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Abstract

This thesis deals with representative examples from a recent body of work
dealing with coupling of Einsteinian gravity to quantum-mechanical matter
fields, and in particular the Dirac field and the electromagnetic field. The
first part of the thesis develops the proof of the existence of particle-like
(soliton) solutions to the fully coupled Einstein-Dirac equation, from the
derivation of the form of the equations and their numerical solution to a
numerical and topological analysis of the stability of the solutions found.
In the second half of the thesis. two nonexistence theorems are developed
for black-hole solutions for the Einstein-Dirac-Maxwell system with various
coupling-strengths and symmetry conditions. These nonexistence theorems
show the impossibility of stable, nontrivial, Dirac fields in the presence of
black holes in the cases investigated.

Cette these traite des exemples représentatifs d’oeuvres récents concer-
nant la conjoncture de la gravitation einsteinienne avec les champs de matiere
quantizées. notamment le champs de Dirac et de l'électromagnétisme. Sa
premiere partie développe la preuve de l'existence des solutions reliées aux
particules (soliton) a '’équation Einstein-Dirac, a partir de la dérivation de la
forme des équations et leur solution numérique jusqu’a l’analyse numeérique
et topologique de la stabilité des solutions trouvées. Dans la deuxiéme par-
tie de la these, on développe deux théoremes de nonexistence aux solutions
de “trous noirs” pour le systeme des équations Einstein-Dirac-Maxwell avec
divers forces d'accouplement et conditions de symétrie. Ces théoréemes de
nonexistence démontrent 1'impossibilité d'un champ de Dirac stable et non-

nul dans la présence de trous noirs dans les situations examinées.
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Chapter 1

Introduction

1.1 Preamble

The purpose of this thesis is to examine and collect some recent research
results concerning solutions to the Einstein-Dirac-Maxwell (EDM) system of
equations. The results we examine are due to Finster, Kamran, Smoller and
Yau, and appear in [FSY1], [FSY2] and [FKSY1]. These equations govern
the behaviour of Dirac particles (such as electrons or neutrinos) coupled
to gravity and electromagnetism. The results we shall be concerned with
fall into two classes: there are results showing the existence of particle-like
solutions to these equations; and there are results showing nonexistence of
certain classes of singular solutions - in particular, black-hole solutions with
various types of symmetry. It should be noted that not all of these results
apply to the fully coupled EDM system.

This work is divided into two main sections. In the first section, we ex-
amine the results of [FSY1] regarding the existence of soliton (particle-like)
solutions for the Einstein-Dirac equation in the static, spherically symmetric

case. These results confirm that, for minimal coupling to electromagnetism,



the equations governing the Dirac field do indeed predict the existence of
particle-like solutions. In the second section, we examine two main results.
The first is from [FSY?2], dealing with the nonexistence of time-periodic so-
lutions of the Dirac equation in the fairly general case of an axisymmetric
black-hole background; that is, the (somewhat surprising) nonexistence of so-
lutions in which a Dirac particle “orbits” such a black hole. The second result
of the third section demonstrates the nonexistence of a class of static, spheri-
cally symmetric solutions to the full EDM system. There are two appendices
giving additional background necessary to the main matter but which is not
the principal subject of this work. In the first appendix we briefly give some
necessary background material to define the Einstein, Dirac, and Maxwell
equations and their setting. In the second we give some exposition regarding
the use of topological methods, and in particular the Conley index theory,
in qualitative analysis of PDEs, since this method is used in examining the

stability of the particle-like solutions found in the first part.

1.2 Background of the Work

The work examined here is a recent selection of work in the subject of the
coupling of gravity to various other fields. The initial work most closely re-
lated to the results we shall be dealing with was the work of Bartnik and
McKinnon (1988), who studied the interaction of Einsteinian gravity with a
non-Abelian Yang-Mills field. Their discovery of nontrivial particle-like so-
lutions to the EYM system was somewhat remarkable, since these solutions
were everywhere regular and static. Neither the Einstein vacuum equations

nor the Yang-Mills equations uncoupled to gravity admit static, regular solu-



tions. This fact is due to the presence of two forces, the repulsive Yang-Mills
force and the attractive gravitational force, in the system which balance each
other for the solutions found. Prior to this result, it had been conjectured
that no such solutions could exist - their discovery was the first in a sub-
stantial body of recent work. The Bartnik-McKinnon solutions were shown
by Straumann and Zhou (1990) to be unstable with respect to small per-
turbations - which introduces the theme of stability analysis for particle-like
solutions, which shall be relevant to the current results. Substantial research
on the Einstein-Yang-Mills equations has been done by Kiinzle and others
(especially Darian and Masood-ul-Alam), particularly in finding cosmolog-
ical solutions, and solutions with spherical symmetry. Further work with
the EYM equations was undertaken by McLeod, Smoller, Wasserman, and
Yau (1991) and by Smoller, Wasserman and Yau (1993), introducing in this
original context the study of black hole solutions. They demonstrated the
existence of such solutions, establishing a nontrivial class of black holes with
Yang-Mills field. Smoller and Wasserman (1993) established the existence of
infinitely many smooth solutions of the EYM equations.

These results with the non-Abelian Yang-Mills gauge fields set the stage
for later work which examined similar questions about the Dirac field. Since
the Dirac field represents fermions, which constitute normal matter, this is
physically significant, but is greatly different in character from the Yang-Mills
field. Substantial work with forms of the Einstein-Dirac and Einstein-Dirac-
Maxwell equations has been done by Finster, Smoller, and Yau. The question
of finding particle-like solutions for the Einstein-Dirac equation (studied in

some depth in this thesis) was followed by a similar result for the full Einstein-
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Dirac-Maxwell system - in each case, soliton solutions were found, and shown
in addition to be stable under small spherically symmetric perturbations.
With these existence results, it is then natural to examine the case of black-
hole solutions.

Unlike the Yang-Mills situation, the principal results for black-hole solu-
tions are nonexistence theorems. In a series of papers from 1999, Finster,
Smoller and Yau prove a number of related nonexistence theorems, rely-
ing on a few basic techniques well illustrated by the examples we study
in detail in later parts of this work. The first, proving nonexistence of of
static, spherically symmetric solutions to the fully coupled EDM system, re-
lies on an analytic result, establishing bounds on the magnitude of the Dirac
spinors which lead to contradiction for nonzero fields, meaning that only
the Reissner-Nordstrom and Schwarzchild solutions are possible. The com-
bination of spin and quantization changes the situation from the classical
(nonquantum) picture. Turning to the minimally coupled situation, then,
they looked at the Reissner-Nordstrom background and looked at the be-
haviour of a Dirac field uncoupled to gravity on this background. For this,
because of the timelike nature of the singularity and the fact that the maxi-
mal analytic extension of the Reissner-Nordstrom background has infinitely
many asymptotically flat regions connected through the black hole, it was
necessary to develop matching conditions across the event horizon. This pa-
per thus brought to the work a novel treatment of the Dirac equation in the
distributional sense, seeking generalized solutions (which would be problem-
atic in the fully coupled case since we assume regularity of the metric). The

main result was to show that there are no time-periodic (and hence no static)



solutions to the Dirac equation on this background.

This was generalized by Finster, Kamran, Smoller and Yau (in the last
result studied in the present work) to the Kerr-Newman geometry (the most
general Einstein-Maxwell black hole geometry), again using matching condi-
tions and a distributional understanding of solutions of the Dirac equation.
As in the former case, however, it was shown that there are no nontrivial
solutions. This paper ([FKSY1]) also shows this result for more general ge-
ometries (a case not pursued in the present work) in which the Dirac equation
is separable into radial and angular parts - namely geometries in which the
Weyl conformal curvature tensor satisfies an algebraic condition making it
“Tyvpe D" (a more general type of metric which includes, in addition to the
KN geometry, others such as the Taub-NUT metric). This illustrates the
application of the algebraic classification of the conformal curvature to show
such general results. These nonexistence results for time-periodic solutions
led to the investigation of the long-time dynamical behaviour of Dirac fields
on these backgrounds given initial data. This too has been studied by Fin-
ster, Kamran, Smoller and Yau ([FKSY?2]), and bounds have been found on
the rate at which Dirac particles must escape to infinity or fall into the black
hole.

Returning again to the Yang-Mills field whose coupling to gravitation
began our discussion of the research in this area, an examination of the case
of a Dirac particle coupled both to gravity and to the magnetic component
of an SU(2) Yang-Mills field - the Einstein-Dirac-Yang-Mills equation - has
been done by Finster, Smoller and Yau. It was shown that the only solutions

are the known black hole solutions with vanishing Dirac field. This makes



use of a similar analytic approach to that seen in the spherically symmetric
EDM case, by deriving bounds on the spinors at the horizon.

These recent developments in this area employ a wide range of techniques,
most of which are exemplified by the particular cases studied in the current

work.

1.3 Results to be Considered

We have now framed the problem to be considered: the interaction of three
fields. namely the gravitational, electromagnetic and Dirac fields, and the
solutions to the coupled systems of equations representing them. None of the
solutions we will present are fully general, but each sheds some light on the
more general question of classifying these solutions. In the next chapter, we
begin with the positive result of the existence of particle-like solutions to the
Einstein-Dirac equation. We suppress the electromagnetic field interactions
(that is., we assume there is no electromagnetic field, so that we are dealing
with a bare chargeless Dirac field coupled to gravity). This corresponds to
the situation where gravitation is the dominant effect: it serves as a model
problem for the more general, physically realistic case.

In the first section, we seek soliton solutions to the E-D equation. These
are solutions which resemble particles in that they are locally concentrated,
and spacetime is asymptotically flat: we seek these by use of a particular
form for the field having this property. We assume such solutions to be
spherically symmetric, and to follow a particular ansatz (this is admittedly
not an entirely general approach, but since we are seeking an existence proof,

the only work justification of the ansatz which is required is that is yield



solutions to the equations). We then examine the stability of the solutions
found. Establishing the existence and stability of particle-like solutions for
this E-D system is rather difficult, and involves algebraic manipulation of
spinorial and tensorial equations to obtain the form of the system to be
studied, numerical computations to find solutions to the differential equations
thus obtained, and topological analysis of these solutions to establish their
stability.

In the second section, two nonexistence theorems are developed, gener-
alizing somewhat the classification theorems of Carter, Israel and Robinson
to include the possible presence of a nontrivial Dirac field. The first result
addresses the spherically symmetric case only, with full coupling of the Dirac
field to the metric. The second deals with the case of no coupling, describing a
Dirac field on an axisymmetric background somewhat more general than the
Kerr-Newman. It has been shown by Chandrasekhar that the Dirac equation
is separable into ordinary differential equations in the Kerr-Newman back-
ground geometry, which makes possible the result of [FKSY1] (when suitably
generalized). This can be regarded as an approximation of the weak-coupling

limit for the full Einstein-Dirac-Maxwell equation.



Part 1

Existence of Particle-Like
Solutions of the Einstein-Dirac
Equation
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Chapter 2

Dirac Equation on a Static,
Spherically Symmetric
Background

2.1 Form of the Equations
2.1.1 Form of the Operator

We wish to find particle-like solutions of the Einstein-Dirac equation: we
must thus find a metric on a manifold, and a corresponding Dirac field so
that the stress-energy tensor associated with the field satisfies the Einstein
field equations with the given metric and the field itself is a solution to the
Dirac equation on that background. This requires the solution of a coupled
set of equations: we must concretely find these equations and attempt to find
solutions for them. This system is quite complicated, however, so to simplify
the form as much as possible, we begin by assuming a highly symmetrical
form to the spacetime. In particular, we shall assume a spherically symmetric

spacetime. A common example of such a spacetime is the Schwarzchild
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solution, which in spherical coordinates (T, r, 8, ¢), has metric form
2

(1-2)

The more general case, (as seen for instance in [Hawk], appendix B) for

ds’ = —(1 - 2Tm)dtc2 - +r?(d6” + sin” §d¢*))

a spherical spacetime is,
dt?
F3(r)

We thus have two positive radial functions (assumed to be at least C?)

ds® = -

+ X2%(r)dr? + r*(d6? + sin? 6d¢?)) (2.1)

determining the metric: for consistency with [FSY1], we will write the metric
tensor in the form
gij = diag(%, —%, —r?, —r?sin? 6) (2.2)
with 4 and T positive functions of r. The Dirac operator must now be
constructed in these coordinates, to take advantage of this symmetry.
Since the Dirac matrices are elements of a spinor space, and correspond by
the homomorphism H (defined in Appendix A) with elements of the tangent
space, they transform in the same way. Thus, since the e; = ga;, the Dirac

matrices transform the same way, and so we have:

G' =T

G" = VA(71 cos 6 + ¥, 5in 8 cos ¢ + 3 sin sin @)
1 2.3
G = -r-(—*n sin @ + 42 cos 8 cos ¢ + v3 cos fsin @) (2:3)

1 .
G® = m(—“m sin ¢ + 3 cos @)

and in particular, we have (as a representative example):

0 0 cos{®) isin(e)
T r
o 0 0 _isin(¢) _ cos(¢)
G® = _cos(¢) _ isin(d) Or Or
isir:(o) cosr(z) 0 0

12



with the other G* found similarly. Now we recall that p = 3¢,;uG'G’G*G',
and we may calculate the form of p in these coordinates by using the forms
for the G* given above. Since we know that the G* anti-commute when
indices are different, and ¢, is zero when any index is repeated, so that p =
—‘\/'EG‘G'G"G", which an explicit calculation reveals to be the “pseudoscalar”

matrix

~ 01
P =" =thN172Y3 = I 0

which is convenient, since it is independent of position. We recall the form
of (A.3), the components of the spin derivative. With p a constant, the term
%p(a,-p) can be eliminated. With the particular value of p we have found, the
term 3T7(pG;VG™)p can also be found by direct calculation to be zero.

This leaves the B matrices as:
B(z) = G'(2)E;(z) = —=Tr(G™V,G")G'CnGhn

Consider the term G’G,,G,: since G’G* = g/*, we get nonzero terms
for every pair of equal indices (with possible sign changes due to the anti-
commutativity), while the relation between the G matrices and p = 4°, a
self-inverse matrix, gives us a remaining nonzero term of (ie},,,7°GP), so

that we have the following:
B = — = Tr(G™V;G")(#:Gn ~ #Gnm + G gmn + i€ VG

With a few more observations, we can simplify this greatly. First, we note
that since 4g™" is the trace of the matrix G™G", and g™"; vanishes, we have
0 = V;Tr(G™G™) which is just Tr((V;G™)G")+Tr(G™(V;G")), so that the

first two terms in the last expression for B are equal, while the third is zero

13



(since it corresponds to the case with equal values for m and n). Furthermore,
in the term involving the volume tensor ¢, the antisymmetry of this tensor
allows us to replace the covariant derivative in the multiplying term with a
partial derivative, and this in turn means that the trace in the multiplying
term is zero in any term with all different tensor indices (i.e. the terms with
nonzero €). This last is a somewhat cumbersome calculation, which can be
checked with a symbolic computation program, using the explicit forms of
the G. This means that only the first two terms (which are equal, due to the

antisymmetry) are significant, and so we have
B= %Tr(c"v,-c:f)a,,

This can be somewhat further simplified by nothing that, as with basis
vectors, we have V;G’ to be a linear combination of the G matrices them-
selves, and that Tr(G"X)G,, = 4X for any such combination, so that finally

we have the quite simple form:
Lo o

Having found this convenient form for the B matrices, we can find it ex-
plicitly, and thus obtain a form for the Dirac operator with which to do calcu-
lations. To find the divergence V;G’, we note that it is just jmaj(JQTqTGj ).
Thus, we must find the derivatives of the G matrices found earlier. Noting

that we chose the form of the matrices to reflect a static geometry, the term
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for the t index is naturally zero. For the radial component, we find:

___L_ G ( TA: )8 ( r2sm(0)) ,)

\/m r2sin(@)/ or TVA
(T4 2 (22t costo)

+ v?sin(8) cos(¢) + v3 sin(6) sin(¢))))

Here we have removed some factors of v 4 and non-radially-dependent parts
of the expression. Noting that the +* are not radially dependent, this leaves

only:

(G-

By similar calculations, we find that:

Bs(V/191G%) =

rsirlx(ﬁ) ( — 2v' sin(@) cos(8)

+ (cos*(8) — sin*(8))(1* cos(8) + 7 sin(#)) )

1
Vgl

and

\/—6@(\/1? = — (9)(—‘r2605(¢)—73sin(¢))

Summing these to obtain the divergence V;G?, we get that the B matrices
are given by:

22 o,T

) - —('v cos(f) + ¥*sin(0) cos(¢) + +* sin(@) sin(¢))

and noting that this last combination is a scalar multiple of G", we can reduce

10, T
(o)

15
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Finally, we combine this with the form for the Dirac operator and get it

to be:

1 1. 18T ,
SOV Ui ) 24)

) d
= 1 !_ 1 T{ —
G=iG'5 +iG'(5 +

This is perhaps the clearest form in which the operator can be written.
In the next section, we shall examine it, and reduce the expression further by
exploiting further symmetries. Along the way, we shall give some discussion

about some more general considerations.

2.1.2 Refinements

We have developed a form for the Dirac operator: before proceeding with
further we must check that this operator is Hermitian with respect to the
appropriate scalar product, since physical observables in quantum mechanical
systems correspond to Hermitian operators. We shall now provide a short
discussion of this in the current context, more details on which may be found
in [Fin].

There are two scalar products defined for solutions to the Dirac equa-
tion. The first of these applies to any wave function: integrating, over all
of spacetime, the scalar product of two functions with the invariant measure

accounting for the tensor density:

<¥.&>= / ¥é\/|gld*z (2.5)
M

In this case, the bar represents the adjoint operation on spinors, so that
= (1 0
F=0 (O _I)

16



This scalar product is called the spin scalar product, and is indefinite of sig-
nature (2,2). In order to give meaning to the scalar product as a probability
density. we would like to have a scalar product, however, which does not
involve integration over all of spacetime, but rather only on some spacelike

hypersurface. This is generally written as
(¥|P) =/ VUG’ dv;dp (2.6)
n

where H is any such hypersurface, on which du is the measure induced by the
metric. This scalar product has a physical interpretation as the probability
density of the Dirac particle, and the conservation of the Dirac current means
that it is independent of the choice of H - that is, % can be continuously
deformed to any other spacelike hypersurface and leave (¥|®) fixed. Conser-
vation of the Dirac current is the statement that V,¥G’® = 0, which holds
for solutions to the Dirac equation. The spin scalar product described above
is more general, since it makes the time coordinate into an observable, but
lacks an immediate physical interpretation - the second will be used to give
the normalization conditions which we shall use later, since it has physical
meaning.

We must check that the Dirac operator is Hermitian with respect to the
spin scalar product. so that it will correspond to an observable quantity. (The
fact that the operator G is Hermitian with respect to the spin scalar product
justifies the notation, commonly used in quantum field theory, < ¥|G|® >,

the bra/ket notation.) This is easy to check, using our explicit form for the
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Dirac operator with the B matrices in the form of a divergence:

9 i
<GU|®>= f (10155 + Evjcz)\pcp\/|g|d41

=f"\17(iG-’5% - éV,—G-’)tD\/E-ld“z

+ f T(i0,(v1gG") ) @d'z 27)

=/W(iGj% + %v,-cf)cb\/mmx

=< ¥|GP >

This provides some justification for the physical significance of the operator
G which we have constructed. Note that in this calculation, we have simply
moved the term [ Yv’(ia,-(\/EGi ))(Dd‘x from the contribution of the first,
flat-space G, term in the integral to the second, B, term and thus removing
the conjugation.

