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EXTROPY

A substance having five characteristic properties,
viz. specific pressure, specific volume, intrinsic energy,
temperature, anc entropy (p, v, &, T, @), it is, in general,
completely defined if any two of these are known, for the
relations between any three of these properties may be ex-
pressed by the equation x = ;r(y,z). In graphical solutions
of problems any peir of properties may be used as co-ordinates;
if the relation between one pair of properties is given by a
curve to one pair of co-ordinates, it may, by means of the
furndamental equation, he transferred to any other. The pv
diagram is the one most commonly used, since it is the orne
most easily obtained, but for many investigations great ad-
vantages are offered by the temperature-entropy diagram.

Entropy may be defined as E% between any two points,
taken alcng any reversible path between those points. It de-
pends therefore on the two states only and not on the way of
changing from one to the other. Entropy may be measured from
eny arbitrary zero. If, irn Fig. 1, OT and O @ represent the
axes of temperature and entropy respectively, we can at once
See that any isothermal change will be represented by & line
parallel to 0 D, angz;%entropic chenge by a line parallel %o
OT. Chenges taking place under conditions of constant pPressure,

constant volume, or constant intrinsic energy will be repre-
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sented by curves, varying with the conditionsof the substance
and of the change. &n aliabatic change, if reversible, is also
isentropic, but ar adiabatic charge is not necessarily iserntropiec:
for example, if a gas expand through & non-conducting porous
plug, no heat is added, but the erntroyy increases. In &ll
ordinary cases of expansion, however, an adiabatic charge may
be assumed to be isentropic.

The Carnot cycle on the TQ diegram can be easily
showr to be a rectangle, and to be a cycle of meximum theoretical
efficiency between its temperature limits; but it can also be
showr. that there is an unlimited rnumber of cycles betweern the
sane temperature limits of the same maximum o€ efficiency, com-
posed not of two isothermals and two adiabatica, but of two
isothermels and two icodiasbatics, along which the interchenges

of heat are balanced.

Let AB in Fig. 1 represent any reversible process
arnd ¢ the specific heat during this change. Then to raise the
temperature of unit weight by amount dt, heat 45 = cdt nust ve

experded. A4lso by definition d@ = Q% or dg = Td4>. Therefore
_ _ 2 Pa 1
cdt = Tdcpz dq, whence { =f cdt = de —————— (1]

t
1 9,
This last integral is the area under the curve; hernce

the Leat necessary to produce any change is represented by the
area under the curve in the T¢@ diagream. This is the first

important deduction from our definition of entropy. From these

relations we oan also get ¢ = T%%. or the subtangert at ary
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point on the curve representing a reversible change represents
the specific heat at that point. If the curve be a comstant

volume curve, the subtangent represents the specific heat at
oconstant volume; if a constant pressure curve, the specific heat
at constant pressure. This, however, unfortunately does rot
a8sist us in finding the specific heat of a substance, since

we have no method of drawing T¢ ourves except through the

knowledge of, or relieance on, predetermined specific heat.

Perfect Gases

4 perfect gas may be defined as one whose properties

follow the equation pv = RT, where R is & constant, and whose
specific heat at constant jressure and at constant volume are
constants. The law of the mechanical egquivalent of heat applied
to such & body gives the eguation 47 = AE + % pdv (2)
where 7 is the heat supplied and E the change in internal energy.
If a change takes place at constant volume, the heat supplied,
dq, must be equal to c; AT; hence since dv is zero, dE = cydT;
ir other words the internal energy depends solely on the temper-
ature and an isothermal change is also isodynamic. If a change
takes place in unit mess of gas from temperature T to tempez-
ature T, at constant pressure, the heat supplied is cP(Tg - T1);
if at constant volume, cy(Tg - Ty). The change in internal
energy is the same in the two cases, since the two end temper-

atures are the same; therefore the difference in the heat sup-

plied is eyuivalent to the external work done. Hence



(4)
Ty - '.Dl), since

=Y, eply - 1) =37,

cvdT + %—p dv. Therefare

ey

c (Tz - T]_) - Cv("’z - Tl] 31. (Vz - Vl) =c.<

P
i
- —?, or since

(&3

pv = RT. Therefore cp - ©

£

v

Bquation (2) may also be writtem 4

d¢, which is —, 18 equal to Sy tTP cvg__ 4+ = J V. hence
on integrating, @ = o, log T + _1} log v+const. = c. log <= gv -+
(¢, - o,) log v+ocomst. = oy log »+0y 1og V - ¢y log R+c  log

v - ¢y log v+const. = cv(log P+ Ylog v: + const. - o, log (va)

