
An Embedded Probabilistic Test

Instrument for Built-In Self-Test

Methods

Steven Bielby

steven.bielby@mail.mcgill.ca

260328492

March 2015

Advisor: Gordon W. Roberts

Electrical and Computer Engineering Department

3480 University Street Room 642

Montreal, Quebec

Canada H3A 2A7

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfilment of the requirements for the degree of Master of Engineering



McGill University

Abstract

Faculty of Engineering

Department of Electrical Engineering

Master of Engineering

An Embedded Probabilistic Test Instrument for Built-In-Self-Test Methods

by Steven Bielby

As circuits become increasingly complex and testing time continues to increase, it is

becoming more and more important to use built-in self-test techniques to ensure that

the circuit is working according to its data sheet specifications. This thesis presents

an embedded probabilistic test instrument in an IBM 130 nm CMOS technology, which

allows for quick and easy probabilistic test evaluation of the bit-error ratio of a device-

under-test. The proposed probabilistic test instrument can be used to inject a multitude

of test signals into a device under test including clock signals, AC signals, and signals

with jitter modulated onto the clock edges.

The device under test’s performance is evaluated by extracting the output signal’s

edge locations. Using statistical methods, the probability distributions associated with

the edge locations can be used to calculate the bit error-ratio that can be expected for

the device under test. At the core of this work is the use of Sigma-Delta modulation

techniques in combination with delay-locked loops to create a timing strobe that is finely

and accurately controllable in order to be able to sample the eye-diagram of the device

under test in various locations to extract the edge-location data. All of the timing strobes

and stimulation signals as programmable in software in order to simplify the hardware

design, as well as the work of the test engineer. The probabilistic test instrument was

fabricated using IBM CMOS 130 nm technology and, in conjunction with a custom-

designed PCB, the design was tested to ensure proper operation. The performance of

the test instrument was evaluated by comparing the simulations to the measured results,

as well as using external measurement devices to confirm on-chip measurements.



Résumé

De nos jours, les circuits deviennent de plus en plus complexes et le temps pour les

tester continu d’augmenter. De ce fait, il devient de plus en plus primordial d’utiliser un

mécanisme d’autotest qui sera intégré dans les circuits, afin que ceux-ci soient capables

de s’assurer que leur fonctionnement est conforme à leurs fiches de données. Cette thèse

introduit un instrument de probabilité qui utilise la technologie IBM CMOS 130 nm.

Cet équipement permet une évaluation probabiliste en utilisant la fréquence d’erreurs

binaires de l’appareil qui est sous test et ce, rapidement et facilement. L’instrument

proposé ci-dessus peut être utilisée afin d’injecter une multitude de signaux tests dans

l’appareil sous test. Ces signaux comprennent des signaux d’horloge, des signaux alter-

natifs, et des signaux gigues qui sont modulés avec les bords d’horloge.

L’appareil testé pour sa performance, est ensuite évalué par extraction de l’emplacement

du bord du signal de sortie. En utilisant des méthodes statistiques, les distributions de

probabilités associées aux emplacements des bords du signal peuvent être utilisées afin

de prédire la fréquence d’erreurs. Le cœur de ce travail est l’utilisation des techniques

de modulation Sigma-Delta en combinaison avec une “delay-locked loop” pour créer un

signal de synchronisation qui est précisément contrôlable afin d’être capable de prendre

des échantillons dans différents endroits. L’instrument de test probabiliste a été fabriqué

en utilisant la technologie IBM CMOS 130 nm en conjonction avec un circuit PCB fait

sur mesure. La performance de l’instrument a été évaluée en comparant les résultats de

mesure avec les simulations initiales ainsi qu’avec l’utilisation de dispositifs de mesure

externes.
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Chapter 1

Introduction

Complimentary metal-oxide-semiconductor (CMOS) is a technology that is used to

build integrated circuits. These circuits are what make up the majority of today’s

microprocessors, RAM, image sensors, and other analog and digital circuits. The CMOS

fabrication process is a very mature process that involves a series of photo-lithographic

printing, etching, and doping steps. Like any real-world process, the CMOS fabrication

process is not perfect and it is subject to blemishes and imperfections that can cause

failures or undesired variations in performance of the design which, when shipped to a

customer, will not perform as expected. For these reasons, it is important to test each

and every device after manufacturing to verify the device operates as specified in its

device data sheet. Testing the devices is a very expensive process, but it is a necessary

part of the development cycle of a CMOS chip. Without a proper test, the product’s

value would be significantly decreased due to the unknown operating characteristics of

the device.

Today, the cost of testing represents a large percentage of the total production cost

of a design [1]. Moreover, as transistor sizes decrease, chips are being made with greater

number of transistors and, on top of that, designs are becoming more complex with

greater functionality and performance. This means that with the maturation of the

fabrication process, manufacturing costs will decline, however relative test costs will

continue to increase [1]. The cost of testing is measured by test cost per second, multi-

plied by the test time

cost of test = test cost per second× test time (seconds) (1.1)

The cost per second that it costs to test a design is more-or-less a fixed cost that

involves that cost of an automated test equipment (ATE) machine. The simplest way to

1
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reduce the cost of testing a design is to reduce the amount of time that it takes to test

it. The is the job of the test engineer and their role is to guarantee the performance of

each device after it is fabricated, in the shortest amount of time. It is in the context of

reducing the overall test time, as well as achieving correct test results, that this thesis

has been written.

1.1 Designing to Reduce Test Time

With the knowledge that a product will be tested after fabrication, there are different

design techniques that can greatly reduce the amount of testing time required to properly

test the device. The two techniques are called design for test (DFT) and built-in self-test

(BIST) [1]. DFT is a major topic of interest in automated testing environments. The

idea with a DFT system is to make the design simpler to test, and also have a more

thoroughly testable product. During the design phase, extra built-in circuits are added

to the design in order to reduce the testing complexity, or make a test signal available

outside of the device.

BIST testing is different from DFT whereby the BIST circuits allow for the device to

evaluate its own performance without the need for an expensive additional ATE. A BIST

circuit will usually return a pass/fail signal that allows the testing process to quickly

and easily determine of the device is working properly or not. Since the testing is being

done by the device itself, it is then possible to utilize a much less expensive ATE tester

[1]. Figure 1.1 illustrates a possible die layout of a BIST circuit.

Figure 1.1: Possible layout of die containing BIST circuitry

As the market moves towards more system-on chip (SoC) designs, the introduction

of embedded test circuits in the design becomes more and more important. As there are

limited I/O pins available on a die, it is impossible to route input and outputs access

points to each and every block in the design. In this situation, the motivation for using
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embedded test techniques (DFT and BIST) surpasses simply being able to save testing

time but is essential to ensure a proper functioning of the chip as a whole. While the

introduction of a test bus [2] can alleviate some of these access issues, it does so at

the expense of additional signal integrity issues such as inter-symbol interference (ISI)

and noise effects. Whereas, including embedded instruments directly on-chip eliminates

many of these signal integrity issues, enables validation of many of the critical elements

of the design and, most importantly, does so at low cost. In addition, testing probes have

limited bandwidth capabilities, so it is not always possible to test a chip at the full op-

erating frequency without introducing bandwidth-limiting effects in the measurements.

In this situation, testing on the chip itself and asserting a pass/fail signal becomes very

advantageous.

There are, however, concerns with the introduction BIST test circuits as the measure

of performance is being measured by a circuit that itself has not been tested to ensure

proper functionality. Currently, the ATE testers that are used for such testing are

precisely calibrated to ensure proper measurements, but with BIST circuits, this is not

possible. For this reason, BIST circuits are designed to have very low complexity, and

very high reliability.

1.2 Scope of Thesis

Transceiver circuits are found in a multitude of communication applications that are

used on a daily basis such as mobile phones, computers, and telecommunication equip-

ment [1]. Testing a transceiver circuit and the corresponding communication channel

can be an expensive process for an external ATE tester to undertake given the lengthy

tests that must be performed to ensure proper operation of the device. To keep the

test costs down, a low-cost test alternative must be used, and one method is the im-

plementation of an embedded BIST circuit. The implementation of a BIST circuit into

the design comes at the cost of silicon overhead, but reduced test time, as well as being

able to test the circuits at their full operating frequencies is gained. This is because test

equipment channels are often bandwidth limited so the real full-speed performance is of-

ten difficult to measure [1]. In this thesis, a fully-programmable embedded probabilistic

test instrument is proposed to reduce test time and cost.

A probabilistic test instrument greatly reduces the time required to test a device

under test (DUT) and its corresponding communication channel. The performance

metric that is used to test a communication channel is the bit error ratio (BER) and

this signifies the average number of transmission errors,μNE
, versus the number of total

bits transmitted, NT [1], i.e.
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BER =
μNE

NT
(1.2)

Measuring the BER can be done by running through a large number of bits and

comparing the received with the transmitted bits and determining the correctness of

each one. This method, however is cost-prohibitive, so a probabilistic model is used

which greatly reduces the number of bits that have to be transmitted. A more detailed

explanation of the probabilistic test is described in Section 1.3. By extracting statistical

information regarding the transition locations of the edges of the individual bits, it is

possible to estimate the BER of of the communication channel. A simple hardware

circuit implementation will generate a cumulative distribution function (CDF) of the

transition edges which can be translated into a projected BER for the channel [1].

There are two ways of extracting the CDF of the transition edges: parallel or serial.

The parallel implementation uses one N-element delay line, and N counters. A counter

timing strobe is tapped out of the delay line after each delay element and attached to

the timing strobe input of each counter. The result is that each counter will sample a

different time-instant of the eye diagram, all one delay-element (ΔT) apart, as illustrated

in Figure 1.2. Here, the D-flip-flop is used to sample the DUT output signal, with each

flip-flop connected to a different phase of the delay line. A counter is then used for each

flip-flop to count the number of edge transitions. This implementation saves time, but at

the expense of a greater silicon area [3]. In contrast, the serial implementation is much

smaller, but requires more time to extract the CDF [1]. Figures 1.2 and 1.3 illustrate

the design of the parallel and serial CDF measuring circuits.

Figure 1.2: Principle operation of a parallel CDF-extraction circuit.

The principle of the serial implementation is similar to the parallel realization but

uses a single transition detector and counter, and a variable delay element. As illustrated

in Figure 1.3, using a variable delay element, the timing strobe is set to different time-

instants in the eye-diagram, and the total number of signal transitions is counted for each
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Figure 1.3: Principle operation of a serial CDF-extraction circuit. Multiple measure-
ments must be taken with varying ΔT to construct the CDF.

time instant. The test is repeated multiple times until each time-instant is extracted

and the CDF can be created.

In this thesis, the hardware design and implementation of the probabilistic test in-

strument will be covered. The design will be implemented in IBM CMOS 0.13 μm

technology using Cadence and Virtuoso design tools. Simulations for the ideal cases will

be conducted, and following the fabrication of the design, the experimental results will

be collected and analysed.

1.3 Background on Probabilistic Test Methods

The performance measurement for a communication system is how many transmission

errors occur in a transmission of a given length. This is called the bit error ratio (BER)

and is defined in Equation 1.2 where μNE
is the number of transmission errors and

NT this the total number of bits transmitted. Following Equation 1.2, given the BER

and number of bits transmitted, the number of expected transmission errors over this

channel can be computed. Thus, the BER can be understood as the probability that an

error will occur, where

BER = Pe (1.3)

The BER can therefore be modelled as a random variable with mean μBER and stan-

dard deviation σBER. The most basic way of testing for a BER is by simply comparing

the received signal with the transmitted signal and comparing the two and measuring

the number of transmission errors that are detected over a certain amount of time. Fig-

ure 1.4 illustrates this setup. However, as the BER is defined as an average based on the

number of transmitted bits, a multitude of similar tests must be conducted to compute
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an average value [1]. Additionally, extracting the average from a random variable with

a finite number of measurements will always have a level of uncertainty with it [1]. The

greater the number of transmitted bits, the greater the level of certainty of the measure-

ment. As a general rule, to achieve a high level of confidence in the measurements, the

number of bits transmitted is approximately 10 times the reciprocal of the BER. For

example, to determine if a channel is able to achieve a BER of 1× 10−14, it is necessary

to transmit approximately 10× 1014 bits.

Figure 1.4: BER test setup

test time =
number of bits

clock speed
(1.4)

If a system operates at a clock speed of 1 GHz, according to Equation 1.4 the test

would take

10× 1014

1× 109
= 1× 106s (1.5)

The time outlined in Equation 1.5 is prohibitively long and can not be used as a

production test. For this reason, a number of different approaches are taken to shorten

the amount of test time in the production environment. In this thesis, two of these

techniques that are used to estimate the BER that are based on the edge locations will

be covered: amplitude-based scan test and time-based scan test. There are two other

BER test methods that can be used: the Dual-Dirac jitter decomposition method, and

the Gaussian mixture jitter decomposition method [1]. These test methods follow a

similar implementation to the time- and amplitude-based tests, but are only used when

the input stimulus signals introduce a data-dependent jitter component; for example

when a PRBS is used as a stimulus signal. The Dual-Dirac and Gaussian mixture jitter

decomposition tests are used to separate the deterministic jitter from the random jitter
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to evaluate the performance of the DUT. In this thesis, an simple ’1010’ stimulus signal

is being used in the place of a PRBS, so only the amplitude- and time-based scan tests

are necessary to evaluate the performance of the DUT. In a future work, if a PRBS test

pattern is used, the utilization of such test methods would be appropriate.

For lack of a better statistical model at this time, the distribution of the edge distri-

bution will be assumed to be Gaussian with mean μrobust and standard deviation σrobust.

It is often assumed that the variation in the edge transition is caused by uncorrelated

unbounded random noise alone. As such, it is common in the industry to refer to σrobust

as the random jitter (RJ) component, denoted as σRJ .

In this work, we make use of the robust mean and sigma method whereby they are

calculated by utilizing the first and third quartile values from a Gaussian distribution

[4] (denoted as Q1 and Q3) which are gathered from the CDF result. More specifically,

from the standard Gaussian distribution, the robust mean is easily calculated as

μrobust = Q1 +
(Q3−Q1)

2
(1.6)

and the robust sigma is found from

σrobust =
(Q3−Q1)

1.35
(1.7)

1.3.1 Amplitude-Based Scan Test

The amplitude-based scan test uses an alternating “1010” pattern to ensure that no

periodic pattern or pattern dependent jitter is present [1]. Assuming that each bit has

the same probability of error and given the standard deviation of the edges, σN , it is

possible to define the BER as a function of the threshold voltage, VTH , that is used to

sample the eye diagram as described as [1]

BER(VTH) =
1

2
− 1

2
× Φ

(
VTH − VLoic0

σN

)
+

1

2
× Φ

(
VTH − VLoic1

σN

)
(1.8)

Solving Equation 1.8, the minimum BER occurs when the threshold voltage is set to

the middle of the two logic levels. This makes sense as this would offer the widest point

of the eye opening that would be sampled.

The eye diagram that is being referred to is a time-denormalized interleaving of the

transmitted bit periods. Adjusting the sampling time and sampling threshold voltages,
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it is possible to move the decision point into the most favourable position. The eye

diagram in shown in Figure 1.5.

Figure 1.5: An eye-diagram of a received signal generated from a random bit sequence.
Superimposed on this figure are the voltage and timing decision levels.

In the amplitude-based scan test, a first measurement is taken with the threshold

voltage moved closer to the logic 1 voltage level so as to worsen the eye-diagram sampling

and hence performance of the system. The reduction in the overall system performance

will greatly reduce test time as the average number of bits transmitted to get a single

error will greatly decrease. The logic level 0 is insignificant in this measurement so

Equation 1.8 can be written as [1]

BER(VTH) ≈ 1

2
− Φ

(
VTH − VLoic1

σN

)
(1.9)

Next, this process in repeated a second time, but with the threshold voltage moved

even closer to the logic 1 voltage level resulting in a degradation of performance and an

even shorter test time. Two different performance measurements allow to solve for the

two unknowns in Equation 1.9, VLogic1 and σN1 .

The two tests are repeated but with the VTH moved closer to the logic 0 voltage

level. Solving again for the two unknowns, VLogic0 and σN0 in this case, and averaging

the two σN values, it is possible to substitute them into Equation 1.8 to calculate the

BER. Additionally, the optimum threshold level for the best performance can be found

to occur at [1]

VTHideal
=

σN0VLogic1 + σN1VLogic0

σN0 + σN1

(1.10)
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The idea of using differing threshold voltage levels is illustrated in Figure 1.6. As

shown, the idea is to solve for the unknowns when the system is performing sub-optimally

where a significantly fewer number of bits need to be transmitted. Using the results from

these measurements, it is possible to estimate the BER when the sampling threshold

voltage is in the ideal location.

Figure 1.6: The relationship between threshold voltage and BER

1.3.2 Time-Based Scan Test

The time-based scan test is similar to the amplitude-based scan test where it uses

statistical methods to shorten test time. Here, the BER depends on the voltage noise as

well as the jitter of the edge of the sampling signal [1]. In this test, instead of varying

voltage threshold levels, it is the sampling time that is altered. Referring to Figure 1.5,

this corresponds to the adjustment of the location of the sampling time on the horizontal

axis.

It has been shown in [1] that the BER of a channel can be approximated by extracting

the RJ from the distribution of edge transitions at the receiver by varying the strobe

time, tTH . In doing so, the BER at any sampling instant (referred to as the BER bathtub

curve) can be derived according to
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BER(tTH) =
1

2
− 1

2
× Φ

(
tTH − 0

σRJ

)
+

1

2
× Φ

(
tTH − T

σRJ

)
(1.11)

Here T is assumed to be the bit duration of the receiver signal (see Figure 1.5). It

follows that from Equation 1.11, that if a time sampling instant is chosen to be much

less than T/2, then the BER expression can be written as

BER(tTH) =
1

2
− 1

2
× Φ

(
tTH − 0

σRJ

)
(1.12)

Solving for σRJ and substituting back into Equation 1.11, it is then possible to esti-

mate the minimum BER by making only one measurement [1].

1.3.3 Issues with Present-Day Test Methods

The tests outlined in Sections 1.3.1 and 1.3.2 are excellent methods for reducing test

time in production, however there are also some issues with the tests. One major issue is

the fact that the present-day instruments that are used to capture the transition edges

has a limited bandwidth. Often times, the bandwidth is limited such that the measure-

ments can not be taken at the full clock speed of the device, and a sub-sampling process

must be used. Another drawback of a bandwidth-limited system is that any means to

extract the high-speed signal will be impacted by the bandwidth of the extraction in-

strument [1]. At high-speeds, testing a communication channel can not be done properly

with external equipment. The reason is that the signal integrity is compromised when

probes are attached to the system and introduce additional loading effects [5].

Modelling the system to disregard the added loading effects of the probes is extremely

difficult as it would need to account for the zero-crossing times as well as the introduced

inter-symbol interference introduced by the probes. Thus, this thesis proposes an on-chip

BIST test method that will use a probability extraction unit to make all the measure-

ments on chip such that no external probe is needed for testing. This will allow the

measurements to be taken at full-speed, and no additional loading effects will be intro-

duced into the system when the measurements are taken so an accurate performance

can be measured.



Chapter 1. Introduction 11

1.4 Thesis Outline

This thesis presents the overall design principles and hardware implementation of an

embedded probabilistic test instrument. The following chapters will cover the implemen-

tation in greater detail. Chapter 2 provides a background of the basic building blocks

that have been implemented in the probabilistic test instrument. Chapter 3 walks the

reader through the sigma-delta modulator phase generation techniques. Chapter 4 de-

scribes the delay-locked loop (DLL) as a time mode filter and also goes into great detail

about a new design method for high-order DLLs, and Chapter 5 describes the archi-

tecture of the probabilistic test instrument. Finally, Chapter 6 covers the experimental

results, and Chapter 7 is the conclusion.



Chapter 2

Background of the Building

Blocks

This chapter will describe the basic building blocks that will be used to construct

the probabilistic test instrument (PTI). Each input will be generated by a circular shift

register that will generate a variety of signals that will be used to stimulate the device

under test (DUT). The signals are all individually programmable such that it is possible

for the test engineer to adjust the test signal based on the application. Each circular shift

register will either be followed by a voltage-more filter, or a time-mode filter depending

on the nature of the input signal. By adjusting the filters, as well as the input bitstreams

loaded into the registers, it is possible to achieve different input signals to stimulate and

measure the performance of the DUT. At the core of the DUT test circuit is a DLL and

circular shift register used to control the timing strobe to sub-gate delay resolution [6].

2.1 D-Flip-Flop

The D-flip flop is a very crucial component in this thesis as it is included in many

of the basic building blocks of the PTI. The D-flip-flop that is used is a positive-edge

triggered design with set and reset pins. A D-flip-flop will latch the value at the D input

on the rising edge of the clock signal and it will be propagated to the output until the

next rising clock edge. The design is made up of 6 3-input NAND gates for a total of

36 transistors in each flip-flop. Figure 2.1 shows the design of the D-flip-flop.

