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Abstract 

The Inflationary power spectrum plays an important role in modern cosmology. In 

this thesis, we studied both the experimental and theoretical aspects of the inflation­

ary spectral index. By exploring the recent WMAP data, we found that the evidence 

for the running of the spectral index mainly cornes from multipoles near l = 40. This 

fact allows a partial running spectrum to give as good a fit as the WMAP running 

spectrum. We gave sorne simple formulae for the inflationary spectral indices based on 

the Hamilton-Jacobi formulation of inflation. These simple formulae agree with the 

exact solutions in sorne special cases. The Hamilton-Jacobi formulation of inflation 

was also applied to reconstruct inflaton potentials from a given power spectrum. A 

simple and accurate reconstruction formulation was presented. All analytic potentials 

giving a constant spectral index are derived, which show that a nearly scale-invariant 

spectrum can give rise to slow-roll inflation during 60 e-foldings within sub-Planckian 

inflaton field values and a potential energy V 1
/

4 
rv 1015GeV. Potentials for large 

running of the spectral index and large tensor-to-scalar ratio were also constructed, 

which need super-Planckian field values and require that the slow-roll approximation 

breaks down before reaching 60 e-foldings. We have shown that for the cosmologi­

cally interesting scales, a renormalizable potential fits the reconstructed potential for 

a large running spectrum very weIl. Our reconstruction formulation also pro duces a 

self-consistent tensor spectrum once a scalar spectrum and the tensor-to-scalar ratio 

are given. Higher order corrections to the slow-roll approximation are also consid­

ered. We showed that they can be incorporated straightforwardly into our formulae 

for spectral indices and the reconstruction formalism. 



Résumé 

Le spectre de puissance inflationniste joue un rôle important en cosmologie moderne. 

Dans cette thèse, nous étudions les aspects expérimentaux et théoriques de l'indice 

spectral inflationniste. En étudiant les données récentes de WMAP, nous trouvons que 

les évidences de la variation de l'indice spectral provient principalement des multipôles 

près de l = 40. Ceci permet au spectre partiel variable de présenter une aussi bonne 

concordance que le spectre WMAP variable. Nous présentons des formules simples 

pour les indices spectraux inflationniste basées sur la formulation Hamilton-Jacobi de 

l'inflation. Ces formules simples sont en accord avec les solutions exactes dans cer­

tains cas simples. La formulation Hamilton-Jacobi de l'inflation est aussi appliquée à 

la reconstruction de potentiels inflationnistes à partir du spectre de puissance. Une 

formulation de reconstruction simple et précise est présentée. Tous les potentiels an­

alytiques pour un indice spectral constant sont dérivés, montrant ainsi qu'un spectre 

presque invariant d'echelle peut produire de l'inflation avec roulement lent pendant 

60 e-repliements avec des valeurs de champ d'inflaton sub-Planckienne d'énergie po­

tentielle V 1
/

4 
rv 1015 GeV. Des potentiels avec une variation de l'indice spectral et un 

ratio tenseur-sur-scalaire élevés sont aussi construits; ceux-ci ont besoins de valeurs 

de champ super-Planckiennes et l'approximation du roulement lent devient invalide 

avant d'atteindre 60 e-repliements. Nous montrons que pour des échelles intéressantes 

cosmologiquement, un potentiel renormalisable et le potentiel reconstruit concordent 

bien pour une grande variation du spectre. Notre formulation de reconstruction pro­

duit aussi un spectre tensoriel auto-consistant dans la mesure où un spectre scalaire 

et un ratio tenseur-sur-scalaire sont donnés. Des corrections d'ordre supérieures à 

l'approximation du roulement lent sont aussi considérées. Nous montrons qu'elles 

peuvent être incorporées directement dans nos formules pour l'indice spectral et nos 

formules de reconstruction. 
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Chapter 1 

Introduction 

Inflation has become an important part of modern cosmology since A. Guth's seminal 

paper [1], which is designed to solve the horizon and flatness problems. Moreover, 

inflation is the first theory which gives causal explanation to the large-sc ale structure 

of the present universe. In this chapter, we start with a brief introduction to the 

successes and problems of standard cosmology [2, 3], and introduce the achievements 

of inflationary cosmology [4, 5] with emphasis on the results of the inflationary spectral 

index in the slow-roll approximation [6, 7]. 

1.1 Standard Cosmology 

The study of modern cosmology began when Einstein presented the general theory of 

relativity in 1915. In general relativity, spacetime and matter are connected through 

the spacetime metric, which not only describes the geometry of spacetime but also 

determines the motion of matter. In order to apply general relativity to the uni­

verse, Einstein made a convenient assumption that on large sc ales the universe is 

homogeneous, which now is referred to as the cosmological principle and confirmed 

by experiments. The cosmological principle leads to a homogeneous and isotropie 

1 



1.1 Standard Cosmology 2 

metric, the Robertson-Walker metric: 1 

(1.1 ) 

where spatial coordinates, (r, e, rp), are comoving coordinates, and hence the physical 

distance is a product of the comoving distance and the scale factor, a(t); K is the 

spatial curvature constant and it determines the topology of the three spatial dimen­

sions: K = 0 gives a fiat universe, K > 0 a closed (finite) universe, and K < 0 an 

open (infinite) universe. 2 

The third pillar of standard cosmology is that "matter" can be regarded as a 

perfect fiuid; its properties are determined by its energy density p(t) and pressure 

p( t). The resultant Einstein field equations are 

ii 

3K 
p+A--

2
, 

a 
1 

-6(P + 3p), 

(1.2) 

(1.3) 

where overdots denote derivatives with respect to time and the reduced Planck mass, 

M p1 = (87T'G)-1/2, is set to 1 throughout this thesis;3 A is the cosmological constant, 

which can be effectively regarded as vacuum energy and is absorbed into the en­

ergy density, p, hereafter. Eq. (1.2) is referred to as the Friedmann equation, which 

connects the total energy density and the Hubble parameter: 

_ â(t) 
H(t) = a(t)' (1.4) 

The Friedmann equation and the Einstein field equation, Eq. (1.3), can be combined 

to give the continuity equation: 

p = -3H(p + p). (1.5) 

1 We use natural units throughout this thesis. See Appendix A for conversion between natural 

units and international units. 

2 Although the universe is also infinite if K = 0, the terminology "open universe" is reserved for 

the case of negative spatial curvature. 

3See Appendix A. 



1.1 Standard Cosmology 3 

For relativistic matter (radiation), P ~ 3p, which gives rise to a sc ale factor as a ex: t 1
/

2
; 

for non-relativistic matter ("dust," or just "matter"), p ~ 0 and hence a ex: t 2/ 3 • Stan­

dard cosmology gives an excellent description of the radiation and matter domination 

epochs, and hence a clear picture of the evolution of the uni verse: The uni verse starts 

with a hot, dense, and thermal equilibrium state (Big Bang); as the universe expands, 

the temperature decreases and the universe goes through nucleosynthesis, decoupling 

of photons, and formation of structure (galaxies). 

The confirmation of Hubble's law, the prediction of abundances of light elements, 

and the Cosmic Microwave Background (CMB) are three classic tests of standard 

cosmology for which the big bang theory succeeds remarkable well. Moreover, the 

CMB provides much information about the early universe, and recent high-precision 

observations of the CMB anisotropy, by the Wilkinson Microwave Anisotropy Probe 

(WMAP), are designed to accurately determine basic cosmological parameters, such 

as today's Hubble parameter, the age of the universe, and the composition of the 

energy density of the universe [8, 9]. 

Despite its great successes, standard big bang cosmology does not shed light on the 

infant universe far before nucleosynthesis, and three critical cosmological problems 

are left over. Firstly, due to its expansion, today's observable universe would con si st 

of many patches which were out of causal contact in the past, and hence there is 

no causal explanation for the homogeneity of the CMB; this is the horizon problem. 

Secondly, defining the critical density as Pc = 3H2 , and the fractional density as 

0= pl Pc, the Friedmann equation can be rewritten as 

(1.6) 

So the deviation of the total density from unit y is monotonically increasing with time 

in the radiation and matter domination epochs. However, today's total density is 

close to unit y, Otot = 1.02 ± 0.02 [11]. Therefore, a question arises: Why is the 

universe still so fiat even though the deviation has been amplified by a factor of more 

than 1016 since nucleosynthesis? This problem is referred to as the fiatness problem. 

The third problem is the structure formation problem. On one hand there is no causal 
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mechanism for the observed large-scale structure; moreover, standard cosmology does 

not provide a mechanism for the generation of primordial density perturbations. 

1.2 Inflationary Cosmology 

The idea of inflation is that a rapid expansion epoch in the early universe could solve 

the above cosmological problems. Specifically, we define inflation as an epoch with 

the comoving Hubble radius decreasing with time; from the Einstein field equation, 

Eq. (1.3), this definition is equivalent to an accelerating expansion epoch [6]: 

d (H- 1
) Inflation {=} dt -a- < a {=} Ci > o. (1.7) 

The decrease of the comoving Hubble radius would shrink the present observable 

uni verse into a causally connected region, and hence the horizon problem could be 

solved. As for the flatness problem, it is obvious that the deviation of the total density 

from unit y is suppressed during inflation. Moreover, inflation sets the early quantum 

fluctuations as seeds of structure formation at late times, so the structure formation 

problem can be solved by causal physics. 

Although inflation is a brilliant idea, it is hard to achieve inflation with well­

motivated particle physics theories since inflation typically requires near Planck scale 

physics. Nevertheless, people usually consider a class of inflationary models which is 

driven by a single scalar field, the inflaton field </;, by which the energy density and 

pressure are 

p 

p 

1 '2 
2</; + V(</;), 

~~2 - V( </;), 

(1.8) 

(1.9) 

where V (</;) is the inflaton potential and the spatial gradient terms are omitted since 

we consider a homogeneous background uni verse. From the Friedmann equation and 

the continuity equation, the equations of motion become 

V + ~~2 
2 .. . 

</; + 3H </; -V' , 

(1.10) 

(1.11) 
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where primes denote derivatives with respect to the inflaton field; the spatial curvature 

term is dropped hereafter since we consider a flat uni verse only. An accelerating epoch 

requires that the potential energy dominates, V > ~2. Generally, a generic inflation 

model, deemed slow-roll inflation, is usually employed. In this scenario the inflaton 

field slowly rolls and the potential energy dominates until the end of inflation: 

3H2 V, 

3H cp '" -V'. 

(1.12) 

(1.13) 

The satisfaction of the above slow-roll approximation is quantified by the magnitude 

of the slow-roll parameters [10]: 

EV 

with 

~ (~)2 
V" 
V' 

EV« 1, 

11Jv1 « 1. 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

Therefore, the end of inflation is indicated by EV ~ 1 or 11Jv ~ 11. Note that these 

conditions are not sufficient for the slow-roll approximation to be valid because they 

only restrict the shape of the potential but not the dynamics; an attractor behavior 

. of the solutions is required for the slow-roll approximation to be valid. We use a 

rigorous treatment of the equations of motion in this thesis; see Chapter 3. Also see 

Section 4.3 for a discussion about the inflationary attractor. 

The amount of inflation can be expressed through the number of e-foldings from 

time t to the end of inflation: 

aend l tend 

N(t) - ln a(t) = t H(t)dt. (1.18) 

In the slow-roll approximation, it can be expressed as 

Fr/> V 
N ~ id -dcp. 

<Pend V' 
(1.19) 
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TypicaIly, 60 e-foldings are needed for today's observable universe to solve the cosmo­

logical problems. Differentiating the above expression, one has the relation between 

the inflaton field and the number of e-foldings: 

d<p V' 
_rv_ 

dN V· 
(1.20) 

1.3 Primordial Power Spectra 

One of the features of inflation is that it relates the present large-sc ale structure to 

the small fluctuations in the early universe. The idea is that vacuum fluctuations of 

the inflaton field, 6<p, occur during inflation, which give rise to resultant density fluc­

tuations and metric fluctuations. During inflation, these fluctuations are stretched 

weIl outside the horizon, where they are frozen for a long cosmic time. WeIl after nu­

cleosynthesis, cosmologically interesting sc ales begin to reenter the horizon, and that 

is the initial epoch for structure formation. The initial power spectrum is observable 

today; therefore it provides an important test of inflationary cosmology. 

The details of the cosmological perturbation theory are beyond the scope of this 

thesis; the results, however, are simple and crucial for the discussion of the remaining 

chapters. The power spectra of the primordial curvature perturbation (R; also re­

ferred to as the power spectrum of scalar field perturbation) and gravitational waves 

(h; also referred to as the spectrum of tensor modes perturbation) are 

Pn(k) (1.21) 

(1.22) 

where the relation of the inflaton field, <p, and the comoving wavenumber, k, is given 

implicitly through the horizon crossing condition, 

k=aH, (1.23) 

which will not be written down explicitly in equations hereafter; a factor of 8 in Ph is 

introduced to be consistent with conventions ofthe WMAP collaboration [11, 12, 13]. 
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Eqs. (1.21) and (1.22) are the leading or der results of slow-roll inflation; the next 

order results are discussed in Sections 3.3 and 4.2. Besides, we discuss only single­

field inflation in this thesis. Since gravitational waves couple to matter fluctuations 

weakly, the effect of the CMB anisotropy is dominated by the scalar field, and we 

mainly discuss the curvature perturbation spectrum in this thesis. 

