
ln compHance with the
Canadian Privacy Legislation

sorne supporting forms
may have been removed from

this dissertation.

hile these forms may be included
in the document page count,

their removal does not represent
any loss of content from the dissertation.

Implementation of Distributed Data Processing in a
Database Programming Language

Zongyan Wang

School of Computer Science

McGill University, Montréal

November 2002

A thesis submitted to the Faculty of Graduate Studies and

Research in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Copyright@ Zongyan Wang, 2002

1+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and
Bibliographie Services

Acquisisitons et
services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-88326-4
Our file Notre référence
ISBN: 0-612-88326-4

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou aturement reproduits sans son
autorisation.

Contents

Résumé

Abstract

Acknowledgments

1 Introduction
1.1 Purpose of the Thesis.
1.2 Distributed Database

1.2.1 Early Distributed DBMS Prototypes
1.2.2 Principles of Distributed Database Overview
1.2.3 Oracle 9i Distributed Database System

1.3 HTTP
1.4 JRelix
1.5 Approach in the thesis

1.5.1 Why ALDATP
1.5.2 What is ALDATP

1.6 Outline of the Thesis

2 JRelix System
2.1 Starting and Exiting JRelix
2.2 Declaration
2.3 Relational Algebra
2.4 Domain Algebra .
2.5 Views
2.6 Update
2.7 Computations.
2.8 Event Handlers
2.9 System Commands

3 Users' Manual on JRelix Distributed Systems
3.1 Getting Started . . .
3.2 Syntax of aldatp ..
3.3 Remote Assignment .
3.4 Remote View

li

viii

ix

x

1
2
2
2
6

12
18
23
26
26
28
30

31
31
32
36
40
40
41
42
44
45

46
46
49
54
61

CONTENTS

3.5 Remote Update
3.6 Remote Computation. . .
3.7 Remote Computation Call
3.8 Remote Statement Block
3.9 Remote Command
3.10 St art Options

3.10.1 Root Level Server .
3.10.2 Lower-level JRelix Server .
3.10.3 Protected JRelix Server
3.10.4 Stand-alone JRelix

3.11 Manage Port Numbers
3.12 Background Server ...
3.13 Security Issue

3.13.1 Protected Server

III

62
63
64
65
67
67
67
70
70
71
72
75
78
78

3.13.2 File Access Permission 79

4 Implementation of JRelix Distributed Systems 81
4.1 JRelix System Overview .. 81
4.2 General Issues on JRelix Distributed Data Processing Implementation 84

4.2.1 Parsing Aldatp Syntax and Building Syntax Tree 84
4.2.2 Building the Parser Tree 86
4.2.3 Overall Process Flow 89
4.2.4 Shipping Query and Shipping Data 92

4.3 Implementation details for distinct distributed data processing 99
4.3.1 Remote Assignment . 99
4.3.2 Remote Update 104
4.3.3 Remote View 106
4.3.4 Remote Computation . 108
4.3.5 Remote Computation CalI 109
4.3.6 Remote Statement Block and Command 110
4.3.7 Left-hand Operations for Stand Alone JRelix .

4.4 System Administration
4.4.1 Start Options
4.4.2 Manage Port Numbers
4.4.3 Background Server
4.4.4 Security Issues .

5 Applications with Aldatp
5.1 Distributed event-based systems .
5.2 Seamless Distributed Database Systems.

6 Conclusions
6.1 Summary
6.2 Future enhancements

111
112
112
115
120
122

129
129
132

135
135
137

CONTENTS

Bibliography

IV

140

List of Figures

1.1 Horizontal fragmentation of relation Employee
1.2 Vertical fragmentation of relation Employee
1.3 Organization of a Web client-server

2.1 Initial Screen upon Starting JRelix
2.2 Initialize a fiat relation
2.3 Initialize a nested relation
2.4 Link two relations through surrogates

3.1 Demo JRelix Systems .

4.1 JRelix System
4.2 Syntax tree for assignment
4.3 Syntax tree for a remote assignment .
4.4 Examples of non-null URLs in a syntax tree
4.5 JRelix Multidatabas System Architecture ..
4.6 Relationships Between aldatp Components .
4.7 Example of system relation and user defined relation
4.8 Protocol for shipping fiat relation
4.9 Example for shipping fiat relation
4.10 Nested relation
4.11 Disk files and metadata about nested relation "Faculty" .
4.12 Pseudo code for shipping fiat or nested relation . .
4.13 Data stream shipped for nested relation
4.14 Data files for relation "faculty" at the receiver site.
4.15 distinguish 1eft-hand assignment
4.16 Pseudo code for shipping relation and computation
4.17 Data stream shipped for computation IntPerChg .
4.18 pseudo code for computation call
4.19 The main loop of aldatpTLd .. .
4.20 JRelix start options
4.21 Requests processed by root server
4.22 Flow chart for allocatePort. . . .
4.23 Flow chart for enquirePort
4.24 Requests processed by lower level or protected server

v

7
8

19

31
34
35
36

48

82
86
88
89
90
93
95
96
96
97
98
99

100
101
104
108
109
III
114
116
118
119
120
123

LIST OF FIGURES

4.25 Syntax tree for an example expression.

4.26 Syntax tree for a remote update

vi

127
127

List of Tables

3.1 URL-based names 52

4.1 The principle fields of syntax tree nodes 87
4.2 Sample operation types and codes in JRelix system 87
4.3 Dumped syntax tree for a remote assignment ... 88
4.4 Definition of system relations: .rel, .dom, and .rd 94
4.5 Examples of remote assignment 101
4.6 Examples of remote update 105
4.7 Examples of remote view 107
4.8 Examples of distributed computation caU. 110

vu

Résumé

Cette thèse discute la conception et l'exécution des caractères d'intégration d'Internet

dans un langage de programmation de base de données JRelix, de sorte qu'elle possède

non seulement l'organisation de données, le stockage et les fonctions d'indexation d'un

DBMS normal, mais également les possibilités de traitement de données â distance

par Internet.

Une prolongation de nom basé sur URL pour les éléments de base de données est

adoptée en ce langage de programmation de base de données, qui apporte des possi

bilités de collaboration et distributives par Internet, sans des changements de syntaxe

ou de sémantique indépendamment de la nouvelle structure pour les noms. Les re

lations, les calculs, les rapports (ou les questions) et l'expression rélationnelle sont

traités uniformément comme les éléments de base de données dans notre exécution.

Ces éléments de base de données peuvent être consultés ou exécutés â distance, qui

signifie que l'accès aux données ou le traitement de données â distance et le Remote

Procedure Call (RPC) sont soutenus. Le partage de ressource est l'accomplissement

principal de l'exécution. En outre, l'autonomie de site et le transparent de perfor

mance sont accomplis; la gestion basée sur la vue repartie est réalisable; les sites

n'ont pas besoin d'être géographiquement éloignés; la gestion de sécurité est mise en

application.

Vlll

Abstract

This thesis discusses the design and implementation of integrating the Internet capa

bility into a database programming language JRelix, so that it not only possesses data

organization, storage and indexing capabilities of normal DBMS, but also possesses

remote data processing capabilities across the Internet.

A URL-based name extension to database elements in a database programming

language is adopted, which gives it collaborative and distributed capability over the

Internet with no changes in syntax or semantics apart from the new structure in

names. Relations, computations, statements (or queries) and relational expression

are treated uniformly as database elements in our implementation. These database

elements are enabled to be accessed or executed remotely. As a result, remote data

accessing or processing, as well as Remote Procedure CalI (RPC) are supported.

Sharing resource is a main achievement of the implementation. In addition, site

autonomy and performance transparency are accomplished; distributed view man

agement is provided; sites need not be geographically distant; security management

is implemented.

IX

Acknowledgments

First and foremost, l wish to thank my thesis supervisor Professor Tim Merrett for

his attentive guidance, invaluable advice, endless patience and continuous encour

agement throughout the research and preparation of this thesis. He always provides

insights into the implementation and this thesis benefited from his careful reading

and constructive criticism. l would also like to thank him for his generous financial

support.

l would like to thank Yi Zheng, who provided great information about existing

JRelix system and lab operations. l benefited a lot from discussing with her. l

also wish to thank the School of Computer Science for the graduate courses and

the research environment. Thanks to an the secetaries and system staff for their

administrative help and technical assistance.

Special thanks goes to David Noce, who translated the abstract to French and

proofread this thesis .

Thanks must also go to my dear parents, mother-in-law and my sister for their

endless love and constant support, without which it would be impossible for me to

complete my study at McGill .

Finally, l wish to appreciate my husband, Qiang Xu, for his understanding, love,

support and encouragement during my study.

x

Chapter 1

Introduction

This thesis describes the design and implementation of a distributed system with

collaborative and distribution capability in a database programming language JRe

lix [Yua98, Bak98, Hao98, He97, SunOO).

In this chapter, we will give the background and preliminary material needed

throughout the thesis, as weIl as a brief introduction to the approach used for the

implementation. In section 1.1, we will present the purpose of designing and imple

menting this distributed system in JRelix. In section 1.2, sorne early DBMS proto

types as well as main principles of DBMS are illustrated. However, one thing needs

to be noted; our implementation is not going to replace distributed database systems

or build a new dustributed database system. Instead, our implementaion is to build

a low-level mechanism for dustributed data processing in a database programming

language, upon which we can develope applications with distributed database sys

tems functions. Since in our implementation, URL-based name structure is adopted

and our approach resembles HTTP in sorne aspects, a brief introduction to HTTP

and URL is presented in section 1.3. Section 1.4 is an overview of JRelix system

on which our work is based. In section 1.5, we will describe the approach used in

our implementation to integrate the Internet capability into a database programming

language. In section 1.6, we will give a brief outline of the thesis.

1

CHAPTER 1. INTRODUCTION 2

1.1 Purpose of the Thesis

Networks of computers are everywhere. The Internet is a vast interconnected collec

tion of computer networks of many different types, in which components located at

networked computers communicate and coordinate their actions. AIl the databases

that are linked by the Internet may be regarded as an enormous data base family. They

cooperate with each other, share public information, and private data is protected

from malicious intruders.

Distributed database technology is one of the most important developments of the

past decades. The maturation of database management systems (DB MS) technology

has coincided with significant developments in distributed systems and the result is

the emergence of distributed DBMSs. The sharing of resource is a main motivation for

constructing distributed database systems. Other basic motivations for distributing

databases are improved performance and increased availability.

The purpose of this thesis is to integrate the Internet capability into a high level

database programming language JRelix, developed at the Aldat lab of School of Com

puter Science at McGill University, 50 that it not only possesses the data organization,

storage and indexing capabilities of the normal DBMS, but aiso possesses the remote

data processing capabilities of the Internet.

1.2 Distributed Database

1.2.1 Early Distributed DBMS Prototypes

Several distributed DB MS prototypes were developed during the 1970s and early

1980s, such as SDD-l [Rot80, RG77], R* [Wi181], Distributed INGRES [Sto86a] l

DDM [Cha83], POREL [NW82], SIRIUS-DELTA [Lit82], MULTIBASE [Smi82] and

DDTS [DW80]. AH extended single site DB MSs to manage relations that were spread

over the sites in a computer network .

CHAPTER 1. INTRODUCTION

SDD-l

3

The SDD-1 project [Rot80, RG77], developed at the Computer Corporation of Amer

ica, was the first prototype of a distributed database system; it was designed between

1976 and 1978, and implemented in 1979. This project made a significant contribu

tion to the DBMS research field. The SDD":l project is a pioneering progject which

helps understanding of the important problems of distributed database.

SDD-1 supports the relational data model. Global relations can be fragmented in

two steps, first horizontally and then vertically; fragments can be replicated. SDD-

1 provides fragmentation transparency, i.e., the user is unaware of fragments and

their location. Concurrency control in SDD-l [BRGP78, BSRSO, BSSO] uses the

conservative timestamp method enhanced by several additional characteristics. In

SDD-l query processing [GBW+Sl], semijoins are used for reducing cardinalities of

relations. Reliability in SDD-l [HSSO] is provided by a virtual machine which has

a layered software architecture. Many of the ideas such as fragmentation, semi-join,

timestamps for currency control were proposed and used for the first time in the

SDD-l project.

However the performance of the SDD-l is not ideal. In particular, concurrency

control is not deadlock-free; the data manipulation language used in SDD-l introduces

sorne limitations in query processing; the reliability system does not survive network

partitions.

IBM system R*

System R is an experimental database management system designed and built by

members of the IBM San Jose Research Laboratory (now IBM Almaden Research

Center) in the 1970's. It is a research program on the relational model of data. R*

[WilS1] is the distributed version of the original System R prototype. The goal of

the R * project is to build a distributed database system. Each site is an autonomous

relational database system cooperating with other sites.

Data in R * is stored in relations. In R *, sites need not be geographically distant:

CHAPTER 1. INTRODUCTION 4

different sites can be on the same computer. This is considerablly important not only

for the development and testing of the database applications, but also for application

systems. Different R* modules can be placed on the same computer, which is helpful

for security, accounting, or performance reasons.

One of the most important objectives of R* is to provide site autonomy [Lin80].

Each site is able to control other sites' accessing to its own data as well as to manipu

late its data without being conditioned by any other site. The first goal is completely

achieved by R *. However, the second goal is only partially achieved. Since R * uses

two-phase-commitment of transactions [Lin83], a loss of site autonomy cannot be

avoided. Site autonomy also requires that the system be able to grow incremen

tally and to operate continuously. New sites can join to existing on es without requir

existing sites to agree with joining sites on global data structures or definitions.

Another important issue in R * is location transparency (the user is not aware of

the actuallocation of data). Thus, from the programmers' viewpoint, the use of R*

is basically equivalent to the use of centralized system. An R * system wide name

[Lin81] structure is as follows

<creator>@<creator-site>.<object>@<birth-site>

Synonyms and defaults are used for simplifying this naming scheme.

In R*, view management is also distributed [BHL83]. Views can be defined using

relations which residing at a different site from the definition site. Fragmentation

and replication are not implemented by the R* system. In fact, Views can simulate

fragmentation. A global relation can be defined as a view built on top of several

relations at different sites which represent fragments.

As it will be shown, our approach supports most of the features described above.

Further more, we incorporate more technologies, e.g. remote procedure caU or remote

method invocation, and distributed event-based system.

CHAPTER 1. INTRODUCTION 5

Distributed INGRES

Distributed INGRES [Sto86a, Sto86b] was developed at the University of California

at Berkeley. It is a distributed version of the relational database system INGRES,

Distributed INGRES is designed to operate on both local (Ethernet-like) network and

geographical network. Sorne aspects of query processing are parametric with respect

to the type of network.

Distributed INGRES provides fragmentation and location transparency. Horizon

tal fragmentation is supported, while vertical fragmentation is not. Fragments can

be replicated; one of them is designated as primary, which is used by transaction

management, concurrency control and reliability algorithms.

Distributed INGRES uses 2-phase-locking for concurrency control. Deadlocks are

detected and resolved with a centralized deadlock detector. Global query process

ing [ESW78b] in Distributed INGRES extends the decomposition strategy used for

single-site INGRES.

OTHERS

Other homogeneous distributed database systems prototypes are developed in 1970s

and 1980s: DDM [Cha83], developed at the Computer Corporation of America,

POREL [NW82], developed at the University of Stuttgart, and SIRIUS-DELTA [Lit82),

developed at INRIA.

Two major research prototypes in the field of heterogeneous distributed database

system are MULTIBASE [Smi82], developed at Computer Corporation of America,

and DDTS [DW80], developed at Honeywll Corporate Computer Science Center. The

most ambitious requirement of heterogeneous systems is the capability of providing

DBMS independence. Le. DBMS instances at different sites aU support the same

interface and could an participate somehow in a distributed system. This is a very

difficult goal, thus sorne prototypes do not attain this overall objective. The MULTI

BASE system is developed for providing transparency to retrieval applications, while

updates are performed by each individual DBMS, without coordination.

CHAPTER 1. INTRODUCTION 6

1.2.2 Principles of Dist:ributed Database Overview

Survey papers discussing major issues concerning distributed systems has been writ

ten by Rothnie and Goodman [RJG77], Bernstein et al [BRJS78] and Gray [Gra79].

Textbook discussions are offered by Ceri and Pelagatti [CP84L Ozsu and Valduriez

[OV99], Date [DatOO], Silberschatz and Korth and Sudarshan [SKS97]. Our survey

is mainly based on these materials and relevant literatures.

Data distribution alternatives

Consider a relation R that is to be stored in the database. There are several ap

proaches to store this relation in the distributed database.

@ Replication. The system maintains several identical replicas(copies) of the

relation. Each replica is stored at a different site, resulting in data replication.

@ Fragmentation. The relation is partitioned into several fragments. Each frag

ment is stored at a different site.

@ Replication and fragmentation. The relation is partitioned into several

fragments. The system maintains sever al replicas of each fragment.

Replication

If relation R is replicated, a copy of R is stored in two or more sites. In the most

extreme case, we have full replication, in which a copy is stored in every site in the

system. On the other hand, an alternative to replication is to store only one copy of

relation R. There are sorne advantages and disadvantages for replication .

• Enhanced performance. Replication helps performance since diverse and

conflicting user requirements can be more easy to deal with. For example, data

that is frequently accessed by one user can be placed on that users local machine .

• Availability. If one of the machines fails, a copy of the data is still available

on another machine on the network.

CHAPTERl. INTRODUCTION 7

® Increased overhead on update. The system must ensure that aH replicas of

a relation R are consistent; otherwise, errors may result. Thus, whenever R is

updated, the update must be propagated to aH sites containing replicas.

Fragmentation

If relation R is fragmented, Ris divided into a number of fragments RI, R2, ... ,Rn.

There are two different schemes for fragmenting a relation: horizontal fragmentation

and vertical fragmentation.

Horizontal fragmentation of a relation is accomplished by a selection operation.

The selection operation places each tuple of the relation in a different partition based

on a predicate (e.g. an employee relation may be fragmented according to the de

partment of the employees). We can obtain the reconstruction of the relation R by

taking unions of aIl fragments.

R = R1 union R2 union ... union Rn

Figure l.1 shows an example of horizontal fragmentation of relation Employee.

Employee Employee1
Cid name department salary) (id name department salary)
1 Joe CS 50000 1 Joe CS 50000
2 Sam CS 55000 2 Sam CS 55000
3 Sue EE 55000
4 Joe EE 45000 Employee2

(id name department salary)
3 Sue EE 55000
4 Joe EE 45000

Figure 1.1: Horizontal fragmentation of relation: Employee

Vertical fragmentation divides a relation into a number of fragments by projecting

over its attributes, such that R can be reconstructed from the fragments by taking

natural joins.

R = R1 natjoin R2 natjoin ... natjoin Rn

Figure l.2 shows an example of vertical fragmentation of relation Employee.

CHAPTER 1. INTRODUCTION 8

Employee
Cid name department salary)
1 Joe CS 50000
2 Sam CS 55000
3 Sue EE 55000
4 Joe EE 45000

Employee 1 Employee2
(id name salary) (id department)

1 Joe 50000 1 CS
2 Sam 55000 2 CS
3 Sue 55000 3 EE
4 Joe 45000 4 EE

Figure 1.2: Vertical fragmentation of relation: Employee

Fragmentation is desirable because it places data in a close proximity to its place

of use, thus potentially reducing transmission cost. In addition, it reduces the size of

relations that are involved in user queries.

Replication and Fragmentation

Based on the user access patterns, each of the fragments may also be replicated.

This is preferable when the same data was accessed from applications that run at a

number of sites. In this case, it may be more cost-effective to duplicate the data at a

number of sites rather than continuously transmitng it between them.

Objectives of DDBS

1. Site autonomy & No reliance on central site

Under many situations, site autonomy is desîred. Local data is locally owned and

managed. AH data really belongs to sorne local database, even if it is accessible from

other remote sites. Such matters as security, integrity, and storage of local data are

controled by local DBMS. To manipulate local data should not be conditioned by any

other sites.

Site autonomy also requîres that the system be able to grow incrementally and to

CHAPTER 1. INTRODUCTION 9

operate continuously. That menas new sites can join to existing ones without requiring

existing sites to agree with joining sites on global data structures or definitions.

Site autonomy implies that aH sites must be treated as equals. There are must

not be any reliance on a central master site for some central service, e.g. centralized

query processing, centralized transaction management, or centralized naming services.

Reliance on central site would be undesirable for at least two reasons. First, the

central site might be a bottleneck. Second, the system would be vulnerable. If the

central site went down, the whole system would be down.

2. Transparency

The possible forms of transparency discussed in [SR] and [OV99] can be summa

rized as follows:

@ Location transparency (network transparency or distribution transparency):

users do not have to specify where data is located.

@ Replication transparency: objects can be copied, and copies are maintained

automatically. Users should be able to behave as if the data were in fact not

replicated at aU.

@ Fragment transparency: tables can be fragmented to different sites. Users

should be able to behave as if the data were in fact not fragmented at aIl.

@ DBMS transparency: should not matter what DBMS is running at each site

@ Performance transparency: performance independent of submission site

@ Transaction transparency: looks like single-site transactions

3. Improved reliability

Distributed DBMS are intended to improve reliability sinee they have replicated

components, thus eliminating single points-of-failure. The failure of a single site, or

the failure of a communication that makes one or more sites unreachable, may not

CHAPTER 1. INTRODUCTION 10

fatal enough to bring down the entire system. Us ers may be permitted to access other

parts of the distributed database.

4. Enhanced performance

Data replication and data fragmentation enables data localization. This has two

. potential advantages:

@ Since each site handles only a portion of the database, contention for CPU and

I/O services is not as severe as for a centralized database, and

® Localization reduces remote access delays and data movement among sites.

The parallel capability of distributed database system may be achieved by inter

query and intra-query parallelism. Inter-query parallelism results from the ability

to execute multiple queries at the same time. Intra-query parallelism is achieved by

breaking up a single query into a number of subqueries. Each of them is executed at

a different site, accessing a different part of the distributed database.

Technical Issues Overview

Distributed query processing

Distributed query processing is discussed in [Won77, ESW7Sa, HY79, ESSO, CPS3,

Won83]. An important aspect of distributed query processing is query optimization.

The problem Îs how to decide on a strategy for executing each query over the network

in the most cost-effective way. The factors to be considered are the distribution of data

and communication costs. The objective is to optimize parallelism of the distributed

system to enhance the performance of executing the query [OV99]. An important

aspect of query optimization is join ordering, since permutations of joins within the

query may lead to improvements of several orders of magnitude. One basic technique

for optimizing a sequence of distributed joïn operationis through use of the semijoin

operator [BC8l, BG81b, KYYS2]. The main value of the semijoin is to reduce the

size of the join operands and thus the communication cost. However, the y might

increase local costs.

CHAPTER 1. INTRODUCTION 1l

Distributed transaction management

The user accesses to shared databases are formulated as transactions [BN97, BHG87],

which are units of execution that satisfy four properties: atomicity, consistency, isola

tion, and durability-jointly known as the ACID properties [Gra78, GR93]. Atomic

ity means transactions are atomic (aH or nothing). Consistency means a transaction

transforms a consistent state of database into another consistent state. Isolation

means transactions are isolated from one another. Durability means once a transac

tion commits, its update survive in the database, even if there is a subsequent system

crash. ACID properties are enforced by means of concurrency control and reliability

protocols.

Distributed concurrency control

Papers covering distributed concurrency control are offered by [BS80, BSR80, BG81a,

BG82]. Concurrency control involves the synchronization of access the distributed

database, such that the integrity of the database is maintained. The synchronization

is achieved by concurrency control algorithms. The concurrency control problem in

a distributed context is somewhat different from the centralized framework. One not

only has to worry about the integrity of a single database, but also about the consis

tency of multiple copies of the database. Distributed concurrency control algorithms

enforce global serializability, that is "the execution of the set of transactions at each

site is serializable and the serialization orders of these transactions at aU these sites

are identical" [OV99]. Most concurrency control algorithms are locking-based, e.g.

centralized locking, primary copying locking, and distributed locking algorithm. It

is a well-known theorem that if DBMS obey the two-phase locking rule, "no lock on

behalf of a transaction should be set once a lock previously held by the transaction

is released", then it is possible to ensure the serializability. The side effect is that

they cause dead locks. Distributed deadlock-detection algorithms are presented by

[RSL 78, CHM83]. [Kna87] surveys the distributed deadlock detection literature.

CHAPTER 1. INTRODUCTION 12

Distributed reliabiHty protocols.

Distributed database system are potentially more reliable since there are multiple

copies of each system component, which eliminates single points-of-failure. Data is

replicated to ensure that data is accessable in case of system failures. Distributed

reliability proto cols maintain the atomicity and durability properties. To ensure

atomicity, the transaction must execute a commit proto col. The most widely used

commit protocol is the two-phase commit proto col (2PC) [LS76, ML83]. 2PC may

lead to blocking: a situation in which the fate of a transaction cannot be determined

until a failed site (the coordinator) recovers. To avoid blocking, we can use three

phase commit proto col (3PC) [Ske81] and modified version of 2PC [ML83]. To

ensure durability, distributed recovery [ABG84, Koh81 J ensure that the system can

recover to a consistent state following a failure.

We have introudeced sorne early distributed DBMS prototypes, main features and

sorne technical issues of DBMS in this section. The purpose of this thesis is not to

replace distributed DBMS or build a new one. In our implementation, we provide

the Internet capability or distributed data processing capability into a database pro

gramming language JRelix. Our implementation achieves sorne features of distributed

DBMS and could be used with other language features of JRelix to implement DDBMs

(see Chapter 5).

1.2.3 Oracle 9i Distributed Database System

Oracle supports both homogenous and heterogeneous architectures. In a homoge

nous distributed database system, each database is an Oracle database. In a

heterogeneous distributed database system, at least one of the databases is

a non-Oracle database. The Oracle database server accesses the non-Oracle system

using Oracle Heterogeneous Services in conjunction with an agent. If a user accesses

the non-Oracle data store using an Oracle Transparent Gateway, then the agent is a

system-specifie application. The agent is specifie to the non-Oracle system, so each

type of system requires a different agent. For example, if a user includes a Sybase

CHAPTER 1. INTRODUCTION 13

database in an Oracle distributed system, then we need to obtain a Sybase-specific

transparent gateway so that the Oracle databases in the system can communicate

with it. Alternatively, we can use generic connectivity to access non-Oracle data

stores so long as the non-Oracle system supports the ODBC or OLE DB proto cols.

