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Abstract

Gonadotropin-releasing hormone (GnRH) neurons are neurosecretory cells of the vertebrate
diencephalon that regulate fertility through pulsatile secretion of GnRH into the median
eminence. The physiological mechanism for pulsatile release of GnRH is hypothesized
to depend on the intrinsic electrical activity of these cells, which in mice includes two
endogenous modes of action potential burst firing; namely parabolic and irregular bursting.
In this thesis, we develop a stochastic Hodgkin-Huxley-like model of the electrical activity
in a single GnRH neuron and use it to (i) predict the contributions of specific ionic currents
in the generation of parabolic and irregular bursting, and (ii) investigate the mathematical
mechanisms underlying bursting behaviour. As part of the model development process, we
obtain new data-based submodels for several ionic currents that have been pharmacologically
isolated in GnRH neurons. Through numerical simulations, we find that the model generates
parabolic and irregular bursting solutions that agree qualitatively with electrophysiological
recordings. We show that the type of bursting generated by the model can be toggled by
changes in the conductances of certain ionic currents, notably those of a slow inward Ca2+

current and a Ca2+-activated K+ current. The parabolic and irregular bursting models
are analyzed using numerical bifurcation techniques, revealing that the two models actually
share a common topological structure in their fast subsystems. Despite this mathematical
similarity, the two models differ in one major aspect: parabolic bursting is not dependent
on neuronal noise, whereas irregular bursting relies on slow stochastic fluctuations that push
the system past the threshold for firing. Lastly, we demonstrate that a canonical model
for bursting, where spiking is initiated and terminated through passage of a saddle-node on
invariant circle bifurcation in the fast subsystem, can also produce both types of bursting.
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Résumé

Les neurones GnRH sont des cellules neurosécrétrices qui appartiennent à la diencéphale des
vertébrés et qui réglementent la fertilité en sécrétant l’hormone GnRH dans une manière
pulsatile dans l’éminence médiane. On fait l’hypothèse que le mécanisme physiologique
de ce phénomène dépend sur l’activité électrique intrinsèque de la neurone, qui dans les
souris comprend de deux types d’éclatement endogènes de potentiel du membrane; en
particulier l’éclatement parabolique et l’éclatement irrégulier. Dans cette thèse, on construit
un modèle stochastique de la forme Hodgkin-Huxley pour l’activité électrique dans une
seule neurone GnRH et on l’utilise pour (i) prédire les contributions spécifiques des courants
ioniques à la génération de l’éclatement parabolique et irrégulier, et (ii) étudier le mécanisme
mathématique par laquelle l’éclatement se manifeste. Comme partie du processus du
dévéloppement du modèle, on obtient de nouveaux modèles pour certains courants ioniques
qui sont établis en accord avec les données expérimentales. Avec l’aide de la simulation
numérique, on trouve que le modèle génère des solutions d’éclatement paraboliques et
irrégulières qui sont en accord qualitativement avec les enregistrements électrophysiologiques.
On montre que le type d’éclatement produit par le modèle peut être activé/désactivé par un
changement des paramètres de résistance appartenant à un courant Ca2+ et un courant K+

activé par Ca2+. Les modèles paraboliques et irréguliers sont analysés avec des méthodes
de bifurcation numériques révélant que les deux modèles ont une structure topologique en
commun dans leurs sépérations rapides. Bien qu’ayant une similarité mathématique, les deux
modèles se distinguent par un aspect majeur: l’éclatement parabolique ne dépend pas sur
la fluctuation stochastique alors que l’éclatement irrégulier dépend sur de lentes fluctuations
qui dirigent la trajectoire au seuil de l’excitabilité. Finalement, on démontre qu’un modèle
réduit pour l’éclatement, où l’excitabilité est débutée et terminée par une bifurcation SNIC
dans la séparation rapide, peut aussi générer les deux types d’éclatement.
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Chapter 1

Introduction

This thesis is comprised of a detailed study of a newly developed model for intrinsic electrical
activities in gonadotropin-releasing hormone (GnRH) neurons. The study emphasizes the
quantitative fitting methods used during model development, the role of individual ionic
currents in generating bursting behaviour, and the topological properties of bursting solutions
exhibited by the model.

We begin this chapter by providing a physiological context for the model presented in
this thesis. Next, we review previous modelling efforts for GnRH neurons to motivate the
objectives of the model, as presented in the final section of this chapter. The rest of the
thesis is constructed as follows. In the second chapter, we review some of the mathematical
tools used for the development and analysis of the model, including stochastic differential
equations (SDEs) and slow-fast subsystem analysis. The model is developed in the third
chapter, where we describe in detail the methods used to estimate free parameters for
each component of the model, and show the results of model fits to data. In the fourth
chapter, we show the numerical results obtained for the two types of bursts, describe the
effects of various ionic currents on burst characteristics, and provide a geometric analysis of
bursting solutions. In the final chapter, we summarize our findings, discuss limitations and
physiological implications of the model, and suggest future research directions.

1.1 Physiology of GnRH neurons

GnRH neurons are one member of a class of hypothalamic neurons that synthesize and
secrete hormones to regulate the function of the anterior pituitary. These hypothalamic
neurons, named after the hormone they produce, project into the median eminence of the
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hypothalamus where secreted hormones enter the bloodstream via the hypophyseal portal
system [2]. GnRH stimulates the release of two gonadotropins—luteinizing hormone (LH)
and follicle-stimulating hormone (FSH)—from the pituitary, making GnRH neurons the final
neural output controlling fertility in the hypothalamo-pituitary gonadal (HPG) axis [3]. A
pulsatile profile in the output of GnRH is essential for effective release of gonadotropins [4],
which are further regulated by the amplitude and frequency of GnRH pulses [5]. The period
of GnRH pulses ranges from 30 minutes to hours and is dependent on the reproductive state
of the organism [3]. As indicated in Figure 1.1.1, the secretion of GnRH is regulated (in part)
by the gonadal steroid estradiol, which in females, exerts negative and positive feedback on
GnRH release depending on the stage of the menstrual or estrous cycle [6].

Figure 1.1.1: Schematic of the role of GnRH neurons within the HPG axis.

The determination of the complete mechanism underlying the pulsatile release of GnRH is
still an open topic of research. However, the dependence of hormone release on phasic action
potential (AP) firing in magnocellular neurons [7, 8]—another type of neuroendocrine cell—
suggests that spontaneous electrical activity in GnRH neurons is crucial for GnRH release.
In support of this claim, GnRH release in the median eminence is found to be AP-dependent
[9]. What is unclear, however, is how specific patterns in AP firing modulate the profile of
hormone release.

Burst firing or bursting, a commonly observed pattern of electrical activity in neurons, is
defined by the repetition of a burst—the sequential firing of two or more APs—followed
by a period of quiescence called the interburst interval. A recent electrophysiological study
employing whole-cell patch clamp methods showed that GnRH neurons exhibit at least two
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types of bursting [10]. The first type, referred to as irregular bursting [10], has been observed
in other studies [11, 12], and is characterized by wide variation in interburst interval and
burst duration, with quiescent phases corresponding to a stable baseline membrane potential.
Despite the wide variation in interburst interval, one study found that the majority of bursts
in their sample were separated by an interval of less than 20 seconds [13]. In the same
study, the average duration of the burst was found to be less than 10 seconds for a subset
of the sample. Another study showed similar results for two representative GnRH neurons,
where active and quiescent phase durations did not exceed one minute [10]. A representative
recording of a GnRH neuron exhibiting irregular bursting is shown in Fig. 1.1.2b. The
second type of bursting—referred to as parabolic bursting—is rare (occurring in only 1-2%
of cell population), and has only been documented in one published study [10]. This type of
bursting is characterized by an oscillatory membrane potential—with a period on the order of
seconds—that alternates between an active phase of AP firing and a quiescent phase, where
the cell repolarizes well below the threshold for firing. Furthermore, the interspike interval
as a function of the spike count during the burst resembles a convex parabola. This burst
phenotype, depicted in Fig. 1.1.2a has been observed in other types of neurons, notably in
the R15 neuron of Aplysia [14].

Figure 1.1.2: Two types of bursting recorded in current-clamp mode from GFP-identified GnRH
neurons in brain slices of mice. Time series of membrane potential during (a) parabolic bursting
and (b) irregular bursting.
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Figure 1.1.3: Biological model of Nunemaker et al. [15] for co-existing rhythms in GnRH neurons.
Figure used with permission.

Since pulsatile hormone release occurs with a much lower frequency than that typically
observed during parabolic and irregular bursting, it is unlikely that there exists a one-to-one
correspondence between a burst of APs and a spike in hormone release. In an attempt to
find underlying rhythms that operate on the same timescale as hormone release, one study
carried out a spectral analysis of long duration time series from extracellular recordings
of firing patterns in GnRH neurons [15]. The spectral analysis revealed two classes of
rhythmic events—clusters and episodes—classified by periods of 100-1000 sec. and >1000
sec. respectively. These low frequency events correspond to slow modulation of AP firing
rate. Changes in the firing rate are attributable to changes in the interburst interval, since
spike count and duration of the burst did not vary significantly between episodes. The
authors proposed a biological model of interacting electrical rhythms in GnRH neurons (Fig.
1.1.3), where bursts are the “fundamental units of activity” required for hormone release.
The model suggests that external agents (such as estradiol) modulate interburst interval to
produce low frequency rhythms that conform with the pulsatile release of GnRH at a similar
frequency.

Given that bursting may be crucial for GnRH pulse generation, it is natural to study
the ionic mechanisms governing it. A large body of literature exists on the properties of
individual ionic currents conducted by GnRH neurons, which in mice include two types
of Na+ currents [16], various subtypes of Ca2+ and K+currents [17, 18, 19], and a non-
selective cation current [20]. A comprehensive list of currents that have been isolated in
GnRH neurons and a brief description of their physiological characteristics are provided in
Table 1.1. For a more detailed summary of these currents, the reader is pointed to a recent
review of GnRH neuron electrophysiology [3]. A handful of studies cited in Table 1.1 also
examine the effects of estradiol (in vivo [19, 16, 10] and in vitro [21]) on the quantitative
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properties of various current(s). For instance, one study found that estradiol administered
in vivo significantly alters the maximum current density and shifts the V 1

2
parameter of the

steady-state inactivation curve of IA [19]. Since IA is an outward current that is active at
voltages near the baseline potential [22], this result suggests that estradiol targets IA to
modulate the excitability of the cell, which in turn may impact bursting characteristics.

Current Description References
INaF Tetrodotoxin (TTX)-sensitive transient (fast) Na+ current primarily

responsible for the generation of APs.
[16, 23]

INaP TTX-sensitive persistent Na+ current that may contribute to the
generation of afterdepolarization potentials in GnRH neurons.

[24, 16]

IA Large-amplitude transient K+ current. Block of IA by 4-
aminopyridine (4-AP) reduces latency to spike firing.

[19, 22]

IK Non-inactivating delayed-rectifier K+ current. Likely active in the
repolarization phase of the AP.

[22, 19]

IM K+ current that is activated by GnRH to reduce excitability in GnRH
neurons.

[25]

IKir G-protein activated inwardly-rectifying K+ (GKIR) current that has
been evoked in the immortalized GT1 cell-line and contributes to
suppressing excitability.

[26]

IKCa Ca2+-activated K+ current. Consists of at least two subtypes: (i)
a current with small single-channel conductance (ISK) active in
controlling excitability and medium duration afterhyperpolarization
(AHP), and (ii) a current with “big” single-channel conductance
(IBK), likely involved in repolarization of the AP. A third type
(IAHP−UCL) contributing to slow AHP formation has also been
proposed but the channel conducting IAHP−UCL has yet to be verified.

[17, 27, 28, 29]

IHV A Large amplitude high voltage-activated Ca2+ current. Causes influx
of Ca2+ into the cell during spiking. Comprised of several different
current subtypes (L,N,P/Q,R) denoted by ICaL, ICaN , etc.

[30, 18]

ILV A Low amplitude low voltage-activated Ca2+ current conducted by T-
type Ca2+ channels. May be implicated in rhythmic behaviour due
to high input resistance of GnRH neurons.

[18, 31]

Ih Hyperpolarization-activated cation current. Block of Ih by ZD7288
decreases spike count in current injection experiments.

[20]

Table 1.1: Brief descriptions of ionic currents expressed in GnRH neurons. For each current,
references to experimental studies are provided.

One important characteristic of both types of bursting is that it is intrinsic [12, 11, 10],
meaning that it persists in the absence of synaptic inputs or currents applied by the
experimenter. It follows that bursting activity occurs from the interaction of non-synaptic
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currents conducted by voltage- and calcium-gated ion channels embedded in the membrane of
the soma and dendrites of these neurons. Electrophysiological experiments such as those cited
in Table 1.1, provide only a rough idea of the mechanisms underlying the burst, since they
study the effects of each current individually. What is not gained from these studies, however,
is an understanding of how the individual ionic currents interact to generate rhythmic
behaviour. Mathematical modelling is a useful tool for understanding bursting since one
can quickly test physiologically plausible combinations of ionic currents to see if they can
generate the rhythmic behaviour observed experimentally. Once this is achieved, the model
can then be validated against new experiments, and fine-tuned to agree with experimental
results. With a successful model, one can then make informed predictions about the role of
certain ionic currents in bursting through the variation of model parameters.

1.2 Existing GnRH neuron models

Several mathematical models have previously been developed to describe various phenomena
associated with bursting and/or excitability in GnRH neurons. We summarize these models
here in a chronological fashion. Note that some of these models are actually based on
electrophysiological data from immortalized GnRH-secreting neurons of the GT1 cell line.
Given the progress in electrophysiological methods, it is now possible to use, for example,
whole-cell patch-clamp techniques to record GFP-identified GnRH neurons from brain slices
in adult mice [18]. All of the models reviewed in this section are of the Hodgkin-Huxley
(HH) type, and it is assumed that ionic currents can be described using the HH formalism
[32] unless otherwise stated.

Van Goor et al., 2000 [33]

In the first study that we review, the authors investigate the phenomenon of “spike-
broadening” in GT1 cells, defined as an increase in AP width and amplitude that leads
to an increase in Ca2+ influx during spiking. To confirm the ionic mechanisms responsible
for spike-broadening, the authors develop an electrical model for GT1 cells, that serves as a
framework for several future studies mentioned in this section. The set of spiking currents
used in the model, namely INaF , ICaL, ICaT , IK , IM , IKir, along with a Ca2+-carrying leak
current Id, are modelled according to voltage-clamp data. Of note in the previous set of
currents is INaF , which is not modelled using the typical HH formalism for the fast Na+

current, but rather a reversible four-state Markov model. The spike trains produced by
the model show qualitative agreement with experimental results and the model is able to
reproduce the phenomenon of spike-broadening.
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Lebeau et al., 2000 [34]

In this study, the authors investigate the role of Ca2+-mobilizing and adenylyl cyclase (AC)-
coupled receptors in controlling excitability in GT1 cells through an extension of the model by
Van Goor et al. [33]. The ionic currents appearing in the voltage equation are conceptually
divided into two main groups. The first consists of the spiking currents from the model by
Van Goor et al. [33] that operate on a fast time scale. The second consists of the slow
“pacemaker” currents that interact with the multicompartmental Ca2+ subsystem, including
the small-conductance Ca2+-activated K+ current ISK , a store-operated Ca2+ channel ISOC ,
and a Ca2+-dependent inward Ca2+ current Id. The effect of GnRH on Ca2+-mobilizing
receptors is realized in the model through a decrease in the parameter representing ER
membrane permeability. Similarly, the effect of forskolin on AC-coupled receptors is realized
through an increase in the maximum conductance parameter of Id. This model does not
explain how intrinsic bursting is generated, but rather focuses on the effect of external
modulators (e.g. GnRH, forskolin) on membrane excitability.

Roberts et al., 2009 [35]

In contrast with several of the models reviewed in this section, the model developed by
Roberts et al. accounts for the bipolar morphology (one dendrite, one axon) typically
observed in GnRH neurons. This morphology leads to heterogeneity in the passive properties
(capacitance, resistance) of different sections of the membrane, which affects the recording of
current at the soma. Therefore, models which aim to reproduce electrical activity recorded at
the soma are more realistic if they account for the morphology of the cell. The authors of this
study do so by developing a multicompartmental model using the neurocomputational tool
GENESIS (GEneral NEural SImulation System http://www.genesis-sim.org/GENESIS/).
For the somatic compartment, the authors assume the presence of INaF , INaP , IK , IM , IKir,
ICaL, and ICaT . Except for INaF and INaP , all currents are adapted from the model of
Lebeau et al. [34]. Whereas the active dendritic compartments are assumed to conduct INaF

and INaP , the axonal compartments are assumed to conduct INaF , INaP , and IK . While
bursting is not considered here, a key finding of this study is that afterdepolarization (ADP)
amplitude is found to decrease with increasing length of the dendrite.

Fletcher and Li, 2009 [36]

The model presented in this study is an extension of the model presented in Lebeau et al.
[34] but with the reduced set of currents INaF , ICaL, IK , IKir, Id, ISOC , and ISK . The
novel component of this model is a two-compartment (cytosol and endoplasmic reticulum
(ER)) Ca2+ submodel that accounts for spatial diffusion of [Ca2+] in each compartment.
The ER and cytosolic Ca2+ concentrations ([Ca2+]ER, [Ca2+]i) are assumed to be spherically
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symmetric, resulting in a partial differential equation (PDE) model for [Ca2+]ER and [Ca2+]i
that depends on one spatial dimension, r. Another distinguishing feature of this study from
that of Lebeau et al. [34] is that the model exhibits two types of qualitatively different
bursting behaviour, where each type of bursting occurs through a different physiological
mechanism. The two types of bursting share some features with the parabolic bursting
observed in [10], but in both cases, the bursts do not have the characteristic parabolic
profile in interspike interval, and the spikes do not undershoot the plateau of the underlying
slow oscillation. The first type of bursting occurs via a time-dependent increase in inositol
trisphosphate (IP3) concentration, which in turn increases Ca2+ release from the ER to
initiate bursting. It is unclear, however, from the figures presented in this study whether
bursting is periodically sustained in this case. The second type of bursting is intrinsic (does
not require time-dependent changes in parameters), and is due to an interaction between
ISOC and the dynamics of [Ca2+]ER. This second type of bursting appears to be periodically
sustained.

