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ABSTRACT 

Updated, localized, and specific information on agricultural land area, crops planted, and 

irrigation requirements contribute to better irrigation planning and management. To this end, 

parameters and methods for a crop inventory and simulation of crop water productivity at the 

Guyana coastal lands were investigated. A supervised classification using Landsat8, Sentinel2, and 

RADARSAT/RCM C-Band was evaluated. For an inventory of both sugarcane and rice, the 

optical-radar fusion of Sentinel2 and RCM provided the highest accuracy (sugarcane: users 

accuracy [UA] = 95%, producers accuracy [PA] = 100%; and rice UA = 100%, PA = 95%), 

compared to single image products. Supervised classification using Sentinel2-RCM images for 

May, June and Oct 2021, and Jan 2022 showed good prediction with an accuracy of 82 - 87%, and 

kappa at 0.80 – 0.85. The crop stage at image acquisition impacts the accuracy of classification. 

The highest accuracy for rice was obtained at the vegetative, reproductive, and mature stages while 

for sugarcane, the highest accuracy was at tillering and maximum canopy phase.  

The crop (rice, sugarcane and vegetables) simulations of water productivity were 

performed with the AquaCrop model and used both location-specific soil and weather data as well 

as AquaCrop default values. General field information and calibrated parameters are from the 

literature. The following irrigation thresholds based on the water holding capacity at the root zone 

(WHR) were tested: 50 to 120% WHR for rice, 40 to 100%WHR for sugarcane and 40 to 100% 

WHR for vegetables.  The scenarios of 80%WHR for rice, 50%WHR for sugarcane and 40%WHR 

for vegetables have the lowest irrigation requirements without incurring significant difference (at 

p>0.05) in yield. These irrigation scenarios are recommended for irrigation water distribution 

during dry periods.  Results of both the crop inventory and crop modelling provide important 

inputs into large-scale agricultural water planning and management in wet tropical regions.  
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RESUME 

Des informations actualisées, localisées et spécifiques sur la superficie des terres agricoles, 

les cultures plantées et les besoins en irrigation contribuent à une meilleure planification et gestion 

de l'irrigation. Dans ce but, nous avons étudié les paramètres et les méthodes d'inventaire des 

cultures, ainsi que des simulations de l'efficacité de l'utilisation de l'eau sur les terres côtières de la 

Guyane. Une classification supervisée utilisant Landsat8, Sentinel2, et RADARSAT/RCM C-

Band a été évaluée. Pour un inventaire de la canne à sucre et du riz, la fusion optique-radar de 

Sentinel2 et de RCM a fourni la plus grande précision pour la canne à sucre (précision des 

utilisateurs [UA] = 95 %, précision des producteurs [PA] = 100 %) et pour le riz (UA = 100 %, 

PA = 95 %), comparativement à l'utilisation d'images individuelles. La classification supervisée à 

l'aide d'images fusionnées Sentinel2-RCM pour mai, juin et octobre 2021, ainsi que pour janvier 

2022, a montré une bonne prédiction avec une précision de 82 à 87 % et un kappa de 0,80 à 0,85. 

Le stade de la culture au moment de l'acquisition de l'image a un impact sur la précision de la 

classification. La plus grande précision pour le riz a été obtenue aux stades végétatif, reproductif 

et mature, tandis que pour la canne à sucre, la plus grande précision a été obtenue au stade du 

tallage et de la canopée maximale.  

Les simulations de la productivité de l'eau des cultures (riz, canne à sucre et légumes) ont 

été réalisées avec le modèle AquaCrop et ont utilisé à la fois des données pédologiques et 

météorologiques spécifiques au site et les valeurs par défaut d'AquaCrop. Les informations 

générales sur les champs et les paramètres calibrés proviennent de la littérature. Les seuils 

d'irrigation suivants ont été testés : 50 à 120% de la capacité de rétention d'eau à la zone racinaire 

(WHR) pour le riz, 40 à 100%WHR pour la canne à sucre et 40 à 100% WHR pour les légumes.  

Les scénarios de 80 % de la capacité de rétention d'eau au niveau des racines pour le riz, de 50 % 
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pour la canne à sucre et de 40 % pour les légumes présentent les besoins d'irrigation les plus faibles 

sans entraîner de différence significative (à p>0,05) dans le rendement. Ces scénarios d'irrigation 

sont recommandés pour la distribution de l'eau d'irrigation pendant les périodes sèches.  Les 

résultats de l'inventaire des cultures et de la modélisation des cultures fournissent des données 

importantes pour la planification et la gestion de l'eau agricole à grande échelle dans les régions 

tropicales humides. 
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CHAPTER I: GENERAL INTRODUCTION 

1. Background of the study 

Agroecosystems are at risk of experiencing drought or waterlogging without an established 

irrigation and drainage system. To have sustainable yields, with minimal abiotic stress, large 

agricultural systems must have a well-designed water management system. The crop area and 

irrigation water requirements are important for water management planning and design. The 

irrigation water requirement is the amount of water needed to satisfy crop evapotranspiration needs 

and water losses incurred in the field such as soil evaporation, runoff, and deep percolation. It 

gives irrigation managers information on the volume of water which needs to be routed to a service 

area. The water requirement is usually measured or simulated at field or plant level at a unit depth 

of water required per unit area. To scale up the crop water requirements of an irrigation system, 

the service area also needs to be known.   

The service area can be determined by regular reporting and accounting of planted and 

harvested fields. For wider irrigation and drainage systems and management such as at the regional 

and national level, a faster and more reliable means of monitoring the crop area ought to be 

established.  Crop inventories through remote sensing have been developed and implemented in 

several countries for monitoring at a large scale. This study uses the latest developments in satellite 

technology and remote sensing to monitor rice and sugarcane inventories along the Guyana coastal 

lands. 

Guyana was chosen for this study because the technologies mentioned above are still in 

their infancy in the country. Moreover, Guyana is in a transitional stage as it shifts from its 

extensive monocropping of sugarcane into more diversified agriculture. Sugarcane has been its 

major crop since the 19th century, but due to declining demand from the European Union and the 
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United States (Mitchell, 2006), and competition from subsidized beet sugar in European countries 

(McGowan, 2008), there was less demand for sugarcane. The abandoned farms are slowly being 

converted into other high value crops due to the government’s agricultural diversification program. 

This crop diversification makes use of the existing expansive irrigation and drainage infrastructure, 

the high fertility of these coastal soils and abundant rainfall.  

 Knowledge of the crop water requirements of sugarcane, rice and various vegetables would 

be helpful for water resources management and planning. Moreover, much of Guyana’s canals and 

irrigation and drainage infrastructure has been designed with drainage and navigation as a priority. 

Improvements in the infrastructure’s design from an irrigation perspective would support more 

resilient agriculture, considering climate change. Climate scenarios for Guyana’s coastal region 

suggest decreasing annual total rainfall and increasing intensity of flooding and drought 

(Government of Guyana, 2012). The agriculture sector needs to implement water-saving practices 

and improve the performance of existing irrigation and drainage systems. 

2. Objectives of the research 

This thesis aims to contribute to improvements in Guyana’s agricultural water management 

through the following specific research objectives: 

i. Develop a methodology for an operational crop inventory by comparing the suitability of 

Landsat8, Sentinel2, RCM and optical-radar fusion as image inputs (Chapter III); 

ii. Evaluate the applicability of AquaCrop for modelling rice growth and water productivity 

(Chapter IV); 

iii.  Investigate irrigation deficit scenarios and their impact on the yield and water productivity 

of sugarcane (Chapter V); 

iv. Recommend a water management scenario for higher vegetable productivity (Chapter VI).  
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CHAPTER II: COMPREHENSIVE REVIEW OF RELEVANT LITERATURE 

1. Agricultural and climatological characteristics of the Guyana coastal land 

Guyana is a country in South America, nestled between 1° to 9 °N and 56° to 62° W. For 

several decades, sugarcane has been its major crop, with the management of its farms held by the 

government since 1976 through the Guyana Sugarcane Corporation (1999). However, due in part 

to the declining preferential sales of the European Union and the United States (Mitchell, 2006), 

and competition from subsidized beet sugar from European countries (McGowan, 2008), the 

production of sugarcane has decreased remarkably. Nearly 400 sugarcane estates had encompassed 

the coastal plains of Guyana at its peak production in the 19th century (GuySuCo, 1999) but as of 

2018, only three estates remain (GuySuCo, 2018). The exports, which amounted to USD 123 

million in 2011 fell to USD 27.7 million in 2019 (Singh, 2021). Rice production has been the 

second major crop of Guyana since the 20th century (McGowan 2008). It has been increasing 

steadily, contributing to 5% of the total GDP by 2013 (Ministry of Agriculture, 2013). Rice is 

cultivated in Regions 2, 3, 4, 5 and 6, shown in Figure 2.1,  and covers approximately 90,000 ha 

(Ministry of Agriculture 2013).  
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Figure 2.1. Primary rice-producing regions in Guyana (reprinted from Mahdu, 2019). 

 

Aside from the reasons cited for sugarcane’s decline, the agriculture sector also 

experienced symptoms of Dutch disease caused by the booming gold, diamond and oil industries 

(Bubbico et al., 2020), persistent labour issues (GuySuCo, 2018), the deterioration of the irrigation 

and drainage system and access roads, absentee owners, and patches of high salinity areas (GLSC, 

2013). These led to the contraction of agriculture and further abandonment of agricultural lands. 

In Region 6, cultivated lands (53,000 ha) are almost as wide as abandoned lands (44,000 ha) of 

which 82% is publicly owned (GLSC, 2004).  
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The soils of the coastal farmlands of Guyana are mostly rich clayey and silty soils. From 

the coast and stretching 32 km inland, the soil is hydraquents or marine phase front land soil; 

meanwhile areas closer to the rivers are fluvaquents or riverain soils. Both are classified as good 

to moderate agricultural land with poor drainage (Braun & Derting, 1964; GLSC, 2013).  

Agriculture is limited near the coast since the soils further inland are medihemist soils which are 

bog soils of very high acidity, extremely low fertility and acid sulphate toxicity (GLSC, 2013).  

The climate at the coast and the upper half of Guyana is tropical rainforest (Peel et al., 

2007).  The wet climate at the coast allows for two high-yielding cropping seasons. Crops can be 

planted all year round.  

Both the soil and the climate are suitable for agriculture and support high yields. Moreover, 

the area has four major rivers (Essequibo, Demerara, Berbice and Corentyne Rivers) which divide 

the coastal plains and provides freshwater from the backlands; and plentiful narrow rivers and 

streams such as the Mahaica, Mahaicony, Abary and Canje rivers (USACE, 1998). However, even 

with the presence of these rivers, areas near the coastline of Guyana have large quantities of 

brackish water all year round due to the tidal influence along the river and streams (USACE, 1998). 

Wide and shallow reservoirs called conservancies were constructed further inland to catch and 

store fresh water. Canals, discharge regulators and gates were also installed to deliver fresh water 

from the conservancy to the farms.  

The fertile soil, wet climate, availability of freshwater for irrigation, and existence of an 

established and expansive I&D system encourage agriculture and point to a high potential for 

agriculture to thrive in Guyana. However, agriculture has been solely focused on sugarcane for a 

very long time, and a shift to other crops, such as vegetables, will require not only a shift in the 

crops produced, but also a shift in the farmers’ and government’s thinking, priorities, and the 
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design, planning and management of infrastructures and systems.  

2. Crop water management of tropical agricultural systems 

The water management measures such as water harvesting, soil moisture conservation, 

irrigation improvements, and a combination of these measures can contribute to an increase in the 

global kcal production by at least 18% for the low implementation scenario, and at most 60% for 

the maximum implementation (Jägermeyr et al., 2016). Crop water management is important for 

all levels of agriculture production: for the farmers to get high sustainable yields and improved 

productivity, and the national and global interest in keeping food security for the next years in light 

of the growing population and a more erratic climate.  

In the tropics, which lie between the Tropic of Cancer and the Tropic of Capricorn, cold 

temperature is not a limiting factor to production, but the high temperature increases evaporation, 

and the precipitation is not well distributed all year round (Hoffman et al., 1990). The monsoons 

bring in heavy rainfall but the intensity, start and end of a monsoon season varies annually. The 

key characteristics therefore of crop water management for tropical agriculture are the storage of 

water during the wet months, reduction of water losses during the dry months, and productivity 

improvements.  

Reduction of water losses in the field contributes to higher water productivity (WP). As an 

efficiency parameter, higher WP values can be achieved by obtaining better yields and reducing 

inputs and losses. There are several ways to reduce losses such as by controlling soil evaporation 

through mulching and closer plant spacing and using systems with fewer conveyance losses and 

application inefficiencies, e.g., drip irrigation. Various mulching media such as straw (Biswal et 

al., 2022), composted coir pith, sugarcane trash (Dhanapal et al., 2019) and plastic film (Chai et 

al., 2022) have been tried and their impact on the yield and water productivity have been studied. 
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The water use efficiency can also be improved by developing better varieties (Dou et al., 2016; 

Poddar et al., 2022), inducing water stress to promote fruit formation, using deficit irrigation or 

alternate-wetting and drying, and modifying the irrigation methods such as using alternate or fixed 

furrow irrigation instead of the convention furrow irrigation (Abera et al., 2020; Bayisa et al., 

2021).  

Water-saving methods such as deficit irrigation and alternate wetting and drying (AWD) 

has been around for several years. The current trend of research on these technologies involves 

their comparison with other irrigation regimes such as continuous flooding and saturation (Blango 

et al., 2019; Dou et al., 2016; Poddar et al., 2022), identification of soil-water thresholds to 

minimize yield losses (Akinro et al., 2012; Bayisa et al., 2021; Vélez-Sánchez et al., 2022), and 

the scheduling of varying levels of applied water stress or soil-water thresholds for different crop 

phenological stages (Brar & Singh, 2022; Dingre et al., 2021; Elsheikh, 2015).   

The water management strategies discussed above are tested and measured at the field or 

farm level. To scale up the impact of these strategies to the requirements at a larger scale such as 

for a town or an irrigation service area, the production area must be known. 

3. Monitoring of crop production area 

A crop inventory which uses remote sensing satisfies the requirements for monitoring a 

large expanse done at frequent intervals and low labour needs. Remote sensing information can be 

obtained either from satellite images or from UAVs. In this paper, remote sensing implies the 

images obtained from satellites. Several satellites have been deployed in the past decades as 

humanity’s knowledge of space exploration grew. These satellites take images of the earth’s 

surface at a constant schedule and collect different information depending on their specifications. 

Sensors on board the satellites capture images from different wavelengths of the electromagnetic 
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spectrum. Some, such as Landsat (USGS, 2022), Sentinel-2 (ESA, 2022a), and MODIS (NASA, 

2022a) provide data from the optical, infrared and ultraviolet range, while others such as the 

RADARSAT Constellation Mission (CSA, 2021), Sentinel-1 (ESA, 2012), NISAR (NASA, 

2022b), and TerraSAR-X (ESA, 2022b) provide data from the radar L, X or C-bands. These 

sensors differ further by their spectral resolution, which is the range of wavelengths they were 

designed to receive; the radiometric resolution which is their sensitivity to the wavelengths; and 

spatial resolution which is the area equivalent to one-pixel size in the satellite image. Moreover, 

each of these satellites has specific paths around the earth which determines their temporal 

resolution or the frequency that an image is captured in a location. Various satellite images or data 

products are available for use with each one having its own set of specifications, data archive 

length, preprocessing, availability, and costs.  

Before a crop inventory is established, the most suitable satellite products and processing 

methods have to be determined first. The design of an inventory depends on the purpose, the target 

final product, characteristics of the location, objects to be identified, frequency of data collection, 

and also financial constraints. When the target of the inventory is general vegetation, the area can 

be distinguished from adjacent water bodies, and urban areas by the RGB, near-infrared, red edge 

bands (Chen et al., 2021; Feranec et al., 2000; Waser & Schwarz, 2006). When the targets of the 

inventory are specific vegetation covers such as trees, crops or grass, satellites which provide more 

spectral bands greatly assist in distinguishing the minute differences in the spectral reflectance of 

crops such as done by (Marais-Sicre et al., 2020; Pfitzner et al., 2022; Verma et al., 2019). 

The location of the crop inventory and desired frequency of monitoring determines the 

suitable satellite sources. In the tropics where cloud cover is a concern, radar images are more 

reliable sources as they can retrieve information through thick layers of clouds. Given the 
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frequency of cloudy days in the tropics, and the return frequency (every 12 or 14 days) of optical 

satellites, few to no clear images can be obtained in a year. A large-scale crop inventory poses 

another concern since several cloudless images have to be available to create a mosaic image.  

Finally, the cost of acquiring satellite images is an important factor to ensure the smooth and 

regular operation of crop inventories.  

4. Identification of crop water requirement 

The irrigation water requirement can be computed from the crop water requirement and the 

production area. The crop water requirement is measured or simulated at the plant level and it is 

equivalent to the needs of a crop for evapotranspiration (Hoffman et al., 1990). Quantifying 

evapotranspiration, however, is complicated.  Not only does evapotranspiration vary between 

crops, but also between climate, varieties and cultivars, and different crop stages. A standard or 

reference evapotranspiration was established to create a baseline evapotranspiration value, usually 

of alfalfa or other short grasses. The computation of the ETo is altogether a separate set of 

modelling. It can be measured using evaporation pans or computed from the Penman-Monteith, 

Hargreaves, Blaney-Criddle, and several other methods (Hoffman et al., 1990).  

The ETo accounts for the impact of climate and location on ETc, whereas the crop 

coefficient accounts for the evapotranspiration of the target crop relative to the reference grass. As 

the crops mature, the kc also varies. This factor is considered in ETc computations by using a 

different kc value for the initial stage (kcini), mid-season (kcmid) and late season (kcend) stage (Allen 

et al., 1998) The crop transpiration is computed from the ETo and the crop coefficient, as shown 

in Equation 1.  

𝐸𝑇𝑐 = 𝑘𝑐 ∗ 𝐸𝑇𝑜 (Eq. 1) 

Theoretically, crop transpiration would represent all of the crop’s water needs. But in a 
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farm, evapotranspiration and delivery of water comes with losses incurred from the application of 

irrigation, evaporation, run-off and storage and movements of water within the soil.  Crop models 

seek to simulate the interactions between the crop, climate, soil, water and management practices, 

and predict the impact of these interactions on the crop’s growth, yield and environment.  

One of these crop growth models is AquaCrop (FAO, 2018), which is notable for its simple 

design and usability to a wide range of practitioners. AquaCrop is a water-based model wherein 

the availability of water drives growth (Steduto et al., 2009). The translation of water to yield is 

governed by three equations: computation of the water required for evapotranspiration (in 

Equation 2), conversion of the water transpired into biomass (in Equation 3) and partitioning of 

the above-ground biomass into yield and non-marketable biomass (in Equation 4).  

𝐸𝑇𝑐 = 𝑘𝑐 ∗ 𝐸𝑇𝑜 ∗ 𝐶𝐶𝑡  (Eq. 2) 

𝐵 = 𝑊𝑃∗ ∗ 𝑇𝑟   (Eq. 3) 

𝑌 = 𝐻𝐼 ∗ 𝐵   (Eq. 4) 

 Wherein the ETc is the crop evapotranspiration (mm day-1); kc is the crop coefficient 

(unitless); ETo is the reference crop evapotranspiration (mm day-1); CCt is the effective canopy 

cover at time t (%); B is the aboveground biomass (kg); WP* is the normalized water productivity 

(kg m-3); Y is the yield (kg); HI is the harvest index (unitless) 

 

 The values of all of the parameters in the three core equations are adjusted by the input 

parameters, the presence of stresses, the extent of canopy cover over time, and the effective depth 

of the root zone.  There are three components or modules which are simulated separately in 

AquaCrop: soil available water, root deepening and canopy development. The parameter values 

contributed by each component to the core equations are shown in Figure 2.2.   
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Figure 2.2. Simplified core simulation computations, modules and parameters in 

AquaCrop 

  

The canopy development module provides the effective canopy cover used in Equation 2. 

