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ABSTRACT 

Nuclear spectra of A=l4, 18, 38, 42, 206 and 208 nuclei 

were calculated using free reaction matrices as effective inter-

actions and Woods-SaKon single-particle wavefunctions. The 

calculations show that, in most of the cases considered, realistic 

single-particle wavefunctions must be used in the determination 

of realistic effective interaction matrix elements. The results 

are especially interesting in the A=18 nue lei where it is found 

that the use of realistic single-particle wavefunctions produce 

changes in spectra comparable to.those introduced by core-

polarization. In heavier nuclei it appears that a simple harmonie 

oscillator calculation is out of the question at least for states 

involving both neutrons and protons. Wavefunctions deduced for 

a single value of the oscilLator parame ter ~w cannot adequately 
206 210 ... 

describe the states in nuclei such as Pb and Pb possessing 

a large neutron excess. 
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CHAPTER 1 

INTRODUCTION 

Since the nuclear shell model was proposed by Mayer and Jensen 
2 

it has become a sophisticated and powerful tool for understanding 

Many aspects of the structure of finite nuclei. In what is termed 

phenomenological shell model the ory the residual interaction is 

parametrized and the parameters determined by fitting experimental 

data. The usual practice in this model is to inclùde the minimum 

number of configurations required to fit the data and at the same 

time give "reasonable" two-body matrix element~_ For example, 

the low-lying positive parity states in 0 18 would be described by 

two interacting valence particles confined to the (ls,Od) shell 

outside an inert closed she11 0
16 

core. The effects of neg1ected 

configurations are absorbed in the residual interaction parameters. 

The model dependent interaction obtained in this manner is referred 

1 

to as an effective interaction. As a resu1t of the model dependence, 

effective interaction matrix e1ements May not have much resèmblance 

to the same matrix elements eva1uated with the free space nucleon-
f 

nuc1eon interaction. In the past few years much research has 

been done in efforts to obtain effective interaction matrix elements 

from the free nucleon scattering data. Much of this work has been 
7 

discussed in a lec,ture series by Baranger. 

r The realistic interactions MOst often used in the literature are 
3 4,5 6 

those of Kallio and Kolltveit, Kuo and Brown, and Tabakin • 
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Since effective interaction matrix elements are model dependeŒ 

it is important that all aspects of the model dependence are examined. 

In previous calculations of effective interaction matrix elements 

from realistic interactions the shell model single-particle wave-

functions have been taken to be eigenfunctions of an infinitely deep 

harmonie oscillator potential. If a shell model single-particle 

potential exists, it must be finite with a diffuse surface. Wave-

functions for states near the surface of a finite potential well will 

differ considerably from wavefunctions for an infinitely deep well. 

In this the sis we have investigated the effects of using more realistic 

single-particle wavefunctions in evaluations of effective interaction 

matrix elements. To obtain wavefunctions for a finite single-

particle potential we assumed that the shell model potential could 
8 9 

be represented by a Woods-Saxon potential with a Thomas spin-orbit 

terme To study more complicated effects (for example, non-locality) 

a more sophisticated model would be required. There have been 

earlier calculations to investigate the effect of using Woods-Saxon 
10 18 

wavefunctions. Flowers and Wilmore considered the spectra of 0 
11 18 

and F and Stamp and Mayer considered the structure of the collective 

1 . 16 40 Th d h 1 al octupo e states 1n 0 and Ca. ese authors use p enomeno_ogic 

interactions and found significant changes in matrix elements compared 

to the values obtained using harmonic oscillator wavefunctions. 

However, in phenomenological calculations a large part of the wave-

function dependence can be absorbed in the parameters of the inter-

action. On. the other hand, in calculations of effective interaction 
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it is imperative to include the wavefunction dep~ndence. 

We have used free reaction matrices developed by Kahana and 
12-17 

co-workers as realistic effective interactions in our study 

of the effects of more realistic wavefunctions. Calculations were 

performed with harmonie oscillator wavefunctions as weIl as with 

Woods-Saxon wavefunctions. In most of the nuclei considered the 

free reaction matrices had not been used as effective interactions 

even with harmonie oscillator wavefunctions. As a result we also 

consideredproperties of the free reaction matrix itself as an 

effective interaction. 
18 

In Chapter 2 Green's function techniques are used to define 

the lowest order shell model effective interactions for, two·particle,. 

two-hole and particle-hple states. The lowest.orderrealistic 

effective interaction in the nuclear reaction mat~ices 18 discussed. 

The method for obtaining a nuclear reaction matrix from a free 
17 

reaction matrix is discussed briefly. Lee has considered this 

problem in detail. 
20 

In Chapter 3 we present a standard particle-hole model 

calculation of the odd-parity states in 0 16. This calculation was 

performed to study the effective particle-hole interaction obtained 

from free reaction matrices. Only harmonie oscillator single-partie le 

'wavefunctions were used in this calcu1ation. The loca~ velocity 
16 

dependent free reaction matrices were used as the effective 

interaction. 

In Chapter 4 Woods-Saxon wavefunctions for A=15,17,39,4l,207 

• 
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and 209 nuc1ei are determined. For convenience in she11 mode1 

ca1cu1ations the Woods-Saxon wavefunctions are tabu1ated as expansions 

in terms of harmonie osci11ator wavefunctions. 

In Chapters 5 and 6 we present ca1cu1ations of the spectra of 

14 18 18 38 42 42 206 210. 
N ,0 ,F ,Ca , Ca ,Sc , Pb and Pb us~ng Woods-Saxon 

wavefunctions. !WO forms of the free reaction matrix are used as 

effective interactions: a local ve10city dependent representation for 

rea1tive S states on1y and free reaction matrices ·obtained from a 

non-local separable potentia1. For comparison the spectra were 

a1so ca1culated with harmonie oscil1ator wavefunctions. The she11 

model .technology required to calculate the various spectra is standard. 

In Appendix A we give the expressions for the various types of matrix 

elements used and the phase conventions used throughout the thesis 

are defined. 

In Chapter 7 we conclude by summarizing the ~ost significant 

resu1ts from each chapter • 
• 
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CHAPTER 2 

SHELL MODEL EFFECTIVE INTERACTIONS 

AND THE FREE REACTION MATRIX 

2-A Introduction 
18 

We use Green"s -function techniques to arrive at a consistent 

formalism for defining an effective shell model Hamiltonian. The 

particular cases considere~ are those of two-particle, two-ho1e and 

partic1e-hole Hamiltonians. The derivation is based on the assumption 

of a Hartree-Fock ground state that would be obtained from Brueckner 
19 

theory. The derivation is used to show the relationships among 

the nuclear reaction matrices for the cases considered and to examine 

differences in various nuclei. Once the effective interaction is 

defined within the framework of a model, a realistic interaction is 

then used to calculate the effective interaction. In our case we 

use a free reaction matrix to determine the nuclear reaction matrix. 
17 , 

Lee has discussed, in detail, the procedure for determining the 

effective interaction from a free reaction matrix. 

2-B Green's Functions 

We define one and two-particle Green's functions to be 

G (t ,t ) = (-i)< N!T{a (t )a +(t )l!N > 
pa p cr p p cr cr 

(2-1a) 

and 

G ,,'\ (t ,t ,t ,t,\) = (_i)2< NIT{a (t )a (t )a,.+(t,\)a+(t 'JIN> (2.lb) 
pa"", p a K 1\. P P cr cr A 1\. K K' 

respectively. Other Green's functions are defined in a similar manner. 

The operators a +(t ) and a (t ) are the usual Heisenberg representation a cr p p 
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of the fermion creation and annihilation operators. The Greek 

subscripts denote the full set of quantum numbers that label a single­

particle state and IN >'is the fully interacting ground state of the 

N fermion system 

(2.2) 

The one-particle Green's function may be written in the form 

where 

G (t ,t \ ... 8(t -t ) (-i) <Nia (t )a +(t )IN > 
pa p ~ pa' p p a a 

-8(t -t ) (-i) < Nia +(t )a (t )IN > a p a a p p 

= G + (t -t \+G - (t -t ) 
pa p ~ pa p a 

8(t -t) = 0 
p a t < t 

P cr 

... '1 t > t 
P cr 

(2.3) 

In (2.3) and ~he following discussion G is used to denote the Green's 

function with the discontinuity at t =t subtracted.' G+ is a particle 
p a 

propagator and G i8 a hOfe propagator. Introducing the Fourier trans· 

furm 

(2.4) 

it follows that the spectral representation ,for G+ is 

G +(w) = \-: 
pa L 

< Nia IN+l,a> < N+l,ala +IN > e a (2.5) 

ex 

The summation in (2.5) is over all states of the (N+l)-particle nucleus. 

Similarly, for the hole propagator we have 
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l G - (w) = -
pa 

~ Nia +IN-I,a> < N-I,ala IN> a . p (2.6) 

+ -Both Gand G have a series of poles on the real aKis corresponding 

to the single-particle and single-hole energies of the (N+I) and (N-l)-

particle nuclei, respectively. The problem of determining the. self-

consistent single-particle (ho le) energies relative to the ground 

state of the N-particle system is the problem of determining the poles 

+ of G-(w). However, we are interested in calculating the spectra of 

the closed shell nucleus IN > and the 1~+2 > nuclei rather than the 

self-consistent potential which would determine the single-particle 

(hole) energies. To do this we make the usual assumption of nuclear 

spectroscopy; a Hartree-Fock ground state for the nucleus exists and 

G ±(w) are diagonal in the Hartree-Fock representation. That is, 
pa 

we demand that our formalism be consistent in principle rather than 

in practice for calculating the Hartree-Fock energies. We will return 

to this point later. 

To determine the spectra of the N and (N±2)-particle nuclei, the 

two-particle and particle-hole Greenls functions are required. The 

two-particle Greenls function may be written in the form 

G ~~ (t ,t ,t~it~) = S(t _t~)(_i)2< Nia (t )a (t )~+(t~)a+K(~)IN > + 
patV\. p p 1'0 1'0 P 1'0 P P a P A 1'0 . A 

+ S(t~-t ) (-i) 2< NI~+(t~)a +(t~)a (t )a (t )IN > 
,l'op A",K l'oppap 

(2.7) 

where G+ and G are the propagators for two-particJes and two-holes, 
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respectively. The spectral representations are 

GpaK~ (w) = (-i) L 
a 

and 

< Nia a IN+2,a> < N+2,ala. +a +!N > 
P a A K 

< Nlé).+aK+!N-2,a> < N"2,al ap8 a lN> 

[W+(EN_2a-ENo)-i~] 

(2.8a) 

(2.8b) 

GpaKÀ-(w) and GpaKÀ-eW) have series of poles on the real axis corres­

ponding to the spectra of the (N±2)-particle nuclei. The particle"hole 

Green~ function is the special case of (2.lb) where tp=t
À 

and ta=tK 

which leads to the spectral representation. 

G .,'" (w) = 
pOIV\. 

(2.9) 

The particle-hole Green~ function has a series of poles on the real 

axis corresponding to excitation energies of the N-particle system. 

In nuclear spectroscopy the problem of determining the excitation 

energies of the systems under consideration is that of determining 

the poles of the Green~ functions (2.8) and (2.9). To perform such a 

calculation without approximations is entirely unfeasible. The first 

approximation made i8 an assumption about the structure of the ground 
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state wavefunctions for the N, (N+l) and (N-l) particle nuclei. We 

consider cases where IN > is a closed shell nucleus and make the 

shell model assumption that the ground states May be represented by 

single-particles moving in a self-consistent Hartree-Fock potential. 

Equations (2.1) may be used to write down equations of motion for the 

propagators. The result is a hierarchy of coupled equations which 
15 

can only be solved in various approximations. We wi 11 work from 

the following set of approximate equations for the propagators: 

one-particle 

+ 0+. 
G (t -t '\ • G (t -t ) pa p a' pa p a 

+i '\ [dt dt G 0+ (t -t ) ~ 1 al a2 pal p al 
al a2 

x A Pet -t )G +(t -t) 
0102 01 a2 a2a a2 a 

(2.10a) 

one-hole 

(2.l0b) 

two-particle 

+ G (t -t ) 
poKÀ p À 

(2.l0c) 
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G
pOK

' (t -~) = G -(t -t)G -Ct -t )-G -Ct -t)G -Ct -t ) 
A P A pK P A dA. p À (lÀ p À OK P À 

particle-hole 

In (2.10) 

operators 

P 
the self-energy operators A 

2P 2h ph 
r , rand r are as yet 

and Ah and the interaction 

unspecified functions of the 

two-nucleon interaction. Equations (2.10) contain no direct coupling 

among the various two-particle propagators. Since the equations are, 

in fact, coupled, the self-energy and interaction operators should be 

chosen consistently for all equations. We start by defining a repre-

sentation in which the particle propagator is diagonal and then obtain 

solutions for the two-particle equations in the same approximation. 

2-C The Hartree-Fock Energies 

The Hartree-Fockapproximation for (2-l0a) would be to take the 

'. 
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self-energy operator to be 

(2.U) 

6 < EF 

where v is the two-nucleon interaction. It is well known that the 

strong, short-range, repulsive nature of the nucleon-nuc1eon interaction 

makes a Hartree-Fock ca1cu1ation with (2.11) impossible. In the 
19 

Brueckner theory of finite nuclei the Hartree-Fock single-particle 

states and the Brueckner reaction matrix are determined self-consistently 

simultaneously. The sing1e-partic1e energies are 

El.. = T. + \' (Ki ... -exch.) 
1. L Jl.J 

(2.12) 

j < k
F 

where T. is the kinetic energy of the particle. The Brueckner reaction 
1. 

matrix is 

K • . '.11 = v . . '.0 
1. J "" 1. J "" 

+I·-' 
mn 

v.. K 1.n 
1. J mn mnl\.N (2.13) 

where only unoccupied intermediate states are inc1uded in the summation 

and a is a parame ter to modify the denominator for off-the-energy-she11 

propagation in the intermediate states. 

Taking the Fourier transform of (2.10a) we have 
\ . .J 

G + (w) = G O+tw) + \ . 
pa pa L 
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In Brueckner theory the self-energy operator is 

= l (2.15) 

8 < k
F 

Determining the poles + of G (w) 
po 

defines the reaction matrix (2.13) 

at the sing1e-particle energies (2.12) of the diagonal representation. 

In the diagonal representation 

where 

-1E t 
G (t) = (-i)[(1-f )GCt)-f G(-t)le p 6

po po 'p p 

f = 0 
p 

= 1 

and ~ 1s the Fermi energy. For the (N+2)-partiele system the 

Hami1tonian 

becomes 

H. '" T+v 

H '" HO+Hl 

\' + 1 '" L Ekak ak + '2 
k 

Lvat3l'ô 
Q(3 
l'ô 

(2.16) 

(2.17) 

(2.18) 

The single-partie le energies are those defined in (2.12) ,and the 

perturbation i5 the two-nueleon interaction for two-partieles in the 

states of the (N+l)"particle nucleus. 

2-D The Two-Particle Propagator 

To de termine the po1es of the two-partiele propagator we make 

the approximation 
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Taking the Fourier transform of (2.10c) we have that 

+ (1-f )(l-f ) { 
G (w' = p a 6 6 - 6 6 + 

palCÀ '1 [w-€ -E +in] pK a'A p'A al( 
P a 

Equation (2.20) may put in the matrix form 

+ (w-H -v)G (w) = (-i)1 o 

(2.19) 

• (2.20) 

(2.21) 

+ From (2.21) it follows that finding the poles of G (w) i8 equivalent 

to diagonalizing the Hamiltonian 

fi =H-kr o (2.22) 

in the Hilbert space of two-particle states above the Fermi sea. 

Equation (2.20) i8 represented in terms of diagrams in Fig. 2-1. 

Iteration of the equation leads to a ladder series in the interaction v. 

+ 

Fig. 2-1. The two-particle propagator in the "1adder" approximation. 

With the bare nucleon-nucleon interaction as the two-particle 

perturbation it would be necessary to diagonalize (2.22) in the entire 

• 
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Hilbert space of two-particle states above the Fermi sea. This 

difficulty can be removed by introducing a reaction matrix which 

permits diagonalization of the Hamiltonian within a subspace of the 

two-particle configurations. For a subspace M we define the reaction 

matrix by 

\' K (w)G +(w) 1:1 "\ v G +(w) 
~POP10l P101KÀ ~ paP101 P101KÀ 
Plal Plal 
in M 

From (2.23) and (2.20) it follows that 

and . 

KpaPlol (w) CI vpaPlol + ~ 
P202 

outside M 

lt is more convenient to write (2.24) in the matrix form 

K(w) = v+V' H (w)Q K(w) 

• (2.23) 

(2.25) 

where Q is a projection operator restricting the intermediate states 

to states not contained in M. The operator (l-f )(l-f ) projects 
P2 °2 

out the occupied core states. K(w) is' a regular function in the upper 

half-plane and 

K(w) - v 

w - co 

• 

(2.24a) 

(2.24b) 
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The form of (2.24) implies a discrete spectrurn of intermediate states 

which is not a necessary assurnption. For the purposes of the present 

discussion the nature of the intermediate states is not important. 

For shell model calcu1ations in a convenient subspace of two-

particle configurations (PlOl ) tbe two-partic1e Greeds function is 

+ G
pOKÀ 

(w) D 

(l-f ) (l-f ) ""_ 

[w-€p -€ +i:] { ôpK ÔC1À - ôpA ÔOK + L'Kpop a (w)Gp a ~ (W)} 
pa" 11 11 

P10l ." 

(2.26) 

and the effective Hamiltonian i8 

H(w) == HO+K(w) (2.27) 

+ Determining the poles of G (w) in (2.26) is not a simple eigenvalue 

problem as in (2.20). Equation (2.26) is a self-consistent equation; 

+ the poles of G (w) can be determined by diagonalizing the effective 

Hamiltonian (2.27) which in turn is defined by the positions of "the 

poles. tt will be seen later that with a suitable choice of the sub-

space of configurations the reaction matrix is essentially the same 

for all states Q, consequently We take the Hamiltonian to be 

H(w) = RO+K(-;:;J (2.28) 

With (2.28) finding the poles + of G (w) i8 a self-consistent eigenvalue 

problem. This point will be discussed later. Equations (2.25) and 

(2.26) are expressed in terms of diagrams in Fig. 2.2. When drawing 

diagrams a wavy 1ine is used to denote a reaction matrix interaction 

and a dashed line denotes a v interaction. lt should be noted that 

although K is a surn over many nucleon-nucleon interactions occuring 

in a finite time interval it is treated as an instantaneous interaction 
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when used as a perturbation. 

. (o.) ____ _o + [~] + . ., ., 

Ch) + 

Fig. 2-2. The two·particlepropagator as a ladder series in the reaction 

matrix. In (a) the intermediate states are outside the 

subspace of diagonalization. In (b) the intermediate states 

are in the subspace of diagonalization. 

From the defini.tion (2.24) it can be seen that K(w) contains 

all of the effects of two-particle correlations outside the chosen 

subspace while the diagonalization of H(w) includes all correlations 

within the subspace. Consequently, (2.26) contains a11 of the two-body 

correlations above the Fermi sea without any double counting of diagrams. 

Finding the poles of the Green's function (2.26) gives the same eige~ 

values as would have been obtained for (2.20), however, on1y a set 

of the eigenvalues can be determined. On the other hand,only the 

piece of the wavefunction in the subspace i5 determined by diagonal-

ization. From the eigenvalueproblem (2.22) one obtains the amplitudes 

of the unperturbed configurations in the state Q 

= < Nia a IN+2,Q> 
p cr 

(2.29) 
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where the configurations (p,a) are in the entire Hilbert space above 

the Fermi sea. From the eigenvalue problem (2.28) one obtains the 

amplitudes 

X a = < Nia a /N+2,a,> (2.30) pa pa, 

where the configuration (p,a) are within the subspace. The full set 

of amplitudes can be calculated in a straight forward manner. Substi-

tuting the spectral representation (2.8a) into (2.23) and finding the 

residues, we have 

(2.31) 

In matrix notation (2.31) 1s 

a a 
K(wJCP = v 'ir (2.32) 

where cpa 1s the wavefunction (uncorrelated) in thesubspace and 'ira.is 

the wavefunction (correlated) for the ent1re space of two-partic1e 

configurations. To obtain ta from cpa we define a wave rnatrix by 

a a 
'If = M(wJCP (2.33) 

From (2.32) it follows that 

(2.34) 

and 

(2.35) 

Equations (2.26), (2.33), (2.34) and (2.35) give the complete solution 

for the problem of deterrnining the low-lying levels of the (N+2)-

particle nucleus with the interaction operator (2.19). 

'. 
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2-E .The Two-Hole Propagator 

The Fourier transform of (2.l0d) is 

-G
PcrKÀ 

(Ill) ... 

(2.36) 

The poles of G-(IIl) are at the energies of the states in the (N-2)-

particle nucleus relative to the ground state of the N-particle nucleus. 

When two particles are removed from the N-particle nucleus creating 

two-hole states the residual interaction is the effective interaction 

between the tWQ particles in the N-particle nucleus. From our definition 

of the groundstate the two-hole interaction operator i8 

(2.37) 

where 

K 2h( ) 
pap a III 

1 1 

(2.38) 

That i8, the interaction operator is the particle-particle.reaction 

matrix evaluated at the poles of the two-hole propagator. The Green's 

function i8 

- . 

G ,A (Ill) = palV\o 

f f ( 
pa ~ô Ô -6 6 

[W+E +E -iT}1 L pK aÀ pÀ aK .. p cr . 

(2.38) 
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The two-hole propagator and a hole-hole reaction matrix e1ement are 

given in terms of diagrams in Fig., 2-3. The hole-hole interaction 

matrix element is shown as an insertion of a lad der series on particle 

(l%) + 

tb) + + ... ' 

> .. + + ... 

Fig. 2-3. (a) The two-hole propagator as a ladder series in the two-

hole reaction matrix. (b) A hole-hole interaction matrix 

element as a ladder series in the interaction v. 

lines. Diagrams drawn in this manner,can be misleading; the hole-hole 

interaction does not contain any four-hole two-particle interactions. 

Fo~ example, the matrix element of the second order term in Fig~ 2-3b 

ia just the conjugate of the particle-particle matrix element. 

The effective Hamiltonian for the two-hole states is' 

2h 
H(W) = HO+K (w) (2.39) 

The problem of finding the poles of the two-hole Green~ function i8 

a self-consistent problem as it was.for the case of two-particle~. If 
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the reaction matrix does not depend on the various eigenvalues of 

the states with the same quantum numbers, the poles of (2.38) can 

be determined by diagonalizing the Hamiltonian 

2h -
. H(w) = HO+K (wJ (2.40) 

There are several differencesbetween the two-particle and two-hole 

reaction-matrices. For two particles the subspàce of configurations 

which defined the reaction matrix could be chosen arbitrarily. -In 

the case of two holes the reaction matr1x is defined by the subspace 

of occupied states. The two-particle correlations-of (2.33) are 

contained in the Hartree-Fock single-particle states in the case of 

two holes. 

2-F The Particle-Hole Propagator 

The Fourier transform of (2.10e) 1s 

G Ph(w) = 
pa/(À 

(l-f )f -(l-f)f ( 
o a a Q~ + 

[W-E +E +iT)] L ôpK ôaÀ 
P cr-

--

Plal 

r Ph( )G ph( >} pap a w p a KÀ w • 
III l 

(2.41) 

The poles of GPh(w) are at the excitation energies of particle-hole 

states relative to the ground state of the N-particle nucleus.. In 

calculations of particle-hole structure the unperturbed single-particle 

(hole) energies are taken to be the energies of the states in the (N+l) 

and (N-l) nuclei. With this definition of the unperturbed states 

the residual interaction is the interaction between a particle in a 

state of the (N+I)-particle system and the particles in the N~particle 



-21-

20 
nucleus. The particle-hole interaction operator is then the reaction 

matrix for these states evaluated at the excitation energy of the 

particle-hole system 

(2.42) 

There are two terms in (2.42) because the direct and exchange particle-

hole matrix elements are different. Particle-hole matrix elements 

are just linear combinations of the particle-particle matrix elements 

for the same states. A particle-hole reaction matrix is.a 1inear 

combination of the particle-particle reaction matrices for the same 

configurations but evaluated at the particle-ho1e excitation energies. 

The particle-particle reaction matrices for the particle-hole matrix 

elements (2.42) are 

K ph( ) 
pop a W 

1 1 

and 

(2.43a) 

Although we have used the same notation in (2.42) and (2.43), the matrix 

,elements (2.43) are particle-particle coupled matrix elements. 

The particle-hole Green's function is 
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+ ~' [K ph(w\ -K ph(W)]G Ph(W~ ~ pap a ~ pa ap p a (2.44) 
1 1 1 1 l 1 

21 
lt can be shawn that finding the poles of (2.44) is equivalent 

to solving the eigenvalue problem 

(2.45a) 

\' J: ph Ph}- ex + L 1 Kp 6Àf3 (w) -Kp 6 f3,\ (w) X 6 f3 = 0 • (2.45b) 

6f3 

Equations (2.45) are the eigenvalue problem for the particle-hole 

states in the random phase approximation. , The various matrix elements 

in (2.45) are shawn in Fig. 2-4. The amplitudes of the ~article-hole 

configurations' contained in a particle-hole state are 

X..:~ex(l-f )f"l+Y "lex(l-f_)f = < Nia a.. +IN,o:> 
........ PI\. pl\. A P pA 

/ ' 

(2.46) 

The bar on the amplitudes in (2.45b) denotes the complex conjugate. 

X "l 0: i8 the amplitude of a configuration (p,A) in the state ex arising pl\. ' 

from excitation of aparticle from the' core. YpAex is the amplitude 

of a configuration in the ~tate 0: arising from particle-hole configurations 
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(a) c (b) Cc) , (d) 

P'\LY 

K ph 
p~8 

K ph 
pf38À 

K ph 
p8~ 

Fig. 2-4. The partic1e-ho1e interaction matrix e1ements. 

a1ready present in the ground state. ' The Tamm-Dancoff approximation 

ex i8 obtained from (2.45) by setting Y equa1 to zero 

ex . ~ ,-(E -~-w )X· + ~K 
P -,.. a: pÀ l p~ô 

ph ph lL~ ex = 
(w) -Kpf3 ôÀ (w) J'''ô f3 0 (2.47>. 

Ôf3 

The eigenva1ue equations (2.45) and (2.47) are se1f-~onsistent 

equations in the same way the eigenva1ue prob1ems for two partic1es 

and two ho1es were. The partic1e-ho1e reaction matrix is simi1ar 

to the two-ho1e reaction matrix in that the subspace of configurations , 

defining the reaction matrix is part1y the space of occupied states. 

2-G The Free Reaction Matrix 

To perform she11 model ca1culations with the effective Hamil-

tonians of the previous sections the nuclear reaction matrices must 

be determined from the nucleon-nucle'on interaction. 
12 " 

A free reaction 

matrix deduced from the nuc1eon-nucleon scattering data can be 
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used to determine the nuc1ear reaction matrices. The free reaction 

matrix is defined by the integral equation 

~(e) = V+V~F(e)PRF(e) 

where 

= -L 
e~T 

(2.48) 

P ia the principal value operator and T is the total kinetic energy 

operator. On the energy she1l e becomes the total kinetic energy 

and, in general, may be treated aa a complex parameter. The nuc1ear 

reaction matrices of the previoua sections were a1l of the form 

K(w) = v+v 1.1 (w)QK(w) (2.49) 

Solving (2.48) for v in terms of ~ and substituting in (2.49) we have 

(2.50) 

When fitting a representation of ~ to the free nucleon-nucleon 

scattering data, trans1ational invariance of the two-nuc1eon potential 

is required; therefore, the propagator in (2.48) is replaced by 

the propagator 

1 =-
E-t 

(2.51) 

In (2.51) t is the relative kinetic energy operator and on the energy 

shell E is the relative kinetic energy of the two nuc1eons. In fact, 

K,(E) ia related to the two-body scattering data through on the energy 

.shell matrix e1ements 

.With KF known the nuclear reaction matrix can be obtained from 

K(w) = KF(E)+KF(E) [,ij (W)Q-..h'F(E)P]K(W) (2.52) 
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17 
The determinaton of ~ and K has been discussed in detail by Lee. 

In finite nuclei the nucleon-nucleon interaction need not be on the' 

.energy shell; however, in an exact calculation of (2.52) the nuclear 

reaction is independent of~. On the other hand, it is often useful 

to make the approximation 

K(w) = ~(e:) (2.53) 

by choosing an appropriate value of~. For ~ < 0 the choice (2.53) 

is equivalent to the lowest order reference spectrum approach of 
22 

Bethe, et al.. --
2-H Correction Terms 

In first order the nuclear reaction matrix is the free reaction 

matrix. The highér order terms contain the corrections arising from 

the fact that K(w) is determined by nucleons scattering in bound 

states whereas ~(E) is determined by free nucleon scattering. We 

examine briefly the second order correction terms for the various 

nuclear reaction matrices. When drawing diagrams a solid line is used 

to denote a free reaction matrix interaction and p and h are used to 

designate states above and below the Fermi sea, respectively. 

a) Two-particle 

The two-particle reaction matrix element (2.25) is 

(2.54) 

As an expansion in ~ (2.54) ia 
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, 
P3 

+ - • Pc; 

• Pl 

P
4 

1 

P 
Pt; J 

P .' 
2 

+ 
(2.55) 

The projection operator Q2p restricts the intermediate states to 

configurations in which P5 and P6 are not both in the subspace of 

configurations used to diagonalize the effective Hamiltonian. 

bl two-hole 

The two-hole reaction matrix element (2.37) is 

As an expansion in KF (2.56) is 

h3 h4 h3 h4 h3 h4 11\ h3 

+ Q 
'P5 P6 

~ P 5 

hl h2 hl h3 hl 

h4 

P 
P6 

~ 

h2 l' 

(2.56) 

+ 
(2.57) 

h .. Q2h. h· d· () 
T e proJect~on operator restr~ets t e ~nterme ~ate states P5 ,P6 ,~ 

to ail possible two-particle configurations above the Fermi sea. 

cl Particle-Hole 

The particle-hole reaction matrix elements (2.45) are 

h2 
hl 

K . Ph(w) = 
P2 

> (2.5~a) 

P2h lh2Pl 
Pl h2 

.. 
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P2 . h2 P2 hl 

K ph(W) == > (2.58b) 
P2hl Plh2 

Pl hl Pl 

hl P2 Pl 

K . ph(W) == 
P2Plh2hl 

=9- (2.58c) 

h2 hl 

h2 P2 Pl 

K ph(W) == -===> (2.58d) 
P2P1h1h2 

h 1 ., h2 

As expansions in ~ (2.58a) and (2.58c) are 

P2 hl P2 hl . P2 hl P2 h 
~ l' " . 1." 

+ 
QPh P (2.59a) 

" .+ P3 Pli P3 P4 

Pl h2 Pl h2 Pl h2 Pl h2T 

P2 Pl P2 Pl ,. P2 Pl t P2 Pl fi. 

+ 
QPh P + - P . . (2.59b) P3 4 P3 P4 

hl h2 hl ·l'h h d' h2 h ." e· 2 1 1 
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The diagrams (2.58b) and (2.58d) are exchange diagrams. The pro­

jection operator QPh restricts the intermediate states (P3,P4) to 

all possible two~particle configurations above the Fermi sea. The 

diagrams (2.58a) and (2.58b)' are the Tamm-Dancoff approximation and 

the ground 8tate correlation diagram8 (2.S8c) and (2.58d) are 

included in the random phase approximation. From (2.59) it can be 

seen that,'if the particle-holes states have negative parity, QPh 

is different for (2.59a) and (2.S9b). That is"the effective inter-

action would be different for the Tamm-Dancoff diagrams and the 

ground state correlation diagrams. 

2-1 Energy Dependence of K(w) 

In all the cases discussed the effective shell model Hamiltonian . 

. was energy dependent and the determination of the eigenvalues involved 

a self-consistent calculation of the reaction matrix. If K(Wo? i8 

state dependent for states with the same quantum numbers, the eigen-

values and eigenvectors cannot be determined by a simple diagonalization 

of the effective Hamiltonian. This difficulty can be avoided by 

reducing the subspace of configurations to only the dominant config-

uration of the state under consideration. In general, such a procedure~ 
is not necessary. Some insight into the energy dependence- of K(w) 

can be gained by considering the correction terms in the previous 

section. The energy dependence enters via the propagator ~(w)Q. 

In the following discussion we assume that harmonie oscillator states 

are used to evaluate the matrix elements. 

a) Two-particle: With a judicious choice of the subspace for, 
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diagonalization most of the energy dependence in ,(2.55) can be 

removed. For example, by choosing the subspace to be an entire shell, 

the first intermediate state contribution is 2~w away in energy. In 

general, the spread in e11envalues for a set of states is not large 

and a good approximation is to evaluate the reaction matrix 'at 

the mean excitation energy. 

b) Two-hole: For the two-hole matrix elements (2.57) the 

intermediate states are not related to the choice of the subspace 

for diagonalization. However, the lowest intermediate state is 

always at 2~w. Again, a good approximation is to use the average 

excitation energy. 

c) 'Particle-hole: For the particle-hole matrix elements (2.59). 

there are two cases to consider: 1) negative parity particle-hole 

states, and 2) positive parity particle-hole states. For negative 

parity states with oscillator shell spacings the lowest intermediate 

state energies in (2.59a) and (2.59b) are 3~w and 2~w, respectively. 

In heavy closed shell nuclei, such as Pb208 , the spin-orbit splitting 

gives mixed parity shells. With mixed parity shells there can be 

both positive and negative parity low-lying particle-hole states. 

For mixed parity shells the lowest energy intermediate states are at 

2~w for both (2.59a) and (2.59b). In practice the single particle 

states are not degenerate and in heavy nuclei intermediate state 

energies may be near the excitation energy. The difficulty of small 

denominators, if it does exist, has not been considered. In the 

random phase approximation it is possible to have imaginary eigenvalues. 
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If an eigenvalue becomes imaginary, the effective, interaction 

also becomes imaginary. In terms of the model a complex eigenvalue 

means that the interaction used would not·have yielded the Hartree-
21 

Fock solution assumed for the ground state. In the present case 

this appears directly in terms of the interaction. The particle-hole 

reaction matrix is the reaction matrix assumed to give the ground 

state but evaluated at a different energy. The inability to find a 

self-consistent solution for a real interaction means that the 

interaction is inconsistent with the assumption of the Hartree-Fock 

ground state. 

2-J Summary 

A formalism for defining the effective shell model Hamiltonian 

was derived using Green's functions. The integral ~quations for the 

Green's functions were solved in the approximations that give the 

usual shell model eigenvalue problems. In all the cases considered 

the effective interaction is a nuc~ar reaction matrix defined self-

consistently by the excitation energies of the states being considered. 

For the one-particle case the reaction matrix is the Brueckner 

reaction matrix and the single-particle states are the Brueckner 

Hartree-Fock states. The one-particle, two-hole and particle-hole 

reaction matrices are 4efined by the subspace of occupied states. The 

two-particle reaction matrix is defined by the subspace of config-

urati'ons chosen for diagonalization. The nuclear reaction matrices 

can be evaluated from an expansion in terms of a free reaction matrix. 
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CHAPTER 3 

ODD-PARITY PARTICLE-HOLE STATES IN 016 

. 3-A Introduction 

We present in this chapter a standard shell model calculation 

of the odd-parity states in 0
16 

using the" relative S state phenomeno-
16 

logical free reaction matrix as an effective interaction. The 

particle-hole structure was calculated in both the Tamm-Dancoff and 

the rand~m ~hase approximations. Since the original work of Elli9tt 
23 

and Flowers there have been many ca1culations of the particle-hole 
16 24 

states in 0 • Gillet and Vinh Mau carried out a detailed phenomeno-

logical calculation and since then there have been several calculations 
3,25-27 

using realistic interactions. The work presented here is 
3 " 

similar to that of Kallio and Kolltveit in that only the relative 

S state part of the nucleon-nucleon interaction is included. The 

method for obtaining an effective interaction from a free reaction 
28 

matrix is quite different from the Scott-Moszk~ASki separation method. 

To examine the difference the effective interaction, obtained from the 

free reaction matrix, is compared to the Kallio-Kolltveit interaction 

which was obtained by the Scott-Moszkowski separation method~ The 

dependence of the particle-hole spectra on the higher energy components 

contained in the free reaction matrix is discussed. 

3-B Particle-Hole States 

We make the usual shell model assumption that the nuc1ear 

Hamiltonian consists of a diagonal part and a two-body perturbation 
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H CI HO+Vl 

sa I~~+ak+ % l v~1Ô (3.1) 

k ~ 

'1 
Presumably, the single-particle energies ~k would be obtained from 

a self-consistent calculation of the grou~d state. lt was shawn in 

Chapter 2 that an appropriate effective Hamiltonian for 'shell model 

ca1culations is 

(3.2) 

K(w) i8 the two-nucleon reaction matrix defined by 

K(W) - v+v I;J(~)QK(W) (3.3) 

where 

w-HO 
,/;j(W) 

1 =-

Q is the projection operator to be chosen so that diagonalization 

of (3.2) doe8 not 1ead to double counting of 1adder diagrams. 