The curvature perturbation is usually parameterized as a phenomenological power­

law spectrum: 

( 
k ) ns-l 

Pn = Pno ko ' (1.24) 

where ko is a chosen pivot point and Pno is the corresponding normalization; the 

number -1 in the exp one nt cornes from a historical convention. This parameterization 

can be easily generalized to the definitions of the spectral indices for scalar and tensor 

spectra: 

dlnPn 
dlnk ' 

dlnPh 
dlnk . 

(1.25) 

(1.26) 

Since fluctuations are stretched outside the horizon rapidly by inflation, differences 

between different modes are expected to be small; as a result, the power spectra 

should be close to scale-invariant spectra, i.e. ns ~ 1 and nt ~ O. 

For slow-roll inflation, the expressions for the spectra can be simplified to 

Pn(k) 
1 V 3 

127r2 V,2' 
2 

37r2 V, 

(1.27) 

(1.28) 

and differentiating the relation of horizon crossing condition approximately gives 

dlnk ~ dN, (1.29) 

due to the fact that the Hubble parameter hardly changes during slow-roll inflation. 

The spectral indices are obtained straightforwardly in terms of the slow-roll parame-

ters (Eqs. (1.14) and (1.15)) [10J: 

- 6Ev + 2T/V, 

- 2Ev· 

(1.30) 

(1.31) 
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The spectral indices are not constants in general. Their runnings are defined as 

dns 
Clôs dlnk' 

dnt 
Clôt dlnk· 

The slow-roll predictions are [14] 

- 24E~ + 16Ev7Jv - 2çv, 

where çv is the third slow-roll parameter [15]: 

V/V" 
çv - VV· 

Since the runnings are of order 0 ( E~ ), their effects are expected to be sm aIl. 

The tensor-to-scalar ratio is defined as 

Ph 
r=-- PRo 

In terms of the slow-roll parameters, it is 

r(k) ~ 16Ev(k). 

Thus the tensor spectral index can be approximately expressed as 

r 
nt ~ --, 

8 

which is referred to as the infiationary consistency equation [14]. 

(1.32) 

(1.33) 

(1.34) 

(1.35) 

(1.36) 

(1.37) 

(1.38) 

(1.39) 

The scalar and tensor power spectra can be inferred from the CMB anisotropy, 

thus they provide indirect tests to infiationary cosmology. N evertheless, the inverse 

problem, "what is the shape of the infiaton potential for a given power spectrum 7" 

has not been solved accurately. In the following chapters, we first reexamine the 

experimental evidence for the scalar power spectrum; then we use a rigorous treatment 

of the infiaton equations of motion and give more accurate formulae for the spectral 

indices. We present a simple and accurate method for the reconstruction of infiaton 

potentials in Chapter 4. This general reconstruction formulation is implemented 

in the cases of constant and running spectral index in Chapters 5 and 6, where 

experimental results are applied and thus constraints on infiationary cosmology arise. 

We give conclusions in Chapter 7. 



Chapter 2 

WMAP Power Spectrum 

The WMAP mission was designed to precisely detect the tiny fluctuations in the CMB 

and thus accurately determine the basic cosmological parameters. It was launched in 

2001, and the first year and three-year data were released in 2003 and 2006 respec­

tively. In this chapter, we explore the experimental evidence for the primordial power 

spectrum from WMAP and other up-to-date astrophysical data. 

2.1 Nearly Scale-Invariant Spectrum 

Consider a simple and basic cosmological model: a flat uni verse filled with radiation, 

baryons, cold dark matter, and a cosmological constant, where the primordial power 

spectrum can be parameterized with a power-Iaw spectrum. This model is referred 

to as the A CD M model (to distinguish from the running spectral index model intro­

ducted in the next section, we also call it the non-running model) , and it is described 

by six basic parameters: the scalar spectral index ns , the normalization parameter of 

the power spectrum A, the optical depth to the decoupling surface T, today's Hub­

ble constant h (in units of 100km/s/Mpc), the baryon density Dbh2, and the matter 

density Dmh2. This model fits both the first year and three-year WMAP data very 

well; moreover, it is consistent with the predictions given by inflation-a flat universe, 

gaussian primordial fluctuations, and a nearly scale-invariant spectrum [11, 13]. 

We reexamined the ACDM model using CosmoMC, a Markov-Chain Monte-Carlo 

9 



2.1 Nearly Scale-Invariant Spectrum 10 

engine for exploring cosmological parameter space [16].1 Table 2.1 lists our best fit 

values for the cosmological parameters and also quotes the best fit parameters given 

by the WMAP collaboration [11, 13]. One should be aware of the difference between 

the best fit model (values) and the marginalized (mean) values. A marginalized value 

is a 1-dimensional expectation value by marginalizing over all other parameters; it and 

its uncertainty usually represent the best estimate for a single parameter. The best 

fit model is one point in the parameter space minimizing X2 = -2InL, where L is the 

likelihood function; its uncertainties depend on the likelihood surface and are usually 

complicated and not shown. It is obvious that the combinat ion of all marginalized 

values does not necessarily give the best fit model. If one considers more than one 

parameter at the same time, the best fit model is preferred; for example, the best 

fit CMB angular spectra are given through the best fit model, not the marginalized 

values. Values in this thesis are from best fit models unless specified. 

To search a best fit point, we usually set 6. ln L < 0.05, so the tolerance on X2 

is less than 0.1. However, we have observed that there is a tendency for CosmoMC 

to get stuck in local minima of X2 when searching for best fit points, and hence 

it is possible that the values listed in this chapter are not the global minima. To 

alleviate this problem, we tried to start with different regions in the parameter space. 

Besides, Markov Chains also provide the best fit points among the accepted samples. 

N evertheless, we will show how the parameters and daims change if one falls in a 

local minimum. 

CosmoMC uses (Dch2, 1000, In[lO lOPno]) instead of (Dmh2, h, A). The relation 

between the cold dark matter density Dch2 and the matter density density Dmh2 is 

Dmh2 = Dch2 + Dbh2. 0 is the ratio of the sound horizon to the angular diameter 

distance, and it indicates the position of the first peak of the CMB temperature 

angular spectrum; the values of O's are also shown in the table. 2 The relation between 

lSee http:j jwww.cosrnologist.infojcosrnornc. The author thanks Antony Lewis for help with 

using CosrnoMC. 

2We discuss only the pararneters directly related to the scalar and tensor power spectra in this 

thesis; see, e.g., Refs. [2,3,6] for discussion about the CMB angular spectrurn and other cosrnological 
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Table 2.1: Best fit non-running models for the first year and three-year WMAP data. 

Parameter WMAPI [11] WMAP1a WMAP1b WMAP3 [13] WMAP3a 

ns 0.97 0.96 0.99 0.96 0.95 

A 0.86a 0.87 0.88 c 0.81 

T 0.10 0.11 0.16 0.092 0.090 

h 0.68 0.69 0.72 0.73 0.73 

100nbh2 2.3 2.29 2.36 2.22 2.22 

n m h2 0.145b 0.145 0.140 0.128 0.128 

100e 1.045 1.047 1.040 

X2 1431 1428.8 1429.5 11252.3 

1/ 1342 1342 1342 

aThe original value is A(0.05) = 0.78. Here we take ns = 0.97 to evaluate A(0.002). 

bThis is the value from Ref. [13]; the value given by Ref. [11] is 0.13. 

CRef. [13] uses the amplitude of galaxy fluctuations instead of the normalization parameter 

A; its value is a8 = 0.77. 

Pno and A is [12] 
2 X 1047f2 

Pno = 2 A ~ 2.95 X 10-9 A, (2.1) 
9TcMB 

where TCMB = 2.725 x 106 jLK. We choose the pivot point ko = 0.002Mpc- 1 through-

out this thesis; for other pivot point values, one has 

ln Pn(k) = (2.2) 

(2.3) 

In Table 2.1, the number of degrees of freedom, 1/, is the number of data points 

minus the number of parameters. For the first year WMAP data, there are 899 

data points for the TT spectrum (l = 2 - 900, l is the multipole of the CMB angular 

parameters. 
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spectrum), and 449 for the TE spectrum (l = 2-450). Therefore, l/ = 899+449-6 = 

1342, and the reduced X2
, x2

jl/, is 1.065. The three-year WMAP data mixes the Cl 

likelihoods for high multipoles (l = 13 - 1000 for TT, l = 24 - 450 for TE) and the 

pixel likelihoods for low multipoles (l = 2 - 12 for TT, l = 2 - 23 for TE), so the 

values of X2 and l/ do not have absolute meanings. 

The first column of Table 2.1 is the best fit model for the first year WMAP data 

[11]; it is consistent with a nearly scale-invariant spectrum as predicted by slow-roll 

inflation. The second column (la) lists our best fit model, which is consistent with 

the best fit model given by the WMAP collaboration [11]. The fact that these two 

columns are not identical may be due to different settings; for example, the maximum 

l in the calculation of the likelihood.3 We found another "best fit" point in the first 

year data, which has an almost scale-invariant spectral index and a relatively high 

optical depth, as shown in the third column (lb) of Table 2.1. Compared to column 

la, the model in column lb is obvious a local minimum. This is due to the fact 

that there is a long, flat degeneracy between ns and T in the first year WMAP data 

[11]. The three-year data, however, breaks this degeneracy with the help of the 

polarization data [17]. It turns out that the best fit model favors a spectral index less 

than the scale-invariant value and a lower optical depth, as shown in the fourth and 

fifth columns of Table 2.1. Again, our result for WMAP3 is consistent with the result 

from the WMAP collaboration, although, different from the WMAP collaboration, 

we do not include the BB spectrum in the analysis of the three-year data. The first 

year results are consistent with the three-year results despite a relatively high matter 

density. 

Table 2.2 lists our best fit non-running models when using different data sets. The 

first column is the result from the first year WMAP data alone (same as the second 

column of Table 2.1); others are from the combinations of the first year WMAP data 

and the data sets specified in the first row, where CMB = ACBAR + CBI + VSA is 

the combination of the recent CMB data [18, 19, 20] and LSS = 2dF + SDSS is the up-

3We used most default settings in CosmoMC. 
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to-date large-sc ale structure data [21, 22]. We used the July 2005 version of CosmoMC 

and its default data sets in the analysis including the first year WMAP data. These 

data sets are: July 2002 ACBAR data [18], 900 :::; 1 :::; 1950 (7 data points); 2000 and 

2001 CBI data [19], 700 :::; 1 :::; 1760 (8 data points); February 2004 VSA data [20], 

640 :::; 1 :::; 1700 (8 data points); June 2002 2dF data [21], 0.022 :::; k(h/Mpc) :::; 0.147, 

32 data points; October 2003 SDSS data [22], 0.016 :::; k(h/Mpc) :::; 0.205 (19 data 

points). These data are combined in the standard way: For WMAP data, CosmoMC 

uses the WMAP likelihood function; for other data, the code is usually fed into 

CosmoMC by the corresponding experimental group.4 

Table 2.2: Best fit non-running models for the combinat ions of the first year WMAP 

and other data sets. 

Parameter WMAP1a CMB 2dF CMB+2dF SDSS LSS AH 

ns 0.96 0.96 0.97 0.96 0.99 0.99 0.96 

A 0.87 0.86 0.87 0.86 0.90 0.90 0.86 

T 0.11 0.12 0.11 0.11 0.13 0.15 0.091 

h 0.69 0.71 0.69 0.70 0.67 0.69 0.68 

100nbh2 2.29 2.28 2.29 2.29 2.38 2.37 2.29 

n m h2 0.145 0.136 0.145 0.140 0.160 0.152 0.149 

1008 1.045 1.043 1.045 1.044 1.050 1.049 1.045 

X2 1428.8 1449.3 1463.2 1484.3 1453.5 1490.0 1513.0 

v 1342 1365 1374 1397 1361 1393 1416 

Table 2.3 lists similar best fit non-running models as Table 2.2, with the first 

4We found a bug in the CBI data set. The offset lognormal matrix for CBI is inconsistent with 

its data. See Ref. [23J for a discussion about the impact of using the wrong matrix; also see the 

CBI website, http:j jwww.astro.caltech.edu;-tjpjCBIjdata, for a link to the discussion about this 

issue. Since this bug was found after the initial submission of this thesis, the corresponding best fit 

models in Tables 2.2, 2.3, 2.5, and 2.6, are recollected using the right matrix. The modifications to 

the initial submission, however, are not significant: The best fit models are basically unchanged and 

the X2's are down-shifted by 3.1 to 3.8. 
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year WMAP data replaced by the three-year data. We used the May 2006 version of 

CosmoMC in the analysis including the three-year WMAP data. 5 Except for using 

the 2005 2dF data (the same range of k / h and the same number of data points as 

2002 2dF data) [24], other data sets are the same as those in Table 2.2.6 Tables 2.2 

and 2.3 show that including other data sets has only minor effects on the parameters, 

while the large-scale structure data favor a slightly larger matter density. 

Table 2.3: Best fit non-running models for the combinat ions of the three-year WMAP 

and other data sets. 