Database Links

Oracle's distributed database management system architecture lets us access data in

remote databases using Oracle Net and an Oracle server. We can identify a remote

table, view, or materialized view by appending ©dblink to the end of its name. A

database link is a connection between two physical database servers that allows a

client to access them as one logical database. In Oracle, a database link is a pointer

that defines a one-way communication path from an Oracle database server to another

database server. The link pointer is actually defined as an entry in a data dictionary

table. To access the link, we must be connected to the local database that contains

the data dictionary entry.

Oracle lets us create private, public, and global database links. If they are

private, then only the user who created the link has access; if they are public, then

aH database users have access. Global database links create network-wide links for

every Oracle database in the network. When we create a private or public database

link, we can determine which schema on the remote database the link will establish

connections to by creating fixed user, current user, or connected user database links.

The great advantage of database links is that they allow users to access another

user's objects in a remote database so that they are bounded by the privilege set

of the object's owner. Database links allow us to grant limited access on remote

databases to local users.

Every application that references a remote server using a standard database link

establishes a connection between the local database and the remote database. Many

us ers running applications simultaneously can cause a high number of connections

between the local and remote databases. Shared database links enable us to limit

CHAPTER 1. INTRODUCTION 14

the number of network connections required between the local server and the remote

server.

Location Transparency

Typically, administrators and developers use synonyms to establish location trans

parency for the tables and supporting objects in an application schema. For example,

the following statements create synonyms in a database for tables in another, remote

database.

CREATE PUBLIC SYNONYM emp
FOR scott.emp@sales.us.americas.acme_auto.com;

CREATE PUBLIC SYNONYM dept
FOR scott.dept@sales.us.americas.acme_auto.comj

Now, an application can issue a query that does not have to account for the location

of the remote tables.

SELECT ename, dname
FROM emp e, dept d
WHERE e.deptno = d.deptno;

In addition to synonyms, developers can also use views and stored procedures to

establish location transparency for applications that work in a distributed database

system.

Local views can provide location transparency for local and remote tables in a

distributed database system. For example, assume that table emp is stored in a

local database and table dept is stored in a remote database. To make these tables

transparent to users of the system, we can create a view in the local database that

joins local and remote data:

CREATE VIEW company AS
SELECT a.empno, a.ename, b.dname
FROM scott.emp a, jward.dept©hq.acme.com b
WHERE a.deptno = b.deptnoj

PLjSQL program units called procedures can also provide location transparency.

We have three options:

CHAPTER 1. INTRODUCTION 15

1) Using Local Procedures to Reference Remote Data

Procedures or functions (either standalone or in packages) can contain SQL state

ments that reference remote data. For example, consider the procedure created by

the following statement:

CREATE PROCEDURE fire_emp (enum NUMBER) AS
BEGIN

DELETE FROM emp@hq.acme.com
WHERE empno = enum;

END;

2) Using Local Procedures to CalI Remote Procedures

You can use a local procedure to caU a remote procedure. The remote procedure

can then execute the required DML. For example, assume that scott connects to

local_db and creates the following procedure:

CREATE PROCEDURE fire_emp (enum NUMBER)
AS
BEGIN

EXECUTE term_emp@hq.acme.com;
END;

3) Using Local Synonyms to Reference Remote Procedures

SQL and COMMIT Transparency

Oracle's distributed database architecture aiso provides query, update, and trans

action transparency. For example, standard SQL statements such as SELECT, IN

SERT, UPDATE, and DELETE work just as they do in a nondistributed database

environment. Additionally, applications control transactions using the standard SQL

statements COMMIT, SAVEPOINT, and ROLLBACK-there is no requirement for

complex programming or other special operations to provide distributed transaction

control.

* The statements in a single transaction can reference any number of local or

remote tables.

* Oracle guarantees that aIl nodes involved in a distributed transaction take the

same action: they either aIl commit or aIl roll back the transaction.

CHAPTER 1. INTRODUCTION 16

@ If a network or system failure occurs during the commit of a distributed trans

action, the transaction is automatically and transparently resolved globally.

Specifically, wh en the network or system is restored, the nodes either aH com

mit or an roll back the transaction.

Replication Transparency

Oracle also provide many features to transparently replicate data among the nodes

of the system. For more information about Oracle's replication features, see Oracle9i

online documents.

Remote Procedure CaUs (RPCs)

Developers can code PL/SQL packages and procedures to support applications that

work with a distributed database. Applications can make local procedure calls to

perform work at the local database and remote procedure calls (RPCs) to perform

work at a remote database.

When a program calls a remote procedure, the local server passes an procedure

parameters to the remote server in the calI. For example, the following PL/SQL pro

gram unit caUs the packaged procedure deLemp located at the remote sales database

and passes it the parameter 1257:

BEGIN
emp_mgmt.del_emp©sales.us.americas.acme_auto.com(1257);

END;

In order for the RPC to succeed, the called procedure must exist at the remote

site, and the user being connected to must have the proper privileges to execute the

procedure. Local users can also connect to the remote database and create remote

procedures:

CONNECT scott/tiger©hq.acme.com

CREATE PROCEDURE term_emp (enum NUMBER)
AS
BEGIN

DELETE FROM emp WHERE empno = enum;
END;

CHAPTER 1. INTRODUCTION 17

Distributed Query Optimization

Distributed query optimization is an Oracle feature that reduces the amount of data

transfer required between sites.

Distributed query optimization uses Oracle's cost-based optimization to find or

generate SQL expressions that extract only the necessary data from remote tables,

pro cess that data at a remote site or sometimes at the local site, and send the results

to the local site for final processing. This operation reduces the amount of required

data transfer wh en compared to the time it takes to transfer aH the table data to the

local site for processing.

Site Autonomy

Although several Oracle databases can work together, each database is a separate

repository of data that is managed individually. However, users should not ignore the

global requirements of the system.

Restrictions on Distributed Queries

Several restrictions apply to Oracle distributed queries.

o Within a single SQL statement, updated tables, and locked tables must be

located at the same node, as well as aIl referenced LONG and LONG RAVi

columns, sequences.

For example, the following statement will raise an error:

SELECT employees_ny.*
FROM employees_ny@ny, departments
WHERE employees_ny.department_id = departments.department_id
AIITD departments. department_name =) ACCOUNTING'
FOR UPDATE OF employees_ny.salary;

o Oracle does not allow remote DDL statements (for example, CREATE, ALTER,

and DROP) in homogeneous systems. Note that in Heterogeneous Systems, a

pass-through facility allows users to execute DDL.

CHAPTER 1. INTRODUCTION 18

$ In a distributed database system, Oracle always evaluates environmentally

dependent SQL functions such as SYSDATE, USER, UID, and USERENV

with respect to the local server, no matter where the statement (or portion

of a statement) executes.

® A number of performance restrictions relate to access of remote objects:

- Remote views do not have statistical data.

- Queries on partitioned tables might not be optimized.

- No more than 20 indexes are considered for a remote table.

- No more than 20 columns are used for a composite index.

® There is a restriction in Oracle's implementation of distributed read consistency.

1.3 HTTP

The proto col used in our approach is similar to HTTP. In this section, we present a

brief introduction to the paradigm of HTTP and URL. In section 1.5, the difference

and similarity between HTTP and our proto col ALDATP is described in detail.

HTTP Overview

HTTP stands for Hypertext Transfer Proto col. It is the network proto col

used to deliver files and data (collectively called resources) on the World Wide Web,

whether they are HTML files, image files, query results, or anything else. Usually,

HTTP takes place through TCP /IP sockets. HTTP has been in use sinee 1990. The

original version HTTP/0.9 has no RFC. RFC 1945 [BLFF96] gives HTTP/1.0 in 1996

and it is replaced by RFC 2616 [FGM+99] which specifies HTTP /1.1 in 1999.

A simplified organization of the Web is shown in figure 1.3

The Web client (browser) communicates with a Web server using one or more

TCP connections. The well-known port for the Web server is TCP port 80, but other

ports can be used. The proto col used by the client and server to communicate over

CHAPTER 1. INTRODUCTION

Vofeb

Tep port 80

hypertext link Web
server

Teppo 80

Web Client
(brovtœl')

hypertext link

Figure 1.3: Organization of a \iVeb client-server

19

Web
servel'

Tep port 80

the TCP connection is called HTTP. The client establishes a TCP connection to the

server, issues a request, and reads back the servers response.

Web server can "point to" other Web servers with hypertext links. The file re

turned by the server normally contains pointers to other files that can reside on other

servers. It IS the client(browser) that open other TCP connections to follow these

links from server to server to fetch the files. These links are not restricted to pointing

only to other Web servers. They can point to an FTP server or a Telnet serveL

The early versions of HTTP, i.e. HTTP/0.9 and HTTP/1.0, make a new con

nection for each transfer. The server denotes the end of its response by closing the

connection. The persistent connection extension added into HTTP /1.1 was motivated

by effenciency concerns. A connection may be used for one or more request/response

exchanges.

URL

HTTP lS used to transmit resources, not just files. A resource is sorne chunk of

information that can be identified by a URL: a Uniform Resource Locator. The speci

fication and meaning of URLs is given in RFC 1738 [BLMM94] and RFC 1808 [Fie95].

CHAPTER 1. INTRODUCTION 20

URLs are part of a grander scheme called URIs(Uniform Resource Identifiers). URIs

are described in RFC 1630 [BL94]. The most common kind of resource is a file, but

a resource may also be a dynamically generated query result, the output of a CGI

script, or something else.

Every URL, in its full, absolute form, has two top-level components:

scheme : scheme-specifie-location

The first component, the scheme, declares which type of URL this is. For instance,

mailto, ftp, telnet, http are examples of schemes. The second component specifies

resources, e.g files or CGI (or J8P) codes, and the scheme specifies the communication

proto col to retrieve them. 80 we can define our own scheme if we invent a useful new

proto col.

HTTP URLs are the most widely used. An HTTP URL has two main jobs to

do: to identify which web server maintains the resource, and to identify which of the

resources at that server is required. In general,

HTTP URLs are of the following form:

http://servername [:port] [/pathNameOnServer] [?arguments]

Items in square brackets are optional. A full HTTP URL al ways begins with the

string ''http://"followed by a server name. The server name is optionally followed

by the number of the port on which the server listens for requests. Then cornes an

option al path name of the server's resource. If this is absent then the server's default

web page is required. Finally, the URL optionally ends in a set of arguments.

To publish a resource on the Web, a user must first place the corresponding file

in a direct ory that the web server can access. Knowing the name of the server 8 and

a path name for the file P that the server can recognize, the user can then construct

the URL as "http: IlS/Pli.

There are certain pathname conventions that servers recognize. For example, a

pathname beginning II-tim" is by convention in a subdirectory Iipublic_htmP of

user Tim's home direct ory.

CHAPTER 1. INTRODUCTION

HTTP Protocols

Message Types: Requests and responses

21

There are two HTTP 11.1 message types: requests and responses. The format of an

HTTP 11.1 request is

Method request-URI HTTP-version

Headers

<blank line>

[message-body]

The format of an HTTP/1.1 response is

HTTP-version status-code reason-phrase

Header

<blank line>

[message-body]

Methods

The following methods are supported by HTTP/1.1.

1. The GET method is the most common HTTP method, which returns what

ever information is identified by the request-URI.

2. The HEAD request lS similar to the GET request, but only the server's header

information is returned, not the actual contents(i.e. no message-body) of the

specified document. This request is often used to test a hypertext link for

validity, accessibility, and recent modification.

3. A POST request is used to send data to the server to be processed in sorne

way, such as by a CGI script. A POST request is different from a GET request

in the following ways:

CHAPTER 1. INTRODUCTION 22

• A block of data is sent with the request, in the message body. There are

usually extra headers to describe this message body, suc as Content-Type:

and Content-Length:.

• The request URI is not a resource to retrieve; it is usually a program to handle

the data you're sending.

• The HTTP response is normally a pro gram output, not a static file.

Besides "GET", "HEAD", "POST", HTTP/1.1 supports new methods, such as

"OPTIONS" l "PUT", "DELETE", "TRACE".

Header Fields

The request-header fields allow the client to pass additional information about the

request, and about the client itself, to the server. These fields act as request modifiers,

with semantics equivalent to the parameters on a programming language method

invocation.

The response-header fields allow the server to pass additional information about

the response which cannot be placed in the Status-Line. These header fields give

information about the server and about further access to the resource identified by

the Request-URI.

Status Codes

The Status-Code element is a 3-digit integer result code of the attempt to understand

and satisfy the request. The Reason-Phrase is intended to give a short textual de

scription of the Status-Code. The Status-Code is intended for use by automata and

the Reason-Phrase is intended for the human user.

CHAPTER 1. INTRODUCTION

1.4 JRelix

Relational Database System

23

The relational model was first proposed by Dr. E.F.Codd in his pioneering paper

"A Relational Model of Data for Large Shared Data Banks" [Cod70]. Since then.

relational database systems have developed rapidly. In Codd's relational model, a

collection of tables that he terms relations are used to model and store data. Each

relation resembles a table which consists of rows and columns. "tuples" are used to

refer to rows and "attributes" are used to refer to the column headers. The term

"domain" refers to the set of legal values that an attribut es can have, i.e. the data

type of an attribute.

Operations on Relations

Relational Algebra, which is also proposed by Codd, consists of a set of operations

applied on relations for retrieving information. In the relational algebra, there is no

operation performed on individual tuples. The relational operators take relations as

operands and return a relation as a result which can be further manipulated.

The relational algebra operations are usually classified as unary or binary, accord

ing to the number of operands. Unary operators take a single relation as operand

and binary operators take two relations as operands. Both of them produce a single

relation as their result.

U nary operations

Projection: makes a copy of a relation with a specifie subset of the attributes

Selection: selects tuples that satisfy a specifie condition

Binary operations

mu-join: join operators that generalize set-valued set operations

sigma-join: join operators that generalize logic-valued set operations

Operations on Domains

CHAPTER 1. INTRODUCTION 24

Merrett[Mer84] proposed the domain algebra which consists of a set of operations

that enable the arithmetic and related processing of the values of attributes in in

dividual tuples. It allows the user to create new domains from existing ones. The

generation of a new value from many values within a tuple or from values along

an attribute also becomes possible. The domain algebra operations are defined as

follows:

Horizontal operations: new value is generated from the values with a tuple

Constant

Rename

Function

If-then-else

Vertical Operations: new value is generated from values along an attribute

Reduction

Equivalence Reduction

Functional Mapping

Partial Functional Mapping

Database Programming Language

The relational model has proven itself exceptionally useful for many applications.

However, the commercial implementations of the relational model are lacking in ex

pressive power and in the ability to handle complex data. For many applications such

as Computer automated design (CAD), VLSI chips design and Geographie Informa

tion Systems (GIS), these implementations are inadequate tools. The relational model

itself, however, is not limited to these implementations. This has led to research in the

field of database programming language (DBPL). DBMS are capable of dealing with

large amounts of persistent data, while programming languages provide well-proven

and powerful techniques for creating, organizing and manipulating data in memory.

DBPLs seek to integrate the technologies and paradigms of programming languages

CHAPTER 1. INTRODUCTION 25

and database management in order to solve the problem of developing data-intensive

applications.

One of the approaches to create a database programming language was to embed

a database query language into an existing programming language. The INGRES

relational database system [SWKH76] embedded its query language QUEL into the

C programming language to pro duce the EQUEL language. This paradigm, e.g. SQL

plus JDBC plus Java, is still being widely used by most commercial DBMSs like DB2,

Oracle, Informix, SQL Server etc. A major disadvantage of this approach is that it

requires the programmer to be fluent with both the host language and the query

language. It aiso yields an awkward programming environment by mixing the types

of query language together with typing systems of the host language.

Another approach to creating a DBPL is to add database features to existing

programming language. For example, Pascal/R [Sch77] combines the relational data

model with the Pascal. One more approach aimed to design a programming lan

guage with uniform persistence. In a persistent Programming Language, such as

Psalgol [Mor88, ABC+83], data of any type, e.g. arrays and records used in primary

memory and abstraction of a relation or file used on the persistent storage, may per

sist. ObjectStore [LLOW9l] adds persistence to the C++ programming language

which makes the accessing of persistent data seamless to the programmer.

JRelix (the Java implementation of a Relational database programming language

in Unix) was developed at the Aldat lab of the School of Computer Science at McGill

University. JRelix contains a database management systems (DB MS) which is respon

sible for organizing and storing data, and a programming language Aldat(Algebraic

Data Language), based on relational algebra and domain algebra [Mer84, Yua98].

JRelix incorporates complex constructs such as computations (functions and proce

dures), sorne object-oriented paradigms, such as instantiation [Bak98, Zhe02], and

nested relations [He97, Hao98]. The event handler [SunOO], which is a characteristic

of active database systems, and attribute metadata [MerOl] for relational OLAP and

data mining are implemented in JRelix. A GIS Editor [CheOl] is also implemented

CHAPTER 1. INTRODUCTION 26

which demonstrates JRelix capability to support sophisticated data.

1.5 Approach in the thesis

In this section, we are going to present our approach ALDATP for implementing a

distributed system. We first illustrate why we implement ALDATP and then outline

what is ALDATP.

1.5.1 Why ALDATP

There are several reasons for building distributed database systems, including shar

ing of data, reliability and availability, and speedup of query processing. However,

along with these advantages come sever al disadvantages, including higher software

development cost, greater potential for bugs, and increased processing overhead. The

primary disadvantage of distributed database system is the added corn pl exit y required

to ensure proper coordination among the sites. Up untill now, nobody provides an the

characteristics listed in section 1.2.2. Different implementation will attach different

degrees of importance to different objectives in different environments.

There are sever al paradigms and associated proto cols which might offer bases for

adding network programming into database programming. The first alternative is

Tep data transmission protocol [Ste96, Ste94] . But the user or programmer must

be fluent with a set of proto cols or messages for various data communications if this

paradigm is adopted for adding network programming into data base programming.

However, this can be avoided and we can make the proto cols totally transparent in

a high level implementation. Another disadvantage is the need to deal with port

numbers makes it awkward when multiple database systems coexist on one physical

computer, thus many and even dynamical port numbers must be involved on each

hosto Perhaps several new syntaxes need to be added; this de pends on the existing

database programming language.

Remote invocation is another programming models for distributed application.

CHAPTER 1. INTRODUCTION 27

Such programs need to be able to invoke operations in other process, often run

ning in different computers. The earliest and perhaps the best-known of these was

the extension of the conventional procedure calI model to the remote procedure call

(RPC) model [DJ84, Ra095], which allows client programs to call procedure in server

programs running in separate process and generally in different computers from the

client. The most well-known RPC package is Sun RPC. RFC 1831 [SM95] describes

Sun RPC which was designed for client-server communication in Sun NFS network

file system.

More recently, the object-based programming model has been extended to allow

objects in different pro cess to communicate with one another by means of remote

method invocation (RMI) [CDK01]. Java RMI [WW] is the mostly adopted RMI

package. The Object Management Group's Common Object Request Broker Archi

tecture (CORBA) [Gr096, Tib95] is designed to support the role of an object request

broker that enables client to invoke methods in remote objects, while both clients and

servers can be implemented in a variety of programming languages. The basic idea

for RPC, RMI and CORBA are the same, which is remote invocation.

In JRelix, computation can be invoked by means of a top-level call taking do

mains or relations as its parameters or taking no parameters. Thus computations

function as procedures, which is a top level procedural abstraction. In our database

programming language, we treat relations, computations, statements(or queries) and

relational expression uniformly as database elements. Since we enable these database

elements to be accessed or executed remotely, we get remote invocation capability as

a result. Furthermore, it is a more capable paradigrn since it not only provides RPC

and RMI but also remote data accessing.

Merrett [Mer02] suggests adopting a URL-based name extension to database e1e

ments in our database programming language "ALDAT", which gives it collaborative

and distributed capability over the Internet with no changes in syntax or semantics

apart from the new structure in names, thus makes maximum use of minimal ideas.

We caU this approach "ALDATP" (aldat protocol).

CHAPTER 1. INTRODUCTION

1.5.2 What is ALDATP

Basically, the URL-based name structure in ALDATP is of the following form:

aldatp:/ / servername / pathN ameonServer / databaseElement

28

"aldatp: 1;U is the scheme of the URL that declares the type or proto col of the

URL. "pathNameOnServer" gives the path name of the JRelix instance. "databaseEle

ment" specifies a database resource or a task issued to the database. Relations, com

putations, views, relation al expressions, statements and commands are examples of

"databaseElement" .

Both ALDATP and HTTP use a URL structure to identify and locate resource.

The mechanism for ALDATP resembles that for HTTP in sorne aspects, but they are

different.

® A resource on the Web is a corresponding file or code in a directory which the

web server can access.

® A resource of the JRelix multi-database system is a corresponding database

element of a JRelix instance running at a direct ory which other aldatp servers

can access.

® A resource on the Web could be a static file.

e A resource of the JRelix multi-database system could be an existing relation,

view, computation of a running JRelix instance.

® A resource on the Web could be a pro gram (e.g. CGI, JSP) which Web server

runs to dynamically generate a file on the fiy and returns the file back to the

client (browser).

® A resource of the JRelix multi-database system could be a relational expression

which an aldatp server runs to dynamically generated a result relation on the

fiy and returns the relation back to the client; or it could be a statement block

or command which an aldatp server runs and return a response code back to

the client.

CHAPTER 1. INTRODUCTION 29

• For HTTP, sorne services-related codes could be downloaded to run inside the

browser. For example, codes written in Javascript are often downloaded with a

web form in order to provide better-quality interaction with the user.

• For ALDATP, top-level computations (like stored procedures in sorne databases)

could be downloaded to run at the client site.

• On a web server only the files or codes published or put into directories that

the web server can access are publicly available, others are private.

• In JRelix multi-database system, the JRelix running under a II public_aldatp"

directory are publicly available, others are private.

• \;Veb server can "point to" other Web servers with hypertext links. The file

returned by the server normally contains pointers to other files that can reside

on other servers. It is the client(browser) that open other Tep connections to

follow these links from server to server to fetch the files.

• An aldat query issued by a client can nest distributed sub-queries. It is the

J relix server that opens other TCP connections to follow these links from server

to server.

The primary difference between ALDATP and HTTP is that ALDATP is designed

for sharing resource among database systems while HTTP is for sharing resource

among file systems.

Potentially, aH the files and CGI or JSP codes put in the directories that the web

server can access are publicly available via HTTP. On each host, one web server is

enough to deal with the requests from clients (browsers). One web server can access

aH those files and invoke aU those codes that are published.

In a JRelix multi-database system, a group of database sites might coexist in one

hosto Each database runs at an individual direct ory. Each direct ory running a JRelix

instance could have a sub-directory in which another database instance is running

CHAPTER 1. INTRODUCTION 30

there. A database tree is similar to a file system tree. The directory nodes in a file

system tree correspond to the database nodes in a database tree. The files or codes

in a directory correspond to the elements in a database. To access the elements of

one database, that database must be running as a server. Unlike one web server for

one host, there are a group of database servers for one hosto

1.6 Outline of the Thesis

@ Chapter 1 introduces the purpose and outline of this thesis. A literature rerview

of distributed database management system, HTTP, URL and a database pro

gramming language JRelix is provided. The approach of this thesis is also briefiy

introduced in this chapter.

@ Chapter 2 is a introduction to the JRelix on which our work is based.

@ Chapter 3 is the users' manual on JRelÏx distributed data processing .

• Chapter 4 gives a detail description of implementing distributed data processing

- Aldatp in JRelix.

• Chapter 5 presents possible extensions with Aldatp in JRelix. An application of

event-based distributed system and suggestions to obtain location and fragem

ntation transparency are discussed.

@ Chapter 6 concludes the thesis with a summary and proposes future works.

Chapter 2

JRelix System

This chapter presents a tutorial on JRelix so that readers will understand the rest

of the thesis. This tutorial focuses on the parts of JRelix that are relevant to our

implementation of multi-database systems.

2.1 Starting and Exiting JRelix

To start JRelix, the following command is typed on the command line of the operating

system.

> java JRelix

As a result, JRelix copyright information is displayed in its mn-time environment,

and JRelix shows its prompt sign">iI and waits for user input.

+---+
Relix Java version 0.80

Copyright Cc) 1997 -- 2002 Aldat Lab
School of Computer Science

McGill University
+---+
>

Figure 2.1: Initial Screen upon Starting JRelix

To exit the system, user types "quit;" after the system prompt sign.

31

CHAPTER 2. JRELIX SYSTEM

2.2 Declaration

Domain Declaration

32

A relation is defined on one or more attributes, and the data for a given attribute is

from a particular domain of values. The domian of a given attribute determines its

data type. There are two kinds of domain declaration in JRelix, Le. atomic-typed

domain and complex-typed domain.

JRelix provides ten atomic data types: integer, short, long, float, double, boolean,

string, text, univers al [MerOl] and attribute [MerOl] type. In general, the syntax used

to declare a domain of atomic data type is as follows:

>domain <dom_name1>,<dom_name2> ... <data_type>;

The following are example of declaring atomic-typed domains.

> domain dept, office, code, name, titIe, address string;

> domain numStus integer;

On the other hand, two complex data types have been implemented in CUIrent

JRelix, Le. nested relation and computation. Nested relational domain is used wh en

the attribute in a relation is a further relation. This mechanism constructs a nested

relation. The syntax used to de clare a nested relation al domain is as follows:

The following are examples of declaring nested relational domain.

> domain courseCcode, titIe);

> domain profs(name, office, course);

Wh en a new nested domain is declared, an invisible relation (whose name starts

with a ".") is created automatically in the system. This relation is supposed to

hold the data that belong to the nested domain in question. In the example given,

".course" and ".profs" are generated.

CHAPTER 2. JRELIX SYSTEM 33

To show the information of domains currently declared in the system, use the

following command:

> sd

> sd <dom_name>;

When domain name is specified, the command shows the information about this

particular domain; otherwise, it shows aH the currently declared domains.

The following is an example of showing aU the domain lists.

>sd;
------------------------------- Domain Entry -------------------------------
Name Type NumRef IsState Dom_List

code string 1 false
course idlist 1 false .id, code, title,
address string 0 false
office string 1 false
numStus integer 0 false
dept string 0 false
profs idlist 0 false .id, name, office, cours

. title string 1 false
name string 1 false

>

To delete a domain from the current system, use the dd command:

> dd <dom_name>;

Declare and Initialize Relations

Relations are defined on one or more attributes (or domains) which must have been

declared before the relation is declared or initialized. The general syntax for declaring

a relation is as follows:

>relation <rel_name>C<dom_name1> , <dom_name2> ...);

Note that the domain list can be any vaUd do mains declared already in the sys

tem, e.g. atomic-data-typed domains, nested relational domains and computational

domains etc.

