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Abstract  

The COVID-19 pandemic emphasized the importance of strong surveillance systems and 

epidemiological data to inform local and global responses. Successful responses needed to be 

comprehensive and consider health inequities, morbidity and mortality patterns, pharmaceutical 

and non-pharmaceutical interventions, and SARS-CoV-2’s transmission dynamics. My thesis aims 

to understand and document Canada’s management of local COVID-19 epidemics by investigating 

these different facets of the pandemic to improve future preparedness. 

 To inform their response, provincial authorities relied on mathematical models. In my first 

manuscript, I reviewed these efforts by conducting a scoping review of 20 models. I found that 

provincial modelling efforts were tailored to local contexts and influenced by the local expertise 

available. Surveillance datasets for cases, hospitalizations, and deaths were some of the main data 

sources used by models. Despite varying structures in knowledge translation across provinces, 

common challenges included timely access to high-quality data and the integration of data across 

surveillance databases. 

My review evidenced that provincial models did not consider social determinants of health. 

To improve our understanding of how they shaped transmission, I quantified the geographic 

concentration of SARS-CoV-2 by social determinants of health in 16 Canadian cities in my second 

manuscript. Leveraging surveillance data on confirmed cases and census data for area-level social 

determinants of health, I observed a geographic concentration of cases, with 50% of the cumulative 

cases reported within areas containing 21-35% of their population in each city. Additionally, I 

estimated the Gini covariance coefficients (co-Gini), which indicated a disproportionate 

concentration of cases in vulnerable communities, especially those with a higher proportion of 

visible minorities. 

Mathematical models used in Canada focused heavily on projecting the SARS-CoV-2 

healthcare burden. My third manuscript described the temporal trends in in-hospital COVID-19 

mortality risk, the drivers, and length of hospital stay through the first three epidemic waves. Using 

surveillance databases from Ontario and Québec, totaling nearly 50,000 hospitalizations, I 

estimated that the in-hospital mortality risk peaked at 31% during first wave and declined to 6-7% 
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by the third wave. I also found that patient load negatively affected survival and that hospital 

lengths of stays decreased over time. 

With the scale-up of SARS-CoV-2 vaccination, both morbidity and mortality drastically 

decreased, highlighting its fundamental role in mitigating pandemic risks. Robust tools for 

evaluating vaccine candidates and rollout strategies are essential. My fourth manuscript explores 

the vaccine features required to contain the transmission of a future Disease X, focusing on three 

key features under development: 1) EC50 (the concentration of antibodies required to achieve 50% 

of the vaccine's maximum effect), 2) the half-life of plasma secreting cells (which produce 

antibodies), and 3) the vaccine’s impact on the virus's infection rate of target cells. Using an agent-

based model of transmission of this potential (re)emerging respiratory virus, I found that, in 

general, an EC50 ≤ 3 or half-life of plasma secreting cells ≥ 1 year is needed to contain an 

epidemic with a basic reproductive number ≤ 3. Vaccines lowering the infection rate of target 

cells has minimal impact.  

My thesis synthesizes knowledge on some of the important features of Canada’s COVID-

19 epidemic and its responses, and proposes tools to enhance pandemic preparedness. First, it 

underscores the need to enhance Canadian modelling capacity, and ensure access to timely, high-

quality surveillance data. Second, it examines the heterogeneities in transmission and in-hospital 

mortality risks, which informed vaccination strategies and provided estimates of key indicators for 

models projecting healthcare demands. Moreover, it demonstrates the value of descriptive 

epidemiology and explanatory studies. Finally, it proposes a flexible model that can be used to 

evaluate the impact of vaccine candidates for future Disease X pandemics. 
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Resumé 

La pandémie de COVID-19 a souligné l'importance d'une surveillance rigoureuse et de 

données épidémiologiques pour éclairer les réponses locales et mondiales. Les réponses efficaces 

doivent être globales et tenir compte des inégalités en matière de santé, des schémas de morbidité 

et de mortalité, des interventions pharmaceutiques et non pharmaceutiques et de la dynamique de 

transmission du SRAS-CoV-2. Ma thèse vise à comprendre et à documenter les réponses du 

Canada aux épidémies locales de COVID-19 en étudiant ces différentes facettes des réponses à la 

pandémie afin d’améliorer la préparation future. 

Pour éclairer leur réponse, les autorités provinciales se sont fiées à des modèles 

mathématiques. Dans mon premier manuscrit, j'ai passé en revue ces efforts en effectuant un 

examen de la portée de 20 modèles. J'ai constaté que les efforts provinciaux de modélisation étaient 

adaptés aux contextes locaux et influencés par l'expertise locale disponible. Les ensembles de 

données de surveillance des cas, des hospitalisations et des décès faisaient partie des principales 

sources de données utilisées par les modèles. Malgré les différentes structures d'application des 

connaissances d'une province à l'autre, les défis communs comprenaient l'accès en temps opportun 

à des données de haute qualité et l'intégration des données dans les bases de données de 

surveillance. 

Mon examen a révélé que les modèles provinciaux ne tenaient pas compte des déterminants 

sociaux de la santé. Pour améliorer notre compréhension de la façon dont ils ont façonné la 

transmission, j'ai quantifié la concentration géographique du SRAS-CoV-2 par les déterminants 

sociaux de la santé dans 16 villes Canadiennes dans mon deuxième manuscrit. En tirant parti des 

données de surveillance sur les cas confirmés et des données de recensement sur les déterminants 

sociaux de la santé au niveau des aires de dissémination, j'ai observé une concentration 

géographique des cas, avec 50 % des cas cumulés signalés dans des zones contenant 21 à 35 % de 

leur population dans chaque ville. De plus, j'ai estimé les coefficients de covariance de Gini (co-

Gini), qui indiquaient une concentration disproportionnée de cas dans les communautés 

vulnérables, en particulier celles comptant une proportion plus élevée de minorités visibles. 

Les modèles mathématiques utilisés au Canada se sont fortement concentrés sur la 

projection du fardeau des soins de santé liés au SRAS-CoV-2. Mon troisième manuscrit décrivait 
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les tendances temporelles du risque de mortalité hospitalière due au COVID-19, les facteurs 

déterminants et la durée des séjours à l'hôpital au cours des trois premières vagues épidémiques. 

À l'aide de bases de données de surveillance de l'Ontario et du Québec, totalisant près de 50 000 

hospitalisations, j'ai estimé que le risque de mortalité à l'hôpital atteignait un sommet à 31 % lors 

de la première vague et diminuait à 6 à 7 % lors de la troisième vague. J'ai aussi constaté que le 

nombre de patients affectait négativement la survie et que la durée des séjours à l'hôpital diminuait 

avec le temps. 

Avec l'intensification de la vaccination contre le SRAS-CoV-2, la morbidité et la mortalité 

ont considérablement diminué, ce qui met en évidence leur rôle fondamental dans l'atténuation des 

risques de pandémie. Des outils robustes pour évaluer les vaccines candidats et les stratégies de 

déploiement sont essentiels. Mon quatrième manuscrit explore les caractéristiques du vaccin 

nécessaires pour contenir la transmission d'une future maladie X, en se concentrant sur trois 

caractéristiques clés du développement de vaccins : i) la CE50 (la concentration d'anticorps requise 

pour atteindre 50 % de l'effet maximum du vaccin), ii) la demi-vie du plasma, et iii) l’impact du 

vaccin sur le taux d’infection des cellules cibles. En utilisant un modèle de transmission basé sur 

des agents de ce prochain virus respiratoire, j'ai découvert qu'en général, une CE50 ≤ 3 ou une 

demi-vie des cellules sécrétant du plasma ≥ 1 an est nécessaire pour contenir une épidémie avec 

un nombre reproducteur de base ≤ 3. Les vaccins qui réduisent le taux d'infection des cellules 

cibles ont un impact minime. 

Ma thèse synthétise les connaissances en épidémiologie de l’épidémie de COVID-19 et des 

réponses au Canada et propose des outils pour améliorer la préparation à une pandémie. 

Premièrement, cela souligne la nécessité d’améliorer la capacité canadienne en modélisation 

mathématique et d’assurer un accès plus rapide à des données de surveillance opportunes et de 

haute qualité. Deuxièmement, elle a examiné les hétérogénéités de la transmission des cas et les 

risques de mortalité à l’hôpital, qui ont éclairé la stratégie de vaccination et fourni des estimations 

d’indicateurs clés pour les modèles projetant les demandes de soins de santé. De plus, elle 

démontre la valeur des études descriptives et explicatives. Finalement, ma thèse propose un modèle 

flexible qui peut être utilisé pour évaluer l’impact des candidats vaccins sur les futures pandémies 

de la maladie X. 
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patterns and severity of those epidemics, Canada’s response towards it, and the preparedness for 
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diverse provincial modelling efforts against COVID-19 epidemic over the first 2 years. 

Additionally, this paper draws lessons for future responses to public health challenges. My second 
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models that guided provincial responses. Specifically, manuscript 2 provided quantified evidence 

of geographical concentration of SARS-CoV-2 cases in cities across provinces of Canada and 

identified drivers associated with the observed heterogeneities. Manuscript 3 provided estimates 

of the time-varying in-hospital COVID-19 mortality risk and patient length of stay throughout the 

first three epidemic waves. Moreover, it identified the drivers that led to those changes. Finally, 

my fourth manuscript contributes knowledge on pandemic preparedness using a mathematical 

model. Manuscript 4 pinpoints the desired vaccine features that are preferred to contain future 

epidemics caused by a SARS-CoV-2 type of virus. 
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provided advice on the model. Dr. Marie Alexandre estimated the parameters used to link antibody 
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Chapter 1. Introduction 

1.1. Background 

The first SARS-CoV-2 case was reported in December 2019 in Wuhan (China). This newly 

identified coronavirus then spread rapidly worldwide, leading to the Coronavirus 2019 (COVID-

19) pandemic–one of the most significant public health crises of the 21st century. It has impacted 

the world on an unprecedented scale, leading to a drastic loss of human life, increased health 

inequalities, and triggered a global economic crisis (1, 2).   

To mitigate its spread, extensive non-pharmaceutical interventions (NPIs) were 

implemented (e.g., travel restrictions, closure of non-essential services) (3). The implementation 

and lifting of these measures depended mostly on the local situations of COVID-19 epidemics. 

Canada’s decentralized healthcare infrastructure led to a unique adoption of various mathematical 

modelling approaches across provinces and territories to support these decisions (4). A common 

thread, however, was that vulnerable individuals (e.g. essential workers, low-income population) 

were disproportionately affected by the burden of SARS-CoV-2 infections and COVID-19 

mortality (5, 6). Moreover, the prolonged surges in COVID-19 hospitalizations placed 

unprecedented pressure on the healthcare system, leading to significant overload (7, 8).  

Nowadays, drawing lessons learned from the COVID-19 pandemic and preparing for 

future pandemics are priority research areas. To bolster global preparedness, one strategic 

approach is to develop vaccine candidates targeting prototype pathogens from families identified 

in the World Health Organization (WHO)’s blueprint for priority diseases (9, 10). In addition to 

advances in vaccine development, understanding the population-level effectiveness of these 

candidates may inform research directions for refining these vaccines. 

My thesis aligns with the multifaceted aspects and interdisciplinary nature of pandemic 

response and preparedness, from understanding inequalities, the burden on hospital resources and 

mortality, and the evidence-to-decision pipeline, to vaccine developments for pandemic 

preparedness.  
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1.2. Organization of this thesis 

This manuscript-based thesis is structured around the following four objectives: 

1. Review and document Canada’s diverse provincial mathematical modelling efforts 

in response to COVID-19 epidemics, understand how these efforts evolved along 

with the changes in local epidemics and increased knowledge on SARS-CoV-2, and 

draw lessons from Canada’s experiences. 

2. Quantify the degree of geographical concentration of SARS-CoV-2 transmission in 

Canada’s largest cities and epicentres of the country’s COVID-19 epidemics, and 

understand how area-level social determinants of health are associated with these 

heterogeneities across metropolitan areas. 

3. Describe the temporal trends in in-hospital COVID-19 mortality risk and its drivers, 

and estimate the changes in the length of hospital and intensive care unit (ICU) stays 

using data from the two largest provinces in Canada. 

4. Contribute to pandemic preparedness by examining the desired vaccine features to 

contain the transmission and maintain healthcare capacity for a future pandemic. 

My thesis is organized into eight chapters. Chapter 1 presents the background and 

objectives of the thesis. Chapter 2 provides a contemporary overview of past and recent pandemics, 

including COVID-19, and contextualizes my doctoral work. Chapter 3 summarizes the data 

sources and methodologies used in my different manuscripts. Chapters 4 to 7 comprise the four 

manuscripts that each address one of the abovementioned objectives, in sequence. Finally, Chapter 

8 synthesizes the findings of my research and interprets the results in the context of pandemic 

responses and pandemic preparedness. 
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Chapter 2. Literature review 

2.1. Important pandemics in human history 

Previous pandemics and their impacts 

The word “pandemic” first appeared in print in England in 1666 to refer to a disease 

occurring in a region or country (11), even if pandemics occurred well before that time. The 

meaning of the term evolved, and the vocabulary became more specialized with terms such as 

outbreak, endemic, and epidemic, to better characterize the spread of communicable diseases. A 

pandemic, from the Greek pandēmos (“common to all people”), is an epidemic that occurs over a 

very wide area, crossing international boundaries, and usually affecting a large number of people 

(12). An epidemic is the occurrence of cases of disease in excess of what would normally be 

expected in a defined community, geographical area or season (13, 14). An epidemic that is limited 

to a localized increase in the incidence of disease is an outbreak (12). When an outbreak is 

consistently present but limited to a particular region, it becomes endemic (15).  

Pandemics of the past have been caused by diseases with various mode of transmission, 

such as vector-borne, waterborne, airborne, bloodborne, and sexually transmitted. In addition to 

having significant health consequences for populations, these pandemics have profoundly shaped 

human societies throughout history. Their impacts are not limited to the realms of health, but also 

include changes in public infrastructure, social behaviors, and economy, among others (16, 17). 

Important historical pandemics include those caused by plague, cholera, and flu. 

Plague has caused at least three of the deadliest pandemics in human history that have 

resulted in over 200 million deaths (18). It is a high-fatality flea-borne disease caused by Yersinia 

pestis, a gram-negative bacteria whose animal host and reservoir are rodents. The first plague 

pandemic began with the Plague of Justinian in the 6th century that affected the entire 

Mediterranean Basin, Europe, and the Middle East (19, 20), with at least 18 waves spanning over 

200 years that killed 33-60% of the Mediterranean population (18, 21, 22). The most prominent 

plague pandemic is the second one, which started with the famous Black death (often referred as 

“the Plague”; 1347-1351 AD). It is estimated that up to 60% of the European population perished 

during the Black Death alone (23, 24). After the Black Death, plague travelled from Europe to 
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Asia, and gave rise to the third plague pandemic in late 20th century (25-27). Notably, the first 

known quarantine measures, a type of NPIs, were enacted in response to the Black Death (17). 

Even nowadays, quarantine remains an effective public health measure against the spread of 

infectious diseases (28). 

More recently, over the 19th and 20th centuries, cholera caused several major pandemics. 

Cholera, caused by Vibrio cholerae, is an acute and often fatal waterborne disease. Cholera 

originates from the Ganges Delta and has caused several major epidemics outside of this area with 

the expansion of global travel in the 19th century. The 1854 Broad Street cholera outbreak in Soho, 

London, is well-known among epidemiologists. It was during this epidemic that John Snow 

conducted the landmark investigation that laid the foundation for modern epidemiology. By using 

data-driven approaches such as data mapping, spatial analysis, and descriptive statistics, John 

Snow refuted the long-held Miasma theory (a misconception that diseases were caused by bad air) 

with the germ theory of disease (pathogens cause disease), and contributed to the improvement of 

outbreak control measures for waterborne diseases (29). However, Cholera outbreaks are still a 

concerning public health issue worldwide, often related to poverty and inequality, as exemplified 

by the 2010 epidemic in Haiti (30, 31). 

Unlike the other infectious diseases described above that tend to spread rapidly, the 

contagion process for sexually transmitted infections (STI) is often slower and limited to people 

who are having multiple sexual partners. For instance, HIV is thought to have originated in Central 

Africa in the first half of the 20th century, but AIDS was only recognized in 1981. Since 1981, over 

42 million people have died of HIV and, in 2023, there were approximately 40 million people 

living with HIV (32). Similarly, the WHO declared in 2022 that the multi-country epidemics of 

mpox (clade IIb) was a “public health emergency of international concern” (PHEIC). 

Transmission during this outbreak was principally attributed to sexual contacts among men who 

have sex with men and saturation of high sexual-activity groups limited the spread of this pathogen 

(33, 34). 

Nowadays, respiratory pathogens are among the most significant public health threats and 

of greatest concern for their potential to lead to pandemics. The 1918 Spanish flu, caused by the 

H1N1 strain of influenza virus, was another deadly pandemic that wiped out 1-5.4% the world’s 



 

 30 

population (50-100 million deaths) (17, 35-37). Though the pandemic ended after two years, the 

impact of the Spanish flu persisted for decades. Evidence shows that viral reassortment among 

influenza viruses may have caused subsequent pandemics, including the 1957 Asian flu (H2N2), 

the 1968 Hong Kong flu (H3N2), and the 2009 Swine flu (H1N1) (25, 38). Recently, the H5N1 

avian influenza has gathered increasing concerns due to its zoonotic spillover potential to other 

species, including humans (39, 40). 

Coronaviruses make up an important family of respiratory viruses. This family includes 

four genera groups: alpha-, beta-, gamma-, and delta-coronaviruses (41). Up to now, several 

human coronaviruses (HCoV) have been identified: HCoV-229E, HCoV-NL63, HCoV-OC43, 

HCoV-HKU1, the severe acute respiratory syndrome coronavirus (SARS-CoV), the Middle East 

respiratory syndrome coronavirus (MERS-CoV), and the severe acute respiratory syndrome 

coronavirus 2 (SARS‑CoV‑2) (42). The later three coronaviruses all belong to the most 

pathogenic genus (the beta-coronavirus) and have caused three pandemics and epidemics in the 

21st century, in 2003, 2012, and 2020, respectively (25, 43). However, the health burden of the 

SARS-CoV and MERS-CoV pandemics never reached the one caused by SARS-CoV-2.  

Several pathogen characteristics can influence the course of an outbreak. First, a high basic 

reproduction number (𝑅0) indicates that the transmission potential is substantial. The 𝑅0 represents 

the average number of secondary cases resulting from the infection of a primary case in a 

completely susceptible population (47). For example, the 𝑅0 of SARS-CoV-2 (the original strain) 

ranges between 2-2.5 according to the WHO estimates, which is higher than that for SARS-CoV 

(1.7–1.9) and MERS-CoV (<1) (44). Coupled with a short generation interval (i.e., average time 

between the infection of a primary case and subsequent transmission events), pathogens with high 

𝑅0 result in more explosive epidemic growth. The second characteristic is the timing of the onset 

of symptoms relative to peak infectivity (45). The peak infectivity of SARS is between 5 to 10 

days after symptom onset, which contributed to its containment (46). As asymptomatic infections 

are difficult to detect, pathogens with a higher fraction of asymptomatic (or sub-clinical) infections 

are more difficult to control. Thirdly, variability in transmission (e.g. overdispersion) can affect 

the likelihood of an outbreak and its subsequent control. When transmission events are 

overdispersed, case importation is less likely to result in outbreaks. However, when outbreaks do 

occur, high overdispersion may lead to more explosive growth of the outbreak and difficulty 
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controlling it (47). Finally, the existence of a natural reservoir makes it less likely for an outbreak 

to be eliminated. For instance, zoonotic diseases can transmit naturally between vertebrate animal 

and humans, either directly, or indirectly through the environment, challenging outbreak control 

(48). 

The mode of transmission of a pathogen will influence its pandemic potential. Compared 

to other infectious diseases, respiratory viral pandemics pose several unique challenges. First, 

respiratory viruses can transmit through droplets and/or aerosols released from an infected 

individual during social interactions (49). Further, the generation interval is often quite short and 

measured in days for most respiratory viruses (i.e., as compared to years for HIV). Furthermore, 

the high mutation rates of respiratory viruses, especially RNA viruses, allow them to potentially 

evade immune responses, develop resistance to treatment and vaccines, reassort themselves to 

continuously circulate in the population (e.g., seasonal influenza), or allow viral recombination 

and reassortment at the human-animal interfaces that could give rise to future pandemics (e.g., the 

coronavirus pandemics) (38, 50-54).  

Key parameters to estimate for an emerging pathogen and the role of mathematical modelling 

 At the onset of an outbreak, several key parameters need to be estimated to assess the 

pandemic potential of an emerging pathogen. These parameters will help identify the type of 

interventions required to control it. These include 𝑅0, overdispersion, the generation (or serial) 

interval, the incubation period, the infectious period, the proportion of asymptomatic transmission 

events, and case severity (by the infection-hospitalization ratio and/or infection-fatality rate). Such 

parameters are often informed by case investigation, contact tracing studies, and surveillance data, 

although the latter is affected by completeness of case ascertainment. The WHO has proposed a 

series of templates and protocols to collect such information on the “First Few X cases and 

contacts” (FFX). These activities require a case definition that should be clear and adaptable, with 

inclusion of confirmed, suspected, and probable cases.  

 Once these parameters have been estimated, the next steps can involve nowcasting 

(situational awareness), forecasting, assessing the impact of NPIs and pharmaceutical (if available) 

interventions, resource planning, and informing policy decisions. These activities often involve 

the use of mathematical models of disease transmission. The main advantage of such models is 
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that they enable the simplification of abstract systems into more manageable problems. 

Mathematical modelling offers a structured approach to simplify the complex processes into 

representation of reality and project epidemic indicators under various “what if” scenarios (e.g., 

policy options) (55). In addition, it can help interpreting situations where data may be incomplete 

or missing, providing insights into historical trends and the effectiveness of public health measures, 

even when the details are unclear (56, 57). These strengths of mathematical modelling make it a 

well-suited tool in both planning and evaluating responses to public health crises, such as 

pandemics.  

The use of mathematical modelling in infectious disease epidemiology can be traced back 

to the 18th century when Daniel Bernoulli applied the first mathematical models to study smallpox 

inoculation and its effect on mortality rates (58). The fundamental framework (the susceptible-

infected-removed “SIR” model) was later introduced by William Kermack and Anderson 

Mckendrick in 1927 (59), after which mathematical models have been increasingly used to 

simulate disease transmission and inform responses, from influenza, to SARS, and HIV (60).  

2.2. The COVID-19 pandemic 

Global COVID-19 pandemic timeline, epidemiology and responses 

In December 2019, several patients with pneumonia of unknown origin, presenting 

symptoms such as fever, cough, and respiratory distress, were reported in the city of Wuhan, Hubei 

Province, China (61). Shortly after the detection of these cases, the Chinese government notified 

the WHO about the situation on the last day of 2019. Epidemiological investigations suggested a 

connection between the cases and the Huanan Seafood Wholesale Market. On January 7th, 2020, 

the mysterious pneumonia was confirmed to be caused by a novel coronavirus, which was later 

named the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). Even now, the origin 

of SARS-CoV-2 is still controversial (62). However, the leading hypothesis in the scientific 

community is that it originated from a zoonosis spillover to humans in a wet market of Wuhan, 

China (63). One month into the new year, this new coronavirus had already swept across continents 

(64). With outbreaks being detected all over the world, the WHO first declared the COVID-19 

outbreak a “public health emergency of international concern” on January 31st, 2020. Later on 
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March 11th, 2020, it was declared a pandemic. At that time, SARS-CoV-2 cases had been 

confirmed in over 100 countries, passing 100,000 confirmed cases globally (64).  

Following the WHO’s declaration of a pandemic, countries announced COVID-19 national 

emergencies and implemented public health measures. A small number of countries and regions 

such as Australia, China, New Zealand, North Korea, and some Canadian regions adopted an 

elimination strategy, which is referred to as the “Zero-COVID” approach. The underlying goal 

was to achieve local elimination by containing new outbreaks before they spread and lead to 

community transmission (65). The other strategy used was mitigation (i.e., flattening the epidemic 

curve) which attempted to reduce levels of community transmission such that it would not 

overburden the healthcare system. No matter which strategy was chosen, they relied on NPIs. 

Common interventions included lockdowns, physical distancing, mandatory masking, travel 

restrictions, quarantine for travellers (and regular testing), contact tracing, and case isolation (66). 

The major difference between the two strategies was that regions with an elimination goal acted 

faster and often implemented the measures more strictly (65, 67). Eventually, with the availability 

of vaccines and therapeutics, all regions that initially aimed to eliminate SARS-CoV-2 switched 

to a mitigation strategy.  

During the COVID-19 pandemic, the necessity, effectiveness, and societal impacts of some 

public health measures were debated due to their collateral impacts on economy, mental health, 

and social inequalities. Contentious measures included face masks, closure of school and non-

essential businesses, lockdowns, and curfews. For instance, in Canada, school closure aroused 

heated discussions over its broader societal and economic impacts. Proponents argued that school 

closure could efficiently mitigate community transmission, especially during the early stages when 

the community transmission was low (68-73). On the other hand, opponents disputed that this 

measure resulted in severe educational disruptions, and negative effects on children’s mental 

health and social development (74-76). Critics also pointed that most infections among children 

do not result in high morbidity, whereas an unacceptably high proportion of COVID-19 deaths 

occurred among residents of long-term care homes. However, balancing public health priorities 

and individual wellness is ethically challenging, especially during emergencies (77).  
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By December 2020, nearly one year after the detection of the first case, effective COVID-

19 vaccines from Pfizer-BioNTech, Moderna, and AstraZeneca had already been approved under 

emergency use authorization (EUA). Vaccine rollout began in the following months for countries 

that were able to secure doses, with much of low and middle-income countries left without access. 

Due to the limited supply and very high demand, national authorities often prioritized healthcare 

workers, elderly people, and other high-risk groups, before gradually expanding eligibility (61). In 

the meantime, three new variants of concern (VOC) of SARS-CoV-2 emerged: Alpha (B.1.1.7), 

Beta (B.1.351), and Gamma (P1). While many countries began to ease their restrictions (i.e., 

lockdowns) alongside declining case numbers in the summer of 2021, the Delta (B.1.617.2) variant 

caused a resurgence of SARS-CoV-2 cases. Delta had higher transmissibility, higher viral load 

and longer duration of shedding, and higher likelihood of immune escape, resulting in a notably 

lower vaccine effectiveness for this variant (78-81). The rise of the Delta variant led to the 

reintroduction of restrictions in several jurisdictions.  

The global vaccine coverage reached 50% by January 2022 (82). Meanwhile, the Omicron 

variant (B.1.1.529), a SARS-CoV-2 VOC with high transmissibility, but slightly reduced severity 

(as compared to Delta), became the predominant variant circulating worldwide (83). These factors, 

combined with economic pressures, pandemic fatigue, and other negative population health 

impacts, led many countries to shift towards a "living with COVID" strategy starting in late 2021. 

As of November 2nd, 2024, a total of 777 million SARS-CoV-2 cases and 7.1 million COVID-19 

deaths were reported to the WHO (84). Although affected by underreporting, there were still over 

50,000 new cases and approximately 1,000 reported deaths to the WHO every week in October of 

2024.  

Global mathematical modelling efforts 

Never have mathematical models played such a prominent role in informing public health 

actions than during the COVID-19 pandemic. For example, mathematical modelling studies from 

Imperial College London’s COVID-19 Response Team were among the very first to estimate the 

scale of the emerging epidemic in January 2020, the transmission potential, the severity of the 

virus, and the impact of NPIs (85). The U.S. Centers for Disease Control and Prevention (CDC) 

undertook mathematical modelling efforts to forecast disease burden. They provided an “ensemble” 
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forecast that combined outputs from multiple, independently developed models to increase the 

validity of their estimates (86). Furthermore, the COVID-19 Vaccines Global Access (COVAX) 

initiative, led by the WHO, used mathematical modelling to ensure the equitable distribution of 

COVID-19 vaccines (87). These models helped guide policy decisions by projecting the epidemic 

indicators (e.g., cases, hospitalizations, deaths), evaluating the potential impact of interventions, 

and providing insights on healthcare resource allocation and vaccine prioritization strategies.  

2.3. Canada’s response to the COVID-19 pandemic 

The first SARS-CoV-2 case in Canada was reported on January 25th, 2020. By the time 

WHO declared the end of the PHEIC on May 5th, 2023, over 4.6 million SARS-CoV-2 cases and 

52,231 COVID-19 deaths had been reported in Canada (88). However, these numbers hide 

important regional variations in transmission dynamics, disease burdens, and responses because 

of Canada’s decentralized healthcare infrastructure, that puts the administration and delivery of 

healthcare services under the jurisdiction of provincial and territorial governments. (89).  

During the Canadian COVID-19 epidemics, the federal government was responsible for 

border and travel restrictions, quarantining of incoming travelers, and procurement of personal 

protective equipment (PPE), testing kits, and vaccines (90). Through the Public Health Agency of 

Canada (PHAC), the federal government supported and coordinated the responses at the 

provincial/territorial levels. However, the core elements of COVID-19 responses were planned 

and organized by the provincial and territorial governments (91, 92). Provinces adopted different 

strategies based on their local epidemiological, political, and social contexts (93, 94). For example, 

in provinces heavily impacted during the early stages of the COVID-19 pandemic, such as Ontario 

and Québec, public health measures were primarily focused on mitigating transmission due to 

already high levels of sustained community spread, despite quite stringent NPIs. At the other end 

of the spectrum, in the four Atlantic provinces (New Brunswick, Newfoundland and Labrador, 

Nova Scotia, and Prince Edward Island) there were less outbreaks, and outbreaks were more 

rapidly detected and controlled. As such, early interventions in those provinces were aimed at 

avoiding case importation. Together, they created the “Atlantic Bubble”, which allowed 

unrestricted travel among residents of the four provinces, but restricted travel for travelling from 

elsewhere (e.g., those from neighboring Québec). However, this policy was suspended in late 
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November 2020 and gradually abandoned as sustained community transmission occurred, despite 

the “Bubble”. requiring a shift in public health strategies. 

 Both the federal and provincial/territorial governments of Canada undertook substantial 

mathematical modelling efforts. At the federal level, PHAC established an External Expert 

Modelling Group. They produced models to guide the country’s response and provided support 

and coordination across provinces and territories. They also facilitated collaboration across 

provinces through regular meetings that involved provincial/territorial modellers (95, 96). At the 

provincial level, most provinces either officially established modelling teams involving academic 

researchers or conducted in-house modelling within government units (97-101). The three 

territories of Canada, with their limited modelling capacity, primarily relied on federal modelling 

efforts or collaborated with modellers from other provinces to support their responses. The 

provincial models were used to monitor epidemic indicators, project healthcare demands and 

resources planning, evaluate impacts of interventions, and optimize vaccine rollout strategies. 

These modelling efforts complemented those of the academic community that published several 

influential models in Canada (95, 100, 102-105). 

2.4. Determinants and heterogeneities in SARS-CoV-2 transmission 

The transmission of SARS-CoV-2 is determined by multiple factors including biological, 

virological, social, and environmental ones. Variations in host characteristics including age, 

comorbidity, viral load, and immune responses also contribute to differential transmissibility and 

susceptibility. Studies have found lower proportions of asymptomatic infections among older age 

groups compared to children (106, 107), while asymptomatic cases, though less infectious, can go 

undetected (i.e., not isolated) and contribute to onward SARS-CoV-2 transmission (108). 

Individuals’ viral load and antibody levels (immunity acquired from natural infection or vaccine-

induced) are directly linked to their infectiousness and susceptibility (109, 110). Additionally, 

variations in individual-level viral loads can lead to overdispersion in transmission (i.e., 

“superspreading events”), which can result in many secondary infections being caused by a small 

proportion of cases (111, 112). Considering this, a NPI that limits large gatherings may be more 

effective for SARS-CoV-2 than for a pathogen whose transmission is not overdispersed. 
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NPIs such as lockdown, masking, closure of non-essential business and schools, and work-

from-home order were able to reduce transmission (72, 113, 114). However, disparities in risk of 

SARS-CoV-2 infection by social determinants of health (SDOH), the nonmedical factors 

influencing health outcomes, were observed (115). Essential workers were disproportionately 

exposed to SARS-CoV-2 infections due to occupational hazard and lack (or improper use) of 

personal protective equipment (116, 117), resulting in intervention-generated inequalities in 

transmission. A study found 3.3-fold higher burden of SARS-CoV-2 cases among essential 

workers (118) while another study suggested 11.6-fold higher hazard of infection among 

healthcare workers compared to the general population (119). These occupational hazards were 

compounded by SDOH that contributed to onward transmission of the virus. Poor household 

conditions (e.g., lack of appropriate ventilation), high household density, and living in a multi-

generational household were correlated with SARS-CoV-2 infections (120-123). Other SDOH 

such as being in disadvantaged ethnic groups (e.g., visible minorities), low income (124), and 

immigrants could have negative impacts on SARS-CoV-2’s burden (125-128). These factors 

resulted in geographically and temporally clustered transmission dynamics of SARS-CoV-2.  

2.5. Morbidity and mortality of SARS-CoV-2 infection 

 The COVID-19 pandemic placed immense pressure on healthcare systems. Many hospitals, 

and particularly their ICUs, were strained and over-occupied, often for long periods (7, 129-131). 

Healthcare workers infected with SARS-CoV-2 had to isolate, which further reduced the capacity 

of hospitals to care for patients. The prolonged surges of hospital admissions also severely 

disrupted treatment and care for other conditions (132, 133). A survey conducted by WHO in May 

2020 found wide disruptions of health services for non-communicable diseases. Among the 155 

participating countries, 31% experienced partial or complete interruptions for cardiovascular 

emergency services and 63% for rehabilitation services (134).  

Besides putting pressure on health systems, the burden of SARS-CoV-2 infections was 

severe. Among the roughly 60-70% of infections that would be symptomatic (135-137), cough, 

fever, fatigue, headache, myalgias, anosmia, and diarrhea were the most common initial symptoms 

of the original strain (wild-type) of SARS-CoV-2 (138). For approximately 20% of laboratory-

confirmed SARS-CoV-2 cases, the severity of the diseases required hospitalization (139-142). 
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Patients with severe COVID-19 may develop acute respiratory distress syndrome, lymphopenia, 

thromboembolic complications, disorders of the central or peripheral nervous system, and acute 

cardiac, kidney, and liver injury that ultimately led to multi-organ failure (143-147). It was 

estimated that one-fifth to one-third of hospitalized COVID-19 patients experienced critical illness, 

among whom approximately 70% require invasive mechanical ventilation (148). The mortality 

rate among hospitalized patients was estimated to be 12% for general admissions and increased to 

41% for those who were critically ill (149). 

 Variations in the severity and mortality of SARS-CoV-2 were observed for age, sex, and 

other factors. It was estimated that the risk of hospitalization and case mortality for the original 

SARS-CoV-2 strain increased by 3.4% and 7.4% per age year (150). Male patients had 86% higher 

risk of mortality compared to female patients and those with comorbidities had a risk up to 4.9 

times higher than that of patients without comorbidities (151). Though associations between race 

and ethnicity and COVID-19 severe outcomes have been inconclusive, evidence has shown that 

socioeconomic determinants were strongly associated with outcomes of COVID-19 among ethnic 

and racial minority groups (152, 153). Disparities in healthcare resources and access (e.g., hospital 

capacity, vaccine coverage), and differences in population structure and health conditions also 

underlined the varied outcomes of patients across regions and different settings (154-157). 

Residents of long-term care homes in Canada accounted for 69% of the total COVID-19 related 

deaths during the first two waves (from March 1st, 2020, to February 15th, 2021), far exceeding the 

international average of 41% (158).  

Besides these acute symptoms, COVID-19 symptoms can persist for more than 12 weeks 

after the infection, which is known as “long COVID” (159). It can occur among any individual 

infected with SARS-CoV-2 and has an estimated incidence of 10-30% among non-hospitalized 

cases, 50-70% among hospitalized patients, and 10-12% among vaccinated cases (160-162). 

Symptoms of long COVID encompass multiple organ systems with the most common symptoms 

including fatigue, post-exertional malaise, cognitive dysfunction, cardiovascular, thrombotic, and 

cerebrovascular diseases (163, 164). The symptoms can last for years and can relapse (165). Long 

COVID can negatively impact individuals’ quality of life, as many affected experience difficulties 

returning to work and daily activities. It also puts a strain on the healthcare system due to the need 

for long-term, multidisciplinary care (166). 
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2.6. SARS-CoV-2 vaccines 

One of the few success stories of the COVID-19 pandemic is certainly the rapid 

development, trials, and production of SARS-CoV-2 vaccines, including the first messenger RNA 

(mRNA) vaccines (60, 167). A variety of candidates for COVID-19 vaccines are available – the 

latest update of WHO’s COVID-19 vaccine tracker and landscape recorded 183 vaccines in 

clinical development and 199 in pre-clinical development as of March 30, 2023 (168). These 

vaccines were developed using various technology platforms with different efficacies. The major 

vaccines that are granted EUA by WHO and have been instrumental in global COVID-19 

immunization efforts are summarized in Table 2.6.1. 

Table 2.6.1. Characteristics of the major vaccines approved for emergency use 

authorisation (169). Vaccine efficacy and risk ratios with 95% confidence intervals from 

randomized clinical trials are presented. 

Vaccine  Platform 
Number 

of doses 

Vaccine efficacy against Risk ratio of all-

cause mortality 

(Intervention vs 

placebo group) 

Symptomatic 

infection 

Severe or 

critical infection 

Pfizer/BioNTech  

(BNT162b2) 
mRNA 2 

97.9% 

[44.3-99.9%] 

95.7%  

[73.9-99.9%] 

1.07  

[0.52-2.22] 

Moderna  

(mRNA-1273) 
mRNA 2 

93.2% 

[91.1-94.8%] 

98.2% 

[92.8-99.6%] 

1.06 

[0.54, 2.10] 

AstraZeneca 

(AZD1222) 

Adenovirus 

(CHAdOx1) vector 
2 

70.2% 

[62.1-76.6%] 
Unavailable 

0.48 

[0.20, 1,14] 

Johnson & Johnson 

(Ad26.Cov2.S) 

Adenovirus 

(CHAdOx1) vector 
1 

66.9% 

[59.1-73.4%] 

76.3% 

[57.9-87.5%] 

0.25 

[0.09-0.67] 

SinoPharm  

(BBIBP-CorV) 

Whole inactivated 

Coronavirus 
2 

87.1% 

[64.8-86.3%] 
Unavailable Unavailable 

Sinovac 

(CoronaVac) 

Whole inactivated 

Coronavirus 
2 

69.81% 

[12.27-89.61%] 
Unavailable 

0.5 

[0.05, 5.52] 

Bharat Biotech  

(BBV152) 

Whole inactivated 

Coronavirus 
2 

77.8% 

[65.2-86.4%] 

93.4% 

[57.1-99.8%] 

0.5 

[0.17-1.46] 

Novavax 

(NVX-CoV2373) 
Protein subunit 2 

82.9% 

[50.5-94.1%] 

100% 

[87.0-100%] 

0.9 

[0.3-2.68] 

One year since the FDA approval of first COVID-19 vaccines under EUA, over 50% of 

the world’s population received at least one dose of vaccine by the end of 2021 (82). It was 

estimated that vaccinations have prevented approximately 14 million COVID-19 related deaths in 
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185 countries and territories during the first year of vaccination (87). However, significant 

inequities in vaccine access and distribution were evident – high income countries administrated 

69 times more doses per inhabitant than low-income countries within the first few months of 

vaccination (170).  

2.7. Preparing for the next Disease X pandemic 

On May 5th, 2023, WHO declared an end to COVID-19’s status as a PHEIC (171). 

However, concerns over potential future pandemics have not faded as human activities that favor 

new or re-emerging infectious diseases persist (172). Associated factors include increased risk of 

zoonotic disease spillover due to more frequent interactions between human and domestic or wild 

animal reservoirs, climate change and urbanization, and increased speed of transmission because 

of the rapid global mobility (16, 173, 174). In just the first quarter of the 21st century, there have 

already been at least eight major (re)emerging pathogens (e.g., West Nile, SARS-CoV, H1N1, 

MERS-CoV, Zika, Ebola, SARS-CoV-2, and mpox), of which two resulted in pandemics (H1N1 

and SARS-CoV-2) (175). Pandemic preparedness remains a strategic priority for the 21st century, 

as it is more cost-effective in minimizing the health, social, and economic impacts of emerging 

infectious diseases, than not taking proactive actions (176). Pandemics are mainly the result of 

human activity that influence the interactions between humans, animals, and the environment. As 

such, preventing future pandemics requires a One Health approach that involves all relevant 

sectors. One Health is an integrated approach guided by systems thinking and transdisciplinary 

action, that seeks to address urgent, ongoing, or potential health threats at the human-animal-

environment interface at subnational, national, global, and regional levels (177). It ensures a 

sustainable balance and optimizes the health of all people, animals, and ecosystems (178).  

