
Neural Conditional Random Fields for
Natural Language Understanding

Marc-Antoine Rondeau Beauchamp

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

December 2016

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Doctor of Philosophy.

c⃝ 2016 Marc-Antoine Rondeau Beauchamp

2016/12/12

i

Abstract

This thesis presents work on Neural Conditional Random Fields (NeuroCRFs), a combination
of neural network and conditional random field, applied to chunking and named entities
recognition (NER), two information extraction tasks. Information extraction is a subfield
of natural language understanding (NLU), the study of the automatic processing of natural
language utterances in order to obtain the information they contain in a form suitable for
further automatic processing. NER is the recognition and classification of the named entities
found in an utterance, while chunking is the syntactic segmentation of an utterance. In both
cases, information contained in an utterance is extracted in the form of segments, composed
of successive words, and an attached class. In this thesis, chunking and NER are approached
through sequence labelling, the assignment of a label to each element in an input sequence.
This transforms the natural language utterance into a structured sequence of labels that can
easily be interpreted to extract the required information.

NeuroCRFs are models composed of a neural network (NN) used for feature extraction
and a conditional random field (CRF), used to factorize the complex distribution of output
labels conditioned by the input utterance into simpler factor functions that are based on the
NN. CRFs rely on a set of features than can be extracted from the natural language utterance.
Once the set of features is defined, machine learning algorithms can be used to learn the
relation between those features and the correct output sequence. Feature engineering is
the main challenge of CRF, and requires extensive work by a human expert. NeuroCRFs
use the feature learning capability of NNs to reduce, and even remove, the need for feature
engineering.

This thesis includes three major contributions. The first is an extension of NeuroCRFs,
where the NNs is used to learn and extract features corresponding to transitions between
label in the output sequence, instead of the usual emission features.

The second contribution is a continuation of this concept. NeuroCRFs use a NN to learn
factor functions corresponding to events in the output sequence. Label emissions and label
transitions are only one form of such events. We extended this concept to add factor functions
shared by multiple events. This improved performance at the cost of reintroducing some
feature engineering. We also improved performance by combining those shared features with
a large margin model training algorithm. Performance was further improved by combining
NNs obtained with different initializations into a single ensemble model.

ii

Finally, the third contribution addresses the limitations of the feedforward NNs (FFNNs)
used in the previous experiments. FFNNs are limited by their input, a sliding window over
the natural language utterance. The model is forced to assume that labels are independent of
the input outside of this limited window. Recurrent layers, such as long short term memory
(LSTM) layers, do not have this limitation. LSTM based NeuroCRFs, a new addition to
the NeuroCRFs family, significantly improved performance over FFNN based NeuroCRFs.
Bi-directional LSTM layers were found to remove the need for the sliding window.

iii

Sommaire

Cette thèse présentera des travaux portant sur les NeuroCRFs, une combinaison de réseaux
de neurones et de champs markoviens conditionnels (CRF), dans le contexte du chunking
et de la reconnaissance d’entités nommées (NER), deux tâches d’extraction d’information.
L’extraction d’information est un sous-domaine de la compréhension du langage naturel
(NLU), l’étude du traitement automatique de phrases en langage naturel afin d’obtenir
l’information contenue dans cette phrase dans une forme structurée compatible avec un
traitement automatique subséquent. La NER consiste à reconnaitre et classifier les entités
nommées présentes dans une phrase. Le chunking est la segmentation sémantique d’une
phrase. Dans les deux cas, l’information est extraite sous forme de segments, composés
de mots consécutifs, auxquels est attaché une classe. Dans cette thèse, ces tâches sont ap-
prochées par l’étiquetage de séquence, où une étiquette est appliquée à chaque élément d’une
séquence. Cela transforme la phrase en une séquence d’étiquettes structurée, qui peut être
interprétée facilement afin d’extraire l’information désirée.

Les NeuroCRFs sont des modèles composés d’un réseau de neurones (NN), utilisé pour ex-
traire des caractéristiques, et d’un CRF qui va factoriser une complexe distribution d’étiquettes,
conditionnée par la phrase, en un produit de plus simple fonctions, qui sont obtenues à
partir des sorties du NN. Les CRFs dépendent d’un ensemble de caractéristiques qui peu-
vent être extraites d’une phrase en langage naturel. Une fois que cet ensemble est défini,
les algorithmes d’apprentissage automatique permettent d’apprendre la relation entre ces
caractéristiques et la séquence d’étiquettes désirée. L’ingénierie des caractéristiques est la
principale difficulté d’un CRF, et demande l’attention d’un expert humain. Les NeuroCRFs
exploitent la capacité d’apprentissage de caractéristiques des NNs afin de réduire ce travail
d’ingénierie.

Cette thèse inclue trois contributions majeures. La première est une extension des Neu-
roCRFs, où le NN est utilisé pour apprendre et extraire des caractéristiques correspondant
aux transitions entre deux étiquettes, plutôt qu’à l’émission d’une seule étiquette.

La seconde contribution est un prolongement de ce concept. Les NeuroCRFs utilisent
leur NN afin d’apprendre des fonctions correspondant à des événements dans la séquence
d’étiquettes. Les transitions entre étiquettes et l’émission d’une étiquette ne sont que deux
formes d’événements. Nous étendons ce concept en ajoutant des fonctions qui sont partagées
par plusieurs événements. Ceci améliora les performances, au prix d’efforts supplémentaires

iv

d’ingénierie des caractéristiques. Des améliorations supplémentaires ont été obtenues avec
un algorithme d’apprentissage maximisant la marge de la séquence correcte, et en combinant
des NNs obtenues avec différentes initialisations dans un large modèle-ensemble.

Finalement, la troisième contribution adresse les limitations des NNs utilisés dans les
expériences précédentes. Ces NNs sont limités par leur entrée, une fenêtre glissée sur la
phrase en langage naturel. Le modèle doit supposer que les étiquettes sont indépendantes
de l’entrée en dehors de cette fenêtre. Les couches de neurones récurrentes, par exemple des
couches à longue mémoire à court terme (LSTM), n’ont pas cette limitation. Des NeuroCRFs
basés sur des couches LSTM, un nouveau membre de la famille des NeuroCRFs, ont des
performances significativement améliorées comparées aux NeuroCRFs sans récursion. L’ajout
d’une récursion bidirectionnelle peut même remplacer la fenêtre glissée sur la phrase en
langage naturel.

v

Acknowledgements

First, I would like to thank Richard Rose and Yi Su, my supervisors. Their advice and
feedback guided me during my PhD. Their efforts to refocus me on the central research plan,
when I was distracted by other interesting directions, was invaluable. I also would like to
thank Fabrice Labeau, Douglas O’Shaugnessy, and Yannis Psaromiligkos for their service
in the various exams required in the course the PhD program. Similarly, I am thankful for
the comments and feedback of Philippe Langlais, Jean Gotman, Roni Khazaka, and Milica
Popovich. The support and feedback of Paul Vozila and Nate Bodenstab, during internships
at Nuance Communications, was also appreciated.

I would also like to thank my labmates, Hoda Daou, Sina Hamidi, Aanchan Mohan, Atta
Norouzian, Fabien Sacuto, Vikrant Tomar, and Shou-Chun Yin, made my time at McGill
richer and enjoyable. Their willingness to be conscripted as sounding board was appreciated,
and helped the work leading to this thesis.

Les services de relecture de Dimtri Achminov ont été fortement appréciés. Je voudrais
finalement remercier ma famille pour leur soutien et encouragement. En particulier Line,
Jocelyn, Alain et Jacqueline, qui m’ont toujours prêté oreille dans les moments difficiles.

vi

Preface

The original contributions of this thesis are the full-rank NeuroCRFs, presented in Chapter 3,
their extension with added shared parameters, presented in Chapter 4, and the combination
of long short term memory layer with NeuroCRF, presented in Chapter 5.

The neural network based systems used in this thesis were developed using the theano
toolkit, originally created by the LISA team of Université de Montréal. The continuous word
representations were obtained with the word2vec tool developed by Tomas Mikolov. Large
margin training is based on work by Gimpel and Smith.

vii

Contents

1 Introduction 1
1.1 Natural Language Understanding . 1

1.1.1 Information Extraction . 1
1.1.2 Sequence Labelling . 2
1.1.3 Example Task . 2

1.2 Chunking . 3
1.3 Named Entities Recognition . 3
1.4 Conditional Random Field . 4
1.5 Neural Network . 4
1.6 NeuroCRF . 4
1.7 Continuous Word Representation . 5
1.8 Thesis Outline . 5

2 Background 8
2.1 Information Extraction From Natural Language 8

2.1.1 Hidden Markov Models . 9
2.1.2 Maximum Entropy Markov Models 9

2.2 Conditional Random Fields . 10
2.2.1 Definition . 11
2.2.2 Feature engineering . 13
2.2.3 Example . 14
2.2.4 Parameters Estimation . 15
2.2.5 Regularization and Feature Pruning 16

2.3 Neural Network . 17

viii Contents

2.3.1 Back Propagation . 19
2.4 Recurrent Neural Network . 21

2.4.1 Back propagation Through Time . 22
2.5 Continuous Word Representation . 24

2.5.1 Ranking approaches . 25
2.5.2 Skip-gram models . 26
2.5.3 Continuous Bag of Words models . 27

2.6 Performance Measures . 27
2.6.1 Classification Accuracy and Segmental F1 28

2.7 Datasets . 29
2.7.1 Chunking . 29
2.7.2 Named entity recognition . 30

3 NeuroCRF 34
3.1 NeuroCRF . 34

3.1.1 Full-Rank NeuroCRF . 36
3.1.2 Low-Rank NeuroCRF . 37
3.1.3 General Form of Full and Low-Rank NeuroCRF 38
3.1.4 Motivation . 41
3.1.5 Related Works . 42

3.2 Dynamic Programming . 42
3.2.1 Forward Algorithm . 42
3.2.2 Backward Algorithm . 43
3.2.3 Viterbi Algorithm . 44

3.3 Parameter Estimation . 44
3.3.1 Stochastic Gradient Descent . 45
3.3.2 Regularization . 49

3.4 Experimental Study . 50
3.4.1 Datasets and Performance Metrics 50
3.4.2 Model Configurations . 50
3.4.3 Training Procedure . 51
3.4.4 CRF Baseline and State of the art . 52
3.4.5 Results . 53

Contents ix

3.4.6 Impact of Mutual Information . 60
3.5 Summary . 62

4 Three Improvements to NeuroCRF 63
4.1 Shared Parameters . 63

4.1.1 Generalized Events . 64
4.1.2 Transition Grouping Procedure . 64
4.1.3 Feature Selection Matrix . 66

4.2 Large Margin Training . 66
4.3 Ensemble Models . 69
4.4 Experimental Study . 70

4.4.1 Model Configuration and Training Procedure 70
4.4.2 Datasets and Performance Metrics 70
4.4.3 Results . 71

4.5 Summary and Discussion . 80

5 Recurrent NeuroCRFs 84
5.1 Motivation . 84
5.2 Related Works . 85

5.2.1 Sequence-to-Sequence Models . 86
5.3 Recurrent Layer . 87
5.4 Long Short-Term Memory Layer . 88

5.4.1 Back Propagation . 90
5.4.2 Bi-directional LSTM Layer . 91

5.5 Experimental Study . 91
5.5.1 Model Configuration and Training Procedure 91
5.5.2 Datasets and Performance Metrics 92
5.5.3 RNN-based NeuroCRF . 92
5.5.4 LSTM-based NeuroCRF . 93
5.5.5 BLSTM-based NeuroCRF . 100
5.5.6 Importance of context size . 106

5.6 Summary and discussion . 107

x Contents

6 Conclusion and Future Work 109
6.1 Full-rank NeuroCRFs . 109
6.2 Shared Parameters . 110
6.3 Recurrent NeuroCRF . 110
6.4 Future Work . 110

6.4.1 More Datasets . 111
6.4.2 Semi-Supervised Learning . 111
6.4.3 Data Driven Parameters Sharing Scheme 112
6.4.4 System Combination . 112
6.4.5 Information Extraction with Attention Mechanisms 113

xi

List of Figures

2.1 Clique template of linear chain conditional random fields 11
2.2 Full linear chain factor graph with T = 3. 15
2.3 Example of feed forward neural network with 3 output units, 5 hidden units

and a bi-dimensional input. 19
2.4 Computation graph for unit i of layer l at time t 21
2.5 Segmented and labelled example sentence from CoNLL-2000 30
2.6 Segmented and labelled example sentence from WikiNER 32

3.1 Clique templates of linear chain NeuroCRFs. Square boxes are factors, circles
are variables. 41

3.2 Boxplot comparing the performance of low and full-rank NeuroCRFs for the
Chunking, NER and WikiNER task. 54

3.3 Precision-Recall plot comparing the performance of low and full-rank Neuro-
CRF on the chunking task. 56

3.4 Precision-Recall plot comparing the performance of low and full-rank Neuro-
CRF on the NER task. 59

3.5 Precision-Recall plot comparing the performance of low and full-rank Neuro-
CRF on the WikiNER task. 61

4.1 oxplot comparing the performance of improved NeuroCRFs for the Chunking,
NER and WikiNER task. 73

4.2 Precision-Recall plot comparing the performance of improved NeuroCRF on
the chunking task. 76

4.3 Precision-Recall plot comparing the performance of improved NeuroCRF on
the NER task. 79

xii List of Figures

4.4 Precision-Recall plot comparing the performance of improved NeuroCRF on
the WikiNER task. 82

5.1 Computation graph of long short term memory cell. 88
5.2 Boxplot comparing the performance of FF-based, LSTM-based and RNN-

based NeuroCRFs on WikiNER . 93
5.3 Precision-recall graph comparing the performance of FF-based, LSTM-based

and RNN-based NeuroCRFs on WikiNER 94
5.4 Boxplots comparing the performance of LSTM-based NeuroCRFs for the Chunk-

ing, NER and WikiNER task. 96
5.5 Boxplots comparing the performance of bi-directional LSTM-based Neuro-

CRFs for the Chunking, NER and WikiNER task. 102

xiii

List of Tables

2.1 Size of the CoNLL-2000 dataset, in words, sentences and segments 30
2.2 Distribution of segment class in the CoNLL-2000 dataset 30
2.3 Size of the CoNLL-2003 dataset, in words, sentences and segments 31
2.4 Distribution of segment class in the CoNLL-2003 dataset 31
2.5 Size of the WikiNER dataset, in words, sentences and segments 32
2.6 Distribution of segment class in the WikiNER dataset 32

3.1 Comparison of low and full-rank NeuroCRFs 53
3.2 Detailed results comparing low and full-rank NeuroCRF for the Chunking task 55
3.3 Detailed results comparing low and full-rank NeuroCRF for the NER task . 58
3.4 Detailed results comparing low and full-rank NeuroCRF for the WikiNER task 60
3.5 Comparison of mutual information in the training corpora. 62

4.1 Grouping of label used to create generalized events for the NER tasks CoNLL-
2003 and WikiNER . 66

4.2 List of generalized events corresponding to the transition (B − LOC, O) for
the NER tasks CoNLL-2003 and WikiNER 67

4.3 Comparison of improvements to NeuroCRFs 72
4.4 Performance of ensemble NeuroCRFs . 72
4.5 Detailed results comparing improved NeuroCRFs for the chunking task . . . 75
4.6 Detailed results comparing ensemble NeuroCRFs for the chunking task . . . 75
4.7 Detailed results comparing improved NeuroCRFs for the NER task 78
4.8 Detailed results comparing ensemble NeuroCRFs for the NER task 78
4.9 Detailed results comparing improved NeuroCRFs for the WikiNER task . . . 81
4.10 Detailed results comparing ensemble NeuroCRFs for the WikiNER task . . . 81

xiv List of Tables

5.1 Comparison of the performance of FF-based, LSTM-based and RNN-based
NeuroCRFs on WikiNER . 93

5.2 Comparison of LSTM-based NeuroCRF and FF-based NeuroCRFs 95
5.3 Detailed results comparing LSTM-based NeuroCRFs for the chunking task . 97
5.4 Detailed results comparing LSTM-based NeuroCRFs for the NER task . . . 99
5.5 Detailed results comparing LSTM-based NeuroCRFs for the WikiNER task . 101
5.6 Comparison of BLSTM-CRFs and LSTM-CRFs 101
5.7 Detailed results comparing BLSTM-based NeuroCRFs for the chunking task 104
5.8 Detailed results comparing BLSTM-based NeuroCRFs for the NER task . . . 105
5.9 Detailed results comparing BLSTM-based NeuroCRFs for the WikiNER task 106
5.10 Impact of context component of input for WikiNER. 107

List of Terms xv

List of Acronyms

ASR automatic speech recognition

BLSTM bi-directional long short term memory

CRF conditional random field

FFNN feed forward neural network

HMM hidden Markov model

LSTM long short term memory

MEMM maximum entropy Markov model

NER named entity recognition

NeuroCRF neural conditional random field

NLP natural language processing

NLU natural language understanding

NN neural network

RNN recurrent neural network

1

Chapter 1

Introduction

This chapter will introduce the field of natural language understanding, and its subfield
information extraction. Sequence labelling, the approach to information extraction used in
this thesis, will also be presented. This will be followed by a short description of chunking
and named entities recognition, two information extraction tasks than can be solved with
sequence labelling. The main topic of this thesis, neural conditional random fields (Neuro-
CRFs), a recent model family used for sequence labelling, will be presented next. Finally, the
outline of this thesis, with a list of its major contributions, will conclude this introductory
chapter.

1.1 Natural Language Understanding

Natural language understanding (NLU) is the study of the automatic processing of natural
language utterances in order to extract the information they contain in a form suitable
for further processing by an automatic system. Automatic systems require information in
a highly structured and specific format, while natural languages carry information in an
unstructured and highly variable format. NLU tasks consist of bridging this gap between
the natural form of an utterance and the structured form required by automatic systems.

1.1.1 Information Extraction

Information extraction is a sub-field in NLU consisting of the extraction and classification
of segments from a natural language utterance. The words contained in a segment, as well

2 Introduction

as its class, are a structured representation of some of the information that was present in
an unstructured form in the original natural language utterance. The extracted information
is used for further processing. The structure of the information extracted is determined by
the requirements of this processing. The type of information to extract is restricted to the
information required by the subsequent processing.

1.1.2 Sequence Labelling

Sequence labelling consists of assigning a label to each element in an input sequence. This can
be used for information extraction, as well as for other tasks. Conversely, other approaches,
such as rules based systems, can be used for information extraction.

The segmentation and classification steps of information extraction are performed jointly,
by assigning a label to each word in the sentence. Those labels are interpreted to retrieve
the segments and their class. A common labelling scheme is IOB2, where the label identify
the position of the word in its segment, as well as the class of the segment. Words that are
not part of a relevant segment are assigned a label indicating this.

This approach does not depend on the type of information that must be extracted. It
is suitable for all tasks where specific information must be extracted from a sentence in the
form of classified segments. The classes, and therefore labels, will of course be different
depending on the task, but the overall process will be identical.

1.1.3 Example Task

A system used to provide directions to a user will be used illustrate how sequence labelling
is used to extract information from natural language utterances. This system needs to know
the origin, destination, and means of transportation, in order to query its database and
retrieve the required set of directions. The information extraction step has to identify the
segments corresponding to those three classes, if they are present.

Using IOB2 labelling, this task requires seven labels:

• B-origin and I-origin

• B-dest and I-dest

• B-mean and I-mean

1.2 Chunking 3

• O.

“B” indicates the beginning of a segment; “I” indicates the inside of a segment; “O” indicates
the outside of a segment. The second part of the “B-*” and “I-*” labels, such as “origin”,
indicates the class.

A user needing directions in order to get home might say the sentence “I want to take the
bus to get home from 2344 random street”. The destination is “home” and the word “home”
is therefore given the label “B-dest”. The origin is “2343 random street”, with the labels
“B-origin I-origin I-origin”. The means of transportation is “bus”, with the label “B-mean”.
The other words are labelled “O”. Once the origin, destination and means of transportation
are identified, the system queries its database of bus routes.

1.2 Chunking

Chunking1 is one of the two information extraction tasks studied in this thesis. Chunking
is the creation of a flattened form of a sentence’s parse tree. The information extracted
consists of syntacticly related words [2]. The resulting segments, along with an associated
type, form “chunks”. Chunks correspond to a sub-tree in the full parse tree, with the label
coming from the syntactic head of the sub-tree. While the resulting parsing is not as rich as
a full parse tree, it can be used as features for subsequent processing such as [3], and can be
obtained using sequence labelling.

1.3 Named Entities Recognition

The second information extraction task studied in this thesis is named entities recognition
(NER) [4], the extraction and classification of named entities from natural language sen-
tences. Named entities are, as the name indicates, proper names. They includes place
names, organizations, persons, events, book titles, etc. Segments consisting of a named en-
tity are extracted from the input sentence, and classified. The exact classes varies according
to the requirement of the tasks, but classes for places, organizations and persons are com-
mon. In some cases, the distinction can be finer, and the classes can also include the role of
a named entity in a query. In the example above, origins and destinations are places, but
the system must be able to distinguish between them.

1Sometimes called “shallow parsing”.

4 Introduction

1.4 Conditional Random Field

Conditional random fields (CRFs) [5] are discriminative models where the distribution of an
output sequence conditioned by an input sequence is factorized into simpler factor functions.
The factor functions are organized in a factor graph, connecting a subset of the variables in
the output and input sequence with the factor functions. Usually, the factor functions are
log linear weighted sums of features extracted from the sequences.

Linear chain CRFs are a subset of CRFs where the factor graph places the output variables
in a linear chain. The factors are functions of two consecutive output variables, as well as
some input variables. The feature weights of those factor functions are tied.

The main challenge of CRFs is the feature engineering required by the factor functions.
This is task specific, and requires work by an human expert. Examples of feature engineering
can be seen in [6, 7, 8, 9].

1.5 Neural Network

Neural Networks (NNs) are network of simple non-linear units. The input of those units is a
weighted sum of the output of other units. Units are organized into successive layers, where
the output of a layer’s units are connected to the input of the next layer’s unit. The first
layer’s input is the input of the NN. Similarly, the last layer’s output is the output of the NN.
NNs form non-linear mapping between their input and outputs, making them well suited for
complex feature analysis. Layers learn a representation of their input, which is then used
as the input by the following layer. This allows the NN to build more and more complex
representation of its input. Ideally, the NN output should be a perfect representation of the
desired mapping between its input and output. The weights connecting units are selected
in order to minimize a loss function based on the difference between the output of the NN
given a specific input and the desired output.

1.6 NeuroCRF

NeuroCRFs are combinations of neural networks (NNs) and conditional random fields (CRFs).
The factor functions of a NeuroCRF are modelled through NNs. As the NN can learn to
extract relevant features from its input, this reduces the feature engineering usually required

1.7 Continuous Word Representation 5

by CRFs. Meanwhile, CRFs provide a powerful framework to group simple functions into a
complex distribution over a random sequence conditioned by an input sequence.

1.7 Continuous Word Representation

The natural representation of words, in a neural network, is a very large one-hot vector,
where the element corresponding to a word is set to one, and all other elements are set to
zeros. This results in a high-dimensional, but very sparse, input space. A continuous word
representation projects this input space into a much lower dimensional space, where a word is
represented by a continuous dense vector. Those continuous word representations were first
introduced for language modelling tasks [10]. They have also been used for NLP and NLU
tasks. Those continuous word representation address the issues related to large vocabulary
by learning similar representations for similar words. The representation is pre-trained on
large corpora of unlabelled data. If a word is not present in the corpus used to train the
NLU system, but is present in this large corpora, words with similar representations will still
have been used when training the NLU system.

1.8 Thesis Outline

This section will present the organization of this thesis, highlighting its contributions. The
content of this thesis is organized into 6 chapters.

Background

Chapter 2 will present background information. It will start by an overview of information
extraction from natural language. This will be followed by a presentation of conditional ran-
dom fields, neural networks and word representations. This will be followed by a description
of the performance measures used in the experimental studies included in this thesis. Finally,
Chapter 2 will conclude with information about chunking and named entities recognition,
the two information extraction tasks studied in this thesis, as well as the datasets used in
the experimental studies.

6 Introduction

NeuroCRF

Chapter 3 is based on work published in “Full-rank linear-chain neurocrf for sequence label-
ing” [11]. The main focus of Chapter 3 is two fundamental forms of NeuroCRFs, full and
low-rank NeuroCRFs. Full-rank NeuroCRFs are a contribution of this thesis.

It will present the general form of NeuroCRF, and how full and low-rank NeuroCRFs can
be obtained by constraining the parameters of this general form. Chapter 3 will also present
how to estimate the model parameters, for a given training corpus.

Finally, it will present an experimental study showing improvement over a baseline CRF
with similar features. We will discuss the improvements obtained with full-rank Neuro-
CRFs, compared to low-rank NeuroCRFs, as well as the factors enabling and limiting those
improvements.

Three Improvements to NeuroCRFs

Chapter 4 is based on work published in “Recent improvements to NeuroCRFs for named
entity recognition” [12]. It will present three ways to improve the performance of NeuroCRFs.
One of those improvements, added shared parameters, is a contribution of this thesis.

Chapter 4 will first present a way to add shared NN outputs, which will be mapped
to multiple factor functions corresponding to transitions between labels. This is done by
grouping labels and transitions manually, based on their similarity. NN outputs are added
for each groups, and the factor functions are now based on sum of NN outputs, depending
on the relevant transitions.

Chapter 4 will also present an investigation of a form of large margin training in order
to reduce overfitting. This modifies the parameter estimation procedure to maximize not
only the log likelihood of the training corpus, but also the margin of the correct output
compared to the best competing output. Finally, Chapter 4 will present a way to exploit the
non-convexity of NNs, and therefore NeuroCRFs ,to produce complementary models. Those
models are combined into a larger ensemble model, improving performance.

Recurrent NeuroCRFs

Chapter 5, based on work published in “LSTM-Based NeuroCRFs for Named Entity Recog-
nition” [13], will present the last contribution of this thesis. It will address a limitation of
feedforward NNs (FFNNs), where the NN output is only a function of the current input,

1.8 Thesis Outline 7

limiting support for long term dependencies between input and output. This problem is
addressed by replacing the feedforward NN by a recurrent NN, where the NN output is a
function of previous inputs.

Chapter 5 will focus on long short term memory (LSTM) layers, a form of recurrent NN,
and their bi-directional variant. The bi-directional variant divides the LSTM layer in two.
One half uses a causal recurrence, where the output is based on previous inputs. The other
half uses an anti-causal recurrence, where the output is based on following inputs.

Chapter 5 will conclude with an experimental study justifying the use of LSTM instead
of simpler recurrent NNs. LSTM-based NeuroCRFs will be combined with the improvements
presented in Chapter 4. They will be compared to bi-directional LSTM (BLSTM). We also
present results showing that BLSTM remove the need for the sliding window over the input
that was used in the previous FFNN-based NeuroCRFs.

Conclusion

Chapter 6, the conclusion, will summarize the important contribution of this thesis, and list
promising future work that could build on the content of this thesis.

8

Chapter 2

Background

This chapter will present some background material for the following chapters. The first
section will present an overview of information extraction from natural language, of which
chunking and named entities extraction are a subset. This will be followed by a presentation
of conditional random fields (CRFs), and feed-forward and recurrent neural networks (NN).
The major contributions of this thesis are based on a combination of CRF and neural net-
works. The input of the NN used are based on continuous word representations, the subject
of the next section. Finally, this chapter will conclude with a description of the datasets and
performance measures used in the experimental studies found in this thesis.