The following are examples of relation declaration.

CHAPTER 2. JRELIX SYSTEM

> relation student(dept, address, numStus);
> relation faculty(dept, profs);

34

However, the syntax given above only declares a relation structure in the system,

which means it is an empty relation without any data inside. A relation can also be

declared with actual data tuples, and this is called relation initialization. The syntax

for relation initialization is defined as follows:

> relation <rel_name>«dom_namel>,<dom_name2> ...) <- <initialization_list>;

Figure 2.2 is a example of initalizing fiat realtion and Figure 2.3 is a example of

initalizing nested realtion.

department C dept
cs
MA
EE

address
3480 University Street
1001 Sherbrooke
3480 University Street

numStus)
500
800
400

>relation departmentCdept, address, numStus) <- {
C"CS", "3480 University Street", 500),
("MA", "1001 Sherbrooke", 800),
("EE", "3480 University Street", 400)};

Figure 2.2: Initialize a fiat relation: department

The rule for initialization list is

• A relation is always surrounded by a pair of curly brackets.

• Inside a relation, each tuple is surrounded by a pair of round brackets.

• Different tupI es are separated by comma signs.

Although it seems only one relation (e.g. faculty) is initialized during a nested

relation declaration, multiple relation initializations might potentially be involved.

As mentioned before, when a nested domain is declared, a corresponding relation

whose name is prefixed with a"." is created in the system automatically, and this

relation is supposed to hold the data that belong to the nested domain. In the example

given, .course and .profs are generated.

CHAPTER 2. JRELIX SYSTEM

faculty
(dept profs

(name office course
(code title)

CS Merrett 304 612 database system
617 information system

Newborn 305 767 E-commerce
431 Algorithms

EE Pat 412 530 Control System
538 Robot

>relation facultyCdept, profs) <- {
("CS", {(tlMerrett","304",{ ("612" ,"database system"),
("617", "information system")}), ("Newborn", "305",
{ ("767","E-commerce"), ("431","Algorithms") }) }),

C"EE". {("Pat", "412", { ("530", "Control system").
("531", "Robot") }) })
};

)

Figure 2.3: Initialize a nested relation: faculty

35

The linkage between the top-level relation and relations associated with each nested

domain is achived through a so-called "surrogate" , which represented as a long integer

in JRelix implementation. Figure 2.4 shows the surrogates linking relations.

To print the content of a relation in screen, use the pr command:

> pr <rel_name>;

The dr is used to remove the relation specified from the system:

>dr <rel_name>;

The command to Est aU relation entries that have been declared in the system is

sr.

>sr;
>sr <rel_name>;

For example,
>sr;
-------------------- Relation Table
Name Type Arity
tive

NTuples Sort Ac

CHAPTER 2. JRELIX SYSTEM

Faculty

dept ~~fs
CS .. 1 ... , . 1

EE
,

4 ~ 1 , , ,
..... '"

.c®mse
.id code
) ...

612 J J '
1 .&ooI! \.

1 , 2 i 617
1

3 " 431
3 767
5 530 , ,

\ 5 /~""""",,=-531 , ,
~'"'

.pmû
id rame

, , 1 Ivllnetl , ,
1 ,
~ 1

,
Newborn 1 ,

\a.".~11

.
Pat

title
data.œ.re sy.;tem
infonn.a.tion sy'Stern
Algorithnw
E-corrune rce

office course
/~2

...
304 .

• ,
306 1 3

,
1 .

412 \ 5~ ... _~

Control Sy'Ste rn
Robot /

----------~
Figure 2.4: Link two relations through surrogates

department
faculty

>

relation
relation

3
2

2.3 Relational Algebra

3
2

3
2

o
o

36

Relational algebra consists of a set of functional operations on one or two relations and

pro duces a result relation. JRelix constructs expressions by using various operators

and then pro duces the result relation by assignment or incremental assignment.

Assignment and IncrementaI Assignment

An assignment "<_11 creates a relation using the result of a relational expression. an

incremental assignment 11<+" adds the result of a relational expression to an existing

relation. The general syntax is as follows:

> <new_relname> <- <expression>;

> <new_relname> <+ <expression>;

For assignment operation, if the result relation has the same name as an existing

CHAPTER 2. JRELIX SYSTEM 37

relation in the current system, the existing relation will be removed first.

Example
> facultyCopy <- faculty;
> department <+ newDepartment;

In the above examples, facultyCopy obtains a copy of original faculty. The result

of depariment is a merge of the original department and newDepartment.

Relational Expression

Relational expression can be divided into two categories: unary operations and

binary operations.

U nary operations

Unary operations take one relation as input and generate one relation as output.

Projection, selection and T-selection are unary operations.

Projection

Projection creates a subset of the source relation specified by Expression. It ex

tracts a subset of the attributes of the source relation by domain list. Duplicate tuples

will be removed from the result relation. the syntax is as follows:

> [<doID_name1> , <doID_name2> ...] in <expression>;

Selection

Selection also creates a subset of the source relation specified by Expression. Un

like Projection, the result relation contains aH the attribut es of the source relation.

However, the tuples in the result relation are those satisifying the condition of the

Selection Clause. The syntax is as follows:

> where <SelectClause> in <Expression>;

T -selection

Projections and selections can be combined into one expression to form T-Selections.

In aT-Selection, first perform the selection, and then perform the projection. The

syntax is as follows:

CHAPTER 2. JRELIX SYSTEM 38

> [<dom_name1> , <dom_name2>, ...] where <SelectClause> in <Expression>;

Example:
>R <- [deptJ where numStus > 500 in department;
>pr R;
+----------------------+
1 dept
+----------------------+
1 MA
+----------------------+
relation R has 1 tuple

Binary Operations

Binary operations take two relations as input and pro duce one result relation. There

are two categories of binary operators: mu-joins and sigma-joins. mu-joins are a

generalization of set operations on relations, and sigma-joins are a generalization of

logical operations on relations [Mer84]. The results of mu-joins and sigma-joins are

also relations.

The syntax for join goes as follows:

<Expression> <JoinOperator> <Expression>

<Expression> [<ExprList> : <JoinOperator> : <ExprList> J <Expression>

In the first production, the common attributes of the 1eft and right side relations

are used as join attributes. In the case where the 1eft and right side relations have no

common attributes, the user may specify which attributes form the joïn attributes.

This is handled in the second production.

j.t-joins ("set"-valued)

j.t-joins correspond to the binary set operations of union, intersection and differ

ence. In general, j.t-joins operators can be defined in terms of three components -

center, 1eft and right. Given two relations R(X,Y), S(Y,Z), the three components are

defined as follows:

center(R,S) = {(x,y,z) 1 (x,y) in R and (y,z) in S}

CHAPTER 2. JRELIX SYSTEM 39

left(R,S) = {(x,y,dc)l(x,y) in R and any z «(y,z) not in S)}

right(R,S) = {(dc,y,z)ICy,z) in S and any x ((x,y) not in R)}

We have:

R ujoin S = center(R,S) U left(R,S) U right(R,S)

R ijoin S = centerCR,S)

R djoin S = X,Y in left(R,S)

R drjoin S = Y,2 in right(R,S)

R lrjoin S = leftCR,S) U center(R,S)

R rjoin S = right(R,S) U center(R,S)

R sjoin S = left(R,S) U right(R,S)

Take the two relations "department" and "faculty" introduced in Figure 2.2 and

Figure 2.4 as examples.

>R <- department ijoin facultYi
>pr Ri

+---------+----------------------+-------------+----------+
1 dept 1 address 1 numStus 1 profs
+---------+----------------------+-------------+----------+
1 CS
1 EE

1 3480 University Stre 1 500
1 3480 University Stre 1 400

1 1
1 4

+---------+----------------------+-------------+----------+
relation R has 2 tuples

>R <- department ujoin faeulty;
>pr R;
+---------+----------------------+-------------+------------+
1 dept 1 address 1 numStus 1 profs
+---------+----------------------+-------------+------------+
1 CS
1 EE
1 MA

3480 University Stre 500
1 3480 University Stre 1 400
1 1001 Sherbrooke 1 800

1 1

1 4
1 de

+---------+----------------------+-------------+------------+
relation R has 3 tuples
Note: de means "don't eare".

> R <- department djoin facultYi
>pr R;
+----------------------+----------------------+-------------+
1 dept 1 address 1 numStus
+----------------------+----------------------+-------------+
1 MA 1 1001 Sherbrooke 1 800

CHAPTER 2. JRELIX SYSTEM 40

+----------------------+----------------------+-------------+
relation R has 1 tuple

(J'-joins ("truth"-valued)

The family of (J'-joins are based on set comparison operators such as "subset" or

"equals". The sigma joins extend the truth-valued comparison operation on sets to

relations by applying them on each set of values of the join attribute for each of the

other values in the two relations. Refer to [Mer84] for detai! descriptions on O'-joins.

One of the frequently used sigma-joins is natural composition, i.e. icomp. The

operations and result of icomp are quite similar to that of natural join (i.e. ijoin),

except that the joïn attributes are removed from the result relation.

Example
>R <- department icomp facultYj
>pr Rj
+----------------------+-------------+------------------+
1 address 1 numStus 1 profs
+----------------------+-------------+------------------+
1 3480 University Stre 1 400 1 4
1 3480 University Stre 1 500 1 1
+----------------------+-------------+------------------+
relation R has 2 tuples

2.4 Domain Aigebra

Domain algebra provides a set of operations applied on attributes. A thorough de

scription of domain algebra can be found in [Mer84]. Although domain algebra is one

of the most important components for JRelix, we are not going to elaborate it here

because it is not very crucial to our implementation of multi-database system. For

further information, please refer to [Mer84, Yua9S].

2.5 Views

While the assignment operator causes the expression following it to be evaluated and

the result stored in the relation named on the 1eft, it is useful to be able to defer the

evaluation until later. The mechanism for this is called a view. Unlike a relation, a

CHAPTER 2. JRELIX SYSTEM 41

view does not hold data upon declaration and initialization. It is usually regarded

as a functional definition. In JRelix notation, is replaces the assignment arrows,

<- and <+. Thus the syntax for views is as follows:

> <view-name> is <expression> ;

It defines view-name to be synonymous with the result relation of the relational

expression, and no evaluation is performed until a subsequent assignment, or other

operation such as print forces it.

Example

>V is faeulty sjoin department;
>pr V;
+-------------------+-------------------+-------------------+----------+
1 dept 1 profs 1 address 1 numStus
+-------------------+-------------------+-------------------+----------+
1 MA 1 de 1 1001 Sherbrooke 1 800
+-------------------+-------------------+-------------------+----------+
expression has 1 tuple

2.6 Update

The update operation allows us to change values of specified attributes in certain

tuples. These attributes could be selected by a "using" clause which uses a relational

algebra operation to select tupI es from the relation we want to update. We can also

use updates to add or delete sorne tuples to or from the relation.

Update provides the mechanism for changing a relation. There are three basic

update operations on relations: add, delete and change. The syntax for update is:

>Update <rel_name> add <expression>;

>Update <rel_name> delete <expression>;

>Update <rel_name> change <statementList> <UsingClause >;

UsingClause := using <JoinOperator> <Expression>

Here the first two productions add or delete the result of Expression to or from

the relation being updated. The semantics of add is the same as that of the incre

mental assignment. The semantics of delete is related to that of the djoin. The third

CHAPTER 2. JRELIX SYSTEM 42

production updates part of the relation in the way specified by StatementList. The

part of the relation to be updated is the joÏn result (specified by JoinOperator) of

the relation being updated and the result of expression in UsingClause. If there is no

JoinOperator in the UsingClause, the default join operator is natural joïn. If there is

no UsingClause, the whole relation is updated. The StatementList that follows the

keyword change may contain update statements.

Example

>update department change numStus <- numStus+l00 using ijoin on faculty;
>pr department;
+----------------------+----------------------+--~----------+

1 dept 1 address 1 numStus
+----------------------+----------------------+-------------+
1 CS 3480 University Stre 600
1 EE 1 3480 University Stre 1 500
1 MA 1 1001 Sherbrooke 1 800
+----------------------+----------------------+-------------+
relation department has 3 tuples

2.7 Computations

Computation implements procedural abstraction in jRelix. The basis of computation

can be found in [Mer84]. The formaI syntax for the declaration of a computation goes

as follow:

comp <comp_name> (< ParameterList >)is

< ComputationBody > ;

A computation can be thought of as a compressed relation, in which the relation

ship is given not explicitly by data but implicitly by code. For example IntPerChg is

a relationship among l, i, p.

>domain I,i float;
>domain p integer;
>comp IntPerChg(I,i,p) is
{I <- (l+i)**p-l}
alt
{i <- (1+I)**(1.0/p)-1}
aIt
{p <- round(log(l+I)/log(l+i»};

CHAPTER 2. JRELIX SYSTEM 43

The computation name is IntPerChg. There are three parameters in this computa

tion, and they are an defined as domains. There are three "aIt" blocks in this example.

AU ofthem satisfy the constraint "1 = (l+i)**p-l". Given values for any two of these

variables, the value of the third will be calculated according to the constraint.

The central design principle applied in implementing computation is to make them

resemble relations. We show the relation corresponding to velo city as below:

1ntPerChg (l
0.06
0.06
0.07
0.07

i
0.0024307966
0.0048675537
0.0028231144
0.0056540966

p)
24
12
24
12

It is an infinite relation, in which every tuple satisfies the constraint "1 = (1 +i) **p-

1". Further more, an tuples satisfying this constraint are included in the relation.

The parameters of a computation become the domains of its associated relation.

Although 1ntPerchg is code and we call it a computation or comp, it must always

be thought of as a relation. That way, we do not need any new syntax to invoke it.

For example,

> 1ntint <- [p] where 1=0.12 & i=O.Ol in 1ntPerChg;
gives the result as follow.
>pr Intint;
+-------------+
1 P
+-------------+
1 11

+-------------+

Computations may also be invoked by means of top-level caUs in jRelix taking

domains and relations as parameters or taking no parameters. Thus computation

functions just as procedure, which is a top level procedural abstraction implemented

in Relix, the predecessor of jRelix. Please refer to [RSL95] for a complete discussion

of procedure in Relix. Take the following example:

CHAPTER 2. JRELIX SYSTEM

> comp AssignComp () is
{ result <- temprel;
};

> comp JoinComp (A, B, C) is
{ C <- A ujoin B;
};

> AssignComp ();
> JoinComp (in oldRecord, in moreRecord, out Record);

44

Here we have defined two computations. The invocation of computation Assign

Comp is a top level caU which takes no parameter. The invocation of computation

JoinComp is also a top level call, taking three parameters where in and out are used

to specify the input and output parameters. "oldRecord" and "moreRecord" are

two existing relations, while "Record" is the output and newly generated relation in

this example. The statement(s) in the computation body will be executed when the

computation is called.

2.8 Event Handlers

An event is a system-generated procedure cano The procedure that is called is com

monly known as an event handler. It is a procedure with a specially formulated name

linking it to the situation under which it should be called. For example, when a re

lation is updated by add, delete or change, the response can be coded in procedures

named, respectively, with the following syntax:

[prelpost:J add: <relation>

[prelpost:J delete: <relation>

[prelpost:J change: <relation>: <attribute>

where pre means that the procedure is to be invoked before executing the update,

and post means caU the procedure afterwards.

For the update operation, the affected relation would be separated into three pieces

which are named Trigger, New and Rest. They only exist in the pre and post event

CHAPTER 2. JRELIX SYSTEM 45

handler. Trigger is defined as being the tuples which will be affected by an update

operation on the original relation, or you can call it Old. New is defined as being

the new values of those oid tuples. Rest is defined as being the tuples which are not

affected by an update operation on the original relation. They only exist in the pre

and post event handler.

2.9 System Commands

System commands can be used to set JRelix environment and display system informa

tion. By using these commands, the user can know more about his or her environment

upon starting JRelix run-time system.

The following are sorne of the system commands implemented in JRelix.

Debug: turn the debug model on/off

Time: turn on/off the interpretation timer.

Trace: turn the log on/off

Sd: display the user-defined and system-defined domain information.

Sr: display the user-defined and system-defined relation information

Input: any JRelix commands and statements can be stored as a batch file on the

disk and be loaded into the system like a sequence of JRelix commands

Chapter 3

U sers' Manual on JRelix

Distributed Systems

In this chapter, the users' manual on remote data processing of JRelix is glVen.

Section 3.1 describes a demo environment used throughout this user manu al , and

introduces basic ways to launch the multiple JRelix system. Section 3.2 presents the

new syntax for visiting other databases. Sections starting from 3.3 to 3.9 go through

the detailed examples about the remote data processing of this system. The topics

coyer remote assignment, view, update, computation, computation call, statement

block and commando In section 3.10, we show four basic options to start JRelix. There

are extensions that will be introduced in other sections. Section 3.11 describes the

way to manage the port numbers used by the multiple JRelix systems. Section 3.12

introduces background servers that will be started and stopped automatically. In

Section 3.13, security issues on file access permission and the protected server running

outside "public_aldatp" directories are illustrated.

3.1 Getting Started

Before starting the multiple JRelix, we must illustrate a demo environment in our lab

first. Throughout this chapter, we use examples on this environment to show the way

46

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 47

to start and use this system. Figure 3.1 presents the structure of the demo multiple

JRelix system.

Two physical hosts, "roo" and "mimi", are involved in the example. "~tim", and

"-zwang26", are two normal users' home directories respectively. Figure 3.1 shows

"zwang26's" and "tim's" home directories on "roo", and only "zwang26's" home

directory on "mimi".

Immediately under each user's home direct ory, there is a "publicaldatp" directory.

Each node of the sub-tree rooted at "public_aldatp" is an individual JRelix. For in

stance, under "-zwang26/" on "roo", "public_aldatp", "pubA", "pubAl", "pubA2",

"pubB" are aH individual JRelix systems. Vnder normal conditions, the JRelix run

ning under "public_aldatp" direct ory is publicly available. It could be visited by other

databases that are potentially linked by Internet. As is illustrated in the Figure 3.1,

except un der a regular user's home directory, "publicaldatp" may also reside at a

higher level directory, e.g. its owner is "root" .

Besides the nodes under a "public_aldatp", JRelix could also run at a site out of

the "publicaldatp". In Figure 3.1, The JRelix running at "-zwang26j JRelixjpriv"

on "roo" and the JRelix running at "-timjpriv" on "roo" are such sorts of systems.

By default, the JRelix running outside "public_aldatp" is private and protected. Only

the local owner can operate it. However, it is able ta visit other publicly available

JRelix. For instance, the JRelix running at "-timjpriv" can visit other JRelix running

under "public_aldatp".

The basic way ta start a multiple JRelix system could be very simple. In Sec

tion 3.10, more options and situations will be introduced in detail.

Step 1. Start JRelix Root Server

On each machine, one and only one root server should be launched before the

whole multiple JRelix system can work.

The DBA or system administrator with super user authority, goes to the root

user's "public_aldatp" direct ory (the "public_aldatp" at the upper right corner on

Fig 3.1), and types "java aldatpTLd &".

JfQQ~ l

l "-'l
"'Z'N~6 ... tim 1 public_aldatp

lA JB ~ l ,',r ','

pubAr::-1 Ô

l
"'Z'NaJ:tg26lpuhlic _ aldatp "'2.'i'1aJ:tg26!j:relix

r~ ·'----1
... h.ml public_aldatp ôPriv.

pubA

1 1 l
pubA l pub A 2 U

~ ~ mimi: 1

,-'--------'-----1
"'Z'ovaJ:tg26 public aldatp

Fig 3.1 Demo Bttu.Ctu.œ of multiple JRelix

... Z'o31aJ:~26l~ aldat:' "'Zli'1~2lpriv
1 1 ~ 1 puhA pubB

r-I Ô pu~Al Cl ~ ··'r·

~ .. .E;Jg.~

•

pub A

pu~-
eS

@
~
'1:1
t;5
~
~

fi3
~
en

~
~
~

~
t:"-1

~
~
~
~
tJ
Ci3
~
ta
q
t;5
t3
en
~
~
~

..,.
00

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 49

Or

The aldatpTLd root server can also be launched by a corn mon user. For normal

user, go to the "publicaldatp" directory, which should be immediately un der his

home directory, and type "java aldatpTLd &"

Example 3.1.1

[zwang26J [rooJ [-/public_aldatpJ java aldatpTLd &

Note:

If the aldatpTLd root server is launched by a common user, the "publicaldatp" at

the root level directory is publicly unavailable. More descriptions are given in section

3.10.

From this section to section 3.9, it is assumed that the root level server al

datpTLd is launched at the root user's "public_aldatp" instead of at a normal user's

"public_aldatp". 80 the root user level "public_aldatp" is publicly available in the

examples of these sections.

Step 2. Start JRelix Instance

Go to the directory of one JRelix database, and type "java JRelix"

Example 3.1.2

[zwang26] [rooJ [-/public_aldatp/pubAJ java JRelix
Starting lower-level aldatp server using port:9994
+---+

Relix Java version 0.80
Copyright Cc) 1997 -- 2002 Aldat Lab

School of Computer Science
McGill University

+---+
>

3.2 Syntax of aldatp

To enable two JRelix to visit each other, a communication must be established be

tween them so that shipping data, shipping query, and executing remote command is

realizable. To implement these communication abilities, new proto cols are developed

which are collectively called aldatp.

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 50

We are not going to explain these proto cols in this user's manu al. In this section,

we are going to introduce how to use the new syntax for aldatp to express the in

tentions of shipping data, shipping queries, executing remote commands and remote

computation caUs. From section 3.3 to section 3.9, detailied tutorials are given on

using them.

To visit other JRelix, we need to indicate the location of the destination. The

location information about a JRelix system includes the ho st name or IF address of

the physical machine and its position in the file system. 80 ho st name or IF address

plus the path or directory in the file system rnake a global unique identifier for each

JRelix on the Internet.

Eleven sample databases are highlighted in Figure 3.1. On each sample database,

a representive element labeled Ei (i: from 1 to 11) stands for the elements of the

corresponding database. An element in our exarnple could be one of the followings:

1. name of a relation, view or computation,

2. parenthesized expression,

3. statement or statement block in brace.

Table 3.1 presents the syntax for accessing these El ta El1 from each 11 databases.

The following is a example indicating the elernent Elof JRelix running at host

"roo" on the directory - zwang26jpublic_aldatpjpubAjpubAl

Example 3.2.1

aldatp://rooj-zwang26/pubA/pubAl/El

As it can be seen, the syntax for remote relation identifier

1. begins with "aldatp:/ /", which is a header, followed by

2. the hast name "roo" ,

3. alias of user home directory "-zwang26/",

4. part of the path "pubA/pubA1/",

5. ends with the relation name "El".

As mentioned in section 3.1, not aH the JRelix on the Internet are designed to be

publiclyavailable. However, by default, the JRelix under "public_aldatp" are publicly

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRlBUTED SYSTEMS 51

Location Syntax for accessing El to Ell
DB 1 El

aldatp: j jlocalhost j -zwang26 j pubAj pubA2 jE2
aldatp:j jlocalhost;-zwang26jpubAjE3
aldatp: j jlocalhost j -zwang26 j pubB jE4
aldatp:j jlocalhostj-zwang26jE5
E6 not available
aldatp:j jlocalhost;-timjE7
aldatp:j jlocalhost/pubAjES
aldatp:j /10calhost/E9
aldatp:j jmimi/-zwang26/pubBjE10
aldatp:j jmimi/Ell
Note: "localhost" and "roo" are alternative to each other for site 1

DB 2 aldatp:j jlocalhost;-zwang26jpubA/pubA1jE1
E2
From E3 to E11, the same as site1
Note: "localhost" and "roo" are alternative to each other for site 2

DB 3 PubA1/E1 or aldatp:j jlocalhostj-zwang26jpubAjpubAljE1
PubA2/E2 or aldatp:j jlocalhost;-zwang26jpubAjpubA2jE2
E3
From E4 to Ell, the same as site1
Note: "localhost" and "roo" are alternative to each other for site 3

DB 4 aldatp:j jlocalhost;-zwang26/pubAjpubA1jE1
aldatp: j /localhost j -zwang26 j pu bA j pu bA2 /E2
aldatp: j jlocalhost j -zwang26 j pu bA jE3
E4
From E5 to Ell, the same as site1
Note: "localhost" and "roo" are alternative to each other for site 4

DB 5 PubAjpubAljEl or aldatp:j jlocalhost;-zwang26jpubAjpubAljE1
PubA/pubA2jE2 or aldatp:/ jlocalhost;-zwang26jpubAjpubA2jE2
PubAjE3 or aldatp:j jlocalhost;-zwang26jpubAjE3
PubBjE4 or aldatp:j jlocalhost;-zwang26jpubB/E4
E5
From E6 to Ell, the same as sitel
Note: "localhost" and "roo" are alternative to each other for site 5

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 52

Location Syntax for accessing El to Ell
DB 6 aldatp:j jlocalhost;-zwang26jpubAjpubAl/El

From E2 to E5 , the same as sitel
E6
From E7 to EU, the same as site 1
Note: "localhost" and "roo" are alternative to each other for site 6

DB 7 aldatp:/ jlocalhost;-zwang26/pubA/pubAl/El
From E2 to E6 , the same as sitel
E7
From ES to EU , the same as sitel
Note: "localhost" and "roo" are alternative to each other for site 7

DB S aldatp://localhostrzwang26/pubA/pubAl/El
From E2 to E7, the same as sitel
ES
From E9 to El1 , the same as sitel
Note: "localhost" and "roo" are alternative to each other for site B

DB 9 aldatp://localhost;-zwang26/pubA/pubAl/El
From E2 to E7 , the same as sitel
PubA/ES or aldatp://localhost/pubA/EB
E9
From ElO to Ell , the same as sitel
Note: "localhost" and "roo" are alternative to each other for site 9

DB 10 aldatp:j /roorzwang26/pubAjpubAl/El
aldatp:j /roo;-zwang26/pubA/pubA2/E2
aldatp:j /roo;-zwang26/pubAjE3
aldatp:j /roo;-zwang26/pubBjE4
aldatp:j jroo;-zwang26/E5
E6 not available
aldatp:j /roortim/E7
aldatp:j /roo/pubAjEB
aldatp:j jroo/E9
ElO
aldatp: jlocalhost /EU
Note: "localhost" and "mimi" are alternative to each other for site 10

DB 11 From El to E9, the same as site 10
Pub/ElO or aldatp:j jloclahost;-zwang26/pub/ElO
Ell
Note: "localhost" and "mimi" are alternative to each other for site 11

Table 3.1: URL-based names.