Parameter WMAP3a CMB 2dF CMB+2dF SDSS LSS AlI 

ns 0.95 0.95 0.95 0.95 0.95 0.96 0.95 

A 0.81 0.80 0.80 0.80 0.84 0.82 0.83 

T 0.090 0.088 0.085 0.080 0.071 0.082 0.074 

h 0.73 0.73 0.73 0.72 0.66 0.69 0.69 

1000bh2 2.22 2.20 2.22 2.20 2.24 2.26 2.22 

Omh2 0.128 0.125 0.127 0.127 0.146 0.141 0.138 

100e 1.040 1.039 1.039 1.039 1.041 1.042 1.040 

X
2 11252.3 11271.5 11290.9 11310.2 11285.1 11327.0 11348.1 

Figure 2.1 shows the distributions of the parameters for the non-running model 

using the three-year WMAP data, where solid lines are marginalized probabilities and 

dotted lines are me an likelihoods of samples; for Gaussian distributions they should be 

the same.7 There are four independent Markov chains, each having 200,000 samples. 

After removing bum-in samples, there are about 8 x 104 accepted samples from which 

5Column WMAP3a of Tables 2.1 and 2.3 is obtained from the April 2006 CosmoMC, but there 

should be no difference between the April and May 2006 CosmoMC at this level. 

6We used the default settings for the data sets in CosmoMC. The SDSS likelihood is computed 

from k/h = 3.16 x 10-3 to IMpc- 1 in the July 2005 CosmoMC, but from k/h = 10-4 to 1Mpc-1 

in the May 2006 CosmoMC; however, the difference seems negligible. 

7 See http:j /www.cosmologist.info/cosmomc. 
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the distributions are generated. As shown in the figure, the chains converge very weIl. 

To summarize this section, the non-running model with a nearly scale-invariant 

spectrum fits the WMAP data and other up-to-date CMB and large-scale structure 

data very weIl. 

2.2 Large Running Power Spectrum 

Although a nearly scale-invariant spectrum fits the data very weIl, a running power 

spectrum is also consistent with the current data. In 2003 the first year WMAP data 

opened the door to the possibility of a large running power spectrum as = -0.1, from 

blue (ns > 1) to red (ns < 1), as shown in Figure 2.2. The -0.1 level of running is 

uncomfortably large for slow-roll inflation, since the running is a second order effect 

in the slow-roll expansion; thus it is expected to be small. Therefore, despite the 

large error bars for the running, it gives rise to a challenge to slow-roll inflation. We 

discuss the experimental evidence for the running in this section and the theoretical 

aspects in Chapter 6. 

It is obvious that using extra degrees of freedom, the goodness of fit will improve. 

To quantify the improvement of the goodness of fit, we define 

(2.4) 

We found that a large tensor contribution is important for obtaining significant im­

provement. If the tensor-to-scalar ratio is set to r = 0, then .6.X2 = 1; however, 

including the tensor-to-scalar ratio as a free parameter it becomes .6.X2 = 5.8 We re­

fer to the running spectral index model with tensor spectrum as the running model. 9 

BNote that the improvement is ~X2 = 3 in the WMAP best fit model [11, 12]. Moreover, the 

improvement is .6.X2 = 3 for the three-year WMAP data whether tensor spectrum is included or not 

[13]. See Table 2.4 for comparison. 

9To be consistent with the WMAP collaboration, the tensor spectral index is given by the infta­

tionary consistency equation, nt = -r /8, which is a good approximation at this level of running. 

See Section 6.2 for a more rigorous treatment for the tensor spectrum. 
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Figure 2.1: The parameter distributions for the non-running model using the three­

year WMAP data. Solid lines are marginalized probabilities and dotted lines are 

me an likelihoods of samples. 
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Figure 2.2: The spectral index ns as a function of k for the combination of the first 

year WMAP and other data. The mean (solid line), the 68% (shaded area), and the 

95% (dashed lines) intervals are shown. The scales probed by the data are indicated 

on the figure. (Reproduced from Figure 2 of Ref. [12].) 

Table 2.4lists the best fit running models for the first year and three-year WMAP 

data. With the improvement of measurements of the three-year data, the level of 

running is still large, but it is reduced in our best fit model of the three-year data. It 

can be se en that there is a large discrepancy between columns WMAP3 and WMAP3b 

in Table 2.4. First of aIl, Ref. [13] does not provide the best fit running model, and 

the values listed in column WMAP3 of Table 2.4 are marginalized values. Moreover, 

the Sunyaev-Zel'dovich effect is considered in Ref. [13], but it is not considered in 

our analysis. Actually, including this secondary effect seems to have little effect on 

the best fit model. FinallY' the constraints on the parameters have been narrowed by 

new chains run by the WMAP collaboration since the first release of the WMAP3 

paper [13]. The up-to-date results are available on the WMAP website,lO and the 

lOSee http://lambda.gsfc.nasa.gov / product/map / dr2 /parameters.cfm. 
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new marginalized values for the running model are ns = 1.16, as = -0.085, and 

r < 1.1 (95% CL). Therefore, the new result confirms the trend of shrinking the level 

of running and the tensor-to-scalar ratio, as has been pointed out by our best fit 

running model for the three-year WMAP data. 11 

Figure 2.3 shows the distributions of the parameters for the running model using 

the three-year WMAP data. There are four Markov chains, each having 200,000 

samples. After removing bum-in samples, there are about 3 x 104 accepted samples 

from which the distributions are generated. These chains, however, do not converge 

as well as those of the non-running model. 

Tables 2.5 and 2.6 list our best fit running models for the combinations of the 

first year and three-year WMAP and other data sets. It can be seen that including 

other CMB data the ~X2'S go from 4.8 to 7.3 and from 3.1 to 3.9 for first year 

and three-year WMAP data respectively, so the CMB data strengthen the evidence 

for running (other parameters remain basically unchanged). Meanwhile, inclusion of 

large-scale structure data reduces both the ~X2'S and the values of ns, as, and the 

tensor-to-scalar ratio r. 12 80 large-scale structure data do not favor running. From 

the first to three-year WMAP data (and their combinations), the spectral index and 

the tensor-to-scalar ratio are reduced, especially for the tensor-to-scalar ratio when 

11 For the three-year data, we found a best fit point with ~X2 = 648, which is a huge change of 

X2 , and this model is very different from those given in Table 2.4, notably with a positive running 

spectral index, Œs = 0.07. With detailed investigation, we found that the decrease of X2 mainly 

co mes from the fact that the TT beam and point source correction (see Ref. [9]) is almost identical 

to the TT high multipole X2, 114374, but with the opposite sign and hence the total X2 is reduced 

significantly. We suspect the validity of the beam and point source corrections code released by the 

WMAP collaboration, WMAP _3yLtt_beaILand_ptsrc_corr. f90, in the range of a positive running 

spectral index, and we do not regard this point as a real best fit. The author of the code, Michael 

Nolta, informed us that this may be due to the failure of the gaussian approximation of the likelihood 

(private communication). 

12In trying to understand why the SDSS analysis [22] favors running, but our best fit running 

model using SDSS data does not, we note that the SDSS analysis uses a non-fiat model when 

running is considered. 
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Figure 2.3: The parameter distributions for the running model using the three-year 

WMAP data. Solid lines are marginalized probabilities and dotted lines are mean 

likelihoods of samples. 
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Table 2.4: Best fit running models for the first year and three-year WMAP data. 

Parameter WMAP1 [12] WMAP1c WMAP3a [13] WMAP3b 

ns 1.27 1.27 1.21 1.12 

Œs -0.10 -0.098 -0.10 -0.076 

r 0.56 0.57 < 1.5 (95% CL) 0.24 

A 0.74 0.72 0.61 b 0.74 

T 0.29 0.29 0.11 0.12 

h 0.79 0.81 0.74 0.70 

1000bh2 2.3 2.39 2.20 2.13 

o h2 
m 0.122 0.122 0.126 0.132 

100B 1.050 1.039 

~X2 3 4.8 3 3.1 

a Ref. [13] do es not give the best fit running model; here we list the marginalized 

(mean) values. Besides, the Sunyaev-Zel'dovich effect is considered here. 

bThe original value is Pno(0.05) = 20.9 x 10-10 . Here we take ns = 1.21 and 

as = -0.102 to evaluate A(O.002). 

the SDSS data is included. 

The fact that CMB data favor running, but large-scale structure data do not, 

implies that the evidence of running actually cornes from the low-k part of the power 

spectrum, where the CMB is more sensitive. This suggests that the real power spec­

trum may be more complicated than the parameterization as Eq. (2.2). We were 

therefore motivated to introduce the partial running model, which has a running 

spectrum in the relevant part of the k space but is fiat in low and high k regions 

[25]. We tuned the range of running to be as small as possible until the X2 increases. 

For the first year and three-year WMAP data, the relevant ranges for running are 

-7.2 < lnk [Mpc-1
] < -2.8 and -6.6 < lnk [Mpc-1

] < -2.8 respectively. Regions 

of running for other data sets are given in the lower parts of Tables 2.5 and 2.6. 

Figures 2.4 and 2.5 show the corresponding best fit non-running, running, and the 



2.2 Large Running Power Spectrum 21 

Table 2.5: Best fit running models for the combinat ions of the first year WMAP and 

other data sets. 

Parameter WMAP1c CMB 2dF CMB+2dF SDSS LSS AH 

ns 1.27 1.27 1.09 1.09 1.09 1.09 1.09 

as -0.098 -0.098 -0.047 -0.051 -0.040 -0.036 -0.045 

r 0.57 0.57 0.24 0.23 0.24 0.24 0.23 

A 0.72 0.72 0.79 0.79 0.79 0.79 0.79 

T 0.29 0.29 0.14 0.13 0.14 0.14 0.13 

h 0.81 0.81 0.69 0.69 0.68 0.68 0.68 

100nbh2 2.39 2.40 2.28 2.26 2.34 2.38 2.32 

n h2 
m 0.122 0.122 0.146 0.144 0.152 0.155 0.149 

1000 1.050 1.050 1.046 1.046 1.046 1.050 1.046 

~X2 4.8 7.3 1.4 2.6 -2.4 0.2 -0.4 

ln k10w -7.2 -7.5 -6.4 -6.5 -6.5 -6.5 -6.5 

ln khigh -2.8 -2.3 -2.6 -2.5 -2.8 -2.7 -2.6 

~X2 4.7 7.4 1.9 2.9 -0.1 1.7 2.2 

corresponding partial running models for WMAP. Since other CMB data strengthen 

the evidence for running, but large-scale structure data weaken it, when including 

large-scale structure data, the lower cutoff will be larger than, and the higher cutoff 

will be smaller than, those including other CMB data. This effect, however, is not 

obvious for the three-year WMAP data since its evidence for running is weaker than 

that of the first year data. Except for WMAP1c and WMAP1c+SDSS, other X
2 

values for the partial running model are seen to be lower than those of the running 

and non-running models. 

It is at first surprising that the running region of the spectrum can be reduced 

to such an extent. Moreover, Ref. [26] claimed that the evidence for running mainly 

comes from the lowest three multipoles. This is in contrast to the running part of 

our partial running spectrum since roughly speaking, k/aoHo f"V l/2, and hence the 
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Table 2.6: Best fit running models for the combinat ions of the three-year WMAP and 

other data sets. 

Parameter WMAP3b CMB 2dF CMB+2dF SDSS LSS AH 

ns 1.12 1.11 1.06 1.16 1.05 1.03 1.05 

as -0.076 -0.073 -0.049 -0.086 -0.046 -0.034 -0.048 

r 0.24 0.13 0.12 0.33 0.0023 0.034 0.0069 

A 0.74 0.76 0.76 0.70 0.84 0.82 0.82 

T 0.12 0.12 0.10 0.12 0.10 0.10 0.086 

h 0.70 0.70 0.70 0.71 0.63 0.67 0.65 

100nbh2 2.13 2.11 2.14 2.15 2.17 2.20 2.14 

n mh2 0.132 0.132 0.130 0.131 0.153 0.144 0.147 

() 1.039 1.040 1.038 1.040 1.041 1.041 1.041 

~X2 3.1 3.9 2.7 3.2 3.2 0.5 1.4 

ln k10w -6.6 -6.5 -6.5 -6.5 -6.4 -6.5 -6.5 

ln khigh -2.8 -2.3 -2.6 -2.6 -2.6 -2.7 -2.4 

~X2 3.7 4.9 3.1 4.6 6.0 4.0 4.5 

lower cutoff ln k10w = -7.2 corresponds to l t'V 6. To better understand this, we have 

computed the difference in X2 between the best fit non-running and running models 

including contributions from lmin to lmax: 13 

lmax 

~X2(lmin) = L c5x2(non-running) - c5X2 (running), (2.5) 
l=lmin 

where c5X2 (l) is the X2 contributed from diagonal (l) and off-diagonal (l' > l) terms. 

For the three-year WMAP data, TT beam and point source corrections and TE 

determinant likelihoods are also included. 14 The plots are shown in Figures 2.6, and 

2.7. We observe there that the low multipoles (l = 2,3,4) in the TT data do account 

13Zmax = 900 for the first year WMAP TT spectrum, 1000 for the three-year WMAP TT spectrum, 

and 450 for the TE spectra. 

14There is a bug in the code, WMAP _3yr _tt_beamÂlld_ptsrccorr. f90, provided by the 

WMAP collaboration, where the Cl spectra are incorrectly passed into the function 
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Figure 2.4: The best fit power spectra of the first year WMAP data: constant running 

(solid, black), partial running (dashed, red), and non-running (la: dot-dashed, green; 

lb: dotted, blue). 

for cumulative contributions to the total decrease in X2 between the non-running and 

running models (.6.X~T = 0.5 and 1.0 for WMAPlac and WMAPlbc respectively). 

However the TE data, ignored by the analysis of Ref. [26], have the opposite effect 

and henee the .6.X;ot is rather insensitive to the inclusion of the first three multipoles. 