2.1 Information Extraction From Natural Language

The information carried by natural language needs to be extracted before it can be used in
some automatic processes. Unlike artificial languages, natural language are highly irregular,
and the information cannot, in general, be extracted by a simple set of rules. In the case of
speech, those problems are compounded with the higher irregularity of spontaneous speech
and the low but still non-zero error rates of modern automatic speech recognition systems.

The tasks used in the experimental studies included in this thesis are chunking and
named entity recognition. Both consists of extracting and labelling segments from a natural
language sentence. In both cases, it is assumed that the sentence is available in text form.
In both cases, the output is expressed as a sequence of labels, which are then automatically
and trivially combined with the original sequence of words to extract the relevant segments.
As such, while the two tasks are different, the same general tools are applicable to both.

2.1 Information Extraction From Natural Language 9

More details on the tasks themselves can be found in Section 2.7.
Named entry recognition is used to retrieve named entities, such as place and person

names. Chunking, or shallow parsing, is used to create a flattened form of a sentence
grammatical parse tree.

While other approaches, such as support vector machines [14, 15, 16] and decision trees
[17, 18] have been used, this section will focus on three related approaches:

1. Hidden Markov models (HMMs)

2. Maximum entropy hidden models (MEMMs)

3. Conditional random fields (CRFs).

Those approaches have the same fundamental structure of states and transitions between
states, where the states correspond to the labels, and where every label has an associated
observation (i.e. the word). CRFs will be covered in Section 2.2.

2.1.1 Hidden Markov Models

Hidden Markov models (HMMs) are a well known class of generative models, where an
observation is generated by an hidden state. The observations x = {x1, . . . , xT } depend only
on the corresponding state yt. A given state yt depends only on the immediately previous
state, and is independent of any other preceding states (i.e p(yt|yt−1, yt−2) = p(yt|yt−1)). The
model is

p(y, x) =
T∏

t=1
p(xt|yt)p(yt|yt−1) = p(x|y)p(y). (2.1)

The transition probabilities p(yt|yt−1) can be modelled by categorical distribution. The
emission probability density p(xt|yt) is more complex, and is specific to a given system.

HMM were used for NER in [19, 20, 21, 22]. HMMs were used for chunking in [23, 24].
While all those works use the same class of model, they rely on different features extracted
from the words in order to obtain p(xt|yt). This is feature engineering and will be discussed
in more details in the context of CRFs, in Section 2.2.

2.1.2 Maximum Entropy Markov Models

Maximum entropy Markov models (MEMMs) [25] are a discriminative form of HMMs. They
have the same structure of states, observations and transitions, but rather than focusing on

10 Background

p(xt|yt), the generative model of the observation given the state, they focus on p(yt|yt−1, xt),
a discriminative model of the state given the previous state and current observation.

The model is
p(y|x) =

T∏
t=1

p(yt|yt−1, xt), (2.2)

p(yt|yt−1, xt) = 1
Z(yt−1, xt)

exp F (yt, yt−1, xt), (2.3)

Z(yt−1, xt) =
∑

y

exp F (y, yt−1, xt), (2.4)

where F (y, yt−1, xt) is a weighted sum of features extracted from (y, yt−1, xt), xt is the current
observation, yt is the current state and yt−1 is the previous state. In MEMMs, p(yt|yt−1, xt)
is a maximum entropy classifier.

MEMMs were used for NER in [26] and [27]. They were also used for chunking in [28].
MEMMs were rapidly overshadowed by the similar but more powerful conditional random
fields.

2.2 Conditional Random Fields

Conditional random fields (CRFs) are a class of graphical models [5, 29]. CRFs are an ex-
tension of MEMMs, intended to address the label bias problem where the model is biased
towards states with few outgoing transitions. CRFs are used to model a conditional distri-
bution p(y|x) over an input sequence x and an output sequence y. CRFs are defined by
a factor graph. The distribution p(y|x) is factorized according to this graph. The factor
functions found in the factor graphs are similar to distributions over features extracted from
the sequences y and x. CRFs replace the global distribution over a large number of variables
by many factor functions over a smaller number of variables.

CRFs are commonly used for chunking and NER, as well as for other sequence labelling
taks. Passos et al. combined CRF and continuous word representation [9] for NER. In this
particular case, the word representation training procedure is modified to better incorporate
a lexicon of known named entities. CRFs with simpler features were applied to NER [6] and
chunking [7] in 2003. CRF have been regularly used for information extraction since their
introduction [30, 31, 32].

2.2 Conditional Random Fields 11

2.2.1 Definition

yt−1 Ψt

xt

yt

(a) General

yt−1 Ψ1,t yt

Ψ2,t

xt

(b) Factorized into transition and emission

Fig. 2.1 Clique template of linear chain conditional random fields. Square
boxes are factors, circles are variables. Subfigure (b) is similar to a
HMM, replacing p(xt, yt|yt−1) = p(xt|yt)p(yt|yt−1) with Ψt(yt, yt−1, xt) =
Ψ1,t(yt, yt−1)Ψ2,t(yt, xt).

CRFs are models of the form [5]

log p(y|x) =
⎛⎝ ∑

Ψg∈G
log Ψg(x, y)

⎞⎠− log Z(x) (2.5)

Z(x) =
∑

y

∏
Ψg∈G

Ψg(x, y), (2.6)

where y and x are respectively the output and input sequence, Ψg is a factor function, G
is the set of factor functions in the graph and Z(x) is a normalization term. The factor
functions can be grouped into clique templates Cp.

log p(y|x) =
⎛⎝∑

Cp∈C

∑
Ψc∈Cp

log Ψc(xc, yc)
⎞⎠− log Z(x) (2.7)

Ψc(xc, yc) = exp
∑

θp,k∈θp

θp,kfp,k(xc, yc), (2.8)

where xc and yc are the subsets of x and y relevant for the factor function Ψc belonging to
the clique template Cp, θp are the model parameters of the same clique template, fp,k is a

12 Background

parameter less feature extraction function, and θp,k is the associated feature weight.
In practice, the linear-chain form turns out to be the most useful and popular. In this

form, the distribution is factorized into T factor functions, where T is the length of the
output and input sequences, with a single clique template, illustrated by Figure 2.1a. The
factor functions are a log-linear combination of features extracted from a relevant segment
of the input and output sequences. Linear-chain CRFs [29] are models of the form

log p(y|x) =
(

T∑
t=1

log Ψt(yt, yt−1, x)
)

− log Z(x) =
(

T∑
t=1

Gt(x)F (yt, yt−1)
)

− log Z(x) (2.9)

Ψt(yt, yt−1, x) = exp Gt(x)F (yt, yt−1) (2.10)

Gt(x) = Ct(x)W + B (2.11)

Z(x) =
∑

y
exp

(
T∑

t=1
Gt(x)F (yt, yt−1)

)
, (2.12)

where Gt(x) is a feature analysis matrix and F (yt, yt−1) is an output feature selection matrix.
The feature analysis matrix Gt(x) is composed of an input feature weights matrix W , a
feature count matrix Ct(x) and an output feature biases matrix B.

The feature count matrix Ct(x) is a 1-by-N matrix, where N is the number of features.
The columns contain the number of occurrences, in x, of the corresponding feature around
time t. The set of features used is specific to the goal of the system. An example would be
that the t’th word xt is “the”, or that xt−1 is “a”.

Ct(x) is not a function of the output sequence y. The output feature selection matrix
F (yt, yt−1) has a similar role. It indicates the presence or absence of an output feature in
the pair (yt, yt−1). Where Ct(x) extracts feature counts from x around t, F (yt, yt−1) extracts
feature occurrences from (yt, yt−1). An example of an output feature would be that the t’th
label yt is “True”, or that there’s a transition from “False” to “True”. F (yt, yt−1) is a M -by-1
matrix, where M is the number of output features. A full feature is the occurrence of an
output feature or the co-occurrence of an input and output feature.

Finally, the input feature weights matrix W is a N -by-M matrix. Its elements indicate
the weight of an input feature co-occurring with an output feature. The output feature

2.2 Conditional Random Fields 13

biases matrix B is a 1-by-M matrix. Its elements indicate the weight of an output feature,
independently of the input. The output feature weights are described as “biases” to unify
the notation with the one used for neural networks.

Figure 2.1b shows the clique template of HMM-like linear-chain CRFs. In this particular
case, the clique is further separated into transition factors Ψ1,t and emission factors Ψ2,t.
This structure mirrors the one of HMMs, where observations and transitions distributions
are independent.

2.2.2 Feature engineering

While the feature weights matrix can be optimized automatically, identifying the relevant
feature set requires work by an expert. This feature engineering is an essential step when
designing a CRF-based system. The feature set is task-specific, although similar tasks will
have similar feature sets. This decision is somewhat ad-hoc. Features are selected based on
previous experiments and expert knowledge, but ultimately, only experimental results can
determine if a feature set is suitable for a specific task. Among the possible features are

• Word identity,

• Word representation,

• Part-of-speech,

• Prefixes and suffixes,

• Presence in dictionaries.

It is also possible to include feature n-grams extracted from a window, or even input features
that are independent of the position in x.

The feature engineering process will determine the feature count matrix Ct(x) and the
output feature selection matrix F (yt, yt−1). In the feature weight matrix, every input feature
is associated with all output features. It is common to fix the weights of some combination
of input and output feature to 0, which reduces the overall number of features. This is part
of feature engineering, and is done when a specific input and output feature are known to be
independent. Feature pruning, discussed in Section 2.2.5, can be used to reduce the number
of features.

14 Background

2.2.3 Example

Feature engineering is the first step in the creation of a CRF model for the small example
presented in Section 1.1.3 of the introduction chapter. A very simple feature set will be used
to illustrate basic feature engineering.

The input features will be the presence of a word in a small sliding window around t, so
that

Ct(x) =
[

V (xt−1) V (xt) V (xt+1)
]

(2.13)

V (xt) =
[

v1(xt) v2(xt) . . . v|V |(xt)
]

(2.14)

vi(x) =

⎧⎨⎩ 1, i = x

0, i ̸= x
, (2.15)

where |V | is the number of possible words and the words xt are represented by an index
between 1 and |V |. The output features are divided into two groups: emission and transition
features. With 7 possible labels,

F (yt, yt−1) =
[

e1(yt) · · · e7(yt) f1(yt, yt−1) · · · f49(yt, yt−1)
]⊤

(2.16)

ei(y) =

⎧⎨⎩ 1, i = y

0, i ̸= y
(2.17)

fi(y, y′) =

⎧⎨⎩ 1, i = 7y + y′

0, i ̸= 7y + y′ , (2.18)

where the label yt is represented by an index between 1 and 7, with 49 pairs of label
(yt, yt−1), for a total of 56 output features. The feature weight matrix W is a 3|V |-by-
56 matrix, and the biases matrix B is a 1-by-56 matrix. The feature weights are in the form
of wxt−1=1,yt=1, wxt−1=1,yt=1,yt−1=1, byt=1, and byt=1,yt−1=1. The feature weights correspond to
the co-occurrence of an input feature and an output features, while the biases correspond to
the occurrence of an output feature.

The resulting clique template follows Figure 2.1a. With T = 3, the full factor graphs is
shown in Figure 2.2.

2.2 Conditional Random Fields 15

Ψ1

x1

y1 Ψ2

x2

y2 Ψ3

x3

y3

Fig. 2.2 Full linear chain factor graph with T = 3.

2.2.4 Parameters Estimation

Parameters are estimated using a large number of training examples. The parameters are
selected to minimize the loss function [5, 29]

L(train) =
∑

(y,x)∈train
− log p(y|x), (2.19)

where (y, x) is a training pair in the training corpus train.
Sutton and McCallum, in an excellent tutorial on CRF [29], showed that the loss function

is minimized when the expected number of occurrences of a feature, according to the model,
is equal to the number of occurrences of the feature in the training pair (x, y), so that

T∑
t=1

∑
(yt,yt−1)

p(yt, yt−1|x)C⊤
t (x)F ⊤(yt, yt−1) =

T∑
t=1

C⊤
t (x)F ⊤(yt, yt−1) (2.20)

T∑
t=1

∑
(yt,yt−1)

p(yt, yt−1|x)F ⊤(yt, yt−1) =
T∑

t=1
F ⊤(yt, yt−1), (2.21)

where the probability of a transition between label yt−1 and yt at time t, p(yt, yt−1|x), is com-
puted using dynamic programming, using an algorithm similar to the Baum-Welch algorithm
[33] used to estimate the parameters of HHMs.

In general, it is impossible to find an analytical solution [29]. Numerical techniques, such
as gradient descent or the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS)
algorithm [34] are used. The convex nature of the loss function, being a sum of convex
functions, simplifies this search, as convergence to a point close to the global minimum is
assured if the learning rate is small enough.

16 Background

2.2.5 Regularization and Feature Pruning

While CRF are convex models and training will converge to a point close to the global
minimum, overfitting is still possible and will degrade performance on unseen data [29].

Norm regularization is usually applied to CRFs. Norm regularization is a prior applied
to the model’s parameters Θ, so that the loss function becomes

L(train; {σi}) =
∑

(y,x)∈train
− log p(y, Θ|x), (2.22)

p(y, Θ|x) = p(y|x)p(Θ). (2.23)

If a Gaussian prior with parameter specific standard deviation σi is applied to Θ, so that

log p(Θ) =
∑

θi∈Θ

θ2
i

2σ2
i

− log σi

√
2π, (2.24)

the norm regularized loss function becomes

L(train; {σi}) = L(train) +
∑

θi∈Θ

θ2
i

2σ2
i

− log σi

√
2π, (2.25)

∇θi
L(train; {σi}) = ∇θi

L(train) + θi

σ2
i

. (2.26)

This prior will therefore penalize parameters with high absolute value and add a component
pointing towards zero to the gradient. The magnitude of this component increases as the
value of the parameters goes away from zero. The strength of this regularization term is
controlled by the hyper-parameters σ2

i .

Feature Pruning

Feature pruning has two related functions. First, it reduces the size of the model, reducing
its memory and computational complexity. It also contributes to regularizing the model, by
removing noisy features, in particular uncommon features.

Obviously, features whose weight is zero can be removed from the model without affecting
performance. Regularization can be used to increase the number of feature where this applies.
In particular, l1 regularization can be used for feature pruning [35]. This can be combined

2.3 Neural Network 17

with occurrence count and feature weight ranking, to obtain a target feature count[36]. In
this particular case, an initial feature set is created by ranking the features’ occurrence count
and selecting the top N . After training, the features with the smallest weights are removed
and replaced by new features.

2.3 Neural Network

Conditional random fields are one of the two components of NeuroCRFs, the main topic
of this thesis. NeuroCRFs also use a neural network, a combination of simple units called
artificial neurones. Those units are organized into a larger network. While the individual
units are simple, the whole network is complex, and can learn to approximate many functions
[37].

Feed forward neural networks are organized in layers of units. The outputs of a layer are
connected to the inputs of the next layer. They are no connection between units belonging
to the same layer.

Artificial neurones are composed of three components. First, an activation function,
typically non-linear. Second, a bias value. Finally, a weight vector, with a weight per
connection to another unit.

In general, the neural network G is composed of units gi so that

gi(G) = σi(GWi + bi), (2.27)

where σi is the unit activation function, Wi are the weights connecting unit i to the other
units and bi is the unit’s bias. This fully connected form is obviously intractable. If a unit
gl,i is associated with a layer Gl, this becomes

gl,i(Gl−1) = σl,i(Gl−1Wl,i + bl,i). (2.28)

This restriction results in a feed forward neural network (FFNN). An example of FFNN is
shown in Figure 2.3.

A set of units are assigned as output and a set is assigned as input. For a feed forward
neural network, the input units are the lowest layer, and the output units are the top
layer. The other layers are called “hidden layers”, since they cannot be directly observed
from outside the network. With L hidden layers containing Nl units each, the output layer

18 Background

GL+1(x) is a composition of L layers Gl(x):

GL+1(x) = σL+1(GL(x)WL+1 + BL+1) (2.29)

Gl(x) = σl(Gl−1(x)Wl + Bl) = σl(al(x)) (2.30)

G0(x) = x. (2.31)

The dimensionality of the output layer GL+1(x) is fixed to the dimensionality of the function
being approximated. The number of hidden layers L and the size of those layers {N1, . . . , NL}
are not fixed. The parameters of this network are the L + 1 weight matrices Wl and the
L + 1 biases matrices Bl.

The activation function of the last layer is usually a simple non-parametric function,
chosen to accomplish a specific task. The softmax function is suitable for many classifications
tasks.

softmax(aL+1(x)) =
[

exp aL+1,1(x)
Z(x) ,

exp aL+1,2(x)
Z(x) , . . . ,

exp aL+1,NL+1(x)
Z(x)

]
(2.32)

Z(x) =
NL+1∑
i=1

exp aL+1,i(x) (2.33)

With a softmax activation function, a NN can learn to approximate a posterior prob-
ability P (y|x) = softmaxy(aL+1(x)). This can then be used for classification, so that
ŷ = arg maxy P (y|x).

Time Dimension

In the preceding description of NNs, we assumed that there is no time component. That
is, we assumed that x and Gl(x) are vectors. It is common to have a temporal component,
where x and Gl(x) are matrices, whose rows correspond to time indices.

This does not require any significant change for the NN itself. With T time indices, Gl

becomes:
Gl(x) =

[
Gl,1(x1)⊤, Gl,2(x2)⊤, . . . , Gl,T (xT)⊤

]⊤
(2.34)

2.3 Neural Network 19

Gl,t(xt) = σl(Gl−1,t(xt)Wl + Bl) (2.35)

x =
[
x⊤

1 , x⊤
2 , . . . , x⊤

T

]⊤
. (2.36)

Its corresponding activation matrix is

al =
[
a⊤

l,1, a⊤
l,2, . . . , a⊤

l,T

]⊤
, (2.37)

al,t = Gl−1,t(xt)Wl + Bl. (2.38)

Output layer

Hidden layer

Input

Fig. 2.3 Example of feed forward neural network with 3 output units, 5 hid-
den units and a bi-dimensional input.

2.3.1 Back Propagation

Numerical optimization is used to find good NN parameters In general, this is done by
minimizing some loss function for a training corpus of relevant data. The loss function used
varies depending on the task but, in general, minimizing or maximizing a function requires
the gradient of its parameters.

With a training corpus “train” composed of training pairs (y, x), where x is an observation
matrix and y is a target matrix, the loss function is usually a linear function of per-example
losses, such as

L(train) =
∑

(y,x)∈train
L(y, x), (2.39)

20 Background

where L(y, x) is the per-example loss. Because of this, obtaining the gradient of the param-
eters with respect to the per-example loss function is sufficient. It can then be used with an
optimization algorithm such as stochastic gradient descent (SGD), presented in Section 3.3.1.

In order to do so, the gradient of the loss function with respect to the NN’s output
units, which can be obtained directly, is back propagated [38] from those units to the units
connected to them. This process is repeated until the gradient of every unit is obtained.
Fundamentally, back propagation is simply the systematic and recursive application of the
chain rule.

The per-example loss is a function of the NN output matrix, such as

L(y, x) = f(GL+1,1(x1), . . . , GL+1,T (xT)). (2.40)

Because of this, the gradient of parameter θl of layer Gl is

∇θl
L(y, x) = g

(
∂GL+1,1(x1)

∂θl

, . . . ,
GL+1,T (xT)

∂θl

)
. (2.41)

A given unit i of layer Gl, at time step t, is connected to other units. When the derivative
of the loss function with respect to those other units is know, it is back propagated to Gl,t,i.
This process is repeated for all units at all time step. In the case of layers like Equation 2.30,

∂L(y, x)
∂Gl,t,i

=
∑

j

∂L(y, x)
Gl+1,t,j

σ′
l+1(al+1,t,j)Wl+1,i,j, (2.42)

σ′
l(al,t,i) = ∂σl(al,t,i)

∂al,t,i

, (2.43)

where ∂L(y,x)
Gl+1,t,j

, the derivative of the loss function with respect to unit j of the layer Gl+1 at
time step t, is already known. Figure 2.4a shows the computation graph for a single unit.
Back propagation through a unit follows this graph backward.

Parameters Gradient

Finally, once the gradient has been back propagated to all units and time steps in a layer
Gl, the chain rule is then applied one more time, to get to the gradient of its parameters θl:
In the case of Equation 2.30, whose parameters are θl = {Wl, Bl}, the required derivatives

2.4 Recurrent Neural Network 21

Gl,t,i

σl

+ Bl,i

dot Wl,j,i

Gl−1,t,j

al,t,i

(a) Feed Forward

Gl,t,i

σl

+ Bl,i

dot Wl,j,i

Gl−1,t,j

dot

Rl,j,i

Gl,t−1,j

al,t,i

(b) Recurrent

Fig. 2.4 Computation graph for unit i of layer l at time t. “dot” indicates
matrix multiplication.

are
∂Gl,t,j(xt)

∂Wl,i,j

= σ′
l(al,t,j)Gl−1,t,i(xt) (2.44)

∂Gl,t,i(xt)
∂Bl,i

= σ′
l(al,t,i). (2.45)

Finally,
∂L(y, x)
∂Wl,i,j

=
∑

t

∂L(y, x)
∂Gl,t,j(xt)

∂Gl,t,j(xt)
∂Wl,i,j

, (2.46)

∂L(y, x)
∂Bl,i

=
∑

t

∂L(y, x)
∂Gl,t,i(xt)

∂Gl,t,i(xt)
∂Bl,i

. (2.47)

2.4 Recurrent Neural Network

Recurrent neural networks (RNNs) are NN containing one or more recurrent layers. Equa-
tion 2.30 defines feed-forward (FF) layers. Its recurrent counterpart, with added recurrent
weight matrix Rl, is

Gl,t(x) = σl(Gl−1,t(x)Wl + Gl,t−1(x)Rl + Bl) = σl(al,t), (2.48)

22 Background

Gl,0(x) = 0. (2.49)

The layer output is organized as a matrix whose rows correspond to time indices,

Gl(x) =
[
Gl,1(x)⊤, Gl,2(x)⊤, . . . , Gl,T (x)⊤

]⊤
. (2.50)

Figure 2.4b shows the computation graph for a recurrent unit.
FF NNs assume that the observation at time t and the output at time t′ ̸= t are indepen-

dent. Since RNNs do not make this assumption, they can learn to extract features depending
on previous observations. This is useful for many tasks where there is a dependency on pre-
vious inputs, such as language modelling [39, 40], acoustic modelling [41, 42], and machine
translation [43]. While it is possible to use previous input without using recurrent layer,
for example by using an input window containing surrounding observations, RNN have the
advantage of being able to retain information indefinitely, as they are not limited by a finite
window.

2.4.1 Back propagation Through Time

Section 2.3.1 explained back propagation for a FF NN. Back propagation needs to be modi-
fied, to incorporate the time recursion, in order to be applied to a RNN. This form of back
propagation is known as back propagation through time (BPTT) [44].

As in Section 2.3.1, a given unit i of layer Gl, at time step t, is connected to other units. In
the case of the FF NN of Section 2.3.1, those units are Gl+t,t,j, the units of the following layer
at the same time step t. Those connections still applies to RNN. The recurrent connections,
to units Gl,t+1,j, the units of the same layer at the following time step t+1, need to be added
to Equation 2.30.

∂L(y, x)
∂Gl,t,i(x) = FFl,t,i + Recl,t,i, (2.51)

FFl,t,i =
∑

j

[
∂L(y, x)

∂Gl+1,t,j(x)σ′
l+1(al+1,t,j)Wl+1,i,j+

]
, (2.52)

Recl,t,i =
∑

j

[
∂L(y, x)

∂Gl,t+1,j(x)σ′
l(al,t+1,j)Rl,i,j

]
, (2.53)

2.4 Recurrent Neural Network 23

σ′
l(al,t,i) = ∂σl(al,t,i)

∂al,t,i

, (2.54)

where ∂L(y,x)
∂Gl+1,t,j(x) , the derivative of the loss function with respect to unit j of the layer Gl+1

at time step t, and ∂L(y,x)
∂Gl,t+1,j(x) , the derivative of the loss function with respect to unit j of the

layer Gl at time step t + 1, are already known. BPTT follows, backward, the computation
graph for a recurrent unit, shown in Figure 2.4b.

Vanishing and Exploding Gradient

RNNs suffer from the vanishing and exploding gradient problem [45, 46], where the gradient
tend to either vanish to zero or to increase exponentially during BPTT. One of the advantages
of long-short term memory (LSTM) layers, which will be discussed in details in Chapter 5,
is that they are more resilient to the vanishing gradient problem [47].

Assuming a simple layer, consisting of a single unit, with linear activation, the output of
this unit, at time t is

yt = xtW + yt−1R, (2.55)

The contribution of the output yt−d to the output yt is multiplied by an exponential function
of the recurrent weight. The gradient of yt is back propagated to yt−d by

∂yt

∂yt−d

= Rd. (2.56)

This simple example shows the fundamental nature of the problem. The repeated multipli-
cation by the recurrent weights will tend to drive the gradient towards either zero or infinite
values. The exact threshold depends on the activation function and the overall weight matrix
[46].

Parameters Gradient

Once the gradient has been back propagated to all units and time steps in a layer Gl, the
chain rule is then applied one more time, to get to the gradient of its parameters θl: In the
case of Equation 2.48, whose parameters are θl = {Wl, Rl, Bl}, the required derivatives are

∂Gl,t,j(xt)
∂Wl,i,j

= σ′
l(al,t,j)Gl−1,t,i(x), (2.57)

24 Background

∂Gl,t,j(x)
∂Rl,i,j

= σ′
l(al,t,j)Gl,t−1,i(x) (2.58)

∂Gl,t,i(x)
∂Bl,i

= σ′
l(al,t,i). (2.59)

Finally,
∂L(y, x)
∂Wl,i,j

=
∑

t

∂L(y, x)
∂Gl,t,j(x)

∂Gl,t,j(x)
∂Wl,i,j

, (2.60)

∂L(y, x)
∂Rl,i,j

=
∑

t

∂L(y, x)
∂Gl,t,j(x)

∂Gl,t,j(x)
∂Rl,i,j

, (2.61)

∂L(y, x)
∂Bl,i

=
∑

t

∂L(y, x)
∂Gl,t,i(x)

∂Gl,t,i(x)
∂Bl,i

. (2.62)

2.5 Continuous Word Representation

While NNs can learn useful features and perform feature analysis, their input must be in a
vectorial form. For the NLU tasks considered in this thesis, the input is based on words.
Each individual word can be represented by a one-hot vector. The dimensionality of this
vector is equal to the size of the vocabulary. Most elements are set to 0, with only one
exception: the element whose index is the index of the represented word in the vocabulary.
In effect, the most basic representation of words is a very large, very sparse vector.

This kind of word representation is not practical. Similar words do not have similar
vectors; the NN cannot generalize to words that were not seen during training. It is possible
to create an alternative representation where similar words have similar vectors. In those
cases, the very large, very sparse one-hot vector is replaced by a continuous vector of much
smaller dimensionality. This representation is often called a “word embedding” or simply
“embedding”. It can be interpreted as a low dimensionality space embedded in the initial
one-hot space. Word representations can be trained on unannotated data. This kind of
representation was initially developed for language modelling [10]. They can be re-used for
different NLU tasks.

Bengio et al. found that the combination of a continuous word representation and a
neural network resulted in a significant perplexity reduction compared to similar n-gram
language models. Le et al. used a similar representation in a class-based neural network

2.5 Continuous Word Representation 25

language model applied to a Mandarin Chinese ASR task [48]. Collobert presented two
architectures combining input representation and neural networks [49, 3]. Turian et al.
presented a comparison of the performances of various word representations, used as part of
the feature set of a CRF for two NLU tasks [8]. Other approaches learn representation to
predict surrounding words [50, 51], as well as presence or absence in lexicons [9].