 Disease X, a placeholder concept first introduced by WHO in 2018, represents a disease 

that is currently unknown but may cause future pandemics (179). While the range of potential 

pathogens for Disease X is large, WHO has identified a list of priority diseases for research and 

development, as the resources are limited. They include COVID-19, SARS-CoV and MERS-CoV, 

Crimean-Congo hemorrhagic fever, Ebola virus disease and Marburg virus disease, Zika, and 

several other pathogens that are considered to pose the greatest public health risk (180). 

Recognizing the role of vaccines in previous pandemics and the unprecedented speed of vaccine 
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development during COVID-19, the Coalition for Epidemic Preparedness Innovations (CEPI) 

proposed the “100 Day Mission” initiative. Embraced by the G7 and G20, this initiative aims to 

prepare the world to respond to the next Disease X by facilitating the development of safe, effective, 

and accessible vaccines within 100 days from the moment that a pathogen is sequenced and/or the 

need for a vaccine is recognized (9). In order to achieve this ambitious goal, CEPI outlined 5 areas 

of innovation that are necessary (181):  

1) Creating a library of prototype vaccines for representative pathogens from virus families 

with the greatest pandemic potential.  

2) Pre-establishing networks to facilitate clinical trials. 

3) Using advanced technology to speed up the identification of immune markers. 

4) Enhancing global manufacturing capacity for vaccines. 

5) Optimizing global disease surveillance and early warning systems. 

2.8. Knowledge and evidence gaps 

My doctoral work was completed from 2021 to 2024. The knowledge and evidence gaps 

addressed by my four articles inevitably evolved with the pandemic and its unprecedented 

scientific efforts. For instance, a search using the term “COVID-19” on PubMed resulted in close 

to 450,000 publications as of the end of November 2024. The work presented in this dissertation 

reflects the interdisciplinary nature of pandemic responses that require health scientists to draw 

from different fields. The specific knowledge and evidence gaps addressed by each of the next 

chapters are described in the following paragraphs. 

As the COVID-19 pandemic swept across the world, decision-makers were faced with 

numerous uncertainties about SARS-CoV-2. In Canada, each provincial government deployed 

various mathematical modelling efforts to guide decision-making. Documenting Canada’s diverse 

provincial mathematical modelling efforts can help understanding how local contexts influenced 

the modelling responses in each province and help draw valuable lessons for future public health 

challenges. However, these efforts have not yet been comprehensively documented, reviewed, and 

analyzed. My first thesis manuscript addresses these gaps. 
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One of the most striking features of the COVID-19 pandemic was that the risk of 

transmission, morbidity, and mortality was highly heterogenous: some people were at much higher 

risk of adverse health outcomes than others. Yet, little attention was devoted in our pandemic 

response to alleviating those health inequities. With increasing evidence on heterogeneities in 

transmission risks associated with SDOH, there was a need to understand these patterns and their 

associated factors to better understand SARS-CoV-2’s transmission dynamics in Canada. To 

address this, I conducted the first Canadian multi-provincial study that compared whether the 

magnitude of inequities varied across Canadian cities.  

Models developed and used during the pandemic were not static: they were continuously 

updated and adapted to enhance their precision and validity. Given COVID-19’s impacts on 

morbidity and mortality, quantifying the time-varying hospital burden –in terms of length of stay 

and ICU admissions– was therefore important to accurately parameterize those mathematical 

models. At that time, the only evidence available in Canada came from a single city or hospital. 

To address that, I used the administrative data of the country’s two largest province and epicenters 

of the epidemics. 

Finally, as the world moves onward from the COVID-19 emergency response, pandemic 

preparedness should remain at the crux of the global health agenda. Anticipating the next Disease 

X through potential vaccine candidates of prototype pathogens is warranted. Mathematical models 

that can evaluate the potential population-level impact of those vaccines and their immunological 

characteristics are needed. However, existing disease transmission dynamic models do not 

consider host-level variations in their time-varying viral load and immune responses. My last thesis 

manuscript addressed these knowledge gaps. 

In summary, my thesis constitutes a research program that weaves together mathematical 

modelling and evidence-to-decision pathways, heterogeneity in infections and their social 

determinants of health, patterns of healthcare consequences, and future pandemic preparedness 

and immunological characteristics of vaccines.  
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Chapter 3. Methods 

This chapter summarizes the main data sources utilized and methodological approaches 

applied across the four manuscripts. 

3.1. Data sources 

My thesis leveraged data from multiple sources including new surveys, administrative 

databases, census data, and the published scientific literature. The main data sources my thesis 

were provincial surveillance and administrative databases including laboratory data on confirmed 

SARS-CoV-2 infections and COVID-19 hospitalizations. These datasets generally contain basic 

demographic characteristics but limited sociodemographic information. As such, I leveraged 

census data to complement this gap and used the Postal Code Conversion File (PCCF) to link each 

case to their corresponding census area. Another key data source of my thesis was the Québec 

Connect study, which was used to inform the contact behavior of the mathematical model I 

developed in my fourth manuscript. The following sections give a more detailed description of 

these data sources. 

3.1.1. Provincial COVID-19 surveillance databases 

COVID-19 is a notifiable disease in each province. Healthcare is a provincial jurisdiction 

in Canada and each province manages their own COVID-19 surveillance databases. These 

databases record all identified diagnoses of SARS-CoV-2 infections by the provincial public health 

laboratories, COVID-19 hospitalizations within each province, and COVID-19 deaths. At the time 

I conducted the analyses of my second and third manuscripts, only data from some provinces were 

available for analysis without breaching any data confidentiality agreements, as summarized 

below.  

British Columbia 

In British Columbia, confirmed SARS-CoV-2 cases were recorded in the Public Health 

Reporting Data Warehouse (PHRDW) (182). First developed in 2011, this data warehouse 

continuously integrates new data on notifiable diseases per their provincial surveillance forms, 
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laboratory tests, and deaths (i.e., enteric diseases, vaccine preventable diseases, chronic diseases, 

respiratory diseases, environmental health conditions, sexually transmitted and blood borne 

infections). By linking data from different sources using a custom person-matching algorithm 

(validated match rate close to 100%), PHRDW creates de-identified profiles of individuals to 

support real-time public health surveillance, identifying trends in disease activity through linked 

and cleaned datasets prepared for analysis.  

Manitoba 

 In Manitoba, the COVID-19 surveillance data and contact tracing information were 

requested through the Manitoba Population Research Data Repository (183). This database 

integrates administrative (e.g., hospital, pharmaceutical prescriptions), survey (e.g., health survey, 

census), and registry (e.g., health insurance, vital statistics) data from agencies such as Manitoba 

Health. It supports interdisciplinary research across healthcare, education, social services, and 

justice, aiming to analyze health patterns and outcomes. Data access is managed by the Manitoba 

Centre for Health Policy. This data warehouse includes three datasets on COVID-19: COVID-19 

Lab Testing and Results Data, COVID-19 Surveillance Data – Case and Contacts, and COVID-

19 Vaccinations, Appointments, and Screening Data. The latter two are collected in the Public 

Health Information Management System. Briefly, these databases contain information on the 

laboratory tests (e.g. result, date of collection), demographic information (e.g., age, postal code), 

acquisition classifications, case outcome, risk factors, and vaccination status. 

Ontario 

 In Ontario, data on laboratory-confirmed SARS-CoV-2 cases and COVID-19 

hospitalizations were recorded in the Case and Contact Management System (CCM) (184, 185). 

The CCM system was a dynamic reporting platform designed to manage the extensive COVID-19 

data flow. It facilitated tracking cases, contacts, outbreaks, and adverse events following 

immunizations while linking lab results with data from local health authorities. On June 1, 2024, 

data entry into CCM ceased, with all COVID-19 related information transitioned to the Integrated 

Public Health Information System (iPHIS) for continued management. 
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Québec 

 In Québec, lab-confirmed SARS-CoV-2 cases and those detected through epidemiological 

links were recorded in the Trajectoire de santé publique (TSP) database (186). The TSP database 

is a comprehensive public health database to track and analyze the health trajectories of individuals 

across the province. It integrates various sources of health information, including administrative 

health data, medical service utilization records, hospitalizations, and other relevant healthcare 

interactions. During the COVID-19 epidemic, it was used to collect data on SARS-CoV-2 cases 

including epidemiological and sociodemographic information until July 13th, 2022.  

The individual-level COVID-19 hospital data were obtained from the Maintenance et 

exploitation des données pour l'étude de la clientèle hospitalière database (MED-ÉCHO live) 

(187). This database, administrated by the Ministère de la Santé et des Services Sociaux (MSSS, 

Ministry of Health and Social Services), contains clinico-administrative information on care and 

services provided to individuals admitted to, or registered with, a Québec hospital, including day 

surgeries. It is used for evaluating service needs and consumption and supports the planning, 

organization, and assessment of delivered healthcare services. Daily hospital-level capacity data 

were extracted from the Relevé quotidien du centre hospitalier report which provides a daily 

overview of active hospitalizations for COVID-19 patients (188). 

3.1.2. Canadian Census (2016)  

In my second manuscript, data from the 2016 Canadian Census of Population was used to 

inform the dissemination area (DA) level population size and social determinants of health. The 

use of census data was chosen because it is the most complete, comparable, and representative 

source of area-level characteristics of the population in each city (189). At the time manuscript 2 

was conducted, the 2016 data was the most recent available version. The sex and age structures of 

the modelled population in manuscript 4 were extracted from the 2021 Census of Population.  

The census is conducted by Statistics Canada every 5 years to provide a detailed statistical 

portrait of Canada, its residents, and citizens outside of Canada. It provides information on the 

population, age and sex, type of dwelling, families, households and marital status, language, 

income, immigration and ethnocultural diversity, housing, Aboriginal peoples, education, labour, 
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journey to work, language of work and mobility and migration (190). At each census, two cross-

sectional survey formats are conducted: the short-form and the long-form. In 2016, the short-form 

questionnaire was distributed to 100% of the population without any sampling. On the other hand, 

the long-form census was collected from a random sample of 1 in 4 private dwellings in Canada.  

Responding to the short-form census survey was mandatory (191). Quality of the responses 

were screened, and follow-ups were performed to complete missing information. Omissions and 

inconsistencies were corrected using deterministic imputation and donor imputation. Deterministic 

imputation is an approach often used to handle systematic errors or missing data by applying a 

predefined solution based on subject-matter knowledge. The donor imputation, also referred to as 

the nearest neighbour, is a technique commonly used to deal with non-responses by using values 

taken from similar respondents (192). The final responses to the long-form survey are weighted to 

represent the Canadian population living in private dwellings. 

3.1.3. Postal Code Conversion File (PCCF) and Postal Code Conversion File Plus 

(PCCF+) 

The Postal Code Conversion File (PCCF) is a tool created by Statistics Canada that links 

the six-character Canadian postal codes to standard geographic areas, such as dissemination areas 

(DAs), census tracts (CTs), census divisions (CDs), census metropolitan areas (CMAs), as well as 

other administrative geographies like health regions and federal electoral districts (193). It 

provides geographic coordinates (latitude and longitude) for each postal code’s representative 

point, enabling spatial analysis and mapping. The PCCF is updated every five years after each 

census to align with new census geographic areas. It is often used by researchers to conduct health 

services planning, demographic analysis, and policy development by associating postal codes with 

population-based data (194). 

In my second manuscript, each SARS-CoV-2 case was linked to their corresponding DA 

and CMA using the PCCF that was released in 2017. DA is the smallest geographic unit for which 

census data is distributed in Canada. It is a small, relatively stable geographic unit consisting of 

one or more adjacent dissemination blocks based on data from the preceding Census of Population 

Program. The average population for each DA is between 400 to 700 persons (195). A CMA is 

composed of one or more adjacent municipalities. To be classified as a CMA, that area must have 
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50,000 or more residents in its core area and a total population of at least 100,000, based on 

adjusted data from the previous Census of Population Program. Other adjacent municipalities are 

included in a CMA if they have a high degree of integration with the core. Once an area is 

designated as a CMA, it remains a CMA even if its total population declines below the thresholds 

(196).  

The Postal Code Conversion File Plus (PCCF+) is a SAS control program that builds on 

the PCCF by incorporating additional features, including population-weighted random allocation 

for postal codes that cover multiple DAs (197). It is served as a link between the Canada Post six-

character postal codes, census geographic areas (e.g., DA, CMA), and supplementary 

administrative regions and neighborhood income quintiles. This file was used in my second 

manuscript to obtain the income status of each DA. Data access was request through the Data 

Liberation Initiative. 

3.1.4. The Québec Connect study 

In my fourth manuscript, I developed a mathematical model to simulate the transmission 

of a novel pathogen. To efficiently capture epidemiological patterns, the social behaviors of the 

modelled population need to be reproduced. This was informed by data extracted from the Québec 

CONNECT study (CONtact and Network Estimation to Control Transmission). It is a population-

based survey aimed to understand the contact patterns and social networks of all non-

institutionalized Quebecers (e.g., residents of long-term care homes were not eligible). The survey 

was conducted through 4 phases which covered the period before, during, and after the pandemic: 

February 2018 to March 2020 (phase 1); April 21st to May 25th, 2020 (phase 2); and July 3rd, 2020, 

to February 26th, 2021 (phase 3 to 5). The recruitment procedure involved two stages of sampling. 

First, a digit dialing sampling of households was used to recruit participants. This sampling method 

is often used to provide a sample of households, families, or persons through a random selection 

of their telephone numbers (198). Then, stratified sampling based on the age and sex structures of 

the household was used to select one person in each household to complete the questionnaire. For 

each participant, their sociodemographic characteristics as well as their contacts, relationship 

information, locations of contacts, durations, and frequency of contacts were collected. Data used 
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in my manuscript were extracted from published figures. Detailed description and methodology of 

the study are summarized in Drolet et al. (199). 

3.2. Methodologies used 

I employed a variety of epidemiological methods in my thesis, from descriptive, analytic, 

to modelling and simulation approaches. This section follows the order of my manuscript to briefly 

describe the study designs and the methods I utilized. Some justifications and explanations of the 

designs and methods that were not included in the manuscripts are presented here. 

3.2.1. Manuscript 1: Narrative review and customized data collection tool 

My first manuscript is a review of the provincial modelling efforts that informed responses 

to the COVID-19 epidemics in Canada. As published information in the peer-reviewed literature 

to document these experiences was scarce, a systematic review would have provided an incomplete 

picture of the situation. Instead, I chose to conduct a narrative review. This type of review is useful 

to obtain perspectives on complex topics thanks to its ability to synthesize varied information and 

provide a comprehensive summary (200, 201). Although this method could be more prone to bias 

than a systematic review, it allows the authors to integrate findings from diverse sources, highlight 

knowledge gaps, and provide interpretation, which can help contextualize findings and propose 

meaningful new insights (202).  

Provincial teams were identified using a Criterion-I purposeful sampling strategy, a 

technique widely used in qualitative research to identify and select all cases that meet some 

predetermined criterion of importance (203). To collect the necessary information from each 

provincial team, I created a customized data collection tool to gather detailed information from 

identified provincial modelling teams. The tool was designed to capture 1) model type, 

characteristics, and evolution, 2) surveillance data used to inform the models, 3) knowledge 

translation structure, and 4) main challenges encountered in a structured format. Key points were 

listed to ensure the collection of the most essential information. The tool was administered through 

a digital survey to facilitate efficient data collection while minimizing the burden on the teams.  
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3.2.2. Manuscript 2: Measurements of inequality and social determinants of health 

For this manuscript, I used a multi-provincial lens to quantify and compare the city-specific 

geographical concentration of SARS-CoV-2 by social determinants of health. However, 

harmonizing, validating, and pooling administrative and surveillance data from multiple provinces 

in Canada is extremely challenging (204-206). Provincial legislation mandates that 

“administrative data cannot cross provincial jurisdictional boundaries, requiring that linkage and 

analyses take place province-by-province” (205), creating “legal interoperability” barriers to data 

sharing. In addition, socio-demographic variables related to important social determinants of 

health were often not collected in surveillance databases. To overcome these barriers, and to have 

a broader picture of the inequalities of SARS-CoV-2 transmission across Canada, I used an 

ecological study design by examining at the DA-level. To do so, I developed and deployed a 

decentralized data processing approach that ensured the confidentiality of provincial surveillance 

data and enabled interpretation across provinces. Briefly, I cleaned, coded, and analyzed all 

Québec data as a part of the provincial modelling team in Québec. After that, I generalized the 

code to ensure that the other provincial teams could easily use my codebase for their purposes. 

Then, a detailed analysis plan, the code, and examples of outputs were distributed to each 

provincial team, along with province-specific meetings for further explanation and 

troubleshooting. This approach allowed consistency in the analytical approach across provinces. 

Provinces with DA-level SARS-CoV-2 data available were included in the study. The 

choice of the CMAs followed the criteria that ensured a sufficiently large numerator (the cases) 

and denominator (population size) with which local transmission patterns could be examined. The 

selection of social determinants of health (SDOH) were based on the characteristics of SARS-

CoV-2 transmission (i.e., those related to contact rates and types of potential exposures) and the 

existing literature. The final list of SDOH examined was limited by the availability of DA-level 

data. A detailed list of the SDOH and their definitions are provided in Table 5.4.1. 

The area-level concentration of SARS-CoV-2 cases were quantified using Gini 

coefficients, calculated as twice the area under the Lorenz curve (207). The Gini coefficient is a 

statistical measure of inequality that ranges from 0 to 1, where 0 represents perfect equality and 1 

means perfect inequality (208). The inequalities by SDOH were measured using Gini covariance 
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(co-Gini) coefficients and concentration curves (209). Compared to other assessments of 

inequalities, such as the concentration index, weighted correlation, and regression, the Gini 

coefficient is widely recognized and interpretable across disciplines, which can facilitate greater 

understanding of results for a broader audience. Moreover, the Gini coefficient is a non-parametric 

measure (209).  

3.2.3. Manuscript 3: Risk of in-hospital mortality using logistic regression 

For my third manuscript, I conducted a retrospective population-based cohort study using 

provincial databases on COVID-19 hospitalizations from Ontario and Québec. The risk of in-

hospital mortality was estimated using a logistic regression with cubic splines for calendar time, 

adjusted for patient-level characteristics and hospital-level determinants. The choice of logistic 

regression over survival analysis for a time-to-event outcome with censoring was based on my 

research question that aimed to examine variations in the in-hospital mortality risk over time, 

instead of hazard ratios or the time-to-death. This is in line with previous analyses that used logistic 

regression to examine in-hospital mortality risk due to COVID-19 (210-212). The time-varying 

adjusted mortality risks and 95% confidence interval (CI) were obtained using marginal 

standardization with 1,000 bootstrap replicates of the individual hospitalizations. Marginal 

standardization is a method that sums predicted probabilities to create a weighted average that 

reflects the distribution of characteristics in the target population. This allows for inferences to be 

made about the total population (marginal instead of conditional) from which the data was drawn 

(213). 

When measuring the length of stay, approximately 17% of the hospitalizations in Ontario 

were missing the date of discharge and were therefore excluded from the analyses, assuming data 

were missing completely at random. The rationale for this assumption stemmed from a 

combination of expert insights and data. Surveillance data specialists from Ontario suggested that 

the missing dates were due to clerical errors made by the medical archivists who entered the 

information and were thus likely independent from the characteristics of the hospitalizations. 

Supporting this claim, I conducted an empirical examination of potential differences in the age and 

gender distribution of the hospitalizations with observed and missing dates. I found that these were 

almost identical. 
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3.2.4. Manuscript 4: Mathematical model of disease transmission 

The 2024 update of WHO’s disease research and development (R&D) Blueprint for 

Epidemics Priority Pathogens listed several respiratory virus families including Coronaviridae 

(e.g., family of SARS-CoV-2 virus) and Orthomyxoviridae (e.g., family of influenza virus) as high 

PHEIC risk. For respiratory viruses, the host’s viral load level is highly associated with 

infectiousness and the duration of infection (10). To examine the desired vaccine features for a 

potential Disease X caused by such a respiratory virus, I adopted a mathematical modelling 

approach that combines the between-host population transmission of infection and the within-host 

individual-level dynamic of viral load and immune responses. Mathematical models can simulate 

the transmission of a hypothetical pathogen and the impact of potential vaccine scenarios that 

capture both the direct and indirect (herd-immunity) benefits of vaccination. Broadly, 

mathematical models of infectious diseases can be classified into two categories: compartmental 

models and individual-based models (IBM) (214). Compartmental models are a common approach 

that divide the study population into different compartments according to their infection status and 

other characteristics (e.g., age, sex, intervention) (215). These models are often programmed using 

a set of ordinary differential equations (ODE) and are generally more computational efficient than 

IBMs (216), if the number of compartments is reasonably small. IBMs, on the other hand, simulate 

each individual within the population, which allows a high level of population heterogeneity, more 

complex behaviors, and memory-dependent interventions or processes (e.g., contact tracing) (217, 

218). As such, I developed a hybrid approach that combines an IBM of inter-host transmission 

with within-host compartmental models of virus and antibody dynamics. The IBM of this hybrid 

model was used to simulate: 1) the time-varying between-host contact network, stratified by 

household or non-household contacts, 2) virus transmission (based on the within-host viral load 

and antibody level of each individual), 3) natural progression of the disease (i.e., infection, 

hospitalization, and death), and 4) vaccine characteristics and rollout strategies. 

My hybrid modelling approach also used compartmental models. Specifically, target cell-

limited (TCL) models are mathematical models that describe the dynamics of viral infections 

within a host, that are often used in studies of HIV and influenza (219, 220). The dynamics of viral 

infections describe how a virus interacts with the host’s cells and immune system over time (221). 

A TCL assumes that viral replication is primarily constrained by the availability of uninfected 
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target cells. In studies of the SARS-CoV-2 virus, extension of the TCL model with an eclipse 

phase (TCLE model) was found to provide the best fits to empirical data (222). The eclipse phase 

of the infected cell is defined as the time elapsed between successful cell infection and the start of 

virus production (223). As such, in manuscript 4, a TCLE model proposed by Marc et al. (110) 

was utilized to project the individuals’ time-varying viral load. To model the antibody kinetics 

(i.e., the temporal changes in the concentration of antibodies), the mechanistic model proposed by 

Clairon et al. (224) was adopted. This simplified model is more computationally efficient, and it 

can analyze the joint kinetics of anti-spike IgG antibodies (i.e., an antibody that targets the spike 

protein of SARS-CoV-2) and neutralization capacity (i.e., the antibody’s ability to block the virus 

from infecting host cells). 

3.3. Ethics 

This thesis used existing studies, publicly available information, and individual participant 

data to conduct secondary data analyses. All individual-level data were de-identified. Ethics 

approvals were not required for my first and fourth manuscripts, as confirmed by McGill’s 

Institutional Review Board. For my second manuscript, ethics approvals were obtained from the 

Research Ethics Board of the University of British Columbia (H20-02097), the Health Research 

Ethics Board of the University of Manitoba (HS24140 (H2020:352)) and the Health Information 

Privacy Committee of the Government of Manitoba (No. 2020/2021-32) in Manitoba, the Health 

Sciences Research Ethics Board of the University of Toronto (no. 39253) in Ontario, and the 

Institutional Review Board of McGill University in Québec (A06-M52-20B). Ethics approvals for 

my third manuscript were acquired from the Health Sciences Research Ethics Board of the 

University of Toronto (no. 39253) in Ontario, and the Institutional Review Board of the Faculty 

of Medicine and Health Sciences of McGill University in Québec (A06-M52-20B). 
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Chapter 4. Canada’s Provincial COVID-19 Pandemic Modelling Efforts 

4.1. Preface to Manuscript 1 

Mathematical modelling efforts during the COVID-19 pandemic were not developed in 

isolation–they were built upon the experiences and frameworks developed during previous 

epidemics and pandemics. At the beginning of the COVID-19 pandemic, models from the United 

Kingdom highlighted the potentially high morbidity and mortality burden of unmitigated SARS-

CoV-2 transmission. In that country, the COVID-19 response was relatively centralized, and 

modelling efforts were primarily performed by members of the Scientific Pandemic Influenza 

Group on Modelling-Operational (SPI-M-O) that reported directly to the Scientific Advisory 

Group for Emergencies (SAGE) (225, 226). In contrast, the response was decentralized in Canada. 

Most provinces developed their own modelling approaches to inform their local public health 

responses.  

Provincial modelling efforts, in contrast to those of the academic community (95, 100, 102-

105), have not undergone formal review yet. This is, in part, because the research agenda 

prioritized immediate public health needs over publication-oriented activities. My first thesis 

manuscript addresses this gap, documenting and analyzing Canada’s provincial COVID-19 

mathematical modelling approaches. By contextualizing provincial responses and challenges 

within the Canadian landscape, this chapter sets the foundation for understanding how 

mathematical frameworks guided decisions for managing the pandemic. It forms an important 

starting point for improving Canadian pandemic preparedness. Importantly, the review of the 

models in this manuscript also provides foundational insights into why my second and third 

manuscripts are vital for understanding and improving pandemic responses in Canada.  

The resulting article was published in Canadian Journal of Public Health (CJPH) in May 

2024. 
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Abstract 

Setting: Mathematical modelling played an important role in the public health response to 

COVID-19 in Canada. Variability in epidemic trajectories, modelling approaches, and data 

infrastructure across provinces provide a unique opportunity to understand the factors that shaped 

modelling strategies. 

Intervention: Provinces implemented stringent pandemic interventions to mitigate SARS-CoV-2 

transmission, considering evidence from epidemic models. This study aimed to summarize 

provincial COVID-19 modelling efforts. We identified modelling teams working with provincial 

decision-makers, through referrals and membership in Canadian modelling networks. Information 

on models, data sources, and knowledge translation were abstracted using standardized 

instruments. 

Outcomes: We obtained information from 6 provinces. For provinces with sustained community 

transmission, initial modelling efforts focused on projecting epidemic trajectories, healthcare 

demands, and evaluating impacts of proposed interventions. In provinces with low community 

transmission, models emphasized quantifying importation risks. Most of the models were 

compartmental and deterministic, with projection horizons of a few weeks. Models were updated 

regularly or replaced by new ones, adapting to changing local epidemic dynamics, pathogen 

characteristics, vaccines, and requests from public health. Surveillance datasets for cases, 

hospitalizations and deaths, and serological studies were the main data sources for model 

calibration. Access to data for modelling and the structure for knowledge translation differed 

markedly between provinces. 

Implication: Provincial modelling efforts during the COVID-19 pandemic were tailored to local 

contexts and modulated by available resources. Strengthening of Canadian modelling capacity, 

developing and sustaining collaborations between modellers and governments, and earlier access 

to linked and timely surveillance data could help improve pandemic preparedness. 
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Résumé 

Contexte : La modélisation mathématique a joué un rôle de premier plan dans les ripostes 

sanitaires à la COVID-19 au Canada. Les différentes trajectoires épidémiques provinciales, leurs 

approches de modélisation et infrastructures de données représente une occasion unique de 

comprendre les facteurs qui ont influencé les stratégies de modélisation provinciales. 

Intervention : Les provinces ont mis en place des mesures de santé publique strictes afin 

d’atténuer la transmission du SRAS-CoV-2 en tenant compte des données probantes provenant des 

modèles épidémiques. Notre étude vise à décrire et résumer les efforts provinciaux de modélisation 

de la COVID-19. Nous avons identifié les équipes de modélisation travaillant avec les décideurs 

provinciaux parmi les réseaux Canadiens de modélisation et par référence. Les informations sur 

les modèles, leurs sources de données et la mobilisation des connaissances ont été obtenues à l’aide 

d’instruments standardisés. 

Résultats : Nous avons colligé les informations provenant de 6 provinces. Pour les provinces qui 

ont eu de la transmission communautaire soutenue, les efforts de modélisation initiaux se sont 

concentrés sur la projection des trajectoires épidémiques, des demandes de soins de santé et sur 

l’évaluation des impacts des interventions proposées. Dans les provinces où la transmission 

communautaire a été faible, les modèles visaient à quantifier les risques d’importation. La plupart 

des équipes ont développé des modèles à compartiments déterministes avec des horizons de 

projection de quelques semaines. Les modèles ont été régulièrement mis à jour ou remplacés par 

de nouveaux, s'adaptant aux dynamiques locales, à l’arrivée de nouveaux variants, vaccins et des 

demandes des autorités de santé publique. Les données de surveillance des cas, des hospitalisations 

et des décès, ainsi que les études sérologiques, ont constitué les principales sources de données 

pour calibrer les modèles. L’accès aux données pour la modélisation et la structure de mobilisation 

des connaissances différaient considérablement d’une province à l’autre. 

Implication : Les efforts de modélisation provinciaux pendant la pandémie de la COVID-19 ont 

été adaptés aux contextes locaux et modulés par les ressources disponibles. Le renforcement de la 

capacité canadienne de modélisation, le développement et le maintien de collaborations entre les 

modélisateurs et les gouvernements, ainsi qu'un accès rapide et opportun aux données de 
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surveillance individuelles et liées pourraient contribuer à améliorer la préparation aux futures 

pandémies. 
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Pandemic; SARS-CoV-2.  
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1. Introduction 

 Governments worldwide have relied on epidemic modelling, along with other 

epidemiological studies, to guide responses to the coronavirus disease (COVID-19) pandemic 

(James et al., 2021; McBryde et al., 2020; Rhodes & Lancaster, 2020). Mathematical models of 

infectious diseases can integrate knowledge about the pathogen, human behaviors, and 

interventions to generate projections under various “what if” scenarios that considers uncertainty 

(Brooks-Pollock et al., 2021; MacIntyre & Heslop, 2022). These tools have been previously used 

to inform public health responses to such as Ebola, Zika, and HIV (Johnson & White, 2011; 

Lewnard et al., 2014; Morrison & Cunha, 2020) —but their unprecedent adoption during the 

COVID-19 pandemic created tensions in the production and use of modelling. In Canada, these 

efforts were partly inspired by earlier works against SARS in 2003 (Gumel et al., 2004) and the 

2009 H1N1 influenza (Biggerstaff et al., 2022; York University. (n.d.)). 

The federal Public Health Agency of Canada (PHAC) developed models (Gabriele-Rivet 

et al., 2021; Ludwig et al., 2020; Ogden et al., 2020) to advise national-level public health matters 

(e.g., border closures, vaccine distribution (National Collaborating Centre for Infectious Diseases, 

n.d.; Government of Canada, n.d.)). PHAC served an important convening role through its 

“External Modelling Experts Group” that established a network of provincial and territorial 

modelling experts, providing support, coordination, and facilitating collaborations (Allin et al., 

2022b). The Canadian federal government was responsible for procurement of personal protective 

equipment, testing kits, vaccines and testing kits, and provision of financial support. However, 

some of the core elements of the COVID-19 responses were planned and organized by Canadian 

provincial and territorial governments (Allin et al., 2022a; Canadian Public Health Association, 

2021). Complementary to PHAC’s convening role, provinces and territories relied on their own 

modelling teams to monitor and project epidemic trends, plan for healthcare resources, and assess 

the potential impact of various pharmaceutical/non-pharmaceutical interventions (e.g., physical 

distancing, school closures, curfews, vaccine passport, immunization strategies) (BC COVID-19 

Modelling Group, n.d.; Government of Alberta, 2020; Government of Saskatchewan, n.d.; Hurford 

et al., 2021; Government of Manitoba, n.d.; INSPQ, n.d.; INESSS, n.d.; Ontario COVID-19 

Science Advisory Table, n.d.). Despite having similar health systems, provincial/territorial teams 

employed a wide range of models that answered different questions. This diversity provides a 
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unique opportunity to understand how the different provincial/territorial contexts influenced what 

modelling strategies were chosen and how collaborations, knowledge translation and exchange 

between modellers and decision-makers were structured.  

This study aims to describe, summarize, and analyze provincial COVID-19 modelling 

efforts in Canada. There has been no comprehensive overview of those efforts, and this will 

complement the province-specific literature on the subject (Hillmer et al., 2021). Specifically, we 

document the main model types, their evolution, the availability of surveillance data and other 

resources, the strategies used to mobilize modelling expertise and sustain collaborations, and how 

these models shaped the pandemic responses. Documenting and understanding Canada’s diverse 

provincial modelling efforts will help us draw appropriate lessons for future public health 

challenges (Eker, 2020; Padmanabhan et al., 2021; Soman Pillai et al., 2020; Tan, 2006). 

2. Methods 

We reviewed Canada’s provincial modelling efforts by identifying the main modelling 

teams with government mandates to model SARS-CoV-2 in British Columbia (BC), Alberta (AB), 

Saskatchewan (SK), Manitoba (MB), Ontario (ON), Québec (QC), New Brunswick (NB), Nova 

Scotia (NS), Prince Edward Island (PE), and Newfoundland and Labrador (NL) between March 

2020 and December 2021. We included dynamic transmission models and excluded those used 

solely to estimate the effective reproduction number or other epidemiological quantities (e.g., 

phenomenological models). 

Teams were identified through memberships in modelling networks and referrals. Once 

identified, data collection instruments were provided to abstract information on four domains: a) 

model type, characteristics, and evolution, b) surveillance data used to inform the models, c) 

knowledge translation structure, and d) main challenges encountered. A total of 20 models were 

included in this review, and results are summarized as a narrative review. 
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3. Results 

3.1 Overview of epidemic settings and initial modelling efforts 

Shortly after declaration of public health emergencies in March 2020 (Mishra et al., 2022; 

Vickers et al., 2022; Xia, Ma, Buckeridge, et al., 2022; Xia, Ma, Moloney, et al., 2022), several 

provinces mandated modelling groups to support responses: SK’s University of Saskatchewan 

Computational epidemiology & Public Health Informatics Laboratory (CEPHIL), ON’s COVID-

19 Modelling Consensus Table (MCT) (Hillmer et al., 2021), QC’s two COVID-19 modelling 

teams at McGill University and Université Laval , and NL’s Predictive Analytics Team (CanLII, 

n.d.). In total, half of the provinces established modelling teams composed of academic researchers 

working in collaboration with provincial governments. Throughout the pandemic, most provinces 

had one or two main modelling teams while ON and BC mobilized several teams simultaneously. 

Some provinces (MB, NS) relied primarily on internal teams within health authorities. In other 

cases, academic modellers provided assistance and expertise (AB, NB, PE). Public availability of 

information on these models’ methods was limited in most cases. In all provinces, modelling 

projections from PHAC were often referenced and informed policymaking in provinces with 

limited modelling capacity. Atlantic provinces faced specific circumstances (i.e., timing of travel 

and spread), which allowed for a suppression strategy and maintained very low prevalence of 

community cases before June 2021. In NL, modelling efforts quantified the risk of SARS-CoV-2 

importation on community transmission (Hurford et al., 2021, 2023). For other provinces, a 

mitigation strategy was adopted due to sustained community transmission. Policies were aimed at 

“flattening” the epidemiological curve and maintaining hospitalizations below hospital capacity 

(Government of British Columbia, 2020; Government of Alberta, n.d.; University of 

Saskatchewan, n.d.; Tuite et al., 2020). Modelling efforts were mainly focused on: 1) projecting 

epidemic indicators (e.g., cases, hospitalizations, deaths) and demands on healthcare resources; 

and 2) evaluating the potential impact of proposed interventions (Table 4.2.1). 
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Table 4.2.1 Features of mathematical models and type of evidence provided to policy makers during the epidemic in each 

province. 

a. Provinces with initial sustained community transmission that aimed to control transmission (mitigation strategy) 

Use of the 

evidence 
Model type Developer Overarching Goal 

Projection 

horizon 

Update 

frequency 

Direct reporting 

institution 
Public availability 

British Columbia        

Impact evaluation 

and forecasting 

epidemic 

indicators 

Covidseir 

(compartmental) 

SFU/DFO/ 

UBC/BCCDC 

Estimating the impact of 

distancing measures, the 

leeway to relax measures, 

and forecast cases under 

different scenarios 

3-8 weeks Weekly Governmental 

institutes  

(BC center of 

disease control) 

Code is available on 

GitHub 

Forecasting 

epidemic 

indicators and 

modelling contact 

tracing 

Branching process 

(stochastics) 

MOH/SFU/UB

C/BCCDC 

Estimate impact of 

contact tracing in lower-

incidence circumstances 

2-6 weeks Weekly Governmental 

institutes  

(BC center of 

disease control) 

Findings disseminated in 

COVID-19 

communications 

Modelling time-

varying contact 

rates 

Age- and contact-

structured model 

(compartmental) 

BCCDC/UBC Vaccination rollout, 

modelling with BC Mix 

survey data. 

Not used for 

routine 

projections 

Ad hoc Governmental 

institutes  

(BC Centre for 

Disease Control) 

Methodological details 

available as a journal 

article (Iyaniwura et al., 

2022; Ringa et al., 2022). 

Forecasting 

epidemic 

indicators and 

impact evaluation 

(in long-term care) 

Combined 

compartmental with 

Bayesian hierarchical 

model 

BCCDC/SFU Estimate transmission 

potential and impact of 

interventions in long-term 

care settings in BC.  

Not used for 

routine 

projections 

Ad hoc as 

work took 

place 

Governmental 

institutes  

(BC Centre for 

Disease Control) 

Code is available on 

github. Methodological 

details and results 

published as journal article 

(Stockdale et al., 2022). 

Planning for 

vaccine allocation 

Essential workers 

model & modified 

covidseir (both 

compartmental) 

SFU MAGPIE 

group (Colijn) 

& BCCDC 

Compare vaccination 

rollout 

1-6 months Ad hoc Governmental 

institutes  

(BC Centre for 

Disease Control) 

Code is available on 

GitHub 

Alberta        

Policy 

development, 

impact evaluation, 

and planning for 

healthcare 

resources 

Compartmental SIR 

Model 

Alberta Health/ 

University of 

Alberta 

Estimate transmission, 

underreporting, impacts 

of public health 

interventions and project 

case counts and 

hospitalizations 

4-6 weeks Ad hoc Alberta Health Results shared by CMOH 

at various times during the 

pandemic.  
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Use of the 

evidence 
Model type Developer Overarching Goal 

Projection 

horizon 

Update 

frequency 

Direct reporting 

institution 
Public availability 

Saskatchewan        

Impact evaluation 

and planning for 

healthcare 

resources 

(Feb 2020-Mar 

2020) 

Compartmental model University of 

Saskatchewan 

Computational 

Epidemiology 

& Public Health 

Informatics 

Laboratory 

Estimating transmission 

and projecting case count 

and hospitalizations 

12 months Not 

updated -- 

Replaced 

by below 

modelling 

types of 

4/2020 

Governmental 

institutes 

(Saskatchewan 

Health Authority 

and Saskatchewan 

Ministry of 

Health; J Basran 

co-lead) 

Findings disseminated via 

initial MoH press briefings 

Forecasting 

epidemic 

indicators and 

planning for 

healthcare 

resources 

 

(Jun 2020-Jul 

2020) 

 Hybrid Age & 

Regional Stratified 

compartmental -ABM-

DES with detailed acute 

care DES 

 Acute-care capacity 

planning 

12 months Not 

updated -- 

Replaced 

by below 

modelling 

types of 

summer 

2020 

 

 Findings disseminated via 

physician town halls & 

semi-weekly MoH press 

briefings 

Impact evaluation 

and planning for 

medium-term 

healthcare 

resources 

(Apr 2020-

Present) 

Hybrid geographically 

explicit agent-based & 

discrete event 

simulation model 

 Evaluating candidate 

regional & province-wide 

public health orders 

Long-term scenario 

projection 

Assessing LTC rules 

3-12 months Biweekly  Findings via physician 

town halls & semi-weekly 

MoH press briefings 

Forecasting 

epidemic 

indicators and 

planning for short-

term healthcare 

resources 

(Jun 2020-Present) 

Machine Learning 

(Bayesian Particle 

Filtered/SMC) 

compartmental model 

 Providing accurate daily 

reporting on diverse 

epidemiological quantities 

from health system & 

wastewater data 

Projecting posterior state 

estimate forward 

Multi-week Daily Governmental 

institutes 

(Saskatchewan 

Health Authority 

& Saskatchewan 

Ministry of 

Health) 

Findings disseminated 

daily via dashboard & 

email & 

physician town halls & 

semi-weekly MoH press 

briefings 

Manitoba        

Details on the modelling works were not publicly available 
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Use of the 

evidence 
Model type Developer Overarching Goal 

Projection 

horizon 

Update 

frequency 

Direct reporting 

institution 
Public availability 

Ontario        

 

Impact 

evaluation, 

planning for 

healthcare 

resources, and 

vaccine 

allocation 

CORE Model 

(agent-based) 

COVID-19 

Modelling 

Collaborative 

(University 

Health Network, 

Sunnybrook 

Hospital, 

University of 

Toronto, others)  

Estimating acute care 

resource use (hospital and 

ICU admissions and 

occupancy, mechanical 

ventilations) under different 

scenarios and interventions. 

Also use to estimate acute 

care PPE demand and ICU 

medication demand. 

Multi-week Variable 

(weekly to 

bi-weekly 

in 1st year, 

approx. 

monthly in 

2nd year) 

Modelling consensus 

table, Governmental 

institutes, Science 

advisory tables (e.g., 

critical care table)  

Model description 

published as journal 

article (Barrett et al., 

2020). Findings were 

routinely published in 

Science Table updates. 