With (3.3) as the effective Hamiltonian, the partic1e-ho1e 

excitation energies and wavefunctions are given by the solution of the 
15 

eigenvalue problem 

(3.4a) 

(3.4b) 

p'h' 
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. a a 
Xph and Yph are the Tannn-Dancoff and gro~nd sta,te correlation ampli-

,tudes, respectively. The bar on the amplitudes in (3.4b) denotes the 

complex conjugate. The eigenvalue problem (3.4) was determined in 

the well known random phase approximation (RPA). The Tamm-Dancoff 

a approximation (TDA) is obtained from (3.4) by setting Yph equal to 

zero, whence the eigenvalue problem 

(Ep -~ -wJXph
a 

+ l {Kph'hp' (wJ -Kphfplh (wJ}Xplhl~ - 0 • (3.5) 
p'h' 

The properties of the particle-hole eigenvalue problems have been 
21 

discussed in detail by Thouless. The matrix elements required in 

(3.4) and (3.5) are defined in Appendix A. 

In Chapter 2 the calculation of K(w) from an expansion in terms 

ofa free reaction matrix RF was discussed. The expansion is 

(3.6) 

The eigenvalue problems (3.4) and (3.5) are self-consistent determina-

tions of the spectra and reaction matrices. We calculated the spectra ' 

in the first order approximation 

K(w) .;. RF(E) (3.7) 

In the approximation (3.7) the eigenvalue problems are no longer 

self-consistent. In an exact calculation of K(w) there is no depend-

ence on Ej however, in the approximation (3.7) E is essentially a 

free parameter. The E dependence can be used to advantage by using 
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the dependenceto compensate for the neglect of the correction terms. 

The reaction matrix elements included in our calculation are 

given in (2.58) and (2.59). We diagonalized the residual interaction 

in the subspace of configurations consisting of Op-shel1 holes and 

(Od,ls)-shell particles. In this case the lowest energy intermediate 

states in (2.59a) and (2.59b) are (P3,P4) = (Od,lsjOf,lp) and 

(Od,lsjOd,ls), respectively. The large spin-orbit splitting (~ Ihw) 

of the unperturbed particle-hole configurations gives a significant 

variation in~(w)for a set of states with the same quantum numbers. 

lt ia interesting to note that the contribution of nearby states 

in the correction terms has the largest effect on the high Tml states 

and the least effect on the low-lying T=O states. Apart from the 

state and matrix element dependence, the correction terms contri-

bute differently to different isotopie spin states. If the isotopie 

spin coupling is performed explicitly (APpendix A), there are different 

linear combinat ions of the T=O and T=l particle-particle matrix 

elements for T=O and T=l particle-hole matrix elements. For the 

direct particle-hole matrix element (2.58a) the coupling is 

T
ph 

= 0: < 1 (3K(T=l~+K(T=0) l! 1> 

T
ph 

= 1: < 1 (K(T=l) ~K(T=O)} 1 > • 

We calculated the partiele-hole spectra for various values of E to 

obtain sorne information about the dependence of the spectra on the 

correction terms. 
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3-C The Free Reaction Matrices 

In this calculation we used the relative S state phenomeno-
16 

logical free reaction matrices discussed by Kahana. Since the 

dominant contributions ta the free, reaction matrices are the relative 

S state reaction matrices, we included only relative S state com-

ponents in the effective interaction. In the coordinate space repre-

sentation ~ ls non-local; accordingly we have used local but velocity 

dependent representations of the form 

(3.8) 

where 

(3.9) 

1 3 
We use KO and KO to denote the T=l and T=O relative S state free 

reaction matrices, respectively. 
, 3 

It should be noted that KO(e) 

contains a pole which 1s a consequence of the existence of the deuteron 

bound state. The parameters in (3.8), which were determined by 
29 

fitting the Hamada-Johnston phase shifts, are given in Table 3.1. 

-, 
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Table 3.1 

Parameters for the free reaetion matrices 

lKO (T=l, S=O ,.&=0) 3KO (T=O, S=l ,,t"'0) 

EO(MeV) 1.7 8.6 

gl (MeV) 53.827 103.297 

g2(MeV) 2,442.2 1,697.0 

-1 0.897 1.115 al (fm ) 

1 -1 3.072 2.670 ~(fm ) 

1 
bl 4.72 1.50 

b2 i 4.40 2.28 
! 
t 

3-D The Odd-Parity Partiele-Hole States 

Partiele-hole states were eonstrueted as eigenstates of total 

angluar momentum J and total isotopie spin T. The j-j eoupling 

scheme used is deseribed in Appendix A. The particle-hole interaction 

was diagonalized in both the TDA and RPA in the subspaee of config 

urations consisting of Op-shell holes and (Od,ls)-shell partieles. 

The unperturbed energies and configurations are given in Table 3.2. 

The unperturbed energies used were the neutron configuration energies 
24 

given by Gillet and Vinh Mau. Harmonie oscillator wavefunctions 

were used with a size parame ter eorresponding to ~w - 13.4 MeV. 
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Table 3.2 

The unperturbed neutron particle-hole configurations. 

Configuration Energy (MeV) 

OP3/2 
-1 

OdS/ 2 17.65 , 

OP3/2 
-1 

lS1/2 18.52 , 

OP3/2 
-1 

Od3/ 2 22.73 , 

OP1/2 
-1 

OdS/ 2 11.51 , 

OP1/2 
-1 

ls1/2 12.38 , 

OP1/2 
-1 

Od3/ 2 16.59 , 

As mentioned ear1ier, with the approximations made, E is 

essentially a free parameter.' The dependence of the spectra on E 

was examined and it was found that only the highest ~,T = 1-,1 

states and the lowest 3-,0 state were appreciably E dependent. The 

E dependence of these levels is shown in Fig. 3.1.' From Fig. 3.1 

it can be seen that aIl of the levels are nearly E inde pendent for 

~ > 80 MeV. This fol1ows from the E dependence of the free reaction 

1 3 matrices. KO(E) and KO(E) are relatively insensitive to varia-

tions in E when E is greater than 80 MeV; furthermore, for E less 

than 80 MeV, varying E is to a good approximation only altering 
20 

the strength of the interaction. lt is weIl known that the 

collective partic1e-hole states shown in Fig. 3.1 are sensitive to 

the str~ngth of the interaction. We present our calculations with 
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E = 86 MeV. This value was chosen since the sarne .value gives 
16 

reasonable agreement with the spectra of neighboring nuclei. 

The required radial integrals of the free reaction matrices 

are given in Table 3.3. In Fig. 3.2 the results of the present 

calculation in the RPA are compared with eKperiment and the spectra 
27,30 

for the Kallio-Kolltveit interaction. The energy levels and 

wavefunctions in both the TDA and RPA are tabulated in Table 3.4. 

In the particle-hole model one of the 1-,0 states is a spurious 

state. In the RPA the spurious state should be at zero energy, 

however, in the present calculation it is imaginary. The spurious 

state is very sensitive to the strength of the interaction; conse-

quently, with the present approKimations there is no reason why 

it should be at zero energy. 

":' Comparing the calculated speetra with experiment it can be 

seen that there is very little agreement with experiment. The 

structure of the low-lying T=O states is not weIl determined. Brown 
31 

and Green proposed that the structure be explained by.the coex· 

istence of spherieal and deformed ground states in 016• More 
32 . 

reeent.ly, Zuker, Buck and MeGrory have calculated the structure of 

the law-lying states in a many-partie le configuration model. The 

calcu1ated particle-hole states should be.compared with their unper-

turbed positions which cannot be obtained from experiment. The 

giant dipole states are too high; again, the structure of the giant 

di pole states is not weIl known. The giant dipole states and lowest 

3-,0 state have the proper collective behavior in both the TDA and 

RPA in the present calculation. 

-. 
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Table 3.3 

Radial integrals of the free reaction matrices with 

t'itl) = 13.4 MeV and e = 86 MeV 

n n' < nlllxolln' > < nl/3Ko lln ' > 

0 0 -7.034 -11.079 

0 1 -4.021 -7.799 

0 2 -2.234 -5.116 

1 l -4.193 -7.557 

l 2 -2.722 -5.746 

2 2 -2.374 -5.164 
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Fig. 3-2. The odd-parity states in 0 16 calculated in the random-phase approximation. The columns 
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Table 3.4 

The energy levels and wavefunctions for the odd-parity states from the present calculation :'.~:,,:.:'.:<. :. 

MeV, liw = 13.4 MeV). The phases of the wavefunctions are defined in Appendix A. The last columns in: .. 

the table are the ground state correlation amplitudes 
. . 

J3t.T = 0-.0 7t -
J .T = .0 .1 -

OP3/2 
-1 -1 -1 

OP1/ 2 
-1 

OP1/ 2 OP3/2 

E Approx 
Od3/ 2 1s1/ 2 Od3/ 2 1s1/ 2 

OP3/ 2 
-1 -1 -1 

OPl/2 
-1 

E Approx Opl/2 OP3/2 

Od3/ 2 Is1/ 2 Od3/ 2 Is1/ 2 1 

~ 

13.41 TDA 0.064 0.998 14.22 TDA 0.097 0.995 1 

13.41 RPA 0.064 0.998 -0.003 0,.001 14.21 RPA 0.096 0.995 0.005 -0.012 

25.56 TDA 0.998 -0.064 27.93 TDA 0.995 -0.097 

25.54 RPA 0.998 -0.064 0.019 -0.004 27.80 &PA 0.996 -0.096 -0.046 0.010 

-- -- ------ --- ~ - -- - --- ----

.. 



-
1C -J ,T = 1 ,0 

OP3/2 
-1 

OP3/2 
-1 

OP3/2 
-1 

E Approx 

Od5/ 2 1s112 Od3I2 

0.65 TDA 0.702 0.274 -0.185 

i (7.70) RFA * 
10.67 TDA -0.299 0.369 0.039 

10.50 RPA -0.251 0.394 0.030 

16.88 TDA 0.105 0.843 0.017 

16.88 RPA 0.107 0.843 0.017 

18.29 TDA -0.571 0.277 0.228 

18.28 RFA -0.565 0.276 0.226 

24.54 TDA 0.283 -0.043 0.955 

24.51 RPA 

1 

0.287 -0.043 0.954 

, 

* Eigenvalue is imaginary. 

-1 
OPI/2 OP1/ 2 

-1 
OP3/ 2 

-1 
OP3/ 2 

-1 

181/2 Od3/ 2 Od 5/2 181/2 

0.285 0.562 

0.850 -0.225 

0.870 -0.183 -0.072 0.005 

-0.416 -0.325 

-0.418 -0.321 -0.006 0.009 

-0.140 0.724 

-0.140 0.731 -0.020 0.001 

0.061 -0.049 

0.061 -0.045 0.000 -0.005 

OP3/ 2 
-1 

OP1/ 2 
-1 

Od3/ 2 181/2 

0.022 0.005 

0.003 0.007 

-0.006 -0.002 

0.015 0.001 

" 

e 

OPI/2 
-1 

Od3/ 2 

-0.057 

-0.006 

-0.009 

-0.018 

1 
~ 
0-
1 



e 

J1t.T = 1-.1 
-1 -1 -1 -1 

OP3/2 . OP3/2 
E Approx 

OP3/~ OP1/ 2 

Od S/ 2 1s1/ 2 Od3/ 2 1s1/2 

14.39 TDA -0.149 -0.053 -0.038 0.986 

14.38 RPA -0.148 -0.053 -0.038 0.987 

18.50 mA -0.319 -0.206 0.264 -0.064 

18.47 RPA -0.314 -0.204 0.257 -0.062 

20.69 TDA -0.306 0.929 0.203 0.011 

20.67 RPA -0.316 0.926 +0.201 0.009 

24.87 TDA 0.873 0.204 0.305 0.150 

24.59 RPA 0.879 0.225 0.269 0.150 

21.31 TDA -0.142 -0.223 0.891 0.007 

27.13 RPA -0.107 -0.217 0.906 0.013 

/ 
t· .... 

-1 -1 1 -1 -1 
OP3/ 2 IOP3/ 2 OP1/ 2 OP3/2 

Od3/ 2 OdS/ 2 181/ 2 Od3/ 2 

0.017 

0.016 -0.002 0.011 -0.001 

0.884 

0.889 -0.021. -0.002 0.014 

0.046 

0.043 -0.006 0.004 0.009 

0.283 

0~296 0.036 0.014, -0.035 

-0.368 , 
-0.351 -0.056 

./ 
-0.003 ; -0.014 

1 
! 

e 

'. 1 
-1 -1 

OPl/2 OP1/ 2 

181/ 2 Od3/ 2 

-0.002 0.002 

0.002 0.006 

0.011 -0.010 

0.005 0.054 

1 -0.0121-0.007 

t 
.po ....., 
t 



e 

-
J'It,T = 2 0 

OP3/2 
-1 

OP3/2 
-1 

OP3/2 
-1 

OP1/2 
-1 

E Approx 
Od5/ 2 ls1/ 2 Od3/ 2 Od5/ 2 

12.22 TDA 0.288 0.052 -0.026 0.949 

12.20 RFA 0.288 0.052 -0.027 . 0.949 

16.46 TDA 0.~53 -0.073 -0.157 -0.239 

16.45 RPA 0.456 -0.073 -0.157 -0.241 

18.54 TDA 0.728 -0.450 -0.095 -0.140 

18.53 RFA 0.730 -0.443 -0.095 -0.140 

19.88 TDA 0.369 0.884 -0.161 -0.142 

19.87 RFA 0.364 0.887 -0.160 -0.140 

23.29 TDA 0.214 0.093 0.969 -0.051 

23.28 RFA 0.213 0.092 0.970 -0.050 

-

.' 

"'" 

-1 -1 
OP1/2 OP3/ 2 OP3/2 

-1 

Od3/ 2 OdS/ 2 1s1/2 

0.115 

0.116 -0.023 -0.002 

0.841 

0.839 -0.009 0.001 

-0.489 

-0.492 0.005 0.002 

-0.192 

-0.190 0.005 0.002 

0.059 

0.060 0.009 0.002 

OP3/ 2 
-1 

OP1/ 2 
-1 

Od3/ 2 OdS/ 2 

0.001 0.002 

0.014 -0.016 

0.002 -0.013 

0.003 -0.010 

0.001 -0.009 

-- - - ---- --

e 

OP1/ 2 
-1 

Od3/ 2 

-0.008 

-0.002 

-0.013 

-0.008 

0.007 

- ---- - - ---

~ 
00 



e 

=-

1( -
J .T = 2 .1 

OP3/2 
-1 

OP3/ 2 
-1 

OP3/ 2 
-1 

OP1/2 
-1 

E Approx 
Od5/ 2 lsl/2 Od3/ 2 OdS/ 2 

0.252 1 13.68 TDA 0.093 0.076 0.960 

13.64 RPA 0.243 ! 0.091 0.074 0.963 

18.26 TDA 0.270 -0.025 -0.08Y -0.041 

18.23 RFA 0.264 -0.022 -0.084 -0.037 

19.66 TDA -0.608 0.763 0.027 0.088 

19.64 RPA -0.627 0.749 0.029 0.090 

21. 59 TDA 0.658 0.614 -0.320 -0.211 

21.52 RFA 0.652 0.633 -0.304 -0.207 

24.45 TDA 0.247 -.177 0.940 -0.156 
-

24.39 RPA 0.234 0.172 0.946 -0.149 

---- -- - --~ --- ~ -~ --

OP1/ 2 
-1 -1 1 

OP3/2 OP3/2 
-1 1 

Od3/ 2 Od5/ 2 lsl/2 

1 

-0.021 1 

1 -0.021 0.017 0.004 

0.958 

0.960 -0.001 0.000 

0.198 

0.196 0.018 -0.002 

-0.208 

-0.200 -0.029 -0.010 

0.015 

0.017 -0.013 -0.006 

- --- '- ---- -- -- -

-
-1 -1 

OP3/ 2 OP1/ 2 

Od3 / 2 Od5/ 2 

0.018 -0.028 

-0.010 0.004 

-0.001 -0.014 

-0.002 0.023 

-0.011 0.031 

e 

OP1/ 2 
-1 

Od 3/ 2 

-0.002 

-0.030 

-0.011 

0.016 

-0.008 

- -

, 
~ 
\0 
1 
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,;::? 

Jfi,T = 3-,0 

OP3/2 
-1 

OP3/ 2 
-1 

E Approx 

Od S/ 2 Od3/ 2 

8.50 1 TDA 0.306 -0.263 

7.59 RPA 0.351 -0.304 

16.48 TDA 0.898 -0.237 

16.36 RPA 0.884 -0.245 

22.03 TDA 0.314 0.935 

21. 96 l RFA 0.331 0.929 

fi -
J ,T = 3 ,1 

OP3!2 
-1 

OP3!2 
-1 

E Approx 
OdS/ 2 Od3!2 

13.50 TDA -0.161 -0.009 

13.44 RPA -0.lS1 +0.007 

19.07 TDA 0.981 0.113 -

19.02 RFA 0.983 0.106 

2S.25 TDA -0.110 0.994 

2S.15 RFA -0.104 0.996 

----------

OP1/ 2 
-1 

OP3/ 2 
-1 

OdS/ 2 OdS/ 2 

0.915 

-0.918 0.118 

-0.369 

-0.402 0.029 

0.164 

0.170 -0.022 

""" 

OP1/ 2 
-1 

OP3!2 
-1 

OdS!2 OdS/ 2 

0.987 

+0.989 +0.009 

0.159 

0.151 0.020 

-0.026 

-0.024 -0.022 

--~ ----- -

OP3/ 2 
-1 

Od3 / 2 1 

-0.113 

-0.039 

0.032 

. 

OP3!2 
-1 

Od5!2 

-0.040 

-0.025 

0.006 

OP1/ 2 
-1 

~/2 

0.177 

0.042 

-0.020 

OP3!2 
-1 

OdS/ 2 

+0.004 

+0.009 

-0.044 

~-

; 

• 

e 

1 
\II 
o 
1 
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Among the remaining levels, the most pronounced discrepancy is 
25 

with the 0 levels. lt is known that the tensor force contri-

butes with opposite sign to the central force shifting the 0-

levels down towards the experimental positions. The 1-,1 spectrum 

has nearly' the correct relat.ive spacing of levels but the levels 

are shifted upwards relative to the experimental' spectrum. One 

should not attribute too much significance to the relative spacing 

of levels since the positions of tbe states, which are believed to 

be described by the particle-hole model, are largely determined by 

the unperturbed energies of the dominant configurations. This can 

be seen from the data in Table 3.5. The Iowest T=I leve1s are 

nearly pure configurations and the energy shif~s are smali. These 

levels~ apart from the role of the tensor force, are not sensitive 

to the interaction. The 17.3 (1-,1) and 19.5 (2-,1) MeV states 

do contain significant configuration mixing since there are three 

re1atively close spaced unperturbed configurations at 16.59, 17.65 

and 18.52 MeV. 

Comparing the present resu1ts with the spectra for the Kallio-

Ko1Itveit interaction it can be seen that amongst the levels which 

are known experimentally only the giant dipole states differ sig-

nificant1y. There are several differences for the other states. 

lt can be seen by comparing Tables 3.1 and 3.6 that there are real 

differences between ~ and the Kallio-Kolltveit interaction. lKO 

3 and KO are more attractive in the n'=n=O state and less attractive 

in the other states. 
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Table 3.5 

The positions of the partic1e-hole states relative to the unperturbed energie8 of the dominant configuration 

Unpert. Unperturbed Cale. Calcu1ated 
J1C,T Exp. Energy t§!,exp Configuration Energy t§!, 

cale Configuration .. 
!MeV~ ~eVl {MeVl 

o ,0 10.95 12.38 -1.43 
-1 

OPI/2 ,181/ 2 13.41 +1.03 -1 
0.998(OPl/2 ,lSI/2) 

o ,1 12.78 12.38 +0.40 -1 14.21 +1.83 -1 1 

OPI/2 ,181/2 O.995(OP1/ 2 ,181/ 2) VI - N 
1 

1-,1 13.10 12.38 +0.72 -1 
OPI/2 ,181/ 2 14.38 +2.00 -1 

0.987 (OP1/2 ,181/ 2) 

1 ,1 17 .3 16.59 +0.71 -1 
OP1/2 ,Od3/ 2 18.47 +1.88 -1 

O.889(OP1/ 2 ,Od3/ 2) 

2 ,0 12.52 11.51 +1.01 -1 
OP1/2 ,Od5/ 2 12.20 +0.69 0.949(OP1/2-1,Od5/ 2) 

2-,1 12.96 11.51 +1.45 -1 
OPl/2 ,Od5/ 2 13.64 +2.13 -1 

0.963(OP1/2 ,Od5/ 2) 

2 ,1 19.5 18.52 +0.98 
-1 

OP3/2 ,181/ 2 19.64 +0.14 -1 
O.749(OP3/2 ,181/ 2) 

3-,1 13.26 11.51 +1.75 -1 
OP1/ 2 ,Od5/ 2 13.44 +1.93 -1 

0.987 (OP1/2 ,Od5/ 2) 
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Table 3.6 

Radial integra1s for the Ka11io-Ko1ltveit interaction taken from 

reference 7 

n ni 15 
0 

3
5 

1 

0 0 -6.07 -9.15 

0 1 -5 0 34 -9.71 

0 2 -4.30 -7.12 

1 1 -5.01 -8.28 . 
1 2 -4.18 -7.18 

2 2 -3.68 -6.67 

That the corresponding spectra do not ref1ect these differ-

ences is because the positions of the levels are main1y determined 

by the unperturbed energies. 

It is instructive to examine the ro1e of the higher energy 

components of ~ in determining the partic1e-hole spectra. lt has 

been found that the low energy properties of the nucleon-nucleon 
18 18 16 

interaction are dominant in determining the spectra of 0 and F 

This is because the contributions of the repulsive terms to the 

n=nI=O matrix e1ement is small. In Table 3.7 the separate contri-

butions of attractive and repulsive terms in ~ to the matrix elements 

required for the particle-ho1e spectra are listed. The longer range 

attractive terms, which are main1y determined by the low energy 
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scattering data, are more like the Kallio-Kolltveit interaction. 

The off-diagonal integrals n=O; n'=l,2 are still smaller but the 

others are more or less uniformly larger. The shorter range repulsive 

terms make an almost negligible contribution to the n=n'=O integrals 
33 

and the contribution increases with n and ni. Bhadurie and Tomusiak 
27 

and Mavromatis, Markiewicz and Green have found that using a 

state dependent separation distance for the Kallio-Kolltveit inter-

action also decreases the radial integrals for higher n quantum 

numbers. If the particle-hole spectra are sensitive tothe higher 

energy components of the nucleon-nucleon interaction, t~e sensitivity 

will be manifested in a dependence on the higher n and n' radial 

integrals. To examine this dependence we used only the attractive 

1 
terms of KO 

3 and KO as an effective interaction. The results 

are compared with those of the correct RF in Table 3.8. Most of 

-the levels are only slightly affected while the lowest 3 ,0 state 

is shifted by 1.4 MeV. 
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Table 3.7 

The contributions of the attractive and repulsive 

parts of the free reactionmatrices to the radial integrals 

< nlllKolln' > 3 < nll KOllni > 
n ni 

- + - + 

0 0 -7.480 +0.446 -11.673 +0.574 

0 1 -5.035 +1.013 -8.890 +1.091 

0 .2 -3.423 +1.189 -6.632 +1.516 

1 1 -5.506 +1.313 -9.244 +1.687 

1 2 -4.450 +1. 728 -7.930 +2.184 
1 

2 2 -4.566 +2.192 -7.895 +2.731 
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Table 3.8 

Comparison of the partic1e-ho1e spectra ca1cu1ated with ~ and ~ 

(no repulsion) in the RPA 

JJt,T ~ ~(no repu1sion) 

o ,0 13.41, 25.54 13.50, 25.76 

o ,1 14.21, 27.80 14.34, 28.07 

1 ,0 10.50, 16.88, 18.28, 24.51 10.07 , 16.85, 18.28, 

1 ,1 14.38, 18.47, 20.67, 24.59, 27.13 14.52, 18.47, 20.82, 

2 ,0 12.20, 16.45, 18.53, 19.87, 23.28 12.31, 16.63, 18.72, 

2 ,1 13 .63, 18,23, 19.64, 21.52, 24.39 13.66, 18.35, 19.79, 

3 ,0 7.59, 16.36, 21. 96 6.15, 16.18, 22.00 

3 ,1 13.44, 19.02, 25.15 13.61, 19.12, 25.45 

24.66 

24.86, 27.35 

19.98, 23.36 

21.66, 24.48 
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3-E E1ectromagnetic Transitions in 016 

The formulae for calcu1ating transition probabilities 

in the partic1e-ho1e mode1 are given in Appendix A. In Table 3.9 

the reduced transition probabi1ities for transitions to the ground 

state are tabulated. The transition probabilities were caiculated 

in the TDA with no effective charge. Transition probabilities are 

not given for the 1-,0 states since ~=O dipole transitions are 
34 

forbidden by isospin selection rules. There is very little data 

available for levels above 10 MeV. 

The octupole and giant dipole transition strengths are 
20 

enhanced as predicted by the schematic model. Experimentally, the 

B(E3) for the 6.13 MeV (3-,0) transition is 209.5 e2fm6. In the 

present calcu1ation the B(E3) is 67.8 and 120.9 e2fm6 in the TDA and 

RPA, respective1y. The dipole strength is almost completely concen-

trated in the two highest states which are in the region of the 
35 

giant dipole resonance. lt is weIl known that the she1l model 

gives too large a contribution to the dipo1e sum rule. Shakin and 
36 

de Providencia have shawn that the correlations in the RPA ground 

state give Pauli corrections which decrease considerab1y the dipole 

transitions strength. 

The 2 ,1 states indicate the existence9f a giant magnetic 

quadrupole resonance. The magnetic resonance has been observed in 
37 38 

ine1astic e1ectron scattering. The Saskatchewan group have 

assigned the 19.08 MeV state ~ = 2 ,1. Unfortunately, the spin-

parity assignment can on1y be made by a model dependent analysis of 
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Table 3.9 

The reduced transition probabi1ities B(E-M,l) for the transition 

~,T ~ g.s. in the TDA 

Jl!,T E B(E-M,L) Exp 
1- i',T E B(E-M,L) 

- -
2 ,0 12.22 0.01 0.600 1 ,1 14.39 0.024 

2-,0 16.46 5.26 1-,1 18.50 0.013 

2-,0 18.54 3.47 1-,1 20.69 0.008 

2-,0 19.88 6.83 1-,1 24.87 0.941 

2-,0 23.29 0.74 1-,1 27.31 0.438 

3-,0 ,-8.50 67.83 209.5 2-,1 12.22 37.45 

3-,0 16.48 14.97 2-,1 16.46 3.75 

3-,0 22.03 10.44 2-,1 18.54 8.36 

2-,1 19.88 193.2 

2-,1 23.29 88.4 
-3 ,1 13.50 21.58 

3-,1 19.07 25.91 

3-,1 25.25 45.78 

f reference 39 

the transverse magnetic form factor. The present calculation indi-

cates that the resonance wou1d be in the vicinity of 20 MeV and 

-1 -1 
split between the (P3/2 ,d5/2) and (P3/2 ,d3/ 2) configurations 

as in the case of the giant dipo1e resonance. 

The 2-,0 states at 8.88 MeV and 12.52 MeV decay to the 

ground state by M2 radiation with reduced transition probabi1ities 

of 0.55 ~02fm2 and 0.60 ~02fm2 respectively. The lowest 2 ,0 

39 

state (12.22 MeV) in the present ca1culation has a BCM2) of 0.01 ~02fm2. 
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In this transition there is a very sensitive cance11ation between 

-1 -1-
the (P3/2 ,dS/ 2) and (P1/2 ,dS/ 2) components. AlI of the cal-

culations with realistic forces have the lowest 2-,0 state in the 

vicinity of 12 MeV. The phenomenologica1 calcu1ations of E1liott 

and F10wers and Gillet and Vinh Mau have the lowest state near 10.S 
40 

MeV. Recently, Gill ~ .!l. have conc1uded that the partic1e-ho1e 

state in Elliott and Flower's ca1culation is in reasonable agreement 

with the decay properties of the 8.88 MeV state. On the other hand, 
41 

the 016(p,p') experiments of Hasse1gren ~!l. indicate that the 

8.88 MeV state does not contain an appreciable one-particle-one-ho1e 

component. The theoretical and experimental evidence favor assigning 

the 12.S2 MeV state the structure of the lowest particle-ho1e state. 

3-F E1ectromagnetic Transitions in N16 

The quartet of lowest T=l states in 016 are uns table 

against particle emission and contain isobaric spin mixing from nearby 

T 0 Th 1 . N16 bl· t . 1 = states. e ana ogue states 1n are sta e aga1ns part1c e 

emission and do not contain T=O admixtures. An analysis of electro­

magnetic transitions among the levels in N16 provides a test of the 

wavefunctions calculated in 0 16 assuming isotopic spin as a good 

quantum number. In the absence of Coulomb effects the amplitudes of 

the neutron particle-proton hole configurations in the N16 states 

are the same as those calculated for 0 16 • Coulomb effects are present 

and result in a relative shifting of the analogue states in the A=16 

multiplet. The Coulomb shifts have been discussed by Elliott and 

Flowers and Tombre11o. 
16 

We have used the ca1culated 0 ampli-
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tudes to calculate the transition probabilities in N16 • The states 

are nearly the pure particle-hole configurations given in Fig. 3-4. 

The decay scherne of the states is shown in Fig .. 3-3 and the experi-
30 

mental branching is given in Table 3.10. 

Table 3.10 

Experimental gamma-branching in N
16 

7 Mode Branching (%) 

71 E2 100 

72 E2-tMl 100 

73 M3 <2 

74 
E2-tMl 25 

75 
Ml 75 

76 E2 <2 

39 
The experimental B(E2) for the 0 ~ 2 transition is 

4.1 e2fm4. With no effective charge the calculated B(E2) was 0.074 

2 4 e fm ~ The transition probability can be expressed in terms of the 

sing1e-partic1e transitions of the neighboring nuclei N
15 

and 0
17

• 

The main contribution is from the sl/2 ~ dS/ 2 neutronparticle tran­

sition with a small amp1itud39for the Pl/2~ P3/2 proton hole transi-

tion. With the experimenta1 values for the sing1e-particle 
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0.392 -1 1-,i 
sl/2P1/2 

1r6 
0.29S li - -1 3-,1 

dS/2Pl/2 

'12 '13 '14 'lS 1 
c-
t-' 
1 

0.120 , ,It -1 o ,1 sl/2P1/2 

0.000 
'11 

Il Il 
-1 2-,1 dS/2Pl/2 

MEV 
J{ 

Conf. J ,T 

Fig. 3-3. The e1ectromagnetic transitions in N
16

. 
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16 . 2 4 
transitions the N B(E2) 1S 7.1 e fm. The proton hole transition 

probability 1s not weIl known experimentally, however, it entera 

with an amplitude of 0.092 whereas the neutron particle transition 

has an amplitude of 0.955. 
17 

Assuming that the 0 neutron effective 

charge arises from a polarization of the charged core and i8 propor­

tional to Z, the N16 B(E2) is reduced to 5.7 e2fm4. A similar 

treatment of the 12 , 14 and 16 E2 decay modes does not enhance them 

sufficiently to compete with the Ml decay modes. 

In the last column of Table 3.11 the decay widths of the 

levels are given. The widths were calculated using the experimental 

energies of the levels. The calculated widths are in agreement with 

the experimental results for the 12, 13 and 16 branching of the decay 

scheme. The branching ratio 15/14 is 3 while the calculated value 

is 0.9. The 14 Ml decay is very sensitive to small amplitudes in 

the wavefunctions since the dominant configurations 

J 
-1 1 -1 

sl/2,Pl/2 > ~ d5/ 2,Pl/2 > cannot contribute to the transition. 

3-G Summary 

The particle-hole spectra calculated with the relative S 

state free reaction matrices is in reasonable agreement with experi-

ment. The positions of the levels that are predicted by the particle-

hole model are mainly determined by the unperturbed energies of the 

dominant configurations. These particle-hole levels are fairly 

insensitive to the structure of the interaction. On the other hand, 

the collective octupole and giant dipole states are very sensitive 

to the interaction and the model used. Only the collective octupole 
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state is sensitive to the higher energy components in~. Thi~ 

sensitivity is not unique since the octupo1e state i8 sensitive to 

a11 aspects of the interaction and mode1. 

Table 3.11 

Ca1culated gamma decay widths in N
16 

B (L,l!) n n 
Trans Mode e2f 2L_ 2f 2L-2 rL /B(L,1C) rL (eV) 

m IJ.O m ,l! ,l! 

11 E2 0.074 0.20lxlO-10 1.49x10-12 

Ml 0.548 -3 -4 
12 

0.297xlO 1. 63x10 

E2 0.053 0.18Ox10-8 9. 54xlO-ll 

13 M3' 571 0.209xlO-19 1.19xlO -17 

Ml' 0.085 -3 -5 
14 0.696x10 6.75xlO 

E2 0.006 0.746xlO -8 4.48xlO-11 

Ml 0.258 -3 -5 
15 0.232xlO 5. 92xlO 

16 E2 0.044 0.695xlO-ll 3.06xlO-13 
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CHAPTER 4 

SINGLE-PARTICLE POTENTIALS AND WAVEFUNCTIONS 

FOR SHELL MODEL CALCULATIONS 

4-A Introduction 

Shell model calculations with realistic forces are usually 

performed for either closed or nearly closed shell nuclei. It 1s 

7clearly of interest to learn the additional effect of using more 

realistic single-particle wavefunctions than the conventional 

harmonic oscillator field. To this end Woods-Saxon potentials with 

a Thomas spin-orbit term have bE:en fitted to the experimentally 

observed single-particle energies. Potentials and wavefunctions 

have been determined for nuclei with A = 15, 16, 17, 39, 40, 41, 207, 

208 and 209. It seems best to perfo~ shell model calculations by 

expanding Woods-Saxon wavefunctions in terms of harmonic oscillator 

functions. Obvious modifications in the wavefunctions are produced 

by introducing a finite well. It is vital to see that the nuclear 

radius is correctly described by the more realistic single particle 

wavefunctions. The size of the valence orbits plays a large role 

in determining the energy scale for the inter-valence-nucleon inter­

action. The only direct experimental information on nuclear àizes 

comes from measurement of the r.m.s. radius of the nuclear charge 

distribution. In a shell model description of nuclei the single­

particle potential radius for protons can be determined by requiring 

the r.m.s. radius, calculated using single-particle wavefunctions, 
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to be consistent with the observed r.m.s. radius of the charge 

distribution. There is very litt le experimental information on 

the neutron distribution in nue lei. However, some information can 

be obtained about the size of valence neutron orbits by appealing 

to the Coulomb energy shift deduced from the positions of analogue 
43 

states. This method has been used by Nolen et. al. for nuclear 

size determinations in the calcium region. The above methods were 

used to de termine weIl radii in the calculations presented in this 

chapter. 

4-B The Potential and Wavefunctions 

For a harmonie oscillator (HO) potential the single-particle 

Hamiltonian is 
2 122 

= L+- mwr 2m 2 

which satisfies the Schrodinger equation 

where 

and 

~ cp n,tm W = en,t cp n.tm W 

en.t = (2n+J+3/2)~w 

CPn.tmW = Rn,t(r)Y.tm(G,cP) 

(4.'1) 

(4.2) 

The radial oscillator function Rn,t(r) is defined in Appendix B. 