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 53

available and those outside "public_aldatp" are private and protected. Therefore, we

do not use the whole path in our syntax. Instead, we only use the part of the path

which immediately after "public_aldatp" to represent the path information. By using

this structure, there are two apparent advantages. First, outside "public_aldatp" JRe

lix are protected sinee there are no ways to parse a directory outside "public_aldatp".

Second, the us ers are not required to know the whole complicated path. The knowl

edge of the structure of the sub tree rooted at "publicaldatp" is enough.

Example 3.2.2

1) aldatp:/ /roojE5

Element E5 of the JRelix running on "roo" at cc- jpublicaldatp"

2) aldatp:j /mimi/pubB/pubjElO

Element ElO of the JRelix running on "mimi" at ,,- jpublic_aldatpjpubB"

3) aldatp:j jlocalhost;-timjE7

Element E7 of the JRelix running on local host at "-tim/publicaldatp"

There is a shortcut for this expression. But it only applies to a parent JRelix

accessing its descendants

Example 3.2.3

For JRelix running on "roo" at "-timjpublic_aldatpjpubA" , if it accessies El

of Hs descendant JRelix running on "roo" at "-timjpublic_aldatp/pubAjpubAl", a

shortcut exists:

pubAl/El

This shortcut is only suit able for "going down". Any "going up", or first "going

up" then "going down" can not use this format.

Example 3.2.4

For the JRelix running on "roo:-zwang26jpublic_aldatpjpubA" , if it wants to

access E4 M of "roo:-zwang26jpublic_aldatpjpubB", the following expression must

be used:

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 54

aldatp:j jrooj-zwang26jpubBjE4

Ifit use pubBjE4, the system will look for "-zwang26/publicaldatp/pubAjpubB"

which does not exist.

The syntax for remote views and computations are the same as for relations. With

the knowledge of the syntax for identifying remote relations, views or computations,

it is easy to understand the syntax for remote expressions and statements. The syntax

for remote expressions is to replace the identifier (for relation, view, or computation)

with a parenthesized expression.

Example 3.2.5

aldatp://roo/pubA/(R1 ijoin Sl)

aldatp://localhostrtimj([name] in R7 ijoin aldatp:j /mimi/Rll)

Similarly, the syntax for remote statements is to replace the identifiers with braced

statements or statement blocks.

Example 3.2.6

aldatp://roo/pubA/{ let name' be name};

aldatp://mimi/-zwang26/pubB/{ S4 <- R4 };

aldatp://roo/-tim/pubA/pubAl/{ update R add S };

aldatp://localhost/-tim/pubA/{ compcall (in R, out aldatp://mimi/pubA/R) };

More examples on declarations, commands, assignments, updates, views, com

putations, computation calls, and statement blocks will be given in the following

sections.

3.3 Remote Assignment

Note: Suppose aH the example databases are empty at the beginning of this section.

This section is a self-contained tutorial. Users can follow the tutorial step by step.

As we know, in JRelix system, the do main must be defined before it can be used

to create new relations. For instance, to create the following relation:

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 55

Students3 C name
Joe
Sue

date)
09/2001
09/2002

VVe need to define the domains first if they do not already exist in the system.

Example 3.3.1

1) start JRelix at "roo:-zwang26/public_aldatp/pubA";

[zwang26] [roo] [-/public_aldatp/pubAJ java JRelix
Starting lower-level aldatp server using port:9994
+---+

Relix Java version 0.80
Copyright Cc) 1997 -- 2002 Aldat Lab

School of Computer Science
McGill University

+---+

2) define domains "name", "date" and initialize relation "Students3"

>domain name,date string;
>relation Students3Cname,date) <- {("Joel!, "09/2001"), ("Sue", "09/2002")};
>pr Students3;
+----------------------+----------------------+
1 name 1 date
+----------------------+----------------------+
1 Joe 1 09/2001
1 Sue 1 09/2002
+----------------------+----------------------+
relation Students3 has 2 tuples
>

Now suppose we will assign this "Students3" relation from "roo;-zwang26/

public_aldatp/pubA" to the "roo:-zwang26/ JRelix/priv". There are two equal ways

to do it; either do the assignment at "roo:-zwang26/ JRelix/priv", or do the as

signment at "roo:-zwang26/public_aldatp/pubA". Before we do that, we might be

concerned about wh ether the domains "name" and "date" have been defined at

"roo:-zwang26/ JRelix/priv" or not.

For the "Students3" example, if any of the "name" and "date" is not defined at

the "roo:-zwang26/ JRelixjpriv", the system would automatically define a new one at

"roo:-zwang26/ JRelix/priv" exactly the same as what lS defined at "roo:-zwang26/

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 56

public_aldatpjpubA". If user would like, he could define "name" or "date" manually,

but this is not necessary.

Example 3.3.2

1) Start JRelix at "roo: - zwang26 j JRelixj pri v" , display the domain list existing in

the system. In this example, it is empty.

[zwang26J [roo] [-/JRelix/privJ java JRelix
Starting protected lower-level aldatp server using port:9993

//version info
>sd;
---------------------- Domain Entry -------------------------------
Name Type NumRef IsState Dom_List

2) Do the assignment and check the domains again.
>Stu6A (- aldatp://localhost/-zwang26/pubA/Students3;
>sd;
---------------------- Domain Entry -------------------------------
Name Type NumRef IsState Dom_List

date
name

>pr Stu6Aj

string
string

1
1

false
false

+----------------------+----------------------+
1 name 1 date
+----------------------+----------------------+
1 Joe
1 Sue

1 09/2001
1 09/2002

+----------------------+----------------------+
relation Stu6A has 2 tuples
>

If at "roo:-zwang26j JRelixjpriv", "name" or "date" are defined, but have different

type, then the system would check if any relation refers to the domain. If it were

being used, the system would complain "confiict domain detected", or else replace it

with the new one.

Example 3.3.3

1) go to JRelix running at "roo:-zwang26jJRelixjpriv", delete relation "Stu6A",

domain "name" and "date"

>dr Stu6A;
>dd date,name;

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 57

2)define domain ((name" and "date" again, but different type

>domain name,date real;
>sdj
---------------------- Domain Entry -------------------------------
Name Type NumRef IsState Dom_List

date
name

>

float
float ° o

false
false

3)do the same assignment again and check the domain Est.

>Stu6A <- aIdatp://Iocalhost/-zwang26/pubA/Students3;
>sd;
---------------------- Domain Entry -------------------------------
Name Type NumRef IsState Dom_List

date
name

>

string
string

1

1
false
false

Note: Although the domains have the "same name, different type", they are

replaced with new ones since they are not being used.

4)Delete relation "Stu6A", domains "name" and "date". Define new "name" and

"date" using the different type, and create a relation using these domains. Do the

assignment again.

>dr Stu6A;
>dd name,datej
>domain name,date reaI;
>relation R(name,date) <- {(1.0,2.0),(3.0,4.0)};
>sd;
---------------------- Domain Entry -------------------------------
Name Type NumRef IsState Dom_List

date
name

float
float

1

1
false
false

>Stu6A <- aIdatp://Iocalhost/-zwang26/pubA/Students3;
InterpretError: Conflict domain : name is being used as real

The last possibility is "same name, same type". In this case, only the number of

reference is changed.

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 58

Example 3.3.4

1) go to JRelix running at "roo:-zwang26jJRelixjpriv". Delete relation "Stu6A",

domains "name" and "date".

>dr R;
>dd name,date;

2) assign to relation "Stu6A"

>Stu6A <- aldatp://localhost/-zwang26/pubA/Students3;

3) assign to another relation "Stu6B"

>Stu6B <- aldatp://localhost/-zwang26/pubA/Students3;

4) Show the domain list. The number of reference is increased ta 2.

>sd;
---------------------- Domain Entry -------------------------------
Name Type NumRef IsState Dom_List

date
name

string
string

2
2

false
false

The remote relation could appear on the right-hand side, the left-hand side or

both si des of the assignment. The assignments could be a replacement one or an

incremental one.

Example 3.3.5

1) go to "roo:-zwang26jpublic_aldatpjpubA", update Students3;

>update Students3 change name <- "aaa";

2) go to "roo:-zwang26j JRelixjpriv", do the following assignment

>aldatp://localhost/-zwang26/Students5 <
aldatp://localhost/-zwang26/pubA/Students3 ujoin Stu6B;

OK
>

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 59

Example 3.3.6

1) go to "roo: - zwang26 j JRelixj priv" , incremental assign "Students3" at

"roo: - zwang26 / pu blicaldatp j pu bA" to "Stu6A"

>Stu6A <+ aldatp://loealhost/-zwang26/pubA/Students3;
>pr Stu6Ai
+----------------------+----------------------+
1 name 1 date
+----------------------+----------------------+

Joe
Sue
aaa
aaa

09/2001
09/2002
09/2001
09/2002

+----------------------+----------------------+
relation Stu6A has 4 tuples
>

The JRelix system supports relational algebra and domain algebra for relations

with an arbitrary level of nesting. The following example presents the way to ship

nested relations.

Here is the nested relation we used in the example.

Books4
(Authors title priee Deseriptors)

(authors) (deseriptors)
Ai Tl P3 Di
A2 D2

A1 T3 Pi D1
D2
D3

Example 3.3.7

l)Go to "roo:-zwang26/publicaldatpjpubB", which has a nested relation Books4;

> pr Books4;
+-----------------+-----------------+-----------------+-----------------+
1 Authors 1 title 1 priee 1 Descriptors
+-----------------+-----------------+-----------------+-----------------+
1 3
1 1

1 T3
1 Tl

1 P3
1 Pl

1 4
1 2

+-----------------+-----------------+-----------------+-----------------+
relation Books4 has 2 tuples

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 60

>pr .Authors;
+----------------------+----------------------+
1 .id 1 authors
+----------------------+----------------------+
1 1
1 1
1 3

1 Al
1 A2
1 Al

+----------------------+----------------------+
relation .Authors has 3 tuples
>pr .Deseriptors;
+----------------------+----------------------+
1 .id 1 descriptors
+----------------------+----------------------+

2
2
4
4
4

Dl
D2
Dl
D2
D3

+----------------------+----------------------+
relation .Deseriptors has 5 tuples
>

2) assign Books4 to "roo:-zwang26jpublic_aldatpjpubA",

>aldatp://loealhost/-zwang26/pubA/Books3 <- Books4;

3)go to JRelix running on "roo:-zwang26jpublic_aldatpjpubA", check the "Books3"

>pr Books3;
+------------------+------------------+------------------+------------------+
1 Authors 1 title 1 priee 1 Deseriptors
+------------------+------------------+------------------+------------------+
1 1
1 2

1 T3
1 Tl

1 P3

1 Pl
1 3
1 4

+------------------+------------------+------------------+------------------+
relation Books3 has 2 tuples
>pr .Authors;
+----------------------+----------------------+
1 .id 1 authors
+----------------------+----------------------+
1 i
1 2
1 2

1 Ai
1 Ai
1 A2

+----------------------+----------------------+
relation .Authors has 3 tuples
>pr .Deseriptors;
+----------------------+----------------------+
1 .id 1 deseriptors
+----------------------+----------------------+
1 3
1 3

1 Di
1 D2

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 61

3
4
4

D3
Dl
D2

+----------------------+----------------------+
relation .Descriptors has 5 tuples
>

Note: Each system has its own sequential series for surrogates. Wh en "Books4" is

shipped from "roo:-zwang26jpublicaldatpjpubB" to "roo:-zwang26jpublic_aldatpjpubA",

new surrogates are allocated at "roo:-zwang26jpublic_aldatpjpubA".

3.4 Remote View

The assignment operator causes the expression following it to be evaluated and the

result stored in the relation named on the 1eft. For view, the evaluation is performed

until a subsequent assignment, or other operation such as print, forces it.

The following example is about remote view. The view is defined for other JRelix,

and the right-hand side expression could be local, remote or hybrid. Like the relation,

this view can be cited at any site.

Example 3.4.1

1) go to JRelix at "roo:-zwang26jJRelixjpriv", define the following view

>aldatp://localhost/-zwang26/StudentsView6 is Stu6B
ujoin aldatp://localhost/-zwang26/pubA/Students3j

OK

2) print the view "StudentsView6" at "roo:-zwang26jJRelixjpriv"

>pr aldatp://localhost/-zwang26/StudentsView6;
+----------------------+----------------------+
1 name 1 date
+----------------------+----------------------+

Joe
Sue
aaa
aaa

09/2001
09/2002
09/2001
09/2002

+----------------------+----------------------+
relation _temp_X9X_7 has 4 tuples
>

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 62

3)print the view "StudentsView6" at "roo:-zwang26/public_aldatp"

>pr StudentsView6;

>

Recursive rernote view is also supported.

Example 3.4.2

Suppose relation "Parent6" exists at "roo:-zwang26/ JRelix/priv"

Parent6(Sr Jr)
Joe Sue
Max Ann
Max Ted
Sue Max

The "Ancestor3" is a remote recursive view.

>aldatp://localhost/-zwang26/pubA/Ancestor3 is
Parent6 ujoin (Parent6[Jr : icomp : Sr] aldatp://localhost/-zwang26/pubA/Ancestor3);

If we print it, the evaluation is perforrned and the result is as follows

>pr aldatp://localhost/-zwang26/pubA/Ancestor3;
+----------------------+----------------------+
1 Sr 1 Jr
+----------------------+----------------------+

Joe Ann
Joe Max
Joe Sue
Joe Ted
Max Ann
Max Ted
Sue Ann
Sue Max
Sue Ted

+----------------------+----------------------+
relation _temp_X9X_15 has 9 tuples
>

3.5 Remote Update

The updated relation could be a local or rernote one. The right-hand expression could

be local, rernote or hybrid.

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 63

Example 3.5.1

1) Update local relation using remote expression

>update Stu6B add aIdatp://Iocalhost/-zwang26/pubA/Students3;

>update Stu6B delete aldatp://localhost/-zwang26/pubA/Students3;

>update Stu6B change name (- "Joe Joe" using

2)Update remote relation

>update aIdatp://Iocalhost/-zwang26/pubA/Students3 add Stu6B;
OK
>update aIdatp://localhost/-zwang26/pubA/Students3

change name <- if date="09/2002" then "Sue" else "Joe";
OK

3.6 Remote Computation

In JRelix, computation is a special kind of relation. Although it actually works as

procedures or functions, it behaves like relations. Because a computation can be

thought of as a typed relation, we do not need to add new syntax to invoke it. We

are already quite familiar with remote relation and view, therefore it would be easy

to work with remote computation.

Example 3.6.1

1) go to JRelix running at "roo:-zwang26jpublic_aldatpjpubA", create the f01-

lowing computation;

> domain I,i realj
> domain p integer;
>comp IntPerChg3(I,i,p) is
{I <- (l+i)**p-l}
aIt
{i <- (1+I)**(1.0/p)-1}
aIt
{p <- round(log(l+I)/log(l+i))};
>

2) go to JRelix at "roo;-zwang26j JRelixjpriv" to invoke the computation "Int

PerChg" at "roo:-zwang26jpublic_aldatpjpubA"

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 64

>lntint6 <- [p] where 1=0.12 & i=O.Ol in aldatp://localhost/-zwang26/pubA/lntPerChg3;
>pr Intint6;
+-------------+
1 p
+-------------+
111
+-------------+
relation 1ntint6 has 1 tuple
>

3.7 Remote Computation CaU

Computation caUs are top-level computations. They could take relations as param

eters, and these in or out parameter relations could be remote or local ones. The

computation call itself could also be executed locally or remotely.

Example 3.7.1

l)The following is a simple example of computation caIl defined at

"roo:-zwang26jpublicaldatpjpubA"

> domain ~(name,date);
> domain T(name,date);
> comp compcal13(R,T) is
{R <- T}

aIt
{T <-R };

2)Invoke "compca1l3". the "IN" parameter is a local relation and the "OUT"

parameter is a remote relation.

>compcal13 (in Students3, out aldatp://localhost/-zwang26/Stud5);
>pr aldatp://Iocalhost/-zwang26/Stud5;
+----------------------+----------------------+
1 name 1 date
+----------------------+----------------------+
1 aaa 1 09/2001
1 aaa 1 09/2002
+----------------------+----------------------+
relation _temp_X9X_146 has 2 tuples

Example 3.7.2

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 65

1) go to JRelix running at "roo: -zwang26 j JRelixjpriv", invoke "compca1l3" at

"roo:-zwang26jpublic_aldatpjpubA", both of the "IN" and "OUT" parameter rela

tions are located at "roo:-zwang26jpublicaldatpjpubA"

> aldatp://localhost/-zwang26/pubA/{compcal13 (in Students3, out R3)};
OK
>pr aldatp://localhost/-zwang26/pubA/R3;
+----------------------+----------------------+
1 name 1 date
+----------------------+----------------------+
1 aaa 1 09/2001
1 aaa 1 09/2002
+----------------------+----------------------+
relation _temp_X9X_38 has 2 tuples
>

Example 3.7.3

This example actually ships the remote computation call to the local site on the

fly, and executes it locally.

1) go to JRelix running at "roo:-zwang26j JRelixjpriv", invoke "compca1l3" of

"roo:-zwang26jpublic_aldatpjpubA", both of the "IN" and "OUT" parameter rela

tions are located at "roo:-zwang26j JRelixjpriv"

>aldatp://localhost/-zwang26/pubA/compcal13(in Stu6B, out R6)i
> pr R6;
+----------------------+----------------------+
1 name 1 date
+----------------------+----------------------+
1 Joe 1 09/2001
1 Sue 1 09/2002
+----------------------+----------------------+
relation R6 has 2 tuples
>

Please pay attention to the difference between example 3.7.2 and example 3.7.3

3.8 Remote Statement Block

Remote statements en able us to execute statements remotely. To sorne extent, it

works as if the users telnet to the remote system and operate that system.

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 66

Declaration Example

1) go to JRelix at "roo:-zwang26jpublic_aldatp"

2) declare domain

> pubA/{ domain authors string};
> pubA/{ domain Authors(authors)};
> pubA/{ let authors' be authors};

3) declare view

>pubA/{ V3 is Authors};

4) declare computation

> aldatp://localhost/pubA/{comp IntPerChg3(I,i,p) is
{I <- (l+i)**p-l}
alt
{i <- (1+I)**(1.0/p)-1}
alt
{p <- round(log(l+I)/log(l+i)}
};

Assignment Example

l)go to JRelix at "mimi:-zwang26jpublic_aldatp"

> aldatp://roo/-zwang26/pubA/{ Students3' <~ Students3};

Update Example

1) go to JRelix at "roo: -timjpublic_aldatp"

> aldatp://roo/-zwang26/pubA/{update Students3 change name <- "ccc";};

Computation calI Example

1) go to JRelix at "roo:-timjpublic_aldatp"

> aldatp://localhost/-zwang26/pubA/{compcal13 (in Students3, out R3)};

Command Example

1) go to JRelix at "roo:-timjpublic_aldatp"

>aldatp://localhost/pubA/{trace};

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 67

3.9 Remote Command

Compared with section 3.8.5, which demonstrates executing commands at the re

mote site, in this short section, we show examples of executing locally with a remote

operand.

Example 3.9

1) go to "roo:-zwang26jpublicaldatp", print remote relation

>pr pubA/Students3;
+----------------------+----------------------+
1 name 1 date
+----------------------+----------------------+
1 aaa
1 aaa

1 09/2001
1 09/2002

+----------------------+----------------------+
relation _temp_X9X_l has 2 tuples

3.10 Start Options

In section 3.1, a demo environment and the essential way to launch multiple JRelix are

presented. There are more options and situations will be elaborated in this section.

3.10.1 Root Level Server

If a root server is started on one physical machine, then by default all the JRe

Ex systems running under a "public_aldatp" direct ory of that machine are publicly

available. Otherwise, each JRelix instance is stand-alone, it can visit other publicly

available JRelix, but it is not available to others.

Two kinds of root level server are implemented. There are a few differences between

them.

The first one is called aldatpTLd, which means "aldatp top level daemon". As

introduced in section 3.1, the way to start the aldatpTLd is:

The DBA or system administrator with the super user authority go es to the root

user's "public_aldatp" directory (the "public_aldatp" at the upper right corner on

Fig 3.1), and types "java aldatpTLd &".

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 68

Or

The aldatpTLd root server can also be launched by a normal user. The normal

user goes to the "publicaldatp" directory, which should be immediately under his

home directory, and type "j ava aldatpTLd &"

Example 3.10.1

[zwang26] [roo] [-jpublic_aldatpJ java aldatpTLd &
[lJ 96529
[zwang26J [roo] [-jpublic_aldatp] starting aldatp top level daernon, please wait
aldatp top level daernon is available now

The root server is responsible for listening to the "well-known" port number for

aldatp, managing available port numbers, keeping a system dictionary, recording the

information about an the sub server locations and their corresponding port numbers

and responding to the requests from clients.

The aldatpTLd does not launch a JRelix instance. It is only a daemon program.

By adding "java aldatpTLd" into one of the files under the jetejreX.d direct ory for

Unix system, aldatpTLd root server could be started automatically wh en the Unix

system is rebooted.

If the aldatpTLd is detected down, it can be started manually. The new started

aldatpTLd ean detect aU the active running lower-level servers and do the house

keeping work. A detaüed description is given in Example 3.11.2

The second way to start a root level server is starting JRelix at "publicaldatp"

directory while the aldatpTLd is not running. In this case, the JRelix not only

takes the role of root server doing aH the duties described above, (i.e. it starts a

root daemon), but also st arts a JRelix instance and acts as a normal JRelix server

responding to the data processing requests from clients.

Example 3.10.2

l)If aldatpTLd is running, then stop it by using UNIX "ps" and "kill" eommands

to stop a pro cess

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 69

[zwang26J [roo] [-/public_aldatpJ ps
PID TT STAT TIME COMMAND

96529 pl l 0:00.00 /bin/sh /usr/local/bin/java aldatpTLd
96531 pl S 0:00.26 /usr/local/jdkl.3.1/bin/i386/green_threads/java aldat
[zwang26] [roo] [-/public_aldatp/pubAJ kill -9 96529 96531

2) launch JRelix at "publiLaldatp"

[zwang26] [roo] [-/public_aldatpJ java JRelix
starting top level aldatp server
+---+

Relix Java version 0.80
Copyright Cc) 1997 -- 2002 Aldat Lab

School of Computer Science
McGill University

+---+
>

If one st arts the JRelix at the "publiLaldatp" directory while the aldatpTLd is

on, then a lower level JRelix servel' is launched. That means aldatpTLd still works as

a root servel', and the JRelix running at the "public_aldatp" only works as a normal

lower-level servel', which will be described in the next section.

Note: In this user manual, the aldatpTLd is launched at "publiLaldatp" of a

normal user "-zwang26", sin ce the author has no root user authority. It's necessary

to explain the difference between them

1) At "roo", if aldatpTLd is started at root user's "public_aldatp", then al

datp:j jroojpubAjE8 and aldatp:j jroojE9 refer to the ES and E9 in Fig3.1. They

are publicly available.

2)At "roo", if aldatpTLd is started at -zwang26jpublic_aldatp, then aldatp:j jroojpubAjES

refers to "roo:-zwang26jpublic_aldatpj

pubAjES" which does not exist. Consequently, E8 and E9 in Fig 3.1 are not pub

licly available. In this case, for example, aldatp:jjroo;-zwang26jpubAjE3 and al

datp:j jroojpubAjE3 are the same thing.

Under normal situation, it is recommended to launch root server at root user's

"public_aldatp" directory.

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 70

3.10.2 Lower-Ievel JRelix Servel'

Each sub directory under "public_aldatp", lS a residence of an individual JRelix

instance. Even the directory ending with "public_aldatp" could reside an individu al

JRelix instance as weIl. By default, theses JRelix systems are publicly available.

They are normallower-level servers.

Example 3.10.3

1) Stop the JRelix launched in the previous example by typing "quit;" after ">"

>quit;

2) Start aldatpTLd,

[zwang26] [roo] [-/public_aldatp] java aldatpTLd &

3) Start JRelix "roo:-zwang26jpublic_aldatp".

[zwang26] [roo] [-/public_aldatpJ java JRelix
Starting lower-level aldatp server using port:9993
...... //version info

3.10.3 Protected JRelix Servel'

Besides those directories under "publicaldatp", JRelix could also be launched at any

directory outside "public_aldatp". In this case, by default the resource of the JRelix

instance are public unavailable to any other us ers on the Internet as well as any other

users on the local machine. The only exception to this case is "remote view", which

will be illustrated in Section 3.13.2.

Example 3.10.8

1) Make sure aldatpTLd has already been started.

2) Go to "roo:-zwang26jjrelixjpriv" and start JRelix

[zwang26] [roo] [-/jrelix/privJ java JRelix
Starting protected lower-level aldatp server using port:9991
...... //version info

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 71

3.10.4 Stand-alone JRelix

Under sorne circumstances, we would pre fer starting a stand-alone JRelix to starting a

JRelix server. For example, when the owner is rebuilding or reconstructing a database

under "public_aldatp", or the owner wants to possess the database exclusively for

sorne reason even if the database is under "publicaldatp" direct ory. The owner can

launch a database in stand-alone mode so that it is absolutely prevented from being

accessed from outside.

Example 3.10.9

[zwang26] [roc] [-/public_aldatpJ java JRelix -SA
Starting st~~d-alone JRelix .
.. Ilversion info

Note: 1) It is not good to start more than one copy of JRelix concurrently at the

same directory, sinee the current JRelix is RAM based and concurrency control is not

implemented yet.

2) A "stand-alone" JRelix does not mean it is isolated from the outside. A stand

alone JRelix still has the freedom to access any outside database only if that database

is publicly available. In other words, launching a stand-alone JRelix just means that

it can not be accessed from outside but it can access outside data.

3) Stand-alone jrelix could be launched under "publicaldatp" or outside "public_aldatp" .

Under sorne unusual circumstances, we intend to st art a JRelix server but the

system automatically st arts a stand-alone JRelix. One possibility is the top level

server is not running or the communication to the top level server fails. Consequently,

it is forced to start a stand-alone JRelix. Another unusual situation lS that aIl the

reserved port numbers are consumed, thus no more port numbers are available. In

this case, it is also forced to start a stand-alone JRelix. More will be explained in

section 3.11 .

Example 3.10.10

[zwang26] [roc] [-/public_aldatp/pubAJ java JRelix
Couldn't get rio for the connection to TOP level server
Starting stand-alone JRelix .
...... I/version info

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 72

3.11 Manage Port Numbers

On each physical machine, there is only one "well-known" port for the aldatp. This

"well-known" port is used by the root server.