 CORE+ Model 

(agent-based) 

COVID-19 

Modelling 

Collaborative 

(University 

Health Network, 

Sunnybrook 

Hospital, 

University of 

Toronto, others) 

Estimating transmission and 

projecting case count under 

different scenarios and 

interventions (non- 

pharmaceutical interventions, 

vaccines, school closures) 

Multi-week Variable 

(approx. 

monthly) 

Modelling consensus 

table, Governmental 

institutes  

Model description and 

results (assessment of 

the effect of school 

closures) published as 

journal article 

(Naimark et al., 2021). 

Findings were 

described in some 

Science Table updates. 

 McMaster 

Pandemic 

("macpan") 

(compartmental) 

McMaster 

macpan working 

group 

Estimate effects of non- 

pharmaceutical interventions 

(NPI) and vaccines on 

epidemic dynamics and health 

care system burden under 

different scenarios 

A few weeks 

to a few 

months 

Every 3 

weeks 

Modelling consensus 

table 

Code is available on 

GitHub; results are 

described in blog posts 

on GitHub and in  

Science Table updates . 

 Western-LHSC 

Covid Model 

(compartmental) 

Lauren Cipriano 

& Wael Haddara 

Estimate effects of NPIs, 

vaccines, testing strategies, 

and arrival of new variants on 

epidemic dynamics and health 

care system burden under 

different scenarios 

A few weeks 

to a few 

months 

Every 3 

weeks 

Modelling consensus 

table, governmental 

institutes (London 

health science center) 

and community health 

system partners. 

Two public reports 

outline methods, 

assumptions, and data 

sources in detail. 

Planning for 

vaccine 

allocation 

COVID Hotspot 

Model 

(compartmental) 

Unity Health 

Toronto 

Compare vaccination 

prioritization and roll-out 

strategies 

Up to 3 

months 

Variable, 

and ad-hoc 

Modelling consensus 

table, Governmental 

institutes 

Mixing code publicly 

available, remainder of 

code is not yet publicly 

available, public reports 

outline methods 
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Use of the 

evidence 
Model type Developer Overarching Goal 

Projection 

horizon 

Update 

frequency 

Direct reporting 

institution 
Public availability 

Québec        

Planning for 

healthcare 

resources 

INESSS-McGill 

model 

(compartmental) 

McGill 

University 

COVID-19 

modelling team 

Monitoring the evolution of 

SARS-CoV-2 transmission 

to evaluate hospital demands 

for COVID-19 regular and 

ICU beds under different 

scenarios 

3 weeks Weekly Institut national 

d'excellence en 

santé et services 

sociaux 

(INESSS) 

Description of the early 

model is published as 

journal article (Godin et al., 

2021); first version of code 

is available on GitHub; 

equations and results 

available on INESSS 

website. 

Impact evaluation INSPQ-ULaval 

model 

(compartmental, 

stochastic) 

Université 

Laval COVID-

19 modelling 

team 

Examine the potential impact 

of NPIs and vaccination 

strategies on the dynamics of 

infection, detected cases, 

hospitalizations, and deaths 

by age 

Up to 6 

months 

Variable Institut National 

de Santé 

Publique du 

Québec (INSPQ) 

Results and methods are 

available on INSPQ website. 

 

b. Provinces that aimed to eliminate transmission and avoid case importation (suppression strategy) 

Newfoundland and Labrador       

Assessing 

effectiveness of 

an existing policy 

Memorial U Travel 

Restrictions Model 

(compartmental, 

stochastic) 

Memorial 

University/ 

Predictive 

Analytics team 

Quantify the impact of travel 

restrictions on COVID-19  

9-weeks Not 

applicable 

Department of 

Health and 

Community 

Services, NL  

Code and data are publicly 

available on figshare and 

results are published at 

RSOC (Hurford et al., 

2021). 

U of Toronto Travel 

Restrictions Model 

(Agent-based) 

University of 

Toronto/ 

Predictive 

Analytics Team 

Quantifying the impact of 

travel restrictions on 

COVID-19  

Not 

applicable 

Not 

applicable 

Department of 

Health and 

Community 

Services, NL 

Preprint available here 

Impact evaluation 

and assessing 

effectiveness of 

an existing polity 

Memorial U 

community outbreak 

risk model 

(importations, 

stochastic) 

Memorial 

University 

Quantify the risk of a 

community outbreak given 

alternative border 

restrictions, and explore 

future scenarios for 

community outbreaks 

2-weeks Daily Department of 

Health and 

Community and 

Community 

Services, NL 

Model description and 

results are available as a 

journal article (Hurford et 

al., 2023). Code and data are 

publicly available. 

New Brunswick, Nova Scotia, and Prince Edward Island      

Details on the modelling works were not publicly available 

Abbreviation: SFU: Simon Fraser University; DFO: Fisheries and Oceans Canada; UBC: University of British Columbia; BCCDC: BC Centre for Disease 

Control; SIR: Susceptible-Infectious-Recovered; MOH: Ministry of Health; ABM: Agent-Based Model; DES: Discrete Event Simulation.
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3.2 Model characteristics, calibration, and validation 

Developing mathematical models for pandemic response involves trade-offs between data 

availability, model complexity, and computing efficiency (Padmanabhan et al., 2021). In all 

provinces, models built at early stages of the pandemic were usually simple in structure and dealt 

with substantial uncertainty in key epidemiological parameters (e.g., fraction asymptomatic, pre-

symptomatic transmission, severity) (Jewell et al., 2020). Two-thirds of those models were 

compartmental (13/20) and only two of those (2/13) were stochastic (Table 4.2.1). The remaining 

one-third were agent-based or hybrid (e.g., agent-based and discrete event simulation) models. 

Definitions of different models can be found in Box 4.2.1. The projection’s time horizon was 

usually short (a few weeks) and did not exceed 12 months.  

To capture heterogeneities in the population and refine estimates, models were often 

stratified. Common model stratification included age, geographic areas, and those that allowed for 

heterogenous contact structures (e.g., occupation, long-term care homes; LTCH). None of the 

teams developed ensemble projections that statistically combined the outputs from multiple 

models (Ray et al., 2020), although “consensus projections” were used in Ontario (Table 4.4.1). 

Box 4.2.1: Definitions of the main general types of mathematical models used by 

Canadian provincial teams during the COVID-19 pandemic. 

• Compartmental model. This type of model divides the population into distinct 

categories (i.e., compartments/states) and tracks the number of individuals 

within each of them. These models can be deterministic or stochastic. 

• Stochastic model. A stochastic model accounts for the random variations in the 

probability of transitions between states. In contrast, deterministic model will 

describe the average population without uncertainties, where the outcomes are 

completely determined by the initial conditions. 

• Agent-based model. A model that simulates the behavior and outcome of each 

individual in the modelled population. They are also referred to as individual-

based models. It enables the incorporation of a high degree of heterogeneity in 

the population and can track the trajectory of each modelled individual. 

• Discrete Event Simulation (DES). DES models the system as a series of 

‘events’ that occur over time and assumes no change in the system between 

events. In DES, patients are modelled as independent entities each of which can 

be given associated attribute information (Allen et al., 2015). 
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 Most models were calibrated to surveillance data (Table 4.4.1) using Bayesian methods. 

Other calibration algorithms include manual fitting (e.g., manually tuning parameters to reproduce 

outcomes) and optimization (e.g., minimizing the root mean square error). Among the models with 

information available, the most common calibration outcome was the daily number of new 

COVID-19 hospitalizations (7/11) and confirmed cases (6/11). The latter was especially common 

for models estimating importation risks. Serological studies, new admissions to intensive care units 

(ICU), hospital and ICU censuses of COVID-19 patients, and COVID-19 deaths were also used. 

Using surveillance data posed several challenges due to inherent under-ascertainment of cases 

(Ibrahim, 2020), nosocomial infections for hospitalizations (Xia et al., 2022), and the distinct 

transmission dynamics in specific settings (e.g., LTCH) (Wang et al., 2020) which may affect 

accuracy of projections. However, only three of the models were able to adjust for underreporting 

and/or exclude nosocomial infections and cases from LTCH (Table 4.4.1). To alleviate some of 

these issues, provincial seroprevalence studies were used (Héma-Québec, n.d.; Jentsch et al., 2021; 

COVID-19 Immunity Task Force, n.d.). This was also complemented by screening and/or 

sequencing data for new variants (e.g., B.1.1.7, B.1.351, P.1, B.1.617, B.1.1.529). Calibration to 

daily reported cases became more challenging during the Omicron wave in December 2021 when 

mass PCR testing was saturated and restricted over time in most jurisdictions while the use of at-

home rapid antigen tests was encouraged. During this period, hospitalizations were commonly 

used as calibration targets. 

The great majority of models (9/11) with information available involved some form of 

validation. Models that were not validated evaluated the potential impact of intervention(s) or 

estimated importation risks. For models projecting key epidemic indicators, validation usually 

involved comparing past projections with the observed surveillance data and identifying 

discrepancies (if any) and the reasons behind them (Table 4.4.1). Teams reported varied validation 

metrics such as the median absolute errors or compared previous projections’ uncertainty intervals 

with observed data. For models estimating the impacts of public health measures (e.g., proportional 

reduction in incidence), results were often compared with other published estimates.  
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3.3 Model evolution  

As the pandemic progressed, models were updated and new ones were developed, 

reflecting the changing epidemiology and types of interventions available (e.g., reopening, 

vaccines) (Figure 4.2.1). The key reasons for changes in model structure were a better 

understanding of the natural history of COVID-19, changes in transmission dynamics (e.g., time-

varying transmission rate among different age groups, geographical areas), the demands for more 

granular model outputs, changes in surveillance data, and the need for increased computing 

efficiency. To refine results, stratification was the most common change to model structure (86% 

of models; Table 4.4.1). Geographical areas (75%), age (67%), and occupation (17%) –key 

determinants of heterogeneities in transmission and health outcomes – were the most common 

stratification factors (Davies et al., 2020; Mishra et al., 2022; Xia, et al., 2022). None of the models 

stratified by sex/gender or ethnicity. Additionally, some models were adapted to simulate 

transmission of co-circulating variants, allowing for immune escape when warranted.  

During the course of the pandemic, new questions were asked to modelling teams, leading 

to the development of new models that provided information on optimization of vaccine allocation 

strategies. These models include the Essential Workers Model in BC (Mulberry et al., 2021), the 

Vaccine prioritization model in NL (Martignoni et al., 2022), and the Hotspot Model in ON 

(Mishra et al., 2021) that focused on geographic heterogeneity in transmission.  
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Figure 4.2.1. Evolution of models over time and the main reasons for change in selected 

provinces.  

Note: Only models with detailed information on evolution are shown. ABM=Agent-based model; 

INESSS=Institut national d’excellence en santé et services sociaux; INSPQ=Institut national de 

santé publique du Québec; SEAIR=Susceptible-Exposed-Asymptomatic-Infected-Recovered; 

UofT=University of Toronto; LHSC=London Health Science Center.  
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3.4. Data availability and access 

 Access to surveillance data was an important feature of provincial modelling efforts. Most 

of the model inputs, model parameters, and calibration outcomes were informed by such provincial 

surveillance datasets (Table 4.4.2). We can categorize data access into three broad groups (Table 

4.2.2). 

Table 4.2.2 Three broad types of surveillance data access by Canadian provincial and 

territorial modelling teams during the COVID-19 pandemic (2020-2021). 

 Data access type Provinces 

1 Teams that relied almost exclusively on publicly available information. Some teams in BC 

2 

Teams that were provided access to raw or 

aggregated epidemiological, clinical, and 

laboratory data directly by the province through: 

Data-sharing agreements. BC, SK, QC, NL 

Already-established 

partnerships. 
AB 

3 
Teams in provinces that established formal data sharing mechanisms mediated 

by a third party. 
ON’s MCT 

 Working with surveillance data presented various challenges. First, reporting delays could 

be important and were often longer during rapidly increasing waves. This was a particular 

challenge for projection models, which required minimal reporting delays and consistency across 

multiple datasets. Non-stationary reporting delays made it hard for modellers to censor time-series 

or to appropriately model those delays. Moreover, surveillance databases were often not linked 

together or standardized, especially in the first waves, with discrepancies being detected between 

some datasets. Many contact-tracing systems were managed by local public health units and often 

unharmonized across authorities, hindering data aggregation. Additionally, clinical databases were 

not linked to epidemiologic and public health databases, meaning that key information such as the 

patient’s travel history, socio-demographical characteristics, and comorbidity status were not 

systematically available. A related issue noted in some provinces was inconsistencies in 

geographic attribution for patients in public health and clinical databases. Finally, epidemics were 

marked by wide heterogeneity in transmission risk across social determinants of health (Mishra et 

al., 2020; Mishra et al., 2022; Wang et al., 2020; Xia, et al., 2022), but rarely did provinces collect 

information on these individual-level determinants. 

 Overall, engagement with public health institutes and provincial ministries of health was 

required to understand the nuances related to data collection, surveillance systems (e.g., 

communication of reporting delays) and data interpretation.  
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3.5. Team-government collaboration structure, knowledge translation, and communication 

cycles 

The organization of the modelling teams and the pathways from data to decisions varied 

greatly among provinces (Figure 4.2.2, Table 4.4.3), but can be broadly grouped in three categories 

(Table 4.2.3). 

 

 

Figure 4.2.2. Structure of provincial modelling teams and the communication of evidence to 

decision-makers and the public in Saskatchewan, Ontario, and Québec during the COVID-

19 pandemic.  
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Table 4.2.3. Types of organization of the Canadian provincial modelling teams during the 

COVID-19 pandemic (2020-2021). 

 Organization of provincial modelling teams Provinces 

1 
Small number of academic teams with direct and frequent contact with 

decision-makers 
BC, SK, QC, NL 

2 
Larger number of academic teams with communication to decision-

makers liaised by designated appointees 
ON 

3 
Government researchers producing projections in-house and/or in 

collaboration with external/academic consultants 

AB, BC, MB, NB, 

NS, PE 

Provinces with less teams had complementary models that answered different questions. 

For instance, Québec had a team responsible for weekly projections of short-term hospital demand 

and another one for medium-term forecasts and scenarios. Through routine meetings, model results 

and uncertainties were presented to decision-makers, followed by a discussion on interpretation of 

findings. Given the decision-makers’ short communication cycles, model calibration, 

interpretation, and results were usually communicated less than 24-36 hours after analyses were 

initiated (Figure 4.2.2). For provinces without sustained transmission (NL), collaborations and 

communications between the government and the modellers often occurred through case-by-case 

requests.  

Ontario was the only province with the capacity to mobilize multiple modelling teams 

working on related questions. Instead of direct team-government contact, a Modelling Consensus 

Table was established to mobilize expertise and coordinate teams, provide data, interpret findings, 

and communicate consensus results to decision-makers through appointees and routine meetings 

(Hillmer et al., 2021). The gap between receiving data and presenting results was slightly longer 

than with the smaller team structure (~2 days) but provided additional opportunity to validate 

findings.  

Despite different collaboration structures, all teams made efforts to communicate 

modelling results to the public. Reports were published on government websites (BC COVID-19 

Modelling Group, n.d.; Government of Alberta, 2020; Government of Saskatchewan, n.d.; INSPQ, 

n.d.; INESS, n.d.; Ontario COVID-19 Science Advisory Table, n.d.), and/or in scientific journals 
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(Barrett et al., 2020; Hurford et al., 2023; Hurford et al., 2021; Iyaniwura et al., 2022; Naimark et 

al., 2021; Stockdale et al., 2022). Routine press briefings were one of the most common approaches 

for direct communication to the public, and scientists were invited to answer questions concerning 

the models at the early stages of the pandemic. Additional communication efforts were also made 

at varying degrees. For example, two thirds of the models had code and/or detailed 

methodology/equations available (Table 4.2.1), while other teams focused on explaining the model 

outputs directly to the public, for example through pre-prints and dissemination of videos. Best 

practices for modelling often include providing detailed information on methods, code, and 

underlying assumptions. However, during the pandemic, the public sharing of methods was in 

some case limited due to competing needs and prioritization of urgent activities.  

Finally, only half of the academic teams with mandates received financial support directly 

from the government or through governmental operating research grants. The rest obtained other 

funding sources or worked on a volunteer basis (Table 4.4.1). 

4. Discussion 

Mathematical models of SARS-CoV-2 transmission have been extensively used at the 

provincial level in Canada to assist public health responses, with most provinces establishing 

formal collaborations with academic teams. Models were continuously updated throughout the 

pandemic to account for changes in transmission dynamics and epidemiology, as well as various 

interventions considered. We observed considerable variety in modelling approaches and 

organization of teams, reflecting diverse public health demands and modelling capacity across 

provinces. Summarizing these diverse modelling efforts offers insights into the challenges faced 

by modelling teams and valuable lessons for future public health emergencies. 

There was no “one size fits all” modelling approach or team structure, highlighting the 

distinct provincial needs for pandemic decision-making. With widespread community 

transmission and a mitigation strategy, decision-makers required various types of projections to 

tailor responses to the specific local contexts. The models were used to answer a range of 

questions: from the impact of implementing/lifting of specific measures (sometimes in distinct 

community settings), anticipation of healthcare burden, to resource planning and allocation. As 

such, models used in those provinces were often complex and relied heavily on local surveillance 
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data. The level of model complexity was a function of the research questions, while balance 

between complexity, data availability, and computational efficiency had to be achieved. For the 

Atlantic provinces, where community outbreaks were initially suppressed, different modelling 

approaches were needed (Hurford et al., 2023). 

The number and organization of the provincial modelling teams was influenced by the 

available expertise and existing relationships. With large teams, multiple models provided 

additional opportunities for cross-validation at the expense of longer lags between evidence 

generation and decision-making: aggregating evidence, resolving discrepancies (if any), and 

reaching consensus could require additional time (Chen et al., 2020; Wang, 2020). In Ontario, 

communication of aggregated evidence by specific appointees facilitated knowledge translation. 

Additionally, this structure enabled frequent dissemination of modelling evidence to the public 

and supported the scientific independence of modelling teams. Mobilizing several teams is not 

possible in settings where expertise is limited. With smaller teams, it could be easier to coordinate 

analyses and data access, as well as to establish close collaborations with decision-makers and 

other important stakeholders.  

The provincial modelling efforts in Canada shared some common features with other 

countries: from the choices of models and the data challenges (Brooks-Pollock et al., 2021; 

Meehan et al., 2020; Pagel & Yates, 2022; Panovska-Griffiths et al., 2021) to the structure used to 

mobilize evidence and knowledge translation (e.g., ON’s MCT was similar to the Scientific 

Pandemic Influenza Group for Modelling, Operational sub-group in the UK, SPI-M-O) (Medley, 

2022). One difference, however, is that provinces did not rely on ensemble modelling, an approach 

adopted by some (e.g., U.S. Center of Disease Control and Prevention (Ray et al., 2020)) to 

statistically combine multiple model outputs and produce more robust estimates (Brooks-Pollock 

et al., 2021). Similar efforts were made by PHAC using two models (Public Health Agency of 

Canada, 2021).  

As provinces transitioned away from a public health emergency response, the collaboration 

between modelling teams and decision-makers evolved. In Québec, the responsibility for weekly 

projections of COVID-19 hospitalizations was transferred to a government institute (INESSS) 

through knowledge translation activities. In Ontario, the organization (MCT) that integrated 
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modelling efforts from independent teams (Ontario COVID-19 Science Advisory Table, n.d.), was 

disbanded as part of the dissolution of Ontario Science Advisory Table, and a new structure was 

formed (i.e., the Ontario Public Health Emergencies Science Advisory Committee) under the 

jurisdiction of Public Health Ontario (Public Health Ontario, 2022). As relationships between 

governments and modelling teams continue to evolve, a key priority remains increasing 

transparency in public reporting systems and in the frameworks for synthesizing and processing 

knowledge (Shea et al., 2020). 

Supporting and strengthening collaborations between academic modelling teams and 

governments should be considered a priority for ongoing pandemic preparedness. This would help 

mitigate challenges that emerged during the COVID-19 pandemic (e.g., delayed data sharing, 

lacking data accessibility) and facilitate knowledge translation. Irrespective of the type of 

collaborations, academic and government partners should ameliorate the granularity of 

surveillance data, increase accessibility to public reporting systems while protecting privacy, and 

ensure rapid public dissemination of evidence used for decision-making (Shea et al., 2020). 

Improving our understanding of barriers to data sharing and results dissemination is needed, both 

between provincial governments and academic teams, and between provinces/territories and the 

federal government. Mechanisms to encourage collaboration and prompt sharing of privacy-

preserving linked data are required.  

     In the aftermath of the 2003 SARS outbreak, PHAC was established in order to improve 

Canada’s public health systems to anticipate and respond to public health threats (Gumel et al., 

2004). Analogously, the COVID-19 pandemic has highlighted a need to reinforce provincial-level 

mathematical modelling capacity. The ad hoc and non-systematic, process through which many 

modelling teams were set up shows the need to maintain close collaborations between a diverse 

set of modelling teams and provincial knowledge users. Future modelling initiatives need to 

consider idiosyncrasies of each province’s public health system: differences in decision-making 

culture, surveillance systems, and public health contexts; unevenly distributed modelling capacity; 

and limited public health capacity in Atlantic Canada (Public Health Agency of Canada, 2024) and 

other jurisdictions.  
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Overall, this review highlighted the following takeaways. First, surveillance systems would 

benefit from improved infrastructure to help facilitate linkage across harmonized databases. For 

academic modellers, collaboration structures and funding resources that can minimize perceptions 

of conflict of interest and prioritize independence should be considered. Second, there is a need 

for policies and resources that facilitate the appropriate use of public health data, appraisal of 

modelling assumptions by multidisciplinary teams of surveillance experts, epidemiologists, and 

public health practitioners, and modellers, and the communication and dissemination of model 

results and methodology. Third, it is important to have established protocols to facilitate data 

access and sharing during emergencies such as pandemics, and to communicate data limitations of 

surveillance systems. Cultivating ongoing collaborations and engagement between academic and 

government partners would also minimize such barriers. Finally, investments should be made to 

train and retain highly qualified personnel with modelling expertise, both in academia and in 

government. Capacity to develop multiple independent models, and to compare their results, could 

further increase the validity and reliability of modelling results. While the government of Canada 

has already made some first steps (Government of Canada, 2021), complementary efforts are 

needed at provincial levels, and operational linkages should be established between modelling 

groups. All these recommendations will help avoid the inequities and negative health outcomes 

caused by the poorly coordinated Canadian COVID-19 pandemic responses (Clark et al., 2023). 

 Our review acknowledges some limitations. First, provincial modelling teams were 

identified through referral which may have missed models and teams. However, our approach 

should have included all main provincial models used. Second, we did not consider modelling 

efforts in the territories or those for specific groups/communities despite their local importance. 

Third, we did not attempt to evaluate which models had the most accurate projections, despite its 

importance, as the latter was often contingent upon data availability and quality. In terms of 

strengths, we included detailed information on 20 models from 6 provinces to provide a 

comprehensive review of pandemic modelling efforts. 

7. Conclusion 

 Provincial modelling efforts to inform COVID-19 pandemic policy responses were tailored 

to local epidemiological situations, strategies, and available resources (e.g., trained personnel, 



 

 78 

access to surveillance data, and research funding). Access to ‘near real time’ quality surveillance 

data (Colijn et al., 2022) is crucial to pandemic modelling. Continued efforts need to be made to 

overcome data limitations, whilst balancing data privacy and governance. Furthermore, capacity 

and expertise for modelling in both governments and academic settings should be strengthened 

and resourced. 
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4.4. Manuscript 1: Supplementary Materials 

4.4.1. Supplementary tables 

Table 4.4.1. Model stratification, model validation, and detailed funding source of each model. 

Model Name Model Stratification 
Model calibration and 

validation 

Calibration 

algorithm 
Detailed funding source 

British Columbia     

covidseir 
By geographic area: BC vs. health authorities 

within BC (in the internal use)] 
/ / 

Michael Smith Foundation for 

Health Research, volunteer 

Age- and contact-structured model By age and contact structure / /   

Essential workers model By age and essential workers 
Validation: age-based 

incidence in Fall 2020.  
  Genome BC  

Alberta     

Compartmental SIR Model 
Aggregate level, vaccinations, and emerging 

variant dynamic 

Model calibrated to:  

- Historical case 

- Hospitalization 

- Immunization data 

 

Validation:  

- The performance to overall 

fit of data (post-simulation)  

- Comparisons to serology 

data (when available).  

Bayesian N/A 

Saskatchewan     

Compartmental model Not stratified / / / 

Hybrid Age & Regional Stratified 

compartmental -ABM-DES with detailed 

acute care DES 

By population type and geographic areas:  

(1) general population members 

(2) health workers in (separately) acute-care 

and associated with long-term care and 

community cohort facilities 

(3) teachers 

(4) those living on religious (e.g., in 

Saskatchewan Hutterite and Mennonite) 

colonies 

(5) workers in homeless shelters and 

associated with screening and contact tracing 

/ / / 



 

 87 

Model Name Model Stratification Model calibration and validation 
Calibration 

algorithm 
Detailed funding source 

Hybrid geographically explicit agent-

based & discrete event simulation model 
/ / / / 

Machine Learning (Bayesian Particle 

Filtered/SMC) 

compartmental model 

/ / / / 

Manitoba     

Information not available 

Ontario     

CORE Model 

(agent-based) 

By age-groups (10-year bands), 

household size, and exposure types 

(school, work, household, other) 

Model calibrated to:  

- Hospitalizations and ICU admissions by age-

group 

/ 
Funded by Ontario COVID-

19 Rapid Research Fund 

CORE+ Model 

(agent-based) 

By age-groups (10-year bands), 

household size, and exposure types 

(school, work, household, other) 

Model calibrated to:  

- Cases by age-group 

- Hospitalizations by age-group 

/ 
Funded by Ontario COVID-

19 Rapid Research Fund 

McMasterPandemic 

("macpan") 

(compartmental) 

Generic structure that facilitates 

compartmental models with 

heterogeneities in age/social/spatial 

structure and testing, vaccination in 

multiple doses, etc.  However, mostly 

homogeneously mixed versions have 

been used for forecasting to date. 

Models used for MCT forecasts were calibrated to:  

- Case reports  

and/or  

- Hospitalization reports 

The software allows calibration to any number of 

observed time series simultaneously. 

 

Code is typically validated by applying it to 

stochastic epidemic simulations for which the 

correct underlying parameter values are known. 

Bayesian 

M. G. DeGroote Institute for 

Infectious Disease Research 

(IIDR), Public Health 

Agency of Canada (PHAC), 

Canadian Network for 

Modelling Infectious 

Diseases (CANMOD). 

Western-LHSC Covid 

Model (compartmental) 

By age groups (0-4, 5-11, 12-17, 18-

24, 25-49, 50-59, 60-69, 70+) and 

two separate groups based on very 

different contact structures LTC 

residents and College/University 

students 

Model is calibrated to:  

- ICU occupancy and hospital occupancy 

- Estimated infections (case counts adjusted for 

estimated underdiagnosis) 

- Earlier versions were also calibrated to deaths.   

 

Earlier versions impacts of NPIs were validated to 

other model's estimates presented in published 

analyses from NYC and Lombardi.   

Manual fitting 

Initially some internal 

funding from Western 

University (Catalyst Grant).  

No current funding.  
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Model Name Model Stratification Model calibration and validation 
Calibration 

algorithm 
Detailed funding source 

COVID Hotspot Model 

(compartmental) 

By geographic area 

(hotspots; 10 strata) and 

age-group (10 strata) 

Model is calibrated to:  

- Hospitalizations per-capita by hotspots (10 strata) and 

age-group (10 strata) 

- Deaths per-capita by hotspots (10 strata) and age-group 

(10 strata) 

 

Model projections were cross-checked against diagnosed 

cases and positivity rates; and validated against age-

stratified serology at two time-points 

/ 

Funded by CIHR Rapid 

Response grant and funds 

from the St. Michael's 

Hospital COVID-19 

Research Innovation 

Council. 

Québec     

McGill-INESSS model 

By geographic area:  

(1) Overall Québec 

(2) Groups of health 

regions (RSS) with similar 

epidemiological trends 

Model calibrated to:  

- Observed daily number of hospitalizations (excluding 

nosocomial infections and LTCH residences) 

- Seroprevalence of SARS-CoV-2 infection 

 

Model projections are validated using observed daily 

number of hospitalizations time series. The observed 

numbers were within the 95% CrI of the projections for 

most of the times. 

Bayesian 

Initially funded by the 

McGill Interdisciplinary 

Initiative in Infection and 

Immunity (Mi4,), then by 

INESSS 

INSPQ-Laval model 

By Region, Age, Vaccine 

status (up to 4 doses), 

variant (up to 4 variants), 

13 Mixing Matrices 

Model fit to: 

- Daily new hospitalisations for 8 age groups since 

February 2020 

- Daily new deaths for 8 age groups since February 2020  

- Seroprevalence for two time windows and 4 age groups  

- % increase Alpha, Delta, Omicron 

 

Validation:  

- Daily new cases by 8 age groups since February 2020  

- Daily new hospitalisations for 8 age groups by vaccine 

status  

- Daily new deaths for 8 age groups by vaccine status  

- Seroprevalence for two time windows and 4 age groups  

- % increase Alpha, Delta, Omicron 

/ Funded by INSPQ 
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Model Name Model Stratification Model calibration and validation 
Calibration 

algorithm 
Detailed funding source 

Newfoundland and Labrador     

Memorial U Travel Model 

(compartmental, stochastic) 
Not stratified 

Model calibrated to:  

- published daily number of cases. 
Manual fitting 

Department of Health and 

Community Services 

U of Toronto Travel Model 

(Agent-based) 
/ / / / 

Memorial U community 

outbreak model 

(importations, stochastic) 

Vaccination status, 

variant, travel-related and 

community cases 

Model fit to: 

- Travel-related cases 

- Occurrence of community outbreaks 

- Reported cases during the Alpha variant outbreak in 

February 2021 

Manual fitting 

Department of Health and 

Community Services, 

NSERC Emerging Infectious 

Disease Modelling 

Consortium Initiative 

New Brunswick   

Information not available 

Nova Scotia   

Information not available 

Prince Edward Island   

Information not available 
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Table 4.4.2. Data availability, challenge, and funding status. 

 

Data Source and Data 

Sharing 
Evolution of Available Data Available Data at Present Data Challenges 

Other Challenges 

(resources, personnel) 

British Columbia     

Information not available       

Alberta     

Data for modelling was 

processed and analyzed 

within the Ministry of 

Health.  

1. Due to limited geographic-specific 

information prior to May 2020, 

jurisdictional based (including 

summaries from the Public Health 

Agency of Canada) and provincial 

(where possible) data was used to 

inform modelling projections 

2. Overall various surveillance data 

systems within the Ministry of 

Health related to cases, 

hospitalizations, and immunizations 

were used to inform modelling 

projections 

Surveillance data systems 

within the Ministry of Health 

related to cases, 

hospitalizations, and 

immunizations are used. In 

addition, methods related to 

modelling accounted for data 

impacted by changes in 

definitions and policies.   

Surveillance data used for 

modelling was obtained 

from the integration 

between large multi-

system data warehouses. 

These surveillance 

systems have its own 

limitations (independent 

from the pandemic) 

including reporting delays.  

 

Modelling methods 

adjusted for these delays 

in the data.   

Data analytics, 

communicable disease, and 

immunization teams within 

the Ministry of Health 

played an important role in 

preparing, understanding, 

and interpreting data used to 

support modelling efforts.  

Saskatchewan     

Information not available 

Manitoba     

Information not available 
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Data Source and 

Data Sharing 

Evolution of Available Data Available Data at Present Data Challenges Other Challenges 

(resources, personnel) 

Ontario     

Modelling 

consensus table 

(MCT) included a 

partnership with 

Ontario Ministry of 

Health which 

provided data for 

the modelling to all 

MCT members. 

1. Full, anonymized, person-level 

surveillance data (cases, 

hospitalizations, ICU admissions, 

deaths) via CCM+.  

2. Full, anonymized, person-level 

data on vaccination 

(COVAXON).  

3. Full, anonymized, person-level 

and event-level testing data from 

Ontario Laboratory Information 

System (OLIS). 

4. Aggregated cellphone-based 

mobility data from BlueDot 

(purchased by Ontario Ministry of 

Health and shared with MCT);  

5. Separate surveillance data 

tracker for long-term care homes 

(LTC tracker). 

The MCT disbanded in 

September 2022, and access 

to available data include 

public repositories and 

separate data-sharing 

agreements with the 

Ministry of Health; 

McMaster macpan working 

group is seconded to Public 

Health Ontario for ongoing 

projections and has internal 

access via Public Health 

Ontario. 

1. Rapid and timely sharing of data 

meant that data required processing 

and cleaning, a process that was 

subsequently conducted by Public 

Health Ontario prior to uploading 

to MCT on a daily basis.  

2. Discrepancies between LTC data 

from surveillance (CCM+) and 

LTC tracker.  

3. Socio-demographic data limited 

to age and gender; but 

dissemination area included in 

future iterations allowing for area-

level socio-demographic 

information from census data 

linkage.  

4. Limited data on exposure risks. 

5. Changes to case-definition for 

classifying re-infection limited use 

of surveillance data to examine and 

incorporate re-infections into 

models.  

6. Data on variants of concern were 

limited based on the proportion 

screened and type of screening as 

sequencing was not universal in 

Ontario. 

A key strength was the 

responsiveness of the 

Ministry of Health Data 

Analytics Team with respect 

to understanding and 

preparing the data for the 

MCT, the PHO team for 

supporting interpretation of 

the data; and the Ministry of 

Health Data Analytics 

Branch for provision of 

additional data sources as 

needs evolved for the 

modelling questions. 
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Data Source and Data Sharing Evolution of 

Available Data 

Available Data at Present Data Challenges Other Challenges 

(resources, personnel) 

Québec     

The MED-ÉCHO datasets came 

from Québec Health Insurance 

databases: the Régie de 

l'assurance maladie du Québec 

(RAMQ), and databases from the 

Ministère de la Santé et des 

Services sociaux (MSSS) du 

Québec. The access to these 

databases is made possible 

through a tripartite agreement 

between the MSSS, the RAMQ 

and the Institut national 

d'excellence en santé et en 

services sociaux (INESSS). Data 

were transmitted from INESSS on 

a weekly basis. 

1. Seroprevalence 

data was not 

available until 

October 2020 

2. Hospital data was 

not linked to testing 

database and 

administrative 

surveillance database 

until late 2020 

The MED-Écho datasets came 

from Québec Health Insurance 

databases (Régie de l'assurance 

maladie du Québec (RAMQ)) and 

databases from the Québec 

Ministry of Health and Social 

Services (Ministère de la Santé et 

des Services sociaux (MSSS)). 

The access to these databases is 

made possible through a tripartite 

agreement between the MSSS, the 

RAMQ and the Institut national 

d'excellence en santé et en 

services sociaux (INESSS). Data 

were transmitted from INESSS on 

a weekly basis.  

1. Non-stationary reporting 

delay of admission and 

discharge  

2. Date of admission for 

patients infected in hospital 

is the original date of 

admission and no indicator 

of nosocomial infection 

3. Hard to identify patients 

transferred from long-term 

care facilities 

4. Missing key socieo-

demographic informationn 

  

Newfoundland and Labrador     

Two data sharing agreements are 

in place. One agreement since 

April 2020 allows for sharing of 

data to respond to requests from 

the Department of Health and 

Community Services. Data to be 

used in publications is covered by 

a separate Health Research Ethics 

Board approval completed in 

March 2021. 

Data that could be 

used for analysis to 

appear in publications 

was provided by 

NLCHI in June 2021 

and June 2022. 

All necessary and requested data 

was provided to June 3, 2022. 

Provincial data was 

provided when requested. 

For responding to rapid 

requests, frequently 

multiple data types were 

needed, and lack of real-

time access to government 

data was a barrier, such that 

public data was often used 

in its place due to better 

availability of the latter. 

  

New Brunswick, Nova Scotia, and Prince Edward Island    

Information not available 
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Table 4.4.3. Description of organization provincial modelling teams and communication of 

evidences with the government and the public. 

Description 

British Columbia  

Information not available 

Alberta  

      Leveraged a pre-existing collaborative relationship with academic mathematical modellers and 

shared results within the Ministry of Health.  

Saskatchewan  

      Daily reports were sent to the Saskatchewan Authority and the Saskatchewan Ministry of Health. 

The Saskatchewan stakeholders then use the reports to inform day to day decision making regarding 

public health orders and interventions, and for shorter-term health service delivery decisions (e.g., 

planning surge capacity, suspending elective surgery, etc.), circulating reports to hundreds of medical 

officers of health, epidemiologists, physicians, higher-level public health decision makers. Model results 

were presented for feedback to the top public health officials and high-level heath service delivery 

parties through weekly meeting.   

Manitoba  

Information not available 

Ontario  

      A group of volunteers, independent, and academic mathematical modellers, along with 

epidemiologists and other experts in surveillance data, were brought together via invitation by a 

leadership team comprised of Dalla Lana School of Public Health, Public Health Ontario, and Ministry 

of Health. The group formed the Ontario Modelling Consensus Table (MCT), and was later embedded 

under the overarching umbrella of the Ontario Science Advisory Table (of which, the MCT was a 

specific working group). MCT co-chairs represented the MCT at the Ontario Science Advisory Table, 

and responded to the requests of the Ontario Chief Medical Officer of Health, the Ministry of Health, 

and other stakeholders at various public health levels (e.g. local public health jurisdictions, Ministry of 

Education). For the Ontario Science Advisory Table and Ontario Chief Medical Officer of Health, the 

MCT provided consensus modelling projections based on policy scenarios, by combining results across 

independent mathematical models. All MCT consensus modelling presented to the stakeholders were 

publicly shared via reports and slide-decks. MCT co-chairs also presented consensus modelling to the 

ministerial cabinet meetings. The frequency of the modelling ranged from every 1-3 weeks, and usually 

every 2 weeks, with a focus on near-casting (3-week projections) to medium-term (up to 3-month 

projections).  The MCT also included public health agency modellers at Public Health Ontario and 

Ontario Ministry of Health Data Analytics Branch, which each developed independent mathematical 

models of SARS-CoV-2 transmission, and whose outputs were also included in the consensus modelling. 

The consensus modelling presented to stakeholders varied based on availability and feasibility of each 

volunteer modelling group being able to update and provide results. 
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Description 

Québec  

      There are 2 teams contributing to the modelling efforts in Québec: the McGill University COVID-19 

modelling team (McGill team) and the University of Laval COVID-19 modelling team (UofL team). 

      At the beginning of the pandemic, the McGill team updated the model for hospitalization projection 

twice a week and directly reported to the responsible government institute (Institut national d'excellence 

en santé et services sociaux; INESSS) through scheduled meetings. After the first wave, the frequency of 

update and meeting changed to once a week. Model results were made publicly available via INESSS 

official website. It took approximately 4-5 days from receiving the data to results being published. 

      The UofL team updated their model upon request and reported the results directly to the responsible 

government institue (Institut national de santé publique du Québec; INSPQ) through meetings. The 

model results were made publicly available via INSPQ official website. Approximately, it took X days 

from receiving the data to results being published.  

      After the meeting with INESSS (McGill team) and INSPQ (UofL team), the results were then 

presented to the final decision maker (Ministry of Health and Social Services; MSSS) through a weekly 

meeting by INESSS and INSPQ. Overall, it took 1-2 days (McGill team) and X days (UofL team) from 

receiving the data to the results being presented to the decision maker.  

Newfoundland and Labrador   

      At the request of the Premier, a provincial modelling team was formed with accountability to 

NLCHI. The membership of the provincial modelling team changed over time, but most consistently 

included modellers from IBM, Memorial University, and the University of Toronto. The Department of 

Health and Community services would communicate requests for modelling, which would then be 

handled by members of the provincial modelling team. When results were complete presentations would 

be given to the Department of Health and Community Services (6-8 presentations from April 2020-

December 2021). Modelling results were communicated via public presentations as part of the NL 

government's COVID-19 communications. Complete publications, for example, which detailed 

methodology were produced by research teams independently. 

New Brunswick   

Information not available 

Nova Scotia   

Information not available 

Prince Edward Island   

Information not available 
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4.4.2. Supplementary text: Links to publicly available information in Table 4.2.1 

British Columbia 

• SFU/DFO/UBC/BCCDC model code: https://github.com/seananderson/covidseir 

• BCCDC/SFU model code: https://github.com/sempwn/cr0eso 

• SFU MAGPIE group (Colijn) & BCCDC model code:  

https://github.com/nmulberry/essential-workers-vaccine 

Alberta 

• Alberta Health/University of Alberta model results:  

https://www.alberta.ca/respiratory-illness#jumplinks-3 

Ontario 

• Science Table updates: https://covid19-sciencetable.ca/science-briefs/ 

• McMaster macpan model  

o Code: https://github.com/mac-theobio/McMasterPandemic 

o Results: https://mac-theobio.github.io/covid-19/ 

Québec 

1. McGill University COVID-19 model  

a. Code: https://github.com/pop-health-mod/covid19-release 

b. Equations and results:  

https://www.inesss.qc.ca/covid-19/risques-dhospitalisation-et-projections-

des-besoins-hospitaliers.html 

2. Université Laval COVID-19 model results:  

https://www.inspq.qc.ca/covid-19/donnees/projections 
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Newfoundland and Labrador 

3. Memorial University/ Predictive Analytics team model data and code:  

https://doi.org/10.6084/m9.figshare.12906710.v2. 

