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Abstract

This thesis deals with representative examples from a recent body of work

dealing with coupling of Einsteinian gravity to quantum-mechanical matter

fields, and in particular the Dirac field and the electromagnetic field. The

first part of the thesis develops the proof of the existence of particle-like

(soliton) solutions to the fully coupled Einstein-Dirac equation, from the

derivation of the form of the equations and their numerical solution to a

numerical and topological analysis of the stability of the solutions found.

In the second half of the thesis. two nonexistence theorems are developed

for black-hole solutions for the Einstein-Dirac-~·'1a.."(wellsystem with various

coupling-strengths and symmetry conditions. These nonexistence theorems

show the impossibility of stable. nontrivial, Dirac fields in the presence of

black hales in the cases investigated.

Cette thèse traite des exemples représentatifs d'oeuvres récents concer­

nant la conjoncture de la gravitation einsteinienne avec les champs de matière

quantizées. notamment le champs de Dirac et de l'électromagnétisme. Sa

première partie développe la preuve de l'existence des solutions reliées aux

particules (soliton) à l'équation Einstein-Dirac, à partir de la dérivation de la

forme des équations et leur solution numérique jusqu'à l'analyse numérique

et topologique de la stabilité des solutions trouvées. Dans la deuxième par­

tie de la thèse, on développe deux théorèmes de nonexistence aux solutions

de "trous noirs~ pour le système des équations Einstein-Dirac-Maxwell avec

divers forces d'accouplement et conditions de symétrie. Ces théorèmes de

nonexistence démontrent l'impossibilité d'un champ de Dirac stable et non­

nul dans la présence de trous noirs dans les situations examinées.
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Chapter 1

Introduction

1.1 Preamble

The purpose of this thesis is to examine and collect sorne recent research

results concerning solutions to the Einstein-Dirac-~[axwell(EDM) system of

equations. The results we examine are due to Finster, Kamran, Smoller and

Vau, and appear in [FSY1], [FSY2] and [FKSYl]. These equations govern

the behaviour of Dirac particles (such as electrons or neutrinos) coupied

to gravity and electromagnetism. The results we shall be concerned with

fall into two classes: there are results showing the existence of particle-like

solutions to these equations; and there are results showing nonexistence of

certain classes of singular solutions - in particular, black-hole solutions with

various types of symmetry. It should he noted that oot a1l of these results

apply to the fully coupied EDM system.

This work is divided into two main sections. In the first section, we ex­

amine the results of [FSYl] regarding the existence of soliton (particle-Iike)

solutions for the Einstein-Dirac equation in the statie, spherically symmetric

case. These results confirm that, for minimal coupling to electromagnetism,

3



•

•

the equations governing the Dirac field do indeed prOOict the existence of

particle-like solutions. In the second section, we examine two main results.

The first is from [FSY2], dealing with the nonexistence of time-periodic so­

lutions of the Dirac equation in the fairly general case of an axisymmetric

black·hole background; that is, the (somewhat surprising) nonexistence of so­

lutions in which a Dirac particle "orbits" such a black hole. The seeond result

of the third section demonstrates the nonexistence of a class of statie, sphcri­

cally syrnmetric solutions to the full ED~I system. There are two appendices

giving additional background necessary to the main matter but which is not

the principal subjeet of this work. In the first appendix we briefly give sorne

neeessary background rnaterial to define the Einstein, Dirac, and Maxwell

equations and their setting. In the second we give sorne exposition regarding

the use of topological rnethods, and in particular the Conley index theory,

in qualitative analysis of PDEs, since this method is used in exarnining the

stability of the particle-like solutions found in the first part.

1.2 Background of the Work

The work examined here is a recent selection of work in the subject of the

coupling of gravity to various other fields. The initial work most closely re­

latOO to the results we shaH be dealing with was the work of Bartnik and

~lcKinnon (1988), who studied the interaction of Einsteinian gravity with a

non·Abelian Yang-~1ills field. Their discovery of nontrivial particle-like so­

lutions to the EYM system was somewhat rernarkable, since these solutions

were everywhere regular and static. Neither the Einstein vacuum equations

nor the Yang-~lillsequations uncoupled to gravity admit static, regular solu-

4
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tions. This fact is due to the presence of two forces, the repulsive Yang-~.Hlls

force and the attractive gravitational force, in the system which balance each

other for the solutions found. Prior to this result, it had been conjectured

that no such solutions could exist - their discovery was the first in a sub­

stantial body of recent work. The Bartnik-~lcKinnonsolutions were shown

by Straumann and Zhou (1990) to be unstable with respect ta small per­

turbations - which introduces the theme of stability analysis for particle-like

solutions, which shaH be relevant ta the current results. Substantial research

on the Einstein-Yang-~Iills equations has been done by Künzle and others

(especially Darian and ~Iasood-ul-Alam), particularly in finding cosmolog­

ical solutions, and solutions with spherical symmetry. Further work with

the EY~1 equations was undertaken by NlcLeod, Smoller, Wasserman, and

Vau (1991) and by Smoller, Wasserman and Vau (1993), introducing in this

original context the study of black hole solutions. They demonstrated the

existence of such solutions, establishing a llontrivial class of black holes with

Yang-~lills field. Smoller and Wasserman (1993) established the existence of

infinitely many smooth solutions of the EYM equations.

These results with the non-Abelian Yang-Mills gauge fields set the stage

for later work which examined similar questions about the Dirac field. Since

the Dirac field represents fermions, which constitute normal matter, this is

physically significant, but is greatly different in character from the Yang-Mills

field. Substantial work with forms of the Einstein-Dirac and Einstein-Dirac­

Nlaxwell equations has been done by Finster, Smoller, and Vau. The question

of finding particle-like solutions for the Einstein-Dirac equation (studied in

sorne depth in this thesis) was followed by a similar result for the full Einstein-

5
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Dirac-~Iaxwell system - in each case, soliton solutions were found, and shown

in addition to be stable under small spherically symmetric perturbations.

With these existence results, it is then natural to examine the case of black­

hole solutions.

Unlike the Yang-~lills situation, the principal results for black-hole solu­

tions are nonexistence theorems. In a series of papers from 1999, Finster,

Smoller and Vau prove a number of related nonexistence theorems, rely­

ing on a few basic techniques well illustrated by the examples we study

in detail in later parts of this work. The first, proving nonexistence of of

statie, spherically symmetric solutions to the fully coupled EDM system, re­

lies on an analytic result, establishing hounds on the magnitude of the Dirac

spinors which lead to contradiction for nonzero fields, meaning that ooly

the Reissner-Nordstrom and Schwarzchild solutions are possible. The com­

bination of spin and quantization changes the situation from the classical

(nonquantum) picture. Turning to the minimally coupied situation, then,

they looked at the Reissner-Nordstrom background and looked at the he­

haviour of a Dirac field uncoupled to gravity on this background. For this,

because of the timelike nature of the singularity and the fact that the maxi­

mal analytic extension of the Reissner-Nordstrom background has infinitely

many asymptotically fiat regions connected through the black hole, it was

necessary to develop matching conditions across the event horizon. This pa­

per thus brought to the work a novel treatment of the Dirac equation in the

distributional sense, seeking generalized solutions (which would he problem­

atic in the Cully coupled case since we assume regu1arity of the metric). The

main result was ta show that there are no time-periodic (and hence no static)

6
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solutions to the Dirac equation on this background.

This was generalized by Finster, Kamran, Smoller and Yau (in the last

result studied in the present work) to the Kerr-Newman geometry (the most

general Einstein-~I3Xwell black hole geomet ry), again using matching condi­

tions and a distributional understanding of solutions of the Dirac equation.

As in the former case, however, it was shown that there are no nontrivial

solutions. This paper ([FKSY1]) also shows this result for more general ge­

ometries (a case not pursued in the present work) in which the Dirac equation

is separable into radial and angular parts - namely geometries in which the

\Veyl conformaI curvature tensor satisfies an algebraic condition making it

"Type Dl' (a more general type of metric which includes, in addition ta the

K~ geometry, others such as the Taub-NUT metric). This illustrates the

application of the algebraic classification of the conformaI curvature to show

such general results. These nonexistence results for time-periodic solutions

led to the investigation of the long-time dynamical behaviour of Dirac fields

on these backgrounds gjven initial data. This tao has been studied by Fin­

ster. Kamran, Smoller and Yau ([FKSY2]), and bounds have been found on

the rate at which Dirac particles must escape to infinity or faU inta the black

hale.

Returning again ta the Yang-~~nl1s field whose coupling to gravitation

began our discussion of the research in this area, an examination of the case

of a Dirac particle coupled both to gravity and to the magnetic component

of an 5U(2) Yang-~Iills field - the Einstein-Dirac-Yang-Mills equation - has

been done by Finster, Smoller and Yau. It was shown that the only solutions

are the known black hole solutions with vanishing Dirac field. This makes

7
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use of a similar analytic approach ta that seen in the spherically symmetric

ED~'[ case, by deriving bounds on the spinors at the horizon.

These recent developments in this area employa wide range of techniques,

most of which are exemplified by the particular cases studied in the current

work.

1.3 Results to he Considered

We have now framed the problem to be considered: the interaction of three

fields. namely the gravitational, electromagnetic and Dirac fields, and the

solutions to the coupied systems of equations representing them. None of the

solutions we will present are fully general, but each sheds sorne light on the

more general question of classifying these solutions. In the next chapter, we

begin with the positive result of the existence of particle-like solutions to the

Einstein-Dirac equation. \Ve suppress the electromagnetic field interactions

(that is. we assume there is no electromagnetic field, sa that we are dealing

with a bare chargeless Dirac field coupied to gravity). This corresponds to

the situation where gravitation is the dominant effect: it serves as a model

problem for the more general, physically realistic case.

In the first section, we seek soliton solutions ta the E-D equation. These

are solutions which resernble particles in that they are locally concentrated,

and spacetime is asymptotically fiat: we seek these by use of a particular

form for the field having this property. We assume such solutions to be

spherically symmetric, and to follow a particular ansatz (this is admittedly

Dot an entirely general approach, but since we are seeking an existence proof,

the only work justification of the ansatz which is required is that is yield

8
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solutions to the equations). We then examine the stability of the solutions

found. Establishing the existence and stability of particle-like solutions for

this E-D system is rather diflicult, and involves algebraic manipulation of

spinorial and tensorial equations to obtain the form of the system to be

studied, numerical computations to find solutions to the differential equations

thus obtained, and topological analysis of these solutions to establish their

stability.

[n the second section, t\\'o nonexistence theorems are developed, gener­

alizing somewhat the classification theorems of Carter, Israel and Robinson

to include the possible presence of a nontrivial Dirac field. The first result

addresses the spherically symmetric case only, with full coupling of the Dirac

field to the metric. The second deals with the case of no coupling, describing a

Dirac field on an a'Cisymmetric background somewhat more general than the

Kerr-Newman. It has been shown by Chandrasekhar that the Dirac equation

is separable into ordinary ditrerential equations in the Kerr-Newman back­

ground geometry, which makes possible the result of [FKSYI] (when suitably

generalized). This cao be regarded as an approximation of the weak-coupling

Iimit for the full Einstein-Dirac-Nlaxwell equation.

9
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Part 1

Existence of Particle-Like
Solutions of the Einstein-Dirac

Equation

10
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Chapter 2

Dirac Equation on a Static,
Spherically Symmetric
Background

2.1 Form of the Equations

2.1.1 Form of the Operator

\Ve wish ta find particle-like solutions of the Einstein-Dirac equation: we

must thus find a metric on a manifold, and a corresponding Dirac field so

that the stress-energy tensor associated with the field satisfies the Einstein

field equations with the given metric and the field itself is a solution to the

Dirac equation on that background. This requires the solution of a coupied

set of equations: we must concretely find these equations and attempt to find

solutions for them. This system is quite complicated, however, 50 to simplify

the form as much as possible, we begin by assuming a highly symmetrical

form to the spacetime. In particular, we shaH assume a sphericaHy symmetric

spacetime. A common example of such a spacetime is the Schwarzchild

Il
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solution, which in spherical coordinates (T, T, 8, tiJ), has metric form

2m dr2
•

ds2 = -(1 - -.-)dt2 + 2m) + r2 (d82 + sln2 odtj)2))
r (1- r

The more general case, (as seen for instance in [Hawk], appendix B) for

a spherical spacetime is,

d 2

ds2 = - f'2~r) + X 2(r)dr2+ r2(dB2+ sin2Bd,p2)) (2.1)

\Ve thus have two positive radial functions (assumed to be at least C2 )

determining the metric: for consistency with [FSY1}, we will write the metric

tensor in the form

d · (1 1 2 2· 2 8)g.. = zag - - - - r -r sin
IJ T2'.4" (2.2)

with A and T positive functions of r. The Dirac operator must now he

constructed in these coordinates, to take advantage of this symmetry.

Since the Dirac matrices are elements of a spinor space, and correspond by

the homomorphism 1l (defined in Appendix A) with elements of the tangent

space, they transform in the same way. Thus, since the ej = ~J' the Dirac

matrices transform the same way, and sa we have:

Gt = T ro
Gr = J'A(rI cos 8 + r2 sin 8 cos tiJ + r3 sin 8 sin tiJ)

1 (2.3)
GO = -(-il sinD + i2 cos 8 cos tiJ + r3 cos 8sin tIJ)

r

GtP = 2 ~ 8 (-r2 sin tIJ + 73 cos t/J)
r sin

and in particular, we have (as a representative example):

0 0 C08(tP) illin(~)

r r

GtP = 0 0 _ isin(tP) _ C08(~)

r r
_ C08(tP) _ isin(t/J) 0 0
isin[tP)

r
C08(tiJ) 0 0r r

• 12
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with the other G" found similarly. Now we recall that p = ~fijIeIGiGjG"G',

and we may calculate the form of p in these coordinates by using the forms

for the Gle given above. Since we know that the G" anti-commute when

indices are different, and f.ijlel is zero when any index is repeated, 50 that p =
bGtGrG6G<P, which an explicit calculation reveals ta he the "pseudoscalar"

Vl91
matrix

I*V • (0 1)p =15 = Z"'f0111213 = 1 0

which is convenient, since it is independent of position. We recall the form

of (A.3), the components of the spin derivative. With p a constant, the term

~p(ajp) can be eliminated. \Vith the particular value of p we have found, the

term kTr(pGjVmGm)p can also be found by direct calculation ta he zero.

This leaves the B matrices as:

Consider the term GJGmGn : since GJG" = yl", we get nonzero terms

for every pair of equal indices (with possible sign changes due to the anti­

commutativity), while the relation hetween the G matrices and p ~ 15 , a

self-inverse matrix, gives us a remaining nonzero term of (if.!nnp,5GP), 50

that we have the following:

With a few more observations, we cao simplify this greatly. First, we note

that since 4gmn is the trace of the matrix GmGn, and gmn;j vanishes, we have

0= VjTr(GmGn) which isjust Tr«Vjcm)CR)+Tr(Gm(Vjcn)), sa that the

first two terms in the last expression for B are equal, while the third is zero

13
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(since it corresponds to the case with equaJ values for m and n). Furthermore,

in the term involving the volume tensor f, the antisymmetry of this tensor

allows us to replace the covariant derivative in the multiplying term with a

partial derivative, and this in tum rneans that the trace in the multiplying

term is zero in any term with aH different tensor indices (Le. the terms with

nonzero f). This last is a somewhat cumbersome calculation, which cao be

checked with a symbolic computation program, using the explicit forms of

the C. This means that only the first two terms (which are equal, due to the

antisymmetry) are significant, and sa we have

This can be somewhat further simplified by nothing that, as with basis

vectors, we have VjC} to be a linear combination of the G matrices them­

selves. and that Tr(GnX)Gn = 4X for any such combination, so that finaHy

we have the quite simple form:

Having found this convenient form for the B matrices, we can find it ex­

plicitly, and thus obtain a form for the Dirac operator with which to do calcu­

lations. To find the divergence VjGj, we note that it is just +8j( Ji9TGj).
Vl91

Thus, we must find the derivatives of the G matrices found earlier. Noting

that we chose the forro of the matrices to reftect a static geometry, the term

14
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for the t index is naturally zero. For the radial component, we find:

Here we have removed sorne factors of VA and non.radially.dependent parts

of the expression. Noting that the ,i are not radially dependent, this leaves

only:

By similar calculations, we find that:

~a8(Ji9ïG8) == .\8) (-2,1 sin(8) cos(8)
V Igi rSln

+ (cos2 (B) - sin2 (8))("'?cos(4J) + ,3 sin (4J)))

and

Summing these to obtain the divergence V jGj, we get that the B matrices

are given by:

B = ~(~ - a.;)e' - ~("l cos(8) + A/ sin(8) cos(.p) + 1'3 sin(8) sin(.p))

and noting that this last combination is a scalar multiple of Gr, we cao reduce

this finally to:

B= i(~(l __1_) _ ! arT)e;r
r VA 2 T

15
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Finally. we combine this with the form for the Dirac operator and get it

to be:

(2.4)

This is perhaps the clearest form in which the operator can be written.

In the next section, we shaH examine it. and reduce the expression further by

exploiting further symmetries. Along the way, we shaH give sorne discussion

about sorne more general considerations.

2.1.2 Reftnements

\Ve have developed a form for the Dirac operator: before proceeding with

further we must check that this operator is Hermitian with respect to the

appropriate scalar product. since physical observables in quantum mechanical

systems correspond to Hermitian operators. \-Ve shaH now provide a short

discussion of this in the current context, more details on which may be found

in [Fin].

There are two scalar products defined for solutions ta the Dirac equa­

tion. The first of these applies to any wave function: integrating, over aIl

of spacetime, the scalar product of two functions with the invariant measure

accounting for the tensor density:

(2.5)

•
In this case, the bar represents the adjoint operation on spinors, so that

16
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This scalar product is called the spin scalar product, and is indefinite of sig­

nature (2,2). In order to give meaning to the scalar product as a probability

density. we would like to have a scalar product, however, which does not

involve integration over aIl of spacetime, but rather only on sorne spacelike

hypersurface. This is generally written as

(2.6)

•

where 11. is any such hypersurface, on which dp. is the rneasure induced by the

metric. This scalar product has a physical interpretation as the probability

density of the Dirac particle, and the conservation of the Dirac current rneans

that it is independent of the choice of 11. - that is, 11, can be continuously

deformed to any other spacelike hypersurface and leave (\{II~) fixed. Conser­

vation of the Dirac current is the staternent that V j \{lGj4» = 0, which holds

for solutions to the Dirac equation. The spin scalar product described above

is more general, since it makes the time coordinate into an observable, but

lacks an immediate physical interpretation - the second will be used to give

the norrnalization conditions which we shall use later, since it has physical

meaning.

\Ve must check that the Dirac operator is Hermitian with respect to the

spin scalar product, 50 that it will correspond to an observable quantity. (The

fact that the operator G is Hermitian with respect to the spin scalar product

justifies the notation, commonly used in quantum field theory, < 'ltIGlc) >,

the bra/ket notation.) This is easy to check, using our explicit form for the

17
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Dirac operator with the B matrices in the form of a divergence:

< GII/I~ > = J(iGJ â~j + ~VjGj)II/~Ji9ï.rx

=J'li (iGj~ - ~V .GJ) cil Ji9ïcrxax) 2)

+ JII/ ( iâj ( Ji9ïGj)) ~.rx

=JlI/(iGj â~j + ~VjGj)~Ji9ï.rx
= < 'lIIGcIl >

(2.7)

•

This provides sorne justification for the physical significance of the operator

G which we have constructed. Note that in this calculation, we have sirnply

moved the term f 'It(i8j ( v'i9iGj))cIld4x from the contribution of the first,

flat-space G, term in the integral to the second, B, term and thus remaving

the conjugation.

