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Abstract i

Abstract

Atomic decomposition of audio describes sound as a linear combination of elementary

waveforms (atoms) from which high-quality coding, source separation, and signal

transformation can be achieved. When the desired output is produced using only a few

atoms, the decomposition is sparse. Existing atomic decomposition algorithms rely on

computing many correlations between a time-signal and a redundant dictionary of atoms

causing them to become increasingly memory/computationally intensive as the signal

length grows and/or the atoms become more complex.

In this thesis we approach atomic decomposition through the lens of vector function

architecture (VFA), a non-traditional computing paradigm which produces a fixed

dimensional representation, consequently overcoming the burden of long duration signals.

Using VFA we show how to systematically encode atoms, and from these encodings build

an entirely new atomic decomposition system, called Hyperdimensional Atomic

Decomposition (HD-AD), that avoids time-domain correlations altogether. We show that

our system scales with the sparsity of the signal, rather than its length in time. As a result,

it often produces atomic decompositions much faster than real-time – a speed unknown to

existing atomic decomposition methods. Encoding with a VFA involves a non-trivial

decoding step which we present a solution based on Newton’s method.

We show that HD-AD can also be used as a pre-processing step to traditional atomic

decomposition algorithms like matching pursuit and its variants. We call this system Neural

Network accelerated Matching Pursuit (NN-MP). NN-MP greatly increases the tractability

of matching pursuit with asymmetric atoms, allowing it to run on machines with modest

computing resources.



Résumé ii

Résumé

La décomposition atomique des signaux audio décrit le son comme une combinaison linéaire

de formes d’onde élémentaires (atomes) à partir de laquelle un codage, une séparation de

source ou une transformation de signal de haute qualité peuvent être obtenus. Lorsque la

décomposition souhaitée ne comprend qu’un petit nombre d’atomes, elle est qualifiée de

parcimonieuse. Les algorithmes de décomposition atomique existants reposent sur le calcul

de nombreuses corrélations entre un signal temporel et un dictionnaire d’atomes redondant,

ce qui les rend d’autant plus gourmands en mémoire et en calcul que la longueur du signal

augmente ou que les atomes deviennent plus complexes.

Dans cette thèse, nous abordons la décomposition atomique par le prisme de l’architecture

de fonctions vectorielles (VFA), un paradigme de l’informatique non traditionnel qui produit

une représentation à taille fixe, contournant ainsi le fardeau des signaux de longue durée.

Utilisant la VFA, nous montrons comment coder systématiquement les atomes, et construire

un système de décomposition atomique entièrement nouveau à partir de ces codages, que

nous appelons décomposition atomique hyper-dimensionnelle (HD-AD). Cette approche évite

complètement le calcul de corrélations dans le domaine temporel. Nous montrons que notre

système se dimensionne plus en fonction de la parcimonie du signal à coder, que de sa durée.

En conséquence, HD-AD effectue des décompositions atomiques beaucoup plus rapidement

qu’en temps réel - une vitesse inconnue des méthodes de décomposition atomiques existantes.

Cependant, l’encodage avec une VFA nécessite une étape de décodage non triviale pour

laquelle nous présentons une solution fondée sur la méthode de Newton.

Nous montrons que la méthode HD-AD peut également être utilisée comme étape de pré-

traitement pour les algorithmes de décomposition atomique traditionnels tels que le Matching

Pursuit (MP) et ses variantes. Nous appelons ce système Matching Pursuit accéléré par
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réseau de neurones (NN-MP). NN-MP accrôıt considérablement la propension de la poursuite

à s’adapter à des atomes asymétriques, ce qui lui permet de tourner sur des ordinateurs dotés

de capacités de calcul modestes.
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Chapter 1

Introduction

The most common way we think to encode symbols is with points. A simple example of

this would be a written letter of the alphabet. Representing symbols by points results in an

encoding that is minimally redundant. However, such encodings are susceptible to noise – a

horizontal line accidentally written across a handwritten “l” changes the meaning to “t”.

Not only are point encodings easily corruptible, but encoding multiple symbols requires

multiple points, all separate from each other, resulting in data structures which are

unbounded in size. If one wishes to write a long story, they will need a lot of paper.

An alternative way to encode symbols is across a vector, where the symbol’s meaning is

distributed equally along the entire length. Miscellaneous errors at certain coordinates do

very little to obscure the encoded symbol, since it is still intact at all the other dimensions

of the vector. Encoding a symbol with a vector of high dimension is highly redundant and

difficult to corrupt. An example of such encoding structures are those in the human brain.

It is not the case that individual neurons of the brain correspond to specific ideas or
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understandings. Rather, it is through the constellation of billions of neurons that the brain

takes in the world, and produces some high dimensional representation of it. The

distributed nature of our brain’s neural representation allows for uninterrupted cognition as

cells die and are replaced, ultimately producing a conscious experience robust to certain

realities of biology.

Such are the types of observations which inspired hyperdimensional computing (HDC),

a brain inspired computing paradigm that encodes symbols across vectors of high

dimension, rather than at points [2]. The large amount of redundancy introduced by high

dimensional vector encodings allows for multiple symbols to be encoded “on top” of each

other. Thus the shape of the encoding does not change as the number of symbols to be

encoded grows. One could call this the high dimensional advantage. The steep initial

investment of high redundancy is quickly repaid in the form of a very powerful, fixed

dimensional representation which is – ironically – very flexible. Having an encoding which

does not change size is valuable for problems that typically have data structures with a

tendency to grow too large to compute with. This is a classic problem with traditional

algorithms which compute atomic decompositions of audio.

Atomic decomposition of audio aims to represent sound as a linear combination of

waveforms, called atoms. From a set of atoms which describe a sound, high-quality audio

coding, source separation [3], and signal transformation [4] can be achieved. The more the

structure of the atom agrees with the sound producing structures in the audio, the fewer

atoms are needed to describe the sound [5]. When a decomposition of a signal has only a

few atoms, the decomposition is sparse. Sparsity is valuable because it allows for more



1. Introduction 3

compressed audio coding, and better control over sound synthesis.

The typical approach to retrieving this small set of atoms involves computing many

time-domain correlations between a query signal and a larger set of atoms called a

dictionary. The most general and well-known algorithm which does this is matching

pursuit (MP) [5]. As the query signal grows in length, so too does the length of the atoms

in the dictionary. The size of the dictionary grows because more atoms are required to

account for the new time. Furthermore, sparsity-promoting atoms generally have many

parameters which also increases the size of the dictionary. The amount of memory required

to store dictionaries of atoms with more than a few parameters to decompose signals of

more than a few seconds can require terabytes of storage, and the number of time

correlations to be computed with a matrix of that size is very high. This makes sparse

atomic decomposition of audio using dictionaries of meaningful atoms virtually impossible

on most personal laptops. These conditions make atomic decomposition a candidate for

investigation through the lens of HDC.

In this thesis we show how to systematically encode various time-frequency atoms using

a subset of HD computing called vector function architecture (VFA) [6]. Encoding with

VFA vectors involves a non-trivial decoding step for which we present a solution based on

Newton’s method. From these atom encodings, we develop a new method to produce an

atomic decomposition which avoids time-domain correlations altogether. In order to

decompose a signal with HD encoded atoms, we first need an HD encoding of the signal

itself. We choose a deep neural network (DNN) as our HD encoder. The fixed dimension

VFA encoding also helps create a DNN model architecture that can generalize to signals of
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any length. In the case that the user wishes to compute an atomic decomposition using

time-domain correlations, we show that our method can serve as a pre-processing step

which pre-selects dictionary atoms for use with MP or its variants such as orthogonal

matching pursuit (OMP) [7], ultimately making these algorithms more tractable. To the

best of our knowledge, our atomic decomposition system is the first which completely

avoids the computation of time-domain correlations.

The contributions of this thesis are:

1. An atomic decompositions which completely avoids time-domain correlations.

2. A method to quickly estimate atom parameter anchor-points, making MP and its

derivative algorithms with these atoms more tractable.

3. A method to decode VFA vectors which are the bound product of other vectors and/or

in superposition.

1.1 Motivation

The prime motivation of this thesis is to design an atomic decomposition system that is

fast. We believe that sparse atomic decomposition is a powerful creative tool, since it allows

for flexible control over audio synthesis at the user’s discretion. However, the computation

difficulties mentioned earlier have almost entirely kept this tool out of the hands of the

average creative audio person. Our method is a step in the direction of making an atomic

decomposition for all, since it generates decompositions faster than real-time, and can run

on a modest personal computer or laptop. Furthermore, our methodology is not specific to
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any one atom prototype, but can be applied to any new atom prototypes that arise in the

future, or existing atom prototypes which we did not explore in this thesis.

1.2 Overview of Thesis

In Chapter 2 we give an overview of some essential aspects of atomic decomposition of audio,

as well as existing solutions to the sparse atomic decomposition problem. In Chapter 3 we

start by giving an overview of HD computing, then present our solution to the non-trivial

VFA decoding problem, and end the chapter with our reformulation of atomic decomposition.

In Chapter 4 we give a review of the areas of deep learning which are relevant to our neural

network HD encoder. In Chapter 5 we present the results of our HD atomic decomposition,

as well as show that our method can be used in a traditional MP algorithm or its variants.

We conclude the thesis in Chapter 6 by sharing our thoughts after having gone through with

the project and discuss future directions we see this research going.
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Chapter 2

Atomic Decomposition

Atomic decomposition describes a signal as a linear combination of elementary functions

(atoms) which belong to a dictionary [8]. For audio, we think of these functions as

waveforms. The linear relationship between a signals and a dictionary of atoms means that

the atoms must share enough energy with the signal in order to decompose it. We loosely

define this as the synthesis criteria of atoms. Typically dictionaries are designed by

“paving” the time-frequency plane with the atom’s time-frequency shape so that sound

happening at any time and any frequency has a nearby atom to represent it [8]. Adequate

paving can be ensured if the atom has a parameterized prototype that controls is

time-frequency shape.

There also exist data-driven methods that learn atoms based on a given class of signals,

such as speech [9]. These atoms are not parameterized and try to decompose a signal with

as few atoms as possible, which is called sparse atomic decomposition. The advantage that

prototype atoms have over non-parameterized atoms is that their parameters give some
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insight into the sound generating structures within the signal. We call this the analysis

criteria of atoms. The ideal atom has a prototype whose parameters create shapes that

match many time-frequency structures in a wide range of audio. Atoms which satisfy both

synthesis and analysis criteria allow for flexible and controlled resynthesis of signals,

making atomic decomposition a power tool with creative audio applications.

Formally the linear relationship between an audio signal y ∈ RN and a set of M atoms

D in matrix form Φ ∈ RN×M is expressed as

y = Φx + ϵ (2.1)

x ∈ RM is a vector of weights describing the contribution of each atom to y and ϵ is

the noise/error term. In this project we focus on the case when M ≫ N , which means the

dictionary is redundant. In order to retrieve a sparse x, equation (2.2) is solved.

minimize
x

∥x∥0

subject to ∥y − Φx∥2
2 ≤ ϵ

(2.2)

where ∥x∥0 is the l0 “norm” of x, and counts the number of non-zero components.

Quotations marks are included around the l0 “norm” because ∥ax∥0 ̸= a∥x∥0 for a ∈ R,

and so is not technically a norm. However, the l0 “norm” directly models the sparsity of x.

Minimizing the l0 “norm” of x results in a sparse but non-unique solution to equation (2.1).

Time-shift frequency-shift invariant parametric atoms ϕm ∈ D where 1 ≤ m ≤ M have

the general form
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ϕ[n] = E[n]eiωcn (2.3)

where E is the envelope (windowing) function, ωc = 2πfc is the normalized angular

frequency of oscillation (0 ≤ f c ≤ 1
2), and n is discrete time. The shape of E[n] can be

broadly divided into two categories – symmetric and asymmetric.

2.1 Symmetric Atoms

Symmetric atoms are characterized by symmetry about a time instant. One of the most

common symmetric atoms, the Gabor atom, was introduced in 1946 by Dennis Gabor in [10].

Since no signal can be arbitrarily localized in both time and frequency, Gabor thought the

most compact time-frequency structure possible, the Gaussian, should be used as the building

block of signals [8]. Gabor decided to modulate infinite duration complex sinusoids with a

Gaussian function

E[n] = exp
(

− π
(n − τ

s

)2
)

(2.4)

where τ is the time center of the windowing function, and s ∈ R≥1 is the scale parameter

controlling the time support and frequency bandwidth of the atom. The small

time-frequency footprint of Gabor atoms make them excellent atoms for decompositions

which compute correlations via the fast Fourier transform (FFT). Perhaps the most

commonplace time-frequency representation, the short-time Fourier transform (STFT), is

an atomic decomposition of symmetric atoms [11].

In practice, a pure Gaussian function – which is of infinite duration – is substituted for a

discrete time window like the Hanning window function, or Hann window [12]. The N point
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Hann window is

EHann[n] = 0.5 + 0.5cos
(

2π(n − τ)
N − 1

)
(2.5)

for 0 ≤ n ≤ N − 1. The use of a Hann window when computing an STFT is a common

choice, and our experiments with Gabor atoms use this window in order to draw a connection

between our method and existing popular atomic decompositions with symmetric atoms. The

Hann window and its discrete Fourier transform (DFT) is shown in Figure 2.1.

(a) (b)

Figure 2.1: Hann window for τ = 16 in (a) time and (b) frequency.

Gabor atoms are typically short – between 2 and 250 ms – and their small time-frequency

footprint means they are good at localizing regions of energy in the time-frequency plane.

However, their short duration means that long time-frequency structures, such as partials,

must be decomposed with many Gabor atoms, and thus are not sparse. The task of collecting

short atoms which together describe a long time-frequency structure is called partial tracking

[13]. The reason that long duration Gabor atoms cannot be used to sparsely decompose

partials is that the window symmetry is an unrealistic feature of audio. More common in
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audio is a window E[n] which is asymmetric.

2.2 Asymmetric Atoms

Asymmetric atoms are characterized by an asymmetric envelope E, where, in general, the

portion before the envelope’s maximum (the attack) is shorter than the portion after the

envelope maximum (the decay). Asymmetry is an essential characteristic for parametric

atoms that sparsely represent a wide range of time-frequency shapes common in audio. The

most basic asymmetric envelope parameter is the damping factor.

