
Detecting and Removing 
Specularities and Shadows in Images 

By 

Jisnu Bhattacharyya 

Electrical and Computer Engineering 
McGill University, Montreal 

September 2004 

A thesis submitted to McGill University 
in partial fulfùlment of the req uirements of the Degree of 

Master of Engineering 

©Jisnu Bhattacharyya 2004 



1+1 Library and 
Archives Canada 

Bibliothèque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de l'édition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell th es es 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

ln compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre référence 
ISBN: 0-494-06544-3 
Our file Notre référence 
ISBN: 0-494-06544-3 

L'auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l'Internet, prêter, 
distribuer et vendre des thèses partout dans 
le monde, à des fins commerciales ou autres, 
sur support microforme, papier, électronique 
et/ou autres formats. 

L'auteur conserve la propriété du droit d'auteur 
et des droits moraux qui protège cette thèse. 
Ni la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou autrement 
reproduits sans son autorisation. 

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de cette thèse. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

Abstract 

Specularities and shadows often confound algorithms designed to solve computer vision 

tasks such as image segmentation, object detection and tracking. In this thesis, an 

illumination compensation technique that detects and removes both specularities and 

shadows is proposed. The method requires no camera calibration or other a priori 

information regarding the scene. This thesis also introduces two new illumination 

invariant representations based on the Retinex: the R image and the REDGE image. 

Potential specularities are initially detected and a wavefront grown outwards from the 

center of the specularity. This continues until the !pecularity boundary or a material 

boundary is reached. The latter is detected by the newly discovered illumination invariant 

Rand REDGE images that are introduced in this thesis. Upon reaching the specularity 

boundary, the wavefront contracts inwards, coloring in the specularity as it contracts, 

until the specularity no longer exists. 

After treating specularities, shadows are dealt with. Support Vector Machines are trained 

to identify shadow boundaries based on their boundary properties. This boundary 

information is used to identify shadowed regions in the image and then assign them the 

color ofnon-shadow neighbors of the same material. 

Illumination compensation as proposed in this thesis was found to increase the accuracy 

of image segmentation, skin detection and face recognition. 
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Résumé 

Résumé 

Les ombres et les spéculaires confondent souvent des algorithmes conçus pour résoudre 

des tâches de vision par ordinateur telles que la segmentation d'image, la détection d'objet 

et la poursuite d'objet mobile. Dans cette thèse, on propose une technique de 

compensation d'illumination qui détecte et enlève des spéculaires et des ombres. La 

méthode n'exige aucun calibrage d'appareil-photo ou toute autre information a priori 

concernant la scène. Cette thèse présente également deux représentations basées sur le 

Retinex qui sont invariables aux changements d'illumination: l'image R et l'image 

Des spéculaires potentiels sont au commencement détectés et un front des ondes 

s'augmente vers l'extérieur du centre du spéculaire. Ceci continue jusqu'à la frontière 

spéculaire ou une frontière matérielle est atteinte. Le dernier est détecté par les images R 

et REDGE nouvellement découvertes et présentés dans cette thèse. Lors d'atteindre la 

frontière spéculaire, le front des ondes se contracte vers l'intérieur, colorant le Spéculaire 

tout en se contractant, jusqu'à ce que le Spéculaire n'existe plus. 

Après avoir traiter les spéculaires, les ombres sont traitées. Des Support Vector Machines 

sont formées pour identifier des frontières d'ombre basées sur leurs propriétés de 

frontière. Cette information de frontière est employée pour identifier des régions 

ombragées dans l'image et puis pour leur assigner la couleur des voisins non-ombragées 

du même matériel. La compensation d'illumination comme proposée dans cette thèse peut 

augmenter l'exactitude de la segmentation d'image, de la détection de peau et de 

l'identification de visage. 
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Chapter 1: Introduction 

Chapter 1 

Introduction 

1.1 The Need for Illumination Compensation 

From a practical point of view, variations in illumination due to shadows, specularities 

and poor lighting can cause problems for computer vision algorithms such as 

segmentation, tracking, or object recognition. Due to discontinuities resulting from 

variable or poor illumination, a given material may be segmented into several regions, as 

illustrated in Figure 1.1. What is required is illumination compensation - correction for 

the impact of these illumination differences - so that subsequent computer vision 

algorithms can deliver increased accuracy based on uniform material properties abne. 

Figure 1.1 Image segmentation. Left: Original, 
Right: Segmented image. Segmentation is discussed in 
more detai! in Section 4.5. 

From a theoretical point of view, the light reflected from a surface is the product of its 

reflectance and the illumination of the scene [1,2]. If the intensity and spectral 

distribution of the the illumination at each point in an image is known, then the 

reflectance can be recovered. However, the intensity of the illumination will vary 

according to the geometry of the scene, the angle of incidence of the illuminant and the 

viewing angle. A priori knowledge of aIl these factors is possible in a very controlled 

laboratory setting, but such information is not available for typical images. A method 
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Chapter 1: Introduction 

that compensates :fir illumination without imposing unnatural constraints is proposed in 

this thesis. 

The proposed method, which only requires that scenes be illuminated by common indoor 

and outdoor illuminants [3,4,5], first uses the Luminance Retinex [6] - a variant of the 

Retinex [7-15] - to correct for poor illumination in an image. Specularities are then 

detected by using a technique motivated by [16]. Each specularity is removed by 

growing outward from the center of the specularity to its boundary, or until a material 

change is detected . Next, shadows are detected by segmenting the image into regions and 

using a Support Vector Machine to identify the boundaries of shadows. Once the 

boundaries of shadows have been detected, the corresponding shadows are given the 

color of their non-shadow neighbors (of the same material). 

The final illumination compensated image enjoys good color uniformity for materials and 

is remarkably free of specularities and shadows. An example is shown in Figure 1.2. 

(a) (b) 

Figure 1.2 Segmentation after illumination 
compensation. Left: Left-most image from Figure 
1.1 after illumination compensation, Right: 
Illumination compensated image after 
segmentation. Compare with Figure 1.1. 

However, these images do not fare exceptionally weIl for the purposes of image 

enhancement as they seem somewhat artificial at times. Nevertheless, the benefits are 

excellent for the purposes of computer vision algorithms such as segmentation and object 

recognition. 

2 



Chapter 1: Introduction 

1.2 Background and Literature Review 

Pre-processing algorithms for illumination compensation inc1ude general image 

processing tools such as the traditional histogram equalization and gamma correction 

which correct for poor lighting effects by modifying the dynamic range of an image. The 

so-called Retinex [7-15] is an image enhancement and illumination compensation 

algorithm that also modifies the dynamic range of a scene while additionally offering a 

considerable amount of color constancy. The Retinex is discussed in detail in Chapter 2. 

Traditional pre-processing algorithms do not specifically treat strong specularities and 

shadows. Classical approaches to œtecting and removing specularities make use of the 

dichromatic reflection model [17], which is discussed in depth in Chapter 4. These 

methods [17-23] are quite successful in controlled settings with uniform backgrounds and 

foreground objects that have very saturated col ors, such as plastic spheres. Analyzing 

and removing highlights in images with complex scenes has proven more successful 

when photometrie stereo [19,24-27] methods have been used along with the dichromatic 

reflection model. In this thesis photometrie stereo techniques do not concem us as the 

focus is on removing the highlights given a single ima~. Recently, however, Torres [16] 

has shown that potential specularities can be thresholded in a single image by using a 

binary mask in intensity-saturation space. We use this idea as the basis for our 

specularity algorithn which is discussed in detail in Chapter 4. 

Several algorithms for shadow detection and removal exist in the literature and are 

discussed in depth in Chapter 5. These methods usually impose unnatural constraints: the 

background llllst be flat and non-textured [28], the illuminant vector must be known in 

advance [29], the illumination must be white [30-32], or the camera must be calibrated in 

a specifie way [33]. The work of Barnard and Finlayson [34], discussed in detail in 

Chapter 5, only requires common illuminants - a very mild constraint indeed. They 

showed that for common illuminants, illumination changes across boundaries due to 

shadows exhibit certain properties. We use this idea as the starting point for our 

algorithm 

3 



Chapter 1: Introduction 

The discussion in this section shows that many image processing algorithms work well in 

laboratory settings. This thesis strives to compensate images for illumination without 

imposing any unnatural constraints (i.e., camera calibration, photometrie stereo). 

4 



Chapter 1: Introduction 

1.3 Thesis Contributions 

This section summarizes the four main contributions of this thesis: two new illumination 

invariant representations called the R and REDGE images, an original method for 

detecting and removmg specularities, and a novel shadow detection and removal 

technique. 

The so-called illumination invariant Rand REDGE images are based on the Retinex and 

can be used to improve the accuracy of computer vision applications such as face 1 and 

object recognition. As the Rand REDGE images are remarkably shadow and specularity 

free, in this thesis they are used to locate material changes in an image. 

A novel method for detecting and removing specularities is proposed. Based on an idea 

in [16], we detect initial areas that may be specularities, but very often either too little of 

the specularity is detected, or the specularity is detected along with the surrounding matte 

surface. This thesis introduces a technique whereby it is possible to grow a wa\efront 

outwards from the center of the specularity to its boundary, or until a material boundary 

has been reached according to the REDGE image. Once the boundary of the specularity 

has been reached, the wavefront contracts inwards, coloring in as it contracts, until the 

specularity no longer exists. 

A novel method for detecting and removmg shadows is also proposed. For shadow 

detection, the theoretical basis for the color ratios across boundaries due to shadows is 

similar to but not the same as in [34], as our ratios allow shadows to be modeled in a 

manner more in keeping with physical laws. Furthermore, our extensive mathematical 

analysis of the properties of shadow boundaries and how they relate to color ratios is new. 

Moreover, in [34] an LUT is used that contains the ratios of possible shadow boundaries 

1 The R image has been used to improve face recognition accuracy by M. Gandhi at the Centre for 
Intelligent Machines, McGill University. Gandhi computed the R image for ail faces in the Yale database, 
and then applied histogram fitting to ensure that ail images had a similar dynamic range: 100% accuracy 
was obtained. This will be discussed in more detail in a forthcoming paper by Gandhi. 
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Chapter 1: Introduction 

that can exist in nature. However, this thesis proposes a novel method that uses Support 

Vector Machines, whereby it is possible to identifY probable shadow boundaries, not just 

possible ones. Furthermore, in this thesis it is shown that not only can shadows be 

extracted from these boundaries, but they can also be removed by coloring them with the 

average color ofnon-shadow neighbors of the same material. 

In all cases - be it illumination invariance or the treatment of shadows and specualrities -

no unnatural constraints are imposed. There is no need for more than one camera or a 

sequence of images, and no a priori information about the scene is necessary. The only 

condition that is imposed is that the illumination in the scene be from commonly existing 

indoor and outdoor illuminants. 

6 



Chapter 1: Introduction 

1.4 Thesis Outline 

Chapter 2 studies the effects of pre-processing images with the Retinex. The Retinex 

provides considerable dynamic range compression and color constancy, but it tends to 

gray out images [7-15]. The relationship between the Retinex and the image formation 

process is studied in depth, before discussing a scheme that r~stores color to images 

grayed out by the Retinex [9]. Color estoration was observed to weaken the color 

constancy of the original Retinex. Furthermore, it also had an arbitrary effect on pixel 

chromaticities, as also discovered in [6]. For example, pixels that were in the skin locus2 

[35-41] before applying the Retinex with color restoration were found to lie outside of it 

afterwards. It was decided that it would be safer to use the Luminance Retinex [6]. The 

Luminance Retinex only provides dynamic range compression while leaving the 

chromaticities of the original image unchanged. In order to deal with the issue of color 

constancy, it was necessary to restrict the illumination in scenes to common indoor and 

outdoor illuminants. Such illuminants have been found to lie in a well-defined region of 

chromaticity space known as the Planckian Locus [3,4,5], whose evolutionary basis is 

also discussed in this chapter. Finally, two new illumination invariant representions based 

on the Retinex, the R and RED GE images, are introduced. 