In fact, the larger part of the decrease in X2 clearly cornes from the regions near l = 7 

in the TE data (.6.X~E = 1.7 for both WMAPlac and WMAPlbc) and l = 40 in the 

TT data (from l = 37 to 44, .6.X~T = 1.2, 2.3, and 2.2 for WMAPlac, WMAPlbc, 

and WMAP3ab respectively). Again, the decrease of X2 in l = 7 is compensated by 

opposite effect of the low multipoles in the TE data. Nevertheless, the multipoles 

near l = 40 explain why our partial running spectrum starts running at relatively 

high k values, k rv 0.001 Mpc- 1 , compared to the the values which would affect the 

low multipoles, k rv 10-4 Mpc-1 . This perspective lends more interest to the possible 

confirmation or negation of large running by future improvements in the data, sinee 

the experimental determination of the higher multipoles is not so limited by cosmic 

compute_tt_beam_and_ptsrc_chisq due to the range of dynamical allocation of the storage space of 

the Cl arrays. We have avoided this problem and reported this bug to the author of the code. 
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Figure 2.5: The best fit power spectra of the three-year WMAP data: constant 

running (solid, black), partial running (dashed, red), and non-running (dot-dashed, 

green). 

variance [25]. 

To summarize this section, we found that the evidence for running mainly cornes 

from multipoles near 1 = 40, and hence a partial running model with a small region of 

running would give as good a fitting as the full running model. Although the goodness 

of fit, .0.X2 = 3, does not justify adding two extra parameters, the possibility of a large 

running power spectrum is still interesting since it is unexpected in slow-roll inflation. 
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Figure 2.7: Difference of X2 between the best fit non-running and running models of 

the three-year WMAP data (3a and 3b), versus the minimum multipole included lmin. 

The separate contributions from temperature (TT) and polarization (TE) as weIl as 

the total are shown. 



Chapter 3 

Inflationary Spectral Index 

There has been interest in the accuracy of the slow-roll approximation since it was 

presented. Higher order corrections in the power spectrum and the spectral indices 

have been calculated [27, 28]. New approximate methods have also been invented to 

better describe the inflationary dynamics, e.g. the inflation flow equations [29, 30], 

the horizon-flow slow-roll parameters [31, 32], and the uniform approximation [33]; 

see Ref. [34] for a recent review. In this chapter, we present formulae for spectral 

indices and their runnings based on the Hamilton-Jacobi formulation of inflation, 

which allows for a rigorous treatment of the inflaton equation of motion. In addition, 

these formulae are also useful in potential reconstruction, as will be illustrated in 

Chapters 5 and 6. 

3.1 Hamilton-J acobi Formulation of Inflation 

The basic idea of the Hamilton-Jacobi formulation of inflation is to regard the Hubble 

parameter H ( cp), rather than the inflaton potential V ( cp ), as the fundamental quan­

tity [35, 36], which can reduce the second order differential equation to a first or der 

equation. Differentiating Eq. (1.10) with respect to time and substituting into Eq. 

(1.11) gives 

~2 = -2H. (3.1) 

27 
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Assuming cp is a strictly monotonic function of time during inflation (if that is not 

the case, we can focus on monotonie epochs and patch them together), so ~ =1= a and 

the inflaton field can be regarded as the basie variable during inflation. Dividing Eq. 

(3.1) by ~ and substituting into Eq. (1.10), one has 

cp - -2H', 

V 3H2 - 2H,2. 

(3.2) 

(3.3) 

These equations look like those of the Hamilton-Jacobi formalism in classieal mechan­

ics, and Eq. (3.3) is referred to as the Hamilton-Jacobi equation [36]. 

The Hamilton-Jacobi formulation of inflation provides an easy way to find exact 

solutions. Once the Hubble parameter is specified, the potential as well as the scalar 

field can be obtained exactly (if Eq. (3.2) can be integrated analytically). Moreover, 

this rigorous treatment of the equation of motion does not depend on the inflationary 

attractor behavior, which is crucial to the validity of the potential slow-roll approxi­

mation; see the discussion in Section 4.3. 

Like the potential slow-roll parameters, the Hubble slow-roll parameters are de-

fined as [27, 15] 

EH 2 (~)' (3.4) 

'T/H 
H" 

2-
H' 

(3.5) 

H' H'" 
(3.6) ÇH 4---

H H· 

Using the Hamilton-Jacobi equation, the potential slow-roll parameters can be ex­

pressed in terms of the Hubble slow-roll parameters exactly [15]. In first order of the 

slow-roll approximation, their relations are 

EV, 

'T/H 'TJv - EV, 

(3.7) 

(3.8) 

(3.9) 

We use the Hubble slow-roll parameters and drop the subscript H hereafter unless 

there is an ambiguity. 
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Using the slow-roll parameter E, the Einstein field equation, Eq. (1.3), can be 

written as 

(3.10) 

Therefore, Ci > 0 {::::::} E < 1 and the end of inflation is indicated by E = 1 exactly. As 

for the number of e-foldings, it can be written as 

which gives two useful relations: 

dN 1 H 
dcp 2 H' 

N = ~ (<p H dcp 
2 J<Pend H' ' 

and 

(3.11) 

(3.12) 

The derivatives of the slow-roll parameters with respect to N follow directly [29]: 

dE 
2E(TJ - E), -

dN 
dTJ ç - ETJ, -
dN 
dç 

(TJ - 2E)Ç + Cl, 
dN 

where Cl is another slow-roll parameter [15]: 

H,2 H"" 
Cl = 8 H3 

3.2 Inflationary Spectral Indices 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Differentiating the horizon crossing condition, one has the relation between the num­

ber of e-foldings and the comoving wavelength: 

dN -1 
dlnk l-E 

(3.17) 

From the power spectra of the primordial curvature perturbation and gravitational 

waves, Eqs. (1.21) and (1.22), and the derivatives of the slow-roll parameters, Eqs. 

(3.13) and (3.14), the spectral indices and their running follow straightforwardly: 

ns -1 = 
2 

-(TJ - 2E), 
l-E 

(3.18) 
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-2E 
1- E' 

-2 
(1 _ E)3 [4E2 - 5ETl + ç + E( -ETl + 2r? - ç)], 

-4E 
(1 _ E)3 (E - Tl)· 
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(3.19) 

(3.20) 

(3.21 ) 

Dropping the E terms in the denominators and O( E3
) or der terms in as, one recov­

ers the standard results at first or der in the slow-roll approximation; see Eqs. (1.30), 

(1.31), (1.34), and (1.35). In slow-roll inflation, the Hubble parameter is basically 

unchanged so the E terms in the denominators are negligible; nevertheless, we will see 

that the E term in the horizon crossing condition improves the accuracy and plays an 

important role in potential reconstruction. 

In terms of the Hubble slow-roll parameters, the tensor-to-scalar ratio is 

r(k) = 16E(k), (3.22) 

which gives the inflationary consistency equation: 

1 r r 
nt = - - < --. 

1-r/168 8 
(3.23) 

It is an inequality rather than an equality as the potential slow-roll approximation 

predicts. Aiso note that at is a function of E and Tl, which can be expressed as a 

combinat ion of ns and n( 

(3.24) 

Differentiating the consistency equation also gives this result, which is known as the 

second consistency equation [37] (the last parenthesis is the correction from keeping 

E terms in the denominators). 

3.3 Corrections ta the Spectral Indices 

Eqs. (1.21) and (1.22) are the standard results to first or der in the slow-roll approxi­

mation; the second order results are [27] 

(3.25) 
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(3.26) 

where , -:::: 0.5772 is the Euler-Mascheroni constant. The corresponding spectral 

indices are [27, 15] 

n(2) -1 
8 

2 11 
-4E + 2TJ - 2(1 + C)E - 2(3 - 5C)ETJ + 2(3 - c)ç, 

-2E - (3 + C)E2 + (1 + C)ETJ, 

(3.27) 

(3.28) 

where C = 4(ln 2 +,) - 5 -:::: 0.08145. From the derivatives of the slow-roll parameters, 

Eqs. (3.13) to (3.15), here we present the runnings of spectral indices to O(E3
) order 

(for 0:'8) in the slow-roll approximation: 

~ [8E2 
- 10Er] + 2ç + 8(1 + C)E3 

- ~(7 + 31c)E2 TJ 
1- E 2 

2 1 1 1 ] ) -(3 - 5C)ETJ - 2(9 - 7C)EÇ + 2(3 - c)TJç + 2(3 - c)a ,(3.29 

~ [4E - 4r] + 4(3 + C)E2 
- (15 + 7C)ETJ + (1 + c)ç 

1-E 

+2(1 + C)TJ2] . (3.30) 

It is obvious that the second order results agree with the potential slow-roll approxi­

mation to first order; see Eqs. (1.30), (1.31), (1.34), and (1.35). 

The exact results to first order, Eqs. (3.18)-(3.21), may not be as good as the 

approximate results to second order or the methods in Refs. [27,28,29,30,31,32,33] 

in general; nevertheless, these simple formulae, which are the results of keeping the 

E term in the horizon crossing condition, are still theoretically interesting. First of 

all, there are two exact solutions to the original perturbation equations, power-law 

inflation [27] and the n8 = 3 case [38]. The perturbation equations are [27] 

d2Uk + (k2 _ ~ d
2z) Uk 

dr2 Z dr2 

d2Vk + (k2 _ ~ d2a) Vk 
dr2 a dr2 

with boundary conditions 

1 Ok 
U ---+ --e-~ T 

k V2k ' 
1 Ok 

V ---+ --e-~ T 

k V2k ' 

0, 

0, 

for aH« k, 

for aH» k, 

(3.31 ) 

(3.32) 

(3.33) 

(3.34) 
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where T = J a- 1dt is the conformaI time and z = a~/ H; Uk and Vk are the Fourier 

modes of the scalar perturbation, u, and the tensor perturbation, v, respectively. (See 

Ref. [27] for details about these quantities.) 

In the case of power-Iaw inflation, our simple formulae give the exact spectral 

indices and the tensor-to-scalar ratio as well (see Section 6.2); although the second 

order results still give constant spectral indices, they do not predict the right values. 

In the case of ns = 3, Eq. (3.18) gives the correct result again, but the second order 

result, Eq. (3.27), gives a running index instead of a constant index [38].1 Second 

of all, the E term in the horizon crossing condition is crucial to the accuracy of the 

reconstruction of inflaton potentials, which will be illustrated in Chapter 4. 

Ref. [34] showed that if the slow-roll parameters are of or der 0(10-1
), then the 

second order results are not really necessary; also, in the case of large running spectral 

index, the second order results do not seem to improve the accuracy. Although we 

mainly consider the first order results, one can straightforwardly incorporate higher­

or der corrections into the discussion in this thesis. In brief, the simple formulae 

remain interesting and useful. 

1 We do not yet understand the reason for our method agreeing with the exact results. This is 

the subject of future investigations. 



Chapter 4 

Reconstruction of Inflaton 

Potentials 

As the experimental determinations of the inflationary power spectrum become more 

and more precise, one might want to extract information of the early universe from 

the spectral index as much as possible. For instance, what is the inflaton potential 

which gives the best fit inflationary power spectrum? This issue can be solved through 

the reconstruction of inflaton potentials. The traditional method of inflaton potential 

reconstruction is to Taylor exp and the potential in terms of the slow-roll parameters, 

which are determined by a given power spectrum [39J; this method, however, is not 

always reliable [40J. New methods, such as Monte Carlo reconstruction [41J and 

analytic reconstruction [42J, are still not satisfactory in simplicity and accuracy. In 

this chapter, we present an integration method for potential reconstruction based on 

the Hamilton-Jacobi formulation of inflation [35, 36], which is not only accurate but 

also simple. 

4.1 Reconstruction Formulation 

Our purpose is to construct H(</J), and hence V(</J), from a given Pn(k), which cannot 

be done directly because the relation of </J and k is given implicitly by the horizon 

crossing condition, k = aH. The strategy to avoid this problem is to regard the 

33 
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inflaton field cjJ as a single-valued function of k, which is guaranteed to be possible by 

the definition of inflation Eq. (1.7): During inflation, d ln k/ dt > 0, together with the 

assumption ~(= - 2H') =J 0, we have d ln k / dcjJ =J 0: 

dlnk 1 H H' 
~=-"2H'+ H' (4.1) 

and henee the derivative of the Hubble parameter can be written as 

(4.2) 

By straightforward manipulation of the equations, one has 

1 2 dH ( dH )-1 
-"2H dlnk H - dlnk (4.3) 

( 
dcjJ )2 

dlnk 
dlnH ( dlnH) 

- 2 d ln k 1 - d ln k . (4.4) 

Substituting Eq. (4.3) into the expression of Pn , Eq. (1.21), a first order differential 

equation results: 
dH _H3 

dln k 87r2Pn - H2' 
( 4.5) 

and Eq. (4.4) can be written as 

~ = ± Hy'167r2Pn 
dln k 87r2Pn - H2· 

( 4.6) 

Given a power spectrum Pn(k), solving Eq. (4.5) gives H(k), and integrating Eq. 

(4.6) defines cjJ = cjJ(1nk). Using the inverse function lnk = Ink(cjJ), a potential can 

be reconstructed through the Hamilton-Jacobi equation. Ref. [43] presented a similar 

integration method, but used the lowest order slow-roll approximation in each step, 

and henee their method is not as accurate as the Hamilton-Jacobi formulation which 

we describe. 

