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ABSTRACT

Nuclear spectra of A=14, 18, 38, 42, 206 and 208 nuclei
were calculated using free reaction matrices as effective inter-
actions and Woods-Saxon single-particle wavefunctions. The
calculations show that, in most of the cases considered, realistic
single-particle wavefunctions must be used in the determination
of realistic effective interaction matrix elements. The results
are especially interesting in the A=18 nuclei where it is found
that the use of realistic single-particle wavefunctions produce
changes in spectra comparable to those introduced by core-
polarization. In heavier nuclei it appears that a simple harmonic
oscillator calculation is out of the question at least for states
involving both neutrons and protons. Wavefunctions deduced for
a single value of the oscillator parameter %w cannot adequately
describe the states in nuclei such as Pb206 and Pb210 possessing

a large neutron excess.
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CHAPTER 1
INTRODUCTION
1

Since the nuclear shell model was proposeg by Mayer and Jensen
it has become a sophisticaéed and powerful t001. for understanding
many aspects of the structure of finite nuclei. In what is termed
phenomenological shell model theory the residual interaction is
parametrized and the parameters determined by fitting experimental
data. The usual practice in this médel is to include the minimum
number of configurations required to fit the data and at the same
time give "reasonable" two-body matrix elements. For example,
the low-lying positive parity states in O18 would be described by
two interacting valence particles confined to ﬁhe (1s,0d) shell
'outside an inert closed shell 016 core. The effects of neglected
configurations are absorbed in the residual interaction parameters.
The model dependent interaction obtained in this manner is refer;ed
to as an effective interaction. As a result of the model dependence,
effective interaction matrix elements may not have much resemblance
to the same matrix elements evaluated with the free space nucleon-
anucleon interaction. In the past few years much research has
been done in efforts to obtain effective interaction matrix elements
from the free nucleon scattering data. Much of this work ﬁas been

7
discussed in a lecture series by Baranger.

f The realistic interactions most often used in the literature are
: 3 4,5 6
those of Kallio and Kolltveit, Kuo and Browm, and Tabakin.



Since effective interaction matrix elements are model dependert
it is important that all aspects of the model dependence are examined.
In previous calculations of effective interaction matrix elements
from realistic interactions the shell model single=-particle wave-~
fuhctions have been taken to be eigenfunctions of an infinitely deep
harmonic oscillator potential. If a shell model single=-particle
potential exists, it must be finite with a diffuse surface. Wave-
 functions for states near the surface of a finite potential well will
differ considerably from wavefunctions for an infinitely deep well.

In this thesis we have investigated the effects of using more realistic
single-particle wavefunctions in evaluations of effective interaction
matrix elements. To obtain wavefunctioﬁs for a finite single~
particle potential we assumed tgat the shell model pOtengial could

be represented by a Woods-Saxon potential with a Thomas spin=-orbit
term. To study more cdmplicated effects (for example, non-locality)

a more sophisticated model would be required. There have been

earlier calculations to investigatelghe effect of using Woods-Saxon
wavefunctions. Flowers andi?ilmofe considered the spectra of O18

and F18 and Stamp and Mayer considered the structure of the collective
octupole states in 016 and Caéo. These authors used phenomenclogical
interactions and found significant changes in matrix elements compared
" to the values obtained using harmonic oscillator wavefunctions.
However, in phenomenological calculations a large part of the w#ve-

function dependence can be absorbed in the parameters of the inter-

action. On the other hand, in calculations of effective interaction

-



it is imperative to include the wavefunction dependence.

We hi;elgsed free reaction matrices developed by Kahana and
co-workers as realistic effective interactions in our study
, of the effects of more realistic wavefunctions. Calculations were
performed with harmonic oscillator wavefunctions as well as with
Woods-Saxon wavefunctions. In most of the nuclei considered the
free_reaction matrices had not been used as effective interactions
even with harmonic oscillator wavefunctions. As a result we also
considered properties of the free reaction matrix itself as an
effective interaction. 18

In Chapter 2 Green's function techniques are used to define
the lowest order shell model effective interactions for two-particle,
two-hole and particle-hple statesi The lowest order realistic
effective interaction in the nuclear reaction matrices is ﬁiscussed.
The method for obtaining a nuclear reactioT matrix from a free
reaction matrix is discussed briefly. Lee ’ has considered this
problem in detail.

20

In Chapter 3 we present a standard particle-hole model
calculation of the odd-parity states in 016. This calculatioﬁ was
performed to study the effective particle~hole interaction obtained
from free reaction matriées. Only harmonic oscillator single-particle
‘wavefunctions were used in this calculation. The locallvelocity
dependent free reaction matrice316 were usea as the effective

interaction.

In Chapter 4 Woods-Saxon wavefunctions for A=15,17,39,41,207

A}



and 209 nuclei are determined. For convenience in shell model
caiculations the Woods-Saxon wavefunctions are tabulated as expansions
in terms of harmonic oscillator wavefunctions.

In Chapters 5 and 6 we present calculations of the spectra of
Nla, 018, F18, Ca38, 0342, Scaz, szo6 and Pb210 using Woods-Saxon
wavefunctions. Two forms of the free reaction matrix are used as
effective interactions: a local velocity dependent representation for
realtive S states only and free reaction matrices obtained from a
non~-local separable potential. For comparison the spectra were
also calculated with harmonic oscillator wavefunctions. The shell
model technology required to calculate the various spectra is standard.
In Appendix A we give the expressions for the various types of matrix
elements used and the phase conventions used throughout the thesis
are defined.

In Chapter 7 we conclude by summarizing the most significant

results from each chapter.
. [ ]



CHAPTER 2
SHELL MODEL EFFECTIVE INTERACTIONS

AND THE FREE REACTION MATRIX

2=A Introduction
- 18 .

We use Green's function techniques to arrive at a consistent
formalism for defining an effective shell model Hamiltonian. The
particular cases considered are those of two-particle, two-hole and
particle~hole Hamiltonians. The derivation is based on the assumption
of a Haigree-Fock ground state that would be obtained from Brueckner
theory. The derivation is used to show the relationships among
the nuclear reaction matrices for the cases considered and to examine .
differences in various nuclei. Once the effective interaction is
defined within the framework of a model, a realistic interaction is
then used to calculate the effective interaction. In our case we
usela free reaction matrix to determine the nuclear reaction matrix. -
Lee ’ has discussed: in detail, the procedure for determining the
effective interaction from a free reaction matrix.

2-B Green's Functions ~

We define one and two-particle Green's functions to be

Gy Eyrt) = (1)< NlT{ap(tp)ad+(tc)} N > (2-1a)

and
G (Er o ErEy) = (-1) %< NlT[ap(tp)ac(tc)a;:(tx)a:(t‘())lN > (2.1b)

respectively. Other Green's functions are defined in a similar manner.

The operators ac+(tc) and ap(tp) are the usual Heisenberg representation



6f the fermion creation and annihilation operato;s. The Greek
subscripts denote the full set of quantum numbers that label a single=~
particle state and IN >'is the fully interacting ground state of the
N fermion system

HN > = EN°N> . (2.2)

The one=-particle Green's function may be written in the form

G, t) = 6t -t ) (D) <‘N|ap(tp)a0+(tc)|N >

-6(e =t ) (-1) < Nja_*(t )a (e )N >

g p P
+ -
= - =t .
Gpc (tp tc)+Gpd (tp 0) | 2.3
where
e(t:p-tc:I )y = 0 tp < to
= "1 t >¢t .
P o]

In (2.3) and the following discussion G is used to denote the Green's
function with the discontinuity at tp=tU subtracted.’ G+ is a particlé

propagator and G is a hoje propagator. Introducing the Fourier trans=

form . 4co
+ iwt +
\ = dt .
G (@) f O 2.4)
-0

it follows that the spectral representation for G+ is

+ < N|a_|Ml,a> < N+1,0£laa+lN >
Gy (@ = Z L . (2.5)

[ U
a [0)' (EN+1 -EN )+1Tl]

The summation in (2.5) is over all states of the (N+l)-particle nucleus.

Similarly, for the hole propagator we have
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. ! < N|a F|n-1,0 > < N-1,0]a_|N >
Gy (@ == Z g L . (2.6)

o Lo By y By )-in]

Both G+ and G have a series of poles on the real axis corresponding
to the single-particle and single-hole energies of the (N+1) and (N-1)~
particle nuclei, respectively. The problem of determining the.self~
consistent single=-particle (hole) energies relative to the ground
state of the N-particle system is the problem of determining the poles
of Gi(w). However, we are interested in calculating the spectra of
the closed shell nucleus |N > and the |®+2 > nuclei rather than the
self-consistent poteﬁtial which would determine the single-particle
(hole) energies. To do this we make the usual assumption of nuclear
spectroscopy; a Hartree-Fock ground state for the nucleus exists and
Gp;t(uo are diagonal in the Hartree-Fock representation. That is,
we demand that our formalism be consistent in principle rather than
in practice for calculating the Hartree-Fock energies. We will return
tb this point later.

To determine the spectra of the N and (Ni2)=-particle nuclei, the
two~particle and particle~hole Green's functions are required. The

tWOfparticle Green's function may be written in the form
Goin (o7 EorEr3Ey) = OCE E) (-i)%< Nla (tp)aa(tp)a;(th)a:(th)lN > +
+ 0057t ) %< nfa) (5))a o ()8 (& da (e )N >
Gpc:hctp-th) +6 ) (5t (2.7)

where G+ and G are the propagators for two-particles and two-holes,



respectively. The gpectral representations are

<Nja a |M2,a> < ¥2,0/a,ta TN >
o £m-(EN+2 -EN )+i'ﬂ]
and
- -~ <nNlata Tjn-2,0> < N-2,0]aa |N>
G gen (@) = (1) Z 2 % e PO . (2.8b)
o lwt@y_, =y ) =il

GpcK)\ (w) and Gp oKA (w) have series of poleg on the real axis corres-
ponding to the spectra of the (Ni2)~particle nuclei. The particle-hole
Green's function is the special case of (2.1b) where t:p==‘t:7L and ta=t p

which leads to the spectral representation.

w + +
-~ < N N, > < N,0 N >
@ = D) Z la-)\ apl ]aK acl

G
OKA o, 0 ..
P [w-(EN -EN )+inl

+ +
< Nja_'a_|N,a> < N,ala, a_|[N>
+(-i)>_' K_Go A_D

[k (8, %8, ) i)

. (2.9)

The particle-hole Green's function has a series of poles on the real
axis corresponding to excitation energies of the N~particle system.

In nuclear spectroscopy the problem of determining the excitation
energies of the systems under consideration is that of determining
the poles of the Green's functions (2.8) and (2.9). To perform such a
calculation without approximations is entirely unfeasible. The first

approximation made is an assumption about the structure of the ground



gtate ﬁavefunctions for the N, (N+1) and (N-1) particle nuclei. Wg
consider cases where IN > is a closed shell nucleus ;nd make the
shell model assumption that the ground states may be represented by
single=-particles moving in a sélf-consistent Hartree~Fock potential.
Equations (2.1) may be used to write down equations of motion for the
propagators. The result is a hierarchy of co;gled equations which
can only be solved in various approximations. We will work from

the following set of approximate equations for the propagators:

one-particle

+ ot : o+
G o (t:p t:o) Gpa (tp t:c) +iZ .[dtc dtc Gpa (tp ta )
.o 1 92 1 1
192
x A P(c_ -t )6 * e -t ) (2.10a)

91% °1 Oy 00 0y

one-hole

- o- ! o-
- = -t +i dt d -t
Gpcr (tp t:o) Gpcr (tp c) 12 [ 0y tuszol (tp 01)

xA Dt -t )G a'(: -t ) (2.10b)

019, 91 9 9 9

two=particle

GPGKA (tp-th) Cok (tp-th)Gal (tp .tx) PA (t tA)G (t t;\)

+
+ (1) fdc dt G (t -t )G (t -t )
}; Py PPy S P P00 TP Py
P19
PsO
2% 2P
x T (t )G (t -t.) (2.10c)
P101PyT," Py Py pz“’“‘ Py A
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two-hole
GpaKA (tpft;‘)'= GpK ( p-th)c A (tp-tl)-G A (tp-th)GoK (tp-tx)

B}
+iZ[dt dt ¢ (t -t )& __ (t -t
J ey Py opl(p 01) 601(9 01)
P19
PeTy 2h

xI )G

(t_ -t T -t,) (2.10d)
P101Py0y Py Py PpTpKA Tpp A

particle-~hole

. ph - = + - = -
Gpam (t:p t:o) GpK (tp tK)Go?L (tK tp)

+ -
+iZ[dt dt G t -t G t -t
. Py Py PRy ey 91) 0oy ey °1)
P19

Pn0
272 r ph(

ph
t -t ) (t_ -t ). (2.10e)
P101P2% P P KN “pp K

G
P29 2

In (2.10) the self-energy operators A? and AP and the intexaction

operators PZP, PZh

and Pph are as yet unspecified functions of the
two-nucleon interaction. Equations (2.10) contain no direct coupling
among the various two-particle propagators. Since the equations are,
in fact, coupled, the self-energy and interaction operators should be
chosen consistently for all equations. We start by defining a repre-
sentation in which the particle propagator is diagonal and then obtain
solutions for the two-particle equations in the same approximation.
2-C The Hartree-Fock Energies

The Hartree-Fock: approximation for (2-10a) would be to take the



self-energy operator to be

P \ \"
A t =t = Z v -exch.)6(t =t 2.11
plpz ( pl pz) ( 915925 exch.) 6( pl pz) ( )

5<€F
where v is the two~nucleon interaction. It is well known that the
strong, short-range, repulsive nature of the nucleon~-nucleon interaction
makes a Hartree-Fock calculation with (2.11) impossible. In the
Brueckner theory of finite nuciei19 the Hartree-Fock single-particle
states and the Brueckner reaction matrix are determined self-consistently

simultaneously. The single~particle energies are

€ = Ti + zi (K 1313 .=exch.) (2.12)
j< k

where Ti is the kinetic energy of the particle. The Brueckner reaction

matrix is

- Vi jmn! mnkﬁ
Riske = Vijke zd S e, € e A 2.13)

where only unoccupied intermediate states are included in the summation .
and A is a parameter to modify the denominator for off-the-energy=-shell
propagation in the intermediate states.

Taking the Fourier transform of (2.10a) we have

i

+ O+, \" 0+ P + :
G o (w) Gpd (w) 1—2{) Gppl, (m)A.plpz(w)szo (w) .(2.14)
P1P2
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In Brueckner theory the self-energy operator is

P -
Ao (“’)=Z (
1P2 3

8<F

- h- . .
Kp 5 0.5 exch.) (2.15)
1 27
Determining the poles of Gp;+(m) defines the reaction matrix (2.13)
at the single-particle energies (2.12) of the diagonal representation.

In the diagonal representation

-i¢ t
G g(t) = (-D[(L-£)O(E)-£,6(-t) Je P §0g (2.16)
where
ﬁp =0 €, > &
= 1 ep < GF

and & is the Fermi energy. For the (N+2)-particle system the

Hamiltonian
B = Tiv (2.17)
becomes
H= HO+H1 ‘
\" + L1\ + o+
=Z_. €, 2 +—2- Zvam'ﬁ a, .exﬁs a5a7 . (2.18)
k oB
78

The single-particle energies are those defined in (2.12) and the

perturbation is the two-nucleon interaction for two-particles in the

states of the (N+l)=particle nucleus.

2=-D The Two-~Particle Propagator

To determine the poles of the two-particle propagator we make

the approximation
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2p
r (k. =t ) =v 6( Yy . (2.19)
P191P2% P P2 P191P2%

t -t
P Py

" Taking the Fourier transform of (2.10c) we have that

(1-£ )(1-£)
6 .t = o9 l5 5. -8 6
POKA [m-ep-eb+in] pPK oA PN oK

+
+ Z v G (w} . (2.20)
pcplol plclxl
P19

Equation (2;20) may put in the matrix form

(wH,)G (@) = (-DI : (2.21)
From (2.21) it follows that finding the poles of G+(w) is equivalent
to diagonalizing the Hamiltonian
H = H0+v (2.22)
in the Hilbert space of two-particle states above the Fermi sea.
Equation (2.20) is represented in terms of diagrams in Fig. 2-1.
Iteration of the equ.ation leads to a ladder series in the interaction v.

Ll : |

7//// T_ + A

A N

>,
L4

Fig. 2-1. The two-particle propagator in the “"ladder' approximation.

With the bare nucleon-nucleon interaction as the two~particle

perturbation it would be necessary to diagonalize (2.22) in the entire

P



Hilbert space of two-particle states above the Fermi sea. This
difficulty can be removed by introducing a reaction matrix which
permits diagonaiization of the Hamiltonian within a subspace of the
two-particle configurations. For a subspace M we define the reaction

matrix by

— . .
24 Kpoplol(“DGplolKl (w) E: VpoplclcplolKA (w) . (2.23)
P19 9101
_ in M
From (2.23) and (2.20) it follows that

- (1-£_ )Y(A-£_)
- ‘ ) 9
K (W) = v + Z v — == K (w) (2.24a)
pop,0; pap, 0, pOP, 0, [w €. "% +in] P20,P 191 N
PyTsy 2 "2
outside M '
and
1- -
| - ( fpz)(l foz)
K (W) = v + v P - K (w).  (2.24b)
poa;p; LA ZJ POP, T, Lw €. "% +inl Tp,0,0:0; R
p202 2 2
outside M

It is more convenient to write (2.24) in the matrix form

| K@) = vivE (WQ Kw) (2.25)
where Q is a projection operator restricting the intermediate states
to statgs not contained in M. The operator (l-fpz) (l-foz) projeéts
out the occupied core states. K(w) is a regular function in the upper
half-plane and

K{w) - v
w - X



The form of (2.24) implies a discrete spectrum of intermediate states

which is not a necessary aésumption. For the purboses of the present

discussion the nature of the intermediate states is not important.
For shell model calculations in a convenient subgpace of two-

particle configurations (plol) the two-particle Greers function is

(1-£ ) (1-£ )
+ o g +
Gpolc}\ (w) [m-epfea-i-iq] apx aa)\' apA 601( +ZJquplcl(“)Gplolm(“’)}
' 1% o
(2.26)
and the effective Hamilitonian is
H(w) = Hy+K (W) . (2.27)

Determining the poles of G+(w) in (2.26) is not a simple eigenvalue
problem as in (2.20). Equation (2.26) is a self-consistent equation;
the poles of G*(ub can be determined by diagonalizing the effective
Hamiltonian (2.27) which inm turn is defined by the positions of the
poles. It will be seen later that with a suitable choice of the sub-
space of configurations the reaction matrix is essentially the same
for all states @, consequently we take the Hamiltonian to be

Hw) = Byt ) . (2.28)
Wwith (2.28) finding the poles of G*(u» is a self-consistent eigenvalue
problem. This point will be discussed later. Equations (2.25) and
(2.26) are expressed in terms of diagrams in Fig. 2.2. When drawing
diagrams a wavy line is used to denote a reaction matrix interaction
and a dashed line denotes a v interaction. It should be noted that
although K is a sum over many nucleon~nucleon interactions occuring

in a finite time interval it is treated as an instantaneous interaction
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' when used as a perturbation.

)y | MYV :: ——-- -+ {._-} + se

-
>
-,
s
.
L4
S,
>

(b)

Fig. 2-2. The two-particle propagator as a ladder series in the reaction
matrix. In {(a) the intermediate states are outside the
subspace of diagonalization. In (b) the intermediate states

are in the subspace of diagonalization.

From the definition (2.24) it can be seen that K(w) contains
all of the effects of two-particle correlations outside the chosen
subspace while the diagonalization of H(w) includes all correlations
within the subspace. Consequently, (2.26) contains all of the two-body
correlations above the Fermi sea without any'double counting of diagrams.
Finding the poles of the Green's function (2.26) gives the same eigemr .
values as would have been obtained for (2.20), however, only a set
of the eigenvalues can be determined. On the other hand, “only the
piece of the wavefunction in the subspace is determined by diagonal-
ization. From the eigenvalue problem (2.22) one obtains the amplitudes
of the unperturbed configurations in the state «

x & = <Naja [N+2,0> (2.29)

® i
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where the cpﬂfigurations'(p,o) are in the entire Hilbert space above
the Fermi sea. From the eigenvalue problem (2.28) one obtains the
amplitudes |
?{pca = < Njaa w20 > (2.30)
where the configuration kp,c) are within the subspace. The full set
of amplitudes can be calculated in a straight forward manner. Substi-

tuting the spectral representation (2.8a) into (2.23) and finding the

residues, we have

QL o
L K@HX %=) v X . (2.31)
= o P19 Z—; POP10y P10
P19 P19
in M '

In matrix notation (2.31) is

K(wa)cpa = v &

(2.32)
where Qa is the wavefunction (uncorrelated) in the subspace and wa.is :
the wavefunction (correlated) for the entire space of two-particle

configurations. To obtain wa from Qa we define a wave matrix by

¥ = M(wO)cpa . , (2.33)
From (2.32) it follows that
K(uy) = M) (2.34)
and
M) = 1+,£f(mO2QK(wa) . (2.35)

Equations (2.26), (2.33), (2.34) and (2.35) give the complete solution
for the problem of determining the low-lying levels of the (N+2) -

particle nucleus with the interaction operator (2.19).
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'2-E _.The Two-Hole Propagator

The Fourier transform of (2.10d) is

B £,
GpcKJ\ W) = [w+ep+e

—-in] {%g%}.'%k%x *

- 2h

1-2J rbdplgl(uocplalxh'(uo}- . (2.36)

P19,
The poles of G-(w) are at the energies of the states in the (N-2)~-
particle nucleus relative to the ground state of the N-particle nucleus.
When two particles are removed from the N-particle nucleus creating
two-hole states the.residual interaction is the effective interaction
between the twq particles in the N-particle nucleus. From m.1r definition

of the ground state the two-hole interaction operator is

2h 2h
w) =K ) ' 2.37
Toaoyay @ = Fogp g ) 2.37)
where ’
‘ (1-£ ) (=€ )
2h 2 2 2h
K (w) =v +. /) v — —= K (w) .
pop; 0, pOp,0; /., PO, T, [w € "¢ ] Py0,0,0;
P,0 2 72
272
(2.38)
That is, the interaction operator is the particle-particle reaction ~

matrix evaluated at the poles of the two-hole propagator. The Green's

function is

foU f

(W) = . 6 -6 _ 8
GpaKA (W) _[qri-eb+€a-iq] 16_pl( oA PN OK

O\ 2h -
+>‘: .Kp(mlo,1 (w)GplolKh (w)} . (2.38)
P19 '
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The two-hole propagator and a hole-hole reaction matrix element are
given in terms of diagrams in Fig. 2-3. The hole-hole interaction

matrix element is shown as an insertion of a ladder series on particle

A 4 Y

@ — = vy — + v y
NN/ VWA

* : Y \(

SR/ v oY \'% L
(b) AN\ [ PO - + . + e 8.9
2 N\ v v j I V

. A A - ——
2 S + t---- ~+ s

Fig. 2-3. (a) The two-hole propagator as a ladder series in the two-
hole reaction matrix. (b) A hole~hole interaction matrix

element as a ladder series in the interaction v.

lines. Diagrams drawn in this manner can be misleading; the hole-hole
interaction does not contain any four~hole two-particle interactions.
For ex#mple, the matrix element of the second order term in Fig. 2-3b
is just the conjugate of the particle-particle matrix element.
The effective Hamiltonian for the two-hole states is-
HW) = B . (2.39)

Thé problem of finding the poles of the two-hole Green’s function is

a self-consistent problem as it was. for the case of two-particles, If



the reaction matrix does not depend on the various eigenvalues of
the states with the same quantum numbers, the poles of (2.38) can
be determined by diagonalizing the Hamiltonian

H(w) = H0+K2h @) - (2.40)
There are several differences between the two-particle and two-hole
reaction matrices. For two particles the subspace of configufationa
which defined the reaction matrix could be chosen arbitrarily. 'In
the case of two holes the reaction matrix is defined by the subspace
ooncéupied states. The two-particle correlations.of (2.33) are
contained in the Hartree-Fock single-particle states in the case of
two holes. | |
2~-F The Particle-Hole Propagator

The Fourier transform of (2.10e) is

¢ Phy (1-£ )€ -(1-£)f .
POKA [w-ep+ediin] 5ok Son

- -
+ Z “Ppaploih“’)‘;pl olmph(“’)} . (2.41)

P19
.The poles of Gph(ub are at the excitation energies of particle~hole
states relative to the ground state of the N-particle nucleus. In.
calculations of particle-hole structure the unperturbed single-particle
.(hole) energies are taken to be the energies of the states in the (N+1).
and (N-1) nuclei. With this definition of the unpertufbed states
the residual interaction is the interaction between a particle in a

state of the (N+l)-particle system and the particles in the N=-particle
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nucleus. The particle=-hole interaction operator is then the reaction

matrix for these states evaluated at the excitation energy of the

particle-hole system

ph ph
r = K - h
- POP;0, (w) pap,0, (W) Kpoloplp (w) . (2.42)

There are two terms in (2.42) because the direct and exchange particle=-
hole matrix élements are different. Particle-hole matrix elements

are just linear combinations of the particle-particle matrix elements
for the same states. A particle-hole reaction matrix is a linear
combination of the particle-particle reaction matrices for the same
gonfigurations but evaluated at the particle~hole excitation energies.
The particle-pgrticle reaction matrices for the particle-hole matrix

elements (2.42) are

(1-£, ) (15, )

ph L\ 2 ph
K (w) =v +Z v — — K (w) (2.43a)
POP10, . POP10y pop,0, [u-c) -e; I Tey00p,0
PAC 2 2
272
and
= (1"'fp )(1'f(I )
ph 2 2 '
(Ww=v__ .+ v ~ ==K ph
PG10p, PO 0P PG1P,T, [w‘ep €y ] PyT,00, (w) . (2.43h)'
pzoz 2 "2

Although we have used the same notation in (2.42) and (2.43), the matrix
.elements (2.43) are particle-particle coupled matrix elements.

The particle~hole Green's function is



1- “(1-f )£
. oh ( fp)fo ( fo)fp
Gpald\ (w) = [w-¢ +e +in] 6;:'I( 60)»
P o .

\- ph ph ph }
+ Zi‘ K w) =K G W 2,
Kooy DKo qp T WG, 7 () 2.4
P1%
21
It can be showm that finding the poles of (2.44) is equivalent

to solving the eigenvalue problem

a’ N\ T ph ph o
(e g "udXy Z Eoms® @ EKop a ‘“’)} X sp
Y

i\

+ Z {Kp &Bph(m)-xp 6&"*‘@}3: 6;‘ =0 (2.458)
B Y -
o Y ph, .\ _ PRoxy ©
(e e )T, Z {Kpm Ok SN (w}Y 5p
6p
+ Z {Kp awph'(“’)"(p 5 mphcw)}ié B°‘ =0 . (2.45b)
68

Equations (2.45) are the eigenvalue problem for the particle-hole
states in the random phase approximation.  The various matrix elements
in (2.45) are shown in Fig. 2-4. The amplitudes of the particle-hole

configurations contained in a particle-hole state are <

SO o, - + ’
ffpx (A-£ )£, V(1-£) £ = < Nlapax |N,a > . (2.46)

The bar on the amplitudes in (2.45b) denotes the complex conjugate.

Xpha is the amplitude of a configuration (p,A) in the state ¢ arising

from excitation of a particle from the core. Yp}‘a is the amplitude

of a configuration in the state & arising from particle-hole configurations
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Fig. 2-4. The particle-hole interaction matrix elements.

| already present in the ground state. - The Tamm-Dancoff approximation

is obtained from (2.45) by setting Y© equal to zero

\

.
e e X + Z {Kpm P Kog 2" @ Fyg = 0 @47,
. , Y

The eigenvalue equations (2.45) and‘(2.47) are self-tonsistent
equations in the same way the eigenvalue problems for two péfticles
and two holes were. The particle-hole reaction matrix is similar
to the two~hole reaction matrix in that the subspace of configuratidns ~
defining the reaction matrix is partly the space of occupied states.
2-G__The Free Reaction Matrix |

To perform shell model calculations with the effective Hamil-
tonians of the previous sections the nuclear reaction matrices must
be detfgm}éed from the nucleon-nuclé?n interaction. A free reaction

matrix deduced from the nucleon-nucleon scattering data can be



used to determine the nuclear reaction matrices. The free reaction

matrix is defined by the integral equation

Kp(e) = vivll (e)PK_(e) (2.48)
where
- L
)gF(e) = oeT .

P is the principal value operator and T is the total kinetic eneréy
~operator. On the energy shell e becomes the total kinetic energy
and, in general, may be treated as a complex parameter. The nuclear
reaction matrices of the previous sections Qere all of the form
KW = viv o (WKW . L (2.49)

Solving (2.48) for v in terms of KF and substituting in (2.49) we have

K(W) = Ky () (e) [ ()= F ()RIR(W) - (2.50)

When fitting a representation of KF to the free nucleon-nucleon
scattering data; translational invariance of the two-nucleon potential

is required; therefore, the propagator in (2.48) is replaced by

the' propagatdr .
: =L
;éIF €) = . | (2.51)

e-t

In (2.51) t is the relative kinetic energy operator and on the energy

e

shell ¢ is the relative kinetic energy of the two nucleons. In fact,
KF(e) is related to the two-body scattering data through on the energy

ghell matrix elements

ﬁ2k2

<klk (e =Sk > .

With Kp known the nuclear reaction matrix can be obtained from

R(W) = Ky () +K; () [ a4 (PR @) . (2.52)
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The determinaton of KF and K has been discussed in detail by Lee.

In finite nuclei the nucleon~-nucleon interaction need not be on the -
_energy shell; however, in an exact calculation of (2.52) the nuclear
reaction is independent of €. On the other hand, it is often useful
to make the approximation
K(w) = KF(e) " (2.53)

by choosing an appropriate value of €. For ¢ < 0 the choice (2.53)
is equivalent %Z!the lowest order reference spectrum approach of
. Bethe, et al..
' 2-H Corréction Terms

In first order the nuclear reaction matrix is the free reaction
matrix. The highér order terms contain the corrections arising from
the fact that K(w) is determined by nucleons scattering in bound
states whereas KF(e) is determined by free nucleon scattering. we
examine briefly the second order correction terms for the various
nuclear reaction matrices. When drawing diagrams a solid line is used
to denote.a free reaction matrix interaction and p and h are_used to
designate states above and below the Fermi sea, respectively.
a) _Two-garticle |

The two-particle reaction matrix element (2.25) is

K (w)

(2.54)
P4P,P1Py

As an expansion in KF (2.54) is



1
J\ ~ 7N ' )\
AP3 Puf APz Pun P3 P4 Py Py
AN T -+ A — ) A
»n A A N
A Pl Pz \Pl P2 / 1 A ) A (2.55)

The projection operator Q2p restricts the intermediate states to
configurationa in which Pg and P are not both in the subspace of
* configurations used to diagonalize the effective Hamiltonian.

b) Two-hole

The two-hole reaction matrix element (2.37) is

(w) = (2.56)
Y \'4 A a
By By b Wy

}

h h h h Ah h, A Ah h +
A 3 4 A A3 4 A 3 4 P 3 4

Q" P +
NANANANAA = A - /
. + A pS p6 h A p5 p6 ¥ (2.57)
Mn, n, M. n A . !
1 2 | 1 _ 2 { N h1 3,\ A hl 2’

The projection operator Q2h restricts the intermediate states (ps,p6) ,\i

to all.possible two-particle configurations above the Fermi sea.

¢) Particle-Hole

The particle-hole reaction matrix elements (1.45) are

K (2.58a)
| PohyBoPy
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'WW\J
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P, By
» »
A /L

Pp By

Pp Py
o~ 7S
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N Q V.
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TP R
ipz pl /
. qQPh
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(2.58¢)
(2.58d)
LP2 P
(2.59a)
A P
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Pp By
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The diagrams (2.58b) and (2.58d) are exchange diagrams. The pro-~
jection operator Qph restricts the intermediate states (p3,p4) to
all possible two=-particle configurations above the Fermi sea. The
diagrams (2.58a) and (2.58b) are the Tamm-Dancoff approximation and
the ground state correlation diagrams (2;58c) and (2.58d) are
included in the random phase approximation. From (2.59) it can be
seen that,'ié the particle-holes states have negative parity, Qph

is different for (2.59a) and (2;59b). That is,.the effective inter=~
action would be different for the Tamm-Dancoff diagrams and the
ground state correlation diagrams.

2-1__Energy Dependence of K(w)

In all the cases discussed the effective shell modei Hamiltonian,
was energy dependent and the determinétion of the eigenvalues involved
a self-consistent calculatién of the reaction matrix. I£ K(wb? is
state dependent for states with the same quantum numbers, the eigen=
values and eigenvectors cannot be determined by a simple diagonalization
of the effective Hamiltonian. This difficulty can be gvoided by
reducing the subspace of configurations to dnly the dominant config=-
uration §f the state under consideration. In general, such a procedure‘
is not necesséry. Some insight into the energy dependence'of‘K(uD
can be gained by considering ;he cbrrection terms in the previous
section. The energy dependence enters via the propagator y{'f (w)Q.
In the following discussion we assume that harmonic oscillator states
are‘used to evaluate the matrix elements.

a) Two-particle: With a judicious choice of the subspace for



~29-

diagonalization most of the energy dependence in (2.55) can be
removed. For example, by choosing the subspace to be an entire shell,
the first intermediate state contribution is 2fiw away in energy. 1In
general, the spread in %%genvalues for a set of states is not large
and a good approximation is to evaluate the reaétion matrix at
the mean excitation energy.

b) Twé-hole: For the two;hole matrix elements (2.57) the
. intermediate states are not :elated to the choice of the subspace
for diagonalization. However, the lowest intermediate state is
_always at 2fiw. Again, a good approximatiqn is to use the average
excitation enexrgy.

c) Particle-hole: For the particle-hole matrix elements (2.59).
there are two cases to consider: 1) negative parity particle-hole .
states, and 2) positivé parity particle-hole states. For ﬁegative
parity states with oscillator shell spacings the lowest intermediate
state energies in (2.5%a) and (2.59b) are 3fiw and 2%w, respectively.
" In heavy closed shell nuclei, such as szos, the spin-orbit splitting
gives mixed parity shells. With mixed parity shells there can be
both positive and negative parity low-lying particle-hole states.
For mixed parity shells the lowest energy intermediate states are at
2fiw for both. (2.59a) and (2.59D). In practice the single particle
states are not degenerate and in heavy nuclei intermediate state
) energies may be near the excitation energy. The difficulty of small
denominators, if it does exist, has not been considered. 1In the

random phase approximation it is possible to have imaginary eigenvalues.



If an eigenvalue becomes imagin;ry, the efféctive,interaction
algso becomes imaginary. In terms of the model a complex eigenvalue
me;ns that the intéraction uged would not.ﬁﬁre yielded the.Hartree-
Fock solution assumed for the ground state. In the present case
this appears directly in terms of the interaction. The particle-hole
reaction matrix is thé reaction matrix assumed to give the ground.
state but e#aluated at a different energy. The inability to find a
self-consistent solution for a real interaction meéns fhat the
interaction is inconsistent with the assumption of the Hartree-Fock
ground state.
2-J Summary

A formalism for defining the effective shell model Hamiltonian
was derived using Green's functions. The integral equations for the
Green's functions were solved in the approximations that give the
usual shell model eigenvalue problems. In all the cases considered
the effective interaction is a nuclear reaction matrix defined self-
consistently by the excitation energies of the states being considered.
For the one-particle case the reaction matrix is the Brueckner
reaction matrix and the single-particle states are the Brueckner ' .
Hartree-Fock states. The one=-particle, two-hole and particle-hole
reaction matrices are defined by the subspace of occupied states. The
two=-particle reaction matrix is defined by the subspace of config-
urations chosen for diagonalization. The nuclear reaction matrices

can be evaluated from an expansion in terms of a free reaction matrix.



" free reaction matrix, is compared to the Kallio-Kolltveit interaction

CHAPTER 3 .
ODD-PARITY PARTICLE-HOLE STATES IN 016

3=A Introduction

We present in this chapter a standard shell model calculation

of the odd-parity states in 016 using the relative S state phenomeno-
- 16

logicai free reaction matrix as an effective interactioh. The
particle-hole structure was calculated in both the Tamm-Dancoff and

the random phzse approximations. Since the original work of Elliott
23
and Flowers there have been many calculations of the particle-hole
24
states in 016. Gillet and Vinh Mau carried out a detailed phenomeno-

logical calculation and since then there have been several calculations
3,25-27
using realistic interactionms. The work presented here is
3 .

similar to that of Kallio and Kolltveit in that only the relative

S state part of the nucleon-nucleon interaction is 1nc1uded.. The
method for obtaining an effective interaction from a free reaction

28
matrix is quite different from the Scott-Moszkowski separation method.

