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EKTROPY 

A substance having five characteristic properties, 

viz. specific pressure, specific volume, intrinsic energy, 

temperature, and entropy (p, v, E, T,<£), it is, in general, 

completely defined if any two of these are known, for the 

relations between any three of these properties may be ex

pressed by the equation x - /(y,z). In graphical solutions 

of problems any pair of properties may be used as co-ordinates; 

if the relation between one pair of properties is given by a 

curve to one pair of co-ordinates, it may, by means of the 

fundamental equation, be transferred to any other. The pv 

diagram is the one most commonly used, since it is the one 

most easily obtained, but for many investigations great ad

vantages are offered by the temperature-entropy diagram. 

Entropy may be defined as / —^ between any tw:o points, 

taken along any reversible path between those points. It de

pends therefore on the two states only and not on the way of 

changing from one to the other. Entropy may be measured from 

any arbitrary sero. If, in Fig. 1, OT and Dtp represent the 

axes of temperature and entropy respectively, we can at once 

see that any isothermal change will be represented by a line 

parallel to 0 p, andAfsentropic change by a line parallel to 

OT. Changes taking place under conditions of constant pressure, 

constant volume, or constant intrinsic energy will be repre-



(25 

sented by curves, varying with the conditions of the substance 

and of the change. An adiabatic change, if reversible, is also 

isentiopic, but an adiabatic change is not necessarily isentropic; 

for example, if a gas expand through a non-conducting porous 

plug, no heat is added, but the entropy increases. In all 

ordinary cases of expansion, however, an adiabatic change may 

be assumed to be isentropic. 

The Carnot cycle on the T<f> diagram can be easily 

shown to be a rectangle, and to be a cycle of maximum theoretical 

efficiency between its temperature limits; but it can also be 

shown that there is an unlimited number of cycles between the 

same temperature limits of the same maximum m£ efficiency, com

posed not of two isothermals and two adiabatics, but of two 

isothermals and two isodiabatics, along which the interchanges 

of heat are balanced. 

Let AB in Fig. 1 represent any reversible process 

and c the specific heat during this change. Then to raise the 

temperature of unit weight by amount dt, heat dQ = cat must be 

expended. Also by definition d<p = -J or dQ = Tdcp . Therefore 

cdt - Td<f= dQ, whence Q = P
2 ^ = j ̂  (!) 

This last integral is the area under the curve; hence 

the heat necessary to produce any change is represented by the 

area under the curve in the Tf diagram. This is the first 

important deduction from our definition of entropy. From these 

relations we can also get Q = C M t or the subtangent at any 
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point on the curve representing a reversible change represents 

the specific heat at that point. If the curve be a constant 

volume curve, the subtangent represents the specific heat at 

oonstant volume; if a constant pressure curve, the specific heat 

at constant pressure. This, however, unfortunately does not 

assist us in finding the specific heat of a substance, since 

we have no method of drawing T<p curves except through the 

knowledge of, or reliance on, predetermined specific heat. 

Perfect Gases 

A perfect gas may be defined as one whose properties 

follow the equation pv = RT, where R is a constant, and whose 

specific heat at constant pressure and at constant volume are 

constants. The law of the mechanical equivalent of heat applied 

to such a body gives the equation a^ = dE + i pdv (Z) 

where % is the heat supplied and E the change in internal energy. 

If a change takes place at constant volume, the heat supplied, 

dQ, must be equal to ov dT; hence since dv is zero, dE = cvdT; 

in other words the internal energy depends solely on the temper

ature and an isothermal change is also isodynamic. If a change 

takes place in unit mass of gas from temperature T± to temper

ature T2 at oonstant pressure, the heat supplied is o-0(Q?g _ T T ) ; 

if at constant volume, c^(T£ - T±). The change in int#roal 

energy is the same in the two cases, since the two end temper

atures are the same; therefore the difference in the heat sup

plied is equivalent to the external work done. Hence 
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cp(T2 " Tl) ~ °v^2 " Ti) = £ P^E " V = ? 2{ T2 ~ V ' since 

pv = RT. Therefore cp - cy ~ J* or since T ^ = / , ov( v - 1) = 7 . 