2.2.1 Damped Sinusoid

The damped sinusoid (DS) is an essential asymmetric atom in atomic modelling of audio

given its relationship to a vibrating mode of a resonant structure. Early examples of its use

in signal modelling include the well-known Prony’s method [14]. An envelope damping

parameter is introduced into the atom prototype which allows control over its decay

characteristics. The amplitude envelope of a damped sinewave is

EDS[n] = e−αnu[n] (2.6)

where α ∈ R≥0 is the damping factor and u is the unit step function. The DS has a well

known discrete time Fourier transform

F [ϕDS](ω) = 1
1 − e−α+i(ω−ωc) (2.7)

and a well known N point DFT.
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F [ϕDS](k) = 1 − eN(−α+i(ωc−2πk/N))

1 − e−α+i(ωc−2πk/N) (2.8)

From viewing F [EDS](k) in Figure 2.2 we see that the spectrum of EDS[n], and

consequently ϕDS, is unimodal, and thus ensures an optimal shape for parameter

estimation in the time-frequency plane. However, the initial discontinuity at the envelope’s

Figure 2.2: DS normalized magnitude spectrum for α = 0.05.

attack is an unrealistic feature of real-world audio and requires smoothing in order to

better agree with musical sounds. This motivates the investigation into other atom

prototypes that introduce an attack parameter in order to provide flexible control over the

envelope while maintaining a uni-modal spectrum.

Asymmetric atom prototypes are built from the damped sinusoid window by introducing

an attack portion of the envelope denoted A†[n] where † specifies the atom attack shape.

E†[n] = A†[n]e−αnu[n] (2.9)

It is clear that for damped sinusoids ADS[n] = 1.
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Defining the asymmetric atom prototype as a modulation of a damped sinusoid introduces

two important quantities: nm, the envelope maximum, and nI , the influence time. In sound

synthesis, nm is typically used as a measure of the attack time [15].

nm = arg maxn(E[n]) (2.10)

and nI is

nI = arg maxn

(
e−αn(1 − A[n − 1]) > δ

)
(2.11)

where typically δ = 0.001 i.e. −60 decibels (dBs). Being able to control nm and nI through

atom parameters are important for designing different sounds from atoms.

2.2.2 Ramped Exponentially Damped Sinusoids

The ramped exponentially damped sinusoid (REDS) is an asymmetric atom designed

specifically for sparse atomic decomposition of audio and follows the form of equation

(2.9) [1]. It has a compact and unimodal spectrum, and can control the attack and decay

characteristics with a minimum number of parameters: 2.

REDS atoms are inspired by two other asymmetric atom prototypes: the gammatone
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(GT) [16] and the formant-wave-function (FOF) [17].

AGT[n] = np (2.12)

AFOF[n] =


1
2(1 − cos(nβ)) for 0 ≤ n ≤ π

β

1 for π
β

< n

(2.13)

The GT and FOF both introduce a smoothing of the DS discontinuity but fall short in

terms of desirable audio processing properties in one way or another. On the one hand, the

GT provides a smooth attack shape which results in a unimodal spectrum; however, the

polynomial attack parameter p does not provide flexible enough control for representation

of a wide range of sounds. On the other hand, a FOF introduces a β parameter which

allows precise control of the envelope attack; however, the piece-wise construction results in

a multi-modal spectrum, making parameter estimation sub-optimal.

The REDS attack envelope uses elements of both a GT and a FOF while avoiding the

shortcomings of each atom. AREDS[n] is a polynomial like a GT and is parameterized by an

attack parameter β like a FOF.

AREDS[n] = (1 − e−βn)p (2.14)

Unlike the piece-wise construction of AFOF, AREDS[n] is smooth and therefore has a

unimodal spectrum. Finally, p = 1 reveals the DS-like construction (one minus the DS

envelope by letting α = β). For p > 1 the attack onset is smoothed and results in a more

narrow bandwidth. REDS envelope maximum is nm = 1
β
log(1 + pβ

α
) and its influence time

is approximately nI ≈ − 1
β
log(1 − (1 − δ)1/p).
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A binomial expansion of ϕREDS[n] shows its sum of exponentials form

ϕREDS[n] = (1 − e−βn)pen(−α+iωc)u[n]

=
p∑

r=0
(−1)r

(
p

r

)
en(−α−rβ+iωc)u[n]

(2.15)

where
(

p
r

)
= p!

(p−r)!r! . Since the spectrum of an exponential is well known, the discrete time

Fourier transform of ϕREDS follows easily.

F [ϕREDS](ω) =
p∑

r=0
(−1)r

(
p

r

)
1

1 − e−α−rβ+i(ω−ωc) (2.16)

Similarly its N point DFT is

F [ϕREDS](k) =
p∑

r=0
(−1)r

(
p

r

)
1 − eN(−α−rβ+i(ωc−2πk/N))

1 − e−α−rβ+i(ωc−2πk/N) (2.17)

REDS concentrated and unimodal spectrum is shown in Figure 2.3.

Figure 2.3: REDS normalized magnitude spectrum for α = 0.05, β = 0.23, and p = 3.
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Figure 2.4 visually compares the asymmetric A†[n], Figure 2.5 compares the DFT of

A†[n], and Table 2.1 compares each A†[n] in terms of valuable audio processing qualities. All

comparisons point to REDS atoms being a good choice for this project.

(a) DS. (b) GT. (c) FOF. (d) REDS.

Figure 2.4: Comparison of asymmetric A†[n] for β = 0.05, and p = 3.

(a) α = 0.05, β = 0.23, and p = 3. (b) α = 0.005, β = 0.05, and p = 3.

Figure 2.5: Spectra comparison of asymmetric ϕ for short transient-like atoms (left) and
long tonal-like atoms (right).

When an atom prototype matches a particular sound generating structure, certain

parameters of the atom might become analogous to physical properties of the structure

itself. For example, consider the asymmetry of sinusoidal components of a plucked guitar

string. Decomposing this signal with a dictionary of asymmetric atoms causes α to be seen

as a control for the amount of energy reflected at the nut and bridge of the guitar. Tuning
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Criteria DS GT FOF REDS
Concentrated Spectrum – ✓ ✓ ✓

Unimodal Spectrum ✓ ✓ – ✓
Influence Time Control – – ✓ ✓
Time-domain Simplicity ✓ ✓ – ✓
Causal Filter Simplicity ✓ ✓ – ✓
Inner Product Simplicity ✓ – – ✓

Table 2.1: Asymmetric envelope overview [1].

α has a similar effect as making the nut and bridge at the edge of the string harder or

softer, causing the components to ring for longer or shorter.

By using parameters of atoms in a sparse decomposition, new sounds can be generated

which are related to, but not an exact reconstruction of the input audio. For example, tuning

α so that more energy than is physically possible is reflected along the string in the guitar

example. This demonstrates how powerful of a creative tool atomic decomposition can be,

where physically unrealistic acoustic sources can be realized by the tuning of a few, simple

parameters.

2.3 Models of Audio Synthesis

Asymmetric atoms are typically thought to be used in the additive model of audio

synthesis. The additive model controls periodic elements in audio, such as partials, by the

frequency parameter of the atom. The necessity of post-processing of Gabor atoms with

partial tracking in order to reveal these structures shows a natural consequence of

decomposition by asymmetric atoms with the additive model: the identification of partials.

The partial-identifying nature of asymmetric atoms makes decompositions with them
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naturally more meaningful since it reveals structures in the sounds without any further

processing.

An alternative model of audio synthesis, the source-filter model, controls the periodic

elements in audio by the time spacing of atoms, rather than their frequency parameter. This

is done by generating audio as the output of a set of filters in parallel, excited by a periodic

train of impulses. When the response of the filter is the time waveform of an atom, we

can see this model as an atomic decomposition. Here, the frequency parameter controls the

resonance of the filter. A sound-producing structure which fits the source-filter model is the

human voice, where the excitation of the glottis has an asymmetric shape and is filtered by

the vocal tract. Our experiments perform decompositions from both the additive model and

the source-filter point of view using the atoms discussed in this chapter.

2.4 Matching Pursuit

In practice there are two major obstacles that must be overcome when solving (2.1): the

creation of a set of waveforms on which to decompose, and a method for selecting a sparse

subset of these waveforms. The first is accomplished largely through user design, although

there exist data-driven methods which aim to learn waveforms for a given set of

signals [18]. Selecting a subset of the waveforms is a challenge that yet offers no clear-cut

solution, with many approaches focusing on quality [7], others on speed [19]. The most

well-known approach to selecting a subset of atoms to decompose a wide-range of signals

with is Matching Pursuit (MP) [5].



2. Atomic Decomposition 18

Matching Pursuit is an iterative, greedy algorithm used to minimize the l0 “norm” of x

by approximately solving equation (2.2) [5]. At each iteration matching pursuit chooses the

atom ϕm ∈ D which best fits a signal y and computes its contribution x. This operation is

expressed as

arg min
x,m

∥y − ϕmx∥2
2 (2.18)

We can expand ∥y − ϕmx∥2
2 to see that

∥y − ϕmx∥2
2 = (y − ϕmx)⊺(y − ϕmx)

= y⊺y − y⊺ϕmx − xϕ⊺
my + xϕ⊺

mϕmx

= ∥y∥2 − 2xϕ⊺
my + x2∥ϕm∥2

2

(2.19)

For any m, ∥y − ϕmx∥2
2 is minimized when its gradient with respect to x is 0, in other

words
0 = ∇x∥y − ϕmx∥2

2 = ∂

∂x

(
∥y∥2 − 2xϕ⊺

my + x2∥ϕm∥2
2

)

= −2ϕ⊺
my + 2x∥ϕm∥2

2

→ x = ϕ⊺
my

∥ϕm∥2
2

(2.20)

where ϕm is often normalized such that ∥ϕm∥2
2 = 1. By substituting x from equation (2.20)

in the expansion from equation (2.19), it follows that

∥y − ϕmx∥2
2 = ∥y∥2 − 2ϕmy⊺ϕ⊺

my + (ϕ⊺
my)2∥ϕm∥2

2

= ∥y∥2 − 2(ϕ⊺
my)2 + (ϕ⊺

my)2

= ∥y∥2 − (ϕ⊺
my)2

(2.21)
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Thus minimizing equation (2.18) reduces to a search over m

arg min
m

(∥y∥2 − (ϕ⊺
my)2) (2.22)

which can be equivalently expressed as

arg max
m

|ϕ⊺
my| (2.23)

At each iteration k, equation (2.23) is computed on a residual signal r(k) and the selected

atom ϕm̃ where m̃ = arg max
m

|ϕ⊺
mr(k)| is subtracted from r(k) to get r(k+1)

r(k+1) = r(k) − x(k)ϕm̃ (2.24)

where x(k) = ϕ⊺
m̃r(k). When ϕm ∈ R, the phase ∠ϕm must be estimated from a discrete set

as for the other parameters. However, when ϕm ∈ C then x ∈ C as well and thus contains

magnitude and phase information. In this case, the update equation (2.24) becomes

r(k+1) = r(k) − 2ℜ{x(k)ϕm̃} (2.25)

This process is outlined in Algorithm 1. Theoretically, given a dictionary that constitutes a

frame, MP can decompose any signal such that r(k) = 0 for some, possibly infinite, k [5].

At each iteration k, MP selects an atom ϕm̃ which is orthogonal to r(k+1). However,

given a redundant dictionary of non-orthogonal atoms, ϕm̃ is not necessarily orthogonal to

the residual at later iterations, and consequently can be chosen again. This fact is what

allows a dictionary of finite size to need an infinite number of MP iterations to achieve a
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null residual as mentioned earlier. A modification to MP, orthogonal matching pursuit

(OMP), avoids this by ensuring that the residual at each iteration is orthogonal to all

atoms selected so far [7].

2.4.1 Orthogonal Matching Pursuit

OMP differs from MP by iteratively building a sub-dictionary of atoms. At each iteration,

the most correlated atom from the dictionary is appended to the sub-dictionary, and the

correlation with the residual of all atoms in the sub-dictionary is computed and used to

update the coefficient vector. This results in a residual which is orthogonal to all atoms

chosen so far. Because of this, at any iteration k, OMP gives the best k term

approximation using the k atoms selected so far – this is not the case with MP.

Consequently, for a dictionary of size M , OMP converges to the projection of y onto D in

no more than M iterations. OMP is outlined in Algorithm 2. In the interest of brevity a

least squares (LS) solution is shown for the coefficient update as in [19]. However, the

original algorithm is less compact. Interested readers are directed to [7] for details.

Algorithm 1 Matching Pursuit
init: k = 0, x(k) = 0, r(k) = y

1: repeat
2: m̃(k) = arg maxm|ϕ⊺

mr(k)| ▷ best atom selection
3: x

(k)
m̃ = ϕ⊺

m̃r(k) ▷ coefficient computation
4: x(k) = x(k−1) + x

(k)
m̃ ▷ coefficient update

5: r(k) = r(k−1) − 2ℜ{x(k)ϕm̃} ▷ residual update
6: k = k + 1
7: until stopping condition ▷ iteration limit or signal-to-residual ratio (SRR) threshold
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In our experiments, we use the implementation proposed in [20] which utilizes efficient

inverse Cholesky factorization to vastly reduce the computation complexity. The interested

reader is directed to their paper for an in-depth discussion of their method.

2.5 Parameter Refinement

In practice, the parameters of atoms ϕ ∈ D, denoted λ, are chosen from a discrete set of

values. However, the best fitting atom to the signal likely has some set of parameters λ̃ in

the neighborhood of the initial estimate for λ. The most general method which retrieves λ̃

is Newton’s method.