Duan et al., 2011 [1]

In this study, the focus is set on the modelling of irregular bursting behaviour. The authors
develop a model that combines components adapted from previous models reviewed in this
section, as demonstrated in Figure 1.2.1. The two-compartment Ca2+ submodel is similar to
that of Fletcher and Li [36], but diffusion is not accounted for. A distinguishing feature of this
model is the inclusion of IAHP−UCL, a UCL2077-sensitive, Ca2+-activated K+ current [28]
that contributes to the “slow” AHP, in contrast to ISK—a “medium” AHP current [17]. The
current IAHP−UCL plays the role of a pacemaker current during irregular bursting simulated
by the model. It is activated by Ca2+ released from IP3 receptor-dependent stores in the ER.
The irregular bursting can be roughly explained as a periodic interruption of spiking due to
activation of ISK , followed by activation of IAHP−UCL, whose slow deactivation generates long
interburst intervals. The re-activation of IAHP−UCL during the quiescent phase is prevented
by the uptake of Ca2+ into the ER, and the efflux of cytosolic Ca2+ by the ATPase and
Na+/Ca2+ exchange pumps (see Fig. 1.2.1a). Spiking resumes once IAHP−UCL is sufficiently
deactivated. Stochasticity in interburst interval, a key characteristic of irregular bursting,
is obtained by coupling white noise processes to the open state equations of IAHP−UCL.
A model simulation of irregular bursting behaviour from their model is shown in Figure
1.2.1b. Note the persistence of Ca2+ transients after the firing of action currents, due to
Ca2+-induced release of Ca2+from IP3 receptors. The authors of this study, however, did
not show whether the model can generate parabolic bursting, and did not include model
simulations of membrane potential during bursting (they only show the total ionic current
and Ca2+). Therefore, it is unclear if the model can generate parabolic bursting behaviour
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and if simulations agree with experimental recordings of voltage obtained during irregular
bursting.

Figure 1.2.1: (a) Schematic representation of the GnRH neuron model developed by Duan et al.
[1]. (b) Model simulation of total ionic current (top) and intracellular Ca2+ concentration (bottom).
Figures used with permission.

Csercsik et al., 2012 [37]

The model presented in this study takes a hybrid approach to the modelling of membrane
currents in GnRH neurons. This means that, in the soma, the spike generating mechanism
is abstracted by a simple quadratic integrate-and-fire model [38], whereas the currents
interacting with the two-compartment Ca2+ submodel are described using a HH formalism.
These Ca2+-related currents consist of ISK , and IAHP−UCL adapted from Duan et al. [1],
along with the new currents ICa (representing the combined current IHV A + ILV A) and
IDAP . The depolarizing afterpotential (DAP/ADP) current IDAP is modelled by a HH-like
Na+ current with Ca2+-dependent activation and inactivation in order to account for the
presence of ADPs observed experimentally [24]. The expression for the voltage-gated Ca2+

current ICa is also of the HH-form, and was parameterized by fitting to the voltage-clamp
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data in [30]. Additionally, the authors account for the morphology of the GnRH neuron by
the inclusion of one active and one passive dendritic compartment. The total ionic current
in the active dendritic compartment is described using the same spiking model as in the
soma but with no additional Ca2+ currents. The model does exhibit irregular bursting in
the presence of synaptic input and also supports an intrinsic mode of bursting. However,
there is no clear indication whether the model can generate parabolic bursting solutions.

Chen et al., [39]

In the final study that we review, the authors extend the bursting model by Duan et al. [1]
to account for the morphology of the cell. In the extended model, it is assumed that the
neuron is unipolar (one dendrite), and consists of four distinct compartments: (i) the soma,
(ii) the proximal dendrite, (iii) an AP initiation site (iSite) within the dendrite, and (iv)
the distal dendrite. The inclusion of the iSite is due to a study by Iremonger and Herbison
[40] showing that APs are mostly initiated from a point within the proximal dendrite (<100
μm from the soma), where dendritic Na+ channel density is the highest. This means for
example, that a small depolarization at the soma can trigger an AP at the iSite, which
then back-propagates to the soma to generate an AP there. In contrast with the model by
Csercsik et al. [37], this extended model uses a one-dimensional cable equation to describe
the spatial and temporal dependence of membrane potential. The neuronal compartments
are divided up spatially, with the soma occupying an interval [0, x1), the proximal dendrite
extending from [x1, x2), and so forth. The equation for cytosolic Ca2+ concentration is also
assumed to be spatially dependent: a Ca2+ diffusion term is included in the equation, but the
authors find this formalism to have no effect on the behaviour of the model. The model also
reveals that due to rapid diffusion of voltage along the dendrite, bursting is still controlled
by ionic mechanisms at the soma, and burst patterns at the soma and iSite are the same, up
to a small phase difference. Lastly, we note that this model is used in a more recent study
[41] that investigates how synaptic input along the dendrite can modulate bursting and AP
propagation.

1.3 Model objectives

Having covered the previous GnRH neuron modelling efforts, we are now ready to state the
objectives of the model presented in this thesis. We motivate the objectives by addressing
the primary scientific concerns with previous models.

One concern with the models reviewed above (with the exception of the Csercsik et al. [37]
model), is that several of the equations for non-pacemaker or “spiking” currents are closely
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adapted from the model of GT1 cells developed by Lebeau et al. [34]. Since the development
of the Lebeau et al. [34] model, a handful of ionic currents, specifically members of the set
Iion = {INaF , INaP , IA, IK , ILV A, IHV A, Ih} have been isolated and recorded from brain slices
in GnRH neurons using whole-cell patch-clamp techniques (see Table 1.1). These recent
results indicate that a new GnRH neuron model should be developed to include revised
versions of the ionic currents appearing in Lebeau et al. [34]. Moreover, it is clear from
the models presented above that none of them explicitly incorporate IA or Ih, which are
known to (i) affect the excitability of the membrane, and (ii) operate on medium to slow
time scales. This suggests that these two currents play an active role during bursting.
Based on this, the first objective of the GnRH neuron model should be to accurately
reproduce the characteristics of spontaneous (intrinsically generated) AP firing using the
set of currents Iion (and perhaps others, such as IKCa), where each member of Iion is fit to
recent electrophysiological data.

The second major objective relates to bursting behaviour. As one can infer from the
previous section, no published GnRH neuron model (to the author’s best knowledge) has
demonstrated the ability to simulate intrinsic parabolic bursting. Irregular bursting has
been simulated by the models of Duan et al. [1] and Csercsik et al. [37] through the
IAHP−UCL mechanism. However, the voltage- and Ca2+-dependence of (in)activation for
IAHP−UCL is not confirmed, and so the modelling of this current is based on phenomenological
considerations. This is evident from the models using IAHP−UCL since the maximum
conductance of this current is always assumed to be 1-2 orders of magnitude larger than
that of all other currents. Furthermore, bursting obtained via the IAHP−UCL mechanism
relies on a multicompartmental submodel of [Ca2+]i that has a large number of unknown
parameters. With this in mind, the second objective of the model is to simulate both
parabolic and irregular bursting with the following constraints:

• The new ion channel data is taken into consideration.

• The parameters used to simulate both types of bursting lie within a physiologically
reasonable range.

• The bursting mechanism does not depend on IAHP−UCL.

• The bursting is intrinsic, i.e., the model does not require a periodic source of input to
generate rhythmic behaviour.

• The dynamics of [Ca2+]i are abstracted by a single compartment model in order to
minimize the number of free parameters and variables in the combined model.
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With a model that satisfies the above criteria, we will be able to determine the major
differences between the two types of bursts exhibited by GnRH neurons in mice [10], and
determine the role of various ionic currents in generating such bursts.
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Chapter 2

Mathematical preliminaries

2.1 Stochastic differential equations (SDEs)

The GnRH neuron model developed in Chapter 3 is a set of ordinary differential equations
that accounts for neuronal noise through the coupling of a stochastic process to one or more of
the equations. The resulting set of equations then becomes a member of the class of stochastic
differential equations (SDEs), that have a rich underlying theory. In this section, we present
some introductory concepts in SDEs in order to prepare the reader for the presentation of
the model. We mainly follow the treatment of the topic as presented in [42] and [43]. The
discussion of numerical methods in Section 2.1.2 is adapted from [44].

We begin by defining the one-dimensional stochastic process W (t), known as the Wiener
process or Brownian motion—a fundamental concept in the theory of SDEs.

Definition A one-dimensional Wiener process W (t), t ∈ R is a continuous stochastic process
satisfying

• W (0) = 0.

• W (t− s) ∼ N(0, (t− s)). In other words, the probability distribution function p(w, t)

of W (t) satisfies the diffusion equation

∂p

∂t
=

1

2

∂2p

∂w2
, p(w, 0) = δ(w),

therefore, p(w, t) =
1√
2πt

exp[−w2

2t
].
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• For times 0 < t1 < t2 < · · · < tn, the random variables X1 = W (t1), X2 = W (t2) −
W (t1), . . . , Xn = W (tn)−W (tn−1) are independent.

The above definition implies that E[W (t)] = 0 and E[W (t)2] = t. Moreover, suppose that
0 ≤ s ≤ t, then

E[W (t)W (s)] = E[(W (t) +W (s)−W (s))W (s)]

= E[(W (t)−W (s))]E[W (s)] + E[W (s)2]

= E[W (s)2]

= s, (2.1.1)

where we used independence of W (t) − W (s) and W (s) for the second line. Applying the
identity (2.1.1) we have

E[X2
j ] = E[W (tj)

2] + E[W (tj−1)2]− 2E[W (tj)W (tj−1)]

= tj + tj−1 − 2tj−1

= tj − tj−1. (2.1.2)

Formally, (2.1.2) implies that E[dW 2] = dt, indicating that the stochastic calculus differs
from the standard calculus.

One can numerically simulate a Wiener process (Fig. 2.1.1) using its discrete time analog

Wi+1 = Wi +
√
hN(0, 1), i = 0, . . . , n, W0 = 0, (2.1.3)

where N(0, 1) is an independent sample from a normal distribution and h is the spacing
between time points. Note that when simulating (2.1.3) numerically, the numbers obtained
from N(0, 1) are generated as the output of an algorithm that requires the use of independent
and uniformly distributed numbers as input. Two such algorithms for computing N(0, 1)

numbers are known as the Box-Muller method (used by XPPAUT [45]) and the more efficient
ziggurat method (used by MATLAB [46]). Of course, these methods rely on the statistical
performance of pseudo-random number generators such as the Mersenne Twister generator.
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Figure 2.1.1: Graphs demonstrating the statistics of the simulated Wiener process. Equation (2.1.3)
was simulated N = 10 000 times on the interval 0 ≤ t ≤ 1. (a) Sample path of W (t) (blue) with
expected value and variance of W (t) for the N trials. (b) Histogram representing probability
distribution function of W (t) at the time points listed in the figure legend. Note the diffusive
nature of the process.

Based on the properties of W (t) we can now delineate the role of Wiener processes in defining
the dynamics of SDEs. A formal, (yet non-rigorous) way of stating a one-dimensional SDE
is

dx(t)

dt
= a(x(t)) + b(x(t))ξ(t), x(0) = x0, ξ(t) =

dW

dt
, (2.1.4)

where W is the Wiener process defined above. The term ξ(t) in (2.1.4) is commonly known
as “white noise”. One issue with (2.1.4) is that despite being continuous, the sample paths
of W (t) are nowhere differentiable, i.e., ξ(t) doesn’t exist. For this reason, the SDE (2.1.4)
is more rigorously stated as

dx(t) = a(x(t))dt+ b(x(t))dW (t), x(0) = x0. (2.1.5)

We say that x(t) is a solution to the SDE (2.1.5) if

x(t) = x0 +

ˆ t

0

a(x(s))ds+

ˆ t

0

b(x(s))dW (s), for t ≥ 0. (2.1.6)

The theory of SDEs requires that the last integral on the right-hand side of (2.1.6) is well-
defined, which, as it turns out, can be achieved using Riemann sums. In other words, the
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integral is defined as the limit of partial sums given by

Sn =
n∑

i=1

b(τi)(W (ti)−W (ti−1)). (2.1.7)

In contrast to Riemann sums, however, the infinite limit of Sn depends on the point ti−1 ≤
τi ≤ ti. By taking τi = ti−1 in the infinite limit, one obtains the Itô integral, whereas taking
τi = (ti + ti−1)/2 leads to the Stratonovich integral. Stochastic calculus has been developed
using both the Itô and Stratonovich definitions, and the use of one or the other depends on
mathematical and physical considerations that will not be explored here. Notice however,
that when b(x(t)) is a constant (the additive noise case), the two integral definitions are
equivalent.

We note in passing that the theory of SDEs is not restricted to one-dimensional systems and
has been generalized for use in higher dimensional settings.

2.1.1 Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck (OU) process η(t) is defined as a solution to the SDE

tcdη(t) = −η(t)dt+
√
2DtcdW (t), η(0) = η0, (2.1.8)

where tc and D are parameters that determine that determine the correlation time and
intensity of the noise respectively (see Eq. (2.1.12)). The solution to (2.1.8) is obtained
using the method of variation of parameters, and given by

η(t) = η0e
− t

tc +

√
2D

tc

ˆ t

0

e−
(t−s)
tc dW (s), t ≥ 0. (2.1.9)

From (2.1.9) we obtain the following statistical properties of η(t):

E[η(t)] = n0e
− t

tc =⇒ lim
t→∞

E[η(t)] = 0 (steady-state expectation), and (2.1.10)

Var[η(t)] = D(1− e
−2t
tc ) =⇒ lim

t→∞
Var[η(t)] = D (steady-state variance). (2.1.11)

Another statistical quantity of interest that can be calculated from (2.1.8) is the autocorre-
lation function defined by r(t) = E[η(t)η(s)], 0 ≤ s ≤ t. In the long time limit (s, t � 1),
the autocorrelation of η(t) is given by

r(t) = D exp[
s− t

tc
], (2.1.12)
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which is the reason why η(t) is known as “exponentially-correlated” noise.

2.1.2 Numerical methods for SDEs

Similar to mathematical models described by complex sets of ODEs, certain SDE models
are studied most effectively using numerical techniques. The Euler-Maruyama (EM)
approximation of (2.1.4) is a one-dimensional stochastic (Itô) process X(t), t ∈ [0, T ] that
satisfies the iterative equation

Xn+1 = Xn + hnan + bnΔWn, X0 = x0 (2.1.13)

for the discrete time points 0 = t0 < t1 < · · · < tn = T , where Xn = X(tn), hn = tn+1 − tn,
an = a(Xn), bn = b(Xn), and ΔWn = W (tn+1) − W (tn) are the random increments of the
Wiener process W (t). We assume an equally spaced grid so that tn = t0 + nh, i.e., hn = h.
The independent random increments ΔWn are obtained using (2.1.3), which means that an
algorithm for generating independent, normally distributed N(0, 1) samples is required.

Based on the discussion above, it is now important to determine how well Xi approximates
the true solution x(ti). Analogous to the definition of global truncation error for numerical
solutions of ODEs, we define the error ε in SDEs as follows:

ε = E[|X(T )− x(T )|],

i.e., the expectation of the absolute error in the approximation at time T . An approximation
Xh(t), where h denotes the step size, is said to converge strongly with order γ > 0 at T if
there exists a constant C independent of h, and a h̄ > 0 such that

ε(h) = E[|Xh(T )− x(T )|] ≤ Chγ,

for all h ∈ (0, h̄). It can be shown under some growth conditions on a(x) and b(x) that the
EM approximation converges strongly with order γ = 0.5 uniformly on [0, T ]. Moreover,
in the case where b(x) = b = constant, then the strong convergence order improves to
γ = 1. It is important to point out that other approximation schemes may offer higher order
convergence. For instance, the Milstein scheme, defined by the iterative equation

Xn+1 = Xn + hnan + bnΔWn +
1

2
bnb

′
n((ΔWn)

2 − h), X0 = x0, (2.1.14)

has strong convergence order of γ = 1. The approximation schemes (2.1.13) and (2.1.14) are
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derived through stochastic (Itô) Taylor expansions, and thus higher order schemes can be
derived by taking more terms in the truncated Taylor expansion. The results of stochastic
simulations in Chapter 4 were obtained using the EM scheme (typically with h = 0.01ms),
which is reasonable since the system only contains additive noise terms.

2.2 Slow-fast subsystem analysis

In this section, we review a commonly-used technique for analyzing bursting in neuronal
systems referred to as either dissection of bursting [47], slow-fast subsystem analysis [48],
or geometric singular perturbation (GSP) analysis [49]. Although we use these terms
interchangeably, the latter term is most appropriate since the technique involves using
dynamical systems theory to study singularly perturbed systems, that is systems expressed
in the form

ẋ = f(x, y), x(0) = a

ẏ = εg(x, y), y(0) = b,
(2.2.1)

where x ∈ R
n, y ∈ R

m, and ε > 0 is a small perturbation parameter. Neuronal
models can often be expressed in the form (2.2.1) because of the relative timescales of the
underlying biological mechanisms. For example, the processes responsible for action potential
generation may operate on much faster timescales than those that regulate intracellular Ca2+

concentration. To motivate the discussion of slow-fast subsystem analysis, we will first review
some relevant theory on quasistatic-state approximation (QSSA). Our overview of this topic
is based on that of Hoppensteadt [50], which should be consulted for technical details.

2.2.1 Quasistatic-state approximations

One goal of the QSSA theory is to show that in some cases, solutions of the reduced problem

0 = f(x, y) (2.2.2)

ẏ = εg(x, y), y(0) = b, (2.2.3)

can converge to solutions of the full system (2.2.1). First, we assume that f and g are
smooth, continuously differentiable functions. We seek solutions to the slow subsystem,

ẏ0 = εg(φ(y0), y0), y0(0) = b, (2.2.4)
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for which x = φ(y) is a unique smooth solution to (2.2.2). Now suppose that a solution y0(t)

to (2.2.4) exists, and the manifold φ(y) is a surface of stable equilibrium points of the fast
subsystem

ẋ = f(x; y), (2.2.5)

where y is now treated as a vector of parameters. Denoting x0(t) = φ(y0(t)), a corollary
of the Quasistatic Manifold Theorem in [50] states that if x(0) is within the domain of
attraction of φ(b) in the fast subsystem, then, for ε sufficiently small there exists a solution
(x(t), y(t)) of the system (2.2.4) on some interval 0 < t0 ≤ t ≤ T that satisfies

x(t) = x0(t) + o(1), y(t) = y0(t) + o(1), (2.2.6)

uniformly as ε → 0+. More precisely, this result implies that at some time t after the
initial time, for every δ > 0 there exists an r > 0 such that |(x, y) − (x0, y0)| < δ whenever
0 < ε < r. In other words, in the limit ε → 0+, the solution x(t) of (2.2.1) converges to the
trajectory φ(y0(t)) along the stable equilibrium manifold, where y0 is the solution of (2.2.4).
Furthermore, the solution y(t) of (2.2.1) converges to the solution of the slow subsystem
(SS).