\Ve have checked the meaningfulness of the Dirac operator in the most

recently obtained form (2.4) by checking that it is Hermitian with respect

ta the spin scalar product. To simplify calculations, we shall next separate

out the angular momentum from the equation, in order to simplify it. This

will involve the use of an ansatz for the wave functions: here, we are simply

assuming that the wave functions can he expressed in a particular form, and

use the characteristics of that form to simplify the equation. While this is

far from obvious a-priori, we will attempt to justify the use of the ansatz.

First, we make sorne definitions. By analogy with the construction of the

Dirac spinors from the Pauli spinors in fiat spacetime, we define sorne com­

binations of Pauli matrices which correspond to our new coordinate system.

These will capture dependence on the angle coordinates. In particular, define

18
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(with the usual definitions (A.l) for the ai matrices in cartesian coordinates):

ar(fJ, t1J) = cos(fJ)a l + sin(8) cos(tIJ)l12 + sin(8) sin(4))l13

a 8 (fJ, lj» = - sin(fJ)l11 + cos(8) eos(q,)a2 + eos(fJ) sin(q,)a3 (2.8)

(1<>{9,1/J) = Sin
1
(9) (-sin{,p)(12 +COS{,p)(13)

\Ve DOW seek a eonvenient form for the wave funetions which allows us

to simplify our system (2.4). Specifieal1y, we assume that the wave function

takes the form:

(2.9)

•

where the Ui are eomplex radial funetions and the ea are the standard basis

of the Pauli spinors, namely el = (1,0) and e2 = (0, 1). The new term w is

a paranleter which we shal1 end up using to classify solutions: it represents

the energy of the system. This form will be seen to be quite convenient, and

rather general, as we shaH now attempt to show. In general, we eao, with

the sarne definition of the ea , express a totally general form for the Dirac

wave funetions for two Dirae particles as ~a(x. t) = ....:l(x, t)ea . This.4 is a

(.. x 2) matrix whose eolumns are then the components of the wave funetions

for the two Dirae partic1es - it represents the eombined system. We want the

evolution of this system to produee a statie solution, and for this system ta

be statie, we must have the evolution of .-\ ta be only a change in phase:

A(x, t) = _e""t .4(x)

\Ve see that the two Dirac partic1es then have an oscillation with a frequency

proportional to the energy w. On the other hand, if we want to have spherical

symmetry, we must have no angular dependeoce: in terms of our Pauli-matrix
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expressions (2.8), we must have .4 in terms of only the t and r spinors given

in our new system of (j matrices. These are nand (jr as given previously.

Thus, we have:

This form for the combined system of two Dirac particles, when we mul­

tiply this matrix form by the ea , gives a linear combination of the form (2.9)

given above for the wave function, and its counterpart with the (jr spinor in

the top entry instead of the bottom, namely:

(2.10)

•

This last variant ansatz for the solution will produce a solution to a

transformed version of the Dirac equation in which the mass is negative,

corresponding to conjugation by "Y5 of the Dirac operator. We consider the

combination of both of these cases, corresponding to the fact that the Dirac

equation has meaningful solutions of both positive and negative mass, a fact

which leads to the "Dirac sea" of negative-mass solutions. \Ve shaH regard

these solutions as transformed versions of solutions of the untransformed

Dirac equation, and so consider them in our analysis of the solutions, when

we find them. This means that we can consider only one of the two forms as

the ansatz for the metric (breaking the symmetry of positive and negative

mass by choosing one ta work with), and obtain (2.9) as the ansatz we shaH

use.

\Vith this in mind, we proceed to use the form (2.9) to separate the

angular momentum from the Dirac equation. To do this, we find the form of
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•

the Dirac operator acting on such a wave function. We have, first, that:

This is just:

Now, the first term (involving the at derivatives) becomes:

(iCtat )(e-iw.tt ( ~lea )) = (iGt)( -iwe-iw.tt) ( ~lea )
q U2ea q U2ea

=Gtw'lla

=wT"'y°'lla

The term involving ar derivatives (and the corresponding spin-derivative cor­

rections) becomes:

. r 1- ..t-~ T' (0 Gr) (08 0VA - 1_ oT'VA)'T.
zG (ar + r - 2T) 'IIa = _a r 0 l r + 1 r 1 2T 'M'a

~o\V, since the angular derivatives are zero for radial fUDetions. the angular

derivative terms' only effect cornes from their action on qr, where we have

that O'r(89qr) = l, and similarly for the t/J derivative. Thus, we have:
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•
And since, furthermore, G8= ~ (_~8 ~), this simply becomes:

since (ar )2 = n. Ali of this applies equally to the 8,p term, so these two terms

are equal, and the whole expression becomes:

(2.11 )

•

:'Jotiee that this form produees a eoupled system of differential equations

in the two unknown funetions Ul and U2 whieh appear in the ansatz for W.

This equation can now be simplified by removing the angular momentum:

we accomplish this by first rewriting this equation in a more convenient form

by transforming 'It. The form we shaH choose makes it easy to write the

Dirac equation as an ordinary differential equation (or rather a system of

them), involving only radial derivatives. This will be done by solving for

different functions of T, T and the Uq, from which they can he recovered. In

particular, we will consider functions which simplify the form of the above

equation, rendering it real rather than fully complex, and eliminating some

of its terms, namely:
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and

\Vith this substitution, we consider the expression

(2.12)

For u for which the Dirac equation (G - m) \II a = 0 hold, this last equations

holds also, and vice versa, since they are scalar multiples of each other. Since

this equation is real, we may assume that the spinor ~ is real.

We note that the normalization condition now becomes simply

To give the simplest form for the Dirac equation as an ODE, we choose

the form

(2.13)

•

which we shaH use for the numerical computations.

2.2 The Field Equations

2.2.1 The Energy-Momentum Tensor

\Ve have found the Dirac equations already: we wish now to find the Einstein

field equations, 50 that we may attempt to find solutions for the coupied

system. The standard way to do this is by variational methods (see e.g.

[LoRu] chapter 8.4). The idea here is tbat S is a Lagrangian dependent on

the metric and its first two derivatives, whose associated energy-momentum
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tensor has components which are its derivatives with respect to the metric

components. \Ve want ta find this tensor associated ta the Dirac field in

arder ta determine its effect on the curvature of the metric, and hence on the

metric itself. This produces the coupling of the matter field to the metric

used in the Einstein equations, and will thus give us the next equations we

need. To do this we must find the variation of the metric in order to compute

the derivatives.

If we allow ourselves to consider a variation of the metric which is arbi­

trary, say 6gij , then we can use algebraic relations to discover the variation

of other quantities. In particular, the variation of the Dirac matrices corre­

sponding to a given e5gij arises in the following way. Since we have the relation

~(GiGj + GiGi) = gi), and the variation of the inverse is 6gij = _gikgJle5glcl ,

we can differentiate these ta find the variation for the covariant and con­

travariant Dirac spinors to be:

and

\Ve can use these basic quantities to find the energy-momeotum teosor:

this cao be found as the variation of the action of the Dirac operator, which

is just:

s = / I{I(G - m)1{I Ji9id"x

So the variation is cSS, or, since 'Ir solves the Dirac equation, and hence

(G - m)'It = 0, we can find e5S by considering ooly the contribution of 6G,
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•

so that we get:

~ote that since the action is real, we have removed the imagina!)" part of

the integrand. Next. we simplify this form by showing that the contribution

of the B matrices to the variation of the action is in fact zero. We begin by

allowing the variation tSB to act on 'li, substituting the form for B which we

round previously:

Noting that the first term is zero since p is constant, and the third term is

traceless. we find the contribution of the B matrices to the integrand in the

variation to be:

Re~tSB'V = 1~lmtS(Tr(GmVjcn)WGjGmGn~)

= l~"(Tr(G"'V)G")Im(\PGjGmG" \P))
Here. we notice that since ,5 '" P = fijldGiGjG"G', we can replace the term

GlGmGn , and then use the antisymmetry of the tensor density f to CODvert

covariant to partial derivatives, and get that:

Re~8B~= 1
1
6&(fJmnPTr(GmVj Gn)'1t,5Gp W)

= 1
1
68(fjmnPTr(GmajC?)~,5Gp'I! )

= 1
1
6 (fjmnptSTr(Gm8jC?)'i,5Gp'I!)

where the last transformation is a result of the antisymmetry of ~ and the

fact that Tr(Gm 8j Gn ) = 0 when there are no repeated indices, 50 that we
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can ignore the ljmnp's contribution to the variation. Substituting for the

variation in the middle, we then get that

To reduce this further, we observe that the 1ast peice,

and so the variation of the B matrices disappears. Thus, we need only find

the variation c5G) to find cSS. This is thus:

2

65 =J~ L Re'1!.(iGj 8k )tJ!.6gJk Ji9îd"x
a=l

and the energy-momentum tensor is the symmetrized form of this:

2

Tjk = ~L Re'1!.(iGj 8k + iGk8j )'1!.
a=l

~ow it is easy to show from the algebraic properties of the Pauli matrices

that the cross terms with j 1: k vanish, and direct calculation gives the others

as:

Tt
t = 2wT2r-21~12

T; = _2wT2r-21~12 + 4Tr-3~1~2 + 2mTr-2(~î - ~~)

T: = -2T-3T~1~2

r: = -2T-3T~1~2

2.2.2 Field Equations

(2.14)

(2.15)

(2.16)

(2.17)

•
Now that we have obtained the Energy-Momentum tensor for the Dirac field,

we must find the Einstein Field Equations which are obtained from it. We
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recall the form of the metric given in (2.2); this metric is the most gen­

erai spherically symmetric metric possible, and has two arbitrary functions,

namely .-t and T, of the radius coordinate r. \Ve thus wish to 6nd the com­

ponents of the Einstein tensor Gj = R~ - ~R8j in terms of A(r), T(r) and

their radial derivatives. The part of the field equations which derive from

the metric will he this tensor, hence these components.

Calculating the Einstein tensor for the given metric, we find that it is a

diagonal matrix with the Collowing components (ail primes represent radial

derivatives) :

GO 1 .-1 A'
o = - r2 + r 2 + -;

G~ = _1- + A _ 2AT' (2.18)
r 2 r 2 rT

2 3 A' .-tT' .-t'T' 2.-tT,2 .-tT"
G2 = G3 = 2r - rT - 2T + Tl - T

~ow. the Einstein field equations Gj = -81rTJ, using the Corm for the

energy-momentum tensor TJ calculated in (2.14) give three equations, since

TJ is again a diagonal matrix with the last two entries equal. The first of

these equations is:

the second is:

cg = -81rTg

1 .-t .-l' 2wT2I~12-- + - + - = -81r--...;......~
r 2 r 2 r r 2

-(1 - A) + r.-l' = -161rwT21~12

(2.19)

•

Gt = -81rT1
1

_..!.. + .-t _ 2.4T' = -81r -2wT2I~12+ 4Tr-l~1~2 + 2mT(~~ - ~~)

r 2 r 2 rT r 2

2T.4T'
(1 - A) + T = -161rwT21~12 + 321f'TT-l~1~2 + 161rmT(~~ - ~~)

(2.20)
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and the last field equation is:

G~ = G~ = -81rTf = -81rT;

(2.21)

Together, these form the Einstein part of the Einstein-Dirac system of

equations for the case we are considering. We can combine these with the

equation we derived (2.13) for the Dirac equation in the sphericaHy symmetric

background, namely:

Together. these comprise the system of equations in whose solutions we

are interested. In fact, the system can be simplified by showing that the

equation (2.21) cao he eliminated from this system, as it is implied by the

others: we shaH show this once we have the equations in a convenient form.

Having eliminated the equation (2.21) from our system, we wish to find

a consistent form for our system to nlake it easier ta work with. To do this,

we will first isolate single terms with unknown functions sa that we may

sequentially solve for these functions. It is easy ta see that if we take the

Dirac equations (2.13) from matrix form, and writing a = (lI and j3 = <1-2

they appear as:

•
and

VAa' = ~o - (wT + m)j3
r

v'Aj3' = (wT - m)o - ~j3
r

28
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•
\Vith the same conventions for a and /3, the remaining Einstein equations,

on the other band, may be written (by isolating terms with derivatives) as:

(2.24)

and

\Vith these four equations, we have reduced the problem to the solution

of solving for a system of four unknown functions satisfying these relations

in radial derivatives.

Now recall the normalization condition on the wave function: since the

wave function may he considered as a point in a projective Hilbert space,

only values which are scaled to have magnitude 1 are physically meaningful

(this represents the probability amplitude of the system). The magnitude is

defined by the scalar product given previously in (2.6), namely

with 11, a spacelike hypersurface and dlJ the measure induced on it by the

metric. Requiring that ~ have magnitude 1 in the norm induced by this scalar

product on solutions to the Dirac equation leads to physically meaningful

solutions. Taking 11. to he surfaces of constant time parameter t, we can

integrate this radially, getting the scaling condition to then he

1°c T 1
1~12-dr= ­

o lA 41r
(2.26)

•
since we just have the normal vector Vj with ooly a time component, hence

picking out only the GO term.
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This normalization condition, together with the assumption that the so­

lution is regular at r = 0 (that is, can be expanded as a Taylor series), leads

us to the Taylor series expansions, to second order, for the four functions

0, {3, AandT of r given here:

(2.27)

(which is nearly tautological, except that it reveals 00 = 0),

(2.28)

(2.29)

and

(2.30)

•

In these expressions, we recall that w and 'm are the energy and (rest) mass

of the Dirac particle, respectively, and are thus preexisting parameters for

the system. This Taylor expansion shows us that, in this form, the degrees of

freedom for the solutions are then determined by two additional parameters:

the value Ta = T(O) and the value al = :. We can restrict this further by

noting sorne additional restrictions on the Corm of the solutions.

First, we recall that the AD~I (Arnowitt-Deser-Misner) mass of a sys­

tem is a concept of the total mass of a system, origjnally motivated by the

Hamiltonian formulation of General Relativity, in which the existence of con­

straints in the formulation lead one to seek ta "de-parameterize" the theory,

leading to a precise notion of total energy in a system (the Hamiltonian) .
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This led to the AD~I mass, which we may think of as the mass of a system

as measured by an observer at spatial infinity. Requiring that this be finite

leads to the constraint:

Hm -2
r

(1 - A(r)) < 00
r .....oc

but since limr .....oo r = 00, this implies that

Hm .4(r) = 1
r .....oo

(2.31)

(2.32)

This coostraint eliminates one degree oC Creedom for our system, correspond­

iog to one parameter.

The second constraint (eliminating the second spurious parameter form

our Taylor series formulation) is simply that we wish our spacetime to he

asymptotically fiat - that is, asymptotically ~linkowskian. Given the previous

constraint and our Corm oC the metric in (2.2), this leads to the remaining

constraint

Hm T(r) = 1
r.....oc

(2.33)

•

\Ve have now nearly obtained a foma for our Einstein-Dirac equations

which will be susceptible of numerical treatment. The normalization condi­

tion and the asymptotic 8atness condition «(2.26) and (2.33)) are difficult to

make use of, however, in a numerical context. Instead, we shall make use

of a re-parameterization technique which will make it possible ta substitute

the integral normalization condition and the asymptotic flatness conditions

with finiteness conditions and explicit choice of values for sorne parameters,

identifying solutions of the equations thus discovered with solutions of the
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desired Einstein-Dirac equations under a scaling of the coordinates about the

point r = O.

In particular, we shaH replace the abovementioned constraints with the

finiteness conditions:

and

Hm T(r) < 00
r ..... oo

(2.34)

(2.35)100 T
14-1 2 /ldr < 00

o v.4

while compensating for the extra degrees of freedom gained by setting

and

Ta = 1

m=±l

(2.36)

(2.37)

C~ote that m = ±l includes bath the positive and negative mass solutions for

the Dirac equation, and that these are treated separately. The negative-mass

solutions are those discovered by Dirac, forrning the "'sea", holes in which are

detected as antimatter Dirac particles.)

The coordinate transformation which makes these constraints equivalent

to the first set involves first a scaling of r by a factor of

À= 100 T
41r (02 + J32)-dr

o JA

•
(which is the of the ratio of the actual norm of the wave function with the

desired value of 1). Then, if we take

T = Hm T(r)
r .....oo
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(2.38)

•

•

we can take a solution (0,;3, T, .4) of the equations (2.22), (2.23), (2.24)

and (2.25) satisfying our new constraints (2.34) and (2.35), then we can

produce one satisfying the old constraints (2.26) and (2.33) by defining the

new functions

li = [fa(>.r)

.8 = [f8(>.r)

.~ = .-l(Ar)

t = T-1T(Ar)

It is clear that, for strictly positive À.T, this transformation is invertible.

Further, this new wa\'e function satisfies the Einstein-Dirac equations (2.22),

(2.23), (2.24) and (2.25) with the parameters

m=Àm
(2.39)

w= ÀTW

as can be checked by direct substitution. Also. it is clear that these functions

satisfy the conditions

{OC _ t 1
Jo (0

2
+ 8

2
) JAdr = 47r

Hm T( r) = 1 (2.40)
r .....oc

r -
Hm - (1 - .4(r )) < 00

r .....oc 2
as required. Thus, these provide us a unique solution for our Einstein-

Dirac equations, corresponding to the solution we found for the numerically

tractable system (2.22). (2.23), (2.24), (2.25) with constraints (2.34) and

(2.35). ~ote that since the normalization condition and the asymptotic 8at­

ness condition are required for physical significance, the scaled solutions are

the ones in whose properties we shaH be interested.
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Chapter 3

Solutions to the Dirac Equation
and their Properties

Having found Taylor expansions for the relevant physical quantities 0, /3, .-\

and T about the origin (giving initial conditions) and the ODEs which they

satisfy, one rnay proceed to solve these ODEs numerically. This has been

done (see [FSYl] sections 7. 8) but we do not propose to present extensive

details here on the nature of these solutions. These details may he found

in [FSYl] if necessary - in particular, the graphs of the various functions

0, B. .-1 and T being sought are of sorne interest. Our main purpose here,

however, is to describe the method for finding these solutions, and a few of

their most salient qualitative properties. We will then proceed to examine

the stability of these solutions under perturbation, which will give sorne idea

as to whether these states represent physically realistic situations. This will

involve sorne topological properties of the solutions.
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3.1 Existence

3.1.1 Determination and Properties of Solutions

\Ve wish here to consider how one would go about finding useful solutions

to the differential equations (2.22)-(2.25). This has been done by Finster,

Smoller and Yau ([FSYl]). In order to find nc::~erical solutions for the system

under consideration, one would use the Taylor expansions we have obtained

already in (2.27)-(2.30) to construct initial data about the origin, and then

use a numerical DE solver to use these initial conditions to develop a full

solution (the Taylor expansions are necessary so that initial conditions at 0

and at a nearby point, which in practice was 10-5 , deemed close enough that

the Taylor approximation would be close enough). Since it is possible to scale

the variables in order to satisfy the norrnalization and asymptotic ftatness

conditions (2.35) and (2.34), there is sorne freedom to choose arbitrary values

for sorne of the parameters. Picking the rnass parameter to be defined to be

m = ±l and assuming that T(O) = 1 (though of course Twill only be 1 at

infinity, in general, since it measures the ""time dilation" factor at a point

as measured by an observer at infinity) , numerical solutions were found by

fixing the parameter a land getting numerical solutions in the independent

variable w, the energy of the field.

It was reported that these solutions were continuons in both al and w,

which makes it reasonable to use this method (if this did not hold, the qual­

itative results being sought would not be expected to be obtained in this

way, since properties of the solutions would not necessarily be extendible ta

nearby values of the parameters). The solutions had T going to a nonzero
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limit T at infinity (henee capable of being scaled), T and .4 everywhere posi­

tive, the spinor magnitude 0 2 +,82 going to zero faster than order r-2, .4 ~ 1

asr t--+ 00 (which is necessary for asymptotic ftatness), and

lim -2
r

(1 - .-t(r)) < 00
r....oo

which is the condition for finite :\D~I mass. Since every other essential

condition can he met by scaling, we know this solution is at least admissible.