Equation (2) may also be written dQ = cydT t ^P civ. Therefore 

dcp , which is *$, is equal to cy^| t j p y ovdT + | f£; ^ence 

on integrating, $ - cv log T + ^ log v + const. - o.7 log ^ + 

(c . - c ) log v-* const. = cv log p +-ov log v - cv log R * c o log 

v - cv log v+oonst. = cy(log p+ y log v) -f- const. = ov log (pv
r ) 

•f- const. By means of the fundamental equation pv = RT, we can 

eliminate either p or v from this last expression for f, and 

obtain the value of the entropy in terms of temperature and 

volume or in terms of temperature and pressure, giving f>~ 

cv log (Tv^-
1^ const, or <f = cp log (Tpif> -t- const. These 

results may also be obtained more directly from equation (2} 

and the fundamental equation pv - RT. By combining these^ 

equation (2) may be written dQ = cydT +(cp - oy}T ^. By sub

stituting in this from the differentials of the logarithms of 

the fundamental gas equation, equation (2) may also be written 

in the forms aQ = cpdT - (op - oy)T £ | or aQ = ov T ̂ E+o T £*. 

These three forms on dividing through by T and integrating give 

three different expressions for the entropy in terms of any two 

of the three variables p, v, T, which can be written in a 

convenient form thus:-

<fz-
(h. = °v l°e ̂ 2 + (op - ov) log ̂ 2 (g) 

% ~ *i = °i? loe — " (op " ^ l0e PE {4> 
Tl 1 
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$Z ' : 1 = °v l oS £i + o log 
v2 (5) 

Pi " x' vl 

From these we may obtain at once the equations for constant 
m 

volume lines as 4^ - j-, z Qv log _£ 
Tl 

or 1>2 - f± - cv log
 p2 

1 

(6) 

and for constant pressure lines as •n *2 
?1 £ c.. log TIT-

r 1 
or f> - ^ = o log !§, 

* x * vi ) 

(7) 

T ft Curves 

Xle have now derived certain general equations that 

define the connection between the four variables p, v, T and<£; 

in actual problems we usually have a relation between the two 

characteristic properties p and v and require to find the corre

sponding relation between T and $ . The commonest relation in 

the p v plane is that shown on an indicator cara, which $ in 

general may be expressed by the equation p v11 = a constant. (8). 

Hence px v^n r p 2 V gn 0r ji = 1 ^ . From the fundamental gas 
& 1 

equation we have 
iJl v! - R T± and p 2 v2 = R T£, whence

 pl vl = Ti, 

V 2 *Z 
On substituting this value of fl in the previous equati 

p2 
on v.e get 



V 
v ^ • ' *2 ' 

V 
1 

(6} 

n-1 

or „ n-1 = 
Vl 

Tl 

' T2 

T, Henoe from equation (S) we get ^ g *P, = cv log 2 ^ (G _ G ] 
1_ "27 P v 

( H y H=!t T, 
loefd 

2 o - c Tc 

- o log TJT- - P ^ log 2 
v l n=T f7 

p* - ̂ 1 ^ = . ^ 104 =., ̂  loe h ,„ 
I " I T . 

Equations (8) and (9) are general expressions, covering practic

ally all variations in perfect gases, and giving the relations 

in the p v and T cp planes respectively. For isothermal changes 

T is a constant; hence from the fundamental equation pv = a 

constant, and hence from equation (8) n = 1. Then from equation 

(9) fz - *P± - cy.^ .0 , i. e.^<f may have any value whatever and 

an isothermal change is represented in the T«p plane by the 

equation <f> - a constant. For isentropic changes, or adiabatic 

in the case of reversible cycles, $z z f± and equation (9) 

gives n = f , whence equation (8j becomes p vy r a constant. If 

p is a constant, equation (4) gives ̂  - </l - G i o g 2 . 1 f y 
1 * T 

is a constant, equation (3) gives ,, n 1 
f2 -T[ - ov

 loB ^ , as already xl 

found. From equation (8) in these cases n r 0 andoo respective-

ly. All possible variations of equations (8) and (9j are in

dicated in Table 1 and Fig. 2. 
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GAS EETGIEE CYCLES 

In applying the principles and results given above 

to the various theoretical gas-engine cycles the classification 

£iven by Dugald Clerk will be followed. In all the figures 
o 

capital letters are used to denate points on the temperature-

entropy, small letters corresponding points on the pressure-

volume diagram. The letters T and d> followed by subscripts 

denote the temperature and entropy at the points denoted by the 
subscript. 