We have checked the meaningfulness of the Dirac operator in the most
recently obtained form (2.4) by checking that it is Hermitian with respect
to the spin scalar product. To simplify calculations, we shall next separate
out the angular momentum from the equation, in order to simplify it. This
will involve the use of an ansatz for the wave functions: here, we are simply
assuming that the wave functions can be expressed in a particular form, and
use the characteristics of that form to simplify the equation. While this is
far from obvious a-priori, we will attempt to justify the use of the ansatz.

First, we make some definitions. By analogy with the construction of the
Dirac spinors from the Pauli spinors in flat spacetime, we define some com-
binations of Pauli matrices which correspond to our new coordinate system.

These will capture dependence on the angle coordinates. In particular, define

18



(with the usual definitions (A.1) for the o' matrices in cartesian coordinates):
o' (8, ¢) = cos()a’ + sin(#) cos(¢)a? + sin(P) sin(¢)o®
(6, ¢) = —sin(@)o' + cos(8) cos(p)o? + cos(h) sin(d)a® (2.8)
0°(8.0) =

sin1(0) (- sin(@)o? + cos(@)o?)

We now seek a convenient form for the wave functions which allows us

to simplify our system (2.4). Specifically, we assume that the wave funciion

takes the form:

U€q

d’a = eiwt (0'“28.;) (29)

where the u; are complex radial functions and the e, are the standard basis
of the Pauli spinors, namely e, = (1,0) and e; = (0,1). The new term w is
a parameter which we shall end up using to classify solutions: it represents
the energy of the system. This form will be seen to be quite convenient, and
rather general, as we shall now attempt to show. In general, we can, with
the same definition of the e,, express a totally general form for the Dirac
wave functions for two Dirac particles as ®,(x.t) = A(x,t)eq. This 4 is a
(4 x 2) matrix whose columns are then the components of the wave functions
for the two Dirac particles - it represents the combined system. We want the
evolution of this system to produce a static solution, and for this system to

be static, we must have the evolution of A to be only a change in phase:
A(x, t) = —e“tA(x)

We see that the two Dirac particles then have an oscillation with a frequency
proportional to the energy w. On the other hand, if we want to have spherical

symmetry, we must have no angular dependence: in terms of our Pauli-matrix
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expressions (2.8), we must have 4 in terms of only the ¢t and r spinors given
in our new system of o matrices. These are I and o" as given previously.
Thus, we have:

A(x) = (vn(r)I[ + UQ(,)ar)

v3(r)] + vy(r)o”

This form for the combined system of two Dirac particles, when we mul-
tiply this matrix form by the e,, gives a linear combination of the form (2.9)
given above for the wave function, and its counterpart with the ¢" spinor in
the top entry instead of the bottom, namely:

&, = et (" “‘e") (2.10)

Uz€4

This last variant ansatz for the solution will produce a solution to a
transformed version of the Dirac equation in which the mass is negative,
corresponding to conjugation by ¥° of the Dirac operator. We consider the
combination of both of these cases, corresponding to the fact that the Dirac
equation has meaningful solutions of both positive and negative mass, a fact
which leads to the “Dirac sea” of negative-mass solutions. We shall regard
these solutions as transformed versions of solutions of the untransformed
Dirac equation, and so consider them in our analysis of the solutions, when
we find them. This means that we can consider only one of the two forms as
the ansatz for the metric (breaking the symmetry of positive and negative
mass by choosing one to work with), and obtain (2.9) as the ansatz we shall
use.

With this in mind, we proceed to use the form (2.9) to separate the

angular momentum from the Dirac equation. To do this, we find the form of
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the Dirac operator acting on such a wave function. We have, first, that:
G¥, = (iG'3, + G"(i0, + =(1 - A7) - %TT) +iG%9, + iG®0,) ¥,

This is just:

— |t : l _a-3 _Ll wt [ U1€Eq
G\Ila-[zGBt+zG’(6,+r(l A1) 2T)]e

oTuge,
Now, the first term (involving the d, derivatives) becomes:

(e (i) = e (1)
= G'w¥,

= wT+%Y,
The term involving 0, derivatives (and the corresponding spin-derivative cor-

rections) becomes:

iG™ (9, + l_r’ri - z)tlr,, = (_(C’r, ‘(’)) (i, +iﬁr_1 - iT;;,Z)\II..

Now, since the angular derivatives are zero for radial functions, the angular
derivative terms’ only effect cotnes from their action on o", where we have

that 0" (90") = [, and similarly for the ¢ derivative. Thus, we have:

(iG°3%) (e“"“' (a',‘;z‘;a) ) = (iG®)(e™") (3% (a'r‘,';';a) )

= (iG®) () ( O(u1€4) )

(0" uze,)

. —iwt 0
= (iG%)(e™™") ((8,0')(?126«))
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-7 0

. . —iwt Uu1€q — Lot 0 o 0
e (22)) 5 (8 7 (o)
Loy [0
= ;(e ) <u26n)
_ t {0 o U1€q
- ; 0 0 o' uqe,

since (07)? = I. All of this applies equally to the 8, term, so these two terms

. 0 o .
And since, furthermore, G® = ! ( 0 , this simply becomes:

are equal, and the whole expression becomes:

G¥, =((_?,, ‘B) i(vVAa, + ‘/Er‘l - ‘/ET')

2T
2t {0 of
r 0 —
+wTy" + ” (0 0))\11.,

Notice that this form produces a coupled system of differential equations

(2.11)

in the two unknown functions u; and u; which appear in the ansatz for V.
This equation can now be simplified by removing the angular momentum:
we accomplish this by first rewriting this equation in a more convenient form
by transforming ¥. The form we shall choose makes it easy to write the
Dirac equation as an ordinary differential equation (or rather a system of
them), involving only radial derivatives. This will be done by solving for
different functions of r, T and the u,, from which they can be recovered. In
particular, we will consider functions which simplify the form of the above
equation, rendering it real rather than fully complex, and eliminating some

of its terms, namely:

¢1=

u,

© ol
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and

P, = ——=u,

vT

With this substitution, we consider the expression

(((1) —Ol) “T= ((1) (l)) VAD, + ([1) “01) -'1; - m)@ =0 (212

For u for which the Dirac equation (G — m)¥, = 0 hold, this last equations
holds also, and vice versa, since they are scalar multiples of each other. Since
this equation is real, we may assume that the spinor ® is real.

We note that the normalization condition now becomes simply

o T 1
2 L 4.1
/0‘ |P| \/Edr =

To give the simplest form for the Dirac equation as an ODE, we choose

the form

VAY = [uT ((1] '01) 42 ((1) _Ol) —m (‘1’ (1))]¢> (2.13)

which we shall use for the numerical computations.

2.2 The Field Equations
2.2.1 The Energy-Momentum Tensor

We have found the Dirac equations already: we wish now to find the Einstein
field equations, so that we may attempt to find solutions for the coupled
system. The standard way to do this is by variational methods (see e.g.
[LoRu] chapter 8.4). The idea here is that S is a Lagrangian dependent on

the metric and its first two derivatives, whose associated energy-momentum
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tensor has components which are its derivatives with respect to the metric
components. We want to find this tensor associated to the Dirac field in
order to determine its effect on the curvature of the metric, and hence on the
metric itself. This produces the coupling of the matter field to the metric
used in the Einstein equations, and will thus give us the next equations we
need. To do this we must find the variation of the metric in order to compute
the derivatives.

If we allow ourselves to consider a variation of the metric which is arbi-
trary, say dg;;, then we can use algebraic relations to discover the variation
of other quantities. In particular, the variation of the Dirac matrices corre-
sponding to a given dg,; arises in the following way. Since we have the relation
3(G'G? + G’G*) = ¢, and the variation of the inverse is §g7 = —g**¢/'d gy,
we can differentiate these to find the variation for the covariant and con-

travariant Dirac spinors to be:
5G, = 5(69)G*
and
567 = -39 (69u)G'

We can use these basic quantities to find the energy-momentum tensor:
this can be found as the variation of the action of the Dirac operator, which

is just:

s:fii(c—m)w\/m z

So the variation is 45, or, since ¥ solves the Dirac equation, and hence

(G — m)¥ = 0, we can find §S by considering only the contribution of 4G,
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so that we get:

6S=/Re\il(i(661)%+68)\ll\/|-g_| T

Note that since the action is real, we have removed the imaginary part of
the integrand. Next. we simplify this form by showing that the contribution
of the B matrices to the variation of the action is in fact zero. We begin by
allowing the variation § B to act on ¥, substituting the form for B which we
found previously:
B =G’E;
= & (50(90) - %Tr(G"‘V,-G")GmG,, + éTr(pGijG'"')p)

Noting that the first term is zero since p is constant, and the third term is
traceless. we find the contribution of the B matrices to the integrand in the

variation to be:
Re%6BY = ll—ﬁlma(Tr(va,Gﬂ)ﬁchmG,,w)
1 _
—- — mey N j
1 GJ(Tr(G' V,G™)Im(¥G G,,,G,,\IJ))

Here, we notice that since v° = p = €;;G'G?G*G', we can replace the term
G’G,,G,. and then use the antisymmetry of the tensor density € to convert

covariant to partial derivatives, and get that:

Re¥sBY = ——lltsd(e-’m"”Tr(GmVjG")‘l" 750,,1:)
1 .
= — jmnp . 5
=7 65(e Tr(Gmd,G™) ¥y G,\Il)
1 jmnp . 5
=1 (c 8T T(Gm0;G™) ¥y G,,\Il)

where the last transformation is a result of the antisymmetry of ¢ and the

fact that Tr(G,,0;,G.) = 0 when there are no repeated indices, so that we
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can ignore the ¢/™P’s contribution to the variation. Substituting for the
variation in the middle, we then get that
ReWsBY = 1—16(ei'"""(JGmk)Tr(G“BjG")WGp‘I')

To reduce this further, we observe that the last peice,

2
UG, ¥ =) U 7°Gy¥, =0

a=1
and so the variation of the B matrices disappears. Thus, we need only find

the variation 4G to find 4S. This is thus:
2
§S = / % D" Re¥,(iG;8:) Vabg™* /Igld'x
a=1
and the energy-momentum tensor is the symmetrized form of this:
e | —
Tu=3 ; ReV,(iG 0, + iG*9;)¥,

Now it is easy to show from the algebraic properties of the Pauli matrices

that the cross terms with j # k vanish, and direct calculation gives the others

as:
Tt = 2T 2|02 (2.14)
T; = —2wT?*r72|®2 + 4Tr %@, 9, + 2mTr~%(d} ~ 32) (2.15)
T¢ = —2r°T®, &, (2.16)
T? = —2r3T®, &, (2.17)

2.2.2 Field Equations

Now that we have obtained the Energy-Momentum tensor for the Dirac field,

we must find the Einstein Field Equations which are obtained from it. We
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recall the form of the metric given in (2.2); this metric is the most gen-
eral spherically symmetric metric possible, and has two arbitrary functions,
namely A and T, of the radius coordinate r. We thus wish to find the com-
ponents of the Einstein tensor G} = R} — 1 R4} in terms of A(r),T(r) and
their radial derivatives. The part of the field equations which derive from
the metric will be this tensor, hence these components.

Calculating the Einstein tensor for the given metric, we find that it is a

diagonal matrix with the following components (all primes represent radial

derivatives):
'
Gy = -;15 + % + %
G} = ~;1; + % - 2:; (2.18)
Now. the Einstein field equations G} = —8xT}, using the form for the

energy-momentum tensor TJ‘ calculated in (2.14) give three equations, since
T} is again a diagonal matrix with the last two entries equal. The first of

these equations is:

G) = —-8rT¢
[} , 2
LA A g wTiel (2.19)
r2  r? r r?

—(1 = A) +rd’ = —167wT?|®?

the second is:

G, = -8rT}
~_1‘ _i _ 24T 8 —2uT? P2 + 4Tr 1@, D, + 2mT ($? - B3)
re  r2 T r?
2rAT’ 21 (2 -1 2 2
(1-4)+ T = ~167wT?|®|* + 327Tr~'®, P, + 16amT (P] — B3)

(2.20)

27



and the last field equation is:
G =G2 = —8rT? = —8xT3
A AT AT 24T? AT T '8,
or T 2T T? T ~ 72 (2.21)
rd'  rAT' P AT 2r2AT? r2AT”

> T o T T
Together, these form the Einstein part of the Einstein-Dirac system of

= -167Tr &,

equations for the case we are considering. We can combine these with the
equation we derived (2.13) for the Dirac equation in the spherically symmetric

background, namely:

G- (o} )16 5)-m( )

Together, these comprise the system of equations in whose solutions we
are interested. In fact, the system can be simplified by showing that the
equation (2.21) can be eliminated from this system, as it is implied by the
others: we shall show this once we have the equations in a convenient form.

Having eliminated the equation (2.21) from our system, we wish to find
a consistent form for our system to make it easier to work with. To do this,
we will first isolate single terms with unknown functions so that we may
sequentially solve for these functions. It is easy to see that if we take the
Dirac equations (2.13) from matrix form, and writing a = ®, and g = &,

they appear as:

Vid' = ~a ~ (T +m)8 (2.22)
and
VA = (T — m)a — %a (2.23)
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With the same conventions for a and 3, the remaining Einstein equations,

on the other hand, may be written (by isolating terms with derivatives) as:
rd' =1- A - 16mwTa? + 5°%) (2.24)

and

!
2r.4-T— =A-1-167wT?*a® + 3%) +

T

m + 16mmT (a? - 3%) (2.25)

With these four equations, we have reduced the problem to the solution
of solving for a system of four unknown functions satisfying these relations
in radial derivatives.

Now recall the normalization condition on the wave function: since the
wave function may be considered as a point in a projective Hilbert space,
only values which are scaled to have magnitude 1 are physically meaningful
(this represents the probability amplitude of the system). The magnitude is

defined by the scalar product given previously in (2.6), namely
(¥|P) = [ VG dvdu
H

with H a spacelike hypersurface and du the measure induced on it by the
metric. Requiring that ¢ have magnitude 1 in the norm induced by this scalar
product on solutions to the Dirac equation leads to physically meaningful
solutions. Taking H to be surfaces of constant time parameter t, we can

integrate this radially, getting the scaling condition to then be

o T 1

since we just have the normal vector v; with only a time component, hence

picking out only the G° term.
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This normalization condition, together with the assumption that the so-
lution is regular at r = 0 (that is, can be expanded as a Taylor series), leads
us to the Taylor series expansions, to second order, for the four functions

a, 3, AandT of r given here:
a(r) = ayr + O(r?) (2.27)

(which is nearly tautological, except that it reveals ag = 0),

B(r) = %(wTo — m)ar? + O(r) (2.28)
A(ry=1- %mTozcxfr2 + O(r?) (2.29)

and
T(r) =Ty - %"-(4wTo - 3m)T2a?r? + O(r?) (2.30)

In these expressions, we recall that w and m are the energy and (rest) mass
of the Dirac particle, respectively, and are thus preexisting parameters for
the system. This Taylor expansion shows us that, in this form, the degrees of
freedom for the solutions are then determined by two additional parameters:
the value Ty = T(0) and the value a; = %. We can restrict this further by
noting some additional restrictions on the form of the solutions.

First, we recall that the ADM (Arnowitt-Deser-Misner) mass of a sys-
tem is a concept of the total mass of a system, originally motivated by the
Hamiltonian formulation of General Relativity, in which the existence of con-
straints in the formulation lead one to seek to “de-parameterize” the theory,

leading to a precise notion of total energy in a system (the Hamiltonian).
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This led to the ADM mass, which we may think of as the mass of a system
as measured by an observer at spatial infinity. Requiring that this be finite

leads to the constraint:
lim =(1 — A(r)) < oo (2.31)
r—oc 2

but since lim,,,, 7 = oc, this implies that

lim A(r) = 1 (2.32)

r—o0

This constraint eliminates one degree of freedom for our system, correspond-
ing to one parameter.

The second constraint (eliminating the second spurious parameter form
our Taylor series formulation) is simply that we wish our spacetime to be
asymptotically flat - that is, asymptotically Minkowskian. Given the previous
constraint and our form of the metric in (2.2), this leads to the remaining
constraint

lim T(r) = 1 (2.33)

r—oo

We have now nearly obtained a form for our Einstein-Dirac equations
which will be susceptible of numerical treatment. The normalization condi-
tion and the asymptotic flatness condition ((2.26) and (2.33)) are difficult to
make use of, however, in a numerical context. Instead, we shall make use
of a re-parameterization technique which will make it possible to substitute
the integral normalization condition and the asymptotic flatness conditions
with finiteness conditions and explicit choice of values for some parameters,

identifying solutions of the equations thus discovered with solutions of the
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desired Einstein-Dirac equations under a scaling of the coordinates about the
point r = 0.
In particular, we shall replace the abovementioned constraints with the

finiteness conditions:

rI_Lm T(r) < o (2.34)

and
}|*—dr < © 2.35
/o e VA (235)

while compensating for the extra degrees of freedom gained by setting
To=1 (2.36)

and
m = %1 (2.37)

(Note that m = 1 includes both the positive and negative mass solutions for
the Dirac equation, and that these are treated separately. The negative-mass
solutions are those discovered by Dirac, forming the “sea”, holes in which are
detected as antimatter Dirac particles.)

The coordinate transformation which makes these constraints equivalent

to the first set involves first a scaling of r by a factor of

g T
A= 4#/ a? + (%) —=dr
\/ , A

(which is the of the ratio of the actual norm of the wave function with the

desired value of 1). Then, if we take

7 = lim T(r)

r—0o0
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we can take a solution (a,3,T, ) of the equations (2.22), (2.23), (2.24)
and (2.25) satisfving our new constraints (2.34) and (2.35), then we can

produce one satisfving the old constraints (2.26) and (2.33) by defining the

a= ‘/§Q(Ar)

3= \/;B(AT) (2.38)
A= A(r)

new functions

T =717'T(Ar)

It is clear that, for strictly positive A.7, this transformation is invertible.
Further, this new wave function satisfies the Einstein-Dirac equations (2.22),
(2.23), (2.24) and (2.25) with the parameters

m = Am
(2.39)
@ = ATw
as can be checked by direct substitution. Also, it is clear that these functions
satisfy the conditions
® o o T 1
/(; (@* + Bz)ﬁdr =1

lim T(r) =1 (2.40)

r—oc

lim (1 - A(r)) < oo

r—soc 2
as required. Thus, these provide us a unique solution for our Einstein-
Dirac equations, corresponding to the solution we found for the numerically
tractable system (2.22). (2.23), (2.24), (2.25) with constraints (2.34) and
(2.35). Note that since the normalization condition and the asymptotic flat-
ness condition are required for physical significance, the scaled solutions are

the ones in whose properties we shall be interested.
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Chapter 3

Solutions to the Dirac Equation
and their Properties

Having found Taylor expansions for the relevant physical quantities a, 3, A
and T about the origin (giving initial conditions) and the ODEs which they
satisfy, one may proceed to solve these ODEs numerically. This has been
done (see [FSY1] sections 7, 8) but we do not propose to present extensive
details here on the nature of these solutions. These details may be found
in [FSY1] if necessary - in particular, the graphs of the various functions
a, 3. 4 and T being sought are of some interest. Our main purpose here,
however, is to describe the method for finding these solutions, and a few of
their most salient qualitative properties. We will then proceed to examine
the stability of these solutions under perturbation, which will give some idea
as to whether these states represent physically realistic situations. This will

involve some topological properties of the solutions.
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3.1 Existence
3.1.1 Determination and Properties of Solutions

We wish here to consider how one would go about finding useful solutions
to the differential equations (2.22)-(2.25). This has been done by Finster,
Smoller and Yau ([FSY1]). In order to find nu::-erical solutions for the system
under consideration, one would use the Taylor expansions we have obtained
already in (2.27)-(2.30) to construct initial data about the origin, and then
use a numerical DE solver to use these initial conditions to develop a full
solution (the Taylor expansions are necessary so that initial conditions at 0
and at a nearby point, which in practice was 10~°, deemed close enough that
the Taylor approximation would be close enough). Since it is possible to scale
the variables in order to satisfy the normalization and asymptotic flatness
conditions (2.35) and (2.34), there is some freedom to choose arbitrary values
for some of the parameters. Picking the mass parameter to be defined to be
m = %1 and assuming that T(0) = 1 (though of course T will only be 1 at
infinity, in general, since it measures the “time dilation” factor at a point
as measured by an observer at infinity), numerical solutions were found by
fixing the parameter a, and getting numerical solutions in the independent
variable w, the energy of the field.