The result leading to the equations in (2.2.6) is restrictive in that it requires φ(y) to be a
smooth manifold of stable equilibrium points without folds for the relevant values of y. As
mentioned in [50], the presence of a fold in φ(y) (perhaps due to bistability in fast subsystem)
leads to complications in the analysis of singularly perturbed systems. Furthermore, the
theory above makes no mention of periodicity in the fast subsystem. Therefore, it does not
apply to the active phase of bursting, where the fast subsystem has periodic spiking solutions
for values of y that are solutions of the full model. Despite these limitations, advances in
slow-fast subsystem analysis have allowed researchers to obtain rigorous results concerning
the existence of periodic bursting solutions, as discussed in the next section.

2.2.2 GSP examples

The first step in the slow-fast subsystem analysis of a bursting model is to identify which
parameters lead to a separation of time scales in the model so that the full model can be
decomposed into fast and slow subsystems (as described by (2.2.4) and (2.2.5)). Ideally, the
second step of the analysis is to use the dynamical properties of the fast and slow subsystems
to prove the existence of periodic bursting solutions for ε sufficiently small. For example,
Lee and Terman [51] show the existence of “square-wave” periodic bursting solutions for
certain 3-dimensional systems with two fast variables and one slow variable. They do so
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by constructing a contracting Poincaré map that is a composition of maps, with each map
corresponding to the passage of the trajectory along a neighbourhood of the fixed point
or periodic solution manifolds of the fast subsystem (FS). The proof is complicated by the
presence of a homoclinic orbit in the fast subsystem, which leads to values of ε for which
the period bursting solution is not uniquely determined. Rigorous existence results have
also been obtained for “parabolic” bursting [52], where it was shown that a general class
of systems that have slow and fast subsystems satisfying certain geometric assumptions,
are dynamically equivalent to a class of systems that possess parabolic bursting solutions
[53]. Although the results in [52, 51] are quite general, the hypotheses of the theorems
may be difficult to verify analytically for a given model, and so numerical verification is
required. In some cases, the justification for the existence of bursting solutions is heuristic
[54, 49], meaning that solutions are assumed to exist based on (i) geometric arguments in
the phase plane, and (ii) numerical simulations demonstrating that bursting solutions follow
a trajectory within a small neighbourhood of the fast subsystem manifolds. The value of the
heuristic approach is that the bursting model under investigation can be classified by the two
types of bifurcations crossed in the FS, which correspond to the initiation and termination
of spiking in the bursting solution of the full model [48]. The classification can then be used
to study the dynamics observed in the full model based on a canonical model that is more
tractable analytically, as we will demonstrate in Section 4.3.

In order to demonstrate the effectiveness of slow-fast subsystem analysis in deciphering the
dynamics of bursting models, we study the Chay-Cook model for bursting in pancreatic β-
cells [55]. The slow-fast subsystem analysis of this model was first carried out in the seminal
work by Bertram et al. [54]. The Chay-Cook model is a Hodgkin-Huxley-like model given
by the set of equations

Cm
dv

dt
= −[ICa(v, s) + gKn(v − VK) + gL(v − VL)]

dn

dt
= λ

n∞(v)− n

τn(V )

ds

dt
=

s∞(v, c)− s

τs(v, c)

dc

dt
= f [−αICa(v, s)− kcc],

(2.2.7)
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where

s∞(v) = [1 + exp(2A(v, c))]−1, A(v, c) = (Vs + Ss log(c)− v)/2Ss

τs(v, c) = τ̄s[2 cosh(A(v, c))]
−1

x∞(v) = [1 + exp((Vx − v)/Sx)]
−1, x ∈ {m,n}

τn = τ̄n[1 + exp((v − Vn)/Sn)]
−1

ICa(v, s) = (gIm∞(v) + gss)(v − VCa).

The parameters values chosen for the analysis are those for the “Type II” bursting example
in [54]. When integrated numerically, system (2.2.7) exhibits parabolic bursting behaviour;
that is, the graph of v(t) shows slow oscillations that underlie clusters of spikes with low
frequency at the start and end of the burst, and high frequency near the middle of the
burst. The value of τ̄s is taken to be large and f small to create a separation of timescales
in the system. As a result, the two-dimensional FS consists of the equations for v̇ and ṅ

(with the gating variable s and the intracellular Ca2+ concentration c treated as parameters),
whereas the two-dimensional SS consists of the equations for ċ and ṡ with the fast variables
assumed to be at equilibrium (as functions of c and s). Now, in the case of a sufficiently large
separation of timescales, we expect the bursting trajectory of the full model to correspond
to a cycle along the equilibrium and periodic solution manifolds of FS, as determined by the
SS. Using AUTO [56], we can plot a projection in the s−v plane of the “s”-shaped equilibrium
manifold φ(s, c) as well as the branch of periodic solutions of FS. In other words, we can
compute the one-parameter bifurcation diagram of FS with respect to the “parameter” s (one
of the slow variables that is treated as a constant), and plot the periodic solutions extending
from any Hopf bifurcation points that are found numerically. Note that the projection of
φ(s, c) remains static in the s−v plane because the FS does not depend explicitly on the slow
variable c. If we superimpose the bursting solution in the (s, v) plane onto the one-parameter
bifurcation diagram, as shown in Figure 2.2.1, we can then observe how trajectories traverse
the branches of fixed points and periodic solutions of the FS. The s-nullcline (s = s∞(v; c))

at the minimum and maximum values of c (cmin, cmax) obtained in the bursting solution are
also superimposed in Figure 2.2.1 to indicate the direction of the flow in the s − V plane.
With these numerical results, we can now heuristically justify that a burst cycle in the full
model corresponds to a trajectory along the stable and periodic manifolds of the FS, as
suggested by Figure 2.2.1.
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Figure 2.2.1: Graphical representation of the slow-fast subsystem analysis for the Type II burster:
Chay-Cook model (2.2.7). The bifurcation structure for the FS has branches of (i) stable (red) and
unstable (black) fixed points, and (ii) maximum and minimum values of periodic solutions (green).
The projection of the full model solution (grey) in the s − v plane, and the s-nullclines (blue) at
cmin and cmax are superimposed on the one-parameter bifurcation diagram of the FS. Notice that
this model does not possess bistability and that the full model trajectory remains within a small
neighbourhood of the branches of the bifurcation structure for the entire cycle.

To begin our analysis, let us suppose that the initial condition of the full model is taken so
that it lies in the basin of attraction of the stable equilibrium of the FS, above the slow s-
nullcline where ṡ > 0. Then the trajectory will quickly relax towards the lower stable branch
of the FS manifold, and move along it rightward since ṡ > 0. This behaviour continues (as
long as the s-nullcline lies below the stable manifold) until the trajectory passes the fold and
enters the parameter regime where FS has a single unstable equilibrium coexisting with a
stable limit cycle. For the set of fast subsystem parameters generating “Type II” bursting,
the fold occurs at a codimension-one saddle-node on invariant circle (SNIC) bifurcation, i.e.,
where a saddle-node and homoclinic bifurcation occur simultaneously (see Fig. 2.2.2 for a
schematic of this bifurcation).
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Figure 2.2.2: Schematic diagrams showing the transition through a SNIC bifurcation in a planar
system for hypothetical parameter s. For s < 0, the system has a saddle (red) and a stable
(green) equilibrium. The stable manifold (blue) of the saddle separates a pair of heteroclinic orbits,
connecting the stable manifold of the stable equilibrium with the unstable manifold of the saddle
point. The SNIC bifurcation occurs at s = 0 where a homoclinic orbit coincides with the center
manifold of the saddle-node. A stable limit cycle persists for s > 0. See [57] for more details.

Within the parameter regime that supports periodic spiking in the FS, the lateral movement
of the burst trajectory relative to the fold is determined by the magnitude of ṡ and the time
that the trajectory spends above and below the nullclines. To see this, notice that during
spiking the full model trajectory will repeatedly cross the s-nullcline (whose position in the
s− v plane is c-dependent). At the start of the burst, the trajectory spends long periods of
time above the s-nullcline, and so one expects a net movement to the right. As the burst
progresses, the s-nullcline moves upward (due to an increase in c induced by Ca2+ entry into
the cell during spiking), increasing the time the trajectory spends below the nullcline. As a
result, the trajectory moves back towards the SNIC, eventually crossing it to terminate the
burst. After the SNIC is crossed, c begins to decrease (due to Ca2+ efflux from the cytosol),
shifting the s-nullcline downward. The trajectory continues leftwards along the stable branch
as long as the s-nullcline lies above it. The cycle begins anew once the s-nullcline falls back
below the stable branch. The position of the trajectory relative to the fold also gives rise
to the characteristic “parabolic” profile in spike frequency that is observed within the burst.
This phenomenon is explained by the fact that the period of stable limit cycles monotonically
approaches infinity as the parameter s approaches the homoclinic bifurcation. Therefore, at
the furthest point of the trajectory from the homoclinic, the spike frequency is the highest,
while at the start and end of the burst, it is the lowest.

In describing the path of the trajectory in the s− v plane, we required that the s−nullcline
move in a specific manner as a function of c in order to generate parabolic bursting.
Ultimately, this corresponds to a certain configuration of the s- and c-nullsurfaces, given
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by s = s∞(v, c) and c = − α
kc
ICa(v, s). One could use the nullsurfaces to justify the existence

of bursting solutions in a manner analogous to that of “Type I” bursting in [54], where the
slow subsystem is only one-dimensional. Another approach is to analyze the slow subsystem
in the two-dimensional phase plane. The basis of this method is to obtain the nullclines of
the slow subsystem during the quiescent phase of the burst by using the quasistatic state
assumption, and in the active phase by using formal averaging. Using the properties of
the nullclines, one can justify the existence of a periodic solution that crosses (for example)
the curve of homoclinic bifurcations in the FS, which corresponds to entry or exit from the
spiking regime in the FS. Such an approach was used by Smolen et al. [58] in the study of a
bursting model with a two-variable SS. For the Chay-Cook model that we presented in this
section, we would thus analyze the following systems in the phase plane:

ċ = −f [αICa(v∞(s), s) + kcc]

ṡ =
s∞(v∞(s), c)− s

τs(v∞(s), c)

(quasistatic state assumption), and (2.2.8)

˙̄c = − f

T (s̄)

ˆ T (s̄)

0

(αICa(v(t, s̄), s̄) + kcc̄) dt

˙̄s =
1

T (s̄)

ˆ T (s̄)

0

s∞(v(t, s̄), c̄)− s̄

τs(v(t, s̄), c̄)
dt,

(formal averaging) (2.2.9)

where in (2.2.8) v∞(s) is the steady solution of the FS, and T (s) in (2.2.9) is the period of
the spiking solution v(t, s) of the FS. Note that we can interpret (2.2.8) as “the SS restricted
to the manifold of fixed points of the FS”.

As a final example, consider the phase plane analysis depicted in Fig. 2.2.3 of a parabolic
bursting model by Baer et al. [59]. Using equations analogous to (2.2.8) and (2.2.9), the
authors of [59] computed the nullclines of the SS restricted to the equilibrium of the FS
(labeled ẋ = 0 and Ċa = 0 in Fig. 2.2.3) and the nullclines of the formally averaged SS
(labeled ẋav = 0 and Ċaav = 0 in Fig. 2.2.3). Figure 2.2.3 indicates that the projection of
the full model trajectory in the Ca − x plane is well-approximated by a piecewise defined
system consisting of two parts. The first part, corresponding to the quiescent phase of the
burst, has the form of (2.2.8) and is defined in the region below the curve of homoclinic
(HC) bifurcations in the fast system. The second part, corresponding to the active phase of
the burst, has the form of (2.2.9) and is defined above the HC curve. To see why the full
model trajectory is well-approximated by a periodic solution of such a system, notice that
in the regions below and above the HC curve, the trajectory always crosses the nullclines
horizontally or vertically.
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Figure 2.2.3: Graphical representation of slow subsystem phase plane analysis as carried out by
Baer et al. [59] for a parabolic bursting model. The nullclines (short dashes) ẋ = 0, Ċa = 0, and
ẋav = 0, Ċaav = 0 are plotted against the projection of the full model solution in the Ca− x plane
(solid). The full model trajectory passes through a curve of homoclinic (HC) bifurcations of the
fast subsystem (long dashes). The point labeled “C” denotes a cusp that forms at the intersection of
the x- and xav- nullclines with the HC curve. A similar cusp also exists for the c- and cav-nullclines
but it is not visible at this resolution. Figure used with permission.

With this mathematical background, we are now ready to introduce and analyze the GnRH
neuron model.
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Chapter 3

Model development

3.1 Formalism

To model the intrinsic electrical activity of GnRH neurons, a Hodgkin-Huxley-like (HH)
formalism was used [32]. We say “Hodgkin-Huxley-like” because the original HH model has
been modified to include additional ionic currents, to incorporate a submodel for intracellular
Ca2+ concentration, and to use a different description for the Na+ current responsible for the
generation of action potentials. The dynamical equations governing HH models are derived
from basic electromagnetic theory by modelling the cell as an RC-circuit, where the cell-
membrane acts as a capacitor in parallel with voltage/Ca2+-dependent ion channels (which
in turn behave as resistors in parallel). Each resistor corresponds to one of several ion channel
species that are distinguishable from each other by their permeability to specific ions and
their protein structure. Due to differences in ionic concentrations between the inside and
outside of the cell, electrochemical gradients emerge for each type of ion species resulting
in a movement of charges through these channels. In the circuit model, the gradient is the
source of an electromotive force that is placed in series with each resistor. To illustrate the
types of ion channels expressed on GnRH neurons and to emphasize the theory underlying
Hodgkin-Huxley models, a circuit diagram for the GnRH neuron model is provided in Figure
3.1.1. Notice that all conductances, except for that of the leak current, IL, are variable due
to voltage- and Ca2+-dependent permeability of ion channels.
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Figure 3.1.1: Circuit diagram illustrating the various ionic currents that are part of the GnRH
neuron model.

In Figure 3.1.1 the membrane potential is defined by V = Vin−Vout, the difference in potential
between the intracellular and extracellular regions. We use the standard convention that flux
of positive ions into the cell corresponds to a negative current, and that current applied to
the inside of the cell is positive. Whether ions of type j leave or enter the cell is determined
by the sign of the so-called driving force V −Ej, where Ej is the Nernst or reversal potential
for ion j. The reversal potential Ej is given by the equation

Ej =
RT

zF
ln

(
[j]o
[j]i

)
,

where [j]o and [j]i are the extracellular and cytosolic concentrations respectively of ion j.
The values of the reversal potentials are constants since it is assumed that the concentration
gradients of ions are actively maintained by the cell via ion pumps and exchangers. The
amount of flux of ion j, otherwise known as ionic current, is denoted by Ij and is given by
the equation

Ij = gj(t, V, Ca)(V − Ej), (3.1.1)

where gj is the time-, voltage-, and Ca2+-dependent conductance (inverse of resistance).
Equation (3.1.1) can be derived using Kirchoff voltage law applied to the individual RC-loops
in the circuit. It is also important to note that gj is determined by the collective action of
all ion channels of type j acting in parallel. In this context, it is then appropriate to refer
to (3.1.1) as the macroscopic current equation. From this point forward, it is assumed that
the units of the quantities introduced in (3.1.1) are [gj] = nS, [V ] = mV, so that [Ij] = pA.

Applying Kirchoff’s current law for the circuit in Figure 3.1.1, we obtain the dynamical
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equation for the membrane potential V ,

Cm
dV

dt
= −(INaF +INaP +IA+IK +IHV A+ILV A+Is+Ih+IKCa+IL)+Iapp+η(t), (3.1.2)

where Cm is the membrane capacitance, Iapp represents an external stimulus applied to
the system, and η(t) is a stochastic variable that accounts for intrinsic noise within the
system. For the present modelling study, Iapp is usually zero since we seek to model intrinsic
electrical activity; however, the simulation of applied current is still useful as a means of
model verification. The dynamics of the stochastic variable η(t) are determined by an OU
process as defined by (2.1.8). Descriptions of all ionic currents appearing in (3.1.2), except
for the slow inward Ca2+ current Is and the leak current IL, are provided in Table 1.1. The
currents Is and IL are excluded from Table 1.1 because there are no published studies on
these currents for GnRH neurons. We refer the reader to [14, 60] for a description of these
currents in other cells. In (3.1.2), the voltage-gated currents are INaF , INaP , IA, IK , IHV A,
ILV A, Is, and Ih, whereas IKCa is Ca2+-gated. For the voltage-gated currents (except INaF ),
we have

I = gmph(V − E), (3.1.3)

where m and h are dynamical variables that represent the proportion of open m-subunits
and h-subunits in the ion channel population and g is the maximum conductance parameter.
The term subunit refers to a component of an individual ion channel that undergoes
conformational changes to allow the channel to open. Intuitively, m and h can be thought of
as “activation” and “inactivation” gating variables respectively. The parameter p represents
the number of independent activation subunits assumed to be present in individual ion
channels. It follows that the product mph is the proportion of ion channels in the membrane
that are conducting or “open”. The dynamical equations for m and h are given by

h =
n∑

i=1

fihi, 0 ≤ fi ≤ 1,
n∑

i=1

fi = 1 (3.1.4)

ṁ =
m∞(V )−m

τm(V )
(3.1.5)

ḣi =
h∞(V )− hi

τhi
(V )

(3.1.6)

x∞(V ) =
1

1 + exp[(V − Vh)/k]
, x = m,h. (3.1.7)

Notice that the equation for h is composed of a weighted sum of n dynamical variables
satisfying (3.1.6) to account for currents that inactivate on multiple (n) time scales, and
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Figure 3.1.2: Simple (in)activation scheme for independent ion channel subunits

that h∞(V ) is identical for all hi. Equations (3.1.5) and (3.1.6) can be derived employing
a chemical kinetic approach applied to the simple configuration shown in Figure 3.1.2 and
defining x∞(V ) = α(V )

α(V )+β(V )
, τ(V ) = 1

α(V )+β(V )
. Equation (3.1.7) can be derived by using

the notion of Gibbs free energy, and assuming a linear thermodynamic model for free energy
[61] (i.e. by assuming an exponential form for the voltage-dependent transition rates, α(V ),
β(V ) between open and closed subunit states). The Boltzmann-like curve (3.1.7) is also a
reasonable model for other voltage dependent rates whose functional forms satisfy certain
criteria (see Section 3.2.3). The voltage-dependent time constants τ(V ), on the other hand,
can assume one of three functional forms:

τ = constant (3.1.8)

τ1(V ) = d+ c exp[−(V − a)2

b
] (3.1.9)

τ2(V ) = e[exp(
a+ V

b
) + exp(

c+ V

d
)]−1 + f. (3.1.10)

The function τ1(V ) is symmetric about the maximizing point V = a while τ2(V ) can be
skewed about its maximizing point for certain values of the parameters. The use of such
voltage-dependent time constants is standard in the neuronal modeling literature [62, 48, 35].

