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ABSTRACT

The application of artificial neural networks

to the detection of bovine mastitis

Xingzhu Yang

(M.Sc., Animal Science)

The overall objective of this research was to investigate the feasibility of using artificial neural
networks to detect the incidence of clinical bovine mastitis and to determine the major factors
influencing it. The first part of this research was devoted to a general examination of the learning
ability of artiticial neural networks by training them with relatively small data sets. These data sets
(a total ot 460.474 records) contained suspected indicators of mastitis such as milk production, stage
of lactation and somatic cell count. and it was hoped that artificial neural networks would be able
to detect what statistical modelling had already established elsewhere in the literature. The second
part of this research was extended to examine the roles of more information resources such as
conformation traits and their genetic values — factors that have not been studied extensively. with
either conventional approaches or emerging technologies like artificial neural networks. This study
consisted of 1.296.877 records representing 82.807 cows. 4.340 sires in 609 herds covering the
period of December 1979 to November 1992. In the process of these investigations. the etfects of
data preprocessing and neural network architecture were also examined as they relate to quality of
prediction. Results of analyses using a "relative operating characteristic" indicated that artificial
neural networks could discriminate between mastitic states with an overall accuracy of 86% using
conventional information. Conventional 2 x 2 contingency table analyses indicated that a training
set with a high proportion of mastitic records yielded a neural network better able to predict presence
of the mastitic state and vice versa. The most important production traits were found to be somatic
cell count, stage of lactation and test-day milk production. Conformation traits were found to play
an almost insignificant role in the prediction of clinical mastitis. especially when compared with test-

day production variables. When comparisons were limited to the kinds of conformation data, cow
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genetic proofs for conformation traits were found to have a greater influence than either sire genetic
proofs or cows’ phenotypic scores. However, on an individual basis, the only conformation traits
which exhibited any association with the network’s ability to predict clinical mastitis were
phenotypic scores for rear-teat placement, dairy character and size. cow proof for dairy character,
sire reliability for final score and sire proofs for pin-setting (desirability) and loin strength. This
research showed that the combined use of "relative operating characteristic" and conventional 2 x
2 contingency table analyses, compared to using only one, could provide a more complete picture
of the neural net’s ability to discriminate. Sensitivity analysis proved useful in determining the
influencing factors for a given prediction network. Results from the preprocessing ot data indicated

that such a practice may be worth exploring in future research.
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RESUME

L application des réseaux de neurones artificiels

pour la détection de la mammite bovine

Xingzhu Yang

(M.Sc., Sciences Animales)

L objectif était d’explorer la possibilité d utiliser les réseaux de neurones artificiels pour détecter
I'incidence de la mammite bovine et déterminer les facteurs I'influengant. La premicre partie de la
recherche a été consacrée a I"analyse de la capacité d apprentissage des réseaux de neurones a I’aide
de fichiers de données relativement petits (i.e.. 460.474 observations au total). Ces fichiers
contenaient des indicateurs tels le rendement laitier, le stade de lactation et le comptage leucocytaire.
et les réseaux de neurones devaient détecter leur relation avec la mammite. Les résultats escompteés
devaient étre semblables a ceux obtenus par modélisation statistique et présentés dans la littérature.
La deuxiéme partie de la recherche avait comme objectif d’examiner ["apport d’information
additionnelle comme les traits de conformation et leurs valeurs génétiques, dont I'impact sur la
mammite n'a pas été étudié de fagon extensive autant avec les techniques conventionnelles quavec
de nouvelles techniques. Pour cette étude, le fichier de données comprenait 1.296.877 observations
représentant 82.807 vaches réparties dans 609 troupeaux et 4,340 taureaux. et couvrait la période de
décembre 1979 a novembre 1992. L’effet du pré-traitement des donneées et de | architecture des
réseaux sur leur apprentissage a aussi été étudié. Les résultats basés sur [’analyse des caractéristiques
relatives d’opération ont indiqué que les réseaux de neurones pouvaient classifier les observations
avec une précision de 86% a [’aide des variables conventionnelles. L analyse de contingence 2 x 2
a démontré qu’un fichier d’apprentissage contenant une plus grande proportion d’observations
positives pouvaient mieux prédire la présence de mammite, et vice-versa. Les traits de production
les plus importants étaient le comptage leucocytaire, le stade de lactation et le rendement en lait au
jour du test. Le rdle des traits de conformation dans le prédiction de la mammite était négligeable

comparativement aux données de production. En comparant les différentes données de conformation,
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les épreuves génétiques des vaches avaient une plus grande influence que les épreuves génétiques
des taureaux ou que les scores phénotypiques des vaches. Toutefois, sur une base individuelle. les
seuls traits de conformation pour lequel un impact sur la mammite a été observé ont été le score
phénotypique pour la position des trayons arriére, la grosseur et le caractére laitier, 'indice génétique
des vaches pour le caractére laitier, la fiabilité de la cote finale du taureau. et les épreuves des
taureaux pour la position des ischions la force du rein. Cette recherche a montré que,
comparativement a |"utilisation d"une seule méthode d’analyse. I’ utilisation combinée des analyses
de contingence et des caractéristique relatives d opération décrivait mieux la capacité discriminante
des réseaux de neurones. Il a aussi été observé que les analyses de sensibilité étaient utiles pour
déterminer |'influence relative des divers facteurs sur la détection de la mammite. Les résultats de
pré-traitement des données ont indiqué que les recherches sur cette pratique valaient la peine d’étre

poursuivies.
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a thorough bibliography or reference list.

Additional material must be provided where appropriate (e.g. in appendices) and in
sufficient detail to allow a clear and precise judgement to be made of the importance

and originality of the research reported in the thesis.

In the case of manuscripts co-authored by the candidate and others. the candidate
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CHAPTER 1

GENERAL INTRODUCTION



1.1 INTRODUCTION

The human society has evolved to a new era -- "the information age". The world has become a
global village in terms of world-wide information access, instant information flow and a global share
of information resources. This age has been in part shaped by the information related technologies
such as E-mail. the World Wide Web, and on-line real time multi-media. i.e. the information super
highway. As a result of significant improvements in the area of computer technology (both software
and hardware). artificial intelligence (Al). a branch of computer science concerned with designing
intelligent computer systems. is emerging from the laboratory and is taking its place in human affairs
and assisting in human decision making and reasoning. It is now one of the fastest growing
segments of the computer industry. The artificial neural network. for example. is one of the Al
technologies that is demonstrating promise for applications in different domains. Its software
products have been on the market tor a tew years, and are becoming more popular and user-triendly.
An artificial neural network is defined as a computing system that mimics living nervous systems.
This new technology has been developing rapidly in the recent decades. For instance. while neural
networks in the 1980s were mainly dedicated to military applications in artificial intelligence. this
decade saw the release of commercial professional systems for non-military applications (Hassan
and Tohmaz 1995: NeuralWare 1993). Its successful applications have covered wide domains such
as the prediction of finances. signal analysis processing, robotics, and clinical diagnosis (Neural Ware
1993). These applications have attracted interest from people working in diverse fields. In recent
vears interest in artificial neural networks has been extended to applications in agricultural related
industries. A number of studies have shown the advantages of artificial neural networks over more
conventional approaches. These studies have demonstrated the applicability of the neural networks
for modelling natural systems and the possibility of making automated agriculture a reality in the
next century (Cook and Wolfe 1994). Although research into its applications for the animal industry
is still in a nascent stage. it has been rapidly expanding. Investigations have involved such areas as
meat quality control. projection of 305 day milk yields, detection of egg fertility, and diagnosis of
mastitis (Lacroix et al. 1995: Yang et al. 1995; Nielen et al. 1994; Brethour 1994). However.

compared with the other domains, these validations have been very limited. Where and how to use
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artificial neural networks in animal industries still remains to be fully elucidated. This lack of

direction forms part of the motivation for this study.

1.2 MASTITIS

Mastitis continues to be a costly disease in modern dairy farming despite considerable efforts
dedicated to solving it for the last two centuries. On a global scale, losses from mastitis in the dairy
industry account tor billions ot dollars annually. The recent emphasis placed on mastitis control by
the dairy industry has been due not only to its economic consequence, but also due to its association
with improvements in production performance. Considerable research has revealed that mastitis has
increased along with selection gains in pertormance (Shook and Schutz 1994; Shook 1989: Schutz
1994: Rogers and Hargrove 1991). These results emphasise the need for further research into

mastitis control.

Mastitis is a multifactor disease, and as such its control has to be made trom different perspectives.
To date. herd management is one of most effective tools for reducing mastitis related costs. although
some have proposed that selection for genetic resistance to mastitis would be promising as well. [t
was found that an early diagnosis of mastitis could reduce production losses and shorten the duration
of antibiotic treatments. which in turn reduce other related costs. Conventional methods for the
identification of mastitis employ indirect indicators such as somatic cell counts. the electrical
conductivity of milk, and bovine serum albumin levels. While a number of investigations have
shown that a certain degree of predictability can be obtained individually for mastitis by each of the
individual indicators. recent studies have implied that statistical modelling of mastitis occurrence
with the involvement of more indicators would provide a more accurate prediction (Berning and
Shook 1992: Emanuelson et al. 1987). While increasing the number of input variables into a
statistical model can enhance a model’s predictive ability. such an increase in the number of input
variables involved. also increases the required computing capacity. This is especially true for
analysing non-or-all traits like a disease incidence and has been highlighted by several authors. It

is obvious that a modelling system in which more information can be taken into account would be
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preferable. An artificial neural network might be an alternative because the computing capacity is
required much less due to its parallel distribution nature compared to a statistical based method.
leading to the second motivation for the study into the applications of artiticial neural networks in

detecting mastitis.
1.3 OVERALL OBJECTIVES OF THIS RESEARCH

[his research is intended to examine the general learning ability ot Artificial Neural Networks tor
prediction of the incidence of clinical bovine mastitis. How well ANNs can learn from past data is
the first and most important question to be answered in the first part of this project. Successfully
proving learning ability of ANNs will lead to our interest in betterment of its predictive ability by
exploring more information resources as ANNs have no limitation on number of input variables
taken in and facilitate the combination of ditferent input types. This would naturally become our
focus in the subsequent research. I[dentification of those variables having close associations with
mastitis incidence has been one of the goals of this studies. [n addition. an examination of the
advantages and disadvantages of the various methods used in the assessments ot learning ability of

ANNSs will be pursed as well
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CONNECTING STATEMENT

Chapter | has presented a general picture about the information age, indicated some of new
technologies that have emerged and shown some of the application potentials of artificial neural
networks for a variety of domains. Successful applications of ANNSs in other domains have inspired
an interest in initialising this form of research in relation to animal industries. The question of where
and how to use this ANNs in animal industries has been one of the initial motivations for this
project. More specitically, this study intends to validate the potential ot applying ANNs to detecting
bovine mastitis. which remains an outstanding problem tor the dairy industry. Before starting this
new research. a full literature review on the advancements in mastitis detection will help understand
some important information resources. which might be associated with mastitis. Therefore. the

following chapter will be fully devoted to the assessment of past studies related to mastitis detection.



CHAPTER 2

LITERATURE REVIEW



2.1 IMPORTANCE OF MASTITIS RESEARCH

Mastitis, defined as an inflammation of udder. has appeared in literature for about two centuries and
although considerable research effort has been devoted to solving the disease, it remains a serious
problem facing the dairy industry (Morse 1977). Currently, the importance paid by the dairy
industry towards the healthy status of a cow’s udder is associated with the following: First. the
udders themselves are an important organ for milk production with their health status directly
determining the value ot'a cow. Without a healthy udder. a cow is nearly worthless regardless ot
the breeding value she might have for other traits or the level of milk vield she has had in the past.
Second. from a perspective of genetic improvement, a high occurrence of mastitis would certainly
reduce selection intensity for other traits. resulting in a less aggregate genetic progress. Third.
mastitis has been widely recognised as one of the most costly diseases in the dairy industry, and has
a direct impact on the profit of dairy farms. A study of an experimental herd in Michigan has shown
that mastitis was the second most important trait for determining the protit associated with herd lite
following milk yield. Fourteen percent of profit variance was attributed to mastitis (Andrus and
McGilliard 1975). The associated costs include decreased milk yield and its related components.
medical treatments, veterinary services. labour costs. nondeliverable milk. involuntary cuiling and
poor milk quality. [n addition. the poor milk quality leads to economic loss for the milk-processing
sector such as a reduction in cheese vield. [t was reported that the cost of mastitis for the dairy
industry of New York state alone was nearly $150 million (U.S.) annually (Miles et al. 1992). For
the whole USA such losses were estimated to exceed $2 billion (National Mastitis Council 1987).
[n the United Kingdom the estimate was £100 to £120 million per annum (Booth 1988 Hillerton
and Walton 1991). Other economic studies of mastitis costs in U.S., Canada. Sweden, the
Netherlands, U.K. and Australia showed similar results that dairy farmers suffered from monetary
loss ranging from $150 to $250 per year per cow (Dobbins 1977: Gill et al. 1990; Heuven et al 1988;
Janzen 1970; Miles et al. 1992: Monardes 1994). Fourth. mastitis incidence does not seem 10
decrease. but appears to increase along with the genetic improvement in milk production (Shook and
Schutz 1994: Shook 1989; Schutz 1994; Rogers and Hargrove 1991). Finally. consumers in current

society want animal products produced by healthy animals with minimal use of antibiotics and other
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drugs. In short. both economic initiatives and social concern have reflected the necessity and

importance of studying the mastitis problem.

2.2 THE PAST AND CURRENT STATUS OF RESEARCH INTO DETECTING BOVINE
MASTITIS

Mastitis has been associated with many factors such as herd management. sanitation, milking
machines and the genetic resistance of an individual. Correspondingly. work towards solving the
mastitis problem has been investigated tfrom all perspectives. Herd management has been widely
recognised as one of the most effective ways to reduce mastitis related costs since an early accurate
diagnosis of mastitis can reduce production loss and shorten the duration of antibiotic treatments.
thus diminishing losses incurred by discarding milk. Additionally. other mastitis related costs can
be minimised or eliminated. The methods developed to detect mastitis can be broadly grouped into

the following.

2.2.1 The Bacteriologic Culture Approach

The early work was mainly dedicated to seeking the causal agent for mastitis, especially
bacteriologic aetiology of bovine mastitis. By the early part of this century when the bacteriologic
culture approach to detection of udder infection was available, a mastitis control program was
immediately launched (Morse 1977 Dodd et al. 1977). The control program was aimed at reducing
new infection rates and reducing the numbers of infected cows. However, it was soon obvious that
the bacteriologic test to determine the status of the udder was time consuming and expensive. as well
as unsuitable for large scale screening. In particular it proved unsuitable for monitoring herds or
implementing the eradication of disease in population. As a result. research was directed to finding

a simple and accurate method to identify infected quarters (or udder) from normal quarters.