In Chapter 3 specularity detection and removal is dealt with. The dichromatic reflection 

model is discussed, along with practical issues that limit its application. The work of 

Torres [16], which thresholds specularities using a binary mask in intensity-saturation 

space, is discussed and motivates our algorithm. Specularities are imperfectly detected 

with this method, but it is possible to determine their generallocation. It is shown that a 

specularity can be modeled in intensity space as a peaked mountain surrounded by a 

matte region that has the characterisitics of a flat surface such as a plain. From the peak of 

the specularity it is possible to grow a wavefront outwards until the bottom of the 

mountain has been reached or until a material boundary has been encountered as per the 

2 Recent research has shown [35 -41] that the skin color distribution under common indoor and outdoor 
illuminants falls in a shell-shaped region in chromaticity space that is close to the Planckian locus. This 
shell-shaped region, where skin can be found, is often referred to as the skin locus [35-41]. Chapter 5 
discusses the skin locus in more detail. 

7 
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REDGE Image. Once the wavefront expansion has stopped, the wavefront then grows 

inwards, coloring in as it grows, until the specularity is non-existent. 

Chapter 4 studies in depth the mathematical properties of color ratios across boundaries 

due to shadows. It is shown that a Support Vector Machine can be used to identify 

probable shadow boundaries in an image. Problems are encountered with extremely 

strong shadows that are often severely c1ipped in color space, resulting in a loss or 

corruption of chromatic information. The mathematical properties of color ratios across 

boundaries between neighboring regions that were derived at the beginning of the chapter 

no longer ho Id in such cases. However, it is found tmt these problematical boundaries can 

be thresholded and an additional SVM can be used to differentiate between shadow and 

non-shadow borders among them. Once the probable shadow boundaries have been 

identified, this chapter describes how to extract shado\W from the detected boundaries. 

Finally, the chapter conc1udes by demonstrating how the extracted shadows can be given 

the average color of neighbors that are of the same material. 

Chapter 5 integrates the work done in the previous three chapters. The illumination 

compensation method - which consists of applying the Luminance Retinex, followed by 

specularity and shadow detection and removal - is tested on a wide variety of images 

with excellent results. The chapter then discusses the variety of applicatio ns that can 

benefit from illumination compensation. In particular, the benefits of illumination 

compensation to skin detection and face recognition are investigated. It is shown that 

because of shadows and specularities many skin pixels may go undetected. However, 

after compensating for illumination, these same pixels can be correctly identified as skin. 

It is also shown that the accuracy of face recognition can increase if images are first 

compensated for illumination using the method proposed in this thesis. 

8 
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Chapter 2 

Pre-Processing Images Using Retinex 

2.1 Introduction 

The Retinex [7-15] is an image enhancement algorithm that provides a high level of 

dynamic range compression3 and color constancy. Moreover, it can be applied to arbitrary 

images without any prior knowledge of camera calibration. As a result, it has become a 

popular tool with which to pre-process images before applying further computer vision 

algorithms [42-44]. This chapter investigates the pros and cons ofpre-processing images 

with the Retinex. 

This chapter also de scribes two new illumination invariant representations based on the 

Retinex: the Retinex Uniformity Image (R image), and the REDGE image. The R image 

is a grayscale version of a given image that is free of the effects of varying illumination. 

In the R image, areas of uniform color are severely grayed out, but the edges between 

materials remain. As the graying occurs in areas ofuniform color, the appellation Retinex 

Unifomity Image is coined. The RED GE image is an edge image that is derived from the 

R image. Figure 2.1 shows an example of both the R and the REDGE image. As both 

representations correct for illumination, they can be useful in many computer vision 

applications. In this thesis, the REDGE image is used to locate material changes in an 

image as part of the specularity detection process discussed later on in Chapter 3. 

3 When the dynamic range ofa scene exceeds the dynamic range of the recording medium, the visibility of 
color and detail can sometimes be quite poor in the recorded image [9]. Dynamic range compression 
attempts to correct this situation by mapping a large input dynamic range to a relatively small output 
dynamic range [11]. 
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Figure 2.1 The R and REDGE images. Left: Original, Middle: R image, Right: 

R EDGE image. 

Chapter 2 is organized as follows: first Section 2.2 studies the image enhancement 

properties of the Retinex. The Retinex offers strong dynamic range compression and 

color constancy but the enhanced images tend to be grayed out. Section 2.3 investigates 

the relationship between the image formatim process and the Retinex and Section 2.4 

discusses how color can be restored to images that have been grayed by the Retinex. 

However, color restoration was observed to not only weaken the color constancy of the 

original Retinex, it also had an arbitrary effect on pixel chromati:ities, as also found in 

[6]. It was decided that it would be safer to use the Luminance Retinex [6]. Section 2.5 

describes the Luminance Retinex [6], which offers the dynamic range compression of the 

Retinex, but not the color corntancy. Section 2.6 deals with the issue of color constancy 

as follows: instead of correcting for changes in illumination color, we can adapt to them 

by restricting the illumination in scenes to common indoor and outdoor illuminants, 

which tend to lie wry close to a crescent shaped curve in x,. y chromaticity space known 

as the Planckian Locus [3,4,5]. The evolutionary basis of the Planckian Locus is also 

discussed in this section. Finally, Section 2.7 introduces two new illumination- invariant 

representations: the Rand REDGE images. 
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2.2 The Retinex 

Many variants of the Retinex have been proposed over the years. The last version that 

Land proposed is now referred to as the Single Scale Retinex (SSR) [9-12] . The Single 

Scale Retinex for a point (x, y) in an image is defined [9-12] as being: 

R;(x,y) = log 1; (x,y) -log[ F(x,y) (8) 1; (x,y) (2.2.1) 

where R;(x,y) is the Retinex output and I;(x,y) is the image distribution in the i th 

spectral band. In this thesis there are three spectral bands - one each for R, Gand B. In 

the above equation the symbol (8) represents the convolution operator and F(x,y) is 

the Gaus sian surround function: 

(2.2.2) 

where r 2 = x 2 + y2, and c is the Gaussian surround constant - analogous to the (j 

generally used to represent standard deviation. The Gaussian surround constant c is what 

is referred to as the scale of the Retinex. In previous research [14] it has been 

mathematically demonstrated that the Retinex algorithm provides color IDnstancy by 

returning a ratio of the reflectances of a scene. 

Figure 2.2 gives an example of the powerful color constancy that the Retinex offers, but 

also apparent are the benefits of dynamic range compression. Whereas the original image 

is rather dark, the enhanced image is not only less red, it is also reasonably brighter. The 

dynamic range compression that the Retinex offers is more evident in Figure 2.3. In both 

Figures 2.2 and 2.3 the poor lighting in the original images has been dramatically 

improved by applying the Retinex. 
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Figure 2.2 The Retinex corrects for illumination. LeCt: Original, 
Right: Result of applying Single Scale Retinex with surround 
c=80. 

Figure 2.3 The Retinex offers strong dynamic range compression. 
LeCt: Original, Right: Result of applying Single S::ale Retinex 
with c=80. 

Typically, a small scale provides very good dynamic range compression, but at the cost of 

poorer color rendition, as graying is more common and pronounced in unifonn zones of 

color, as these zones violate the gray world assumption upon which the Retinex is based 

[9]. Conversely, a large scale provides better color rendition, but at the cost of dynamic 

range compression [9], as seen in Figure 2.4. 

Figure 2.4 The problem with the Retinex: a large scale provides better color rendition, but at the 
cost of dynamic range compression. LeCt: Original, Middle: SSR applied with small scale (c = 15), 
Right: SSR applied with large scale (c = 250) 
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The multiscale Retinex (MSR) tries to achieve a compromise between dynamic range 

compression and color rendition by combining the results of several scales. The 

multiscale Retinex output RMSR; for the i th spectral channel is a weighted sum of N Single 

Scale Retinex outputs and is given in [9] as: 

N 

RMsR, = L mn Rn; 
n=! 

(2.2.3) 

whereby Rn; is the Single Scale Retinex output computed for the nth scale en' and wn is 

the weight associated with the nth scale. In it is found that equally weighting the scales 

with one small (en = 15), one intermediate (en = 80), and one large scale (en = 250) 1S 

sufficient for most images. An example of applying the MSR is shown in Figure 2.5. 

Figure 2.5 The Retinex generally results in desaturation 
of color. LeCt: Original, Right: Result of applying MSR 

In Figure 2.5 the MSR enhanced image is c1early grayed out. In fact, all Retinex 

processing, whether SSR or MSR, generally results in desaturation of co br to greater or 

lesser degrees, as seen in Figures 2.2-2.5. This graying effect occurs because in the MSR, 

a pixel's value in each channel is replaced with the ratio of its value to its neighbors. 

Thus, for pixels in areas where color is relatively uniform, the ratio in all three channels 

will be equal to one and look gray. Therefore, there is a need for a color restoration 

scheme. Color restoration is discussed in Section 2.4. Before dealing with color 
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restoration, the relationship between the Retinex and the image formation process is tirst 

investigated in Section 2.3. 
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2.3 The Image Formation Process and the Retinex 

This section investigates the relationship between the Retinex and the image formatim 

process, as this relationship is a foundation for the mathematical analysis of shadows in 

Chapter 4. An image taken with a linear device such as a digital camera is composed of 

sensor responses whose value at a given pixel is given by [3]: 

,1,=700 

PK = f E(Â)S(Â)RK(Â,)dÂ K=R,G,B (2.3.1) 
,1,=400 

where E is the illumination, S is the reflectance, and RK is the camera sensitivity function. 

The camera sensitivity function can be assumed to be a Dirac delta function [3] with 

sensitivity at sorne wavelength, as follows: 

(2.3.2) 

Finlayson [3] gives strong evidence that the Dirac assumption is valid over a wide range 

of sensors. The Dirac delta function has the well-known shifting property that gives: 

K=R,G,B (2.3.3) 

The reflectance component S(ÂK) can be isolated if the illumination E(À'K) is known. 

Unfortunately, for arbitrary images the illumination is generally not known. Thus, 

recovering the original illumination and reflectance components in this fashion is akin to 

determining the two original factors given a product. If, however, the sens or response at 

a pixel is divided by its spatially weighted average value, the following is obtained 

[13,14]: 

r
K 

= PK = E(ÂK )S(ÂK) 

PK E(ÂK )S(ÂK) 
K=R,G,B (2.3.4) 

where rK is the new output pixel value. The bars denote the spatially weighted average 

value at a pixel, which is essentially the value that is obtained after Gaussian smoothing. 

For graduaI changes in illumination the following holds true [14]: 
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K=R,G,B (2.3.5) 

Consequently the output r K is approximately a ratio of the reflectances of a pixel and its 

surroundings, thus providing independence from spectral variations in illumination [14] : 

K=R,G,B (2.3.6) 

In the literature it is often argued that the human visual system computes a ratio of an 

object's reflectance to the reflectance of its surround [7,8]. For many cases the above 

relation is an equality. For those cases where it is an approximation, the reflectance ratio 

dominates the spectral illumination variations [13,14]. Subsequently applying the 

logarithm to each pixel, as in Equation (2.3.7), has the effect of enlarging low intensity 

pixel values with respect to higher intensity pixel values, thereby further compressing the 

dynamic range. Thus: 

1 PK rK = og= 
PK 

K=R,G,B 

Recalling that the spatially weighted average value of a pixel is essentially the 

(2.3.7) 

corresponding pixel value in a smoothed version of the image, the above can be re-written 

as follows: 

K=R,G,B (2.3.8) 

where ® represents the convolution operator, and F is a Gaussian function. It is 

immediately apparent that the expression above is the last version of tre Retinex that 

Land presented [9]. 
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2.4 The Retinex: Problems with Color Restoration 

In Section 2.2 it was found that Retinex processing, whether SSR or MSR, generally 

results in desaturation of cobr to greater or lesser degrees, as illustrated again in Figure 

2.6. This graying effect occurs because in the MSR, a pixel's value in each channel is 

replaced with the ratio of its value to its neighbors. Therefore, for pixels in areas of 

uniform color the ratio in all three channels will be equal to one and look gray. 

Therefore, there is a need for a color restoration scheme. 

Figure 2.6 The Retinex generally results in desaturation of color. Left: Original, 
Right: Result of applying MSR 

In [9] a color restoration function is proposed that successfully, in most cases, restores 

color to the desaturated images. A very similar function is proposed in [6]. An example 

ofapplying the MSR with color restoration (the MSRCR) is shown in Figure 2.7. 