Further study of the solutions found revealed sorne important qualitative

properties - properties which are revealed by study of the numerical solu­

tions and can be assumed to hold for exact solutions since the numerically

discovered oDes will he sufficiently close (due to continuity of the solutions).

First, it was noted that for positive mass (sealed to m = 1) any fixed value

of Oh there were a countable set of solutions for various values of w from

Wo < W1 < ... < Wffl(U' The lowest w corresponds to the ground state and

the higher w to excited states for the Dirac particle. The radial graphs of the

functions .4 and T associated ta these states were seen ta have certain reg­

ularities: T is always a monotone decreasing function decaying fronl a value

greater than 1 at r = 0 toward T = 1 as r ~ 00 (as should be expected, since

the mass should be expected to be concentrated at the center and thus cause

time dilation relative to an obsen'er at infinity, corresponding to a high T

value, while at infinity, the metric is asymptotically fiat - the nlonotonicity,

however, is new). The .4 function, on the other hand, is not monotone: its

exact behaviour depends on which excited or ground state the particle is in.

It is equal ta 1 at the origin, and asymptotically approaches 1 as r ~ 00,

but between these, it dips, and has sorne number of relative minima - one for

the ground state, and for the nth excited state, n + 1 minima. For negative
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mass, similar properties were observed in both .4 and T.

\Ve have briefty discussed the characteristics of the T and A curves in r

- the remaining variables for which we get numerical results are Q and ~,

the spinor components. Since these are the two components of a spinor, we

can best understand the behaviour of the curves found as a parametric curve

in ct - /3 space. For every case, this curve is a closed curve beginning and

ending at the origin (indicating asymptotic behaviour and initial state). For

the ground state and small values for the initial value 01, this curve stays

in the first quadrant and has no self-intersections, while for higher values of

Ol it develops a "kink" and then, for still higher 01, a self-intersection. For

excited states, the curve no longer remains in the tirst quadrant: for the first

excited state (and small od, it passes through ail but the fourth (with no self­

intersections) and for the second, it passes through ail four, and does intersect

itself in the tirst, resembling a cardioid. Somewhat similar phenomena are

observed for the negative mass states. This illustrates that the excited states

exhibit more complicated behaviour than the ground states, which is the

same result noted in the case of the function A, for instance.

The next significant feature of the solutions (which, in part, leads to the

investigation of stability features) appears when one examines the relation­

ship, in any given ground or excited state, between mass m and energy w, as

parameterized by 0 l. That is, considering the nth excited state, fixing the

mass and varying 0 l, one gets a one-parameter family of solutions having

particular energy w: rescaling m and w to give physically meaningful results,

one gets solutions only in a particular range of values of m, and the curve as a

whole has a spiral shape: for a low value of m, there is a unique solution, but
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Figure 3.1: Qualitative Properties of ~Iass Spectrum Plot

as the curve (parameterized by ad continues, it reaches a ma.ximum value of

m for which solutions exist, then turns back and turns around a fixed point or

cycle (as illustrated in figure 3.1.1) that for certain critical values of m there

may he countahly many energy states, while at others there will he a finite

number. In every one of these solutions we have the energy less than the rest

mass (w < m), which irnplies that we are looking at a system of fermions in

a bound state: to separate the partic1es we would have to put in energy to

bring the total energy up to the separate rest mass of a particle, since for

two separated, noninteracting particles, the total energy will be the sum of
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their separate rest masses. Tbese spirals, thougb quantitatively different for

different excited states, appear (empirically) to be qualitatively the sarne for

aH ground and excited states for both positive and negative mass.

A similar spiral can be found by plotting p - 2w (where p is the ADM

mass). This quantity represents the energy contained in the gravitational

field (since the AD~1 mass represents the total mass-energy of the system

as measured from infinity, hence the total energy of the gravitational field

and the Dirac particles thenlselves taken together - and we are looking at a

pair of fermions bound together). It is negative for small m, meaning that

the bound state has less energy than the unbound state, hence that energy

must be put into the system to break apart the fermions, and thus suggesting

that this state should be stable in this range. For the higher values of m the

solution should then be unstable since it will release energy to decay into an

unbound state, as indicated by the positive value of p - 2w. We have thus

been led to the question of stability of the solutions.

3.2 Stability Analysis

3.2.1 Numerical Considerations

In order to judge the physical significance of the solutions we have round

for the Einstein-Dirac equation, one of the questions it is natural to ask is

whether the solutions represent a stable configuration. If small perturbations

would disrupt a solution and render it unstable, we would not expect the cor­

responding physical configuration to occur naturally in physical situations.

Therefore, we must consider the behaviour of our solutions under pertur­

bation: sorne of this consideration is nurnerical, and sorne is topologjcal in
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(3.2)

•
nature.

We eonsider spherically symmetric perturbations only, here - this bas the

simple effect of making the functions A and T in the Corm of the metrie

(2.1.1) dependent upon time t as weil as radius r. The same methods can be

used to calculate the Dirac operator, but a time derivative of A now enters

into it. In eontrast to (2.4), we thus have:

G "Gt( a A) "Gr( a 1(1 1) arT) "G(J~ "GtP8=1 --- +1 -+- -- -- +1 iJ(J+l tPat 4.4 ar r /A 2T

and we can separate the angular dependence by an ansatz of a form similar

to that of (2.9), but (since the time dependenee will he inside the spinor in

the functions z which play the role of the radial u of (2.9)) of the form

~ = n (. zrdr, t)ea ) (3.1)
r U7 z2(r, t)ea

Following much the same procedure as before, this yields a time-dependent

form of the Dirac equation as a 2-cornponent ODE:

((1 0) (iTat _ ~TA + ~t)
o -1 4.4 2

- (~ ~) /A6r + (~ ~l); -m) G~) = 0
On the other hand, the time-dependent form of the energy-momentum

and Einstein tensors gives the dependent Einstein equations to be the fol­

lowing:

(3.3)

•
(3.4)
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.4 - 1 2AT' 2T.4 ~
--2- + -T = 81r--2 -Re(zl 8r z2 + Z28r zd

r r r
(3.5)

(3.6)

2 A' AT' ..l'T' 2.4T'
81r r3TRe(zlz2) =2r - rT - -2- +~

.-tT" 3T2.42 T .-it T2.4
- T + 4.42 + 2A + 2.4

Given values for the mass parameter m and energy parameter w, and

a compatible solution (0, {3, .·t T)(r) of the equations (2.22)-(2.25), we wish

to consider the general form of a perturbation of this solution. An ansatz

for this which specializes to the case already examined in the case of the

time-independent case makes use of the redefined spinors 0:' and /:3 implicitly

defined by expressing the Zi by

and

.... The perturbations in the spinors which we are considering are therefore small

time-dependent deviations from the static (a, /3,.4, T) given. Since .4 and T

are real and the spinors a and B are (generally) complex, we thus have the

perturbation as:

•

a(r. t) = a(r) + €(al(r, t) + ia2(r, t)

;3(r. t) = B(r) + ~(bl (r, t) + i~(r, t»
.4(r, t) = A(r) + ~.4l (r, t)

T(r, t) = T(r) + eTl (r, t)
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where ai- bi , .-ll and Tl are real-valued.

The analysis of this perturbation proceeds as follows: one substitutes

the geoeraJ perturbation into the Einstein-Dirac equations and assumes € is

small enough that ail but the first order terms can be neglected. This gjves

a system of linear ODEs for the perturbing functions. An unstable solution

would be one which admits the possibility of such a perturbation growing

exponentially in time (since the equations are linear), so if we assume that

time dependence is of this form and show that there are 00 nontrivial such

solutions. then we will have shown the stability of the known solution. We

thus assume that (for f representing in tum each of the functions aj, bj , AI

and Tl) we have

f(r, t) = e lCt f(r)

(noting that the same K is used in every case since we are looking at linear

perturbations).

The linear ODEs obtained are the following:

vAa'l = al - (m + wT)b l + KT~ - 2·4~ (~ - (m + wT)~) - wTlf3
r ., r

r;, a2 ( ) 1.._ .4 l T Tl /3v.-la = - - m + wT ~ - KTVOl - - /3 - K,-
2 r 4.-1 2

IAb~ = -(m + wT)al - bl
- ",Ta2 - .41 (-(m + wT)o - /3) - wTlo

r 2A r
r; , T) ~ T ..4 1 T Tlv.4b2 = -(m + w a2 - - + '" al - t a - K,-2a

r 4.,
(3.12)
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and

T I •.:llT T 321rT2 ( {3 ,CI )2r.-\ 1 = -4- - 1 + ATI + 01 + f-II O
., r

+ 161rT2o(2mal - 2wTal + KTa2)

- 161rT28(2mbl + 2wTbl - KT~)

- 161rTl (3wT2(02 + /32) - 'iTo {3 - 2mT(02 - {32))
r

AlT ( 2 2 2 2 . 2 2 )+ 161r A wT (0 + 8 ) - ;TofJ - mT(a - {3 )

In addition, one obtains a purely algebraic condition:

.-\1 = 161r VAT (-(Kb l + 2w~)a + (Kal + 2wa2){3)
K.T

(3.13)

•

In addition, there are initial conditions at r = 0 and the constraints

demanding asymptotic flatness and the normalization condition to consider

in this system. Initial conditions are given by a Taylor expansion, as before:

al(r) = alO + O(r2
) (3.14)

a2(r) = a20 + O(r2
) (3.15)

Tl(r) = TlO + O(r2
) (3.16)

bj(r) = O(r2
) (3.17)

Al(r) = O(r2
) (3.18)

while the normalization condition (2.26) (using the newly redefined a and {3

as the components of~) must still be satisfied. We note that the conservation

of current means this integral is the same at aIl times, bence equal to its

limit as t t-+ -00, where the wavefunction approaches the unperturbed static

solution.

It can be verified (using a symbolic computation program) that any solu­

tions to the differential and algebraic equations in the above system satisfy
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•
the Einstein equation so we have a consistent system. To demonstrate stabil­

ity of the solutions we have found (under first-order perturbation) it suffices

to show nonexistence of sucb solutions for a value of the exponential growth

rate parameter '" which are strictly positive (leading to an actual exponential

growth of the perturbation).

In the following argument, we make several coordinate transformations

ta find a convenient way to examine the perturbational effects. If we first

make a small reparametrization of time,

we find that the form 3.7 of the perturbation remains the same, but the

functions Tl, a2 and ~ change by a radial factor:

(3.19)

(3.20)

(3.21)

•

(we note the common form of these transformations). By choosing a suitable

reparameterization, we can thus fix, for example,TI at the origin to be zero

so that Tl (r) = O(T) and thus reduce the number of Cree parameters which

characterize the perturbed solution. This, however, weakens the asymptotic

flatness condition 2.33 ta a Corm more like 2.34, 50 that Tl approaches, say

J.t in the lirnit as r ~ 00. Further, we can eliminate a second parameter

by noting that the linearity of the equations allows us to scale any solution,

hence we may fix one more parameter by a multiplicative factor - say, set

a20 = 1. This leaves only the parameter aLO ta determine the solution.
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To show stability, we recall, we must show that there are no solutions

for this perturbed system having the form 3.12 for which K. is positive (since

this would lead to runaway changes in the state, which indicates instability).

Without entering into excessive detail in the numeries (whieh are not our cur­

rent Cocus), we can briefty describe what this involves: in the al vs. bl plots

(as created nurnerically as solutions to our perturbed system), we are looking

at perturbations from the (} -{3 graph, sa that the al - bl graph is similar to it

for small K. This graph, plotting the spinor components against each other,

gives a parametric curve with parameter r. Near r = 0 this is near the origin

(both a and i3 are zero) and as r ~ 00 it again returns to the origin in the

unperturbed solutions, forming a closed curve (in the case of excited states,

there may be self-intersections of this curve - for the ground state there are

none). To show that the normalization integral cannot be fini te, it suffices

to show that the perturbed version of this graph is bounded away from zero

for large time. This was initially difficult to judge (due ta inaccuracies in

the numeries) so, noting that the a2 and ~ are approximately multiples of

(} and {3 respectively, a transformation â2 = a2 - 110 and ~ = ~ - JJI3 was

used. Rewriting (3.12) in these new variables gave much improved accuracy.

To solve the system, initial data at r = 0 were constructed (approximately)

by finding initial values satisfing the property that limr .....00 (a., b.)(r) is min­

imized, by choosing a cutoff value of r, R whieh minimize it (since beyond

a certain value, inaccuracies in the numerical solutions will accumulate and

make results unusable). By doing this for various values of K., it was ob­

served that, indeed, for positive K. these plots diverge very quickly away from

zero for large r - though the good behaviour (similar fonn) of the (â2 , ~)(r)
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plots for these various values suggests that inaccuracies in the Dumerics are

not responsible for the divergence, and thus that. indeed, for positive K, the

spinors are bounded away from zero (indeed diverge) and so the normaliza­

tion integral cannot he finite, hence no such solution can exist. This would

imply that the particle-like solutions found earlier would be stable. The same

method applies to the excited states as to the ground state.

\Ve point out here that these results only work for small rnass m (weak

coupling of the Dirac field to gravity), where the linearized equations are

tractable. To deal with larger m, in the domain where the Iml vs. W, we

must resort to topological methods involving the Conley index - which is

descrihed in Appendix B, and the use of which in this context is dealt with

in the next section.

3.2.2 Topological Considerations

\Vith the understanding of the Conley index developed in Appendix B, sorne

illuminating results can be obtained regarding the stability of the class of

solutions found previously for the Einstein-Dirac equation. We discussed

in the previous section sorne of the numerical stability analysis which was

effective for weak coupling of the Dirac field to the metrie (that is, for small

mass). The study of the mass-energy spectrum for higher m requires the

topological results just described.

To do this, we regard the rnass of the fermion ta be the bifurcation pa­

rameter (that is, the main parameter for the Dirac equation - we consider

the mass-energy spectrum curve (shown in figure 3.1.1) as representing fixed

values of m - W relative to m). The reason for this choice is Dot obvious,
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since the scaling factor means that m is not in fact fixed, while m and w

enter into the linear form of the field equations in exactly the same way. In

fact, solutions to these linearized equations do not determine w except up to

a linear time-dependent perturbation (for more details on this, see [FSYI],

appendix B), but m is entirely determined by the solution, since G\II = m'1l

so that the ioner product of G\II with itself is just m2 •

Having adopted m as the relevant parameter, we then have a series of

equations on m - w, corresponding to the mass-energy spectrum for the

n th excited state, and we can analyze these by continuation. For instance,

near m = O. we have a stable solution Qo, which has Conley index EO, the

homotopy type of the pointed zero-sphere. The importance of continuation

becomes clear here, for as we vary the parameter m, we can continue this

stable solution aH the way to the turning point Pl of the spiral curve of

the mass-energy spectrum, where the mass attains the critical value m =

ml' At this point, we have a degenerate solution (with ftows entering any

neighborhood on one side and exiting the other) so that the Conley index

of the solution Pl is just 0, namely the homotopy type of the pointed one­

point space (since the neighborhood contracts down to the single exit point).

Since, moving to lower m from this solution at ·m = ml, we can construct

neighborhoods containing both the fixed points which "bifurcate" from Pl,

then the Conley index for a region containing both of these must be fi - bence,

since we know the bottom solution (being a continuation of Qo) has ftows

ooly entering its neighborhood, the top solution must have Conley index

El, the homotopy type of a pointed l-sphere (circle). In other words, this

solution is unstable.
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This type of argument applies at every bifurcation point in the mass­

energy spectrum's spiral- that is, every point Pat which there is a degenerate

solution, which corresponds to a vertical tangent to the curve. The Conley

index of each of these points is 0, and 50 each of the pairs of solutions into

which these degenerate solutions bifurcate must have this same combined

Conley index, so there are, alternately, stable solutions with index EO and

unstable solutions with index El .
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Part II

Nonexistence of Black Hale
Solutions
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Chapter 4

Case 1: Spherically Symmetric,
Static EDM System

In this chapter, we consider for the tirst time a fully coupled system combining

the Einstein. Dirac and ~Ia.xwell equations. This is a quite general configu­

ration. since the Dirac equation describes the behavio'Jr of a fermionic field,

and ~'1a"(well'sequation describes a (in this case force-carrying) bosonic field:

these are the two known classes of physically occurring fields. The fermionic

field may be considered to represent a matter field composed of indistin­

guishable Dirac particles (for instance, electrons). These will be modeled

as interacting through the electromagnetic field carried by the bosonic field,

namely the photons represented by ~laxwell's equation, as weil as thrcugh a

(non-quantized) gravitational field represented by the Einstein equations.

Recall that, when we showed the existence of particle-like solutions for

the Einstein-Dirac equations in the first part of this work, we notOO that, for

any given state, for mass parameter above a critical value, solutions cease

to exist. It has been shown in [FS'Y4] that this property also holds for the

Einstein-Dirac-~'1axwellsystem as weil. The natural hypothesis is that this
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corresponds to the formation of black hole solutions: the center of mass of the

system becomes a black hole, and thus the solution is no longer particle-like.

In [FSY3] this was shown not to work under certain restricted conditions

- such a black hole solution, given restricted symmetry requirements and

minimal coupling, could not contain nonvanishing Dirac field. The results

we shaH he examining examine this question of black hole solutions further.

Our purpose in this chapter is to show that, in the restricted case of

spherically symmetric, static solutions, there are no black hole solutions with

nontrivial matter field outside the horizon - in other words, there are only

the Reissner-Nordstroln solutions. This may he interpreted as stating that, if

a cloud of Dirac particles (such as electrons) which is spherically symmetric

collapses into a black hole preserving that symmetry, none of the matter

can remain outside the horizon. This is an effect arising from the quantum­

mechanical formulation of the fields in consideration, and does not occur in

the classical case.

4.1 EDM Equations in Spherically Symmet­
rie, Statie System

4.1.1 Dirac Equation

The first step in examining the coupied ED~1 system will be ta derive the

form of the Dirac operator in the case of a spherically symmetric, static

spacetime in which gravity is coupled to bath the matter field governed by

the Dirac equation and also to the electromagnetic field. This is a straight­

forward generalization of the form of the operator in the similar case without

electromagnetism, which we examined in Part 1. The only alteration in the
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form of the operator there derived is in the time coordinate. This arises

in the following way: the electromagnetic field is described by the potential

A = (-lj), 0) in the usual way. The Coulomb potential l/J appears in this

version of the operator, which is:

G = 'iGJ8j + B

=iT-y°(8, - ie<p) + -yr(ivA8r + ;(vA - 1) - i~T') + i-y888 + i-y4>84>

(4.1)

where the, matrices are, as before, the Dirac matrices for fiat spacetirne in

polar coordinates.

It is clear here (using the definition of the Gj) that the form of the Dirac

operator is essentially the same as that obtained in (2.4), except that the

termiT,O(8d has become iT,O(Ôt - ielj»). \Ve shall therefore not elaborate

upon the derivation, wherein the only difference would be an accounting for

the electromagnetic potential.

~ow we must consider sorne quantum mechanical features of Dirac fields

in order to appreciate the behaviour of this system. Ta do this, we shall make

a brief excursion to describe sorne quantum mechanics of particles with spin.