As mentioned previously, the current INaF does not follow the formalism of (3.1.4)-(3.1.7).
Details on the modelling of INaF are provided in Section 3.3, but for now, we state the
macroscopic current equation given by

INaF = gNaFO
3(V − ENa),

where O is the proportion of open Na+ channels whose dynamics are governed by the Markov
model depicted in Figure 3.1.3.
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Figure 3.1.3: Three-state Markov model used to describe INaF . Details on this model can be found
in [63].

We now introduce the Ca2+-dependent equations appearing in the model. The dynamics of
intracellular Ca2+ concentration, denoted by Ca, are described by the following ODE model:

dCa

dt
= f(−αICa − kp

Ca2

K2
p + Ca2

)

ICa = ILV A + IHV A + Is (3.1.12)

α =
β

2FVcyt

,

which is a simplification of a more detailed Ca2+ subsystem used in previous GnRH neuron
models [34, 1]. An important feature of the present Ca2+ submodel (3.1.12) is that it prevents
the accumulation of Ca2+ in the cell that enters through voltage-gated Ca2+ channels. The
Ca-dependent saturating term on the right-hand side accounts for removal of intracellular
Ca2+ via membrane-bound pumps and/or exchangers. The parameter f represents the
fraction of free (unbound) Ca2+ in the cytosol. The term α is a factor that converts the flux
ICa into concentration of Ca2+ in units of μM. In the equation for α, F is Faraday’s constant,
Vcyt is the volume of the cytosolic compartment, β is a molar to micromolar conversion factor,
and the factor 2 represents the valency of the calcium cation. The variable Ca enters the
voltage equation through the Ca2+-dependent K+ current IKCa, which represents the current
conducted by SK channels and has the form

IKCa = gKCa
Ca2

K2 + Ca2
(V − EK). (3.1.13)

In the equation for IKCa, the Ca-dependent term represents instantaneous activation of the
SK channel through an indirect binding mechanism involving intracellular Ca2+ and the
cytoplasmic protein calmodulin [64].

All values of the parameters appearing in this section can be found in Section A.2.
Unless otherwise noted, different intrinsic electrical states are simulated by the model
through changes in the maximum conductance parameters, without changes to the kinetic
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parameters. For visual reference, plots of the voltage-dependent time constants and steady-
state (in)activation curves are provided in Section A.3.

3.1.1 Model assumptions

The use of a (stochastic) HH model makes implicit assumptions about the properties of the
cell. Assumptions of the present model are listed here.

• The cell is an ideal spherical capacitor with an isopotential somatic compartment.
Consequently dendritic contributions to the membrane potential are not considered.

• The included ionic currents account for all ionic flux into and out of the soma.

• In the context of Ca2+ handling, the intracellular region is comprised of a single
compartment that is well mixed, i.e. intracellular Ca2+ concentration is homogeneous.

• The linear driving force approximation (rather than the full Goldman-Hodgkin-Katz
(GHK) equation) is adequate for modeling excitability. This assumption was shown to
be valid in a study of the original Hodgkin-Huxley equations [65].

• Stochastic fluctuations in membrane potential are the result of variability in one or
more slow processes within the neuron. These processes may include (in)activation of
ion channels with large time constants or intracellular Ca2+ handling.

An additional note is warranted for the assumption involving the GHK equation. Although
we stated that the linear driving force or “Ohm” approximation is valid in the original
HH model [65], the HH model does not include voltage-gated Ca2+ currents. In a typical
mammalian neuron, [Ca2+]i is small (0.1 μM) relative to the concentrations of other ions in
the cell, for example [Na+]i (5× 103 μM) and [K+]i (140× 103 μM) [66]. For this reason, the
influx of Ca2+ through voltage-gated channels can cause a large relative increase in [Ca2+]i,
in which case it may be more appropriate to use the GHK current equation for modelling
Ca2+ current [67]. The resulting current equation would then be

ICa = p̄mph
V (2F )2

RT

Cae exp[−2FV
RT

]− Ca

1− exp[−2FV
RT

]
, (3.1.14)

where p̄ is the maximum permeability of the ion channel, V is the membrane potential, Cae

is the extracellular Ca2+ concentration (often taken to be a constant equal to 1.0 − 2.0μM
[66, 67]), Ca is the intracellular Ca2+ concentration as defined above, and R, T , F are the
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standard thermodynamic quantities. The use of (3.1.14) could be used in place of (3.1.3)
for the voltage-gated Ca2+ currents ILV A, IHV A, and Is that appear in (3.1.2). However for
simplicity, we retain the Ohmic form of these currents—a standard assumption in the field
of computational neuroscience (e.g., see [35, 28] and many others) .

3.2 Modelling of ionic currents

3.2.1 Parameter estimation for ionic currents

Models describing the electrical activities of neurons grow increasingly complex when one
seeks a complete biophysical description of these activities. This typically results from the
inclusion of many ionic current submodels. For example, a single current modelled using
the HH-formalism that has one time constant of inactivation can introduce two variables
and thirteen parameters into the model. This is unavoidable if the purpose of the model
is to make realistic predictions about the contributions of individual ionic currents to the
overall electrical activity of the neuron. Fortunately, the rapid advance in electrophysiological
recording techniques has made accurate parameter estimation an achievable endeavour. The
type of data that are useful to conduct such parameter estimations include the time series
data obtained from current- and voltage-clamp experiments. In the current-clamp setting,
the experimenter records the membrane potential of the cell over a given period of time to
gain information about the contribution of all conducting ion channels. It is in this recording
mode that one might observe phenomena such as bursting, spiking, or simply a neuron in
the resting state. In the voltage-clamp mode, the membrane potential is fixed at certain
value, known as the command potential, through a feedback circuit so that dV

dt
= 0 [14].

The feedback current required to maintain this condition is in turn a measure of the ionic
current being conducted at the command potential. Data from voltage-clamp recordings is
useful for parameter estimation in neuronal models because most currents are assumed to be
strictly voltage-dependent. For instance, if it is assumed that the HH formalism is adequate
for describing ionic currents, then the ODEs governing the dynamics of the gating variables
can be solved for exactly when voltage is fixed. For an HH gating variable given by (3.1.5)
or (3.1.6), we have

x(t) = x∞(V ) + (x(t0)− x∞(V ))e−
(t−t0)
τ(V ) , (3.2.1)

where V is a constant and t0 is the initial time. Although many currents can be active during
voltage-clamp experiments (leading to many equations of the form (3.2.1)), pharmacological
agents can be employed to isolate individual ionic currents. For example, the so-called “h-
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current”, denoted Ih in the present model, is sensitive to the pharmacological agent ZD7288
[20]. Assuming that a sufficiently high dose of ZD7288 is fully effective at blocking Ih, two
voltage-clamp experiments with the same voltage-protocols can be performed to extract the
contribution of Ih by subtraction. Now suppose that a voltage clamp experiment has been
performed with the assumption that the measured current is attributable to a single species
of ion channel. Assuming that the current is well described by (3.1.3), the time-dependent
current equation for the ion channel is given by

I(t) = g[m(t)]p
n∑

i=1

fihi(t)(V − E), (3.2.2)

where m and h have the closed-form solution (3.2.1). The advantage of closed-form solutions
for the current is two-fold. First, it eliminates any error incurred by solving the gating
differential equations numerically, and second, an efficient least squares-based method can
be implemented to estimate all the parameters appearing in (3.2.2). The latter concept was
originally developed by Willms et al. [68] and is called the full-trace fitting method. Details
on this method are provided in Section 3.2.3. In the following subsection we introduce the
voltage protocols employed by electrophysiologists to obtain the data required for the full-
trace method, and also describe an alternative method of estimating the kinetic parameters,
specifically those appearing in (3.1.5) and (3.1.6).

3.2.2 Voltage protocols

Voltage-clamp recordings are useful for quantifying the (in)activation kinetics of a particular
species of ion channel. Using the voltage-clamp data, empirical functions describing the
steady-state (in)activation curves x∞(V ) and time constants τ(V ) can be determined.
Although by definition, voltage-clamp means to maintain a constant membrane potential,
some kind of transient response needs to be evoked during a voltage-clamp experiment in
order to quantify the kinetics of a particular current. Step protocols, where the command
voltage undergoes a series of steps to different values, are most frequently used to reveal the
kinetic properties of ionic currents. Table 3.1 summarizes two common step protocols used
for this purpose.

To determine how the steady-state activation and time-constant curves are obtained using
the protocol described in Table 3.1a, we make some simplifying assumptions:

Assumption 1. i. The evoked ionic current is adequately described by (3.2.2).
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Protocol (Voltage vs. time) Description

a)

Vhold

Vstep

Vpulse

A sufficiently long hyperpolarized pre-
pulse is used so that x → x∞(Vpulse),
where x = m,h. The step voltage Vstep is
varied. Time constants of (in)activation
and steady-state activation at the discrete
values of Vstep can be inferred from this
data.

b) Vhold

Vstep

Vpulse

In contrast to protocol a), the pre-
pulse step potential Vpulse is varied while
Vstep remains constant. Steady state
inactivation at the discrete values of Vpulse

can be inferred from this data.

Table 3.1: Summary of voltage-clamp protocols used to determine kinetics properties of ion channels

ii. The ion channels conducting the current are at a steady state at the end of the pre-pulse
and are completely deactivated, i.e., h = h∞(Vpulse) = 1 and m = m∞(Vpulse) = 0.

iii. The rate of inactivation is slow relative to the rate of activation. That is, no
inactivation occurs within the time required to reach peak activation.

By the assumptions above, the value of the steady-state activation curve at a given step
voltage Vstep is obtained through the ratio

I(Vstep)(Vmax − E)

Imax(Vstep − E)
=

g[m∞(Vstep)]
p

g
= [m∞(Vstep)]

p, (3.2.3)

where it is assumed that Imax = maxV ∈R{I(V )}. The values of I(Vstep) are obtained from
the measurement of peak current during the voltage step. The calculated values of m∞
at the various step potentials are then employed to fit to a continuous sigmoidal function
raised to some unknown power p. The fitting yields the parameter values associated with
the sigmoidal function (including p) so that m∞(V ) can be used within a continuous ODE
model. Next, we show how the time constants of activation can be determined using the
protocol in Table 3.1a. Remark that during the activation transient,

I(t) = g[m∞(Vstep)(1− e
− t

τ(Vstep) )]p(Vstep − E). (3.2.4)

Thus it is possible for the experimenter to fit the transient current data to the function
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f(t) = A(1− e−
t
τ )p, where A, τ are treated as fitting parameters, and the value of p is that

obtained from the activation curve fitting. A second fitting must be performed to convert
the discrete values of τ at the step potentials into a continuous function, which often has a
bell-shaped profile. Finally, the same voltage-step protocol can be used to obtain the time
constants of inactivation, assuming that the process of inactivation begins once the current
has reached its peak value during the voltage step. Under this assumption, the current
equation at some time t after the peak time is given by

I(t) = gm∞(Vstep)
p

n∑
i=1

fi[h∞(Vstep) + (1− h∞(Vstep))e
− t

τi(Vstep) ](Vstep − E), (3.2.5)

where we have substituted m(t) = m∞(Vstep), and h(t) = h∞(Vstep)+(1−h∞(Vstep))e
− t

τi(Vstep)

into (3.2.2). Expanding (3.2.5), we find that I(t) has the functional form f(t) =∑n
i=1 Aie

− t
τi + B. Once again, f(t) is fit to the current data to obtain the parameters

Ai, B, and τi, and a continuous function τi(V ) is obtained by a secondary fitting procedure.
The fraction of channels with inactivation type i (denoted by fi) can be obtained using the
values of Ai because

fi =
Ai∑n
k=1 Ak

.

We remark, however, that there is an estimated value of fi corresponding to each voltage-
step, and therefore fi is not uniquely determined from this procedure.

The remaining kinetic information that can be extracted from the voltage-clamp data is the
steady-state inactivation curve. To obtain this curve, protocol b) of Table 3.1 is often used.
Using a similar set of assumptions as in case a), the value of the steady-state inactivation
curve at a given pulse voltage Vpulse is obtained through the ratio

I(Vpulse)

Imax

=
g[m∞(Vstep)]

ph∞(Vpulse)(Vstep − E)

g[m∞(Vstep)]p(Vstep − E)
= h∞(Vpulse), (3.2.6)

which can then be used to obtain the parameters for the continuous sigmoidal function
h∞(V ).

3.2.3 Full-trace method

The parameter estimation technique described in Section 3.2.2 may lead to inaccuracies in the
estimation of the kinetic parameters due to the nature of Assumption 1. More specifically, the
assumption that the timescales of activation and inactivation are widely separated may not be
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valid for some species of ion channels. In this case, the activation kinetics are “contaminated”
by the simultaneous inactivation of the channel, resulting in poor approximations by (3.2.3)-
(3.2.6). This issue can be resolved by fitting the voltage-step data directly to (3.2.2), whereby
the values of m∞, h∞, τm, and τhi

at discrete voltages are obtained simultaneously.

Unfortunately the continuous function describing τ(V ) can assume a variety of biophysically
plausible functional forms as suggested by the use of the two different functions τ1(V ) and
τ2(V ) in the present model. The root cause of this ambiguity is due to the fact that the
voltage-dependent transition rates α(V ) and β(V ) can assume various functional forms,
which ultimately affects τ because τ = 1

α+β
in an HH-formulated model. Although the

steady-state activation curves also suffer from this issue of ambiguity (since x∞ = α
α+β

), they
do so to a lesser degree than the time-constant curves since the mathematical properties of
such rate functions guarantee a saturating functional form for x∞.

Based on the considerations above, the software package NEUROFIT [69] was developed
to assist modelers in developing accurate ionic current submodels. The fitting algorithm
implemented within assumes that steady state activation is given by the Boltzmann function
(3.1.7), and as a result the parameters for this function are returned by the algorithm.
However due to the ambiguity in the function τ(V ), only the values of τ are returned for each
discrete voltage, requiring a secondary fitting to produce a continuous function for τ . The
NEUROFIT package was utilized for the present model to parameterize the hyperpolarization-
activated Ih current. More details on Ih are provided in Section 3.2.4.

3.2.4 Voltage-clamp fitting results

The ionic currents in the set S = {INaP , IK , IA, IHV A, ILV A, Ih} were parameterized
according to voltage-clamp recordings. The use of NEUROFIT for fitting to voltage-clamp
data was not possible (except for Ih) due to inavailibility of data or the use of voltage
protocols not supported by the software. Fortunately, published voltage-clamp recordings
exist for all currents in the set S with precise descriptions of the protocols used to evoke
them. By simulating the voltage protocols described by the various experimenters, it was
possible to parameterize the individual ionic models. Although in most cases the fitting for
these currents was qualitative, the goal was to capture key features of the recorded currents;
namely, the amplitude and rates of (in)activation. Steady-state (in)activation curves were
assumed to have the form given by (3.1.7), while the voltage-dependent time constants τ(V )

assumed one of the forms (3.1.8)-(3.1.10). The remainder of this subsection provides the
results of voltage-clamp simulations for the currents in S along with brief summaries of
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each current and references to the corresponding experimental studies. The estimates of
kinetic parameters obtained from the voltage-clamp fittings are listed in Table A.1, while
the estimates of maximum conductance parameters are listed in row gvc of Table A.3.

INaP

A voltage-ramp recording of the persistent Na+ current INaP published by Wang et al. [16]
was used as a reference for fitting. The current INaP was isolated by Wang et al. [23] through
a TTX-subtraction method. We point out that even though GnRH neurons conduct two
types of TTX-sensitive Na+ current, it is assumed that the fast Na+ current INaF does not
activate during the application of a sufficiently slow ramp protocol. In turn, this allows for
the isolation of a separate current denoted INaP . The macroscopic current equation

INaP = gNaPmNaPhNaP (V − ENa), (3.2.7)

is based on that used by Magistretti et al. [70] in a study of entorhinal cortex cells. Equation
(3.2.7) was parameterized through the use of a genetic algorithm that minimizes the L2-norm
of the error between the simulated trajectory and the digitized current trace of Wang et al.
[23]. Figure 3.2.1 shows the resulting model simulation of INaP under the ramp protocol
used experimentally.