12
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Figure 2.1: D-flip-flop design

2.2 Delay-Locked Loop

A delay locked loop (DLL) is a system whose output signal phase is related to the

phase of the input signal. A DLL is very similar in design to a phase-locked loop (PLL),

except that the voltage-controlled oscillator (VCO) is replaced with a voltage-controlled

delay line (VCDL). Typically, PLLs have been more widely used in system architec-

tures due to their ability to be used under many different conditions; from frequency

multiplication, to clock-recovery, to signal demodulation [6]. DLLs have emerged as an

alternative to PLLs for specific functions where only a single frequency is required. The

advantages of a DLL over a PLL is that they are easier to stabilize, simpler to design,

and they offer better jitter performance [7]. The jitter performance is the direct result

of not having a VCO in the design which means that phase errors induced by supply

noise, or component non-idealities, do not accumulate over time which results in a signal

with a less jitter. Much of the work in this section follows work that was completed and

published in [6].

There are two different types of DLLs that can be implemented. They differ from

one another based on their inputs, and their jitter transfer characteristics. These will

be referred to as Type-I and Type-II DLLs and are displayed in Figure 2.2 and Figure

2.3 respectively [8].

A DLL is an element where the amount of delay in the delay line is adjusted such

that a desired phase relationship is achieved between the input and the output signals.

By controlling this relationship, it is possible to accurately adjust the output phase of

the DLL. For a Type-I DLL, the reference feedback is compared with a delayed version

of itself. This architecture is widely used in DLL-based frequency synthesizers [9] and
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Figure 2.2: Type-I DLL

Figure 2.3: Type-II DLL

Figure 2.4: Type-I DLL linear continuous-time model

Figure 2.5: Type-I DLL with added delay
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multi-phase clock generators [10]. In the Type-II architecture, there are two different

inputs that are being compared: a delayed clock reference, and an input data signal.

Looking at the excess-phase transfer function of both DLL architectures, the differences

between the two designs can be highlighted.

In the Type-I case, the DLL can be represented in the s-domain by the diagram shown

in Figure 2.4. This continuous-time model representation includes a small delay block

represented by the e−sτD which accounts for the phase offset between the input signal

at the phase detector and the VCDL inputs. With the small added delay added to the

input to the VCDL, the Type-I DLL can be represented by Figure 2.5 where the extra

delay to account for any offset is present. From this design, it is possible to generate

the system equations such that the transfer function of this design can be derived. The

output phase is represented as

θo(t) = θclk(t+ τD) +KDVc(t) (2.1)

while vφ(t) and vc(t) are derived to be

vφ(t) = KP {θCLK(t)− θo(t)− 2π} (2.2)

vc(t) = f(t) ∗ vφ(t) (2.3)

Substituting Equations 2.2 and 2.3 into 2.1, and simplifying in the time-domain leads

to

θo(t) = θCLK(t− τD) +KDKP f(t) ∗ {θCLK(t)− θo(t)− 2π} (2.4)

Similarly, the analysis can be done in the frequency-domain which is shown as

θo(s) = e−sτDθCLK(s) +KDKPF (s)

{
θCLK(s)− θo(s)− 2π

s

}
(2.5)

Simplifying and solving for the input-output behaviour of this design leads to

θo(s) =
e−sτD +KDKPF (s)

1 +KDKPF (s)
θCLK(s)− KDKPF (s)

1 +KDKPF (s)

2π

s
(2.6)
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The first term in Equation 2.6 accounts for the phase offset between the two input

clock points. The extra delay at the input of the VCDL is usually zero, which makes

this term simplify to simply θCLK . The second terms is the dynamic behaviour of the

system that will account for the step change in input phase.

The input θCLK can be represented by a constant clock input as well as an excess

phase input. This is represented in the Laplace Domain as follows:

θin(s) = θCC(s) + φin(s) =
ωin

s2
+ φin(s) (2.7)

The input-output behaviour can be simplified from 2.6 to be

θo(s) =
e−sτD +KDKPF (s)

1 +KDKPF (s)

[ωin

s2
+ φin(s)

]
− KDKPF (s)

1 +KDKPF (s)

2π

s
(2.8)

Solving simply for the input-output excess phase behaviour,

φo(s) =
e−sτD +KDKPF (s)

1 +KDKPF (s)
φin(s) (2.9)

Under the condition of no excess delay at the input of the VCDL, τD = 0, the output

excess phase can be show to track the input phase, i.e.,

φo(s) =
e−sτD +KDKPF (s)

1 +KDKPF (s)

∣∣∣∣
τD=0

φin(s) = φin(s) (2.10)

As one would expect, the output phase of the DLL is directly matched to that of the

input phase. For this reason, the type-I DLL is ideally suited for clock synchronization

applications.

A similar analysis can be done with the Type-II DLL. In this case, as mentioned pre-

viously, the two inputs to the phase-detector and the VCDL are not connected together.

This allows for the Type-II DLL to serve a different purpose to that of the Type-I DLL.

Following a similar analysis procedure to that of the Type-I DLL, the architecture of

the Type-II DLL in Figure 2.6 can be transformed to obtain the linear continuous-time

model, shown in Figure 2.7.

The system equations for the Type-II DLL are as follows:

θo(t) = θclk(t+ τD) +KDVc(t) (2.11)
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Figure 2.6: Type-II DLL architecture

Figure 2.7: Type-II DLL linear continuous-time model

vφ(t) = KP {θDATA(t)− θo(t)− 2π} (2.12)

vc(t) = f(t) ∗ vφ(t) (2.13)

The time-domain (Eqn. 2.14) and frequency-domain (Eqn. 2.15) representations for

the input-output relationship of this model are derived from Equations 2.11, 2.12, and

2.13, and are as follows:

θo(t) = θCLK(t) +KDKP f(t) ∗ {θDATA(t)− θo(t)− 2π} (2.14)

θo(s) = θCLK(s) +KDKPF (s)

{
θDATA(s)− θo(s)− 2π

s

}
(2.15)
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Solving for the output phase and simplifying leads to

θo(s) =
1

1 +KDKPF (s)
θCLK(s) +

KDKPF (s)

1 +KDKPF (s)
θDATA(s)− KDKPF (s)

1 +KDKPF (s)

2π

s
(2.16)

Similar to the substitution that was performed for the Type-I DLL, it is possible to

decompose the data signal into both a constant-clock input as well as an excess-phase

input. This is shown below where the constant clock is the same frequency as the

reference clock at the input to the VCDL:

θDATA(s) = θCC(s) + φin(s) =
ωin

s2
+ φin(s) (2.17)

Solving for the excess-phase transfer function, it is possible to extract the behaviour of

the Type-II DLL as

φo(s) =
KDKPF (s)

1 +KDKPF (s)
φin(s) (2.18)

Equation 2.16 has three terms. The first term is representative of the reference clock

transfer function, the second terms is representative of the data transfer function, and

the third is the term accounts for the change in output phase. With the data input

separate from the clock input, it is possible for the Type-II DLL to be utilized for more

that simply clock synchronization. If the filter function, F (s), is an integrator, then it

can easily be shown that the data transfer function would be low-pass, while the clock

transfer function would be high-pass.

With the clock transfer function being high-pass in nature for the Type-II DLL and

all-pass in Type-I, it is important for designers to keep in mind that the DLL is subject

to jitter propagation from the input reference frequency. For this reason, it is important

that the reference clock that is used in these designs has a very low phase noise in order

to have a clean output signal.

2.2.1 Phase Detector

The phase detector is a block that compares the phase of two signals and determines

if the first is ahead, or behind the second. The simplest phase-detector can be imple-

mented using an XOR or XNOR gate as shown in Figure 2.8. The disadvantage of this

simplistic phase-detector is that it only has a linear input range of π radians. This limits



Chapter 2. Background of the Building Blocks 19

the detector’s ability to compare signals across a full period range and in turn limits

the capture range of the DLL. The phase-detector produces an average voltage output

proportional to the phase difference between the two compared signals.

Figure 2.8: XNOR logic implementation as a phase-detector

Figure 2.9 shows the working principle of the phase-detector from 2.8. When both

signals are the same, the output is equal to VDD and when they are different, the output

is equal to VSS . The overall average voltage level of the signal will be proportional to

the amount of phase that the two signals differ by.

Figure 2.9: Phase-detector example signals

For the implementation in a DLL, a phase-frequency detector (PFD) was used in this

thesis. The PFD has the added advantage that it can produce an output when the two

signals being compared differ not only in phase, but in frequency as well. The PFD is

largely used in PLL applications, but was also used in this instance as the phase-detector

for a DLL. The PFD implementation also has the added advantage that the linear region

of operation spans 4π radians. This ensures that the PFD output is always working in

the linear range when comparing two signals of differing phase. The implementation of

the PFD that was implemented in this work is shown in Figure 2.10.

The PFD is constructed with two D-flip-flops and a feedback AND gate. Each flip

flop is attached to one of the input signals that will be compared. The output of each

flip flop is connected to both a signalling line, as well as the feedback AND gate. The

signalling line represents either an up or a down pulse, which signals to the charge pump

(Subsection 2.2.2) what action to take to align the two signals. The D-flip flops are rising-

edge sensitive, so only the rising edges will be detected. When a signal transitions, the
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Figure 2.10: PDF design

D-flip flop it is attached to asserts a logical high value at the output. The output signals

are compared with the AND gate, and when they are both a logical high value, this

triggers the reset signal for both D-flip-flops so that the detecting process can start over.

The difference in the time that one signal is asserted will correspondingly translate to the

width of the pulse that the charge pump block will generate to control the delay line. As

an example, if signal A were to transition high, then the “up” signal would transition to

high. When the B input transitions, the “down” signal will transition to high and once

both the “up” and “down” signals are high, the reset signal will be triggered, which will

reset both the “up” and “down” signals to low, such that the process can be repeated

for each clock period.

Figure 2.11: PFD example signals

2.2.2 Charge Pump

The charge pump is a simple circuit which translates an incoming digital voltage

signal into an output current. The charge pump block is a dual-input, single-output
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design where the inputs are attached to the “up” and “down” line of the phase-detector,

and the output is attached to the filter of the DLL. The output is a single-ended output

where the “up” and “down” signals are essentially added, and their result is converted

into a current. The overall result of this block is that the corresponding “up” and “down”

signals will either provide a positive or negative current from the DLL loop filter. The

schematic of the charge pump is shown in Figure 2.12.

Figure 2.12: Charge-pump architecture

The charge pump architecture described in Figure 2.12 shows how the incoming up

and down pulses from the phase-detector are converted into a corresponding current.

The reference current Ibias is set using a simple resistor. Since the transistors are biased

to a certain DC operating point, the resistor regulates the current that is seen at the

incoming reference branch. In the design, the current was limited to 1mA. Transistors

M1, M2, and M7 are used as current mirrors where the current flowing through Ibias will

be mirrored to the current flowing through the sources of M1, M2, and M7. Similarly,

the same is done at the top of the schematic with transistors M3 and M4. The result of

this architecture is that transistors M5 and M6 will be used as switches in order to let

the current from the branches flow at the desired times towards the output. When “up”

is high and “down” is low, a current of 1mA will be sourced to the loop filter via the

“out” node which will increase the delay of the VCDL. Alternatively, when “down” is

high and “up” is low, a current of 1mA will be sinked from the loop filter and decrease

the delay of the VCDL.
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2.2.3 Loop Filter

The loop filter of the DLL is the main component which determines the overall filter-

ing characteristics of the DLL. The loop filter function can be calculated by determining

the overall desired DLL response. The loop filter serves to extract the DC signal from

the output of the charge pump, and pass this along to the VCDL such that the delay

can be adjusted so that it is possible to achieve lock for the DLL. The loop filter can

be chosen to have either an active, or a passive implementation based on the require-

ments of the transfer function that is desired. More information about the design and

the implementation of the loop filter functions can be found in Chapter 4. The most

simplistic loop filter that can be implemented is for a first-order DLL where a simple

capacitor is used. The capacitor will be used as a current-in, voltage out filter and the

implementation is shown in Figure 2.13.

Figure 2.13: 1st-order loop filter for a DLL

2.2.4 Voltage-Controlled Delay Line

The voltage-controlled delay line (VCDL) is the component of the DLL which differ-

entiates it from the PLL. The VCDL serves to adjust the delay of the clock reference

signal such that once it is compared to the incoming reference signal at the inputs to

the phase-frequency detector, they are both exactly in phase. It is possible to adjust

the phase of the output signal by simply adjusting the voltage at the control line of

the VCDL. In the design that was used in this dissertation, an increase in voltage on

the control line will increase the delay of the delay line, and a reduction of voltage will

decrease the delay of the delay line. The architecture of the VCDL that was used is

simply a series of inverters connected in series with an adjustable amount of capacitance

at each node. By increasing the control voltage, more capacitance will be introduced

at each node - essentially increasing the RC time constant of the buffer. The increase

of the RC time constant of each buffer in the line will introduce more delay from the

beginning to the end of the delay line. This architecture is displayed in Figure 2.14.
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Figure 2.14: Voltage-control delay line architecture

It is desired to have a linear voltage-to-delay transfer characteristic such that the

signal’s phase can be controlled in a predictable manner. The sensitivity by which the

delay line can be controlled is determined by running simulations to extract the exact

behaviour of the circuit. The majority of the DLLs designed in this dissertation used

an architecture of 16 inverters with the attached capacitance implemented as the gate

of a large transistor. A transistor was substituted in the place of a capacitor in order

to make the layout of the VCDL much smaller without any noticeable degradation in

performance.

2.3 Sigma-Delta Modulator

Sigma-delta modulation is a digital signal processing method that is used to encode

analog signals into digital signals. The result of sigma delta modulation is that the

input analog signal will be represented at the output by a density of digital bits - a

density of 1s and 0s. The transformation from an analog to a digital signal is done by

sampling the signal at a specific rate, called the sampling rate. The sampling can be

done at any frequency above the Nyquist rate in order to fully represent the signal in the

digital domain. The metric with which the sampling rate is often referred to is called

the over-sampling ratio (OSR). The OSR is defined as

OSR =
fs
2fB

(2.19)

In Equation 2.19, fs represents the sampling frequency, and fB represents the signal

bandwidth that is being converted. Figure 2.15 shows the basic implementation of a

sigma-delta modulator.
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Figure 2.15: General block diagram of sigma-delta modulator

Sigma-Delta modulators are a very popular choice as an analog-to-digital converter

(ADC), due to the fact that the implementation has a high degree of insensitivity to

analog circuit imperfections so they are an excellent choice when being integrated into

CMOS designs [11]. The sigma-delta modulator relies on two signal processing tech-

niques - oversampling and quantization noise feedback. Quantization noise is the error

that accumulates when the input signal with infinite different levels is quantized into a

set of discrete levels. This transformation generates a small error and is referred to as

the quantization error [11].

The advantage of oversampling the input signal is identified by Figure 2.16. The

quantization noise power is evenly distributed in the range of [−fs/2, fs/2] and its PSD

magnitude is represented by

SE(f) =
Δ2

12fs
(2.20)

and the in-band noise power is given by

PE =
Δ2

12×OSR
(2.21)

where Δ represents the smallest quantization level difference.

When oversampled, the quantization noise power stays the same, but is simply spread

over a larger bandwidth. This is represented by the two shaded rectangles in Figure 2.16.

When a low-pass filter is used to recover the signal, the resulting oversampled signal will

have less quantization noise.

The advantage of oversampling of a signal is represented by the overall signal-to-noise

ratio (SNR). SNR is defined as
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Figure 2.16: Spreading of quantization noise in an oversampled sigma-delta system

SNR |dB = 10log10

(
Psignal

Pnoise

)
(2.22)

within the bandwidth of the signal. As the sampling rate increases and the in-band

noise is reduced,

SNR′ |dB = 10log10

(
MPsignal

Pnoise

)
(2.23)

and the in-band SNR changes according to

ΔSNR |dB = SNR′|dB − SNR|dB = 10log10(M) (2.24)

The change in the effective number of bits of resolution of the signal is represented by

Δn =
ΔSNR|dB

6.02
=

10log10(M)

6.02
=

1

2
log2(M) (2.25)

This shows that an extra 0.5 bits of resolution is gained for every time the oversampling

ratio is doubled.

Another advantage of the sigma-delta modulator that further increases the perfor-

mance is that it is possible to filter the quantization noise in such a way that most

of its power lies outside of the signal band [11]. This is called noise-shaping and it

is represented in Figure 2.17. The higher the sigma-delta modulator order, the more
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pronounced the noise shaping is, however the increase in order of the modulator greatly

increases complexity as well. The benefits of higher order modulators and increased

OSR on the SNR are shown in Figure 2.18. Here, the reader can see that a higher-order

modulator results in a higher SNR for the same OSR.

Figure 2.17: Noise shaping of the sigma-delta ADC

Figure 2.18: SNR vs. OSR for different orders of sigma-delta modulators

2.4 Circular Shift Register

The circular shift register is a series of serially connected memory cells that will

right rotate a bit sequence using a clock signal to create a circular bitstream. The

memory cells that are used in this particular implementation are D-flip-flops and they

are arranged in different lengths depending on the application. The use for a circular

shift register is that it can easily be loaded using a source and a clock signal, and it is

fully programmable even after the chip has been fabricated. This allows for any design

containing a circular shift register to be programmed with any desired bit sequence in

order to deliver the desired input signal.
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The advantage of using a circular shift register over an external source is that it

is ideally suited for built-in-self-test (BIST) methods. Once programmed, no external

source is required resulting in a self-contained test environment. In addition, the circular

shift register could be pre-programmed to contain a desired bitstream such that no initial

loading or initialization of the bitstream is required. In order to have a continuously

rotating stream that will repeat over and over again, the output of the last D-flip-flop

is fed back into the input of the first D-flip-flop to make a continuous stream. At each

rising edge of the clock signal, the bits are rotated right one bit. Figure 2.19 shows a

representation of the circular shift register implementation.

Figure 2.19: Circular shift register implementation using D-flip-flops

The implementation of a circular shift register can be used to generate signals with

high precision and very low hardware complexity [12]. It can be loaded with any rep-

resentation of bits that the designer wants and it is fully programmable even after the

chip has been fabricated.

2.5 Digital-to-Time Converter

The digital to time converter is a device which translates a digital-representation of

a signal into a time-representation of a signal. The converter takes an input of digital

bits, and produces an output waveform with the edge transitions located at specific a

point in time relative to a reference clock signal. The relationship between the input

code selection and the output edge transition locations [13] can be represented as

tout = at(b0 + b12
1 + b22

2 + ...+ bN−12N−1) + tos (2.26)

In this equation, tout represents the phase shift of the output signal, at represents the

conversion relating the digital select bits into time, b0...bN−1 represents the individual

input digital select bits for the DTC, and tos is a fixed time offset.
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The most simplistic way to construct a digital-to-time converter is by using a DLL

in conjunction with a multiplexer. The DLL’s delay line will generate an array of clock

signals that differ by a fixed phase difference. The multiplexer is then used to select the

clock signal at the desired phase. The number of different phases that are available will

be limited by the number of delay elements in the DLL delay line, as well as the number

of control lines to select the signal. The architecture of the DTC is displayed in Figure

2.20.

Figure 2.20: Architecture for a basic digital-to-time converter

The input select lines are used to determine which output phase signal is selected

from the DTC. An example waveform output is shown in Figure 2.21 and depicts the

output waveform from an input of the code sequence 0,1,2,3. In this particular example,

there are only 4 different clock phases available to select from, meaning that only 4

equally-spaced phases are fed into the multiplexer.

Figure 2.21 represents a multi-bit DTC implementation. The figure is used to convey

the idea of the DTC to the reader. For the implementation in this thesis a single-

bit implementation is used that takes the output of a sigma-delta encoded signal to

control the select line of the DTC, and hence the output time encoding of the signal.

The single bit implementation selects between only two differing phases, as opposed to

the multiple-phases of Figure 2.21. The attractiveness of this implementation is the

simplicity of being able to control the multiplexer with a single bit. Depending on the

desired implementation, any two phase signals can be chosen as the input to the DTC,

but for simplicity, phases 90o apart were chosen.
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Figure 2.21: Example DTC waveform output for a select sequence of 0,1,2,3

The output phase of the single bit DTC with respect to the clock reference can be

represented as

φ(x) =

{
0o: x = 1

90o: x = 0
(2.27)

where x represents the single bit select input.

2.6 Frequency Divider

The frequency divider is a component which is used to divide the frequency of an

incoming periodic clock signal. The frequency divider is generally used to divide fre-

quencies around the chip, and is often used in the feedback loop of a multiplying PLL.