Type 1 (See Fig. 3). Heat received at constant 

volume without previous compression. The cycle is as follows:-

From a to b the piston moves forward, drawing in the charge; at 

b the inlet valve closes and the mixture is fired, instantaneous

ly in the ideal case, the pressure rising along bd; adiabatic 

expansion then takes place, as shown by de, to the initial 

pressure; ea is the return or exhaust stroke, expelling the 

products of combustion. The portion a b ofthe stroke does not 

appear on the Td) diagram, since during it no change of con

dition of the gas takes place; it represents only the mechanical 

moving of the charge into the cylinder ana is no part of the 

heat cycle. The heat taken into the cylinder is represented 

by the area O B D P ; that rejected by the area 0 B E P; the 

difference,or area B D E, represents the work done during the 

cyole. The efficiency of the cycle therefore is given by the 

fraction O B D P - O B E P . low B D is a constant volume 
O B D P 

T 
line; if in equation (6) we take <f>t as zero and B as the initial 

temperature, we may write the equation of the line as 

<f> - ov(log T - log TB). Differentiating a 0 = ov<H. 



(8) 

The area under the curve or area 0 B 3) P - / T d ̂  « /, T, 

cv, — = c Y (Tp .- T Bh The line 

B E is a oonstant pressure line and in a similar way we can 

find the area under it, or area 0 B E P, to be cp (Tg - TB)« 

Hence the efficiency of the process is Cy (Tp - Tg) - Cp (Tg- Tg) 

ey ( TD - TB) 

or 1 - y ^E - ̂ B, if the expansion be incomplete, continued 
r Tp - Tg 

only to the point / say, the line (J F is a constant volume 

line. The heat rejected may be divided into two portions, 

that represented by the area under F G, and that under G- B, or 

cv (TF - TQ) and cp (T$ - TB) respectively. Hence the 

efficiency = Qy (TB - TB) - Cv (Tg - TG) , Q (TQ, - TB) = 1 -

*F ~ % * y (T S-T B)
 Cv {tD - TB) 

*D - TB 

It is evident at a glance from the T <p diagram that 

the efficiency is decreased when expansion is less than that 

required to reach the initial pressure. Type II (See Fig.4). 

Heat received at constant pressure after previous compression. 

Two cylinders, a pxunp and a motor cylinder, are required in this 

type, but their diagrams may be superposed on one another. 

a b represents the suction stroke of the pump; b c the oompres-

sion>assumed adiabatic the gas passing into a receiver along 

the line cof; it then enters the motor cylinder along the line 

o dt receiving heat, at oonstant pressure. The supply of heat 



is cut off at dt from where a-diabatic expansion takes place 

to the initial pressure at e; e a is the return or exhaust 

stroke, at constant pressure. The lines a b and c e1 again do 

not appear in the T<p diagram, for the same reason as before. 

The heat taken into the cylinder is represented by the area 

0 C D P; that rejected by the area 0 B E P; the efficiency is 

therefore O Q P P ~ O B E P . How C D and B E are both constant 

0 C D P 

pressure lines; henoe, as before, area under C D « op (Tp - T05 

and area under B E = ep (TE - TB)* Hence m s cp (TD-T<$) ~ cp 

cp (TE _ T̂ J 

^ B " T B = 1 - ?E - 3?B . Bow for the line C D, from the 

*D " *0 

equation of the curve, op (log Tp - log Tc) = f 0 - <po; similar

ly for the line B E op (log TE - log TB) = *̂ E - <pB. But 

TD - fc a *E -^B since the lines B C and E D are adiabatios. 

Therefore log Tp - log TQ = log TE - log TB or log TD _ lQcr T E 

% ~ ° fi 

and therefore ^ = TE . Hence TB - To . TE and TE = TD T_. 

T0 Tg *5 To" 

Substituting in the equation above 

yyj = 1 - *E - T B J£ 
^ ** " 1 - !l or * z 1 _ TB g - *B - i- TB 
TD - T0 T D ' ±0 - ± *£ 

TD - T0 T0 

This last form shows the result usually derived from the p v 
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diagram, that the efficiency in this case depends only on the 

temperatures at the beginning and end of compression, or, since 

for an adiabatic line the volumes are proportional to the tempera 

-tures, only on the volumes at the beginning and end of compressior 

If the expansion be incomplete, say to a volume a f twice that 

at the beginning of compression, the heat taken in is the same 

as before, area 0 C D P, but the heat rejected is greater, 

being now represented by the area 0 B Gr F P. Hence the work 

is now represented by the area B C D F Gr, against B C D E for 

the full expansion. £he work done and the efficiency are 

therefore both diminished by any cutting off of expansion. 