Meanwhile, the root deepening module simulates root growth and provides the effective rooting 

depth which is further used in the soil available water module. Lastly, the soil available water 

module’s main output is the soil water content at the root zone. Water uptake is either equal to the 

crop transpiration requirement in Equation 2, or the available water at the root zone, whichever is 

smaller.  

AquaCrop does not model the processes behind crop stress. Instead, the values of the stress 

coefficients (Ks) are determined by the values of indicator parameters and their relationship to 

stress thresholds, as shown in Table 2.1. Several stress coefficients are used to represent water 

stress due to drought, water stress from waterlogging, cold stress, heat stress, nutrient deficiency 

stress, and salinity stress. The Ks values indicated the severity of stress wherein values closer to 

‘1’ are for unstressed or optimal conditions and values nearer to ‘0’ represents stressed conditions. 
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The stress coefficients are incorporated into the core equations or modules depending on the 

parameter they modify.  

Table 2.1. Stresses considered in AquaCrop and their indicators, thresholds, stress 

coefficient, and effect on parameters. 

Stress coefficient (Ks) Indicator Parameter Modified  

A. Water Stress 

water stress affecting 

canopy expansion (Ksexp,w) 

fraction of water depletion 

at the root zone (Dr) 

canopy growth coefficient 

(CGC), harvest index (HI) 

water stress affecting 

stomatal closure (Kssto) 

fraction of water depletion 

at the root zone (Dr) 

crop evapotranspiration 

(ETc), harvest index (HI) 

water stress for early 

canopy senescence (Kssen) 

fraction of water depletion 

at the root zone (Dr) 

Senescence phase, canopy 

decline coefficient (CDC) 

water stress due to poor 

aeration (Ksaer) 

percent air in soil pore 

volume 

crop evapotranspiration 

(ETc) 

B. Temperature stress 

cold stress affecting 

pollination (Kspol,c) Daily minimum 

temperature (Tn) 

harvest index (HI) 

cold stress affecting 

biomass production (Ksb,c) 
Biomass (B) 

heat stress affecting 

pollination (Kspol,h) 

Daily maximum 

temperature (Tx) 
harvest index (HI) 

C. Soil Fertility Stress 

soil fertility stress 

coefficients 

soil available Nitrogen, 

Phosphorus, Potassium  

CGC, maximum canopy 

cover (CCx), normalized 

water productivity (WP*) 

D. Soil salinity stress 

salinity stress affecting 

stomatal closure (Kssto) 

electrical conductivity 

(ECe) 
CGC, CCx, CDC 

* plower and pupper are thresholds defined for each stress coefficient and indicator 

AquaCrop has been used extensively since its dissemination. A review by (Salman et al., 

2021) has shown that the research using AquaCrop can be divided into development, evaluation 

and application. The works on development include the addition of new features such as the 

assimilation of remote-sensing data (Corbari et al., 2021; Han et al., 2020), AquaCrop-GIS (Lorite 

et al., 2013), and programming into other languages (Camargo Rodriguez & Ober, 2019). 

Evaluation activities, meanwhile, are parametrization, calibration, validation and testing studies of 
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different crops at various locations (Sandhu et al., 2015; Wellens et al., 2022). Lastly, the 

application of AquaCrop constitutes studies of crop response to agronomic management practices 

(Ahmadzadeh Araji et al., 2019; Bahmani & Eghbalian, 2018), impact assessment to crop 

production by environmental changes (Alvar-Beltrán et al., 2021; Raoufi & Soufizadeh, 2020), 

and support to policymaking through the simulation of hypothetical scenarios and interventions 

(Karandish & Hoekstra, 2017; Zhuo et al., 2016).   

AquaCrop is suitable for this thesis as it has already established its use for large-scale 

applications such as those for climate change impact assessment and policy support. Its use of 

conservative and default parameters; and templates for grains/fruit-producing crops, leafy 

vegetables and root/tuber crops, make it applicable when information on the numerous model 

parameters is limited. A comprehensive review of crop parameters for field crops (Pereira, 

Paredes, Hunsaker, et al., 2021), vegetables (Pereira, Paredes, López-Urrea, et al., 2021) and tree 

and vine fruit crops (Rallo et al., 2021) has confirmed that the standard crop parameters released 

in FAO56 (Allen et al., 1998) is still in agreement with the result of recent crop parameter studies. 

The review released updated FAO56 standard crop parameters to incorporate the results of the new 

studies.  Moreover, the parameters adjusted to the standard climate (minimum relative humidity 

RHmin = 45% and wind speed at 2 meters height u2 = 2 m s−1) (Allen et al., 1998; Pereira, Paredes, 

López-Urrea, et al., 2021) were also provided to improve the transferability of crop coefficients 

for simulation at other locations. 
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BRIDGING TEXT 

 

Research objective 1 aims to develop a methodology for a crop inventory for rice and 

sugarcane. The study is discussed in Chapter III. Several satellite images taken on different dates 

were tested. The suitability of these data inputs, the date of acquisition and optical-radar fusion 

were explored to come up with a set of methods or guidance for establishing a crop inventory in 

the country. 

This study is in preparation for submission to the International Journal of Applied Earth 

Observation and Geoinformation. The paper is co-authored by Guia Marie M. Mortel, Dr. Chandra 

Madramootoo, Dr. Vern Singhroy and Dr. Viacheslav Adamchuk. The contributions of each 

author are mentioned on page 7. 
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CHAPTER III 

Classification of rice and sugarcane crop patterns using optical-radar fusion 

Abstract 

Crop inventory has been traditionally conducted using optical satellites.  In recent years, 

the use of synthetic aperture radar has extended the applicability of remote sensing by providing a 

textural basis for classification in both day and night-time, and over cloud-covered areas. We 

explore the applicability of optical-radar fusion for a crop inventory of sugarcane and rice in the 

coastal plains of Guyana in South America. Land use in Guyana has changed considerably. A crop 

inventory could provide insight into the extent of the land use change and identify alternative 

cropping patterns for abandoned land. A most recent set of images and acquisition dates were 

evaluated to distinguish between rice and sugarcane. Supervised classification using single-sensor, 

single-date images showed better performance with Sentinel2 (81% overall accuracy), compared 

to Landsat8 and RADARSAT Constellation Mission (RCM). Landsat8 is suitable for the mapping 

of sugarcane areas, and Sentinel2 is suitable for rice. However, for the simultaneous classification 

of both crops, the Sentinel2-RCM (accuracy of 84% and kappa of 0.82) is better than single-sensor 

classifications using only Landsat8, Sentinel2 and RCM. Better class accuracies were observed for 

rice when most of the fields are at the vegetative, reproductive, and mature stages. For sugarcane, 

the tillering, grand growth, and early maturity stages are most suited for a crop inventory. The 

results provide a basis for the design of an operational system for the mapping of rice and 

sugarcane areas in Guyana and other tropical regions. 

1. Introduction 

Monitoring crop area production is essential for various planning activities. In the context 

of agricultural water management, crop area information, alongside irrigation requirements, is 



 

36 

 

necessary to calculate the volume of water to be released to farms. Accurate data on the area 

planted provides a more exact estimate of irrigation allocations.   

Remote sensing is a common approach for large-scale crop monitoring. National crop 

inventories, such as in the US (USDA, 2019), Canada (AAFC, 2022) and the UK (UKCEH, 2022) 

rely on optical and radar satellite images (MODIS, Landsat-5, AWiFS, DMC, Sentinel1, Sentinel2 

and Radarsat2) to generate crop area information. The general process of an inventory or 

classification is by running a trained algorithm over a set of satellite images for a target area. 

Satellite images will have differing data and resolution accuracy depending on the satellite, sensor 

and wavebands selected.  The trained algorithm, meanwhile, can be prepared using supervised or 

unsupervised classification.  

A few global annual crop mapping and forecasting services also exist such as the Crop 

Explorer by the USDA Foreign Agricultural Service (2022), Crop Watch bulletins by the Institute 

of Remote Sensing and Digital Earth of the Chinese Academy of Sciences (CropWatch, 2022), 

Monitoring Agricultural ResourceS by the European Commission (2022), and the Global 

Information and Early Warning System on Food and Agriculture by FAO (2022).   

Due to the importance of rice to the food security of many cultures around the world, some 

institutions have produced country-wide maps specifically for rice. For example, the Philippine 

Rice Information System provides a country-wide map of areas planted with rice and their 

estimated yield during each cropping season using Sentinel1A images and the ORYZA crop model 

(Alosnos et al., 2019; PHILRICE, 2022). Research on methods for mapping rice areas has also 

been done at the global scale to map rainfed, irrigated and paddy croplands using MODIS, climate 

date, and existing statistical crop surveys and inventories (Salmon et al., 2015). Other country- or 

region-wide mapping studies have been done in West Indonesia (Sianturi et al., 2018; Thorp and 
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Drajat, 2021), the Mekong River Delta in Vietnam (Bouvet and Le Toan, 2011; Kontgis et al., 

2015), and China (Wei et al., 2022; Zhan et al., 2021). 

Mapping of sugarcane areas is operational at the national level in Brazil through the 

Canasat Project which provides annual maps of sugarcane cultivation areas and harvested fields 

using multitemporal and multispectral images from Landsat and the China-Brazil Earth Resources 

Satellite (CBERS) (Canasat, 2022; Rudorff et al., 2010). Sugarcane mapping studies have also 

been done in Guangxi, China (J. Wang et al., 2020); Longzhou, China (Wang et al., 2019); 

southeast India (S. Wang et al., 2020); and in Sao Paulo Brazil using object-based image analysis 

(Luciano et al., 2019).  

1.1. Classification using optical and SAR satellite images 

High spectral resolution sensors can pick up subtle variations between different crops or 

land cover subclasses (Qin et al., 2022; Hamzeh et al., 2016; Pfitzner et al., 2022). In addition to 

the bands provided by high spectral images, indexes also improve classification by providing an 

additional value for classification. The Normalized Difference Vegetation Index (NDVI) is one of 

the common indexes used to indicate vegetation health (De Oto et al., 2019; Feng et al., 2022; 

Ihuoma and Madramootoo, 2019; ILRI, 2022.). A comparison by Zhi et al. (2017) on vegetation 

indexes has showed NDVI to be the optimal optical index for identifying rice phenology as 

compared to 11 other indexes such as the enhanced vegetation index, simple ratio and chlorophyll 

index. NDVI values above 1 or below zero are usually indicative of non-vegetated areas, and are 

thus, also helpful in distinguishing vegetation.  

In recent years, there is increasing use of radar sensors for crop inventory (AAFC, 2022; 

Homayouni et al., 2019; Pei et al., 2011; UKCEH, 2022). The active transmission of SAR satellites 

allows sensors to use its energy to illuminate and thus detect and record images at any time. Clouds, 
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and other less dense matter, do not interact with the SAR signals, making SAR appealing for 

remote sensing studies over regularly clouded areas such as the tropics. One of these SAR data 

sources is the RADARSAT Constellation Mission (RCM) which consists of three small synthetic 

aperture radar (SAR) satellites flying in a constellation configuration. It was launched in June 

2019, and new applications of the products are currently being developed. The RCM provides 

compact polarization. In this configuration, the signal transmits waves at circular or compact 

polarizations and receives the backscatter either along H or V vectors (Touzi and Côté, 2019). 

Recent results have shown that the multi-frequency and compact polarimetric images from RCM, 

when combined with fully polarimetric data, were useful for estimating soil moisture conditions, 

improving ship detection and classification, and mapping geological structures (Singhroy et al., 

2021). This study is a first for mapping tropical crops using RCM.  

1.2. Remote sensing in Guyana 

Cloud cover is a challenge to remote sensing activities in Guyana. It is overcast for most 

of the year, and partly cloudy for the rest. A review of Landsat8 images from 1990 to 2009 

identified only 280+ viable cloud-free images, in which more than 70% were taken between 

August to November (GFC and Poyry Forest Industry [PFI], 2011). Its climate has two rainy 

seasons: one from December to January, and a wetter season from April to August (US Army 

Corps of Engineers [USACE], 1998). The two rainy seasons dictate the start of the two main 

planting periods. The first season of rice is planted between May and June, while the second season 

is from November to December (Guyana Rice Development Board [GRDB], 2022). Sugarcane is 

mostly planted during the second season.  

 A national forest inventory (GFC and PFI, 2011) has been conducted in Guyana. 

Other remote-sensing studies done are the detection of artisanal gold mining in forests (Stoll et al., 
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2022), mapping of mangrove areas (Nedd et al., 2021) and identifying episodes of coastline 

advance and retreat (Ahmad and Lakhan, 2012).  Time-series radar and Landsat data fusion 

techniques were used to estimate coastline changes and map land cover along the coastal areas 

(Singhroy, 1996, 1995; Singhroy et al., 2021).  

There is currently no methodology for an operational crop inventory in Guyana.  To 

contribute to filling this gap, this study will evaluate the suitability of Landsat8, Sentinel2, RCM 

and optical-radar fusion as image inputs for the crop inventory. Furthermore, we will also test the 

performance of the classification for varying acquisition dates. This study seeks to address the 

following research objectives:   

i. Analysis of the performance of classifying rice and sugarcane areas using single-date 

images from Landsat8, Sentinel2 and RCM; 

ii. Assess the accuracy of classification using a combination of optical and radar data;  

iii. Establish the considerations for deciding the image acquisition date for the crop inventory.  

2. Methodology 

2.1. Site selection 

Guyana is located between 1.18° and 8.44° N, with the Atlantic Ocean at its north, and 

Venezuela, Brazil and Suriname at its borders. Its major crops are rice and sugarcane, which are 

grown along the Atlantic seacoast stretching from the Pomeroon River to the Corentyne River. 

These agricultural lands comprise 1.54% of the total land and contribute around 16.8% to the 

national GDP (Bank of Guyana, 2020). Most of the rice is grown at West Berbice in Region 5, 

Essequibo in Region 2, and Frontlands in Region 6 (GRDB, 2016b). Meanwhile, the major 

sugarcane estates are Albion/ Port Mourant in Region 6, Blairmont in Region 5 and Uitvlught in 
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Region 3 (GuySuCo, 2018).   

West of the Berbice river from the Number 40 to Waterloo villages was selected for the 

classification. The site encompasses parts of Region 5 and Region 6 and has a good mix of 

sugarcane estates, rice fields, and other land use. Two areas-of-interest (AOI) (in Figure 3.1) were 

selected: one for training near Bush Lot village, and one for testing at Waterloo village.  Figure 

3.2 shows the rice and sugarcane crops in the testing and training areas on June 25th, 2022.  The 

fields followed the regular planting schedule and represented the usual field view during June.  

 

Figure 3.1. Area-of-interest used for training and testing. 
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Figure 3.2. Rice (A) and sugarcane (B) fields at the study site in June.  

2.2. Satellite data and pre-processing 

Images covering the coastline from Number 40 to Waterloo villages were acquired for 

May, June and October 2021, and January 2022. The final set of selected images for Landsat8, 

Sentinel2 and RCM are shown in Table 3.1. 

Table 3.1. Final selection of images for each satellite per acquisition month. 

Month Landsat8 Sentinel 2 RCM 

May 2021-04-29 2021-05-12 2021-05-02 

June 2019-05-26 2021-06-11 2021-06-10 

October 2021-10-06 2021-10-09 2021-10-01 

January 2022-01-08 2022-01-12 2022-01-08 

 

Landsat 8 Operational Land Imager is an optical satellite, designed and managed by the 

NASA and the US Geological Survey (USGS) from 1972 to the present. It provides reflectance 

for 11 bands at 15, 30, and 100 km spatial resolution at a revisit time of 16 days (USGS, 2022). 

Meanwhile, Sentinel2 is managed by the European Space Agency. It provides data on visible light, 

and infrared bands at 10, 20 and 60 m spatial resolution at a revisit of 10 days per satellite or 5 

days for the whole constellation (ESA, 2022). The RCM, meanwhile, provides SAR images using 
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its fully polarimetric capabilities, in addition to single-polarization (HH, HV, VV), conventional 

(HH-HV, VV-VH, and HH-VV), and hybrid (i.e., compact) dual polarization. The RCM is 

designed to transmit and receive C-band at 12 days frequency per satellite or 4 days for the whole 

constellation at a spatial resolution of 3 to 100m depending on the imaging mode (CSA, 2021). 

2.2.1. Preprocessing  

The RCM images were C-band RCH and RCV, taken at 5 m resolution. Radiometric 

correction, multi-look, speckle filtering and terrain correction were performed. For Landsat8, 

images from the Level2 Collection2 Tier1 were used. Collection 2 images have been corrected 

with terrain correction, radiometric calibration, and radiometric saturation; Level2 images are 

products taken at a 76’ solar zenith angle, thus reducing shadows in the image; and Tier 1 are 

scenes of the highest available data quality (USGS, 2022). The scenes were projected to WGS 

1984 UTM Zone 21N. The Sentinel2 images, meanwhile, were Level 1C Top-of-the-atmosphere. 

The bands at 10 meters resolution were used along with the infrared bands at 20 meters resolution, 

as shown in Table 3.2. Atmospheric correction was done to convert from 1C to 1A Bottom-of-the-

Atmosphere. For both Landsat8 and Sentinel2, the NDVI was calculated, and all the bands were 

stacked.  

Table 3.2. Bands used and their spatial and spectral resolution  

Satellite Landsat8 Sentinel 2 

Spatial 

resolution 
30 meters 10 meters 20 meters 

Bands used 

(Code and 

wavelength) 

B1: 435 – 451 nm, ultra-blue 

B2: 452 – 512 nm, blue 

B3: 512 – 590 nm, green 

B4: 636 – 673 nm, red 

B5: 851 – 879 nm, NIR 

B6: 1,566 – 1,651 nm, SWIR1 

B7: 2,107 – 2,294 nm, SWIR2 

B2: 490 nm, blue 

B3: 560 nm, green 

B4: 665 nm, red 

B8: 842 nm, VNIR 

B5: 705 nm, VNIR 

B6: 740 nm, VNIR 

B7: 783 nm, VNIR 

B8a: 865 nm, NIR 

B11: 1610 nm, SWIR1 

B12: 2190 nm, SWIR2 
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Satellite Landsat8 Sentinel 2 

Computed 

Index 
NDVI NDVI 

 

2.2.2. Generating reference images and criteria for rice and sugarcane 

Sample points were generated all over the AOIs. They were manually classified and then 

confirmed with experts familiar with the area. In the satellite images, sugarcane fields were 

observed to have a very distinct pattern, as seen in Appendix A. Rows can be identified, especially 

in high-resolution images. Deep furrows appear every two rows. The whole field, which averages 

six ha, is bisected by an in-field collector drain (GuySuCo, 2022). The farm irrigation canals are 

wider and are easily distinguishable in satellite images. Meanwhile, a rice field (Figure 3.3 A) can 

range from 0.5 to 6 ha. Regardless of the field dimensions, rice farms are significantly smaller than 

sugarcane farms. Because rice is planted by broadcast or by closely spaced rows, it appears as 

uniform green bands in satellite images. The false-colour images using SWIR - NIR - Red 

(Landsat8: B6-B5-B4, Sentinel2: B11-B8a-B4) were also used to differentiate between soil and 

flooded fields; and soil and newly planted crops. The reference images and criteria shown in 

Appendix A were used to help classify each sample point. 

  
a. Rice fields  b. Sugarcane fields 

Figure 3.3. Rice (a) and sugarcane (b) fields, as observed from satellite images 
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2.3. Image classification and accuracy analysis using single satellite images 

Supervised classification is a method of identifying a pixel’s class based on statistical 

similarities between its band values and those of training points with a known class. An image was 

selected for Landsat8 (2021-04-29), Sentinel2 (2021-05-12) and RCM (2021-05-02). Each of the 

three images was clipped with the AOI for training and used for supervised classification. Several 

training points were manually identified for each of the 10 classes: rice, sugarcane, mixed 

vegetation, grassland, soil, cloud shadow, clouds, water, forest and settlements. To extract 

meaningful information from the satellite data, a spectral-based pattern recognition algorithm is 

used. It is chosen over object-oriented algorithms because of its use of the spectral information at 

each pixel to identify its class. Moreover, it is available in many free and open-source software, or 

commonly used GIS processing software. This allows an easier replication or adoption of the 

methods in this study. The maximum likelihood, a spectral-based algorithm, assigns pixels to a 

class based on their band fit with the normal distribution of each class’s band (Casella and Berger, 

2002). It was used for its rapid processing and low computing resource requirement. The 

probability threshold was set to zero to force the program to classify all pixels. The classification 

algorithm was run using the training images and the training points. The classified images were 

then smoothed and aggregated using majority analysis with kernel size 7.  