First, since we will wish to consider solutions ta the Dirac equation in terms

of eigenstates of other operators, we shaH develop these briefty. The first

of these is the total angular mornenturn operator J2 = (L + 8)2, since we

wish any solutions for the Dirac equation in this situation to he eigenvalues

of this operator - in particular, we would wish J2 \II = 0, corresponding ta

the eigenvalue 0, which should he the total angular rnomentum of the multi­

plet (multiparticle) state. This is an illustration of the physical meaning of

the operators we are considering: a Hermitian operator on the state space
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of the system represents a physical observable (in this case the total an­

gular momentum including spin components), and its eigenvaJues represent

the distinct quantum numbers which that observable value can attain. A

physically observable STATE corresponds to an eigenstate (eigenfunction or

eigenvector, depending on how we think of the elements of the Hilbert space

of states of the system) of the operator: states which are not eigenstates do

not correspond to classical states of the system, but rather to linear combi­

nations, or superpositions of them. We now develop briefty the operator J,

following roughly the treatment in [Sch].

The total angular momentum operator combines two components: the

first, L, corresponds to classical angular momentum, which we may think of

as representing the rotation of the Dirac particles about a center of motion,

which in our case will be the point r = 0; the second component, S is the

spin angular momentum and is a feature which does not arise in classical

mechanics. It is a result of the fact that the Dirac field is a spinor field and

has some internai freedom. Since the spin group is the universal covering

group of the rotation group in three dimensions, and thus these two Lie

groups have the same Lie algebra, it follows that infinitesimal elements of

each can be added. So the total angular momentum will take account of

both. The operator L, the angular momentum about the origin for a particle,

is L = r x p, where r is the (vector) operator for the observable representing

the position of the particle relative to the origin, and p is the momentum

operator. It is an infinitesimal rotation about the origin - that is, an element

of the Lie algebra of the rotation group 50(3)), which Lie algebra has three

generators, representing the infinitesimal rotations about the x, y and z axes
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(in Cartesian coordinates). Wc designate these three generating operators by

Lx, Ly and Lz, respectively. \Ve remark that the fact that we are considering a

rotationally symmetric system corresponds to the daim that these operators

commute with the Hamiltonian H describing the evolution of the system,

since these are then constants of motion.

The spin angular momentum operator S measures the change in spin

components - since this is an element in the same Lie algebra as the angular

momentum, it is reasonable to consider it an angular momentum as weil,

although it is an infinitesimal element of a different Lie group. \Ve consider

a rotation not only to rotate the particle in space but also to rotate its

spin components, so that the total rotation is represented by the operator

J = L +S. The separate components of the total angular momentum are not

conserved quantities of the evolution, since in general they will not commute

with the Hamiltonian, whereas J will. In other words, in classical terms, it is

the total angular momentum which is conserved - sa that we might think of

angular momentum being transferred from the (classical) rotation to the spin

momentum of a partide, with the total sum being conserved. This is then the

appropriate operator to consider as angular momentum. ~Iore particularly,

we will be considering the operator J2: this can be found (cf. [Sch]) ta have

eigenvalues of the form j (j + 1), where j is the angular momentum quantum

number. In the situation we are considering, this is the angular momentum

of each Dirac particle, and takes on half-integral values, 50 that

. 1 3
J = 2' 2''''

\oVe are also interested, since we are coupling our Dirac particles to the

electromagnetic field, in the component of angular momentum about the
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axis defined by the field lines, which we are designating the z axis. This is

the J: operator, which possesses the convenient property that it commutes

with J2. Since it represents the component of angular momentum along a

particular axis, it cao take eigenvalues with ab50lute value at most j, but cao

otherwise take on any half-integral value (representing, therefore, an aogular

momentum just as J does), so that we have its eigenvalues ta be k where:

k = -j, - j + l, ... ,j - l, j

Both the J: and J2 operators conlmute with the Dirac operator, as does

the time-translation operator i8t and the operator ,0P where P is the parity

operator.

Since the four operators J, J:, i8t and ,op aIl commute with the Dirac

operator and ail commute with each other, eigenstates of the Dirac equation

will also be eigenstates of each of these operators, since commuting operators

can be simultaneously diagonalized, and we have chosen a four-dimensional

representation for the spinor state, 50 that any solution for the Dirac equation

can be written as a linear combination of simultaneous eigenstates for these

four operators. That is, if (D - m) \If = 0 we have:

iat~ =w~

J2~ = j(j + 1)\If

J:~ = k'l!

,0P\If = ±'It x {1
-1

for j + ~ even

for j + ~ odd

•
\Ve may thus index solutions according to the eigenvalues ta which they

correspond for each of these operators. The spectrum of the two angular
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momentum operators has already been described, consisting of discrete half­

integral eigenvalues. The time-translation operator has a continuous spec­

trum with all real values possible as eigenvalues, so w E lR is ail we can say.

The eigenvalues for the parity operator are ±l, so we can index the simul­

taneous eigenstates of these operators by the eigenvalues corresponding ta

them. These form a basis for the solution space which we indicate

,T,C h ±' 1 3 k .. 1 . 1CI
'I! jlcw W ere c = , J = 2' 2' ..., = -J, - J + ,... ,J , w E ft

so that the previous set of equations becomes

iat \{Ijkw = w\{ljkw

J 2 '11jkw = j(j + l)'IIjkw

J. \{I~k = k'1l*k (4.2)• ) w J W

o ± ± { 1 for j + ~ even
! P'II jkw = ±'11 jkw x . 1

-1 for J + 2 odd

~ow for each solution of the Dirac equation which is one of these ba­

sis states, the Dirac operator can be reduced to a system of ODEs in the

variable r much as was done in the previous part in which we reduced the

Dirac equation through symmetries. Note that this refers ta a solution for a

single particle, however: it now becomes necessary to construct multiparticle

solutions from those we have found for single particle states.

Whereas the state for a single particle - the wavefunction - is represented

as a point in a Hilbert space 'H, it must follow tbat multiparticle states rep­

resenting n particles are represented by points in the tensor product of n

copies of 'H, namely 'Hn = 'H ® 'H ... ® 11., which is again a Hilbert space.

An important point is the question of bow this multiplet state vector he­

haves under interchange of the particles composing it. That is, if we bave
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the multiplet state as a function \II(\IIt, \II~h"" \{In) of n single-particle states,

what is the change in the multiplet state if we permute the entries • what is

\{I (\{I l1( 1), \{I l1(2) , •.. , 'II l1(n)), for sorne permutation (7 E Sn? As Weyl remarks

in [\Veyl] (p240), we would expect any physically realistic situation to be

confined to either the totally symmetric or totally antisymmetric subspace

of the Hilbert space 1I.n . This is first because with a hermitian evolution,

any configuration which begins in either of these two spaces (which decom·

pose lI.n completely) will remain there, and second because we expect that,

for identical particles, interchanging the states of two particles should rep.

resent essentially the same physical situation, hence be represented by a

scalar multiple of \{I of the same magnitude. The ooly question is whether it

should be symmetric or antisymmetric in CT. In the case of particles described

by the Dirac equation, fermions, it will be aotisymmetric, so that we have

an element of the antisymmetric tensor algebra of 11. (note that since 11. is

iofinite-dimensional, there is no limit in principle to the number of particles).

\Ve thus represent the multiplet state by the so.called Hartree-Fock state:

\{IHF = \{Il /\ \{I2 /\ ... /\ \{In

\Ve remark briefly here that it is this representation for the combined

multiparticle state which gjves rise to the Pauli exclusion principle, which

asserts that two fermions (Dirac particles, for our purposes) May oot have the

same quantum state. This principle was predicted empirically on the basis of

observations of the 611ing of electron shells in the periodic table of elements

(noting that there are at most two electrons in any energy state, one in each

parity), but was explained by the antisymmetry of the multiparticle wave

function for fermions: the Hartree-Fock state is zero if any of its components
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are scalar multiples of each other - that is, represent the same state.

In the case we are considering, we are interested in combining the possible

values k of the .:-axis component of angular momentum (the component along

the a.xis of the electromagnetic field). So we are actually considering

(4.3)

\Ve observe that, by the fact that these (1 are eigenstates of J: with

eigenvalue k (as in equation 4.2), we in fact have the combined state as an

eigenvalue of the operator extended in the usual way to 11., namely:

Jz'1/HF = (Jz 'l1j(k=j)w) 1\ 'I1j(k=]-L)w 1\ ... /\ 'I1j(k=-j)w

+ (lj(k=j)w /\ (Jz 'ltj(k=j-L )",) /\ ••• /\ 'IIj(k=_])'"

+ ... + \{Ij(k=])'" /\ 'IIj(k=j_ L}w /\ ••• /\ (J;: \f1j(k=_j)",) (4.4)

that is. J;: acts on each component of the Hartree-Fock state - but these,

being eigenstates. simply contribute a scalar multiple of the whole state:

J;:\{IHF = (j'1lj(k:jj",) /\ '1Ij(k:j-L)w /\ ••• /\ Wj(k=_j)",

+ '1tj(k:])w /\ ((j - l)'1I}(k=j-L)w) /\ •.. /\ 'IIj(k==-j)w

+ ... + 'IIj(k=j)w /\ '1/j(k=j-L)w /\ ••• /\ (( -j)'I1j(k=-j)w) (4.5)

But this reduces to just:

j

JzlJ!HF = L k'l1 HF = 0
k==-j

(4.6)

•
so that, in fact, that the Hartree-Fock state WHF is also an eigenstate of

the angular momentum operator J;:, and in fact has no angular momentum

about the z a.xis.
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•
It is somewhat less easy to show that the Hartree-Fock state has total

angular momentum also equal to zero (Le. that it is spherically symmetrie),

and to do this we must use the so-called "Ladder Operators" J±. These

are rather similar to the a and at operators developed in the usual treat­

ment of the harmonie oscillator (e.g. in [Cob]). A treatment of the Ladder

operators for angular momentum can be round in [Cohl p. Although they

do Dot represent dassical observables, they represent (chapter VI, part C),

and a situation similar to the current case is treated in [FSY3] using only

the angular momentum L. The addition or removal of a quantum of energy,

or photon (in the case of the harmonic oscillator) or a quantum of angular

momentum (in the present case). These operators are defined by:

so that [J+. J-J = 21iJ: (since [1:1" Jy ] = i1iJ:). \Ve use units where li = 1

throughout, and thus [J+. J-l = 2J:. This is analogous to the harmonic

oscillator. where the corresponding operators are ~(p ±iq) (where p is the

position and q the momentum operator), whose commutator is 1. The ladder

operators are dearly adjoints of each other, and we have the relations

(4.7)

•

(whieh follows from the commutation relation above). From these, we can

find that, as in the case of the harmonie oscillator, the J± act as "ladder"

operators in the sense that tbey take an eigenvector associated with one

eigenvalue to one associated with the next (or previous) eigenvalue. In the

case of the harmonie oscillator (see e.g. [Coh]) this is given the interpretation

of a creation or destruction operator. Here it takes astate iDto astate with
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one more quantum unit of angular momentum, with a multiplicative factor:

we have:

(4.8)

(4.9)

•

(This factor is clearer if we note that j(j -1) - k(k + 1) = (j - m)(j + m + 1)

and j(j - 1) - k(k - 1) = (j - m + l)(j +m)). But then of course if we

apply this to the Hartree-Fock state in the usual way, we will obtain a series

of terms which contain two copies of the same state, and since the wedge

product is antisymmetric, each of these terms is zero, so that:

J±~HF = (Kj~j{A:=j}w) /\ ~j{A:=j-l}W /\ ••• /\ ~j(A:=-j)w

+~j(A:=j)w /\ (Kj - 1~j(A:=j-l)W) /\ ••• /\ ~j(A:=-j)w + ••• =0

where the KA: are the appropriate scalars. In each case, there is a doubled

term, corresponding to a physical system in which two Dirac particles are

in the same state, which the Pauli exclusion principle (the antisymmetry of

the /\-product) rules out. By 4.9 and 4.6, combined with the relation 4.7

decomposing the total angular momentum in terms of the ladder operators

and J;:l we have that the Hartree-Fock state ~HF is an eigenstate of the total

angular momentum operator with eigenvalue 0, and thus that the Hartree­

Fock state can be spherically symmetric, since

and J is the infinitesimal generator of revolutions.

Thus, the multiplet state of 2j + 1 particles can be spherically symmetric

even though each one may have nonzero angular momentum.

Having established that we may have a system of 2j + 1 Dirac particles

which is static and spherically symmetric, we wish to separate out the time
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•

and angular dependence in the Dirac equation to simplify the computations.

To do this, we choose an explicit ansatz for the wave functions, which will

involve the spherical harmonies. These are simultaneous eigenfuncions of the

operators L2 and L z (which is why we make use of them in our ansatz), and

are weIl known, but we shaH discuss them here briefty, though more detailed

treatment is found in ([Coh] chapter VI, part D).

The spherical harmonies are functions }~f(8, cP) corresponding to the eigen­

values j(j + 1) for the L2 operator and k for the L: operator. (Since we have

oot included spin angular momentum here, it is necessary ta adjust this when

dealing with the J2 and J: operators, since DOW we have half-iDtegral values,

sa we will have, for instance,

as a possible spherical harmonie). Direct calculations show that the 8 and cP

dependence in the Y can be separated out to give, for any particular index

values 0: and ;3

In particular, we can use the ladder operators J_ to construct spherical

harmonies from the "maximum" where j = k, since the ladder operator

takes an eigenstate corresponding ta one eigenvalue to that corresponding to

the next lowest quantum state (i.e. the next lowest of the discrete eigenvalues

of the spectrum of the angular momentum operator). The maximum case is

obtainable by writing the operators for which we want ta find simultaneous

eigenstates as ODE's, and is just:
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•
(this is unique up to a constant which is fixerl for aIl the functions YQQ, Yoo- 1,

. .. }~..?o obtained from it).

\Ve define the 2-spinors Xk± l by:
J ï

(4.10)

(4.11)

(where j takes on half-odd-integral values and k runs in each case from - j

to j). The X are eigenvalues of K =al+ 1:

Kk (L: + 1 L_) k
XJ±4 = L+ -Lz + 1 Xj±~

( . 1) k=~ J + 2 XJ±4

[n addition. multiplying by the "polar Pauli matrbc" qr gives, by a simple

direct calculation:

K qr Xk + j ± ~ = _qrK X~, 2 ' J±4

= ±(j + ~)X;±4

so that multiplication by the spinor ur interchanges the two integral-index

forms corresponding to a half-integral j - in other words:

U rxk - vk
j±i - "'j:fî (4.12)

•

Note that for the values of X we are simply associating, for each value of k,

the spherical harmonies (multiplied by the appropriate spinor value) for the

integral values on either side of k, added, leaving only one half-integral index,

j. The whole ansatz, ta get the 4-spinor values associated ta the half-integral
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indices j and k will combine both the integral indices corresponding to both

j and k. In particular, analogously to the development of the ansatz 2.9 for

the solutions to the Dirac-~[axwell equation developed in section 2.1.2, we

see that we have two 2-spinors interchangeable through multiplication by (7r,

motivating the Corm for the ansatz:

(4.13)

and

(4.14)

•

(note the difference between the two forms, indexed· by parity: the inter­

change of the roles of the higher and lower integral indices on the X). Bere,

the ~jkW:i are unknown radial functions ~jkwi (r). This is an ansatz for a si­

multaneous eigenstate of the four operators iÔh J'l, Jz and ,0P as in 4.2, and

for such states, with this ansatz and the symmetry properties, we can (much

as in the existence proof of part 1) reduce the Dirac equation (G-m)'IIjkw =0

to an system of ordinary differential equations, which in this case turo out

to he these:

VA:r~Tkw = [(w - etb)T (~ -~n ± 2
1
2; 1 (~ ~l) - mG~) ]~jL

(4.15)

\Ve remark here briefly on the similarity of this equation to that found in

2.4 - in the case where j = ~ and the electromagnetic potential 4> vanishes,

we retrieve 2.4 from 4.15 immediately, since this is the case of a single Dirac

particle coupled only ta gravity.
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•
It is this last (4.15) which we shaH use for purposes of calculations, bearing

in mind that solutions to the Dirac equation are linear combinations of such

eigenstates.

As we have already discussed in part l, only normalized wavefunctions

have physical meaning (since their squared norm represents a probability

density, and must have total integral equal to 1). In physical situations, we

therefore normalize the wavefunctions by their integral which, as we have

already remarked, can be found by integrating on any spacelike hypersur­

face. since this is invariant when the wavefunction is a solution of the Dirac

equations. So our normalization integral 2.6 becomes

(4.16)

•

where the terms are defined as before. In this case, however, the condition

which we must place on this normalization integral is different: where pre­

viously we required that it be finite, the presence of a black hale in this

case (and the fact that we are considering only the spacetime outside the

horizon) makes it possible that contributions from inside the horizon might

cancel contributions from the outside. This is because this integral, inside

the horizon, becomes negative (since inside the horizon spacelike and timelike

paths exchange roles). The fact that, near the horizon, there may be diverg­

ing positive and negative contributions canceling each other means that we

can only expect to make the narmalization integral be finite away from the

horizon. That is, for every ro > p, we will have the above integral he finite

when it is taken on the part of a hypersurface strictly outside T = TO •
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4.1.2 Einstein and Maxwell Equations

Having obtained the form in the previous section for the Dirac equation and

the wavefunctions of the Dirac particles, wc need ta find the total current

(for coupling ta ~Iaxwell's equations as the source of the electromagnetic

field) and the energy momentum tensor of the matter field (for coupling

to Einstein's equations as the source of the gravitationaJ field). Using the

explicit form for the wave equations (4.15), we find that the total current ior

the Dirac field is just the sum of the separate currents for the singlet states.

~Iore generally we would have

since we are obtaining the current of the Dirac field through the observable

represented by the operator C. This form, given the explicit ansatz we have

chosen. reduces to

j

°a _ ~ ;r;c-Ca ,T.C) - L... 'ft jlew.; 'ft jle:..;

k=-j

because the antisymmetrization in the Hartree-Fock state has no effect since

the different \{I obtained for different values of k are orthogonal with respect

to the bilinear form Ga on 1/., as cao be verified by a direct calculation using

the form for the wavefunctions and the operator in terms of the ~jt"'.

Now because we are dealing with spherically symmetric solutions, it is

c1ear that the components j9 and jtP of the current will he zero, since any

nonzero current in these directions would break the sphericaJ symmetry.

To find the time-coordinate componeot jt, we make use of an identity 00
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the 2-spinors X~±!, namely that

~ Ir Ir (8 ' ) 2j + 1
L Xj ±4 (8. et»Xj±~ ,(/) = 41r
Ic=-j

(4.17)

•

(which follows from the constants involved in the definition of the X and the

norms of the spherical harmonies - summing over k we obtain this simple

form). Using this identity, we can find that the component jt has the forro:

j

/ = L '1IjlrwGt (X)'1tjkw
Ic=-j (4.18)

= T2 (02 82 ) 2j + l
2 +, •r "'t1r

where we recall that Q and ;3 are the real components of the unknown func-

tians 4ljw. \Ve remark that finding such real components can he done for the

following reason.