4. Memorial University model code and data:  

https://github.com/ahurford/pandemic-COVID-zero 
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Chapter 5. Geographical Concentration of SARS-Cov-2 Cases by Social Determinants of 

Health in Canada 

5.1. Preface to Manuscript 2 

In my first manuscript, I reviewed the provincial modelling efforts during the COVID-19 

pandemic in Canada. Among the models that were reviewed, none of the those developed at the 

early stage of the epidemic considered heterogeneities in SARS-CoV-2 transmission, beyond age 

and sex differences. Yet, important within-city geographic disparities in the COVID-19 burden 

became apparent during the first wave (227). Despite the importance of social determinants of 

health in shaping COVID-19’s burden, attempts to address these disparities were few.  

Social determinants of health, such as socioeconomic status, housing conditions, and 

occupational exposure, emerged as critical factors shaping SARS-CoV-2 transmission risks (118, 

227-229), highlighting the urgent need to understand the patterns and drivers of SARS-CoV-2 

transmission in Canada. To address this knowledge gap, I conducted the first multi-provincial 

Canadian study to quantify and compare these inequalities across 16 metropolitan areas in four 

provinces: British Columbia, Manitoba, Ontario, and Québec. I employed descriptive analyses for 

this purpose, as these methods are essential for identifying patterns, generating hypotheses, and 

guiding targeted interventions, despite often being undervalued in contemporary epidemiology 

(230). By quantifying heterogeneity, this chapter links population-level patterns to potential 

interventions, enhancing the insights gained from provincial models. 

The resulting article was published in the Canadian Medical Association Journal (CMAJ) 

in February 2022. 
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5.2. Manuscript 2: Geographical concentration of SARS-CoV-2 cases by social 

determinants of health in 16 large metropolitan areas in Canada – a cross-sectional study 

Yiqing Xia MscPH1,2, Huiting Ma MSc2, Gary Moloney MSA2, Héctor A. Velásquez García MD, 

Ph.D3,4, Monica Sirski Ph.D5, Naveed Z. Janjua MBBS, Dr.PH3,4, David Vickers Ph.D6, Tyler 

Williamson Ph.D6,7, Alan Katz MBChB, MSc5, Kristy Yiu MSc2, Rafal Kustra Ph.D8, David L 
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Abstract 

Background: Understanding inequalities in SARS-CoV-2 transmission along social determinants 

of health could help develop effective mitigation strategies that are responsive to local transmission 

dynamics. This study aims to quantify social determinants of geographic concentration of SARS-

CoV-2 cases across sixteen census metropolitan areas (CMA) in four Canadian provinces. 

Methods: We used surveillance data on confirmed SARS-CoV-2 cases at the level of 

dissemination area (DA). Gini (co-Gini) coefficients were calculated by CMA based on the 

proportion of the population in ranks of confirmed cases and each social determinant using census 

data (income, education, visible minority, recent immigration, housing density, and essential 

workers) and the corresponding share of cases. Heterogeneity was visualized using Lorenz 

(concentration) curves. 

Results: Geographic concentration was observed (in each CMAs, half of the cumulative cases 

were concentrated in DAs containing 21-35% of their population): with the greatest geographic 

heterogeneity in Ontario CMAs (Gini coefficients, 0.32-0.47), followed by British Columbia 

(0.23-0.36), Manitoba (0.32), and Québec (0.28-0.37). Cases were disproportionately concentrated 

in areas with lower income, education attainment, and higher proportion of visible minorities, 

recent immigrants, high-density housing, and essential workers. Although a consistent feature 

across CMAs was concentration by proportion visible minorities, the magnitude of concentration 

by social determinants varied across CMAs.  

Interpretation:  The feature of geographical concentration of SARS-CoV-2 cases was consistent 

across CMAs, but the pattern by social determinants varied. Geographically prioritized allocation 

of resources and services should be tailored to the local drivers of inequalities in transmission in 

response to SARS-CoV-2’s resurgence. 
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Introduction  

The COVID-19 epidemics in Canada have varied in size and trajectory across provinces 

and their large cities (1, 2). At the national-level (3) and within provinces (4, 5), there has been a 

disproportionate burden of confirmed cases, and thus severe outcomes, among socially and 

economically marginalized communities (6). Social determinants of health refer to non-medical 

factors influencing health outcomes while structural determinants encompass cultural norms, 

policies, and institutions that generate social stratification and determine socio-economic position 

(7, 8). In Canada and elsewhere, data have consistently highlighted the importance of determinants 

such as household size and density, work in essential services, and proxies for structural racism in 

the relative risk of COVID-19 (9-17). 

Understanding the factors associated with geographical patterning of transmission within 

cities can help identify the populations, and specifically the contexts, with the greatest risks; 

analyses which enable better allocation of resources, tailoring of policies, and implementation of 

context-specific strategies to more effectively and efficiently curb local transmission (18). 

Although respiratory virus transmission is often geographically clustered within a city (19), the 

early public health response to SARS-CoV-2 transmission in Canada did little to take within-city 

clustering into account (20, 21). Similarly, few studies to date have quantified and compared the 

geographical concentration of SARS-CoV-2 cases by social determinants across Canada, and the 

extent to which the magnitude of inequalities might vary between cities and provinces (22, 23). 

We therefore sought to quantify and compare the magnitude of geographical concentration of cases 

by area-level social determinants of health across 16 metropolitan areas in four Canadian 

provinces: British Columbia, Manitoba, Ontario, and Québec. Together these provinces accounted 

for 79% of cases in Canada by July 8th, 2021.   

Methods 

Study design and study population 

We conducted a cross-sectional study using surveillance data from four provinces, over the 

January 23, 2020 (report date of the first documented case in Canada) to February 28, 2021 period. 

Due to the unique context of transmission in long-term care homes, we excluded cases among their 
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residents to focus on transmission dynamics in the wider community. The unit of analysis was the 

dissemination area (DA), which is the smallest standard geographic unit with census information, 

representing between 400-700 residents (24). 

Settings 

 This study includes the four provinces with data available to study teams: DA-level 

information on SARS-CoV-2 cases to enable linkage with census data. The census metropolitan 

areas (CMA) included in the analyses are large CMAs that represent more than 80% of diagnosed 

SARS-CoV-2 cases in each province (summarized in Table 5.2.1). Specifically, we included up to 

six of the largest CMAs in each province. In British Columbia, Victoria was excluded because it 

of its low cumulative case count. In Manitoba, only Winnipeg is qualified as a CMA by census 

definition (25).  

Data sources 

Individual-level data from provincial surveillance databases were used to calculate the 

number of SARS-CoV-2 cases per DA. In British Columbia, confirmed cases are recorded in case 

line list integrated in the Public Health Reporting Data Warehouse. In Manitoba, the COVID-19 

surveillance data and contact investigation information were requested through the Manitoba 

Population Research Data Repository (26). In Ontario, data on laboratory-confirmed cases were 

recorded in the case contact management solutions. In Québec, confirmed cases were recorded in 

the Trajectoire de santé publique database. For each confirmed case, basic sociodemographic 

information was collected (i.e., address) by the relevant public health authorities, in addition to 

epidemiological characteristic such as date of case report and living environment (e.g., long-term 

care facility). Cases were assigned to a DA according to the residential address using the Postal 

Code Conversion File (27) for all provinces.  

Data describing DA-level social determinants of health, with the exception of income, were 

extracted from the latest available Canadian census data (2016) (28), which represents the most 

complete, comparable, and representative source of area-level characteristics of the population in 

each city (29). The after-tax income per person equivalent ranking across DAs was obtained from 

the Postal Code Conversion File Plus Version 7A/7D for each province (30). This variable is 
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generated by Statistics Canada using administrative data sources and captures household size to 

generate a per-person equivalent measure (31). 

Measures 

We defined SARS-CoV-2 cases as polymerase-chain reaction laboratory-confirmed cases 

(all provinces) (32). For Québec we also included cases confirmed by epidemiological link 

(individual with COVID-19 symptoms without other apparent cause that had a close contact with 

a laboratory-confirmed case (33)) due to lack of testing capacity during the first wave in February 

– April 2020. We considered the following measures of social determinants of SARS-CoV-2 

transmission based on previous studies that conceptualized factors as they related to contact rates 

and types of potential exposures for transmission (23, 34, 35): 1) socio-demographic indices (after-

tax income per-person equivalent, proportion population without certificate, diploma or degree, 

and proxies for systemic racism via the proportion visible minority (self-reported) (36, 37), 

proportion recent immigration) (17, 18, 35); 2) dwelling-related indicators (proportion not living 

in high-density housing) (9, 13) and, 3) occupation-related variables (proportion working in 

essential services conceptualized using national occupation classifications (38) that would least 

amenable to remote work (39, 40): health, trades and transport and equipment operation, sales and 

services, manufacturing and utilities, resources, agriculture and production) (16). Determinants 

were ranked from the highest value to the lowest and grouped into ten deciles within each CMA. 

Table S1 details the definitions of each variable.  

Analyses 

The cumulative numbers of confirmed SARS-CoV-2 cases were aggregated to the DA-

level, along with population denominators, and social determinants. First, we quantified the 

magnitude of overall geographical heterogeneity within each CMA using Gini coefficients and 

crude Lorenz curves. These non-parametric methods allow for straightforward quantification and 

visualization of within-CMA inequalities by social determinants (41). Second, we quantified the 

extent to which cases were concentrated by each social determinant using co-Gini coefficients and 

concentration curves (42). To generate the curves, we plotted the cumulative share of CMA’s 

population ranked by number of cases or each social determinant on the x-axis and the 

corresponding cumulative proportion of cases on the y-axis (43). The Lorenz (concentration) 
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curves depict a diagonal line of equality, and the further the data deviate from the diagonal, the 

higher the variability (or greater inequality/concentration) in cases across the population. The Gini 

and co-Gini coefficients were calculated as twice the area between the Lorenz (concentration) 

curve and the line of equality (44). Values closer to 1 reflect greater inequality while values closer 

to 0 represents uniform distributions (45). The methods we adopted are appropriate to examine 

inequalities within each CMA under contexts of varied distributions of social determinants and the 

health measures of SARS-CoV-2 transmission. Data management and analyses were conducted 

by each provincial team separately using standardized protocols and a shared code base. 

Aggregated results were shared across provincial teams as per the data privacy requirements of 

each province. All analyses were conducted using R statistical software (46). 

Ethics approval 

Ethics approvals were obtained from the Research Ethics Board of University of British 

Columbia in British Columbia (H20-02097), the Health Research Ethics Board of University of 

Manitoba (HS24140 (H2020:352)) and the Health Information Privacy Committee of the 

Government of Manitoba (No. 2020/2021-32) in Manitoba, the Health Sciences Research Ethics 

Board of University of Toronto (no. 39253) in Ontario, and the Institutional Review Board of 

McGill University in Québec (A06-M52-20B). 

Results 

During the study period, 63,266 (British Columbia), 15,089 (Manitoba), 239,160 (Ontario), 

and 224,377 (Québec) cases were recorded in the 16 CMAs included in the study. These 16 CMAs 

accounted for 81%, 57%, 83% and 80% of all confirmed cases in each province, respectively. Less 

than 9% of the DAs recorded zero cases during the study period (Table 5.2.1).  
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Table 5.2.1. Characteristics of census metropolitan areas (CMA) and dissemination areas 

(DA) included in the study from January 23, 2020 to February 28, 2021 (21). 

Census Metropolitan 

Areas 
Population 

Cases 

(N) 

Pop with 50% 

casesa (%) 

DAs 

(N) 

DA with no 

reported cases 

(%) 

British Columbia      

Vancouver 2,454,378 54,222 25.8% 3,425 2.7% 

Kelowna 184,190 2,865 34.7% 239 3.8% 

Abbotsford-Mission 180,230 5,622 27.5% 263 2.3% 

Manitoba      

Winnipeg 777,496 15,089 28.5% 1,224 8.3% 

Ontario      

Toronto 5,927,779 187,764 29.1% 7,522 0.2% 

Ottawa–Gatineau 

(Ontario part) 
991,726 13,975 21.2% 1,456 1.7% 

Hamilton 747,545 12,490 26.1% 1,199 0.8% 

Kitchener-

Cambridge-Waterloo 
523,894 9,598 29.6% 736 0.4% 

St. Catharines-

Niagara 
406,074 6,835 23.6% 678 1.6% 

Windsor 329,144 8,498 29.7% 548 8.0% 

Québec      

Montréal 4,098,927 175,111 29.3% 6,469 6.5% 

Québec City 800,296 22,219 30.3% 1,291 5.6% 

Ottawa–Gatineau 

(Québec part) 
332,057 5,337 33.1% 491 4.9% 

Sherbrooke 212,105 4,572 29.2% 327 6.4% 

Saguenay 160,980 5,056 28.2% 295 6.1% 

Trois-Rivières 156,042 3,633 33.5% 272 4.8% 

aPop with 50% cases = Percentage of population in DAs that accounted for 50% of the total 

cases. 
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Magnitude of overall heterogeneity between cities 

In each CMA, half of the cumulative SARS-CoV-2 cases were diagnosed in DAs consist 

of 21-35% of their respective population (Figure 5.2.1, Table 5.2.1). CMAs in Ontario exhibited 

the greatest heterogeneity (Gini coefficients: 0.32-0.47), followed by British Columbia (Gini 

coefficients: 0.23-0.36), Manitoba (Gini coefficient: 0.31) and then Québec (Gini coefficients: 

0.28-0.37). The magnitude of heterogeneity varied within provinces as well. The largest and 

smallest Gini coefficients were observed, respectively, in Vancouver and Kelowna in British 

Columbia; St. Catharines–Niagara and Hamilton in Ontario; and Saguenay and Trois-Rivières in 

Québec. Lorenz curves and Gini coefficients for each CMA can be found in Figure 5.4.1 and Table 

5.2.2. 

 

Figure 5.2.1. The Lorenz curves of COVID-19 confirmed cases (excluding long-term care 

residents) by proportion of the population and corresponding Gini coefficients.  
Note: The population was ranked by the number of cases in each DA from the highest to the lowest. To 

ease interpretation, Abbotsford-Mission and Kelowna are grouped and displayed as “British Columbia (rest 

CMA)”; Kitchener-Cambridge–Waterloo, Hamilton, Ottawa-Gatineau (Ontario part), St. Catharines–

Niagara and Windsor are grouped and displayed as “Ontario (rest CMA)”; Ottawa – Gatineau (Québec 

part), Québec City, Saguenay, Sherbrooke and Trois Rivières are grouped and displayed as “Québec (rest 

CMA)”. Lorenz curves and the corresponding Gini coefficients for each CMA can be found in Figure S1.  
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Table 5.2.2. Characteristics of social and structural determinants across all dissemination area (DA) of each census metropolitan 

area (CMA) and the corresponding Gini/co-Gini coefficients of cumulative COVID-19 cases.  

Census 

Metropolitan 

Area 

Population 
After-tax household 

income 
% without 

diploma/certificate 
% visible minority 

% recent 

immigration 
% not living in high-

density housing 
% essential worker 

IQRa Gini IQRa 
Co-

Gini 
IQRa Co-Gini IQRa 

Co-

Gini 
IQRa 

Co-

Gini 
IQRa 

Co-

Gini 
IQRa 

Co-

Gini 

British Columbia               

Vancouver 
588 

(478, 767) 

(0.1%) 

0.36 
47638  

(40026, 56094) 

(0.0%) 

0.13 
6.6 

(3.4, 11.5) 

(0.3%) 

0.24 
45.0 

(24.2, 69.2)  

(0.3%) 

0.17 
2.0 

(5.4, 7.9)  

(0.3%) 

0.11 
94.6 

(90.0, 97.6)  

(0.3%) 

0.19 
46.6 

(37.8, 56.5)  

(0.3%) 

0.25 

Kelowna 
649 

(516, 890) 

(0.4%) 

0.23 

47923  

(40686, 55331)  

(0.4%) 

0.08 

8.2 

(4.7, 11.6)  

(0.4%) 

0.07 

6.6 

(3.8, 10.1)  

(0.4%) 

0.11 

1.2 

(0.0, 2.5)  

(0.4%) 

0.05 

97.4 

(95.4, 98.8)  

(0.4%) 

0.07 

56.1 

(49.4, 62.5)  

(0.4%) 

0.08 

Abbotsford-

Mission 

597 

(446, 823) 

(0.0%) 

0.35 

46023  

(39250, 52714)  

(0.0%) 

0.17 

14.3 

(9.9, 19.2)  

(0.0%) 

0.22 

17.2 

(8.9, 36.6)  

(0.0%) 

0.27 

1.9 

(0.0, 4.3)  

(0.0%) 

0.23 

95.8 

(91.7, 98.1)  

(0.0%) 

0.21 

59.6 

(52.6, 66.8)  

(0.0%) 

0.21 

Manitoba               

Winnipeg 
545 

(457, 649) 

(0.1%) 

0.32 
45914 

(37357, 54989) 

(0.0%) 

0.13 
8.6 

(4.8,10.4) 

(0.3%) 

0.12 
17.1 

(8.1,34.2)  

(0.3%) 

0.09 
6.2 (0.0,9.0)  

(0.3%) 
0.08 

95.1 (89.9,98.2)  

(0.3%) 
0.12 

50.8 
(42.6,58.8)  

(0.3%) 

0.12 

Ontario               

Toronto 
564  

(443, 809) 
(0.0%) 

0.34 

50341  

(41429, 60411) 
(0.0%) 

0.17 

8.1  

(4.0, 14.0) 
(0.4%) 

0.20 

41.3  

(20.7, 68.3)  
(0.4%) 

0.20 

3.6  

(1.4, 7.1)  
(0.4%) 

0.12 

94.1  

(88.9, 97.4)  
(0.4%) 

0.18 

45.8  

(35.7, 56.5)  
(0.4%) 

0.24 

Ottawa–Gatineau 

(Ontario part) 

554  

(447, 738) 

(0.0%) 

0.47 

57664  

(46856, 66708)  

(0.0%) 

0.19 

5.1  

(2.5, 9.1) 

(0.2%) 

0.16 

17.8  

(9.3, 30.8)  

(0.2%) 

0.21 

1.6  

(0.0, 3.6)  

(0.2%) 

0.18 

97.1  

(94.2, 100.0)  

(0.2%) 

0.20 

37.5  

(30.1, 45.7)  

(0.2%) 

0.16 

Hamilton 
520  

(438, 667)  

(0.0%) 

0.40 
50294  

(38292, 59801)  

(0.0%) 

0.11 
8.5  

(4.4, 15.2) 

(0.3%) 

0.09 
12.6  

(6.2, 21.8)  

(0.3%) 

0.15 
0.7  

(0.0, 3.0)  

(0.3%) 

0.09 
96.8  

(93.8, 100.0)  

(0.3%) 

0.09 
52.8  

(43.5, 62.3 

(0.3%)) 

0.10 

Kitchener-

Cambridge-

Waterloo 

544  

(440, 749)  
(0.0%) 

0.32 

48899  

(39710, 57738)  
(0.0%) 

0.13 

10.5  

(6.4, 16.2)  
(0.1%) 

0.11 

12.2  

(5.9, 22.3)  
(0.1%) 

0.13 

1.3  

(0.0, 3.5)  
(0.1%) 

0.11 

96.8  

(94.1, 98.5)  
(0.1%) 

0.15 

54.3  

(44.8, 61.8)  
(0.1%) 

0.13 

St. Catharines-

Niagara 

518  

(450, 644)  
(0.0%) 

0.44 

43266 

(35136, 50738)  
(0.0%) 

0.12 

9.8  

(6.2, 14.7)  
(0.1%) 

0.08 

6.7  

(2.8, 11.8)  
(0.1%) 

0.11 

0.0  

(0.0, 2.0)  
(0.1%) 

0.10 

97.4  

(95.1, 100.0)  
(0.1%) 

0.10 

60.0  

(52.5, 68.2)  
(0.1%) 

0.07 

Windsor 
502  

(430, 615)  

(0.0%) 

0.35 

45227  

(32280, 54901)  

(0.0%) 

0.16 

8.9  

(4.8, 15.2)  

(0.0%) 

0.11 

13.8  

(5.5, 27.4)  

(0.0%) 

0.15 

1.6  

(0.0, 3.8)  

(0.0%) 

0.09 

96.7  

(93.6, 98.4)  

(0.0%) 

0.12 

61.1  

(52.9, 69.2)  

(0.0%) 

0.09 
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Census 

Metropolitan 

Area 

Population 
After-tax household 

income 

% without 

diploma/certificate 
% visible minority 

% recent 

immigration 
% not living in high-

density housing 
% essential worker 

IQRa Gini IQRa Gini IQRa Gini IQRa Gini IQRa Gini IQRa Gini IQRa Gini 

Québec               

Montréal 
536 

(448, 672)  

(0.4%) 

0.33 

40304  

(33015, 49411)  

(0.4%) 

0.11 

10.3 

(5.5, 16.7)  

(0.6%) 

0.09 

16.9  

(6.8, 32.5)  

(0.6%) 

0.16 

2.4 

(0.0, 6.2)  

(0.6%) 

0.13 

96.2  

(92.5, 98.5)  

(0.6%) 

0.14 

47.6  

(38.1, 56.1)  

(0.6%) 

0.08 

Québec City 
514 

(425, 682)  

(0.4%) 

0.31 
45104  

(35847, 51917)  

(0.5%) 

0.10 
6.8 

(3.8, 11.4)  

(0.6%) 

0.08 
3.2 

(1.1, 6.7)  

(0.6%) 

0.12 
0.0 

(0.0, 2.4)  

(0.6%) 

0.09 
98.4  

(96.9, 100.0)  

(0.6%) 

0.07 
47.1  

(39.6, 54.5)  

(0.6%) 

0.10 

Ottawa–Gatineau 

(Québec part) 

543 

(425, 805)  

(0.0%) 

0.30 

44891  

(36112, 53526)  

(0.0%) 

0.10 

13.5 

(7.3, 21.4)  

(0.0%) 

0.07 

8 .0 

(2.7,15.6)  

(0.0%) 

0. 13 

0.0 

(0.0, 2.8)  

(0.0%) 

0.12 

97.6  

(95.5, 100.0)  

(0.0%) 

0.05 

44.7  

(35.6, 53.1)  

(0.0%) 

0.07 

Sherbrooke 
543 

(455, 734)  

(0.0%) 

0.33 

37490  

(28906, 44427)  

(0.0%) 

0.17 

11.3 

(6.7, 19.0)  

(0.6%) 

0.08 

3.6 

(1.0, 7.7)  

(0.6%) 

0.16 

0.0 

(0.0, 2.4)  

(0.6%) 

0.15 

98.2  

(96.7, 100)  

(0.6%) 

0.08 

53.7  

(46.6, 61.1)  

(0.6%) 

0.09 

Saguenay 
464 

(398, 607)  
(0.0%) 

0.37 

41091  

(32929, 46566)  
(0.0%) 

0.14 

10.3 

(6.2, 15.9)  
(0.0%) 

0.09 

0.0 

(0.0, 2.2)  
(0.0%) 

0.11 

0.0 

(0.0, 0.0)  
(0.0%) 

0.01 

100  

(97.6, 100.0)  
(0.0%) 

0.09 

55.3  

(48.3, 61.9)  
(0.0%) 

0.11 

Trois-Rivières 
481 

(406, 620)  

(0.4%) 

0.28 

36899  

(28382, 45459)  

(0.4%) 

0.08 

12.1 

(6.1, 18.5)  

(0.4%) 

0.07 

1.9 

(0.0, 3.8)  

(0.4%) 

0.09 

0.0 

(0.0, 0.6)  

(0.4%) 

0.09 

98.8  

(97.5, 100.0)  

(0.4%) 

0.05 

55.9  

(48.6, 62.9)  

(0.4%) 

0.08 

aIQR = interquartile range of social and structural determinants across all DAs within a CMA. 

* The percentages within the brackets after IQR of each variable represents the proportion of DAs with missing variable. (For population, DAs with 0 population 

are also included). 

** Gini coefficients of those Lorenz curves went above and under the equity line were in bold font. 

*** All the variables are ranked from the highest value to the lowest.
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Magnitude of heterogeneity by social determinants between cities 

The social determinant across which nearly all CMAs experienced a concentration of cases 

was the proportion visible minority. Figure 5.2.2 depicts the CMA-specific distribution and the 

respective co-Gini coefficients by proportion visible minority. Distribution of all the social 

determinants, co-Gini coefficients, proportion of population and the corresponding percentage of 

confirmed cases, and concentration curves for each CMA can be found in Table 5.2.2, Table 5.4.2, 

Figure 5.4.2 and Figure 5.4.3.  

 

Figure 5.2.2. Density distributions of dissemination area-level proportion visible minority 

and the corresponding co-Gini coefficients (excluding long-term care residents) of 

cumulative COVID-19 cases, stratified by census metropolitan areas (CMA).  

Note: The x-axis represents the dissemination area-level proportion visible minority and the y axis 

represents the different CMAs. For each value (X%) on the x-axis, the height of curve represents 

the proportion of DAs that has X% visible minority.For each CMA, the distribution of proportion 

minority is shown. Abbotsford-Mission is displayed as “Abbotsford”; Ottawa-Gatineau (Ontario 

part) is displayed as “Ottawa”; St. Catharines–Niagara is displayed as “Niagara”; Ottawa-Gatineau 

(Québec part) is displayed as “Gatineau”. Co-Gini coefficients followed by a “*” mark represent 

co-Gini coefficients of those Lorenz curves that went over and under the equality line. Distribution 

of other social determinants of health and the corresponding Gini (co-Gini) coefficients can be 

found in Figure 5.4.2. 
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The distribution of the underlying social determinants was heterogenous across CMAs. 

Larger CMAs usually had wider distribution of the social determinants (Figure 5.4.2). Cities with 

less variability in the values of the social determinant tended to have smaller a co-Gini for that 

determinant: for example, Kelowna had a co-Gini of 0.07 for proportion not living in high-density 

housing, whose distribution was narrow as compared with Vancouver (co-Gini 0.19, Figure 5.4.2). 

Across all CMAs, cases were disproportionately concentrated by geographies represented by lower 

income, higher proportion living in high-density housing, lower education attainment; and a higher 

proportion visible minority, recent immigration and essential workers (Figure 5.4.3). 

Concentration by visible minority was the most consistent finding across CMAs, with variability 

in inequalities across CMAs within provinces. The largest co-Gini coefficient for income was 

observed in Ottawa (co-Gini 0.17); for lower levels of education in Vancouver (0.24), for visible 

minority, recent immigration and not living in high-density housing in Abbotsford-Mission (0.27, 

0.23 and 0.21), and for essential workers in Vancouver (0.25) (Table 5.2.2). In Winnipeg 

(Manitoba), after-tax income explained the most heterogeneity (co-Gini 0.13). 

When examining the 3 largest CMAs in Canada, the magnitude of geographical 

concentration by social determinants were similar for Toronto and Vancouver, in particular as they 

related to essential services (co-Gini 0.24 in Toronto, co-Gini 0.25 in Vancouver). In contrast, 

although Montréal demonstrated similar overall heterogeneity (Gini 0.33) to Toronto (0.34) and 

Vancouver (0.36), there was less heterogeneity by the same social determinants. In Montréal, the 

largest co-Gini was observed for proportion visible minority (co-Gini 0.16).  

Interpretation 

This study provides comprehensive and robust evidence of high geographical 

concentration and thus, geographic hotspots of SARS-CoV-2 cases within Canadian cities across 

four provinces. These hotspots are largely defined along social determinants related to occupation, 

income, housing, and proxies for structural racism. Specifically, we quantified heterogeneities in 

cumulative SARS-CoV-2 cases using measures of inequality across sixteen Canadian CMAs from 

British Columbia, Manitoba, Ontario, and Québec –provinces with the majority of cases in Canada. 

Although the magnitude of geographical heterogeneity was relatively similar across CMAs, and a 
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consistent theme across cities was the concentration of cases by proportion visibility minority, the 

degree of concentration by social determinants differed across cities. 

There are two important implications of the city-specific findings for public health. First, 

given that each city demonstrated geographical concentration –with approximately 21-35% of the 

population in DAs accounting for 50% of cases– prioritizing and allocating resources to 

geographical hotspots could lead to a more effective and efficient response, and reduce inequalities 

(47), especially in the context of limited resources. An example of a hotspot-targeted strategy has 

been that of vaccination roll-out in some jurisdictions (48), but could also be systematically applied 

to ensure geographically prioritized resources for timely access to testing, support for isolation and 

quarantine of contacts. Indeed, data suggest that without a systematic and intentional hotspot and 

community-tailored strategy, both testing and vaccination coverage were lowest in geographical 

hotspots (48, 49) and among racialized communities (35) in Canada and other high-income 

countries (41, 50).  Second, even though in each city, cases were concentrated across each social 

determinants of health, the magnitude of concentration by the same determinant differed between 

cities. That is, cities may differ with respect to which determinants were most associated with 

geographical clustering of SARS-CoV-2 cases. Each city would therefore benefit from tailoring 

its geographically prioritized strategy to its local structural determinants of heterogeneity in cases. 

For example, the difference in the co-Gini for essential services between Montréal compared to 

Vancouver and Toronto, despite similar distribution in the proportion essential workers in all three 

CMAs, suggests that the underlying context for hotspots (e.g., policies for sick leave (51)) may be 

different and thus signal different unmet needs of populations who shouldered the disproportionate 

burden of cases. Thus, using the city-specific spatial clustering of cases by social determinants to 

guide the local response could lead to more equitable allocation of resources and better access to 

interventions by providing services that actually meet the needs of communities at disproportionate 

risk. Such an approach may become even more important in the context of appropriately 

addressing the needs of ‘unvaccinated’ pockets of contact networks (52), and with increasingly 

transmissible variants of SARS-CoV-2 (53). 

The results are consistent with the socio-geographical clustering patterns observed in other 

studies from Canada (35, 53), the United States (54-56), and Sweden (57). Higher rates of SARS-

CoV-2 cases among racialized communities, or neighbourhoods with greater diversity, have been 
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a consistent finding across countries, and reflect pathways through systemic racism, including 

occupational exposure risks and barriers to prevention (58) and access effective isolation (59-61). 

In a previous study of the first wave in Ontario, the association between area-level proxies for 

systemic racism (proportion visible minority) and SARS-CoV-2 cases dissolved after adjusting for 

other relevant explanatory factors, including occupation, household size, and income (35). 

Clustering of cases in the context of essential services may reflect type and rates of contacts, 

sometimes without occupational protections, and access to safe working environments (62, 63). 

Similarly, income, occupation, and educational attainment are often correlated, with the latter 

further associated with barriers in access to health information and healthcare, including 

prevention (64, 65). Meanwhile, high-density households represent a barrier to physical distancing 

and effective isolation or quarantine (66). Importantly, these determinants are often correlated (67) 

(68), which means that each falls within an explanatory pathway, especially in the relationship 

between income and cases, and proxies of systemic racism and cases (34). Taken together, 

concentration in cases by social determinants reflects plausible mechanistic pathways for 

population-level transmission and, as such, the local contexts that define hotspots under broad 

stay-at-home policies (69) in each city.  

Our descriptive study did not include an explanatory set of analyses to examine sources of 

heterogeneity in the difference in co-Gini between cities. However, we note that the distribution 

of each social determinant varied between CMAs, as depicted in Figure 5.4.2. When there is less 

variability of a given social determinant within a city, it consequently may be less of a determinant 

of geographical heterogeneity in cases. For example, the distribution of not living in high-density 

housing was more homogenous in Kelowna than Vancouver, whereas the corresponding co-Gini 

was higher in Vancouver. As such, the levels of geographical concentration by social determinants 

of geographical concentration between cities may also vary because of differences in the 

underlying degree of homogeneity/heterogeneity for the determinant under study.  

Limitations of our study include our use of observed cases reported by provincial 

surveillance systems. We could have underestimated the co-Gini if testing rates were lower among 

marginalized communities (35). For example, testing capacity constraints were especially salient 

in the first wave and under-ascertainment of cases was important (70-72). Second, although we 

excluded residents of long-term care homes, our definition of community-wide cases could still 
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include other congregate-level settings such as shelters and group homes reflecting other 

unmeasured social determinants that could lead to geographical concentration within cities. Third, 

the DA-level social determinants were extracted from the most recent available census data from 

2016, which may not accurately represent the characteristics of the population in 2020-2021. 

Fourth, as individual-level data on social determinants for cases were not available, we conducted 

our unit of analysis at the smallest area (DA) possible to limit misclassification in the context of 

an ecological study. Furthermore, in the few surveillance systems (e.g. Ontario) where individual-

level data on some social determinants were collected and were available, and despite about 50% 

missingness, the pattern and magnitude were similar to the DA-level findings (73, 74). We limited 

the descriptive study to a cross-sectional analysis of each social determinant separately. Future 

work should examine sources of differences in the magnitude of inequalities/concentration in cases 

between cities (underlying differences in distribution of social determinants and the application of 

interventions), over time (to examine longitudinal pattern of heterogeneities over time and in each 

wave), with mediation or explanatory modelling of pathways to further examine the clustering of 

cases, and by a composite measure of social determinants or via multivariable analyses (given the 

potential for differential correlation between social determinants in each city (23)).  

In conclusion, geographical hotspots characterized by social determinants have been a 

consistent feature the COVID-19 pandemic across major urban centers in British Columbia, 

Manitoba, Ontario, and Québec. The pattern of epidemic concentration and thus, inequalities, by 

social determinants has varied between cities. Geographically prioritized allocation of resources 

and services that are tailored to the local drivers of inequalities in acquisition and transmission risk 

offer a path forward in the public health response to SARS-CoV-2’s resurgence as vaccination 

programs are being scaled-up.   
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5.4. Manuscript 2: Supplementary Materials 

5.4.1. Supplementary figures 

 

Figure 5.4.1. The Lorenz curves of COVID-19 confirmed cases (excluding long-term care 

residents) by proportion of population and the corresponding Gini coefficients.  

Panel A: Lorenz curves of census metropolitan areas (CMA) in British Columbia (Abbotsford-

Mission is displayed as “Abbotsford”). Panel B: Lorenz curves of CMAs in Manitoba. Panel C: 

Lorenz curves of CMAs in Ontario (Ottawa-Gatineau (Ontario part) is displayed as “Ottawa”; 

Kitchener - Cambridge – Waterloo is displayed as “Waterloo”); St. Catharines–Niagara is 

displayed as “Niagara”). Panel D: Lorenz curves of CMAs in Québec (Ottawa-Gatineau (Québec 

part) is displayed as “Gatineau”). The population was ranked by the number of cases in each 

dissemination area (DA) from the highest to the lowest. 
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Figure 5.4.2. Distribution of the social determinants of health and the corresponding Gini 

(co-Gini) coefficients (excluding long-term care residents) of cumulative COVID-19 cases 

across census metropolitan areas (CMA).  

This “ridgeplot” displays the dissemination area-level proportion visible minority on the x-axis 

and the y-axis represents the different CMAs. For each CMA, the distribution of proportion 

minority is shown. Panel A: population size. Panel B: After-tax income per person equivalent. 

Panel C: proportion population without certificate, diploma or degree deciles. Panel D: proportion 

visible minority. Panel E: proportion recent immigration. Panel F: proportion working in essential 

services. Panel G: proportion not living in high-density housing. Abbotsford-Mission is displayed 

as “Abbotsford”; Ottawa-Gatineau (Ontario part) is displayed as “Ottawa”; St. Catharines–Niagara 

is displayed as “Niagara”; Ottawa-Gatineau (Québec part) is displayed as “Gatineau”. Co-Gini 

coefficients followed by a “*” mark represent co-Gini coefficients of those Lorenz curves that 

went over and under the equality line.  
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Figure 5.4.3. The concentration curves of COVID-19 confirmed cases (excluding long-term 

care residents) by social determinants.  

Panel A: after-tax income per-person equivalent deciles. Panel B: proportion population without 

certificate, diploma or degree deciles. Panel C: proportion visible minority deciles. Panel D: 

proportion recent immigration deciles. Panel E: proportion working in essential services deciles. 

Panel F: proportion not living in high density housing deciles. Abbotsford-Mission is displayed as 

“Abbotsford”; Ottawa-Gatineau (Ontario part) is displayed as “Ottawa”; St. Catharines–Niagara 

is displayed as “Niagara”; Ottawa-Gatineau (Québec part) is displayed as “Gatineau”. All the 

variables were ranked from the highest value to the lowest.  
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5.4.2. Supplementary tables 

Table 5.4.1. Social Determinants of Health–Variables from Statistics Canada 2016 Census of Population.  

Measure (Source)a Definition of indicator Notesb [r] 
Population size 

(100% of census sample) 

Total population count of a 

Dissemination Area  

In this measure and where required, Dissemination Area (DA) population counts are 

adjusted (reduced) to remove residents of Long-Term Care Homes (LTCH)c.  

Socio-demographic   

Household income 

(100% of census sample)d 

Decile rank of a Dissemination 

Area’s average total after-tax 

income, weighted by population 

After-tax income is calculated for each household from the income for all household 

members. Calendar year 2015 is the reference period for all income variables in the 2016 

Census. Single-person equivalent is used to account for households of different sizes. To 

limit variations in the cost of living, the ranking is calculated exclusively from DAs within 

the same Census Metropolitan Area (CMA).   

% recent immigration 

(25% of census sample) 

Numerator: Number of persons 

within each DA who immigrated 

to Canada in the 5 year period 

between 2011 and 2016 

Denominator: Total population 

within the Dissemination Area 

2016 Census Dictionary states: 'Immigrant' refers to a person who is, or who has ever been, 

a landed immigrant or permanent resident. Such a person has been granted the right to live 

in Canada permanently by immigration authorities.  

2016 Census Dictionary states: 'Period of immigration' refers to the period in which the 

immigrant first obtained landed immigrant or permanent resident status. 

Recent immigrant refers to a person who obtained a landed immigrant or permanent 

resident status up to five years prior to a given census year. In the 2016 Census, this period 

is January 1, 2011, to May 10, 2016. 

% visible minority 

(25% of census sample) 

Numerator: Number of persons 

who belong to visible minority 

groups 

Denominator: Total population 

within the Dissemination Area 

Visible minority groups are defined by the Employment Equity Act: "persons, other than 

Aboriginal peoples, who are non-Caucasian in race or non-white in colour". 2016 Census 

Dictionary states: “The visible minority population consists mainly of the following 

groups: South Asian, Chinese, Black, Filipino, Latin American, Arab, Southeast Asian, 

West Asian, Korean and Japanese.” 

% educational 

attainment  

(25% of census sample) 

Numerator: Number of persons 
aged 15 and over who have not 

obtained a certificate, diploma or 

degree from a high school, trades 

school, college, or university. 

Denominator: Total of all persons 

aged 15 and older living in private 

households in the Dissemination 

Area. 

The certificates, diplomas or degrees included in this measure also capture: high school 
equivalency certificates; Certificates of Apprenticeship; Journeyperson’s designations; 

trade certificates or diplomas completed at institutes of technology and vocational centres; 

CEGEP; non-university certificates or diplomas from a private business school or school of 

nursing; teaching certificates; “non-degree programs of study completed through a 

university….connected with professional associations in fields such as accounting, 

banking, insurance or public administration.” [2016 Census Dictionary]. Persons included 

in the numerator have not obtained these types of certificates, diplomas or degrees. 
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Measure (Source)a Definition of indicator Notesb [r] 
Dwelling-related   

% not living in high-

density housing (% 

suitable housing) 

(25% of census sample) 

Numerator: Number of private householdse 

living in dwellings that have “enough 

bedrooms for the size and composition of 

the household.” [2016 Census Dictionary] 

Denominator: Total number of private 

households within the Dissemination Area 

The National Occupancy Standard (NOS) is used to classify the suitability of 

accommodations. A suitable household is defined as "households where the 

required number of bedrooms based on the National Occupancy Standard (NOS) 

does not exceed the reported number of bedrooms in the dwelling.” The number of 

required bedrooms is determined using the following criteria: 

1. A maximum of two persons per bedroom. 

2. Household members, of any age, living as part of a married or common-law 

couple share a bedroom with their spouse or common-law partner. 

3. Lone-parents, of any age, have a separate bedroom. 

4. Household members aged 18 or over have a separate bedroom - except those 

living as part of a married or common-law couple. 

5. Household members under 18 years old of the same sex share a bedroom - 

except lone-parents and those living as part of a married or common-law couple. 