While we settled on a specific word representation during the experimental studies, to
control for the impact of the word representation [52], continuous word representation is an
active area of research [53, 54, 55].

Similarity between words is ill-defined. Whether or not two words are similar to each
other is more of an intuitive idea than something that can be reliably tested. While it is
hard to define similarity in general, it is fairly easy to create pairs of similar words, such
as city names, countries, verbs, stems, etc. In practise, works on word representations will
usually present an informal and anecdotal demonstration that similar words have similar
representation. This informal demonstration is followed by a more concrete and formal
experimental study, where the representation is used for a real task.

Several approaches capable of generating reasonable word representations have been pro-
posed. We will briefly introduce some in the following subsections.

2.5.1 Ranking approaches

Creating a representation using unannotated data is done by training a simple model on a
task which does not require annotation. This is the case of language modelling, where the
goal is simply to estimate the likelihood p(w|h) that the word w follows the history h. When
creating a representation, the goal is to learn features to represent words. The likelihood
itself is of limited interest. Rather than train on likelihood, Collobert and Weston proposed
the use of a ranking criterion [49, 3].

In this approach, a true window w is extracted from the unannotated data. The central
word is replaced by another word, forming a “false” window w′. A NN is trained to minimize
the cost c(w, w′) for all pairs (w, w′)

c(w, w′) = max (0, 1 − m(w, w′)) (2.63)

m(w, w′) = N (w) − N (w′), (2.64)

26 Background

where m(w, w′) is the margin between the score N (w) of the true window and the score
N (w′) of the false window. The representation learning network’s input is window of word
ids, indexing into a lookup table. This lookup table contains the continuous word represen-
tations. The entry in the lookup table corresponding to a word is tied and shared by all
positions in the input window.

2.5.2 Skip-gram models

Skip-grams models [50, 51] are used to predict the words preceding and following a known
word. This involves learning a word representation that can be used for other tasks. The
skip-gram model is a NN using a single linear hidden layer, with a softmax output layer.
Each word is represented by two continuous vectors of size H, w(i) and w(o). The first vector,
w(i), is equivalent to the weights between a one-hot input layer and the hidden layer. The
second vector is equivalent to the weights between the hidden layer and the output layer. H

is the size of the hidden layer. In both cases, those weights are stored in a lookup table and
only the ones actually required are used. The input vector w(i) is used as the representation.

Given a sequence of T words, a skip-gram model should maximize

1
T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(wt+j|wt), (2.65)

where wt is the word in position t and c is the size of the context, that is the number of word
either preceding or following the central word that should be predicted.

p(wt+j|wt) =
exp

(
w(i)

t · w(o)
t+j

)
∑W

k=1 exp
(
w(i)

t · w(o)
k

) , (2.66)

where W is the size of the vocabulary, w(i)
t is the representation of the word at position t in

the training sequence, w(o)
k is the output representation of word wk and w(o)

t+j is the output
representation of word wt+j at position t + j in the training sequence.

For non-trivial vocabulary size W , computing ∇p(wt+j|wt) is impractical. Negative sam-
pling is an alternative, which optimizes a modified objective function

1
T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log σ(w(i)
t · w(o)

t+j) +
K∑

k=1
Ew(o)∼Pn(w)

[
log σ(−w(i)

t · w(o))
]

, (2.67)

2.6 Performance Measures 27

where σ(x) is the logistic function, K is an hyper-parameter defining the number of negative
samples to use, and Pn(w) is a noise distribution.

2.5.3 Continuous Bag of Words models

Continuous bag of words (CBoW) [51] models are similar to skip-gram models. While skip-
gram models use a central word to predict the surrounding words, CBoW models use the
surrounding words to predict the central word. They use the same parameters, but combine
them differently. The hidden layer of a skip-gram is the representation of the central word.
The hidden layer of a CBoW is the sum of the representations of the surrounding words.

Given a sequence of T = 2C +1 words, a CBoW model should maximize log p(wC |{wt|t ∈
T, t ̸= C}).

H =
∑
t̸=C

w(i)
t , (2.68)

p(wC |{wt|t ∈ T, t ̸= C}) =
exp

(
H · w(o)

C

)
∑W

k=1 exp
(
H · w(o)

k

) , (2.69)

where H is the hidden layer, W is the size of the vocabulary, w(i)
t is the representation of

the word at position t in the training sequence, w(o)
k is the output representation of word wk

and w(o)
t+j is the output representation of word wt+j at position t+ j in the training sequence.

Computing ∇p(wC |{wt|t ∈ T, t ̸= C}) has the same complexity as computing ∇p(wt+j|wt),
its skip-gram equivalent, and is impractical for large vocabularies. Negative sampling is ap-
plicable to CBoW, resulting in the modified objective function

log σ(H · w(o)
C) +

K∑
k=1

Ew(o)∼Pn(w)

[
log σ(−H · w(o)

k)
]

, (2.70)

where σ(x) is the logistic function, K is an hyper-parameter defining the number of negative
samples to use, and Pn(w) is a noise distribution.

2.6 Performance Measures

In this thesis, performance is evaluated in term of F1, the harmonic mean of precision and
recall. High F1 indicate that a system was able to retrieve the segments that are present in

28 Background

the reference, without also retrieving segments that are not in the reference. Recall is the
percentage of segment found in the reference that were retrieved by the system. Precision is
the percentage of segment retrieved by the system that are also in the reference.

F1 = 2 pr

p + r
= 2 c

n + m
, (2.71)

where c is the number of segment retrieved also present in the reference, n is the number of
segment in the reference, m is the number of segment retrieved, p = c/m is the precision,
and r = c/n is the recall. Usually, F1 is multiplied by 100 and reported as a number between
0 and 100 rather than 0 and 1.

2.6.1 Classification Accuracy and Segmental F1

It is also possible to factorize F1 into two other related measures, so that

F1 = AcF
(s)
1 = c

cs

2cs

n + m
, (2.72)

where Ac = c/cs is the classification accuracy, cs is the number of segment correctly retrieved,
disregarding the class, and F

(s)
1 is the segmental F1. F

(s)
1 is simply F1 disregarding the class of

the retrieved segments. High F
(s)
1 indicates that the system is capable of identifying segment

boundaries. High classification accuracy Ac indicates that, given correct segmentation, the
system is capable of classifying segments accurately.

Classification accuracy should be distinguished from label accuracy

Al(y′, y) = 1
T

T∑
t=1

⎧⎨⎩ 1, y′
t = yt

0, y′
t ̸= yt

,

which does not take into account segmentation, and is a label level performance measure.
This measure is not usually a good performance measure, for example in cases where most
words are assigned the same label. In those cases, a system that completely ignores its input
and always assign this label will have a high label accuracy, despite its poor real performance.

2.7 Datasets 29

2.7 Datasets

The sequence labelling techniques described in this thesis are evaluated on three datasets.
Those datasets contain separate training and test corpora. The training corpora are used
to learn the models’ parameters. Some decisions, such as the various hyper-parameters
controlling the machine learning algorithm used, are based on a small validation subset of
the training corpus. This validation corpus is removed from the training data.

One dataset is used to evaluate performance on a chunking task. The two others are
used to evaluate performance on named entity recognition tasks.

This section will present the details of those two tasks, as well as some statistics describing
the datasets. It also contains a high level qualitative description of the three datasets.

2.7.1 Chunking

Chunking consists of segmenting a sentence into groups of syntactically related words. The
resulting segmentation is dense, with very few words outside segments. In particular, the
end point of a segment is usually the starting point of the next segment. This high den-
sity increases the importance of the segmentation, since any error will usually affects two
segments.

Those experiments use the CoNLL-2000 shared task[56]. This dataset contains sentences
extracted from the Wall Street Journal (WSJ). The reference segmentation is automatically
derived from the Penn Treebank II corpus [57]. The segments are obtained by flattening the
parse tree, using the syntactic category. Segments usually contain the syntactic head of a
sub-tree and all the elements to its left. For example, a noun phrase will contain determiners
and adjectives coming before the noun as well as the noun itself. The automatic flattening
results in some inconsistent labels, due to some especially complex parse trees. Figure 2.5
shows the segmentation and labelling of an example sentence.

The segments are assigned to one of 11 classes. This results in 23 labels: two per class and
one label to indicate that a word is not part of any segment. The CoNLL-2000 dataset does
not contain a standard validation corpus. 1000 sentences were randomly selected and used
to create the validation corpus used in the experiments presented in this thesis. Table 2.1
details the size, in words, sentences and segments, of the training, validation and test corpus.
Table 2.2 shows the distribution of segment type for the training, validation and test corpus.
The NP segments, corresponding to noun-phrases, form approximately half of the dataset.

30 Background

Those distributions are virtually identical for the training, validation and test corpus.
Confectionery products sales also had strong growth in the quarter .

B-NP I-NP I-NP B-ADVP B-VP B-NP I-NP B-PP B-NP I-NP O
NP ADVP VP NP PP NP

Fig. 2.5 Segmented and labelled example sentence from CoNLL-2000

Training Validation Test
Words 188,112 23,615 47,377
Sentences 7,936 1,000 2,012
Segments 95,020 11,958 23,852

Table 2.1 Size of the CoNLL-2000 dataset, in words, sentences and segments

Training Validation Test
NP 48,947 (52%) 6,134 (51%) 12,422 (52%)
VP 19,027 (20%) 2,440 (20%) 4,658 (20%)
PP 18,907 (20%) 2,374 (20%) 4,811 (20%)
ADVP 3,774 (4%) 453 (4%) 866 (4%)
SBAR 1,940 (2%) 267 (2%) 535 (2%)
ADJP 1,843 (2%) 217 (2%) 438 (2%)
PRT 495 (1%) 61 (1%) 106 (0%)
CONJP 50 (0%) 6 (0%) 9 (0%)
INTJ 28 (0%) 3 (0%) 2 (0%)
LST 8 (0%) 2 (0%) 5 (0%)
UCP 1 (0%) 1 (0%) 0 (0%)

Table 2.2 Distribution of segment class in the CoNLL-2000 dataset

2.7.2 Named entity recognition

Named entity recognition (NER) consists of extracting and classifying phrases corresponding
to named entities. Named entities are identifier for organizations, persons, places, etc. The
named entities are a major component of the information contained in a sentence. In general,
sentences usually consist of a few named entities, and very few named entities are immediately
followed by another named entity, resulting in isolated segments, distributed sparsely in the
sentence.

Two NER datasets are used in the experiments presented in this thesis. Both use the
same classes of named entities, with similar definitions. Both are based on written text,

2.7 Datasets 31

grammatically correct and written in a formal style. The named entities are classified as
person name, organization name, location name and miscellaneous name. The organization
class includes team names, including national teams, business names, and other groups of
people. The miscellaneous class includes movie and book titles, as well as other named
entities that are not part of the three other classes. Figure 2.6 shows a segmented and
labelled example sentence.

The first dataset is CoNLL-2003[4]. It consists of manually annotated newswire text,
extracted from the Reuters corpus. It is a small dataset, with a standard split into training,
validation and test corpora. Table 2.3 details the size, in words, sentences and segments, of
the training, validation and test corpus. Table 2.4 shows the distribution of segment type for
the training, validation and test corpus. The distribution is not dominated by any class, but
miscellaneous named entities are less frequent than the three other types. The distributions
are similar for the training, validation and test corpus.

Training Validation Test
Words 203,621 51,362 46,435
Sentences 14,041 3,250 3,453
Segments 23,499 5,942 5,648

Table 2.3 Size of the CoNLL-2003 dataset, in words, sentences and segments

Training Validation Test
ORG 6,321 (27%) 1,341 (23%) 1,661 (29%)
PER 6,600 (28%) 1,842 (31%) 1,617 (29%)
LOC 7,140 (30%) 1,837 (31%) 1,668 (30%)
MISC 3,438 (15%) 922 (16%) 702 (12%)

Table 2.4 Distribution of segment class in the CoNLL-2003 dataset

The small size of CoNLL-2000 and CoNLL-2003 limits the models. A larger corpus
is needed to truly take advantage of some of the models presented in this thesis. The
second NER datasets, WikiNER[58] is used to address this issue. It is a much larger corpus
of semi-automatically annotated data extracted from Wikipedia. The annotation process
is summarized below. The dataset was randomly separated into training, validation and
test corpora. The validation and test corpora contains 20% of the named entities, equally
distributed between them. Table 2.5 details the size, in words, sentences and segments,

32 Background

of the training, validation and test corpus. Comparing Table 2.5, Table 2.3 and Table 2.1
clearly show the significantly larger size of WikiNER. Table 2.6 shows the distribution of
segment type for the training, validation and test corpus. The distribution are similar for
the training, validation and test corpus. While the classes are the same, the distribution is
not the same as the one observed with CoNLL-2003.

Training Validation Test
Words 2,798,532 351,322 349,752
Sentences 113,812 14,178 14,163
Segments 244,368 30,546 30,546

Table 2.5 Size of the WikiNER dataset, in words, sentences and segments

Training Validation Test
ORG 39,795 (16%) 4,912 (16%) 4,891 (16%)
PER 77,010 (32%) 9,594 (31%) 9,613 (31%)
LOC 68,737 (28%) 8,718 (29%) 8,580 (28%)
MISC 58,826 (24%) 7,322 (24%) 7,462 (24%)

Table 2.6 Distribution of segment class in the WikiNER dataset

It retooled its Angus Shops in Montreal to produce Valentine tanks . . .
O O O B-LOC I-LOC O B-LOC O O B-MISC I-MISC . . .

LOC LOC Misc

Fig. 2.6 Segmented and labelled example sentence from WikiNER

Automatic Annotation of Wikipedia

As described in [58], WikiNER is created using an automated process. This automation
enables the creation of a large corpus without the expense of manual annotations. It is a
trade-off between data and quality. The process is not fully automatic, and relies on implicit
annotations directly created by the editors of Wikipedia. WikiNER uses a validation process
to select sentences after annotation. This process rejects a large number of ambiguous
sentences. Due to the large size of Wikipedia, the resulting dataset is larger than the
manually annotated datasets.

Pages are assigned to categories by editors, with links within a page to its categories. It
is possible to create a high precision system that automatically classify pages into one of the

2.7 Datasets 33

4 classes of named entities used. Similarly, editors add links between named entities and the
relevant page. In effect, editors manually segment the sentences and the segments are then
automatically classified using the linked page.

The resulting annotations are not identical to true manual annotations. This is partly
caused by errors in the page classification system, but it is also caused by the goals of
editors. Linked are used to point the reader toward more information on a given topic.
The link does not always include all the words in the named entities. Similarly, it is not
infrequent for compound named entities to contains links pointing toward their components
as well as a link pointing to the article describing the whole. This segmentation is different
from the segmentation usually specified by annotation directives for NER. For example, in
the sentence “Of those Tigers tanks lost against the United States Army...”, “United States”
is labelled as a MISC segment, while “Army” is labelled as a ORG segment. In the sentence
“Another modern United States Army unit...”, “United States Army” is labelled as a ORG
segment. The later follows correct annotation directives, while the former example does
not. This example illustrates the trade-off of WikiNER: we accept a slightly lower quality
dataset in order to get access to a much larger dataset. Manually annotating a corpus of
the size of WikiNER would be both prohibitively expensive and time consuming. For our
purpose, which is to test algorithms and models, WikiNER is acceptable. The models have
to learn complex dependencies between input and output sequence, and those dependencies
are present in WikiNER.

34

Chapter 3

NeuroCRF

This chapter will describe NeuroCRFs, a combination of neural networks (NNs) and condi-
tional random fields (CRFs).1 This combination is intended to reduce the feature engineering
required by CRFs. The feature learning capacities of NNs are the key to this reduction. Two
forms of NeuroCRFs will be described. The first form, low-rank NeuroCRFs, is similar to
existing models. The second form, full-rank NeuroCRFs, is intended to exploit the superior
modelling capacity of NN, and is an original contribution of this thesis. Following chapters
will show that this concept of rank is a special case of a more general notion. This will be
followed by the description of the training procedure used to train NeuroCRFs, including
the techniques used to regularize the models.

This chapter will conclude with an experimental study of NeuroCRFs, compared to a
CRF baseline with an equivalent level of feature engineering. This study will also include a
comparison of full and low-rank NeuroCRFs.

3.1 NeuroCRF

“NeuroCRF” refers to a large family of models. In general, any model composed of a NN and
a linear chain CRF belongs to this family. Within this family, models can still be assigned
to a more specific class. The NN is used to compute an output matrix, with one row per
word in the utterance. The number and role of the columns, as well as the nature of the NN
will determine the intra-familial type of a model. This chapter will present two classes of

1The content of this chapter is based on work published in “Full-rank linear-chain neurocrf for sequence
labeling” [11].

3.1 NeuroCRF 35

NeuroCRF, both based on feed forward NNs. Those two classes are special case of the same
general form, and can be obtained by adding and removing constraints on the parameters.
The general form will be presented first, and will be used to describe the model training
algorithm.

Equation 3.1, which is a restatement of Equation 2.9, is the general form of a linear chain
NeuroCRF. The model includes a NN, with L hidden layers and whose output is GL+1,t(x).
Gl,t(x) is row t of the matrix Gl in Equation 2.30.

log p(y|x) =
(

T∑
t=1

GL+1,t(x)F (yt, yt−1)
)

− log Z(x) (3.1)

GL+1,t(x) = GL,t(x)WL+1 + BL+1 (3.2)

Z(x) =
∑

y
exp

(
T∑

t=1
GL+1,t(x)F (yt, yt−1)

)
, (3.3)

The model’s parameter are the weight and biases of the NN. The feature count function Ct

of Equation 2.9 is replaced by the last hidden layer of the NN, GL,t.
The nature of the NN will determine the constraints on most parameters, independently

of the class of NeuroCRF. The constraints applied to WL+1 and BL+1, as well as F (yt, yt−1),
do not depend on the class of NN used. The combination of NN class, constraints and
F (yt, yt−1) determines the intra-family type of a NeuroCRF.

CRFs factorize complex distributions into a set of simpler functions. The parameters of
F (yt, yt−1) are a set of events, in this case the presence of yt and yt−1 in y at indexes t and
t − 1 respectively. Those events are associated with feature learned by the NN; the event to
features mapping is controlled by F (·). For any given event (yt, yt−1), GL+1,t(x)F (yt, yt−1)
is the potential of this event. This is related to the log likelihood log P (yt, yt−1), with the
key difference that the potentials are not constrained to sum to 0, and can be positive or
negative.

The factor functions of this general linear chain NeuroCRF are

Ψt(yt, yt−1, x) = exp (GL+1,t(x)F (yt, yt−1)) . (3.4)

36 NeuroCRF

3.1.1 Full-Rank NeuroCRF

In [11], we introduced full-rank NeuroCRFs, as well as the notion of NeuroCRF rank. This
work extended an existing class of models, introduced by Collobert et al., which are low-rank
NeuroCRFs. An overview of low-rank NeuroCRFs is presented in the following subsection.
When the output features selection function of the form F (yt, yt−1), it is possible to refor-
mulate Equation 3.1 as

log p(y|x) =
(

T∑
t=1

F ⊤(yt−1)rs(GL+1,t(x), N, N)F (yt)
)

− log Z(x), (3.5)

where rs(v, r, c) is a function that transform the vector v with rc elements into a r-by-c
matrix, F (y) is an indicator matrix with one element per possible label, N is the number
of labels, and GL+1,t(x), the NN output layer with N2 units, is equivalent to a transition
matrix, so that the only output features are label-to-label transitions. Most elements of
F (y) are zero, the exception being the element corresponding to y. This notation is useful
to illustrate the notion NeuroCRF rank, but at the cost of flexibility.

In a full-rank NeuroCRFs, the NN is used to model label-to-label transitions. The NN
learns features from the input that predict a transition from a specific label to another label
at a given time. In contrast, the NN of low-rank NeuroCRFs, such as those described in
[3], learns features that predict the emission of a specific label at a given time, ignoring the
previous label. The equivalent of Equation 3.5 for a low-rank NeuroCRF is

log p(y|x) =
(

T∑
t=1

F ⊤(yt−1) (RGL+1,t(x) + A) F (yt)
)

− log Z(x), (3.6)

where R is a constant N -by-1 matrix of ones, with one element per label, and A is a transition
weight matrix. The matrix multiplication of R and GL+1,t(·) is the low-rank equivalent of
rs(·). Both transform the NN output in a N -by-N matrix. In low-rank NeuroCRFs, the
effective NN output matrix Ĝ = RGL+1,t is a square matrix of rank 1. The transition weight
matrix A is removed in Equation 3.5, as it is redundant with the biases of the NN output
layer.

3.1 NeuroCRF 37

NeuroCRF Rank

In general, this concept of rank is applicable to all NeuroCRFs, since the effective NN output
matrix is

Ĝ(x) =

⎡⎢⎢⎢⎢⎢⎢⎣
Ĝ1,1(x) Ĝ1,2(x) · · · Ĝ1,N(x)
Ĝ2,1(x) Ĝ2,2(x) · · · Ĝ2,N(x)

...
ĜN,1(x) ĜN,2(x) · · · ĜN,N(x)

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.7)

where Ĝyt−1,yt(x) = GL+1,t(x)F (yt, yt−1). The rank of Ĝ is the rank of the NeuroCRF.

3.1.2 Low-Rank NeuroCRF

Low-rank NeuroCRFs are related to hidden Markov models (HMMs) and have a similar
structure. In a HMM, the joint distribution over input and output log p(y, x) is factorized
into log p(x|y)p(y), where

log p(x|y) =
T∑

t=1
log p(xt|yt), (3.8)

log p(y) =
T∑

t=1
log p(yt|yt−1). (3.9)

The joint distribution is decomposed into a set of emission log-likelihoods log p(x|y) and
transition log-likelihoods log p(yt|yt−1). A similar factorization is possible for CRFs and
NeuroCRFs. In the general form used in Equations 2.9 and 3.1, this factorization involves
constraints on WL+1 and BL+1.

Equation 3.1 can be rewritten in a less general form, to incorporate those constraints.

log p(y|x) =
(

T∑
t=1

GL+1,t(x)F (yt) + F ⊤(yt−1)AF (yt)
)

− log Z(x), (3.10)

where A is a transition weight matrix, and F (y) is an indicator matrix, with one element
per possible label. The NN output GL+1,t(·) also contains one element per possible label.
Previous work on NeuroCRF, such as of [59, 3, 60, 61], used this factorization into emission
and transition parameters.

38 NeuroCRF

Equivalence with Collobert’s Model

The window approach with sentence-level log-likelihood from “Natural Language Processing
(almost) from Scratch” [3] is equivalent to a low-rank NeuroCRF. Equations 12 and 13 of
[3] are equivalent to Equation 3.10. Equation 12 of [3] can be restated as

s([x]T1 , [i]T1) =
∑

t

(
[A][i]t−1,[i]t + [fθ][i]t,t

)
=
∑
t=1

GL+1,t(x)F (yt) + F ⊤(yt−1)AF (yt), (3.11)

where

• The input sequence [x]T1 becomes x;

• The output sequence [i]T1 becomes y;

• The output at time t [i]t becomes yt;

• The NN output [fθ][i]t,t becomes GL+1,t(x)F (yt);

• The Transition weight [A][i]t−1,[i]t becomes F ⊤(yt−1)AF (yt).

In Equation 13 of [3], the logadd term is a direct equivalent of the log Z term in Equation 3.10.
Both are the log-sum of s([x]T1 , [i]T1) = s(x, y) for all possible output sequences.

3.1.3 General Form of Full and Low-Rank NeuroCRF

Full and low-rank NeuroCRFs are special cases of a more general form of NeuroCRFs. The
formulations used in the previous subsections incorporate constraints that would otherwise
be applied to the weights and biases. Those formulations, by transforming the NN output
into a matrix rather than the usual vector, allowed the use of rank in order to differentiate
them. In this subsection, we will detail the constraints required to obtain full and low-rank
NeuroCRFs using the general form. This will allow us to present the training procedure only
for the general form.

The general form of full and low-rank NeuroCRFs will use an output feature selection
function so that

F (yt, yt−1) =
[

e1(yt) · · · eN(yt) f1(yt, yt−1) · · · fN2(yt, yt−1)
]⊤

(3.12)

3.1 NeuroCRF 39

ei(y) =

⎧⎨⎩ 1, i = y

0, i ̸= y
(3.13)

fi(y, y′) =

⎧⎨⎩ 1, i = Ny + y′

0, i ̸= Ny + y′ , (3.14)

where N is the number of label, and N2 the number of transitions. This creates a N2 + N

column vector, where the first N elements are emission and the remaining N2 elements are
transitions.

With an hidden layer with H elements, the parameters of the output layer GL+1,t, WL+1

and BL+1 are a H-by-N2 +N matrix and a N2 +N vector, respectively. Different constraints
are required for full and low-rank NeuroCRFs.

Using Equation 3.12, the general form is equivalent to the specific form of a full-rank
NeuroCRF if

B̂L+1,Nyt−1+yt + GL,t(x)ŴL+1,Nyt−1+yt = BL+1,N+Nyt−1+yt + GL,t(x)WL+1,N+Nyt−1+yt , (3.15)

where WL+1 and BL+1 are the constrained weights and biases of the general form, and ŴL+1

and B̂L+1 are the full-rank NeuroCRF parameters. In this case, the weights and biases are
constrained, and must be expressible as

BL+1 =
[
0, 0, . . . , 0, B̂L+1

]
. (3.16)

WL+1 =
[
0, 0, . . . , 0, ŴL+1

]
, (3.17)

both matrices with N columns of zeros, followed by the full-rank parameters. The columns
fixed to zero are the ones assigned to the emission output features. In practice, they are
simply removed from the model, so that the output feature selection matrix includes only
entries for transitions.

The general form is equivalent to the specific form of a low-rank NeuroCRF if

Ol(yt, yt−1) =
(
GL,t(x)ŴL+1 + B̂L+1

)
F (yt) + F ⊤(yt−1)AF (yt), (3.18)

40 NeuroCRF

Oc(yt, yt−1) = (GL,t(x)WL+1 + BL+1) F (yt, yt−1), (3.19)

Ol(yt, yt−1) = Oc(yt, yt−1), (3.20)

where WL+1 and BL+1 are the constrained weights and biases of the general form, and ˆWL+1,
B̂L+1 and A are the low-rank NeuroCRF parameters.

Using Equation 3.12, this expands into

B̂L+1,yt + Ayt−1,yt = BL+1,yt + BL+1,N+Nyt−1+yt , (3.21)

GL,t(x)ŴL+1,yt = GL,t(x)WL+1,yt , (3.22)

0 = GL,t(x)WL+1,N+Nyt−1+yt . (3.23)

There are no constraints on BL+1, and models can be converted between the two forms
using

BL+1 =
[
B̂L+1, rs(A, 1, N2)

]
. (3.24)

The weights are constrained and must be expressible as

WL+1 =
[
ŴL+1, 0, 0, . . . , 0

]
, (3.25)

a matrix where the first N columns are ŴL+1 and the remaining N2 columns are fixed to
zero.

While low and full-rank NeuroCRFs model the same set of events, their general forms
show that the similarity is superficial. Low-rank NeuroCRFs use the NN to model emission
only. A separate transition matrix is required to model transitions. Without this matrix,
low-rank NeuroCRF would use a 0th order Markov assumption. Full-rank NeuroCRFs use
the NN to model pair of label. This implicitly combines emission and transition, since the
event (yt, yt−1) only occurs if the even yt also occurs.