The frequency divider has a very simple architecture and is simply a cascade of a specific

number of D-flip-flops. In the applications of this thesis, the frequencies will only be

divided by 2N , where N is an integer. The equation with which we can determine how

many flip-flops are required to make the desired division is shown in Equation 2.28. Fig-

ure 2.22 shows the architecture of a divide-by-4 circuit. In this case, only 2 D-flip-flops

are necessary to carry out the division process.
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Quantity = log2(N) (2.28)

Figure 2.22: Frequency dividing by 4 circuit

2.7 Voltage-Mode Filter

A voltage-mode filter is a component which will block the passage of certain signals

based on their frequency. In a voltage-mode signal, information is carried by the voltage

level of the signal. A voltage-mode filter can be either low-pass, band-pass, or high-pass.

A low-pass filter will pass all the voltage signals whose frequency is below the cut-off

frequency. A band-pass filter will pass all the voltage signals whose frequency in between

the lower and upper frequency cut-offs. A high-pass filter will pass all the voltage signals

whose frequency is above the cut-off frequency.

A voltage-mode filter can posses both active and passive components, can be of many

different orders, and can have many different frequency responses. Typically, high-

frequency applications utilize passive components, while low-speed applications utilize

active components. The reason for this is that the parasitic capacitances associated with

active filters can have a very detrimental effect on the circuits function at high speeds.

The order of the filter plays a very important role in the roll-off of the filter at the

cut-off frequencies. A higher-order filter will have a steeper gain roll-off than a lower-

order filter and will result in less unwanted signals being passed through the filter. The

higher order the filter is, the closer the frequency response gets to the ideal “brick-wall”

cut-off, where all frequencies outside the band are suppressed. With every increase of

order, a performance increase of 20dB/decade can be observed in the frequency-response

plot. The resulting filters will have an NX20dB/decade performance for an N th-order

filter. An example of the gain-attenuation advantages is shown in Figure 2.23 where

four Butterworth filters are compared.
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Figure 2.23: Comparison between 4 different orders of butterworth voltage-mode
low-pass filters

In addition to differing orders of filters, there are also differing filter classes. Each

filter type has its own advantages and disadvantages. For example, Butterworth filters

are best for flat passband gain, Chebychev and Elliptic have a very steep roll-off at the

expense of ripple in the passband region, and Bessel has a very linear phase-response.

2.8 Time-Mode Filter

Time-mode signal processing (TMSP) has become a popular field of study where

voltage-domain sampled data is encoded into a time signal where the information is

stored with respect to a reference clock edge [14]. This encoding makes the data much

less susceptible to amplitude noise which is becoming a limiting factor in the performance

of sub-micron analog technologies [14]. A time-mode filter works as a part of TMSP and

it is similar to a voltage-mode filter, but instead of filtering out the voltage levels that

are not within the passband, it is the time-difference with respect to a reference that

will be filtered out. In a voltage-mode circuit, the levels of the voltage are specified with

respect to a common level - usually ground. The voltages are measured with respect to

this and the rate at which they change is called the frequency of operation. Similarly,

with time-mode circuits, the signal is compared to a reference signal but instead of

comparing voltage levels, the phase of transition edges are compared. The rate at which

the edges change location and complete a full period is determined to be the frequency at

which the signal is operating. An comparison between voltage- and time-mode circuits

is illustrated in Figure 2.24.
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Figure 2.24: Comparison between time- and voltage-mode signal representations

The advantage of using time-domain signals is that it an be easily implemented in any

technology because a propagation delay is inherent to all materials. Additionally, the

resolution at which a signal can be controlled is much greater than the voltage-circuit

counterparts. It is possible to achieve picoseconds resolutions in time, while often times

microvolt resolutions are the smallest achievable resolutions in voltage-mode circuits.

The time-mode filter is very similar to the voltage-mode filter discussed in Section

2.7, where a phase difference will be passed if the frequency is within the passband of

the filter, and it will be attenuated if it is not. Time-mode filters can also be low-pass,

band-pass, or high-pass in nature and they can be of many different orders, as well as

from many different families of filters.

There are a couple of different ways of implementing time-mode filters: using a PLL,

a DLL, or time-mode reconstruction IIR filters [15] [14]. In this thesis, a DLL is used

as a time-mode filter. A DLL was selected to be used as the time-mode filter over a

PLL for various reasons. PLLs have disadvantages that make their use in high-speed

designs very problematic, especially when both excellent performance and reliability are

desired [16]. Additionally, The voltage-controlled oscillator (VCO) of the PLL is a major

source of problems. If not designed correctly, then there can be a significant amount

of phase-noise that will be present on the output edges of the clock signal. Variations
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in temperature, supply voltage and process variations will greatly affect the operating

performances of a PLL.

DLLs, however, are not as susceptible to the problems outlined above. Instead of

using a VCO, the DLL incorporates a voltage controlled delay-line (VCDL) (Section

2.2.4). The output of the DLL will be adjusted such that it will align with the input

edges to achieve lock, such that the input buffer delay, and the clock skew are reduced

to zero. Since the design operates at a single frequency, the DLL was chosen to act as

the time-mode filter for this thesis. The implementation of the DLL as a time-mode

filter is covered in Chapter 4.

2.9 Counters

A counter is a digital logic block which stores the number of times a positive ris-

ing edge has occurred. There are various types of counters, but the one that will be

implemented in this thesis is an asynchronous counter. The counter architecture is a

serially-connected line of D-flip-flop implemented dividers (Section 2.6). The output of

one counter is fed into the input of the next. Thus, when the counting process is finished,

a binary-representation of the number is left in the counting block. A representation of

the architecture is presented in Figure 2.25.

Figure 2.25: Asynchronous counter architecture

2.10 PLL

A phase-locked loop is a similar structure to a DLL, where the output phase is related

to the input phase. The difference with the two structures is mainly the fact that the
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DLL uses a VCDL, and a PLL uses a voltage-controlled-oscillator (VCO). All the other

components in the architecture are the same and were described in Section 2.2. The

VCO allows the PLL to work with a number of different frequencies unlike the DLL that

can only work with a single frequency. For this reason, the PLL is often used as a clock

multiplier on chip. The negative feedback loop is divided down with a series of dividers

which results in having the output frequency multiplied by that same ratio. Figure 2.26

shows the basic design of a PLL.

In this work, the PLL is used as a frequency multiplier. The reason that the PLL is

used, is that it can reliably multiply the frequency of a clock signal while still keeping

the same overall relative phase shift in the signal. This property makes synchronization

of signals very simple.

Figure 2.26: Block diagram of a phase-locked loop

From Figure 2.26, it can be shown that the overall transfer function can be written

as

θo(s) =
NPLLωFR

s(NPLLs+KV COKPF (s))
+

sNPLLKV COF (s)

s(NPLLs+KV COKPF (s)
θin(s) (2.29)

Where NPLL represents the total division factor in the feedback loop, KP represents the

phase-detector coefficient, KV CO represents the VCO constant, and ωFR represents the

free-running frequency of the PLL.

The divider in the feedback loop will serve to multiply the output frequency by the N-

dividing ratio. From a purely logical standpoint, the divider works because the VCO is

matching the two signals at the input to the phase detector. The frequency of the signal

in the feedback loop is N-times lower in frequency due to the divider, hence the output is
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N times the frequency of the input frequency. This can be shown mathematically where

a ramp input phase change is a constant input frequency described by

θin(t) = ωint · μ(t) ⇐⇒ θin(s) =
ωin

s
(2.30)

Taking the derivative we find

ωin(s) = sθin(s) =
ωin

s
(2.31)

Applying the final value theorem to Equation 2.29, the output frequency can be shown

to be

ωo(∞) = lim
s→0

sωo(s) = lim
s→0

NPLL [ωFRs+KV COKPF (S)ωin]

sNPLL +KV COKPF (S)
= NPLLωin (2.32)

This shows that the output frequency converges to a multiple of the input frequency

which is determined by the divider in the feedback loop of the PLL. The loop filter for

a PLL is designed very similarly to the design of the DLL loop filter. This process is

described in great detail in Section 4.1.

2.11 Summary

In this section, the building blocks and concepts were introduced. This section covered

the major components including the DLL, PLL, sigma-delta modulator, DTC, counters,

as well as a variety of filters. These building blocks will be used to construct the PTI in

the following sections.
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Sigma-Delta Phase Generation

Technique

This chapter will cover the design and implementation of the sigma-delta encoding

technique that is used to encode the signals that are used in the probabilistic test

instrument (PTI). The PTI uses various signals to stimulate the DUT so that it is

possible to perform a variety of tests. The PTI uses a signal generator that consists

of a 1XN circular shift register that circulates N encoded bits in a repeating fashion.

The bitstream is subsequently filtered by a filter whose type depends on the encoding of

the signal (voltage or time) [6]. A theory of the design and operation of the bitstream

generator is covered in this chapter, as well as the simulations that are run to verify the

operation of the implementation of the design using MATLAB and Simulink.

3.1 Overview

The stimulation signals for the PTI are all generated using a circular shift register

that continuously circulates N bits. In this chapter, the design and implementation of

this signal generator will be covered in detail. The signal generator consists of three

distinct parts: the sigma-delta modulator which first encodes the input signals into a

bitstream, the digital-to-time/digital-to-voltage converter which encodes the bits into

a time or voltage signal, and the circular shift register which stores and continuously

circulates the bit sequence. In this design, the sigma delta modulator and the digital-

to-time/digital-to-voltage converters are implemented in software, and the circular shift

register is implemented in hardware. It is the software portion of the signal generator

that will be the major focus of this chapter.

36
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Implementing part of the design in software has some major advantages. First, im-

plementing part of the design in software significantly reduces the hardware complexity

of the design and second, it allows for a great deal of flexibility. Figure 3.1 illustrates

the breakdown between hardware and software of the components of the phase signal

generator.

Figure 3.1: Software and hardware breakup of the signal generation module

As Figure 3.1 illustrates, the sigma-delta phase generation of the signals is done in

software. A DC code is presented to a sigma-delta modulator where it is encoded and

the output bits are stored in the circular shift register. The oversampling ratio, defined

in Section 2.3, is adjusted along with the frequency of the signal to ensure that the

output bits are a multiple of the total number of pits that can be stored in the circular

shift register. Without a multiple of the period, the output signal from the circular shift

register would not be a smooth signal following the filter, and would lead to measurement

errors.

The sigma-delta modulator works by encoding the DC code into a digital bitstream

whose values take on either VDD or VSS . The average value is of the sigma-delta bit-

stream is proportional to the input DC code and is extracted from the bitstream using

a low-pass filter as described in Sections 2.7 and 2.8. The sampling frequency of the

sigma-delta modulator is the same as the reference clock frequency which here is 114.56

MHz. In addition to DC codes, the phase signal generator can encode AC signals as

well. The principle is the same for the AC signal where the output density of bits is

proportional to the instantaneous input signal.

The output of the 1XN circular shift register is fed into a DTC (described in Section

2.5) where the signal is time-encoded whereby the DC code level is proportional to the

phase of the signal. The relationship between the DC code and the output phase of the

signal in relation to the reference clock signal can be described as

φo = (φmax − φmin)× |(DC Code− 1)| (3.1)
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The output phase from the DTC is related to the overall phase difference between the

encoding signals, as well as the input DC code. The implementation for this thesis uses

a DC code of 1 to represent the minimum phase shift, and a DC code of 0 to represent

the maximum phase shift. By changing the DC code input, it is possible to accurately

control the phase of the output signal from the phase signal generator. The application

of these signals will be covered in more detail in Chapter 5.

3.2 Phase Encoding

The phase encoding used in the DTC is fully-programmable and can be adjusted to

meet the test engineer’s timing needs. Since the DTC is also located in software as

illustrated in Figure 4.7 it is possible to easily change the encoding scheme to change

the phase-range over which the time-encoded signal spans. This is done by changing

the bit pattern associated with each sigma-delta level. Table 3.1 illustrates the different

possible phase-encoding that can be applied to the signals, and Table 3.2 illustrates

some examples of the relationship between to signals that can be used to span a desired

phase range. Both encoding schemes are implemented using a duty cycle of 50%. It is

important to note that each period must be the same length. That is, for example, a

signal encoded with 8 bits must be clocked at twice the speed as a signal encoded with

4 bits, as is shown in Table 3.1.

In this thesis, sigma-delta encoded AC signals will be used to stimulate the DUT.

The circular shift register that the sigma-delta encoded AC signals will be loaded into

can store up to 256 bits. Having only 256 bits limits the frequency of the input signal

given the fact that the sampling time is a set 114.5 MHz. Since the output length, and

sampling time are set, the only thing that can be changed is the number of periods of

the input signal that occur in the N sample points - 256 in this case. In order to encode

a signal with a high SNR, one must ensure that the input signal frequency, FT , and the

sampling frequency, FS , are mathematically related according to the coherency equation

FT =
M

N
FS (3.2)

Where M and N are positive integers and M < N/2 to satisfy the Nyquist Sampling

theorem. In this case, FT , FS , and N are set, so all that can be changed is M. Addition-

ally, to get the best results, both M and N should be relatively prime - meaning that

they should have no common factors. Thus, M can be set to be 1,3,5,7, etc. For the

purposes of this thesis, four different reconstruction filters are available to extract the

original AC signals from their sigma-delta encoded bitstreams as mentioned in Section
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Table 3.1: Bit Encoding for Different Phases of DTC

Phase Shift Bits Encoding Phase Bit Encoding Clock Speed

0
4 1100 4× CLKref

8 11110000 8× CLKref

45
4 -
8 01111000 8× CLKref

90
4 0110 4× CLKref

8 00111100 8× CLKref

135
4 -
8 00011110 8× CLKref

180
4 0011 4× CLKref

8 00001111 8× CLKref

Table 3.2: Possible Relationships Between Encoded Signals

Phase 0 Phase 0 Encoding Phase 1 Phase 1 Encoding
Phase Range
(degrees)

90 0110 0 1100 0-90
180 0011 90 0110 90-180
135 00011110 45 01111000 45-135

Table 3.3: Input AC signal frequencies for sigma-delta encoding

M AC Signal Frequency

1 447.265 kHz
3 1.341 MHz
5 2.236 MHz
7 3.130 MHz

2.7. This results in M values of 1,3,5, and 7 being selected. The resulting frequencies of

the input AC signals are thus set, and are enumerated in Table 3.3.

3.3 MATLAB/Simulink Simulations

The software portion of the phase generator was designed and tested in MATLAB

and Simulink. Figure 3.2 illustrates the sigma-delta implementation of the software

portion of the generator.

The implementation in Figure 3.2 is a simple first-order modulator with a signal

transfer function (STF) of 1. The noise transfer function of this modulator is calculated

as

NTF(z) =
1

1 +H(z)
(3.3)
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Figure 3.2: Simulink block diagram of sigma-delta modulator

A higher-order implementation of the modulator can easily be implemented by chang-

ing the filter in the modulator. The filter coefficients were calculated by using DSMOD

software [17]. Table 3.4 describes normalized filter coefficients for higher-order imple-

mentations. All modulators are designed with Fp = 1 rad/s, FStop = 1.5 rad/s and

Fs = 1000 rad/s for an OSR of 500 using an Inverse Chebychev pole-zero placement

algorithm. The resulting bitstream is down-sampled in order to fit into the circular shift

register, but without any loss in resolution.

Table 3.4: Sigma-Delta Filter Functions

Order
Passband Edge
Attenuation

Loop Filter Transfer
Function, H(z)

1 10 H(z) = 0.1867e−1
z−1

2 20 H(z) = (0.18848e−1)z−0.18672
z2−1.999z+1

3 30 H(z) = (0.2345e−1)z2−(0.4663e−1)z+0.2318130e−1
z3−2.999z2+2.999∗z−1

4 40 H(z) = (0.2868e−1)z3−(0.8565e−1)z2+(0.8524e−1)z−0.2828e−1
z4−3.999z3+5.999z2−3.999z+1

5 50 H(z) = (0.3413e−1)z4−(0.1359)z3+(0.203)z2−(0.1347)z+0.3355e−1
z5−4.999z4+9.999z3−9.999z2+4.999z−1

6 60 H(z) = (0.3966e−1)z5−0.1975z4+0.3935z3−0.3919z2+0.1952z−0.3888e−1)
z6−5.999z5+14.999z4−19.999z3+14.999z2−5.999z+1

The power-spectral density for the bitstream out of the first-order sigma-delta mod-

ulator is illustrated in Figure 3.3. As expected, the sigma-delta modulator shows noise-

shaping of the signal and pushed the noise out of band where it will be filtered out with

the time- or voltage-mode filter.

The architecture in Figure 3.3 is also used to encode the DC code signals into a

sigma-delta representation. With the noise-shaping performance of the sigma-delta it is

possible to encode very high precision signals with a density of 1s and 0s.
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Figure 3.3: Power spectral density plot for 27.9 kHz signal modulated with an OSR
of 2048

Table 3.5 represents the encoding schemes for various DC codes spaced by DC codes

of 0.2. Intermediate DC code encoding is possible but at the expense of a greater number

of circulating bits.

Table 3.5: The Sigma-Delta Bit-Encoding for Various DC Codes

DC Code
Sigma-Delta Encoding

(repeating)

0 0
0.2 00001
0.4 00101
0.5 01
0.6 11010
0.8 11110
1 1

Figure 3.4 illustrates a time-domain representation of a 447.625 kHz sigma-delta

encoded sine wave with an over-sampling ratio of 128. The original signal is shown in

red, and the sigma-delta encoded representation is shown in blue. Similarly, Figure 3.5

illustrates a time-domain representation of a sigma-delta encoded DC code of 0.2 with

an over-sampling ratio of 500.

3.4 Summary

This chapter covered the design and implementation of the sigma-delta encoding

technique that is used to encode the stimulation signals that are used in the PTI. The

advantages of implementing the bitstream in software was introduced, as well as the
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Figure 3.4: Sigma-delta encoded 447.625 kHz sine wave with OSR of 128

methods for generating both AC and DC input signals. The bitstreams are stored in

a 1XN register that circulates N encoded bits in a repeating fashion. The bitstream

is subsequently filtered by a filter whose type depends on the encoding of the signal

(voltage or time). A theory of the design and operation of the bitstream generator was

covered, as well as the possible phase-encodings used. Finally, time-domain simulations

were using MATLAB/Simulink run to verify the correctness of the implementations.



Chapter 3. Sigma-Delta Phase Generation Technique 43

Figure 3.5: Time-domain representation of a sigma-delta encoded DC code of 0.2
with an over-sampling ratio of 500



Chapter 4

Delay-Locked Loop as a

Time-Mode Filter

This chapter will discuss using a delay-locked loop (DLL) as a time-mode filter,

as well as give an introduction to a new method for designing higher-order DLLs. It

will cover the design and simulation results for the implementation of the DLLs used

in the design of the probabilistic test instrument. Simulations were first done with

MATLAB/Simulink to verify the proposed theory of operation and finally transistor-

level simulations were completed with the use of Cadence/Virtuoso.

There are many systems today that require the control of the edge of a clock signal.

That is, being able to accurately vary the phase of the clock signal to a very high

resolution. Although it is possible to simply delay the phase of the signal using a delay

element, this delay will not be robust to variations in process, voltage, or temperature

when then device in physically manufactured in silicon. Instead, the use of a DLL where

the output is fed back to the input by the use of a feedback loop, allows a designer

to very accurately control the phase of the signal when the DLL is used as a phase-

reconstruction filter. As is true when designing a PLL, the goals when designing a DLL

are very similar: the main issues are to reduce the static phase offset at the output, as

well as keeping a very low amount of jitter on the output clock edge.

As supply voltages continue to drop, it is becoming more and more difficult to achieve

acceptable power-supply noise induced jitter when using a PLL [18]. While it is possible

to design for these difficulties, it is important to note that a system does not funda-

mentally require the implementation of a voltage-controlled oscillator when the system

already supplies a clock at the correct frequency. In this respect, the implementation

of a DLL is a smarter choice over a PLL because it is possible to eliminate some of the

shortcomings and complexity of the implementation of a VCO.

44
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A DLL can only work with one frequency so, when compared with a PLL, there

are fewer applications where it could be implemented. However, in those applications

it is possible to see better results due to the lack of phase accumulation at the VCO.

The application that will be discussed in this thesis is the use of a DLL as a phase

reconstruction filter such that it can be used to accurately control the edge of a clock

signal.

4.1 Method for Designing Higher-Order Delay-Locked Loops

One of the contributions of this work is that a different method of designing higher-

order DLLs is presented. The general idea of this method was first suggested and

researched by Sadok Anouini, but with the principles focused on designing PLLs [19].

The method presented here extends this work to facilitate the design of higher order

design of DLLs as well [6].