+ const. By means of the fundamental equation pv = RT, we can

1

eliminate either p or v from this last expression for ¢, and
obtain the value of the entropy in terms of temperature and
volume or in temms of temperature and pressure, giving P~

c, log (rv!™%) & const. ox P = cp log (Tp_j‘f‘?) + const. These
results may also be obtained more directly frow equation (2)
and the fundamental equation pv - RT. By combining these,
equation (2) may be writtem dQ = ¢ 4T +(c;, - o,IT gs’.. By sub-
stituting in this from the differentials of the logarithms of
the fundamertal gas equation, equation (2) may also be written
in the forms 4% = ¢,dT - (op - o )T Sf or aQ = oy T & 4o, T &V,
These three forms on dividing through by T and integrating give
three different expressions for the entropy in terms of any two
of the three variables p, v, T, which can be written in a

convernient form thus:-

- T v

P> - P, =0, log 2 4 (o, - o ) log '2 (3)
T Py v

P, -, = o, log T2 - (o, - o,) log P2 (4)

Ty b2



P, - . = e log Pz , ¢ log -2 (5)
g2~ 71 g & p —98
v i) + L vl
From these we may obtain at once the equations for comstant
m

. &
volume lines as <?2 - 41 = ¢, log =
1

(6}
Po

or ‘302-4’1 -

¢, log

Man W Ceigisr” S’ Weais N

- 23 2 T
and for constant pressure lines as ?3 - Zc log Tg

(7)

e W s Car Carr St

7 - v
or @, - iy = o, log 2

T D Curves

e have now derived certain general equations that

defire the connection between the four variables p, v, T andcf);
in actual problems we usually have & relation between the two
characteristic properties p and v and require to find the corre-
sponding relation between T and @ . The commonest relatiom in
the p v plane is that shown on an indicator card, which # in

general may be expressed by the equatior p v* = & constant. (8).

-

n = r Pl_?zn
Hence p; viI = py V. or Tz ~ ¥o% From the fundamental gas
equation we have y :
¥ V1 F RT and pg v5 = R Ty, whenoce P171 = T
Pove T
On substitutirg this value of El in the previous eyuation we cet

Py



n n-1 m

\f: 1% T 1
= w— - = p

Vlh Tz Vl 'Vl 5

T
Hence fro%.equation (3) we get ¢E P, -c log 2 4 (CP - ev)

v nEE
— 1
(&1j o Te 6. - @ T,
logfﬁ—) = e log TI - Pn v log =
. -1 1
c Cy — C, ] D C. I - C T
[ V-2 __ ¥ {log g - _ W 2 log & =z c_ n~-Yy log T
( n-1 ; — o - 1 g @; vV = € EE (9)
* 1

mquations (8) and (9) are general expressions, coverirg practic-
ally all variations in perfect geses, and giving the relations
in the p v and ch plenes respectively. For isothermal chenges
T is a constant; hence from the furdamental equation PV = &
constant, and hence from equation (8) n = 1. Ther from equation
(9) P5 =P = ¢, 0.0, 1. €., L&y have any value whatever and
en isothermal change is represented in the!D¢ ilane bty the
equation ¢): & constent. For isentropic changes, or adisbatiec
ir the case of reversible cycles, P = @, and equation (9)
gives n =) , whence equation (8) becomes p v/ - & constant. If

. T
p is a constant, equation (4) gives Po - $7 o cp log 2 ; if v

is a constant, equation (3) gives , m 1
# ¢ - 6. 1 to
2 —-h - Gy log m— » 88 already
1

found. From equation (8) in thete cases n - 0 and oo respective-

1y. A4ll posaible variaticne of equations (8) ard (9) are in-
dicated in Table 1 and Fig. 2.
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GAS EFGINE CYCIRE

Ir applying the principles and results givern above

to the various theoretical gas-engine cycles the classification

¢iven by Dugeld Clerk will be followed. In &ll the figures
o
capital letters are used to denete points on the temperature-

entropy, srall lettiers corresponding points or the pressure-
volume diagrem. The letters T and.¢ followed by subscripts

dencote the temperature and entropy at the points denoted by the
subsocript.