Figure 3.1a shows the clique template of full-rank NeuroCRFs. This is the NN-based
counterpart of Figure 2.1a. Figure 3.1b shows the clique template of low-rank NeuroCRFs.

3.1 NeuroCRF 41

This is the NN-based counterpart of Figure 2.1b.

yt−1 Ψt = GL+1,t,yt−1,yt(x)

xt

yt

(a) Full-rank

yt−1 Ψ1,t = Ayt−1,yt
yt

Ψ2,t = GL+1,t,yt(x)

xt

(b) Low-rank

Fig. 3.1 Clique templates of linear chain NeuroCRFs. Square boxes are fac-
tors, circles are variables.

3.1.4 Motivation

One of the key goal of NeuroCRFs is to replace the feature engineering, described in Sec-
tion 2.2.2, of CRFs with the feature learning of neural networks. Both feature learning and
feature engineering require work by an expert, and brute force approaches, such as random
search for hyper-parameters and feature pruning, can be used to transfer some of the required
work form the expert to a computer cluster.

One advantage of feature learning is that an expert on NN training can work on a wide
variety of problems, in many domains such as image classification, automatic speech recog-
nition and natural language understanding (NLU). All of those problems can be addressed
using NNs. Similarly, while good feature sets have been developed for many NLU tasks, those
feature sets are only available for some languages. Feature learning, on the other hand, does
not rely on previous experience with the language; the only requirement is labeled data in a
known format.

Finally, deep convolutional NNs are the state of the art in image processing. Those models
have overtaken the previous state of the art, which was based on years of feature engineering.
For example, the performance of [62], based on SIFT features [63], was improved upon by a
deep convolutional NN in [64]. Similar improvements were observed for face verification [65]
and other tasks [66].

While feature learning did not obtain the same dramatic improvement for NLU tasks, this

42 NeuroCRF

indicates that feature learning can not only equal but exceed the best engineered features2.

3.1.5 Related Works

Conditional random fields have been used for sequence labeling since their introduction [5].
State of the art performance requires feature engineering, which leads to improvement from
84.04[6] to 90.90 [9] on CoNLL-2003 (NER).

Collobert et al. combined neural network and CRFs in [3] which resulted in a model similar
to the low-rank NeuroCRF described below. Do et al. [59] used a similar combination3. NNs
and CRFs have also been combined for joint intent detection and slot filling[67], once more
using a low-rank NeuroCRF Similar combinations of NN and CRFs were also used in [68].
In [69], a similar approach was used, where the hidden layers of the NN were themselves
equivalent to the output layer of a low-rank NeuroCRF.

Recent work combining neural network with rich features did outperform conventional
CRF; this will be elaborated upon in Section 5.2. Finally, Sequence-to-Sequence models [70],
discussed in more details in Section 5.2, have been used to create flatten parse trees [71],
similar but richer to the output of the chunking task.

3.2 Dynamic Programming

The normalization term Z(x) involves a summation over all possible output sequences. In
general, the number of such sequence is an exponential function of T . Dynamic programming
algorithms can be used to compute Z(x) with a linear complexity, rather than the exponential
complexity required by a naive summation [29]. The well known Viterbi algorithm [72] is
also used to find the most likely output sequence for a given input sequence.

3.2.1 Forward Algorithm

The first algorithm is the forward algorithm [33]. It recursively computes a matrix α such
that

αt,yt =
∑

y⟨1..t−1⟩

exp
(

t∑
t′=1

GL+1,t′(x)F (yt′ , yt′−1)
)

. (3.26)

2Recent works are starting to show improvements, as discussed in Section 5.2.
3We also coined “NeuroCRF” independently.

3.2 Dynamic Programming 43

Z(x) is the sum of all possible output sequences for their entire length and ending with any
output label yT . The value of αt,yt is the partial sum ending at time t and with a specific
last output label yt. Since Z(x) = ∑

yT
αT,yT

, this matrix can be used to compute Z(x).
The values αt,y are computed with the recursion:

α1,y1 = exp GL+1,1(x)F (y1, init), (3.27)

αt,yt =
∑
yt−1

αt−1,yt−1 exp GL+1,t(x)F (yt, yt−1), (3.28)

where init indicates the initial state, and α1,y1 initiates the recursion.

3.2.2 Backward Algorithm

The second algorithm is the backward algorithm [33]. It recursively computes a matrix β

such that

βt,yt =
∑

y⟨t+1..T ⟩

exp
⎛⎝ t∑

t′=t+1
GL+1,T (x)F (yt′ , yt′−1)

⎞⎠ . (3.29)

The value of βt,yt is the partial sum starting at time t + 1 and preceded by yt. Like α, this
matrix can be used to compute Z(x):

Z(x) = β0,init =
∑
y1

β1,y1 exp GL+1,1(x)F (y1, init). (3.30)

The values βt,y are computed with the recursion:

βT,yT
= 1 (3.31)

βt,yt =
∑
yt+1

βt+1,yt+1 exp GL+1,t+1(x)F (yt, yt−1), (3.32)

where βT,yT
initiates the recursion.

44 NeuroCRF

3.2.3 Viterbi Algorithm

Finally, the Viterbi algorithm [72] can be used to find the most likely output sequence.

ŷ = arg max
y

log p(y|x) = arg max
y

T∑
t=1

GL+1,t(x)F (yt, yt−1) (3.33)

The first step is the recursive computation of the δ matrix, whose elements δt,yt are defined
as

δt,yt = max
y⟨1..t−1⟩

GL+1,t(x)F (yt, yt−1) +
t−1∑
t′=1

GL+1,t′(x)F (yt′ , yt′−1). (3.34)

This is analogous to αt,yt . While αt,yt is the sum for all y⟨1..t⟩ ending with yt, δt,yt is the
maximum value. Like α, δ is computed recursively:

δ1,y1 = GL+1,1(x)F (y1, init), (3.35)

δt,yt = max
yt−1

δt−1,yt−1 + GL+1,t(x)F (yt, yt−1). (3.36)

The second step is to backtrack recursively:

ŷT = arg max
yT

δT,yT
(3.37)

ŷt = arg max
yt

δt,yt + GL+1,t+1(x)F (ŷt+1, yt) (3.38)

3.3 Parameter Estimation

The values of the model parameters are estimated by maximizing the log-likelihood of a
training corpus. This training corpus contains pairs of input and output sequences. This is
equivalent to minimizing the loss function

L(train) = −
∑

(x,y)∈
train

log p(y|x) =
∑

(x,y)∈
train

L(y, x), (3.39)

where train is the training corpus and L(y, x) = − log p(y, x) is the per-example loss function.

3.3 Parameter Estimation 45

The loss function is minimized if

∑
(x,y)∈
train

T∑
t=1

∇(GL+1,t(x))F (yt, yt−1)) =
∑

(x,y)∈
train

∇Z(x)
Z(x) , (3.40)

where ∇(GL+1,t(x))F (yt, yt−1)) and ∇Z(x) are gradients with respect to the parameters. In
general, this cannot be solved in closed form, forcing the use of a numerical approach, such
as stochastic gradient descent (SGD).

3.3.1 Stochastic Gradient Descent

Gradient descent (GD) minimizes L(train) by updating the parameters Θ = {W, B} re-
cursively. Starting with an initial Θ0, randomly selected and some learning rate λ, the
parameters are updated by following the gradient:

Θi = Θi−1 − λ∇L(train). (3.41)

Stochastic gradient descent (SGD) use an approximation of ∇L(train) to minimize L(train).
This approximation is simply ∇L(y, x). A training pair (y, x) is sampled from train and
the parameters are updated using ∇L(y, x). This technique is used when the training set
is large, and computing a gradient is computationally expensive. Using SGD, updating the
model’s parameters requires only the gradient for a training pair (y, x).

The learning rate is the key hyper-parameter of SGD. It is used to scale the gradient
before updating the parameters. Large learning rates accelerates learning, and will reduce
the number of updates required to achieve convergence. Small learning rates are required
to reach a local minimum. It is common to scale the learning rate during training, to have
the advantage of a large learning rate in the initial updates, when the parameters are not
close to a local minimum, and to have the advantage of a small learning rate in the latter
updates, when the parameters are close to a local minimum.

The algorithm used in the following experiments uses a validation set to identify the
best hyper-parameters, including the learning rate. Models are trained as long as their
performance, on the validation set, improves. If validation performance does not improves,
or gets worse, the learning rate is reduced and training resumed with the previous best
parameters.

46 NeuroCRF

Computing ∇L(y, x) is the main difficulty of parameter estimation, and is the focus of
the remainder of this section.

Gradient

The first step is to define the gradient in terms of ∂
∂ΘGL+1,t(x). It will then be possible to

back-propagate this gradient into the NN. To simplify notation, Equation 3.1 is rewriten
using factor functions

Ψt(yt, yt−1, x) = exp (GL+1,t(x)F (yt, yt−1)) , (3.42)

L(y, x) = − log p(y|x) = log Z(x) −
T∑

t=1
log Ψt(yt, yt−1, x), (3.43)

Z(x) =
∑

y

T∏
t=1

Ψt(yt, yt−1, x). (3.44)

Since
∇ log Ψt(yt, yt−1, x) = ∂

∂ΘGL+1,t(x)F ⊤(yt, yt−1), (3.45)

∇Ψt(yt, yt−1, x) = Ψt(yt, yt−1, x)∇ log Ψt(yt, yt−1, x), (3.46)

expressing ∇L(train) in term of ∇ log Ψt(yt, yt−1, x) and ∇Ψt(yt, yt−1, x) is sufficient to allow
back propagation of the cost through the NN.

The gradient for the loss function is

∇L(train) =
∑

(x,y)∈
train

∇L(y, x), (3.47)

∇L(y, x) = ∇Z(x)
Z(x) −

T∑
t=1

∇ log Ψt(yt, yt−1, x). (3.48)

The product rules for derivative is applied to Equation 3.44, resulting in

∇Z(x) =
∑

y

T∑
t=1

⎛⎝∏
t′ ̸=t

Ψt′(yt′ , yt′−1, x)
⎞⎠∇Ψt(yt, yt−1, x). (3.49)

3.3 Parameter Estimation 47

For convenience, we reorder the summation so that the sum over time is first:

∇Z(x) =
T∑

t=1

∑
y

⎛⎝∏
t′ ̸=t

Ψt′(yt′ , yt′−1, x)
⎞⎠∇Ψt(yt, yt−1, x). (3.50)

Since y = [y⟨1..t−2⟩, yt−1, yt, y⟨t+1..T ⟩], Equation 3.50 can be factorized into 3 terms:

∇Z(x) =
T∑

t=1

∑
y

fα(y⟨1..t−2⟩, yt−1)ft(yt, yt−1)fβ(yt, y⟨t+1..T ⟩) (3.51)

fα(y⟨1..t−2⟩, yt−1) = Ψt−1(yt−1, yt−2, x)
t−1∏
t′=1

Ψt′(yt′ , yt′−1, x), (3.52)

fβ(yt, y⟨t+1..T ⟩) =
T∏

t′=t+1
Ψt′(yt′ , yt′−1, x), (3.53)

ft(yt, yt−1) = ∇Ψt(yt, yt−1, x) = Ψt(yt, yt−1, x)∇ log Ψt(yt, yt−1, x). (3.54)

Finally, the summation over y can be decomposed to that

∇Z(x) =
T∑

t=1

∑
(yt,yt−1)

ft(yt, yt−1)
⎡⎣ ∑

y⟨1..t−2⟩

fα(y⟨1..t−2⟩, yt−1)
⎤⎦⎡⎣ ∑

y⟨t+1..T ⟩

fβ(yt, y⟨t+1..T ⟩)
⎤⎦ . (3.55)

Equation 3.55 can be simplified by including that α and β matrices defined by Equation 3.26
and Equation 3.29.

It is possible to obtain ∇Z(x) using the dynamic programming algorithms described
earlier.

∇Z(x) =
T∑

t=1

∑
(yt,yt−1)

αt−1,yt−1βt,yt∇Ψt(yt, yt−1, x). (3.56)

This formulation of ∇Z(x) can be modified to illustrate a characteristic of the parameters
minimizing the loss function. The likelihood of a transition from yt−1 to yt, at time t is

p(yt, yt−1|x) = αt−1,yt−1βt,ytΨt(yt, yt−1, x)
Z(x) . (3.57)

48 NeuroCRF

This likelihood can be used in Equation 3.56, to that

∇L(y, x) =
T∑

t=1

∑
(yt,yt−1)

p(yt, yt−1|x)∇ log Ψt(yt, yt−1, x) −
T∑

t=1
∇ log Ψt(yt, yt−1, x). (3.58)

This is minimized when

T∑
t=1

∑
(yt,yt−1)

p(yt, yt−1|x)∇ log Ψt(yt, yt−1, x) =
T∑

t=1
∇ log Ψt(yt, yt−1, x). (3.59)

Finally, starting with Equation 3.58, it is possible to back-propagate the gradient down to
the parameters. The gradient ∇lL(y, x) of the loss function with respect to the parameters
of layer l θl is

∇lL(y, x) =
T∑

t=1

∑
(yt,yt−1)

p(yt, yt−1|x)∂GL+1,t(x)
∂θl

F (yt, yt−1)⊤ −
T∑

t=1

∂GL+1,t(x)
∂θl

F (yt, yt−1)⊤.

(3.60)
As described in Section 2.3.1 of Chapter 2, the chain rule is applied recursively to obtain
∂GL+1,t(x)

∂θl
for all θl.

Recursive formulation

It is also possible to use back-propagation through time to propagate the gradient down to
the factor functions.

This is done recursively, starting with

∂L(y, x)
∂αT,y

= ∂L(y, x)
∂Z(x) . (3.61)

Then, for all t < T ,
∂L(y, x)

∂αt,y

=
∑
y′

Ψt+1(y′, y, x)∂L(y, x)
∂αt+1,y′

, (3.62)

which is then propagated to the factor functions with

∂L(y, x)
∂Ψt(yt, yt−1, x) = ∂L(y, x)

∂αt,yt

αt−1,yt−1 . (3.63)

Back propagation can then be used to get the parameters’ gradients.

3.3 Parameter Estimation 49

The main advantage of this approach, compared to the more detailed process described
earlier, is that it is easily implemented by the automatic derivative computation tools devel-
oped for NNs, such as Theano [73]. Those tools rely on systematic application of the chain
rule to obtain, from a computation graph of simple operations, the graph corresponding to
gradients.

3.3.2 Regularization

Overfitting occurs when the performance improves on the training data, but decrease on
other, unseen data. Neural networks, as well as CRFs, tend to overfit data, and this remains
true for NeuroCRFs. Norm regularization, described in Section 2.2.5, is used to limit over-
fitting. The experiments described below used L2 norm regularization for the NN weights
and the biases of the output layer. The word representation is not regularized.

Dropout [64, 74] is another form of regularization for NN. Its main function is to prevent
co-adaptation between units. Co-adapted units are group of units effectively acting as a single
unit: they always have correlated values. This grouping is usually caused by a combination
of random initialization, output and input. This will cause overfitting, since a specific unit
in the group can rely on a part of the input that is only coincidentally correlated, in the
training data, with the features detected by the other units. If this happens, this unit might
have a low value when it should have a high value. The units of the following layer that rely
on the group will also have a low value, and so on.

Dropout limits this by, during training, randomly removing units from the NN. A random
binary mask is applied to the hidden layers. The dropout rate is the probability of unit being
removed from the network by this mask. The weights leading into a masked unit are not
updated, since the mask block gradient propagation. Similarly, the weights leading from the
units are also not updated, since their gradient is zeroed by the mask. Units whose weights
are not updated will tend to drift from their group, which will break the random correlation.
Finally, the units that relied on the masked units will have seen examples where those units
are deactivated. In general, dropout reduces, without guarantees, correlation between units
in the same layer.

50 NeuroCRF

3.4 Experimental Study

The performance of full and low-rank NeuroCRFs was compared to a CRF baseline for all
three tasks presented in Section 2.7. In the case of chunking and NER using CoNLL-2003, we
also included the state of the art results. Both are CRF with extensive feature engineering.
Our CRF baseline is comparatively simpler and only required minimal feature engineering.

3.4.1 Datasets and Performance Metrics

The data used in those experiments is presented in Section 2.7. The performance metrics
used are presented in Section 2.6.

3.4.2 Model Configurations

The training procedure described in the next subsection depends on some hyper-parameters,
such as the learning rate and the size of the hidden layer. A random search [75] is used
to find potential hyper-parameters. One hundred sets of hyper-parameters are generated
randomly and are used to train models. The validation set is used to pick the 10 best
configurations. For each of those configurations, 10 models are trained, with 10 different
random initializations.4 The final results are based on the set of hyper-parameters with the
highest average validation score. Algorithm 1 summarizes the model configuration procedure.

The experiments below uses a IOB2 encoding of segments into labels. All experiments
used a word representation trained on wikipedia data, with 100 dimensions normalized to
have zero-mean and unit variance. This pre-trained word representation is used as the ini-
tialization for all NeuroCRFs. The hyper-parameters includes the hidden layer size, learning
rate, norm regularization, and dropout rate. The hidden layer size and dropout rate are
sampled from a uniform distribution, while the learning rate and norm regularization are
sampled from a log-uniform distribution. All hyper-parameters are assumed to be indepen-
dent of each others.

The input x includes some simple features:

1. Word, using their continuous word representation,

2. Capitalization feature extracted from the words, and
4Including the initialization used during the random search.

3.4 Experimental Study 51

3. Part-of-speech tags, included in the corpora.

The input vector is a sliding window over those features, containing the features representing
the current word, and some preceding and following words. The context size C is an hyper-
parameter determining the number of preceding and following words to include in the sliding
window. The sliding window contains 2C + 1 words.

Data: training and validation corpus
Result: model configuration
for hp, init in sample(100) do

model = train(hp, init)
candidateshp = val(model)

end
candidates = best(candidates, 10) for hp in candidates do

for init in sample(9) do
model = train(hp, init);
scorehp = scorehp + val(model)

end
scorehp = scorehp/10

end
hp = arg max scorehp

Algorithm 1: Model configuration algorithm. “hp” is a set of hyper-parameters, “init”
is a random initialization of the model’s parameter, “candidates” and “score” are lists
of validation scores with an entry per set of hyper-parameters. “sample” is a function
sampling hyper-parameters and initialization for the random search, and “best” is used to
select the hyper-parameters with the highest validation score.

3.4.3 Training Procedure

Models are trained using a variant of early stopping. Models are trained until performance
stops improving on the validation set, even if performance still improves on the training set.
This limits overfitting. Since obtaining the validation score takes a non-negligible amount of
time, validation performance is evaluated twice per epoch. Since there is some randomness
in the validation performance, training is not stopped immediately after the first drop in
validation performance. Instead, the model’s parameters are updated until no improvement
was seen during the last half of updates. That is, if the last improvement was during the
5th update, training will stop after the 10th update. The model’s parameters are saved

52 NeuroCRF

whenever a new best result, on validation, is observed. Those saved parameters are the ones
returned by the training procedure.

This procedure uses a patience counter. Training stops when the number of updates
equals this counter. The patience counter is doubled when validation performance improves
sufficiently, using a very small threshold of less than 0.1% relative improvement.

The learning rate is not constant during training. When validation performance drops
sufficiently, the previous best model parameters are restored, and the learning rate is halved
[76].

3.4.4 CRF Baseline and State of the art

The CRF baseline is a conventional CRF using standard features. Those features are not
engineered to target a specific task. The feature engineering for this baseline is simple, and
involves a level of effort similar to the work required for the NeuroCRFs.

CoNLL-2000 and CoNLL-2003 are well known corpora and extensive feature engineering
was applied to those two corpora over the years. The performance of our NeuroCRFs are
also compared to the performance of the state of the art system for those corpora. The CRF
baseline rely on no external data, in particular gazetteers, but this restriction is not applied
to the state of the art results.

The feature set of the CRF baseline is derived from the features available for the Neuro-
CRF:

• Word identities, capitalization feature and part-of-speech tag extracted from a sliding
window,

• Bigrams and tri-grams of the above,

• Word representation for the central word.

Those features are extracted by Ct(x), the feature count matrix of Equation 2.11. The
output feature selection matrix F (yt, yt−1) completes the feature set by linking input feature
to outputs. For this CRF baseline, the output feature are labels emissions and label-to-label
transitions, like the one used in the example in Section 2.2.3.

The state of the art for the chunking task is [7]. For the NER task (CoNLL-2003), the
state of the art is [9].

3.4 Experimental Study 53

3.4.5 Results

Table 3.1 shows the averages and standard deviations of 10 models trained with the same
hyper-parameters and different random initializations, for the three tasks. Those results
show that full-rank NeuroCRFs outperform low-rank NeuroCRFs on all three tasks.

The boxes in Figure 3.2 shows the two central quartiles of those 10 models’ F1. Each
box correspond to a group of 10 models, used for the indicated task. The vertical lines
above and below the boxes indicate the range of the first and last quartile. The central
horizontal lines, in the boxes, indicate the median. Figure 3.2a shows a clear separation
between low and full-rank NeuroCRFs. Full-rank NeuroCRF clearly improved performance
when applied to the chunking task. Figure 3.2b shows large variance caused by random
initializations when models are trained and tested on the NER task. While, in general, full-
rank models outperformed low-rank model, this large variance prevents us from reaching any
firm conclusion for the NER (CoNLL-2003) task. Figure 3.2c shows a much smaller variance,
caused by the larger training and test size of the WikiNER task. While the improvements are
limited, this figure shows that the worse full-rank model outperforms the worst quartile of
low-rank models. In general, full-rank models tend to outperform low-rank models. For the
three tasks, those results show that properly regularized full-rank NeuroCRFs will usually
perform at least as well as low-rank NeuroCRFs, and will often outperform them.

Table 3.1 shows that NeuroCRFs outperform the baseline CRFs. They do not outperform
the state of the art results on those tasks, lacking the high level of feature engineering required
to get this level of performance.

Low-Rank Full-Rank CRF State of the art
Task µ σ µ σ

Chunking 93.59 0.0964 93.94 0.0507 93.28 94.38[7]
NER 88.63 0.2145 88.75 0.2305 87.82 90.90[9]

WikiNER 87.49 0.1107 87.58 0.0739 85.60 NA

Table 3.1 Comparison of low and full-rank NeuroCRF for the Chunking
(CoNLL-2000), NER (CoNLL-2003), and WikiNER (Wikipedia) task. Results
are the average µ and standard deviation σ of 10 models.

54 NeuroCRF

Low-Rank Full-Rank
0.934

0.935

0.936

0.937

0.938

0.939

0.940

(a) Chunking

Low-Rank Full-Rank

0.884

0.886

0.888

0.890

0.892

(b) NER

Low-Rank Full-Rank
0.8725

0.8730

0.8735

0.8740

0.8745

0.8750

0.8755

0.8760

0.8765

0.8770

(c) WikiNER

Fig. 3.2 Boxplot comparing the performance of low and full-rank NeuroCRFs
for the Chunking, NER and WikiNER task.

3.4 Experimental Study 55

Chunking (CoNLL-2000)

Table 3.2 shows detailed results for the chunking task. Those results show improvement for
all five measures. A two-tailed Student’s T-tests shows that the change in F1 is statistically
significant (p ≤ 0.01%). In particular, both the classification accuracy and segmental F1

improved for the full-rank NeuroCRF. The improved segmental F1 indicates that modelling
the transitions directly helps detecting the boundaries between segments. This is especially
important for the chunking task, since the segments are usually adjacent to each other,
and any error would tend to cascade into the adjoining segments. Similarly, the improved
classification accuracy indicates that the model capacity to assign segments to class, by
labelling words, was improved by modeling the label-to-label transitions. The classification
accuracy Ac is high for both systems, but their F

(s)
1 is significantly lower. In the case of

full-rank NeuroCRF, Ac = 98.74%, while F
(s)
1 = 95.14. Small improvement to F

(s)
1 would

improve performance more than comparable small improvement to Ac. This indicates that
the errors are caused by segmentation, and not by classification.

Figure 3.3 plot the precision vs recall of each model applied to the chunking task. This
facilitate the comparison between the full and low-rank NeuroCRFs. The two configurations
are clearly separated, with the full-rank NeuroCRFs occupying the top-right corner, which
correspond to higher F1. Figure 3.3 confirms that full-rank NeuroCRFs outperform low-rank
NeuroCRFs for this task.

Low-Rank Full-Rank
Measure µ σ µ σ

F1 93.59 0.0964 93.94 0.0507
Precision 93.53% 0.1052 93.94% 0.0821

Recall 93.65% 0.1112 93.93% 0.0529
Class. Accuracy 98.63% 0.0353 98.74% 0.0284

F
(s)
1 94.89 0.0844 95.14 0.0534

Table 3.2 Detailed results comparing low and full-rank NeuroCRF for the
Chunking task, showing the F1, precision, recall, classification accuracy and
segmental F1. Results are the average µ and standard deviation σ of 10 models.

56 NeuroCRF

93.4 93.6 93.8 94.0
Precision

93.4

93.6

93.8

94.0

R
ec

al
l

Low-Rank
Full-Rank

Fig. 3.3 Precision-Recall plot comparing the performance of low and full-rank
NeuroCRF on the chunking task.

3.4 Experimental Study 57

Named Entity Recognition (CoNLL-2003)

Table 3.3 shows detailed results on the NER task. Those results show improvements on
most measures but they also show a large standard deviation. While the use of full-rank
NeuroCRFs did improve performance, the improvement is limited, and it is not possible to
separate this improvement from the variation caused by the random initialization combined
with the non-convexity of NeuroCRFs. A two-tailed Student’s T-tests shows that the change
in F1 is not statistically significant (p ≥ 20%). Nonetheless, Table 3.3 shows improvement
for F1, precision, recall and classification accuracy. Segmental F1 was slightly reduced.

Named entities tend to be sparse in a sentences, with very few entities immediately
following each others. This task is less sensitive to segmentation than the chunking task,
since segmentation errors are unlikely to cascade. Table 3.3 shows that recall is lower than
precision, indicating the presence of false negatives, for low and full-rank NeuroCRFs. This
is confirmed by the drop in F

(s)
1 compared to Table 3.2. This drop indicates that the models

are less able to segment their input accurately. Part of this can be attributed to the nature of
those two tasks, and to the size of the training sets. While the sparseness prevent cascading
errors, the sparseness of segment biases the NN toward missing segments. This (correct)
bias can cause false negative when combined with atypical named entities, named entities
appearing surrounded by atypical carrier phrases, or named entities appearing without carrier
phrases.

This sparseness also has other undesired effects. First, it reduces the effective training
size. While CoNLL-2003 contains more word and sentences than CoNLL-2000, it contains
significantly less segments. This reduction in training size limit the capacity of the model to
learn good classification, which explain, in part, the lower classification accuracy observed
between Tables 3.2 and 3.3. Similarly, the smaller effective training set will limit the number
of named entities and carrier phrases seen during training. NeuroCRFs are trained using
example, and reducing the number of examples seen will reduce performance, and increases
the sensitivity to initialization.

The second effect of the sparseness of named entities apply to the test set. The test
set is smaller, containing only a few thousands segments. The performance of a model on
smaller test sets will tend to be more variable, as a single mistake has more impact. This
combines with the smaller effective training set to explain the larger standard deviation
observed between Tables 3.2 and 3.3.

58 NeuroCRF

While the smaller effective training set explain in part the lower classification accuracy
observed between Tables 3.2 and 3.3, it is not the only factor. The distributions of classes
are not identical for those two tasks. In particular, the entropy of the class distribution,
computed for the test set, is 0.37 bits for Chunking, while it is 1.93 bits for NER (CoNLL-
2003). This results indicates that classification is harder for NER, where the entropy is close
to the maximum, and combine with the smaller effective training set to explain the lower
classification accuracy.