To examine the difference the effective interaction, obtained from the

which was obtained by the Scott-Moszkowski separation method. The
dependence of the particle-hole spectra on the higher energy components
contained in the free reaction matrix is discussed.
3-B ?article-Hole States

We make the usual shell model assumption that the nuclear

Hamiltonian consists of a diagonal part and a two-body perturbation

~
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H=H +V

Zekak k+ %Z 01576 aa EB 8637 . (3-1)

Presumably, the single-particle energies € would be obtained from
a self-consistent calculation of the ground state. It was shown in
Chapter 2 that an appropriate effective Hamiltonian for shell model

calculations is

H(w) = Hy#K (w) . (3.2)
K(w) is the two-nucleon reaction matrix defined by

K(w) = vivE/(w)QR (W) (3.3)

where

Ly = m_ﬂ :

Q is the projection operator to be chosen so that diagonalization
_ of (3.2) does not lead to double counting of ladder diagrams.

.With (3.3) as the effective Hamiltoniam, the particle-hole
excitation energiegsand wavefunctions are given by the solution of the

eigenvalue problem

o ' o
(ep=en 9% pn *Z (% mp @) Fonrprn o) Eprm

p'h!
*Z (K o1 (0 pptnm ]Yp'-h'a =0 (3.4
p|h|
= a,y \ - «
(ep=en ¥ on "'; (Koprhpt (4 Kopthth ¥ ¥prns
. ‘p| ]
-hEL, (Kpp'hh-(“b?'Kpp-h-h(“bﬂiﬁ-h-a =0 (3.4b)

p'h’



Xpha and tha are the Tamm-Dancoff and ground state correlation ampli-
‘tudes, respectfvely. The bar on the amplitudes in (3.4b) denotes the
complex conjugate. The eigenvalue problem (3.4) was determined in
the well known random phase approximation (RPA). The Tamm-Dancoff
approximation (TDA) is obtained from (3.4) by setting tha equal to

zero, whence the eigenvalue problem

(Gp‘ﬁh'waxpha +Z {Kph thp! (WJ "‘Kph'plh(wg }xp'h |q =0. (3'5)
. p'h!

The properties of the particle-hg%e eigenvalue problems have been
discussed in detail by Thouless. The matrix elements required in
(3.4) and (3.5) are defined in Appendix A.

In Chapter 2 the calculation of K(w) from an expansion in terms

of a free reaction matrix KF was discussed. The expansion is

R(W) = Ky (e)H, () @ (PIK(W) - (3.6)

The eigenvalue problems (3.4) and (3.5) are self-comsistent determina-
tions of the spectra and reaction matrices. We calculated the spectra
in the first order approximation

K(w) = KF(e) . 3.7)
In the approximation (3.7) the eigenvalue problems are no longer '
self-consistent. In an exact calculation of K(w) there is no depend-"
ence on ¢; however, in the approximation (3.7) ¢ is essentially a

free parameter. The ¢ dependence can be used to advantage by using
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the dependence to compensate for the neglect of the correction terms.
The reaction matrix elements included in our calculation are
given in (2.58) and (2.59). We diagonalized the residual interaction
in the subspace of configurations consisting of Op-shell holes and
(0d,1s) -shell particles. In this case the lowest energy intermediate
states in (2.5%9a) and (2.59b) are (p3,p4) = (0d,1lg;0f£,1p) and
(0d,1s;0d,18), respectively. The large spin-orbit splitting (3 lfiw)
of the unperturbed particle-hole configurations gives a significant
variation iniﬂ(quor a set of states with the same quantum numbers.
It is interesting to note that the contribution of nearby states
in the correction terms has the largest effect on the high T=l states
and the least effect on the low-lying T=0 states. Apart from the
state and matrix element dependence, the correction terms contri=-
bute differently to different isotopic spin states. If the isotopic
spin coupling is performed explicitly (Appendix A), there are different
linear combinations of the T=0 and T=1 particle-particle matrix
elements for T=0 and T=1 particle-hole matrix elements. Fof the

direct particle-hole matrix element (2.58a) the coupling is

e {3K(T=1)+K (T=0) }
T =08 < > 1>

R(T=1) -K(T=0
2

T, =1;: < l ] > .

ph

We calculated the particle-hole spectra for various values of € to
obtain some information about the dependence of the spectra on the

correction terms.



3-C The Free Reaction Matrices

In this calculation we used the relativé S st?ge phenomeno-
logical free reaction matrices discussed by Kahana. Since the
doﬁinant contributions to the free reaction matrices are the relative
S state reaction matrices, we jncluded only relative S state com=
ponents in the effective interaction. In'the coordinate space repre-~
- sentation KF is non-local; accordingly we have used local but velocity

dependent representations of the form
1,3 = [ r (f )
Ko(e) A(e) { g, s +b1> e + 3532 z(-)-l-b2

-.r -CL.T
[ P—;)zecl2 +eo“2 (ﬁ;)"‘]} (3.8)
where

-1
AT =-§—0+ 61" bp0 (3.9)

We use 1Ko and 3K0 to denote the T=1 and T=0 relative S state free
reaction matrices, regpectively. It should be noted that 3Ko(e)
contains a pole which is a consequence of the existence of the deuteron

bound state. The parameters in (3.8), which were determined by
29

fitting the Hamada-Johnston phase shifts, are given in Table 3.1.



Table 3.1

Parameters for the free reaction matrices

Ik, (1=1,5=0,4=0) %k (1=0,5=1,4=0)

€ QeV) 1.7 8.6
g, (eV) 53.827 103.297
g, (MeV) 2,442.2 1,697.0
al(fm'l) | 0.897 . 1.115
az(fm'l) 3,072 2.670

b, 4.72 1.50

b, 4.40 2.28

3-D_The 0dd-Parity Particle-Hole States

Particle-hole states were constructed as eigenstates of total
angluar momentum J and total isotopic spin T. The j-j coupling
scheme used is described in Appendix A. The particle-hole interaction
was diagonalized in both the TDA and RPA in the subspace of config
urations consisting of Op-shell holes and (0d,ls)-shell particles.
The unperturbed energies and configurations are given in Table 3.2.
The unperturbed energies usedézere the neutron configuration enefgies
given by Gillet and Vinh Mau. Harmonic oscillator wavefunctions

were used with a size parameter corresponding to fw = 13.4 MeV.



Table 3.2

The unperturbed neutron particle~hole configurations.

Configuration ‘ Energy (MeV)
Op "l o4 17.65
3/2 5/2
0p3/2'1, 15, /5 18.52
op3/2"1, 0d, 22.73
0p1/2'1, 0dg/y 11.51
0p1/2'1, 15/ 12.38
0p1/2'1, 0, 1, 16.59

As mentioned earlier, with the approximations made, € is
essentially a frée paraméter.' The dependence of the spectra on €
was examined and it was found that only the highest Jn,T = 1-,1
states and the lowest 3-,0 state were appreciably € depgndent. The
¢ dependence of these levels is shown in Fig. 3.1. From Fig. 3.1
it can be seen that all of the levels are nearly € independent for
¢ > 80 MeV. This follows from the ¢ dependence of the free reaction )
matrices. 1Ko(e) and 3Ko(e) are relatively insensitive to varia-
tions in € when ¢ is greater than 80 MeV; furthermore, for ¢ less
than 80 MeV, varying € is to a good app?oximation zoally altering
the s;rength of the interaction. It is well known that the

collective particle-hole states shown in Fig. 3.1 are sensitive to

the strength of the interaction. We present our calculations with
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Fig. 3-1. The ¢ dependence of the collective particle-hole

stateé in 016.
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¢ = 86 MeV. This value was chosen since the same value givef6
reagonable agreement with the spectra of neighboring nuclei.

The required radial integrals of the free reaction matrices
ateAgiven in Table 3.3. In Fig. 3.2 the results of the present
.iﬂﬁ.calculation in the RPA are compared with experiment and the spectra
}H >for the Kallio-Kolltveit interaction.27’30 The energy levels and
xévwavefuhctions in both the TDA and RPA are tabulated in Table 3.4.
. In'the particle~hole model one of the 17,0 states is a spurious
-state. In the RPA the spurious state should be at zero energy,
ﬁ'“ﬁoﬁeiér, in the present calculation it is imaginary. The spurious
? st#ieiis very sensitive to the strength of the interactionj conse;
f qnent1§,'with the present approximations there is no reason why
T it shopld be at zero energy.

;:’”ff?iﬁ C6m§aring the calculated spectra with experiment it can be

" seen that there is very little agreement with experiment. The

structureagf the low-lying T=0 states is not well determined. Brown

and Green proposed that the structure be explained by the coex=
: istence of spherical and deformed ground states in 0;6. More
32

recently, Zuker, Buck and McGrory have calculated the structure of
the 10w4lying states in a many-particle configuration model. The

- calculated particle~hole states should be.compared with their unper=
turbed positions which cannot be obtained from experiment. The
giant dipole states are too high; again, the structure of the giant
dipole states is not well known. The giant dipole states and lowest
37,0 state have the proper collective behavior in both the TDA and

RPA in the presenf calculation.
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Table 3.3
Radial integrals of the free reaction matrices with

fiw = 13.4 MeV and ¢ = 86 MeV

n at <nflkglt > <alf’kglnt >
0 0 ~7.034 ~ -11.079

0 1 -4.021 -7.799

0 2 -2.234 - -5.116

1 1 - ~4.193 -7.557
1 2 -2.722  =5.746
2 2

-2.374 e5.164'




E (MeV)

The odd-parity states in O16

calculated in the random-phase approximation.

The columns

KF is the present calculation and the columns labeled KK are for the Kallio-Kolltveit
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The energy levels and w

MeV, fiw = 13.4 MeV).

The phases of the wavefunctions are defined in Appendix A.

Pable 3.4

the table are the ground state correlation amplitudes

.7 =0,0
-1 -1 -1 _1i
O3/ Opy/p |%P372 | OP1s2
E Approx
0d3/, s/, |0d3/0 |18372
13.41 TDA 0.064 | 0.998
13.41 RPA 0.064 | 0.998 | -0.003 | 0.001
25.56 TDA 0.998 | -0.064
25.54 RPA 0.998 | -0.064 | 0.019 | -0.004&

avefunctions for the odd-parity states from the present calculation

The last columns in..

(e = 86.0 -

J.r=0,1
-1 -1 -1 -1
E Approx Opysp | OPyyy |OP3y | 0Py
0d 1
si2 | w2 %2 |2 g
. v
14.22 TDA 0.097 0.995 !
14.21 RPA 0.09%6 0.995 0.005 | -0.012
27.93 TDA 0.995 | -0.097
27.80 RPA 0.996 | -0.096 | -6.046 0.010




=10

E  |Approx %3, Ry, bl oy L N L P [ T [ L '

0d5 /o sy | 0dgyp | 18yyp| 0dg/p | 0d 5/ | 812 | %35 1sy/p | 0dsy

0.65 TDA 0.702 | 0.274 | -0.185 | 0.285| 0.562
i(7.70) RPA *
10.67 TDA -0.299 | 0.369 | 0.039 | 0.850] -0.225
10.50 RPA ~0.251 | 0.394 | 0.030 | 0.870] -0.183 | -0.072 0.005 | 0.022 0.005 | -0.057
16.88 TDA 0.105 | 0.843 | 0.017 | -0.416| -0.325
16.88 RPA 0.107 | 0.843 | 0.017 | -0.418} -0.321 | -0.006 0.009 | 0.003 0.007 | -0.006
18.29 TDA -0.571 | 0.277 | 0.228 | -0.140| 0.724
18.28 RPA -0.565 | 0.276 | 0.226 | -0.140| 0.731 | -0.020 0.001 | -0.006 | -0.002 | -0.009
24.54 | TDA 0.283 | -0.043 | 0.955 | 0.061} -0.049
24.51 RPA 0.287 | -0.043 | 0.954 | 0.061} -0.045 | ©0.000 -0.005 | 0.015 0.001 | -0.018

* Eigenvalue is imaginary.

-9*7..



At =10, ~

e |aoprox | 32 L Ll [ Pl P L I Y L L

od, ) o)y | Odgpy | 18y, | 08y, | 04 18, /s 0d, .l 1), | 04y

14.39 | oA -0.149 | -0.053 | -0.038 | 0.986| 0.017
14.38 | ReA -0.148 | -0.053 | -0.038 | 0.987 | 0.016 | -0.002 0.011 | -0.001 | -0.002 | 0.002
18.50 | DA -0.319 | -0.206 | 0.264 | -0.064| 0.884
18.47 | REA -0.314 | -0.204 | 0.257 | -0.062| 0.889 | -0.,021 | -0.002) 0.014 | 0.002 | 0.006
20.69 | TDA -0.306 | 0.929 | 0.203 | 0,011 0.046
20.67 | meA -0.316 | 0.926 | +0.201 | 0.009| 0.043 | ~0.006 0.004 | 0.009 | 0.011 |-0.010
26.87 | TDA 0.873 | o0.204 | o0.305 | 0.150| 0.283 | _, |
24.59 | RPA 0.879 | 0.225 | 0.269 | 0.150| 0.296 | 0.036 0.014 | -0.035 | 0.005| 0.054
21.31 | oA .0.142 | -0.223 | 0.891 | 0.007 | -0.368 B R
27.13 | RPA -0.107 | -0.217 | 0.906 | 0.013]-0.351 | -0.056 | -0.003:-0.014 | -0.012 | -0.007




r=2"0 .

I VR LV S VR U DV LoV 007 | OPrzs

E Approx .
0dg/y | 18175 | %375 |%d5/p | %375 | %5/a sy | 0d3y | %5y | %437

12.22 TDA 0.288 | 0.052 |-0.026 | 0.949 | 0.115
12.20 RPA 0.288 | 0.052 |-0.,027 | 0.949 | 0.116 | -0.023 -0.002 | 0.001 0.002 | -0.008
16.46 TDA 0.453 | -0.073 |-0.157 |-0.239| 0.841
16 .45 RPA 0.456 | -0.073 |-0.157 |-0.241| 0.839 | -0.009 0.001 | 0.014 | -0.016 | -0.002
18.54 | TDA 0.728 | -0.450 |-0.095 | -0.140 |-0.489
18.53 RPA 0.730 | -0.443 |-0.095 |-0.140 |-0.492 | 0.005 0.002 | 0.002 | -0.013 | -0.013
19.88 TDA 0.369 | 0.884 |-0.161 | -0.142 |-0.192
19.87 RPA 0.364 | 0.887 |-0.160 | -0.140 | -0.190 | 0.005 0.002 | 0.003 | -0.010 | -0.008
23.29 TDA 0.214 | 0.093 | 0.969 | -0.051{ 0.059 |
23.28 RPA 0.213 | ©0.092 | 0.970 | -0.050 | 0.060 } 0.009 0.002 | 0.001 | -0.009| 0.007

-817..
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3.1 =271
-1 -1 ) -1 -1 - -1 -1 -1 -
Approx OP3/2 Opgsp = {0P37,  |OPyyn | OPyyn | OP3y Op3/9 Opg/y 10Pyyn | OPyyp
odg /, 1s1 /5 0d, 0dg ol 0dy ) | 0dg,,  |lsy ) 0d, odg,, | 0d,
13.68 TDA 0.252 | 0.093 | 0.076 | 0.960 | -0.021
13.64 RPA 0.243 ! 0.091 | 0.074 | 0.963 | -0.021 | 0.017 0.004 | 0.018 | -0.028 | -0.002
18.26 TDA 0.270 | -0.025 | -0.089 | -0.041 | 0.958
18.23 RPA 0.264 | -0.022 | -0.084 | -0.037 | 0.960 |-0.001 0.000 | -0.010 0.004 | -0.030
19.66 TDA -0.608 | 0.763 | 0.027 | 0.088 | 0.198
19.64 RPA -0.627 | 0.749 | 0.029 | 0.090| 0.196 | 0.018 -0.002 | -0.001 | -0.014 | -0.011
21.59 TDA 0.658 | 0.614 | -0.320 | -0.211 | -0.208
21.52 RPA 0.652 | 0.633 | -0.304 | -0.207 | -0.200 |-0.029 -0.010 | -0.002 0.023 | 0.016
24.45 TDA 0.247 | -.177 | 0.940 | -0.156 | 0.015
24.39 RPA 0.172 | 0.946 | -0.149 | 0.017 |-0.013 -0.006 | -0.011 0.031 { -0.008

0.234




= p——
7.1 =30
-1 "1 -1 -1 -1 -1
Op Op Op Op Op Op
E Approx 3/2 3/2 1/2 3/2 3/2 1/2
0dg/y | 03y | 95,5 | 0dgyy | 045, | 045,
8.50 TDA 0.306 | -0.263 | 0.915
7.59 RPA 0.351 | -0.304 | -0.918 | 0.118 |-0.113 | 0.177
16.48 TDA 0.898 | -0.237 | -0.369
16.36 RPA 0.884 | -0.245 | -0.402 | 0.029 |-0.039 | 0.042
22.03 TDA 0.314 | 0.935 | 0.164
21.96 RPA 0.331 | 0.929 | o0.170 |-0.022 ! 0.032 |{-0.020
Jr=3,1
) -1 - -1 ) )
Op3sy  |OP37a  [OPysa  |OP3sp T|OP3yy  |OP5n
E Approx
Odg,y | Odgyp | Qdsyp | Odgyp | Odgyy | 0dg
13.50 TDA -0.161 | -0.009 | 0.987
13.44 RPA -0.151 | 40.007 {+0.989 {+0.009 |-0.040 |-+0.004
19.07 TDA 0.981 | 0.113° | 0.159
19.02 RPA 0.983 | 0.106 | 0.151 | 0.020 |-0.025 |+0.009
25.25 TDA -0.110 | 0.994 |-0.026
25.15 RPA -0.104 | 0.996 |-0.024 |-0.022 | 0.006 |-0.044




Among the remaining levels, the most pronounced discrepancy is
with the 0 levels. It is known25 that the tensor force contri-
butes with opposite sign to the cenﬁral force shifting the o
levels down towards the experimental positions. The 1-,1 spectrum
has nearly the correct relatiﬁe spacing of levels but the levels
are shifted upwards relative to the experimental spectrum. One
should not attribute too much significance to the relative spacing
of levels sgince the bositidné of the states, which are believed to
be described by the partiéie-hole model, are largely determined by
the unperturbed energiés of the dominant configurations. 'This can
be seen from the data in Table 3.5, The lowest T=1 levels are
nearly pure configdrations.and the energy shifts are small. These
levels, apart from ;he'role of the tensor force, are not sensitive
to the interactioﬁ;ilThe 17Q3 (1-,1) and 19.5 (2-,1) MeV states

do contain significant'configuration mixing since there are three
relatively close spacéd unperturbed configurations at 16.59, 17.65
and 18.52 MeV.

Comparing the present results with the spectra for the Kallio-
Kolltveit interactidn.it §an be seen that amongst the levels which
are known experimentally only the giant dipole states differ sig-
nificantly. There are several differences for the other states.
It can be seen by compaiing Tables 3.1 and 3.6 that there are real
differences between KF and the Kallio-Kolltveit interaction. 1Ko
;nd 3K are more attractive in the n'=n=0 state and less attractive

0

in the other states.



Table 3.5

The positions of the particle-hole states relative to the unperturbed energies of the dominant configuration

. Unpert. Unperturbed Calc. Calculated o
J°,T Exp. Energy AEex p Configuration Energy AEcalc Configuration -
(MeV) (MeV) MeV)

0",0 10.95  12.38 -1.43 01)1/2‘1,131/2 13.41 +1.03 0.998(0p1/2'1,1s1/2)'
0,1 12.78 12.38 +0.40 Opllz"l,ls.ll2 14.21 +1.83 0.995(0p1/2-1,iéi}2)'?;
17,1 13.10  12.38  +0.72 0191/2'1,131/2 14.38 +2.00 0.987(op1/2'1,1s1/25
17,1 17.3 16.59 +0.71 0p1/2'1,0d3/2 18.47 +1.88 0.889(0p1/2'1,0d3/2)
27,0 12.52  11.51 +1.01 0p1/2-1,0d5/2 12.20 .69 0.949(0p, ,,"1.0d, /)
2”1 12.96  11.51 +1.45 09112-1,0d5/2 13.64 +2.13 0.963(op1/2'1,oa5/2)
27,1 19.5 18.52 +0.98 0p3/2-1,131/2 19.64  +0.14 o.749(0p3/2'1,1s1/2)

3,1 13.26 11.51 +1.75 opllz'l,OdS/2 13.44 +1.93 0.987(0p1/2'1,0d5/2)
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Table 3.6
Radial integrals for the Kallio-Kolltveit interaction taken from

reference 7

n n! 5o 51

0 0 -6.07 -9.15
0 1 5,34 -9.71
0 2 -4.30 -7.12
1 1 -5.01  -8.28
1 2 -4.18 -7.18
2 2 -3.68 -6.67

That the corresponding spectra do not reflect these differ-
ences is because the positions of the levels are mainly determined
by the unperturbed energies.

It is in;tructive to examine the role of the higher energy
components of KF in determining the particle-hole spectra. It has

been found that the low energy properties of the nucleon-nucleon

16
interaction are dominant in determining the spectra of 018 and Flsl

This is because the contributions of the repulsive terms to the
a=n'=0 matrix element is small. In Table 3.7 the separate contri-
butions of attractive and repulsive terms in KF to the matrix elements
required for the particle-hole spectra are listed. The longer range

attractive terms, which are mainly determined by the low energy
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scattering data, are more like the Kallio-Kolltveit interaction.

The off-diagonal integrals n=0; n'=l,2 are still smaller but the
others are moré or less uniformly larger. The shorter range repulsive
terms make an almost negligible contribution to the n=n'=0 integrals
and the contribution increases with'giand n'. Bhadurie and Tomusiak
and Mavromatis, Markiewicz and Green have found that using a

state dependent separation distance for the Kallio-Kolltveit inter-
action also decreases the radial integrals for higher mn quantum
numbers. If the particle-hole spectra are sensitive to the higher
energy components of the nucleon-nucleon interaction, the semsitivity
will be manifested in a dependence on the higher n and n' radial
integrals. To examine this dependence we used only the attraétive
terms of 1K0 and 3KO as an effective interaction. The results

are compared with those of the correct KF in Table 3.8. Most of

the levels are only slightly affected while the lowest 3-,0 state

is shifted by 1.4 MeV.
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Table 3.7

The contributions of the attractive and repulsive

parts of the free reaction matrices to the radial integrals

< af'kylnt > < okt >
n n'
- + - +

0 0 ~7.480  +0.446 -11.673 +0.574
0 1 -5.035 +1.013 -8.890 +1.091
0 2 -3.423 +1.189 -6.632 +1.516
1 1 ~5.506 +1.313 -9.244 +1.687
1 2 -4.450  +1.728 -7.930 +2.184
2 2 -4.566 +2.192 -7.895 +2.731




-56~-

Table 3.8
Comparison of the particle-hole spectra calculated with KF and KF

(no repulsion) in the RPA

JK,T KF I{F(no repulsion)

0,0 13.41, 25.54 13.50, 25.76

0,1 14.21, 27.80 14.34, 28.07

1,0 10.50, 16.88, 18.28, 24.51 10.07, 16.85, 18.28, 24.66

1,1 14.38, 18.47, 20.67, 24.59, 27.13| 14.52, 18.47, 20.82, 24.86, 27.35
27,0 12.20, 16.45, 18.53, 19.87, 23.28| 12.31, 16.63, 18.72, 19.98, 23.36
27,1 13.63, 18,23, 19.64, 21.52, 24.39| 13.66, 18.35, 19.79, 21.66, 24.48
37,0 7.59, 16.36, 21.96 6.15, 16.18, 22.00

3,1 13.44, 19.02, 25.15 13.61, 19.12, 25.45
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3-E__Electromagnetic Transitions in 016

The formulae.for calculating transition probabilities
in the particle-hole model are given in Appendix A. In Table 3.9
the reduced transition probabilities for transitions to the ground
state are tabulated. The transition probabilities were calculated
in the TDA with no effective charge. Transition probabilities are
not givenlfor the 1 ,0 states since Agzo dipole transitions are
forbidden by isospin selection rules. There is very little data

available for levels above 10 MeV.

The octupole and giant dipole tramsition strengths are

20
enhanced as predicted by the schematic model. Experimentally, the
B(E3) for the 6.13 MeV (3-,0) transition is 209.5 ezfm6. In the

present calculation the B(E3) is 67.8 and 120.9 ezfm§ in the TDA and

RPA, respectively. The dipole strength is almost completely concen=
trated in the two highest states which are3§n the region of the
giant dipole resonance. It is well known that the shell model
gives too 1arge3g contribution to the dipole sum rule. Shakiﬁ and
de Providencia have shown that the correlations in the RPA ground
state give Pauli corrections which decrease considerably the dipole
transitions strength.

The 2-,1 states indicate the existence'of a giant magnetic
quadrupole resonance. The magnetic resonance has been observed in

37 38

inelastic electron scattering. The Saskatchewan group have

assigned the 19.08 MeV state J® =27,1. Unfortunately, the spin-

parity assignment can only be made by a model dependent analysis of
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Table 3.9
The reduced transition probabilities B(E-M,1) for the transition

J“,T - g.s. in the TDA

7,1 E B(E-M,L) Exp} 7,7 E B(E-M,L)
27,0 - 12.22 0.01  0.600 1,1 14.39  0.024
27,0 16.46 5.26 17,1 18.50  0.013
27,0 18.54 3.47 1,1 20.69  0.008
27,0 19.88  6.83 1,1 24.87  0.941
27,0 23.29 0.74 17,1 27.31  0.438
37,0 -8.50  67.83  209.5 27,1 12.22  37.45 -
37,0 16.48  14.97 27,1 16.46 3.75
3,0 22.03  10.44 27,1 18.54 8.36
27,1 19.88 193.2
27,1 23.29  88.4 .
37,1 13.50  21.58
3,1 19.07  25.91
35,1 25.25  45.78

¢4 reference 39

the transverse magnetic form factor. The present calculation indi-
cates that the resonance would be in the vicinity of 20 MeV and
split between the (p3/2-1,d5/2) and (p3/2-l,d3/2) coqfigurations
as in the case of the giant dipole resonance. .

The 27,0 states at 8.88 MeV and 12.52 MeV decay to the 35
ground state by M2 radiaticn with reduced transition probabilities

2_2

of 0.55 p, £fm and 0.60 uozfmz, respectively. The lowest 27,0

0
state (12.22 MeV) in the present calculation has a BCMZ) of 0.01 uozfmz.
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In this transition there is a very sensitive cancellation between

1;dslz) components. All of the cal-

the (by/," »d5 ) and (b,
culations with realistic forces have the lowest 2-,0 state in the
vicinity of 12 MeV. The phenomenological calculations of Elliott

and Flowers and Gillet and 4\:)i.nh Mau have the lowest state near 10.5
MeV. Recently, Gill et al. have concluded that the particle-hole
state in Elliott and Flower's calculation is in feasonableAagreement
with the decay properties of the 8.88 MeV state. On the other hand,
the Ole(p,p') experiments of Hasselgren ggﬂgl.4lindicate that the
8.88 MeV state does not cogtain an appreciable one-particle-one-hole
component. The theoretical and experimental evidence favor assigning

the 12.52 MeV state the structure of the lowest particle-hole state.

3-F Electromagnetic Transitions in N16

The quartet of lowest T=1 states in O16 are unstable
against particle emission and contain isobaric spin mixing from nearby
T=0 states. The analogue states in N16 are stable ggainst particle
emission and do not contain T=0 admixtures. An analysis of electro-
magnetic transitions among the levels in N16 provides a test of the
wavefunctions calculated in 016 assuming isotopic spin as a éood
quantum number. In the absence of Coulomb effects the amplitudes of
the neutron particle-proton hole configurations in the N16 states
are the same as those calculated for 016. Coulomb effects are présenﬁ
and result in a relative shifting of the analogue states in the A=16
multiplet. The Coulomb shifts have been discussed by Elliott and

Flowers and Tombrello. We have used the calculated 016 ampli-
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tudes to calculate the transition probabilities in N16. The states
are nearly the pure particle-hole configurations given in Fig. 3=4.
The decay scheme of the states is shown in Fig. 3-3 and the experi-

30
mental branching is given in Table 3.10.

Table 3.10

Experimental gamma-branching in N1

y Mode Branching (%)
71 . B2 100
2 E2-RM1 100
73 M3 < 2
7, EZ-M1 25
75 Ml 75
76 E2 <2
39 _ - _
The experimental B(E2) for the 0 — 2 tramsition is
4.1 ezfma. With no effective charge the calculated B(E2) was 0.074

ezfm4, The transition probability can be expressed in terms of the

1 1
single-particle transitions of the neighboring nuclei N 3 and O 7.
The main contribution is from the $1/2 - d5/2 neutron particle tran=-
sition with a small amplitude for the p, ,,™ P proton hole transi-
39 1/2 F3/2

tion. With the experimental values for the single-particle
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Fig. 3-3. The electromagnetic transitions
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16
transitions the N B(E2) is 7.1 ezfmh. The proton hole transition

probability is not well known experimentally, however, it enters
with an amplitude of 0.092 whereas the neutron particle transition
has an amplitude of 0.955. Assuming that the O17 neutron effective
charge arises from a polarization of the charged core and is propor-
tional to Z, the N16 B(E2) is reduced to 5.7 e2fm4. A similar
treatment of the Y95 7, and %6 E2 decay modes does not enhance them
sufficiently to compete with the M1 decay modes.

In the last column of Table 3.11 the decay widths of the
levels are given. The widths were calculated using the experimental
energies of the levels. The calculated widths are in agreement with
the experimental results for the 72, 73 and 76 branching of the decay
scheme. The branching ratio 75/74 is 3 while the calculated value
is 0.9. The 7, Ml decay is very sensitive to -small amplitudes in
the wavefunctions since the dominant configurations
131/2’p1/2-1 > - ldS/Z’p1/2-1 >-can?ot contribute to the transitionm.
3-G___Summary

The particle-hole spectra calculated with the relative S
state free reaction matrices is in reasonable agreement with experi-
ment. The positions of the levels that are predicted by the particle~
hole model are mainly determined by the unperturbed energies of the
dominant configurations. These particle-hole levels are fairly
insensitive to the structure of the interaction. On the other hand,
the collectivg octupole and giant dipole states are very sensitive

to the interaction and the model used. Only the collective octupole



state is sensitive to the higher energy components in KF' This
sensitivity is not unique since the oétupole state is sensitive to

all aspects of the interaction and model.

Table 3.11

Calculated gamma decay widths in N16

B (L,x) n a
Trans Mode o2f 2L_pL 2, 2L-2 I‘L’n/B(L,:t) I‘L’n(eV)
m 0 ™m

7, E2 0.074 0.201x10" 0 1.49x10" 12
7, M1 " 0.548 0.297x1073 1.63x107%

E2 0.053 0.180x10"° 9.54x10" Mt
74 M3 571 0.209x10"1° 1.19x10"
7, ML 0.085 0.696x107 6.75x10"°

E2 0.006 0.746x10°8 4.48x10" 1L
7s M1 0.258 0.232x10"> 5.92x10"°
7q E2 0.044 0.695x10 -t 3.06x10" 13




CHAPTER 4
SINGLE~PARTICLE POTENTIALS AND WAVEFUNCTIONS

FOR SHELL MODEL CALCULATIONS

4-A Introduction
Shell model calculations with realistic forces are usually

pefformed for either closed or nearly closed shell nuclei. It is

r clearly of interest to learn the additiomal effect of using more
realistic single-particle wavefunctions than the conventional
harmonic oscillator field. To this end Woods~Saxon potentials with
a Thomas spin~-orbit term have been fitted to the experimentally
observed single-particle energies. Potentials and wavefunctions
have been determined for nuclei with A = 15, 16, 17, 39, 40, 41, 207,
208 and 209. It seems best to perform shell model calculations by
expanding Woods-Saxon wavefunctions in terms of harmonic oscillator
functions. Obvious modifications in the wavefunctions are produded
by introducing a finite well. It is vital to see that the nuclear
radius is correctly described by thé more realistic single particle
wavefunctions. The size of the valence orbits plays a large role
in determining the energy scale for the inter-valence-nucleon inter=-
action. The only direct experimental information on nuclear sizes
comes from measurement of the r.m.s. radius of the nuclear charge
distribution. 1In a shell m;del description of nucleivthe single-
'particle potential radius for protons can be determined by requiring

the r.m.s. radius, calculated using single-particle wavefunctions,
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to be consistent with the observed r.m.s. radius‘of the charge
distribution. There is very little experimental information on
the neutron distribution in nuclei. However, some information can
be obtained about the size of valence neutron orbits by appealing
to the Coulomb energy shift deduced from the positizgs of analogue
states. This method has been used by Nolen et. al. for nuclear
size determinations in the calcium region. The above methods were
used to determine well radii in the calculations presented in this
chapter.

4-B  The Potential and Wavefunctions

For a harmonic oscillator (HO) potential the single=-particle

Hamiltonian is

2
122
B, = S=+5m'r (4+1)

which satisfies the Schrodinger equation

where :
€y - (2n+4+3/2)Aw
and

%
\ f Py @ Py @ = 1
The radial oscillator function an(r) is defined in Appendix B.
Since the HO potential doesn't contain a spin-orbit term, the single-
particle energies are taken from experiment and states of total
angular momentum (j,m) are constructed from HO wavefunctions with an

- appropriate size parameter



a.é (—g—“—) e (4.3)

The wavefunctions are then

Vo n@ = Z-<z%m'msljm> cpnm,(:_:)xms"“i . (b)
ml

m
- 8

For finite po;entials we take a Woods-Saxon (WS) shape with

a Thomas spin orbit term,

v(r) =V, £(r) + V (f-;)z %g; £(x)4+0 +V_(x) (4.5)
1
where - -1
£(x) = [1+exp(l’{;&)] (4.6)
and
_ Ze X (2
v (@) = ) [3- rRu) ] rS R,
2 .
= 2 r? R, : %.7)

The Coulomb potential (4.7) is that of an equivalent uniform charged
sphere of the same r.m.s. radius as the actual nuclear charge distri-

bution. With this potential the single-particle Hamiltonian is

2
B = -%;+V(r) (4.8)

which defines the Schrddinger equation

Hs Vs ® = Sugs¥upim

4 In the calculatioms Qf%?z =2,0 £ 2.
“ .
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where

%

Yoy in® ) < s |3 > 5, Y, @0%, T @.9)
m!?

8
m
s
and

%*
f“’vljm (‘E)ijm@ds =1 *

The radial wavefunction yvﬁj(r) is the solution of the equation

2 2 '
wolrat  _ _ L0etl) ) _

T
r

Making the substitution

ij&)=ru

vej (x) (4711)

Eq. (4.10) becomes

L2 2 2 -
U N < W 1€ s, Hia224d .
{- =St = V E@)H, ) S 5= £)Leg + V ()¢, j}

dr2 2m m C dr =
Vg0 =0 - (4.12)
The eigenvalues of the operator £°g are
<gg> =4 , =4ty
= -4-1, j=4-% . (4.13)

The radial function yvzj(r) was obtained by numerical integration

of (4.12). The solution is in units of fm-% and is normalized in

. the fashion
©

\/‘lywj(r)lzdr =1 . (4.14)
; |
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For tabulating the xvjj(r) and for calculations with (4.9)
as basis states it is useful to expand yvtj(r) in terms of the
functions ha(r). The oscillator functions of Eq. (4.2) are dimen-
sionless and are an orthonormal set of functions in the principal
quantum number n,
b @
f aSR (r)R (r)rzdr =9 . (4.15)
nt mb ‘ mn

0

It is convenient to write the size parameter Q as

o = 0.024114560 - (4.16)

The expansion of yM‘j(r) is

©
= 3/2 1
yvjj(r) = anjj(hnba T an(r) (4.17)
' n=0
where o is a free parameter. The coefficients anzj(ﬁm) are dimen-
sionless and are determined by overlap integrals,
© .
a_ .. (fw) = fas/er )y, (©dr . (4.18)
ndj nt V4] A
0

From the normalizations (4.14) and (4.15) we have

oo © -
f'lyuj(r)lzdr =1 =Zlamj(m12 . (4.19)
0

n=0

In practice the number of terms fequired in the expansion (4.17).

is not large; in fact, the number of terms is minimized by choosing
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a value of #w to maximize the overlap of the term n = v. This
point is discussed further in the following sections. Using (4.17)
we immediately have the single-particle states (4.90) as an expangion

in oscillator states (4.4),

e}

o\ :
WVL:I@_- >.‘ amj(ﬁw)\vrwj@ . (4.20)
n=0 '
4-C Nuclear Sizes
Experiments such as electron scattering are able to determine
&4

the size of the nuclear charge distribution pc(_). For spherical

nuclei the quantity measured is the root-mean-square radius defined
by

% ® %
< rz >b% % [‘/\pc(r)rzdgl = [4ak/hpc(¥)r4dr] . (4.21)
0

A uniform charge distribution which gives the same low enefgy
scatterﬁng as the actual nuclear charge distribution will have the

same r.m.s. radius. The equivalent uniform charge distribution

3
pc x = 3 r < R
4xR
= 0 r2 R ' (4.22)
has an r.m.s. radius
2% _ 3\%

The 'equivalent .radius" is then

R = ("55)% < r? >c% (4.24)

u



where < r2 >é% is the measured r.m.s. radius of the charge distri-
bution. Measured r.m.s. radii and equivalent radii for gome of

the nuclei we will consider are given in Table 4.1.