Type 1 (See Fig. 3). Heat received at constant
volume without previous compression. The cycle is as follows:-
Fror. 2 1o b the pistor moves forward, drawing in the charge; at

b the inlet valve closes and the mixture is fired, instantansesous-

ly in the ideal case, the pressure rising along bd; adiabatic

exparsion thern takes place, as shown by de, to the initisal

pressure; e& is the return or exhaust stroke, expelling the
products of combustion. The portion & b ofthe stroke does not

appear on the Tqb diegram, since during it no change of coxn-
dition of the gas tekes place; it represents only the mechanical
movirg of the charge into the cylinder and is no part of the
heat cycle. The heat taker into the cylinder is represented

by the area 0 B D P; that rejected by the area 0 B E P; the
differernce,or area B D E, represents the work done during the
cycle. The efficiency of the c¢ycle therefore is given by the

fregtion O BDP-OBEP. TXow RBD is a constant volume
OBDP

T
line; if in equation (6) we take ¢, as zero and B as the initial

temperature, we may write the equation of the line as

@ = o,{log T - log Ty). Differentiating ig = c,,?df_t_.
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¥z ek
- ;1D
The area under the ocurve or area 0 B D P = [‘ T cl:?- iTB T.

oF
ey, é.i. = oy (Tp - Tg). The line ’
B E is a comstant pressure lime and in a similar way we can
£ind the ares under it, or area 0 B E P, to be cp (Tg - TB).
Hence the efficiency of the prodess 1s ey (Tp - Tg) - op (Tg- Tan)

¢y ( Tp - Tgi

or 1 - v 22_:_22. If the expansion be incomplete, continued
Tp - TB

only to the point ‘f say, the line G F is a constant volume

1line. The heat rejected may be divided into two portionms,

that represented by the area under F G, and that under G B, or

oy (Tp = Tg) and Cp (Iq - TB) respectively. Hence the

efficiency = 0y (Tp - Tp) - Cy (gF -(- Tg) - Cyp (g - TR} =1 -

Tp - Tg + y (2g - TB) v (%p - Tp)

Tp - 73

It is evident at a glance from the T¢ diagram that

the efficiency is decreased when expansion is less than that
required to reach the initial pressure. Type II (See Fig.4).
Heat received at constant pressure after previous compression.
Two cylinders, a pump and & motor cylinder, are required in this
type, but their diagrams may be superposed on one another.

a b represents the suction stroke of the pump; b ¢ the compres-
sion, assumed adiabatic, the gas passing into a receiver along

the line ce'; 1t then enters the motor oylinder slong the line

o' d, receiving heat, at constant pressure. The supply of heat



is ocut off at 4, from where a-diabatic expansion takes place

to the initial pressure at e; e a is the return or exhsusi
stroke, at constant pressure. The lines & b and ¢ ¢' again 4o
not appear in the T¢ diagram, for the same reason as before,
The heat taken into the eylinder is represented by the ares

O C DP; that rejected by the area 0 B E P; the efficlency is

therefore 0O CDP -~ 0 BEZP. Now C D and B E are both constzut
OCDP

pressure lines; hence, &s before, area under C D = o (Tp = Tgi

and area under BE = op (Tg - Tg). Hencegp

cp (Tp-Te) ~ Cp

(Tg = Tg) = °» (D - %al
E B =1-Tg-TB , FNow for the line C D, from the
TS - m0
equation of the curve, oy (log Tp - log Tg) ='Pa - Qe; similar-
1y for the line BE oy (log Ty - log Tp) = Pr - PB. But

?p - P. - Pr -PB since the lines B C and E D are sdiabatios.

Therefore log Tp - log T¢ = log Tg - log Tg or 1og TD - j490 TR

Te T8

and therefore Tp _ o
To Tp mp o B TE =D Ty

Substituting in the equation above

=1- Tg -1 ?.9..
" E 5

T
=1« T orm=;_ TR -1
Tp - To D 1F1 To B-1-13
TD""TQ Tc

This last form shows the result usually derived from the p v
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diagrem, thet the efficiency in this caese depends only on the
temperatures at the beginning and end of compression, or, since
for an sdigbatic line the volumes are proportionsal to the tempers
~tures, only on the volumes et the beginning and end of compressior
If the expansion be incomplete, say to a volume a ftwice thst
at the begimnmming of compression, the heat taken in is the same
as before, area 0 C D P, but the heat rejected is grester,
being now represented by the aree 0 B G F P. Hence the work
is now represented by the areea B C D F &, against B C D E for
the full expansion, The work done and the efficiency sre
therefore both diminished by any cutting off of expansion.

