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ABSTRACT

Immunological memory is a key feature of the human immune system’s ability to clear
seasonal influenza infections, but we lack detailed and quantitative understanding of the
mechanisms that regulate the maintenance of immunological memory over time and acti-
vation of memory cells upon reinfection. In this thesis, we develop an 11-delay differential
equation within-host model of influenza A virus, which describes three infection phases:
the innate and adaptive immune responses, and the generation of immunological memory.
We mathematically study a 3-equation submodel of viral dynamics, a 5-equation submodel
of the innate immune response to viral infections, and the full 11-equation model. One of
the main features of this model is the lack of a unique disease-free steady state, which is
due to the interferon (IFN) positive feedback regulation and varying levels of immunologi-
cal memory. The study of endemic-disease equilibria shows that the existence of memory
T cells keeps viral titers low over time. Numerical simulations of the model confirm that
the innate immune response is integral to early control of the infection while killer T cells
and immunological memory are crucial for limiting the total number of infected cells. This
holds for infections of varying infectiousness and viral replication strength.

Various findings regarding the immune response upon re-exposure to the virus follow
from numerical simulations of successive infections: (1) very high levels of pre-existing
immunity are not able to clear infections without triggering the adaptive immune response,
but (2) they do considerably reduce the magnitude of the infection, and (3) repeated re-
exposures to virus induce a quicker antibody response and keep antibody levels high.
Modeling of various vaccination and natural infection scenarios suggest that these results
hold, even when considering decreasing immunity, which results from mutations of the
influenza A virus or time elapsed between infections.

We also adapt our model to consider sex-biased differences in the immune response.
Increasing T cell and antibody production as well as IFN positive feedback in females
results in much shorter infections of lower magnitude and increased inflammation. Con-
versely, decreasing T cell and antibody production and increasing virus-induced IFN
production in males results in infections of decreased magnitude, but of similar length and
inflammation as the original simulations. This suggests that such a model could be used
to study sex-biased differences in immunological dynamics, but more data is needed to
better quantify these differences.
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ABRÉGÉ

La mémoire immunitaire est une composante essentielle du système immunitaire, en ce
qui a trait à l’élimination d’infections de la grippe saisonière. Cependant, les mécanismes
qui régulent le maintien de la mémoire immunitaire et l’activation de cellules mémoire
lors d’une réinfection restent à élucider et quantifier. Dans ce mémoire, nous développons
un modèle mathématique intra-hôte du virus de l’influenza A, composé de 11 équations
différentielles à retards. Ce modèle décrit trois phases de la réponse immunitaire: la
réponse immunitaire innée, la réponse immunitaire adaptative (acquise) et la formation de
la mémoire immunitaire. Nous étudions mathématiquement un sous-modèle composé de
3 équations, décrivant la dynamique virale de l’influenza A; un sous-modèle composé de
5 équations, décrivant la réponse immunitaire innée aux infections virales; et le modèle
complet composé de 11 équations. L’une des principales qualités qui caractérise ce modèle
est la non-unicité de l’état d’équilibre correspondant à l’absence d’infection, qui résulte
de la modélisation des méchanismes de rétroaction positive de l’interferon (IFN) et des
différents niveaux de mémoire immunitaire. L’étude des états d’équilibre endémique de
la maladie démontre que l’existence des lymphocytes T mémoire permet d’obtenir une
borne supérieure de la charge virale à long-terme. Les simulations numériques du modèle
appuient l’hypothèse selon laquelle la réponse immunitaire innée permet de contrôler la
croissance initiale de l’infection, tandis que les lymphocytes T cytotoxiques et la mémoire
immunitaire déterminent le nombre total de cellules infectées. Nous démontrons d’ailleurs
que ces conclusions s’imposent indépendemment de l’infectiosité de la maladie ou de la
vitesse à laquelle le virus se réplique.

Les simulations numériques d’infections successives permettent de tirer plusieurs con-
clusions concernant la réponse immunitaire en cas d’expositions multiples au virus: (1) une
mémoire immunitaire préexistante, engendrée par des niveaux élévés de cellules mémoire,
ne peut éliminer une infection sans déclencher de réponse immunitaire adaptative (ac-
quise), mais (2) la mémoire immunitaire réduit considérablement la gravité de l’infection,
et (3) des expositions répétées au virus promeut une production d’anticorps plus rapide et
maintiennent des taux élevés d’anticorps. La modélisation et la simulation de plusieurs
scénarios qui incluent à la fois des vaccinations et des infections naturelles suggèrent que
ces résultats sont valides, même si l’on prend en considération que immunité décline
avec le temps, entre les infections, et que les mutations du virus de l’influenza A sont
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fréquentes.
Nous adaptons également notre modèle pour tenir compte de la différenciation de

la réponse immunitaire selon le sexe. Une augmentation de la production de cellules T
et d’anticorps ainsi que de la rétroaction positive de l’IFN chez les femelles se traduit
par des infections beaucoup plus courtes, de moindre gravité, et par une augmentation
de l’inflammation chez les femelles. Inversement, une diminution de la production de
cellules T et d’anticorps et une augmentation de la production d’IFN induite par le virus
chez les hommes entraînent des infections de moindre gravité, mais d’une durée et d’une
inflammation similaires à celles des simulations initiales. Cela suggère qu’un tel modèle
pourrait être utilisé pour étudier l’impact des différences sexuées sur les dynamiques du
système immunitaire, mais davantage de données expérimentales sont nécessaires pour
mieux quantifier ces différences.



CONTRIBUTION TO ORIGINAL KNOWLEDGE

In Chapter 2, I derive a new model, described by (2.1.1), of within-host influenza A infec-
tion, which to the best of our knowledge is the only within-host delay differential equation
(DDE) model of influenza A which explicitly includes innate immunity as well as T-cell
mediated immunity and B-cell/antibody mediated immunity, which make up the adaptive
immune response. Using piecewise-smooth DDEs, the model (2.1.1) explicitly describes 3
phases of infection, each of which is reached a different threshold is met: the innate immune
response, the adaptive immune response, and the generation of immunological memory
post-infection. We study the stability of disease-free equilibria of a 3-equation submodel of
viral dynamics and show characterize the conditions under which the disease-free and
endemic disease steady states stable, which is directly linked to the epidemiological R0.
We numerically study the stability of two types of disease-free equilibria of a 5-equation
submodel of the innate immune response to infection: the healthy disease-free equilibrium
and the chronic inflammation equilibrium. We study the disease-free equilibria of the full
11-equation model of the innate and adaptive immune responses to acute infection and
find that the absence of memory T cells is a necessary condition for the persistence of high
viral titers.

In Chapter 3, we use this model to study different reinfection scenarios and study open
questions in mathematical modeling of influenza. We find that high levels of pre-existing
immunity considerably reduce the magnitude of the infection, and repeated re-exposures
to virus induce a quicker antibody response and keep antibody levels high. It is to the best
of our knowledge the first within-host differential equation model to study the impact
of multiple vaccinations on long-term immunity and how repeated vaccinations impact
infection time courses. In Chapter 3, we also adapt this model to study sex-disparities in
the innate and adaptive immune responses for males and females, which is one of the first
models to do so.
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CHAPTER 1

INTRODUCTION

In this thesis, I develop a time-dependent delay differential equation model of the human
immune system response to natural influenza A infections and reinfections. This 11-
equation model takes into account both the innate and adaptive immune responses, which
are broadly the first and second phases of the immune response, respectively. To do so, this
model will describe the underlying mechanisms and kinetics of viral infections at a cellular
level, that is the interactions between different cell types. The model can be divided into
three nestled sub-models: the basic viral dynamics (three equations), the innate immune
response (five equations), and the full model, including the adaptive immune response
(11 equations). The mathematical study of these three different models will allow for a
better understanding of the relative contribution and impact of each phase of the immune
response during infection. The goal is to simulate different scenarios of infection and
reinfection, through natural infection and inoculation, to gain insights into disease time
courses, as experimental data for immunological quantities for these scenarios is very
limited. Moreover, one of my model’s objectives is also to gain a better understanding of
how viral time courses are impacted by the delays in the different physiological processes
that occur during a flu infection. This model will also be applied to study the difference
between male and female individuals, which is little studied in mathematical immunology.

An overview of the different components of the immune response to flu infections
is presented in Sections 1.1, 1.2, and 1.3. Previous models of influenza A infections are
reviewed in Section 1.4, and Section 1.5 introduces delay differential equation modeling
specifically. Section 1.6 presents an overview of numerical simulations, and 1.7 serves as
an outline for the work presented in the following chapters this thesis.

1.1 GENERAL IMMUNE RESPONSE TO FLU INFECTIONS

Individuals are infected with the flu or influenza A by inhaling respiratory droplets (saliva
or mucus) containing influenza virions (virus particles) produced by an infected person
exhaling. These virions bind to receptors of healthy epithelial cells, i.e. the cells that line
internal organs and body cavities, of the respiratory tract. By doing so, the virions are
infecting new cells, which can then produce more virions [1]. This triggers an immune
response (IR), made up of two distinct components: (1) the innate immune response and (2)

1



2 1.1. GENERAL IMMUNE RESPONSE TO FLU INFECTIONS

the adaptive immune response. The innate immune response is the first line of the defense
of the immune system. Innate immune cells and molecules are physical and chemical
barriers that initiate an immune response by rapidly recognizing antigens, i.e. foreign
pathogens. The innate immune response is crucial for early control of an infection. The
innate immune response is short lasting and non-specific, i.e. innate immune cells and
molecules target and bind to molecules that are common in many viruses and bacteria but
they cannot distinguish between different microorganisms. The innate immune response
mostly relies on the production of phagocytes and proteins, such as cytokines, a type of
protein that affects the behavior of other cells. There are various types of cytokines, which
include interferons (IFNs) and interleukins (ILs). The action of innate immune cells and
molecules is not always sufficient to eliminate the infection. When this occurs, the adaptive
immune response is initiated [2–4].

The adaptive immune response includes a naive or primary component and a memory
component. The primary adaptive immune response is triggered when antigen levels
exceed a certain threshold and initiated by the innate immune cells [3, 5–7]. The primary
adaptive immune response usually takes effect several days post-infection [3, 8, 9]. It is
long lasting, more versatile and very specific, i.e. adaptive immune cells can distinguish
between and respond to a wide variety of foreign pathogens. The adaptive immune
response also relies on cytokine action but its main effects are the result of T-cell and B-cell
actions. Moreover, the adaptive immune response is the most important component in
immunological memory, which is the immune system’s ability to more rapidly recognize
previously encountered pathogens. The memory property of the adaptive immune system
leads to increased protection because the immune response upon re-infection with the
same pathogen is stronger than the immune response provoked by the primary (first)
infection [2, 3].

These different components of the immune response peak at different times over the
course of infection, with the innate immune response peaking before the adaptive immune
response. The peak times of each type of cell, molecule or agent that make up the primary
immune response are shown in Table 1.1.

In the case of influenza A infections, the immune response begins when immune cells
bind to two antigenic (foreign) proteins found on the surface of virions: hemagglutinin
(H or HA) and neuraminidase (N or NA), whose properties determine the sub-type or
strain of influenza (e.g. H1N1, H3N2, etc.) [2]. Inoculation and infection usually induce
a response based on the recall of previously acquired immune memory (backboosting
antibody response, reactivation of memory T cells), which is strongest for an infecting strain
that is similar to those of previous infections [10]. For influenza, there are, however, major



Chapter 1. Introduction 3

Cell or Molecule Type Range of Values Reference

Free Virus
2-3 [8, 10–12]
4-5 [13]

IFNs
2-3 [10, 14]
2-5 [11]

Effector CD8+ T Cells 7-10 [1, 8, 15, 16]
Effector CD4+ T Cells 6-7 [17]

Effector B cells 7 [10, 18]
Antibody 8-10, 25 [8, 12, 18]

Table 1.1: Time of Peak of Different Cell Types During Primary Influenza A Infections in Days Post-
infection (dpi).

differences between the immune responses mounted after a natural infection and after
vaccination. On one hand, the adaptive immune response induced by a natural infection
targets both HA and NA proteins and generates a response of the same magnitude against
both. On the other hand, the most common currently licensed influenza A vaccines, which
are live attenuated and recombinant vaccines, are HA-based and generate little to no
response against NA. This is not ideal because generating an anti-NA immune response
results in less severe disease [10].

Post-infection, the waning of antibody titers and the evolution of the virus lead to
decreasing immunity. The protection resulting from antibodies also declines such that
three to seven years post-infection, an individual is only half as protected from infection
when compared to immediately post-infection [10].

1.2 INNATE IMMUNE SYSTEM AND INTERFERONS

When an infection occurs, viruses are initially recognized by several innate immune
receptors located on the surface of host cells or within these cells [5]. Once activated,
these receptors induce innate immune cells and infected cells to produce macrophages,
which in turn produce pro-inflammatory cytokines, such as ILs and IFNs, which allows
for early control of the infection [5, 19, 20]. In addition, mcrophages can destroy virions
through phagocytosis and are an important component of T cell activation [5, 13, 21].
There exist three different types of IFNs. Type I IFNs can reduce the production of virus by
infected cells by binding to receptors on the surface of infected cells. This leads to infected
cells producing different proteins that inhibit virus replication inside the cell. They can
also induce an antiviral state in susceptible, uninfected cells, i.e. make them resistant



4 1.3. ADAPTIVE IMMUNE RESPONSE

to infection [13, 19, 20, 22]. Type II and III IFNs’ also have antiviral properties but their
precise mechanisms of action have not been characterized as well [19, 23, 24]. Moreover,
IFNs stimulate certain components of the innate immune system, such as the production
of natural killer (NK) cells (which kill infected cells) [13, 20]. IFNs are also required to
activate the short-lived adaptive immune response [20]. When the IFN response occurs
sufficiently early in an infection, there is rapid viral clearance which results in a subclinical
infection, i.e. an asymptomatic and undetectable infection, or in mild disease. Subclinical
infections can be cleared by an innate immune response without inducing an adaptive
immune response [5]. In contrast, when the IFN response is delayed, there is persistent
viral infection and inflammation which leads to more severe disease [22].

1.3 ADAPTIVE IMMUNE RESPONSE

The adaptive immune response, activated in part by IFNs and other innate immune
components, is comprised of high-affinity and antigen-specific T-cell and B-cell responses.
In fact, T cells and B cells can recognize a diversity of antigens and mount a targeted
response to each pathogen.

1.3.1 Helper T Cells, Cytotoxic T Cells & Memory T Cells

During an infection, mature naive CD4+ T cells bind to viral antigen and acquire effector
functions to become helper T cells. These cells are required to activate almost all adaptive
immune responses. They activate B cells, which leads to antibody secretion and the
production of macrophages [9]. Moreover, when mature naive CD8+ T cells bind to viral
antigen, they differentiate into effector CD8+ T cells also called cytotoxic T cells (CTLs) or
killer T cells. They are then activated by helper T cells, i.e. they acquire effector functions
and the ability to migrate to infection sites within a week of their activation by antigen
[25]. Once activated, a CTL "hunts" for target cells, i.e the CTL (1) surveys many cells and
recognizes infected cells; (2) kills a target cell by binding to the target cell; and (3) the target
cell disintegrates and the CTL hunts for new target cells [13, 26]. It is usually supposed that
CTLs cannot hit multiple cells simultaneously [26]. The proliferation of CTLs in response
to antigenic stimulation can elicit a stronger CTL response (positive feedback loop) which
in turn down regulates the virus population, which down regulates the CTL response [27].

During the infection, the T-cell population expands, but it returns to normal levels
post-infection, after the deletion of 90 to 95% of effector CD8+ T cells. The remaining 5
to 10% become memory T cells after a few weeks [28–30]. The CD8+ T cells peak 10-fold
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higher than CD4+ T cells, but CD4+ T cells peak earlier and the CD4+ T-cell population
declines faster [15].

The population of pathogen-specific memory T cells is maintained through homeostatic
regulation for years or decades, even in the absence of persistent antigen (bystander
stimulation). Upon re-infection with the same pathogen or similar pathogens and re-
exposure to antigen, these cells rapidly gain effector functions to kill infected cells [5, 25,
28, 30]. As an individual ages and is exposed to different pathogens, the memory T-cell
compartment expands and there is competition for growth factors and anatomical space
between memory T cells and naive T cells which limits naive CD8+ T cells’ homeostatic
proliferation. This could lead to there being fewer T cells available to fight pathogens [5].

These processes also depend on ILs. In fact, ILs and paradoxal IL signaling are an
essential part of the immune response resulting in a broad range of T-cell action. For
example, IL-12 increases the proliferation, differentiation and the formation of CTLs. IL-2
intensifies antigen specific CD8+ T-cell response and induces T-cell death. IL-7 and IL-15
are required for the formation and maintenance of memory T cells. Moreover, different
types of ILs are required for homeostatic regulation of CD4+ T cells [25, 28, 31–33].

1.3.2 Effector & Memory B Cells and Antibodies

Exposure to viral antigen after an influenza infection activates naive B cells. After being
activated, these B cells differentiate into short-lived effector B cells (plasmablasts), with the
action of helper T cells. These plasmablasts can then produce naive or low-affinity virus-
specific antibodies which bind to virions and neutralize them [10, 13, 18, 34, 35]. A small
fraction of these activated naive B cells also differentiate into long-lived plasma cells after
selection for high-affinity B cell receptors in germinal centers. Plasma cells continuously
secrete antibody that maintains long-term antibody levels, conferring long-term protection
and immunity from disease [10, 18, 35]. Most B cells die post-infection, when there is no
longer antigen stimulation, with only a small proportion of long-lived antibody-secreting
cells (ASCs) or plasma cells [34] remaining. The mechanisms that explain the persistence
of these cells without persistent antigenic stimulation are unclear [10, 18, 35].

Upon activation naive B cells can also differentiate into another type of long-lived
cells: memory B cells. Memory B cells do not secrete antibodies, but have the ability to
rapidly proliferate and differentiate into plasmablasts on antigen re-encounter, a process
heavily reliant on T-cell help [10, 18, 34]. The plasmablasts that result from memory B-cell
differentiation secrete mature or high-affinity antibody [10]. Hence, antibodies are secreted
by two distinct cell types: short-lived plasmablasts or long-lived plasma cells (i.e. not
directly from memory B cells) [10, 13, 18].
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1.4 PREVIOUS MATHEMATICAL MODELS OF INFLUENZA

Since the early 20th century, ordinary differential equation (ODE) compartmental models
have been used to model between-host population dynamics of infectious diseases, to
inform public health decisions. One of the first within-host model of influenza, that is
a model describing viral dynamics between cells of a single individual, was developed
by Larson et al. in 1976 [36]. This model, consisting of seven compartments and five
parameters, was able to accurately reproduce viral titers in mice but its parameters could
not be related to biological mechanisms.

1.4.1 Viral Dynamics Models

Simple ODE models have been used to quantify cell dynamics in infectious disease because
they are relatively easy to fit to data. Basic viral dynamics, which form the base of these
ODE models are described in Nowak and May [27] as

˙V (t) = kY (t) − uV (t) (1.4.1)
˙X(t) = λ − dX(t) − βX(t)V (t) (1.4.2)
˙Y (t) = βX(t)V (t) − aY (t) (1.4.3)

with variables V (t) the free virus cell population; X(t), the uninfected, susceptible cell
population; and Y (t), the infected cell population with the following parameters: k, the
virion production rate; u the death rate of free virus; λ, the birth rate of uninfected cells; d,
the death rate of uninfected cells; β, the infection rate constant; a, the death rate constant of
infected cells. These equations have been shown to accurately reproduce the exponential
growth of viral titers that is measured experimentally [1].

In 2006, Baccam et al. [37] used (1.4.1)-(1.4.3) to model influenza kinetics taking
λ = dX(t). In this case, (1.4.2) reduces to

˙X(t) = −βX(t)V (t)

and we say the model is target-cell limited.

Target-cell limited models have the trivial steady state (V ∗, X∗, Y ∗) = (0, 0, 0), which
indicates the infection is cleared because all target (susceptible) cells have been infected by
virions and have died [13]. Models are constructed in this way because the regeneration
and natural death of target cells have long time scales (months) which have little impact
on the rapid dynamics of influenza (days). However, this assumes that either (1) all cells
are infected or (2) the initial number of target cells X0 is defined as the number of cells
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that will become infected. The first assumption is false as in most cases influenza infects
no more than 50% to 60% of the lungs [12].

Target cell limited models do not explicitly account for the immune response. This
supposes that either (1) the immune response is negligible or (2) it is constant and implicitly
defined by the parameters u and a, which represent the rate of loss of infectious cells Y

and virus V , respectively.
Nonetheless, these equations have been shown to accurately reproduce the exponential

growth of viral titers that is measured experimentally [1, 11]. Many other target-cell
limited ODE models developed since have also been shown to accurately reproduce viral
dynamics [1, 12, 37–39]. Moreover, because most variables and parameters in Baccam
et al’s model [37] represent biological quantities and processes (e.g. viral clearance rate,
cell lifespan), the parameter values obtained from fitting the model to experimental data
provided new insights on influenza kinetics.

In the last 20 years, the development of within-host ODE and delay differential equation
(DDE) models of influenza has greatly accelerated. This has led to the development of
more complex models which have allowed for greater theoretical investigations of cell
dynamics and the impact of the immune response on viral time courses [8, 12, 32, 40–43].

1.4.2 Immune Response Models

The 1994 model of Bocharov et al. [44] is widely recognized as one of the first within-host
model of influenza to include the immune response [1, 13]. This 10-dimensional ODE
model included compartments for helper T cells, CTLs, B cells, antibodies and interferon
(IFN) and was parameterized using the known biology of influenza infections. However,
the model was not validated using experimental data.

In [37], the model described by (1.4.1)-(1.4.3) was also extended to include an IFN
compartment, representing the immune response. Parameterizing this model with exper-
imental data resulted in fits that were not statistically significantly better than the ones
obtained with the 3-dimensional model described by (1.4.1)-(1.4.3), which includes no
immune response. However, the model in [37] could reproduce a double peak in virus
load, which occurs in some patients, whereas the model in (1.4.1)-(1.4.3) could not. More
generally, basic influenza models that do not account for the immune response are unable
to reproduce a variety of scenarios. For example, dose-dependent dynamics, i.e. infections
where the viral load is low, or infections in immunocompromised individuals cannot
be modeled without adding an immune response component [11]. Since the mid-2000s,
many models which include the immune response, and the differences between the innate
and adaptive immune responses, have been developed [2]. These models include the
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Cell or Molecule Type Range of Values Unit Reference
Free Virus 106 TCID50·mL−1 [1]

Infected Cells 2.625 · 109 - 5.25 · 109 cells [11, 12, 41, 45]
IFNs 10 − 100 pg · ml −1 [14]

Effector CD8+ T Cells 5 · 104 - 106 cells [8, 16, 29]
Effector CD4+ T Cells 5 · 103 -105 cells [15]

Effector B cells ∼ 103 cells · µL−1 [46]
Antibody 4 · 102 - 8 · 102 pg · ml −1 [8]

Table 1.2: Typical Peak Values of Different Cell Types During Influenza A Infections.

3-dimensional virus-triggered innate immune signaling model developed by Tan et al. [40]
which is described in Section 2.1.2.

The main challenge with models which include an immune response component is
the lack of diverse and quantitative data. This is mostly due to the fact that influenza
infections occur over a very short time period and most data from human patients only
contains a few time points representing immunological measurements such as cytokine or
antibody levels, making it hard to parameterize mathematical models [12, 13].

However the peak values of most immune components have been experimentally
measured and can be found in Table 1.2. In Table 1.2, the viral load is measured in units of
50% tissue culture infectious dose TCID50 (or TCID50/mL), which represents infectious
viral load only (total virus is measured by viral RNA levels). TCID50 has been used in
previous models [1, 11, 12]. The T-cell populations describe the T-cell populations in the
lungs and the B-cell concentrations are in liters, which is the right order of magnitude for
B cells in the lungs.

1.5 DELAY D IFFERENTIAL EQUATION MODELING

The mathematical modeling of many biological phenomena entails taking into account
various delays in physiological processes, such as the delay between infection and produc-
tion of immune cells, or the delay between infection and the production of virions by the
infected host. Classical time-dependent ODE models that seek to model these delays often
introduce an additional compartment or variable representing a latent state, assuming
that the latent and infected periods are exponentially distributed [1]. For example, when
including a latent or eclipse phase, E(t), the model described by (1.4.1)-(1.4.3) becomes

˙V (t) = kY (t) − uV (t) (1.5.1)
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˙X(t) = λ − dX(t) − βX(t)V (t) (1.5.2)
˙E(t) = βX(t)V (t) − cE(t) (1.5.3)
˙Y (t) = cE(t) − aY (t) (1.5.4)

with the new variable E and new parameter c. In this case, cells become infected after
an average time c−1 has elapsed. The assumption that the latent and infected periods are
exponentially distributed was shown to incorrectly reproduce influenza kinetics. As such,
the implementation more appropriate delays could lead to more accurate model behavior
and parameter value estimates [1].

The introduction of additional compartments to represent multiple steps (or cascades)
within a process, as in (1.5.1)-(1.5.4) where X produces E which in turn produces Y , can
lead to an increase in the number of parameters in more complex models [47]. This can
make it harder to have quantifiable parameters with biological significance, especially
if multiple delays are considered. DDE models, while less common in mathematical
modeling of immunological processes than classical ODE models, allow us to avoid these
issues [2].