It was reported that these solutions were continuous in both a; and w,
which makes it reasonable to use this method (if this did not hold, the qual-
itative results being sought would not be expected to be obtained in this
way, since properties of the solutions would not necessarily be extendible to

nearby values of the parameters). The solutions had T going to a nonzero
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limit 7 at infinity (hence capable of being scaled), T and A everywhere posi-
tive, the spinor magnitude a®+ 3% going to zero faster than order r=2, 4 — 1

as r — 00 (which is necessary for asymptotic flatness), and
lim 2(1 - A(r)) < oo
00 2

which is the condition for finite ADM mass. Since every other essential
condition can be met by scaling, we know this solution is at least admissible.

Further study of the solutions found revealed some important qualitative
properties - properties which are revealed by study of the numerical solu-
tions and can be assumed to hold for exact solutions since the numerically
discovered ones will be sufficiently close (due to continuity of the solutions).
First, it was noted that for positive mass (scaled to m = 1) any fixed value
of a,, there were a countable set of solutions for various values of w from
wo < Wy < +++ < Wmaz- The lowest w corresponds to the ground state and
the higher w to ezcited states for the Dirac particle. The radial graphs of the
functions A and T associated to these states were seen to have certain reg-
ularities: T is always a monotone decreasing function decaying from a value
greater than 1 at r = 0 toward T = 1 as r — o0 (as should be expected, since
the mass should be expected to be concentrated at the center and thus cause
time dilation relative to an observer at infinity, corresponding to a high T
value, while at infinity, the metric is asymptotically flat - the monotonicity,
however, is new). The .4 function, on the other hand, is not monotone: its
exact behaviour depends on which excited or ground state the particle is in.
It is equal to 1 at the origin, and asymptotically approaches 1 as r — oo,
but between these, it dips, and has some number of relative minima - one for

the ground state, and for the nth excited state, n + 1 minima. For negative
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mass, similar properties were observed in both A and T.

We have briefly discussed the characteristics of the T and A curves in r
- the remaining variables for which we get numerical results are a and 3,
the spinor components. Since these are the two components of a spinor, we
can best understand the behaviour of the curves found as a parametric curve
in a — 3 space. For every case, this curve is a closed curve beginning and
ending at the origin (indicating asymptotic behaviour and initial state). For
the ground state and small values for the initial value a,, this curve stays
in the first quadrant and has no self-intersections, while for higher values of
a; it develops a “kink” and then, for still higher a,, a self-intersection. For
excited states, the curve no longer remains in the first quadrant: for the first
excited state (and small a,), it passes through all but the fourth (with no self-
intersections) and for the second, it passes through all four, and does intersect
itself in the first, resembling a cardioid. Somewhat similar phenomena are
observed for the negative mass states. This illustrates that the excited states
exhibit more complicated behaviour than the ground states, which is the
same result noted in the case of the function A, for instance.

The next significant feature of the solutions (which, in part, leads to the
investigation of stability features) appears when one examines the relation-
ship, in any given ground or excited state, between mass m and energy w, as
parameterized by «,. That is, considering the nth excited state, fixing the
mass and varyving a;, one gets a one-parameter family of solutions having
particular energy w: rescaling m and w to give physically meaningful results,
one gets solutions only in a particular range of values of m, and the curve as a

whole has a spiral shape: for a low value of m, there is a unique solution, but
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Figure 3.1: Qualitative Properties of Mass Spectrum Plot

as the curve (parameterized by a,) continues, it reaches a maximum value of
m for which solutions exist, then turns back and turns around a fixed point or
cvcle {as illustrated in figure 3.1.1) that for certain critical values of m there
may be countably many energy states, while at others there will be a finite
number. In every one of these solutions we have the energy less than the rest
mass (w < m), which implies that we are looking at a system of fermions in
a bound state: to separate the particles we would have to put in energy to
bring the total energy up to the separate rest mass of a particle, since for

two separated, noninteracting particles. the total energy will be the sum of

38



their separate rest masses. These spirals, though quantitatively different for
different excited states, appear (empirically) to be qualitatively the same for
all ground and excited states for both positive and negative mass.

A similar spiral can be found by plotting p — 2w (where p is the ADM
mass). This quantity represents the energy contained in the gravitational
field (since the ADM mass represents the total mass-energy of the system
as measured from infinity, hence the total energy of the gravitational field
and the Dirac particles themselves taken together - and we are looking at a
pair of fermions bound together). It is negative for small m, meaning that
the bound state has less energy than the unbound state, hence that energy
must be put into the system to break apart the fermions, and thus suggesting
that this state should be stable in this range. For the higher values of m the
solution should then be unstable since it will release energy to decay into an
unbound state, as indicated by the positive value of p — 2w. We have thus

been led to the question of stability of the solutions.

3.2 Stability Analysis
3.2.1 Numerical Considerations

In order to judge the physical significance of the solutions we have found
for the Einstein-Dirac equation, one of the questions it is natural to ask is
whether the solutions represent a stable configuration. If small perturbations
would disrupt a solution and render it unstable, we would not expect the cor-
responding physical configuration to occur naturally in physical situations.
Therefore, we must consider the behaviour of our solutions under pertur-

bation: some of this consideration is numerical, and some is topological in
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nature.

We consider spherically symmetric perturbations only, here - this has the
simple effect of making the functions 4 and T in the form of the metric
(2.1.1) dependent upon time ¢ as well as radius r. The same methods can be
used to calculate the Dirac operator, but a time derivative of A now enters
into it. In contrast to (2.4), we thus have:

¢=ict(2 -2, +in(§ +o(- %) - 32';) +iG3p + iG®D,

44
t

and we can separate the angular dependence by an ansatz of a form similar
to that of (2.9), but (since the time dependence will be inside the spinor in

the functions : which play the role of the radial u of (2.9)) of the form

¥ = vT ( 21 (r, t)eg ) 3.1)

r \io"2(r t)e,
Following much the same procedure as before, this yields a time-dependent

form of the Dirac equation as a 2-component ODE:

((6 &) (ra-35+57)

_((1’ (1)) \/36,+((1) Bl)%—m) (;;) =0

On the other hand, the time-dependent form of the energy-momentum

(3.2)

and Einstein tensors gives the dependent Einstein equations to be the fol-

lowing:

4-1 A uT? —

2 + T = —8r 2 Re(Z10,z;, + 223,22) (33)
T?2A T2
= - 871'Re(l—2(z—18,zl + 53,-22)
rd T (3.4)
T34-3 _
+ 5 (F0n + F0,2))
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A-1 24T T Az
—+ =

e T 87 Re(Z10, 27 + 220, 21) (3.5)
2 _ A AT AT 24T
SW;ETRG(.;l.'.Q) —2_7’ - TT - 2 + T2

. - - 3.6
_AT" 37242 TAT | T34 (36

T T3 T34 T34

Given values for the mass parameter m and energy parameter w, and

a compatible solution (a, 3, A.T)(r) of the equations (2.22)-(2.25), we wish
to consider the general form of a perturbation of this solution. An ansatz
for this which specializes to the case already examined in the case of the
time-independent case makes use of the redefined spinors a and 3 implicitly

defined by expressing the z; by

a(r.t) = e “a(r.t)
and

2(r.t) = e a(r,t)

~ The perturbations in the spinors which we are considering are therefore small
time-dependent deviations from the static (a, 5, 4, T) given. Since 4 and T
are real and the spinors a and 3 are (generally) complex, we thus have the

perturbation as:

a(r.t) = a(r) + £(ay(r, t) + iag(r, t)) (3.7)
3(r.t) = 3(r) + £(by(r,t) + iby(r, 1)) (3.8)
A, t) = A(r) + A, (r, t) (3.9)

T(r.t) = T(r) +Ti(r. 1) (3.10)

(3.11)
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where q;. b;, A, and T are real-valued.

The analysis of this perturbation proceeds as follows: one substitutes
the general perturbation into the Einstein-Dirac equations and assumes ¢ is
small enough that all but the first order terms can be neglected. This gives
a system of linear ODEs for the perturbing functions. An unstable solution
would be one which admits the possibility of such a perturbation growing
exponentially in time (since the equations are linear), so if we assume that
time dependence is of this form and show that there are no nontrivial such
solutions, then we will have shown the stability of the known solution. We
thus assume that (for f representing in turn each of the functions a,, b;, 4;

and 7) we have

f(r.t) =e"f(r)

(noting that the same « is used in every case since we are looking at linear
perturbations).

The linear ODEs obtained are the following:

VA = = — (m+wT)by + xTb; - ;—jl(‘r-' - (m+wT)B) —wT\8

\/Ka’2 = 072 — (m+wT)by, — kT, — f—;Tﬁ—nZ;—

\/Kb'1 = —-(m+wT)a; — l-)rl — KkTa; — ;4(~(m +wl)a - g) -wlha

' by A T,
\/:Ibz = —-(m+ wT)a; — - + kTa; - IﬁTa - rc?la

(3.12)
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and

27‘.‘1T{ ‘i'_‘iz - T1 .'lT[ + 327rT2

(a1 8 + Bha)
+ 161rTza(2ma1 — 2wTa, + kTay)
—~ 167T*3(2mb, + 2wTh, — kTb,)
_ 16T, (3wT2(a2 + 87 — iTab* _2mT(a? - 3%)
+16x T (wT2(a + 6% - —Taﬂ mT (a® - 3%)) (3.13)

In addition, one obtains a purely algebraic condition:

A, =167 Q( (kb + 2why)a + (ka, + 2waq)3)

In addition, there are initial conditions at r = 0 and the constraints
demanding asymptotic flatness and the normalization condition to consider

in this system. Initial conditions are given by a Taylor expansion, as before:

a,(r) = ay + O(r?) (3.14)
az(r) = ag + O(r?) (3.15)
T.(r) = Ty + O(r?) (3.16)
b;(r) = O(r?) (3-17)
Ay (r) = O@?) (3.18)

while the normalization condition (2.26) (using the newly redefined a and 3
as the components of ¢) must still be satisfied. We note that the conservation
of current means this integral is the same at all times, hence equal to its
limit as t — —oc, where the wavefunction approaches the unperturbed static
solution.

It can be verified (using a symbolic computation program) that any solu-

tions to the differential and algebraic equations in the above system satisfy
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the Einstein equation so we have a consistent system. To demonstrate stabil-
ity of the solutions we have found (under first-order perturbation) it suffices
to show nonexistence of such solutions for a value of the exponential growth
rate parameter ~ which are strictly positive (leading to an actual exponential
growth of the perturbation).

In the following argument, we make several coordinate transformations
to find a convenient way to examine the perturbational effects. If we first

make a small reparametrization of time,

- Tl (0) ent

th—ch(O)

we find that the form 3.7 of the perturbation remains the same, but the

functions T), a; and b, change by a radial factor:

Tl(T) — T](T) - %g—))'T(T) (319)
az(r) = ag(r) — ";"%(%a(r) (3.20)
ba(r) = ba(r) = 2 () (321)

(we note the common form of these transformations). By choosing a suitable
reparameterization, we can thus fix, for example, T, at the origin to be zero
so that T1(r) = O(r) and thus reduce the number of free parameters which
characterize the perturbed solution. This, however, weakens the asymptotic
flatness condition 2.33 to a form more like 2.34, so that T, approaches, say
i in the limit as 7 — oo. Further, we can eliminate a second parameter
by noting that the linearity of the equations allows us to scale any solution,
hence we may fix one more parameter by a multiplicative factor - say, set

azo = 1. This leaves only the parameter a;¢ to determine the solution.
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To show stability, we recall, we must show that there are no solutions
for this perturbed system having the form 3.12 for which « is positive (since
this would lead to runaway changes in the state, which indicates instability).
Without entering into excessive detail in the numerics (which are not our cur-
rent focus), we can briefly describe what this involves: in the a, vs. b, plots
(as created numerically as solutions to our perturbed system), we are looking
at perturbations from the a— 3 graph, so that the a; — b, graph is similar to it
for small x. This graph, plotting the spinor components against each other,
gives a parametric curve with parameter r. Near r = 0 this is near the origin
(both a and 3 are zero) and as r — 0o it again returns to the origin in the
unperturbed solutions, forming a closed curve (in the case of excited states,
there may be self-intersections of this curve - for the ground state there are
none). To show that the normalization integral cannot be finite, it suffices
to show that the perturbed version of this graph is bounded away from zero
for large time. This was initially difficult to judge (due to inaccuracies in
the numerics) so, noting that the a; and b, are approximately multiples of
a and J respectively, a transformation @, = a; — ua and by = by — uB was
used. Rewriting (3.12) in these new variables gave much improved accuracy.
To solve the system, initial data at r = 0 were constructed (approximately)
by finding initial values satisfing the property that lim,,,o(a;, 4 )(r) is min-
imized, by choosing a cutoff value of r, R which minimize it (since beyond
a certain value, inaccuracies in the numerical solutions will accumulate and
make results unusable). By doing this for various values of x, it was ob-
served that, indeed, for positive x these plots diverge very quickly away from

zero for large r - though the good behaviour (similar form) of the (a2, b2)(r)
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plots for these various values suggests that inaccuracies in the numerics are
not responsible for the divergence, and thus that, indeed, for positive x, the
spinors are bounded away from zero (indeed diverge) and so the normaliza-
tion integral cannot be finite, hence no such solution can exist. This would
imply that the particle-like solutions found earlier would be stable. The same
method applies to the excited states as to the ground state.

We point out here that these results only work for small mass m (weak
coupling of the Dirac field to gravity), where the linearized equations are
tractable. To deal with larger m, in the domain where the |m| vs. w, we
must resort to topological methods involving the Conley index - which is
described in Appendix B, and the use of which in this context is dealt with

in the next section.

3.2.2 Topological Considerations

With the understanding of the Conley index developed in Appendix B, some
illuminating results can be obtained regarding the stability of the class of
solutions found previously for the Einstein-Dirac equation. We discussed
in the previous section some of the numerical stability analysis which was
effective for weak coupling of the Dirac field to the metric (that is, for small
mass). The study of the mass-energy spectrum for higher m requires the
topological results just described.

To do this, we regard the mass of the fermion to be the bifurcation pa-
rameter (that is, the main parameter for the Dirac equation - we consider
the mass-energy spectrum curve (shown in figure 3.1.1) as representing fixed

values of m — w relative to m). The reason for this choice is not obvious,
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since the scaling factor means that m is not in fact fixed, while m and w
enter into the linear form of the field equations in exactly the same way. In
fact, solutions to these linearized equations do not determine w except up to
a linear time-dependent perturbation (for more details on this, see [FSY1],
appendix B), but m is entirely determined by the solution, since G¥ = mV¥
so that the inner product of G¥ with itself is just m?2.

Having adopted m as the relevant parameter, we then have a series of
equations on m — w, corresponding to the mass-energy spectrum for the
n'® excited state, and we can analyze these by continuation. For instance,
near m = 0, we have a stable solution @, which has Conley index ¥°, the
homotopy type of the pointed zero-sphere. The importance of continuation
becomes clear here, for as we vary the parameter m, we can continue this
stable solution all the way to the turning point P; of the spiral curve of
the mass-energy spectrum, where the mass attains the critical value m =
m;. At this point, we have a degenerate solution (with flows entering any
neighborhood on one side and exiting the other) so that the Conley index
of the solution P, is just 0, namely the homotopy type of the pointed one-
point space (since the neighborhood contracts down to the single exit point).
Since, moving to lower m from this solution at m = m,;, we can construct
neighborhoods containing both the fixed points which “bifurcate” from P,
then the Conley index for a region containing both of these must be 0 - hence,
since we know the bottom solution (being a continuation of @) has flows
only entering its neighborhood, the top solution must have Conley index
L', the homotopy type of a pointed 1-sphere (circle). In other words, this

solution is unstable.

47



This type of argument applies at every bifurcation point in the mass-
energy spectrum’s spiral - that is, every point P at which there is a degenerate
solution, which corresponds to a vertical tangent to the curve. The Conley
index of each of these points is 0, and so each of the pairs of solutions into
which these degenerate solutions bifurcate must have this same combined
Conley index, so there are, alternately, stable solutions with index £° and

unstable solutions with index %!.
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Part 11

Nonexistence of Black Hole
Solutions
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Chapter 4

Case I: Spherically Symmetric,
Static EDM System

In this chapter, we consider for the first time a fully coupled system combining
the Einstein, Dirac and Maxwell equations. This is a quite general configu-
ration, since the Dirac equation describes the behaviour of a fermionic field,
and Maxwell's equation describes a (in this case force-carrying) bosonic field:
these are the two known classes of physically occurring fields. The fermionic
field may be considered to represent a matter field composed of indistin-
guishable Dirac particles (for instance, electrons). These will be modeled .
as interacting through the electromagnetic field carried by the bosonic field,
namely the photons represented by Maxwell’s equation, as well as thrcugh a
(non-quantized) gravitational field represented by the Einstein equations.
Recall that, when we showed the existence of particle-like solutions for
the Einstein-Dirac equations in the first part of this work, we noted that, for
any given state, for mass parameter above a critical value, solutions cease
to exist. It has been shown in [FSY4] that this property also holds for the

Einstein-Dirac-Maxwell system as well. The natural hypothesis is that this
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corresponds to the formation of black hole solutions: the center of mass of the
system becomes a black hole, and thus the solution is no longer particle-like.
In [FSY3] this was shown not to work under certain restricted conditions
- such a black hole solution, given restricted symmetry requirements and
minimal coupling, could not contain nonvanishing Dirac field. The results
we shall be examining examine this question of black hole solutions further.

Our purpose in this chapter is to show that, in the restricted case of
spherically symmetric, static solutions, there are no black hole solutions with
nontrivial matter field outside the horizon - in other words, there are only
the Reissner-Nordstrom solutions. This may be interpreted as stating that, if
a cloud of Dirac particles (such as electrons) which is spherically symmetric
collapses into a black hole preserving that symmetry, none of the matter
can remain outside the horizon. This is an effect arising from the quantum-
mechanical formulation of the fields in consideration, and does not occur in

the classical case.

4.1 EDM Equations in Spherically Symmet-
ric, Static System

4.1.1 Dirac Equation

The first step in examining the coupled EDM system will be to derive the
form of the Dirac operator in the case of a spherically symmetric, static
spacetime in which gravity is coupled to both the matter field governed by
the Dirac equation and also to the electromagnetic field. This is a straight-
forward generalization of the form of the operator in the similar case without

electromagnetism, which we examined in Part [. The only alteration in the
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form of the operator there derived is in the time coordinate. This arises
in the following way: the electromagnetic field is described by the potential
A = (—¢,0) in the usual way. The Coulomb potential ¢ appears in this
version of the operator, which is:

G =iG’0;+ B

VAT
2T

= iT+%(d, — iep) + 1" (iVAD, + %(\/E ~-1) - ) +i7%0p + i7%0,

(4.1)
where the v matrices are, as before, the Dirac matrices for flat spacetime in
polar coordinates.