Figure 2.7 Color restoration successfully treats Retinex graying for most images. 
Left: Original, Right: Result of applying MSRCR with color restoration as per [6] . 
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The problem with these color restoration functions is that they use the chromaticities of 

the original image in order to restore color, which stands in direct contrast to the color 

constancy objectives of the Retinex. In fact, it was found that the stronger the color 

restoration, the weaker the color constancy. Even moderate amounts of color restoration 

significantly lessened the color constancy properties of the Retinex, as illustrated in 

Figure 2.8. 

Figure 2.8 Color restoration weakens color constancy of the 
Retinex. Left: Original, Right: MSRCR 

For most images, the dilution in color constancy is not very noticeable and is usually 

more than made up for by the gains in visual infonnation and the great increase in col or 

rendition [9]. The main reason that the dilution in color constancy is not very noticeable 

for most images is that most images are taken with standard illuminants. This will be 

discussed more in Section 2.5 

Thus, tre dilution of color constancy is of no great consequence if most images do not 

suffer as a result of it, and are still able to enjoy the benefits of dynamic range 

compression and contrast enhancement. Of greater concem is the following: the color 

restoration function changes image chromaticities in an unpredictable fashion [6]. Thus, it 

would be nice to get the dynamic range compression and contrast enhancement of the 

Retinex while at the same time having color fidelity (keeping the chromaticities of the 

original image). This is discussed in the next section. 
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2.5 Luminance Retinex 

The fundamental problem with the Retinex, discussed in the previous section, can be 

summarized as follows: the stronger the dynamic range compression, the greater the 

resulting de saturation. Furthermore, any subsequent color restoration not only ends up 

weakening the original gains in color constancy, but also affects the image chromaticities 

in an'unpredictable fashion. In this context, [6] proposes to separate the dynamic range 

component of the MSR from the color constancy component. The multiscale Retinex is 

only applied to the Luminance channel, thereby preserving the chromaticities of the 

original image while still providing dynamic range compression. Thus, the original 

formulation for the Single Scale Retinex of Equation (2.2.1) becomes: 

RL (x,y) = log 1 L(X,y) -log[ F(x, y) * IL (x, y) (2.5.1) 

where L represents the intensity channel. The multiscale Luminance Retinex, hereafter 

referred to as the Luminance Retinex, is then simply the weighted sum of several 

luminance Retinex outputs using different scales. Identical to the original MSR [9] it uses 

three different scales with equal weights, and the scales remain unchanged (i.e., c= 15, 

c=80, and c=250). As the Luminance Retinex is only applied to the intensity channel, 

the chromaticities of the original image remain unchanged. Figure 2.9 shows the result of 

applying the Luminance Retinex to an example image. 

Figure 2.9 Luminance Retinex offers the dynamic range compression of the 
Retinex while preserving the original chromaticities of the image by only operating 
on the luminance channel. Left: Original, Right: Result of applying Luminance 
Retinex. 
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Thus, by using the Luminance Retinex, the dynamic range compression of the Retinex is 

obtained without encountering the various problems caused by color restoration. 
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2.6 Color Constancy, Evolutionary Psychology and the P1anckian Locus 

One of the great promises of the Retinex was the color constancy that it was supposed to 

provide. However, it has been seen that the color constancy that the original Retinex 

offers cornes with sorne significant drawbacks. As a result, the decision was made to use 

the Luminance Retinex, which provides very strong dynamic range compression and 

contrast enhancement. But Othis begs the question: what ever shaH be done about color 

constancy? In this section this question is studied in greater detail. 

Color constancy, from the viewpoint of evolutionary psychology, is a very important 

adaptive function [45]. The ability to identify objects by their color across varying 

illumination conditions increases an organism's chances of survival. Evolutionary 

psychologist Shepard [46] proposes that characteristics of the world that have been 

present over the greatest amount of evolutionary time (e.g, sunlight) will be most deeply 

intemalized. Thus, it stands to reason that the human visual system's color constancy will 

be optimal for the mrying chromaticities of daylight [4,46]. Now, it is weH established 

that the chromaticities of daylight vary during the day, depending on cloud coyer and sun 

position, but they all faH very close to a crescent shaped curve in Ky chromaticity space 

knownas the Planckian Blackbody Locus [3,4,5], as seen in Figure 2.10. 
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Figure 2.10 The Planckian Locus and common illuminants. Distribution 
of the Jt-y chromaticities of 172 common illuminants (in bIue) and 
Planckian locus (in red), as per Finlayson [5] 
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The Planckian blackbody locus is produced by heating a blackbody radiator to various 

temperatures. What is of special interest here is that the Planckian locus includes not only 

the chromaticities of natural illuminants such as sunlight and blue skylight, but 

conventional illuminants from standard indoor yellow lighting (i.e., lightbulbs) to 

fluorescent lighting. In fact, Finlayson [5] plots 172 standard lights, as shown in Figure 

2.10, including daylights and fluorescents, and finds that they cluster very tightly around 

the locus. 

Thus, while it is possible to have a very saturated blue or red illuminant, in most practical 

situations the illuminant will fall on this locus. In fact, the lighting industry strives to 

manufacture illuminants with chromaticities that lie close to the locus [3]. Therefore, 

this the sis restricts itself to dealing with the vast majority of images, who se illuminants lie 

close to the locus. 
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2.7 The R Image: A New Illumination-Invariant Image 

This sectio n proposes two new illumination- invariant representations based on the 

Retinex: the Retinex Uniformity Image (R image) and the REDGE image. The R image is 

a grayscale version of a given image that is free of the effects of varying illumination. In 

the R image areas of uniform color are severely grayed out, but the edges between 

different materials remain. As the graying occurs In areas of uniform color, the 

appellation Retinex Unifomity Image is coined for the R image. The REDGE image is an 

edge image that is derived from the R image. As both representations correct for 

illumination, they can be use fui in many computer vision applications. In this thesis, the 

REDGE image is used in the specularity removal process discussed later on in Chapter 3. 

The R image is based on the following property that the single scale Retinex exhibits: the 

smaller the scale, the greater the illumination invariance, and the greater the graying, 

especially in areas of uniform color. It stands to reason then, that if the scale is made 

extremely small the result should be an illumination invariant, albeit gray scale, image. 

Indeed, this is the case, as demonstrated in Figure 2.11. Moreover, since graying occurs 

in areas of uniform color, the unabbreviated appelation of this illumination invariant 

image is the Retinex Uniformity image. 
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Figure 2.11 The R image. Left: Original Right: Result 
of applying Single Scale Retinex4 with small scale (c=2) 

To enhance the R image, an illumination-invariant edge image, the REDGE image, is 

obtained by thresholding the R image. As seen in Figure 2.12, the majority of pixels in 

the R image c1uster around the peak of ze ro, and trail off very quickly on both sides, very 

much like a Laplacian distribution. The pixels c1ustering around the peak of the histogram 

represent pixels in areas of uniformity5, which suggests that those pixels on either side of 

the peak must represent material (or very sharp shadow) edges6 in the invariant image. It 

follows that material edges can be extracted from the R image by thresholding both 

sides of the peak. However, the R image is first gain-offset7 corrected as per [13] so that 

the thresholding can be performed in the display domain8
• Figure 2.12 shows histograms 

ofboth the raw Retinex and the gain-offset corrected Retinex output. 

4 After applying SSR with c=2 the image was converted to grayscale and contrast stretched for display 
furposes. 

As the Retinex averages a pixel's value with that ofits surround, pixels in areas ofuniforrn col or will have 
a value of one. However, since the Retinex also subsequently takes the logarithm, they will in fact have a 
value of zero. 
6 It was found that the vast majority of shadows were successfully removed by computing the R image. 
However, very sharp shadow edges could not always be fully removed by the R image. 
7 Gain-offset correction as per [13] maps an input dynamic range [a,b] to [0,255]. 
8 The display domain is [0,255], which includes all possible RGB or grayscale pixel values that a digital 
image can have. 
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Figure 2.12 Retinex Intensity histograms. Left: Raw Retinex output, Right: Gain­
offset corrected Retinex output 

Before fonnally defining the REDGE image, a few definitions are presented. First T is 

defined as the gray level value that corresponds to the peak of the histogram. Next, 

unifonn areas are posited to exist between the thresholds fi and f 2 , which are related to 

the peak T as follows : 

(2.7.1) 

where k is a very small integer. The transfonnation between Rand REDGE can then be 

fonnally defined as follows: 

if R(x, y) > fi nR(x,y) < f 2 ::::::} REDGE(X,y) = 255 

if R(x,y) < fi uR(x,y) > f 2 ::::::} REDGE(X,y) = 0 
(2.7.2) 

In Equation (2.72), pixels whose grayscale values lie between fi and t2 (i.e., within 

unifonn areas) are arbitrarily made white in the REDGE image, while everything el se is 

deemed a material edge and made black. When k is too large, many valid material edges 

are mistakenly identified as being unifonn areas. Similarly, when k is too small, too 

25 



Chapter 2: Pre-processing Images Using Retinex 

many false edges are detected and the image becomes rather cluttered. It was found that 

k =3 was a good compromise, as shown in Figure 2.13. 

Figure 2.13 The R EDGE image. Left: Original, Right: R EDGE 

Image 

Thus, two new and powerful illumination invariant representations have been discovered: 

the R image, and the R EDGE image. As the R EDGE image indicates where in the image 

material boundaries lie, any particular location in a given image can be cross-referenced 

with its corresponding RED GE image in order to determine whether or not the location 

corresponds to a material boundary. This property of the R EDGE is used in Chapter 3 to 

detect and remove specularities. 
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2.8 Conclusions 

In this chapter it was found that while the Retinex provided very strong dynamic range 

compression, it also produced color constancy at the price of excessive graying. While, 

the color restoration function was suitable for image enhancement purposes f>] , its 

drawback was that it effectively undermined the original goal of color constancy and also 

changed image chromaticities in an unpredictable manner [6]. In light of these 

discoveries, instead of correcting changes in illumination color, this thesis chose to adapt 

to them by restricting itself to lights that lie close to the Planckian Locus. After aIl, most 

standard illuminants lie close to the Plancmn locus [3,4,5], and the lighting industry 

strives to manufacture illuminants close to this locus [3]. Furthermore, a decision was 

made to pre-process images with a variant of the Retinex: the Luminance Retinex [6], 

which provides powerful dynamic range compression. The Luminance Retinex enhances 

an image by applying the Retinex to the intensity channel, thereby offering dynamic 

range compression, while preserving tre chromaticities of the original image. 

The investigation outlined above led to the disco very of two illumination invariant 

representations based on the Retinex: the R image, and the REDGE image. The R image 

is remarkably free of illumination effects, as is the REDGE image, which is an edge image 

derived from the R image. Both representations can be used in conjunction with other 

computer vision applications. AIso, a; the REDGE image indicates where in the image 

material boundaries lie, any particular location in a given image can be cross-referenced 

with its corresponding REDGE image in order to determine whether or not the location 

corresponds to a material boundary. In Chapter 3 this property of the REDGE image is 

used to detect and remove specularities. 
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Chapter 3 

Detecting and Removing Specularities 

3.1 Introduction 

The classical approach to dealing with specularities in images begins with the 

Dichromatic Reflection Model [17] for inhomogeneous dielectrics. According to this 

model, for a given surface the RGB color signal C at a pixel is a linear combination of the 

light CI reflected at the material surface ( Clis interchangeably referred to as highlight, 

specularity or interface reflection) and the light C B reflected from the material body ( C B 

is referred to as body or matte reflection): 

(1) 

where ml and m B are the corresponding weight factors which depend on the geometry 

of the scene, including the angle of incidence of the illuminant and the viewing angle. 

Several techniques have been proposed to separate pixels into their dichromatic 

components [17,18] and pro duce a so-called intrinsic matte image with the specularity 

component removed. The problem with this approach is that for the highlight removal 

process to work well, only materials which show the same reflection properties can be 

included [19]. Otherwise, the color clusters of the different materials will overlap in RGB 

space. Thus, a prior segmentation of the image is required. 