Similarly to ODE models, we can define an initial value problem for autonomous DDEs
in Rn. The following definitions are taken from Smith [48]. Let τ > 0, the delay, be a real
number. Let C = C([−τ, 0],Rn), the state space of the dynamical system, be the space of
continuous functions from [−τ, 0] into Rn, with the norm

∥ϕ∥ = sup{|ϕ(θ)| : −τ ≤ θ ≤ 0}, ϕ ∈ C.

Then, the initial value problem for an initial condition ϕ is

x′(t) = f(x, xt), t ≥ 0

x0 = ϕ
(1.5.5)

where x′(t) represents the right hand derivative of x(t) and f : C → R
n is a given function.

We say x(t) is a solution to the initial value problem if it satisfies (1.5.5). Then, in a
dynamical systems framework, the trajectory of the solution to (1.5.5) is the curve t → xt.
For x(t) ∈ C([−τ, S],Rn), S ≥ 0, then for any t ∈ [0, S], we define xt ∈ C, the state of the
dynamical system at time t by

xt(θ) = x(t + θ), −τ ≤ θ ≤ 0. (1.5.6)

The state of the system is defined this way because to know the value of x(s) for
t ≤ s ≤ S, we must know all the values x(η) ∀ η ∈ [t − τ, t]. By rewriting θ = η − t, we
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obtain (1.5.6).

If in addition to continuity, we assume f is Lipschitz in the state variable xt on each
bounded subset of R× C, then there exists a unique solution to the initial-value problem
(1.5.5) [48].

The delays that occur most frequently in the modeling literature are discrete or constant
delays [49]. In this case, (1.5.5) can be written

x′(t) = f(x, x(t − τ))

x(t) = ϕ(t), −τ ≤ t ≤ 0.
(1.5.7)

If τ = 0, (1.5.7) is simply an ODE initial-value problem. When there are multiple delays,
(1.5.7) becomes

x′(t) = f(x, x(t − τ1), · · · , x(t − τn)) (1.5.8)

with τ1 ≥ · · · ≥ τn.

We can define f(x, x(t − τ)) = f(x, y). Theorem 3.1 in [48] states that if f , fx and ϕ are
continuous, then there exists σ > 0 such that there exists a unique solution of (1.5.7) on
[−τ, σ]. This can be generalized to the case with multiple delays, (1.5.8) [48].

Many DDEs model intrinsically nonnegative quantities arising from biological prob-
lems. As such, ensuring nonnegative initial conditions lead to nonnegative solutions is an
important aspect of DDE modeling. From Theorem 3.4 of [48], for x ∈ R

n, if there exists
a unique solution of the initial-value problem (1.5.8) under continuity of f and fx, and
xi = 0 implies fi ≥ 0, then provided ϕ ≥ 0 ∀t ∈ [−τ, 0], then x(t) ≥ 0 ∀t ≥ 0 for which it is
defined.

x(t) = x∗ ∈ Rn is a steady state solution of (1.5.5) if and only if f(x̂∗) = 0, where x̂∗ ∈ C

is the constant function equal to x∗. The equilibria of (1.5.8) are the same as that of the
corresponding ODE

x′(t) = f(x(t), · · · , x(t)).

Like ODEs, but unlike PDEs, DDEs have the principle of linearized stability. Thus,
similarly to ODE systems, the local stability of these equilibria can be determined by
linearizing the system about the equilibria. The following derivation follows Smith [12].

If x(t) is a solution of (1.5.5), to linearize about x∗, we consider the solution

x(t) = x∗ + y(t)

where y(t) is a small perturbation to the solution x(t). Then y(t) is a solution of

y′(t) = f(x̂∗ + yt).
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We assume that f can be written in the form

f(x̂∗ + ϕ) = L(ϕ) + g(ϕ), ϕ ∈ C

where L : C → R
n is a bounded linear function and g : C → R

n is "higher order", i.e.

lim
ϕ→0

|g(ϕ)|
ϕ

= 0.

If we neglect the higher order term, we obtain the linearized equation about the
equilibrium x̂∗,

z′(t) = L(zt). (1.5.9)

For the DDE defined in (1.5.7), the linearized equation (1.5.9) simplifies to

L(zt) = fx(x̂∗)x(t) + fy(x̂∗)x(t − τ) (1.5.10)

where we define f(x, x(t − τ)) = f(x, y). This can be generalized to a DDE with multiple
discrete delays of the form in (1.5.8). In this case, we have

L(zt) = fx(x̂∗)x(t) +
n∑

j=1
fyj

(x̂∗)x(t − τj) (1.5.11)

where we define f(x, x(t − τ1), · · · , x(t − τn)) = f(x, y1, · · · , yn).

For z(t) = eλtv, v ̸= 0 to be a solution of (1.5.9), with λ complex and v a vector with
complex components, we must have

λv = L(eλv) = Lλ

where Lλ is an n × n matrix. For DDEs with a single discrete delay, as defined in (1.5.7),
we have

Lλ = fx(x̂∗)v + fy(x̂∗)e−λτ v.

We can generalize this to DDEs with multiple discrete delays as defined in (1.5.8) and we
obtain

Lλ = fx(x̂∗)v +
n∑

j=1
fyj

(x̂∗)e−λτj v.

Then z(t) is a solution of (1.5.9) if λ is a root of the characteristic polynomial

det(λI − Lλ) = 0.

The delays often result in more complex characteristic polynomial that typically have
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infinitely many roots. From Theorem 4.8 in [48], let ∆(λ) = 0 be the characteristic poly-
nomial corresponding to (1.5.9), which is the linearized system of (1.5.5) and suppose
that

−σ := max
∆(λ)=0

ℜ(λ) < 0.

Then x∗ is a locally asymptotically stable steady state of (1.5.5). If ℜ(λ) > 0 for some λ,
then the equilibrium is unstable.

Sufficiently large delays can also lead to delay-induced instability or delay-induced
oscillations. A solution x(t) to (1.5.5) is oscillatory with respect to a steady state x∗ if
x(t) − x∗ has arbitrarily large zeros: for some s ∈ R, for a solution of (1.5.5), defined for
t ≥ s for every t0 > s, ∃ t1 > t0 such that x(t1) − x∗ = 0 [21]. If it is locally asymptotically
stable for all delays, then we say x∗ has delay-independent stability.

1.5.1 Piecewise-Smooth Delay Differential Equations

The mathematical modeling of infections requires the modeling of distinct phases repre-
senting various biological processes. For example, in my mathematical model, which will
be developed in Chapter 2, the adaptive immune system is not activated until virus levels
cross a certain threshold. In this context, piecewise-smooth (PWS) functions can be used
to define the distinct phases. More generally, PWS functions are often used to represent
biological processes that are described by smooth nonlinear functions. The use of PWS
functions can simplify the model and lead to easier mathematical analysis [50].

The following definitions are taken from Bernardo et al. [51]. A PWS flow is described
by a finite set of smooth ODEs

ẋ = Fi(x, µ), for x ∈ Si

where
⋃

i Si = D ⊂ R
n and each Si is non-empty. The intersection

∑
ij

:= S̄i

⋂
S̄j

is either an Rn−1-dimensional manifold included in the boundaries ∂Si and ∂Sj or it is
the empty set. Each Fi is smooth in both the state x and the parameter set µ for any
open subset of Si and defines a smooth flow Φi(x, t) within any open set U ⊃ Si. If

∑
ij is

non-empty, it is called a discontinuity set or switching manifold. The degree of smoothness
of a PWS ODE in the switching manifold

∑
ij is determined by the highest order r such

that the Taylor series expansions of Φi(x, t) and Φj(x, t) agree up to terms of O(tr−1). If
Fi(x) ̸= Fj(x) for x ∈ ∑

ij , then the degree of smoothness of the PWS ODE is one. This type
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of system is said to be of Filippov type. If Fi(x) = Fj(x) but Fi,x ̸= Fj,x, then the degree
of smoothness is two. Systems with smoothness of degree two or higher are said to be
PWS continuous systems. PWS systems give rise to various types of bifurcations on the
switching manifold called discontinuity-induced bifurcations (DIBs). These can occur, for
example, when an equilibrium point lies on a discontinuity set or there are limit cycles
near or tangent to the discontinuity set.

For example, for an ODE with a single discontinuity set, we have

ẋ =

F1(x, µ), if x ∈ S1

F2(x, µ), if x ∈ S2

(1.5.12)

where F1 generates the flow Φ1 and F2 generates the flow Φ2. The single boundary can be
written as the zero of a smooth function H such that (1.5.12) can be written as

ẋ =

F1(x, µ), if H(x) ≤ 0

F2(x, µ), if H(x) > 0.
(1.5.13)

As shown in Barton [50], this can be extended to PWS DDEs with a finite number of
discrete delays:

˙x(t) =

F1(x(t), x(t − τ1), . . . , µ) if H(x(t), x(t − τ1), . . .) ≤ 0

F2(x(t), x(t − τ1), . . . , µ) if H(x(t), x(t − τ1), . . .) > 0.
(1.5.14)

1.6 NUMERICAL S IMULATIONS

The goal of numerically simulating DDEs is to approximate solutions of initial value
problems for which we cannot find exact solutions and to study the qualitative behavior of
equilibria using the characteristic roots of linearized systems. DDE models are generally
more complex to simulate numerically than ODE models but restricting a model to DDEs
with discrete delay results in a more robust numerical solution [2, 49].

For the initial-value problem defined in (1.5.7), the following definitions are adapted
from Bellen and Zennaro [52] and Shampine [49]. On the interval [0, T ], we consider step
sizes hn > 0 and mesh points ∆ = {t0, t1, . . . , tn, . . . , tN = T}. Considering t0 = 0 and
tn = tn−1 + hn for n ≥ 1, for all tn ∈ ∆ we either have that tn − τ < 0 or tn − τ ∈ (ti, ti+1].
By solving a discrete set of algebraic equations for xn+1, we can approximate x(tn+1). This
is called a temporal discretization of the initial value problem. Methods that compute xn+1

are called explicit if xn+1 can be solved explicitly. Otherwise, they are called implicit. A
DDE is said to be stiff if for most explicit methods, the largest step size hn guaranteeing
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numerical stability and a small discretization error is excessively small [53]. This occurs
when some components of solutions to the differential equation system decay much faster
than others. In these cases, implicit methods usually perform much better than explicit
methods.

Initial time-series simulations of the DDE model were performed with the Matlab
function dde23 [54]. Most of the code of dde23 is based on explicit continuous Runge-Kutta
methods, which are a family of methods used for temporal discretization of nonlinear
differential equations [49]. However, due to the stiffness of the differential equation model
in this thesis, some simulations were performed using dde15s, adapted from the Matlab
stiff ODE solver ode15s by Dr Lawrence F. Shampine (Southern Methodist University) in
Agrawal et al. [55]. The updated version of the software, dde15s_updated, was written by
Michelle Przedborski [56]. The absolute and relative tolerances used were 10−9.

1.7 THESIS OUTLINE

In Chapter 2, in Section 2.1, I will develop an 11-equation time-dependent delay differential
equation model of the immune response during infection, including immune components
responsible for the maintenance of immunological memory. Solutions of this model
and the stability of steady states values will then be studied. First, solutions of a three-
equation submodel of within-host viral dynamics without the immune response will
be studied in Section 2.2.1. Then, solutions of a five-equation submodel of viral and
innate immune dynamics will be studied in Section 2.2.2. Finally, solutions of the full 11-
equation model of viral, innate immune, and adaptive immune dynamics will be studied
in Section 2.2.3. Numerical simulations of these models will be performed and the effect
of some parameters on model dynamics will be assessed in Section 2.3. Modeling these
submodels, i.e. simplified systems, will allow us to study the influence of various immune
compartments separately.

In Chapter 3, we will study the impact of the cell compartments which are responsible
for maintaining immunological memory on reinfection time-courses. Specifically, in
Section 3.1, a framework to model reinfections will be developed, taking into account the
various factors which influence immunological memory. Numerical simulations will be
performed in Section 3.2 and the impact of these factors will be discussed. A model of
sex-biased difference in immune responses on infection and reinfection time courses will
be developed and studied in Section 3.3. We will discuss the different sex-biased factors
and their impact on the immune response as well as how to include them in the model
previously developed.



CHAPTER 2

MATHEMATICAL MODELING OF THE IMMUNE RESPONSE TO

INFLUENZA A

In this chapter, I will develop a time-dependent delay differential equation model of the
immune response during infection, study its stability and perform numerical simulations
representing various infection scenarios. The model will be derived in Section 2.1. First,
a three-equation submodel of within-host viral dynamics without the immune response
will be developed in Section 2.1.1. Then, a five-equation submodel of viral and innate
immune dynamics will be developed in Section 2.1.2. Finally, the full 11-equation model of
viral, innate immune, and adaptive immune dynamics will be developed in Section 2.1.3.
The solutions and their stability will be studied in Section 2.2 with the three-, five-, and
eleven-equation models studied in Sections 2.2.1, 2.2.2, and 2.2.3, respectively. Numerical
simulations will be performed and presented in Section 2.3. Estimations of parameter
values, model simulations for various infection scenarios, and sensitivity of the model to
the parameters will be discussed in Sections 2.3.1, 2.3.2, and 2.3.3, respectively.

2.1 DERIVATION OF THE DELAY D IFFERENTIAL EQUATION MODEL

My goal is to model how innate and adaptive immune cell populations evolve during
infection and reinfection with time-dependent delay differential equations. The model will
be comprised of the following 11 time-dependent variables:

V : Free Virus Concentration (TCID50· mL−1)

X : Uninfected, Susceptible (Target) Cell Population (cells)

Y : Infected Cell Population (cells)

R : Recovered and Resistant to Infection Cell Population (cells)

I : IFN Serum Concentration (pg · mL−1)

TE : Effector CD8+ T-Cell Population (cells)

TM : Memory T-Cell Population (cells)

TH : Helper CD4+ T-Cell Population (cells)

BLL : Long-lived B-Cell Concentration (cells ·µL−1)

15
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BE : Effector B-cell Concentration (cells ·µL−1)

A : Antibody Concentration (pg · mL−1).

The variables V , X , and Y constitute the basic viral dynamics. A three-equation submodel
describing these dynamics will be derived in Section 2.1.1. The innate immune dynamics
are comprised of the variables V , X , Y , R, and I . Building on the equations for viral
dynamics derived in Section 2.1.1, the equations characterizing the innate immune re-
sponse will be derived in Section 2.1.2. The full model, describing both the innate and the
adaptive immune responses described by (2.1.1a)-(2.1.1k) will be derived in Section 2.1.3
by extending the innate immune response model developed in Section 2.1.2. The dynamics
will be described by the following equations:

V̇ = kV Y (t − τV )
K̃n

1

K̃n
1 + In(t − τIV )

− dV V (t) − ρV A(t)V (t) (2.1.1a)

Ẋ = µ − dXX(t) − βX(t)V (t) − kIXX(t)I(t) (2.1.1b)

Ẏ = βX(t)V (t) − dY Y (t) − kTEY TE(t)Y (t) − kIY I(t)Y (t) (2.1.1c)

Ṙ = kIXX(t)I(t) + kIY Y (t)I(t) − dRR(t) (2.1.1d)

İ = kIY (t − τI) +
b2I(t − τ2)

k2 + I(t − τ2)
+ kTEITE(t − τTEI) + kTHITH(t − τTHI)

− dII(t)
(2.1.1e)

ṪH = kTH
1V (t)>VT

I(t)Y (t) − dTH
TH(t) (2.1.1f)

ṪE = kTE
I(t − τTE

)TH(t − τTE
)1V (t−τTE

)>VT
Y (t − τTE

)
1 −

TE(t − τTE
)

P (t − τTE
)


+ kTM Y 1V (t)>VT

TM(t)Y (t) − (1 − 1Y (t))TE(t)
(

dTEpi + kTM

)
− dTE

TE(t)

(2.1.1g)

ṪM = (1 − 1Y (t))kTM
TE(t) − kTM Y 1V (t)>VT

TM(t)Y (t) (2.1.1h)

ḂLL = kBLL
1V (t−τBLL

)>VT
V (t − τBLL

)TH(t − τBLL
)

− kBLLV 1V (t−τBLLV )>VT
V (t − τBLLV )BLL(t − τBLLV )

(2.1.1i)

ḂE = kBE
1V (t−τBE

)>VT
V (t − τBE

)TH(t − τBE
)

+ kBLLV 1V (t−τBLLV )>VT
V (t − τBLLV )BLL(t − τBLLV ) − dBE

BE(t)
(2.1.1j)
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Ȧ = kBLLABLL(t) + kBEABE(t) − ρAA(t)V (t) − dAA(t). (2.1.1k)

The full model described by (2.1.1a)-(2.1.1k) is a system of 11 delay differential equa-
tions describing different phases of a within-host influenza infection. The constants k

with a single variable subscript describe the primary production rate of that variable. The
constants k with a double variable subscript indicate either (1) a contact rate between two
cell types (in which case it multiplies a product of two variables) or (2) a production rate
of a variable which is produced by different cell types, such as I and A (in which cases it
multiplies a single variable). The delays have the same subscript as the constants, except
when the variable with the delay is not multiplied by a constant. The constants d with a
single variable subscript describe the decay rate of that variable.

The terms denoted
1V >VT

are indicator functions, which turn certain components of the adaptive immune system on
and off as different thresholds are crossed. Broadly, there are three phases to the immune
response: initially, the innate immune response is induced, then the short-lived adaptive
immune response is activated, and finally, the short-lived adaptive immune response is
turned off post-infection and immunity levels are boosted. The indictor functions that
generate these behaviors introduce discontinuities in the DDEs which will be discussed in
Section 2.2.3.1.

The dynamics and interactions between all the model variables are shown in Figure 2.1.
The compartments in blue (the free virus, susceptible cells, and infected cells), represent V ,
X , and Y , the basic viral dynamics. The compartments in green, i.e. the recovered cells and
IFNs represent R and I , respectively. Together, the blue and green compartments describe
the viral dynamics with innate immune response components. The adaptive immune
response components are activated once viral antigen is above a certain threshold. The
T-cell and B-cell compartments represent a simplification of the T-cell and B-cell dynamics,
which make up the adaptive immune response. The T-cell and B-cell dynamics are shown
in full in Figure 2.2 and Figure 2.3, respectively. The black arrows indicate stimulatory
effect and the red repression arrows indicate inhibitory effect.

2.1.1 Viral Dynamics

Equations (1.4.1)-(1.4.3) in Section 1.4 form the basis of the viral dynamics in my model,
described by (2.1.1a) to (2.1.1c). In fact, when there is no immune response whatsoever
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Figure 2.1: Simplified Diagram of Viral and Immune Response Dynamics.

(2.1.1a)-(2.1.1c) reduce to

V̇ (t) = kV Y (t − τV ) − dV V (t) (2.1.2a)

Ẋ(t) = µ − dXX(t) − βX(t)V (t) (2.1.2b)

Ẏ (t) = βX(t)V (t) − dY Y (t). (2.1.2c)

The first term in (2.1.2a) differs from (1.4.1) as it takes into account the duration of viral
replication, i.e. the latent phase before an infected cell starts producing new virus, dis-
cussed in Section 1.5. Except for this delay, (2.1.2a)-(2.1.2c) are identical to (1.4.1)-(1.4.3).
The inclusion of the production of healthy cells µ to the model allows us to model post-
infection cell regeneration, which target-cell limited models cannot do. This has been done
in previous models, which then allowed for distinguishing lethal from sublethal infections
[57].

2.1.2 Innate Immune Response Dynamics

The innate immune response is made up of more than 7 different cell types, including
different types of macrophages and NK cells [4]. This response is induced by different
types of IFNs as well as IL action. Modeling each of these components separately would
result in a 16 equation model with additional variables describing macrophages, NK cells,
type I IFNs, type II IFNs, type III IFNs, and ILs. To reduce the number of equations that
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make up the model (2.1.1), we consider that the entire innate immune response is included
in the IFN compartment. This consolidation results from the idea that IFN action is an
integral part of the innate immune response and that IFNs stimulate components of the
innate immune system, such as NK cells and macrophages, at a rate that is assumed to be
proportional to the amount of IFNs present [1, 13]. Certain IFN types have a similar role
to ILs in effector and memory cell regulation, making the impact of ILs hard to quantify
and to distinguish from that of IFNs [25, 31]. Most mathematical models of infection
do not usually differentiate between the different types of IFNs and multiple previous
models have made the assumption that the IFN compartment encompasses a wide range
of innate immune response components with biologically sound results [13, 19, 40]. This
assumption allows for considerable simplification of the model and which will allow for
more specificity in the modeling of the adaptive immune response which is responsible for
long-term memory.

Thus, we model the innate immune response with a single IFN compartment, I , whose
dynamics are described by (2.1.1e). Moreover, the compartment R represents cells that
have become resistant to infection due to IFN action, as described in (2.1.1d).

Low virus loads may be controlled by the innate immune response without inducing a
short-lived adaptive immune response [4, 5]. In that case, the innate immune response to
viral infections is described by the following five equations:

V̇ = kV Y (t − τV )
K̃n

1

K̃n
1 + In(t − τIV )

− dV V (t) (2.1.3a)

Ẋ = µ − dXX(t) − βX(t)V (t) − kIXX(t)I(t) (2.1.3b)

Ẏ = βX(t)V (t) − dY Y (t) − kIY I(t)Y (t) (2.1.3c)

Ṙ = kIXX(t)I(t) + kIY Y (t)I(t) − dRR(t) (2.1.3d)

İ = kIY (t − τI) +
b2I(t − τ2)

k2 + I(t − τ2)
− dII(t). (2.1.3e)

In (2.1.3a)-(2.1.3d), the terms highlighted in green represent the effect of the innate
immune response, described by (2.1.3e), on the basic viral dynamics.

The innate immune response components were adapted from the model in Tan et al.
[40] which considers virus-triggered innate immune signaling pathways and is made up of
three compartments: V , the viral mRNA; I , the IFNs; and A, the antiviral proteins (AVPs)
and seeks to characterize five reactions:
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1. the replication of viral mRNAs;

2. the virus-activated IFN expression;

3. the expression of AVPs activated by IFNs;

4. the positive feedback of IFNs; and

5. the inhibition of virus replication by AVPs.

Each of these reactions occurs with a delay which we denote τV , τI , τ3, τ2, and τ5, respec-
tively. The model of [40] consists of three delay differential equations representing each
compartment

dV

dt
= k1V (t − τV )

b1K
n
1

Kn
1 + An(t − τ5)

− dV V (t) (2.1.4a)

dI

dt
= kIV (t − τI) +

b2I
n2(t − τ2)

kn2
2 + In2(t − τ2)

− dII(t) (2.1.4b)

dA

dt
= k3I(t − τ3) − d3A(t). (2.1.4c)

AVP concentration values are much smaller than virus and IFN concentration values
and we thus assume AVP concentration values return to steady state on a faster time
scale than virus and IFN [40]. To simplify the model (2.1.4a)-(2.1.4c), we assume A is at
quasi-steady state, that is

0 ≈
dA

dt
= k3I(t − τ3) − d3A(t) (2.1.5)

=⇒ A(t) ≈
k3

d3
I(t − τ3) (2.1.6)

A(t − τ5) ≈
k3

d3
I(t − (τ3 + τ5)). (2.1.7)

Assuming equality in (2.1.7), equation (2.1.4a) becomes

dV

dt
= kV V (t − τV )

b1K̃
n
1

K̃n
1 + In(t − τIV )

− dV V (t) (2.1.8)

where

K̃1 =
d3

k3

1/n

K1
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and with the parameter name change τ3 + τ5 → τIV .

The focus of the model (2.1.4) of [40] is the virus-mediated innate immune response. It
does not explicitly model the basic viral dynamics presented in Nowak and May [27] and
described in (1.4.1)-(1.4.3). In fact, the single compartment V representing viral mRNA
produced from infection is a combination of two viral mRNA populations: (1) the viral
mRNA that exists in free virions and (2) the viral mRNA that exists within infected cells.
Free virus needs to enter host cells for viral replication and virus-activated IFN expression
to occur (see Figure 2.1), which represents reactions 1 and 2, respectively. Because they
cannot occur outside infected cells, we say these two reactions are driven by the infected
cell population, Y .

In (2.1.1a), the infected cell compartment Y drives the production of viral mRNA,
which results in free virus, as described in Section 2.1.1. As such, the factor V (t − τV ) in
2.1.4a becomes Y (t − τV ) in (2.1.3a). The inhibitory effect of the innate immune response
is described by the term highlighted in green in (2.1.3a). In (2.1.4a), kV is considered to
be the production rate of viral mRNA and b1, the maximal growth rate of viral mRNA.
These two parameters were estimated and are thus not uniquely identifiable. Considering
this, in (2.1.3a), we assume the production of free virus is described by a Hill function
and its maximum growth rate is defined by kV Y (t − τV ). By putting (2.1.8) and (2.1.2a)
together, we get (2.1.3a), which completely describes free virus dynamics in the presence
of an innate immune response with the parameter name change kV b1 → kV .