Figure 3.2.1: Simulation of INaP under a 50 mV/s ramp protocol vs. digitized experimental data
(blue).
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IK and IA

A voltage-clamp recording of the isolated K+ currents IA and IK obtained by Pielecka-
Fortuna et al. [19] was used as a reference for fitting. The voltage-clamp protocol used in
[19] was designed to demonstrate the activation and inactivation characteristics of IA and IK

separately. In their study, parameters for the activation curves of IA and IK were obtained
using methods similar to those described in Section 3.2.2. These parameter values were used
as initial estimates for the qualitative fitting process. The macroscopic expression for IK

assumes the form used in previous models of GnRH neurons [34, 35], that is,

IK = gKm
4
K(V − EK). (3.2.8)

The expression for IA is similar to that of other neuron models [62, 71] but has a composite
inactivation term that was necessary to obtain the best fit. The resulting macroscopic
equation is

IA = gAmA[fAhA,1 + (1− fA)hA,2](V − EK). (3.2.9)

Figure 3.2.2 compares simulation (panel (a)) and recording (panel (b)) of IA + IK under the
experimental voltage protocol (top of panel (a)). A key characteristic of IA is that pre-pulses
lower than −40 mV remove inactivation of IA so that a subsequent step to a depolarized
potential (e.g. −10 mV) generates a transient spike in K+ current. Meanwhile, IK , which
is uniquely active during the voltage steps corresponding to the −40 mV and −20 mV pre-
pulses, shows a short delay in activation and is essentially non-inactivating, consistent with
the lack of inactivation term in (3.2.8).

Figure 3.2.2: (a) Simulation of combined K+ current (bottom panel) under pre-pulse voltage protocol
(top panel). (b) Current traces obtained experimentally using the voltage protocol plotted in (a).
Experimental figure from [19] used with permission.
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IHV A and ILV A

The reference voltage-clamp recordings for the low- and high- voltage activated Ca2+

currents—IHV A and ILV A respectively—were obtained by Sun et al. [18]. In [18], it was
demonstrated through the use of pharmacological agents that the high-voltage activated
IHV A actually represents the current conducted by a variety of Ca2+channel types. However,
by treating IHV A as one entity, the authors were able to obtain the steady-state (in)activation
curves of the combined current. The parameters of these activation curves were used as a
basis for the fitting of IHV A, whose equations assumed a standard HH form, except for the
use of two inactivation variables to account for the diversity in HVA channel types. The
resulting equation for IHV A is given by

IHV A = gHV AmHV A[fHV AhHV A,1 + (1− fHV A)hHV A,2](V − ECa). (3.2.10)

A striking difference between the LVA and HVA Ca2+ currents is that the maximum
amplitude of IHV A was found to be at least an order of magnitude larger than that of ILV A

[18]. In fact, it was reported in [18] that only 41% of GnRH neurons exhibit a low amplitude
LVA current. In contrast with this, however, is that another study recorded larger amplitude
ILV A, and found it to be conducted by 100% GnRH neurons in adult mice [31]. Therefore,
the conductance and kinetic parameters of ILV A may have a large range of physiologically
acceptable values. The voltage range at which the low amplitude ILV A was evoked by Sun
et al. [18] is consistent with the voltage range of activation in T-type Ca2+ channels [31].
Based on this observation, the kinetics of ILV A were fit to the voltage-clamp data in [31]
using the current equation

ILV A = gLV Am
2
LV AhLV A(V − ECa), (3.2.11)

which has the same form as ICaT used by Lebeau et al. [34]. The maximum conductance
gLV A was then adjusted to fit the data in [18]. Figures 3.2.3a,b compare the results of the
two voltage-clamp simulations with experiment for IHV A. The model simulations for ILV A

are shown in Figure 3.2.3c.
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Figure 3.2.3: Simulations and recordings of voltage-gated Ca2+ currents in GnRH neurons. (a)
Voltage-clamp simulation of IHV A under pre-pulse protocol (top panel) vs. experimental data
(bottom panel). (b) Similar to (a) but with short-duration voltage-protocol designed to evoke tail
currents. (c) Simulation of ILV A using similar pre-pulse protocol as (a) and (b). Experimental
figures used with permission.

Ih

Current traces of Ih at different voltage steps were obtained by first digitizing published
voltage-clamp data from [20]. This data was then input into NEUROFIT, which was configured
to fit to a current equation of the form

Ih = gh[fhhh,1 + (1− fh)hh,2](V − Eh). (3.2.12)

The inclusion of two inactivation variables in (3.2.12) is based on a model of Ih by Dickson
et al. [72]. Note that in the case of Ih, the use of the terms “activation” and “inactivation”
can be misleading since in a physiological context, Ih exhibits little or no inactivation yet has
two time scales of activation. In the context of modelling, the term “inactivation” is typically
used to describe gating variables with a steady-state curve that saturates as V → −∞, even
if the variables represent activation of the current. The fitting results generated by NEUROFIT

are plotted against the digitized data in Figure 3.2.4.
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Figure 3.2.4: Voltage-clamp simulation of Ih (black) vs. digitized voltage-clamp data (blue).

3.2.5 Limitations of voltage-clamp recordings

Although voltage-clamp recordings are useful for modelling, one should keep in mind the
implicit assumptions that are made when using voltage-clamp data for building single-
compartment models of neurons, regardless of the method of parameterization. One
significant assumption is that adequate “space-clamping” was present during the recording
of the electrical data used for fitting. A perfect space-clamp is achieved when the membrane
potential of the neuronal component is uniformly controlled, i.e., isopotential. However, the
assumption of perfect space-clamp is only reasonable for spherical neuronal compartments
[73]. In GnRH neurons, the somatic compartment is ellipsoidal [74], suggesting the presence
of imperfect space-clamp in voltage-clamp recordings. Furthermore, there are two major
dendritic processes in GnRH neurons that may affect the values of current obtained at the
soma [35].

Given that there are space-clamp issues associated with the recording of ionic currents
in voltage-clamp, it is understandable that spiking models of neurons require parameter
tuning relative to the voltage-clamp fitted values in order to produce the correct qualitative
behaviour (as is the case with the present model). On the other hand, parameter tuning in
the full model might simply be needed to compensate for ionic currents that are missing in the
model. If we assume that the model accurately represents the types of ion channels expressed
on the membrane, then a recent study by O’Leary et al. [75] may explain the parameter
discrepancies. In brief, their modelling study showed that the same average bursting activity
can be obtained using different sets of maximal conductance parameters with similar ratios.
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In fact, for certain conductance parameters, the acceptable range of values had an upper
bound as much as twice the minimum value. Therefore, the notion of variability in ion
channel density between cells exhibiting the same qualitative behaviour has physiological
grounds, and should be taken into consideration when combining individual ionic currents
to form a realistic bursting model for GnRH neurons.

3.3 Action potential fitting

Experimental recordings of spiking GnRH neurons in mice have revealed that the geometry of
action potentials remains consistent (with some statistical variation) from cell to cell. Action
potential (AP) shapes vary widely with species and anatomical location of the neuron, and
hence there is no universal neuron model. Therefore, each model that aims to describe
electrical activity in a certain type of neuron must be parameterized by fitting to data
obtained from the correct species and cell type. Despite differences in AP shapes, there are
still phases of the AP that are common across most types of spiking neurons. The initial or
depolarizing phase of the AP begins when the rate of change in membrane potential exceeds
some sufficiently high threshold. After the onset of an AP, the membrane potential increases
rapidly before reaching a maximum, followed by a rapid decrease or repolarization back
towards the pre-spike baseline. For some neurons, this repolarization leads to a membrane
potential below the baseline before a recovery period of afterhyperpolarization (AHP) back
up to the baseline. In some neurons, a net inward current after the AHP causes a small
amplitude local maximum that lies above the baseline potential. This phenomenon is known
as afterdepolarization (ADP). The AHP and ADP events are quantified by their maximum
amplitude relative to the baseline, and/or their duration. Figure 3.3.1 shows a GnRH neuron
exhibiting both an AHP and ADP.

Another property of firing or spiking GnRH neurons is the short duration of their APs: high
resolution current clamp recordings of GnRH neurons have shown that the action potential
duration (APD) is less than 1 ms during bursting and current injection experiments. APD
can be quantified using the “full-width at half-maximum” (FWHM) measure. The half-
maximum voltage is defined by the simple formula

VHM =
Vth + Vmax

2
.

The values of Vth and Vmax are determined numerically. At the threshold voltage Vth,
dV
dt
(Vth) = 1 mV/ms, whereas Vmax is the maximum voltage attained during the action
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Figure 3.3.1: Typical neuronal action potentials with final spike exhibiting AHP and ADP. Data
obtained from a whole-cell recording of a GnRH neuron.

potential. The APD for a spike is thus given by the difference in time between the two
points that assume the value VHM . GnRH neurons fire action potentials spontaneously, that
is independent of external sources of current, but may also be forced to fire APs by a direct
current injection from a resting state.

3.3.1 Fitting attempt I

During the course of modelling spiking activity in GnRH neurons, it was observed that the
selected values of the parameters led to action potentials that were too wide (∼3-5 ms). This
issue occurred when using a four-state reversible Markov model by Lebeau et al. [34] for
the current INaF . Based on the large amplitude contributions of INaF and IK during spiking
activity, it was proposed that the submodels for these two currents be reparameterized to
minimize the width of the action potential during spiking. This was motivated by the work
of Wang and Buzaki [76], whose minimal Hodgkin-Huxley model (consisting of INaF , IK and
IL) exhibits tonic spiking with APD and other AP characteristics similar to that observed
in GnRH neurons. In addition to minimizing the APD to obtain the proper value, it is also
crucial that the model generates realistic AP amplitudes, where amplitude is defined as the
difference Vmax − Vth. AP amplitudes of 80− 100mV have been observed experimentally in
GnRH neurons [24, 10]. Therefore given the typical AP threshold voltage of Vth ≈ −50mV,
we expect the model to generate APs that peak between +30 and +50 mV. Since AP
amplitude is also dependent on the interaction between INaF and IK , we incorporated an
AP amplitude constraint into the APD minimization procedure. As a final constraint, we
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required that INaF and IK also exhibit the correct behaviour in voltage-clamp simulations.

The requirements that the full model generates narrow action potentials with sufficiently
large amplitude, and that the INaF and IK submodels behave appropriately in voltage-
clamp were used as the basis for designing an objective function in the parameter search
algorithm. A set of 13 parameters from the INaF and IK models were selected for the
parameter variation, 10 of which represent the rate parameters of the 4-state Markov model
for INaF by Lebeau et al. [34]. The maximum conductances gNaF and gK of INaF and
IK , and the scaling parameter e of the activation time constant τmK

, were also selected for
variation. The INaF submodel was assigned more free parameters since simulations of IK in
voltage-clamp already showed good correspondence with experimental data as demonstrated
in Section 3.2.4. In contrast, the INaF model had less reliable data for fitting implying more
uncertainty in its rate parameters.

The objective or fitness function, F , used for the AP optimization consists of a sum of two
types of error expressions. The first error expression, E1, is assumed to be a sum of terms
quantifying how well the model matches certain experimentally observed AP characteristics.
We have that

E1 =
n∑

i=1

|cmodel,i − cobs,i|
|cobs,i| , (3.3.1)

where ci represents the ith quantifiable characteristic of the action potential. The
characteristics that were chosen for this study include: the global maximum and minimum
voltage obtained during the simulation, mean action potential width measured according to
the FWHM definition, mean interspike interval, and AP threshold for the first generated
spike. Action potentials in this problem were simulated using a 600 ms, 10 pA current step
applied from the resting equilibrium, as performed experimentally to evoke APs from rest
[20]. The second error expression E2, on the other hand, is assumed to be a measure of the
error between model and data for a voltage-ramp simulation of the combined Na+ current
INaF + INaP . Data for this error calculation was obtained by digitizing an experimentally
published recording [16] and interpolating it using numpy [77] linear interpolation at equally
spaced time points. The relative L2 error between model and data used in this study is
defined by

E2
2 =

∑N
j=1 |Imodel,j − Iobs,j|2∑N

j=1 |Iobs,j|2
, (3.3.2)

where Ij = I(tj) are the values of the currents at the interpolation points. Note that relative
error terms are used throughout so that individual error terms are equally weighted, i.e., no
optimization criterion is deemed more important than any other.
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The genetic algorithm and direct search method as implemented in MATLAB Optimization
Toolbox [46] were employed for the action potential optimization task. Initial population
ranges for the genetic algorithm and initial parameters for the direct search method were
estimated based on the manual discovery of the parameters needed to generate spiking in
the model. Although action potential characteristics can be optimized through manual or
“hand”-fitting of parameters, the use of optimization routines automates the daunting task of
searching a high-dimensional parameter space and often generates better results. Of course,
the success of these optimization routines depends on the correctness of the underlying
model, and the appropriate choice of error functions. The probabilistic nature of the genetic
algorithm allows for a wider sweep of the parameter space when compared with the direct
search method and thus was most successful at generating an optimal parameter set. Figure
3.3.2 shows the outcome of the genetic algorithm when minimizing the APD for model spikes,
and minimizing the error between model and experimental Na2+ current under the 50 mV/s
voltage-ramp protocol.

Figure 3.3.2: Output from the genetic algorithm for the action potential width and voltage-ramp
optimization task. (a) Value of F as a function of generation number shows convergence to a
potential minimum. (b) Time series of membrane potential corresponding to the best iteration. (c)
Voltage-ramp simulation corresponding to best iteration.

Although the results from Figure 3.3.2 seem promising, closer inspection of the action
potentials shows a more elevated threshold for firing and a steeper transition to firing than
observed experimentally. Rather than modifying the error function F through additional
terms, a different error function was implemented by incorporating voltage-time series data of
a spiking cell into the optimization problem. The improved error function involves calculating
the error between two signals in the phase plane in order to eliminate time from the fitting
process as described in detail in Section 3.3.2.
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3.3.2 Phase plane fitting method

The phase plane fitting method was developed to improve upon the traditional least-squares
approach of fitting neuronal models to voltage time series data [78]. As described in [78],
the least-squares fitness function introduces phase error, that is an increase in the value of
the fitness coefficient depending on the relative phase between two signals. For example,
without a reliable means of “phase locking” two signals, a stochastic integration of a model
could generate spikes at different times than the data leading to large errors, even if the
model is potentially accurate. Thus the phase plane fitting method, which involves fitting
model to data in the (V, V̇ ) plane, is computationally more efficient as it eliminates time
from the fitting process. This allows the fitting algorithm to be started from any initial
condition, as long as the system is not undergoing transient behaviour.

Assuming that the available data is in the form of a voltage time series, the first step when
applying the phase plane method is to generate a time series of the derivative, V̇ . For the
GnRH neuron data, this was accomplished by using scipy [77] interpolation tools to obtain a
cubic spline interpolation of the time series and then using the built-in methods to calculate
the derivative. Plotting V vs. V̇ for the data reveals a characteristic cycle that clarifies the
geometry of different components of the action potential as is shown in Figure 3.3.3c.

Figure 3.3.3: Data from a recording of GnRH neuron membrane potential. (a) Membrane potential,
V . (b) Rate of change of V as a function of time. (c) Scatter plot of rate of change of V as a function
of V .

The error function for this fitting method relies on calculating the temporal density of the
trajectory in the (V, V̇ ) plane. Denoting a point in the plane by x = (V, V̇ ) and a point on
the system’s trajectory by y(t) = (V (t), V̇ (t)), the continuous formulation for the temporal
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density of the trajectory at a point x is given by

D(x) =
1

T

ˆ T

0

δ(x− y(t)) dt, (3.3.3)

where T is the final time for the data and δ is the Dirac delta function. However, for equally
spaced data points yi (with spacing Δt), (3.3.3) is calculated numerically using the discrete
approximation of the density function

D(x) =
1

N

N∑
i=1

η(x, yi)

η(x, y) =

⎧⎨
⎩0, y /∈ Ω(x)

1, y ∈ Ω(x)
,

where N= T
Δt

and Ω(x) is some small neighbourhood of x. Based on this, the error between
the model and the observed data at x is defined as

E(x) = Dmodel(x)−Dobs(x). (3.3.4)

The total error is then obtained by integrating (3.3.4) over an area in the (V, V̇ ) plane that
contains both the model and data trajectories. In practice the integration area A in the
(V, V̇ ) plane is discretized into a grid consisting of, for simplicity, rectangular cells of equal
area. A simple way to define A so that both trajectories are contained in A is

A = [ min
V ∈{Vmodel,Vobs}

V, max
V ∈{Vmodel,Vobs}

V ]× [ min
V̇ ∈{V̇model,V̇obs}

V̇ , max
V̇ ∈{V̇model,V̇obs}

V̇ ].

Thus by choosing a grid spacing hi in the V -direction and hj in the V̇ -direction, we obtain
the rectangular cells Ωij ∈ A. We then normalize E(xij) by the area of Ωij to obtain the
total discretized error

E2
tot =

∑
i,j

(
E(xij)

|Ωij|
)2

, (3.3.5)

where |Ωij| is the area of the cell. In the typical case of equal grid spacing, |Ωij| = |Ω| can be
taken as a common factor outside the sum in 3.3.5. In this case, the following relative error
function is obtained for the purposes of equal weighting in fitness functions with multiple
terms:

R2 =

∑
i,j[Dmodel(xij)−Dobs(xij)]

2∑
i,j Dobs(xij)2

. (3.3.6)
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Figure 3.3.4: Validation of the phase plane fitting method using GnRH neuron model. (a)
Convergence of fitness function to a potential minimum. (b) Model reference curve (blue) and
the trajectory (orange) corresponding to the best genetic algorithm iteration.

As a validation of the phase plane fitting method, a continuously spiking version of the
GnRH neuron model was fit to itself. Specifically, the genetic algorithm was run with the
fitness function given by (3.3.5) using gNaF and gK as free parameters. As shown in Fig.
3.3.4, the trajectory in the phase plane is recovered accurately and the parameters selected
by the genetic algorithm were close to the model values. For this fitting, the grid spacing in
the (V, V̇ ) was equal in both directions with hi = hj = 1. This spacing is hereafter used as
the default value for all fitting attempts.

3.3.3 Fitting attempt II

Using the phase plane fitting method, various models for the transient sodium current INaF

were tested to compare how well they allowed the full model to fit the data shown in Fig.
3.3.3. It was assumed that the other parameters in the model, except for gK and the
scaling parameter e for τmK

remained static. Different models were selected because initial
fitting attempts (discussed above) showed that the originally proposed sodium model did
not generate an adequate fit to the phase plane data. The schematics of the four fast sodium
models that were tested are shown in Figure 3.3.5. Model A is the reversible version of a
three-state model for the squid axon Na+ channel [63], model B is that used in Section 3.3.1,
model C is the same as model B but does not satisfy a detailed balance condition (enforced
in model B through the parameter a), and model D is the Hodgkin-Huxley model for the
squid axon Na+ channel [32].
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Figure 3.3.5: Schematic diagrams for the four Markov models of INaF tested under the phase plane
fitting method. Each diagram represents the transitions undertaken by independent subunits of
the Na+ channel (the number of subunits is indicated by a multiplier next to each diagram). (a)
3-state reversible model. (b) 4-state reversible model satisfying microscopic reversibility. (c) 4-state
reversible model without microscopic reversibility. (d) Hodgkin-Huxley gating model.