2.2.2 Indirect Indicators of Mastitis



Numerous investigations into the etficacy of a single indicator of mastitis such as an electrical
conductivity of milk, somatic cell count., N-acetyl-B-D-glucosaminidase (NAGase) activity and
bovine serum albumin (BSA) levels. as well as conformation information analyses of individual
animals, have been performed. Among these indicators, an electrical conductivity and somatic cell
count of milk have been intensively assessed. Although to my knowledge there are few reports on
a direct use of conformation information as a predictor of mastitis. some of studies have attempted

to determine the association between conformation traits and mastitis status.

2.2.2.1 The predictability of an electrical conductivity of milk for mastitis

An electrical conductivity (EC) of milk as an indicator of mastitis has been the subject of published
research reports since the 1940s (Hillerton and walton 1991) and is based on the fact that mastitis
leads to changes in milk composition, especially ion concentrations. Mastitic milk has higher
concentrations of sodium and chloride ions than normal milk, whereas the concentrations of lactose
and potassium (K") ions are decreased. causing the EC of mastitic milk to be increased. Based on
those findings. a cowside device and an on-line system for detection of clinical and subclinical
mastitis have been developed. The cowside device could be a useful advisory/veterinary tool
(Hillerton and Walton 1991: Sheidrake and Hoare 1981). but the accuracy for the simple hand-held
device was relatively low. An investigation by Sheldrake and Hoare (1981) showed that the mean
sensitivity (i.e.. correct identification of the occurrence of mastitis. also termed as a conditional
probability of a true-positive) and specificity (i.e.. correct identification of the absence of mastitis.
also termed as a conditional probability of a true-negative) of EC for three herds was on average
49% and 79% respectively. An on-line mastitis detection system was developed to meet the needs
of auto-milking systems in the modern dairy industry. To distinguish the changes in EC. several
criteria have been investigated such as absolute value (ABV) of EC (referred to running averages
of repeated measurements). and inter quarter ratio (IQR) (Nielen et al. 1994). Several studies
pointed out that an infected quarter had a higher mean EC than normal (Nielen et al. 1992; Miller
1984: Fernando et al. 1982: Linzell et al. 1974: Sheldrake and Hoare 1981; Hillerton and Walton
1991). leading to the IQR being defined as the ratio between the quarter with the lowest value and
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the other quarters of the same cow (Fernando et al. 1982; Gebre-Egziabher and Wood 1979). The
assumption for this criterion was that all non-pathological factors influence the EC of all quarters
equally. In this way the effects of other factors can be eliminated. Although most studies have
proven that the EC of milk is a good indicator of infection (Fernando et al. 1982; Fernando et al.
1985: Gebre-Egziabher and Wood 1979: Nielen et al. 1992; Linzell et al. 1974), the sensitivity and
specificity reported in those studies were on average about 70% and 85% respectively. Others found
it less accurate (Sheldrake and Hoare 1981: Batra and McAllister 1984: Lansbergen et al. 1994)

finding a sensitivity and speciticity of below 65% and 75% respectively.
p

2.2.2.2 Somatic cell counts as an indicator of mastitis

SCC consists of many types of cells, including neutrophils. macrophages. lymphocytes and various
epithelial cell types of the mammary gland (Kehrli and Shuster 1994). I[n the course of an
inflammatory response of the mammary gland. alterations in SCC occur due to the recruitment of
neutrophils into the cow’s defence mechanisms. Therefore. changes in SCC can illustrate changes
the health status of the quarters. SCC has been routinely recorded as an indicator of mastitis and
tends to be proposed as an useful selection criterion for dairy cattle breeding programs (Heuven et
al. 1988: Kehrli and Shuster 1994: Zhang et al. 1994 Andersson-Eklund and Danell 1993: Shook
and Schutz 1994: Dekkers et al. 1994). However. the use of SCC alone to discriminate between
normal and infected quarters needs a set of threshold values. which directly affects the usefulness
of SCC in the prediction of mastitis. As a consequence. SCC as a decisive indicator of mastitis is
still under question (Noordhuizen et al. 1987). The results of the past studies on the identification
of mastitis by SCC are presented in Table 2.1. Those resuits showed that SCC as an indicator of’
mastitis in general had a low to moderate predictability. Compared with the electrical conductivity.
SCC proved less accurate in differentiating between mastitic and normal cows. Also, the different
studies outlined in Table 2.1 showed a great deal of variability. This could be attributable to the
following factors. a) SCC threshold level. i.e. setting a low level of SCC threshold could result in
high sensitivity and reduce the number of cows incorrectly classified as negative (false-negative);

whereas setting a high threshold could lead to high specificity reducing the false-positive rate. b)
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The prevalence of mastitis in a population, i.e. in a population with low prevalence of mastitis. most
of the cows would not have mastitis. thus the probability of classitying healthy cows as infected is
high. In these circumstances SCC has a low posterior probability of a true-positive response. In
contrast. SCC has a low probability of a true-negative response when a high prevalence of mastitis
exists in a population. ¢) The dilution ot SCC. i.e. high SCC milk from infected quarters can be
diluted with low SCC from uninfected quarters, which always happens in the bucket milk: d) other
tactors: milking equipment and time. the age and parity of cows and antibiotic therapy could result
in a raised SCC. The disagreements among the tindings ot past studies. because ot the above tactors.
have made it ditficult to establish a fixed baseline for concentration of SCC in distinguishing normal
from mastitic quarters. Hence. the [nternational Dairy Federation (IDF) no longer recommends the
use of a tixed threshold SCC value to determine the healthy status of quarters (Jensen and Knudsen
1991). In addition to the direct use of the SCC absolute value. other alternatives such as log-
transformation of SCC. the inter-quarter ratio (IQR). and the California Mastitis Test (CMT) have

also been attempted in order to improve detection of mastitis.

2.2.2.3 Use of NAGase and blood serum albumin (BSA) as a predictor of mastitis

NAGase activity and BSA levels have been reported to increase in cows with mastitis and are
attributable to damaged secretory epithelial cells in mastitic cows. They are seemly correlated with
signs of mastitis. which have led to the possibility of using NAGase activity and BSA levels as rapid
tests for determining the severity of clinical mastitis (Wilson et al. 1991). Unfortunately. most
reports (Wilson et al. 1991: Fernando et al. 1985: Sheldrake et al. 1983: Emanuelson et al. 1987)
have pointed out that the NAGase and BSA can not be used effectively to detect mastitic quarters
in 2 cow. Only 50 % of established mastitic cows can be identified by these mastitic markers

(Emanuelson et al. 1987: Sheldrake et al. 1983: Fernando et al. 1985).

2.2.2.4 Conformation traits as predictors of mastitis

To our knowiedge, studies using conformation traits as predictors of mastitis have not been done.
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However. some of studies pointed out that there was a low to moderate relationship between some
of the conformation traits and mastitis status (or its indicators) (Schutz 1994; Monardes et al. 1990;
Rogers 1993: Seykora and McDaniel 1985). suggesting that conformation of individuals plays a
minor role in the passive defence mechanism against infection. [t seemed reasonable that
conformation traits would not be a key indicator of mastitis, but inclusion of conformation traits in
a model might improve its predictability for mastitis (Thomas et al. 1984). The use of conformation
information to enhance predictability for mastitis has not been extensively studied. attributable to
the high computing capacity demand required by a statistical model that simultaneously includes
many factors (or variables), especially when modelling a none-or-all trait (Simianer et al. 1991:
Emanuelson et al. 1993). Further studies in this area may result in better understanding of which

conformation traits play a greater role than others in the detection of mastitis.

2.2.3 Prediction of Mastitis Occurrence Using Statistical Modelling

Less etfort has been made in the prediction of bovine mastitis using multiple indicators (Berning and
Shook 1992). Reported investigations into this area have involved a combination ot one indicator
with its transtormed value or combination of several different mastitis markers in cows. Using
logistic regression. Emanuelson et al. (1987) found that for all indicators like adenosine triphosphate
(ATP). SCC. NAGase. BSA. and Antitrypsin (ATRY). but not EC. combinations of absolute values
and inter-quarter ratios were no better than predictions based on absolute values alone. Table 2.2
shows the predictive ability of the logistic model. In contrast, a number of studies drew the
conclusion that including different indicators of mastitis in a model can enhance a model’s ability
to correctly classify the health status of a cow’s quarters (Berning and Shook 1992: Emanuelson et
al. 1987). For example. in the study by Emanuelson et al.(1987), the predictive ability of logistic
model combining the two independent tactors. log ATP and log EC was .701. which was higher
compared to that of .680 for log ATP and .483 for log EC taken separately. The superiority of
combining more indicators into a single function to improve predictive ability was supported by
Berning et al (1992) . In that study they pointed out that the log NAGgase was relatively more

effective in identifying major pathogen infections from minor ones. whereas log SCC was better able
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to differentiate between infected and uninfected classes. A reasonable explanation was that SCC
measures the cellular response to bacterial infection, while NAGase activity reflects secretory cell
damage. The study recommended that the final predictors of infection status be herd, log SCC. and
log NAGase by stepwise logistic regression of bacterial status on herd. lactation number, milk. log

SCC. log NAGase. and stage of lactation.

Statistical modelling of mastitis incidence has been extended to involve the use of electrical
conductivity information. Recent studies using an on-line mastitis detection method in the
Netherlands. by Nielen et al (1994) found that relevant information on EC appeared at the beginning
and the end of the milking process after mapping EC data per quarter per milking. To capture the
EC pattern and minimise the number of EC data points per quarter without losing information about
the pattern. the measurements of EC of milk were taken for one-minute intervals at the start. middle,
and end of each milking, with each quarter being milked sequentially. Four models were developed
for three data sets taken during the observation periods defined as: the final period (T0). the milking
12 h before TO (T-12) and the milking 24 h before TO (T-24). Clinical mastitis, ves or no. was the
dependent variable in all data sets.

model 1) MAX' + MAX? + MAX' + SD' + SD* + SD".

model 2) as 1) + RPROD + CTEMP.

model 3) MAXS' + MAXS® + MAXS' + SUMD' + SUMD* + SUMD".

model 4) as 3) + RPROD + CTEMP.
Where |. 2. and 3 are the tirst. middle and last milking intervals per observation period respectively:
MAX is the maximum value ot each of three milking intervals; SD is the standard deviation of the
12 points defined in the study: MAXS is the maximum value of the smoothed data from each of the
3 milking intervals: SUMD is referred to the sum of the absolute value of the derivatives; RPROD
is the relative milk production per cow per milking calculated as the percentage of the production
24 h betore, and CTEMP is the pre-processing milk temperature determined by subtracting the

population mean from the per cow observation.

A comparison on the accuracy of the models is shown in Table 2.3. These results generally showed
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that statistical modelling that included more information on the electrical conductivity of milk
offered better predictability in terms of the sensitivity and specificity. The limited results from
statistical modelling of mastitis incidence using a multiple factor statistical approach revealed some
enhancements in predictability compared with using only single factors, indicating a promising

approach for the detection of mastitis. However, more investigations in this area are required.

2.2.4 An Emerging New Technology -- Artificial Neural Networks

An artificial neural network {(ANN) --a computer-based simulation of living nervous systems
resulting from research into artificial intelligence (Al). is a relatively new technology and is an
important branch of artificial intelligence (NeuralWare 1993: Zurada 1992). Its applications have
developed rapidly in last fifteen vears. especially in areas such as signal processing. the prediction
of finances. robotics, detection of explosives in checked airline baggage and clinical diagnoses
(NeuralWare 1993: Hassan and Tohmaz 1995). These successes have inspired research initiatives
in other domains. For example, researchers on the Human Genome Project at the Los Alamos
National Laboratory in Los Alamos. N. M. have applied neural network algorithms to the problems
of DNA sequence analysis (Kestelyn 1993). A study of a back-propagation neural network to predict
average air temperature has pointed out that neural networks have considerable potential for

modelling natural systems (Cook and Wolfe 1991).

Additionally. there has recently been a growing interest in applying ANNs to agriculture-related
applications. Zhuang and Engel (1990) attempted to use an ANN with the back-propagation
technique in order to recommend a herbicide and an appropriate application system for a given field
situation. The problem of selecting an appropriate grain marketing alternative was also overcome
with a more complex neural network architecture. It was pointed out that ANNs generally worked
faster than other systems such as an expert system. The application of an ANN to predict apple
quality provided direct evidence for its merit, in that the remaining error unexplained by the linear
model was reduced by 5% using multilayer neural networks (5). Guan and Gertner (1991) applied
an ANN to modelling and predicting red pine seedling survival. The results indicated that the ANN-
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based red pine seedling survival model not only fit the data better than a statistical model. but was
also expected to pertorm better on future data provided that the training data was representative.
Dolenko et al (1995) worked on classifying cereal grains using backpropagation and cascade
correlation networks and pointed out that in comparison with a Gaussian classification technique.
ANNSs delivered higher classification accuracy and were more attractive for implementation in
automated grain inspection systems. Ding and Dunasekaran (1994) applied an ANN as a multi-index
classifier for food quality and concluded that accuracy and speed of classification were greatly
improved. Neural network modelling tor predicting tlowering and physiological maturity ot soybean

was performed by Elizondo et al (1994) and shown to be promising.

Although most validations of ANN in animal industry are in a nascent stage. there have been some
of exampiles that show promise. For instance. Lacroix et al (1995) predicted 305-day milk. fat and
protein production in dairy cows and found that ANNs generally performed at least as well as the
model currently used by Canadian milk recording agencies. The use of ANNs for estimating
marbling score in live cattle was more accurate than using the same features in a multiple regression
model (Brethour 1994). Neural networks were also used to detect tertility of eggs (Das and Evans
1992). Attempts to apply ANNSs to detect bovine mastitis has been made in recent years (Nielen et
al. 1994: Yang et al. 1995). The results from those studies have shown a slightly better
discriminatory ability to distinguish between mastitic and non-mastitic cows using ANNs compared
to statistical modelling. However. it was recommended that further improvement in predictability
of ANNss should be pursued through exploration of existing information and manipulation of their

internal characteristics.