As it can be seen, each lower-level server also consumes one port number. These

lower-level servers start or shut down dynamically, thus they consume the ports dy

namically. At one time, usually only small parts of this big multiple database family

are active. In addition, the multiple database system could contain huge numbers

of members. Furthermore, the multiple database system is not static itself. Making

new databases, moving databases, or removing databases are permitted. In short,

the active status of the entire multiple system may keep changing dynamically and

frequently. So it is unwise to make aH port numbers for each member in the multi

ple system to be publicly "well-known". One solution is selecting a master on each

physical computer to manage these ports and these ports are totally transparent to

end-users. In our implementation, the root server is such a master.

Suppose we estimate that the maximum number of members lU the multiple

database system is N. First we select M available port numbers. Suppose on av

erage, one third of the N members are active, then we cou Id choose M to be equal to

or greater than N /3. A little bit more is better. Usually this job is done by DBA

or System Administrator, who manually edits a ".ports" file at the "publicaldatp"

directory. In this file, at each line we write down one of these M port numbers. Af

ter that, we could st art the aldatpTLd root server. Lower-level servers could also

be launched afterwards. The lower-Ievel server would ask the root server to allocate

an available port for it. The root server receives the request, then picks one of the

available ports from these M ports and allocates it to the requester.

It is possible that the real time number of active members is greater than M. It

is also possible that sorne of the M ports are consumed by other applications. Thus,

when the root servel' is asked for allocating a port, no more port is available. If this

happens, the system would complain "no available port". One solution is to edit the

".ports" file and add more available port numbers. The root servel' and all the active

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 73

lower-level servers need not be restarted. Another alternative solution is to wait until

one of the M ports is released, then it can be reused for new requester.

Example 3.11.1

1) Quit aU the JRelix and aldatpTLd started in the previous examples.

2) Edit ".ports" file at "roo:-zwang26jpublic_aldatp" so that it only contains three

port numbers.

9991
9992
9993

3) Start a program that consumes one of these three ports

[zwang26] [roo] [-J java HTTPserver 9991

4) Go ta "roo:-zwang26jpublic_aldatp", start aldatpTLd

[zwang26J [roo] [-/public_aldatp] java aldatpTLd &

5) Start a program that consumes another port

[zwang26] [roo] [-J java HTTPserver 9992

6) Go to "roo:-zwang26jjrelixjpriv", start JRelix

[zwang26] [roo] [-/jrelix/privJ java JRelix
Starting protected lower-level aldatp server using port:9993
...... Ilversion info

7) Go to "roo:-zwang26jpublicaldatp" l start JRelix

[zwang26] [roo] [-/public_aldatpJ java JRelix
Warning! NO available port
Starting stand-alone JRelix .
...... Ilversion info

8) Quit the JRelix started at step 7); Edit ".ports" file at "roo:-zwang26jpublicaldatp" 1

and add one more port 9994 at the bottom of the file

9) Go to "roo:-zwang26jpublicaldatp", start JRelix

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 74

[zwang26] [roo] [-/public_aldatp] java JRelix
Starting lower-level aldatp server using port:9994
...... //version info

Up till now, there are totally 4 ports in the ".servies" file. 9991 and 9992 are

used by two programs narned "HTTPserver", 9993 and 9994 are consurned by two

JRelix running at "roo:-zwang26jjrelixjpriv" and "roo:-zwang26jpublic_aldatp" re

spectively.

10) Stop the HTTPserver using port 9991, so the 9991 is released.

11) Go to "roo:-zwang26jpublic_aldatpjpubA", start JRelix. The new released

9991 port will be consurned .

[zwang26] [roo] [-/public_aldatp/pubAJ java JRelix
Starting lower-level aldatp server using port:9991
...... //version info

12) Stop the HTTPserver using port 9992

13) Go to "roo:-zwang26jpublicaldatpjpubAjpubAl", start JRelix

[zwang26] [rooJ [-/public_aldatp/pubA/pubA1J java JRelix
Starting lower-level aldatp server using port:9992
...... //version info

If the root server is shut down while sorne lower-level server is still running. Af

terwards, when the root servel' is restarted, the root servel' can detect aH the current

alive lower-level servers.

Example 3.11.2
After exarnple 3.11.1, four lower-level servers are running,

9991: pubA
9992: pubA1
9993: priv
9994: public_aldatp

1) Stop aldatpTLd by using UNIX "ps" and "kill" command to stop a pro cess
2) Go to JRelix on "roo:-zwang26jpublic_aldatpjpubAjpubA1", try to print the

relation narned Students3" on "roo:-zwang26jpublic_aldatpjpubA"

>pr aldatp://localhost/-zwang26/pubA/Students3;
>java.net.ConnectException: Connection refused
>InterpretError: service temporarily unavailable
>

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 75

Note: Since the root server is down, the remote request is declined.

3) Quit JRelix at "roo:-zwang26jjrelixjpriv", so there are three alive JRelix lower

level servers now

9991: pubA
9992: pubA1
9994: public\verb_aldatp

4) Go to "roo:-zwang26jpublic_aldatp", st art aldatpTLd

[zwang26] [roo] [-/public_aldatpJ java aldatpTLd &

Note: the root server can detect the three alive lower-level servers and their port

numbers

5) Go to JRelix on "pubAl", try to print the relation named "Students3" on

"roo:-zwang26jpublic_aldatpjpubA" once more

>pr aldatp://localhost/-zwang26/pubA/Students3;

+----------------------+----------------------+
1 name 1 date
+----------------------+----------------------+
1 aaa 1 09/2001
1 aaa 1 09/2002
+----------------------+----------------------+

Now there are three alive JRelix lower-Ievel servers

9991: pubA
9992: pubA1
9994: public_aldatp

7) Go to "roo:-zwang26jpublic_aldatpjpubB", start JRelix

[zwang26] [roo] [-/public_aldatp/dirBJ java JRelix
Starting lower-level aldatp server using port:9993

//version info
>

3.12 Background Server

It Îs not mandatory to start the lower-level servers manually. Instead, the root server

can st art lower-level servers automatically if necessary.

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 76

Example 3.12.1

1) Quit an the alive lower-level servers and aldatpTLd if applicable.

2) Start aldatpTLd

[zwang26] [roo] [-/public_aldatpJ java aldatpTLd &

3) Go to "roo:-zwang26jjrelixjpriv", start JRelÏx

[zwang26] [roo] [-/jrelix/privJ java JRelix
Starting protected lower-level aldatp server using port:9993
...... //version info

4) Now only aldatpTLd and JRelix at "roo:-zwang26jjrelixjpriv" is running

[zwang26J [roo] [-J ps
PID TT STAT TIME COMMAND

74405 pO 1+
74407 pO 1+
74438 p2 1+
74440 p2 1+

0:00.00 /bin/sh /usr/local/bin/java aldatpTLd
0:00.26 /usr/local/jdkl.3.10/bin/i386/green_threads/java aldatpTLd
0:00.00 /bin/sh /usr/local/bin/java JRelix
0:00.50 /usr/local/jdkl.3.10/bin/i386/green_threads/java JRelix

5) Go to JRelix at "roo:-zwang26jjrelixjpriv", try to visit JRrelix at "roo:-zwang26j

pu blic_aldatp j pu bA"

>pr aldatp://localhost/-zwang26/pubA/Students3;
+----------------------+----------------------+
1 name 1 date
+----------------------+----------------------+
1 aaa 1 09/2001
1 aaa 1 09/2002
+----------------------+----------------------+

A background JRelix server is started automatically at "roo:-zwang26jpublicaldatpjpubA"

by the root server.

6) Check the process again.

[zwang26] [roo] [-J ps
PID TT STAT TIME COMMAND

74405 pO 1+
74407 pO 1+
74577 pO 1+
74579 pO 1+
74543 p2 1+
74545 p2 1+

0:00.00 /bin/sh /usr/local/bin/java aldatpTLd
0:00.30 /usr/local/jdkl.3.10/bin/i386/green_threads/java aldatpTLd
0:00.00 /bin/sh /usr/local/bin/java JRelixBack
0:00.45 /usr/local/jdkl.3.10/bin/i386/green_threads/java JRelixBack
0:00.00 /bin/sh /usr/local/bin/java JRelix
0:00.52 /usr/local/jdkl.3.10/bin/i386/green_threads/java JRelix

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 77

7) Go to "roo:-zwang26jpublicaldatpjpubA", try to start a JRelix server

[zwang26] [roo] [-/public_aldatp/pubAJ java JRelix
Warning! JRelix server is running on this directory
It is forbidden ta start more than one JRelix server concurrently at the same directory.

8) Go to "roo:-zwang26jpublic_aldatp" start a JRelix and visit "roo:-zwang26j

public_aldatpjpubA"

[zwang26] [roo] [-/public_aldatp] java JRelix
Starting lower-level aldatp server using port:9992
...... //version info
>pr pubA/Students3;
+----------------------+----------------------+
1 name 1 date
+----------------------+----------------------+
1 aaa
1 aaa

1 09/2001
1 09/2002

+----------------------+----------------------+

A JRelix background server is available to any other JRelix.

9) Quit the JRelix at "roo:-zwang26jjrelixjpriv"

>quit;
waiting aIl the active threads finish working

[zwang26] [roo] [-/jrelix/privJ

The background server running at "roo:-zwang26jpublicaldatpjpubA" will be

terminated as weIl, sin ce "roo:-zwang26jpublic_aldatpjpubA" is launched on account

of "roo:-zwang26/jrelixjpriv". Although after launching, "roo:-zwang26jpublicaldatpjpubA"

could be used by anyone else.

10) Check process again

[zwang26J [roo] [-] ps
PID TT STAT TIME COMMAND

74405 pO 1+
74407 pO 1+
74646 p3 1+
74648 p3 1+

0:00.00 /bin/sh /usr/local/bin/java aldatpTLd
0:00.32 /usr/local/jdk1.3.10/bin/i386/green_threads/java aldatpTLd
0:00.00 /bin/sh /usr/local/bin/java JRelix
0:00.54 /usr/local/jdkl.3.10/bin/i386/green_threads/java JRelix

Only aldatpTLd and JRelix at "roo:-zwang26jpublic_aldatp" are running. If

"roo:-zwang26jpublic_aldatp" visit "roo:-zwang26jpublicaldatpjpubA" again, a new

background server at "roo:-zwang26jpublic_aldatpjpubA" will be launched.

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 78

3.13 Security Issue

3.13.1 Pl'otected Servel'

As presented in section 3.2, the JRelix systems outside "public_aldatp" are private

and protected, since there are no ways to parse a directory outside "public_aldatp".

By default, only the owners can operate these systems at local sites. However, if a

user defines a remote view which refers ta local resource, it is desirable ta permit

remote sites to access the local resource wh en the view is being actualized.

Example 3.13.1

1) At "roo:-zwang26jjrelixjpriv", we define a view on "mimi:-zwang26jpublicaldatpjpubA"

, and this view refers ta the relation named "Stu6B" at "roo:-zwang26jjrelixjpriv".

>aldatp://mimi/-zwang26/pubA/V3 is Stu6Bj
OK
>

Wh en this view is actually used, the remote database running on "mimi:-zwang26j

public_aldatpjpubA" would access data from "roo:-zwang26jjrelixjpriv" to actualize

the view. So the "roo:-zwang26jjrelixjpriv" must possess the sever ability to respond

to this data access request. But we do not want it to be publicly available. This is

the reason why it is outside the "publicaldatp" directory.

2) Go ta JRelix at "mimi:-zwang26jpublic_aldatpjpubA" to actualize the view

>R3 <- V3j
>pr Rj
+----------------------+----------------------+
1 name 1 date
+----------------------+----------------------+
1 Joe
1 Sue

1 09/2001
1 09/2002

+----------------------+----------------------+
relation R has 2 tuples
>

3) Stop JRelix at "roo:-zwang26jjrelixjpriv"

4) Go to JRelix at "mimi:pubA" to check the view once more

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 79

>pr V3;
+----------------------+----------------------+
1 name 1 date
+----------------------+----------------------+
1 Joe
1 Sue

1 09/2001
1 09/2002

+----------------------+----------------------+
relation _temp_X9X_14 has 2 tuples
>

A background JRelix server is started at "roo:-zwang26Jjrelixjpriv"

3.13.2 File Access Permission

In general, the JRelix under "public_aldatp" are publicly available, while the JRelix

outside "publicaldatp" areprivate and protected. By this way, we control the access

permission at a database or direct ory level. However, we are able to control the access

permission more finely at a relation or file level.

Example 3.13.2

1) Start aldatpTLd, start JRelix at "roo:-zwang26jpublic_aldatpjpubA";

2) In this example, Students3 is a relation of "roo:-zwang26jpublic_aldatpjpubA".

Go ta "roo:-zwang26jpublic_aldatpjpubA", change the mode of Students3 ta be only

readable and writable by the owner user.

[zwang26J [rooJ [-/public_aldatp/pubAJ chmod 600 Students3

3) Go ta "roo:-zwang26jjrelixjpriv", start JRelix, and try ta read Students3 at

"roo: - zwang26 j public_aldatp j pubA"

[zwang26J [roo] [-/jrelix/priv] java JRelix
Starting protected lower-level aldatp server using port:9993
...... //version inÎo
>pr aldatp://localhost/-zwang26/pubA/Students3;
InterpretError: Permission denied to read Students3

4) Go ta "roo:-zwang26jpublicaldatpjpubA", change the mode of R to be read

able by aU but only writeable by owner

[zwang26] [rooJ [-/public_aldatp/pubAJ chmod 644 Students3

CHAPTER 3. USERS' MANUAL ON JRELIX DISTRIBUTED SYSTEMS 80

5) Go to "roo:-zwang26jjrelixjpriv", try to read Students3 of "roo:-zwang26j

public_aldatpjpubA" again

>pr aldatp://localhost/-zwang26/pubA/Students3;
+----------------------+----------------------+
1 name 1 date
+----------------------+----------------------+
1 aaa 1 09/2001
1 aaa 1 09/2002
+----------------------+----------------------+
relation _temp_X9X_l has 2 tuples
>

6) At "roo:-zwang26fjrelixjpriv" try to update Students3 of "roo:-zwang26j

public_aldatp jpubA"

>update aldatp://localhostrzwang26/pubA/Students3 change name <- "Joe";
Permission denied to write Students3

7) Go to "roo:-zwang26jpublicaldatpjpubA", change the mode of Students3 to

be readable and writable by an

[zwang26J [roo] [-/public_aldatp/pubAJ chmod 666 Students3

8) Go to JRelix at "roo:-zwang26fjrelixjpriv" try to update Students3 of "roo:

-zwang26jpublic_aldatpjpubA" again

>update aldatp://localhostrzwang26/pubA/Students3 change name <- "Joe";
OK

Chapter 4

Implementation of JRelix

Distributed Systems

In this chapter, we are going to describe the implementation of JRelix distributed

systems in detail. In section 4.1, we will give an overview of the current JRelix

system architecture. Section 4.2 presents the general implementation issues on aldatp.

In section 4.3, more detail and specifie implementation issues for different remote

functions of JRelix are illustrated, such as the capability of executing assignments,

updates, commands, declarations, and invoking computation caUs across the Internet.

The implementation of system administration for aldatp is described in section 4.4.

The system administration topics coyer starting the system, managing port numbers,

launching background servers and security issues on data access permission.

4.1 JRelix System Overview

Architecture

The JRelix system contains four main parts, the Parser, the Interpreter, the Execu

tion Engine and the Data. The parser and the interpreter function as the front-end

processor and act as an interface between end-user and the central execution engine.

The central execution engine fulfills the tasks passed from the interpreter. Data are

81

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 82

permanently stored files as weIl as mn-time data in RAM. They consist of not only the

user-defined relational data and stored computation code, but also "system tables"

which represent the system information of the database. Figure 4.1 is an overview of

the system. The underlying communication proto col is TCP /IP socket.

User
Input

Parser

Execution engine
D:nnam algebra

Rela lional algebra
Events and ac live

~=-::'1>1 datab:ise
'----r---'

Computation
Nemed relation

Figure 4.1: JRelix System

~-'---
l.ht!r-deft1Ul d data

&

~stem

information

A JRelix command entered by end-user is first accepted by JRelix parser. The parser

reads the command-line input, analyzes the command syntax and finally translates

the command into an intermediate code which has a tree structure and is therefore

called syntax tree. The parser is created by using Java Compiler Compiler (J avaCC)

[?] , a parser generator that reads a high-level grammar specification and converts it to

a Java Program that can recognize matches to the grammar. J JTree is a preprocessor

for JavaCC that builds parser trees. The output of JJTree is run through JavaCC to

create the parser. In JRelix implementation, a Parser class is created corresponding

to this module.

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 83

Interpreter

The interpreter repeatedly caUs the parser, receives trees passed from the parser,

traverses the syntax tree and decomposes it into a set of method caUs executed by

the execution engine. The interpreter also interacts with the system tables to retrieve

and update information about attributes, relations, views and computations in the

database. In JRelix implementation, an Interpreter class is built to represent the

interpreter.

Execution Engine

Essentially, there are five conceptual aspects in JRelix system: relational algebra,

domain algebra, computation, events and nested relation. They corresponds to

five basic function modules, i.e. Relation Processor[Hao98], Virtual Domain Actu

alizer[Yuan98], Computation Processor[Bak98], Events and Active Database[He97],

and Nested Relation Processor[Hao98], which work together and also support each

other to fulfill the tasks of the execution engine. Apart from the core function mod

ules, there are other function modules such as Geditor[CheOl] and Attribute Meta

data[MerOl] etc.

Memory and Disk Files

The data of each User-defined relation is permanently stored in a disk file having the

same name as the relation and read fully into RAM when referred (assume they are

small enough).

Apart from user-defined relation data, JRelix maintains so-called "system informa

tion" which contains important information about user-defined relations and domains

in the system, describes the current system execution state and controls system be

havior either during a single JRelix session or across multiple sessions. The system

relations .rel and .dom store information about aH the relations (including views and

computations) and attributes in the database respectively, while system relation .rd

stores information that links the relations with attributes defined on. File .expr con-

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 84

tains the serialized syntax tree of views and virtual attributes, while .comp contains

the serialized syntax trees of computations. System tables exist both in the memory

and on the hard disk with different formats.

4.2 General Issues on JRelix Distributed Data Pro

cessing Implementation

As illustrated in chapter 1, the basic idea of ALDATP is adapting a URL-based name

extension to a database programming language "aldat", which gives it collaborative

and distributed capability over the Internet with no changes in syntax or semantics

apart from the new structure in names. New components are added to the current

system and sorne existing models are modified to implement the multiple collaborative

system. For instance, the parser is modified to accept URL-based name structure, the

interpreter is upgraded to recognize and analyze the syntax tree with remote query.

In the execution engine, new components for aldatp are implemented ta deal with

distributed data processing.

4.2.1 Parsing Aldatp Syntax and Building Syntax Tree

Syntax specification

The syntax for aldatp has already been introduced in the Section 3.2. A demon envi

ronment as shown in Figure 3.1 and Table 3.1 gives thoroughly new syntax examples

of the URL-based name structure for that sample multiple database trees. Here we

summarize it as follows:

aldatpheader element

The element could be one of the followings:

1) identifier of a relation, view or computation

2) parenthesized expression

3) statement or statement block in a brace

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 85

The following lS the specification for" aldatpheader" .
TOKEN
{

1* ALDATPHEADER *1

< ALDATPHEADER : <FULL_ALDATPHEADER> 1 <SHORT_ALDATPHEADER> >
1

< FULL_ALDATPHEADER : <FULL_ALDATP> «<LETTER»+ «DOT»*)+
<SLASH> (<TILDE> <IDENT> <SLASH»* «IDENT> <SLASH»* >

1
< SHORT_ALDATPHEADER : <IDENT> «SLASH> <IDENT»* <SLASH> >
1

< FULL_ALDATP : "aIda tp : 1 1" >
1

< IDENT : <LETTER> «LETTER>I<DIGIT>!<OTHERS»* >

< #SLASH : ["/","\\"] >
1
< #TILDE : [Il -"] >
1

Il "l" for Unix and "\\', for Windows

< #LETTER : ["a"_"z", "A"-"Z"] >
1

< #OTHERS : ["_II, ""'J >

< DOT "." >
}

Note
el 1 e2 1 e3 ! ... A choice of el, e2, e3, etc.
(e)+ One or more occurrences of e
(e)* Zero or more occurrences of e
["a"_" z"] matches aIl lower case letters

There are two kinds of ALDATPHEADER, one is full format and the other is short

format. The full format is used under most situations. Its structure is as follows:

1) First begins with "aldatp:1 j", which is a header,

2) Then follows by the host name « <LETTER>) + «DOT» *) + <SLASH>, e.g. "roo j"

or "mimi.cs.mcgill.caj"

3) Next follows by an option part (<TILED> <IDENT> <SLASH» *. It specifies

the alias of user home directory, e.g. "-zwang26j",

4) The last part «IDENT> <SLASH» * is optional. If the destination path ends

with "public_aldatp", then this part does not occur. Otherwise it is the rear part of

the target path, which lS immediately after "publicaldatp".

The short format is much simpler. But it only applies to parent JRelix access

ing its descendants. The syntax is <IDENT> «SLASH> <IDENT» * <SLASH>, e.g.

"pubAj pubAl 1"

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 86

To implement the above syntax, we first modify the grammar specification text

file, Parser.jjt, by adding the specification of aldatp syntax. Then we generate the

new Parser using JJTree and JavaCC.

4.2.2 Building the Parser Tree

The syntax tree generated by the parser is compact and easy to interpret. Figure 4.2

shows the syntax tree for assignment : A <- R ijoin S

Figure 4.2: Syntax tree for assignment

In Figure 4.2, if the element is an identifier, e.g. relation R, it corresponds to a

single leaf node in the tree. If the element is an expression, e.g. R ijoin S, then it

corresponds to the sub-tree rooted at node "ijoin". Last of aH, if the element is a

statement, e.g. A <- R ij oin S, then it corresponds to the whole syntax tree.

Each node in the syntax tree contains fields indicating the nature of the node. The

principle fields are described in the Table 4.1

There are in total more than two hundreds different types and opcodes (operation

code) defined in JRelix system. To save space, we list sorne of them that will be used

in this paper in table 4.2.

We can dump the parser tree to a fiat text file according to some traverse order.

With this dump file and traverse order, the parser tree can be recreated. The following

is the dump file for syntax tree of A <- R ij oin S. Each line corresponds to one no de

of the tree

CHAPTER 4. IMPLEJ\,IENTATION OF JRELIX DISTRIBUTED SYSTEMS 87

item type description
parent Node Parent node
children java. uti!. Vector Children nodes
type int Operation type, e.g. declaration, update
opcode int Specifie operation, e.g. declare relation, declare

view, update add, update change
name String The name of the identifier, If the node is an identifier
info Object User-input data for some sort of nodes
identifier String Node identifier

Table 4.1: The principle fields of syntax tree nodes

type opcode
100 statement 101 sequence

......
110 execute
111 statement black

140 declaration 141 relation
1140 left-hand view declaration 142 view

143 domain
144 let
145 computation

160 assignment 161 Assignment
1160 1eft-hand assignment 162 IncrementaI assignment
180 update 181 update add
1180 1eft-hand update 182 update de1ete

183 update change
230 identifier 230 identifier
301 binary joïn operator 361 ijoin

362 ujoin
363 sjoïn
3641join
365 rjoïn
......

......

Table 4.2: Sample operation types and codes in JRelix system

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 88

identifer:Assignment name:null opcode:161 type: 160 nurnChildren:2 info:null url:null

identifer:ldentifier name:A opcode:230 type:230 nurnChildren:O info:null url:null

identifer:Join name:null opcode:361 type:301 nurnChildren:2 info:null url:null

identifer:ldentifier name:R opcode:230 type:230 nurnChildren:O info:null url:null

identifer:ldentifier name:S opcode:230 type:230 nurnChildren:O info:null url:null

In our URL-based name solution, we can identify each database element on the

Internet. In order to obtain such capability, we rnodify the previous node structure

by ad ding a new field url. This field contains the URL information of the node.

Figure 4.3: Syntax tree for a rernote assignment

identifier name opcode type Numchildren info url
StatementBlock null 111 100 1 null aldatp:j /roo/pubA/
Assignment null 161 160 2 null null
Identifier A 230 230 0 null null
Join null 361 301 2 null null
Identifier R 230 230 0 null null
Identifier S 230 230 0 null null

Table 4.3: Dumped syntax tree for a rernote assignrnent

For the assignment A < - Rio j in S, there are many extensions when remote data

processing capability is available. Figure 4.3 and Table 4.2.2 give the syntax tree and

its dumped file record for aldatp://roo/pubA/{A <- R ijoin S}; Figure 4.4lists

more extensions. To save space, we only give the syntax tree and indicate those nodes

having a URL that is not null.

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 89

url: aldatp:l hnirnil

~--o
/\

8
url: aldatp:llmo/pubAI

url: aldatp:llrool

url: aldatp:lfroo/pubAl url: aldatp:llmi.m.û

alda:jp :11:m.inUl {A <- a1da:jp:llroolpœAfR ijoin S}; A <- alda:jp :lIroolpuhAfR ijoin a1da"ip:llmimilS;

Figure 4.4: Examples of non-null URLs in a syntax tree

4.2.3 Overall Process Flow

80 far, the parser tree with URL information is generated. Now we illustrate how the

syntax tree with non-null URL nodes is processed in general. Figure 4.5 shows the

system architecture of JRelix with distributed capability.

Interpreter

A JRelix command entered by an end-user is first accepted by JRelix parser and

translated into a syntax tree. While the interpreter is traversing and decomposing

the tree into a set of method caUs executed by the execution engine, if it encounters a

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 90

User Input User Input .. Engine Engine ...
ParSier Ne'lw®rk Puser

IRrexp rerer

D o:maill. alge bn

C CIXI:lp\lt!Ltio 1\ • CCIXI:lp\lt!Ltioo:l.

.1

User...iefind //.{lm USiI"i'-ll4'neIlIf.IUf!.