Figure 3.4 shows the precision vs recall plot for this task. As expected, it is not possible
to clearly separate the two configurations. Full-rank models tend to have a higher precision,
being more toward the left of the graph, but there is significant overlap. The same is true for
recall, with the full-rank models being more toward the top of the graph. While this figure
shows improved performance using a full-rank NeuroCRFs, the large spread and significant
overlap prevents firm conclusions.

Low-Rank Full-Rank
Measure µ σ µ σ

F1 88.63 0.2145 88.75 0.2305
Precision 88.78% 0.2688 88.93% 0.2588

Recall 88.48% 0.2322 88.57% 0.3145
Class. Accuracy 94.51% 0.2012 94.66% 0.2095

F
(s)
1 93.78 0.1422 93.75 0.1648

Table 3.3 Detailed results comparing low and full-rank NeuroCRF for the
NER (CoNLL-2003) task, showing the F1, precision, recall, classification accu-
racy and segmental F1. Results are the average µ and standard deviation σ of
10 models.

WikiNER

This task is similar to CoNLL-2003, and was included to compensate for the issues caused by
the small size of CoNLL-2003. Table 3.4 shows the detailed results for this task. Those results
show improvements on most measure, the exception being segmental F1. As expected, the
standard deviations are lower compared to Table 3.3. A two-tailed Student’s T-tests shows
that the change in F1 is not statistically significant (p ≥ 6.00%).

Figure 3.5 shows the precision vs recall plot for this task. While there is some overlap, the
full-rank NeuroCRFs are clearly clustered toward the upper-right corner, corresponding to

3.4 Experimental Study 59

88.0 88.5 89.0
Precision

88.0

88.5

89.0

R
ec

al
l

Low-Rank
Full-Rank

Fig. 3.4 Precision-Recall plot comparing the performance of low and full-rank
NeuroCRF on the NER task.

60 NeuroCRF

their higher F1. This is confirmed by the boxplot in Figure 3.2c, where the central quartiles
of full-rank NeuroCRFs are above the median of low-rank NeuroCRFs. Both precision and
recall tend to be higher using a full-rank NeuroCRF than when using a low-rank.

The low classification accuracy observed in Table 3.3 is observed in Table 3.4. This
confirm the impact of the class entropy, which is 1.96 bits for the WikiNER task. Similarly,
the sparseness of segments, biases the models toward no-segments, results in a lower recall,
compared to precision, and a relatively low segmental F1.

Low Rank Full-Rank
Measure µ σ µ σ

F1 87.49 0.1107 87.58 0.0739
Precision 87.65% 0.1092 87.75% 0.0738

Recall 87.34% 0.1233 87.41% 0.0797
Class. Accuracy 93.46% 0.0718 93.61% 0.0722

F
(s)
1 93.62 0.0658 93.56 0.0532

Table 3.4 Detailed results comparing low and full-rank NeuroCRF for the
WikiNER task, showing the F1, precision, recall, classification accuracy and
segmental F1. Results are the average µ and standard deviation σ of 10 models.

3.4.6 Impact of Mutual Information

The mutual information between two variables is a measure of how much is known about one
if the other is known. If the two variables are independent, then the mutual information is
zero. The mutual information between the yt, the label emitted at time t, and the previous
label yt−1 is

I(yt; yt−1) =
∑
y∈Y

∑
y′∈Ŷ

P (y, y′) [log2 P (y, y′) − log2 P (y) − log2 P (y′)] , (3.64)

where Y is the set of labels, and Ŷ is Y plus the initial state.
Table 3.5 shows the mutual information between the previous label yt−1 and the current

label yt. The motivation behind full-rank NeuroCRF is to use the NN to model the depen-
dency between those two variables. The mutual information is significantly larger in the
chunking task than in the two NER tasks. Since higher mutual information between two
variables indicate a higher level of dependency, the low mutual information in the NER tasks

3.4 Experimental Study 61

87.2 87.4 87.6 87.8
Precision

87.2

87.4

87.6

87.8

R
ec

al
l

Low-Rank
Full-Rank

Fig. 3.5 Precision-Recall plot comparing the performance of low and full-rank
NeuroCRF on the WikiNER task.

62 NeuroCRF

explains the lower gain when replacing a low-rank NeuroCRF with a full-rank NeuroCRF.
The lower mutual information, in the NER tasks, is caused by the predominance of the

“O” label. Named entities tend to be sparse, and most words are therefore labelled with “O”.
Since named entities are also short and isolated, the preceding label also tend to be “O”. The
predominance of “O” labels in the data combines with the lower number of possible classes,
compare to chunking, to explain the lower label entropies in the NER task.

Task H(yt) H(yt−1) H(yt, yt−1) I(yt; yt−1)
Chunking 2.6538 2.7909 4.6157 0.8290
NER 1.1166 1.3896 2.2484 0.2578
WikiNER 1.0042 1.2030 1.9473 0.2599

Table 3.5 Comparison of mutual information in the training corpora of the
chunking and NER tasks. H(yt) is the entropy of the emitted labels, H(yt−1)
is the entropy of the preceding labels, including the initial state, H(yt, yt−1) is
the joint entropy and I(yt; yt−1) is the mutual information.

3.5 Summary

In this chapter, we described the training procedure for NeuroCRF. We presented a new
member of this family of model, full-rank NeuroCRF, whose NN models transitions rather
than the emissions modelled by low-rank NeuroCRF.

Our experimental study show significant improvements on a chunking task, CoNLL-2000.
Improvements were also obtained on CoNLL-2003, a NER task, but the high variance caused
by the random initialization prevent us from attributing those improvements to the use of
a full-rank NeuroCRF. Similar experiments on WikiNER, a much larger NER task, also
show improvement. The lower sensitivity of WikiNER to initialization confirms that the
improvements are not caused by better initializations.

63

Chapter 4

Three Improvements to NeuroCRF

This chapter presents some improvement to the full-rank NeuroCRFs presented in Chap-
ter 3.1 The first improvement modifies the output features to share NN outputs, and there-
fore parameters, between related label emission and label-to-label transitions. The second is
intended to increase the margin between the correct hypothesis and the incorrect hypothesis.
Finally, the third improvement exploits the impact of a model’s initialization by combining
separately trained model into a single ensemble model. The impact of those improvement is
investigated in an experimental study concluding this chapter.

4.1 Shared Parameters

As seen in Section 3.1.3, the full and low-rank NeuroCRFs are part of a larger family of
models. Those two classes of NeuroCRF are characterized by constraints applied to their
weights and biases, as well as by the form of their feature selection matrix F (yt, yt−1).
Another class of NeuroCRF can be obtained by removing the constraints without altering
F (yt, yt−1). This new class assigns a NN output to every label emission, as well as to every
label-to-label transition, combining full and low-rank NeuroCRF into a single model. This
increases the number of NN outputs required, adding more parameters to the model, but
those outputs, and the corresponding parameters, are used by many transitions.

This is the basic form of a more general class of model. The core concept is to use
F (yt, yt−1) to combine multiple NN outputs [12]. Label-to-label transitions are assigned to

1The content of this chapter is based on work published in “Recent improvements to NeuroCRFs for
named entity recognition” [12]

64 Three Improvements to NeuroCRF

groups of similar transitions. F (yt, yt−1) will be used to combine the NN outputs correspond-
ing to the groups of (yt, yt−1). This approach requires feature engineering, in order to define
which transitions are similar.

Similarly, this general approach, where the NN outputs no longer have a one-to-one cor-
respondence with F (yt, yt−1) could be used to tie transitions together, reducing the number
of parameters. Low-rank NeuroCRFs can be derived from full-rank NeuroCRFs by tying
together all transitions having the same end label, although this does involve some other
modifications to include the transition matrix A.

4.1.1 Generalized Events

By itself, the NN does not operate on the entire input sequence, nor does it attempts to
predict the entire output. Instead, the NN outputs correspond to the immediate potential of
specific events. As in Equation 3.24 and Equation 3.25, some of the weights and biases can
be constrained to 0, so that some events are not a function of the input, and other events
are not biased.

For full-rank NeuroCRFs, those events are label-to-label transitions. Low-rank Neuro-
CRFs includes two kind of events: label emissions and label-to-label transitions. The label
emission potentials are functions of the input, while the label-to-label transition potentials
are constant.

The shared parameter approach presented in this section requires feature engineering to
create a set of generalized events. There will be one NN output per event; in this particular
case, all events are a function of the input, and there are no zero constraints on the weights
and biases matrices. Any given label-to-label transitions (yt, yt−1) must be associated with
1 or more events. The feature selection matrix F (yt, yt−1) is created using this mapping.

Our experimental study used a systematic approach to convert segment class, with the
corresponding labels, into a set of generalized events. The procedure used is presented in
the following subsection.

4.1.2 Transition Grouping Procedure

Given the improved performance obtained with full-rank NeuroCRFs, we decided to focus
on an additive approach, where generalized events are added to the label-to-label transitions
used in full-rank NeuroCRFs [12]. Label emissions were also added to the set of events,

4.1 Shared Parameters 65

resulting, before any grouping, in a hybrid low and full-rank NeuroCRF, where the NN is
used to generate potentials for both emissions and transitions.

In this subsection, the feature engineering used to create generalized emission events
based on label emission and label-to-label transitions is described. Other sets of generalized
events are possible, and should be task-specific. The procedure described in this subsection
is a decent starting point, and is applicable to all tasks. In general, the feature engineering
required can be simplified by grouping label emissions, and extending this grouping to label-
to-label transitions. The first step is to create groups of labels, corresponding to generalized
emission events. This step requires feature engineering, but the following steps, where those
groups are used to create generalized transition events, do not.

Our label grouping procedure creates Nc + 4 groups, where Nc is the number of classes.
Group Ec contains all the labels used for segments belonging to class c. Group EB contains
all the labels used to indicate the beginning of a segment. Group EI contains all the labels
used for the rest of the segment. Group ESEG = EB ∪ EI contains the labels indicating
that a word is part of a segment. Finally, group ENON contains the label used to indicate
than a word is not in a segment, as well as the initial state. Every group corresponds to a
generalized emission event. Table 4.1 shows the results of this grouping for the NER tasks.
This grouping assumes that all segment classes are equally related to each other, which is
why they are all placed in the ESEG group. Different relations between classes would require
different groups.

The second step, which does not require feature engineering, is used to create the gener-
alized transitions events from the generalized emission events. With a set of labels L, the set
of transitions is T = L × L, the cartesian product of L. The generalized transition events
are created by replacing L by

E = {EB, EI , ESEG, ENON , E1, . . . , ENc} ∪ L, (4.1)

where E is the union of the generalized emission events and label emission events. The set
of generalized events G = (E × E) ∪ E is a superset of T and L, as generalized events are
added to the existing emission and transition events.

66 Three Improvements to NeuroCRF

Group Labels
ELOC B-LOC, I-LOC
EMISC B-MISC, I-MISC
EORG B-ORG, I-ORG
EP ER B-PER, I-PER
ESEQ B-LOC, B-MISC, B-ORG, B-PER, I-LOC, I-MISC, I-ORG, I-PER
EB B-LOC, B-MISC, B-ORG, B-PER
EI I-LOC, I-MISC, I-ORG, I-PER

ENON O, init

Table 4.1 Grouping of label used to create generalized events for the NER
tasks CoNLL-2003 and WikiNER

4.1.3 Feature Selection Matrix

The NN has one output per element in the set of generalized events G. Using some arbitrary
ordering, GL+1,t,i(x) is the output assigned to Gi. The feature selection matrix F (yt, yt−1) is
modified to use those generalized event outputs.

F (yt, yt−1) = 1
C(yt, yt−1)

[
in((yt, yt−1), G1) in((yt, yt−1), G2) · · · in((yt, yt−1), G|G|)

]⊤
,

(4.2)

C(yt, yt−1) =
∑

Gi∈G
in((yt, yt−1), Gi), (4.3)

Where in((yt, yt−1), Gi) is a binary indicator function that is equal to 1 when (yt, yt−1) is
inside the generalized event Gi. This modified feature selection matrix will average the
C(yt, yt−1) NN outputs used by a transition from label yt−1 to label yt. The indicator function
in((yt, yt−1), Gi) is based on a reverse lookup, where every transitions has an associated set of
generalized events B(yt, yt−1). Table 4.2 shows an example, for the transition (B − LOC, O).

4.2 Large Margin Training

Parameters are estimated by minimizing a loss function, which increases the log-likelihood
of the correct output given the corresponding input. It is possible for this log-likelihood to
be very close to the log-likelihood of the best competing hypothesis. Ideally, the parameters

4.2 Large Margin Training 67

B(yt, yt−1) = B(B − LOC, O)
Emission Events:

EB EI ESEQ ELOC B-LOC
Transitions Events:

(O, EB) (O, EI) (O, ESEQ) (O, ELOC) (O, B − LOC)
(ENON , EB) (ENON , EI) (ENON , ESEQ) (ENON , ELOC) (ENON , B − LOC)

Table 4.2 List of generalized events corresponding to the transition
(B − LOC, O) for the NER tasks CoNLL-2003 and WikiNER

should be selected to maximize both the log-likelihood and the margin between the correct
and best competing hypothesis. Large margin training has been applied to HMMs [77], and
the same approach has been used with CRFs [1]. In this particular case, the loss function

L(y, x) = − log p(y|x) = log Z(x) −
T∑

t=1
GL+1,t(x)F (yt, yt−1)

Z(x) =
∑

y
exp

(
T∑

t=1
GL+1,t(x)F (yt, yt−1)

)
,

is replaced by

L(y, x) = Z ′(x, y) −
T∑

t=1
GL+1,t(x)F (yt, yt−1), (4.4)

Z ′(x, y) = max
y′

T∑
t=1

(
GL+1,t(x)F (y′

t, y′
t−1) + cost(yt, y′

t)
)

, (4.5)

cost(y, y′) =

⎧⎨⎩ 0, y = y′

1, y ̸= y′ , (4.6)

where cost(yt, y′
t) is the contribution of y′

t to the margin and Z ′(x, y) is the potential, to be
minimized, of the best hypothesis competing with the correct decoding y. This loss function
will try to enforce a margin proportional to the difference between the correct hypothesis
and the best competing hypothesis. The resulting loss function is not differentiable, but this
optimization problem can be solved as explained in [77].

This loss function can be modified to use an upper bound of Z ′(x, y) [78, 1]. Since,

68 Three Improvements to NeuroCRF

log∑i exp xi ≥ max xi,

log Z(x, y) = log
∑
y′

exp
[

T∑
t=1

GL+1,t(x)F (y′
t, y′

t−1) + cost(yt, y′
t)
]

, (4.7)

is an upper bound of Z ′(x, y). The loss function becomes

L(y, x) = log Z(x, y) −
T∑

t=1
GL+1,t(x)F (yt, yt−1), (4.8)

which is differentiable. This is simply the loss function used to train NeuroCRFs, with an
added cost term cost(yt, y′

t). This was applied to low-rank NeuroCRF in [59].
The cost term in Equation 4.7 increases the contribution of a possible y′ to Z(x, y),

which is minimized. This will push the NN outputs GL+1,t,i used by incorrect hypotheses
towards −∞. We obtained a similar effect by replacing cost(yt, y′

t) by

cost(y, y′) =

⎧⎨⎩ −1, y = y′

0, y ̸= y′ , (4.9)

which decreases the contribution of a hypothesis y′ to Z(x, y). Both cost terms are im-
plemented by adding a constant term to the NN output matrix. The main advantage of
Equation 4.9 over Equation 4.6 is that it is significantly more sparse.

The recursive formulation of ∇Z(x) from Section 3.3.1 becomes

∇Z(y, x) =
∑
y′

T

∇αT,y′
T

(4.10)

∇α1,y′
1

= exp cost(y1, y′
1)∇Ψ(y′

1, init, x) (4.11)

∇αt,y′
t

=
∑
y′

t−1

exp cost(yt, y′
t)
(
∇αt−1,y′

t−1
Ψ(y′

t, y′
t−1, x) + αt−1,y′

t−1
∇Ψ(y′

t, y′
t−1, x)

)
, (4.12)

where yt is the correct label at time t and y′
t is a possible label. This shows that the

contribution of ∇Ψ(y′
t, y′

t−1, x) is reduced when yt = y′
t.

4.3 Ensemble Models 69

4.3 Ensemble Models

Ensemble learning uses the complementarity between models to improve performance. Mod-
els are combined into a single larger ensemble model. The errors of reasonably good models
should be distributed randomly. Since the models will not make the same error at the same
point, the ensemble model will be able to correct for the erroneous models. The ensemble
model can be based on a voting system, such as ROVER [79], or on some other combination
of systems, such as a product of experts.

The experimental studies used in this thesis report the results of multiple training runs,
each using a different random initialization. This is done to compensate for the non-convexity
of NNs. The different initializations will converge to different local minima, and will result in
different performance. This provides us with complementary models. The ensemble model
is a product of expert of those models.

Similar approaches, where models of the same class are ensemble, have also been devel-
oped for class of models where there is a known optimal model for a given training corpus.
Those approaches will obtain complementary models by modifying the training data. Bag-
ging [80] splits the training data into subset, used to train individual models. Adaboost
[81] trains a series of models, and adapts the weight of training examples as a function of
their error with the current model. We did not investigate these approaches due to the large
training time required by NeuroCRF.

The ensemble model is a product of experts,

ĜL+1,t(x) = 1
M

M∑
i=1

G
(i)
L+1,t(x) (4.13)

L(y, x) = − log p(y|x) = log Z(x) −
T∑

t=1
ĜL+1,t(x)F (yt, yt−1) (4.14)

Z(x) =
∑

y
exp

(
T∑

t=1
ĜL+1,t(x)F (yt, yt−1)

)
, (4.15)

where M models are combined, and G
(i)
L+1,t(x) is the output of model i. As the NN outputs

are used inside an exponential, the summation is equivalent to a product. The division by
M is not strictly needed, but it helps prevent overflow.

70 Three Improvements to NeuroCRF

This approach is equivalent to a single, larger network, where units are connected by
block, so that

Ŵl =

⎡⎢⎢⎢⎢⎢⎢⎣
W

(1)
l 0 . . . 0
0 W

(2)
l . . . 0

. . .

0 0 . . . W
(M)
l

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.16)

B̂l =
[
B

(1)
l , B

(2)
l , · · · , B

(M)
l

]
, (4.17)

ŴL+1 = 1
M

[
W

(1)
L+1, W

(2)
L+1, · · · , W

(M)
L+1

]
(4.18)

B̂L+1 = 1
M

M∑
i=1

B
(i)
L+1. (4.19)

4.4 Experimental Study

The performance of the improvement presented in this chapter were compared to full and
low-rank NeuroCRF baselines. Those baseline results were the subject of Chapter 3, and
were compared to CRF baselines in Section 3.4. The CRF baseline was not included in this
chapter in order to reduce the number of results to compare.

4.4.1 Model Configuration and Training Procedure

The improvements presented in this chapter do not affect the model configuration and train-
ing procedure. As such, the model configuration procedure described in Section 3.4.2, and
the training procedure is described in Section 3.4.3 are used.

4.4.2 Datasets and Performance Metrics

The data used in those experiments is presented in Section 2.7. The performance metrics
used are presented in Section 2.6.

4.4 Experimental Study 71

4.4.3 Results

Table 4.3 shows the averages and standard deviations of 10 models trained with the same
parameters and different random initializations, for the three tasks. The results include low
and full-rank NeuroCRF baselines. Large margin training is compared to those baselines.
With the exception of low-rank NeuroCRF used for NER, large margin training improved
performance. Shared parameters where added to full-rank NeuroCRFs, resulting in improve-
ments for the three tasks. The combination of large margin training and shared parameters,
once more applied to full-rank NeuroCRFs, further improved performance for the Chunking
and WikiNER. Performance on NER (CoNLL-2003), while improved over the baseline, was
lower than the performance observed using either large margin training or shared parameters.

Table 4.4 shows the results when those groups of 10 models are combined into a single
ensemble models.

The boxes in Figure 4.1 shows the two central quartiles of those 10 models’ F1. Each
box correspond to a group of 10 models, used for the indicated task. The vertical lines
above and below the boxes indicate the range of the first and last quartile. The central
horizontal lines, in the boxes, indicate the median. Finally, the line going from box to box
indicates the performance of ensemble models. Figure 4.1a clearly shows a series of successive
improvement on the chunking task. Figure 4.1b confirms that large margin training and
shared parameter both improved performance, on the NER task, when used individually,
but that their combination was less helpful. Figure 4.1c, like Figure 4.1a, shows a succession
of improvement on the WikiNER task. In this particular case, full-rank NeuroCRF are
equivalent or slightly worst than large margin low-rank NeuroCRF.

Chunking (CoNLL-2000)

Table 4.5 shows detailed results for the chunking task. The performance metric used are
described in Section 2.6 The table is divided into three set of experiments: low-rank, full-
rank, full-rank with shared parameters. Those base configurations are compared to the same
configuration trained with large margin.

Table 4.5 shows generalized improvements when large margin training is added to low-
rank NeuroCRFs. A two-tailed Student’s T-tests shows that the change in F1 is statistically
significant (p ≤ 1.74%). Those results show that classification accuracy was not significantly
affected, but that the segmental F1 was increased. This indicates that the models trained

72 Three Improvements to NeuroCRF

Chunking NER WikiNER
Configuration µ σ µ σ µ σ

Low-Rank 93.58 0.0964 88.63 0.2145 87.49 0.1107
+Margin 93.69 0.0675 88.49 0.2540 87.60 0.1034
Full-Rank 93.94 0.0507 88.75 0.2305 87.58 0.0739
+Margin 93.97 0.0972 89.03 0.1505 87.90 0.1122
+Shared 94.08 0.0760 89.08 0.1818 87.95 0.1569

+Margin+Shared 94.20 0.0650 88.82 0.1385 88.10 0.1082

Table 4.3 Comparison of improvements to NeuroCRFs for the Chunking
(CoNLL-2000), NER (CoNLL-2003), and WikiNER (Wikipedia) task. Model
obtained using large margin training, shared parameter and the combination of
both are compared to full and low-rank NeuroCRFs. Results are the average µ
and standard deviation σ of 10 models.

Chunking NER WikiNER
Configuration µ ens. µ ens. µ ens.

Low-Rank 93.58 93.86 88.63 89.27 87.49 88.02
+Margin 93.69 93.91 88.49 88.84 87.60 87.79
Full-Rank 93.94 94.31 88.75 89.23 87.58 88.03
+Margin 93.97 94.10 89.03 89.42 87.90 88.29
+Shared 94.08 94.24 89.08 89.37 87.95 88.40

+Margin+Shared 94.20 94.27 88.82 89.13 88.10 88.50

Table 4.4 Comparison of ensemble NeuroCRFs for the Chunking (CoNLL-
2000), NER (CoNLL-2003), and WikiNER (Wikipedia) task to the models used
to create the ensembles. Compare the average µ of 10 models to an ensemble
of those 10 models.

4.4 Experimental Study 73

Low-Rank +Margin Full-Rank +Margin +Shared +Mar.+Sha.
93.4

93.6

93.8

94.0

94.2

94.4

(a) Chunking

Low-Rank +Margin Full-Rank +Margin +Shared +Mar.+Sha.
87.8
88.0
88.2
88.4
88.6
88.8
89.0
89.2
89.4
89.6

(b) NER

Low-Rank +Margin Full-Rank +Margin +Shared +Mar.+Sha.
87.2

87.4

87.6

87.8

88.0

88.2

88.4

88.6

(c) WikiNER

Fig. 4.1 Boxplot comparing the performance of improved NeuroCRFs for
the Chunking, NER and WikiNER task. Model obtained using large margin
training, shared parameter and the combination of both are compared to full
and low-rank NeuroCRFs. The line indicates the performance obtained with
the corresponding ensemble models.

74 Three Improvements to NeuroCRF

with large margin are better at identifying the segment boundaries, but are not more capable
of identifying classes. Precision and recall were similarly improved.

Table 4.5 also shows some improvements when large margin training is added to full-rank
NeuroCRFs. In this case, the effect is much lower, and is not statistically significant (p ≤
36.00%). Segmental F1 is slightly increased, while classification accuracy is not significantly
affected. The effect of shared parameters is statistically significant (p ≤ 0.02%). In this case,
segmental F1 is improved, while classification accuracy is not affected.

Finally, Table 4.5 also shows generalized improvements when large margin training is
added to full-rank NeuroCRFs with shared parameters (p ≤ 0.2%). Once more, classification
accuracy is not affected, but segmental F1 is improved.

Table 4.6 shows improved performance using ensemble models, when compared to Ta-
ble 4.5. Ensemble learning improved on the average F1 obtained for all configurations. The
ensemble of full-rank NeuroCRF was especially better than the baseline models. Classifica-
tion accuracy is not significantly improved by ensemble learning. Segmental F1 is improved.
The large improvement obtained using an ensemble of full-rank NeuroCRF, which is the
new best configuration, is the results of a combination of better segmentation and better
classification. Other configurations have similar performance on either of those measure, but
none have the same high performance for both.

In general, those experiments show that large margin training and shared parameters
improve the segmentation performance of NeuroCRF, without improving their classification
performance. The same is true of ensemble of those models.

Figure 4.2 shows the precision-recall plot of those experiments. It clearly shows the
improved performance when large margin training is applied to low-rank NeuroCRFs. Sim-
ilarly, full-rank models with shared parameters are clearly separated from full-rank models.
Full-rank models with large margin training, while showing some improvement, are clearly
interleaved with the full-rank baseline. Finally, the combination of shared parameters, large
margin training and full-rank NeuroCRFs outperformed the other configuration, and can be
separated from full-rank models with shared parameters.

Named Entity Recognition (CoNLL-2003)

Table 4.7 shows detailed results for the NER (CoNLL-2003) task. The performance metric
used are described in Section 2.6 The table is divided into three set of experiments: low-rank,

4.4 Experimental Study 75

Low-Rank +Margin
Measure µ σ µ σ

F1 93.59 0.0964 93.69 0.0675
Precision 93.53% 0.1050 93.59% 0.0880

Recall 93.65% 0.1129 93.79% 0.0754
Class. Accuracy 98.63% 0.0339 98.62% 0.0210

F
(s)
1 94.89 0.0840 95.00 0.0870

Full-Rank +Margin
F1 93.94 0.0507 93.97 0.0972

Precision 93.94% 0.0815 93.94% 0.1071
Recall 93.93% 0.0542 94.00% 0.0896

Class. Acc. 98.74% 0.0278 98.73% 0.0349
F

(s)
1 95.14 0.0545 95.18 0.0940

Shared +Margin
F1 94.08 0.0760 94.20 0.0650

Precision 94.10% 0.0774 94.17% 0.0662
Recall 94.07% 0.0882 94.24% 0.0824

Class. Acc. 98.74% 0.0212 98.73% 0.0340
F

(s)
1 95.28 0.0760 95.42 0.0721

Table 4.5 Detailed results comparing improved NeuroCRFs for the Chunk-
ing (CoNLL-2000) task, showing the F1, precision, recall, classification accuracy
and segmental F1. “Shared” refers to full-rank NeuroCRFs with shared param-
eters. Results are the average µ and standard deviation σ of 10 models. Bold
font indicates absolute best result, while italic font indicate per-row best result.