Table 4.1

Charge radii for various nuclei

Nucleus <‘r2 >-;E R Experiment Ref.
(fm) (o} u
14
N 2.46 3.18 Elect. Scatt. a
016 2.71 . 3.50 Elect. Scatt. a
o'® 2.77 3.58 Elect. Scatt. a
Ca40 3.50 _ 4.51 Elect. Scatt. a
ca'*? 3.53 4.56 Elect. Scatt. a
71297 5.480 7.07 Muonic X-ray b
Pb206 5.489 ~7.09 Muonic Xoray b
szos(nat) 5.493 7.09 Muonic X-ray b
'p12% 5.513 7.12 Muonic X-ray b

a) H.R. Collard, L.R.B. Elton and R. Hofstadter, Nuclear Radii,
Numerical Relationships in Science and Technology, New Series,

Group 1, Vol. 2, ed. H. Schopper, Landolt-Bornstein, Springer-

Verlag, 1967.
b) H.L. Acker, G. Backenstoss, C. Daum, J.C. Sens and S.A. De Witt

Nucl. Phys. 87, 1 (1966).



We assume that the nuclei we consider are we}l described by
neutrons and protons moving independently in avefage spherical
potentials. With this assumption the charge distribution and the.
distribution of particle centres (matter distribution) can be obtained
from the single-particle wavefunctions. TFor the potential (4.5) the

proton and neutron matter distributions are, respectively,

o, () =% Z @31 |s,,, L@ |2 (4.252)
va3)
and
o @ ==t ) e, ol . s
)

The total matter distribution is then

@ =20 @ rre @ (4.25¢)

The proton matter distribution does not coincide with the charge
distribution. To obtain the charge distribution the charge distri-

bution of the proton itself must be folded into the matter distribution.

44,45
The proton charge distribution is fitted by
-rzlap2 ‘
pprot(r) =372 3° . (4.26)
% a
P
with ap = 0.65 fm .

From (4.21) we have that

Njw
[

<> =
prot.

0.63 fm . 4.27)
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[
The r.m.8. radius of the charge distribution is

2 _ 2 . 2
<r >b = <r >b f <r >prot (4.28)

where < r2 >b is obtained from (4.25a).

The gross behaviour of nuclear radii, as a function of mass

1/3

number, can be represented by the well known "A law'. Recently,

b4
Elton has reviewed the A dependence of matter and charge radii.

Along the valley of maximum stability, the charge radius varies some=-

1/3

what less than A + For isotopes and isotones the departures from

1/3 - .
an A / variation are large. The quantity used to measure deviations

of the charge radius Rb from the Al/3 law is
) = 3a dRc
R, dA

1/3 then ¥ = 1. For isotopes of spherical

45,47
nuclei 7 % 0.65, while 7 £ 1.5 for isotones. It has been suggested

If Rc is proportional to A

that in a microscopic description of nuclei the deviation of y from

[PV URE Y

unity can bé'ascribed to the binding energy of the valence particles.

Elton also points out that for mass radii the experimental evidence

1/3

is not in conflict with an A dependence.

4-D Harmonic Oscillator Potentials

When a HO potential is used as a single-particle potential
the size parameter must be determined for each nucleus. One method
of determining the size parameter is to require consistency with the
observed r.m.s. radii discussed in the preceding section. For the
puxpose of comparison in later sections we determined HO poteﬁtials

for 0, Ca and Pb.



With HO function basis states all orbitals in the same shell

have the same r.m.s. radius which we denote by

1
< r? >'% < nL"rZHnL >2

8
(20t4+3/ 2%
— }a -
nS2
= o (4.29)

where ¢ is the size parameter (4.3). Denoting the number of neutrons
and protons in an oscillator shell by Nsn ‘and Nsp, the r.m.s. radii

of neutrons and protons are

. n -%
<% o [\"”Nsns] 4.30
r >h ZJ No . (4. a)
S
and
<25 % - [y Nspns Té T ";3%
P 1_24 . (4. )
S

respectively. For a nucleus consisting of A nucleons (A=N+Z) we have

%

. n P

3 (N, AN )

<’ 5t = [ /, —'STABTL“S . (4.30b)
S

In (4.30b) we assumed that the neutrons and protons were in wells of
the same radius. The generalization to wells of different radii is
obvious. The oscillator size parameters can be determined from (4.30)

by using qxpg;imental values of the r.m.s. radii. We have

1 <?2 N P :
iw = e rr—— | - N n (4.313)
o] < r2 >p Zm ./__, 8 8
i



/ N n (4.31b)

and

fiw (Am> Z_‘ G +N . (4.31c)

<:r >

In Table 4.2 the occupied orbitals of the closed shell nuclei
016, Ca40 and Pb208 are listed. Equations (4731) were used to obtain
fiw values wigh proton matter radii deduced from the charge radii
of Table 4.1. The results, assuming that the neutron and proton
r.m.s. radii are the same, are listed in Table 4.3. With < r2 >h =
< rz >b the N=Z nuclei, 016 and Ca40, have the same HO potential
for‘both neutrons and protons. However, for Pb208, which has a
neutron excess, the HO potentials have different radii for neutrons
and protons. From Table 4.2 it can be seen that higher oscillator
shells weight the r.m.s. radius heavilf. Imposing the condition
< r2 >h = < r2 >b requires a neutron potential with a smaller radius.
This immediately implies that in a single-particle representation

isospin is no longer a good quantum number. This point will be

discussed in the following sectioms.



~75=

[

Table . 4.2

The Shell Model Single-Particle States

20+l

ngj

Zn N
s 8

IN Nuclei

3.0

18.0

60.0

150.0 -

315.0

393.0

N=20, Z=20;Ga40

40

> N-126, 2=82;pb208

g

168

184
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Table 4.3
Harmonic Oscillator potential parameters assuming

the neutron and proton matter radii to be the same

Nucleus Aw iw
P n
016 13.90 13.90
Ca40 10.71 10.71
Pb208 6.73 7.72

On the other hand, if one takes the neutrom potential to be
identical to the protom potential then < r2 >h% = 5,82 fm. and for
the nucleus < r2 >k = 5.67 fm. That is, both the neutron and the
total matter distributions would be outside the charge distribution.
For the charge distribution < rz >b% = 5.493 fm. (Table &4.1).
Another relevant quantity in later discussions is the r.m.s. radius
of the neutron excess in sz 8 with neutrons and protons in the
same potentiais < r2 >he% = 6.48 fm. and when the neutrons and
protons have the same T.m.S. radii < r2 >he% = 6,05 fm.

4-E TIsobaric Spin_and Analogue States

In the absence of the Coulomb interaction the nucleon-nucleon
. 48
interaction is very nearly charge independent. Neglecting the
Coulomb interaction it is useful to introduce the isobaric spin

(isospin) quantum numbers and treat the neutron and proton as different



isospin states of the same particle. It is well known that the
isospin operator ?’13 a spherical tensor operator of rank ome with
components t_, t_ and t3. The components of T satisfy the same
commutation'relations as those of the spin operatorlg. First we
briefly review the notation that will be used. The isospin part
of the nucleon wavefunction is denoted by the ket t,t3 > and we
define

|proton > = |%+k >

lneutron >= "[%-% > . (4.32)
The isospin states are eigenstates of the operator t3

tl% 2 %> = %, #h> '  (4.33a)

and t+ and t_ satisfy

e e >=0, ¢t [¥%5>=0

e i >= B>, e ld> = 5> (4.330)

For a many nucleon system the corresponding operators are

A A
- ) T
T.'*:: Z ti(i), '1:3 = L c3(1) (4.34a)
i=1 i=1
and the total isospin is
: A
'\"‘1
T= ) T@ . (4.34b)
i=1

For a state lT"T3' > of the A nucleon system

' |1, Tyt > = [(T'TJr3')(T'iT3+1) ]%IT"T:;';!_-I > . (4.35)

3
The eigenstates of the system are eigenfunctions of the operators

T2 and T3 where
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2 2

The eigenvalues are

< 'I‘2 > = T'(T'+1)
and
= - Z-N
< '1‘3 > T3' 2 . (4.37)

With the above definition of the isospin states we write the total

wavefunctions for neutrons and protons as

_ n
lneutron >= \b‘v’“ @ l%’% >
and

|proton > = ‘szjp@) %> . (4.38)

The necessary condition for isospin to be a valid quantum number is
. *
that the space-spin parts of the wavefunctions be identified, i.e.,

n

= p
\!ruj @ = \yuj @ . (4.39a)
In terms of the raising and lowering operators the condition is

< neutronlt_lproton >=< protonlt_l_lneutron >=1. (4.39)
The eigenfunctions of the charge independent nuclear Hamiltonian
form multiplets of states with total isospin T and ~T s '1'3 ST,
These eigenfunctions correspond to the states of different nuclei
with the same.number of nucleons but differing in the number of
neutrons and protons. That is, the statfgs differ only in their charge

number and are called analogue states. Analogue states are .

defined by introducing ‘modi fied isospin raising and lowering operators.

%* One should point out that the average field in which nucleons

move could itself be isotopic spin dependent without _dgstroying

isospin invariance.



and ' (4.40)
T =@yt —

72 % i
[1°-1, -T3] |

where

2-2--%ll=l_!|'-%li
[T°-1,"~1,1 *[1rT," > = [(T T,") (T'41,'+1) ] 7'z, > .

3
The state lN-l,z+1 >= lTT3+1 > which is the analogue of the state

[N,z >= |TT, > , is obtained by

|T T4l > = Tl > .
In the case of a nucleus the Hamiltonian is not charge inde-
pendent because of the presence of the charge dependent

Coulomb force
2

N o= & - . - .
Vo (D) < i G £, (1)) Gty () (4.41)
.Including the Coulomb force displaces the members of an isopsin

multiplet in energy. The energy shift is readily calculated in

perturbation theory using the eigenstates of isospin,

= 2 |

Equation (4.42) is the well known isobaric mass formula. In the
absence of nuclear structure effects the mass difference of neigh-
bouring members of a multiplet are related to the Coulomb energy
shift AEc,

M(T,T4+1) -M(T,T,) = £E - )

= (btc)+2cT (4.43)

3
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where © is the neutron-proton mass difference. In addition to
shifting the energy levels the Coulomb force introduces two other
effects: (1) dynamic . distortion of the spac1a1 part of the nucleon
wavefunction; and (2) mixing of states of different isopin. The

wavefunction . for a state of isospin T is then
-1

\
9y = (D) +), @ M @ +) BEVED . (4.44)

w0 v
TYT
The second term is the mixing of states of the same spin and parity
51
through dynamic distortion effects while the third is the mixing

50
of different isospin states through the Coulomb force,

<o, lv log >
B, T = e . (4.45)

Even though the mixing of states of different isospin may be small,
rigorous validity of the isospin quantum number requires that the
space-spin parts of the neutron and proton wavefunctions be identical.
Departures from isospin invariance can be estlmated by calculating
the deviation of (4.39b) from unity. For the purpose of discussing

these deviations we use (4.38) and (4.39) to define

X(ViLritivei) 1 -< protonlt+lneutron >

. o
. n 2
=1 -\/Puv't'j?(r)uvﬁj +(r)xr dr . (§.46)
5 -

1 and X(v'e'j! %,vzj) = 0, the spatial parts

When X(v'£'j' = vij)

of the wavefunctions are identical and isospin is a valid quantum
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aumber. To calculate the isospin impurity in the ground state
of a nucleus one has to sum over products of the‘overlap integrals
occuring in (4.46).

To calculat? the Goulomb energy shift in perturbation theory
one needs the structure of the analogue state. These states are
quite different for nuclei with N=Z and nuclei with N#Z. If we
assume the ground states of closed shell nuclei to be states of good
isospin then N=Z nuclei are generally T=0 states and N#Z nuclei afe
states with T = szl and T3 = SZ%EL . We are primarily interested
in the Coulomb energy shifts of analogue single-particle states.

41

The analogue states of 017 and Ca41 are states in F17 and S¢ ,

respectively,

]F17s.p. > = 3:_10175.p. >
IScals.p. > = ﬁlcfls.p. > .

The only effect of the operator :r; is to change the valence neutron
into a proton. In perturbation theory the Coulomb energy shift is
then that of the single-particle interacting with the charged particles
of the closed shell core. The analogue states of the Qingle-particle'
states in szog_are states in Bi?og. However, the analogue states

are not single-particle states since there is a neutron excess. The

analogue state is

2% > = 3:_[1’1)2093.1). >

[T -T4 -'r3]
N,
- ). t+(i)lpb2°95.p. > (4.47)
(45)°*

i=1
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whére we have used the fact that Pb209 is a state of isospin
.1 T = 45/2 and T, = ~45/2. In (4.47) the operator.t+ gives zero fo?
gll,states which are filled with both neutrons and protons but
gives a non-zero result for the neutron excess. The analogue state
wavefunction contains a term in which the valence neutron is changed
to a proton but also contains terms in which the valence.neutron
remains unchanged while proton particle-neutron hole states are
created in the szos neutron excess. The analogué state wavefunctions
for 017, Sc41 and Bizo9 are represented pictorially in Fig. 4.,1. The
Coulomb energy shift of the Bizo9 analogue states is that from
particles in a11 the neutron excess orbitals imteracting with the
;harge 7=82 core and weighted by the amplitudes in (4.47).
4-F Single-Partiéle Energies

The low-lying statés in A=15 and A=17 nuclei with their shell
model assignments are given in Table 4.4. The lowest states having
the samé spin and parity as wogld be expected on the basis of the
shell model are usually taken to be the single-particle (hole) states.

52 - < 16 17

Naquib and Green have recently shown that the O (d,p)0  experi-
ment gives speétroscopic factors consistent with unity for the
(0d;1ls) states.” The amount of configuration mixing in the.O16 ground
state and the degree to which the single-particle (hole) strength
is spread over several states is stiil an unsolved problem. Shuk1a53'
"has calculated transition strengths in A=15 nuclei by introducing
configuration mixing. In our calculations we take the experimentally

observed energies in Table 4.5 to be the single-particle energies in

A=15 and A=17 nuclei.
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Fig. 4-1. 1Isobaric Analogue States
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Table 4.4
30

Low-lying levels in A=15 and A=17 nuclei

015 : le
E, (eV) nt] 3 | E (MeV) ntj 3
0.00 Op, %; 0.00 Op, y .
5.19 -k 5.27 ~ 5/2
5.24 5/2F 5.30 ¥
6.16 Opyyy 3/2; : 6.33 3/2;
6.79 3/2 ; 7.15 . 5/2+
6.86 3/2,5/2 | 7.31 3/2
ol i 17
E_(MeV) 4] 3n k E (MeV) nt] 3x
0.00 04 51;* = 0.00 0dy 54;*
0.87 1s, 5 0.50 s, %
3.06 % '
3.85 5/2° i
4.56 3/2° N .
5.08 0dy,, 32 R 1d, 5 3/2"
5.22 :
5.38 3/2° i
5,71 | 7/2" i
5.73

EESEE XS

5.87 Z 3/2




Table 4.5

Single-particle binding energies for A=16 and A=17 nuclei

RE N ol? Ft
ntj E, MeV)| ns] Ep MeV)|  n4j E,(MeV} ntj E, (MeV)
0py, -15.65 op,  -12.11 0dg,, 414 | 045, -0.60
Opy,  -21.81 Op,,, -18.44 s, -3.21 | lsy -0.10
| 0dy,, +0.94 | 0dyp +4.50

\)

In contrast to the A=15 and A=17 nuclei, analysis of nucleon
transfer reactions for A=39 and A=41 nuclei show that the single-
particle (hole) strength is badly fragmented. For A=41 there are
approximately 80- levels below 6 MeV, while for A=39 there are approx-
imately 25 below 6 MeV. With such a high density of states it is
natural that there should be céﬁsiderable mixing. The (Of,1p) shell
single-particle states would have spins and parities 7/2", 3/27,
1/2° and 5/2°. The known negative parity states below 5.76 MeV in

Sc41 The levels listed are from (p,7) and

55 -
have analysed the

are given in Table &4.6.
54
(p,p) experiments. Bock, Duhm and Stock

40, 3 1
Ca (He ,d)Sc4 stripping reactions to obtain spectroscopic factors

The results are given in
- 56
Table 4.7. Belote, Sperduto and Buechner

for the 0.00, 1.71 and 2.42 MeV states.

have studied the level

structure of Ca41 using the Ca‘l'o(d,p)Ca41 stripping reaction. Their



Table 4.6

Low=-lying states in Sc41 (ref. 54)

Ex(MeV) i (prox‘ﬁs ional) Ex(Mev) 7 (prm‘;’it. sional)
0.00 7/2° 4.808 5/2°,(1/2")
1.7  3/27 4.950 5/2°

£ 2,409  3/27 5.008 7/2°
2.584  5/2° 5.067 1/2°
2.663  5/2°, 9/2" 5.139  3/2°
2.879  7/2° (7/2%,5/27) 5.392 1/2”
2.969  7/2° (1/2%) 5.490 1/2"
3.182  5/2°, 9/2° 5.521 > 5/2%
3.467  1/2° 5.530 . 3/2°
3.692  5/2°, /2% | 5.650 5/27,7/2
3.729 1/2" 5.690 25/t
3.769 1/2” 5.698 1/2"
4.018  7/2° 5.706 5/27,1/2°
4,027 5/27,7/2% 5.755 1/2°
4437 30275725, 7/2%
4511 5/27,9/2%
4.532  3/2°
4.639  1/2°

Table 4.7

Spectroscopic factors and single-particle excitation energy

in Sc41 (ref. 55)
E_(Mev) JT ngj No. oi S S E_(ngj)
X ‘Levels x -
0.0 7/2" 0f, 1, 1 0.92 0.92 0.00
1.71 3/2_ Op, /5 0.91
2.42 3/2 2 0.09 1.77

1.00




analysis to obtain spectroscopic factors and shell model identi-
fications is given in ?éble 4.8. Only the 0f7/2 single-particle
sfate corresponds to a single state in both the Caao(ﬂes,d)Sc41

aﬁd the Caao(p,d)Ca41 experiments. Both experiments also give
consistent results for the 0p3/2 single-particle state. The gingle
. particle strength is mostly in the lowest 3/2- state with the
remainder in the second 3/2° state. 1In Ca41 the Op% strength is
spread over five states while only 50% of the 0f5/2 strength is
contained in the states observed. To obtain unperturbed positions

for the single-particle states we define the single-particle excit=

ation energy to be
. m

-
P . .
E (1) = 35 ) sWE@ -
i=1l
. . 41 41 .

_The single-particle energies for Ca and S5c  are givens;n the

last columns of Tables 4.7 and 4.8. Hinds and Middleton have used
the Caao(t,oz)l(:i9 and Ca40(ﬂe3, )Ca39 pick up reactions to locate

the single-hole states in K39 and Ca39. Theif identification is

. . 58
given in Table 4.9. Recently, Kozub has analyzed the Caao(p,d)Ca3

9
experiment to obtain spectroscopic factors for the states containing
the single-particle strength. The spectroscopic factors are given

in Table 4.10 and the unperturbed single-particle energies are

given in the last column of the same table. The (t,0) and (p,d)
experiments both indicate that most of the 0d5/2 strength is

concentrated in the states at 5.13, 5.48, and 6.15 MeV. The'single-

particle binding energies for A=39 and A=4l are listed in Table &4.11.
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Table 4.8
Spectroscopic factors and single-particle'excitation

energies in Ca41 (ref. 56)

Tt . No. of .
Ex(Mev) J ntj levels ] 5 Ex(n,&J) .
0.00 7/2° Of; 1 1.00 1.00 0.00
1.95 3/2_ . Opy /5 0.94 A
33.62 1/2; ) 0p1/2 0.11
3.95 1/2 0.73
4.20 1/2° 0.01
4.62 /2" 0.11
4.76 1/2" 5 0.21 1.17 4.13
4.89 -5/2° 0.12
5.66 5/2° 0.25
5.81 5/2° 3 0.11 0.48 5.50

Table 4.9

Single-hole states in A=39 nuclei (ref. 57)

39 = 39

E_(teV) 7 5 E_(MeV) KL ]
0.00 . 3/2% 0d 0.00 3/2% 0d

. 3/2 . 3/2
2.47 1/2 1s 2.53 1/2 1s

. 1/2 . 1/2
5.13 5/2 0d 5.28 5/2 0d
5.49 5/2 0d . 5.62 5/2 0d
6.15 5/2 0d 6.35 5/2 0dg
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Table 4.10

Spectroscopic factors and excitation energies for the

single-hole states in Ca39 (ref. 58)

E, (MeV) I ntj a 5 p a 3. b Ex (L 1)y,
0.00 32" o4y, 1.78 0.2 178 0.2  0.00  0.00
2.47  1/2% la;,, 116 0.91 116 0.91 247 2447
+ | ”

5.13 (5/2)' 0dg /, 0.36 0.24

+ |
5.48 (3/2,5/2)* 04 ,, 0.16  0.11
615 (/% o0d,,, 0.3 0.25 0.8 0.60  5.61  5.62

a) Neutron well radius ry = 1.11 fm.

b) Neutron well radius ry = 1.35 fm.

Table 4.11

Single-particle binding energies in A=39 and A=40 nuclei

KE) 39 ! il
Ep (MeV) ] E,(MeV) nfj | Eg(Mev) mtj | By (MeV) nlj
‘ =15.64 0d3/2._ -8.33 0:13/2 -8.36 0f7/27 -1.08 0f7/2-
-18.11  1s;,, [-10.86  1sy, -6.29 1py/p | #0-71 Opyy,
-21.25  0dg ) -4.23  1p,

-2.86  Of, ),
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The binding energies were determined from the excitation energies
L o 59
from Tables &4.7-4.10 and the neutron and proton separation energies.
60
A distorted-wave-approximation analysis of the single-

nucleon transfer reactions szog(d,p)szo9 and szos(d,t)l’bzo7
demonstrated that the shell model single-particle (hole) states can
be identified with single.states in szog and Pb207. The single~-
particle (hole) binding energie s are listed in Table 4.12. The

single proton states in B:‘LZO9 have been studied by the szos(Hes,d)

61,62 63
Bizo9 and the szos(a,t)Bizo9 reactions and the distorted

wave analysis of the results indicate that most of the single-particle
strength is concentrated in one state. However, the Zp% strength

64 208, 3 ,\..209
is fragmented. Bardwick and Tickle - have studied the Pb"  (He ,d)Bi
reaction and found that the Zp% strength was split between levels
at Ex = 3.64 MeV (60%)'and Ex = 4.42 MeV (40%) . With this result
the unperturbed position of the ZP% state would be unbound by 0.18

65 ,
MeV. Hinds et al. have used the szoa(t,ob reaction to excite

the single-hole states in T1207. Apart from the 0g7/2 level, analysis
of the experiment showed that the spectroscopic factors for the

states observed were consistent with unity. The level at 3.48 Mev
excitation energy was tentatively assigned a 037/2 character; however,,

if the assignment is correct the level contains only 25% of the

single-particle'strength.
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Table

4.12

Single-particle binding energies in A=208

and A=209 nuclei

Pb207 % Pb209 Tl207 Bi209
nj Eg (MeV) nLj E, (MeV) ntj Eg (MeV) nt Eg (MeV)
2p1/2 -7.38 . 2d3/2 -1.42 231/2 -8.03 2p1/2 +0.18
1f5/2 -7.95 137/2 -1.45 ld3/2 -8.38 2p3/2 «0.57
2p3/2 -8.27 351/2 -1.91 Oh11/2 -9.37 1f5/2 =0.94
1f7/2 =9.72 0315/2 =2.53 | 0g7/2 «-1.1.51(?‘1'57/2 -2.87
1g9/2 -3.9 g

4-C Coulomb Displacement Energies

The general behaviour of Coulomb displacement energies of

nuclear ground states and their analogue states is reproduced by
‘ 66

the semi-empirical formula of Anderson, Wong and McClure

1/3-1.13 (MeV) .

AR = L.444 Z A (4.48)
The formula (4.48) does not reproduce nuclear structure effects.
Excited states, particularly valence particle states, cog%&6%ot be
.expected to be fitted by (4.48) because of Thomas~Ehrman , shifts
arising from the proximity of the two-body threshold. For example,
the Odslz-lsll2 splitting in 017 and F17 is 0.87 MeV and 0.50 Mev,

’respectively. Nuclear structure effects can be peproduced by



performing a shell model calculation with the Coulomb interaction
69 : '
(4.41). Harchol et al. have calculated the displacement energies

of. the analogues of ground states in the region 28 < A < 65. 1In

the calculation the oscillator size paraméter was varied to fit the
data. We have used the. nuclear size dependence of the GCoulomb energy
shift to determine the single-particle potential radius while the
other parameters were varied to fit the single-particle energies.

In guch a parameter search, calculation of the two?body matrix
elements of the Coulomb interaction (4.41) at each stage in the search
would be excessively time consuming.

The Coulomb energy shifts were calculated assuming that the ’
.barticles moved in thé average Coulomb.potential of the charged core
nucleus. The potential was taken.to be that of a uqiformly charged
sphere of the same r.m.s. radius as the actual nucleus. In this
approximation only the direct Coulomb interaction terms.are included.
The exclusion principle has thg efféct of keeping the protons apart;
hence78he exchange terms decrease the Coulomb emergy. Sood and
Green calculated the exchange contributions for nuclei up to
A=41 using HO wavefunctions. They found that including the exchange
effects decreased the Coulomb enérgy by 6% for A=%i and 17 and by
47 for A=39 and 41. Nolen, Schiffer and Williaﬁs have estimated
the exchange effects to be 3.5% for szos. Calculaéing Coulomb
energies by thgzabove procedure does not give structure effects

e.g., pairing,. but it does give Thomas-Ehrman shifts.

4<H Method of Determining Potentials

Woods-Saxon potentials were fitted to the experimental single
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particle energies given in Tables 4.5, 4.11, and 4.12. The eigen-
values and eigenvectors were calculated by numerical integration
of (4.12) using the code ABACUS II.73 In the calculations we were
only able to consider bound states.

The procedure followed for A=17 and A=41 nuclei was the following:
1) Neutron wells were determined for O17 and Ca41 by adjusting VO’
a and Vso to reproduce the experimental single-particle spectra.
Simultaneously the potential radius was largely determined'by

requiring the Coulomb energy displacement to be correctly predicted

by including the Coulomb potential in perturbation theory, 1i.e.

“ _ _.n n
M, = <Vv v > .

2) The proton single-particle eigenvalues and eigenvectors were
calculated using the nuclear poteﬁtial deduced for ﬂeutrons but with
the Coulomb potential included in the numerical solution of (4.12).
It was found in this way that the Coulomb energy shift AEC calculated
in perturbation theory agreed for the 0d5/2 or 0f7/2 levels with

that obtained from including Vc to all orders.

The procedure followed for A=15 and A=39 nuclei was the
following: 1) The potential radii obtained for the A=17 and A=41
nuclei were parametrized in the form R = roAl/3; 2) Apart from
an All3 change, the neutron potentials for A=l5 and A=39 were assumed
to be the same as those for A=17 and A=41l. Calculating the single-

hole energies it was found that the potentials did not give sufficient

binding. The diffusivity was kept fixed while V and V, were varied
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to reproduce the single-hole spectra. 3) To check the consistency
of the results the Coulomb displacement energies.were calculated
in perturbation theory and the proton energies were calculated by
including the Coulomb potential in the solution of (4.12).

The proéedure for fitting the hole spectra requires some
clarification. It should be emphasized that the basic-assumption
in the fitting procedure is that the experimental states can be
assigned a single-particle character. A self-consistent Hartree-
Fock calculation of the type discussed in Chapter 2 would give the
single-particle states and an average single-particle potential.
The Woods-Saxon potentials obtained for the A=1l7 and A=4l nuclei
are then representations of the Hartree-Fock potentials for these
nuclei. The potentials for the hole states should be representations
‘of the Hartree-Fock potentials for A=16 and A=40 nuclei since an
experimental single-hole energy is that of a particle in the closed
shell nucleus. Initially it was assumed that the particle and hole
potentials differed onlybyaradius change of A1/3. In Sec. 4.C the
A dependence of nuclear sizes was discussed. The empirical evidence
ié that isotopes and isotones increase less and more rapidly than
A1/3, respectively. Perey and Schif»‘:‘erl"7 have suggested that these
variations can be ascribed to changes in wavefunctions as a function
of binding energy. In view of the fact that it is useful to consider
neutrons and protons as-identical particles in shell_model calcula-
tions, it is a good approximation to assume an average behaviour

1/3

of an A dependence. This model does not take into account

rearrangement energy effects.



In general, /the Brueckner Hartree-Fock single-particle
potential is non-local74 or, alternatively, local but energy
dependent. The energy dependence of single-particle potentials
fbr nuclei with A $ 40 has been discussed by Elton and Swift.45
They found that the assumétion of a linear relationship between the
.strength of the potential for nuclei with N=Z and the proton kinetic
energy was sufficient to explain the experimental data. We followed

the same procedure and changed only V_ and Vso,to fit the single~

0
hole spectra. With local and energy dependent potentials states
differing only in the number of nodes in the radial wavefunction
are not orthogonal. In shell model calculations one normally works
with a subspace of configurations such that the non-orthogonality
does not enter into the calculations.

When the fitting procedures described above were applied to
unuclei with A=207 and A=209 it was found that there were ambiguities
in the potentials. The methods used for the heavy nuclei arev

discussed with the results for those nuclei.

4-T Results for A=15 and A=17 Nuclei

A problem in A=17 nuclei is that the Od3/2 level is unbound

whereas one normally includes the state in shell model calculations.

17

In O the 0d state is seen as a narrow resonance at 0.94 MeV

3/2
. . . 16

in neutron elastic scattering on 0 . Since the resonance is narrow,
a reasonable approximation to obtain the effects of a finite nuclear

potential is to calculate a wavefunction for the state with a small

binding energy. In shell model calculations using the 017 single-



-96-

particle states as unperturbed configurations this is equivalent
to adding a term AV(r) to the single-particle Haﬁiltonian and
removing it from the two-body perturbation.

The WS potential for 017 was determined by the method discussed
in the previous section. To determine the spin-orbit strength the
binding energy of'the 0d3/2 state was calculated as a function of
the well depth V07 By extrapolating back into the cont;nuum it

17

was possible to fix Vso' The fitted well parameters for O are

given in Table 4.13. The 04 binding energy as a function of V0

3/2
is shown in Fig. 4.2a. The curve is not quite linear; however,
the extrapolation should be sufficiently accurate for our purposés.
Ig.Fig. 4.2b the mean energy shift per unit change in Vo is plotted
'vs. the mean of the change in the potential treated.as a perturbation;
fhe linear relationmship would imply that adding the term NV (r) to
the single-particle potential and removing it from the two-body
perturbation has no effect on the unperturbed single-particle emergy.
The calculated neutron single-particle energies, together with ﬁhe__
experimental energies are shown in Fig. 4.3. The r.m.s. radius of
the 016 charge distribution is not well established experimentally;
The value quoted in Tab1254.1 was obtained using HO wavefunctions.
“Recently Elton and Swift have fitted WS wavefunctions to elastic
electron scattering data and the single-particle energies to the
proton separation energies obtained from (p,2p) experiments. They

L .

obtained the result < r2 >c2 = 2,79 fm. which corresponds to an

equivalent uniformly charged sphere of radius Ru = 3,60 fm. The
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Table 4.13

Potential parameters for 017 and 015

Nucleus Yo Vso a-l o
MeVy . (MeV) (em™ by (£m)

o’ 57.0 5.7 . 0.63 1.17

ol3 61.9 9.2 0.63 1.17

Coulomb displacement energies for the A=17 analogue states cal-
culated in perturbation. theory with R.u = 3.60 fm. are given in
Table 4.14. With R = 3.46 fm. the Coulomb energies were increased
by about 2%. Apart from the 0d3/2 state the calculated numbers

are in good agreement with experiment. The Thomas~Ehrman shift of
the 131/2 level is reproducéd in this model. Ihe calculated 0d3/2
energy shift is too small; however, with the level bound by 1.9
MeV the shift is only increased to 3.45 MeV. It is obvious that
the level would have to be bound nearly as deep as the OdS/Z level
to give the experimental energy shift. It is very likely that

the error is in the quoted experimental value of the displacement
energy. The number quoted is the difference in binding energy of
the levels in 017 and F17. This energy difference is only the
Coulomb energy shift if the Coulomb potential does not appreéiably
distort the wavefunction. An example of the effects of such
distortions will be discussed in Chabter 5. 1In Sec. 4.G exchange

[
energy corrections to the Coulomb displacement energies calculated
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Table 4.14
Coulomb displacement energies calculated in

perturbation theory with R, = 3.60 fm

A=17 A=15
nt j QE Exp nlj £E Exp.
(MeV) MeV) (MeV) (MeV)
0d5/2 3.51 3.54 '0P1/2 3.50 3.54
151/2 3.14 3.17 01)3/2 3.51 3.47
.0d3/2 3.26;/‘ 3.56

# Calculated with wavefunction for EB = «0.23 MeV.

above were discussed. To include the corrections would decrease
the calculated energy shifts and imply that the nuclear potential
should have a smaller radius. The present model is not sufficiently
accurate to merit considering this detail.

The wavefunctions for the 017 states are tabulated in
Table 4.15 as expansions in terms of oscillator functions. The
coefficients tabulated are those defined in Eq. (4.17). Two sets of"
parameters are tabulated; ome for the fiw value that maximizes the
overlap with the oscillator function having the same number of nodes
while the second is a common #w value for the set of states; To

compare HO and WS wavefunctions a few of the wavefunctions are plotted



The coefficients of the expansion of the WS wavefunctions for O

Table 4.15

17

in terms of HO wavefunctions

VL3 0ds sy Isy 4y 0d3 9 0dy/y 0d3/,

%ﬁev) -4.11 -3.27 -1.93 -1.05 -0.23

:Q?f 13.5 13.4 12.0 13.4 13.0 13.4 12.0 13.4 11.0 13.4
0 0.988 0.988 -0.143 -0.079 0.978 ' 0.977 0.971 0.967 0.958 0.949
1 -0.014 -0.008 0.947 0.939 -0.014 -0.033 -0.003 | -0.070 0.001 -0.109
2 0.137 0.138 -0.087 -0.163 0.183 0.180 0.206 0.195 0.234 0.214
3 -0.053 -0.051 . 0.228° 0.224 -0.059 -0.065 -0.060 | -0.085 -0.067 -0.110
4 0.032 0.032 -0.098 0.128 0.057 0.058 | 0.070 0.073 0.091 0.054
5 -0.029 -0.029 0.078 0.088 -0.041 -0.043 -0.048 | -0.057 -0.060 -0.077
6 0.014 0.014 -0.061 -0.072 0.027 0.029 0.036 0.041 0.051 0.060
7 -0.014 -0.014 0.038 0.048 -0.024 -0.026 -0.032 | -0.036 | =0.045 -0.053
8 0.009 0.008 -0.034 -0.040 0.017 0.018 £0.023 0.028 0.036 0.044
9 -0.007 -0.007 0.023 . 0.030 -0.015 -0.016 -0.021 | -0.024 -0.033 -0.039
10 0.005 0.005 -0.020 -0.024 0.013 0.012 0.016 0.020 0.028 0.034

-101~
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in Fig. 4.4. The WS Od state is very similar to an oscillator

5/2
function while the 151/2 WS wavefunction extends ﬁuéh-further beyond
the potential than the HO wavefunction. The differences between
the wavefunctions are partly understood by considering the %#w value
that maximizes the overlap of the WS and HO wavefunctions. A
direct measure of the extent to which the wavefunctions extend beyond
the nuclear potential is given by the integrals of r2 in Table 4.16..
In an oscillétor potential all states with a shell have the same
value of < r2 >. In the WS potential the < r2 > are 11.62 and
17.79 fmz,for the 0d5/2 and 151/2 states respectively. The large
< rz > for the 4=0 state is reflected in the decrease in the Coulomb
displacement energy.

The single-hole states in 016iwere determined by the pro-
cedure outlined in the previous section. Changing only the'well

1/3

radius, by the A factor, did not give P states with sufficient
binding energy. The well depth and spin-orbit strength were both
increased to fit the experimentally observed energies. The ;ell
parameters are given in Table 4.13. The wavefunctions are plotted
in Fig. 4.4 and tabulated in Table 4.17. Since the p states are
deeply bound the WS wavefunctions are very nearly HO wavefunctions;
however, they correspond to HO wavefunctions with a considerably
larger value of #iw than required for the‘valence particles in 017{
The integrals of r2 are given in Table 4.16. The WS wavefunctions
have smaller r.m.s. radii for hole states and larger r.m.s. radii

for particle states than a common oscillator potential for 016 and

/

!



Fig‘ 4'4-

-103-

.
!