2.5.1 Newton’s Method

For a general parameter λ ∈ λ we seek a value which minimizes the residual energy function

J(λ) = ∥y − ϕλx∥2
2 (2.26)

Algorithm 2 Orthogonal Matching Pursuit
init: k = 0, x(k) = 0, r(k) = y, Φ(0) = ∅

1: repeat
2: m̃(k) = arg maxm|ϕ⊺

mr(k)| ▷ best atom selection
3: Φ(k) = [Φ(i−1), ϕm̃] ▷ sub-dictionary update
4: χ(k) = (Φ(k) ∗ Φ(k))−1Φ(k) ∗ r(k−1) ▷ coefficient computation via LS solution
5: x(k) = x(k−1) + χ(k) ▷ coefficient update
6: r(k) = r(k−1) − Φ(k)χ(k) ▷ residual update
7: k = k + 1
8: until stopping condition ▷ SRR threshold
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Newton's method (NM) searches for the zeros of a function g(x) by iteratively computing

x(k) = x(k−1) + g(x(k−1))
g′(x(k−1)) (2.27)

Equation (2.27) can be modified to find the minimum of a function (where the first derivative

equals zero) by letting g(x) = f ′(x). This construction finds the minimum of equation (2.26)

using the first and second partial derivative of J(λ). For a complex-valued atom ϕλ the first

derivative of J(λ) is

∂

∂λ
∥y − ϕλx∥2

2 = 2ℜ
{
x̄

∂

∂λ
ϕH

λ y + |x|2 ∂ϕH
λ

∂λ
ϕλ

}
(2.28)

and the second derivative is

∂2

∂λ2 ∥y − ϕλx∥2
2 = −2ℜ

{
x̄

∂2ϕH
λ

∂λ2 y + |x|2
(∂2ϕH

λ

∂λ2 ϕλ + ∂ϕH
λ

∂λ

∂ϕλ

∂λ

)}
(2.29)

At each iteration k Newton’s method updates parameter λ with equation (2.30)

λ(k) = λ(k−1) −
∂J
∂λ

(λ(k−1))
∂2J
∂λ2 (λ(k−1))

(2.30)

until some maximum iteration is reached or SRR(k) ≯ SRR(k−1). Furthermore, this algorithm

can be generalized to the multi-dimensional case in order to estimate multiple parameters

simultaneously. For the parameter vector λ ∈ RQ which contains Q parameters of ϕ, we can

update their values using a multi-dimensional Newton’s step in equation (2.31)

λ(k) = λ(k−1) −
(
HλJ(λ(k−1))

)−1
∇λJ(λ(k−1)) (2.31)
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Where ∇λJ(λ(k−1)) is the gradient vector

∇λJ(λ(k−1)) =


∂J
∂λ1

(λ(k−1)
1 )
...

∂J
∂λQ

(λ(k−1)
Q )



and HλJ(λ) is the Hessian matrix of J(λ)

(
HλJ(λ)

)
i,j

= ∂2J

∂λi∂λj

(λ) = −2ℜ
{
x̄

∂2ϕH
λ

∂λi∂λj

y + |x|2
( ∂2ϕH

λ

∂λi∂λj

ϕλ + ∂ϕH
λ

∂λi

∂ϕλ

∂λj

)}
(2.32)

The power of Newton’s method lies in its ability to refine any parameter of an atom as long as

the atomic expression is twice differentiable with respect to that parameter. For a detailed

discussion and exploration of Newton’s method for parameter refinement of asymmetric

atoms the reader is referred to [1].

2.6 Problem Reformulation

When decomposing a signal, matching pursuit is limited by two factors. First, the reliance

on computing many time-domain correlations means that as the signal length N grows, so

does the computational cost of computing the decomposition. Second, adding parameters

to the atom prototype results in an exponential growth of the dictionary size M . Desiring

a sparser decomposition with more meaningful parameters, like those from asymmetric

atoms, comes at a much higher computational cost.

Inspired by this observation, we develop an encoding method where atoms are

represented by vectors of high but fixed dimension NHD ≪ N , regardless of their length in
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the time-domain. Furthermore, we utilize the time-frequency shift invariance of the atoms

discussed so far, to “reuse” atom encodings throughout the time-frequency plane, resulting

in a dictionary of size MHD ≪ M . This greatly lessens the trade-off between atom

prototype selection and computation time. Given such an encoding method, the focus of

atomic decomposition switches from designing a dictionary of waveforms, to generating an

encoding of the query signal y from which the atom parameters can be extracted.

The core of reframing atomic decomposition in this way comes from the field of

hyperdimensional computing (HDC), a brain inspired computing paradigm. In Chapter 3

we give an overview of HDC as it pertains to our approach to atomic decomposition.
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Chapter 3

Hyperdimensional Computing

Hyperdimensional computing (HDC) is a computing paradigm inspired by models of a

biological brain. Like a brain, which has a very high number of neurons (≈ 86 billion for

humans), HDC operates in a very high dimensional space of size NHD. Unlike traditional

computing methods, where quantities are represented with a single 8-64 bit binary unit,

HDC representations encode symbols throughout the entire high dimensional space. This

makes it a distributed representation. When one or many of the dimensions is corrupted,

the encoded symbol remains intact since it is spread equally across all other dimensions.

This feature of HDC imbues it with an extreme robustness to noise. The elements of HDC

are either random or built from randomness, meaning that the structures encoded in the

high dimensional space are not specific to a particular state of the space, but rather to the

relationship between different states of the space – another observation taken from

biological neural modelling [2]. The symbols encoded using HD vectors can, in principal, be

anything. In the past, HDC has been used in speech recognition [21], language

identification [22], image classification [23], robotic decision making [24], and
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encryption [25], to name a few.

In order to motivate the utility of HD computing for our problem, we first start by

discussing the traditional form a parameter vector takes. We typically think of the parameter

vector for an atom of Q parameters to be a Q × 1 dimensional structure in RQ×1 like the

parameter vectors discussed in section 2.5.


λ1

...

λQ

 (3.1)

Equation (3.1) somewhat resembles a key-value pair, where the “key”, or parameter

position, returns the parameter value. Because the values are stored in a maximally sparse,

or alternatively minimally redundant, manner, they are susceptible to corruption by noise.

In addition, atoms with more parameters require more vector positions, and storing multiple

parameter sets from M different atoms requires adding another dimension to the structure,

making it of size Q × M × 1 
λ1,1, ..., λM,1

... ... ...

λ1,Q, ..., λM,Q

 (3.2)

One of the primary insights from HD computing is that by expanding the “value”

dimension from size 1 to a size that is highly redundant, NHD, we can collapse the “key”

dimensions (Q and M) entirely. The resulting structure is of fixed dimension NHD, for any
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number of encoded parameters and atoms. In this chapter we will show how to

systematically build such an encoding, starting with the basic units of HDC.

The basic building blocks of HDC are vectors of high dimension NHD usually between

103 and 104, sometimes referred to as hypervectors [2]. In order to compute with these

vectors, certain algebraic operations must be defined which describes how data structures

are built and decoded. These operations roughly correspond to multiplication (binding)

and addition (superposition). Together, the set of hypervectors and algebraic operations

form a ring-like structure called a Vector Symbolic Architecture.

3.1 Vector Symbolic Architecture

Vector symbolic architecture (VSA) is a term coined by Robert Gayler in [26] where he

aimed to solve certain linguistic challenges posed to models of symbolic processing and

brain function. In particular, his VSA model, known as the multiply-add-permute (MAP)

VSA model, has the useful property of preserving vector dimensionality throughout

computation. This differs from other cognitive models such as the tensor product

production system (TPPS), whose dimensionality expands throughout subsequent

computations [27]. Many properties of a VSA model, such as the dimensionality preserving

nature, or lack thereof, are dictated by the specific binding operation chosen. In many

ways, binding is the heart and soul of any VSA model.



3. Hyperdimensional Computing 28

3.1.1 Binding

The binding operation, generically denoted as ◦, is used to “associate” two symbols to each

other using their corresponding hypervectors. Binding two non-identity hypervectors to each

other generates a new vector which is dissimilar to either vector used in the binding. For

example, if we encode symbols u̇, v̇ with hypervectors u and v, and wish to associate them

with each other to generate a new symbol ṡ, the corresponding hypervector s is built by

u ◦ v = s (3.3)

The similarity between two hypervectors is measured by their inner product

⟨u, v⟩ =
∑

i

uivi (3.4)

or more commonly, their cosine similarity

⟨u, v⟩
∥u∥2∥v∥2

=
∑

i uivi√∑
i u2

i

√∑
i v2

i

(3.5)

where ui is the ith coordinate of u. The similarity of vectors used in equation (3.3) can be

summarized by
⟨u, s⟩ ≈ 0

⟨v, s⟩ ≈ 0

In fact, binding a vector with itself results in a vector which is dissimilar to the original

vector. In other words

⟨u, u ◦ u⟩ ≈ 0 (3.6)
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We will see more consequences of this later on in section 3.2. The desired properties of

binding are:

1. associative – (a ◦ b) ◦ c = a ◦ (b ◦ c) = (a ◦ c) ◦ b

2. distributive over addition – ∑D1
i ai ◦∑D2

j=1 bj = ∑D1
i

∑D2
j ai ◦ bj

3. has an inverse operation to perform unbinding, denoted�◦.

The inverse operation to binding is used to retrieve constituent hypervectors from a bound

vector, in other words

u ≈ v�◦ s = ũ ◦ s (3.7)

Where ũ is the approximate inverse of u. ũ is an approximation in that it has the same

inner product with the other hypervectors as the original vector used in the binding [28],

however it can have different amplitude than u. Binding allows encodings to be built which

are unique, and not similar to other encodings even if they each have many of the same

hypervectors bound inside.

Hadamard Product

The Hadamard binding is perhaps the simplest binding operation we will discuss. Denoted

⊙, the Hadamard product of two hypervectors is simply the element-wise product of each

vector. In other words if u ⊙ v = s, then

si = ui · vi (3.8)

This was the binding operation of choice for Gayler in [26]. He also chose his hypervectors

to be bipolar, where each element is ±1, chosen randomly. Bipolar hypervectors have the
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nice property that each vector unbinds itself, in other words, ũ = u. If u ⊙ v = s, then

v = u ⊙ s and u ⊙ u = 1NHD (3.9)

where 1NHD is a vector of size NHD where each element is 1. The fact that each hypervector

unbinds itself in Gayler’s MAP is one of the core ideas behind resonator networks, a highly

efficient and accurate algorithm for retrieving bound vectors [29].

Circular Convolution

Another popular binding operations is circular convolution as used by Tony Plate in his

holographic reduced representation (HRR) [30]. Denoted as ⊛, if the circular convolution of

two hypervectors u ⊛ v = s then

sk =
NHD∑
i=1

u(i−k)%NHDvi (3.10)

where % is the standard modulo operator. The relationship between convolution and

multiplication via the Fourier transform reveals the simpler form of circular convolution.

s = u ⊛ v can alternatively computed as

s = F−1(F(u) ⊙ F(v)) (3.11)

As can be seen from equation (3.11), unbinding circular convolution is done by conjugation

of the Fourier transform, in other words

u ��⊛ v = F−1(F(u) ⊙ F(v)) (3.12)
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The ability to perform ⊛ via the FFT greatly increases its scalability for an otherwise

expensive computation.

3.1.2 Superposition

The other primary operation in a VSA is superposition. Superposition, denoted +, collects

hypervectors into a new vector. Collecting u and v to generate s via superposition is written

u + v = s (3.13)

where si = ui + vi. Superposition differs from binding in that it preserves the similarity of

the input vectors to the output vector, in other words

⟨u, s⟩ ≫ 0

⟨v, s⟩ ≫ 0
(3.14)

In practice, binding is generally used to associate symbols belonging to a single entity, such

as the color and texture of an object, where it is the combination of symbols which prevails,

not any one symbol. Alternatively, superposition is used to collect the encodings of several

entities into a single hypervector, where each entity prevails as equally as the others.

In order to illustrate the similarity preserving or destroying nature of superposition and

binding, we show their effects on vectors in R2 in Figure 3.1.

In many early VSA works, the problems being solved originated in linguistics [28].

Cognitive behavior was observed through language, and then attempted to be reproduced
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(a)
u ∈ R2

v ∈ R2
(b)

⟨u, u + v⟩ ≫ 0

⟨v, u + v⟩ ≫ 0
(c)

⟨u, u ⊙ v⟩ = 0

⟨v, u ⊙ v⟩ = 0

Figure 3.1: Simple NHD = 2 example to show the similarity consequences of superposition
and binding.

in symbolic models of reasoning. As such, many of the original symbols which were being

encoded using VSA were words. Since individual words by and large have no obvious

numerical relationship between each other, their corresponding VSA hypervectors were

generated randomly – either random binary [31], random bi-polar [26], or random

Gaussian [28] – and consequently are quasi-orthogonal to each other [29]. However, for

encoding symbols which have a numerical relationship to each other, such as size or

distance, it is desirable to have this relationship persist in the encoding space.

Much of the initial experimentation in this thesis was done purely with the VSA

technologies mentioned so far. However, we found that encoding symbols which have

numerical relationships between each other in a way which does not preserve this

relationship to be sub-optimal. We were encouraged by experimentation which preserves

this relationship, however existing methods of preserving numerical quantites are restricted

to one encoding symbol [32]. For the time-frequency atoms we discussed in chapter 2 there
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are either 2, 3, or 4 numerical symbols (parameters).

In [6], an HDC framework is presented which collects previous VSA explorations and

formalizes an architecture that generalizes symbol encoding from a discrete set to a

continuous range of real numbers for any number of parameters. Additional capabilities

such as computing with functions are addressed as well, all in a mathematically rigorous

manner. This new framework gave our project the tools it needed to truly build the atomic

decomposition system we envisioned.

3.2 Vector Function Architecture

Vector Function Architecture (VFA) is an extension of Vector Symbolic Architecture which

permits the encoding of a continuous range of values, as well as the manipulation of

functions such as function convolution and function shifting, all in the high dimensional

space. VFA collects contributions from previous VSA projects and unifies them in a

well-defined mathematical framework. The curious reader is directed to [6] for a complete

description of Vector Function Architecture, while here we will give an overview of certain

elements of VFA which will be used in our approach to atomic decomposition.

In general, the coordinates of VFA hypervectors are complex numbers. The expression

for the inner product between encodings is rewritten to the general vector form

⟨u, v⟩ = u⊺v (3.15)

With these complex-valued high dimensional vectors, real numbers can be encoded through
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fractional power encoding (FPE) by using the binding operation. FPE starts with self-

binding, which describes binding a vector with itself k times

u(k) = (u)(◦k) = u ◦...◦︸ ︷︷ ︸
k−1 times

u (3.16)

as a way to encode integers. This is then generalized to real numbers r

fFPE : r ∈ R → u(r) = (u)(◦r) ∈ C (3.17)

For Hadamard binding, self-binding corresponds to

u(k) = (u)(⊙k) = u ⊙...⊙︸ ︷︷ ︸
k−1 times

u (3.18)

which results in the exponentiation of each coordinate of u by r, or

u(r)n = (un)r (3.19)

For circular convolution, self-binding corresponds to

u(k) = (u)(⊛k) = u ⊛...⊛︸ ︷︷ ︸
k−1 times

u = F−1
(
F(u) ⊙...⊙︸ ︷︷ ︸

k−1 times

F(u)
)

(3.20)

which results in the exponentiation of each element of the Fourier transform of u by r

u(r)n = F−1(F(u)r)n (3.21)

The particular FPE encoding of a continuous value r depends on the base vector u. A
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notable subset of hypervectors with complex coordinates is the set of unitary vectors

A◦ = {u : ∥u ◦ v∥2 = ∥v∥2 ∀u} (3.22)

These vectors are special because binding two unitary vectors generates another unitary

vector. For Hadamard product binding, vectors with entries on the unit circle are an obvious

set of unitary vectors

A⊙ = {u : un = eiθn|∀θn ∈ R} (3.23)

For circular convolution, unitary vectors correspond to the inverse Fourier transform of points

on the unit circle

A⊛ = {u : F(u)n = eiθn|∀θn ∈ R} (3.24)

Because of this, there is the nice consequence of being able to generate real unitary vectors

using circular convolution. It is well known that the inverse Fourier transform of a complex

vector with Hermitian symmetry is real. Consequently, taking the inverse Fourier

transform of a vector of points on the unit circle which is Hermitian symmetric returns a

real unitary vector under circular convolution.