Although the tensor spectrum is not experimentally weIl determined today, one 

can in principle reconstruct inflaton potentials from a tensor spectrum. Sinee Ph ex 

H 2
, the reconstruction formulation is: 

H(k) ~JPh(k), ( 4.7) 

( 
dcjJ )2 

dlnk 
_ d ln Ph (1 _ ~ d ln Ph) . 

dln k 2 dln k 
( 4.8) 
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From Eqs. (4.5) and (4.6), we see that an overall factor A2 in Pn(k) contributes 

factors A in H and A 2 in V, but the dynamics of c/J and ln k does not change. So 

we rescale Pn to absorb the 87f2 factor for simplicity, P = 87f2Pn. For definiteness, 

hereafter we take the positive sign of Eq. (4.6); redefining c/J ~ -c/J brings us to the 

other case. We have 

dH 
dlnk 

dc/J 
dlnk 

_H3 

P-H2' 

HV2P 
p-H2· 

(4.9) 

(4.10) 

There is a pole at P = H 2 in the above equations, and it divides the phase space 

of (P, H2) into two regions. If we start with ~ > Hf, then dH / d ln k < 0 and H 

decreases along with ln k. Even though P decreases along with ln k, P > H 2 is always 

satisfied since whenever H 2 approaches P, dH / d ln k will diverge and thus H 2 will 

decrease faster than P. Similarly, if we start with Pi < Hf, then dH / d ln k > 0 but 

P < H 2 remains unchanged. Therefore, no trajectory can cross over the boundary 

P = H 2 if we numerically reconstruct the Hubble parameter, H(k), through Eqs. 

(4.9) and (4.10). 

The above conclusion gives rise to an interesting observation if we express the 

slow-roll parameter E in terms of P and H 2 : 

( 4.11) 

Recall that E = 1 indicates the end of inflation, so if we start with Pi < Hf, inflation 

do es not happen; if Pi > Hf is given, inflation never cornes to an end by itself. In 

fact, this pole is a result of the assumption that E < 1 (see the context of Eq. (4.1)); 

therefore, the trajectories remain in either E < 1 or E > 1, and hence it is an intrinsic 

problem of this reconstruction formulation. 

Since H 2 is always smaller than P during inflation, one can usually neglect the H 2 

terms in the denominators of Eqs. (4.9) and (4.10) to avoid the pole. Tracing back 

to the original equations, this is equivalent to neglecting the E term in the horizon 

crossing condition (see Eqs. (3.17) and (4.1)). Actually, the pole in H(k) does not 



4.2 Corrections to the Reconstruction Formulation 

necessarily occur in H(e/». Combining Eqs. (4.9) and (4.10) gives 

dH(e/» 

de/> 

H 2 (e/» 

J2P(k) . 

36 

( 4.12) 

There is no pole at aIl. Eq. (4.12) is actually Eq. (1.21) with H' < O. Since k is 

related to e/> implicitly through the horizon crossing condition, Eq. (4.12) cannot be 

solved analytically in most cases. We will see ex amples where Eq. (4.12) can be 

solved directly or the trajectory can cross over the boundary, P = H 2
, in Section 5.1. 

N evertheless, we will show in Chapters 5 and 6 that for a constant spectral index, 

there is no natural end to inflation; for a running spectral index, since we do not 

have analytic solutions and must solve the equations numerically, the pole cannot be 

avoided and again there is no natural end to inflation. 

Actually, only about 10 e-foldings of the inflationary power spectrum are ob­

servable, and reconstructed potentials are reliable only in the corresponding regions. 

Therefore, the above problem of the end of inflation can be solved if one sim ply as­

sumes that the spectral index no longer preserves pure constant or running at sorne k. 

Alternatively, other mechanisms, e.g. multiple-field inflation, may also arise to make 

the constant and running spectral index models realistic. 

4.2 Corrections to the Reconstruction Formula-

tion 

One may worry that the reconstruction formulation may be inaccurate since we con­

sider only the first order result in the slow-roll approximation. However, it is straight­

forward to incorporate higher or der corrections into the formulation using the horizon 

crossing condition, which implies 

dlnH -E 
(4.13) -- -- , 

dlnk 1- E 
d2 lnH 2E 

( 4.14) 
dlnk2 - (1 _ E)3 (17 - E), 

d3 lnH -2E [ ] (4.15) 
dlnk3 (1 _ E)5 4E2 - 7E17 + 2172 + 2E3 - 5E217 + 4E172 + (1 - E)Ç' , 
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which in turn give 

(4.16) 

( 4.17) 

( 4.18) 

To incorporate higher order corrections, for instance O( E) order corrections, we 

substitute the above equations into Eq. (3.25): 

( 
d ln H) 3 (1 _ d ln H) 3 = _ H

2 
{ ~ (2 _ ln 2 _ ,) d

2 
ln H + d ln H 

d ln k d ln k P 2 d ln k 2 d ln k 

(
dlnH)2 (dlnH)3}2 

-[2 + (1-ln2 -,)] dlnk + [1 + (1-ln2 -,)] dlnk (4.19) 

Terms in small parentheses are second order corrections; setting them to zero gives 

the result in Section 4.1. 

Although we do not explicitly show the corresponding reconstruction formulation 

for other higher order corrections, such as O(ç) [28], it is straightforward to incorpo­

rate them as shown above. This yields increasingly higher order differential equations, 

whose solutions would require more than one initial condition. Instead of doing so, 

one can incorporate the corrections into the first order result as follows [25]. Define 

the correction factor C through Eq. (3.25): 

( 4.20) 

C (4.21) 

First, solve the first order equations, Eqs. (4.9) and (4.10), by a given spectrum P, 

then one has the leading order Hubble parameter Ho and correction factor Co. Second, 

substituting P / Co into the first order equations, yields Hl and the corresponding 

correction factor Cl, with Hl satisfying 

(4.22) 
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Repeating the second step with PI Ci , one obtains the ith iteration of the Hubble 

parameter, Hi, which gives the power spectrum through second order equation: 

(4.23) 

The iterations {Ci} are expected to converge to the true correction factor of Eq. 

(3.25), so pP) is close to P. In brief, we can reconstruct a Hubble parameter, Hi, 

which gives a power spectrum close to the original spectrum through the second 

order equation. This procedure works well for small ci; for large value of ci, the 

corrections are not so close to each other in the beginning. Figure 4.1 shows the 

first and second order reconstructed power spectra for the best fit WMAP running 

model. The first order result is identical to the input spectrum (ln P), so it is not 

shown in the figure. For the second order results, we see that after two iterations, 

the reconstructed spectrum is close to the original spectrum at large k (late-time). 

The discrepancies in the beginning are due to the discrepancies of corrections {Ci}, 

which can be avoided by fine tuning the initial condition ~i, but the late-time values 

are insensitive to that due to the attractor behavior, as discussed in the next section. 
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Figure 4.1: The first and second order reconstructed power spectra for the best fit 

WMAP running model (ns = 1.12, as = -0.076, r = 0.24, and Po = 1; see column 

3b of Table 2.4). 
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As we have mentioned in Section 3.3, the second or der corrections do not neces­

sarily give better results. Therefore, the simple reconstruction formulation remains 

useful in many cases. 

4.3 Inflationary Attractor 

Since the original infiationary equation is a second or der differential equation, we 

have, in principle, the freedom to choose the value of ~i anywhere on the potential; 

however, in the reconstruction formulation, ~ is determined by H', see Eq. (3.2). 

Figure 4.2 shows the first order reconstructed power spectra for the best fit WMAP 

running model with different initial infiaton velocities. For ~i = -2H', the recon­

structed spectrum is same as the input power spectrum; for ~i =1- - 2H', there are 

discrepancies between the shapes of the input and reconstructed spectra. This is 

because for a given potential, the reconstruction formulation chooses a particular so­

lution of H (<p), which requires a particular ~i but gives the desired power spectrum. 

For example, in the exponential potential case, a complicated, parametric solution 

H (<p) is required for arbitrary initial conditions [36], which gives neither power-Iaw 

expansion nor constant spectral index (see section 5.1). There are also shifts of k for 

different initial conditions; they come from the definition ln k = ln a+ ln H in our algo­

rit hm where we choose ai = 1. These shifts, however, do not have absolute meanings 

since the scale factor is not determined. AIso, the normalization factor 87r2Pno is not 

included in the numerical calculations; restoring this factor will give a contribution 

J87r2Pno to H, and hence an extra shift of k. Therefore, we shi ft aIl reconstructed 

spectra to the same ki , the starting point of the input power spectrum. Note that 

Figure 4.2 is similar to Figure 4.1 except for the shifts (we take ~i = -2H' in Figure 

4.1), and hence the discrepancies of iterations in the beginning can be removed by 

fine tuning the initial conditions. 

The attractor behavior of the Hamilton-Jacobi equation aIleviates this initial con­

dition problem [36, 15]. For example, the power-Iaw solution, Eq. (5.3), is the attrac­

tor of the exponential potential, Eq. (5.4); aIl trajectories converge to the attractor 
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Figure 4.2: The first order reconstructed power spectra for the best fit WMAP running 

model with different initial inflaton velocities (ns = 1.12, as = -0.076, r = 0.24, and 

Po = 1; see column 3b of Table 2.4). 

solution [44]. In linear perturbation, the discrepancy between different initial con­

ditions dies away after several e-foldings [36]. Since the late-time behaviors of the 

inflaton field are asymptotically the same, one does not have to find the "attractor" 

solution [15]; once we know that a potential with a particular Hubble parameter and 

~i gives the desired properties, e.g. power spectrum, we expect a range of initial 

conditions will also give the same behaviors at late-time. Alternatively, as long as in­

flation happened at least several e-foldings before today's observable universe passed 

through the horizon in the early universe, the sensitivity to the initial conditions is 

damped out. 



Chapter 5 

Reconstruction: Constant Spectral 

Index 

In this chapter, we investigate the sirnplest pararneterization of the inflationary spec­

tral index which fits the experirnental data very weIl: the case of a constant spectral 

index, i. e. P = pokn, where Po > 0 and n ns - 1 are constants. We will see 

sorne rnodels where the inflationary trajectories can cross over the boundary P = H 2
• 

We also establish the connection between the forrnulae for spectral indices and the 

reconstruction of inflaton potentials, and give aIl analytic potentials for the case of a 

constant spectral index. 

5.1 Particular Potentials 

We recover three weIl-known potentials for the case of a constant spectral index in 

this section, and present new potentials in the next section. 

Power-Law Inflation 

Consider the case that n is a non-zero constant. A particular solution is obtained 

straightforwardly for Eq. (4.9): H <X kn/2. Substituting this particular solution into 
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Eq. (4.10), one has 

H J n R kn/2 
2 

0 , 
n-

(5.1) 

cp - CPo = Jn(n-2)1 ~ 
2 n ko' (5.2) 

where CPo and ko are integration constants. CPo does not have physical significance and 

hence the sc ale of ko here is arbitrary; we drop them for simplicity in most cases in 

this and subsequent chapters, but restore them wh en they are relevant. Note that 

this solution is valid only for a red tilt (n < 0); we will give solutions for a blue tilt 

(n > 0) later. 

The reconstructed Hubble parameter and inflaton potential follow directly: 

(5.3) 

(5.4) 

where p = (n - 2)/n = l/t > 1 and Ho = J Po/p is the scale ofthe Hubble parameter 

and can be fixed by the normalization of the power spectrum. This potential is 

the power-law (a <X tP) inflationary potential [45, 35]. As mentioned in Section 3.3, 

power-law inflation is one example where exact solutions to the original perturbation 

equations are known [27]. Ref. [46] pointed out that the horizon-crossing/Bessel 

approximation and the expression for the power spectrum, 

(
H 2)2 

Pn <X T ' (5.5) 

might fail for non-exponential inflation. However, as shown above, it is interesting 

that Eq. (5.5) (Eq. (1.21)) is still valid for pure power-law inflation. Therefore, 

for simplicity, we still use Eq. (1.21) as the basis of the formulation of potential 

reconstruction. 

The number of e-foldings is 

(5.6) 
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Typically, 60 e-foldings are needed for today's observable universe to solve the cos­

mological problems, N* = 60. In this case, the change in <P, 

(5.7) 

is beyond the Planck scale (lMp1 ) except for very small n. For example, n ~ -3 x 10-4 

gives /:).<P* ~ 1. Values with subscripts * correspond to N* = 60. 

As we will show in Section 5.3 that there is no natural end to inflation in the case 

of a constant spectral index, we therefore refer to <Pend as the value where inflation is 

ended by other degrees of freedom or a sudden change in n. 

Scale Invariance 

Since the power spectrum Pis a function of k, Eq. (4.12) cannot be solved directly; 

however, there is one case where we can solve it without worrying about the horizon 

crossing condition. It is the case of sc ale invariance, i. e. P = Po is a constant. The 

solution of Eq. (1.21) is 

H 
y'2Po 

1<p1 ' 
(5.8) 

1<p1 = 
1 1

1/3 

6J2Pot (5.9) 

The slow-roll parameter is é = 2/<p2 , so inflation occurs when 1<p1 > )2. Therefore, 

if one starts with 0 < t < 1/(3v!Po) , then <p will roll from decelerating expansion 

(a < 0) to accelerating expansion (inflation), i. e. the inflaton trajectory can cross 

over the boundary P = H 2
• The reconstructed potential is 

6Po ( 2 1 ) 
V = <p2 1 - "3 <p2 • (5.10) 

This potential is the intermediate (faster than power-Iaw, slower than exponential) 

inflationary potential with f3 = 2 [35, 47, 48]. The general form is 

H 

V 

a ex 

(5.11) 

(5.12) 

(5.13) 
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where {3 > 0 ({3 < 0 gives rise to contraction), 0 < f = 4/({3 + 4) < 1, and 

A = [H6/ f2(2{3),8/2] 2/(,8+4). Figure 5.1 shows the potential corresponding to a scale­

invariant spectrum. We emphasize again that only about 10 e-foldings of the recon­

structed potential are reliable. N evertheless, we show wider ranges of the potentials 

in this chapter to have global descriptions of the potentials. As mentioned in Section 

4.1, a more complicated spectral index or other degrees of freedom are needed to 

make these models realistic. 