Once the classification of the training image was acceptable by visual inspection, a 

statistical analysis was done to check its accuracy. First, the supervised classification was run for 

the whole image using the trained set of algorithms, training points and parameters. The classified 

image was then clipped with the testing AOI. Random sample points were generated, and the actual 

class of each point was checked by referring to several sources: true-colour image, false-colour 

image, Google Earth, ESRI World Imagery, and confirmation with field photos and experts. 
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Satellite imagery had been used to validate the class of the sample points when field validation is 

not possible, such as when the study period is in the past and land use has changed considerably 

such as forest degradation (Chen et al., 2021),  land cover change (Feranec et al., 2000; Li et al., 

2021), and cropping pattern changes (Lunetta et al., 2010) over several years; or the locations are 

expensive for field validation such as remote islands (Hanintyo et al., 2021), caribou areas for 

lichen cover monitoring (Jozdani et al., 2021) or tracking forest fires (Sifakis et al., 2004).  

A confusion matrix was generated to compare the actual with the predicted class. The 

optical image which produced the highest accuracy was stacked with the RCM image for the 

optical-radar fusion. A similar procedure for training and accuracy analysis was carried out on this 

image to determine the performance of the fusion as compared to single-sensor images.  

2.4. Multi-date image classification and accuracy analysis  

The sensor which gave the highest accuracy between Landsat8 and Sentinel2 was fused 

with RCM and used for the analysis on varying image acquisition dates. Images were downloaded 

for May, June and October 2021, and January 2022. Preprocessing was done as described in 

Section 2.2, and classification training and testing as in Section 2.3.  

The results of each acquisition date were overlayed with the crop calendar for rice and 

sugarcane to determine the performance of the classification across the crops’ various growth 

stages. The crop calendar is based on the pattern of land cover change observed across the four 

images; the known growth duration of the crop; and the usual planting period of rice and sugarcane. 

Both sugarcane and rice fields are flooded weeks before planting to control weeds. A sequence of 

bare soil, flooded fields and vegetation indicates the start of a cropping season.  

SNAP and its Sen2Cor processor were used for pre-processing; ENVI Version 5.6.1 for 

the supervised classification and most of the data transformation and analysis; and ArcGIS for the 
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creation and processing of random sample points.  

3. Results and Discussion 

3.1. Classification using single-sensor images 

 

Figure 3.4. The overall accuracy of classification using various satellite images  

The classification using single-date, single-sensor images from Landsat8, Sentinel2 and 

RCM achieved an average overall accuracy with Sentinel2 at 81% (kappa coefficient = 0.78) as 

shown in Figure 3.4. The overall accuracy (OA) is the percentage of true positive over the total 

testing points for all classes, while the kappa coefficient compares the performance of the 

classification to random. A kappa coefficient of zero means that the classification is as good as a 

random classification. The overall accuracy and kappa coefficient of the classifications using the 

three satellites compare well with similar crop inventories, as shown in Table 3.3. An overall 

accuracy ranging from 60 to 90% was obtained by other studies for single image classifications 
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using optical satellites (SPOT, Landsat8, Sentinel2). Classifications using an individual SAR 

image have been proved to be inaccurate with at most 66% overall accuracy. A time series of SAR 

images or a combination of SAR with other satellite images are more promising methods for 

classifications using SAR. 

Table 3.3. Overall accuracy of a single image classification using optical or SAR images 

Author/s Satellite 
Overall 

accuracy (%) 
Location Classes 

A. Optical 
 

 
  

Blickensdörfer et al. 

(2022) 

Sentinel2 + 

Landsat8 

67 – 70 Germany Various crops 

Yan et al. (2021) Sentinel2 79 – 81 Sanjiang Plain, 

Chian 

Various crops 

Marais-Sicre et al. 

(2020) 

Formosat-2 56 Toulouse, 

France 

Various crops 

Steinhausen et al. (2018) Sentinel2 85 – 87 Chennai Basin, 

India 

Land cover including 

agriculture 

Cai et al. (2018) Landsat 60 – 90 Illinois, USA Corn and soybean 

Zhu et al. (2012) Landsat 

 

78 – 87 Eastern 

Massachusetts 

Land cover including 

agriculture 

McNairn et al. (2009) SPOT 

Landsat 

77 – 81 

67 – 72 

Canada Various crops 

B. SAR 
 

 
  

Blickensdörfer et al. 

(2022) 

SAR: Sentinel1 63 – 66 Germany Various crops 

Marais-Sicre et al. 

(2020) 

TerraSAR 

Radarsat-2 

Alos 

42 

49 – 55 

35 

Toulouse, 

France 

Various crops 

Idol et al. (2016) SAR: Radarsat2 39 - 62 Wad Mani, 

Sudan 

Land cover including 

agriculture 

Zhu et al. (2012) SAR: PALSAR 31 Eastern 

Massachusetts 

Land cover including 

agriculture 

 

The land cover complexity of Guyana prevents getting very high values for overall 

accuracy and kappa coefficient. A single class, such as mixed vegetation, encompassed a diverse 

subset, such as abandoned sugarcane farms, vegetable gardens, shrubbery, mangroves, and 

coconut plantations. There are also wetland vegetation areas which were classified either in the 
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mixed vegetation or the water class depending on the intensity of aquatic plant growth. With the 

large scope of each class, the statistical measurements of the band will average out over the 

subclasses in its scope. Specifying a class, such as rice and sugarcane, assists in more accurately 

obtaining the class spectral reflectance and band statistics. It has also been shown that when the 

landscape becomes more heterogenous, vegetation indexes play a more important than spectral 

bands in the classification (Zhang et al., 2021). 

3.2. Classification by optical-radar fusion 

3.2.1. Overall accuracy (OA) of classification 

The overall accuracy of Sentinel2 is generally good for an inventory. A higher accuracy 

can be achieved by testing different methods of image preprocessing, classification methods, and 

sets of input images. For this study, we tested different satellite images, fusion of optical and radar, 

and varying acquisition dates to improve the overall and class accuracies achieved. 

Between the two optical satellites, Sentinel2 was chosen to be fused with RCM, not only 

for its higher overall accuracy and kappa coefficient but also because of its high spatial and spectral 

resolution. The classification using Sentinel2-RCM produced an overall accuracy (84%) and kappa 

coefficient (0.82) which are higher than the single data images. The accuracy obtained compared 

well with similar crop inventory studies using optical-radar fusion such as Sentinel2 – Sentinel1 

(UKCEH, 2022); Sentinel1 - Sentinel2 - Landsat8 (Blickensdörfer et al., 2022); Landsat8 – 

MODIS - Sentinel1 (Ajadi et al., 2021); and Formosat2 with TerraSAR, Radarsat-2 and Alos 

(Marais-Sicre et al., 2020) which have reported between 71 to 95% overall accuracy. The 

Sentinel2-RCM fusion also gave better class accuracy for rice (UA = 100%, PA = 95%) and 

sugarcane (UA = 95%, PA = 100%).  

Sentinel2 had low class accuracy for sugarcane due to misclassification with mixed 
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vegetation. By fusing RCM with Sentinel2, the two classes were more easily distinguished as 

reflected in the improved accuracy of the class. 

3.2.2. Class accuracy for rice and sugarcane classification 

A classification’s performance for each class is described by the class accuracies: user’s 

accuracy and producer’s accuracy. The user of a map is concerned about the map’s reliability, i.e., 

how often is the map correct when it shows that an area is under sugarcane.  It is expressed as the 

user’s accuracy (UA) and is computed as in Equation 1. Meanwhile, map producers are concerned 

about the maps’ truthfulness with reality, and how often the map correctly captures the areas of 

the class. The producer’s accuracy (PA) is given in Equation 2.  

Equation 1.     𝑢𝑠𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑈𝐴)  =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  𝑜𝑟  1 − 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  

Equation 2.     𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑃𝐴) =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  𝑜𝑟 1 −  

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
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Figure 3.5. Class accuracy for rice using various single-date satellite images for 

classification 

 

Figure 3.6. Sugarcane class accuracy using various satellite images 
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Landsat8 performed well for sugarcane (Figure 3.6: UA = 95%, PA = 95%), but not for 

rice (Figure 3.5: UA = 58%, PA = 50%). Most of the rice areas were misclassified as grass, and 

vice-versa. The low spatial resolution of Landsat8 is not suitable for some of the rice fields of 

Guyana, which can be as narrow as 25 meters. Whereas Sentinel2 was able to capture the rice areas 

with a PA of 100% and UA of 85% because of its higher spatial and spectral resolution compared 

to Landsat8. However, it did not perform adequately for sugarcane. Some abandoned and 

overgrown sugarcane farms were detected and falsely classified under sugarcane. Without a high 

smoothing and aggregation kernel size, areas within sugarcane fields were classified under 

grassland or mixed vegetation. The higher pixel resolution of Sentinel 2 makes the classification 

detect granular non-uniformity within the fields and the sparse cover between crop rows. Spatial 

resolution is highly influenced by the target features to be classified. Larger plantations and crops 

planted with wide row spacings, such as sugarcane, are better classified using lower spatial 

resolution. Meanwhile, narrow plots and fields with narrow row spacing, such as rice fields are 

better identified using higher spatial resolution.  

 Classification using a single-date RCM image showed inferior performance for both crops 

with class accuracies ranging from 10 to 62%. Sugarcane was misclassified with the grass and 

forest class, and rice was misclassified with grass, even at a high smoothing kernel size. The very 

high spatial resolution of RCM poses the same problem using Sentinel2 for sugarcane, wherein 

non-uniformity within the fields and between rows was detected. Further work needs to be 

conducted to explore the different polarimetric bands of RCM and time series to improve the 

separation of rice sugar cane grass and forest.  Moreover, classification by radar uses a land cover’s 

structure and surface texture to classify each pixel instead of reflectance at the visible light and 

infrared region. Most of the vegetation classes will have nearly the same roughness. Lastly, the 



 

52 

 

RCM classification was done using only two bands: C-Band RCH and C-Band RCV. This gives 

the algorithm less basis for classification when using RCM images as compared to Landsat and 

Sentinel2 which have more 7 and 10 bands, respectively. The maximum likelihood algorithm, and 

most other classification algorithms, rely on the statistics of each band to determine a pixel’s class. 

Fewer bands, therefore, provide less basis to accurately classify a pixel. In the same way, using 

more bands such as when fusing optical and radar, would be beneficial since data from the visible, 

infrared and radio wave parts of the spectrum could be used. While RCM could be used to identify 

vegetation, water, and urban areas, single-date RCM images could not be used on their own to 

differentiate between vegetation classes. 

3.3. Effect of the acquisition date and crop stage on accuracy 

 Sentinel2-RCM fusion was used for the classification and accuracy analysis by date 

because of its better performance compared to the single-sensor classifications. It performed well 

for May, June and October 2021, and January 2022 and had a consistent OA (82 to 87%) and 

kappa coefficient (see Table 3.4).   

 

Table 3.4. Overall accuracy and kappa of classification for each acquisition date  

Acquisition Date 2021-MAY 2021-JUNE 2021-OCT 2022-JAN 

Overall accuracy (OA) 84.00% 82.73% 86.67% 86.11% 

Kappa coefficient 0.8221 0.8063 0.8500 0.8438 
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3.3.1. Higher accuracy was obtained at the vegetative, reproductive, and mature stages of rice 

 

Figure 3.7. Classification accuracy of rice using Sentinel2-RCM at various acquisition 

dates. 

The class accuracy for rice was inconsistent and dipped to 45% UA in June (see Figure 

3.7). Most of the misclassification is with the grassland class. This is because the rice is in its early 

stages of growth and has similar backscatter as the grassland. Upon overlaying a crop calendar of 

rice with the class accuracies by date, we observe that the June image coincides with when most 

of the fields were flooded, cultivated or newly planted fields. This is because the rice seeding is 

conducted in flooded fields - about 3 cm of water over the soil. The classification misidentified 

newly planted fields with grassland, indicating that it is best to avoid this crop stage when doing 

the crop inventory. Not only are there insufficient planted fields to get a good estimate of the total 

planted area, but also the rice in the fields is too young, short, and sparse to be spectrally distinct 

from grass. In addition, during June, the rice fields vary between bare soil, flooded fields and fields 
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with rice crops at about 6 cm high. This clearly can lead to misclassification because each farmer's 

plots have different management in the early stages.  At the late vegetative and reproductive stages, 

rice crops have a more distinct and consistent backscatter and reflectance (Verma et al., 2019).  

 Therefore, good accuracies were obtained when most of the rice fields are at the late 

vegetative, reproductive, and ripening stages which range from 21 to 109 days after planting based 

on the growth duration of the GRDB10 variety (in Table 3.5). GRDB10 is the most common 

variety grown in Guyana followed by GRDB9 and G98-22-4 (GRDB, 2016b).  

Table 3.5. Rice growth duration based on GRDB10 variety.  

Crop stage Days after Planting (DAP) 

Dormancy and Tillering 0 to 21 

Late vegetative 21 to 57 

Reproductive 57 to 87 

Ripening/ Mature 87 to 109 

Note: Data from GRDB, 2016c. 

The usual peak rice planting period in Guyana is May to June for the first season and 

December for the second season. Following this schedule, the June image in Figure 3.8 is supposed 

to show most fields at the newly planted or vegetative stages. However, most of the fields observed 

were flooded, thus indicating late planting. The light blue areas in Figure 9 show shallow muddy 

water and the black areas show deeper standing water.  Climate reviews and weather reports 

confirmed that a weak La Nina was present (Hydrometeorological Service of Guyana, 2021). 

There was severe flooding on May 20, 2021 (OCHA, 2021). This could have hindered the supply 

of farm inputs as farmers wait for the water to drain to a suitable level for either land preparation 

or planting. 
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* Flooded fields are in blue, bare soil in brown and vegetated areas in green.) 

Figure 3.8. False colour image (SWIR-NIR-Red) of rice areas in June 2021. 



 

56 

 

3.3.2. Higher accuracy was obtained at tillering, grand growth, and early maturity stages for 

sugarcane 

 

Figure 3.9. Classification accuracy of sugarcane using Sentinel2-RCM at various image 

acquisition dates 

The classification of sugarcane fields produced lower class accuracy when the June and 

January images were used (See Figure 3.9.). June coincides with late maturity and harvest, and 

January with the establishment stage. Sugarcane’s establishment phase occurs within 60 days after 

planting and was misclassified with grassland, in the same way as grassland was misclassified with 

newly planted rice. The late maturity and harvested stages of sugarcane were misclassified with 

mixed vegetation. Better accuracies are observed when the crop is at tillering, grand growth, and 

early maturity stages which occur 3 to 13 months after planting (in Table 3.6). 
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Table 3.6. Sugarcane growth stage duration.  

Crop Stage 
Months after Planting (DAP) 

New Plant Ratoon 

Establishment 0 to 2 0 to 1 

Tillering 3 to 4 2 to 3 

Grand Growth 5 to 10 4 to 9 

Early maturity and ripening 11 to 12 10 to 11 

Late maturity 13 to 14 12 to 13 

Note: Data from Eastwood, 2009; Gaj, 2014; Molijn et al., 2019 

 

The classification also shows that sugarcane field activities are not synchronous within 

each block, or group of fields, and do not follow the usual crop calendar. There were also areas 

which fit the sugarcane field pattern but were classified as mixed vegetation. Upon closer 

inspection, these areas were indeed overgrown and are abandoned sugarcane fields. 

 

3.3.3. Recommended image acquisition dates for the crop classification inventory of rice and 

sugarcane 

 The image acquisition date is indeed an important consideration when designing an annual 

crop inventory program. Figure 3.10  shows the rice and sugarcane areas identified by the multi-

date classification for May, June and October 2021 and January 2022. When the acquisition date 

coincides with land preparation, very few fields are identified. To get a complete picture of the 

crop areas for each season or annually, the images must be acquired when suitable crop stages are 

present in the field. The mapped areas of each image can also be added-up into one map.  However, 

the false positives from each image will be included in the final crop area. A temporal analysis can 
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be done to identify the planted areas more accurately across several images. 

 

Figure 3.10. Mapped rice and sugarcane areas using the multi-date fusion of Sentinel2 and 

RCM compiled from the different acquisition dates. 

 

The major crop stage or field activity is an indicator of the best months to acquire images. 

The plot of the rice and sugarcane calendar in Table 3.7 shows the range of crop growth stages 

which can be observed for each month based on the usual planting period. The stages suitable for 

a crop inventory for rice and sugarcane are the dominant stages in the field from January to March 

and June to August which represent crop maturity. Acquisition of images during these months is 

thus recommended if planting follows the usual cropping calendar. Otherwise, the date of image 

acquisition can be adjusted depending on the prevailing cropping calendar in the area. 
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Table 3.7. Guideline for satellite image acquisition months for crop inventory of rice and 

sugarcane in Guyana  

Crop Stage 
Months 

J F M A M J J A S O N D 

Rice Bare Soil 
  

x x 
     

x x 
 

Flooded 
  

x x x 
    

x x x 

Tillering x 
  

x x x 
    

x x 

Late vegetative a x x 
  

x x x 
    

x 

Reproductive a x x x 
  

x x x 
    

Ripening a 
 

x x x 
  

x x x 
   

Harvested 
  

x x 
   

x x x 
  

 
 J F M A M J J A S O N D 

Sugarcane  
            

- First Crop Bare Soil 
        

x x x 
 

Establishment 
         

x x x 

Tillering a x x 
         

x 

Grand growth a 
 

x x x x x x x 
    

Early Maturity a 
       

x x x 
  

Late Maturity 
         

x x x 

Harvested 
          

x x 

- Ratoon Establishment 
          

x x 

Tillering a x x 
         

x 

Grand growth a 
 

x x x x x x x 
    

Early Maturity a 
       

x x x 
  

Late Maturity 
         

x x x 

Harvested 
          

x x 

 a Stages suitable for conducting the crop inventory of sugarcane and rice  

4. Conclusion 

  We compared the performance of Landsat8, Sentinel2 and RCM for crop inventory of rice 

and sugarcane in Guyana. The results have shown that when single-image data is used, the optical-

radar fusion of Sentinel2 and RCM is better than single-sensor classifications using Landsat8, 

Sentinel2 and RCM. The different class accuracies of rice and sugarcane for Landsat8 and 

Sentinel2 have also shown the importance of the target class’s features such as farm size, 

uniformity, and planting pattern. Landsat8 is suitable for classifying sugarcane areas, and Sentinel2 
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for rice. However, to conduct an inventory for rice and sugarcane simultaneously, the optical-radar 

fusion of Sentinel2 and RCM is more efficient and provides better results.   

Analysis by acquisition date has helped identify the crop stages which are most suitable for 

conducting a crop inventory: the vegetative, reproductive and mature stages for rice (2 to 4 months 

after planting); and tillering, grand growth and early maturity stages for sugarcane (3 to 12 month 

after planting).  

5. Recommendations 

Based on the findings of this study, the following recommendations are made: 

1. With optical-radar fusion, specifically Sentinel2-RCM for a crop inventory of rice and 

sugarcane, improvements to the classification can be done by exploring algorithms such as 

Random Forest or Decision Tree, or by using multi-date imagery during the mature stages of the 

crops.  

2. Given that Guyana is covered with clouds for most of the year, and few images are 

available for most months, multitemporal analysis can be explored to improve accuracy, detect 

field activities, and capture areas planted in the other season. An inventory for each region is more 

suitable to get cloudless images over an area.  