Since the HO potential doesn't contain a spin-orbit term, the single-

particle energies are taken from experiment and states of total 

angular momentum (j,m) are constructed from HO wavefunctions with an 

appropriate size parame ter 



The wavefunctions are th en 

a= 

m' 
m 

s 
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(4.3) 

(4.4) 

For finite potentials we take a Woods-Saxon ~S) shape with 
{-

a Thomas spin orbit term, 

where 

and 

2 [ V (r) 
Ze . 

c = 2R 3-
u 

ze2 
=-

r 

-1 

fer) = [l+eXp<r:~ J 

(L)2 J r-S;R 
Ru u 

r>-"R 
u 

(4.6) 

(4.7) 

The Coulomb potential (4.7) is that of an equivalent uniform charged 

sphere of the sarna r.m.s. radius as the actual nuclear charge distri-

bution. With this potential the single-particle Hamiltonian is 

2 
H-__ = .E... + Ver) --ws 2m 

which defines the Schr6dinger equation 

{- In the calculations ~~c)2 = 2.0 fm2. 
1t 

(4.8) 
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where 

'itv,tjm W = L < .e~'ms 1 jm > y v.tj (r)Y.tm (9 ,cp)Xm ~ (4.9) 

m' S 

m 
s 

and 

The radial wavefunction Yv,tj(r) is the solution of the equation 

Making ~he substitution 

(4.11) 

Eq. (4.10) becomes 

, y \lt j (r) = 0 (4.12) 

The eigenvalues of the operator ~.~ are 

< It.:!!. > = t , j = t+~ 

= -,t~1, j = t-~ (4.13) 

The radial function y ',t.(r) was obtained by numerica1 integration 
V J 

of (4.12). The solution i8 in units of fm-lz and is normalized in 

the fashion 
ex> 

,~Yv,tj(r)12dr = 1 

o 

(4.14) 
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For tabulating the y,vtj(r) and for calculations with (4.9) 

as basis states it is useful to expand y " .(r) in terms of the 
~J . . 

functions Rnt(r). The oscillator functions of Bq. (4.2) are dimen-

sionless and are an orthonormal set of functions in the principal 

quantum number n, 

00 

J a.3Rnt (r)Rm,t (r)r
2
dr = 8mn 

o 

lt i6 convenient to write th~ size parameter a. as 

2 a. = O.024l145~w 

The expansion of y ".(r) is 
. VNJ 

'\ 3/2 
Yvtj (r) = L antj (~w)a r Rnt (r) 

n=O 

(4.15) 

(4.16) 

(4.17) 

where a is a free parameter. The coefficients anJj(~) are dimen­

sionless and are determined by overlap integrals, 
00 

J 3/2 
an,t j (~w) = a. r RnJ (r) Yvt j (r) dr 

o 

From the normalizat-ions (4.14) and (4.15) we have 

00 

JI YV/,j (r) j
2
dr 

o 

00 . 

= 1 = l lant/~wI2 
n=O 

(4.18) 

(4.19) 

In practice the number of terms required in the expansion (4.17) 

is not large; in fact, the number of terms i5 minimized by choosing 
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a value of ~w to maximize the overlap of the term n = v. This 

point is discussed further in the following sections. Using (4.17) 

we immediately have the single-particle states (4.9~~s an expansion 

in oscillator states (4.4), 

00 

"'v.tj W i = > ~ an,ej (~W)"'n,ej W (4.20) 

n=O 

4-C Nuclear Sizes 

Experiments such as electron scattering are able to determine 
44 

the'size of the nuclear charge distribution p W. For spherica1 
c 

nuclei the quantity measured is the root-mean-square radius defiued 

by 

(4.21) 

A uniform charge distribution which gives the same low energy 

scatter,ing as the actual nuc1ear charge distribution will have the 

same r.m.s. radius. The equiva1ent uniform charge distribution 

p (r) 
c 

has an r.m.s. radius 

= 3 

42fR 3 
u 

= 0 

The "equivalent,radius" is then 

r~R 
u 

r~R 
u 

(4.22) 

(4.23) 

(4.24) 
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where < r 2 > % is the measured r.m.s. radius of the charge distri­
c 

bution. Measured r.m.s. radii and equivalent radii for some of 

the nuclei we will consider are given in Table 4.1. 

Nucleus 

N14 

0
16 

0
18 

Ca40 

Ca42 

T1207 

Pb206 

Pb
208

(nat) 

. Bi20.9 

Table 4.1 

Charge radii for various nuclei 

<.r2 > % 
(fm) c 

2.46 

2.71 

2.77 

3.50 

3.53 

5.480 

5.489 

5.493 

5.513 

R Experiment 
u 

3.18 E1act. Scatt. 

3.50 Elect. Scatt. 

3.58 Elect. Scatt. 

4.51 Elect. Scatt. 

4.56 Elect. Scatt. 

7.07 Muonic X-ray 

7.09 Muonic Xoray 

7.09 Muonic X-ray 

7.12 Muonic X-ray 

Ref. 

a 

a 

a 

a 

a 

b 

b 

b 

b 

a) H.R. Collard, L.R.B. Elton and R. Hofstadter, Nuclear Radii, 

Numerical Relationships in Science and Technology, New Series, 

Group l, Vol. 2, ed. H. Schopper, Landolt-Bornstein, Springer-

Verlag, 1967. 

b) H.L. Acker, G. Backenstoss, C. Daum, J.C. Sens and S.A. De Witt 

Nucl. Phys. ~, 1 (1966). 
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We assume that the nuclei we consider are well described by 
'. 

neutrons and protons moving independently in average spherical 

potentials. With this assumption the charge distribution and the 

distribution of particle cen~res (matter distribution) can be obtained 

from the single-particle wavefunctions. For the potential (4.5) the 

proton and neutron matter distributions are, respectively, 

and 

Pn (r) = i;; ~ 'L (2j+l) \uv.tj n(r) i2 

(VJj) 

The total matter distribution is then . 

(4.25a) 

(4.25b) 

(4.25c) 

The proton matter distribution does not coincide with the charge 

distribution. To obtain the charge distribution the charge distri-

bution of the pro~on itself must be folded into the matter distribution. 
44,45 

The proton charge distribution is fitted by 

2 
l 

-r /a 
Pprot (r) = e p 

3/2 3 

with 

From (4.21) we have that 

< r
2 > proto 

a 

1C ap 

= 0.65 fm 
P 

3 2 =-a 
2 p 

= 0.63 fm2 

2 
" (4.26) 

(4.27) 
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The r.m.s. radius of the charge distribution is 

= 

where < r 2 > is obtained from (4.25a). 
p 

< r
2 > prot (4.28) 

The gross behaviour of nuclear radii, as a function of mass 

1/3 number, can be represented by the weIl known liA law". Recently, 
44 

Elton has revi~wed the A dependence of matter and charge rad!!. 

Along the valley of maximum stability, the charge radius varies some-

what less than Al/3. F· d . h d f or 1sotopes an 1sotones t e epartures rom 

AlI3 .' . l Th . d d i i an var1at1on are arge. e quant1ty use to measure ev at ons 

of the charge radius R from the Al/3 law is 
c 

dR r = 3A ~ 
Re dA 

If R is proportional to Al/3 then r = 1. 
c 

For isotopes of spherical 

nuclei r =i= 0.65, while r =i= 1.5 for isotones. 
45,47 

It has been suggested 

that in a microscopie description of nuclei the deviation of r from 

unit y can be ascribed to the binding energy of the valence particles. 

Elton also points out that for mass radii the experimental evidence 

1/3 is not in conflict with an A dependence. 

4-D Harmonie Oscillator Potentials 

When a HO potential is used as a single-particle potential 

the size parameter must be determined for each nucleus. One method 

of determining the size parame ter i8 to require consistency with the 

observed r.m.s. radii discussed in the preceding section. For the 

purpose of comparison in later sections we determined HO potentials 

for 0, Ca and Pb. 
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With HO function basis states all orbitaIs in the same shell 

have the same r.m.s. radius which wc dcnote by 

= 

= 

where a is the size parame ter 

and protons in an oscillator 

of neutrons and protons are 

2 -~ < r > 2 = n 

and 

< r 2 > ~ = P 

respectively. For a nucleus 

(2n+.t+3/2) ~ 
a 

n 
}z 

-L 
a (4.29) 

(4.3). Denoting the number of neutrons 

sheH by N n "and 
s 

N p 
s ' 

the"r.m.s. radii 

[I N nn J% 
" S s 

(4.30a) Na 
s 

r ,"-' N Pn f - "- ." 

lL s s 
(4.30b) Za 

s 

consisting of A nucleons (A=N+Z) we have 

r \-, (N n+N p) 1~ 
= ) s s n (4.30b) _ ~ Aa s 

s 

In (4.30b) we assurned that the neutrons and protons were in wells of 

the same radius. The generalizatlon to wells of different radii is 

obvious. The oscillator size parameters can be determined from (4.30) 

by using experimental values of the r.m.s. radii. We have 

l'iw = 
P 

(4.3la) 



and 

Ylw 
n = 

= 

1 
2 

< r > n 

1 
2 

< r > 
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(4.3Ib) 

s 

(4.3Ic) 

s 

In Table 4.2 the occupied oroitals of the closed shell nuclei 

016, Ca40 and Pb208 are 11.·sted. E . (4 31) d b i quatl.ons • were use to 0 ta n 

Ylw values with proton matter radii deduced from the ~harge radii 

of Table 4.1. The resu1ts, assuming that the neutron and proton 

r.m.s. radii are the same, are 1isted in Table 4.3. With < r
2 > ... 

n 

< r 2 > the N=Z nuc1ei, 0
16 

and Ca
40 , have the same HO potentiai 

p 

for both neutrons and protons. 
208 

However, for Pb ,which has a 

neutron excess, the HO potentia1s have different radii for neutrons 

and protons. From Table 4.2 it can be seen that higher oscillator 

shells weight the r.m.s. radius heavily. Imposing the .condition 

< r 2 > = < r
2 > requires a neutron potential with a smaller radius. 

n p 

This immediate1y implies that in a single-particle representation 

isospin is no longer a good quantum number. This point will be 

discussed in the following sections. 

.. .'" .iL .... 
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Tab1e.4.2 

The She11 Mode1 Sing1e-Particle States 
/ 

2n+.t n.tj fuN IN Nuclei s s s 

0 Os~ 3.0 2 

1 OP3/2 
N=8, Z=8; 0 16 18.0 8 --------

Op~ 

2 Od5/ 2 
1s-! 

40 
Od3/ 2 60.0 20 -------- N=20, Z=20;Ca 

3 Of7/ 2 
1P3/ 2 
1p~ 

Of5/ 2 
150.0 . 40 

4 Og9/2 
1d5/ 2 
2s~ 

1d3/ 2 
Og7/2 315.0 70 

5 Oh~ 393.0 82 ... , 
Oh9/ 2 . 

"- ..... 
"-

1f7/2 '>N=126, Z=82;Pb208 

2P3/2 " " " 2p~ . " " 
1f5/2 588.0 112" 

6 0113/ 2 
693.0 126 

ll~l)/2 

o Il L/2 
" J 
•• C S/2 

3s~ 

2d3/ 2 
197/2 

1008.0 168 

7 Oj 15/2 1136.0 184 
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Table 4.3 

Harmonie Osci11ator potential parameters assuming 

the neutron and proton matter radii to be the same 

Nucleus 1'iw t'lw 
p n 

0
16 13.90 13.90 

Ca
40 10.71 10.71 

Pb
208 6.73 7.72 

On the other hand, if one takes the neutron potentia1 to be 

identica1 to the proton potentia1 then < r
2 > ~ = 5.82 fm. and for 

n 

the nucleus < r 2 ~ = 5.67 fm. That is, both the neutron and the 

total matter distributions wou1d be outside the charge distribution. 

For the charge distribution < r 2 > ~ = 5.493 fm. (Table 4.1). 
c 

Another relevant quantity in 1ater discussions is the r.m.s. radius 

of the neutron excess in Pb
208 with neutrons and protons in the 

. 2 ~ 
same potentia1s < r > = 6.48 fm. and when the neutrons and 

ne 
2 ~ 

protons have the sarne r.m.s. radii < r > = 6.05 fm. 
ne 

4-E Isobaric Spin and Analogue States 

In the absence of the Coulomb interaction the nuc1eon-nuc1eon 
48 

interaction is very nearly charge independent. Neglecting the 

Coulomb interaction it is usefu1 to introduce the isobaric spin 

(isospin) quantum numbers and treat the neutron and proton as different 
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isospin states of the same particle. lt is weIl known that the 
... 

isospin operator t is a spherical tensor operator of rank one with 
... 

components t+, t_ and t 3 • The components of t satisfy the same 

... 
commutation relations as those of the spin operator a. First we 

briefly review the notation that will be used. The isospin part 

of the nucleon wavefunction is denoted by the ket It,t3 > and we 

define 

1 proton> == 1-1~ > 

Ineutron > == 1-1--1 > 

The isospin states are eigenstates of the ope rat or t 3 

(4.32) 

t31% ± -1 > = +~I-1, ±-1 > '(4. 33a) 

and t+ and t satisfy 

t+I~-1 > = 0 

t+I%-% > = 1%+% > 

t 1%-% > = 0 

t_I~% > = 1-1-% > 

For a many nucleon system the corresponding operators are 
A A 

T = + L t± (i) , T = 3 L t 3 (i) 

i=l i=l 

and the total isospin is 
A 

-. \ -, ... 
T = L t (i) 

i=l 

For astate 1 TI, T
3 

1 > of the A nucleon system 

(4.33b) 

(4.34a) 

(4. 34b) 

- k l /T ITI TI >= [(TI+T 1) (TI+T +1)]2 TI T 1+1>. 
±'3 3 -3 ,3-

(4.35) 

The eigenstates of the system are eigenfunctions of the operators 

T
2 

and T
3 

where 
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(4.36) 

The eigenvalues are 

< T2 > = T' (T'+l) 

and 

< T > = T ' = (Z-N) 
332 (4.37) 

With the above definition of the isospin states we write the total 

wavefunctions for neutrons and protons as 

and 

(4.38) 

The necessary condition for isospin to be a valid quantum number is 
* 

that the space-spin parts of the wavefunctions be identified, i.e., 

(4.39a) 

In terms of the raising and lowering operators the condition is 

< neutronlt_lproton > = < protonlt+lneutron > = l. (4.39b) 

The eigenfunctions of the charge inde pendent nuclear Harniltonian 

form multiplets of states with total isospin T and -T ~ T3 ~ T. 

These eigenfunctions correspond to the states of different nue lei 

with the sarne number of nucleons but differing in the number of 

neutrons and protons. That is, the states differ only in their charge 
49 

number and are called analogue states. Analogue states are 

defined by introducing modified isospin raising and lowering operators. 
--------------------------------* One should point out that the average field in which nucleons 

move could itself be isotopie spin dependent without de.stroying 

isospin invariance. 
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and (4.40) 

+ 1 ::r . = (T +) = 2 2 ~ T_ 
[T -T -T] 3 3 

where 

[T2-T 2.T ]-~IT'T 1> = [(T'-T ')(T'+T '+l)]-%IT'T ' > 333333· 

The state lN-1,Z+1 >= ITT
3
+1 > which is the analogue of the state 

IN,Z >= ITT3 > , i8 obtained by 

In the case of a nucleus the Hami1tonian i8 not charge inde-

pendent becul1sa of the presence of the charge dependent 

Coulomb force 
2 

Vc (i,j) = ~ (~-t (i» (~-t (j» r.. 3 3 (4.41) 
l.J 

Inc1uding the Coulomb force disp1aces the members of an isop8in 

multiplet in energy. The energy shift is readi1y ca1cu1ated in 
50 

perturbation theory using the eigenstates of isospin, 

Equation (4.42) is the we11 known isobaric mass formula. In the 

absence of nuc1ear structure effects the mass difference of neigh-

bouring members of a multiplet are re1ated to the Coulomb energy 

shift tE , 
c 

M(T,T
3
+1)-M(T,T

3
) = tEc - 8 

= (b+c)+2cT3 
(4.43) 
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whcre B is the neutron-proton mass difference. In addition to 

shifting the energy levels the Coulomb force introduces two other 

effects: (1) dynarnic, distortion of the spacial part of the nucleon 

wavefunction; and (2) mixing of states of different isopin. The 

wavefunction -,for a state of 1sospin T 18 then 

\' 
q>0 CI q>0 (t) + L CXIJ. (T)cplJ. (T) 

1J.:f0 

+ I f3v (T')q>v(T') 

V 

T'fI: 

• (4.44) 

The second terrn is the mixing of states of the sarne spin and parity 
51 

through dynarnic distortion effects while the third i8 the mixing 
50 

of different isospin states through the Coulomb force, 

f3 (T ') 
V 

(4.45) 

Even though the mixing of states of different isospin may be small, 

rigorous validity of the isospin quantum nurnber requires that the 

space-spin parts of the neutron and proton wavefunctions be identical. 

Departures from isospin invariance can be estimated by calculating 

the deviation of (4.39b) from unity. For the purpose of discussing 

these deviations we use (4.38) and (4.39) to define 

X(V'J' j' ;V"j) = 1 - < protonlt+lneutron > 
co 

= 1 -\rUV',t'j~(r)uVJjn.(r)r2dr • (4.46) 

0 

When X(V'Jlj' = v,tj) = 1 and X(v'J'jl ,v,tj) = 0, the spatial parts 

of the wavefunctions are identical and isospin is a valid quantum 
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number. To ca1cu1ate the isospin impurity in the ground state 

of a nucleus one has to sum over products of the over1ap integrals 

occuring in (4.46)~ 

To ca1culat~ the Coulomb energy shift in perturbation the ory 
1 

one needs the structure of the analogue state. These states are 

quite different for nuc1ei with N=Z and nuclei with N~Z. If we 

assume the ground states of closed she11 nuc1ei to be states of good 

isospin then N=Z nuclei are genera11y T=O states and Niz nuclei are 

st~~es with T = IT31 and T3 = (Z;N) • We are primarily interested 

in the Coulomb energy shifts of analogue sing1e-particle states. 

17 41 . 17 41 The analogue states of 0 and Ca are states 1n F and Sc , 

respectively, 

1 
17 tTtJl 17 

F s.p. > = ~+ 0 s.p. > 

1 41 or' 1 41 Sc s. p. > = ..J + Ca s. p. > 

The on1y effect,of the operator ~ is to change the valence neutron 

into a proton. In perturbation theory the Coulomb energy shift is 

,~hen that of the sing1e-partic1e interacting with the charged particles 

of the closed shell core. The analogue states of the sing1e-particle 

. Pb209 . B· 209 h 1 states 1n are states 1n 1 • However, t e ana ogue states 

are not sing1e-partic1e states since there is a neutron excess. The 

analogue state is 

1 
209 w 1 209 ni A>"" J+Pb s.p.> 

= T 1 IPb209 > + 2 2 ~ s.p. 
[T -T -T] 

l'l 3 3 

1 ") 1 • 1 209 
= ~ ~ t+(1) Pb s.p. > 

(45) .-1 1.-

(4.47) 



1 , 

-82-

where we have used the fact that Pb
209 is a state of isospin 

T a 45/2 and T
3 

a -45/2. In (4.47) the operator t+ gives zero for 

all.states which are filled with both neutrons and protons but 

gives a non-zero result for the neutron excess. The analogue state 

wavefunction contains a term in which the valence neutron is changed 

to a proton but also contains terms in which the valence neutron 

remains unchanged while proton particle-neutron hole states are 

d · 1 Pb
208 h 1 f i 

create 1n tlG neutron excess. Te ana ogue state wave unct ons 

for 0
17 , Sc41 and Bi

209 
are represented pictorially in Fig. 4.1. The 

1 b h · f f h .209 1 . h f 
Cou om energy s 1 t 0 t e B1 ana ogue states1S t at rom 

particles .in aIl the neutron excess orbitaIs interacting with the 

charge Z=82 core and weighted by the amplitudes in (4.47). 

4-F Single-Partic1e Energies 

The 10w-lying states in A=15 and A=17 nuclei with their shell 

model assignments are given in Table 4.4. The lowest states having 

the same spin and parity as would he expected on the hasis of the 

shell model are usua1ly taken to he the single-partic1e (hole) states. 

52 16 17 . 
Naquib and Green haverecently shown that the 0 (d,p)O exper1-

ment gives spectroscopic factors consistent with unit y for the 
. 16 

(Od;ls) states" The amount of configuration mixing in the 0 ground 

state and the degree to which the single-particle (hole) strength 
53 

is spread over several states is still an unsolved problem. Shukla 

has calculated transition strengths in A=15 nuclei by introducing 

configuration mixing. In our calculations we take the experimentally 

observed energies in Table 4.5 to be the single-particle energies in 

A=15 and A=17 nuclei. 
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Table 4.4 
30 

Low-1ying 1eve1s in A=15 and A=17 nue lei 

1 

0 15 N15 

E (MeV) n.tj 3" 
\' E (MeV) n.tj . 3" x ~ x 

0.00 OP% %- J 0.00 OP% %-

! 5.19 ~+ 5.27 5/2+ 

5.24 5/2+ ! 5.30 %+ 

6.16 ·OP3/2 3/2- 6.33 3/2-

6.79 3/2+ 
1 

7.15 5/2+ 

6.86 3/2,5/2 7.31 3/2+ 
~ 
1 

0
17 ~ 

F
17 i 

E (MeV) n.tj 3" ! E (MeV) n.tj 3" x \ x 

0.00 Od5/ 2 
5/2+ 0.00 Od5/ 2 

5/2+ 

0.87 18% %+ 0.50 18% %+ 

-3.06 ~ 

3.85 5/2-

-4.56 3/2 

5.08 Od3/ 2 
3/2~ 5.10 1d3/ 2 

3/2+ 

5.22 
-5.38 3/2 

7/2 - li 
5.71 .' ~l '. 

5.73 !; 
·1 

5.87 ~ 3/2 ~ 
l , 
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Table 4.5 

Single-particle binding energies for A=16 and A=17 nuclei 

015 N1S 
1 017 F

17 

n,tj Eb (MeV) 1 n.tj EB (MeV). n.tj E (MeV 
B 

n.tj E (M 
B 

eV) 

OP% -15.65 
1 

Op 
% 

-12.11 OdS/ 2 
-4.14 OdS/ 2 

-0.60 

OP3/2 -21.81 1 OP3/2 -18.44 18% -3.27 18% -0.10 
1 

"1 
Od3/ 2 

+0.94 Od3/ 2 +4.50 
; j 

In "contrast to the A=lS and A=17 nuclei, analysie of nucleon 

transfer reactions for A=39 and A=4l nuclei show that the single-

particle (hole) strength is badly fragmented. For A=41 there are 

approximately 80· levels below 6 MeV, while for A=39 there are approx-

imately 25 below 6 MeV. With such a high density of states it" i8 

natural that there shou~d be considerable mixing. The (Of,lp) shell 

single-particle states would have spins and parities 7/2-, 3/2-, 

1/2- and 5/2-. The known negative parity states below 5.76 MeV in 

Sc
41 

are given in Table 4.6. 
54 

The levels listed are from (P,1) and 
55 

(p,p) experiments. Bock, Duhm and Stock have analysed"the 

C 40(H 3 d)S 41 .. . b' . f 
a e, c str1pp1ng react10ns to 0 ta1n spectroscop1C actor8 

for the 0.00, 1.71 and 2.42 MeV states. The results are given in 
56 

Table 4.7. Belote, Sperduto and Buechner have studied the level 

structure of Ca41 using the Ca40 (d,p)Ca4l stripping reaction. Their 
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Table 4.6 

L l' . . S 41 ow- y1ng states 1n c (ref. 54) 

E (MeV) :f 1C E (MeV) :f (pr~SiOna1) x (pro~isiona1) x 

0.00 7/2- 4.808 5/2-, (7/2-) 

1.714 3/2- 4.950 5/2-

. 2.409 3/2- 5.008 7/2-

2.584 5/2- 5.067 1/2-

2.663 5/2'T, 9/2+ 5.139 3/2-

7/2- (7/2+,5/2-) 1/2 -2.879 5.392 

2.969 7/2- (7/2+) 5.490 1/2-

3.182 5/2- , 9/2+ 5.521 ::or 5/2+ 

3.467 1/2- 5.530 3/2-

3.692 5/2-, 7/~ 5.650 5/2-,7/2-

3.729 1/2- 5.690 ~ 5/~ 
3.769 1/2- 5.698 1/2-

4.018 7/2- 5.706 5/2-,7/2-

4.027 5/2-,7/2± 5.755 1/2-

4.437 3/2 - , 5iiZ-, 7 Î2± 
4.511 5/2 - , 9/2+ 

4.532 3/2-

4.639 1/2-

Table 4.7 

Spectroscopie factors and sing1e-partic1e excitation energy 

in Sc 41 (ref. 55) 

E (MeV) J1f n.tj 
No. of s IS E (n.tj) x Levels x· 

-7/2 0.00. 0.0 Of7/ 2 1 0.92 0.92 -1.71 3/2 OP3/2 0.91 -2.42 3/2 2 0.09 1.00 1.77 
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ana1ysis to obtai~ spectroscopic factors and she1l mode1 identi-

fications is given in Table 4.8. Only the Of7
/ 2 single-particle 

. 40 3 41 
state corresponds to a single state 1n both the Ca (He ,d)Sc 

. 40 41 . 
and the Ca (p,d)Ca exper1ments. Both experiments a1so give 

consistent results for the OP3/2 single-particle state. The singl~ 

partic1e strength is mostly in the lowest 3/2- state with the 

remainder in the second 3/2- state. 
41 

In Ca the Op~ strength is 

spread over five states while ·only 50% of the Of5/ 2 strength. is 

contained in the states observed. To obtain unperturbed positions 

for the single-particle states we define the single-particle excit-

ation energy to be 
m 

1 
=-m S (i)E (i) 

x 
i=l 

Th i 1 . 1 . f 41 d 41 i . h 
e s ng e-part1c e energ1es or Ca an Sc are g ven 1n t e 

, . 57 

last columns of Tables 4.7 and 4.8. Hinds and Middleton have used 

40 39 40 3 39 
the Ca (t,a)K and Ca (He ,a)Ca pick up reactions to locate 

the single-hol~ states in K39 and Ca39 • 
58 

given in Table 4.9. Recently, Kozub 

Their identification is 

40 39 
has analyzed the Ca (p,d)Ca 

experiment to obtain spectroscopic factors for the states containing 

the single-particle strength. The spectroscopic factors are given 

in Table 4.10 and the unperturbed single-particle energies are 

given in the last column of the same table. The (t,a) and (p,d) 

experiments both indicate that most of the Od
5

/ 2 
strength is 

concentrated in the states at 5.13, 5.48, and 6.15 MeV. The singl~ 

particle binding energies for A=39 and A=41 are listed in Table 4.11. 
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Table 4.8 

Spectroscopie factors and sing1e-partic1e excitation 

. . C 41 ( f 
energ~es ~n a re. 56) 

E (MeV) J1t n.tj 
No. of S LS E (nlj) 

x 1eve1s x 

0.00 7/2- Of7/ 2 
1 1.00 1.00 0.00 

. 1.95 3/2- OP3/2 0.94 

2.47 3/2- 2 0.28 1.22 2.07 

3.62 1/2- OPl/2 0.11 

3.95 1/2- 0.73 

4.20 1/2- 0.01 

4.62 1/2- 0.11 

4.76 1/2- 5' 0.21 1.17 4.13 

4.89 . 5/2- 0.12 

5.66 5/2- 0.25 

5.81 5/2- 3 0.11 0.48 5.50 

Table 4.9 

Single-hole states in A=39 nue lei (ref. 57) 

Ca39 K39 

E (MeV) J1L n.tj E (MeV) J1L nlj 
x x 

0.00 3/2+ Od3/ 2 
0.00 3/2+ Od3/ 2 

2.47 1/2+ 151/ 2 
2.53 1/2+ 151/ 2 

5.13 5/2+ Od5/ 2 
5.28 5/2+ Od5/ 2 

5.49 5/2+ Od5/ 2 
·5.62 5/2+ Od5/ 2 

6.15 5/2+ Od5/ 2 
6.35 5/2+ Od5/ 2 
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Table 4.10 

Spectroscopie factors and excitation energies for the 

sing1e-ho1e states in Ca39 (ref. 58) 

E (MeV) 
x 

. ri: .­
J n.tj a 5 b a b 

0.00 3/2+0d3/2 1.78 0.92' 1.78 0.92 

2.47 

5.13 

5.48 

6.15 

1/2+ 

(5/2) + 
1sl/2 

Od5/ 2 
+ (312,512) Od5/ 2 

(512) + 045/ 2 

1.16 0.91 1.16 

0.36 0.24, 

0.16 0.11 

0.36 . 0.25 0.88 

a) Neutron we11 radius rO = 1.11 fm. 

b) Neutron we1l radius rO = 1.35 fm. 

Table 4.11 

0.91 

0.60 

0.00 

2.47 

5.61 

Sing1e-partic1e binding energies in A=39 and A=40 nue lei 

ca39 K39 Ca41 sc41 

EB (MeV) nej EB (MeV) ntj EB (MeV) n.tj 

1 
EB (MeV) 

i 
. -15.64 Od3/2 . 

-8.33 Od3/2 
-8.36 Of7/2 ! ,:,,1.08 

1. 

-18.11 1s1/2 -10.86 1s1/2 -6.29 1P3/2 
~ +0.71 

-21.25 Od5/2 
-4.23 1P1/2 

-2.86 Of5/2 

0.00 

2.47 

5.62 

n.tj 

Of
7/2 

. 

OP3/2 
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The binding energies were determined from the excitation energies 

from Tables 4.7-4.10 and the neutron and proton separation energies. 
60 

A distorted-wave-approximation analysis of the single-

208 209 208 207 
nucleon transfer reactions Pb (d,p)Pb and Pb (d,t)Pb 

demonstrated that the shell model single-partic1e (ho1e) states can 

be identified with single states in Pb
209 

and Pb
207 • The sing1e-

, ' 

partie le (hole) ,binding energ:ie sare listed in Table 4.12. The 

the Pb208 (He3,d) in Bi209 have been studied by 
63 

the Pb208(a,t)Bi209 reactions and the distorted 

single proton states 
209 61,62 

Bi and 

59 

wave analysis of the results indicate that MOst of the single-particle 

strength i8 ëoncentrated in one state. However, the 2P% strength 
64 

i8 fragmented. Bardwick and Tickle ' have studied the Pb208 (He3 ,d)Bi209 

reaction and found that the 2p~ strength was split ~etween 1eve1s 

at E = 3.64 MeV (60%) and E = 4.42 MeV (40%). With this resu1t 
x x ' 

the unperturbed position of the 2p~ state wou1d be unbound by 0.18 

65 208 
MeV. Hinds ~!!l. have used the Pb (t ,a) reaction to excite 

h . 1 hl· 1207 
t e s~ng e- 0 e states ~n T • Apart from the Og7/2 leve1, ana1ysis 

of the experiment showed that the spectroscopie factors for the 

states observed were consistent with unity. The 1eve1 at 3.48 MeV 

excitation energy was tentative1y assigned a Og7/2 characterj however" 

if the assignment is correct the level contains only 25% of the 

single-particlestrength. 
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Table 4.12 

Sing1e-partic1e binding energies in A=208 

and A=209 nuc1ei 

Pb207 \ 

Pb209 T1207 Bi209 / 

ntj EB (MeV) ntj Ea (Me t{) nt j EB (MeV ntj EB (MeV) 

2P1/2 -7.38 2d3/ 2 -1.42 2s1/2 -8.03 2P1/2 +0.18 

lf5/2 -7.95 197/ 2 -1.45 1d3/ 2 -8.38 2P3/2 -0.57 

'2P3 /2 -8.27 

1 

3s1/ 2 -1. 91 1 Ohll / 2 -9.37 1f5/2 -0.94 
1 

Oi13/ 2 -9.01 2d5/ 2 -2.36 
1 1d5/ 2 -9.70 Oi13 / 2 -2.16 

1f7/2 -9.72 
:. 

Oj15/2 -2.53 \ 
Og7/2 -11.51(1 lf7/2 -2.87 , ., 

Oh9/ 2 -10.85 Oi11/ 2 
-3.15 

; 
Oh9/ 2 -3.77 r. 

j 

199/ 2 -3. 94 ~ 
t 
~. 

4-G Coulomb Displacement Energies 

The general behaviour of Coulomb displacement energies of 

nuc1ear ground states and their analogue states 1s reproduced by 
66 

the semi-empirica1 formula of Anderson, Wong and McClure 

6E = 1.444 Z A1/ 3 -1.13 (MeV) 
c 

(4.48) . 

The formula (4.48) does not reproduce nuclear structure effects. 

Excited states, particu1ar1y valence partic1e states, cou1d not be 
67,68 

expected to be fitted by (4.48) because of Thomas-Ehrman shifts 

arising from the proximity of the two-body thresho1d. For examp1e, 

the Od5/ 2-1s 1/ 2 splitting in 0 17 and F17 is 0.87 MeV and 0.50 MeV, 

respectively. Nuclear structure effects can be ~EProduced by 
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performing a shell model calculation with the Coulomb interaction 
69 

(4.41). Harc'hol ~.2.1. have calculated the dis placement energies 

of. the analogues of ground states in the region 28 < A < 65. In 

the calculation the oscillator size parameter was varied to fit the 

data. We have used the.nuclear size dependence of the Coulomb energy 

shift to determine the single-particle potential radius while the 

other parameters were varied to fit the single-particle energies. 

In such a parame ter search, calculation of the two-body matrix 

elements of the Coulomb interaction (4.41) at each stage in the search 

would be excessi~ely time consuming. 

The .Coulomb energy shifts were calculated assuming that the 

particles moved in the average Coulomb potential of the charged core 

nucleus. The potential was taken to be that of a uniformly charged 

sphere of the same r.m.s. radius as the actual nucleus. In this 

approximation only the direct Coulomb interaction termS.are included. 

The exclusion principle has the effect of keeping the protons apart; 

hence the exchange terms decrease the Coulomb energy. Sood and 
70 

Green calculated the exchange contributions for nuclei up to 

A=4l using HO wavefunctions. They found that including the exchange 

effects decreased the Coulomb energy by 6% for A=15 and 17 and by 
71 

4% for A=39 and 41. Nolen, Schiffer and Williams have estimated 

the exchange effects to be 3.5% for Pb208 • calculating Coulomb 

energies by the above procedure does not give structure effects 
72 

e.g., pairing,. but it does give Thomas-Ehrman shifts. 

4-H Method of Determining Potentials 

~. Woods-Saxon potentials were fitted to the experimental singl~ 
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particle energies given in Tables 4.5, 4.11, and 4.12. The eigen-

values and eigenvectors were ca1culated by numerical integration 
73 

of (4.12) using the code ABACUS II. In the calculations we were 

only able to consider bound states. 

The procedure followed for A=17 and A=41 nuclei was the following: 

1) Neutron wells were determined for 017 
and Ca

4l 
by adjusting VO' 

a and V to reproduce the experimental single-particle spectra. 
so 

Simultaneously the potential radius was largely determined by 

requiring the Coulomb energy displacement to be eorreetly predieted 

by ineluding the,Coulomb potential in perturbation theory, i.e. 

2) The proton single-partie1e eigenvalues and eigenveetors were 

calculated using the nuclear potential deduced for neutrons but with 

the Coulomb potential inc1uded in the numerieal solution of (4.12). 

It was found in this way that the Coulomb energy shift ~ ealcu1ated 
c 

in pert~rbation theory ~greed for the Od5/2 or Of7/2 levels with 

that obtained from inc1uding V to a1l orders. 
c 

The procedure fo1lowed for A=15 and A=39 nuc1ei was the 

fol10wing: 1) The potential radii obtained for the A=17 and A=4l 

1/3 . 
nue lei were parametrized in the form R = rOA • 2) Apart from 

1/3 
an A change, the neutron potentia1s for A=15 and A=39 were assumed 

to be the same as those for A=17 and A=4l. Caleulating the single-

hole energies it was found that the potentials did not give suffieient 

binding. The diffusivity was kept fixed while V and Vso were varied 
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to reproduce the single-hole spectra. 3) To check the consistency 

of the results the Coulomb displacement energies were calculated 

in perturbation theory and the proton energies were calculated by 

including the Coulomb potential in the solution of (4.12). 

The procedure for fitting the hole spectra requires some 

clarification. It should be emphasized that the basic assumption 

in the fittingprocedure is that the experimental states can be 

assigned a single-particle character. A self-consistent Hartree-

Fock calculation of the type discussed in Chapter 2 would give the 

single-particle states and an average single-particle potential. 

The Woods-Saxon potentials obtained for the A=17 and A=4l nuclei 

are th en representations of the Hartree-Fock potentials for these 

nuclei~ The potentials for the hole states should be representations 

of the Hartree-Fock potentials for A=16 and A=40 nue lei aince an 

experimental single-hole energy is that of a particle in the closed 

shell nucleus. Initially it was assumed that the particle and hole 

potentials differed onlYbyaradius change of Al / 3 . In Sec. 4.C the 

A dependence of nuclear sizes was diseussed. The empirical evidence 

is that isotopes and isotones increase less and more rapidly than 
/ 47 

Al 3, respectively. Perey and Schiffer have suggeste4 that these 

variations can be ascribed to changes in wavefunctions as a function 

of binding energy. In view of the fact that it is useful to eonsider 

neutrons and protons as· identical pàrticles in shell model calcula-

tions, it is a good approximation to assume an average behaviour 

1/3 of an A dependence. This model does not take into account 

rearrangement energy effects. 
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In general, Ithe Brueckner Hartree-Fock single-particle , 
74 

potential is non-local or, alternatively, local but energy 

dependent. The energy dependence of single-particle potentials 
45 

for nuclei with A ~ 40 has been discussed by Elton and Swift. 

They found that the assumption of a linear relationship between the 

strength of the potential for nuclei with N=Z and the proton kinetic 

energy was suf~icient to explain the experimental data. We followed 

the same procedure and changed only Vo and V
so

' to fit the single­

hole spectra. With local and energy dependent potentials states 

differing only i~ the number of nodes in the radial wavefunction 

are not orthogonal. In shell model calculations one normally works 

with a subspace of configurations such that the non-orthogonality 

does not enter into the calculations. 