-4 -2 2 4 

R i 

-o. 

n=O 

Figure 5.1: The reconstructed potential for a sc ale-invariant spectrum ( Ho = 1). 

The number of e-foldings and the change in </; are 

N 1 ( 2 2) 4 </;end - </; , 

J4N + </;2 -1</;1. 

(5.14) 

(5.15) 

To have ~</;* rv 1, we need large 1</;*1 rv 102; the absolute value of </;, however, does 

not have physical significance since we have the freedom shift </;0. We will see models 

which give a nearly scale-invariant spectrum with smaU inflaton field values and n of 
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or der 0(0.1) (remember that to have !:1</J* rv 1 in power-law inflation, n rv 0(10-4 ) is 

required). 

We find that the first order differential equation, Eq. (4.9), can be reduced to an 

algebraic equation, which allows us to extend the spectral index to n > 0: 

H2 - 2Pok2lnH + Ck2 

Hn _ _ n_pokn Hn - 2 + Ckn 

n-2 

where C is an integration constant. 

0, 

0, 

for n = 2, 

for n =1= a, 2, 

(5.16) 

(5.17) 

The n = 2 case can be solved with the Lambert W function, which satisfies 

W(x)eW(x) = x. The Hubble parameter and the inflaton field are 

H Ho exp [-~W (-~)l 2 POk2 ' 
(5.18) 

(5.19) 

where C' = exp( C / Po) and Ho = v?5. The irregularities of the Lambert W function 

in H (k) can be removed if we express H as a function of </J: 

H = Ho exp (~</J2) . (5.20) 

This model shows that even though the pole exists in the intermediate solution H = 

H (k) and </J = </J( k ), it an be removed from the final result H = H ( </J) in sorne special 

cases. The reconstructed potential is 

(5.21 ) 

This is the ns = 3 case [38]; it is shown in Figure 5.2. 

The scale factor cannot be expressed as an analytic function of time, but we have 

a (5.22) 

(5.23) 

(5.24) 
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Figure 5.2: The reconstructed potential for a constant spectral index: n = 2 (Ho = 1). 

where ai, ti, and CPi are initial values, and Ei is the exponential integral function: 

(5.25) 

Inflation occurs when Icpl < .J2, and cp roUs toward 0 as t --+ 00; therefore e-1/ 2 < 

exp( _cp2 / 4) < 1 during inflation. Substituting these inequalities into Eqs. (5.23) and 

(5.22), we have, assuming t > t i , 

(5.26) 

Therefore, the expansion rate is faster than exponential a <X eHot . Since one can 

always have a sc ale factor expand faster than exponential exp(At) in a certain range 

with a sufficiently small A, the above comparison does not have an absolute meaning. 

Despite this, the constant Ho represents the energy sc ale of inflation and can be fixed 

through the normalization of the power spectrum, so it indeed gives a reference for 

the expansion rate. 
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The number of e-foldings is 

(5.27) 

Therefore, the number of e-foldings is exponentially sensitive to the value of cP/ cPend' 

If we take, e.g., cP* of order 1, then cPend* has to be fine tuned at the level of 0(10-26
), 

where inflation ends by other degrees of freedom or by artificially changing the value 

of n. Nevertheless, sinee current data suggest a nearly scale-invariant spectrum, we 

do not take this model with ns = 3 seriously. 

5.2 General Solutions 

Eq. (5.17) can be solved analytically only when n is a particular rational number, 

which allows it to be redueed to an algebraic equation with degree sm aller than or 

equal to 4, e.g. n = 1/2, ±2/3, ±1, 4/3, 3/2, 8/3, ±3, ±4, ±6, and 8. Even though 

one can find H(k), it is not easy to recover H(cP) analytically. Moreover, if n is an 

irrational number, Eq. (5.17) cannot be solved analytically at all. Here we introduee 

a strategy to find general solutions with constant spectral index, which can avoid 

using the reconstruction equations, Eqs. (4.9) and (4.10). 

The formula for the spectral index, Eq. (3.18), can be rewritten as: 

ns - 1 (2 ns - 1) '17= + - é. 
2 2 

(5.28) 

In the case of n = ns - 1 being a constant, it gives a relation between the slow-roll 

parameters é and '17. We can check that all the previous examples satisfy this relation. 

Moreover, substituting the definitions of the slow-roll parameters, Eq. (5.28) becomes 

a second or der differential equation: 

(5.29) 

Sinee this equation is symmetric under cP -7 -cP, if H (cP) is a solution, H ( -cP) is also 

a solution. We will see that exeept for power-law inflation, all other solutions for a 

constant spectral index are even functions. 
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Defining y = ln H, Eq. (5.29) becomes 

" (n ),2 n y + 2" - 1 Y -"4 = o. (5.30) 

It is a second order, nonlinear differential equation; however, the equation do es not 

explicitly have y- and 4>-dependent terms, so it can be reduced to a first or der dif­

ferential equation and we can do separating of variables. Defining z( cP) = y', we 

have 

, (n ) 2 n z + 2" - 1 z -"4 = o. (5.31) 

If z' = 0, then we recover the solution of power-Iaw inflation. For n = 0,2, we recover 

the solutions in the previous sections. 

0<n<2 

If 0 < n < 2, integrating Eq. (5.31) gives 

[ 
~ l2/(n-2) 

H = Ho cos y~cP (5.32) 

, 2:n tan' [Jn(2;n)~l· (5.33) 

80 inflation occurs wh en 

~ (~) y ~lcPl < arctan y --:;;:--n- + m7r, (5.34) 

where m is an arbitrary integer and we take m = 0 for simplicity. The potential is 

v = H~ cos [Jn(2 ; n) ~l4/(n-,) {3 -2: n tan' [Jn(2; n)~]} (5.35) 

We see that both the Hubble parameter and potential have a period of 27r J n(2~n). 
Figure 5.3 shows the reconstructed potentials. 

The sc ale factor can be expressed as 

a (5.36) 

nHot (5.37) 

(5.38) 
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Figure 5.3: The reconstructed potentials for a constant spectral index: 0 < n < 2 

(Ho = 1). 

where x = cos [Vn(2 - n)/8<p] and <I> is the Lerch <I> function: 

00 zm 
<I>(z,a,v) = L ( ) . 

m=O V + ma 
(5.39) 

Note that during inflation, Ho < H < (2/n)1/(2-n) Ho, which can be se en from Eqs. 

(5.32) and (5.34), so we have, assuming t > t i , 

(5.40) 

This is thus faster than exponential expansion, eHot . 

The number of e-foldings is 

2 sin [vn(2 - n)/8<p] 
N= -ln 

n sin [vn(2 - n)/8<Pend] 
(5.41) 

Similar to the case of ns = 3, we need fine tuning of <Pend* for n -+ 2-. However, for 

near scale invariance, e.g.) n = 0.1, nN*/2 = 3, taking <P* = <Pmax ~ 8.73, we have 
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CPend* ~ 0.315. To have l:1cp* sm aller than the Planck scale, we can set, e.g., cP* = 0.1, 

which gives CPend* ~ 0.005. We do not need fine tuning and can keep the inflaton field 

values sub-Planckian; this model is therefore more realistic than the models in the 

previous sections. 

n < 0 or n> 2 

Similar to the previous subsection, if n < ° or n > 2, the Hubble parameter is 

( 

~) 2/(n-2) 

H=HoexP(~J2(n~2)CP) l+Cexp ±nv~cp , (5.42) 

where an arbitrary constant C is introduced to include the particular solution of 

power-Iaw inflation; however, only the sign of C is relevant since we have the freedom 

to shift cp and rescale Ho. Therefore, we take C = 0, ±1 for simplicity. To be consistent 

with the sign convention of power-Iaw inflation, we take the upper signs of ± or ~. 

If C = 1 and n = 4, the Hubble parameter is just a cosh(cp) function, which is the 

case of A = 1 in Ref. [49]. 

The slow-roll parameter E is 

(5.43) 

We deduce the following possibilities depending on different combinations of param-

eters: 

1. C = 0, -1 and n > 2 ~ E > 1: No inflation. 

2. C = D,land n < ° ~ E < 1: Eternal inflation. 1 

3. C = 1 and n > 2: Inflation occurs when 

~ (l+N) Icpl < V ~ ln 1 _ Jn:2 . 
(5.44) 

1 We use the terminology "eternal inflation" where inflation occurs for aH values of <P, -00 < <P < 

00. 
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4. C = -1 and n < 0: Inflation occurs when 

~ (N+l) 
14>1 > V ~ ln Jn~2 _ 1 . (5.45) 

The reconstructed potential is 

V = Hg exp (-J n 2~ 2<P) 1+ Cexp (nJn2~ 2 <p) 4/(n-21 

{ 
n [1 - C exp (nif!- 4> ) ]2 } 

X 3 - n - 2 1 + Cexp (nJn2--;"24» . 
(5.46) 

Figures 5.4, 5.5, and 5.6 show the reconstructed potentials. 

-4 -2 a 2 4 

phi 

n=-l 

------ n=-2 

Figure 5.4: The reconstructed potentials for a constant spectral index: n < 0 with 

C = 1 (Ho = 1). 

The sc ale factor is 

a = 

n 
--Hot 
n-2 

~ ) 2/n [f{l--2 ]1 - C exp ( ny ~4>i 
ai exp -2-(cP - 4>i) ( If!-) , 

n 1 - C exp n ~4> 2n 
(5.47) 

l x 1 + Cxn
-

2
1 21-2/(n-2) 

C 2 1 + CXn
- dx, 

Xi 1 - X n -
(5.48) 
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Figure 5.5: The reconstructed potentials for a constant spectral index: n > 2 with 

C = 1 (Ho = 1). 

where x = exp [ J 2(nn_2) </J]. If C = 0, the scale factor is reduced to power-Iaw expan­

sion (n < 0). For other cases, we have (during inflation) 

1. C = 1 and n < 0: H < 22/(n-2) Ho, so a(t) < exp [22/(n-2) Hot] < eHot . 

2. C = 1 and n > 2: H > 22/(n-2) Ho, so a(t) > exp [22/(n-2) Hot] > eHot . 

3. C = -1 and n < 0: H < (_2n)1/(n-2) Ho. Note that lim (_2n)1/(n-2) -t +00 
n--->O-

and lim (_2n)1/(n-2) -t 1-, so 
n~-oo 

(a) n < -1/2: a(t) < exp [(-2n)1/(n-2)Hot] < eHot . 

{ 

a(t) > eHot , 
(b) n> -1/2: exp [(-2n)1/(n-2)Hot] > 

eHot > a(t), 

iflA-.1 < J-2-1n (3+V5) '+' n(n-2) 2' 

ifl</JI > J 2 ln (3+V5) . n(n-2) 2 
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Figure 5.6: The reconstructed potentials for a constant spectral index: n < 0 with 

C = -1 (Ho = 1). 

The number of e-foldings is 

N-2 2 1- Cexp (nJn2~2cP) 
N = --(cPend - cP) + -ln 

2n n 1 - C exp (nJn2~2cPend) 
(5.49) 

If C = 1, then the number of e-foldings becomes 

exp (nN) = sinh [Jn(n - 2)/8cP] . 
2 sinh [Jn(n - 2)/8cPend] 

(5.50) 

If n -+ 0-, then sinh xI! sinh X2 ~ xI! X2 ~ sin xI! sin X2; it is similar to the case of 

o < n < 2 when n -+ 0+. Otherwise, we need large /:).cP* to give the desired number 

of e-foldings. If n -+ 2+, then N rv ln 1 cP / cPend 1; we need fine tuning of cPend* to give 

the desired number of e-foldings as in the case of ns = 3. 

For C = -1, thus n < 0, the number of e-foldings is a cosh function: 

exp (nN) = cosh [Jn(n - 2)/8cP] . 
2 cosh [Jn(n - 2)/8cPend] 

(5.51) 



5.3 Summary of Constant Spectral Index 54 

Again, we need ta have n very close to 0-, e.g. 0(10-4
) as in power-Iaw inflation, ta 

give the desired number of e-foldings within sub-Planckian inflaton field values. 

5.3 Summary of Constant Spectral Index 

Now we have the complete collection of seven independent solutions for the case of 

a constant spectral index, which cover the entire interval of -(X) < n < 00. Let us 

consider how the reconstructed potentials depend on the spectral index, and discuss 

the most realistic model which is consistent with current data. 

