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Abstract

We prove a completeness result for the equivalenze of proofs in the positive [ragment.
(T, A, —) of intuitionistic propositional logic with respect to sets. We also show
that proofs in the full intuitionistic propositional logic factor through interpolants -
in this way we prove a stronger interpolation property than the usual one which gives

only the existence of interpolants.

Translating that to categorical lerms, we give a representation theorem for free
cartesian closed categories (Theorem 3.16) in the calegory ol sets and we show
that Pushouts of bicartesian closed categories have the interpolation property (‘I'he-

orem 4.47).

Resumé

Nous montrons un résultat concernant la complétlude de I'équivalence des prenves
dans le fragment positil (T, A, —) de i« logique intuitionniste et propositionnelle
par rapport aux ensembles. Nous montrons aussi que les preuves de 'ensemble de la
logique intuitionniste et propositionnelle se décomposent par les interpolants - en [ait,
nous prouvons une propriété d’interpolation plus lorte que la propriété habituelle gui

donne seulement 'existence des interpolants.
p

Transférant ces resultat dans le contexte des catégories, nous donnons un théoreme
de représentation pour les catégories cartésicnnes lermées et libres (Théoréme 3.16)
dans la catégories des ensembles. Nous montrons aussi que les Sommes fibrées des

catégories bicartesiennes et fermées ont la propriéié d’interpolation ('héoreme 4.47).
P
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1 Introduction

A very successful approach to category theory is the one by Lambek and Lawvere
in which they consider certain calegorics “coming [rom nature” as certain lormal
systems coming from logic. The whole approach one may call categorical logic. There
is an important characteristic in Lambek’s approach which is less emphasized in the
approach of Lawvere, namely [or Lambek these formal systems have not only lormulas
and the notion of provability, but also they have the equalily among proofs - the notion
which appeared in classical proof theory as well. For us, this is an essential feature,

and we like to call this part of categorical logic calegorical proof theory.

While for most of the prool theorists the notion of equalily was just a hy-product
of proof reduction which in turn was used “just” to investigale provability - the very
noticn of the equality of the prools was also under consideration most explicitly by
Prawitz. It turns oui that the two cqualities (of Prawitz and Lambek) arc almost
the same (for certain [ragments ol logic exactly the same). TI'herefore, Lambek’s
conclusion is that formulas in the formal sysiems are objecls in the corresponding
categories and that proofs (or rather their equivalence classes) arc arrows in these
categories. It was also noted that in that manner prools become “real mathematical
objects” - and perhaps some nonintended mathematical techniques could be applicd
to investigate them. We believe that even the fact that the prools became more “real”

is a step forward in the understanding what a “gencral” theory of proofs is [G6d65).

The [ormal systems investigated in this thesis are the ones coming from intuition-
istic propositional logic. In the presence of the equality of prools that is the same as
to investigate bicartesian (or cartesian) closed categories - these are categories “quite
often appearing in nature” e.g. toposes are like that. The general goal is to formulate

and to prove for these formal systems (in the presence of equality of the proofs) some



of the well known properties which hold in the presence of provability only. In this
thesis we shall prove a compleieness result for the equality of proofs in the positive
fragment {T, A, —} of intuilionistic propositional logic with respect to sets and we
shall show that interpolation property holds for the full intuitionistic propositional
logic considering not only provability but also equality of proofs. There is a common
“two-step strategy” for proving the {L‘}ove resuits: first prove the right property of
the reductions associated to the forn'{..j? system and second, show that in categorical

Lerms it gives what you want. Let us be a bit more precise about these two resulis.

The first result says that for every free cartesian closed category there exists a

faithful structure preserving [unctor into the category of sets.

Informally, a [ree cartesian closed category is a cartesian closed category freely

generaled by objects and arrows between generated objects.

Some consequences of the above result are that various extensions of cartesian
closed structure do not impose additional equalities among arrows. E.g. let I : C —
B(C) be the canonical map {rom a [ree cartesian closed category C to the free Boolean
topos B(C) generated by C; then [ is faithful. But perhaps more important is that it
confirms our intuition that cartesian closed categories indeed axiomatize the cartesian
closed structure of sets. (In “everyday practice” it means that a diagram commutes

in every cartesian closed category if and only if it commutes in Set.)

A key technical step in the proof of the above theorem is that in a free cartesian
closed category one can faithfully adjoin infinitely many maps 1 — C' for every object
C. This is shown with the help of a system of reductions suggested by G. Mints.
Unfortunately the original paper contains some mistakes, as V. Harnik pointed out
to us, sece remark 3.43; since we think that these reductions are very interesting on

their own right, we repair Mints’ proof (of confluence as well as normalization). Also,

[



an important ingredient in the proof is a variant of H. Friedm~a’s completeness result.

for (a variant of) typed A-calculus.

I would like to add that Michael Makkai told me that the above result should be
true and suggested that the Friedman result should be used in the proof. More on

the history of the theorem one can find in remarks 3.23, 3.44.

Now, let us say couple of words about the sccond result. In logic, by interpolation
we vsually mean a statement as follows: suppose we have a prool of a stalenient, |
C from hypothesis B {i.e. B — C) whcré" B is in a language Ly and (' s in a
language Ly , then there exists a statement A in the language £, N Ly so that we can
prove’3 — A and A — C . There ate many prools ol statements of this type [lor
different formal systems. Some of them are purely syntactic and they arc oblained

as corollaries to cut elimination or normalization.

In our setting (or better to say: in Lambek’s approach) ihe statements ol cul
elimination and normalization are less elegant but inlerpolation remains (almosi) as
elegant as in the basif:l case. The above statement of interpolalion in this setting has
to have a form as folléws.' suppose again f3 is in the language L, and C' in a language
Ly and suppose that there exists a proof B = C in the language L; U Ly, then there
exists A in £, N L, and there are B 5 A in Ly and A S C in L such thal { = sr.
One can see that this kind of interpolation is a genuine improvement, over the usnal

f.-interpolation. We may also add that we allow the presence of axioms and even the

presence of theories.

We also want to obtain a categorical reformulation of the above statement (inde-
pendent of such notions as language and theory); therefore we have to formulate the
interpolation property in the appropriate form, i.e. as a stalement about, Pushouts.
It turns out that this a.gairi_generalizes even {urther the sta.t,cmént of interpolation

- to be really precise about that would require some definitions which we prefer to

3



~ give later. Let us just say that our sccond main resull says that Pushouts (some-
times called bipushouts) in the 2-category of bicartesian closed categories satisfy the
" naturally formulated interpolation property. The same holds for t}w -calegory of

caricsian closed categories. -

T'his is not the first time that interpolation is investigated from calegorical view-
point - pcrhaps the lJcst known work is the one by Pitts [Pit83a, Pit82b, Pit87, Pit88,
l"’lt92] there, as well as in almost all the other references, the interpolation “happens”
in a poset (usuaily in the lattice of subobjects of an object) so again we :an éay that
these variants of intel'polatién concern the provahil?ty only - and not the equality of
prools. There is, however, an exception: Pavlovié in [Pav92] considers interpolation
in a fibrational context and the fibration do not ha.re to be posetal - the results there
are of a general nature and they do not give answer whether a particular doctrine
c.g. ol bicartesian closed 2a.teg_0}jies' has the interpolation property or not. Another
calegorical formulation of intet:p'é)létiOn is given in [KPSﬁ] for the category ol Banach

spaces.
Let us now briefly describe the contents of the thesis:

Following the Introduction is the second part called Basics of Bicartesian Closed
Caltegories in which we give basic definitions and the relation between three versions
of typed lambda calculus and corresponding catcgories (bicartesian closed, cartesian
closed and (elementary) distributive). Althourgh the connections of this type are well
known (c[. [LS86]), we give slightly different presentation; in particular our notion of
mternal language is different from the existing ones. Also, we think that we give the
most explicit connection belween bicartesian clr'Jsed categories and the corresponding
language. We are more premsc about that in remark 2.15. This ba.swaﬂ'u finishes

the common part needed for the proof of both main results. The second part. also



contains a section on free (bi)cartesian closed categories which is needed for the proof

of ithe first minain result.

In the third part we give the proofl of the completeness resun. I starts with a
section 3.1 on Friedman’s completeress result lfor typed lambda caleulus; althongh
it is essentially Friedman’s prool, certain things had 1o be prepared and some new

cases had to be included, Additiona! information is in remark 3.26.

In section 3.2 we finisi the prool of the first result by proving some properties of
the proofs in the positive fragment of intuitionisti~ nropositional logic. We give the
first correct prool that the Mints' (Prawitz’) reductions for lyped lambda calculus
with surjective p: iring and terminal object are confluent and weakly normalizing.
Actually when we started our work no otlicr work was finished which would treal

even the same set ol equations. For more on that sec remarks 3.43, 3.44. -

In the fourth part we start the proof of the interpolation result and in section 4.1

we present the right set of reduciions.

The pruof continues in section 4.2 where we prove that the prools in intuitionistic

propositional logic enjoy a stronger interpolation properly than required by the or-

dinary Craig interpolation. We use ideas from Prawilz’ proof of the statement - the

differences and similarities are explained at the beginring of the scction.
Section 4.3 is just the restatement of the previous fact in calegorical terms,

In section 4.4 we prove the “right” categorical statement of the interpolation. I
contains subsection 4.4.1 where we explain h(, relation between stricl, and nonstriet,
doctrines of bicartesian closed calegories. This relation is contained in {BKP8Y], we
learned about that from Michael Makkai who also formulated theorem 4.69 in the
present form (having in mind non-tripleable doctrines). However, the actual proof

of this theorem and use of it in this thesis are ours. In the subseclion 4.4.2 on



Pushouts we give a construction of Pushouts in the nonstrict doctrine using ordinary
2-pushouts in the strict doctrine and in that way we finish the proof of the second
main result. We coukd probably prove our interpolation result more directly without
so detailed exposition of the above relation but since we think (together with Michael
Makkai) that our construction can be a sign of a more general phenomenon we give

this section in ils present length,

In scction 4.5 we give couple of applications of the interpolation. Among other
things we show that both of the main theorems on interpolation in Heyting algebras
from [Pit83a] casily follow {rom our interpolation result. This section is not really
finished but we [eel that there is nothing wrong with not finishing a section on

applications.

And finally the appendix, which can be considered as a part of section 3.2, in
which we give a not original but complete proof of the weak normalization for the set
of reductions given in this section. We give this proof because it is often omitted or

al least not given with all the details.



2 Basics of Bicartesian Closed Categories

In this section we shall give the definitions of bicartesian closed category, cartesian
closed category and (elementary) distributive category and we shall explain (again)
the Lambek-type connection between these categories and the appropriate Lyped
A-calculi. Some characteristics of our approach to the connectlion are given in re-
mark 2.15. There are many papers where various variants of typed lambda calculi
with finite coproducts are dealt with, but we are not awarc ol the existence ol the
explicit comparison as done below; however, we have to admit, the comparison is
direct. After this, we give the definition of [ree catcgories in the appropriate sense

and prove some elementary facts about them.

2.1 Categories vs. languages

Common thing about the above categories is that their definilions arc based on Lhe
existence of certain adjoint functors. Brielly, we can say thatl bicartesian closed cat-
egories are the ones with finite products, finite coproducts and exponents; cartesian
closed categories are the ones with finite products and exponents; and distributive
categories are the ones with finite products and finite coproducts such that the canon-
ical map (A x B) + (A x C) = Ax (84 C) (for al! the objects A, 2 and C) is an

iso. Let us now give precise definitions of these notions:

Definition 2.1 A category B is {strict) bicartesian closed if il has objects 1 and

0, and for every two objects A, B € B there are objects - denoted A x I3, A4 3 and



A8 let us write it in a tabular form as follows:

1
x |Ax B

+|A+EB

— | AB

The calegory also has to have the {ollowing arrows:

04 € hom(A,1)

X | 74,8 € hom(A x B, A)

7' 5 € hom(A x B, B)

04 € hom(0, A)

a8 € hom(A, A+ B)

+ | ¢4 p € hom(B,A+ B)

dipc € hom(A x (B+C),Ax B+ AxC)
— [eap € hom(A® x B, A)

and the {ollowing operations on homsets:

x | hom(C, A) x hom(C, B) 4 hom(C, A x B)
+ | hom(A4, C) x hom(B, C} ™ hom(A + B, ()
— | hom(A x B, C) = hom(A4, CF)

(the operations should have indexes, but since they are uniquely determined by their

arguments we omit them). These (constants and) operations have to satisfy the



following equations:

() |r=0,
(Pr) | may,0, U, J2) = 1,
X | (Pre) 17y, {1, f2) = [
(SP) | {7aB9,Tap9) =9
(1) |s=10,4

(In1) | [s1,82)ea,,4, = 8
(Ina) | [s1,82]¢4, 1, = 52
+ | UC) [T'M'B:’"fﬂt,s] =r
(A) | dasel{m, ama), (71, t2m2)] = Vaypraxe
(A1) (71, ), (71, tamo)|da o = Laxin+c)
(B) E,‘[’B(}L*WC“B,W&,B> =h

— | (H) |(eaplhmem,7ep)) =k

for every arrow f € hom(A4,1), f; € hom(C, A;), g = hom(C, A x B), s € hom(0, A),
s; € hom(4;,C), r € hom(A + B,C), h € hom(C x B, A) and k € hom(C, A?).

If a category has only finite products (i.e. satisfies “x” parls of the tables) we
call it cartesian, If it has finite products and exponents ("x, =" parts) we call it
cartesian closed. If it has finite products and finite coproducts such that products
distribute over coproducts ("x, +" parts) we call it an (clementary) distributive
category. And as we said earlier - a category with finite products, coproducts and
exponents (“x, + ,—" parts) is called a bicartesian closed category. It is well known

that the distributivity (the equations A and A=") [ollows {rom the rest of the axioms.

In the definition (as it stands) we allow nonuniqueness of objects 1, 0, A x 3,
A+ B and A® (for every A and B). When we want lo siress this we call the
category nonstrict. In the case that we choose only one ohject to represent the

above constructs we call such a category strict.

9



We will use the following abbreviations: if A; EL Al, ¢ = 1,2 then fi x fo =
(fimyy fama) 0 AL X Ay — AL X Ay, [+ 9 = [ufi,ufe] 1 Ay 4 Ay = Al + A3 Also,
A= Ap X+ % A, is used to denote products when the brackets are nested on the left;
and il B is a subsequence of A then ‘JTE : A — B denotes the canonical projection,

and similarly for coproducts.

Definition 2.2 The 2-category BCC of bicartesian closed categories has as 0-cells
(small) bicartesian closed categories, as 1-cells functors preserving bicartesian closed
structure (be-functors), and as 2-cells natural isomorphisms. We will also work in
the 2-category - the “strict” version of the doctrine BCC - that is the 0-cells in BCC,
are strict bicartesian closed categories, 1-cells are strict be-functors - that is functors
which preserve the chosen structure “on the nose” e.g. F(AxB) = F{(A)x F(B). The
2-cells in BCC, are natural isomorphisms. Similarly, CCC will denote the 2-category
of the cartesian closed categories and CCC; its strict variant. Often we refer to these

2-catlegories as (strict) doctrines.

Let us just add that the consideration of natural isomorphisms as 2-cells is not
too strong a restriction. By now, it is part of the 2-categorical folklore that the
doctrines with similar kind of closed structure require natural isomorphisms as 2-
cells - otherwise they are not tripleable over the 2-category of categories. For a
discussion see [BKP.SQ]. We can also add that in our case these doctrines with all the

natural transformations as 2-cells do not have Pushouts - a central object of study

in our thesis.

Definition 2.3 (Typed A8, A, §-calculi) A typed Aé-calculus is a formal system
which consists of three classes: Types, Terms and Equations. They have to satisfy

the following conditions:

10



Types Types are freely generated from a set of basic types - sorts and the lollowing
rules: 1,0 €Types; if A, B €Types then A x B, A+ 13, A® €Types. Again using

the tables we can write it as

1

x |Ax B
0

+ |A+B
AB

Terms For each type A we have countably many variables of type A (we denote

them as zf! or z; : A) and they arc terms, also if s : 0, s; : C,r: A4 B

a: Ay x Ay, a;: A; (i=1,2), f: AB, b1 B are terms then

* 11

X | mw(a): Ay, 7'(a) : Ag
(ay,a2) : Ay X Ay
(s): C

tpa(b): B+ A

+ |y p(b): A+ B
bz4.6¢, 2B G rAtE L O
(S°0): A

— | Azfb: BA

are terms. (The notions of [ree and bounded variables in a term £ are standard
- let us just be explicit about the 8-form: FV(6z4.s§, 885743 1 () =
(FV(s;1) = {zA U (FV (s2) = {zP ) U FV(r) (FV(t) denotes the sel of the free

variables in 1.))

11



Let us just illustrate where ¢ and 6 come from. For that recall the rules for

elimination of the connectives 4. and V (in natural deduction):

I I Ty A4 Ty B

N r S1 S9

L €(s) AvB C C  62rsC,xB.s;rAtE
C C

As usualy we allow cancellation of some (none or all) of the hypothesis A and

B. In our nolation these would be denoted by z# respectively z2.

Equations They always have the following form s =x t where 5,1 €Terms and X is

a sct of (typed) variables such that F'V(s) U FV(¢) C X.

Convention: when FV(s)UFV({) = X we often omit X in s =x ¢. Also, typing

1s omitted whenever convenient.

The following expressions are equations (we call them axioms of Ad-calculus):

(T) | J' =%
x { (Pri) | mi({f1, f2)) = fi t=1,2
(5P) | (m1(g)smalg)) = g
(1) 5% =c(a?) 2° € FV(s9)
+ | () | 82fM sy, 282 805 () = si(r /i) i=1,2

(7) | 6t w(u(z)/z48), yPo(0(yP) /"B ) w = v(w/z) z4,yP & FV(v)
(B) | Azthir) = h{r/z")

—| (n) | AaB.(k2B) =4k xB ¢ FV(k)
forevery term f:1, fi: A;, g: AXB,s5:C,5;:C,vC,w:A+B,h:B,r: Aand

k: A® such that s,v,k satisfy the conditions on the free variables as stated above

12



.also, the notation A(r/z) denotes the substitution of » instead of all [ree occurrences
of z in h but first taking care of clashes of variables - so we are all the time working
under a-congruence since it is possible to do that naively as in untyped A-calculus

and 1t is safe for our purposes).

Equations are obtained also by the following rules (we also say that prools arc

formed from the axioms and the following rules):

s=x 1l . r=x8 s=yI
(B) r=x1 O 7= Tren) =T

F

t=XU{;L‘] s n a? =y b8 A7 - gAY
(6) &1 =X /\:L'-S (SUb) (S‘(I) =xuy (l’,‘h)

A4-B

=y 'U-A+B

o) Somen S sren
x50, 475257 =xuvuz 6z, yC ey u

The need for having indexed equations - contexts will be explained later. We can
have some other basic types (sorts) and some other basic terms {(constants). The
part of the calculus denoted by ”x" we would call 7-calculus but the name is already
taken, since we w?ll not work with this calculus only, we shall lecave it nameless. The
part denoted by "x, — we shall call A-calculus, the part denoted by “x, 4" we
shall call §-calculus and as we said earlier all the parts logether we call Ad-calculus;
let us also add that é-calculus needs an additional rule: (Sub) which we give later,
All types and terms of a certain calculus we call the language; sometimes we are
less precise and we call only the set of basic types and basic constants the language,
A set of equations added to the above system we will call a theory of the caleulus

e.g. Ab-theory or just theory.