If in this type it were desired to open to exhaust at the 

same volume as at the beginning of compression, the diagram 

shows that with the compression assumed this is impossible, 

unless we suppose that the highest temperature also is not 

reached, since the constant volume line through B requires a 

higher temperature for the same entropy than the constant pres

sure line through C. The only way of securing this economical

ly is therefore to have a high compression, when the temperature 

at C is higher and the line CD is shifted in a direction parallel 

to the <p axis. 5!his is what is actually done in the engines 

attempting to work on this cycle, which usually follow the Otto 

mechanical cycle and so open to exhaust at the same volume as 

that at the beginning of compression. 

Tj]?e III (See Fig:5) Heat received at constant volume after 
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previous compression. The action ma.j be regarded as requiring 

two cylinders, but the pump and motor diagrams may conveniently 

be combined, as in Type II. The pump draws in a volume a h, 

which is compressed adiabatically along the line b c and into 

a receiver along the line o c •*-. The compressed gases enter 

the motor oylinder along the line c1 c; heat is added instan

taneously and the pressure and temperature rise along the 

line o d. When the supply of heat is cut off at a, adiabatic 

expansion along d e takes place down to the original pressure; 

an exhaust stroke at constant pressure completes the cycle. 

The heat taken in is represented as before by the area 0 C D P; 

the heat rejected by 0 B E P; and the work done by B C D E. 

The efficiency is therefore O C P P - O B E P 0 C.B is a 

O C D P 

constant volume line; hence the area under it is o. (T* . f ), 
v it O 

B E is a oonstant pressure line and hence the area under it is 

sp (TE - T B). ihe efficiency is therefore ev (TD - Tc) - o 

<?•- O ) - i - y BE - fg . ° V ( T D ~ T 0 ) 

I 3*D - T0 

When the expansion is continued only to the volume 

existing at the beginning of eompression we have the ordinary 

four-stroke Otto cyole. H B then represents the closing line 

of the oyole, the drop of pressure and temperature at constant 

wolo*. B H is therefore a constant volume line, so that the 
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area under it is c v (Tg - T B ) . The heat taken in is the 

same as before; the efficiency i3 then o y ( T D ~ T C ) - C Y ( T H - T B ) 

s 1 ~ gH " TB . Also the lines C D and B H are similar, 

***" T ° and therefore Tg = ^ and henoe as in 
TJ> fc 

Type II we can reduce the efficiency to 1 - TJJ 0r 1 - T B 

or in this case also the efficiency aepends only on the tem

peratures at the beginning and end of compression, or, since 

compression is supposed adiabatic, only on the ratio of 

compression. A third case is given by Clerk, where the expan

sion is not full, but is carriea to a volume greater than 

that at the beginning of compression- F G shows this case when 

the volume at the ena of expansion is aouble that at the begin

ning of compression. The efficiency, if desired, can easily be 

found in the same way as previously, the work done being the 

area B C D F G, and the heat rejected being composed of the two 

areas, 0 B G K, under the constant pressure line B G, and 

E S f P, under the oonstant volume line G F« A glance at the 

T $ diagram shows that the efficiency in this ease is intermed

iate between that in the first two oases, and that the effi^iencj 

decreases as the expansion is lessened. 
r«9 6 

TYPE I A i ^ This differs from Type I in that, while the expansioi 

stroke is adiabatic, the exhaust or return stroke, which really 

becomes then a compression stroke, is isothermal. The expansio; 
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is continued until the temperature falls to that at the 

beginning of the cycle. The line of addition of heat B D is 

a constant volume line; that of rejection of heat E B is 

isothermal. The area under B D is therefore ov (Tp «- T B). 

The area under E B is the rectangle 0 B E P, the sides of 

which are TB and *?E - ̂x> • Now from the equation of the 

line B D, 9* - cv (log TB - * log TB) = ov 1°8 £D ; henoe 
TB 

the area under E B s TB , cv log TD # The efficiency is 
1B 

therefore ov (TD - TB) ~ cv. TD log Ig
 TD 1°S ̂ D 

.. £JL B 1 - TB . 
ov (TD - T B) TD - ̂ B 

It is evident fct once from the form of the diagram that the 

theoretical efficiency of this type is very high, but the 

immense expansion required and the extremely slow working 

necessary to allow of even approximately isothermal compression 

render an engine of this type excessively cumbrous and unecono

mical from the standpoint of output with respect to size and 

weight. Incomplete expansion has the effect of cutting off 

part of the area representing the work done, as shown by F G, 

and hence of decreasing the efficiency, as in all the other 

oases. 
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CQMPAKESOB OF ETOIBBS. 