Most higher order DLL design methods take on a dominant pole approach where

the designed will set the bandwidth of the DLL and then, once connected in feedback,

the overall frequency response and stability will be determined. The problem with this

approach is that the overall frequency response of the DLL is not explicitly specified

– it is just the result of the feedback-connected design and is not necessarily the fre-

quency response that the designer is striving for. An alternative design approach that

is presented here is one where the overall desired frequency response of the DLL is set,

and then the filter coefficients are determined based on both the delay-line and the

charge-pump constants. This will result in a design that is exactly what the designer is

looking for. This method allows for a general pole-zero placement synthesis method for

designing DLLs of arbitrary order with an emphasis on Type-II DLLs.

The data input the to the DLL can be broken down into two components - the

constant clock component (which is the same as the reference frequency), as well as the

excess phase component. If an analysis is performed on the block diagram, it can seen

that the excess-phase transfer function from input to output – when using the filter as

an integrator – is a low-pass response (see Section 2.2).

The DLL design process begins by approximating both the excess phase transfer

function,

ΦA(s) =
cNsN + cN−1sN−1 + ...+ c1s+ c0
sN + dN−1sN−1 + ...+ d1s+ d0

(4.1)

and the filter function,
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F (s) =
aNsN + aN−1sN−1 + ...+ a1s+ a0
sN + bN−1sN−1 + ...+ b1s+ b0

(4.2)

as a ratio of two polynomials of N th order. Following from Equation 2.18, it is possible

to represent the excess-phase of the Type-II transfer function as

ΦA(s) =
KDKPF (s)

1 +KDKPF (s)
(4.3)

And substituting in Equation 4.2,

ΦA(s) =
KDKP

aNsN+aN−1s
N−1+...+a1s+a0

sN+bN−1sN−1+...+b1s+b0

1 +KDKP
aNsN+aN−1sN−1+...+a1s+a0
sN+bN−1sN−1+...+b1s+b0

(4.4)

After simplifying, this leads to

ΦA(s) =
KDKPaNsN +KDKPaN−1sN−1 + ...

(1 +KDKPaN )sN + (bN−1 +KDKPaN−1)sN−1 + ...

...+KDKPa1s+KDKPa0
...+ (b1 +KDKPa1)s+ (b0 +KDKPa0)

(4.5)

Since the DLL is being designed is for a low-pass functionality as discussed in Section

2.2, it is desired to have the signals passed without any degradation. For this reason, the

DLL is designed to have a DC gain of 1 so that the signals below the cut-off frequency

will not be suppressed. To realize this constraint, a pole is needed at DC in Equation

4.5. By observation, it can be seen that this constraint sets the requirement for b0 = 0.

With this set, the equation for the filter function can be simplified from Equation 4.2 to

F (s) =
aNsN + aN−1sN−1 + ...+ a1s+ a0
(sN−1 + bN−1sN−2 + ...+ b1)s

(4.6)

Now, working backwards from the loop filter transfer function, it is possible to solve for

the filter function from Equation 4.3 to get

F (s) =
1

KDKP

ΦA(s)

1− ΦA(s)
(4.7)

Substituting Equation 4.1 into Equation 4.7 and simplifying leads to
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ΦA(s) =
1

KDKP

cNsN + cN−1sN−1 + ...+ c1s+ c0
(1− cN )sN + (dN−1 − cN−1)sN−1 + ...+ (d1 − c1)s+ (d0 − c0)

(4.8)

Given the realization conditions that were set previously for the DC gain of 1, the

two lowest coefficients must be equal. This sets the constraint of c0 = d0 and it follows

that the overall phase-filter function general form should be changed from Equation 4.1

to take the form

ΦA(s) =
cNsN + cN−1sN−1 + ...+ c1s+ d0
sN + dN−1sN−1 + ...+ d1s+ d0

(4.9)

This shows that to have a DC gain of 1, a pole is needed at DC in the filter function.

Working from a perspective of realizing a desired excess phase input-to-output transfer

function, denoted by ΦA(s), according to the analysis above, as long as the desired trans-

fer function takes on the general form in Equation 4.9 where the lowest two coefficients

are equal, the resulting loop filter will contain a pole at DC.

Given a desired overall phase-transfer function, the filter coefficients can now be

determined from this transfer function. Combining Equations4.6, 4.7, and 4.9, the filter

function can be written as

F (s) =

1
KPKD

[
cN

1−cN sN + ...+ c2
1−cN s2 + c1

1−cN s+ d0
1−cN

]
sN +

dN−1−cN−1

1−cN sN−1 + ...+ d1−c1
1−cN s

(4.10)

It follows that the loop filter, F (s), realization conditions are summarized below:

aN = 1
KDKP

cN
1−cN

aN−1 = 1
KDKP

cN−1

1−cN
...

a1 =
1

KDKP

c1
1−cN

a0 =
1

KDKP

d0
1−cN

bN−1 =
dN−1−cN−1

1−cN
...

b1 =
d1−c1
1−cN

b0 = 0

(4.11)
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The use of a pole-zero placement method to form high-order DLLs greatly simplifies

the design process and ensures that the overall transfer function matches the desired

transfer function. Using this approach, designing high-order DLLs is a very simple

process.

4.2 Start-Up Circuit

When the DLL is implemented at the transistor-level, it is important for the designer

to be aware of the practical design limitations that the DLL circuit is constrained to.

In the case of the DLL the VCDL has a limited range over which the signal can be

delayed. The range is approximately 0-1.4 periods of delay. The architecture is such

that a low control voltage will result in a small delay, and a large control voltage will

result in a large delay. Once the VCDL is placed inside the DLL, it is important that the

control pulses from the charge-pump are adjusting the control voltage in the appropriate

direction to ensure that the control voltage has not reached VDD or VSS. For example,

a situation where the control voltage is giving incorrect pulses in shown in Figure 4.1.

Figure 4.1: Example of an incorrectly starting DLL

In Figure 4.1, the VCDL control voltage initially starts at 0, but the controlling signal

needs to be moved slightly to the left (back in time, or removing phase). For this to

happen, the phase detector will be sending “down” pulses to the phase-detector which
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will, in turn, attempt to apply less voltage to the control line of the VCDL. However,

since the VCDL control voltage is already at zero, the voltage on the control line will

remain unchanged. To achieve a proper lock, the DLL should increase the phase of the

output signal such that it is delayed by almost one full period. At this point, the VCDL

will be able to properly match the phase of the input signal such that a proper lock is

achieved.

To solve this problem, a start-up circuit was designed for the DLL. The start-up

circuit ensures that when the VCDL control voltage is started from a zero voltage, the

first pulse that is seen by the charge pump is an “up” pulse such that the voltage on

the delay line will always be increased, regardless of the order of the incoming signals.

If this were not the case, then it is possible that a “down” pulse is issued first and the

DLL will never achieve locking conditions.

The start-up circuit architecture is a simple modification to the input of the PFD

where there are simply two D-flip-flops that will ensure that the “up” signal will be

asserted first by making sure that the data input edge is detected before the DLL output

feedback edge. It works by placing a D-flip-flop at the D-inputs to the flip-flops in the

PFD. Typically, these are always tied to a logical high, but in this case, they will only

be high once the data signal edge has been detected. This will discard any previous

feedback DLL output edges until a data signal edge has been detected. The architecture

of this design is illustrated in Figure 4.2.

Figure 4.2: DLL start-up circuit to ensure proper locking conditions
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With the modified PFD shown in Figure 4.2, with a control voltage of initially zero,

it is possible to guarantee that the controlling circuit will align the input and output

pulses by changing the phase of the output signal in the correct direction given the delay

limitations of the VCDL. The initially zero voltage on the control voltage line is achieved

by using a single nMOS transistor and an initial setup control line.

4.3 Sub-Gate-Delay Edge-Control of a Clock Signal Using

DLLs and Sigma-Delta Modulation Techniques

4.3.1 Background

The most widely used method for edge control is one where a DLL is implemented

and the edge locations are tapped out at each point in the delay line [20]. The resolution

achievable with this method, however, is limited by the minimum gate delay available

in the delay line. In the approach described in this section, a DLL will be used as a

reconstruction filter acting on a sigma-delta modulated bitstream, which will allow for

sub-gate-delay edge control [6].

In this work, the type of DLL that is classified as type-II will be considered (Section

2.2). Specifically, this is one in which the input to the voltage-controlled delay line

(VCDL) and the phase detector (PD) are separate signals as shown in Figure 2.3. To

achieve sub-gate-delay timing resolution, a clock reference will be applied to the input of

the VCDL, and a phase-modulated sigma-delta bitstream will be applied to the input of

the phase detector. The use of a phase-modulated bitstream will allow for an accurate

control of the output signal edge [12][21].

Figure 4.3: System diagram with a DLL reconstruction filter

An overview of the sub-gate-delay edge control circuit is shown in 4.3. Here the system

consists of three main blocks: a 1-bit sigma-delta modulator, a digital-to-time converter

and a type-II DLL. The input to the system is a DC code level – anywhere between 0

and 1 – that will be encoded with a one-bit sigma-delta modulator. The output of this

modulator is converted into a time signal using a digital-to-time converter (DTC). As the
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modulator output is 1-bit wide, the output of the DTC will select between two distinct

time instants, essentially creating a phase modulated output signal with two distinct

phases. This phase modulated signal is then applied to the input to the DLL, which, in

essence, acts as a time-domain or phase reconstruction filter. Hence, the output of the

DLL is a lowpass-filtered version of its input, resulting in a precisely positioned edge

relative to the DLL clock reference as illustrated in Figure 4.4. The control of the edges

is attained by simply adjusting the input DC code level at the input of the sigma-delta

modulator. The use of a sigma-delta modulator allows for a very high-precision encoding

where the quantization noise can subsequently be filtered out using a low-pass DLL as

a reconstruction filter.

Figure 4.4: Illustrating the phase extraction process when the DLL extracts the
average phase between the densities of two coarse delays

Figure 4.5: Implementation of phase signal generation scheme. Circular memory
contains the sigma-delta encoded signal in the phase domain and the DLL is used to

extract it.

Figure 4.5 illustrates the implementation that will be used for the sigma-delta en-

coding of the DC code level. Rather than use a physical sigma-delta block, a circular

memory block is used to output the encoded bitstream [22]. This approach will reduce

the hardware complexity required for this design when compared to that in [21] as it will

only require a bank of circular memory to excite the DLL. Additionally, since the circu-

lar memory is programmable, it is also possible to excite the DLL with a wide variety

of encoded signals. In this application, the bit sequence corresponding to a specific DC

code is captured from a sigma delta modulator and stored in the circular memory where

it will be repeatedly shifted to the right at a frequency of fs. This repeated shifting

mimics the output of the sigma-delta modulator. A DLL is then used to reconstruct the

encoded signal.

The DLL that was designed is a type-II DLL as it provides two possible time-domain

filtering functions. The transfer function from the PD input to the DLL output can be

shown to be low-pass in nature, whereas the transfer function from the clock reference
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input to DLL output is high-pass in nature. Thus, by injecting the sigma-delta encoded

signal into the lowpass terminal, it is possible to filter out the high-frequency quantiza-

tion noise associated with the DTC output edges and be left with a very clean signal

whose average phase is directly related to the input DC code level.

The lowpass filter characteristics of the DLL will be determined by the transfer func-

tions of the individual blocks that make up the DLL. Through the appropriate selection

of components, the DLL can be made to behave in a prescribed manner. The design

process for this DLL is outlined in Section 4.1. As a design example, a third-order DLL

was designed and simulated to showcase the advantage of the higher-order designs, as

well as to show the effectiveness of the design technique described earlier in this section.

The sigma-delta modulator was designed with a passband of 100 kHz. In order to fil-

ter out the quantization noise, the closed-loop response of the DLL was set to have a

3rd-order Bessel response with a 3-dB bandwidth of 40 kHz, leading to

ΦD
II(s) =

1.588× 1016

s3 + 6.11× 105s2 + 1.558× 1011s+ 1.588× 1016
(4.12)

The phase detector is to be implemented as a sequential phase detector whose gain

coefficient KP is given by

KP =
IP
2π

(4.13)

For a bias level 1 mA, the phase detector coefficientKP is 0.16 mV/rad. The VCDL is

implemented as a cascade of 16 inverters each with a capacitive load and is characterized

to have a voltage-to-phase gain coefficient KD of 7.35 rad/V. The loop filter transfer

function F (s) can then be derived to find

F (s) =
1.357× 1019

s3 + 6.114× 105s2 + 1.558× 1011s
(4.14)

The loop filter in Equation 4.14 is implemented using an active filter between the

phase detector output and the delay line. A Sallen-Key filter topology was used in

addition to a single capacitor and voltage buffer. Figure 4.6 shows the correctness of

the previous design method by comparing the desired transfer function to the measured

transfer function of the DLL.
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Figure 4.6: Ideal and measured responses of the designed DLL

4.3.2 Simulink Ideal Simulations

In order to verify the ideas of this chapter, two separate MATLAB/Simulink sim-

ulations were performed. The first involved the setup shown in Figure 4.3, where the

output of the sigma-delta modulator was sent directly to the DTC input. The second

involved the setup shown in Figure 4.7 where the output of the sigma-delta modulator

was truncated to 1024 bits and the resulting bitstream was loaded into a circular mem-

ory bank. Next, the input DC code level was adjusted and the edge of the output signal

from the DLL was recorded. The results for the two separate situations are shown in

Figure 4.8. As is evident from this plot, over an input DC level range of 0 to 1, the

output edge followed the input DC level in a linear manner. It is important to note that

in this graph, the input DC code delta that was simulated is 0.05, however the minimum

code difference that can be simulated with 1024 bits is 1/1024.

In analyzing the results in Figure 4.8, there was no noticeable difference between the

two approaches involving the sigma-delta modulated output or the circulated bitstream

– the largest error was 0.07o. With this very linear DC-code-to-phase-transfer charac-

teristic for the DLL, it is then possible to adjust the edges in a very predictable fashion,

and it will be possible to modulate any type of waveform onto this edge with very little

distortion.

Figure 4.7: Sigma-delta encoding of the DC code level is done in software and it is
filtered by the DLL implemented in hardware
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Figure 4.8: DC code-controlled phase offset. This curve is a locus of points with a
resolution of 2.44 ps due to the maximum use of 1024 bits.

Figures 4.9 and 4.10 illustrate the phase error of the edge when the response has

settled to a steady-state value for a full sigma-delta input and a truncated input, re-

spectively. It can be noted that the RMS jitter of the edge is much greater in Figure

4.10 with the truncated bit sequence. The reason for this is due to the fact that the

circular bitstream does not contain an exact multiple of sigma-delta bitstream periods,

so there is some extra error that is introduced.

Figure 4.9: RMS jitter of the edges with a full sigma-delta bit sequence. A DC Code
delta of 0.05 was used.

The DLL as a time-mode filter works with the same principles as a voltage-mode

filter. The lower the loop bandwidth of the DLL, the more the higher frequencies will

be suppressed. Therefore, to have a DLL with the least amount of output jitter, the

designer should use the smallest loop bandwidth possible. The drawback of using a
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Figure 4.10: RMS jitter of the edges with a truncated bit sequence to 1024 bits. A
DC Code delta of 0.05 was used.

very small loop bandwidth is that the settling time for the DLL will be increased as the

loop bandwidth is decreased. Figure 4.11 illustrates the difference in the peak-to-peak

jitter of the output signal with two different bandwidths. The DLL with the 825 kHz

bandwidth has a maximum peak-to-peak jitter of 2.49 × 10−9 seconds, while the DLL

with a bandwidth 1000 times smaller at 825 Hz has a maximum peak-to-peak jitter of

2.38× 10−11.

Figure 4.11: Effect of the loop bandwidth of the DLL on the peak-to-peak jitter of
the output signal.

If one were to want to reduce the jitter of the output of the DLL, the circular bitstream

size could be adjusted to match a full period of the sigma-delta modulator, the system’s

overall bandwidth could be reduced, or a higher-order DLL could be implemented.
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4.3.3 Transistor-Level Simulations

Following the proof-of-concept of the design with Simulink, the system was prepared

for fabrication in a 130 nm CMOS process from IBM. The design is based on the im-

plementation of Figure 4.7. As the models used at this level are no longer ideal, it is

expected to see some differences from the MATLAB/Simulink simulations.

Figure 4.12: Input code level-controlled edge location obtain from the transistor level
implementation compared to the ideal truncated output. A DC Code delta of 0.05 was

used.

Figure 4.12 illustrates the DC code-controlled phase offset of the circuit. Like before,

Figure 4.12 depicts a linear relationship between the input DC code level and the average

edge location, with a maximum error for the transistor-level simulations of 0.7o. The

RMS jitter could not be properly collected due to the accuracy limits of the simulator.

RMS jitter metrics will be collected once a physical design has been fabricated.

As shown in Figures 4.8 and 4.12, the phase angle is tunable from 0 to 90 degrees.

The minimum input code level difference that can be implemented with 1024 bits is

1/1024, which results in a phase step of 0.088 degrees (2.44 ps at 100 MHz), however

the accuracy of the edge is largely dependent on the amount of jitter on the edge. When

comparing the proposed design of adjusting the phase of the edge with the use of a

sigma-delta modulated bitstream with previous methods using a tapped out delay line,

it is obvious that this proposed method is superior in terms of edge placement resolution.

As described in Section 2.2.4, the DLL that was implemented utilizes a VCDL built with

16 separate inverters. If one were to use this DLL to extract different clock signals, the

minimum phase-resolution would be 360/16 = 22.5 degrees. With the new proposed

implementation, it is shown that it is possible to tune the edge of the DLL output to a

significantly greater resolution.

Figure 4.13 illustrates a rough approximation of the edge locations at the output of

the DLL, with an input DC code of 0.6. The spread of the edges is representative of the
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Figure 4.13: Histogram of rising edge locations for a settled DLL for an input DC
code of 0.6.

jitter of the signal at the output. As mentioned previously, it was not possible to extract

the exact edge locations for the calculation of a jitter metric due to the limitations of

the simulator. The results of the approximate edge locations from Figure 4.13 are what

were expected with a Gaussian-like distribution of the edge locations.

4.4 Summary

This chapter discussed using a delay-locked loop (DLL) as a time-mode filter, as well

as gave an introduction to a new method for designing higher-order DLLs. It covered

the design and simulation results for the implementation of the DLLs used in the design

of the PTI. Simulations were first done with MATLAB/Simulink to verify the proposed

theory of operation and finally transistor-level simulations were completed with the use

of Cadence/Virtuoso. It was shown that it was possible to use a DLL in combination

with an input bitstream to control the phase of the output signal.



Chapter 5

Architecture of the Probabilistic

Test Instrument

This chapter presents the design of the probabilistic test instrument (PTI) that will

be used to extract the edge-location timing information for a high-speed circuit. The

extracted edge-locations will be used to construct a PDF that will be used to extract

the bit-error-rate (BER) associated with the communication channel and receiver. The

circuit is designed for embedded built-in self-test (BIST) methods that will reduce the

error that is currently present with probing methods, and is applicable to high-speed

transceiver circuits for data communications. This chapter, along with Chapter 2, dis-

cusses the working principles of the basic building blocks that make up the design of

the PTI. The ideal simulation results using MATLAB and Simulink are presented in

this chapter, and the transistor-level simulations will follow in Chapter 6. Any signal

references are described in between quotation marks (“”) and these signals are outlined

in Appendix A.

5.1 Probability Test Instrument System Architecture

The probabilistic test instrument (PTI) is designed to run with a clock speed of 114.5

MHz and consists of two main modules: the multi-channel programmable bitstream

generator (BSG), and the probability extraction unit (PEU). The system architecture

follows from the design first described in [13], but many design modification and im-

provements have been made. The BSG serves to generate the stimulating test signals

for the device under test (DUT) as well as the clock signals for the timing and sampling

inside the PEU. The BSG has many different functions and can generate many differ-

ent AC, DC, phase-modulated, and pseudo-random bit sequences through the use of an

58
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array of circular bitstreams and filters. Multiplexers and control lines are used to load

the bi streams and to select the desired functions of the BSG.

The PEU is the unit that does the extraction of the timing information relating to the

DUT and compiling it into a histogram for easy readout and calculation of the BER. The

architecture of the PEU is fairly simplistic and is composed of mostly digital logic which

makes the design very portable to different technologies. Additionally, as discussed in

Chapter 1, the PEU loading of the DUT circuit is insignificant as the added capacitance

is simply the input capacitance to the comparator. Further, the performance of the

DUT will always be the same as the test circuit will always remain on-chip and no

connections are being added or removed for the testing. Figure 5.1 illustrates the overall

system architecture of the design.

5.2 Multi-Channel Programmable Bitstream Generator

The multi-channel programmable bitstream generator (BSG) is composed of both

software and hardware components. The function of the BSG is to generate the input

test signals fed into the PEU such that the performance of the DUT can be measured.