It is clear here (using the definition of the G7) that the form of the Dirac
operator is essentially the same as that obtained in (2.4), except that the
term iT+°(8,) has become iT+°(8, — ie¢). We shall therefore not elaborate
upon the derivation, wherein the only difference would be an accounting for
the electromagnetic potential.

Now we must consider some quantum mechanical features of Dirac fields
in order to appreciate the behaviour of this system. To do this, we shall make
a brief excursion to describe some quantum mechanics of particles with spin.
First, since we will wish to consider solutions to the Dirac equation in terms
of eigenstates of other operators, we shall develop these briefly. The first
of these is the total angular momentum operator J?2 = (L + S)?, since we
wish any solutions for the Dirac equation in this situation Lo be eigenvalues
of this operator - in particular, we would wish J2¥ = 0, corresponding to
the eigenvalue 0, which should be the total angular momentum of the multi-
plet (multiparticle) state. This is an illustration of the physical meaning of

the operators we are considering: a Hermitian operator on the state space
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of the system represents a physical observable (in this case the total an-
gular momentum including spin components), and its eigenvalues represent
the distinct quantum numbers which that observable value can attain. A
physically observable STATE corresponds to an eigenstate (eigenfunction or
eigenvector, depending on how we think of the elements of the Hilbert space
of states of the system) of the operator: states which are not eigenstates do
not correspond to classical states of the system, but rather to linear combi-
nations, or superpositions of them. We now develop briefly the operator J,
following roughly the treatment in [Sch].

The total angular momentum operator combines two components: the
first, L, corresponds to classical angular momentum, which we may think of
as representing the rotation of the Dirac particles about a center of motion,
which in our case will be the point r = 0; the second component, S is the
spin angular momentum and is a feature which does not arise in classical
mechanics. It is a result of the fact that the Dirac field is a spinor field and
has some internal freedom. Since the spin group is the universal covering
group of the rotation group in three dimensions, and thus these two Lie
groups have the same Lie algebra, it follows that infinitesimal elements of
each can be added. So the total angular momentum will take account of
both. The operator L, the angular momentum about the origin for a particle,
is L = r x p, where r is the (vector) operator for the observable representing
the position of the particle relative to the origin, and p is the momentum
operator. It is an infinitesimal rotation about the origin - that is, an element
of the Lie algebra of the rotation group SG(3)), which Lie algebra has three

generators, representing the infinitesimal rotations about the z, y and z axes
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(in Cartesian coordinates). We designate these three generating operators by
L., L, and L., respectively. We remark that the fact that we are considering a
rotationally symmetric system corresponds to the claim that these operators
commute with the Hamiltonian H describing the evolution of the system,
since these are then constants of motion.

The spin angular momentum operator S measures the change in spin
components - since this is an element in the same Lie aigebra as the angular
momentum, it is reasonable to consider it an angular momentum as well,
although it is an infinitesimal element of a different Lie group. We consider
a rotation not only to rotate the particle in space but also to rotate its
spin components, so that the total rotation is represented by the operator
J = L +8S. The separate components of the total angular momentum are not
conserved quantities of the evolution, since in general they will not commute
with the Hamiltonian, whereas J will. In other words, in classical terms, it is
the total angular momentum which is conserved - so that we might think of
angular momentum being transferred from the (classical) rotation to the spin
momentum of a particle, with the total sum being conserved. This is then the
appropriate operator to consider as angular momentum. More particularly,
we will be considering the operator JZ: this can be found (cf. [Sch]) to have
eigenvalues of the form j(j + 1), where j is the angular momentum quantum
number. In the situation we are considering, this is the angular momentum

of each Dirac particle, and takes on half-integral values, so that

=13
1-2927”'

We are also interested, since we are coupling our Dirac particles to the

electromagnetic field, in the component of angular momentum about the
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axis defined by the field lines, which we are designating the z axis. This is
the J, operator, which possesses the convenient property that it commutes
with J2. Since it represents the component of angular momentum along a
particular axis, it can take eigenvalues with absolute value at most j, but can
otherwise take on any half-integral value (representing, therefore, an angular

momentum just as J does), so that we have its eigenvalues to be k£ where:
k=-5,-7+1,....75-1,j

Both the J. and J? operators commute with the Dirac operator, as does
the time-translation operator i3, and the operator v’ P where P is the parity
operator.

Since the four operators J, J., i3, and v°P all commute with the Dirac
operator and all commute with each other, eigenstates of the Dirac equation
will also be eigenstates of each of these operators, since commuting operators
can be simultaneously diagonalized, and we have chosen a four-dimensional
representation for the spinor state, so that any solution for the Dirac equation
can be written as a linear combination of simultaneous eigenstates for these

four operators. That is, if (D — m)¥ = 0 we have:

J20 = j(j +1)¥
J.¥ = k¥
L
OPU = £+ x 1 for]‘+feven
-1 for j + 5 odd

We may thus index solutions according to the eigenvalues to which they

correspond for each of these operators. The spectrum of the two angular

(<)
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momentum operators has already been described, consisting of discrete half-
integral eigenvalues. The time-translation operator has a continuous spec-
trum with all real values possible as eigenvalues, so w € R is all we can say.
The eigenvalues for the parity operator are +1, so we can index the simul-
taneous eigenstates of these operators by the eigenvalues corresponding to

them. These form a basis for the solution space which we indicate

13

59 §1 cee

so that the previous set of equations becomes
10 W5y, = Wi,

\Il?,wwherec=:t,j= k=-j,—-j+1,...,j,weR

Thkw
JS,, =50+ D
J ¥ = kW (4.2)
1 for j+ 5 even
0 + +
Py = £V¥7%  x 2
Y bk S {—1 for j + 3 odd

Now for each solution of the Dirac equation which is one of these ba-
sis states, the Dirac operator can be reduced to a system of ODEs in the
variable r much as was done in the previous part in which we reduced the
Dirac equation through symmetries. Note that this refers to a solution for a
single particle, however: it now becomes necessary to construct multiparticle
solutions from those we have found for single particle states.

Whereas the state for a single particle - the wavefunction - is represented
as a point in a Hilbert space H, it must follow that multiparticle states rep-
resenting n particles are represented by points in the tensor product of n
copies of ‘H, namely H" = H ® H--- @ H, which is again a Hilbert space.
An important point is the question of how this multiplet state vector be-

haves under interchange of the particles composing it. That is, if we have
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the multiplet state as a function ¥(W¥,, ¥,, ..., ¥,) of n single-particle states,
what is the change in the multiplet state if we permute the entries - what is
U(¥s01): Uor2)s - - -+ Yo(n)), for some permutation o0 € &S,? As Weyl remarks
in [Weyl] (p240), we would expect any physically realistic situation to be
confined to either the totally symmetric or totally antisymmetric subspace
of the Hilbert space H". This is first because with a hermitian evolution,
any configuration which begins in either of these two spaces (which decom-
pose H" completely) will remain there, and second because we expect that,
for identical particles, interchanging the states of two particles should rep-
resent essentially the same physical situation, hence be represented by a
scalar multiple of ¥ of the same magnitude. The only question is whether it
should be symmetric or antisymmetric in o. In the case of particles described
by the Dirac equation, fermions, it will be antisymmetric, so that we have
an element of the antisymmetric tensor algebra of H (note that since H is
infinite-dimensional, there is no limit in principle to the number of particles).

We thus represent the multiplet state by the so-called Hartree-Fock state:
VAF =W Al A---A Y,

We remark briefly here that it is this representation for the combined
multiparticle state which gives rise to the Pauli ezclusion principle, which
asserts that two fermions (Dirac particles, for our purposes) may not have the
same quantum state. This principle was predicted empirically on the basis of
observations of the filling of electron shells in the periodic table of elements
(noting that there are at most two electrons in any energy state, one in each
parity), but was explained by the antisymmetry of the multiparticle wave

function for fermions: the Hartree-Fock state is zero if any of its components
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are scalar multiples of each other - that is, represent the same state.
In the case we are considering, we are interested in combining the possible
values k of the z-axis component of angular momentum (the component along

the axis of the electromagnetic field). So we are actually considering

HF _ .y c
VO = Wik A Wige=

—j—l)w A M /\ ‘Il;(k= (4.3)

-
We observe that, by the fact that these ¥ are eigenstates of J. with

eigenvalue k (as in equation 4.2), we in fact have the combined state as an

eigenvalue of the operator extended in the usual way to H, namely:

HF _
J:‘I’ = (‘]:\p;(kzj)u) A W;(k:;—l)w ARSENAN \p;(k=—j)‘~'

+ Wik=jpw A (= W50 YA A

=j~1)w

=3)w A \p;(k=j—l)u AN (U ;(k:-j)u) (4-4)

—Jw

c
+"'+\I’J(k

that is. J. acts on each component of the Hartree-Fock state - but these,

being eigenstates. simply contribute a scalar multiple of the whole state:

HF __ (.14 c c
SO = (Wm0 A Wz A A W=

+ q’;(kzj)u A ((J - 1)‘1’;(&:1—1)‘.;) Ao A ‘I’;(k=~j)w

ot Wiemiw A Yikmjone A A (=) Ykmojpe)  (4:5)

But this reduces to just:

J
JUHF = 3" pHF =0 (4.6)

k=-j
so that, in fact, that the Hartree-Fock state ¥#F is also an eigenstate of

the angular momentum operator J., and in fact has no angular momentum

about the z axis.



It is somewhat less easy to show that the Hartree-Fock state has total
angular momentum also equal to zero (i.e. that it is spherically symmetric),
and to do this we must use the so-called “Ladder Operators” J.. These
are rather similar to the a and a' operators developed in the usual treat-
ment of the harmonic oscillator (e.g. in [Coh]). A treatment of the Ladder
operators for angular momentum can be found in [Coh] p. Although they
do not represent classical observables. they represent (chapter VI, part C),
and a situation similar to the current case is treated in [FSY3] using only
the angular momentum L. The addition or removal of a quantum of energy,
or photon (in the case of the harmonic oscillator) or a quantum of angular

momentum (in the present case). These operators are defined by:

so that [J..J.] = 2hJ, (since [J;.J,] = ikJ.). We use units where i = 1
throughout, and thus [J,.J_] = 2J.. This is analogous to the harmonic
oscillator, where the corresponding operators are 715(9 +iq) (where p is the
position and q the momentum operator), whose commutator is 1. The ladder

operators are clearly adjoints of each other, and we have the relations
P=JJ ++J=JJ,+J - (4.7)

(which follows from the commutation relation above). From these, we can
find that, as in the case of the harmonic oscillator, the J. act as “ladder”
operators in the sense that they take an eigenvector associated with one
eigenvalue to one associated with the next (or previous) eigenvalue. In the
case of the harmonic oscillator (see e.g. [Coh]) this is given the interpretation

of a creation or destruction operator. Here it takes a state into a state with
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one more quantum unit of angular momentum, with a multiplicative factor:

we have:

']i\pjku = \/J(] + 1) - k(k x 1)\1’3:'(13:&:1);.; (48)

(This factor is clearer if we note that j(7 —1)—k(k+1)=(G-m)G+m+1)
and j(j — 1) —k(k-1) = (j = m+ 1)(j + m)). But then of course if we
apply this to the Hartree-Fock state in the usual way, we will obtain a series
of terms which contain two copies of the same state, and since the wedge

product is antisymmetric, each of these terms is zero, so that:

HF _ (-
Je ¥ = (K% in) A W=y A A W= (49)
WS k=jiw AN (KW yu) A A Wpajpu +00- =0

where the A, are the appropriate scalars. In each case, there is a doubled
term, corresponding to a physical system in which two Dirac particles are
in the same state, which the Pauli exclusion principle (the antisymmetry of
the A-product) rules out. By 4.9 and 4.6, combined with the relation 4.7
decomposing the total angular momentum in terms of the ladder operators
and J,, we have that the Hartree-Fock state ¥¥F is an eigenstate of the total
angular momentum operator with eigenvalue 0, and thus that the Hartree-

Fock state can be spherically symmetric, since
JUHF =0

and J is the infinitesimal generator of revolutions.

Thus, the multiplet state of 2j + 1 particles can be spherically symmetric
even though each one may have nonzero angular momentum.

Having established that we may have a system of 2j + 1 Dirac particles

which is static and spherically symmetric, we wish to separate out the time
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and angular dependence in the Dirac equation to simplify the computations.
To do this, we choose an explicit ansatz for the wave functions, which will
involve the spherical harmonics. These are simultaneous eigenfuncions of the
operators L? and L. (which is why we make use of them in our ansatz), and
are well known, but we shall discuss them here briefly, though more detailed
treatment is found in ([Coh] chapter VI, part D).

The spherical harmonics are functions YJ-" (8, ¢) corresponding to the eigen-
values j(j + 1) for the L? operator and k for the L. operator. (Since we have
not included spin angular momentum here, it is necessary to adjust this when
dealing with the J? and J, operators, since now we have half-integral values,

so we will have, for instance,

Y43 (9, 0)

J+3
as a possible spherical harmonic). Direct calculations show that the 8 and ¢

dependence in the Y can be separated out to give, for any particular index

values a and 3
£(8.9) = F3(0)e

In particular, we can use the ladder operators J_ to construct spherical
harmonics from the “maximum” where j = k, since the ladder operator
takes an eigenstate corresponding to one eigenvalue to that corresponding to
the next lowest quantum state (i.e. the next lowest of the discrete eigenvalues
of the spectrum of the angular momentum operator). The maximum case is
obtainable by writing the operators for which we want to find simultaneous

eigenstates as ODE'’s, and is just:
g
Y = ca(sin ) g
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(this is unique up to a constant which is fixed for all the functions Y&, Y.o-!,
... Y2 obtained from it).

We define the 2-spinors xf L1 by:
2
ko _ Jj+k A-1 (1 J;k A+1 (0
G-1T\ 7 Y- (0 AT Yol

L= j+l-lc},.k-§ 1y j+1+kyk+% 0
AL 2j+2 J+3 \0 2j+2 =i\l

(where j takes on half-odd-integral values and k runs in each case from —j

(4.10)

to j). The y are eigenvalues of K = &J + 1:

. L.+1 L_
k —_ z k
Kxyey = ( L, -L.+ 1) Xo}

1
= F( + 3)X]s

In addition. multiplying by the “polar Pauli matrix” o" gives, by a simple

(4.11)

direct calculation:

. 1 .
Ro'x*+j+ 5= —a’hxfi%
N S

so that multiplication by the spinor o" interchanges the two integral-index

forms corresponding to a half-integral j - in other words:
ko _ ok
erjt% = xj;:% (4.12)

Note that for the values of x we are simply associating, for each value of k,
the spherical harmonics (multiplied by the appropriate spinor value) for the
integral values on either side of k, added, leaving only one haif-integral index,

j. The whole ansatz, to get the 4-spinor values associated to the half-integral
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indices j and k will combine both the integral indices corresponding to both
j and k. In particular, analogously to the development of the ansatz 2.9 for
the solutions to the Dirac-Maxwell equation developed in section 2.1.2, we
see that we have two 2-spinors interchangeable through multiplication by o,

motivating the form for the ansatz:

k +
g =Y Ao Pk (4.13)
Jhkw r lX§+%®;ku2
and
k -
b = et YA Gy Pk 4.14
ke =€ T Nk & (4.14)
r 1xj_% Jkwo

(note the difference between the two forms, indexed by parity: the inter-
change of the roles of the higher and lower integral indices on the x). Here,
the &}, . are unknown radial functions ®$,.(r). This is an ansatz for a si-
multaneous eigenstate of the four operators i9,, J?, J. and v°P as in 4.2, and
for such states, with this ansatz and the symmetry properties, we can (much
=0

to an system of ordinary differential equations, which in this case turn out

as in the existence proof of part I) reduce the Dirac equation (G ~m)¥$,

to be these:

d . _ 0 -1\  2j+1/1 0 1 0\7,.
‘/]Fbikw‘[(”'“’”(l 0)*7‘(0 -1)_’"(0 1)]4'1*“

(4.15)

We remark here briefty on the similarity of this equation to that found in
2.4 - in the case where j = % and the electromagnetic potential ¢ vanishes,
we retrieve 2.4 from 4.15 immediately, since this is the case of a single Dirac

particle coupled only to gravity.
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It is this last (4.15) which we shall use for purposes of calculations, bearing
in mind that solutions to the Dirac equation are linear combinations of such
eigenstates.

As we have already discussed in part I, only normalized wavefunctions
have physical meaning (since their squared norm represents a probability
density, and must have total integral equal to 1). In physical situations, we
therefore normalize the wavefunctions by their integral which, as we have
already remarked, can be found by integrating on any spacelike hypersur-
face, since this is invariant when the wavefunction is a solution of the Dirac

equations. So our normalization integral 2.6 becomes

R (4.16)

where the terms are defined as before. In this case, however, the condition
which we must place on this normalization integral is different: where pre-
viously we required that it be finite, the presence of a black hole in this
case (and the fact that we are considering only the spacetime outside the
horizon) makes it possible that contributions from inside the horizon might
cancel contributions from the outside. This is because this integral, inside
the horizon, becomes negative (since inside the horizon spacelike and timelike
paths exchange roles). The fact that, near the horizon, there may be diverg-
ing positive and negative contributions canceling each other means that we
can only expect to make the normalization integral be finite away from the
horizon. That is, for every ro > p, we will have the above integral be finite

when it is taken on the part of a hypersurface strictly outside r = r.
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4.1.2 Einstein and Maxwell Equations

Having obtained the form in the previous section for the Dirac equation and
the wavefunctions of the Dirac particles, we need to find the total current
(for coupling to Maxwell's equations as the source of the electromagnetic
field) and the energy momentum tensor of the matter field (for coupling
to Einstein’s equations as the source of the gravitational field). Using the
explicit form for the wave equations (4.15), we find that the total current for
the Dirac field is just the sum of the separate currents for the singlet states.

More generally we would have
jn - \I,HFGa\I,HF

since we are obtaining the current of the Dirac field through the observable
represented by the operator G. This form, given the explicit ansatz we have

chosen. reduces to

T GO

Jkw

j°=§:

J

k=—j

because the antisymmetrization in the Hartree-Fock state has no effect since
the different ¥ obtained for different values of k£ are orthogonal with respect
to the bilinear form G° on H, as can be verified by a direct calculation using
the form for the wavefunctions and the operator in terms of the ®, .
Now because we are dealing with spherically symmetric solutions, it is
clear that the components j® and j® of the current will be zero, since any

nonzero current in these directions would break the spherical symmetry.

To find the time-coordinate component j¢, we make use of an identity on



the 2-spinors x;‘. 41, namely that
2

27 +1
47

j ————————
D x5, (6.0)X),,(6.0) = (4.17)

k=-j;
(which follows from the constants involved in the definition of the x and the
norms of the spherical harmonics - surnming over & we obtain this simple

form). Using this identity, we can find that the component j¢ has the form:

J = z \p]kuct(x ;kw
k=-; (418)

T2 , 227 +1
= m@ T

where we recall that a and 3 are the real components of the unknown func-
tions ®§ . We remark that finding such real components can be done for the
following reason.