The T 4> diagram can be advantageously employed in 

comparing one type with another, or in comparing different 

cases of the same type under changing conditions. For this 

purpose it is superior to the pv diagram, especially in 

presenting at a glance the relative efficiency of different 

cycles, while if used in conjunction with the pv diagram, 

we have before us all the information which can be obtained 

regarding any theoretical cycle. 

Figure 7 shows the relation between the Lenoir, the 

Otto, and the Atkinson cycles; the first is an example of 

Clerk's Type I; the other two of Type II, the Atkinson with 

oomplete expansion produced by the mechanism of the engine, 

the Otto with expansion to a volume equal to that at the 

beginning of compression. The area B E F shows the work 

done during a cycle in the Lenoir engine; B O D E that done 

in a cycle in the Otto; and B C D ? that in a cycle in the 

Atkinson. Very evidently the first is much the least 

efficient and the last the most efficient of the three. If 

the compression in the two latter is increased, the work done 

becomes B C D E f and B C f D ' P ' respectively. The 

difference between these two areas (now B E ' F f) is less 

than before ( B E F ); hence we see that the theoretical 

superiority of the Atkinson is less at higher compressions* 
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Further, the increased size, complexity and friction in the 

mechanism of the Atkinson more than counterbalance the 

theoretical superiority to the Otto, so that in practice the 

Otto is the most efficient, and the Atkinson has been little 

more than an ingenious attempt at improvement. 

For engines employing adiabatic compression and expan

sion there are three symmetrical types of thermodynamic cycle * 

which are each cycles of maximum efficiency for the conditions 

assumed. The first of these is the constant temperature 

type, the well-known Carnot cycle. In this adiabatic ex

pression raises the temperature from the lower to the upper 

limit; during isothermal expansion at the upper temperature 

the whole heat supply is received; when the supply is cut 

off, adiabatic expansion reduced the temperature to the lower 

limit; and then isothermal compression brings the working 

fluid back to its initial conditions• The second symmet

rical cycle is the constant pressure type. In this we have 

first adiabatic compression as before from the lower to the 

upper pressure; heat is then supplied at the constant upper 

pressure, with consequent rise of temperature and increase 

of volume; when the heat supply is out off, adiabatic 

expansion to the lower pressure takes place, followed by the 

rejection of heat at the constant lower pressure and conse

quently, diminishing temperature and volume. The third 
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symmetrical cycle is the constant volume type. Agaii, 

the first change is adiabatic compression, here from 

maximum to minimum volume; at the end of compression heat 

is added at constant volume, with consequent increase of 

both pressure and temperature; when the heat supply is 

cut off, adiabatic expansion reduces the pressure and temper*^ 

ture until the volume reaches that existing before compression; 

finally heat is rejected at constant volume and diminishing 

temperature and pressure. Figure 8 shows these three 

symmetrical cycles, for the same range of compression in all 

three; A B G H represents work done during a Camot cycle; 

A B E F that during a oonstant pressure cycle; and I B C D 

that during a oonstant volume cycle. It can be easily shown, 

by the method employed before, that in all three the efficiency 

is the same and depends only on the ratio of the volume before 
1 

compression to that after compression, being 1 - (y) . In 

the Carnot oycle the efficiency is the greatest ideally 

possible under any conditions, since the temperature at the 

end of compression is the maximum reached in the cycle; in 

the others the efficiency is not the greatest ideally possible 

for the temperature range, but is the greatest possible for 

the conditions assumed. The T<& diagram shows that the 

work done per cycle in the Carnot type is very much less than 

in either of the others; the pv diagram shows that the 

range of volume is considerable, being about twelve times-
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hence a large unwieldy machine is required for a small output. 

The constant pressure type gives the greatest output per cycle, 

shown by area A B E F, but from the pv diagram the range of 

volume is about eighteen times; hence here too a large cylin

der is required, though for a much larger output than in the 

Carnot type. The work per cycle in the constant volume 

type, represented by area A B C B, is not very much less than 

for the constant pressure type, while the pv diagram shows 

that the range of volume is very much less, being only five 

times. Henoe, under these conditions, a much greater output 

per unit of weight or sise would be given by an engine working 

on the oonstant volume type. 

