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A blind prediction contest was organized to evaluate the ability of different modeling approaches to simulate the 

seismic rocking response of a full-scale four-column podium structure. The structure was tested on a shake table, 

and was subjected to two bidirectional ground motion ensembles comprising 100 synthetic records each. This 

short communication presents the main assumptions and results from the model, developed using the Distinct 

Element Method (DEM), which provided the second-best prediction of the experimental results. A comparison of 

the model predictions and the experimental results demonstrates that the numerical model was generally able to 

reproduce the large displacements induced by the more intense ground motion ensemble, while tending to 

overestimate the displacements of the less intense earthquake ensemble. This overestimation of the response was 

reduced through the inclusion of damping in the system. However, the addition of damping greatly increased the 

solve time which is problematic for a competition, and in the case of the more intense ground motion ensemble 

also resulted in an underprediction of the maximum response of the structure.    
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INTRODUCTION 

A full-scale four-column rocking podium structure, comprised of an aluminium slab supported on four cylindrical 

structural steel columns, was tested under artificially-generated bi-directional seismic excitations using a 6-dof 

shaking table. The specimen was designed at ETH Zurich, while the shake table tests were conducted at the 

Earthquake and Large Structures (EQUALS) Laboratory of the University of Bristol, UK, under the SERA 

transnational access project "3DROCK: Statistical Verification and Validation of 3D Seismic Rocking Motion 

Models”. For details regarding the experimental configuration and test-set up of the prototype (including a 

description of the signals applied to the shake-table), which have been explicitly reproduced numerically, the 

reader is directed to Vassiliou et al (2020).  

In this modeling exercise, a numerical model based on the Distinct Element Method (DEM) (Cundall 1971), and 

implemented in 3DEC (Itasca Consulting Group Inc. 2013), was developed with the objective of predicting the 

dynamic response of the specimen briefly described above and depicted in Figure 1. The ability of DEM to model 

large block displacements and the opening and closing of joints makes it particularly useful for modeling rocking 

motion. It has previously been applied with satisfactory results to the analysis of rocking structures such as single 

rigid blocks (Peña et al. 2007, DeJong 2009), walls (Al Shawa et al. 2012), spires (DeJong and Vibert 2012), 

arches (De Lorenzis et al. 2007) and columns (Papantonopoulos et al. 2002; Psycharis et al. 2003).  

Figure 1 (a) 3D and (b) elevation view of the proposed discrete element model.

This is the peer reviewed version of the following article: [Distinct element modeling of the dynamic response of a rocking podium tested on a shake 
table. Earthquake Engineering &amp; Structural Dynamics 50, 5 p1469-1475 (2020)], which has been published in its final version at d
oi: 10.1002/eqe.3404



METHODOLOGY 

 

In the case of the proposed model, rigid blocks, in contact with each other through nonlinear interface springs 

with zero thickness, were used to represent both the columns and the foundation/top slabs, as well as the 

cylindrical restraints. Material densities were specified as 8000 kg m-3 and 2700 kg m-3 for the structural steel and 

aluminium elements respectively. Each rigid block is characterised by six degrees of freedom; when contact is 

detected, faces are triangulated to create sub-contacts, located at the element vertices. Normal (kn) and shear (ks) 

stiffnesses were assigned at sub-contacts between solid elements, as depicted in Errore. L'origine riferimento 

non è stata trovata.. In the elastic range, under a shear-compression biaxial stress-state, the joint behavior is 

governed by: 

∆𝜎𝑛 = 𝑘𝑛∆𝑢𝑛              (1) 

∆𝜏𝑠 = 𝑘𝑠∆𝑢𝑠             (2) 

where σn and 𝜏s are the normal and shear stresses respectively, kn and ks are the normal and shear joint stiffnesses, 

and Δun and Δus correspond to differential displacements (see Figure 2).  

 

Figure 2 Graphical representation of the contact between adjacent blocks (adapted from Malomo et 

al (2019)).  

 

Cohesive-frictional sliding joints between columns and restraints were modeled using a simplified Mohr-Coulomb 

criterion with tension cut-off. The maximum local shear resistance is given by Equation (3). The cohesion 

parameter, c, is set to zero right after reaching the maximum shear strength FS,max, thus neglecting any post-peak 

softening branch. This results in a residual capacity FS,res governed by the acting vertical force FN,max and the 

selected friction angle ϕ (Equation (4)). 