For either binding operation, a vector of points on the unit circle must be generated. In

general we denote the function

fA◦ : θ ∈ C → u ∈ A◦ (3.25)

which takes a vector of angles and maps them to a corresponding unitary vector for the

given binding operation ◦.
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The property that similarity between symbols is preserved in the encoding space make the

Hadamard product and circular convolution a locality preserving encoding (LPE). In fact,

if the base vector u is sampled from certain distributions, there exists a similarity kernel K

which precisely defines the similarity between the encodings for two real numbers r1 and r2.

Encodings that have a similarity kernel are known as a kernel LPE (KLPE). An LPE of the

form in equation (3.17) is a KLPE if for sufficiently large NHD the inner product of encoding

points defines a translation-invariant similarity kernel

u(r1)⊺u(r2) → K(r1 − r2) (3.26)

Furthermore, this similarity kernel is compatible with a VSA binding operation if encoding

r1 + r2 corresponds to binding the encoding for each value, in other words

u(r1 + r2) = u(r1) ◦ u(r2) (3.27)

For unitary vectors whose θ is sampled from a uniform distribution, the resulting similarity

kernel is the sinc function.

sinc(r) = sin(πr)
πr

(3.28)

The similarity between two encoding vectors approaches the analytic similarity kernel as

NHD increases, as shown in figure 3.2.

This similarity behavior can be generalized to binding Q > 1 vectors.

(u1(r1) ◦ ... ◦ uQ(rQ))⊺(u1(s1) ◦ ... ◦ uQ(sQ) = K(r1 − s1) × ... × K(rQ − sQ) (3.29)
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(a) NHD = 100 (b) NHD = 1000 (c) NHD = 10, 000

Figure 3.2: VFA Sinc Similarity Kernel for uniform sampling. Q = 1.

This is shown in Figure 3.3 for Q = 2.

Figure 3.3: Similarity Kernel for uniform sampling when NHD = 10, 000 and Q = 2.

Looking at the similarity kernel displays how encoding real numbers is a natural extension

of encoding integers since the zero crossing remain at integer values. When thinking of

encoding integers i as self binding a base vector with itself i times as written in (3.16), the

true similarity-destroying nature of binding is on full display: even when two HD vectors are

identical, binding them together creates a hypervector almost completely orthogonal to the
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original vector. This is the same behavior we pointed out in equation (3.6) but now we see

it displayed as a sinc function and generalized by the VFA framework.

3.3 VFA Atomic Encoding

Our approach to atomic decomposition is based on encoding atoms in HD space using the

VFA framework laid out in the previous section. For an atom ϕλ of Q parameters, we first

create a base vector uλq for each λq ∈ λ. These base vectors are stored for the decoding

process which we detail in the next section. Then we encode each particular λ̇q using its

corresponding base vector, uλq via the FPE described in equation (3.17). Finally, the HD

vector which encodes ϕλ is built by binding together all uλq(λ̇q) using ◦:

s◦(λ̇) = uλ1(λ̇1) ◦ uλ2(λ̇2) ◦ ... ◦ uλQ
(λ̇Q) (3.30)

We choose unitary vectors for our base vectors uλq because of their success in previous

HDC works as well as their nice mathematical properties. For each parameter λq we generate

a Hermitian symmetric phasor θq and store the corresponding unitary vector

uλq = fA◦(θq) (3.31)

In order to scale the atoms by their complex gain coefficient x, we bind the atom encoding

s(λ̇) with a vector encoding of x, x⃗HD. For Hadamard binding, x⃗HD is simply

(x⃗HD)n = x (3.32)
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for 1 ≤ n ≤ NHD. However, because circular convolution operates using the Fourier

transform of vectors, the coefficient encoding vector for ⊛ is

F(x⃗HD)n = x (3.33)

for 1 ≤ n ≤ NHD
2 +1, and then conjugate mirrored for the following NHD

2 −1 vector coordinates.

We define the function

γ◦(x) : x ∈ C 7→ x⃗HD (3.34)

which maps an atom’s coefficient x to the corresponding HD vector x⃗HD depending on the

binding operation ◦.

Equations (3.30) - (3.34) are combined to encode a time-signal which is the linear

combinations of time-frequency atoms

y =
∑

k

xkϕλk

by the HD vector

z =
∑

k

γ◦(xk) ◦ s◦(λk) (3.35)

for a binding operation ◦. For this project we choose circular convolution as the binding

operation (◦ = ⊛) because of the ability to generate real-valued vectors, as discussed in

section 3.2. Because circular convolution binding (and Hadamard binding) produce an

output vector the same size as its inputs, which is of fixed dimension NHD, the size of

encoded atoms does not change with its length in the time-domain, N . The burden of long

duration signals is of no concern given this encoding method.
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Because binding destroys the similarity between the input and output vectors, retrieving

λk is not trivial for any VSA model, and is further complicated by the continuous nature of

VFA encodings. In the next section we show that extending Newton’s method as described

in section 2.5.1 to unitary HD vectors works quite well for retrieving λk.

3.4 Decoding VFA Vectors

Once bound, retrieving the vectors which went into the binding is difficult because the

similarity of the vectors to the bound product is destroyed. When the set of symbols being

encoded is discrete, retrieving the individual vectors used in the binding is a hard

combinatorial search problem. Recently, efficient algorithms for retrieving the input vectors

have emerged which only search a fraction of the total search space [29]. However, for

continuous encodings, there exists no finite set of vectors which we can search through in a

brute-force manner.

In [6] an optimization approach was presented to decode VFA vectors which uses the

structure of unitary vectors to approximate an encoded real number. First, an initial

estimate is obtained through a matrix dot product of discrete points in the encoding space,

referred to as anchor-points. Then gradient descent refines the course estimate to better

approximate the true value. Here, we present an alternative method by extending

Newton’s method, as described in section 2.5.1 for time-domain signals, to the HD space.

We call this “HD Newton’s method” in order to distinguish it from the time-domain

version already discussed, as well as draw comparisons between the two. For simplicity we
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detail HD Newton’s method for ◦ = ⊙, but note that the since ⊙ and ⊛ are related by the

Fourier transform, the same steps we show for ⊙ apply to the Fourier transform of vectors

bound with ⊛.

For unitary VFA base vectors, HD Newton’s method aims to find the minimum of

JHD(λ) = ∥z − γ⊙(x) ⊙ s⊙(λ)∥2
2 (3.36)

The structure of unitary vectors (exponentials) give easy access to their first and second

partial derivative which allows for a seamless extension of equation (2.31). The first partial

derivative of HD encodings for atoms in the form of equation (3.30) is

∂s
∂θj

= iλ̇j · eiλ̇1θ1 · ... · eiλ̇QθQ (3.37)

and the second partial derivative is

∂2s
∂θj∂θk

= −1 · λ̇jλ̇k · eiλ̇1θ1 · ... · eiλ̇QθQ (3.38)

for j, k ∈ [1, ..., Q]. Once again, multiple atomic parameters can be refined simultaneously,

except this time it is being done in the HD space. At each iteration k, we update the

estimation of λ

λ(k) = λ(k−1) −
(
HλJHD(λ(k−1))

)−1
∇λJHD(λ(k−1)) (3.39)

The initial estimate λ(0) is obtained from a matrix dot product of HD vectors.

λ(0) = argmaxm|Φ⊺
HDz| (3.40)
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The anchor-point matrix can be seen to be analogous to the matrix dictionary from

Chapter 2, and so we call it the HD matrix dictionary, denoted ΦHD. The anchor spacing,

which is used to generate an initial estimate λ(0), can be visualized by placing the VFA

similarity kernel along the encoding range at each anchor-point. In Figure 3.4 we see the

anchor-points for spacing of 0.7 and 2.5. Having anchor-points further apart from each

other leaves large regions of the encoding range with no nearby anchor, therefore making

those values difficult to decode. For example, as we see in Figure 3.4b, an anchor spacing of

2.5 would make an encoded value of λ = 1 non-decodable because it does not have a

nearby anchor which can be used to generate a good initial estimate λ(0). Anchor-points

should be spaced often enough so that every point in the entire encoding range has a

nearby anchor from which its value can be decoded from.

(a) (b)

Figure 3.4: Similarity (dotted line) between encoded values in the range [−4, 4] and a
discrete set of anchor-points (red dots).

To test the ability of Newton’s method to retrieve λ given λ(0) we encode random values
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and run a grid search through various NHD, Q, and anchor spacing. C is the number of

vectors in superposition, which we choose to be 1. Figure 3.5 shows box plots comparing

the anchor spacing with the cosine similarity between the refined estimate vector and the

ground truth vector for NHD = 500 and Q = 1, 2, 3, 4.

(a) (b)

(c) (d)

Figure 3.5: Evaluation of Newton’s method for VFA vectors for different Q.

We see three cases arise. First, when the anchor spacing is tight HD Newton’s method

always provides a very accurate parameter estimate. This is shown by a box plot which is
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condensed into a line at cosine similarity = 1. Second, less dense anchor spacing results in

a box plot whose 25th-percentile is down near 0 but its 75th-percentile is near 1, with the

median being at either extreme. Third, when the anchor spacing is very sparse the box

plot range is concentrated near 0, meaning that HD Newton’s method cannot retrieve an

accurate parameter estimates. In general, as Q gets bigger the anchors need to be closer to

each other in order to retrieve an accurate estimate of λ. This is likely due to the nature of

multi-dimensional kernels, as shown in equation (3.29), where the peaks around

anchor-points get sharper and more selective due to multiplying together many numbers

which are less than 1.

From the HD perspective, noisy approximations of s⊙(λ) should not be very

detrimental to retrieving the true parameters due to HD vector’s natural robustness to

noise and the similarity preserving nature of superposition. A noisy approximation of

s⊙(λ), ŝ⊙(λ) can be seen as s⊙(λ) + ϵ where ϵ is some amount of noise. As we saw in

Figure 3.1, the similarity between s⊙(λ) and ŝ⊙(λ) still has a relatively high cosine

similarity. Thus the initial estimate λ(0) shouldn’t be that inaccurate and Newton’s

method should be able to correctly denoise ŝ⊙(λ) to retrieve s⊙(λ), and consequently λ.

We test Newton’s method ability to retrieve s⊙(λ) from ŝ⊙(λ) by adding Gaussian white

noise to the vector s⊙(λ) for various signal-to-noise ratio (SNR) levels as shown in Figure

3.6 for NHD = 500 and Q = 2, 3, 4.

We see that Newton’s method performs very well at retrieving good parameter

estimates as long as the noise isn’t more powerful than the signal. HD Newton’s method

also works to decode the superposition of multiple superposed VFA vectors, C > 1. When
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(a) (b)

(c) (d)

Figure 3.6: HD Newton’s method performs well as long as the noise is not more powerful
than the signal.

decoding the superposition of multiple HD vectors, HD Newton’s Method refines one

encoding at a time, and subtracts it from the remainder until the squared norm of the

remainder no longer decreases. In practice we observe that HD Newton’s method performs

worse as Q and C increase. This can be accounted for by increasing NHD, which allows for

the encoded symbols to be distributed across more dimensions, making them more robust

to different scenarios.
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Finally, the coefficient x is estimated in the same way as in signal processing: a dot

product.

x = ⟨s⊙(λ), z⟩ = s⊙(λ)⊺z (3.41)

We summarize the steps to decoding VFA vectors in algorithm 3.

Algorithm 3 Decoding bound VFA hypervectors in superposition
given: ΦHD, z init: k = 0, Π(k) = ∅, X(k) = ∅, rHD

(k) = z, x(k) = 1
1: repeat
2: λ(k) = argmaxm|Φ⊺

HDr(k)
HD| ▷ best atom selection

3: init: j = 0, λ(j) = λ(k) ▷ Newton’s method
4: repeat
5: λ(j+1) = λ(j) −

(
HλJHD(λ(j))

)−1
∇λJHD(λ(j))

6: x(j+1) = s⊙(λ(j+1))⊺r(k)
HD ▷ update coefficient approximation

7: j = j + 1
8: until stopping condition ▷ iteration limit
9: Π(k+1) = [Π(k), λ(j)] ▷ store refined parameters

10: X(k+1) = [X(k), x(j)] ▷ store coefficient
11: r(k+1)

HD = r(k)
HD − γ⊙(x(j)) ⊙ s⊙(λ(j)) ▷ residual update

12: k = k + 1
13: until stopping condition ▷ square norm of HD residual increases

3.5 Hyperdimensional Atomic Decomposition

We call our atomic decomposition system which uses the atom encodings from section 3.3

and HD Newton’s method decoding from section 3.4, Hyperdimensional Atomic

Decomposition (HD-AD). To the best of our knowledge, ours is the first system which

computes atomic decompositions of audio and avoids time-domain correlations altogether.

Having said that, a number of similarities exist between a traditional matching pursuit
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atomic decomposition and our reformulated HD approach. We outline these in Table 3.1.

Step Time-domain MP HD Atomic Decomposition

initialization k = 0, x(k) = 0, r(k) = y k = 0, x(k) = 0, r(k)
HD = z

best atom selection m̃(k) = arg maxm|Φ⊺r(k)| m̃(k) = arg maxm|Φ⊺
HDr(k)

HD|

to minimize: to minimize:

parameter - J(λ) = ∥r(k) − ϕλx∥2
2 JHD(λ) = ∥r(k)

HD − γ⊙(x) ⊙ s⊙(λ)∥2
2

refinement run: run:

λ(j+1) = λ(j) − ∇λJ(λ(j))
HλJ(λ(j)) λ(j+1) = λ(j) − ∇λJHD(λ(j))

HλJHD(λ(j))

coefficient computation x
(k)
m̃ = ϕ⊺

m̃r(k) x
(k)
m̃ = s⊙(λ(j))⊺r(k)

HD

residual update r(k+1) = r(k) − 2ℜ{x
(k)
m̃ ϕm̃} r(k+1)

HD = r(k)
HD − γ⊙(x(k)

m̃ ) ⊙ s⊙(λ(j))

Table 3.1: Comparison of a MP atomic decomposition steps and our HD-AD.