Statistical color image segmentation methods such as [47] and [48] do not account for the 

image formation process. As a result, the segmentation fails to identify highlights as 

belonging to a given material. Physics-based color segmentation methods, on the other 

hand, try to take the image formation process into account. In [17,20] the RGB cube is 

searched for skewed-T-shaped clusters in an effort to determine the number of materials 
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in a scene, segment them, aoo then separate them into their respective matte and interface 

components. As the analysis of 3-dimensional color space is costly, in [19] the 

complexity of the task is reduced to the scrutiny of a 2D u-v chromaticity space. 

Similarly, in [21-23] clusters are detected in HSI space based on peaks and valleys in 

histograms. AlI of these methods are successful when the objects in a scene have very 

saturated colors (such as plastic spheres and cups) and exist in a laboratory setting where 

the background is uniform, usualIy black. The use of photometric stereo [19,24-27] 

along with the dichromatic reflection model, however, shows sorne promise in being able 

to successfulIy analyze and remove highlights in images of complex scenes. As this 

the sis is concemed with removing the highlights in a single image, photometric stereo 

techniques do not concem us here 

This chapter describes a novel method for detecting and removing specularities in images. 

Based on an idea in [16], initial areas that may be specularities are detected. However, 

quite often either too little of the specularity is detected or it is detected along with the 

surrounding matte surface. The technique introduced in this chapter de scribes how a 

wavefront can be grown outwards from the center of the specularity to its boundary, or 

until a material boundary has been reached according to the REDGE image. Upon reaching 

the boundary of the specularity, the wavefront contracts inwards. As it contracts, it colors 

in the specularity until it no longer exists. The method successfulIy removes specularities 

from typical images as seen in Figure 3.1. 

Figure 3.1 Removing specularities. Left: Original, 
Right: After specualrities have been removed using 
the method in this thesis. 
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This chapter is organized as follows: Section 3.2 discusses how potential specularities 

can be detected in an image. Section 3.3 studies the relationship between specularities and 

their matte surroundings. Section 3.4 de scribes how a wavefront can be grown outward 

from the center of a specularity to its boundary, and Section 3.5 shows how to remove the 

specularity by coloring the wavefront inwards. 
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3.2 Detecting Potential Specularities 

A method for the detection of specularities in color images has been proposed recently, 

whereby certain relationships between intensity and saturation are exploited [16]. The 

method constructs a bi-dimensional histogram of an image called the MS diagram, where 

M represents intensity and S stands for saturation. In [16] it is found that highlights are 

located in a weIl defined region of MS space, independent of hue. In this thesis, intensity 

is referred to as 1, and the MS diagram will henceforth be alluded to as the 1S diagram or 

1S-space. The authors of [16] then construct a binary mask in 1S-space to detect potential 

specularities. This method is used with sorne modifications in order to locate seed points 

in the general vicinity of specularities. 

We now proceed to de scribe the method in detail. In this thesis, the definition ofintensity 

is the same as in [16]: 

1 
1=-(R+G+B) 

3 

For saturation, the following well-known expression for saturation is utilized: 

S = Max(R,G,B)- Min(R,G,B) 

Max(R,G,B) 

(4) 

(5) 

Before creating the 1S diagram, the luminance channels of the images are processed by 

histogram equalization in [16] to ensure that the upper limit of the dynamic range is 255 9
. 

The Luminance Retinex [6] is applied in place of histogram equalization. Figure 3.2 

shows sorne typical 1S diagrams. 

9 In this thesis, the upper limit is set to 1. 

31 



Chapter 3: Detecting and Removing Specularities 

Figure 3.2 The IS Diagram. Top: Original, Middle: Luminance Retinex 
output, Bottom: IS Diagram of Luminance Retinex output 

As specularities tend to be bright and desaturated, they cluster in the botiom right-hand 

corner of the IS plane. By analyzing a representative selection of images, the authors of 

[16] pro duce a binary mask (shown in Figure 3.3) in IS-space that can be used to 

segment highlights. 

, 
Figure 3.3 Binary mask used in [16]. 
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Unfortunately, it has not been possible to replicate their results, as the boundaries of the 

mask are not altogether apparent in the paper. Instead, a new mask was created by 

inspecting a set of 40 images from the Internet that have specularities of varying degrees. 

Specularities were manually identified in these images and the peak intensity of each 

specularity was plotted in an 18 binary mask (Figure 3.4). In other words, the most intense 

point within each specularity was plotted in the bi- variate histogram. 

s s s 

o 1 o 1 o 

Figure 3.4 Creating the Binary Mask, Left: Seed points, Middle: Lines (red) 
fittedlO to the extremities of the seed points, Right: Final Mask 

The reason that the most intense point of each specularity is plotted in the bi- variate 

histogram is as follows: since our plan is to grow outward from detected seed points to 

the boundaries of the specularities, then at a minimum the peak (point of highest 

intensity) of each specularity should be detected. Now, the mask created with the seed 

points (left-most in Figure 3.4) has many holes in it. Therefore, in order to increase our 

chances of detecting specular areas, the holes were filled in by fitting lines to the 

extremities of the cIuster and then using the enc losed area as the mask (Figure 3.4). 

Potential specularities were then thresholded with the binary mask (Figure 3.5). 

10 The equations of the lines take the fonn S=mI + b where ml=1.117, l1Q=0.875, 1113=0.48,11'14=-0.74, m=-
1.24, m=2.22 , nq=O.OI, h'''-1.05 , b 2=-0.28, b 3=0.48, b 4=0.69, b 5=1.22, b 6=1.69, b 7=0.65 
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Figure 3.5 Detecting specularities using the IS binary mask. Top: Original, Bottom: Specularities 
thresholded using the IS mask. 

Figure 3.5 shows that this approach successfully locates specular regions in an image. 

However, it becomes immediately apparent that specularities are often confused with 

non-specular materials that are also bright and desaturated. Secondly, the approach often 

fails to successfully identify the limits of the specularity boundary. As a result, either the 

full specularity fails to be detected (under-detection) or the bounds of the specularity are 

exceeded (over-detection). These issues are dealt with in the next section. 
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3.3 The Mountain and the Plain: The Relationship Between Specularities 
and their Matte Surroundings 

In Section 3.2, it was shown that specularities can be detected using a binary mask in MS 

space. While the detection is not perfect because of under- and over-detection, in most 

cases the center of the specularity (a seed point) has been correctly detected. Therefore, it 

is proposed that the center of the specularity be used as an initial condition for an 

expanding wavefront, one that grows outwards in aIl directions with a constant velo city. 

A series of advancing wavefronts that ultimately take the shape of a container (as in 

Figure 3.6) are envisioned. The boundaries of the container will either be the boundary of 

the specularity or a material boundary. 

Figure 3.6 An expanding wavefront that takes the 
shape of a container. 

Thus, the wavefront has two stopping conditions: either it reaches the specularity 

boundary or it encounters a material boundary. The reasoning behind this is as follows: 

the specularity detection scheme in Section 3.2 can confuse specularities with bright, 

desaturated materials. Thus, if the detected seed point mistakenly lies on such a material 

and is not actually a specularity, the wavefront is allowed to expand at most to the 

boundary of the material, thereby preventing the expansion from continuing indefinitely. 

AIso, even if the seed point actuaIlY lies on specularity, stopping the expansion at a 

material boundary is a safety net to catch and terminate an expansion that has gone awry 
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and advanced past the specularity boundary. In this case, the wavefront can be prevented 

from expanding indefinitely by stopping the expansion at a material boundary. 

Of the two stopping conditions (specularity boundary and material boundary), the latter 

is not an issue, as the REDGE image can simply be cross-referenced in order to determine 

whether or not a material boundary has been reached. Of greater concem is finding a way 

to determine when the boundary of the specularity has been reached. 

The properties of hundreds of specularities from a wide variety of images were examined 

and it was found that within specular regions, the different color variable systems (e.g., 

ROB, rg, HSI) tend to vary quite erratically. However, the surrounding matte regions tend 

to have a more stable color. It was also fOlmd that specularity can be modeled as a 3D 

surface such as a mountain. Figure 3.7 shows typical intensity plots of sorne 

specularities. Since specularities are brighter than their surroundings, they form 

"mountains" in intensity space and the surrounding "plain" corresponds to the matte 

surface or stable color, for which we are searching. The point where the mountain ends 

and the plain begins is the specularity boundary . 
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Figure 3.7 A specularity can be thought of as a 3D surface such as a 
mountain. Above, intensity plots of three typical specularities. 

The goal then is to propagate every point on the wavefront outward until it either hits a 

stable color or hits an REDGE image boundary. Furthermore, a stable color has been 

reached when the plain surrounding the specularity mountain is encountered. 
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3.4 Growing Outwards to the Specularity Boundary 

In the previous section it was shown that specularity can be modeled in intensity space as 

a mountain surrounded by a planar matte region. The aim is to find a way to descend this 

mountain, stopping once a stable color (i.e., the plain) has been reached. Now, since the 

specularity is essentially a topographic surface, for a given specularity it would be helpful 

to examine a contour map of the intensity levels, su::h as the one shown in Figure 3.8. 

Figure 3.8 Contour rnap of specularity. Each 
contour level can be thought of as a wavefront. 

In Figure 3.8 it is seen that each contour level can be viewed as a wavefront at a given 

stage in the propagation. Thus the contour map depicts a series of advancing wavefronts 

that exp and outward from the peak of the specularity. As the mountain is descended from 

its peak to lower and lower contour levels, the total size of the region will increase 

slowly. However, upon reaching the plain, the region size will increase much more 

quickly. In Figure 3.9 it is seen that the plots of contour level versus total region size are 

typically parabolic. Furthermore, the slope of the curves begins to sharply increase at or 

very close to the bottom of the mountain. In order to detect this sharp increase in slope a 

3-point quadratic is fitted to the data at every iteration using the method of Least Squares 

and the slope is extracted. Since the line of best fit considers the last three points, it gives 
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a good approximation of the direction or slope of the data at any given iterationll . A sharp 

increase is defined arbitrarily as being 50% or more, and the wavefront is grown outward 

from the peak of the specularity mountain to successively lower contour levels by using a 

classical I;!cursive flood-fill algorithm [53]. Figure 3.10 shows an example of growing 

wavefronts outward from the peaks of potential specularities. 
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Figure 3.9 Plot of contour level versus total region size for sorne typical specularities. 
Each contour level has an intensity of 1% less than the previous one. The sharp increase 
in slope marks the point where the plain(matte) region begins and the 
mountain(specularity) ends. 

Figure 3.10 Results of growing wavefronts outward from the peaks of potential 
specularities. Left: Original image, Middle: Potential specular areas detected 
with IS mask. Right: After growing outward from the peak of each potential 
specularity. 

Il Note that for Iteration 1 the sI ope is undefined and for Iteration 2 it is not examined. 
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An issue encountered while growing outward is that sometimes the wavefront expansion 

is cut short too early, as shown in Figure 3.11 where a specularity seed point on the 

forehead is detected, but the wavefront nonetheless fails to exp and to the boundary of the 

specularity. In fact, the wavefront barely seems to exp and at aIl. The reason this occurs is 

that it was assumed that the total region size increases in a relatively linear fashion until 

the sharp change in slope at the specularity boundary. This initial linear increase is 

referred to as the "specularity line". ' Similarly, the tenn "matte line" refers 10 the linear 

increase after the sharp change il slope. The graphs in Figure 3.9 fit this model quite 

weIl. However, the curves of the specularities whose expansions are cut short indicate 

that a certain number of specularities can be modeled as having a leading c1uster of points 

with relatively low or zero slope. These points are designated as noise, as illustrated in 

Figure 3.12. 

Figure 3.11 Sometimes the expansion is eut short too early. Left: Original, Middle: 
Speeular areas deteeted with IS mask. A seed point that is barely visible is deteeted on 
the forehead. Right: After growing outwards: the wavefront fails to expand from the 
seed point to the boundary of the speeularity. 
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Figure 3.12 A more complete model: contour level vs. total 
specularity region size. Very often, during the first few iterations 
the region size increases very minimally. Compare with Figure 3.9 

In Figure 3.12, it is only after this initial zero slope, or noise line, that the specularity line 

appears, followed by the matte and REDGE image lines 12. Ignoring this initial horizontal 

slope yields vastly superior results, as illustrated in Figure 3.13. 