The radial flux of the Dirac fields,
Fr =8 (5 ) enm
is constant, since the flux integral over the boundary of any annular region
about r = 0 is zero (by conservation of current), and by symmetry. The Dirac
equation thus implies that the radial flux is constant, while |®5 |*> > F, so
since the metric is asymptotically flat (and hence |, 2+ 0asr— oc) we
must have the radial flux to be zero. But this means that <I> .1 P52 must have
vanishing imaginary part. Since this is real, both components have the same
phase, which we can arrange to be zero by a constant phase transformation
(which is permissible by gauge freedom). Then, since the Dirac equation has

real coefficients, ail the spinors can be made real, justifying our use of a and

3 as real values for the spinor components.
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In order to derive the energy-momentum tensor, we use the same varia-
tional technique applied in part I. Taking the variation of the Dirac action
here, we find that in this case the energy momentum tensor is simply given
by the norm of the wavefunction relative to the symmetrized bilinear form

iG4(0y — ieAp), namely:

= —Re Z \IIJ,M (iGa(0y — ieAs) + iGp(0s — ieAa)) Wi, (4.19)

k=-j

From this it is relatively easy to compute the components of T involving ¢ and
r as indices. First, we observe that the mixed terms involving the angular
coordinates vanish, so we do not need to compute these directly. This is
because of spherical symmetry, which means that there is no stress along the
angular directions. Directly performing the calculation of the stress-energy
tensor using the ansatz 4.13, 4.14 and the Dirac operator 4.15 allows this
to be found quite easily, making use of the fact (4.17) that the sum of the

‘2

norms of the x's over all & values is known to be 2==. This simplifies the

expressions for the first two diagonal entries of the stress-energy tensor to:

2]+1

Tt(_“’_'_e?L
t r?

(a® + B%) =— (4.20)

and the second will be, depending on the parity of the state under consider-
ation, where ¢ = +,

+1

4n
(4.21)

; 2
T = - @+ 3+ a4 Tt -

(w—eg)T?
r2

Now to find T and T: , we first note that due to spherical symmetry,

they must be equal (since both simply represent an angular component of
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the stress-energy tensor, which, being spherically symmetric, has all angular
components equal). They will be found by contracting the wave function

with the angular part of the Dirac operator to find their sum, so that:

n+ﬁ_&z)MNMazmw¢

k=-j

Jhkw

but we have that these angular derivatives can be written in terms of the

angular momentum as:

.—‘

G®8, + g°8y = —-0"GL

-~

(&L is as represented in the expression for the operator K above). With this
equation, we can use the explicit ansatz for the wave functions and derive
the angular components of T in terms of the spinors x. In particular, we

find them to be:

(where we have used x;‘ 1 o" = x;';%). But we remark here that the operator
&L has the y as eigenvectors, because of their construction from the spherical
harmonics (eigenvectors of L) in linear combinations which preserve this
property after application of &.

This finally yields:

TS =T? = Fa /3 ((2.78';1)2)

Once we have these components for the stress energy tensor, we can

substitute these into the Einstein equations
. 1 :
G} = R} - SR} = 81T}
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These field equations give us equations for A and T:

rd' =1-A4-2(2j+1)(w - ed)T?a® + 8%) = r?AT?|¢'|>?  (4.22)

and

!

2r.—lT7—; =A4-1-22j+1)(w - ed)T?*a? + 8%
+ 2(2—j_:—1):!Tax3 +2(25 + 1)mT(a® — 3%) + r?AT?|¢']* (4.23)
With the Dirac current as source for Maxwell’s equations
ViF* = grej*

we obtain a second-order equation for ¢:

' 2
r’A¢" = —(2j + 1)e(a? + 3%) — (2r4 + r?A% + %.—l’)a&' (4.24)

Combining these with the Dirac equations for a and 3:

0
VAd = 1'12-: 1a - ((w—ed)T + m)3 (4.25)
and
, 27 +1

VAB = ((w - ed)T + m)a F = (4.26)

we obtain the complete set of Einstein-Dirac-Maxwell equations for the case
we are considering. Here, we have ¢ = + as usual.
The normalization condition obtained in (4.16) then becomes, substitut-

ing these new forms,

/ T+ [J‘z)!——fdr < 00 (4.27)
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(for any rq > p).

We note the similarity of these equations (4.22)-(4.26) to those in part
I, namely (2.22)-(2.25), which they become in the case where we remove
the Maxwell equation and set j = } and ¢ = 0. A similar analysis of
these equations would show that this system has particle-like solutions having
properties similar to that system, but here we are interested primarily in

the nonexistence of certain classes of solutions, and more specifically certain

classes of black hole solutions. We discuss these results next.

4.2 Nonexistence Theorems
4.2.1 Characterization of Black Hole Solutions

With the computational framework we have now established for the fully cou-
pled Einstein-Dirac-Maxwell equations in the spherically syminetric, static
case, we can proceed to prove the theorems in which we are currently in-
terested for this case. These will be nonexistence results for certain types
of black hole solutions (namely solutions for which the Dirac field is non-
vanishing). The standard definition of a black hole (e.g. [Hawk]| p315) is
that of a region of spacetime from which light or particles cannot escape - in
other words, which is closed under the operation of taking the union with any
future-directed timelike or null paths from any point in the region. For our
purposes, we are interested in describing the fields on spacetime outside of
such a black hole - and in particular, since we are dealing with a spherically
symmetric spacetime, this amounts to defining our spacetime as the product
of R (time) with a region outside a ball of some radius about the origin (a

typical spacelike hypersurface). Study of normal such black hole solutions,
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the Schwarzchild and Reissner-Nordstrom solutions, lead us to characterize
our understanding of “black hole solution” in the following way, which we
will take as definitive in the present context. We will then prove that the
two mentioned solutions are the only ones satisfying the given conditions.
We assume that spacetime is asymptotically flat far from the black hole,
so that as r — oo we have A(r) = 1 and T(r) — 1. We characterize the
event horizon of the black hole, the surface at r = p, by saying that as
r — p from above, we have A(r) — 0 and T(r) — oo. This corresponds
to the observational properties that near the event horizon of black holes in
such a system one would have, as seen by an outside observer, arbitrarily
compressed length in the radial direction, and arbitrarily slow passage of
time as one approached the horizon. We make some additional assumptions
on the horizon in order to ensure a physically reasonable situation. These

are:

1. The volume element /| det g;;| is a smooth function and is nonzero at
the horizon (the horizon is regular: that is, it is not locally distinguish-
able from other points in spacetime, which is physically reasonable,

since only the center of the black hole should be singular).

2. The electromagnetic field strength, F;;F" = -2|¢'|2AT? (from the
Faraday tensor Fj;) is bounded near the horizon (again, the horizon’s

singularity is a coordinate artifact).

3. A(r) obeys a power law. That is, there exist constants C and s, both

positive, such that outside the horizon (i.e. for r > p) the following is
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true:
A(r) =C(r - p)" +O((r = p)**") (4.28)

The regularity condition (1) is equivalent to the condition that 72 A and
its inverse (T2.4)~! are both smooth functions of r on the interval [p, 00), since
\ﬂm = r".—’!'éT*‘, and clearly r? is smooth here, so if both of these are
smooth, the volume element is as well, and nonzero on the horizon since T2 A
must be defined at r = p. Because of the boundedness of this function, the
condition on the strength of the electromagnetic field, (2) simply becomes
the boundedness of |¢'(r)| for r € (p,p + ¢€).

The first two conditions describe physically reasonable black hole solu-
tions: the principle is that the only singularity should be that at the center
of the black hole. There is a coordinate singularity at the horizon in polar
coordinates, as can be seen by the fact that the functions A and T appearing
in the metric in this system are not well behaved. However, physically sig-
nificant scalar quantities are well behaved near the horizon. The regularity
condition (1) that the volume element should be nonzero means that objects
passing the horizon would not be “crushed”, and the condition on the finite
strength of the electromagnetic field means that there are only physically

reasonable forces acting there.

4.2.2 Main Theorem

In this section, we develop the results leading up to and including the main
nonexistence theorem of this chapter, which states that the only black hole
solutions to the EDM system (4.22)-(4.26) is the non-extreme Reissner-

Nordstrom solution. There are two cases, to which we will devote a lemma
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each - the two cases are separated for reasons related to the form of the
proof. The first case is for the power-law s < 2: this contains the Reissner-
Nordstrom case, with s = 1, and here we show that there are no solutions
with the Dirac spinors not identically zero (where they are identically zero,
we have the R-N solution). We begin this with a technical lemma, showing
that for such a solution, the spinors are finite and bounded away from zero

near the horizon. More precisely:

Lemma 1. If the power-law in condition 3 has power s < 2 and there is a
black hole solution (a, 3, A,T) to the EDM system (4.22)-(4.26) for which
the spinors a and 3 are not everywhere zero, then (a2 + (3%) is bounded from
above and below near r = p: that is, 3¢ > 0 and 3c > 0 for which

c<at+83<c'uwhenp<r<p+e (4.29)
Proof. If we take

d
ﬁa(az + 3%) = 2V A(ad’ + 88")

then by the Dirac equations 4.25 and 4.26, we can write this as:

g+ =26 5) (5 50 (5)

m 722t) (s
where the terms involving ((w—e@)T )as have canceled. We can get an upper

bound on the magnitude of this last, using the operator of the matrix in the

middle, so that
d , 2 ) (27 +1)%\2 2
VAZ(@® +8) < (4m? + 2 52) (@2 + 8 (4.30)

But now, we have found an ODE for (a? + 8%)(r), and since solutions to this

ODE are uniquely determined (locally) by their values at any point, we know
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that a nontrivial such solution will be nonzero evervwhere on some interval
p < r < p+e. Writing the bound above as:
4 (a® + 3?) 1

@+ =7

we have the left hand side to be an exact differential (of log(a® + 32)), so we

(25 + 1)2)2

£y 2
(4m + 2

can integrate from r = p to r = p + ¢ and obtain that

[log((a® + 3%)(p +€)) — log((a® + 3%)(r))|
e 1 (2j +1)

<
T Jo=r v (o) &

Now recalling that A(r) satisfies the power law (3). with (in this case) s < 2,

m? + “do (431)
( )

we see that A(r) as r — p™, the term 7‘: does not grow too rapidly, and so
we can take the limit as o — r. since the function is integrable. This vields
some finite value, and hence near the horizon the spinors are bounded, as

required for the statement of the lemma. a

This lemma will be important for the proof of the case of the main theorem
where s < 2. since it will allow us to show that the electromagnetic field
strength near the horizon is infinite if s > 1 on the one hand (violating
condition 2) or to obtain a contradiction from the boundedness above if
s < 1 on the other hand. For the case where s > 2, we will need to use a
different method of proof, since this lemma no longer applies. We shall use

two more technical lemmas, of which the following is the first:

Lemma 2. Ifs > 2, then

lim (r — p)"2(a? + 8%)(r) =0 (4.32)

r—pt
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Proof. Consider the Maxwell equation 4.24 and write it as

(r*VATY
r2/AT

(where of course all primed derivatives are radial derivatives). Now by the

én — ‘}l (23 + l)e( 2 52)

N S Y (4.33)
regularity condition 2, |¢’| is bounded near the horizon, while from the reg-
ularity condition we know that r? Vv AT is smooth (hence its derivative exists
and is bounded) and nonzero near the horizon, so that the second term in

the expression for ¢” is also smooth, and thus we must have that the first

term is integrable, or:
p+e |
/ (02 +8%) < o0 (4.34)
PR

(since the other part is bounded on both sides near the horizon and does not
affect integrability).
Now if we consider the function in the limit on the left hand side of 4.32,

and take its derivative, we find:
C((r— ot e +8%) = =20 = p) 5 @ + 80 + (r = p)E (e + 47)
dr ' 2 dr

into which we can substitute the bound we found in 4.30 for %(02 + 3?), to

get the bound

L~ ot + 890)
<-2r-p) i@+ ) + + B0 | gty )

(4.39)

i+

But now if we notice that both of the terms of this expression are inte-

grable, since in each case the function is bounded by a function of the same
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order as 4.34 and thus converges: in each case, this is so because s > 2. But
since each of these is integrable, so is the left side - since the magnitude of
the derivative of (r — p)~2(a? + 8?) is integrable, the function itself must
have some limit as one approaches the horizon - but since by the condition
3, we have A = O(r — p)?, if the limit were anything other than zero, 4.34
could not be integrable since near the horizon it would behave as a function
of order @(r — p)~%, which would, since s > 2, diverge. Thus, the lemma

must hold. O
The last technical lemma we will need is the following:

Lemma 3. If s > 0 then |¢'| has a finite, nonzero limit as r — p:
VR N T
lim |¢'| = - lim A72T7" >0
r—a+t p r—pt
Proof. Consider the equation 4.22. Since we have s > 2, by the power-law
for A, the left side of this equation approaches zero as r — p*, so we must
have that:

lim (1 — 4 - 2(2j + 1)(w — e@)T?(a® + 3%) — r2AT?|¢'(1)|?)

r—pt

Now clearly since we have regularity of the horizon is that the term 2(2j +
1)(w — ep)T?*(a® + 3?) should have some finite limit as one approaches the
horizon, and the result will follow. But now note that if |(w — e¢)T] is
bounded, then the previous lemma yields the desired result. So suppose
otherwise - if |(w — e@)T| is not bounded near r = p, then consider the

differential equation for AT? arising from the Einstein equations 4.22 and
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4.23:

rad;(ATQ) = —4(2j + 1)(w — ed)T*(a?® + 3?) (4.36)

T 2
+ 2@:—1)7‘%3 +2(2j + 1)mT3(a? - %) (4.37)

Using this to estimate bounds on the magnitude of the derivative in question,

this gives us the estimate

d . . 24 1 2
|r - AT?| 2 T2(0® + 8% (425 + D(w - ed)T| - 2(—’:—)

~2(2j + 1)m)
Now the regularity condition (1) on the horizon means that the left side
of this must be bounded, and since our assumption was that |(w — e9)T| is
unbounded and the rest of the bracketed terms are all bounded, we must have
that the product T3 (a®+3%)|(w—e¢)T| is bounded, but since T grows without
bound as we approach the horizon, this means that lim,.,,+ (w — €¢)T?(a? +

3%) = 0, which we have already seen will yield the result desired. O

With these technical lemmas in hand, we can proceed to the proof of the
main nonexistence theorem we wish to demonstrate for the case of the static,

spherically symmetric EDM system, which is the following:

Theorem 1. The only black hole solutions for the Finstein-Dirac-Mazwell
system (4.22)-(4.26) for which the horizon satisfies regularity conditions 1, 2
and 3 are the non-eztreme Reissner-Nordstrom solution (where a = 8 = 0,

hence the Dirac field vanishes) and the case where s = 2 and in this case,
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near r = p the following expansions hold:
A(r) = Ao(r — p)* + O((r - p)*)
T(r) =To(r — p)~' + O((r - p)°)
o(r) = = + dulr — p) + O((r - p)?) (4.38)
a(r) = ao(r — p)* + O((r - p)**')
B(r) = Bo(r — p)* + O((r — p)**')
where A and T are positive real, and ¢g, ag and 3y are real. The power k

in the ezpansion for a and 3 must satisfy

1 1 . Y 27+ 1,2
e - — 2 _ o242 1
5 <K ny™ e2d3TE + ( 2 ) (4.39)
and ag and 3y are related by:
2j+1
C!o(\/ th‘, + J ) = -‘ﬁo(m - €¢0T0) (440)

2p

where ¢ = %.
Proof. There are three cases here, split by the special case where s = 2.

Case 1: (0 < s <2) This case includes the Reissner-Nordstrom solutions
(where there is no Dirac field - or in other words, the spinors (a, ) =
(0,0)) - to show that there are no others, we proceed with a proof by
contradiction. Suppose that there is a black hole solution to the system
(4.22)-(4.26) in which the spinors do not identically vanish. Then we
can use the lemma 1, and we have that (a,3) are bounded near the
horizon at r = p. Considering the DE (4.36) for AT?, we again have the
left side smooth because of the regularity condition on the horizon, and

thus the right side smooth as well. The now as r — p, T — 00, and so
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the dominant term of the right is the term —4(2j+1)(w—e@)T*(a?+5?),
so this must be smooth, hence, since (a® + 3%) > 0 and T — oo, we

must have that (w — e¢) — 0.

Now take Maxwell’s equation in the form previously found in (4.33) and
note that by the regularity conditions, the term for ¢’ is smooth. If s >
1, however, the singularity for A~! in the other term is not integrable,
hence |¢'| — oo as r — p*, which contradicts the regularity of the
electromagnetic field on the horizon (regularity condition (2)). On the
other hand, if s < 1, then we can integrate (4.33) to get a form for ¢’
around the horizon, since the term A~! has an integrable singularity.
The result can again be integrated, and, obtaining the constant of
integration at this stage from the fact that lim,, +(w — eo(r)) = 0,

giving the formula for the expansion of ¢ about the horizon:
W -3
o(r) =ei(r = p) "+ aar = p) + — + O((r — p)™™)

Upon substituting this form for ¢ into the Einstein equation for A,
namely (4.22), we see that since the right side of (4.22) is bounded as
r — p* since A and r?AT?|¢'|? are bounded and (w — e¢) = O(r — p),
while T%(a® + 3?) is of order (r — p)~*, with s strictly less than 1.
But the left side is not bounded, being of order (r — p)*~!, which is
impossible. This yields a contradiction, so in fact there can be no such

solutions.

Case 2: (s > 2) By Lemma 3, we have a Taylor series expansion around

r = p for (w — e@) of:
(w—eg)(r) =c+d(r — p) + R(r — p)
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where 0 # |d| = $lim,.,,+ A=

So near the horizon, the term (w — e9)T, which appears in both the
Dirac equations (4.25) and (4.26), diverges monotonically. Now by the
Dirac equations for the spinor components a and 3, namely 4.25 and
4.26, we can see that since the derivative for each component contains
this term multiplied by the other component, we have the spinor (a, 3)
spinning about the origin at an increasing rate as one approaches the

horizon. In [FSY3] it is shown that in general if we have an ODE

'(z) = [a(z) ((1’ '01) + b(x) ((1) _01) + c(x) (‘1) é)}@(x)

with smooth coefficients a , b , ¢, and with aﬁ and £ smooth and mono-
tone near r = 0. and b*+c? < a?, then |®|? is bounded above and below
near £ = 0. (The proof of this involves some relatively straightforward
analysis involving the functional given by the Hermitian matrix

aw = (114

and its norm)The Dirac equation in the form (4.15) is now such a
system, with £ = (r — p), so we would have (a,3) bounded away
from zero, which is in contradiction with lemma 2, and so we have a

contradiction.

Case 3: (s = 2) In this case, which must include the Reissner-Nordstrém

case, we have from the power-law condition on 4 that the first two
Taylor expansions in 4.38 must hold - this is part of the theorem proved.
Now again by results shown in [FSY3] we have that (w — e¢)T cannot

diverge monotonically near the horizon. But by Lemma 3 implies that
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it has a Taylor expansion around r = p with nontrivial linear coefficient
T 1 . .
d = lim,.,,+ £—=. So the constant term in the expansion of the bare

(w — e¢) must be zero because of the expansion for T, and we have

lim+(w —ed)T = A

r—p
with
e . (r—p7!
Al = = lim
Al pr=ot VA

(where we have used, from Lemma 3, the form for the derivative of ¢

to find this form).

Now we can rewrite the Dirac equations 4.25 and 4.26 in the trans-
formed variable u(r) = —r — pln(r — p), which approaches infinity as
one approaches the horizon. The qualitative theory of ODEs, and in
particular the linear stable manifold theorem, describes the asymptotic
behaviour of solutions to such an equation, and we can thus determine
that a and 3 satisfy the required power law from 4.38, while the con-
straint that x > 1 is the result of the fact that lim(r—p)~!(a®+4%)(r) =
0 (the result of lemma 2 in the case s = 2), since a and S were of higher

order than } in (r — p), this would diverge.