As illustrated in Figure 5.2, there are two distinct portions of the BSG: software and

hardware. The software portion contains the components to generate the input test stim-

ulants, while the hardware side contains the circular memory to circulate the generated

bitstream, the filters to extract the desired frequencies of the signals, and multiplexers

and D-flip-flops to control the routing of the signals to the correct outputs.

The BSG has 5 different input channels labelled 1-5 in Figure 5.2. The different

channels are used to stimulate the DUT, as well as regulate the timing and voltage

threshold levels for the PEU. Having a multitude of test channels enables the test engi-

neer to extract a wide array of information from the DUT by using simple controls and

bit-loading techniques.

Channel 1 is used as a pseudo-random bit sequence test stimulant. This channel is

used to load the circular memory with any bit sequence that the test engineer would

like to input into the DUT. Throughout the tests completed in this thesis, a repeating

“1010” pattern in the PRBS input due to the fact that this is the input sequence that

is required in both the amplitude- and time-based scan tests described in Sections 1.3.1

and 1.3.2. The PRBS can be programmed to have a repeating bit length of 20 bits.

Channel 2 is used to control the timing of the bits from channel 1 to the DUT. First,

the software portion of this channel uses a sigma-delta modulator to modulate with

either a DC code or an AC signal depending on what kind of timing the test engineer
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Figure 5.1: Overall system design of the PTI
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Figure 5.2: Multi-channel programmable bitstream generator

would like to generate. Next, the bit sequence is fed through a DTC where it is converted

into a time-modulated signal as described in Section 2.5. The time-modulated signal

is stored in a 256-bit circular memory where it is circularly shifted to generate a test

signal. A time-mode filter (covered in Section 2.8) extracts the DC component of the

encoded signal such that the appropriate timing for channel 1 is achieved. The ability

to encode both a DC code and an AC signal allows the test engineer to control the

amounts of input jitter that is seen on the edges of the PRBS. An encoded DC signal

will provide a clean jitter-free edge, while an AC signal will provide an edge that varies in

relation to the encoded AC frequency and amplitude. This timing option allows a great

deal of flexibility for the test engineer to test the DUT and perform jitter-transfer and

jitter-tolerance tests. Given the fact that the output of the circular bitstream is time

encoded with 4 bits per period, and additionally used to clock a D flip-flop, the shifting

of the bits in the register needs to be done at 8 times the frequency of the desired signal

at the output of the D flip-flop. With the DUT working at a frequency of 28.625 MHz,

the overall shifting speed must be done at 229 MHz (twice the frequency of the reference

clock). To achieve this, a multiplying PLL must be used as illustrated in Figure 5.3.

Channel 3 is used to stimulate the DUT with a simple AC signal. The AC signal

is encoded with sigma-delta modulation techniques, fed through a digital to analog

converter (DAC), and stored in a 256-bit circular memory. Using different voltage-mode

filters, the encoded AC signal is extracted and presented at the input of the DUT by

correctly selecting the analog multiplexer control signal of channel 3. The voltage-mode

filter (covered in Section 2.7) can be tuned to 4 different cutoff frequencies: 830 kHz,

2.48 MHZ, 4.15 MHz, and 5.80 MHz. The design of these filters and the associated

control signals is described in Section 5.4.
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Figure 5.3: Multiplying PLL used to properly clock the circular shift register

Channels 4 and 5 are used to control the threshold voltage, vTH , and the timing-

strobe, tSTRB, of the PEU. Channel 4 uses a similar method as channel 3 to control

the threshold voltage of the PEU’s comparator. However, instead of encoding an AC

signal, channel 4 encodes a DC signal where it is stored in a circular memory of 20 bits.

A voltage-mode filter is used to extract the DC component of this signal which is then

fed into the PEU’s comparator. The threshold voltage set at this node will be used

to control the sampling voltage in the PEU - that is, the sampling location in the eye

diagram. Channel 5 is used to control the timing strobe of the PEU. The timing strobe

is generated by encoding a DC code with a sigma-delta modulator and feeding it through

a DTC. The time-encoded signal is then stored in a 64-bit circular memory after which

the DC component of the time-signal is extracted using a time-mode filter. Through the

use of Channels 4 and 5, the threshold-voltage and time-strobe are controlled and used

to sample the eye-diagram as illustrated with the dashed lines in Figure 5.4. Channels 4

and 5 can be controlled independently to establish the desired sampling location of the

eye diagram.

Each of the 5 channels is independently clocked from the others based on the encoding

that has been done on the signal. The base clock frequency that the PTI uses is 114.5

MHz. Input channel 1 is clocked out at 57.25 MHz because the DUT runs at a clock rate

of 28.625 MHz: one bit for a 1 and one for a 0 makes a “10” sequence have an output

period of the desired 28.625 MHz. Input Channel 2 is a time-encoded signal where there

are four bits that represent a full period at 28.625 MHz. The result is that the bitstream

needs to be clocked at four times the desired output rate in order for the output to have
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Figure 5.4: Threshold-voltage and timing-strobe used to control the sampling location
in the eye diagram

the correct frequency, and then doubled again because it is being fed into a D-flip-flop

where only the rising edges are used to sample. The result is that the circular bitstream

for input channel 2 is clocked at 229 MHz. Input channel 3 is simply a sigma-delta

encoded AC signal, so the circular bitstream is clocked at the same frequency as was

used to sample - 114.5 MHz. Similarly, input channel 4 is clocked at the reference clock

signal rate because it is also a sigma-delta encoded signal. Finally, input channel 5 is

clocked by a PLL (see Section 5.7) and, since it is time-encoded with 4 bits per period

with an output clock frequency of 28.625 MHz, its operating frequency is 114.5 MHz.

The clocking frequencies are summarized in Table 5.1.

Table 5.1: Clocking Frequencies for the Circular Bitstreams for each Input Channel

Input Channel Clocking Speed

1 57.25 MHz
2 229 MHz
3 114.5 MHz
4 114.5 MHz
5 114.5 MHz

Each circular shift register was designed out of serially-connected D-flip-flops. This

design choice was made to ensure that the memory cells would be robust and properly

latch and circulate the data that was being loaded into each of them. The disadvantage

of the implementation of serially-connected D-flip-flops is that the memory cells are quite

large and take up a proportionally large amount of area. For the implementation of this

thesis, however, reliability was paramount so the large D flip-flop implementation was

utilized.
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5.3 Probability Extraction Unit

The probability extraction unit (PEU) is a hardware component of the design that

detects the edge locations of the DUT that will, in turn, be used to calculate the bit

error ratio of the DUT. The overall architecture of the PEU is illustrated in Figure 5.5.

Figure 5.5: Architecture of the probability extraction unit

The PEU consists of a voltage comparator (VC), an automatic coarse-locking circuit,

and two counters. The VThreshold and timing strobe blocks are simplified inputs coming

from the BSG. The VC is used to determine when the incoming signal is greater than

the set voltage threshold from input channel 4. The resulting decision signal coming out

of the voltage comparator is then fed into two separate modules - one counter and the

automatic course-locking timing circuit. The automatic coarse-locking timing circuit is

used to lock onto the signal at the output of the voltage comparator so that when fine

adjustments are made to the timing strobe, tSTRB from input channel 5, it is within its

90o linear phase-range such that is it possible to adjust it around the V COUT edge. The

design of the coarse-locking circuit is described in Section 5.7.

Input channel 5 controls the timing strobe location for the counters. By varying

the phase of the strobe, it is possible to sample the eye-diagram from Figure 5.4 in a

predictable and controlled manner.

Figure 5.6 illustrates the working principle of the decision circuit of the PEU. With

an input sinusoidal signal into the VC and a constant threshold voltage, the V COUT

signal represents when the V CIN signal is above or below the threshold value, vTH .

When above, the value is a 1, and when below, it is a 0. The working principle is very

similar to that of a very high-gain differential amplifier. The V COUT signal is held at the

input to the counter and a sample is taken at the timing strobe’s, tSTRB, rising edge. If
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Figure 5.6: Timing diagram for the PEU for two different threshold values

the V COUT signal is a 1 when the sample is taken, the count will be incremented. If the

V COUT signal is a 0 when the sample is taken, then the count will not be incremented.

There are two counters in the PEU in Figure 5.5. The top counter is attached to the

output of the comparator, and it counts the number of rising edge transitions from the

DUT, V COUT , that are ahead of the timing strobe, tSTRB (denoted by the value N).

The bottom counter counts the total number of timing strobe rising edge transitions

(denoted as NTotal. Using the output values of these two counters over a range of timing

strobe locations, it is possible to extract the CDF corresponding to the DUT and, as

described in previously, use these results to compute the BER of the received signal.

In Figure 5.6, the first period of the V CIN sinusoidal signal represents the situation

where the count will be incremented because the V COUT signal is high when at rising

edge of the tSTRB timing signal. Similarly, the second period of the sinusoidal input

signal represents the situation where the count is not incremented because the V COUT

signal rises only after the tSTRB signal. It is by using the final counts of the number

of counted high signals versus the number of tSTRB edges, that the performance of

the system will be measured. In both the amplitude- and time-based scan tests, the

threshold voltage will be kept to be a constant voltage and the phase of the tSTRB

signal will be adjusted around the rising edge of the V COUT signal. The adjustment of
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the phase of the tSTRB signal around the rising edge will allow for the extraction of the

performance of the DUT.

Figure 5.7 illustrates the insight that will be gained from the PEU and the location

of the edge locations coming out of the DUT. Figure 5.7(A) shows the relationship

between then input DC code and the tSTRB phase relative to V COUT . Therefore, by

varying the input DC code, the tSTRB phase is controllable over 90 degrees from -45 to

45. Using the PEU and extracting a measurement for each sampling location, the CDF

and PDF of the DUT can be extracted as shown in Figure 5.5(B) and Figure 5.5(C),

respectively. The CDF is obtained by simply plotting the fraction of times the V COUT

signal is ahead of the timing strobe. Finally, the PDF in Figure 5.5(C) is obtained by

taking the derivative of the CDF in Figure 5.5(B).

Using the extracted PFD from the PEU, it is possible to approximate the BER that

is achievable with this device. As previously stated, the CDF is calculated by computing

the fraction of the number of edges whereby the rising edge of V COUT is ahead of tSTRB

as detected by the PEU. The experiment is repeated k-times across all the available DC

codes and the resulting PDF is illustrated in Figure 5.7(C). Each normalized point can

be calculated with the following formula

CDF(k) =
N(k)

NTotal
(5.1)

where k represents the kth DC code in the range from 0 to 1. With the PDF, it is

possible to calculate the mean and standard deviations that will be used to estimate the

BER as described in Sections 1.3.1 and 1.3.2.

5.4 Voltage-mode Filter Design

The voltage-mode filter design relates to the block in the input channel 3 path. The

voltage-mode filter consists of four different cutoff frequencies that can be selected based

on the encoded signal. The design of the voltage-mode filter block is illustrated in Figure

5.8.

The voltage-mode filter has one input and one output, but four different frequency-

responses based on the values of the select signals, S1 and S2. The path from the

input to the output is determined by the select signals to the multiplexers. The analog

multiplexers were designed to have a minimum transmission resistance to reduce the

loading effects that they have on the frequency-response. The transmission resistance

of the multiplexer was measured to be 700 Ω. At the output of the final multiplexer
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(a) Sampling locations of signal with varying DC
code inputs to tSTRB , relative to V COUT

(b) Sample CDF of edge locations from the in-
put signal to the PEU

(c) Sample PDF of edge locations from the in-
put signal to the PEU

Figure 5.7: Timing strobe sampling phase and the extracted CDF and PDF wave-
forms

is a single capacitor that will be part of any selected resistor combination. With each

resistor being a different value, four different RC filters are realized and each one can be

selected with the appropriate S1 and S2 values.

Table 5.2 illustrates the different RC filters that are implemented and Table 5.3

illustrates the appropriate signals to select them. The transmission resistance for the

two multiplexers of 700 Ω each was taken into account when determining the values for

the resistors. The 1400 Ω difference was subtracted from the resistors as can be seen

in the differences in the second and third columns from Table 5.2. The voltage-mode

filter bank was designed to have multiple resistors and a single capacitor due to the large

layout size of a capacitor and the relatively small layout size of the resistors.
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Figure 5.8: Design of the voltage-mode filter block for input channel 3

Table 5.2: Resistor Values for Voltage-Mode Filter Bank

Resistor
Resistor Value

(Ω)
Resistance from Input

to Output (Ω)
Capacitor
Value

Cutoff Frequency
(Hz)

R1 17.796k 19.196k 10pF 829.075k
R2 5k 6.402k 10pF 2.486M
R3 2.439k 3.839k 10pF 4.145M
R4 1.344k 2.744k 10pF 5.80M

Table 5.3: Select Signals for Corresponding Voltage-Mode Filter Bank Cutoff Fre-
quency

S1 S2
Cutoff Frequency

(Hz)

0 0 829.075k
1 0 2.486M
0 1 4.145M
1 1 5.80M

5.5 DTC into Software

The digital-to-time converter (DTC) illustrated in Figure 2.20 is quite complex and

must be properly designed to ensure minimal phase noise, as well as minimizing power

and layout area. In order to circumvent these issues, as well as reduce the number of

components that need to be tested on-chip, the DTC in this dissertation has been moved

off-chip and into software. Having the signals generated off-chip allows for a great deal
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of flexibility as to which signal is encoded and the desired phase separation between the

high and low signals.

Implementing the DTC completely in software significantly decreases the hardware

complexity of the design at the sacrifice of silicon area overhead. Having the DTC in

software means that each bit and its associated timing information must be stored in

memory instead of being generated on-chip. As covered in Section 2.5, the digital-to-

time converter takes an input bit-sequence and translates it into a time-encoded output

bit-sequence. The hardware complexity and optimization of all the components in order

to minimize jitter is a very time-consuming task so the process was completely eliminated

and moved into software. The output bits of the DTC that are modelled in software will

be stored in a circular shift register as was described in Section 2.4. The time-encoded

representation will be a greater length than the input bitstream due to the fact that the

time information for the transitions must be stored as well. The software implementation

is illustrated in Figure 5.9

Figure 5.9: Single-bit DTC

An input 0 translates to a 90 degree phase-shift, and a 1 translates to a 0 degree

phase-shift indicating

φ(x) =

{
90o: x = 0

0o: x = 1
(5.2)

where φ(x) represents the output phase given the input, x.

The 90-degree phase-difference between the two signals means that that the output

period is divided into four distinct parts to form a full 360 degree period. This can be

represented by substituting the time-encoded signals by a four-bit representation. The 0

input is represented by a “0110” sequence corresponding to a 90o phase shift, and the 1

input represented by a “1100” sequence corresponding to a 0o phase shift. The output of

the DTC is loaded into the circular shift register where it is right-shifted at 4 times the
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reference frequency such that the output corresponds to the appropriate time-encoded

signal at the desired frequency. Figure 5.10 illustrates the overall design of the DTC

and the separation between the software and hardware components.

Figure 5.10: Separation of the software and hardware components of the DTC

The advantage of off-chip encoding is that the phase-encoding is completely pro-

grammable, and only the shifting frequency would need to be adjusted if a different

phase-encoding were utilized. It is possible to encode, anywhere from 0 to 360 degrees

in 90 degree increments with a 4 bit implementation, as well as smaller increments at

the expense of a greater number of bits. This would not be possible to do with the

traditional implementation. Additionally, the lack of on-chip hardware for the DTC

removes possible sources of jitter and noise on the output signals.

5.6 Counters

The counters are an integral part of the PEU and are implemented to count the

number of times the V COUT signal is ahead of tSTRB, as well as the total number of

tSTRB pulses. An asynchronous counter is implemented in this thesis because it offers

a simple, yet robust architecture. The counting line is initialized to all 1’s and then the

incoming V COUT rising edges will toggle the bits serially. The reason that the counter is

designed this way is that if all the counters were initialized to zero, the first count would

toggle every counter in the line and the output would have to be inverted. Instead, the

counter initializes to high, and the output is taken at the inverted output of each divider

illustrated in Figure 5.11.

Once the counter has finished counting, it is important for the circuit to have the

ability to provide the counted number to the outside-world such that it is possible for

the test engineer to read and decipher the results. As shown in Figure 2.25, the counter

is a serial line of dividers. Once the counting stops, the corresponding counted number

sits on the lines between adjacent dividers. To extract these numbers, a parallel-loading
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shift register was constructed using a series of D-flip-flops. The values at each node are

shifted into the counter, and finally the counter rotates to the right to serially shift out

the divider’s bits. The architecture for the shifting register can be seen in Figure 5.11.

Figure 5.11: Parallel-loading shift register implemented to rotate right the counted
bits

The timing of the counter and the shift register is of great importance to guarantee

that the counting has stopped when the right-shifting occurs. If there is a timing error

between these two actions, then it is possible that the same digit could be erroneously

shifted out twice in adjacent bits and lead to an incorrect result. In order to guarantee

that the timing of the circuits is correct, a small control circuit was developed. This

circuit can be seen in Figure 5.12.

Figure 5.12: Controlling circuit to manage the timing between counting and shifting

The controlling circuit of Figure 5.12 is designed with two D-flip-flops, an inverter,

and various multiplexers. The counting block has two states - counting and shifting. The

counting is done asynchronously and the counter is incremented each time an incoming

rising edge is detected. The shifting is done synchronously with the use of the clock

signal. The transition from counting to shifting is done with the control of the “count-

shift-select” control line. For a low voltage level, the counter is in the counting state,

and a high voltage level will transition the counter into a shifting state. The transition

between the two states is crucial such that no single bit is counted twice. The two D-

flip-flop implementation creates a control signal for the shift register on the falling edge
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of the shifting clock signal. The control signal will transition the shift register from a

loading state to a shifting state. The clock signal is asserted on the falling edge of the

shifting clock such that an adequate amount of time is given for the transient signals

to stabilize. Once the shift register has been transitioned into the shifting state, the

shifting clock signal rotates the register to the right by one bit with every rising edge.

The register is connected in a feedback loop such that the same bit-sequence will be

continuously circulated to facilitate reading of the output value. In order to determine

where the bit-sequence begins and ends, two shift registers are initially loaded with a

high value such that it is easy to spot when the sequence repeats. A depiction of the

timing of the counter’s signals is shown in Figure 5.13.

Figure 5.13: Waveforms of the controlling circuit to transition between counting and
shifting

A counting issue will arise when two subsequent similar values are presented at the

input to the counter. The reason is that with two subsequent 1s, there are no edges

that will cause the D-flip-flops to toggle. To remedy this situation, a simple reset circuit

was designed such that on the falling edge of the input clock the input into to the

counter would be reset to zero. This small circuit was implemented between the voltage

comparator and the counter block and is shown in Figure 5.14.

Figure 5.14: Auto-resetting circuit to ensure proper counting
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5.7 Coarse-Locking and Fine-Locking

The PTI uses both a coarse- and fine-locking mechanism to correctly place the phase

of the sampling edge, tSTRB, of the circuit in the desired location. The fine-locking

mechanism only has a phase range of 90 degrees, so if the signal phase of the output

of the voltage comparator is not within the range of operation, it will be impossible for

the fine-locking mechanism to finely adjust the phase of the timing strobe to extract

the performance of the DUT. To remedy this issue, a coarse-locking mechanism is also

used where the timing strobe signal is automatically adjusted to be within the range of

the fine-locking mechanism. The coarse-locking mechanism is made up of a DLL, PLL,

D-flip-flop, and multiplexers. The architecture of this block is illustrated in Figure 5.15.

Figure 5.15: Architecture of the automatic coarse-locking circuit

The automatic coarse-locking mechanism begins with the output of the comparator

feeding into a DLL that is clocked at 28.625 MHz. The reason that the clock speed is

28.625 MHz for this DLL is because that is the speed at which the DUT is working.

The function of the first DLL in this circuit is to delay the signal 315 degrees such that

over the operating range of the fine-locking circuit, there is a possibility to chose any

locations from −45o to 45o with respect to the rising edge of the voltage comparator

output to allow a large sampling range.

Following the DLL, the signal is fed into a PLL where the frequency is multiplied by

4. The multiplied signal will be used as the clocking signal for the fine-tuning circuit

that uses a time-encoded sigma-delta DC code in a circular-bitstream and a time-mode

filter as shown in Figure 5.1 for input channel 5. The clock that is being used is 4
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times the speed of the DUT due to the fact that the sigma-delta encoding is also time-

encoded using 4 bits per period such that a 90 degree phase range can be used, as

covered in Section 5.5. Since the clocking signal is locked to −45o (315o from the DLL),

a 0o encoding in the fine-tuning circuit will correspond to an overall phase difference of

−45o. Similarly, if the fine-tuning circuit is loaded to have a 90o phase shift, then the

overall corresponding phase difference will be 45o with respect to the voltage comparator

output signal. This situation is illustrated in Figure 5.16.