The Shapes of the Potentials 

The shapes of the reconstructed potentials seem to transform continuously from n < 0 

(C = -1, Figure 5.6) to n = 0 (Figure 5.1), and from 0 < n < 2 (Figure 5.3), to 

n = 2 (Figure 5.2) and n > 2 (Figure 5.5). However, when n -+ o± (C = -1), as 

can be seen from Figures 5.3 and 5.6, both peaks blow up, they do not converge to 

the case of scale invariance; similarly, when n -+ 2+, as can be seen from Figure 5.5, 

the peaks blow up, it does not converge to the case of n = 2. Only when n -+ 2-, 

the potential for 0 < n < 2 (Figure 5.3) transforms continuously to the case of n = 2 

(Figure 5.2). Furthermore, two eternal inflationary potentials (power-Iaw inflation 

and n < 0 with C = 1) seem to be quite different from other potentials, especially 

the power-Iaw case, which is the only non-even function. 

Three are three solutions for n < O. To break the degeneracy, the slow-roll 

parameter E is needed: 

< C= 1 
n 

E C=O n-2 
(5.52) 

> C= -1 

As can be seen from the slow-roll parameter, Eq. (5.43), and will be proved in general 

in the next subsection, the E converges to n/(n - 2), so these three potentials will 

converge to the power-Iaw inflationary potential. We can also see from Eq. (5.46) 

that they have the same asymptotic behaviors at large 1<p1, as shown in Figure 5.7. 
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However, if n is small, e.g. n ~ -0.01 [11], then the differences at small 14>1 will 

become significant. 

v 

1 2 3 4 

phi 

C=l 

C=O(power-law) 

C=-l 

5 

Figure 5.7: Three potentials with n < a have the same asymptotic behaviors (n = 

-1, Ho = 1). 

So far an potentials we have considered are monotonie during inflation; however, 

with further investigation, we found that this is not always the case. The Hamilton­

Jacobi equation, Eq. (3.3), can be written as 

(5.53) 

From Eqs. (3.12), (3.13), and (3.18), the derivative of the reconstructed potential is 

V' = HH' [6 - n + (n - 4)Ej. (5.54) 

Since we assume that the sign of H' does not change during inflation, to have V' = 0, 

we need n > 6. Such potentials have local minima, as shown in Figure 5.8. Ref. [49] 

gives another class of inflationary potentials which also has a similar "Mexican-hat" 

shape. 
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Figure 5.8: The reconstructed potential for a constant spectral index with n = 7(> 6) 

shows that V' = a during inflation (Ho = 1). 

We must be careful with potentials with large spectral index, since from Eq. (3.18), 

large n gives rise to large slow-roll parameters hence the slow-roll approximation 

breaks down. Therefore, our starting point, Eqs. (1.21) and (1.22), would be invalid 

and sorne of the previous solutions are not self-consistent. Ref. [50] has argued a 

potential with large Tl does not necessarily produce a spectral index predicted by 

the slow-roll approximation due to the invalidity of the horizon crossing condition. 

Nevertheless, present data prefer a nearly scale-invariant spectrum [11, 12, 13], so we 

should not take the solutions with large spectral index seriously. 

The End of Inflation and the Scale Factor 

From Eqs. (3.13) and (3.18), the derivative of E can be written as 

dE E 
- = --[2E + (1 - E)(ns - 1)]. 
dlnk 1-E 

(5.55) 
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If n > 0, then dEI d ln k < 0 and it is obvious that E --+ 0 as ln k --+ 00. If n < 0, 

then it is easy to show that E will converge to n/(n - 2) < 1, at which dE/dlnk --+ o. 

In both cases, E does not reach 1 at finite ln k so inflation do es not have a natural 

end for the case of a constant spectral index. As mentioned in Sections 4.1 and 5.1, 

to make these models realistic, other degrees of freedom must start dominating, or n 

must change, at sorne critical point. 

As can be se en in the previous sections, the scale factor expands faster than 

exponential, eHot , for blue tilts (n > 0), but slower than exponential for n ::; 0; here 

Ho is the normalization factor, which sets the lower bound for the Hubble parameter 

during inflation in the case of blue tilt, and the upper bound in the case of n ::; O. 

There is an exception, -1/2 < n < 0 with C = -1, where Ho is neither a lower nor 

an upper bound. 2 Note that Ho varies between different models, so different models 

cannot be compared directly. 

The Best Fit Non-Running Potential 

Usually, we need to fine tune <Pend* (n > 0 and n < 0 with C = 1) or large l::l.<p* 

(power-law inflation, scale invariance, and n < 0 with C = -1) to give the desired 

number of e-foldings. The only case where we can avoid the fine tuning problem and 

keep aIl relevant scales sub-Planckian is the nearly scale-invariant case, e.g. n rv 0.1 

(we do not need to tune n to be very small, 0(10-4), as required in power-Iaw inflation 

and n < 0 with C = -1). Two potentials have this property; they are the eternal 

inflation (C = 1) and the 0 < n < 2 case. In both cases, the slow-roll parameter is 

for n --+ O. (5.56) 

Therefore, they have the extra nice property that the slow-roll approximation is weIl 

satisfied (TJ automatically satisfies the condition; see Eq. (5.28)). This is important 

because the validity of Eq. (1.21) is based on the slow-roll approximation; thus a 

self-consistent solution is required. 

2Power-law inflation is not included this analysis. 
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Sinee current data prefer a red-tilted spectral index, the eternal inflation case 

(C = 1) represents our best fit non-running potential. The best fit spectral index for 

the non-running model is n = -0.05 from the three-year WMAP data; see column 

3a of Table 2.1. To keep [j.cP* small, we take, e.g., cPi = 0.1, then we have 60 e­

foldings at cPend* ~ 0.45. 3 The slow-roll parameter E is of order 10-5 and 'Tl is about 

-0.025 in this range, so the slow-roll approximation is well satisfied and henee the 

second order corrections are completely negligible. Furthermore, a small E implies 

a low tensor-to-scalar ratio, r = 16E < 10-3 , so this model is consistent with the 

best fit non-running model where the tensor spectrum is ignored. Sinee the slow-roll 

parameter is small, E "" 10-5, the energy sc ale is described by the COBE normalization 

[6]: V 1/ 4 ~ 0.027E1/ 4 M p1 ~ 3.7 x 1015GeV. 

In brief, a slow-roll inflationary potential can give rise to a nearly scale-invariant 

spectrum, which can sustain inflation for 60 e-foldings within sub-Planckian inflaton 

field values at the potential energy scale of order V 1
/

4 
"" 1015GeV; the tensor-to­

scalar ratio is negligible as is so far consistent with experiments. However, there 

is no natural end to inflation; other degrees of freedom are needed for a consistent 

realization of this model. 

3We need an extra condition, e.g. the tensor-to-scalar ratio r, to fix the value of <Pi (or the overall 

scale). Here we choose a small <Pi to keep D.<p* small. Nevertheless, different extra conditions just 

affect the overall factor of the potential; its shape do es not change. See the discussion in Section 

6.1. 



Chapter 6 

Reconstruction: Running Spectral 

Index 

It is always possible to exp and the power spectrum around a pivot point, ko: 

1 1 d2ns 1 InP(k) = InP(ko) +nln(k/ko) + -asln2(k/ko) + , 2 In3(k/ko) + ... (6.1) 
2 3. dlnk k=ko 

where n = ns(ko)-l and as = dns/dlnklk=ko are denoted as the values ofthe spectral 

index and its running at the pivot point in this chapter. In last chapter we discussed 

the case of a constant spectral index, which keeps only the linear term in the above 

expansion; in this chapter, we explore the second simple st case, a parabolic power 

spectrum, i. e., as =J. 0 but higher order terms are dropped. This parameterization 

can give a slightly better fit to the data, as discussed in Section 2.2. 

6.1 Unique Solution? 

Here we use the same strategy as in Section 5.2 to see if we can find analytic solutions 

for the case of a running power spectrum. Similarly, defining y ( cp) = ln H, the formula 

for the running of the spectral index, Eq. (3.20), becomes 

(6.2) 

59 
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To reduce the order of the above equation, we define z(cp) = y': 

" (2 1) , ( ') 2 as (2 1 )3 Z Z Z - - + z 1 - 2z z + - z - - = O. 
2 2 2 

(6.3) 

Defining p(z) = z' will further reduce the order of the equation: 

( 
2 1) dp 2( as (2 1)3 pz Z - - - + pz 1 - 2p) + - z - - = O. 

2 dz 2 2 
(6.4) 

Setting as = 0 in the above equation, we recover all constant spectral index solutions. 

This is the Abel differential equation; defining u = 1/p brings it back to the usual 

form. Sorne classes of the Abel differential equations have analytic solutions, but our 

equation seems to be in the class whose solutions remain unknown;l thus we do not 

have analytic solutions for the running spectral index model at present. 

To numerically solve the differential equations of potential reconstruction, Eqs. 

(4.9) and (4.10), a set of initial conditions is needed: 

(6.5) 

Since we have the freedom to shift the infiaton field, we set CPi = 0 for simplicity. The 

value of Hi determines the value of Ei because E = H 2 
/ P. So the initial conditions, 

Eq. (6.5), are just the values of (ki , Ei)' Now, a question arises: Do different initial 

conditions give different Hubble parameters, or the same Hubble parameter with 

different normalization factors? To answer this equation, we first investigate the case 

of a constant spectral index where we have analytic solutions, and then discuss the 

case of a running spectral index. 

We assume that for a given power spectrum and initial conditions, the solution 

can be written as 

H(cp) = Hoh(cp), (6.6) 

where Ho is an overall factor and there is no arbitrary constant in h(cp). Now, we 

recover the integration constant CPo, which was dropped in Chapter 5, and we will 

1 Maple 9 claims that it incorporates most solvable Abel classes known by 2000, but it do es not 

give a solution for Eq. (6.4). 
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soon see that it is relevant. Together with the expression of the power spectrum, Eq. 

(1.21) (remember that P = 87rPn), and the initial conditions, Eq. (6.5), we have 

(6.7) 

(6.8) 

We see that Eq. (6.7) determines CPo, which represents the initial value of cp (corre­

sponding to ki ), and Eq. (6.8) fixes Ho, which is the overall factor. Therefore, different 

choices of initial conditions, (k i , Ei), just give different values of CPo and Vo = H'6, but 

the shapes of the Hubble parameter, h(cp), and potential, (3 - E)h(cp)2, remain un­

changed. 

Since we have obtained all the analytic solutions for the case of a constant spectral 

index, we can check that different initial conditions just give different values of Ho 

and CPo, but h( cp) is uniquely determined by the spectral index. The reason why we 

have unique solutions for the case of a constant spectral index is because Eq. (5.31) is 

a first order equation, so a single initial condition, Ei = 2z;, determines h( cp) uniquely. 

In the case of a running spectral index, Eq. (6.3) is a second or der equation of z, 

so we need both Zi and z~. From Eqs. (3.12), (3.13), and (3.18), one has 

(6.9) 

Z' (6.10) 

Assume that we have solutions, Hl and H2' for the reconstruction equations Eqs. 

(4.9) and (4.10) with initial conditions (ki , Eli) and (ki , E2i)' When we evaluate Hl(k) 

at k~ =1- ki , at which El(kD = E2i, we will have E~(kD =1- E;(ki) according to Eq. (6.9). 

Therefore, hl and h2 , which determine El and E2, are different solutions. 

Since different initial conditions give rise to different shapes of the Hubble param­

eter, let us see how the Hubble parameter and other physical quantities vary with Ei' 

Since His always decreasing, Hi would set the overall sc ale for the Hubble parameter 

('" Hi) and the potential ('" Hl). Also, from Eq. (4.10) we see that.6.cp scales as Hi' 

Consider the case that Ei is small; we expect that I.6.HI '" IH'.6.cpl = HI.6.cph./ E/2 does 
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not change much in a small range of ll<jJ (or llin k). So the expansion rate goes like 

(6.11) 

and the number of e-foldings is 

a k Hi k 
N=ln-=ln-+ln- ~ ln-. 

ai k i H k i 
(6.12) 

In brief, we can tune Ci to be very small to have both the inflaton potential and 

ll<jJ much sm aller than the Planck scale; the cost is a low expansion rate (and a 

low tensor-to-scalar ratio because of the small c). The number of e-foldings, how­

ever, is approximately unchanged over a small range of ln k. For example, for the 

cosmologically interesting scales, 10-4 < k(Mpc-1
) < 1, the number of e-foldings is 

approximate 9.2. 

6.2 Tensor Spectrum 

In the last section we argued that different values of Ci give different shapes for the 

Hubble parameter in the case of a running spectral index; to uniquely determine the 

Hubble parameter, and hence the inflaton potential, we have to choose a particular 

Ci. In fact, this is fixed by the tensor-to-scalar ratio, Eq. (3.22). In this section, we 

discuss the consequences of using different tensor spectra. 

The tensor spectrum is not as well determined as the scalar spectrum, and its run­

ning is too weak to be detected at present. Therefore, it is sufficient to parameterize 

the tensor spectrum as 

(6.13) 

where nt is a constant. As mentioned in Section 4.1, one can also reconstruct the 

Hubble parameter from the tensor spectrum. Substituting the parameterization, Eq. 

(6.13), into the tensor reconstruction equations, Eqs. (4.7) and (4.8), one has the 

solution: 

~ (~) H = -4 - exp ~ V 2 (nt _ 2) <jJ , (6.14) 
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where PhO = 87r2PhO' Comparing this result with the power-Iaw solution, Eq. (5.3), 

we have 

n, 

16 pn (k), 
p 

(6.15) 

(6.16) 

where p = (n - 2)/n = Cl; see Section 5.1. Note that this result is consistent with 

the exact result in both the amplitude ratio and the spectral indices [27]. 