Figure 3.13 Clipping the noise line prevents the expansion from being eut short. Left: Original, 
Middle: Growing in and out. Right: Growing in and out after first c1ipping the noise line. 

The results of detecting specularities with sorne other images are shown in Figure 3.14. 

12 At a certain point the wavefront expansion must ultimately stop as it cannot expand past material R
EDGE 

image boundaries. As a result the total region size will remain constant, resulting in a plateau or line of 
zero slope. This line is the R

EDGE 
image line. 
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Figure 3.14 Detecting specularities by growing wavefronts outward from 
their peaks. Top: Original, Bottom: Detected specular regions. 

Now that specular regions in an image are successfully identified, the next task is to color 

in these regions with the color at their boundaries. This is discussed in the next section. 
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3.5 Coloring Inwards 

AlI wavefronts are colored inwards by repeatedly finding the new interior boundary of the 

detected regions and coloring each boundary pixel with the average color immediately 

outside the boundary. The algorithm, illustrated in Figure 3.15, can be stated as follows: 

1. Find the boundary of the specularity wavefront. 

2. Color the specularity boundary by coloring each specularity boundary pixel with 

the average color of neighboring pixels outside the specularity wavefront. 

3. Repeat 1 and 2 until the specularity no longer exists. 

• 
Figure 3.15 Coloring a specularity inwards. From left to right: the specularity œcomes 
smaller and smaller as the wavefront boundary is repeatedly colored inwards. The detected 
specular region is red, and the wavefront boundary is green. 

Also, when part of the specularity boundary coincides with an REDGE image boundary 

(i.e., a material boundary), it is not colored inwards for tre following reason: coloring a 

specularity inwards from a material boundary can result in the specularity being colored 

in incorrectly. The reason nr this can be seen in Figure 3.16: when part of a specularity 

boundary coincides with a material boundary, the surrounding matte region has not been 

reached for that portion of the specularity. Thus, that portion of the specularity should not 

be colored inwards as it will incorrectly be colored inwards with the color of specularity. 

Figure 
coincides with a material boundary. In this example the 
specularity shares a boundary with the eyebrow. LeCt: 
Original, Middle: Specularity in red, Right: After coloring 
inwards. 
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Specularities were colored inwards and it was found that due to noise in the RED GE image, 

small "holes" in the original image were sometimes left uncolored, resulting in a Swiss 

cheese-like result, as shown in Figure 3.17. 

Figure 3.17 R EDGE image nOlse sometimes 
results in artifacts. Top: Original, Bottom: After 
removing specularities. Note the small "holes" on 
the forehead that have been left uncolored. 

The solution is to fill the holes before coloring in by eliminating tiny (size of 4 pixels or 

less) REDGEimage c1usters 13 that lie within a detected area. Rather than being valid 

material boundaries these tiny c1usters of pixels in the R EDGE image tend to be noise. 

Figure 3.18 shows the results of applying the specularity removal algorithm presented in 

this chapter to a wide variety of images. Not only has pre-processing with the Luminance 

13 A cIuster of pixels is defined as a group of interconnected pixels. 
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Retinex brightened the images, but also the largest and most severe specularities have 

been removed. As skin detection schemes often fail to correctly identify highlights, any 

segmentation scheme applied to the processed images should now be more efficacious. 

Figure 3.18 Specularity detection and removal. For each pair of images, 
on the left is the original image, while on the right is the result of applying 
the Luminance Retinex [6] and then detecting and removing specularities. 
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3.6 Conclusions 

The Introduction in Section 3.1 pointed out that the vast majority of methods specifically 

targeting specularities are either based on the dichromatic model or use photometrie 

stereo. As also discussed in Section 3.1, methods based on the Dichromatic Model have 

been shown in the literature to work well, but ha ve been tested only on laboratory images. 

Since photometrie stereo requires the use of several images it was not investigated further 

since a single image method was sought for this research. 

The novel specularity detection and removal technique proposed in this thesis does not 

require more than a single camera or a sequence of images. Neither is a prior 

segmentation of the image required. Also, the technique is not limited to "toy images" in 

laboratory settings - it is robust and can process complex scenes. Furthermore, fuis 

chapter also presents two new illumination invariant representations: the R and REDGE 

images. The specularity detection and removal approach consists of finding the seed 

regions of specularities using saturation and intensity, from which we grow outwards 

either to the boundary of the specularity or until a material boundary is encountered in the 

newly discovered REDGE image. Once the boundary of the specularity has been reached, 

the waveform moves inwards, coloring in as the region contracts. The process of coloring 

continues until the specularity no longer exists. Any subsequent skin detection scheme 

should show more success, as specularities will no longer be present to confound the 

segmentation. 
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Chapter 4 

Detecting and Removing Shadows 

4.1 Introduction 

Natural images often contain shadows and these usually confound their analysis by 

current computer vision approaches. It has been found to be difficult to distinguish 

between shadow and non-shadow regions when they have similar hue, saturation and 

intensity. In [28] the authors propose a method to identify and classify shadows as being 

cast or self. Unfortunately, two unnatural constraints are imposed: first, the background 

must be flat and non-textured; second, there must be no occlusions between shadows and 

objects. Another shadow detection method [29] requires an advance knowledge of the 

illuminant vector. Several illumination invariant color spaces have been proposed and 

used for shadow detection [30-32], but they aIl have the constraint of requiring white 

illumination. One way to avoid this constraint is to white-balance the camera[49,50], but 

our approach does not require any camera calibration, thereby making it more practical 

for applications. 

The work of Barnard and Finlayson [34] does not require camera calibration. They 

showed that shadow boundaries have certain interesting properties. SpecificaIly, 

illumination changes across shadow boundaries were shown to exhibit color ratios that 

were different from the ratios across material boundaries. In [34] a lookup table was used 

to keep track of possible illumination changes across shadow boundaries. However, the 

method in this thesis automatically identifies probable illumination changes, not just 

possible ones. Our work is based on the research in [34]. We, however, use Support 

Vector Machines to identify probable shadow boundaries in typical images; shadowed 

regions are inferred from this boundary information. The shadowed regions are then 

removed by assigning them the color of non-shadow neighbors of the same material. The 

method successfully removes shadows from typical images as seen in Figure 4.1. 
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Figure 4.1 Removing shadows. Left: Original, 
Right: After shadows have been removed using 
the method in this thesis. Note that the highlights 
still remain. 

This chapter is organized as follows: first Section 4.2 studies the properties of col or ratios 

across boundaries between regions in a segmented image. Then Section 4.3 focuses on 

the relationship between these color ratios and boundaries caused by shadows. Section 4.4 

describes how a Support Vector Machine can be used to differentiate shadow boundaries 

from those due to a change in material. Section 4.5 discusses training a Support Vector 

Machine to identify shadow boundaries in a segmented image. Sorne boundaries are 

incorrectly c1assified, and Section 4.6 deals with these problem boundaries. Section 4.7 

shows how shadows can be extracted from their corresponding boundaries, and Section 

4.8 describes how to remove them by assigning them the color of neighboring pixels of 

the same material. 

47 



Chapter 4: Detecting and Removing Shadows 

4.2 Color Ratios Across Region Boundaries 

Consider an image segmented into N regions, RI ... R N' where Bij is the boundary 

between neighbors Ri and R j' as shown in Figure 4.2. 

Figure 4.2 Image regions and boundaries. Left: Image 
segmented into N regions RI ... RN' Right: The 

boundary between neighbors Ri and R j is Bij' 

Equations (2.3.1) to (2.3.3) in Section 2.3 mathematically de scribe the relationships 

between the image formation process, illumination and reflectance. Equation 2.3.3 is 

repeated below as Equation (4.2.1), as it is the foundation for the mathematics that 

follows in this chapter: 

K=R,G,B (4.2.1) 

In the above equation, PK is the sensor response at a given pixel, S(IlK ) is the 

reflectance and E(IlK ) is the illumination. Next, consider Figure 4.3 where PKi is a pixel 

in Ri adjacent to B ij' In other words, it lies on one side of the boundary B ij between Ri 

and R j' specifically the side that belongs to Ri' Similarly, let P Kj be a pixel in Rj and 

adjacent to Bi}' 
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Figure 4.3 Pixel P Ki is in Ri and adjacent to Bi}' 

If the sensor response at P Ki is divided by the sensor response at P Kj , the following ratio 

is obtained: 

K=R,G,B (4.2.2) 

This the sis focuses on the detection of shadow boundaries after an image has been 

segmented into regions. In this case, if both pixels lie on the same material, one property 

they have in common is their reflectance. Since Si (ÀK ) = S j (ÀK ) , then: 

K=R,G,B (4.2.3) 

which is a ratio of the illumination intensities in each channel, independent of reflectance. 

If it is then assumed that the spectral distribution of the illumination is the same for both 

pixels, and that it is only the intensity of the illumination that changes, then: 

K=R,G,B (4.2.4) 

where ci} depends on the geometry of the scene, such as the angle of incidence of the 

illuminant and the viewing angle. The ratio can then be rewritten as: 
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K=R,G,B (4.2.5) 

The above equation states that, given two pixels located on lnth sides of a boundary 

between twO neighboring regions with the same surface reflectance, and illuminated by 

the same spectral distribution, the ratios of the two pixels will be the same in aIl three 

color channels. 

In practice it is rare that Equation (4.2.5) ho Ids true. In natural images two pixels P Ki 

and PKj with S;(ÀK ) = S/ÀK ) will differ in hue, saturation and chromaticity as weIl as 

intensity. The reason that Equations (4.2.4) and (4.2.5) indicate that PKi and PKj only 

differ in intensity is because ambient illumination has not been accounted for. The 

illumination E in Equations (2.3.1) to (2.3.3) and also in Equation (4.2.1), actually 

consists of an ambient component and a contribution from the light source. Thus: 

K=R,G,B (4.2.6) 

In Equation (4.2.6), E A signifies the ambient illumination and EL represents the 

illumination from the light source, both of which have different spectral distributions. As 

the intensity and spectral distribution of the ambient illumination are often modeled as 

being ideIi:ical everywhere in the scene [51-53], the constant A can be substituted for 

EA(ÀK ). The ratio in Equation (4.2.5) then becomes: 

K=R,G,B (4.2.7) 

The ratio in Equation (4.2.7) is explored further in the next section. 
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4.3 Shadows Across Region Boundaries 

Equation (4.2.7) in the previous section gives the ratio between pixels PKi and P/(j 

located on either side of a boundary Bij between two neighboring regions Ri and Rj. 

Furthermore, both regions have the same surface reflectance and are illuminated by the 

same light source, EL and ambient light, A. Consider the case when P Ki is in shadow 

and P /(j is not, as in Figure 4.4. 

Figure 4.4 Ri and R j have the same surface reflectance. 

Pixel P Ki is in shadow and pixel P /(j is not. 

Substituting P KS for P Ki and P KN for P /(j results in the following expression: 

K=R,G,B (4.3.1) 

where now C ij < 1 since the pixel that is in shadow must ha"\e a lower intensity than the 

pixel not in shadow. Equation (4.3.1) gives the ratio of two pixels across a boundary 

between two neighboring regions with the same surface reflectance, where one region is 

in shadow and the other is not. 

There is one very oommon occurrence, however, that Equation (4.3.1) fails to model: a 

region in shadow that is a neighbor to another region (of the same material) that is in 
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shadow. Figure 5 illustrates how this could be possible. When an object casts a shadow, 

part of it will be in umbra, while another part will be in penumbra. The umbra is that 

region of the shadow where the shadowing object blocks aIl of the light from the source, 

whereas the penumbra is that region adjoining the umbra where the shadow is only 

partial. Therefore, it is actually possible for a region in umbra to be adjacent to a region 

(of the same material) in penumbra. Furthermore, Figure 4.5 also illustrates that the 

penumbra does not have a constant intensity: it gradually increases in intensity from 

shadow to light. In an image that has been segmented into regions, a penumbra may be 

segmented into several adjacent regions. Thus, it is also possible for two regions (of the 

same material) in penumbra to be adjacent to each other. 