Similarly, the viral mRNA which triggers IFN production comes from infected cells.
As such, we can say the term V (t − τ2) in (2.1.4b) is described by Y (t − τI) in (2.1.3e). The
model [40] estimated n2 = 1, which means there is no synergistic effect in IFN positive
feedback. We choose to set n2 = 1 which allows for simplification of the model. Thus,
(2.1.3e) is obtained from (2.1.4b). In [40], the IFN levels represent normalized concentration
values, that is the ratio of IFN concentration at a specific time to its initial concentration. In
2.1.1, I(t) represent the difference between IFN levels at time t and basal concentrations.

The innate immune response also results in the production of recovered and resistant
cells, described by (2.1.3d), which are not susceptible to infection. These cells are produced
at rates kIX , the production of resistant cells from susceptible cells, and kIY , the recovery
rate of infected cells. We consider that healthy cells that become resistant to infection are
cells who are never directly in contact with the antigen but are near cells in contact with
antigen. In this case, the spatial dimension of the model is not considered and 100% of
healthy cells in contact with free virus become infected, as described in (2.1.3b) by the
term βXV . This has been done in a previous model [58]. It could have been interesting to
consider a more direct antiviral effect of IFN, i.e. a subset of healthy cells in contact with
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virus become infected and the rest become resistant. In this scenario, IFN would reduce
the total size of the infection through “resistance” to infection.

2.1.3 Adaptive Immune Response

Studies have suggested that the short-lived, effector adaptive immune response to infection,
which includes T-cell, B-cell, and antibody responses, kicks in once the amount of antigen
present is above a certain threshold [3, 6, 7]. Others have shown that the adaptive immune
response, including memory T cell, is minor in individuals who are asymptotic or infected
with low antigen doses [59, 60]. For this reason, we will consider that the adaptive immune
response is activated when antigen levels cross a certain threshold. The only mechanism
in the model (2.1.1) not subject to the threshold is antibody action on free virus. Once
this threshold is crossed, the innate immune response is strong enough and the infection
becomes symptomatic. Previous models have defined this threshold as being 1% of peak
viral titers [13]. Thus, we can write the threshold condition as

V (t) > VT .

The threshold crossing is time-dependent and because of the delays present in (2.1.1f)-
(2.1.1j), the compartments described by these equations are not all activated at the same
time. In fact, the mechanisms that occur after no delay will be activated first, which allows
for modeling of immunological memory components being activated faster upon reinfec-
tion. The dynamics pertaining to these different threshold-crossing times are modeled by
indicator functions and are explained in more detail in Section 2.2.3.1.

More generally, when V ≤ VT , only the innate immune response, described by (2.1.1e)
and derived in Section 2.1.2, is activated. When V > VT , the T-cell and B-cell compartments
are activated. Helper, effector, and memory T-cell dynamics are described by (2.1.1f)-
(2.1.1h), which will be derived in Section 2.1.3.1. Long-lived and effector B cells are
described by (2.1.1i)-(2.1.1j) and antibody is described by (2.1.1k), which will be derived
in Section 2.1.3.2. Some of these adaptive immune response components act directly on
the innate immune response subsystem (2.1.3a)-2.1.3e. These components are highlighted
in green in (2.1.9a) to (2.1.9e):

V̇ = kV Y (t − τV ) ·
K̃n

1

K̃n
1 + In(t − τIV )

− dV V (t) − ρV A(t)V (t) (2.1.9a)

Ẋ = µ − dXX(t) − βX(t)V (t) − kIXX(t)I(t) (2.1.9b)

Ẏ = βX(t)V (t) − dY Y (t)−kTEY TE(t)Y (t) − kIY I(t)Y (t) (2.1.9c)
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Figure 2.2: Diagram of Complete T-cell Dynamics.

Ṙ = kIXX(t)I(t) + kIY Y (t)I(t) − dRR(t) (2.1.9d)

İ = kIY (t − τI) +
b2I(t − τ2)

k2 + I(t − τ2)
+ kTEITE(t − τTEI) + kTHITH(t − τTHI)

− dII(t).
(2.1.9e)

In (2.1.9a), the term highlighted in green represents free virus removal due to binding
with antibody, where ρV represents the binding rate between antibody and free virus. In
(2.1.9c), the highlighted term represents CTL killing of infected cells, where kTEY represents
the killing rate of CTLs. In (2.1.9e), the two highlighted terms represent IFN production
by effector CD8+ T cells and helper T cells, respectively. kTEI and kTHI are the production
rates of IFN by effector and helper T cells, respectively [19, 61].

2.1.3.1 T-cell Compartment

In my model (2.1.1), when V > VT , differentiation and activation of different types of naive
T cells occurs. The interactions and dynamics between different T-cell types after T-cell
activation are illustrated in Figure 2.2 and will be described below.

In the absence of disease, the naive CD4+ T-cell population is maintained through
homeostatic proliferation which regulates naive CD4+ T cell turnover and keeps the cell
population relatively constant [62]. Differentiation of naive CD4+ cells into helper T
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cells TH and their subsequent activation depends on antigen presentation. Before they
are activated, CD4+ T cells do not have any effector functions, which are described in
Section 1.3. For these reasons, to have a simpler model, there is no naive CD4+ T-cell
compartment in my model (2.1.1). The production of helper cells, TH , is modeled with the
assumption that there are always enough naive CD4+ T cells, which is the case in healthy
non-elderly adults [62].

In this case, TH production is proportional to viral antigen, which in my model, in
(2.1.1f), is ascribed to the infected cell population Y . This process is further promoted by
IFN action, I , which increases binding of naive T cells to antigen. The production of TH is
thus modeled by

kTH
1V (t)>VT

I(t)Y (t). (2.1.10)

The removal of helper T cells is proportional to the number of helper T cells and is described
by

−dTH
TH(t). (2.1.11)

Combining (2.1.10) and (2.1.11), we obtain the two term equation (2.1.1f).

Similarly to naive CD4+ T cells, the population of naive CD8+ T cells is maintained
through homeostatic proliferation. For the same reasons, to have a simpler model, there is
no naive CD8+ T-cell compartment in my model (2.1.1). The production of CTLs, TE , is
modeled with the assumption that there are always enough naive CD8+ T cells, which is
the case in healthy non-elderly adults [62]. The production of CTLs takes into account the
delay between CD8+ T-cell differentiation and their activation and migration to infection
sites [25]. This delay is denoted τTE

.

When the infection generates a threshold level of antigen, experimental results have
shown that exposure to antigen for as little as 24 hours is enough to induce programmed
naive CD8+ T-cell proliferation and differentiation into CTLs or effector CD8+ T cells [25,
28]. However, viral infections occurring in humans, including influenza A infections, are
not cleared within 24 hours so T-cell exposure to antigen most likely continues after their
initial activation and how further antigen exposure impacts this antigen-independent CD8
T-cell development is unclear [28]. Moreover, experimental results on antigen-independent
T-cell development are performed in isolation and do not accurately reproduce the context
of an infection, e.g. they do not take into account other components of the immune
response [61, 63]. For these reasons, most mathematical models that consider CD8+ T
cells dynamics during infection assume that CD8+ T-cell proliferation and differentiation
depend continuously on the presence of viral antigen [29, 30, 64]. It is also assumed that
the proliferation of CTLs is proportional to the amount of antigen or antigen presenting
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cells [13]. Like TH , my model (2.1.1) assumes CD8+ T-cell proliferation and differentiation
depends continuously on the presence of antigen, ascribed to the population of infected
cells Y .

The production of CTLs TE is limited by the total population capacity of memory and
effector T cells and so the maximum population of effector CD8+ T cells P (t) is

TE(t) + TM(t) ≤ TT OT =⇒ TE(t) ≤ P (t) = TT OT − TM(t). (2.1.12)

Models that exclude this density-dependence have been show to result in statistically
poor fits to available data [16].

Moreover, the CTL proliferation rate is also proportional to the population of helper T
cells TH , which activate CTLs, as well as innate immune components I , which increase
binding to viral antigen [13]. The production of CTLs is then modeled by the first term of
(2.1.1g):

ṪE = kTE
I(t − τTE

)TH(t − τTE
) · 1V (t−τTE

)>VT
Y (t − τTE

)
1 −

TE(t − τTE
)

P (t − τTE
)

 (2.1.13)

where kTE
is the production rate of TE and the last term in (2.1.13) ensures that (2.1.12) is

satisfied.

The removal of CTLs is proportional to the number of CTLs and represents the cell
disappearance rate, which includes death and long-term exit from blood [65]. It is described
in (2.1.1g) by

−dTE
TE(t). (2.1.14)

The other mechanisms that govern CTL production and decay depend on memory T
cells. Memory T cells are split into 2 different subtypes: central memory T cells (TCM cells)
and effector memory T cells (TEM cells). It is unclear whether both populations arise and
are sustained independently or whether TCM cells can become TEM cells and vice versa
[28, 29]. TEM cells can kill targeted infected cells, similarly to CTLs. Moreover, they can
carry out other effector functions more rapidly than CTLs activated as a result of the initial
immune response [30]. To simplify this model and because the mechanisms that regulate
memory T-cell subtypes are not well understood, only one memory T cell compartment
will be considered, denoted TM . These cells reacquire effector functions upon reinfection.
To simplify the model further, we will consider that TM become TE , i.e. regain effector
functions, at a rate kTM Y , with no delay. This process is modeled by the second term in
(2.1.1g),

kTM Y 1V (t)>VT
TM(t)Y (t). (2.1.15)
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During the post-infection period, denoted (1 − 1Y ), the population of CTLs declines
very quickly, at a much faster rate than the normal death rate of TE , described in (2.1.14).
Indeed, Post-infection, 90 to 95% of CTLs are cleared and 5 to 10% differentiate into
memory T cells. This is modeled in (2.1.1g) by the term

−(1 − 1Y (t))TE(t)
(

dTEpi + kTM

)
(2.1.16)

where dTEpi is the decay rate of CTLs post-infection and kTM
TE(t) is the rate at which

effector T cells differentiate into memory T cells post-infection. This term is non-zero if Y ,
the population of infected cells is zero, i.e. the infection has been cleared or no infection
has occurred yet. Another way to model the production of memory T cells post-infection
would be to consider that effector T cell become memory T cells at rate kTM

after a delay
τTM

, as was done in a previous model [16].

Putting (2.1.13), (2.1.14), (2.1.15), and (2.1.16) together, we obtain (2.1.1g).

As opposed to helper CD4+ and effector CD8+ T cells, memory T-cell populations
are maintained over long periods of time, independent of infection. It is assumed the
population of memory T cells is kept relatively constant over time, i.e.

(production rate)(TM(t)) = (death rate)(TM(t))

holds [66]. For this reason, in (2.1.1h), there are no terms representing independent
production or removal of memory T cells.

Memory T cells are produced post-infection as described in (2.1.16). Memory T cells
regain effector functions as described in (2.1.15), with opposite sign. Putting these two
terms together, we obtain that the memory T-cell population varies according to (2.1.1h).
Thus, (2.1.1f)-(2.1.1h) completely describe T-cell dynamics.

2.1.3.2 B-cell and Antibody Compartment

In their complete form, B-cell dynamics, including differentiation and effector function,
are characterized by the schematics in Figure 2.3 and will be described below.

Minimal antigen doses may be controlled subclinically by innate defenses and may be
insufficient to induce adaptive immune responses, such as B-cell differentiation [5]. As
such, long-lived B cells and plasmablasts are only produced if the amount of viral antigen
is greater than the threshold amount, i.e. V > VT . This is the same threshold amount as
required for T-cell activation, as explained in Section 2.1.3.

There are three distinct types of B cells: short-lived effector cells, long-lived memory
cells, and long-lived plasma cells. Short-lived effector cells, also called plasmablasts, and
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Figure 2.3: Diagram of Complete B-cell Dynamics.

long-lived plasma cells can secrete antibody but memory B cells cannot. These cells re-
differentiate into plasmablasts upon reinfection. In my model, memory and plasma cells
will be combined into one compartment, BLL, representing long-lived cells to reduce the
number of compartments and simplify the model. There are thus two B-cell compartments
in (2.1.1): BLL, described by (2.1.1i), and BE representing short-lived effector B cells, whose
dynamics are described by (2.1.1j). Both these compartments are made up of ASCs.

Both these types of cells result from naive B cells binding to viral antigen, differentiating,
and being activated, as shown in Figure 2.3. Similarly as for T cells, to have a simpler
model, there are no naive B-cell compartments in my model (2.1.1). The production of
long-lived B cells BLL and short-lived B cells BE are modeled with the assumption that
there are always enough naive B cells. The production of BLL and BE takes into account
the the delay between B-cell differentiation and their activation and migration to infection
sites after they are activated [18]. These delays are denoted τBLL

and τBE
, for the production

of BLL and BE , respectively.

The production of both long-lived B cells BLL and short-lived plasmablasts BE is
proportional to viral antigen, ascribed to the free virus population V , and to helper T cells
TH , which activate B cells. The production of these cells is represented by

kBLL
1V (t−τBLL

)>VT
V (t − τBLL

)TH(t − τBLL
) (2.1.17)

kBE
1V (t−τBE

)>VT
V (t − τBE

)TH(t − τBE
) (2.1.18)
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where kBLL
is the production rate of BLL and kBE

is the production rate of BE .

Upon reinfection, long-lived (memory) B cells can differentiate and become effector
B cells BE . This is triggered by long-lived B cells BLL binding to viral antigen V at a rate
kBLLV . This process occurs after a delay τBLLV but is quicker than the differentiation of
naive B cells into BE after a primary infection [10]. This process is described by term

−kBLLV 1V (t−τBLLV >VT
V (t − τBLLV )BLL(t − τBLLV ) (2.1.19)

Because long-lived B-cell populations are maintained for years, even in the absence of
antigen, it is assumed the population of long-lived B cells is constant over time, so there is
no antigen-independent removal term for [10].

Putting together (2.1.17) and (2.1.19), we obtain (2.1.1i).

Plasmablasts BE are removed at a rate proportional to their population,

−dBE
BE(t). (2.1.20)

Putting (2.1.18), (2.1.19) (as a production term, i.e. with positive sign), and (2.1.20), we
obtain (2.1.1j).

We consider that antibody is produced by both long-lived B cells BLL and plasmablasts
BE . This is modeled in (2.1.1k) by

kBLLABLL(t) + kBEABE(t) (2.1.21)

where kBLLA is the production rate of antibody A by long-lived B cells and kBEA is the
production rate of antibody A by plasmablasts.

The model does not take into account antibody affinity. Indeed, antibody produced
by long-lived B cells have a higher affinity to virus, i.e. higher binding rate to virus, than
plasmablasts that are produced during a primary infection. Antibody binding to virus
results in the neutralization (elimination) of virus and the elimination of antibody. In
(2.1.1k), this is described by the term

−ρAA(t)V (t) (2.1.22)

where the constant ρA is the binding rate of antibody A and free virus V . In (2.1.1a) the
binding rate between antibody A and free virus V is denoted ρV . Considering A and V are
not expressed in the same units, we have implicitly defined ρA as

ρA = kρV (2.1.23)
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where k a unit normalization constant. So, in my model (2.1.1a)-(2.1.1k), there is a unique
binding rate between antibody and virus but the parameters ρV and ρA express this binding
rate in different units (see Table 2.7 in Section 2.3.1.2).

Removal of antibody also results from natural antibody clearance, represented by

−dAA(t). (2.1.24)

Putting (2.1.21), (2.1.22), and (2.1.24) together, we obtain (2.1.1k), which completely de-
scribes antibody dynamics.

2.2 ANALYSIS OF SOLUTIONS AND STABILITY

2.2.1 Viral Dynamics

Because all variables represent biological quantities, it is important to establish positivity
of the solutions. The viral dynamics presented in (2.1.2a)-(2.1.2c) can be rewritten as

ẋ =


V̇ (t)

Ẋ(t)

Ẏ (t)

 =


kV Y (t − τV ) − dV V (t)

µ − dXX(t) − βX(t)V (t)

βX(t)V (t) − dY Y (t)

 = f(x, y) (2.2.1)

where

x =


V (t)

X(t)

Y (t)

 and y =


V (t − τV )

X(t − τV )

Y (t − τV )

 ∈ R3.

Theorem 3.1 from [48], presented in Section 1.5, establishes uniqueness of the solution
for the initial-value problems and continuous initial conditions ϕ, provided f and fx are
continuous. For the system defined in (2.2.1), we have that f is a vector of polynomial
functions, so it is smooth and thus, both f and fx are continuous. Thus, for any continuous
initial conditions ϕ, this system has a unique solution for a given set of parameters.
Moreover, from Theorem 4.3 of [48], presented in Section 1.5, if the solution is unique, we
have positivity of the solution if

∀ x, y ∈ R3
+ xi = 0 =⇒ fi ≥ 0
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for any nonnegative initial conditions ϕ. For the system defined in (2.2.1), for nonnegative
parameter values, we have

x1 = 0 =⇒ f1 = k̄K̃1
−n

y1 ≥ 0, (2.2.2)

x2 = 0 =⇒ f2 = µ ≥ 0, (2.2.3)

x3 = 0 =⇒ f3 = βx2x1 ≥ 0. (2.2.4)

Thus, by Theorem 3.4 of [48], for any nonnegative initial conditions ϕ, the model of basic
viral dynamics, defined by the system (2.2.1), has a nonnegative solution.

Let x∗ = (V ∗, X∗, Y ∗) denote a steady state solution of the model (2.1.2a)-(2.1.2c), as
defined in Section 1.5. This solution satisfies

0 = kV Y ∗ − dV V ∗ (2.2.5)

0 = µ − βX∗V ∗ − dXX∗ (2.2.6)

0 = βX∗V ∗ − dY Y ∗. (2.2.7)

We can solve for explicit forms of x∗. When V ∗ = Y ∗ = 0, (2.2.5) and (2.2.7) hold. In this
case, it is easy to see from (2.2.6) that

X∗ =
µ

dX

.

This gives us a first steady state

(V ∗, X∗, Y ∗)DF =
0,

µ

dX

, 0
 . (2.2.8)

This steady state represents a disease-free (DF) equilibrium, that is the system is at equilib-
rium when an individual has no infection. We can also solve for V ∗, X∗, Y ∗, for V ∗ ̸= 0,
Y ∗ ̸= 0. We have

(2.2.5) =⇒ Y ∗ =
dV V ∗

kV

(2.2.9)

(2.2.7) =⇒ Y ∗ =
βX∗V ∗

dY

. (2.2.10)

Equating (2.2.9) and (2.2.10), we get

dV V ∗

kV

=
βX∗V ∗

dY
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⇐⇒
dV

kV

=
βX∗

dY

because V ∗ ̸= 0

=⇒ X∗ =
dV dY

kV β
. (2.2.11)

Subbing in the value of X∗ obtained in (2.2.11) in (2.2.6), we get

0 = µ − β

dV dY

kV β

 V ∗ − dX

dV dY

kV β

 .

We can solve for V ∗ and we obtain

V ∗ =
µkV

dV dY

−
dX

β
. (2.2.12)

Putting this value back in (2.2.9), we get

Y ∗ =
µ

dY

−
dV dX

kV β
. (2.2.13)

The values of (2.2.12), (2.2.11), and (2.2.13) form the second steady state, the endemic
(E) equilibrium:

(V ∗, X∗, Y ∗)E =
 kV µ

dV dY

−
dX

β
,
dV dY

kV β
,

µ

dY

−
dXdV

kV β

 . (2.2.14)

This steady state represents an infection that will not die out but the number of infected
cells will not increase exponentially and kill the individual, that is the disease becomes
chronic. This system thus has two steady states: a unique disease-free equilibrium and a
unique endemic equilibrium.

To ensure we have positive steady steady state values Y ∗ > 0 and V ∗ > 0 in (2.2.14),
we need

kV βµ − dXdV dY ≥ 0. (2.2.15)

The first term in (2.2.15) is a product of the production rates of free virus (kV ), target cells
(µ), and infected cells (β). The second term is a product of the decay rates of these variables
This is equivalent to requiring that production rates be greater than decay rates. This is
also equivalent to the condition:

R0 :=
βkV µ

dV dXdY

≥ 1. (2.2.16)
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We should note that when R0 = 1, the steady state defined in (2.2.14) is the same as
(2.2.8). In this case, there is only one steady state. We can also note that R0 is the product
of production rates divided by the product of decay rates.

In epidemiology, R0 denotes the basic reproduction number of an infection, that is
the expected number of cases expected to arise from a single infected individual in a
population of susceptible individuals. If R0 > 1, the infection will spread in the population;
if R0 < 1, the infection will die out. If R0 = 1, the infection stays stable but will not cause an
epidemic. We will study the stability of the two steady states defined in (2.2.8) and (2.2.14)
for different values of R0 to prove R0 in my model is analogous to the epidemiological R0,
that is it represents the expected number of infected cells stemming from a single infected
cell in a population of target cells.

Linearizing around the disease-free steady state (2.2.8) and following the general
principles outlined in Section 1.5, we obtain the following characteristic polynomial

∆DF(λ) = (dX + λ)
(dV + λ)(dY + λ) −

kV βµ

dX

e−λτV

 . (2.2.17)

The complete derivation of the characteristic polynomial is omitted here as it is a specific
case of the linearization about the disease-free steady state of the innate immune system
model derived in Section 2.2.2. We have that λ = −dX < 0 is always a root of the
characteristic polynomial (2.2.17). Because this root is negative, we need to study the other
roots to determine stability.

If λ = 0 is a root of the characteristic polynomial (2.2.17), we get

0 = dV dY −
kV βµ

dX

⇐⇒ R0 = 1

for R0 defined in (2.2.16). This also means that

∆DF(0) < 0 ⇐⇒ R0 > 1. (2.2.18)

For λ > 0, ∆DF(λ) defined in (2.2.17) is increasing and we can evaluate

lim
λ→∞

∆DF(λ) = lim
λ→∞

(dX + λ)
(dV + λ)(dY + λ) −

kV βµ

dX

e−λτV

 = ∞. (2.2.19)

In the case where R0 > 1, because (2.2.18) and (2.2.19) hold, by the intermediate value
theorem [67], we have that ∆DF(λ) = 0 on (0, ∞), i.e. there is a positive real root of the
characteristic polynomial (2.2.17). In this case, when R0 > 1, the disease-free steady state
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(a) (b)

Figure 2.4: Contour plots of |∆(λ)| in the complex plane. The characteristic roots are at the center of the
islands. (a) Contour plot for characteristic polynomial ∆DF(λ) of the system (2.1.2a)-(2.1.2c) linearized
about the disease-free steady state (2.2.8) for R0 < 1. (b) Contour plot for characteristic polynomial ∆E(λ)
of the system (2.1.2a)-(2.1.2c) linearized about the disease-free steady state (2.2.14) for R0 > 1.

(2.2.8) is unstable.

We can follow a similar approach for the endemic disease steady state defined in (2.2.14).
Linearizing about (2.2.14) and following the general principles outlined in Section 1.5, we
obtain the following characteristic polynomial

∆E(λ) = (dV + λ)
βkV µ

dV dY

+ λ

 (dY + λ) − (dX + λ)dV dY e−λτV . (2.2.20)

We can study the characteristic polynomial (2.2.20) as we did (2.2.17). We have that λ = 0
is a root of (2.2.17) if we get the following characteristic equation

0 = dV dXdY − kV βµ ⇐⇒ R0 = 1.

If R0 < 1, then the endemic equilibrium (2.2.14) is negative, i.e. it does not occur biologi-
cally. For this reason, the analytical study of stability of this steady state is irrelevant for
R0 < 1.

Moreover, from Figure 2.4a, we find that the characteristic polynomial ∆DF defined
in (2.2.17) has no complex roots with nonnegative real part when R0 < 1. This means
that when R0 < 1, the disease-free steady state defined in (2.2.8) is asymptotically stable.
Similarly, from Figure 2.4b, we find that the characteristic polynomial ∆E defined in (2.2.20)
has no complex roots with nonnegative real part when R0 > 1. This means that when
R0 > 1, the disease-free steady state defined in (2.2.14) is asymptotically stable.
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Figure 2.5: Simulation of the viral dynamics defined in (2.1.2a)-(2.1.2c) for R0 = 1 for initial condi-
tions representing a small perturbation from the disease-free steady state (2.2.8). Initial conditions are
[V 0, X0, Y 0] = [V ∗, X∗, log10(5250)]. The inset represents ∥x(t) − x∗∥ where x(t) is the solution to
(2.1.2a)-(2.1.2c) and x∗ is the disease-free steady state defined in (2.2.8).

Hence, we have that when R0 < 1, the disease-free steady state (2.2.8) is stable and the
endemic steady state (2.2.14) is negative and non-physical (and unstable); when R0 > 1,
the disease-free steady state is unstable and the endemic steady state is stable. This means
that if R0 < 1, the infection will die out and if R0 > 1, the infection will spread in the
body. Thus, there is a transcritical bifurcation at the point where R0 = 1 because the two
steady states collide and interchange stability. This is analogous to the definition of R0 for
infections at a population level.