When the fitting procedures described above were applied to 

nuclei with A=207 and A=209 it was found that there were ambiguities 

in the potantials. The methods used for the heavy nuclei are 

discussed with the results for those nuclei. 

4-1 Results for A=15 and A=17 Nuclei 

A problem in A=17 nuclei is that the Od3/ 2 level is unbound 

whereas one normally includes the state in shell model calculations. 

17 In 0 the Od
3

/ 2 state is seen as a narrow resonance at 0.94 MeV 

16 in neutron elastic scattering on 0 • Since the resonance is narrow, 

a reasonable approximation to obtain the effects of a finite nuclear 

potential is to calculate a wavefunction for the state with a small 

bi di h Il d 1 1 1 · . h 0 17 . 1 n ng energy. In s e mo e ca cu atLons uSLng t e sLng e-

'. 
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partic1e states as unperturbed configurations this is equiva1ent 

to adding a term âV(r) to the sing1e-particle Hami1tonian and 

removing it from the two-body perturbation. 

The WS potentia1 for 0
17 was determined by the method discussed 

in the previous section. To de termine the spin-orbit strength the 

binding energy of ,the Od3/ 2 state was calculated as a function of 

the we11 depth VOi By extrapolating back into the continuum it 
, 

was possible to fix V • The fitted we11 parameters for 0 17 are 
so 

given in Table 4.13. The Od3
/ 2 binding energy as a function of Vo 

is shown in Fig. 4.2a. 'The curve is not quite linear; however, 

the extrapolation should be sufficiently accurate for our purposes. 

In Fig. 4.2b the mean energy shift per unit change in Vo is plotted 

vs. the mean of the change in the potential treated as a perturbation. 

The linear relationship would imply that adding the term AV(r) to 

the sing1e-particle potential and removing it from the two-body 

perturbation has no effect on the unperturbed single-partie le energy. 

The ca1culated neutron single-particle energies, together with the 

experimental energies are shown in Fig. 4.3. The r.m.s. radius of 

the 0
16 charge distribution is not well established experimentally. 

The value quoted in Table 4.1 was obtained using HO wavefunctions. 
45 

.. Recently Elton and Swift have fitted WS wavefunctions to elastic 

electron scattering data and the single-particle energies to the 

proton separation energies obtained from (p,2p) experiments. They 

1.. 

obtained the result < r 2 > ~ = 2.79 fm. which corresponds to an 
c 

equivalent uniformly charged sphere of radius R =3.60 fm. The 
u 

'. 
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Fig. 4-2. (a) The Od3/ 2 binding energy as a function of 

the weIl depth. (b) The integral of AV(r) and the change 

in binding energy of the Od3/ 2 state as a function of the 

well depth. 
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Table 4.13 

Potential parameters for 0 17 and 015 

Nucleus Vo V a rO 
80 

Cfm -1) (MeV) (MeV) Cfm) 

0
17 57.0 5.7 0.63 1.17 

015 61.9 9.2 0.63 1.17 

Coulomb dis placement energies for the A=17 analogue states cal-

culated in perturbation the ory with R = 3.60 fm. are given in 
- u 

Table 4.14. With R = 3.46 fm. the Coulomb energies were increased 
u 

by' about 2%. Apart from the Od3/ 2 state the calculated numbers 

are in good agreement with experiment. The Thomas-Èhrman shi.ft of 

the lSl/2 level is reproduced in this model. The calculated Od3/ 2 

energy shift is too small; however, with the leve 1 bound by 1. 9 

MeV the shift is only increased to 3.45 MeV. It is obvious that 

the levèl would have to be bound nearly as deep as the Od / level 5 2 

to give the experimental energy shift. It iS'very likely that 

the error is in the quoted experimental value of the displacement 

energy. The number quoted is the difference in binding energy of 

the levels l.·n 017 and Fl7 • Th' d'ff . l th loS energy 1. erence loS on y e 

Coulomb energy shift if the Coulomb potential docs not appreciably 

dis tort the wavefunction. An example of the effects of such 

distortions will be discussed in Chapter 5. In Sec. 4.G exchange 
1 

energy corrections to the Coulomb dis placement energies calculated 
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Table 4.14 

Coulomb dis placement energies calculated in 

perturbation theory with R = 3.60 fm 
u 

A=17 A=15 

6E Exp nJj 6E c c 
(MeV) (MeV) (MeV) 

3.51 3.54 OP1/2 3.50 

3.14 3.17 OP3/2 3.51 
1 i 

3.26r 1 3.56 

t Calculated with wavefunction for E
B 

= -0.23 MeV. 

Exp. 

(MeV) 

3.54 

3.47 

above were discussed. To include the corrections would decrease 

the calculated energy shifts and imply that the nuc1ear potentia1 

should have a sma11er radius. The present model is not sufficiently 

accurate to marit considering this detail. 

The wavefunctions for the 017 states are tabulated in 

Table 4.15 as expansions in terms of oscillator functions. The 

coefficients tabulated are those defined in Eq. (4.17). Two sets of 

parameters are tabulated; one for the ~w value that maxi~izes the 

'. overlap with the oscillator function having the same number of nodes 

while the second is a common ~w value for the set of states. To 

compare HO and WS wavefunctions a few of the wavefunctions are plotted 
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Table 4.15 

The coefficients of the expansion of the WS wavefunctions for 0
17 

in terms of HO wavefunctions 

v.tj Od5/ 2 ls 1/ 2 Od3/ 2 Od3/ 2 Od3/ 2 
E ~!!ev) -4.11 -3.27 -1.93 -1.05 -0.23 

~ 13.5 1 13.4 12.0 13.4 1 13.0 13.4 12.0 13.4 11.0 13.4 

o 0.988 0.988 -0.143 -0.079 0.978 0.977 0.971 0.967 0.958 0.949 

1 -0.014 -0.008 0.947 0.939 -0.014 -0.033 -0.003 -0.070 0.001 -0.109 

2 0.137 '0.138 -0.087 -0.163 0.183 0.180 0.206 0.195 0.234 0.214 

3 -0.053 ! -0.051,! Q. 228' 0.224 -0.059 -0.065 -0.060 -0.085 1 -0.067 -0.110 

4 0.032 0.032! -0.098 ~0.128 0.057 0.058 0.070 0.073 0.091 0.094 

5 -0.029 -0.029 1 0.078 0.088 -0.041 -0.043 -0.048 -0.057 -0.060 -0.077 

6 0.014' 1 0.014 i -0.061 -0.072 0.027 0.029 0.036 0.041. 0.051 0.060 

7 -0.014 -0.014 i 0.038 0.048 -0.024 -0.026 iO.032 -0.036 -0.045 -0.053 

8 0.009 0.008 1" -0.034 -0.040 ~.017 0.018 '0.023 0.028 0.036 0.044 

9 -0.007 -0.007 0.023 0.030 -0.015 -0.016 -0.021 -0.024 -0.033 -0.039 

10 0.005 0.005, l. -0.020 -0.024 0.013 0.012 ~.016· 0.020 1 0.028 0.034 

1 
t-' 
o 
t-' 
1 
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in Fig. 4.4. The WS OdS/2 state is very similar to an osci11ator 

function whi1e the ls1/2 WS wavefunction extends much further beyond 

the potentia1 than the HO' wavefunction. The differences between 

the wavefunctions are part1y understood by considering the tiW value 

that maximizes the over1ap of the WS and HO wavefunctions. A 

direct measure of the extent to which the wavefunctions extend beyond 

the nuc1ear potentia1 is given by the integra1s of r 2 in Table 4.16 •. 

In an osci1lator potentia1 a1l states with a shell have the same 

value of < r 2 >. In the WS potential the < r 2 > are 11.62 and 

2 17.79 fm for the OdS/2 and lsl/2 states respectively. The large 

2 " < r > for the J=O state is reflected in the decrease in the Coulomb 

displacement energy. 

Th . 1 hl· 0 16. d . d b h e s~ng e- 0 e states ~n Iwere eterm~ne y t e pro-

cedure outlined in the previous section. Changing only the weIl 

radius, by the Al/3 factor, did not give p states with sufficient 

binding energy. The well depth and spin-orbit strength were both 

increased to fit the experimentally observed energies. The well 

parameters are given in Table 4.13. The wavefunctions are plotted 

in Fig. 4.4 and tabulated in Table 4.17. Since the p states are 

deeply bound the WS wavefunctions are very nearly HO wavefunctions; 

however, they correspond to HO wavefunctions with a considerab1y 

1 1 f h . d f hl· 1 . 0 17 arger va ue 0 ~w t an requ~re or t e va ence part~c es ~n 

The integrals of r 2 are given in Table 4.16. The WS wavefunctions 

have smaller r.m.s. radii for hole states and larger r.m.s. radii 

for particle states than a common oscillator potential for 0 16 and 
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Fig. 4-4. Woods-Saxon radial wavefunetions for A=17 and A=lS 

nuelei. Harmonie oseillator wavefunetions with ~w = 13.4 MeV 

are presented for eomparison. The figures are 

(a) OP1/2 and OP3/2 neutron states 

(b) OdS/ 2 neutron state 

(e) Od3/ 2 (EB = -0.23 MeV) neutron state 

(d) 1sl/2 neutron state 

(e) 151/ 2 
proton state 

(f) OdS/ 2 
proton state 

(g) OP1/2 proton state 
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Table 4.16 

The integra1s < r 2 > for A=17 and A~15 

v.tj 
HOa . 1 

Od5/ 2 
10.83 

J 
1 

ls1/2 10.83 

Od3/ 2 
10.83 

OP1/2 7.74 

OP3/ 2 7.74 

~) HO with fiw = 13.4 MeV. 

b) E
B 

= -0.2 MeV 

~ 

2 2 < r > (fm. ) 

WS(neutron) 

11.62 

17.79 

16.90b 

6.70 

6.46 

Table 4.17 

WS(proton) 

12.98 

25.54 

f 

1 6.92 

~ 
f 

The coefficients of the expansion of WS 

wavefunctions fOlS . or l.n terms of osci11ator functions 

v.tj OP1/2 OP3/ 2 
EB(MeV) -15.68 -2.179 

~~(Mev) 16.0 13.4 16.25 . f 13.4 
-.n-

o: 

1 0 0.997 0.990 1 0.999 0.989 
~ 1 -0.012 0.100 l -0.004 ~ 0.135 

)1 

2 0.069 0.086 1 0.038 ft 0.061 
~ Q 

i 
L' 

3 -0.026 -0.004 -0.025 •• -0.007 t 
4 0.008 0.005 0.000 " -0.004 • 0 

5 -0.009 -0.007 ~ -0.006 ~ -0.007 il ~ 
J ~ 

6 0.002 -0.001 ~ 0.001 ~ -0.002 " 
t 
l 1" 

'. 
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17 o would have. The common HO potential is taken to have ~w = 

13.4 MeV which is the result obtained from electron scattering 
~ 

'data and commonly used in shell model calculations. The Coulomb 

displacement energies calculated in perturbation the ory are in as 

good agreement with experiment as in the case of 0
17

• If the well 

radius had been kept the sarne as that f~r 017 the Coulomb energies 

would have been decreased by approximately 1%. Clearly the present 
1/3 . 

model cannot detect an A radius change when 6A=1. 

The proton states were calculated using the sarne WS potentials 

as for the neutrons but with the Coulomb potential included in the 

solution of the differential equation. The calculated binding 

energies of the OP1/2 and OP3/2 states were -12.20 and -18.30 MeV, 

respectively. The experimental energies are -12.10 and -18.40 

MeV. The calculated binding energies for the Od5/ 2 and 1sl / 2 

states were -0.61 and ~0.10 MeV. A few of the proton wavefunctions 

are plotted in Fig. 4.4 and tabulated in Table 4.18. The proton 

p states have a complete overlap with the neutron states; however, 

the Od5/ 2 and ISl/2 proton-nueotron overlaps are 0.997 and 0.980, 

respectively. The sma1l binding energy of the ISl/2 proton state 

al10ws the wavefunctio~ to spread out considerably more than the 

neutron wavefunction. The integra1 of r 2 is 25.54 fm2'for the 

2 proton state and 17.79 fm for the neutron state. 

The r.m.s. radius of the charge distribution ~calculated 

assuming the neutron and proton matter distributions to be the sarne) 

for 0
16 

with the present wavefunctions is 2.54 fm. This result is 
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75 

consistent with the resu1ts of Wilkinson and Mafethe and 
76 

Wilkinson ; however it is sma11 compared with the recent resu1t 
45 

(2.79 fm) of Elton and Swift. 

v.tj 

Table 4. 18 

The coefficients of the expansion of WS wavefunctions 

for F17 and N15 in terms of HO wavefunctions 

-0.61 -0.22 -12.16 

i'iw i 
~ 

n ï, 

o 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

12.5 t 

0.981 

-0.005 

0.165 

-0.061 

0.048 

0.025 

-0.024 

+0.017 

-0.015 

0.012 

13.4 1 11. 0 1 

0.979 

-0.052 

0.158 

-0.075 

0.051 

-0.045 

0.028 

-0.025 

0.019 

-0.016 

-·0.014 

fi 1 
J. -0.168 j' 

1 0.902 

1 -0.111 1 
1 0.277 1 

~ 
-0.135 i 

~ 
~ 0.124 * 

1 -~:~~~ 1 

~ -0.071 ~ 
Q ~ 
~ 0.057 ~ 
f -0.052 ~ 
1 ~ 
r l 

4-J Resu1ts for A=39 and A=41 nuc1ei 

13.4 

-0.060 

0.879 

-0.222 

0.264 

-0.180 

0.138 

-0.120 

0.094 

-0.083 

0.070 

-0.062 

f 
J f 15.5 

1 0.996 

~-0.009 

_ ~ 0.076 , 
l t-0.028 

1 0.010 

t -O. on 
l 0.003 
~ t-·0 •004 

~ 0.002 
~ 
l-0.002 

~ 0.002 

1 

13.4 

0.992 

0.090 

0.089 

-0.009 

0.007 

1-0.008 
1 
~ 0.001 
! 

~-0.004 

A 0.001 
~ 

{-0.002 

~ 0.002 
" N 
\1 

The procedure fo11owed in fitting the A=39 and A=41 sing1e-

partic1e (ho1e) spectra was identica1 to that of the previous 
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'section. The fitted wel1 parameters are given in Table 4.l9a and 

the resu1ts for the 1evels are tabulated in Table 4.19b. The fits 

to the spectra are good except for the Of
5

/ 2 levei which has a 

binding energy 1.17 MeV 1ess than the experimenta1 value. The 

experimental value, quoted in Table 4.8, was based on the obser-

vation of only 50% of the Of
5

/ 2 
sing1e-particle strength. For 

that reason it is likely that the unperturbed sing1e-partic1e 

position is higher than that given in Table 4.8. The Coulomb 

disp1acément energies listed in co1umn 4 of Table 4.l9b were cal 

, 1 

cu1ated in perturbation theory with an equivalent radius 

R = 4.52 fm « r
2 >~ = 3.50 fm). Fpr an r.m.s. radius of 3.41 fm 

u 

the Coulomb displacement energies were increased by 1% for the 

particle states and 1.5% for the ho1e states. The' displacement 

lmergies are in good agreement with experiment considering the 

fragmentation of the single-particle strengths. The integra1s 

of r
2 

are 1isted in c6lumn 6 of Table 4.19b. The < r
2 > vary 

considerably compared to a constant value for all states within a 

HO she1l. The neutron wavefunctions are tabulated in Tables 4.20 

and 4.21. Except for the p states, the wavefunctions a11 have good 

overlaps with corresponding oscil1ator wave function. The proton 

states were calculated by including the Coulomb potential in the 

differentia1 equation. The results for the proton states are listed 
1 , 

in the last three columns of Table 4.19b and the wavefunctions are 

tabulated in Table l~.22. 
2 

The proton states have 1arger < r > 

values but the overlaps with the neutron wavefunctions are very good. 
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Table 4.19a 

Woods-Saxon potentia1 parameters 41 39 for Ca and Ca 

Vo V a r 
Nucleus so 

~fm-1l (MeV) (HeV) ~fml 

Ca41 61. 77 7.0 0.75 1.14 

Ca
39 62.9 8.5 0.75 1.14 

Table 4.19b 

Resu1ts for A=41 and A=39 nuc1ei 

neutrons a protons 

v.tj EB 
1 EB 

l§.a 
AR b l<r~ 1 < r

2 
> 1 EB 

1 
c 

Exp c (fm2) HO (l'iw-ll. 5) (MeV) (MeV) Exp (MeV) 

Of5/ 2 - 1.69 - 2.86 7.09 17.07 16.23 - .1.00 

1P1/2 - 4.34 - 4.23 6.71 20.93 16.23 

1 1P3/ 2 - 6.31 - 6.29 6.92 7.00 18.73 16.23 

Of7/ 2 - 8.30 - 8.36 7.32 7.28 14.78 16.23 J - 1.00 

1 Od3/ 2 
-15.62 

1 :::::: 

7.49 7.53 10.87 12.62 - 8.11 

1sl/2 -18.03 7.431 7.25 11.37 12.62 -10.58 

Od5/ 2 -21.54 1-21.25 7.49 10. 84 1 12.62 -14.03 

a) Ca1cu1ated with R = 4.52 fm 
u 

b) Deduced from Table 4.11 

EB 
Exp 

- 1.08 

- 1.08 

- 8.33 

-10.86 

< r
2 > 

lfm2) 

15.93 

. 15.93 

11.49 

12.13 

11.30 
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Table 4.20 

The coefficients of the expansion of the WS 

wàvefunctions for Ca41 in terms of HO wavefunctions 

Of7/ 2 1 1P3/ 2 1 1P1/2 

-8.30 1 
-6.31 -4.34 1 

Of5/ 2 

-1.69 

~ 12.75 11.5 11.881 11.5 11.5 11.75 

0 0.997 0.991 
1 

-0.073 -0.098 -0.111 0.986 . " 

1 0.004 0.100 0.982 0.981 0.968 -0.011 

2 0.068 0.084 -0.056 -0.022 -0.072 0.144 

3 -0.040 -0.024 0.138 0.142 0.179 -0.056 
1 

4 0.007 0.002 -0.077 -0.069 -0.089 0.038 

5 -0.013 -0.013 0.031 
1 

0.028 0.050 -0.033 
,. 

6 0.005 0.001 1 -0.032 -0.031 -0.045 0.019 

7 -0.003 -0.003 
1 

0.016 0.014" 1 0.025 -0.017 
1 

8 0.003 0.002 . -0.012 -0.012 1-0.021 0.012 
i 

, , 1 

9 1-0•001 0.000 1 0.009 0.008 1 0.015 -0.001 
! 1 

1 
10 1 0.001 0.001 i -0.006 -0.005 1-0•011 0.008 

1 1 1 

," . 

11.5 

0.986 
o. 

0.006 

0.147 

-0.052 

0.037 

-0.032 

0.018 

-0.016 

0.011 

-0.009 

·0.007 
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Table 4.21 

The coefficients of the expansion of the WS 

wavefunctions for Ca39 in terms of HO wavefunctions 

Od3/2 181/ 2 Od5/ 2 

-15.62 -18.03 -21.54 

13.5 11.5 12.88 1 11.5 13.5 11.5 j 
1 

0.998 0.989 0.010 1 -0.059 0.999 ·0.989 i 

-0.003 0.132 0.998 0.990 -0.006 0.138 

0.048 0.070 -0.005 0.112 0.017 0.040 . 

-0.027 -0.009 0.044 0.062 -0.027 -0.016 

0.003 -0.001 -0 0 037 -0.024 -0.002 -0.008 

-0.007 -0.007 0.001 -0.006 -0.004 -0.006 

0.002 -0.002 -0.008 -0.009 0.002 -0.001 

1 -0.001 -0.002 0.002 0.000 
1 

0.000 
1 

0.000 
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Table 4.22 

The coefficients of the expansion of WS wavefunctions for Sc41 and K39 in terms of osci1lator functions 

! 
. Od3 / 2 ls

112 Od5/ 2 v.tj 
1 Of7 !? 

EB (MeV) 1 -1.00 -8.11 1 -10.58 -14.03 

~tiW 
1 1 

, 

12.0 11.5 
, 

13.0 11.5 12.25 11.5 13.0 11.5 

0 0.994 0.993 0.997 0.993 0.000 -0.038 0.999 0.994 

1 0.002 0.041 -0.013 0.089 0.997 0.995 -0.007 0.102 

2 0.091 0.097 0.060 0.074 -0.007 0.057 0.024 0.039 

3 -0.050 -0.042 -0.033 -0.018 0.058 0.066 -0.030 -0.021 

4 0.016 0.014 0.007 . 0.003 -0.043 -0.034 -0.001 -0.006 

5 -0.021 -0.021 -0.011 -0.010 0.004 0.000 -0.005 -0.007 

6 0.010 0.008 0.005 
1 

0.002 -0.011 -0.012 0.002 0.000 

7 -0.008 1 -0.008 -0.004 1 -0.005 0.004 0.002 
, 

1 8 0.006 0.006 0.004 0.004 -0.002 -0.002 

9 -0.004 -0.003 -0.004 -0.004 0.002 0.002 

10 0.004 : 1 "0.003 0.004 

1 

0.004 0.000 0.000 

-...... - - - .. . -

• ~ 
~ 
VI 
1 
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The variation in the extension of the neutron wavefunctions 

is reflected in the Coulomb energy shifts. The OPl/2 wavefunction 

which is considerably more spread out than the Of
7

/ 2 
wavefunction 

gives a Coulomb e~ergy shift 0.61 MeV srnaller than that for the 

Of7/ 2 state. On this basis one wou Id expect the lPl/2 proton state 

to be unbound by 2.37 MeV. On the other hand, the lowest ~- state 

in Sc4l (Table 4.6) has an excitation energy only 0.15 MeV less 

~han that of the lowest ~- state in Ca4l (Table 4.8). The second 

- 41 -
~ level in Sc is depressed by 0.22 MeV relative to the second ~ 

in ca
4l which is identified as containing more than 50% of the p~ 

single-partie le strength. The behaviour of the p~ state is very 

similar to that of the Od3
/ 2 state in A=17 nuclei. 

Certainly the treatrnent of these levels, the.p~ state in 

41 d h d . 17 Id b· db· . 
Sc an t e 3/2 state ~n F , wou e ~mprove y recogn~z~ng 

that they lie in the continuum. However, further investigation of 

this sort is somewhat outside the scope of the present work. We 

require only a fairly reasonable deterrnination of the single-particle 

wavefunctions which are later to be used in shell model spectroscopie 

calculations. 

4-K Results for A=207 and A=209 Nuclei 
77-82 

There have been many attempts to ob tain 'single-particle 

potentials that fit the experimental data in the lead region. In 

the oxygen and calcium isotopes there were sufficient pararneters 

available to fit the experimental spectra. 
209 208 

In Pb and Pb there 

are seven particle .levels and six hole levels while there are only 
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three parameters in the potential since the radius is to be fixed 

by fitting the Coulomb displacement energy. The general feature of 

WS potentials is that the y give single-particle levels spaced too far 

79 82 
apart. Recently Rost obtained a reasonable fit to the neutron 

states in lead with a WS potential. lt is a property of the single-

particle potentialthat the levels can be brought closer together 

by increasing the ~ell radius while decreasing the well depth. At 

the sarne time the spin-orbit strength must be increased to keep 

spin-orbit pairs of states apart. This is essentially what Rost did 
79 

to improve upon the results of Blomqvist and Wahlborn for neutrons. 

When fitting the experimental spectrum it is assumed that the states 

are. pure single-particle stat~s; however if there is some fragme.n-

tation of the single-particle strength then the unperturbed single-

particle energies are not those observed experimentally. In the 

lead region the residual two-body interaction matrix elements are 

too small so that the difference between the unperturbed single-particle 
79 

positions and the observed energies would not be as large as 1 or 2 MeV. 

In the present work it has been our approach to remove the well 

n 
known VOrO arnbig~ity by determining the well radius from a calcula-

tion of Coulomb displacement energies. The experimental Coulomb 

d · 1 f h B' 208 1 f h Pb208 d 
~sp acement energy 0 t e ~ ana ogue 0 t e groun state 

83 
is 18.98 MeV. lncluding the exchange correction of 3.5% estimated 

71 
by Nolen .=!. al. the present model should predict a Coulomb displace-

ment energy of approximately 19.69 MeV. In the shell model 

d .. f h B . 208 1 h C 1 b hi ft i 
escr~pt~on 0 t e ~ ana ogue state, t e ou om energy s s 
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calculated by averaging over the Coulomb energie~ of the states. in 

the neutron excess as discussed in Sec. 4-E. Another quantity that 

is determined by the well radius is the r.m.s. radius of the neutron 

excess. Nolen ~,~. assumed a form for the neutron density distri-

bution and by adjusting the parameters to give the correct Coulomb· 

displacement energy calculated the r.m.s. radius of the neutron excess 

to be 5.70 fm. This resu1t is consistent with the total neutronr.m.s.· 

radius being slightly larger than the proton r.m.s. radius 

« .r2 > % = 1.035 < r 2 > %). 
n p 

From an optica1 modelana1ysis of law 

Pb
208 . G 1 P 1 d energy proton on scatter1ng reen ess, y e an Tang 

84 
have 

deduced that the neutron radius is 1arger than the proton radius 

« r
2 >n~ = (1.09 ± 0.05) x < r

2 >p~)' In view of these resu1ts we 

imposed the condition that the neutron we11 radius 1ead to a Coulomb 

displacement energy of approximately 19.6 MeV and an r.m.s. radius 

for the neutron excess of approximate1y 5.70 fm. 

Before proceeding to fit potentiàls to the experimenta1 specta 

the Blomqvist-Wah1born (BW) " and Rost potentials were checked for 

conformity to the above criteria. The BW and Rost wel1 parameters 

used in the calculation are given in Table 4.23. The Rost we11 gave 

a Coulomb displacement energy of 18.16 MeV and an r.m.s. radius of 

6.53 fm for the neutron excess. The BW well gave a Coulomb disp1ace-

ment cncrgy of 18.73 MeV and an r.m.s. radius of 6.21 fm for the 

neutron excess. The Coulomb energies were calculated for a uniform 

charge distribution having an r.m.s. radius of 5.49 fm. (Table 4.1). 

Rost a1so fitted the leve1s by using a different radius for the 
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Table 4.23 
79 82 

Parameters for the Blomqvist-Wahlborn and Rost neutron 

potentials 

Vo V r a so 0 
(fm -1) (MeV) (MeV) (fm) 

Rost 40.5 8.30 1.349 0.70 

BW 44.0 7.82 1.27 0.67 

i 
spin-orbit term tlian for the central welle Blomqvist and Wahlborn, 

and Rost, included corrections for pairing energies in the hole 

states and for collective effects. Neither of these improvements 

on the mode1 would alter the above results significa~tly. All of 

the potentials studied by Rost have a central well radius larger 

than that of the BW·well. C1early the potential must have a sma11er 

radius than that of the Rost or BW potential in order that the 

Coulomb energy and r.m.s. radius are correctly predicted. 

Rost introduced two additional parameters into the spin-

orbit term but found that the neutron data could not be reasonably 

fitted with rO ~ 1.25 fin. To fit the Coulomb energy and radius of 

the neutron excess we considered first only the hole leve1s in Pb
208

• 

lt was found that the radius and the energy levels could not be 

.. fitted simultaneously. However, by omitting the Oi13 / 2 level a good 

fit was obgained. With the set of parameters the position of the 

Oi
13

/
2 

1evel was calculated and the positions of the Pb209 pàrticle 
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leve1s were ca1culated. In going from Pb208 to Pb209 we made 

h Al/3. h d' d' h . . t e c ange as 4scusse 4n t e preV40US sect4ons. The resu1ts 

with this set of well parameters are given in column l of Fig. 4.5. 

A1l of the levels are above their experimental positions. This is 

in marked contrast to lighter nuclei where it was found that as 

the experimental levels became more deeply bound the we1l depth and 

spin-orbit strength had to be increased. This phenomenon has been 
85 

pointed out by Brown, Gunn and Gou1d. By increasing the we1l depth 

and the spin-orbit strength the Oi13/ 2 ho1e 1eve1 and the partic1e 

leve1s, except for 1 
the Oj15/2 state, come down to give good agreement 

with experiment. The resu1ts are shown in co1umn II of Fig •. 4.5. 

The fact that the Oi13/ 2 ho1e 1evel was fitted with the same para­

meters as the partic1e 1evels and the Oj15/2 1eve1 was not fitted 

with the second set of parameters indicates a correlation with the 

osci11ator she1l degeneracy of 2n+t. Since there was on1y the 

Oj15/2 state remaining to be fitted, both the we1l depth and spin­

orbit strength for this 1eve1 were increased arbitrari1y to fit 

the experimental position. The final spectrum with the weIl para-

meters of Table 4.24bis given in the fourth column of Fig. 4.5. 

With the wavefunctions for the Pb208 ho1e 1evels the Coulomb dis p1ace-

f h .208 1 1 1 d b 19 62 ment energy 0 t e B4 ana ogue state was ca cu ate to e • 

MeV. Inc1uding the exchange correction of 3.5% we have that 

~c = 18.93 MeV to be compared to the experimenta1 value of 18.98 MeV. 

In addition, the r.m.s. radius of the neutron excess was calcu1ated 

to be 5.72 fm which is consistent with the value of 5.70 fm obtained 

by No1en !.t !l. 
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Fig. 4-S. The ~ingle-particle and hole spectra of Pb209 and Pb208 • 

Columns l, II and III are the spectra with different potentials . 

for states belonging to the same oscillator shell. The parameters 

are given in Table 4.2Sb. 
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Table 4.24 
-

The integrals < r 2 > and Coulomb energy shifts . 

for the Pb
209 

particle states and Pb
208 

hole states 

< r
2 > f .. 

r 2 
7 v.tj EB &:c v.tj EB 

- < r > &: 

(fm
2
) (fm2) 

c 
(MeV) (MeV) (MeV) (MeV) 

2d3/ 2 
-1.34 52.13 17.39 2Pl/2 - 7.22 

1 
34.08 19.52 

197/2 -1~37 39.99 18.65 lf5/2 : - 7.97 31.79 19.79 
- . 

1 351/ 2 -1.98 56.18 17 .02 2P3/2 - 7.94 33.55 19.59 

2d5/ 2 -2.52 46.36 . 17.98 Oi13/ 2 1 - 8.76 34.84 19.23 
! 1 

Oj15/2 -2.54 

1 

37.80 18.76 lf7/ 2 - 9.87 31.58 19.82 

Oin /2
1 -3.39 33.37 19.47 Oh9/ 2 

-10.70 30.47 19.94 

1 199/2 -4.24 37.39 ! 18.97 1 

1 
1 

1 
j 
1 

1 .. 1 , 

t Calculated for a charge distribution with an r.m.s. radius 5.49 fm 

2 The calculated energies, integrals of r and Coulomb en~rgy 

shifts, are given in Table 4.24. From the values of the integrals 

·of r 2 it can be seen that wavefunctions vary considerably from 

those of a HO potential. In particular, the states of low orbital 

angular momentum and small binding energy have large tai ls. The 

wavefunctions are tabulated in Table 4.25 as expansions in HO wave-

functions. In the calculation of the wavefunctions a cutoff of 

16.0 fm was used. The (2s,ld,Og) shell hole states were calculated 

with the sarne well pararneters as for the (2p,lf,Oh) shell states. 

The hole energies are given in Table 4.26. 

i 
1 
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Table 4.25a 

The WS partic1e and ho1e neutron wavefunctions for Pb209 and Pb208 as expansions in terms of HO wavefunctions. 

For each state the first co1umn is the value of ~w that maximizes the over1ap of the osci11ator function with 

the same number of nodes, the second co1umn is a common fiw value for aIl states. 

2d3/ 2 197/2 
3s

H2 2d5/ 2 Oj15/2 Oi11/ 2 

-1.34 -1.37 -1.-98 -2.52 -2.54 -3.39 , 
1· 7.81 8.00 8.44 8.00 7.56 8.00 7.81 i 8.00 9.38 8.00 9.38 

0.068 0.066 -0.023 -0.085 0.000 0.002 0.072 0.071 0.998 0.973 0.998 

,-0.082 -0.050 0.988 0.983 0.085 0.082 -0.046 -0.013 -0.006 0.221 -0.004 

0.956 0.954 -0.026 0.058 -0.093 -0.012 0.976 0.974 -0.020 0.044 0.002 

-0.072 -0.109 0.077 0.096 0.946 0.936 -0.043 -0.084 -0.058 -0.049 -0.055 

0.158 0.151 -0.114 -0.104 -0.083 -0.171 0.104 0.097 0.004 -0.024 0.003 

-0.172 -0.177 0.026 0.012 0.172 0.157 -0.147 -0.151 0.000 -0.012 -0.004 

0.065 0.072 -0.032 -0.034 -0.185 -0.197 0.037 0.045 0.010 0.004 0.009 

-0.073 -0.073 0.029 0.024 0.070 0.091 -0.044 -0.044 

0.058 0.062 -0.012 -0.009 -0.078 -0.080 0.040 0.043 

-0.034 -0.037 0.014 0.013 0.062 0.072 -0.016 -0.019 

0.030 +0.032 -0.009 -0.005 -0.034 -0.043 0.017 0.018 

8.00 

0.976 

0.203 

0.057 

-0.040 

-0.018 

-0.013 

0.002 

1 
1-' 
N 
'-" 
1 
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Table 4.25a 

v.tj 1 199/ 2 1 2P1/2 If5/ 2 

(: 
~B 1 
:Hev) 

-4.24 -7.22 -7.97 

:\w, ! 

1 1 
8.25 8.00 7.75 8.00 8.12 8.00 7.75 

1 n 

1 
- 1 

0 0.022 -0.014 0.063 1 0.064 0.044 . 0.027 0.065 
! 

1 0.995 0.993 0.019 0.059 1 0.996 0.996 0.042 

2 0.007 0.061 0.992 0.990 0.018 0.043 0.992 

3 1 0.016 0.027 0.014 -0.043 -0.002 0.002 0.006 
1 

4 1 -0.095 -0.093 0.021 0.014 1 -0.007 -0.077 0.004 

5 1 0.006 -0.003 -0.098 -0.098 1 -0.001 -0.005 -0.095 

6 J -O.~10_ -0.O~2 __ 1~·_~~2 0.011 1 -0.003 , -0.004 '0.002 

1 

2P3/ 2 1 Oi13/ 2 

-7.94 .. 8.76 

1 
8.00 9.00 8.00 

0.066 0.998 0.986 

0.082 -O.OÜ 0.155 

0.988 -0.039 -0.005 

-0.052 -0.048 -0.054 

-0.002 0.003 -0.018 

-0.094 0.005 -0.002 

-' 6.011 0.007 0.007 

- ---------~ 

e 

1 1f7/2 

1 
-9.87 

1 
8.00 

0.078 

0.994 

0.012 

-0.030 

-0.073 

-0.001 

0.003 

8.00 

0.078 

0.994 

0.012 

-0.030 

·-0.073 

-0.001 

0.003 

1 .... 
N 
~ 
1 
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Table 4.25a continued 

v.tj 

EB 
(MeV) 

iiw 
n 

0 

1 

2 

3 

4 

5 

6 

Oh9/ 2 

-10.70 

8.81 8.00 

0.998 0.990 

0.006 0.132 

-0.028 ';0.003 

-0.045 -0.046 

-0.001 -0.015 

0.003 -0.002 

0.006 0.005 

Table 4.25b 

The neutron potentia1 parameters for the single-particle 

and ho1e states in Pb209 and Pb208 

2n+,t Vo V r a so 0 

(fm -1) (MeV) (MeV) (fm) 

5 52.0 5.32 1.135 0.70 

6 55.0 6.32 1.135 0.70 

1 57.8 6.82 1.135 0.70 
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Table 4.26 

Additional neutron hole state energies in Pb208 

v.tj 

-14.3 -16.1 -16.6 -17.8 -19.4 -21.9 

In 1ight nuclei with N=Z the proton and neutron nuclear 

potentia1s are the same. In heavy nuclei with a neutron excess an 
86-91 

isospin dependent or "synunetry energy" term is required. 

~he isospin dependent term is usually taken to have a volume form 
92 

factor identica1 to the isospin independent form factor. With such" 

a volume form factor the neutron and proton we1l depths are found 

to differ by a factor" proportional to (N~Z). Surface peaked form 
93 

factors have been discussed by Terasawa and Satchler. To fit the 

.209 208 
proton particle and hole spectra of B1 and Pb we first assumed 

that the neutron and proton nuclear potentials differed on1y in 

their well depths. It was impossible to fit the experimental spectra 

with one set of parameters. The proton levels showed an oscillator 

she1l dependence similar ta that for the neutron states although it 

was not as pronounced. A reasonable fit ta the data was found using 

different well depths and spin orbit strengths for states having 

different values of 2n+.t. The fitted wel1 parameters are given in 

Table 4.27. With the well parameters for the 2P3/2 "state the 2p~ 

level was unbound. The well depth was increased slightly to obtain 
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Table 4.27 

Wood-Saxon potential parameters for the proton 

particle and hole states in ai209 and Pb208 

Vo Vso rO a 
2n+.t (MeV) (MeV) (fm) (fm -1) 

4 67.5 5.32 1.135 0.70 

5 69.6 7.82 1.135 0.70 

6 71.2 7.82 1.135 0.70 

(2P1/2) 70.85 7.82 1.135 0.70 

a bound state wavefunction for shel1 model calculations. The 

calcu1ated spectrum is shown in the first column of Fig. 4.6 and 

i 2 
the binding energies and integrals of rare given in Table 4.28. 