Figure 5.16: Waveforms of the automatic coarse-locking circuit demonstrating the
phase range of operation

As mentioned in Section 5.2, the circular bitstream for input channel 5 can contain

64 bits. Due to the fact that each bit is time encoded with four bits, this means that the

sigma-delta encoding can be a maximum of 16 bits long. 16 bits represents a total phase

resolution of 1
16 × 90o = 5.625o, or 545 ps. It is possible for the test engineer to place

timing strobe signal edge accurately to a resolution of 5.625o. Table 5.4 describes the

corresponding input codes and the timing strobe’s phase delay difference with respect

to the DUT signal.
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Table 5.4: Input Code and Corresponding Phase Shift with Respect to DUT Signal

Input Code
Phase Relation

(degrees)

0000 0000 0000 0000 -45
0000 0000 0000 0001 -39.375
0000 0000 0000 0011 -33.75
0000 0000 0000 0111 -28.125
0000 0000 0000 1111 -22.5
0000 0000 0001 1111 -16.875
0000 0000 0011 1111 -11.25
0000 0000 0111 1111 -5.625
0000 0000 1111 1111 0
0000 0001 1111 1111 5.625
0000 0011 1111 1111 11.25
0000 0111 1111 1111 16.875
0000 1111 1111 1111 22.5
0001 1111 1111 1111 28.125
0011 1111 1111 1111 33.75
0111 1111 1111 1111 39.375
1111 1111 1111 1111 45

The D-Flip-Flop in Figure 5.15 is used to control the loading of the bits into the

circular bitstream. The enable signals, “Enable 1” and “Enable 2” are used to control

this process and are described in detail in Section 5.8. Additionally, Chapter 4 covers

the fine clock control architecture and design.

Input channel 5 is a very important channel due to the fact that it contains a time-

encoded signal and, since it is used for sampling purposes, it is very important that

the phase of the signal with respect to other signals in the design is correct. For this

reason a small start-up circuit is designed such that the circular bitstream only begins

shifting the signal on the rising clock edge of the output of the DLL with the 315o

phase-shift. The reason for this is the encoding that is used in the DTC. A 0o phase-

shift corresponds with a “1100” bit sequence and a 90o phase-shift corresponds with a

“0110” bit sequence. It is important that the output signal from the circular bitstream

and the DUT signal match up appropriately, else the time encoding will not be what is

desired. For example, if the output of the circular bitstream is one-quarter period offset

in phase, then the output bit sequences will resemble “0110” for a 0o phase shift and

“0011” for a 90o phase-shift. This will result in the sampling edge not being centered

around the DUT edge and the measurements results will not be correct. The start-up

circuit is illustrated as the D-flip-flop in Figure 5.15. The “Enable 1” and “Enable 2”

signals are used to correctly operate the start-up circuit and these are covered in Section

5.8.
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5.8 Set-up Signals

In order to get the chip working as desired, there is a specific sequence of asserting

control signals that needs to be followed. The first order of business when the chip

is powered up is to load the circular memories with the desired bitstream that was

generated in software. There are two options of loading the circular bitstreams with the

bit sequences: manually, or automatically with the help of an ATE. The loading of the

bit sequences are covered in Section 5.11.

The signals that must be controlled are “Enable 1”, “Enable 2”, “Load DFF CLK”,

and the “Input X Select” signals where “X” represents the input channel number of the

bitstream that is being loaded.

First, to load the circular shift register, the appropriate “Input X Select” signal must

be set to 1. A 1 in this situation will allow the loading of new bits, while 0 will feed

back the output of the shift register to the input such that is it connected in a circular

manner. Next, “Enable 1” and “Enable 2” must be set to 0. Setting “Enable 1” to

zero will allow the shifting of the bits into the circular shift register to be controlled

manually, or from an external source as described in Section 5.11. When set to 1, the

shifting clock is attached to the reference clock so the bits will be shifted at 114.5 MHz.

By controlling the rate at which the bits are shifted, it makes the process of loading

the shift register easier on the test engineer. Additionally “Enable 1” set to 0 serves to

initialize all the DLLs and PLLs to ensure that they are in the correct start up state.

The bits that are loaded into the circular shift register are loaded through the “Load

Bits X” input, where “X” represents the appropriate circular shift register input channel.

For instance, to load bits in the circular shift register associated with input channel 5,

the input to use would be “Load Bits 5”. Once the bits have been loaded into the

appropriate circular shift register, the “Input X Select” signal is set to zero such that

the circular shift register output is fed back to the input and that any change on the

“Load Bits X” input signal does not have any effect on the loaded bits. The “Enable 1”

signal should then be asserted to 1 to connect the shift registers to the correct clock so

that they are rotated at the correct frequency.

Prior to any measurements, the “Reset Counter” input should be toggled to reset

the counters, and the “Count Shift Select” signal should be set to 0 to select the count

function. Setting it to 1 will enable the shifting function to shift out the count number

after a test has been completed.

Following the loading of input channel 5’s circular bitstream and the toggling of

“Enable 1” to 1, a sufficient amount of time should be allowed for the DLL and PLL
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circuits to settle to their constant values until “Enable 2” is toggled to 1. The reason is

that this input contains a time-sensitive bit sequence, so it is important that the shifting

of the bits corresponds with the rising edge of the DUT clock. If this is not done, then

the fine-control’s phase could possibly not line up with the DUT and voltage-comparator

edge locations. See Section 5.7 for a more detailed explanation. Once “Enable 2” has

been set to 1, it is possible to begin taking measurements. The measurements are started

by first setting the “Count Shift Select” signal to 0, and then setting the “Reset Counter”

to 1 (this is an active low signal). To stop the measurements, the “Count Shift Select”

signal should be set to 1 so that the final count numbers are serially torated at the

output so that the values can be recorded.

The counter contains 16 different counting blocks, so a number up to 216 − 1 can be

counted. With a clock speed of 28.625 MHz, this corresponds to a maximum test time

of 65535
28.625×106s−1 = 2.28ms. If a longer time is taken, each overflow bit should be counted

and added to the final count accordingly.

5.9 Design of the Comparator

The comparator is a very important and central part of the PEU design. The com-

parator compares the output voltage of the DUT against that of the threshold voltage

(input VComparator) and outputs a 1 if the DUT voltage is above that of the threshold

voltage, and a 0 otherwise. The output of the comparator is described as

Vo =

{
1 : VDUT > VTH

0 : VDUT > VTH

(5.3)

The comparator design specifications need to be able to satisfy both the required

speed performance as well as the wide-range operating voltage range such that the

threshold voltage can be manipulated over the entire available range from ground to

VDD. An operational amplifier could be implemented as a comparator, but in this dis-

sertation it would not be appropriate due to the high-frequency operation of the design.

Instead, a comparator design where sensitivity and propagation delay are optimized, is

implemented. The block diagram of the voltage comparator is shown in Figure 5.17.

The pre-amplification stage is used to amplify the input signal to improve the com-

parator’s sensitivity such that the minimum input difference on which the comparator

can make a decision is increased [23]. Additionally, the pre-amplification stage isolates

the input from switching noise from the decision circuit stage [23]. The decision circuit

will make the decision whether the input is above or below the threshold voltage, and
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Figure 5.17: Block diagram for the voltage comparator

the output buffer ensures that the comparator can properly drive the following circuits

and ensure that the decision circuit can work under the proper biasing conditions.

The design of the comparator stage is shown in Figure 5.18 [23]. This architecture

in particular was chosen because it is a very good general-purpose comparator. It offers

a very large rail-to-rail operation range for input signals, and it also has a sufficiently

large bandwidth so that the the comparator can easily operate a the desired speeds in

this PEU design. The sizing of each transistor in the design of the voltage comparator

is summarized in Table 5.5.

Figure 5.18: Transistor design of general-purpose comparator

The bias circuit for the nMOS and pMOS devices is shown in Figure 5.19, and the

sizing for each of the transistors is listed in Table 5.6.

Figure 5.19: Bias circuit for the comparator
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Table 5.5: Transistor sizing for the voltage comparator

Transistor Width Length

T1 6 um 300 nm
T2 3 um 300 nm

T3, T4, T11, T12 3 um 300 nm
T5 3 um 600 nm

T6, T7 6 um 300 nm
T8 6 um 600 nm
T9 6 um 300 nm
T10 3 um 300 nm
T13 6 um 300 nm

T14, T15, T16, T17 3 um 300 nm
T18, T19 6 um 300 nm

T20, T21, T25 6 um 300 nm
T22, T23, T24 3 um 300 nm

T26 3 um 3 um

Table 5.6: Transistor sizing for the voltage comparator bias circuit

Transistor Width Length

T27 3 um 6 um
T28 15 um 600 nm
T29 3 um 300 nm

T30, T31 30 um 600 nm
T32 15 um 600 nm
T33 60 um 600 nm

The voltage comparator was characterized and tested to ensure proper operation

across all the desired voltage ranges. Figure 5.20 illustrates the voltage transfer curve of

the comparator with a threshold voltage of 0.6 V. The input, Vin was then swept from

VSS to VDD. The offset seen in the figure is a systematic offset that is negligibly small

for the uses in this design. Taking the derivative of the voltage transfer curve allows for

the calculation of the gain of the comparator which equals 5782 V/V, as illustrated in

Figure 5.21.

In order to demonstrate the wide-range of common-mode operation, the voltage com-

parator’s threshold voltage was varied from 0.1 V to 1.1 V in 100 mV increments, and

the input voltage was swept from 0 to 1.2 V in each test. The results are illustrated

in Figure 5.22 and demonstrates the wide voltage-range operation of the comparator.

This allows the voltage threshold to be varied such that the eye-diagram can be sampled

across a wide voltage-range.
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Figure 5.20: The voltage transfer curve for the voltage comparator with the threshold
voltage held at 0.6 V and the input swept from 0 to 1.2 V

Figure 5.21: The gain of the voltage comparator

5.10 Practical Design Challenges and Considerations

In this section, a brief description of the practical design challenges and considerations

will be covered. There are many different design considerations that must be taken into

account in a design that will be used in the real-world. Topics that will be covered in

this section include: inverter sizing, multiplexer design, and real-world considerations.
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Figure 5.22: The operation of the comparator across a range of threshold voltages
from 0.1 V to 1.1 V in 100 mV increments while sweeping each input from 0 V to 1.2

V.

5.10.1 Inverter Sizing

Sizing the inverter is a very important design step because the inverter is used in

many different applications throughout the design of the PTI. The inverter is one of the

most simplistic components, but it must be sized in a way that the threshold voltage is

approximately in the middle of the voltage range between VDD and VSS, and that it

additionally must have a large enough driving power to be able to drive a large amount

of capacitance throughout the chip.

The inverter uses tow gates, a pMOS gate at the top, and an nMOS gate at the

bottom. Following many simulations, the ideal sizing for the inverter was determined

to have sizings of 300 nm and 1.27 μm for the pMOS and nMOS transistor widths,

respectively.

5.10.2 Multiplexer Design

The design of the multiplexer is important because two different factors have to

be balanced to achieve a desirable result. First, the transmission resistance must be

minimized such that a signal attenuation is minimized, and second, the input capacitance

must be minimized so that the signals being multiplexed are capable of driving the signal

through the multiplexer. There is a trade-off with the resistance and capacitance. To

reduce the resistance, the sizes of the transistors must be increased, but the increase

of size also increases the input capacitance of the multiplexer. The final design of the
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multiplexer has a transmission resistance of 700 Ω and a capacitance that is easily

driven with an inverter. Figure 5.23 illustrates the design of the multiplexer and Table

5.7 outlines the sizes of the transistors used in its construction.

Figure 5.23: Design of the multiplexer.

Table 5.7: Transistor sizing for the multiplexer in Figure 5.23

Transistor Width Length

T1, T2 4.2 um 300 nm
T3. T4 1 um 300 nm
T5, T8 1.4 um 300 nm
T6, T7 6.3 um 300 nm
T9 8.4 um 300 nm
T10 2 um 300 nm

5.10.3 Real-World Considerations

In addition to the designing of the circuit so that the on-chip signals performed

correctly, there were also many factors that had to be taken into account when the

CMOS chip would be connected to the outside world, outside of the chip. These include

the added capacitance of the pads and bond wires, electrostatic discharge, as well as

loads into the measurement equipment.

Each pad that was used on the chip adds a large amount of capacitance to the design.

Each pad is connected to a bond wire, and then to an external pin in the package. This

is a large amount of extra capacitance, so it was necessary to ensure that the on-chip
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components had the capability to drive this capacitance at a relatively-high speed. To

ensure that this was possible, each digital output was fitted with a digital buffer that

was sized to have four inverter stages that increase in transistor size. The final inverter

is 40 times the size of a standard inverter in order to be able to properly drive a large

output load. Digital buffers were additionally added inside the circuit where a large

amount of capacitance needed to be driven.

The output buffers are also included to drive the extra capacitance that is added by

the presence of the electrostatic discharge protection (ESD) circuits. ESD is the sudden

flow of electricity between two objects when they are contacted together. The sudden

flow of electricity is usually the result of a build-up of static charge on an instrument or

person and, when this comes into contact with a portion of the circuit, can damage the

electronic components due to the exposure to a very high voltage and hence creation of a

large current. The ESD protection circuits are placed at each pad contacting the outside

world and are designed to be a set of two diodes that will discharge the damaging current

to VSS. Figure 5.24 illustrated the way that the diodes are connected to provide ESD

protection. One diode protects against damaging high voltages, and the other protects

against damaging low voltages. Additionally, the ESD protection will protect against

and voltage surges from the power supplies that are not properly filtered out by the

shunt capacitors. Each ESD diode was designed to be very large (47μm× 68μm) to be

able to handle a large amount of current.

Figure 5.24: Design of the electrostatic discharge protection circuit.

Finally, it is important to take into account the signals that are driven off-chip that

will be used as test-points for the external measurement equipment. The initial design

called for an oscilloscope probe to be used to probe different locations of the circuit. An

oscilloscope probe has a very large resistance, so the output stages were designed to be
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able to drive this resistance. As the PCB design was created, the measurement methods

changed slightly to using SMA cables to attach to the oscilloscope to be able to gather

information more easily. SMA cables are designed to have 50Ω of resistance, so the final

design turned out to have an output signal swing of only 200 mV, instead of the planned

full 1.2 V. If designing another chip, this would be important to take into account in the

initial design phase.

5.11 Printed Circuit Board Design

The printed circuit board (PCB) was fabricated once the CMOS design was completed

and packaging process was finalized. It is with the PCB that the design of the PTI is

tested using a series of mechanical switches, SMA connectors, power supplies, and signal

sources. The PCB board that was fabricated was designed to have 4 layers: a top layer,

a power plane, a ground plane, and a bottom layer. The design of the PCB was done in

such a way to allow the testing to be done with the greatest flexibility, but still have a

very simple design. All select signals for the system are implemented using mechanical

switches that simply select either 1.2 V or 0 V as the input voltage. This minimizes the

number of voltage sources that are required to control the operation of the PTI. The

switches that were used are single-pole double throw (SPDT). Single pole means that

only one set of switches is being switched when the switch is moved, and double throw

means that there are two different positions that the switch can be set to.

Loading a signal into the circular bitstream using the “Load Bits X” input can be

done either manually using the switches, or automatically using an ATE. Having the

option to load the registers two different ways was implemented in order to facilitate the

testing process for those who have access to an ATE, but still allow the testing to be

done by those who do not. Figure 5.25 illustrates the architecture of this design.

Figure 5.25: PCB “Load Bits X” signal input circuit

The DC power supplies were attached to the PCB by using a single wire and once

on chip, capacitors were used to reduce the amount of high-frequency noise. Two 22
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μF capacitors were placed in series from power to ground in parallel with two 1 μF

capacitors. The values of the capacitors were used such that they could cover a wide

range of frequencies. Additionally, during operation it is seen that, due to the way the

capacitors are constructed, large capacitors have a large parasitic inductance at higher

frequencies which increases the impedance of the capacitor to ground. The smaller 1

μF capacitors are placed closer to the chip so that the resonance is filtered out as well.

The input to the “DFF Clock” input is a very important input due to the fact that

it is used as a clocking signal. The clocking signal needs to be very clean and without

any false edges such that the circular bitstreams can be loaded properly without any

false-shifting. A known problem with switches, however, is switch bouncing where false

glitches can be seen in the output waveform as the new connection is made and contacts

physically move from one position to another. As the the switch settles to its new

position, the contact tends to mechanically bounce which leads to the circuit being

opened and closed many times and creating false edges that would be interpreted as

false clock signals.

The bouncing issue issue was solved with the implementation of the clock-debouncing

circuit illustrated in Figure 5.26. The debouncing circuit has two different parts, the low-

pass RC filter, and the Schmitt Trigger. The low-pass RC circuit was designed to have

a time constant of 20 ms in order to smooth out the bouncing signals using a resistor

of 20 kΩ and a capacitor of 1 μF . Finally, a Schmitt Trigger is implemented which

implements hysteresis to shift the switching threshold levels to reduce the likelihood of

false edges. The overall design of the PCB is illustrated in Figure 5.27

Figure 5.26: Clock debouncing circuit design
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Figure 5.27: Design of the custom PCB to test the PTI

5.12 Simulation Results

Each of the individual components were tested to ensure proper operation, and were

subsequently combined into a larger design once each component performed as designed.

It is essential to ensure that each component is working as designed to guarantee a

problem-free design. Additionally, testing the components as they are designed reduces

the likelihood that an error will be found in the larger design where it will be significantly

more difficult to find the issue. It should be noted that some of the tests were done with

a wider bandwidth than what is being used in the PCB design in order to reduce the

overall simulation time of each component. Without increasing the bandwidth, some



Chapter 5. Architecture of the Probabilistic Test Instrument 87

simulations would take on the order of months to complete. The bandwidth change will

not have a significant impact on the basic working principle of the component.

5.12.1 Delay-Locked Loop

The delay-locked loop was tested to ensure that it would properly lock to the input

signal. The control-voltage-to-delay transfer characteristic of the VCDL was determined

by building the delay line and measuring the differing delays that were associated with

each voltage level. The results of these measurements can be seen in Table 5.8 and

Figure 5.28. When designing the VCDL, the operating frequency played a large part in

the design. The VCDL was designed to be capable of delaying the incoming reference

signal anywhere from 0 to 1.4 periods. This gives the DLL more than a full period

of operation, and it allows the output signal to have a full period of delay from the

incoming reference signal. The region around the full period of delay is designed to be

as linear as possible as this is where the DLL’s operating region will be.

Table 5.8: Voltage-Control Delay Line Transfer Characteristic for a 28.57 MHz Clock

Control Voltage (V) Delay (ns) Fraction of Period

0 2.2 0.06
0.1 2.3 0.07
0.2 2.6 0.07
0.3 3.3 0.09
0.4 4.9 0.14
0.5 7.8 0.22
0.6 12.7 0.36
0.7 19.3 0.55
0.8 25.7 0.73
0.9 31.7 0.91
1 37.7 1.08
1.1 43.7 1.25
1.2 49.3 1.41

Tests on the full DLL were conducted with a loop filter with a value of 33 nF which

translates to a DLL bandwidth of approximately 8.3 kHz. This small bandwidth is

excellent for filtering out the high-frequency components of the input bitstream. Figure

5.29 illustrates the settling of the DLL. It should be noted that the initial voltage for

the DLL starts around 500 mV, and not at zero. This was done simply to reduce the

total simulation time that is required. It is known that that the settling voltage is much

above the starting voltage point, so there is no detrimental effect to have a different

starting point closer to the final settling voltage. Figure 5.30 shows the locking of the

input and output waveforms which shows that the DLL is functioning as designed.
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Figure 5.28: Voltage-controlled delay line transfer characteristic for a 28.57 MHz
clock

Figure 5.29: Loop filter voltage during the settling of a DLL

Traditionally, the best way to analyze the settling characteristic is to plot the output

phase against time and monitor the settling of this phase to a constant value. As can

be seen in Figure 5.29, this was not done. Instead, the voltage from the loop filter was

plotted against time. The reason for this is that, as is shown in Figure 5.28, the phase-

voltage relationship is linear in the region that the DLL is operating in. Therefore, it

is reasonable to use the voltage characteristic to measure the performance of the DLL

in the same way that the phase is traditionally used. Figure 5.29 uses a simple clock of
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Figure 5.30: Locking of the input and output signals of the DLL

the same frequency as the operating frequency of the DLL (28.625 MHz) as the input.

This input will test whether or not the DLL can lock to a signal without any issues. As

seen in the figure, the loop filter voltage settles and the output and input phases are

locked as expected. The test was repeated once again to test with a sigma-delta input

as will be done with the chip. Figures 5.31 and 5.32 shows the same results, but this

time using a time-encoded sigma-delta input rather than a constant clock signal. The

two different sigma-delta inputs represent the maximum and minimum phase that can

be controlled with the DC code inputs.