The Carnot cycle is outside the bounds of practical 

consideration for two reasons: the exceedingly small output 

per unit of siae of cylinder?and the inability to secure even 

approximately isothermal compression except at excessively 

slow speeds. Figure 9 shows a comparison between the constant 

pressure and constant volume types under conditions more nearly 

approaching those met with in practice, i.e. where the extreme 

pressure and temperature range is the same and where in the 

constant pressure type expansion takes place only to a volume 

equal to that at the beginning of compression. This latter 

is approximately the cycle of the Diesel engine* A+B C U 

shows the work done per cycle in the constant volume type; 

A E C D that in the constant pressure type. The latter shows 
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evidently a considerable advantage in efficiency. Reference 

to the pv diagrams, however, shows that the range of volume 

is about 14 to 1 in the constant pressure cycle but only 5 

to 1 in the constant volume type, thus necessitating a 

cylinder of about three times the size in the former case. 

This to some extent offsets the advantage of greater effici

ency between the given temperature limits, and moreover this 

advantage in effieienoy is less at lower temperatures and 

pressures than those shown, which hitherto have been more 

frequent in practice. 

There is also great difficulty in regulating and 

controlling the combustion practically in engines of the 

constant pressure type. These various reasons have 

militated against engines of Type II taking the place in 

commercial practice to which their theoretical superiority 

entitles them. 
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YAHIATI017S WITHUT Q1TB TYPE. 

The T<p diagram lends itself admirably to comparisons 

of different conditions in any given cycle. A series of 

diagrams of 5?ype II to which most gas-engines in use belong 

will show this. Figure 10 shows the effect of varying 

the quantity of heat supplied per cycle; that is of having 

rich or weak mixtures in the charge. We can easily find 

that the work donw per cycle changes, but the efficiency 

is constant. Figure 11 shows the effect of varying the 

compression. Here not only does the work done per cycle 

increase with increased compression, but the efficiency 

also increases, efficiency, as we have already seen, being 

greater at greater compressions. This appears at once 

from the T <$ diagram, where the areas under the three 

curves, representing the heat taken in per charge are 

equal, but the area representing the work done increases 

considerably. Figure 12 gives the effect of varying the 

suction temperature alone, and Figure 13 the effect of 

varying suction temperature and its natural corollary, the 

quantity of heat per cycle, since a smaller mass of gas is 

drawn in at y the higher temperature. in both these 

cases the efficiency will remain the same, since it depends 

only on the ratio of compression, but the work done per 

cycle will decrease as the temperature rises. 
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VARIABLE SPECIFIC HEAT. 

In the discussion so far the specific heat of the 

working substance has been treated as constant. It is, 

however, now generally admitted that the specific heat is 

not constant, but increases with increasing temperature, 

the rate of increase being different.gases. fhough all 

experimenters agree in finding this increase of specific 

heat, they are very discordant as to numerical results and 

no published figures have so far found general acceptance; 

hence it is impossible to make calculations of any value 

allowing for increasing specific heat. One instance is 

however taken in order to examine the effect of the in

creasing specific heat on the efficiency and on the entropy 

diagram. That selected is the Otto cycle shown in Figs: 

8 and 9 and repeated in Figure 14, diagram A B C D. 

Starting with equation (2) in the form d& a c7 dt 4 (<5p-ov) 

T dv , let us examine the changes in the equations caused by 
v 

variable specific heat. Assume Prof.Burstall's statement 
of the results of IJaUard and Le Chatelier's experiments to 

be the law of variation, this iB c7 2 a + s ? 

c*> - b 4 s T 

where a, b and s are constants to be determined by experi

ment. Substituting in the equation above gives d Q « 

(a + s T] d T + (b - a) T dv . Hence d<p - d Q = (a s) 

4 T + (b-a) dv • Integrating Qf-<p m a log 
v 

/0\K/v-
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T . s (T-T) -t- (b-a) log v . For a constant volume line, 

taking <f - 0, we get <f> ~ a log ? -t- s (T-7). m Figure 
(TT 

I 
14, A B E F is plotted from this equation, assuming the 

working substance as nitrogen, for which Burstall gives cv 

- .170 + .0000 872 t, which equals .1939 •+-.0000 872 T. 