The only difference occurs when R0 = 1. In this case, in my model, as shown in
Figure 2.5, small perturbations around the unique disease-free steady state (2.2.8), result in
the system returning to this steady state, while in epidemiological models, when R0 = 1,
the infection remains stable. This is because my model takes into account cell proliferation
and death, meaning that the infected cells will die out and healthy cells regenerate (see
Section 2.3.1 for parameter values), whereas epidemiological population models assume
the population is constant and do not consider birth and death of individuals.
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2.2.2 Innate Immune Response Dynamics

Consider the submodel describing viral and innate immune response dynamics without
adaptive immune components, described by equations (2.1.3a) to (2.1.3e). At steady state,
this submodel must satisfy

0 = kV Y ∗ K̃n
1

K̃n
1 + I∗n − dV V ∗ (2.2.21a)

0 = µ − dXX∗ − βX∗V ∗ − kIXX∗I∗ (2.2.21b)

0 = βX∗V ∗ − dY Y ∗ − kIY I∗Y ∗ (2.2.21c)

0 = kIXX∗I∗ + kIY Y ∗I∗ − dRR∗ (2.2.21d)

0 = kIY ∗ +
b2I

∗

k2 + I∗ − dII∗. (2.2.21e)

When V ∗, Y ∗ ̸= 0, solving (2.2.21a)-(2.2.21e), we obtain positive endemic equilibria denot-
ing chronic infection. We can obtain an expression for Y ∗ as a function of I∗ from (2.2.21e).
We can use (2.2.21a) to define V ∗ as a function of Y ∗ and I∗. Then, from (2.2.21c), we can
express X∗ as a function of V ∗, Y ∗, and I∗. From (2.2.21d), we can express R∗ as a function
of X∗, Y ∗, and I∗. Hence, we could express all of the variables as a function of I∗. Putting
these expressions in (2.2.21b) will result in a single equation that I∗ satisfies.

This results in a scalar equation in a single variable, I∗, and from the value(s) of I∗, we
could obtain the corresponding values of V ∗, X∗, Y ∗, and R∗. However, because n is not
necessarily an integer, the resulting expression might not be polynomial. For these reasons,
there is no easily obtainable closed-form expression for each of the variables at steady state.
We could plot this function of I∗ to determine for which value(s) of I∗ is (2.2.21b) satisfied
but these values would depend on the specific parameter choice. For these reasons, this
expression will not be studied analytically or numerically.

When V = Y = 0, the equalities in (2.2.21a) and (2.2.21c) hold. We then obtain

X∗ =
µ

dX + kIXI∗ from Equation (2.2.21b) (2.2.22)

R∗ =
µkIXI∗

dR(dX + kIXI∗) from Equation (2.2.21d). (2.2.23)

Equation (2.2.21e) holds if (1) I∗ = 0 or if (2) −dII∗ + b2 − dIk2 = 0 and I∗ ̸= 0.

The first case results in the first disease-free steady state, which represents healthy
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individuals:

(V ∗, X∗, Y ∗, R∗, I∗)DF = (0,
µ

dX

, 0, 0, 0). (2.2.24)

The second type of disease-free steady state, (V ∗, X∗, Y ∗, R∗, I∗)DF∗ occurs when I∗ ̸= 0
and the condition

dII∗ − b2 + dIk2 = 0 (2.2.25)

is satisfied. Equation (2.2.25) is a polynomial of degree one with the root

I∗ =
b2

dI

− k2 ≥ 0. (2.2.26)

In this case, the steady state, which represents individuals with no disease but with chronic
inflammation, is

(V ∗, X∗, Y ∗, R∗, I∗)DF∗ =
0,

µ

dX + kIXI∗, 0,
µkIXI∗

dR(dX + kIXI∗), I∗

 . (2.2.27)

The system (2.1.4) defined by Tan et al. [40] can also reach these types of steady states.

If b2dI < k2, (2.2.26) is never satisfied. In this case, the only disease-free steady state is
the steady state with no chronic inflammation, defined in (2.2.24). In particular, this occurs
when b2 = 0, which indicates that the IFN positive feedback loop, denoted by the term

b2I(t − τ2)
k2 + I(t − τ2)

is a necessary condition for chronic inflammation.

To study the stability of the system, we can linearize (2.1.3a)-(2.1.3e) about any disease-
free steady state. To do so, we linearize about the steady state defined in (2.2.27). In this
case, we introduce the new variables ξ(t) = X(t)−X∗, φ(t) = R(t)−R∗, and ζ(t) = I(t)−I∗,
with |ξ(t)|, |φ(t)|, |ζ(t)| ≪ 1. The variables V and Y are implicitly defined about the steady
state 0 and are assumed to be very small. To linearize about this steady state, we define
ε∗ = (εV , εξ, εY , εφ, εζ)T , a small perturbation around the steady state, with |ε∗| ≪ 1 such
that the linearized dynamics are

(V (t), ξ(t), Y (t), φ(t), ζ(t))T = eλtε∗ λ ∈ C. (2.2.28)

Substituting this ansatz (2.2.28) into the model, for n > 1, (2.1.3a), becomes

V̇ = kV Y (t − τV )K̃n
1 (K̃n

1 + (ζ + I∗)n(t − τIV ))−1 − dV V (t)
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= kV

K̃n
1

K̃n
1 + I∗nY (t − τV ) − dV V (t) + O(Y ζn)

with Y ζn ≪ 1. Hence, when linearized (2.1.3a) becomes

V̇ = λeλtεV = kV

K̃n
1

K̃n
1 + I∗neλ(t−τV )εY − dV eλtεV

⇐⇒ λεV = kV

K̃n
1

K̃n
1 + I∗ne−τV εY − dV εV .

Similarly, linearizing (2.1.3b) and we obtain

ξ̇(t) = Ẋ(t) = µ − dX

ξ(t) +
µ

dX + kIXI∗

 − β

ξ(t) +
µ

dX + kIXI∗

 V (t)

− kIX

ξ(t) +
µ

dX + kIXI∗

 (ζ(t) + I∗)

= −(dX + kIX)ξ(t) −
βµ

dX + kIXI∗V (t) −
kIXµ

dX + kIXI∗I(t) + O(ξ(V + ζ))

with ξV ≪ 1 and ξζ ≪ 1. So we have the following linearized dynamics:

ξ̇ = λeλtεξ = −(dX + kIXI∗)eλtεξ −
βµ

dX + kIXI∗e
λtεV −

kIXµ

dX + kIXI∗e
λtεζ

⇐⇒ λεξ = −(dX + kIXI∗)εξ −
µ

dX + kIXI∗(βεV − kIXεI).

For Y defined in (2.1.3c), the steady state is 0 and there are no delays, so the linearization
about the steady state yields

Ẏ (t) = β

ξ(t) +
µ

dX + kIXI∗

 V (t) − kIY Y (t)(ζ(t) + I∗) − (dY + kIY I∗)Y (t)

=
βµ

dX + kIXI∗V (t) − (dY + kIY I∗)Y (t) + O(ξV + Y ζ).

The linearized dynamics of (2.1.3c) are

Ẏ = λeλtεY =
βµ

dX + kIXI∗e
λtεV − (dY + kIY I∗)eλtεY

⇐⇒ λεY =
βµ

dX + kIXI∗εV − (dY + kIY I∗)εY .
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We can similarly linearize R defined in(2.1.3d) about its steady state

φ̇(t) = kIX

ξ(t) +
µ

dX + kIXI∗

 (ζ(t) + I∗) + kIY Y (t)(ζ(t) + I∗)

− dR

φ(t) +
µkIXI∗

dR(dX + kIXI∗)


= kIXI∗ξ(t) + kIY I∗Y (t) −

kIXµ

dX + kIXI∗ζ(t) − dRφ(t) + O(ξζ + Y ζn).

Thus, the linearized dynamics of (2.1.3d) are

Ṙ = λeλtεφ = kIXI∗eλtεξ + kIY I∗eλtεY +
kIXµ

dX + kIXI∗e
λtεζ − dReλtεφ

⇐⇒ λεφ = kIXI∗εξ + kIY I∗εY +
kIXµ

dX + kIXI∗εζ − dRεφ.

The linearization of (2.1.3e) yields

ζ̇ = kIY (t − τI) + b2(ζ(t − τ2) + I∗)(k2 + (ζ(t − τ2) + I∗)−1 − dI(ζ(t) + I∗)

= kIY (t − τI) +
b2k2

(k2 + I∗)2ζ(t − τ2) − dIζ(t) + O(ζ2).

In this case, the linearization of (2.1.3e) results in

ζ̇ = λeλtεI = kIeλ(t−τI)εY +
b2k2

(k2 + I∗)2e
λ(t−τ2)εI − dIeλtεI

⇐⇒ λεI = kIe−λτI εY +
b2k2

(k2 + I∗)2e
−λτ2εI − dIεI .

The full linearized system of (2.1.3a)-(2.1.3e) about any disease-free steady state (of
which there are at most two) is thus

V̇ = kV

K̃n
1

K̃n
1 + I∗nY (t − τV ) − dV V (t) (2.2.29a)

ξ̇ = −(dX + kIX)ξ(t) −
βµ

dX + kIXI∗V (t) −
kIXµ

dX + kIXI∗I(t) (2.2.29b)

Ẏ =
βµ

dX + kIXI∗V (t) − (dY + kIY I∗)Y (t) (2.2.29c)

φ̇ = kIXI∗ξ(t) + kIY I∗Y (t) −
kIXµ

dX + kIXI∗ζ(t) − dRφ(t) (2.2.29d)
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ζ̇ = kIY (t − τI) +
b2k2

(k2 + I∗)2ζ(t − τ2) − dIζ(t) (2.2.29e)

Hence, the linear system of equations that needs to be satisfied for (2.2.28) to be the
solution of (2.2.29) is

Aε =:



−dV 0 kV
K̃n

1
K̃n

1 +I∗n e−λτV 0 0
−βµ

dX+kIXI∗ −dX − kIXI∗ 0 0 −kIXµ
dX+kIXI∗

βµ
dX+kIXI∗ 0 −dY − kIY I∗ 0 0

0 kIXI∗ kIY I∗ −dR
kIXµ

dX+kIXI∗

0 0 kIe−λτI 0 Ilin − dI





εV

εξ

εY

εφ

εζ


= λ



εV

εξ

εY

εφ

εζ


(2.2.30)

where

Ilin =
b2k2

(k2 + I∗)2e
−λτ2 .

For A defined in (2.2.30), det(A − λI), computed by co-factor expansion, leads to the
following characteristic polynomial

∆(λ) = (dX + kIXI∗ + λ)(dR + λ)
dI −

b2k2

(k2 + I∗)2e
−λτ2 + λ

 −(dV + λ)(dY + kIY I∗ + λ)

+
kV K̃n

1 βµ

(K̃n
1 + I∗n)(dX + kIXI∗)

e−λτV

. (2.2.31)

For the disease-free steady state which has I∗ = 0, as defined in (2.2.24), the system
defined in (2.2.30) simplifies to

Aε =



−dV 0 kV e−λτV 0 0
−βµ
dX

−dX 0 0 −kIXµ
dX

βµ
dX

0 −dY 0 0

0 0 0 −dR
kIXµ
dX

0 0 kIe−λτI 0 b2
k2

e−λτ2 − dI





εV

εξ

εY

εR

εI


= λ



εV

εξ

εY

εR

εI


. (2.2.32)

Consequently, for I∗ = 0, det(A − λI) defined in (2.2.31) simplifies to

∆(λ) = (dX + λ)(dR + λ)(dI −
b2

k2
e−λτ2 + λ)

−(dV + λ)(dY + λ) +
kV βµ

dX

e−λτV

 . (2.2.33)
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In the corresponding characteristic equation of (2.2.31), ∆(λ) = 0, the first two terms
of the product will result in negative real eigenvalues for positive parameter values dX ,
dR, and kIX and I∗ ≥ 0. The other terms could result in positive or negative real-part
eigenvalues.

Studying the linearizations about both disease-free steady states (2.2.24) and (2.2.27),
when both of these steady states exist, there are four possibilities to consider: (1) they
are both unstable, (2) (2.2.24) is stable and (2.2.27) is unstable, (3) (2.2.24) is unstable and
(2.2.27) is stable, or (4) they are both stable. Examples of each of the first three cases are
shown in Figures 2.6-2.8, and they will be discussed in detail below. We will then show
that the fourth case can never occur.

Figures 2.6-2.8 were obtained by varying two parameters: β, the contact rate between
uninfected cells X and free virus V , and b2, the maximal production rate of the IFN
positive feedback. We have chosen to vary these parameters for two main reasons: (1)
these parameters have biological significance and (2) the impact of variations in these
parameters on the characteristic equation is easy to study. In fact, we can think of β as a
way to represent the strength of the infection, i.e. a measure of infectiousness and b2 as
a way to represent the strength of the IFN feedback loop or more generally of the innate
immune response. This is reflected in the form of the characteristic polynomial defined in
(2.2.33). Positive real-part eigenvalues will arise from one of two factors in the product:

dI −
b2k2

(k2 + I∗)2e
−λτ2 + λ (2.2.34)

or

−(dV + λ)(dY + λ) +
kV βµ

dX

e−λτV . (2.2.35)

This makes testing hypotheses regarding convergence to steady state easier. Indeed, we
expect a strong infection to result in an unstable disease-free equilibrium and a strong
IFN positive feedback to result in a stable chronic inflammation steady state as defined
in (2.2.27). A weak infection should result in a stable disease-free equilibrium and a
weak IFN positive feedback should result in a stable disease-free steady state with no
chronic inflammation as defined in (2.2.24). Varying exclusively these two parameters does
not, however, provide a comprehensive illustration of the dynamics regarding the innate
immune response that influence convergence to the various steady states. For example, kV ,
which represents the virion rate production could have also been used to symbolize the
strength of the infection. The respective impact and combined effects of β and kV will be
discussed in Section 2.3.3. Moreover, as discussed in Section 1.5, sufficiently large delays
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(a) (b)

Figure 2.6: Plots for the characteristic polynomial ∆(λ) of the system (2.1.3a)-(2.1.3e) linearized about
the disease-free steady states for parameter values defined in Section 2.3.1.2. (a) Contour plot of |∆(λ)| in
the complex plane for the linearization about the first disease-free steady state (I∗ = 0). (b) Contour plot of
|∆(λ)| in the complex plane for the linearization about the second disease-free steady state (I∗ ̸= 0). The
characteristic roots are at the center of the islands.

result in delay-induced instability and result in more complicated dynamics. However,
in this case, the delays represent the duration of viral replication or cell production and,
due to biological constraints, large delays will not occur. For this reason, we will not
study the impact of increasing the delays on the stability of the equilibria of the model
(2.1.3a)-(2.1.3e).

In Figure 2.6, obtained when using the parameter values of the full model, defined
in Section 2.3.1, both disease-free steady states (2.2.24) and (2.2.27) have positive real
eigenvalues, meaning that they are both unstable. In this case, the numerical simulations
of the model converge to the endemic steady state as shown in Figure 2.11b, in Section 2.3.2.

Figure 2.7 was obtained by decreasing β, i.e. decreasing the infectiousness of the
disease, when compared to Figure 2.6. Figure 2.7a has no eigenvalues with positive real
part. This illustrates that a weak infection leads to control of the infection by the innate
immune system, resulting in a disease-free steady state which is stable, the healthy disease-
free steady state (2.2.24). Figure 2.7b has eigenvalues with positive real parts which means
the chronic inflammation disease-free steady state (2.2.27) is unstable, due to the relative
weakness of the IFN positive feedback.

Figure 2.8 was obtained by increasing b2, i.e. increasing the IFN positive feedback,
when compared to Figure 2.6. Figure 2.8b has no eigenvalues with positive real part. This
illustrates that a strong IFN feedback loop is able to control the infection, resulting in a
disease-free steady state which is stable, the chronic inflammation disease-free steady state
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(a) (b)

Figure 2.7: Plots for the characteristic polynomial ∆(λ) of the system (2.1.3a)-(2.1.3e) linearized about
the disease-free steady states for parameter values defined in Section 2.3.1, except for β = 2.05 · 10−4. (a)
Contour plot of |∆(λ)| in the complex plane for the linearization about the first disease-free steady state
(I∗ = 0). (b) Contour plot of |∆(λ)| in the complex plane for the linearization about the second disease-free
steady state (I∗ ̸= 0). The characteristic roots are at the center of the islands.

(a) (b)

Figure 2.8: Plots for the characteristic polynomial ∆(λ) of the system (2.1.3a)-(2.1.3e) linearized about the
disease-free steady states for parameter values defined in Section 2.3.1, except for b2 = 4. (a) Contour plot
of |∆(λ)| in the complex plane for the linearization about the first disease-free steady state (I∗ = 0). (b)
Contour plot of |∆(λ)| in the complex plane for the linearization about the second disease-free steady state
(I∗ ̸= 0). The characteristic roots are at the center of the islands.
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(2.2.27). Figure 2.8a has positive real eigenvalues which means the healthy disease-free
steady state (2.2.24) is unstable, due to the strength of the IFN positive feedback. This
result can also be obtained by decreasing β, i.e. decreasing the strength of the infection, in
which case the innate immune response over powers the infection, leading to stability of
(2.2.27).

We will prove that both disease-free steady states (2.2.24) and (2.2.27) cannot be stable
for the same parameter values. Decreasing infectiousness β can lead to stability of either
one of the disease-free equilibria (2.2.24) and (2.2.27). In this case, the strength of the IFN
positive feedback b2 will determine which of the two steady states, (2.2.24) or (2.2.27),
is stable, based on the eigenvalues that arise from the term (2.2.34) of the characteristic
polynomial ∆(λ), defined in (2.2.31). When I∗ = 0, (2.2.34) satisfies the characteristic
equation ∆(λ) = 0 if

dI −
b2

k2
e−λτ2 + λ = 0

=⇒ dI −
b2

k2
e−λτ2 = −λ > 0.

Thus, we must have

dI >
b2

k2
e−λτ2 >

b2

k2
(2.2.36)

because for negative λ and positive τ2, e−λτ2 > 1.

Similarly, when I∗ is defined by (2.2.26), (2.2.34) satisfies the characteristic equation
∆(λ) = 0 if

dI −
b2k2

k2 +
 b2

dI

− k2

e−λτ2 + λ = 0

dI −
k2d

2
I

b2
e−λτ2 + λ = 0

=⇒ dI −
k2d

2
I

b2
e−λτ2 = −λ > 0.

Thus, we must have

dI >
k2d

2
I

b2
e−λτ2



44 2.2. ANALYSIS OF SOLUTIONS AND STABILITY

=⇒
b2

k2
> dIe−λτ2 > dI (2.2.37)

because for negative λ and positive τ2, e−λτ2 > 1.

Equations (2.2.36) and (2.2.37) cannot hold concurrently. For this reason, (2.2.24) and
(2.2.27) cannot both be stable. Interestingly, (2.2.37) is equivalent to having I∗, defined in
(2.2.26), strictly positive. In other words, (2.2.27) is stable when it is defined for biologically
real values of I∗.

When there is equality in (2.2.26), there is a unique disease-free steady state, with
I∗ = 0, defined by (2.2.24), with a zero eigenvalue, resulting from the term (2.2.34). Thus,
there is a transcritical bifurcation at this point. In this case, we have

b2 = dIk2. (2.2.38)

For small enough β, numerical simulations representing a small perturbation from the
healthy disease-free steady state (2.2.24) result in the model converging to the healthy
disease-free steady state (2.2.24), which is shown in Figure 2.9a. For β large enough, a
small perturbation from the healthy disease-free steady state (2.2.24) result in the model
converging to the endemic disease steady state, which is shown in Figure 2.9b. In this case,
stability of the unique disease-free steady state is entirely determined by the infectiousness
of the infection, as the strength of IFN positive feedback is fixed.

2.2.3 Full Model Dynamics

A steady state (V ∗, X∗, Y ∗, R∗, I∗, B∗
LL, B∗

E, A∗, T ∗
E, T ∗

M , T ∗
H) of the full model defined in

(2.1.1) satisfies

0 = kV Y ∗ K̃n
1

K̃n
1 + I∗n − dV V ∗ − ρA∗V ∗ (2.2.39a)

0 = µ − dXX∗ − βX∗V ∗ − kIXX∗I∗ (2.2.39b)

0 = βX∗V ∗ − dY Y ∗ − kIY I∗Y ∗ (2.2.39c)

0 = kIXX∗I∗ + kIY Y ∗I∗ − dRR∗ (2.2.39d)

0 = kIY ∗ +
b2I

∗

k2 + I∗ + kTEIT ∗
E + kTHIT ∗

H − dII∗ (2.2.39e)

0 = kTH
1V ∗>VT

I∗Y ∗ − dTH
T ∗

H (2.2.39f)
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(a) (b)

Figure 2.9: Simulation of the viral dynamics defined in (2.1.3a)-(2.1.3e) for initial conditions representing
a small perturbation from the disease-free steady state (2.2.24). Initial conditions are [V 0, X0, Y 0, R0, I0] =
[V ∗, X∗, log10(5250), 0, 0]. (a) Simulation for parameter values defined in Section (2.3.1.2), except for
β = 2.175 · 10−3 and b2 defined in (2.2.38). The inset represents ∥x(t) − x∗∥ where x(t) is the solution
to (2.1.3a)-(2.1.3e) and x∗ is the disease-free steady state defined in (2.2.27). (b) Simulation for parameter
values defined in Section (2.3.1.2), except for b2 defined in (2.2.38).

0 = kTE
· 1V ∗>VT

Y ∗

1 −
T ∗

E

P ∗

 · I∗ · T ∗
H + kTM Y 1V ∗>VT

T ∗
MY ∗

− (1 − 1Y ∗)
(

dTEpiT
∗
E + kTM

T ∗
E

)
− dTE

T ∗
E

(2.2.39g)

0 = (1 − 1Y ∗)kTM
T ∗

E − kTM Y 1V ∗>VT
T ∗

MY ∗ (2.2.39h)

0 = kBLL
1V ∗>VT

V ∗T ∗
H − kBLLV 1V ∗>VT

V ∗B∗
LL (2.2.39i)

0 = kBE
1V ∗>VT

V ∗T ∗
H + kBLLV 1V ∗>VT

V ∗B∗
LL − dBE

B∗
E (2.2.39j)

0 = kBLLAB∗
LL + kBEAB∗

E − ρA∗V ∗ − dAA∗. (2.2.39k)

If V ∗ = Y ∗ = 0, then (2.2.39a) and (2.2.39c) hold. Then, for a non-zero threshold VT ,
(2.2.39j), (2.2.39g), and (2.2.39f) become

0 = −dTH
T ∗

H =⇒ T ∗
H = 0 (2.2.40)

0 = dTEpiT
∗
E + kTM

T ∗
E − dTE

T ∗
E =⇒ T ∗

E = 0 (2.2.41)

0 = −dBE
B∗

E =⇒ B∗
E = 0. (2.2.42)



46 2.2. ANALYSIS OF SOLUTIONS AND STABILITY

Moreover, from (2.2.39k), we get

A∗ =
kBLLAB∗

LL

dA

(2.2.43)

Equations (2.2.39i) and (2.2.39h) both reduce to 0 = 0 when VT > 0 so the steady
states B∗

LL and T ∗
M are not uniquely defined for disease-free steady equilibria. This allows

for the modeling of different immunological memory levels. Given (2.2.40)-(2.2.42), the
disease-free steady state expressions X∗, R∗, and I∗ are the same as in the disease-free
steady state expression for the innate immune system model (2.2.27), with I∗ defined in
(2.2.26), in Section 2.2.2. In this case, I∗ is not uniquely defined. Hence, disease-free steady
states for the full immune system model are0,

µ

dX + kIXI∗, 0,
µkIXI∗

dR(dX + kIXI∗), I∗, 0, 0, T ∗
M , B∗

LL, 0,
kBLLAB∗

LL

dA

 . (2.2.44)

The steady state (2.2.44) is not unique because I∗, B∗
LL, and T ∗

M are not uniquely defined.
When there is no chronic inflammation, i.e. I∗ = 0, the innate immune component steady
states are described by (2.2.24), and (2.2.44) simplifies to0,

µ

dX

, 0, 0, 0, 0, 0, T ∗
M , B∗

LL, 0,
kBLLAB∗

LL

dA

 . (2.2.45)

Equation (2.2.45) represents a healthy individual whose immune system functions nor-
mally. In fact, post-infection no immune cell populations should remain, besides TM , BLL,
and A, the components that make up immunological memory.

There are multiple different forms of endemic disease steady states. In fact, it is possible
that (1) V ∗ ̸= 0 but V ∗ ≤ VT or that (2) V ∗ ̸= 0 and V ∗ > VT .

In the first case, X∗, Y ∗, R∗, and I∗ can be obtained by following a similar process as
can be used to obtain endemic disease steady state of the innate immune system (2.1.3a)-
(2.1.3e), which was detailed in Section 2.2.2. TH , TE , and BE can be defined as they were in
(2.2.40), (2.2.41), and (2.2.42), respectively. Similarly, (2.2.39h) and (2.2.39i) reduce to 0 = 0,
so B∗

LL and T ∗
M are not uniquely defined. From (2.2.39k), we can define A∗ as function of

B∗
LL and V ∗ and from (2.2.39a), we can define A∗ as a function of V ∗ and Y ∗. By equating

these two definitions of A∗, we can define V ∗ as a function of B∗
LL and Y ∗. Thus, all steady

state values can be expressed as a function of I∗ and B∗
LL.

For the second case, when V ∗ > VT , (2.2.39a)-(2.2.39k) are satisfied when infected and
recovered cells, and most immune components are non-zero. It is not evident how to
algebraically determine a closed-form expression for most steady state values, with the
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exception of T ∗
M . We could determine the other steady state values satisfying (2.2.39a)-

(2.2.39k) numerically.