If in this type it were desired to open to exhaust at the
same volume as at the beginning of eompression, the disgram
shows that with the compression assumed this is impossible,
unless we suppose thet the highest tempersture slso is not
reached, since the constant volume line through B requires s
higher tempersture for the same entropy than the constant pres-
sure line through C. The only way of securing this economicsl-
ly is therefore to have a high compression, when the tempersturs
et C 1s higher and the line CD is shifted in a direction parallel
to the ¢ axis, This is whet is actually done in the engines
attempting to work on this cycle, which usually follow the Otto
mechanical cycle snd so open to exhsust at the same volume ss

thet at the beginning of compressiom,

Type III (See Fig:5) Heat received at constant volume sfter
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previous compression. The action way be regarded as requiring
two cylinders, but the pump and motor diagrems may conveniently
be combined, as in Type IX. The pump draws in a volume a b,
which is compressed adisbatically along the line b ¢ and into

a receiver along the line ¢ ¢ 1, The compressed gases enter
the motor eylinder along the line ol ¢; heat is added instan-
taneously and the pressure and temperature rise along the

line ¢ 4. When the supply of heat is cut off at 4, adiabatic
expansion along 4 e takes place down to the original pressure;
an exhaugt stroke at constant pressure completes the ecycle.

The heat taken in is represented as before by the area O C D P;

the heat rejected by 0O B E P; and the work done by B C D E.

The efficiency is therefore O C D P - OB E P , c.D is &
OCD?
constant volume line; hence the area under it is oy (Tp - 1)

B E 1s & constant pressure line and hence the area under it is

op (Pg - Tg). The efficiency is therefore oy (Tp -~ TC) - op.
°v (TB s Tc)

(TE”TB) -lurTE"'TB

When the expansion is continued only to the volume

existing at the beginning of eompression we have the ordinary
four-stroke Otto cycle. H B then represents the closing line

of the oycle, the drop of pressure and temperature at constant

volume. B H is therefore a constant volume line, so that tie
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P!
o
o P

area under it is ¢y (Tg - Tp). The hegt taken in is the
same as before; +the efficiency is then oy (Tp~Tq)-Cv(TH-TB)

Cv (TB—TC)
=1-Tg-Tg . Algo the lines C D and B H are similar,
N
™= ¢ and therefore T = Tg &nd hence as in
TD '@E
Type II we can reduce the efficiency to 1 -~ TH or 1 - T3

Tp T
or in this case also the efficiency depends only on the tem-
peratures et the beginning and end of compression, or, since
compression is supposed adiabatic, only on the ratio of
compression. A third case is given by Clerk, where the expan-
sion 1s not full, but is carried to a volume greater than
that at the beginning of compression. F G shows this case when
the volume &t the end of expansion is double that at the begin-
ning of compression. The efficiency, if desired, can easily be
found in the same way as previously, the work done being the |
area B C D F G, and the heat rejected being composed of the two
areas, 0 B G R, under the constant pressure line B @&, and
R G F P, under the constant volume line G F. A glance at the

T @ diagram shows that the efficiency in this case is intermed-

iate between that in the first two cases, and that the effi:iency

decrease;ass the expansion is lessened.
TYPE I A.': This differs from Type I in that, while the expansio

stroke is adiabatic, the exhaust or return stroke, which really

becomes then & compression stroke, is isothermal. The expansio;
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igs continued until the temperature falls to that at the
beginning of the cyele. The line of addifion of heat B D is
a conmtant volume line; that of rejection of heat E B is
isothermal. The area under B D is therefore cy (Tp - Tg).

The area under E B is the rectangle O B E P, the sides of
which are Ty and ‘PE -Pp . Now from the equation of the

line B D, PD = oy (log Tp - » log TB) = oy 108 TD . pence

TB
the area under E B = Tg. oy log Tp , The efficiency is
TB
therefore oy ( - Tg) - oy. Tp 1o Tp Tp log Tp
v (Tp B ve °D 108 75 =1 - T8 |
Cy (TD - TB) ™ - TB

It is evident &t once from the form of the diagram that the
theoretical efficiency of this type is very high, but the
immense expansion required and the extremely slow working

necessary to allow of even approximately isothermal compression

render an engine of this type excessively cumbrous and unecono-
mical from the standpoint of output with respest to size and
weight. Incomplete expansion has the effect of cutting off
part of the area representing the work done, as shown by F G,

and hence of decreasing the efficiency, as in all the other

e&aseg.
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COMPARISON OF ENGINES.