It was assumed, for the sake of comparison, that the temp

erature reached was the same as before; the actual temp

erature reached does not affect the efficiency, though it 

does affect the work done. A simple expression for the 

efficiency with varying specific heat cannot be obtained, 

but the efficiency in any particular case may be obtained 

from the T<p diagram by the ratios of the areas, as is done 

below for this case. The equation of the curve is ^ -

a log T + s (T-Tt). The area under the curve - / T d <p 

or, substituting from the differential of the equation of 

the curve, the area - /T (a dT + s dl?) - /(a d? * s ?. d T ) 
2 •/ 5 t/ 

= a T 4- s T + const. 
"5 

The temperature limits for B E are 559° and 1973° 
absolute, hence the area under it is 430.5 heat units; the 

limits for A F are 290° and 1250°, so that the area under 

it is 250.5 units. The efficiency is therefore 

450.5 - 250.5 - 42$. The efficiency of the process 
£3075 

with specific heat assumed constant can be found from the 

compression ratio as 1 - flj* - 48c5. Hence in this 

case the efficiency has been reduced from 48$ to 42MJ by 
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allowing for an increasing specific heat. though these 

figures are not reliable, sx yet they indicate that the 

effect of the specific heat increasing with rise of tem

perature will be to decrease the theoretical thermal ef

ficiency of any cycle, or in other words, to increase the 

"efficiency ratio" of a cycle by lessening the difference 

between the efficiency actually attained and that theoret

ically possible for that cycle Ander ideally perfect con

ditions. It therefore helps to account for part of "the 

missing quantity". 

C0IT7ERSI0U OF THE ACTUAL INDICATOR CARD. 

The actual conversion of a gas-*engine indicator 

diagram into a T<p diagram is rendered difficult from 

sreveral causes. For a T«p diagram the quantity of heat 

concerned per cycle must be known; this demands an accu

rate knowledge of the explosive mixture. In practically 

all gas-engines there is considerable variation in the 

explosive mixture under running conditions; in the hit-

and-miss type of governing, for example, the\ mixture after 

a missed stroke is much richer than the average and a 

greater weight of gas will be contained in it on account 

of the greater density due to the cooling effect of the 

missed stroke. If governing is done by throttling the 

fuel, again the composition of mixture and weight of gas 
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in it will vary; if both air and gas are controlled we still 

find that the proportions necessarily vary, in order to get good 

explosive mixtures at the varying compressions resulting. The 

best that can be done in any case is to use average indicator 

cards and an average mixture calculated from the observed x vol

umes of gas and air used. A second serious difficulty in the 

conversion of a pv to a T̂ > diagram is the determination of Cp 

and cy* !To satisfactory definite values for these quantities 

at the higher temperatures have yet been published, and there is 

a further difficulty in applying what is known to the mixture in 

varying proportions of gas, air and products of combustion that 

takes part in every cycle. A third difficulty is presented by 

the decrease in volume after combustion due to the chemical re

arrangements in the products produced by the combustion. It 

has been calculated by Dugald Clerk that the shrinkage on com

bustion varies from 4$ with a mixture of 1 gas to 5 air, to 2.2% 

with a mixture of 1 gas to 10 air. Finally, it is necessary 

to knpw a definite temperature somewhere in the cycle in order 

to plot a correct diagram. Only with difficulty can the tem

perature of the gases be measured during the cycle, and then 

only approximately, because any temperature observed will be not 

the mean of the whole mass, but the temperature at the point of 

observation only, since it is now definitely established that 

the temperature throughout the mass of gas is not uniform, but 

varies from point to point. A common assumption is to take 
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the temperature of the. charge at the beginning of compression as 

equal to that of the issuing jacket water. Prof.Reeve stated 

that he assumes the round figure of 600° F. abs. If the above 

mentioned necessary quantities are known or assumed, the T̂ > 

diagram may be plotted from the indicator diagram by xaring the 

equations given above. In Captain Sankey's method a chart is 

prepared on which constant pressurenand constant volume lines 

are laid out at convenient distances apart; then the diagram is 

plotted by finding points at the intersection of the proper cons

tant volume and constant pressure lines. Graphic methods of 

obtaining the T<p diagram from the indicator card have been 

developed, notably by Prof.Boulvin and by W.J.Goudie (Broc.l. 

IJech.E.) These are both based on the use of constructional 

logarithmic curves, and the former involves a transferring first 

to the Tv plane and from that to the T̂ > . neither of these 

methods, however, has come into general use, but either would 

be advantageous in cases where a number of diagrams with the same 

values of cv and V were to be transferred. Goudie's method 

can be applied also to cases in which the specific heat is 

assumed variable, as is pointed out in the paper referred to. 