𝐹𝑆,𝑚𝑎𝑥 =  𝑐 + 𝐹𝑁,𝑚𝑎𝑥𝑡𝑎𝑛𝜙               (3) 

𝐹𝑆,𝑟𝑒𝑠 = 𝐹𝑁,𝑚𝑎𝑥𝑡𝑎𝑛𝜙            (4) 

For the majority of discrete methods (e.g. Meguro and Tagel-Din 2000; Rafiee et al. 2008), loading-reloading 

modelling is not directly incorporated in the formulation. In the DEM framework, the representation of stiffness 

and strength degradation phenomena depends on the number of springs that have failed in tension, whose 

resistance is set to zero in the subsequent steps, as well as on both the extent and location of joint slip, i.e. where 

𝐹 = 𝐹𝑆,𝑟𝑒𝑠. Normal displacements due to dilation phenomena un,dil, which take place only at the onset of shear 

failure, can be accounted for by introducing the parameter ψ, i.e. iteratively correcting the total normal force FN,tot 

acting at the joint level as a function of the direction of shearing until the limiting shear displacement (uls,dil) is 

reached: 

∆𝑢𝑛,𝑑𝑖𝑙 = ∆𝑢𝑠𝑡𝑎𝑛𝜓            (5) 

𝐹𝑁,𝑡𝑜𝑡 = 𝑘𝑛∆𝑢𝑛 + 𝑘𝑛∆𝑢𝑠 𝑡𝑎𝑛𝜓            (6) 

In this exercise, cohesion (c), tensile strength (ft) and dilation (ψ) were set to zero from the beginning of the 

analysis. Thus, the interface frictional resistance in the model only relies on the friction angle ϕ, which was set to 

11.3° based on an assumed coefficient of friction of 0.2 (Zhang et al. 2008). On the other hand, failures induced 

by high compressive stress localization were neglected. Finally, both kn and shear ks were set equal to 1e9 Pa/m, 

representing the smallest iteratively-calibrated value beyond which interpenetration phenomena among adjacent 

elements occurred. Ideally, only stiffness proportional damping would be employed, with mass proportional 

damping set to zero (DeJong 2009). However, stiffness proportional damping significantly decreases the timestep, 

which greatly increased computation time. For the blind prediction competition, a long-time step was problematic 

since 200 time-history simulations were required. As a result, no numerical damping was specified, i.e. both mass 

and stiffness proportional damping were set to zero. The assumption of no damping can be effective for dynamic 

simulations (Psycharis et al. 2003), and is particularly reasonable for this structure where cone-shaped constraints 



keep the columns in place and prevent vibration displacements, which can be unrealistically predicted in 

simulations when high frequency damping is neglected (DeJong, 2009). Nevertheless, damping is a very important 

parameter in DEM, and the effect of this no damping assumption is also evaluated for a few of the time history 

simulations. Moreover, given that in the employed computational platform it is presently not possible to model 

curved solids, the specimen geometry was slightly simplified. Specifically, all circular cross-sections were 

discretized into n-sided regular polygons, with an investigation conducted into the number of sides required to 

accurately capture the cross-sectional area of the columns. Consequently, the circular cross-sections were replaced 

with 80-segment polygons which were then joined together, forming a single rigid element as illustrated by Figure 

3(a). This results in approximately 160 springs per contact surface (80 on the inner surface and 80 on the outer 

surface, see Figure 3(b) where springs are coloured in black). 

 

In terms of boundary conditions, and with reference to Figure 1 and Figure 3, the blue conical restraints, the dark 

grey top or bottom slabs and the red pegs that were installed to prevent overturning, were joined together, allowing 

no relative displacement between these parts. The ground motion was simulated by specifying a velocity time 

history to the foundation. Finally, in order to further reduce computational expense, each of the experimentally-

employed signals were truncated at different time instants, depending on their properties, with the objective of 

capturing the most destructive significant 20 seconds of the ground motion. These truncated records were then 

applied to the model simultaneously in the x and y directions. 

 
Figure 3 (a) proposed discretization of circular cross-sections,  identification of interface springs at 

both (b) component and (c) joint level 

 
Figure 4          (a) Sample deformed configuration of the rocking podium and (b) points at which the 

displacements were monitored (adapted from Vassiliou et al (2020)). 