Low-Rank Full-Rank
Measure Base +Mar. Base +Mar. +Sha. +Both

F1 93.86 93.91 94.31 94.10 94.24 94.27
Precision 93.76% 93.79% 94.30% 94.07% 94.24% 94.22%

Recall 93.95% 94.03% 94.31% 94.13% 94.25% 94.33%
Class. Accuracy 98.67% 98.65% 98.79% 98.78% 98.78% 98.74%

F
(s)
1 95.12 95.20 95.46 95.26 95.41 95.47

Table 4.6 Detailed results comparing ensemble NeuroCRFs for the Chunking
(CoNLL-2000) task, showing the F1, precision, recall, classification accuracy
and segmental F1. “+Both” refers to the combination of large margin and
shared parameters.

76 Three Improvements to NeuroCRF

93.4 93.6 93.8
Precision

93.4

93.6

93.8

R
ec

al
l

Low-Rank
+margin

(a) Low-Rank vs Margin

93.8 93.9 94.0 94.1
Precision

93.8

93.9

94.0

94.1

R
ec

al
l

Full-Rank
+margin

(b) Full-Rank vs Margin

93.8 94.0 94.2
Precision

93.8

94.0

94.2

R
ec

al
l

Full-Rank
Shared

(c) Full-Rank vs Shared

94.0 94.1 94.2 94.3
Precision

94.0

94.1

94.2

94.3

R
ec

al
l

Shared
+margin

(d) Shared vs Margin

Fig. 4.2 Precision-Recall plot comparing the performance of improved Neu-
roCRF on the chunking task.

4.4 Experimental Study 77

full-rank, full-rank with shared parameters. Those base configurations are compared to the
same configuration trained with large margin.

Large margin training improves performance for the full-rank models, but reduces per-
formance for the low-rank models. A two-tailed Student’s T-tests shows that the change in
F1 is statistically significant for the full-rank models (p ≤ 0.50%), but not for the low-rank
models (p ≥ 19.00%). Full-rank models with shared parameters are also negatively affected
by large margin training (p ≤ 0.30%). Table 4.7 shows that large margin training improved
classification at the expense of segmentation for low-rank NeuroCRFs, whose NN model
label emissions. The table also shows that large margin training improved segmentation
for full-rank NeuroCRFs, whose NN model label-to-label transitions, while also improving
classification accuracy. Finally, the table shows that the addition of large margin training to
models with shared parameters, whose NN models both label emissions and label-to-label
transitions, significantly reduced classification accuracy.

Table 4.7 shows significant improvement when shared parameters are added to full-rank
NeuroCRFs. A two-tailed Student’s T-tests shows that the change in F1 is statistically
significant (p ≤ 0.30%). Both classification and segmentation performance are improved.
There are also significant improvement to precision and recall.

Table 4.8 shows improved performance using ensemble models, when compared to Ta-
ble 4.7. Ensemble learning improved the average F1 for all configuration. Both segmentation
and classification are improved by the ensemble models. The significant improvement ob-
served are caused by this join improvement. In general, the performance of the ensemble
models depend on the performance of the models used to create them. This is visible in
Figure 4.1b, where the line indicating the performance of ensemble models clearly follow the
boxes indicating the range of performance obtained with the original models.

WikiNER

Table 4.9 shows detailed results for the WikiNER task. The performance metric used are
described in Section 2.6 The table is divided into three set of experiments: low-rank, full-
rank, full-rank with shared parameters. Those base configurations are compared to the same
configuration trained with large margin.

Both large margin training and shared parameters results in improvements, on all five
measures. In particular, low-rank NeuroCRFs trained with large margin achieve performance

78 Three Improvements to NeuroCRF

Low-Rank +Margin
Measure µ σ µ σ

F1 88.63 0.2145 88.49 0.2540
Precision 88.78% 0.2688 88.54% 0.3100

Recall 88.48% 0.2322 88.43% 0.3450
Class. Acc. 94.51% 0.2012 94.66% 0.1257

F
(s)
1 93.78 0.1402 93.48 0.2477

Full-Rank +Margin
F1 88.75 0.2305 89.03 0.1505

Precision 88.93% 0.2588 89.14% 0.3266
Recall 88.57% 0.3145 88.93% 0.2403

Class. Acc. 94.66% 0.2095 94.73% 0.2348
F

(s)
1 93.75 0.1648 93.99 0.1691

Shared +Margin
F1 89.08 0.1818 88.82 0.1385

Precision 89.15% 0.2139 88.94% 0.1393
Recall 89.00% 0.2559 88.70% 0.2734

Class. Acc. 94.80% 0.1410 94.54% 0.1394
F

(s)
1 93.96 0.1482 93.95 0.1076

Table 4.7 Detailed results comparing improved NeuroCRFs for the NER
(CoNLL-2003) task, showing the F1, precision, recall, classification accuracy
and segmental F1. “Shared” refers to full-rank NeuroCRFs with shared param-
eters. Results are the average µ and standard deviation σ of 10 models. Bold
font indicates absolute best result, while italic font indicate per-row best result.

Low-Rank Full-Rank
Measure Base +Mar. Base +Mar. +Sha. +Both

F1 89.27 88.84 89.23 89.42 89.37 89.13
Precision 89.44% 88.84% 89.42% 89.46% 89.39% 89.24%

Recall 89.09% 88.83% 89.04% 89.38% 89.34% 89.02%
Class. Accuracy 94.80% 94.89% 94.94% 94.87% 94.96% 94.67%

F
(s)
1 94.16 93.62 93.99 94.25 94.11 94.15

Table 4.8 Detailed results comparing ensemble NeuroCRFs for the NER
(CoNLL-2003) task, showing the F1, precision, recall, classification accuracy
and segmental F1. “+Both” refers to the combination of large margin and
shared parameters.

4.4 Experimental Study 79

88.0 88.5 89.0
Precision

88.0

88.5

89.0

R
ec

al
l

Low-Rank
+margin

(a) Low-Rank vs Margin

88.0 88.5 89.0 89.5
Precision

88.0

88.5

89.0

89.5

R
ec

al
l

Full-Rank
+margin

(b) Full-Rank vs Margin

88.0 88.5 89.0 89.5
Precision

88.0

88.5

89.0

89.5

R
ec

al
l

Full-Rank
Shared

(c) Full-Rank vs Shared

88.5 89.0 89.5
Precision

88.5

89.0

89.5

R
ec

al
l

Shared
+margin

(d) Shared vs Margin

Fig. 4.3 Precision-Recall plot comparing the performance of improved Neu-
roCRF on the NER task.

80 Three Improvements to NeuroCRF

similar to the performance of the baseline full-rank NeuroCRFs. A two-tailed Student’s T-
tests shows that the change in F1 is statistically significant (p ≤ 3.60% with low-rank,
p ≤ 0.01% with full-rank). In general, large margin training improves segmentation and
classification performance. The inclusion of shared parameters also improves segmentation
and classification performance (p ≤ 0.01%). Finally, the combination of shared parameters
and large margin training also improve both measures (p ≤ 0.01%).

Figure 4.4 confirms the results in Table 4.9. There is a clear separation between full-
rank model trained with and without large margin. The inclusion of shared parameters
also results in a clear separation. while there is some overlap, low-rank models trained with
large margin dominate the upper right corner, corresponding to higher F1, while low-rank
models trained without occupy the lower right corner. Full-rank NeuroCRFs with shared
parameters trained with large margin also dominate the upper right corner, while the full-
rank NeuroCRFs with shared parameters trained without large margin occupy the lower
right corner. In this particular case, there is a significant overlap between the two groups.

4.5 Summary and Discussion

In this chapter, we presented improvements to the NeuroCRF models presented in Chapter 3.
One of those improvement is an extension of full-rank NeuroCRF where NN outputs, and
therefore parameters, are shared by similar transitions. Those shared parameters are added
to the transition specific parameters. The addition of those shared parameters improve
performance on the three task of interest.

Large margin training, the second improvement, was also found to improve performance.
The combination of shared parameters and large margin training improved performance for
two of the three tasks.

Finally, we exploited the complementarity of the 10 models used to evaluate performance
by combining them into a single ensemble model. Those ensemble models improved perfor-
mance over the 10 original models. It was found that their performance is affected by the
other improvements similarly to the average performance of the 10 original models.

We report results on WikiNER to compensate for the small size of CoNLL-2003. WikiNER
is significantly larger, which help training and reduce the variation caused by the random
initialization, and by the test set. This is reflected in the experimental results, where the
experiments on WikiNER reported in Table 4.9 show consistent improvements, unlike the

4.5 Summary and Discussion 81

Low-Rank +Margin
Measure µ σ µ σ

F1 87.49 0.1107 87.60 0.1034
Precision 87.65% 0.1092 87.68% 0.1079

Recall 87.34% 0.1233 87.53% 0.1142
Class. Acc. 93.46% 0.0718 93.55% 0.0573

F
(s)
1 93.62 0.0658 93.65 0.0747

Full-Rank +Margin
F1 87.58 0.0739 87.90 0.1122

Precision 87.75% 0.0738 88.04% 0.0971
Recall 87.41% 0.0797 87.76% 0.1328

Class. Acc. 93.61% 0.0722 93.76% 0.0887
F

(s)
1 93.56 0.0532 93.74 0.0489

Shared +Margin
F1 87.95 0.1569 88.10 0.1082

Precision 88.14% 0.1435 88.27% 0.0983
Recall 87.75% 0.1764 87.94% 0.1211

Class. Acc. 93.81% 0.0810 93.89% 0.0658
F

(s)
1 93.75 0.0993 93.83 0.0767

Table 4.9 Detailed results comparing improved NeuroCRFs for the WikiNER
task, showing the F1, precision, recall, classification accuracy and segmental F1.
“Shared” refers to full-rank NeuroCRFs with shared parameters. Results are
the average µ and standard deviation σ of 10 models. Bold font indicates
absolute best result, while italic font indicate per-row best result.

Low-Rank Full-Rank
Measure Base +Mar. Base +Mar. +Sha. +Both

F1 88.02 87.79 88.03 88.29 88.40 88.50
Precision 88.16% 87.88% 88.18% 88.43% 88.57% 88.66%

Recall 87.89% 87.70% 87.88% 88.14% 88.23% 88.34%
Class. Accuracy 93.71% 93.58% 93.81% 93.92% 93.98% 94.05%

F
(s)
1 93.94 93.81 93.84 94.00 94.06 94.10

Table 4.10 Detailed results comparing ensemble NeuroCRFs for the
WikiNER task, showing the F1, precision, recall, classification accuracy and
segmental F1. “+Both” refers to the combination of large margin and shared
parameters.

82 Three Improvements to NeuroCRF

87.2 87.4 87.6 87.8
Precision

87.2

87.4

87.6

87.8

R
ec

al
l

Low-Rank
+margin

(a) Low-Rank vs Margin

87.5 88.0
Precision

87.5

88.0

R
ec

al
l

Full-Rank
+margin

(b) Full-Rank vs Margin

87.5 88.0
Precision

87.5

88.0

R
ec

al
l

Full-Rank
Shared

(c) Full-Rank vs Shared

87.5 88.0
Precision

87.5

88.0

R
ec

al
l

Shared
+margin

(d) Shared vs Margin

Fig. 4.4 Precision-Recall plot comparing the performance of improved Neu-
roCRF on the WikiNER task.

4.5 Summary and Discussion 83

experiments on CoNLL-2003 reported in Table 4.7, where large margin training degraded
performance for two of the three base configurations. Those consistent improvements match
the results of the experiment on the chunking task, reported in Table 4.5.

More feature engineering is required to take advantage of the added shared parameters. In
particular, a natural extension of this method would be to apply clustering to tie transitions,
rather than adding generalized events. This would reduce the number of parameters required,
and could improve performance when there is not enough training data.

84

Chapter 5

Recurrent NeuroCRFs

NeuroCRFs using recurrent layers are presented in this chapter.1 The output of a recurrent
layer is a function of its input and of its previous output. This can support long term
dependencies between input and output without extending the size of the input window or
extending the Markov order of the model.

Our experiment used two forms of recurrent layer. They will be presented in the fol-
lowing sections. The second form, long short-term memory (LSTM) layers, was found to
significantly improve performance. This will be the focus of this chapter.

5.1 Motivation

In a NeuroCRF, the NN is used to learn and extract useful features from the input. With a
feed forward NN (FF NN), the features must be extracted from a sliding window. This limits
the capacity of the NeuroCRF to learn and model long term dependencies between input
and output. For example, no features related to the topic of a sentence can be extracted
by a FF NN. While the topic might be identifiable for a given window, the FF NN cannot
provide the corresponding features to the previous and following windows, severely limiting
their utility. Segments can also be significantly longer than the sliding window, which will
complicate their classification.

In general, the CRF component of the NeuroCRFs can assemble the local potentials
provided by the FFNN into longer term potentials. For example, αt,I−LOC accumulates

1The content of this chapter is based on work published in “LSTM-Based NeuroCRFs for Named Entity
Recognition” [13].

5.2 Related Works 85

potentials for a LOC segment, even when the beginning of the segment is outside the sliding
window. The CRF Markov order limits the CRF capacity to address long term dependencies.
In the previous example, αt,I−LOC combines all possible LOC segments starting before t. This
can prevent accurate detection of the segment’s end, or prevent the model from realizing that
the segment is, in fact, the name of a municipal organization, whose correct class is ORG.2

The performance of a CRF trained on a given corpus depends almost totally on the quality
of its features. Improved feature analysis should improve performance.

Finally, the recurrent layer can also increase the effective Markov order. This is because
recurrent layers are continuous state machines. Those continuous state machines are not
constrained to a finite set of states, determined by the Markov order. They can instead
learn a function that creates states as needed to analyze the input.

5.2 Related Works

Recurrent neural networks (RNNs) have been combined with CRFs in [60, 82], forming a low-
rank NeuroCRFs based on RNN. This has also been done in the domain of image processing
[83].

LSTMs were used for the CoNLL-2003 NER challenge [84], with a very low performance
(F1 = 60.15). Those models were used to generate a vector representation of the label,
resulting in an architecture completely different from the CRF based models described in
this chapter. Hammerton hypothesized that the low performance was, in part, caused by
the low informativeness of their word representation.

More recently, bidirectionnal LSTMs with rich features have [85] obtained excellent per-
formance on the CoNLL-2003 task. In [85], a FFNN low-rank NeuroCRF with those rich
features obtained F1 = 89.673. Using a bidirectional LSTM model with those rich features
augmented with a complex word representation improved performance to 91.624. A simi-
lar model was presented in [86], using a conventional feature set but without the complex
word representation, reaching F1 = 90.10 on the CoNLL-2003 task. When gazetteer fea-
tures, which are highly informative for NER, are removed, this model reached 88.83, which

2This is a common problem in NER, complicated by a combination of inconsistent naming conventions
and the placement of adjectives in English.

3Our equivalent result was 88.63, improved to 88.75 with a full-rank model.
4Our equivalent result was 89.30

86 Recurrent NeuroCRFs

is inferior to our full-rank model presented below5.
Those results show the importance of feature engineering. In particular, “bad” features

did decrease the performance of the models in [86], while “good” features improved perfor-
mance significantly in [85].

The models described in [87] are very similar to the models described in this chapter.
The main difference is the word representation used, in particular the addition of a character
based representation. On CoNLL-2003, a basic bidirectional LSTM models, trained using
cross-entropy, obtained F1 = 87.00, the character representation improved performances to
89.36, and using a full-rank NeuroCRF improved performance further to 91.21. Those results
illustrate the importance of the word representation and of the CRF component.

LSTMs and the similar gated recurrent units have also been used in for joint intent
classification and slots filling in [88, 89, 90, 91]. The labeling component of those models is
very similar to the models presented in this section, but they are trained using cross-entropy
rather than CRF log-likelihood.

5.2.1 Sequence-to-Sequence Models

Sequence-to-sequence (seq2seq) models [70, 92, 93] were originally developed for machine
translation. As their name indicates, they are used to generate an output sequence given an
input sequence. This task is a more general form of the sequence labeling task addressed in
this thesis.

Sequence-to-sequence models were developed for a different problem, and are missing
some fundamental constraints required for the tasks we approached with sequence labeling,
while also having extra requirements that are not meet by sequence labeling. We can expect
well trained seq2seq models to achieve reasonable performances on sequence labeling tasks,
but we do not expect that they would exceed the performances of the models presented in
this thesis, or of similar models.

Seq2seq models are composed of two major components: an encoder and a decoder. Both
are recurrent NNs. The encoder is used to create a summary of the input sequence, as well
as to extract features. The decoder is used to generate the output sequence, based on the
summary encoded by the encoder. The features extracted by the encoder are used by the
decoder through an attention mechanism [92] which uses an internal state to weight the

5Most of this difference is attributed to our word representation.

5.3 Recurrent Layer 87

features extracted at various point in the input sequence.
The decoder is required in order to support output sequences whose length is not fixed

to the input sequence’s length. In sequence labeling, those two lengths are always equal.
The attention mechanism is required for machine translation, as there is not always a

clear one-to-one mapping between input and output. For our sequence labeling tasks, there
is a known one-to-one mapping between input and output. Fundamentally, this is the key
difference: seq2seq models have to learn a complex alignment between input and output, but
this alignment is not part of their output, while our models assume a one-to-one sequential
mapping between input and output. A seq2seq model used for sequence labeling would have
to learn this exact mapping but in our model this constraint is built-in.

If a length constraint is added to the decoder and the attention mechanism is replaced
by the one-to-one mapping, seq2seq models are simply NN with two recurrent layers.

5.3 Recurrent Layer

Recurrent layers were described in Section 2.4. We use RNN (recurrent NN) to refer to NNs
built from those layers, in order to distinguish them from NN built from the LSTM layers
presented in the next section.

RNNs add a set of recurrent weights, Rl, to the parameters of the standard feed forward
NN. Those recurrent weights combine the layer’s previous output Gl,t−1 to its current input
Gl−1,t and biases Bl to create a new output Gl,t.

RNNs’ ability to manipulate their memory is limited. An input Gl−1,t is only remembered
by the recurrent connection, and its contribution to Gl,t+d will decay at a fixed rate. Similarly,
information can only be forgotten through decays, caused by successive multiplication with
Rl, or through an immediate opposed input Gl−1,tWl. This opposed input must be a close
approximation of the units in Gl,t−1Rl that must be forgotten.

Another limitation is that the memory is also the layer’s output. The needs of the
recurrent connection, used to keep track of state, and the needs of feature extraction can
conflict. Ideally, the two would be separate, and recurrent layers would have a set of units
used as memory, and another set that would be used as output. This is possible if the
following layer has zeroed weights for the output units. While it is possible for a RNN to
learn such a topology, it is unlikely to occur without explicit constraints.

Despite those limitation, RNN have been recently combined with CRF [60, 82]. They

88 Recurrent NeuroCRFs

also have been used for sequence labelling without using CRFs [94] and for joint training
with a topic and/or intent classifier [95, 88].

5.4 Long Short-Term Memory Layer

Gl,t,i

×

σl

ol,t,i

sl,t,i

σl

+

ŝl,t,i z−1

× ×ϵl,t,i ϕl,t,i

Fig. 5.1 Computation graph of long short term memory cell.

Long short term memory (LSTM) [81] layers address some of the issues with RNNs. In
particular, the recursion is now controlled by the input. There is also an added internal mem-
ory, with an associated recurrent connection, that can preserve observations independently
of the output. Access to this internal memory is controlled by gates. The gates protect the
internal memory, which reduces the impact of the vanishing gradient problem described in
Section 2.4 [47]. LSTM have been used for sequence labelling, in particular as part of the
CoNLL-2003 challenge [84]. More recently they were combined with MEMMs [96].

LSTM layers are function of the form Gl,t,i = f(Gl−1,t, Gl,t−1, sl,t−1,i), where sl,t−1,i is the
internal memory, forming a state vector sl,t. For unit i, the internal memory is updated by

sl,t,i(Gl−1,t, Gl,t−1, sl,t−1,i) = σl

⎛⎝ ϕl,t,i(Gl−1,t, Gl,t−1)sl,t−1,i +
ϵl,t,i(Gl−1,t, Gl,t−1)ŝl,t,i(Gl−1,t, Gl,t−1)

⎞⎠ , (5.1)

5.4 Long Short-Term Memory Layer 89

where ŝl,t,i(Gl−1,t, Gl,t−1) is a candidate value, ϕl,t,i(·) is the forget gate, and ϵl,t,i(·) is the
input gate. The new value is a function of a linear combination of the previous value and a
candidate value, where the contribution of each is controlled by the forget and input gates.
Finally, the internal memory is exposed to the following layers, and to the next time step,
through the output gate

Gl,t,i(Gl−1,t, Gl,t−1, sl,t−1,i) = ol,t,i(Gl−1,t, Gl,t−1)sl,t,i(Gl−1,t, Gl,t−1, sl,t−1,i) (5.2)

Figure 5.1 shows the resulting computation graph.
The forget gate is

ϕl,t,i(Gl−1,t, Gl,t−1) = σϕ(
Nl−1∑
j=1

Gl−1,t,jWl,ϕ,j,i +
Nl∑

j=1
Gl,t−1,jRl,ϕ,j,i + Bl,ϕ,i), (5.3)

the input gate is

ϵl,t,i(Gl−1,t, Gl,t−1) = σϵ(
Nl−1∑
j=1

Gl−1,t,jWl,ϵ,j,i +
Nl∑

j=1
Gl,t−1,jRl,ϵ,j,i + Bl,ϵ,i), (5.4)

the output gate is

ol,t,i(Gl−1,t, Gl,t−1) = σo(
Nl−1∑
j=1

Gl−1,t,jWl,o,j,i +
Nl∑

j=1
Gl,t−1,jRl,o,j,i + Bl,o,i), (5.5)

and the candidate value is

ŝl,t,i(Gl−1,t, Gl,t−1) = σl(
Nl−1∑
j=1

Gl−1,t,jWl,s,j,i +
Nl∑

j=1
Gl,t−1,jRl,s,j,i + Bl,s,i), (5.6)

where σl is the layer’s activation function, and σϕ, σϵ, and σo are the gates’ activation
function, usually the logistic function.

The forget gate can erase the content of the memory cell, the input gate control the
update of the memory cell and the output gate can temporarily suppress outputs. While
the layer’s output is part of the recursion, the memory cell also contributes.

Overall, the recursion is more complex that the RNN’s recursion, and is controlled by
the input, rather than fixed.

90 Recurrent NeuroCRFs

5.4.1 Back Propagation

Given ∂L(x,y)
∂al+1,t,j(x) , the loss back propagated to the linear activation of layer l+1 unit j at time

step t, and ∂L(x,y)
∂al,t+1,g,j(x) , the loss back propagated to the linear activation of gate g of layer l

unit j at time step t + 1, the loss is back propagated into the units at time t, with

Recϕ =
∑

j

Rl,ϕ,i,j
∂L(x, y)
∂al,t+1,ϕ,j

, (5.7)

Recϵ =
∑

j

Rl,ϵ,i,j
∂L(x, y)
∂al,t+1,ϵ,j

, (5.8)

Reco =
∑

j

Rl,o,i,j
∂L(x, y)
∂al,t+1,o,j

, (5.9)

Recs =
∑

j

Rl,s,i,j
∂L(x, y)
∂al,t+1,s,j

, (5.10)

∂L(x, y)
∂Gl,t,i

=
∑

j

Wl+1,i,j
∂L(x, y)
∂al+1,t,j

+ Recϕ + Recϵ + Reco + Recs. (5.11)

It it then back propagated to the output gate by

∂L(x, y)
∂ol,t,i

= ∂L(x, y)
∂Gl,t,i

sl,t,i. (5.12)

The gradient is propagated to the forget gate by

∂L(x, y)
∂ϕl,t,i

= ∂L(x, y)
∂Gl,t,i

ol,t,iσ
′
lsl,t−1,i, (5.13)

to the input gate by
∂L(x, y)

∂ϵl,t,i

= ∂L(x, y)
∂Gl,t,i

ol,t,iσ
′
lŝl,t,i, (5.14)

and finally to the candidate value by

∂L(x, y)
∂ŝl,t,i

= ∂L(x, y)
∂Gl,t,i

ol,t,iσ
′
lϵl,t,i. (5.15)

5.5 Experimental Study 91

5.4.2 Bi-directional LSTM Layer

Bi-directional LSTM (BLSTM) layers are the concatenation of two sub-layers. The first sub-
layer remember previous inputs. The second sub-layer reverses the recursion and remembers
future inputs. This anti-causal sub layer can be obtained by reversing the recursion used for
the causal LSTM layer. The sub-layers cannot be connected to each other, as this would
create cycles in the computation graphs.

The main advantage of this approach is that the entire layer has seen the entire input at
all t. This can be used by the following layers to create features based on the entire input,
rather than being limited to a sliding window, or to the current and previous inputs.

5.5 Experimental Study

Our experimental study is divided into three parts. First, we compared the performance on
WikiNER of a RNN-based NeuroCRF to the performance of a LSTM-based NeuroCRF. The
LSTM-based NeuroCRF was found to be significantly better; in order to limit the number
of variables, the following experiments used LSTM-based NeuroCRF.

The second set of experiments compares the performance of LSTM-based NeuroCRFs
combined with the improvements presented in the previous chapters. Those experiments
used full-rank NeuroCRFs.

Finally, the third set of experiments investigates the performance of bi-directional LSTM
layer, forming BLSTM-based NeuroCRF. BLSTM-based NeuroCRF are combined to the
improvement presented in the previous chapters. This set of experiment also include an
investigation of the importance, to BLSTM-based NeuroCRF, of the context included in the
sliding window. This last investigation was only applied to WikiNER, since its large size
reduces the variance of the results.

5.5.1 Model Configuration and Training Procedure

The improvements presented in this chapter do not significantly affect the model config-
uration and training procedure. As such, the model configuration procedure described in
Section 3.4.2, and the training procedure is described in Section 3.4.3 are used.

The recurrent layers are unrolled completely during training; it is common to establish a
cut-off point, where the recurrence is only allow edto go backward for a fixed number of time

92 Recurrent NeuroCRFs

steps, in order to reduce the computational requirement of model training. This practice is
useful when operating over very long sequences, such as speech frames in an acoustic model
This is not required for the three tasks used in our experimental studies, as the sentences
have, at most, a few dozen words.

Bi-directional LSTM layers are split evenly, so that half the units are causal and half
are anti-causal. While this might not be the optimal split, this arbitrary choice avoided the
addition of another hyper-parameter, which would have increased the search space.

Finally, we should note that the dropout mask is not involved in the recursion. Dropout
is only applied to the non-recurrent connections between layers.

5.5.2 Datasets and Performance Metrics

The data used in those experiments is presented in Section 2.7. The performance metrics
used are presented in Section 2.6.

5.5.3 RNN-based NeuroCRF

Table 5.1 shows the performance of three configurations: a baseline full-rank FF-based Neu-
roCRF, a LSTM-based NeuroCRF and a RNN-based NeuroCRF. While the RNN-based
model outperforms the FF-based model, the improvement is limited. The performance of
the LSTM-based model is a significant increase over both. Given those results, the following
experiments do not use RNN-based NeuroCRFs.

Table 5.1 shows improved classification performance for the RNN-based NeuroCRFs,
compared to the baseline. This can be explained by the longer memory, which ensures that
the entire segment can be used during classification. The improved classification performance
of the RNN-based models is partially cancelled by their lower segmentation performance.

Table 5.1 also shows significant improvement for the LSTM-based NeuroCRFs, over both
the baseline and RNN-based NeuroCRFs. Both classification and segmentation performance
are significantly improved.