Woods-Saxon radial wavefunctions for A=17 and A=15

nuclei. Harmonic

are presented for

(a)
(b)
(e)
(d)
(e)
()

(8

Opy/2

oscillator wavefunctions with 1w = 13.4 MéV
comparison. The fiéures are

and 0p3/2 neutron states

neutron state

(EB = =0.23 MeV) neutron sfate

neutron state

proton state

proton state

proton state
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Table 4.16
2

< r” > for A=1l7 and A=15

The coefficients of the expansion of WS

1
wavefunctions for O

<r?> (g%
vij a
HO WS (neutron) WS (proton)

0d5/2 / 10.83 11.62 12,98
181/2 10.83 17.79 25.54

0dy,, 10.83 16.90°
Opl/2 7.74 6.70 6{92
0P, /, 7.74 6.46

a) HO with fw = 13.4 MeV.
by Eg = -0.2 MeV
Table 4.17

in terms of oscillator functions

VA 0Py /, g 3 /2

Eg (MeV) ~15.68 ; ~2.179
\gw0te) 16.0 | 13.4 | 1625 - |  13.4
0 0.997 | 0.990 |  0.999 0.989
1 -0.012 | 0.100 § ~0.004 0.135
2 0.060 | 0.6 | 0.3 | 0.061
3 -0.026 % ~0.004 é -0.025 | =0.007
4 0.008 ; 0.005 |  0.000 ~0.004
5 -0.009 | -0.007 | -0.006 i =-0.007
6 0.002 | -0.00L {  0.001 | -0.002
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017 would have. The common HO potential is taken to have fiw =
13.44%ev which is the result obtained from elecgron scattering
‘data " and commonly used in shell model calculations. The Coulémb
disélacement energies calculated in perturbation theory are in as
good agreement with experiment as in the case of 017. 1f the well
radius had been kept the same as that fér 017 the Coulomb energies
would have been decreased by approximately 1%. Clearly the present

1/3

model cannot detect an A radius chénge when AMA=l.

The proton states were calculated using the same WS potentials
as for the neutrons but with the Coulomb potentialAinc1uded in tﬂe
solution of the differential equation. The calculated binding
" energies of the 0p1/2 and 01.':3/2 states were -12.20 and ~-18.30 MeV,
respectively. The experimental emergies are ~12,10 and -18;40
MeV. The calculated binding energies for the Od5/2 and 131/2

states were -0.61 and -0.10 MeV. A few of the proton wavefunctions
are plotted in Fig. 4.4 and tabulated in Table 4.18. The proton
p states have a complete overlap with the neutron states; however,

the 0d and 151/2 proton-nueotron overlaps are 0.997 and 0.980,

5/2
respectively. The small binding energy of the 1s1/2 proton state
allows the wavefunction to spread out considerably more than the
neutron wavefunction. The integral of r2 is 25.54 fmz‘for the
proton state and 17.79 fmz for the neutron state.

The r.m.s. radius of the charge distribution (calculated

assuming the neutron and proton matter distributions to be the same)

for 016 with the present wavefunctions is 2.54 fm. This result is
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= 75
. consistent with the results of Wilkinson and Mafethe and
76 . »
Wilkinson ; however it is small compared with the recent result
45

(2.79 fm) of Elton and Swift.

Table 4. 18
The coefficients of the expansion of WS wavefunctions

for F17 and le in terms of HO wavefunctions

wi | 0d5 /) 1512 0P /9

E, : -0.61 | -0.22 -12.16
fiw

o 12.5 13.4 | 11.0 13.4 15.5 | 13.4
o | o0.81{ 0.979 §-0.168 { =-0.060 | 0.9% { 0.992
1 | -0.005} =-0.052 } 0.902 0.879 1-0.009 ! 0.090
2 § 0.165 | 0.158 §-0.111 | =0.222 .% 0.076 | 0.089
3§ -0.061} =0.075 { 0.277 0.264 -0.028 §-0.009
4 | o.s8f 0.051 }-0.135 | -0.180 | 0.010 | 0.007
5 g -0.041 § =0.045 § 0.124 0.138  {-0.011 }-0.008
6 i 0.025} 0.028 {-0.101 | -0.120 } 0.003 { 0.001
7 ¢ -0.024} =-0.025 { 0.078 0.094  }-0.004 §=0.004
s } +0.017 ] 0.019 }-0.07L { -0.083 0.002 [ 0.001
9 § -0.015 | -0.016 . 0.057 { 0.070 §-0.002 £ -0.002
10 |  0.012 % -0.014 } -0.052 % -0.062 | 0.002 { 0.002

£ 1 i ] 3

4=3 Results for A=39 and A=41 nuclei

The procedure followed in fitting the A=39 and A=41 single-

particle (hole) spectra was identical to that of the previous
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. section. The fitted well parameters are given in Table 4.19a and

the results for the levels are tabulated in Table 4.19b. The fits
to the spectra are good except for the 0f5/2 level which has a
binding energy 1.17 MeV less than the experimental value. The
experimental value, quoted in Table 4.8, was based on the obser-
vation of only 50% of the Of5/2 single-partic;e strength. For

that reason it is likely that the unperturbed single-particle
position is higher than that given in Table 4.8. The Coulomb
displacémgnt energies listed in colﬁmn 4 of Table 4.19b were cal
culated in perturbation theory with gn equivalent radius

R, = 4.52 fm (< 2 Sk

= 3,50 fm). For an r.m.s. radius of 3.41 fm
the Coulomb displacement enérgies were increased by 1% £for the
particle states énd 1.5% for the hole states. The' displacement
energies are in good agreement with experiment considering the

fragmentation of the single-particle strengths. The integrals

of r2 are listed in coélumn 6 of Table 4.19b. The < r2 > vary

considerably compared to a constant value for all states within a

HO shell. The neutron wavefﬁngtions are tabulated in Tables 4.20
and 4.21. Except for the p states, the wavefunctions all have good
overlaps with corresponding oscillator wave function. The proton
states were calculated by including the Coulomb potential in the
differential equ?tion. The results for the proton states are listed
in the last thre; columns of Table 4.19b and the wavefunctions are

tabulated in Table 4.22. The proton states have larger < r2 >

values but the overlaps with the neutron wavefunctions are very good.
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Table 4.19a

41

and Ca39

Nucleus Yo Vso a-l :
(MeV) (MeV) (fm_7) (fm)
ca®t 6177 7.0 0.75  1.14
ca>’®  62.9 8.5 0.75 1.14
Table 4.19b
Results for A=41 and A=39 nuclei
neutrons protonsa
V43 Eg E, AEca AEcb > | <r? > 5 Eg <>
(MeV) Exp | MeV) I|Exp. |(fm2) HO (fiw-11.5) (Mev)| Exp | (fm?)
0f, ), | = 1.69 |- 2.86 7.09 17.07! 16.23 | -.1.00{ =~ 1.05 15.93
1py/p | = 434 |- 4.23 | 6.71 20.93| 16.23
1p,/, | - 6-31 |- 6.29 | 6.92) 7.00 18.73] 16.23
0f,,, | = 8.30 |- 8.36 | 7.32 7.28114.78] 16.23 | - 1.00{ - 1.08| . 15.93
0d,/, | -15.62 {-15.64 | 7.49 7.53/10.87{ 12.62 | - 8.11} - 8.33 11.49
1jp | -18-03 |-18.11 ) 7.43 7.25{11.37| 12.62 | -10.58! -10.86; 12.13
0dg ), | =21.54 |-21.25 | 7.49 10.84{ 12.62 | -14.03 11.30

a) Calculated with R, = 4.52 fm

b) Deduced from Table 4.11
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wavefunctions for Ca4
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Table 4.20

in terms of HO wavefunctions

H

VAS | 0%, /2 15/ P12 )

%gev, -8.30 -6.31 434 -1.69

\ﬁt 12.75 1.5 | 11.88] 11.5 | 11.5 11.75 11.5
n

o ! 0.997 | o0.991 | -0.073 | -0.098 |-0.111 0.986 0.986

0.004 0.100 | 0.982 | 0.981 | 0.968  |-0.011 0.006

2 | 0.068 | 0.084 | -0.056 | -0.022 |-0.072 0.144 0.147
'3 |-0.040 | -0.024| 0.138 | 0,142 | 0.179  [-0.056 | =-0.052
4 | 0.007 0.002 | -0.077 | =0.069 |=0.089 0.038 0.037
5 |-0.013 | -0.013| 0.031{ 0.028 | 0.050  [-0.033 | -0.032
6 | 0.005 0.001 | =0.032 | =0.031 |=0.045 0.019 0.018
7 1-0.003 | -0.003 | 0.016 | 0.014] 0.025 - |-0.017 | =-0.016
8 | 0.003 0.002 § -0.012 | =0.012 |-0.021 0.012 0.011
9 |=0.001 0.000 | 0.009 | 0.008 | 0.015  [-0.001 | -0.009
10 | 0.001 0.001 | =0.006 | =0.005 |=0.011 0.008 10.007
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Table 4.21

) The coefficients of the expansion of the WS

wavefunctions for Ca39

in terms of HO wavefunctions

“

vE] 0ds /5 15972 0ds /9

E

(Bev) -15.62 -18.03 -21.54
w435 11.5° 12.88 11.5 13.5 11.5

hok

0 0.998 0.989 0.010 | =-0.059 | 0.999 | .0.989

1 -0.003 0.132 0.998 0.990 | ~0.006 0.138

2 0.048 0.070 | =0.005 0.112 | 0.017 0.040 -

3 -0.027 ~0.009 0.044 0.062 | -0.027 | -0.016 -

4 0.003 -0.001 | -0,037 | =-0.024 | -0.002 | =-0.008

5 -0.007 -0.007 0.001 | =0.006 | =0.004 | -0.006

6 0.002 -0.002 | -0.008 | -0.009 | 0.002 | -0.001

7 -0.001 -0.002 0.002 0.000 | 0.000 0.000

IR -



Table 4.22
The coefficients of the expansion of WS wavefunctions for Sc41 and K39 in terms of oscillator functions
Vil 0f; /9 9449 18179 0ds /9
Ep(MeV) | -1.00 -8.11 -10.58 -14.03
:\\?” 12.0 11.5 13.0 11.5 12.25 11.5 13.0 11.5
0 0.99% 0.993 0.997 0.993 0.000 | -0.038 0.999 0.9%
1 0.002 0.041 -0.013 0.089 0.997 0.995 -0.007 0.102
2 0.091 0.097 0.060 0.074 -0.007 0.057 0.024 0.039
3 -0.050 -0.042 -0.033 -0.018 0.058 0.066 -0.030 -0.021
4 0.016 0.014 0.007 . 0.003 -0.043 | -0.034 -0.001 -0.006
5 -0.021 -0.021 -0.011 -0.010 0.004 0.000 -0.005 -0.007
6 0.010 0.008 ~ 0.005 0.002 -0.011 | -0.012 0.002 0.000
7 -0.008 |' -0.008 ~0.004 -0.005 0.004 0.002 '
8 £ 0.006 0.006 0.004 0.004 -0.002 | -0.002
9 -0.004 | =0.003 -0.004 -0.004 0.002 0.002
10 0.004 ! -0.003 0.004 0.004 0.000 0.000

-G11-
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The variation in the extension of the neutron wavefunctions
is reflected in the Coulomb energy shifts. The 0p1/2 wavefunction
which is considerably more spread out thaﬁ thé 0f7/2 wavefunction
gives a Coulomb energy shift 0.61 MeV smaller than that for the
0f7/2 state. On this basis one would expect the 1p1/2 proton state‘
to be unbound by 2.37 MeV; On the other hand, the lowest % state
in Sc41 (Table 4.6) has an excitation energy only 0.15 MeV less
than that of the lowest % state in Ca41 (Table 4.8). The second
%- level in Sc41 is depressed by 0.22 MeV relative to the second %-
in Ca41 which is identified as containing more than 50% of the p%
single-particle strength. The behaviour of the p;5 state is very
similar to that of the 0d3/2 state in A=l7 nuclei.

Certainly the treatment of these levels, the.p% state in

41

Sc and the d state in F17, would be improved by recognizing

3/2
that they lie in the continuum. However, further investigation of
this sort is somewhat outside the scope of the present work. We
require only a fairly reasonableAdetermination of the single-particle
wavefunctions which are later to be used in shell model spectroscopic
calculations.

4-K Results for A=207 and A=209 Nuclei

77-82
There have been many attempts to obtain single-particle

potentials that fit the experimental data in the lead region. 1In
the oxygen and calcium isotopes there were sufficient parameters

i . : 209 208
available to fit the experimental spectra. In Pb and Pb there

are seven particle levels and six hole levels while there are only
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thrée parameters in the potential since the radius is to be fixed
by fitting the Coulomb displacement energy. The general feature of
WS potggtials is that tgey give single-particle levels spaced too far
apart. Recently Rosf : obtained a reasonable fit to the neutron
states in lead with a WS potential. It is a propefty of the single-
particle potential that the levels can be brought closer together
by increasing the well radius while decreasing the well depth. At
the same time the spin-orbit strength must be increased to keep
spin-orbit pairs of states apart. This is essentially what Rost did
to improve upon the results of Blomqvist and Wahlborn79 for neutrons.
When fitting the experimental spectrum it is assumed that the states
are.pure single-particle states; however if there is some fragmen-
tation of the single-particle strength then the unperturbed single-
particle energies are not those observed experimentally. In the
lead region the residual two-body interaction matrix elements are
‘too small so that the difference between the unperturbed single-particle7
positions and the observed energies would not be as large as 1 or 2'Mev. ’
In the present work it has been our approach to remove the well
known Voron ambiguity by determining the well radius‘from a calcula-
tion of Coulomb displacement energies. The experimental Coulomb
'Aisplacement energy of the 31208 analogue of the Pb208 ground state
is 18.98 M,eV.s3 Including the exchange correction of 3.5% estimated

71 '
by Nolen et al. the present model should predict a Coulomb displace-

—— —

ment enmergy of approximately 19.69 MeV. In the shell model

description of the 31208 analogue state, the Coulomb energy shift is
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calculated by averaging over the Coulomb energies of the states in

the neutron excess as discussed in Sec. 4-E. Another quantity that

is determined by the well radius is the r.m.s. radius of the neutron
excess. Nolen et /al. assumed a form for the neutron demsity distri-~
bution and by adjusting the parameters to give the correct Coulomb
displacement energy calculated the r.m.s. radius of the neutron excess
to be 5.70 fm. This result is consistent with the total neutron r.m.s.
radius being slightly larger than the proton r.m.s. radius

2. % 2 %

Kr >h = 1.035<r >§ ). From an optical modelanalysis of low

84
energy proton on Pb208 scattering Greenless, Pyle and Tang have

deduced that the neutron radius is larger than the proton radius
(< 2 >n% = (1.09 + 0.05) x < r2 >p;5

imposed the condition that the neutron well radius lead to a Coulomb

). In view of these results we

displacement energy of approximately 19.6 MeV and an r.m.s. radius
for the neutron exces; of approximately 5.70 fm.

Before proceeding to fit potentials to the experimental specta
the Blomqvist-Wahlborn (BW) and Rost potentials were checked for
'conformity to the above criteria. The BW and Rost well parameters
used in the calculation are given in Table 4.23. The Rost well gave
a Coulomb displacement energy of 18.16 MeV and an r.m.s.‘rédius of
6.53 £m for the neutron excess. The BW well gave a Coulomb displacé-
ment cnergy of 18.73 MeV and an r.m.s. radius of 6.21 fm for the
neutron excess. The Coulomb energies were calculated for a uniform
ch;rge distribution having an r.m.s. radius of 5.49 fm. (Table 4.1).

Rost also fitted the levels by using a different radius for the
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Table 4.23 ,
79 82
Parameters for the Blomqvist=Wahlborn and Rost neutron
_potentials

Yo Vso o 2 -1

(MeV) (MeV) (fm) (fm 7)
Rost 40.5 8.30 1.349 0.70
BW 44.0 7.82 1.27 0.67 .

spin-orbit term tﬁan for the central well. Blomévist and Wahlborn,
and Rost, ihcluded corrections for pairing energies in the ﬁole
states and for collective effects. Neither of these imp;ovements
on the model would alter the above results significantly. All of
the potentials studied by Rost have a central well radius larger
than that of the BW well. Clearlj the potential must have a smaller
radius than that of the Rost or BW potential in order that the
Coulomb energy and r.m.s. r;dius are correctly predicted. °

Rost introduced two additional parameters into the spin-
orbit term but found that the neutron data could not be reasonably
fitted with r, % 1.25 fm. To fit the Coulomb energy and radius of‘
the neutron excess we considered first only the hole levels in szos.
It was found that the radius and the energy levels could not be
_fitted simultaneously. However, by omitting the 0113/2 level a good
fit was obgained. With the set of parameters the position of the

209

0i13/2 level was calculated and the positions of the Pb particle
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levels were calculated. In going from Pb208 to szo9 we made

the A1/3'change as discussed in the previous sections. The results
with this set of well parameters are given in column I of Fig. 4.5.
All of the levels are above their experimental positions. This is

in marked contrast to lighter nuclei where it was found that as

the experimental levels became more deeply bound the well depth and
spin-orbit strength had to be increasgg. This phenomenon has been
pointed ouf by'Brown, Gunn and Gould. By increasing the well depth
and the spin-brbit strength the 0113/é hole level and the particle
levels, except for the 0;]15/2 state, cbme dowvn to give good agreement
with experiment. The results are showp in column II of Fig. 4.5.

The fact that the 0113/2 hole level was fitted with‘the same para-
meters as the particle levels and the 0j15/2 level was not fitted
with the second set of parameters indicates a correlation with the
oscillator shell degeneracy of 2nt4. Since there was only the

0j15/2 state rem;ining to be fitted, both the well depth and spin-
orbit strength for this level were increased arbitrarily to fit

the experimental position. The final spectrum with the well para-
meters of Table 4.24bis given in the fourth column of Fig. 4.5.

With the wavefunctions for the szos hole levels the Coulomb displace-
ment energy of the Bi208 analogue state was calculated to be 19.62
MeV. Including thé exchange correction of 3.5% we have that

AEc = 18.93 MeV to/be compared to the experimental value of 18.98 ﬁev.
In éddition, the r.m.s. radius of the neutron excess was calculated

to be 5.72 fm which is consistent with the value of 5.70 fm obtained

by Nolen et al.
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Fig. 4-5. The éingle-particle and hole spectra of Pb209
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ds/2
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£5/2
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113/2

I

7/2
9/2

N

EXP

208

‘and Pb .

Columns I, II and III are the spectra with different potentials

for states belonging to the same oscillator shell. The parameters

are given in Table 4.25b.
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Table 4.24

The integrals < rz > and Coulomb energy shifts .

for the Pb209 particle states and Pb208 hole states

V4] ' Eg < r? > AEC" Vi3 Eg - Fer? > AEC"
2 ‘ 2
MeV) (fm ) (MeV) MeV) (fm) | (MeV)
2d3/2 -1.34 52.13 17.39 2p1/2 - 7.22 34.08 19.52

1g7/2 -1.37 39.99 18.65 1f - 7.97 31.79 | 19.79

5/2
3s

1/2 -1.98 56.18 17.02 2p3/2 - 7.9% 33.55 | 19.59
2d5/2 -2.52 46.36 17.98 Oi13/2 - 8.76 34.84 19;23”
0j15/2 -2.54 37.80 | 18.76 1f7/2 - 9.87 31.58 | 19.82
0i11/2 -3.39 33.37 19.47 0h9/2 -10.70 30.47 | 19.94
1g9/2 ~4.24 37.39 18.97

i
!
!

4 Calculated for a charge distribution with an r.m.s. radius 5.49

£fm

‘
The calculated energies, integrals of rz and Coulomb energy
shifts, are given in Table 4.24. From the values of the infegrals
"of rz it can be seen that wavefunctions vary considerably from
those of a HO potential. In particular, the states of low orbital
angular momentum and small binding energy have large tails. The
wavefunctions are tabulated in Table 4.25 as expansions in HO wave-
functions. 1In the calculation of the wavefunctions a cutoff of
16.0 fm was used. The (2s,1d,0g) shell hole states were calculated

with the same well parameters as for the (2p,1£,0h) shell states.

The hole energies are given in Table 4.26.



Table 4.25a

209

The WS particle and hole neutron wavefunctions for Pb

For each state the first column is the

the same number of nodes, the second

column is a common fiw value for all states.

208

and Pb as expansions in terms of HO wavefunctions.

value of %w that maximizes the overlap of the oscillator function with

Vi 2449 812 38172 2ds /9 031570 %112
¢f§v -1.34 -1.37 -1.98 -2.52 -2.54 -3.39
;\Ef 7.81 8.00 8.44 8.00 7.56 8.00 7.81 | 8.00 9.38 8.00 9.38 8.00
o | o0.06s | o0.066 | -0.023 | -0.085 | ©0.000 | o0.002 | o0.072 | o0.071 | 0.998 } 0.973 | 0.998 | 0.976
. | -0.082 | -0.050 | o.988 | o0.983 | o.0ss | o.082 | -0.046 | -0.013 | -0.006 | 0.221 | -0.004 | 0.203
> | o0.956 | ©0.956 | -0.026 | 0.0s8 | -0.093 | -0.012 | 0.976 | 0.974 | -0.020 | 0.0 |} 0.002 ) 0.057
s | -0.072 | -0.100 | 0.077 | 0.09 | 0.946 | 0.936 | -0.043 | -0.084 | -0.058 } -0.049 | -0.055 | -0.040
s | 0.8 | o.s1 | -0.124 | -0.104 | -0.083 | -0.171 | o0.104 | 0.097 | 0.004 | -0.024 | 0.003 ) -0.018
s | -0.72 | -0.177 | o0.026 | 0.012 | 0.172 | 0,157 | -0.147 | -0.151 | 0.000 -0.012 | -0.004 | -0.013
6 | o.06s | 0.072 | -0.032 | -0.034 | -0.185 | -0.197 | o0.037 | o0.045 | 0.010 | 0.004 | 0.009 ) 0.002
2 | -0.073 | -0.073 | o0.029 | o0.024 | o.070 | o0.001 | -0.044 | -0.044
e | o.0ss | o.062 | -0.012 | -0.009 | -0.078 | -0.080 | 0.040 | 0.043
o | -0.034 | -0.037 | o0.014 | o0.013 | o.062 | 0.072 | -0.016 | -0.019
0| o.030 | +0.032 | -0.009 | -0.005 | -0.034 | -0.043 | o0.017 | 0.018

YA




Table 4.25a

VL 1 2 1f i
43 89/2 Py/2 5/2 2P3/, 0i13/2 1,05

i
B - - - - - )

o 4.24 7.22 7.97 7.9 8.76 9.87
hw 1

. 8.25 8.00 7.75 8.00 8.12 8.00 7.75 8.00 9.00 8.00 8.00 8.00
0 0.022 | -0.014 0.063 0.064 0.044 | 0.027 0.065 0.066 0.998 0.986 0.078 0.078
1 0.995 0.993 0.019 0.059 0.996 0.996 0.042 0.082 | -0.012 0.155 0.99% 0.99
2 0.007 0.061 0.992 0.990 0.018 0.043 0.992 0.988 | -0.039 | -0.005 0.012 0.012
3 0.016 0.027 0.014 | -0.043 | =0.002 0.002 0.006 | -0.052 | -0.048 | -0.054 | -0.030| =-0.030
4 | -0.095 | -0.093 0.021 0.014 | -0.007 | -0.077 0.004 | =-0.002 0.003 | -0.018 | -0.073| --0.073
5 | 0.006 | -0.003 | -0.098 | -0.098 ; =0.001 | -0.005 | -0.095 | =0.09%4 0.005 | -0.002 | -0.001| =-0.001
6 | -0.010 | -0.012 0.002 0.011 | -0.003 ! -0.004 | -0.002 |- 6.011 0.007 0.007 0.003 0.003

AL



Table 4.25a continued
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VL j Oh

9/2
Eg -10.70
MeV)
. w  g.81 8.00
0 0.998 '~ 0.99
1 0.006 0.132
2 -0.028 <0.003
3 -0.045 -0.046
4 -0.001 -0.015
5 0.003 "=0.002
6 0.006 0.005

Table 4.25b
The neutron potential parameters for the single-particle
and hole states in Pb209 and szos
2nty Yo vso o a -1
(MeV) MeV) (£m) (fm )
52.0 5.32 1.135 0.70
55.0 6.32 '1.135 0.70
57.8 6.82 1.135 0.70
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Table 4.26

Additional neutron hole state energies in Pb208

vij 0h11/2 281/2 1d3/2 1d5/2 0g7/2 039/2
EB -14.3 -16.1 =16.6 -17.8 =19.4 -21.9
(MeV)

In light nuclei with N=Z the proton and neutron nuclear
potentials are the same. 1Im heavy nuclei with a neutron excess an
isospin dependent or 'symmetry energy" term is requ:i.red.se-91
The isospin dependent term is usually taken to have a volume form
factor identical to the isospin independent form factor.92 With such.
a volume form factor the neutron and proton well depths are found
to differ by a fagtor' proportional to (lf'). Surface 9p3¢aaked form
factors have been discussed by Terasawa and Satchler. To fit the
proton particle and hole spectra of Bizo9 and Pb208 we first assumed
that the neutron and proton nuclear potentials differed only in
their well depths. It was impossible to fit the experimental spectra
with one set of parameters. The proton levels showed an oscillator
" shell dependence similar to that for the neutron s;ates although it
was not as pronounced. A reasomable fit to the data was fbﬁnd using
" different well depths and spin orbit strengths'for states having
.different values of 2n+¢. The fitted well parameters are given in

Table 4.27. With the well parameters for the 2p3/2‘state the Zp%

level was unbound. The well depth was increased slightly to obtain
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Table 4.27

Wood-Saxon potential parameters for the proton

particle and hole states in Bi209 and szo8
- V0 V;o r0 a .
" (MeV) (MeV) (£m) (fm ")
4 67.5 5.32 1.135 0.70
.5 69.6 7.82 1.135 0.70
6 71.2 7.82 1.135 0.70
(2p1/2) 70.85 7.82 1.135 0.70

a bound staté.wavefunction for shell model calculations. The
calculated spectrum is shown in the first column of Fig. 4.6 and
the binding energies and integrals of"r2 are given in Table 4.28.
The wavefunctions are tabulated as expansions in terms of HO wave-

functions in Table 4.29. ;

Table 4.28

The proton particle and hole energies and

integrals of r? for Bizog and szos (r0=1.135 £m)

Ve i Eg < r;- > i Eg < r: >
(MeV) (£m™) MeV) (fm7)
25) 1y - 7.64 23.81 2p1/2 -0.18 °~  28.79
1d, 10 - 8.52 24.36 2p4 /) -0.34 29.13
Oh)yjp = 9429 30.58 15, -0.48 28.49
1dg - 9.74  24.64 0ii5/n -2.11 33.35
0g, /5 ~12.40 / 26.40 1£; -3.23 28.78
Ogg/,  -l4.8 ' 27.63 Ohg -4.21 28.65
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Fig. 4-6. The proton particle and hole spectra for Bi

and szos. The spectra I and II are for the potentials w1th

r, - 1.135 and 1.27 fm respectively.



Table 4.29
' : . .209 208 X . .
The proton WS wavefunctions for Bi and Pb as expansions in terms of HO wavefunctions. For each state

the first column is the value of Hw that maximizes the overlap with an oscillator function and the second is

a common value for all the states. The wavefunctions are for the WS potentials with ry = 1.135 fm.
vLj 2p1/2 293/2 . 1f5/2 . 0113/2 . 1f7/2 0h9/2
Ep .
(Mev) -0.18 . =0.34 -0.48 ~2.11 -3.23 4,21
Aw
n - 8.31 8.00 8.12 8.00 8.62 8.00 9.38 8.00 -8.25 8.00 9.50 8.00
0 0.077 0.076 -0.080 0.080 0.081 0.002 0.997 0.973 0.100 0.068 0.997 0.975
1 0.073 0.025 0.083 0.064 0.992 0.983 -0.008 0.220 0.988 - 0.986 -0.014 0.215
2 0.988 0.984 0.986 0.986 0.036 0.165 -0.064 -0.006 0.056 | 0.110 -0.055 0.001
3 0.045 0.118 0.046 0.075 -0.047 -0.014 -0.047 -0.059 -0.070 -0.057 -0.042 -0.050
4 -0.042 =0.024 -0.049 ~-0.043 -0.076 { =-0.079 0.003, -0.028 -0.077 -0.082 0.002 -0.025
5 -0.094 -0.096 -0,095 -0,097 -0.005 -0.024 0,009 -0.004 -0.007 | -0.016 0.006 -0.005
6

-0.006 -0.018 -0.006 -0.012 0.004 -0.004 0.007 0.007

=621~



Table 4.29 continued

Vi3 281 /2 g9 Ohy1/2 g9 %; /2 %24/2
Eg 7.6k -8.52 -9.29 -9.74 -12.4 -14.8

(Mev) '

\hff 7.69 §.00 7.9 8.00 8.88 8.00 7.75 8.00 8.62 8.00 8.25 8.00
o | 0.007 | o0.07n | o.122 | o0.130| o0.99 | 0.987 | 0.13 | 0.163 | 0.9% 0.992 | 0.995 | 0.994
. | o029 | o071 | o.8s | o.984 | -0.009"| 0.13 | 0.982 | -.980 | -.003 0.100 | 0.003 | 0.043
» | 0.070 | o0.075 | o.068 | 0.0s5| -0.079 | -0.053 | 0.071 | 0.019 } -0.073 _0.058 | -0.086 | -0.081
s | o0.079 | 0.009 | -0.079 | -0.081 | -0.042 | -0.058 | -0.088 | -0.096 | -0.040 0,051 | -0.041 | -0.047
4 | -0.083 | -0.094 | -0.069 | -0.067 | 0.004 | -0.016 0.070 | -0.063 | 0.002 | -0.010 | 0.003 | -0.002
| -0.0s0 | -0.011 | -0.009 | -0.007 | o0.011 | 0.005 | -0.008 | 0.000 | 0.009 0.006 | ©0.011 | o0.010

-0¢1-
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Comparing Tables 4.24 and 4.28 it can be seen that the
proton particle states have smaller r.m.s. radii than the corres-
ponding neutron states. Although the proton states have smaller
binding energies the Coulomb barrier tends to keep them localized
ﬁore within the well. The proton states have radii more like the
constant radius withiﬁ a shell for a HO potential. By examining
the overlap integrals in Table. 4.29 it can be seen that the proton
states differ. from HO wavefunctions more in shape in the interior
region of the nucleus rather than in extension beyond the well as
in the case of neutrons. The r.m.s. radius for the first shell of
proton hole states is 5l23 fm. Including the remainderwof the
core would decrease this and give a proton distribution r.m.s.
radius of approximately 5.0 fm. Clearly this is inconsisten;hwith
the observed chrage distribution r.m.s. radius of 5.49 fm. To
obtain the observed r.m.s. radius for the protons and keep our
single-particle description of the nucleus a proton well different
from the neutron well is required.

To fit the observed r.m.s. radius for protons the single
particle spectra was refitted with WS potentials of larger radius.
The final well parameters are given in Table 4.30. All of the bound
levels except the Oh levels were reasonably fitted with one set of
potgntial parameters. To fit the experimental positions of ghe Oh
levels a larger spin-orbit splitting was required. To obtain a
bound state wavefunction fdr the Zp% state the well depth was

increased slightly. The calculated spectra are shown in the second
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Table 4.30
Potential parameters to £it the proton particle and

0 2
hole spectra of Bi2 9 and Pb 08 and the charge distribution radius

1

\'} \') r a

vij 0 80 0 -1
MeV) MeV) (£m) (fm )
2p1/2 2p1/2 60.6 7.40 1.27 0.70
’ o- . . . .
2p3/2, 155/2 11372 60.6 7.40 1.27 0.70
1£; /95 231/2, 1d3/2
ldg s 08795 0899
59.6 11.0 1.27 0.70

Ohg/ps ORy11/p

column of Fig. 4.6. The calculated energies and integrals of r2 are
given in Table 4.31. The r.m.s. radius for the proton distribution
was determined using wavefuﬁctions for the remaining states calculated
with the well parameters that fitted the first shell of hole states |
~ (excluding 0h11/2)' The result was an r.m.s. radius of 5.49 fm for

the proton centres and 5.55 fm for the charge distribution which is
consistent with the experimental value. The wavefunctions are
‘tabulated in Table 4.32 as expansions in terms of HO wavefunctions.

A best oscillator size parameter for all of the levels was taken

to be Hw = 6.75 MeV. For calculations using the neutron and proton
wavefunctions gogether the proton wavefunctions are tabulated in

Table 4.33 with #w = 8.0 MeV.



Proton particle and hole energies and integrals
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Table 4.31

of r2 for 31209 and Pb‘,208 (r0=1.27 fm)
V4] EB < rz > vEj EB < r2 >

(MeV) (fn?) | Qev)  (fmd)
251/2 - 7.71 27.79 2p1/2 -0.14 33.64
ld:,’/2 ‘- 8.52 28.92 2p3/2 -0.21 34.07
0h11/2 - 9.58 38.59 1f5/2 -0.84 33.99
1d5/2 - 9.84 29.47 0113/2 -1.92 41.45
037/2 -12.33 32.50 1f7/2 -2.93 34.50
039/2 -14.9 34.68 0h9/2 -3.93 34.95




Table 4.32
209 208 .
The proton WS wavefunctions for Bi and Pb as expansions in HO wavefunctions. For each state the first

column is the value of ¥w that maximizes the overlap with an oscillator function while the second is a cormon

value for all states. The wavefunctions are for the potentials with‘r0 = 1,27 fm.

b3 2Py /5 2P/ 15/, . STYZ 155 Ohg /9

E
B

- - - l - - -

(tev) 0.14 0.21 0.84 1.92 2.93 3.93

fiw

:>\ 6.69 6.75 6.50 6.75 7.00 6.75 7.50 6.75 6.62 6.75 7.75 6.75
0 0.092 0.092 0.094 0.098 0.125 0.087 0.955 0.983 0.132 0.152 0.996 0.980
1 0.108 0.119 0.110 0.156 0.985 0.985 0.001 0.159 0.980 0.979 ~0.006 0.183
2 0.979 0.979 0.977 0.973 0.035 0.100 ~0.085 -0.050 0.070 0.036 -0.074 .} -0.031
3 0.065 0.046 0.077 0.002 -0.080 -0.066 -0.053 -0.070 ~0.096 ~0.102 -0.046 | -0.062
4 ~0.074 ~0.077 ~0.077 ~-0.092 -0.082 -0.088 0.004 -0.021 «0,087 -0.082 0.003 -0.024
5 -0.103 =-0.102 -0.106 -0.098 -0.004 -0.015 0.013 0.005 -0.009 =0.002 0.010 0.000
6 -0.010 -0.006 ~0.012 0.002 0.012 0.008 0.009 0.012 0.015 0.017 0.007 0.009

-he1-



Table 4.32 continued

vii
28, /5 d, 5 Ohy1/2 s/, 0g; /2 089/9
Eg -7.71 -8.52 -9.58 -9.84 -12.3 -14.9
M)
Hiw
. 6.12 6.75 6.38 6.75 7.00 6.75 6.19 6.75 7.06 6.75 6.62 6.75
o | o0.079 | 0.092 0.151 | o.206 | 0.993 | 0.992 | o0.170 | 0.248 | 0.99 | 0.993 | 0.992 | 0.992
1 | o0.150 | o.258 | o0.075 | 0.969 |-0.001 | 0.052 | o0.971 0.956 | -0.006 | -0.054 | -0.006 | -0.031
» | o0.966 | o0.048 | 0.002 | -0.004 |-0.106 | -0.099 | 0.089 | -0.060 | -0.095 | -0.088 | -0.111 | -0.112
s | o.114 | -0.063 | -0.102 | -0.118 |-0.049 | -0.059 | -0.115 | -0.133 | -0.043 | -0.053 | -0.045 | -0.040
s | -0.107 | -0.133 | -0.080 | -0.065 | 0.007 | -0.001 | -0.083 | -0.054 | 0.006 | -0.002 | 0.008 | 0.012
s | -0.004 | -0.063 | -0.011 | 0.005 | 0.017 0.016 | -0.010 | 0.015 | 0.013 | 0.012 | 0.017 | 0.016
6 | -0.016 | o0.015 | o0.015 | o.018 | 0.009 | o0.011| o0.018 | 0.022 | 0.007 0.009 | 0.008 | 0.007

-GEeT~



Table 4.33

The proton wavefunctions of Table 4.32 expanded in terms of HO wavefunctions with iw = 8.0 MeV

vil 22172 | P32 | s | Ohiapy) Ya2 | Mon 25112 | 312 12l Y¥s2 |l %8772 | %89y
(;:V) -0.14 -0.21 ~-0.84 -1.92 -2:93 . -3.93 -7.71 -8.52 -9.58 -9.84 -12.3 -14.9
\hw
n 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0

o | 0122 | o.132 | o0.262 | 0.990 | 0.323 | 0.995 | o0.127 | 0.352 | 0.976 | 0.39 | 0.981 } 0.963

. | o.318 | o.350 | o.938 | -0.098 | ©0.902 | -0.051 | 0.417 | 0.888 | -0.19 | 0.854 | -0.172 | -0.258

2 | o.891 | o0.865 | -0.205 | -0.086 | -0.271 | -0.076 | 0.s25 | -0.281 | -0.090 | -0.331 | =-0.083 | -0.073

3 -0.283 -0.324 -0.078 -0.036 -0.082 -0.040 -0.350 -0.083 -0.007 -0.073 .1 - -0.010 0.011

s+ | -0.066 | -0.050 | -0.044 | 0.017 | -0.022 | 0.009 | -0.069 | -0.005 | 0.026 | 0.010 | 0.020 | 0.025

s | -0.018 | -0.038 | 0.031 | o0.013| o0.038 | o0.011 | 0.004 | 0.033 | 0.010 | 0.035 | 0.009 | 0.005

6 | 0.5 | o0.050 | 0.010 | .0.005| o0.010 | 0.006 | 0.060 | 0.009 | -0.001 | 0.005 | 0.001 | -0.004

> | o0.007 | 0.005 | 0.007 | -0.003| o0.001 | -0.001 | 0.005 | -0.002 | -0.005 | -0.005 | -0.004 | -0.004

~9¢€1~
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It is clear from the above results that the present micro=
scopic description of the Pb208 single-particle states and size is
ambiguous. For this reason we briefly review the validity of the
results. It is possible that Woods-Saxon potentials fitted to a
few states near the top of the well are not a valid description of
' the remaining levels that are more deeply bound. For example, in
light nuclei the well depth had Eo be increased for more deeply
bound levels; however, this has the effect of decreasing the r.m.s.
radius. TFor the proton well with ry = 1.135 £m the ﬁell was fitted
to the states in the shell containing 42 of the 82 protons. For
this shell the r.m.s. radius was 5.23 fm and thzsreminaing levels
could not increase the radius. Elton and Swift have checked
for Ca40 the effect of including the correct charge distribution
rather than the uniform distribution used here and found the effect
to be small. For the neutron case the present microscopic model
gave a Coulomb displacement emergy and r.m.s. radius for the %?Ptron
excess which were consistent with the results of Nolen gt al.
who'used a macroscopic model with realistic Fermi distributions. In
our calculation the Coulomb exchange energy correction used was the
same as that of Nolen et al. Increasing the exchange correction
would give a larger well radius. In the limit of zero exchange
correction the BW potential well, which has ry = 1.27 fm., gives a
Coulomb displacement energy of 18.73 MeV which is consistent with

experiment. The corresponding large r.m.s. radius for the neutron excess
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would seem to imply the existence of a neutron "halo". 1In fact,
the results are consistént with those of the naive HO potential
model of Sec. 4=D. Imposing the condition that the proton and
neutron matter distributions have the same r.m.s. radii forced the
use of HO potentials of different sizes. The valLeé éf fiw deduced
for HO potentials are close to the é;erage values from the WS
calculation.