The T @ diagram can be advantageously employed in
comparing one type with another, or in comparing different
cases of the same type under changingconditions. For this
purpose 1t is superior to the pv diagram, especially in

presenting at a glance the relative efficiency of different
cycles, while if used in conjunction with the pv diagram,

we have before ugs 8ll the information which can be obtained
regarding any theoretical cycle.

Figure 7 shows the relation between the Lenoir, the
0tto, and the Atkinson eycles; the first is an example of

Clerk's Type I; the other two of Type II, the Atkinson with
complete expansion produced by the mechanism of the engine,
the Otto with expansion to a volume equal to that at the
beginning of compression. The area B E F shows the work
done during a cycle in the Lenoir engine; B C D E that done
in & eycle in the Otto; and B C D F that in a cyecle in the
Atkinson. Very evidently the first is much the least
efficient and the last the most efficient of the three. Ir

the compression in the two latter is increased, the work done

!
becomes B C D ' E ' and B c'"n'pt respectively. The

difference between these two areas (now BE ! # ¥) 1is less
than before ( BE F ); hence we see that the theoretical

superiority of the Atkinson is less at higher compressionms.
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Further, the increased size, complexity and friction ia the
mechanism of the Atkinson more than counterbalance the
theoretical superiority to the 0tto, so that in practice the
Otto is the most efficient, and the Atkinson has been little
more than an ingenious attempt at improveument.

For engines employing adiambatic ecompression and expan-
sion there are three symmetrical types of thermodynamic cycle,
which are each cycles of maximum efficiency for the comditions
agsumed. The first of these is the constant temperature
type, the well-kmown Carnot cycle. In this adiabatic cu. .~
pression raises the temperature from the lower to the upper
limit; during isothermal expansion at the upper temperatuie
the whole heat supply is received; when the supply is cut
off, adiabatic expansion reduced the temperature to the lower
limit; and then isothermal compression brings the working
fluid back to its initial conditions. The second symmet-
rical oycle is the constant pressure type. In this we have
first adiabatic compression as before from the lower to the
upper pressure; heat is then supplied at the constant upper
pressure, with consequent rise of temperature and increass
of volume; when the heat supnly is cut of?, adiabatic
expansion to the lower pressure takes place, Pollowed by the
rejection of heat at the constant lower pressure and conse-

quently, diminishing temperature and volume. The third
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symmetrical cycle is the constant volume type. Ageaic

the first change is adisbatic compression, here from
maxirum to minimum volume; &at the end of compression heszt

is asdded at constent volume, with consequent increase of

both pressure and temperature; when the heat supply is

cut off, sdisbatic expansion reduces the pressure and tempe:i.-
ture until the volume resches that existing before compression;
finally heat is re jected at constant volume and diminighing
temperature and pressure. Figure 8 shows these three
symmetrical eycles, for the same range of compression in all
three; A B G H represents work done during a Carnot cycle;

A B E P thet during 8 constant pressure cycle; and A B C D

that during a constant volume cycle. It can be easily shown,

by the method employed before, that in all three the efficiency
is the same and depends only on the ratio of the volume before
compression to that after compression, being 1 - (%) e In

the Carnot cycle the efficiency is the greatest ideally
possible under any conditions, since the temperature at the
end of compression is the maximum reached in the cycle; in
the others the efficiency is not the greatest ideally possible
for the temperature range, but is the greatest possible for

the conditions assumed. The T¢ diagrem shows that the
work done per oycle in the Carnot type is very much less than

in either of the others; the pv diagram shows that the

range of volume is considerable, being about twelve times;
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hence a large unwieldy machine is required for a small ouijut.
The constant pressure type gives the greatest output per cycle,
shown by area A B E F, but from the pv diagram the range o?
volume is about eighteem times; hence here too & large cylii.-
der is required, though for a much larger output than in the
Carnot type. The work per cycle in the constant volume
type, represented by area A B C D, is not very much less than
for the constant pressure type, while the pv diagram shows
that the range of volume is very much less, being only Pive
times. Hence, under these conditions, & much greater output
per unit of weight or size would be given by an engine working
on the constant volume tgpe.