To determine T ∗
M , considering Y ∗ ̸= 0, we have that (2.2.39h) reduces to

−kTM Y T ∗
MY ∗ = 0 =⇒ T ∗

M = 0. (2.2.46)

This proves that the absence of memory T cells is a necessary condition for the persistence
of elevated viral titers. Equivalently the presence of memory T cells, i.e. TM ̸= 0, keeps
viral titers relatively low (V ≤ VT ). Indeed, if TM ̸= 0, for (2.2.39h) to be satisfied, either (1)
Y ∗ = 0, in which case V ∗ = 0, from (2.2.39b) and (2.2.39c), and TE = 0, from (2.2.39g) or
(2) Y ∗ ̸= 0, in which case (2.2.39h) reduces to

−kTM Y 1V ∗>VT
T ∗

MY ∗ = 0. (2.2.47)

In this case, for T ∗
M , Y ∗ ̸= 0, we have V ∗ ≤ VT .

In Sections 2.3 and 3.2, we will consider scenarios where the infection is cleared before
the memory T cells are depleted, which does not give rise to high virus levels. In Section 3.2
we will use the model (2.1.1) to study reinfection scenarios and their impact on long-term
immunity, in which case we will consider that each infection is cleared before the next
one begins. Thus, we will be interested in studying disease-free steady states after each
infection and endemic disease steady states of (2.1.1) will not be studied in detail.

2.2.3.1 Piecewise-smooth Dynamics

The full model describes the dynamics of the immune system during an infection and post-
infection. Post-infection the population of CD8+ T cells TE contracts and they differentiate
into memory T cells TM . We can define a piecewise-smooth (PWS) function to represent
these two phases. If we define x(t) to be an 11-dimensional vector representing the
variables of the full model at time t, with xi, the i-th component of the vector. Equations
(2.1.1g) and (2.1.1h) describe two distinct phases: the infection phase (when Y (t) > 0)
and the post-infection phase (when Y (t) = 0). Then, from the definitions presented in
Section 1.5.1, we can define

S1 = {x(t) : x3(t) = 0}

S2 = {x(t) : x3(t) > 0}
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with x3(t) = Y (t). Then, we have the switching manifold

∑
12

= {x(t) : x3(t) = 0}.

We want to define a function H such that when x(t) ∈ S1, H ≤ 0 and when x(t) ∈ S2,
H > 0. From the switching manifold, we can explicitly define the function H to be

H(x(t), x(t − τV ), . . .) = x3(t) = Y (t).

We can define the vector fields F1, describing the infection phase, and F2, describing the
post-infection phase, where F1,i and F2,i represent the i-th component of each vector field.
The full model presented in (2.1.1a)-(2.1.1k) describes both the infection and post-infection
phases for all variables, except for TE and TM . During the infection phase, these variables
described by (2.1.1g) and (2.1.1h), respectively, can be written as

ṪE(t) = kTE
I(t − τTE

)TH(t − τTE
) · 1V (t−τTE

)>VT
Y (t − τTE

)
1 −

TE(t − τTE
)

P (t − τTE
)


+ kTM Y 1V (t)>VT

TM(t)Y (t) − dTE
TE(t).

(2.2.48)

˙TM(t) = −kTM Y 1V (t)>VT
TM(t)Y (t) (2.2.49)

During the post-infection phase, we have

ṪE = kTE
I(t − τTE

)TH(t − τTE
) · 1V (t−τTE

)>VT
Y (t − τTE

)
1 −

TE(t − τTE
)

P (t − τTE
)


+ kTM Y 1V (t)>VT

TM(t)Y (t) −
(

dTEpi + kTM
+ dTE

)
TE(t).

(2.2.50)

˙TM = −kTM Y 1V (t)>VT
TM(t)Y (t) + kTM

TE(t) (2.2.51)

We have x7(t) = TE(t) so we have F1,7 = ṪE , as defined in (2.2.48) and F2,7 = ṪE , as
defined in (2.2.50). Similarly, we have x8(t) = TM(t) so we have F1,8 = ˙TM , as defined in
(2.2.49) and F2,8 = ṪE , as defined in (2.2.51). For all other components, i.e. for all i ̸= 7, 8,
we can define F1,i = F2,i, where the vector field is described by equations (2.1.1a)-(2.1.1f)
and (2.1.1i)-(2.1.1k). Then the model can be be described in the following way

ẋ =

F1(x(t), x(t − τV ), . . .) if H ≤ 0

F2(x(t), x(t − τV ), . . .) if H > 0
(2.2.52)

In this case, there are equilibria which lie on the switching manifold: the disease-free
steady states described in (2.2.44). The numerical simulations (see Section 2.3.3) did not
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reveal any qualitative differences in behavior for different parameter values indicating that
there are no discontinuity-induced bifurcations occurring for positive parameter values at
this steady state.

Within the infection phase, there are also two distinct phases: when V ≤ VT , only the
innate immune system is activated and when V > VT , the adaptive immune system is
also activated. However, the adaptive immune system components, described by (2.1.1f)-
(2.1.1j) are not all activated at the same time. Some components cross the threshold after
no delay, i.e when V (t) > VT . Other components cross the boundary after a delay. In
the model defined in (2.1.1a)-(2.1.1k), there are four delays that have an impact on the
threshold condition: τTE

in (2.1.1g), τBLL
in (2.1.1i), τBLLV in (2.1.1i) and (2.1.1j), and τBE

in (2.1.1j). Each of these delays is distinct, i.e. for each delay we can write the threshold
condition as V (t − τi) > VT , for i = 1, 2, 3, 4. Without loss of generality, we suppose

0 < τ1 < τ2 < τ3 < τ4.

For a finite number of discrete delays, we can define each delayed variable V (t − τi)
as a distinct threshold [50]. Initially, viral titers are low, i.e V (t), V (t − τi) ≤ VT but V

is increasing. After the infection, peaks V is decreasing. In this case, the intersection
manifolds are

∑
01

= {x(t) : x1(t) = VT , x1(t − τi) ≤ VT } for i = 1, 2, 3, 4
∑
12

= {x(t) : x1(t) > VT , x1(t − τ1) = VT , x1(t − τi) ≤ VT } for i = 2, 3, 4

...∑
45

= {x(t) : x1(t), x1(t − τi) > VT , x1(t − τ4) = VT } for i = 1, 2, 3
∑
56

= {x(t) : x1(t) = VT , x1(t − τi) > VT , } for i = 1, 2, 3, 4

...∑
90

= {x(t) : x1(t), x1(t − τi) ≤ VT , x1(t − τ4) = VT } for i = 1, 2, 3

with x1(t) = V (t).

There are thus 10 distinct vector fields which define ẋ(t). The explicit definition and
analysis of these vector fields will be omitted because there are no steady states or limit
cycles in any of the switching manifolds so there are no discontinuity-induced bifurcations.
In fact, when the vector field cross the switching manifolds, the infection is either increasing
or decreasing. Moreover, the numerical simulations (see Section 2.3.3) did not reveal any



50 2.3. NUMERICAL SIMULATIONS

qualitative differences in behavior for different parameter values with regards to these
switching manifolds.

2.3 NUMERICAL S IMULATIONS

The numerical simulations of (2.1.1) presented in this section will model acute infections,
i.e. infections that are cleared by the immune response. In other words, we will simulate
scenarios where a healthy individual contracts an infection. This induces an immune
response which results in infection clearance, after which an individual is considered
healthy again. In this case, we are considering a case where there is initially no chronic
inflammation in the absence of infection.

As presented in Table 1.2, the variables of interest in the model (2.1.1) are measured
in different units and because of this and inherent differences in the measured quantities,
peak values are of different magnitudes, ranging from the order of 10 (concentrations in
mL) to 109 (number of cells in the lungs). Specifically, in a very short time span (<100
hours), the number of infected cells grows to peak at ∼109 and then decreases to 0 within
200 hours. We need to account for these different scales explicitly to perform numerical
simulations and analyze model dynamics of (2.1.1). To do so, all variables will be measure
in log10(unit) of their respective units, presented in Table 1.2. This choice is the result
of certain variables usually being presented in these units (viral titers, IFN levels, and
antibody levels) [1, 8, 14]. This allows us to view all variable time courses on a single
graph to better visualize the different phases of the infection, which in turn allows us to
analyze the relationship between different cell compartments and the dynamics that occur.
Moreover, modeling variables in log10(unit), instead of the original units found in Table 1.2,
avoids having parameters values that are smaller or of equal magnitude as the tolerance
10−9, defined in Section 1.6, which can occur in this type of model [68]. In this case, the
log transformation results in stabilization of the computational algorithm. One main issue
arises from this choice: most immune compartments are 0 at the disease-free steady state
defined in (2.2.44), which in a log scale results in log10(unit) = 0 ⇐⇒ unit = 100 = 1. For
example, this means that the disease-free steady state value of infected cells defined in
(2.2.44) is 1 and the number of infected cells never actually reaches 0. If we wanted the
number of infected cells to be 0, we would need log10(0) = −∞, which can’t be reached
numerically. However, we suppose that this is negligible because a single infected cell
would not result in an infection and this is within the tolerance of experimental measures
for the different immune components.
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Variable Value Unit Reference
X0 log10(5.25 · 109) log10(cells) [12, 14, 41]
Y 0 log10(5.25 · 103) log10(cells) (2.3.4)
T 0

M log10(104) log10(cells) (2.3.5)
B0

LL log10(90.5) log10(cells) ·µL−1 (2.3.14)
A0 log10(3 · 10) log10(pg · ml−1) (2.3.12)

Table 2.1: Non-Zero History Functions for Numerical Simulations of (2.1.1), for −τ ≤ t ≤ 0

2.3.1 Estimation and Computation of Parameter and Steady State Values

2.3.1.1 Estimation and Computation of Steady State Values

The contraction of an infection represents a perturbation of the disease-free steady state
(2.2.45), which represents a healthy individual, with no chronic inflammation, i.e. I∗ = 0.
For this reason, numerical simulations of (2.1.1) presented in Section 2.3.2 begin at a
disease-free steady state, for all variables except for a small perturbation, which represents
the exposure to virus and contraction of the infection. In this case, the perturbation of the
steady state results from assuming that the initial number of infected cells is positive, i.e.
Y 0 > 0. This does not represent a biologically realistic scenario, because infections are
contracted after exposure to free virions V , modeled by V 0 > 0, as detailed in Section 1.1.
However, assuming that Y 0 > 0 and that the initial free virus population is V 0 = 0 leads
to more reliable estimations of viral kinetics than perturbing the steady state by having
V 0 > 0 [11].

The perturbation of the disease-free equilibrium occurs at time t = 0, before which the
system (2.1.1) is at a disease-free steady state defined in (2.2.45). For this reason, the history
functions of all variables are constant for −τ ≤ t < 0, where −τ := − max{τV , ..., τTE

}.
Specifically, all variables are zero at the disease-free steady state (2.2.45) except for healthy,
target cells X ; memory T cells TM ; long-lived B cells BLL; and antibody A. Indeed, in the
absence of infection, the number of healthy, target cells is the number of epithelial cells in
the lung, so it is non-zero. We can define X(t) = X0 for −τ ≤ t0 as the initial number of
target cells. Moreover, due to natural infections occurring early in life, most adults have
some immunity against influenza A, i.e. they have non-zero antibody levels [10, 18, 69].
We can define A(t) = A0 for −τ ≤ t0 as the initial antibody levels. Because this is a steady
state value, as defined in (2.2.44), we must also have B0

LL ̸= 0 where BLL(t) = B0
LL for

−τ ≤ t ≤ 0. Similarly, due to previously existing immunity, we assume T 0
M ̸= 0 where

TM(t) = T 0
M for −τ ≤ t ≤ 0. The non-zero constant history functions are found in Table 2.1.

Post-infection, the system is once again in a disease-free steady state, defined in (2.2.44),
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Variable Value Unit Reference
X∗ log10(5.25 · 109) log10(cells) (2.3.1)
T ∗

M log10(1.52 · 104) log10(cells) (2.3.11)
B∗

LL log10(3.56 · 103) log10(cells · mL−1) (2.3.17)
A∗ log10(4.8 · 102) log10(pg · mL−1) (2.3.13)

Table 2.2: Non-Zero Disease-Free (Without Inflammation) Steady State Values for Numerical Simulations
of (2.1.1).

which means all variables are zero except for X , TM , BLL, and A. The post-infection steady
state values for variables which are non-zero are found in Table 2.2.

The estimated number of healthy susceptible cells pre-infection X0 is taken directly
from the literature. The steady state value of X is unique which means there is complete
regeneration of epithelial cells post-infection. The steady state of X post-infection can thus
be defined:

X∗ = X0, −τ ≤ t ≤ 0. (2.3.1)

This is consistent with experimental observations [70].

As mentioned previously, the initial number of infected cells Y 0 does not represent a
biologically realistic quantity because infections are transmitted between individuals by
inhaling free virions. This number was chosen to be

Y 0 = log10(5.25 · 103). (2.3.2)

or 0.0001% of cells in the lung to obtain realistic viral time-courses. Discussion on the
impact of this choice is presented in Section 2.3.3. This would give us the history function
of Y (t)

Y (t) =

0 − τ ≤ t < 0

Y 0 t = 0
(2.3.3)

for −τ ≤ t ≤ 0, with Y 0 defined in (2.3.2). Because of the delay in viral replication τV in
(2.1.1a), (2.3.3) results in delayed virion production, i.e. V (t) = 0 for all t < τV . This means
that, for a time, infected cells exist in the absence of free virions. However, this does not
occur in reality. Instead, by choosing

Y (t) = Y 0 (2.3.4)

for −τ ≤ t ≤ 0, with Y 0 defined in (2.3.2), virion production will start immediately,
reflecting a more realistic scenario where infected cells drive virion production and virions



Chapter 2. Mathematical Modeling of the Immune Response to Influenza A 53

drive infection of cells.

We assume the number of memory T cells before the infection occurs T 0
M is 104 cells,

which is the same order of magnitude as the peak number of CD8+ T cells (see Table 1.2).

T 0
M = log10(104) = 4. (2.3.5)

In this case, we do not consider antigenic similarity between strains. The impact of similar-
ity between influenza strains on the immune response will be discussed in Chapter 3.

Post-infection, 5 to 10% of CD8+ T cells become memory cells. Assuming the infection
is cleared at time tC > 0, we have Y (t) > 0 for 0 ≤ t < tC and Y (tC) = 0. We can thus
define

T ∗
M = T 0

M + p · TE(tC) (2.3.6)

where p ∈ (0.05, 0.1) and TE(tC) is the number of effector T cells when the infection is
cleared. The effector T-cell population peaks at time tP EAK and until the infection is cleared,
i.e for t ∈ (tP EAK , tC), the decrease in effector T cells is only attributable to natural cell
death, which occurs at rate dTE

(see (2.1.1g), detailed in Section 2.1.3.1). The decrease in
effector T cells is

ṪE(s) = −dTE
TE(s). (2.3.7)

Thus, we can define the solution of the ODE (2.3.7)

D(s) := TE(s) = c exp(−dTE
s), c ∈ R.

If s = 0 when t = tP EAK , we have

D(0) = TE(tP EAK) = c =⇒ D(s) = TE(tP EAK) exp(−dTE
s).

During the infection, effector T-cell production continues. Thus, at time tC , the number of
effector T cells is

TE(tC) > D(tC − tP EAK) = TE(tP EAK) exp(−dTE
(tC − tP EAK)) (2.3.8)

Considering the infection is cleared within a few weeks and dTE
, which will be defined in

(2.3.26) and derived in Section 2.3.1.2, is very small, we have

exp(−dTE
(tC − tP EAK)) ≈ (1 − δ) (2.3.9)

for δ > 0, δ ≪ 1. Putting (2.3.9) in (2.3.8), we obtain

TE(tC) > TE(tP EAK)(1 − δ) =⇒ TE(tC) ≈ TE(tP EAK). (2.3.10)



54 2.3. NUMERICAL SIMULATIONS

Then, 10% of CD8+ T cells become memory cells, and putting (2.3.10) and (2.3.6) together,
we obtain the number of memory T cells

T ∗
M = log10(104 + 0.1 · 5.2 · 104) = log10(1.52 · 104). (2.3.11)

Antibody levels expand 20-fold during influenza A infections [13]. The peak of antibody
levels is assumed to be the median of the range of experimental values, found in Table 1.2.
As such, A0, the value of A(t) pre-simulation for all −τ ≤ t ≤ 0 is

A0 = log10

 1
20 · 6 · 102

 = log10(3 · 10) log10(pg · mL−1). (2.3.12)

Post-infection, the antibody levels are boosted 16-fold [18]. Thus, we have

A∗ = 16 · A0 = log10(16 · 30) = log10(4.8 · 102) = log10(pg · mL−1). (2.3.13)

Moreover, the normal range for memory B cells in healthy subjects is 27 − 154 cells per
µL [46]. Taking the median value of this range for the initial steady state of the long-lived
B-cell population, we have

BLL(t) = log10(90.5) − τ ≤ t ≤ 0. (2.3.14)

The initial production rate of antibody by long-lived B cells, kBLLA can be determined
by the initial values of A and BLL. In fact, at the disease-free steady state, we have

A(t) =
kBLLABLL(t)

dA

− τ ≤ t ≤ 0 (2.3.15)

=⇒ kBLLA =
A(t)dA

BLL(t) =
log10(3 · 10) · 0.04
24 · log10(90.5) ≈ 1.26 · 10−3. (2.3.16)

From the value of A∗ computed in (2.3.13) and the steady state expression of A∗ derived
in (2.2.39k), we can compute the value of B∗

LL:

B∗
LL =

A∗dA

kBLLA

≈
log10(4.8 · 102) · 0.04

24 · 1.26 · 10−3 ≈ log10(3.56 · 103). (2.3.17)

2.3.1.2 Estimation and Computation of Parameter Values

Some parameter values were taken from experimental data found in the literature. The
parameter values which were found in the literature all represent decay rates of certain
variables or delays in certain biological processes. These processes are defined and their
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Parameter Range of Values Unit Reference
Delay for Viral Production (τV ) 8 − 12 h [1, 40, 71]

Virus Decay rate (dV ) 1/3 − 2 h−1 [1]
Infected Cell Decay Rate (dY ) 1/48 − 0.2 h−1 [1, 12]
Delay for IFN Production (τI) 4 − 8 h [40, 72]

Delay for IFN Production by CTLs (τTEI) 5 h [61]
IFN Decay Rate (dI) 0.1 − 0.7 h−1 [40, 73]

Delay for T-Cell Production (τTE
) 72 − 120 h [1, 13, 25]

Effector B-Cell Decay Rate (dBE
) 1/120 − 1/72 h−1 [35]

Ab Decay Rate (dA) 0.04/24 h−1 [74]

Table 2.3: Ranges of Parameter Values Found in the Literature.

values are stated in Table 2.3. Within these ranges the parameters were chosen to obtain
the appropriate time-courses for all variables. The chosen parameter values are stated
in Table 2.4. Other parameters were computed from known parameter values. These
parameter values are found in Table 2.5. Some parameters were subject to constraints
resulting from steady state values, linearization constraints, or from other parameter
values. The parameters were estimated based on these constraints and the parameter
values subject to constraints are found in Table 2.6. The remaining parameters are free and
were chosen to best approximate infection time-courses for all variables. These parameter
values are found in Table 2.7.

More generally, parameter values were determined in three phases, which are closely
linked to the infection phases defined in the model (2.1.1) and detailed in Section 2.1: (1)
infection occurs and the innate immune system is activated, (2) the adaptive immune sys-
tem is activated, and (3) the infection is cleared (post-infection phase). This methodology
capitalizes on the complementary action of the innate and adaptive immune responses.
Indeed, as presented in Section 1.1, the innate immune response controls the initial growth
of the infection, including when the adaptive immune system has not been activated yet,
while the adaptive immune response governs the elimination of the infection. Thus, we
can determine the parameters which pertain to the innate immune system, i.e. parameters
which appear in (2.1.3a)-(2.1.3e), first, to have peak time and value of viral and innate
immune system components V , X , Y , and I , as defined in Tables 1.1 and 1.2, respectively.
The peak of R is determined by the peak of I (see (2.1.1d)). Once all parameters which
appear in (2.1.3a)-(2.1.3e) have been fixed, we can determine parameters that regulate
adaptive immune dynamics during the infection (excluding immunological memory com-
ponents TM and BLL). The parameters included in this category are all of the parameters in
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Parameter Value Unit
τV 8 h
dV 1.0 h−1

dY 5.55 · 10−2 ∗ h−1

τI 6 h
τTEI 5 h
dI 0.675 h−1

τTE
72 h

dBE
0.01 h−1

dA 1.67 · 10−3 ∗ h−1

Table 2.4: Chosen parameter values from ranges found in the literature for numerical simulations of (2.1.1).
The values with a ∗ are stated to three significant figures but the simulations use the values with full precision
to obtain the correct steady state values.

the full model (2.1.1) not already determined, with the exception of kBLL
and kTM Y . The last

two parameter values, pertaining to immunological memory components, are determined
in the last phase which relates to post-infection equilibria. Similar methodology was used
in [8] to determine parameter values in two phases, representing the innate and adaptive
immune responses, respectively.

Below, we present parameter value derivations, for the parameters which are subject to
constraints or which are computed from other parameters. The parameters a presented in
the order in which they appear in the full system (see (2.1.1a)-(2.1.1k)).

In Section 2.2.2, the linearization of the innate immune response model about the
disease-free steady state supposes

n > 1. (2.3.18)

This constraint was used to estimate n.

Moreover, it is assumed the regeneration of cells in the lungs occurs over a period of
three to four weeks [70]. dX , the decay rate of target cells was chosen so that X returns to
steady state in that time period. From the estimated decay rate of healthy cells, we can
estimate the proliferation rate of these cells. In fact, at steady state, we have

X∗ =
µ

dX

=⇒ µ = X∗dX = log10(5.25 · 109) · 2.725 ≈ 26.4. (2.3.19)

We assume that the decay rate of recovered cells is the same as that of susceptible cells
because we assume these cells are not impacted by the infection but they are still subject to
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other biological factors that lead to decay, as are healthy cells. That is, we have

dR = dX . (2.3.20)

From the range in Table 2.3, dY was estimated to be

dY =
1
18. (2.3.21)

To have positivity of the disease-free equilibrium defined in (2.2.44), specifically to
have, I∗ > 0, we need (2.2.26) to hold, i.e.

k2 ≤
b2

dI

. (2.3.22)

This constraint was used to estimate k2.

Around 8 days after the beginning of the infection, a much higher proportion of CD8+
T cells produce IFN compared to than CD4+ T cells [31]. To model this, we have

kTHI ≪ kTEI =⇒ kTHI ≪ 0.05 (2.3.23)

where kTEI = 0.05 was estimated.

T-cell and B-cell proliferation only begins once the infection has crossed a certain
threshold which has previously been defined as 1% of the maximal viral titer [13]. So we
have

VT = log10(0.01 · 106) = log10(104) = 4. (2.3.24)

During the infection, the growth of CD8+ T cells TE is limited by the number of memory
cells TM . We define the maximum T-cell population to be the peak of the T-cell response
when an adult already has some levels of immunity which gives

TT OT = TE(tP EAK) = log10(5.2 · 104) ≈ 4.71 (2.3.25)

where TE(tP EAK) was chosen from the range in Table 1.2. As an individual is reinfected,
the number of memory T cells will increase and the proliferation of CD8+ T cells will be
constrained by (2.3.25). The average proliferation (p) rate of naive and effector CD8+ T
cells is p = 0.002 d−1 [65]. At homeostasis, this the proliferation rate is the same as the
death rate dTE

. During an infection the proliferation rate increases greatly, as described in
(2.1.1g) but it is assumed the decay rate representing natural cell death and exit from the
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Parameter Value Unit Reference
µ 26.5 ∗ log10(cells)·h−1 (2.3.19)
dR 2.725 h−1 (2.3.20)
VT log10(104) log10(TCID50) (2.3.24)

TT OT 4.71 ∗ log10(cells) (2.3.25)
dTE

8.33 · 10−5 ∗ h−1 (2.3.26)
kTM

1.40 · 10−3 ∗ h−1 (2.3.29)
dTEpi 1.26 · 10−2 ∗ h−1 (2.3.30)
kBLLA 1.26 · 10−3 ∗ log10(pg · mL−1)[log10(cells · µL−1) · h]−1 (2.3.16)
kBEA 2.62 · 10−3 ∗ log10(pg · mL−1)[h]−1 (2.3.34)

Table 2.5: Computed parameter values for numerical simulations of (2.1.1). The values with a ∗ are stated
to three significant figures but the simulations use the stated formulas to compute them to full precision to
obtain the correct steady state values.

blood does not. From this, we obtain

dTE
= p =⇒ dTE

= 8.33 · 10−5 h−1. (2.3.26)

At their peak proliferation rates, CD8+ T cells proliferate and expand at a rate faster
than CD4+ T cells [65, 66]. The production rates of CD8+ T cells and CD4+ T cells were
estimated to produce this behavior, which results in

kTH
= 3.765 · 10−3 [log10(pg · mL−1) · h]−1. (2.3.27)

CD4 + T cells also decay faster than CD8+ T cells so from (2.3.26) have that

dTH
>

0.002
24 h−1. (2.3.28)

Post-infection, the effector CD8+ T-cell population contracts and over the course of two to
three weeks (336 to 504 hours), 5% to 10% of CTLs become memory T-cells. It is assumed
the 90%-95% of T cells who die do so over the same period. From the peak value for CD8+
T cells in Table 1.2, the post-infection CTL disappearance rate is

log10(5.2 · 104)
504 ≤ kTM

+ dTEpi ≤
log10(5.2 · 104)

336 .