In a broad sense ANNs have been demonstrated to be a very useful tool in various domains. Their
applications have covered wide areas. For the macro-world ANNs can be used for tasks from
battlefield management to minding the baby and for the micro-world they can be applied to detecting
DNA sequences (Kestelyn 1993). protein structures (Salt et al. 1992), as well as identifying micro-
organisms (Chun et al. 1993). The reason for the popularity of ANNs is due to their advantages over

the traditional approaches. One of the most distinctive advantages is that there is no need to begin
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with an a priori model. nor is there a need to identity the required variables beforehand (Lacroix et
al. 1995). With ANNs, no assumptions are required with regard to input and output variables.

ANNSs are able to internalise the implicit relationships existing between inputs and outputs. and are
particularly powertul in approximating highly non-linear relationships. In addition. ANNs have no
limitation on the number of input variables taken and also facilitate the combination of different
input types. All these advantages have made ANNs a powertul tool for handling information
sources. On the other hand. ANNs like other methods have some limitations. For example. the
relationship between inputs and outputs can not be explicitly explained. But ANNs. as a new
technology and a new alternative. provide renewed hope of solving old problems. which have been

difficult to be overcome using traditional approaches.
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. TABLE 2.1 Comparison of the accuracy of prediction of mastitis by SCC from different studies

Sources Sample type Threshold or SS SP Comment
log-transformation
(20) toremilk 6.05 408 75 low
stripping 6.85 40.3 73 low
bucket 6.28 495 71 low
(19) toremilk 81 92 high
(53) 200.000 88 high
(50) 500.000 75 middle
(58) 500.000 66 low
@ (45) bucket 500.000 53 low
(36) bucket 51 low
(34) bucket 400.000 41 low

Where the SS represents the sensitivity of SCC for differentiation of mastitis.

the SP represents the specificity of SCC for differentiation of mastitis.



’ TABLE 2.2 Comparison of predictive ability of logistic models. including a single absolute value

of indicator. or absolute value plus inter quarter ratio

Component IQR ABS [QR + ABS
Log SCC 0.476 0.675 0.683
Log ATP 0.482 0.680 0.655
Log NAGase 0.443 0.596 0.560
Log BSA 0.378 0.507 0.461
Log ATRY 0.237 0.454 0.351
Log EC 0.465 0.483 0.603

Where the IQR and ABS represent inter quarter ratio and absolute value respectively.



[ ] TABLE 2.3 Comparison of sensitivity and specificity of logistic regression models (LRM) the
milking of mastitis observation (T0). the milking before TO (T12). and the milking 24 h before T0

(T24)

Time n SS (%) n SP ( %)
TO
Model | 34 76 37 86
Model 2 26 77 32 94
Model 3 32 78 36 83
Model 4 25 84 31 90
T-12
Model | 36 67 44 87

. Model 2 30 67 38 89
Model 3 34 71 42 90
Model 4 29 76 36 92
T-24
Model | 36 67 36 81
Model 2 25 72 33 85
Model 3 32 63 35 86
Model 4 23 70 32 88

Where the SS represents the sensitivity of Logistic Regression Model.

the SP represents the specificity of Logistic Regression Model.



CONNECTING STATEMENT

The past studies of mastitis detection, reviewed in the previous chapter, have indicated the basic
conclusion that individually. each of the indicators for mastitis status was limited in terms of their
discriminating ability and pointed to the importance of including different indicators in a model for
the prediction of this multi-factor related disease. While statistical modelling of mastitis is able to
account for more input variables, it has some limitations as well. For instance. a high computing
capacity is required when more input variables are included in a model. especially for an all-or-none
trait. In contrast, ANNs has no such a limitation. Also ANNs are able to process information faster
due to parallel distributing processing. Moreover, there is no need to begin with an a priori model.
All these advantages imply that ANNs may be a potential alternative to more traditional approaches.
especially for the mastitis problem. The next chapter will focus on the feasibility of using ANNs

to detect bovine mastitis using test day milking records available.
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3.1 ABSTRACT

A back-propagation artificial neural network was employed to detect clinical mastitis in a file of
460.474 test day records. Two data files were created to train the artificial neural networks.
containing a relatively large (1:1) ratio and a relatively small (1:10) ratio in the incidence to non-
incidence of clinical mastitis. These ratios were applied to each of two input file designs: one
comprised variables that are traditional in the modelling of mastitis (e.g.. age. stage of lactation and
somatic cell count) and a second included additional variables (e.g.. season of calving, milk
components and conformation class). Results from analyses of relative operating characteristics
indicated that artificial neural networks could discriminate between mastitic states with an overall
accuracy of 86%. This discriminatory ability was subject to patterns that existed in the training data
files but was not affected by ditfering proportions of mastitic records. However. conventional
analyses with a 2 x 2 contingency table indicated that differing proportions of mastitic records in the
training data files had some effect on the particular purpose of the artificial neural network being
developed. Results suggested that the relative operating characteristic method and contingency table
analyses should be jointly used to assess diagnostic systems. Additional variables had little effect
on the prediction accuracy. but this lack of effect needs to be verified for optimal artificial neural

network contiguration. data preprocessing. and new sources of information.

KEYWORDS

Artificial neural networks: Bovine mastitis: Detection: Test day records.
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3.2 INTRODUCTION

Mastitis. an inflammation of the udder in cows, is widely recognised as one of the most costly
diseases in the dairy industry that directly impacts the profit of dairy farms. A study of an
experimental herd in Michigan found that mastitis was the second most important trait. following
milk vield. to determine the profit of herd life. Fourteen percent of the variance of profit was
attributed to mastitis (Andrus and McGilliard. 1975). Miles et al. (1992) estimated that the cost of
mastitis for the New York state dairy industry alone was nearly $150 million annually. Throughout
the US. loss caused by mastitis has been estimated to exceed $2 billion/yr (National Mastitis
Council. 1987). and in the United Kingdom. the cost was estimated to be $150 to $200 million/yr
(Booth. 1988: Hillerton and Walton. 1991). Other studies of mastitis in the US. Canada. Sweden and
The Netherlands have shown that dairy farmers suffered monetary loss ranging from $125 to $250/yr
per cow (Dobbins. 1977: Gill et al.. 1990; Heuven et al., 1988: Janzen. 1970: Miles et al.. 1992:
Monardes. 1994). Therefore. mastitis continues to be one of the leading disease and management

problems afflicting the dairy cattle industry.

Although an early and accurate diagnosis of mastitis has long been sought. no perfect technique
exists. Some of the more conventional methods used to identify subclinical mastitis employ
indicators such as stage of lactation and somatic cell count (SCC). Somatic cell count is routinely
recorded in dairy herd management programs and is often cited as being useful in selection decisions
for breeding programs of dairy cattle (Andersson-Eklund and Danell, 1993: Dekkers et al.. 1994:
Heuven et al.. 1988: Shook and Schutz. 1994; Zhang et al.. 1994). However. its use as an indicator
of mastitis remains inconclusive (Noordhuizen et al.. 1987). For example. findings from past
research regarding the discriminatory ability of SCC to determine mastitic states vary greatly.
suggesting sensitivities (i.e.. correct identification of the occurrence of mastitis) and specificities
(i.e.. correct identification of the absence of mastitis) of SCC in the range of 40 to 70% and 60 to
89%. respectively (Fernando et al., 1982; Fernando et al.. 1985; McDermott et al.. 1982; Rindsig
et al.. 1979; Schultz, 1977; Sheldrake et al.. 1983). Other approaches to detect mastitis include the

use of statistical modelling which produced a 70% accuracy by considering such effects as herd,
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lactation number, stage of lactation, milk yield on test day. SCC, and N-acetyl-13-D-
glucosaminidase (Emanuelson et al.. 1987). Definitive findings by Berning and Shook (Berning and
Shook. 1992) and Emanuelson et al. (1987) support the importance of including different indicators

in a model so that the ability to distinguish between mastitic and nonmastitic cows is enhanced.

Recent investigations (Allore and Jones., 1995; Allore et al., 1995: Hogeveen et al.. 1993a:
Hogeveen et al.. 1995b: Nielen et al.. 1994) into the problem of the detection of mastitis include the
use of expert systems and artificial neural networks (ANN), which promise better diagnostic results
through the employment of increasingly more factors. Artificial neural networks. computing systems
comprised of simple. highly interconnected processing elements (PE) that mimic the structure of the
human nervous system. are gaining recognition as plausible alternatives for solving real world
problems. ANN have been successfully applied in such areas as financial prediction. signal analysis
processing and robotics. and clinical diagnoses. To date. however, there have been relatively few
instances in which ANN have been applied to agriculture and even fewer ‘nstances in which ANN
have been applied to the animal industry. [n agriculture. research into the applications of ANN has
encompassed areas such as the prediction of corn yields (Uhrig et al.. 1992). herbicide selection
(Zhuang and Engel. 1990). apple quality classification (Bochereau et al.. 1992), red pine survival
rate prediction (Guan. 1991), and the evaluation of potted plant arrangements (Brons et al.. 1991).
[n the animal industry. ANN have been employed less often. although investigation into their use
has been rapidly expanding in recent years. and their success rate is, even in a nascent stage.
consistent with that of traditional methods. For example. Lacroix et al. (1995a) predicted 305-d milk.
fat. and protein yields in dairv cows and found that ANN generally performed at least as well as the
model currently used by Canadian milk recording agencies. The use of ANN to predict meat quality
in live cattle has also been studied extensively, producing positive results (Brethour. 1994: Park et
al.. 1993; Whittaker et al.. 1991). Although research by Nielen et al. (1994) has shown that ANN can
differentiate between mastitic and non mastitic cows reasonably welil, further study into the
methodology remains necessary in many areas. One such area is data preprocessing (the treatment
of data prior to their presentation to the ANN). Previous studies (Lacroix et al.. 1995b; Lacroix et

al.. 1997: Lawrence. 1991) have shown that the distribution of output data in training data sets can
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have a major influence on the learning of ANN. Another area of study is the assessment of the ability

ot an ANN to perform specific tasks. since applications based on this approach are relatively recent.

The objective of this research was to evaluate the feasibility of predicting the rate in the incidence
of clinical mastitis in individual cows with ANN using test day yield and selected conformation data.
The specific objectives were 1) to check the ability of an ANN to differentiate between mastitic and
nonmastitic cows, 2) to examine the effect of differing proportions of the rate in the incidence of
clinical mastitis in training data files on the learning ability and classification accuracy of an ANN.
3) to compare the accuracy of prediction using traditional variables versus an expanded file of
variables (traditional plus additional). 4) to detect variables that have large degrees of influence on
the prediction of clinical mastitis using sensitivity analyses. and 5) to examine the advantages and

disadvantages of the various methods used in the assessments.

3.3 MATERIALS AND METHODS

3.3.1 Artificial neural networks

Derived from research in artificial intelligence. ANN were designed to mimic the structure of the
human nervous system in order to perform certain complex functions of a human brain. such as
reasoning and learning. Artificial neural networks consist of PE and interconnections that correspond
to neurons and synapses in the human nervous system. Grouped in layers. PE are the basic units of’
the ANN in which neurocomputing takes place. The PE that receive information from the
environment form the input layer and the output layer of PE is responsible for generating output
signals. The PE located between the input and the output layers form the hidden layers. and their
number depends on the complexity of a given problem. Interconnections, or weights. store and
represent the knowledge acquired by the ANN. Through interconnections, PE in one layer can be
connected fully, randomly. or correspondingly to those in an adjacent layer. The basic computations
of ANN can be outlined as follows. The PE receive input signals from an environment or a previous

layer. and an operation of weighted summation takes place over all inputs. Finally, output signals
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are generated by transforming the received signal via a transfer function and are transmitted to the

next layer. This basic process takes place in every PE.

There are two main phases in a network operation: learning and recall. The former is the process of
adapting or modifying the connection weights in response to stimuli that are being presented to the
input buffer and. optionally. to the output buffer. In the recall phase. the same kinds of stimuli are
presented to the trained network. which generates corresponding output signals for specific purposes
(NeuralWare. 1993). A variety of ANN can be constructed based on differences in the arrangement
of the layers. the interconnection of the PE. and the leaming procedure employed. For this research.
a feed-forward. back-propagation method was employed. Back-propagation ANN are believed to
be well suited for prediction and classification problems. [n the learning process ot a back-
propagation ANN. pairs of inputs and outputs are fed to ANN and the basic neurocomputing is then
carried out in each PE. The difference between the outputs generated by the network and the actual
outputs is calculated and taken as a learning signal to be back-propagated into the ANN. All weights
in the ANN are then adjusted to reduce this error as much as possible. All inputs and outputs can be
presented repeatedly to the ANN. which progressively changes its weights in a gradient-descent

tashion. Through this process. the ANN can acquire knowledge from a data file.

3.3.2 Data and variables

The data for this research (individual Holstein test day records from December 1979 to November
1992) were supplied by the Québec Dairy Herd Analysis Service. The original data contained
885.403 records representing 35.824 cows and 147 herds of which 2550 records indicated an
incidence of clinical mastitis. This indication of mastitis is reported by the farmer on the day of test
and has the effect of flagging the record of that cow for the purposes of official yield projection. In
theory, it only refers to incidence of clinical mastitis on the day of test, and its accuracy has
sometimes been questioned in the past. However, for the purpose of this study, it was assumed to
be accurate. Each record of the data had 75 fields of which, 15 were determined to contain the most

valuable information to detect clinical mastitis. These fields were converted into a file of traditional



and a file of traditional plus additional variables that are listed in Table 3.1. Those considered
traditional were essentially those variables or factors which have been used in previous research to
predict subclinical mastitis, including herd effect, lactation number, SCC. milk yield on test day. and
stage of lactation. [n this study. herd effect was characterised by mean SCC for a herd and by the
number of cows on the test day. The additional variables included. for example. date of test day.
calving. and drying off as well as available conformation classes. The final conformation of cows
was classified on a six-point scale (1 = excellent. 2 = very good. 3 = good plus. 4 = good. 5 = fair,
and 6 = poor). These rankings. assigned by Holstein Canada classifiers. were based on linear
combinations of various conformation traits, e.g.. general appearance. dairy character, capacity.
rump. feet and legs. mammary system, and fore and rear udders. The desired outputs were mastitic

states as reported by farmers in test day records.