The Carnot ocyecle is outside the bounds of practical
consideration for two reasons: the exceedingly small output
per unit of size of eylinder7and the inability to secure even
approximately isothermal compression except at excessively
slow speeds. Figure 9 shows a comparison between the constant
pressure and constant volume types under conditions more nesarly
approaching those met with in prectice, i.e. where the extreme
pressure and temperature range is the same and where in the
constant pressure type expansion tekes place only to a volume
equal to that at the beginning of compression. This latter
is approximately the cycle of the Diesel engine. A.BCD

shows the work done per oycle in the constant volume type;
A E CD that in the constant pressure type. The letter shows
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evidently a considerable advantege in efficiency. Refrrince
to the pv diasgrams, hcwevex, shows that the range of voclume
is about 14 to 1 in the constant pressure cycle but only 5

to 1 in the constant volume type, thus necessitating a
cylinder of about three times the size in the former cese.
This to some extent offsets the advantage of greater efiici-
ency between the given temperature limits, and moreover this
edvantage in efficiency is less at lower temperatures and
pressures than those shown, which hitherto have been more
frequent in praectice.

There is &also great diffieculty in regulating and
controlling the combustion practically in engines of the
constant pressure type. These various reasons have
militeted against engines of Type II taking the place in

commercial practice to which their theoretical superiority

entitles then.
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VARIATIONS WITHIN ONE TYPE.

The T<§ diagram lends itself sdmirsbly to comparisons
of different conditions in eny given cycle. A series of
diagrams of Type II to which most gas-engines in use belong
will show this, Figure 10 shows the effect of varying
the quentity of heat supplied per cyecle; thaet is of having
rich or weak mixtures in the charge. We can easily find
that the work donw per cycle changes, but the efficiency
is constant, Figure 11 shows the effect of verying the
compression, Here not only does the work done per cycle
increase with increassed compression, buf the efficiency
also increases, efficiency, as we have slready seen, being
greater at greater compressions. This appears at once
from the T @ diasgram, where the areas under the three
curves, representing the hesat taken in per charge sre
equel, but the area representing the work done increasses
consideradbly. Figure 12 gives the effect of varying the
suction température alone, and Figure 13 the effect of
varying suction temperature and its natural corollary, the
quantity of heat per cycle, since & smsller mass of gas is
drawn in at & the higher temperature. In both these
cases the efficiency will remain the same, since it depends
only on the ratio of compression, but the work done per

cycle will decrease ss the temperature rises.
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VARIABLE SPECIFIC TEAT,

In the discussion so far the specific heat of the
working substance has been treated as constant. It is,
however, now generslly admitted thet the specific heat is
not constant, but increases with increasing temperature,
the rate of increase being diff:;enlké:;es. Though all
experimenters agree in finding this increase of specific
heaf, they are very discordent as to numerical results and
no published figures have so far found general acceptance;
hence it is impossible to mgke calculations of any value
allowing for incressing specific heat, One instance is
however tsken in order to examine the effect of the in-
cregasing specific heat on the efficiency and on the entropy
diagrem, That selected is the Otto cycle shown in Figs:
8 and 9 and repeated in Figure 14, diagram A B C D.
Starting with equation (2) in the form 48 = cy 4t $ (cp-cv)
T Ei , let us examine the changes in the equations csaused by
varzable specific heat. Assume Prof.Burstall's ststement
of the results of liallard snd Le Chatelier's experiments to
be the law of variation, this is ¢y = a4+s T

CP: b+s T
where a, b and s are constants to be determined by experi-
ment, Substituting in the equation above giwes d Q «
(a+8®)dT+ (b- a) TQ_;. Hence d ¢ :y_ﬁ_@_:(a+s)
T

a7 4 (b-a) 31% +  Integrating ¢-¢, = a log,
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T .8 (T-T) & (b-a) log v . For a constent volume line,
?' v‘
teking @, = 0, we get = & log” +s (T-7). In Figure

14, A B E F is plotted from this Z'quation, sssuming the
working substance as nitrogen, for which Burstall gives cy
= 170 + .0000__872 t, which equals .1939 +.0000 g72 —,
It was sssumed, for the sske of comparison, that the temp-
erature reached was the same as before; the actuasl temp-
erature reached does not affect the efficiency, though it
does affect the work done. A simple expression for the
efficiency with varying specific heat cannot be obtained,
but the efficiency in any particular csse may be obtained
from the T¢ disgram by the ratios of the areas, as is done
below for +this case. The equetion of the curve is P =
alogT4s (T-7,). The area under the curve = /ngﬂ
or, su%'stituting from the differentisl of the equation of
the curve, the srea = J[T (a 4T 4 s 4T) = j&a d74+s ™. 4 m)
~—a2T+s8 Tz... const. i