And one more piece of terminology: sometimes we will speak aboul type-terms
i.e. when we want to be specific about the basic types used to built a complex type

(using the operations as in the first table of the current definition) then T(X,,... X,)

13



denotes a type built out of the basic types Xi,...,X,. As usually done, we will
overuse slghtly the notation and we will write sometimes 7{Ay,...,A;) to denote
the object in a strict bicartesian closed category build out of the objects Aj,... An

and the operations on objects as in the first table of definitiorn 2.1.

In the presence of (Pr;) and (Z'ran) one can see that the reflexivity (rule (R)) is
not needed. Also, it is a simple exercise to see that the following rules are derivable

(the usual care about clashes of variables is needed for the second rule):

CI.B =x bB S =Y u{zB} t

(W) X5 (Sub) s(a/z) =xur i(b/z)

Also, one can show that any two terms t“,7° are equal over a context which

contain a variable of the type 0 (use t° = = ({t%,z%) = ¢“(z°)). The following

lemma is going to be used:
Lemma 2.4 For any term F(Z°) such that a1, 2, g FV(F) and any uy,up : C (and
w of the ap;;ropriate Lype)
F((Sa1.u1, za-uz; w))Z) = 621.F(ur/Z), w3.F (us] Z); 0.
(Hind: lake v = F((6z;.u1, T2.uz; 278)/Z) and use (v)).
Also, for a lerm 1® and [ : D one can show that:

F(e°(1)/2) = €°(1)

The following expression (23, ...,z ">t) called term with context is going to be often

used, il denotes a term ¢ and a sequence of variables such that F'V(t) C zit, L el

Definition 2.5 An interpretation M of a language L in a bicartesian closed cat-

egory B is a function which assigns objects to basic types (sorts), and satisfies

14



M(A#B) = M(A)#M(B), where # is product, coproduct or exponent; also M(#) =
# where # is 1 or 0 (hence, M(7(X4,...,X,)} = T(M(Xy),...M(X,)) where
T(X1,...,X,) is a type-term as at the end of definition 2.3). I[ the language L.
has some basic constants it is assumed that the category C had them prescribed in
advance, more precisely if ¢: T(X},...,X,) is a basic constant in the language L we
assume that there exists an arrow in hom(1, 7 (M(X,),... M(X,))) - such an arrow
we will often also denote by ¢). Then the interpretation assigns arvows to terms as
follows (using induction on complexity of terms):

o Mz, ... ,zhm b)) -—-7r:-:."

o M(Z: Av#) = 0 7. If the context were empty then we would have M( o) = 1,.

o M(Z: Avc) = cl; (here ¢ is a constant). Also we could have emply context,

then M( vc)=c.

pury

& 'E‘i(t)) =mM(F: Av t) t=1, 2

[ ]
=

&y

oy

o M(Z:Av {t, 1)) = (M(Z: Ao ), M(Z: Ao ty)).

[ ]
=

8

=y

b eC(t)) = OeM(Z: Avi).

o M(Z:Avu(t)) = uM(Z: Avi).

™

=
8
g

> Sy, yP2vyw) =

[M(3: A,y1: Byvw), M(Z: Az Byow)d{l 5, M(3: Av w))

-

o M(Z: Av (t't)) = e(M(F: Avty), M(Z: Ab 1))

o M(Z:Av)yB.t)=(M(Z: A,y: Bot)), il #: A were nol there we would have
M( eXxyB.t) = (M(y® » )7 prem))™

15



The map d : A x (By + By) — A x By + A x B, mentioned above is the canonical
isc which exists in any hicartesian closed category (as well as in any distributive

calegory).

Let [y, I be two interpretations of a theory T in a category B. Then a morphism
1 from [; to Iy is a family of arrows in B indexed by the set of types from T such that

they commute with the basic symbols from the language i.e. W}:((ﬁ:))xfz(Az)':bA:xAz =

; h(A)+0(A L(AL (A _
"'pf‘f’r:{:((ﬁl))thz)’ WM‘I:EA:)H ) = Lrif.a?)) s En(a) )Pyt X Yua) =

P AE 1 (Ar). 1 (42) @0d for every basic constant £, sholy( 2€9) = Ip( 2£€). It is interest-
ing to notice that these conditions alone are enough to establish that for every term

with context (Z : A o £©) the following holds:

(7 : AvtC)pp = ¥eli(F : AviC).

A model of a Ad-theory T is an interpretation such that all the rquations from
T are preserved. A morphism between two models we will call a homomeorphism.
A homomorphism M, % M, € ModzB is an isomorphism iff all the components of

the family are iso in B.

For an interpretation J : L — B (model 7 : T — B) and for a bicartesian closed
functor 7 : B — D by F o I we denote the interpretation F o7 : L — D (model
Fol:T — D) defined as lollows: on basic types I o I(A) = F(I(A)) and on basic
constants F' o f(c) = F(I(c)). Now it is easy to see that the first equation is actually
true for all types and that the second equations generalize to the terms with contexts
iLe. Fol(z: Avt) = F(I(z : Avt)). So indeed F o [ is an interpretation of L. That

F o1 is also a model (if [ is one) will follow from the soundness below.

Similarly, if we are given a (homo)morphism  : I = I, between two interpreta-
tions (models) of a language L (theory T') in a be-category B and if /' : B — D is
a be-functor then 7 0 3 will denote the (homo)morphism between F o I} and Fo I,

16



defined as follows: F o4 = F(34); it is not hard to check that this is indeed a

homomorphism. Also, of course, if ¢ was an isomorphisim # 04 remains one oo,
. —F'.-\ . . . . v corp A .
And finally, if A~ 38 '8 is a natural isomorphism in BCC and il 7" = A 1s a model
yif AW p ,

Fo
then T UBD% B is an isomorphism of models defined as expected i.e. 00 My = Oya).
GoM

Remark 2.6 Suppose that Ny, No € ModrB. It is casy to sce thal a family of isos
N (X) 2 No(X) (X is a basic type (sort) from the language) extends in al most one
way (if any) to an isomorphism N, % N, (By induction on the complexity ol Lypes
one can show that the isornorphisms ¥ must satisly the following: ) = 1, = ",
Yo = 1o = 5", if X is a basic type ¢y and 93! are given above, haxp = tha X 1P
and Yixg = Pt X g, Yars = s + ¥p and '(/JH_LB = ¢3! + by, and P =

(bae(l x ¥3'))" and 935 = (P3'e(l x ¥g)).)

To guarantee also the existence »f an isomorphism N, Z N, which extends the
given family, the family has to satisly the lollowing: for every basic constant £ {rom

the language, Yo Ni( £9) = No( ©£°). The isomorphisms € are defined as above.

Now we can show soundness of our interpretation bui before that we have to give
a useful technical lemma which can be proved by induction on the complexity of

terms.

Lemma 2.7 . Every interpretation M satisfies the following:
1. M(zM* %4 fmy(2),. .., ma(2))) = Mz, .. a0 [(e,. .., 2,)).
If i : B is not free in t then

7 Bot)=M(@G: Av t)wﬁ:g‘mg)

2. M(Z:A
8. M(E: A f(& (9(@)/y") = M(F: Ay : Bo [(Z,y%))(1; M(E : A g(2))).

17



Proposition 2.8 (Soundness) Let T be a Ao-theory., Let M be a model of T in a

bicarlesian closed calegory. Then

IfTE [ =xgthen M(Xo [f)=M(X0oyg).
Proof: As usually, this can be proved by induction on the complexity of proofs
However, to check even the base ol induction requires some work - that the axiom

() is preserved the following argument is needed (here we use [ ] instead of Af)

IE A bz? v(r,l(a:")/z"'i"B), IIB-U(LE(?/B)/ZA+B)1 w] =

[{Z, z > v(e1(2)/2)], [2, & v(ea()/ )] {1 5, [Fo w]) =

([# 2,z U]M ,1;,1)f[£ zo o (2)f), [Ey 20 v]!(ljx[}s [£,y> LE(J)] ld i E'Bb w]])
(T E AN PN CEITPLCY)) N Rt L Gut IS AN R PIE0) ) AP |
E.’!?,J’.‘b LI(I)II)s [[5‘:1 e U]] js |I.'L‘,yl> 52(y)]])]d(1j! IIED w]]) =

[{[a':’,:bv]](lﬁ,
uf,zwﬂ[(w@1,[[5,9»51(3,-)]]) (w4 o L8 yo a(@)d(1 4, [F0 w]) =
% ‘) (ﬂ‘A B,L':Tf

[£: Ao v(w/2)]

(G PN pld{lz [Eow]) =

[Z z0v){l; [Eow]) =
(We used that the map d is inverse of [(7% "17":%_,;>= {m

Remark 2.9 Without contexts we wouldn’t have soundness - it would be provable

(using (Sub’), 8 and (Tran)):
XX f=da¥ gk f=g

and every interpretation in Set which maps X to empty set is a model of the left side

but doesn’t have to be of the right side. However using the rules with contexts we

get “only”
Aw)\'.f . gk f =FRVifgu{z} ¢

and the above interpretation is a model for both sides

18



Definition 2.10 To every bicartesian closed category C we can assoctale o \o-

language L¢, called the internal language, as follows:

s The objects become the set of basic types. When we. want to be precise, the
basic type corresponding to an object A we will denote by X (Lhis is required

when we want to make distinction between types such as X x XN and Nawpn)

¢ The arrows {rom the specified terminal object 1 become the basic constants
- but in several dilferent ways! More precisely: the basic constants ol type
T(Xa,,. .. Xa,) are the arrows home(1,7 (A, ... A,)). (Thus, we have (at
least) two dilferent constants ¢y @ X4, xa, and ¢ : X, X X4, corresponding Lo

. the same (1 ERYI Az)el)

The standard interpretation M is the interpretation which to every sym-
bol of the internal language assigns the intended meaning: X, — A and ¢

T(Xay, .. Xa) o [ 21 = T(A,...A).

The correspouding A-theory Tp contains all equations salisfied by the standard

interpretation: {4 =x s4 € T if M(X v 1) = M(X b s).

(We could have included ‘term constructors’ (unary functions)- every arrow A EN
B becomes a term constructor: if £ : A is a term then f({) : 2 1s a new term.
However, it wouldn’t give anything new in the presence of exponents since ameng the
equations of the theory we would have to include f(I) = {[‘I) where f is Lhe name
of the constant corresponding to the transpose ol [ i.e. f = (fm 4)". In the case
of distributive categories, though, this is not redundant and we have to include the

unary functions as well.)

The above notions make sense in case of a nonstrict (“ordinary”) bicartesian closed

category B, not only in case of strict bec, excepl that in the nonstrict case we [first
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have to choose a strict structure on B and then the interpretation of the complex

types e.g. M(X x Y) is the chosen product of M(X) and M(Y) in B.

Proposition 2.11 (Completeness) For a given Aé-theory T lhere exists a canon-

ical model M 2T — Cp such that M(X vu) = M(Xev)only if THu=xv.
Proof: This ts a standard construction and it is given as [ollows.

Objects Objects are types.

Arrows They are classes ol equivalent terms with contexts. To compare (= :
Avyoyan s A S22, a ) with (g By, w2 BabgP (5. .., yB™)
we first have to have (... (A x A2) X ...) X Ap = (... (B1 x By) X ...) X By,
call it C. (So, assuming m < n it says that B, = A,,...,B; = A,_n4p and

By=(.. (A x Ay x...) X Ayoma1-) Then we say that they are equivalent iff

TE f(mi(z)y s mal2)) =2 g(m1(2), . ..y 7m(2)).
The class above gives an arrow C — D.

Composition (y—“B 1:-_91)(.19-;1 bf)= (:1:—;1 > g{mi( )}y, s 7m([)/ym)). Here [ is of the

type B.
Units 1y =(z: Ava).

Cartesian structure This is going to be defined on the representatives of arrows

which have one [ree variable.

e 04 ={(x:Ab =)

e 748 =(7: AX Bpx(z)).



o ((z:A> f2).(y: Avg(y))) = (v Av (f(2). g(2))). (Sich)
Closed structure .

o cap=(x: AP x B (mx)m(x))).

o (2:AxBre f(2)) = (2 Ao My f({2y,02))).
Coproducts .

o O4= (00 c*(z2))

o o = (21 b y(z))

o [(z4 0 fO), (P> )] = (P b 82.f,.9;2)

The equivalence classes which correspond to ( p¢), where ¢ is a constant, [rom the

language we will denote also by ¢.”

As usual the first thing to check is independence on representatives. But this is

{rue because of the substitution rule (Sub) for typed Aé-calculus.

Second, we have to show that this is a bicartesian closed category. We will show

only the equations (B) and (IC):
e(fm @) = (&> (x((((n(2), 1), 7' (@) = (S (), ), ()))) =
(2> (.S ({n(2), 1)) 7(@) £ (2o J((a(e), 7' (2)) = (25 [(2)) = /.
[ruyria) = (248 o 8202/ 2), 7 rlialy®)2); 245 2 (20 0(2/2)) = 7.

The canonical interpretation which assigns types o the same-name-objects, con-
stants to the same-name-arrows is obviously a model of 1. The whole construction

is such that ‘by definition’ completeness follows. O
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Corollary 2.12 The canonical model M : T — By classifies all models of T in the

Jollowing sense: the map BCCy( By, D) o ModyD is an isomorphism of calegories.

Let us be more explicil aboul the 2-dimensional property of the canonical model:
suppose that N\,Ny € ModyD are lwo isomorphic models (i.e. for cvery type A
in T' there exisls an isomorphism Ni(A) %4 Ny(A) in D such that for every term
(z o 1B) e T, paNi(a? v 1B) = No(z? o 1B)p,) then there exists unique natural
isomorphism Iy = Fy such that ¥ o M = 3, in other words: for cvery type A

Wy = "/) A

Having in mind the remark 2.6, we can require less in the above statement about
the 2-dimensional properly of M : T — By, that is, we could give the isomorphism
between Ny, Ny giving only a family of isomorphisms Ny (X} 23 No(X), now X is just
a basic lype, salisfying the following: for cvery basic constant € from the language,

e N ( ch) = Ny ch)-

Proof: For the 1-dimensional part, let us just prove surjectivity of the above map
—o M. Take a model N : T' = D we have to find a be-functor F : By — D such
that N = Fo M. I on Ob(Br) is easily defined since Ob(Br) are types of T so
F7(A) = N(A). Since the arrows of Bt are classes of equivalent terms with contexts
we are going 10 define ' = IV on arrows {also) (recall the definition of interpretation).
Now we have Lo show that F' does not depend on the choice of representatives and
that I is indeed be-functor. The first part follows from the completeness, and the

second from the delinition of the be-structure on By.

As for the 2-dimensional property, let us just say that naturality of ¥ : F} = F

is “the same thing” as the homomorphism property of ¢ : Ny = N,. 0

[S]
[AG]



2.2 TFree categories

All the statements in this subsection, as well as in the previous one, could be proved

for cartesian closed categories or distributive categories instead of bicartesian closed

categories.

Definition 2.13 (Free BCC) Let L be a Aé-language and T be the theory on this
language with no additional azioms (emply theory). To this T one ecan ussoclate
the bicartesian closed category Cp as in proposition 2.11. Cyp is lhen called free

bicartesian closed category. (In the non-strict doctrine any calegory equivalent to Cyp

is called free.)
Its universal property is given in corollary 2.12. In picture:

T
7'

Cr ETE D

where M is the canonical model and ¢ € ModyD bul since Lhe theory 7' doesn’t

have additional equations we can say that ¢ is just an interpretation of symbols,

This is a generalization of the notion “calegory generated by graph™ since the
free arrows can be of arbitrary type. This is required il we want lo consider these
categories as categories of proofs, but also if we want to aveid identilication of types
in the definition of an internal language. We don’t have lo define a more general
notion where the free arrows have arbitrary domain (this is included by the definition
of exponents) if we are to define free bicartesian closed or carlesian closed calegories,

however we would have to do this in case ol distribulive calegories.

When we analyze the above diagram we will oblain exactly the definition of a free

(bi)cartesian closed category given in [Mak89] and [HM92]. Belore we do that, let us

recall the notion of “free arrow”.

23



Proposition 2.14 (Free arrow) For every bicarlesian closed category C and for
coery object C in C there cxisls a bicarlestan closed category C[1 5 I(C)] and «
be-funetor 1 2 C — C|1 L, 1(C)), such that for every be-functor F : C — D and
cvery arrow (1) = F(C) there exisls unique be-funclor C{l 5 I(C)] S D such that
Gol =TI und G(€) = a. This € is called the free arrow.

Proof: First form the slice category C/C (in general it does not have to be bicartesian
closed) and consider the canonical functor C L C/C which maps an object A to
Ax C 3 C and an arrow (A ER Byto(AxC Urim) gy C). Now, form the full
subcategory of C/C spanned by the objects from the image of I i.e. all the objects
are of the form Ax C 3 C. Denote this full subcategory by C//C. This is easy to see
that C//C is a bicartesian closed category, that the functor I is a be-functor and that
the whole construct € = € //C satisfies the universal property from the proposition
- the role of the frec arrow 1 I{(C) is played by the arrow 1 x C 272 0 % ©. This
construction is described in more detail in [Mak89] (for an equivalent construction

sec [L.S86]).

In the special case when the category C is a free bicartesian closed category the
construction can be equivalently described as follows. The category C is obtained
from a “free Aé-theory” T as in the definition 2.13 i.e. C = Cr. Now add to the
language ol T' a new constant £ : C. Then the new theory, which we denote simply
by T'U{£}, has no additional axioms. Now form the category Cryuyey. I is the obvious

functor which maps things to the same name things. a

Going back to the definition of free bicartesian closed category generated by the
free theory T (which has only a set of basic types, denoted by O, and a set of basic
constants (free arrows), denoted by A, and no additional equations) we can see that

the universal property of it is expressed with respect to the notion of interpretation.
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To give such an interpretation we first give a map
¢|o :0—-T

and than we interpret the free arrows - let us be more precise aboul thal: the (ree
bicartesian closed category generated by the set O (denoted Co) has the universal
property which applied to ¢|o gives a unique (in the strict doctrine) structure pre-

serving functor G : Ca — D such that the following diagram commutes:
O
/ Yo
N
3G D

&
({ is the canonical inclusion). Now we have A Co where s and £ arc the maps
t

Co

which give domain and codomain of the basic arrows A (in the presence ol exponents
we can assume that s is constant (the terminal object) butl in case of distributive
categories we have to have this more general possibilily). The second part of the
notion of interpretation is interpretation of basic constauts and here it means that
we choose ¢|4(a) € hom(I{s(«)), [(t(a))) for every @ € A (il such a choice does not,
exist, there is no interpretation). The universal property of Cp now says that there

exists unique structure preserving functor I : Cp — D such that

77N

Cr 3F D

commutes (J is the canonical inclusion} and F(a) = ¢|a(a} for every a. This is
exactly as required in the definition of free (bi)cartesian closed calegory given in

[HM92] or [Maks9].