The radial flu.x of the Dirac fields,

F(r) ~ <l>j",(r) (~ ~i) <l>j",(r)

is constant, since the flux integral over the boundary of any annular region

about r = 0 is zero (hy conservation of current), and by symmetry. The Dirac

equation thus implies that the radial flux is constant, while l~j",,2 ~ F, sa

since the metric is as:rmptotically Oat (and hence l()j~12 t-+ 0 as r ...-t (0) we

must have the radial flux to be zero. But this means that ~j~l<ltjw2 must have

vanishing imaginary part. Since this is real, both components have the same

phase, which we can arrange to be zero by a constant phase transformation

(which is permissible by gauge freedom). Then, since the Dirac equation bas

real coefficients, aIl the spinors can he made real, justifying our use of 0 and

,8 as real values for the spinor components.
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•
In order ta derive the energy-momentum tensor, we use the same varia­

tional technique applied in part I. Taking the variation of the Dirac action

here. we find that in this case the energy momentum tensor is simply given

by the norro of the wavefunction relative to the symmetrized bilinear form

iGa (ab - ieÂb), namely:

j

Tab = ~Re L \I1jk..... (iGa(l1b - ieA,,) + iGb(8a - ieÂa»'1Ijkw
- k=-j

(4.19)

From this it is relatively easy to compute the components of T involving t and

r as indices. First, we observe that the mixed terms involving the angular

coordinates vanish, so we do not need to compute these directly. This is

because of spherical syrnmetry, which rneans that there is no stress along the

angular directions. Directly performing the calculation of the stress-energy

tensor using the ansatz 4.13, 4.14 and the Dirac operator 4.15 allows this

to be found quite easily, making use of the fact (4.17) that the sum of the

norms of the X's over ail k values is known to be 2{;L. This simplifies the

expressions for the first two diagonal entries of the stress-energy tensor to:

",t = (w - ecP)T2 (2 (2) 2j + 1
.If 2 Q +,u 4r 'rr

(4.20)

and the second will he, depending on the parity of the state under consider­

ation, where c = ±,

~=r
(w - etP )T2( 2 ,q2)2j + 1 T (.l(2j + 1)2 mT( 2 (32)2i + 1
....;......-~..;.......- a + fJ ± -O,u + - 0 -

r 2 4rr r J 41r r 2 41r
(4.21)

•
Now to find Tl and T:, we first note that due to spherical symmetry,

they must be equal (since both simply represent an angular component of
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•

the stress-energy ten5Or, which, being spberically symmetric, bas all angular

components equal). They will be found by contracting the wave function

with the angular part of the Dirac operator to find their sum, 50 that:

j

T: + T: = Re ~ 'I1jkw(iGlla6 + iGq>a4»~jkw
k=-)

but we have that these aogular derivatives cao he written in tenDS of the

angular momentum as:

(al is as represented in the expression for the operator K above). With this

equation, we can use the explicit ansatz for the wave functions and derive

the angular components of T in terms of the spinors x. In particular, we

find them to be:

6 <P _ ,T ~j (-k- - - k k - - k )T(J + T4> - af3-3 Re X "±luLX "±! - X"-r-luLX "-r-Ir 1 2 1:2 JT2 1T2
k=-j

(where we have used x~± 1Ur = X~ 1). But we remark here that the operator
1 ï )~ï

al has the X as eigenvectors, because of their construction from the spherical

harmonies (eigenvectors of l) in linear comhinations which preserve this

property aCter application of a.
This final1y yields:

r.' _~ _ f3T ((2 j + 1)2)
Il - Jj. - =Fa... r 3 8rr

Once we have these components for the stress energy tensor, we can

substitute these into the Einstein equations

. . 1· .
Gj = Rj - 2"R8j = -8rrTj
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These field equations give us equations for .4 and T:

and

T' .
2r.-l T = .-l - 1 - 2(2j + l)(w - ecP)T2(o2 + {32)

± 2 (2) + 1)2 To{3 + 2(2j + l)mT(a? _ 132 ) + r2 .4T2 IcP'1 2 (4.23)
r

\-Vith the Dirac current as source for Nla.'Cwell's equations

we obtain a second-order equation for cP:

. T' r 2

r2 .4tP" = -(2j + l)e(02 + 132
) - (2rA + r 2 .4 T + 2·4')cP' (4.24)

Combining these with the Dirac equations for 0: and {3:

') . 1
VAo' = ± -1

2
; 0 - «w - edJ)T + m){3

and

2' 1VAf3' = «w - ecj»T + m)o T 1
2
; j3

(4.25)

(4.26)

•

we obtain the complete set of Einstein-Dirac-~Iaxwellequations for the case

we are considering. Here, we have c = ± as usual.

The normalization condition obtained in (4.16) then becomes, substitut­

ing these new forms,

(4.27)
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•

(for any ra > pl.

We note the similarity of these equations (4.22)-(4.26) ta those in part

l, namely (2.22)-(2.25), which they become in the case where we remove

the ~Iaxwell equation and set j = ~ and tP = O. A similar analysis of

these equations would show that this system has particle-like solutions having

properties similar ta that system, but here we are interested primarily in

the nonexistence of certain classes of solutions, and more specifically certain

classes of black hale solutions. We discuss these results next.

4.2 Nonexistence Theorems

4.2.1 Characterization of Black Hole Solutions

\Vith the computational framework we have now established for the fully cou­

pied Einstein-Dirac-~(axwell equations in the spherically symmetric, statie

case, we can proceed to prove the theorems in which we are currently in­

terested for this case. These will be nonexistence results for certain types

of black hole solutions (namely solutions for which the Dirac field is non­

vanishing). The standard definition of a black hole (e.g. [Hawk] p315) is

that of a region of spacetime from which light or particles cannat escape - in

other words, which is clased under the operation of taking the union with any

future-directed timelike or null paths from any point in the region. For our

purposes, we are interested in describing the fields on spacetime outside of

such a black hale - and in particular, since we are dealing with a spherically

symmetric spacetime, this amounts ta defining our spacetime as the product

of R (time) with a region outside a ball of sorne radius about the origin (a

typical spacelike hypersurface). Study of normal snch black hole solutions,
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•

the Schwarzchild and Reissner-Nordstrom solutions, lead us to characterize

our understanding of '~black hole solution" in the Collowing way, which we

will take as definitive in the present context. We will then prove that the

two mentioned solutions are the only ones satisfying the given conditions.

We assume that spacetime is asymptotically fiat far from the black hole,

so that as r ~ 00 we have .-l(r) ,....:, 1 and T(r) ~ 1. We characterize the

event horizon of the black hole, the surface at r = p, by saying that as

r ~ p from above, we have A(r) ~ 0 and T(r) ~ 00. This corresponds

to the observational properties that near the event horizon of black holes in

such a system one would have, as seen by an outside observer, arbitrarily

compressed length in the radial direction, and arbitrarily slow passage of

time as one approached the horizon. \Ve make sorne additional assumptions

on the horizon in order to ensure a physically reasonable situation. These

are:

1. The volume element JI det 9ijl is a smooth function and is nonzero at

the horizon (the horizon is regular: that is, it is Dot locally distinguish­

able from other points in spacetime, which is physically reasonable,

since only the center of the black hole should be singular).

2. The electromagnetic field strength, FijFi j = -214>'1 2 AT2 (from the

Faraday tensor Fij ) is bounded near the horizon (again, the horizon's

singularity is a coordinate artifact).

3. A(r) obeys a power law. That is, there exist constants C and s, both

positive, such that outside the horizon (Le. for r > p) the following is
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true:

(4.28)

•

The regularity condition (1) is equivalent to the condition that T2 A and

its inverse (T2 A) -1 are both smooth functions of r on the interval [p, 00), since

v'ldetgijl = r 2.4- îT-l, and dearly r 2 is smooth here, so if both of these are

smooth, the volume element is as weil, and nonzero on the horizon since T2 A

must he defined at r = p. Because of the boundedness of this function, the

condition on the strength of the electromagnetic field, (2) simply becomes

the boundedness of 1(j)' (r) 1 for r E (p, P + l).

The first two conditions describe physically reasonable black hole solu­

tions: the principle is that the only singularity should be that at the center

of the black hole. There is a coordinate singularity at the horizon in polar

coordinates, as cao be seen by the fact that the functions A and T appearing

in the metric in this system are not weil behaved. However, physically sig­

nificant scalar quantities are well behaved near the horizon. The regularity

condition (1) that the volume element should be Ronzero means that objects

passing the horizon would not be "crushed", and the condition on the finite

strength of the electromagnetic field means that there are ooly physically

reasonable forces acting there.

4.2.2 Main Theorem

In this section, we develop the results leading up to and inc1udiog the main

nonexistence theorem of this chapter, which states that the ooly black hole

solutions to the EDM system (4.22)-(4.26) is the non-extreme Reissner­

Nordstrom solution. There are two cases, to which we will devote a lemma
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each - the two cases are separated for reasons related ta the form of the

proof. The first case is for the power-Iaw s < 2: this contains the Reissner­

Nordstrom case, with s = 1, and here we show that there are no solutions

with the Dirac spinors not identically zero (where they are identically zero,

we have the R-N solution). \Ve begin this with a technical lemma, showing

that for such a solution, the spinors are finite and bounded away Crom zero

near the horizon. ~Iore precisely:

Lemma 1. If the power-law in condition 3 has power s < 2 and there is a

black hole solution (o,I1,..t, T) to the EDM system (4.22)-{4.26) for which

the spinors 0: and 11 are not everywhere zero, then (02 + (32) is bounded from

above and beLow near r = p: that is, 3f > 0 and 3c > 0 for which

c ::; 0:
2 + /32 ::; c- l when p < r < p + f

Proof. If we take

then by the Dirac equations 4.25 and 4.26, we cau write this as:

(4.29)

VA~ (0
2

+B
2

) = 2 (0 8) (~~l "'-;t') (~)
where the terms involving (w - ef/J )T)o:{3 have canceled. \Ve can get an upper

bound on the magnitude of this last, using the operator of the matrix in the

middle, sa that

(4.30)

•
But now, we have found an ODE for (02 + .B2 )(r) , and since solutions to this

ODE are uniquely determined (Iocally) by tbeir values at any point, we know
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that a nontrivial such solution will be nonzero everywhere on some interval

p < r < p + f. Writing the bound above as:

we ha\'e the left hand side to be an exact differential (of log(02 + ,82)), so we

can integrate from r = p to r = p + f and obtain that

~ow recalling that .-\(r) satisfies the power law (3). with (in this case) s < 2.

we see that .-l(r) as r ~ p+ ~ the term 7:t does not grow too rapidly, and 50

we can take the limit as {! ~ r. since the function is integrable. This yields

sorne finite value, and hence near the horizon the spinors are bounded, as

required for the statement of the lemma. o

•

This lemma will be important for the proof of the case of the main theorem

where s < 2. since it will allow us to show that the electromagnetic field

strength near the horizon is infinite if s ~ 1 on the one hand (violating

condition 2) or to obtain a contradiction from the boundedness above if

s < 1 on the other hand. For the case where s > 2, we will need to use a

different method of proof, since this lemma no longer applies. We shaH use

two more technicallemmas, of which the following is the first:

Lemma 2. If s ~ 2, then

(4.32)
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Prao/. Consider the ~la~well equation 4.24 and write it as

." _ 1 (2j + l)e (2 (32) (r2v'AT)' ,,;,.'
tP - - - Q + - -----::=--0/

A r 2 r2v'AT
(4.33)

(where of course a11 primed derivatives are radial derivatives). Now by the

regularity condition 2, I<p/i is bounded near the horizon, while from the reg­

ularity condition we know that r2v'AT is smooth (hence its derivative exists

and is bounded) and noozero near the horizon, so that the second term in

the expression for <p" is also smooth, and thus we must have that the first

term is integrable, or:

(4.34)

•

(since the other part is bounded on bath sides near the horizon and does not

affect integrability).

~ow if we consider the function in the limit on the 1ert hand side of 4.32,

and take its derivative, we find:

into which we can substitute the bound we found in 4.30 for :"(0.2 + (32), to

get the bound

1:r (r - p)-j(o? + 132
)() 1

~ -~(r - p)-j-l (fi2 + 132) +~ (4m2 + (2j~ 1)2f(fi2 + 132)(r _ p)-i

(4.35)

But now if we notice that bath of the terms of this expression are iDte­

grable, since in each case the fUDction is bounded by a fUDction of the same
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order as 4.34 and thus converges: in each case, this is sa because s ;::: 2. But

since each of these is integrable, so is the left side - since the magnitude of

the derivative of (r - p)-! (02 + 82 ) is integrable, the function itself must

have sorne limit as one approaches the horizon - but since by the condition

3, we have A = O(r - p)S, if the limit were anything other than zero, 4.34

couId not be integrable since near the horizon it would behave as a function

of order O(r - p)-!, which would, since s ;::: 2, diverge. Thus, the lemma

must hold. 0

The last technical lemma we will need is the following:

Lemma 3. If s > 0 then liP'l has a finite, nonzero limit as r ~ p:

Proof. Consider the equation 4.22. Since we have s ;::: 2, by the power-law

for .·t the left side of this equation approaches zero as r ~ p+, so we must

have that:

Now clearly since we have regularity of the horizon is that the term 2(2j +
l)(w - ecP)T2(02 + ;32) should have sorne finite limit as one approaches the

horizon, and the result will follow. But now note that if I(w - e,p)TI is

bounded, then the previous lemma yields the desired result. So suppose

otherwise - if I(w - e,p)TI is Dot bounded near r = p, then consider the

differential equation for .-lT2 arising from the Einstein equations 4.22 and
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4.23:

r~ (.4T2) = -4(2) + l)(w - e<l»T4(o2 + /32)

± 2 (2j + 1)2 T Jo(3 + 2(2j + 1)mT3(o2 _ /32)
r

(4.36)

(4.37)

•

Using this to estimate bounds on the magnitude of the derivative in question,

this gives us the estimate

Now the regularity condition (1) on the horizon means that the left side

of this must be bounded, and since our assumption was that I(w - eq,)TI is

unbounded and the rest of the bracketed terms are aIl bounded, we must have

that the product T 3(0:2+.B2)1(w-eq,)Tj is bounded, but since T grows without

bound as we approach the horizon, this means that lill1r.....p+(w - eq,)T2(o2 +

,82
) = 0, which we have already seen will yield the result desired. 0

\Vith these technical lemmas in hand, we can proceed to the proof of the

main nonexistence theorem we wish to demonstrate for the case of the static,

spherically symmetric ED~I system, which is the following:

Theorem 1. The only blaek hale solutions for the Einstein-Dime-Maxwell

system (4.22)-(4.26) for whieh the horizon satisfies regularity conditions 1, 2

and 3 are the non-extreme Reissner-Nordstrom solution (where 0: = j3 = 0,

hence the Dirae field vanishes) and the case where s = 2 and in this case,
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near r = p the foLlowing expansions hold:

.-\(r) = .40 (r - p)2 + O«r _ p)3)

T(r) = To(r - p)-l + O«r _ plO)
w

f/J(r) = - + tPo(r - p) + O«r - p)2)
e

o(r) = oo(r - p)" + O( (r _ p)"+l)

(j(r) = po(r - p)" + O«r _ p)"+l)

(4.38)

where .-\0 and Ta are positive real, and tPo, 00 and ,Bo are real. The power K.

in the expansion for 0 and j3 must satisfy

1 1
- <1\.=­
2 .40

and 00 and /30 are related by:

'}. 2",.2'7"'2 (2j + 1 )2
nt - e %.l 0 + 2p (4.39)

ri 2j + 1 ~
oo( V .40 1\. ± 2p ) = -tio(m - ert>oTo)

where c = ±.

(4.40)

•

Proof. There are three cases here, split by the special case where s = 2.

Case 1: (0 < s < 2) This case includes the Reissner-Nordstr6m solutions

(where there is no Dirac field - or in other words, the spinors (0,;3) ~

(0,0)) - to show that there are no others, we proceed with a proof by

contradiction. Suppose that there is a black hole solution to the system

(4.22)-(4.26) in which the spioors do oot identically vanish. Theo we

cao use the lemma 1, and we have that (0,13) are bounded near the

horizon at r = p. Consideriog the DE (4.36) for .4T2, we again have the

left side smooth because of the regularity condition on the horizon, and

thus the right sicle smooth as weil. The now as r ~ p, T ~ 00, and 50
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the dominant term of the right is the terrn -4(2j+l)(w-e4»T4(a2 +.B2 ),

50 this must he smooth, hence, since (02 + ,82) > 0 and T ~ 00, we

must have that (w - eq,) H O.

Now take ~'Ia"well's equation in the form previously found in (4.33) and

note that hy the regularity conditions, the term for 4>' is smooth. If s ~

1, however, the singularity for .4- 1 in the other term is not integrable,

hence ItIJ'l ~ 00 as r ~ p+, which contradicts the regularity of the

electromagnetic field on the horizon (regularity condition (2)). On the

other hand, if 8 < 1, then we can integrate (4.33) to get a form for t/>'

around the horizon, since the term .4- 1 has an integrable singularity.

The result can again he integrated, and, ohtaining the constant of

integration at this stage from the fact that lil1lr....p+ (w - etl>(r)) = 0,

giving the formula for the expansion of cP about the horizon:

Upon substituting this form for cP ioto the Einstein equation for .4,

namely (4.22), we see that since the right side of (4.22) is bounded as

r ~ p+ since .4 and r2 .4T2 1t/>'1 2 are hounded and (w - etl» = O(r - p),

while Tl (Q2 + /32) is of order (r - p) -5, with s strictly less than 1.

But the left side is not bounded, being of order (r - p)5-1, which is

impossible. This yields a contradiction, sa in fact there can be no such

solutions.

Case 2: (8 > 2) By Lemma 3, we have a Taylor series expansion around

r = p for (w - et/» of:

(w - eq>)(r) = c + d(r - p) + R(r - p)
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where 0 1: Idl = ~ lim,......p+ J1T·
SO near the horizon, the term (w - efj»)T, which appears in both the

Dirac equations (4.25) and (4.26), diverges monotonically. Now by the

Dirac equations for the spinor components 0 and {3, namely 4.25 and

4.26, we can see that since the derivative for each component cantains

this term multiplied by the other component, we have the spinor (a, /3)

spinning about the origin at an increasing rate as one approaches the

horizon. In [FSY3) it is shown that in general if we have an ODE

~/(x) '" [a(x) (~ ~l) + b(x) (~ ~l) + c(x) (~ ~)] ~(x)

with smoath coefficients a , b , c, and with ! and ~ smoath and mon<ra a

tane near X = O. and b2 +c2 < a2
, then 1<1>12 is bounded above and below

Dear x = o. (The praof of this involves sorne relatively straightforward

analysis involving the functional given by the Hermitian matrix

(
1 +! -~)

A(x) = _~a 1 _a~

and its norm)The Dirac equation in the fonn (4.15) is now such a

system, with x = (r - pl, so we would have (0,.8) bounded away

from zero, which is in contradiction with lemma 2, and so we have a

contradiction.

Case 3: (8 = 2) In this case, which must include the Reissner-Nordstrôm

case, we have from the power-Iaw condition on .4 that the first two

Taylor expansions in 4.38 must hold - this is part of the theorem proved.

Now again by results shown in [FSY3) we have that (w - ecP)T cannat

diverge monotonically near the horizon. But by Lemma 3 implies that
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it has a Taylor expansion around r = p with nontriviallinear coefficient

d = lilllr.....p+ ~ liT' So the constant term in the expansion of the bare

(w - eq,) must be zero because of the expansion for T, and we have

Hm (w - eq,)T = ;\
r...... p+

with

1
\1 e l' (r - p)-L;"\ = - lm -----,,~-

p r ..... p+ VA

(where we have used. from Lemma 3, the form for the derivative of q,

to find this form).

Now we can rewrite the Dirac equations 4.25 and 4.26 in the trans­

formed variable uer) = -r - pln(r - p), which approaches infinity as

one approaches the horizon. The qualitative theory of ODEs, and in

particular the linear stable manifold theorem, describes the asymptotic

behaviour of solutions to such an equation, and we can thus determine

that Q and i3 satisfy the required power law from 4.38, white the con­

straint that K > ~ is the result of the fact that lim(r-p)-1(o2+.B2)(r) =

o(the result of lemma 2 in the case s = 2), since Q and.B were of higher

order than' ~ in (r - p), this would diverge.