5.12.2 Counter

The counter was tested to ensure that the count outputs correctly correspond to

the number of output edges that are detected in the PTI. The test for this component

was done by simply introducing a number of edges and making sure that the output

corresponds to the number of edges that were introduced at the input. The number is

serially shifted out of the counter as described in Section 2.9.
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Figure 5.31: The loop filter voltage and waveforms during the settling of the DLL
with a 0o phase shift

Figure 5.32: The loop filter voltage and waveforms during the settling of the DLL
with a 90o phase shift

5.12.3 Phase-Locked Loop

The PLL was tested in a similar way to the DLL. As described previously in this

chapter, the PLLs in this design are used solely for multiplying frequencies to meet

timing requirements. The input to the PLL is a clock signal, and the output is the

multiplied signal. The multiplication factor is directly dependent on the feedback divider

as described in Section 2.10. Figure 5.33 illustrates the settling of the loop filter voltage,

as well as the output waveforms and their corresponding frequencies for the multiplying

by 2 PLL. The argument for using the filter voltage instead of the phase of the signal in

the settling characteristic is similar to that of the DLL: the VCO range over which the
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PLL is operating is linear so there is a direct linear correspondence between the loop

filter voltage and the output frequency.

Figure 5.33: The waveforms for the outputs of the multiplying by 2 PLL

From Figure 5.33, it is possible to see that the output frequency is twice that of

the input frequency as desired. Additionally, the control voltage of the PLL is shown

to reach a steady-state value as anticipated. The settling of the control voltage’s final

value is exactly what is expected when comparing to Figure 5.34 where the relationship

between the PLL output frequency and VCO control voltage is shown.

Figure 5.34: VCO voltage-frequency relationship used in the PLL
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5.12.4 Circular Shift Register

The circular shift register is one of the most important pieces in the design of the

PTI, so it is of the utmost importance that it works properly. To test the circular shift

register, a sample bitstream was loaded into the registers, it is connected circularly in

feedback, and the output bitstream is compared to the loaded bitstream to make sure

that they match. Additionally, it is made sure that the bitstream repeats as it is designed

to do. Figure 5.35 illustrates the waveforms of the circular shift register. The red line

in the input bit sequence and the black line is the sequence that is shifted out of the

circular register. It can be seen that both waveforms are the same which concludes that

the circular shift register works as intended.

Figure 5.35: The waveforms of the circular bitstream after a bitstream of “11000” is
loaded and connected circularly

5.12.5 Coarse and Fine Locking

The automatic locking circuit was described in detail in Section 5.7 and is used to

synchronize the output bitstream from the circular shift register with the output of

the comparator so that it is possible to extract very fine edge-transition information.

Without this circuit, the fine adjustment of the edge would not necessarily be done

around the rising edge of the output comparator waveform as desired. To ensure that the

circuit was working as it was designed, test simulations were done with input waveforms

of arbitrary phase to guarantee that the circuit worked under all input conditions. Figure

5.36 shows the output waveform from the circular shift register that has been clocked

by the multiplying PLL such that the output waveform is locked to the correct phase
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so that measurements can be taken. The waveform that is loaded into the circular shift

register is one that alternates a “1010” time-encoded pattern such that the output is

located at a phase-shifted 0o. This is achieved because it is alternating back and forth

between a −45o and a 45o phase-shift, and the lowpass time-mode filter extracts the

average value of 0o. The black curve shows the time-encoded output from the circular

shift register, and the red curve shows the locked filtered output from the DLL which

will be used as the timing input to the counters.

Figure 5.36: The waveforms of the circular bitstream after coarse-locking and a 45o

phase-shift

There are 2 DLLs and 1 PLL in the circuit as outlined in Section 5.7. Figure 5.15

outlines the general architecture for the coarse-locking circuit and Figure 5.37 shows the

different control voltages for the controlling DLLs and PLLs in the automatic coarse-

locking circuit. The “DLL 1 Voltage” is in reference to the first DLL which takes the

input from the comparator to delay the signal 315o so that is is possible to accurately

control the edge anywhere from −45o to 45o. The voltage can be seen to settle to a

constant value. It was started with an initial condition to reduce the simulation times.

As mentioned in Section 4.2, each DLL contains a start-up circuit to guarantee proper

operation of the DLL. The second voltage, “PLL Voltage”, is the control voltage for the

multiplying PLL that will multiply the DLL output by 4 to properly clock the circular

bitstream so that the output is of the correct frequency. Finally, the third voltage in the

figure shows the voltage for the second DLL which acts as the time-mode filter for the

circular bitstream. Here, the signal is only enabled once the PLL has properly settled to

a constant value to ensure that the clocking happens at a constant rate. Also, it should

be noted that the additional logic covered in Section 5.7 ensures that the clocking of

the circular bitstream begins on the correct pulse so that the rising edge is located at
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the correct phase-location. The two Figures 5.36 and 5.37 show the correctness of the

design of the coarse-locking circuit.

Figure 5.37: The control voltages in the coarse-locking circuit illustrating proper
operation

5.12.6 Summary

This chapter covered the architecture of the PTI that is used to extract the edge-

location timing information for a high-speed circuit. The extracted edge locations will be

used to construct a PDF that will be used to extract the bit-error-rate (BER) associated

with the communication channel and receiver. This section covered the system architec-

ture, practical design considerations, PCB design, as well as the simulation results for

the components using MATLAB and Virtuoso.



Chapter 6

Experimental Results

The chapter presents the results from the measurements of the PTI once it had

been returned from fabrication. The PTI CMOS was fabricated in a IBM 0.13 μm

process with a die size of 1.2 mm X 1.2 mm. The die was packaged in an CQFP80A

package from Mosis that contains 80 pins. The package was mounted on a specifically-

designed printed circuit board (PCB) with input and output channels that allow for

stimulation and measurement of the PTI. This chapter will investigate the final design

of the PTI, as well as its operational characteristics. The results will be compared with

the simulated measurements and final quality of design will be discussed. Finally, future

design improvements will be suggested for the PTI.

6.1 Experimental Setup

The experimental setup for the testing of the design is shown in Figure 6.1. The

experimental setup consists of three major components: the HP 81130A programmable

pattern generator with two channel outputs, the PCB board mounted with the PTI and

the associated discrete components for testing, and a signal measurement instrument

which in this case was the Agilent 80000B Digital Signal Analyser.

The HP 81130A is a programmable pattern generator that was used to load all the

circular shift registers with the correct bit sequences. Using its two separate channels, it

is possible to easily load the channels by providing both the input bitstream as well as

the input D-flip flop loading clock signal “Load DFF CLK” (see Appendix A). Using the

control switches mounted as discrete components on the PCB, it is possible to control

the “Load X Select” input signals to select which circular shift registers are in the load

configuration, and which ones are in the circular-shifting configuration. Each circular

95
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Figure 6.1: Experimental setup for the testing of the PTI

shift register is then programmed by using the appropriate “Load Bits X” signal, as well

as the “Load DFF CLK” signal which are both generated by the HP 81130A pattern

generator. See section 5.8 for the process to load the signals properly.

The Agilent 80000B is used as an oscilloscope to extract the timing and voltage

characteristics from the PTI. The 80000B can handle signals up to 13 GHz, and can

sample up to a speed of 40 Gbits/sec. The advantage of the 80000B is that it it possible

to save each sample in the waveform for later analysis.

The 0.13 μm CMOS design was designed with the use of the Cadence design suite and

was fabricated. The result of the fabricated chip can be seen in Figure 6.2. Following

the fabrication, it was packaged by Mosis in a CQFP80A package. Inside the package,

bond wires are used to connect the CMOS die to the package pins. Figure 6.3 illustrates

how the chip is connected to the package.

6.2 DLL Time-Mode Filter

A type-II DLL (Figure 2.3) is to be used as a time-mode filter in the design of the PTI

as described in Chapter 4. In the design phase of the thesis, an extra DLL was placed on

the CMOS die in order to be able to easily verify its operational characteristics. Without

a separate DLL, it would have been impossible to properly characterize the DLL due to
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Figure 6.2: The fabricated 0.13 μm CMOS die

the very complicated nature of the design of the PTI and the limited output signal pins

on the CMOS die. The DLL being tested in this design is the exact same design and

layout as the DLLs that are used in the PTI, so all of the results extracted from these

tests are possible to infer to the DLLs in the PTI.

The DLL has two inputs, one loop filter connection, and one output. The two inputs

are the clock signal input, and the bitstream input as described in Section 2.2. The

loop filter connection is simply a point connection from the charge pump output to the

VCDL as illustrated in Figure 2.13, so it is only possible to implement a first-order

design. Finally, the output connection is the output of the DLL and will be used to

analyze its performance.

The loop filter was chosen following the procedure of DLL designs outlined in Chapter

4. With a delay line constant of 60.04×10−9 secV , a charge pump constant of 0.16 mV/rad,

a clock frequency of 28.625 MHz, and a chosen bandwidth of 8250 Hz, a capacitor value

of 33 nF was obtained. With a lower bandwidth, one can expect better performance

due to the fact that the DLL is extracting the DC average value from the bitstream.

A first-order sigma-delta modulator designed and tested in software in Chapter 3, was

used to encode a variety of DC codes. The codes and their corresponding sigma-delta

representation is shown in Table 6.1.



Chapter 6. Experimental Results 98

(a) The connections from the CMOS die to the packaging

(b) Connection of bond wire from CMOS die to package

Figure 6.3: Packaging of the 0.13 μm CMOS die

The bitstreams were then time-encoded using the DTC outlined in Section 2.5. This

means that each 1 bit is represented by a “1100” sequence corresponding to a 0o phase-

shift, and each 0 bit is represented by a “0110” sequence corresponding to a 90o phase-

shift. Therefore, each repeating bit sequence that is used to stimulate the DLL is 8×4 =

32 bits in length. The DC code variation allows for the output edge to be controlled

anywhere from 0 to 90 degrees and, depending on different experimental conditions, it is

possible to use different phase-encodings for the DTC which will result in a smaller range,

but finer resolution for the control of the output edge signal. Additionally, the duty cycle
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Table 6.1: DC Code Sigma-Delta Representation

DC Code
Sigma-Delta Encoding

(repeating)

0 00000000
0.125 10000000
0.25 11000000
0.375 11100000
0.5 11110000
0.625 11111000
0.75 11111100
0.875 11111110
1 11111111

of the input bitstream and clock signals will not have any effect on the performance of

the DLL due to the fact that only the rising edges for each signal are registered. Figure

6.4 shows the settling of the loop filter voltage when changing the input DC code from

1 to 0.

Figure 6.4: DLL loop filter voltage when changing the input DC code from 1 to 0.

The performance of the DLL time-mode filter to control the locations of the output

edges was measured, and the results are shown in Figure 6.5. This figure illustrates the

relationship between the input DC code, and the phase of the output edge with respect

to the input constant clock signal. In the same figure, the ideal phase shift, as well as the

transistor level edge locations. As seen in the figure, the output edge locations follow the

expected edge locations. The linearity of the DC-code to edge-location transfer function

makes the adjustment of the location of the edge locations simple and predictable, as

was desired for this design.

In addition to measuring the phase of the edges, the standard deviation and peak-

to-peak jitter of the edges was measured. The dominating source of the jitter is the

quantization noise that passes through the filtering process. To measure the jitter, the

sigma-delta modulated DC code is loaded into the HP pattern generator and applied to
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Figure 6.5: DC-code input and the corresponding edge locations at the output of the
DLL time-mode filter

the input of the DLL. The same DC codes from Table 6.1 were used and the results are

illustrated in Figures 6.7 and 6.8 for the peak-to-peak jitter and the standard deviation

of the edge jitter, respectively. For each test, a minimum of 20 000 edge transitions

were collected. Figure 6.6 shows an example of the extracted edge location histogram.

A count in each bin is added when the edge transition is measured at each location.

Figure 6.6: Edge location histogram for a DC input code of 0.75

The peak-to-peak jitter that is measured with the first-order DLL is found to be at

a maximum of 338 ps for a signal of 28.625 MHz (34.9 ns period). The peak-to-peak

jitter was measured as the location of the latest edge-transition minus the location of

the earliest edge-transition. As this is the peak-to-peak jitter, this is the worst-case

scenario that would be encountered, and the majority of the jitter is significantly less
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Figure 6.7: The peak-to-peak deviation of the edge locations for a first-order DLL

Figure 6.8: The standard deviation of the edge locations for a first-order DLL

than these values. The standard deviation of each edge is reported in Figure 6.8, where

the standard deviation of the edge in each location was measured. Here, the standard

deviations vary from 29.4 ps to 50.8 ps. It is important to note that in this case, the

standard deviation and the root-mean squared (rms) values are the same. The reason is

that the edge locations are being measured from the mean location of the edge so, when

computing the standard deviation with Equation 6.1 where μ is the mean value
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σ =

√√√√ 1

N

N∑
i=1

(xi − μ)2 (6.1)

is the same as calculating the rms value with the equation below:

xrms =

√
1

N
(x21 + x22 + ...+ x2N ) (6.2)

When the measured result is compared to that in [13], the results are a significant

improvement in the jitter performance. It is reported in [13] that the best-case jitter

performance obtained with a 50 MHz clock is 65 ps, and outside a small DC code range

of 0.35 to 0.55 this jitter increases as high as 1000 ps. In this work, the worst-case jitter

performance that is measured is 50.8 ps.

From the measurements acquired in this section, it is possible to see that the jitter

increases as the DC code approaches 1, and performs best from input codes ranging

between 0.3 and 0.7. While it increases only slightly outside this range, in order to have

the least amount of jitter, it is best to operate within this range.

The experiments were repeated for a phase encoding of 45o so that the edge was

controllable between 0o and 45o in the same fashion as the previous experiments. This

would allow for a greater resolution between subsequent edge placements with the same

number of bits in the sigma-delta controlling sequence. For a 45o encoding a greater

total number of bits is be necessary to represent the 45o phase shift over the 90o in the

DTC, and the shifting clock has to be doubled in frequency. With the 45o phase-shift, 8

bits are required for each sigma-delta bit instead of 4 with the 90o shift. The result is an

edge that can be controlled with twice the resolution, but at the expense of having twice

the number of bits circulated in the circular bitstream. The 45o encoding of the signal is

represented by a “01111000” bitstream, while a 0o is represented by “11110000”. Figure

6.9 illustrates the relationship between the input DC code, and the edge location when

a phase-encoding of 45o is used.

Figure 6.10 shows the peak-to-peak jitter of the edge and Figure 6.11 shows the

standard deviation of the jitter as the DC code is varied from 0 to 1.

The tests were again repeated, but this time they were done using a smaller loop

bandwidth of 825 Hz (loop capacitor of 330 nF) to be able to compare the average jitter

at the output. As shown in Chapter 4, it is expected that with a smaller bandwidth,

less jitter will be present on each edge. Figures 6.12 and 6.13 compare the effects of
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Figure 6.9: Relationship between the input DC code and the phase of the output
when a 45o phase-encoding is used.

Figure 6.10: The peak-to-peak deviation of the edge locations for a first-order DLL
with a 45o phase-encoding

different loop bandwidths on the standard deviation of jitter on the output signal with

an input phase-encoding of 90o and 45o, respectively.

It is obvious that with a reduced bandwidth of the DLL, the standard deviation of

the jitter decreased as expected in the 45o phase-encoding case. With the 90o phase-

encoding, the two results are very similar and this can be attributed to the fact that the

jitter has already been minimized for this configuration and clock input.
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Figure 6.11: The standard deviation of the edge locations for a first-order DLL with
a 45o phase-encoding

Figure 6.12: The effects of different loop bandwidths on the standard deviation of
jitter on the output signal with an input phase-encoding of 90o.

6.3 Probabilistic Test Instrument

In this section the Probabilistic Test Instrument (PTI) that was outlined in Chapter

5 is tested and the results are reported. The PTI takes up the majority of the CMOS

die that was fabricated for these tests. The PTI will generate the test stimulus signals,

as well as measure the performance of the DUT by means of statistical extraction.

The experimental setup of this design is exactly the same as that for the DLL time-

mode filer. All of the PCB power and control voltages are connected to DC power
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Figure 6.13: The effects of different loop bandwidths on the standard deviation of
jitter on the output signal with an input phase-encoding of 45o.

supplies using simple copper wires, input bit channels are connected to a pattern gener-

ator using a series of SMA cables, and the outputs are connected to an oscilloscope for

measurement gathering. Figure 6.14 shows the setup of the testing environment.

Figure 6.14: Bench test setup for measuring the fully integrated PEU in a 130 nm
CMOS process technology.

The design of the PTI is very complex, so the first steps that were taken in testing

were to ensure that all the components were working as designed. First, the BSG was

tested to ensure that it was possible to stimulate the DUT with the proper signals, and

following that, the PEU was tested. The following subsections outline the testing that

was done to evaluate the performance of each component.
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6.3.1 Circular Shift Register

The circular shift resister was designed to be possible to test with a dedicated output

pin connected to the output of the 256-bit circular shift register. By monitoring the

waveforms on this pin, it is possible to determine whether or not the component is

working correctly. In this test, a sequence of pulses of increasing length was loaded

into the shift register and circularly shifted out. The result proved that the component

was working as desired and is illustrated in Figure 6.15 which shows that the output

is exactly what is expected and confirms that the circular shift registers are indeed

working. As not every shift register has a dedicated output pin, the other registers are

tested in conjunction with other components. Additionally, since they are all the same

architecture, it can be expected that the other shorter shift registers work as expected.

Figure 6.15: Testing of the circular shift register

6.3.2 Input Channel 1 and 2

Input channel 1 was tested in conjunction with input channel 2. The two channels

together make up the output bit sequence from pin “Out Inputs 13” which will subse-

quently be fed into the DUT. As shown in Figure 5.3, a multiplying PLL is used to bring

the clocking frequency up to the required speed such that the bits are timed correctly

to achieve the desired output sequence. In this test, a simple “1100” pattern, signifying

a time-encoded 0o phase-shifted signal, was loaded into the register to ensure that the

PLL was able to multiply the clock correctly, and the output of the DLL was monitored.

The results of this test are illustrated in Figure 6.16.

The output frequency of the waveform is expected to be 57.25 MHz but, as shown

in the figure, the output frequency of this waveform is only 43.42 MHz. Upon further
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Figure 6.16: Output waveform from the circular shift register following the loading
of a “1100” repeating bit sequence and clocking with the multiplying PLL

investigation, the reason for which the output frequency is not what is expected is due

to the fact that there was extra parasitic capacitances that are present at the output of

the ring oscillator. At the end of the design phase, an extra test point was added to the

PLL to monitor the operation, and the extra capacitance was not taken into account.

For this reason, it is not possible for the ring oscillator to oscillate fast enough to bring

the output frequency up to the desired 229 MHz. The basic functionality of the PLL

is correct, and it has been measured that the control voltage on the VCO line is at its

minimum in order to maximize the output frequency, but with the added capacitance,

it is not possible for the output frequency to be brought up to what it needs to be for

proper operation.

6.3.3 Input Channel 3

Input channel 3 is a channel designed for stimulating the DUT with AC signals, as

covered in Section 5.2. Input Channel 3 uses a circular shift register that can hold up

to 256 bits that is subsequently fed into a voltage-mode filter. The input waveform that

is loaded into the shift register is sigma-delta encoded, and the voltage-mode filter is

used as a reconstruction filter to extract the original input waveform. Following from

Chapter 3, the first input signal was encoded with an input frequency of 447.265 kHz and



Chapter 6. Experimental Results 108

was loaded into the circular shift register. The waveform was loaded and the resulting

output from the circular shift register is shown in Figure 6.17.

Figure 6.17: Sigma-delta encoded 447.265 kHz waveform at the output of the 256-bit
circular shift register for input channel 3

The subsequent waveform was then put through a voltage-mode reconstruction filter

with a cutoff frequency of 829.075 kHz. Due to a mistake by the author, the output

testing node was included to have a digital buffer such that it was possible to drive the

output resistance and capacitance that is seen on the package’s pads, and the oscillo-

scope. Unfortunately, this results in a square wave output, and not a sine-wave output

as should be expected. However, it is possible to infer from the period of the square

wave, that the filter is working properly, and that the digital buffer is acting as an am-

plifier to saturate the signal past the threshold voltage of the transistors. This result is

illustrated in Figure 6.18. Note that in this figure, the output is being shifted at a faster

rate in order to test the limits of the registers.