Remark 2.15 In [LS86] interpretation of terms of a A-calculus in a cartesian closed

category C uses the previous notion of {rec arrow. Similarly the notions of the internal
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language L¢ and the theory T associated to a cartesian closed category € use not
only the notion of free arrow but also identifications of types in the theory which we
avoid. [t is not hard to show that this theory is essentially the same as ours - the
categories associated to them are equivalent. Let us just add that the interpretation
ol A-terms in [MS88] is the same as ours, but for definition of the theory associated
to a cartesian closed category they quote [LS86]. Also in both of the {most standard)
references the 2-dimensional part of the connection is absent but it is present here

(as well as in e.g. [Mak89]).



3 The Completeness Result
In this part we formulate and prove the first main result.

Theorem 3.16 Lei C be a free cartesian closed calegory. Then there cxists a faithful

structure preserving functor I : C — Set.

The proof of this result roughly goes as [olHows: take a (ree cec, add nlinitely
many free arrows for every object, show that this is sale and then use a variant of

the Friedman completeness result for typed A-calculus.

Let us explain what we mean by adding infinitely many arrows to a free cee and

it being sale.

We want to enrich the free cartesian closed zategory with a lot of free arrows so
that in this enriched category 1 generates. But first we have o show that these new
arrows don’t spoil anything. However obvious it may look, one has Lo be carcful,
bearing in mind that in a nonfree case it does not have to be true (c.g., adding a [ree
arrow from 1 to the empty set in the category ol sets “spoils the thing”: the canonical
functor from Set to the new category is not faithful; morcover, the new category is
equivalent to a poinl). In a sense this is the only case when something like that may

happen as the following easy lemma describes - “nonemply can be inhabited”:

Lemma 3.17 The following two slalemenls are cquivalent for any caviesion closed

category C:

o The canonical functor [ : C — C[¢] is faithful (where C[€] denoles lhe calegory
C with the freely added arrow€:1 = C).

o The terminal arrow O¢ : C — | is epi in C.
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Proof: Assume that [ is [aithful. If fO0c = ¢g0¢ in C[¢] then multiply by £ and use
faithfulness. The other direction is also easy. It is enough to prove faithfulness of [
on arrows {rom 1. Take two such arrows f,g € C. Suppose {(f) = I(g) in C[¢], that
is 1 xC Y 0 x 0 =1 xC Y ¢ % € in C (see proposition 2.14). This is the
same as [, = gx,. Multiplying [rom the right by {0¢, l¢) we get fOc = g0¢. Since

we assumed that O¢ was epi, we have [ = ¢. 0

The point which we want to make is that in a free ccc adding of a free arrow
is safe. [or that we use the following proposition which is going to be proved in

section 3.2.

Proposition 3.18 (Free types are nonempty) If [ =, g in a free A-calculus and

z does nol occur as a free variable in either f or g then we alse have f =g.
Now, we can establish the following,

Proposition 3.19 (Key proposition) In a free cartesian closed category C every

O¢ is epr.

- Proof: Let [ and ¢ be two arrows in C such that fOc = g0c. In the corresponding
free A-calculus it gives [ =,c ¢ (see lemma 2.7.2), here % does not appear in f, g.
By the previous proposition it means f = g in the A-calculus. Therefore f = ¢ in C

(by soundness). =
Corollary 3.20 Lel C be a free cartesian closed category and let D be a free cartesian

closed category oblained from C by adding infinitely many free arrows 1 =5 C; for every

object C; € C. Then the canonical functor I :C — D is a faithful ce-functor.
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Proof: Adding one free arrow is faithful by lemma 3.17 and proposition 3.19. Adding
finitely many follows by induction. To add infinitely many free arrows consider the
constructions of a free cartesian closed category: let C = Cy for a {ree Mtheory {as in
the definition of [ree cartesian closed category). Then D can be constructed as Co
where TV =T U {ES-JICJ' € C,i € I} (see the end ol the prool of proposition 2.14).
The functor I is the unique ce-functor which classifies the model T M D wlhere
M is the canonical model 7" % D and M| is the reduct of it on T s0 we have
oM = M'|p. If I were not faithful it would mean that there are two closed terms
tand s in T such that T/ { = s and yet 7" F | = 5. Since every prool uses finilely
many symbols we would have 77 = T'U {£,...,£5"} - a finite extension of 7" such
that 7" - £ = s. Since T is a finite extension we know (by the above induction) that

it has to be faithful and therefore 7" I ¢ = s contrary to the assminption,

Alternatively, to add infinitely many [ree arrows we could form the (iltered colimit,
of all the finite extensions. Then use that two arrows arc equal in the colimit il they

were already equal in a finite extension. O

To continue the proof of theorem 3.16 we need the following result which is a
corollary of the vaiiant of Friediman completeness - this corollary is going to be

proved in the next section.

Corollary 3.21 Let D be a free cartesian closed calegory which has infinilely many
frec arrows for every object. Then there exisls a fuithful, structure preserving funclor

DL Set.

We can recapitulate as follows:

Proof of the first main result - Theorem 3.16: Take a [ree cartesian closed category

C, add infinitely many free arrows to every object in C. Call the new category D. The
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canonical functor f : C — D is cc and faithful by corollary 3.20. Also the previous

functor 7 : D — Set is cc and faithlul. So ol : C — Sel is the faithful cc-functor. O

As we can sce the only things which remain to be proved are proposition 3.18 and

corollary 3.21. As we said, their proofs are given in following two sections.

Remark 3.22 It is easy to show that we can’t get fullness (and even some weaker
propertics) in the above theorem. Also we could mention that not every cartesian
closed category can be faithfully mapped in Set, as a matter of fact not even in a
Boolean topos as observed in {Sco80] (Y = U in a Boolean topos implies U = 1).
However by an easy argument one can show that every small cartesian closed category
C can be mapped in a De Morgan topos by a full and faithful structure preserving

functor.
et us just add a remark on the work of others.

Remark 3.23 Concerning the history of Theorem 3.16, we note that the problem
whether it was true was raised, along with analogous problem involving monoidal
closed categories, by M. Barr and others, many years ago. In [Sol83] is outlined
a prool that for every two arrows in a free cartesian closed category without free
arrows there is a structure preserving functor into the category ol finite sets which
distinguishes these two arrows; in the proof the Mints’ reductions (then unrepaired)

are used.

Theorem 3.16 is formally analogous to results in {Sco80] and [HM92], each of which
give representations, in the form of structure-preserving functors, of cartesian-closed
and richer structures in certain toposes; in place of faithfulness, other conditions are
imposed on the representation. The methods in this paper are quite different from
these of [ScoS0] or [HM92]. More on the history of the above result one can find in

remark 3.44.
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3.1 On Friedman completeness for typed lambda calculus

As was promised before, in this section we give the proof of corollary 3.21.

Let us first mention the following obvious fact aboutl A-calculus (without addi-

tional equalities).

Lemma 3.24 Let (015€C) = (2% €C) and assume E¢ is a constant which does

not appear in @1 and @2. Then @ = @s.

Proof: In the proof of (¢, B°€%) = (2B €€ replace all the occurrences of €6 with

a brand new variable 2€ and then usec (7). O

Theorem 3.25 (Essentially Friedman[Fri75]) Lel L be a free typed A-caleudus
which has infinitely many basic constants for every lype. Then theve cxisls a maodel

L5 Set such that N{Xvt)=N(Xv ) implies LF Ly =x 1y,

Proof: It is enough to specily N on the basic (free) Lypes and the constants. To do
that we introduce an auxiliary map - premodel [' ; L — Sel which maps a type A Lo
{[( bt)]:1: A}, [~] denotes an equivalence class (under provable cquality), also notice
that since the context is empty the terms have to be closed. To simnplily notation a
bit we will denote a term with a context only by the name of the terin if il does nol,
cause confusion. Now if X is a [ree type (or 1) then N{X) o I'(X). Togive N on
the arrows we need a family of partially defined surjective maps s4 : N{A)}) — 1'(A),

A € Types(L).

Claim 1. Let the family of partial maps s = {sp : D € Types(L)} be defined as

{ollows:

e sy = lr(x), X is a {ree object or 1;
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o sa,.p(a,b) = [{l,12)], where t; € s4(a) and {; € sp(b);

o Let [ & N(C)MB). Then sga(f) is defined and equal to [p] € I'(C?) if for
every b € Dom(sg) [(b) € Dorn(sc) and

scl(f(b)) = [(¥'T)], r € sp(b). (1)

Then the [amily is well defined and all comnponents are surjective.

Proof of claim 1. The proof is by the induction on the complexity of types. Ob-

viously for the free lypes and 1 the statement is true. Also for the product types.
For the exponent type C? lemma 3.24 insures that there is only one such [¢] if any.
(Assume that there are two: {¢1] and [ps], by induction hypothesis s is surjective
so [£] € Im(sp) where £ is not in ¢1, @2. Then {rom (1) follows (1°€) = (¢2*¢) and
therefore ¢, = @a.) To show that sgs is surjective take an arbitrary [¢] € T'(C?)
then the witness [ € N(C)V(B) is chosen so that f(b) € sz ([¢'r]) if b € Domsg
(take any € sp(b)) and arbitrarily otherwise. O Claim 1.

Now we can define N(€) for €2 a basic constant. N(€) = d such that sp(d) = [¢]
(if there are several such d € N(D) we choose one of them).

Claim 2. For every (:vj“,. .oyt e fB) in L and every a; € Dom(sy,)

N(f)(a1,...,a,) € Dom(sg) and
sp(N(Nlary...,a,)) = [f(i'l/ml,- - ,tn/“:n)]a t: € SAi(ai) (2)

Proof of claim 2. is by induction on the complexity of f. If f = ¢P then by the
definition of N(£) we have sp(N(€)) = [€] and this is indeed (2) since 31(1;) = 1;.

g
Let us check only one case more: f€° = AyB.hC. Take «; € Dom(sas). We

must show that N(Ay.k){ay,...,a,) € Dom{sgs) and sgs(N(Ay.h)(a1,...,a,) =
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[Ayh{ta /a1, - a2 (G € sa(@). b is enough to show that Ny i(H ool fas)
satisfies (1) in place of ¢ i.e. for every b € Dom(sg) it holds that

sc(N(Qy.h)ar, ..., a)(0) = (A (b /oy, o /o) )]
r € sg(b), because by the uniqueness of [} it will follow sen(N(Ay. ) (ay, ... a,)) =
sty ))(B) €

Dom(sc); this is so by the induclion hypothesis since N{AyJi}(ay, ... 0, )(0) =

[Ay.h(t1/21,. .., Eaf2s)). But first we have to check that (N (Ay.h)(«

N(h)(a1,... a5, b) (and a; € Dom(ss, )b € Dom(sg)). Again by the induction
hypothesis sc(N(A)(e1, ... an 0)) = [R{Li /20, o b/, )], 5o indeed

so(N(Ay.h)(ay, .., an)(B) = [Mb /e, b e, /)] = [(Ag (i faeyy oo bufa ) )]

(recall t; € sy,(a;i) and » € sg(d)). O Claim 2,

Now it is clear that N reflects equality: let N(z* v fB) = N(&* v ¢™), then for

every a € Dom(sa), sg{N([)e) = sp(N(g)a) and so by (2) we have [(&/x) = g(&/)
(take @ € s3'(€), £ € [,g). By lemma 3.24 we have [ =, g. (0

Remark 3.26 The typed A-calculus for which Friedman proved the theorem didn’t
have product types nor the terminal type nor additional (“functional™) constants.
Also the equations didn’t have contexts. In his case I'(A) = {{f] : ¢ = A} (1 not,
necessarily closed). Obviously for A =1 i, wouldn’t work in our case. So we had to

take only closed terms and therefore we had 1o introdnce “many” constants.

Let us also add that the above theorem was proved independently (and later) hy

John Kennison [Ken92].
And finally, we restate and give the proof ol:

Corollary 3.21 (bis!) Let D be a [ree cartesian closed category which has infinitely

many free arrows for every object. Then there exists a faithlul, structare preserving

functor D 5 Sel.
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Proof: Let L be the free A-calculus such that Cp, = D. Then by the previous theorem
there is a model N of L in Sel which rellects equality. Then, by corollary 2.12 there
exists a ce-Tunctor D 55 Seb such that N = F o M (M is the canonical model

M : L — Cp). I is faithful by the construction of C;, and faithfulness of N, O



3.2 DMints’ reductions

To finish off the prool of theorem 3.16 we need to prove proposition 318, For that
we need a confluent system of reductions for (a frec) typed A-calculus as given above,
which does not introduce new variables - So not. only products but also the terminal
object are included and not all types arc inhabited. There are only two references
(that we are aware of) where such a system is given: [Min80] and [CDI1]. We prefer
the system given by Mints and we are going to use that one. 'T'he main reason for our
choice is that these reductions are closer to Prawitz’ reductions for natural deduction

and they are simpler than the ones in {CD91].

The reductions in [CD91] are R; (sce below) but in the opposite direction (and no
restrictions), R, and in addition infinitely many reductions which are introduced to
take care of “Obtulowitz’ pairs” e.g. z'*4 Se (rq (224, (X)) D (o, mo(a ).
Because of these pairs they have to add new reductions and by a kind of Knuth-Bendix
procedure they add infinitely many reductions but neatly classificd in fonr gronps.
The above pair they “connect™ by an S Py, reduction: {#, mo(a'**)) — o', (Let us
just mention that their remark that Mints’ reductions are “ouly” up Lo an equivalence
relation is unjustified since the equivalence is a-congruence used also by them and

almost everybody else.)

Let us briefly introduce some terminology related to the notion of reduction. A
binary relation R on a set of terms is called a reduction; tradilionaily (/,s) € R is
denoted t B s. A term ¢ is R-normal if there is no term s such that £ 5 5. A term |
is weakly normalizing if there is a finite sequence t = I 5E..5 t, such that &, is R-
normal. A term ¢ is strongly normalizing il every sequence £ = E.3, 5.
is finite. We say that R is weakly (strongly) normalizing il every term £ is weakly
(strongly) normalizing. The transitive and reflexive closure of R we will denote by

R
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A diagram such as:

o —>]
]
B ¥
¥
C—E*d

is actually a statement which says: if ¢ = b and a P, ¢ then there exists d such that

b2 dand ¢ d, where a, 4, v and § are possibly different reductions.
We say that R is locally confluent/locally Church-Rosser if

R

@ ——}

|
‘Rl IR
¥

c-gz-d

also we say that R is confluent/Church-Rosser if

[
R.l
c

Notation: We will write {[x] when we refer to a particular occurrence of the variable

—

 (frec or bound - but of course not in Az. position); {[s/x] denotes a term equal to
t except that instead ol z is written s (so it means that we don’t care about clashes
of variables here). Example: let {[z] = Az.(z,2) where we are pointing to the left
occurrence of @ in (z,z). Then {[f{z)/t] = Az.(f(z),z). We can see that also
t{f(z)/x]) = t{f(z)/y] where t{y] = Az.(y,z). The same thing is true in general,
namely writing {[s/z] we can always assume that the variable = occurred only once
in ¢[z] (again nol counting the occurrences in Az.). We will try to use just ¢[s] instead
ol t[s/z] as olien as convenient. (We just defined the notion of “context”, but since
we used this word earlier for a different thing, here we won’t give a particular name

to it.)
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Mints’ system ol reductions R is the following:

’ CItB] D Cha.(t'2)] = € FV(t) provided neither £ = Ay.s

nor C[t] = D|(#'s)]
C[t4%B) 25 Cl{mi (1), 72())] provided neither ¢ = (sy,5,)

nor Cl] = Dimi(1)
e ENeR e
R2{ Cf(ha.t's)] D Cli(s/x)]
| Clri({ts, 12))] Mo i=1,2

To be more precise, we should have said that Cfz] has exactly one occurrence of

the variable z and then the above reductions would have looked c.g. as follows:
CltB" /27" B Cl(Aw.(t2)) /2] = & FV(L)

provided neither ¢ = Ay.s nor C[z] = D[(z's)/w] lor any two lerms D[w], s.

The terms in the brackets on the lelt we call redezes. The positions above which
are excluded we call restricted positions. I { is a redex of a reduction v {y-redex)
and if t 5 s is a y-reduction on { then 4(t) will denote the term s. We also write
t % s if there is a reduction vy € R such that ¢ 5 s or £ = s. (So again we are
abusing notation a bit: R denotes (at the same time) its refllexive closure). The
smallest equivalence relation containing R we will denote =%, so0 £ =% s il and only
if there exists a sequence of terms t = {g,{y,...,{, = s such that for cvery 0 <2 < n
t; Y tig1 or tig E t;. Oflten, we want to be precise and to wrile { gf s il there is
a sequence as above so that X = FV({y,...,t;). The system of reductions in which
_ the restrictions (on the position as well as on the shape of terms) are omitled, we

' call unrestricted reductions and we deuote it by R®.
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The restrictions in the above system are the obvious ones to prevent nontermina-
tion - it is interesting that this is “the right” choice i.e. with these restrictions the
system is strongly normalizing and also sufficient for the A-calculus in the following

sense:

Proposition 3.27 For every sel of variables X, F1=xs if t 2% s

Proof: To prove that we need a very simple fact which is going to be used once more:
Lemma 3.28 For cvery two terms ¢ and s, { &8 s iff t &% s.

Proof: In both directions, the proof is by induction on the length of the chain which
wilness the appropriate relation. The only thing which has to be checked is the base
of induction in the proof from right to left, and the only four cases worth checking
are the applications of unrestricted reductions when the subterm on which we act is
in the restricted position or of restricted shape (or both). Let’s check just two cases:
suppose that a term (i,,12) appears as a subterm of a term r, we can write this as

r[{t;,12)], and suppose that the unrestricted SP was applied on ? i.e.

r[{ts,02)] 55 rl{ma({tr, 1)), ma({ta, 22)))]-

In the restricted case these two terms can be connected as follows:

Pl{er )] <2 i ({s La)), mal b1, 12))]-

(Notice that we don’t have to separate the case when the term (¢4, ¢2) appears in the

restricted position.) For the second case we choose the following: suppose

P[(#17458)] B r[(A2®.(t47 2P sP)).
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These two terms van be connected in the restricted case as follows:
P[(t475B)] £ r[(AxB (1 2By B

(Again we did not have to separate the case when & = Ay} The other cases are

equally easy. 0

To prove the above proposition we just have to prove that b & =y s ifl { =§" s

but this is standard; for a simpler situation sce, for example, proposition 3.2.1. in

[Bar85]. ]

The key observation is that R} and R3 commute. More precisely we have the

following proposition:

Proposition 3.29

R;
a—2x},

H
R;l IR

Y
C—R—;;-d

From this proposition, using some more or less obvious propertics of the ahbove
system of reductions, we can establish scveral interesting corollaries c.g. confluence,
strong normalization (giving also a particular, nice normalization strategy) and also

confluence of the system same as the above one bul without, restrictions.

The prool is going to be divided in several lemmas but before we need Lo introduce

some notation and some definitions.