Because a zero value existed in one of the 15 fields of interest. 424,929 records were discarded.
leaving a final data file of 460.474 records. 1545 of which indicated the presence of clinical mastitis.
This final data file was separated into two data files based on the presence or absence of clinical
mastitis (1545 and 458.929 records. respectively). Each of these data files was then further split into
one third and two thirds by assigning the tirst record (in each group of three) to the tirst file and the
next two records to the second file. The two training data tiles were then formed by combining
records from both ot the larger (2/3) data tiles. One training data file contained 50% mastitic and
50% nonmastitic records (i.e.. a 1:1 ratio) and was thus created by using all 1030 mastitic records
and an equal amount of nonmastitic records. assigned randomly from the other data file. This
resulted in a data file of 2060 records with a 50% rate in the incidence of clinical mastitis. The
second training data file comprised 10 nonmastitic records for every | mastitic record and. again.
used all 1030 mastitic records and 10,300 randomly assigned nonmastitic records. which resulted
in a data file of 11.330 records with a 9.1% rate in the incidence of clinical mastitis (i.e.. a 1:10
ratio). The 1:10 ratio was chosen in an effort to model a ratio that is realistic (Batra et al.. 1977
Miller. 1984; Wilson et al.. 1991), and the 1:1 ratio allowed the ANN to be trained with more
mastitic records than normal in order to determine whether an increase in the occurrence changed

the ability of the ANN to predict clinical mastitis after training.
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The data files that contained one third of the overall data were used to construct two testing data files
and the same procedure used to create the training data files was followed. One of the testing files
had a 50% rate in the incidence of clinical mastitis (1030 records. 5135 mastitic and 515 nonmastitic);
the other had a 9.1% rate in the incidence of clinical mastitis (5665 records, 515 mastitic and 5150

nonmastitic). These designs were applied to each of the input files (Table 3.1).

3.3.3 ANN configuration

In order to perform the analyses. an ANN software (NeuralWare. 1993) which facilitates
manipulation of the configuration (e.g.. type of network. learning rate, momentum, and learning
schedule) and architecture (i.e.. numbers of hidden layers and numbers of PE in each of the hidden
layers to be created) was used. Several architectures of ANN were tested. and the following. which
produced good overall results, was employed. Three-layered back-propagation ANN were
constructed with 10 PE in the hidden layer. [n the first case. two ANN were constructed with 6 PE
in the input layer. corresponding to the traditional variables. and trained with the data files
containing 50 and 9.1% rates in the incidence of clinical mastitis. respectively. In the second case.
two ANN were constructed with 23 PE in the input layer. corresponding to traditional plus additional
variables, and were also trained with the corresponding data files. Inputs in this study were coded
as continuous variables except for those involving season (i.e.. season of calving, dry period and test
day) where values. each represented by two binary inputs (00. 01. 10. 11). were used. Although
conformation classes were coded as continuous variables. they were not always present. and an extra
binary variable (0. 1) was used to indicate the presence or absence of the value for a particular
animal. There were, therefore, 17 inputs, 3 of which were coded with 2 binary inputs. and 3 of which
needed an additional binary flag to indicate their presence or not, giving the total of 23 (Table 3.1).
[t should be noted that. except in the case of the conformation variables, no other fields were missing
due to initial edits. The ANN were trained with a normalised cumulative delta-rule leamning rule and
an epoch of 16 records for 100.000 cycles, at which point the classification ability of the ANN was
no longer significantly improving. The transfer tunction in the PE was a hyperbolic tangent function.
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Outputs from the ANN, representing predicted mastitic states, consisted of continuous values in the
range from O to 1. To convert the continuous values into binary states to match the outputs with
actual mastitis states, a value had to be artificially determined. This threshold value is analogous to
a set level for generating a specific signal in an electronic device. A threshold. or decision criterion,
can be any decimal number between 0 and 1, although the value of 0.5 is adopted in most cases. A
decision criterion is regarded as an arbitrarv value because of its dependence on the prior probability
of an event. personal considerations of the values, and the costs associated with correct and incorrect
decisions of both kinds (Swets and Pickett. 1982). In this study, various threshold values were used

depending on the measuring methcds described subsequently.
3.3.4 Measures to assess the ability of the ANN

To evaluate the power of ANN to detect clinical mastitis, a comparison can be made usinga 2 x 2
contingency table (Table 3.2). In Table 3.2. the symbols A. B, C and D denote the actual numbers
of each observed outcome. The conditional probability for the true-positive response. (TP). is
estimated by dividing the number of correctly predicted mastitic states by an ANN (A) by the
number of actual incidences (A + C) (Swets and Pickett. 1982) This conditional probability. which

is sometimes referred to as sensitivity, is expressed in Eq. (1).

P(TP) = 'A':-\_c' (h

The other three conditional probabilities of a true-negative (sometimes referred to as specificity). a
talse-positive. and a false-negative response are denoted as P(TN), P(FP). and P(FN), respectively.
and can be obtained similarly (see Egs. (2). (3). and (4)).

D
B+ D

P(TN) =



B o
P(FP) = B:iD (3)

C
= 4
P(EN) = ——— 4)

These four conditional probabilities measure different facets of the power of ANN to identify

mastitic states. [t should be noted that P(TP) + P(FN) =1 and P(TN) + P(FP) = 1.

From Table 3.2, two posterior probabilities of a true-positive and a true-negative response can be
calculated that measure the reliability of the prediction of clinical mastitis by ANN. A posterior
probability of a true-positive response, P(PSTP). can be obtained using Eq. (5) (Swets and Pickett.

1982):

A -
P(PSTP) = “+B (3)

The other posterior probability of a true-negative response, P(PSTN). can be similarly obtained using

Eq. (6).

P(PSTN) = E?_D (6)

Equations (5) and (6) demonstrate how reliably ANN predict the presence or absence of clinical
mastitis for each case and can. therefore. lead to degrees of contidence about certain management

practices.

Furthermore. the overall probability of a correct response (i.e.. the probability that the response is
either true positive or true negative) is an additional measure employed to assess a diagnostic system.

That probability. P(TTCR). is defined in Eq. (7) (Swets and Pickett, 1982):

A+D )

PTTCR) = A+B+C+D
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Although equations 1 to 7 represent a certain way of measuring the ability of an ANN. each equation
has a common weakness. a natural dependence on the prior probability of an event (e.g.. in this
study. a prior prevalence of mastitis in a population) and the choice of decision criteria; none of the
measures. discussed previously. allows for the comparison of two distinct diagnostic systems in
terms of either their screening ability or in terms of their ability to provide an accuracy index (A,).
An A, for the evaluation of a diagnostic system should reflect only an intrinsic accuracy and should

be independent ot any external factors (Swets and Pickett. 1982).

For these reasons, a preferred measure of accuracy called a relative operating characteristic (ROC)
analvsis was recommended by Swets (1988) and Swets and Pickett (1982). In order to construct an
A,. the ROC method uses the conditional probability ot a true-positive response and the conditional
probability of a false-positive response because all of the relevant information with regard to
accuracy can be captured by these two outcomes. To estimate the single-valued A,. outputs from a
diagnostic tool are used to plot the conditional probability of a true-positive response against the
conditional probability of a false-positive response for various settings of the threshold value. Figure
5.1 shows an ROC graph containing three curves. Each curve has several points which each
represents one possible decision criterion: a curve represents the possible location of different points
for a particular discrimination capacity. An appropriate nonlinear model is chosen to fit the curve,
and the area of the entire graph that lies beneath the empirical curve is calculated. This proportion,
relative to the entire graph. is defined as the A, value, which has a theoretical range of 0.5 to 1.0. No
discrimination exists for A, = 0.5, i.e.. when the curve is along the diagonal. The diagnostic tool can
achieve an A, of 0.5 by chance alone: in other words. this diagonal represents a situation in which
the diagnostic information is so poor that abnormal and normal cannot be discriminated at a better
than chance level. If A, = .0. discrimination is perfect, illustrating that results from the diagnostic
tool are correct regardless of the decision criteria. The solid curves in Fig. 3.1 represent
discrimination capacities of diagnostic tools and demonstrate that these conditional probabilities for
true-positive responses exceed the conditional probabilities for false-positive responses for every
point along the curve. The curve deviation from the major diagonal is attributed to the discrimination

capacities rather than to chance alone.
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This ROC approach can be applied to ANN. The A, value could indicate the real power of an ANN
obtained from the training data file. The A, would accurately measure the intrinsic capacity of a
trained ANN to discriminate between mastitic and nonmastitic cows free of interference from
external factors, such as prevalence of mastitis in a population and threshold values. This ROC
analysis could be especially useful to compare the abilities of ANN trained with different proportions
of mastitic records. In this investigation, the ROC analysis was designed to provide overall
assessments of the power of ANN. and the 2 x 2 contingency table analyses were used to show the
profiles of ANN or insights into the knowledge that ANN acquired at a given decision criterion of

0.5.

3.3.5 ANN sensitivity to inputs

To examine the importance of each input in the detection of clinical mastitis. a sensitivity analysis
was pertormed using the ANN that was trained with the data file that had a 50% rate in the incidence
of clinical mastitis. and that included all inputs. Three sensitivity analysis techniques were proposed
and tested by Lacroix et al. (1995a). The method used in this research was to disable individual PE
in recall mode. More specifically. the ANN was first trained with all the inputs in the training data
file. The PE in the input layer. corresponding to one input variable. was then disabled. and the output
value of this PE was set to zero (for input variables with more than one corresponding PE. all PE
were disabled). Following this. every record in the testing data file was recalled once. Finally. the
results were compared with those from an ANN with no disabled PE. This protocol was applied to
each input variable (i.e.. 17 times). Results were compared using the criterion of overall probability
of a correct response (i.e.. probability that the response is either true positive or true negative); prior
probability in the testing data file (i.e.. 50%) and the decision criterion of 0.5 were the same for each
disabling. [n order to account for the role of each input. its relative importance (RI) was calculated

as defined in Eq. (8).



_ P(TTCR)« - P(TTCR)

8
P(TTCR) X100 (8)

RI

where P(TTCR),, is the overall probability of a correct response obtained from the ANN with
disabled PE.

3.4 RESULTS

Figure 3.2 represents the ROC graph that was created from the output of the ANN with various
settings of decision criteria. The ANN was trained and tested with the data file with a 50% rate in
the incidence of clinical mastitis. involving traditional plus additional inputs. The empirical curve
in Fig. 3.2 accurately reflects a tixed discrimination capacity of the trained ANN. The capacity in
terms of A, value is approximately 0.8598. Although none of the available research into the detection
of clinical mastitis provides an A, value and a direct comparison of the accuracy of ANN and
conventional methods is near impossible. the accuracy achieved in Fig. 3.2 demonstrates that the

ability of the ANN to predict mastitic states is quite good.

[n order to examine the etfect of ditfering proportions of clinical mastitis in training data files on the
overall discrimination capacity of ANN, the ROC analysis was performed with the output from an
ANN that was trained and tested by the data files with a 9.1% rate in the incidence of clinical
mastitis. This analysis involved the traditional plus additional inputs. An A, value of 0.8631 for the
ANN revealed that the proportions of clinical mastitis did not produce obvious differences in the
overall accuracy between the two trained ANN. However, resuits from the conventional 2 x 2
contingency table analyses (Table 3.3) suggested that training with an high proportion of mastitic
records vielded an ANN that was favourable for predicting a mastitic state. The conditional
probabilities of a true-positive and true-negative response were 0.746 and 0.841, respectively. for
the training data files that contained a 50% rate in the incidence of clinical mastitis and 0.25 and
0.99, respectively, for the training data files that contained a 9.1% rate in the incidence of clinical

mastitis (conditional probabilities of a false-positive and false-negative response were not included
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in the results since they are complementary with the conditional probabilities of a true-negative and
true-positive response, respectively (i.e.. P(TP) + P(FN) = 1 and P(TN) + P(FP) = 1}. The results in
Table 3.3 show that the overall probability of a correct response varied from one case to another: for
example. the ANN trained and tested with the data files having a 50% rate in the incidence of clinical
mastitis had a low overall probability of a correct response of 0.793 compared with 0.923 for the
ANN that was trained and tested with the data files having a 9.1% rate in the incidence of clinical
mastitis. This difference was due to the proportion. or prevalence. of clinical mastitis in testing data

files rather than the intrinsic overall capacity that the ANN acquired.

The ROC and 2 x 2 contingency table analyses were also applied to the files containing only the
traditional variables. This allowed the effect ot including new sources of information to be
examined. Comparing the A, values for the ANN that were trained with the data files having 50%
and 9.1% rates in the incidence of clinical mastitis (0.8546 and 0.8653. respectively) and involving
traditional input variables only. it appeared that additional inputs contributed little to the
predictability of the ANN. This conclusion was further supported by the 2 x 2 contingency table
analyses with similar values in five corresponding measures between the traditional and the

traditional plus additional input tiles shown in Table 3.3.

Table 3.4 presents the results from the sensitivity analyses for the ANN that was trained and tested
with the data files that had a 50% rate in the incidence of mastitic containing traditional plus
additional inputs. The first column of Table 3.4 indicates the name of the input variable that
corresponds to the PE that were disabled each time. The importance of each of the variables is
characterised in terms of the tive probabilities that are shown in Table 3.4. The overall probability
of a correct response was used as a general measure because all comparisons were made within the
same configuration of an ANN and because the decision criterion and testing data file were the same
for each disabling. To facilitate visualization. a relative importance was calculated and is listed in
the last column. A higher relative importance (in absolute terms) indicates a variable with a greater

impact on the accuracy of the prediction.
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From the evidence in Table 3.4, input variables can be classified into three groups. The group of
inputs including stage of lactation, milk yield on test day, cumulative milk yield, SCC. and mean
SCC for a herd has the greatest effect on the prediction of clinical mastitis. Fat percentage on test
day and cumulative fat yield compose the second group, and the remaining input variables
apparently do not play a significant role. Some variables may even provide a negative etfect on the
quality of an output. such as drying off. conformation classes for sires and dams, and herd size on
test day. As a result. the effect of these latter inputs is not clear. For instance. SCC on test day had
a negative influence on the conditional probability of a true-positive response and a positive
influence on the conditional probability of a true-negative response and the posterior probability of
a true-positive response. [n contrast, mean SCC had the reverse effect. Generally speaking, the
previous findings were consistent with the results from the ROC analyses. which demonstrates that
the use of additional inputs does not significantly enhance the accuracy of ANN over studies

employing traditional inputs only.

3.5 DISCUSSION

The ROC analyses indicated that ANN could accurately recognize patterns in test day records to
discriminate mastitic states. The success rate of ANN is comparable with other systems used in
human clinical practice, such as radionuclide scanning and mammography. and ANN provide a

promising alternative for veterinarians in the practice of mastitis diagnosis.