&: &:

.syS2'm Worma.t:ioo .sy sam irt'orma.tioo

Figure 4.5: JRelix Multidatabase System Architecture

tree node with non-null URL, it caUs "aldatpClient" to pro cess the sub-tree rooted at

this node and then waiting for the response from the "aldatpClient". As we know, the

sub-tree might be as large as the whole syntax tree or as small as a leaf node of the

who le syntax tree. The types of the sub-trees are various. It is possibly a relational

expression, thus the expected result is a relation. It is probably a statement or

command, so the expected result is a response code about whether the statement or

command is executed successfully. After the Interpreter receiving the result of remote

processing from "aldatpClient", it continues the unfinished work. !t's possible that

there are sever al non-null nodes in a syntax tree, thus the interpreter will call the

aldatpClient more than once.

Note

If the sub-tree is a single leaf node indicating a remote relation for example, when

the no de occurs at the right hand of the statement, a corresponding relation is fetched

from the target site. In fact, it can be considered as a special case of expression.

However, if the node occurs at the 1eft hand of the statement, e.g.

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 91

aldatp://mimi/A <- R ijoin S,

aldatp://mimi/V is R;

update aldatp://mimi/A add Rj

compcall (in R, out aldatp://mimi/A);

there are different ways for different situations that will be discussed in Section 4.3.

In this section, we only discuss the right-hand case to make it easy at the beginning.

aldatpClient

When an "aldatpClient" receives a request from the Interpreter, it extracts the URL

from the root node of the sub-tree being processed. From analyzing the URL, it

gets the host name and path information of the target JRelix. Then it connects

with the root server on that host, enquîres and gets the port number of the server

started at the target path. With the host name and port number, the aldatpClient

can build a direct connection to the target aldatpServer and communicate with that

server. After the connection is established, the "aldatpClient" dumps the sub parser

tree in a fiat text format as shown in 4.2.1 and send it to the target server. Then

the "aldatpClient" blocks and waits for the response from the target server. The

response from the target server is either a response code or a response code plus a

relation. For the latter, the "aldatpClient" will build a corresponding relation in the

local environment.

aldatpServer

An aldatpServer can be started in different ways. In addition, there are two dis

tinct types of aldatpServer. One is regular and the other is protected. When an

aldatpServer is started, it continuously listens to the port, accepts connections from

aldatpClients, and creates new threads aldatpHandler to han dIe the client require

ments. If the request from the client is a parser tree in a fiat text format, the

aldatpHandler will create the parser tree first. Then it caIls the local interpreter to

interpret the tree. Afterwards, it sends the result back to the caller.

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 92

Figure 4.6 explains the relationship between aldatpClient, aldatpTLd, aldatpServer

and aldatpHandlers.

1) Interpreter encounters a URL node and calls aldatpClient.

2) aldatpClient gets the host name from the URL and uses the "well-known" port

to connect with the root server to ask for the port of the target JRelix ("aldatpServer"

in the diagram).

3) The root server supplies the port of the target JRelix server to the client.

4) aldatpClient uses the port from step 3) to connect with the target JRelix

server(aldatpServer).

5) aldatpServer creates new threads to handle the client request.

6) If the request is "ParserTree" then caUs local Interpreter to deal with it.

7) Interpreter calls Execution Engine

8) - 11) The result is returned from the Execution Engine by the Interpreter and

the aldatpHandler to the aldatpClient.

4.2.4 Shipping Query and Shipping Data

Except for sorne administration messages, the typical things sent across the network

are queries and data. The most common model is the client sends a parser tree to the

server, consequently the server sends back a response code or a response code plus a

relation.

In the term of aldatp, a query is a statement, command or relational expression.

A statement is one of the assignments, updates, declarations, loop statements, con di

tionai statements, etc. In the point of view of a syntax tree, a query is a sub-tree or

the whole tree. Shipping query is explained in detail in Section 4.2.2. In summary,

the way to ship query is to first dump the syntax tree into a fiat text format stream

and then transfer it to the target site. The receiver gets the text format records and

then recreates the parser tree.

Shipping data is more complicated. The data we mentioned here is the broad sense

data. It not only refers to user-defined relational data (fiat or nested) and attribute

1 In!e'P,..!er

(LO 1 1 (I)

a1iatpClient

Client

.

~" i ~~. 1

Roof Server

(a1iafp TLd)

a1iatpSeIV'er 1 <. r •

Senrer

Figure 4.6 Relatio:nships beh~reen aldatp components

(8 (n
1 AldatpHand.ler l 141 11'01 hl.te:rp:rete 1; ~ 1 Exe~tion

('3) (8} E l:1gI.l1.e

@
~
'V

tJ
~
~

~
~
tr1

~
<
>2
~
~
o
'"lj

~
~
>< o
t;)

S5
53
c:::
tJ o
Cr}

83
~
~
CD
W

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 94

information; it also includes the "code" or syntax tree for a computation. Before

introducing shipping data, we will explain how the data is organized and stored in

the JRelix system first.

Upon declaration and initialization, a relation is stored in a file whose name corre

sponds to the name of the relation. Every JRelix system maintains a set of "system

tables" which represent the data dictionary of the database. They are stored in per

manent files on the hard disk as well as memory in RAM. Once the interpreter starts,

two system tables DomTable and RelTable are constructed in RAM from loading files

.rel, .dom, .rd, .comp and .expr on the disk.

System relation attributes descriptions
.rel .reLname Relation name

.tuples Number of tuples

.attributes Number of attributes

.rvc Type (relation. view, computation)

.sort Number of sorted attributes
.dom .dom_name Attribute name

.type Attribute type

.count Number of times this attribute is referenced
.rd .reLname Relation name

.dom_name Attribute name

.position Position of this attribute

Table 4.4: Definition of system relations: .rel, .dom, and .rd

Shipping fiat relation

Figure 4.7 is an example relation R, the relative information about R in the system

relations .dom, .rel, .rd, and its corresponding data file stored on the hard disk.

To ship data, not only the data file whose name corresponds to the name of the

relation is shipped, but also the relational and domain information stored in the

"system tables" are shipped. To do so, we should pay attention ta the following three

points.

First, the JRelix is RAM based. In other words, .dom, .rel and .rd files on the

disk are not updated immediately. However, the JRelix run time system updates

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 95

R (name date)

Sam 690810
Joe 661120

.dom .rel .rd R
name:7:1 R:2:2:15:2 R:name:O Sam 690810
date:7:1 R:date:l Joe 661120

Figure 4.7: Example of system relation and user defined relation

the system tables DomTable and RelTable in real time. Thus, to transfer system

information, we can't rely on the .dom, .rel and .rd files. Instead, we extract the

information from the system tables and transfer them. At the receiver site, the

relational and domain information about the shipped data are written into the system

tables and run time environment in RAM. When the JRelix session is finished, the

system dictionary will be written back into disk files .rel, .dom, .rd, .comp and .expr.

Second, when the data file and system information is received, a new relation is

created accordingly. For the "right hand" situation, the newly created relation is

temporary. For example,

A <- aldatp://mimi/R ijoin S.

R is shipped from "mimi" to local database. It is not necessary to be kept in

the system after be ijoined with S. Furthermore, it is possible that another relation

named R exists in the current data base. The existing R should not be overwritten

by the R shipped from "mimi". So wh en R is shipped to the local site, the run time

system assign it a system generated temporary name.

Third, since the domain information and relational information are shipped ac

companying with the user defined data, the run time system is able to check the

agreement of the shipped domains with the existing domains having the same names.

If they are in conflict with respect to each other, a system error is displayed. On the

other hand, if there are not the same name domains in the receiver, the system will

create new domains accordingly.

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 96

The proto col for shipping fiat relations is shown in figure 4.8:

Rel
<rel.ll.ame> <1" -=::l:'8l.rvc> T' -=::rel.num.tuples> T' <=:rel.:nurnattrs> T' -=::rel.numrortattrs>
-=::rel.domains[O] .:narne> "1" -=::rel.domai:ns[O] .~>

-=::rel.domaiIlSm .name> 'r' -=::rel.domains[i] .~> (i: rel.numattrs..1)
<line l,i tem 1> "0" <li.ne l.ite m 2> .. 0" ... «0 "-=::line l.item k> (k: rel..nurnattrs)

-=::fuL8 j .item 1> «0"' <line j .item 2> "0" ... "O"-=::lire j.item k> (j: rel.l:\urntuples)

END

Note: "0" is a delinùteI "4<'''.

rel.ïofC is the ~ of a re l"3.tion. ''l' tOI relatiorl, 'V' fOI view and "c" fOI computation

Figure 4.8: Proto col for shipping fiat relation

Figure 4.9 shows an example of the data stream shipped across the network.

R(name

Sam
Joe

date)
690810
661120

_ temp_?;9X _ 2115121212 ,..- _. -Ie lational irdb
/., "'-~17 --~--"'~'"

t, ~-_®~7 . __ ._J_.;oi ----- domain irtfo

1 ·~-·-1ë:eÔ66112ëio-- '-'-,
J

L,,~... SamO 690810 0 ... / ,.._. _. - data
--- ~----- --

Figure 4.9: Example for shipping fiat relation

Shipping N ested Relation

To begin with, we will explore a three level nested relation to understand how the

data is organized and stored in JRelix for nested relations. Figure 4.10 is an example

of nested relation.

Figure 4.11 shows the files about "faculty" on the disk:

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 97

faculty
(dept profs)

(name office course)

code title)

CS Merrett 304 612 database system
617 information system

Newborn 306 767 E-commerce
431 Algorithms

EE Pat 412 530 Control System
538 Robot

Figure 4.10: Nested relation: faculty

Nested relations are relations whose attribute values may themselves be relations.

The essence of nested relation is to subsume the relational algebra into domain al ge

bra. To ship nested relations, we need to modify the algorithm. As discussed above,

the algorithm for shipping fiat relation is as follows:

1) ship relational information

2) ship domain information

3) ship data file

For nested relations, since relations are incorporated into domains, the second step

should be revised to allow relations to be encapsulated in domains. Furthermore,

the pro cess is recursive to allow deep nesting. One more significant point is about

surrogates. As shown in figure 4.11, surrogates are used for nested relations. These

surrogates are system generated sequential number.

\\Then the surrogates of a nested relation are shipped from the resource to the

target, they may confiict with sorne of the existing surrogates at the target site. 80

the receiver will replace the original surrogates with the new surrogates generated by

himself. Figure 4.12 shows the pseudo code for shipping fiat or nested relation.

Figure 4.13 shows data stream transferred across network and Figure 4.14 shows

files created at the receiver site for the assignment: faculty <- pubA2/faculty;

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 98

Facuky .profs

de:et pl:Dfs .id name ofl:1.ce course
CS 1 1 Mrreti 304 :2
EE 4 1 Newborn 306 3

4 Pat 412 5
.cOl!.l'Se

.id code title
2 612 database systera

:2 617 :informa tian sy;tem
3 431 AlgoritlmlS
3 767 E-c o:m..ro.erce
5 530 Control sy'Stem
5 531 Robot

rel .dron. .rd
facull:)'02 m OIS m cod~0101000 facu.b;yDdeptOO 0

;t:«"ofs D3 04 01500 0 cO'IlI"Se 01:2 Dl DO facu.b;yOprof & 01 0

.c01.l!Se D:.i œ 01500 offi.c ~ D1 0 l DO 0 .p:oüO.idOOO

deptD10100D .prof sDr~ 0 l 0

prof, Ol:2DlOOO .prof sOoffi.c~ 02 0

I:.itl.e D1Dlm 0 .prof sOc O1.m:e 030

m:w.e D1 Dl m 0 .cours~ O.ll m 0

.Cour5~ Oco de 0 l 0

.course DtiJ:le 020

Figure 4.11: Disk files and metadata about nested relation "Faculty"

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 99

SendRel (Rel) {

}

Il ship relational information
send «rel.name> 1 <rel.rvc> 1 <rel.numtuples> 1 <rel.numattrs>

1 <rel.numsortattrs»;
Il rel.rvc is the type of a relation. "r" for relation,

"v" for view and 'Cc"~ for computation

Il ship domain information
for each domain[i] in the being shipped Rel do
{

if domain[i] .type is a nested relation
SendRel (.rel.domainsEiJ .name)

else
Il recursive calI

send (rel.domains[iJ .name 1 rel.domains[iJ .type)
}

Il ship data file
for each line in the data file do
{

}

read one line,
send the line;

Figure 4.12: Pseudo code for shipping fiat or nested relation

4.3 Implementation details for distinct distributed

data processing

4.3.1 Remote Assignment

The assignment operation assigns a "relation value" to a relation. There are two

types of assignments in JRelix, normal assignment and incremental assignment. The

former creates a new instance of the relation, while the latter adds the tuple data of

the source relation to the assigned relation. In a distributed assignment, the source

and/or the assigned relation might be remote relation. The source relation is not

necessary an existing relation, in stead, it could be a temporary relation resulting

from a relational expression. Any relations of the expression are allowed to be remote

ones.

If the URL-based name structure, i.e. "aldatpheader" plus "element", only appears

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 100

C_J_~_-~f.~~~,ïjl~Qi i~ ~.: :~-
}-," deptl7 - -~",
1 1

ruulty :rela tional MO

'~ '. ,lJ!9fSl12 .- .' 1~1---- ru ulty domain i.nfo

< ----~.:~~l tj5!~1fQ ~ _---_>-4 .p ro& relation info
,,<idii2 -.. -..

/ '
/ li.aIMI7 \-441---- .pro& do1:1L8in inro
l ,

'ofl1cel7 } , }
~ ~

-oÇQ!lloo112 .- --
<~çô~;iî516i3i6- -:_-:·~-.COUDe :relational infu

~ J - -.1]12--- ---:-:"~~-
/ \

~. codel7)-441----.course dr.J!ùai.n 000
.... ''''1~17 J -'--ti~ _---- .

5a53ÙJ'R;;b~tO -... '"-
"

./""... -.. ,
/ 505])0 Control s)BtemO "", ,

1 30 1610 E-cormnerce 0 .~ ... --- .course chtame
1 1

.. 30 431 0 PJgori th:ms 0 1
...
" , ~ 20 611 0 infonnation sy'SÎemD .. /'

'2 [j 6U.9..è.!alJ~_~-~eln:8"'- -
..... ----2fôP;t0412050- ---- .. '"~'"

" .. 1 o Newhonl.O 306 030 .. ~1.;;II'41------ .pro& data me
. ·-lQJyrenett0304D2a .-_.- .
. ,"15s 0 10--:-:-.:-~~ ---

1 1

\~--EEO 40 _ ' -oIIIilil----------
. ----- ru Wty da ta me

Figure 4.13: Data stream shipped for nested relation

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 101

FacUhy .p:rofs
dept profs .id :name offICe C01.l.1"Se

CS 14 13 Pat 412 10
EE. 13 14 Iv~rrett 304 12

14 Nevibom 306 11
,C@'U.I'Se

.id code titre
10 53] Control s~te la
10 531 Robot

11 431 PJgOl'i thms

11 767 E-conune :rce
12 612 database sj"Stem

12 617 inform.ation s~tem

Figure 4.14: Data files for relation "faculty" at the receiver site

at the right hand of the assignment, we call the assignment "right-hand assignment",

else we call it "1eft-hand assignment". Table 4.5 gives examples of both right-hand

and 1eft-hand assignment.

Right-hand assignment: A <- aldatp:j /mimirtim/pubA/S;
A <- [name) where date = "661120" in aldatp://mimi/-tim/pubA/S;
A <- aldatp:/ /mimi/(R ijoin S)j
A <- T ujoin aldatp://mimi/([name) in (R ijoin S))j
A <+ R ijoin aldatp:/ /roo/pub/S;

Left-hand assignment: aldatp:/ /roo/ A <- IntPerChg ijoin IntPerj
aldatp://roo/A <- R ijoin aldatp:/ /mimirtim/([name] in R ijoin S)j
aldatp:/ /roo/ A <+ aldatp:/ /mimi/ (R ijoin S);

Remote assignment aldatp://roo/pubA/{ A<- R ijoin S }j
statement:

Table 4.5: Examples of remote assignment

For the right-hand assignment, whenever the interpreter encounters anode with

non-null URL, it caUs aldatpClient to throw the sub tree to the target site. The sub

parser tree is either a single node corresponding to a remote relation or an expression

tree. What ever it is, a response relation will be shipped back if no failures occur.

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 102

Having received the response relation, the interpreter continues the unfinished work.

Finally, the source "relation value" is evaluated, and then is assigned to the local tar

get relation. Since shipping parser tree and shipping relation are already introduced

in Section 4.2, nothing is special for right-hand assignment.

For the left-hand assignment, the assigned relation is a remote one. If we allow

the interpreter to treat the left-hand no de the same as it treat the right ones, then

the interpreter will attempt to fetch a remote relation to the local site and over write

it instead of assigning source relation value to the remote target relation by mistake.

80 our solution is as follows:

First, because the parser can tell a left-hand assignment, a special operation type

is used to distinguish left-hand assignment.

It can be seen from the Figure 4.15, the normal node type for assignment is 160. On

the other hand, the no de type for left-hand assignment is 1160. Thus, the interpreter

can distinguish the left-hand assignment quite easly.

Second, after the interpreter telling the left-hand assignment from other assign

ments, it will evaluate the right hand expression as usuai and get a temporary re

lation that is the relation value of the right-hand expression. Next, the interpreter

constructs a remote assignment statement assigning the temporary relation to the

target relation.

Example

Suppose we execute the following statement at JRelix running at

"roo:-zwang26/public_aldatp/pubA"

aldatp://roo/A <- R ijoin aldatp://mimi/-tim/(Ename] in R ijoin S);

Step 1: Distinguish left-hand assignment.

Step 2: The interpreter evaluates the following expression,

R ijoin aldatp://mimi/-tim/C Ename] in R ijoin S)

The result relation value is stored in a temporary relation, e.g. _temp_X9X_5

Step 3: The interpreter builds a remote statement as following

aldatp://roo/{ A <- aldatp://roo/-zwang26/pubA/_temp_X9X_5};

Step 4: Interpret the statement created in step 3.

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 103

aldatp:.I Ilu::all:IDwT <- R;

identifier m.me op:;o:le ty'fe Num info url
chi1.dren

P..ssigrunent null 161 nôo 2 mill aldatp :ll'1Dc aDwsti
IdentifIer T 230 230 0 null mill

Ide ntifref R 230 230 0 null null

T <- alda1p: IllocalhostJR;

identi.:tler l'lame op:;cde ty'fe Num info url
chi1.dren

.. à.ssigrunent rLull 161 um 2 null nuD.
Ide ntifrer T 230 230 0 null null

1 Ide ntifrer R 1230 1 230 0 null alda'dp :/l1oc aThosti

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 104

aldatp:/lJocaJ.lost/{T <- R};

identifier Ml'û.e o~cde i:yp3 Num i.:J:lfo url
child.ren

StatementBlock 111 100 1 mill aldatp :!.Illc alhodl
P...ssigmaent null 161 160 2 null nuD.
Identifler T 230 230 0 null null
Identi:t1er R 230 230 0 null lmU

Figure 4.15: distinguish left-hand assignment

In summary, the rule to deal with left-hand assignment is evaluating relational

expression locally and executing the assignment remotely.

4.3.2 Remote Update

Here are three cases of update statement.

Update R add S;

Update R delete S;

Update R change <statements> using S

S is a relation or any relational expression, and the using S clause (which is op

tionaI) in the change command uses the natural joïn of S with R to select the part of

R that will be change. S may also be preceded by a joïn operator other than a natu

raI join. The <statements> in this case are usually assignment statements changing

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 105

values of attributes.

In aH three cases, if R is a remote relation, the update statement is called left

hand update. If only S is remote relation, or if S is a relational expression and the

expression consists of remote relations, then we call the update statement right-hand

statement.

llight-hand update: Update A add aldatp:j jmimij-timjpubAjS;
Update A delete (T ujoin aldatp:/ jmimij(R ijoin S));
Update A change name <- Tom using
([name] where date ="661120" in aldatp:j jmimij timjpubAjS);

Left-hand update: Update aldatp:j jroojA add (IntPerChg ijoin IntPer);
Update aldatp:jjrooj A delete
(R ijoin aldatp:jjmimirtimj([name] in R ijoin S));
Update aldatp:j jroojA change date <-"031007"
using aldatp:j jmimij(R ijoin S);

Remote update statement: aldatp:j /roojpubAj update A add (R ijoin S) ;

Table 4.6: Examples of remote update

For the right-hand update, the interpreter evaluates S as usuaI. Whenever it

encounters a remote node when evaluating the expression, the interpreter caUs aldat

pClient to throw the sub parser tree rooted at that node to the target site. After the

remote server has interpreted the parser tree and sent back the response relation, the

interpreter continues the unfinished work. Finally, a "relation value" is evaluated,

and then the local interpret uses it to do update. The ide a is the same as interpreting

right-hand assignment.

For the 1eft-hand update, a special operation type is used to distinguish 1eft-hand

update. Since if we allow the interpreter to treat the being updated relation the same

as it treat the right hand S, then the interpreter will attempt to fetch a remote relation

to the local site and update it locally by mistake. So our solution is as follows:

First, the parser assigns the update node a special type when it detects a left

hand update. The normal node type for update is 180. On the other hand, the node

type for 1eft-hand update is 1180. Thus, the interpreter can distinguish the 1eft-hand

update.

Second, after the interpreter telling the 1eft-hand update from other updates, it

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 106

will evaluate the right hand expression as usual and get a temporary relation that

is the relation value of the right-hand expression. Next, the interpreter constructs a

remote update statement updating the target relation using the temporary relation.

Example

Suppose we execute the following statement at JRelix running at

"roo:-zwang26/public_aldatp/pubA"

Update aldatp://roo/A change name (- "Luc"

using R ijoin aldatp://mimi/-tim/([nameJ in R ijoin S);

Step 1: Distinguish left-hand update.

Step 2: The interpreter evaluates the following expression,

R ijoin aldatp://mimi/-tim/([nameJ in R ijoin S)

The result relation value is stored in a temporary relation, e.g. _temp_X9X_5

Step 3: The interpreter builds a remote statement as following

aldatp://roo/{ update A change name (- "Luc"

using aldatp://roo/-zwang26/pubA/_temp_X9X_5 };

Step 4: Interpret the statement created in step 3.

In summary, the rule to deal with left-hand update is evaluating relation al expres

sion locally and executing the update remotely.

4.3.3 Remote View

As introduced in Section 2.5, view does not hold data upon declaration and initializa

tion. It is usually regarded as a functional·definition. In JRelix notation, is replaces

the assignment arrows, <- and <+. Thus,

Vis R ; (or V is < relational expression>)

just defines V to be synonymous with R, and no evaluation is performed until a

subsequent assignment, or other operation such as print forces it. Tuple data are

generated on the fly.

Like assignment, if V is a remote one, the statement is called left-hand view.

Else if "aldatpheader" only occurs at right-hand R or the relation al expression, the

statement is called right-hand view.

CHAPTER 4. IMPLE1V1ENTATION OF JRELIX DISTRIBUTED SYSTEMS 107

Right-hand view: Vis add aldatp://mimi/ tim/pubA/S;
Left-hand view: aldatp://roo/V is IntPerChg ijoin IntPer;

aldatp://roo/V is R ijoin aldatp://mimi/S;
Remote view declaration statement: aldatp://roo/pubA/ V is R ;

Table 4.7: Examples of remote view

Right-hand view is similar to right-hand assignment except the evaluation of right

side relational expression is deferred. Once the evaluation is invoked, the methods

for evaluation are the same.

For the left-hand view, we use the similar idea for left-hand assignment and left

hand update, which is changing left-hand view to a remote statement of view decla

ration.

First, the parser asslgns a special type when it detects a left-hand view. The

normal type for view is 140. On the other hand, the type for left-hand view is 1140.

Thus, the interpreter can distinguish the left-hand view quite easy.

After the interpreter telling the left-hand update from other updates, the inter

preter constructs a remote statement of view declaration in remote site's point of

vlew.

Example

Suppose we execute the following statement at JRelix running at

"roo:-zwang26/public_aldatp/pubA"

aldatp://roo/V is R ijoin pubA1/R ijoin aldatp://mimi/-tim/S;

Step 1: Distinguish left-hand view.

Step 2: The interpreter builds a remote statement as following

aldatp://roo/{ V is aldatp://roo/-zwang26/pubA/R ijoin

aldatp://roo/-zwang26/pubA/pubA1/R ijoin

aldatp://mimi/-tim/S };

Step 3: Interpret the statement created in step 2.

In summary, the rule to deal with left-hand view is changing left-hand view dec

laration to a remote statement of view declaration. AU the right-hand stuffs are

rewritten according to the new site's point of view.

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 108

4.3.4 Remote Computation

A computation can be thought of as a compressed relation, in which the relationship

lS given not explicitly by data but implicitly by code.

Take the computation IntPerChg introduced in Section 3.6 as example. Because

a computation must be thought of as a relation, when the interpreter interpret the

following statement, it will ask aldatpClient to ship the IntPerChg as if it is a relation.

1ntint <- [p] where 1=0.12 & i=0.01 in aldatp:lllocalhost/lntPerChg;

In section 4.2.3, shipping data is introduced, but only regular fiat and nested

relation are involved. As we know now, a computation is a special kind of relation,

thus shipping data for computation lS actually shipping code. The algorithm shown

in Figure 4.12 is modified to Figure 4.16

SendRel (Rel) {

}

Il ship relational information
send «rel.name> e' l" <rel.rvc> "l" <rel.numtuples> cc l"

<rel.numattrs> ,e l" <rel.numsortattrs>);

Il ship domain information
for each domain[i] in the being shipped Rel do
{

if domain[i] .type is a nested relation
SendRel (.rel.domains[iJ.name)

else
Il recursive calI

send C<rel.domains[i].name> "l" <rel.domains[iJ .type>)
}

Il ship data file
if (Rel.type is relation) {

for each line in the data file do
{

read and send the line,
}

}

else if (Rel.type is computation) {

}

dump the syntax tree of the computation code into a fIat text format;
send the dumped treei

Figure 4.16: Pseudo code for shipping relation and computation

Figure 4.17 presents the data stream shipped across the network for computation

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 109

IntPerChg .

, ,
1
1
1 ,
,
\

........ ------ -- -------- -- -. ..
"-, -~~~lÇJlgIQ!9J3I!L __ - .' .. -: ~---
_ ~ÏI4 ~~-". ,

~ ij4 4~~-----------------
\

''''-~~ --~ .'