3. Other techniques for gathering cloudless images such as mosaicking and augmentation 

with images from UAVs can also be explored.  The UAV images which cover a small area can be 

used as low-level field verification of large areas covered by the satellite images.  

4. The application of optical and radar fusion can also be explored for the inventory of 

other crops or land cover classes. 
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8. Appendix 

Appendix A. Reference guide for classification of rice, sugarcane, and mixed vegetation. 

Crop and criteria Reference Image 

RICE 

- Green in False Colour (SWIR-NIR-

Red) 

- Mostly uniform green colour of the 

field  

- No visible furrow 

- Either square or a narrow rectangle 

 

 
 

 
SUGARCANE 

- Green in False Colour (SWIR-NIR-

Red) 

- Large rectangular parcel with 

rectangular plots 

- Plots separated by a canal  

- Rows of crops visible in plots 

(Sentinel2) 

- Rough grainy green, mostly uniform 

shade 

- Canals are either seen as water or soil 

 

  

MIXED VEGETATION 

- Green in False Colour (SWIR-NIR-

Red) 

- If in a non-agricultural area:  

- grainy or rough shades of green 

- Irregular shape 

- If in an agricultural area:  

- Abandoned farms: grainy green, 

distinct non-uniformity, bare soil 

patches present, irrigation lines 

are overgrown 

- Vegetables: uniform green with 

one furrow, no sub-plots 
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BRIDGING TEXT 

 

Chapter III discussed the methodology for a crop inventory in Guyana. With a full 

inventory over Guyana or a conservancy service area, the areas planted with rice and sugarcane 

can be identified and measured. This crop inventory is an important input to estimate irrigation 

requirements. The other important factor is the crop water requirement which will be obtained 

using simulations in AquaCrop. Chapter IV discusses how AquaCrop was used to simulate yield 

at a regional scale, and the impact of several irrigation scenarios on yield and farm water 

consumption for rice.  

This study is in preparation for submission to Agricultural Water Management. The paper 

is co-authored by Guia Marie M. Mortel and Dr. Chandra Madramootoo. The contributions of each 

author are mentioned on page 7. 
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CHAPTER IV 

Optimizing water productivity of rice in a tropical coastal plains heavy clay soil  

Abstract 

Rice (Oryza sativa) is an important staple crop in many parts of the world. In this paper, 

we used AquaCrop to investigate the response of rice growth to various irrigation scenarios in the 

Guyana coastal plains. AquaCrop was calibrated using field climate and soil data, estimated 

parameters and regional reports of yield from 2005 to 2008 for two seasons: Season 1 (planting 

from April to June) and Season 2 (from November to January). The most sensitive parameters 

during calibration were the days to maturity, weed coverage and crop coefficient at the maximum 

canopy. After calibration, the simulated yield was validated using reported yields from 2009 to 

2012. The validation showed that AquaCrop and the parameters used were adequate for yield 

simulations (RMSEn = 5.46 to 6.43%, RMSE = 0.1 to 0.23 ton/ha, MBE = 0.05 to 0.14 ton/ha).  

The calibrated parameters were then used in irrigation management simulations with 50, 60, 70, 

80, 90, 100, 110 and 120% water holding capacity at the rootzone (WHR), for which irrigation 

commences at the indicated %WHR and stops when field capacity (100%WHR) is reached. For 

the 100, 110, and 120% WHR, irrigation was continuous to maintain the indicated %WHR. A one-

way ANOVA of the yields (at a = 0.05) show that there is a statistically significant difference in 

yield among the eight scenarios, and no significant difference between the yields obtained from 

Season 1 and Season 2 crops. Among the eight irrigation scenarios, the yield is reduced for the 50, 

60, and 70% WHR with a significant difference (at a = 0.05) from the yields obtained from 90, 

100, 110 and 120%WHR. The water-saving scenario of 80%WHR can be used when irrigation is 

limited.  
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1. Introduction 

1.1. Rice cultivation in Guyana 

Rice cultivation is a priority to ensure food security in countries with rice-based diets. 

Globally, approximately 54 kg per capita, is consumed annually (OECD and FAO, 2022). These 

consumption values are expected to increase by 1.1% yearly as driven by the increasing population 

in Asia, Latin America and the Caribbean, and increasing per capita consumption in Africa (OECD 

and FAO, 2022). In Guyana, rice is the 2nd major crop after sugarcane and has approximately 

560,000 tons harvested annually of which 19% goes to domestic supply and 81% to exports 

(Guyana Rice Development Board [GRDB], 2016a). The dominant varieties used in Guyana are 

GRDB10, GRDB9, G98-22-4, G98-196 and G98135 (GRDB, 2016b). The rice farms span along 

Guyana’s coast facing the Atlantic Ocean to the north. The top rice-producing areas are Essequibo 

in Region 2, West Berbice in Region 5, and the Frontlands in Region 6 (GRDB, 2016a).  Region 

6, the area of the study site, has around 52, 874 (18%) ha of cropland of which 6.73% of the total 

land area or 19,396 ha are planted with rice (GLSC, 2004). Meanwhile, around 7% of Region 6’s 

total land area is barren overgrown rice croplands which were abandoned mainly because of the 

absence of enough irrigation and drainage facilities in the area (GLSC, 2004).  

The soil over most of the agricultural lands is a rich alluvial clay to silty clay hydraquent 

which stretches 32 km inland and is often associated with poor drainage (GLSC, 2013). Four major 

river systems on the coastal plains provide irrigation and drainage: the Corentyne River, the 

Berbice River, the Demerara River and the Essequibo River (USACE, 1998).  

 Irrigation for rice fields is controlled by conservancies, which are shallow reservoirs 

providing irrigation and flood control (USACE, 1998). Each conservancy collects rainwater within 

the catchment and releases it through several sluice gates which route water to consumers or major 
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rivers (Bovolo, 2014). The rehabilitation of drainage and irrigation systems and access dams has 

long been identified as a focus area for agricultural development, especially for the coastal region 

(GLSC, 2013). A survey of Guyana’s rice farmers by Mahdu (2019) found that around 39% of the 

respondents pump water into their fields because of the absence of an irrigation system or the very 

low water level in the nearby irrigation canal.  

When irrigation water enters the farms, it goes into basins enclosed by soil bunds of at least 

20 cm high. The fields are flooded after land preparation and drained 2 – 3 days after planting 

(GRDB, 2020, 2016c). After the initial draining, the fields are flooded again every 6 to 7 days 

which is a practice akin to AWD. The fields are also drained for the application of fertilizers and 

post-emergence herbicides, and harvest (GRDB, 2020). Continuous flooding is not performed 

unless it is needed to control weeds. In this method, called Pin-Point irrigation, the fields are 

flooded again from 5 DAP and kept flooded until harvest (Roel et al., 1999) with at least 7 cm of 

standing water as recommended by the GRDB (2016c). 

 Planting is done before the start of the wet season which occurs from April to August and 

from December to January (USACE, 1998). As such, there are two main planting seasons: April 

to June and November to January which we refer to as Season 1 and Season 2, respectively.  

1.2. Simulating rice growth using the AquaCrop model 

 Due to the importance of rice in many parts of the tropical world, it is often the focus of 

crop modelling studies using the AquaCrop, DSSAT-CERES and ORYZA models. AquaCrop is 

selected for this study because of its suitability for rice simulations in large-scale applications such 

as for a cluster of farms or regions. Large-scale applications of AquaCrop tend to be used for 

climate change impact simulations using projected scenarios such as the ‘Adapting irrigation to 

climate change (AICCA)’ project of the FAO and IFAD which modelled the response of irrigated 
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and rainfed rice and maize for the West Africa region (Salman et al., 2021); and wheat and 

sugarcane yield simulations along the Indus River Basin in Pakistan (Alvar-Beltrán et al., 2021).  

AquaCrop is based on three fundamental equations representing the physical process and 

relationships between the accumulated transpiration, biomass, and yield. Crop growth is driven by 

water, and the first basic computation is for evapotranspiration based on the percent canopy cover 

at any time (t), evapotranspiration (ETo) and crop coefficient (kc). A main accessibility feature of 

AquaCrop is its use of the effective canopy cover which can be more easily estimated visually as 

compared to the leaf area index. The model is also simplified by its use of stress coefficients and 

indicator thresholds. This reduces the number of required crop parameters and eliminates the 

modular simulation of processes such as the nutrient cycle, stomatal response to water stress, ion 

transport, stress signalling pathways, flowering, pollination, and waterlogging.  

For example, the stomatal response to water stress is represented by the water stress 

coefficient (ks), as shown in Figure 4.e. It ranges from 1 for unstressed to 0 for fully stressed. The 

coefficient value is based on the fraction of soil water depletion in the rootzone (Dr).   The stomatal 

stress is determined by a threshold (psto) value of Dr above which the crop starts to experience 

water stress and below which is readily available water (RAW). Above psto, the water stress 

coefficient becomes less than 1. The psto is a crop-dependent parameter with some crops, such as 

sugarcane, able to extract water more easily in drier soils, while some, such as rice and hot pepper, 

have lower psto values.  
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* a = water holding content at the rootzone, b = moisture content by volume, c = Dr, fraction of 

water depletion at the rootzone, psto = threshold of Dr, d = readily available water, e = water 

stress coefficient 

 

Figure 4.1. Relationship between units of measure of soil water content. 

The depletion at the rootzone (Dr) is the inverse of the water holding capacity at the 

rootzone (%WHR) (in Figure 4.1a-c). A 100%WHR refers to zero depletion and moisture content 

at field capacity, while 0%WHR is the moisture content at the permanent wilting point and the 

maximum Dr of 1, as illustrated in Figure 4.1a. The WHR, as shown in Equation 1, is the water 

content (in mm) in the root zone between the soil moisture content (%MCvol) at field capacity (FC) 

and permanent wilting point (PWP). To prevent confusion between the different water content 

terms, WHR will be used throughout this paper to describe soil water content 

  𝑊𝐻𝑅 = (%𝑀𝐶𝑣𝑜𝑙,𝐹𝐶  − %𝑀𝐶𝑣𝑜𝑙,𝑃𝑊𝑃 ) × 𝑟𝑜𝑜𝑡 𝑧𝑜𝑛𝑒 𝑑𝑒𝑝𝑡ℎ     (1) 

 Several studies have calibrated and validated AquaCrop parameters to model rice growth 

such as on the timing of transplanting of rainfed paddy rice in Lao (Kim et al., 2021), drying-



 

74 

 

wetting cycle in eastern China (Xu et al., 2019), and simulating the impact of climate change in 

sub-tropical environments (Raoufi and Soufizadeh, 2020), among many others. A comprehensive 

review of AquaCrop modelling studies from 2009 to 2019 found that around 10% of the studies 

were devoted to rice (Salman et al., 2021).   

AquaCrop provides a crop template for paddy rice, the detailed contents of which are 

published in the AquaCrop Reference Manual (Raes et al., 2018). The parameters are based on the 

contributions of several scientists who have tested and calibrated these parameters (Steduto et al., 

2012). A comprehensive review by Pereira et. al (2021) has released an updated set of crop 

parameters for AquaCrop based on several rice studies which have satisfied the criteria for defining 

crop parameters, producing accurate measurements, and satisfying transferability requirements. 

Updated values for the crop coefficient at the initial stage (kcini), middle of the season (kcmid) and 

end of the season (kcend); maximum root depth (Zx); and fraction of soil water depletion (psto) were 

provided. For flooded rice with dry seeding, the work of Alberto et al. (2014) in Los Baños, 

Philippines; Linquist et al. (2015) in California, USA; and Diaz et al. (2019) in the Rio Grande do 

Sul, Brazil have been used in the updated set of parameters.  

Building upon the comprehensive studies done to determine the crop parameters for rice, 

we evaluated the applicability of AquaCrop for modelling rice growth at Black Bush Polder in 

Region 6, along the Guyana coastal plains.  Various irrigation scenarios were simulated and based 

on the crop response; irrigation scenarios were recommended for the optimal use of water 

resources. 

2. Methodology 

2.1. Data and preparation of simulation files 

 The study location is at Black Bush Polder, Guyana (6°4’58” N, 57°15’57” W). It is near 
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the coast and the outlet of the Corentyne River. BBP is also part of Region 6, which is one of 

Guyana’s top rice-producing regions with approximately 20,000 hectares of rice land (GLSC, 

2004). Irrigation water is supplied by the Berbice and Canje Rivers.  

 

 

Figure 4.2. Average monthly rainfall and evapotranspiration at BBP (2005 to 2012). 

 

The data used for the AquaCrop climate file was obtained from the set-up of a field 

automatic weather station which had measured daily rainfall, minimum and maximum 

temperature, sunshine hours, and wind speed at 2 meters from 2005 to 2012. Two peak rainy 

months occur, one around May and another in December, as shown in Figure 4.2. The driest 

months, which are between September and November, have an average monthly rainfall ranging 

from 57 to 94 mm. The monthly rainfall varies from the average by 50 to 200 mm. The greatest 

variability is observed for December until March, and May to June, which are also notably the 

rainy months.  
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The daily ETo was computed by the AquaCrop ETo calculator based on the FAO Penman-

Monteith equation. The ETo averages 130 mm/month, with the highest values coinciding with the 

driest months. The ETO varies from the monthly average by 10 to 35 mm/month. The highest 

variability is observed from March to April.  Meanwhile, the monthly temperatures were consistent 

with the minimum temperature ranging from 24.6 to 26.1°C and the maximum temperature from 

30.6 to 32.9°C. The input for the annual mean atmospheric CO2 used the dataset of the Mauna Loa 

Observatory as provided within AquaCrop (FAO, 2018a; Raes et al., 2018).  

The soil data were obtained from soil core samples taken from 3 locations in the field at 

150, 300 and 450mm depth. The soil is clayey and made up of 2% sand, 34% silt and 64% clay. It 

has a %MCvol at PWP ranging from 32 to 35% and a %MCvol at FC from 49 to 51%. The soil is 

under the frontland clay soil group common to the whole coastal plain of Guyana (Braun and 

Derting, 1964) and is characterized by deep, gray, poorly drained clayey and silty soils. More 

specifically, the soil type is the drained phase of Corentyne clay. It is a swampland soil prone to 

waterlogging during heavy rains but has high fertility (GLSC, 2004). 

Other parameters used for the irrigation, field management and initial conditions files are 

based on informant interviews and reports of agronomic practices as discussed in Section 1.1. 

Meanwhile, the crop file was based on the AquaCrop paddy rice growing-degree-days. The growth 

schedule was first converted from growing-degree-days to calendar days using the local weather 

file. Then, some of the parameters were modified based on the varietal characteristic information 

of GRDB 10, and local agronomic reports. The GRDB10, the most common variety used, is a 

semidwarf with vigorous vegetative growth and high tillering ability. It has a potential grain yield 

of 6.8 to 7 tons/ha and matures within 106 to 112 DAP (GRDB, 2016d). A simulation file was 

created for the Season 1 crop and one for Season 2.  
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2.2. Calibration and validation 

 Once the input files were prepared, AquaCrop (FAO, 2018b) was run from 2005 to 2008. 

The resulting dry yield was converted to fresh yield by using a conversion factor of 80%. This 

comes from the GRDB (2016c) recommended harvest moisture of 18 to 21% moisture content. 

The yield of rice for 2009 – 2012 was provided in the GRDB annual reports and reported by region. 

The average yields for Region 6 were used for calibrating the simulation parameters. The 

calibration was done by adjusting parameter values to minimize the root mean square error, percent 

RMSE and mean bias error. The parameters calibrated were mostly non-conservative, and the 

values used ranged only within reported min-max values or within 10% of the default.  

 Validation was conducted using the final set of calibrated parameters from 2009 to 2012. 

Simulated yield and calibrated yield were statistically compared. Once the statistical analysis is 

acceptable, the parameters were further used for irrigation scenario simulations.  

2.3. Irrigation management scenario simulations 

The irrigation scenarios were set at 50%, 60%, 70%, 80%, 90%, 100%, 110% and 120% 

WHR. The percentage values correspond to the %WHR thresholds at which an irrigation input is 

triggered in the model.  Since the AquaCrop irrigation file for generating an irrigation schedule 

takes RAW depletion as input, the conversion at Equation 2 was used.  

  𝑅𝐴𝑊 𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 =  (1 − 𝑊𝐻𝑅) 𝑝𝑠𝑡𝑜⁄        (2) 

For the 50 to 90% WHR scenarios, the irrigation input is equal to the amount required to 

bring back the soil moisture content to field capacity; while for the 100 to 120% WHR scenarios, 

the input is equal to the amount necessary to maintain the soil moisture. An illustration of the 

different scenario thresholds and irrigation inputs is shown in Figure 4.3. 
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Figure 4.3. Threshold and irrigation target %WHR for each scenario. 

Using the crop parameters obtained after calibration, yields at varying irrigation scenarios 

were simulated. A one-way ANOVA and pairwise t-test were then conducted to check the 

significance of the results. 

3. Results and Discussion 

3.1. Calibration and validation 

Data for each of the parameters were obtained either through field-measured values, local 

data sources, or related literature. There were 11 parameters calibrated of which the days to 

maturity, weed coverage and crop coefficient at maximum canopy (kcmax) were the most sensitive. 

The range of values used for these three parameters (shown in Table 4.) resulted in a 5 to 10% 

change in the RMSEn. The values used for days to maturity were between 106 to 112 DAP based 

on the varietal characteristics of GRDB10. Meanwhile, for the weed coverage parameter, between 

10 to 15% values were tested for the kcmax parameter, values between 1.0 to 1.12 were tested during 

the sensitivity analysis. These values fall around the updated crop coefficients from Pereira et al. 

(2021). The least sensitive parameters were the soil curve number, sowing rate, maximum effective 
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rooting depth, and initial water depth between bunds. Changing these parameters did not affect the 

simulations.  

Table 4.1. Sensitivity of the simulated yield to some calibrated parameters. 

Parameter calibrated Range of values used Change in RMSEn (%) 

Days from planting to maturity 106 to 112 DAP 7 to 10% 

Weed coverage 0 to 15% 7% 

Crop coefficient (kc
max

)
 1 to 1.12 5% 

Duration of flowering 15 to 18 days 0 to 5% 

Reference harvest index (HIo)  41 to 45% 2% 

Days to max rooting depth 30 to 44 days 0 to 2% 

Maximum canopy cover (CCx) 85 to 99% 0.2 to 2% 

 

The sensitivity of the simulated yield with the parameters on the days to maturity, weed 

coverage and kcmax, indicates that field measurements of these values would significantly improve 

the simulations. Field measurements of the psto would also be very helpful to the simulations. The 

psto is valuable for determining RAW and the water stress coefficient, as shown in Figure 4. and 

Equation 2. The final calibrated parameters are as in Table 4.2. The full list of the simulation 

parameters can be found in Table 4.A1. 

Table 4.2. Simulation parameters and the values used. 

Parameter Value Source 

Soil:   

Saturated hydraulic conductivity (Ksat) 35.0 mm/day AQ 

Curve Number (CN) 77 AQ, Cal 

Crop:   

Type of planting method direct sowing F 

Sowing rate 134.50 kg seed/ha F, Cal 

Maximum canopy cover (CCx) 85% AQ, Cal 

Canopy decline (CDC) 13.8%/day F 

Days to emergence 21 DAP F 

Days to maturity 112 DAP F, Cal 

Duration of flowering 15 days AQ, Cal 

Days to flowering 77 DAP F 

Max effective rooting depth (Zx) 0.50 m AQ, Cal 

Days to max root depth 44 days AQ, Cal 
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Parameter Value Source 

Crop coefficient at CCx (Kcmax) 1 AQ, Cal 

Water Productivity (WP*) 19.0 g/m2 Con 

Reference Harvest Index (HIo) 41% AQ, Cal 

Management:   

Irrigation Method for rice Basin F 

Water Quality for BBP 0.0 dS/m F 

Soil covered by mulches None, 0% F 

Soil bund height for rice 0.20 m F 

Weed cover for rice 15% F, Cal 

Simulation:   

Planting Search Window for S1 May F 

Planting Search Window for S2 Nov F 

Initial Soil Water for rice At Saturation F 

Initial Water Depth between bunds for rice 100 mm F, Cal 

Initial salinity for BBP 0.02 dS/m F 

* Key: Cal = Calibrated, M = Measured, F = Localized field observation or information, Con = 

Conservative parameter, Lit = Literature, AQ = AquaCrop default 

 

After calibration, the simulated yield had a good agreement with the actual reported yield 

as shown in Table 4.3. The final RMSE, RMSEn and MBE for both Season 1 and Season 2 were 

deemed to be acceptable at a yield error threshold of 0.43 tons per hectare.  