Both the ROC and the conventional 2 x 2 contingency table analyses tended to support each other
in the conclusion that the proportion ot mastitic records in training data files does not affect the
overall capacity of the ANN. However. only the 2 x 2 contingency table has an impact on the
specifics of the knowledge. An high proportion of mastitic records in the training data seemed to
increase the ability of ANN to recognize the mastitic state (i.e.. ANN that were fed more mastitic
records could. theoretically. gain more relevant knowledge and. in turn. could more accurately detect
mastitic cows). Conversely, low proportions of mastitic records seemed to lead ANN to predict

incidence of clinical mastitis less accurately (although the ability to predict nonmastitic states
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improved). These results, which confirm results obtained in previous studies (Lacroix et al.. 1995b:
Lacroix et al.. 1997), have a profound implication for the animal industries. For example, in the
selection of cows for dry period therapy, the ANN that is trained with a data file containing an high
percentage of mastitic records may be applied to the herd in order to reduce the number of cows that
are incorrectly classified as negative. This represents an important advantage for ANN over
conventional methods and. in essence, permits the end user to determine the goal of the predictive

tool.

Regarding the use of traditional and additional variables. small variations existed in the measures
resulting from the ROC analyses and the conventional 2 x 2 contingency table. The differences were.
however, quite small and did not support the hypothesis that additional inputs make a significant
contribution to the predictability of the ANN. Moreover. the results from the sensitivity analysis
showed that most of the variables playing important roles (SCC. stage of lactation. and cumulative
milk yield), are those having a close biological association with mastitis and are already accounted
for in most traditional models. In this sense. the importance of SCC and some of the other variables
is not unexpected and no new light is shed on the variables which contribute to clinical mastitis. [t
is. however, reassuring to see that the ANN was in general agreement with other studies in the

literature (Dekkers et al.. 1994: Heuven et al.. 1988: Shook and Schutz. 1994; Zhang et al.. 1994).

The fact that some of these additional variables did not have an effect may stem from different
reasons. As stated previously, it may have been due to a lack of biological association: however,
conformation traits (an amalgamation of other general traits like dairy character, capacity. feet and
legs. and mammary system) might have been expected to play a larger role, particularly due to the
influence of mammary system. but the effect was negligible. [n instances where subgroups of an
input are expected to exert a greater influence on the predictive ability, it may be more reasonable
to present those subgroups individually; i.e., the coding method for variables of this type might not
be appropriate for the ANN to recognize the pattern. Also, data preprocessing (i.e.. treatment of the
data prior to input) may have a large influence on the results of the ability of an ANN to predict. For

example, season of calving, dry period, and test day were classified into four seasons in this research,



but it is possible that converting them into two seasons might have made a ditference to recognition

of patterns by the ANN.

[t is also worth discussing the code in the data for presence or absence of clinical mastitis; this field
is used by the milker to report an incidence of clinical mastitis on the day of test. and its accuracy
has been questioned in the past. This posed an interesting dilemma in that. presumably. any
subsequent interest in a resulting module from this research should ensure a more accurate
completion of this field in the future but would also raise some questions as to the reliability of the
module. based on the earlier data. Obviously, the ANN assumed that this tield was correct and
proceeded with its pattern recognition accordingly. The possibility of both talse positives and., more
trequently. false negatives (no indication of mastitis when, in fact, there was) in the data. as well as
their ramifications on the results. cannot be ignored. The ANN may also have been misguided if, tor
example. certain data were associated with no clinical mastitis on the day of test but the cow showed
this symptom the next day or even soon thereafter. The fact that frequently available data were being
used to try and generate a useful module for producers meant that their quality was sometimes
limited and this should be taken into consideration when judging the results of this research. One can
only continue to encourage the accurate coding ot data and, assuming the codes were correct, it can
be concluded that the ANN was reasonably well able to discriminate between important and
unimportant variables when predicting incidence of clinical mastitis on the day of test. However,
definitive conclusions as to the usefulness of additional variables are difficult at this time without
a better understanding of both the data being used and their optimal manner of presentation to the

ANN.

The selection of measures or methods used to evaluate a diagnostic system is an important decision
and is a constant subject for discussion. Sensitivity and specificity have traditionally been employed
to assess clinical diagnostic tests and the discriminatory ability of a diagnostic system (Fernando et
al.. 1985: McDermott et al.. 1982; Nielen et al.. 1994; Rindsig et al.. 1979: Schultz, 1977: Sheldrake
and Hoare. 1981): however these measures, as diagnostic indexes, have limitations. As a result, a

new method, ROC, was recommended and applied to select applications (Brethour, 1994; Swets,
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1988). This research supports the view that none of the five measures in conventional contingency
table analyses can be used alone as a diagnostic A, in the comparison of distinct systems and that
A, values work quite well in this area. [t appears that the overall discrimination capacities. or A,
values. of ANN are solely dependent on patterns. defined as relationships between inputs and outputs
that exist in the training data files and are not subject to proportions of mastitis. The proportions of
mastitis, however. have an effect on the learning process of ANN because the more experience ANN
can acquire on one perspective. the better the performance. Although the conventional 2 x 2
contingency table analyses had some disadvantages in assessing the power of ANN. it did provide
some insights into the knowledge gained by ANN. Hence. we suggest that the joint use of ROC and

conventional contingency table analyses provide a more complete picture of the ability ot ANN.

This investigation represents merely a first step in the application of ANN to detect clinical mastitis.
For ANN to fulfil their potential in this area. continued efforts must be made. First. information
resources. specifically the method of coding information and the practice of determining those
tactors that contribute most to the incidence and detection of clinical mastitis. should be studied.
More information resources. such as conformation traits of the udder and veterinary data. should be
explored. Second. a better understanding of the internal characteristics ot an ANN is in order.
Although valuable information is often available. inappropriate architecture design and poor
selection of internal characteristics. such as transter functions and learning schedules. often lead to
the failure of a validation. In short. future research in this area should focus on the preprocessing of
information for ANN: recent studies concur with this need for future research. stressing the
importance of validating the application as well as the optimal contiguration of an ANN (Lacroix.
1994 Lawrence. 1991: Stein, 1993). Further understanding of these two aspects is expected to
improve the accuracy of predictions of clinical mastitis by ANN. A successful application of ANN
in the diagnosis of clinical mastitis should have a great impact on dairy management and disease
control. Indeed. a computer that is equipped with such a system may furnish farmers with accurate
and efficient means of monitoring the status of mastitis in herds. [t may also make automated

detection of clinical mastitis possible in the future.



3.6 CONCLUSIONS

This research suggests that ANN are reasonably accurate at detecting mastitic states in dairy herds.
using dairy herd improvement records. The proportion of different mastitic states in the training files
had little impact on the overall capacity of the ANN to discriminate. but did have signiticant
implications for the intended function of the ANN: a high proportion of mastitic record yielded an
ANN that was better able to predict the mastitic state, and a low proportion of mastitic records
vielded a less accurate prediction. Furthermore, additional variables had little effect on the results
in this study and this may need to be re-examined in terms of data preprocessing or a more accurate
gold standard against which to compare the results. Use of more complete data (e.g.. historical
veterinary data instead of lactation status information) or a change in the way variables are presented
to the ANN may vield different results. We also recommend the combination of the ROC method
and 2 x 2 contingency table analyses to assess the accuracy of a diagnostic system. Based on these
results. further investigation into clinical mastitis detection with a larger data file and better
conformation information should be performed and. perhaps. directed toward the study of the more

valuable and difficult diagnoses of subclinical mastitis.
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TABLE 3.1. The inputs used in the analyses (traditional or additional variables) And their

treatment by the artificial neural network.

Type of input Variable Treatment

Traditional
Lactation number Continuous
SCC Continuous
Milk vield on test day (kilograms) Continuous
Stage of lactation (days) Continuous
Mean SCC on test day Continuous
Herd size on test day Continuous

Additional

Season of calving

Season of dry period

Season of test day

Fat percentage on test day

Protein percentage on test day
Cumulative milk yield

Cumulative fat vield

Cumulative protein yield

Overall conformation class of the cow
Presence of Conformation class of the cow
Overall conformation class of the sire
Presence of conformation class of the sire
Overall conformation class of the dam

Presence of conformation class of the dam

2 binary inputs (00. 01, 10, or 11)
2 binary inputs (00. 01. 10. or 11)
2 binary inputs (00. 01. 10, or 1)
Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Binary flag (O or 1)

Continuous

Binary flag (0 or 1)

Continuous

Binary tlag (0 or 1)




‘ TABLE 3.2. 2 x 2 contingency table for assessing the ability of an artificial neural network.

Observation of mastitis

Yes No
Prediction of mastitis Total predicted
Yes A B A+B
No C D C+D
Total Observed A+C B+D A+B+C+D

o 51



‘ TABLE 3.3. Effects of mastitis proportions in training data files on the predictive abilities of the

artificial neural networks at a given decision criterion of 0.5.

Training ratio Testing ratio P(TP) P(TN) P(PSTP) P(PSTN) P(TTCR)

Traditional plus additional variables

[:1 1:1 0.746 0.841 0.824 0.768 0.793

1:10 1:10 0.250 0.990 0.717 0.930 0.923
. Traditional variables only

1:1 1:1 0.715 0.858 0.834 0.750 0.786

1:10 1:10 0.239 0.990 0.707 0.929 0.922




TABLE 3.4. Relative importance (RI) of each of the input variables to the predictive abilities of
the artificial neural networks that were trained and tested with data files containing a 1 : | ratio of

mastitic to non mastitic records.

Disabled input P(TP) P(TN)  P(PSTP) P(PSTN) P(TTCR) RI
None 0.746  0.841 0.824 0.768 0.793

Season of test day 0.738 0.845 0.826 0.763 0.791 -0.25
Season of calving 0.755  0.833 0.819 0.773 0.793 0.00
Season of drying otf 0.763 0.831 0.819 0.778 0.797 0.50
Lactation number 0.769 0.814 0.805 0.779 0.791 -0.25
Stage of lactation 0.445  0.800 0.690 0.590 0.622 -21.56
Milk yield on test day 0.588  0.852 0.799 0.674 0.720 -9.21
Fat percentage on test day 0.650 0.905 0.872 0.721 0.778 -1.89
Protein percentage on test day 0.755 0.831 0.817 0.773 0.793  0.00
Cumulative milk yield 0913 0394 0.601 0.819 0.653 -17.65
Cumulative fat yield 0.728  0.835 0.815 0.754 0.782 -1.39
Cumulative protein yield 0.757 0819 0.807 0.771 0.788 -0.63
SCC on test day 0.885  0.363 0.582 0.760 0.624 -21.31
Conformation class of thecow ~ 0.701  0.874 0.847 0.745 0.787 -0.76
Conformation class of the sire 0.761 0.835 0.822 0.778 0.798 0.63
Conformation class of the dam 0.750  0.847 0.830 0.772 0.798 0.63
Herd size on test day 0.738 0.856 0.837 0.766 0.797 0.50
Mean SCC 0.322  0.984 0.954 0.592 0.654 -17.65




‘ Figure 3.1. Three examples of relative operating characteristic curves representing different
discrimination capacities where the accuracy indices are 0.75 (), 0.85 (Z). and 0.95 (A). The

minimum accuracy index is also shown (- - -).
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Figure 3.2. Relative operating characteristic analysis for the diagnostic accuracy of the artificial
neural network that was trained and tested with traditional plus additional inputs, and a mastitic to

nonmastitic ratio of 1:1. The area under the curved line (I) represents the accuracy index of the

artificial neural network. 0.8598.
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CONNECTING STATEMENT

The results presented in the previous chapter have shown that the accuracy of the ANNs for
ditferentiating mastitic cows from non-mastitic cows was at least as good as the conventional
approaches using the relatively small data sets. This finding encouraged us to carry out further
studies in this area with the expanded data sets and more input information sources. The following
research is intended to check the role of conformation traits in the prediction of mastitis. [n addition.
the etfects of the data preprocessing and ANNs architectures on the quality of the results were also

examined.



CHAPTER 4
Identification of factors influencing clinical mastitis using test-day

production and conformation data with artificial neural networks

X. Z Yangz. R. Lacroix and K. M. Wade®
Department of Animal Science. McGill University
Macdonald Campus. 21111 Lakeshore Road
Ste. Anne de Bellevue, PQ. H9X 3V9 CANADA

Short Title
FACTORS INFLUENCING MASTITIS FOUND WITH ARTIFICIAL NEURAL

NETWORKS

Key words: Artificial neural networks. clinical mastitis. production. conformation traits. sensitivity

analysis. milk production

Abbreviations: ANN. artificial neural network; PE, processing element; SCC. somatic cell count

2 Present address: Ontario Swine Improvement Inc., Suite 202-450 Speedvale Avenue W., Guelph, ON, NIH 7Y6.

3 Corresponding author. Reprint requests.

59



4.1 ABSTRACT

A data set comprised of 1.296.877 test-day records and covering the period of December 1979 to
November 1992 was used to investigate the usefulness of artificial neural networks to detect
influential variables in clinical mastitis. These data were complemented with phenotypic and genetic
conformation data in an effort to improve the predictive ability of the artificial neural network. The
data were analysed using the production data only. the conformation data only. and a combination
of the two. Results trom a 2 X 2 contingency table analysis indicated that stage of lactation. milk
vield on test day. cumulative milk yield and somatic cell count were the major production factors
intfluencing the occurrence of clinical mastitis. Among the conformation traits. such variables as
phenotypic scores for rear-teat placement. dairy character and size. cow proot for dairy character.
sire reliability for final score and sire proofs for pin-setting (desirability) and loin strength were
found to have some intluence on the network’s predictive ability although they were all very minor
tn relation to the production variables mentioned. As a group. cow genetic proofs seemed more
important than either sire genetic proofs or cow phenotypic scores. Architecture had little impact
on the pertormance of the artificial neural networks in this study but it is felt that future research in

this. as well in the area of data preprocessing would be benetficial.
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4.2 INTRODUCTION

Mastitis continues to be one of the more serious diseases facing the modern dairy industry (Morse
1977) and. despite much research efforts into finding a means to diagnose and prevent it. financial
losses do not seem to be reducing drastically over time (Dobbins 1977; Booth 1988: Gill et al. 1990:
Miles et al. 1992). In tact, the incidence of mastitis may actually be rising with increased selection
pressure for milk production (Shook 1989: Rogers et al. 1991: Schutz 1994: Shook and Schutz
1994). In the absence. therefore. of an effective approach to preventing the occurrence of mastitis,
its early and accurate diagnosis (in conjunction with an instant therapy) provides the best means of’
reducing mastitis-associated costs to farmers. [t also follows that the identification of factors that
play a role in its occurrence will allow for better subsequent management of dairy cows with regard

to this disease.