The following notion makes sense in general: il {[s/z] 5 ¢ then the p-residual of
s is whatever remains in ¢’ of s. We are going to use that notion only when pis one of
the R;-reductions and s is not the redex on which we apply p. Leb us just add that
the notion of residual as well as the concept of minimal development are standard in

literature, see for example [HS86].
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Definition 3.30 (R,-residual) Let v be one of the Ry-reductions and let {[s/z] =
' be on a y-redez R such that R # s. The vy-residual of s is defined as follows:
first, if R is disjoint from s i.e. i[s/z] = T[s/z,R[y] for some term Tx,y] then
' = T[s/z,v(R)/y] and in this case s is the residual of s. Second, if R is a proper
sublerm of s i.e. s = S[R[y] for some lerm S[y] # y, then 1’ = [S[y(R)/y]/z] and
the residual of s is S|y(R)/y). Third, if s is a proper sublerm of R i.e. R =r[s/x]
Jor some lerm v[z] £ 2 and t[z] = T(r[z]/y] for some term T[y]. Then we have two
cases depending on v: if v = 5 then I = T([(Az.r[s/z]'z)[y] and this s is the residual
of s; if vy = SP then I = T[(x(r[s/x]), x'(r[s/z])}/y] and these twe occurrences of s
are the residuals of s.

The residual of a residual of some term s we will call again the residual of s.

Notice that every residual of a redex remains a redex. Also that residuals of disjoint
ierms remain disjoint. The only case when a term ¢ can have more then one residual

is when we perform an SP reduction on a term that contains ¢.

Definition 3.31 (R,-minimal development) Let R,,...,R, be a sel of y-redezes
inalermi (v € Ry ory=R1). Thent *\ s s a minimal development (denoted
") on Ry,..., R, if in each step we reduce a redex which is a vesidual of one of
Ri,..., R, (one of them al the first step) and minimal among them (with respect to
the sublerm relation). When we wrile a set of redexes for a minimal development as

above we assume thel if 1 < j then R; A R; (R; is not a sublerm of R;).

‘I'wo minimal developments performed one after another don’t have to make a minimal
development, but if the redexes of the second one don’t contain any of the redexes of
the first then they do make one minimal development on the union of the two sets of

redexes. Although we are not going to use it we can notice that the above remarks
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on residuals tell that every minimal developmenton ..., K, ends in n steps (sinee

we never apply SP-reduction on a redex containing a redex from the prescribed list).

Lemma 3.32 A set of rederes delermines the vesull of minimal deoclopment in the

m Hm
. . ~
following sense: if t ~ s’ andt — " on the same sel of rederes then 8" = &,

Proof: Induction on the number of redexes. Zero redexes don't make a problem.
Neither does one. Since the order ol reductions [or the disjoint, redexes is irrelevant,
we can assume that all the maximal redexes are reduced at the end. Suppose now
that we omit all the maximal redexes. By the induction hypothesis without them
both minimal developments give the same result {(new minimal developments are
“initial segments” of the old ones). Moreover {again by the induction hypothesis) the
residual of the maximal redexes are the same in bolh cases and, as observed carlier
they are disjoint (and they didn’t multiply). Reducing them in whatever order gives

the same result. o

The main use of minimal development is in the following lemmas

Lemma 3.33 If every reduction p € Ry, and every v € Ry, salisfy the following

condition:
I
@« —
l
,7"1 |,T’l'l
¥
€=z
2
then R3 and R commule i.c.
T’.
4] _:2_3_{}
|
'Ril IRy
Y
C—go>d
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Proof: Induction on the length of R, When the length is 1 notice that every one
step reduction 7 is a minimal development and use the assumption plus induction
on the length of Rj. The above argument is also used when passing from “n-17 to

unn . a

Notation: Let v € R;. Then v = 8* il v = 5 and 4°* = Pr= if v = 5P (notice
Lhat yoP* = 4°7). Also

{ ifu=20

,Yu(t) = .
(i) fu=1

for example

{ ilu=20

T]u(f.) — ‘
Az.(t'2) fu=1

(of course z & I'V(1)).

rom now on we will write just t[e] instead of [a/z] whenever ossible.

Lemma 3.34 Lel a[b] Y% ¢ be @ minimal development on redezes Ry, ..., Ry, ..., Riyg,

Rivini[0), - .., Ripjr(b], where the redezes Ry,...,R; are proper subterms of b and

the lerm b appears exactly where shown. Then: ¢ = d[y*(V),...,y*(V)] so that
"I’"‘

alzg} = d'[x,...,z] on the rvedezes Riyr,...,Riysy Rigjereu(z], ..., Risjer[z] and

b5 b on Ri,...,Ri; hereu=0if Rip; 1[0} F b and u =1 if Riy ;1[0 = b.

Our assumption on the order of wriling of redezes for a minimal development

gives Ripip1[b] < -+ < Ripjqxlb] (the relation < stands for “proper subterm”).

(Sometimes we will use the following form of the lemma: let a[b] L ¢ be a mini-
mal development on redexes Ry,..., Ri, ..., Riy;, Riyj+1[8), - .., Ripjax[b], where the

rederes Ry, ..., R; are subterms of b and the term b appears ezactly where shown
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as a proper sublerm and maybe B; = b. Then: ¢ = a'[y*(M)..... YO so that
alz] LN a'[z,...,x] on the redexes Riyy, ..., Ripj, Bigjala], ..., I{;+j_+k[;r!] and b5 I

on Ry,...,Ri—u; hereu=0if RiZbandu=1 i Ri=1.)

Proof: If all the redexes are disjoint from b then the statement is almost a tantology.
There are two other cases - the first one is when there is a maximal redex properly
contained in b. By lemma 3.32 we can assume that we first do the reductions in b
ie. a[b s a[l'] and then the reductions or the redexes disjoint from . Since the
reduction a{b'] 7% d on a redex Ry disjoint from ¢’ satisfies the statement i.e. d = o'[i]
so that afz] ik a'{z} on Ry (it can be proved by induction on the complexity of afx])
we have proved the lemma in this case. The prool now continues by induction on Lhe
index k; the previous part is just the base of induction & = 0 i.c. there is no redex
containing b, So let R denote the maximal redex containing b (it can be b itsell)
i.e. in the notation above R = Riyjprt1[0). Our minimal development is a[d] e
on the set of redexes as in the statement of the lemma plus /2. By lemma 3.32 we
can assume that R is the last one reduced. Consider now the minimal development,
without the last step. Since alb] = A[R/y] (for an appropriate term A) we can apply

the induction hypothesis and conclude that

A[R[y) S AR y] (1)
on the redexes without R so that

Aly] ™ Ay] (2)
on the redexes outside of R - these are some of f4,,..., fi4; and

RO R 3)
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on the rest of the redexcs - they are Rp,...,R;, the redexes from Riyq,..., Rit;
which are in R and Riyj51[b],- -, Rigj3xlb]. Avvlying the induction hypoihesis to (3)
(actually just the base of induction) we hav: " = R'[y*(0'),..., ("] so that

Rlx) = R[z,...,z] (4)

on the redexes from Riq,..., Riy; which are in R and Riyjyi4eiz]s . ., Rigizs(z]s

and also

b % ¥ (3)
on Ry,..., K. Taking (2) and (4) we get

A[Rla]/y) ™ ARz, ...2]/y] (6)

on Riyty..., Riyj, Riviprsa]z],- .o, Rivjerlz]. Now, if we reduce R'[z,...,z] (which

is indeed a redex) we have
AlRlzlfy] > ATy(Rz,...,a])/y] (7)

on Rit1,. .oy Rigjy Rigjrqr(2)y- - oy Rigjeesa (2] - Since A[R[z]/y] = afz] we can use
a'la,...,x] to denote A'[y(R'[z,...,x])/y] . This together with (5) finishes the proof.

a

Lemma 3.35 With the above nolation the following hold:

L) & (1)

2. a[y(d)] = afb), providing b is of the forbidden shape’ (i.e. b = (b, ba) or

b= Ax.by) or in n resivicled position or both. a
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Lemma 3.36 The conditions of lemma (3.83) are salisfied when p is any Ry reduce-

tion.

Proof: Case 1. p= Pr (and y =y or 5 .. SP). So suppose we have
Lase 1. J J !

a[m({b1, b2))} L ~all]

/[y (w({y°(81), 82))) /=, - (= ((y"(81), 1)) /=]

where the minimal development ¥™ is done on the redexes Ry,..., 1 ..., Bigjs

Ripim[m({b1,0))], - ooy Rigjrrl®{{b1,52))], where the redexes Ry,. .., f; are sublerms
of b;, redexes which are in b; are not even shown and the term w({b, b2}) is exactly
where shown. By lemma 3.34 the result of the minimal development has to be as

above (since we can’t apply 4 on (by, b2) - either the types don’t match or the shape

is forbldden) where a[z] & o[, ..., %] on Ripr,. .-, Rigj, Rijeraal@)s oy Rigier[]

and b, > b’I on Ry,...,Ri_,.

For the sake of simplicity we will write just «'[z] instead of o'[x,...,x] and simi-
larly a/[y*(r ((7°(60), 89))] for @™ (m((r*(60), (o) s+, ( (" (8), )3/ ] and
so on. But we don’t write Pr instead of Pr= (e.g.the following diagram). Applying

Pr* we have;
alm((b1, bs))) —L—a[b)]

m

o

/[y (w (7" (61): )] -y (v (00))]

By lemma 3.35 we can add one more arrow:

alm({b, by))] —E——aty]

T al[,.’u\/ﬂ(bll )]

- !U,l

Iy ({(r (b)), b)) Ty (7 ()]
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Now, if uVv = 0t is obvious that a[b;] 7 a'lbilon R,y Byyeo oy Riggy Rigyn[bi)s-- -,
Rig;ek|b] finishes the proof. Therefore suppose uw Vv = 1. 1If b is of “{orbid-
den shape’ or in a restricled position (it couldn’t be both because we would have
wV v = 0) then by lemma 3.35 a'[v(b})] = a'lb}] and again the added 4™ is per-
lormed on all the redéxes excepl the one which caused v Vv =1 ie. Ry, .., By,
Rivry ooy Biggy Rivirau[i)s -y Rigipalbi].

a[w ({by, ba))] — s a[by]

™ a'1b]
~er
/[y (r ({7 (0h): ) )] Ty (v (81))]
And finally, if b; is not of ‘forbidden shape’ nor in a restricted position (and still

uV o= 1) then a[b)] 2 a[y(d})] can be performed so we have:

a[m({br, ba))] —F———=alby]
™ o'[y(0))}

op

o

@[y (w (77 (03), B)))] - @[y (" (1))
where the new 4™ is performed on Ry, ..., Ri_uav)y Rit1s. .oy Bigjs Rivjer[ba]y ..
Ritjr[b1]. That finishes the prool of the firsi case.

Casc 2. p=f (and ¥y =7 or v = SP). So assume we have

a[(My.be)] —F—alb(c/y)]

m

oy
[y (Ayy"(0) (<))
where ¥™ is done on the redexes Ry,...,Ry,..., B, ..., Riy;y Ripia[(Oy.bie)], ...,

Rivjeu[(Ay.bc)], where the redexes Ry,. .., R; ate subterms of b, redexes Riyq,..., Ri
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are in ¢ and the term (Ay.b'c) is exactly where shown. (See the simplilication in the
notation mentioned in the first case.) Again by lemma 3.3 the vesult of the minimat
development has to be as above (since we can’t apply v on Ay.b) where afr] A, L]
on the redexes Rig1,. .., Ritj, Ritjrren[®]s. oy Bigjan[r). b 2 W oon By, o B, and
¢ don Ry ooy Ricw. Without loss of generality we assume that b has at most
three occurrences of y in it - so b looks like b(y, ¥, ) where only the leftmost ¥ is among
the redexes (e.g. &y = y) and only the rightmost » is in the restricted position lor

this v. Applying 8* we have

&Iy Ay (0 (1) 3 )Y B B (7 (F (3 ()7 () ().

The rightmost occurence ol ¥¥(¢') is in a restricted position (by the assumplion} so

applying v°” we get ¢’ al this position (we used lemma 3.35). Also v(v* (") - (")
~oP .

and v4(y*(b')) T 4*V¥(I). So, we can add one more “arrow” te the diagram above

and now we have

al(Ay.b(y,y,y)c)] L a[b{c/y,cly,efy)))

& [y Ay (' (v(y)s 5 1)) ()] =g [y (0 (9 () v () € ))]

. . . . ¥
It 1s easy to see the redexes for the following minimal development: ble,e,e) =
LI}
bic',c,c). Now we have two cases: ¢ of lorbidden shape or not (let us just mention
that the first case is possible exactly when ¢ is of forbidden shape). In the lirst case
I I
N, wi YT g : : ;P !
(') = ¢ and v¥(c) = ¢ (in fact w = 0 in this case). In the sceond case ¢ = (')

and ¢ 2 4*(¢) (recall that first two positions of ¢ are nol restricted in ). In any
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case the two “branches” of the above diagram are little closer - we have:

a[(Ay.b{y. v, y)'c)]
/ \
@'y ( Ay (Vv () v 1) ()] a[b(c, ¢, ¢)]

R;
rtf["/uvu(b'('y(c'), ,.fw(cn')’ C'))]

4P

a'[y*V¥(bo)]  afbo]

where:

b(c,d,c) il ¢ has forbidden shape

Vv(c),v7(c), ") if ¢ has allowed shape.

bD =

(passage to b’ also doesn’t make a problem now). Now if Vv = 0 solution is obvious
so assume u V v = 1. So the situation is exactly as in the first case - in any case to

the above diagram we can add

a[()\y.b(y, Y. y)‘C)]

,"’|fl ﬁ
I (A (Vv (w)y 9 1)) ()] alb(c, ¢, )]
73
CRRTINE R =
%P
a'[y*V¥(bo)}  albo]
~+°P ym
a'[77(bo)]
where ¥ = 0 il b is ol “forbidden shape” or in a restricted position and r = 1

otherwise. (Although ~+™ is not in general a transitive relation here we took care

e
oo



of that by reducing “from inside” so that these conseculive 4™’ give a minimal

development.)
Case 3 p=T (and vy = 5 or v = SP). So suppose we have
| a[t!] —L—a[*)

4

a'lt!fx)
(See again the simplified notation from case 1.). The minimal development was
done on the redexes Ry, ..., Ri, ..., Rigsy Bigjaa ]y oo oy Bigjer(f], where the redexes
Ry, ..., R; are subterms ¢l t and the term ¢ is exactly where shown. By lemima 3,34
the result of the minimal development has to be as above (since we can™t apply v
on t - the types don’t match) where a[z] LN a'l2] on Ripiy. .oy Biggs Rigiarfe), oo,

R;+J'+k[:l:] and ¢ . on Ry, ..., R Since U still has type ! it is obvious that the

following holds:
ol —L—a[¥]
,.yﬂ‘ll l,.),"l
/[t ] <> a'[#]
where the new 4™ is done on Riy1,..., Rirj, Rivirt[*]s ooy Rivjer(*]. O
Proof: of pl‘bposition 3.29. Just apply the previous lemma and lemmia 3.33. |

Lemma 3.37 R, is canonice! (i.c. confluent and strongly normalizing).

Proof: For details we refer to [Min80] - this part is correct. Lel us just say that
by Newman’s lemma it’s enough to show local confluence and strong normalization.
Local confluence is easy here. Strong normalization is proved by assigning to cach

term ¢ a natural number #¢ so that
R ? . !
t = t' implies #¢ > #¢'.
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For that we first definc the rank of a type as the number of the type forming operations
in it i.e. #(A x B) = #(A®) = #(A) + #(B) + 1 and the rank of atomic types and

terminal type is zero. Second, we define the degree of a redex
d(R) = 22 #(4)
where Ap, ..., A, are types ol redexes in { which contain R. Finally

=3 d(Ry)

where f; are all (occurrences of) redexes in ¢. a

Lemma 3.38 The reduclion Ry ts canonical.

Proof: A well known result is that in the typed case Pr; and § are canonical (see
for example [GLT89]). Adding T-contraction won’t change much. Local confluence
is simple to check; and strong normalization we get by showing that all T-reductions
can be postponed after g, Pr-reductions. Let us just show that this is so in case of
$. Suppose that before aj(Az.bc)) 2, a[(b(c))] there was a T reduction. There are
only two interesting cases: C[t'] L Cl*] = ¢ and B[t'/y] L Bl#/y] = b. In the
first case the old reduction looked like a[(Az.5'C[tY])] 5 a[(Az.bc)] LA al(b(c))/y], we
transform it to af(Az.6'C[tY])] LA CERNES a[b(c)]. (By a-congruence we insure
that there ate no clashes of variables.) In the second case the old reduction looked as
a[(he. B[t yle)] 5 afre.Blx/y)'d B a[b(c)]. We transform it to a[(\z. B[t} /y]c)] &
(Bl /() = aBOIEO)/3] D lBE/y)] = alb(@)]. (Here we assumed
that y was nol a [ree variable in ¢ - it was anyway denoting just a position.) Even
simpler is the proof with Pr instead of 8. Notice that in those transformations the

number of Pr, § reductions remains the same and they “go up”. So there is no
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infinite Ro-reduction, if there were it would have to have infinitely many Pr, g-
reductions (no terms have infinitely many consecutive T-reductions); transforming
such a reduction we would get arbitrarily long reduction of conscentive Pr, g steps

which would contradict strong normalizabilily of this fragmenl. m

This (and even less) is enough to show that Mints' reductions are confluent. That

is also all what we need o finish the prool ol the main theorem. For the record:
Corollary 3.39 Minls’ reductions are confluent,

Proof: Suppose we have

(Recall R = Ry URs.) Then just apply the induction on the number ol changes of
R} and R} in the branches together with lemmas 3.37, 3.38 and proposition 3.29.

(That was the pattern of the Hindley-Rossen lemma.) m)

Although not needed for the main lemma we can prove that Minis’ rednclions are

not only confluent but also weakly normalizing,.

Proposition 3.40 Terms in Ry normal form arve closed for Ry-reductions, so we
have that Mints’ reductions are weakly normalizing, the straleqy being: first do all

Ri-reductions then all Ro-reduclions (even more specifically: Ry can be separaled:

first all Pr and 8 and then all T reduclions).

Proof: Just notice that application of Pr and f-reductions on Ry-normal term can’t
introduce new Ry redexes. For example if a[Az.b'c] is a Ry-normal term, then afb(c)]
is R;-normal too - all terms are in even more restricted position then they were beflore

the B-reduction. Also use lernmas 3.37 and 3.38. ‘ (!
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Corollary 3.41 (Akama) Minls’ reductions are strongly normalizing.

Proof: First observe (cxatnining several cases) thal if a term is not in Rp-normal
[orm il can’t become Ro-normal after application of R;-reductions. So assume that

we hiave an infinite chain

(i; € {1,2}). Since R, is strongly normalizing as proved above, we have that in the
above chain infinitely many reductions is of Ry-type. Let ; denote (the unique) ;-
normal form of the term #;. Then from the above infinite chain we can obtain (by

Ri-normalization) the following infinite chain:

R -

- R3
P SO

2

LVE 3
IRe:

la

1

This chain exists by the commutativity of R} and R} (proposition 3.29) and the fact
that R normal forms are closed for Ra-reductions (proposition 3.40). Alsc we have
{hat the chain is infinite by the observation from the beginning of the proof. But this

contradicts strong normalization of R,. O

It is obvious that unrestricted Mints’ reductions are not normalizing (for example

4" could be n-expanded and fB-reduced infinitely many times); it is interesting,

however, that they are confluent.

Corollary 3.42 Mints’ reductions without the restrictions are confluent.