Assuming 10% of CTLs become memory T cells and 90% of CTLs die, we obtain

0.1 ·
log10(5.2 · 104)

504 ≤ kTM
≤ 0.1 ·

log10(5.2 · 104)
336
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Parameter Value Unit Reference
n 1.775 Unitless (2.3.18)
k2 8 · 10−1 log10(pg · mL−1) (2.3.22)

kTHI 3 · 10−3 [log10(cells) · h]−1 (2.3.23)
kTH

3.765 · 10−3 [log10(pg · mL−1) · h]−1 (2.3.27)
dTH

6 · 10−3 h−1 (2.3.28)
kTM Y 6.580050090 · 10−5 [log10(cells) · h]−1 (2.3.31)
kBLL

1.758133200 · 10−3 [log10(TCID50 · mL−1) · h]−1 (2.3.32)
τBLL

10 h (2.3.35)
τBLLV 8 h (2.3.36)

Table 2.6: Estimated parameter values for numerical simulations of (2.1.1) subject to constraints stated to
their precision

0.90 ·
log10(5.2 · 104)

504 ≤ dTEpi ≤ 0.90 ·
log10(5.2 · 104)

336 .

The values used are

kTM
= 0.1 ·

log10(5.2 · 104)
336 ≈ 1.40 · 10−3 h−1 (2.3.29)

dTEpi = 0.90 ·
log10(5.2 · 104)

336 ≈ 1.26 · 10−2 h−1. (2.3.30)

TM decreases slightly during the course of the infection as memory T cells regain
effector functions, but is boosted post-infection until is reaches steady state.The steady
state value T ∗

M is not uniquely defined in the steady state expression (2.2.45), but we want
numerical simulations to converge to the value defined in (2.3.11). The only remaining
free parameter in (2.1.1h) is kTM Y . Thus, kTM Y was chosen so that T ∗

M reaches the steady
state determined in (2.3.11), within the tolerance (10−9). The value

kTM Y = 6.580050090 · 10−5 [log10(cells) · h]−1 (2.3.31)

was tuned using a decision tree-based search.

Similarly, the steady state value B∗
LL is not uniquely defined in the steady state ex-

pression (2.2.45), but we want numerical simulations to converge to the value defined in
(2.3.17). The value of the parameter kBLL

was estimated using the same method as for
(2.3.31) to obtain the steady state value derived in (2.3.17):

kBLL
= 1.758133200 · 10−3 [log10(TCID50 · mL−1) · h]−1. (2.3.32)
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From this, we also obtain the correct steady state value A∗. The peak of A(t) is determined
by the production rates kBLLA (defined in (2.3.16)) and kBEA. Long-lived B cells produce
higher-affinity antibody than short-lived, effector B cells. Because this model only includes
a single population of antibody A which binds to virus at a constant rate defined by ρA

and ρV , we assume that the ratio of the production rates kBLLA and kBEA is the same as that
of the highest-affinity antibodies to the lowest-affinity antibodies. The antibody binding
rates range from 25% to 52% [18].That means

kBLLA

kBEA

=
0.52
0.25 (2.3.33)

=⇒ kBEA =
0.52
0.25 · kBLLA ≈ 2.08 · 1.26 · 10−3 ≈ 2.62 · 10−3. (2.3.34)

Moreover, B-cell proliferation and differentiation processes do not occur at the same
time. Upon infection, naive B cells differentiate into long-lived B cells slower than they
differentiate into effector B cells. Upon reinfection, long-lived B cells re-differentiate into
effector B cells much faster than naive B cells differentiate into effector B cells. This leads
to the following constraints

τBLLV < τBLL
< τBE

.

τBE
was chosen to obtain the correct timing of the peak for BE and was estimated to be 36

h. From this, τBLL
was estimated and finally from τBLL

, τBLLV was estimated, leading to

τBLL
= 10 h (2.3.35)

τBLLV = 8 h. (2.3.36)

2.3.2 Simulations of the Model

Numerical simulations of (2.1.1a)-(2.1.1k), using the initial conditions defined in Table 2.1
and parameter values defined in Tables 2.4-2.7 in Section 2.3.1.2 result in the steady state
values defined in Table 2.2 in Section 2.3.1.1 and the dynamics shown in Figure 2.10.

Figure 2.10 shows the model (2.1.1a)-(2.1.1k) returning to the disease-free steady state
post-infection, from an infection infecting around 50% of the lungs. In this case, all
components of the immune system are activated and work normally. This illustrates
the case of a healthy individual clearing a relatively strong influenza A infection. If
certain parts of the immune system are not activated, for example in the case of immuno-
compromised patients, the dynamics can change drastically. Figure 2.11a and 2.11b
illustrate the dynamics of the submodels defined in (2.1.2a)-(2.1.2c) and (2.1.3a)-(2.1.3e),
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Parameter Value Unit
K̃1 4.25 log10(pg · mL−1)
kV 0.755 log10(TCID50 · mL−1) · [log10(cells) · log10(pg · mL−1) · h]−1

τIV 5 h
ρV 3 · 10−2 [log10(pg · mL−1) · h]−1

dX 2.725 h−1

β 2.175 · 10−2 [log10(TCID50 · mL−1) · h]−1

kIX 2.5 · 10−1 [log10(pg · mL−1) · h]−1

kIY 3.75 · 10−2 [log10(pg · mL−1) · h]−1

kTEY 5.5 · 10−2 [log10(cells) · h]−1

kI 9 · 10−2 log10(pg · mL−1) · [log10(cells) · h]−1

b2 1.5 · 10−1 log10(pg · mL−1) · h−1

τ2 6 h
kTEI 5 · 10−2 [log10(cells) · h]−1

τTHI 7 h
kTE

1.485 · 10−3 [log10(cells) · log10(pg · mL−1) · h]−1

kBLLV 7.5 · 10−4 [log10(TCID50 · mL−1) · h]−1

kBE
2.25 · 10−3 [log10(TCID50 · mL−1) · h]−1

τBE
36 h

ρA 5 · 10−6 [log10(TCID50 · mL−1) · h]−1

Table 2.7: Free parameter values stated to their precision for numerical simulations of (2.1.1).

respectively.

We can see in Figure 2.11a that without an immune response, the initial viral growth is
unbounded and very quickly (in less than 24 hours) the number of infected cells is greater
than the initial number of healthy cells, i.e. Y > X0. In this case, with the parameter values
defined in Section 2.3.1, R0, as defined in (2.2.16), is R0 ≈ 2.87 ≫ 1. This indicates that
for these parameter values, an individual with no immune system would die in under 24
hours after infection. Figure 2.11b illustrates a case where only part of the immune system
is working: only the innate immune response is activated. This is not sufficient to control
the infection, as the number of infected cells still exceeds the initial number of target cells,
but it illustrates how effective the innate immune system is, as the number of infected cells
is drastically smaller. Moreover, the time it takes for the number of infected cells to exceed
the the initial number of target cells is much longer. This is due to the innate immune
system significantly inhibiting viral growth, as seen in Figure 2.14, which allows time for
the adaptive immune response to kick in, which then controls infection clearance.
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Figure 2.10: Model simulation of (2.1.1a)-(2.1.1k) with default parameter values defined in Tables 2.4-2.7
and initial conditions defined in Table 2.1 in Section 2.3.1.2.

(a) (b)

Figure 2.11: Submodel simulations of (2.1.1a)-(2.1.1k) with default parameter values defined in Tables 2.4-
2.7 in Section 2.3.1.2, for relevant parameters. The horizontal dashed line indicates the initial number of
target cells. If the number of infected cells is greater than the initial number of target cells, the individual
has died from the infection. The time at which this occurs is denoted by the vertical dashed line. (a) Model
simulation of (2.1.2a)-(2.1.2c) with initial conditions [V 0, X0, Y 0] = [0, X∗, log10(5250)]. (b) Model
simulation of (2.1.3a)-(2.1.3e) with initial conditions [V 0, X0, Y 0, R0, I0] = [0, X∗, log10(5250), 0, 0].
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Four different scenarios will be studied for the full model defined in (2.1.1a)-(2.1.1k):
(1) there is no previous immunity; (2) there is no innate immune system; (3) there is no
T-cell compartment; and (4) there is no B-cell compartment. These scenarios are shown in
Figure 2.12.

(a) (b)

(c) (d)

Figure 2.12: Model Simulation of (2.1.1a)-(2.1.1k) with default parameter values defined in Tables 2.4-2.7
in Section 2.3.1.2. The horizontal dashed line indicates the initial number of target cells. If the number of
infected cells is greater than the initial number of target cells, the individual has died from the infection. The
time at which this occurs is denoted by the vertical dashed line. (a) Full model with no previous immunity.
Initial conditions are [0; log10(5.25 · 109); log10(5250); 0; 0; 0; 0; 0; 0; 0; 0; ]. (b) Model with the adaptive
immune response only (I = 0). Initial conditions defined in Table 2.1. (c) Full model without a T-cell
response. Initial conditions defined in Table 2.1, except for T 0

M = 0. (d) Full model without a T-cell response.
Initial conditions defined in Table 2.1, except for B0

LL = 0 and A0 = 0.

All four panels of Figure 2.12 illustrate the same outcome. In fact in all cases, there
is a point where the number of infected cells Y is greater than the initial number of
cells in the lungs, i.e. Y > X0. This represents a case where an individual who has
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contracted influenza A has died from the disease. Because the model is not target cell
limited, new healthy cells are produced at a high rate which makes it possible for there to
be more infected cells than there are cells in the lungs. This issue is discussed further in
Section 2.3.3. However, Figure 2.10 still illustrates an important fact: the absence of any
one of the immune response components leads to an individual dying of the disease. The
impacts of each of these components are varied and are discussed below.

As shown in Figure 2.12a, when there is no previous immunity, but all immune system
components are activated, the dynamics of the model are quite similar to Figure 2.10 but all
short-lived cell populations peak higher, to compensate for the lack of long-lived/memory
cells.

As shown in Figure 2.12b, when there is no IFN, virus replication is uninhibited which
leas to to extreme virus proliferation and growth in the early stages of the infection. In this
case, an individual dies notably faster than in all other cases studied in Figures 2.12a, 2.12c,
and 2.12d. The adaptive immune response is activated later on and thus cannot control
the infection and prevent it from taking over. In Figure 2.10 as well as all other panels of
Figure 2.12, where the IFN compartment is activated, the initial growth rates of the virus
are similar. This underscores how crucial IFN and the innate immune system are to control
the initial phase of the infection.

As shown in Figure 2.12c, when there are no T cells, B-cell production is increased to
compensate for the lack of T cells. Even though, as mentioned previously, IFN allows for
control of the early virus growth, the combination of IFN and B-cell action is not enough
for the system to converge to a disease-free steady state. This indicates how essential T
cells are for clearing a symptomatic infection.

As shown in Figure 2.12d, when there are no B cells or antibody, the dynamics of the
model look quite similar to those of the full model shown in Figure 2.10. However, T-cell
production is increased to compensate for the lack of B cells.

2.3.3 Sensitivity Analysis

The qualitative behavior of the model defined in (2.1.1a)-(2.1.1k) is the same for any
constant history function for infected cells Y 0 in the range [log10 5.25 · 100, log10 5.25 · 106].
This represents an initial infected cell population ranging from five infected cells to 1% of
the peak number of infected cells. As shown in Figure 2.13a, when the initial number of
infected cells is lower, peak viral titers occur at around 115 hours post-infection (4.8 days
post-infection) compared to around 72 hours post-infection (3 days post-infection) in the
full model shown in Figure 2.10. Peak viral titers are the same for both the simulations
shown in Figures 2.13a and 2.10. Similar time courses as those shown in Figure 2.13a
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(a) (b) (c)

Figure 2.13: Model Simulation of (2.1.1a)-(2.1.1k) with default parameter values defined in Tables 2.4-2.7
in Section 2.3.1.2. (a) Initial conditions are defined in Table 2.1, except for Y 0 = log10(5.25 · 100). (b) Initial
conditions are defined in Table 2.1, except for Y 0 = log10(5.25 · 106). (c) Initial conditions are defined in
Table 2.1, except for V 0 = log10(7.5 · 102) and Y 0 = 0.

are obtained for Y 0 = 1. In Figure 2.13b, when the initial number of infected cells is
greater, viral titers peak at around 46 hours post-infection (1.9 days post-infection) and
the peak value of viral titers is around 8% greater. These peaks all occur within the
physiologically realistic ranges given for viral titers (see Table 1.1 and 1.2) so this model
does not discriminate between different initial quantities of infected cells. However, it
probably would have been more realistic to model the system (2.1.1a)-(2.1.1k) with a non-
constant number of infected cells for the history function. Moreover, Figure 2.13c illustrates
model dynamics when the perturbation from steady state comes from having the initial
number of infected cells Y 0 = 0 and having a non-zero V 0, i.e. the infection is introduced
into the body through free virus instead of infected cells. The initial value used was
V 0 = log10(7.5 · 102) < VT [1]. This scenario is more realistic, because cells cannot become
infected without healthy cells first coming into contact with virions. In this case, the viral
titers peak at the same point as in Figure 2.10 but the peak occurs much later. Indeed, in
Figure 2.13c viral titers peak at around 136 hours post-infection (5.6 days post-infection)
which is outside the physiologically realistic ranges given for viral titers (see Table 1.1).
The qualitative dynamics remain the same.

In all cases shown in Figures 2.11 and 2.10, the strength of the infection plays a huge
role on what components are sufficient and necessary to control an infection. We can
consider 2 parameters as defining the strength of the infection: β, the contact rate between
healthy cells X and free virus V , which is a measure of infectiousness, and kV the viral
proliferation/replication rate. The infection is weaker for smaller values of β and kV

so very small values of β and kV result in low-dose infections, which, as mentioned in
Section 1.2, can be entirely controlled by the innate immune system. Similarly, greater
values of β and kV result in a stronger infection. Ideally, the combined action of the innate
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(a) (b) (c)

Figure 2.14: Infection outcomes for various infection strengths with default parameter values de-
fined in Tables 2.4-2.7 in Section 2.3.1.2, except for β and kV . Purple indicates the maximum num-
ber of infected cells is <1% of total number of target cells X0. Red indicates maximum number of
infected cells is 100% of total number of target cells X0. (a) Model (2.1.2a)-(2.1.2c) with initial
conditions [V 0, X0, Y 0] = [0, X∗, log10(5250)]. (b) Model (2.1.3a)-(2.1.3e) with initial conditions
[V 0, X0, Y 0, R0, I0] = [0, X∗, log10(5250), 0, 0]. (c) Model (2.1.1a)-(2.1.1k) with initial conditions de-
fined in Table 2.1.

and adaptive immune responses is able to fight off relatively strong infections. In this case,
we are interested in how strong the infection can be, i.e. how big β and kV can be, and still
have the infection be controlled by the immune response. We consider that an infection is
controlled by the immune response if less than 100% of the initial number of target cells
are infected. Figure 2.14 and Figure 2.15 show the impact of different infection strengths
on the ability of the immune response to control an infection. Figure 2.15 was generated
using a 100x100 mesh of parameter values for β and kV . Figure 2.15 was generated using a
20x20 mesh of parameter values for β and kV , due to computational time. Increasing the
number of mesh points would yield a figure with better resolution. Moreover, Figures 2.14
and 2.15 were generated using a relatively narrow range of β values because the model is
especially sensitive to this parameter.

Figure 2.14a shows that when there is no immune system, the infection is either ex-
tremely small (<1% of cells are infected) or kills the individual (100% of initial target cells
become infected). Figure 2.14b shows that the innate immune response has a massive
impact on the outcome of the infection. Indeed, in this case, much stronger infections, i.e.
infections with greater kV and β, result in subclinical infections, that is infections that are
entirely controlled by the innate immune system. Figure 2.14b illustrates that the inclusion
of the adaptive immune response results in subclinical infections for even greater values
of kV and β. The combined action of innate and adaptive immune responses results in
control of higher dose infections, though the acceptable increase in kV and β is markedly
smaller. Indeed, the contrast between Figures 2.14a and 2.14b is greater than that between
Figures 2.14b and 2.14c. This indicates that the innate immune response is absolutely
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crucial in controlling infection growth and while the addition of the adaptive immune
response does have an impact, it does not allow for control of substantially greater dose
infections, when compared to the innate immune response.

The maximum number of infected cells is not an adequate measure of the adaptive
immune response’s impact on the evolution of a flu infection, but the maximum number
of infected cells provides a comprehensive view of adaptive immune dynamics, as shown
in Figure 2.15.

(a) (b)

(c) (d)

Figure 2.15: Total number of cells infected for various infection strengths with default parameter values
defined in Tables 2.4-2.7 in Section 2.3.1.2, except for β and kV . (a) Full model. Initial conditions defined in
Table 2.1. (b) Model with the adaptive immune response only (I = 0). Initial conditions defined in Table 2.1.
(c) Full model without a T-cell response. Initial conditions defined in Table 2.1, except for T 0

M = 0. (d) Full
model without a B-cell response. Initial conditions defined in Table 2.1, except for B0

LL = 0 and A0 = 0.
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In (2.1.1a), the decay of free virus is driven by

V̇ (t) = −dV V (t) − ρV A(t)V (t) (2.3.37)

and in (2.1.1c), the decay of infected cells is driven by

Ẏ (t) = −kIY I(t)Y (t) − dY Y (t) − kTEY Y (t)TE(t). (2.3.38)

In (2.3.37), for physiologically realistic parameter values, A is bounded, i.e. A(t) reaches a
maximum during the course of the infection. In this case, the decay of V is

V̇ (t) = −dV V (t) − ρV A(t)V (t) ≤ −dV V (t) − ρV max{A(t)}V (t). (2.3.39)

Similarly, in (2.3.38), TE bounded, as defined in (2.1.1g) and for physiologically realistic
parameter values I is bounded, i.e. I(t) reaches a maximum during the course of the
infection. In this case, the decay of Y is

Ẏ (t) = −kIY max{I(t)}Y (t) − dY Y (t) − kTEY Y (t)TT OT . (2.3.40)

From (2.3.39) and (2.3.40), we have that both the infected cells and the free virus population
decay exponentially and do not reach 0, their disease-free steady state value, in finite time.
This means that the infection is never completely resolved. Moreover, in some cases, a new
infection arises from a very small number of infected cells. In reality, once the number of
infected cells is low enough, the infection always die out in finite time because it is not
possible to have a number of infected cells or free virions < 1. To circumvent this issue in
my simulations, a tolerance value is used to manually set Y to zero if it is below a certain
tolerance. Forcing Y = 0 for Y < tol means that a new infection will never occur once
the primary infection has been cleared, unless a new perturbation is introduced into the
system.

The value of the tolerance used to determine when an infection has been cleared, for
any value < 1 does not impact the infection time-course of any variable, except for TE and
TM . Indeed, all other variables are very close to their steady state value defined in (2.2.45)
before the infection is completely cleared (between 200 and 400 hours in Figure 2.10) and
forcing Y = 0 when it is below a certain tolerance does not impact the dynamics for
these variables. However, TE clearance and TM production occur post-infection, denoted
(1 − 1Y (t)) in (2.1.1g) and (2.1.1h). This is equivalent to saying these processes only occur
when Y = 0. In this case, these processes are initiated at the precise time t at which
Y (t) = 0. If we increase the tolerance, TE cell clearance will start earlier; if we decrease
the tolerance, TE cell clearance will start later. The time it takes for TE and TM to reach
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their steady state values, as defined in (2.2.45), does not visibly change because during the
infection, the decay of TE is entirely described by the term −dTE

TE(t) in (2.1.1g), where
dTE

is very small (see Table 2.5) and there is no production of TM .
The choice of tolerance allows us to precisely determine the timing of effector T-cell

decay. Moreover, because the number of memory T-cell is dependent on the number
of effector T cells present at the end of the infection, as described (2.3.6), the choice of
tolerance determines precisely the value of the parameter kTM Y , defined in (2.3.31), which
uniquely determines the steady state value T ∗

M . Current experimental data estimates the
decay occurs two to three weeks post-infection, as presented in Section 1.3, but if additional
experimental data was available, time courses for TE and TM post-infection could be tuned
by adjusting the tolerance. In this case 5 · 10−5 was chosen.

2.3.3.1 Discussion on Parameter Values

From a public health or medical perspective, one of the goals of mathematical modeling
of within-host infections is to produce "transmissibility" or "virulence" as readouts of the
model to quantify these phenomena and improve outcomes. One step we can make in this
direction is having physiologically relevant parameters, both conceptually and numerically.
The parameters presented in Section 2.3.1 have conceptual biological meanings but their
values are often defined in units that cannot be expressed in biologically meaningful
values. This does not allow for an easy intuitive understanding of these parameters
and can impede understanding of their influence on immune dynamics. For example,
many parameters, including β which represents the contact rate between target cells
X and free virus V and is used as a measure disease "infectiousness", are in units of
[log10(TCID50 · mL−1) · h]−1, which are not intuitively meaningful and thus do not provide
an easily transferable measure of "infectiousness", which could be used to compare various
strains across models. This problem has occurred in many other models [8, 37].

As mentioned when discussing Figure 2.12, the model is not target-cell limited and so
when the infection is not controlled by the immune system, the number of infected cells
can proliferate to a point where Y > X0, i.e. the number of infected cells is greater than the
number of cells in the lungs (the initial number of target cells at any disease-free steady
state defined in (2.2.44)). In a target-cell limited model, if the number of infected cells is
equal to the number of cells in the lungs, i.e. Y = X0, then the individual has died. We can
interpret Y = X0 in the model defined in (2.1.1a)-(2.1.1k) in the same way and consider
that the dynamics that occur after the threshold Y > X0 is crossed do not represent
physiologically realistic infection time courses. This still allows for the study of the impact
of different components, compartments and parameters of the model and a measure of



70 2.3. NUMERICAL SIMULATIONS

their relative contribution to controlling the infection, as discussed in Section 2.3.2.
The issue arises because the healthy target cell compartment X has an artificially high

cell turnover rate, which means there are constantly new cells produced and free to be
infected. In fact, from dX , we can estimate the half-life of lung epithelial cells which is time
it would take for the cell population to halve in size if there were no proliferation [65]. We
have

half-lifeX =
ln(2)
dX

=
ln(2)
2.725 ≈ 0.25 h.

Experimentally the half-life of epithelial cells in the lungs was found to be 17 months or
approximately 12240 hours [75]. This extreme difference is due to the fact that dX was
estimated to have X return to the disease-free steady state (2.2.44) in 3 to 4 weeks, as is
biologically the case. Moreover, the decay rate of infected cells dY , defined in (2.3.21), is
much lower than that of healthy cells, which is unrealistic. Similar issues have arisen in
previous models of influenza, including target-cell limited models. For example, in many
target-cell limited models, the growth of infected cells and viral titers is correctly estimated
because it is constrained by the number of target cells to model the rapid decrease of viral
titers post-peak, the viral decay parameter is over-estimated [11].

The delays τTE
and τBE

, which determine delay before effector T-cell and effector B-cell
production, respectively, determine the time at which these cell populations peak during
an infection. As such, the model is very sensitive to these delays, and the values presented
in Tables 2.3 and 2.7, respectively, were chosen to obtain the correct peaks.

It would be interesting to perform a more thorough sensitivity analysis, particularly
with regards to global sensitivity of the model and the contributions of the non-linear
terms.Aen



CHAPTER 3

MODELING OF REINFECTION AND VACCINATION

In Chapter 2, a within-host model of influenza A infections was developed. Equation
(2.1.1) includes three variables responsible for long-term immunity: memory T cells TM ,
long-lived B cells BLL, and antibody A. As opposed to other immune components, these
cell populations do not die out at the end of the primary infection but are maintained, even
in the absence of viral antigen, and allow for a more rapid immune response in the event
of reinfections (called secondary, tertiary, etc., infections) [3, 10, 18, 30]. In this chapter, we
will study the impact of these cell compartments on reinfection time-courses. In Section 3.1,
a framework to model reinfections will be developed, taking into account the various
factors which influence immunological memory: the similarity between infections, the
type of exposure to the virus, the time interval between exposures, and the season during
which the exposure occurs. These factors will be discussed in Sections 3.1.1, 3.1.2, 3.1.3, and
3.1.4, respectively. Numerical simulations will be performed and presented in Section 3.2.
The impact of sex on infections and reinfections will be discussed in Section 3.3.

3.1 REINFECTION MODELING

Influenza is an acute infection, with infection time-courses described by (2.1.1) occurring
over a short period of time (a few weeks to a month), as shown in Figure 2.10. Months or
even years might go by before an individual is re-exposed to an influenza virus, a time
during which immune cell populations will evolve. There are thus multiple time scales
to consider when developing a framework to model reinfections: infection dynamics are
fast and inter-infection dynamics are slow. The model (2.1.1) does not describe the slow
dynamics that govern the evolution of immune cell populations in between infections. In
between infections, (2.1.1) is at the disease-free steady state defined in (2.2.45).