The remaining constraint relating the spinor coefficients 00 and {jo is

derived by substituting the taylor expansions we have thus obtained

into the Dirac equations.

o
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Chapter 5

Case II: Time Periodic
Solutions of Dirac Equation
Axisymmetric Black Hole
Geometry

•
ID

•

In the first part. we dealt with an existence theorem for the Einstein-Dirac

system in the case of spherical symmetry, and in doing 50 developed sorne of

the analytic tools for examining such systems. In this part, on nonexistence

theorems for black hole solutions, we are considering as well sorne slightly

different situations. In chapter 4, we added electromagnetism and dealt

with a fully coupled Einstein-Dirac-~Ia."well system, still in a spherically

synlmetrÎC situation. In this chapter, we shaH relax full coupling and consider

the Dirac equation acting on a fixed background, but this will enable us to

relax the symmetry requirement, allowing perfect spherical symmetry of the

black hale spacetime to be defonned to an axisymmetric geometry. The

Dirac field will still be coupled to gravity and ta electromagnetism, but the

coupling of the metric and the Faraday tensor to the Dirac field is ignored.
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This is a reasonable approximation for the case where the mass and charge

of the Dirac particle is small compared to that of the black hole, as would

typically he the case in physical situations. The advantage of this approach

is that it allows us to consider a far more general black hole geometry. In

particular, we shaH begin with a consideration of the Kerr-Newman black

hale geometry, which is the O1ost general geometry involving the eoupling of

gravity to electromagnetism. On this background, we will show that there do

not exists time periodic solutions of the Dirac equation, which we do by first

decomposing such solutions ioto Fourier series and considering the various

components as statie solutions. The proof that there do not exist static such

solutions resembles that for the Reissner-Nordstrom background.

5.1 Kerr-Newman Geometry

The Kerr-Newman geometry is the O1ost general black-hole solution for the

Einstein-~la..xwell equation, and forms the background which we shaH con­

sider for the solutions of the Dirac equation in this situation. The Kerr­

Newman geometry is parametrized by the mass of the black hole (as mea­

sured from infinity), its angular momentum (also measured from infinity) and

its charge. That is, the Kerr-Newman solution is characterized by the param­

eters (a, Q, .~l), where a is the angular momentum per unit mass ;" Q is the

charge, and Al is the AD~I mass (see for instance box 33.2 of [MTW], pp878­

883). There is a horizon only if the mass is sufficiently high to overcome the

repulsive effects of angular momentum and the associated frame dragging,

as weH as the charge of the hole. This occurs if and ooly if M 2 ~ Q2 + a2

- for smaller mass, one obtains a "naked singularity", namely a singularity
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of curvature without the presence of a horizon, which is presumed to be a

non-physical phenomenon. The limiting case with 1\;[2 = Q2 + a2 is the so­

called "extreme Kerr-Newman geometry", and the result we shaH show does

Dot apply to such a case.

The various degenerate cases where the angular momentum, the charge,

or both, vanish yield, respectively, the Reissner-Nordstrom, the Kerr, and

the Schwarzchild solutions, which together are aIl the stationary geometries

for the Einstein-~Iaxwellequation. The result we shaH deal with here shows

that there can he no time-periodic solutions for the Dirac equation on this

geometry (note that this result also generalizes the condition in the previous

result, pertaining only to static solutions). This shows, in this more gen­

eral class of geometries, alheit for only partial coupling, a result similar to

that of chapter 4 holds. To consider solutions of the Dirac equation on this

background, we must make use of several coordinate systems, because it is

necessary to extend the solutions across the event horizon (though this can

only be done in the distributional sense). The generalized Dirac equation

is discontinuous at the event and Cauchy horizons of the KN geometry, but

may still he analyzed hy techniques similar to those used in the spherically

symmetric, completely coupIed case, involving the asymptotic behaviour of

certain spinors as one approaches the event horizon. The main difference is

that one must derive conditions at both types of horizon in order to extend

the solutions obtained outside the black hole into the interior, since there

may be more than one '''asymptotic end", or asymptotically fiat portion of

spacetime. in the Kerr-Newman geometry.
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5.1.1 Form of Dirac Equation in KN Geometry

A convenient set of coordinates on the KN background are the Boyer-Lindquist

coordinates (t, r, 8, tP) in which the metric bas the form

(5.1)

with

(where e.g. [~IT\V] uses p2, we use U in conformity with [FKSYl]) in these

coordinates, we also have that the potential ..4 for the electromagnetic field

is

A = fFdx2 = - 't (dt - asin2 8dt/1) (5.3)

•

~o\v in these coordinates, we observe that there are several cases where

the metric becomes singular. \Vhen r = 0, which is at the singularity itself,

the metric blows up, as does the curvature tensor, resulting from the presence

of the U in the form of the metric. But the metric also blows up at the roots

of ~. Now in a non-rotating, non-charged black hole, the equivalent of ~ is

a linear function witb ooly one foot (at the horizon), but here there are two.

These correspond to the event horizon and the Cauchy horizon, and occur

at, respectively:

and

ro = fli/ - Jkl2 - a2 - Q2
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ln these coordinates, we construct a frame of vectors at each point from

which we will construct the Dirac matrices. This will be a so-called Newman­

Penrose frame, which is a way of choosing a basis for the tangent space at each

point in a way which simplifies certain calculations. The frame produced is a

null frame - that is, it consists of null vectors. The Newman-Penrose method

is motivated (cf. [Wald] pp52, 372-373) by considering a basis for the space

of Pauli 2-spinors at each point, say 0'-\ and L'o\, having OAL'-\ = 1. One

constructs the frame by taking two null vectors as the vectors corresponding

to the product of these two basis spinors with themselves:

and

together with two vectors obtained by the other two possible multiplications

of the basis spinors with their complex conjugates, namely the complex (and

mutually conjugate) vectors:

and

(recall that ordinary vectors can be formed as the product of spinors and

complex-conjugate spinors, sa that we really have bere a null tetrad of vectors

(la, na, ma, :;=na)). Such a null frame bas the property that Lana = l, marna =
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(5.4)

•
-1 and aU other inner products between its elements vanish. The complex

vector m may be considered as a complex linear combination of real vectors

corresponding to its real and imaginary parts, say mG = ~(xa + iyG) where

x and y are unit spacelike vectors orthogonal to 1 and n.

In order to obtain a useful form for the Dirac operator on the KN back­

ground, we make use of a frame (the symmetric frame) of this kind, which

is expressed in Boyer-Lindquist coordinates as:

l= 1 ((r2+a2)~+~~+a~)
J2UI~1 ôt [)r BtI>

n = f(~) (r2+ a2)~ - ~~ + a~)
J2UI~1 ôt Br 8t1>

1 ( .. 8 8 i 8)
m = "/2U la sin 8ôt + 88 + sin (J 8tjJ

1 ( .. 8 8 i 8)
m = ../2U -la sin (} iJt + 88 - sin 8 8iP

In this expression, we have used the step function !(x) which is 1 for

nonnegative x and 0 for negative x. Applied to ~, which is negative between

the Cauchy horizon and the event horizoll, this makes the frame degenerate

there (with n = 0).

From this Newman-Penrose null frame, we can construct a real orthonor­

mal frame by taking linear combinations of the symmetric frame vectors:

•

!(~)
Uo = /2 (1 + n)

1
Ul = /2(1- n)

1 _
U2 = y'2(m+m)

1 _
U3 = y'2i(m - m)
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\Ve note again that this frame is degenerate between the Cauchy and event

horizons. It is this frame which we shaH use in representing vectors, rather

than the coordinate frame, since this makes our calculation simpler.

l'low if we consider the Dirac equation in this background, we first remark

that, while the form (:\.3) for the E matrices remains the same as before, the

spinor connection D giving the spin derivative for the Dirac operator (iGj D j )

now has a slightly different form due ta the presence of an electromagnetic

field with potential .-l, which influences the Dirac particles if thcy are charged.

The spin derivative D is thus of the form

Dj = : - iEj - ieAj
J

sa that the B matrix has the form

The analysis of this is very similar to the case in part l, except for the

presence of the electromagnetic potential tenD. One cao, by similar means

to those used there, fiod a Corm for the B matrix which involves only partial

derivatives, namely:

B = 2~8j( v'1Yïu~ha - iémnPljabUam(8jU/ln)Ucn"(5"(C + e."jU~"(a (5.7)

Now frorn this, the explicit form of the Dirac operator as

·aG = iGJ-. + B(x)axJ

and the explicit form for the T matrices and the u-basis for vectors, it is

straightforward to compute the Dirac operator directiy, though the terms

are somewhat complicated.
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The matrix for the Dirac operator has a fairly symmetric form, involving

the following terms:

8± = ~(ia9 + icotl:/ + aS~1:/ (r - iacosl:/)) ± ~(asin(JÔt + ~8atP)
vU 2 2 vU sIn

and

-{3 1 ( ·a i 8 a sin 8 ( . 8) ) 1 ( . 98 1 a)
± = Vil l (J + 2cot - 2U r + la cos ± Vil a sIn t + sin 8 tP

and

and

o± = - ~ (i(r2 + a2 )8t + ia8f/) + eQr)
UI~I

~(. .r - Al i . )
± VU t8r + l 2~ + 2U(r + la COS 6)

\Vith these terms, the Dirac operator may be written as:

G= (5.8)

•

The Dirac Equation is then (G - m) \II = 0 for this G, acting on Dirac

4-spinor fields \II.

It was first shown by Chandrasekhar in 1976 that this Dirac equation

can he separated completely ioto ODE's in the Kerr background, and later
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extended to the KN background by Page and by Toop. Although we will not

enter into great detail, we will now discuss this separation. It proceeds by

making a gauge transformation of the wave function into a new form, where

the Dirac operator is transformed into a form which separates into a SUffi of

two operators with dependence upon only, respectively, radial and angular

coordinates.

If we consider the matrices

1

S = l.:ll.

and

(r - ia cos 9) !
o
o
o

o
(r - ia cos 9) 4

o
o

o
o

(r + iacos9)!
o

o
o
o

(r + iacos 9) 4
(5.9)

(

(r + ia cos 9)

r . 0=-l o
o

o
-Cr + iacos8)

o
o

o
o

-(r - ia cos 9)
o (r - i~COS9J

(5.10)

Then one can consider a gauge transformation of the wave function 'II by

S. namely 'ÎI = S~. and consider the effect of this on the property that \II

should satisfy the Dirac equation. This becomes:

rS(G - m)5-1 \Î1 = 0 (5.11)

50 the Dirac operator is DOW represented as r 5 (G - m )5- 1, which, when

calculated, turns out to be the SUffi of the following two operators:

( imr
0 Mt>+

~(~)~v_)
R= ~(~)~V_

-imr 0
0 -imr

JiXi'D+ 0 lmr
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and

(

-am cos 8

A= 0o
-c-

where we have

o
am cos 8

C,+
o

o
-C,_

-am cos 8
o

and

~ow since 'R is dependent ouly on radial variables and .A only on angular

ones, and the transformed Dirac operator on \ÎI is their SUffi, we would expect

to try to find an ansatz for \ÎI which reflects this separation by allowing the

system to decompose into two independent systems. These systems will be

for 2-spinors. involving 2 x 2 matrices as operators, so we need an ansatz

involving two 2-component functions, one dependent upon r and the other

upon (J. If we first remove the time dependence to get the form

\ÎI(t, r, 8, 4») = e-âwt-ik~ci-(r, 8) (5.12)

•

for real energy w and half-odd-integral spin k. We then say that if our

unknown 2-component radial function is ..Y±(r) and the angular one is Y±(8),

we can construct the whole fonn for ci- from these as:

(5.13)
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(5.14)

•

•

The Corm for '11 realized from these expressions gives, when we apply the

Dirac operator R +.A to the gauge-transformed wavefunction, gives, clearly,

('R + A) 'Ît = O. but in fact we have more, namely that since R acts purely on

the radial component and A acts purely on the angular component, this can

only happen if 'ÎI is a siffiultaneous eigenstate of the two operators, sa that

From this, we find that the Dirac equation decouples. From the equation

R'Ît = À'Ît we obtain:

(_~ml~rIV_+\ imr - À ) ( ..\+) - 0
~ A l.;lJiXïV- .\_-

while from the equation A'Ît = -ÀW we get:

(amc;+D +" -am~~!+ ") G~) == 0 (5.15)

Furthermore. the operators V± and L,± can he simplified, since each is applied

to a purely radial or purely angular term, respectively, so the other derivatives

involved in each operator vanish, leaving the forms:

and

c± = a, + ~ cot D'f (aw sinD + kcsc D)

5.2 Nonexistence Theorem

5.2.1 Matching Conditions for Spinors Across Horizon

Having obtained the ODE forros (5.14) and (5.15) above for the Dirac equa­

tion, we now note that there is more to be done before we cao proceed to
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analyze the solutions to this system. In particular, we observe sorne difficul­

ties with the radial equation, which not only posesses a discontinuity due to

the step function €(~), but also, because of the presence of the term ~-l

in the expression for 1J~ is singular at the roots of ~, namely T = TO and

T = Tl' The existence of these poles in the coefficients of the equation means

that the solutions - the wavefunctions representing the Dirac field - may have

discontinuities at these values of T, may in fact have singular behaviour as

T approaches them. The peculiar causal structure of spacetime at these, the

event and Cauchy horizons, also makes treatnlent of a wavefunction defined

across them somewhat problematic. Consequently, it is necessary to develop

matching conditions across the horizon, which will give conditions on the

relationship between the solutions to the Dirac equation inside and outside

both type of horizon.

The maximal analytic extension of the Kerr-Newman geometry (part of

whose conformai diagram is shown in figure 5.2.1) consists of an infinite

nurnber of copies of three types of regions, which are designated l, kt, and

o because they represent regions Inside the Cauchy Horizon, in the ~liddle

(between the Cauchy and Event Horizons) and Outside the Event Horizon.

That is, in our Boyer-Lindquist coordinates, the region 1 represents the part

of the spacetime with r < ro, region kl is where TO < r < Tl and 0 is where

rl < r. This is similar to the situation with the Kerr solution as in, for

instance, ([Hawk] p165). Thus, we are considering conditions which allow us

ta extend solutions to our equation, or find constraints satisfied by solutions

extending one given on sorne part of the maximum analytic extension.

To derive such conditions, we must obtain the Dirac operator in a Corm

93



•

•

Figure 5.1: Part of the Penrose Diagram for the Maximal Analytic Extension
of Kerr-Newman Geometry

which extends across the horizons - this is done by expressing the operator

in Kerr coordinates, which are not singular at the horizons. Actually, there

are two types of Kerr coordinates, one for each horizon which we wish to

cross. ln each case, we will construct the wavefunction \{I as the sum of two

distinct solutions, one for each of the two regions bordering the horizon in

question. This requires the use of a step function (in particular, the Heavi­

side function e) to multiply by the two solutions, since the wavefunction as

a whole need not be smooth, and sa neither solution need necessarily he ex-
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tendible smoothly across the horizon. Derivatives of these yield Dirac delta

functions, and the necessity of defining solutions of the Dirac equation in the

distributional sense.

The Kerr coordinates resolve sorne of the difficulties of the Boyer-Lindquist

coordinates for our purposes - we relate them infinitesimally (the relation of

coordinate values themselves can be recovered - up to an irrelevant constant

- by integration) in order to make easier the transformations of the Dirac ma­

trices, which transform, we recall, as local coordinate basis vectors. There

are two possible Kerr coordinate patches of interest, one crossing the Event

horizon, which we designate with a + index, and the other, indicated with

a -, which we use to derive the matching across the Cauchy horizon. The

coordinates rand 8 rernain unchanged, but the Kerr coordinates have new

variables u± and rP±, which are related to the Boyer-Lindquist coordinates

by the following infinitesimal relations:

and

a
del>± = dei> ± ~ dr

\Ve note that u± are null coordinates (that is, 8u± is everywhere nu11), and

the difference of sign indicates a difference of direction: u+ are incoming

in the sense that following a curve of increasing u+, one crosses the event

horizon from the outside (region 0) to the inside (regioD kl), allowing us

to create matching conditions across this horizon. Similarly, u_ represents

outgoing Dull curves crossing the Cauchy horizon. This interpretation of

the u± is borne out by noting that along curves of constant u±, we have a
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simple relation between dt and dr given by the infinitesimal relation above.

ln particular, we will have the equality of the dr term in this relation with

-dt, so that:

and since as one approaches the Cauchy horizon, integrating, we have t ap­

proaching =fOO, and at the event horizon, approaching ±infty. So the event

horizon lies at a point at infinity in the BL coordinates, namely (r, u±) =

(Til =fOC), and the Cauchy horizon at (r, u±) = (ro, ±oo), since we can use the

infinitesimal relations above to find that the u± follow t in this way. But then,

the Kerr coordinates can be seen to extend the B-L coordinates in the sense

that they provide a coordinate system in which the problematic behaviour

of the metric at the horizons is eliminated, since the horizons DOW exist only

at points at timelike infinity, hence there are no difficulties crossing the hori­

zon (this terminology is somewhat confusing since it would appear that, as

the BL coordinates cross the horizons and the Kerr coordinates do not, the

former should be extend the latter - the fact of the coordinate singularity at

this crossing accounts for the terminology used).

Now we need to express the Dirac equation in the Kerr coordinates in

arder ta derive the matching conditions we need across the horizons. We

remark that, ta preserve the form of the Dirac equation, it will be necessary

to cOlnbine two transformations - both the coordinate change of the Dirac

matrices, and a gauge transformation of both the Dirac matrices and the

spinors. The general form of the gauge transformation will be:

(5.16)
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and thus, to preserve the form of the Dirac equation,

(5.17)

(5.18)

•

Before returning to this, we see how the Dirac matrices transforrn into

the new coordinates, dealing first with the case of the matching across the

Cauchy horizon, which is dealt with by the chart (u+, r, 9, 4>+), 50 we first

have:

and

since u+ depends only on t and rand €P+ depends only on tP and r. The other

two Dirac matrices rernain the same - since we found them in the symmetric

frame. however, and this involves a step function of ~, we find that we have

Heaviside functions S(x) (which is 1 for x ~ 0 and 0 for x < 0) involved in

the relevant case, namely that associated with the r-coordinate, which is the

coordinate in terms of which ~ is defined.
. 0 2 + 2GU a sin 2 r a (0 J)

+ = - VU '"Y + v'UI~1 '"Y - "'1

Gr = -JI~I (8(.o.h3 + 8(-.o.hO)

G6 = __1_""'(1

VU
1 a

GetJ+ - _ ......2 + (""10 _ .....3)
- sinOVU 1 v'UI~1 ( 1

\Vith this, we cao return to find the gauge transformation matrix V(r) re­

ferred to above. This is chosen 50 as to remove the singularity at the horizon
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caused by the presence of the ~ in the expressions for GU+ and G<P+. In

particular, it may be found that with the transformation given by the matrLx

(5.19)

(5.20)

•

the problematic forms for Gr and the singularities in GU+ and G<p+ disappear,

since calculating the new form of the Dirac matrices (;j yields:

. (J 2 2
(;U+ = a sin 2 r + a (0 J)

.jf] "( + .jf] "( - "(

c- = -J2~((1- ~hO + (1 + ~)'?)
èS = __1_...,.1

.jf]

- 1 va
GrP+ = _ "(2 + _,. (...,.0 _ "(3)

sin (J.jf] l./

In this form. we have matrices which are regular across the horizons,

being regular everywhere except at coordinate singularities (and so, via the

anticommutation relations. is the metric), and since the Dirac operator (;

on wavefunctions in this transformed form is constructed as ususal, it too is

regular across both horizons: it is just (; = ~·Gl,·-l. \Vith this recognized, we

can examine its behaviour in the vicinity of the horizons and derive conditions

relating the wavefunctions inside and outside them.