We conclude this chapter the way we started it: with a discussion of atom parameter

vectors. The typical parameter encoding vector we stated in equation (3.2) is a Q × M × 1

dimensional data structure which encodes M atoms of Q parameters in a minimally

redundant manner. Expanding the “value” dimension allows for the M and Q dimensions

to be collapsed entirely, which we now understand is possible because of the properties of

binding and superposition. Here we remind the reader of another high dimensional

encoding which also allows the M and Q dimensions to be collapsed, the time-signal y

itself! The time-domain waveform of an atom encodes the parameter values via the

expression of the atom prototype ϕ†(λ). Moreover, multiple atoms parameters are encoded
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by summing the atom waveforms (superposition).

While high dimensional time-signal representations expand in size in accordance with

the atom parameters, VFA hypervectors do not. Another advantage of HDC which we have

emphasized less is the distributed nature of VFA encodings. As we can see by looking at

the window of an atom, the parameter value encoding is concentrated under the non-zero

portion of the envelope E. For example, we cannot estimate the damping factor α of a DS

by looking at the waveform before its time shift τ . VFA vectors distribute this meaning

equally at all points in the vector.

One place the utility of this distributed nature is displayed is within Newton’s method.

If we think back to parameter refinement with Newton’s method using time-signals, the

residual energy function J(λ) = ∥y − ϕλx∥2
2 requires a coefficient x > 0. However, if y is a

short Gabor atom with a time window of 32 samples and the τ estimate in ϕλ is inaccurate

by 16 or more samples, then ϕ⊺
λy = 0 and ϕλ’s parameter cannot be refined using Newton’s

method. The concentrated nature of time-signal encodings is not robust enough to

misaligned windows. Encoding λ in a distributed manner fixes this problem, and if a

high-quality HD encoder exists to generate z, then s◦(λ)⊺z ≫ 0 will be selected by the

argmax and the parameters λ can be refined with HD Newton’s method.

Furthermore, the “tangling” of parameters in the time-domain, such as the attack

parameter β and time shift τ of a REDS, causes refinement to sometimes be difficult with

Newton’s method [1], where the estimation (or mis-estimation) of one parameter directly

affects another. VFA parameter encoding overcomes this problem by “flattening”
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parameter encodings in the HD space: all parameters are encoded in the same manner

(exponentials raised to a power). No two parameters can become entangled since the VFA

encoding base vectors uλq are all chosen to be quasi-orthogonal to each other for all q and

the particular λ̇q is encoded equally at all positions of the hypervector.

Finally, we point out that VFA vector and time-signals encode symbols in orthogonal

directions. Encoding in a time-signal is done between vector coordinates – for example, the

difference between two samples of a sine tone gives its frequency. VFA vectors encode

within vector coordinates, by rotating the base vector’s value at each position by an

amount related to the encoding value λ̇q. It is through the ensemble of all of these nuances

that make Hyperdimensional Atomic Decomposition possible.

We now turn to the generation of an HD encoding of y from which λ can be extracted.

HD vectors have been produced through averaging the mapped signal values in HD space

for classification prototypes [32], with spiking neural networks [33] [23], and deep neural

networks [34] [29]. We choose deep neural networks as an encoder given their success in other

HDC problems, as well as their ability to perform well in noise – an important feature for

general audio processing. In Chapter 4 we will give an overview of deep learning techniques

as it relates to our problem.
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Chapter 4

Deep Learning

Machine learning (ML) consists of algorithms which improve through the use of large

amounts of data, a subset of which is deep learning (DL). For audio, DL has been applied

with success to problems traditionally solved with digital signal processing (DSP)

techniques such as audio synthesis, enhancement, classification, speech recognition, and

music information retrieval, to name a few [35]. In particular, it is common to adapt deep

learning techniques developed for images to audio given the image-like shape of audio

time-frequency representations like the STFT. However, inherent differences between

time-frequency representations of signals and 2D spatial images suggest that simply

grafting image-processing techniques to audio problems is sub-optimal. At the moment,

while developing audio-specific deep learning techniques is an open area of research, many

traditional deep learning methods still produce state of the art results for many audio

processing tasks. This is one of the reasons why we choose a neural network as our HD

encoder. We start by looking at the building block of deep learning models – the artificial

neural network.
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4.1 Artificial Neural Networks

Artificial neural networks (ANNs), like hyperdimensional computing, are inspired by

brain-like computation. Neural networks approximate a function f of some input x to

output y by defining a mapping y = f(x; θ) and optimizing its parameters θ using a

training dataset. The assumption is that the training dataset has essential characteristics

common to all of its kind, allowing the network to generalize to unseen inputs.

The basic building blocks of ANNs is the artificial neuron, or node. Like biological

neurons, ANN nodes are connected to each other. An artificial neuron is defined by

h(x) = g(w⊺x + b) (4.1)

where x is the input to the neuron, w is a weight vector, b is the neuron’s scalar bias, and

g is the neuron’s activation function. The use of an activation function is inspired by the

behavior of biological neurons, as well as allow networks to model more complex relationships

within data. When many artificial neurons connect to each other, the network becomes deep,

with the output of each layer becoming the input to the next.

4.1.1 Deep Neural Networks

Deep neural networks (DNNs) consist of multiple layers of artificial neurons. Each layer k

consisting of Dk neurons and h(x) can be defined recursively as

hk(x) = g(Wkhk−1(x) + bk)

h0 = x
(4.2)
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where W ∈ RDk × RDk−1 is a matrix of layer k’s weights and bk is the layer k’s bias vector.

Neural networks of this structure are called feed-forward, since information flows from layer

to layer, and is never fed back. Layer 0 is the input layer, while layer K is the output layer.

Layers 1, ..., K −1 are known as hidden layers since they do not represent the model input or

output, but rather some high dimensional feature space from which patterns in the data can

be extracted. The simplest ANN neuron structure, the fully connected (FC), or linear layer,

has every neuron of the layer connecting to each neuron of the next layer. This is shown in

Figure 4.1.

Figure 4.1: Fully connected neural network with 1 hidden layer.

The maximum connectivity of FC neurons causes the feature space to describe more
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global characteristics, since behavior at any one neuron is sent to every other neuron, no

matter how far away it is. Because VFA vectors encode information globally, we will use an

FC layer at the output of our network to generate s⊛(λ). In contrast to the FC structure,

a convolutional layer computes a hidden feature space not as a matrix multiplication but

as a discrete convolution between a sliding kernel and the layer’s input. The sliding kernel

results in more local activity in the network. A network which contains convolutional layers

is known as a convolutional neural network (CNN) [36]. CNNs are widely used in the field

of image processing as well as in audio, in part because of the importance of location in the

input data such as edges in space, or energy distribution in the time-frequency plane.

4.1.2 Convolutional Neural Networks

Convolutional layers compute the discrete convolution between a kernel h and an input x

where the weights of h are learnable parameters, just like those in equation (4.2) [37]. While

1D convolutional kernels exist, we specify the more common 2D case, which is what we will

use. For a 2D kernel w, the convolution with input x is

(x ⋆ w)[m, n] =
∑

p

∑
q

x[p, q]w[p − m, q − n] (4.3)

Furthermore, since x often has more than 1 channel – such as red, green, blue (RGB) for

images, or real-imaginary for audio STFT representations – equation (4.3) is performed to

each input channel, for each output channel. Thus, to compute an output feature space

of J channels from an input of I channels, I · J kernels are defined – one kernel for each

input/output channel pair – and the output is summed [37]. The output feature space cj is



4. Deep Learning 54

computed via

cj =
I∑

i=1
wi,jxi (4.4)

Then, like in equation (4.1), a bias is added to cj and we pass the sum through an activation

function to generate the input to the next layer yj,

yj = h(x) = g(cj + bj) (4.5)

The 2D convolutional kernels h are typically square between 3 − 7 units tall and the filter

wi,j moves along the input feature space by some stride amount in Z+ ×Z+. This movement

along the feature space is what captures local activity in data [38]. Striding determines the

size of the output feature space and can be used to down-sample the layer’s input. On the

other hand, if the feature size is to remain the same the filter slides by one and the feature

space is to be padded at the edges. The interested reader is directed to [39] for a complete

discussion on CNNs.

4.1.3 Activation Functions

The activation function g allows the network to model very complex relationships between

data by introducing non-linearities into the flow of information. Without these

non-linearities, the network’s ability to perform even simple tasks is severely limited.

Furthermore, any deep neural network without non-linear activation functions can be

rewritten as a single layer network [37].

The sigmoid function

g(x) = 1
1 + e−x

(4.6)



4. Deep Learning 55

was a common activation function in early neural networks. However, it is often replaced

with a rectified linear unit (ReLU). ReLU passes positive values but zeros negative ones

g(x) = max(0, x) (4.7)

Experimental results have shown that ReLU activations converge faster than sigmoid, as

well as produce superior results in some cases [40]. An activation function related to ReLU,

the exponential linear unit (ELU), also passes positive values but attenuates negative values

rather than zeroing them. ELU is defined in equation (4.8)

g(x) =


x x > 0

α(ex − 1) x ≤ 0
(4.8)

where it is typical for α = 1. Notably, ELU’s derivative is continuous at x = 0, while ReLU’s

derivative is not. ELU has been shown to suffer less from the dying neuron problem than

ReLU, as well as generally converge faster [41]. These three activation functions are shown

in Figure 4.2.

(a) (b) (c)

Figure 4.2: Different activation functions g(x).
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By and large, selecting the proper activation function is done more by trial and error

than being an exact science.

4.2 Gradient-Based Optimization

Training a neural networks is the process of tuning the network parameters θ so that a

desired output is achieved. These parameters are adjusted according to a loss function

which, for supervised learning problems, typically takes the ground truth and the model’s

output and compares them. The loss function should be differentiable as well as chosen

such that the minimization of the loss results in the desired output from the network.

However, because of the non-linearity introduced by the network activation functions, the

loss function is non-convex and cannot be minimized with classic convex optimization

techniques. Thus, model parameters are adjusted according to gradient descent.

For a loss function L, the derivative of each network parameter is computed with respect

to L. A typical loss function, and the one used in this project, is mean squared error (MSE).

For some model input x, the MSE between the model output ŷ = f(x; θ) and the ground

truth y is

LMSE = 1
N

N∑
i=1

∥ŷi − yi∥2
2 (4.9)

Since we want to minimize the loss, we then adjust the network parameters in the direction

of steepest descent by some amount ϵ, known as the learning rate.

θn+1 = θn − ϵ∇θL (4.10)
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A true gradient descent would compute the loss for the entire set of training data, and then

perform equation (4.10). However, in practice this can be very memory and computationally

expensive. Instead, the loss is computed for a smaller subset of the training data called

a batch. The gradient computation and subsequent parameter updates are performed per

batch. This not only allows networks to scale to very large datasets, but also has been shown

to converge faster [42]. In order to further speed-up neural network training, the gradient is

computed via back-propagation, an algorithm which uses the chain-rule in calculus to avoid

computing individual derivatives multiple times by storing the derivative for each parameter

at each layer of the network for reuse deeper in the network [43]. A complete discussion of

back-propagation is given in [37].

4.3 Models

As mentioned earlier, deep learning for audio often involves applying techniques developed

for image processing to 2D audio representations such as the STFT. In addition to the

STFT, other 2D representations of sound are used for input to deep learning models such

as the Log-mel spectrogram and the constant-Q spectrogram [35]. Outside of the

audio-specific features fed to the neural network, there have been attempts which try to

incorporate audio- and DSP- specific ideas into deep learning layers. These include

SincNet, which learns cut-off frequencies of sinc functions used for the task of speech

recognition [44], and harmonic convolutions, which incorporates the harmonic spacing of

related partials into 2D convolutions [45]. We adopt traditional elements of CNNs which

take as input complex-valued STFTs.
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We define a general CNN structure which is flexible and performs well in our experiments,

shown in Figure 4.3. It has elements borrowed from other neural network architectures such

as residual connections from ResNet [46] and a fully-connected layer which generates the final

HD vector [29]. Using convolutional layers at the head of the network and fully connected

(FC) layers at the tail makes sense since we are trying to translate the local time-frequency

characteristics of the signal into HD vectors which encode them “globally” by distribution

along the entire output vector. Each layer performs down-sampling of the input features by

some amount dsk ∈ Z+ × Z+. This is done with a max-pooling operation which strides by

dsk. Max pooling searches a patch of feature space and returns only the maximum value in

that area [47]. The fixed size NHD of VFA atom encodings works well with neural networks

because they too have layers of fixed size.

The filterk modules in the model can either be chosen to be stacked 2D convolutional

units, or convolutional gated linear unit (GLU), or convGLU. The stacked 2D

convolutional units are built from two 2D filters, one right after the other separated by an

activation function. The second filter’s kernel has size 1 × 1, which effectively scales the

input feature. A similar structure has been used in popular audio CNNs such as

WaveNet [48], a state of the art model for speech generation.

The convolutional GLU is defined in equation (4.11). Output channel j of a convGLU

layer is

(cj + bj) + σ((cj + bj)) (4.11)

where cj and bj are defined from equation (4.4) and (4.5), and σ is the sigmoid activation

function. The idea behind gating is that the flow of information is controlled to allow for more
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Figure 4.3: Generic Model Structure. dsk is the down-sampling amount for the given layer,
performed by striding by dsk with a 2D max-pooling unit. conv2D1×1 denotes a conv2D unit
with a 1 × 1 kernel. filterk(GLU) is the convGLU unit defined in equation (4.11). For our
experiments, the input feature is a complex-valued audio STFT.

complex interactions within the network [49]. ConvGLU layers have a history of success in

audio deep neural networks [50]. The exact model architecture changes for each experiment
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is detailed in the Appendix A for each experiment in the next chapter.

4.3.1 Training

Code for training and testing our neural networks is written in Python 3 using the

PyTorch [51] deep learning library. The actual training took place on machines at

Compute Canada1, an organization that provides computing resources to researchers in

Canada. These resources not only include hardware accelerators like graphical processing

units (GPUs), but also the software infrastructure which allow us to train with multiple

GPUs running in parallel. Our training jobs ran on the Cedar compute cluster2 and were

allocated 64 GB of random access memory (RAM), 4 GPUs (NVIDIA P100), and 6 CPU

cores per GPU for a total of 24 CPU cores. With the availability of so many high power

resources we were able to train our models within a week, allowing for downtime after the

maximum 24 job time and having to wait in the queue when resuming training.