The wavefunctions are tabulated as expansions in terms of HO wave-

functions in Table 4.29. 

Table 4.28 

The proton particle and hole energies and 

integra1s f 2 f B· 209 o r or 1. and Pb208 (rO=1.135 fm) 

v.tj EB < r Z > v.tj EB < r 2 > 
(MeV) (fm2) (MeV) (fm2) 

2s 1/ 2 7.64 23.81 2P1/2 -0.18 28.79 

1d3/ 2 - 8.52 24.36 2P3/2 -0.34 29.13 

Ohll / 2 - 9.29 30.58 1f5/2 -0.48 28.49 

1d5/ 2 - 9.74 24.64 Oi13 / 2 -2.11 33.35 

Og7/2 -12.40 26.40 If7/2 -3.23 28.78 

Og9/2. -14.8 27.63 Oh9/ 2 
-4.21 28.65 
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0.0 P3/2 

-1.0 f S/2 

-2.0 
i

13/2 

-3.0 f 7/2 

-4 0 0 h
9/2 

-5.0 

-6.0 

-7.0 

-8.0 
8 1/2 

d3/ 2 
-9.0 

h11/ 2 
-10.0 dS/ 2 

-11.0 

MEV l II EXP 

. 209 
Fig. 4-6. The proton partic1e and ho1e spectra for Bi 

208 
and Pb • The spectra l and II are for the potentia1s with 

r - 1.135 and 1.27 fm respectively. 
o 
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Table 4.29 

h f . f B .209 d b208 .. f f h T e proton WS wave unct10ns or 1 an P as expanS10ns 1n terms 0 HO wave unctions. For eac state 

the first co1umn is the value of fiw that maximizes the over1ap with an osci11ator function and the second is 

a common value for aIl the states. The wavefunctions are for the WS potentia1s with rO = 1.135 fm • 

.. .. 
vot j 1 2P1/2 1 2P3/ 2 1 1f5/2 Oi13/ 2 If7/2 1 Oh9/ 2 
J!:B 

(He v) -0.18 . -0.34 -0.48 -2.11 -3.23 -4.21 

~ 
, 

1 

1 

. 8.31 1 8.00 8.12 8.00 8.62 8.00 9.38 8.00 -8.25 8.00 9.50 
1 
1 

0 0.077 1 0.076 -0.080 0.080 0.081 0.002 0.997 0.973 0.100 0.068 0.997 

1 0.073 0.025 0.083 0.064 0.992 0.983 -0.008 0.220 0.988 0.986 -0.014 

2 0.988 0.984 0.986 0.986 0.036 0.165 -0.064 -0.006 0.056 0.110 -0.055 

3 0.045 0.118 0.046 0.075 -0.047 -0.014 -0.047 -0.059 -0.070 -0.057 -0.042 

4 -0.042 -0.024 -0.049 -0.043 -0.076 -0.079 0.003, -0.028 -0.077 -0.082 0.002 

5 -0.0"94 -0.096 -0.095 -0.097 -0.005 -0.024 0.009' -0.004 -0.007 -0.016 0.006 

6 -0.006 -0.018 -0.006 -0.012 0.004 -0.004 0.007 0.007 

---- ~- - - -- - --- -- --_._-- -_. ----- -_.- ~-

8.00 

0.975 

0.215 

0.001 

-0.050 

-0.025 

-0.005 

1 
t-' 
N 
~ 
1 
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v.tj 1 
1 

25 1/ 2 1d3/ 2 

E
B 

l 

Mev)! 
-7.64 -8.52 

~I 7.69 8.00 1 7.94 8.00 

0 0.007 0.071 0.122 0.130 

1 0.129 0.171 0.984 0.984 

2 :0.979 0.975 0.068 0.055 

3 0.079 0.009 -0.079 -0.081 

4 -0.083 -0.094 -0.069 -0.067 

5 -0.080 -0.071 -0.009 -0.007 

, 

Table 4.29 continued 

Oh11/ 2 1d5/ 2 

-9.29 -9.74 
1 

8.88 8.00 7.75 8.00 

0.996 0.987 o .13l~ 0.163 

-0.009 \ 0.136 0.982 -.980 

-0.079 -0 •. 053 0.071 0.019 

-0.042 -0.058 . -0.088 -0.096 

0.004 -0.016 -0.070 -0.063 

0.011 0.005 -0.008 0.000 

Og7/2 1 
-12.4 

8.62 8.00 

0.996. 0.992 

-.003 0.100 

-0.073 -0.058 

-0.040 -0.051 

0.002 -0.010 

0.009 0.006 

-

Og9/2 

-14.8 

8.25 8.00 

0.995 0.994 

0.003 0.043 

-0.086 -0.081 

-0.041 -0.047 

0.003 -0.002 

0.011 0.010 

1 
~ 
w 
o 
1 



-l3l-

Comparing Tables 4.24 and 4.28 it can be seen that the 

proton particle states have smaller r.m.s. radii than the corres-

ponding neutron states. Although the proton states have smaller 

binding energies the Coulomb barrier tends to keep them localized 

more within the welle The proton states have radii more Iike the 

constant radius within a shell for a HO potential. By examining 

the overlap integrals in Table. 4.29 it can be seen that the proton 

states differ.from HO wavefunctions more ~n shape in the interior 

region of the nucleus rather than in extension beyond the well as 

in the case of neutrons. The r.m.s. radius for the first shell of 

proton hole states is 5.23 fm. Including the remainder of the 

core would decrease this and give a proton distribution r.m.s. 

radius of approximatel.y 5.0 fm. Cl~arly this is inconsisten~ .. ~ith 

the observed chrage distribution r.m.s. radius oi 5~49 fm. To 

obtain the observed r.m.s. radius for the protons and keep our 

single-particle description of the nucleus a proton well different 

from the neutron weIl is required. 

To fit the observed r.m.s. radius for protons the single 

particle spectra was refitted with WS potentials of larger radius. 

The final well parameters are given in Table 4.30. All of the bound 

levels except the Oh levels were reasonably fitted with one set of 

potential parameters. To fit the experimental positions of the Oh 

levels a ·larger spin-orbit splitting was required. To obtain a 

bound state wavefunction for the 2PL state the well depth was 
'2, 

increased slightly. The calculated spectra are shown in the second 
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Table 4.30 

Potential parameters to fit the proton particle and 

hole spectra of Bi
209 

and Pb
208 

and the charge distribution radius 

V.tj 
Vo V rO a so 

(fm- l ) (MeV) (MeV) (fm) 

2Pl/2 2Pl/2 60.6 7.40 1.27 0.70 

2P3/2' lf5/ 2 , Oi13/ 2 60.6 7.40 1.27 0.70 

lf7/2 ' 2s l /2' ld3/ 2 

ld"5"/2' Og7/2' Og9/2 

Oh9/ 2 ' Ohn /2 59.6 11.0 1.27 0.70 

column of Fig. 4.6. 2 The ca1culated energies and integrals of rare 

given in Table 4.31. The r.m.S. radius for the proton distribution 

was determined using wavefunctions for the remaining states calculated 

with the weIl parameters that fitted the first shell of hole states 

""(exc1uding Oh11/ 2)· The result was an r.m.s. radius of 5.49 fm for 

the proton centres and 5.55 fm for the charge distribution which is 

consistent with the experimental value. The wavefunctions are 

tabulated in Table 4.32 as expansions in terms of HO wavefunctions. 

A best osci11ator size parameter for aIl of the levels was taken 

to be ~w = 6.75 MeV. For calculations using the neutron and proton 

wavefunctions together the proton wavefunctions are tabulated in 

Table 4.33 with ~ = 8.0 MeV. 
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Table 4.31 • 

Proton partic1e and ho1e energies and integra1s 

2 .209 '208 
of r for Bl. and Pb, (rO=1.27 fm) 

vJj E
B < r

2 > V"j EB < r
2 > 

(MeV) (fm2) (MeV) (fm2) 

2S 1/2 - 7.71 27.79 2P1/2 -0.14 33.64 

1d3/ 2 - 8.52 28.92 2P3/ 2 -0.21 34.07 

Ohll / 2 - 9.58 38.59 1f5/2 -0.84 33.99 

1d5/ 2 - 9.84 29.47 Oi13 / 2 
-1. 92 41.45 

Og7/2 -12.33 32.50 lf7/2 -2.93 34.50 

Og9/2 -14.9 34.68 Oh9/ 2 -3.93 34.95 



v,tj 1 

(: 
EB 1 
~év)i 

'::\ 
) 

0 
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Table 4.32 

209 208 . 
The proton l~S wavefunctions for Bi and Pb as expansions in HO wavefunctions. For each state the fl.rst 

co1unm is the value of tiw that maximizes the over1ap with an osci11ator function whi1e the second is a common 

value for aIl states. The wavefunctions are for the potentia1s with-rO = 1.27 fm. 

2P1/2 1 2P3/2 If5/2 . Oi13/ 2 If7/ 2 Oh9/ 2 

-0.14 -0.21 
1 

-O. 8l~ -1.92 
1 

-2.93 -3.93 

6.69 1 6.75 6.50 6.75 
1 

7.00 6.75 
1 

7.50 6.75 6.62 6.75 
1 

7.75 

0.092 0.092 0.094 0.098 1 0.125 0.087 0.955 0.983 0.132 0.152 0.996 

0.108 0.119 0.110 0.156 0.985 0.985 0.001 0.159 0.980 0.979 -0.006 

0.979 0.979 0.977 0.973 0.035 0.100 -0.085 -0.050 0.070 0.036 -0.074 _ 

0.065 0.046 0.077 0.002 -0.080 -0.066 -0.053 -0.070 -0.096 -0.102 -0.046 

-0.074 -0.077 -0.077 -0.092 -0.082 -0.088 0.004 -0.021 "'0.087 -0.082 0.003 

-0.103 -0.102 -0.106 -0.098 -0.004 -0.015 0.013 0.005 -0.009 -0.002 0.010 
t 

-0.010 -0.006 -0.012 0.002 0.012 0.008 0.009 0.012 0.015 0.017 0.007 

6.75 

. 
0.980 

0.183 

-0.031 

-0.062 

-0.024 

0.000 

0.009 

1 
t-' 
ltJ 
~ 
1 
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v.tj 
26,/') 1d~/? 1 

~ 

~ 
, -7.71 

1 
-8.52 

1 v) 
LW 

6.12 6.75 6.38 6.75 

0 0.079 0.092 0.151 0.204 

1 0.159 0.258 0.975 0.969 

2 0.966 0.948 0.092 -0.004 

3 0.114 -0.063 -0.102 -0.118 

4 -0.107 -0.133 -0.080 -0.065 

5 -0.094 -0.063 -0.011 0.005 

6 -0.016 0.015 0.015 0.018 

Table 4.32 continued 

Ohll / 2 1d5/ 2 

-9.58 -9.84 

7.00 6.75 
1 

6.19 6.75 

0.993 0.992 0.170 0.248 

-0.001 0.052 0.971 0.956 

-0.106 -0.099 0.089 -0.060 

-0.049 .. 0.059 -0.115 -0.133 

0.007 -0.001 -0.083 -0.054 

0.017 0.016 -0.010 0.015 

0.009 0.011 0.018 0.022 

Og7/2 1 

-12.3 
1 

7.06 6.75 

0.994 0.993 

-0.006 -0.054 

-0.095 -0.088 

-0.043 -0.053 

0.006 -0.002 

0.013 0.012 

0.007 0.009 

6.62 

0.992 

-0.006 

-0.111 

-0.045 

0.008 

0.017 

0.008 

e 

Og9/2 

-14.9 

6.75 

0.992 

-0.031 

-0.112 

-0.040 

0.012 

0.016 

0.007 . 

1 
~ 
~ 
VI 
1 
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Table 4.33 

The proton wavefunctions of Table 4.32 expanded in terms of HO wavefunctions with tiw = 8.0 MeV 

v.tj 1 2Pl/2 
, 

2P3/2 If5/2 Oi13/ 2 1 If7/2 Oh9/ 2 2s1/2 Id3/ 2 OhU / 2 Id5/ 2 1 Og7/2 1 1 

EB ! 
1 

t 

1 
-9.84 '"-12.3 Mev)' 

-0.14 -0.21 -0.84 -1. 92 1 -?~93 -3.93 -7.71 -8.52 -9.58 
, , 1 

~wl 8.0 .\ 8.0 8.0 8.0 1 8.0 8.0 8.0 8.0 8.0 8.0 8.0 

0 0.122 0.132 0.262 0.990 0.323 0.995 0.127 0.352 0.976 0.394 0.981 

1 0.318 0.350 0.938 -0.098 0.902 -0.051 0.417 0.888 -0.196 0.854 -0.172 

2 0.891 0.865 -0.205 -0.086 -0.271 -0.076 0.825 -0.281 -0.090 -0.331 -0.083 

3 -0.283 -0.324 -0.078 -0.036 -0.082 -0.040 -0.350 -0.083 -0.007 -0.OZ3 - . -0.010 

4 -0.066 1 -0.059 -0.044 0.017 -0.022 0.009 -0.069 -0.005 0.026 0.010 0.020 

5 -0.048 1 -0.038 0.031 0.013 0.038 0.011 0.004 0.033 0.010 0.035 0.009 

6 0.045 0.050 0.010 .0.005 0.010 0.006 0.040 0.009 -0.001 0.005 0.001 

7 0.007 0.005 0.007 1 -0.003 0.001 -0.001 0.005 -0.002 -0.005 -0.005 -0.004 

Og9/2 

-14.9 

"---
8.0 

0.963 

-0.258 

-0.073 

O.OU 

0.025 

0.005 

-0.004 

-0.004 

1 
1-' 
W 
Ci' 
1 
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It is clear from the above results that the present micro· 

. d .. f h Pb208 . 1 . 1 d . . SCOp1C escr1pt1on 0 t e s1ng e-part1c e states an S1ze 1S 

ambiguous. For this reason we briefly review the validity of the 

results. It is possible that Woods-Saxon potentials fitted to a 

few states near the top 'of the weIl are not a va1id description of 

the remaining leve1s that are more deeply bound. For examp1e, in 

light nuclei the well depth had to be increased for more deeply 

bound levels; however, this has the effect of decreasing the r.m.s. 

radius. For the proton well with rO = 1.135 fm the well was fitted 

to the states in the shell containing 42 of the 82 protons. For 

this shell the r.m.s. radius was 5.23 fm and the reminaing leve1s 
45 

could not increase the radius. Elton and Swift have checked 

for ca40 the effect of inc1uding the correct charge distribution 

rather th an the uniform distribution used here and found the effect 

to be smal1. For the neutron case the present microscopic model 

gave a Coulomb displacement energy and r.m.s. radius for the neutron 
71 

excess which were consistent with the results of Nolen ~â1. 

who used a macroscopic model with realistic Fermi distributions. In 

our calculation the Coulomb exchange energy correction tised was the 

same as that of Nolen ~ al. Increasing the exchange correction 

would give a larger well radius. In the limit of zero exchange 

correction the BW potential well, which has rO = 1.27 fm., gives a 

Co~lomb displacement energy of 18.73 MeV which is consistent with 

experiment. The corresponding large r.m.s. radius for the neutron excess 
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would seem to imply the existence of a neutron "halo". In fact, 

the results are consistent with those of the naive HO p~tential 

model of Sec. 4-D. Imposing the condition that the proton and 

neutron matter distributions have the same r.m.s. radii force.d. the 

use of HO potentials of different sizes. The values of ~w deduced 

for HO potentials are close to the average values from the WS 

calculation. 

With a charge independent nuclear Hamiltonian the use of 

single-particle potentials of different radii for neutrons and protons 

destroys isospin invariance. To regain isospin invariance the 

single-particle potentials must be coupled through the introduction 
94 

of ·ground state correlations. This means that in shell model cal-

culations with these potentials the residual two-body perturbation 

would have to account for this co~pling. 

In the single-particle description of the neutron states it 

was found that the weIl parameters we~e oscillator shell dependent. 

The well depth was larger for states belonging to higher osciHator 

shells. The necessity of a deeper well near the Fermi surface was 
85 

pointed out by Brown, Gunn and Gould and was interpreted to imply 

an effective mass greater than unity. This effect has also been 
95 

observed by Elton and Swift . 48 
l.n Ca • 

96 
Recently Bertsch and Kuo 

have discussed the effect of core-polarization on the single-particle 

st~ength and the resultant increase in effective mass for states 

near the Fermi surface. It is possible that the peculiar behaviour 

of the levels in the single-particle model can be explained by the 
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presence of correlations in the ground state. When the proton weIl 

was increased in size to give a radius consistent with experiment 

the shell effect for protons disappeared. 

4~L Summary 

Woods-Saxon potentials with a Thomas spin-orbit term were used 

to obtain single-particle wavefunctions for shell model calculations. 

The wavefunctions were expanded in terms of HO wavefunctions. In 

the light nuclei the single-particle potentials were consistent with 

the experimental data. It was found that the value of tiw that 

maximized the overlap of an HO·wavefunction with the calculated WS 

wavefunction was state dependent. The state dependence was Most 

pronounced for particle states relative to hole states with hole 

. ~ states requiring a larger average value of tiw than partLcle states. 

To a good approximation deeply bound levels can be represented by 

a single HO wavefunction. The states that have small binding energies, 

in particular, states with low orbital angular momentum, tend to 

extend much further beyong the potential than the corresponding 

oscillator functions. 

In the heavy nuclei of the Pb region it was found that the 

present single-particle model was inconsistent with the experimental 

data. Neutron and proton potentials of different radii are required 

to fit the data which immediately implies the existence of ground 

state correlations. The analysis of nucleon-transfer experiments 

discussed in Sec. 4-F are consistent with the shell model description 

of the Pb
208 

ground state. Recent experiments by Glashausser ~!l. 
97 

------------------------------- 98 
t This effect has been pointed out by Wong and Wong. 
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using inelastic proton scattering to excite single-hole states in 

Pb207 indicate that core-polarization is important in describing 

the single-particle transitions. Furthermore, single-particle 
97 

electromagnetic properties indicate the presence of significant 

amounts of core-excitation. 

Apart from the validity of the single-particle model it i8 

interesting that the potential parametrization used in this case 

allows one to fit the neutron spectra with a small well radius. 

Rost introduced additional parameters into the spin-orbit term but 

still required a ~eutron weIl larger than the proton weIl which is 
1 

inconsistent with the matter distributions being nearly the same.· 

Rost obtained his best fit with the large radius using six parameters 

to fit thirteen single-particle energies. In our fit with the small 

radius six parameters were used to fit twelve single-particle energies 

a~~ the r.m.S. radius of the neutron excess. With theadditional 

parameters Rost was able to fit the proton states with one potential 

of nearly the same radius as the present one whereas we required a 

larger spin-orbit splitting for the Oh levels. Since the radius 

of the valence orbitaIs is a determining factor in two-body inter-

actions we would expect either Rost's or our proton wells to give 

similar two-particle and two-hole spectra. However, definite dif-

ferences should arise from replacing Rost's neutron weIl by ours. 

Experimental results obtained by the Los Alamos group after 

this theoretical analysis was completed indicate that the OjlS/2 

Single-particle strength is spread over at least two states. The 
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state at E = 1.41 MeV contains only 50% of the single-particle x 

strength and astate at E = 3.56 MeV may contain as little as . x 

30% of the single-particle strength. The splitting of the single-

particle strength arising from strong mixing with the 

(g9/2(Pb208 ,3-)} l~- configuration. Assuming that the 3.56 MeV 

state contains 50% of the strength the unperturbed position of the 

Oj15/2 state would b~ at Ex = 2.48 MeV or·EB = -1.46 MeV. With 

this unperturbed energy the Oj15/2 level is still not predieted 

with the Woods-Saxon potential for the other Pb
209 

single-partie le 

states. However, if future experiments show further fragmentation 

of the single-partiele strength, it may be possible to fit aIl of 

the Pb209 states with a single set of potential parameters. 
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CHAPTER 5 

THE EFFECT OF WOODS-SAXON WAVEFUNCTIONS ON 

SHELL MODEL SPECTRA 

5-A Introduction 

In this chapter we present several calculations that were 

performed to examine the effects of using Woods-Saxon wavefunctions 

in shell model calculations. In these calculation the phenomenolog­

ical free reaction matrix that was used as an effective interaction 

in Chapter 3 was used as the residual interaction. This interaction 

is simple to work with and was determined from the free nucleon 

scattering data. It also had the added feature that the resu1ts 

for a normal attractive potential and a ve10city dependent potentia1 

cou1d be studied simu1taneously. Since the interactions act on1y 

in relative S states, the calcu1ations were confined to 1ight nuc1ei. 

The two-particle and two-hole spectra of A=14, 18 and 38 nuclei 

were calculated using both harmonie oscillator (HO) and Woods-Saxon 

(WS) wavefunctions. For valence particles with s~~ll binding energies 

the lJS wavefunctions are spread out relative to the HO wavefunctions 

which must 1ead to smaller two-body'matrix elements. For more 

deeply bound levelswhich are localized within the potential, the 

shapes of the WS and HO wavefunctions differ only slightly. The 

(ls,Od) states are valence particle states in A=17 nuclei and deeply 

bound hole states in A=39 nuclei; consequently, the two-body matrix 
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elements for these two cases are convenient for ,isolating the 

effects of tails and shape in the WS wavefunctions. 
la 

Flowers and Wilmore have studied the A=17 spectra using 

a phenomen'ological interaction and Woods-Saxon wavefunctions. Their 

work differs from the present calculations in the interaction and 

in the wavefunctions used. The WS wavefunctions were ca1culated 

using an effective mass in the solution of the SchrHdinger equatiori 

and the calcu1ated single-partic1e energies were depressed from 
11 

their experimenta1 positions. Stamp and Mayer have examined the 

effects of using WS wavefunctions to calculate the position of 

. 16 40 the octupo1e state ~n 0 and Ca • 

5-B The Mode1 

In Chapter 2 the she11 model description of two-particle and 

two-ho1e states was discussed. If the residual interaction is not 

a function of the excitation energy, the spectra are obtained by 

diagonalizing Hamiltonians of the forro 

H = 

where HO is 'the unperturbed sing1e-particle Hami1tonian and vis 

the residua1 two-body interaction. The ca1cu1ations were carried 

out for both HO and WS sing1e-partic1e potentia1s. With a HO potential 

the unperturbed energies used are the experimenta1 single-particle 

energies. For the WS potentia1s the wavefunctions given in Tables 

4-15, 4-17. and 4-21 were used. In the WS ca1cu1ations the experi-

mental single-particle energies rather than the calculated energies 

were used. The effective interactions used were the free reaction 
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matrices given in Sec. 3-C. Our primary interest in the calculations 

was to consider the effects of WS wavefunctions on two-body inter-

action matrix elements. With e = 86 MeV the free reaction matrices 

give reasonable matrix elements for the nuclei considered and that 

value was used in aIl the ealeulations. Expressions for the two-

body interaction matrix elements for two-particle and two-hole 

states are given in Appendix A. The j-j coupling scheme was used in 
1 

aIl the calculations. 

A two-body matrix element with HO or WS wavefunctions only 

differs in the radially dependent part of the matrix element. By 

expanding the WS wavefunctions for the single-particle states 

in~luded in a caleulation in terms of HO wavefunetions with a common 

value of ~w the WS matrix elements become sums over HO matrix elements. 

With WS wavefunctions radial integrals of the interaction for many 

values of the HO relative state principal quantum numbers (n,n') are· 

required. To illustrate the dependence of the interaction on the 

values of n and n' several radial integrals are given in Table 5-1. 

The attraetive·terms decrease with increasing n and n' while the 

velocity dependent repulsive terms increase· 

In the diagonaliza.tion of the interaction matrices the s;i.ngle-

particle energies of the A=15, 17 and 39 ground states were taken to 

be at zero energy. The single-partiele energies used are given in 

Table 5-2. With this en~rgy seale the experimental binding energies 

for A=18 and A=14 nue lei are given by 
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Table 5.1 

Oscillator function radial integrals of the phenomeno­

logical relative S state free reaction matrix (Chap. 3) 

wi~h € = 86.0 MeV and fiw = 13.4 MeV. The attractive 

and repulsive terms are designated by - and + respective1y. 

ni 

o 
1 

2 

3 

1 

2 

3 

2 

3 

4 

3 

4 

4 

5 
1 
1 

.\ 

-7.48 

-5.04 

-3.42 

-2.43 

-5.51 

-4.45 

-3.39 

-4.57 

T=l (MeV) 

+ 

0.44 
0.89 

1.25 

1.57 

1.38 

1.81 

2.18 

2.28 

Total 

-7.04 

-4.15 

-2.17 

-0.86 

-4.13 

-2.·64 

-1.21 
1 

-2.29 

-11.40 

- 8.75 

- 6.55 

- 5.00 

- 9.07 

- 7.80 

6.39 

- 7.76 

-3.95 2.68 -1.27 - 6.98 

-3.21. 3.03 -0.18 - 6.00 

-3.99 3.11 

-3.57 3.48 

-3.59 3.89 

-3.29 4.62 

-0.88 

-0.09 

+0.30. 

+1.33 

Table 5.2 

- 6.89 

1 - 6.35 

1 - 6.26 

\ - 5.78 
\ • ! 

T=O (MeV) 

+ 

0.57 

1.11 

1.53 

1.87 

1.68 

2.17 

2.58 

2.70 

3.15 

3.52 

3.62 

4.30 

4.45 

5.22 

Total 

-10.83 

-7.64 

- 5.02 

- 3.13 

- 7.39 

- 5.63 

3.81 

- 5.06 

- 3'~83 

- 2.48 

- 3.27 

- 2.32 

- 1.81 

- 0.56 

The unperturbed neutron sing1e-particle (ho1e) energies 

used in the calcu1ations 

A=15 

0.0 

1 
6.'16 

v,ej 

f ! Od5/ 2 

! OSl/2 
l 
\ Od3/ 2 
j 
f 

A=17 A=39 

vot j 

0.0 0.0 

0.87 2.50 

5.08 6.00 
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BE(2p;018) = 2BE (0
17) -BE (0

16
) -BE (018) 

= -3.90 MeV 

BE (2p,F
18) = BE (0

17 )+BE (F
17) -BE (0

16) -BE (F18) 

= -5.01 MeV 

BE (2h;014,. = BE (016)+BE(014)_2BE(015) 

= 2.45 MeV 

BE(2h;~14) = BE (0 16) +BE (N14) -BE (015) _BE-(N15) 

= 4.83 MeV. 

The above binding energies were taken from the 1964 Atomic 

100 59 

Mass Table. From neutron separation energies 

38 
binding energy for Ca is 

the experimental . 

BE(2h;Ca38) = 2.34 MeV. __ _ 

Using the hole energies given in Table 5.2 the two-hole eigenvalue 

problem is identica1 to the two-partic1e prob1em; however, the cal-

cu1ated energies are the negative of the experimenta1 energies. 

5-C The Spectra of A=14, 18 and 38 Nuc1ei 

The states in A=14 nuc1ei that arise from p-2 configurations were 

calculated with HO wavefunctions and with the WS wavefunctions given 

in Table 4.17. In shel1 mode1 ca1culations of two-partic1e and two-

ho1e states using the HO wavefunctions the common practice is to use 

a HO size parameter determined by the size of the closed shel1 core. 

A value commonly used for 016 is i1.w = 13.4 MeV. From Tables 4.15 

and 4.17 is can be seen that i1.w = 13'.4 MeV lies between the average 

values of ~w that maximized the overlap of a HO wavefunction with 

the WS wavefunctions for the Op and (ls,Od) she11s. For comparison 

with ca1culations using WS wavefunctions the A=14 and A=18 spectra 

were calcu1ated using HO wavefunctions with fiw = 13.4 MeV. The A=14 
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spectrum was ca1cu1ated using the WS wavefunctions with five terms 

of the expansion in HO wavefunctions inc1uded. 
, 101 

Recently Mange1son ~ ~. have summarized the experimenta1 

and theoretica1 knowledge of the states in N14• The experimental 

energies of the states that are identified as being predominatly 

of p-2 configurations are given in Table 5.3. The calculated eigen-

values are given in Table 5.4 and compared with experiment in 

Fig. 5-1. The WS spectrum is depressed relative to the HO spectrum; 

that is the WS calculation gives larger binding energies for partic1es 

in the p she11. A HO ca1culation with a 1arger value of ~w would 

reproduce the WS spectrum since the WS wavefunctions have a very 

good overlap with HO wavefunctions of 1arger ~w. In the WS ca1-

cu1ation the T=O states are depressed (relative to the HO ca1culation) 

more than the T=l states. This effect arises because the T=O inter-

action is more dependent on the oscillator size parameter than the 

T=l interaction. However the main point of interest is that hole 

states require a considerably larger yalue of ~w than the partic1e 

. states. This state dependence has been pointed out previous1y by 
~ 

Wong and Wong. 

The experimental energies of the low-1ying positive parity 

states in 0
18 

are given in Table 5.~. The two-partic1e spectrum 

was calcu1ated using HO wavefunctions with ~w = 13.4 MeV and the WS 

wavefunctions given in Table 4.15. The wavefunctions for the Od3/ 2 

state with a binding energy of -0.23 MeV was used. In the calculation 

five, seven and ten terms of the expansions in HO wavefunctions were 

inc1uded for the Od5/ 2, Od3/ 2 and lSl/2 wavefunctions, 
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Table 5.3 

The experimenta1 energies of low-1ying positive 

parity states in A=14, 18 and 38 nue lei 

N14 (a) T 018 (h) F18 (c) Ca38 (d) 
1 

1· EB (MeV) 
1 J1C,T 1 i J1C,T EB (MeV) 

1 
J1C,T EB (MeV) 

1 
IEB (MeV) 1 

1 
! 

1 

1 

-4.83 0+ 1 -3.90 1+,0 -5.01 0+,1 -2.34 , 
-2.52 2+,1 -1.92 3+,0 -4.07 2+,1 -0.14 

-0.89 4+,1 -0.35 
1 

5+,0 -3.88 0+,1 2.02 
0+ 1 1+,0 

1 

(2+) 
1: 

2.20 -0.27 1 -3.31 2.50 , 
! 1 2+,1 + 8.89 

1 

0.02 2 .,0 -2.49 

1 1 
2+ 1 1.35 2+,3+ -1.65 , 

, . 
0+,1 1 1.43 2+ i -1.17 

1 
i 

! 1 ; 

1 1 3+,1 1 1.47' 
1 + t 

1 4 ,1 3.22 
, , 

reference 101 

references 102, 103, 104 

reference 105 

reference 59 
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" + ........ ----1 0 , 

WS 

14 Fig. 5-1. The two-hole speetrum of N . The theoretical spectra 

are for harmonie oscillator wavefunetions (HO,~w = 13.4 MeV) and 

Woods-Saxon (WS) wavefunctions. 
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Table 5.4 

14 The calculated spectra of N • HO and WS designate 

ealculations with harmonie oscillator (~w = 13.4 MeV) 

and Woods-Saxon wavefunctions respectively. 

?T Eigenvalues (MeV) 

0+,1 -2.47, 9.22 
1+,0 -4.75, -1.54, 10.25 
2+,0 0.74 
2+ 1 , 3.46, 11.50 
3+,0 6.90 

0+,1 -2.70, 9.00 

1+,0 -5.48, -2.53, 10.10 
2+,0 -0.11 

2+,1 3.07, 11.43 

3+,0 5.98 

respectively. The calculated spectra are given in Table 5.5 and 

compared with experiment in the second and third columns of Fig. 5.2. 

All of the states in the WS ca1cu1ation are shifted upwards relative 

to the states in the HO calcu1ation. The HO ca1culation is with the 

value of ~w that gives a maximum overlap of a HO wavefunction with 

the WS wavefunction for the Od5/ 2 state. The values of ~w that 

~imize the overlap of HO wavefunctions with the WS wavefunctions 

for the ls1/
2 

and Od
3

/ 2 states are smal1er. This is a reflection 

of the long tails o~ the WS wavefunctions. The effect of the 

~reading out of the Od3/ 2 and 1sl/2 wavefunctions on two-body matrix 
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Table S.S 
18 The calculated spectra for 0 HO and WS designate 

ca1culations with harmonic oscil1ator (~w = 13.4 MeV) 

and Woods-Saxon wavefunctions respectively. 

i\T Eigenvalues (MeV) 

0+,1 -3.0S, 0.06, 8.98 

2+,1 -1.S9, O.lS, 4.68, S.45, 9.86 

4+,1 -0:.82, 3.26 

0+,1 -2.63, 0.67, 9.23 

2+,1 -1.33, 0.23, 4.76, S.S2, 9.93 

4+,1 -0.73, 3.S0 

elements involving these states is to decrease the matrix elements 

from their HO values. It should be reme~bered that al1 effects 

are relative to the calcu1ation with HO wavefunctions. The HO 

ca1culation is for a single-particle potential that gives a wavefunction 

most like the WS wavefunction for the OdS/ 2 state. From Table S.5 

and Fig. 5.2 it can. be seen that the lowest 0+ states are affected 

most. The positions of these states are largely determined by the 

2 2 (dS/ 2) and (sl/2) diagonal and off-diagonal matrix elements. Since 

the lSl/2 state has a poor over1ap with a HO wavefunction, the diagonal 

2 (sl/2) matrix element is decreased appreciably. The matrix elements 

2 2 2 2 
< (sl/2) J=olvl (sl/2) J=O> , < (sl/2) J=olvl (dS/ 2) J=O > and 

2 2 < (d5/ 2) J=olvl (dS/ 2) J=O·> are decreased by 35%, 10% and 9%, 

respectively. Matrix elements involving the d3/ 2 state are a1so 

decreased. However, most of the low-lying levels shown in Fig. 5.2 
1 
1 
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• The theoretiea1 speetra are for harmonie osei11ator 

(HO,~w = 13.4 MeV) and Woods-Saxon (WS) wavefunetions. NR denotes the ea1eu1ations without the 

repu1sive term of the residua1 interaction. 
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do not contain appreciab1e admixtures of this configuration and 

are not significant1y affected. An exception is the second 4+ 

state which 1s shifted upwards more than the first 4+ state. The 

+ seçond 4 state is predominant1y d
3

/
2

) configuration 

whi1e the first is predominant1y 

To examine the dependence of the WS ca1cu1ation in the 

(n,n') structure of the radial integra1s of the interaction the 

spectrum was ca1cu1ated neg1ecting the repu1sive term in the inter-

action. The results of the ca1cu1ation for the lowest 1eve1s are 

shown in columns four and five of Fig. 5.2. Neglecting the repulsive 

term gives a more attractive interacti0!l and larger upward shifts 
. + 

of the states in the WS ca1cu1ation. The upward shifts of the 0 

states are larger in magnitude than those in the ca1cu1ation with 

the full interaction. However, a1l states are affected in the same 

way in both calcu1ations. 

18 + 
In 0 there are three 0 states observed experimenta11y 

be10w 6 MeV excitation energy whereas shell mode1 ca1culations on1y 

predict two states with a third state at about 10 MeV. Furthermore, 

E2 transition probabilities are much 1arger than the shell mode1 

wou1d predict. The anomalous E2 transition rates have lead to 

many attempts to describe the states as mixtures of she1l modeL 
106-111 

and deformed states. The dynamics of transition moments test 

the structure of the wavefunctions; consequently the ca1cu1ation 

of transition probabilities provides important information about 

the size of the deformed components in the observed states. ·Shlomo 



-154-

112 
and Moreh have calculated the electromagnetic transition 

probabilities in OlS using the various calculated admixtures of 
109 

spherical and deformed states. They found that the Benson-Irvine 

wavefunctions gave the best overall agreement with experiment. 

The coexistence of spherical and deformed states leads to difficulties 

in the interpretation of 'effective interaction calculations. More 

precisely, to calculate the structure of OlS,using an effective 

interaction one would first calculate the shell model and the 

deformed state spectra separately and then mix the two types of 
111 

states with the appropriate effective interaction. By a shell 

model calculation we generally mean one using spherical valence 

levels and perhaps involving sorne core polarization corrections 

to the effective interaction. In any case the shell model calculations 

should not reproduce the experimental spectrum. Rather, the experi-

mental spectrum should be reproduced only when the deformed states 
4 

are included. This has not been the case; as Kuo and Brown 

pointed out, the shell model calculations usually predict the second 

0+ state to be very near the experimental position while it is 

believed (on the basis of E2 transiton probabilities) that the state 

contains a large deformed component. This implies that when the 

shell model and deformed states are mixed the 0+ state is not shifted 

significantly in energy but acquires a large deformed component 
113 

in the wavefunction. Brown and Green found that the Kuo-Brown 

effective interaction cou1d not reconcile the energies 'of the states. 

and the observed transition probabi1ities. 
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In the earlier discussion it was seen that the use of WS 

wavefunctions weakened the (sl/2)2J =0 diagonal matrix element 

relagive to the (d5/ 2)2J=0 diagonal matrix element. The result 

was an upward shift of the first and second 0+ state relative to 

the other states in the spectrum. If the 0+ states contain appre-

ciable deformed state components the calculated energies should be 

above the experimentally observed energies. WS wavefunctions also 

have a significant effect on transition probabi1ties. The longer 

tails of the WS wavefunctions increase integrals of r L relative 

to the values using HO wavefunctions. The radial integrals required 

for E2 transitions in the (Od,ls) shell are given in Table S.6. 