When an individual is re-exposed to influenza after a primary infection, recall of
previously acquired immune memory induces a quick immune response dependent on
memory T cells TM , long-lived B cells BLL, and antibody A, which are non-zero at the
disease-free equilibrium defined in (2.2.45). After each infection, TM , BLL, and A levels are
boosted. This is illustrated in Figure 3.1, for TM specifically but is similar for antibody and
long-lived B cells. In Chapter 2, the initial condition and steady state value of memory T
cells are denoted T 0

M and T ∗
M , respectively. In this chapter, we will write T 0

M,i to denote the

71
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Figure 3.1: Memory T-cell Evolution during and between Infections.

initial population of memory T cells for the i-th infection and T ∗
M,i to denote the steady

state value of memory T cells after the i-th infection, and similarly for other variables. We
define the i-th infection as starting at time ti = 0. Because the system (2.1.1) is at steady
state in between infections, we would have

T 0
M,i+1 = T ∗

M,i (3.1.1)

B0
LL,i+1 = B∗

LL,i (3.1.2)

A0
i+1 = A∗

i , (3.1.3)

as shown in Figure 3.1 for TM . However, in between infections, there are variations in these
cell populations, which are not explicitly modeled in (2.1.1). As such, for every reinfection
i + 1, the initial conditions will be calculated from the steady state values of infection i, i.e.
T ∗

M,i, B∗
LL,i, and A∗

i . The explicit expressions for these initial conditions will be derived in
Sections 3.1.1-3.1.3 and stated in Section 3.2.

The number of healthy, target cells returns to its initial (unique) steady state value, so
we have

X0
i+1 = X∗

i = X0
i = · · · = X0

1 = X0. (3.1.4)

where X0 denotes the initial condition of the primary infection, which is defined in
Table 2.1. As shown in Figure 2.13 in Section 2.3.3, the initial number of infected cells Y 0

does not have a strong impact on the model dynamics. Consequently, this number will be
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taken to be constant for every infection and reinfection, i.e.

Y 0
i+1 = Y 0

i = · · · = Y 0
1 = Y 0 (3.1.5)

where Y 0 denotes the initial condition of the primary infection, which is defined in Ta-
ble 2.1.

The mechanisms that explain how various factors impact memory T-cell and antibody
populations have been studied, and will be described in the following sections, to develop
a framework for modeling reinfections. Then, these processes and their impact on memory
T cells and antibody levels will be quantified to obtain values to numerically simulate
various reinfection scenarios. However, as mentioned in Section 1.3, the many mechanisms
that influence the persistence long-lived B cells BLL are not well understood [10, 18, 35].
As such, the impact of various factors on immunological memory resulting from B-cell
populations is hard to quantify. To quantify B-cell concentrations, we will consider that
every reinfection begins at a disease-free steady state (2.2.45). In this case, (2.2.43) must be
satisfied and rewriting this expression as

B∗
LL,i =

dAA∗
i

kBLLA

, (3.1.6)

we can compute B∗
LL,i from A∗

i .

Many questions relating to various immune cell populations are of interest when
modeling reinfections. Studies have suggested that if preexisting antibody levels are high
enough, a secondary infection will not trigger a short-lived adaptive immune response
effector T cells and B cells because virus will be controlled and cleared by memory cell
populations and innate defenses, which is known as sterilizing immunity [3, 30]. It has also
been shown that immunological memory could reduce the magnitude and the severity
of the infection by limiting pathogen replication such that the infection results only in
mild disease, which is known as protective immunity [30, 76, 77]. For influenza, neither
natural infections nor vaccination result in sterilizing or protective immunity, owing to
virus mutations [78]. In this case, immunological memory components can lead to faster
control of infection growth than the primary response, i.e. can memory and long-lived
immune cells reduce peak viral loads and the duration of the infection, which is known
as immunoattenuation [30, 78]. However, the effect of immunity in preventing influenza
infection versus attenuating illness, and correlates of protection, i.e. measurable signs that
a person is immune, are not well characterized [78]. To the best of my knowledge, these
are still open questions in immunology and more specifically in mathematical modeling of
immune responses.
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The goal of the numerical simulations in Section 3.2 is to reproduce various scenarios
over long periods of time (years) to study their impact on long-term immunity. Different
vaccination strategies or how often an individual is infected, for example, can impact
long-term immunity levels [79].

Many different factors influence the strength and the quality of the immune memory
recall, one of the most important being the similarity between influenza strains. In fact, as
mentioned in Section 1.1, the adaptive immune response is antigen-specific, meaning that
adaptive immune cells target specific antigens or viruses. To evade this specific immune
response, seasonal influenza viruses mutate very quickly and the gradual accumulation of
genetic mutations periodically results in the emergence of a novel variant, or a novel strain
[3, 10, 18, 80]. The emergence of new variants through this process, called antigenic drift,
hinders the adaptive immune system’s ability to recognize the virus and mount an immune
response. If the novel strain is similar to a previously encountered strain, some antigen-
specific immune cells, i.e. adaptive immune components, that have previously proliferated
will activate and proliferate once again in response to the similar antigen. The immune
response to similar strains, induced by recall of previously acquired immune memory, is
called cross-reactive and, as mentioned in Section 1.1, is strongest when influenza strains
are most similar [3, 10, 30]. Measures of cross-reactivity will be discussed in Section 3.1.1.

The rapidly mutating nature of influenza viruses has a huge impact on the development
of vaccines and the implementation of vaccination strategies. Influenza A vaccines are
developed bi-annually to target a specific influenza strain that is predicted to be the
dominant one in the following winter (in both the Northern and Southern Hemispheres)
[10]. For this reason, as mentioned in Section 1.1, the immune response resulting from
vaccination is extremely targeted and does not confer broad immunity to different strains
of influenza [18]. For this reason, previous vaccinations have a limited impact on the
immune system’s ability to control infections that arise from exposure to novel strains.
On the contrary, the immune response induced by natural infection confers broader and
longer-lived immunity. Differences in modeling natural infections and vaccination will be
discussed in Section 3.1.2.

With time or after repeated exposures to influenza viruses, the strength of the immune
response for a specific antigen increases [30]. This is illustrated in Figure 3.1 for memory
T cells. My model (2.1.1) was developed to reproduce this feature within the course of a
single infection, and the parameter values presented in Section 2.3.1.2 were chosen so that
T ∗

M > T 0
M , B∗

LL > B0
LL, and A∗ > A0. Single infection time-courses, shown in Figure 2.10,

demonstrate that TM , BLL, and A are boosted over the course of a single infection. However,
some immunological memory compartments, such as antibody, wane slowly over time
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and it has been suggested that repeated exposure of low-dose antigen could keep immune
levels high over long periods of time (years) [10, 30]. Because antibody waning is not
directly included in the model equations (2.1.1), the impact of inter-infection interval
length on antibody waning and the immune response upon reinfection is discussed in
Section 3.1.3.

The last factor that will be considered is the season during which the infection occurs.
This will be discussed in Section 3.1.4.

This modeling does not account for cross-reactivity with different pathogens or the
competition between different pathogens on the maintenance of immunological memory.
Infection resulting from exposure to a new pathogen, such as an unrelated disease can lead
to an increase in certain memory T-cell subtypes or lineages but a decline in others [30].
Because in (2.1.1) we only consider one memory T-cell compartment, we do not consider
the impact of other infectious diseases on the immune response to reinfections. Moreover,
this modeling assumes that the infectiousness of the infection and the viral replication
rate, denoted by the parameters β and kV respectively, are constant across all secondary
infections. This might not be the case and the infectiousness and viral replication rate have
an important impact on the immune system’s ability to control an infection, as shown in
Figure 2.14.

3.1.1 Similarity Between Infections

Similarity between flu strains is crucial in determining the strength of the immune response
to a new infection. If a novel flu strain or flu variant is very similar to previously encoun-
tered ones, the immune response will be strong. If it is dissimilar, the immune response
will be much weaker [10, 18]. A measure of similarity between different flu strains can be
obtained by considering conserved viral epitopes. Epitopes are chemical groups found
on the surface of molecules that are recognized by T cells, B cells, and antibody. Upon
recognition, these cells can bind to epitopes and induce an immune response. As the virus
mutates, some epitopes are conserved and some mutate [10]. Reinfections to different flu
strains can boost responses to specific epitopes that are shared between two virus strains,
i.e. that have not mutated [18]. As such, we can consider the percentage of conserved
epitopes to represent a measure of similarity between two influenza strains. Previous
models have implemented this [27, 42].

Memory T-cell action against the conserved epitopes can confer protection to various
strains of influenza [76]. This is because T cells, as opposed to antibody, recognize more
conserved parts of influenza viruses that are not as prone to mutations [81, 82]. Highly
conserved T-cell epitopes, i.e. epitopes conserved in more than 70% of flu strains, are
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enough to induce a protective CD8+ T-cell response [82, 83]. In this sense, memory T
cells provide heterologous, broad protection to different influenza subtypes. In humans,
influenza A-specific CD8+ T cells can persist for decades after infection or vaccination [30,
80].

Because memory T cells persist for decades, we consider that after an infection, memory
T cells are conserved until the following infection occurs, no matter the amount of time
between infections. We assume that memory T cells will be cross-reactive to virus strains
with conserved epitopes of the primary infection. Conserved T-cell epitopes across a wide
variety of influenza strains account for 30% to 50% of all T-cell epitopes [84]. For this
reason, we will assume that higher levels of epitopes are conserved in strains that are very
similar. We will assume that the percentage of conserved epitopes between flu strains, is a
randomly distributed variable denoted CUnif because mutations that lead to antigenic drift
occur randomly. We will further assume that between 30% and 100% of T-cell epitopes
are conserved, i.e there is always some level of similarity between flu infections (30% of
conserved epitopes) and you can be reinfected by the same strain (100% of conserved
epitopes), for natural infections. We will model this as CUnif ∼ U(0.3, 1), where U is the
uniform distribution with minimum 0.3 (30%) and maximum 1 (100%). Thus, we denote
the initial number of memory T cells for a the i-th reinfection

T 0
M,i+1 = CUnifT ∗

M,i. (3.1.7)

The case of memory T-cell immunity arising from vaccination will be discussed in
Section 3.1.2.

Antibody epitopes are generally conserved at a much lower rate than T-cell epitopes
[84]. For this reason, the immunity mediated by antibody is constrained to the few viral
strains which are very similar to the primary infection, i.e. have high epitope conservation
[80]. Variants with substantial mutations, or fewer conserved epitopes, cannot be neutral-
ized by existing host antibodies because there is less cross-reactivity [81, 84]. Antibody
levels on reinfection also depend on the elapsed time since the previous infection. To
account for the time-dependence, an expression for the initial amount of antibody on
reinfection will be derived and explained in Section 3.1.3.

3.1.2 Type of Exposure

The model (2.1.1) was derived to describe within-host dynamics in natural influenza
A infections. The increased immunity that results from natural infections also confers
immunity to different or heterologous strains of influenza than that of the primary infection
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[30, 82]. As described in the previous section, Section 3.1.1, this broad immunity is the
result of CD8+ T-cell action which recognizes parts of the virus less prone to mutations
[81, 82]. However, currently used influenza A vaccines induce an antibody response, but
they do not induce an efficient CD8+ T-cell response [80]. The antibody-induced immunity
and protection resulting from natural infections is broader and longer-lived than that
resulting from vaccination, which is extremely targeted towards components more prone
to mutations. Indeed, antibody titers can remain high for decades after a natural infection,
but wane quickly after vaccination [18]. Thus, natural infections can protect an individual
against a secondary infection with a different strain, whereas vaccination cannot. Increased
antibody titers resulting from vaccination can only attenuate secondary infections caused
by strains similar to those of the primary infection and offer little protection against
dissimilar strains [82].

For modeling the type of exposure, we will consider that natural infections and vacci-
nations are equally likely, i.e. for each exposure, each type of exposure has a 50/50 chance
of occurring. This will be modeled with a Bernouilli distribution, which represents a single
experiment with two outcomes i.e. yes or no. The mean of the Bernouilli distribution
represents the probability of the "yes" event occuring. In this case, for each exposure,
vaccination occurs with probability p = 0.5 and natural infection occurs with probability
p = 0.5, which means the Bernouilli distribution has mean 0.5. Denote the type of each
exposure EBern, we have EBern ∼ Bernouilli(0.5).

The model (2.1.1) derived in Chapter 2 describes immune dynamics during natural
infections. The model (2.1.1) does not produce accurate time-courses for vaccinations
because vaccinations do not result in healthy cells becoming infected. However, we
assume that the steady state values of (2.1.1) defined in (2.2.45), accurately described the
steady state values of antibody A and long-lived B cells BLL after vaccination because the
boost in antibody titers resulting from natural infections and vaccination are similar [85].
For this reason, simulating the model (2.1.1) will reproduce the antibody boost resulting
from vaccination.

Because influenza vaccination does not induce a CD8+ T-cell response, we want the
initial number of memory T cells of the next natural infection to be determined by the
steady state value of memory T cells after the previous natural infection. Supposing
exposures i − 1 and i + 1 are natural infections and exposure i is the result of vaccination,
then

T 0
M,i+1 = T ∗

M,i−1. (3.1.8)

This way, vaccination has no impact on T-cell immunological memory, but T-cell memory
acquired from previous infections is not lost. Vaccination will only boost antibody titers
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(and indirectly long-lived B cells who maintain these antibody levels) but not memory T
cells.

The antibody boost induced by vaccination depends on two factors: time elapsed
since the previous exposure and total number of previous vaccinations. An expression
for the initial amount of antibody on reinfection following a vaccination will be derived
and explained in Section 3.1.3. The impact of the number of previous infections will be
described in Section 3.1.2.1.

3.1.2.1 Number of previous infections

Repeated exposures to antigen with low-dose natural infections can increase antibody
levels and can contribute to long-term protection and immunity [30, 31]. However, the
opposite is true for flu vaccinations: repeated vaccinations result in diminishing antibody
titer boosting after each vaccination or diminishing antibody half-life after each vacci-
nation [86, 87]. In either case, after a few months, post-vaccination antibody titers are
lower in individuals having received multiple vaccinations. To model this phenomenon,
initial antibody titers for reinfections will depend on the number of previous vaccinations.
Because initial antibody levels on reinfection are time-dependent with regard to the time
elapsed since the previous exposure, this will be discussed in Section 3.1.3.

The number of previous vaccinations for the first reinfection will be a random number
in {1, . . . , 7}, which is the number of previous vaccinations for which there is experimental
data available in [87].

3.1.3 Time Between Infections

People generally get the flu once every few years [88]. Assuming the period of time
between flu infections, which we denote T , is normally distributed with mean 36 months
(3 years) and standard deviation 12 months (1 year), we have TNorm ∼ N (36, 12). In this
case, approximately 68% of inter-infection time intervals are in [24, 48], or between two and
four years after the primary infection. Approximately 95% of reinfections occur after one
to five years and approximately 99.7% of reinfections occur 0 to 6 years after the primary
infection, i.e the inter-infection interval time is in [0, 72]. This seems to be a reasonable
assumption. If the inter-infection time interval sampled from TNorm is negative, it will be
resampled.

As mentioned in Sections 3.1.1, we suppose the number of memory T cells is invariant
over long periods of time (decades). As such, the number of memory T cells at the
beginning of a secondary infection or vaccination T 0

M,i is not impacted by the time elapsed
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between infections. On the other hand, antibody resulting from natural infections provide
relatively long-lasting protection but wane exponentially over time. As such, initial
antibody titers of the (i + 1)-th infection are described by

A0
i+1 = A∗

i e
−aTNorm (3.1.9)

where TNorm is the time between infections, in months, and a is the rate of decrease, which
is determined by the time at which antibody reach half-peaks. Indeed, we have

a =
ln(2)
t1/2

(3.1.10)

where t1/2 is the time at which antibody titers reach half-peaks. Experimentally, this has
generally been estimated to be a few years, though there is a lot of variability and some
studies estimate half-peaks to occur a few decades after the primary infection [10, 18, 85,
89, 90]. We will choose t1/2 = 48, i.e. half-peaks are reached after 2 years. From (3.1.10),
this gives

a =
ln(2)
48 .

The variability in estimates of antibody waning is explained in part by how similar the
current infecting strain is to strains previously encountered by an individual. To model
this phenomena, we will take into account the similarity between strains, defined by CUnif ,
as we did for memory T cells in (3.1.7). Thus, (3.1.9) becomes

A0
i+1 = CUnifA∗

i e
−aTNorm . (3.1.11)

The post-infection antibody waning rates are constrained by post-vaccination antibody
waning rates, for which experimental values are presented in Table 3.1 and described fur-
ther in this section. Indeed, post-infection antibody waning is slower than post-vaccination
antibody waning so half-peak values must be reached later. Antibody titers boosted by
vaccination generally wane much faster than that, with half-peak estimates ranging from
less than a year to three years [85, 86].

When modeling post-vaccination antibody waning, we need to take into account the
number of previous vaccinations. In fact, the initial antibody boost post-exposure is
independent of the number of previous vaccinations but additional vaccinations provide
antibody boosts that wane with increasing speed [86, 87]. Half-peaks are reached around
600 days after the first vaccination and are reached in less than a year after the seventh
vaccination [85–87]. The monthly antibody waning rate a is estimated from [87], where
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Cumulative Number of Vaccinations Half-Life (in months) a

1 32 0.022
2 28 0.025
3 24 0.029
4 20 0.035
5 17 0.041
6 13 0.053
7 9 0.077

Table 3.1: Half-Life of antibody titers post-vaccination for influenza A, estimated from [87]. a is stated to
two significant figures but the simulations use the values with full precision, computed using the formula
defined in (3.1.10).

monthly percentage decline of antibody titers were measured for up to 7 successive
vaccinations. These values are shown in Table 3.1. We do not consider strain similarity
for antibody boosts resulting from vaccination because vaccines are developed to target a
specific strain, which can vary a lot from year to year. In this case, initial antibody levels
are described simply by (3.1.9), with a defined in Table 3.1.

3.1.4 Season

In the Northern Hemisphere, the flu season occurs every year from October to April and
usually peaks in January [70]. Individuals are much more likely to be exposed to the flu
during these months. As such, we consider two seasons: winter, occurring from October to
April, and summer, occurring from May to September. This can be described by a random
variable SBern ∼ Bernouilli(0.8), for a Bernouilli distribution as described in Section 3.1.2.
The probability of a flu infection in the winter is 0.8 and the probability of a flu infection in
the summer is 0.2, which means it is four times as likely an individual will be exposed to
influenza in the winter compared to the summer. These values were chosen somewhat
arbitrarily because of lack of easily accessible data quantifying this disparity. To keep the
reinfection framework relatively simple, we consider that the season and the time elapsed
since the last infection are independent variables, even though in reality the number of
months since the previous infection could be used to determine the season.

We can model the seasonality of influenza by considering the impact low tempera-
tures have on immune defenses. A previous study has suggested that exposure to cold
temperature during these months impairs IFN-induced antiviral responses [91]. In the
model (2.1.1), IFNs inhibit viral replication inside infected cells, as described in (2.1.1a).
The parameter n, found in Table 2.7, determines the effectiveness of the IFN inhibition: as
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n increases, IFN inhibition increases; as n decreases, IFN inhibition decreases. The model
(2.1.1) and the parameter values used for the numerical simulations in Section 2.3 describe
a ’typical’ infection with the flu. As such, we will consider that the parameter values
presented in Section 2.3 describe a winter infection because it is more likely to occur. To
model summer infections, when IFN responses are not inhibted by low temperatures, we
need to increase n, i.e when SBern = 0

n > 1.775 (3.1.12)

which is the value of n defined in Table 2.7. The parameter values for various reinfection
scenarios will be presented in Section 3.2.

3.2 NUMERICAL S IMULATIONS

The goal of our numerical simulations is to study the impact of different variables on
the immune response to influenza on re-exposure as described in Section 3.1. Initially,
we consider an unrealistic scenario where immunological memory is perfectly conserved
between natural infections i.e. the infecting strain is exactly the same and no time has
elapsed between infections, so antibody titers do not wane. For the purpose of this
simulation, we use the same parameter values as in Section 2.3. The history functions for
the i-th infection are defined for −τ ≤ ti < 0. The history functions for the first infection
are those presented in Table 2.1. For subsequent infections, we have X0

i+1 defined by (3.1.4),
Y 0

i+1 defined by (3.1.5), and T 0
M,i+1, B0

LL,i+1, and A0
i+1, defined by (3.1.1), (3.1.2), (3.1.3),

respectively for the (i + 1)-th infection. Put together, all the non-zero history functions are

X0
i+1 = X0

Y 0
i+1 = Y 0

T 0
M,i+1 = T ∗

M,i (3.2.1)

B0
LL,i+1 = B∗

LL,i

A0
i+1 = A∗

i .

All other variables are zero for −τ ≤ ti+1 < 0, which is their steady state value defined in
(2.2.45), as for simulations of a single infection presented in Section 2.3.1.1.

The system defined in (2.1.1) is at steady state between infections and the inter-infection
period occurs on a different time scale than the acute infection period (years vs. days).
For these reasons, reinfection time courses for each variable are plotted over each other
such that time is measured from the onset of the i-th infection at time ti. Using the
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initial conditions defined in (3.2.1) and parameter values defined in Tables 2.4-2.7, time
courses for viral and innate immune components, described by (2.1.1a)-(2.1.1e), are shown
in Figure 3.2 and time courses for adaptive immune components, described by (2.1.1f)-
(2.1.1k), are shown in Figure 3.3.

As seen in Figures 3.2a-3.2e, 3.3a-3.3b, and 3.3e, the dynamics of all components, except
those responsible for immunological memory, are similar across infections. The levels
of TM , BLL, and A increase substantially from one infection to the other, as shown in
Figures 3.3c-3.3d, and 3.3f, which is the result of the model’s design. All variable peaks are
in the same order of magnitude as shown in Figure 2.10, except for effector CD8+ T cells
(Figure 3.3b), long-lived B cells (Figure 3.3d), and antibody (Figure 3.3f). The resulting
differences between these reinfections and the initial model simulation, presented in
Figure 2.10 are shown in Figure 3.4.

As we can see in Figure 3.4a, viral and innate immune components peak within 2 hours
of the original model simulation but, as shown in Figure 3.4b, adaptive immune compo-
nents present a lot more variability. Indeed, short-lived adaptive immune components
(helper and effector T cells, and effector B cells) peak around the same time as during
the original simulation. However, antibody and long-lived B cells peak up to more than
150 hours earlier as an individual is reinfected, which is consistent with immunological
memory inducing proliferation early on in secondary infections, as described in Section 3.1.
As we can see in Figure 3.3c, the memory T-cell peak is reached when memory T cells
attain their post-infection steady state values, as defined in (2.2.45). Figure 3.4b shows this
occurs later and later as the number of infections increases. Because the production of
memory T cells begins when the infection is cleared, this does not support the hypothesis
that increased immunological memory reduces the duration of the infection, as described
in Section 3.1.

Figure 3.4c shows a monotonic decrease in peak values for free virus V and infected
cells Y as the number of infections increases, which supports the assertion that repeated
infections can reduce the magnitude of subsequent infections. Moreover, this decrease
seems to approach a limit as the number of infections increases. This does not however
have an influence on the IFN and recovered cell compartments, for which the peak values
do not vary much. In Figure 3.4d, we can see short-lived adaptive immune component
peaks, i.e. TH , TE , and BE peaks, decrease as the number of infections increases. In
contrast, immunological memory component peaks, i.e. TM , BLL, and A peaks, increase
as the number of infections increases. This occurs in part because by design of the model
(2.1.1), TE + TM is bounded to account for limits in anatomical space, as described in
Section 2.1.3.1.
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(a) Free Virus (b) Healthy Cells

(c) Infected Cells (d) Recovered Cells

(e) IFN

Figure 3.2: Time courses of 10 successive natural infections with history functions defined in (3.2.1) and
parameter values defined in Tables 2.4-2.7. Time is measured from the onset of the i-th infection. (a) Free
virus V . (b) Target cells X . (c) Infected cells Y . (d) Recovered cells R. (e) IFN I .
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(a) Helper T cells (b) Effector T cells

(c) Memory T cells (d) Memory B cells

(e) Effector B cells (f) Antibody

Figure 3.3: Time courses of 10 successive natural infections with history functions defined in (3.2.1) and
parameter values defined in Tables 2.4-2.7. Time is measured from the onset of the i-th infection. (a) Helper T
cells TH . (b) Effector CD8+ T cells TE . (c) Memory T cells TM . (d) Long-lived B cells BLL. (e) Short-lived
B cells BE . (f) Antibody A.