Figure 5.2 is a boxplot of the results shown in Table 5.1. It shows that the performance
of RNN-based NeuroCRFs is indeed improved compared to the FF-based NeuroCRFs, there
is a significant overlap. Figure 5.2 also shows the significant improvement obtained with
LSTM-based NeuroCRFs, compared to the FF-based models and to the RNN-based models.
Those experimental results justify the use of LSTM layers in the following experiments.

5.5 Experimental Study 93

While improvements can be obtained with RNN-based NeuroCRFs, larger gain are obtained
with LSTM-based NeuroCRFs.

NeuroCRF (FF) NeuroCRF (RNN) NeuroCRF (LSTM)
Measure µ σ µ σ µ σ

F1 87.58 0.0739 87.66 0.1386 89.11 0.0795
Precision 87.75% 0.0738 87.88% 0.1242 89.26% 0.0999

Recall 87.41% 0.0797 87.44% 0.1584 88.96% 0.0621
Class. Acc. 93.61% 0.0722 93.76% 0.1564 94.57% 0.0709

F
(s)
1 93.56 0.0532 93.50 0.0691 94.23 0.0557

Table 5.1 Comparison of the performance of FF-based, LSTM-based and
RNN-based NeuroCRFs on WikiNER

NeuroCRF(FF) NeuroCRF(RNN) NeuroCRF(LSTM)
87.0

87.5

88.0

88.5

89.0

89.5

F
1

Fig. 5.2 Boxplot comparing the performance of FF-based, LSTM-based and
RNN-based NeuroCRFs on WikiNER

5.5.4 LSTM-based NeuroCRF

Table 5.2 shows the results obtained when the FF NN used in the previous chapters is
replaced by a LSTM layer. Results from Table 4.3 are included for comparison. In general,
the LSTM improved performance for all task and all configurations. For the Chunking and
WikiNER task, the worst LSTM configuration is better than the best FFNN configuration.

94 Recurrent NeuroCRFs

88 89
Precision

88

89

R
ec

al
l

NeuroCRF(FF)
NeuroCRF(RNN)
NeuroCRF(LSTM)

Fig. 5.3 Precision-recall graph comparing the performance of FF-based,
LSTM-based and RNN-based NeuroCRFs on WikiNER

5.5 Experimental Study 95

On the NER (CoNLL-2003) task, the results are less clear. The best LSTM configurations
outperform the best FFNN configurations, but the worst LSTM configuration is significantly
worst than the worst FF NN configuration. Nonetheless, the results in Table 5.2 show
significant improvement when using LSTM layers.

Chunking NER WikiNER
Configuration µ σ µ σ µ σ

NeuroCRF(LSTM) 94.46 0.0924 89.30 0.2432 89.11 0.0795
+Margin 94.46 0.0948 89.30 0.1526 88.82 0.0835
+Shared 94.31 0.0849 88.25 0.1833 89.04 0.1155

+Margin+Shared 94.56 0.0550 89.00 0.3119 89.13 0.1098
NeuroCRF(FF) 93.94 0.0507 88.75 0.2305 87.58 0.0739

+Margin 93.97 0.0972 89.03 0.1505 87.90 0.1122
+Shared 94.08 0.0760 89.08 0.1818 87.95 0.1569

+Margin+Shared 94.20 0.0650 88.82 0.1385 88.10 0.1082

Table 5.2 Comparison of LSTM-based NeuroCRFs and full-rank FF-based
NeuroCRFs for the Chunking (CoNLL-2000), NER (CoNLL-2003), and
WikiNER (Wikipedia) task. Large margin training, shared parameter and the
combination of both are also compared. Results are the average µ and standard
deviation σ of 10 models.

Chunking

Table 5.3 shows detailed results obtained when LSTM-based NeuroCRFs are used for the
chunking task. The performance metric used are described in Section 2.6 The table is divided
into two set of experiments: full-rank LSTM-based NeuroCRFs and LSTM-based NeuroCRF
with shared parameters. Those base configurations are compared to the same configuration
trained with large margin.

The results in Table 5.3 show that the best configuration is the combination of large
margin training and shared parameters. This configuration has the best F

(s)
1 , although it also

has the worst classification accuracy. This illustrates the importance of good segmentation
for this task.

While the combination of shared parameter and large margin training resulted in the best
configuration, Table 5.3 shows that LSTM-based NeuroCRFs without shared parameters
outperform LSTM-based NeuroCRFs with shared parameters. In this particular case, both
F

(s)
1 and classification accuracy were degraded, reducing overall performance.

96 Recurrent NeuroCRFs

LSTM-based +Margin +Shared +Mar.+Sha.
94.1

94.2

94.3

94.4

94.5

94.6

94.7

F
1

(a) Chunking

LSTM-based +Margin +Shared +Mar.+Sha.
88.0
88.2
88.4
88.6
88.8
89.0
89.2
89.4
89.6
89.8

F
1

(b) NER

LSTM-based +Margin +Shared +Mar.+Sha.
88.7

88.8

88.9

89.0

89.1

89.2

89.3

F
1

(c) WikiNER

Fig. 5.4 Boxplots comparing the performance of LSTM-based NeuroCRFs for
the Chunking, NER and WikiNER task.

5.5 Experimental Study 97

Table 5.3 show that large margin training improved segmentation. It also reduced classi-
fication accuracy. Without shared parameters, the two changes cancel each other, resulting
in similar overall performance. With shared parameters, the improved F

(s)
1 more than com-

pensate for the reduction in classification accuracy.
The impact of the LSTM layer is observable by comparing the results in Table 5.3 and

the results shown in Table 4.5. The performance of the NeuroCRFs using a LSTM layer
shows significant improvement over the baseline NeuroCRFs. Most of the improvement
are caused by better segmentation. There are no significant change to the already high
classification accuracy, but they are significant improvement to the segmental F1, indicating
better segmentation.

Figure 5.4a is a boxplot of the results in Table 5.3. It shows significant improvements
for the combination of large margin training and shared parameters. Figure 5.4a shows the
similar performance of LSTM-based NeuroCRF with and without large margin training. It
also show that performance is lower when shared parameters are added without large margin
training.

LSTM-based
NeuroCRF

+Margin
Measure µ σ µ σ

F1 94.46 0.0924 94.46 0.0948
Precision 94.48% 0.0890 94.47% 0.1068

Recall 94.43% 0.1016 94.45% 0.0959
Class. Acc. 98.81% 0.0223 98.76% 0.0215

F
(s)
1 95.60 0.0958 95.64 0.0891

Shared +Margin
F1 94.31 0.0849 94.56 0.0550

Precision 94.31% 0.1107 94.57% 0.0618
Recall 94.30% 0.0773 94.56% 0.0823

Class. Acc. 98.75% 0.0371 98.72% 0.0162
F

(s)
1 95.50 0.0784 95.79 0.0565

Table 5.3 Detailed results comparing LSTM-based NeuroCRFs for the
Chunking (CoNLL-2000) task, showing the F1, precision, recall, classification
accuracy and segmental F1. “Shared” refers to full-rank LSTM-based Neuro-
CRFs with shared parameters. Results are the average µ and standard devia-
tion σ of 10 models. Bold font indicates absolute best result, while italic font
indicate per-row best result.

98 Recurrent NeuroCRFs

Named Entity Recognition

Table 5.4 shows detailed results obtained when LSTM-based NeuroCRFs are used for the
NER task. The performance metric used are described in Section 2.6 The table is divided
into two set of experiments: full-rank LSTM-based NeuroCRFs and LSTM-based NeuroCRF
with shared parameters. Those base configurations are compared to the same configuration
trained with large margin.

Table 5.4 shows that the best configurations are the full-rank LSTM-based NeuroCRFs
and the full-rank LSTM-based NeuroCRFs trained with large margin. Those two models
are not equivalent, even if their overall performance are. The segmentation performance
of the large margin model is higher, but its classification performance is lower. We used a
two-tailed Student’s T-test to verify the statistical significance of those results. As expected,
the differences in precision and recall are not statistically significant (p ≥ 94%), but the
differences in F

(s)
1 and Ac are significant (p ≤ 2.85% and p ≤ 3.12%, respectively).

Table 5.4 and Table 5.2 show degraded performance when using shared parameters on
the NER (CoNLL-2003) task. This degradation affects all performance metrics, and is
statistically significant (p ≤ 0.01%.) This combination of LSTM layer and added shared
parameter has significantly more parameters than the baseline NeuroCRF. CoNLL-2003
is the smallest training corpus used in our experiment, and we do not observe a similar
degradation with the other tasks.

Figure 5.4b is a boxplot of the results in Table 5.4. It shows the similar performance of
LSTM-based NeuroCRF with and without large margin training. It also show that perfor-
mance is significantly lower when shared parameters are added without large margin training.
With the chunking task, large margin training improved performance when combined with
shared parameters. Figure 5.4b shows that large margin training only compensate for part
of the degradation caused by the shared parameters. This indicates that the combination
of added shared parameters and the parameters required by the LSTM layer gates increases
the overfitting, and that the training corpus is too small to properly train those models.

WikiNER

Table 5.5 shows detailed results obtained when LSTM-based NeuroCRFs are used for the
WikiNER task. The performance metric used are described in Section 2.6 The table is
divided into two set of experiments: full-rank LSTM-based NeuroCRFs and LSTM-based

5.5 Experimental Study 99

LSTM-based
NeuroCRF

+Margin
Measure µ σ µ σ

F1 89.30 0.2432 89.30% 0.1526
Precision 89.42% 0.3862 89.41% 0.1986

Recall 89.19% 0.2061 89.18% 0.2613
Class. Acc. 94.83% 0.1849 94.64% 0.1735

F
(s)
1 94.17 0.1576 94.36 0.1878

Shared +Margin
F1 88.25 0.1833 89.00 0.3119

Precision 88.50% 0.1471 89.03% 0.4034
Recall 88.00% 0.2967 88.98% 0.2751

Class. Acc. 94.23% 0.1563 94.56% 0.3009
F

(s)
1 93.66 0.2088 94.12 0.1298

Table 5.4 Detailed results comparing LSTM-based NeuroCRFs for the NER
(CoNLL-2003) task, showing the F1, precision, recall, classification accuracy
and segmental F1. “Shared” refers to full-rank LSTM-based NeuroCRFs with
shared parameters. Results are the average µ and standard deviation σ of
10 models. Bold font indicates absolute best result, while italic font indicate
per-row best result.

100 Recurrent NeuroCRFs

NeuroCRF with shared parameters. Those base configurations are compared to the same
configuration trained with large margin.

Table 5.5 shows that the best configuration is a full-rank LSTM-based NeuroCRFs with
shared parameters trained with large margin training. The second best configuration is
a full-rank LSTM-based NeuroCRFs. The F1, precisions, recalls, classification accuracies
and F

(s)
1 of those two configurations are similar. Two-tailed Student’s T-tests show that

the differences are not statistically significant (all p ≥ 17%). The third best configuration
is a full-rank LSTM-based NeuroCRFs with shared parameters. Its F1, precisions, recalls,
and F

(s)
1 is not statistically difference from the ones of the best configuration (p ≥ 7%),

but its classification accuracy is (p ≤ 4%). Finally, the worst configuration is a full-rank
LSTM-based NeuroCRFs trained with large margin training. Its performance is statistically
significantly different from the performance of the other configurations (p ≤ 0.1%).

Table 5.5 and Table 5.2 shows that the worst LSTM-based NeuroCRF configuration
outperforms the best FFNN-based NeuroCRF configuration. The difference is statistically
significant (p ≤ 0.01%). Comparing the detailed full-rank results found in Table 4.9 with
Table 5.5 shows that both segmental and classification accuracy are improved by the LSTM
layer.

Figure 5.4c is a boxplot of the results in Table 5.5. It shows that the performance of the
best and second best configuration are similar, and confirm the degradation observed with
large margin training without added shared parameters.

5.5.5 BLSTM-based NeuroCRF

Table 5.6 shows the results obtained when the FF NN used in the previous chapters is
replaced by a bi-directional LSTM layer. Results from Table 5.2 are included for comparison.
For the WikiNER task, the worst BLSTM configuration is better than the best LSTM
configuration. For the Chunking task, performance is improved by the BLSTM layer, but
the best LSTM configuration is better than the worst BLSTM configuration. Results are
more complex for the NER (CoNLL-2003) task. For this task, there is no clear ranking
between LSTM and BLSTM-based NeuroCRF.

5.5 Experimental Study 101

LSTM-based
NeuroCRF

+Margin
Measure µ σ µ σ

F1 89.11 0.0795 88.82 0.0835
Precision 89.26% 0.0999 89.00% 0.0949

Recall 88.96% 0.0621 88.65% 0.0865
Class. Acc. 94.57% 0.0709 94.40% 0.0681

F
(s)
1 94.23 0.0557 94.09 0.0684

Shared +Margin
F1 89.04 0.1155 89.13 0.1098

Precision 89.22% 0.1114 89.31% 0.1042
Recall 88.86% 0.1280 88.95% 0.1256

Class. Acc. 94.45% 0.0963 94.54% 0.0791
F

(s)
1 94.27 0.0653 94.28 0.0812

Table 5.5 Detailed results comparing LSTM-based NeuroCRFs for the
WikiNER task, showing the F1, precision, recall, classification accuracy and
segmental F1. “Shared” refers to full-rank LSTM-based NeuroCRFs with shared
parameters. Results are the average µ and standard deviation σ of 10 models.
Bold font indicates absolute best result, while italic font indicate per-row best
result.

Chunking NER WikiNER
Configuration µ σ µ σ µ σ

BLSTM-based NeuroCRF 94.57 0.0743 89.23 0.3703 89.28 0.1070
+Margin 94.65 0.0871 89.05 0.2064 89.45 0.1337
+Shared 94.52 0.0944 89.17 0.1155 89.23 0.0712

+Margin+Shared 94.61 0.0613 88.83 0.2496 89.32 0.1406
LSTM-based NeuroCRF 94.46 0.0924 89.30 0.2432 89.11 0.0795

+Margin 94.46 0.0948 89.30 0.1526 88.82 0.0835
+Shared 94.31 0.0849 88.25 0.1833 89.04 0.1155

+Margin+Shared 94.56 0.0550 89.00 0.3119 89.13 0.1098

Table 5.6 Comparison of BLSTM-CRFs and LSTM-CRFs for the Chunking
(CoNLL-2000), NER (CoNLL-2003), and WikiNER (Wikipedia) task. Neu-
roCRFs using bi-directional LSTM layers are compared to NeuroCRFs using
LSTM layers. Large margin training, shared parameter and the combination of
both are also compared. Results are the average µ and standard deviation σ of
10 models.

102 Recurrent NeuroCRFs

BLSTM-based +Margin +Shared +Mar.+Sha.

94.4

94.5

94.6

94.7

94.8

F
1

(a) Chunking

BLSTM-based +Margin +Shared +Mar.+Sha.
88.2
88.4
88.6
88.8
89.0
89.2
89.4
89.6
89.8

F
1

(b) NER

BLSTM-based +Margin +Shared +Mar.+Sha.
89.0

89.1

89.2

89.3

89.4

89.5

89.6

89.7

F
1

(c) WikiNER

Fig. 5.5 Boxplots comparing the performance of bi-directional LSTM-based
NeuroCRFs for the Chunking, NER and WikiNER task.

5.5 Experimental Study 103

Chunking

Table 5.7 shows detailed results obtained when BLSTM-based full-rank NeuroCRFs are used
for the chunking task. The performance metric used are described in Section 2.6 The table is
divided into two set of experiments: full-rank BLSTM-based NeuroCRFs and BLSTM-based
NeuroCRF with shared parameters. Those base configurations are compared to the same
configuration trained with large margin.

The best configuration is a BLSTM-based full-rank NeuroCRF trained with large margin
training. Two-tailed Student’s T-tests show that the differences between this configuration
and BLSTM-based full-rank NeuroCRF and BLSTM-based full-rank NeuroCRF with shared
parameter are statistically significant (p ≤ 4.4% and p ≤ 0.4%, respectively). The difference
between this best configuration and the second best, BLSTM-based full-rank NeuroCRF
with shared parameter trained with large margin training, is not statistically significant
(p ≥ 25%). This is also visible in Figure 5.5a.

In general, we see that with BLSTM-layer, performance is improved by large margin
training and not significantly affected by shared parameters.

Named Entity Recognition

Table 5.8 shows detailed results obtained when BLSTM-based full-rank NeuroCRFs are used
for the NER (CoNLL-2003) task. The performance metric used are described in Section 2.6
The table is divided into two set of experiments: full-rank BLSTM-based NeuroCRFs and
BLSTM-based NeuroCRF with shared parameters. Those base configurations are compared
to the same configuration trained with large margin.

The best configuration is a BLSTM-based full-rank NeuroCRF. The second best is a
BLSTM-based full-rank NeuroCRF with shared parameter. A two-tailed Student’s T-tests
shows that the differences between those two configurations is not statistically significant
(p ≥ 61%). The difference between the best configuration and the third best, a BLSTM-
based full-rank NeuroCRF trained with large margin training, is also not statistically sig-
nificant (p ≥ 19%). Finally, the difference between the best and worst configuration is
statistically significant (p ≤ 2%). This is also visible in Figure 5.5b.

Given that the results in Table 5.8 and Table 5.4 cannot be clearly separated, further
analysis is required. There is not a statistically significant difference between the best config-
uration in Table 5.8 and the best configurations in Table 5.4 (p ≥ 61%). This indicates that

104 Recurrent NeuroCRFs

BLSTM-
based

NeuroCRF
+Margin

Measure µ σ µ σ

F1 94.57 0.0743 94.65 0.0871
Precision 94.64% 0.0983 94.67% 0.0967

Recall 94.51% 0.0704 94.63% 0.0861
Class. Acc. 98.88% 0.0341 98.89% 0.0345

F
(s)
1 95.65 0.0467 95.71 0.0854

Shared +Margin
F1 94.52 0.0944 94.61 0.0613

Precision 94.55% 0.1050 94.60% 0.0911
Recall 94.48% 0.0975 94.63% 0.0703

Class. Acc. 98.85% 0.0512 98.85% 0.0214
F

(s)
1 95.62 0.0758 95.71 0.0652

Table 5.7 Detailed results comparing BLSTM-based NeuroCRFs for the
Chunking (CoNLL-2000) task, showing the F1, precision, recall, classification
accuracy and segmental F1. “Shared” refers to full-rank BLSTM-based Neuro-
CRFs with shared parameters. Results are the average µ and standard devia-
tion σ of 10 models. Bold font indicates absolute best result, while italic font
indicate per-row best result.

5.5 Experimental Study 105

the lower performance, from F1 = 89.30 to F1 = 89.23, is caused by the random initialization.
In general, for this task, the BLSTM layer did not improve performance significantly.

Any difference is masked by the significant variability caused by the random initialization.

BLSTM-
based

NeuroCRF
+Margin

Measure µ σ µ σ

F1 89.23 0.3703 89.05 0.2064
Precision 89.38% 0.2925 89.15% 0.0991

Recall 89.09% 0.4888 88.94% 0.3958
Class. Acc. 94.83% 0.2693 94.68% 0.1525

F
(s)
1 94.10 0.1766 94.05 0.1678

Shared +Margin
F1 89.17 0.1155 88.83 0.2496

Precision 89.27% 0.2740 88.91% 0.3352
Recall 89.07% 0.2215 88.75% 0.2927

Class. Acc. 94.73% 0.1327 94.54% 0.1882
F

(s)
1 94.13 0.1245 93.96 0.1214

Table 5.8 Detailed results comparing BLSTM-based NeuroCRFs for the NER
(CoNLL-2003) task, showing the F1, precision, recall, classification accuracy
and segmental F1. “Shared” refers to full-rank BLSTM-based NeuroCRFs with
shared parameters. Results are the average µ and standard deviation σ of
10 models. Bold font indicates absolute best result, while italic font indicate
per-row best result.

WikiNER

Table 5.9 shows detailed results obtained when BLSTM-based full-rank NeuroCRFs are used
for the WikiNER task. The performance metric used are described in Section 2.6 The table
is divided into two set of experiments: full-rank BLSTM-based NeuroCRFs and BLSTM-
based NeuroCRF with shared parameters. Those base configurations are compared to the
same configuration trained with large margin.

The best configuration is a BLSTM-based full-rank NeuroCRF trained with large margin
training. The second best configuration is the equivalent with shared parameters. A two-
tailed Student’s T-tests shows that the differences between those two configurations is not
statistically significant (p ≥ 7%). The best configuration is statistically different from the

106 Recurrent NeuroCRFs

two remaining configurations (p ≤ 1%), while the second best configuration is not (p ≥ 9%).
This is also visible in Figure 5.5c.

Comparing the results in Table 5.9 and Table 5.5, the worst BLSTM-based configuration
is better than the best LSTM-based configuration. The difference is statistically significant
(p ≤ 3.5%).

BLSTM-
based

NeuroCRF
+Margin

Measure µ σ µ σ

F1 89.28 0.1070 89.45 0.1337
Precision 89.46% 0.1125 89.58% 0.1305

Recall 89.10% 0.1049 89.32% 0.1507
Class. Acc. 94.69% 0.0932 94.77% 0.0863

F
(s)
1 94.29 0.0524 94.38 0.0903

Shared +Margin
F1 89.23 0.0712 89.32 0.1406

Precision 89.41% 0.0604 89.50% 0.1313
Recall 89.05% 0.0927 89.15% 0.1586

Class. Acc. 94.60% 0.0533 94.64% 0.0913
F

(s)
1 94.32 0.0776 94.38 0.0797

Table 5.9 Detailed results comparing BLSTM-based NeuroCRFs for the
WikiNER task, showing the F1, precision, recall, classification accuracy and
segmental F1. “Shared” refers to full-rank BLSTM-based NeuroCRFs with
shared parameters. Results are the average µ and standard deviation σ of
10 models. Bold font indicates absolute best result, while italic font indicate
per-row best result.

5.5.6 Importance of context size

The computational complexity of LSTM layers is usually dominated by the large matrix
multiplication between the input and the corresponding weight matrix. This, in turn, is a
function of the size on the input vector, itself a function of the sliding window’s size. This
window is composed of a central word, the C words preceding the central word, and the
C words following the central word. Removing the context from this sliding window would
reduce the computational complexity of LSTM layer.

5.6 Summary and discussion 107

The context provided by the preceding and following words is an important source of
information for feature analysis. Without it, FF NNs would have to extract features from
isolated words, since they have no memory of past or future. In the case of bi-directional
LSTM layers, both the past and future can be available at all time step. The internal memory
can be used to replace the important information that would be provided by the context.

A small experiment on WikiNER, where models are trained with no context, confirms
this. Table 5.10 shows that the performance of a full-rank NeuroCRF using a FFNN is
significantly degraded with the context is removed. The segmentation performance is re-
duced. More interestingly, so is the classification accuracy, confirming that having access
to the entire named entity is required in order to classify it correctly. Those results con-
firm NeuroCRFs using a FFNN cannot learn essential features, as those features require the
context.

Table 5.10 also shows that a bi-directional LSTM layer can reconstruct this context.
Those results show that NeuroCRFs using a BLSTM NN can learn to reproduce the essential
parts of the context, by using their internal memory as a substitute.

Model F
(s)
1 Ac F1

NeuroCRF (FF) 93.56 93.61% 87.58
Without Context 91.98 91.99% 84.61
NeuroCRF (BLSTM) 94.10 94.83% 89.23
Without Context 94.23 94.70% 89.23

Table 5.10 Impact of context component of input for WikiNER.

5.6 Summary and discussion

In this chapter, we presented recurrent versions of the NeuroCRF models presented in Chap-
ter 3 and Chapter 4. The resulting recurrent NeuroCRFs are able to use the entire input
sequence when learning and extracting features.

Our initial experiment compared two forms of recurrent NeuroCRFs. The first is based
on a conventional recurrent layer, where the previous output of the layer is used to compute
the current output; this is a full-rank form of R-CRF. The second form is based on a LSTM
layer, where an internal memory is also used to carry the summary of previous inputs.
Our experimental results shows significant improvements with the LSTM-based NeuroCRF

108 Recurrent NeuroCRFs

compared to the RNN-based NeuroCRF and the FFNN baseline.
This initial experiment was followed by the combination of the improved NeuroCRF

presented in Chapter 3 with LSTM layers. Performance was significantly improved for the
WikiNER and chunking tasks. Results are less clear on the NER (CoNLL-2003) task, due
to the high variance caused by the random initialization.

Finally, we investigated bi-directional LSTM layers, which are divided in a causal and
anti-causal section. Our experimental results showed significant improvements over purely
causal LSTM layers. We also confirmed that bi-directional LSTM layers can replace the
context component of the input window without suffering from degraded performance. This
property can be used to decrease the computational complexity of LSTM-based system,
which is dominated by the matrix multiplication of the input and weight of the LSTM layer.

109

Chapter 6

Conclusion and Future Work

This chapter will present a summary of the major contributions found in Chapters 3, 4 and 5
of this thesis to the problem of natural language understanding (NLU). This will be followed
by an overview of some potential extension of the work presented in this thesis.

6.1 Full-rank NeuroCRFs

Chapter 3 presented full-rank NeuroCRFs, the first contribution of this thesis. Full-rank
NeuroCRFs are the combination of a conditional random field (CRF) and a neural network
(NN). A CRF’s factor functions are used to factorize a complex distribution into a set of
simpler factors. A full-rank NeuroCRF’s factor functions are the outputs of a NN. Linear-
chain CRFs, commonly used in natural language understanding for information extraction
through sequence labelling, have factor functions corresponding to label-to label transitions.
In a full-rank NeuroCRF, each possible label-to-label transition has a corresponding NN out-
put. The corresponding factor function is a function of the origin label yt−1, the destination
label yt and of the observation xt.

Previous work [59, 3, 60, 61] in this area focussed on low-rank NeuroCRFs, where the
NN is used to model label emission. Full-rank NeuroCRFs were able to obtain significant
improvements on a chunking task, where the origin label is a strong predictor of the destina-
tion label. Improvements were also obtained on two NER tasks. Those improvements were
limited by the low mutual information between successive labels, and by the higher class
entropy of the NER tasks. The experimental results showed that full-rank NeuroCRFs were
able to improve, compared to low-rank, the modelling of inter-labels dependencies, without

110 Conclusion and Future Work

degrading performance in the cases where those dependencies are limited.

6.2 Shared Parameters

Chapter 4 presented full-rank NeuroCRFs with added shared parameters. NN outputs, cor-
responding to generalized events, were added, and combined linearly to form factor functions
corresponding to label-to-label transitions. An initial sharing scheme, suitable for most tasks,
was developed.

This sharing scheme creates emission events based on the class corresponding to a label,
as well as to the position in a segment (i.e. first or following word) indicated by the same
label. Those emission events are then used to create a set of transitions events, and output
units corresponding to those events are added to a full-rank NeuroCRF. The full factor
functions average the NN outputs corresponding to the generalized events set of a specific
transition.

Those shared parameters were found to improve performance on all three tasks. They
were also combined with large margin training, intended to improve the model’s generaliza-
tion, and with ensemble learning.

6.3 Recurrent NeuroCRF

Chapter 5 presented the use of recurrent NN, specifically LSTM layers, in NeuroCRFs. LSTM
layers use an internal memory cell as part of their recursion, allowing them to model long
term dependencies between input and output. The use of bi-directional LSTM layers, which
consist of causal and anti-causal halves, was also investigated.

Significant improvements were observed with LSTM and bi-directional LSTM layers.
Their performance when combined with the shared parameters presented in Chapter 4, as
well as large margin training, was also investigated. Finally, an experimental study showed
that bi-directional layers eliminate the need for the sliding window.

6.4 Future Work

This section presents an overview of some possible future work extending the contributions
of this thesis.