With a charge independent nuclear Hamiltonian the use of
single=-particle potentials of different radii for neutrons and protons
destroys isospin invariance. To regain isospin invariance the
single~-particle potentials mu;t be coupled through the introduction
of ground state correlationms. * This means that.in shell model cal-
culations with these potentials the residual two-body perturbation
would havé té-account for this coypling.

In the single-particle descri?tion of the neutron states it
was found that the well parameters were oscillator shell dependent.
The well depth was larger for states belonging to higher oscillator
sheils. The necessity of a deeper wg%l near the Fermi surface was
pointed out by Brown, Gunn and Gould and was iﬁterpreted to imply
an effective mass greater tg;n unity. This effect has also been %
observed by Elton and Swift in Ca 8. Recently Bertsch and Kuo
have discussed thé effect of core-polarization on the single-particle
strength and the resultant increase in effective mass for states

near the Fermi surface. It is possible that the peculiar behaviour

of the levels in the single-particle model can be explained by the
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presence of correlations in the ground state. When the proton well’
was increased in size to give a radius consistent with experiment
the shell effect for protons disappeared.

4~1, Summary

Woods-Saxon potentials with a Thomas spin-orbit term were used
to obtain single-particle wavefunctions for shell model calculations.
The wavefunctions were expanded in terms of HO wavefunctions. In
the light nuclei the single-particle potentials were consistent with
the experimental data. It was found that the value of #iw that
maximized the overlap of an HO wavefunction with the calculated WS
wave function was state dependent. The state dependence was most
pronounced for particle states relative to hole states with hole
states requiring a larger average value of fiw than particle states.

' To a good approximation deeply bound levels can be represented by

a single HO wavefunction. The states that have small binding energies,
in particular, states with low orbital angular momentum, tend to
extend much further beyong the potential than the corresponding
oscillator functions.

In the heavy nuclei of the Pb region it was found that the
present single-particle model was inconsistent with the experimental
data. Neutron and proton potentials of diffe;ent radii are rgquired
to fit the data which immediately implies the existence of ground
state correlations. The analysis of nucleon-transfer experiments
discussed in Sec. 4~F are consistent with the shell model description
of the Pb208 ground state. Recent experiments by Glashausser et al.

------------------ - AR D G G MR ED W e WS 98 -
4 This effect has been pointed out by Wong and Wong.
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using inelastic proton scattering to excite single-hole states in
Pb207 indicate that core-polarization is important in describing h
the single-particle transitions. Furthermore, single-particle

, electromagnetic properties97 indicate the presence of significant
amounts of core-excitatiom.

Apart from the validity of the single-particle model it is
interesting that the potential parametrization used in this case
allows one to fit the neutron spectra with a smal} well radius.

Rost introduced additional parameters into the spin-orbit term but
still required a'neutron well larger than the proton well which is
inconsistent with the matter distributions being nearly the same..
Rost obtained his best fit with the large radius using six parameters
to fit thirteen single-particle emergies. In our fit with the small
radius six parameters were used to fit twelve single-particle energies
and the r.m.s. radius of the neutron excess. With the additional
parameters Rost was able to fit the proton states with one potential
of nearly the same radius as the present one whereas we required a
largér spin-orbit splitting for the Oh levels. Since the radius

of the valence orbitals is a determining factor in two-body inter-
actions we would expect either Rost's or our proton wells to give
similar two-pﬁrticle and two-hole spectra. However, definite dif-
ferences should arise from replacing Rost's neutron well by ours.

Experimental results obtained by the Los Alamos group  after
this theoretical analysis was completed indicate that the 0315/2

single-particle strength is spread over at least two states. The
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state at Ex = 1.41 Mev Fontains only 50% of the single-particle
strength and a state at Ex = 3.56 MeV may contain as little as

30% of the single-particle strength. The splitting of the sgingle-
particle strength arising from strong mixing with the
{g9/2(Pb208,3-)} A%- configuration. Assuming thgg ;hé 3.56 MeV
state contains 507 of the strength the unperturbed position of the

B
this unperturbed energy the Oj15/2 level is still not predicted

0j15/2 state would be at Ex = 2,48 MeV or E_ = -1.46 MeV. With

with the Woods-Saxon potential for the other szo9 single~particle
states. However; if future experiments show further fragmentation
of the single-particle strength, it may be possible to fit all of

the Pb209 states with a single set of potential parameters.
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CHAPTER 5

THE EFFECT OF WOODS~SAXON WAVEFUNCTIONS ON

SHELL MODEL SPECTRA

5=-A Introduction

In this chapter we present several calculations that were
performed to examine the effects of using Woods-Saxon wavefunctions
in shell model calculations. In these calculation the phenomenolog-
ical free reaction matrix that was used as an éffective interaction
in Chaptef B.Qas used as the residual interaction. This interaction
is simple to work with and was deter@ined from the free nucleon
scattering.data. It also had the added feature that the results
for a normal attractive potential and a velocity dependent potémntial
could be studied simultaneously. Since the interactions act only
in relative S states, the calculations were confinéd to light nuclei.
The two=-particle and two-hole spectra of A=1l4, 18 and 38 nuclei
were calculated.using both harmonic oscillator (HO) and Woods-Saxon
(WS) wavefunctions. For valence particles with small binding e;ergies -
‘the WS wavefunctions are spread out relative to the HO wavefunctions
which must lead to smaller two-body-mafrix elements. For more
deeply bound levels which are localized within the potential, the
shapes of the WS and HO wavefunctions differ only slightly. The
(1s,0d) state; are valence particle states in A=17 nuclei and deeply

bound hole states in A=39 nuclei; consequently, the two-body matrix
/

!
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elements for these two cases are convenient for isolating the
effects of tails and shape in the WS wavefunctions.'

Flowers and Wilmore]i) have studied the A=17 spectra using
a phenomenological interaction and Woods-Saxon wavefunctions. Their
work differs from the present calculations in the interaction and
in the wavefunctions used. The Wé wavefunctions were calculated
using an effective mass in the solution of the SchrBdinger equation
and the calculated single-particle energies were depressed from
their experimental positions. Stamp and Mayer'11 have examined the
effects of using WS wavefunctions to calculate the position of

the octupole state in 016 and Ca4o.

5-B__The Model

In Chapter 2 the shell model description of éwo-particle and
two-hole states was discussed. If the residual interaction is not
a function of the excitation energy, the spectra are obtained by
diagonalizing Hamiltonians of the form

H = Hd+v

where Ho is the unperturbed.single-particle Hamiltonian and v is
the residual two-body interaction. The calculations were carried
out for both HO and WS single-particle'potentials. With a HO potential
the unperturbed energies used are the exéerimental single-partiéle
energies. For the WS potentials the wavefunctions given in Tables
4-15, 4-17 and 4-21 were used. 1In the WS calculations the experi-

mental single-particle energies rather than the calculated energies

were used. The effective interactions used were the free reaction
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-
matrices given in Sec. 3-C. Our primary interest in the calculations
was to consider the effects of WS wavefunctions on two-body inter=-
action matrix elements. With ¢ = 86 MeV the free reaction matrices
give reasonable matrix elements for the nuclei considered and that
value was used in all the calcﬁlations. Expressions for the two-
body interaction matrix elements for two-particle and two-hole
states are given ;n Appendix A. The j-j coupling scheme was used in
all the calculations.

A two-body matrix element with HO or WS wavefunctions only
differs in the radially dependent part of the matrix element. By
expanding the WS wavefunctions for the single-particle states
inqluded.in a calculation in terms of HO wavefunctions with a common
value of ¥w the WS matrix elements become sums over HO matrix elements.
With WS wavefunctions radial integrals of the interaction for many
values of the HO relative state principal quantum numbers (n,n') are.
required. To illustrate the dependence of the interaction on the
values of n and n' several radial integrals are given in Table 5-1.
The attractive. terms decrease with increasing n and n' while the
velocity dependent repulsive terms increase-

In the diagonalization of the interaction matrices the single-

~‘paz':ticle energies of the A=15, 17 and 39 ground states were taken to
be at zero energy. The single-particle energies used are given in
Table 5-2. With this energy scale the experimental binding energies

for A=18 and A=14 nuclei are given by
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Table 5.1

Oscillator function radial integrals of the phenomeno-

logical relative S state free reaction matrix (Chap. 3)

with € = 86.0 MeV and #iw = 13.4 MeV.

The attractive

and repulsive terms are designated by = and + respectively.

f

T=1 (MeV) T=0 (MeV)
n n!' - + Total - + Total
0 0 ~7.48 0.44 =7.04 | -11.40  0.57  =10.83
0 1 -5.04 0.89 =-4.15 | - 8.75  1.11  =7.64
0 2 -3.42  1.25 -2.17 | - 6.55  1.53 - 5.02
0 3 -2.43 1.57 -0.86 | - 5.00 1.87 - 3.13
1 1 -5.51 1.38 <-4.13 | - 9.07  1.68 = 7.39
1. 2 -4.45 1.81 -2.64 | - 7.80  2.17 - 5.63
1 3 -3.39 2.18 -1.21 | - 6.39  2.58 - 3.81
2 2 -4.57 2.28 -2.29 | - 7.76  2.70 = 5.06
2 3 -3.95 2.68 ~-1.27 | - 6.98  3.15 - 3.83
2 A -3.21. 3.03 -0.18 | - 6.00  3.52 - 2.48
3 3 -3.99 3.11 -0.88 | - 6.89 - 3.62 - 3.27
3 4 -3.57 3.48 =0.09 | - 6.35  £4.30 = 2.32
4 4 3.59 3.89 +0.30. | - 6.26  4.45 - 1.81
5 5 -3.29  4.62 +1.33 | - 5.78 5.2 = 0.56
Table 5.2

The unperturbed neutron single-particle (hole) energies

used in the calculations

A=15 § A=17 g A=39
; : § .
vij €., vii | € ,. Ve j €. ..
Vi v { v
Mt i oy QMe¥)
z ;
L] % - ‘. .
0p, /5 0.0 | 0d 0.0 | 0d, 0.0
II { t
Op Opy ), 6.16 % 05, /, 0.87 % 1s1 /5 2.50
: 5.08 | 0d 6.00
| Od3/2 ; 5/2
{ !
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BE@p;018) = 2BE(0)-BE(0 %)-BE(0™)
= =3.90 MeV
5E2p, 5% = BE'7)+EEE7)-BE (M%) -BE(F')
= =5.01 MeV
BE(2h;ou‘)' = BE(016)+BE(014)-2BE(015)
. = 2.45 MeV
BEhsNY) = BE(O'S)+BE( ) -BE ©')-BE @)
= 4.83 MeV.

The %2ﬁye binding energies were taken from the 1964 Atomic
Mass Table. From neutron separation energies59 the experimental -
binding energy for Ca38 is
BE(2h3Ca>0) = 2.34 MeV. _ .
Using the hole energies given in Table 5.2 the two-hole eigenvalue
problem is identical to the two-particle problem; however, the cal-

culated energies are the negative of the experimental energies.

5-C The Spectra of A=14, 18 and 38 Nuclei

The states in A=l4 nuclei that arise from p-2 configurations were
calculated with HO wavefunctions and with the WS wavefunctions givéﬁ
in Table 4.17. 1In shell model calculations of two~particle and two-
hole states using the HO wavefunctions the common practice is to use
a HO size parameter determiﬁed by the size of the élosgd.shell core.
A value commonly used for 016 is fiw = 13;4 MeV. From Tables 4.15
and 4.17 is can be seen that #w = 13.4 MeV lies between the average

.
values of fw that maximized the overlap of a HO wavefunction with
the WS wavefunctions for.the Op and (ls,0d) shells. For cdmp;rison

with calculations using WS wavefunctions the A=14 and A=18 spectra

were calculated using HO wavefunctions with #iw = 13.4 MeV. The A=14
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spectrum was calculated using the WS wave functions with five terms
of the expansion in HO wavefunctions included.

Recently Mangelson et gl.101 have summarized the experimental
and theoretical knowledge of the states in Nlh. The experimental
energies of the states that are identified as being predominatly
of p- configurations are given in Table 5.3. The calculated eigen-
values are given in Table 5.4 and compared with experiment in
Fig. 5-1. The WS spectrum is depressed relative to the HO spectrum;
that is the WS calculation gives larger binding energies for particles
in the p shell. A HO calculation with a larger value of %w would
reproduce the WS spectrum since the WS wavefunctions have 5 very
good overlap with HO wavefunctions of larger fiw. In the WS cale
culation the T=0 states are depressed (relative to the HO calculation)
more than the T=1 states. This effect argses because the T=0 inter-
action is more dependent on the oscillator size parameter than the
T=1 interaction. However the main point of interest is that hole
states require a considerably larger value of %w than the partic}e

_states. This state dependence has been pointed out previously by
Wong and Wong.98

The experimental energies of the low-lying positive parity
states in O18 are given in Table 5.3. The two-particle spectrum
was calculated using HO wavefunctions with fw = 13.4 MeV and the WS
wavefunctions given in Tab}e 4.15. The wavefunctions for the Od3/2
state with a binding energy of -0.23 MeV was used. In the calculation

five, seven and ten terms of the expansions in HO wavefunctions were

included for the OdS/Z’ Od.?'/2 and 1s1/2 wavefunctions,
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Table 5.3

The experimental energies of low-lying positive

parity states in A=1l4, 18 and 38 nuclei

(14 @ 18 () L18 (@) 38 @

- Eg (MeV) J*,T Eg (MeV) Jt,T E, (MeV) 3, Ej (MeV)
-4.83 | 07,1 -3.90 | 1%,0 -5.01 | o%,1 -2.34
-2.52 1 27,1 192 | 3T0 | -407 | 2T -0.14
~0.89 | 45,1 | -0.35]s5%,0 | -3.88 | 0,1 2.02
2.20 | 0%,1 -0.27 1 110 -3.31 | @9 2.50
8.89 | 27,1 0.02 { 25,0 | -2.49

2t 1 1.35 | 25,37 | -1.65
oF,1 1.43 | 27 -1.17
35,1 1.47
41 3.22

b)
c)
d)

reference 101
references 102, 103, 104
reference 105

reference 59
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~ Fig. 5-1. The two-hole spectrum of N14. The theofetical spectra

are for harmonic oscillator wavefunctions (HO,fiw = 13.4 MeV) and

Woods-Saxon (WS) wavefunctionms.
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Table 5.4

The calculated spectra of N14. HO and WS designate

calculations with harmonic oscillator (fiw = 13.4 MeV)

and Woods-Saxon wavefunctions respectively.

=
3

Calc. Eipenvalues (MeV)

HO -2.47, 9.22

-4.75, -1.54, 10.25
0.74

3.46, 11.50

6.90

-2.70, 9.00
-5.48, ~2.53, 10.10
-0.11

3.07, 11.43

5.98

- - - -

O = O O +H O = O O =

WS

-

-

R RN

respectively. The calculated spectra are given in Table 5.5 and
compared with experiment in the second and third columns of Fig. 5.2.
All of the states in the WS calculation are shifted upwards relative
to the states in the HO calculation. The HO calculation is with the
value of fw that gives a maximum overlap of a HO wavefunction with

the WS wavefunction for the 0d state. The values of fiw that

5/2

maximize the overlap of HO wavefunctions with the WS wavefunctions

for the 1ls and 0d states are smaller. This is a reflection

1/2 3/2 .
of the long tails of the WS wavefunctions. The effect of the

preading out of the 0d and ls wavefunctions on two-body matrix

3/2 1/2
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Table 5.5

18 40 and WS designate

calculations with harmonic oscillator (Hw = 13.4 MeV)

The calculated spectra for O

and Woods-Saxon wavefunctions respectively.

Cale. - J,T Eigcenvalues (MeV)

HO 1 -3.05, 0.06, 8.98
1 -1.59, 0.15, 4.68, 5.45, 9.86
1 -0.82, 3.26
WS ,1 -2.63, 0.67, 9.23
1 -1.33, 0.23, 4.76, 5.52, 9.93
1

-0.73, 3.50

elements involving these states is to decrease the matrix elements

from their HO values. It should be ;emembered that all effects

are relative to the calculation with HO wavefunctions. The Hdt
calculation is for a single-particle'potential that gives a wavefunction
most like the WS wavefunction for the 0d5/2 state. From Table 5.5

and Fig. 5.2 it can be seen that the lowest ot states are affected

most. The positions of thesé states are largely determined by the
(d5/2)2 and (51/2)2 diagonal and off-diagonal matrix elements. Since
the lsl/2 state has a poor overlap with a HO wavefunction, the diagonal
(sllz)2 matrix element is decreased appreciably. The matrix elements
)ZJ=0 >, < (s )2J=Olvl(d )2J=0 > and

< (s )2J=OIVI(S

1/2 1/2 1/2 5/2
2 = 2 = L/ 0 -/

< (d5/2) J'Olvl(ds/z) J=0-> are decreased by 35%, 10% and 9%,

respectively. Matrix elements involving the d3/2 state are also

decreased. However, most of the low-lying levels shown in.Fig. 5.2
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do not contain appreciable admixtures of this configuration and
are not significantly affected. An exception is the second 4+
state which 1s shifted upwards more than the first 4+ state. The
second 4+ state is predominantiy the (d5/2 d3/2) configuration
while the first is predominantly (d5/2)2.
To examine the dependence of the WS calculation in the
(n,n') structure of the radial integrals of the interaction the
spectrum was calculated neglecting the repulsive term in the inter-
action. The results of the calculation for the lowest levels are
shown in columns four and five of Fig. 5.2. Neglecting the repulsive
term gives a more attractive interaction and larger upward shifts
of the states in the WS calculation. The upward shifts of the 0+
states are larger in magnitude than those in the calculation with
the full interaction. However, all states are affected in the same
way in both calculations.

In 018 there are three 0+ states observed experimentally
below 6 MeV excitation energy whereas shell model calculations only
predict two states with a third state at about 10 MeV. Furthermore,

' E2 transition probabilities are much larger than the shell model

would predict. The anomalous E2 transition rates have lead to

many attempts to describe the states as'mixtures of shell model
106-111

and deformed states. The dynamics of transition moments test

the structure of the wavefunctions; consequently the calculation

of transition probabilities provides important information about

the size of the deformed components in the observed states. ‘Shlomo
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112
and Morech have calculated the electromagnetic.transition
probabilities in 018 using the various calculated admixtures of 1o
spherical and deformed states. They found that the Benson-Irvine ’
wavefunctions gave the best overall agreement with experiment.
The coexistence of spherical and deformed states leads to difficulties
in the interpretation of-effectivé interaction calculations. Mofe
precisely, to calculate the structure of 018'using an effective
interaction one would first calculate the shell model and the
deformed state spectra separately and then mix thelfYo types of
states with the appropriate effective interaction. By a shell
model calculation we generally mean one.using spherical valence
levels and perhaps involving some core polarization corrections
to the effective interaction. In any case the sheli model calculations
should not reproduce the experimental spectrum. Rather, the experi-
mental spectrum should be reproduced only when the deformed4states
are included. This has not been the case; as Kuo and Brown
pointed out, the shell model calculations usually predict the second
0+ state to be very.neér the experimental position while it is
believed (on the basis of E2 transiton probabilities) that the state
contaiﬁs a large deformed component. This implies that when the
shell model and deformed states are mixed the 0+ state is not shifted
significantly in energy but acquires figarge deformed component
in the wavefunction. Brown and Green found that the Kuo-Brown

effective interaction could not reconcile the energies of the states.

and the observed transition probabilities.
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In the earlier discussion it was seen that the use of WS
wavefunctions weakened the (31/2)2J=0 diagonal mﬁtrix element
relagive to the (d5/2)2J=0 diagonal matrix element. The result
was an upward shift of the first and second O+ state relative to
the other states in the spectrum. If the 0+ states contain appre-
ciable deformed state components the calculated energies should be
above the experimentally observed energies. WS wavéfunctions also
have a significant effect on transition probabilties. The longer
tails of the WS wavefunctions increase integrals of rL relative
to the values using HO wavefunctions. The radial integrals required
for E2 transitions in the (0d,ls) shell are given in Table 5.6.

The (31/2,51/2) radial integral is increased by 50% while the
(d5/2’d5/2) radial integral is increased by only 10%. This implies
the single-particle effective charge for these levels must be
redefined and that changes in transition'probabilities might occur.
The transitions of particular interest are the E2 transitions

0, » 25, and 2,7 = ",

The necessary formulae for calculating electromégnetic tran~ -
sition probabilities are given in Appendix A. The spectra calculated
With oﬁly the attractive term of the interaction were in best
agreement with experiment. The wavefunctions for these spgctfa were
used to calculate transition probabilities. For the calculation with
HO wavefunctions the theoretical reduced transition probabilities are

B(E2;0," ~2,") = 3.6l ° e’

and
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Table 5.6

2
Radial integrals < ngllr |n'4' > for HO(fiw = 13.4)

and WS wavefunctions.

nt 't (£n2) (n?)
0d5/2 0d5/2 10.83 11.62
151/2 131/2 10.83 17.79
Od3/2 0d3/2 10.83 16.90
Od5/2 151/2 -9.79 -12.59
0d5/2 0d3/2 10.83 12.59
151/2 0d3/2 -9.79 ;16.28.

+ +. 2 2_4
B(E2;01 - 21 ) = 72.0€n e fm

where én is the effective charge of the neutron in units of e. With

the usual effective charge € = 0.5 the transition probabilities are

.B(E2;02+ - 21"') = 0.90 e’fm”
and |
B(E2;0," = 2,7) = 18.0 ezfm;.
The experimental reduced transition probabilities are
B(82;0," = 2,") = 22.2 e*m”
and
B(E2; _01'" - 21+) = 32.7 e2fm®
The above results are typical of all shell model calculations. The

01+ - 21+ theoretical transition probability is about right while
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+
the 02 - 21+ reduced transition probability is decidedly small.
With the wavefunctions from the WS calculation the reduced transition

probabilities are

+ + 2 2_4
B(E2; 02 - 2l ) 12.8en e fm

and

+ +
B(E2; 0" ~2;)

103.0en2 ezfm4 .

The WS wavefunctions increase the reduced transition probabilities
considerably. However, as we noted previously, the effective charge
should be consistently defined. In the present model we have assumed
that the (0d,ls) neutron states are single-particle states. If the
states were pure single-particle states the 017 quadrupole moment

and transition moments would be zero. Experimentally the quadrupole
moment and transition moments are not zero. For the moéel to be
consistent the effective charges required for 017‘s£ogld be used

1
in the calculation of the O 8 transition probabilities. 1In O17 the

39,114
B(EZ;SI/2 *’dslz) and quadrupole moment are known experimentally.
With the assumption of pure single-particle states the effective

charges are

2 bt .
s -d : € ° === B(E2)
1/2 5/2 n 3 < rZ >2
and -
2 49 2 1
dgjp ~ 45yt & “TgQ 2 2 .

<r >

The effective charges for the S1/9 - d5/2 and d5/2 - d5/2 transitions
are 0.52 and 0.42, respectively, fdf‘HO wavefunctions and 0.4l and

0.39, respectively, for WS wavefunctiéns. It appears that the WS
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wavefunctions provide some evidence for a state independent effective

charge. Using an effective charge of 0.4 the transition probabilities

in 018 with WS wavefunctions are

o B@E2;0, » 2 = 2.0 2 e
and
B(E2;0," - 2,%) = 165 e .

With the WS wavefunctions there 02+ i 21+ transition acquires more

of the transition strength but is still an order of magnitude too
small. If the experimental values of the reduced matrix elements for
O17 were used in the 018 calculation with HO wavefunctions the result
would be closer to the WS result. Nevertheless,. the calculated
two-particle amplitudes are different in the WS calculation. The
wavefunctions for the states being considered are given in Table 5.7.
The main difference between the HO and WS calculations is that in the
WS case there is less cenfiguration mixing. This is a result of

the weakening of the matrix elements containing the $1/2 state.

The T=0 spectrum of F18 was calculated using the same wave=
functions and single-particle enefgies that were used in the 018
calculation. The experimental energies of the low=-1lying positive
parity T=0 states are given in Table 5.3. The results of the calcu-
lations with HO and WS wavefunctions are given in Table S.é and
compared with experiment in the second and third columns of Fig. 5.3..
The upward sﬁifts of T=0 states in the WS calculation are larget than

those in the T=1 calculation. The S+ state is shifted very little

since only the (d5/2)2 configuration is involved. The 1+ states are
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Table 5.7

. . . 18
Two-particle wavefunctions in O

for the calculations

with HO and WS single~particle wavefunctions and only the attractive

term of the residual interaction

JUT =2".1
£ cale. (4,02 (d,,0 de o) s.) (@)% ey 8q40)
o 3/2 3/2 %5/2 3/2 ®1/2’ 5/2 5/2 %1/2
ev)
-1.86 HO 0.085 -0.137 -0.185 0.721 0.648
-1.54 WS 0.071 -0.121 -0.152 0.773 0.600
T =0,1
E 2 , 2
(MeV) Calc' (63/2) (d5/2) (Sl/2>
-4.,17 BO 0.212 0.893 0.397
-3.60 WS 0.179 0.936 0.302
-0.37 HO 0.012 0.404 -0.915
+0.44 - Ws 0.310 -0.951

-0.018
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Table 5.8

The calculated spectra for F18. HO and WS designate the calculations

with harmonic oscillator (fiw = 13.4 MéV) and Woods-Saxon wavefunctions.

A

cale. J,T Eigenvalues (MeV)

-5.05, -1.05, 0.75, 3.47, 8.9
-1.67, 2.81, 5.16
-3.97, =0.32, 3.37, 7.37
1.02
-4.06
-3.98, -0.12, 1.64, 3.93, 9.22
-1.06, 3.08, 5.31
-3.37, =0.20, 3.77, 7.95
1.64
! -3.90

HO

-

“F T

ST N e T
O O O O O O o O O O

- - -

-

WS

-

-

-

-

shifted upwards by approximately 1 MeV. The wavefunction fof the
grqund state is given in Table 5.9. From the wavefunctions it can
be seen that both the (d5/2 d3/2) and (51/2)2 configurations are
'1;fge components in the ground state. The (31/2)2J=1 and (d5/2 d3/2)
J=1 diagonal matrix elements are decreased from the values with HO
wavefunctions by 40% and 20%, respectively. The even J states are
shifted upwards also since the main components in the lowest states
are either (dS/2 31/2) or (d5/2 d3/2).

The T=0 spectrum was calculated with only the attractive
term of the free reaction matrix and the results are given in the

fourth and fifth column of Fig. 5.3. The shifts of the WS spectrum
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Table 5.9
The ground state wavefunction for F18 in the calculation with HO

and WS wavefunctions.

2 . 2 2
E Cale.  (dg,)) @375 85720 (@375 81720 Usyz d572) (8172
(MeV)

-5.05 HO -0.137 0.489 Y =0.033 0.702 0.499
-3.98 WS -0.124 0.446 -0.042 0.792 0.397

ére larger in magnitude than for the calculation with the full inter=-
action; however, the effect of using WS wavefunctions is the same.
The two-hole spectrum of Ca38 was calculated using HO wave-
functions and the WS wgvefunctions given in Table 4.21. The single=
particle energies used in the calculations are given in Table 5.2
and the experimental energies of the states in Ca38 are given in
Table's.S. The spectrum calculated with WS wavefunctions is. given in
Table 5,10 and compared with experiment in Fig. 5.4. The spectrum
was calculated with HO wavefunctions for fiw = 11.5 MeV and %¥w = 13.4
MeV. The results of the.HO calculations are given in Table 5.10 and
Fig. 5.4. The HO calculation with fw = 13.4 MeV is nearly identical
to the WS calculation while the spactrum for fiw = 11.5 MeV is omnly
slightly different. The small differences between the two HO
calculations reflect the insensitivity of the interaction to changing
fw from 11.5 to 13.4 MeV. The Ca39 hole states are deeply bound

and the overlap with HO wavefunctions is maximized for fiw ¥ 13.4 MeV.
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/ Table 5.10
The calculated spectra for Ca38. HO and WS designate calculations
with harmonic oscillator and Woods~Saxon wavefunctions. The HO

calculations are given for fiw = 11.5 MeV and 13.5 MeV.

a

.Calc. J°,T Eigenvalues (MeV)

HO ot -1.89, 3.13, 10.20

(e=11.5) 27,1 -0.56, 1.65, 5.64, 7.56, 11.52
51 4.00, 11.64

WS ot,1 -1.96, 2.98, 10.1
21 -0.60, 1.57, 5.62, 7.50, 11.5
st 3.75, 11.6

HO of,1 -2.02, 3.02, 10.1

C(hwe=13.5) 27,1 --0.64, 1.54, 5.61, 7.47
4F 1 3.73, 11.6

The lack of differences between the WS and HO spectra indicates
that the small deviations in shape of the WS wavefunctions from HO
wavefunctions for deeply bound levels has little effect on the
matrix elements. The best value of fw for the Ca39 hole states is
larger than that for the Cazl'1 particle states; however, with the
present residual interaction this does not lead to large state

- dependent effects in matrix elements.
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5-D Remarks About Interaction Matrix Elements with Woods-Saxon

Wavefunctions

A few of the residual interaction matrix for the

(Op;1s,0d) shells are given in Table 5.11. The matrix elements
given are those from the c;lculation of the A=18 spectra with a few
cross shell matrix elements that are required in parﬁicle-hole
calculations. The matrix elements given illustrate the main effects
of using WS wavefunctions to evaluate residual interaction matrix
elements. For deeply bﬁund levels such as hole states theIWS wave=
functions are very much like HO wavefunctions for an appropriate
value of fiw. For particle levels where the binding energy is small

the WS wavefunctions have long tails and poor overlaps with HO
wavefunctions. In A=18 the Od5/2 wavefunction is very much like
a HO wavefunction with #iw = 13.4 MeV. The (d5/2)2 diagongl matrix
elements are only reduced by 5-10% from their HO vglues. The matrix
elements involving the d3/2 and $1/2 states are decreased by.és
much as 407 from their HO values obtained with fiw = 13.4 MeV. 1In
the case of cross-shell matrix elements such as |
< (0 51/ IvI Ry 8179371171 > and < (p1/2)2J=0,T=llv| I 2320 >
the effects are different. Although Both the pl/2 and d5/2 wave-
functions may,to a good approximation, be rapresented by a single HO
wavefunction the values of fiw are different for the two states. The
effect of the different fw values is to reduce the matrix elements.
The (pllz)z, (d5/2)2: J=0,T=1 matrix element is decreaged from the

HO value by the same amount as the (p1/2 31/2)’ (pl/2 51/2): J=1,T=1
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Table 5.11

Residual interaction matrix elements evaluated with HO (iw = 13.4
MeV) wavefunctions and WS wavefunctions. The WS wavefunctions used

were those used in the calculation of the A=14 and A=18 spectra.

Configurations Jﬂ,T HO Ws
MeV) MeV)
+
(d3/5 d3/5) (455 dg/9) ot 1 -1.54 -1.18
@5 d5/9) ot 1 -1.87 -1.57
(5175 5172 ot,1 -0.77 -0.70
+
(d5/5 59 Qs d5yp) 071 -2.31 -2.13
(515 51/2) 0¥ 1 -0.95 -0.85
. + - -
(51/2 31/2)(51/2 s1/2) | 0,1 2.06 1.32
(P1/2 S172) P1y2 S1/2) 1,1 ~1.01 -0.83
(P3/2 dg /) 1,1 0.9 0.83
(B3/5 d5/2) (35 d5/2) 17,1 -2.78 -2.67
+ .
(P12 P1/9) 55 d5/9) 0,1 1.32 -1.12
(5175 5172 ot 1 0.21 0.12
+
(P3 /9 Pyyp) gy dg/p) 0,1 - 1.86 1.58
+
gy G379 Wg 45 9) 1*,0 -1.85 -1.38
@575 4579 1%,0 0.60 0.47
@575 51/2) %0 -1.55 -1.26
(@55 45,9 1*,0 1.71 1.41

<Sl/2 31/2) 1 ,0 0.58 0.50
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Table 5.11 (contd)

@3/,

A3/,

@59

\S1/2

(P1/2

(P32

(P1/2

ds/2) (435

5/5

@5/,
(s1/2
81727 43/,
@572
(5172
d5/2) 5/,
(s1/2
s1722 (5172
s1/2) P12
(P3/2
d3/2) (P33
P1/2) Cs/2

(s1/2

4572

$1/2)

d5/2)
51/2)
51/2)
d5/2)
8172
45/2)
S1/2)
51/2)
51/2)
d3/2)
4372
d5/2)

$1/2)

~4.98
-1.10
-2.36
-1.63
-3.26

0.83

0.00
-2.26
-1.08
-3.52

=4.72

-7971
~1.40

-0.18

-4- 11
-0.91

-2.05

-1.41

-2.53

C0.71

0.00
-2.10
-0.94
-2.12
-3.83

2.54
-6.46

. -1027

-0.12
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matrix element. &n the other hand the (pl/2 51/2), (pll2 81)2):
J=0,T=0 matrix element is decreased more than the (p1/2)2’ (d5/2)2§
J?l,T=0 matrix element.

A few properties of matrix elements for a general central
potential are discussed in Appendix C. One point that should be
‘emphasized is that an overlap of a HO wavefunction and WS wavefunction
that is 0.94 is not a good overlap. If the overlap of a WS wave~
function and the corresponding HO wavefunction is 0.94 other coeffi-
cients of the expansion in terms of HO wavefunctions can be as large'
as 0.2. In the previous discussion it was seen that the (31/2)2
 diagonal matrix elements were decreased from their HO values by far
more than (0.94)4. From (C-5) it can be seen that for interactions
where the radial integrals increase with increasing (m,n') the
_terms arising from small components are more important than in cases
where the radial integrals decrease. However, there is a large
number of terms from the small amplitudes and there is much cancellation
amoﬁg them.

In the calculation of the T=0 spectrum of F18 the WS
wavefunctions used were the neutron single-particle wavefunctions.
proton states in Fl7 are only bound by_0.6 and

The 0d and 1s

5/2 1/2

0.1 MeV, respectively. The WS wavefunctions for the proton state
were given in Table 4.18. It was found that the overlap of the 0d5/2~
proton and neutron wavefunctions was 0.977 while the overlap for

the 1s states was 0.980. Although the overlaps of the neutron and

1/2

proton wavefunctions may be very good it is not a measure of the
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validity of isospin invariance of residual interaction matrix
elements. The small binding energies of the proton states allows '
the proton wavefunctions to extend beyond the nuclear well more

than the neutron wavefunctions. This is reflected in the smaller
values of fiw that maximize the overlaps of the HO and WS wavefunctions
with the same number of nodes. For #iw = 13.4 MeV the overlaps of a

1s HO wavefunction with the neutron and proton WS wavefunctions

1/2
are 0.939 and 0.879. The overlap integrals are maximized with
¥w = 12,0 MeV for the neutron state and 11.0 for the proton state.

2 . R . .
The (s,,,) diagonal matrix element for an interacting neutron and

1/2
proton pair will be smaller than those for two neutron. This point
merits further investigation.