The voltage dependent rates α, β, r3 appearing in Figure 3.3.5a-c are given by sigmoidal
functions of the form a

1+exp(V +b
c

)
, while α, β and δ, γ of Figure 3.3.5d are given by pairs of

exponentials of the form a exp(− bV
c
) and d exp( (1−b)V

c
), 0 ≤ b ≤ 1 [68]. The macroscopic

current equation for models A-C is given by,

INaF = gNaFO
3(V − ENa), (3.3.7)

while for model D,
INaF = gNaFO

3
1O2(V − ENa). (3.3.8)

The physical interpretation of the Na+ channel according to models A-C is that it consists of
three independent subunits where each subunit has identical transition kinetics as determined
by the appropriate diagram in Figure 3.3.5. Meanwhile, the Hodgkin-Huxley model assumes
three identical “activation” subunits and one “inactivation” subunit, all of which operate
independently. Note that it is possible to extend the Markov models of A-D, shown in 3.3.5,
to include all possible subunit configurations associated with the Na+ channel and describe
the macroscopic current by the equation

INaF = gNaFO(V − ENa),
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but these complex models are expensive to compute due to the number of states that they
possess. For example, the Hodgkin-Huxley model (model D) has the well-known equivalent
Markov formulation shown in Figure 3.3.6a, whereas the equivalent formulation for the 2
subunit version of model A is shown in Figure 3.3.6b. Writing down the differential equations
for these equivalent formulations results in large systems of ODEs with dimension determined
by the number of states (minus one to account for conservation). On the other hand, using the
subunit formulation, the ODE systems corresponding to (3.3.7) and (3.3.8) have dimension
2 for models A and D, and dimension 3 for models B and C.
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Figure 3.3.6: Extended Markov models corresponding to (a) model D, and (b) model A of Fig.
3.3.5.

The four different models vary in the number of free parameters with model A having 12,
and models B-D having 10. For the phase plane parameter fitting, these kinetic parameters
plus the maximum conductance gNaF , and the two IK parameters were varied within the
parameter space. Figure 3.3.7 shows the results associated with models A and C, which
had the most success in fitting the various components of the action potential. Specifically,
these two models fit well to all components except the peak of the action potential, where
an overshoot in the maximum voltage occurs. In fact, the overshoot in peak voltage was
encountered by all four models suggesting that the kinetics for IK need to be optimized, or
that there is an ionic current missing from the model. A potential candidate for this missing
current is the “big-conductance” Ca2+-activated K+ current IBK , which is present in GnRH
neurons [27, 3], and is known to contribute to repolarization of the action potential [64].
The voltage and Ca2+ dependence of activation for this current, however, have yet to be
quantified experimentally in GnRH neurons.
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Figure 3.3.7: Phase plane fitting results corresponding to INaF models A (left column) and C (right
column). (a) Value of the fitness function plotted against generation number. (b) Voltage time-series
corresponding to best iteration of the genetic algorithm. (c) Comparison of best model trajectory
with experimentally observed trajectory in the (V, V̇ ) phase plane.

Figures 3.3.7 and 3.3.8 show that models B and D performed worse than models A and C.
The main issue with model B is that the onset of the action potential is too depolarized.
Meanwhile model D shows a clear inability to fit to the phase plane data. It is also worth
noting that the detailed-balance constraint for model B produces undesirable stiffness in the
system, leading to a timestep requirement of dt = 0.001 for stable numerical integration.
For the other models, a timestep of dt = 0.01 was sufficient. Although the requirement
for a smaller timestep might be perceived as a non-issue, recall that GnRH neurons exhibit
interburst intervals on the order of 1-100 seconds. Therefore, long-term stochastic simulations
of bursting behaviour, which are typically integrated using the Euler-Maruyama (EM)
method (see Section 2.1.2), may be rendered impractical with such a small timestep. The
implementation of an adaptive Runge-Kutta SDE solver [79] or an implicit SDE solver [44]
would likely alleviate the problem, and should be considered for future fittings.
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Figure 3.3.8: Phase plane fitting results with INaF models B (left column) and D (right column).
Rows (a)-(c) show the same information as in Fig. 3.3.7.

Based on the results shown in Figs. 3.3.7 and 3.3.8, we can conclude that model A is the
best to use for studying bursting activity in GnRH neurons. Unfortunately, this model is not
able to capture the desired behaviour when fitting to the voltage-ramp data for the combined
Na+ current (recall Section 3.3.1) and the phase plane data simultaneously. Resolving this
discrepancy remains an open topic of research. To conclude, although more biophysically-
detailed models for INaF certainly exist [80, 63, 81], the selected model provides a reasonable
balance between biophysical detail and the ability to simulate most features of the GnRH
neuron action potential.

3.3.4 Limitations of phase plane fitting

The results from Section 3.3.3 suggest that the phase plane fitting method is a powerful
tool for the development of neuronal models. The method has also established success in
parameter fitting for other complicated neuronal systems [82, 83]. However, the use of this
method revealed certain practical issues while fitting to GnRH neuron data. Specifically,
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for the initial fitting attempt the genetic algorithm converged to solutions for which the
maximum value of the derivative V̇ is well below the observed value. Occasionally, the genetic
algorithm would even converge to solutions with no action potentials. The issue becomes
clear when considering the phase plane density of the trajectory for the GnRH neuron data
as shown in Figure 3.3.9—the density of points is highest in the region corresponding to the
quiescent phase of the neuron. For the purposes of demonstration the color bar in Figure
3.3.9 reaches a maximum of 5, but many cells in the quiescent region of the phase plane have
a much higher density. This phenomenon is a consequence of short duration spikes separated
by interspike intervals that are 2-4 orders of magnitude longer. This issue can be addressed
by using a modified form of (3.3.5),

Etot =

(∑
i,j

√
E(xij)

Ωij

)2

, (3.3.9)

which gives more weight to sparsely populated cells, but at the expense of giving a higher
weight to noise [83]. Figure 3.3.9 also demonstrates the effect of the grid spacing on the
distribution of the trajectory density. As shown in Fig. 3.3.9c, a large grid spacing distributes
more points to the regions of negative V̇ , which may assist the genetic algorithm in escaping
from suboptimal solutions at the expense of a less accurate solution. Although the grid
spacing does affect the performance of the genetic algorithm, this issue can be overcome
using the technique of Section 3.3.1, that is by the coupling of additional terms to the fitness
function. Following this strategy, relative errors in the minima and maxima of V and V̇ ,
mean action potential width, and mean interspike interval were computed and added to
(3.3.6) to achieve the best overall fits to the data, which are shown in Section 3.3.3.

(a) (b) (c)

Figure 3.3.9: Phase plane density of the GnRH neuron time-series data under different grid
discretizations. Colors represent the number of data points in a given cell. (a) hi = hj = 1.
(b) hi = hj = 2. (c) hi = hj = 5.
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3.4 Modelling oscillations

3.4.1 Review of oscillatory electrical activity in neurons

Various ionic mechanisms exist for generating intrinsic oscillations in single neurons.
Although there are many different combinations of currents that can produce oscillations, it is
helpful to consider what classes of currents must be present in order to generate oscillations.
With this knowledge, certain currents can be ruled in or out in terms of their contribution
to pacemaking activity.

A simple way to achieve oscillations in a HH model is to combine two currents, one with an
amplifying gating variable and one with a resonant gating variable [48]. Recall that an inward
amplifying current is one that undergoes positive feedback with a depolarizing perturbation
of the membrane potential, while an inward resonant current undergoes negative feedback
with depolarization to produce a net outward current. Outward amplifying and resonant
currents have a similar definition. A classic example of an inward resonant current is the
hyperpolarization-activated current Ih that appears in the present model. This current is
modelled using only an inactivation or “h” gate whose resonance effects are clear. More
specifically, with a depolarizing perturbation in membrane potential, h decreases to produce
a net outward current to shunt the depolarization, whereas the opposite effect is observed
when hyperpolarizing perturbations increase h to cause a rebound depolarization. The
situation is reversed when we consider a current with the same type of gating as Ih but
with a reversal potential that reverses the direction of the current. A well-studied current
that has this property is the inward-rectifier potassium current or IKir. By considering
the behaviour of the current with small hyperpolarizing perturbations to the membrane
potential, we conclude that IKir is an outward amplifying current. Therefore, combining
IKir and Ih should theoretically be able to generate sustained oscillations, an outcome that
is confirmed in Figure 3.4.1. The voltage equation used to generate the simulations in Figure
3.4.1 is

V̇ = Iapp − gL(V − EL)− Ih − IKir,

where the kinetics of the Ih model are the same as that used in the GnRH neuron model. The
kinetics of IKir were obtained from [48]. Figure 3.4.1 also shows the existence of hysteresis
in the trajectory of Ih, while IKir assumes approximately the same trajectory during the
repolarizing and depolarizing phases of the oscillation. A similar phenomenon has been
observed in the INaP+Ih subsystem, where INaP assumes the role of IKir [72]. The overall
effect is reflected in the voltage time-series, where a delay in the activation of Ih causes a
long-lasting plateau at the peak of the oscillation. Mathematically, this effect is explained
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(a) (b)

Figure 3.4.1: Membrane potential oscillations in the Ih + IKir system. (a) Voltage time series
showing stable oscillations. (b) Phase plane diagram of Ih (green) and IKir (blue) vs. V . The
upstroke and downstroke of the oscillation in Ih occurs via different pathways, indicative of a
hysteresis. IKir shows approximately the same linear dependence on V during both phases of the
oscillation, suggesting little or no hysteresis.

by the large separation in time scales between the gating variables for Ih and IKir. In
summary, we remark that in a two current system (+ leak), oscillations may occur for some
(narrow) set of parameters regardless of the directions of the ionic currents, as long as one
of them is amplifying and one of them is resonant. Furthermore, the kinetic parameters of
the interacting currents dictate the period and shape of the oscillations.

3.4.2 Membrane potential oscillations in GnRH neurons

Although rare, slow oscillations in membrane potential with period of 10-20 s and amplitude
of 20-40 mV have been observed in GnRH neurons [10]. These oscillations are referred to as
“subthreshold” since the peaks of the oscillations are not sufficiently depolarized to initiate
action potentials. Given that oscillatory activity is rare, we expect that the voltage-clamp
fitted values of the parameters may deviate from those needed to produce oscillations. Higher
frequency (∼1 Hz) subthreshold oscillations have been observed in entorhinal cortex layer II
(EC) cells [72], where it was shown via a minimal Hodgkin-Huxley model that the currents Ih,
INaP , and IL interact in a feedback loop to generate oscillations. In the previous subsection,
it was also demonstrated that Ih, IKir, and IL can produce oscillations that peak in the
subthreshold regime. Although these currents are active in the present model, the frequency
of the subthreshold oscillations generated by their interaction preclude them from being solely
responsible for generating the much slower oscillations observed in GnRH neurons. Given the
difficulty in simulating subthreshold oscillations with the correct period using the voltage-
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clamp fitted currents, a phenomenological approach was taken. Motivation for this approach
was drawn from a successful model for parabolic bursting in Aplysia, which is commonly
referred to as the Plant model [84]. In the Plant system, there are two slow processes that
interact to generate oscillations with a similar period to that observed in GnRH neurons,
namely a slow inward Ca2+ current (Is) and a Ca2+-dependent K+current (IKCa). Although
the activation of IKCa by intracellular Ca2+ is instantaneous, Ca is a variable in the model
with slow dynamics, ultimately leading to slow dynamics in IKCa. A feedback loop can
occur in this system as a result of the slow inward current Is transporting Ca2+ ions into the
cell and subsequently activating IKCa which counteracts the depolarization induced by Is.
Due to the similarities in parabolic bursting between the R15 neuron of Aplysia and GnRH
neurons in mice, a reparameterized form of the Is, IKCa, Ca submodel was incorporated into
the full GnRH neuron model, where IKCa is defined by (3.1.13) and

Is = gsms(V − ECa). (3.4.1)

To partially support the claim that this submodel is compatible with the physiology of GnRH
neurons, we note that IKCa (as carried by SK channels) has been shown to exist in these
neurons [17]. However, Is has not been isolated and thus its presence remains a conjecture.
In Chapter 4 we show that this phenomenological description is adequate for qualitatively
reproducing the two types of bursting behaviour observed in GnRH neurons. We remark
that, in contrast with the phenomenological current IAHP−UCL used in previous models and
described in Chapter 1, the maximum conductance values of Is used to simulate electrical
activity are of the same order of magnitude as other currents in the model (see Table A.3).

The slow submodel described above was parameterized simultaneously by coupling it with the
voltage-clamp fitted currents described in Section 3.3, and manually adjusting the parameters
to achieve a subthreshold oscillating state. Initial estimates for the parameters were obtained
from the Plant model and a previous model for irregular bursting in GnRH neurons [34].
The parameters were further constrained by requiring that intracellular Ca2+concentration
remains within physiological levels (< 1μM). In the process, some maximum conductances
of the previously fitted currents were adjusted in order to simulate the correct behaviour—
these parameter discrepancies are listed in Table A.3. In Table A.3, the set of parameters
gsub are those used to simulate subthreshold oscillations in the model.

Figures 3.4.2a,b show the conductance parameter regimes where stable subthreshold
oscillations can occur. The one-parameter bifurcation diagram (Fig. 3.4.2a) shows that
a narrow interval for gs supports stable oscillations. To understand how gs and gKCa are
correlated when stable oscillations exist, a periodic solution with period of T = 15 s was
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continued in two parameters to obtain the locus of points shown in Fig. 3.4.2b. The positive
and near-linear relationship between gs and gKCa shows that Is and IKCa oppose each other
in a feedback loop provided that a certain ratio of gs to gKCa is maintained.

(a) (b)

(c)

Figure 3.4.2: Dependence of subthreshold oscillations on model parameters. (a) One-parameter
bifurcation diagram of V vs. gs. Black-solid (-dashed) lines represent the stable (unstable) branches
of steady states and green-solid (-dashed) lines represent the branches of stable (unstable) periodic
orbits emerging from a subcritical Hopf bifurcation point (red square). Note that periodic orbits
are represented by their minimum and maximum values attained during a cycle. (b) Existence of
periodic solutions with fixed period of T = 15 s as a function of gKCa and gs. (c) Fixed period
solutions of V at parameter values specified by the points labeled “1” and “5” in (b), where t
represents time divided by the period of the oscillations. The periodic solution labeled “5” shows a
sharpened peak due to the partial activation of Na2+ current.
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Chapter 4

Model simulations and analysis

In this chapter, we demonstrate that the model presented in Chapter 3 can reproduce both
the parabolic and irregular bursting behaviour with an appropriate choice of maximum
conductance parameter set chosen from Table A.3. Using the model, we (i) demonstrate
how individual ionic currents contribute to different phases of the parabolic burst cycle, (ii)
show that changes in the conductance of IKCa modulate excitability, and (iii) explain how
noise leads to the generation of irregular bursts. To understand bursting behaviour from a
dynamical systems point of view, we also apply slow-fast subsystem analysis to examine the
mechanism(s) underlying the transitions between quiescence and spiking during both types
of bursts. In turn, these numerical findings motivate the study of a simplified quadratic
integrate-and-fire (QIF) model [38] that generates the two types of bursting and can be
analyzed analytically.

4.1 Parabolic bursting

It was demonstrated experimentally that 1-2% of GnRH neurons can spontaneously generate
parabolic bursts of action potentials with slow oscillations underlying them [10]. This
type of bursting can be generated by the model described in Chapter 3 using the set of
conductance parameters gp defined in Table A.3. Compared with the parameter set gsub, the
set of parameters gp allowed the model to generate slow oscillations in membrane potential
that are depolarized enough to generate a cluster of action potentials at the peak of the
wave. Parabolic bursting was observed in the deterministic model (η = 0) and was also
sustained in the presence of noise as shown in Figure 4.1.1b. The model agreed with
experimental recordings of parabolic bursting in terms of interburst interval, active phase
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duration, interspike interval (ISI), and spike frequency profile (Fig. 4.1.1c). The model did
however produce larger amplitude action potentials than observed experimentally but still
within the range (80−100 mV) observed for action potentials generated via current injection
or irregular bursting [20, 10].

Figure 4.1.1: Parabolic bursting in GnRH neurons. (a) Experimental recording of membrane
potential in a GnRH neuron. (b) Stochastic simulation (D = 0.25) of membrane potential. (c),
(d) ISI profile during the active phases marked by a dashed rectangle in (a), (b) for both the (c)
experimental recording and (d) numerical simulation.

Furthermore, the parabolic bursting model was capable of displaying slow oscillations when
spiking is suppressed by TTX (i.e. by setting gNaF = gNaP = 0), as observed experimentally
[10]. Since the Na+ currents INaF and INaP are essentially inactive during the quiescent phase
of the burst cycle, the slow wave underlying parabolic bursting is reasonably approximated
by that obtained during the TTX-simulation. Therefore, by studying the simpler dynamics
of the non-spiking wave, we can gain insights into the processes generating the quiescent
phase of parabolic bursting. Similar to the case of subthreshold oscillations discussed in
Section 3.4.2, the underlying slow wave is mainly driven by the interaction between Is and
IKCa. Although there are other currents that are active during the slow wave, mainly IA,
Ih, IHV A, and IK , their amplitudes are smaller than that of Is and IKCa. However, the
currents IA and Ih did have some effect on certain aspects of the slow wave: increasing the
conductance of IA lengthened the period of the wave, while increasing the conductance of Ih
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reduced the amplitude of the oscillations. The model also revealed that contributions from
the two currents IHV A, and IK were more prominent at the peak of the wave, suggesting
a more significant role for these currents in the generation of action potentials, i.e., during
the active phase of the burst. The Ca2+ current ILV A was minimally active during the slow
wave, consistent with observations from a previous modelling effort [36]. These observations
concerning the slow wave are demonstrated in Figure 4.1.2, where we show the contributions
of various ionic currents underlying slow oscillations in membrane potential. Figure 4.1.2
also demonstrates the model prediction that there exists a latency in peak intracellular Ca2+

relative to voltage, a phenomenon that has been observed in cells exhibiting irregular bursting
[1]. To the author’s best knowledge, the Ca2+-imaging experiments needed to confirm the
prediction for the parabolic bursting case have yet to be performed.