6. Household members under 5 years old of the opposite sex share a bedroom if 

doing so would reduce the number of required bedrooms. This situation would arise 

only in households with an odd number of males under 18, an odd number of 

females under 18, and at least one female and one male under the age of 5. 

https://www23.statcan.gc.ca/imdb/pUtil.pl?Function=getNote&Id=141809&NT=01 

 

 

Occupation-related   

% essential services not 

amenable to remote 

working  

(25% of census sample) 

Numerator: Number of persons in the labor 

force who have occupations in one of the 

following categories: 

Manufacturing/utilities, 

Trades/transport/equipment operators, 

Sales/services, Health, 

Resources/agriculture/production 

Denominator: Total labor force population 

aged 15 years and over in private 

households in the Dissemination Area 

Occupations are assigned according to the National Occupancy Classification 

(2016). Occupation was chosen over “Industry” to better represent the type of work 

performed and skill-level required by a population rather than the industry that 

provides the employment. Numerators may be defined separately (“or”) or added 

together in different combination sets (“and”). “Labor Force” is all persons in 

private households aged 15 years and older who were either employed or 

unemployed during the week of Sunday, May 1 to Saturday, May 7, 2016. 
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Sources:  

Data tables from: Statistics Canada. 2017. 2016 Census of Population. Census Profile - Age, Sex, Type of Dwelling, Families, Households, 

Marital Status, Language, Income, Immigration and Ethnocultural Diversity, Housing, Aboriginal Peoples, Education, Labour, Journey to Work, 

Mobility and Migration, and Language of Work for Canada, Provinces and Territories, Census Divisions, Census Subdivisions and 

Dissemination Areas (File: 98-401-X2016044). Accessed January 2018. 

Dictionary definitions from: Statistics Canada. 2017. 2016 Census Dictionary. Statistics Canada Catalogue no. 98-301-X2016001. Ottawa, 

Ontario. November 29. (https://www12.statcan.gc.ca/census-recensement/2016/ref/dict/index-eng.cfm, accessed November 30, 2020).  

Questionnaire used to collect the information: 1) Statistics Canada. Census 2A – 2016. Modified April 23, 2019. 

(https://www23.statcan.gc.ca/imdb/p3Instr.pl?Function=assembleInstr&a=1&&lang=en&Item_Id=295241) and 2) Census 2A-L - 2016. 

Modified April 23, 2019. (https://www23.statcan.gc.ca/imdb/p3Instr.pl?Function=assembleInstr&a=1&&lang=en&Item_Id=295122) 

a-“Sample” refers to the short-form Census questionnaire (100% sample) or to the long-form questionnaire, received by a random sample of 

households (25% sample). It is mandatory for recipients to respond to the questionnaires. Statistical inferences for the entire population are drawn 

from the subset of responses of the long-form questionnaire; these inferences are reported in the tabulated values provided by Statistics Canada. 

Note that income information was collected solely from administrative data sources (100% sample) and were not part of either questionnaire.  

b-Additional details about variable definitions may be included the Census Dictionary; please refer to Statistics Canada’s Dictionary for the 2016 

Census of Population for complete definitions. Some definitions provided here are taken verbatim from source.  

c-Due to reporting methods used by CCM+, case counts among “Long-Term Care Residents” may also include cases that are reported for residents 

of “nursing home[s] or other chronic care facility[ies]”. Adjustments in population counts described here only include adjustments to 

Dissemination Areas that have one (or more) LTCH facility identified by the Ontario Ministry of Health. The adjustments are made by subtracting 

the total number of beds in the facility from the population count of the DA. 

d-Income deciles for the City of Toronto / Toronto Public Health Unit were tabulated from data contained in PCCF+ (version 7B) and adjusted for 

population size. Ref: Statistics Canada. 2018. Postal Code Conversion File Plus (PCCF+) Version 7B, Reference Guide. November 2018 Postal 

codes. 

e-Where referenced, “household” refers to a “private household”. The 2016 Census Dictionary states: “Private household” refers to a person or 

group of persons who occupy the same dwelling and do not have a usual place of residence elsewhere in Canada or abroad.” 
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Table 5.4.2. Proportion of population and the corresponding percentage of confirmed cases within each decile group ranked by 

the social and structural determinants across CMA. 

Census Metropolitan Area 
Decile 

groups 

After-tax 

household 

income 

% without 

diploma/certificate 

% visible 

minority 

% recent 

immigration 

% not living in 

high-density 

housing 

% essential 

worker 

Pop* Case** Pop* Case** Pop* Case** Pop* Case** Pop* Case** Pop* Case** 

British Columbia  

Vancouver 

1 10.0% 6.1% 9.9% 21.3% 10.0% 15.5% 10.0% 13.4% 1.8% 1.0% 10.0% 23.7% 

2 20.0% 13.0% 20.0% 37.3% 20.0% 29.6% 20.0% 25.7% 19.7% 13.0% 20.0% 38.8% 

3 30.0% 20.9% 30.0% 49.5% 30.0% 41.8% 29.9% 37.0% 29.9% 21.1% 30.0% 49.3% 

4 40.0% 29.9% 40.0% 58.7% 39.9% 53.1% 40.0% 47.6% 39.9% 29.0% 39.3% 58.3% 

5 50.0% 39.6% 49.9% 66.6% 50.0% 63.4% 50.0% 57.9% 49.3% 37.1% 50.0% 66.5% 

6 60.0% 51.0% 60.0% 73.8% 60.0% 71.6% 60.0% 68.6% 59.8% 47.0% 59.9% 73.6% 

7 70.0% 63.3% 69.6% 80.5% 70.0% 80.0% 70.0% 77.1% 69.9% 57.3% 70.0% 80.4% 

8 80.0% 76.4% 79.7% 87.0% 80.0% 87.3% 79.9% 85.4% 79.9% 68.1% 80.0% 87.2% 

9 90.0% 89.0% 89.9% 94.2% 90.0% 93.8% 88.6% 92.0% 89.9% 81.1% 89.8% 93.8% 

10 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Kelowna 

1 9.8% 10.5% 9.9% 12.3% 9.9% 14.4% 9.4% 11.0% 2.7% 2.2% 9.6% 10.7% 

2 19.8% 22.0% 19.9% 21.6% 19.1% 25.1% 19.6% 21.8% 19.2% 16.8% 19.9% 20.1% 

3 29.8% 32.5% 29.1% 30.8% 30.0% 37.4% 30.0% 31.7% 29.7% 26.9% 29.8% 30.5% 

4 39.8% 41.5% 40.0% 39.7% 39.7% 45.7% 39.1% 40.5% 39.1% 37.0% 39.9% 39.8% 

5 49.8% 51.4% 49.5% 48.6% 49.5% 55.7% 49.2% 49.4% 49.4% 46.7% 49.8% 47.6% 

6 59.6% 58.6% 59.8% 58.9% 59.8% 65.8% 59.7% 58.9% 59.9% 58.0% 59.7% 58.6% 

7 69.9% 67.7% 69.2% 66.6% 69.5% 74.1% 64.9% 64.7% 69.2% 66.4% 68.0% 66.6% 

8 79.3% 76.3% 79.7% 78.0% 79.0% 83.6% 100.0% 100.0% 79.9% 76.8% 79.7% 80.7% 

9 89.8% 88.6% 89.7% 88.9% 89.9% 92.4%     89.8% 88.5% 89.9% 88.9% 

10 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%     100.0% 100.0% 100.0% 100.0% 

Abbotsford-Mission 

1 10.0% 6.4% 9.6% 17.3% 10.0% 21.1% 9.8% 21.2% 3.1% 2.9% 9.9% 18.4% 

2 19.9% 12.0% 19.7% 35.1% 19.9% 38.6% 19.7% 34.5% 19.3% 13.5% 19.9% 32.5% 

3 30.0% 20.3% 30.0% 46.6% 29.5% 50.9% 29.8% 44.8% 29.5% 20.1% 29.7% 46.2% 

4 39.7% 28.9% 39.8% 56.0% 40.0% 61.7% 40.0% 56.2% 39.6% 26.9% 39.9% 56.8% 

5 49.9% 38.6% 49.6% 65.4% 49.8% 69.9% 49.5% 64.0% 49.1% 34.8% 49.4% 64.4% 

6 59.7% 51.4% 59.7% 74.2% 59.4% 76.3% 59.8% 73.4% 59.9% 43.2% 59.6% 72.5% 

7 69.7% 66.6% 70.0% 80.8% 70.0% 83.0% 69.4% 81.1% 68.4% 54.7% 69.9% 80.9% 

8 79.8% 81.5% 79.9% 88.1% 79.8% 88.1% 73.6% 83.3% 79.7% 66.3% 79.9% 87.4% 

9 89.8% 90.8% 89.3% 94.1% 89.9% 93.8% 100.0% 100.0% 89.9% 79.8% 89.9% 93.8% 

10 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%     100.0% 100.0% 100.0% 100.0% 
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Census Metropolitan Area 
Decile 

groups 

After-tax 

household 

income 

% without 

diploma/certificate 

% visible 

minority 

% recent 

immigration 

% not living in 

high-density 

housing 

% essential 

worker 

Pop* Case** Pop* Case** Pop* Case** Pop* Case** Pop* Case** Pop* Case** 

Manitoba                            

Winnipeg 

1 9.9% 7.4% 10.0% 15.6% 9.9% 9.8% 9.9% 12.4% 2.4% 2.1% 10.0% 14.3% 

2 19.8% 14.4% 20.0% 28.1% 19.9% 23.8% 19.9% 23.4% 19.9% 16.2% 19.7% 27.0% 

3 30.0% 22.8% 29.9% 38.6% 29.7% 35.0% 30.0% 35.0% 29.6% 24.0% 30.0% 39.0% 

4 40.0% 29.9% 39.9% 48.5% 39.9% 45.2% 39.9% 45.7% 39.9% 31.6% 40.0% 48.9% 

5 50.0% 39.2% 49.9% 57.9% 50.0% 55.8% 49.9% 56.4% 49.9% 40.9% 49.1% 57.8% 

6 59.9% 49.7% 59.8% 67.0% 59.9% 66.8% 59.6% 65.1% 60.0% 51.1% 60.0% 67.8% 

7 70.0% 60.6% 69.6% 75.7% 69.9% 76.4% 69.9% 75.2% 69.5% 59.8% 70.0% 75.1% 

8 79.7% 72.8% 80.0% 82.7% 80.0% 85.5% 77.9% 80.9% 79.9% 72.0% 80.0% 83.4% 

9 89.8% 84.6% 90.0% 90.9% 90.0% 93.5% 100.0% 100.0% 89.6% 85.2% 89.9% 91.0% 

10 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%     100.0% 100.0% 100.0% 100.0% 

Ontario  

Toronto 

1 10.0% 4.9% 9.8% 15.4% 10.0% 16.6% 9.9% 13.4% 1.6% 1.0% 10.0% 18.1% 

2 20.0% 11.0% 19.9% 30.2% 20.0% 30.9% 20.0% 25.6% 19.7% 11.7% 20.0% 33.1% 

3 30.0% 18.5% 29.9% 43.0% 30.0% 43.6% 29.8% 37.7% 29.9% 19.0% 29.9% 46.7% 

4 40.0% 27.2% 39.7% 54.6% 40.0% 54.5% 40.0% 48.4% 39.9% 26.8% 39.9% 58.4% 

5 50.0% 37.4% 50.0% 65.5% 50.0% 64.6% 49.8% 58.9% 50.0% 36.2% 50.0% 67.9% 

6 60.0% 49.4% 59.9% 74.6% 59.9% 73.2% 60.0% 69.2% 59.9% 46.3% 60.0% 76.7% 

7 70.0% 61.2% 69.9% 82.1% 70.0% 81.8% 69.9% 78.3% 70.0% 57.5% 70.0% 84.2% 

8 80.0% 72.8% 79.8% 88.4% 80.0% 88.6% 80.0% 86.4% 79.9% 69.9% 79.9% 90.1% 

9 90.0% 85.1% 89.9% 95.0% 90.0% 94.8% 85.8% 90.5% 90.0% 83.9% 90.0% 95.4% 

10 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Ottawa – Gatineau (Ontario part) 

1 9.9% 5.7% 10.0% 17.6% 10.0% 20.2% 9.9% 19.2% 2.9% 1.8% 10.0% 19.1% 

2 19.9% 12.1% 20.0% 31.3% 20.0% 33.0% 20.0% 30.7% 29.6% 19.2% 20.0% 30.5% 

3 30.0% 19.3% 29.9% 42.2% 29.9% 44.7% 29.8% 43.1% 39.6% 27.8% 30.0% 39.7% 

4 40.0% 27.7% 39.4% 50.3% 40.0% 55.0% 40.0% 53.0% 49.6% 36.1% 39.7% 50.3% 

5 50.0% 37.8% 49.8% 61.6% 50.0% 65.0% 49.9% 63.9% 59.9% 45.4% 50.0% 60.6% 

6 59.9% 48.0% 59.9% 70.0% 59.8% 73.5% 60.0% 71.3% 70.0% 55.7% 60.0% 69.4% 

7 70.0% 56.7% 68.7% 76.7% 69.9% 81.8% 66.2% 76.1% 80.0% 67.4% 70.0% 78.1% 

8 79.9% 67.7% 80.0% 85.8% 80.0% 88.5% 100.0% 100.0% 89.9% 79.2% 79.9% 86.8% 

9 90.0% 80.9% 84.1% 89.1% 90.0% 94.0%     100.0% 100.0% 90.0% 94.0% 

10 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%         100.0% 100.0% 

 
  



 

 130 

Census Metropolitan Area 
Decile 

groups 

After-tax 

household income 

% without 

diploma/certificate 
% visible minority 

% recent 

immigration 

% not living in 

high-density 

housing 

% essential worker 

Pop* Case** Pop* Case** Pop* Case** Pop* Case** Pop* Case** Pop* Case** 

Hamilton 

1 9.9% 6.9% 10.0% 11.5% 10.0% 16.3% 9.9% 12.5% 2.5% 2.1% 9.9% 13.0% 

2 20.0% 15.1% 19.8% 23.3% 19.9% 28.7% 20.0% 24.3% 29.6% 25.3% 20.0% 22.7% 

3 29.9% 23.9% 30.0% 35.0% 30.0% 39.2% 29.9% 34.9% 39.4% 33.3% 30.0% 34.2% 

4 40.0% 31.7% 39.9% 44.1% 40.0% 48.9% 39.8% 46.7% 49.4% 43.0% 39.9% 45.0% 

5 49.9% 44.4% 49.7% 56.5% 49.9% 56.8% 49.9% 56.1% 59.4% 53.8% 50.0% 57.0% 

6 60.0% 54.4% 59.8% 65.7% 60.0% 68.0% 58.7% 63.2% 69.3% 65.0% 59.9% 65.5% 

7 70.0% 65.3% 69.8% 74.5% 69.9% 78.0% 100.0% 100.0% 79.9% 75.7% 69.9% 75.5% 

8 80.0% 75.8% 79.8% 83.2% 80.0% 85.2%     89.5% 85.3% 80.0% 84.1% 

9 89.9% 87.9% 89.9% 91.2% 90.0% 92.0%     100.0% 100.0% 90.0% 91.4% 

10 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%         100.0% 100.0% 

Kitchener - Cambridge - Waterloo 

1 10.0% 7.4% 9.9% 15.2% 10.0% 15.2% 9.9% 12.6% 3.1% 1.8% 9.9% 14.7% 

2 20.0% 15.8% 19.7% 25.7% 19.6% 26.5% 19.9% 23.8% 20.0% 15.4% 19.9% 26.8% 

3 30.0% 22.8% 29.7% 37.4% 30.0% 37.8% 29.8% 36.6% 29.9% 23.5% 29.9% 38.0% 

4 40.0% 31.5% 39.9% 48.6% 40.0% 47.2% 39.8% 46.8% 39.8% 32.4% 40.0% 48.5% 

5 49.2% 41.0% 49.9% 57.8% 50.0% 57.5% 49.8% 56.8% 49.9% 42.8% 49.5% 57.8% 

6 59.9% 51.0% 59.8% 66.3% 59.9% 66.7% 59.8% 65.8% 59.4% 50.6% 59.9% 67.8% 

7 70.0% 61.6% 69.9% 75.4% 70.0% 75.1% 65.0% 69.2% 69.9% 62.1% 70.0% 77.8% 

8 79.9% 71.4% 79.4% 83.7% 80.0% 81.7% 100.0% 100.0% 80.0% 72.4% 79.8% 84.2% 

9 89.9% 83.6% 89.8% 92.7% 90.0% 89.1%     89.8% 82.1% 90.0% 92.5% 

10 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%     100.0% 100.0% 100.0% 100.0% 

St. Catharines - Niagara 

1 10.0% 14.3% 10.0% 9.2% 9.7% 12.5% 9.9% 12.0% 4.2% 3.0% 9.9% 10.9% 

2 19.9% 21.9% 19.8% 20.5% 19.8% 25.6% 19.6% 23.8% 29.9% 28.3% 20.0% 21.9% 

3 29.8% 29.1% 29.5% 30.9% 30.0% 36.9% 30.0% 36.7% 39.3% 36.3% 29.9% 32.2% 

4 39.9% 37.4% 39.9% 41.1% 39.7% 46.6% 39.7% 47.7% 49.5% 43.9% 40.0% 40.1% 

5 50.0% 49.5% 49.9% 50.2% 49.9% 56.4% 42.8% 49.9% 59.8% 55.3% 49.9% 50.9% 

6 59.9% 59.4% 59.8% 57.8% 60.0% 66.7% 100.0% 100.0% 69.7% 66.3% 59.9% 60.6% 

7 70.0% 69.1% 70.0% 68.6% 69.9% 73.2%     79.5% 76.0% 69.9% 69.8% 

8 79.9% 77.9% 79.7% 77.1% 79.7% 81.3%     89.9% 87.0% 79.9% 77.8% 

9 89.9% 88.1% 89.9% 90.8% 88.8% 91.2%     100.0% 100.0% 89.7% 87.3% 

10 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%         100.0% 100.0% 
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Census Metropolitan Area 
Decile 

groups 

After-tax 

household income 

% without 

diploma/certificate 
% visible minority 

% recent 

immigration 

% not living in 

high-density 

housing 

% essential worker 

Pop* Case** Pop* Case** Pop* Case** Pop* Case** Pop* Case** Pop* Case** 

Windsor 

1 9.8% 6.8% 10.0% 13.4% 10.0% 13.8% 9.9% 13.4% 2.1% 1.4% 10.0% 11.1% 

2 19.8% 14.5% 19.3% 25.7% 19.9% 26.3% 19.8% 25.3% 29.8% 25.9% 19.9% 23.7% 

3 29.7% 21.6% 29.8% 36.2% 29.9% 38.1% 29.8% 35.6% 38.9% 33.6% 30.0% 33.5% 

4 39.7% 34.0% 39.7% 46.4% 39.9% 48.8% 39.9% 45.9% 49.8% 42.5% 39.4% 43.1% 

5 49.7% 44.9% 50.0% 55.2% 49.6% 57.2% 50.0% 54.4% 59.8% 53.0% 49.7% 51.5% 

6 59.9% 57.8% 59.9% 63.6% 60.0% 66.5% 59.5% 64.8% 69.9% 62.3% 60.0% 63.9% 

7 69.9% 64.9% 69.8% 72.1% 69.6% 73.6% 100.0% 100.0% 79.9% 73.1% 69.9% 72.4% 

8 80.0% 73.8% 79.8% 79.8% 79.8% 80.2%     89.9% 86.6% 79.9% 83.4% 

9 89.9% 84.0% 89.8% 91.8% 89.6% 86.4%     100.0% 100.0% 89.9% 91.0% 

10 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%         100.0% 100.0% 

Québec  

Montreal 

1 9.9% 6.8% 10.0% 12.8% 10.0% 15.5% 10.0% 14.9% 2.6% 2.0% 10.0% 11.8% 

2 20.0% 15.3% 20.0% 24.5% 20.0% 29.2% 20.0% 26.6% 20.0% 15.1% 20.0% 23.4% 

3 30.0% 23.9% 29.7% 35.0% 30.0% 41.2% 29.9% 37.7% 29.9% 22.8% 29.8% 34.5% 

4 40.0% 32.5% 40.0% 45.8% 40.0% 52.0% 40.0% 47.9% 39.5% 31.1% 38.5% 43.7% 

5 50.0% 42.0% 49.8% 55.8% 50.0% 62.1% 50.0% 57.9% 49.6% 39.5% 50.0% 55.7% 

6 60.0% 51.8% 60.0% 66.0% 60.0% 70.9% 60.0% 67.0% 60.0% 49.2% 59.9% 65.5% 

7 70.0% 62.4% 70.0% 75.1% 69.9% 78.9% 70.0% 75.6% 69.9% 59.1% 70.0% 75.5% 

8 80.0% 74.4% 79.9% 84.3% 80.0% 86.4% 70.6% 75.9% 80.0% 70.9% 79.9% 83.9% 

9 90.0% 86.7% 90.0% 92.5% 90.0% 93.4% 100.0% 100.0% 89.7% 84.0% 89.9% 92.2% 

10 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%     100.0% 100.0% 100.0% 100.0% 

Quebec City 

1 10.0% 7.6% 10.0% 13.5% 9.9% 13.1% 9.9% 12.2% 6.3% 6.0% 10.0% 12.3% 

2 19.9% 15.8% 19.9% 24.4% 20.0% 24.3% 20.0% 24.3% 39.7% 36.6% 19.9% 22.7% 

3 30.0% 24.7% 29.5% 34.4% 30.0% 35.2% 29.6% 34.0% 49.9% 45.0% 30.0% 35.7% 

4 40.0% 33.7% 39.9% 44.5% 40.0% 45.3% 39.9% 43.6% 59.9% 55.3% 40.0% 45.7% 

5 50.0% 42.9% 49.8% 54.5% 49.8% 54.2% 47.2% 49.1% 70.0% 66.7% 49.9% 54.6% 

6 60.0% 52.3% 59.6% 64.2% 59.9% 63.1% 100.0% 100.0% 80.0% 76.0% 59.9% 66.4% 

7 70.0% 62.1% 70.0% 74.5% 70.0% 70.9%     89.7% 87.1% 69.9% 75.0% 

8 80.0% 73.7% 79.7% 82.8% 79.9% 79.5%     100.0% 100.0% 79.9% 83.8% 

9 90.0% 86.5% 88.3% 89.5% 80.5% 79.8%         90.0% 92.2% 

10 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%         100.0% 100.0% 
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Census Metropolitan Area 
Decile 

groups 

After-tax 

household income 

% without 

diploma/certificate 
% visible minority 

% recent 

immigration 

% not living in 

high-density 

housing 

% essential worker 

Pop* Case** Pop* Case** Pop* Case** Pop* Case** Pop* Case** Pop* Case** 

Ottawa – Gatineau (Quebec part) 

1 9.9% 7.9% 10.0% 13.0% 9.9% 13.8% 10.0% 16.2% 2.4% 2.7% 9.9% 9.3% 

2 19.9% 15.3% 19.9% 22.1% 20.0% 27.1% 19.8% 26.5% 29.7% 29.5% 19.9% 18.3% 

3 29.6% 25.1% 29.8% 30.8% 30.0% 35.7% 29.8% 36.7% 39.5% 37.7% 27.9% 26.9% 

4 39.7% 34.5% 40.0% 40.8% 40.0% 47.4% 39.8% 46.1% 49.4% 46.8% 39.9% 37.8% 

5 49.9% 44.7% 49.8% 51.0% 50.0% 56.5% 49.7% 57.3% 59.5% 57.5% 49.8% 46.6% 

6 59.8% 53.7% 59.8% 61.7% 59.9% 67.1% 54.2% 61.0% 69.6% 66.6% 60.0% 60.4% 

7 69.9% 64.8% 69.8% 72.0% 69.9% 75.8% 100.0% 100.0% 79.8% 77.9% 69.7% 70.8% 

8 80.0% 73.7% 79.8% 82.6% 79.9% 85.6%     90.0% 88.7% 79.7% 81.3% 

9 90.0% 87.1% 90.0% 91.9% 89.8% 92.0%     100.0% 100.0% 89.9% 91.2% 

10 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%         100.0% 100.0% 

Sherbrooke 

1 9.8% 5.1% 9.9% 12.4% 9.7% 14.7% 9.9% 14.4% 3.1% 3.5% 9.3% 9.3% 

2 19.2% 16.3% 19.9% 23.7% 19.7% 29.5% 19.9% 29.3% 39.8% 35.9% 19.8% 22.7% 

3 29.9% 24.9% 29.9% 35.2% 29.6% 38.4% 29.6% 36.5% 50.0% 44.4% 29.6% 31.6% 

4 39.9% 31.5% 39.9% 46.0% 38.9% 48.1% 39.6% 47.1% 59.2% 53.5% 39.6% 43.7% 

5 49.9% 40.0% 49.6% 55.7% 49.8% 59.0% 43.6% 50.2% 69.7% 63.8% 49.8% 55.2% 

6 59.8% 51.2% 59.8% 65.2% 60.0% 68.2% 100.0% 100.0% 79.7% 75.5% 60.0% 65.8% 

7 69.8% 60.6% 69.6% 73.3% 69.7% 74.6%     90.0% 86.3% 69.6% 74.4% 

8 80.0% 71.4% 79.7% 81.4% 78.9% 79.9%     100.0% 100.0% 79.0% 82.9% 

9 90.0% 84.6% 88.9% 89.9% 100.0% 100.0%         89.8% 92.5% 

10 100.0% 100.0% 100.0% 100.0%             100.0% 100.0% 

Saguenay 

1 9.6% 9.0% 10.0% 8.4% 9.9% 9.4% 9.6% 9.2% 6.1% 3.4% 9.9% 8.1% 

2 19.9% 19.0% 19.8% 21.6% 19.9% 21.4% 14.1% 13.6% 60.0% 63.0% 19.7% 22.1% 

3 29.3% 28.0% 30.0% 35.5% 29.9% 34.9% 100.0% 100.0% 69.6% 72.3% 30.0% 29.5% 

4 40.0% 39.5% 39.1% 43.5% 39.8% 42.7%     79.7% 81.0% 39.9% 38.9% 

5 49.9% 51.2% 49.2% 53.9% 42.9% 45.1%     89.9% 90.4% 49.9% 47.8% 

6 59.8% 58.4% 59.8% 63.2% 100.0% 100.0%     100.0% 100.0% 60.0% 57.6% 

7 69.8% 65.5% 69.8% 72.3%             69.3% 67.1% 

8 79.9% 74.4% 79.5% 81.1%             79.8% 81.3% 

9 89.7% 82.4% 89.8% 90.5%             89.8% 89.6% 

10 100.0% 100.0% 100.0% 100.0%             100.0% 100.0% 
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Census Metropolitan Area 
Decile 

groups 

After-tax 

household income 

% without 

diploma/certificate 
% visible minority 

% recent 

immigration 

% not living in 

high-density 

housing 

% essential worker 

Pop* Case** Pop* Case** Pop* Case** Pop* Case** Pop* Case** Pop* Case** 

Trois-Rivières 

1 9.9% 10.7% 9.9% 11.3% 9.3% 13.1% 9.8% 11.5% 6.6% 5.4% 9.8% 8.4% 

2 19.8% 20.4% 19.8% 22.8% 19.7% 22.9% 19.4% 23.3% 48.9% 45.5% 19.7% 18.9% 

3 29.7% 29.0% 30.0% 31.9% 30.0% 33.3% 28.5% 32.4% 59.5% 56.2% 29.9% 30.6% 

4 40.0% 38.1% 39.6% 40.6% 39.6% 45.0% 30.1% 33.6% 70.0% 68.4% 40.0% 38.7% 

5 49.9% 46.4% 49.0% 48.7% 48.6% 54.0% 100.0% 100.0% 79.9% 78.9% 49.4% 50.0% 

6 59.8% 58.9% 59.2% 60.1% 59.9% 63.1%     89.9% 89.6% 59.3% 59.3% 

7 69.8% 67.4% 69.5% 71.4% 61.4% 64.7%     100.0% 100.0% 69.4% 67.7% 

8 79.7% 77.1% 79.7% 79.9% 100.0% 100.0%         79.8% 78.0% 

9 89.8% 87.4% 89.8% 88.9%             89.5% 87.0% 

10 100.0% 100.0% 100.0% 100.0%             100.0% 100.0% 

* Pop = cumulative proportion of population 

** Case = cumulative proportion of cases 
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Chapter 6. Mortality Tends and Lengths of Stay Among Hospitalized COVID-19 

Patients in Canada 

6.1. Preface to Manuscript 3 

Expanding from community-level disparities to individual outcomes, my third manuscript 

examines some of the key parameters used in mathematical models of SARS-CoV-2 transmission 

to project the healthcare burden: the length of stay in the hospital, the proportion of people 

hospitalized admitted to the ICU, and in-hospital mortality (231). These parameters were known 

to potentially vary over epidemic waves, across jurisdictions, and by facility. However, they were 

still not well understood at that time. 

Although the Canadian Institute for Health Information (CIHI) compiled hospitalization 

data from provinces into its Hospital Morbidity Database, the available data was limited and 

lacked the required granularity to inform detailed mathematical models (232). For instance, 

hospitalizations were only stratified by gender and broad age groups, and there was a lack of 

stratifications for the durations of hospital stays. Moreover, the trends in hospitalization and in-

hospital mortality were aggregated at the national level on a monthly basis. To address these 

limitations, I utilized administrative health data from Canada’s two largest provinces–Ontario and 

Québec. This approach provided representative and robust estimates of these metrics in Canada.  

The resulting article was published in International Journal of Infectious Diseases (IJID) 

in August 2022. 
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Abstract 

Background: Epidemic of COVID-19 strained hospital resources. We describe temporal trends in 

mortality risk and lengths of stay in hospital and intensive cares units (ICUs) among COVID-19 

patients hospitalized through the first three epidemic waves in Canada. 

Methods: We used population-based provincial hospitalization data from the epicenters of Canada 

(Ontario and Québec). Adjusted estimates were obtained using marginal standardization of logistic 

regression models, accounting for patient-level and hospital-level determinants.  

Results: Using all hospitalizations from Ontario (N=26,541) and Québec (N=23,857), we found 

that unadjusted in-hospital mortality risks peaked at 31% in the first wave and was lowest at the 

end of the third wave at 6-7%. This general trend remained after adjustment. The odds of in-

hospital mortality in the highest patient load quintile were 1.2 (95%CI: 1.0-1.4; Ontario) and 1.6 

(95%CI: 1.3-1.9; Québec) times that of the lowest quintile. Mean hospital and ICU lengths of stay 

decreased over time but ICU stays were consistently higher in Ontario than Québec. 

Conclusion: In-hospital mortality risks and lengths of ICU stay declined over time, despite 

changing patient demographics. Continuous population-based monitoring of patient outcomes in 

an evolving epidemic is necessary for health system preparedness and response. 
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Introduction  

The COVID-19 pandemic has put immense pressure on health care systems. Canada’s most 

populous provinces, Ontario and Québec, bore the brunt of the pandemic (Godin et al., 2021). 

These two provinces accounted for 70% of the country’s total number of COVID-19 

hospitalizations during the first three epidemic waves (INSPQ, 2021; PHO, 2021). The prolonged 

surges in hospital admissions led to rapid increases in hospital patient load, especially in intensive 

care units (ICUs), with associated cancellations of non-urgent care (Derfel, 2021; Favaro et al., 

2021a, 2021b; Olivier, 2021).  

In-hospital mortality provides a proxy measure of the severity of a pandemic and the 

quality and effectiveness of hospital care (Finelli et al., 2021). Worldwide, in-hospital mortality 

was highest in the first months of the pandemic, but progressively declined afterward (Armstrong 

et al., 2020; Dennis et al., 2021). Reasons for this decline include changes in who became infected 

(e.g., age and comorbidities) (Cummings et al., 2020; de Rosa et al., 2021), incremental 

improvements in clinical practice and treatment regimens (Horwitz et al., 2021), and refinement 

of critical care capacity (Bravata et al., 2021; Harris et al., 2018). However, the evolution of in-

hospital mortality across the three epidemic waves has yet to be systematically examined in 

Canada, and it remains unclear to what extent these different factors might explain changes in the 

risk of COVID-19 in-hospital mortality. 

During the course of the pandemic, projections of future demands for hospital beds have 

helped decision-makers to manage and allocate limited healthcare resources (CDC, 2021; Maheu-

Giroux et al., 2021; ScienceTable, 2021). Predicting those demands requires estimates of the 

number of incoming patients and their length of stays (Rees et al., 2020). Understanding the drivers 

of in hospital COVID-19 mortality is important to improve the accuracy of those projections. In 

addition, the disproportionate needs for care in ICUs warrants a thorough investigation of temporal 

changes in length of ICU stays (Deschepper et al., 2021; Shryane et al., 2020). The latter is a key 

metric that provides information on likely healthcare burden (Rees et al., 2020). 

In North America, most studies of in-hospital COVID-19 mortality were informed by the 

experiences of a single city (Mitra et al., 2020; Verma et al., 2021) or hospital (Mah et al., 2021; 

Yang et al., 2020) and the generalizability of these findings remains unclear. To address these 
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knowledge gaps, we aim to 1) describe temporal trends in in-hospital COVID-19 mortality risk, 

2) understand drivers of changes in mortality risk, and 3) estimate changes in length of hospital 

and ICU stays using data from the two largest provinces in Canada, where over 60% of the 

population reside. 

Methods 

Study design and setting 

We conducted a retrospective population-based cohort study using provincial COVID-19 

hospitalization databases from Ontario and Québec. Both provinces have a universal health care 

system, and these databases capture all hospitalizations. Healthcare is under provincial jurisdiction 

and the magnitude of epidemic waves and clinical protocols for COVID-19 patients differ across 

provinces.  

Cohort eligibility criteria 

Cohort entry occurs when individuals are admitted to an Ontario or Québec hospital with 

a COVID-19 diagnosis or the date of diagnosis if it occurs a week or more after admission (i.e., 

presumed nosocomial infections) (Elkrief et al., 2020). We included all hospitalizations with a lab-

confirmed COVID-19 diagnosis admitted between 2020-03-01 and 2021-05-31 in Ontario and 

Québec. All observations were censored at discharge, death, or on August 15th, 2021, whichever 

occurred first. Among the very few individuals that experienced re-infection, only hospitalizations 

related to the first lab-confirmed episode were included in Québec as reinfections are milder than 

primary infections (Qureshi et al., 2022). In Ontario, it is not possible differentiate re-infection. 

Patients admitted or tested after discharge were excluded. Participants with missing date of 

discharge were excluded from the analyses of length of stays (Figure 6.2.1).  
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Figure 6.2.1. Flowchart of patients hospitalized with a lab-confirmed SARS-CoV-2 

diagnosis included in the different analyses, by province (March 1st 2020 to May 31st 2021). 
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Data sources  

Hospitalization data for Ontario was obtained from the Ontario’s Case and Contact 

Management (CCM+), a provincial surveillance database for reporting Diseases of Public Health 

Significance. The approaches dealing with missing observations were summarized in Text 6.4.1 

and Figure 6.4.1. Information on daily hospital capacity came from Bed census summary dataset. 

In Québec, data were obtained from the Maintenance et exploitation des données pour l'étude de 

la clientèle hospitalière database (MED-ÉCHO live). Daily hospital capacity data for each hospital 

were abstracted from the Relevé quotidien du centre hospitalier.  

Outcome and variables 

 Three primary outcomes were studied. The first was all-cause in-hospital mortality, defined 

as a death occurring within 28 days of admission, in line with other studies (Churpek et al., 2021; 

Docherty et al., 2021; Group, 2021; UKHSA, 2022). Patients discharged or dying after 28 days 

were coded as alive at 28 days. The other outcomes were the length of hospital and ICU stay, 

defined as time from hospital and ICU admission to discharge or death (inclusive of the latter; with 

no censoring).  

We categorized patients based on their admission date and corresponding epidemic wave: 

Wave 1 (before 2020-08-01), Wave 2 (2020-08-01 to 2021-03-20), and Wave 3 (after 2021-03-20). 

Hospitalizations with a first positive specimen collected 7 days or more after admission, or whose 

living environment is the hospital, were classified as hospital-acquired infection. In such cases, 

the date of hospital admission for COVID-19 was replaced with the date of the first positive 

specimen to better reflect the time of infection. Patients who were admitted to ICU the same day 

as their hospital admission were defined as direct ICU admission. Patients screened positive for a 

variant of concern (VOC), through mutations N501Y and E484K in Ontario and N501Y, del69/70, 

and E484K in Québec, were regarded as VOC positive (mostly B.1.1.7, with some B.1.351 and 

P.1). Only those whose specimen collected 14 days after their second dose were treated as 

vaccinated (only available in Québec by linking the provincial vaccine registry and MED-ÉCHO 

databases). Overall hospital COVID-19 patient load relative to hospital bed capacity (henceforth, 

hospital patient load) was calculated daily using the number of COVID-19 patients currently 

hospitalized as the numerator and bed capacity (regular + ICU) as the denominator for each of the 
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88 hospitals in Québec and at the level of the 34 public health units in Ontario (due to data 

limitations). The distribution of all patient loads was categorized into quintiles from the lowest to 

highest independently for each province. The ICU patient load relative to ICU bed capacity 

(henceforth, ICU patient load) was calculated based on the same algorithm but using ICU bed 

capacity as the denominator. The gender of hospitalized patients (as proxy of biological sex) was 

not available in Québec.  

Statistical analyses 

 Unadjusted weekly mortality risk, stratified by age, wave, and quintiles of patient load were 

calculated as the proportion of patients admitted with COVID-19 that deceased within 28 days for 

each time period and group. Uncertainty was quantified using 95% Clopper-Pearson confidence 

intervals (CI). Generalized linear models were used to fit smoothed curves of the weekly mortality 

risk (with regression cubic spline for the week of admission) and the mortality risk by age and 

wave. All analyses were performed for each province separately. 

 Adjusted estimates of mortality risk were obtained using logistic regression models with 

cubic splines for calendar time (three knots). In addition, the models adjusted for patient-level 

characteristics and hospital-level determinants. Patient-level variables included those associated 

with severe outcome: age (cubic spline with knots at 50, 70, and 80 years; chosen using the Akaike 

Information Criterion), gender (in Ontario), whether the patient was a resident of long-term care 

homes (LTCH), hospital-acquired infections status, direct ICU admission, VOC status, and 

vaccination status (in Québec) (Booth et al., 2021; Challen et al., 2021; Churpek et al., 2021; Lv 

et al., 2021). Hospital-level determinants comprise the COVID-19 hospital patient load (quintile 

ranking) at time of admission (Block et al., 2021) and facility-level fixed effects to control for 

time-invariant measured/unmeasured confounders. Because of lack of data disaggregation in 

Ontario, both patient load and region fixed-effects were included at the public health unit level. 

Marginal standardization was used to obtain adjusted mortality risks over time, standardizing over 

all hospitalized patients. The 95%CI for overall adjusted mortality risks were generated using 

1,000 bootstrap replicates. 

 Finally, we examined change in hospital and ICU lengths of stays. Specifically, we 

calculated mean and standard deviation and used Kaplan-Meier stratified by age groups (0-49, 50-
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59, 60-69, 70-79, 80 years and older), by waves, and by hospital and ICU patient load quintiles. 

The significance of differences between survival curves was assessed using log-rank tests. 

Ethics approval 

Ethics approvals were obtained from the Health Sciences Research Ethics Board of 

University of Toronto (no. 39253) in Ontario, and the Institutional Review Board of Faculty of 

Medicine and Health Sciences of McGill University in Québec (A06-M52-20B). 

Results 

There were 26,541 (Ontario) and 23,857 (Québec) COVID-19 hospitalizations during the 

study period. Among them, 4,950 (Ontario) and 4,964 (Québec) deceased. Most of the deaths 

occurred within 28 days of admissions: 4,394 (89%) in Ontario and 4,551 (92%) in Québec. Nearly 

a fifth of patients were admitted to ICU during their hospital stay: 5,166 (20%) in Ontario; 3,923 

(16%) in Québec. Hospital patient load ranged from 0-47% in Ontario and 0-51% in Québec (Table 

6.4.1). The ICU patient load varied between 0-83% in Ontario and between 0-123% in Québec. 

Hospitalization profiles varied over time: patients admitted during the third wave were 

younger than those admitted during the first two waves (Table 6.2.1). Patients with presumed 

hospital-acquired infection, those admitted directly to ICU, those who were not fully vaccinated, 

and those infected with a VOC were more likely to die in hospital. A decrease in the proportion of 

hospitalizations transferred from LTCH occurred after the first wave. These patients experienced 

higher mortality risk throughout the whole study period in Ontario. In Québec, however, LTCH 

patients were less likely to die in hospitals during the third wave, reflecting partly changes in 

directives between waves related to these transfers. 
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Table 6.2.1. Characteristics of patients hospitalized with a laboratory-confirmed SARS-

CoV-2 diagnosis and proportion deceased in Ontario and Québec (March 2020 to May 2021). 