6.4 Future Work 111

6.4.1 More Datasets

While full-rank NeuroCRFs improved performance over low-rank NeuroCRF, the improve-
ments were limited when the mutual information between successive labels was low. In the
case of the NER task, the mutual information is limited by the sparseness of named entities
in the datasets used. An obvious extension of the work presented in this thesis would be to
apply full-rank NeuroCRFs to other tasks with high mutual information between labels.

Our experimented studies used labelled data based on high quality written English. While
this should not affect the mutual information, the high regularity of this form of English
should simplify the feature analysis. Feature analysis of spontaneous speech, with its inherent
irregularities and the errors introduced by automatic speech recognition, is significantly more
difficult. FF-based and LSTM-based NeuroCRFs should be negatively affected by those
irregularities, but we can expect the degradation to be smaller for LSTM-based NeuroCRFs.

Finally, the size and depth of our models were limited by the available data, and the
complexity of the tasks used. Larger datasets should support larger and deeper models
without overfitting the training data. More complex tasks, requiring more complex feature
extraction and with high mutual information between labels, would be ideal candidates for
LSTM-based full-rank NeuroCRFs.

6.4.2 Semi-Supervised Learning

Large amount of unlabelled written text is available through the web. Similarly, unlabelled
speech can be obtained inexpensively. This data cannot be used for the supervised learning
algorithm used in this thesis, but could be used by semi-supervised learning algorithms,
which use a mix of labelled and unlabelled training examples to train models.

The process used to pre-train the word representation could be extended to pre-train the
hidden layer of a NeuroCRF. This would be done by using the unlabelled data to train a
deep NN language model, whose parameters would be used to initialize the hidden layers of
a NeuroCRF.

Self-training [97, 98, 99, 100] consists of using the model being trained to label the
unlabelled training examples. First, the labelled data is used to learn parameters. The
resulting model is used to label the unlabelled training examples. Those examples are used
to update the model’s parameters. The process can be repeated, depending on the algorithm.
This approach requires enough data to train a good initial model, and can be computationally

112 Conclusion and Future Work

expansive, due to its iterative nature.
Finally, the algorithm presented in [101] could be adapted for NeuroCRFs. This algorithm

minimizes a loss function composed of a discriminative model and a generative model, both
based on NNs. In [101], this algorithm is used to train image classifiers, where the class is
scalar. Linear chain NeuroCRFs are used with sequences, and the algorithm would have to
be modified to take this into account.

6.4.3 Data Driven Parameters Sharing Scheme

Shared parameters were introduced in Chapter 4. An a-priori sharing scheme was used. This
scheme makes two major assumptions. First, that all the generalized events associated with
a given transition are relevant. Two, that the set of a-priori similarities between labels were
the only possible similarities.

This points to the development of a data driven sharing scheme. In particular, an ap-
proach based on iteratively clustering transitions, automatically creating groups of similar
labels and label-to-label transitions based on their internal representation found in the hid-
den layer, should result in a more efficient use of the model’s parameters. This clustering
would remove irrelevant generalized events, and would create missing links between transi-
tions. This could also be used to extend the Markov order of the model without significantly
increasing the size of the NN output layer.

In our implementation, the added NN outputs are combined using a fixed linear trans-
form. An obvious approach for data driven parameters sharing would be to learn this trans-
form, which was considered during the work leading to Chapter 4. Further consideration
showed that this would, in fact, simply result in a deeper network, as this new transform
would simply add a hidden layer. This does underline a key point: the parameter sharing
is, fundamentally, a very constrained layer. Future work, in this area, is essentially about
determining the required constraints.

6.4.4 System Combination

The ensemble models presented in Chapter 4 were products of experts. This type of ensemble
was selected in order to combine NeuroCRFs whose outputs have the same dimensionality
and interpretation. We did not investigate ensembles of NeuroCRFs with other model classes.
Since the performance of ensemble models rely on complementarity between models, using

6.4 Future Work 113

heterogenous models should improve performance.
The experiments were also limited to product of experts. Other combinations, such as

ROVER [79] or the CRF-based ensemble method presented in [102], could outperform the
product of expert, while supporting heterogenous models who cannot be used with a product
of expert.

6.4.5 Information Extraction with Attention Mechanisms

An attention mechanism [92] was used in machine translation to indicate the words in the
source language utterance relevant for a word in the target language utterance. The attention
model can learn complex many-to-many mapping. This could be used to extract information
contained in non-consecutive words, as well as to support overlapping information, which
cannot be extracted with sequence labelling. While this restriction does not have negative
effects for NER, this limitation is the source of the main difference between the structure
obtained with chunking and the full parse tree. Attention mechanism have been used for
this purpose in[103], without using CRF. Attention models could be used as factor functions
in a NeuroCRF. The model output variables would not be a sequence of label, which would
required the use of task-specific clique templates. This general approach could also support
NLU tasks such as document summarization, which are not well supported by sequence
labelling. It could also be used to extract information directly, without labelling. This is
especially useful for tasks such as slot or form filling, where field in a fixed structure must
be filled by extracting information from one or more utterance, usually as part of a dialog
system.

114

References

[1] K. Gimpel and N. A. Smith, “Softmax-margin crfs: Training log-linear models with
cost functions,” in Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics. Associa-
tion for Computational Linguistics, 2010, pp. 733–736.

[2] E. F. Tjong Kim Sang and S. Buchholz, “Introduction to the conll-2000 shared task:
Chunking,” in Proceedings of the 2Nd Workshop on Learning Language in Logic and
the 4th Conference on Computational Natural Language Learning - Volume 7, ser.
ConLL ’00. Stroudsburg, PA, USA: Association for Computational Linguistics, 2000,
pp. 127–132. [Online]. Available: http://dx.doi.org/10.3115/1117601.1117631

[3] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Nat-
ural language processing (almost) from scratch,” The Journal of Machine Learning
Research, vol. 12, pp. 2493–2537, 2011.

[4] E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the conll-2003 shared
task: Language-independent named entity recognition,” in Proceedings of CoNLL-
2003, W. Daelemans and M. Osborne, Eds. Edmonton, Canada, 2003, pp. 142–147.

[5] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in Proceedings of
the Eighteenth International Conference on Machine Learning, ser. ICML ’01. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 282–289. [Online].
Available: http://dl.acm.org/citation.cfm?id=645530.655813

[6] A. McCallum and W. Li, “Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons,” in Proceedings of the
Seventh Conference on Natural Language Learning at HLT-NAACL 2003 - Volume 4,
ser. CONLL ’03. Stroudsburg, PA, USA: Association for Computational Linguistics,
2003, pp. 188–191. [Online]. Available: http://dx.doi.org/10.3115/1119176.1119206

[7] F. Sha and F. Pereira, “Shallow parsing with conditional random fields,” in
Proceedings of the 2003 Conference of the North American Chapter of the Association

http://dx.doi.org/10.3115/1117601.1117631
http://dl.acm.org/citation.cfm?id=645530.655813
http://dx.doi.org/10.3115/1119176.1119206

References 115

for Computational Linguistics on Human Language Technology - Volume 1, ser.
NAACL ’03. Stroudsburg, PA, USA: Association for Computational Linguistics,
2003, pp. 134–141. [Online]. Available: http://dx.doi.org/10.3115/1073445.1073473

[8] J. Turian, L. Ratinov, and Y. Bengio, “Word representations: A simple and general
method for semi-supervised learning,” in Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, ser. ACL ’10. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2010, pp. 384–394. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1858681.1858721

[9] A. Passos, V. Kumar, and A. McCallum, “Lexicon infused phrase embeddings for
named entity resolution,” CoNLL-2014, p. 78, 2014.

[10] Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and J.-L. Gauvain, “Neural proba-
bilistic language models,” in Innovations in Machine Learning. Springer, 2003, pp.
137–186.

[11] M.-A. Rondeau and Y. Su, “Full-rank linear-chain neurocrf for sequence labeling,” in
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Confer-
ence on, April 2015.

[12] ——, “Recent improvements to neurocrfs for named entity recognition,” in Automatic
Speech Recognition and Understanding Workshop (ASRU), 2015 IEEE, December 2015.

[13] ——, “Lstm-based neurocrfs for named entity recognition,” in Interspeech 2016, 2016.

[14] T. Kudo and Y. Matsumoto, “Chunking with support vector machines,” in Proceedings
of the second meeting of the North American Chapter of the Association for Computa-
tional Linguistics on Language technologies. Association for Computational Linguis-
tics, 2001, pp. 1–8.

[15] H. Isozaki and H. Kazawa, “Efficient support vector classifiers for named entity recogni-
tion,” in Proceedings of the 19th international conference on Computational linguistics-
Volume 1. Association for Computational Linguistics, 2002, pp. 1–7.

[16] J. Kazama, T. Makino, Y. Ohta, and J. Tsujii, “Tuning support vector machines
for biomedical named entity recognition,” in Proceedings of the ACL-02 workshop on
Natural language processing in the biomedical domain-Volume 3. Association for Com-
putational Linguistics, 2002, pp. 1–8.

[17] S. Sekine, R. Grishman, and H. Shinnou, “A decision tree method for finding and
classifying names in japanese texts,” in Proceedings of the Sixth Workshop on Very
Large Corpora, 1998.

http://dx.doi.org/10.3115/1073445.1073473
http://dl.acm.org/citation.cfm?id=1858681.1858721

116 References

[18] G. Paliouras, V. Karkaletsis, G. Petasis, and C. D. Spyropoulos, “Learning decision
trees for named-entity recognition and classification,” in ECAI Workshop on Machine
Learning for Information Extraction, 2000.

[19] D. M. Bikel, R. Schwartz, and R. M. Weischedel, “An algorithm that learns what’s in
a name,” Machine learning, vol. 34, no. 1-3, pp. 211–231, 1999.

[20] K. Seymore, A. McCallum, and R. Rosenfeld, “Learning hidden markov model struc-
ture for information extraction,” in AAAI-99 Workshop on Machine Learning for In-
formation Extraction, 1999, pp. 37–42.

[21] G. Zhou and J. Su, “Named entity recognition using an hmm-based chunk tagger,” in
Proceedings of the 40th Annual Meeting on Association for Computational Linguistics,
ser. ACL ’02. Stroudsburg, PA, USA: Association for Computational Linguistics,
2002, pp. 473–480. [Online]. Available: http://dx.doi.org/10.3115/1073083.1073163

[22] D. Shen, J. Zhang, G. Zhou, J. Su, and C.-L. Tan, “Effective adaptation of a hidden
markov model-based named entity recognizer for biomedical domain,” in Proceedings
of the ACL 2003 workshop on Natural language processing in biomedicine-Volume 13.
Association for Computational Linguistics, 2003, pp. 49–56.

[23] G. Zhou and J. Su, “Error-driven hmm-based chunk tagger with context-dependent
lexicon,” in Proceedings of the 2000 Joint SIGDAT conference on Empirical meth-
ods in natural language processing and very large corpora: held in conjunction with
the 38th Annual Meeting of the Association for Computational Linguistics-Volume 13.
Association for Computational Linguistics, 2000, pp. 71–79.

[24] A. Molina and F. Pla, “Shallow parsing using specialized hmms,” The Journal of
Machine Learning Research, vol. 2, pp. 595–613, 2002.

[25] A. McCallum, D. Freitag, and F. C. Pereira, “Maximum entropy markov models for
information extraction and segmentation.” in ICML, vol. 17, 2000, pp. 591–598.

[26] D. Klein, J. Smarr, H. Nguyen, and C. D. Manning, “Named entity recognition with
character-level models,” in Proceedings of the seventh conference on Natural language
learning at HLT-NAACL 2003-Volume 4. Association for Computational Linguistics,
2003, pp. 180–183.

[27] M. Fresko, B. Rosenfeld, and R. Feldman, “A hybrid approach to ner by memm and
manual rules,” in Proceedings of the 14th ACM international conference on Information
and knowledge management. ACM, 2005, pp. 361–362.

[28] G.-L. Sun, Y. Guan, X.-L. Wang, and J. Zhao, “A maximum entropy markov model
for chunking,” in 2005 International Conference on Machine Learning and Cybernetics,
vol. 6, Aug 2005, pp. 3761–3765.

http://dx.doi.org/10.3115/1073083.1073163

References 117

[29] C. Sutton and A. McCallum, An introduction to conditional random fields for relational
learning. Introduction to statistical relational learning. MIT Press, 2006.

[30] B. Settles, “Biomedical named entity recognition using conditional random fields and
rich feature sets,” in Proceedings of the International Joint Workshop on Natural Lan-
guage Processing in Biomedicine and its Applications. Association for Computational
Linguistics, 2004, pp. 104–107.

[31] J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local information into
information extraction systems by gibbs sampling,” in Proceedings of the 43rd Annual
Meeting on Association for Computational Linguistics. Association for Computational
Linguistics, 2005, pp. 363–370.

[32] N. Sobhana, P. Mitra, and S. Ghosh, “Conditional random field based named entity
recognition in geological text,” International Journal of Computer Applications, vol. 1,
no. 3, pp. 143–147, 2010.

[33] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring
in the statistical analysis of probabilistic functions of markov chains,” The annals of
mathematical statistics, vol. 41, no. 1, pp. 164–171, 1970.

[34] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for bound
constrained optimization,” SIAM Journal on Scientific Computing, vol. 16, no. 5, pp.
1190–1208, 1995.

[35] D. L. Vail, J. D. Lafferty, and M. M. Veloso, “Feature selection in conditional random
fields for activity recognition,” in Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on. IEEE, 2007, pp. 3379–3384.

[36] X. Wang, H. T. Ng, and K. C. Sim, “Dynamic conditional random fields for joint
sentence boundary and punctuation prediction.” in INTERSPEECH, 2012, pp. 1384–
1387.

[37] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are uni-
versal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[38] P. J. Werbos, “Generalization of backpropagation with application to a recurrent gas
market model,” Neural Networks, vol. 1, no. 4, pp. 339–356, 1988.

[39] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur, “Recurrent neural
network based language model.” in INTERSPEECH, vol. 2, 2010, p. 3.

[40] S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget, “Recurrent neural network based
language modeling in meeting recognition.” in INTERSPEECH, 2011, pp. 2877–2880.

118 References

[41] A. Graves, A. r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent
neural networks,” in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, May 2013, pp. 6645–6649.

[42] H. Sak, A. Senior, K. Rao, O. İrsoy, A. Graves, F. Beaufays, and J. Schalkwyk, “Learn-
ing acoustic frame labeling for speech recognition with recurrent neural networks,” in
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Confer-
ence on, April 2015, pp. 4280–4284.

[43] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Advances in Neural Information Processing Systems 27, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2014, pp. 3104–3112. [Online]. Available: http://papers.nips.cc/
paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

[44] P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Pro-
ceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[45] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient
descent is difficult,” Neural Networks, IEEE Transactions on, vol. 5, no. 2, pp. 157–166,
1994.

[46] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural
networks,” in Proceedings of The 30th International Conference on Machine Learning,
2013, pp. 1310–1318.

[47] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber,
“A novel connectionist system for unconstrained handwriting recognition,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 31, no. 5, pp. 855–868,
2009.

[48] H.-S. Le, I. Oparin, A. Allauzen, J. Gauvain, and F. Yvon, “Structured output layer
neural network language model,” in Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on, May 2011, pp. 5524–5527.

[49] R. Collobert and J. Weston, “A unified architecture for natural language processing:
Deep neural networks with multitask learning,” in Proceedings of the 25th international
conference on Machine learning. ACM, 2008, pp. 160–167.

[50] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed representa-
tions of words and phrases and their compositionality,” Neural Information Processing
Systems conference, 2013.

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

References 119

[51] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word repre-
sentations in vector space,” Proceedings of Workshop at ICLR, 2013.

[52] L. Qu, G. Ferraro, L. Zhou, W. Hou, N. Schneider, and T. Baldwin, “Big data small
data, in domain out-of domain, known word unknown word: The impact of word
representations on sequence labelling tasks,” CoNLL 2015, p. 83, 2015.

[53] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word rep-
resentation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Doha, Qatar: Association for Computational Lin-
guistics, October 2014, pp. 1532–1543.

[54] Z. Wu and C. L. Giles, “Sense-aaware semantic analysis: A multi-prototype word
representation model using wikipedia.” in AAAI. Citeseer, 2015, pp. 2188–2194.

[55] W. Ling, T. Luís, L. Marujo, R. F. Astudillo, S. Amir, C. Dyer, A. W. Black, and
I. Trancoso, “Finding function in form: Compositional character models for open vo-
cabulary word representation,” in Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Lisbon, Portugal: Association for Compu-
tational Linguistics, September 2015, pp. 1520–1530.

[56] H. Schmid, “Part-of-speech tagging with neural networks,” in Proceedings of the 15th
Conference on Computational Linguistics - Volume 1, ser. COLING ’94. Stroudsburg,
PA, USA: Association for Computational Linguistics, 1994, pp. 172–176. [Online].
Available: http://dx.doi.org/10.3115/991886.991915

[57] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large annotated
corpus of english: The penn treebank,” COMPUTATIONAL LINGUISTICS, vol. 19,
no. 2, pp. 313–330, 1993.

[58] J. Nothman, N. Ringland, W. Radford, T. Murphy, and J. R. Curran, “Learning
multilingual named entity recognition from Wikipedia,” Artificial Intelligence, vol. 194,
pp. 151–175, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.artint.2012.03.006

[59] T. Do, T. Arti et al., “Neural conditional random fields,” in International Conference
on Artificial Intelligence and Statistics, 2010, pp. 177–184.

[60] K. Yao, B. Peng, G. Zweig, D. Yu, X. Li, and F. Gao, “Recurrent conditional ran-
dom field for language understanding,” in Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on. IEEE, 2014, pp. 4077–4081.

[61] L. Deng and J. Chen, “Sequence classification using the high-level features extracted
from deep neural networks,” in Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on. IEEE, 2014, pp. 6844–6848.

http://dx.doi.org/10.3115/991886.991915
http://dx.doi.org/10.1016/j.artint.2012.03.006

120 References

[62] J. Sánchez and F. Perronnin, “High-dimensional signature compression for large-scale
image classification,” in Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on. IEEE, 2011, pp. 1665–1672.

[63] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International
journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[64] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105.

[65] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to human-
level performance in face verification,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2014, pp. 1701–1708.

[66] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-the-
shelf: an astounding baseline for recognition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2014, pp. 806–813.

[67] P. Xu and R. Sarikaya, “Convolutional neural network based triangular crf for joint
intent detection and slot filling,” in Automatic Speech Recognition and Understanding
(ASRU), 2013 IEEE Workshop on. IEEE, 2013, pp. 78–83.

[68] J. Peng, L. Bo, and J. Xu, “Conditional neural fields,” in Advances in Neural
Information Processing Systems 22, Y. Bengio, D. Schuurmans, J. Lafferty,
C. Williams, and A. Culotta, Eds. Curran Associates, Inc., 2009, pp. 1419–1427.
[Online]. Available: http://papers.nips.cc/paper/3869-conditional-neural-fields.pdf

[69] D. Yu, S. Wang, and L. Deng, “Sequential labeling using deep-structured conditional
random fields,” IEEE Journal of Selected Topics in Signal Processing, vol. 4, no. 6, pp.
965–973, 2010.

[70] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical
machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[71] O. Vinyals, Ł. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton, “Grammar as
a foreign language,” in Advances in Neural Information Processing Systems, 2015, pp.
2773–2781.

[72] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Transactions on Information Theory, vol. 13, no. 2, pp.
260–269, April 1967.

http://papers.nips.cc/paper/3869-conditional-neural-fields.pdf

References 121

[73] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron,
N. Bouchard, and Y. Bengio, “Theano: new features and speed improvements,” Deep
Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

[74] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,
“Improving neural networks by preventing co-adaptation of feature detectors,” arXiv
preprint arXiv:1207.0580, 2012.

[75] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,”
J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2188385.2188395

[76] N. S. Keskar and G. Saon, “A nonmonotone learning rate strategy for sgd training
of deep neural networks,” in Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on, April 2015.

[77] B. T. C. G. D. Roller, “Max-margin markov networks,” Advances in neural information
processing systems, vol. 16, p. 25, 2004.

[78] F. Sha and L. K. Saul, “Large margin hidden markov models for automatic speech
recognition,” in Advances in neural information processing systems, 2006, pp. 1249–
1256.

[79] J. G. Fiscus, “A post-processing system to yield reduced word error rates: Recognizer
output voting error reduction (rover),” in Automatic Speech Recognition and Under-
standing, 1997. Proceedings., 1997 IEEE Workshop on, Dec 1997, pp. 347–354.

[80] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140.
[Online]. Available: http://dx.doi.org/10.1007/BF00058655

[81] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[82] G. Mesnil, Y. Dauphin, K. Yao, Y. Bengio, L. Deng, D. Hakkani-Tur, X. He, L. Heck,
G. Tur, D. Yu et al., “Using recurrent neural networks for slot filling in spoken language
understanding,” Audio, Speech, and Language Processing, IEEE/ACM Transactions
on, vol. 23, no. 3, pp. 530–539, 2015.

[83] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and
P. H. Torr, “Conditional random fields as recurrent neural networks,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp. 1529–1537.

[84] J. Hammerton, “Named entity recognition with long short-term memory,” in Proceed-
ings of the seventh conference on Natural language learning at HLT-NAACL 2003-
Volume 4. Association for Computational Linguistics, 2003, pp. 172–175.

http://dl.acm.org/citation.cfm?id=2188385.2188395
http://dx.doi.org/10.1007/BF00058655

122 References

[85] J. P. Chiu and E. Nichols, “Named entity recognition with bidirectional lstm-cnns,”
Transactions of the Association for Computational Linguistics, vol. 4, pp. 357–370,
2016.

[86] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF Models for Sequence Tag-
ging,” ArXiv e-prints, Aug. 2015.

[87] X. Ma and E. Hovy, “End-to-end sequence labeling via bi-directional lstm-cnns-crf,”
arXiv preprint arXiv:1603.01354, 2016.

[88] Y. Shi, K. Yao, H. Chen, Y.-C. Pan, M.-Y. Hwang, and B. Peng, “Contextual spoken
language understanding using recurrent neural networks,” in Acoustics, Speech and
Signal Processing (ICASSP), 2015 IEEE International Conference on. IEEE, 2015,
pp. 5271–5275.

[89] B. Liu and I. Lane, “Attention-based recurrent neural network models for joint intent
detection and slot filling,” arXiv preprint arXiv:1609.01454, 2016.

[90] D. Hakkani-Tür, G. Tur, A. Celikyilmaz, Y.-N. Chen, J. Gao, L. Deng, and Y.-Y.
Wang, “Multi-domain joint semantic frame parsing using bi-directional rnn-lstm,” in
Proceedings of The 17th Annual Meeting of the International Speech Communication
Association, 2016.

[91] X. Zhang and H. Wang, “A joint model of intent determination and slot filling for
spoken language understanding.” IJCAI, 2016.

[92] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[93] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Advances in neural information processing systems, 2014, pp. 3104–3112.

[94] B. Liu and I. Lane, “Recurrent neural network structured output prediction for spoken
language understanding,” in Proc. NIPS Workshop on Machine Learning for Spoken
Language Understanding and Interactions, 2015.

[95] D. Guo, G. Tur, W.-t. Yih, and G. Zweig, “Joint semantic utterance classification and
slot filling with recursive neural networks,” in Spoken Language Technology Workshop
(SLT), 2014 IEEE. IEEE, 2014, pp. 554–559.

[96] K. Yao, B. Peng, Y. Zhang, D. Yu, G. Zweig, and Y. Shi, “Spoken language understand-
ing using long short-term memory neural networks,” in Spoken Language Technology
Workshop (SLT), 2014 IEEE. IEEE, 2014, pp. 189–194.

References 123

[97] M. Steedman, M. Osborne, A. Sarkar, S. Clark, R. Hwa, J. Hockenmaier, P. Ruhlen,
S. Baker, and J. Crim, “Bootstrapping statistical parsers from small datasets,” in
Proceedings of the tenth conference on European chapter of the Association for Com-
putational Linguistics-Volume 1. Association for Computational Linguistics, 2003,
pp. 331–338.

[98] C. Rosenberg, M. Hebert, and H. Schneiderman, “Semi-supervised self-training of ob-
ject detection models,” 2005.

[99] D. McClosky, E. Charniak, and M. Johnson, “Effective self-training for parsing,” in
Proceedings of the main conference on human language technology conference of the
North American Chapter of the Association of Computational Linguistics. Association
for Computational Linguistics, 2006, pp. 152–159.

[100] R. Reichart and A. Rappoport, “Self-training for enhancement and domain adaptation
of statistical parsers trained on small datasets,” in ACL, vol. 7, 2007, pp. 616–623.

[101] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised learning
with deep generative models,” in Advances in Neural Information Processing Systems,
2014, pp. 3581–3589.

[102] A. Celikyilmaz and D. Hakkani-Tur, “Investigation of ensemble models for sequence
learning,” in Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE Interna-
tional Conference on. IEEE, 2015, pp. 5381–5385.

[103] O. Vinyals, L. u. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton,
“Grammar as a foreign language,” in Advances in Neural Information Processing
Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, Eds. Curran Associates, Inc., 2015, pp. 2773–2781. [Online]. Available:
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf

http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf

	Introduction
	Natural Language Understanding
	Information Extraction
	Sequence Labelling
	Example Task

	Chunking
	Named Entities Recognition
	Conditional Random Field
	Neural Network
	NeuroCRF
	Continuous Word Representation
	Thesis Outline

	Background
	Information Extraction From Natural Language
	Hidden Markov Models
	Maximum Entropy Markov Models

	Conditional Random Fields
	Definition
	Feature engineering
	Example
	Parameters Estimation
	Regularization and Feature Pruning

	Neural Network
	Back Propagation

	Recurrent Neural Network
	Back propagation Through Time

	Continuous Word Representation
	Ranking approaches
	Skip-gram models
	Continuous Bag of Words models

	Performance Measures
	Classification Accuracy and Segmental F1

	Datasets
	Chunking
	Named entity recognition

	NeuroCRF
	NeuroCRF
	Full-Rank NeuroCRF
	Low-Rank NeuroCRF
	General Form of Full and Low-Rank NeuroCRF
	Motivation
	Related Works

	Dynamic Programming
	Forward Algorithm
	Backward Algorithm
	Viterbi Algorithm

	Parameter Estimation
	Stochastic Gradient Descent
	Regularization

	Experimental Study
	Datasets and Performance Metrics
	Model Configurations
	Training Procedure
	CRF Baseline and State of the art
	Results
	Impact of Mutual Information

	Summary

	Three Improvements to NeuroCRF
	Shared Parameters
	Generalized Events
	Transition Grouping Procedure
	Feature Selection Matrix

	Large Margin Training
	Ensemble Models
	Experimental Study
	Model Configuration and Training Procedure
	Datasets and Performance Metrics
	Results

	Summary and Discussion

	Recurrent NeuroCRFs
	Motivation
	Related Works
	Sequence-to-Sequence Models

	Recurrent Layer
	Long Short-Term Memory Layer
	Back Propagation
	Bi-directional LSTM Layer

	Experimental Study
	Model Configuration and Training Procedure
	Datasets and Performance Metrics
	RNN-based NeuroCRF
	LSTM-based NeuroCRF
	BLSTM-based NeuroCRF
	Importance of context size

	Summary and discussion

	Conclusion and Future Work
	Full-rank NeuroCRFs
	Shared Parameters
	Recurrent NeuroCRF
	Future Work
	More Datasets
	Semi-Supervised Learning
	Data Driven Parameters Sharing Scheme
	System Combination
	Information Extraction with Attention Mechanisms