Figure 15, taken from this paper, shows Burstall's trial D4 

worked out with variable specific heat assumption (in full lines) 

and with constant specific heat (in dotted lines). Figures 16 

and 17 are diagrams taken from Berry, transferred from the pv 
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diagram by Boulvin^ graphic method. In treating of the 

effects of ratio of compression, time of firing, quantity of 

heat per charge, end other variables, on the efficiency, a 

single standard engine using a standard working substance may 

be assumed. The standard recommended by the Committee of 

the Institution of Civil Engineers and now generally followed 

is that of "a perfect air-gas engine operated between the same 

maximum and minimum volumes as the actual engine, receiving 

the same total amount of heat per cycle, but without jacket or 

radiation loss, and starting from one atmosphere and the sel

ected initial temperature of 139° F." If however it be de

sired to compare different working substances or fuels, account 

must be taken of the x varying values of cy and v 

The study of compression and expansion lines, the latter 

especially, in the T<p diagram of the actual engine, throws a 

great deal of light on what is happening in the cylinder during 

those strokes. In Fig:15, for instance, the expansion line 

is found at first to slope slightly to the right, then more 

steeply to the right; it then becomes nearly vertical for a 

time and finally slopes to the left. During the whole of 

this period the temperature has been dropping; hence while the 

curve slopes to the right, heat is being added to the working 

substance. The source of this added heat is not well estab

lished. Some authorities would put it down as due to "after

burning"; others, as due, in great part at least, to the 
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increase of specific heat at higher temperature; yet others, 

to the dissociation at high temperatures of some of the chemical 

compounds formed by the combustion, heat being produced by their 

re-combination as the- temperature falls; while some believe it 

can be largely explained as due to the interchange of heat 

between the cylinder walls and the gases inside. According to 

this last theory the hot gases, immediately after explosion, 

give up heat to the cooler walls; as the gases expand, their 

temperature decreases and there comes a time when it falls be

low that of the walls, which then give up heat to the gases. 

One would hardly expect, however, that the temperature of the 

gases would fall so rapidly in comparison with that of the walls, 

which are all the time transmitting and giving up heat to the 

jacket water, that the walls would be able to give up heat to 

the gases at or soon sfter the middle of the stroke, when the 

surface of the cylinder is increasing most rapidly. 3„uite 

probably several of these influences may combine in cases where 

the heat actually does increase during the stroke,especially 

in such a case as that of Fig:16, where the expansion line in 

the T^ diagram slopes continuously to the right. In Fig: 15 

during the latter part of the stroke the line slopes to the 

left, showing that the heat is decreasing. m this case the 

fall of temperature due to expansion is taking place faster than 

can be overcome by the supply of heat from any of the sources 
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mentioned. This reasoning shows too that even though the 

expansion line might be vertical, this does not necessarily mean 

that the expansion is really adiabatic, but only that the various 

influences counteract each other to such a degree as to produce 

an apparently adiabatic expansion. As a matter of fact, the 

expansion line in practically all cases does slope to the right 

showing that heat has been received from some source during 

expansion. 

The compression line also gives opportunity for interesting 

deductions. As a general thing it slopes first to the right, 

showing an increase of entropy and a reception of heat from the 

cylinder walls by the gases. As compression proceeds a point 

is reached where the temperature due to compression is equal to 

that of the gases; the curve then becomes vertical, and on 

further compression slopes to the left, showing that the gases, 

owing to the compression, have reached a higher temperature than 

the walls, and are then giving up heat to the walls. It some

times happens that the loss actually exceeds the gain due to com

pression, in which case the temperature may decrease towards the 

end of compression; Fig:17, giving a case of late ignition, 

shows this. In Fig: 15 the compression curve at the end of 

compression slopes again towards the right, showing that at 

higher compressions and speeds the heat due to compression may be 

greater than is taken away by the walls. This additional heat 

may also be due to early ignition. The time of firing of 
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course affects the combustion line, also making it approach 

more or less nearly to a constant volume line. "The 

character of the exhaust line is of no significance, as it does 

not represent the history of a fixed quantity of substance. 

Its sole importance is to close the diagram and thus to make the 

area of the Tf diagram the heat equivalent of the work record^ 

ed by the indicator card." 
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