The testing and evaluation of our models is done locally on an Intel Core i5 2.9GHz

central processing unit (CPU) with 16 GB of RAM. Consequently the reported speeds of

our experiments are not recorded for hardware accelerated machines with GPUs.

We conclude this chapter with a discussion of existing atomic decomposition projects with

neural networks, and ours. Existing atomic decomposition methods which incorporate neural

networks do so in order to “learn” atoms in a data-driven manner, as we discussed at the

beginning of Chapter 2. These waveforms are typically tailored to one class of signals, such

as speech, and are not parameterized meaning flexible resynthesis cannot be achieved. These
1https://www.computecanada.ca/
2https://docs.computecanada.ca/wiki/Cedar

https://www.computecanada.ca/
https://docs.computecanada.ca/wiki/Cedar
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other investigations aim to increase sparsity by maximizing the synthesis criteria of atoms.

However, the absence of parameters means little insight into the sound generating structures

of the signal can be made. Furthermore these systems still rely on the computation of many

time-domain correlations. Our approach is unique in that it uses atoms which satisfy both

synthesis and analysis criteria of atoms and use a neural network to generate the coefficient

x, rather than relying on an algorithm which computes time-domain correlations.
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Chapter 5

Experiments

In this chapter we realize the atom encoding developed in Chapter 3, of atoms discussed in

Chapter 2, using the neural networks like the ones outlined in Chapter 4. The complete

HD-AD system is tested on signals which are a synthetic mixture of atoms plus noise,

synthesizer sounds, and real-world recordings in order to demonstrate its ability to

generate atomic decompositions. In addition, we introduce a hybrid algorithm – neural

network accelerated matching pursuit (NN-MP) – which builds a dictionary of atoms based

on the parameters of HD-AD, but computes the gain coefficient in the time domain like

MP. We show this approach can be extended to MP variants such as OMP.

To recap, our goal is to generate an encoding of a time-signal y using the VFA encoding

paradigm, from which atomic parameters can be extracted. To do this, we rewrite the

traditional expression of y as a linear combination of waveforms

y =
∑

k

xkϕλk
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to an expression z which is a linear combination of encoded atoms in HD space

z =
∑

k

γ⊛(xk) ⊛ s⊛(λk)

where ⊛ is the circular convolution binding operation discussed in section 3.2. In order to

train a neural network to generate these encodings, we create datasets of signals y using the

atoms discussed in Chapter 2, and feed their STFT representation as input to variations of

the CNN in Figure 4.3, using z as the model’s ground truth. When building z, we generate

base encoding vectors uλq for each atom parameter λq, as discussed in section 3.3. These

VFA base vectors are stored and used to decode the neural network output via HD Newton’s

method, as discussed in section 3.4.

Parameter Rescaling

In theory, a perfect encoder and decoder should be able to construct z so that the precise

set λk for all k is retrieved. However, in practice the interaction between the time-domain

synthesis parameters λ and the HD encoding space leads to a sub-optimal representation,

and we make adjustments to equation (3.35) in order to correct for these and achieve

better performance. This means choosing encoding values λ̇ (to use in s⊛(λ̇)) which

correspond to the time-domain synthesis parameters λ (used in ϕλ).

In order to illustrate the necessity of encoding values λ̇ ̸= λ, recall from Chapter 3 that

the similarity of two real values r1 and r2 in HD space is given by the sinc of their difference.

⟨u(r1), u(r2)⟩ = sinc(r1 − r2)
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For certain parameters λ, encoding the synthesis values (used in ϕλ) leads to bad encoding

similarity behavior for a neural network trying to learn the encoding. For example, consider

the time shift parameter τ and damping factor α of a DS atom. Since τ is given in an integer

number of samples then

⟨uτ (τ1), uτ (τ2)⟩ = sinc(τ1 − τ2) = 0 ∀τ1, τ2 if τ1 ̸= τ2 (5.1)

since (τ1 − τ2) ∈ Z. Furthermore, for a wide range for α, [min(α), max(α)], where min(α) =

1.439e−4 and max(α) = 5.397e−2, corresponding to DS window lengths of 3 seconds and 8

milliseconds, respectively, the encoding similarity between the endpoints of the range is

⟨uα(max(α)), uα(min(α))⟩ = sinc
(
max(α) − min(α)

)
= sinc(0.054) = 0.995 ≈ 1

Figure 5.1 illustrates this encoding similarity behavior for each parameter. For a neural

(a) (b)

Figure 5.1: Encoding similarity between raw synthesis values parameterized by their
difference for ∆τ (a) and ∆α (b).
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network trying to learn the HD parameter encoding space, each situation is sub-optimal.

On the one hand, any τ estimate by the network has an encoding similarity of 0 with the

ground truth unless it is sample accurate. On the other, the worst the network can do for

predicting α in any situation results in an encoding which is nearly identical to the one it is

trying to learn. These parameters illustrate encoding similarity behavior at two extremes –

nearly impossible to get right, and nearly impossible to get wrong – both of which lead to

poor conditions for training neural networks. In order to correct for this, we map the raw

synthesis parameters λ to corresponding encoding values λ̇ in order to better tune the

similarity shape of nearby parameter encodings in the HD space.

The range of synthesis parameters in the training datasets is [min(λ), max(λ)]. In order

to generate the corresponding encoding parameter λ̇ in [min(λ̇), max(λ̇)], we define a

mapping function ġλ : λ 7→ λ̇. In many cases, ġλ is a linear map, so choosing ġλ is

synonymous with rescaling λ values from [min(λ), max(λ)] to λ̇ in [min(λ̇), max(λ̇)].

However, for certain parameters the map is more complicated, as we will see. Figure 5.2

shows how choosing [min(λ̇), max(λ̇)] affects the similarity of nearby parameter encodings.

Furthermore, we systematically set min(λ̇) = 0 for all λ, so the parameter HD encoding

range is specified in terms of max(λ̇), which is alternatively notated as µλ̇.

We see that for both extremes of encoding similarity, rescaling the encoding parameter

range reshapes the similarity behavior of nearby points which better reflects the similarity

of their corresponding waveforms. The rescaling of these parameters for encoding allows us

to tune the similarity behavior of nearby points to a desired level of precision.
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(a) τ = 50 (b) α = 2.706e−2

Figure 5.2: Encoding similarity of nearby parameter values to τ and α.

Changing the encoding range by expanding or contracting max(λ̇) results in encodings

that are harder or easier for our neural network to learn. If we again consider Figure 5.2a, and

the similarity between the encoding for τ1 = 50 and τ2 = 62.5, we see that for max(λ̇) = 2,

uτ (τ1)⊺uτ (τ2) = 0.900

However, increasing max(λ̇) to 8 results in

uτ (τ1)⊺uτ (τ2) = 0.000

For a neural network trying to learn these encodings, this means that it can achieve a lower

loss value (MSE) for a bad parameter estimate the smaller the parameter HD encoding range

is. However, if the parameter encoding range is too large, the space once again becomes too

sparse and the proper encoding becomes hard to find unless you are right on top of it. Thus
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max(λ̇) is a hyperparameter that must be tuned in order to balance the trade-off between

encodings that are learnable by the network and accurate for good reconstruction in the

time-domain.

Input Data

The encodings in equation (3.35) are also modified to accommodate the fixed size input

feature used by CNNs. Because we want to be able to decompose signals of any length, we

feed the neural network tiles of the time-frequency plane meaning that the time and

frequency parameters are encoded local to that tile. The benefits of this are two-fold. First

it allows us to compute high frequency resolution STFTs for long signals without worrying

about the neural network becoming too large. Second, the encoding of time and frequency

parameters locally means that we can create ΦHD for the tile area only, and reuse it

throughout the time-frequency plane. This is possible because these atoms are

time-frequency shift invariant, as discussed in Chapter 2. Being able to reuse ΦHD vastly

reduces its size MHD and consequently lowers the number of HD correlations that need to

be computed. Figure 5.3 illustrates this sub-sampling of the time-frequency plane.

We choose a dual-resolution STFT to take tiles from and feed to the neural network. A

similar idea is used in [52] for the task of automatic speech recognition with DNNs. Via the

Heisenberg principle, time resolution must be sacrificed in order to achieve high frequency

resolution, and vise-versa. We try and somewhat overcome this constraint by calculating

two STFTs, one which is high in frequency resolution, and the other which is high in time

resolution. The high frequency resolution STFT has an FFT size of NFFT and a hop size of
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Figure 5.3: Sub-sampled STFT input tiles.

NFFT
4 . The high time resolution STFT has an FFT size of NFFT

4 and a hop size of NFFT
4 , i.e.

no time overlap between frames. In order to create time-frequency tiles from both STFTs

whose time-frequency coordinates correctly correspond to each other, the frequency axis of

the high time resolution STFT is upsampled by a factor of 4. Figure 5.4 shows tiles from

these two STFTs of a mixture of DS atoms. Figure 5.4a better localizes horizontal structure

(partials) and Figure 5.4b better localizes vertical structures (transients).

Neural-Network Accelerated Matching Pursuit

Finally we point out that HD-AD can be used as a pre-processing step to traditional

atomic decomposition algorithms. By disregarding the coefficients xk predicted by the

network, the parameters λk can be used to populate a dictionary of waveforms Φ for use

with matching pursuit or its derivatives like orthogonal matching pursuit. This is a similar

idea to methods of additive synthesis which use STFT peaks to “prune” a dictionary of



5. Experiments 69

(a) Bt = 64 ms, Bf = 15.625 Hz (b) Bt = 16 ms, Bf = 62.500 Hz

Figure 5.4: Dual resolution STFT tiles and their corresponding time bandwidth Bt and
frequency bandwidth Bf . (a) high frequency resolution. (b) high time resolution.

Gabor atoms. However, our neural network pre-processing goes beyond just time and

frequency parameter estimation by being able to approximate parameter values for

asymmetric envelopes. This greatly increases the tractability of MP with these waveforms.

We call this system neural network accelerated matching pursuit (NN-MP). The same

approach can be taken with variants of MP, such as OMP, for a system called neural

network accelerated orthogonal matching pursuit (NN-OMP).

Aside from the inherent iterative structure from running MP, NN-MP introduces another

level of iteration. Once MP has been run using a dictionary of atoms populated from the

neural network output, the residual is fed back into the neural network and the process is

repeated until some stopping criteria. We casually note that this somewhat resembles a

clean-up memory, a common step in some HDC systems, which retrieves clean vectors from

noisy ones. Interestingly, here the time-signal itself acts like some sort of clean-up memory

by allowing previously misidentified or completely unidentified atoms to be extracted after

any potential masking has been removed in the time-domain.
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Algorithm

The atomic decomposition system, which includes both HD-AD and NN-MP, can be

summarized in the following steps.

1. Initialize: given time-signal y, HD dictionary ΦHD

(a) k = 0

(b) residual r(k) = y.

(c) approximation ŷ = 0 is a signal of zeros.

(d) global dictionary Π = ∅ is empty.

(e) SRR threshold = 30dB.

2. Hyperdimensional Atomic Decomposition (HD-AD):

(a) Compute dual-resolution STFT of r(k) and feed tiles i, j to the neural network to

generate the encodings zi,j.

(b) Run Algorithm 3 (decoding VFA vectors from section 3.4) for each zi,j

(c) Map the HD parameter encodings to the synthesis parameter space via ġ−1
λ

(d) If NN-MP: go to step 3. Else: reconstruct the time-domain signal using γ⊛(x),

done.

3. Neural Network accelerated Matching Pursuit (NN-MP):

(a) Build the matrix dictionary Φ

(b) Run MP or OMP to retrieve the coefficients for atoms in the dictionary.
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(c) Reconstruct the time-signal, update the approximation ŷ, update the residual

r(k+1). k = k + 1.

(d) If SRR is above threshold: done.

Else: repeat steps 2a-2d.

and summarized graphically in Figure 5.5.

For HD-AD we measure its performance in terms of sparsity (∥x∥0) and speed (×’s real-

time = signal duration
HD-AD time ). For NN-MP and NN-OMP we measure performance by sparsity and

SRR.

5.1 HD-AD with Asymmetric Atoms

In this section we present the results of Hyperdimensional Atomic Decomposition. As

discussed earlier, MP can take up to 100×’s slower than real-time to generate a

decomposition with simple symmetric atoms of two parameters and scales poorly with the

signal length N . In contrast, we show that HD-AD scales with the sparsity of y, ∥x∥0,

irrespective of N . For the additive model of synthesis this means atomic decompositions

with asymmetric atoms are generated in at minimum real-time, and in certain situations

much faster. For the source-filter model of audio synthesis HD-AD runs slower than

real-time, however atomic decompositions are still generated in a reasonable amount of

time and at a much lower computational cost than MP.

Our current neural network encoder only extracts the amplitude |x| and not the phase.

We found that training a network to estimate the phase ultimately made little difference in
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Figure 5.5: Atomic Decomposition System for signal y.

terms of reconstructive quality unless the atom’s time shift τ was extremely accurate. Our

experiments showed that the network could learn the phase somewhat well, however the
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decompositions were ultimately worse and so we decided the extra effort was not worth it.

However, we believe it is remarkable that the models were able to learn the phase even to a

moderately successful degree, since it involves not only learning the HD encodings of the

atom parameter space, but their rotations as well. As a result, HD-AD reconstructs atoms

with a constant phase value.

For each experiment, we detail the specific max(λ̇) for each atom parameter. The specific

neural network architectures are detailed in Appendix A. The decompositions are shown as a

waveform and STFT, and compared to the original signal in time and STFT. We report the

total time our system takes to produce each decomposition, as well as divide this total into

the amount taken by the neural network and decoding steps. Compared to the length of the

original signal, this gives us the ×’s real-time performance of our HD atomic decomposition

system.

5.1.1 Damped Sinusoid Atoms

For experiments with damped sinusoid atoms, we create encoding vectors for time, frequency,

and damping parameters. Informal listening tests reveal that the perceptual characteristics

of the damping factor are spaced somewhat exponentially rather than linearly. Consequently,

α is mapped to α̇ via ġα using a base value, b. First, α is normalized to αn given the range

of values in the training set via a linear map.

αn = α − min(α)
max(α) − min(α) (5.2)
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Then we map αn to α̇ via ġα

ġα : αn ∈ R 7→ bαn − 1
b − 1 · µα̇ (5.3)

For decoding we retrieve αn via ġ−1
α

ġ−1
α : α̇ ∈ R 7→

log
(

α̇(b−1)
µα̇

+ 1
)

log(b) (5.4)

Finally α is retrieved by rescaling the normalized αn back to the synthesis range

α = αn(max(α) − min(α)) + min(α) (5.5)

Figure 5.6 shows ġα and ġ−1
α for b = 2000.