The (sl/2,sl/2) radial integral is increased by 50% while the 

(dS/ 2 ,dS/ 2) radial integral is increased by only 10%. This implies 

the single-particle effective charge for these levels must be 

redefined and that changes in transition probabilities might occur. 

The transitions of particular interest are the E2 transitions 

+ + + + o 2 ~ 21 , and 2
1 

-+ 0 .-

The necessary'formulae for calculating electromagnetic tran-' 

sition probabilities are given in Appendix A. The spectra calculated 

with only the attractive term of the interaction_were in best 

agreement with experiment. The wavefunctions for these spectra were 

used to calculate transition probabilities. For the calculation with 

HO wavefunctions the theoretical reduced transition probabilities are 

and 
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Table S.6 
2 

Radial integra1s < nt Ilr lin l.t 1 > for HO(l'iw = 13.4) 

and WS wavefunctions. 

n.t n I.e ' HO WS 
(fm2) (fm2) 

OdS/ 2 OdS/ 2 
10.83 11.62 

lsl/2 ls1/ 2 10.83 17.79 

Od3/ 2 Od3/ 2 
10.83 16.90 

OdS/ 2 ls'1/2 -9.79 -12.S9 

OdS/ 2 Od3/ 2 
10.83 12.S9 

lsl/2 Od3/ 2 -9.79 ;'16.28 

+ + 2 2 4 
B(E2;01 - 21 ) = 72.0en e fm 

where e is the effective charge of the neutron in units of e. With 
n 

the usua1 effective charge e = O.S the transition probabi1ities are 
n 

B(E2;02+ - 21+) = 0.90 e
2

fm4 

and 

+ + 2 4 
B(E2;01 - 21 ) = 18.0 e fm • 

39 
The experimenta1 reduced transition probabi1ities are 

+ + 2 4 
B(E2;02 - 21 ) = 22.2 e fm 

and 

+ + 2 4 B(E2; 01 ~ 21 ) = 32.7 e fm 

The above results are typical of a1l she11 model calcu1ations. The 

0
1
+ ~ 2

1
+ theoretica1 transition probabi1ity is about right whi1e 
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+ + 
the O2 ~ 21 reduced transition probability is decidedly small. 

With the wavefunctions from the WS calculation the reduced transition 

probabilities are 

and 

+ + 224 B(E2; 01 ~ 21 ) = 103.0~n e fm 

The WS wavefunctions increase the reduced transition probabilities 

considerably. However, as we noted previously, the effective charge 

should be consistently defined. In the present model we have assumed 

that the (Od,ls) neutron states are single-particle states. If the 

states were pure single-particle states the 017 quadrupole moment 

and transition moments would be zero. Experimentally the quadrupole 

moment and transition moments are not zero. For the model tQ .be 
17 - .. 

consistent the effective charges required for 0 should be used 

. h 1 1· ~ h 018 . . b b· 1· . ~n t e ca cu at~on o~ t e trans~t~on pro a ~ ~t~es. In 017 the 
39,114 

B(E2;sl/2 - dS/ 2) and quadrupole moment are known experimentally. 

With the assumption of pure single-particle states the effective 

charges are 

e 2 = 4n: B (E2) 1 
n 3 < r2 >2 

and· 

The effective charges for the sl/2 - dS/ 2 and dS/ 2 - dS/ 2 transitions 
.. 

are 0.S2 and 0.42, respectively, for, HO wavefunctions and 0.41 and 

0.39, respectively,for WS wavefunctions. It appears that the WS 
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wavefunc~ions provide sorne evidence for astate inde pendent effective 

charge. Using an effective charge of 0.4 the transition probabi1ities 

in 0 18 with WS wavefunctions are 

and 

+ + 2 4 B(E2j01 ~ 21 ) = 16.5 e fm 

"hh f" h 0+ 2+ "" " W1t t e WS wave unct10ns t ere 2 ~ 1 trans1t1on acqu1res more 

of the transition strength but is still an order of magnitude too 

sIDa11. If the experimenta1 values of the reduced matrix e1ements for 

0
17 

were used in the 0
18 

calcu1ation with HO wa~efunctions the resu1t 

wou1d be c10ser to the WS resu1t. Neverthe1ess,. the ca1cu1ated 

two-partic1e amplitudes are different in the WS ca1cu1ation. The 

wavefunctions for the states being considered are given in Table 5.7. 

The main difference between the HO and WS calcu1ations is that in the 

WS case there is 1ess configuration mixing. This is a result of 

the weakening of the matrix e1ements containing the s1/2 state. 

18 The T=O spectrum of F was ca1cu1ated using the same wave-

functions and sing1e-partic'le energies that were used in the 018 

ca1cu1ation. The experimenta1 energies of the low-1ying positive 

parity T=O states are given in Table 5.3. The resu1ts of ~he ca1cu-

lations with HO and WS wavefunctions are given in Table 5.8 and 

compared with experiment in the second and third columns of Fig. 5.3. 

The upward shifts of T=O states in the WS ca1cu1ation are 1arger than 

those in the T=l ca1cu1ation. The 5+ state is shifted very 1itt1e 

2 + since only the (d
5/2

) configuration is invo1ved. The 1 states are 
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Table 5.7 

Tw • 1 f . . 018 f h 1 1 . o-part~c e wave unct~on8 ~n or t e ca cu at~ons 

with HO and WS single R particle wavefunctions and on1y the attractive 

term of the residua1 interaction 

J" z T = 2+z 1 

Ca1c. 2 
(d3/ 2 d5/2) (d3/ 2 81/ 2? 

2 
(dS/ 2 81/ 2) E (d3/ 2) (dS/2) 

(MeV) 

-1.86 HO 0.085 -0. 137 -0.185 0.721 0.648 

-1.54 WS 0.071 -0.121 -0.152 0.773 0.600 

" + J .T = 0 ,1 
E 2 2 2 

(MeV) 
Ca1c (d 3/ 2) (d5/2) (81/ 2) 

-4.17 HO 0.212 0.893 0.397 

-3.60 WS 0.179 0.936 0.302 

-0.37 HO 0.012 0.404 -0.915 

+0.44 . WS -0.018 0.310 -0.951 
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Table 5.8 

The calcu1ated spectra for F18 . HO and WS designate the ca1cu1ations 

with harmonie oscillator (liw = 13.4 MeV) and Woods-Saxon wavefunctions. 

Cale. J:J(,T Eigenvalues (MeV) 

HO 1+,0 -5.05, -1.05, 0.75, 3.47, 8.94 
2+,0 -1. 67, 2.81, S.16 
3+,0 -3.97, -0.32, 3.37, 7.37 
4+,0 1.02 

5+,0 -4.06 

WS 1+,0 -3.98, -0.12, 1.64, 3.93, 9.22 
2+,0 -1.06, 3.08, 5.31 
3+,0 -3.37, -0.20, 3.77, 7.9S 
4+,0 1.64 

S+,O -3.90 

shifted upwards by approximately 1 MeV. The wavefunction for the 

ground state is given in Table S.9. From the wavefunctions it càn 

2 be seen that both the (dS/ 2 d3/ 2) and (sl/2) configurations are 

large components in the ground state. 

J=l diagonal matrix elements are decreased from the values with HO 

wavefunctions by 40% and 20%, respectively. The even J states are 

shifted upwards a1so since the main components in the 10west states 

are either (dS/ 2 sl/2) or (dS/ 2 d3/ 2)· 

The T=O spectrum was calculated with on1y the attractive 

term of the free reaction matrix and the resu1ts are given in the 

fourth and fifth co1umn of Fig. S.3. The shifts of the WS spectrum 
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Table 5.9 

The ground state wavefunction for F
18 

in the ca1cu1ation with HO 

and WS wavefunctions. 

Calc. 
2 

(d~/2·d5/2) (d3/2 sl/2) ~sn 
2 

E (d3/ 2) dS/2) 

(MeV) 

-5.05 HO -0.137 0.489 -0.033 0.702 

-3.98 WS -0~124 0.446 -0.042 0.792 

are larger in magnitude than for the ca1cu1ation with the full inter-

action; however, the effect of using WS wavefunctions is the sarne. 

38 
The two-ho1e spectrum of Ca was calcu1ated using HO wave-

functions and the WS wavefunctions given in Table 4.21. The sing1e-

partic1e energies used in the ca1culations are given in Table 5.2 

and the experimental energies of the states in Ca
38 

are given in 

Table 5.3. The spectrum calculated with WS wavefunctions is· given in 

Table 5010 and compared with experiment in Fig. 5.4. The spectrum 

was calculated with HO wavefunctions for ~w = 11.5 MeV and ~w = 13.4 

MeV. The results of the HO calculations are given in Table 5.10 and 

Fig. 5."4. The HO calculation with ~w = 13.4 MeV is nearly identical 

to the WS calculation while the spectrum for ~w = 11.5 MeV is only 

slight1y different. The sma11 differences between the two HO 

calcu1ations ref1ect the insensitivity of the interaction to changing 

nw from 11.5 to 13.4 MeV. 
39 

The Ca ho1e states are deeply bound 

and the overlap with HO wavefunctions is maximized for ~w ~ 13.4 MeV. 

'. 

(8 1/2) 
2 

0.499 

0.397 
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1 , Table 5.10 

38 The ca1cu1ated spectra for Ca • HO and WS designate ca1cu1ations· 

with harmonic osci11ator and Woods-Saxon wavefunctions. The HO 

ca1cu1ations are given for tiw = 11.5 MeV and 13.5 MeV. 

. ca1c. i"',T Eigenva1ues (MeV) 

HO 0+ 1 , -1.89, 3.13, 10.20 

(tiw=l1. 5) 2+,1 -0.56, 1.65, 5.64, 7.56, 11.52 

4+,1 4.00, 11.64 

WS 0+,1 -1. 96, 2.98, 10.1 

2+,1 -0.60, 1.57, 5.62, 7.50, 11.5 

4+,1 3.75, 11.6 

HO 0+ 1 , -2.02, 3.02, 10.1 

(tiw=13.5) 2+ 1 , ·-0.64, 1.54, 5.61, 7.47 

4+,1 3.73, 11.6 

The 1ack of differences between the WS and HO spectra indicates 

that the sma11 deviations in shape of the WS wavefunctions from HO 

wavefunctions for deep1y bound 1eve1s has 1itt1e effect on the 

matrix e1ements. The best value of ~w for the Ca39 ho1e states is 

1arger than that for the Ca41 partic1e states; however, with the 

present residua1 interaction this does not 1ead to large state 

dependent effects in matrix e1ements. 
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S-D Remarks About Interaction Matrix Elements with Woods-Saxon 

Wavefunctions 

A few of the residual interaction matrix for the 

(Op;ls,Od) shells are given in Table 5.11. The matrix elements 

given are those from the calculation of the A=18 spectra with a few 

cross shell matrix elements that are required in particle-hole 

calculations. The matrix elements given illustrate the main effects 

of using WS wavefunctions to evaluate residual interaction matrix 

elements. For deeply bound levels such as hole states the WS wave-

functions are very much like HO wavefunctions for an appropriate 

value of hw. For particle levels where the binding energy is small 

the WS wavefunctions have long tails and poor overlaps with HO 

wavefunctions. In A=18 the Ods/2 wavefunction is very much like 

a HO wavefunction with ~w = 13.4 MeV. The (ds/2)2 dia~onal matrix 

elements are only reduced by 5-10% from their HO values. The matrix 

elements involving the d3/ 2 and sl/2 states are decreased b~ .~s 

much as 40% from their HO values obtained with nw = 13.4 MeV. In 

the case of cross-shell matrix elements such as 

< (Pl/2 sl/2)J=1Ivl (Pl/2 sl/2)J=1,T=1 > and < (Pl/2)2J=O,T=1Ivl (ds/t 2J=0 > 

the effects are different. Although both the Pl/2 and ds/2 wave-

functions may,to a good approximation, be rapresented by a single HO 

wavefunction the values of ~w are different for the two states. The 

effect of the different hw values is to reduce the matrix elements. 

The (Pl/2)2, (dS/ 2)2. J=O,T=l matrix element is decreased from the 

HO value by the same amount as the (Pl/2 sl/2) , (Pl/2 sl/2): J=l,T=l 
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Table 5.11 

Residua1 interaction matrix e1ements eva1uated with HO (~w = 13.4 

MeV) wavefunctions and WS wavefunctions. The WS wavefunctions used 

were those used in the ca1cu1ation of the A=14 and A=18 spectra. 

Configurations J1t,T HO WS 
(MeV) (MeV) 

(d3/ 2 d3/ 2) (d3 / 2 d3/ 2) 0+,1 -1.54 -1.18 

(dS/ 2 dS/2) 0+ 1 , -1.87 -1.57 

(sl/2 sl/2) 0+ 1 ., -0.77 -0.70 

(dS/ 2 dS/ 2) (dS/ 2 dS/ 2) 0+,1 -2.31 -2.13 

(sl/2 sl/2) 0+ 1 , -0.95 -0.85 

(sl/2 sl/2) (s1/2 s1/2) 0+,1 -2.06 -1.32 

(P1/2 sl/2) (P1/2 sl/2) 1 ,1 -1.01 -0.83 

(P3/2 dS/2) 1 ,1 0.94 0.83 

(P3/2 dS/ 2) (P3/2 dS/ 2) 1 ,1 -2.78 -2.67 

(~3/2 sl/2) (P3/2 sl/2) 1 ,1 -2.03 -1.65 

(P12/ P1/ 2) (dS/ 2 dS/ 2) 0+ 1 , 1.32 . 1.12 

(s1/2 sl/2) 0+,1 0.21 0.12 

(P3/2 P3/ 2) (d5/ 2 dS/ 2) 0+ 1 , 1.86 1.58 

. (d3/ 2 d3/ 2) (d3/ 2 d3/ 2) 1+ 0 , -1.85 -1.38 

(d3/ 2 dS/2) 1+,0 0.60 0.47 

(d3/ 2 s1/2) 1+ 0 , -1.55 -1.26 

(dS/ 2 d5/2) 1+,0 1. 71 1.41 

<s1/2 s1/2) 1+,0 0.58 0.50 
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·e 
Table 5.11 (contd) 

(d
3/2 

d
S/2

) (d
3/2 

d
S/2

) 1+ 0 , -4.98 -4.11 

(d3/2 B 1/2) 1+ 0 , -1.10 -0.91 

(d S/2 dS/2) 1+,0 -2.36 -2.0.5 

(s1/2 s1/2) 1+,0 -1.63 -1.41 

(d3/2 B 1/2) (d3/2 s1/2) 1+,0 -3.26 -2.53 

(d S/2 dS/2 ) 1+,0 0.83 0.71 

(s1/2 B 1/2) 1+,0 0.00 0.00 

(dS/2 dS/2 ) (d S/2 dS/2 ) 1+,0 -2.26 -2.10 

(B 1/2 s1/2) 1+,0 -1.08 -0.94 

(s1/2 s1/2) (B 1/2 s1/2) 1+,0 -3.S2 -2.12 

(P1/2 s1/2) (P1/2 s1/2) 0-,0 -4.72 -3.83 

(P3/2 d3/2) 0-,0 3.12 2.54 

(P3/2 d3/2) (P3/2 d3/2) 0-,0 -7 g71 -6.46 

(P1/2 P1/2) (d S/2 dS/2) 1+,0 -1.40 . -1.27 

(s1/2 s1/2) 1+,0 -0.18 -0.12 
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1 
matrix element. On the other hand the (Pl/2 sl/2)' (Pl/281/2): 

J=O,T=O matrix element is decreased more than the (Pl/2)2, (dS/2)2~ 

J=l,T=O matrix element. 

A few properties of matrix elements for a general central 

potential are discussed in Appendix C. One point that should be 

emphasized is that an overlap of a HO wavefunction and WS wavefunction 

that is 0.94 is not a good overlap. If the overlap of a WS wave-

function and the corresponding HO wavefunction is 0.94 other coeffi-

cients of the expansion in terms of HO wavefunctions can be as large 

as 0.2. In the previous discussion it was seen that the (sl/2)2 

diagonal matrix e1ements were decreased from their HO values by far 

more than (0.94)4. From (C-S) it can be seen that for interactions 

where the radial integrals increase with increasing (n,n') the 

terms arising from sma11 components are more important than in cases 

where the radial integrals decrease. However, there is a large 

number of terms from the small amplitudes and there is ~uch cancellation 

among them. 

In the calculation of the T=O spectrum of F
l8 

the WS 

wavefunctions used were the neutron single-particle wavefunctions. 

The OdS/ 2 and 1s1/ 2 proton states in F
l7 

are on1y bound by 0.6 and 

0.1 MeV, respective1y. The WS wavefunctions for the proton state 

were given in Table 4.18. It was found that the over1ap of the Od S/ 2 _ 

proton and neutron wavefunctions was 0.977 whi1e the over1ap for 

the 1s1/2 states was 0.980. A1though the over1aps of the neutron and 

proton wavefunctions may be very good it is not a measure of the 
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validity of isospin invariance of residual inter~ction matrix 

elements. The small binding energies of the proton states allows 

the proton wavefunctions to extend beyond the nuclear well more 

than the neutron wavefunctions. This is reflected in the smaller 

values of ~w that maximize the overlaps of the HO and WS wavefunctions 

with the same number of nodes. For ~w = 13.4 MeV the overlapsof a 

lsl/2 HO wavefunction with the neutron and proton WS wavefunctions 

are 0.939 and 0.879. The over1ap integrals are maximized with 

~w = 12.0 MeV for the neutron state and 11.0 for the proton state. 

2 The (sl/2) diagonal matrix element for an interacting neutron and 

proton pair will be smaller th an those for two neutron. This point 

merits further investigation. 

S-E Summary 

The two-particle spectra of A=18 nuc1ei and the two-ho1e 

spectra of A=14 and A-38 nuclei were calculated with a rea1istic 

effective interaction and WS wavefunctions. The WS wavefunctions 

. for hole states are very much 1ike HO wavefunctions with an appro-

priate choice of ~w while the Od3/ 2 and ls l / 2 wavefunctions differ 

considerably from HO wavefunctions. The A=14 and A=18 spectra 

calculated with WS wavefunctions were compared with spectra calculated 

with HO wavefunctions. The HO size parameter chosen for comparison 

was the value that maximized the over1ap of the OdS/ 2 HO and WS 

wavefunctions and was an intermediate value for the particle and hole 
24,111 

states. This value is commonly used by other authors. The two-

hole matrix elements were increased by using WS wavefunctions whil(' 

o 
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the two-particle matrix elements were decreased., Since the hole 

WS wavefunctions are very much like HO wavefunctions with the sarne 

size pararneter in all states, HO wavefunctions can be used to 

reproduce the spectra calculated with WS wavefunctions. By using 

a smaller value of ~w in the HO calculation of the two-particle 

spectra the differences between the HO and WS calculations would be 

lessened. However, for the particle states the maximizing value 

of ~w is much more state dependent than for the hole states. For 

matrix elements involving both the Op and (ls,Od) configurations 

the matrix elements calculated with Woods-Saxon wavefunctions vary 

considerably in the changes relative to the HO ca1culations. The 

F1S spectrum was calculated using the neutron'wavefunctions; however 

the 1s l / 2 proton WS wavefunction has a poorer overiap with a HO 

wavefunction than the neutron WS wavefunction. Using different 

wavefunctions for the proton and neutron would increase the difference 

between HO and WS matrix elements. 

• 



CHAPTER 6 

SHELL MO DEL CALCULATIONS WITH A FREE REACTION 

MAlRIX AS AN EFFECTIVE INTERACTION 

6-A Introduction 

In this chapter we present calcu1ations of the two-partic1e 

spectra of A=18, 42 and 210 nuc1ei and the two-ho1e spectrum of 

Pb~.06. A free reaction matrix is used as the effective she 11 mode1 

interaction and the ca1cu1ations were performed using both harmonic 

osci1lator and Woods-Saxon wavefunctions. In Chapters 3 and 5 we 

presented nuc1ear structure ca1cu1ations for which a free reaction 

matrix was used as an effective interaction. In genera1, the free 

reaction matrix ~ is non-local. In the earlier ca1cu1ations a 
17 

local but ve10city dependent representation of KF was used. Lee 

has made a more complete study of RF and the nuc1ear reaction matrix 

by using a non-local separable potentia1 to fit the free nuc1eon-

nuc1eon scattering data. The free reaction matrix obtained from the 

separable potentia1 is used as the effective interaction in the 

ca1cu1ations presented here. 

6-B The Free Reaction Matrices 

In Chapter 2 we discussed the method for ~taining an effective 

interaction from the free reaction matrix~. The nuc1ear reaction 

matrix is defined by the integra1 equation 
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(2.52) 

and ~ is defined by 

~ (e) = V+V /:JF (e) p~ (e) (2.48) 

In (2.52) and (2.48) the propagators are 

Â(w) = --L 
w-H 0 

and 

Jip(e) 
l =--

e-t 

which are the propagators for nucleons in the nucleus and free 

space respectively. ~(e) is determined by nucleon-nucleon scattering 

in free space whereas K(w) is determined by nucleon-nucleon scattering 

in bound states. The term in (2.52) containing the differ~nce between 

the propagators is the correction for going from the free reaction 

matrix to the nuclear reaction matrix. The interpretation of the 

correction term becomes more transparent by writing the difference 

between the propagators as 

The difference between)1(w) and~F(e)p is referred to as the spectra 

correction. The term,~(w){Q-l} is referred to as the Pauli correction 

and arises from the fact that not aU of the boünd s"tates are avail-

able for the nucleons scattering in bound states. In general Q is a 

projection operator excluding from the intermediate state summation 

all oc~upied orbitals. In particular cases Q excludes unoccupied 

states as well to prevent double counting of nucleon-nucleon inter-

actions. An example of such a case is that of two valence particles 
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outside a closed shell core which was discussed in Sec. 2-D. 

~ is related to the two-nucleon scattering data through 

on-the-energy-shell matrix elements. With ~ determined from the 

free nucleon-nucleon scattering data K(w) can be determined from 

(2.52). To obtain a realistic interaction from the free nucleon-

nucleon scattering data a potential is defined for each state of 

total relative angular momentum by the partial wave expansion 

where 

and X is the intrinsic spin wavefunction. J is the total relative 

angular momentum for a state of orbital angular momentum Z and spin 

S;· To fit the nucleon-nucleon scattering data Lee used separable 

non-local potentials of the form 
2 

V.et',SJ(k,k ' ) = l g.e.tlS~ V.tS~(k)Vt'S~(k'). (6.2) 

i=l 

To obtain ~ we define a free reaction matrix for each relative 

angular momentumstate 

Substituting (6.2) and (6.3) into (2.48) we have 
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~.e.tl ,SJ(k,k l je) 
i . i i 

g,u' v.eSJ (k)V,t 'SJ (k ') 
i 

where 

= 'tJ.2 
m 

Equation (6.4) has the solution 

where 

and 

ik 

=I ij i J 
À,t.e'SJ (e)v.eSJ (k)v,trSJ (k') 

ij 

ij i ," i ik kj 

= 8 g.e,t 'SJ + L g.e.t"SJ 1!,t"SJ Ce)À,t".t CE) 

k.e" 

co 

lt ,tSJ (e) -r 2 _ ~ q dq 

i k 
v':tSJ (q) v tSJ (q) 

2 
e-yq o 

(6.5) 

(6.6) 

(6.7) 

Lee obtained free reaction matrices for the S ,P and D states 

i 
with S-D tensor coupling •. The form factors v,tSJ in (6.5) that were 

133 
used for the So and Sl- Dl states are 

= (6.8a) 

For a11 other partial waves the form factors are 

(6.4) 
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(6.Sb) 

where a
t 

is the "inverse range". The strengths and "ranges" for 
ll5 

the various states were determined by fitting the Yale IV . nticleon-

nuc1eon scattering data. The potentia1 parameters determined from 

the data are given in Table 6.1. The fitted parameters give too 

sma11 a D-state probabi1ity for the deuteron indicating that the 

tensor force obtained from the fit is too weak. To comp1ete1y deter-

mine KF(e) the ~-functions (6.7) are required. Lee chose the form 

factors (6.8) such that (6.7) was ana1ytical1y integrab1e. The 

expressions for the ~-functions are given in Table 6.2. On the 

rea1 axis ~(e) is not an ana1ytic function of e. There is a 

singularity at e=O and ~(e) on the positive real axis is not the 

ana1ytic continuation of ~(e) from the negative rea1 axis. In the 

present calcu1ations we have on1y used negative values. of e so that 
1 
1 

we have only 1isted the ~-functions for e < O. With the parameters 

given in Table 6.1 and the ~(e) functions given in Table 6.2.~(e) 

is completely determined for negative e. 

With ~(e) determined the nuc1ear reaction matrix can be 

obtained from (2.52). The reaction matrix elements for a given 

nucleus are determined by the size of the nucleus an~ by the con-

figurations inc1uded in the description of the states being consid-

ered. The model ~ependence of the projection operator Q was 

discussed in Chapter 2. Lee has determined the nuclear reaction 

matrix elements for the (1s,Od) shel1 with an 0
16 

core. Both plane. 
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Table 6.1 

Parameters of the separable potential 

2S+l", al g /. a
2 

g 1 
(fIn -1) Y' (MeV) (fm -1) ~~ (MeV) 

J al 2 

3
S 1.59 

2 
6.23 6.87 x'103 

1 
-2.89 x 10 

3
S 

_3D 
1 

1.53 x 104 
1 1 

-7.80 x 10 

3
D 1.50 

2 6:00 
.' '. 4 

1 5.44 x 10 4.86 x 10 

1p 
1 

1.90 4.40 x 102 1. 90 4.58 x 105 

3D 1.29 2 
2 

-2.05 x 10 

3
D 2.37 

2 
3 

-2.56 x 10 

lS 
0 

1.51 -1.91 x 102 7.29 7.78 x 103 

3p 1.53 
2 

1.53 
2 

0 
-2.07 x 10 ~.8_6 x 10 

3p 1.37 1.14 x 102 
1.37 

2 
1 

3.11 x 10 

3p 1.57 1 
1.57 

2 
2 

-7.38 x 10 -1.73 x 10 

1
D 1.59 

2 
2 

-1.21 x 10 
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Table 6.2 

The ~(€) functions for the separable pote~tia1 and € < O. 

2S+1 
.t j 

1 3 
SO' Sl 

3D 1 

V.t l(k) 

1 

(k
2
+a/) 

k
2 

(k2+a12) 2 

2 
and € == -1a < 0 

. v,,2(k) 

1 ii 
2 2 ~O = -

(k +a2 ) 

12 
~O = -

k2 
ii 

(k2+a22) 2 ~2 =. -

12 
~2 = -

e 

2 
The notation is 1 ==.!1.... E. = 1 a. 2 (MeV) 

m 1 1 

~ 

41ai (ai+a) 
2 

~ 

2 
~(-a ) 

21 (a1+a2) (alfa) (a2+a) 

2 2 
~(a. +4a.ar5a ) 

1 1 

4 
321a. (a . +a) 

1 1 

~ 

322 41(a
1
+a2) (a1+a) (a2+a) 

x 

2 2 222 
x (al a2 +2a1a2(al+a2)ar(a1 +3a1a2+a2 )a ) 

1 
r' 

" " 1 



e 

1 3 
Pl' PO.1.2 

k k 1 
2. 2. 5/2 ~ 2. 2.3/2 

\"' la. J ,A.~ 1 U. J 

j 
1 

1 , . , 
1 
1 

1 
1 

1 3 k
2 k4 

D2, D2 ,3 
(k2 +a2) 2 (k2+a2)3 

1 

Table 6.2 (contd) 

11_ 
1(1 -

1( (a+3a) 
3 

2 2 
1( 12 = _ 1(a +4aal-5a ) 

1 4 32/,a(a+O:) 

22 1( 3 2 2 3 
1(1 = - 5 x (Sa +25a 0447aa+35a) 

256)' a (a+o:) 

11 2 2 
1(2 = - 1( (a +4aa1-5a ) 

4 32)'a(a+a) 

12 1( 3 2 2 3 
1(2 = - 5 x (Sa +25a 0447aa +35a ) 

256)'a (a+O:) 

e 

-
22 1( 4 3 2 2 3' 4 

1(2 = - 6 x (7a +42a ~82a a +1220 +63a ) 
512)'a(a+a) . 

1 
1-' ...... 
00 
1 
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wave and harmonic osci11ator intermediate states were used to 

eva1uate the Pauli and spectral corrections. The two sets of 

intermediate states give quite different reaction matrix e1ements 

and the correct choicè of states is still an unso1ved prob1em. 

To eva1uate effective interaction matrix e1ements with Woods-

Saxon (WS) wavefunctions many nuc1ear reaction matrix e1ements are 

required. In genera1 the nuc1ear reaction matrix e1ements are a 

numerica1 array. To obtain effective interaction matrix e1ements 

with WS wavefunctions one wou1d have to use the WS wavefunctions 

initia11y in the d~tailed determination of K(w). Such a ca1culation , 
wou1d be a very difficult computational prob1em. The free reaction 

matrix is a convenient device for obtaining an ana1ytic function 

which reproduces K(W) matrix elements to a good approximation. The 

matrix e1ements of K(w) in (2.52) are independent of € whereas KF 

is, a spe~ified function of e given by (6.5). Using HO sing1e-particle 

states for the (Od,ls) she11 Lee found that the matrix e1ements of 

~(€) with € = -80 and -200 reproduced (to a good approximation) 
~ 

the K(w) matrix e1ements for harmonic osci11ator and plane wave 

intermediate states respective1y. With a functiona1 form for the 

nuc1ear reaction matrix elements it is possible to ca1cu1ate a11 of· 

the HO matrix e1ements required to eva1uate the two-body matrix 

e lement s wi th WS 'ilave fune tions. 

f The ca1cu1ation with harmonic osci11ator intermediate states 

was for no gap between the occupied and unoccupied 1eve1s in the 
7 

osci11ator spectrum. Baranger has discussed in detail calcu1ations 

using harmonic oscil1ator intermediate states. 
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Radial integrals of the free reaction matrix elements eva-

luated with HO wavefunctions are given in T.~ble 6.3. The radial 

integrals are given for E = -80 MeV and € = -200 MeV. The € = -200 

MeV radial integrals are considerably weaker than the E = -80 MeV 

integrals. Since calculations were performed for b~th light and 

heavy nuclei n = n' = 0 radial integrals are given as a function of 

~w. The interaction is sensitive to the oscillator potential size 

parameter; consequently the choice of size parameter for each 

nucleus is important. 

6-C The Models 

The two-particle and two-hole spectra were calculated using 

both HO and WS wavefunctions. The WS wavefunctions used were those 

given in Tables 4.15, 4.20, and 4.25. For the A=18 nuclei the 

configurations and energies used were those given in Table 5.2. In 

the HO wavefunction expansion of the WS wavefunction five and seven 

terms were included for the Od and ls levels respectively. The 

oscillator size parame ter used in the expansion was ~w = 12.5 MeV. 

For the other nuclei the configurations included in the calculations 

are listed in Table 6.4 together with the unperturbed energies and 

tàe number of terms included in the WS wavefunction expansion. In 

the calculation the lowest unperturbed configuration was taken to 

be at zero energy. With this energy scale the experimental spectra 

for A=l8 nuclei is given in Table 5.3. The experimental spectra 

for the other nuclei are given in Table 6.5. The ground state 
100 

binding energies given in the 1964 Atomic Mass Table . . 
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e Table 6.3 

. Radial integra1s of the free reaction matrix eva1uated with HO 

wavefunctions. Table 6.3a is for hw = 13.4 MeV and ~ = -80 MeV 

and Table 6.3b is for tiw - 13.4 MeV and ~ = -200 MeV. Table 6.3c 

gives the n = ni = 0 radial integra1s as a function of tiw. The 

integra1s are in units of MeV. 

(a) 

n n' 
3
S 1 

3
D 1 

3
S 

_3
D 1 1 

3
D 

_3
S 1 1 

1p 
1 

3D 2 
3
D 3 

0 0 -12.62 1.90 -1.59 -1.59 1.67 -2.42 -0.12 
0 1 -11. 76 2.41 -1.9l -1.56 2.14 -2.80 -0.19 
0 2 -10.36 2.63 -1. 96 -1.45 2.36 -2.91 -0.24 
0 3 -9.00 2.72 -1.89 -1.34 2.47 -2.91 -0.27 
0 4 -7.80 2.73 -1. 74 -1.23 2.50 -2.85 -0.30 
0 5 -6.75 2.70 -1.56 -1.13 2.50 -2.77 -0.32 
1 1 -10.86 3.06 -1.87 -1.87 3.20 -3.25 -0.29 
2 2 -8.16 3.67 -1.77 -1. 77 4.98 -3.51 -0.46 
3 3 -5.79 3.94 -1.53 -1.53 6.77 -3.50 -0.62 . 
4 4 -3.86 4.01 -1.25 -1.25 8.36 -3.36 -0.75 ... ·' 
5 5 -2.33 3.99 -0.97 -0.97 9.68 -3.17 -0.86 

(a) continued 

n ni ls 
0 

3p 
0 

3p 
1 

3p 
2 

1D 2 

0 0 -7.08 -2.08 1.89 -1.00 -0.48 
0 1 -6.22 -1. 95 2.26 .' -1.28 -0.64 
0 2 -5.16 -1. 70 2.36 -1.40 -0.71 
0 3 -4.20 -1.46 2.35 -1.45 -0.75 
0 4 -3.37 -1.26 2.30 -1.46 -0.76 
0 5 -2.65 -1.09 2.23 -1.44 -0.76 
1 1 -5.32 -1.49 2.86 -1. 70 -0.84 
2 2 -3.29 -0.42 3.34 -2.12 -1.05 
3 3 -1.61 0.55 3.53 -2.36 -1.16 
4 4 -0.28 1.29 3.54 -2.46 -1.20 
5 5 0.75 1.82 3.46 -2.49 -1.20 
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1 

(b) 

n ni 3
S 1 

3D 1 
3
S 

_3
D 1 1 

3D _3
S 1 1 

3p 
1 

3
D 2 

3
D 3 

0 0 -10.63 2.08 -1.38 -1.38 1.82 -2.27 -0.12 
0 1 -9.92 2.64 -1.66 -1.37 2.43 -2.64 -0.18 
0 2 -8.75 2.88 -1. 71 -1.29 2.75 -2.74 -0.23 
0 3 -7.62 2.98 -1.65 -1.20 2.93 -2.73 -0.27 
0 4 -6.62 2.99 -1.53 -1.12 3.02 .. . -2.68 -0.30 
0 5 -5.74 2.96 -1.38 -1.05 3.05 -2.60 -0.32 
i 1 -9.16 3.35 -1.65 -1.65 3.75 -3.06 -0.28 
2 2 -6.85 4.01 -1.57 -1.57 6.03 -3.30 -0.46 
3 3 -4.79 4.30 -1.37 -1.37 8.30 -3.29 -0.61 
4 4 -3.10 4.38 -1.13 -1.13 10.31 -3.16 -0.74 
5 5 -1. 74 4.34 -0.88 '0.88 11.96 -2.98 -0.85 

(b) continued 
-

n ni lS 
0 

3p 
0 

3p 
1 

3p 
2 

1
D 2 

0 0 -6.48 -2.03 2.01 -0.96 -0.48 
0 1 -5.69 -1.92 2.41 -1.23 -0.62 
0 2 -4.72 -1.68 2.52 -1.34 -0.70 
0 3 -3.84 -1.46 2.52 -1.38 -0.73 
0 4 -3.08 -1.26 2.47 -1.39 -0.75 
0 5 -2.42 -1.10 2.40 -1.38 -0.75 
1 1 -4.84 -1.46 3.07 -1.62 -0.82 
2 2 -2.93 -0.38 3.58 -2.03 -1.02 
3 3 -1.32 0.60 3.78 -2.25 -1.13 
4 4 -0.04 1.35 3.79 -2.35 -1.17 
5 5 0.98 1.89 3.70 -2.38 -1.18 
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(c) 

€ (MeV) -80.0 -200.0 

tiw (MeV) 5.0 10.0 15.0 5.0 10.0 15.0 

lS -2.15 -5.10 -7.98 -1. 96 -4.67 -7.30 
3 0 

-0.35 -1.31 -2.45 -0.34 -1.27 -2.34 Po 
3p 0.26 1.08 2.34 0.27 1.14 2.48 
3 1 

-0.12 -0.55 -1.26 -0.12 -0.53 -1.21 P2 
1 -0.03 -0.23 -0.64 -0.03 -0.22 -0.62 '. D2 3S -3.67 -8.94 -14.33 -3.08 -7.52 -12.07 1 3
S 

_3D -0.23 -0.94 -1.92 -0.20 -0.81 -1.67 
3 1 1 

0.14 0.92 2.47 0.15 1.01 2.71 Dl 
lp 0.21 0.92 2.10 0.22 0.98 2.31 
3 1 

-0.21 -1.24 -3.07 -0.19 -1.17 -2.89 D2 3D 1 -0.006 -0.05 -0.17 -0.006 -0.05 -0.16 
3 

1 
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Table 6.4 

Unperturbed single-particle energies used in the calculation of 

42 42 206 210 
the spectra of Ca , Sc , Pb and Pb • The third colu~for 

each nucleus is the number of terms included in the expansion of 

WS wavefunctions in terms of HO wavefunctions. 