In the carly part of this century the bacteriological culture approach was discovered and used
accurately to identity infected mammary glands in cows: it is. however, time consuming and a high
labour cost limited its practical application (Dodd et al. 1977: Morse 1977). Research was
subsequently directed towards the use of indicators of mastitis such as somatic cell count, bovine
serum albumin and electrical conductivity but a single indicator has generally been tound to be
inadequate since mastitis is caused by many different factors (genetics, management, sanitation,
milking techniques, etc.). This is further evidenced by the fact that statistical models in this area
generally consider multiple sources of information. They are. however. relatively scarce in the
literature, possibly because mastitis is not consistently recorded in most dairy cattle populations
(Seykora and McDaniel 1986: Rogers et al. 1991; Kehrli and Shuster 1994. Schutz 1994: Zhang et
al. 1994) or because of the heretofore limitation in computing power (Simianer et al. 1991:
Emanuelson et al. 1993). Most past research into statistical modelling of mastitis has been limited
to some of the performance traits. physiological markers and environmental factors (Emanuelson
et al. 1987: Berning and Shook 1992: Lescourret et al. 1995). Although phenotypic and genetic data

on conformation traits have long been available, their use as predictors of mastitis has not been
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studied extensively, despite a number of studies which showed low to moderate correlations between
them and mastitis or SCC (Seykora and McDaniel 1985; Monardes et al. 1990; Rogers et al. 1991:
Rogers 1993: Schutz et al. 1993). Those studies suggested that the possibilities of reducing the
incidence of mastitis existed through indirect selection for conformation traits (Batra and McAllister
1984: Thomas et al. 1984; Monardes et al. 1990). This also implied that patterns might exist

between conformation traits (both phenotypic and genetic) and mastitis.

Artificial neural networks (ANNSs) are part of an emerging technology which has many advantages
over traditional approaches, one of which is their ability to handle large amounts of information
sources simultaneously in a non-sequential process (Freeman 1993). Although applications of
ANNSs in the agricultural industry are not as common as in other fields, a review of some of the
existing cases has proved interesting (Yang et al. Submitted) and there is a growing interest in
studies into where and how ANNs can be used. The application of ANNs in the detection of clinical
mastitis has already been reported (Nielen et al. 1994: Yang et al. 1995; Yang et al. Submitted).

However it may be possible to enhance the ability of these ANNs by exploring additional sources

of information such as phenotypic scores and genetic values for conformation traits.

The objectives. therefore. of this study were 1) to investigate the possibility of enhancing the power
of ANNSs to predict the occurrence of clinical mastitis through the use of phenotypic and genetic
information on conformation traits (as opposed to production data only): 2) to examine the relative
importance of these (and production) variables on the occurrence of mastitis; and 3) to check the

etfects ot data size and network architecture on the quality of ANN performance.

4.4 MATERIALS AND METHODS

4.4.1 Artificial Neural Networks

Derived from research into artificial intelligence, ANNs were designed as an imitation of the human
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nervous system in order to perform complex functions such as reasoning and learning on computers.
They consist of processing elements (PEs) — the equivalent of biological neurons — that are grouped
into interconnected layers. Each connection possesses a weight, which corresponds to a synapse.
Through a learning process. an ANN is able to detect patterns in a data set, i.e.. it learns how to map
sets of inputs to their corresponding output(s) and. when presented with a specific set of inputs. a
trained ANN can then generate the corresponding output(s). Neurocomputing takes place in the PEs.
and ANN learning occurs through the adjustment of the connection weights. Detailed descriptions

of how ANNs work can be found in the literature (e.g.. Freeman 1993, NeuralWare 1993).

A variety of ANNs can be constructed based on differences in the arrangement of the layers. the
interconnection of the PEs, and the learning procedure employed. For this research. a teed-torward.
back-propagation method was employed. Here. the learning process is said to be supervised: pairs
of inputs and outputs are fed to the ANN and the basic neurocomputing is then carried out in each
PE. The ditference between the outputs generated by the network and the actual outputs is
calculated and taken as a learning signal to be back propagated into the ANN. The weights in the
ANN are then adjusted to reduce this error as much as possible. All inputs and outputs from a data
file can be presented repeatedly to the ANN. which progressively changes its weights in a gradient-
descent fashion. Through this process, the ANN learns the relationships existing between the various

sets of inputs and their corresponding output(s).

4.4.2 Data and Variables

The data for this study consisted of individual Holstein test-day records obtained from the Québec
Dairy Herd Analysis Service (PATLQ) and conformation information on cows and sires provided
by Holstein Canada and the Canadian Dairy Network. The test-day records (3.5 million) were
originally retrieved from the data base of PATLQ and fifteen specific fields were chosen for use in
this study. Two additional variables — mean SCC and herd size on test day — were constructed from

the data as an indication of the herd effect and three “flag”™ variables that were used to indicate
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whether the three conformation variables in the test-day data were present or not. A summary of
these variables. as well as their treatment is shown in the Appendix. 4.1 Elimination of records that
included a suspect (or absent) value in one of the fifteen fields of interests reduced the data set from
3.5 to 1.9 million. Keeping only those records where matching conformation data existed further
reduced this data set. The conformation data included phenotypic scores for cows and genetic proofs
for cows and their sires (see the Appendix 4.2 for further details on the specific conformation traits
as well as the classification procedure). The final data set comprised 1.296.877 records representing

82.807 cows. 4.340 sires in 609 herds covering the period of December 1979 to November 1992.

To facilitate the construction of training and testing data sets with no duplicate records between
them. the following procedures were applied: the final data set was categorised according to presence
(4.610) or absence (1.294.116) of the code for clinical mastitis. Each of these two categories was
then randomly split into two data sets (i.e.. two sets of 2,305 records wit/ an indication of clinical
mastitis and two sets of 647.0358 records without an indication of clinical mastitis). The splits were
achieved simply by reading every second record. A training data set was subsequently formed by
using all records from one of the data sets with mastitis (i.e.. 2,305) and by randomly assigning equal
numbers of records (2.305) from one of the data sets without mastitis. A testing data set was created
in the same way, but using another two data sets. These two data sets had 4.610 records with a
mastitis proportion of 50% and no repeated records between them. From these data sets the training
and testing files were constructed for 1) production information only: 2) conformation information
only: and 3) a combination of the two. In the case of the combination. some summary conformation
data that is present in test-day production files was excluded due to the presence of more complete

data in the actual conformation file. . A summary of the various data structures is shown in Fig. 4.1.

4.4.3 ANN Configuration

Artificial neural networks consist of input layers (representing the input variables), an output layer

{representing the variable that is being predicted) and a hidden layer. Most of the actual processing
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occurs in the hidden layer, and its structure can vary in terms of the number of processing elements
therein. In the case of the production data, there were 23 input PEs (i.e., 17 inputs, six of which were
coded as binary) and one output PE — namely the prediction of mastitis. Four different architectures
were examined with respect to the hidden layer in order to gauge its effect on the training process.
Using a notation which refers to the number of PEs in each of the input. hidden and output layers.
respectively. the four architectures examined were: 23-2-1, 23-10-1, 23-50-1, and 23-110-1. For
example. a 23-2-1 network reterred to 23 input PEs. two PEs in a hidden layer. and one output PE.
The number of PEs in the hidden layer (i.e.. 2. 10, 50 and 110) were chosen arbitrarily but it was
telt that the spread was large enough to show any effect. When analysing the production and
conformation data combined, the same architectures were applied at the hidden and output layers and
there were 106 input PEs. These input PEs contained the 89 conformation variables and seventeen
of the production inputs (the three conformation classes in the production data set were omitted
along with their respective “flag™ indicators). A single network was implemented when analysing
the conformation data only; it contained 89 input PE. 110 PEs in the hidden layer and one PE at

output layer. A summary of the various architectures is also shown in Fig. 4.1.

The ANNSs were trained with a normalized cumulative delta-rule learning rule and an epoch of 16
records for 100.000 cycles. at which point the classification ability of the ANN was no longer
significantly improving. The transfer function in the PEs was a hyperbolic tangent function. Since
the output PE of these ANNs is a binary “Yes/No™ and is represented by a continuous value between

0 and I. a cutoff point of 0.5 was chosen for determining the outcome.

4.4.4 Measures to Assess the Ability of the ANN

This research adopted the 2 x 2 contingency table analysis, which has been well documented by
Swets et al. (1982). Radostits et al. (1994) and Yang et al. (Submitted). Measures employed in the
analyses included the two conditional probabilities for a true-positive and a true-negative response,

denoted as P(TP) and P(TN), respectively, and the overall probabiiity of a correct (positive or
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negative) response denoted as P(TTCR). P(TP) refers to the percentage of correct identification of
the occurrence of mastitis by the ANN given its prevalence. P(TN) refers to the percentage of
correct identification of the absence of mastitis by the ANN given its absence. P(TTCR) measures
the overall predictability of the ANN for mastitis. Since the distribution of true positives to true
negatives is 50:50, P(TTCR) is simply the average of P(TP) and P(TN). These measures. as well

as their derivation, are shown in Fig. 2.
4.4.5 ANN Sensitivity to Inputs

Sensitivity analyses were carried out to examine the influence ot an individual input or a group of
inputs on the occurrence of clinical mastitis as supplied on test-day reports. The method entailed
the disabling of certain PEs in recall mode only. A detailed description of this procedure can be
found in Lacroix et al. (1995a) and Yang et al. (Submitted). Sensitivity analyses were performed
for the production data (using the 23-10-1 architecture). the conformation data (using an 89-110-1
architecture) and the combination of production and conformation data (using the 106-110-1
architecture). A relative importance of each input (or a group of inputs) defined was also calculated.
This is simply the percentage change in P/(TTCR) when a specific input is disabled from when no

variables are disabled. It was calculated as:

P(TTCR), - P(TTCR)
P(TTCR)

100

where P(TTCR)y is the overall probability of a correct response from the ANN with a specific

processing element disabled. The RI value was used as the main method for evaluating a variable’s
importance towards the prediction, and a higher absolute value indicated a larger influence. Changes
in the measures of P(TP) and P(TN) were also considered since their values were different measures

of the ability of an ANN.
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4.5 RESULTS AND DISCUSSION

Table 4.1 contains the results from sensitivity analyses of the ANN trained with the production data
only. The values are presented as a comparison of the different networks with disabled inputs to the
network with no disabling (first line). The RI values indicate that the input variables of stage of
lactation. milk yield on test day., cumulative milk yield and SCC played a major role in the prediction
process. while other inputs. including seasons of test day. calving day and drying off. protein %.
cumulative fat, cumulative protein. sire conformation score, dam conformation score and herd size
seemed to have very little effect on the process at all. At the same time, there were variations in the
networks" abilities to predict true positives and true negatives (as evidenced by the P(TP) and P(TN),
respectively). In addition it was observed that there were some degree of association between
incidence of clinical mastitis and lactation number, tat %. mean SCC and cow conformation score.
[t should be noted that the conformation variables used in this part of the study refer to those found
in the test-day tiles and are not as complete or extensive as those in the conformation files that were

also used.

The results in Table 4.1 are in general agreement with those of Yang et al. (Submitted): those
variables with a major contribution to predictability in the previous work also demonstrated a similar
role in this study. The more than doubling of the training data size (an increase from 2.060 to 4.610
records) had little effect on the overall ability of the ANN to predict - P(TTCR) actually dropped
tfrom 0.793 to 0.782. It should. however, be noted that some changes emerged. For instance, the
roles of SCC and stage of lactation appeared strengthened, while the role of mean SCC and
cumulative milk yield appeared weakened to a certain degree. Input variables such as lactation
number and cow conformation score. that showed little role in previous work (Yang et al.

Submitted). seemed to demonstrate some association with mastitis in this study.

These findings are supported by other work in the literature. For example, Houben et al. (1993)

found the risk of clinical infection was influenced by stage of lactation and lactation number and
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Berning and Shook (1992) performed logistic regression of bacterial status on herd. lactation
number. milk yield. log SCC. logarithm of N-acetyl-B-D-glucosaminidase, and stage of lactation.
After removing the least significant variables in a stepwise process, final predictors of infection
status were found to be herd, log SCC. and logarithm of N-acetyl-p-D-glucosaminidase (Berning
and Shook 1992). Lescourret et al. (1995) used calving month, production potential and herd effect
in a model to predict the occurrence of mastitis. Stage of lactation and milk yield had a role in
modelling logarithm of SCC. Heuven et al. (1988) observed that stage of lactation effects for
logarithm of SCC disappeared when corrected for milk yield. A similar phenomenon also occurred
in this study where the role of mean SCC seemed to diminish with increasing numbers of inputs:
previous work (Yang et al. Submitted) categorised the role of mean SCC with an RI value of
approximately -17%. while the current study found RI values -2.3% (Table 4.1). and 0% (Table 4.3).
It should also be stated that a small RI value for mean SCC does not imply that it is unimportant:
in tact P(TP) and P(TN) both indicate that it did play some role. Hence. it may be worth considering
the idea that the pattern or role of an input is subject to a given set of information, used to train an
ANN. and may be moditied if new information is included. This phenomenon could be due to that
fact that these inputs are overwhelmed by the presence of certain production traits. or due to a

redistribution of roles among the inputs.

Table 4.2 shows the results of the sensitivity analyses for each input variable when the ANNs were
trained and tested with both the production and the conformation data. As before, those variables
seen as exerting the greatest intluence on the predictive ability of the ANN included stage of
lactation. milk yield on test day, cumulative milk yield and SCC. This time. lactation number was
also prominent as an influential factor. Relatively weak associations were observed for season of
test day. cow proof for dairy character. cow proof for final score and reliability of sire proof for final
score. While the remaining inputs did not seem to have any obvious influence on the overall
predictability of the ANNS, the exclusion of many of them (e.g.. Mean SCC on test day) resulted in
an ANN with different abilities. depending on whether they were attempting to predict true positives

or true negatives. The general conclusion from these specific sensitivity analyses was that
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conformation traits were relatively unimportant as predictors of clinical mastitis. In fact, only three
variables (cow proof for dairy character and final score and reliability of sire proof for final score)

had RI values of greater than one.