Proof: Suppose that

R!.ll
()b

a
]
Cc
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That implies b Zxu ¢ and by lemma 3.28, it 1s the same as b Zg ¢ and then from the
. 'r" -r\- .
confluence of R we have that there exists a term o such that 8 = d and ¢ = d. Since

R C R* we have:

Rn -
(L(—.._);..b

|
m")‘l I(Re)*
Y

c o d

Remark 3.43 Mints’ reductions were given in [Min80]. Unfortunately lemma 7.1
(vi) and theorem 7.3 are not correct. The theorem stales that the normalizing strat-
egy is first Rz then R,. Applying that on 2'** we get {w(x), 7'(x)). Bul applying
the strategy on (x(z),(z)) gives {(*,%'(z)}. So two cqual terms & and {7 (z), 7'(x))
don’t have the same normal form. If the calculus were without the terminal object
(and the appropriate rule) then first Ry then R, would be a normalizing sirategy;
this was suggested already in [Pra7l, 3.5.2 Normalization theorem] (notice however
that the uniqueness of the normal form (there called expanded normal form) was nol
stated c.[. 3.5.3 Strong normalization theorem loc. ¢il.), bul also recall that, Prawitz

considers all first order logical connectives (even absurdity) but not the connective

true.

Let us finally restate and prove

Proposition 3.18(bis!) If f =, ¢ in a free A-calculus and z does not occur as a frec

variable in either [ or g then we also have f = g¢.

Proof: Since by corollary 3.39 (free) typed A-calculus is confluent for a set of reduce- .
tions which do not introduce new variables, from f =, ¢ we have that there is a term

t such that f and ¢ reduce to it, therefore f =1 and { = ¢. O



The above prool concludes the proof of the first main result. Let us just give a

remark on the history of the above result.

Remark 3.44 We obtained the theorem 3.16 in spring 1990 and I gave a talk on
that on a McGill seminar organized by Prof. Lambek. However, I was using Mints’
result, without nolicing this mistake in it. In December 1991 I corrected these mis-
takes in Minis’ paper and distributed my paper (almost the same as the second and
third section of the thesis) in March 1992 to some people at McGill University. Since
the end ol July, beginning of August 1992 the paper was available from an “ftp-site”
as announced on two e-mail lists (under the name “On free CCC”). The only math-
ematical changes are two additional corollaries about Mints’ reductions - corollaries
3.11,3.42 which are immediate consequences of our main result aboul Mints’ reduc-
tions i.e. proposition 3.29. The corollary 3.41 is the main result in [Akad3] - a paper
which has our paper as a reference. Also, independently, Jay [Jay92] gives a different
prool of strong normalization for a system in which every type had a closed normal

term - a property not available in general.
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4 The Interpolation Result

In this part we formulate and prove the second main result, thai is the interpolation
property of bicartesian closed categories as well as carlesian closed categories. Also,
at the end we give couple ol applications which show that our interpolation is indeed

a strong generalization of the corresponding result for lleyting algebras.

Let us formulate more precisely whal we are afler:

Definition 4.45 A square consisting of calegories, functors and a nalwral transfor-

mation _
A £ B
|
7 H
| 4
C 7 D

has the interpolation property if for every two objeclts C € C and B € B and cvery
arrow H(B) 4 K(C) in D there exist an object A € A and arrows 3 L I(A) in B
and G(A) = C in C such that d = K(c)m4H(b).

We will consider only those squares of the above lype will 7 a natural isomor-

phism.

Definition 4.46 A 2-calegory of calegories has the inlerpolation properly if oll lhe

Pushouts have the inlerpolation properly.

We use the term “Pushout” to specily that we have in mind appropriale version
of the 2-categorical weighted bicolimit - the precise definition is coming latter see

subsection 4.4.2.
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Theorem 4.47 The 2-calegory BCC of bicartesian closed calegories has the interpo-

lation properly.

"This resull holds not only for bicartesian closed categories but also for cartesian

closed categories.

The above theorem is proved in two steps. First we prove a stronger interpolation
property for intuitionistic propositional logic than known in the literature - namely,
as mentioned in the introduction, we not only obtain the interpolant but we also show
that the new proofs (of the interpolant and from the interpolant) when composed are
actually equal to the prool which we started with. Additional care is needed to handle
the presence of axioms; the presence of additional equalities among proofs turns out
to he no problem at all. ldentilying proofs with terms we can precisely state this as

{ollows.

Proposition 4.48 Let Ly and Lo be two languages, and let Ty and Ty be two Ad-
theories on the respective languages. Let Ty be a theory on the language Ly 0 Lo such
that To C 11 N T2 (we may as well assume that the theories are deductively closed).
Let (x5 () be a term in the language Ly U Ly such that the type B is in Ly and the
type C is in La. Then, there is a type A in [y 0 Ly and terms (z® > r4) in Ly, and
(y* > ) in Lo such that:

Tl U T2 F i =8 .s(r/y).

The proof of this proposition is given at the end of section 4.2. In the section 4.3
we give the firsi reformulation of the above propesition in categorical terms and we
obtain the interpolation property for “ordinary” ‘2::Pushouts in the 2-category BCC;
(bicartesian closed categories with ihe chosen structure, strict be-functors and natural

...isomorphisms as 2-cells) - one can notice, though, that the funciors associated to the
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above proposition (i.e. By, — By,) have a particular properly - they are inclusions on
objects. This is so because Ly 1s a subset of L; - no collapsing of types has occurred.
Although the main result - theorem 4.47 does not require any assumption ol this type

- these somewhat unusual functors will play a substantial role in the proof of il.

The proof of theorem 4.47 then proceeds via conunection between the strict and
nonstrict doctrines & la [BIKP89] and via construction of Pushouls in the nonstrict

doctrine BCC from the 2-pushouts in the strict doctrine BCC,.

57



4.1 Prawitz’ permutative reductions

As it was mentioned earlier, to obtain the interpolation property lor bicartesian
closed calegories we are going to analyze a syntactic proof of the Craig interpolation
property [lor intuitionistic propositional logic. There, the sirategy is to show weak
normalizalion of the appropriate system ol proof-reductions, and then to study the
normal form. It is hard to attack the whole set of equations as given in definition 2.3,
but luckily enough we don’t have to do that. We can take a system of equation which
is strictly weaker than the one in the definition and this will suffice! It is well known
that adding disjunction to the positive fragment {T,A,—} of intuitionistic logic
brings difficulties of a new kind to the analysis of proofs. E.g. {o prove a satisfactory
form of normalization of proofs, i.e. the one which will give the subformula property,
it is no longer enough to consider just §-like reductions (denoted by R, below) but
one has to add a substantial part of 7-like reductions (or expansions) for disjunctions
{and the connective “false”) (denoted by C and E below). This is already done in
[Pra65)], for a “recent” discussion connecting this to linear logic see [GLTS89]. We

choose to work with Prawilz’ original reductions, in the form given in [GLTS89].

Notation: [or two terms ¢ and r we write ¢ > r if r is an immediate subterm of ¢.
Reflexive and transitive closure ol > we shall denote »*, so that { " s means that

s is a subterm of ¢.

The lollowing set of reduction we will denote by p; we find it convenient to par-

tition p as follows:

(Az.t's) LN t(s/z)
—RZ ?T,'((il,ﬂg)) }j; t,' 1= 1,‘2
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’ mi(8y.aey, za.tg; t) 13 Sap.mi(y), waomi(ua)i !

o (Say.uy, Taua; t)'r 3 Sxr.atr, vo.us'ry
< dz1-uq, .o (S31.01, Yo 23 1) 4 Sy (Sa .y, wateny 0), yo (S0, oty wa )
{ Sz, y.v;t) 2, Sx.c(w), y.eMv);t
[ mi(e/2(1)) 2 ()

p e (1) B eA(t)
< §2.uC,y.oC; B (1) L “(1)
| ) &

The following “scheme” of reductions in natural deduction corresponds Lo the

C-reductions:

i B £ P

AVB C C § : ¢ r C 1
cC T —  AVDB D D é
D D

Here, r stands for one of the five rules for elimination of connectives - so it can have
one, two or three hypotheses; § stands for the elimination ol disjunction. Stmilarly

one can represent the F-reductions.

To see that the system of equations generated by the above scl of reductions p is
weaker than the one in definition 2.3 use lemma 2.4. The following is not really nceded
for our purposes but let us notice that the equation dz4.0(2?), y®.5(y%);w = w is
not provable in the above system, but it is equivalent to the equation (%) relative o

the above system.

The above reduction system p is strongly normalizing and has the Church-Rosser

property (stated and partially proved in {Pra71],[GLT89],[Gir71]) (although I have
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never checked that), however - here we give (and prove in the appendix A) just what

we need and this is weak normalization (cf. [Pra63] p.50).

Theorem 4.49 (Prawitz’ weak normalization) Luvery term & in the A§-calculus

can be reduced o a normal (reduced) form (with respect Lo the above system p).
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4.2 Interpolation in the A-calculus setting

Theorem 4.49 is used to prove the Craig interpolation theoren [or intuitiomstic propo-
sitional logic. In this section we give the prool which follows Prawitz’ proof which is
given as a hint in {Pra65]. There are several differences hetween our proof and the
Prawitz proof. First the minor ones: he works in natural deduction and does not
have the connective 1 (“true”) in the language - we work with typed lambda caleulus
and we have all the propositional connectives. "I'he most important difference is that,
we do more, i.e. we check that not only do we obtain an interpolant bul also that
the two proofs when composed are equal to the prool which we began with (actually
we even get more: the two proofls when composed reduce to the normal lformn ol the
proof that we begun with). Also we allow the presence of arbitrary axioms as well as

additional equations of proofs and Prawilz does nol consider this al all.

A general remark - whenever a variable appears “out of nowhere” it means thal

this is a brand new variable.

First we need the [ollowing lemma (c[. [Pra65], Cor. 3 pp. 51.).

Lemma 4.50 For a free A-calculus (no additional equations but willh conslants)
the following holds: lct t© be a p-normal term such thal | = mi(s) or I = s or
t = Saau,y.v;s or ¢¥(s) orl is an alomic lerm (i.e. a variable or a constant {or +)).
Then there exists a chain t =l = - - = L, of suceessive sublerms of | sueh thal lhey
are in the following relation: for every 0 < i <, by = mi(lip), or bi = lip'u, ov
t; = 8z.u,y.vitip (for someu, v, z and y), or t; = B(liy)) and L, is an alowic berm

(i.e. 1, = v¥ where v is a variable or « constan! (or *)).

In particular if the term L is nol x lthen [, is nol . So, if in addition the M-

calculus doesn’t have consiants then {, is ¢ variable.
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Furihermore, by C-normalily we havi: if thy = dz.u,y.v; L, then the above chain
L=1ly> = L, is aclually just § = dz.u,y.vity and Ly is either BB gp g constant

(for some p-normal lerms u, v).

Sumilarly, by B-normality, if ta_y = ¢E(lny) then t = ¢B(1y) end ty is a variable

x fwe don’l have conslants of type 0).

Proof: Induction on the complexity of ¢. If the complexity is zero this is no problem
by the property of t,. If ¢t = mi(s) then s91%¢2 = 5% for some p-normal terms
ry and sy, or s = w;(s)) for a p-normal term sy, or s is of the zero complexity (s
can’t be a é-form by C-normality, e-form by E-normality nor {u,v) by Re-normality,
and the other cases don’t type-match). All three cases are all right by the induction
hypothesis. So Lo get the chain for { we just add { on the top of the chain for s.
Similarly the case when { = s'r (.SC::2 = mi($1) or s = s1'ry or s is atomic). Third
case is when £ = 8a.u, y.v; s. Then again s can be either s;°r or ;(s;) or atomic ; this
is handled again by the induction hypothesis. Notice that /, must have a complex

type or type 0 unless t = *. o

Definition 4.51 ‘A% (A™) is the set of atoms which occur positively (negatively) in

A. For a contexl ' = i xBn we define Tt = U BF (T~ = U;BI). Also we

soas vyl

define 17217 =07 =07 = ¢ (empty set).

Lemma 4.52 For a free A6-calculus without frec constant terms we have: T2t (Tt
be a p-normal term and let Ty Uy =T be a partition of the conlext. Then there ure

(Ty o et and (Ta, 5" v s€) such that
[ =r s(rfy),
2 AT CTinr;uch,
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S.A-CITn(rfuc).
Actually one proves in 1} that s(r[y) 2.

Proof: First notice that in the case when I} = ¢ the resull is obvious: just take
A=1,r=*and s = {. Now we proceed by induction on the complexity of £, We

have the {ollowing cases:

Casie 1. t¢ = 2%, We have two subcases: 2% € I'y then take 4 = €, » = &% and

s = %% and in the second subcase 2€ € T'y then take A =1, s = ¢ and r = *.

Case 2.t =#,s0 C = 1. Just take A= 1, s =+ and » = *,

Case 3. t9 = (191,152), so C = C; x Cy and {5 are p-normal. By the induction

1ty f

hypothesis there are (I'; & rf“) and (I‘g,y{"‘ > s?‘) (1 = ,2) such that

bi=r si(rify), AT CTT N (T UEGH), A7 ST (I UCY).

Now take A = Ay1x Ay, s = (st (w1 (yM ) /i), sa(malyV ) )y and v = (ry,r4)
and see that it satisfies the lemma.

Case 4. ¢ = .r,(t?‘), so C = O +Cy and 15 is p-nm'nm-I. By the induction
hypothesis there are (I'; » #{*} and (I, yi" & 5) such that

bo=rsi(n/m), AT STy NP7 L CH), AT ST n (I UCT).

Now take A = A}, s =¢(s1) and r = 7 and see thal it satisfies the lemma,
; Case 5. 1¢ = M@ .15, so € = C%, and (' is p-normal. Then by the induction
hypothesis applied to the term (I, z€2 & ££1) and the partition of its context, as I, U
(T'3,2°2) there are (I & ri*) and (I, 2%,y b 591 such that

b =ra si(ri/m), AT ST 0 (7, C7)UCT), AT S IT N (1, CHHuCy).

Now take A = Ay, » = r; and s = Az%.5; and check that the lemma holds (use

(Cr*)~ =CFucCy).



Case 6. (In this case only, we use lemma 4.50.) ¢t = wi(s) or L = s'ror 1 =
buw.u,y.v;sor L= &(s) wherer, s, u and v are some p-normal terms. Then by lemma
41.50 we have thal there exists a chain of immediate subterms: { = &y =y = -+~ >
li = +++ > ln such that the following subcases can take place: t2, = m(x®*52) or

P P
I 71 —

15 = B R or 1, = Sz, g 2B1PE2 or 4,y = ¢®(2) for some p-normal terms

1 and v since in the calculus we don’t have additional constants and ¢ 3 *.
Subcase 6.1.1. 15 | = m(z®*P2) and 25%F ¢ Ty,

Let ¢’ be like the term ¢ except that it has 2% instead of ,-; (notice however,
that ¢ can contain x%1%E2) so ¢ =p t/(m;(2B1%P2)/250). The complexity ol ¢’ is lower
then the complexity of ¢, so we can apply the induction hypothesis cn (I'U {z%} b ¢')
and the partition T, 2% = (I'y, z5)UTy. Then by the induction hypothesis then exist

(i, 2% 5 B4Y and (T, 5 » S%) such that
' =p.m S(Rly), AYGQ(DUE)TNITFUCT), A~ C ([ UE) n{lFuC).

Recall that %% is in I'y. So we define r = R(m(251%E2)), s = § and A stays

the samc and we can check that the lemma is satisfied. First:
bap V(maPi) faB) =p S((R(mi(=™>52) [2)) [y) = s(r[y).

T'he second and third part of the conclusion are satisfied since F7 C (£ x [3)° where

s = 4, —. It is obvious that the stronger hypothesis gives the reduction instead of

the equality.

Subcase 6.1.2. t% | = mi(x®%F2) and 2F1%B2 € T,. Again consider (I, 2% o 1)

where ' is the same as ¢ except that 2 appears instead of m;(z%1*%2), thercfore
U(mi(xB1xB2) [25) = 1, Since ¢’ is less complex then ¢ e;p;\ly the induction hypothesis
on the partition I', 25 = T U (T, 25). Then by the induction hypothesis then exist

(Ty o R*Y) and (I'y, 2%,y > S) such that
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U =p 5 S(R/y), AYCTFN((UE)"UCT), A= Cly NIV EUC).
Recall that 2%1%E2 isin I'y. So we definer = R, s = S(mi(a"1%#)) and A stays the
same and we can check that the lemma is satisficd. First, £ = £/(m(®12E2) o) =
S(mi(zBr*E) 25 (R/y) = s(r/y). The sccond and third part of the conclusion are
satisfied since Ef C (E; x [)° where s = 4+, —. As earlier, il is obvious that the

stronger hypothesis gives the reduction instead of the equality.
: E B2 E gf
Subcase 6.2.1. 1,1, = a1 ‘u*? and 2™ € ).

Then we apply the induction hypothesis on (I'> u*2) and the “reverse” partition

T, U =T to get (Tae BM) and (I'y, 73" > 5F2) such that
w=r Si(R:/m1), At CTE (T UED), AT ST AT U E).

Applying the induction hypothesis once more on (I', 21 6w0®), where w(l,— /)

¢, and the partition (I'y, 25Uy =T, 2% o get (I, z0 R52) and (I, y5? v ST such

that
w =r.. Sy(Bafy2), AF C (TFUEH) N (T3 UCH), A7 C (T U BT) N (I UC).
Now take A = A}, r = Ay Ro((2'5))/2) and s = .5'2((;9«";”‘1{1)/1;2) and cheek
that the lemma is satisfied. Indeed the first conclusion lollows lrom: :
s(r/y) = Sa((AynBal(2*51)/2) Ra) Jy2) D Sa( Ro((=Si(Rafys))/2)) fy2) (w1 ap-
pears only in 5)) = Sz(Rz((m‘u)/Z))/yz) = 5‘2(1?-2(1[,:-1/2’))./?12) = Sy(Rafi2)(luzt /)
(since z appears only in By) = w(lp1/z) = {. To get D instead of = in the last step

use the stronger induction hypothesis: “actually one proves in 1) that s(r/y) Lo

not just the equality.

] . O ~ o 1 hl —
For the other two conclusions use that ##~ € I, so £y C ' and £} C I'}”

where § = —, +.

o B2, g ~Ea
Subcase 6.2.2. t51, = 25w and 257 €T,
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‘Phen we apply the induction hypothesis on (I'>u®?) and the partition Iy UT, =T
1o get (I o B) and (T, 97" » S72) such that

w=r S (R fy1)s AF CTF O (T5 UED), Ar CTr N (T U E).

Applying the induction hypothesis once more on (T, z%1 0 w®), where w(t,_1/2) =
L, and the partition T; U (I',251) = I, 2% to get (T » R5?) and (T'y, 25,342 » 5F)
such that .

w =y, So(Rafya), AT CTHN(D;UETUCH. A3 CTTN(TFULFUC).

Now take A = Ay x Ay, s = Sa{ma({y*1%4) [y N ((z* Si{m1(y1742) [y1))/z) and
r = (Ry, ) and check that the lemma is satisfied. (We will check only the first

conclusion. Indeed:

s(rfy) = Salma((Ra, Ra) ) /y2)) (= S1(mi (B, Ra)) /1)) 2) S

| Sa(Ra/v2)((z*S1(Raftn))/2) &

G Sy(Rafu)((@)/2) = Sa Bofya)(tnor /D) B w(tno /) = L.
The last two reductions where under the stronger induction hypothesis; otherwise we
have equality.)