IntPerChg :relatio:nal infonna tien

IntPerChg domain information

il id:: ntifie r 1 url 1 ty}:e 1 op::ode 1 :na:rne 1 bits 1 i:nfo T~ 1 info 1 nurnChildreJ:'l .
.".---- ._ ... ---""'-

Declafân;;~nu1~ 1401145In~ 11 n,illj;-üfill
~ ,

,,-Comp1>l amelnullI6401641In~OI nul~nullil " .. ~ ...
} / CompIdentifre ~n~6411230IIntPelChgIOI rrol.~mllJ!D

./ PararaeterLis~nullI6001600In~OIl'Lu1~n~3 \
(,

" Pararaetelln~6021602mOln~nullIO '. ,
Paramete~n~ 60216021ijOlnulllnull/O ~ ..- IntPerChg "data" (code) ,
Paramete~n~ 60216021~Oln~riUl~O l

1

CompBod)tnul~6501650InullIOlnull/nu1~4 ,1
1

J , ,
J
1

, ,
\

,

ldentifie~n~2301230IIIOI rrol.~n~ 0
Functionln~ 50015121l'lul~Olnullln~ 1

" Adc1 n~3001332InullIOlmù~nul~2
'. ti;e ~nullI4701453Inull/OI I:ntege:tjlI0

lderiti:fi.e:tjnull/2301230IiIOlnullj nul~O ~~ ~ ---
---- ~.~. --_co __ --

,
•

Figure 4.17: Data stream shipped for computation IntPerChg

The caller aldatpClient receives the data stream, creates a temporary relation or

a temporary computation according to the relation type, which th en is used by the

interpreter or the computation processor.

4.3.5 Remote Computation CalI

Computation calls are top-level computations. Basically they are similar to the pro

cedure caUs in sorne programming language. They could take relations as parameters,

and output relations as the result of computation. These in or out parameter rela

tions could be remote or local ones. The computation caU itself could also be called

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 110

locally or remotely.

Right-hand computation caU: Compcall (in aldatp://mimi/R, out R);
Left-hand computation calI: Compcall (in R, out aldatp://mimi/R);
lnvoke computation caU aldatp://roo/pubA/ compcall (in R, out S) ;
remotely: aldatp://roo/pubA{ compcall (in R, out aldatp://mimi/R) }j
Ship computation code to aldatp://roo/pubA/compcall (in R, out S) ;
local site, invoke it aldatp://roo/pubA/compcall (in aldatp://mimi/R, out S) ;
locally

Table 4.8: Examples of distributed computation call

In table 4.8, for both the first and the second case, the computation code is at

local site and the computation is executed locally. For the third case, the computa

tion is executed remotely. Remote statement execution will be introduced in section

4.3.6. For the fourth one, the remote code is shipped to the local site and invoked

locally. Top-level computation code shipping is the same as normal computation code

shipping, which is introduced in section 4.3.4

For each remote "in" parameter relation, the computation processor calls the al

datpClient to get the relation from remote server. The aldatpClient throws the one

no de parser tree to the target server, and a response relation will be shipped back if

no failures happen.

For each remote "out" parameter relation, a temporary relation is generated first

to hold the data. Then a remote assignment statement is constructed to assign the

temporary relation to the target output relation.

Figure 4.18 shows the pseudo code for computation calI.

4.3.6 Remote Statement Block and Command

The root node of the entire parser tree has a non-null URL, so the interpreter caUs the

aldatpClient to throw the whole tree to a remote target server. The server receives

and interprets the parser tree, throws sorne part sub-trees further to other servers if

necessary, and at last sends a response code back to the caller. This has already been

introduced in section 4.2, so we are not going to elaborate any more.

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 111

Computation.applylnOut ()

{

Il Apply this computation using the in/out syntax.

Il bring in the input parameters

If the input parameter is a remote relation,

call adltpClient to get the input relation;

else

bring it in from the local calling environment

Execute the computation block

Il output

If the output parameter is local relation

Copy out the output variables to the calling environment

If the output parameter is remote relation {

}

}

Copy out the output variables to the calling environment with

a system generated temporary name;

Create and execute a remote statement to assign the temporary

relation to the target output relation;

Figure 4.18: pseudo code for computation caU

4.3.7 Left-hand Operations for Stand Alone JRelix

We have introduced four kinds of 1eft-hand operations: 1eft-hand assignment, left

hand update, 1eft-hand view and 1eft-hand computation caU. The basic idea to deal

with the 1eft-hand operations is translating 1eft-hand statement into remote state

ment.

Example.

For the following statement at JRelix running at

"roo:-zwang26/public_aldatp/pubA"

aldatp:llroo/A <- R ijoin aldatp:llmimi/-tim/C Ename] in R ijoin S)i

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 112

Step 1: R ijoin aldatp://mimi/-tim/C Ename] in R ijoin S) is evaluated and

stored in a temporary relation, e.g. _temp_X9X_5

Step 2: build and execute the following remote statement

aldatp://roo/{ A <- aldatp://roo/-zwang26/pubA/_temp_X9X_5};

If the JRelix running at "roo:-zwang26jpublic_aldatpjpubA" is a stand alone

JRelix, i.e. it is not a aldatp server. It is obvious that the statement created in step

2 does not work. So we need to change the solution a little bit for stand-alone JRelix

as follows.

Step l' : R ijoin aldatp://mimi/-tim/C Ename] in R ijoin S) is evaluated and

stored in a temporary relation, e.g. _temp_X9X_5

Step 2' Ask the JRelix server running at "roo: -/public_aldatp" to give a

system generated temporary name. E.g. _temp_X9X_15

Step 3' Ship the relation _ temp_X9X_5 from "roo: -zwang26/public_aldatp/pubA" to

"roo: - /public_aldatp".

The shipped relation has a new name _temp_X9X_15 at "roo:-/public_aldatp".

Step 4': Build and execute the following remote statement

The same ide a is used in left-hand update, left-hand computation call for stand

alone JRelix. The exception is left-hand view, since view defers the evaluation until

later. We can't send the result of the evaluation to the opposite side upon view

declaration. As a result, left-hand view is not allowed for stand-alone JRelix.

4.4 System Administration

4.4.1 Start Options

The st art options of JRelix multidatabase system have already been illustrated in

Section 3.10. Here, we summarizes them as follows:

1) Root level server

Start "java aldatpTLd &" at a "public_aldatp" directory

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 113

or

Start "java JReIix" at a "public_aIdatp" directory

2) Lower level JRelix server

Start "java JRelix" at any sub directory under "pubIic_aldatp"

3) Protected JRelix server

Start "java JReIix" at a directory outside "public_aldatp"

4) Stand alone JRelix

Start "java JRelix -SA" at any directory

Start aldatpTLd

On each computer, the root level server manages and coordinates an the JRelix servers

on that machine to carry out the distributed tasks. If the root server is not started

on one machine, aU the JRelix running on that machine are stand alone JRelix

systems, i.e. they are not servers. The root server is responsible for listening to the

"well-known" port number and responding to the requests from JRelix systems on the

local machine or any other computers linked by the Internet. Meanwhile, it maintains

a system dictionary about the information on port numbers and the current lower

level servers.

The aldatpTLd doesn't launch a JRelix session at aH. No user data and system

tables are loaded at this time. The parser, the interpreter, and the execution engine

are not invoked for the moment. Figure 4.19 shows the fiow chart.

Start JRelix Instance

Four distinct start options are obtained from the same java program: JRelix.java.

Figure 4.20 shows the control fiow of selecting an option.

Among the four options, the stand alone option is the simplest one. It st arts

a session with front-end interface, by which end-user can enter JRelix commands.

Meanwhile, the main loop of the interpreter is invoked. In the loop, the interpreter

repeatedly calls the parser to translate user input command into syntax tree, receives

syntax tree passed from the parser, traverses the syntax tree and decomposes it into

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 114

Start

~
CheckPorl()
initiate sy'Si:em irdom"l.8.tion about
port nu:mbels and JRelix se:rvew

.
a;,

1 Accept a connection 1

Create a th:read aldatpHandlel ta
deal with the client

Figure 4.19: The main loop of aldatpTLd

a set of method calls executed by the execution engine.

Lower level server and protected server are basically the same. They not

only start a front-end interface session ta pro cess end-user input commands, but aiso

start a serveL The server repeatedly listens ta a specifie port, accepts connections

and creates multiple threads ta deal with the requests from clients. These requests

are passed from other JRelix systems. A typical request is ta interpret a syntax tree

and return a result as shawn in the previous sections in this chapter. There are other

kinds of requests to a JRelix lower level server or protected server, which will be

discussed in the latter sections.

As mentioned in section 3.10, at one moment only one root servel' can be launched

at one machine. The root servel' is either an aldatpTLd or a JRelix running at

a "public_aldatp" directory. The JRelix root server (not the aldatpTLd) plays

two roles. It has aH the functions of a lower level servel', as weIl as functions of a

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 115

root server, aldatpTLd. It starts a front-end interface session to pro cess end-user

input commands. It also starts a special serveL This server not only manages and

coordinates other JRelix servers on that machine to carry out the distributed tasks,

but also deals with data processing requests such as interpreting a syntax tree asked

from other JRelix.

4.4.2 Manage Port N umbers

Apart from the "well-known" port number consumed by the root server, each lower

level server also consumes one port. However, it is unwise to make an port numbers

for each member in the multiple system to be public "well-known". In our impIe men

tation, a global master manages these ports and these ports are totally transparent

to end-users.

The port numbers reserved for lower level servers are written into a disk file

'''. ports" . This file is created manually by a system administrator. Each line in

the ".ports" is a port number", and this file must be already existent at the same

directory at which the root server will be started.

Figure 4.19 gives a brief pro cess fiow of aldatpTLd. The beginning step is initiating

system administration information.

When the root server is being started, aU the port numbers in the ".ports" are

loaded into RAM. Although these ports are reserved for aldatp lower level servers

usage and ideally aIl of them are available when being allocated, we still check the

availability of each port in case some of them have already been used by other appli

cations. Those still available ports are pushed in to a stack.

This check brings us another benefit. Suppose the root server shuts down (e.g.,

the root JRelix is exited or the aldatpTLd is killed by user) while many lower level

servers are still running, each consuming a port number. Under this circumstance,

the root server can be started without restarting aH the running lower level servers.

Because if the root server detects a port is being used, it will assume the port is

being used by a lower level server and then ask the opposite side for its identifier, by

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 116

N

protected

serve!

N

y

ask lOot rer....-e!

10 aJlœate a

lo'\li'er lew l
server

lOot rerver

N (no more available pms)

stand.-alone

JRelix

Figure 4.20: JRelix start options

y

s'tard. alone

JRelix

N

stand aloll.e
JRelix

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 117

sending the message: "checkPort".

If the port is reaHy occupied by a lower level server, the lower level server under

stands the protocol, so it returns its identifier information according to a pre-defined

protocol:

ALDATP_PATH

<path>

In this case, the root server writes the identifier and corresponding port number into

a hash table. If no expected result is received, the root server will regard this port as

being used by other applications.

In short, the root server maintains a stack to store available ports and a hash

table to keep the information about current running lower level servers and protected

servers.

So far, the root server is running. Whenever it accepts a connection, it creates

a thread to deal with it. The requests processed by root server are summarized in

Figure 4.21. Detail descriptions are given following the table.

Note: Figure 4.21 gives an the possible requests to the root serveL Figure 4.24

summaries all the possible requests to a normallower level server in section 4.4.3.

1. allocatePort

When a lower-level se l'ver or protected servel' is being lunched, it asks the root

server to allocate an available port. Figure 4.22 shows the fiow ch art for "allocatPort".

If no ports are available, the "chekPort" is invoked. If sorne ports that were used by

other applications while the root server was starting are released at this moment, then

these ports are pushed into the satck "availablePort" so that they can be allocated.

Moreover, those new ports added manually to the ".ports" file after the root server's

starting can also be pushed into the stack "availablePort" by the" checkPort" .

Since the current JRelix is RAM-based and has no concurrency control mecha

nism, it is not allowed to start more than one JRelix server concurrently at the same

direct ory. The hash table "ports" maintained by root servel' is helpful to prevent

users from starting duplicate servers.

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 118

Request Caller Descri pion Resp:mse

alloca tePort JRelix hk root server to OK
<user :name:;> or allocate an available PJrt <PJw
<user home JRelixBack to start a lOW'er levaI or or
clirectory> (see § 4.4.3) putectecl semr NO available PJrt
<~th> or

JRelix is l:1.1.l:Uli.11g on fuis
clirecIDty

confmnPort JRelix Confirm the PJrt is OK Root Senre! register it into the
<Plth> or hash table "PJrts"

<PJrl> JRelixBack

quit Interpreter The 1)w'"er level or Root selVe! deletes the ert"hy

<Pltl"!> or pute ete cl senrer notifIe s from hash table ''rmts'', adds the

aldatpHandle r tll.e 100t selVe!" wll.en it is PJrt to the stack "availablePOlf'
going ID quit.

enqu:irePOli aldaifClient hk the root selVer fu!"
<url> the PJli nJ.llnber of !he

url.
If the Plth COl'!eSPJ:ncIing OK
ta !he url is found in the <PJw
msh table
If Mt found, tryto start a

œckground selVe! at start selVer
that Plth. If start <PJw
suce essfull y
othernise SelVe! not available

Figure 4.21: Requests processed by root server

2. confirmPort

Initially, the "availablePort" stack stores the ports available at the moment the

root server was being launched. Tt is not guaranteed that these ports are still available

wh en they are being allocated to sorne lower level servers. If the port be allocated

can be used to create a server, the lower level server will confirm this port number,

thus the root server adds the lower level server's path and the port number to the

hash table "ports". Otherwise, the caller will caU the root server to allocate a port

once more.

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 119

N

JRelix is rumring on this dire C10lY

N

OK
NO available :rt .::: :rt>

Figure 4.22: Flow chart for allocatePort

3. quit

The "quit" request is simple. The root server deletes the entry in the hash table

"ports" and adds the free port to the stack "availablePort"

4. enquirePort

Figure 4.23 shows the fiow chart for "enquirePort".

When an "aldatpClient" receives a request from the Interpreter, it extracts the

URL from the root no de of the sub-tree. From analyzing the URL, it gets the host

name and path information about the target JRelix. Then it connects with the root

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 120

N

tryto start a bac k

ground se:rver ai the p9.th

y

get the fOrt from "fOrts"

retum:
start server
< ::>

y

N

gel the p3rt from '):orts"
retum:

OK

retullL:

please check ne. UFL

Figure 4.23: Flow chart for dealing enquirePort

server on that host, enquires the port number for the JRelix server running at the

target path. If there is no entry for the path in root server's system table, the root

server will try to start a background server and return the port of the background

server to the caller. If the path doesn't exist, the system will warn the user to check

the URL.

4.4.3 Background Server

As shown in Figure 4.23, background servers are automatically started by the root

server if necessary. This greatly decreases the human intervene and increase the

autonomous capability. Unlike normallower level server or protected server, a back-

CHAPTER 4. nvfPLElvfENTATION OF JRELIX DISTRIBUTED SYSTEMS 121

ground server does not start a front-end interface session to pro cess end-user input

commands, but only start a background daemon. The daemon repeatedly listens to

a specific port, accepts connections and creates multiple threads to deal with the

requests from clients, e.g. to interpret a syntax tree and return a result.

For JRelix with an end-user interface, the user will finally terminate the session

by typing "quit;" at a JRelix command line. However, the JRelix background server

is started automatically by the root server, therefore it is totally transparent to end

users. For example, a user named Joe st arts a JRelix session and inputs the following

statement:

aldatp://roo/-tim/{ A <- R ijoin S};

Joe does not care whether or not a JRelix server has already been launched at

"roo:-timjpublic_aldatp". If a server is running there, no matter it is a background

or front-end one, Joe uses it for free. If the JRelix started by Joe ask root server for

the port number of JRelix running at "roo:-timjpublic_aldatp", the response code

from the root server is

OK

<port>

In contrast, if no server is running there, th en the root server will start a back

ground server at "roo:-timjpublic_aldatp" for Joe, but Joe is not aware of it. The

response code from the root server to the JRelix started by J oe is

start server

<port>

80 the JRelix started by Joe knows the background server running at "roo:-timj

public_aldatp" is initially started for him. Although the background server can be

invoked by anyone else afterwards, the JRelix started by Joe has the responsibility to

stop that background server when Joe quits his session. Otherwise the background

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 122

server will potentially never be stopped unless the system crashes or the machine is

shut down.

Each JRelix system maintains a system table that keeps records of other JRelix

background servers initially started for it. When it is stopping, it notifies every

background server in the table to terminate.

When a background server receives a "quitServer" request, the server stops creating

new threads for new connections. After all the active threads finishing the works at

hand, the background server stops eventually.

Up till now, an the possible requests to the normallower level server are introduced.

Here we summarize them in figure 4.24

4.4.4 Security Issues

Protected Server

The JRelix systems running outside "public_aldatp" are private and protected. In

general, only the owners can operate these systems at local sites. One exception is

"1eft-hand view". For example, the JRelix running at "roo:-zwang26jpriv" declares

the following view,

Aldatp://roo/-tim/V is R ijoin S;

When this view is invoked, the JRelix running on "roo:-timjpublicaldatp" would

access data from "roo;-zwang26jpriv" to actualize the view. So the "roo:-zwang26jpriv"

must posses the sever ability to response this data access request.

As illustrated in section 4.2.1.1, the URL-based name structure is as follows:

CCaldatp://" «<LETTER»+ «DOT»*)+ <SLASH>

(<TILED> <IDENT> <SLASH»* «IDENT> <SLASH»*

header + host name + alias of user home direct ory (optional) + rear part of the

target path immediately after "public_aldatp" (optional)

When a URL is translated into a path, the "public_aldatp" is added into the

result, e.g.

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 123

Re ques! Caller

checkPort aldatpTLd

PalSerTree alda~1ient

<durt"L}:ed node 1 >

<dumped node n:::>
END

quitSetVe1

getRelName

Inte:tprete!

alda~1ient

PutRe l alda ~1ie nt
. If see Figure
4.9

END

Description Resp:mse

Resp:mse root seM! its ALDATP PAlli

path <path>

AldatpServer rebuild the <res}XInse code>
hee and call local

irdelprete:r ta inte:tpret it. Re 1
Return the res}XInse code. ! see Figure 4.9
If the tree is an expression, END
send back the result
relation

The 1oV:181 1evel server or

protected setVe! notifies

He JRelix background
sewers, initially sta1ted for

hint, ta exit.
The stand alone JRelix ask <name >

a JRelix setVe1 for a
tem}XIral'] relation liarne

berore it send a relation ta

tre seMr.

The stand alone JRelix Jrelix SerY-e! build the
send a relation ta a re lation
JRelix seM!

Figure 4.24: Requests processed by lower level or protected server

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 124

aldatp://roo/-tim/R: relation R of the JRelix running at -tim/public_aldatp on "roo".

aldatp://roo/-tim/pubA/R : relation R of the JRelix running at -tim/public_aldatp/pubA

on "roo".

So the URL-based name structure can only refer to the elements of the databases

running under "publicaldatp". Suppose we start a JRelix server at a directory

outside "public_aldatp", this server will never be pointed to by our URL-based name

structure. So we almost get the "protected" characteristic for free.

To make the 1eft-hand view work, we use a special URL-based name structure.

Instead of using "aldatp:j /" 1 we use "aldatpProtect:j /" as the header.

Example:

Suppose we execute the following declaration at "roo:-zwang26/priv"

aldatp://roo/-tim/V is R;

Step 1: Detect the statement is a left-hand view and the JRelix itself is a protected

JRelix

Step 2: The interpreter builds a remote statement as following

aldatp://roo/-tim/{ V is aldatpProtect://roo/-zwang26/priv/R};

Step 3: Interpret the statement created in step 2.

When this view is actualized, the interpreter encounters anode with non-null URL.

It caUs aldatpClient to process the sub tree rooted at this node. The aldatpClient

finds the URL header is "aldatpProtect") as a result, it translates the URL into

a target path without adding "public_aldatp". In this e xample the aldatpClient

extracts host name "roo" and target path "-zwang26jpriv" from the URL. Then it

connects with the root server running on "roo" and gets the port number for JRelix

running at "-zwang26jpriv". Finally, the aldatpClient communicates with the JRelix

running on "roo:-zwang26jpriv" directly.

"aldatpProtect" is designed for interior URL-based name structures. It is totally

transparent to end-users. It is an illegal URL header for the parser. This guarantees

the protected server is isolated from malicious intruders and curious users.

For the 1eft-hand assignment and 1eft-hand update, we first evaluate the right

hand expression and store it in a temporary relation. Then we convert the 1eft-hand

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 125

operation into a remote operation. The temporary relation will be read while the

remote assignment or update is being interpreted. To make the temporary relation

readable from remote sites, we use "aldatpProtect" as the aldatp header. The same

idea can be used for left-hand computation top-level caU.

Example

Suppose we execute the following statement at JRelix running at "roo:-zwang26/priv"

aldatp://roo/A <- R ijoin aldatp://mimi/-tim/C [nameJ in R ijoin S) i

Step 1: Distinguish left-hand assignment and the JRelix itself is a protected JRelix

Step 2: The interpreter evaluates the following expression,

R ijoin aldatp://mimi/-tim/C [nameJ in R ijoin S)

The result relation value is stored in a temporary relation, e.g. _temp_X9X_5

Step 3: The interpreter builds a remote statement as following

aldatp://roo/{ A <- aldatpProtect://roo/priv/_temp_X9X_5}i

Step 4: Interpret the statement created in step 3.

An alternative solution is using the way described in section 4.3.7. Instead of

waiting the opposite side to ask for reading the temporary relation, it can send that

temporary relation to the opposite side on its own initiative.

File Access Permission

In general, the JRelix under "public_aldatp" are publicly available, while the JRelix

outside "public_aldatp" are private and protected. In this way, we control the access

permission at a database or directory level. However, we are able to control the access

permission more finely at a relation or file level.

The current JRelix system lS RAM-based. The met a data (or system tables)

are stored in permanent files on hard disk as weIl as memory in RAM. Once the

interpreter starts, system tables are constructed in RAM from loading meta data

files on disk. The system tables reside in RAM during the run-time till the JRelix

session lS terminated. Subsequently, they are written back to disk. However, the

user-defined data are stored in permanent files on disk and read fully (assume they

are small enough) into RAM only wh en referred. If the relation loaded Ïnto the RAM

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 126

is going to be updated (including incremental assignment), the original data file on

the disk is deleted. The JRelix run-time system generates new relational data in

RAM. Finally, it recreates a data file with the same name as the original one on the

disk.

In the lifetime of a user-defined relation, mostly it stays on the disk. We can

change the mode of the data files manually by using Unix "chmod" commando Next

time the data file is referred, the access permission to that relation can be different. In

our system, we decide that only if the absolute mode of the relation data file permits

read by others, can that relation be read by other JRelix systems; only if the absolute

mode of the relation data file permits write by others, can that relation be written

by other JRelix.

An aldatpHandler receiving a parser tree from a remote aldatpClient doesn't in

terpret the parser tree until it has checked the access permission. It traverses the

tree, checks the mode of the data files for each relational identifier in the tree. If

the relational identifier appears at the left side of a statement, the aldatpHandler

checks its write permission for others. Otherwise, the aldatpHandler checks its read

permission for others.

Example

Suppose we execute the following statement at "roo;-zwang26jpublic_aldatpjpubA"

R (- aldatp://roo/-tim/([name,date] in (R ijoin S ijoin aldatp://mimi/-tim/T»;

The aldatpHandler of JRelix running at "roo: -timjpublicaldatp" receives the

following parser tree.

It traverses the tree, and encounters five identifiers name, date, R, Sand T. name

and date are domains. T is a remote relation. Therefore Rand S need to be checked.

If both the disk files named Rand S respectively permit read by others, the check

procedure returns OK. Otherwise, it complains "permission denied to read XXX" .

Example Suppose we execute the following statement at "roo: ~zwang26/public_aldatp/p1.

Update aldatp://roo/-tim/R add ([name,date] in (R ijoin S ijoin aldatp://mimi/-tim/T»;

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 127

Figure 4.25: Syntax tree for expreSSlOn: ([name,date 1 III (R ijoin S ijoin al

datp://mimi/ tim/T)

Step 1: The interpreter of JRelix running at "roo:-zwang26/public_aldatp/pubA"

evaluates the expression: ([name,date] in (R ijoin S ijoin aldatp://mimi/-tim/T)).

Stores the result relational value into a temporary relation, e.g. _temp_X9X_5.

Then builds and interprets the following remote statement

aldatp://roo/-tim{ update R add aldatp://roo/-zwang26/pubA/_temp_X9X_5};

Step 2: The aldatpHandler of JRelix running at "roo: -tim/public_aldatp"

receives the parser tree shown in figure 4.25.

Figure 4.26: Syntax tree for update R add al-

datp:/ /roo/zwang26/pubA/ _temp.JC9X_5

CHAPTER 4. IMPLEMENTATION OF JRELIX DISTRIBUTED SYSTEMS 128

It traverses the tree, and encounters two identifiers Rand _ temp_X9X_5. _ temp_X9X_5

is a remote relation. Only R needs to be checked. R appears at the 1eft side of the

statement. The check procedure checks write permission for the file named R on the

disk.

As mentioned before in this section, if the relation loaded into the RAM is going

to be updated (including incremental assignment), the original data file on the disk is

deleted. Afterwards, a data file with the same name as the original one is created on

the disk. The potential problem is that the newly recreated file in Unix system has

a default mode according to users' profile. As a result, the original mode is replaced

with the default one, which is not desired. To avoid this situation, we keep record of

the file mode before the file is deleted, and change the mode back to the original one

wh en the file is recreated.

For left-hand assignment, if the assigned relation does not exist before, a new data

file is created. Since this relation is created by remote JRelix system, we grant it

a mode of permit both read and write to others. On the other hand, if the same

name relation exists and it is forbidden to overwrite it by others, the check procedure

returns "permission denied to write XXX" . If the same name relation data files exists

and it is allowed to overwrite it by others, a new relation data file is generated to

replace it. The new relation data file has a mode permitting both the reading and

writing to others.

Chapter 5

Applications with Aldatp

This chapter presents possible extensions with Aldatp in JRelix. In section 5.1, we

introduce an application of event-based distributed system. In section 5.2, we suggest

solutions to achieve location and fragmentation transparency.

5.1 Distributed event-based systems

Networking technologies and products now enable a high degree of connectivity across

a large number of computers, applications, and users. In these environments, it is im

portant to provide asynchronous communications for the class of distributed systems

. This requirement has been filled by distributed publish-subscribe systems. In the

RMI mode, a method in the remote interface of a particular object is invoked syn

chronously: i.e. the invoker waits for reply. In the event-based systems, notifications

are sent asynchronously to multiple subscribers whenever a published event occurs at

an object of interest.