 
Ontario 

(N = 26,541) 

Québec 

(N = 23,857) 

 
Wave 1 

(N = 4,751) 

Wave 2 

(N = 12,064) 

Wave 3 

(N = 9,726) 

Wave 1 

(N = 7,437) 

Wave 2 

(N = 13,240) 

Wave 3 

(N = 3,180) 

Number of deaths  

 1,078 2,248 1,068 1,866 2,361 324 

Overall mortality risk [95% confidence interval]  

 
22.7%  

[21.5-23.9%] 

18.6%  

[17.9-19.3%] 

11.0%  

[10.4-11.6%] 

25.1%  

[24.1-26.1%] 

17.8%  

[17.2-18.5%] 

10.2%  

[9.2-11.3%] 

Age; mean (SD)  

At admission 67.8 (18.1) 68.3 (18.9) 59.9 (18.6) 71.5 (18.5) 69.9 (19.3) 60.8 (18.7) 

At death 79.2 (12.5) 79.8 (11.8) 74.0 (13.2) 81.6 (10.7) 82.0 (10.5) 76.7 (11.2) 

Gender; proportion (proportion deceased)  

Male 53.4% (23.0%) 54.2% (19.5%) 54.5% (11.8%) Data not available 

Female 46.6% (22.3%) 45.5% (17.6%) 44.8% (9.9%)  

Other 0.1% (33.3%) 0.3% (20.5%) 0.8% (12.3%)  

Living in long-term care homes; proportion (proportion deceased)  

Yes 18.7% (41.6%) 8.5% (42.7%) 0.4% (30.8%) 11.3% (41.8%) 2.8% (33.2%) 1.3% (2.4%) 

No 81.3% (18.3%) 91.5% (16.4%) 99.6% (10.9%) 88.7% (23.0%) 97.2% (17.4%) 98.7% (10.3%) 

Presumed hospital-acquired infection; proportion (proportion deceased)  

Yes 10.8% (29.9%) 16.2% (24.4%) 6.4% (23.3%) 16.1% (31.2%) 13.4% (21.0%) 4.6% (20.7%) 

No 89.2% (21.8%) 83.8% (17.5%) 93.6% (10.1%) 83.9% (23.9%) 86.6% (17.3%) 95.4% (9.7%) 

Ever admitted to ICU; proportion (proportion deceased)  

Yes 21.5% (28.9%) 17.6% (30.3%) 20.7% (22.9%) 20.0% (24.6%) 19.6% (24.7%) 23.6% (18.2%) 

No 78.5% (21.0%) 82.4% (16.1%) 79.3% (7.9%) 80.1% (25.2%) 80.4% (16.2%) 76.4% (7.7%) 

Direct admission to ICU; proportion (proportion deceased)  

Yes 11.8% (31.6%) 8.2% (31.9%) 9.1% (22.7%) 3.1% (22.8%) 3.1% (24.2%) 4.4% (23.6%) 

No 88.2% (21.5%) 91.8% (17.5%) 90.9% (9.8%) 96.9% (25.2%) 96.9% (17.6%) 95.6% (9.6%) 

Fully vaccinated before positive test; proportion (proportion deceased)  

Yes 
Data not available Data not available 

0.1% (0.0%) 

No 99.9% (10.2%) 

Infected with variants of concern; proportion (proportion deceased)  

Yes Not applicable 4.7% (20.4%) 55.3% (14.2%) Not applicable 39.8% (11.6%) 

No  95.3% (18.5%) 44.7% (7.0%)  60.2% (9.3%) 

ICU = intensive care unit.  
aOnly deaths occurred within 28 days of admission were included.  
bWave1: March 1st, 2020 to July 31st, 2020); Wave 2: August 1st, 2020 to March 20th, 2021; Wave 3: March 21st, 

2021 to May 31st, 2021. 
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Time trends in crude mortality risk among hospitalized COVID-19 patients 

 The time trends in crude mortality risk were similar between provinces (Figure 6.2.2). In 

the first two months of the epidemic, the probability of in-hospital death peaked at 31% (95%CI: 

27-35%) in Ontario and 31% (95%CI: 28-34%) in Québec; followed by a gradual decrease in 

mortality that lasted until the beginning of the second wave. Thereafter, the risk of in-hospital 

death gradually increased, but plateaued at lower levels than in the first wave at 23% (95% CI: 20-

27%) in Ontario and 23% (95% CI: 19-27%) in Québec. In both provinces, the risk declined from 

the middle of the second wave. Overall, the unadjusted mortality risk followed the number of new 

hospitalizations, except for the third wave when mass vaccination was taking place. 

There was a strong gradient in mortality risk with age in both provinces, and generally, the 

absolute mortality risk decreased over time for all age groups (Figure 6.2.2). However, there may 

have been less of a difference among the 60-84 group between the second and third wave in 

Québec. Hospital patient load was also associated with mortality risk in crude analyses in Québec: 

there was a monotonic increase in crude mortality risk with increasing quintiles of facility-level 

patient load (Figure 6.4.2). The trend in Ontario, where patient load was measured at the level of 

PHU, was stable through patient load quintiles. 
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Figure 6.2.2. Panel A: Unadjusted weekly mortality risk among patients hospitalized with 

COVID-19 in Ontario and Québec. Panel B: Unadjusted mortality risk among patients 

hospitalized with COVID-19 by 5-year age groups, stratified by epidemic waves, with 95% 

Clopper-Pearson confidence intervals in Ontario and Québec.  

Note: Panel A: Point estimates are presented with 95% Clopper-Pearson confidence intervals. 

Mortality for the first week of March 2020 is not presented as only 5 and 1 patients were admitted 

in Ontario and Québec, respectively. Fitted mortality risk over time using binomial logistic 

regression models with cubic splines for week of admission are shown (curves) with associated 

confidence intervals (shaded areas around the curve). Daily numbers of new patients hospitalized 

with a COVID-19 diagnosis were presented as the shaded background. Panel B: For each age 

group, mortality risks during Wave 1 (before August 1st, 2020), Wave 2 (August 1st, 2020 to March 

20th, 2021), and Wave 3 (March 21st, 2021 to May 31st, 2021) are shown separately in that order 

from left to right. There was no hospitalization aged 5-9 years in Ontario during Wave 1. 
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Adjusted mortality risk over time 

 After adjusting for age, living environment, hospital-acquired infection status, direct ICU 

admission, VOC and vaccination status, and time-varying quintiles of hospital patient load, the 

estimated temporal trend in mortality risk was similar to the unadjusted ones in both provinces 

(Figure 6.2.3). Despite this, Québec exhibited a more pronounced decrease in the estimated 

mortality risk at the beginning of the epidemic: from 37.1% (95%CI: 27.7-45.8%) to 15.2% 

(95%CI: 13.2-17.4%). In Ontario, the estimated decline for the same period was from 24.7% 

(95%CI: 18.7-31.6%) to 13.5% (95%CI: 11.3-16.0%). Adjusted highest mortality risks during the 

second wave were comparable in Ontario (18.9%; 95% CI: 18.0-19.8%) and in Québec (18.2%; 

95% CI: 17.3-19.0%) but the decline in the third wave was more pronounced in Ontario. 

 

Figure 6.2.3. Adjusted mortality risk among patient hospitalized with COVID-19 and 95% 

bootstrapped confidence intervals in Ontario (in red) and Québec (in blue) since March 1st, 

2020.  

The models were adjusted for quintile of hospital patient load at time of admission, age (cubic 

spline with 3 knots at 50, 70, and 80 years), gender (in Ontario), whether the patient was from 

long-term care home, had an hospital-acquired infection, direct admission to the intensive care 

unit, infection with a variant of concern, full vaccination status (in Québec), and either facility-

level fixed effects (in Québec) or public health unit-level fixed effects (in Ontario). The absolute 

adjusted mortality risks were obtained by marginalizing over each province patient’s 

characteristics, which respective distributions differ slightly.   
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 In adjusted analyses, mortality risk was higher at the second and highest patient load 

quintile in Ontario, while it increased with the patient load in Québec. The adjusted odds of in-

hospital mortality in the highest patient load quintile were 1.2 (95%CI: 1.0-1.4) and 1.6 (95%CI: 

1.3-1.9) times that of the lowest one in Ontario and Québec respectively (Table 6.4.2). In addition, 

the odds among patients that were male (aOROntario: 1.4; 95%CI: 1.3-1.5), LTCH residents 

(aOROntario=2.4, 95%CI: 2.1-2.7; aORQuébec=1.7 , 95%CI: 1.5-2.0), with presumed hospital-

acquired infections (aOROntario=1.5, 95%CI: 1.4-1.7; aORQuébec=1.0, 95%CI: 1.0-1.2), directly 

admitted to the ICU (aOROntario=3.7, 95%CI; 3.3-4.1; aORQuébec=2.5, 95%CI: 2.1-3.1), or were 

infected with a VOC (aOROntario=2.0, 95%CI: 1.7-2.3; aORQuébec=1.3, 95%CI: 1.0-1.7), were 

higher in both provinces. In Québec, none of the fully vaccinated COVID-19 hospitalized patients 

died.  

Hospital and intensive care lengths of stay  

 Over the whole study period, the average length of ICU stays was longer in Ontario (17.2 

days) as compared to Québec (12.9 days; p-value<0.01). This trend was observed for all age groups 

(all p-values<0.01; Table 6.4.3). Length of stays in ICU decreased steadily over time in Ontario 

from 19.4 days to 15.6 days (all pairwise p-values<0.01; Figure 6.2.4). In Québec, average length 

of ICU stays were 13.5 days during the first wave and then stabilized at 12.6 days s. Age was 

associated with length of stays in both province: hospitalized individuals aged 0 to 49 years and 

those aged 80 years and older spend less time in ICU than others age groups (all pairwise p-

values<0.01). The age-specific pattern was generally consistent across epidemic waves. In 

addition, there was a trend of shorter length of stays in ICU among hospitalized patients younger 

than 70 years of age with each wave in Ontario (p-value<0.01; Figure 6.4.3). No conclusive pattern 

was observed for the length of stays by ICU patient load (Figure 6.4.4). Patients who died and 

those who never used ventilator spent less time in ICU (p-value<0.01, except for the third wave; 

Figure 6.4.5, Figure 6.4.6). 
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Figure 6.2.4. Kaplan-Meier curves for length of stays in intensive care units (ICU) among 

patients hospitalized with COVID-19, stratified by age group and by wave, in Ontario (top 

row) and Québec (bottom row).  

Note: Waves are defined as followed: first wave1 (before June 30th, 2020), second wave (August 

23rd, 2020 to March 20th, 2021), and third wave (March 21st, 2021 to May 31st, 2021).  

 

 Overall length of hospital stays decreased over time from 17-19 days to 12 days (all 

pairwise p-values<0.01; Table 6.4.4). The inter-province differences were smaller compared to 

length of ICU stays. Younger patients had shorter stays then those older than 60 years (p-

value<0.01, Figure 6.4.7) and this pattern was consistent over time. In Québec, higher patient loads 

were associated with shorter length of hospital stays across time (p-value<0.01, except for third 

wave; Figure 6.4.8). The patterns by survival and ventilation status were similar as those for ICU. 
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Discussion 

Using population-based provincial surveillance databases containing records of all 

hospitalized COVID-19 patients in the two largest Canadian provinces, this study found important 

variations in mortality risk. Part of the observed decline over the three epidemic waves could be 

explained by changes in patient characteristics. Specifically, we found that the demographic profile 

of those acquiring infection (e.g., age, LTCH residents), hospital-acquired infections, VOC, and 

higher patient loads were associated with higher mortality risk. During periods of highest patient 

load, the adjusted in-hospital mortality increased in both provinces. The length of ICU stay was 

consistently longer in Ontario compared to Québec. Patients aged 0-49 years and those 80 years 

and older were discharged from ICU more rapidly.  

 The observed substantial decrease in mortality risk during the first wave in both provinces 

is consistent with results from studies in the United Kingdom and the United States that adopted 

the same definition of in-hospital death (Anesi et al., 2021; Docherty et al., 2021; Jones et al., 

2021). Furthermore, given the discrepant epidemiological curves between Ontario and Québec, 

the similarity in the adjusted temporal trends in mortality risk also provides evidence that factors 

beyond patient profiles could have played a role. Reasons behind the persistent reduction in 

mortality could include adoption of new therapeutics and treatments. For example, dexamethasone 

and anti-IL-6 receptor monoclonal antibodies, which have been shown to reduce mortality among 

severely ill patients in the RECOVERY trial (Group, 2021) became part of treatment guidelines in 

early summer of 2020. Other potential factors include the cumulative experiences of hospital teams 

and the availability of updated evidence-based COVID-19 protocols (Asch et al., 2021; Coppock 

et al., 2021; Jones et al., 2021). The availability of first doses of COVID-19 vaccines in the third 

wave may also contributed to the continuous decreasing mortality risk during that period (Scobie 

et al., 2021).  

Overall, our analyses suggest that part of in-hospital mortality risk reductions could be 

sustained if hospital capacity is maintained, and hospital-acquired infections are prevented. These 

findings are aligned with those from studies conducted worldwide (Bravata et al., 2021; Elkrief et 

al., 2020; French et al., 2021; Gray et al., 2021; Ponsford et al., 2021). Limited critical care 

resources and rapidly increasing staff-to-patient ratio could have influenced patient outcomes 
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during periods of high transmission (Docherty et al., 2021; Sprivulis et al., 2006). Additionally, 

nosocomial infections could exacerbate mortality risk because this population has vulnerable 

health conditions and comorbidities (Ponsford et al., 2021; Richterman et al., 2020). 

Concomitant with reductions in mortality risks, decreases in the length of ICU stays have 

been observed in multiple settings during the first wave (Roth et al., 2021; Shryane et al., 2020). 

Our results suggest a continuous decline in ICU stay throughout the study period. Despite the 

similar temporal patterns between provinces, we observed that the length of ICU stay in Ontario 

was consistently longer than it in Québec, and the proportion of patients admitted to ICU was 

higher in Ontario as well. Inter-provincial differences in clinical practices, such as criteria for ICU 

admission and discharge, could explain part of these differences. Other reasons include the 

changing demographic profiles of COVID-19 admissions. For example, patients aged 0 to 49 years 

and those 80 years and older spent less time in ICU than the others. Potentially because younger 

patients (≤50 years) improve more rapidly (Voinsky et al., 2020) and those in the oldest age group 

experience higher mortality in ICU (ICNARC, 2020; Oliveira et al., 2021). These findings are 

consistent with the observed shorter ICU stay among those who died and those who never used 

ventilator.  

Tracking the evolution of patient outcomes can help improve hospital services, supply 

chain management, human resources planning, and prioritize future research (Bateson and 

McPeake, 2022). In addition, the average length of ICU stay is a critical metric required to project 

census ICU bed, which has been a limiting factors of healthcare systems in several settings 

(Lapidus et al., 2020). Timely availability of high-quality surveillance data should be prioritized. 

Despite differences in the proportion of patients admitted to ICU and their length of stay, the in-

hospital mortality risks were relatively consistent between Ontario and Québec. Improving our 

understanding of ICU demand may contribute to optimizing patient outcomes and help planning 

for sufficient hospital capacity to adapt to potential increases in patient flow (Bravata et al., 2021; 

Rossman et al., 2021). 

 Our study should be interpreted considering certain limitations. First, we were unable to 

control for sex (Zha et al., 2021), ethnicity (Price-Haywood et al., 2020; Xia et al., 2022), or 

comorbidities(Garibaldi et al., 2021) –factors that could be associated with COVID-19 mortality. 
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Even though we were able to control for some of the main predictors of COVID-19 mortality (e.g., 

age, hospital-acquired infections, LTCH residents), we cannot rule out residual confounding. In 

addition, we considered all patients with a laboratory-confirmed SARS-CoV-2 diagnosis although 

it might not be the principal reason for the hospitalization. Second, the administrative and 

surveillance databases used do not provide detailed information on treatments received by patients. 

This limitation hampered our ability to examine how evolving standards of care and specific 

treatments impacted mortality outcomes. Third, we defined our mortality outcome as patients that 

died within 28 days after admission which may slightly underestimate mortality risk. However, 

this definition captures close to 90% of the total in-hospital deaths and our results are robust to 

expanding the death definition to within 56 days of admission. Additionally, it has the merit of 

measuring the immediate impact of COVID-19 on deaths more accurately (Heneghan and Oke, 

2020). Fourth, the CCM+ data from Ontario did not allow the addition of facility-level variables 

and vaccine status. We addressed this by using public health unit-level variables to (partially) 

control for inter-hospital variations. Further, the lack of vaccine status should not affect the results 

based on the small number of fully vaccinated patients (<0.01%) and the similar timeline of 

vaccination program implemented during the study period. Finally, missing dates of discharge in 

Ontario were assumed to be missing completely at random. The potential for bias is low, however, 

as these errors in data entry and transmission are likely independent of hospitalization -as shown 

in our examination of the characteristics of hospitalizations with observed and missing dates of 

discharge.  

Strengths of this study includes its representativeness:  all hospitalizations in these two 

provinces are included. This study also adds considerably to the timeline —spanning over three 

epidemic waves— of COVID-19 inpatient mortality risks and lengths of ICU stay. We controlled 

for some of the key confounders and results were relatively consistent across provinces operating 

under different health jurisdiction.  

In conclusion, this study demonstrates temporal variability in mortality risk among 

hospitalized patients that could not be explained by changes in COVID-19 patients’ demographic 

profiles across epidemic waves. Findings highlight the importance of strategies to buffer against 

surges in hospital capacity and limiting nosocomial outbreaks to reduce in-hospital mortality risk. 

As the epidemic continues, there remains a potential for future surges from emergence of new 
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variants, especially if associated with increased virulence, and the potential for waning protection 

against severity from vaccines; but also, the potential for reduction in hospitalization with the 

scale-up of outpatient therapeutics. Hence, continued monitoring of the evolution of patient 

outcomes and re-evaluation of the length of ICU stay will be essential to adapt, and inform hospital 

capacity planning to improve patient outcomes. 

  



 

 154 

Authors’ contribution 

YX, SM, DB, and MMG conceived and designed the study. YX conducted the statistical 

analysis, conducted the literature search drafted the manuscript. HM supported data curation and 

cleaning for Ontario. HM, DB, MB, BS, AC, AV, IG, NK, SM, and MMG interpreted results, 

drafted and edited the manuscript, and critically reviewed it for intellectual content. All authors 

approved the final version of the manuscript. 

Acknowledgements 

This work was supported by McGill’s Interdisciplinary Initiative for Infection and 

Immunity (Mi4) (to MM-G) and a grant from the Canadian Institutes of Health Research (to SM). 

YX is supported by a doctoral award from the Fonds de recherche du Québec – Santé (FRQS). BS 

research program is funded by a Canada Research Chair (Tier 2) in Economics of Infectious 

Diseases; MM-G research program is funded by a Canada Research Chair (Tier 2) in Population 

Health Modeling; NK is supported by a career award from the Fonds de Recherche Québec – Santé 
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6.4. Manuscript 3: Supplementary Materials 

6.4.1. Supplementary Text: Missing dates related to hospitalization. 

Date imputation was conducted before any inclusion and exclusion process. Therefore, the 

proportion missing mentioned in this document is based on the raw dataset (the whole IPHIS 

dataset transferred on August 15th, 2021). According to the nature of administrative dataset, a 

larger proportion of missing value occurs within more recently entered cases. Individuals marked 

as “hospitalized” and had at least one date related to hospitalization were regarded as 

“hospitalizations”.  

Figure 6.4.1 shows the flow char of the data processing procedure. Of the 28247 records, 

62 missing dates of specimen collection were replaced with episode date. Missing dates of hospital 

admission (523 / 28247, 1.9%) were with date of specimen collection. For missing dates of hospital 

discharge (6350 / 28247, 22.5%), they were imputed using date of death (if the patient decreased, 

885 / 6350, 13.9%), the latest date among date of ICU discharge, and date of the end of ventilation 

(if case was resolved, 434 / 6350, 6.9%), or the date of data cut-off of the dataset (if case was not 

resolved, 103 / 6350, 1.6%). After imputation, 17.4% (4929 / 28247) of discharge date were still 

missing. Missing dates of ICU admission (38 / 5524, <0.1%) were substituted using date of 

hospital admission if the patient had an indication of ever in ICU. Missing dates of ICU discharge 

(1025 / 5524, 18.6%) were filled following the same logic as date of hospital discharge (284 / 1025 

(27.7%) using date of death, 137 / 1025 (13.4%) using maximum date, and 27 / 1025 (2.6%) using 

data cut-off date). After processing, there were 10.4% (577 / 5524) missing date of ICU discharge 

remaining. All missing dates of deaths (21 / 5407, <0.1%) were imputed with the latest date among 

date of hospital discharge, date of ICU discharge, and date of the end of vitalization.  
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Figure 6.4.1. Flow chart on data processing procedure before analysis in Ontario. 
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Missing Public Health Units 

 There were 1.5% (434 / 28247) records missing Public Health Units (PHU) of residence, 

they were assigned the PHU where the patients were diagnosed.   

Missing continuous age 

 Starting in July 2021, IPHIS reports only reports the 10-year age group to which the 

individuals belonged to and classifies all cases older than 80 years old into one group. According 

to a study published using Ontario data (1), survival rate decreased with age (presented in 2-year 

age group). Therefore, we looked into the latest IPHIS report available with a 2-year age group 

(this is the most precise age variable in IPHIS reports) to match with the August 15 dataset. The 

IPHIS report extracted on June 28th, 2021, was used.  

 Based on the fact that no specific identification variable can be utilized to link the two 

datasets, we matched on the 10-year age group, the episode date, the date of specimen collection, 

the PHU of diagnosis, gender, the dissemination area of residence, the date of admission, the date 

of death, the date of discharge, the date of create of record, the date of report, and the date of 

information collection. After matching, 270 (<0.1%) of the records in the August 15 dataset failed 

to find a match. All of the records were in the “80 plus” group. Therefore, those records were 

imputed with the mean age of people older than 80 years.  

 Notably, in our study, age is modeled as a continuous variable. Unfortunately, IPHIS 

reports do not contain the exact age of the patient. As mentioned above, 2-year age group is the 

finest age information available. As such, we assigned the continuous age of each patient using 

the mean of the 2-year age group. For example, a patient in the 30-31 age group was given an age 

of 30.5. Additionally, those who were older than 100 years old were categorized into one group as 

“100 Plus”. To make the model feasible, we imputed the age with 100.5. 
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6.4.2. Supplementary figures 

 
Figure 6.4.2. Unadjusted mortality risk among patients hospitalized with COVID-19 by 

quintiles of hospital patient load with 95% Clopper-Pearson confidence intervals in Ontario 

(top panel) and Québec (bottom panel) from March 1st, 2020 to May 31st, 2021.  

Note: Patient load is ranked separately from the lowest to the highest quintile by public-health unit 

in Ontario and by facility in Québec.  
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Figure 6.4.3. Kaplan-Meier curves for length of stays in intensive care units (ICU) among 

COVID-19 ICU inpatients in different age groups, stratified by wave, in Ontario (top panels) 

and Québec (bottom panels).  

Note: Wave1: before June 30th, 2020; Wave 2: Aug 23rd, 2020 to March 20th, 2021; Wave 3: March 

21st, 2021 to May 31st, 2021. Summer lull (July 1st, 2020 to Aug 22nd, 2020) is excluded due to 

small number of hospitalizations. 
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Figure 6.4.4. Kaplan-Meier curves for length of stays in intensive care units (ICU) among 

COVID-19 ICU inpatients admitted to hospitals in different ranks of ICU patient load, 

overall and stratified by wave, in Ontario and Québec.  

Note: Wave1: before June 30th, 2020; Wave 2: Aug 23rd, 2020 to March 20th, 2021; Wave 3: March 

21st, 2021 to May 31st, 2021. Summer lull (July 1st, 2020 to Aug 22nd, 2020) is excluded due to 

small number of hospitalizations. 
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Figure 6.4.5. Kaplan-Meier curves for length of stays in intensive care units (ICU) among 

COVID-19 ICU inpatients admitted to hospitals stratified by outcome and wave, in Ontario 

and Québec.  

Note: Wave1: before June 30th, 2020; Wave 2: Aug 23rd, 2020 to March 20th, 2021; Wave 3: March 

21st, 2021 to May 31st, 2021. Summer lull (July 1st, 2020 to Aug 22nd, 2020) is excluded due to 

small number of hospitalizations. 
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Figure 6.4.6. Kaplan-Meier curves for length of stays in intensive care units (ICU) among 

COVID-19 ICU inpatients admitted to hospitals stratified by ventilation status and wave, in 

Ontario and Québec.  

Note: Wave1: before June 30th, 2020; Wave 2: Aug 23rd, 2020 to March 20th, 2021; Wave 3: March 

21st, 2021 to May 31st, 2021. Summer lull (July 1st, 2020 to Aug 22nd, 2020) is excluded due to 

small number of hospitalizations. 
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Figure 6.4.7. Kaplan-Meier curves for overall lengths of stay in hospital among patients 

hospitalized with COVID-19, stratified by age group and by wave, in Ontario (top row) and 

Québec (bottom row).  

Note: Waves are defined as followed: first wave1 (before June 30th, 2020), second wave (August 

23rd, 2020 to March 20th, 2021), and third wave (March 21st, 2021 to May 31st, 2021).  
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Figure 6.4.8. Kaplan-Meier curves for overall length of stays in hospital among patients 

hospitalized with COVID-19 in different ranks of hospital patient load, overall and stratified 

by wave, in Ontario and Québec.  

Note: Wave1: before June 30th, 2020; Wave 2: Aug 23rd, 2020 to March 20th, 2021; Wave 3: March 

21st, 2021 to May 31st, 2021. Summer lull (July 1st, 2020 to Aug 22nd, 2020) is excluded due to 

small number of hospitalizations. 
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6.4.3. Supplementary tables 

Table 6.4.1. Ranges of each quintile of COVID-19 patient load and ICU patient load relative 

to overall bed availability at the level of public health units in Ontario and hospital-level in 

Québec. 

Rank 

Ontario Québec 

Public Health 

Units - Hospital 

Public Health 

Units – ICU1 Hospital-level ICU1-level 

1st quintile 0.0 - 3.5% 0.0 - 2.7% 0.0 - 4.2% 0.0 - 10.9% 

2nd quintile 3.5 - 6.0% 2.7 - 6.1% 4.2 - 7.7% 11.1 - 17.9% 

3rd quintile 6.0 - 8.6% 6.1 - 8.8% 7.7 - 11.3% 18.2 - 25.8% 

4th quintile 8.6 - 12.3% 8.8 - 13.2% 11.3 - 17.3% 25.8 – 37.0% 

5th quintile 12.3 - 47.4% 13.2 - 83.3% 17.3 - 50.7% 37.5 - 123.1% 

1 ICU= intensive care unit. 
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Table 6.4.2. Odds ratios and 95% confidence intervals (CI) for covariates included the 

logistic regression models1 of in-hospital mortality in Ontario and Québec. 

Covariate 
Ontario Québec 

Odds ratio 95% CI Odds ratio 95% CI 

Gender2   

Female Ref  

Not applicable Male 1.4 1.3-1.5 

Other 1.7 0.9-3.0 

Living in long-term care facilities     

 2.4 2.1-2.7 1.7 1.5-2.0 

Presumed hospital-acquired infection     

 1.5 1.4-1.7 1.0 1.0-1.2 

Direct admission to ICU     

 3.7 3.3-4.1 2.5 2.1-3.1 

Infected with variants of concern     

 2.0 1.7-2.3 1.3 1.0-1.7 

Patient load   

1st quintile Ref  Ref  

2nd quintile 1.1 1.0-1.3 1.4 1.2-1.6 

3rd quintile 1.0 0.9-1.2 1.5 1.3-1.7 

4th quintile 1.0 0.9-1.2 1.5 1.3-1.7 

5th quintile 1.2 1.0-1.4 1.6 1.3-1.9 

Fully vaccinated before infection3    

 Not applicable 0.0 0.0-Inf 
1 The models were adjusted for quintile of patient load at time of admission, age (cubic spline with 3 knots 

at 50, 70, and 80 years), gender (only for Ontario), whether the patient was from long-term care facility, 

had an hospital-acquired infection, direct admission to the intensive care unit, infection with a variant of 

concern, full vaccination status (only for Québec), and either facility-level fixed effects (in Québec) or 

PHU-level fixed effects (in Ontario). 
2 Due to data limitation, gender is used as an proxy of the biological sex. 
3 Only 0.1% of the hospitalizations were fully vaccinated before infection 
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Table 6.4.3. Mean and standard deviation (SD) of length of stay in intensive care units (ICU) 

by wave, age group, and ICU patient load (quintile ranking) in Ontario and Québec. 

 

Overall 

(March 1st, 2020 - 

May 31st, 2021) 

Wave1 

(March 1st, 2020 - 

July 31st, 2020) 

Wave2 

(August 1st, 2020 - 

March 20th, 2021) 

Wave3 

(March 21st, 2021 - 

May 31st, 2021) 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Ontario  

Overall 17.2 (18.5) 19.4 (19.0) 17.6 (20.1) 15.6 (15.5) 

Occupa 1st 15.6 (18.5) 18.1 (20.6) 14.7 (18.4) 13.6 (12.3) 

Occup 2nd 16.0 (17.2) 17.9 (16.3) 18.5 (20.9) 10.5 (9.0) 

Occup 3rd 19.1 (19.6) 22.5 (22.3) 18.5 (19.0) 13.2 (11.2) 

Occup 4th 18.1 (20.0) 17.4 (13.9) 19.2 (22.1) 16.7 (17.0) 

Occup 5th 17.1 (16.8) 10.1 (4.5) 10.7 (7.2) 17.4 (17.1) 

Age group  

0-49 years 15.1 (18.1) 18.2 (23.2) 15.3 (19.6) 13.8 (14.1) 

Occupa 1st 14.1 (25.2) 16.0 (29.4) 14.1 (25.6) 9.7 (10.2) 

Occup 2nd 12.4 (13.9) 14.9 (13.9) 15.4 (18.5) 8.8 (8.1) 

Occup 3rd 19.7 (19.5) 24.3 (21.9) 16.9 (18.4) 18.6 (16.9) 

Occup 4th 14.6 (16.2) 5.5 (4.9) 14.5 (17.1) 15.0 (15.5) 

Occup 5th 15.1 (14.8) 6.0 (Only 1 observation) 12.7 (12.8) 15.3 (14.9) 

50-59 years 18.3 (19.4) 22.3 (20.1) 18.9 (22.9) 15.6 (15.7) 

Occupa 1st 17.7 (21.6) 20.7 (16.1) 15.9 (28.4) 14.2 (11.8) 

Occup 2nd 15.8 (15.4) 17.7 (14.8) 19.5 (20.4) 10.4 (7.9) 

Occup 3rd 21.8 (21.8) 28.2 (26.2) 19.4 (18.5) 11.9 (8.4) 

Occup 4th 19.7 (20.6) 18.7 (14.8) 21.4 (23) 18.2 (18.8) 

Occup 5th 16.9 (16.9) 14.5 (0.7) 13.0 (3.8) 17.0 (17.2) 

60-69 years 18.4 (18.0) 20.9 (19.0) 18.6 (18.5) 16.9 (16.7) 

Occupa 1st 16.9 (15.2) 21.6 (17.7) 15.4 (14.4) 14.3 (11.8) 

Occup 2nd 17.4 (18.3) 21.2 (19.2) 18.8 (20.3) 11.3 (11.3) 

Occup 3rd 19.7 (19.1) 21.5 (21.1) 20.1 (19.4) 13.9 (10.1) 

Occup 4th 19.5 (19.2) 16.1 (11.7) 20.8 (19.9) 18.1 (19.3) 

Occup 5th 18.4 (17.7) 9.3 (5.5) 9.9 (6.7) 18.8 (17.9) 

70-79 years 18.3 (19.3) 18.1 (18.2) 18.8 (21.4) 17.6 (16.6) 

Occupa 1st 15.7 (16.4) 16.6 (21.5) 15.2 (13.9) 16.5 (15.1) 

Occup 2nd 18.2 (16.8) 19.6 (16.9) 20.4 (19.5) 12.9 (8.4) 

Occup 3rd 17.9 (17.8) 17.8 (16.1) 19.6 (19.9) 9.4 (5.7) 

Occup 4th 20.2 (24.8) 21.8 (19.1) 21.1 (28.6) 18.1 (16.3) 

Occup 5th 19.5 (18.8) 8.0 (Only 1 observation) 10.8 (5.6) 20.0 (19.1) 

80 years and older 13.4 (16.2) 14.1 (18.1) 14.6 (17.9) 10.2 (8.3) 

Occupa 1st 11.7 (13.9) 12.0 (14.9) 11.6 (13.6) 10.2 (11.6) 

Occup 2nd 14.7 (20.9) 11.3 (12.3) 17.6 (25.2) 8.8 (7.0) 

Occup 3rd 15.3 (19.6) 18.7 (25.4) 15.0 (17.7) 7.3 (5.3) 

Occup 4th 13.3 (11.3) 17 .0 (13.3) 14.5 (12.4) 9.7 (7.2) 

Occup 5th 11.1 (9.2) No observation 4.3 (1.5) 11.4 (9.2) 

Survival status        

Dead defined as deaths within 28 days of admission  

Alive 19.6 (21.2) 23.5 (22.3) 20.5 (23.7) 16.8 (17.4) 

Dead 11.7 (7.5) 10.3 (6.7) 12.0 (7.7) 12.1 (7.5) 

Dead defined as deaths within 56 days of admission  

Alive 18.4 (21.6) 22.6 (22.9) 19.2 (24.4) 15.6 (17.4) 

Dead 15.1 (11.0) 14.0 (11.2) 15.2 (10.9) 15.6 (10.9) 

Ventilation status        

Ever 24.1 (22.9) 29.4 (21.4) 24 (24.6) 14.3 (12.2) 

Never 15.8 (17.1) 16.8 (18.5) 15.5 (17.9) 15.7 (15.7) 
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Overall 

(March 1st, 2020 - 

May 31st, 2021) 

Wave1 

(March 1st, 2020 - 

July 31st, 2020) 

Wave2 

(August 1st, 2020 - 

March 20th, 2021) 

Wave3 

(March 21st, 2021 - 

May 31st, 2021) 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Québec  

Overall 12.9 (15.2) 13.5 (15.2) 12.6 (15.5) 12.6 (14.1) 

Occupa 1st 11.9 (15.9) 12.5 (19.2) 11.8 (15.4) 11.9 (14.1) 

Occup 2nd 13.2 (16.4) 15.6 (16.3) 11.9 (15.3) 14.8 (19.1) 

Occup 3rd 12.9 (15.4) 14.0 (15.5) 13.3 (17.1) 11.3 (10.6) 

Occup 4th 13.8 (15.4) 14.0 (17.3) 14.0 (15.7) 12.7 (12.4) 

Occup 5th 12.5 (12.7) 12.8 (12.6) 11.9 (13.1) 12.6 (12.0) 

Age group  

0-49 years 10.3 (13.9) 10.9 (15.3) 9.4 (12.1) 11.6 (15.2) 

Occupa 1st 8.5 (17.2) 11.7 (29.0) 6.8 (12.2) 9.7 (13.8) 

Occup 2nd 11.0 (15.7) 9.1 (6.7) 9.5 (13.5) 15.5 (23.0) 

Occup 3rd 9.4 (9.2) 9.2 (8.6) 9.3 (9.6) 9.9 (9.4) 

Occup 4th 9.8 (11.0) 7.9 (7.6) 11.4 (13) 8.4 (8.9) 

Occup 5th 14.0 (13.5) 13.8 (13.3) 12.1 (10.6) 19.6 (19.4) 

50-59 years 14.3 (18.8) 15.3 (16.7) 14.9 (22.4) 12.5 (14.2) 

Occupa 1st 14.9 (21.2) 17.7 (20.1) 15.3 (24.7) 13.0 (15.9) 

Occup 2nd 12.8 (20.4) 13.6 (11.2) 11.7 (24.4) 14.3 (17.9) 

Occup 3rd 14.9 (19.4) 19.4 (24.1) 16.2 (21.7) 10.5 (10.9) 

Occup 4th 14.1 (16.3) 11.8 (12.9) 15.0 (18.1) 13.8 (14.4) 

Occup 5th 15.0 (16.9) 14.8 (14.6) 18.2 (24.1) 10.8 (10.3) 

60-69 years 14.8 (15.2) 15.8 (15.1) 14.1 (15.0) 15.1 (16.2) 

Occupa 1st 13.9 (14.2) 18.0 (15.1) 13.2 (13.5) 13.8 (16.2) 

Occup 2nd 16.6 (18.0) 23.7 (22.9) 13.6 (11.9) 18.3 (24.1) 

Occup 3rd 14.1 (13.7) 17.1 (14.1) 12.6 (14.1) 14.5 (12.2) 

Occup 4th 17.0 (18.1) 15.4 (14.3) 18.7 (21.4) 15.2 (13.4) 

Occup 5th 12.3 (10.8) 12.7 (11.6) 12.1 (10.2) 10.3 (6.8) 

70-79 years 13.2 (14.5) 14.0 (15.8) 13.1 (14.7) 11.5 (9.4) 

Occupa 1st 12.6 (13.1) 10.1 (12.2) 13.5 (13.9) 12.1 (8.9) 

Occup 2nd 12.7 (13.0) 17.2 (15.1) 11.9 (12.9) 12.3 (10.9) 

Occup 3rd 14.1 (18.4) 12.3 (13.9) 15.4 (20.8) 10.6 (9.8) 

Occup 4th 13.8 (15.3) 17.1 (23.8) 12.8 (11.1) 11.1 (6.4) 

Occup 5th 12.7 (11.7) 13.8 (13.1) 11.4 (9.9) 11.3 (9.6) 

80 years and older 9.4 (10.6) 8.7 (9.5) 9.9 (11.3) 8.7 (8.5) 

Occupa 1st 9.4 (11.9) 6.6 (7.1) 10.0 (12.8) 7.6 (8.5) 

Occup 2nd 9.8 (11.9) 7.4 (6.6) 10.8 (13.6) 7.5 (5.2) 

Occup 3rd 9.4 (7.7) 9.2 (6.4) 9.9 (8.8) 7.9 (4.9) 

Occup 4th 11.7 (12.1) 17.2 (18.3) 10.4 (9.1) 10.1 (12.7) 

Occup 5th 7.0 (8.2) 6.5 (5.4) 7.4 (10.6) 
18.0 (Only 1 

observation) 

Survival status        

Dead defined as deaths within 28 days of admission  

Alive 14.0 (16.9) 15.3 (16.7) 13.7 (17.5) 13.0 (15.2) 

Dead 9.3 (6.9) 8.0 (6.5) 9.5 (6.8) 10.9 (7.3) 

Dead defined as deaths within 56 days of admission  

Alive 13.1 (16.7) 14.5 (16.6) 12.7 (17.5) 12.3 (14.9) 

Dead 12.3 (10.5) 11.0 (10.6) 12.5 (10.2) 13.8 (10.9) 

Ventilation status        

Ever 19.9 (18.0) 19.9 (17.1) 20.5 (19.8) 18.6 (14.9) 

Never 7.8 (10.0) 7.4 (9.8) 7.8 (9.5) 8.0 (11.5) 

a Occup = ICU patient load (quintile ranking from lowest to highest)  
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Table 6.4.4. Mean and standard deviation (SD) of length of stay in hospital by wave, age 

group, and ICU patient load (quintile ranking) in Ontario and Québec. 