The P(TP) values resulting from when SCC - the most significant factor in Tables 1 and 2 — was
disabled require some further explanation as they were unity for both the network trained with
production data only and the network trained with both production and conformation data. This
arose. in essence. from the fact that inputs were disabled by setting the input value to zero which.
in the case of a bipolar mode of presentation (all inputs mapped between —| and +1). results in the
output value being set to the average of the minimum and the maximum input values. Since SCC
values actually ranged from approximately zero to several million. this value — the average of the
minimum and the maximum values — was still quite significant and. therefore. a// animals had a high
associated SCC and were all diagnosed as being mastitic. Mathematically. this means that the values
C and D (Fig.. 4 2) were always equal to zero for this particular sensitivity analysis (i.e.. P(TP) was
always equal to 1.0 and P(TN) was, therefore. always equal to 0.0). These values of 1.0 and 0.0 are.
therefore. a result of the specific technique used. and should not be interpreted as anything other than

the fact that SCC played an important variable in the prediction of mastitis from these data sets.

Sensitivity analyses were also performed for ANNs trained and tested with only the conformation
data (Table 4.3). This was done in order to exclude the production variables. some of which seemed
to be having an overwhelming effect on the predictive process. and to try and spread out the
conformation variables more. The results indicate that, despite their low level of influence on the
prediction of clinical mastitis, not all variables were equal in their effects. However. of the 89 input
variables only six — phenotypic scores for rear-teat placement, dairy character and size, cow proof
for dairy character, sire reliability for final score and sire proofs for pin-setting (desirability) and loin
strength — had an RI value of greater than one. That being said, the role of many of the other
variables (e.g.. cow proof for final score) was found to be different depending on whether the

network was predicting presence or absence of clinical mastitis [i.e., P(TP) versus P(TN)].
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While the results from Tables 4.2 and 4.3 basically show that conformation data did not exhibit a
large role in the prediction of clinical mastitis (as defined in this study), those which did show some
influence were not altogether unexpected. For instance, Rogers et al. (1991) and Schutz et al. (1993)
found genetic correlations between the logarithm of somatic cell score and udder depth. fore udder

attachment. and front teat placement, ranging from -0.35 to -0.2.

The next analysis looked at conformation data on a group, rather than on an individual basis.

Variables were grouped according to their natural divisions — cow phenotypic scores. cow proofs and
sire proofs. All combinations of group disabling were examined and compared to the network
trained with both production and contormation data (i.e.. each group was first disabled on its own,
then pairs of groups were disabled, and. finally. all three groups were disabled). The results are
shown in Table 4 and indicate that each source of conformation traits (or their combinations) played
a small but. as expected. unequal role in the prediction of clinical mastitis. For the role of each
individual information source. cow proofs seemed to be more influential (RI value of -2.4 %), asa
group. than either sire proofs or cow scores. In fact. sire proofs seemed to have somewhat of a
reversed role: disabling this group of information resulted in a slight enhancement in the overall
predictability (RI value of 1.3%). This trend was also observed when more than one group was
disabled: group disabling that involved sire proofs seemed to “improve™ the situation while
involvement of cow proofs let to a more negative RI value. These results are in support ot some
work concerning genetic evaluations, indicating that udder conformation traits had higher a genetic
(about 0.3) than phenotypic (-0.1) correlation with SCC (Monardes et al. 1990: Rogers et al. 1991;
Schutz 1994). In addition. it was concluded that the correlations between sire proofs for somatic cell

score and type traits were generally small (Zhang et al. 1994).

With regard to the effect of different architectures (in this study, number of hidden PEs) on the
ability of ANNs to predict, Table 4.5 shows the results for both the ANN that was trained with the

production data only and the ANN that was trained with the production and conformation data
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together. While there was little difference in the results obtained from the production information
only, the same overall trend was not observed with both sets of ANNs (i.e.. the performance of the
ANN trained and tested with both production and conformation information actually seemed to
deteriorate with higher numbers of PEs in the hidden layer while the opposite was the case for the

ANN trained and tested with only the production data).

This might not be the case for other applications since the number of hidden PEs depend primarily
on the nature of data. For example. Dolenko et al. (1995) and Hassan and Tohmaz (1995) found that
ANN architectures had quite a large effect on the performance of ANNs. While no general rule
seems to exist, a broad guideline for the number of PEs in a hidden layer is presented in the Tutorial
for NeuralWorks Professional II/Plus and NeuralWorks Explorer (1993). More specifically. Pizzi
and Somorjai (1994) concluded that, for classification problems with two classes, the number of PEs
in the hidden layer should be at least twice the number of input variables. On the other hand.
Freeman (1993) believed that for networks of a “reasonable™ size (hundreds or thousands of inputs),
the hidden layer need only be a relatively small fraction of the size of the input layer. It could be
argued that the results from this study supported Freeman's theory. Since the primary aim of this
research was not one of fine-tuning ANN architectures, extensive investigations were not carried out.
The conclusion from this study. however. would seem to be that architecture design is not a key
factor. This might not be the case in other applications and much research (both theoretical and

practical nature) remains to be carried out.

Although this study has shown a minor role of conformation traits as predictors of mastitis, the
authors believe that the discriminatory ability of an ANN can be further enhanced through an
exploration of new information resources. Research in other area has exhibited some associations.
For instance, the estimated genetic correlations between milk yield and indicators of mastitis
suggested that genetic proofs for production traits might be an important source of information for
improving an ANN’s ability to predict mastitis (Miller 1984; Banos and Shook 1990; Simianer et
al. 1991: Schutz 1994). Furthermore, SCC itself has a high genetic correlation with mastitis (0.6 to
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0.8) indicating that a pattern may exist (Shook and Schutz 1994). Future research should also look
at the creation ot new variables using available sources of information (e.g.. a log-transformation of
SCC, SCC on test day divided by mean SCC for the herd, etc.). This could lead to a better use of
information resources and an enhancement in predictability of ANNs at no increased cost. Of
course, further efforts should be devoted to data preprocessing as well and the importance of this
issue has been addressed in previous studies (Lawrence 1991; Stein 1993; Pizzi and Somorjai 1994:
Lacroix etal. 1995b: Lacroix et al. 1995¢c: Yang et al. Submitted). In order to apply ANNs in this

particular field. a final optimal configuration needs to be determined.

4.6 CONCLUSIONS

The most influential variables associated with clinical mastitis are production traits. specifically.
SCC. milk vield and stage of lactation. When compared to that of production traits. the role of
conformation traits seemed to be minor. However. some of these variables (e.g.. phenotypic scores
for rear-teat placement. dairy character and size. cow proof for dairy character. sire reliability for
final score and sire proofs for loin strength and pin-setting - desirability) had a higher degree of
association than others. and were consistent with other studies trom the literature. While relatively
important conformation variables were seen across categories. as a group. cow proofs seemed to be
more influential than either sire proofs or even cow phenotypic scores. The architecture of the ANN

seemed to play very little role in its predictive ability for this application.
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‘ TABLE 4.1. The role of each input variable in the artificial neural network trained with the

production data only.

Disabled input variable P(TP)* P(TN) P(TTCR) RI (%)
None 0.713 0.851 0.782 -
Season of test day 0.706 0.855 0.780 -0.3
Season of calving 0.692 0.869 0.780 -0.3
Season of drying off 0.692 0.865 0.778 -0.5
Lactation number 0.772 0.773 0.772 -1.3
Stage of lactation 0.107 0.997 0.552  -29.4
Milk yield on test day 0.537 0.885 0.711 -9.1

. Fat percentage on test day 0.639 0.900 0.770 -1.5
Protein percentage on test day 0.726 0.840 0.784 0.3
Cumulative milk vield 0.537 0.885 0.711 9.3
Cumulative fat yield 0.766 0.799 0.783 0.1
Cumulative protein yield 0.672 0.875 0.778 -0.5
SCC on test day 1.000 0.000 0.500 -36.1
Conformation score of the cow 0.652 0.889 0.770 -1.5
Conformation score of the sire 0.728 0.840 0.782 0.0
Conformation score of the dam 0.723 0.848 0.785 0.4
Herd size on test day 0.721 0.846 0.784 0.3
Mean SCC on test day 0.609 0.920 0.764 -2.3

£ P(TP) = Conditional probability of a true-positive response. P(TN) = Conditional probability
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‘ of a true-negative response, P(TTCR) = Overall probability of a correct response (i.e..
probability that the response is either true-positive or true-negative). and RI =

P(TTCR), - P(TTCR)
P(TTCR)

X 100 where P(TTCR)q4 = Overall probability of a correct response

from the artificial neural network with a specific disabled processing element.
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TABLE 4.2. The role of each input variable in the artificial neural network (106-110-1

architecture)” trained with both production and conformation data.

Disabled input variable P(TP)? P(TN) P(TTCR) RI (%)
None 0.731 0.794 0.762 -
Test day production data
Season of test day 0.708 0.834 0.771 1.2
Season of calving 0.718 0.815 0.761 0.7
Season of drying off 0.726 0.801 0.764 0.3
Lactation number 0.866 0.555 0.710 -6.8
Stage of lactation 0.114 0.996 0.555 -27.2
Milk yield on test day 0.557 0.852 0.705 -1.5
Fat percentage on test day 0.667 0.867 0.767 0.7
Protein percentage on test day 0.732 0.792 0.762 0.0
Cumulative milk yield 0.871 0.562 0.716 -6.0
Cumulative fat 0.728 0.801 0.764 0.3
Cumulative protein 0.757 0.761 0.759 -0.4
SCC on test day 1.000 0.000 0.500 -34.4
Herd size on test day 0.742 0.777 0.759 -0.4
Mean SCC on test day 0.660 0.865 0.762 0.0
Cow phenotypic scores for conformation
Conformation 0.714 0.807 0.761 -0.1
Frame / Capacity 0.731 0.794 0.763 0.1
Stature (height at rump) 0.736 0.789 0.763 0.1
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Size
Chest width
Loin strength
Rump
Pin setting
Pin width
Feet & legs
Foot angle
Bone quality
Rear-leg set
Mammary system
Udder texture
Median suspensory
Fore udder
Fore attachment
Fore-teat placement
Rear udder
Rear-attachment height
Rear-teat placement

Dairy character

Contormation

Final score

Reliability of final score
Frame / Capacity

Stature (height at rump)

0.695
0.731
0.724
0.751
0.731
0.718
0.730
0.730
0.734
0.734
0.731
0.726
0.727
0.722
0.728
0.734
0.735
0.725
0.716
0.725

Cow proofs for conformation

0.729
0.557
0.720
0.748
0.730

Relative height at front end 0.730
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0.834
0.795
0.811
0.795
0.794
0.809
0.795
0.797
0.788
0.794
0.793
0.804
0.802
0.806
0.794
0.792
0.790
0.803
0.803
0.797

0.794
0.921
0.800
0.785
0.793
0.792

0.766
0.763
0.767
0.763
0.762
0.764
0.762
0.764
0.761
0.764
0.761
0.765
0.764
0.764
0.761
0.763
0.763
0.764
0.760
0.671

0.762
0.739
0.764
0.766
0.762
0.761

0.5
0.1
0.7
0.1
0.0
0.3
0.0
0.3
-0.1
0.3
-0.1
0.4
0.3
0.3
-0.1
0.1
0.1
0.3
-0.3
-0.1

0.0
-3.0
0.3
0.5
0.0
-0.1



Size
Chest width
Body depth
Loin strength
Rump
Pin-setting tendency
Pin-setting desirability
Pin width
Feet & legs
Foot angle
Bone quality
Rear-leg set tendency
Rear-leg set desirability
Mammary system
Udder depth
Udder texture
Median suspensory
Fore udder
Fore attachment
Fore-teat placement
Fore-teat length
Rear udder
Rear-attachment height
Rear-attachment width
Rear-tcat placement
Dairy character

Dairy form

0.738
0.730
0.730
0.727
0.730
0.739
0.721
0.730
0.727
0.720
0.735
0.724
0.731
0.734
0.713
0.715
0.733
0.723
0.740
0.732
0.733
0.729
0.731
0.738
0.732
0.739
0.737
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0.793
0.792
0.794
0.795
0.795
0.788
0.805
0.795
0.793
0.797
0.782
0.800
0.796
0.794
0.811
0.816
0.789
0.805
0.784
0.794
0.790
0.790
0.796
0.782
0.795
0.748
0.790

0.766
0.761
0.762
0.761
0.762
0.764
0.763
0.762
0.760
0.763
0.759
0.762
0.763
0.764
0.762
0.766
0.761
0.764
0.762
0.763
0.761
0.760
0.764
0.760
0.763
0.743
0.763

0.5
-0.1
0.0
-0.1
0.0
0.3
0.1
0.0
-0.5
0.1
-0.4
0.0
0.1
0.3
0.0
0.5
-0.1
0.2
0.0
0.1
-0.1
-0.3
0.3
-0.3
0.1
-2.5

0.1



Sire proofs for conformation

Conformation 0.744 0.777 0.761 -0.1
Final score 0.719 0.805 0.762 0.0
Reliability of final score 0.855 0.606 0.730 4.2
Frame / Capacity 0.735 0.789 0.762 0.0
Stature (height at rump) 0.721 0.801 0.761 -0.1
Relative height at front end 731 0.792 0.761 -0.1
Size 0.734 0.790 0.762 0.0
Chest width 0.740 0.786 0.763 0.1
Body depth 0.715 0.816 0.766 0.5
Loin strength 0.743 0.778 0.761 -0.1
Rump 0.747 0.770 0.758 -0.5
Pin-setting tendency 0.741 0.776 0.758 -0.5
Pin-setting desirability 0.643 0.881 0.762 0.0
Pin width 0.701 0.817 0.759 -0.4
Feet & legs 0.730 0.795 0.762 0.0
Foot angle 0.715 0.812 0.764 0.3
Bone quality 0.723 0.799 0.761 -0.1
Rear-leg set tendency 0.733 0.797 0.765 04
Rear-leg set desirability 0.721 0.805 0.763 0.1
Mammary system 0.728 0.798 0.763 0.1
Udder depth 0.708 0.818 0.763 0.1
Udder texture 0.722 0.802 0.762 0.0
Median suspensory 0.731 0.792 0.762 0.0
Fore udder 0.731 0.795 0.763 0.1
Fore attachment 0.7531 0.796 0.763 0.1
Fore-teat placement 0.725 0.801 0.763 0.1
Fore-teat length 0.728 0.800 0.764 0.3

82



Rear udder 0.735 0.791 0.763 0.1

Rear-attachment height 0.716 0.812 0.764 0.3
Rear-attachment width 0.734 0.787 0.760 -0.3
Rear-teat placement 0.723 0.807 0.765 0.4
Dairy character 0.714 0.807 0.760 -0.3
Dairy form 0.731 0.795 0.763 0.1

An architecture of 106-110-1 represents 106 input. 110 hidden and | output processing

clement(s). respectively.