Chapter 3. Modeling of Reinfection and Vaccination 85

(a) (b)

(c) (d)

Figure 3.4: Differences between initial model simulation presented in Figure 2.10 with regards to value of
peak and timing of peak of all model variables of (2.1.1) for 10 infections. If the difference in peak time is
negative, the peak occurred earlier than in Figure 2.10. If the difference in peak time is positive, the peak
occurred later. (a) Difference in peak timing for viral and innate immune components described by (2.1.1a)-
(2.1.1e). (b) Difference in peak timing for adaptive immune components described by (2.1.1f)-(2.1.1k).
(c) Difference in peak values for viral and innate immune components described by (2.1.1a)-(2.1.1e). (d)
Difference in peak values for adaptive immune components described by (2.1.1f)-(2.1.1k).
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Together, Figures 3.4c and 3.4d show that even for monotonically increasing immuno-
logical memory, immunological memory and innate immune components are not enough
to control the infection and the adaptive immune response is always triggered. This
suggests that for an infection of this strength, high levels of previously acquired immunity
are not enough to control the infection, as suggested in [30]. This is especially true because
these scenarios do not account for cross-reactivity and waning antibody titers, which
dampen immunological memory strength, as described in Section 3.1. This is in agreement
with the fact that early control of infection growth is the result of IFN action, as discussed
in Section 2.3.3 and shown in Figure 2.14. Indeed, there is no memory component to IFN
action in this model as immunological memory results from adaptive immune components.
However, in recent years a growing body of literature has suggested that innate immune
components could have improved response upon reinfection, which would suggest the
existence of IFN-related memory [92, 93].

3.2.1 Case Study of A Reinfection Scenario

The immune response to influenza is subject to many randomly distributed factors, as
described in Section 3.1. We will thus study an example a scenario likely to occur: over the
course of 10 exposures (which represents a few decades), an individual will be naturally
infected and vaccinated multiple times and virus mutations will impact how immunity is
preserved over time. In this case, the values of CUnif , EBern, TNorm, and SBern, presented in
Sections 3.1.1-3.1.4, are sampled independently from their respective distributions each
time the model is run. Figure 3.5 provides a diagrammatic representation of the algorithm
implementation of the different scenarios, depending on the values these variables take.

For the (i + 1)-th infection, we have the history functions defined by

X0
i+1 = X0 from (3.1.4)

Y 0
i+1 = Y 0 from (3.1.5)

T 0
M,i+1 = CUnifT ∗

M,i from (3.1.7) (3.2.2)

B0
LL,i+1 =

dAA0
i+1

kBLLA

from (3.1.6)

A0
i+1 = CUnifA∗

i e
−aT from (3.1.11).

All other variables are zero for −τ ≤ t < 0, which is their steady state value defined in
(2.2.45).

We will examine a case study of this scenario, i.e. a single realization of the random
variables, with the values of CUnif , EBern, TNorm, and SBern presented in Table 3.2. In this
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Natural Infection

Vaccination
Type of

Infection
E 

S=0 (Summer)

Season SS=1 (Winter)n = 1.775

n > 1.775

Number
of Previous
Infections

a = 0.022 7

2, ..., 6

1a = 0.077

Reinfection

Time Between
Infections T

a = 0.014
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Figure 3.5: Flow diagram of how various parameters and variables are chosen for reinfection scenarios.
Diamonds represent decision nodes and rectangles represent processes and operations. Random variables
are in dark blue. Flow lines indicate which parameter value was chosen. The probability distribution of the
variables and the probability of each event was omitted from this flow diagram and values were stated to two
significant figures for clarity.

case, the history functions for TM , BLL, and A for each infection (iteration) were computed
using the formulas in (3.2.2). In this case, we also choose

n = 1.86375

when SBern = 0, i.e. it is summer and n is subject to the constraint defined in (3.1.12).

For iterations where vaccination occurs, it does not make sense to plot infection curves
for viral and innate immune components as well as helper T cells, effector CD8+ T cells,
and effector B cells, i.e. all transient compartments, because no infection actually occurs.
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i Conserved Epitopes CUnif Type EBern Time Elapsed TNorm Season SBern

1 1 Vaccination 39 Summer
2 0.64 Natural 47 Winter
3 0.90 Natural 43 Winter
4 1 Vaccination 39 Winter
5 1 Vaccination 50 Winter
6 0.80 Natural 12 Winter
7 1 Vaccination 35 Winter
8 1 Vaccination 10 Winter
9 0.87 Natural 25 Winter

10 0.66 Natural 28 Winter

Table 3.2: Values of the randomly generated variables for reinfections for a single realization of the proba-
bilistic model. Values are stated to the nearest month and percentage value.

Indeed, as described in Section 3.1.2, the model (2.1.1) does not produce accurate time
courses for vaccinations but accurately describes how antibody and long-lived B-cell titers
are boosted. Moreover, as described in (3.1.8) in Section 3.1.2, post-vaccination, memory T
cells are at the same level as before vaccination and for this reason TM time courses will
not be plotted for iterations where vaccination occurs. Thus, only BLL and A are plotted
for the iterations for which vaccination occurs, which are found in Table 3.2.

In Figure 3.6a, we can see that due to high levels of conserved epitopes, the memory
T-cell populations stays relatively constant over the years, despite not being boosted when
the individual is vaccinated. Conversely, because long-lived B cells and antibody are
boosted by both vaccination and natural infection and because they wane much faster
than memory T cells, the steady state values B∗

LL and A∗, defined in (2.2.44) and (2.2.43),
respectively, show a lot more variability over time, as shown in Figures 3.6b and 3.6c.
Time courses for all variables not presented in Figure 3.6 are similar to those presented in
Figures 3.2 and 3.3, which is why they are omitted.

In Figure 3.7a, we can see that when a natural infection occurs, the innate immune
components are stimulated to the same degree for each successive infection. However, due
to an increased adaptive immune response, viral and infected cell peaks are much lower.
Indeed, as shown in 3.7b, both vaccination and natural infection contribute to antibody
and long-lived B-cell increases. Due to numerous vaccinations which do not boost memory
T-cell levels, the population of memory T cells stays relatively constant over exposures,
providing long-lasting immunity. Figure 3.7 shows that even when taking into account
cross-reactivity of different influenza strains, declining immunity over time, vaccinations,
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(a) (b)

(c)

Figure 3.6: Time courses of 10 successive exposures with random factors defined in Table 3.2, parameter
values defined in Tables 2.4-2.7 (except for n), and history functions defined in (3.2.2). (a) Memory T cells
TM . (b) Long-lived B cells BLL. (c) Antibody A.

and seasonal influence, repeated exposures to influenza reduce the magnitude of peak
viral titers and the number of infected cells, without increasing inflammation (IFN levels).

The differences in peak timing are similar to those presented in Figures 3.4a and 3.4b
and so they are omitted.

Other realizations of the random variables resulted in similar time courses for TM , BLL,
and A, as those presented in Figure 3.6. The differences between peak values also show
similar dynamics as those presented in Figure 3.7. Due to these similarities, plots showing
additional single realization time courses or peak differences are omitted.

The next logical step would have been to sample the random variables from their
respective distributions and perform Monte-Carlo analysis to forecast long-term outcomes
such as survival curves, as has been done in previous models [11, 57, 94–96]. Indeed, this
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(a) (b)

Figure 3.7: Differences between initial model simulation presented in Figure 2.10 with regards to value
of peak for all variables of (2.1.1) for 10 exposures, subject to random factors presented in Table 3.2. (a)
Difference in peak values for viral and innate immune components described by (2.1.1a)-(2.1.1e). (b)
Difference in peak values for adaptive immune components described by (2.1.1f)-(2.1.1k).

would allow us to examine the survival distributions, i.e. the occurrence of distinct events,
such as time between infections, in groups who undergo to different types of exposure,
e.g. frequency of vaccination. Moreover, we could also examine additional deterministic
scenarios, such as the magnitude of the infection after a fixed number of vaccinations.
However, time and space limitations preclude us from pursuing these directions in this
thesis.

3.3 IMPACT OF SEX

Various biological sex differences affect the human immune response. Sex differences
include sex chromosomes, reproductive tissues, and concentrations of sex steroids (hor-
mones) such as androgens, which include testosterone, oestrogens, and progesterone.
There is growing evidence that differences in both gene expression and sex hormones
can lead to sex-biased immune cell function. The influence of genetic components on the
immune response has not been as well characterized as the influence of sex hormones but a
study suggests that sex chromosome complement does not impact influenza infections [97,
98]. Many immune cells, such as T cells and B cells, have sex hormone receptors and, as a
result, the presence or absence of sex hormones or changes in concentrations of sex hor-
mones can alter the immune response [97, 99, 100]. This suggests that sex hormones may
directly cause polymorphic immune responses. Generally androgens and progesterone
are anti-inflammatory, i.e. they supress several immune response components necessary
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for inflammation. Estradiol (oestrogen) has different effects: low concentrations of estra-
diol are pro-inflammatory whereas high concentrations of estradiol lead to diminished
production of pro-inflammatory cytokines [97, 99, 100].

We examined whether sex chromosome complement affects susceptibility to influenza
A virus infection and found that sex chromosome complement did not affect influenza
pathogenesis

These differences have wide-ranging implications on immune responses to a different
pathogens. Specifically when considering viral infections, heightened pro-inflammatory
responses, induced by low oestrogen concentrations, may increase the risk of chronic
inflammation in females, described for the model (2.1.1) by the steady state expression
(2.2.44), with I∗ ̸= 0 [98, 100]. Conversely, anti-inflammatory responses, resulting from
androgen production, may increase the risk of persistent viral infection in male individuals.

IFN activity in immune cells at the disease free steady state with no chronic inflamma-
tion, defined in (2.2.45), is greater in females than in males, which may lead to more rapid
antiviral immune responses in females exposed to virus or vaccines [100]. Females usually
clear infections faster than males but they are more likely to be symptomatic [97, 100].

When considering influenza infections specifically, data supports the hypothesis that
the sex-biased immune response to influenza is predominately mediated by sex steroid
hormones, as opposed to sex chromosomes [98]. Females usually show increased T-cell
activation and proliferation during an infection [99]. They also generally have higher
levels of antibody (at least twice as strong) post-infection or post-vaccination to influenza
than males [99, 100]. This is also associated with higher antibody specificity and avidity to
the virus [100].

This leads to interesting questions as to whether increased levels of antibody in females
lead to greater protection and whether protection against novel strains of influenza virus
is greater in females than in males [100].

The concentrations of sex steroids change drastically over the course of an individual’s
life, and even fluctuate within shorter periods of time, e.g. during the menstrual cycle or
pregnancy, which directly affects immunity [99, 100]. To simplify this modeling problem,
we will only consider fixed concentration levels of each sex hormone.

Despite a stark increase in the last decade, there is very limited data regarding sex-
biased differences in infection kinetics, as less than 10% of published papers in immunology
report the sex of animal or human subjects [99]. Previous studies have used symptom
scores to quantify sex differences in influenza, when more objective outcome measures,
such as inflammatory markers, would allow for more specificity [98, 101]. Moreover, there
are very few mathematical models of immune dynamics or more specifically of the within-
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host immune response to infection that account for sex-biased differences. These models,
two of which were published in the last year, usually represent sex-biased disparities with
different parameter values [43, 102, 103]. This section will use the same methodology and
we will determine new parameter values for females and males.

All parameter values which differ from those presented in Tables 2.4- 2.7 in Sec-
tion 2.3.1.2 will be presented in Table 3.3, for both females and males, with the change with
regard to the original parameter values. Going forward, we will refer to this combination
of parameters, which results in the variable time courses presented in Figure 2.10, as the
original model or original parameters.

We will suppose females have low estrogen production (pro-inflammatory) and males
have high testosterone production (anti-inflammatory). As discussed in Section 2.1.2, IFN
production resulting from a positive feedback loop can result in chronic inflammation, i.e.
I∗ ̸= 0 in (2.2.44). This production occurs at a rate determined by the parameter b2. The
model is not structurally identifiable, so many parameter combinations could generate the
desired increase in inflammation but we will model an increase in long-term inflammation
in females by increasing b2 and decreasing kI , which represents the viral-induced IFN
production rate. Decreasing b2 and increasing kI will represent anti-inflammatory action
in males. Moreover, IFN inhibition of viral replication is induced more quickly in females,
which in (2.1.1) is described by the delay τIV . As such, τIV will be greater for females than
males.

T-cell production rates, kTH
and kTE

will be increased for females to depict increased
T-cell proliferation and, conversely, will be decreased for males. dTH

will also be modified
so that T-cell population decline occurs within the correct time frame.

It is assumed females have greater antibody levels with higher antibody affinity than
males. In (2.1.1), high-affinity antibody production is the result of antibody production by
BLL, which occurs at rate kBLLA. Because kBLLA, the production of antibody by long-lived
B cells, was chosen to obtain the proper ratio of BLL to A at steady state, as defined in
(2.3.16), increased antibody production in females will be represented by increasing kBLL

,
the production rate of long-lived B cells. This is consistent with the fact that females
usually have higher rates of B cells [99]. Conversely, kBLL

will be decreased to represent
males’ decreased antibody production.

The parameters kTH
and dTH

are still subject to the same constraints, as defined in
(2.3.27) and (2.3.28). In Section 2.3.1.2, the parameter kBLL

was chosen to obtain the correct
steady state value of B∗

LL, thus we expect the steady state values of B∗
LL to be different for

females and males.

For the initial conditions defined in Table 2.1 in Section 2.3, the dynamics for females



Chapter 3. Modeling of Reinfection and Vaccination 93

Parameter F Value Change M Value Change
kI 0.0585 0.65 0.09045 1.005
b2 0.6675 4.45 0.1125 0.75

τIV 8 1.6 2 0.4
kTH

0.00452 ∗ 1.19 0.00341 ∗ 0.905
dTH

0.0081 1.35 0.0048 0.8
kTE

0.00161 ∗ 1.07 0.00146 ∗ 0.985
kBLL

0.00196 ∗ 1.1 0.00167 ∗ 0.95

Table 3.3: Sex-biased parameter values and their fold change, when compared to the parameter values defined
in Section 2.3.1.2. The values with a ∗ are stated to three significant figures but they are computed to full
precision in the simulations.

Variable F Peak M Peak Original Peak
Free Virus V 3.98 · 105 1.37 · 106 9.51 · 105

Infected Cells Y 6.98 · 108 4.76 · 109 2.69 · 109

Recovered Cells R 1.76 · 101 1.81 · 101 1.79 · 101

IFN I 2.59 · 101 2.61 · 101 2.60 · 101

Helper T cells TH 5.42 · 103 4.97 · 103 5.18 · 103

Effector CD8+ T cells TE 6.15 · 104 4.33 · 104 5.20 · 104

Effector B cells BE 5.89 · 102 9.19 · 102 9.28 · 102

Table 3.4: Comparison of peak values for simulations with original parameter values, for females, and males.
This table only shows variables that are 0 at the disease free steady state, defined in (2.2.45), for original
parameter values the of model. All values are stated to three significant digits, in their respective units
defined in Table 1.2.

and males are qualitatively similar with quantitative differences in the peak values and
timings to those of the original model, shown in Figure 2.10, which we will consider to
be representative of average human immune dynamics. Indeed, due to limited data, the
parameters in Table 3.3 were chosen so that the peak values of I , TH , and TE and the steady
state values A∗ in the original model are the averages of female and male peak values.
All other variables are considered to be free variables in this context, that is to mean their
peak values or steady state values were not explicitly used to determine new parameter
values. Peak values for the original model, females and males are presented in Table 3.4.
Steady state values, for variables with non-zero steady state values, for the original model,
females and males are presented in Table 3.5.

All variable peaks presented in Table 3.4 occur within the ranges presented in Table 1.1
for both female and male individual simulations. We consider the infection to be controlled
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Variable F Steady State M Steady State
X∗ 3.55 · 109 5.25 · 109

I∗ 1.56 · 100 0
R∗ 1.48 · 100 0
T ∗

M 1.65 · 104 1.46 · 104

B∗
LL 4.54 · 103 2.58 · 103

A∗ 5.76 · 102 3.77 · 102

Table 3.5: Comparison of steady state values for simulations with original parameter values, for females,
and males for the disease-free steady state (2.2.44). All values are stated to three significant digits, in their
respective units defined in Table 1.2.

when Y (t) = 0, which occurs after 340 hours in the original model, after 347 hours for males,
and after 311 hours for females. Considering adaptive immune components determine
the clearance of the infection, this asymmetrical change in infection length in females
and males would suggest that increased T-cell proliferation and activation leads to faster
clearance of the infection (by more than a day). Conversely, decreased T-cell proliferation
does not markedly increase infection length, which would suggest that this effect is not
directly proportional to T-cell proliferation but that high T-cell proliferation is required
for shorter infection spans. Moreover, as we can see in Table 3.4, free virus, infected cell
and effector B-cell populations decrease substantially in females, when compared to the
original model. On the contrary, free virus and infected cell populations increase markedly
in males, resulting in an infection that infects almost 90% of a male individual’s lung, most
likely causing death. Interestingly, the population of effector B cells in males does not
increase very much to compensate for the decline in T cells.

There is minor increase in B-cell production and infection length in males compared
to a stark decrease in B-cell production and infection length in females for changes of
the same magnitude in T-cell production. This would suggest that small increases in
T-cell production have a limited impact, until the magnitude of the T-cell response reaches
a certain level, at which point the length and magnitude of the infection are markedly
reduced. This could imply that the immune system is subject to different regimens under
different conditions.

The peak value of IFNs is relatively constant across groups, by design, as only the
source of IFN production has changed. As we can see in Table 3.5, this results in different
steady state values for I in females and males. The steady state value of I for females
is non-zero, which differs from original simulations of the model, shown in Figure 2.10.
However, in females, the steady state I∗ ̸= 0 is very small and represents a value which
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can occur in healthy individuals [14]. Compared to the steady state values of the original
model presented in Table 2.2, steady state values of antibody and long-lived B cells are
increased in females and decreased in males. The changes in memory T-cell populations
are roughly proportional to the changes in effector CD8+ T-cell populations, for both
female and male populations.

In the case where immunological memory is perfectly preserved, females and males’
immune components exhibit the same trends after multiple reinfections as the original
model, which was shown in Figure 3.4, respective to their specific peak values, so figures
illustrating this are omitted. In this case, virus and infected cell populations plateau lower
in females than in males.

In Figure 3.8, we consider the change in immune levels in females and males over 10
exposures, when compared to the original model for a single realization of the random
variables, the values for which are presented in Table 3.2. All innate and adaptive compo-
nents exhibit the same trends over 10 re-exposures as those shown in Figure 3.4. There are
however some notable differences.

As we can see in Figure 3.8c, viral titers and infected cells are consistently higher in
males, when compared to the original model peaks. Conversely, they are consistently
lower in females, as shown in Figure 3.8a. The IFN peaks seem quite similar across all
groups, which means the chronic inflammation present in females, defined by a non-zero
I∗ steady state value in (2.2.44) does not have an impact on IFN production during an
infection. It could however contribute to keeping virus titers lower by inducing IFN
production more quickly on reinfection. Moreover, adaptive immune components, shown
in Figures 3.8b and 3.8d for females and males, respectively, exhibit similar trends as the
original model, with antibody and B-cell populations higher in females than in males.
Females exhibit lower levels of killer T cells over time compared to the original model,
despite greater T-cell proliferation and memory T-cell levels, which bound CTL levels,
seeming relatively constant across exposures (across all groups). This is likely due to
increased antibody production, which limit viral titer peaks.

Similarly as for scenarios which do not consider sex as a variable, presented in Sec-
tion 3.2, it would be interesting to study probabilities of long-term outcomes and perform
survival analysis. Once more, time and space constraints prevent us from doing so.
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(a) (b)

(c) (d)

Figure 3.8: Differences between initial model simulation presented in Figure 2.10 with regards to value of
peak and timing of peak of all variables of (2.1.1) for 10 exposures, subject to random factors presented in
Table 3.2. (a) Difference in peak values for viral and innate immune components described by (2.1.1a)-(2.1.1e)
for females. (b) Difference in peak values for adaptive immune components described by (2.1.1f)-(2.1.1k) for
females. (c) Difference in peak values for viral and innate immune components described by (2.1.1a)-(2.1.1e)
for males. (d) Difference in peak values for adaptive immune components described by (2.1.1f)-(2.1.1k) for
males.



CHAPTER 4

CONCLUSION

In Chapter 1, we present an overview of the biological mechanisms that govern influenza
infection dynamics. In Chapter 2 we developed an 11 delay differential equation model
of within-host flu infections, described by (2.1.1a)-(2.1.1k). This model describes multiple
phases of the immune response during the infection and post-infection. During the early
stages of the infection, only the innate immune response, ascribed to I , the IFN population,
is activated. Modeling innate immune components as a single compartment of the system
(2.1.1) allows for more detailed and complex modeling of adaptive immune and memory
components, without having an excessive number of compartments, which would make
analysis of the model arduous. The innate immune response slows viral growth but
is usually not strong enough to clear the infection. As such, when viral levels exceed
a certain threshold VT , the adaptive immune response is activated, the acute phase of
which is described by helper T cells TH , killer T cells TE , and effector B cells BE . The
immunological memory components, which contribute to long-lasting immunity (years,
decades) are described by memory T cells TM , long-lived B cells BLL, and antibody A. The
long-lived B cell compartment represents a consolidation of multiple B cell populations
and the single antibody compartment encapsulates antibodies of varying affinity to virus.
These simplifications result in fewer model compartments and parameters, making the
determination of parameter values for which no clinical values are known and sensitivity
analysis easier. The adaptive immune response allows the immune system to clear the
infection. Post-infection, memory T cells are produced, which allows for the maintenance
of immunological memory.

To study these different phases of the immune response and their impact on infection
time-courses, we first study two submodels. A three-equation submodel (2.1.2a)-(2.1.2c) of
viral dynamics, excluding the immune response, is studied in Section 2.2.1, and allows us
to define an R0, analogous to the epidemiological R0, which characterizes the stability of
disease-free and endemic disease steady states. A five-equation submodel (2.1.3a)-(2.1.3e)
of innate immune dynamics is studied in Section 2.2.2, in which we define two different
types of disease-free steady states: the healthy steady state, where I∗ = 0, and the chronic
inflammation steady state, where I∗ ̸= 0. These two types of steady state also exist for
the full model, including both the innate and adaptive immune responses, described by
(2.1.1a)-(2.1.1k). For both the innate immune system submodel (2.1.3a)-(2.1.3e) and the full
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model (2.1.1), the endemic disease steady state is not studied algebraically because it is
not evident how to determine closed-form expressions for most variables. One notable
exception is memory T cells which are zero at the endemic disease steady state, indicating
that the absence of memory T cells is necessary for the persistence of elevated viral titers.

Numerical simulations of (2.1.1) are performed in Section 2.3 and various pathological
scenarios are considered to study the impact of various immune components on disease
outcome (infection clearance vs individual death), e.g. no innate immune response, no T
cell response, etc. The model fails to accurately produce infection time courses for these
scenarios, i.e. some cell populations exceed what is biologically possible. This is the result
of having an artificially high turnover rate of target cells (high production rate and high
decay rate) to produce correct time courses, meaning there is always a big reservoir of new
cells that can be infected. However, these simulations still allow us to determine the most
important components to each phase of the infection. Notably, the innate immune response
is essential to control the early stages of the infection and the adaptive immune response,
specifically the T cell response, controls infection clearance. Moreover, in Section 2.3.3, the
joint impact of disease infectiousness and the viral replication rate on disease outcome is
studied by performing a sensitivity analysis of the system with regard to these parameters.

In Chapter 3, we consider various scenarios related to repeated infections and vacci-
nations to study how immunological memory impacts the immune response over time.
The strength of the immune recall depends on the similarity between different flu strains,
the type of exposure (natural infection or vaccination) and the time between exposures,
and the season during which the exposure occurs. These factors impact how cross-reactive
the immune response is and allow us to described antibody waning in between infections
(years), which is not explicitly accounted for in the model (2.1.1), developed in Chapter
2. We discuss how these factors are implemented in reinfection modeling in Section 3.1.
We also investigate the (unrealistic) scenario where immunological memory is perfectly
conserved and cross-reactive, which allows us to study open questions in immunology.
Notably, these simulations show that high levels of pre-existing immunity do not result in
sterilizing immunity, i.e. the adaptive immune response is always triggered. Immunologi-
cal memory does reduce the magnitude of the infection monotonically across infections,
though the infections peak at around the same time.

In Section 3.3, we consider the impact of sex hormones on the immune response during
flu infections and how sex-specific immune responses evolves over the course of multi-
ple infections or vaccinations. Model parameters are adapted to reflect differences in sex
hormones such as increased T cell proliferation in female individuals and decreased inflam-
mation in male individuals. However, because the model is not structurally identifiable
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and there is a lack of data regarding sex differences in immunology, other parameters that
are considered to be sex-independent in this model might not be, i.e. sex differences might
have a larger impact than what was considered in the modeling done in this thesis. These
sex-differences result in lower magnitude infections in female individuals and higher
magnitude infections in male individuals. The most striking difference that results from
these changes is that female individuals are able to clear the infection 36 hours before male
individuals.

One aspect of the model (2.1.1) which is not thoroughly investigated in this thesis
is the impact of the delays on infection time courses. Considering many of the delays
are of similar magnitude, it might be possible to simplify the model further by omitting
some of them and still obtain realistic time courses. Parameter fitting, which was not done
rigorously, by using an objective function and optimization algorithm to determine the best
parameters would be interesting to explore. Similarly, the inclusion of random variables,
while making for an interesting modeling problem, in not studied at length. Consequently,
the study of additional deterministic scenarios representing different types of exposures
to influenza over time could have provided additional insight. An interesting question
to explore would be the impact of changing levels of sex hormones over time. Indeed,
the modeling in Section 3.3 assumes all sex hormone levels are constant and thus their
impact on the immune response is constant. However, this is highly unrealistic as hormone
levels vary a lot with time, especially oestrogens which have both immune-activating and
immune-dampening effects, depending on present levels.
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