Figure 4.5 Umbra and penumbra. Left: A non-point light source will 
pro duce three distinct lighting areas [54] in a scene: directly lit, partially 
lit (penumbra), and not lit at all (umbra). Right: The intensity of the 
penumbra gradually increases from shadow to light. 

Ifboth neighboring regions are in shadow, Equation (4.2.7) reduces to the following: 

• PKSI 
ratIO KSSI =--

P KS2 

CijELS2 (ÂK )+A 

ELS2 (ÂK )+A 
K=R,G,B (4.3.2) 

In Equation (4.3.2), PKSI and PKS2 are pixels on either side of the boundary between 

neighboring regions RI and R2 that are both in shadow, as shown in Figure 4.6. 
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Figure 4.6 In Equation (4.3.2) regions Ri and R j have the same 

surface reflectance and pixel P KS 2 is brighter than pixel P KS 1 • 

LeCt: Pixel p KS 1 is in umbra and pixel p KS 2 is in penumbra. 
Right: Both pixels are in penumbra. 

When cij = 0 then PKSI is in umbra and PKS2 is in penumbra. When 0 < cij < 1 then 

both PKSI and PKS2 are in penumbra. However, Equation (4.3.2) does not pennit PKS2 to 

be in umbra. Moreover, in Equation (4.3.2) PKS2 is always brighter than PKSI because a 

greater fraction of the light source reaches it. Therefore, Equation (4.3.3) is introduced to 

model the complementary case in which P KS 2 may be in umbra and where P KS 1 is 

brighter than P KS 2 : 

K=R,G,B (4.3.3) 

Equation (4.3.3) not only allows PKS2 to be in umbra, it also allows PKSI to be brighter 

than PKS2' as shown in Figure 4.7. 
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Figure 4.7 In Equation (4.3.3) regions Ri and R j have the same 

surface reflectance and pixel p KS 1 is brighter than pixel p KS 2 

LeCt: Pixel p KS 2 is in umbra and pixel p KS 1 is in penumbra. 
Right: Both pixels are in penumbra. 

The three ntios expressed in Equations (4.3.1), (4.3.2), and (4.3.3) are the theoretical 

foundations of the shadow identification scheme proposed in this the sis. The next section 

discusses how these ratios can be used with a Support Vector Machine [55-58] to identifY 

shadow boundaries l4
. 

14 A shadow boundary is a boundary between two neighboring regions of the same material, whereby at 
least one region is in shadow. Thus, a shadow boundary in this thesis may be between a shadow region and 
a non-shadow region as in Equation (4.3.1). It may also be between two shadow regions, as in Equations 
(4.3.2) and (4.3.3). 
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4.4 Shadow Boundaries and Support Vector Machines 

In [34] a shadow identification method is proposed that uses a color ratio similar to but 

not exactly the same as Equation (4.3.1). The derivation in [34] uses the term "shadow 

illumination" in place of ambient illumination, and shadows are assumed to be 

illuminated exclusively by ambient light. When converted to the nomenclature used in 

this thesis, the col or ratiô in [34] can be expressed as follows: 

• PKS' A 
ratw KSN' =--

PKN , ELN (IlK )+A 
K=R,G,B (4.4.1) 

where ratio KSN' is the ratio between pixels P KS' and P KN' which lie on either side of a 

boundary between a shadow and a non-shadow region, A is the ambient illumination, 

and ELN is the contribution of the light source. As seen in Equation (4.4.1), the 

expression derived in [34] models a shadow pixel as being in umbra: the pixel is not 

affected by the light source - it is illuminated only by ambient light. 

In [34] the authors restrict themselves to common indoor and outdoor illuminants that, 

they show, form a cone in RGB space. AlI light sources and ambient illuminants are 

assumed to lie within this cone. Thus, aIl possible ratios between two pixels across a 

boundary between neighboring regions belonging to the same material, where one pixel is 

in shadow and the other is not, can be pre-computed and stored in a lookup table [8]. 

Each ratio in the LUT represents a possible change in illumination due to a shadow. 

Subsequently, a given image is segmented into regions and the color ratios for aIl 

boundaries between neighboring regions are examined. If a co lor ratio for a boundary 

appears in the LUT, then it is possible that the boundary is the result of a shadow. 

However, many further tests need to be performed to determine to what degree of 

confidence the boundary can be safely considered an actual shadow boundary [34]. The 

authors suggest that it is difficuIt to determine with any single test whether the boundary 

is really a shadow: 
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"To estimate the plausibility that an edge is a shadow edge we use a 
number of tests, each of which has a score associated with it ... We are 
currently working on a more principled scoring, but we note that 
preliminary results indicate that the exact numbers are not that important. 
We remind the reader that the final score for the boundary is the maximal 
score found among aH tests" 

One difficulty with the reasoning in [34] is that the pixel on the shadow side of the 

boundary is modeled as being in umbra. Thus, ratios across boundaries between soft 

shadows (i.e., penumbra) and non-shadow regions of the same material are not in the 

LUT. Furthermore, ratios across boundaries between neighboring shadow regions of the 

same material are not in the LUT either. We address this issue by using Equations (4.3.1), 

(4.3.2) and (4.3.3) as the theoretical basis for color ratios across shadowboundaries. 

These equations permit us to model shadow regions as both umbra and penumbra. 

A greater problem that arises in [34] is that the color ratios in the LUT indicate possible 

illumination changes due to shadows, but the color ratios by themselves give no evidence 

of probable illumination changes due to shadows. A ratio in the LUT can also be due to a 

change in material [34]. In order to better comprehend this, we examine how a shadow 

illumination change 15 across a boundary between neighboring regions can have the same 

ratio as a material change. We define a new ratio- the ratio between two pixels, PK! 

and p K2 on either side of a boundary between two regions belonging to different 

materials: 

K=R,G,B (4.4.2) 

Since the spectral distribution of the light source is the same for both pixels, it is only the 

intensity of the light source that changes. Thus: 

K=R,G,B (4.4.3) 

15 A shadow illumination change refers to a change in illumination due to a shadow on a given material. 
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Substituting Equation (4.4.3) into Equation (4.4.2) gives: 

K=R,G,B (4.4.4) 

In Equation (4.4.1) the color ratio in [8] was converted to the nomenclature used in this 

thesis. A comparison of Equation (4.4.1) and Equation (4.4.4) shows that values of 

S( AK ), EL (AK ) , A , and c can be chosen such that the two ratios can indeed be made the 

same. Even after restricting EL (AK ) and A to common illuminants, combinations of 

S(AK ) and c can result in identical ratios for shadow ilumination changes (Equation 

4.4.1) across a boundary and material changes (Equation 4.4.4) across a boundary. The 

same holds true for Equations (4.3.1), (4.3.2) and (4.3.3), which are the color ratios 

derived in this thesis that correspond to shadow boundaries. Thus the method in [34] 

leads to ratios that represent possible shadow boundaries that may also represent material 

boundaries 16. 

Instead of using an LUT, in this thesis we train a Support Vector Machine [55-58] using 

color ratios to identify which boundaries between neighboring regions are shadow 

boundaries. An LUT will include many ratios of shadow boundaries that are unlikely to 

occur alongside more common and probable ones. An SVM, on the other hand, can be 

trained with color ratios to accurately identify probable shadow boundaries in a 

principled manner. 

16 A material boundary is a boundary between two neighboring regions of different material, as in 
Equations (4.4.2) and (4.4.4). 

57 



Chapter 4: Detecting and Removing Shadows 

4.5 Training A Support Vector Machine To Identify Shadow Boundaries 

This section describes how an SVM can be trained to differentiate shadow from non­

shadow boundaries. To accomplish this, a wide variety of images containing shadows 

was collected from the Internet and separated into training and test sets. Next, the 

Luminance Retinex [6] was applied to all of the images. ~hese were then segmented into 

regions using EDISON (Edge Detection and Image Segmentation), a mean-shift color 

image segmentation program [59-61]. Figure 4.8 shows the results of applying EDISON 

to a sample image. 

Figure 4.8 The EDISON program for color image 
segmentation. Left: Original, Middle: Lwninance 
MSR image, Right: EDISON applied to Lwninance 
MSRimage. 

Next, shadow and non-shadow regions in the training set were manually identified, and 

boundaries in the images were c1assified as belonging to one of the four categories 

detailed in Table 1. 

1 
2 
3 
4 

Same Material 
Different Materials 
Same Material 
Everything else 

Shadow / Non-shadow 
Shadow / Different Material 
Shadow / Shadow 
Don't care 

Table 1 Training the SYM: each shadow boundary is classfied as belonging 
to one of four categories. 

From the training set, a training file consisting of the features of thousands of boundaries 

was created. The SVM was given the following features for each boundary: the three 
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ratios 17 across the boundary (one for each color channel), rand g chromaticity, and 

intensity. It was found that the number of entries in each class must be roughly the same 

in order to obtain good results. Also, non-shadow boundaries must include a large number 

of borderline cases in order for the SVM to accurately separate the data. Therefore, the 

boundaries of many materials that look like shadows, such as eyebrows and hair in faces, 

were included 18. The training file was then submitted to the SVM, which leamed the 

difference between the various boundary types 19. More specifically, the SVM constructed 

a set ofhyperplanes that separated the data in the feature hyperspace20
. Finally, using the 

hyperplanes it had created, the SVM was used to classify boundaries in images from the 

test set as being either shadow or non-shadow, as shown in Figure 4.9. 

One limitation of the approach described so far is that for extremely strong shadows, 

severe clipping at the lower end of the spectrum results in the loss or corruption of 

chromatic information. The equations in Sections 4.2, 4.3 and 4.4 no longer hold in these 

cases, as is apparent in the last row of Figure 4.9. In the next section, these problematical 

boundaries are identified and an additional SVM is then used to determine whether or not 

they are truly shadow boundaries. 

17 These are found in Equations (4.3.1, 4.3.2, 4.3.3). 
18 The final training file consisted of 13658 boundaries from 50 images. The specific frequencies of the 
various border types were as follows: 

Type 1: (Shadow/Non-shadow): 2915 
Type 2 : (Shadow/Different Material): 3230 
Type 3 : (Shadow/Shadow): 2938 
Type 4: (Everything Else): 4574 

19 While training the SVM, the linear kemel was investigated along with the different types ofnonlinear 
kemels. Specifically, experiments were conducted with the polynomial, sigmoid, and radial basis functions. 
The best results were achieved using the radial basis function (RBF) with a cost, C, of 64 and a gamma, r, 
of 64. It was not known beforehand which C and r were optimal. Consequently, a parameter search was 

done using the "grid se arch" utility that cornes with the libsvm package, in which pairs of (C, r) are tried 

and the one with the best cross-validation accuracy is picked. It was also found that the results were slightly 
worse if the training file was scaled with the svrn-scale utility provided by libsvm. This may be because the 
absolute values of the ratios have sorne inherent meaning. In any case, before writing to the training file, 
intensity was manually scaled to lie between 0 and 1. Furthermore, rand g chromaticity is constrained to 
be between 0 and 1 by definition. For the ratios, both the raw values and normalized values were given. 
Therefore the total number offeatures was nine: the three ratios across the boundary (raw and normalized), 
rand g chromaticity, and intensity. 
20 The total number of support vectors, 3999 out of a possible 13658, indicated that over-fitting was not a 
problem, which was corroborated by a 5 fold cross-validation accuracy of92.55%. 
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Figure 4.9 Results of the method. LeCt: Original, 
Middle: Luminance Retinex [6] image after segmentation, Right: Boundaries 
detected on segmented image. Shadow/Shadow boundaries are blue, while aU 
other shadow boundaries are green. 
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4.6 Treating Problem Boundaries 

It was found that the vast majority of the mistakenly identified boundaries tended to have 

low intensity and were located close to the achromatic axis in RGB color space. This is 

seen in the histograms in Figure 4.10. In this section it is shown that problem boundary 

histograms can be thresholded and an additional SVM can be used to differentiate 

between shadow and non-shadow borders. 

7U 
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Figure 4.10 Histograms ofproblem boundaries. Left: Intensity, Right: Distance from 
achromatic axis. 