Subcase 6.3.1. to_, = Szt 2l 1% 2P+ apd zF1+B2 ¢ ). First notice that
by the end of the lemma 4.50 ¢ = éz,.1", z5.1% 2B +52 {or some p-normal terms ¢, 2,
Since the complexity of ¢ is smaller the the complexity of ¢ we apply the induction
hypothesis on (I',z% » 1), (i = 1,2) and the partition T',z% = (T'y,2%) UT,. So, we
have that there arc (I'y,2% > {*) and (Tg, 5" b s¢) such that (for i = 1,2):

= e silrify), AT C(TL2B)Y N (T7 UCH), A7 C(Ih,25)-n(TFUC).

Now, let A = Aj+Ag, r = §21.04(r1), Ta.ta{re); 2152 and s = 6y1.51, Y595 y 1 H42,

Obviously s and + have right context; also the lemma is satisfied: first
s(r/y1H2) = Gyrsy, yause; (6101 (m), T2ut2(ra); 2 ) G
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by (6y1.81, Y282 2 (1)), 2. (Y181, ya. 523 £a(12)); gt b

LA i . pEr iy tndAup. ! 2, b+
=3 82151 (r1 /1), wa.sa(rafye); 2 T2 DT G Y g ¥yt H e

—

The second and the third part of the conclusion follow from 157 C (I 4 F)* where

8§ =, —.

Subcase 6.3.2. t,_y = §r.u, .05 252 and 2P+ € 1y, The same as the previous

excepl that the purtition of ' is T'y U (I'y, 2 ).

Subcase 6.4. Finally assume £,1 = ¢(2"). Again, by the end of the lemma 4.50
t=eC(z%). I 2° €I, thentake A = 0, s = “(z)) and r = 2 Obviously the
lemma is satisfied. If 2% € T'» then ke A =1, =+ and take s = ¢ (aY). Indeed

(T; » %) and (Ta, ' b ¥(2°)) satisly the lemma. O

Now we have to prove a similar lemma but in the case when the Ad-calenlus
contains additicnal constant terms (but not additional equaltions). To sce what kind
. K . B C“i B 1 R
of difficulty we have let’s give an example: let (z” » ¢ ‘x®) then for Iy = 2” (and
I'; = ¢) the above lemma (as it is) would e false - A would have to be | but this
wouldn’t do. However the problem really doesn’t exist, we just treat the additional
constants as vatiables/additional hypothesis - what they actually are, and state the

lemma carefu'liy.

Lemma 4.53 For a free Ao-calculus (wilh free :'n__w..s'i;(z_nl terms.) we have: let (I'o 17)
be a p-normal term and lel Ty U Ty = [ be a partilion of the conlexl; also lel ¥ =
EPv . EPm be the set of the free conslanls which appear in | and lel ¥ = £, U ¥,

be a partition of that. Then there are (T > ) and (I'y, i v <%) such thal

-‘ 1. t =p s(r/y),

2. At C(TyuzZf)n(r; UuE; UCH),

67



9. A-C(ITuEn)nTiuziuc),

4. t* conlains only conslants from £y and s conlains only conslants from Io.

Actually onc. proves in 1) that s(r/y) 2.

Proof: We have to take care of two things: the first is that 1) is not stated with TUX
as conlext bul jusl T, similarly the terms r and s are over the smaller contexts, and
the second is the additional conclusion 4). We take the term T which is the same
as (€ except that we pul new variables w? instead of ¢%. Then the above lemm“a,
gives (I'1, By > RA) and (I, 2,y > §€) such that T =ryg S(R/y) and the rest as in"
2) and 3) and they don’t have any constants (excebt maybe *)} - we used the same

name ¥ for the set of the variables replacing ;. Now just substitute the constants

in the place of the appropriate variables and get the statement (7 is the term R but

with the constants instead of the variables {rom £,, similarly s is the “new™ §). O

In the previous example the lemma gives two solutions depending what the par-
tition of the ¥ = w®” is (and with the given partition of context as I'y = z%). When
B = CP (and B, = ¢) then take A = C, r = t and s° = y®. In the second case

B
when B, = 08 take 4 = B, r = 28 and s¢ = (w¢"y?).

The following lemma (cf. [Pra65] Cor.5 pp. 46.) is an immediate consequence of

the previous lemma when I'; = ¢ and the fact that every term has a p-normal form.

Lemma 4.54 For cvery term (T o {€) and for every partition £ = 5, U, of the

(frec) constants from t, there exist (U v ") and (4> s€) such that
1o t=p s(r/y),
S A C(TrUShN (S5 uCH),
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3. A~ C(I-UET)N(SfucH).

4. v contains only constants corresponding to $y and s€ conlains only constanls

corresponding to Xs.
And now an importani corollary which we [ind very inleresting:

Corollary 4.55 In a free Aé-calculus on a language L = LU Ly {with free constants)
for cnery term (zBo1C) such that B € Ly and C € Lq there cxist (xPort) and (y'55¢)

such that:

1. t=_8 s(rfy),
2. (zBvrty e Ly,

3. (y* > s%) € L.
{Notice that this implies that A€ LiN L,.)

Before we prove the corollary let us give an example in categorical terminology:
suppose that L; consists of three free objects/lypes X, ¥, Z and suppose thal it has
only one free arrow/c_onstant a:Y — Z. Suppose also that Ly consists of l.Il;ﬁ same.
types and the only free arrow is b: X — Y. Now suppose thal we want Lo mterpolate
ab X—+ Z. For a moment it may look a bit suprising that tkere is any “useful”
arrow in L) from X. But there is! It is quile easy to sce that the interpolation is

obtained from the [ollowing two arrows:

({(ar"), 1x) : X = Z¥ x X) € [y and (e{r,bn’y : 2 1;::':/\’ — 7)€ L.
' ™~

Now we go back to
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Proof of the previous corollary: Given L; U Ly make ¥, to be the set of (free)
constants from Ly, and £ to be the set of (free) constants from Ly — Ly. Also notice
that for a term u if all the variables and constants which appear are {rom a language
L then the term u is on the language L i.e. all ihe types which appear in u are made
out of the basic types which appear in the typing of the variables and constants. Now
apply the previous lemma to obtain that all the constants from r# are from L; and
since o was in L; we have that (zZ » r4) € L;. To show that (y* > s¢) € Lo we
reason similarly and in addition we check that y* € L, - from the previous lemma
parts 2) and 3) we have that A C ¥ U C and this gives A € L by the definition
of £, and the assumption C € Ly. The first conclusions in the corollary and in the

previous lemma are the same. 0

[Pinally we can notice that the above proof actually gives the proof of a stronger
result which allows arbitrary Aé-theories, not only free ones - this was already men-

tioned as proposition 4.48 which we can now restate and prove:

Proposition 4.48 (bis!) Let L, and Ly be two languages, and let T} and T, be two
Aé-theories in the respective languages. Let Ty be a theory in the language Ly N Ly
such that Ty € 1) 1 Ty {we may as well assume that the theories are deductively
closed). Tet (28 t¢) be a term in the language Ly U I, such that the type B is in
Ly and Lh(-: type C isin Ls. Then, there is a type A in £; N Ly and telms (8o r4)

in Ly, and (y* » s©) in L, such that:

Ukt =8 s(r/y).
Proof: In the previous corollary we proved the statement without referring to theo-
vies, i.c. bt =gp s(r/y). From that, of course, {ollows Ty U Ty F 1 =_5 s(r/y). 0

I4 is interesting to notice that not every interpolant in the usual sense is one in

our sense e.g. X x X F X x X has as an interpolant X but in our case X can’t be
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an interpolant if the above proof is just 1y,x and X is atomic {since there is only
one arrow in hom(X, X'} - this itself can be proved by the sublormula property - it

would mean that X is isomorphic to X' x X for every bicartesian closed category).
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4.3 Interpolation in the categorical setting

Now, we wanl Lo see a calegorical rewording of the previous proposition. For that,

we will first give an (expected} pushout construction.

Proposition 4.56 Lel Ly and Ly be two languages, and let Ty and Ty be two M-
theories in the respeclive lunguages. Lel Ty be a theory in lhe language Ly N Ly such
that Ty C Ty N1y (again we may assume that the theories are deductively closed ).

To this situalion we can associate the following diagram in BCC;:

g
By, —> B,
F,I
By,

F . . . . Ml
where By, = By, i = 1,2 are oblained from the respective interpretations Ty —° Br

e My . ;
where T; = By, is the canonical model; see corollary 2.12 (M | means the reduct of

the model M in the language L).

Now, the 2-pushout of the above diagram we form as follows:

I
Byy —————By,

y H
By, 7 Br,ur,

where H is the unique functor from corollary 2.12 such that H o My = My |z, ,

similarly K o My = Miyg |1,; here, My is the canonical model Ty U Ty — Byt

Proof: This 2-pushout has the following universal property: for every two functors

~ P . .
By, — 5 and By, A [ such that PFy = QF; there exists a unique functor Brun L
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- - P
E such that TH = P and TK = @ and also, for any olther Bpgpr, — £ (not
necessarily satisfying any of the previous equations) and two natural isomorphisms

THE T'H and TR 2 T'K which satisly ¢ [ = ¢o Yy there exists a unique natural
isomorphism T L T such that o =t H and ¢, = P K.
To see: this, notice that the functors 7 and € induce a model of 1% U Ty in I,

call it PU @ - it is determined by ils restrictions in L; ie. PUQ [1,= P o My and
PUQ

L= (J o M, - there are no conllicts since the lwo interpretation agree in Ly O Ly
Le. Po (I oMpy) = Qo(f0Mg). Then, again by corollary 2.12, we have the unigue

functor T : Byyur, — £ such that
To Mup=FPU Q

Let us now check that such a T satisfies TH = P and T'K = . We will establish
just the first equality, for that is enough to see that 1'H o M, = P o M;. 'This
follows by restricting the previous equation (4.3) in Ly since PUQ |;,,= P o M, and

ﬁ’flug IL1= Ho M]

To finish the prool, we have to establish the 2-dimensional property ol the above
construction: suppose that one more functor is given By, up K (nol, necessarily
satisfying any of the previous equations) and lwo natural isomorphisms 7'/ £ )
and TK £ T'K which satisly ¢14 = ¢2 1%, we want a unigue natural isomorphisin
T £ T’ such that ¢1 =¥ and ¢y = P K. Using the S-dimensional part of corollary
2.12 we can restate the above paragraph as follows. Given a model M’ TV Uy — [
B ML) € Modp B, (PUQ 1,2
M’ |1,) € Mody, E which satisly @14 = ¢ays for every type A in 1y vy We wani,

and two isomorphisms of models (P U Q

a unique isomorphism P U £ M’ such that Py = ¢ lor every lype 13 € 1
and e = ¢oc for every type C € Ly. Tor the uniqueness il is cnough 1o notice thal

Pu@ 2 M is “already” defined on the basic types by = ¢ix ilf X € L; (no problem
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il X € Ly N L), so it is unique by the remark 2.6. For the existence usc again the
remark 2.6 - since every atomic constant £¢ from L; U Ly has to be in Ly or Ly and

the type C therefore is in Ty or Ty (Lhe intersection again doesn’t make a problem). O

Proposition 4.57 The pushoul square from the above proposition has the inierpola-

Lion properly.

Proof: Since the above square commutes we take the identity to be the 2-cell from
the definition ol the interpolation property. Take B € By, and C € By, and assume
thai there: cxisls an arrow H{B) LK (C) € Br,ur,- By the definition of a category
associated fo a theory there existe a term {8 1) in the language L1 U L, such that

d = [2# v 1°]. Now apply proposition 4.48. - o
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4.4 Strict vs. non-strict

In this section we shall prove that the previous interpolation result for the strict
doctrine BCC, (proposition 4.57) implies our sccond main result, i.e. the interpola-
tion theorem 4.47 for the non-strict doctrine BCC . To do that, as we said in the

introduction, we proceed along the lines ol [BRPSY).

First, in the next subsection, we give a connection in the form of an adjointness,
between the strict and non-strict doctrines ol bicartesian closed categories. The state-
ment itself is a direct consequence ol the theorem [BKP8Y, Thm. 3.13] however, here
we give Makkai’s formulation (motivated by possible applications o non-tripleable
doctrines) and we give an original and direct {though quite syntactic) proof of il.

Doing that we prove sorme lemmas which are used later.

After establishing the connection between the doctrines, we give a construction
of Pushouts (bipushouts} in the non-strict doctrine using the “ordinary” 2-pushouts
from the strict doctrine. This is done in order to prove the interpolation resull (recall
that the pushouts in the strict doctrine were of a special kind - the main characieristic
being that they were constructed over the functors which are inclusions on ohjecls

cl. proposition 4.57).

This is similar to the work in [BKP89, 5.8 and 5.9} bui not the same. The
difference is that we use a special variant of their statement (cl. our theorem 4.64)
but this is not enough here - we have on our disposal only the ordinary pushouts in
the strict doctrine (and .even they arc ol the special kind); they, on the other hand,

can afford the “luxury” ol pseudo-pushouts in the strict docirine.

Let us just repeat that all the statements 2bout interpolation apply Lo cartesian

closed calegories as weil,
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4.4.1 Adjointness

To go from a strict to a nonstrict doctrine is‘('i'u-ite easy - just forget the chosen
structure; Lo go backwards is a bit more subtle. The naive approach of choosing a
strict structure on every bicartesian closed category (possible by the Aziom of Choice)
won’t. work since it may not be possible to choose the siructures in such a way that

the functors become strict.’!

Let us now examine more closely the relation between a be-category B and the
calegory By, (often we will denote By, by B,). First recall that in the case of an
“ordinary” (nonstrict) category to talk about the internal language L and the theory
T we have to choose a be-structure ¥ on B and then these notions are defined as in
definition 2.10; however we will use just Lg for Lz xy, and T for Tz when X is

understood. Notice that although B € BCC was nonstrict By, € BCC, is strict.

To proceed further we need additional notation: Let (f : A — B) € B (and B
is a strict be-category). Then, as earlier, f : 1 — B denotes the unique transpose
of f,ie. f = (fml.,)" Let E be a finite sequence of objects from B and let
5\:,: be the corresponding sequence of basic types from L. Let T, 1 = 1,2 be two
type-terms satisfying the following: ']'I(Z) = A and 'I},(I) = B (as one may recall
from definition 2.3 the type-term simply means a type built out of the basic types
which are specified in the parenthesis - since the same operations exist on objects of

a (strict) bee we can use this notation for the objects as well). Tor a particular kind

'As an example consider the funclor A L B € BCC such that A is the 4 element, Boolean algebra,
B the category with just fawvo isomorphic (but diflerent) objects and F functor which maps the three
non-boltom elements to one of the objects and the bottom o the other object. 1t is easy 1o see that
there is no striet structure on the codomain category which would make I strict. Let us remark

here Lthat when F is an inclusion on objeets we can do that - this is going Lo be exploited later.



ol arrow in B, we use the lollowing notation:

T c v T RN e T
TUX ) =2 To(Xa) = [ Ti(Xy,) e cj-'( A ¥ ad),

Often we will talk about a special kind of the above arrow - those which have basic

. N [N
types for domain and codomain e.g. X4 = Xp; we shall call them clementary arrows

in B;.

Also recall the fact mentioned earlier that there exists a forgetlul 2-funclor
see, W see

which on objects (0-cells) just forgets the chosen structure (on 1- and 2-cells doesn’t

do anything).

Lemma 4.58 For every B € BCC there is an cquivalence
B = B,

defined as follows: ns(A L B) = X4 5 vy

Proof: Consider the lollowing commutative diacram:

Ttz
B"!‘(B,E) ,U.(““\_}) (‘31 )")

where M and Mg are the canonical mod.(-:ls and 15 15 defined to be the fmclor induced
by corollary 2.12. Explicitly, us(Xa) = A, X4 a basic type of Lg (corresponding o
an object A € B) and pp(l 2 T(ﬂ)) -1 4 ‘T(E). It is casy to sce thal pg is
«n equivalence of categories (it is onto on objects - therefore essentially surjective,

also it is full since “cy is mapped on f* and it is faithful by the definition of Tz
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and by the completeness of Tipyy with respect o My since v =, v € Tisy) iff

M(zvu) = M(zvv))

Now notice that |pgs|lns = 1g by definition of g5 (and ps). Obviously then, ng is

an equivalence of calegorics because |p3| has a pseudo-inverse. ‘ m]

Lemma 4.59 Suppose C, B Ai= 1,2 are two sirict be-funciors and suppose that
on the busic lypes and elemenlary arrows they agree, i.e. Hy(Xa 9, Xg) = H2(X4 o,

Xg). Then H, = 115,

Proof: By corollary 2.12 it is enough to show that they agree on the basic arrows,

—

e, that Hi(1 23 T(X,,)) = H(1 3 ‘T(ﬂ)) for g € homc(l,T(Z)). For that, let
us eslablish several claims:

Claim 1. For every two objects 7(X4,) and XT(I) in C, there are (unique coher-
ent) isomorphisms
—_ T X
T(XAI-) ~ T(A:)

Yr

in C,. Morcover they are build inductively out of elementary arrows, be-operations
(as 7, £ ete.) and inverses of already constructed isomorphisms. Notice also that

te(yr) = pe(vs') = 17(7‘)-

Proof ol the Claim 1: is by induction on complexity of 7. Let us just check two

cases: first 7 = 1 (the terminal object) then we have 1 ooXr =1 o A1 and
-1
XN 1= Ox, (the latter one is a bc-operation (constant actually) and the former

one is its inverse). Tor the second case assume that 7 = 7, and assume that

RET YT :
Y ¢ . P . »
7 _(,___1-)\’1'; and 'Tz..c__'-)\’fz have been constructed as above. Then it is easy to
‘)"]'1 ')';,1_'2

check that vy = (ygs(l % 7}11))' and 77! = (v5'e(l X 45;))" satisly the claim. O



From the above claim immediately fotlows that /f,(vr) = Ha(yr) and (7)) =
Ha(v7").

Claim 2. For every basic arrow in C; i.e. | l>cf( “)] ;1 — T(Xy,), the lollowing
equation is among the axioms of T¢:
T(,\_'—' X

z,‘) - (_;
[ee; " hiz' = [pe, ).

Proof of the Claim 2: Using the faithfulness of C, £ € and the fact that the both

sides are mapped to f. O
The lemma follows from the two claims. [l

Now we want Lo see what is a natural strict funclor beltween A, and B, corre-

) . F . .
sponding to a nonstrict be-functor 4 — B. The naive guess is wrong: suppose thal.

Xa, xX .
a constant ¢, M7 e [ 4 was induced by the arrow [ € homy(l, Ay x Aa). Then
Xt x X z\'p 1 XN g R .
(on the level of languages) ¢; """ i cﬁ(}; DR 55 wrong because Lhis constant,

does not even exist in L (£(f) & homg(1, I7(A1) x £'(A3)) - I is not. strict). To give

the correct definition we need some preparatory lemmas.