Ca42 Pb206 Pb2lO 

V.t j ~v.t j n V.&j ev.t j n v.tj €v.tj n 

(MeV) (MeV) (MeV) 

Of7 / 2 0.00 5 2Pl/2 0.00 6 199/ 2 
0.00 5 

lP3/2 2.07 5 1f5/2 0.57 5 Oi11/ 2 
0.79 3 

1P1/2 .4.1.3 5 2P3/2 0.89 6 Oj15/2 1.41 2 

Of5 / 2 
6.69 5 Oi13 / 2 

1.63 4 2d5/ 2 
1.58 6 

1 
If7/2 2.34' 5 3s1/ 2 

2.03 7 
1 
t 
1 Oh9/ 2 

3.47 2 197/ 2 
2.49 4 

1 

i 
1 

2d3/ 2 
2.52 6 

1 

.e 
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Table 6.5 

Experimental energies of low-lying states. in Ca42 , sc42 , Pb206 

and Pb210 

ca
42 

(a) 1 
. Sc 42 (b) Pb

206 
(c) 

.' 

1 Pb
21O

(d) 

i" ,T 

0+,1 

2+,1 
+ o ,1 

2+,1 

4+,1 

6+ 1 , 
2+,1 

2+,1 

2+,1 

2+,1 

4+,1 

2+,1 

0+,1 

(a) 

(b) 

(c) 

(d) 

EB 
(MeV) 

-3.11 

-1.59 

-1.28 

-0.69 

-0.36 

+0.08 

0.28 

0.54 

1.34 

1.75 

1.90 

2.09 

2 . .14 

2.90 

2.99 

3.16 

3.40 

3.59 

reference 

reference 

reference 

reference 

1 

i 

116 

117 

118 

119 

i" ,T 

.+ o ,1 
1+ 0 , 
7+,0 

5+, (0) 

3+,0 

2+,1 

0+ 1 , 
(2+)3+,0 

2+,1 

4+,1 

(4+)5+,0 

6+,1 

(3+)2+,0 

1+,0 

(2+)3+,0 

1+,0 

(2+),3+ 

0+,1 

EB 
(MeV) 

-3.20 

. -2.59 

-2.58 

-1.68 

-1.70 

-1.61 

-1.31 

-1.00 

-0.70 

-0.35 

-0.10 

+0.05 

0.19 

0.49 

0.58 . 

0.66 

0.73 

2.51 

J1f EB 1 J1f EB 
(MeV) ! (MeV) 

0+ + .... 
-:0.§4. 0 -1.24 

2+ +9.16 2+ -0.44 
+ 

+0.52 1 4+ -0.15 0 
3+ 0.70 ! 6+ -0.05 
2+ 0.82 1 8+ +0.03 1 

4+ 1.04 1 , 
1 

1+ 1.09 
1 i 

(2+) 1 1.14 
1 4+ 

.. 

1.36 

(1+ 2+) 1.51 
-7 1.56 
-

1 
6 1. 74 -3 1.89 
-(9 ) 2.01 

5 2.14 
4+ 2.28 
-5 _2.37 

3+ 2.48 

(5-) 2.55 

(6+) 2.61 

(5 ) 2.76 
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= -3.11 MeV. 

BE(2p,Sc42) = BE(Ca41)+BE(Sc41)-BE(Ca40)-BE(Sc42) 

= -3.20 MeV. 

BE(2h,Pb206)= BE(Pb208)+BE(Pb206)_~BE(Pb207) 

= 0.64 MeV. 

BE(2p,Pb210)= 2BE(Pb209)_BE(Pb208)_BE(Pb210 

= -1.24 MeV. 

The A=18 spectra were calculated with HO wavefunctions using 

both E = -80 MeV and E = -200 MeV. These two calculations corres-

pond to calculations with nuclear reaction matricés "determined using 

plane wave and HO intermediate states as was discussed earlier. 

The spectra were also calculated using WS wavefunetions and E = -200 

MeV. Exact ealculations with WS wavefunctions require large amounts 

of computational time so only the value E = -200 was used sinee it 
4 

yielded matrix elements more in accord with those of Kuo and Brown. 

The WS calculations were performed retaining terms in the matrix 

elemtns for whieh the product of expansion coefficients was greater 

than or equal to 0.05. This approximation was cheeked for several 

matrix elements by including additional terms. It was found that 

2 
the approximation was worst for the (sl/2) diagonal matrix elements. 

4 With the approximation used the (sl/2~ matrix elements are approx-

imately 10% too small. Errors in other matrix elements were .. 

eonsiderably smaller. 

. Nuclear reaction matrix elements for the separable potential 
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given in the previbus section have on1y been determined for the 

A=18 nuc1ei. 206 210 In the ca1cu1ations of A=42, Pb and Pb spectra 

the free reaction matrix with € = -200 MeV was used as an effective 

interaction. The WS ca1cu1ations for these nuc1ei were performed 

in the same approximation as for the A=18 nuc1ei. 

6-D Resu1ts for A=18 Nuc1ei 

18 The two-partic1e spectrum of 0 was ca1cu1ated with HO 

wavefunctions (~w = 13.4) for € = -80 MeV and € = -200 MeV. The 

1ow-1ying 1eve1s from both ca1cu1ations are compared with experiment . 

in co1umns a and b of Fig. 6.1. The entire spectrum for € = -290 

MeV is given in Table 6.6. The free reaction matrix with € = -200 

MeV gives 0.4 MeV 1ess binding energy for the ground state than ~ 

with € = -80 MeV. Apart from the ground state the two ca1cu1ations 

give the same 1eve1 positions to within 0.2 MeV. The spectrum 

ca1cu1ated using WS wavefunctions for € = -200 MeV is given in 

Table 6.6 and compared with experiment in co1umn c of Fig. 6.1. 

+ + The 01 and O2 states are shifted upwards by 0.8 and 1 MeV respec-

tive1y relative to the HO ca1cu1ation with ~w = 13.4 MeV. With the 

approximation used in the WS ca1cu1ation the upward shift of the 0+ 

states is overestimated by approximate1y 0.1-0.2 MeV. The other 

low-1ying 1eve1s have sma11er a1though significant shifts relative 

to the HO calcu1ation. The use of WS wavefunctions leads to an 

overa11 state dependent weakening of the interaction matrix e1ements 

relative to the values in the HO ca1cu1ation. The spectrum calcu1ated 

with HO wavefunctions with ~w - 12.0 MeV and for € = -200 MeV is 
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Table 6.6 

The two-partic1e spectra of 0
18 

ca1cu1ated with HO and WS wave-

functions for ~ = -200 MeV. 

Ca1c. J1t,T Eigenva1ues (MeV) 

HO 0+ 1 , -2.87, -Q.24, 10.88 
. (i'iw=13.4) 1+ 1 4.59, 5.63 , 

2+ 1 , -1.78, -0.10, 4.29, 5.91, 10.16 

3+ 1 , 0.55, 4.48 

4+,1 -0.74, 3.34 

WS 0+ 1 , -2.05, 0.80, 10.63 

1+ 1 , 4.72,5.78 

2+ 1 , -1.35, 0.09, 4.51, 5.86, 10.14 

3+ 1 , 0.63, 4.59 

4+,1 -0.58, 3.68 

HO 0+ 1 , -2.71, -0.10, 10.55 

(i'iw= 12 • 0) 1+,1 4.63, 5.67 

2+ 1 , -1.53, 0.02, 4.40, 5.87, 10.11 

3+,1 0.61, 4.59 

4+,1 -0.~2, 3.51 

given in Table 6.6 and compared with the other ca1culations in 

column d of Fig. 6.1. As wou1d be expected the HO calcu1ation with 

i'iw = 12.0 MeV shifts the spectrum upwards relative to the spectrum 

calcu1ated with HO wavefunctions and ~w = 13.4 MeV. Nevertheless, 

a HO ca1culation with a smal1er i'iw value does not reproduce the 

state dependence of the-matrix e1ements in a WS calculation. 

The calcu1ations that were performed for the T=l states of 
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18 18 o were repeated for the T=O states of F • The resu1ts are given 

in Table 6.7 and compared with experiment in Fig. 6.2. The HO 

calcu1ation with ~ = -200 MeV gives 1.5 MeV less binding energy for 

the F18 ground state than the'ca1culation with ~ = -80 MeV. Except 

for the 31+ state the remaining low-lying states in the spectrum 

for ~ = -200 MeV are shifted upwards by appr~ximate1y 1 MeV relative 

to their positions for ~ = -80 MeV. The spectrum calcu1ated using 

.WS wavefunctions for ~ = -200 MeV is given in co1umn c of Fig. 6.2. 

The upward shifts of the 1evels in the spectrum for the WS ca1cu1ation 

relative to those for the HO ca1culation with ~w = 13.4 MeV are 

as large as 2 MeV. The approximation made in the WS calculation i8 

worst for the 1+ states and the ca1cu1ated positions of the 11+ 

and 1
2
+ 1eve1s are too high by approximate1y 0.25 MeV. The spectrum 

ca1culated using the HO wavefunctions for ~w = 12.0 MeV and ~ = -200 

MeV is ~ompared with the other calcu1ations in co1umn c of Fig. 6.2. 
i 

The calcu1ation using HO wavefunctions and nw = 12.0 MeV weakens 

the interaction matrix e1ements but does not reproduce the state 

dependence in the WS calcu1ation. 

5-E Resu1ts for A=42 Nuclei 

42 The two-particle spectrum of Ca was calcu1ated using both 

HO (nw=ll.5 MeV) and WS wavefunctions for ~ = -200 MeV. The resu1ts 

are given in Table 6.8 and compared with experiment in Fig. 6.3. 

+ The HO and WS calculations are very simi1ar except for the 01 and 

O
2
+ states which are shifted upwards by approximate1y 0.25 MeV in 

~e WS calculation. The agreement between the ca1cu1ated and exper~ 
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Table 6.7 

The two-partiele speetra of F
18 

ealeulated with HO and WS 

wavefunetions for e = -200 MeV 

Cale. J7t,T 'Eigenvalues (MeV) 

HO 1+,0 -5.84, ,-1. 67, 1. 78, 4.49, 10.45 

(tiw-13 .4) + . 2 ,0 -2.67, .2.47, 5.80 
..., 3+,0 -4.21, -0.48, 3.40, '8.13 

4+,0 0.61 

5+,0 -4.02 

WS 1+,0 -3.81, 0.02, 2.62, 4.78, 10.33 

2+,0 -1.30, 2.74, 5.71 

3+,0 -3.18, -0.29, 3.46, 8.61 

4+,0 1.57 

5+,0 -3.50 

HO 1+,0 -5.21, -1.38, 1.90" 4.44, 10.13 

(tiw=12.0) 2+,0 -2.00, 2.56, 5.65 

3+,0 '-3.66, -0.37, 3.63, 8.20 

4+,0 1.20 

5+,0 -3.53 
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speetra are for harmonie osei11ator wavefunetions (HO,fiw = 

11.5 MeV) and Woods-Saxon wavefunetions (WS). 
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Table 6.8 

42 
The two-partic1e spectra of Ca ca1cu1ated with HO (~w=11.5 MeV) 

and WS wavefunctions for € = -200 MeV 

Ca1c. J''',T Eigenva1ues (MeV) 

HO 0+,1 -1.47, 2.74, 8.61, 13.81 
1+ 1 , 6.05, 6.34, 8.52 
2+,1 -0.90, 1.09, 3.44, 5.37, 6.41, 8.74 

10.69, 13.22 
'3+,1 1.83, 3.89, 6.24~ 8.47, 10.68 

+ -0.42, 1.63, 3.59, 6.28, 8.48, 13.38 14 ,1 , 
5+,1 1. 91, 6.33 

6+,1 -0.26, 5.26 

WS 0+,1 -1.16, 3.02, 8.38, 13.93 
1+ 1 , 6.12, 6.42, 8.58 
2+ 1 , -0.90, 1.15, 3.61, 5.55, 6.45, 8.76 

10.73, 13.25 
3+,1 1.80, 3.89, 6.23, 8.48, 10.70 

4+,1 -0.41, 1.65, 3.62, 6.32, 8.50, 13.40 
5+,1 1.89, 6.29 
6+ 1 , -0.27, 5.28 

mental spectra is not good. The choice of € = -200 MeV in KF 
for the effective interaction was arbitrary; however, one wou1d not 

expect the Pauli and spectral corrections for the reaction matrix 

e1ements in the (f,p) shel'l to differ great1y from those in the 

(s,d) shel1. On the other hand there is no reason to expect agree-

ment with experiment by using a simple model containing only spherica1 
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two-particle configurations. The model predicts two 0+ and' three 

2+ states below E
B 

= 5 MeV. Experimentally there are six 0+ and 
120-123 

eight 2+ states below EB = 5 MeV. Several authors have discussed 

h f h 1 1 · . 42. f d 1 t e structure'o t e ow- y~ng states ~n Ca ~n terms 0 a mo e 

in which the sp~erical shell model states are mixed with deformed 

states. 

The T=O two-particle spectrum of Sc42 was calculated using 

both HO (~w=11.5 MeV) and WS wavefunctions for e = -200 MeV. The 

results are given in Table 6.9 and cpmpared with experiment in 

Fig. 6.4. The caiculated spectrum i~ in reasonable agreement with 

experiment which is in marked contra~t to the T=l spectra •. The 

11+, 12+, and 22+ states in the WS calculation are shifted upwards 

by 0.5 MeV relative to their positions in the HO calculation. The 

state dependence of the interaction matrix elements in the WS 

+ + calculation leads to a downward shift of the 52 and 71 states 

relative to their positions in the HO calculation. The downward 

+ shift of the 71 state relative to its position in the HO spectrum 

is a consequence of the ~w value used in the HO calculation. The 

Of
7

/
2 

WS wavefunction is very much like a HO wavefunction with 

nw = 12.75 MeV (Table 4.21) whereas the HO calculation presented 

here i5 for ~w = Il.5 MeV. 

5-F Results for Pb206 

In the absence of a calculation of nuclear reaction matrix 

elements for the Pb region the free reaction matrix was used as the 

effective interaction with calculations being performed for 
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Fig. 6-4. 
42 The T=O two-partie1e speetrum of Sc • The speetra presented 

are for harmonie osei11ator (HO, ~w = 11.5 MeV) and Woods-Saxon (WS) 

wavefunetions with € = -200 MeV. 
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Tabla 6.9 

The two-particle T=O spectra of Sc42 ca1cu1ated with HO (~w=ll.5 MeV) 

and WS wavefunctions for € = -200 MeV. 

Calc. i(,T Eigenva1ues (MeV) 

HO 1+,0 -2.79 1.10, 4.16, 5.57, 7.07, 7.96 

13.82 

2+,0 -0.02, 3.31, 4.86, 8.21, 10.84 

3+,0 -1. 66, 0.58, 2.14, 3.38, ~.35, 7.86, 

9.70, 12.97 
+ 1. 61, 8.36 

J 4 ,0 2.38, 5.33, , 
5+,0 -1. 86, 0.21, 6.04, 11.40 

6+,0 3.67 

7+,0 -2.79 

WS 1+,0 -2.24, 1.67, 4.56, 5.90, 7.12, 8.05 

13.98 

2+,0 0.30, 3.80, 5.08, 8.26, 10.90 

3+,0 -1. 42 , 0 • 63 , 2.42, 3.51, 5.50, 7.91, 

9.79, 13.06 

4+,0 1.69, 2.49, 5.32, 8.38 

5+,0 -1.73, 0.12, 6.10, 11.59 

6+,0 3.65 

7+,0 -2.95 

€ = -200 MeV and € = -80 MeV. On the basis of the neutron sing1e-

particle potentials deduced in Chap. 4 the best value of ~w for HO 

" wavefunctions in the Pb region wou1d be approximately 8.0 MeV. On 
82 

the other hand,the neutron wel1 found by Rost had a much 1arger 

radius and the best value of ~w in a ca1cu1ation with Rost's HO 
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wavefunctions wou1d be approximate1y 6.0 MeV. To study the effect 

of the nuc1ear size in determining effective interaction matrix 

e1ements and consequent1y the two-ho1e spectrum the spectrum was 

ca1cu1ated using HO wavefunctions with.~w = 6.0 MeV and 8.0 MeV. 

The resu1ts of the ca1cu1ations are given in Table 6.10. From 

Table 6.10 it can be seen that the positive parity states with even 

+ + + + spin are affected most. The 01 ' 21 , 41 and 61 states are 

depressed by 0.15, 0.24,0.12 and 0·.19 MeV respective1y for ~w = 

8.0 MeV relative to their positions for ~w = 6.0 MeV. For the Pb 

region energy shifts of this size are significant since the matrix 

e1ements are sma11. This can be seen by comparing the unperturbed 

positions of 1eve1s with the positions after diagona1izing the 

she11 mode1 Hami1tonian. In Fig. 6.5 the ca1cu1ated spectra are 

compared with experiment and the unperturbed positions of the 1eve1s. 

Decreasing the value of ~w does not necessari1y le ad to a 

decrease in the magnitude of a matrix e1ement. In fact, some 

matrix e1ements become 1arger in magnitude as ~w is decreased. For 

examp1e, with HO wavefunctions and € = -200 MeV we have 
2 2· 

< (h9/ 2) Jl~l (h9/ 2) J=O> = -0.083 MeV (~w=8.0 MeV) 

= -0.270 MeV (nw=6.0 MeV) 

The nuc1ear size dependence of the matrix e1ements is comp1icated 

by two factors: 1) the different size dependence of the attractive 

1 and repu1sive terms in the So interaction; and 2) a cance11ation 

between the sing1et-even and trip1et-odd·components of the inter-

action. 
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Table 6.10 

Two-ho1e states in Pb206 with EB< 4.0 MeV ca1cu1ated using HO 

wavefunctions with fiw = 6.0 MeV, and ~w = 8.0 MeV for ~ = -200 MeV. 

tiw 6.0 8.0 

;1' Eigenva1ues (MeV) Eigenva1ues (MeV) 

0+ -0.37, 0.62, 1.56, 2.73 -0.52, 0.58, 1.62, 2.78 
1+ 0.84, 1.40, 2.83 0.83, 1.38, 2.82 
2+ 0.24, 0.59, 1.03, 1.43, 1.63, 0.00, 0.54, 0.99, 1.42, 1.58, 

1 : 
2.88, 3.07, 3.92 2.75, 2.83, 3.03, 3.95 1 2.84, , 

3+ 0.54, 1.39, 2.28, 2.82, 3.18, 0.52, 1.34, 2.24, 2.77, 3.13, 

3.98 3.93 
4+ 1.05, 1.22, 2.21, 2.80, 3.10, 0.93, 1.16, 2.18, 2.78, 3.07, 

3.19, 3.39, 3.98 3.18, 3.38, 3.99 
5+ 2.84, 3.18, 3.45, 4.02 2.80, 3.16, 3.43, 4.00 
6+ 2.48, 3.18, 4.00 2.29, 3.16, 4.00 
7+ 4.01 3.98 
8+ 3.20 3.18 
10+ 3.22 3.21 
12+ 3.24 3.23 
-3 3.69 3.63 
- 3.90 2.11, 3.84 4 

1 

2.14, 

5 2.13, 2.37 2.09, 2.33, 3.86 
- 1 1.60, 2.16, 2.50, 3.94 1.58, 2.14, 2.48, 3.92 6 

1 7 1 1.50, 2.12, 2.48, 3.90 1.44, 2.10, 2.46, 3.89 

8 
1 2.16, 2.49, 3.96 2.13, 2.48, 3.94 , 
i 

9 
1 

1.95, 3.93 1.84, 3.92 
-10 j 3.94 3.92 1 , 

! 
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206 
The two-ho1e speetrum of Pb Speetra are 

presented for ea1eu1ations with both harmonie osei11ator (HO) 

and Woods-Saxon (WS) wavefunetions. For eaeh spin the 

eo1umns are: 

1) experimenta1 speetrum 

2) unperturbed speetrum 

3) theory, HO, tiw = 6.0 MeV, € = -200 MeV 

4) the ory , HO, tiw = 8.0 MeV, € = -200 MeV 

5) the ory , WS, € = -200 MeV. 
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With ~w = 8.0 MeV the n=n'=O radial integral of IsO is 

larger than its value when ~w = 6.0 MeV. However, for increasing 

(n,n') the radial integrals for ~w = 8.0 decrease more rapidly 

than those for ~w = 6.0 MeV. The result is that for higher values 

of (n,n') the radial integrals are more attractive with ~w = 6.0 

MeV. For J=O only the IsO' ID2 and 3Pl components of the interaction 

contribute to the matrix elemen~s. For diagonal matrix elements 

the lsO and ID2 terms are attractive while the 3P1 term is repulsive. 

The degree of cancellation is shown in Table 6.11 by the values 

of the matrix elements with and without the 3Pl interaction. The 

degree of cancellation is dependent on the v~lue of €. Increasing 

the value of € makes the Iso interaction more attractive and the 

3Pl interaction less repu1sive. Although the matrix elements do 

not exhibit a uniform behaviour as a function of ftw"it can be seen 

from Fig. 6.5 that the overall effect is to increase the binding 

energies of the levels when ~w is increased. 

~he calculated spectrum of negative parity states is compared 

with experiment in Fig. 6.6. The overall agreement with experiment 

for both positive and negative parity states is not good. The 

results given here are very similar to those obtained by Clement 
124 

and Baranger with the Tabakin potential. It is interesting to 

+ + + note that for the l , 3 , 6 and 6 states the" experimental positions 

of the 1evels" are above the unperturbed energy of the dominant 

configuration. + Except for the 0 and 3 states the ca1culated 

positions of the 1eve1s are below th~ experimenta1 positions. The 
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Table 6.11 

Diagonal J=O matrix e1ements calculated with HO wavefunctions 

for ~w = 8.0 MeV and € = -80.0 MeV. 

Configuration lS +lD 
o 2 

ls +lD +3p o 2 1 

(h9/ 2) 
2 -0.930 (MeV) -0.215 (MeV) 

(i l3 /2) 2 -0.934 -0.305 

(f5/2) 
2 -0.619 -0.229 

(f7/ 2) 
2 -0.826 -0.533 

(Pl/2) 
2 -0.359 -0.086 

(P3/2) 
2 

-0.718 -0.581 

. discrepancy between theory and experiment for the 3 state is so 

large that the 3 state must arise from configurations other than 

those of two-holes. Wavefunctions for several of the 10w-1ying 

leve1s are given in Table 6.12 from which it can be seen that, in 

genera1 there is litt1e configuration mixing in the 10w-lying levels. 

A few low-lying states were calcu1ated using WS wavefunctions. 

The results are given in Table 6.13 and compared with experiment 

in Fig. 6.5. The on1y appreciab1e change in the WS ca1cu1ation was 

+ + + 
to move the 01 one state upward slight1y and the 21 and 22 

states c10ser together. + + Wavefunctions for the 0 and 2 states 

from the WS ca1cu1ation are given in T~b1e 6.14. By comparing the 

wavefunctions in Tables 6.14 and 6.12 it can be seen that a1though 
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Table 6.12 

Wavefunctions for low-1ying states in Pb
206

• The wavefunctions are for the spectrum ca1cu1ated using HO wavefunctions 

with liw = 8.0 MeV and e = -200 MeV 
Jlf=O+ 

... -
EB 

2 
(i

13
/
2

) 2 (f
s

/ 2) 2 
2 2 2 

(h 9/ 2) (f7/2) (P1/2) (P3/ 2) 
{l1eV} 

-0.52 0.070 -0.164 0.324 0.154 0.819 0.410 

0.58 -O. 08l~ 0.229 -0.815 -0.227 0.464 -0.093 

1.62 -0.017 -0.022 0.274 0.045 0.332 -0.901 1 
N 
0 

J.lf=l+ 
a-
I 

EB h f 
(MeV) 9/2 7/2 fs/2 f 7/2 f s / 2P3/2 P1/ 2P3/ 2 

0.83 -0.002 -0.001 -0.012 1.00 

1.38 0.005 -0.009 1.00 0.012 

Jlf=3+ 
E

B h9/2f s/2 h9/2f 7/2 h9/2P3/2 fs/2 f 7/2 f s /2P1/ 2 f s /2P3/ 2 f 7/2P1/ 2 f 7/2P3/ 2 (MeV) 

0.52 0.001 0.001 0.001 -0.009 1.00 0.005 0.008 0.015 

1.34 -0.002 -0.003 -0.003 -0.016 0.005 1.00 0.017 -0.005 
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Table 6.12 continued 
JJ{==s+ 

~~ev) h9/2 fS/2 h9/2f 7/2 h9/2P1/2 h9/2P3/2 fS/2 f 7/2 f7/2P3/2 

2.80 0.001 -0.003 0.023 0.015 0.999 0.017 

JJ{=3-
EB h9/2i13/2 i13/2 f 7/2 
(MeV) 

3.63 -0.007 1.00 
1 

N 
0 

JJ{==4- -..J 
1 

E 
(!!eV) h9/2i13/2 i13/2fS/2 i13/2f 7/2 

2.11 -0.005 1.00 -0.008 

JJ{=S-
EB h9/2i13/2 i13/2fS/2 i13/2f 7/2 i13/2P3/2 
(MeV) 

2.09 0.005 0.910 0.066 0.410 

2.33 -0.006 0.414 -0.063 -0.908 

~-;:.::::...~ 
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Table 6.12 continued 
J1(=6-
EB h9/2 i 13/2 i13/2fS/2 i13/2f 7/2 i 13/ 2P1/2 i 13/ 2P3/ 2 
(MeV) 

1.S8 0.003 -O.OSS O.OOS -0.998 0.018 

2.14 0.012 0.998 0.013 -0.OS4 0.03S 

J1(=7-
EB h9/2 i 13/2 i13/2 f S/2 i13/2 f 7/2 i 13/ 2P1/2 i13/2P3/2 
(MeV} 

1.44 -0.002 0.174 0.OS2 0.976 0.117 1 
N 
0 

2.10 0.011 -0.969 -0.047 0.192 -0.146 (X) 
1 

J1(=8-
EB h9/2i13/2 i13/2fS/2 i13/2 f 7/2 i13/2P3/2 
~eV) 

2.13 0.012 0.999 0.003 -O.OSl 

J1(=9-
E

B h9/2i13/2 i13/2fS/2 i13/2f 7/2 
(MeV) 

1.84 -0.047 0.996 0.072 
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Table 6.12 continued 

.f=2+ 
E

B 0.00 0.54 0.99 1.42 1.58 2.75 
(MeV) 

2 
(h9/ 2) . 0.023 -0.003 -0.017 0.004 -0.008 -0.093 

(h9/2 f S/2) 0.073 0.007 -0.046 0.032 -0.016 -0.282 

(h9/2f7/2) -0.010 0.003 0.008 -0.003 0.002 0.048 

(i13 /2)2 -0.088 -0.015 0.062 -0.039 0.030 0.857 

(f
S/2

) 
2 0.216 0.001 0.947 -0.107 0.104 0.133 

(fS/2f7/2) -0.082 -0.028 0.082 -0.067 -0.008 0.014 

(fs/2P1/2) 0.698 - 0.637 0.216 -0.153 0.053 0.123 

(fS/2P3/2) -0.161 -0.023 0.042 0.970 0;020 -0.118 

(f
7/2

) 2 0.070 0.009 -0.061 0.013 -0.016 -0.093 

(f7/2P3/2) 0.199 0.070 -0.077 0.085 -.0.076 --0.331 

(P 1/2P3/2) -0.586 0.751 0.176 0.075 -0.232 -0.039 

(P3 /2) 
2 

10.179 -0.153 -0.038 -0.067 -0.962 0.089 



-210-

e 
Table 6.12 continued 

J1(=4+ 
EB 0.93 1.16 2.18 
(MeV) 

(h9/2) 
2 0.017 -0.002 -0.019 

(h9/ 2f 5/2) 0.046 -0.012 -0.017 

(h9/ 2f 7/2) -0.014 0.003 0.021 

(h9/2P1/2) 0.055 -0.011 -0.038 

(h9/2P3/2) -0.025 0.003 0.015 

(i13 / 2) 2 -:,0.074 0~010 0.044 

(f5/ 2) 
2 0.598 0.784 0.126 

. (f5 / 2 f 7/ 2) -0.149 0.018 -0.058 

(f5/ 2P3/ 2) -0.699 0.609 -0.310 

(f7/ 2) 
2 

0.061 0.006 -0.041 

(f7/2P1/2) 0.302 -0.093 -0.935 

(f7/2P3/ 2) 0.158 -0.068 -0.057 
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Table 6.13 

Two-ho1e states in Pb
206 

with E
B 

< 4.0 MeV ca1cu1ated using WS 

wavefunctions for e = -200 MeV. 

J1C Eigenva1ues (MeV) 

-0.46, 0.60, 1.60, 2.73 

0.81, 1.39, 2.81 

0.08~ 0.48, 1.00, 1.43, 1.56, 

2.80, "3.04, 3.80 

0.53, 1.34, 2.22, 2.77, 3.12, 

3.66 : 

2.11, 3.82 

5 2.12, 2.34, 3.87 

Table 6.14 

2.75, 

3.77 

f . fil· . Pb206 
Wave unct~ons or ow- y~ng states ~n . The wavefunctions are 

for the spectrum ca1cu1ated using WS wavefunctions and e = -200 MeV. 
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Table 6.14 continued 

J1(=2+ 
EB 
(MeV) 0.08 0.48 1.00 1.43 1.56 2.75 

(h9/2) 
2 0.015 -0.002 ·0.016 0.001 -0.006 -0.016 

(h9/ 2f S/ 2) 0.054 0.011 -0.045 0.024 -0.010 -0.272 

(h9/ 2f 7/2) -0.004 0.005 0.009 0.002 -0.002 0.036 

(i
13

/2) 2 -0.061 -0.018 0.057 -0.023 0.022 0.931 

(f5/2) 
2 

0.197 0.033 -0.957 -0.082 0.093 0.102 

(f5/ 2f 7/ 2) -0.078 -0.031 0.081 -0.078 0.003 0.068 

(f5/2Pl/2) 0.687 0.658 0.206 -0.141 0.045 0.076 

(f5/ 2P3/ 2) -0.142 -0.039 0.041 -0.958 0.172 -0.075 

(f7/2) 
2 0.058 0.012 -0.062 0.006 -0.015 -0.052 

(f7/2P3/2) 0.174 0.089 -0.061 0.079 -0.089 -0.124 

(P1/ 2P3/ 2) -0.624 0.722 -0.136 0.015 -0.264 -0.020 

(P3/i) 
2 0.182 -0.184 -0.031 -0.204 -0.939 0.044 

J1(=O+ 
EB -0.46 0.60 1. 60 
~MeV2 

(h9/ 2) 
2 0.046 -0.073 -0.010 

(i13 / 2) 2 -0.107 0.207 -0.032 

(fS/ 2) 
2 

0.267 -0.869 0.205 

(f7/2)· 
2 

0.124 -0.237 0.040 

(P1/2) 
2 0.852 0.369 0.369 

(f3/ 2) 
2 0.417 -0.064 -0.905 



-213-

the binding energies of astate may be near1y the same in both the 

HO and WS calculations the wavefunction does change appreciably. 

An example of this is the O2+ state. 

5-G Results for Pb 
210 

210 . 
Calculations of the two-particfe spectrum of Pb were 

performed using HO wavefunctions with ~w = 6.0 MeV and ~w = 8.0 

MeV. The results are given in Table 6.15. The states most affected 

+ + + -
by increasing ~w from 6.0 to 8.0 MeV are the 0 , 2 , 10 and 13 

states. It is these states which are initially shifted furthest 

from their unperturbed positions. As in Pb206 the difference in 

energy between the unperturbed and perturbed positions of a given 

configuration are not large. As a result a change of 0.1 MeV in 

the position of a level is significant. In Fig. 6.7 the levels 

2 
arising from the (g9/2) and (g9/2,i13/ 2) configurations are shown 

relative to the positions of the unperturbed" configurations. Except 

for + +' + 
the 01 

' 21 and 101 levels the shifts are less than 0.2 MeV. 
/ 

In Pb
210 the matrix elements de pend on the relative strengths 

of the singlet-even and triplet-odd interactions in the same way 

as the Pb
206 

matrix elements. Decreasing the value of e lessens 

the cance1lation between the lS0 and 3Pl interactions and gives a 

more attractive interaction. The spectra calcu1ated with HO wave-

functions for e = -80 MeV and e = -200 MeV are compared with 

experiment in Fig. 6.8. Wavefunctions for a few of the low-lying 

states/are given in Table 6.16. 
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Table 6.15 

210 
Twp-partic1e spectra of Pb below EB = 2.5 MeV ca1cu1ated using 

HO wavefunctions for e = -200 MeV 

J1t 

9+ 

10+ 

12+ 

14+ 

-2 

3 
4-

5-

6-

7 

8 

9 

10 

11 

-

Eigenva1ues (MeV) 1 Eigenvalues (MeV) 
i'iw = 6.0 MeV tlw = 8.0 MeV 

-0.68, 0.91 , -0.76, 0.90 

0.68, 2.41 0.66, 2.42 

-0.24, 0.77, 1.15, 1.46, -0.34, 0.74, 1.02, 1.38, 2.37, 

2.42 

0.70, 1.51, 2.32, 2.40, 

2.45 

-0.11, 0.78, 1.37, 1.54, 

1.91, 2.34, 2.44, 2.47 

0.72, 1.56, 2.00, 2.34, 

2.42, 2.48 

-0.06, 0.76, 1.46, 1.56 

2.25, 2.36, 2.40 

0.73, 1.54, 2.34, 2.43 

-0.04, 0.71, 1.55, 2.08, 

2.29 

0.74 

0.56, 1.57 

2.79 

2.80 

2.03 

1.17, 2.10 

1.32, 2.09 

1.32, 2.16 

1.38, 2.10 

1.34, 2.15 

1.39, 2.12 

1.36, 2.11 

1.40, 2.13 

1.37, 2.03 

2.47 

0.65, 1.46, 2.78~ 2.36, 2.43 

-0.15, 0.76, 1.29, 1.52, 1.86, 

2.32, 2.41, 2.45 

0.68, 1.54, 1~99, 2.31, 2.39, 

2.45 

-0.09, 0.74, 1.41, 1.55, 2.17, 

2.33, 2.38 

0.69, 1.53, 2.32, 2.40 

-0.06, 0.68, 1.54, 1.96, 2.26 

0.70 

0.47, 1.58 

2.79 

2.80 

2.00 

1.14, 2.04 

1.25, 2.05 

1.31, 2.14 

1. 35, 2.06 

1.32, 2.13 

1.38, 2.07 

1.34, 2.08 

1.39, 2.03 

1.36, 1.97 

12 . 1.38, 2.14 1.36,- 2.09 

13-L·71 1.47 

==============:=.::=================-==================-=_. -- _. - -
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Fig. 6-7. Low-lying states in Pb
210 

relative to their. 

unperturbed positions. The theoretieal ~peetrum was 

ealeulated with harmonie oseillator wavefunetions for 

~w = 8.0 MeV and ~ = -200 MeV. 
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Fig. 6-8. The low-1ying two-partie1e states in Pb210 

ea1eu1ated with harmonie osei11ator wavefunctions. The 

theoretiea1 speetra are for (a) ~w = 8.0,MeV, E = -200 MeV 

and (b) ~w = 8.0 MeV, E = -SO MeV. 
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Table 6.16 

Wavefunctions for low-1ying two-partic1e states in Pb210 • 

The wavefunctions are for the spectrum ca1cu1ated with HO 

wavefunctions, ~w = 8.0 MeV and e = -200 MeV. 