Figure 4.1.2: Measurements of various physical quantities when simulating TTX-induced
suppression of spiking during parabolic bursting. (a) Membrane potential (V ). (b) Intracellular
calcium concentration (Ca). (c) Is (inward) and IKCa (outward). (d) Ih (inward), IHV A (inward,
dashed line), IA (outward, solid line), and IK (outward, dashed line).

Analogous to the subthreshold oscillation case, we analyzed the dependence of gs and gKCa
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on oscillatory solutions by plotting bifurcation diagrams. In this case, it was found that
the parameter regime supporting stable oscillations was wider than in the subthreshold case
(Fig. 4.1.3a), and that there appeared to be non-linear dependence between gs and gKCa

in the two parameter continuation of periodic solutions of fixed period (Fig. 4.1.3b). In
Figure 4.1.3c, we show the solutions of fixed period in the V −Ca plane to demonstrate the
dependence of Ca on the parameters gs and gKCa. Note that by inspecting these solutions,
we can exclude certain parameter tuples (gs, gKCa) that cause the solution of Ca to exceed
its physiological upper bound of 1μM .

(a) (b)

(c)

Figure 4.1.3: Parameter dependence of TTX-induced oscillations. Line colors and styles can be
interpreted in the same way as in Fig. 3.4.2. (a) One parameter bifurcation of V vs. gs. Two
subcritical Hopf bifurcations (red squares) connect a family of periodic orbits. Stable periodic
solutions (solid green) increase in amplitude with increasing gs. (b) Family of periodic solutions
with fixed period T = 20 s as a function of gKCa and gs. (c) Fixed period solutions in the V vs.
Ca plane at the parameter values specified by the points “1-3”, labeled in panel (b).

Returning to the case of bursting (i.e., when Na+ currents are active), action potentials are
initiated as the population of Na+ channels is recruited during the slow depolarization of
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the membrane. The channels that conduct the large-amplitude INaF begin to transition
from the deactivated (C) state to the open (O) state of Fig. 3.1.3 according to the voltage-
dependent rate α(V ), which increases with depolarization. A weaker contribution from the
persistent sodium current INaP also contributes to the formation of action potentials, but
is not necessary for generating bursting activity. However, it was found that increasing
the conductance of INaP decreases the minimum interspike interval and the amplitude of
the spike AHP within the active phase of the burst. As suggested by Figure 4.1.2, spiking
activity during parabolic bursting is also dependent on the currents IK and IHV A. For
instance, increasing the conductance of IK increases the amplitude of spike AHPs, and
increasing the magnitude of the parameter k of mK,∞ (i.e., reducing the steepness of the
steady-state activation curve of IK) increases the minimum interspike interval within the
burst. Meanwhile, decreasing the conductance of IHV A allows for longer active phase duration
due to a decrease in Ca2+ flux through HVA Ca2+ channels during the burst. This ultimately
leads to reduced activation of the current IKCa, and thus a delay in the termination of the
burst.

4.2 Irregular bursting

Due to the irregularity in interburst interval and active phase duration observed during this
type of bursting (e.g. Fig. 4.2.1a), it was assumed during model development that intrinsic
noise was present in the system. Furthermore, we required that the deterministic version of
the irregular bursting model (i.e., when D = 0) to be non-spiking and have a stable resting
equilibrium, based on the hypothesis that long interburst intervals observed experimentally
are caused by a tendency of the system to relax towards its resting state for average noise
amplitudes. These two requirements led to an irregular bursting model where the noise term
η(t) was governed by the OU process (2.1.8), and the conductance parameters assumed the
values from the set girr in Table A.3. By comparing the parameter sets gp and girr, we
see that stability is achieved in the irregular bursting model primarily through changes in
the conductances gs, gKCa, and gK . The reductions in gs, gKCa relative to the parabolic
bursting model eliminated the oscillatory behaviour but still allowed for clusters of action
potentials to be generated in the presence of noise. Similar to the parabolic bursting model,
the parameter gK was adjusted to produce an AHP amplitude consistent with that observed
experimentally. Specifically, gK was set to 150 nS to produce an AHP amplitude of −10

mV. In Figures 4.2.1a,c we compare recordings of membrane potential in GnRH neurons
exhibiting irregular bursting with model simulations. Beneath each plot we also show the
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ISI profile from a representative burst (Figs. 4.2.1b,d). Comparing the data in Figs. 4.2.1b
and 4.2.1d, we observe a difference in the ISI curves at the start of the burst, but a common
increase in ISI towards the end of the burst. Despite these differences, however, a biphasic
ISI curve similar to that in Fig. 4.2.1d has been observed in a recording by Chu et al. [10].

Figure 4.2.1: Irregular bursting in GnRH neurons. (a) Experimental recording of membrane
potential. (b) Higher resolution view of the burst labeled “2” in panel (a) followed by ISI profile for
that burst. (c) Stochastic simulation (D = 1.0) of membrane potential. (d) Same information as
(b) but for the model-generated burst labeled “1” in panel (c).

Although we enforced that the deterministic model has a stable resting equilibrium with the
parameter set girr, it was not necessary for generating irregular bursting behaviour. In fact,
by selecting a parameter set that generates tonic (continuous) spiking in the absence of noise,
we were able to recover irregular bursting once noise was introduced back into the system.
Adopting the terminology in [67], we refer to the tonic spiking state in the deterministic model
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as superthreshold, while the stable resting state as subthreshold. In other words, we are able
to generate irregular bursting in two distinct fashions; namely, through the introduction of
noise into the subthreshold (Fig. 4.2.2a) and superthreshold models (Fig. 4.2.2b). The
superthreshold state can be obtained from the parameter set girr by decreasing gKCa. In
Figure 4.2.1 we show that irregular bursting initiated via the superthreshold state leads to
increased excitability relative to bursting obtained from the subthreshold state. The increase
in excitability is consistent with the experimental results of Liu et al. [17] who showed that
excitability in GnRH neurons can be increased when IKCa is blocked by the pharmacological
agent apamin. The results from Figure 4.2.2 suggest that the modulation of excitability via
gKCa is a possible mechanism for the slow modulation of mean firing rate that occurs on the
time order of hormone release, as observed by Nunemaker et al. [15].

Figure 4.2.2: Comparison of excitability in model simulations of irregular bursting, as determined
by the maximum conductance parameter gKCa. Bursting simulations generated from (a) the
subthreshold state (gKCa = 1.23 nS) and (b) the superthreshold state (gKCa = 0.95 nS).

The model for irregular bursting was also consistent with that observed experimentally [28, 1]
in that transients in intracellular Ca2+ concentration peak at approximately 10% of their
baseline values and persist after the termination of the active phase of the burst (Fig. 4.2.3).
The correspondence with the model simulations in [1] is intriguing as it suggests that the
generation of irregular bursting does not require a two-compartment model of intracellular
Ca2+, nor does it need the presence of the UCL2077-sensitive current IAHP−UCL in the
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model—two important features of the model in [1]. Further similarities in the dynamics
of these two models are revealed in Section 4.3 when conducting the slow-fast subsystem
analysis.

Figure 4.2.3: Simulations of action currents (sum of all ionic currents) and intracellular Ca2+ (Ca)
generated by the irregular bursting model. (a) Action currents showing similar profile to that
of membrane potential during bursting and (b) plot of Ca aligned with the time axis in (a) to
demonstrate latency in Ca transients.

Given that the stochastic variable η is required to generate irregular burst patterns in the
model, we inspected the time course of η separately to understand why bursting occurs in
the presence of noise. Since the equation for η̇ (2.1.8) does not depend on other model
variables, its time series can be thought of as an independent external stimuli to the system.
The long correlation time of η allows for sustained intervals of positive stimuli within the
system, which generate positive feedback from other depolarizing currents in the model to
initiate bursts. Similarly, periods of quiescence correspond to periods of lower values of η,
during which the full model trajectory does not cross the threshold for spike initiation. The
effect of η on the total ionic current in the irregular bursting model is shown graphically in
Figure 4.2.4a, demonstrating that spikes in ionic current during an active phase correspond
with periods of elevated η. In contrast, Figure 4.2.4b shows the effect of replacing η(t) in the
voltage equation (3.1.2) with a Gaussian white noise process ξ(t), with a similar amplitude as
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η(t). The stochastic process ξ(t) does not cause spiking in the model because the fluctuations
in current are too fast to allow for the activation of the slow depolarizing current Is.

Figure 4.2.4: Representative model simulations of noise (black) and total ionic current (green). (a)
Bursting simulation where noise is modelled by the OU process η(t). Notice the (truncated) spikes
in ionic current aligned with intervals of positive η. (b) Simulation using same model parameters as
in (a) but now with a white noise process ξ(t). In this case no spikes are fired during the simulation.

4.3 Slow-fast subsystem analysis

The GnRH neuron model developed in Chapter 3 is comprised of dynamic variables that
operate on different time scales (slow and fast), and so the system is amenable to slow-
fast bifurcation analysis (see Section 2.2 for a review). The purpose of this analysis is to
be able to classify the type of bursting observed in GnRH neurons mathematically. By
doing so, we may be able to leverage mathematical results pertaining to this classification
and ultimately form new model predictions. To begin this section, we apply the slow-fast
subsystem analysis on the parabolic bursting model and then repeat the analysis on the
irregular bursting model. The activation variable of Is appearing in (3.4.1), the second
inactivation variable of IHV A appearing in (3.2.10), and the variable Ca, were identified
as slowly varying in our system based on the values of the parameters τms , τhHV A,2

, and
f appearing in the dynamical equations ((3.1.5),(3.1.6),(3.1.12)) for these three variables
(see Table A.1 for parameter values). Based on this, the fast subsystem is then defined by
the original model equations with ms, hHV A,2, and Ca treated as parameters. Following
the methodology presented in [47], to test that the choice of slow variables was valid, we
compared the slow wave generated by the parabolic bursting model with that obtained by
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Figure 4.3.1: Comparison of the slow wave solutions generated by the full parabolic bursting model
(black) and the four-dimensional (ms, Ca, hHV A,2, V ) quasistatic state model (green).

setting all variables in the parabolic bursting model to their steady state values (except
for the three slow variables, and the voltage, V ). If the identification of slow variables is
correct, we expect the solution of the four-dimensional system to be a good approximation
to the slow wave solution of the full model. The simulations shown in Figure 4.3.1 do indeed
suggest that the choice of slow variables is valid since the solutions of the four-dimensional
model and the full model are in qualitative agreement.

To proceed with the analysis, we record the values of the variables ms, hHV A,2, Ca, and
V from a selected burst cycle along a parabolic bursting trajectory. Then at selected time
points ti within the burst interval, we compute the one-parameter bifurcation diagram in
the ms − V plane for the fast subsystem, by assigning hHV A,2, and Ca (which are now
treated as parameters) the values they attain at time ti. Note that since the fast subsystem
depends explicitly on each slow variable (in contrast to the situation in Section 2.2), the
one-parameter bifurcation diagram is not static throughout the burst cycle, but rather is
continuously shifted during the cycle (hence a moving bifurcation diagram). To examine
next how the solution trajectory of the burst cycle in the ms − V plane evolves with respect
to the moving bifurcation diagram, for each ti we plot the phase point (ms(ti), V (ti)) from
the parabolic bursting trajectory on top of the bifurcation diagram computed in the previous
step. Thus by taking sufficiently many time points ti, we can infer what types of bifurcations
are crossed in the fast subsystem upon initiation of the first spike and termination of the
last spike in the active phase of the burst cycle. The results of the analysis are summarized
in Figure 4.3.2, which suggests that the initiation and termination of spiking corresponds to
the passage of the trajectory through a saddle-node on invariant circle (SNIC) bifurcation
in the fast subsystem, while the quiescent phase of the burst corresponds to a trajectory
along the lower stable branch of the equilibrium manifold. With these numerical results, we
tentatively classify parabolic bursting in GnRH neurons as Type II bursting, according to

67



Figure 4.3.2: Slow-fast subsystem analysis of the parabolic bursting model as determined by one-
parameter bifurcation diagrams in the ms − V plane, where ms is treated as a parameter and the
other slow variables hHV A,2 and Ca are assigned the values they attained during a representative
burst trajectory (leftmost panel). Bifurcation diagrams in the three right panels are computed at
arbitrary times t during the initiation (second panel), active (third panel), and termination phases
(fourth panel) of the burst. The thick lines in the three bifurcation diagrams represent stable and
unstable branches of steady states and periodic orbits as defined in Fig. 3.4.2. The phase trajectories
in the ms − V plane, up to time t, are superimposed on the bifurcation diagrams (solid gray and
black dot) to illustrate the connection between the steady-solutions of the fast subsystem, and the
full model trajectory.

the classifications by Bertram et al. [54].

To provide more numerical support for the existence of a SNIC bifurcation, a three-parameter
(ms,hHV A,2, Ca) continuation of the saddle-node bifurcation and homoclinic bifurcation in
the fast subsystem was computed and then superimposed on the full model trajectory in
(ms, hHV A,2, Ca) phase space. Since the continuation of these bifurcation points in three-
parameter space is not feasible in AUTO, two-parameter (ms, Ca) bifurcations were computed
for discrete values of hHV A,2 attained during the burst. To obtain the approximate locus
of homoclinic points for each value of hHV A,2, a two-parameter continuation of periodic
orbits with fixed period T = 1000 ms was computed. Treating the loci of saddle-node and
homoclinic points in 3-space as two surfaces of the form hHV A,2 = h(ms, Ca), the results
were interpolated using numpy to obtain the smooth surfaces shown in Figure 4.3.3. Notice
that spiking is initiated and terminated close to the intersection points of the trajectory with
the two surfaces.

For the irregular bursting model we followed a similar procedure as above, but now with
η treated as a slow variable in the fast subsystem. Justification for this treatment was
based on the fact that tc, which affects the correlation time of the OU process η(t) defined
by (2.1.8), has a value similar to the time constants of other slow variables in the model
(compare parameters in Section A.2). As argued by Longtin et al. [85], η can be treated as
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Figure 4.3.3: Three-parameter (ms, hHV A,2, Ca) bifurcation diagram of the fast subsystem plotted
on top of full model trajectory (red) in phase space. Note that the surfaces of saddle-node
points (blue) and homoclinic points (green) appear to coincide, suggesting the existence of a SNIC
bifurcation in the fast subsystem.

quasi-constant relative to other variables in the model, which operate on faster time scales.
The slow-fast subsystem analysis of the irregular bursting model not only revealed a similar
bifurcation structure as in the parabolic case, but also the same mechanism for the initiation
and termination of the burst. In particular, Figure 4.3.4 shows that the phase trajectory
follows the locus of stable equilibria of the fast subsystem and then crosses what appears
to be a SNIC bifurcation to initiate spiking. The burst is terminated when the trajectory
crosses the SNIC in the opposite direction and travels along the locus of stable equilibria
once again. Note, however, that once an irregular burst is terminated, a second passage
through the SNIC bifurcation in the fast subsystem can be accelerated or delayed depending
on the time course of η. This gives rise to the variation in interburst interval that is evident
from the simulation in Fig. 4.2.1.

4.4 Minimal bursting model

With the tentative classification of both parabolic and irregular bursters as Type II [54], we
sought to reproduce the two types of bursting in a canonical/minimal model for circle-circle
bursting, that is, bursting where the initiation and termination of the active phase involves
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Figure 4.3.4: Same analysis as (4.3.2) but with additional slow variable η. The bifurcation diagrams
computed for the three different phases of the trajectory show similar structure as in the parabolic
case. Note that the lower stable stationary branches (solid black) are flatter than in the parabolic
case, which explains why the irregular burster doesn’t undergo large amplitude hyperpolarizations
after spiking has terminated.

passage through a SNIC bifurcation in the fast subsystem [48]. This minimal model, which
is based on previous work by Izhikevich [86], is three-dimensional (in the deterministic case),
and as a result the derivation of analytical results is more feasible compared with the model
presented in Chapter 3. Furthermore, numerical solutions can be computed faster which may
have a noticeable effect if simulating networks of synaptically coupled cells. In this section,
we present the model that first appeared in [86], to show that it is capable of recreating the
desired qualitative behaviour, and to derive some basic results.

The modified canonical model for circle-circle bursting is a type of QIF model given by the
set of equations

v̇ = I + a(v − vb)
2 + bu1 + η(t)

u̇1 = −μ1u2 (4.4.1)

u̇2 = −μ2(u2 − u1), μ2 < 4μ1, μ1, μ2  1

v → vr, (u1, u2) → (u1 + d1, u2 + d2), when v = vp,

where η is the same OU process as defined in Section 2.1. According to (4.4.1), the variables
v, u1, and u2 are reset when v attains its arbitrarily set peak value vp, where the reset is
determined by parameters vr, d1, and d2. The set of equations in (4.4.1) is modified from
that of [86] by the use of the terms a(v − vb)

2 vs. v2, bu1 vs. u1, and the inclusion of the
stochastic variable η in the equation for v. With v representing membrane potential and t

the time in seconds, the additional parameters a, b and vb are convenient for achieving closer
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correspondence of v with the bursting observed experimentally. For example, increases in a

decrease interspike interval during spiking, b affects the amplitude of repolarization during
the quiescent phase, whereas vb controls the voltage threshold for spike initiation. Using
the appropriate parameters (see Table A.4), model (4.4.1) generates qualitatively similar
burst patterns as those obtained by detailed model, as shown in Figure 4.4.1. Note that the
original canonical model [86] is dynamically equivalent to (4.4.1), when η = 0, by the change
of variables τ = at, ṽ = v − vb, ũi =

b
a
ui.

Figure 4.4.1: Two types of bursting simulated by the reduced model (4.4.1) in the presence of noise
η. (a) Parabolic bursting simulation. (b) Irregular bursting simulation. Both types of bursting
agree qualitatively with the model simulations in Sections 4.1 and 4.2.