Table 4.3. Agreement between simulated and actual dry yield (ton/ha) after calibration 

 Yield (ton/ha) RMSE 

(ton/ha) 

RMSEn 

% 

MBE 

(ton/ha) Year 2005 2006 2007 2008 

Acceptable at:     <0.43 <10 <0.43 

Season 1        

Actual Yield  3.1 3.7 2.9 2.8 
0.25 8.11 +0.06 

Simulated Yield 3.2 3.3 3.3 3.2 

Season 2        

Actual Yield  3.1 3.4 3.6 3.7 
0.24 6.94 -0.13 

Simulated Yield 3.2 3.1 3.3 3.2 

 

The set of calibrated parameters was validated using the 2009 to 2012 dataset, and the 

simulated yields, in Table 4.4, further confirmed that the parameters were acceptable and could be 

used for large-scale simulation. The validation also confirmed that in the absence of field-

calibrated crop parameters, AquaCrop simulations need at least location-specific soil and weather 
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data to produce acceptable yield estimates. The good performance of the model during calibration 

and validation gives us the assurance that the model can also be used to estimate yield for other 

water holding capacities. 

Table 4.4. Agreement between simulated and actual dry yield (ton/ha) after validation. 

Simulation 
Yield (ton/ha) RMSE RMSEn MBE 

2009 2010 2011 2012 ton/ha % ton/ha 

Acceptable at:     <0.43 <10 <0.43 

Season 1        

Actual Yield 3.2 3.2 2.8 3.4 0.17 5.46 + 0.05 

Simulated Yield 3.2 3.3 3.3 3.3 

Season 2         

Actual Yield 3.6 3.8 3.4 n/a 
0.23 6.43 - 0.14 

Simulated Yield 3.2 3.3 3.1 n/a 

 

3.2. Irrigation management scenarios 

3.2.1 Relationship of yield with irrigation scenarios and crop season 

 Since the statistical analysis of the validation was acceptable, we then proceeded with the 

irrigation scenarios simulations. A simulation was performed for each of the eight irrigation 

scenarios for the two planting seasons from 2005 to 2012. A one-way ANOVA of the yields shows 

that there is a significant difference between the yields of the various irrigation scenarios (p = 2.2e-

16 at a = 0.05). However, there was no significant difference in yield between rice planted in Season 

1 and Season 2.  This might be because both seasons are the two wet seasons in BBP. Furthermore, 

the average amount of rainfall received within one whole crop season is nearly similar in Season 

1 and Season 2, as shown in Figure 4.4. For the succeeding analysis, Season 1 and Season 2 will 

be aggregated. 
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Figure 4.4. Average total rainfall received (mm) for rice planted in Season1 and Season 2 

 

3.2.2. Response of yield from varying irrigation scenarios  

 

Figure 4.5. Simulated yield for rice at varying %WHR 
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Rice growth from 2005 to 2012 was simulated for the different irrigation scenarios. The 

simulated yield (in Figure 4.5) increases with increasing %WHR and plateaus upon reaching 

90%WHR. While rice is quite tolerant to flooded conditions, yield does not substantially increase 

with higher soil-water content. The 50% to 90%WHR represent irrigation deficit systems while 

the 100, 110 and 120% represent continuous flooding since in these scenarios an irrigation input 

is kept to maintain the target %WHR.  

Studies on the impact of irrigation schemes on rice yield vary widely. The works of Feng 

et al. (2021) and Poddar et al. (2022) have shown that when less water is used than in the traditional 

system of continuous flooding, the yield suffers. A field experiment in Eastern India (Poddar et 

al., 2022) of three irrigation schemes (continuous flooding, AWD, and fields kept at saturation 

(SAT)) showed that the grain yields obtained for AWD and SAT are 6 and 12% lower, 

respectively, compared to those obtained from continuous flooding. Their study found significant 

differences in yield response between the three different varieties used, denoting the significance 

of the variety on the effectivity of irrigation schemes. On the other hand, a study in the Rio Grande 

do Sul, Brazil has found that there was no significant difference in yield (p>0.05) between 

continuous irrigation and intermittent flooding scenarios (Borin et al., 2016). Similar results were 

also obtained in field experiments on rice in China and the Philippines (Belder et al., 2003).  

To consolidate these differing responses of rice yield to irrigation schemes, a landmark 

review by Bouman and Tuong (2001) of 31 sets of experimental data with varying soil and rice 

cultivars found that yield is indeed reduced for water-saving irrigation scenarios but only when the 

matrix potential at 10-20 cm soil depth goes below -100 to -300 mbar. This suggests that scenarios 

such as intermittent irrigation, AWD and irrigation deficit can be used with minimal impact on the 

yield provided that a safe operational level of matrix potential or water depth is maintained in the 
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field.  

In the case of rice farming in Guyana, the yield was indeed reduced below 90%WHR. To 

identify if the yield reduction at 50, 60, 70 and 80% WHR is significant, a pairwise t-test was 

conducted. The results in Table 4.5 show no significant difference between the 80%WHR and the 

90%WHR yield. When water is limited, an irrigation scheme following the 80%WHR is 

acceptable for efficient use of water at minimal yield loss.  

 

Table 4.5. The T-test between yield at 90%WHR and varying %WHR irrigation scenarios. 

  Scenarios (%WHR) 

90 80a 70b 60b 50b 

Average yield (tons per ha) 4.20 4.18 4.11 4.03 3.95 

- p-value ref. 0.35 4.9E-04 4.2E-10 2.0E-16 

Irrigation requirement  

(mm per ha) 
164 132 104 82 68 

a No significant difference from yield at 90%WHR (alpha = 0.05). 
b With significant difference from yield at 90%WHR (alpha = 0.05). 

 

The 80% scenario is suitable for growing rice in Guyana during dry periods and the 

90% WHR during regular conditions. However, there may be other considerations for the decision-

maker to pick other irrigation schemes such as weed management and salinity control. Table 4.6 

shows the moisture contents which can be used as thresholds, in conjunction with soil moisture 

sensors, to trigger irrigation operations. The minimum irrigation volume per application is also 

provided. It considers the field losses such as soil evaporation, runoff, and deep percolation. 

However, lateral seepage and conveyance losses still need to be estimated and included.  
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Table 4.6. Simulated crop parameters and irrigation information for each %WHR scenario 

WHR 
Simulated crop outputs MCvol 

threshold 

Irrigation 

volume per 

application 

Total irrigation 

volume per 

season Yield WP 

(%) (tons/ha) (kg/m3 H2O) (mm/mm) (m3/ha) (m3/ha) 

60 4.03 0.823 0.4454 616 822 

70 4.11 0.823 0.4608 462 1,043 

80 4.18 0.825 0.4762 308 1,318 

90 4.20 0.819 0.4916 154 1,643 

100 4.20 0.812 0.5070 95 1,881 

110 4.20 0.813 0.5224 233 3,191 

120 4.20 0.813 0.5378 400 5,166 

 

4. Conclusion 

 AquaCrop has been successfully calibrated and validated to simulate rice growth along the 

coastal frontland soils of Guyana. Field-measured data of the soil and climate had proven to be 

necessary for simulations alongside crop parameters obtained from local information and the 

AquaCrop rice file. The sensitivity analysis has shown, however, that the simulation can still be 

substantially improved if field measurements of the growth stage duration (e.g., days to maturity, 

duration of flowering, days to maximum rooting depth), percentage weed coverage and crop 

coefficient at maximum canopy cover could be obtained.  

 Irrigation scenarios were simulated of which the highest yields can be obtained at 

90%WHR. In this scenario, the soil water content is allowed to decrease until 90%WHR, upon 

which irrigation commences until the field is back to field capacity. Meanwhile, the 80%WHR 

scenario seems to be the optimal method for the Guyana coastal plains when both yield and water 

consumption are important considerations. In this scenario, the yield is not significantly different 

from the maximum yield and the water consumption is lower.  

The current method of irrigating rice involves flooding the fields, with up to 10mm of 
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standing water, weekly. The simulations have shown that there is no substantial increase in yield 

when the soil-water content is kept above field capacity. Moreover, a higher volume of total 

irrigation is used for a whole season at a high %WHR.  
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8. Appendix 

Appendix A 

Key: Cal = Calibrated 

M = Measured 

F = Field Observation and information 

Con = Conservative parameter 

Lit = Literature 

AQ = AquaCrop default 

 

Crop File: Paddy rice at BBP, Guyana 

Table 4.A1. Simulation parameters used after calibration 

PARAMETER VALUE SOURCE 

Development:   

type of planting method direct sowing F 

canopy size of seedling 3.0 cm2/plant AQ 

sowing rate 134.50 kg seed/ha F, Cal 

germination rate 75% AQ 

1000 seed mass 50g AQ 

maximum canopy cover (CCx) 85% AQ, Cal 

canopy decline (CDC) 13.8%/day F 

Days to emergence 21 F 

Days to maturity 112 F, Cal 

Duration of flowering 15 days AQ, Cal 

Days to flowering 77 days F 

soil restrictions shallow rooted AQ 

max effective rooting depth 0.50 m AQ, Cal 

Days to max root depth 44 days AQ, Cal 

ave. root zone expansion 1.1 cm/day AQ 

effect of canopy shelter in late season 50% Con 

Evapotranspiration   

Crop coefficient at CCx (Kc tr,x) 1 AQ, Cal 

Water extraction pattern 

- upper 1/4 

- 2nd 1/4 

- 3rd 1/4 

- bottom ¼ 

40% 

30% 

20% 

10% 

AQ 

Production   

Water Productivity (WP*) 19.0 g/m2 Con 

Reference Harvest Index (Hio) 41% AQ, Cal 

Response to Water Stress:   

p(upper) for canopy expansion 0 Con 
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PARAMETER VALUE SOURCE 

p(lower) for canopy expansion 0.4 Con 

Shape factor for canopy expansion 3 Con 

p(upper) for stomatal closure (psto) 0.1 AQ 

Shape factor for stomatal closure 3 Con 

p(upper) for early senescence (psen) 0.55 Con 

Shape factor for early senescence 3 Con 

Aeration threshold below saturation 0% AQ 

Positive effect on HI due to limited growth none Con 

p(upper) for failure of pollination (ppol) 0.75 Con 

Positive effect on HI due to leaf expansion small Con 

Negative effect on HI due to stomatal closure moderate Con 

Response to Temperature Stress   

Base temp for crop development (Tbase) 8.0 C Con 

Upper temp for crop development (Tupper) 30.0 C Con 

GD range from 0 degree-day to: 10.0 C-day Con 

Min air temp range affecting pollination: +3 C to _ C 8 Celsius Con 

Max air temp range affecting pollination: _ C to 40C 35 Celsius Con 

Response to Salinity   

Lower Ece threshold (ECEn) 3 dS/m Con 

Upper Ece threshold (ECEx) 11 dS/m Con 

Ece at 100% stress affecting canopy expansion 5.0 dS/m Con 

Ece at 100% stress affecting stomatal closure 5.0 dS/m Con 

 

Climate File: Black Bush Polder, Guyana from 2005 to 2012 

Parameter Value Source 

Rainfall Daily, 2005 – 2012 M 

Evapotranspiration (ETO) Daily, 2005 – 2012 Com 

Temperature Daily, 2005 – 2012 M 

CO2 Yearly, MaunaLoa AQ 

 

Irrigation File: rice at BBP, Guyana 

Parameter Value Source 

Irrigation Method for rice 
Basin, Irrigate to FC when 

%TAW is reached 
F 

Water Quality for BBP 0.0 dS/m F 

 

Soil File: BBP, Guyana 
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Parameter Value Source 

Horizons information (texture, thickness, PWP, FC, 

SAT) 

3 horizons up to 

0.45 m depth 
M 

Saturated hydraulic conductivity (Ksat) 35.0 mm/day AQ 

Curve Number (CN) 77 AQ, Cal 

 

Field Management: Rice at BBP, Guyana 

Parameter Value Source 

Soil cover by mulches None, 0% F 

Soil bund height for rice 0.20 m F 

Weed cover for rice 15% F, Cal 

Effect on CN by field practice (poor hydrologic 

condition, straight furrows) 
+10% F, Cal 

 

Simulation parameters 

Parameter Value Source 

Planting Search Window for S1 May F, Cal 

Planting Search Window for S2 Nov F, Cal 

Initial Soil Water for rice At Saturation F 

Initial Water Depth between bunds for rice 100 mm F, Cal 

Initial salinity for BBP 0.02 dS/m F 

Initial canopy cover (Cco) 0% AQ 

Initial Biomass 0 ton/ha AQ 

Initial root depth 0.30 m AQ 
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BRIDGING TEXT 

 

The crop simulations for rice, in Chapter IV, have shown that water-saving scenarios could 

be achieved with minimal impact on yield. We want to know if a similar response will be observed 

in sugarcane. Even with the decreasing production of sugarcane, it is still one of Guyana’s major 

crops and still occupies large areas serviced by the existing irrigation and drainage system. 

Chapter V discusses the response of yield and water productivity of sugarcane to different 

irrigation scenarios. It will determine the suitability of the current irrigation scheme to the needs 

of sugarcane and identify possible ways to improve water management in the estates.   

This study is in preparation for submission to Irrigation Science. The paper is co-authored 

by Guia Marie M. Mortel and Dr. Chandra Madramootoo. The contributions of each author are 

mentioned on page 7. 
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CHAPTER V 

Improving water productivity of surface irrigated sugarcane estates  

Abstract 

 Sugarcane is a traditional major crop and export of Guyana. The estates are located along 

the coast which is approximately one metre below sea level. Therefore, drainage canals are 

essential for the disposal of surface runoff which is of paramount importance as the coast 

experiences over 1000 mm of rain annually during two pronounced wet seasons. The crop water 

requirement for irrigation is a secondary priority. This I&D system, comprised of continuous open 

furrows, keeps the moisture within the fields at approximately 70% water-holding capacity in the 

rootzone (%WHR). The system within sugar estates is also used for the delivery of harvested canes 

from the fields to the mill via barges. This study aims to propose irrigation scenarios to maximize 

yield and water productivity, using the AquaCrop model. Field-measured climate and soil data, 

and local crop parameters were used with the model. During calibration, the yield was weakly 

sensitive (0.6 - 2% ΔRMSEn), to changes in crop parameter values with the maximum change 

observed for the maximum canopy cover and the crop coefficient (kcmax). The crop simulation was 

calibrated with actual reported yields from 2005 to 2008. The calibrated parameters were then 

validated using the 2009 to 2012 dataset. The good agreement (RMSE of 7.15% or 4.39 ton 

cane/ha) with the recorded yield during validation, and the low sensitivity of calibrated parameters 

indicate the acceptability of AquaCrop and the parameters used for simulations. Several irrigation 

scenarios were then simulated, of which no significant reduction or increase in yield was observed 

between 50% to 100%WHR scenarios. The I&D system can aim for an 80%WHR to obtain a 

slightly better yield. A threshold of 50%WHR is advisable during dry periods to avoid significant 

yield loss.  
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1. Introduction 

1.1. Water productivity of sugarcane irrigation schemes 

Water productivity (WPet) is referred to in this paper in terms of the yield produced for 

each unit of water used by both evaporation and transpiration. Water productivity is an indicator 

of the efficiency by which a crop converts the water it uses into harvestable yield. Two main factors 

influence WPet: crop genetics or variety characteristics, and cultural management practices. 

Application of soil amendments (Kalanaki et al., 2022; Zahra et al., 2021), nitrogen application 

rates (Cao et al., 2021) and soil textures (Fang and Su, 2019) have been shown to affect WPet. In 

the realm of crop water management, several factors that influence water productivity are the 

amount of irrigation provided (Kalanaki et al., 2022), the matrix potential threshold for irrigation 

(dos Anjos Veimrober Júnior et al., 2022), groundwater depth (Dai et al., 2022), and irrigation 

method used such as between surface and subsurface drip irrigation (Aydinsakir et al., 2021). 

Several studies have compared the water productivity of various irrigation methods. 

However, studies specific to furrow irrigation for sugarcane are sparse. It is known that for 

sugarcane, double-row furrow planting with mulch has been shown to increase water productivity 

in India (Singh et al., 2022). Reports on other irrigation methods of sugarcane are more common 

such as subsurface drip irrigation in Iran (Naseri et al., 2020) and India (Vaiyapuri et al., 2019), 

and drip irrigation in Brazil (Coelho et al., 2012). 

1.2. Irrigation of sugarcane estates in Guyana 

Sugarcane is a ratoon crop which is grown from shoots left by a harvested crop. In 

Guyana, the first crop (plant cane) is usually planted between November and January and is 

harvested after 40 weeks (Eastwood, 2009). A ratoon crop, meanwhile, takes only 36 weeks to be 

ready for harvest (Eastwood, 2009). Sugarcane is planted on beds laid out in either ridge-and-
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furrow or broad-bed design (GuySuCo, 2022). Most of the fields have traditionally been following 

the ridge-and-furrow layout, but recently, more plots are converted to broad-bed design for 

eventual mechanized planting and harvesting (GuySuCo, 2018). 

Water is pumped from rivers and into the canals leading to the sugarcane estates. It is then 

routed through farm plots, and finally into the furrows within the fields. The irrigation layout is a 

continuous open-ended furrow system wherein water is allowed to freely enter and exit the 

furrows. When the water reaches the end of the furrows, it is collected by an in-field collector drain 

which routes and merges it with the main line (GuySuCo, 2022). 

A unique feature of Guyana’s I&D is the use of open canals for delivering harvested cane 

from the farms to the sugar mills. The inflow of these canals is regulated mainly for the conveyance 

of the harvested cane. A head difference must be maintained between the farms and the mill to 

convey the barges downstream. With this scheme, the soil water content in the fields is kept at 

approximately 70% water holding capacity within the first meter rooting depth.  

1.3. Irrigation and drainage design priorities 

The wet tropical climate (Peel et al. 2007) and clayey frontland soils (Braun and Derting 

1964; GLSC 2013) of the Guyana’s coast, places more emphasis on drainage for agriculture. 

Guyana’s towns and most of its population are also located along the coast, which is generally 

below sea water level (USACE 1998).  As such, the entire I&D system of Guyana, the 

conservancies, and the sea walls were designed to keep water off.   

With drainage and conveyance taking priority in the I&D system design, irrigation is given 

the least priority. Irrigation, however, is a necessary component of fully functioning I&D system. 

Regulating irrigation reduces waterlogging problems and thus lessens the burden on drainage. The 

conveyance role of channels may mean that a large volume of water is allowed to flow, and the 
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potential yield of sugarcane is not reached because of waterlogging. The prioritization of 

conveyance may also mean that during dry periods, channels leading into fields are temporarily 

closed to increase the channel head at the main line.  

This study aims to identify the impact of the current I&D system on the sugarcane yield 

and water productivity obtained. We also want to investigate whether better yield and water 

productivity can be achieved in other irrigation scenarios. This is especially important to schedule 

block irrigation during the dry season.  

Crop growth is modelled using AquaCrop. It is chosen because of its design to model yield 

response from fewer and easily measured crop parameters.  Furthermore, AquaCrop has been 

intensively used for research and as such several crop parameters have already been measured, 

estimated, or calibrated. For sugarcane, the field experiments in Brazil (da Costa Faria Martins et 

al., 2022; da Silva et al., 2013), Australia, Swaziland (Inman-Bamber and McGlinchey, 2003) and 

South Africa (Olivier and Singels, 2012) have contributed to improvements to key parameters of 

the sugarcane crop file, specifically the crop coefficients, maximum root depth, and the threshold 

of soil water depletion for water stress. The default parameters for sugarcane can be found in the 

AquaCrop reference manual (Raes et al., 2018), while the updated crop parameters are published 

by Pereira et al. (2021).  