\Ve have wavefunctions 'Ïf l, q, M, and q,0 which are smooth on the interior

of the regioos 00 which they are defined. At the horizons, however, we

may have non-smooth beha\;our, so it is oecessary to consider the total

wavefunction ~ as a generalized function - that is, the Dirac equation holds

in the distributional sense for the ~'function" q, = ~1 + \II-M + ~o. In order to

capture the effects of these possible discontinuities in the derivatives in the
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Dirac equation, we use the Heaviside functions again: near each horizon, we

consider lÏ1 to be locally the sum of the two solutions on each side, multiplied

by the appropriate Heaviside function to capture the fact that the function

in quesition does not extend past the horizon. The generalized derivatives

of the wavefunction then includes Dirac delta functions contributed by the

derivative at the horizon. Since the Dirac equation is satisfied by the wave

functions everywhere else, this contribution must vanish so that the Dirac

equation is satisfied on the whole function. This is what will give us our

nlatching conditions, aCter we integrate against a test function (to give the

distributional equation a meaning).

50, in the case of the Cauchy horizon (for which we have developed the

Dirac operator above), looking near r = ro, we have that the wavefunction

is locally

and sa the only part oC the derivative in the Dirac equation which does not

trivially vanish because of our assumption that lÏ11 and 'ÏI M are solutions will

be the derivc:ltive of the Heaviside function • which contribution must also be

zero. Since distributional derivatives work in the usual way, this is simply

or, using the fonn for {;r,

When we integrate this (removing the superftuous constant) against some

smooth test function T1( T) in any t:-neighborhood of TO to obtain well-defined
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spinor equations, it becomes

which holds for any E.

\Vhile we may have singular behaviour for the difference (1° + ,3)(1ÏIM ­

'Ït1) as we approach the horizon, this iotegral will nevertheless be well defined

for appropriate choice of test function 1](r), and since it holds for any test

function at aIl, we may choose such a one to work with. One suitable 1], for

example, is

since this controls any singular behaviour of the difference term above through

the denominator (here. h is any smooth function we may choose).

\Ve observe that. except at the horizon itself, the difference 'Ït M - 'Ït 1

has one of its terms vanishing. Because of the nonzero contribution ta the

integral at the horizon due ta the delta function 8ro ' and the fact that eta( r)

must be smooth here, we cannot conclude from this that for the integral

across both sides to cancel both solutions must vanish (though that is in fact

the result we shaH eventually wish ta prove). Instead, we can only obtain a

bound 00 the difference between ~M and \Ï1[ as one approaches the horizon.

In particular, we obtain an expansion which expresses the difference as sorne

constant plus a correction term. The constant will in general be nonzero,

while the first arder correction term will be a multiple of \Ï1 M - this can be

determined from the integral farm of the distributional equation above. Thus
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(5.21 )

(5.22)

(5.23)

•

•

the matching condition at the Cauchy horizon is:

(...,,0 + ,3)('Ï1M(u+, r + ê, 9, l/J+) - \Ïl r (u+, r - ê, 9, l/J+))

= (0)( 1 + 1('"/ + ,..?)~~,( u +, r + ~, 9, l/J+ )) as € I-t 0+

and the one at the event horizon, similarly, is:

(...,,0 + ,3)(q,OCU+, r + ê, 9, l/J+) - lÏJ M(u+, r - ê, 9,4>+))

= (0)(1 + 1(...,,° + (3)\ÏI~,(u+, r - ê, 9, l/J+)) as € I-t 0+

To understand the significance of this condition, we observe that

Ail of these derivations are exactly parallel the situation in the other

Kerr coordinate chart (u_, r, 9, l/J-). The coordinate transformation from BL

coordinates to this Kerr coordinate chart give the Dirac matrices to be:

e;u- - _ asin9 2 + r
2 + a

2
f.(~)( 0 _ 3)

- ..jfj' v'UI~1 "Y "Y

cr = - JI~I (e(:l)'i + e( -:lhO)

1
G(J = - ..;u'"f1

1 a
GIP- = - '"? + f.(~)('yO - 1'3)

sin 9..jfj JUI~I

which we regularize with the spinorial gauge transformation given by

(5.24)
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•
(which we note are identical to the Cl for the Kerr +-chart except for the

final term of CtP- and the replacement of ("'t0 + "'t3 by ')'0 _,,3 in the first and

last cases).

These give matching conditions which are similar to the previous ODes in

form, except for the change of sign in the ,3 term. The matching condition

at the Cauchy horizon is:

(,0 _ ....(3)(~ M(U-, r + é, 8, (j)-) - ~ rCu-, r - €, 8, (j)-))

=0(1 + 1(,° - ...,.3)~M(U-, r + €, 8, (j)-)) as é ~ 0+

and at the event horizon:

(...,.0 - ..../3)(~o(u-,r+ê,8,(j)-) - 'ÎlM{u-,r -ê,8,lj)-))

=0(1 + 1(...,.0 - ...,.3)~A,(u-,r - ë,8,lj)-)) as é ~ 0+

(5.25)

(5.26)

•

In order to make use of these in our subsequent proof of the main Donex­

istence theorem, however, we will need to have these matching conditions

expressed in Boyer-Lindquist coordinates. Since (5.12) shows that the de­

pendence on t and dJ in the Corm of the wavefunction is that of a plane wave,

being of the form

e""'t -ik,p

we know that our condition 5.21 must hold in BL coordinates as weil, and

similarly for the other matching conditions (5.22), (5.25) and (5.26). We will

work out the details of the transformation into BL coordinates for the first,

noting that they are similar for the others.

Since this condition was obtained by extending across the Cauchy horizon

r =ro at timelike negative infinity at t = -00, the condition will have the
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•
form

o 3 - -(, +, )('I1 M (t,ro +é,IJ,t/J) - 'I1[(t,ro - ë,(J,t/J))

= 0(1 + 1(,0 + ,",(3)~ M(t, r + E, (J, t/J)I) across t = -00

(5.27)

But now we must convert this condition on the transformed waveCunction

in Boyer-Lindquist coordinates into a statement about the untransformed

wavefunctions, undoing the gauge transformation to which we subjected the

spinors in converting coordinate systems. Recall that we used the transfor­

mation 5.16 with the matrix Y given by 5.19. But notice that

(;,0 + ,3)y-1 ~ !(;'O + ,3)«I~I-t + 1~lt) + (I~I-t _1~lt),0,3) (5.28)
2

= I~I-~ (1'0 + 1'3) (5.29)

since the second term vanishes due to antisymmetry of the ,. This means

that when we apply the inverse gauge transCormation 'It = \!~-l ~ we then

can remove this factor oC I~I-t and get that

I~I-~("'/+ ,",(3)(WM(t, ro + c,lJ, cP) - 'ltl(t, ro - c,8, cP))

=0(1 + I~I-t 1(1'0 + 1'3)'11 M(t, ro + c, IJ, t/J)I)
(5.30)
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(5.31)
1 1 1 0 3

(r-iacos8)2,(r-iacos8)2) x 1~14(1' +'Y)

But this is not sufficient, since in order to obtain the condition whicb

applies ta the form for which the Dirac equation is separable, we must find

how this appears for the transformed 'Ît = 5\11 for the matrix 5 given by

(5.9). This transformation does not affect the factor oC the matrix (1'0 + 1'3),

since the only difference in pennuting the order in multiplication of 5 by

(1'0 + 1'3) is the permutation of the blocks of S:

(,0 + A(J)5 = diag«r + iacos8)~, (r + iacos8)~,
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where the diagonal matrix is just I~I-tS with the 2 x 2 diagonal blocks

permuted. \Ve note that this matrix is regular on the horizon, hence has no

effect on the matching conditions, so that the only significant effect is the

presence of the factor làl!, which cancels the reciprocal factor in the form

of the matching condition, leaving, in the separable gauge:

o J - -(-y +"'r)(\11M(t, ro + E, 8, cP) - \li(t, ro - E, 8, cP))

=0(1 + 1(,0 + "'/)'ÎI M(t, ra + e, 8, cP)l) across t = -00

(5.32)

and, through the same transformations (using (,0 - "'/3 ) in the case of the

second set of Kerr coordinates), we arrive, for the other matching conditions,

at:

a J - .-("Y +, )(\110 (t, ro + E, 9, tP) - \II ~,(t, ro - ê, (},l/J))

=0(1 + 1(,0 + ,3)'ÎtM(t, ra - e, 8, tb)1) across t = 00

a J - -(., +,)( '11 M (t, ra + ê, 8, cP) - \li ( t, ra - e, (}, l/J»

=0(1 + I(,a - ,J)'ÎtM(t. ra + ê, 8, cP) 1) across t = 00

a J - -("'r +, )('IIo (t,ro+E,9,cP)-\(IJ\,(t,ra- e,8,l/J))

=0(1 + 1(,0 - "'/)'Ît M(t, ra - E, 8, l/J)I) across t = -00

(5.33)

(5.34)

(5.35)

•

These are the matching conditions we shaH use in the development of the

nlain theorem which we develop in the next section.

5.2.2 Main Nonexistence Theorem

Our intent in this section is to develop the main theorem proving the nonex­

istence of (nontrivial) time-periodic solutions of the Dirac equation on the

Kerr-Newman background. Ta do this, we will first prove a technicallemma
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concerning the 2-spinor ..~, showing that it has finite values on the event hori­

zon and cao be zero there only if it vanishes everywhere outside the horizon

(that is, in the region of type 0 bordering on that horizon).

Since in a physically realistic situation (see [~ITW] p882) the surface of

a collapsing body would obstruct the boundaries between these regions, and

thus these would Dot be formed by a realistic physical process within the

universe, only a part of the full ma.ximal analytic extension is physically

relevant. \Ve restrict our attention to sorne finite subset of the maximal

extension, which we caU the physicaL spacetime. Any region 0 (corresponding

to the exterior of the black hole) which lies within the physical spacetime is

called an asymptotic end, and we assume that each such asymptotic end is

time-oriented. Each asymptotic end adjoins two regions of type AJ, one in the

past and one in the future. This corresponds intuitively to the notion that

one can fall ioto a black hole, arriviog in the future, or that the time-reversed

version of this may also occur (thus requiring the matching conditions across

the horizon) but that these regions are not the same since, relative to an

outside observer, falling into the hole requires an infinite duration, so the

past and future regions of type Al are separated by an infinite length of

time, and are considered distinct.

Since we wish to describe the behaviour of the Dirac wave functions on the

physical spacetime, we consider that the wavefunction \If vanishes everywhere

in the ma.ximal extension which is not included in the physical spacetime, as

the rest of the extension is nonphysical, hence the Dirac particle cannot exist

there. Similarly, since in the case of a black hole, we assume that 'II vanishes

on regions of type AJ in the past of the asymptotic ends we are considering
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•
(since. matching these solutions across the horizon, we would otherwise have

particles emerging from the event horizon. which we are assuming to be

impossible ).

Since we will be speaking of time periodic solutions, in which the same

physical state recurs with sorne period, we must define what we mean by the

same physical state. This will not be defined as the value of the wavefunction,

since a physical state must be determined by observables, which correspond

to Hermitian operators on the state space 1-1.. Because of this, wave functions

differing by a constant phase represent the same physical state, and hence

time-periodicity must mean that there is a period and a phase difference such

that the wavefunction at times separated by that period differ only by the

given pha..lï;e difference. That is, \{I is time-periodic, of period T if there is

sorne constant n such that

\Ve remark here that we are defining time-periodicity in terms of the

time coordinate in Boyer-Linquist coordinates, since it corresponds to proper

time for an observer at infinity, who will observe the time-periodicity of the

wavefunction. ~ow, given such a periodic solution, we can write \{I as a

SUffi of Fourier coefficients (as with any periodic function), summing over ail

possible values of the eigenvalue À, of the spin eigenvalue k, and of the period

of the Fourier term. Thus, the wave function decomposes as:

\{I(t. r, (J. ti» = e-iOt L L L e-2'1'in;' e-it"4)Ànt

nEZ k-îEZ ÀEcr.(.A)

(5.36)

•
where C1";(.,A) is the spectrum of A for fixed values of n and k - that is, the set

of possible eigenvalues for the operator A obtained for those n, k. We remark
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that A must have a discrete spectrum since its square can he represented as

an elliptic operator on the sphere (see appendix of [FKSYl] for more details).

\Ve use the same convention for hatted and unhatted 4» as \II, so we have used

\Ve are using ~ to be of the form given in 5.13:

A Ànk _ (:~i::~i::)
4» - ~l\;nk l'~~nk

x..\nky..\nk
~ - +

where the .l\..\nk and y~nk are solutions of the separated ODEs (5.14) and

(5.15), where the energy parameter w is just n + 2.;n.
The normalization condition is much as described in the case of the fully

coupled ED~[ system: we wish to normalize the scalar product so that

(\Ill \II) = 1, and therefore must make the requirement that the integral form

of this product be finite. As in the fully-coupled system, this cannot in gen­

eral be done across the horizon, in particular since one cannot choose an

everywhere-spaeelike hypersurface crossing the horizon. Instead, we must

take the inner product associated with surfaces strictly outside the horizon.

This, however, means that the eurrent-conservation argument which would

make the integral independent of the particular hypersurface fails to work,

since we do not eover the whole of the spacetime. Thus, we must restrict at­

tention to one asymptotic end of the physical spacetime and onlv consider the

normalization integral away from the horizon. So, to consider the region out­

side r = T2, we construct hypersurfaces generated from the Boyer-Lindquist

coordinates by:
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(5.37)

(5.38)

•

•

and take the inner product defined by the usual normalization integral over

llt:z' designated (\III \II h"t'2 . This gives the probability of the Dirac particle

being outside T = T2, which must naturally be finite. So the normalization

condition would be

If the Dirac wave function satisfies this condition, then we want to show

that each Fourier component of it must also satisfy the same normalization

condition, so that we can restrict our analyses to static solutions. Integrating

the given condition with respect to time, to average the inner product over

one whole period of the whole wave function, we get:

li t
+

T

00 > T t (\II\\II)'H"d'i

=LLL ~ [H e-2wi(n'-nlfdT
n,ni 1e.1t' À,),' t

X !e-,(k'-tl"if1)<nk(r, O)if1À
'
n't ' (r, O)d/l'/t (5.39)

But note that since this is integrated over a whole period, and the plane

waves Corm an orthogonal set, the only nonzero terms come from those cases

where n = n' and k = k'~ while the integration over (J (see the appendix of

[FKSYl] for the regularity of the angular part) is nonzero only when ,\ = >"',

hence we can collapse this forro by eliminating the exponentials (the first

integral becomes T and cancels the ~) ta get:

L L LÀ E 17;(A)1 if1Ànk(r, O)if1Ànk (r, O)d/l'/t
nEZ It+ l EZ 'Ht.,.oz

'l

Now the integral in this last form is just the scalar product (ttÀnkl~Ànk)'H"

and since this product is positive, each of these contributing terms is positive
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•
and therefore finite since their sum is finite. Since we cao therefore restrict

our attention to a single Fourier component and obtain results which will hoId

for any time-periodic solution. We begin by showing a boundedness result

for the spinor ..Y which is somewhat analogous to the result on (02 + {32) in

the case of the Cully coupied spherically symmetric case.

Lemma 4. The function X = (:~:) has jinite squared nonn IXI2 on the

event horizon, and if it is zero at r = rl then ..Y vanishes for aU r > rl.

Proof. Recall the Dirac equation's radial component, (5.14) governing the

function ..Y, namely

(_~ml~rl'D_+\ imr - À ) ( ..\+) - 0
~ "f~M'D- ..Y_-

which yields, for ail r > rh an ODE for 1..\ 12 , namely:

~:/~Î2 = M~ < X,X >

=< M:rX, X > + < X,~~x >

=2..\Re( ..\+ ..\_) + 2mrlm(..Y+ ..\_)

(5.40)

•

where the last equality follows from the eigenvalue equation found for ..\.

But this gives bounds on the radial derivative of 1.\12 , since we have it equal

to the sum of the real and imaginary parts of the same function, multiplied

by constants. This gives the bound

So we note that if I..YI2 vanishes anywhere for r > rit then since its derivative

vaoishes there as weil, by this bound, and since X is a solution to this ODE,

then the solution (which is unique by standard theory of ODEs) is that
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.Y ~ o. \Ve must DOW consider the limiting behaviour as r t-+ rI. Suppose

that I.YI2 > 0 outside r = rI' Then we can divide the bound above by

~I ..\'l\ to obtain

noting that the middle expression is the derivative of log I.YI2
, we integrate

this bound to find:

But while I~I-î is singular at rI, it is integrable (since ~ is a quadratic in

r), so this implies that log 1..\1 2 has a finite limit at rI in any case (since if it

is zero anywhere, it will have the finite limit of 0 at rI as well). This proves

the lemma. 0

\Vith this lemma, we can proceed to the main theorem under considera­

tion.

Theorem 2. ln the background of a K eTT-Newman black hole which is non­

extreme (i. e. for which a2 + Q2 < AI2 ), there are no nontrivial normalizable

time-periodic solutions for the Dirac Equation.

Praof. We proceed by showing that any such solution must vanish every­

where in every region of the physical spacetime. The causal structure of the

maximal extension gives a natural sequence in which to do this. We begin

with regions of type 0, since if we assume that nothing can leave the event

horizon, this is independent of the fonn of any solution dsewhere. We thus

begin by showing that in each asymptotic end of spacetime, \II ~ O.

110



•

•

Recall that we have made the assumption that, since we are dealing with

a black hole solution, we assume that 'Î1 M ~ O. We can apply the matching

condition (5.35) across the horizon, so that:

across t = -00. which in terms of the radial functions means

Hm .X_(r) = 0
r>-+rt

Now using the relation between the hatted and unhatted form of the wave­

function,

and the fact that the metric is asymptotically fiat, we find that the normal­

ization condition simply becomes a condition on the integral of the function

I.\'12 , namely

for any r2 > rl' But outside the horizon (where t:{~) = 1) the radial Dirac

equation 5.14, when expanded out, gives two opposing terms summing to

zero, which are just

(This last statement is equivalent to the statement that the Dirac current

'IICr'll in the radial direction is a conserved quantity, since \IIGr\}l = u-i (IX+12 ­

1..\'"_1 2)Il'î2 ). But this means that this function IX+12 -IX_12is constant. But

111



•

•

the normalization condition above means that the integral of 1..~+12 + I.X_12

is finite, so if the (constant) difference were nonzero, the sum wouId be at

least as large, hence its integral over a spacelike hypersurface (having infi­

nite volume) would be infinite. 50 in fact 1...~+12 - 1.,(~_12 "-J O. But since

limr......rt .\- (r) = 0, then the same must hold for ..\ +, so that ..\ is zero on

the horizon, and by lemma 4 vanishes everywhere. By the ansatz for 'ÎI, this

means that 'Ît0 ~ 0 also (that is, any time periodic solutions of the Dirac

equation vanish outside the event horizon).