The remaining constraint relating the spinor coefficients ag and 5, is
derived by substituting the taylor expansions we have thus obtained

into the Dirac equations.
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Chapter 5

Case II: Time Periodic
Solutions of Dirac Equation in
Axisymmetric Black Hole
Geometry

In the first part. we dealt with an existence theorem for the Einstein-Dirac
system in the case of spherical symmetry, and in doing so developed some of
the analytic tools for examining such systems. In this part, on nonexistence
theorems for black hole solutions, we are considering as well some slightly
different situations. In chapter 4, we added electromagnetism and dealt
with a fully coupled Einstein-Dirac-Maxwell system, still in a spherically
symmetric situation. In this chapter, we shall relax full coupling and consider
the Dirac equation acting on a fixed background, but this will enable us to
relax the symmetry requirement, allowing perfect spherical symmetry of the
black hole spacetime to be deformed to an axisymmetric geometry. The
Dirac field will still be coupled to gravity and to electromagnetism, but the

coupling of the metric and the Faraday tensor to the Dirac field is ignored.
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This is a reasonable approximation for the case where the mass and charge
of the Dirac particle is small compared to that of the black hole, as would
typically be the case in physical situations. The advantage of this approach
is that it allows us to consider a far more general black hole geometry. In
particular, we shall begin with a consideration of the Kerr-Newman black
hole geometry, which is the most general geometry involving the coupling of
gravity to electromagnetism. On this background, we will show that there do
not exists time periodic solutions of the Dirac equation, which we do by first
decomposing such solutions into Fourier series and considering the various
components as static solutions. The proof that there do not exist static such

solutions resembles that for the Reissner-Nordstrom background.

5.1 Kerr-Newman Geometry

The Kerr-Newman geometry is the most general black-hole solution for the
Einstein-Maxwell equation, and forms the background which we shall con-
sider for the solutions of the Dirac equation in this situation. The Kerr-
Newman geometry is parametrized by the mass of the black hole (as mea-
sured from infinity), its angular momentum (also measured from infinity) and
its charge. That is, the Kerr-Newman solution is characterized by the param-
eters (a,Q, M), where a is the angular momentum per unit mass %, Q is the
charge, and M is the ADM mass (see for instance box 33.2 of [MTW], pp878-
883). There is a horizon only if the mass is sufficiently high to overcome the
repulsive effects of angular momentum and the associated frame dragging,
as well as the charge of the hole. This occurs if and only if M2 > Q? + a?

- for smaller mass, one obtains a “naked singularity”, namely a singularity
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of curvature without the presence of a horizon, which is presumed to be a
non-physical phenomenon. The limiting case with M? = Q? + a? is the so-
called “extreme Kerr-Newman geometry”, and the result we shall show does
not apply to such a case.

The various degenerate cases where the angular momentum, the charge,
or both, vanish yield, respectively, the Reissner-Nordstrom, the Kerr, and
the Schwarzchild solutions, which together are all the stationary geometries
for the Einstein-Maxwell equation. The result we shall deal with here shows
that there can be no time-periodic solutions for the Dirac equation on this
geometry (note that this result also generalizes the condition in the previous
result, pertaining only to static solutions). This shows, in this more gen-
eral class of geometries, albeit for only partial coupling, a result similar to
that of chapter 4 holds. To consider solutions of the Dirac equation on this
background, we must make use of several coordinate systems, because it is
necessary to extend the solutions across the event horizon (though this can
only be done in the distributional sense). The generalized Dirac equation
is discontinuous at the event and Cauchy horizons of the KN geometry, but
may still be analyzed by techniques similar to those used in the spherically
symmetric, completely coupled case, involving the asymptotic behaviour of
certain spinors as one approaches the event horizon. The main difference is
that one must derive conditions at both types of horizon in order to extend
the solutions obtained outside the black hole into the interior, since there
may be more than one “asymptotic end”, or asymptotically flat portion of

spacetime. in the Kerr-Newman geometry.
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5.1.1 Form of Dirac Equation in KN Geometry

A convenient set of coordinates on the KN background are the Boyer-Lindquist

coordinates (t,r,8, ®) in which the metric has the form

2
ds? =%(dt — asin?0do)? — U(‘% + d02)
. (5.1)
2
- S"(lj o(adt — (r? + a®)do)?

with
U(r,8) = r* +a’cos?8 , A(r) = r? = 2Mr + a* + Q? (5.2)
(where e.g. [MTW)] uses p?, we use U in conformity with [FKSY1}) in these

coordinates, we also have that the potential A for the electromagnetic field
is
%,I(dt — asin® 8d¢) (5.3)

Now in these coordinates, we observe that there are several cases where

A= Ads?=-

the metric becomes singular. When r = 0, which is at the singularity itself,
the metric blows up, as does the curvature tensor, resulting from the presence
of the U in the form of the metric. But the metric also blows up at the roots
of A. Now in a non-rotating, non-charged black hole, the equivalent of A is
a linear function with only one root (at the horizon), but here there are two.
These correspond to the event horizon and the Cauchy horizon, and occur

at, respectively:

T[=1‘I+\/A’12—"(12—Q2

and

ro=M— /M2 -a? - Q2
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In these coordinates, we construct a frame of vectors at each point from
which we will construct the Dirac matrices. This will be a so-called Newman-
Penrose frame, which is a way of choosing a basis for the tangent space at each
point in a way which simplifies certain calculations. The frame produced is a
null frame - that is, it consists of null vectors. The Newman-Penrose method
is motivated (cf. [Wald] pp52, 372-373) by considering a basis for the space
of Pauli 2-spinors at each point, say o' and ", having 04¢* = 1. One
constructs the frame by taking two null vectors as the vectors corresponding

to the product of these two basis spinors with themselves:

and

together with two vectors obtained by the other two possible multiplications
of the basis spinors with their complex conjugates, namely the complex (and

mutually conjugate) vectors:

and

=AA A

’
m = o7

(recall that ordinary vectors can be formed as the product of spinors and
complex-conjugate spinors, so that we really have here a null tetrad of vectors

({*, n*, m®,7m®)). Such a null frame has the property that [°n, = 1, m*m, =
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—1 and all other inner products between its elements vanish. The complex
vector m may be considered as a complex linear combination of real vectors
corresponding to its real and imaginary parts, say m® = 7‘5(1:" + iy®) where
z and y are unit spacelike vectors orthogonal to [ and n.

In order to obtain a useful form for the Dirac operator on the KN back-
ground, we make use of a frame (the symmetric frame) of this kind, which

is expressed in Bover-Lindquist coordinates as:

6 0 0
2 —
\/2U|A (0% +a®) at Eri +“a¢)
_€(a) 0 0
= L ((r? —A—+a—
12 VA ( d a ? 9 a¢) (5.4)
m= ,___20 (zasmoat 60+m3_¢)
m= —1-—( tasin §— 8 : _8_)
V22U ot 60 " sinf 9o

In this expression, we have used the step function e¢(r) which is 1 for
nonnegative £ and 0 for negative r. Applied to A, which is negative between
the Cauchy horizon and the event horizon, this makes the frame degenerate
there (with n = 0).

From this Newman-Penrose null frame, we can construct a real orthonor-

mal frame by taking linear combinations of the symmetric frame vectors:

w=2(t+n)
1
uy=—=(-n)
1\/5 - (5.5)
U = -\/-i-(m + 77'!)
1 —
Uz = -\/—2_;(771 - m)
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We note again that this frame is degenerate between the Cauchy and event
horizons. It is this frame which we shall use in representing vectors, rather
than the coordinate frame, since this makes our calculation simpler.

Now if we consider the Dirac equation in this background, we first remark
that, while the form (A.3) for the £ matrices remains the same as before, the
spinor connection D giving the spin derivative for the Dirac operator (iG?D;)
now has a slightly different form due to the presence of an electromagnetic
field with potential A, which influences the Dirac particles if they are charged.

The spin derivative D is thus of the form

DJ- = 621 - iEJ' nd ieAJ- (56)

so that the B matrix has the form
B = Gj(E,» + eA;)

The analysis of this is very similar to the case in part I, except for the
presence of the electromagnetic potential term. One can, by similar means
to those used there, find a form for the B matrix which involves only partial

derivatives, namely:

\/__ Oy(VITT)T® = 1™t Byt en? ™" + eApudn® (5.7
Now from this, the explicit form of the Dirac operator as

G= iG’% + B(z)

and the explicit form for the ¥ matrices and the u-basis for vectors, it is

straightforward to compute the Dirac operator directly, though the terms

are somewhat complicated.
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The matrix for the Dirac operator has a fairly symmetric form, involving

the following terms:

3: = %(i@g + %cotO + a—gizflﬁ(r - iacosﬂ)) + \/%(a sinf9, + ;iﬁaq,)
and
By = %(i@g + écotG - a;i;o(r+iac050)) + ——\/lz_L—/-(asinﬂag + 5&5%)
and
ay = — \;—;J%(i(rz + @), + iady + eQr)
+ '-#(ia, +il Q_AM + %(r - iacos@))
and
s = - _E%I\/:\l‘__;l\T(i(rz + a?)0, + iad, + eQr)

1Al /. r—M i .
+ T (13,+¢ 53 +2U(r+zacosﬂ))

With these terms, the Dirac operator may be written as:

0 0 a. B
_ 0 0 3. €eA)a-
G= eAya. -8, 0 0 (5.8)
-3. a, O 0

The Dirac Equation is then (G — m)¥ = 0 for this G, acting on Dirac
4-spinor fields V.

It was first shown by Chandrasekhar in 1976 that this Dirac equation

can be separated completely into ODE’s in the Kerr background, and later
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extended to the KN background by Page and by Toop. Although we will not
enter into great detail, we will now discuss this separation. It proceeds by
making a gauge transformation of the wave function into a new form, where
the Dirac operator is transformed into a form which separates into a sum of
two operators with dependence upon only, respectively, radial and angular
coordinates.

If we consider the matrices

(r - iacos@)3 0 0 0
L 0 (r — iacos 0)% 0 0
5 = [A]s 1
4| 0 0 (r + iacos#)2 0
0 0 0 (r + iacos )3
(5.9)
and
(r + iacos @) 0 0 0
[=-— 0 —~(r + tacos8) 0 o
= 0 0 —(r - iacos#) 0
0 0 0 (r — iacos@)
(5.10)

Then one can consider a gauge transformation of the wave function ¥ by
S. namely ¥ = SV, and consider the effect of this on the property that ¥

should satisfv the Dirac equation. This becomes:
[S(G-m)S~'¥ =0 (5.11)

so the Dirac operator is now represented as [S(G — m)S~!, which, when
calcuiated, turns out to be the sum of the following two operators:
imr 0 VI]ADs 0
0 —imr 0 (A)V|A|D-
e(A)V]A|D- 0 —imr 0
0 VIAID: 0 imr
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and

—~am cos 6 0 0 LC,
A= 0 amcos @ -C. 0
- 0 C, —am cos 0 0
-C_ 0 0 amcos 8

where we have
D=8, F —((r2 + a2)d, + ad, — ieQr
A
and
Li=8+ ~cotd ( i 9a+—1—a)
+ =0y 2c F ilasin 69, np%

Now since R is dependent only on radial variables and .4 only on angular
ones, and the transformed Dirac operator on ¥ is their sum, we would expect
to try to find an ansatz for ¥ which reflects this separation by allowing the
system to decompose into two independent systems. These systems will be
for 2-spinors, involving 2 x 2 matrices as operators, so we need an ansatz
involving two 2-component functions, one dependent upon r and the other

upon 8. If we first remove the time dependence to get the form
(t,r,0,0) = e =% (r, ) (5.12)

for real energy w and half-odd-integral spin k. We then say that if our
unknown 2-component radial function is X1 (r) and the angular one is Y. (@),

we can construct the whole form for ® from these as:

X_(r)Y_(8)
X4 ()Y, (8)
X4 (r)Y_(6)
X_(r)Y;(0)

&(r,0) = (5.13)
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The form for ¥ realized from these expressions gives, when we apply the
Dirac operator R + A to the gauge-transformed wavefunction, gives, clearly,
(R+.A)¥ = 0, but in fact we have more, namely that since R acts purely on
the radial component and A acts purely on the angular component, this can

only happen if ¥ is a simultaneous eigenstate of the two operators, so that
RY = —A¥ =\
From this, we find that the Dirac equation decouples. From the equation

RY¥ = AV we obtain:

(\/|._A_[ + imr—2A ) (,\'+) =0 (5.14)

—imr — A eA]A|D_) \X-

while from the equation A¥ = —A¥ we get:

L, —amcosf + A\ (Y,\ _ o
(am cosf + A -L_ ) ()-’_) =0 (5.15)

Furthermore. the operators D+ and £. can be simplified, since each is applied
to a purely radial or purely angular term, respectively, so the other derivatives

involved in each operator vanish, leaving the forms:
)
D. =0, ¢ —A-(m(r2 + a?) + ka + eQr)

and

Ly =0 + %cotox (awsin@ + k csc 0)

5.2 Nonexistence Theorem
5.2.1 Matching Conditions for Spinors Across Horizon

Having obtained the ODE forms (5.14) and (5.15) above for the Dirac equa-

tion, we now note that there is more to be done before we can proceed to
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analyze the solutions to this system. In particular, we observe some difficul-
ties with the radial equation, which not only posesses a discontinuity due to
the step function e(A), but also, because of the presence of the term A~}
in the expression for D. is singular at the roots of A, namely r = ry and
r = ry. The existence of these poles in the coefficients of the equation means
that the solutions - the wavefunctions representing the Dirac field - may have
discontinuities at these values of r, may in fact have singular behaviour as
r approaches them. The peculiar causal structure of spacetime at these, the
event and Cauchy horizons, also makes treatment of a wavefunction defined
across them somewhat problematic. Consequently, it is necessary to develop
matching conditions across the horizon, which will give conditions on the
relationship between the solutions to the Dirac equation inside and outside
both type of horizon.

The maximal analytic extension of the Kerr-Newman geometry (part of
whose conformal diagram is shown in figure 5.2.1) consists of an infinite
number of copies of three types of regions, which are designated I, M, and
O because they represent regions Inside the Cauchy Horizon, in the Middle
(between the Cauchy and Event Horizons) and Outside the Event Horizon.
That is, in our Boyer-Lindquist coordinates, the region / represents the part
of the spacetime with r < rq, region M is where ry < r < r; and O is where
ri < r. This is similar to the situation with the Kerr solution as in, for
instance, ({[Hawk] p163). Thus, we are considering conditions which allow us
to extend solutions to our equation, or find constraints satisfied by solutions
extending one given on some part of the maximum analytic extension.

To derive such conditions, we must obtain the Dirac operator in a form
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Figure 5.1: Part of the Penrose Diagram for the Maximal Analytic Extension
of Kerr-Newman Geometry

which extends across the horizons - this is done by expressing the operator
in Kerr coordinates, which are not singular at the horizons. Actually, there
are two types of Kerr coordinates, one for each horizon which we wish to
cross. In each case, we will construct the wavefunction ¥ as the sum of two
distinct solutions, one for each of the two regions bordering the horizon in
question. This requires the use of a step function (in particular, the Heavi-
side function ) to multiply by the two solutions, since the wavefunction as

a whole need not be smooth, and so neither solution need necessarily be ex-
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tendible smoothly across the horizon. Derivatives of these yield Dirac delta
functions, and the necessity of defining solutions of the Dirac equation in the
distributional sense.

The Kerr coordinates resolve some of the difficulties of the Boyer-Lindquist
coordinates for our purposes - we relate them infinitesimally (the relation of
coordinate values themselves can be recovered - up to an irrelevant constant
- by integration) in order to make easier the transformations of the Dirac ma-
trices, which transform, we recall, as local coordinate basis vectors. There
are two possible Kerr coordinate patches of interest, one crossing the Event
horizon, which we designate with a + index, and the other, indicated with
a —, which we use to derive the matching across the Cauchy horizon. The
coordinates r and 6 remain unchanged, but the Kerr coordinates have new
variables u; and ¢, which are related to the Boyer-Lindquist coordinates

by the following infinitesimal relations:

r? + a*
dui =dt+ TdT

and

dos = do + %dr

We note that u; are null coordinates (that is, d,, is everywhere null), and
the difference of sign indicates a difference of direction: u, are incoming
in the sense that following a curve of increasing u.,, one crosses the event
horizon from the outside (region O) to the inside (region M), allowing us
to create matching conditions across this horizon. Similarly, u_ represents
outgoing null curves crossing the Cauchy horizon. This interpretation of

the u; is borne out by noting that along curves of constant u,, we have a
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simple relation between dt and dr given by the infinitesimal relation above.
In particular, we will have the equality of the dr term in this relation with

—dt, so that:

2 2
dt = . Z“ dr

and since as one approaches the Cauchy horizon, integrating, we have t ap-
proaching Foo, and at the event horizon, approaching +in fty. So the event
horizon lies at a point at infinity in the BL coordinates, namely (r,u.) =
(r1, Fo0), and the Cauchy horizon at (r,u+) = (79, £00), since we can use the
infinitesimal relations above to find that the u4 follow ¢ in this way. But then,
the Kerr coordinates can be seen to extend the B-L coordinates in the sense
that they provide a coordinate system in which the problematic behaviour
of the metric at the horizons is eliminated, since the horizons now exist only
at points at timelike infinity, hence there are no difficulties crossing the hori-
zon (this terminology is somewhat confusing since it would appear that, as
the BL coordinates cross the horizons and the Kerr coordinates do not, the
former should be extend the latter - the fact of the coordinate singularity at
this crossing accounts for the terminology used).

Now we need to express the Dirac equation in the Kerr coordinates in
order to derive the matching conditions we need across the horizons. We
remark that, to preserve the form of the Dirac equation, it will be necessary
to combine two transformations - both the coordinate change of the Dirac
matrices, and a gauge transformation of both the Dirac matrices and the

spinors. The general form of the gauge transformation will be:
¥ =V(r)¥ (5.16)
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and thus, to preserve the form of the Dirac equation,
G =V(r)G'Vi(r) (5.17)

Before returning to this, we see how the Dirac matrices transform into
the new coordinates, dealing first with the case of the matching across the

Cauchy horizon, which is dealt with by the chart (u,,r,0,¢,), so we first

have:
1) 15)
L - t U4 r_&
G G £y +G Em
and
do oo
S _ 07 F rZv+
G g 5% +G pn

since u, depends only on ¢t and r and @, depends only on ¢ and r. The other
two Dirac matrices remain the same - since we found them in the symmetric
frame, however, and this involves a step function of A, we find that we have
Heaviside functions ©(z) (which is 1 for £ > 0 and 0 for £ < 0) involved in
the relevant case, namely that associated with the r-coordinate, which is the

coordinate in terms of which A is defined.

asind , r?+a?

GY+ = — + o_ .3
757 TTa] Al(v v°)
A
¢ = -/ 2 eap +o(-an)
. (5.18)
GO —_ Al
VU
Gtﬂ-o- — -

Lt (=)
sin 0vU VUIA]
With this, we can return to find the gauge transformation matrix V(r) re-

ferred to above. This is chosen so as to remove the singularity at the horizon
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caused by the presence of the A in the expressions for G*+ and G°+. In

particular, it may be found that with the transformation given by the matrix

Vir)=

|-

1 L 1 _1 L .
(A73 + AT - 5(A]7% = |A]9)y°%y (5.19)

the problematic forms for G™ and the singularities in G*+ and G+ disappear,

since calculating the new form of the Dirac matrices G yields:

asinf , r?+a?

Uy o_ .3
G 75" + Vi (Y =)

- 1

G'=—‘/——((I—A)‘y°+(l+ﬁ)‘73)

12\/(7 (5.20)

~0 _ _ _~ 1

G° = \/U‘y
G.‘°*=—;nol—m72+§(*r°—73)

In this form, we have matrices which are regular across the horizons,
being regular everywhere except at coordinate singularities (and so, via the
anticommutation relations. is the metric), and since the Dirac operator G
on wavefunctions in this transformed form is constructed as ususal, it too is
regular across both horizons: it is just G = VGV ~!'. With this recognized, we
can examine its behaviour in the vicinity of the horizons and derive conditions
relating the wavefunctions inside and outside them.