RESULTS 

 

The adopted simplified modeling strategy made it possible for all 200 simulations to be conducted in a reasonable 

time-frame. For each run, the relative displacements of the slab at the top of the podium were monitored at four 

points (M1-M6) as illustrated by Figure 4b. The contest rules required the maximum absolute average 

displacement (MAAD, denoted by u) to be submitted for each run, which was then computed using Equation 7, 

where uix and uiy are the horizontal displacements recorded at each of the points Mi (Figure 4b) in the x and y 

directions. Comparative time-histories of these displacements can be found in Figures 5 and 6 for the El Centro 

and Chi-Chi ground motion ensembles respectively: 

𝑢 = max
𝑡

(abs (
√𝑢1𝑥(𝑡)2+𝑢1𝑦(𝑡)2+√𝑢3𝑥(𝑡)2+𝑢3𝑦(𝑡)2+√𝑢4𝑥(𝑡)2+𝑢4𝑦(𝑡)2+√𝑢6𝑥(𝑡)2+𝑢6𝑦(𝑡)2

4
))                   (7) 



 

As the Figure 5 illustrates, for record #1 of the El Centro ground motion ensemble, the undamped numerical model 

predicted larger displacements than those recorded in the experimental tests, resulting in an overprediction of the 

MAAD by a factor of 3.5. Re-running the analysis with 1000% stiffness-proportional damping applied at the 

impact frequency of the system (1100 Hz) lead to an overall reduction of the response, but still resulted in an 

overprediction of the MAAD by a factor of 2.8. A better correlation was observed in the case of the Chi-Chi 

ensemble, with the undamped DEM model capturing the experimental response fairly well for the first few cycles 

of ground motion (shown in Figure 6 for record #7), and only overestimating the MAAD by a factor of 1.2. This 

is due to the higher intensity of the Chi-Chi ground motion, which induced considerably larger displacements in 

the structure. The numerical model was still on the conservative side, even predicting overturning in a few cases 

(i.e. simulations 31, 64, 68 and 96 of the Chi-Chi ensemble), although in reality the specimen did not collapse. In 

this case, introducing damping into the system did not appear to significantly reduce the response, with the 

exception of the peak displacement between 11-13 seconds, which was underestimated and thus resulted in an 

underprediction of the MAAD by a factor of 0.84. In general, the proposed (i.e. undamped) DEM model was 

found to be capable of reproducing the large displacements induced by the more intense Chi-Chi ensemble, but 

tended to overestimate the smaller displacements of the El Centro ground motion. This was observed both through 

a motion-by-motion comparison of the experimental and numerical MAAD responses (Figure 7, with the 

numerical model on average overpredicting the MAAD by a factor of 1.56 and 1.14 for the El Centro and Chi-

Chi ensembles respectively), as well as a comparison of their CDF plots (see Figure 8; experimental values from 

Vassiliou et al (2020)). The performance of the different modelling approaches was finally evaluated using the 

Kolmogorov-Smirnov (K-S) distance, which measures the error as the maximum vertical distance between the 

experimental and numerically-obtained MAAD CDFs. In the case of the El Centro ensemble, the K-S distance 

for the proposed model was found to be 0.36 (rank 5), while for the more intense Chi-Chi ensemble, the K-S 

distance was found to be 0.06 (rank 1, with just over half the error of the two trailing teams, both of which recorded 

a K-S distance of 0.11), resulting in an average K-S distance of 0.21 and an overall rank of 2.  

 

CONCLUSIONS 

 

In this paper, the development and predictions of a numerical model based on the Distinct Element Method (DEM) 

used for reproduction of the 3D wobbling response of a full-scale rocking podium structure are presented and 

discussed. The structural components of the podium were modelled as rigid blocks and the connections between 

them as nonlinear springs with no tensile strength or cohesion. No damping was used in the analyses, while the 

input ground motions were truncated to reduce computational expense. These simplified assumptions made it 

possible to obtain results in a reasonable timeframe, which is usually challenging when employing these types of 

computational techniques. A comparison of the numerical predictions with the experimental response revealed 

the proposed DEM model to generally be capable of reproducing the large displacements induced by the more 

intense Chi-Chi ensemble (with a relatively good agreement observed for the first few cycles of motion), while 

overestimating the smaller displacements of the El Centro ground motion suite. Overall, the model was found to 

rank 2nd overall, evaluated based on the average Kolmogorov-Smirnov distance between the experimental and 

numerical maximum absolute average displacement (MAAD) CDF plots for both ground motion ensembles.  
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Figure 5 Numerical and experimental displacement time-histories recorded in the structure for 

record #1 of the El Centro ensemble (uEXP = 3.99 mm, uDEM, 0% = 14.1 mm and uDEM, 1000% = 11.2 mm).  

 
Figure 6 Numerical and experimental displacement time-histories recorded in the structure for 

record #7 of the Chi-Chi ensemble (uEXP = 150.6 mm, uDEM, 0% = 175.4 mm and uDEM, 1000% = 126.8 mm).  

 

Figure 7         Motion-by-motion experimental vs numerical (undamped) MAAD (u) for both ground 

motion ensembles. 
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Figure 8         Motion-by-motion comparison of the experimental and numerical (undamped) MAAD (u)  
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