One can see from the above that a non-running tensor spectrum corresponds to 

power-Iaw inflation, which has a constant scalar spectral index; therefore, parameter­

izing a running scalar index and a non-running tensor spectral index, as the WMAP 

collaboration do, is not self-consistent. Once a scalar spectrum and a tensor-to-scalar 

ratio are given, the tensor spectrum can be determined uniquely through the Hubble 

parameter. Figure 6.1 shows the best fit WMAP parabolic scalar spectrum (solid, 

black; see column 3b of Table 2.4), its reconstructed tensor spectrum (dashed, red), 

and the tensor spectrum reconstructed from the inflationary consistency equation 

(dot-dashed, green), Eq. (1.39): 

ln Ph = ln [rPoentln(k/kol] ~ In(rPo) - (r/8) ln(k/ko). (6.17) 

Since at cosmologically interesting scales the slow-roll parameters are small (see 

Section 6.3, Figure 6.4), the inflationary consistency equation is a good approxima­

tion, as can be se en in Figure 6.1. Consequently, the present data does not discrim­

inate between different parameterizations of the tensor spectrum [25]. Nevertheless, 

using a self-consistent tensor spectrum requires neither an extra parameter nor a 

complicated algorithm, so it should be considered in future data fitting. 

As for the reconstruction of a running tensor spectral index, 

(6.18) 

we can also solve Eq. (4.8) directly, which gives cp = cp(ln k); or solve the running 

equation Eq. (3.21), which gives cp = cp(H' / H). In any case, it seems that we do not 

have analytic expressions for H = H ( cp) for a running tensor spectral index. 
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Figure 6.1: The tensor spectra reconstructed from the scalar spectrum and from the 

infiationary consistency equation (r(ko) c:::: 0.24, Po = 1). 

6.3 WMAP Running Power Spectrum 

In this section, we reconstruct the infiaton potential from the best fit WMAP running 

spectral index, and discuss sorne theoretical aspects. 

The three-year WMAP running power spectrum is given in column 3b of Table 

2.4 (ko = 0.002Mpc-1): 

n = 0.12, as = -0.076, (6.19) 

with the tensor-to-scalar ratio: 

r = 0.24. (6.20) 

Figure 6.2 shows the reconstructed Hubble parameter and infiaton potential. Here we 

emphasize that one has the freedom to choose the constant c/Yo, and hence the values 

of the infiaton field do not have absolute meanings. 

The second order corrections (see Section 4.2) are not significant because the 

slow-roll parameters are small at the relevant scales; see Figure 6.4. Although the 

slow-roll parameters become large at late times, they do not have much effect on the 

power spectrum. This is because ns - 1 = n + as ln(k/ko) < 0 at late times, hence é 
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the best fit WMAP running model (Po = 1). 
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converges to (ns -1)/(ns - 3) according to Eq. (5.55);2 together with Eq. (5.28), one 

finds that Tl will also converge to (ns - 1) / (ns - 3), therefore, the correction factor in 

Eq. (3.25) reads: 

(6.21) 

So the second order corrections remain insignificant even though the slow-roll param­

eters are large. In fact, the main reason why the corrections are small is that we keep 

the same Hi in each iteration;3 this is actually equivalent to choose a particular initial 

condition in the higher order differential equation, Eq. (4.19), to make the corrections 

small. 

As for the infiationary energy scale, we need to restore the normalization factor of 

the power spectrum, 2.2 x 10-9 (column WMAP3b of Table 2.4), and the 87r2 factor we 

have dropped; the units for Figures 6.2 (a) and (b) are 4.1 x 10-4 Mpl and 1.7x 10-7 Mtl 

respectively. So at the pivot point (<p :::: 3.06Mpl), H :::: 5.1 x 10-5 Mpl :::: 1.2 x 1014Ge V 

and V 1
/
4 

:::: 9.4 x 10-3 Mpl :::: 2.3 x 1016GeV. Since the slow-roll parameter is small 

at the pivot point, E(ko) = r(ko)/16 = 0.015, this energy scale is consistent with the 

COBE normalization result [6]: V 1/ 4 (ko) :::: 0.027El/4(ko)Mpl :::: 2.3 x 1016 GeV. 

Figure 6.3 shows the logarithm of the scale factor as a function of time. We see 

that the scale factor expands exponentially and then turns to a power-law expansion 

rate. For the cosmologically interesting scales, 10-4 < k(Mpc- 1
) < 1, we have 9.4 

e-foldings (a little bigger than number predicted by Eq. (6.12)), in which the scale 

2 As mentioned in Section 5.3, € always remains less than 1 in the case of a constant spectral 

index; for a running spectral index, although € still converges to (ns - 1)/(ns - 3) for ns < 1, since 

ns - 1 = n + as ln(k/ko) is not a constant, it is possible for € to reach 1 at finite ln k. However, it is 

impossible to see this effect when numerically solving the reconstruction equations, Eqs. (4.9) and 

(4.10). 

3According to Eq. (5.28), if € = 1- (lnkdMpc-1] = -12.7), then T} = 2, so the correction factor 

in Eq. (3.25) is 0, and the iteration method introduced in Section 4.2 fails. We choose a slightly 

larger initial value, Ink~[Mpc-l] = -12.2, for the second order corrections to avoid this problem; 

see the following discussion about the numbers. 
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factor can be parameterized as exponential expansion: 

(6.22) 

where we have restored the normalization factor for the Hubble parameter, 4.1 x 

1O-4Mp \.4 So we have 9.4 e-foldings within 5.1 x 10-38 seconds. Note, since Ci is not 

small, the scale factor does not scale as eHit (Hi ~ 0.31). 

Sinee C is always sm aller than 1, it seems that we can have as many e-foldings as 

we want. However, the slow-roll parameters are increasing at large ln k, so the slow­

roll approximation breaks down before we have 60 e-foldings. For example, we can 

only have about 19 e-foldings while c < 0.2 in our running spectrum case, as shown in 

Figure 6.4. In addition, we can only extend the Hubble parameter to kmin , at which 

c = 1- and the reconstruction equations, Eqs. (4.9) and (4.10), break down. In our 

case, Inkmin[Mpc-1j ~ -12.7 wh en requiring r(ko) ~ 0.24. Consequently, as can be 

seen from Figure 6.4, the slow-roll parameters are quite large within cosmologically 

interesting scales; for instance, the lowest value oflnk [Mpc-1j called by CosmoMC is 

about -12. The large value of c is because we require large value of tensor-to-scalar 

ratio. 

Therefore, if slow-roll inflation is expected to give about 60 e-foldings, then sorne 

assumptions we have made may break down, and we may need to consider other 

possibilities, like: 

1. There is more than one dynamical degree of freedom, i. e. multiple-field inflation. 

2. A spectrum with large running and tensor-to-scalar ratio is valid only for about 

10 e-foldings; we should not extend it to large k (unobservable) region. 

An alternative way to solve the above problem is the partial running spectrum, 

which will keep the slow-roll parameters small and does not change other best fit 

cosmological parameters (see discussion in Section 2.2). With a low-k cutoff on the 

running of the spectrum, the beginning of slow-roll inflation can be pushed far before 
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Figure 6.3: The logarithm of the scale factor as a function of time reconstructed from 

the best fit WMAP running model. 
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Figure 6.4: The reconstructed slow-roll parameters for the best fit WMAP running 

model. 

today's cosmologically interesting scales, while maintaining a large tensor-to-scalar 

ratio at the pivot point. Figure 6.5 shows the WMAP partial running model (see 

column WMAP3b of Table 2.6), where the slow-roll parameters are seen to remain 

small during the relevant part of inflation. The discontinuity in Tl is due to the 

discontinuity in the slope of the power spectrum where it goes between non-running 

and running, which could be avoided by making a smoother transition. Figure 6.6 

shows the reconstructed potential for the WMAP partial running spectrum. Since the 

power spectrum is set to be flat in the low- and high-k parts, this potential is just a 

combinat ion of the running potential in the middle and the sc ale-invariant potential, 

Eq. (5.10), at both ends. As mentioned in Section 5.1, a super-Planckian field value 

is needed to give 60 e-foldings in this scale-invariant potential. 

From the perspective of particle physics model-building, it is interesting to see if 

the reconstructed potential for a large running power spectrum can be described by 

a renormalizable potential. We have therefore fit the reconstructed V to a quartic 

polynomial for different ranges of field values. Figure 6.7 shows the fitting from 

ln k i = -9.2 (10-4 Mpc-1) to ln kt = 0 (1 Mpc-1), 3.8, 4.8, and 5.8, obtaining fits 
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Figure 6.5: The reconstructed slow-roll parameters for the WMAP partial running 

model. 

which for the case of ln kf = 4.8 has the form 

v = 1.7 X 10-7 x (0.0510 - 0.01254> + 0.006234>2 - 0.002774>3 + 0.0003574>4). (6.23) 

To better discriminate the goodness of fit, we also plot the fractional errors in 

Figure 6.8. We see that final k values up to ln kf = 4.8 provide good fits at the percent 

level. This ln kt value corresponds to 15 e-foldings from k = 1O-4Mpc- 1 . Although 

the infiaton changes by super-Planckian values, the smallness of the coefficients in 

the renormalizable potential indicates that the effective field theory description for 

a large running power spectrum is not invalidated, because higher or der terms give 

smaller contributions to V, even at 4> = 7 M p \. 

To summarize this section, the best fit WMAP running model gives rise to a 

potential with energy scale V 1/ 4 
rv 1016 GeV, where super-Planckian infiaton field 

values are needed to obtain 60 e-foldings. Despite this, the smallness of the coefficients 

of the potential implies that the effective field theory is still a good description. 
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Figure 6.7: The reconstructed potential for the best fit WMAP running model and a 

series of renormalizable potentials fitting over different ranges of field values. 
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Figure 6.8: The fractional errors of the fitting potentials. The correlation coefficient 

r for each fit is also shown. 



Chapter 7 

Conclusions 

Inflation has become one of the cornerstones of modern cosmology; it not only solves 

the critical cosmologie al problems, but also provides possibilities to explore the infant 

universe. One of the important aspects of inflationary theory is the primordial power 

spectrum, which connects the quantum fluctuations in the early universe and the 

formation of structure of the present universe. In this thesis, we discussed both 

experimental and theoretical aspects of the inflationary power spectrum. 

We studied the experimental evidence for the six-parameter cosmologie al model, 

which has a nearly sc ale-invariant spectral index and fits the current data very weIl. 

We also investigated the question of the large running of the inflationary spectral 

index in the light of recent WMAP data. By exploring the WMAP data multipole 

by multipole, we found that the evidence for running mainly cornes from multipoles 

near l = 40. This perspective lends more interest to the possible confirmation or 

negation of large running by future improvements in the data, since the experimental 

determination ofthe higher multipoles is not so limited by cosmic variance. Moreover, 

this fact allows us to adjust the shape of the power spectrum, and we found that a 

partial running spectrum gives as good a fitting as the full running spectrum. 

We gave sorne simple formulae of the inflationary spectral indices based on the 

Hamilton-Jacobi formulation of inflation. These formulae are the exact results to the 

leading order of the slow-roll approximation of the power spectra; nevertheless, they 

do reproduce the predictions given by sorne exact solutions of the original perturbation 
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equations of the power spectra. Although there exist higher order results in the slow­

roll approximation for the inflationary spectral indices, none of them can reproduce 

the predictions given by the original exact solutions. Therefore, our simple formulae 

remain interesting in sorne special cases. 

The Hamilton-Jacobi formulation of inflation was also applied to reconstruct infla­

tionary potentials from a given power spectrum. A simple and accurate reconstruction 

formulation was presented. Sorne weIl known potentials for constant spectral index 

were recovered; new potentials for constant spectral index were also derived, which 

show that a nearly scale-invariant spectrum can give rise to slow-roll inflation dur­

ing 60 e-foldings within sub-Planckian inflaton field values and a potential energy 

V 1/ 4 
rv 1015GeV. Potentials for large running of spectral index and large tensor-to­

scalar ratio were also constructed, and they need super-Planckian field values but 

sub-Planckian potential energy, V 1/ 4 
rv lQ16GeV. For these, the slow-roll approxima­

tion breaks down before reaching 60 e-foldings. This problem, however, can be solved 

by the partial running model. We have shown that for the cosmologically interesting 

scales, a renormalizable potential fits the reconstructed potential for a large running 

spectral index very weIl. Therefore the effective field theory description does not 

break down at inflationary energy scales. 

Our reconstruction method also provides a simple algorithm to find a self-consistent 

tensor spectrum once a scalar spectrum and a tensor-to-scalar ratio are given. AI­

though we mainly discussed the leading order results of the slow-roll approximation 

in this thesis, we also showed that higher order corrections can be straightforwardly 

incorporated into the formulae of spectral indices and the reconstruction formulation. 



Appendix A 

U nits and Constants 

We use natural units in this thesis, where the speed of light c, the reduced Planck 

constant h, and the Boltzmann constant kB are set to 1. In this system, the basic 

dimension is energy, 1GeV. The conversion between natural units and international 

units is [6] 

1cm 5.068 x 1013GeV- 1h, 

ls 1.519 x 1024GeV- 1h/c, 

19 5.608 x 1023GeV /c2
, 

1K - 8.618 x 1O-14GeV/kB . 

We also set the reduced Planck mass to 1, and hence aH quantities have the same 

dimension. The value of the reduced Planck mass is [6] 

1Mp1 = 2.436 x 1018GeV. 
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