P(TP) = Conditional probability of a true-positive response. P(TN) = Conditional probability of
a true-negative response. P(TTCR) = Overall probability of a correct response (i.e.. probability

P(TTCR ), - P(TTCR)
P(TTCR)

that the response is either true-positive or true-negative), and Rl =

100 where P(TTCR)ss = Overall probability of a correct response from the artificial neural

network with a specific disabled processing element.
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. TABLE 4.3. The role of each input variable in the artificial neural network (89-110-1

architecture)” trained with the conformation data only.

Disabled input variable P(TPY P(TN) P(TTCR) RI (%)

None 0.436 0.666 0.551 -

Cow phenotypic scores for conformation

Conformation 0.427 0.672 0.546 -0.9
Frame / Capacity 0.462 0.638 0.550 -0.2
Stature (height at rump) 0.444 0.657 0.551 0.0
Size 0.312 0.777 0.544 -1.3
Chest width 0.428 0.677 0.552 0.2
. Loin strength 0.346 0.753 0.549 -0.4
Rump 0.420 0.682 0.551 0.0
Pin setting 0.433 0.663 0.548 -0.5

Pin width 0.402 0.697 0.549 -0.4
Feet & legs 0.450 0.650 0.550 -0.2
Foot angle 0.423 0.678 0.551 0.0
Bone quality 0.479 0.622 0.550 -0.2
Rear-leg set 0.440 0.657 0.549 -04
Mammary system 0.492 0.610 0.551 0.0
Udder texture 0.458 0.643 0.551 0.0
Median suspensory 0413 0.689 0.551 0.0
Fore udder 0.438 0.662 0.550 -0.2
Fore attachment 0.441 0.664 0.552 0.2
Fore-teat placement 0.428 0.671 0.549 0.4

® o4



Rear udder 0.449
Rear-attachment height 0.441
Rear-teat placement 0.305

Dairy character 0.376

Cow proofs for conformation

Conformation 0.440
Final score 0.389
Reliability of final score 0.492
Frame / Capacity 0.459
Stature (height at rump) 0.434
Relative size at front end 0.436
Size 0.435
Chest width 0.440
Body depth 0.436
Loin strength 0.433
Rump 0.439
Pin-setting tendency 0.440
Pin-setting desirability 0.384
Pin width 0.443
Feet & legs 0.439
Foot angle .446
Bone quality 0.433
Rear-leg set tendency 0.438
Rear-leg set desirability 0.439
Mammary system 0.439
Udder depth 0.430
Udder texture 0.416

85

0.658
0.662
0.778
0.713

0.662
0.708
0.616
0.647
0.670
0.672
0.667
0.665
0.668
0.664
0.663
0.660
0.714
0.663
0.669
0.659
0.666
0.664
0.667
0.655
0.678
0.680
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Median suspensory
Fore udder
Fore attachment
Fore-teat placement
Fore-teat length
Rear udder
Rear-attachment height
Rear-attachment width
Rear-teat placement
Dairy character

Dairy form

Conformation

Final score

Reliability of final score
Frame / Capacity

Stature (height at rump)

0.442
0.423
0.452
0.429
0.443
0.432
0.435
0.454
0.440
0.487
0.436

Sire proofs for conformation

0.449
0.432
0.916
0.436
0.428

Relative height at front end 0.440

Size
Chest width
Body depth
Loin strength
Rump
Pin-setting tendency
Pin-setting desirability
Pin width
Feet & legs

0.439
0.449
0.425
0.504
0.475
0.482
0.305
0.376
0.438
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0.663
0.682
0.652
0.676
0.659
0.671
0.664
0.654
0.659
0.592
0.671

0.656
0.672
0.113
0.666
0.673
0.659
0.666
0.652
0.674
0.584
0.630
0.619
0.771
0.719
0.664
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0.2
0.2
6.4
0.0
0.0
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0.2
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Foot angle 0.461 0.640 0.551 0.0
Bone quality 0.443 0.653 0.551 0.0
Rear-leg set tendency 0.452 0.659 0.555 0.7
Rear-leg set desirability 0.426 0.675 0.551 0.0
Mammary system 0.425 0.683 0.554 0.5
~ Udder depth 0.451 0.653 0.552 0.2
Udder texture 0.431 0.669 0.550 -0.2
Median suspensory 0.439 0.664 0.551 0.0
Fore udder 0.430 0.678 0.554 0.5
Fore attachment 0.443 0.667 0.555 0.7
Fore-teat placement 0.433 0.672 0.553 0.4
Fore-teat length 0.433 0.662 0.548 -0.5
Rear udder 0.447 0.653 0.550 -0.2
Rear-attachment height 0.423 0.683 0.353 0.4
Rear-attachment width 0.440 0.659 0.549 -0.4
Rear-teat placement 0.423 0.669 0.546 -0.9
Dairy character 0.412 0.675 0.543 -1.5
Dairv form 0.426 0.681 0.554 0.5

An architecture ot 89-110-1 represents 89 input. 110 hidden and | output processing element(s).
respectively.

P(TP) = Conditional probability of a true-positive response. P(TN) = Conditional probability of
a true-negative response, P(TTCR) = Overall probability of a correct response (i.e.. probability

P(TTCR), - P(TTCR)
P(TTCR)

that the response is either true-positive or true-negative), and RI =

100 where P(TTCR)ss = Overall probability of a correct response from the artificial neural

network with a specific disabled processing element.
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. TABLE 4.4. The role of each group of conformation traits in the artificial neural network (106-

110-1 architecture)” trained with both production and conformation data.

Disabled set of input variables’ P(TP)* P(TN) P(TTCR) RI (%)

None 0.731 0.794 0.762 -
Cow scores 0.643 0.874 0.759 -0.4
Cow proots 0.587 0.902 0.744 -2.4
Sire proofs 0.718 0.826 0.772 1.3
Cow scores and Cow proofs 0.500 0.945 0.723 -5.1
Cow scores and Sire proofs 0.634 0.897 0.765 0.4
Cow proofs and Sire proofs 0.577 0.922 0.749 -1.7
. All scores and proofs 0.484 0.957 0.721 =54

* An architecture of 106-110-1 represents 106 input. 110 hidden and 1 output processing

element(s). respectively.

* A= All cow phenotypic scores for conformation, B = All cow proofs for conformation. and C

= All sire proofs for conformation.

*  P(TP) = Conditional probability of a true-positive response, P(TN) = Conditional probability of
a true-negative response, P(TTCR) = Overall probability of a correct response (i.e.. probability

P(TTCR), - P(TTCR)
P(TTCR)

that the response is either true-positive or true-negative). and RI =

100 where P(TTCR)ss = Overall probability of a correct response from the artificial neural

network with a specific disabled processing element.
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. TABLE 4.5. The effects of different ANN architectures on their performance of an artificial

neural network

Architecture* P(TP)* P(TN) P(TTCR)

ANN TRAINED AND TESTED WITH THE PRODUCTION DATA

23-2-1 0.734 0.841 0.787
23-10-1 0.713 0.851 0.782
23-30-1 0.724 0.849 0.786
23-110-1 0.725 0.856 0.790

ANN TRAINED AND TESTED WITH THE PRODUCTION AND CONFORMATION DATA

. 106-2-1 0.751 0.800 0.775
106-10-1 0.738 0.808 0.771
106-50-1 0.748 0.790 0.769
106-110-1 0.731 0.794 0.762

“  An architectures is denoted in terms of number of input-hidden-output processing elements

¥ P(TP) = Conditional probability of a true-positive response. P(TN) = Conditional probability of
a true-negative response and P(TTCR) = Overall probability of a correct response (i.c..

probability that the response is either true-positive or true-negative).
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Fig. 4.1 Diagram of the size, structure and architecture of the various data sets used in these analyses.
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YES (Observed) NO (Observed) TOTAL (Predicted)

YES (Predicted) A B A+B
NO (Predicted) C D C+D
TOTAL (Observed) A+C B+D A+B+C+D
P(TP) = —-A—— P(TN) = —D— and ATICR) = —A—tP——
A+C B+D A+B+C+D

Fig. 4.2. A 2 x 2 contingency table for assessing the ability of an artificial neural network.

91



CONNETING STATEMENT

Major valuable points drawn from these studies are summarised in the following chapter. The
limitations of ANNSs in detecting bovine mastitis are also presented. Recommendations for the

direction of future research in the area of ANNSs' application into the detection of bovine mastitis are

presented.



CHAPTERSS

GENERAL CONCLUSIONS



This research concluded that ANNSs could be used to detect bovine mastitis because ANNs provide
a high predictive accuracy of mastitis (about 86%) in terms of A,-value. The success rate of ANNs

was comparable with other systems used in human clinical practice. such as radionuclide scanning

and mammography. Although it was difficult to give a general assessment on the superiority of
ANNSs over traditional approaches in terms of predictive ability. since the measure of A,-value were

not emploved in the past studies in the prediction and detection of mastitis. the authars judged that
the predictability of ANNs was at least as good as that of conventional methods in terms of
sensitivity and specificity. the most commonly used criteria in the past research. This general
conclusion indeed answered one of the most common questions of interest: is it possibie to use
ANNs in the animal industry? This study also illustrated an example of how and where ANNs can

be applied.

This study not only validated the feasibility of using ANNSs to detect mastitis. as set in the research
objectives. but also provided sufficient results related to the role of input variables. This research
showed that input variables such as lactation stage. milk yield on test day. somatic cell count on test
day. played dominant roles in the prediction of mastitis. while the input variables of lactation
number. fat % on test day and cumulative fat yield had a small contribution to predictability of
ANNSs. When production data was compared to conformation traits. as a whole, the conformation
traits played a small role. But when the three component groups of the confirmation traits were
compared they demonstrated unequal contribution to the prediction of mastitis, with a greater role
played by cow proofs than either cow scores or sire proofs. When the individual confirmation traits
were compared. conformation traits such as phenotypic scores for rear-teat placement, dairy-
character and size. cow proof for dairy character. sire reliability for final score and sire proofs for
pin-setting (desirability) and loin strength, had a relatively greater impact on the prediction of
mastitis. Sensitivity analyses also indicated that each source of information on conformation traits
had different effects, suggesting that cow genetic proofs had a greater role than phenotypic scores

and sire genetic proofs in enhancing the predictive ability of ANNs for mastitis. All the results
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presented in this study were generally in agreement with those published previously using statistical
methodology. However. it should be noted that because of the full interactions involved among the
input variables, a small modification in the role of each individual input may take place due to
changes in the number of inputs and changes in encoding method. It should be emphasised that the
role of each input in these studies was subjected to a given set of input variables in the training data
set. The role of each input as reflected by the sensitivity analysis might not be due to its own direct
association with mastitis status. Therefore. the relations between input information and mastitis

could not be explicitly explained.

Some work was also done with data pre-processing and internal characteristics of ANNs. Primary
results from ANNS trained on training data sets with differing proportions of mastitis have shown
no effect on the overall discriminatory ability of ANNs through "ROC" analyses. However.
conventional 2-by-2 contingency table analyses indicated some effect on the particular purpose of
the artificial neural network being developed. While this research has revealed that the architecture
and the size of the training data had little impact on performance of an ANN. this conclusion may

not be applicable to other applications of ANNs.

[n addition. this research was the first to adopt "ROC" analyses in the assessment of predictability
for mastitis and proved that A,-value was a preferable measure tor evaluation of diagnostic systems,

especially when the systems are applied to the situations where prevalence of an event differs from
one situation to another. [t was suggested that joint use of "ROC" and 2-by-2 contingency table
analysis would provide a whole picture of the power of a diagnostic system. This study also
recommended that the measures of P(TP). P(TN) and P(TTCR) should be taken into consideration

in evaluation of the role of each input or a group of inputs.

Future research in this area should focus on the pre-processing of information for ANNS, including
a creation of new input variables using available input information, such as genetic information for

SCC and milk yield. and different coding methods applied to inputs. The pursuit of an optimal
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. artificial neural network is encouraged. Further research should be directed towards a more valuable

but difficult area, i.e. the prediction of subclinical mastitis.
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APPENDIX

Appendix 4.1. The monthly production data consisted of specific test-day variables from the Quebec
Dairy Herd Analysis Service. These variables. as well as their treatment by the artificial neural

network. are shown below:

Variable Treatment

Lactation number Continuous
SCC Continuous
Milk vield on test day (kilograms) Continuous
Stage of lactation (days) Continuous

2 binary inputs (00, 1. 10.or 11)
2 binary inputs (00. 01, 10.or 1 1)
2 binary inputs (00. 01, [0.or 1 1)

Season of calving
Season of dry period
Season of test day

Fat percentage on test day Continuous
Protein percentage on test day Continuous
Cumulative milk vield Continuous
Cumulative fat yield Continuous
Cumulative protein yield Continuous
Overall conformation class of the cow Continuous

Presence of Conformation class of the cow
Overall conformation class of the sire

Presence of conformation class of the sire
Overall conformation class of the dam

Presence of conformation class of the dam

Binary flag (0 or 1)
Continuous
Binary flag (O or 1)
Continuous
Binary flag (0 or 1)

Mean SCC on test day Continuous
Herd size on test day Continuous
Total number of inputs 23
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‘ Appendix 4.2 Further details on the specific conformation traits as wee as the classification
procedure.
The conformation data consisted of records from Holstein Canada that matched the already
existing data set for production. A total of 89 conformation variables were associated with each
cow’s production record (23 of which were the individual cow’s phenotypic scores. 33 of which
were that same cow’s genetic proofs and 33 of which were the genetic proots of cow’s sire). The
fact that there are more proofs that phenotypic observations stems from the fact that. over the
period 1979 — 1992, new proofs have been added and. animals were able to receive a proof
(through genetic relationships) even though the corresponding phenotypic score was not

measured. A brief summary of the collection of conformation data follows.

Type classifications are obtained once every 9 months when a classifier evaluates the animals in
a given herd. Traits evaluated on the tarm are either given a linear score (1 - 9) and/or measured.
The computer then generates certain composite traits based on these scores/measurements and all
. the scores are subsequently fed through single-trait BLUP animal model programs to arrive at
genetic proofs for both the animals, on which the scores were taken, as well as their sires. The

reliability of final score is then calculated. based on the accuracy and size of the data.

For up to date information on the current system of classification. the reader is invited to visit

Holstein Canada’s Web site at:
http://www.holstein.ca/

All of these 89 variables were treated as continuous by the artificial neural networks.
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