 

Overall 

(March 1st, 2020 - 

May 31st, 2021) 

Wave1 

(March 1st, 2020 - 

July 31st, 2020) 

Wave2 

(August 1st, 2020 - 

March 20th, 2021) 

Wave3 

(March 21st, 2021 - 

May 31st, 2021) 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Ontario  

Overall 14.7 (19.2) 18.8 (25.9) 14.9 (19.3) 12.3 (13.5) 

Occupa 1st 15.4 (22.5) 18.5 (28.0) 14.3 (20.1) 11.2 (10.2) 

Occup 2nd 14.9 (18.4) 17.9 (22.6) 15.2 (18.5) 10.6 (9.5) 

Occup 3rd 15.3 (19.6) 20.5 (26.2) 15.0 (19.0) 11.2 (11.4) 

Occup 4th 14.6 (18.9) 20.5 (27.3) 15.5 (20.5) 12.5 (14.5) 

Occup 5th 13.4 (15.7) 11.4 (12.3) 14.4 (18.7) 13.3 (14.9) 

Age group  

0-49 years 9.7 (15.4) 12.9 (23.5) 10.1 (16.5) 8.5 (10.3) 

Occupa 1st 9.5 (18.7) 11.5 (26.0) 8.6 (15.4) 8.6 (8.4) 

Occup 2nd 10.3 (14.8) 12.6 (17.0) 10.9 (16.6) 7.8 (7.6) 

Occup 3rd 10.1 (17.1) 14.9 (25.9) 10.5 (17.4) 7.6 (9.8) 

Occup 4th 9.7 (13.4) 15.3 (21.7) 10.5 (15.9) 8.7 (10.7) 

Occup 5th 9.1 (12.5) 11.3 (11.0) 10.9 (19.5) 8.8 (11.1) 

50-59 years 13.7 (20.0) 18.4 (26.0) 13.6 (22.7) 11.9 (13.5) 

Occupa 1st 14.6 (25.4) 17.8 (25.5) 13.3 (28.3) 10.7 (11) 

Occup 2nd 13.4 (19.2) 19.3 (29.3) 12.3 (15.1) 9.1 (8.5) 

Occup 3rd 14.2 (17.9) 18.9 (23.5) 14.1 (18.1) 11.8 (13.5) 

Occup 4th 14.7 (21) 20.5 (29.2) 16.0 (25.7) 12.9 (16) 

Occup 5th 12.0 (15.1) 10.5 (10.9) 13.3 (26.1) 11.9 (12.9) 

60-69 years 16.4 (20.8) 20.6 (31.0) 16.3 (19.3) 14.5 (15.3) 

Occupa 1st 17.2 (26.8) 21.8 (37.9) 15.2 (18.7) 12.1 (11.4) 

Occup 2nd 16.0 (17.8) 18.0 (21.3) 16.7 (18.9) 12.3 (8.9) 

Occup 3rd 17.4 (22.3) 24.2 (33.1) 16.7 (19.3) 13 (11.8) 

Occup 4th 15.7 (18.2) 17.9 (16.6) 17.8 (22.9) 14.2 (15.4) 

Occup 5th 15.6 (17.2) 9.6 (7.9) 15.0 (15.6) 16.2 (17.9) 

70-79 years 16.9 (20.5) 19.8 (24.6) 17.1 (21.6) 14.9 (15.3) 

Occupa 1st 17.7 (22.4) 19.4 (23.3) 17.2 (23.1) 14.2 (11.8) 

Occup 2nd 17.2 (19.2) 20.9 (20.3) 17.3 (20.2) 13.1 (11.4) 

Occup 3rd 16.3 (18.9) 20.3 (20.7) 16.8 (21.5) 12.3 (10.1) 

Occup 4th 17.5 (24.5) 22.5 (39.6) 18.7 (25.4) 15.2 (16.9) 

Occup 5th 15.6 (16.5) 7.4 (5.4) 14.7 (15.4) 16.6 (17.3) 

80 years and older 16.2 (18.3) 20.2 (24.0) 15.6 (17.2) 13.7 (12.1) 

Occupa 1st 17.1 (18.9) 20.4 (24.5) 15.9 (15.9) 11.8 (7.3) 

Occup 2nd 16.1 (19.0) 17.6 (21.9) 16.0 (18.7) 12.2 (10.5) 

Occup 3rd 17.0 (19.9) 21.5 (25.5) 15.3 (17.6) 13.0 (9.9) 

Occup 4th 15.8 (16.6) 23.0 (24.7) 14.5 (14.0) 13.8 (13.3) 

Occup 5th 14.9 (15.9) 15.0 (16.9) 15.4 (19.3) 14.4 (12.8) 

Survival status        

Dead defined as deaths within 28 days of admission  

Alive 15.6 (21) 21.8 (29.1) 16.0 (21.6) 12.3 (14.2) 

Dead 11.3 (7.6) 9.8 (6.8) 11.4 (7.5) 12.5 (8.2) 

Dead defined as deaths within 56 days of admission  

Alive 15.0 (20.9) 21.3 (29.4) 15.4 (21.5) 11.7 (13.8) 

Dead 13.8 (10.8) 12.4 (10.8) 13.5 (10.3) 15.5 (11.4) 

Ventilation status        

Ever 31.7 (32.1) 38.1 (32.8) 32.7 (34.1) 16.8 (11.5) 

Never 14.1 (18.2) 17.8 (25.1) 14.0 (17.8) 12.2 (13.5) 
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Overall 

(March 1st, 2020 - 

May 31st, 2021) 

Wave1 

(March 1st, 2020 - 

July 31st, 2020) 

Wave2 

(August 1st, 2020 - 

March 20th, 2021) 

Wave3 

(March 21st, 2021 - 

May 31st, 2021) 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Québec  

Overall 14.6 (17.5) 17.2 (20.0) 13.6 (16.2) 12.4 (15.3) 

Occupa 1st 12.7 (16.7) 15.6 (20.0) 11.8 (15.8) 11.7 (14.2) 

Occup 2nd 13.7 (17.2) 17.8 (21.6) 13.4 (17.1) 12.1 (13.9) 

Occup 3rd 14.3 (16.2) 16.8 (17.0) 13.7 (15.5) 14.0 (18.3) 

Occup 4th 15.2 (16.7) 16.5 (16.8) 14.6 (16.6) 12.8 (17.0) 

Occup 5th 16.9 (19.9) 18.1 (21.9) 15.2 (15.7) 13.3 (16.8) 

Age group  

0-49 years 8.4 (15.4) 10.3 (21.0) 7.7 (13.3) 7.8 (11.7) 

Occupa 1st 6.8 (10.5) 8.5 (10.7) 5.9 (9.3) 7.4 (12.3) 

Occup 2nd 7.9 (14.8) 8.1 (8.9) 8.2 (18.2) 7.4 (10.5) 

Occup 3rd 8.9 (14.1) 8.9 (9.6) 8.8 (15.1) 9.2 (14.3) 

Occup 4th 9.4 (12.4) 11.6 (15.5) 8.5 (10.7) 6.6 (6.4) 

Occup 5th 11.0 (26.2) 12.0 (32.1) 9.2 (12.1) 10.3 (9.5) 

50-59 years 12.9 (17.5) 14.4 (17.8) 12.4 (18.0) 12.2 (15.8) 

Occupa 1st 12.9 (19.0) 12.9 (14.9) 12.8 (22.1) 13.0 (17.2) 

Occup 2nd 11.9 (16.7) 14.7 (21.9) 11.3 (17.0) 11.2 (13.3) 

Occup 3rd 13.1 (17.1) 15.2 (18.2) 13 (17.5) 11.3 (14.4) 

Occup 4th 13.6 (18.4) 13.9 (18.0) 13.1 (17.9) 16.0 (23.5) 

Occup 5th 13.7 (16.3) 15.0 (17.3) 11.1 (12.5) 13.1 (18.2) 

60-69 years 15.6 (19.6) 18.3 (22.3) 14.6 (18.7) 14.4 (17.4) 

Occupa 1st 14.6 (19.5) 18.2 (23.8) 13.7 (19.5) 13.0 (14.4) 

Occup 2nd 15.5 (21.3) 21.1 (26.0) 15.1 (22.1) 13.9 (16.5) 

Occup 3rd 15.2 (17.4) 16.7 (15.4) 14.1 (16.0) 18.6 (23.8) 

Occup 4th 14.8 (16.9) 16.1 (18.2) 14.3 (16.4) 13.1 (15.2) 

Occup 5th 18.1 (22.5) 19.3 (24.5) 17.0 (19.6) 13.3 (15.3) 

70-79 years 17.0 (18.5) 19.7 (20.9) 16.1 (17.5) 14.3 (15.5) 

Occupa 1st 16.4 (18.4) 19.9 (22.5) 15.5 (17.2) 13.8 (13.6) 

Occup 2nd 15.7 (17.2) 20.4 (22.4) 14.8 (16.1) 14.6 (14.8) 

Occup 3rd 16.2 (17.1) 20.5 (21.0) 15.4 (15.9) 14.3 (16.3) 

Occup 4th 17.4 (18.9) 17.0 (14.8) 18.0 (21.0) 11.8 (10.2) 

Occup 5th 19.4 (20.6) 20.8 (22.5) 17.3 (16.0) 17.8 (25.3) 

80 years and older 15.9 (15.9) 18.3 (18.3) 14.4 (14.1) 15.3 (14.9) 

Occupa 1st 14.1 (15.6) 16.6 (21.1) 12.9 (13.1) 14.5 (11.9) 

Occup 2nd 15.3 (15.2) 20.2 (21.3) 14.2 (13.9) 15.3 (13.1) 

Occup 3rd 15.1 (15.0) 17.6 (15.8) 14.2 (14.3) 16.5 (19.1) 

Occup 4th 16.4 (15.6) 18.4 (16.9) 15.0 (14.2) 19.0 (26.4) 

Occup 5th 17.6 (17.3) 18.7 (18.3) 15.7 (15.1) 12.7 (11.5) 

Survival status        

Dead defined as deaths within 28 days of admission  

Alive 15.7 (19.0) 20.0 (22.1) 14.3 (17.6) 12.5 (16.0) 

Dead 9.8 (6.5) 8.8 (6.1) 10.4 (6.6) 11.6 (7.3) 

Dead defined as deaths within 56 days of admission  

Alive 15.3 (18.9) 19.6 (22.2) 13.9 (17.4) 12.2 (15.8) 

Dead 11.7 (9.6) 10.5 (9.1) 12.4 (9.7) 14.2 (10.8) 

Ventilation status        

Ever 29.2 (26.8) 31.5 (30.4) 27.4 (24.8) 29.7 (23.6) 

Never 13.1 (15.5) 15.5 (17.7) 12.4 (14.6) 10.5 (12.8) 

a Occup = ICU patient load (quintile ranking from lowest to highest)  
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Chapter 7. Defining Optimal Vaccine Features for Pandemic Preparedness 

7.1. Preface to Manuscript 4 

As the world moves away from its emergency COVID-19 pandemic response, public health 

priorities have shifted to improving pandemic preparedness (233, 234). Vaccines have played a 

pivotal role in the COVID-19 response, despite the global inequitable vaccine allocation resulting 

from the so-called “vaccine hoarding” by high income countries, including Canada.  

Nevertheless, pre-established vaccine platforms that can be easily adapted to emerging 

pathogens hold promise to enhance the agility of our collective response and actions. In line with 

the WHO's roadmaps to enhance pandemic prevention for the next "Disease X" and the Coalition 

for Epidemic Preparedness Innovations’ (CEPI) "100 Days Mission" to develop prototype 

vaccines (9, 235), it is crucial to understand the potential use of these tools to minimize the global 

impact of future threats. However, the population-level impact of prototype vaccines can be 

challenging to assess and project given the interplay between vaccine characteristics, host 

immunity, and disease transmission dynamics. For instance, many existing transmission models 

do not consider the individual variations in viral loads and immune responses and their time-

varying features, which could play a pivotal role in shaping the trajectory of infectious diseases 

(e.g., the superspreading events that shaped the trajectories of SARS-CoV-2 transmission (236)). 

Building on the insights from the preceding manuscripts, I designed a novel modelling 

framework that incorporates host-level viral load kinetics and immunological dynamics into 

disease transmission models. Specifically, this manuscript examines the desired vaccine features 

that are required to respond to a future pandemic caused by a potential SARS-CoV-2-type of virus. 

The resulting article will be submitted for submission shortly. 
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Abstract 

Background 

 The next Disease X, a moniker for a yet-to-be identified pathogen that could cause a 

pandemic, emphasizes the needs for proactive surveillance and preparedness. Developing 

prototype vaccines for representative pathogens is crucial to achieve this goal. A “100 Day 

Mission” roadmap was proposed to ensure equitable vaccine access within 100 days. This study 

aims to identify the desired vaccine features needed to control future SARS-CoV-2-like pathogens 

effectively. 

Methods 

 To simulate pathogen transmission, an individual-based model was developed, integrating 

viral load and antibody kinetics models. Various combinations of three vaccine features (the 

concentration of antibodies required to achieve 50% of the vaccine's maximum effect (EC50), 

plasma secreting cells (which produce antibodies) half-life, and the vaccine’s impact on the virus's 

infection rate of target cells) and the basic reproduction number (𝑅0) were examined and their 

impact on infections and hospitalizations quantified over an 18-month period with a population of 

10,000 individuals. Vaccination began on Day 100, either randomly or age prioritized, with no 

supply constraints.  

Results 

 Based on the features of the currently available Bnt162b2 vaccine, the overall reduction in 

cases and hospitalizations could avert 23-47%, and 32-61% of the observed numbers when there’s 

no vaccine, repsectively, with decreased effectiveness with increased 𝑅0 . Lowering EC50 or 

extending the plasma secreting cells’ half-life increased the reductions observed. However, further 

improvements beyond an EC50≤ 3 and plasma secreting cells half-life≥ 1 year resulted in minor 

increases. Changes to the virus-target cell infection rate had minimal impacts on vaccine 

effectiveness. Vaccine efffectiness did not vary largely by the allocation strategy.  
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Conclusions 

 Vaccine development should focus on improving the EC50, followed by extending the 

half-life of plasma secreting cells.  

Keywords: Disease X; 100 Day mission; Vaccine features; mathematical modelling. 
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Introduction 

 Since its emergence in late 2019, the SARS-CoV-2 virus has fueled the ongoing 

Coronavirus Disease (COVID-19) pandemic, with more than 777 million reported cases and over 

7 million reported deaths worldwide (as of 2024-10-06) (1). This pandemic has caused 

considerable morbidity and mortality, disrupted the everyday lives of people, imposed 

unprecedented pressure on healthcare systems, and generated colossal economic losses globally. 

A recent systematic review indicated that the indirect cost of COVID-19 was 11% of the global 

gross domestic product (GDP) while its total cost represented 9% of global GDP and 86% of global 

healthcare spending (2). Such pandemics, caused by emerging diseases, have been recorded 

throughout human history, and the interval between them could be accelerating due to factors such 

as greater population density and travel (3). They include the Spanish Influenza H1N1 (1918-

1920), SARS (2002-2003), swine flu (H1N1; 2009), MERS (2012-onwards), among others (4, 5). 

Pathogens keep (re)emerging and any of these could potentially produce the next Disease X: an 

as-yet unknown pathogen that could cause a serious international epidemic (6). 

 Vaccines have proven to be one of the most important interventions to prevent infections, 

morbidity, and mortality in previous epidemics and pandemics. For example, the seasonal flu 

vaccine prevents millions of illnesses every year (7) and recently developed vaccines for Ebola are 

effective against this often-fatal disease (8). During the COVID-19 pandemic, the different 

vaccines that were rapidly brought to market not only saved millions of lives (9, 10), but helped 

governments lift their non-pharmaceutical interventions (NPIs) sooner. Although the short 

timeline for COVID-19 vaccine development was unprecedented (326 days between identification 

of SARS-CoV-2 and approval of vaccines for emergency use), millions of extra lives could have 

been saved if vaccines had been available earlier and distributed equitably between countries (11). 

To overcome these difficulties and better prepare for the next Disease X, the Coalition for 

Epidemic Preparedness Innovations (CEPI), supported by G7 and G20 countries, proposed the 

“100 Day Mission” initiative to facilitate the development of safe, effective, and globally 

accessible vaccines within 100 days from the moment that a pathogen is sequenced and/or the need 

for a vaccine is recognized (12).  
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 Following the current “100 Day Mission” roadmap, a key component is to develop several 

well-characterized candidate prototype vaccines for representative pathogens across multiple virus 

families (so-called prototype pathogens) (13). Ideally, these vaccines should induce high titers of 

antibodies that can neutralize the virus or directly block the virus’s ability to infect cells, and they 

should maintain long-lasting immunological memory (14). Although animal models can help 

understand the within-host characteristics of the vaccine (e.g., efficacy, immune response, dose 

optimization), the real-world effectiveness of a vaccine within a population is also influenced by 

the host’s characteristics (e.g., population age structure, social contact mixing patterns) and NPIs 

that attempt to limit population-level contacts (15-17). Further, data from individual randomized 

clinical trials will continue to support the approval process (phase 3) and these can provide strong 

evidence on safety and side-effects. However, these trials could be underpowered for some rare 

disease outcomes and often do not provide estimates of population-level effectiveness that 

consider both direct (to individual being vaccinated) and indirect (through herd immunity) benefits 

of vaccines (18).  

 One potential avenue to comprehensively examine the potential impact of vaccines is to 

link the within-host vaccine response to population-level transmission dynamics. For instance, 

studies have found that the majority of subsequent SARS-CoV-2 infections are caused by a small 

proportion of cases (i.e., overdispersion of transmission), which may be associated with the 

variance in individual viral loads (19, 20). Bridging the within- and between-host models can help 

capture these various transmission patterns. Existing mathematical models of SARS-CoV-2 

transmission did not consider both the host-level variations of the time-varying viral load and 

immune responses (21, 22). This study aims to identify the desired vaccine features and allocation 

strategies against a future SARS-CoV-2-type pathogen (e.g., Disease X) assuming that a vaccine 

becomes available 100 days after the detection of the pathogen. To achieve this, we developed an 

individual-based transmission dynamic model incorporating individualized viral load and immune 

response models. 

Methods 

Model overview 
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An individual-based model (IBM) was developed to simulate the epidemic trajectories of 

a SARS-CoV-2-type virus, integrating NPIs, vaccine characteristics, and vaccine rollout strategies. 

To simulate the pathogen’s transmission dynamics, the IBM considered heterogeneities in contact 

and social mixing and incorporates within-host compartmental models of viral load trajectories 

and immune responses after infection (or vaccination). We used a demographic structure and social 

contacts survey from Canada to parameterize the model (Table 7.4.1, Figure 7.4.1). The model is 

flexible and can easily be adapted to accommodate various virus features, vaccine characteristics 

and rollout strategies. A detailed description of the model and parameters can be found in the 

technical report (Section 7.4.1).  

Disease X: SARS-CoV-2-type virus  

Disease X is a concept referring to a hypothetical pathogenic threat whose basic 

reproduction number, generation interval, natural history, and morbidity and mortality profile are 

unknown. In this study, we assumed that Disease X would be similar to a SARS-CoV-2-type virus, 

the first Disease X since the term was coined in 2018 and one of the priority pathogens on the 

WHO’s list (23, 24). As we do not expect the next Disease X to have the exact same characteristics 

as SARS-CoV-2, we investigated the impact of varying the basic reproduction number (𝑅0 ∈

{2, 2.5, 3, 3.5}). With global transmission, imported cases can influence transmission dynamics 

when local transmission levels are low, even after vaccines are available (e.g., waning immunity, 

low protection induced by vaccines). For simplicity, the model assumes one initial imported case 

and allows a weekly importation of one infectious individual, randomly sampled from those aged 

20-59 not currently infected with the virus. 

Contact networks 

 The model stratifies each individual’s social network into household and non-household 

contacts, as some NPIs generally attempt to limit non-household contacts (e.g., school closures, 

remote work, curfews). Both the numbers of household and non-household contacts are age-

specific. The contact matrices used in this paper are adapted from Figure 4 of the social contact 

survey presented by Drolet et al. (25) (Figure 7.4.1), which describes the levels and changes in 

contacts before and during the COVID-19 pandemic in Canada (Québec).  
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At model initialization, each individual is assigned a household, and members of the same 

household can come into contact with each other at each time step. For non-household contacts, 

the number of interactions and the individuals involved are randomly (conditional on the age-

mixing matrices) determined at each time step, ensuring both the quantity and composition of 

contacts vary over time. 

Natural history and disease progression 

 Upon infection with the virus, individuals immediately enter the pre-clinical stage (Figure 

7.2.1). This stage ends when an individual’s viral load reaches its peak (26, 27), the trajectory of 

which is projected by the viral load kinetics model. Concomitantly, people will either develop 

symptoms (mild or severe) or remain asymptomatic. Only individuals with severe symptoms will 

be hospitalized and are at risk of death from the infection. Individuals recovering from the infection 

will gain immunity against reinfection, but immunity will wane over time. Parameters governing 

this process are summarized in Table 7.4.2. 

 

Figure 7.2.1. Schematic diagram of the hybrid individual-based model structure of the 

natural history, and within-host viral load and antibody trajectory models of the SARS-CoV-

2-type virus.  

Symbols: 𝝀𝒗𝒍,𝒂𝒃: probability of infection as a function of the viral load and antibody level of the 

contact pair at risk of transmission;  𝝈𝒊(𝒊 =𝟏,𝟐,..,𝟔): duration of each disease stage;𝝅𝒂𝒔𝒚𝒎𝒑 and 𝝅𝒉𝒐𝒔𝒑: 

the proportion of infections that are asymptomatic and hospitalized, respectively; 𝝁𝒉𝒐𝒔𝒑 : 

proportion of in-hospital mortality; 𝒗: rate of vaccination.   
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Within-host viral load and immune response  

 For each newly infected person, a target cell-limited (TCL) viral load kinetics model and a 

mechanistic model for antibody kinetics will be run simultaneously, considering the individual-

level variance of trajectories. TCL models assume that the rate of viral production is constrained 

by the availability of susceptible target cells and are widely utilized in studies of HIV and influenza 

viral dynamics (28, 29). Briefly, once a target cell is infected, it will enter the eclipse phase (i.e., 

the time elapsed between successful cell infection and the start of virus production (30)) before 

producing infectious and non-infectious viruses. The parameters governing viral load trajectories 

are extracted from Marc et al. (31) and Néant et al. (32) (Table 7.4.3).  

To project the individual-level neutralizing antibody concentrations over time, following 

either infection or vaccination, we adapted the simplified model proposed by Clairon et al. (33), 

which provides the trajectory of waning antibody levels after the second dose of the Bnt162b2 

vaccine (Table 7.4.4). The adapted model mainly focused on 3 of the most important vaccine 

characteristics: 

1. The EC50, the concentration of antibodies required to achieve 50% of the vaccine's 

maximum theoretical efficacy that correlates the immune response and protection from 

infection (the lower the EC50, the better) (34);  

2. The half-life of secreting plasma cells (differentiated B lymphocytes that secrete Igs; 

hereafter, “S cells”) which partially governs the duration of protection (the longer the 

better) (35);  

3. The rate of virus infecting target cells that influences attachment of the virus to host 

cells (𝛽) (36).  

Between-host virus transmission  

 Susceptible individuals and those with partial immunity (either from natural infection or 

vaccination) can (re)acquire the virus. The probability of transmitting the pathogen between each 

contact pairs is determined by the transmissibility of the index case and the susceptibility of the 

contact (associated with antibody level) at the time of contact. The infectiousness (i.e., the 
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probability of transmission) of the index case is modeled as a function of their viral load, using the 

model proposed by Marc et al. (31), which assumes a logit-linear effect of viral load that varies 

according to the type of the contact (household or non-household) given their different effect on 

level of infectiousness (Table 7.4.5). Current knowledge on the relationship between antibody 

level and the protection against infection is limited. Therefore, we assumed an Emax sigmoid 

model of antibody levels and probability of being protected from infections (i.e., the susceptibility 

of the contact). More specifically, the EC50 value (4.08 log10 𝐴𝑈/𝑚𝑙) was parameterized using 

simulations of data from non-human primate models (37) (Table 7.4.6). 

Non-pharmaceutical interventions 

NPIs can affect the number of contacts, as well as mixing by age and household/non-

household contacts. Hence, our contact matrices vary over time following the implementation or 

lifting of NPIs (e.g. lockdowns). Specifically, we divided the non-household contact behaviors 

into 4 periods: pre-epidemic (time before NPIs are implemented; Day 0-14 of the modeled time), 

NPI period (Day 15-99, one day before the hypothetical vaccine becomes available), transition 

period during which the social contact have yet to fully rebound to pre-pandemic levels (Day 100-

220, when the mass vaccination campaign ends), and post-epidemic where the contact rates return 

to their pre-pandemic levels (Day 221 and onwards).  

We assumed that before NPIs are implemented (Day 1-14), there is no case isolation. After 

that period, symptomatic individuals will be isolated 1 day after their symptom onset. That is, 

before Day 15, all cases who are not hospitalized can transmit the virus; whilst afterwards, only 

those at pre-clinical and asymptomatic stages will contribute to the transmission. 

Simulation strategy 

Target vaccine features and rollout scenarios 

 The effect of a vaccine is determined by multiple features. In this study, we examined the 

impact of EC50, half-life of S cells, and rate of target cell infection by the virus (𝛽). The values of 

each were based on the existing Bnt162b2 vaccine (second dose) against SARS-CoV-2 (𝐸𝐶50 =

4.08 log10 𝐴𝑈/𝑚𝑙 ; half-life of S cells = 70 𝑑𝑎𝑦𝑠;  𝛽 = 3.65 × 10−5 𝑚𝑙/𝑣𝑖𝑟𝑢𝑠. 𝑑𝑎𝑦 (hereafter, 

“current” scenario). To explore the impact of different vaccine features on transmission, a series 
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of combinations of different values of the abovementioned three characteristics are examined 

(Table 7.2.1).  

Table 7.2.1. Table of scenarios examined in the model for each basic reproduction number 

(i.e.,  𝑹𝟎 ∈ {𝟐. 𝟎, 𝟐. 𝟓, 𝟑. 𝟎, 𝟑. 𝟓}). 

Scenario descriptions Scenario names 
EC50 

(𝐥𝐨𝐠𝟏𝟎 𝑨𝑼/𝒎𝒍) 
Half-life of the 

secreting plasma cells  
Scale factor of 

𝜷𝟏 

Current vaccine 

features 
Current 4.08 70 days 1 time 

Improve EC50, keep 

half-life of S cells and 

𝛽 the current value 

EC50 = 1 1 

70 days 1 time 

EC50 = 1.5 1.5 

EC50 = 2 2 

EC50 = 2.5 2.5 

EC50 = 3 3 

Change 𝛽, keep EC50 

and half-life of S cells 

the current value 

0.5 𝛽 
4.08 70 days 

0.5 time 

1.5 𝛽 1.5 times 

Increase half-life of S 

cells, keep EC50 and 𝛽 

the current value 

0.5-year half-life 

4.08 

Half a year 

1 time 
1-year half-life 1 year 

2-year half-life 2 years 

20-year half-life 20 years 

1 The scale factors of 𝛽 (the current rate of target cells being infected by the virus) correspond to the values of 

𝛽 = 3.65 × 10−5𝑚𝑙/𝑣𝑖𝑟𝑢𝑠. 𝑑𝑎𝑦  (1 time), 𝛽 = 1.83 × 10−5 𝑚𝑙/𝑣𝑖𝑟𝑢𝑠. 𝑑𝑎𝑦  (0.5 time), and  𝛽 = 5.38 ×
10−5 𝑚𝑙/𝑣𝑖𝑟𝑢𝑠. 𝑑𝑎𝑦  (1.5 times). 

Two different vaccination strategies were examined. The first corresponds to a random allocation. 

This strategy ensures equality of vaccine access (18). The second strategy follows an age-based 

rollout, similar to the approaches widely adopted to minimize severe outcomes during the COVID-

19 pandemics (38). Specifically, individuals aged 70 and older will be prioritized with the age 

threshold lowering by 10 years each week. For both strategies, we assumed a rate that can reach 

80% coverage within 4 months (on Day 220), as observed in Israel (one of the fastest vaccine 

rollouts) during the COVID-19 pandemic (39). Additionally, we assumed a one-dose vaccine, 

considering the pressure on vaccine supply under high-speed rollout. 

Outcomes 
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For each scenario (Table 7.2.1), we evaluated the impact on several outcomes. First, we 

calculated the time-varying effective reproduction number (𝑅𝑡). To overcome computing time 

limitations, 𝑅𝑡 is calculated using the number of new infections divided by the number of actively 

infectious people on day t (using a 7-day moving average), multiplied by the average duration of 

infectiousness. This method has been suggested to be nearly identical to the definition of the 

"instantaneous reproductive number" (21, 40). Second, we measured the fraction of the cumulative 

number of infections and hospitalizations averted from Day 100 (start of vaccination) to the end 

of each month by comparing the vaccine scenarios above to the base case without any vaccination:  

𝐴𝑣𝑒𝑟𝑡𝑒𝑑 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑡−𝑡0 =
∫ 𝐼𝑁𝑜 𝑣𝑎𝑐𝑐𝑖𝑛𝑒
𝑡

𝑡0
− ∫ 𝐼𝑣𝑎𝑐𝑐𝑖𝑛𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜

𝑡

𝑡0

∫ 𝐼𝑁𝑜 𝑣𝑎𝑐𝑐𝑖𝑛𝑒
𝑡

𝑡0

 

Third, we estimated the occupancy rate of hospital beds, defined as the number of patients 

currently hospitalized per 10,000 population. The length of hospital stay is sampled from a gamma 

distribution assuming an average stay of 14.6 days (41). Average country-level hospital density 

per 10,000 population in Europe and Africa (the two continents with the highest and lowest 

hospital capacity according to WHO data (42)) are used as upper and lower bounds for the hospital 

capacity levels. We assumed that 80% of the total hospital capacity can be designated to Disease 

X patients, as observed in the US (43). Finally, we calculated the differences in fractions of 

cumulative number of infections and hospitalizations to compare the impacts by vaccine rollout 

strategies. 

Time horizon 

To evaluate the short-term impact on transmission and hospitalizations of the potential 

vaccine, the model was simulated over a temporal horizon of 1.5 years with a time step of one day, 

starting from the introduction of one infectious case into a completely susceptible population of 

10,000 individuals. Given the short time span, births, deaths, and migration were not considered. 

As per the “100 Day Mission”, mass vaccine campaigns are assumed to start on day 100 with a 

continuous supply of vaccines (i.e., no stockouts) (44). For all outcomes, the median of 100 

stochastic simulations is reported. The model was coded in R version 4.4.1 using a C++ back-end 

implemented with the Rcpp library.  
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Results 

Impact of vaccine characteristics under random vaccine allocation 

Shortly after the initiation of vaccinations on day 100, the effective reproduction number 

(𝑅𝑡) increases with the lifting of NPIs. For a vaccine with the same features as the currently 

available second dose of Bnt162b2 vaccine (the “current” vaccine), the 𝑅𝑡 remains below 1 for 

approximately 4-6 months (depending on 𝑅0) before the epidemic resurges (Figure 7.4.3). Within 

a 1.5-year period, this vaccine could avert 23-47%, and 32-61% of the observed cases and 

hospitalizations when there’s no vaccine, respectively, with smaller averted fractions at higher 𝑅0 

(Figure 7.2.2, Figure 7.4.4, Figure 7.4.5). Those reductions peaked at 7 months post-vaccination 

and decreased over time. In terms of hospital demands, the vaccine was able to bring down the 

number of patients currently hospitalized; nevertheless, it failed to prevent a resurgence of patient 

admissions that resulted in exceeding the upper bound of hospital capacity (Figure 7.2.3). 

Improving EC50 and the half-life of S cells improved vaccine effectiveness, whereas 

modifying the rate of host cells being infected by the virus (𝛽) had minimal impact on improving 

the performance of the “current” vaccine. In general, across all values of 𝑅0, decreasing EC50 to 

3, or increasing the half-life of S cells to 0.5 years based on the “current” vaccine feature, could 

keep the 𝑅𝑡 < 1 and hospitalizations under the upper capacity limit until the end of the 1.5-year 

period. These vaccine features could prevent >96% of cases and >98% of hospitalizations for 

viruses with 𝑅0 of 2 to 2.5. Further improvements in EC50 and the half-life of S cells had minimal 

impact on transmission. For viruses with an 𝑅0 of 3 or 3.5, an EC50 threshold of at least 2.5 or a 

half-life of S cells of at least 2 years were needed to achieve a maximum effect.  
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Figure 7.2.2. Cumulative proportion of new infections (Panel A) and hospitalizations (Panel 

B) averted since vaccination start on Day 100, assuming randomized vaccination.  

Note: The “current” scenario assumes the same vaccine charateristics as the current Bnt162b2 

vaccine (EC50 = 4.08 𝒍𝒐𝒈𝟏𝟎 𝑨𝑼/𝒎𝒍, half-life of S cells = 70 days, 𝜷 = 𝟑. 𝟔𝟓 × 𝟏𝟎−𝟓 𝒎𝒍/
𝒗𝒊𝒓𝒖𝒔.𝒅𝒂𝒚). “EC50” scenarios assume the half-life of S cells and 𝜷 remain the same as the 

current vaccine. “Half-life” scenarios assume the EC50 and 𝜷 remain the same as the current 

vaccine. “𝜷” scenarios assume the EC50 and half-life of S cells remain the same as the current 

vaccine. 
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Figure 7.2.3. Hospital occupancy per 10,000 people since the beginning of the epidemics, 

assuming random allocation of vaccines.  

Note: The “no vaccine” scenario represents the status-quo scenario, where there is no vaccine 

available. The “current” scenario assumes the same vaccine charateristics as the current Bnt162b2 

vaccine (EC50 = 4.08 𝒍𝒐𝒈𝟏𝟎 𝑨𝑼/𝒎𝒍, half-life of S cells = 70 days, 𝜷 = 𝟑. 𝟔𝟓 × 𝟏𝟎−𝟓 𝒎𝒍/
𝒗𝒊𝒓𝒖𝒔.𝒅𝒂𝒚). “EC50” scenarios assume the half-life of S cells and 𝜷 remain the same as the 

current vaccine. “Half-life” scenarios assume the EC50 and 𝜷 remain the same as the current 

vaccine. “𝜷” scenarios assume the EC50 and half-life of S cells remain the same as the current 

vaccine.  
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Comparing the impact of randomized and age-based vaccine rollout strategies 

 For a virus with an 𝑅0 of 2, compared to a random vaccine allocation strategy, rolling-out 

vaccinations based on age resulted in a fraction of cumulative infections averted that was 2 to 3%-

points lower and a fraction of hospitalizations averted that was 0% to 3%-points lower at the end 

of 1.5 years across all vaccine scenarios (Figure 7.2.4). However, random vaccine allocation 

resulted in up to 38%-point (EC50=1) more infections during the first 6 months after vaccination 

started. For 𝑅0 of 2.5, the fractions of cumulative number of infections and hospitalizations averted 

with age-based vaccination was 5% to 10%-points and 6% to 7%-points lower than the scenarios 

with a random allocation strategy. During the first 6 months after vaccination started, the impact 

was up to 46%-points (EC50=2) and 76%-points (EC50=1) lower for infections and 

hospitalizations, respectively, if vaccination was rolled-out prioritizing the older age groups. The 

cumulative fractions of infections averted over the 1.5-year period were 2 to 14%-points (for 

𝑅0=3) and 4 to 11%-points (for 𝑅0=3.5) lower with age-based allocation. For hospitalizations, the 

numbers were 2 to 14%-points and 4 to 11%-points, respectively. 

Comparing the effect of EC50 and half-life of S cells 

To determine which of the EC50 or the half-life of S cells is more important, cumulative 

numbers of infections at the end of 1.5 years were compared across different combinations of their 

values, assuming an R0 of 2.5 and random rollout strategy. For both infections and hospitalizations, 

varying the half-life of S cells had minimal impact with an EC50≤3 or EC50≥6 (Figure 7.4.6). 

With an EC50 of 5, the total number of cumulative infections and hospitalizations decreased with 

increasing half-life of S cells. When the EC50 is 4, prolonging the half-life of S cells to 0.5 years 

resulted in reductions in both outcomes. However, further enhancing the half-life showed very 

small marginal effects compared to the 0.5-year half-life.  
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Figure 7.2.4. Differences in the fractions of cumulative numbers of infections and 

hospitalizations averted comparing randomized and age-based vaccination rollout 

strategies.  
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Discussion 

To prepare the world for future Disease X, reduce outbreak severity, and save lives, 

vaccines remain one of our most valuable tools. It is therefore essential to understand the complex 

interplay between vaccine characteristics, viral load and antibody dynamics, NPIs, and vaccination 

strategies. Using a detailed IBM that accounts for both individual-level dynamics of viral load and 

immune responses, as well as population-level transmission of the virus, we found that some 

specific vaccine and pathogen characteristics determine our ability to control a future SARS-CoV-

2-type Disease X. Across modelling scenarios, we found that lower EC50 and a longer half-life of 

S cells will led to higher fractions of infections and hospitalizations averted, and reduced hospital 

occupancies. However, there was a threshold (EC50 = 3, half-life of S cell = 1 year) where further 

optimizing these two characteristics resulted in only minor improvements in effectiveness. 

Vaccines aiming to modify the rate that a virus infects target cells had minimal impact. In general, 

a random allocation strategy showed better effectiveness across all scenarios tested. 

Our results highlight the significance of the EC50 for vaccine effectiveness, indicating that 

the neutralization capacity is of primary importance, superseding the durability of immunity. 

Although the half-life of S cells is a pivotal factor, its effect faded if the EC50 was below or above 

a certain level. For example, with an EC50 value ≥6 or ≤3, increasing the half-life to 20 years had 

a negligible impact on the number of infections and hospitalizations averted (Figure 7.4.6). Our 

findings are consistent with the conclusions from Clairon et al. (33), that indicated a high 

neutralizing capacity is important against variants of the SARS-CoV-2 virus. Moreover, we 

observed minimal improvement in vaccine effectiveness when the EC50 reached a certain 

threshold (e.g., lowering the EC50 value under 3 showed minor advancements across all 𝑅0 

scenarios). This suggests that even vaccines with lower serological performance (e.g., lower 

neutralization capacity or duration of immunity) may provide similar population-level impacts.  

During the COVID-19 pandemic, many regions and countries prioritized vaccination 

among older age groups to avert severe outcomes (45-47). However, we found that a random 

vaccine rollout strategy could potentially avert more infections and hospitalizations, compared to 

the age-based rollout, across all scenarios. The differences in impacts between the two vaccine 

strategies during the first few months after initiating vaccines could be due to the vaccination 
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rates in our model, as previous research has found diminishing effect of age-based vaccination 

when the vaccination rate is high (48).  

Even with a vaccine effective enough to maintain 𝑅0<1 or keep hospital occupancies below 

capacity for several months, resurgence of the epidemic was observed in several scenarios. This 

could be due to the waning protection of antibodies, as is observed with the intraseasonal 

resurgence of respiratory syncytial virus (RSV) (49), or both waning immunity and case 

importation. Booster doses could be implemented to counteract waning immunity and avoid 

resurgence (51). 

As with other mathematical models, some limitations need to be considered. Key 

assumptions include that the first case acquired locally is detected (i.e., no cryptic transmission), 

public health responses are implemented swiftly 2 weeks after case importation, the population 

adheres to isolation recommendations, and vaccination rollout is rapid. In practice, these 

assumptions may be hard to meet, which would lead to higher levels of transmission during the 

epidemic’s exponential growth phase. Additionally, the IBM modeled a population of 10,000 

individuals due to computational limitations of running both within- and between-host models at 

an individual level. Sensitivity analyses modelling 5,000 individuals indicated different effect 

estimates by population size (Figure 7.4.7). Nevertheless, the qualitative conclusions did not 

change. Further investigations assuming all contacts are non-household showed similar results 

across population sizes, indicating the differences observed might be due to household structures 

(Figure 7.4.8). Finally, we did not link the severity of disease with viral load and antibody level 

due to inconsistent evidence available (52). To compensate for that, we used an age-specific 

probability of being symptomatic or hospitalized. Given that Disease X is a concept, it is virtually 

impossible to examine all potential variations of the next pandemic-causing (re)emerging 

pathogen. However, the model is designed to be flexible enough to easily incorporate different 

virus characteristics and intervention timelines. 

Nevertheless, our approach has many strengths. our model incorporates both within- and 

between-host heterogeneities in viral load and immune responses and transmission patterns. This 

enabled us to model variations in individuals’ responses to the virus and the vaccine, and in their 

contact behaviors. Moreover, the use of mathematical modelling allowed us to consider both direct 
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and indirect benefits of vaccination (e.g., herd immunity). Finally, we explored several scenarios 

and conducted sensitivity analyses to support our conclusions. By examining the impact of 

multiple combinations of key vaccine features across different 𝑅0, our work identified the vaccine 

characteristics that most affect the population-level vaccine effectiveness and provided 

suggestions on the minimum required vaccine features needed to contain a future Disease X 

epidemic under various scenarios.  

Conclusions 

The population-level effectiveness of vaccines against a future Disease X with 

characteristics like SARS-CoV-2-type varied across vaccine features, features of the virus, and the 

vaccine rollout strategy. Improving the EC50 should be prioritized when developing vaccines that 

target SARS-CoV-2-type viruses, followed by increasing the half-life of S cells. In general, a 

random vaccine allocation strategy could reduce more infections and hospitalizations compared to 

an age-based rollout, especially during the first few months after vaccination starts. 
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7.4. Manuscript 4: Supplementary Materials 

7.4.1. Technical Appendix 

1. Overview 

 This document describes a combined within- and between-host model that aims to examine 

the potential impacts of different vaccine features and rollout strategies on epidemic trajectories 

of Disease X (i.e., a term coined to describe an unknown pathogen of pandemic potential). An 

individual-based model (IBM) of SARS-CoV-2-type virus transmission and control is developed 

to incorporate both individual-level dynamics of viral load trajectory and immune responses after 

infection (or vaccination) and population-level transmission dynamics. The IBM is used to 

simulate: 1) between-host contact networks within the population, stratified by household or non-

household contacts, at different stages of an epidemic, 2) virus transmission (based on the within-

host viral load and antibody level of each individual), 3) natural progression of the disease (i.e., 

infection, hospitalization, and death), and 4) vaccine rollout strategies. 

The goal of this study is to explore the desired vaccine features that are needed to contain 

the transmission of a future Disease X, if vaccines are available on Day 100 since the introduction 

of an infectious case into a fully susceptible population and without a limit on supply (1). To 

demonstrate the application of the model, we used Disease X characteristics similar to a SARS-

CoV-2-type virus, using a demographic structure and social contacts from Canada. However, the 

model is flexible and can be adapted easily to accommodate various virus features, vaccine 

characteristics, and vaccine rollout strategies. 

 The model was coded in R version 4.4.1 using a C++ back-end implemented with the Rcpp 

package. 