We have wavefunctions ¥;, ¥a,, and ¥, which are smooth on the interior
of the regions on which they are defined. At the horizons, however, we
may have non-smooth behaviour, so it is necessary to consider the total
wavefunction ¥ as a generalized function - that is, the Dirac equation holds

in the distributional sense for the “function” ¥ = \I;; + \II‘M +Wo. In order to

capture the effects of these possible discontinuities in the derivatives in the
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Dirac equation, we use the Heaviside functions again: near each horizon, we
consider ¥ to be locally the sum of the two solutions on each side, multiplied
by the appropriate Heaviside function to capture the fact that the function
in quesition does not extend past the horizon. The generalized derivatives
of the wavefunction then includes Dirac delta functions contributed by the
derivative at the horizon. Since the Dirac equation is satisfied by the wave
functions everywhere else, this contribution must vanish so that the Dirac
equation is satisfied on the whole function. This is what will give us our
matching conditions, after we integrate against a test function (to give the
distributional equation a meaning).

So, in the case of the Cauchy horizon (for which we have developed the
Dirac operator above), looking near r = ry, we have that the wavefunction

is locally
U(u™,1.0.0%) = ¥, (u*.r.0,0%)0(ro — r) + Wpr(u*,7,8,0%)0(r — ro)

and so the only part of the derivative in the Dirac equation which does not
trivially vanish because of our assumption that ¥, and ¥, are solutions will
be the derivative of the Heaviside function - which contribution must also be

zero. Since distributional derivatives work in the usual way, this is simply
iG.'((s,-o(r)‘i’M - J,D\i'[) =0
or, using the form for G,
0 = ——=0,,(r)(7° + V) (¥ (ut,r,0,0%) = ¥;(ut,r,0,0%
2\/—0( (7° + ) (E o7) — ¥ i( é"))

When we integrate this (removing the superfluous constant) against some

smooth test function n(r) in any e-neighborhood of ry to obtain well-defined
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spinor equations, it becomes
r=ro+e

0= /:_ro_s n(r)dr () (Y + ¥*) (¥ar(u®,7.0,0%) — ¥ (u*,r,6,6%))dr
which holds for any =.

While we may have singular behaviour for the difference (¥° + ¥3)(¥ar —
¥,) as we approach the horizon, this integral will nevertheless be well defined
for appropriate choice of test function n(r), and since it holds for any test
function at all, we may choose such a one to work with. One suitable 7, for
example, is

h
L4 |(70 + ) (W - )]

n(r)

since this controls any singular behaviour of the difference term above through
the denominator (here, h is any smooth function we may choose).

We observe that, except at the horizon itself, the difference Uy — ‘il,
has one of its terms vanishing. Because of the nonzero contribution to the
integral at the horizon due to the delta function 4,,, and the fact that eta(r)
must be smooth here, we cannot conclude from this that for the integral
across both sides to cancel both solutions must vanish (though that is in fact
the result we shall eventually wish to prove). Instead, we can only obtain a
bound on the difference between ¥, and ¥; as one approaches the horizon.
In particular, we obtain an expansion which expresses the difference as some
constant plus a correction term. The constant will in general be nonzero,
while the first order correction term will be a multiple of ¥y - this can be

determined from the integral form of the distributional equation above. Thus
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the matching condition at the Cauchy horizon is:

(‘70 + Afa)("‘l-,h{(u+vr + €, 0, ¢+) - ‘ill(u+v r—g, 01 ¢+))

. (5.21)
= (0)1+ (¥ + ) u(u*,r+¢,0,6%)) as £ — 0*
and the one at the event horizon, similarly, is:
(70 + 73)(@0(1‘*-! r+e, 01 ¢+) - ‘ill\f(u-*v r —g, 0& ¢+))
(5.22)

= (01 +1(1* + 7" u(u*,r —¢,0,6%)) as e = 07
To understand the significance of this condition, we observe that
All of these derivations are exactly parallel the situation in the other
Kerr coordinate chart (u_,r,8,¢_). The coordinate transformation from BL

coordinates to this Kerr coordinate chart give the Dirac matrices to be:
asm0 2y r? + a?

G = —‘/ lb—,l(e(AW +6(-A)YY) .
0 Y (5.23)
G’ = —'\/?"/
o _ _ 1 2 a , A0 L3
G®- = sing\/ﬁ/+m€(3)(/ 7%

which we regularize with the spinorial gauge transformation given by
Vir) = —(I-\I «+e(A)A[OI+ 5 (IAI fracld _ ¢(A)]A[$)7y°

giving the G’ as

G- = —a\s/i%gv r‘;—a (1 +7°)
G =- 1=A)7"+(1+A)
12\/_( ) (5.24)
éo _ ,.,,l
vU
1

So- 3
G - Sin0\/ﬁ \/-—(7 +7)
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(which we note are identical to the G’ for the Kerr +-chart except for the
final term of G®- and the replacement of (¥° + 43 by 4° —~? in the first and
last cases).

These give matching conditions which are similar to the previous ones in
form, except for the change of sign in the 3 term. The matching condition

at the Cauchy horizon is:

(70 - Afs)(‘i’hl(u—v r+Eg, 09 ¢—) - \i"(u-yr - 5,0, ¢—))

) (5.25)
=01 +{(7° =¥ )¥nm(u™,r +¢,0,07)) as e = 0
and at the event horizon:
(v° = ¥ (Wol(u~,r+6,0,07) ~¥p(u™,r —¢,0,67))
(5.26)

=01 +|("° - ) ¥u(u~,r—c,0,467)) ase — 07
In order to make use of these in our subsequent proof of the main nonex-
istence theorem, however, we will need to have these matching conditions
expressed in Boyer-Lindquist coordinates. Since (5.12) shows that the de-
pendence on t and ¢ in the form of the wavefunction is that of a plane wave,

being of the form

we—ike¢

we know that our condition 5.21 must hold in BL coordinates as well, and
similarly for the other matching conditions (5.22), (5.23) and (5.26). We will
work out the details of the transformation into BL coordinates for the first,
noting that they are similar for the others.

Since this condition was obtained by extending across the Cauchy horizon

r = ro at timelike negative infinity at ¢t = —oo, the condition will have the
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form
(‘70 + ’Ys)(‘i'M(t, ro + &, 03 ¢‘) - \i’I(tv Tg — &, 0’ ¢))

. (5.27)
= O + |(7° + )Wt r +<,0,0)|) across t = —o0

But now we must convert this condition on the transformed wavefunction
in Boyer-Lindquist coordinates into a statement about the untransformed
wavefunctions, undoing the gauge transformation to which we subjected the
spinors in converting coordinate systems. Recall that we used the transfor-
mation 3.16 with the matrix V' given by 5.19. But notice that

(0 + ¥V 2 240+ YA + A1) + (817 - [A1 ) (5.28)
=[A[75(+* +7°) (5.29)
since the second term vanishes due to antisymmetry of the v. This means
that when we apply the inverse gauge transformation ¥ = V-9 we then
can remove this factor of |A|~% and get that
IA]73 (0 + 7*) (Wt ro + £,8,0) — ¥ (t,ro — £,8,9))

l (5.30)
= O(1 + [A]77]|(7° + ¥*) ¥ ar(t, T + <, 0, 0)|)

But this is not sufficient, since in order to obtain the condition which
applies to the form for which the Dirac equation is separable, we must find
how this appears for the transformed ¥ = SW¥ for the matrix S given by
(5.9). This transformation does not affect the factor of the matrix (7° +~3),
since the only difference in permuting the order in multiplication of S by
(7¥* + 4?) is the permutation of the blocks of S:

(v° ++°)S = diag((r + iacos8)?, (r + iacosf)?,

. . . (5.31)
(r — iacos )3, (r —iacos#)2) x |A|+(?° +?)
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where the diagonal matrix is just |A|~+S with the 2 x 2 diagonal blocks
permuted. We note that this matrix is regular on the horizon, hence has no
effect on the matching conditions, so that the only significant effect is the
presence of the factor |A|Z, which cancels the reciprocal factor in the form

of the matching condition, leaving, in the separable gauge:

(70 + ‘/3)(&’&1(&! To + £, 01 a) - ‘ill(tv g — &, 01 ¢)) (5 32)
= O+ |(*° + 7*) ¥ ar(t, 70 + .8, 8)]) across t = —oc '

and, through the same transformations (using (v° — %) in the case of the
second set of Kerr coordinates), we arrive, for the other matching conditions,

at:

(7 + ) (Fo(t.ro +.0,6) = Yur(t, 70 ~ 2,6, 6))

) (5.33)
= Ol + |(7° + ¥3)War(t, ro — 2,8, 0)|) across t = oo
(v +7°) (¥ ar(ty o + .8, 0) — Wi(t,ro — .6, 0)) (5.34)
. 5.
= O + |[(7° = ) War(t. ro + £,8, 9)|) across t = oo
(+° + %) (Wo(t, ro +£,0,0) — Uar(t.ro — £,6,0))
(5.35)

= 0(1 + |(70 - 73)‘ilhf(ta Tg — 5707 ¢)I) across t = ~00

These are the matching conditions we shall use in the development of the

main theorem which we develop in the next section.

5.2.2 Main Nonexistence Theorem

Our intent in this section is to develop the main theorem proving the nonex-
istence of (nontrivial) time-periodic solutions of the Dirac equation on the

Kerr-Newman background. To do this, we will first prove a technical lemma
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concerning the 2-spinor X, showing that it has finite values on the event hori-
zon and can be zero there only if it vanishes everywhere outside the horizon
(that is, in the region of type O bordering on that horizon).

Since in a physically realistic situation (see [MTW] p882) the surface of
a collapsing body would obstruct the boundaries between these regions, and
thus these would not be formed by a realistic physical process within the
universe, only a part of the full maximal analytic extension is physically
relevant. We restrict our attention to some finite subset of the maximal
extension, which we call the physical spacetime. Any region O (corresponding
to the exterior of the black hole) which lies within the physical spacetime is
called an asymptotic end, and we assume that each such asymptotic end is
time-oriented. Each asymptotic end adjoins two regions of type M, one in the
past and one in the future. This corresponds intuitively to the notion that
one can fall into a black hole, arriving in the future, or that the time-reversed
version of this may also occur (thus requiring the matching conditions across
the horizon) but that these regions are not the same since, relative to an
outside observer, falling into the hole requires an infinite duration, so the
past and future regions of type M are separated by an infinite length of
time, and are considered distinct.

Since we wish to describe the behaviour of the Dirac wave functions on the
physical spacetime, we consider that the wavefunction ¥ vanishes everywhere
in the maximal extension which is not included in the physical spacetime, as
the rest of the extension is nonphysical, hence the Dirac particle cannot exist
there. Similarly, since in the case of a black hole, we assume that ¥ vanishes

on regions of type M in the past of the asymptotic ends we are considering
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(since, matching these solutions across the horizon, we would otherwise have
particles emerging from the event horizon, which we are assuming to be
impossible).

Since we will be speaking of time periodic solutions, in which the same
physical state recurs with some period, we must define what we mean by the
same physical state. This will not be defined as the value of the wavefunction,
since a physical state must be determined by observables, which correspond
to Hermitian operators on the state space H. Because of this. wave functions
differing by a constant phase represent the same physical state, and hence
time-periodicity must mean that there is a period and a phase difference such
that the wavefunction at times separated by that period differ only by the
given phase difference. That is, ¥ is time-periodic, of period T if there is

some constant 2 such that
¥(t+T.r.0.0) =e Tt r0 0)

We remark here that we are defining time-periodicity in terms of the
time coordinate in Boyver-Linquist coordinates, since it corresponds to proper
time for an observer at infinity, who will observe the time-periodicity of the
wavefunction. Now, given such a periodic solution, we can write ¥ as a
sum of Fourier coefficients (as with any periodic function), summing over all
possible values of the eigenvalue A, of the spin eigenvalue k, and of the period
of the Fourier term. Thus, the wave function decomposes as:

¥(t.r.0.¢) =e "™ Z 2 Z e~ 2mint g—ikogAnk (5.36)
n€Z k—1eZ AeaP(A)
where o (A) is the spectrum of A for fixed values of n and k - that is, the set

of possible eigenvalues for the operator .4 obtained for those n, k. We remark
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that A must have a discrete spectrum since its square can be represented as
an elliptic operator on the sphere (see appendix of [FKSY1] for more details).

We use the same convention for hatted and unhatted ® as ¥, so we have used
A (r, 0) = S'(r, ) ¥ (r,6)

We are using ¢ to be of the form given in 5.13:
_\'/\nky';\nk
‘\’inkl,’:nk
X Anky Ank
JYink)A':nk

(i)Ank =

where the X*** and Y*"* are solutions of the separated ODEs (5.14) and
(5.15), where the energy parameter w is just 2 + %n.

The normalization condition is much as described in the case of the fully
coupled EDM system: we wish to normalize the scalar product so that
(¥|¥) = 1, and therefore must make the requirement that the integral form
of this product be finite. As in the fully-coupled system, this cannot in gen-
eral be done across the horizon, in particular since one cannot choose an
everywhere-spacelike hypersurface crossing the horizon. Instead, we must
take the inner product associated with surfaces strictly outside the horizon.
This, however, means that the current-conservation argument which would
make the integral independent of the particular hypersurface fails to work,
since we do not cover the whole of the spacetime. Thus, we must restrict at-
tention to one asymptotic end of the physical spacetime and only consider the
normalization integral away from the horizon. So, to consider the region out-
side r = r,, we construct hypersurfaces generated from the Boyer-Lindquist

coordinates by:
u!z = {(tv T, 07 ¢)|t = t27r > T2}
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and take the inner product defined by the usual normalization integral over
H,,, designated (¥|¥)y,,. This gives the probability of the Dirac particle
being outside r = r;, which must naturally be finite. So the normalization
condition would be

(U|¥)n, = /;‘ VG’ bvdp < oofor allt,

t2

If the Dirac wave function satisfies this condition, then we want to show
that each Fourier component of it must also satisfy the same normalization
condition, so that we can restrict our analyses to static solutions. Integrating
the given condition with respect to time, to average the inner product over

one whole period of the whole wave function, we get:

1 t+T
o> 7 [ @mdr (5.37)
t
z+‘r : 1 r
SESS e @38
nn’ kk' AN ¢
x ‘/.e—i(k'—k)OQ)mk(r’ 0)*"™* (r, 6)dpy (5.39)

But note that since this is integrated over a whole period, and the plane
waves form an orthogonal set, the only nonzero terms come from those cases
where n = n’ and k = k', while the integration over @ (see the appendix of
[FKSY1] for the regularity of the angular part) is nonzero only when A = X,
hence we can collapse this form by eliminating the exponentials (the first
integral becomes T and cancels the 1) to get:

S Theop) [ TEOS(rb)dun
n€Z k+lez Hery
Now the integral in this last form is just the scalar product (®*"%|®*"*),,,

and since this product is positive, each of these contributing terms is positive
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and therefore finite since their sum is finite. Since we can therefore restrict
our attention to a single Fourier component and obtain results which will hold
for any time-periodic solution. We begin by showing a boundedness result
for the spinor X which is somewhat analogous to the result on (a? + 3°) in
the case of the fully coupled spherically symmetric case.

X,
.
event horizon, and if it is zero at r = r; then X vanishes for all r > ry.

Lemma 4. The function X = ( ) has finite squared norm |X|? on the

Proof. Recall the Dirac equation’s radial component, (5.14) governing the

function .X', namely

( VIAID,  imr - ) (.\'.,.) —0

—imr — A eAV|A|D-] \X-

which yields, for all r > r,, an ODE for |.X'|?, namely:
d 12 — / d ” »

B ~d o o . d (5.40)

=< l"\'dr'\"\ >+ < X, IAIer >

= 2 ARe(X . X_) + 2mrIm(X,X_)
where the last equality follows from the eigenvalue equation found for X.
But this gives bounds on the radial derivative of |.X|?, since we have it equal

to the sum of the real and imaginary parts of the same function, multiplied

by constants. This gives the bound
d »12
|VIBI-IX]

So we note that if |.X'|? vanishes anywhere for > r|, then since its derivative

< (1Al + mr) X2

vanishes there as well, by this bound, and since X is a solution to this ODE,

then the solution (which is unique by standard theory of ODEs) is that
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X = 0. We must now consider the limiting behaviour as r — r;. Suppose

that {X|?> > 0 outside r = r,. Then we can divide the bound above by

V1A X]2, to obtain

|

- |2
X
| X |2

Y

[Tl

<

—(|A] + mr)|A|” < (1Al + mr)|A|~z

noting that the middle expression is the derivative of log|.X|?, we integrate

this bound to find:

—/<w+mmm%smmmfs/(W+mmm%

But while [A|~# is singular at r,, it is integrable (since A is a quadratic in
‘\’

is zero anywhere, it will have the finite limit of 0 at r, as well). This proves

r), so this implies that log

2 has a finite limit at r, in any case (since if it

the lemma. c

With this lemma, we can proceed to the main theorem under considera-

tion.

Theorem 2. In the background of a Kerr-Newman black hole which is non-
extreme (i.e. for which a® + Q% < M?), there are no nontrivial normalizable

time-periodic solutions for the Dirac Equation.

Proof. We proceed by showing that any such solution must vanish every-
where in every region of the physical spacetime. The causal structure of the
maximal extension gives a natural sequence in which to do this. We begin
with regions of type O, since if we assume that nothing can leave the event
horizon, this is independent of the form of any solution elsewhere. We thus

begin by showing that in each asymptotic end of spacetime, ¥ = 0.
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Recall that we have made the assumption that, since we are dealing with
a black hole solution, we assume that ¥,, = 0. We can apply the matching

condition (5.33) across the horizon, so that:
(7% = ¥*)(Fo(t, 11 + €,6,0)) = O(1)
across t = —oc, which in terms of the radial functions means

lim X_(r) =0

r—r)

Now using the relation between the hatted and unhatted form of the wave-

function,

o=
[ lod

TA20 = [A]" U 30408

and the fact that the metric is asymptotically flat, we find that the normal-
ization condition simply becomes a condition on the integral of the function
I.X |2, namely
Qo
/ |X|%dr < oo
r2
for any r, > r,. But outside the horizon (where e¢(A) = 1) the radial Dirac
equation 5.14, when expanded out, gives two opposing terms summing to

zero, which are just

d .. -
SN - X ) =0

(This last statement is equivalent to the statement that the Dirac current
WG' ¥ in the radial direction is a conserved quantity, since WG™¥ = U~ (| X, |*-

[X_]?)|Y'|?). But this means that this function | X, |?> — | X_|?is constant. But
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the normalization condition above means that the integral of |.X,|% + |X_|?
is finite, so if the (constant) difference were nonzero, the sum would be at
least as large, hence its integral over a spacelike hypersurface (having infi-
nite volume) would be infinite. So in fact |X,|? — |X_|?> = 0. But since
lim .+ X_(r) = 0, then the same must hold for .X, so that X is zero on
the horizon, and by lemma 4 vanishes everywhere. By the ansatz for ¥, this
means that ¥o = 0 also (that is, any time periodic solutions of the Dirac
equation vanish outside the event horizon).