In order to determine the histogram thresholds in Figure 4.10, ROC (Receiver Operating 

Characteristic) curves were plotted and EER (Equal Error Rate) values for each threshold 

were found. 21 The training set consisted of 13658 boundaries of which 10 17 were 

problem boundaries. FAR and FRR values for many different thresholds were computed 

and plotted for both intensity and distance from the achromatic axis, as shown in Figure 

4.11. 

21 The following definitions are usefuI: 
FAR: FaIse Accept Rate. For a given threshold, the probability that a regular boundary is faIsely 

identified as a problem boundary. 
FRR: FaIse Reject Rate. For a given threshold, the probability that a problem boundary is rejected, and 

thus faIsely identified as a regular boundary. 
EER: EquaI Error Rate. The threshold at which FAR=FRR. 
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FAR-FRR Diagram for Intensity 
Thresholds 

:: LI __ ~A_R_~--.J 
08 

0.7 

~06 '. 
:li 
ttl 0.5 .g 
0: 04 

0.3 

0.2 

0.1 

" 
". 

'. 

'. 

.... ErR ::. 
.. ' 
" 

" 
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Figure 4.11 FAR-FRR Diagrams. LeCt: FAR-FRR diagram for intensity thresholds. Right: FAR-FRR 
diagram for thresholds of distance from the achromatic axis. 

In Figure 4.11 the EER for intensity is 7% and occurs when the threshold is 0.26, or 

26%. Similarly, the EER for distance from the achromatic axis is 12%, corresponding to 

a distance of 33 pixels. A more cornrnon, way of representing the above information is to 

construct an ROC curve as done in Figure 4.12, 

ROC Curve for Intensity Thresholds 
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Figure 4.12 ROC curves. LeCt: Intensity thresholds. Right: Thresholds of distance from the achromatic 
axis. 
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Using these thresholds, the problem boundaries within the original training set were 

detennined and an additional SVM was trained to differentiate between shadow and non­

shadow borders22
. As illustrated in Figure 4.13, treating problem boundaries separately 

made it possible to more accurately detennine whether or not they were truly shadow 

boundaries. 

Figure 4.13 Treating problem boundaries separately. LeCt: EDISON of 
Luminance MSR image, Middle: Shadow boundaries detected with the 
original SVM, Right: Shadow boundaries detected after thresholding the 
problem boundaries and treating them separately. 

22 For each misidentified boundary, the SVM was provided the following information: intensity, distance 
from the achromatic axis, rand g chromaticity, and whether or not it was a shadow boundary. If it was a 
shadow boundary, it was indicated what category it fell in, using the categories defined in Table 1. The 
training file consisted of the 1017 misidentified borders. The specifie frequencies of the various border 
types were as follows: 

Type 1 (Shadow/Non-shadow, same material): 407 
Type 2 (Shadow/Different Material): 220 
Type 3 (Shadow/Shadow, same material): 161 
Type 4 (Everything Else): 229 

The linear kernel and various types ofnonlinear kernel functions (i.e. polynomial, sigmoid, RBF) were 
investigated. The RBF gave the best results, with the parameter search yielding optimal values ofC=32 
and y=64. The accuracy was not very high: a five fold cross validation accuracy of67.3%, with 370 

support vectors. However, it must be kept in mind that the original accuracy was 92.55%, and now 67.3% 
ofthe remaining 7.45% misidentified boundaries could be accurately predicted. 

63 



Chapter 4: Detecting and Removing Shadows 

The entire test set was revisited, but this time problem boundaries were first thresholded 

and treated separately. The original accuracy rate improved considerably23. In the next 

section, it is shown how shadow regions can be extracted from their corresponding 

boundaries. 

23 The accuracy improved from 92.55% to 96.4%. Theoretically a rate of97.56% should have been 
achieved. After aIl, if 67.3% of the problem boundaries could be classified, and these boundaries accounted 
for 7.45% of the total, then there should have been an improvement of5.01%. The reason that the accuracy 
rate was slightly lower was that 77.3%, not 100%, of the problem boundaries in the training set were 
thresholded. Thus, since it was not possible to thresholdall of the problem boundaries, the accuracy were 
slightly (2%) lower than expected. 

64 



Chapter 4: Detecting and Removing Shadows 

4.7 Extracting Shadow Regions From Their Boundaries 

ln this section a method for extracting shadow regions from their corresponding 

boundaries is described. Ideally, if Bij nR; (boundaries Bij that region Ri shares with its 

N neighbors Rj" .RN ) are all identified as being shadow boundaries, Ri would be 

c1assified as being a shadow region. However, if a valid shadow boundary were to go 

undetected, then Ri would be incorrectly c1assified as being a non-shadow region. 

Therefore, in order to identify whether or not region Ri is truly a shadow region, the 

following two ratios are analyzed: 

1. The proportion of the number of pixels in Bij n Ri that are in shadow to the total 

number of pixels in Bij n Ri 24. 

2. The proportion of the number of boundaries in Bij n Ri that are shadow 

boundaries to the total number of boundaries in Bij n Ri 25. 

Ifboth of the se ratios are sufficiently high then Rj is probably a shadow region. However, 

in order to avoid arbitrarily selecting thresholds for the two ratios, a third SVM was 

trained26 to determine which regions were probable shadow regions. Finally, the test set 

used in Sections 4.5 and 4.6 was revisited, shadow boundaries were detected, and the 

corresponding shadow regions were extracted. (See Figure 4.14). 

24 For example, if a region shares 5 boundaries (of total size 100 pixels) with neighbors and two boundaries 
(ofcombined size 75) are in shadow, the ratio will be 75%. 
25 In this case, if a region shares 5 boundaries (of total size 100 pixels) with neighbors and two boundaries 
(of combined size 75) are in shadow, the ratio will be 40"10. 
26 On a second test set of 50 images the SVM c1assified boundaries as being shadow or non-shadow, as 
described in Sections 4.5 and 4.6. Then, in each of the 50 images the actual shadow regions were manually 
identified. Each region for which the SVM detected at least one shadow boundary (1160 in our case) had 
the following written to a training file: the two ratios and whether or not it was actually a shadow region. 
The best results were found with the RBF, except this time the parameter search yielded optimal values of 
C=I and y=64. The total number of support vectors, 356 out ofa possible 1160, indicated that over-

fitting was not a problem, which was corroborated by a 5 fold cross-validation accuracy of96.8%. 
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Figure 4.14 Extracting shadow regions from their boundaries: probable shadow regions are 
colored green. The original images, along with shadow boundary information, can be found in 
Figure 4.9. 

The next step is to color the shadow regions, which is dealt with in Section 4.8. 
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4.8 Coloring Regions lnwards 

Shadow boundaries were detected and categorized by the SVMs a; per Table 1. This 

section describes how such boundary information can be used to color detected shadow 

regions with the average color oftheir non-shadow neighbors27
. Firstly, adjacent shadow 

regions were merged into shadow super-regions28
. Then, for a detected shadow super­

region, boundaries with neighboring non-shadow regions were traversed, the average 

color along these boundaries was calculated29
, and the shadow super-region was assigned 

this color. FinaIly, aIl boundaries between shadow super-regions and neighboring non­

shadow regions were smoothed30 so that there was a uniform transition between shadow 

super-regions that had been colored in and neighboring non-shadow regions. 

Results are shown in Figure 4.15. OveraIl, the method works weIl. However, as the 

shadows in the fourth image - and by extension their boundaries - are extremely strong, 

severe clipping at the lower end of the spectrum results in the 10ss or severe corruption of 

chromatic information. As discussed in SectioŒ 4.5 and 4.6, the equations in Sections 

4.2, 4.3 and 4.4 no longer hold in these cases. While treating these problematical 

boundaries separately dramatically improves the accuracy of their classification, they still 

suffer from a higher rate of misclassification than regular boundaries. As a result, the 

coloring process can be adversely affected, as seen in the fourth image of Figure 4.15. 

27 Henceforth, the term non-shadow neighbor refers to a non-shadow neighbor of the same material. 
28 A shadow often consists of several regions as discussed in Section 4.3 and iIIustrated in Figure 4.5. As 
the term shadow can be vague, the nomenclature shadow super-region will be used (where appropriate) to 
refer to a collection of adjacent shadow regions that belong to the same material. 
29 Color values along the boundary were taken From the output of the Luminance Retinex [6] 
30 Boundaries Bij between shadow and non -shadow neighbors were smoothed by traversing them and 
convolving them with a Gaussian mask. 
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Figure 4.15 Coloring in shadows. Top: Shadows colored in with the average color ofboundaries 
they share with non-shadow neighbors of the same material. Bottom: Smoothing applied to 
boundaries between shadow and non-shadow neighbors of the same material. The original images 
are shown in Figure 8. 
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4.9 Conclusions 

The Introduction in Section 4.1 pointed out that oost existing shadow detection and 

removal methods require prior information about the scene or impose unnatural 

constraints. Examples are knowledge of the illuminant vector [29] or that the scene be 

illuminated by white light [30-32]. The one algorithm in the literature that did not impose 

any unnatural constraints was the one proposed by Barnard and Finlayson [34]. 

However, as shown in this Sections 4.2-4.4 the theory was slightly flawed. As a result we 

proceeded to improve on this method and implemented the new technique 

The shadow detection and removal technique proposed in this chapter does not require 

any camera calibration or other a priori information regarding the scene. It was found that 

Support Vector Machines were a powerful tool for identifying shadow boundaries based 

on their boundary properties. Furthermore, it was possible to use this boundary 

information to identify shadowed regions in the image and then assign them the color of 

non-shadow neighbors of the same material. 

A primary goal of many statistical color image segmentation methods is to partition an 

image into regions, where each region corresponds to a particular material. Due to 

discontinuities resulting from both specularities and shadows, a given material in the 

scene may be segmented into several regions in the image. The next chapter shows how a 

more meaningful segmentation can be achieved after first compensating for illumination 

by detecting and removing specularities and shadows. 
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Chapter 5 

Experiments and Results 

5.1 Introduction 

A. primary goal of many color image segmentation methods [17,21-23,47,48] is to 

partition an image into regions, where each region corresponds to a particular material. 

Due to discontinuities resulting from shadows and specularities, a given material may be 

segmented into several regions, as illustrated by the facial skin in Figure 5.1. 

Figure 5.1 Image segmentation. Left: Original, 
Right: Image segmented using EDISON. 

In Section 5.2 it is shown that a more meaningful segmentation can be achieved after first 

compensating for illumination using the method proposed in this thesis. The method can 

be summarized as follows: 

1. Apply the Luminance Retinex [6] in order to get dynamic range compression. 

2. Detect and remove specularities as discussed in Chapter 3. 

3. Detect and remove shadows as discussed in Chapter 4. 

In Section 5.3 it is demonstrated that the accuracy of skin detection, a subset of color 

image segmentation, improves when this illumination compensation method is first 

applied. Finally, Section 5.4 shows how illumination compensation can increase the 

accuracy of face recognition. 

70 



Chapter 5: Experiments and Results 

5.2 Illumination Compensation: Results 

The left-most image in Figure 5.1 was illumination compensated and then segmented. 

The results are shown in Figure 5.2. 

Figure 5.2 Image ~gmentation after illumination 
compensation. Left: Left-most image from Figure 
1 after illumination compensation, Right: 
Illumination compensated Image after 
segmentation. 

After shadows and specularities have been removed, tre segmentation results become 

much more meaningful. Now the face will be segmented as a single region, as opposed to 

being divided into specularity, shadow, and non-shadow regions. Figure 5.3 shows 

results31 of applying illumination compensation to a wide variety of images. The results 

show that after compensation, the image segmentations are not as adversely affected by 

discontinuities due to varying illumination. Figure 5.4 displays the same set of images 

after they have been processed by three other popular image enhancement techniques: the 

Multiscale Retinex with Color Restoration (MSRCR) [8], Histogram Equalization [84], 

and Gamma Correction [85] (with gamma = 2). AU three have been applied in the 

literature to a wide variety of images . 

In Figure 5.4 it can be seen that images enhanced by the MSRCR tend to be 

grayed out, as is also the case for images processed by Gamma Correction. Histogram 

Equalization, on the other hand, produces images that are fairly realistic. However, aU 

three algorithms, fail to remove shadows and specularities as well as the method 

31 In Figure 5.3, the image in the second row is of a road that is in very bright sunlight. The compensated 
image is a bit darker due to the effect of the Luminance MSR, which lowered the exaggerated brightness of 
the original image by modifying the dynamic range. Thus, it is seen that not only does the Retinex brighten 
poorly lit images, it also lowers the brightness of overly lit images. 
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proposed in this thesis. In the next section it is demonstrated that compensating for 

illumination can improve skin detection in images. 