Lemma 4.60 Let A 5 B be a Junclor in BCC. Let (A,5y), (B,X,) be the two
categories with added sirict structure. For any finile sel of objecls A€ A and any
type-term T (A;) there are unique coherent isomorphisms

T

r——t —— —

T(F(A)) < F(T(AD))

Proof: What we mean by the “coherent isomorphism® is the following: we Live the

following basic coherent isomorphisms:

£0 p1 PA DA,

0 F(0), 12 F(1), and F(A)BF(A2) " (4D A)
po_l Pl_l f’z, QAy
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where XOY stands for X x Y or X + Y or XV.

"They are called coherent because we require that they commute with appropriate
structure e.g. mipg . a, = (%) and F(7i)pa,xa, = 7, ¢ = 1,2, Since the functor
7 preserves be-structure (nol necessarily on the nose) these isomorphisms exist and

they are unique.

Using these basic coherent isomorphisms (and by induction on the complexity of
T) we can build the above mentioned canonical coherent isomorphisms pr and p7.
Also, the prool of uniqueness of these coherent isomorphisms is by induction on the

complexily of 7. o

Lemma 4.61 Lt A 5 B be a Junctor in BCC and let (A,Zy), (B,Z,) be the two
categorics with added strict slructure. Lel Ty Ye Bry, be an interprelation such that
Mp(X 4) = Yy where X4 denoles the basic type from the language L s corresponding
to the object A € A and Yg denoles the basic type in Ly corresponding Lo the object
3 € B. On basic conslants My is defined as follows: let ¢; : ’T(ATA:) be the basic

conslant in La corresponding lo [ € homy(1,7(A;)). We define

rr—

——

Mp( bCy T(XA'.)) = [Dcﬂ}lf‘"(ﬂﬂl H T(YF(A,-})] 11— T(F(A,))

Then this inlerprelation is also a model.

Proof: Obviously, Mp is well defined. Now we have to check that Mp preserves tue

axioms ol T4. Recall thal v =, v is an axiom of T4 iff M{z > u) = M(a > v) where

M oy N .
La = (A, E))is the canonical interpretation.

——

Claim: For every term (w1 @ Ti(Xa,)), ... 20 0 To(Xy,) ot ‘T()?;;:)) € Ly, the

following holds:

— —— —

F(M(zy: Ti(Xa)s ooy n: To(Xa, ) ot T(Xp,)) =



—— —h

prMp(zy : 'Tl(;\'_.;l), vyt TNy, ) v 6 T '-"))f’”.—ﬁlx---x’fn'

Prool of the claim: By induction on the complexity ol the term ¢. O

Using the claim and the fact that the p’s arc isomorphisins it is innmediate to see

that Mp is a model of T4. a

We can establish the [ollowing 2-adjointness between the 2-categories (doctrines)

BCC and BCC,:

Theorem 4.62 (cf. Thm. 3.13 [BKP89]) Let BCC, L Bec be o Afunclor which
on objects {(0-cells) just forgels the chosen structure (on - and 2-cells doesn’t do any-

r 17 .
thing), let BCC Of BCC,, (A _110_)_[3)}—&»(/15 U6, B,) be a 2-functor defined as fol-
e [P

lows: A; = Br, (similarly B,), I is oblained from the above defined model Ty My B,

01 1 * } . . +
(sec the above lemma), and Iy = G is defined to be the unique nalural isomorphism
Mp
corresponding to the isomorphism Ty ﬂ’U;_BTB which on basic lypes jusl gives the
Mo

(s

X
: : - Xa By
arrow corresponding o 04, more precisely: 0%, = [aX )y N e, Then:

On

s 1]

and the 2-natural iransformation lgce —» |( )s], which is the unil of the adjunclion

satisfies that for every B € BCC

- "3 2.'.33. IBMI

is an equivalence of calegories {und ng € BCC).

Proof: Tt is not hard to sce that Lhe above defined functors arn in(_lct:d 2-Tunctors

(not merely homomorphisms) - we will just check that 4, is well defined. By corol-

lary 2.12 0, is well defined il the isomorphism of models My L Mg is well de-

fined. By remark 2.6 the latter exists if for all basic constants c}r( ) g I
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T(Xa
the following holds: 0° __. 1\/[1;(6;("4' ))
T( -XA,' )

0 ___{o ;r_({;(?};l)?] = | Dcz—,ﬁg((‘}’;l,)l], and by faithfulness of up this is the same as
T(Xa) TR |

= Mg(c}f( Ao )) ; this is the same as

ei(0* Vs ([ o AN = (] bc;ffg:};fy 1) (here o is for & what p was for F).
T(Xa; ) Prr(fim T 1

) F(f)pr = 07'G([)o1. To show

By definition of y3 this is the same as pp(0”

.

o A.
that, we will first establish the following

Claim: IFor every type 7 E € Ly up(0° ) = 670 _ — pr, where 0° __,
Claim: y type T(Xa,) € La ps( T(XA,.)) 70 PT )
are the isomorphisms made out of isomorphisms &%~ as in remark 2.6.

Prool of the claim; By induction on the complexity of T7( X4, ). For the atomic
types this is so by definition since for the atomic T the isomorphisms pr and o7
arc identities. Let us just check the most complicated case: 7 = T,;2. We have the

following chain of equation:

a';;}r" 0,1_|7':, ,p,‘?..;r.J
= (a"}'—lls(l X 0'1',‘,))"‘07.17:, (pr,e(l % p;-:))' by definition of p7, o7
= (07 (1 % a7,)) (07,61 x 021 ))* (pr (1 x pZ!))" by remark 2.6
= (07 (1 x o0, (0, 6(1 % 07 )((prie(1 x pZ]))* X 1)) x1))* v = (u(v x 1))
= (cr.}llﬂ';-ls(l 3 0.}:)(([)1—,6(1 X p}:))" x (1 x o7,))* (ax1)(Ixb) = (1xb}ax1)
= (0-;1107, pre(l % p};)(l x 0}:)(1 X o, ) )* {and e(h*x1)=h
= (07 07, prie(L % (07 07, 0m) " ))* (Ixa)(txb)=1xab
= (us(0%))e(1 % (us(07,)) ")) by induction hypothesis
= p(07) by remark 2.6.

]

Using the above claim the above equation is the same as crf}IGT(—i—_—Jf):rpf}l F(fip =
o7'G(Nay, i.e. OT(T)F(f)p; = G(f)o:. The last equation is a consequence of
the naturality ol f* 2 G; namely from OT(E)F(f) = G(f)0; multiplying both

sides from the right by the isomorphism p; the wanted equation follows provided



01090 = oy : 1 — G(1). This is so because G(1) is a terminal object in B, although

not the chosen onc.

Let us now give the 2-natural transformation # as follows: for every be-category

B we define 1z as in lemma 4.58, 1.c. nz(A A BY= X435 Vh

The 1-dimensional part of 2-naturalily (i.c. “ordinary naturalily”™) [ollows by

definition of F;. The 2-dimensional part is the following.

F
Let A~ _B € BCC, then we have to check thal |0,n4 = a0 ¢ |[Fdna = yu(.
—= :

Ny
1 . . X F
Take an object A € A and calculate: (|0:]n4)a = 0% = [z¥* o r'/ﬂ-f( Y

e,
A

LA F(AY
On the other hand (ns0)4 = 75(04) = [(z¥4 b cﬁft’” ‘¥, so we are done,
A i

Now we are going to show the adjoininess. First the l-dimensional part: we have
to prove that to each C = |41 € BCC there is exactly one C, Y A e BCC, such that
F = |H|nc. (Again we repeat the “old” remark that to talk about, C, when € € BCC

we first had to choose a sirict be-structvre ¥ so the notalion C, has Lhis strueture

hidden.)

The uniqueness of / is easy to establish: first notice that on objects / is uniquely
determin=d since H(Xa) = |H|(nc(A)) = 17(A) and since # has 1o be a strict he-
functor we have H(T()TA:)) = T(F-(_Z,-)). Also H is uniquely given on clementary
arrows by the same reason, i.e. H(X, 2 Ya) = |Hnc(A 4 B) = F'(A) oL (13).
Now we are going to construct f as follows. We are given a lunctor C 5 |A]. Above
we have defined C; 5 | 4|, ( recall that we have hidden strict structures and here we
can choose the strict structure ¥’ on | A} so thal (|4}, L") = A). Also above, we gave
the construction of | A, U A. Let us define H = . By naturalily of 47 we have
|Fslne = maf’. Mualtiplying both sides on the left by |p.4] we get | lma F = [Hne.

Since |pya1lm.4 = 1j4) we obtain F' = |H|5e.
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The 2-dimensional part of the adjointness says that for every C%IAI € BCC

" |Hz[ne
there exists a unique C, ?;c_:A € BCC, such that |s|nc = 0. Define & = p4/0, (do-
main and codomain ol & are all right by the uniqueness of the # in the 1-dimensional
part ol the adjunction). Indeed it satisfies the equation: |pafslne = [r14ll0slne =
|[L|A||7;;|A[0 = f. The uniqueness of & is also not a problem since by remark 2.6 & is
determined by its behavior on basic types. Since |k(Xa)| = |&|nc(A) = 04 and the

funcior | | doesn’t do anything, & is indeed unique. (!

Remark 4.63 We actually need a more precise construction of the functor ( }, for the
following section (it could be aveided if we had a different setting as in e.g. [BKP89]

where the nonstrict doctrine has actually stricl objects but nonstrict [unctors).

Suificiency condition: Take an object A and take all the possible strict structures

on it. Tor each of these structures there is an isomorphic copy A’ of A on which we

take this particular structure when constructing AL

This is going to be used in the lollowing form. Let A be an object in the nonstrict
doctrine. The above condition then implies that for every possible strict structure &
on A there exists an isomorphism A 5 A’ in the doctrine such that when constructing

Al we choose as the strict structure on A’ the structure induced by T (and o).

4.4.2 Pushouts

T'he above adjointness can be used for the construction of Colimits in BCC provid-
ing that we have the appropriate colimits in BCC, (the terminology “Limits” and
“Colimits” it adopted [rom [MP89] and it means weighted bilimits and weighted bi-
colimits respectively; see also [Str80] where they were called indexed bi(co)limits),

This was already done in [BKP89] where “the appropriate colimits” essentially meant
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pseudo-colimits. Since our interpolation (so far) was proved lor {(a particular kind ol)
2-pushouts in the strict doctrine we have to use them for the construction ol Pushouls
in the nonstrict doctrine and not merely pscudo-pushouts. Olten we call 2-pushouts
just pushouts.

. . F G e
Suppose we are given a diagram A — B, A = C in BCC. We want Lo construct a

Pushout. That is, we want a diagram

A—E
G H
4
C—F%—7D

where 7 : HF = K@ is a natural isomorphism which satisfies the following: for every
two functors B £ & and ¢ 3 € and a natural isomorphism 0 : PIM = Q0 there
exists a functor D -5 £ and there exist two natural isomorphisms 8, : 7 = 1T'H and

0, TK = Q

A £ B

such that (:G)(T'7)(0,F) = 0 and such that for every D L, & and natural isomaor-
phisms ¢, : TH = T'H, ¢, : TK — T'K which satisly T'r 0 ¢, 1" = ¢, o'['t there

exists unique natural isomorphism % : T = 7" such thatl ¢; = H and ¢y = K,
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We can notice that the in!crpdla.tion property is invariant for Pushouts, i.e. if
one Pushout over A4 5 B, A 5, > has the interpolation property than all the other
Pushouts over the same diagram have this property. Even more is true, the inter-
polation propertly is indeed a 2-categorical (we even may say bicategorical) notion in

the following sense.

Lemma 4.64 Supposc we have the following diagram

' I '

ta

N/
/ B

G’ G

where L4, Ug, le and lp wre equivalences of calegories and tp < tpf = [F'i4, tg < teG =
G, by s tpH = H'ig, Ly i tpK = K'e, 7 HF = KG and 7' ; H'F' = K'G are

natural isomorphisms such that

KigotyGotpr =7is0Hipolyl : tpHF = K'G't 4. (1)

(This is essentially a strong transf.rmation T- #t BCC where I~ is a commutative

square, and ¢ is an equivalence in Hom(Z~ BCC) see [MP89, Prop.4.1.8].) Then:
1. If one of the squares has the interpolation property the siher one has il too.

2. Also, if one of the squares is a Pushoul the other one is too.

86



Proof: I. Assume the inside square has interpolation property and we want to show

that the outside one has it too.

Take B’ € B', C' € C" and ({'(B") LA K'(CY) € D'. We are doue il we produce
Ae A, (B 5 F'{A")) € B' and (G'(A") LN C") € C such thal o' = K'()rl, 11 ().

First {rom the essential surjectivity of {5 and ig we have two objecls 3 € B and
C € C and two isomorphisms (ig(B) = B') € B’ and {{c(C) = C") € . Also we

have the isomorphism: d” : tp(H(B)) — {p(K(C)) which is deflined to be:
tp(H(B)) " 1 (s(8)) T 18 & ke N K e(0) 9 (ko).

Using faithfulness ol {p we have an arrow (H(/3) N K(CY)) € D such that {p(d)= d".
By the interpolation property ol the top square we have an object A € A and two
morphisms (B A F(A)) € B and (G(A) S C) € C such that d = K(e)ry/1(h).
Now take A" = {14(A), O = tp(A)g(b)u™" : B = F(A) and ¢ = vig(e)la(A) -

G'(A") = C' and check that it gives an interpolant lor ¢, That is check that:
d' = K'(vic(c)g(A) D i (Lp(A)g(b)u™").

For, use the definition of d” and the facts that {p{d) = d" and d = K{c) 74 H(D),

so the equation which we have to check now looks like:
K' (oM (CWp{ K (e)tp(Taltp(H {0 (B)Y " 11 (u)™!
= K (wlo()e(A) ) H (L AYt(b)u" ).
This is the same as:
L (Cp(K () ln(ra)lp(H{b))tu(B)™

= K'(1c(e) K (ba(A) ™ ) I (Ll A)) 1 (Lis(B)).
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Since £y is a natural isomorphism we have
L (F(A)tp(H () = H'(ts(b))in(B)
and then the above equation is equivalent to:
U (CY (K (e))n(ra) = K'(to(e) K (ta( )™ ) o H (L (A)Lu(F(A)).
Stmilarly, since {x is a natural isorhorphism we have
K'(lc())t{G(A)) = L;{-(C)LD(I((c)j

and then the above equation is equivalent to:
K (Ua(ADL(G(A)ip(ra) = ) H'(Er(A) L (F(A)).

Fortunately, the last equation is a special case of equation (1).

2. This is a part of the bicategorical folklore. o

. ¢
Lemma 4.65 Suppose { = {2 o3 1} is a 2-calegory and suppose T _¥¢ BCC
&
where 4 is an equivalence in Hom(Z,BCC). Suppose also I: T — I~ is an inclusion
of the 2-calegories (recall thal I~ is just a commulalive square}, and supposc that

there is o homomorphism T~ 25 BCC such that =1 = &.

Then there exists a homomorphism I~ * BCC and an equivalence T— W= BCC

B
such that @='I =& and 1= = t.

Proof: Il is ecasy to construct what is needed. O
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Now we can start constructing Pushouts in the doctrine BCC. By the lemmas 164
and 4.65 to show that every Pushout over a diagram ¢ : [ — BCC has the
interpolation property it is enough to show that for a Pushout over one equivaleut

diagram ¢’ s I — BCC.

For the beginning we can restrict our attention oun slightly morve special diagrams

and for that we need the following casy lemma.

Lemma 4.66 Fvery funclor A L B can be factored (in the doctrine BCC) as
A\-—-—~—>”

hll
PN
B

where I is an inclusion on objecls and ' is an equivalence of calegorics.

jald

Proof Let ue first define the cntegorj B’ as follows: The objecls of B are objects of
B and also nairs (F(A), A) where A is an object of A. Arrows in B arc only arrows
between first coordinates - more explicitly homg/((F(A), A), B) = homu(/'(A), 13),
the other cases are similar. The comnposition and identities in B’ are the ones from
B. This is indeed in the doctrine because: the properties of the doctrine are defined
up to a (unique coherent) iso anyway. The definition of /" is titc obvious one: (A, 4,
Az) = ((F(A1), Ay) P ({7(Az2), A2)). This functor is in the doctrine, hasically for

the same reason that B’ is.
To construct I we do the following: ((F(A), A) S B) — (F{(A) D 13), similarly

for the other cases. The pscudo-inverse of £ (call it #"} is just the inclusion of B

in B’. 1

. G 4 F p. . . G
Since C & A — B is an equivalent diagram to C' & A — B’, by the above lemmas
we can assume that the funclors in the diagram for which we want o construct

Pushout are inclusions on objects.
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These “unusual™ functors - inclusions on objects - have several interesting features.®
Recall now the example from section 4.4.1 where we had a functor A 5 Be Bee
which was not an inclusion on objects; we were not able to assign strict structures Lo
A and B such that I becomes a strict [unctor {the actual example was mamnlactired
out of a 4 clement Boolean algebra and a calegory with isomorphic (but different)
initial and terminal object). However, when I is an inclusion on objects we can do

that (and even a bit better):

Lemma 4.87 Let A 5 B € BCC be an inclusion on objects. Let Xy be an arbi-

frary strict structure on A. Then, there exisls a strict structure My on B such that

(A,£) 5 (B,5.) € BCc,.

Proof: Let {B,}acx be the set of objects of B. Let us just define strict prodncts.
By x Bg = F(Ax A") il Ba = F(A)and Bg = IF{A"); otherwise choose any product,
of Bs and Bg to be B, x Bg (the arrow part of the definition is equally simple). For

the terminal object in X3 choose (1) where 1 is the terminal object in . 0

After this lemma, using the sufficiency condition on the functor (), (see remark
4.63) we can assume that the diagram C E AL B has not only inclusions on
objects as functors, but also that the strict structures on the categories needed lor
the definition of the functor ( ), are such that £ and & are strict functors. The
advantage of this situation is that we don’t have to worry about, the definition of Lhe
functor I, : A; — B, - the naive guess now works (sce the remark afler lemma 4.59

and several lemmas after)! Let us write this down as

*The day before submission of the thesis (July 6, 1993) we received [J592]) in which the use
of these [unctors is similar to ours - it relates 2-pushouts and pseudo-pushouts. We cun say thal,
the doctrines are not the same as ours, that the prools are different and that interpolation is not,

mentioned in their work.

90



Lemma 4.68 Suppose that I : (A, E1) — (B, X2) is a strict be-functor which is an
inclusion on objects. Then Iy @ Ay — B, which is given as in lemma 4.61 becomes
simply the following: on basic {ypes X4 — Yp(A) and on basic arrows ¢y — cr(y)
(the rest is determined since I? is slricl be-functor). Up to the renaminy of symbols
we can ussume thal we have inciusion of the languages L4 C Ly and of the theories

T'a CTu. Then F, is construcled as in proposition J.50.

We are now all set for the proof of our second main result.

Proof of Theorem 4.47: Start {from a diagram

A+>8

i

C
in the doctrine BCC where both functors are inclusions on objects and the strict
structures on the categories needed for the construction of the functor ( ), are such
that ' and G are strict with respect to these structures. This is done without loss

of generality by the previous lemmas.

The idea of our proof is to construct two squares over this diagram - for one of
them it will be easy to establish the interpolation property, for the other one we will
have that it is a Pushout. Then we will show that they are equivalent in the manner
of lemma 4.64 and the lemma says that both of them are Pushouts which satisfy the

interpolation property.