Distributed event-based systems extend the local event model by allowing multiple

objects at different locations to be notified of events taking place at an object. They

use the publish-subscribe paradigm, in which an object that generates events publishes

the type of events. Objects that want to receive notifications from an object that has

published its events subscribe to the types of events that are of interest to them.

129

CHAPTER 5. APPLICATIONS W-rTH ALDATP 130

When a publisher experiences an event, subscribers that expressed an interest in that

type of event will receive notifications.

Applications that communicate through a publish and subscribe paradigm require

the sending applications (publishers) to publish messages without explicitly specifying

recipients or having knowledge of intended recipients. Similarly, receiving applications

(subscribers) must receive only those messages that the subscriber has registered an

interest in.

As it will be illustrated, distributed event-based systems can be easily built with

the Aldatp facility in JRelix. In this section, we explain how to build distributed

event-based system in JRelix with a publish-subscribe example.

Create a bulletin board

To build a publish-subscribe system, firstly an empty global bulletin board is created

at a global-known site. The bulletin board is a relation having two attributes.

>domain event string;

>domain subscribeBook string;

>relation BulletinCevent, subscribeBook);

An example of existing bulletin board with tuples is as follows:

Bulletin (event

post: add: conferences

post:change:maps

subscribeBook)

aldatp://roo/conferSubscriber

aldatp://mimi/-tim/mapSubscriber

event is the name or identification of a published event type. Corresponding to

each type of events, a subscribe book (a relation which holds user's information)

exists at the site of the events taking place. The attribute subscribeBook gives names

of these relations.

Suppose this bulletin relation is located at "roo:pubA" in the example.

Publish events

Suppose McGill University uses this system to publish its news to the interested

public. News are stored in a relation named McGillnews, e.g.

CHAPTER 5. APPLICATIONS WITH ALDATP 131

McGillnews (date title content).

2002-10-25 Top 100

Whenever new news is added into, it will be sent to every one expressing an interest.

Assume the Mc Gill University news publish system mns at IImimi: -mcgill/pubA Il.

Step 1 create a subscribeBook

>domain subscriber string;

>relation newsSubscr(subscriber);

newsSubscr is a unary relation with only one attribute subscriber.

Step 2 create an event handler

>comp post:add:McGillnews () is

{

Loop <- newsSubscr;

while [] in Loop

{

}

};

S <- pick Loop;

update Loop delete 5

eval 5 <+ New;

Step 3 publish event

Il copy "news5ubscr" to "Loop",

Il while there is sorne tuples in "Loop"

Il pick one tuple from "Loop" and assign it to "5"

Il delete the picked tuple from "Loop"

Il "New" is the system generated relation in event handler,

it stores new added or changed tuples

Il "eval" is an operator of relation metadata.

"eval S" is a relation whose name is the value of "S"

"S" is a singleton and a unary relation.

("eval <Rel>" is not implemented yet.)

>relation eventlnfo (event, subscribeBook) <-

{ ("post: add: McGillnews" , "aldatp: Ilmimirmcgill/pubA/newsSubscr")};

>update aldatp:llroo/pubA/bulletin add eventlnfo Iladd event into bulletin

Now, the bulletin looks like

CHAPTER 5. APPLICATIONS WITH ALDATP

Bulletin (event

post:add:conferences

post:change:maps

post:add:McGillnews

Subscribe

subscribeBook)

aldatp:llroo/conferSubscriber

aldatp:llmimi/-tim/mapSubsrciber

aldatp:llmimi/-mcgill/pubA/newsSubscr

A user at Jrelix running on "roo: zwang26jpubA" checks the bulletin board

>pr aldatp:11 roo/pubA/bulletinj

If she is interested in Mc Gill news, then she subscribes to the event

>relation mylnfo(subscriber) <- {(" aldatp: Ilroorzwang26/pubA/news")} j

>update aldatp:11 mimi/-mcgill/pubA/newsSubscr add myinfoj

Il add into subscribe book

Now, the McGill news subscribe book looks like

newsSubscr(subscriber

aldatp:llroo/-zwang26/pubA/news

Events and Notifications

132

Whenever a new news is added into mimi : -rncgill/pubA/McGillnews, it is also

automatically added into roo:-zwang26/pubA/news.

If the user "zwang26" is not interested in McGill news any more, she can delete

her subscription

>update aldatp:11 mimi/-mcgill/pubA/newsSubscr delete myinfoj

5.2 Seamless Distributed Database Systems

As we know, the true, generalized, distributed database systems are different from

systems that provide remote data access. In a remote data access system, the user

is able to operate on data at a remote site, or even on data at several remote sites

simultan eously, but "the seams show"; the user is definitely aware, to a greater or

CHAPTER 5. APPLICATIONS WITH ALDATP 133

1esser extent, that the data is remote, and has to behave accordingly. In a true

distributed database system, by contrast, the seams are hidden. Full support for

distributed database makes the distribution transparent to users. A single application

should be able to operate transparently on data that is spread across a variety of

different databases as if the data were aH managed by a single DBMS running on a

single machine.

Replication transparency and DBMS transparency are major research fields in

Distributed Systems. Middleware systems try to overcome the heterogeneity faced

wh en data is dispersed across different data sources. It would be nice if the DBMS

instances at different sites could all support the same interface and participate in

a distributed system. In other words, the ideal distributed system should provide

DBMS independence.

DBMS transparency is out of the scope of this thesis. However, it is desirable to

make our implementation to achieve sorne forms of transparency as we cano

® Fragmentation transparency

Each fragment of a data item also has a global unique identifier. By maping the

simple alias to complete names, physical fragmentat locations are hidden. If the

query request is stated in terms of the unfragmented item name, the original

data item needs to be reconstructed from its fragments.

Distributed view management is provided in our implementation. Views can

be defined using relations which are not local to the view definition site. Since

views can simulate fragmentation, we can reconstruct the original relation from

it fragments by using distributed view. For vertical fragmentation, a view can

be definied at each site which take natural join of these fragements. Similarly,

for hOrizontal fragmentation, a view can be definied at each site which take

union of these fragements.

Take the example illustrated in figure 1.1. Suppose an employee relation is

horizontally fragmented into Employeel at "roo:-tim/pubA and Employee2 at

CHAPTER 5. APPLICATIONS WITH ALDATP 134

"mimi:-zwang26/pubB". Employee is the view taking unoin of Employeel and

Employee2.

>Employee is aldatp:j jrooj-timjpubAjEmployeel ujoin

aldatp:j jmimij-zwang26jPubBjEmployee2;

If the user's query is

>Ans <- [id, name] where salary=5000 in Employee;

Employee is reconstructed from fragments Employeel and Employee2.

• Location transparency

In a URL-based name structure, each database element generated is prefixed

with a site identifier. The site identifier is host name plus path. Since each

site has a unique identifier, this approach ensures that no two sites generate

the same name. No central control is required. However, this solution fails to

achieve network transparency, sinee site identifiers are attached to names.

To overcome this problem, we can create a set of alternative names or aliases for

database elements. A user refers to an element by using the simple alias. This

alias is then translated into the complete name with URL-structure. The alias

and local relation names must be unique. With aliases, users will be unware of

the physical location of data.

A straightforward way ta do sa is using remote view. For instance, suppose Ris

the alias for a remote relation "roo: tim/pubA/R". By using the remote view,

>R is aldatp://roo/-tim/pubA/R;

we can obtain the location transparency for "roo: tim/pubA/R".

Or, the maping of alias ta complete name is maintained in a mapping table

(system meta data) at one site and then be sent ta other sites. The system will

look for the required identifier in the mapping table first. If it is not found,

then the local relation table will be searched.

Chapter 6

Conclusions

This chapter begins with a summary of the work that has been accomplished. It

concludes with suggestions for future enhancements.

6.1 Summary

We have built a URL-based name extension to a database programming language

which gives it collaborative and distributed capability over the Internet.

Sharing resource is a main achievement of implementing Aldapt. In addition, some

other basic objectives for distributing databases listed in Chapter 1 are accomplished

in our implementation.

® Site autonomy is achieved. Each site is able both to control access from other

sites ta its own data and to manipulate its data withaut being conditioned

by any other site. The system is able to grow incrementally and to operate

continuously, with new sites joining to existing ones, without requiring existing

sites to agree with joining sites on global data structures or definitions. There

is not any reliance on a central site for central services .

@ Performance transparency is accomplished. Commands or statements used to

perform a task are independent of both the location of the data and the sys-

135

CHAPTER 6. CONCLUSIONS 136

tem on which an operation is carried out. The performance is independent of

submission site

~ Distributed view management is provided. Views can be defined using rela

tions which are not local to the view definition site. Sinee views can simulate

fragmentation, potentially both vertical and horizontal fragmentation are sup

ported.

Moreover, the system obtains the following desirable features

~ Remote procedure caU or remote method invocation is achieved, as well as

remote statements and commands execution are supported.

~ Sites need not be geographically distant: different sites can be on the same

computer. This is considered important not only for the development and test

ing of the database applications, but also for operational systems for security,

accounting, or performance reasons.

~ Security management is implemented. Data accessing permission can be con

trolled at both database (or directory) level and relation (or file) level. Database

can be in either private or public mode. Changing mode is possible and easy

to do. In fact, it is as easy as moving direct ory in an operating system. Pub

lie mode database can be launched in a "stand-alone" type or in a "publicly

available" type.

Although it is desirable to give as many forms of transparency as possible, our

implmentation do es not aim to replace or compete with DBMS. Our implementation

is not driven by aU the transparency forms listed in Chapter 1.6. Basically speaking,

we implement a mechanism for integreting distributed data processing and Internet

capability into a databse programming language. With this facility, the database

programming language is able to develop distributed applications, e.g. distributed

event-based systems.

CHAPTER 6. CONCLUSIONS 137

6.2 Future enhancements

An ambitious improvement is implementing query processing optimization. To en

hance performance, the inherent parallelism of distributed system may be exploited

for query processing parallelism. Under sorne circumstances, change query execution

order may improve performance greatly.

Given a query, there are generally a variety of methods for computing the answer.

It is the responsibility of the system to transform the query entered by the user into

an equivalent query that can be computed more efficiently.

Example

Suppose a user enters the following query,

>aldatp://mimi/R <- aldatp://mimi/T ijoin aldatp://mimi/S;

if the query optimization transforms the query into an equivalent query,

>aldatp://mimi/{ R <- T ijoin S};

Obviously, the new query is much more efficient (unless shipping query is more

expensive than shipping three relations).

Example

Suppose a user enters the following query,

>R <- aldatp://mimi/(S ijoin T) ujoin aldatp://roo/CU ijoin V)i

if aldatp:j jmimij(S ijoin T) and aldatp:j jrooj(U ijoin V) can be executed m

parallel, the parallel execution plan is apparently better than executing sequentially.

If the system supports replication or fragmentation transparency, it is the respon

sibility of the system optimizer to determine which fragments or replication need to

be physically accessed in order to satisfy any given user request.

Example

If a relation R is in fragments RI at "roo:-tim!pubA" ,R2 at" roo:-tim/pub" and

R3 at "mimi:-zwang26jpub", for the following querry

CHAPTER 6. CONCLUSIONS

>T (- R ijoin S;

It needs to be replaced with

>T(- (aldatp://roo/-tim/pubA/Rl ujoin aldatp://roo/-tim/pub/R2

ujoin aldatp://mimi/-zwang26/R3) ijoin Si

138

However, it may be inefficient to rebuild the whole relation from its fragments.

Take the example illustrated in figure 1.1. An employee relation is horizontally frag

mented into Employeel and Employee2 at different sites. Employee is the view taking

unoin of Employeel and Employee2. If the user's query is

Ans (- [id, name] where CS="department" and salary=5000 in Employee;

If we reconstruct Employee prior to pocessing, we obtain

Ans (- [id, nameJ where CS="department" and salary=5000 in CEmployeel unoin Employee2);

However we could answer the query by only using fragment Employeel

Ans (- [id, nameJ where CS="department" and salary=5000 in Employeel;

An important issue of fragmentation transparency is finding a query processing

strategy based on the fragments rather than the relations, even though the queries

are specified on the latter.

Semijoin Îs another basic technique for optimizing a sequence of distributed join

operation [BC81, BG81b, KYY82]. It aims to remove tuples of a relation that fail to

contribute to the result before shipping that relation. The main value of the semijoin

is to reduce the size of the joïn operands and thus the communication cost. This is

desirable particularly if network costs are high. However they might increase local

costs.

A JRelix querry processor with an optimizer will transform the initial parser tree

into an equivalent tree that is expected to require less-time to execute. By selecting

an order of execution for these operators an execution plan is generated and then is

executed.

Apart from optimizer, a coordinator or primary site is desirable to be added un

der sorne situations. In our implementation, aU the sites are totally autonomous.

CHAPTER 6. CONCLUSIONS 139

Although each physical computer has a root server which knows all the sites on the

same physical machine, the global information about aIl the hosts linked by the Inter

net is unknown. A coordinator or primary site having global information is desirable

for sorne applications.

For instance, a simple approach to support replication is keeping a replica table

at each site. If a data item is replicated, the system must consult the replica table to

choose a replica. If a coordinator exists, the coordinator can collect system table ".rel"

from aH the sites. So the coordinator not only knows the location of each database

but can aIso get the relation names in each database from those ".rel" files. Then

the coordinator is able to construct a relation or table called "Replica" having two

attributes "location" and "relationN ame". Subsequently, it broadcasts the "RepUca"

to each sites. We suppose each relation has a unique global name or alias(view) for

this method. Otherwise, we can use another solution. Whenever a relation is to be

replicated, the relation name and the names of those sites keeping a replication are

sent to the coordinator. Therefore, the coordinator is able to construct the replica

table.

In addition, for future distributed transaction management implmentation, a co

ordinator or primary site may play a important role.

In short, this implementation is a modest work. It adopts a simple and effi

cient method to integrate distributed data processing and Internet capability into a

database programming language. There still remains a lot of ground for further im

plementation to make the JRelix system more capable and powerful for distributed

data processing and Internet applications.

Bibliography

[ABC+83] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott, and

R. Morrision. Ps-algol: A language for persistent programming. In In

10th Austrian National Computer conference, pages 70-79, 1983.

[ABG84] R. Attar, P. A. Berstein, and N. Goodman. Site initialization, recov

ery, and backup in adistributed database systems. IEEE Transaction on

Software Engineering, SE-10(6), 1984.

[Bak98] Patrick Baker. Java implementation of computations in a database pro

gramming language. Master's thesis, McGill University, Montreal, 1998.

[BC81] P. A. Bernstein and D. W. Chiu. Using semijoin to solve relational queries.

Journal of the ACM, 28(1):25-40, 1981.

[BG81a] P. A. Bernstein and N. Goodman. Concurrency control in distributed

database systems. ACM computing Surveys, 13(2), 1981.

[BG81b] P. A. Bernstein and N. Goodman. The power of natural semijoin. SIAM

Journal of computing, 10(4):751-771, 1981.

[BG82] P. A. Bernstein and N. Goodman. A sophisticate's introduceion to dus

tributed database concurrency control. In Proceedings of the International

Conference on Very Large Data Bases, 1982.

[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley, 1987.

[BHL83] E. Bertino, L. M. Hass, and B. G. Lindsay. View management in dis

tributed database systems. In Proceedings of the 9th International Con

ference on Very Large Data Bases, October 1983.

[BL94] T. Berners-Lee. Universal Resouree Identifiers in WWW. RFC 1630,

1994.

140

BIBLIOGRAPHY 141

[BLFF96] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer proto col

- HTTP/1.0. RFC 1945, 1996.

[BLMM94] T. Berners-Lee, L. Masinter, and M. MeCahill. Uniform Resouree Loca

tors (URL). RFC 1738, 1994.

[BN97] P. Bernstein and E. Newcomer. Principles of Transaction Processing.

Morgan Kaufmann, 1997.

[BRGP78] P. A. Bernstein, J. B. Rothnie, N. Goodman, and C. A. Papadimitriou.

The concurrency control mechanism of SDD-l:a system for distributed

databases. IEEE-TSE, SE(4:3), 1978.

[BRJS78] Philip A. Bernstein, James B. Rothnie, Jr., and David W. Shipman. Tu

torial:distributed data base management. In IEEE Computer Society,

1978.

[BS80] P. A. Bernstein and D. W. Shipman. The correctness of concurrency

control mechanism in a system for distributed databases (SDD-1). ACM- .

TODS, 5(1), 1980.

[BSR80] P. A. Bernstein, D. W. Shipman, and J. B. Rothnie. Concurrency control

in a system for distributed databases (SDD-1). ACM-TODS, 5(1), 1980.

[CDK01] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Sys

tems Concepts and Design, Third edition. Addison-Wesley, 2001.

[Cha83] A. Chan. Overview of an ADA compatible distributed databse manager.

ACM SIGMOD,San Jose, CA, 1983.

[Che01] Yuling Chen. A G.I.S. edit or for a database programming language. Mas

ter's thesis, McGill University, Montreal, 2001.

[CHM83] K. M. Chandy, L. M. Haas, and J. Misra. Distributed deadlock detection.

[Cod70)

[CP83]

ACM Transactions on Computer Systems, 1(2), 1983.

E. F. Codd. A relational model of data for large shared data banks.

Communications of the ACM, 13(6), 1970.

Stefano Ceri and Giuseppe Pelagatti. Correctness of query execution

strategies in distributed databases. ACM Transactions on Database Sys

tems, 8(4):577-607, 1983.

BIBLIOGRAPHY 142

[CP84]

[DatOO]

[DJ84]

[DW80]

[ES 80]

Stefano Ceri and Giuseppe PelagattL Distributed Database: Principles

and Systems. McGraw-Hill, 1984.

C. J. Date. An Introduction ta Database Systems, Seventh Edition.

Addison-Wesley, 2000.

Birrell A. D. and Nelson B. J. Implementing remote procedure calls. ACM

Transactions on Computer Systems, 2(1):39-59, 1984.

C. Devor and J. Weeldreyer. DDTS: A testbed for distributed databse

research. Honeywell Report HR-80-268, 1980.

R. Epstein and M. R. Stonebraker. Analysis of distributed databse pro

cessing strategies. In Proceedings of the International Conference on Very

Large Data Bases, pages 92-110, 1980.

[ESW78a] R. Epstein, M. R. Stonebraker, and E. Wong. Distributed query pro cess

ing in a relational databse system. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 169-180, 1978.

[ESW78b] Robert S. Epstein, Michael Stonebraker, and Eugene Wang. Distributed

query processing in a relational data base system. In Proceedings of the

ACM SIGMOD International Conference, pages 169-180, 1978.

[FGM+99j R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext transfer proto col - HTTP/1.1. RFC 2616,

1999.

[Fie95] R. Fielding. Relative uniform resource locators. RFC 1808, 1995.

[GBW+S1) N. Goodman, P. A. Bernstein, E. Wang, C. 1. Reeve, and J. B. Rothine.

[GR93]

[Gra78]

Query processing in SDD-l: A system for distributed databases. A CM

TODS, 6(4), 1981.

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.

San Mateo Calif: Morgan Kaufman, 1993.

J. Gray. Notes on Data Base operating Systems. in R. Bayer, R. M. Gra

ham, and G. Seegmuller(eds), Operating Systems: An advanced course,

New York: Springer Verlag, 1978.

BIBLIOGRAPHY 143

[Gra79)

[Gro96}

[Hao98)

[He97]

J. N. Gray. A disscusion of distributed systems. In Proc. congresso AICA

79, October 1979.

Object Management Group. The common object request bro

ker: Architecture and specification, version 2.0. OMG web site

at:http:j jwww.omg.org, 1996.

Biao Hao. Implementation of the nested relational algebra in Java. Mas

ter's thesis, McGill University, Montreal, 1998.

Hongbo He. Implementation of nested relations in a database program

ming language. Master's thesis, McGill University, Montreal, 1997.

[HS80] M. Hammer and D. Shipman. Reliability mechanism for SDD-1. ACM

TODS, 5(4), 1980.

[HY79) A. R. Hevner and S. B. Yao. Query processing in distributed databse

systems. IEEE Transactions on Software Engineering, SE-5(3):177-187,

1979.

[Kna87) E. Knapp. Deadlock detection in distributed database. A CM Computing

Surveys, 19(4), 1987.

[Koh81] W. H. Kohler. A survey of techniques for synchronization and recovery in

decentralized computer systems. ACM computing Su,rveys, 13(2), 1981.

[KYY82] Y. Kambayashi, M. YoshiKawa, and S. Yajima. Query processing for

distributed database using generalized semi-joins. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, pages

151-160, 1982.

[Lin80)

[Lin81]

[Lin83]

B. G. Lindsay. Site autonomy issues in R*: A distributed database man

agement systems. IBM Research Report RJ2927(36822), 1980.

B. G. Lindsay. Object naming and catalog management for a distributed

database manager. In Proc. 2nd Int. Conf. on Distributed Computing

Systems, 1981.

B. G. Lindsay. Computation and communication in R*: A distributed

databse manager. In Proc. 9th A CM Symp. on Operating Systems Prin

ciples, 1983.

BIBLIOGRAPHY 144

[Lit82] W. Litwin. Sirius systems for distributed data management. Distributed

Database, H.J. Schneider, ed. North-Holland, 1982.

[LLOW911 Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The

objectstore dayabase system. Communications of the ACM, 34(10):50-63,

1991.

[LS76] B. Lampson and H. Sturgis. Crash recovery in a distributed data storage

system. Technical Report, Computer Science Laboratory, Xerox, 1976.

[Mer84]

[Mer01]

[Mer02}

[ML83}

[Mor88]

[NW82}

[OV99}

[Rao95}

[RG771

T. H. Merrett. Relational Information Systems. Reston Publishing Co.,

Reston, VA, 1984.

T. H. Merrett. Attribute metadata for relational OLAP and data min

ing. In Proceedings, Eighth Biennial Workshop on Data Bases and Pro

gramming Languages, pages 65-76, Monteporzio Catone, Roma, ltaly,

Sept.200l.

T. H. Merrett. Database programming meets Internet programming.

Technical report, School of Computer Science, McGill University, 2002.

C. Mohan and B. Lindsay. Efficient commit protocols for the tree of pro

cesses model of distributed transactions. In Proceedings of the @nd A CM

AIGACT-SIGOPS Symposium on the Principles of Distributed Comput

ing, 1983.

R. Morrison. Ps-algol reference manual. Technical Report 12, University

of St. Andrews, 1988.

E. J. Neuhold and B. \Valter. An overview of the architecture of the

distributed data base system porel. Distributed Database, H.J. Schneider,

ed. North-Holland, 1982.

M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems,

2nd edition. Prentice-Hall, 1999.

B. R. Rao. Making the most of middleware. Data Communications In

ternational, 24(12):89-96, 1995.

J. B. Rothnie and N. Goodman. An overview of the preliminary design

of SDD-l: A system for distributed database. In Pmc. 2nd Berkeley

Workshop on Distr. Data Manag. and Computer Networks, 1977.

BIBLIOGRAPHY 145

[RJG77] James B. Rothnie, Jr., and N. Goodman. A survey of research and de

velopment in distributed database management. In Proceedings of the

3rd International Conference on Very Large Data Bases, pages 48-62,

Tokyo,Japan, October 1977.

[Rot80]

[RSL78]

[Sch77]

[SH]

[Ske81]

[SKS97]

[SM95]

[Smi82]

[Ste94]

[Ste96]

[Sto86a]

J. B. Rothnie. Introduction to a system for distributed databases (SDD-

1),. ACM Trans. on Database Systems, 5(1):1-17, 1980.

D. J. Rosenkrantz, R. E. Stearns, and P.M. Lewis. System level concur

rency control for distributed database systems. ACM Transactions on

Database systems, 3(2), 1978.

Joachmim W. Schmidt. Sorne high level language constructs for data

of type relation. ACM transactions on Database Systems, 2(3):247-261,

1977.

Stonebraker and Hellerstein. Distributed DBMS: Overview and concur

rency control. Readings in Database Systems, 3rd Edition.

D. Skeen. Non-blocking commit proto cols. In Proceedings of the ACM

SIGMON International conference on the Management of Data, 1981.

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database

System Concepts, Third Edition. McGraw-Hill, 1997.

R. Srinivasan and Sun Microsystems. RPC: Remote procedure call pro

tocol specification version 2. RFC 1831, 1995.

J. M. Smith. Multibase: Integrating heterogeneous distributed database

systems. Proc. National Computer Conference, 1982.

Vif. Richard Stevens. TCP IIP Illustrated, Volume 1 , The Protocols.

Addison-\iVesley, 1994.

W. Richard Stevens. TCP IIP Illustrated, Volume 3 , TCP for Transac

tions, HTTP, NNTP, and the UNIX Domain Protocols. Addison-Wesley,

1996.

M. Stonebraker. The Design and Implementation of Distributed INGRES,

in The INGRES Papers, M. Stonebraker (ed.). Addison-Wesley, Reading,

MA, 1986.

BIBLIOGRAPHY 146

[Sto86b]

[SunOa]

Michael Stonebraker. The INGRES Papers: Anatomy of a Relational

Database System. Addison-Wesley, 1986.

Weizhong Sun. Updates and events in a nested relation programming

language. Master's thesis, McGill University, Montreal, 2000.

[SWKH76] M. R. Stonebraker, E. Wong, P. Kreps, and G. D. ReId. The design and

implementation of ingred. A CM Transactions on Database Systems, 1 (3),

1976.

[Tib95] Fred Tibbets. Corba: A common touch for distributed applications. Data

Comm Magazine, 24(7):71-75, 1995.

[Wil81] R. Williams. R *: An overview of the architecture. IBM Research Report

RJ3325, 1981.

[Won77] E. Wong. Retrieving diepersed data from SDD-1: A system for distributed

database. In Proceedings of the Berkely Workshop on Distributed Data

Management and Compl1,ter Networks, 1977.

[WonS3] E. Wong. Dynamic rematerialization-processing distributed queries us

ing redundant data. IEEE transactions on Software Engineering, SE-

9(3):22S-232, 19S3.

[WW] Wollrath and Jim Waldo. Trail: Rmi. Java RMI web site at:

http:j /java.sun.comjdocsjbooksjtutorialjrmijindex.html. The web site

contains documentations and examples.

[Yua9S]

[Zhe02]

Zhongxia Yuan. Java implementation of the nested domain algebra in

a database programming language. Master's thesis, Mc Gill University,

Montreal, 1998.

Yi Zheng. Abstract data types and extended domain operations in a

nested relational algebra. Master's thesis, McGill University, Montreal,

2002.