Original Image 

(a) 

Illumination 

Compensated Image 

(b) 

Segmented 

Original Image 

(c) 

Segmented 

Illumination 

Compensated Image 

(d) 

Figure 5.3 Illumination compensation applied to a variety of images. From left to right: (a) 
Original image (b) Illumination compensated image (c) Original image segmented (d) 
Illumination compensated image segmented. 
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AfterGamma 

Correction 

(c) 

After Histogram 

Eqnalization 

(d) 

Figure 5.4 Various image enhancement techniques applied to the images in Figure 5.3. 
From left to right: (a) Original image (b) MSRCR (c) Gamma Correction (d) Histogram 
Equalization. Compare the images in this figure to the images in Figure 5.3 (b) which show 
the images processed by the algorithm in this thesis 
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5.3 Illumination Compensation for Skin Detection 

Several image processing applications use skin detection to restrict the complexity of 

subsequent feature extraction. Applications range from nce detection and tracking [62-

65] to gesture recognition [66-68] and pomography filtering [48,69,70]. Skin detection 

techniques can be found in many commercial applications, for example the driver eye 

tracker developed by Ford UK [71]. 

Recent research has shown [35-41] that the skin color distribution under common indoor 

and outdoor illuminants falls in a shell-shaped region in chromaticity space that is close to 

the Planckian locus. This shell-shaped region, where skin can be found, is often referred 

to as the skin locus [35-41]. However, it is camera specifie: Figure 5.4 shows the skin 

locus for two different cameras. 
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Figure 5.4 The Skin locus. Skin pixels are purple while the Planckian locus is the black 
curve. The skin locus is camera specifie. LeCt: Nogatech camera [39], Right: Winnov camera 
[37] 

Although the locus for each camera is slightly different, for the purposes of this section, 

the precise coordinates of the locus for any particular camera do not interest us. It is 

sufficient that for any given camera, skin pixels tend to cluster in a shell-shaped region 

around the Planckian locus. In this spirit, the loci from [35-41] are used as a basis for the 
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creation ofageneric skin 10cus32
, as illustrated in Figure 5.5. The generic skin locus can 

be used to create a simple skin detector: if a pixel is in the locus it is skin, and if it is 

outside the locus, it is not. 
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Figure 5.5 Generic Skin Locus. The locii of 
several cameras [17-23] were studied to create 
a skin locus that caters to a generic camera. 

However, when skin is affected by strong shadows and specularities, skin pixels can faH 

outside the locus. Figures 5.6 and 5.7 demonstrate this more c1early. Figure 5.6 shows a 

facial image that suffers from strong lighting effects, alongside the illumination 

compensated version of the same image. Furthennore, Figure 5.6 also shows a manually 

obtained binary mask of the skin pixels of the face under consideration. Using this mask, 

skin pixels in both the original image and the illumination compensated image are plotted 

in Figure 5.7. Figure 5.7 shows that skin pixels in the original image do not always fall 

within the locus. Strong shadow and specularity cause many skin pixels to go astray and 

end up outside of the generic skin locus. After compensating for illumination, however, 

most of the wayward pixels retum to the locus. 

32 The loci in [35-41] are merged to form the generic skin locus. Then, as in [39], a pair of quadratic 
functions are used to fit (in a least squares sense) the upper and lower bounds of the generic locus in rg 
chromaticity space. The upper bound quadratic function is g=A 1?+B1r+Cz and the lower bound quadratic 
function isg=A2?+B2r+C2, where Al=-1.3571, Bl=1.3571, C1=0.0893, A2=-0.2857, Bz,=0.2857, C2=0.1529 
and the horizontal axis is constrained to being between r=0.2 and r=0.8. 
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Figure 5.6 Binary mask of skin pixels. Left: Original, Middle: After 
illumination compensation, Right: Binary mask of skin pixels. 

\+ · . . . · , 
Generic Skin Locus Boundary 

Generic Skin Locus Boundary 
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. Skin Pixels -, 0.6 

Skin Pixels 

04 

0.1 

Figure 5.7 Distribution in chromaticity space of skin pixels within the binary mask Skin pixels 
are in red and the boundary of the generic skin locus is black. Left: Original image, Right: 
After illumination compensation. 

In order to better illustrate the results of Figure 5.7, in Figure 5.8 for both the 

uncompensated and compensated images we show an image of the face mask of Figure 

5.6 with the labelled skin pixels in one color and the remaining errors in another. 
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Figure 5.8 Face mask with correctly labeed skin 
pixels in red and the remaining errors in green. 
Left: Uncompensated image, Right: Illumination 
compensated image. 

Figure 5.8 demonstrates that skin is far more accurately detected when illumination 

compensation is first applied to an image. If the skin locus for a specific camera is known, 

skin detection can be performed more accurately using that locus. Otherwise, when the 

camera is unknown, the generic skin locus described in this section can be used. In either 

case, by first removing specularities and shadows with illumination compensation, the 

likelihood that a skin pixel will in fact be detected as skin is increased. 
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5.4 Illumination Compensation for Face Recognition 

Face recognition has a variety of applications, sorne of which inc1ude looking for missing 

children, law enforcement, and user authentication in order to restrict access to locations, 

equipment, and information. Recognition under varying illumination, however, can be 

challenging, as different lighting conditions often cause the same face to appear 

dramatically different [73-75]. This section describes experiments which show that the' 

accuracy of face recognition can be improved if images are first compensated for 

illumination using the method proposed in this thesis. The face recognition experiments 

were performed on frontal images with varying illumination from the CMU PIE 

database33 using a subspace analysis34 technique calIed LNMF [76]. Figure 5.9 shows 

sorne of the images from the CMU PIE database that were used. 

Figure 5.9 Typical frontal images with varying frOID 
the slight in-plane rotations, varying eye positions, and non-unifonn background. 

Not only do the faces in Figure 5.9 suffer from slight in-plane rotations, but they have 

varying eye positions and non-uniform backgrounds. AlI of these factors can adversely 

affect recognition rates. As the main focus of this thesis is illumination compensation, alI 

33 The CMU PIE (Pose, Illumination, and Expression) database consists of 41,368 images of 68 people. 
Each person is imaged under 13 different poses, 43 different illumination conditions, and 4 different 
expressions. Experiments were only performed on images with frontal poses under varying illumination. 
There are 24 images of each person that fulfill the aforementioned criteria, for a total of 24x68, or 1632 
images. 
34 Subspace methods [76-82] have become very popular in the field of face recognition. Typically, a set of 
training images from a face database are decomposed into a set of basis images. The images in the original 
training set are then represented as a linear combination of the N most siginificant basis images. An N 
dimensional feature space is then created from these bases, whereby each basis image is one of the 
dimensions. Finally, test images are projected into feature space, and if a test image occupies the same 
region offeature space as a training image, it is deemed likely that both images are of the same person. 
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face images were geometricaHy normalized35 before they were presented to the LNMF 

recognition system. Figure 5.10 shows the results ofnormalizing the faces in Figure 5.9. 

After geometrical normalization, aH images were converted to grayscale and then divided 

into training and test sets. As in [76], half of the images of each person were randomly 

assigned to a training set, while the test set consisted of the remaining images. Each 

image in the training ~t was then represented by LNMF as a linear combination of 81 

basis images, and aH training and test images were projected into the 81 dimensional 

feature space. For a given test image, the Euclidean distances from aH training images 

were computed and tœ closest training image was deemed to be a match. The 

recognition accuracy6 was found to be 93.5%37. The experimental process for this first 

experiment (referred to hereafter as Experimen1) is illustrated in Figure 5.11. 

35 The normalized version of each face image satisfied the following constraints: (a) In-plane rotations 
were corrected by rotating images such that both eyes layon a line that was parallel to the horizontal axis. 
(b) Images were resized such that the inter-ocular distance (distance between the eyes) was always 35 
pixels. (c) Each image was cropped with an elliptical mask such that only the face was visible. Ali pixe Is 
outside the mask boundary were made black, thereby ensuring a uniform background for ail images. 
36 The percentage of faces from the test set that are recognized correctly. 
37 In [83] PCA, LDA and FaceIt were applied to the same set of images, except in [83] gallery (known, or 
training) images were illuminated only by room lights, while probe (unknown, or test) images were 
illuminated by both room lights and the camera flash. The experiment in this thesis, however, randomly 
divided the images into training and test sets. In any case, the accuracy of PCA,LDA and FaceIt were 89%, 
96% and 100%, respectively. 
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Experiment 1 

AIl Training and Test Images-7 Geometrical Normalization 

Input Test Image -7 Recognition 

Experiment 2 

AIl Training and Test Images-7 Geometrical Normalization-7 Illumination 

Compensation 

Input Test Image -7 Recognition 

Figure 5.11 The experimental process: aU images were normalized before recognition 
was performed. 

The same experiment was repeated, but this time aIl training and test images were not 

only normalized, they were also compensated for illumination before recognition was 

performed (as depicted in Figure 10 under the heading Experiment 2: the accuracy 

increased to 98.4. Thus, illumination compensation improved the accuracy of face 

recognition by 4.9%. 
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5.5 Conclusions 

It was found that a more meaningful segmentation could be achieved by compensating 

images for illumination using the method proposed in this thesis. Furthermore, the 

accuracy of skin detection, a subset of color image segmentation, was found to improve 

when this illumination compensation method was first applied. Finally, compensating 

images for illumination increased the accuracy of face recognition 
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Chapter 6 

Conclusions 

This thesis proposes two new illumination invariant representations based on the Retinex: 

the R image, and the REDOE image. The R image is free of illumination effects, and the 

REDOE image is an edge image derived from the R image. Both representations can be 

used in conjunction with other computer vision applications. In this thesis the REDOE 

image was successfully used to detect material changes in an image as part of the 

proposed specularity detection process. 

A novel approach to specularity detection and removal is also proposed in this the sis. The 

metood does not require more than one camera or a sequence of images and no prior 

segmentation of the image is required. Furthermore, the technique is robust and can 

process complex scenes. The approach consists of finding the seed regions of 

specularities using saturation and intensity, upon which a wavefront is grown outwards 

either to the boundary of the specularity or until a material boundary is encountered in the 

newly discovered REDOE image. Once the boundary of the specularity has been reached, 

the wavefront moves inwards, coloring in as the region contracts. The process of coloring 

continues until the specularity no longer exists. 

Aiso proposed in this thesis is a shadow detection and removal technique that does not 

require any came ra calibration or other a priori information regarding the scene. The 

method uses Support Vector Machines to identify shadow boundaries based on their 

boundary properties. Shadowed regions are then inferred from these boundaries then 

assigned the color 0 f non-shadow neighbors of the same material. 
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Illumination compensation as proposed in this thesis was found to increase the accuracy 

of image segmentation, skin detection and face recognition, aIl three of which are popular 

Computer Vision tasks with a wile range of applications. 

However, the proposed method does not work with grayscale images. One advantage of 

storing database images as grayscale is that much less memory is required. While the 

method proposed in this thesis can process color images am those images can then be 

converted to grayscale, the method is powerless when given a grayscale image as input. 

As a result, popular databases such as the Yale face database cannot be processed with 

this method. 

Another issue with the proposed technique is that the processed images often look 

artificial as a result of the coloring in process. Thus, the method should not be used for 

image enhancement purposes. Perhaps in the future this issue can be resolved by 

perfecting or introducing a completely new coloring in process. 

While the method is relatively fast, it is not fast enough for real time. Each image takes 

approximately 3 to 4 minutes to process: about 30 seconds for the retinex, 1 minute for 

treating specularities, and 2 minutes for dealing with shadows. In the future it might be a 

good idea to implement the algorithm on a microchip, as this should result in much faster 

processing times. 

This method did not remove aIl shadows in aH images. It did, however, remove the most 

severe shadows most of the time. Similarly, the method did not remove aH specularities in 

every image, but usuaHy the strongest ones were treated by this method. 
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