With the input channel 1 not working as desired due to the multiplying PLL, the

input channel 3 output can be connected to the DUT in order to provide a stimulating

signal. This signal will not be programmable like channel 1 would provide, but it allows

measurements to still be taken regarding the DUT and PEU. Since the shift register for

this input is clocked at 114.5 MHz, 4 bits must be used to make up the clock signal to

meet the timing requirements of the DUT.
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Figure 6.18: Sigma-delta encoded 447.265 kHz waveform at the output of the 256-bit
circular shift register for input channel 3 following a digital buffer

6.3.4 Input Channels 4 and 5

Input channel 4 is used to set the threshold level at the input to the comparator

so that the sampling location can be changed as desired. This was done by loading a

variety of sigma-delta encoded DC signals into the 20 bit register and monitoring the

output threshold voltage levels. Additionally, it is possible to provide a voltage to the

comparator to ensure that the correct voltage level is used.

Input channel 5 was tested to ensure that proper locking of the signal was done,

and that it was possible to move the edge of the signal around by controlling the input

DC code that is loaded into the 64-bit circular shift register. Input channel 5 includes

the coarse-locking of the signal at the output of the DUT, and also the fine-tuning of

the edge via the sigma-delta DC code and time-mode filter as covered in Chapter 4.

The first DLL to delay the signal to 315o of the original signal worked correctly. This

ensures that the subsequent 90 degree controllable phase range allows for the edge to

be controlled anywhere from −45o to 45o with respect to the edge of the DUT. As the

PLLs in the design are limited in frequency multiplication (due to the small error by

the author), it it impossible for the coarse-locking mechanism to work as intended by

locking to the output signal of the comparator. To remedy this situation, a wire was

soldered to the loop filter of the DLL at the output of the coarse-locking circuit, and the

phase was controlled manually by simply adjusting the voltage to the loop filter. This
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approach allowed the input channel to work correctly, but with a small limitation in the

resolution at which the timing strobe can be controlled.

6.3.5 Probability Extraction Unit

Following the testing of the BSG, the PEU was tested to extract the bit error-rate for

the DUT. As the input channel 1 was not working, it was impossible to add extra jitter

on the edges of the clock. Instead, a simple clock from channel 3 was used to stimulate

the DUT. The threshold levels for the input of the comparator was adjusted manually

to ensure that the correct levels were being used to sample the DUT output signal.

Following the comparator, two counters were used to count the number of edges: one

for counting the total number of timing strobes, and another for counting the number

of edges of the V COUT ahead of the timing strobe for the duration of the test. Each

counter has two modes, a counting mode and a shifting mode. The counting mode is

enabled for the duration of the test, and once completed, the shifting mode is enabled

such that the counted numbers can be shifted out serially and recorded. Each counter

utilizes 16 separate counting cells to make a full 16-bit counter for a total of 65 536

possible counts. If the output ever passes the number of counts, an overflow signal is

raised so it is known to the tester that the counter has overflowed and that this should

be taken into consideration for the data gathering.

The DUT was connected to the PEU and BSG and stimulated with a clock signal

of 28.625 MHz from input channel 3. The comparator threshold voltage was set at 0.6

V and the tSTRB clock signal was varied across the output waveform of the DUT. As

discussed in the previous section, the timing strobe location (for in put 5) is adjusted

with the help of an external voltage source used to set the voltage on the loop filter of

the DLL, essentially controlling the phase of the timing strobe. The voltage resolution

with which this signal is controlled is 1 mV which allows for the edge to be controlled

with a similar resolution to what was initially designed.

With the manual voltage control, a 1 mV change in loop filter voltage amounts in

approximately 600 ps of edge movement. Following from Section 5.7 the original design

of 64 bits of time-encoded signals allows for a resolution of 545 ps which are on very

similar time scales. Each test was conducted by adjusting the phase of the timing strobe,

and counting the number of high clock signals at the point in time. As the timing strobe

is moved across the sampling eye, more high signals will be counted. Comparing the

number of counted high signals against the total signals counted, it is possible to extract

the information about the jitter of the edges of the DUT. Table 6.2 outlines the results
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from the tests and the corresponding probability that the V COUT edge, here called TDUT

for timing purposes, is before TSTRB as TSTRB is varied across 90 degrees.

Table 6.2: Probability that TDUT < TSTRB where TSTRB is varied across 90 degrees

Control Voltage
(mV)

Relative Phase
(degrees)

CDF

0.82 -20.05 0
0.83 -13.18 0
0.84 -3.45 0
0.85 5.14 0.26388
0.86 12.58 0.73302
0.87 18.99 1
0.88 25.41 1
0.89 31.59 1

The results were extracted by using the two counters. Using the shift capability of

the counters, the results were then serially shifted out in binary form. It must be noted

that the design is such that the bits are shifted out in reverse order, so a simple mirroring

of the output bits must be done. Figure 6.19 shows an example of the shifting of the

output count values so that it is possible to record the results. Each counter has two “1”

bits that signal the beginning of the shifting period. The corresponding locations where

both the “Total Count” (blue curve) and the “DUT Count” (red curve) signals line up

with the two “1” pulses is the beginning of the shifting of the binary representation of

the number of bits counted. In this particular example, there are 0 DUT edges counted,

and 33 107 total edges counted.

Table 6.2 confirms the expected results where the later the timing strobe, the more

edges will be counted. Additionally, the phase at which the edges are located are ap-

proximately in the correct position due to the fact that the first DLL in the design was

used to move the control signal to −45o, meaning that the edge would be located at

approximately 0o in the relative fine-locking tuning range. Figure 6.20 shows a graphical

representation of the data from Table 6.2 which corresponds to the CDF of the edges.

6.3.6 Evaluation of the Performance of the PTI

In this section, the overall performance of the PTI will be discussed. The experimental

results from the previous subsections will be used to extract the estimated BER and the

overall performance of the PTI instrument.

The number of input signals that can be used to stimulate the DUT for a variety

of tests is very limited due to the fact that the PLL at input channel 2 is not capable

of multiplying the reference clock to twice it’s original frequency. As a result, it is
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Figure 6.19: Output waveforms from the counter that are being used to extract the
CDF corresponding to the DUT for a control voltage of 0.82 V (−20.05o relative to

V COUT edge)

Figure 6.20: Probability that TDUT < TSTRB where TSTRB is varied across 90 degrees
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impossible to perform any jitter tolerance tests with this instrument. The test that

was performed is the time-based scan test outlined in Section 1.3.2 where the timing

strobe, TSTRB, is swept across the eye diagram and the corresponding probabilities of

TDUT < TSTRB are extracted. The cumulative distribution function (CDF) is shown

in Figure 6.20, and its derivative, the probability density function (PDF), is shown in

Figure 6.21.

Using the PDF, it is possible to extract the edge location’s standard deviation. For

lack of a better statistical model at this time, the distribution of the edge distribution

is assumed to be Gaussian, and the PDF’s approximated distribution is also plotted in

Figure 6.21. In this particular case, one standard deviation is equal to 5.4 degrees, or

524 ps. Having extracted the standard deviation it is possible to find the BER by using

the formula 1.11 which is again repeated below

BER(tTH) =
1

2
− 1

2
× Φ

(
tTH − 0

σRJ

)
+

1

2
× Φ

(
tTH − T

σRJ

)
(6.3)

where tTH will be equal to 0.5
28.625M = 17.5ps. Substituting these results into 6.3,

BER(17.5ns) =
1

2
− 1

2
× Φ

(
17.5ns− 0

524ps

)
+

1

2
× Φ

(
17.5ns− 34.9ns

524ps

)
(6.4)

and simplifying,

BER(17.5ns) = 3.7954× 10−245 (6.5)

The BER in Equation 6.5 is extremely low due to the exceptionally long bit period

and reasonably low jitter for this particular setup. The correctness of the results gained

from the PTI can be very loosely checked by using an external oscilloscope to repeat

the same process where the edge locations are measured and the BER is calculated.

It must be noted that the results measured by the external oscilloscope do not reflect

the communication channel exactly as there is a digital buffer between the channel and

the oscilloscope. Without this buffer, when probing the communication channel, the

characteristics would be changed and it would not reflect the real-world operation of

the channel. Figure 6.22 shows the edge locations that were measured with the external

oscilloscope in comparison to those extracted using the PTI itself.

As can be observed in Figure 6.22, the standard deviation for the off-chip measure-

ment is slightly smaller than that gathered from the PTI. While the signal paths to each
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Figure 6.21: PDF that TDUT < TSTRB where TSTRB is varied across 90 degrees.
This is the derivative of Figure 6.20 which represents the CDF.

Figure 6.22: DUT edge locations measured with an external oscilloscope compared
to those measured with the PTI. External measurements are buffered through a digital

buffer prior to measurement.

measuring instrument are slightly different, i.e., additional buffers are included to drive

off-chip signals, the results show similar behaviour, albeit with the on-chip PEU having

about twice the RMS noise variation (specifically, the on-chip noise standard deviation

was found to be 5.4 degrees or equivalently 524 ps and the off-chip noise variation was

about 226 ps). The extra noise suggests the PEU is noisier than the high-performance

oscilloscope. In so far as using the PEU results to compute BER, consider that if the

sampling instant were placed 2 ns away from the clock reference edge, the BER would

be
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Figure 6.23: CDF for the measurements taken both on- and off-chip.

BER(2ns) =
1

2
− 1

2
× Φ

(
2ns− 0

524ps

)
+

1

2
× Φ

(
2ns− 34.9ns

524ps

)
(6.6)

and simplifying leads to

BER(2ns) = 3.45× 10−5 (6.7)

As shown in Equation 6.7, this results in a bit error approximately every 30k bits.

As expected, with a very small amount of jitter and a very long period, the BER is

extremely low. However, if the clock speeds were to increase, and the sampling locations

changed, the BER would drop significantly.

6.3.7 Summary

In this section, the experimental results of the PTI were collected and evaluated.

Although there were a few problems with the jitter injection test circuit in the BSG due

to the PLL not working as desired, it was possible to extract the standard deviation of

the jitter of the DUT, and approximate an error by using the CDF, PDF, and statistical

models. The DLL as a time mode filter was tested and confirmed to work correctly, and

the advantages of using a smaller filter bandwidth were demonstrated. Using the DLL

to control a timing strobe, the performance characteristics of the DUT were extracted



Chapter 6. Experimental Results 116

and it was determined that a standard deviation of the jitter was measured at 524 ps.

This measurement was compared against that of a high performance oscilloscope where

a standard deviation was found to be 226 ps. The extra noise suggests the PEU is noisier

than the high-performance oscilloscope.



Chapter 7

Conclusion

7.1 Thesis Contribution

This thesis presents a built-in self-test probability test instrument that extracts and

predicts the BER for a particular DUT. The instrument generates its own test stimulant

signals for the DUT and also extracts the probabilistic data associated with the edge

transitions so that it is possible to estimate the BER of the DUT. The instrument is

composed of two modules: the multi-channel bitstream generator, and the probability

extraction unit. The multichannel bitstream generator is completely programmable,

which makes it extremely flexible and adaptable to different test stimulant signals that

the test engineer would like to use and is ideal for both RF and mixed-signal devices.

This thesis showed that it is possible to implement the PTI on a CMOS die in a BIST

testing environment and extract the timing and probabilistic experimental data in order

to estimate the BER.

The advantage of the PTI over previous devices is that it offers the test engineer

an option to greatly reduce testing time by using probabilistic methods over a lengthy

transmit and compare test. Additionally, it is an improvement over current probabilistic

designs due to the fact that it is built in to the device that it is testing, so there is no

additional loading of the communication channel whilst the test is taking place. This

gives the test engineer the best and most accurate information in the performance of

the communication channel.

The design that was presented can stimulate the DUT with AC signals, phase-

modulated signals, as well as DC signals. Additionally the eye-diagram can be sampled

at any voltage and time location in order to easily extract all of the information related

to the operation of the DUT. The multi-channel bitstream generator was presented in

117
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Chapter 5 where a bank of circular shift registers is used to generate a variety of signals

to stimulate the DUT. The BSG is composed of three blocks: the software generator,

the circular shift register, and the filter. The signal would fist be synthesized in software

where sigma-delta modulators would encode the signal into a 1XN bitstream. Limi-

tations as to the quality of the encoded signal were limited by the number of bits of

memory in the circular shift registers. The bits were loaded into the circular shift reg-

ister, and then circularly shifted to make a single continuous signal. This signal would

then be filtered to produce the desired stimulating or timing signal for the DUT. The

time-mode filters used were DLLs due to the fact that they would offer superior jitter

performance over a PLL due to the lack of a VCO. A new method for designing DLLs

was described which greatly simplifies the design process.

A prototype DLL was implemented separate to the PTI, and its operation was exper-

imentally verified. The experimentation results outlined in Chapter 6 show how the edge

of the signal can be accurately controlled with a sigma-delta time-encoded bitstream.

It was shown that the modulator can be used to adjust the edge of a clock signal very

accurately with a phase resolution of approximately 5o and 10o using an encoding of 45o

and 90o respectively. Additionally, it is shown that a lower loop bandwidth results in

less jitter on the output edge.

In Chapter 5, the PEU portion of the PTI was presented. The PEU is the block

that extracts the probabilistic quantities from the operation of the DUT that are used

to estimate the BER. Using a voltage comparator, a controllable timing strobe, and two

counters, the PEU counts the number of times the V COUT signal is ahead of the timing

strobe, as the timing strobe is swept across the eye diagram. Using this information, the

jitter of the DUT output signal is measured and the standard deviation of this jitter,

as well as the sampling location, is used to estimate the BER of the DUT using the

time-based scan method presented in Chapter 1.

Matlab and Simulink simulations of the individual building blocks were presented

in Chapter 5, and the experimental results and were presented in Chapter 6. It was

shown that the PTI was able to extract the jitter characteristics for the VCDL DUT,

and the BER was calculated. Depending on where the output signal is sampled in the

eye diagram, it is possible to expect a wide range of performance. Given that the DUT

operates at a fairly low speed and with a small amount of jitter, the estimated BER at

the ideal sampling location was found to be extremely low at 3.7954× 10−245. With an

increasing clock speed, the sampling location will be moved closer to the edge location,

and the BER will drop significantly.

This thesis showed that it is possible to implement a BIST probability test instrument

that will estimate the BER of a DUT. The design is be implemented on a CMOS so that
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there is no additional loading on the communication channel when the test measurements

are being made, so that an accurate estimation of the BER can be made.

7.2 Future Work

There are many improvements that can be made to the implemented design in this

thesis that are a good source of future work. The first is that higher-order DLLs should

be implemented as filters in order to minimize the phase noise in the timing strobes.

Some small issues should be fixed in the design of the circuit, namely the small parasitic

issue that was encountered such that it was not possible to have the PLL multiply the

frequency to the desired rate. It is possible to reduce the memory size that was used

in the circular shift registers. A large memory cell was used for robustness purposes,

however this introduced a huge limitation in the number of memory cells that could be

incorporated in the design which in turn limits the resolution with which the signals

can be controlled. These memory cells can be implemented as sRAM cells, or even a

D-flip-flop implementation that uses feedback loops which more than halve the number

of transistors used in the design.

In a future implementation, if a PRBS bit-sequence is to be used as an input stimulus

signal, then alternate test methods should be used; namely the the Dual-Dirac jitter

decomposition method and the Gaussian mixture jitter decomposition method discussed

in Section 1.3. Utilization of such test methods will allow for the separation of the

deterministic jitter from the random jitter to evaluate the performance of the DUT.

If a non-complex design is required, it is possible to reduce the whole size of the

implementation such that it would be much more economical to fit into a production

design. Finally, it would be an excellent improvement to have the circuit working at

much greater speeds so that it would be possible to test very high speed communication

circuits.



Appendix A

PTI Pin Names and Descriptions

Table A.1: Pin Names and Descriptions for the Fabricated CMOS Chip

Pin

Number
Pin Name Pin Type Description

1 GND Bidirectional —–

2 —– —– —–

3 OUT DFF 256 Output

Output of the 256 bit circular

memory so that we can verify

that the output is correct.

4 —– —– —–

5 DLL 2 Filter Bidirectional

The filter for the second

DLL. Only a first order

design is possible.

6 —– —– —–

7 CAP EXTRA Bidirectional

The filter for the extra DLL.

Only a first order design is

possible.

8 —– —– —–

9 DUT IN Input

The input of the DUT

(VCDL) which must be

connected to out inputs 13

(pin 43).

10 —– —– —–

Continued on next page
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Table A.1 – continued from previous page

Pin

Number
Pin Name Pin Type Description

11 DUT OUT Output

The output of the DUT

(VCDL) which must be

connected to the input of the

comparator (pin 58).

12 —– —– —–

13
VDD ANALOG

1
Bidirectional —–

14 —– —– —–

15 VSS Bidirectional —–

16 —– —– —–

17
DLL EXTRA

CLK IN
Input

The clock input of the extra

DLL. This must operate at

114.285 MHz.

18 —– —– —–

19 DLL EXTRA IN Input

Input to the extra DLL. This

will be the sigma delta

encoded bitstream.

20 —– —– —–

21
DLL EXTRA

OUT
Output

Output of the DLL. This will

be the placed edge.

22 —– —– —–

23 OUT14 Output

Negative 45 degree shifted

signal out of the comparator.

This is the automatic locking

of the coarse signal.

24
LOCKED

SIGNAL
Output

The output of the DLL with

the controlled edge of the

signal.

25 V 3.3 Bidirectional
3.3 V input for the level

shifting of the clock input.

26 —– —– —–

27 REF CLK IN Input
The input reference clock

input of a 114.285 MHz.

28 —– —– —–

Continued on next page
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Table A.1 – continued from previous page

Pin

Number
Pin Name Pin Type Description

29
DUT V

CONTROL
Input

The voltage control of the

VCDL DUT whose

performance will be

measured.

30 —– —– —–

31 LOAD BITS 4 Input
Loading the bits for the

input number 4.

32
INPUT 4

SELECT
Input Selecting the 4 input.

33 VSS Bidirectional —–

34 VDD DIGITAL 1 Bidirectional —–

35 LOAD BITS 5 Input
Loading the bits for the

input number 5.

36
INPUT 5

SELECT
Input Selecting the 5 input.

37
MANUAL

COUNT TOTAL
Output

Counting the output

manually of the total number

of bits.

38
TOTAL COUNT

OUT
Output

Automatic counting of the

signal that will be serially

shifted out when count is not

selected.

39 LOAD BITS 1 Input
Loading of the bits for the

input number 1.

40
INPUT 1

SELECT
Input Selecting the 1 input.

41 VSS Bidirectional —–

42 —– —– —–

43 OUT INPUTS 13 Output

The output of the inputs 1

and 3 that will be connected

to the DUT, or directly to

the comparator.

44 —– —– —–

Continued on next page
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Table A.1 – continued from previous page

Pin

Number
Pin Name Pin Type Description

45
MANUAL

COUNT DUT
Output

Counting the output

manually of the DUT.

46 —– —– —–

47
DUT COUNT

OUT
Output

The automatic count of the

DUT that will be shifted out

serially.

48 —– —– —–

49
INPUT 1 OR 2

SELECT
Input

Control signal for the OUT

INPUTS 13 to choose either

input 1, 2 or 3.

50 —– —– —–

51 VSS Bidirectional —–

52
VDD ANALOG

2
Bidirectional —–

53 —– —– —–

54 V REFERENCE Input
Reference voltage for the

comparator.

55 —– —– —–

56 DLL 3 FILTER Bidirectional

Filter for the delay locked

loop 3. This can only be a

single capacitor which will

result in a first order system.

57 —– —– —–

58
COMPARATOR

IN
Input

The input to the comparator

which will be connected

either to the output of the

DUT, or the output13.

59 —– —– —–

60 PLL 1 FILTER Bidirectional The filter for the PLL 1.

61 —– —– —–

62 ENABLE 2 Input —–

63 —– —– —–

64 ENABLE 1 Input —–

Continued on next page
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Table A.1 – continued from previous page

Pin

Number
Pin Name Pin Type Description

65
INPUT 2

SELECT
Input Select the input 2.

66 —– —– —–

67 LOAD BITS 2 Input Load bits input 2.

68
FILTER

SELECT 1
Input Filter select 1.

69 —– —– —–

70
FILTER

SELECT 2
Input Filter select 2.

71 —– —– —–

72
COMPARATOR

OUT
Output

Output of the comparator

that is used for probing

purposes.

73 VSS Bidirectional —–

74 VDD DIGITAL 2 Bidirectional —–

75 LOAD DFF CLK Input
Clock signal that is used to

load all the DFFs.

76 PLL 2 FILTER Bidirectional
The filter for the second PLL

that is used to multiply by 4.

77 DLL 1 FILTER Bidirectional Filter for DLL 1.

78
COUNT SHIFT

SELECT
Input

Select signal for either

counting or shifting the

signals out.

79
RESET

COUNTER
Input Reset the counters to zero.

80 VSS Bidirectional —–
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Figure A.1: Pin locations on the CQFP80A package
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