To consiruct what is needed first apply the functor ( ), to the above diagram and

get
A, B,
c.-,l (2)
Cs

91



a diagram in BCC,. By the previous lemma this diagram s of the same Lype as the

one in proposition 4.56.

First we construct the square which has the interpolation property. We canstruct
a 2-pushout in BCC, over this diagram, as given in proposition 1.56 {since Ty € TxU'1¢

up to the renaming of symbols). We obtain

F.
A, ——B,

of

3

Cs"_""}""'])

Recall that D = By, (the union is nol disjoint, t.c.: ihe symbols coming from L4
are identified) and functors U and V are induced by the inclusions of the languages.
This 2-pushout has the interpolation property as ShOWIl.i!’l proposition 4.57 .
Now, in the doctrine BCC we have the following commutative (lizmgra.m.:
A—L>5
Gl IlU (23
C vz 1Pl
We have to show that this square satisfly the interpolation property. IFor, notice thai,
this square is equivalent to
[A,| 18
IGsll lIU I
;]
and this commutative square is obtained applying the lorgetful functor || on a square
which had the interpolation property, therefore it has the property itscll. Now apply

lemma 4.64.

Second, we construct a square over the above diagram 2 which is a Pushoul in
BCC. To show that we are going to use [BKP89, 5.8 and 5.9]. In the form appropriate

for us it says:
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Theorem 4.69 ((BKP89]) The dingram

A r B
G U s
|a|%
Y
c Ve 1’|

s o Pushout in BCC, where

A, b B,

C.S v D’

is a psewdo-pushout in the striet doclrine BCC,.

For the proof we refer to the above reference - here we will give only the con-
struction of the pseudo-pushoul in our terminology and we will recall its universal

property.
first, let us give the construction of D' this is By, where the language of the
theory TV is
L' LgULeU{04:Y34,05" : X34 A object of A}
(U denotes disjoint union) and
= 'Fb' udeU {0.‘1‘(0;?‘?)’)"4) — yl"‘,ozh(gzi‘mx‘d) — ZX“‘[A c A}
L{Oa'0y = ¢f|(f : 1 — A) € A and by € L, ¢y € L¢ corresponding constants}

(the last mentioned &’s can be of complex type and they are then defined by induction

from the basic ’s as in remark 2.6, we don’t have to impose the isomorphism identities
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for these 0°s because they follow as in the mentioned remark). Then, the funclors
U' and V' are simply defined to be inclusions ol “symbols”. Il is casy to check that
they are strict be-functors. The natural isomorphism 0 : U7 F = V'@, is defined in

the obvious way using the above constants 0.

This diagram has the lollowing universal property i the sirict doctrine BCC,: for
every P : B’y = &, Q : C'y — & and a natural isomorphism 7 : P, = QC, there
exists a unique functor R : D' — & such that RU' = P, RV' = @ and BRI = T,
and also for any two functors R, R’ : D' — & and any two natural isomorphisms
¢1: RU' = R'U', ¢« RV' = R'V' which satisly /00 ¢ Iy = .G, 0 RO Lhere exists
a unique natural isomorphism % : R = [ such that ¢; = U’ and ¢ = 4V, The
proof that this diagram has this universal property is quile similar Lo the proof of

proposition 4.56.

Now we start the third part of the prool of theorem in which we show that Lhe two
squares are equivalent as required in lemma 4.64. Let, as above, B, Yp kL C, he
“the” pushout over C, g A, 5 B, and let B, ol Cs be #*the” pseudo-pushout
over the same diagram. By the universal property of D' there exists unigue siricl

be-functor R : D' — ) such that:
U=RU'" V=RV 1lyp = R0. (1)

We want to show that there exists the appropriate strict functor in the other

direction which will give the equivalence. For that we have to establish the following

“rare”
¥

Ut
Claim: There exists a strict be-functor and a natural isomorphism B, 700" [y

’J"
such that §'F, = @ (this implies U"F, = V'().



Proof of the claim: To give U” it 1s enough (by corollary 2.12) to give a model

M" :Tg — D', On basic types:

M) = Yoy il B=F(A)
Xg  otherwise.

The delinition is so far correct since I is inclusion on objects. To give M" on basic

constants we have to introduce a family of isomorphisms 05 : B — U"(B) in D'

where B is an arbitrary type in T (we have in mind that U’ is just “an inclusion of

symbols”). This family is defined inductively as in remark 2.6, here we will give just

the basis of the induction:

0, if B= F(A)

f
Ox, = ‘
lx, otherwise.

Now we can define M" on basic arrows as [ollows:
M"(vbs : B) = 0p[pbys).

Notice the special case of the above definition: if f is in A4 then (using naturality of 4)
it gives M"(by) = ¢y (here by, ¢; are constants in Lg, L¢ respectively, corresponding

to I"(f), G(/))-

Now we have to check that M” is indeed a model: for that is enough to show the

{ollowing casy

Fact: Ior every term (z; : By,..., @, :-Bn > ¢: B)in Lp the following holds:
M"@ By g Bavt i By =0g[x1: Byyooyan i Bav it B]Og‘llx‘,_xsn.

This is easily proved by induction on the complexity of ¢.
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Since U'(mq: By,... a2t Byt B) =[xy Bio... 2y By vt 2 B] we have that
M" is a model of T since U’ is a strict be-functor. We also can see that {8, = V'(,

(compare them on basic symbols from L 4).

The above fact is exactiy what is nceded to show that ¢ defines a naiural isomor-
phism U’ = U”. Also notice that indeed & F; = 0. We were able to assume that F,,
G are inclusions on symbols (up to a renaming) duc lo the above restrictions on I,

(7. This ends the proof of the claim. 0
Now, by the universal property ol

A8,
G

;

we have that in the strict doctrine there exists unique be-functor S @ ) — D' such

that:

u

—— D

i

U'=S8U V' =8V (1)

By equations (3), (4) and the universal property of D it [ollows that RS = 1.

Now we want to compare SR and 1p.. We will use the 2-dimensional part of
the universal property of D' since we have thal there exist natural isomorphisms
IpU' & U = SU = SRU' and 1y : 1pV! = V! = SV = SRV’ which satisly
§'F, = 0 and in a fancier form (SRO)(0'F;) = (Lv:G,)(1 po0) which is exactly needed
in the definition of the universal property of )’ and iherclore there exisls a unique

natural isomorphism 4 : 1 = S such that
';bU’ = 0' and ’l,[)V’ = ly. (5)

This obviously gives the equivalence between £ and 1.
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Coing back to Lhe nonstrict doctrine we can see that we have a strong transforma-
tion beiween the two squares whose components are equivalences exactly as required

in lemma 4.64:

A £ B

f
x /
F

B

G G iUlns U i

A
C —i—= D]
1¢

[Vinc |e'—'|y
/ 5]
. 215
¢ e ln.

(omitted 2-cells are identities). The equation required in the lemma is

|V'l7]cl(_; o] 1]SV|ncG o IESU[ngF = |0|TM o] 1|Ur|,mp Q |9’_1|m;F . |SU|?}5F = |V’|ch.
This holds since by the naturality of 4 (and omitting identities) it is equivalent to
1|V'|"FCG = IOIUA 0 10'_1FS|T]A

and this follows from lgwg, = 6 0 @'~ F;.

Since the bigger square is a Pushout in BCC by theorem 4.69 the smaller square
is too by lemma 4.64. Also we have established that this smaller square has the

interpolation property and it finishes the proof of the interpolation Theorem 4.47. O

97



4.5 Applications of the interpolation

As mentioned in the introduction, this scclion can be considered as a “work in
progress” and these applications are rather easy to obtain from the interpolation.
However, since they have real categorical flavor and since we easily get the results

well krown in the literature we consider thein as applications.

The first application is a prool of the well known theorem aboud, the interpolation
property of Heyting algebras. The theorem is first proved in the important work by

Maksimova [Mak77]. The thcorem as stated in [Pit83a, Thm. B.] is the following:

Theorem 4.70 Fvery pushout square in the calegory Fa of Heyting algebras (und

structure preserving morphisms) has lhe inlerpolalion property.

Proof: Every Heyting algebra is a bicartesian closed calegory and homomorplhisms
of these algebras are be-functors. We can view Ha as a 2-category (2-cells being
identities). Therefore there is an inclusion [ : Ha — BCC. Also, il is casy to show
that a left adjoint to this functor is “posetal collapse” P : BCC — Ha. To construci,
a pushout of C & A <, B in Ha we can do the following: include the diagram in
BCC and construct a Pushout there. Then apply the lunctor 2, in this way we oblain
the square

A—L~p

yl jl’(:’l}

¢ W;{:)P(D)
Since as a left adjotat P preserves Colimits, this square is a pushout. Also a poselal
collapse of a square which has the interpolation property is again a squarc with the

interpolation property. From that the theorem follows. O
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We shall come back 1o Heyling algebras in a moment but hefore that let us

establish another interesting fact.

Proposition 4.71 The full functors are stable under Pushouts in BCC and CCC doc-

Lrines.

Proof: We wani. to show that in a Pushout square as below if J7 is a full functor then

K must be.

A £ B
G IEl
,____.K_._,.D

Suppose that z : K(C) — K(C) is an arrow in D. Since H(F(1}) is a terminal
object and K(CS') is an exponent of K(Cq) by K(C;) (both in D) then (as in any
cce) there exists unique arrow & : H(F(1)) = K(C$) in D such that K(e)u = =
where u : K(Cy) = K(C$* x C,) is the unique arrow such that K (7)u = #0,(¢,) and

K(m")u = e,y (and Og g,y : K(C1) — H(F(1)) is a unique arrow).

Now we can apply our interpolation theorem to # : H{F(1)) — K(C') and
wegel A € A, (b: (1) — F(A)) € B and (c : G(A) = C&) € € such that
# = K(c)taH(b). Since I is full by the assumption there exists an arrow a : 1 — A
in A such that /(e) = b. By naturality of 7 we obtain that K(G(a))r = raH(Fl{a))
and by the way a was chosen we have "t'ljlat & = K{cG(a))m. Now we can check that
K({cG(a)0¢,,1¢,)) : K(Cy) — K(CZ x Cy) satisfies the equations deﬁniﬁg the above
w and then by the uniqueness of u we have that u = K ({cG{(a)0¢,, 1¢,)) (here, Og, is

the unique arrow €y — G(1)). So finally, z = K(e{cG(a)0¢,, 1¢,)), i.e. K is indeed
full. O
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Coming back to Heyling algebras, let us prove the othes main theorem from

[Pit83a] - Thm A.
Theorem 4.72 Monomorphisms arc stable under pushowt in Ha.

Suppose

A—L1-p

T

C—=D
is a pushout in Ha and [ is mono, we want {o show that this 2 is mono. By the
pro’of: of the nrevious theoren: we kitow that the above square is posetal collapse of a
Pushoﬁt square from BCC (i.e. k= P(K) and h = P(H)). Since the monomorphisim
g as a [uncte: is full - it follows by the previous proposition that /1 is full. Also,

posetal collapse of a full functor is a monomorohism i.c. & is a monomorphism. 0O

Since our interpolation result was valid for cartesian closed calegories as well
we can say that: !ne same statements hold for their posclal collapse.  These are
known in the literature as Brouwerian semilatlices so we can just conclude that in
the category of Brouwerian semilattices pushouls have the interpolation property and

that monomorphisms are stablec under pushouts as well.

Fbr the other application let us first recall the following fact related to the Beck-
Chevalley property. Suppose that for the Pushout square as above Lhere are two
functors /1 : B — A lelt _z;djoint to /7 and Ky : D — C left adjoint Lo K. "Then
there exists a canonical natﬁral transformation p : K/ = G I (Lhis doces not depend

on the interpolation property; also we are not assuming thai /i, Gy, p are in Lhe
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doclrine). In picture, the situation is the following:

< &
A B
® l
G| H
i
l P T
i
c D
i \‘:

T'his canonical p is defined to be the [ollowing natural transformatio. :

EGR © K’g(Ts! o] H(T,‘rs))"': KH=G"

The following statement is present in the poset variant in {Pit83a] and generalized

in [Pav02)].

Proposition 4.73 The above square salisfies the ini.er;uclution‘ properiy iff p has a

left inverse.

The proof of the abuve statement is not hard once when we know that the state-

ment holds. We are going to sketch the proof of the relevant corollary:

Corollary 4.74 The above p has lefl inverse when the above Pushoul square is in

the doctrines BCC or CCC.

Proof: We have to construct a natuml'trans[qrnmtion o: Gl = KiH such that op =
Lg,pe- Since the Pushout has the iﬁﬁerpolation property we can find the interpolant
for n}'}'(B) : H(B) — K(K/(B)). That is there are A € A, b : B — F(A) and
¢ G(A) — Ki(B) such that 9l gy = K(c)raH(b). Now define o4 = cF(efi%(b)) and

check that o so defined satisfies the required property. O
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A Proof of the Weak Normalization Theorem

In this appendix we prove the theorem 4.49. First some definitions:

Definition A.75 A mazimal chain of immediate sublerms in a term §is called a
thread. A segment in a lermn L is a chain of ftmnediale sublerms {y = - =1 of i

such thal:

1.ty # bz, yosw

2. cach t; 1 < nis a minor premise of v 8, i.e. is in one of the following positions

dedi gy w or Sz, iyl w
3. t, is nol in @ such posilion.

So any term not ol the “é-form” nor a minor premise of a “4-form™ is a segment.

(n = 1). Also notice that ali {; are of the same type!

4 maximum segment is o scgmend where 1y has one of the following forms:
(u,v), Az.r, 4;(r) or €*(r); and L, is in one of the following positions: w(1,), {L,,'r),
Sz, y.v;t, or €2(L,).

So we can see that the term £, in a maximum scgment is an immediale sublerm of
a C-redex when n > | (because {, then has a “§-form”, e.g. £, = dw.boey, yv;w); and
it is an i_mmediate subterm of an Rp-redex or fo-redex when no= [, more precisely,
this is an immediate subterm of an Ro-redlex if ¢y is nol an ¢-form, and Lhis is an
immediate subterm of an Ff-redex otherwise, i.c. when 4y is an e-form. Also any

p-redex contains the top of a maximum segment as an immediaie subtern.

Since the sublerms of ¢ lerm t make a tree we can define the depth of a segment,

S =i, = - > 1y lo be the number k such thal L = vy = -+« = 1 = L, we wrile

© k= depth(S).
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Proof (of theorem 4.49): Let S = ¢4 = ... = {# be a segment. Then the degree
of S {denoted d(S)) is defined to be the complexity of A, i.e. d(A®) = d(4 x B) =
d(A + B) = d{A) + d(B), d(0) = 1 and d(X) = 0 when X is a [ree type or the
terminal type; the Tength of S (denoted {(5)) is defined to be n (for the above 5). To
every term £ we assign an ordered pair #t = (d, ) where d is the highest degree of a
maximum segment in { (or 0il such a segment does not exist) and I = [(S7)+---+1(Sk)
where S1,..., S, arc all the maximum segments in ¢ with the degree d. Also we say

((f],[]) < (dg,lg) iff dl < dg or, dl =dyand [; < [2.
We assumie d > 0, il d = 0 we are done - there are no p-redexes.

Take a maximum segment S = {, = --- > ¢; of the degree d with the largest

depth among such maximum segments.

First case: ¢, has nor a § nor a e-form so then n = 1 and {, is in 7;({,,), or in ¢,'r,
or in dx.u,y.v;L,. So this is an Ra-redex. Then the whole segment S is just the term
1 and # = (d(S), 1 +1(Sy) +- - - -+ I(S4)), where Sq,..., i are the other maximum
segments ol the degree d(S). Applying the appropriate Ry-reduction on this redex
so that £ B3 1" we can see that #¢' < #1 because an Rj-reduction performed on a
maximum segment/term of the highest degree can’t produce a maximum segment
of a higher degrec. The idea comes from Turing - see [Gan80]. (Check the cases:
the “worst” one is ¢t = ... (Azt.rBst). .. where § = Az.r; so d(t) = d(B*1). The
possible new maximum segments can appear in r(s/z) but then their degree is d(A).
3o the only maximum segments of the degree d(S) are the old ones (if any). Since
we reduced “the innermost” maximum segment they didn’t multiply. Therefore, {(t)

decreased by 1 so indeed #i > #¢'.)

Sccoud case: L, 1s an e-form, so again n = 1. Therefore this is an immediate

sublerm of an F-redex. Then again as above the whole segment S is just the term ;.
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Applying the appropriate FE-reduction on this redex so that { Lt we can see that
#1 < #£t.

Let’s check the worst case, i.e. when &y = B2 (3% and & = 7[§0.uC, yot; FatEa ()]
for the appropriate 7[2%], u, v, 7. .. (the variable = in 7{z] denotes the only place where
the “substituting” is done, so we don’t care aboul the possible clashes of variables).
Then ¢! = T[CC(TO)] and ##£t = (d(F 4+ £2), L +1(52)+- - +1(S)) where Sy, ..., Sk are
the other segments of degree d{ ) + F53}. Alter the reduction the only new maximum

segment would have to contain ¢“(r).

The first subcase is when the term » is the outermost term in the segment i.e. “1,”
or r. Then it would mean that the term r in £ = r[¢"+#2(30)] were also a maxinuum
segment which is properly inside S = {; - therelore d(£, + &) > d(C'). So since the
possible new maximum segment is of a smaller degree notice that d(f) > ('} il there
are no other maximum segments of the degree d(1) = d( £, + 15} and, il there are

some other maximum segments in ¢ of the degree d(t) then () > I(1').

The second subcase is when ¢©(r?) is the innermost term in the chain for the new
maximum segment, i.e. “4;”. If the chain were of length | then it would mean that
the maximum segment is actually an immediate subterm ol an ff-redex. Comparing
C and E reductions one can see that then §z.u®, y.v%; 51+22(30) is also an immediate
subterm of a C-reduction. The only critical case is when d(C') = d( 2| + f52) but, then
the new maximum segment is actually replacing an old maximumscgmenl of the same
degree but since [{t) = 14 {(Sq) + -+ -+ {(Sk) > {(SF) - +{(Sk) = {{1'); (becanse
1(S2) = I(83*) = 1) we have d(t) = d(t') but {(t) > {(¢"). Similarly if the chain is
of the length greater then 1 then both §z.u®, y.v%; 1 +%2(+9) and ©(+?) are minor
premises of the same §-form and they are beginnings of the “same” segment. So the
above formula again holds except that now [(S;) = {(57°%) > 1 and the conclusion

is as above. The noncritical cases give d(f£, + F2) > d(C).
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The other cases are indeed better: applying E, 2.3 the degree of the maximum seg-

ment gets smaller and applying £s we don’t get essentially new maximum segments.

Third case: I, is a é-form, so n > 1 and this is an immediate subterm of a C-
redex. All the cases are similar - let’s just check the case where we apply C,. Let

L= ...6z 0y, Toug; (Y1 lnt, Y2-02;7) - . . (50 1A = Sy 24 F 4o 04t B: 1), Then
C
13 .08y (8, Taugy tae ), Y2 (B awn, Tougy va ). .. = Y

Since L, is no longer a minor premise of a d-form then by the definition of a maxi-
mum scgment the new segment “reduct of 5” has length n—1 (and the same degree);
since the maximum segments of this degree didn’t multiply because we reduced the

“innermost” such segment we get #t — 1 = #1'. O
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