5-E Summary

The two-particle spectra of A=18 nuclei and the two-hole
spectra of A=14 and A-38 nuclei were calculated with a realistic
effective interaction and WS wavefunctions. The WS wavefunctions
_for hole states are very much like HO wavefunctions with an appro=-
priate choice of Hiw while the Od3/2 and 151/2 wavefunctions differ
considerably from HO wavefunctions. The A=1l4 and A=18 spectra
calculateé with WS wavefunctions were compared with spectra calculated
with HO wavefunctions. The HO size parameter chosen for comparison
was the value that maximized the overlap of the 0d5/2 HO and WS
wavefunctions and was an intermediate value for the pagiii%i and hole

’

states. This value is commonly used by other authors. The two-

hole matrix elements were increased by using WS wavefunctions whils
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gﬂe two-particle matrix elements were decreased., Since the hole

WS wavefunctions are very much like HO wavefunctions with the same
size parameter in all states, HO wavefunctions can be used to
reproduce the spectra calculated with WS wavefunctions; By using

a smaller value of %w in the HO calculation of the two-particle
spectra the differences between the HO and WS calculations would be
lessened. However, for the particle states the maximizing value

of Hw is much more state dependent than for the hole states. For
matrix elements involving both the Op and (1s,0d) configurations

the matrix elements calculated with Woods-Saxon wavefunctions vary
cénsiderably in the changes relative to the HO calculations. The
F18 spectrum was calculated using the neutron'wavefunctions§ h&wever
.the 1s1/2 proton WS wavefunction has a poorer overlap with a HO
wavefunction than the neutron WS wavefunction. Using different
wavefunctions for the pfoton and neutron would increase the differencé

between HO and WS matrix elements.
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CHAPTER 6

SHELL MODEL CALCULATIONS WITH A FREE REACTION

MATRIX AS AN EFFECTIVE INTERACTION

6-A Introduction

In this chapter ﬁe present calculations of the two-particle
spectra of A=18, 42 and 210 nuclei and the two-hole spectrum of
4Pb206. A free reaction matrix is used as the effective shell model
interaction and the calculations were performed using both harmonic
oscillator and Woods-Saxon wavefunctions. In Chapters 3 and 5 we
presented nuclear structure calculations for which a free reaction
matrix was used as an effective interaction. In general, the freé
reaction matrix KF is non-local. In the earlier calculations a 17
local but velocity dependent representation of KF was used. Lee
has made a more complete study of KF and the nuclear reaction matrix
by using a non~local separable potential to fit the free nucleon-
nucleon scattering data. The free reaction matrix obtained from the
separable potential is used as the effective interaction in the

calculations presented here.

6-B The Free Reaction Matrices

In Chapter 2 we discussed the method for obtaining an effective
interaction from the free reaction matrix KF' The nuclear reaction

matrix is defined by the integral equation
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KW = K ()R, (e) [F(W)QH(ePIKW) (2.52)
and KF is defined by

R (€) = V4V /;/F<e)m<F<e) . (2.48)

In (2.52) and (2.48) the propagators are

Awy = =+

w-Ho

and .
. 1

A =%
which are the propagators for nucleons in the nucleus and free
space respectively. KF(e) is determined by nucleon-nucleon scattering
in free space whereas K(w) is determined by nucleon-nucieon scattering
in bound states. The term in (2.52) containing the difference between
the propagators is the correction for going from the free reaction |
matrix to the nuclear reaction matrix. The interpretation of the
correction term becomes more transparent by writing the difference

between the propagators as

Awie-1) + w2

The difference betweenjy(w) and;ﬁf(e)? is referred to as the spectrd:
correction. The term/g(w){Q-l} is referred to as the Pauli cqrrection‘h
and arises from the fact that not all of the bound states are avail-
able for the nucleons scattering in bound states. In general Q is a
projection operator excluding from the intermediate state summation
all occupied orbitals. In particular cases Q excludes unoccupied
statesvas well to prevent double counting of nucleon-nucleon inter-

actions. An example of such a case is that of two valence particles
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outside a closed shell core which was discussed in Sec. 2-D.

KF is related to the two-nucleon scattering data through
on~-the-energy-shell matrix élements. With KF determined from the
free nucleon-nucleon scattering data K(w) can be determined from
(2.52) . To obtain a realistic interaction from the free nucleon-
nucleon scattering data a potentiai is defined for each state of

total relative angulaf momentum by the partial wave expansion

<klv|er > = Z Vo 55 oKD %SJM@«:) 7/,.;}*@)
© o AL'SIM

/
where i

’_L MA mz A
/I)SJ &) =< ZszmSIJM >v, @xms
and X is the intrinsic spin wavefunction. J is the total relative
angular momentum for a state of orbital angular momentum £ and spin
'S§.  To fit the nucleon-nucleon_;cattefing data Lee used separable

non=-local potentials of the form
2

2 ) i i
V.@.&',SJ(k’k') Z 808183 VISJ(k)Vz'sJ(k')' (6.2)
i=1

To obtain KF we define a free reaction matrix for each relative

angular momentum state

v » e
<klR @k >= ) Kpyio (ke }/zs}.?@ %,S}f k') (6.3)
L2183 .

Substituting (6.2) and (6.3) into (2.48) we have
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-
- e i i i
Kppgr,ggCkok's€) Z Brgr Vysy KIVgigy (KD

i

- © . .
i i . i 1
+ Z Bgan Vas3 (k){?/; Ak gy (K 2 .&"ZSJ(k"’k';e} (6.4)
0

u" ev'k"
where
_
\ 7 o=
Equation (6.4) has the solution
Z ij i i
| = .
Kppg 155Uk 3€) Apgrsg (Vgsy ®Vpgy &N (6.5
ij
where
i3 ij i ¢ i ik Kkj
- 5 . .
Aoprs3(® PPN, "'24 8ypngg Tpugg(gny (€ (6.6)
k‘z"
and
o) i k
ik ) 4 (@)v @)
%, . () = pf q%aq 281 25 . 6.7)
£8J ; 2
. 0 €-7q

Lee obtained free reaction matrices for the S,P and D states

with S-D tensor coupling. .The form factors v, *in (6.5) that were

283

used for the 180 and 3Sl-3Dl states are
. 2 :
i K
v, (k) = - . (6.8a)
£ {k2+(a£1)2}1+z/2

For all other partial waves the form factors are
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i kL+Zi+2
v, (k) = -
j/ ‘(k2+a£2)l+z/2

(6.8b)

where az is the "inverse rangé". Thé strengths and “ranges" for

the various states were determined bx fitting the Yale IV . nucleon-
nucleon.scattering data. The potentiél parameters determined from
the data are given in Table 6.1. The fitted paraﬁeters give too
small a D-state probability for the deuteron indicating that the
tensor force obtained from the fit is too weak. To completely deter-
mine KF(e) the gx-functions (6.7) are required. Lee chose the form
factors (6.8) such that (6.7) was analytically integrable. The
expressions for the g~functions are given in Table 6.2. On the

real axis n(€) is not an analytic function of €. There is a
singularity at €=0 and n(e) on the pbsitive real axis is not the
analytic continuation of x(e) from the negative real axis. In the
present calculations we have only used negative values. of € so that
we have only 1ist2d the g-functions for € < 0. With the parameters
given in Table 6.1 and the wx(e) functions given in Table 6.2.KF(€5
is completely determined for negative €.

With KF(e) determined the nuclear reaction matrix can be -
obtained from (2.52). The reaction matrix elements for a given
nucleus are determined by the size of the nucleus and by the con-
figurations included in the description of the states being consid=-
ered. The model dependence of the projecﬁion‘operator Q was

discussed in Chapter 2. Lee has determined the nuclear reaction

matrix elements for the (1s,0d) shell with an 016 core. Both plane.
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Table 6.1

Parameters of the separable potential

/ /
ZS+1£J ?;m-l g}éicmeV) iim-l g?éz(MeV)
%, 1.59 -2.89 x 10° 6.23  6.87 x10°
3s,-°D, -7.80 x 10° 1.53 x 10%
’p, 1.50 5.44 % 107 6,00 4.86 x 10
‘2, 1.90 4.40 x 10° 1.90  4.58 x 10°
, 129 ~2.05 x 10° -- -
D, 2.37 -2.56 x 10% - ---
‘s, 1.51 -1.91 x 107 7.20  7.78 x 10°
’p, 1.53 -2.07 x 10 1.53  8.86 x 10°
%, 1.37 1.14 x 10 1.37  3.1L x 10
392 1.57 -7.38 x 10 1.57 -1.73 x 10
1 1.59 -1.21 x 102 -- -




Table 6.2 -
ﬁz 2
The xt(e) functions for the separable potential and € < 0. The notation is 7 ==, €; =7 a, (MeV)

and ¢ = -7a2 <0

25+1 1 2 2
Lj v, (k) iy, (k) x(-a) —
1 3 1 1 ii %
S8 e — ,t —
0’ "1 2 2 2 2 0 2
(k -I-a1 ) (k +a2 ) 4731 (ai-HZ)
12 7
%, -
2y (a1+a2) (al-la) (a2+a)
2 2 (a, 2+4a, 04507
3, K k R n(a; raa, o
1 2 2.2 2 2.2 2 4
(k" +a, ) (k +a, ') 32781 (ai-l-oz)
It212 = - S X

by (a 42, (a 400 (o t0) 2

2 2 2 2, 2
{al a, f2a1a2(a1+a2)a+(a1 +3a,a,+a, Yo'}

=LLT~



Table 6.2 (contd)

s,k ; P R ST S
s |
1’ 70,1,2 | (k2+32) 3/2 : (k2+a2) 5/2 1 167a (at0) >

S 12 _  n(a>thaotso’)
: 327’a(a+0t:)4

22 _ . (5a3425020447a0743500)

2567a(at0)

3 % K 11 _  x(a’+haot5o’)
2,3 i ta2)? aPta?)? 327a(ato)

2’

-8L1~

12 b1

= - X (5a3+25a2a+47aa2+35a3}
2567a (at+0)

22 .. X x {Tat+42a3 0482207 +1220°+630")
5127a (a+q) ’
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wave and harmonic oscillator intermediate states were used to
evaluate the Pauli and spectral corrections. The two sets of
intermed;ate states give quite different reaction matrix elements
and the correct choice of states is still an unsolved problem.

To evaluate effective interaction matrix elements with Woods-
Saxon (WS) wavefunctions many nuclear reaction matrix elements are
required. In general the nuclear reaction matrix elements are a
numerical array. To obtain effective interaction matrix elements
with WS wavefunctions one would have to use the WS wavefunctions
initially in the detailed determination of K(w). Such a calculation

i

wogld be a very difficult computational problem. The free reaction
matrix is a convenient device for obtaining an analytic function
which reproduces K(w) matrix elements to a good approximation. The
matrix elements of K(w) in (2.52) are independent of e whereas Ké
is a speqified.function of ¢ given by (6.5). Using HO single-particle
states for the (0d,ls) shell Lee found that the matrix elements of
KF<€) with € = -80 and =200 reproduced (to a good approximation)
the K(w) matrix elements for harmonic oscillator and plane wave
intermediate states respectively. With a functional form for the
nuclear reaction matrix elements it is possible to calculate all of
the HO matrix elements required to evaluate the two-body matrix
elements with WS wavefunctions.

# The calculation with harmonic oscillator intermediate states

was for no gap between the occupied and unoccupied levels in the

7 .
oscillator spectrum. Baranger has discussed in detail calculations

using harmonic oscillator intermediate states.
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Radial integrals of the free reaction matrix elements eva-
luated with HO wavefunctions are given in Table 6.3. The radial
integrals are‘given for € = ~80 MeV and € = =200 MeV. The € = -200
MeV radial integrals are considerably weaker than the ¢ = =80 MeV
integrals. Since calculations were performed for both light and
heavy nuclei n = n' = 0 radial integrals are given as a function of
¥w. The interaction is sensitive to the oscillator potential size
parameter; consequently the choice of size parameter for each
ﬁucleus is important.

6-C The Models

The two-particle and two-hole spectra were calculated using
both HO and WS wavefunctions. The WS wavefunctions used were those
given in Tables 4.15, 4.20, and 4.25. For the A=18 nuclei the
configurationg and energies used were those given in Table 5.2.. In
the HO wavefunction expansion of the WS wavefunction five and seven
terms were included fo; the 0d and 1ls levels respecfively. The
oscillator size parameter used in the expansion was fiw = 12.5 MeV.
For the other nuclei the configurations included in the calculations
are listed in Table 6.4 together with the unperturbed energies and
the number of terms included in the WS wavefunction expaqsion. In
the calculation the lowest unperturbed configuration was taken to
be at zero energy. With this energy écale the experimental spectra
for A=18 nuclei is given in Table 5.3. The experimental spectra
for the other nuclei are given in Table 6.5.. Thé gfoﬁnd state

100
binding energies given in the 1964 Atomic Mass Table :
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/ Table 6.3

- Radial integrals of the free reaction matrix evaluated with HO
wavefunctions. Table 6.3a is for %w = 13.4 MeV and € = -80 MeV
and Table 6.3b is for fiw - 13.4 MeV and € = ~200 MeV. Table 6.3c
gives the n = n' = 0 radial integrals as a function of Hu. The

integrals are in units of MeV.

(2)

3 3 3. .3 3. 3, 1 3 3
n n' S1 D1 Sl- D1 Dl- S1 P1 D2 D3
0 o -12.62 1.90  =-1.59  -1.59  1.67  -2.42  -0.12
0 1 -11.76 2.41  -1.91  -1.56  2.14&  =-2.80  -0.19
0o 2 -10.36 2.63  -1.96  -l.45 2.36  =2.91  -0.24
o 3 -9.00 2.72  -1.89  -1.34  2.47  -2.91  -0.27
0 4 -7.80 2.73  -1.74  -1.23  2.50  -2.85  -0.30
0o 5 -6.75 2.70  =1.56  =-1.13  2.50  =-2.77  -0.32
11 -10.86 3.06 -1.87  -1.87  3.20  -3.25  -0.29
2 2 -8.16 3.67  ~-1.77  -1.77  4.98  -3.51  -0.46
3 3 -5.79 3.94 -1.53  -1.53  6.77  =3.50  -0.62
& &4 -3.86 4.01  -1.25  -1.25  8.36  -3.36  =0.75
5 5 -2.33 3.99 -0.97 -0.97 9.68  -3.17  -0.86

(a) continued

. 1 3 3 3 1

n n . S0 PO Pl P2 D2

0 0 -7.08 -2.08 1.89 -1.00 -0.48
0 1 -6.22 -1.95 2.26 " -1.28 -0.64
0 2 -5.16 -1.70 2.36 -1.40 -0.71
0 3 =4.20 ~1.46 2.35 -1.45 -0.75
0 4 -3.37 -1.26 2.30 ~1.46 -0.76
0 5 -2.65 -1.09 2.23 -1.44 -0.76
1 1 ~5.32 ~1.49 2.86 -1.70 -0.84
2 2 -3.29 -0.42 3.34 -2.12 -1,05
3 3 -1.61 0.55 3.53 ° -2.36 -1.16
4 4 -0.28 1.29 3.54 -2.46 -1.20
5 5 0.75 1.82 3.46 -2.49 -1.20
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(c)

¢ (MeV) -80.0 -200.0
Hw (MeV) 5.0  10.0 15.0 | 5.0 10.0  15.0
s, =2.15 =5.10 =7.98 | =1.96  =4.67 =7.30
3p0 -0.35 =1.31 -2.45 | -0.34  =1.27 =2.34
321 0.26  1.08  2.34 | 0.27 1.14  2.48
ipz -0.12  -0.55 =-1.26 | -0.12  -0.53 =-1.21
22 20.03 -0.23 ~=0.64 | =0.03  -0.22 =0.62
sy -3.67 -8.94 ~-14.33 | -3.08  -7.52 =12.07
5170 -0.23  -0.94 ~-1.92 | -0.20  -0.81 =1.67
D, 0.14 0.92 2.47 | 0.15  1.01  2.71
;Pl 0.21  0.92 2.10 | 0.22  0.98  2.31
D, ~0.21 ~1.24 -3.07 |-0.19  -1.17 -2.89
>, -0.006 =-0.05 =0.17 |~-0.006 -0.05 =-0.16
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Table 6.4

Unperturbed single-particle energies used in the calculation of

the spectra of Ca42, 8042’ Pb206 and Pb21o. The third column for

<

each nucleus is the number of terms included in the expansion of

WS wavefunctions in terms of HO wavefunctions.

a2 ‘ 5,206 pp210
V&3 €ve; nl vEj €wi n Ve j €vwji m
MeV) (MeV) (MeV)
0f, 1 0.00 5| 2p,, 0.00 6 lgg), 0.00 5
1p, 5 2.07 5 | 15, 0.57 5 01, 079 3
1oy, 413 5| 25, 0.89 6 03yg/ 141 2
Of ¢ 1y 6.69 5 | Oijg,, 1.63 A 2d /1, 1.58 6
| 18, 234 5 3s,,, 2:03 7
| Ohg,, 3.47 2 lg,, 249 4
2d 2.52 6

3/2
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Table 6.5

Experimental energies of low-lying states in Ca42, chz, szo6

O O P DN NN BN O N O

and Pb210
ca*? (a) 5wy pp2% ey | 2%
J,r Eg CINT B J° Eg Jt Eg
(MeV) (MeV) (MeV) (MeV)
*1 -3.11 of,1  -3.20 of  -0.64 |o" -l.24
* -1.59 170 - -2.59 ¥ s016 |28 -0.m
*1 -1.28 7t0  -2.58 of  +0.52 1 4% -0.15
* 1 -0.69 5¥,¢0) -1.68 3t 0.70 | 6%  -0.05
t -0.36 30 -1.70 2T 0.82 |8  +0.03
* 1 +0.08 2T 1 -1.61 5t 1.04
*1 0.28 0", 1 -1.31 1t 1.09
*1 0.5 | @H3T,0 -1.00 h 1.14
t 1.34 2t,1 -0.70 5t 1.36
* 1 175 | 451 -03s jat2h 151
t1 1.90 | @Hst,o -0.10 77 1.56
* 2.09 67,1 +0.05 6" - 1.74
* 1 2.7 | @H2t0  0.19 3" 1.89
*1 2.90 1,0 0.49 9 2.01
51 2,09 | @2H3t,o o8 | 5T 2.14
2t1 ©3.16 1,0 0.66 .| 4 2.28
0,1 3.40 @ ,3t 0.73 57 _2.37
0,1 3.59 of, 1 2051 | 3" 2.48
RENCD 2.55
2t 1 4.07 6" 2.61
) 2.76

(a) reference 116
(b) reference 117
(c) reference 113
- (d) reference 119
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BE (2p,Ca’?) = 2BE(Ca’*')-BE ca*%-BE(ca™Dy
= =3,11 MeV.
BE(2p,5c%2) = BE(ca*hy+BE (sc*!) -BE (ca™®) -BE (5c*2)
= -3.20 MeV.
206 208 206 207

BE(2h,Pb” )= BE(Pb~ )+BE(Pb ) -2BE(Pb” ')

= 0.64 MeV.

58 (2p, 20210 = 288 (262°°) -BE (Pb20%) -k (b7

= -1:24 MeV.

The A=18 spectra were calculated with HO wavefunctions using
both € = -80 MeV and ¢ = -200 MeV. These two calculations corres=
pond to calculations with nuclear reaction matrices determined using
plane wave and HO intermediate states as was discussed earlier.

The spectra were also calculated using WS wavefunctions and € = =200
MeV. Exact calculations with WS wavefunctions require large amodnts
of compugational time so only the value ¢ = ~200 was used since it
yielded matrix elements more in accord with those of Kuo and Brownff
The WS calculations were perfofmed retaining terms in the matrix
elemtns for which the product of expansion coefficients was greater
than or equal to 0.05. This approximation was checked for several
matrix éléments by including additional terms. It was found that
the approximation was worst for the (sl/z) diagonal matrix elements.
With the approximation used the (31/20 matrix elements are approx-
imately 10% too small. Errors in other matrix elements.were

considerably smaller.

Nuclear reaction matrix elements for the separable potential
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given in the previbus section have only been determined for the
A=18 nuclei. 1In the calculations of A=42, szo6 and Pb210 spectra
thé free reaction matrix with ¢ = =200 MeV was used as an effective
interaction. The WS calculations for these nuclei were performed

in the same approximation as for the A=18 nuclei.

6-D Results for A=18 Nuclei

The two-particle spectrum of O18 was calculated with HO
wavefunctions (fw = 13.4) for ¢ = -80 MeV and € = -200 MeV. The
low-lying levels from both calculations are compared with experiment -
in columns a and b of Fig. 6.1. The entire spectrum for € = =200
MeV is given in Table 6.6. The free reaction matrix with e = =200
MeV gives 0.4 MeV less binding energy for the ground state than KF
with ¢ = =80 MeV. Apart from the ground state the two calculations
give the same level positions to within 0.2 MeV. The spectrum
.calculated using Wé wavefunctions for ¢ = -200 MeV is given in
Table 6.6 and compared with experiment in column c of Fig. 6.1.

The 01+ and 02+ states are shifted upwards by 0.8 and 1 MeV respec-
tively relative to the HO calculation with ﬁm = 13.4 MeV. With the
approximation used in the WS calculation the upward shift of the 0+
states is overestimated by approximately 0.1-0.2 MeV. The other
low-lying levels have smalier although significant shifts relative

to the HO calculation. The use of WS wavefunctions leads to an

overall state dependent weakéning of the interaction maﬁrix elements
relative to the values in the HO calculation. The spectrum calculated

with HO wavefunctions with #iw - 12.0 MeV and for ¢ = =200 MeV is
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Table 6.6
. 18 .
The two-particle spectra of O calculated with HO and WS wave-

functions for ¢ = -200 MeV.

Calc. 7,1 Eigenvalues (MeV)‘
HO 0*,1 -2.87, -0.24, 10.88
(w=13.4) 1t1 4.59, 5.63
21 -1.78, -0.10, 4.29, 5.91, 10.16
3t1 0.55, 4.48
st 1 -0.74, 3.34
WS ot,1 -2.05, 0.80, 10.63
11 4.72, 5.78
2F 1 -1.35, 0.09, 4.51, 5.86, 10.14
3,1 0.63, &4.59
4¥ 1 -0.58, 3.68
HO 0,1 -2.71, =-0.10, 10.55
(fiw=12.0) 1t 4.63, 5.67
2t 1 -1.53, 0.02, 4.40, 5.87, 10.11
371 0.61, 4.59
41 -0.62, 3.51

given in Table 6.6 and compared with the other calculations in
column d of Fig. 6.1. As would be expected the HO calculation with
fiw = 12.0 MeV shifts the spectrum upwards relative to the spectrum
calculated with HO wavefunctions and fiw = 13.4 MeV. Nevertheless,
a HO calculation with a smaller fiw value does not reproduce the
state dependence of the-matrix elements in a WS calculation.

The calculations that were performed for the T=1 states of
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Fig. 6-1. The two-particle spectrum of 018 calculated with harmonic oscillator (HO) and Woods-Saxon
(WS) wavefunctions. The calculations are for: (a) HO,fiw = 13.4 MeV, € = -80 MeV; (b) HO,fiw = 13.4 MeV,
e = -200 MeV; (c) WS,e = -200 MeV; (d) HO,fw = 12.0 MeV, € = -200 MeV.
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018 were repeated for the T=0 states of F18. The results are given
in Table 6.7 and compared with experiment in Fig. 6.2. The HO
calculation with € = =200 MeV gives 1.5 MeV less binding energy for

18 ground state than the calculation with ¢ = -80 MeV. Except

the F
for the 3£+ state the remaining low-lying states in the spectrum

‘for € = =200 MeV are shifted upwards by approximately 1 MeV relafive
to their positions for € = ~80 MeV. The spectrum calculated using
_,WS wavefunctions for € = =200 MeV is éiveﬁ in column ¢ of Fig. 6.2.
The upward shifts of the levels in the spectrum for the WS calculation
relative to those for the HO calculation with fiw = 13.4 MeV are

as large as 2 MeV. The approximation made in the WS calculation is
worst for the f+ states and the calculated positions of the 11+

and 12+ levels are too high by approximately‘O.ZS MéV. The spectrum
calculated using the HO wavefunctions for %w = 12.0 MeV and € = -200
MeV is compared with the other calculations in column ¢ of Fig. 6.2.
‘The calculation using HO wavefunctions and #fiw = 12.0 MeV weak;ns

the interaction matrix elements but does not reproduce the state

dependence in the WS calculation.

5-F Results for A=42 Nuclei

The two-particle spectrum of Ca42 was calculated using both
HO (fiw=11l.5 MeV) and WS wa&efunctions for € = =200 MeV. The results
are given in Table 6.8 and compared with experiment in Fig. 6.3.
The HO and WS calculations aré very similar except for the 01+ and
0 + states which are shifted upwards by approximately 0.25 MeV in

2

the WS calculation. The agreement between the calculated and experf
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Table 6.7
The two-particle spectra of F18 calculated with HO and WS
wavefunctions for ¢ = -200 MeV

!

A

Calc. J°,T 'Eigenvalues (MeV)
HO 1*,0 -5.84, -1.67, 1.78, 4.49, 10.45
o @3 T ~2.67, 2.47, 5.80
" 3%,0 -4.21, -0.48, 3.40, 8.13
5t 0 0.61
5,0 -4.02
WS 1t -3.81, 0.02, 2.62, 4.78, 10.33
2¥.0 -1.30, 2.74, 5.71
3t0 -3.18, -0.29, 3.46, 8.61
4,0 1.57
57,0 -3.50 |
HO 1+,0 -5.21, -1.38, 1.90, &4.44, 10.13
(tiw=12.0) 2%,0 ~2.00, 2.56, 5.65
37,0 <3.66, =0.37, 3.63, 8.20
£,0 1.20
57,0 -3.53

-
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N
+ o+

o

EXP

The two-particle spectrum of Ca .

HO . WS

42

spectra are for harmonic oscillator wavefunctions (HO,Hfw =

11.5 MeV) and Woods-Saxon wavefunctions ws).

The calculated
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Table 6.8

42 ‘
The two-particle spectra of Ca calculated with HO (fiw=11l.5 MeV)

and WS wavefunctions for e = -200 MeV
Calc. J“,T Eigenvalues (MeV)
HO 0,1 -1.47, 2.74, 8.61, 13.81
o1t 6.05, 6.34, 8.52
2t 1 -0.90, 1.09, 3.44, 5.37, 6.41, 8.74
10.69, 13.22 |
3t 1 1.83, 3.89, 6.24, 8.47, 10.68
14,1 -0.42, 1.63, 3.59, 6.28, 8.48, 13.38
57,1 1.91, 6.33
67,1 -0.26, 5.26
WS o',1 -1.16, 3.02, 8.38, 13.93
11 6.12, 6.42, 8.58
2¥ 1 -0.90, 1.15, 3.61, 5.55, 6.45, 8.76
10.73, 13.25
37,1 1.80, 3.89, 6.23, 8.48, 10.70
51 -0.41, 1.65, 3.62, 6.32, 8.50, 13.40
sT,1 1.89, 6.29
t1 -0.27, 5.28

mental spectra is not good. The choice of ¢ = =200 MeV iq KF

for the effective interaction was arbitrary; however, one would not
expect the Pauli and spectral correctioms for the reaction matrix
elements in %he (f,p) shell to differ greatly from those in the
(s,d) shell. On the other hand there is nb reason to expect agree-

ment with experiment by using a simple model containing only spherical
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twé-particle configurations. The model predicts two d+ and three
2+ states below Es = 5 MeV. Experimentally there are six d+ and
+ 120-123
eight 2 states below EB = 5 MeV. Several authors have discussed
the structure of the low-lying states in Ca42 in terms of a model
in which the spherical shell model states are mixed with deformed
states.
The T=0 two-particle spectrum of Sc42 waslcalculated uéing

both HO {hwﬁil.s MeV) and WS wavefunctions for € = ~200 MeV. The
results are given in Table 6.9 and épmpared with experiment in
Fig. 6.4. The calculated spectrum ié in reasonable agréement with
experiment which is in marked contrast to the T=l spectra. - The

+ o+ +

11 s 12 , and 22

by 0.5 MeV relative to their positions in the HO calculation. The

states in the WS calculation are shifted upwards

state dependence of the interaction matrix elements in the WS
calculation leads to a downward shift of the 52+ and 71+ states
relative to their positions in the HO calculation. The dowvnward
shift of the 7i+ state relative to its position in the HO spectrum
is a consequence of the %w value used in the HO calculation. The

Of WS wavefunction is very much like a HO wavefunction with

7/2
fw = 12.75 MeV (Table 4.21) whereas the HO calculation presented

here is for Hw = 11l.5 MeV.

5-F Results for Pb206

/

'
In the absence of a calculation of nuclear reaction matrix

_elements for the Pb region the free reaction matrix was used as the

effective interaction with calculations being performed for
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Fig. 6-4.
The T=0 two-particle spectrum of Sc42. The spectra presented
are for harmonic oscillator (HO, #iw = 11.5 MeV) and Woods-Saxon ws)

wavefunctions with € = =200 MeV.
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Table 6.9

The two-particle T=0 spectra of Sc42 calculated with HO (fiw=11.5 MeV)

and WS wavefunctions for € = =200 MeV.
Calc. 7T ‘ Eigenvalues (MeV)
HO 1%,0 -2.79 1.10, 4.16, 5.57, 7.07, 7.96
13.82
2t 0 ~0.02, 3.31, 4.86, 8.21, 10.8&
+
37,0 -1.66, 0.58, 2.14, 3.38, 5.35, 7.86,

9.70, 12.97

AR 1.61, 2.38, 5.33, 8.36
5T o ~1.86, 0.21, 6.04, 11.40
6%,0 3.67 |
7%,0 -2.79
Ws %0 -2.24, 1.67, 4.56, 5.90, 7.12, 8.05
13.98 |
2%,0 0.30, 3.80, 5.08, 8.26, 10.90
37,0 -1.42, 0.63, 2.42, 3.51, 5.50, 7.91,
9.79, 13.06
5,0 1.69, 2.49, 5.32, 8.38
5%,0 -1.73, 0.12, 6.10, 11.59
67,0 3.65
77,0 -2.95

€ = =200 MeV and € = -80 MeV. On the basis of the neutron single-
particle potentials deduced in Chap. & the best value of fiw for HO
_ wavefunctions in the Pb region would be approg%mately 8.0 Mev. On
the other hand,the neutron well found by Rost had a much larger

radius and the best value of fw in a calculation with Rost's HO
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wavefunctions would be approximately 6.0 MeV. To study the effect
of the nuclear size in determining effective interaction matrix
elements and comnsequently the two-hole spectrum the spectrum was
calculated using HO wavefunctions with #iw = 6.0 MeV and 8.0 MeV.
The results of the calculations are given iﬁ Table 6.10. From
Table 6.10 it can be seen that the positive parity étates with even

+  +

1’ 41 and 61+ states are

depressed by 0.15, 0.24, 0.12 and 0.19 MeV respectively for fiw =

spin are affected most. The 01+, 2

8.0 MeV relative to their positions for fw = 6.0 MeV. For the Pb

region energy shifts of this size are significant since the matrix

elements are small. This can be seen by compéring the unperturbed

positions of levels with the positions after diagonalizing the

shell model Hamiltonian. In Fig. 6.5 the calculated spectra are

compared with experiment and the unperturbed positions of the levels.
Decreasing the value of #iw does not necessarily lead to a

decrease in the magnitude of a matrix element. In fact, some

matrix elements become larger in magnitude as %w 1s decreased. For

example, with HO wavefunctions and € = =200 MeV we have

< (h9/2>2J11%.| <h9/2)2J=0 > = -0.083 MeV (fiw=8.0 MeV)

-0.270 MeV (fiw=6.0 MeV) .

The nuclear size dependence of the matrix elements is complicated

by two factors: 1) the different size dependence of the attractive
and repulsive terms in the lso interaction; and 2) a cancellation

between the singlet-even and triplet-odd components of the inter-

action.
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Table 6.10

206

Two-hole states in Pb with EB< 4.0 MeV calculated using HO

wavefunctions with fiw = 6.0 MeV, and #iw = 8.0 MeV for € = =200 MeV.

tiw 6.0 8.0
Jt Eigenvalues (MeV) Eigenvalues (MeV)
ot -0.37, 0.62, 1.56, 2.73 -0.52, 0.58, 1.62, 2.78
v | 0.84, 1.40, 2.83 0.83, 1.38, 2.82
¥ ' 0.24, 0.59, 1.03, 1.43, 1.63,| 0.00, 0.54, 0.99, 1.42, 1.58,
' 2.84, 2.88, 3.07, 3.92 2.75, 2.83, 3.03, 3.95
3" 0.54, 1.39, 2.28, 2.82, 3.18,{ 0.52, 1.34, 2.24, 2.77, 3.13,
3.98 3.93
5 1.05, 1.22, 2.21, 2.80, 3.10,} 0.93, 1.16, 2.18, 2.78, 3.07,
. 3.19, 3.39, 3.98 3.18, 3.38, 3.99 ‘
st 2.84, 3.18, 3.45, 4.02 2.80, 3.16, 3.43, 4.00
67 | 2.48, 3.18, 4.00 2.29, 3.16, 4.00
771 401 3.98
g™ | 3.20 3.18
10t | 3.22 3.21
127 | 3.24 3.23
3" 3.69 3.63
A 2.14, 3.90 2.11, 3.84
5 2.13, 2.37 2.09, 2.33, 3.86
6 1.60, 2.16, 2.50, 3.9 1.58, 2.14, 2.48, 3.92
7" 1.50, 2.12, 2.48, 3.90 1.44, 2.10, 2.46, 3.89
8 2.16, 2.49, 3.9 2.13, 2.48, 3.9
9" 1.95, 3.93 ' 1.84, 3.92
10~ | 3.9 3.92
{
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Fig. 6-5. The two-hole spectrum of Pb206. Spectra are
presented for calculations with both harmonic oscillator (HO)
and Woods-Saxon (WS) wavefunctions. For each spin the
columns are: '
1) experimental spectrum

2) unperturbed spectrum

3) theory, HO, fiw = 6.0 MeV, €
4) theory, HO, fiw = 8.0 MeV, €
5) theory, WS, € = =200 MeV.

-200 MeV
-200 MeV
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With fiw = 8.0 MeV the n=n'=0 radial integral of 180 is

larger than its value when #iw = 6.0 MeV. However, for increasing
(n,n') the radial integrals for #iw = 8.0 decrease more rapidly
than those for #iw = 6.0 MeV. The result is that for higher values

of (n,n') the radial integrals are more attractive with #iw = 6.0

1
0’ D 1

contribute to the matrix elements. For diagonal matrix elements

MeV. For J=0 only the 1S and 3P components of the interaction

the 180 and 1D2 terms are attractive while the 3P1

The degree of cancellation is shown in Table 6.11 by the values

term is repulsive.

. . . 3 .
of the matrix elements with and without the P1 interaction. The
degrée of cancellation is dependent on the value of €. Increasing
1, . i
the value of ¢ makes the S0 interaction more attractive and the

3P1 interaction less repulsive. Although the matrix elements éo
not exhibit a uniform behaviour as a function of #w it can be seen
from Fig. 6.5 that the overall effect is to increase the binding
energies of the levels when ¥w is increased.

The calculated spectrum of negative parity states‘is compared
with experiment in Fig. 6.6. The overall agreement with experiment
for both positive and negative parity states is not good. Tﬁe
results given here are very similar to those obtained by Clement
and Baranger124 with the Tabakin potential. It is interesting to
note that for the f+, 3+, 6+ and 6 states the experimental positions
of the levels are above the unperturbed energy of the dominant

configuration. Except for the O+ and 3~ states the calculated

positions of the levels are below the experimental positions. The
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Table 6.11
Diagonal J=0 matrix elements calculated with HO wavefunctions

for ¥w = 8.0 MeV and ¢ = -80.0 MeV.