AquaCrop had been used to simulate sugarcane growth to understand the crop’s response 

to projected climate change in  Pakistan (Alvar-Beltrán et al., 2021; Farooq and Gheewala, 2020); 

identify a suitable deficit irrigation design in Khuzestan, Iran (Bahmani and Eghbalian, 2018); and 

predict the impact of a shifted crop calendar considering climate projections in Phu Yen, Vietnam 

(Lee and Dang, 2018).  
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2. Methodology 

2.1. Data and preparation of simulation files  

 The study location covers the sugarcane estates of Albion, Rose Hall, and Port Mourant in 

Region 6.  Sugar production in Albion accounts for 55% of Guyana’s total sugarcane production 

with 45,000 to 60,000 ha harvested annually from 2009 to 2018 (GuySuCo, 2018). Irrigation is 

mainly supplied by the Canje Creek which is located southwest of the sugarcane estates.  

Climate data were obtained from the nearest installed automatic weather station located at 

6°4’58” N, 57°15’57” W. Daily data on the rainfall, sunshine hours, wind velocity, and minimum 

and maximum temperature were measured from 2005 to 2012. The average monthly rainfall at the 

study site, in Figure , shows variability between the months. A first wet season can be observed 

from May to August and a second wet season from December to January. The monthly rainfall 

varies from the average by 50 to 200 mm. The greatest variability is observed for December until 

March, and May to June, which are also notably the rainy seasons. The daily reference 

evapotranspiration (ETo) was computed using the FAO Penman-Monteith within AquaCrop. The 

ETo averages 130 mm/month, with the highest variability observed from March to April, at 35 

mm/month. Meanwhile, the minimum and maximum temperatures are almost constant throughout 

the year. 
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Figure 5.1. Average monthly rainfall (2005 - 2012) at the Region 6 sugarcane estates 

 

The majority of the soil at the Region 6 sugarcane estates is a Frontland clay. It is 

characterized by a deep gray layer of clay and silt soil particles, poor drainage, level to nearly level 

relief and the presence of stratified marine deposits (Braun and Derting, 1964). Soil sampling done 

at four random sites confirmed a sand-silt-clay ratio of 2% – 34% – 64%. The soil characteristics 

and soil water retention curve from the four sampling sites were measured.   

 The crop parameters used were based on the sugarcane file provided in AquaCrop. When 

field measurements or local information are available, these values were used instead of those 

provided in AquaCrop’s sugarcane file (Eastwood, 2009: Gaj and Madramootoo, 2017).  Some of 

the key values used are shown in Table 4.2. The full list is provided in Table 5.A1.  
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Table 5.1. Some simulation parameters and the values used. 

PARAMETER VALUE SOURCE 

Soil:   

Saturated hydraulic conductivity (Ksat) 35.0 mm/day AQ 

Curve Number (CN) 77 AQ, Cal 

Crop:   

Type of planting method transplanting F 

Row spacing 1.0 m Lit 

Plant spacing 0.25 AQ, Cal 

Maximum canopy cover (CCx) 90% AQ, Cal 

Days to recovered 22 DAT F, Cal 

Days to max canopy 134 DAT F, Cal 

Days to harvest 281 DAT F, Cal 

Max effective rooting depth (Zx) 0.80 m F 

Days to max root depth 181 days F 

Crop coefficient at CCx (Kcmax) 1.1 F, Cal 

Water Productivity (WP*) 30.0 g/m2 Con 

Reference Harvest Index (HIo) 35% AQ, Cal 

p(upper) for stomatal closure (psto) 0.5 AQ, Cal 

Aeration threshold below saturation 3% AQ, Cal 

Management:   

Irrigation Method Furrow F 

Water Quality 0.0 dS/m F 

Weed cover 6% F, Cal 

Effect on CN by field practice +10% F, Cal 

Simulation:   

Planting Search Window Nov F, Cal 

Initial Soil Water At Saturation F 

Initial salinity 0.02 dS/m F 
* Key: Cal = Calibrated parameter, M = Measured parameter, F = Local field observation or information, 

 Con = Conservative parameter,  Lit = From literature,  AQ = AquaCrop default 

 

2.3. Calibration and validation 

Calibration was first done on 13 parameters within a range of values provided in the 

literature or within 10% of the default or average value. The actual yield data reported by GuySuCo 

(2013) from 2005 to 2008 was converted to dry yield using a 30% dry matter factor (FAO, 2012). 

The agreement between the actual and simulated yield was determined through statistical analysis 

using the root mean square error, percent RMSE and mean bias error. Since these three are 
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measures of error, the best set of calibrated parameters is the one which would give the lowest 

error values. 

Once the calibrated parameters were finalized, they were used to simulate the yield for 

2009 to 2012. An RMSEn value of 10% and an RMSE and MBE below 1.89-ton cane/ha (dry 

yield) confirm that the model and the parameters used were acceptable for simulating yield.  

2.4. Irrigation management scenario simulations 

The irrigation scenarios are all continuous open-furrow irrigation with varying maintained 

thresholds in terms of the water holding capacity in the rootzone (WHR). The WHR is the total 

amount of water in the root zone depth (Ze) held between the measured volumetric moisture 

content (MCvol) at PWP and MCvol at FC (in Equation 1). Irrigation commences when the threshold 

is reached, and an irrigation input is provided to return the %WHR to the threshold. There were 7 

scenarios simulated, namely, 40, 50, 60, 70, 80, 90 and 100% WHR.  The 100%WHR scenario 

corresponds to soil water content maintained at Field Capacity. 

 𝑊𝐻𝑅 = (%𝑀𝐶𝑣𝑜𝑙,𝐹𝐶  − %𝑀𝐶𝑣𝑜𝑙,𝑃𝑊𝑃 ) × 𝑍𝑒 (1) 

Simulations were run for each scenario from 2009 to 2012 using the calibrated and 

validated parameters. A one-way ANOVA test was then conducted to determine a statistical 

difference between the yield distributions of the irrigation scenarios used. Afterwards, a pairwise 

t-test was done to identify if each scenario’s simulated yield is statistically different from the 

highest yield. 

3. Results and Discussion 

3.1. Calibration and validation 

 The simulated yield showed the most sensitivity to the crop coefficient (kcmax) and 

maximum canopy cover (CCmax) for the range of values used ( Table 5.2). However, the changes 
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in the RMSEn are only up to 2%. This indicates that the crop parameters used are nearly optimal 

and are already representative of the conditions in the field. Notably, kcmax is already a field-

measured value provided in the Agriculture Operation Guidelines of GuySuCo (Eastwood, 2009). 

The CCmax meanwhile is based on the indicative value provided in the AquaCrop sugarcane base 

file. 

Table 5.2. Sensitivity of simulated yield (ΔRMSEn) to the most sensitive calibrated 

parameters for the range of values used 

Parameter calibrated Range of values used Δ RMSEn (%) 

Crop coefficient at maximum 

canopy cover (kcmax) 

1.05 to 1.15 0.6 - 1 

Maximum canopy cover 

(CCmax) 

90 to 99% 1 – 2 

Days to maximum canopy 90 to 134 DAT 0.5 – 1 

Days to harvest 267 to 295 DAT 0.5 – 1 

Threshold for aeration stress 3 to 6% MCvol below 

SAT 

0 – 0.8% 

Reference Harvest Index (HIo) 34 to 36% 0 – 0.5% 

 

During the calibration of the model and the input parameters, a good agreement between 

the simulated and actual yield was obtained. The RMSEn, RMSE, and MBE were low and within 

tolerable limits. The validation between the simulated and actual yields has also shown good 

agreement, as shown in Table 5.3. 

Table 5.3. Agreement between simulated and actual yield after calibration and validation 

Simulation 

RMSE RMSEn MBE 

ton 

cane/haa % 
ton 

cane/haa 

Acceptable at: <6.24 <10 <6.24 

Calibration: 2005 – 2008 4.32 6.83 - 0.03 

Validation: 2009 - 2012 4.39 7.15 + 1.44 
a in metric tonnes cane of fresh yield per hectare  
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3.2. Irrigation management scenario simulation 

3.2.1. Response of yield for the different irrigation scenarios 

 The irrigation scenarios were first run from 2005 to 2012 to get the simulated yields. An 

ANOVA of the yields shows that there is a significant difference among the scenarios (using 

simple f-test at a = 0.05). The yield increases with increasing %WHR and plateaued upon reaching 

the maximum mean yield, of 63 ton cane/ha, at 80% WHR, as shown in Figure 5.2.  

 

Figure 5.2. Simulated yield (ton cane/ha) obtained at varying %WHR scenarios  

A one-way t-test shows that the yield distribution from 50 to 100%WHR is not significantly 

different from 90%WHR (Table 5.4). The t-test compares not only the mean values but also the 

spread of the yield distribution.  As such, even though the mean yield obtained at 50%WHR is 

lower than the one obtained at 80%WHR, the difference is not significant since there is still the 

possibility that 80%WHR yields can be obtained when using the 50%WHR scenario. Meanwhile, 

a reduction in yield was evident and statistically significant when the 40%WHR scenario is used. 

This implies that, when water is limited, the soil water content can be allowed to go as low as 

50%WHR without incurring a significant yield penalty.  
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Table 5.4. Pairwise t-test of yields of each irrigation scenario with the yield at 90%WHR 

 
Scenarios (%WHR) 

100a 90 80a 70 a 60 a 50 a 40b 

Mean yield (ton cane/ha) 63.13 63.13 63.13 63.01 62.38 61.08 59.18 

P value at a = 0.05 1.0 reference 1.0 0.91 0.49 0.06 0.006 

        

Irrigation requirement 

(mm per ha) 
532 433 366 303 243 195 139 

a no significant difference from reference at a = 0.05 
b with significant difference from reference at a = 0.05 

 

The current irrigation system of the sugarcane estate keeps an estimated 70%WHR within 

the fields. The simulated yields at 70%WHR are not significantly different from those obtained 

between 80 to 100%WHR. Given the variability in the field, some spots may have a lower soil 

water content, but the gap between the 70% and the 50%WHR provides a leeway to ensure that 

most crops are well irrigated.  

3.2.2. Response of water productivity at varying irrigation scenarios  

 

Figure 5.3. Water productivity at varying %WHR scenarios. 
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The highest mean WPet was obtained at 60%WHR (Figure 5.3) wherein 1.64 kg of dry 

biomass is produced for each cubic meter of water used by evaporation and transpiration. However, 

both a one-way ANOVA and pairwise t-tests have confirmed that the differences in water 

productivity between the scenarios were minimal and not significant p>0.05.  

   

 

Figure 5.4. Comparison of yield (top) and water evaporated and transpired (bottom) at 

increasing %WHR. 

 

The WPet is the conversion of the water used to yield, and as shown in Figure 5.4, both the 

yield and the amount of water used increase almost proportionally with increasing %WHR. The 



 

105 

 

differences in water productivity between the different threshold are not significant. As was the 

case in an experiment in India in a semi-arid region with clay soils, the water productivity of 

sugarcane was also not significantly different between the different soil water replenishment levels 

applied throughout the whole season (Dingre et al., 2021).  

4. Conclusion 

Irrigation management scenarios were simulated for sugarcane grown along the Guyana 

coastal plains on heavy clay soil. In the process, the sugarcane crop file of AquaCrop was 

successfully calibrated with reported yields from 2005 to 2008 and validated with those from 2009 

to 2012. During calibration, the simulated yield did not show high sensitivity to changes in the 

values of crop parameters. The most sensitive parameters are the crop coefficient and maximum 

canopy cover for which at most a 2% change of the RMSEn was observed. The good agreement 

between the simulated and the reported yields during both calibration and validation showed that 

AquaCrop and its sugarcane crop file can be used to reliably simulate yields when used with field-

measured soil and climate data, and key crop parameters. 

 The current irrigation of sugarcane in Guyana, at 70% water holding capacity in the 

rootzone (WHR), was then assessed with other irrigation management scenarios of 40, 50, 60, 80, 

90 and 100% WHR. The yield was highest at 80%WHR, but there was no significant difference 

in the yield distribution obtained between 50 to 100% WHR. Within the scenarios simulated, good 

yields of sugarcane can be obtained from the current irrigation scenario at 70%WHR. Keeping the 

soil-water content above 70% WHR uses more irrigation water but does not significantly increase 

the yield. Meanwhile, keeping between 50 to 70%WHR will reduce irrigation requirements with 

no significant decrease in yield during low rainfall years experiencing drought stress.  
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7. Appendix 

Appendix A 

Key: Cal = Calibrated parameter 

M  = Measured parameter 

F  = Field observation and information 

Con  = Conservative parameter 

Lit  = From literature 

AQ  = AquaCrop default 

 

Table 5.A1. Simulation parameters used after calibration 

PARAMETER VALUE SOURCE 

Development:   

Type of planting method transplanting F 

Canopy size of seedling 6.5 cm2/plant AQ 

Row spacing 1.0 m Lit 

Plant spacing 0.3 m AQ, Cal 

Maximum canopy cover (CCx) 90% AQ, Cal 

Canopy decline coefficient (CDC) 7.6%/day F 

Days to recovered 22 F, Cal 

Days to maximum canopy 134 F, Cal 

Days to senescence 253  AQ 

Days to harvest 281 F, Cal 

Max effective rooting depth 0.80 m F 

Days to maximum root depth 181 F 

Ave. root zone expansion 2.8 cm/day AQ 

Effect of canopy shelter in late season 60% Con 

Evapotranspiration   

Crop coefficient at CCx (Kc tr,x) 1.1 AQ, Cal 

Water extraction pattern 

- upper 1/4 

- 2nd 1/4 

- 3rd 1/4 

- bottom ¼ 

40% 

30% 

20% 

10% 

AQ 

Production   

Water Productivity (WP*) 30.0 g/m2 Con 

Reference Harvest Index (Hio) 35% AQ, Cal 

Response to Water Stress:   

p(upper) for canopy expansion 0.25 Con 

p(lower) for canopy expansion 0.55 Con 

Shape factor for canopy expansion 3 Con 

p(upper) for stomatal closure (psto) 0.5 AQ, Cal 

Shape factor for stomatal closure 3 Con 
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PARAMETER VALUE SOURCE 

p(upper) for early senescence (psen) 0.6 Con 

Shape factor for early senescence 3 Con 

Aeration threshold below saturation 3% AQ, Cal 

Response to Temperature Stress   

Base temp for crop development (Tbase) 9.0 °C Con 

Upper temp for crop development (Tupper) 32.0 °C Con 

GD range from 0 degree-days to: 12.0 °C-day Con 

Response to Salinity   

Lower Ece threshold (ECEn) 2 dS/m Con 

Upper Ece threshold (ECEx) 19 dS/m Con 

Ece at 100% stress affecting canopy expansion 6.3 dS/m Con 

Ece at 100% stress affecting stomatal closure 6.3 dS/m Con 

 

Climate File:  

Parameter Value Source 

Rainfall Daily, 2005 – 2012 M 

Evapotranspiration (ETO) Daily, 2005 – 2012 Com 

Temperature Daily, 2005 – 2012 M 

CO2 Yearly, MaunaLoa AQ 

 

Irrigation File:  

Parameter Value Source 

Irrigation Method 
Furrow, Irrigate to maintain 

%WHR 
F 

Water Quality 0.0 dS/m F 

 

Soil File: 

Parameter Value Source 

Horizons information (texture, thickness, PWP, FC, 

SAT) 

3 horizons up to 

0.45 m depth 
M 

Saturated hydraulic conductivity (Ksat) 35.0 mm/day AQ 

Curve Number (CN) 77 AQ, Cal 

 

Field Management:  

Parameter Value Source 

Soil cover by mulches None, 0% F 
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Parameter Value Source 

Weed cover 6% F, Cal 

Effect on CN by field practice (poor hydrologic 

condition, straight furrows) 
+10% F, Cal 

 

Simulation parameters 

Parameter Value Source 

Planting Search Window Nov F, Cal 

Initial soil Water At Saturation F 

Initial soil salinity 0.02 dS/m F 

Initial canopy cover (CCo) 0% AQ 

Initial Biomass 0 ton cane/ha AQ 

Initial root depth 0.30 m AQ 
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BRIDGING TEXT 

 

The abandonment of sugarcane farms is driving the diversification to higher-value 

cropping systems. Chapter IV and Chapter V simulated the irrigation water requirement of rice 

and sugarcane. With the vegetable industry’s projected expansion and prioritization, its share of 

water use will grow. It is necessary to obtain information on the water requirement of several 

vegetables. Chapter VI discusses the crop water productivity scenarios which lead to minimal yield 

reduction.  

This study is in preparation for submission to Irrigation & Drainage Systems Engineering. 

The paper is co-authored by Guia Marie M. Mortel and Dr. Chandra Madramootoo. The 

contributions of each author are mentioned on page 7. 
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CHAPTER VI 

Development of irrigation water strategies to intensify vegetable production  

Abstract 

  Guyana aims to reinvigorate its agriculture sector by diversifying to higher value vegetable 

crops. Apart from ensuring food security, this also reduces the country’s food import bill. 

Abandoned sugarcane farmlands are targeted for intensification and expansion of vegetable 

production. The diversification initiative comes with investments for the establishment of new 

farms, restoration of canals, the establishment of new water control structures and re-evaluation of 

the irrigation and drainage design. This study seeks to identify water-efficient irrigation scenarios 

and determine the irrigation requirements of vegetable farms located along the coastal lands. Field-

measured soil and climate data were obtained from 2005 to 2012 and used in the AquaCrop model 

alongside local crop and management data of cabbage (Brassica oleracea var. capitata), cassava 

(Manihot esculenta), eggplant (Solanum melongena), hot pepper (Capsicum frutescens), tomato 

(Solanum lycopersicum) and bora or yardlong bean (Vigna unguiculata). Seven scenarios of 

varying irrigation thresholds (40, 50, 60, 70, 80, 90 and 100% water holding content at the rootzone 

[WHR]) were tested in a deficit irrigation management. Results show that at 40, 50 and 60% WHR, 

a decreasing irrigation requirement but no significant reduction in yield (pairwise t-test, p > 0.05) 

were observed. The water savings can be used to irrigate potential production areas, thereby 

assisting in the expansion of the vegetable industry. The choice of planting season does not affect 

the yield (ANOVA, p > 0.05). 

1. Introduction 

1.1. Crop diversification  

The shift of priorities towards vegetable production came with the Agriculture Export 
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Diversification Program (AEDP) which was designed to promote the production and export of 

non-traditional crops. Activities planned or done under the crop diversification initiative include 

the increased support for existing non-traditional crops; the establishment of farms, the 

introduction of new varieties; and the introduction of new crops. The diversification program 

initially focused on the 4Ps (pepper, plantain, pineapple and pumpkin) and 4Cs (coconut, citrus, 

cassava and carrots) (Ministry of Agriculture 2013). Soybean and corn have also been given 

importance for their use as protein sources in the poultry industry. Meanwhile, coconut, mango, 

pumpkin, watermelon, pineapple, and pepper lead the top non-traditional agricultural exports 

(Ministry of Agriculture 2013; NAREI 2021).  

Irrigation and drainage are necessary to manage the poor internal drainage of Guyana’s 

coastal soils, however, for the 1.7 million hectares of agricultural land, only 0.2 million hectares 

have adequate drainage and irrigation (Ministry of Agriculture 2013). To improve the productivity 

of vegetable crops and increase the area cultivated, the diversification program is complemented 

by increased investments in the I&D system to restore canals in abandoned areas and train farmers 

in the maintenance and rehabilitation of structures (GLSC 2013).  