(a) ġα. (b) ġ−1
α .

Figure 5.6: Normalized α encoding map and decoding map for b = 2000. α̇ is normalized
as well to show the general behavior for any max(α).

Since these atoms have 3 parameters, the similarity between the encodings of two DS
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atoms ϕDS(τ1, f1, α1) and ϕDS(τ2, f2, α2) is given by the product of 3 sinc functions.

sinc(τ̇1 − τ̇2) × sinc(ḟ1 − ḟ2) × sinc(α̇1 − α̇2) (5.6)

The encoding ranges for our experiments with DS atoms are

max(τ̇) = 8

max(ḟ) = 8

max(α̇) = 3

(5.7)

The input STFT tiles to the network are 128 FFT frames wide and 64 FFT bins tall,

which have a time span of 2.048 seconds and a frequency range of 1000 Hz.

We train a model on synthetic signals which are the mixture of scaled damped sinusoid

atoms and noise. The time and frequency parameters for atoms in the mixture are sampled

randomly from the time and frequency support of the signal. Since the damping factor is

encoded exponentially, we exponentially sampled a range of α values from

α ∈ [1.439e−4, 5.397e−2] 1
sample (5.8)

which for a sample rate of 16 kHz corresponds to atoms of length 3 seconds and 8

milliseconds, respectively. In order to give the model enough time to estimate the damping

factor, we ensure that long atoms have a time parameter such that at least 1
3 of its length

lies in the local time-frequency tile.
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The atoms in the dataset are scaled to be between −30 dB and 0 dB with random phases.

When encoded, the amplitude in decibels is scaled between 1 and 6, a range which seemed to

work well in our experiments. A decrease in scalar by 1 corresponds to a change in amplitude

by −6 dB. 1
f

filtered white noise is randomly scaled between −60 dB and −30 dB and added

to the signals. The model architecture, as well as dataset parameters are given in Table A.1.

In Figure 5.7 we show the model decomposition on a mixture of scaled damped sinewave

atoms like the ones it was trained on. As can be seen from the reconstruction, the atomic

decomposition naturally denoises the input since only the sinusoidal components (atoms)

are reconstructed.

(a) Input signal: 56 DS atoms. (b) Net approx: 56 DS atoms.

Figure 5.7: Decomposing a mixture of DS atoms. Signal length: 14.384 s, HD-AD time:
2.651 s = 5.425×’s real-time.

In Figure 5.8 we show the model decomposition on a synthetic kalimba playing the

notes C5 and C6, as well as signal transformations on the kalimba sound given the
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parameters produced by the model. This demonstrates the ability of the network to

generate parameters that are meaningful to the sound generating structure of the

instrument and allow for coherent manipulation of the audio. In particular, Figure 5.8c

shows the signal transformation from shifting the frequency parameter of the atoms down

by an octave and multiplying the decay factor α by 1
4 . Multiplying α by 1

4 modifies the

instrument’s resonance, effectively making the notes ring for longer. Figure 5.8d shows the

signal transformation from shifting the frequency parameter of the atoms down by three

octaves and multiplying the decay factor α by 1
8 . The kalimba is a good choice for this

experiment since its method of sound production – an impulse-like excitation followed by

decaying partials – closely resemble the damped sinewave atom prototype.

Finally, Figure 5.9 shows a decomposition of a long duration kalimba recording from

freesound.org1, which demonstrates that HD-AD is able to scale to longer signals without

sacrificing much performance speed. The total time of the method is still above 4 times

real-time.

5.1.2 REDS Atoms

For experiments with REDS atoms, we create encoding vectors for time, frequency,

damping, and attack parameters. Since a REDS is a modulated DS, all of the same

procedures just mentioned for DS apply for REDS. Like with the damping factor, informal

listening tests reveal that the perceptual characteristics of the attack parameter β are

somewhat exponentially spaced, and thus are mapped with the same encoding map as that

in equation (5.3) and are decoded with the decoding map in equation (5.4). For the REDS
1“Kalimba” by user “dermotte” (https://freesound.org/s/244025/) licensed under CCBYNC 3.0

https://freesound.org/s/244025/
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(a) Input signal. (b) Net approx: 54 DS atoms.

(c) f
2 , α

4 . (d) f
8 , α

8 .

Figure 5.8: Sound processing examples. Signal length: 13.000 s, (b) HD-AD time: 3.988
s = 3.260×’s real-time. (c) Multiply f by 1

2 and α by 1
4 . (d) Multiply f by 1

8 and α by 1
8 .

atoms in our dataset, β is restricted such that β ≥ α in order to maintain an asymmetric

envelope shape. We use the same range for β as we did for α in equation (5.8).

β ∈ [1.439e−4, 5.397e−2] 1
sample (5.9)
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Figure 5.9: Decomposing a long recording with DS atoms. (top) Input signal: 66.316 s.
(bottom) HD-AD time: 16.656 s = 4.236×’s real-time. ∥x∥0 = 288.
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which for a sample rate of 16 kHz corresponds to influence times of 3.447 seconds and 9ms,

respectively. Since these atoms have 4 parameters, the similarity between the encodings of

two REDS atoms ϕREDS(τ1, f1, α1, β1) and ϕREDS(τ2, f2, α2, β2) is given by the product of 4

sinc functions.

sinc(τ̇1 − τ̇2) × sinc(ḟ1 − ḟ2) × sinc(α̇1 − α̇2) × sinc(β̇1 − β̇2) (5.10)

The encoding ranges for our experiments with REDS atoms are

max(τ̇) = 8

max(ḟ) = 8

max(α̇) = 3

max(β̇) = 3

(5.11)

The complete experiment settings are given in Table A.2.

Figure 5.10 shows the model decomposition on a mixture of scaled REDS atoms plus

noise like the signals it was trained on.

Figure 5.11 shows the system’s performance on a 6 second signal of a synthesizer toy

piano, and then its performance on the same signal but zero-padded by 10 seconds on either

end (total length of 26 seconds). Since the sparsity of the signal has not changed, our method

performs each decomposition on the same order of time even though one signal is over four

times longer than the other.
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(a) Input signal: 56 REDS atoms. (b) Net approx: 60 REDS atoms.

Figure 5.10: Decomposing a mixture of REDS atoms. Signal length: 14.384 s, HD-AD
time: 8.833 s = 1.628×’s real-time.

Source-Filter Model

We also train a model to generate decompositions from the source-filter point of view, which

we discussed in section 2.3. Because of this, we specify the α and β parameters of a REDS

in terms of their bandwidth Bw = 2α
sr and influence time nI . The range of Bw is

[200, 300] Hz (5.12)

and the range of influence time is

[1, 10] ms (5.13)
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(a) Original toy piano signal: 6.003 s. (b) Net approx: 7 REDS atoms.

(c) Zero-padded toy piano: 26.010 s. (d) Net approx: 7 REDS atoms.

Figure 5.11: Decomposing (a) a signal, and (c) a zero-padded version. HD-AD scales with
the signal’s sparsity, not its length in time. (b) HD-AD time: 2.384 s = 2.518×’s real-time.
(d) HD-AD time: 6.904 s = 3.767×’s real-time.

The encoding ranges for our source-filter experiments with REDS atoms are

max(τ̇) = 4

max(ḟ) = 4

max(α̇) = 1

max(β̇) = 1

(5.14)
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Unlike the previous experiments, which used long time-duration STFT tiles input, the

nature of the source-filter model requires much higher time resolution. Furthermore, the

density of atoms in time results in a density of encodings, which as we have seen limits the

ability to retrieve the parameters via HD Newton’s method for a modest NHD. Because of

this we feed our network time-frequency tiles which are 8 FFT frames wide and 8 FFT bins

tall for NFFT = 128 samples. For a sampling rate of 16kHz, this corresponds to 22

milliseconds in time and 1000 Hz in frequency. The complete experiment settings are given

in Table A.3.

Figure 5.12 shows the decomposition of two mixtures of short-duration REDS atoms

plus noise like the ones it was trained on. Here a two resonant structure is created in two

scenarios – one in which the resonances are stationary, and another where they move in

time. In either case, the formant resonances are well localized in frequency. Due to the

high density of atoms in time, these decompositions take much longer than real-time to

generate. In both examples, the 1-second-long signal takes over 80 seconds to decompose,

which corresponds to a real-time multiplier of ×0.012.

Figure 5.13 shows the system decomposition a synthetic voice saying “near you”. Much

of the formant movement of the voice is captured and once again the time it takes HD-AD to

generate a decomposition is on the same order as the previous example – 0.013×’s real-time.
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(a) Input signal: 128 REDS atoms. (b) Net approx: 164 REDS atoms.

(c) Input signal: 94 REDS atoms. (d) Net approx: 168 REDS atoms.

Figure 5.12: Decomposing a mixture of source-filter REDS atoms with (a) constant
resonances and (c) moving resonances. (b): HD-AD time: 86.139 s = 0.0012×’s real-
time. (d): HD-AD time: 81.827 s = 0.0012×’s real-time.

5.1.3 Vibrato Atoms

One of the advantages of HD-AD is its ability to control the size of the dictionary as the

number of parameters in the atom prototype increases. In order to illustrate this, we add
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(a) Synthetic voice saying “near you”. (b) Net approx: 158 REDS atoms.

Figure 5.13: Decomposing a low synthetic voice with source-filter REDS atoms. Signal
length: 1.228 s, HD-AD time: 96.456 s = 0.013×’s real-time.

vibrato parameters to the REDS atom prototype, and retrieve them in the same way as the

previous experiments. The vibrato parameters are given in the argument to the complex

exponential

arg(n, τ, ωc, s, fm) = (n − τ)ωc + s

2πfm

sin
(
2πfm(n − τ)

)
(5.15)

where s is the vibrato amplitude and fm is the frequency modulation or vibrato rate. The

full vibrato REDS atom prototype is

ϕ(n, τ, ωc, α, β, s, fm) = (1 − e−β(n−τ))3e−α(n−τ)ei·arg(n,τ,ωc,s,fm) (5.16)

The training dataset is created by sampling s and r, in Hertz, randomly from

s ∈ [0, 250] r ∈ [1, 8] (5.17)
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These vibrato REDS (vREDS) atoms generalize the REDS atoms we have been using by

letting s = 0. α and β are sampled in the same manner as the other REDS experiments. Since

these atoms have 6 parameters, the similarity between the encodings of two vibrato REDS

atoms ϕvREDS(τ1, f1, α1, β1, s1, r1) and ϕvREDS(τ2, f2, α2, β2, s2, r2) is given by the product of

6 sinc functions.
sinc(τ̇1 − τ̇2) × sinc(ḟ1 − ḟ2) × sinc(α̇1 − α̇2)×

sinc(β̇1 − β̇2) × sinc(ṡ1 − ṡ2) × sinc(ṙ1 − ṙ2)
(5.18)

The encoding ranges for vibrato REDS atoms are

max(τ̇) = 4

max(ḟ) = 4

max(α̇) = 2

max(β̇) = 2

max(ṡ) = 2

max(ṙ) = 2

(5.19)

The STFT tile settings are the same as they were for the DS and REDS experiments. The

complete experiment settings are given in Table A.4.

We simplify many aspects of this experiment, for example, there is at most 1 atom born

per time-frequency tile, and the parameters are restricted so that atoms don’t overlap if

they are born in the same time-band. The purpose of this experiment is not to generate

a model which can decompose real signals, but rather to demonstrate that creating more

complex atom prototypes, which naturally introduce more parameters, does not prohibit
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HD-AD from generating a decomposition in a timely manner. This is not the case with

MP or many of its derivatives. Figure 5.14 shows the decomposition on a signal which is

a mixture of vibrato REDS atoms plus noise like the ones the model was trained on. The

8.192-second-long signal is decomposed in 4.404 seconds, which is 1.860×’s real-time.

(a) Input signal: 11 vibrato REDS atoms. (b) Net approx: 11 vibrato REDS atoms.

Figure 5.14: Decomposing a mixture of vibrato REDS atoms. Signal length: 8.192 s,
HD-AD time: 4.404 s = 1.860×’s real-time.

We conclude this section with a comparison of the memory footprint of the dictionaries

for HD atomic decomposition and a traditional matching pursuit, shown in Table 5.2. As

can be seen from the right column, for a given atom prototype, the HD dictionary size does

not change as a function of signal length in the time-domain. Finally, the timing of all

HD-AD experiments is summarized in Table 5.1 which also divides the total time taken into

the neural network time and the decoding time.
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experiment length network decoding total × real-time ∥x∥0
(Figure) (s) (s) (s) (s) (#)

synthetic DS (5.7) 14.384 0.823 1.828 2.651 5.425× 56
kalimba note (5.8) 13.000 0.884 3.104 3.988 3.260× 54
kalimba song (5.9) 66.316 3.662 11.994 15.656 4.236× 288

synthetic REDS (5.10) 14.384 1.179 7.654 8.833 1.628× 60
toy piano (5.11a) 6.003 0.482 1.903 2.384 2.518× 7

toy piano zero-pad (5.11c) 26.010 1.793 5.165 6.904 3.767× 7
synthetic vibrato (5.14) 8.192 0.212 4.192 4.404 1.860× 11

source-filter REDS (5.12a) 1.000 0.352 85.787 86.139 0.012× 164
source-filter REDS (5.12c) 1.000 0.309 81.518 81.827 0.012× 168
synthetic “near you” (5.13) 1.228 0.386 96.071 96.456 0.013× 158

Table 5.1: Timing results for experiments shown in this section.

experiment atom MP dictionary size HD dictionary size
(Figure) (type) (M × N) (MHD × NHD)

kalimba note (5.8) DS 102731 × 208000 ≈ 159 GB 2023 × 1000 ≈ 0.016 GB
kalimba song (5.9) DS 521555 × 1.06M ≈ 4.03 TB 2023 × 1000 ≈ 0.016 GB

toy piano (5.11) REDS 332065 × 96128 ≈ 238 GB 14161 × 1000 ≈ 0.113 GB
toy piano zero-pad (5.11) REDS 1.16M × 416160 ≈ 3.52 TB 14161 × 1000 ≈ 0.113 GB
synthetic vibrato (5.14) vREDS 3.24M × 131072 ≈ 3.09 TB 50625 × 1000 ≈ 0.405 GB

Table 5.2: Memory footprint comparison for a dictionary of 64-bit floats for each method,
given in gigabytes (GB) or terabytes (TB).