The t-gmperature limits for B E are 5569° and 1973°
absolute, hence the ares under it is 430.5 heat units; +the
limits for A F are 290° and 1250°, so that the ares under
it is 250.5 units. The efficiency is therefors
430.5 - 250.5 = 42%, mhe efficiency of the process

420.5
with specific heat sssumed constant can be found from the

«408

compression ratio as 1 - (%) = 489, Hence in this

case the efficlency has been reduced from 48% to 427 by
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allowing for an increasing specific hesat. —houszh these
figures are not reliable, =g yet they indicate that the
effect of the specific heat increasing with rise of tem-
perature will be to decrease the theoretical thermsl ef-
ficiency of any cycle, or in other words, to increase the
wgfficiency ratio™ of a cycle by lessening the difference
between the efficiency actuslly attained and that theoret-
ically possible for that cycle #nder ideally perfect con-
ditions. It therefore helps to asccount for part of "the

missing quantity".

CONVERSIO! OF THE ACTUAL INDICATOR CARD.

The sctual conversion of o gas-engine indicator
disgram into a T¢ diegrsm is rendered difficult from
geveral causes, For s T¢ disgram the quantity of heat
concerned per cycle must be known; this demsnds an accu-
rate knowledge of the explosive mixturs. In practically
8ll gas—-engines there is considerable veristion in the
explosive mixture under running conditions; in the hit-
and-miss type of governing, for example, thd mixture after
o missed stroke is much richer then the aversge and a
greater weight of gas will be contained in it on account
of the greater density due to the cooling effect of the
missed stroke. If governing is done by throttling the

fuel, sgain the composition of wmixture smd weight of gas
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in it will vary; if both air end gazs are controlled we still
find that the proportions necessarily vary, in order to get good
explosive mixtures at the verying compressions resulting. The
best that csn be done in sny case is 4o use average indicator
cards snd sn sverage mixture calculated from the observed m vol-
umes of gas and air used. A second serious difficulty in the
conversion of a pv to a T¢ diagram is the determination of cy
and Ccve. Yo satisfactory definite values for these gquantities
at the higher temperatures have yet been published, end there is
e further difficulty in epplying what is known to the mixture in
varying proportions of gas, air smd products of combustion that
tekes part in every cycle. A third difficulty is presented by
the decrease in volume after combustion due to the chemical re-
arrangements in the products produced by the combustion. It
has been calculated by Dugeld Clerk thet the shrinkage on com-
bustion varies from 4% with & mixture of 1 gas to 5 eir, to 2.2
with a mixture of 1 gas to 10 sir. Finally, it is necesssry
to knpw & definite tTemperature somewhere in the cycle in order
to plot a correct disgram. Only with difficulty cen the tem-~
perature of the gases be messured during the cycle, smd then
only approximetely, because sny temperature observed will be not
the mean of the whole mass, but the temperature at the point of
observation only, since it is now definitely established thst
the temperature throughout the mass of gas is not uniform, but

varies from point to point. A common assumption is to take



the temperature of the charge at the beginning of compression as
equal to that of the issuing jacket water. Prof.Reeve stated
that he sssumes the round figure of 600° F. abs. If the sbove
mentioned necessary quantities are known or assumed, the TQ®
diagram mey be ploited from the indicator disgram by using the
equations given sbove. In Captein Sankey's method g chart is
prepared on which constant pressure and constant volume lines

ere laid out at convenient disteonces gpart; then the disgream is
Plotted by finding points et the intersection of the proper cons-
tent volume and constant pressure lines, Graphic methods of
obtaining the TP disgram from the indicator card have been
developed, notably by Prof.Boulvin and by W.J.Goudie (Proc.I.
llech.E.) These sre both based on the use of constructionsl
logarithmic curves, and the former involves & transferring first
to the Tv plane and from that to the TP . Teither of these
methods, however, has come into general use, but either would