This paper seeks to contribute to the effort on diversification and improvement of Guyana’s 

water resources management by providing the irrigation requirements of several vegetables for 

several recommended irrigation scenarios. Specifically, we want to identify factors which 

influence yield (irrigation thresholds, and planting season); understand the representativeness of 

the simulations to other coastal farmland areas of Guyana; examine the potential of the vegetables 

to achieve maximum yield, and recommend an irrigation scenario for efficient use of water. . 

1.2. The AquaCrop model 

This study uses the AquaCrop model to simulate crop growth. It is a water-driven model 
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wherein yield is a function of the evapotranspiration and availability of water. Computation of the 

crop evapotranspiration are conducted first using the FAO-Penman Monteith. Modules on root 

growth and soil-water movement simulate the available soil water for uptake. Parameters 

characterizing the soil, climate, crop, water quality, and field management practices are used to 

ultimately simulate the yield. Stresses are not computed in detail but instead AquaCrop relies on 

indicator parameters to determine the intensity of stress. Details of the model’s structure and 

formulae are discussed in the FAO Irrigation and Drainage Paper #66 (Steduto et al. 2012).  

AquaCrop has been designed for a wide range of practitioners and thus aims to minimize 

complexity in the crop parameters required and the use of the software. Apart from the 15 crop 

files in the system, it provides a crop template for fruit/grain-producing crops, leafy vegetable 

crops, and root and tuber crops. Within 10 years after its release, AquaCrop has been implemented 

in 46 different crops (Salman et al. 2021). Apart from development and evaluation studies (i.e., 

calibration and validation), it has often been used in application studies such as agronomic 

management, environmental changes assessment and policy (Salman et al. 2021). AquaCrop has 

also been used in Guyana for the crop suitability study in Region 3 and Region 9, under climate 

scenarios RCP 4.5 and RCP 8.5 (Navarette-Frias et al. 2021). 

 2. Materials and Methods 

2.1. Data input 

2.1.1. Location, soil and climate 

The study covers Parika, Guyana which is a town situated at the outlet of the Essequibo 

River, in the northern portion of Guyana’s coastal farmlands. It is a part of administrative Region 

3 and is a main port along the Essequibo River (GLSC 2013). The presence of the port drives the 

trade of several goods at the local market. It is also this trading which has assisted in increasing 
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the production of vegetables at farms in and around the town. The agricultural area expanse, known 

as ‘Parika Back’, starts at approximately 5 km from the settlement areas and extends 6 to 8 km 

inwards to the Boerasirie Conservancy (Central Housing & Planning Authority [CHPA] 2006).   

The soil in Parika is silty clay with a sand-silt-clay percentage of 1% - 53% - 46%. Its 

properties were identified by sampling 2 sites in Parika with 2 samples taken at each site at 0 - 15, 

15 - 30, and 30 – 45 cm depth. The soil is acidic with a pH averaging at 4. For the 3 depth horizons, 

the moisture content at field capacity (FC) ranges between 43 to 48%, and between 38 to 43% for 

the moisture content at the permanent wilting point (PWP). This gives total available water (TAW) 

of approximately 49 mm per meter of soil. 

The climate information, meanwhile, was gathered from an automatic weather station 

located at 6.84° N, -58.4° W. The daily rainfall, minimum and maximum temperature, wind 

velocity at 2 m and sunshine hours duration were obtained from 2005 to 2012. The climate at 

Parika follows the general climate of the coastal plains of Guyana. It is characterized by high 

rainfall throughout the year, and almost constant minimum and maximum temperatures. The 

rainiest months, as shown in Figure 6.1, occur from May to July, and December to January. The 

start of the two rainy seasons signals the two planting seasons in Guyana: April to May and 

November to December. These two rainy seasons are also when the rainfall shows the most 

variability with as high as 400mm/month difference from the average. The reference 

evapotranspiration (ETo) was calculated in AquaCrop using the Penman-Monteith and the climate 

data provided. The ETo is less than the rainfall for most of the year except in September when the 

ETo is higher than the monthly rainfall. It is consistent across the year averaging at 127 mm/month. 

Throughout the simulation period, it was observed to vary between 85 to 164 mm/month.  
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Figure 6.1. Average monthly rainfall and reference evapotranspiration (ETo) at the study 

site (Parika, Guyana) from 2005 to 2012. 

 

The Boerasirie Conservancy provides freshwater to Parika. However, the irrigation water 

at Parika is slightly more brackish because of the gradual mixing of fresh and seawater at the outlet, 

tidal influence, salt-water intrusion, and salinity of some patches of soil (USACE 1998).   

2.1.2. Vegetables 

 The vegetables focused on for the simulations were cassava (Manihot esculenta), eggplant 

(Solanum melongena), yardlong or bora bean (Vigna unguiculata), cabbage (Brassica oleracea 

var. capitata), tomato (Solanum lycopersicum), and hot pepper (Capsicum frutescens). These 

vegetables were selected because of their part in the government’s diversification program, their 

suitability to the present and future climate of Guyana, and the role they play in Guyana’s top 

exports, as discussed in Section 1. Among these crops, only tomato has a crop file in AquaCrop. 
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The rest did not have their crop files, as such, AquaCrop’s templates were used as the base file. 

These crops, however, had substantial research of their crop parameters as used in AquaCrop. The 

parameters identified in these studies were noted and used in their respective crop files. As much 

as possible, only studies done in areas having the same climate, latitude or crop variety as coastal 

Guyana are included. Lastly, local information on the variety and management of these vegetables 

was obtained, and these were also incorporated in the final crop files. Table 6.1 lists the secondary 

sources of crop parameter data for each vegetable. The complete list of crop parameters used is 

shown in Table 6.A1.  

 

Table 6.1. Secondary sources of crop parameter data. 

Crop Source Location of Experiment 

All crops National Agricultural Research and 

Extension Institute (NAREI) 

 

Updated standards for vegetables 

by Pereira et al. (2021) 

 

AquaCrop Reference Manual by 

Raes et al. (2018) 

 

FAO Irrigation and Drainage Paper 

by Steduto et al. (2012) 

Guyana 

 

 

Various locations 

 

 

Various locations 

 

 

Various locations 

Tomatoes  

(S. lycopersicum 

‘Heatmaster’) 

Tomato crop file by FAO (2018) 

 

Uzun (2006) 

Various locations 

 

Laboratory 

Eggplant  

(S. melongena) 

Carvalho et al. (2012) 

 

Uzun (2006) 

 

Shabetya et al. (n.d.)  

 

Paula et al. (2003) 

Seropédica-RJ, Brazil 

 

Laboratory 

 

Laboratory 

 

Laboratory 

Hot Pepper  

(C. frutescens var. 

Maiwiri) 

Miranda et al. (2006) 

 

Adegoke et al. (1996) 

Ceara, Brazil 

 

Ibadan, Nigeria 

Bora Bean Cavalcante Jr. et al. (2016) Grande do Note, Brazil 
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Crop Source Location of Experiment 

(V. unguiculata 

subsp. 

sesquipedalis) 

 

Miranda and Campelo Jr. (2010) 

 

Ofori and Klogo (2005) 

 

Rondonia, Brazil 

 

Legon, Ghana 

Cabbage 

(B. oleracea var. 

capitata) 

Zhang et al. (2021) 

 

Tayyeb et al. (2017) 

Wellesbourne, UK 

 

Laboratory 

Cassava 

(M. esculenta) 

Wellens et al. (2022) 

 

Maraphum et al. (2021) 

Colombia, Togo, Nigeria 

 

Laboratory 

 

The AquaCrop model version 7.0 (FAO 2018) was used. The input files for the climate, 

crop, soil, management and simulation parameters were prepared. Calibration and validation were 

not done as there were no available recorded data on the yield of the vegetables at the regional 

scale from 2005 to 2012.  

2.2. Irrigation management scenarios  

The growth of the vegetables was simulated for varying thresholds of water-holding 

capacity (WHR). The WHR is the total amount of water held in the root zone between the field 

capacity and the permanent wilting point. AquaCrop takes another unit of measure of soil-water 

content, the readily available water (RAW), as an input. The relationship between WHR and RAW 

is shown in Figure 6.2 (a-d). The RAW is a part of the WHR that is easily accessible to plants. The 

accessibility of this water is defined by the psto, which is a threshold of soil water depletion (Dr). 

The Dr is the inverse of the WHR such that when Dr is equal to 0, there is no water depletion and 

WHR is equal to 100%. Meanwhile, when Dr is equal to 1, the soil-water is fully depleted and the 

WHR is 0%. When the water depletion is below the psto value, water is accessible, while above 

psto, water is more difficult to extract, even if the moisture content is still above PWP.  



 

 

120 

 

 
* a = water holding content at the rootzone, b = moisture content by 

volume, c = Dr, fraction of water depletion at the rootzone, psto = 

threshold of Dr, d = readily available water, e = water stress coefficient 

 

Figure 6.2. Relationship between units of measure* of soil water content. 

The value of psto is specific to the crop, with drought-resilient crops having a higher psto 

value than the others. Among the vegetables in this study, cassava has the highest value, and hot 

pepper has the lowest. The psto is used in Equation 1 to convert the %WHR to the RAW input 

required by AquaCrop. For consistency, the %WHR is used to represent soil-water content 

throughout this paper. 

𝑅𝐴𝑊 𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 =  (1 − 𝑊𝐻𝑅) 𝑝𝑠𝑡𝑜⁄        (Eq. 1) 

The irrigation scenarios were designed such that irrigation is triggered once the threshold 

%WHR is reached. Then, an irrigation amount was applied to return the soil-water content to 

100%WHR, or field capacity. There were 7 thresholds used: 40%, 50%, 60%, 70%, 80%, 90% 

and 100% WHR.  

An ANOVA was conducted to test the dependency of yield on the varying scenarios used, 

planting season, and crops planted.  To determine if the yield response is replicable or 
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representative of other farm sites in coastal Guyana, simulations were also replicated in Black 

Bush Polder, another coastal agricultural area at 6°4’58” N, 57°15’57” W.  The Black Bush Polder 

study site is characterized by a tropical rainforest climate and clayey soils.  

The crop growth simulations were done using the AquaCrop software (FAO 2018). The R 

language (R Core Team 2022) was used for statistical analysis (ANOVA and t-test).   

3. Results and Discussion 

3.1. Irrigation management scenario simulation 

 The yield was simulated for the 6 vegetables for 8 years and 2 planting seasons. While we 

are focused on the impact of the varying irrigation thresholds on yield, we also want to identify if 

other conditions, such as the planting season and location are important factors. A one-way 

ANOVA was conducted for the two planting season groups, and the results show that the yields 

obtained are not significantly different from each other (at a = 0.05). Since the two planting times 

coincide with the two wet seasons, almost the same amount of rainfall is provided for a whole crop 

season, as shown in Table 6.2. Both planting seasons provide a good opportunity to get good yields.  

Table 6.2. Comparison of the two planting seasons based on the total rainfall received 

(mm) through a whole crop growing period   

Planting Season Average Total Rainfall Received 

(mm/ cropping season) 

Season 1 (Apr. to May planting) 1 509 

Season 2 (Nov. to Dec. planting) 1 673 

 

To study the impact of location on the yield, simulations were also done for 2005 – 2012 

using the soil and climate dataset of Black Bush Polder, Guyana. The ANOVA result has shown 

that the yields obtained between Black Bush Polder and Parika were significantly different (at a = 

0.05). Notably, the whole of coastal Guyana can be generalized as having a wet tropical rainforest 
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climate and front land clay soils. Yet, the location-specific differences between Parika and Black 

Bush Polder in terms of the rainfall patterns, water quality and the different soil texture and layer 

characteristics have impacts on the location’s potential yield.  

The rainfall pattern at BBP and Parika both fall under wet tropical climate under the 

Koppen-Geiger classification (Peel, Finlayson, and McMahon 2007). The more detailed climate 

map by the Hydromet Department of Guyana (GLSC 2013) classifies the two under different 

precipitation regimes: very wet for Parika, and moist for BBP. The difference in monthly rainfall 

between the two locations are shown in Figure 6.3. For the 8 years of observation data gathered, 

the average yearly rainfall for Parika is at 2,912 mm and for BBP, it is 2,147 mm. 

 

Figure 6.3. Average monthly precipitation (mm) at Parika and Black Bush Polder. 

The soils of the two locations also are classified as hydraquents or marine phase ‘frontland 

clay’ (Braun and Derting 1964). There are differences between the two locations. As shown by the 

soil series mapping (Steele 1966; GLSC 2004), the soil in BBP is categorized under the drained 

phase Corentyne clay while the soil in Parika falls under Brickery clay. Further examination of the 

samples obtained at the two locations shows a difference between their moisture retention curves 
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(Figure 6.4). The field capacity is reached by the BBP soils at a higher moisture content than the 

Parika soils, but the moisture content at PWP is higher for Parika than for BBP. This shows a lower 

water holding capacity of Parika soils because of the smaller gap between its FC and PWP, as 

compared to the BBP soil. This is consistent with the characteristics of clayey soils for the BBP, 

and the silty clayey soil at Parika. These difference affects both locations available soil-water and 

water balance computations.   

 

Figure 6.4. Soil moisture retention curves of soil samples from Parika and BBP. 

The significant difference in yield between the two locations highlights the importance of 

location-specific data for crop simulations, especially soil and climate data. For a regional or town 

scale of analysis, such as was done in this paper, the results of crop simulations could not be 

generalized over broad climate and soil classifications. More detailed classification systems such 

as the soil series, and national climatic regimes are better alternatives to expand the results of a 

simulation to nearby locations. 

3.2. Response of vegetable growth and yield to the irrigation scenarios 

The capacity of the vegetables to reach their potential production can be expressed by the 
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relative biomass (Brelative). The Brelative is the percentage of aboveground biomass relative to 

the biomass which can be produced if stresses are absent (Raes et al. 2018). The Brelative for the 

vegetables for all irrigation scenarios range mostly between 75 to 100% (Figure 6.5). This confirms 

that values near the potential can be obtained in Parika even with the crop stresses which can be 

experienced at this site. 

 

Figure 6.5. Predicted biomass production relative to potential biomass (%) of vegetables 

crops grown in Parika, Guyana for various irrigation scenarios. 

The harvest index partitions the biomass into its harvestable component, the yield. A one-

way ANOVA found no significant difference (at a = 0.05) between the yields obtained from the 

different irrigation scenarios for each vegetable. Figure 6.6 shows the relationship between the 

simulated yield for the different scenarios. There are instances that with a decreasing %WHR, the 

yield also decreased such as for hot pepper and tomato or increased as observed in cassava and 

bora bean.  A pairwise t-test was done to check if these variations in the yields were significant. 

The yields of all scenarios were compared to the yields obtained at 90% WHR. The 90%WHR was 

chosen as it reflects more the current irrigation management as compared to the 100%WHR 



 

 

125 

 

wherein the fields are always kept at field capacity (100% WHR). The t-test (in Table 6.3) confirms 

that differences in yield were indeed minimal and insignificant. This indicates that lower %WHR 

thresholds can be used to trigger irrigation without suffering any major reduction in yield.  

 

 

Figure 6.6. Yield of various vegetables at varying %WHR at Parika, Guyana 

 

Table 6.3. P-values of the pairwise t-test of yield relative to yield at 90% for vegetable 

farming in Parika. 

Crop P-values of pairwise t-test 

Irrigation scenario (% WHR) 100 90 80 70 60 50 40 

Cabbage 0.99 REF 0.99 0.85 0.95 0.91 0.84 

Cassava 0.99 REF 0.97 0.84 0.81 0.62 0.44 

Eggplant 0.99 REF 0.98 0.94 0.93 0.96 0.87 

Hot Pepper 0.99 REF 0.99 0.82 0.85 0.78 0.78 

Tomato 0.99 REF 0.98 0.90 0.93 0.86 1.00 

Bora Bean 0.98 REF 0.96 0.95 0.97 0.98 0.59 

Significant difference in yield 
(at a <0.05) 

No REF No No No No No 
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The low %WHR scenarios, such as the 40%, 50% and 60% WHR, seem to be viable due 

to the frequency and amount of its rainfall. As shown in Figure 6.7, the average rainfall received 

by each crop throughout its whole growing cycle is more than the crop water requirement 

(transpiration and evaporation). Even the driest years, shown by the error bars, are still sufficient. 

There were instances of dry days when the available water in the soil has to be supplemented with 

irrigation. In the 90%WHR scenario, the irrigation supplies only 30 to 49% of the crops’ water 

requirement. This small contribution to the crops’ requirement makes it possible for low %WHR 

scenarios, such as the 40%, 50% and 60% WHR, to have minimal impact on the yield. Moreover, 

even with the low %WHR thresholds, frequent rains replenish the soil, and the threshold would be 

rarely reached. 

 

Figure 6.7. Comparison of crop water requirement (mm), rainfall received throughout a 

growing season (mm), and irrigation water requirement (mm) of the 90% and 40%WHR 

scenarios for various vegetables at Parika 
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The low %WHR scenarios require less irrigation water within one whole crop cycle, as 

shown in Table 6.4. The irrigation requirements include losses from soil evaporation, runoff and 

deep percolation. An allowance must be added to cover losses not included in the simulation such 

as lateral seepage and conveyance losses. A 1 ha field using the 60%WHR will require 20 to 50% 

less irrigation than 90%WHR. The water savings can be used for the irrigation of another field. As 

such, for the same amount of irrigation, a larger area can be irrigated. 

Table 6.4. The average irrigation requirement (in m3) * for one hectare of a vegetable farm 

using different irrigation scenarios. 

Crop Total irrigation requirement (in m3) of 1-hectare plot 
Crop cycle 
(months) 

Irrigation scenario (% WHR) 100 90 80 70 60 50 40 - 

Cabbage 4,890 4,860 4,710 4,490 4,260 4,060 3,830 9.0 

Cassava 6,290 6,150 5,790 5,450 5,190 4,920 4,780 12.0 

Eggplant 2,150 2,090 1,950 1,780 1,650 1,610 1,500 4.5 

Hot Pepper 2,600 2,520 2,320 2,150 2,010 1,890 1,730 4.7 

Tomato 1,450 1,390 1,270 1,140 1,050 930 860 3.4 

Bean 810 770 690 590 580 480 350 2.5 

* The irrigation requirement considers losses from soil evaporation, runoff and deep percolation. 

4. Conclusion 

This study sought to provide the irrigation requirements of several vegetable crops grown 

in the coastal farmlands of Guyana. The dataset from 2005 to 2012 obtained at Parika was used to 

simulate the growth of cabbage, cassava, eggplant, hot pepper, tomato and bora or yardlong bean. 

In the process of predicting the irrigation requirements, factors affecting the yield of vegetables 

were explored, and the following key findings were found: 

a. The 40%, 50% and 60% WHR are recommended to be used as thresholds of deficit 

irrigation. There was no significant difference between the yields obtained from the 

irrigation scenarios (40, 50, 60, 70, 80, 90 and 100%WHR). The low %WHR scenarios 
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(40, 50 and 60%WHR) seem to be favourable because of the area’s frequent and moderate 

to high amount of rainfall. The irrigation requirement of these three scenarios ranges from 

140 to 473 m3 per hectare per month, inclusive of soil evaporation, run-off and deep 

percolation losses.   

b. No significant difference between the two planting seasons. The yields which can be 

obtained from the two planting seasons in Guyana are not significantly different from each 

other because of the equally high rainfall received for both planting seasons.  

c. A significant difference between two coastal farmland sites. When the simulated yield at 

Parika was compared with the results of simulations at Black Bush Polder, Guyana, notable 

differences were found. Even with the similar soil type and climate of both Parika and 

Black Bush Polder, the different environments at the two sites affected the yield. The 

results show that care must be observed when generalizing or expanding the scope of crop 

simulation results to other areas. It also highlights the importance of measuring climate and 

soil data in the study site for crop simulations.   

d. An irrigation deficit strategy can be used to efficiently use water while getting high yields. 

The water saved can be used to expand the production area, cultivate abandoned farmlands, 

and aid in intensifying vegetable production in Guyana.  