Now we consider a region of type Al, between the Cauchy and event

horizons. Regions of type .~[ border on regjons of type 0 across an event

horizon in bath the past and future directions, and since in these regions the

wavefunction vanishes, we get the matching conditions across these horizons

to be:

But then these together imply that the wavefunction itself must vanish in

this limit, since it does sa when multiplied by either iD or .."(3, sa that:

Hm cÎlM(t, r, 8, tII) = 0
r......rt

But then by 5.14, we will have the radial derivative of the squared norm of

the ..\ spinor vanishing, or in particular

in the regions of type l\J, but as seen in lemma (4), this means that IXl2 must

vanish everywhere if it is ta be zero at the horizon. Thus, \fi must vanish in

regjons of type Al.
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This leaves only regions of type 1 to consider. These meet regions of type

1\/ at the Cauchy horizon r = ra at both past and future infinity - in Boyer­

Lindquist coordinates, at t = ±oo. \Ve have already seen that in regions

of type JI, the wavefunction \II vanishes, so that the matching conditions

across the Cauchy horizon (5.32) and (5.34) again imply the limit of the

wavefunction near that horizon vanishes:

Hm \ÎI,(t, r,8, t/J) =0
r..... rci

But now regions of type 1 and 0 are symmetric, and the radial Dirac equation

(5.14) is the same in each region, and so lemma (4) applies again, hence .X

must vanish everywhere, and thus \Îl 1 '" o. Thus, since \ÎI vanishes in each of

the three types of region, we have shown the result of the theorem. 0

This theorem has shown that any one of the Fourier components of a time

periodic solution to the Dirac equation on the Kerr-Newman background

must vanish everywhere, which thus implies that the solution itself must do

so as well. This is the last result we wish to show. We remark only that it

can be generalized to more general metrics in which the Dirac equation is

separable in the same way as in the KN geometry, which oecurs in metrics

in which the \Veyl conformai cun-ature tensor has type D, meaning that it

have two repeated eigenbivectors. For more detail on this, refer to part 3 of

(FK5Yl) .
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Appendix A

Background on the Dirac
Equation

The Dirac equations, which are the equations governing such behaviour, make

use of spinor fields to describe a certain class of fields having nontrivial spin

characteristics. Although it is possible to describe these fields in purely

tensorial terms, the calculations are greatly simplified by using the spinorial

formulation. These fields correspond, for instance, to electrons or neutrinos

in physical situations. To make clearer the description of the Dirac equation,

we begin with a consideration of spinors in curved spacetime.

The usual definition of spinors used by physicists describes them by saying

that a :ipinor at a point x on a manifold AI is an equivalence class of pairs

(lj..•• p), where lj; is a complex 2-vector and p is an orthonormal basis of the

tangent space ~\I~. The equivalence is given by:

(1P, p) - (1/J', p')

if

p' = Lp,1/J' = .\1/J, L = 1lA
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where L is a Lorentz transformation and .\ is an element of Spin(4), which we

shaH describe next, and 11. is the homomorphism we shaH give from Spin(4)

onto the group L(4) of Lorentz transformations of Tzk/.

Given an inner-product space (l/, <, », it is possible ([HarD ta define

the Clifford Algebra CI(\P) as ® Vj1(\'P), where I(V') is the ideal in ® \l

generated by elements of the form x@x+ < x, x >. This gives (as in [ChoD an

algebra of linear operators on a complex vector space. generated by elements

satisfying

!u'''(v + :v"(u =< u, v > e

where e is the identity operator in Cl(V). If we take the inner product space

in question to be the ~linkowski inner product, these ''( are linear operators

on a complex vector space having the property that ~(-)'oio + "Y%) = 710f3 . e.

On curved spacetime, we will take the more general metric go~ instead of 7100.

Given a basis eo, eh e2, e3 of the ~linkowski space Tz(A/), such an algebra is

generated (as an algebra) by the basis of Dirac matrices:

(1 0) (0 (7i)
"teo = 0 - l ,"'(e, = -(7i 0

Here the ai are the Pauli matrices:

(0 1) (0 -i) (1 0)
al = 1 0 ,a2 = i 0 ' (73 = ° 1 (A.l)

•

We cao then define the group Spin(4), which will be the transformation

group for Dirac spinors:

Definition 1. The group Spin (4) is the group of real linear operators A,

of unit determinant, on a complex vector-space of dimension 4, such that if
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U E T:z:(A'!), then there exists v E Tz (l\;/) such that Â -LYuÂ = "Iv' That is,

the A are unit determinant operators fixing the Clifford algebra Cl(T:z:(AJ»).

It may he shown that Spin (4) is the universal covering group of the

Lorentz group L(4), and that the quotient Spin(4)/L(4) ~ Z/2Z. In partic­

ular, the covering gives a homomorphism of Spin(4) onto L(4), which we have

denoted 11. previously. For any element L E L (4), there are two elements, A

and -A, whose image under 1t is L. This is related to the fact that L(4) has

the nontrivial homotopy group Z/2Z (the quotient mentioned above): the

unique nontrivial homotopy class is that of a path taking a basis through a

rotation of 21r about the origin and returning to the initial position.

\Ve are now in a position to discuss the spin connection and the Dirac

operator. The Dirac operator will be a partial differential operator of the

form (G - m) acting on spinor fields: solutions to the Dirac equation will he

fields \{I for which (G - m)\{I = O. Here, m is the mass of the field (which

may be zero); to define the G part of the operator, it is necessary to define

a spin connection - in other words, to do geometry on the spin bundle of

spacetime. DifferentiaI geonletry is essentially concerned (cf. the treatment

in [Sha]) with the study of connections on a principal bundle: relevantly here,

a connection provides a notion of covariant differentiation on a manifold. In

general, a connection on a principal bundle is a 1-form with values in the Lie

algehra of the structure group. One standard example is the case of a locally

~Iinkowskian manifold, and the principal bundle of frames, with structure

group L(4): with each direction in the tangent space to the manifold, a

connection associates an element in the tangent space at the identity of the

Lie group of basis transformations. In other words, the connection describes
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how a basis is parallel-transported along a curve: this leads immediately

to the parallel transport of vectors and covariant differentiation. The spin

derivative is related to this notion, but the principal bundle is the Spin(4)

bundle on 1"1.

(We remark here that the notion of a Spin(4) bundle on kl need not be

well defined for arbitrary manifolds kI. There is a topological obstruction ta

the construction of such a bundle which relates ta the Stiefel-Whitney class of

the manifold. which plays an analogous raie for real bundles ta the role of the

Chern class in complex bundles. It is a characteristic class in the cohomology

group of T( k/) with coefficients in Z/2Z. Though a detailed discussion of this

is not relevant here, we remark upon it ta make clear that the requirement

that a spin-bundle should be defined on Al gives a topological condition on

AI. This condition is that the second Stiefel-Whitney class w2Af(T(kI))

should be zero.)

\Ve note that since there is a canonical homeomorphism from Spin(4) ta

L(4), a connection V on the L(4) bundle can he pulled hack ta a connection

D on the Spin(4) bundle: the pulled-hack I-form acts on an element A of

Spin(4) by letting D(A) = V(L), where L = 1-l(A). This gives a well­

defined spin connection, defining a spin derivative, which can be used to

construct differential operators acting on spinor fields, and in particular the

Dirac operator which is of concem here. \Ve present a brief summary of this

development; for a fuller description, see e.g. [Fin].

The G in the Dirac Operator notOO above is a partial difl'erential operator

given in terms of the spin derivative by G = iGiD j + H where H = B(x) is

a self-adjoint matrix at each point x E kI. Here, the Gi are Dirac matrices
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described above, which locally look Iike the standard Dirac matrices "Ij, de­

fined in curved spacetime by the property that ~ {GiGj} = 9ij • e (where {}

denotes anti-commutation). This expression is fairly general: to do explicit

calculations, however, it is necessary to write the spin derivative in te:ms of

known entities. This is analogous ta expressing the covariant derivative in

terms of directional derivatives and Christoffel symbols. Thus, for the pur­

poses of calculation, we write the term G in the Dirac operator in the form

(see [Fin] or [FSYl]):

G = iGla8 + B(x)
Xl

where the B(x) are 4 x 4 matrices playing a role analogous to that of the

Christoffel symbols in covariant differentiation. In [Fin], it is shawn that

they have the Corm:

(A.2)

with

and the symbol p, which in fiat spacetirne is sometimes denoted "15 by analogy

with the other "1 matrices, has the form (with fij/ci the volume form)

l . - " 1
P = -f- -lcl(JIGlG G4! lJ

(A.4)

•
These expressions are clearly ratber complicated, and difficult to make

use of unless special symmetry properties of the metric allow simplification.

The examples studied in Part II are instances of cases in which this oecurs.
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Appendix B

Topological Methods for DEs

The use of topological methods in studying differential equations dates back

to the invention of topology itself, by Poincare. One branch of such methods

includes degree theory, which seeks to understand the structure of solutions

to such equations by the use of a "degree" of a function, which measures

the stability of that function, its critical points, and related features, in an

open neighborhood. In order to make clear the application of this theory to

the system we consider in this work, we shaH briefly describe sorne of the

techniques and principles of these methods.

\Ve begin with ~Iorse theory, which is used to study the topological prop"

erties of. and in particular the stability of critical points of, gradient fields,

and the flows corresponding to them. The "~lorse Index" developed there

is a measure of the attractiveness of a critical point to flows, and hence

its "stability": this index is invariant under small changes in the gradient.

The ~Iorse Index can be generalized to more general fixed sets, by passing

from a numerical index to a topological invariant, in what is known as the

"Conley Index", which is the tool which we apply to our solutions of the
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Einstein-Dirac equation in Part 1. These techniques; being qualitative and

having discrete values for their ·'indices·', have the attractive property of not

requiring exact calculations, and thus being readily applicable to our rough

numerical solutions, subject to certain conditions.

:\ fuller development of these methods can be found in [Smo] , but here

we begin our presentation \Vith a brief examination of ~Iorse Theory.

\Ve are here considering gradient fields, which are fields of the form dl

for f at least in C 2(f!, R), where n c Rn is an open neighborhood. For

such a field, x is a critical point if dl (x) = O. \Ve note that the property of

being a critical point is preserved under smooth maps x = €/J(y) of )(ln, so

that if F = ljJ 0 f and x = ljJ(y) then y is a critical point of dF. Note that

this means that the theory can in fact be developed on any smooth (CCXl)

manifold, which is essential for our desired application. The ~Iorse index

allo\Vs us to examine the structure of such points, which we rnay think of as

fixed points of the ftow deterrnined by dl. We must restrict our attention

to isolated critical points: that is, those for which there are no other critical

points in sorne neighborhood of the point in question. If ail critical points of

/ are isolated, / is a Morse function.

Restricting our attention to ~forse functions is not a serious limitation,

since they are generic in C 2 (n, R) for any neighborhood f! (that is, they

form a dense open set in C2(f!, Il)). This rneans that the study of Morse

functions is quite general, and the following normal form theorern is widely

applicable. This theorem, for functions with non-degenerate critical points,

states essentially that near any such point, the function is an n-dirnensional

"saddle" point with sorne number of dimensions taken by axes in which 1
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decreases (in bath directions), and sorne number with directions in which it

increases - these numbers giving the index. A more precise form of this is

the following:

Tbeorem 3. Given a function f E C2 (n, R) with non-degenerate critical

point x. there is a coordinate system near x such that

n

f(x) = f(x) + E EiX;

l

where fi = ±l.

The number k of positive eigenvalues (which is independent of the coordi­

nate system since it is a property of the Hessian of 1), will be the Morse index

of the critical point x, and can be thought of in terms of stable and unstable

manifolds (which will lead to the generalization in the Conley index). As has

already been remarked, the Morse index addresses the stability of ftows of

the system : = V f(x), for which the critical point x is a stationary point.

Ta make this precise, we recall the following definitions and theorem:

Theorem 4. (Linear Stable Manifold Theorem) Given the setup just de­

scribed, there are manifolds AI" (the unstable manifold), and ~\ln-1c (the stable

manifold) of dimensions k and n - k. such that

Here, recall that (f)t (Yo) denotes the point to which Yo will Dow at time

t in the system : = V f (x). The stable manifold is thus defined ta be the

set of points on flows which asymptotically approach the critical point in
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futurE: time, and the unstable manifold, similarly in past time. The theorem

asserts that these manifolds exist in sufficiently small neighborhoods of the

critical point. \Ve remark that these definitions (and theorem) justify our

description of the ~(orse index k as a measure of stability, since it is the

dimension of the unstable manifold - that is, of the surface of points which

asymptotically "ftee'~ the critical point. By examining this situation in terms

of these manifolds, we are beginning to approach the topological definition

of the index which shaH be the basis of our generalization to larger sets than

points.

The LS~1 theorem implies that there is some open set, say B, about x
which intersects Alk and A/n - k in. respectively, a k-ball and a (n - k)-ball,

which we denote Bk and Bn-k. which have boundaries in aB which are a

(k - l)-sphere and an (n - k - 1)-sphere. ~ote that B can be regarded

naturallyas Bk X Bn-t. If we consider points on aB as (possibly) entrance

or exit points of ftows (assuming ftows do not remain in aB for nonzero time),

then we define:

b- = {x E aB : 3f > 0 : q,C-f,O)(X) n B = 0}

and

b+ = {x E aB : 3f > 0 : lPCO,f) (x) n B = 0}

so that we can regard b+ as aBt x Bn-t and b- as B t x 8Bn-k. \Ve will be

primarily interested in the space B / b+, namely the space obtained by col­

lapsing b+ to a point, and in particular, we will be interested in the homotopy

class of this space. The space B / b+ is called the topological Morse index of

f at x. To see how it relates to the ~lorse index defined previously, suppose
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that f is a function with nondegenerate critical point x having ~lorse index

k: then if we take the coordinate system in which

n

f(x) = f(x) +E EiX;

1

and let B be the preimage in this coordinate chart of a sufficiently small cell

(-8.6) x ... x (-8.6) centered about the origin (of which x is the preimage),

then b+ will he the sides of ôB corresponding to the positive fi, since along

those directions, f is increasing, and hence the ftows exit B. Contracting

b+ to a point, then. we obtain a ""fattened" figure with the same homotopy

type as a k-sphere S". Thus, the topological ~[orse index for a point with

classical ~lorse index k is the homotopy type of S".

Notice that in the preceding construction, only the values of f and dl

around aB are relevant to the determination of the index: this implies both

that the index should be invariant under small perturbations and that it

should not matter that the fixed set contained in B happened to be the

unique fixed point x. The Conley index is an attempt to convey information

about the stability of fixed sets in much the same way that the ~Iorse index

does for fixed points. In order to make this precise, we must define the

type of sets which we shaH coosider. First, we will generalize to arbitrary

ditrerential equations : = f(x), rather than restricting ourselves to gradient

fields (which was necessary to define a nondegenerate critical point, which

we no longer need to do).

Definition 2. :\ set is an invariant set if it is a union of solution curves

{l/Jt (x) : t E IR} - hence it is fixed under ftows both backwards and forwards in

time. :\n invariant set S is isolated if there is sorne bounded neighborhood N
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of 5, called an isolating neighborhood if compact, such that 5 is the maximal

invariant set in iV.

Isolated invariant sets are of interest since, there being no other invariant

sets "near" them in precisely the given sense, they are stable under small

perturbations in f below. That is, since any nearby flow not in the isolated

invariant set must leave N in either past or future time, this must continue

to be true for functions nearby to f (in the compact-open topology), since N

is an isolating neighborhood precisely if no point on its boundary is on a so­

lution curve contained in IV, which is a property preserved under sufficiently

smaH perturbations. This leads to the concept of a continuation of 5, which

we shaH define briefly after introducing a few necessary concepts (for a more

detailed treatment, see e.g. [Smo] pp460-461).

Definition 3. Given a f10w on a space Al, ~Y c ~\l is a local ftow if for each

point "'f E .\, there is a neighborhood U of T and sorne ê < 0 such that the

image of U under the homeomorphism l/Jt is in ..\ for t E [0, ê). A product

parameterization of a local flow ~.\ is a homeomorphism l/J from ..-Y1 X A into

.\ such that for every ..\ E A we have ..YÀ ~ rjJ( ..Y 1 x ..\) is a local ftow in ...\".

\Ve can think of a product parameterization of a local flow as a ftow

which depends upon sorne parameter - this is the origin of the notion of

nearby flows, from which we derive the idea of continuation, which requires

the concept of the space of isolated invariant sets of a parametrized local ftow

of this kind, to wit:

Definition 4. If cP : ..Y1 x A t-t ..Y is a product parametrization of a local flow

..\, define S to be S (cP) = {(S.\, ..Y.\) : 5.\is an isolated invariant set of ..Y.\}
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This gives the notion of a continuation of an isolated invariant set, namely:

Definition 5. If Pl and P2 are points in S then Pl is a continuation of P2

(or Pl and P2 are related by continuation) if both Pl and 1>2 lie in the same

quasi-component of S (that is, it is not the case that S is the disjoint union

of two open sets each containing one point).

This definition allows us to follow isolated invariant sets through different,

related flows deriving from a parametrized POE - in the context of the present

work, the parameter is the fermion mass 'm. This is primarily useful because

we can relate the Conley Index of such isolated sets to those ofother such sets,

which allows us to understand properties of the stability of many solutions

at once. To see how this is accomplished. we examine the definition of the

Conley index more closely. The Conley Index is developed in the context

of isolating blocks, a special type of isolating neighborhood characterized by

having no points on the boundary whîch remain there under the action of

the ftow. In particular, we call a subset S of .~ a local section of a flow if the

flow, for short times 6, defines a local homeomorphism h6 : S x (-6, 6) ~ ..\.

Note that this cannot occur if the orbits of the ftow are tangent to S since

Reac such a point, the ·'fattened" S will be self-intersecting. We can then

define an isolating block by

Definition 6. B is called an isolating block for a ftow f on ..~ if B is the

closure of a neighborhood of .\, and S± are two open sections such that:

1. cl(S±) \ s± n B = 0

2. S-· (-6,6) n B = (S- n B)· [0,6)
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3. S+· (-8,8) n B = (5+ n B) . (-8,0]

4. If x E aB \ (S+ U S-) then there are él < 0 and é2 > 0 with

\Ve remark that S- intersects B just at the boundary, at points where

the flow enters B, while S+ is the same, but for exit points. Note also that

an isolating block is just a special type of isolating neighborhood. It is a

useful fact (since the Conley index will be defined via isolating blocks) that

one can always be found about an isolated invariant set, and in fact any

neighborhood of such a set contains an isolating block about that set.

\Ve now have the language ta understand what is meant by an index:

namely, it is a function constant on compontents of S. or in other words

invariant under continuation. The Conley Index, in particular, though it is

defined in terms of isolating blocks, can be shawn to be independent of them,

and to be well defined on such components - it will indeed be an index. It is

defined by:

Definition 7. If 1 is an isolated invariant set of a flow, and B an isolating

black of l, the Conley Index of / is h(I) ~ [B/b+], the homotopy equivalence

class of B / b+ considered as a pointed space.

\Ve remark that this is indeed a weil defined property of / since if B l and

8 2 are two isolating blocks for l, then Bl/bl I"\J B2/bi and Bl/br "J B2/bt.
(For details of this, see for instance [Smo] pp475-476). A useful fact about

the Couley index is given by the following theorem:

Theorem 5. If Il and /2 are isolated invanriant sets and /1 n /2 = 0 then

Il II /2 is an isolated invariant set whole Conley Index is
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(where /\ denotes the wedge product between two pointed spaces, ob­

tained by taking the disjoint union and identifying the distinguished points).

This theorem gjves an '-addition" for the Conley index for which the identity

is the homotopy type of the one-point space, (.X, xo) = ({xo}, xo) which we

designate O.

This makes the Conley index weil defined for a particular isolated invari­

ant set, and allows us to find the index of collections of such sets. In fact, we

have rather more than this - in particular, we have that h defines an index

as defined above. Namely:

Theorem 6. Il lÀ and 1~ are related by continuation, then they have the

same Conley index.

This is the key result which makes the stability arguments in Part 1 pos­

sible, allowing us to extend the index of stable sets representing solutions

around the spiral form by continuation and draw conclusions about the sta­

bility of these solutions from the shape of the curve and the index of the case

with low "l.-

\oVe remark here that it is possible to define the Conley index in a more

general way, in terms of index pairs, and that this redefinition, while equiva­

lent with the one we have gjven here, is used in the development of the last

theorem. In the interests of clarity and brevity, however, we have omitted

this part of the development of the index theory. This development is given

more fully in [Smo], chapters 22 and 23.
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