1, .1 1, ,1 .3

Configuration So+ D2 So+ D2+ Pl
(h9/2)2 -0.930 (MeV) =0.215 (MeV)
. 2 _ -
(113/2) 0.934 0.305
2
(f5/2) -0.619 -0.229
2
(f7/2) 0.826 -0.533
2
(py/9) -0.359 -0.086
2
(p3/2) -0.718 -0.581

" discrepancy between theory and experiment for the 3  state is so
}arge that the 3 state must arise from configurations other than
those of two-holes. Wavefunctions for several of the low-lying
levels are given in Table 6.12 from which it can be seen that, in
genéral there is little configuration mixing in the low-lying levels.
A few low-lying states were calculated using WS wavefunctions.
The results are given in Table 6.13 and compared with experiment
in Fig. 6.5. The only appreciable change in the WS calculétion was
to move the Ol+ one state upward slightly and the 21+ and 2£+
states closer together. Wavefunctions for the 0+ and 2+ states

from the WS calculation are given in Table 6.14. By comparing the

wavefunctions in Tables 6.14 and 6.12 it can be seen that although
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Fig. 6-6. Negative parity states in Pb . The theoretical

"spectrum was calculated with harmonic oscillator (HO) - wave~

functions for fiw = 8.0 MeV and € = -200 MeV.
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Table 6.12
Wavefunctions for low-lying states in Pb206. The wavefunctions are for the spectrum calculated using HO wavefunctions
with fw = 8.0 MeV and ¢ = -200 MeV
=0"
E 2 . 2 2 2 2 2
(MeV)
-0.52 0.070 -0.164 0.324 0.154 0.819 0.410
0.58 -0.084 0.229 ~-0.815 -0.227 0.464 -0.093
1.62 -0.017 -0.022 0.274 0.045 0.332 -0.901
J"=1
%8 bgpafrrn £579f77 E5/9Pa) Pllzpslz
(MeV)
0.83 -0.002 -0.001 -0.012 1.00
1.38 0.005 -0.009 1.00 0.012
=3t
E
h
) hg1ofs/a Bosafra BosaPasa  Espafrra fsraPrsz fspoPsr2 far2Pz Ta2Psse
0.52 0.001 0.001 0.001 . -0.009 1.00 0.005 0.008 0.015

1.34 -0.002 -0.003 -0.003 -0.016 0.005 1.00 0.017 -0.005




Table 6.12 continued

=5t
E
By "or2%s72 Moaf1sz MoaPrsa MoraPasz Fspafiiz f112%12
2.80  0.001 =-0.003  0.023 0.015  0.999  0.017
J"=
"B byt i13s0f
(MeV)
3.63 -0.007  1.00
J ="
E ) :
Bevy Posatisze f13s2fss2 tisatire
2.11  =0.005 1.00 -0.008
J=5"
E
B heydige dew o fepe Aenjofo o dgajoP
wery "9/2t13r2 fanafsiy M3nti/a Pu3i2Pan
2.09  0.005 0.910 0.066 0.410
2.33 -0.006 - 0.414  =-0.063  =-0.908

-L02~



Table 6.12 continued
=6
E } i . ) :
B hgroiyage  ti3zefsza fi3gefrze tisz2Pie f13/2Paf
(MeV)_ . :
1.58 0.003 -0.055 0.005 -0.998 0.018
2.14 0.012 0.998 0.013 -0.054 0.035
=7
By h i i f i, £ i ..p i ,.p
9/2%13/2 13/25/2 13/2%7/2 13/2P1/2 13/2P3/2
(MeV)
1.44 -0.002 0.174 0.052 0.976 0.117
2.10 0.011 -0.969 -0.047 0.192 -0.146
J=g"
>
B h i i, f 1., f i..,.p
e 9/2 {3/2 13/2%5/2 13/2%7/2 13/2P3/2
2.13 0.012 0.999 0.003 -0.051
=9~
Eg h i i, f i, f
9/2713/2 13/275/2 13/277/2
(MeV)
1.84 -0.047 0.99 0.072

. =80¢-



Table 6.12 continued

-209-

Pt
Ep 0.00 0.56  0.99 1.42 1.58 2.75
(MeV)
<h9/2>2 0.023 -0.003 -0.017 0.004 -0.008 =-0.093
(hg/zfslz) 0.073 0.007 -0.046 0.032 -0.016 -0.282
(h9/2f7/2) -0.010. 0.003 0.008 -0.003 0.002 0,048
(113/2)2 -0.088 -0.015 0.062 =0.039 0.030 0.857
(fS/Z)Z 0.216 0.001 0.947 -0.107  0.104 0.133
<f5/2f7/2) -0.082 ~0.028 0.082 -0.067 -0.008 0.014
(£5/9P1/2) 0.698 0.637  0.216 =-0.153 0.053 0.123
(£5 /5P /2) -0.161 -0.023  0.042  0.970 0.020 -0.118
(f7/2)2 0.070 0.009 -0.061  0.013 -0.016 =-0.093
(f7/2p3/2) 0.199 0.070 -0.077 0.085 _ =0.076 '=0.331
(Py /5P3 /) -0.586 0.751  0.176 0.075 -0.232 -0.039
2 ,0.179 -0.153 -0.038 ~=0.067 -0.962 0.089

(b3/5)




Table 6.12 continued
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(£, /2P3/2)

J=4t 2
Ep 0.93 1.16  2.18
(MeV)
(h9/2)2 0.017  -0.002 =0.019
CHPE I 0.046  =0.012 =-0.017
(hg/pfy /) =0-014  0.003  0.021
(Bg/5P1 /2) 0.055  =0.011 -0.038
(g/pPy/)  -0-025  0.003  0.015
(113/2)2 -0.074 0.010  0.044
(f5/2)2 0.598  0.784  0.126
(£5)yEy))  -0.149  0.018 -0.058
(505>  -0.699  0.609. -0.310
(f7/2)2 0.061  0.006 =0.041
(£, /5P 1/2) 0.302  -0.093 -0.935
0.158  -0.068 =-0.057
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Table 6.13

B
wavefunctions for € = =200 MeV.

Two-hole states in Pb206 with E_ < 4.0 MeV calculated using WS

= Eigenvalues (MeV)

o* -0.46, 0.60, 1.60, 2.73

¥ 0.81, 1.39, 2.81

2" | © 0.08; 0.48, 1.00, 1.43, 1.56, 2.75,
” | 2.80,13.04, 3.80

3 0.53, 1.34, 2.22, 2.77, 3.12, 3.77

3" 3.66 !

& 2.11, 3.82

5 2.12, 2.34, 3.87

|

Table 6.14

206 .
Wavefunctions for low-lying states in Pb . The wavefunctions are

for the spectrum calculated using WS wavefunctions and € = -200 MeV.
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=2t
Eg ,
(MeV) 0.08 0.48 1.00 1.43 1.56  2.75
(h9/2)2 0.015  -0.002 ~0.016 0.001  =0.006 =0.016
(hypfs/p)  0.054 0.011 =0.045  0.024  -0.010 =0.272
(hgpfs/9)  0-004 0.005  0.009  0.002  =0.002 0.036
(113/2)2 -0.061  -0.018  0.057 =0.023 0.022 0.931
(f5/2)2 0.197 0.033 =0.957 =0.082 0.093 0.102
(£5yE, ) -0-078  -0.031  0.081 -0.078 0.003 0.068
(£5/5P1/p)  0-687 0.658  0.206 =0.141 0.045 0.076
(£, )oP3)) -0-142  =0.039  0.041  -0.958 0.172 =-0.075
(f7/2)2 0.058 0.012 =0.062  0.006  =0.015 =0.052
(£, /5P59) 0174 0.089 -0.061  0.079  =-0.089 =0.124
(PyjoPyyp)  -0-624 0.722 -0.136  0.015  =0.264 =0.020
. (p3/2)2 0.182  -0.184 =-0.031 =0.204  =0.939  0.044
JT[ = 0+
Eg -0. 46 0. 60 1.60
MeV)
5
(g /) 0.046 -0.073 -0.010
_ 2
(igq,9) -0.107 0.207 -0.032
2
(£5 /) 0.267 -0.869 0.205
2
(£, /9 0.124 -0.237 0.040
2
By /) 0.852 0.369 0.369
2
(£5/9) 0.417 -0.064 -0.905
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the binding energies of a state may be nearly the same in both the
HO and WS calculations the wavefunction does change appreciably.
An example of this is the 02+ state. 

5-G Results for Pb210 '

Calculations of the two-particle spectrum of Pb210 were

performed using HO wavefunctions with}ﬁw = 6.0 MeV and fiw = 8.0

MeV. The results are given in Table 6.15. The states most affected
by increasing #iw from 6.0 to 8.0 MeV are the 0+, 2+, 1d+ and 13
states. It is these states which are initially shifted furthest
from their unperturbed positions. As in Pb206 the difference in
energy between the unperturbed and perturbed positions of a given
configuration are not large. As a result a change of 0.1 MeV in
the position of a level is significant. In Fig. 6.7 the levels

. s 2 . . .
arising from ;he (g9/2) and (g9/2,113/2) configurations are shown

relative to the positions of the unperturbed configurations. Except

+
1

In Pb210 the matrix elements depend on the relative strengths

for the O +, 2 énd 101+ levels the shifts are less than 0.2 MeV.
of the singlet-even and triplet-odd interactions in the same way
as the Pb206 matrix elements. Decreasing the value of € lessens
the cancellation between the lS0 and 3P1 interactions and gives a
more!attractive interaction. The spectra calculated with HO wave-
fﬁﬁctions for € = =80 MeV and ¢ = -200 MeV are compared with
éxperiment in Fig. 6.8. Wavefunctions for a few of the low=-lying

‘states’'are given in Table 6.16.



Two-particle spectra of Pb

HO wavefunctions for € = ~200 MeV
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Table 6.15

210

below E. = 2.5 MeV calculated using

B

3% Eigenvalues (MeV) " Eigenvalues (MeV)
Hw = 6.0 MeV Yiw = 8.0 MeV

oF -0.68, 0.91 -0.76, 0.90

it 0.68, 2.41 0.66, 2.42

2t -0.24, 0.77, 1.15, 1.46, | -0.34, 0.74, 1.02, 1.38, 2.37,
2.42 2.47

3t 0.70, 1.51, 9.32, 2.40, | 0.65, 1.46, 2.78, 2.36, 2.43
2.45

5F -0.11, 0.78, 1.37, 1.54, | -0.15, 0.76, 1.29, 1.52, 1.86,
1.91, 2.34, 2.44, 2.47 2.32, 2.41, 2.45

st 0.72, 1.56, 2.00, 2.34, | 0.68, 1.54, 1.99, 2.31, 2.39,
2.42, 2.48 2.45 ‘

6t -0.06, 0.76, 1.46, 1.56 | -0.09, 0.74, 1.41, 1.55, 2.17,
2.25, 2.36, 2.40 2.33, 2.38 :

Al 0.73, 1.54, 2.34, 2.43 0.69, 1.53, 2.32, 2.40

gt -0.04, 0.71, 1.55, 2.08, | -0.06, 0.68, 1.54, 1.96, 2.26
2.29

+ 0.74 0.70

1071 0.56, 1.57 0.47, 1.58

127 1 2.79 2.79

1t 2.80 2.80

2" 2.03 2.00

3" 1.17, 2.10 1.14, 2.04 .

4 1.32, 2.09 1.25, 2.05

5 1.32, 2.16 1.31, 2.14

6 1.38, 2.10 1.35, 2.06

7" 1.34, 2.15 1.32, 2.13

8" 1.39, 2.12 1.38, 2.07

9 1.36, 2.11 | 1.34, 2.08

10" 1.40, 2.13 { 1.39, 2.08

11" 1.37, 2.03 1.36, 1.97

12 1.38, 2.14 1.36, 2.09

13 1.71 1.47
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Fig. 6-7. Low-lying states in Pb 10 relative to their
unperturbed positions. The theoretical spectrum was
calculated with harmonic oscillator wavefunctions for

iw = 8.0 MeV and ¢ = -200 MeV.
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Fig. 6-8. The low-lying two-particle states in Pb21o

calculated with harmonic oscillator wavefunctions. The
theoretical spectra are for (a) fiw = 8.0.MeV, € = ~200 MeV
and (b) %¥w = 8.0 MeV, € = -80 MeV.
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Table 6.16
Wavefunctions for low-lying two-particle states in szm.
The wavefunctions are for the spectrum calculated with HO

wavefunctions, fiw = 8.0 MeV and ¢ = -200 MeV.

J%=*

E ) 2 . 2 2 2 2 2 2

eVv)

-0.76  0.324 -0.208  0.182 0.892 0.078  0.116  0.053
0.90  =0.745 0.520  0.010 0.406 =0.026 =-0.092 =0.031
2.60  -0.180 0.011  0.100. =0.107 0.265 0.908  0.226

J“=8+

Eg R T R T T L

() 11/2 11/287/2 *11/289/2 *11/293/2%915/27  87/289/2 “B9/2

-0.06 0.020 0.006 -0.014 =0.037 =0.012 =-0.098 0.99%
0.68 0.000 -0.034 0.993  0.090  0.029  0.061 0.024
1.54  -0.984 -0.013  ~0.013 -0.004 0.087  0.153 0.035

J=10"

E 2 2
B ¢ )i g G )

(MeV) 11/2 11/259/2 15/2
0.47 - 0.013 0.999 0.030
1.58 0.998 -0.012  -0.058
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Jﬂ =2+
Ep -0:34 0.74 1.02 1.38 2.37
(MeV) :
, 2
R 0.096 0.070 0.516 0.796  =0.204
Gy1/987/  0-053 0.073  =0.095 -0.016  0.284
(iy1/98/2) ~0-024 -0.955  =0.273 -0.062  0.082
. 2
G1s/2) 0.072 0.085 0.161 0.205  -0.371
(g7/2)2 0.056 0.022  -0.053 -0.013  0.082
8989/  -0-011 -0.054 0.024 -0.074  =0.817
(87758372 0:054 0.034  =-0.109 -0.073  0.090
(8)p8s/))  0-020 -0.014 0.042 0.030  -0.087
(g9/2)2 0.971 -0.088 .  0.207 0.007  =0.037
(&9 /5%52) 0.163 0.232  =0.735 -0.553  -0.103
(d3/2)2 0.021 0.012  -0.034 -0.012  0.040
(g5 0018 -0.020 0.036 0.004  ~0.053
(395179  0-030 -0.018 0.052 0.022  =0.075
(d5/2)2 0.044 0.031  -0.102 -0.046  0.112 .
(g /251 /2) 0.041 0.037 -0.09% -0.030  0.093




Table 6.16 continued

t
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3=t
Ep 0.15 0.78 1.29 1.52 1.86
MeV)

. 2 AR
(i11/9) 0.050 0.029  -0.488 -0.839  0.152
(iy1/987/)  0-020 0.033 -0.056 -0.003  -0.035
(iy1/280)) =0-025 -0.987 -0.130 0.021  =0.046
(iy1/283/  0-036 0.047 -0.046 0.008  -0.035
(i11/285/9) -0-022 -0.027 0.029 ~0.020 0.062

. 2
Grs/a) 0.031 0.041 0.119 . 0.110 0.011
(g7/2)? 0.030 0.008 -0.036 0.008  =-0.019
(8758072  ~0-041 -0.037 0.059 0.022  =0.025
(87 /595 /) 0.020 0.011 -0.061 0.025  =0.039
8585/,  =0-018 -0.012 0.073 -0.035 0.031

- - L ] » - L ] 0 L ]
&7 /3512 0.017 0.013 - 0.078 0.037 063
(g9/2)2 0.988 -0.047  ; 0.124 0.000 0.040
(89/5%/2) 0.038 0.043 ;-0.117 0.001  -0.107
(89/5%5 /) 0.077 0.086  -0.756 0.526 0.334
(89 /2512 0.068 0.07L  -0.309 0.045  =0.912
Gy 85y ~0-029 -0.021 0.072 -0.011 0.059
(65/2)2 0.019 0.011 -0.059 0.012  =0.040




Table 6.16 -(continued)
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(89/295/2)

-0.052

0.820

Fept
Ey -0.09 0.74 1.41 1.55 2.17
(MeV)

. 2 ‘ - -

(igq ) 0.031 0.014 0.480 0.860 0.120
(i11/987/9)  0-011 -0.033 0.030 0.004 0.052
(i17/289/p) =0-022 0.992 0.080 -0.014 0.084
(i11/283/9)  0-017 -0.030 0.021 -0.004 0.071
(iqy/295/2) -p.ozs 0.040 -0.028 0.026 0.468
(/9519 =0-030 0.045 -0.037 0.020  -0.172 -

. 2

(315/2) 0.018 0.032 0.085 | 0.080 0.110
(g7/2)2 0.019 -0.005 0.024 -0.004 0.047
(87,589/)  =0-056 0.041 -0.105 -0.012  -0.369
(87/585/2)  =0-022 0.020 -0.120 0.048  =0.162
(g9/2)2 0.993 0.035 =~ =0.079 -0.003  -0.073
.H(g9/2d3/2) 0.062 -0.061 0.219 -0.010 0.69
0.047 -0.501  -0.242
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A few of the low-lying states were determined using WS
wavefunctions and € = =200 MeV. The calculated energies are given
in Table 6.17. Comparing Tables 6.17 and 6.15 it can be seen that
the energy shifts resulting from the use of WS wavefunctions are
significant. The binding enérgy of the ground state is decreased
by 0.21 MeV relative to its value in the HO calculation with
¥w = 8.0 MeV. In Pb209 the WS wavefunction for the 1g9/2 state
is too a good approximation a HO wavefunction for fiw = 8.0 MeV.
The 21+, 4£+, 6i+ and 8£+ states are predominantly (g9/2)2 states
and are quite near their unperturbed position. As a result one
would expect that these levels would not be affected by the use
iof WS wavefunctions. On the other hand the 23+ state is'predom-
inantly (111/2)2 and (g9/2 dé/z) with equal amplitudes. The

and 2d states are not well represented by HO

0iy1/2° 18972 5/2
wavefunctions with fiw = 8.0 MeV. In the WS calculation the 23+
state is shifted by 0.12 MeV.  Two-particle wavefunctions for the
d+ states calculated with WS wavefunctions are given in Table 6.18.

Tn the WS calculation there is less configuration mixing in the

+
0 states.

5-H Summary
The two-particle spectra of A=18 nuclei werxe calculated
using the free reaction matrix as an effective interaction. For
the A=18 nuclei the nuclear reaction matrix elements had been
determined by Lee. The values of the nuclear reaction matrix elements

evaluated with harmonic oscillator and plane wave intermediate states
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Table 6.17
. . 210 N ,
Two-particle states in Pb below EB = 2.5 MeV calculated using
WS wavefunctions for € = =200 MeV.
> Eigenvalues (MeV)
ot -0.55, 0.98
1" 0.72, 2.36 °
2t -0.30, 0.79, 1.14, 1.36, 2.36, 2.49
2" 2.00 '
3" 1.16, 2.03
‘ 4 1.22, 2.05
Table 6.18

Wavefunctions for the 0+ states calculated with WS wavefunctions
and € = =200 MeV

J* = oF |

E . 2 . 2 2 2 2 2 2

-0.55 0.235 ~-0.129 0.171 0.943 0.051 0.078 0.032
0.98 -0.790 0.545 0.008 0.275 -0.007 ~0.051 -0.010_

2.71 -0.083 0.016 0.075 -0.086 0.223 0.952 0.154
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are reproduced by KF(€> with ¢ = -80.0 and € = =200 MeV respect-
ively. The matrix elements for € = -80 MeV are considerably
stronger than those for ¢ = -200 MeV. There are large differences
b;tween the spectfa for the two values of €. The correct choice

of intermediate states for evaluating reaction matrix elements is
n&t firmly established. Clearly this question needs to be resolved.
The A=18 spectra were calculated using WS single-particle wave-

functions. The use of WS matrix elements introduced a pronounced

_state dependence of the matrix elements. The changes in the spectra

introduced by WS wavefunctions are as large as those introduced by
4,125-127
corrections arising from core polarization.
Nuclear reaction matrix elements have not been determined
for A=42 nuclei or the Pb region for the interaction used here.
Calculations of the A=42 and Pb210 two~particle spectra and the

two=hole spectrum of szo6 were carried out using KF(e) with ¢ =

-80 MeV and € = =200 MeV as effective interactions. This arbitrary

choice of ¢ did not permit a detailed comparison with experiment.

However, the interaction is reasonable and the general effects of
nuclear size and WS wavefunctions on effective interaction matrix
. . 42

elements for these nuclei were studied. 1In Ca it was found that

. . . . 42
WS wavefunctions altered the spectrum only slightly while in Sc

. o . e g 206 210 .

the modifications were significant. For Pb and Pb it was
found that the spectra are sensitive to the choice of Woods-Saxon

potential used to fit the single-particle spectra. In the Pb

region the effective interaction is very dependent on the relative
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strength of the singlet-even and triplet-odd components of the
124

force. Clement and Baranger found that the Tabakin potential -

had the same behaviour. Using a phenomenological interaction
118 206
True obtained a better fit to the Pb spectrum by omitting

the triplet-odd interaction. In Pb206 it was found that WS wave-

functions did not alter the spectrum except for a few levels. In
210 . .
Pb WS wavefunctions introduce significant modifications of the .

two-particle spectrum.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

In Chapter 2 Green's functions were used to define the
effective shell model Hamiltonians for twq-particle, two-hole and
particle-hole states. In each case the effective interaction is a
nuclear reaction matrix dgfined self-consistently by the energies
of the states under consideration. The nuclear reaction matrices
K(w) can be evaluated from an expansion in terms of a free reaction
matrix KF(e) which is determined from the free nuc leon-nucleon
scattering data. In lowest order the nuclear reaction matrix is the
free reaction matrix. The higher order terms correct for the fact
that KF(e) is determined by nucleons scattering in bound states.
From a complete evaluation of K(w) one obtains a numerical array of
matrix elements. TFor many shell model calculations it is useful to
have an analytic form for K(w). By an appropriate state independent
choice of € one can hopefully reproduce the array with the simpler
free reaction matrix. We have presented a series of calculations
of two-particle, two-hole and particle-hole spectra for which KF(G)
was used as the effective interaction. In general KF(e)'is non-local.
Calculations were performed with both a local but velo;ity dependent
representation of KF and a KF determined from a non-local separable
potential. For A=18 nuclei the nuclear reaction matrix had been
determined for the non-local separable pofential.' Accordingly the

value of ¢ to use in KF was known for that case. 1In all other
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calculations € was chosen arbitrarily so that the effective inter-
action matrix elements were reasonable. Our obje;tivé was to study
model dependence of the nuclear reaction matrix elements; consequently
it was sufficient to have reasonable matrix elements;

In Chapter 3 we presented a calculation of the particle-hole
states in 016. The local but velocity dependent representation of KF
for only the relative S states was used as the effective interaction.
The particle-hole states were constructed in both the Tamm-Dancoff
and random phase approximations. The theoretical spectrum was in
reasonable agreement with experiment. The positions of the levels
that are ﬁorfectly predicted by the particle-hole model are mainly
determined by the unperturbed energies of the dominant configurationms.
These particle-hole states are fairly insensitive to the structure
of the interaction. Omn the othgr hand,'the collective octupole and
giant dipole states are very sensiti;e to both the interaction and
the model used. Only the collective octupole staﬁe is sensitive to
the higher—energy components in KF. This sensitivity is not unique
since the ocutpole state is sensitive to all aspects of the inter-
action and model.

The modifications of nuclear reaction matrix elements arising
from the use of single-particle wavefunctions for a finite single-
particle potential with a diffuse surface were studied. To obtain
the single-particle wavefunctions a Woods-Saxon potential with a
Thomas spin-orbit term was fitted to the experimental single-particle

energies for each nucleus considered. The nuclear size is an important

i
!
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quantity in a determination of nuclear reaction matrix elements.

The radii of the Woods-Saxon potentials were determind by requiring

the Coulomb displacement energies ;o be correctly predicted; In

the case of Pb,which has a neutron excess,the well radius was fixed

by requiring that the wavefunctions predict the observed r.m.s.

radius of the chérge distribution. When fitting Woods-Saxon potentials
to the single-particle states in the Pb region new results were obtained.
For the neutron states in Pb it was foundhthat ﬁhe single-particle
energies and the Coulomb displacement energies could not be fitted
simultaneously. By using different well depths and spin-orbit
strengths for sets of states belonging to different oscillator shells
it was possible to obtain a good fit to the experimental data. The
proton well did not have the energy dependence required to fit'the
neutron states. For the proton states it was found that a potential
well radius 10% larger than the neutron well radius was required to

fit the r.m.s. radius of the charge distribution. The wavefunctions
for the proton and neutron wells predict r.m.s. métter radii consistent
with the proton and neutron matter radii being nearly identical. The-
fact that the neutron and proton wells must have different radii

to be consistent with the experimental data leads to ambiguities.l

By fitting the protom-hole and neutron-hole energies with singie-
particle potentials it was assumed that the Hamiltonian for the Pb208
ground state could be written as the sum of a proton single-particle
potential and a neutron single-particle potential. .The fact that

the proton and neutron wells of different radii were required to
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fit the data implies that in the absence of the Coulomb interaction
the total Hamiltonian does not conserve isospin. Since the nuclear
part of the Hamiltonian must conserve isospin an additional term
coupling the neutrons and protons must be added to the Hamiltonian

so that isospin is conserved. To regain isospin conservation neutron-
proton correlations need to be introduced in the ground state. This
point requires further investigation.

In Chapter &4 proton and neutron Woods-Saxon wavefunctions

for A=15, 17, 39, 41, 207 and 209 nuclei are tabulated as expansions
in terms of harmonic oscillator wavefunctions. The expansion of

the Woods-Saxon wavefunctions in terms of oscillator wavefunctions

is useful for shell model calculations since the mathematical pro-
perties of the harmonic oscillator wavefunctions are used to evaluate
matrix elements the computational time is greatly increased. In
Appendix B results are obtained which can be used to decrease the
computational time. New)recurrence relations for the Talmi coeffi-
“cients and relations among radial integrals evaluated with harmonic
oscillator wavefunctions are derived. One also obtains in this

»

fashion a simple method for calculating the radial integrals required
in calculating electromagnetic moments. With these methods any
desired integral of rL with Woods-Saxon wavefunctions can be obtained
from the expansions in terms of harmonic oscillator wavefunctions.
The necessary formulae for L = 1,2 and 3 are given in Table B-1l.

It was found that the Woods-Saxon wavefunctions deviate from

harmonic oscillator wavefunctions in three main respects, which can
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be conveniently expressed in térms of the value of fiw required to
maximize the overlap of a Woods=-Saxon wavefunction with the main
oscillator component. For a set of states belonging to the same
oscillator shell the values of fiw are state dependent. For states
with small values of orbital angular momentum and small binding
energies the Woods-Saxon wavefunctions have a much greater extension
beyond the potential well than harmonic oscillator wavefunctions.
For these states even the state dependent ¥w gives a poor overlap
of the Woods-Saxon and harmonic oscillator wavefuncéions. These
characteristics are exhibited by the single-particle states in
A=17, 41, and 209 nuclei. In addition to the state dependence for
states within an oscillator sbell there is a state dependence for
states belonging to different oscillator shells. In A=15 and A=39
nuclei the average value of #iw for the hole states is larger than
for the particle states in the A=17 and A=41 nuclei respectively.
In the Pb region the state dependence of #w within a shell is as
great as that between shells.

In Chapter 5 we presented calculations of the A=14,18 and
38 spectra using Woods-Saxon wavefunctions. The local velocity "’
dependent free reaction matrices with only relative S state components
included were used as the effective interactions. The Woods-Saxon
calculations of the A=14 and A=18 spectra were compared with cal=-
culations using harmonic oscillator wavefunctions for an ¥w value
averaged over the p and (s,d) shells, For the (s,d) shell matrix

elements were decreased considerably whereas the p shell matrix
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elements were increased. The Woods-Saxon wavefunctions for the
hole states can be well represented by harmonic oscillator'wa;é-
functions with an appropriate value 5f fiw. As a result the two-hole
spectrum calculated with Woods-Saxon wavefunctions can be reproduced
by using harmonic oscillator wavefunctions with the appropriate
value of fiw. For the A=18 épectra the state dependence of the
Woods-Saxon calculation cannot be reproduced by a harmonic oscillator
calculation. The Ca38 two~hole spectrum was calculated using Woods-
Saxon wavefunctions. Since the hole states are deeply bound the
Woods~-Saxon wavefunctions are well represented by harmonic oscillator
wavefunctions. The Woods-Saxon calculation differed only slightly
from thé harmonic oscillator calculation.

In the ca%culation of the 018 spectrum with Woods-Saxon

j

wavefunctions it was found that the 02+ state was shifted upwards.
relative to the other states. This shift makes the description of
this state as a mixture of spherical shell model and &eformed com=-
ponents more consistent. The state dependence of the matrix eléments
ipyolving configurations from both the p and (s,d) shells indicate
that core excitafion matrix elements will be significantly affected
by using Woods-Saxon wavefunctions. The calculations presented
show that single-particle wavefunctions for a finite single-particle
potential must be used if a detailed comparison of experiment and
theory is to be made. |

In Chapter 6 the recently developed KF(e), which was obtained
from a non-local separable potential, was used as the shell model

effective interaction. The spectra of 018, F18, Ca42, Sc42, szoo
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) 210 . . .

and Pb were calculated using both harmonic oscillator and
. 18 18

Woods-Saxon wavefunctions. The 0 and F spectra were calculated
using harmonic oscillator wavefunctions and for ¢ = -200 MeV and
€ = =80 MeV. These two values of ¢ give matrix elements corresponding
to nuclear reaction matrix elements evaluated using plane wave and
harmonic oscillator intermediate states. The two sets of matrix
elements give significantly different spectra. The question of which
method gives the best matrix elements needs to be answered. The O

18 . s
and F~  spectra were also calculated using Woods-Saxon wavefunctions.
The use of Woods-Saxon wavefunctions introduce changes in the spectra
which are as large as those arising from the inclusion of core
. . 42 42 .
excitation effects. In Ca ~ and Sc the effect of using Woods~Saxon
. . 42

wavefunctions was studied. Xt was found that for Ca4 there were
only minor changes in the spectrum whereas for the T=0 states in

42 . s
Sc . the changes were significant.

. 206 210
In the calculations of the Pb and Pb spectra the effects
of nuclear size and Woods-Saxon wavefunctions were studied. The
spectra were calculated using harmonic oscillator wavefunctions for
fiw = 8.0 MeV. These two oscillator potentials corresponds respectively
82

to the Woods~Saxon potentials obtained by Rost and the one obtainad
in Chapter 4. The two values of %w give significantly different
spectra. This means that knowledge of the r.m.s. radius of the
neutron distributions in Pb is important for the correct determination
of nuclear reaction matrix elements. Only a few low-lying states

206 210

in Pb and Pb were calculated with Woods-Saxon wavefunctions.



-232~

In'Pb210 the use of Woods-Saxon wavefunctions produced signifi-

cant changes in the energies of low-lying states. In the Pb region

. 1
there is a significant cancellation between the S0 and 3P1 com-

b
ponents of the interaction. 1In a determination of the nuclear

reaction matrix glements for this region it will be importantfthat

both the 1S0 and 3P1 components are accurately de;ermined.
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APPENDIX A

SHELL MODEL MATRIX ELEMENTS
The one=-particle, one~hole, two=-particle, two-hole and particle~
hole state vectors are defined in the j-j coupling scheme. With
these definitions expressions for the matrix elements of one and two
body operators are given. The phase conventions defined here are
used throughout the main text. |

A-a State Vectors

The ground state of a closed shell nucleus has total angular
momentum zero. We take the ground state to be the shell model vacuum
denoted by lO >. Then, using the usual fermion creation and anni-
hilation operators, a single-particle state is

. _ +
jm > = 2in |o > (a-1)

where the coupling is

m

v
s - . ¥
|Jm > Z‘< £%m slem > uv.&j(r)Y,&m-s(e’cP)xs . (A-2)
]
A single-hole state is formed by removing a particle from the wvacuum.
For this we define a hole creation operator by

. _ + '
lJm >h = bjm lO > . (A-3)
“The subscript on the ket indicates that the state is a hole state
with quantum numbers (j,m) which was formed by removing a particle

with the quantum numbers (j,-m). The kets are related by

> = (-1>j'maj_m|o >= DI, om> . (a4
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The phase factor is added so that the hole state transforms as a
particle state with angélar momentum (j,-m). Then isospin is used
as a quantum number in the description of the states we use the .
notation

|proton > = |%, +% >

|neutron >= |%, -3 > . (A-5)

The two-particle state of good ahgular. momentum is

l(Jan)JM >= }_} < JanmamleM > I_]ama > lmeb > . (A-62)
o™

Including isospin we use the notation

| (3 3,)m >| Gy, >

l(jaba)JM;TTz >

= |G, 3 m > < ¥t e, |Tn) >lEe, >Ee > . (a-6b)

The state (A-6b) is not properly antisymmetrized. Denoting the

positions of the two nucleons by 1 and 2, the antisymmetrized and

!
normalized two-particle state is

1 1
| G5, )M;TT, > = —= T
e SE R FE YRS

(0,3, @10 >+ DI [,@5,MmIm>) . @)

In (A-7) T+J must be odd if ja = jb.

The two-hole state vector of good angular momentum is

| G372 >, = Z < Sadpmamy | >ligm, >y lagmy > o 4o®)
Ba M

Using (A-4), (A-8) is
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|Glgm>, = DI G s> (4-9)
The hole states defined in (A-3) and (A-8) are conjugate to the
particle states (A-1l) and (A-6). Isospin is included for hole states
in the same way as for particle states, except that the third-component
of isospin for holes is opposite to that for particles. The nor-
'maiized and antisymmetrized two-hole state is the conjugate of (A-7).
The particle-hole state vector of good angular momentum is

defined to be
—
|G i)t >y, = Z < 3 dpmom |t >3 m ) > gm > a-10)
mp,mh
where p and h are used to denote the particle and hole quantum numbers,

respectively. In terms of particle states the particle-hole state is

_ i -
| l(jp,jh}JM >oh " Z .(-1) " mh< jpjhmpmhlJ'M >
"p*™n
x ijmp >Ijh-mh > . (a-11)

For states of good isospin we have that

— -t
2 h
. = - 2.1
lJ'M,TTZ >ph JM >Ph (-1 < zztpthl'l"l'z >
tP’th
1 - -
X l%tp >]«5 th4> . (A-12)

When the vacuum has non-zero isospin, the isospin formalism is not

useful for constructing shell model states.
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A-b Particle-Particle Interaction Matrix Elements

In effective interaction calculations the residual interaction
has a different form for T=0 and T=l interactions. To obtain expres-
sions for the matrix elements we assume a residual interaction of

the general form

vi(1,2) = Zoi'viT(r) (a-13)
i

where 0i designates operators in spin and relative angular momentum
and ViT(r) is the radial dependence in the relative coordinate. Using
(A-7), the antisymmetrized particle=-particle interaction matrix ele-

" ments are-

< GPauTlvi[ G yeet >, =
<[5, (i@ 1a6T|v",2) 13, (1) 5, @) 1T >

(A-14)

[(1+8(c,d)} (1+8(a,b)}]*

where L‘ is the relative angular momentum of the pair (a,b). The
phase factor occurs because of antisymmetrization. Using.shell model
transformations and harmonic oscillator single-particle states (A-14)
has the final form

< (3,3 RGT{V7] (5,3, )T >,

= - - ) < Gl asys >< (L'S>Jl<jajb>Jl><-1>L+]

[{1+5(C,d)}{l+6(a’b)}%L’Ll,S

x Z < nc.zc,ndzd;le,Na‘c’;L SR VAN =6 ASEYCIS W Al
nfn'g "W

x (-1t L+S4T)

{1-(¢-D» - (A-15)
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[ (2L+1) (2L'+1) ]?(29+1)w(qu L}«)W(L,&'JS ;L })
9’ x < n(8) s ;1|vT|n u's)} sT> . (A-15 contd)

The coefficients

< (33T 193 > = < U B BgD1433] U LILES;S >
are the jj-LS transformation coefficients defined and tabulated by
Kennedy and Cliff.128 The coefficients
129 < nczc,ndzd;Llnz,mC;L >
"are the Moshinsky transformation brackets from laboratory to
centre-of-mass coordinates of the two particles. The matrix elements

< n(.zs)»;TlVTln' (.6'8)};‘]? >

are reduced matrix eleﬁents of the interaction where £ and ;' are
the relative orbital angular momenta andgris the total relative

angular momentum. Using (A-13) the reduced matrix element can be

written as

< n(LS)& s7|vE | ne (vs)» 3T > = Z_‘< (,es)9 Tlo l(ﬂs)} ;T > < n.zllv () ot > .
(A-16)
For scalar, spin-orbit and tensor operators we have that
< (zs>9|11(ys)>>= 8,41 | (a-17a)

< (zs)»l&-gl (z's)9> =3, 31%[3(9*1)’““‘1)'2] (A-17b)

]

< (48) 91512103'8)(‘ > = 8g,(-1) 1y 24y [ (2241 (25 '+1) %

®

W(ZS,G'S;éZ) < £02'0/20 > . (A-17c)

S is the usual tensor operator The radial integrals are

12

< nEHViT(r)Hn‘ﬁ' ‘jPR (£)V, (r)R ,j,(r)rzdr (A-iS)
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where the oscillator functions are those defined in Appendix B. 1In
effective intéraction calculations the nuclear reaction matrix is
usually determined separately for each relative >’value. The variow
interaction terms are lebelled by ZS+¥ﬁ?.

In the above expressions oscillator single-particle wave-
functions were assumed. The generalization to an arbitrary radial

single~-particle wavefunction expanded in terms of oscillator functions

is straightforward. The expansion is
m

uvzj(r) = 2: an(vjj)an(r) (a-19)
n=0 :

where m is chosen so that the expansion gives a good representation
of the wavefunction. Using the radial wavefunction (A-19) the

particle-particlé matrix element (A-15) is

. T T .
o< 3P T|VT (5, 35T >

= > N(LL'S) Z a  (e)a, (da (a)a, (b)
LL'S ¢ e

c
Beda™a™

'l
x ,>_.v y < nc‘ec’nd‘ed;Lln"”N‘x)’L >< n'z'iNx.iL'lna‘ba’nbﬁb;L' >
ngng 'NX
* Mng,n's!,SHT) ‘ (4-20)
[
where N and M denote all the expressions before and after the Moshinsky
brackets in (A-15).