5. Limitations & Recommendations for Future Studies 

 This study is an application of AquaCrop and does not seek to develop calibrated and 

validated crop parameters. We recommend a field experiment of the 40, 50 or 60%WHR irrigation 

scenarios in Parika, Guyana. The hypothesis of its suitability in Guyana can be tested out through 

field experiments on cassava, bora bean, and hot pepper, which are the crops with the lowest p-

values in the pairwise t-test.  It is also good to consider one crop for the three crop types in 
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AquaCrop: leafy vegetable, fruit-producing crop (i.e. tomato, hot pepper, beans), and root or tuber 

crop. The timing of irrigation deficit with the crop stage can be explored. Research should also 

be conducted to evaluate other irrigation methods in coastal Guyana such as sprinkler irrigation, 

drip irrigation, alternate-furrow, fixed-furrow irrigation as was done by Abera et al. (2020) for 

onion production in Ethiopia. 

 The comparison of simulations at BBP and Parika show that broad classifications could 

not be used to define similar zones for simulation. A simulation can be done for a location having 

the same soil series and climate regime as Parika to note if statistical difference is present for this 

more detailed classification. 
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9. Appendix 

Appendix A 

Key: M  = Measured parameter 

F  = Field observation and information 

Con  = Conservative parameter 

Com  = Computed 

Lit  = From literature 

AQ  = AquaCrop default 

n/a = Not applicable 

Table 6.A1. Crop simulation parameters used after calibration 

PARAMETER SOURCE Tomato Eggplant Hot Pepper Bora Bean Cabbage Cassava 

Development:        

Type of planting method F transplanting transplanting direct sowing direct sowing transplanting transplanting 

sowing rate (kg seed/ha) F n/a n/a 1.33 3.67 n/a n/a 

Row spacing (m) Lit, F 1.5 1.4 n/a n/a 1.5 1.5 

Plant spacing (m) Lit 0.2 0.7 n/a n/a 1.0 0.67 

Maximum canopy cover (CCx) (%) AQ 75 85 85 85 85 85 

Canopy decline coefficient (CDC) (%/day) Con, Lit 0.4 8.0 8.0 8.0 8.0 4.1 

Days to recovered (days) AQ, Lit 3 7 7 17 65 10 

Days to maximum canopy (days) AQ, Lit 53 67 120 35 164 70 

Days to senescence (days) AQ, Lit 82  105  140 70 245 300 

Days to maturity (days) AQ, Lit, F 102 134 140 76 270 360 

Duration of flowering AQ, Lit 40 74 60 26 n/a 250 

Days to flowering (days) AQ, Lit 28 30 90 35 n/a 80 

Max effective rooting depth (m) AQ, Lit 0.90 1.0 0.75 0.95 0.4 0.65 

Days to maximum root depth (days) AQ 46 60 65 35 135 135 

Evapotranspiration        

Effect of canopy shelter in late season (%) Con 60 60 60 60 60 60 

Crop coefficient at CCx (Kc tr,x) AQ, Lit 1.1 1.05 1.1 1.1 1.05 1.0 

Production        

Water Productivity (WP*) (g/m2) Con 18.0 17.0 17.0 17.0 17.0 17.0 

Reference Harvest Index (Hio) (%) AQ, Lit 63 50 50 50 85 60 

Response to Water Stress:        

p(upper) for canopy expansion Con 0.15 0.25 0.25 0.25 0.25 0.25 

p(lower) for canopy expansion Con 0.55 0.55 0.55 0.55 0.55 0.60 

Shape factor for canopy expansion Con 3 3 3 3 3 3 

p(upper) for stomatal closure (psto) AQ, Lit 0.4 0.45 0.3 0.45 0.4 0.5 
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PARAMETER SOURCE Tomato Eggplant Hot Pepper Bora Bean Cabbage Cassava 

Shape factor for stomatal closure Con 3 3 3 3 3 3 

p(upper) for early senescence (psen) Con 0.7 0.85 0.85 0.85 0.85 0.5 

Shape factor for early senescence Con 3 3 3 3 3 3 

Aeration threshold below saturation (% vol) AQ 5 5 5 5 5 5 

Harvest index adjustment        

Water stress during vegetative (unitless) Con, Lit 0 + 10 + 10 + 10 n/a + 4 

P(upper) for failure of pollination (unitless) Con 0.92 0.9 0.9 0.90 n/a n/a 

Stress affecting leaf expansion (unitless) Con, Lit + 0 + 10 + 10 + 10 n/a + 4 

Stress affecting yield formation (unitless) Con, Lit -3 - 8 - 8 - 8 n/a - 10 

Max. HI adjustment (%) Com 15 15 15 15 n/a 15 

Response to Temperature Stress        

Base temp for crop development (°C) AQ, Lit 7 10 10 10 10 10 

Upper temp for crop development (°C) AQ, Lit 28 35 30 35 30 30 

Min. air temp affecting pollination (°C) Con 10 8 8 8 n/a n/a 

Max. air temp affecting pollination (°C) Con 45 40 40 40 n/a n/a 

Response to Salinity        

Lower Ece threshold (ECEn) (dS/m) Con, Lit 1.7 2 2 4.9 1.4 2.0 

Upper Ece threshold (ECEx) (dS/m) Con, Lit 12.8 15 9 13.2 10.1 12.0 

Ece affecting canopy expansion (dS/m) Con 4.8 5.3 3.8 7.0 4.0 4.5 

Ece affecting stomatal closure (dS/m) Con 4.8 5.3 3.8 7.0 4.0 4.5 
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Table 6.A2. Other simulation parameters used after calibration 

Parameter Source Value 

A. Climate File:   

Rainfall M Daily, 2005 – 2012 

Evapotranspiration (ETO) Com Daily, 2005 – 2012 

Temperature M Daily, 2005 – 2012 

CO2 AQ Yearly, MaunaLoa 

   

B. Irrigation File:   

Irrigation Method F Furrow 

Irrigate back to F Field Capacity 

Water Quality F 2.0 dS/m 

   

C. Soil File:   

Horizons information (texture, thickness, 

PWP, FC, SAT) 
M 

3 horizons up to 

0.45 m depth 

Saturated hydraulic conductivity (Ksat) AQ 35.0 mm/day 

Curve Number (CN) AQ, Cal 72 

   

D. Field Management:   

Soil cover by mulches F None, 0% 

Weed cover F, Cal 5% 

Effect on CN by field practice (poor 

hydrologic condition, straight furrows) 
F, Cal +10% 

   

E. Simulation parameters:   

Planting Search Window 
F, Cal 

May for Season 1 

Nov for Season 2 

Initial soil Water F At 80% TAW 

Initial soil salinity F 2.00 dS/m 

Initial canopy cover (CCo) AQ 0% 

Initial Biomass AQ 0 ton cane/ha 

Initial root depth AQ 0.30 m 
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CHAPTER VII: COMPREHENSIVE DISCUSSION  

1. Application of new developments in remote sensing for crop inventory mapping 

The assessment of single-date, single-sensor images has shown high accuracy of Landsat8 

for classifying sugarcane areas, and Sentinel2 for rice. The spatial and spectral resolution of the 

satellite images have played a role in crop identification, The fusion of Sentinel2 and RCM images 

provided a better accuracy (95 to 100%) for both crops.  An accuracy analysis for May, June and 

October 2021, and January 2022 have helped identify the crop stages which are suitable for a crop 

inventory.  During the tillering stage for rice and the establishment stage for sugarcane, the crops 

are too short and sparse to be identified properly. Meanwhile, harvested rice fields and late 

maturity stage and harvested sugarcane fields are not suitable for a crop inventory as these areas 

are misclassified with mixed vegetation. The best stages to conduct a crop inventory are late 

vegetative to ripening stages for rice and tillering to early maturity for sugarcane. If planting 

follows the usual cropping calendar, these stages dominate the fields from January to March, and 

June to August.  

The crop inventory and irrigation water requirement work in tandem for the operational 

design of an irrigation and drainage system. The results of a crop inventory can be used alongside 

data on watershed or irrigation service area boundaries to identify the hectarage of rice and 

sugarcane within their bounds.  

The field practice of irrigation for rice and sugarcane is represented by the 100% WHR and 

70%WHR scenarios respectively. For these current irrigation regimes, a rice field will require 

roughly 504 m3 ha-1 month-1 and a sugarcane plot will require 323 m3 ha-1 month-1. The field water 

requirement of rice and sugarcane multiplied with the production area and the I&D system 

efficiencies will provide us with the minimum volume of water needed per month. This amount 
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can be compared with the available water from the conservancy or the pump discharge to 

determine additional potential irrigation areas. These are also possible expansion areas for either 

rice, sugarcane or vegetable production. However, the volume comparison between the water 

supply and agriculture demand might also show that the water storage capacity of the conservancy 

or the pump discharge rate is not sufficient for the current production area’s needs. In this case, 

the water-saving scenarios discussed in Chapters III, IV and V can be explored alongside 

developments in the conservancy design and pumping capacity. 

2. The applicability of AquaCrop for crop simulations at a regional scale  

The rice and sugarcane calibration and validation exercise have shown that the AquaCrop 

can be used to simulate the yield of these crops at a regional scale. But for this to work, the modeller 

needs at least the field-measured data on the soil and climate. As such, the results of a simulation 

can be expanded to areas having similar soil, climate type, water quality, and agricultural 

management practice.  The paper in Chapter VI on vegetables has shown, however, that modellers 

need to be careful in expanding the coverage of a simulation’s results.  

General classifications such as the USDA and FAO Subgroup and Family Soil 

Classification, and the Koppen-Geiger climate classification are too broad for simulations smaller 

than the country scale. A paper by (Pasquel et al., 2022) has expounded on the hazards of using 

classifications and parameters for modelling at various scales. The scale at which a simulation is 

analyzed should ideally be the same scale at which the model parameters are generalized. As such, 

a general parameter value or grouping which describes large portions of the world, as was the case 

of the Koppen-Geiger, would not capture the variability of the parameter at smaller scales. In the 

same way, a parameter measured at one plot or farm may represent only that specific farm and not 

adequately represent the general characteristics of the crop for a region.  
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The analysis and recommendations of Chapters IV, V, and VI are for the scale of a region 

or a conservancy service area. A more detailed classification such as the climatic regimes defined 

by the Hydromet Department of Guyana (GLSC, 2013), and the soil series mapping (Steele, 1966) 

may be a better categorical system with which to expand the results of a simulation.  

3. Sensitivity of crop parameters 

The calibration of rice and sugarcane has shown that simulated yield is more sensitive to 

some parameters than others. Big errors or changes to these parameters will decrease the 

simulation’s congruence with the actual yields.  These parameters are the crop stage duration and 

the crop coefficient.  

The crop stage duration is the days or growing-degree-days from planting or transplanting 

until maximum canopy and maturity.  This information is important for an AquaCrop simulation 

since they contribute to computations of the effective canopy cover and effective rooting depth 

(Ze). The crop stage duration also affects the crop’s exposure to flooding or drought, especially 

those occurring near the end of a growing season.  

The crop coefficient, meanwhile, is directly used in the computation of crop transpiration. 

As it is among the first computations done in the model, errors in the crop coefficient will 

compound in the succeeding computations. Compared to the crop stage duration whose 

information is provided for each cultivar by breeding centers, or easily measurable in the fields by 

the farmers themselves, the crop coefficient is more tedious to measure. The kc values are usually 

determined through research, and as such, may be accurate for the cultivar or climate conditions 

that it was measured. Steps to make the kc values transferable are delineated by (Allen et al., 1998), 

however, the review by (Pereira, Paredes, López-Urrea, et al., 2021) has shown that few studies 

have met the pristine and standard requirements to obtain transferable crop coefficients. It is thus 
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helpful to use kc values measured locally, if possible, or from locations having the same climate 

regime, and calibrate the kc before scenario simulations are done. 

Aside from these two parameters, it is also important to get field measurements of the 

maximum rooting depth (Zx) and experiments or calibration of the root zone depletion threshold 

of water stress for stomatal closure (psto). The Zx influences the effecting rooting depth, and thus 

the computations of the soil water uptake. The psto meanwhile is important in the simulation of 

the impact of water stress. The psto defines the boundary above which plants start to experience 

water stress as discussed in Chapter II. 

One of the key features of AquaCrop is its provision of conservative and default parameters 

for the simulations. Experimental research into the kc and psto values of different crops would 

contribute to confirming or improving the conservative parameters used. It would also assist in 

developing new parameter files outside of the 15 crop files in AquaCrop. 

4. Response of yield to varying %WHR irrigation thresholds 

The simulations for rice, sugarcane and vegetables have all shown that water-saving 

scenarios can be efficiently used without incurring significant (p > 0.05) yield losses. Vegetables 

can use as low as 40%WHR deficit irrigation, 50%WHR for sugarcane and 80%WHR for rice.  

One possible reason for these low limits is the coastal farms’ environment. The rainfall is 

abundant, wet days are frequent, and the soils have high water-holding capacities. The high rainfall 

received is evident in the coastal area’s need for drainage, which has been the main purpose of 

Guyana’s canals for several years. Yet even when rainfall is high, there are dry days in between 

when a crop needs water. Even at the lowest threshold, at 40%WHR, for all the crops studied, an 

irrigation requirement is still simulated. Both irrigation and drainage are essential considerations 

for a functioning agricultural water management system. 
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CHAPTER VIII: CONCLUSION 

1. Summary and overall conclusion  

This research aims to contribute to the design of agricultural water management practices 

in Guyana by establishing a methodology for a crop inventory and assessing irrigation scenarios 

for rice, sugarcane and vegetables.  

For the component of the crop inventory, we have identified satellite data products and 

dates of image acquisition for the methodology of a crop inventory in Guyana. Between single-

date images of Landsat8, Sentinel2, and RCM, Landsat8 was the most accurate in classifying 

sugarcane areas, while for rice, Sentinel2 was better. The fusion of Sentinel2 and RCM gave better 

accuracies for a simultaneous inventory of rice and sugarcane. The analysis by image acquisition 

date has shown that among the crop growth stages, the images acquired two to months after 

planting for rice, and three to twelve months for sugarcane were adequate for a crop inventory. 

Rice and sugarcane are undistinguishable in the satellite images during their early growth stages 

(tillering for rice and establishment for sugarcane) and at late maturity.  

Crop water productivity and yield simulations were also conducted for several crops. 

AquaCrop has been proven to reliably simulate the yield at a regional scale based on the validation 

of rice and sugarcane simulations. Sensitivity analyses of the rice and sugarcane simulations have 

identified the crop stage duration, maximum rooting depth (Zx), crop coefficient (kc) and threshold 

of water stress affecting stomatal closure (psto) as important crop parameters for crop simulations. 

Measurement or calibration of these values will help improve the accuracy of future crop 

simulation studies. 

Deficit irrigation scenarios of varying soil-water thresholds were simulated and analyzed. 

The 80%WHR scenario for rice, 50% WHR for sugarcane and 40%WHR for vegetables were 
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assessed to be suitable water-saving irrigation methods at the coastal farms. In these scenarios, 

there is no significant decrease (p>0.05) in yield, and irrigation requirements are lower compared 

to current irrigation schemes.  

The planting season does not affect the yields obtained for rice, sugarcane and vegetables. 

The location, meanwhile, contributes to yield differences observed between Black Bush Polder 

and Parika. These two locations have the same front land clay soils and wet tropical climates but 

have different soil series and national-level climate regimes. More detailed soil and climate 

classifications, such as the soil series and national climate regime, are a better basis for expanding 

the results of a simulation as compared to broad global classifications.  

The future climate for Guyana is forecasted to be drier. However, the current climate over 

the coast is still very wet, and as such drainage is the most important component equal focus on 

both irrigation and drainage will help ensure that Guyana’s agriculture is adapted to the future 

climate while protecting it from the risks of the present.  

2. Recommendations 

2.1. Policy 

Use remote sensing technologies for crop monitoring.   The work on the crop inventory 

has shown that it is possible to use remote sensing for crop monitoring in Guyana. Before the 

technology could be adapted, the Ministry of Agriculture, or any of its divisions, has to be enabled 

in using this technology such as through the hiring or training of personnel on GIS; acquisition of 

processing equipment; and participation in further research to improve and apply the methodology. 

Give incentives for farmers to employ water-saving irrigation schemes.   The use of water-

saving irrigation regimes such as deficit irrigation is useful in improving the efficiency of the 

system and saving irrigation water which can then be used to irrigate other farms. This is especially 
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helpful when the agriculture sector seeks to expand the production area. However, these benefits 

are more felt in the community than at the farmer level. The recommended irrigation scenarios 

predict no significant decrease in yield, but at the same time, there is also no significant increase 

in yield. For a farmer, water-saving regimes do not benefit his harvest.  An incentive provided 

through an irrigation association, or deduction of conservancy fees may help encourage the farmer 

to participate. 

Create a long-term adaptation plan for agriculture   Lower annual rainfall is forecasted in 

the next 50 years in Guyana, but at the same time sea levels are also expected to rise (Government 

of Guyana, 2012). These may reduce the existing agricultural area or spurn the gradual expansion 

of agricultural land further inwards or. Yet, there is a limit to inward expansion as the boundaries 

of the soils suitable for agriculture and the existing conservatories are reached. The results of this 

thesis can be used in developing a long-term adaptation plan to make full use of the country’s 

resources.  

2.2. Further research 

Test and apply the %WHR scenarios recommend by this study.   A field experiment in 

Guyana which compares the conventional irrigation methods and the recommended %WHR 

scenarios for rice, sugarcane and vegetables would be helpful to confirm the simulated effect on 

yield. This will also assist in establishing more confidence in these proposed irrigation thresholds. 

Measure the crop growth stage durations and rooting zone depth of vegetables grown in 

Guyana.   Field measurement of these two parameters is important for crop simulations. Key crop 

parameters for rice are provided by the GRDB whenever a new cultivar is released, while for 

sugarcane, these parameters have already been studied. However, there is a gap in information 

about vegetables. These parameters can be determined by the breeding center or agricultural 
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extension program during their field trials for the introduction of new crops, varieties or cultivars. 

Water productivity of various furrow irrigation schemes:   In this paper, we have not seen 

any significant difference in water productivity between the %WHR thresholds used. 

Improvements to water productivity may be more pronounced when comparing continuous flow 

irrigation with deficit irrigation. Different methods of irrigation may also be compared as was done 

by Ünlü et al. (2007) for cotton by comparing continuous flow irrigation, alternate furrow 

irrigation, surge irrigation, cutback irrigation, and tailwater reuse system. Other irrigation methods 

such as sprinklers, center pivot or subsurface irrigation can also be studied and compared with the 

current irrigation methods in Guyana to determine if the water productivity is improved. 

Use remote sensing-based indexes to estimate parameter values.   One research area 

forward is the combination of satellite images and crop modelling. The recent advances in the field 

have tried to determine crop model parameters such as maximum canopy cover, relative biomass 

(Brel) (Han et al., 2020), and aboveground biomass (Kim & Kaluarachchi, 2015; Mohamed Sallah 

et al., 2019) from satellite-derived indexes. Research on this area is still relatively and much can 

still be done to identify the relationship between the many remote-sensing indexes, and crop 

parameters. This field of research also assists in identifying general crop parameters which are 

representative of the characteristics at the study area’s scale. 

Irrigation design for broad-bed layouts.   Farm labour issues in Guyana push an inevitable 

shift of the sugarcane farm layouts from the furrow-and-ridge into the more machinery-friendly 

broad-bed design. The shift from furrows to a broad-bed layout will alter the wetting pattern of the 

soil. There are not a lot of studies comparing the wetting pattern of the furrow-and-ridge and the 

broad-bed configuration, more so specifically for sugarcane or heavy clay soils. Yet, it is known 

that water expands more in the horizontal direction in clay soils than in course-textured soils 
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(Naglič et al., 2014), but as beds become wider drier spots appear at the center (Memon et al., 

2020). It will be helpful to understand the wetting pattern of a typical sugarcane broad-bed plot 

under furrow irrigation in Guyana. This helps determine if changes in the field irrigation method 

need to be done to ensure that the driest part of a plot still gets the appropriate amount of moisture.  
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