be zdvantageous in cases where g number of disgrams with the same
velues of cy and y were to be transferred, Goudie's method
can be gpplied glso to cases in which the specific heet is
assumed variable, es is pointed out in the paper referred %o.
Figure 15, teken from this paper, shows Burstsll's triasl Dy
worked out with varisble specific heat assumption (in full lines)
end with constant specific heat (in dotted lines). Figures 16

end 17 are disgrams teken from Berry, transferred from the pv



diagram by Boulvin's graphic method. In treating of the
effects of ratio of compression, time of firing, quantity of
heat per charge, end other variasbles, on the efficiency, =a
single standard engine using e stendard working substsnce may
be assumed. The stsndard recommended by the Committee of
the Institution of Civil Engineers snd now generally followed
is that of "a perfect air-gas engine operated between the same
meximum and minimum volumes a8 the asctuasl engine, receiving
the same total smount of heat per cycle, but without Jacket or
radigtion loss, and sterting from one atmosphere end the sel-
ected initial temperature of 139° F." If however it be de-
sired to compare different working substances or fuels, account
must be taken of the m varying values of Cy and y .

The study of compression and expension lines, the latter
especislly, in the T diagram of the actusel engine, throws s
great deal of light on what is happening in the cylinder during
those strokes. In Fig:15, for instance, the expsnsion line
is found st first to slope slightly to the right, then more
steeply to the right; it then becomes nearly vertical for s
time and finslly slopes to the left. During the whole of
this period the temperature has been dropping; hence while the
curve slopes to the right, heat is being added to the working
substance. The source of this sdded hest is not well estsb-
lished. Sone guthorities would put it down a8 due to "efter-

burning"; others, as due, in great part at least, to the
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increase of specific heat st higher temperature; yet others,

t0 the dissociation at high temperatures of some of the chemical
compounds formed by the combustion, heat being produced by their
re-combinetion as the temperature fells; while some believe i%
can be largely explsined as due to the interchange of hest
between the cylinder walls and the geses inside, According to
this last theory the hot gases, immedigtely sfter explosionm,
give up heat to the cooler walls; as the gases expand, their
temperature decreases snd there comes a time when it falls Dbe-
low thet of the walls, which then give up heat to the geses,

One would herdly expect, however, that the tempersture of the
geses would fall so rapidly in comparison with that of the walls.
which are =211 the time transmitting and giving up heet to the
Jacket water, thet the walls would be gble to give up heat to
the geses st or soon zfier the middle of the stroke, when the
surfece of the cylinder is incressing most repidly. Fuite
72robably seversl of these influences mey combine in cases where
the heat actuelly does incresse during the stroke,especially

in such g case as that of Pig:16, where the expsnsion line in
the T¢ diagram slopes continuously to the right. In Pig:15
during the letter psrt of the stroke the line slopes to the
left, showing that the heat is decressing, In this case the
fell of temperature due to expension is taking place faster than

can be overcome by the supply of heat from any of the sources
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mentioned, This ressoning shows too that even though the
expension line might be vertical, this does not necessarily mean
that the expension is reslly adisbatic, but only that the various
influences counteract each other to such a degree as to produce
an apperently adisbetic expansion. As e matter of fect, the
expension line in practicelly all cases does slope to the right
showing thet heat has been reveived from some source during
expension,

The compression line sglso gives opportunity for interesting
deductions, As & genergl thing it slopes first to the right,
showing an increase of entropy and a reception of heat from the
cylinder wells by the gases. As compression proceeds & point
is resched where the tempersture due to compresgcion is equal %o
that of the gases; +the curve then becomes vertical, s=nd on
further compression slopes to the left, showing thet the gseses,
owing to the compression, have reached & higher tempersture thsn
the walls, and ere then giving up heat to the walls. It some-
times heppens that the loss actually exceeds the gain due to com-
pression, in which cese the temperature may decrease towards the
end of compression; Fig:l7, giving & case of late ignition,
shows this. In Fig:15 the compression curve st the end of
compregsion slopes again towards the right, showing thet at
higher compressions end speeds the heat due to0 compression may be
greater than is teken away by the walls, This additional hesat

mey slso be due to early ignition, The time of firing of
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course sffects the combustion line, slsc meking it approsach
more or less nearly to a constant volume line. wthe

cherscter of the exhsgust line is of no significance, as it does
not represent the history of a2 fixed quantity of substence.

Its sole importence is %o close the diagram esnd thus to mske the
area of the T¢ diagram the hest equivalent of the work records

ed by the indicator card."
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