To explain how parabolic bursting arises in the reduced model, we follow the approach of
Sections 2.2 and 4.3, and decompose the model into fast and slow subsystems, with the
temporary assumption that η = 0. The slow subsystem in (4.4.1) is comprised of the
dynamical equations for the variables u1 and u2. Selecting μ1 and μ2 so that μ2 < 4μ1, the
equations for u1 and u2 form a slow subsystem whose equilibrium is a stable focus. However,
if μ2 > 4μ1, the equilibrium of the slow subsystem is a stable node, in which case (4.4.1) can
be transformed into an alternate canonical model for circle/circle bursting [86]. Meanwhile,
the fast subsystem is one-dimensional, consisting of one equation for v̇, since u1 is now treated
as a parameter. To show that the fast subsystem possesses a saddle-node bifurcation, we
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solve for the equilibrium points of v:

v± = vb ±
√
−(I + bu1)

a
. (4.4.2)

Thus when Ĩ ≡ I + bu1 = 0, the two equilibria coalesce into the saddle-node equilibrium
v = vb. When Ĩ > 0 the equilibrium disappears and the fast variable v blows up in finite time
to +∞, an outcome that is prevented by enforcing the reset condition v → vr when v = vp.
Since we still have that Ĩ > 0 after the reset, repeated application of the reset condition
occurs and periodic spiking is observed. With this understanding of the fast dynamics, we
can now describe how bursting occurs in the full model. Before the first spike is initiated,
Ĩ < 0 and the trajectory follows the stable equilibrium manifold v(u1, u2) = vb−

√
− (I+b1u1)

a

(Fig. 4.4.2a). Once the saddle-node bifurcation is crossed in the fast subsystem, spiking
persists until u1 is such that Ĩ < 0. The system allows for the firing of multiple spikes due
to the reset conditions on u1 and u2, which delay the crossing of the line u1 = − I

b1
≡ u∗ in

the phase space of the slow variables u1 and u2 (Fig. 4.4.2b).
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Figure 4.4.2: Phase plane analysis for one burst cycle generated by the parabolic bursting model
(4.4.1). (a) The solution (blue) in the full phase space follows the stable equilibrium manifold
(orange) during the quiescent phase of the burst, while the spiking phase occurs off the manifold.
(b) Solution in the u1 − u2 plane (orange) plotted against the solution (purple) and nullclines
(blue-dashed, yellow-dashed) of the averaged slow subsystem, as determined by Eq. (4.4.3).

To obtain some analytical results, we first rewrite the set of equations in (4.4.1) in the
singularly perturbed form

v̇ = f(v, u)

u̇ = μg(v, u), μ  1,

where u = (u1, u2) and μ is a small parameter. Following the methodology in [87], the
smooth trajectory and nullclines plotted in Figure 4.4.2b are obtained through a change of
variables z= u+O(μ) as determined by the solution of the averaged slow subsystem,

ż =
μ

T (z)

ˆ T (z)

0

g(v(t, z), z) dt, (4.4.3)
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where v(t, z) is the periodic spiking solution of the fast subsystem, and T (z) is the period
of spiking as a function of z = (z1, z2). When u1 ≤ u∗, the averaged system is equal to the
original system. However, when u1 > u∗ we have

g(v(t, z), z) =

(
−μ1z2 + d1δ(T )

−μ2(z2 − z1) + d2δ(T )

)

=⇒ ż =

(
−μ1z2 +

d1
T (z)

−μ2(z2 − z1) +
d2

T (z)

)
.

Fortunately, we can obtain the period T (z) analytically by solving the fast subsystem during
a single spike:

ˆ vp

vr

dv

Ĩ + a(v − vb)2
=

ˆ T

0

dt

=⇒ T (z1) =
κ√

z1 − u∗

{
arctan

[
aκ√

z1 − u∗
(vp − vb)

]
− arctan

[
aκ√

z1 − u∗
(vr − vb)

]}
,

where κ =
√

1
ba

. Solving for the nullclines we obtain

z1-nullcline: z2 =

⎧⎨
⎩0, u1 ≤ u∗

d1
μ1T (z1)

, u1 > u∗
(4.4.4)

z2-nullcline: z2 =

⎧⎨
⎩z1, u1 ≤ u∗

z1 +
d2

μ2T (z1)
, u1 > u∗.

(4.4.5)

On a practical note, in Figure 4.4.2b there is a noticeable error between the solution of
the averaged slow subsystem and the solution of the full model in the u1 − u2 plane. This
discrepancy is a result of the choice of μ1 and μ2 used for the particular simulation, which
were selected to obtain qualitative agreement with the parabolic bursting simulations in the
biophysically detailed model, but are still somewhat large. Using smaller values of μ1 and μ2,
the solution for v loses qualitative agreement with that of the detailed model, but the solution
of the averaged slow subsystem gets closer to that of the full system. Although the parameter
space was only explored manually, the fact that μ1 and μ2 require “intermediate” values to
obtain the correct bursting behaviour suggests an intermediate separation of timescales in the
detailed model as well. Nonetheless, in both the minimal and detailed models, the transition
from quiescence to spiking during bursting corresponds closely with the passage of a SNIC
bifurcation in the fast subsystem, indicating that for the purposes of bursting classification,
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the separation of timescales is sufficiently large.

Up to this point, the analysis of the minimal model has focused on deterministic parabolic
bursting. Now we consider the effect of the stochastic process η(t) and explain how irregular
bursting is generated in the minimal model. Analogous to the detailed model, irregular
bursting occurs when enabling noise from a subthreshold steady-state. Therefore, we choose
the initial condition for the irregular bursting simulations to be (vb−

√
− I

a
, 0, 0, 0). Starting

from this point with a sufficiently high noise intensity, the slow variable η will push the
system past the threshold for firing in the fast subsystem. Once a spike is fired, u = (u1, u2)

is activated via the reset condition, which may trigger further spikes. After the termination
of the burst, an interval of elevated η may lower the threshold for firing as u spirals towards
the origin (the stable steady state of the slow subsystem), triggering another cluster of spikes
as shown in Fig. 4.4.3b. This can be understood by recalling that the threshold for firing in
the fast subsystem is crossed when Ĩ = bu1+I+η > 0. In this case, the quiescent phase of the
burst cycle is interrupted leading to a “short” interburst interval. “Long” interburst intervals,
on the other hand, occur when an interval of decreased η forms after the burst (e.g. Fig
4.2.4a), which prevent u from triggering another set of spikes as it spirals towards the origin.
This interaction between u and η persists to sustain an irregular bursting pattern as t → ∞.
Although the steady-state behaviour is only predicted by integrating the system for long
enough times, we would expect that with a sufficiently high noise intensity D in (2.1.11),
the system will always be able to initiate a spike to reactivate u and generate irregular
burst patterns. In other words, such behaviour is not transient, but rather persistent in the
presence of noise.

Figure 4.4.3: Simulation of irregular bursting in the minimal model starting from a subthreshold
state. (a) Solution v(t) showing two clusters of spikes separated by a “short” interburst interval.
(b) Each cluster of spikes in (a) is initiated from a different value of u (blue markers) because the
threshold for firing also depends on η.
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Chapter 5

Summary and conclusion

At the time of writing this thesis, there remains an intense focus on deciphering the
mechanisms underlying bursting behaviour in GnRH neurons, and ultimately, the connection
between burst firing and hormone release. Indeed, the body of literature concerned with the
modelling of bursting activity in GnRH neurons is growing rapidly. As indicated by the
literature review in Chapter 1, several GnRH neuron models have a common lineage tracing
back to the seminal studies by Van Goor et al. [33] and Lebeau et al. [34], in which neuronal
models are developed for describing electrical excitability in the GT1 cell line. A common
approach in recent models [35, 36, 1, 39, 41] is to construct a submodel consisting of currents
that are adapted from the set of “GT1 currents” {INaF , IK , IM , IKir, ICaL, ICaT} modelled
by Van Goor et al. [33] and Lebeau et al. [34]. For instance, in the bursting models by
Duan et al. [1] and Chen et al. [39], the submodel consisting of GT1 currents is extended
by adding currents such as the persistent Na+ current INaP (from Roberts et al. [35]), the
small-conductance Ca2+-activated K+ (SK) current (denoted IKCa in the present model),
and others. In contrast with several of the models reviewed in Chapter 1, that developed
in Chapter 3 does not assume that the models for the GT1 currents are valid for use in a
GnRH neuron model. Instead, the present model includes revisions to a subset of the GT1
current models based on recent voltage- and current-clamp data obtained from whole-cell
recordings of GnRH neurons in brain slices of mice.

The results obtained from fitting the currents in the set S = {INaP , IK , IA, IHV A, ILV A,
Ih} to voltage-clamp recordings are shown in Section 3.2.4. The fast Na+ current INaF ,
crucial for the generation of action potentials, was not fit to voltage-clamp data but rather
to current-clamp data. As described in Section 3.3.3, the current INaF was parameterized
in the context of the full model. In brief, we used the genetic algorithm to search for
parameter values of the INaF submodel that minimize the error between model simulations
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and recordings of spiking trajectories in the (V, V̇ ) phase plane. We remark that for the
purposes of simplifying the model, the K+ currents IM and IKir, shown to be conducted in
GnRH neurons (see Table 1.1), were excluded. The current IM was excluded because it is
assumed to be captured implicitly by the IK model, whereas IKir was excluded because its
contribution is most significant in the voltage regime hyperpolarized relative to the reversal
potential EK [88], and electrical activity in this regime was not studied in this thesis. Models
for these two currents, adapted closely from Roberts. et al. [35], were tested in the model
and were not found to affect the ability of the model to simulate parabolic and irregular
bursting.

In addition to the ionic components described above, the model also includes the SK
current IKCa, a slow inward Ca2+ current Is, and a single-compartment model for Ca,
the intracellular Ca2+ concentration. The subsystem consisting of these three components
was essential for sustaining endogenous, rhythmic electrical activity; namely, subthreshold
oscillations (shown in Section 3.4.2), and parabolic and irregular bursting (shown in Sections
4.1 and 4.2). Whereas the existence of the SK current IKCa in GnRH neurons is well-
established [17, 28], there is currently no voltage-clamp data to support the inclusion of
Is in the model. The rationale for including the current Is, however, is based on two key
observations: (i) that the other ionic currents in the model (in the absence of Is) do not
appear to possess the kinetic properties required for generating oscillations with a period of
approximately 20 s as observed experimentally, and (ii) that the Plant model for parabolic
bursting, which possesses a similar Is, IKCa, Ca subsystem, reproduces several characteristics
of the parabolic bursting exhibited by GnRH neurons, including a statistically significant
correlation between the active phase duration and the subsequent quiescent phase of the burst
[10]. The agreement between model simulations and experimental recordings of parabolic
and irregular bursting, demonstrated in Chapter 4 (specifically by Figs. 4.1.1, 4.2.1, 4.2.2,
and 4.2.3) provide further support for the inclusion of Is. At the very least, even if Is cannot
be isolated experimentally, the model simulations shown in this thesis demonstrate that the
Is, IKCa, Ca subsystem is a reasonable abstraction of a more complex rhythm generating
mechanism in GnRH neurons.

Finally, we suggest how the proposed model might be extended in future research efforts.
A logical extension of the model is to account for the morphology of the GnRH neuron
by using either (i) a detailed multicompartmental model consisting of many compartments,
similar to that of Roberts et al. [35], (ii) a simplified three compartment (two dendrite,
one soma) model, similar to that of Csercsik et al. [37], or (iii) a continuous cable model
similar to that of Chen et al. [39]. The most appropriate choice of formalism will depend
on the goals of the modelling study. For example, a modelling study that aims to predict
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the synchronization properties of a simple network of GnRH neurons connected synaptically
will likely adopt formalism (ii) or (iii) for the purposes of computational efficiency. On
the other hand, a realistic modelling study that aims to predict the effects of dendrites on
parabolic and irregular bursting in a single GnRH neuron will likely adopt formalism (i).
We also remark that the minimal GnRH neuron model presented in Section 4.4 is a good
candidate for large-scale simulations of networks of bursting GnRH neurons. In conclusion,
we predict that the bursting models presented in this thesis will serve as a framework for
more sophisticated studies of intrinsic electrical activity in GnRH neurons.
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Appendix A

A.1 AUTO configuration files

The following sections of code are working configuration (c.*) files that were used to setup
AUTO for computing the various bifurcation diagrams that appear in the main text. They
provide a useful starting point for researchers studying parameter dependency in neuronal
systems.

A.1.1 Periodic branches (slow-fast subsystem analysis)

unames={1:’v’}
parnames={1:’hhvas’,2:’ms’,3:’ca’,4:’MIN␣v’}
NDIM= 16, IPS = 2, IRS = 0, ILP = 0
ICP = [’ms’,11,’MIN␣v’]
NTST= 70, NCOL= 4, IAD = 3
ISP = 1, ISW = 1, IPLT= 0, NBC= 0, NINT= 0
NMX= 5000, NPR= 1000, MXBF= 10, IID = 2
ITMX= 8, ITNW= 5, NWTN= 3, JAC= 0
EPSL= 1e-07, EPSU = 1e-07, EPSS = 1e-05
DS = 0.1, DSMIN= 1e-05, DSMAX= 1000.0, IADS= 1
NPAR= 14, THL = {}, THU = {}
UZSTOP={11:1e5}

A.1.2 Two parameter continuation of fixed period orbits

unames = {1:’v’,19:’ca’}
parnames = {1:’gs’,2:’gkca’,3:’MIN␣v’,4:’AMP␣v’}
NDIM= 19, IPS = 2, IRS = 0, ILP = 1
ICP = [1,2,3]
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NTST= 100, NCOL= 4, IAD = 3
ISP = 2, ISW = 1, IPLT= 0, NBC= 0, NINT= 0
NMX= 200, NPR= 200, MXBF= 5, IID = 2
ITMX= 8, ITNW= 5, NWTN= 3, JAC= 0
EPSL=1e-7, EPSU=1e-7, EPSS=1e-5
DS = 0.01, DSMIN= 1e-5, DSMAX= 1.0, IADS= 1
NPAR= 14 , THU = {}
UZR={1:0.5,1:0.6,1:0.7,1:0.8,1:0.9:,1:1.0}
UZSTOP={1:5.0}
PAR={11:1.5e4}

A.2 Parameter sets

A.2.1 Detailed model

Parameters for the GnRH neuron model appearing in Section 3.1 are listed here. The
maximum conductances parameters in Table A.3 are those that are changed to generate the
various electrical phenomena. Note that all parameters not listed in Table A.3 remain static
when generating the different electrical phenomena unless otherwise noted in the main text.

HH gating parameters:

INaP IA IK ILV A IHV A Is Ih
m h m h1 h2 m m h m h1 h2 m h1 h2

p 1 — 1 — — 4 2 — 1 — — 1 — —
fi — 1 — 0.8 0.2 — — 1 — 0.2 0.8 — 0.364 0.636

Vh (mV) -41.5 -47.4 -15 -69 -69 15 -56.1 -80 -11 -32 -32 -45 -77.45 -77.45
k (mV) -3.0 8.2 -11 6 6 -9 -10.7 4.7 -7 11 11 -12 9.22 9.22

τ(V ) (ms) 0.4 τ2 τ2 30 500 τ2 τ2 20 τ2 45 950 1500 τ1 τ1
a — 67.3 -40 — — -43 50 — 20 — — — -89.8 -82.6
b — -27.5 26.5 — — 18.5 9 — -10 — — — 11.6 25.7
c — 67.3 43 — — 144 50 — 20 — — — 35.8 370.9
d — 27.5 -8.4 — — -49 -9 — 10 — — — 7.6 54.1
e — 574.48 1 — — 0.38 7 — 1 — — — — —
f — 62.6 0.1 — — 0 0.5 — 0.6 — — — — —

Table A.1: Kinetic parameters for currents with gating described by Equations (3.1.5) and (3.1.6).
Units for time constant parameters a, b, c, d, e, f vary and are inferred from the functions τ1 and
τ2.

Non-HH gating parameters:
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INaF : r2 = 0.2 ms−1, r4 = 0.05 ms−1

α(V ) β(V ) r3(V )

a (ms−1) 55 60 30
b (mV) 33 32 77.5
c (mV) -7 10 12

Table A.2: INaF rate parameters for voltage-dependent functions

IKCa : K = 1.0μM

Electrical parameters:

Capacitance: Cm = 20pF (experimentally observed value [19]).

INaF INaP IA IK ILV A IHV A Is Ih IKCa IL

E (mV) 54 54 -101 -101 82.5 82.5 82.5 -40 -101 -65

gvc (nS) — 0.68 45 100 0.2 8 — 1 — 1

gp (nS) 300 0.68 45 115 0.2 8 0.58 0.5 1.96 0

girr (nS) 500 0.68 45 150 0.2 8 0.18 1 1.18 0

gsub (nS) 500 0.68 45 150 0.2 8 0.58 0.5 3.88 0

Table A.3: Electrical parameters for ionic currents. E is the reversal potential. The values in row
gvc are the maximum conductances used to fit to voltage-clamp experiments. The values in rows
gp, girr, gsub are the maximum conductances used to fit to parabolic bursting, irregular bursting,
and subthreshold oscillating models.

Calcium submodel parameters:

f = 0.0025, kp = 0.265ms−1, Kp = 1.2μM, β = 106, Vcyt = 2.8pL.

Noise:

D = 1.0 pA2/ms, tc = 1500ms.

A.2.2 Minimal model

The parameters used to generate parabolic and irregular bursting in the minimal model are
listed here.
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a b I μ1 μ2 vb vr vp d1 d2 D tc
Irregular 5 1.2 -2 0.2 0.12 -60 -70 40 1 1 30 1.4
Parabolic 2 5 0 0.3 0.08 -50 -57 30 1 2 30 1.4

Table A.4: Parameters used for generating parabolic and irregular bursting in the minimal model
(4.4.1).

A.3 Voltage-dependent curves

In Figure A.3.1 we provide plots of the (in)activation curves and voltage-dependent time
constants for the gating variables of voltage-gated ionic currents in the GnRH neuron model.
The purpose of this section is to serve as a visual reference for researchers studying the model.
For all plots, V has units of mV while τ has units of ms. For INaF (Fig. A.3.1a), all functions
have units ms−1.
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(a) INaF

(b) INaP

(c) IK

(d) IA
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(e) ILVA

(f) IHVA

(g) Ih

(h) Is

Figure A.3.1: Kinetic curves for voltage-gated currents in the GnRH neuron model.
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