5.2 Neural Network Accelerated MP

In this section we present the results of NN-MP, a system which disregards the coefficient

approximation of the neural network and instead builds a dictionary of atoms from the model

output to use in a matching pursuit algorithm. The expansion of M for a dictionary of long

asymmetric atoms is greatly mitigated by our neural network pre-processing. Furthermore,

we show that the same idea can be applied to OMP for what we call NN-OMP. Here we show

the time-domain waveform and STFT of the approximations from NN-MP and NN-OMP.
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Appendix B has more detailed displays of how the SRR progresses as NN-MP and NN-OMP

iterates.

5.2.1 Damped Sinusoid Atoms

We use the parameter estimates from the neural network in section 5.1.1 to populate a

dictionary with DS atoms to generate a MP atomic decomposition. In addition, we include

atoms whose parameters are around the ones predicted by the model, in order to account

for possible inaccuracies from the neural network encoder. Figure 5.15 shows a 30 dB SRR

decomposition of one of the kalimba notes from the signal decomposed with our HD atomic

decomposition in Figure 5.8.

(a) Input signal. (b) NN-MP approximation.

Figure 5.15: NN-MP decomposition of a kalimba note. 30 dB SRR reconstruction with
192 DS atoms.
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5.2.2 NN-OMP with Gabor Atoms

Not only does our system serve to matching pursuit more tractable, but it also increases

the tractability of MP variants such as OMP, which we discussed in section 2.4.1. While

usually generating sparser decompositions, OMP is much slower than traditional MP. In

the same way as we did for MP in the previous section, we put a neural network on the

front end of an OMP algorithm to pre-select a dictionary of waveforms, which once again

mitigates the exponential grown of dictionary size M . We run NN-OMP with symmetric

Gabor atoms like those discussed in section 2.1.

For experiments with Gabor atoms, we create encoding vectors for the time, frequency,

and window length parameters. For window length, we choose two sizes: one long and one

short. These correspond to tonal-like and transient-like structures in sound, respectively.

wshort = 32 samples, wlong = 512 samples (5.20)

The particular symmetric window used for our experiments is the Hann window EHann

defined in equation (2.5).

The encoding structure for time and frequency is the same as it has been for all previous

experiments.
max(τ̇) = 4

max(ḟ) = 8
(5.21)

However, the window length is specified in an integer number of samples, which as we saw

in the beginning of this chapter results in two encodings which are almost orthogonal to
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each other. Unlike our previous discussion of this phenomena with the time shift τ , where

we changed the similarity behavior by choosing a different encoding range, for window

length we choose to keep the encodings for tonal-like and transient-like windows

quasi-orthogonal to each other.

For window length we seek to preserve the inherent dis-similarity between wshort and

wlong when encoding them. In some sense a transient and tonal sound can be thought of as

“orthogonal” to each other, where one is a vertical line in frequency, and the other a horizontal

line in time. Binding the smooth time-frequency encoding space with either a transient or

tonal window encoding results in two HD encoding sub-spaces – one for tonal structures,

and one for transient structures. Figure 5.16 shows the effect of binding a smooth encoding

space, such as time or frequency, with a quasi-orthogonal one like for window length.

(a) Orthogonal. (b) Continuous. (c) Bound.

Figure 5.16: (a) Similarity between window length encodings. (b) Similarity between
time and frequency encodings. (c) Similarity between long and short window Gabor atoms.
NHD = 1000.

The binding of smooth with orthogonal vectors to divide the HD space into distinct sub-
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spaces has been done for multi-channel electromyography (EMG) signals [32] or different

quefrency bins in MFCCs [53]. In either case, as with ours, the goal is to preserve some

aspect of the symbols to be encoded in the HD space. Since these atoms have 2 continuous

parameters, the similarity between the encodings of two Gabor atoms ϕHann(τ1, f1, w1) and

ϕHann(τ2, f2, w2) is given by the product of 2 sinc functions.


sinc(τ̇1 − τ̇2) × sinc(ḟ1 − ḟ2) w1 = w2

≈ 0 w1 ̸= w2

(5.22)

We train our model on synthetic signals which are the mixture of transient and

tonal-like structures, built from Gabor atoms randomly scaled between −30 dB and 0 dB

with random phase. The phase of atoms which represent the same tonal structure are set

to ensure a smooth sinusoidal oscillation. Similar to the source-filter experiment with

REDS atoms in section 5.1.2, the STFT tiles fed to the neural network for Gabor atoms

are relatively small: 8 FFT frames wide and 64 FFT bins tall for NFFT = 1024 samples.

For a sampling rate of 16kHz, this corresponds to 176 milliseconds in time and 1000 Hz in

frequency. When generating data, each tile can have up to two tonal structures within it

and up to three transient structures. The model architecture as well as dataset parameters

are given in Table A.5.

For our NN-OMP experiments we compare the decomposition using the atoms

corresponding to points in the HD dictionary ΦHD, with the atoms refined by HD Newton’s

method from these initial estimates. We first test the model on a mixture of synthetic

transient and tonal-like sounds plus noise, like the signals it was trained on, shown in

Figure 5.17. Then we test the model on a real recording of the piano playing G#5, shown
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(a) Input signal. (b) Unrefined. Sparsity: 2245. (c) Refined. Sparsity: 1275.

Figure 5.17: Mixture of synthetic tonal and transient structures. Unrefined does not reach
30 dB SRR, refined does.

in Figure 5.18.

(a) Input signal. (b) Unrefined. Sparsity: 2190. (c) Refined. Sparsity: 1286.

Figure 5.18: Piano playing G#5.

In Figure 5.19 we plot the SRR of NN-OMP with and without HD Newton’s method used

to refine the neural network generated encodings, versus sparsity. HD Newton’s method

allows the decompositions to achieve a higher SRR in fewer iterations and with greater

sparsity.
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(a) (b)

Figure 5.19: Refined HD encodings vs. raw encodings. (a) Synthetic mixture of tonal
transient-like structures. (b) Piano playing G#5.

In particular, HD Newton’s method greatly helps approximate the time parameter of

transient Gabor atoms, wshort. Because the window is so short, a time error of 16 samples

or more will result in an atom which will not be selected by OMP. This illustrates the

advantage of distributed representations which we discussed at the end of Chapter 3 and

shows that parameter refinement in HD space is preferred in some scenarios depending on

the quality of the signal encoder.

We stop the unrefined experiment on the synthetic signal in Figure 5.19 due to the high

number of atoms and slow progress of signal approximation. For the synthetic mixture of

tonal and transient structures, 30 dB SRR cannot be achieved unless HD Newton’s method

is used. For the real piano signal, Newton’s method results in an increase in sparsity by

904 atoms, or 41.28% fewer atoms, and achieves 30 dB SRR in 5 fewer NN-OMP iterations.

To conclude, in this chapter we presented atomic decompositions generated by HD-AD,
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NN-MP, and NN-OMP. The signals being decomposed were the mixture of atom prototypes

plus noise, synthesizer instrument sounds, and real musical recordings. The decompositions

were generated with DS and REDS asymmetric atoms, as well as symmetric Gabor atoms,

from both the additive and source-filter model point of view. We showed that the signal can

be modified using the atom parameters in the decomposition, resulting in high-quality signal

transformation. Results from our HD-AD system show that it can generate decompositions

with asymmetric atoms, from the additive synthesis point of view, faster than real-time.
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Chapter 6

Conclusion

In this thesis we addressed the problems that long-duration asymmetric atoms cause to

traditional atomic decomposition algorithms. We did this by creating a new atomic

decomposition system, Hyperdimensional Atomic Decomposition (HD-AD) which

completely avoids time-domain correlations. We showed that HD-AD can quickly

approximate parameters which are typically difficult to estimate such as attack and decay.

In addition to generating its own atomic decomposition, we showed that HD-AD fit into

existing atomic decomposition algorithms like matching pursuit (MP) and orthogonal

matching pursuit (OMP) by pre-selecting atoms in the dictionary. We call these systems

neural network accelerated matching pursuit (NN-MP) and neural network accelerated

orthogonal matching pursuit (NN-OMP). We presented a solution to the VFA decoding

problem based on Newton’s method, which we referred to as HD Newton’s method.

We showed that for the additive model of audio synthesis, HD-AD is able to generate

decompositions in much faster than real-time. These speeds are possible for both short and
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long duration signals. Furthermore, HD-AD can approximate signals from the source-filter

point of view. We demonstrated that our neural network pre-processing make MP and OMP

more tractable for asymmetric atoms with NN-MP and NN-OMP.

6.1 Discussion

From the outset of this project, there were some areas of uncertainty which we thought

might impede our progress, but that in the end caused us little trouble. Chief of these

concerns was the absence of atomic decomposition “ground-truth” for audio signals.

However, the ability of the neural network to identify coherent asymmetric atom structures

in real-world audio after only ever seeing synthetic mixtures of atom prototypes plus noise

we found to be extremely encouraging. We believe this bodes well for future applications of

this work that may use other atom prototypes which we did not explore in this thesis.

In addition, we speculate if there could be some unexplored theoretical underpinnings to

atomic decomposition of signals in HD space. In particular we wonder if there is a “frame”-

like nature to a set of HD encodings corresponding to a time-frequency dictionary that

constitutes a frame. Perhaps future explorations into vector function architecture will give

hints to this question which would have interesting results from a signal processing point of

view.

6.2 Future Work

We now present the future directions we see us, or others, taking this research in. First, we

believe that many improvements can be made to the neural network encoder. For our
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experiments we found architectures which seemed to work well, and throughout the

duration of the project modified it little. However, we find it unlikely that our neural

network is the optimal encoder, and that there is still a lot of improvement to be made in

this aspect of the research, either with optimizing the network’s performance and making it

smaller/faster, or boosting the network’s performance by making it bigger.

In addition, we believe the sub-sampling of the time-frequency plane can be done in a

more intelligent manner in order to ensure atoms are easy to estimate for the model. As we

noted in Chapter 5, it can be the case that an atom is dealt a bad hand in terms of its

placement in an STFT tile making estimating its parameters difficult. More intelligent

STFT sub-sampling would help reduce this issue. One approach we looked at was using

Persistent Homology [54], a method for computing topological features which could be used

to identify asymmetric atoms in an STFT.

Finally, minimal to no post-processing was done to the HD-AD identified atoms. It is

possible that the performance could be improved by, for example, adjusting an atom’s time

shift τ based on onset detection from another system. In the case of the source-filter model,

we found that often many atoms can be identified in a short time frame which likely are

being inferred from only one atom-like structure in the input signal. Post-processing these

detections to select the best-fitting of those identified could help reduce this problem, as

well as potentially allow for over-sampling of the time-frequency plane for processing with

HD-AD.
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Appendix A

Experiment Settings

Here we detail the exact settings for each experiment from Chapter 5. The neural network

architectures and parameter encoding ranges were chosen largely through trial and error.

The synthesis parameter ranges were chosen to represent a wide range of sounds common in

audio.

Model Data
sub-layers 0 sampling rate 16000

sub-layer filters – FFT size 1024
activation function ELU hop size 256

filters ConvGLU tile ∆t 128 STFT frames = 2.096s
dsk [2, 2]6 + [1, 2] tile ∆f 64 bins = 1000 Hz

channelsk 2i for i = 5, ..., 11 α range [8ms, 3s]
FC channels 2048 max(τ̇) 8

NHD 1000 max(ḟ) 8
max(α̇) 3

Table A.1: Damped Sinewave Experiment Overview. [2, 2]6 + [1, 2] denotes down-sampling
by [2, 2] for the first 6 layers and then by [1, 2] in the following layer. α range shown as the
atom’s length in seconds = −1

α
log(0.001).
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Model Data
sub-layers 0 sampling rate 16000

sub-layer filters – FFT size 1024
activation function ELU hop size 256

filters ConvGLU tile ∆t 128 STFT frames = 2.096s
dsk [2, 2]6 + [1, 2] tile ∆f 64 bins = 1000 Hz

channelsk 2i for i = 5, ..., 11 α range [8ms, 3s]
FC channels 2048 β range [9ms, 3.477s]

NHD 1000 max(τ̇) 8
max(ḟ) 8
max(α̇) 3
max(β̇) 3

Table A.2: REDS Experiment Overview. β range shown as the atom’s attack envelope
influence time nI = −1

β
log
(
1 − (1 − δ)

1
p

)
for δ = 0.001 and p = 3.

Model Data
sub-layers 1 sampling rate 16000

sub-layer filters 3 FFT size 128
activation function ELU hop size 32

filters ConvGLU tile ∆t 8 STFT frames = 22ms
dsk [2, 2]3 tile ∆f 8 bins = 1000 Hz

channelsk 2i for i = 5, 6, 7 Bw range [200, 300] Hz
FC channels 2048 nI range [1, 10] ms

NHD 1000 max(τ̇) 4
max(ḟ) 4
max(α̇) 1
max(β̇) 1

Table A.3: REDS source-filter experiment overview. α = 2Bw

sr .
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Model Data
sub-layers 0 sampling rate 16000

sub-layer filters – FFT size 1024
activation function ELU hop size 256

filters ConvGLU tile ∆t 128 STFT frames = 2.096s
dsk [2, 2]6 + [1, 2] tile ∆f 64 bins = 1000 Hz

channelsk 2i for i = 5, ..., 11 α range [8ms, 3s]
FC channels 2048 β range [9ms, 3.477s]

NHD 1000 s range [0, 250] Hz
r range [1, 8] Hz
max(τ̇) 4
max(ḟ) 4
max(α̇) 2
max(β̇) 2
max(ṡ) 2
max(ṙ) 2

Table A.4: Vibrato REDS experiment overview. s range and r range shown in Hertz.

Model Data
sub-layers 0 sampling rate 16000

sub-layer filters – FFT size 1024
activation function ELU hop size 256

filters ConvGLU tile ∆t 8 STFT frames = 176ms
dsk [2, 2]3 + [2, 1]3 tile ∆f 64 bins = 1000 Hz

channelsk 2i for i = 5, ..., 10 window sizes 2ms, 32ms
FC channels 2048 max(τ̇) 4

NHD 1000 max(ḟ) 8

Table A.5: Gabor experiment overview.
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Appendix B

NN-MP/OMP Details

Here we show detailed figures of NN-MP and NN-OMP which plots the residual as well as

the SRR evolution as the system iterates on the residual.
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Figure B.1: Decomposing a kalimba C5 note with DS atoms using NN-MP.
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Figure B.2: Decomposing synthetic transient and tonal like structures with Gabor atoms
using NN-OMP.
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Figure B.3: Decomposing a piano signal playing G#5 with Gabor atoms without parameter
refinement using NN-OMP.
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Figure B.4: Decomposing a piano signal playing G#5 with Gabor atoms with parameter
refinement using HD Newton’s method with NN-OMP.
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