A-c Hole~Hole Interaction Matrix Elements

It was shown in Sec. A-a that the two-hole state is related
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4

to the two-particle state by
J-M-I-T-T3 .

1 G a)GTT, > = (1) | (35,3,3MT-T, > . (a-21)
Since the interaction matrix elements are independent of M and Tg
the hole-hole interaction matrix elements are identical to the
particle-particle interaction matrix elements. For interactions which
depend on T3, for example, the Coulomb interaction, the change in
sign of T3 is that required to make proton-hole matrix elements the

same as proton-particle matrix elements.

A-d Particle-Hole, Interaction Matrix Elements
With the definition (A-12) of particle-hole states the Tamm=-

Dancoff approximation interaction matrix elements are

X
D (J,T) = }: (-1)° C1Cs, < lvl;z _‘]3> (A-22a)
and
. ) _
E (J,T) = 21‘ ('1) C1oCqy < lVlJBJ >(A-22Db)
m,t
where
Q= j2+34 m2 m4+1 t2 t4
= L
Cip = < 3ydy 12|JM>< %t [TT3>
and
e s 11
Cap <J3J4m3m4l.J'M>< 5ot ]TT > .

The subscripts 1 and 3 denote particles while 2 and 4 denote holes.
b and E are the direct and exchange matrix elements, respectively.

The superscript x denotes the matrix elements of the Tamm-Dancoff
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approximation and y will be used to denote the ground state correla-
tion matrix elements of the random phase approximation. For the

ground state correlations the matrix elements are

¥ . -1, -
p’ (J,T) = Z (-1)¢012034<3133|V|32 3,

m,t

1 > (A=-22c)

and
E’(3,T) = Z -1%..c., <i.i.lvli 'lj s (A-22+d)
’ 12734 ~ J1931 g J2 .
m,t

Using Racah algebra the particle-hole matrix elements can be expressed

in terms of particle-particle matrix elements

. - J 3 ET T L
D (J,T) ='Z (-1) (23'+1) (2T '+1)
' Jre '
x W53, 33 ' DWCEESST'D)
. s T! . .
x < (33T v [ Gy atTr > (A-23a)
T dptigtiats
EJ,T) = } (-1) L 47273 o341y (2141)
s
x W({j 1j4j3j2;J'J)W(%%%%;T'T)
.. T, .
x < (§3 )TV [ (G303 > (A-23b)
y 7 j1+34+ J'HT 4L
D’ (J,T) = /, (-1 (23'+1) (2T '+1)
ST
X W(jlj3jzj4;J'J)W(% %%;T'T)
.. T,
x < (JIJB)J’T'lV | Gyd ot > (A~23c)
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- jo+ja+l
Y (3,T) = 2‘ -1) L T2 2311y (2T '+1)
' JT!

W(313533,33 WG TIT)

t

b

< s Ty, . .
< (3113)J'T'IV I(J4JZ)J'T‘ > . (A-23d)
Performing the isospin summation in (A-23) we have

v

DT EruERET'D < G133 V] Gy >
i
[ ]

T
R . T 3 .
=% < (33,03 [{3v7 B, +v7 8, 3 (5535037 > By

T

R IR ELI IS NS SR [ TCI I L (a-243)

Tl

and

}_ QTHHUEEST'T) < (33T v | (553097 >
TI

. T T, :
=% 3 - 3
5 < (33,0373 8y, v 8,0 (3535) > Bg

T

+5< G0 Byt Bl Uadp) > 8y (a-24b)

The isotopic spin coupling in (A-23c) and (A-23d) is the same as
‘that in (A-24).

A~e One-body Operator Matrix Elements

The matrix element of a one~body operator qu between two-

particle states (A-=6) is
. s ' -
< (G igdd™ lqul (G i)™ >

= < JkMq|IMY > < (jajd)J'”Tkll(jajb)J > . (A-25)

I
[
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The reducedmatrix can be evaluated in a straightforward manner by

making use of the reduction formula

< [3, (D 34@ 13"l W@ 11,13, 13 >

~ d274a, .. I . - s . .
e P €~ ¢ TR IO Y ORI W6 MR IO AR EL PO il i, >

b8, DT TR R < dgln @, > (n2ee)

where
<l i, > = < e@ilmlei, >
k| ~%-k A
- (D 5, <[k >
R A AL
x < T, () > {_.1"'('1)2 } (A-26b)
< Tk(r) > = [ 'uc(f)Tk(r) ua(r)rzdr | (A-'26c)

and
. . N
J = (2J+1)_2
Equation (A-26b) 1is the reduced matrix element for single-particle states.
With the antisymmetrized state vector (A-9), and (A-26) the reduced

matrix element in (A-25) is
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< Ui areim W+ @G, 33T >,

S 1 _ G(_l)ll&ja-jd
@ [as s )1

N N S . .
x (D7 8(i 3 I W3 3,3 T5kIPM 5,0

J+I+T!

Lol
+ (~1) 8(i_3,) I Cig3y3"3k3 MM gdy)

T+J+J '+1

Lo
+ (-1) 8(3gd I W3 543"k IMI 5 3,)

B DT 8 3,)3,00 3 Tk M 41) =27

" where
e . . T+T' . .
M(id,) =< i llz, (1 i, >+ D77 < @l > -

If both particles are neutrons or protons, then.
. . = s n’p.
M(3g3,) =2 < ln i, >
If the particles are different, M(jc,ja) will be the sum or difference

1
of the two operators depending on the value of T+T'.

For the case of a scalar operator (A-25) is

< GIPIT I E@ (G331 >

= 8(3,7)8(T,TNAM3 3,80 3,0 M5 8U,,3]  (a-28)
where

M(3a,) = < S llEWli, >+ <3 lE@ i, >

and

. < ja“f(r)llja >-=\/ﬁua(r) £(r) ua(r)rzdr .
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The matrix element of a one body operator between two-hole

states (A-9) is
b Uiamln 1G 3y >

= (-1)J+J"M'M'< (jcjd)J'-M'lqul (jajb)J-M >

JHT MM

- - 1M1 s 9 ] 3 3 -
-1) < Ik [31M > < (3 IQ I IT NG I> - (4n29)
The reduced matrix element in (A-29) is independent of (M,M') and is
the same for both particles and holes.

The matrix element of a one-body operator between particle-

hole states (A-11) is
< (333,030 T | (53 M >
= < gRg | > < Gyt I lGyaps > - (a-30)

The subscripts 1 and 3 denote particles while 2 and 4 denote holes.

The reduced matrix element in (A-30) is -

< (3333 T )41, M 1(313,)3 >
k+jl-j4 ~ J|A
-1) 3((-1)7 3400353, 3'93k3)< 35l (@) 13y > 853,

~

-7 3,00,3,3'33k3)) < 3l @i, >8G3) - 43D

Equation (A-31) is analogous to (A-26) . Since "particles" and tholes"
are distinct, there are no additional terms in (A-31) similar to
those in (A-27).

The matrix element of a one body operator between a particle~-hole
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state (A-11) and the ground state is

<ol [Gapm>

= < Jag |00 > < 0|7y [1(5,3,)9 > (a-32)
where the reduced matrix element is

< ol /(3,303 > |
Ltj. =] i .

A SN
= (-1) iy < dplmlliy > - (a-33)

[}

A-f Electromagnetic Transitions

The partial width of a gamma ray transition (with angular

momentum L, energy E7 and parity x) from an initial state of spin Ji
131

and final state of spin Jf is given by

E

_ 8y (L+1) 7 21+1

T = (== B(L n) . (A-34)
Lot p[ar41yrr]? BC

The reduced transition probability is

, 1 V- 2
Bt~ 8 = Grgn [, | < ElTlt >|
. mi,mf
/ (23 +1) . :
- @ | < gl lli >  (a-35)

where the reduced matrix element is defined by

<aplnlopy > = <spaalig ><nli> . Go36)

The operators qu are the appropriate multipole operators (see below) .

It follows from (A-35) and (A-36) that
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(23.+1)

BLywE » 1) = gy BlLmi-6 . o (a-37)
£

Convenient units for the reduced transition probabilities are

[B@Ix)] = ezfm?L electric
[BLx] = ROmeZL-Z magnetic

For electric transitions the multipole operator in (A-35) is

-

M \ k., L_M
gL = ZJ e(etty ey Y CRLW) (A-38)
k

'where t3 is the third component of isospin. The operator (A-38)

has zero matrix elements between neutron single-particle states. In
shell model calculations it‘is necessary to use an effective charge
for neutrons and protons. Introducing effective charges, (A-38)
becomes

ETLM = 2; e[(€p+en)% + (ep-en)t3k]rkLYLM(9k,¢k) (A-39)
k

where ep and €, are the proton and neutron charges in units of e.
It is most convenient in calculations to perform the isospin reduction

separately, comsequently we write (A-39) in the form
M M
El= ) 1y M6 00 (A=40)
k

where I is the isospin factor in units of e. With the single-particle
states (A~2), the reduced matrix element of the electric multipole

operator is
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< UM e i; >

- j - b oL F
je~%-L  j. iy E7L
=1 (-1 % Lo < jgi,3k[10 > < L >{1+( 1) I}
. (4x)* ,

2
(a-4l)

ca

where

< rL > = :/puf(r)rLui(r)rzdr .

When the radial wavefunctions are harmonic osciilator wavefunctions

the radiai inéegrals in (A-41) may be evaluated analytically. A

table of several of the integrals aré given in Appendix B.
For.magnetic transitions the mﬁltipole operator in units of

Bohr nuclear magnetons is

k

I is the isospin reduction factor defined previously and u is a
magnetic reduction factor. The magnetic reduction factor is identical
to I with ep and € replaced by up(=2.79) and un(=-1.91), respectively.

It is convenient to separate (A-42) into an orbital and a spin part,

.l = w0 (a-43)

¢

with

) S a0

k

u )
and

M

M (o) = )_V (r) LY (6,>9,)) ug .

k
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For the single=-particle states (A-2) the reduced matrix elements

of the magnetic multipole operators are

< e Midh@erlie®i; > .
:

= 2I(-1) Ighets | L+Jl.

WG bodshy ¥
_ 4.0 AL+L :
<2 M-y POE }

(lm)% -2

x < .zf.cimlLl > (A-44a)

and

%L
< umidg @lei; > = w0 £75, < 3.3,5%]0 >

x (L=(8473,) (231 =083 ) 211
-l s £+ ALAL
>

i7f . .
e SEC _{1+(-112 } (a-54b)
NN

where P

L-1_ _ L-1 2
<r > = L/‘uf(r)r u,r dr .

The reduced single-particle matrix elements (A-41) and (A-44),
combined with the one-body operator matrix elements of Sec. A-e,
can be used to evaluate electromagnetic transition rates for the

various shell model states considered.
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/ APPENDIX .B

RECURRENCE RELATIONS FOR TALMI COEFFICIENTS AND

SHELL MODEL RADIAL INTEGRALS

Harmonic oscillatqr functions are used as the unperturbed
single-éarticle wave functions in most nuclear shell model calcula-
tions. Apart from being a good representation of the single-particle
wave functions in most cases, the oscillator functions have converr
jent mathematical properties. The best known properties are the
Talmi i;;nsformation132 from laboratory coorindates and the Talmi-
method  for evaluating radial integrals. Brody, Jacob and Moshinsky
" have discussed the evaluation of shell model matrix elements using
the above methods. Since any radial wave function can be expanded
iﬁ terms of oscillator functioms, the transformation properties of

the oscillator functions can always be used to simplify calculations.

As shell model calculations become increasingly complex the methods

- used to evaluate matrix elements become more ‘important. For example,

the calculation of oscillator brackets required in Hartree-Fock
134 '
calculations.
We have found that radial oscillator function recurrence
relations provide a convenient method for obtaining recurrence
relations for radial integrals and Talmi coefficients. These rela-

tions are particularly useful when a large number of radial integrals

are required. For instance, the case of radial wave functions which

133
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have been expanded in terms of oscillator functions. Several
133,135,136

authors have obtained various expressions for the Talmi coeffi-

cients. The recurrence relations given here are more general and

have the advantage that all possible coefficients may be generated.
The methods discussed are applied to the simple case of

evaluating radial integrals required in calculations of electromag=- -

netic multipole moments.

B-a The Radial Integrals

The various matrix elements required in nuclear shell model

129
calculations have been discussed in detail by Moshinsky and Brody,
133 .
Jacob and Moshinsky. In Moshinsky's notation the radial integrals

required for the matrix elements are

[\

<atv@lne > = [ R, @V@ER  Gox'ex . @D)

V(r) is the radial dependence of the potential in the relative coor-
dinate and (n,¢) are the usual quantum numbers of relative motion.

The radial oscillator function is

r % 2
— 2n! L ~x"[2 a5, 2 o
Rn.e(x) L——-——I‘(n+z+3/2)]' e L~ x%)- (8-2)
where
_ o Muk
and
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. : ;‘

The Laguerre polynomials Ln£+2(x2) are those defined by Erdelyi,
137 :

et al. The radial oscillator functions, as defined in (B-2), are

normalized such that

‘/‘Rm&(x)RM x)x2dx = 5. . (B=3)

For central, spin-orbit and tensor forces the radial integrals
required satisfy the condition £' = 4, Z12. The values of n and n'
are determined by‘energy conservation in the Moshinsky transformation.
If the radial wave function being used has been expanded in terms
of radial oscillator functions, n and n' can vary over a wide range
in a given matrix element.

Using the Talmi transformation the radial integrals (B-1)

can be expressed as the sum of Talmi integrals, i.e.

Atnin?

\"

< n''|[v(x)|ns > =/, B(n',e',n.&;p)Ip (B-4)
p=A

_ AL . . ..
where A = = and is an integer. The Talmi integrals are
2 2pt+2 -x2
Ip = mfx e V(r)dx (B-5)

and the coefficients B(n'4,nf;p) are the Talmi coefficients. Expres-
sions for the Talmi coefficients can be obtained by using the explicit

form of the Laguerre polynomials.
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B-b Recurrence Relations for the Oscillator Functions
It is convenient in the following discussion to use the

notation
Ing.>= R, ) . (B-6)
The recurrence relations for the Laguerre polynomials can be used

to write down the following recurrence relations for the radial

oscillator functions:

"

x|n,s > (n+.e+%)%ln,1,-1 > - (n+l);§]n+l,.&-1 >  (B-7)

x|n,s > (n+.&+3/2);£]n,.8+1 > - n%ln-l,.&+1 > (B-8)

and

len,z > = [ (a+l) (a+e+3/2) ]%ln+l,,6 >

O
+ @oH43/2) |n,4 > - [a(iety)]%|n-1,4 >. (8-9)
From (B-8) and(B-9)'we have the useful relation

Lo 3
(n+s+5/2) 2|0, 442 > = n*|n-1,442 >

E 3
+ (@He+3/2)%|n,8 > - (otl)%|n+l,2 > . (B-10)

B-c Recurrence Relations for Radial Integrals

The oscillator function recurrence relations can be used to
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‘ obtain recurrence relations for the radial integrals < n'f'[[v(r) ||n.t >.
From (B-10) we have immediately that
% R’
(+2+5/2)% < n', 2! |[V(x) [n, 242 > = n*< n', 2 ' ||V (2) n-1,0+2 >
%
+ (h43/2)2% < ' V() n,2 >

%
- ()2 <n''|V(x)|n+tl, L > . (3-11)

Equation (3-125 may be used to obtain the set 9f integrals
< n', 4 |v(x) I!n,z+2 > from the set < n"l A0V () |ln+l, >. It is obvious
that both sets of iﬁtegrals must requi&:e the same set of Talmi inte=
grals, that is, moments of the potential V(r).

For potentials that commute with x equations (B~7), (B-8),
and (B-9) may be used to obtain relations among the. radial integrals
of the potentials.' Using (B-10) and the relation

< n'.@'”sz(r) lng > =< nw: “V(r)leln.& >  (B-12)
we have that

[ (m'+1) (a4 '+3/2) % < n'+1,4'[V(r) fn, 4 > =
-[nt @) 1% < at-1,80 V() k> +
+[n(at+E) 1% < n? AV (D) n-1,8 > +
517(2n'+,z'-2n-.z) <n' 2V (r)n,t >+

+[ (n+1) (nhe+3/2) ]25 <n', L' |[v(x)|ntl, L > . (3-13)'
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From the relation
< n',4[xv(r)x[ns > = < n'z'”V(r)xznnz > (B~14)
;pd (B-8) and B-9) we have that

[ (n1+2143/2) (n+£+3/2) 1% < ',z 1V (x) In, 8+ > =
[n(n'+2+3/2) 1% < n', ' +1|[V(r) |n-1,841 > +

+[n' (o+e+3/2) ]% < n'-1,2+1|v(x) |jn,4+1 > - [n,n']35 X
< n'-;l,.& 41|V () [[n-1,2+1 > - [ (n+l) (n+e+3/2) ]% x
<0t V() o+l >+ (20+443/2) < o', V() n,s >

-[n(nts+y) ];é <n' V) |n-1,4 > . (B~15)

. Equation (B-13) is a relation among integrals of the same £ and 4'
while (B-15) gives the set of integrals < n',s'+1[[V(x)|jn,£+1l > in terms
of the set < n',2'|[V(r)|jn+l,4 >. Other relations may be obtained
in a similar manner.

Although (B-13) and (B-lS) are only valid for potentials that

[}

commute with x, a simple velocity dependent potential of the form

2 2
= L ‘E'— had
W(p,r) =5 V(r) W) of (B~16)
(where p is the relative radial momentum operator) can be handled

conveniently by these methods. The oscillator potential for relative

motion is
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=41 " -
Hrel o + 5 fiw x . (B-17)

Using (B-17) and (B-9) the radial integrals of W(p,r) are

< 't |[Wip,r) n,4 > = [ (nt+l) (n+z+3/2)]%hw <nt', ' |v(x) |ntl,s >
+ @nie+3/2)8w < n', 4t V@) o4 >
;Eﬁ

+ [n(o+s+%) %00 < ', 4t |V(x) n-1,2 > .

(B-18)

B-d Recurrence Réaltions for the Talmi Coefficients

To obtain a recurrence relation for the coefficients

B(n'4',nt;p) we use (B-9) and the equation

<nt, et V@t fn.g > = @ut43/2) <t gt V() fn,s >
-[(n-él) (n+£+3/2) ]% <n',2' V() |n+1,2 >

-[n(ats+y) ]5E < a',|v(x) lln-l,; > . (B-19)

Expanding both sides of (B-19) in terms of Talmi integrals, using

the result
IpCVxZ) = (p¥3/2) I, (8-20)

and equating the coefficients of the integrals we have that

B(n's',ntl,£'p) = 0B(n'2',nL;p)+EB(n'4",ns;p-1)+7B(n'4 ", n-1L;p)
| | ‘* (8-21)



-256-

. where

1
A <pSadmtntl, ) =it .

The coefficients in (B-21) are given by

[ (@+l) (n+e+3/2) ]}2 a = 2n+4+3/2
[ (1) (n+2+3/2) ]}i B = -(pty)
[ (it+l) (n+s+3/2) ]% 7 = -[n(n+,z+35)]% . (B-22)

In (B-21) it is to be understood that a Talmi coefficient is zero,
if the value of p is outside the range allowed for that coefficiert .
To obtain a recurrence formula for the coefficients

B(n'4'+1l,ng+1;p) we use the relation
< n'.ﬂ'”V(r)xznn.& > =< n'yxv(e)x]ns > . (B-23)
Using (B-8), (B-23) can be written as

< n',z'llvcr)xzﬂn,z >=q < n', 4" +1 V() |n-1,8+1 > +

+a, < a'-1,4+1V{r) [ln, 041 > + < nt=1,4'+1[V(x) [n-1,4+1 >
ta, <ahe V@allng > (3-24)

where
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1

.l __3___]
QT L (mst3/2)

%
- [ =i |
Q = | e +3/2)
%
- . nn'
o = [ (ar4+3/2) (n'+4 '+3/2) ]
%

@y, [ (n+L+3/2) (n'+4'+3/2) J

(B-25)
In the same manner that (B-21) was obtained we have from (B-24) that

B(n's'+l,n8+1;p) = o B(n'4'+l,n-14+15p) + 0B (n'-18'+1,04+1;p)
+ oﬁB(n'-lz'+l,n-lz+l;p) + oz(p+%)B(n'£',n£;p}1)
(B-26)

where

' ‘ .
L2 5 € p €
Expanding both sides of (B-1l) in terms of Talmi integrals

and equation the coefficients we have that

(n+,c+5/2)}é B(n'4',ni+2;p) = n}i B(n's',n-14+2;p) +
5 3
+ (ntg+3/2)% B(n'4',ns3p) - (ntl) B(n's',n+1s;p)
(8-27)
where

Since the range of p for the two sets of coefficients in (B-27) is
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different we have Fhat

@y T st mile ) = @r3/) BB, S L (e-28)

Equations (B-21), (B-26) and (B-27), combined with the

symmetry

B(n'4',nt;p) = B(nL;n'4';D) (B-29)
and the normalization
B(00,003;0) =1 (B-30)

can be used to generate all of the Talmi coefficients.

B-e The Radial Integrals < n'ZlﬂxA”nz->

The calculation of transition moments involves radial inte-

grals of the form

IO, = < n'g' [« s > (8-31)
where A is the multipole order of the transition and A = £'=4;
M = n'-n. From (B-31) it is obvious that

I\;A8,8n) = T(A;-40,~/0) . (B-32)
The radial integrals I(A;Af,4n) can be evaluated analytically when

oscillator function basis states are used. A formula involving a
138

finite sum has been given by Nilsson. However, the oscillator
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function recurrence relations may be used to generate the desired
integrals without recourse to a summation. Consider the case of a
dipole transition. From angular momentum considerations the desired
integrals are < n'4-1lx|lng > and < n'4+1l{x|ne >.

Using (B-3), (B-7) and (B-8), the non-zero integrals are

.

< n,4-1lx|ns > = (nti+h)

5

(nte+3/2)

%

< n,4+1]x|lng >

< a-1,2+1|x|ne >

< n+l,2-1|x|ng > -(n+1)% . (B-33)
Any desired integral may be obtained by repeated application of
(B-7), (B-8) and (B-9). The integrals for A = 1,2 and 3 are tabu-
lated in Table B-l..

Inspection of the recurrence relations for the oscillator
functions leads to selection rules for the radial quantum numbers as

well. The result is

I(2t; +2m,Mm) =0 if s > +tim
/ M < ~t4m ‘(B-34a)
I(2t; +2mtl,m) =0 if Lla > +tim © (B=34b)
and |
I(2t+l; +2m-1,Mm) = 0 if Mo > +tdwtl
Mm < -tim (B-34¢)
where

=0,1,2,....
m=0,l,... St .
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Table B-1 The integrals of x}‘ where X = r(-;-zﬂ);é.
A nt 4! <n'.8'”XA“n£>
1 n  £-1 (n+z+%)%

1 n 4+l (n+g+3 /2);5
1 o+l 2-1 /‘ - (n+1)%
1 n-1 2£+1 ‘4 -n%
2 n+l 2 -[ (n+1) (n+2+3/2) ]35
-2 n 2 (2n+2+3/2)
2  n-l 2 ~[n(n+i+%) ]'12
2 n 2=2 [ (o) (n+s-%) ];E
2 n+l  4-2 =2[ (n+1) (n+2+%k) ];é
2 nt2 £-2 [ (1) (o2) ]%
2 n 442 [ (akg+3/2) (aeke+5/2) 12
2 n-1 - £+42 -2[n(n+s+3/2) ]%
2 n-2 g2 [n(n-1) 1%
3 n-1 2-1 =[n(n+s-%) (nts+s) ]%
3 n £-1 (nt+8+%) %(3n+£+3/ 2)
3 n+l -1 -(n+l) % (3o+2£4+3)
3 n+2  2-1 [ (n+1) (n+2) (n+L+3/2) ];f
3 ntl g+l -[ (n+1) (n+£+3/2) (n+4+5/2) ]%
3 n 4+l (n+8+3/2) % (3n445/2)
3 n-1 g+l ot (3n+24+2)
3 me2 g4l [n(a-1) (o) 12

3 n £-3 [ (n+g -3/2) (o2 -%) (ntp+s) ]JE
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A nt g < argt i ns >

3 ntl -3 =3[ (n+1) (n+p+k) (n+e-%) ]%

3 n+2  4-3 +3{ (n+1) (0+2) (ntL+%) ]%

3 w3 23 [t 1) t2) (#3) 12

3 n £2+3 [ (nte+3/2) (n+e+5/2) (n+4+7/2) ]JE
3  n-1 443 -3[n (n+e +3/2) (nks+5/2) ik

3 n=2 243 +3[n(n-1) (nte+3/2) ]]"E

3 03 48 Aa@-D) @)1
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APPENDIX C

WOODS~-SAXON RADIAL MATRIX ELEMENTS

Radial matrix elements with Woods-Saxon (WS) single-particle
wavefunctions are a series in terms of the same reduced integrals
that are required when harmonic oscillator (HO) wavefunctions are
used as basis states. Special cases of matrix elements with WS
wavefunétions are examined to illustrate the effects of using WS wave-
functions as opposed to harmonic oscillator functions.

It is convenient to write the radially dependent part of thed

particle-particle interaction matrix element (A-20) in the form

RM.E =v.2‘ an ‘(a)an.b (b).an (C)an <d)
2 .n, ,n 8 .e d
a’b’c¢’d

- ng,n's'NK ’

- ot | . T ¢
x Z <nczc,ndzd,Llnz,b;o£L><n'z ,NZ,L'lnaja,nb.cb,L >
X RI(ng,n'f') . . (c-1)

RI includes both the coupling and the,radial integrals. Only the
(ng,n's') dependence is retained explicitly since it contains all
of the information required in the following discussion. To obtain
the desired expressioﬁs for RME we utilize the properties of Moshinsky
brackets that are derived in Appendix D.

For the case 4, =4, we use the symmetry (D-3) to write (C-1)

in the form
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RME = Z Z o () (d)
n

c d
ety AL
>
T 7 Ba
x < nc.ac,ndzd;Lln.c,Nx;L >

[o, <a>anb<b>+<-1>L'L'an @a ()]

x —2 R <auLNGLn 2 n g L >
[1+6(na,nb)]
x RI(n4,n's') . (c-2)

For the case of HO wavefunctions with n = and ja = ‘b the.
Mbshinsky bracket vanishes unless L-L' is even. However, for Ws
wavefunctions the terms in the summation over n and n add or sub-
‘tract if L-L' is even or odd.

Equation (C-2) can be reduced further to compare with a matrix
element evaluated using HO wavefﬁnctions. In the following we adopt
the notation

[a (@a, E*D"a @a <b>]
n n, n n

[n,-n ]= 2 b= . (c-sA)'
b a [1+ &(n_;n,)]

For a central force, performing the summation over 0 in (C~2) leads to~
. T N1 '
RME = Z Z oznc (C)Otnd (d)
nc,ndi.na ngn !N |
x < nc.&c,ndzd;Lln:C,N;f,'L > x {[o]< n'.B,N‘;{;L'lnaza,na.ﬂa;L' >

RI(ng,n'+13)

1 .10 oT.t
+ [ ey < BMHL2NGL lna,za,na+1,za,L >
RI(ng,n'+28) _ _, P s
+ [2] RIE nizy <P +24 ,NG; L In4_,n 424 ;L' >
+ [3] ...

+ouuinn, } x RI(nf,n's) . (C-4)
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When L-L' is odd the coefficients [nd-nb] tend to. cancel making the
¢ontributions to the matrix element small.
For the case that L-L' is even (C-4) can be reduced further

by using Eq. (D=6). The result is

RME = Z Z (c)and(d) x < nczc,nd.&d;Lln.&,l\L’f;L >
,nd,n ng' n'NJC c

1 o1, 0 oT.1 ] - oT 1 oT. 1
X {Cl < n'g,NGL lnaza,na.za,r. >+ C, <n'H,N 1%L lnaza,naza,x. >

+ €y < n'+24,N-2K;L" [n ¢ _,n 8 ;L' >+ C, < nt424 NG L' [n_+18,,0 +14 L' >
+ [3]
e PR } x RI(&,n's) ~ (c-5)
where - 3
c. = "[0] +[1] R’ 41g) 1 [ (a'l) (n'+e43/2) ']
1 RI(ms n'8) 2 L(a+1) (a_T2_+3/2)
%
4 [2] RLGusn'+Z) ;{(nwz) (@' +4+5/2) (n'+1) (' +4+3/2) |
RI(ns,n'%) 2 (na+l) (na+,ea+3/ 2) ]
' E
o [1] RI(nf,n'+18) 1 { N (N6+1/2) ]
2 RI(f.n'8) 2 L (n +1)(n+,+3/2)

%

| RI(ng . n'+24) , 35 N (N+C+L/2) ]
+ (2] REngnigy o L2 @52 [ @_+1) (a4, +372)

%

_ RI(f,n'+28) 1 o % N(N-+Lr1/2) ]
¢y = [2] RI(Ez LA ‘-1/2)] !‘(n +1) (a_+2,¥1/2)

and
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= -[2] RI(mf.n'+2¢) ( (na+1)(na+ﬂa+3/2)]é

C, RI@E,n'2) | (a_+2) (a_+4_¥5/2)

For the special case n_ =0 (D-14) and (D~15) can be used to write

(C-5) as

—_
RME = >—' Z anc(c)and(d) x < nczc,ndzd;le,NAGL >
. g RN .

' N (NH+1/2)
x {[ ¢,-C, ,[:(n'+1) (n'+.&+3/2)]
' %

+e ((N-l) (N-1/2) N (EFL/2) 1 g
3 U ('+2) (o' 14+5/2) (@ '+D) (@' 72372y | |

%

x < n'.&,N;(,L'lOza,Oza;L' >

x C, <n'+24,NGL'|1s 18 L' >
4 a a
+ e o o @
L T }' X RI(ng,n'2) . (C-6)

In many cases for wavefunctions with zero nodes the WS wavefunction
can be represented as mainly one HO wavefunction with n=0 plus small
amplitudes of n=l and 2. For these cases (C-6) gives the dependence

of the matrix element on the (n,n') structure of the interaction.

~
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. APPENDIX D |

1

PROPERTIES OF MOSHINSKY!‘ BRACKETS

The oscillator function recurrence relations (Appendix B)

are used to obtain relations among Moshinsky brackets for states having

the same total energy. '
129

The Moshinsky transformation
L
By = o .
@)%, = 5%,  (relative)
% =
2 Xom = X%, (centre-of-mass) (0-1)

for the oscillator functions (B=2) introduces the transformation

brackets < n.z,l\bf;Llnl.cl,nz,cz;L >. Energy and momentum conservation

J
" impose the restrictions

2n 4 #2048, = 2nH4+2N+L

272
Lty = &L
b.+b
(V2o it (0-2)

Furthermore, the brackets have the symmetries

Z-L<

]

-1)
= (-1)
= (-1

< ng,N&;L|n 4,08, 5L > ng,NC;L{n,4,,0,4, 5L >

£1-L W, .
< N&,M,Llnltl,nz,&z,L >
LR L -
< NZ,ns5L|n,8,,0 4 5L >« (0-3)
Since the recurrence relation (B-9) only changes the radial .

quantum number of the oscillator function, the two-particle states

. of the Moshinsky transformation satisfy the same equation. For

‘ example,
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2
X, 1n1,zl,n242;1. > = -[ (n,+1) (a +3/2)] ln oMl 5L >
+(2n+ +3/2)]n £1omy8,5L >

~[n (a bt %) ]%lnl-ul,nzzz;L >, (0-4)

Similar relations may be obtained for the relative and centre~of-mass
coordinate eigenfunctions. If both sides of (D-4) are multiplied by
< M,N«;e;Ll only one bracket on the right hand side will be non=-zero

by energy conservation. Using the equality

< ng,NZ ;L (xR2+xcm2) [nj# smy8,5L > =

2.2
< ng,NESL] (X, 4K, ) [ny8 00,850 > (D-5)
and the expansions analogous to (D-4). We obtain the relatioms:

1.
L@ *) (a4, #3/2) 12 < g NS n 4L 0y 5L >

By
1
+[ (0, +1) (0, +4,+3/2) 1% < 04 ,NCsL|n 4, 0,418, 5L >

..|:n(n-l-.z-i-3§)]2 < n-12, NZ’ Lln 1,n2 4y3L >

N 1% < ng,8-1C 50|04, 0,8, 5L > (D-6)

~and
%
[ (ot1) (ah£+3/2) 1% < nt1g NZL5L|n 2,0 8,50 >
+[ (N+1) (N +3/2) ]%< M,N+15C;Lln1.&1,n2£2;L >
% )
=[ny (ke H) 1% < ng NiL n =18 snpL 5L >

+%)]% < ng,NLsL]n 4 0, -2

9 L> . (D-7-

+[n2 (n2 9

In a similar mannér the integrals of

b o4 02,020,022 2. 20 2 2

and

XRli-xcm4 = (XR2+Xcm2) (KR2 -}icmz) - (X12+X22) (KRZ -x.cmz) (D-9)



brackets.

and

where

and
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Two such relations are

may be used to obtain several relationships among transformation

‘f' . . n=
By < n,N ,L|n1+2z1,n Lyl >+ B, < M,NZ,Llnl,cl,nz,zz,L >

272°

By < n-u,nlelnl-t-ul,nzzz;:. >+p, < n.&,N-lJC;Lln1+ul,n2.zz;L > +

B

< n-u,Nof;L[nl.c

< 0424,NC;5L|n 4,
<'n+l£,N§f;Llnl-lzl,n2£
< n.e,N+1;f;Lln1-

2’

[(a +1) (n,+£,+3/2) (n,42) (0 +L,+5/2) Ik
~[ (m,+1) (n, 42 ,+3/2) (0,32) (ny+ +5/2>]z
[n (ate+%) (o +1) (o4, +3/2) ];5
[ eeCH) (n,+1) (0 +8+3/2) 1%
- [n (rbaH) (HL) (gt ;+3/2) 12

-[N (N+bf+%) (n,+1) (2,43 /2) ]}2

[(n+1)(n+£+3/2)(n+2)(ntz+5/2)]%

-[ (1) L4+3/2) (V2) (NH+5 /é) ]%
[ (r+1) (@h+3/2)n (o 42 1 +5) 1%

{ (n+1) (ntde 3/2)n (n +4 + )]2

\u

-[ (1) (N+¢\_-h3/2)n1(n +2 +f2)]2 _

2

\{-l

~[ L) QueK+3/2)m, (o, ) |

[Pyt 5L > + B < 0t ,N-1;L 0 4 ,n +1e, 5L >

(p-10)

Ryhy L >+ 7, < M,N+2Z;Llnl.§1,n2£2;L > =
L >+ 7, < o+le, N1 n 4,,0,)m10, 5L > +

16,0,8,3L > + 74 < ng ,N4+1C;L|n 4, ,0,-18,5L >

(0-11)

(0-12)

(D-13)
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The same method can be used to obtain relations for the unequal mass
139 -
transformation brackets.
The preceding relations give useful results for special cases:

n1=0 s n2=0

[(n+l) (nt+s+3/2) ];é < n+u,N»€;L]0£1,O.62;L > =

- [ L) L +3/2) < n.z,N+1;C;Llozl,ozz;L > (0-14)

7, < 024, NKGL|08,,08,5L > = -7, < ng,N+2L sL]04,,08,5L > (D-15)

n=0,N=0 ‘
[ (a+1) (my+ +3/2)]"2 < 02,0 5L n #1808, 5L > =

-[ (n2+1) (n2+.52+3/2) ]JE <.>0.& ,OZ;Llnl,&l,n2+L&2;L > (D-16)

B, < 04,0L:1|n 428 ,0,8,5L > =i =B, < oz,o,Z;Llnlz n,+28,5L >
(D-17)
gz -L) is even
2 (ny+1) (n 42, 43/2) 1 < nﬁl,NI,Lln1+1£1,nl,al,
[n(n+e+%) ]% < n-u,Nf;Llnljl,nlll;L >+
[N L +%) 1% < ng,N-1£ ;L|n 4,0, 8,50 > (D-18)

(£.-1) is odd
[y +2)(n +5/2>]2 < ng,8L;L[n 426,00 .bl,L > =

[n(n+1,+1‘)]2 < n-14,NCL|n +18, 50, 1,L >+

[N QL +s) 1% < ng,N-1X;1|n +18 .0 8, 5L > (-19)
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»(“1-1') is even

o
2[ (a+l) (n+e+3/2) 1% < n+u,nJ;Lln1£l,n2.62;L > =
1y 1% 1 lo - :
[nl(n1+£l+z)] < n.&,n.&,Llnl 18,ompb,5L > +

Y : LT
[n, (a e, +5) 1% < n¢,ng3L{n 4, ,n,-18,5L > (D-20)

(¢,-L) is odd

i
[ (m+2) (k2+5/2) 1% < n+2.z,rw;Lln1,cl,n2£2;L > =
3
[ny (a +eH0) 1% < n+1z,n.&;L|nl-ul,n2,52;L >+
%
[n, (a,+2,+8) 1% < a+ls,n45L|n, 4, ,0,=14,5L > (-21)

A
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