2. Model structure and parameterization 

2.1 Demography – Population size, age and sex distribution 

The model simulates a closed population of 10,000 individuals. This number was chosen 

to balance model complexity with computing efficiency. The individuals are grouped into 9 age 

groups (i.e., 0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, and 80+) and the model is 
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stratified by sex (i.e., male, female). The model was parameterized using demographic information 

from Québec, one of the Canadian provinces at the epicenter of the COVID-19 pandemic (Table 

7.4.1) (2). Given the short time-scope of the simulation (1.5 years), no births, aging, deaths (except 

those caused by the modelled pathogens), or migrations are considered. 

Table 7.4.1 Age and sex distribution of the simulated population, based on Canadian data. 

Age group 

(years) 

Male 

proportions 

Male 

population  

Female 

proportion  

Female 

population  

Total  

(both sexes) 

0-9 5% 544 5% 517 1,061 

10-19 6% 553 5% 528 1,081 

20-29 6% 590 6% 572 1,162 

30-39 6% 638 6% 640 1,278 

40-49 6% 642 6% 639 1,281 

50-59 7% 670 7% 669 1,339 

60-69 7% 672 7% 701 1,373 

70-79 4% 437 5% 488 925 

80- 2% 195 3% 304 500 

Total 49% 4,942 51% 5,058 10,000 

 

2.2 Contact networks 

2.2.1 Overview 

Two types of contacts (household and non-household) are considered in the model, given 

that non-pharmaceutical interventions (NPIs) generally target non-household contacts. At each 

time step, members within the same household can contact each other, and all individuals can 

contact members outside of their household. To account for heterogeneities in contact networks 

by age, the amount of household and non-household contacts varies by age. This information is 

extracted from the Québec CONNECT study that surveyed social contacts using a representative 

sample of the population in Québec before and during the COVID-19 pandemic (3). 

2.2.2 Household contact networks 

At model initiation, each individual is assigned to a household. Members within the same 

household are assumed to contact each other at each time unit and this contact behavior is not 
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affected by the restrictions during the epidemic. In other words, the number of household contacts 

of each individual is constant over time. To assign individuals to a household, people aged 18 

years and older are randomly sampled as index persons to look for household members, assuming 

minors (those who are younger than 18 years old) will stay in a household with at least one adult. 

For each index person, the number of household contacts (𝑐ℎ) in each age group (a) is assigned by 

sampling from Poisson distributions, with an average number of contacts based on the household 

contact matrix (Figure 7.4.1, Panel A): 

𝑐𝑎
ℎ ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑎

ℎ)  

The household size is assumed to be no larger than 10 people (i.e., if the total number of household 

members assigned to the index person exceeds 9, a resampling will be performed).  

 
Figure 7.4.1. Mean number of daily household (Panel A) and non-household (Panel B) 

contact matrices per person. Adapted from Drolet et al. 2022 (3).   

Note: Household contact networks are assumed to be fixed over time. Non-household contact 

networks are assumed to change with the restrictions: pre-epidemic (Day 0 to Day 14), NPI period 

(Day 15 to Day 99), transition period (Day 100 to Day 220), and post-epidemic (Day 221 to the 

end, assuming the same as pre-epidemic level). 
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2.2.3 Non-household contact networks 

At each time step, individuals are attributed a number of non-household contacts (𝑐𝑛ℎ) in 

each age group (a), sampled using Poisson distributions. The number of contacts varies over time 

(t) following the implementation, or lifting, of NPIs (e.g., lockdowns).  

𝑐𝑎,𝑡
𝑛ℎ ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑎,𝑡

𝑛ℎ)  

The different contact behaviors over time are divided into 4 periods: pre-epidemic, NPI period, 

transition period where NPI are lifted, and post-epidemic (Figure 7.4.1, Panel B). The pre-

pandemic period is defined as the time before NPI are implemented. In our simulation, we assumed 

that NPIs are implemented 14 days after the importation of the pathogen into the population. This 

is informed by the observed timeline in Québec during the COVID-19 pandemic (3). The NPI 

period begins on day 15 and lasts until the hypothetical vaccine becomes available on day 100. As 

mass vaccination activities begin, the population enters a 4-month transition period where social 

contacts have yet to fully rebound to pre-pandemic levels. The duration of the transition period is 

determined by the assumed vaccination rate, as detailed in Section 2.6. From Day 221 and onwards 

(post-pandemic period), the contact rates return to the pre-pandemic levels. 

2.3 The natural history of the SARS-CoV-2 type virus 

The natural history of the SARS-CoV-2 type virus is depicted in Figure 7.4.2. As an 

emerging disease, all individuals in the model are assumed to be fully susceptible to the pathogen 

(i.e., no prior immunity). Upon infection with the emerging virus, individuals will enter the pre-

clinical stage with a duration (𝜎1) based on the time between infection and symptom onset. 

Symptom onset coincides with the peak of viral load (4, 5), as determined by each individual’s 

viral load trajectory (outlined in Section 2.4.1). After that, people will either continue to be 

asymptomatic or will develop symptoms.  
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Figure 7.4.2. Schematic diagram of the hybrid individual-based model structure of the 

natural history, and within-host viral load and antibody trajectory models of the SARS-CoV-

2-type virus. 

Symbols: 𝝀𝒗𝒍,𝒂𝒃: probability of infection as a function of the viral load and antibody level of the 

contact pair at risk of transmission;  𝝈𝒊(𝒊 =𝟏,𝟐,..,𝟔): duration of each COVID-19 disease stage;𝝅𝒂𝒔𝒚𝒎𝒑 

and 𝝅𝒉𝒐𝒔𝒑 : the proportion of infections that are asymptomatic and hospitalized, respectively; 

𝝁𝒉𝒐𝒔𝒑: proportion of in-hospital mortality; 𝒗: rate of vaccination. 

The severity of symptom is determined using a multinomial distribution that provides age-

stratified probabilities of being asymptomatic (𝑝𝑎
𝑎𝑠𝑦𝑚𝑝

), having symptoms that will lead to 

hospitalization (hereafter “severe symptoms”;  𝑝𝑎
ℎ𝑜𝑠𝑝

), or being symptomatic but not requiring 

hospitalization (hereafter “mild symptoms”; 𝑝𝑎
𝑠𝑦𝑚𝑝

= 1 − 𝑝𝑎
𝑎𝑠𝑦𝑚𝑝

− 𝑝𝑎
ℎ𝑜𝑠𝑝

 ) (Table 7.4.2) (6). 

𝑆𝑦𝑚𝑝𝑡𝑜𝑚 𝑠𝑡𝑎𝑡𝑢𝑠𝑎 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑎
𝑎𝑠𝑦𝑚𝑝

, 𝑝𝑎
𝑠𝑦𝑚𝑝

, 𝑝𝑎
ℎ𝑜𝑠𝑝) 

Asymptomatic individuals and those with mild infection will transition to the immune stage 

(𝜎2, 𝜎3 ) when their viral load decreases below 104  copies/ml, assuming they are no longer 

infectious (7). For those with severe symptoms, the delay between symptom onset and 

hospitalization is sampled from a gamma distribution (𝜎4). The duration of hospitalization is also 

sampled from a gamma distribution. After that time, individuals can either be discharged (𝜎5) or 

die of the disease (𝜎6) (8). We assumed an in-hospital mortality risk of 16.3%, similar to that 

observed for COVID-19 (𝜇ℎ𝑜𝑠𝑝).  



 

 207 

𝜎4 ~ 𝐺𝑎𝑚𝑚𝑎(1.9, 0.33) 

𝜎5 ~ 𝐺𝑎𝑚𝑚𝑎(0.70, 0.084) 

𝜎6 ~ 𝐺𝑎𝑚𝑚𝑎(0.96, 0.097) 

Table 7.4.2. Probability of asymptomatic infection and probability of hospitalization for each 

age group. 

Probability of 

asymptomatic 

infection 

Age 0-9 Age 10-19 Age 20-29 Age 30-39 Age 40-49 

50% 45% 40% 35% 30% 

Age 50-59 Age 60-69 Age 70-79 Age 80-89 Age 90- 

25% 20% 15% 10% 10% 

Probability of 

hospitalization 

Age 0-9 Age 10-19 Age 20-29 Age 30-39 Age 40-49 

0.05% 0.2% 0.8% 2.2% 3.6% 

Age 50-59 Age 60-69 Age 70-79 Age 80-89 Age 90- 

8.6% 16.9% 29.5% 41.9% 41.9% 

 

2.4 Within-host viral load and immune response 

 This section describes the within-host module with individual-level projections of viral 

load and antibody trajectories. This module is run whenever an individual is infected with the 

emerging pathogen (viral load and antibody models) or an individual is vaccinated (antibody 

model only) (Figure 7.4.2).  

2.4.1 Viral load trajectories 

 Upon infection with the virus, a target cell-limited viral kinetic model is run for each newly 

infected case to project the viral load trajectory over time. This model is widely adopted in studies 

on HIV and influenza viral dynamics (9, 10), which assumes that the rate of viral projection is 

constrained by the availability of susceptible target cells. It considers the dynamics of the target 

cells (𝑇), the infected cells in their eclipse phase (𝐼1; the time elapsed between successful cell 

infection and the start of virus production (11)), the productively infected cells (𝐼2), the infectious 

viruses (𝑉𝐼), and the non-infectious viruses (𝑉𝑁𝐼). The total concentration of viral load is the sum 
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of 𝑉𝐼 and 𝑉𝑁𝐼. Specifically, the model is governed by the following ordinary differential equations 

(ODEs):  

𝑑𝑇

𝑑𝑡
= −𝛽𝑇𝑉𝐼  

𝑑𝐼1
𝑑𝑡

=  𝛽𝑇𝑉𝐼 − 𝑘𝐼1 

𝑑𝐼2
𝑑𝑡

= 𝑘𝐼1 − 𝛿𝐼2𝐼2 

𝑑𝑉𝐼
𝑑𝑡

= 𝑝𝜇𝐼2 − 𝑐𝑉𝐼 

𝑑𝑉𝑁𝐼
𝑑𝑡

= 𝑝(1 − 𝜇)𝐼2 − 𝑐𝑉𝑁𝐼 

Where 𝛽, 𝑘 and 𝑝 are the rate of 𝑇 infected by 𝑉𝐼, the rate of 𝐼1 becoming 𝐼2, and the rate of virion 

release from 𝐼2, respectively; 𝜇 is the proportion of produced viruses being infectious;  𝛿𝐼2 and 𝑐 

are the loss rate of 𝐼2 and virions, respectively.  

The target cell-limited models are parameterized and individualized based on the works 

presented by Marc et al. (12) and Néant et al. (𝛿𝐼2 by age) (13) (Table 7.4.3). Note that based on 

the available information, 𝛽  is calculated using the basic reproduction number (𝑅0
𝑣 ), which 

represents the number of newly infected cells by a single infected cell at the beginning of the 

infection, i.e. in a fully susceptible population. 

𝛽 =
𝑅0
𝑣𝑐𝛿𝐼2
𝑝𝑇0𝜇

 

To capture the individual-level variance of viral load trajectory, parameters that will vary across 

individuals are sampled for each individual from log-normal distributions based on the fixed and 

random effects listed in Table 7.4.3. 
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Table 7.4.3. Parameters of the target cell-limited SARS-CoV-2 viral load kinetic model (12, 

13). 

Parameters Symbol Fixed effect Random effect (SD) 

Initial numbers of each cell population  

Target cells 𝑇0 1.33 × 105 cells/ml / 

Infected cells in their eclipse phase 𝐼10 0 cells/ml / 

Productively infected cells 𝐼2𝑜 
1

30
  cells/ml / 

Infectious virus 𝑉𝐼0 0 cells/ml / 

Non-infectious virus 𝑉𝑁𝐼0  0 cells/ml / 

Basic reproduction number of virus on 

target cells 
𝑅0
𝑣 13.60 0.38 

Rate of infected cells at an eclipse 

phase1 (𝑰𝟏) becoming productively 

infected cells (𝑰𝟐) 

𝑘 4 𝑑−1 / 

Age < 65 𝛿𝐼2
𝑎𝑔𝑒<65

 1.09 d-1  0.39 

Age ≥ 65 𝛿𝐼2
𝑎𝑔𝑒≥65

 0.84 𝑑−1 0.037 

Rate of virions released from 

productively infected cells (𝑰𝟐) 
𝑝 2.8 × 105𝑐𝑒𝑙𝑙𝑠−1. 𝑑−1 2.35 

Proportion of produced viruses that are 

infectious (𝑽𝑰) 
𝜇 10−4 / 

Loss rate of infectious and non-

infectious cells (𝑽𝑰) 
𝑐 10 𝑑−1 / 

1 Definition of eclipse phase of the infected cell: the time elapsed between successful cell infection 

and the start of virus production (11). 

2.4.2 Antibody responses 

 Each person can develop immunity against the emerging pathogen through recovering from 

an infection or vaccination. A mechanistic model for antibody kinetics is used to project the 

individual antibody concentration (BAU/ml) over time. This simplified model is adapted from the 

work proposed by Clairon et al. (14) and considers the dynamics of the secreting plasma cells (𝑆) 

and antibodies (𝐴𝑏). Specifically, it is governed by the following ODEs. 

𝑑𝑆

𝑑𝑡
= 𝑓𝑒−𝛿𝑉(𝑡−𝑡0) − 𝛿𝑆𝑆 

𝑑𝐴𝑏

𝑑𝑡
= 𝜗𝑆 − 𝛿𝐴𝑏𝐴𝑏 
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Where 𝑓 is the fold-change for the steady-state memory compartment after second injection; 𝛿𝑉 is 

the declining rate of the induced vaccine antigen; 𝑡 represents the time since immunization (𝑡0); 

𝛿𝑆  refers to the death rate of secreting plasma cells; 𝜗  is the initial acceleration for antibody 

production; and 𝛿𝐴𝑏 stands for the degradation rate of antibodies. 

 The antibody kinetics models are parameter based on the antibody responses after the 

second dose of the Bnt162b2 vaccine (14) (Table 7.4.4). Same as for viral load trajectories, 

parameters that will vary across individuals are sampled for each individual from log-normal 

distributions to capture the individual-level variance of immune responses. Due to limited 

information on the dynamics of antibody responses after natural infection, we used the second-

dose efficacy of Bnt162b2 vaccine as proxy.  

Table 7.4.4. Parameters of the antibody kinetics model (14). 

Parameters Symbol Fixed effect Random effect (SD) 

Fold change for steady-state memory 

compartment after second injection 
𝑓 7.1 0.9 

Induced vaccine antigen declining rate 𝛿𝑉 2.7 𝑑−1 / 

Death rate of S cells 𝛿𝑆 0.01 𝑑−1 / 

Initial acceleration for antibody production 𝜗 24.5 𝑑−2 0.5 

Antibody degradation rate 𝛿𝐴𝑏 0.08 𝑑−1 / 

2.5 Between-host virus transmission and case importation  

2.5.1 Transmission of the virus 

 We assume that cases will not isolate until NPIs are put into place. Specifically, during the 

first two weeks of the epidemic, individuals in the pre-clinical, asymptomatic, and symptomatic 

(both mild and severe) stages are assumed to transmit the disease. After that period, symptomatic 

individuals will isolate one day after their symptom onset (which is determined by the viral load 

of each individual, as described in Section 2.4.1). Upon isolation, these cases will not be able to 

transmit to non-household members, nor household members. The probability of transmitting the 

pathogen (𝑝𝑡𝑟𝑎𝑛𝑠) between each contact pair is determined by the transmissibility of the index case 

(𝑝𝑉𝐿) and the susceptibility of the contact (𝑝𝑖𝑚𝑚) at the time of contact (t). 
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𝑝𝑡
𝑡𝑟𝑎𝑛𝑠 = 𝑝𝑡

𝑉𝐿 × 𝑝𝑡
𝑖𝑚𝑚 

2.5.2 Linking viral load to infectiousness 

 The infectiousness (i.e., the probability of transmission) of the index case is modeled as a 

function of the viral load (𝑉𝐿). To account for this relationship, we adapted a model proposed by 

Marc et al. (12), which assumes a logit-linear effect of viral load that varies according to the type 

of the contact (ℎ𝑐; household or non-household): 

𝑙𝑜𝑔𝑖𝑡 (𝑝𝑡
𝑉𝐿) = {

𝛼                                                                                                    𝑖𝑓 log10 𝑉𝐿𝑡 ≤ 6

𝛼 + (𝛾1ℎ
𝑐 + 𝛾2(1 − ℎ

𝑐)) × exp (𝑏) × (log10 𝑉𝐿𝑡 − 6)  𝑖𝑓 log10 𝑉𝐿𝑡 > 6
 

where 𝛼 is the baseline probability of transmission; 𝛾1 and 𝛾2 represent the effect of household 

and non-household contact on the transmission probability, respectively; ℎ𝑐 serves as an indicator 

of type of the contact (ℎ𝑐 = 1 for household contact and ℎ𝑐 = 0 for non-household contact); and 

𝑏 is a Gaussian individual random effect of 𝛾1 and 𝛾2 with variance of 0.852. 

The baseline probability of transmission (𝛼) is simulated to match the 𝑅0 of the virus using 

the average number of daily household ( 𝑐ℎ ) and non-household ( 𝑐𝑛ℎ ) contacts, and the 

abovementioned time-varying probability of transmission model. Brent’s method (15) is used to 

find the best estimate for 𝛼 given the following equation: 

𝑅0 = 𝛽
ℎ𝑐ℎ𝐷 + 𝛽𝑛ℎ𝑐𝑛ℎ𝐷 

=∑ (𝑝𝑡
𝑉𝐿,ℎ𝑐ℎ + 𝑝𝑡

𝑉𝐿,𝑛ℎ𝑐𝑛ℎ)
𝐷

0
  

=∑

{
 
 

 
 exp (𝛼)

1 + exp (𝛼)
× (𝑐ℎ + 𝑐𝑛ℎ)                                                                                                                                                                   𝑖𝑓 log10 𝑉𝐿𝑡 ≤ 6

exp (𝛼 + 𝛾1 × exp (𝑏) × (log10 𝑉𝐿𝑡 − 6) )

1 + exp (𝛼 + 𝛾1 × exp (𝑏) × (log10 𝑉𝐿𝑡 − 6) )
× 𝑐ℎ +

exp (𝛼 + 𝛾2 × exp (𝑏) × (log10 𝑉𝐿𝑡 − 6) )

1 + exp (𝛼 + 𝛾2 × exp (𝑏) × (log10 𝑉𝐿𝑡 − 6) )
× 𝑐𝑛ℎ     𝑖𝑓 log10 𝑉𝐿𝑡 > 6

𝐷

0
 

where 𝛽 represents the transmission rate; 𝐷 is the duration of infectiousness. 

The rest of the parameters are sampled from log-normal distributions for each individual to 

incorporate the variances across contact pairs (Table 7.4.5). 
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Table 7.4.5. Parameters of the viral load to probability of transmission model. 

Parameters Symbol Fixed effect Random effect (SD) 

Effect of household contact on the 

transmission probability 
𝛾1 0.49 0.85 

Effect of non-household contact on the 

transmission probability 
𝛾2 0.21 0.85 

2.5.3 Linking antibody level to susceptibility 

 Information on the relationship between antibody levels and the protection against 

infection is very limited. We estimated this relationship by assuming an Emax sigmoid model of 

antibody levels (𝐴𝑏) and probability of being protected from infections (𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ). Then, we 

obtained the susceptibility (𝑝𝑡
𝑖𝑚𝑚) of the contact:  

𝑝𝑡
𝑖𝑚𝑚 = 1 − 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝐸0 +
𝐸𝑚𝑎𝑥 × (log10 𝐴𝑏)

𝛾ℎ𝑖𝑙𝑙    

𝐸𝐶50
𝛾ℎ𝑖𝑙𝑙

+ (log10 𝐴𝑏)𝛾
ℎ𝑖𝑙𝑙  

 

where 𝐸0 and 𝐸𝑚𝑎𝑥 represent the baseline and maximum possible effect of antibody protection 

against infection, respectively; 𝛾ℎ𝑖𝑙𝑙 is the Hill coefficient that controls the steepness of the curve; 

𝐸𝐶50 is the concentration of antibodies (in log10 scale) required to achieve 50% of the vaccine's 

maximum effect. To estimate the values of these parameters (Table 7.4.6), we referred to a model 

based on non-human primate data jointly modelling viral load and antibody dynamics in naïve 

animals. We defined 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 as the probability animals have to maintain an undetectable viral 

load after infection, and conducted simulations to identify this relationship. Note that, in this 

preclinical study, antibodies were measured using the MesoScale Discovery (MSD, Rockville, 

MD) pseudo-neutralization assay and were expressed in Arbitrary unit per milliliter (AU/ml), just 

as the 𝐸𝐶50  parameter. As such, the antibody level projected from the immunity model is 

converted from the WHO International Standard BAU/mL to AU/ml using the conversion formula 

calibrated by the manufacturer of the MSD assay: BAU/ml = 0.00901×AU/mL (16). The estimated 

𝐸𝐶50 was within the range of the observed estimates of SARS-CoV-2 vaccine 𝐸𝐶50 (17). 
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Table 7.4.6. Parameters of the Emax sigmoid mode of antibody levels and susceptibility of 

the contact. 

Parameters Symbol Value 

Baseline effect of antibody on protection against 

infection if no antibody generated 
𝐸0 0 

The maximum effect of antibody on protection against 

infection 
𝐸𝑚𝑎𝑥 1 

The concentration of antibodies required to achieve 

50% of the vaccine's maximum effect 
𝐸𝐶50 4.08 log10𝐴𝑈/𝑚𝑙 

Hill coefficient 𝛾 32 

 

2.5.4 Case importation  

Imported cases can influence transmission dynamics when local transmission levels are 

low. For instance, even after transmission is controlled through vaccination, imported cases could 

trigger new transmission chains under certain conditions (e.g., wanning immunity, low protection 

induced by vaccine). For simplicity, we allow weekly importation of one individual aged 20-59, 

who is not currently infected with SARS-CoV-2, to import the virus into the population. 

2.6 Vaccine rollout strategies 

 Though randomized clinical trials (RCT) used to support vaccine approvals can provide 

strong evidence on their safety and short-term effects, there will be limited information to assess 

the impact of vaccines on outcomes such as hospitalizations, mortality, and other rare severe 

outcomes (18). To examine the impact of vaccine rollout strategies on transmission, we assumed 

vaccines become rapidly available on day 100, and explored two different approaches to 

vaccination. The first strategy corresponds to a randomized rollout of vaccines. The second 

strategy follows an age-based rollout, similar to the approaches adopted by many countries during 

the COVID-19 pandemic to minimize severe outcomes (19). Specifically, individuals aged 70 and 

older will be prioritized with the age threshold lowering by 10 years each week. For both strategies, 

we assume a one-dose vaccine and that the vaccination campaign reaches 80% coverage of the 

population within 4 months, as observed in Israel during the COVID-19 pandemic (20).  

3. Model simulation  
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 The model was implemented using a modular coding structure. Each of the 4 modules (○1

contact and infection, ○2 case importation, ○3 disease progression, ○4 vaccination scenarios) run 

sequentially at each time step. The model was simulated over 1.5 years, starting from the 

introduction of one imported case into a completely susceptible population. Results are 

summarized based on the median of 100 simulation runs. 

4. Scenarios and sensitivity analysis 

 An ideal vaccine is expected to induce high titers of antibodies and maintain long-lasting 

immunological memory (21). Antibodies induced by vaccines can not only neutralize the virus, 

but also directly block the virus’s ability to infect cells. To evaluate the impact of different vaccine 

features on transmission, a series of scenarios were examined based on different values of the three 

important vaccine parameters: 1) EC50, which correlates the immune response and protection from 

infection (22); 2) half-life of secreting plasma cells, which partially governs the  duration of 

protection (23); and 3) rate of target cell infection by the virus (𝛽), which influences attachment 

of virus to host cells (24). The choices of scenarios are based on the characteristics of the second 

dose of the Bnt162b2 vaccine. Detailed combinations of the three parameters are summarized in 

Table 7.4.7.  
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Table 7.4.7. Table of scenarios examined in the model for each basic reproduction number 

𝑹𝟎 ∈ {𝟐, 𝟐. 𝟓, 𝟑, 𝟑. 𝟓}. 

Scenario 

descriptions 
Scenario names EC50 

Half-life of the 

secreting plasma 

cells (
𝑰𝒏(𝟐)

𝜹𝑺
)1 

Scale factor of the 

current rate of target 

cells being infected by 

the virus (𝜷)2 

Current vaccine 

feature 
Current 4.08 70 days 1 time 

Improve EC50, 

keep half-life of S 

cells and 𝛽 the 

current value 

EC50 = 1 1 

70 days 1 time 

EC50 = 1.5 1.5 

EC50 = 2 2 

EC50 = 2.5 2.5 

EC50 = 3 3 

Change 𝛽, keep 

EC50 and half-

life of S cells the 

current value 

0.5 beta 

4.08 70 days 

0.5 time 

1.5 beta 1.5 times 

Increase half-life 

of S cells, keep 

EC50 and 𝛽 the 

current value 

0.5-year half-life 

4.08 

Half a year 

1 time 
1-year half-life 1 year 

2-year half-life 2 years 

20-year half-life 20 years 

Note:   
1 The values of half-life of the secreting plasma cells correspond to the values of 𝛿𝑆 = 0.01 (70 

days); 𝛿𝑆 = 0.00385 (half a year); 𝛿𝑆 = 0.0019 (1 year); 𝛿𝑆 = 0.00095 (2 years); and 𝛿𝑆 = 0.00009 

(20 years). 
2 The scale factors of the current rate of target cell infection correspond to the values of  𝛽 =
3.65 × 10−5 𝑚𝑙/𝑣𝑖𝑟𝑢𝑠. 𝑑𝑎𝑦  (1 time), 𝛽 = 1.83 × 10−5 𝑚𝑙/𝑣𝑖𝑟𝑢𝑠. 𝑑𝑎𝑦  (0.5 time), and 𝛽 =
5.38 × 10−5 𝑚𝑙/𝑣𝑖𝑟𝑢𝑠. 𝑑𝑎𝑦 (1.5 times). 
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5. Outcome measures 

 For each vaccine feature examined–EC50, half-life of secreting plasma cells, and infection 

rate of target cells by virus–we aim to determine the proportion of infections and hospitalizations 

averted, in the face of pathogens with 𝑅0 ranging from 2 to 3.5. Additionally, we compare the 

impact of different vaccine features on transmission by presenting the different trajectories of the 

daily number of new infections, the cumulative rate of hospitalization per 100,000 population, and 

the number of hospital beds occupied over time. To assess the impact of population size on 

hospitalization, the model will be run with a population of 5,000, using vaccine features from 

Scenario 1 (“Current” vaccine features) as part of the sensitivity analysis. 
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7.4.2. Supplementary figures 

 

Figure 7.4.3. Time-varying effective reproductive number for each scenario and vaccine 

strategy. 
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Figure 7.4.4. Cumulative number of infections for each scenario and vaccine strategy. 
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Figure 7.4.5. Cumulative number of hospitalizations for each scenario and vaccine strategy. 
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Figure 7.4.6. Changes in cumulative number of infections and hospitalizations by half-life of 

secreting plasma cells with fixed EC50 values from 1 to 7, assuming a randomized vaccine 

allocation strategy. 
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Figure 7.4.7. Comparing the effect of different population sizes (10,000 population vs. 5,000 

population).  

Panel A: cumulative fraction of infections averted. Panel B: cumulative number of infections 

averted per 100,000 population. Panel C: cumulative fraction of hospitalizations averted. Panel D: 

cumulative number of hospitalizations averted per 100,000 population. 
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Figure 7.4.8. Comparing the effect of different population sizes (10,000 population vs. 5,000 

population), when assuming all contacts are non-household members.  

Panel A: cumulative fraction of infections averted. Panel B: cumulative number of infections 

averted per 100,000 population. Panel C: cumulative fraction of hospitalizations averted. Panel D: 

cumulative number of hospitalizations averted per 100,000 population. 
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Chapter 8. Discussion and Conclusions 

8.1. Discussion 

Canada had lower SARS-CoV-2 case counts, COVID-19 mortality, and excess deaths, and 

higher vaccination coverage than most G10 countries (i.e., a group of 11 advanced economy 

countries)–but also experienced some of the most restrictive public health measures (237). 

However, Canada performed worse on these same measures compared to nations like China and 

South Korea, where stricter measures were employed (82, 238). Moreover, Australia, a peer nation 

with a federated healthcare system similar to Canada, was able to achieve local control and had 

better health outcomes (239). Important lessons need to be drawn from Canada’s COVID-19 

response. These include improvements in data-sharing between provinces and territories and the 

federal government, enhancement of mathematical modelling capacity, alleviation of health 

inequities that worsened during the pandemic, avoidance of an exhausted healthcare workers force 

that limited hospital capacity, and restoration of trust from long-term care homes, among others 

(240-242). By comprehensively examining the elements of the Canadian COVID-19 response–

from mathematical modelling, health inequities, and drivers of in-hospital COVID-19 mortality– 

my thesis provides an in-depth understanding of some of the most salient pandemic challenges and 

outcomes. Moreover, it offers evidence-based insights to inform future vaccination strategies and 

improve pandemic preparedness. 

In my first manuscript, I highlighted the diversity of modelling approaches and 

collaboration structures employed across provinces. These reflected regional variations in 

COVID-19 transmission dynamics, data availability, and modelling capacity. Importantly, I 

identified in this article several challenges faced by modellers and which have put particular 

emphasis on the necessity of timely availability of high-quality surveillance data that are linkable 

across different healthcare datasets. “A mathematical model is as good as the data it uses” (243) 

and quality of the data determines the accuracy of the model’s projections (244). At the federal 

level, a recent publication by members of the PHAC External Modelling Network for Infectious 

Diseases (PHAC EMN-ID) on the role of mathematical modelling for pandemic preparedness 

arrived at a similar conclusion, highlighting the important challenges related to the “availability of 

linked public health, hospital and genomic data in Canada” (95). More specifically, data on new 
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cases with sociodemographic information (including sex, age, are of residence, ethnicity, social 

determinants of health, and genotype of the pathogen) and epidemiological information (including 

date of symptom onset, travel history, and contact information), with linkage to hospitalization 

and mortality databases are required in response to future pandemics. In addition, regular 

seroprevalence surveys with representative samples should be performed to better understand the 

population-level prevalence, adjust for under-detection of surveillance data, and better inform the 

models. With regard to the structure modeling teams, it would be beneficial to establish 

frameworks that encourage enhanced collaboration among government, academic, and community 

partners. This could be achieved through greater transparency, open dialogue, and clear 

justification of decisions to ensure alignment and mutual understanding among all stakeholders. 

An editorial entitled “COVID‑19 data and modelling: We need to learn from and act on 

our experiences” accompanied my first manuscript (245). This editorial by Michael Wolfson 

agreed on the importance of improving data availability, linkage, and quality, addressing 

inequalities, supporting on-going collaborations, and increasing the modelling expertise in 

Canada. However, he criticized my statement that “there was no one size fits all modelling 

approach” as being “rather anodyne”. Instead, he would have wanted me to draw lessons on the 

modelling approaches and team structures that were the most effective. I argue that this criticism 

does not appreciate that the effectiveness of modelling approaches depends on the type and quality 

of the surveillance data, which differed greatly by provinces and through time. The same can be 

said about team structure: some regions do not have enough modelling capacity to set up larger 

teams, such as the one established in Ontario for instance. The last criticism mentions that I did 

not address the federal role in modelling and data flows. However, provinces and territories were 

responsible for implementing and lifting the majority of NPIs (e.g., school closure, stay-at-home), 

often applying them to some selected local health regions only. Further, when surveillance data 

gets harmonized and aggregated across jurisdictions, there can be loss of granularity and 

information which could limit federal modelling efforts. Such a centralized system could risk 

losing the nuances that are necessary for effective regional public health interventions. 

My second manuscript quantified and compared the geographical concentration of SARS-

CoV-2 cases by social determinants of health across 16 cities in four Canadian provinces–British 

Columbia, Manitoba, Ontario, and Québec–using Gini coefficients and Lorenz curves. Overall, 
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half of the cumulative cases in each city were concentrated in areas where only 21%-35% of their 

population resided. Additionally, the results showed disproportionate burden of cases in 

disadvantaged communities with lower income and educational attainment, and in areas with 

higher proportion of visible minorities, recent immigrants, high density housing, and essential 

workers. Besides the fact that these population were generally vulnerable (i.e., more likely to 

experience adverse health outcomes than general population) (246, 247), the public health 

interventions during the COVID-19 pandemic might have aggravated the inequalities in SARS-

CoV-2 transmission by impacting the population differently. For example, essential workers were 

not able to work from home, along with the limited and poor condition of personal protective 

equipment (248), imposed on these individuals a greater risk of SARS-CoV-2 infection. 

Inequalities in SARS-CoV-2 case burden stemming from social determinants of health has 

been noted by previous studies conducted in Canada and other countries such as the United 

Kingdom and the United States (227, 249-254). The overall patterns observed in my paper are 

consistent with the findings from similar contexts in Canada, the United Kingdom. However, those 

studies focused on fewer locations. Presenting estimates for 16 Canadian cities provides 

compelling evidence that inequalities were important across the country, even if the unique 

contribution of specific SDOH varied by city. The results from my paper later assisted in the 

adoption of the “hotspot strategy” for the vaccine rollout in Toronto. Nevertheless, early pandemic 

responses in Canada overlooked health inequalities, neither did the COVID-19 research 

investments (255). As the lessons of COVID-19 has shown, social determinants of health should 

be integrated as part of the pandemic response strategies and research priorities. 

 In my third manuscript, I leveraged population-based databases from Ontario and Québec 

and examined mortality trends and length of stay among hospitalized patients with COVID-19 

during the first three epidemic waves using logistic regressions and marginalized standardization. 

In both provinces, mortality was initially very high but declined by 22%-point in Québec and by 

11%-point in Ontario, after adjusting for patient profiles and facility characteristics. This 

highlighted the impact of improved clinical management and patient treatments (256-258). For 

instance, advancements in treatment protocols such as corticosteroid use, anticoagulation therapy, 

and vaccination, likely played a significant role in reducing mortality (259-261). On the other hand, 

patient load appeared to be a critical factor influencing the in-hospital mortality risk during the 
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pandemic: the adjusted odds of morality in the highest patient load quintile were 1.2 and 1.6 in 

Ontario and Québec, respectively. Hospitals operating near or beyond capacity led to significant 

challenges in providing optimal care, strained healthcare resources (e.g., staff, ventilation 

equipment), and thus contributed to the higher mortality risks (262). Moreover, the regional 

differences in length of stay between Ontario and Québec might have reflected differences in 

healthcare capacity, as Ontario consistently had longer stays and higher proportion of patients 

admitted directly to the ICU throughout the study period. The latter might explain the lower 

mortality risk in Ontario early in the pandemic. These findings underscore the importance of 

healthcare capacity on COVID-19 outcomes. 

 Mathematical modelling can contribute not only to the informing the response during an 

ongoing pandemic, but also for pandemic preparedness. The use of vaccines during the COVID-

19 pandemic has highlighted the feasibility of rapidly developing, testing in clinical trials, and 

distributing vaccines at scale to effectively combat emerging pathogens (9). Integrating dynamics 

of viral load, antibody, and virus transmission, my fourth manuscript examined the desired vaccine 

features against future Disease X pandemic caused by a SARS-CoV-2-type of virus. Specifically, 

my paper highlighted the importance of increasing the potency (EC50≤ 3) and the persistency 

(half-life of S cells≥ 1 year) of the vaccine to reduce the need for frequent dosing and booster 

vaccinations. This approach not only improves convenience for individuals but also optimizes 

healthcare resource utilization by minimizing logistical challenges and associated costs.  

Achieving the desired vaccine feature needs to use appropriate technology to deliver these 

features. During the COVID-19 pandemic, messenger RNA (mRNA) vaccines showed the highest 

efficacy to prevent symptomatic infection compared to vaccines developed using other platforms 

(263). More importantly, mRNA vaccines stand out compared to traditional vaccine technologies 

for their superior manufacturing and scale-up efficiency, as well as their adaptability to emerging 

variants (264, 265). These characteristics make mRNA vaccines one of the most promising 

platforms for developing vaccine candidates in future pandemics, enabling rapid responses to 

evolving pathogens. My fourth paper addresses this priority research area for pandemic 

preparedness. 
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8.2. Strengths and Limitations 

Limitations 

 The main sources of information I leveraged for my thesis included primary data collection, 

administrative databases, and surveillance data. While the latter two were the most authoritative 

and comprehensive databases available, the findings were inevitably subject to the limitations 

inherent to the nature of these data sources. For instance, my narrative review of provincial 

modelling efforts could have missed some teams or models that were not part of the modelling 

networks I surveyed. Regarding the administrative and surveillance databases, for instance, they 

lacked critical variables (i.e., ethnicity, occupation), sometimes had coarse granularity (i.e., 

aggregated), and missingness in existing variables.  

The findings of my thesis should be interpreted considering following limitations. Firstly, 

underreporting of cases in surveillance datasets of SARS-CoV-2 infections might have led to 

underestimation of case counts. The surveillance datasets were able to catch all cases that were 

diagnosed at testing facilities through mandatory reporting. A study conducted in Toronto found 

that individuals who were visible minorities or had a lower household income were less likely to 

be tested (250). In this case, the estimates of my second paper might have underestimated the 

inequalities of SARS-CoV-2 case burden in those vulnerable communities. However, my 

qualitative conclusions would not have changed. On the other hand, underreporting is unlikely to 

have affect the databases related to COVID-19 hospitalizations given their complete population 

coverage. 

Secondly, when comparing results across provinces, caution is necessary due to the slight 

differences in case definition, available information, and protocols. For example, in Québec, due 

to the restrained testing capacity especially during the early phase of the epidemic, SARS-CoV-2 

cases identified through epidemiological links (e.g., close contact of a laboratory confirmed case 

and showing symptoms of SARS-CoV-2 infection) were also included in the official reported 

number of cases, while the rest of the provinces included in my analyses did not include these 

individuals in their counts. Additionally, some hospitalization variables in Ontario lacked 

disaggregation, which might have obscured the patterns such as the trend of mortality risk by 
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patient load observed in Québec. However, these heterogeneities did not affect the province-

specific estimates, ensuring their validity within provincial analyses. 

Moreover, the hospitalization datasets we used included all patients with a positive 

COVID-19 diagnosis, but we do not know if the reason for the hospitalization was due to their 

COVID infection (i.e., incidental). In other words, not everyone included in the analysis of my 

third manuscript was hospitalized due to COVID-19. If patients were hospitalized for other reasons, 

they might have milder symptoms and thus less likely to die. This might lead to underestimation 

of the mortality risk. Finally, errors during data entry and pre-processing by medical archivists are 

inevitable. While some errors were corrected during subsequent transmissions, others might 

remain. However, according to expert opinion, these errors are likely random rather than 

systematic which would not bias my results.  

The findings of my fourth manuscript should be contextualized given some of the 

assumptions I had to make. Both the within-host and between-host models were based on the 

natural history of SARS-CoV-2 and parameterized as such, albeit I explored a wide range of basic 

reproduction number. Further, while it is likely that a future Disease X pathogen will share some 

characteristics similar to that of SARS-CoV-2, they may differ significantly in some respects (i.e., 

morbidity, mortality). However, targeting prototype pathogens remains a strategic approach. 

Importantly, the model is flexible and can be adjusted for other respiratory pathogens, enhancing 

its applicability in future scenarios. 

Strengths 

In terms of strengths, my thesis adopted a multi-province lens to examine the Canadian 

COVID-19 pandemic. I offered a detailed comparison of the disparities in SARS-CoV-2 

transmission, severe outcomes, healthcare capacity, and public health strategies across the country. 

For instance, my first manuscript included mathematical modelling teams from six provinces, 

together encompassing >90% of the total Canadian population. My second manuscript included 

four provinces with accessible DA-level SARS-CoV-2 case data, while the third used population-

based cohorts of hospital admissions in Ontario and Québec (covering approximately 60% of 

Canada’s population), improving the precision and generalizability of previous studies that focus 

on a single city or facility. My work delivered nuanced insights into Canada’s COVID-19 epidemic 
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and response strategies. To my knowledge, my first three manuscripts are rare examples of 

research on COVID-19 that combined insights from multiple provinces in Canada. 

Furthermore, my thesis leveraged a diverse range of methodologies across the four 

manuscripts. These included a narrative review, descriptive epidemiology and inequality 

measurements, regression analysis, and mathematical modelling of disease transmission as well as 

within-host viral load and immune response dynamics models. This methodological diversity 

highlights the multifaceted contributions of public health and epidemiology to both pandemic 

response and preparedness.  

8.3. Conclusions 

Mathematical modelling is a useful tool to guide pandemic response and assist 

preparedness. Efforts need to be made to overcome data limitation, increase pandemic response 

capacity, and smooth collaboration barriers during non-crisis period. Pandemic responses should 

consider heterogeneities and tailor the interventions based on local context. Continued investments 

should be devoted to developing a more resilient healthcare system capable of effectively planning 

capacity and allocating resources during public health emergencies. Additionally, optimizing 

vaccine features, and leveraging adaptable platforms such as mRNA technology are critical to 

designing effective vaccine candidates for future pandemics, if distributed equitably at global and 

national levels. 
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