Now we consider a region of type M, between the Cauchy and event
horizons. Regions of type M border on regions of type O across an event
horizon in both the past and future directions, and since in these regions the
wavefunction vanishes, we get the matching conditions across these horizons
to be:

lim (7° + Y*)¥ar(t,7,6,6) = 0= lim (v° — v*)®u (¢, 7.6, 6)
rrt rorl
But then these together imply that the wavefunction itself must vanish in
this limit, since it does so when multiplied by either 4° or %%, so that:
lim $x(t,r,0,0) =0
resr
But then by 5.14, we will have the radial derivative of the squared norm of

the .X spinor vanishing, or in particular

d .
VIAIZIXE =0

in the regions of type M, but as seen in lemma (4), this means that | X |? must
vanish everywhere if it is to be zero at the horizon. Thus, ¥ must vanish in

regions of type M.
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This leaves only regions of type / to consider. These meet regions of type
M at the Cauchy horizon r = ry at both past and future infinity - in Boyer-
Lindquist coordinates, at t = £oc. We have already seen that in regions
of type M, the wavefunction ¥ vanishes, so that the matching conditions
across the Cauchy horizon (5.32) and (5.34) again imply the limit of the
wavefunction near that horizon vanishes:

lim{_ lil,(t, r8,¢)=0

r—rg

But now regions of type I and O are symmetric, and the radial Dirac equation
(5.14) is the same in each region, and so lemma (4) applies again, hence X
must vanish everywhere, and thus ¥, = 0. Thus, since ¥ vanishes in each of

the three types of region, we have shown the result of the theorem. a

This theorem has shown that any one of the Fourier components of a time
periodic solution to the Dirac equation on the Kerr-Newman background
must vanish everywhere, which thus implies that the solution itself must do
so as well. This is the last result we wish to show. We remark only that it
can be generalized to more general metrics in which the Dirac equation is
separable in the same way as in the KN geometry, which occurs in metrics
in which the Weyl conformal curvature tensor has type D, meaning that it

have two repeated eigenbivectors. For more detail on this, refer to part 3 of
(FKSY1].
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Appendix A

Background on the Dirac
Equation

The Dirac equations, which are the equations governing such behaviour, make
use of spinor fields to describe a certain class of fields having nontrivial spin
characteristics. Although it is possible to describe these fields in purely
tensorial terms, the calculations are greatly simplified by using the spinorial
formulation. These fields correspond, for instance, to electrons or neutrinos
in physical situations. To make clearer the description of the Dirac equation,
we begin with a consideration of spinors in curved spacetime.

The usual definition of spinors used by physicists describes them by saying
that a spinor at a point z on a manifold M is an equivalence class of pairs
(v'. p), where ¢ is a complex 2-vector and p is an orthonormal basis of the

tangent space M. The equivalence is given by:
(v.p) ~ (W', 0)
if
p=Lpv =Ay,L=HA
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where L is a Lorentz transformation and A is an element of Spin(4), which we
shall describe next, and H is the homomorphism we shall give from Spin(4)
onto the group L(4) of Lorentz transformations of T, M.

Given an inner-product space (V| <,>), it is possible ([Har]) to define
the Clifford Algebra CI(V') as @ V/I(V"), where I(V) is the ideal in @V
generated by elements of the form r®z+ < r,z >. This gives (as in [Cho]) an
algebra of linear operators on a complex vector space, generated by elements

satisfying
Yo + Yo =< U, U > e

where e is the identity operator in CI(V'). If we take the inner product space
in question to be the Minkowski inner product, these ~ are linear operators
on a complex vector space having the property that %(‘7375 +Y8%Ya) = Nag - €-
On curved spacetime, we will take the more general metric g,3 instead of 7,3.
Given a basis ey, e}, €3, 3 of the Minkowski space T;(M), such an algebra is

generated (as an algebra) by the basis of Dirac matrices:

. _ I 0 _ 0 (e f
/EQ - 0 _H 172. - —U.' O

Here the o; are the Pauli matrices:

D B ) B B

We can then define the group Spin(4), which will be the transformation

group for Dirac spinors:

Definition 1. The group Spin(4) is the group of real linear operators A,

of unit determinant, on a complex vector-space of dimension 4, such that if
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u € Ty(M), then there exists v € Ty(M) such that A~!'y,A = v,. That is,
the A are unit determinant operators fixing the Clifford algebra CI(T,(M)).

It may be shown that Spin(4) is the universal covering group of the
Lorentz group L(4), and that the quotient Spin(4)/L(4) = Z/2Z. In partic-
ular, the covering gives a homomorphism of Spin(4) onto L(4), which we have
denoted H previously. For any element L € L(4), there are two elements, A
and — A, whose image under H is L. This is related to the fact that L(4) has
the nontrivial homotopy group Z/2Z (the quotient mentioned above): the
unique nontrivial homotopy class is that of a path taking a basis through a
rotation of 27 about the origin and returning to the initial position.

We are now in a position to discuss the spin connection and the Dirac
operator. The Dirac operator will be a partial differential operator of the
form (G — m) acting on spinor fields: solutions to the Dirac equation will be
fields ¥ for which (G — m)¥ = 0. Here, m is the mass of the field (which
may be zero); to define the G part of the operator, it is necessary to define
a spin connection - in other words, to do geometry on the spin bundle of
spacetime. Differential geometry is essentially concerned (cf. the treatment
in [Sha]) with the study of connections on a principal bundle: relevantly here,
a connection provides a notion of covariant differentiation on a manifold. In
general, a connection on a principal bundle is a 1-form with values in the Lie
algebra of the structure group. One standard example is the case of a locally
Minkowskian manifold, and the principal bundle of frames, with structure
group L(4): with each direction in the tangent space to the manifold, a
connection associates an element in the tangent space at the identity of the

Lie group of basis transformations. In other words, the connection describes
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how a basis is parallel-transported along a curve: this leads immediately
to the parallel transport of vectors and covariant differentiation. The spin
derivative is related to this notion, but the principal bundle is the Spin(4)
bundle on M.

(We remark here that the notion of a Spin(4) bundle on M need not be
well defined for arbitrary manifolds M. There is a topological obstruction to
the construction of such a bundle which relates to the Stiefel-Whitney class of
the manifold, which plays an analogous role for real bundles to the role of the
Chern class in complex bundles. It is a characteristic class in the cohomology
group of T (M) with coeflicients in Z/2Z. Though a detailed discussion of this
is not relevant here, we remark upon it to make clear that the requirement
that a spin-bundle should be defined on M gives a topological condition on
M. This condition is that the second Stiefel-Whitney class w, M (T (M))
should be zero.)

We note that since there is a canonical homeomorphism from Spin(4) to
L(4), a connection V on the L(4) bundle can be pulled back to a connection
D on the Spin(4) bundle: the pulled-back 1-form acts on an element A of
Spin(4) by letting D(\) = V(L), where L = H(A). This gives a well-
defined spin connection, defining a spin derivative, which can be used to
construct differential operators acting on spinor fields, and in particular the
Dirac operator which is of concern here. We present a brief summary of this
development; for a fuller description, see e.g. [Fin|.

The G in the Dirac Operator noted above is a partial differential operator
given in terms of the spin derivative by G = iG'D; + H where H = H(z) is

a self-adjoint matrix at each point x € M. Here, the G; are Dirac matrices
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described above, which locally look like the standard Dirac matrices v;, de-
fined in curved spacetime by the property that 3{G:G;} = gi; - e (where {}
denotes anti-commutation). This expression is fairly general: to do explicit
calculations, however, it is necessary to write the spin derivative in te;ms of
known entities. This is analogous to expressing the covariant derivative in
terms of directional derivatives and Christoffel symbols. Thus, for the pur-
poses of calculation, we write the term G in the Dirac operator in the form
(see [Fin] or [FSY1]):

G = icjﬁ% + B(x)

where the B(x) are 4 x 4 matrices playing a role analogous to that of the
Christoffel symbols in covariant differentiation. In [Fin], it is shown that

they have the form:
B(z) = G (x) E; (z) (A.2)
with
E;, = %p(ajp) - -ILGTT(G’"V,G")G,,.G,. + %Tr(ﬁijGm)p (A.3)

and the symbol p, which in flat spacetime is sometimes denoted +4° by analogy
with the other v matrices, has the form (with ¢;x the volume form)

t

= FfijleiGijG‘ (.4.4)

p

These expressions are clearly rather complicated, and difficult to make
use of unless special symmetry properties of the metric allow simplification.

The examples studied in Part II are instances of cases in which this occurs.
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Appendix B
Topological Methods for DEs

The use of topological methods in studying differential equations dates back
to the invention of topology itself, by Poincare. One branch of such methods
includes degree theory, which seeks to understand the structure of solutions
to such equations by the use of a “degree” of a function, which measures
the stability of that function, its critical points, and related features, in an
open neighborhood. In order to make clear the application of this theory to
the system we consider in this work, we shall briefly describe some of the
techniques and principles of these methods.

We begin with Morse theory, which is used to study the topological prop-
erties of. and in particular the stability of critical points of, gradient fields,
and the flows corresponding to them. The “Morse Index” developed there
is a measure of the attractiveness of a critical point to flows, and hence
its “stability”; this index is invariant under small changes in the gradient.
The Morse Index can be generalized to more general fixed sets, by passing
from a numerical index to a topological invariant, in what is known as the

“Conley Index”, which is the tool which we apply to our solutions of the
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Einstein-Dirac equation in Part I. These techniques; being qualitative and
having discrete values for their “indices”, have the attractive property of not
requiring exact calculations, and thus being readily applicable to our rough
numerical solutions, subject to certain conditions.

A fuller development of these methods can be found in [Smo], but here
we begin our presentation with a brief examination of Morse Theory.

We are here considering gradient fields, which are fields of the form df
for f at least in C*(Q,R), where Q C R" is an open neighborhood. For
such a field, T is a critical point if df (Z) = 0. We note that the property of
being a critical point is preserved under smooth maps r = ¢(y) of R*, so
that if F = ¢ o f and T = ¢(¥) then 7 is a critical point of dF. Note that
this means that the theory can in fact be developed on any smooth (C*)
manifold, which is essential for our desired application. The Morse index
allows us to examine the structure of such points, which we may think of as
fixed points of the flow determined by df. We must restrict our attention
to isolated critical points: that is, those for which there are no other critical
points in some neighborhood of the point in question. If all critical points of
f are isolated, f is a Morse function.

Restricting our attention to Morse functions is not a serious limitation,
since they are generic in C?(Q2,R) for any neighborhood €2 (that is, they
form a dense open set in C?(2,R)). This means that the study of Morse
functions is quite general, and the following normal form theorem is widely
applicable. This theorem, for functions with non-degenerate critical points,
states essentially that near any such point, the function is an n-dimensional

“saddle” point with some number of dimensions taken by axes in which f
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decreases (in both directions), and some number with directions in which it
increases - these numbers giving the index. A more precise form of this is

the following:

Theorem 3. Given a function f € C?*(Q,R) with non-degenerate critical

point T, there is a coordinate system near T such that
n
flx)= f(@)+)_ ex?
t
where ¢; = £1.

The number & of positive eigenvalues (which is independent of the coordi-
nate system since it is a property of the Hessian of f), will be the Morse index
of the critical point T, and can be thought of in terms of stable and unstable
manifolds (which will lead to the generalization in the Conley index). As has
already been remarked, the Morse index addresses the stability of flows of
the system ‘;—% = V f(z), for which the critical point T is a stationary point.

To make this precise, we recall the following definitions and theorem:

Theorem 4. (Linear Stable Manifold Theorem) Given the setup just de-
scribed, there are manifolds My (the unstable manifold), and M, _, (the stable

manifold) of dimensions k and n — k. such that
o if yo € My them ¢,(yo) = T as t ~ —o0
o ifyo € M,_i them ¢y(yo) = T ast — oc

Here, recall that ¢,(y) denotes the point to which yg will flow at time
t in the system % = Vf(z). The stable manifold is thus defined to be the

set of points on flows which asymptotically approach the critical point in

121



future time, and the unstable manifold, similarly in past time. The theorem
asserts that these manifolds exist in sufficiently small neighborhoods of the
critical point. We remark that these definitions (and theorem) justify our
description of the Morse index k£ as a measure of stability, since it is the
dimension of the unstable manifold - that is, of the surface of points which
asvmptotically “flee” the critical point. By examining this situation in terms
of these manifolds, we are beginning to approach the topological definition
of the index which shall be the basis of our generalization to larger sets than
points.

The LSM theorem implies that there is some open set, say B, about T
which intersects M, and M, _, in. respectively, a k-ball and a (n — k)-ball,
which we denote B* and B"~*, which have boundaries in 8B which are a
(k — 1)-sphere and an (n — k — 1)-sphere. Note that B can be regarded
naturally as B* x B"~*. If we consider points on 8B as (possibly) entrance
or exit points of flows (assuming flows do not remain in 8B for nonzero time),

then we define:

b-={z€dB:3e>0:¢_0(z)NB=0}
and

b" ={z€0B:3e>0: ¢pq(r)N B =0}

so that we can regard b* as dB* x B"~* and b~ as B* x dB™*. We will be
primarily interested in the space B/b*, namely the space obtained by col-
lapsing b* to a point. and in particular, we will be interested in the homotopy
class of this space. The space B/b* is called the topological Morse indez of

f at T. To see how it relates to the Morse index defined previously, suppose
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that f is a function with nondegenerate critical point T having Morse index

k: then if we take the coordinate system in which
f@) = f(2)+ 3 ea?
1

and let B be the preimage in this coordinate chart of a sufficiently small cell
(—48.d) x --- x (—4.4) centered about the origin (of which T is the preimage),
then b will be the sides of @B corresponding to the paositive ¢;, since along
those directions, f is increasing, and hence the flows exit B. Contracting
b to a point, then. we obtain a “fattened” figure with the same homotopy
type as a k-sphere S*. Thus, the topological Morse index for a point with
classical Morse index & is the homotopy type of S*.

Notice that in the preceding construction, only the values of f and df
around OB are relevant to the determination of the index: this implies both
that the index should be invariant under small perturbations and that it
should not matter that the fixed set contained in B happened to be the
unique fixed point T. The Conley index is an attempt to convey information
about the stability of fixed sets in much the same way that the Morse index
does for fixed points. In order to make this precise, we must define the
type of sets which we shall consider. First, we will generalize to arbitrary
differential equations %‘; = f(z), rather than restricting ourselves to gradient
fields (which was necessary to define a nondegenerate critical point, which

we no longer need to do).

Definition 2. A set is an invariant set if it is a union of solution curves
{o(z) : t € R} - hence it is fixed under flows both backwards and forwards in

time. An invariant set S is isolated if there is some bounded neighborhood N
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of S, called an isolating neighborhood if compact, such that S is the maximal

invariant set in V.

Isolated invariant sets are of interest since, there being no other invariant
sets “near”’ them in precisely the given sense, they are stable under small
perturbations in f below. That is, since any nearby flow not in the isolated
invariant set must leave N in either past or future time, this must continue
to be true for functions nearby to f (in the compact-open topology), since N
is an isolating neighborhood precisely if no point on its boundary is on a so-
lution curve contained in .V, which is a property preserved under sufficiently
small perturbations. This leads to the concept of a continuation of S, which
we shall define briefly after introducing a few necessary concepts (for a more

detailed treatment, see e.g. [Smo| pp460-461).

Definition 3. Given a flow on a space M, X C M is a local flow if for each
point v € X, there is a neighborhood U of v and some £ < 0 such that the
image of U under the homeomorphism ¢, is in X for t € [0,£). A product
parameterization of a local flow .X' is a homeomorphism ¢ from X, x A into

X such that for every A € A we have X, = ¢(.X, x A) is a local flow in X.

We can think of a product parameterization of a local flow as a flow
which depends upon some parameter - this is the origin of the notion of
nearby flows, from which we derive the idea of continuation, which requires
the concept of the space of isolated invariant sets of a parametrized local flow

of this kind, to wit:

Definition 4. If ¢ : X; x A — X is a product parametrization of a local flow

X, define S to be S(#) = {(Sx, X)) : Siis an isolated invariant set of X, }
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This gives the notion of a continuation of an isolated invariant set, namely:

Definition 5. If p, and p, are points in S then p, is a continuation of p,
(or p; and p, are related by continuation) if both p, and p, lie in the same
quasi-component of S (that is, it is not the case that S is the disjoint union

of two open sets each containing one point).

This definition allows us to follow isolated invariant sets through different,
related flows deriving from a parametrized PDE - in the context of the present
work, the parameter is the fermion mass m. This is primarily useful because
we can relate the Conley Index of such isolated sets to those of other such sets,
which allows us to understand properties of the stability of many solutions
at once. To see how this is accomplished, we examine the definition of the
Conley index more closely. The Conley Index is developed in the context
of isolating blocks, a special type of isolating neighborhood characterized by
having no points on the boundary which remain there under the action of
the flow. In particular, we call a subset S of X a local section of a flow if the
flow, for short times &, defines a local homeomorphism ks : S x (-4,6) —» X.
Note that this cannot occur if the orbits of the flow are tangent to S since
near such a point, the “fattened” S will be self-intersecting. We can then

define an isolating block by

Definition 6. B is called an isolating block for a flow f on X if B is the

closure of a neighborhood of X, and S* are two open sections such that:
L. d(SE)\ST*NB=0

2. S~ -(=6,8) N B = (S~ N B) - [0,0)
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3. S*-(-6,)NB=(S*NB)-(-4,0]
4. Ifz € 9B\ (St U S~) then there are £, < 0 and &2 > 0 with

We remark that S~ intersects B just at the boundary, at points where
the flow enters B, while S* is the same, but for exit points. Note also that
an isolating block is just a special type of isolating neighborhood. It is a
useful fact (since the Conley index will be defined via isolating blocks) that
one can always be found about an isolated invariant set, and in fact any
neighborhood of such a set contains an isolating block about that set.

We now have the language to understand what is meant by an index:
namely, it is a function constant on compontents of S. or in other words
invariant under continuation. The Conley Index, in particular, though it is
defined in terms of isolating blocks, can be shown to be independent of them,
and to be well defined on such components - it will indeed be an index. It is
defined by:

Definition 7. If [ is an isolated invariant set of a flow, and B an isolating
block of /, the Conley Index of I is h([) == [B/b*], the homotopy equivalence

class of B/b* considered as a pointed space.

We remark that this is indeed a well defined property of I since if B, and
B, are two isolating blocks for 7, then B,/b; ~ By/b; and B,/bf ~ B,/b}.
(For details of this, see for instance [Smo] pp475-476). A useful fact about

the Conley index is given by the following theorem:

Theorem 5. If I, and I, are isolated invanriant sets and I, N I = @ then

I, I I, is an isolated invariant set whole Conley Indez is

h(1 L I2) = h(l2) A k(1)
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(where A denotes the wedge product between two pointed spaces, ob-
tained by taking the disjoint union and identifying the distinguished points).
This theorem gives an “addition” for the Conley index for which the identity
is the homotopy type of the one-point space, (X, zy) = ({zo}, o) which we
designate 0.

This makes the Conley index well defined for a particular isolated invari-
ant set, and allows us to find the index of collections of such sets. In fact, we
have rather more than this - in particular, we have that h defines an index

as defined above. Namely:

Theorem 6. If I, and I, are related by continuation, then they have the

same Conley indez.

This is the key result which makes the stability arguments in Part I pos-
sible, allowing us to extend the index of stable sets representing solutions
around the spiral form by continuation and draw conclusions about the sta-
bility of these solutions from the shape of the curve and the index of the case
with low m.

We remark here that it is possible to define the Conley index in a more
general way, in terms of indez pairs, and that this redefinition, while equiva-
lent with the one we have given here, is used in the development of the last
theorem. In the interests of clarity and brevity, however, we have omitted
this part of the development of the index theory. This development is given

more fully in [Smo], chapters 22 and 23.
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