JtC=O+ 

E
B (i11/2) 2 (j 15/2) 

2 2 2 2 2 2 
(g7/2) (g9/2) (d3/ 2) (d5/ 2) (sl/2) 

(Mey) 

-0.76 ° 0.324 -0.208 0.182 0.892 0.078 0.116 0.053 

0.90 -0.745 0.520 0.010 0.406 -0.026 -0.092 -0.031 

2.60 -0.180 0.011 0.100 ° -0.107 0.265 0.908 0.226 

JtC=8+ 
E

B (iU /2) 2 i 11/ 2g7/ 2 i11/2g9/2 i11/2d3/2(j15/2)2 g7/2g9/2 
2 

(g9/2) 
(MeV~ 

-0.06 0.020 0.006 -0.014 -0.037 -0.012 -0.098 0.994 

0.68 0.000 -0.034 0.993 0.090 0.029 0.061 0.024 

1.54 -0.984 -0.013 -0.013 -0.004 0.087 0.153 0.035 

JtC=10+ 
E

B (ill / 2)
2 

i ll/ 2g9/ 2 (j15/2)2 
(MeV) 

0.47 ° 0.013 0.999 0.030 

1.58 0.998 -0.012 -0.058 

0,\ 
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Table 6.16 continued 
J1t=2+ 
EB -0~34 0.74 1.02 1.38 2.37 
(MeV) 

(i11/2) 
2 0.096 0.070 -0.516 0.796 -0.204 

(ill / 2g7/ 2) 0.053 0.073 -0.095 -0.016 0.284 

(ill/ 2g9/ 2) -0.024 -0.955 -0.273 -0.062 0.082 

(j 15/2) 
2 -0.072 -0.085 0.161 -0.205 -0.371 

(g7/2) 
2 

0.056 0.022 -0.053 -0.013 0.082 

(g7/2g9/2) -0.011 -0.054 0.024 -0.074 -0.817 

(g7/2d3/2) 0.054 0.034 -0.109 -0.073 0.090 

(g7/2d5/2) -0.020 -0.014 0.042 0.030 -0.087 

(g9/2) 
2 0.971 -0.088 . 0.207 0.007 -0.037 

(g9/2d5/2) 0.163 0.232 -0.735 -0.553 -0.103 

(d3/ 2) 
2 0.021 0.012 -0.034 -0.012 0.040 

(d3/ 2d5/2) -0.018 -0.020 0.036 0.004 -0.053 

(d3/ 2s1/ 2) -0.030 -0.018 0.052 0.022 -0.075 

(d5/ 2) 
2 0.044 0.031 -0.102 -0.046 0.112 

(d5/ 2s 1/ 2) 0.041 0.037 -0.094 -0.030 0.093 
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Table 6.16 continued 

J1f=4+ 
E

B 0.15 0.78 1.29 1.52 1.86 
(MeV) 

(~11/2)2 0.050 0.029 -0.488 
.-
-0.839 0.152 

(i11/ 2g7/2) 0.020 0.033 -0.056 -0.003 -0.035 

(i11/ 2g9/2) -0.025 -0.987 -0.130 0.021 -0.046 

(i11/ 2d3 / 2) 0.036 0.047 -0.046 0.008 -0.03S 

(i11/2dS/2) -0.022 -0.027 0.029 -0.020 0.062 

(j lS/2) 2 -0.031 -0.041 0.119 . 0.110 0.011 

2 
(g7/2) , 0.030 0.008 -0.036 0.008 -0.019 

(g7/2g9/2) -0.041 -0.037 0.059 0.022 -0.025 

(g7/2d3/2) 0.020 0.011 -0.061 0.025 -0.039 

(g7/2d5/~) 
.. 

-0.018 -0.012 0.073 -0.035 0.031 

(g7/2s 1/2) -0.017 -0.013 0.078 -0.037 0.063 

(g9/2) 
2 0.988 -0.047 0.124 0.000 0.040 

(g9/2d3/2) 0.038 0.043 -0.117 0.001 -0.107 

(g9/2dS/2) 0.077 0.086 -0.756 0.526 0.334 

(g9/2s 1/2) 0.068 0.071 -0.309 0.04S -0.912 

(d3/ 2dS/2) -0.029 -0.021 0.072 -0.011 0.059 
. 2 
(d5/2) 0.019 0.011 -0.OS9 0.012 -0.040 
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Table 6.16 ·(continued) 

JlL=6+ 
E

B -0.09 0.74 1.41 1.55 2.17 
(MeV) 

. (i
11

/ 2)2 0.031 -0.014 0.480 0.860 -0.120 

(ill/ 2g7/2) 0.011 -0.033 0.030 0.004 0.052 

(ill / 2g9/ 2) -0.022 0.992 0.080 -0.014 0.084 

(ill / 2d3/ 2) 0.017 -0.030 0.021 -0.004 0.071 

(i11/2d5/2) -0.025 0.040 -0.028 0.026 0.468 

(i11/ 2s 1/ 2) -0.030 0.045 -0.037 0.020 -0.172 

(j 15/2) 2 -0.018 0.032 -0.085 -0.080 -0.110 

(g7/2) 
2 0.019 -0.005 0.024 -0.004 0.047 

(g7/2g9/2) -0.056 0.041 -0.105 -0.012 -0.369 

(g7/2d5/2) -0.022 0.020 -0.120 0.048 -0.162 

(g9/2) 
2 0.993 0.035 -0.079 -0.003 -0.073 

(g9/2d3/2) 0.062 -0.061 0.219 -0.010 0.694 

(g9/2d5/2) 0.047 -0.052 0.820 -0.501 -0'.242 
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A few of the low-lying states were determined using WS 

'\l7avefunctions and e = -200 MeV. The calculated energies are given 

in·Table 6.17. Comparing Tables 6.17 and 6.1S it can be seen that 

the energy shifts resulting from the use of WS wavefunctions are 
: 

significant. The binding energy of the ground state is decreased 

by 0.21 MeV relative to its value in the HO calculation with 

~w = 8.0 MeV. In Pb
209 

the WS wavefunction for the 199/2 state 

is too a good approximation a HO wavefunction for ~w = 8.0 MeV. 

+ + + + 2 
The 21 ' 41 ' 61 and 81 states are predominantly (g9/2) states 

and are quite near their unperturbed position. As a result one 

would expect that these levels would not be affected by the use 

of WS wavefunctions. On the other hand the 23+ state is predom­

inantly (ill/ 2)2 and (g9/2 dS/ 2) with equal amplitudes. The 

Oill/ 2, 199/2 and 2dS/ 2 states are not well represented by HO 

wavefunctions with ~w = 8.0 MeV. . + In the WS calculat~on the 23 

state is shifted by 0.12 MeV.'. Two-particle wavefunctions for the 

0+ states calculated with WS wavefunctions are given in Table 6.18. 

In the WS calculation there is less configuration mixing in the 

+ o states. 

S-H Sununary 

The two-particle spectra of A=18 nuclei were calculated 

using the free reaction n~trix as an effective interaction. For 

the A=18 nuclei the nuclear reaction matrix elements had been 

determined by Lee. The values of the nuclear reaction matrix elements 

evaluated with harmonie oscillator and plane wave intermediate states 
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Table 6.17 

~qo-particle states in Pb
210 

below E
B 

= 2.5 MeV calcu1ated using 

WS wavefunctions for E = -200 MeV. 

l' Eigenvalues (MeV) 

0+ -0.55, 0.98 
1+ 0.72, 2.36 . 
2+ -0.30, 0.79, 1.14, 1.36, 2.36, 2.49 -2 2.00 

3 1.16, 2.03 

4 1.22, 2.05 

Table 6.18 

Wavefunctions for the + o states ca1cu1ated with WS wavefunctions 

and E = -200 MeV. 
J1t = 0+ 

EB (i ll /2) 2 (j15/2)2 (g7/2) 
2 

(g9/2) 
2 2 

(~3{2~ . (d5/ 2) 
2 

-0.55 0.235 -0.129 0.171 0.943 0.051 0.078 

0.98 -0.790 0.545 0.008 0.275 -0.007 -0.051 

2.71 -0.083 0.016 0.075 -0.086 0.223 0.952 

(s112) 
2 

0.032 

-0.010 

0.154 
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are reproduced by ~(e) with e = -80.0 and e = ~200 MeV respect­

ively. The matrix elements for e = -80 MeV are considerably 

stronger than those for e = -200 MeV. There are large differences 

between the spectta for the two values of e. The correct choice 

of intermediate states for evaluating reaction matrix elements is 

not firmly estab1ished. Clearly this question needs to be reso1ved. 

The A=18 spectra were ca1cu1ated using WS single-particle wave-. 

functions. The use of WS matrix e1ements introduced a pronounced 

. state dependence of the matrix e1ements. The changes in the spectra 

introduced by WS wavefunctions are as large as those introduced by 
4,125-127 

corrections arising from core po1arization. 

Nuc1ear reaction matrix elements have not been determined 

for A=42 nuc1ei or the Pb region for the interaction used here. 

Ca1culations of the A=42 and Pb
210 

two-particle spectra and the 

two~hole spectrum of Pb
206 

were carried out using ~(e) with e = 

-80 MeV and e = -200 MeV as effective interactions. This arbitrary 

choice of € did not permit a detai1ed comparison with experiment. 

However, the interaction is reasonab1e and the genera1 effects of 

nuc1ear size and WS wavefunctions on effective interaction matrix 

e1ements for these nuc1ei were studied. In Ca42 it was found that 

WS wavefunctions altered the spectrum on1y slight1y whi1e in Sc
42 

206 210 . the modifications were significant. For Pb and Pb lot was 

found that the spectra are sensitive to the choice of Woods-Saxon 

potential used to fit the single-partic1e spectra. In the Pb 

region the effective interaction is very dependent on the relative 
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strength of the sing1et-even and trip1et-odd components of the 
124 

force. Clement and Baranger found that the Tabakin potential 

had the same behaviour. 
118 

Using a phenomeno1ogica1 interaction 

True obtained a better fit to 206 
the Pb spectrum by omitting 

the trip1et-odd interaction. In Pb
206 

it was found ,that WS wave-

functions did not alter the spectrum except for a few levels. In 

Pb
210 

WS wavefunctions introduce significant modifications of the, 

two-particle spectrum. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

In Chapter 2 Green's functions were used to define the 

effective shell model Hamiltonians for two-particle, two-hole and 

particle-hole states. In each case the effective interaction i8 a 

nuclear reaction matrix defined' self-consistently by the energies 

of the states under consideration. The nuclear reaction matrices 

K(w) can be evaluated from an expansion in terms of a free reaction 

matrix ~(€) which is determined from the free nucleon-nucleon 

scattering data. In lowest order the nuclear reactionmatrix is the 

free reaction matrix. The higher order terms correct for the fact 

that ~(€) is determined by nucleons scattering in bound states. 

From a complete evaluation of K(w) one obtains a numerical array of 

matrix elements. For many shell model calculations it is useful to 

have an analytic form for K(w). Byan appropriate state independent 

choice of € one can hopefully reproduce the array with the simpler 

free reaction matrix,. We have presented a series of calculations 

of two-particle, two-hole and particle-hole spectra for which ~(€) 

was used as the effective interaction. In general ~(€) is non-local. 

Calculations were performed with both a local but velo,ci'ty dependent 

representation of ~ and a ~ determined from a non-local separable 

potential. For A=18 nuclei the nuclear reaction matrix had been 

determined for the non-local separable potential. Accordingly the 

value of € to use in l~ was known for that case. In all other 
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calculations € was chosen arbitrarily so that the effective inter-

action matrix elements were reasonable. Our objective was to study 

model dependence of the nuclear reaction matrix elements; consequently 

it was sufficient to have reasonable matrix elements. 

In Chapter 3 we presented a calculation of the particle-hole 

. 0 16 states 1n • The local but velocity dependent representation of RF 
for only the relative S states was used as the effective interaction. 

The particle-hole states were constructed in both the Tamm-Dancoff 

and random phase approximations. The theoretical spectrum was in 

reasonable agreement with experiment. The positions of the levels 

that are correctly predicted by the particle-hole model are mainly 

determined by the unperturbed energies of the dominant configurations. 

These particle-hole states are fairly insensitive to the structure 

of the interaction. On the other hand, the collective octupole and 
~ 

giant ,dipole states are very sensitive to both the interaction and 

the model used. Only the collective octupole state is sensitive to 

the higher--energy components in~. This sensitivity is not unique 

since the ocutpole state is sensitive to all aspects of the inter-

action and model. 

The modifications of nuclear reaction matrix elements arising 

from the use of single-particle wavefunctions for a finite single-

particle potential with a diffuse surface were studied. To obtain 

the single-particle wavefunctions a Woods-Saxon potential with a 

Thomas spin-orbit term was fitted to the experimental single-particle 

energies for each nucleus considered. The nuclear size is an important 
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quantity in a determination of nuclear reaction matrix elements. 

The radii of the Woods-Saxon potentials were determind by requiring 

the Coulomb displacement energies to be correctly predicted. In 

the case of Pb,which has a neutron excess,the well radius was fixed 

by requiring'that the wavefunctions predict the observed r.m.s. 

radius of the charge distribution. When fitting Woods-Saxon potentials 

to the single-particle states in the Pb region new results were obtained. 

For the neutron states in Pb it was found that the single-particle 

energies and the Coulomb displacement energies could not be fitted 

simultaneously. By using different well depths and spin-orbit 

strengths for sets of states belonging to different oscillator shells 

it was possible to obtain a good fit to the experimental data. The 

proton well did not have the energy dependence required to fit the 

neutron states. For the proton states it was found- that a potential 

well radius 10% larger than the neutron well radius was required to 

fit the r.m.S. radius of the charge distribution. The wavefunctions 

for the. proton and neutron wells predict r.m.s. matter radii consistent 

with the proton and neutron matter radii being nearly identical. The 

fact that the neutron and proton wells must have different radii 

to be consistent with the experimental data leads to ambiguities. 

By fitting the proton-hole and neutron-ho le energies with single­

particle potentials it was assumed that the Hamiltonian for the Pb
208 

ground state ·could be written as the sum of a proton single-particle 

potential and a neutron single-particle potential. The fact that 

the proton and neutron wells of different radii were required t? 
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fit the data implies that in the absence of the Coulomb interaction 

the total Hamiltonian does not conserve isospin. Since the nuclear 

p~rt of the Hamiltonian must conserve isospin an additional term 

coupling the neutrons and protons must be added to the Hamiltonian 

so that isospin is conserved. To regain isospin conservation neutron-

proton correlations need to be introduced in the ground state. This 

point requires further investigation. 

In Chapter 4 proton and neutron Woods-Saxon wavefunctions 

for A=15, 17, 39, 41, 207 and 209 nuclei are tabulated as expansions 

in terms of harmonic oscillator wavefunctions. The expansion of 

the Woods-Saxon wavefunctions in terms of oscillator wavefunctions 

is useful for shell model calculations since the mathematical pro-

perties of the harmonic oscillator wavefunctions are used to evaluate 

matrix elements the computational time is greatly increased. In 

Appendix B results are obtained which can be used to decrease the 
) 

computational time. New recurrence relations for the Talmi coeffi-

cients and relations among radial integrals evaluated with harmonic 

oscillator wavefunctions are derived. One also obtains in this 

fashion a simple method for calculating the radial integrals required 

in calculating electromagnetic moments. With these methods any 

desired integral of r L with Woods-Saxon wavefunctions can be obtained 

from the expansions in tcrms of harmonic oscillator wavefunctions. 

The necessary formulae for L = 1,2 and 3 are given in Table B-l. 

It was found that the Woods-Saxon wavefunctions deviate from 

harmonie oscillator wavefunctions in three main respects, which"can 
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be eonveniently expressed in terms of the value of ~w required to 

maximize the overlap of a Woods-Saxon wavefunetion with the main 

oseillator eomponent. For a set of states belonging to the same 

oseillator shell the values of ~ are state dependent. For states 

with small values of orbital angular momentum and small binding 

energies the Woods-Saxon wavefunetions have a mueh greater extension 

,beyond the potential weIl than harmonie oseillator wavefunetions. 

For the se states even the state dependent ~w gives a poor overlap 

of the Woods-Saxon and harmonie oseillator wavefunetions. The se 

eharaeteristies are exhibited by the single-partiele states in 

A=17, 41, and 209 nuelei. In addition to the state dependenee for 

states within an oseillator shell there is astate dependenee for 

states belonging to different oseillator shells. In A=15 and A-39 

nuelei the average value of liw for the hole states is larger than 

for the partiele states in the A=17 and A=4l nuelei respeetively. 

In the Pb region the state dependenee of fiw within a shell is as 

great as that between shells. 

In Chapter 5 we presented ealeulations of the A=14,18 and 

38 speetra using Woods-Saxon wavefunetions. The loeal veloeity' 

dependent free reaetion matrices with only relative,S state eomponents 

included were used as the effective interactions. The Woods-Saxon 

calculations of the A=14 and A=18 spectra were compared with cal­

culations using harmonie oscillator wavefunctions for an liw value 

averaged over the p and (s,d) shells, For the (s,d) sheli matrix 

elements were deereased considerably whereas the p sheli matrix 
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e1ements were increased. The Woods-Saxon wavefunctions for the 

ho1e states can be we1l represented by harmonic osci1lator wave-

functions with an appropriate value of fiw. As a resu1t the two-ho1e 

spectrum ca1cu1ated with Woods-Saxon wavefunctions can be reproduced 

by using harmonic osci1lator wavefunctions with the appropriate 

value of fiw. For the A=18 spectra the state dependence of the 

Woods-Saxon ca1cu1ation cannot be reproduced by a harmonic oscillator 

ca1cu1ation. 38 The Ca two-hole spectrum was ca1cu1ated using Woods-

Saxon wavefunctions. Since the ho1e states are deep1y bound the 

Woods-Saxon wavefunctions are we11 represented by harmonic osci11ator 

wavefunctions. The Woods-Saxon ca1cu1ation differed on1y slight1y 

from the harmo?ic osci11ator ca1cu1ation. 

In the ca1cu1ation of the 0
18 

spectrum with Woods-Saxon 
1 
1 

wavefunctions it was found that the 02+ state was shifted upwards. 

relative to the other states. This shi ft makes the description of 

this stateas a mixture of spherical shel1 mode1 and deformed com-

ponents more consistent. The state depenùence of the matrix e1ements 

i~~olving configurations from both the p and (s,d) she11s indicate 

that core excitation matrix e1ements will be significant1y affected 

by using Woods-Saxon wavefunctions. The calcu1ations presented 

show that sing1e-partic1e wavefunctions for a finite sing1e-partic1e 

potentia1 must be used if a detailed comparison of experiment and 

the ory is to be made. 

In Chapter 6 the recent1y deve10ped ~(€), which was obtained 

from a non-local separable potential, was used as the she11 mode1 

effective interaction. 
18 18 42 42 206 The spectra of 0 , F ,Ca ,Sc ,Pb 
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210 
and Pb were calculated using both harmonic oscillator and 

Woods-Saxon wavefunctions. The 0 18 and F18 spectra,were calculated 

using harmonic oscillator wavefunctions and for ~ = -200 MeV and 

e = -80 MeV. These two values of e give matrix elements corresponding 

to nuclear reaction matrix elements evaluated using plane wave and 

harmonic oscil1ator intermediate states. The two sets of matrix 

e1ements give significant1y different spectra. The question of which 

method gives the best matrix e1ements needs to be answered. The 0 

and F
l8 

spectra were also ca1cu1ated using Woods-Saxon wavefunctions. 

The use of Woods-Saxon wavefunctions introduce changes in the spectra 

which are as large as those arising from the inclusion of core 

~ ~ " excitation effects. In Ca, and Sc the effect of uSLng Woods-Saxon 

wavefunctions was studied. It was found that for Ca42 there were 

on1y minor changes in the spectrum whereas for the T=O states in 

S 42 h h . "f" c ,t e canges were sLgnL Lcant. 

In the ca1culations of the Pb
206 

and Pb
210 

spectra the effects 

of nuc1ear size and Woods-Saxon wavefunctions were studied. The 

spectra were calcu1ated using harmonic osci11ator wavefunctions for 

~w = 8.0 MeV. These two osci11ator potentia1s corresponds respective1y 
82 

to the Woods-Saxon potentia1s obtained by Rost and the one obtainm 

in Chapter 4. The two values of ~w givesignificant1y different 

spectra. This means that know1edge of the r.m.s. radius of the 

neutron distributions in Pb is important for the correct determination 

of nuclear reaction matrix e1ements. On1y a few 10w-1ying states 

in Pb206 and Pb210 were ca1cu1ated with Woods-Saxon wavefunctions • 
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210 In·Pb the use of Woods-Saxon wavefunctions produced signifi-

cant changes in the energies of 1ow-1ying states. In the Pb region 

1 3 
there is a significant cancellation between the So and Pl com-

1 

ponents of the interaction. In a determination of the nuclear 

reaction matrix e1ements for this region it will be important that 
J 

both the lSO and 3P1 components are accurately determined. 
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AFPENDIX A 

SHELL MODEL MATRIX ELEMENTS 

The one-particle, one-hole, two-particle, two-hole and particle-

hole state vectors are defined in the j-j coupling scheme. With 

these definitions expressions for the matrix elements of one and tw~ 

body operators are given. The phase conventions defined here are 

used throughout the main texte 

A-a State Vectors 

The ground state of a closed shell nucleus has total angular 

momentum zero. We take the ground state to be the shell model vacuum. 

denoted by 10 >. Then, using the usual fermion creation and anni-

hilation operators, a single-particle state is 

1 jm > = a. + 1 0 > 
Jm 

where·the coupling is 

(A-l) 

_\< .eJvn-ssljm > u ,II • (r)YJ, (e,cp)X ~. ·(A-2) ~ V~J m-s s 
s 

A single-hole state is formed by removing a particle from the vacuum. 

For this we define a hole creation operator by 

= b. +10 > 
Jm 

(A-3) 

. The subscript on the ket indicates that the state is a hole state 

with quantum numbers (j,m) which was formed by removing a particle 

~ith the quantum numbers (j,-m). The kets are related by 

(A-4) 
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The phase factor is added so that the hole state transforms as a 

particle state with angular momentum (j,-m). Then isospin is used 

as a quantum number in the description of the states we use the 

notation 

1 proton > == I~, +~ > 

Ineutron > == I~, -~ > 

The two-particle state of good angularmomentum is 

Including isospin we use the notation 

1 (jaba)JM;TTZ > = 1 (jajb)JM >I(~~)TTZ > 

(A-5) 

(A-6a) 

= 1 (jajb)JM > < ~~tatbITTz >I~ta >I~tb > • (A-6b) 

The state (A-6b) is not properl~ antisymmetrized. Denoting the 

positions of the two nucleons by land 2, the antisymmetrized and 

normalized two-particle state is 

In (A-7) T+J must be odd if ja == jb· 

The two-hole state vector of good angular momentum is 

1 (jajb)JM >h == l < jajbma~IJM >Ijama >hljb~ >h • (A-8) 

ma'~ 

Using (A-4), (A-8) is 
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1 ( . 1. )JM >. (_l)J-MI (J'aJ'b)J-M. > J~Jb h = (A-9) 

The hole states defined in (A-3) and ~-8) are eonjugate to the 

partie le states (A-l) and (A-6). Isospin is included for hole states 

in the same way as for particle states, except that the third-eomponent 

of isospin for holes is opposite to that for partieles. The nor-

malized and antisymmetrized two-ho1e state is the eonjugate of (A-7). 

The partiele-ho1e state vector of good angular momentum is 

defined to be 

1 (jpjh)JM >ph = L < jpjhmp~IJM >Ijpmp >1 jh~ >h 

mp'~ 

(A-IO) 

where p and h are used to denote the partic1e and hole quantum numbers, 

respectively. In terms of particle states the particle-hole state is 

(A-11) 

For states of good isospin we have that 

" .lz-t 
IJM;TTZ >ph = IJM >ph L (-1) h< .lz.lztpthITTz > 

tp,th 

x l.lzt >I.lz-th > 
p . 

(A-12) 

When the vacumn has non-zero isospin, the isospin formalism is not 

useful for constructing shel1 mode1 states. 
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A-b Partic1e-Partic1e Interaction Matrix Elements 

In effective interaction ca1cu1ations the residual interaction 

has a different form for T=O and T=l interactions. To obtain expres-

sions for the matrix e1ements we assume a residual interaction of 

the genera1 form 

TI· T V (1,2) = O.V. (r) 
l. l. 

(A-13) 

i 

where O. designates operators in spin and relative angu1ar momentum 
l. 

and V.T(r) is the radial dependence in the relative coordinate. Using 
l. 

(A-7), the antisymmetrized partic1e-particle interaction matrix e1e-

ments are· 

< (j jd)JM;T!V
T

! (j jb)JM;T> = a c a a 

t+S+T 
= [1-,<-1) ] k < [j (1)jd(2)]JM;T!VT(1,2)I.U (1)jb(2)]JM;T:: 

[(1+8(c,d») (1+8(a,b»)]2 . c . a . 
(A-14) 

where t is the relative angu1ar momentum of the pair (a,b). The 

phase factor occurs because of antisymmetrization. Using she1l mode1 

transformations and harmonie oscillator single-partic1e states (A-14) 

has the final.form 

< (j jd)JM;T!vTI (j jb)JM;T > a c a a 

l l~ \' < (j jd)J! (LS)'J >< (L'S)J! (j jb)J >(_l)L+l 
[ ( ( }

'2 L c a 
1+5(c,d)} l+8(a,b) 1,1 1 ,S . 

= 

x l < nctc,ndtd;LIn.t,l\T~L > < nlt l ,N:{;L'!n",'::a,nbtb;LI > 

n,ttn I.e 'N.;e 

. (A-15) 
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x L [(2L+l) (2L '+1) ]~(2)>+1)W(L.tJS ;L~)W(L.t 'JS ;L') 

~ x < n(.tS) j;T Iv
T 

ln 1 (.t 'S»);T > . (A-15 contd) 

The coefficients 

are the jj-LS transformation coefficients defined and tabulated by 
128 

Kennedy and Cliff. The coefficients 

129 
are the Moshinsky transformation brackets from laboratory to 

centre-of-mass coordinates of the two particles. The matrix elements 

. < n(ts)~;TlvTlnl(.tIS)J;T > 

are reduced matrix elements of the interaction where J and .t l are 

the relative orbital angular moment a and J is the total relative 

angular momentum. Using (A-l3) the reduced matrix element can be 

written as 
. .:-0 

< n(.ts)J;TlvTln'(.t's)~;T > = L < (.tS)~;TIOil(.t's)g;T ~ < n.tllviT(r)lIn',t' > . 

i (A-l6) 

For scalar, spin-orbit and tensor operators we have that 

< (.tS)8 Il1 (otiS)>> > = ô.tt ' (A-17 a) 

< (.tS)>>I!.e§..1 U'S)~> = ô.t tl Sl~[»(»H)-.t(.t+l)-2] (A-l7b) 

< (.tS)~ISl21(.t'S)Î'> = ÔSl(-l)1-)(24)~[(2J+l)(2.t'~l)]~ 
x W(tS.t'S;~2) < .tO.t ' OI20 >. (A-17c) 

S12 is the usua1 tensor operator. The radial integrals are 
CX) 

< ntllviT(r)lIn'.t' > = J Rn.e(r)ViT(r)Rn'.t,(r)r2dr (A-l8) 

o 
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where the oscillator functions are those defined in Appendix B. In 

effective intéraction calculations the nuclear reaction matrix is 

usually determined separately for each relative ~value. The varioœ 

interaction terms are lebelled by 2S+lJ~. 

In the above expressions oscillator.single-particle wave-

functions were assumed. The generalization to an arbitrary radial 

single-particle wavefunction expanded in terms of oscillator functions 

is straightforward. The expansion is 
m 

uv.tj (r) = I an (V,ej)Rnt (r) 
n=O 

(A-19) 

where m is chosen so that the expansion gives a good representation 

of the wavefunction. Using the radial wavefunction (A-19) the 

particle-particle matrix element (A-15) is 

x l~ < nc"c,ndJd;LlnJ,Ni;L > < n'J';N.(;LrlnaJa,nbtb;L' > 
nJn.t r~ 

(A-20) 

where N and M denote aIl the expressions before and after the ~oshinsky 

brackets in (A-15). 

A-c Hole-Hole Interaction Matrix Elements 

It was shown in Sec. A-a that the two-hole state is related 
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to the two-particle state by 

J-M+T-T 
:t (jaj b)JM;TT3 >h = (-1) 31 (jaj bJ -M;T-T3 > • 

Since the interaction matrix elements are inde pendent of M and Tj 

the hole~hole interaction matrix elements are identical to the 

(A-2l) 

particle-particle interaction matrix elements. For interactions which 

depend on T3 , for example, the Coulomb interaction, the change in 

sign of T3 is that required to make proton-hole matrix elements the 

same as proton-particle matrix elements. 

A-d Particle-Hole,Interaction Matrix Elements 
1 

With the definition (A-12) of particle-hole states the Tamm~ 

Dancoff approximation interaction matrix elements are 

DX(J,T) = I (-1)CPC 12C34 < jlj4-1Ivlj2-lj3 > (A-22a) 

m, t 
and 

EX(J,T) = I (-l)CJ>C12C34 < jlj4-1Ivlj3j2-1 >(A-22b) 

m, t 

where 

cp = j2+j4-m2-m4+1-t2-t4 

C12 = < jlj2mlm21JM > < ~~tlt2ITT3 > 

and 

The subscripts 1 and 3 denote particles while 2 and 4 denote' holes. 

D and E are the direct and exchange matrix elements, respectively. 

The superscript x denotes the matrix elements of the Tamm-Dancoff 
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approximation and y will be used to denote the ground state corréla-

tion matrix elements of the random phase approximation. For the 

ground state correlations the matrix elements are 

,-) 
DY(J,T) = 1.. .. (-1)CPc

12
c

34 
< j1j3Ivlj2-lj4-1 > (A-22c) 

m,t 

and 

EY(J,T) = 'i (-1)CPc 12C
34 

< j1j3Ivlj4-1j2-1 >.(A-22~d) 
m,t 

Using Racah a1gebra the partic1e-ho1e matrix e1ements can be expressed 

in terms of particle-partic1e matrix e1ements 

j +j +J '+T '+1 
(-1) 1 4 (2J '+1) (2T'+1) 

J'T' 

. x W(jl j4j 3 j 2;J 'J)W(~~~~;T'T) 

x '< (jlj4)J'T'lv
T '! (j2 j 3)J'.T' > 

.\' j1+j4+j 2+j 3 
EX(J,T) = !...J (-1) (2J'+1) (2T'+1) 

J'T' 

x W(jlj4j3j2;J'J)W(~~~~;T'T) 

x < (jlj4)J'T' IvT'1 (j3 j 2)J'T' > 

'CI 
= ) 

L . ..J 

JIT' 

jl+j + J'+T'+l 
(-1) 4 (2J'+1) (2T'+1) 

(A-23a) 

(A-23b) 

(A-23c) 
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- \-, 
EY (J,T) - L 

j +j +1 
(-1) 1 2 (2J'+1) (2T '+1) 

J'T' 

x W(j1j3j2j4;J'J)W(~~~~;T'T) 

(A-23d) 

Performing the isospin summation in (A-23) we have 

),--, (-1)T'+1(2T'+1)W(~~Ja~;T'T) < (jlj41 J'T'lvT'1 (j2 j 3)J'T' > 
L--I 

T' 

(A-24a) 

and 

T' 

(A-24b) 

The isotopie spin eoupling in (A-23e) and (A-23d) is the same as 

that in (A-24). 

A-e One-body Operator Matrix Elements 

The matrix element of a one-body operator T
k 

between two-
q • 

partie1e states (A-6) is 

(A-25) 
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The redueedmatrix ean be evaluated in a straight~orward manner by 

making use of the reduetion formula 

< [je(1»)d(2)JJ'IlTk(1)+T~(2)II(ja(1)jb(2)]J > 

= ~ (-1) j a- jd( ô(jdjb) (-1) J 'jeW(jej aJ 'J ;kjd)< je IITk (1) Ilja > 

+ ô(je j ) (_l)J jdW(jdjbJ'J;kje) < jd!lTk (2) IIjb » (A-26a) 

where 

and 

< j IITkllj > = < (t 3z) j IITkl1 Ct 3z) j > 
cac e a a 

j -3z-k,., 
= (-1) e j < j j ~-~lkO > 

a ca, 

. J, +,t +k 

x < T (~) > {1+(-1) a e l 
k . '", 2 J 

f · 2 
< Tk(r) > = u (r)Tk(r)u (r)r dr 

,e a 

,., ~ 

J = (2J+l) 2 

(A-26b) 

(A-26e) 

Equation (A-26b) is the reduced matrix element for single-partiele states. 

With the antisymmetrized state veetor (A-9), and (A-26) the redueed 

matrix element in (A-25) is 
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a< (jcjd)J'T'IITk(l)+Tk(~) Il (jajb)JT >a 

where 

l l ". k+ja -jd 
~ ~ ~ x J(-l) 

(2)'2 [(1-IÔ cd) (1-+ô ab) ] 2 

X (_l)J' 8(jdjb)j W(j j J'J;kjd)M(j ,j ) c cac a 

+ (-l)J+T+T' 8(jcja)jdW(jdjbJ'J;kjc)M(jdjb) 

+ (_l)T+J+J'+l 8(" " )~ W(" " JIJ'k" )M(" ") JdJa Je JcJd ' Jd Jc,Jb 

(A-27) 

M(j j) ~<j I!Tk(l)llj >+ (_l)T+T'<j IITk (2)l!j > • ca cac a 

-, 
If both particles are neutrons or protons, then 

M(j ,j ) ~ 2 < j I!Tk
n 'Pllj > cac a 

If the particles are different, M(j ,j ) will be the sum or difference 
c a 

1 

of the two operators depending on the value of T+TI. 

For the case of a scalar opera,tor (A-25) is 

(A-28) 

where 

M(j , j ) = < j IIf (1) IIj > + < j IIf(2) IIj "> a a a a a a 

and 

, < j I,f(r) Ilj > =Ju (r) fer) u (r)ldr a a a a 
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The matrix element of a one body operator, between two-hole 

states (A-9) is 

(A-29) 

The redueed'matrix element in (A-29) is independent of (M,M') and is 

the same for both partie1es and ho1es. 

The matrix e1ement of a one-body operator between partie 1e-

ho1e states (A-11) is 

< (jSj4)J'M' ITkq 1 (jlj2)JM > 

= < JkM:L IJI~I > < (jSj4)J' IITk ll(j1j2)J > (A-SO) 

The subseripts 1 and S denote partie1es whi1e 2 and 4 denote holes. 

The redueed matrix e1ement in (A-SO) is 

< (jSj4)J' IITk(P)+Tk(h) l!(jlj2)J > 
k+j1-j4 A J,A 

= (-1) J(-l) J~W(jSj1J'J;kj2)< jsIITk'(p) Iljl > ô(j2,j4) 

- (_l)J j4W(j4j2J'J;kj1) < j41ITk(P)llj2 > ô(j1,jS») • (A-Sl) 

Equation (A-S1) is analogous to (A-26). Sinee "partie1es" and "holes" 

are distinct, there are no additional terms in (A-SI) similar to 

those in (A-27). 

The matrix element of a one body operator between a partieIe-hole 
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state (A-11) and the ground state is 

< ollkq 1 (j1 j 2)JM > 

= < JkMq 100 > < O!lTkll(jlj2)J > (A-32) 

where the" reduced "matrix element is 

(A-33) 

A-f Electromagnetic Transitions 

The partial width of a gamma ray transition (with angu1ar 

momentum L, energy E and parity~) from an initial state of spin J. 
'1 131 l. 

and final state of spin J
f 

is given by 

r. = L,n:. 
8~ (L+l) 

L[ (2L+1)!!]2 

The reduced transition probabi1ity is 

1 
B(L,~;i ~ f) = -(2-J~.+~1~) 

1. 

L 1 < flTkq1i >1
2 

mi,mf 

where the reduced matrix element is defined by 

(A-34) 

(A-35) 

(A-36) 

Th~ operators Tkq are the appropriate multipole operators (see below). 

It follows from (A-35) and (A-36) that 
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(2J. +1) 
~ 

= (2 1) B (L ," ; i ... f) J
f
+ (A-37) 

Convenient units for the reduced transition probabi1ities are 

[B (L,,) ] = e2fm2L e1ectric 

[BL,,] = 2f 2L-2 
~O m magne tic 

For e1ectric transitions the mu1tipo1e operator in (A-35) is 

(A-38) 

where t 3 is the third component of isospin. The operator (A-38) 

has zero matrix e1ements between neutron sing1e-partic1e states. In 

she11 mode1 ca1cu1ations it is necessary to use an effective charge 

for neutrons and protons. Introducing effective charges, (A-38) 

becomes 

(A-39) 

k 

where ep and en are the proton and neutron charges in units of e. 

It is most convenient in ca1cu1ations to perform the isospin reduction 

separate1y, consequently Wé write (A-39) in the form 

(A-40) 

where l is the isospin factor in units of e. With the sing1e-partic1e 

states (A-2), the reduced matrix element of the electric mu1tipo1e 

operator is 
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where 

When the radial wavefunctions are harmonie oscil1ator wavefunctions 

the radial integra1s in (A-41) may be eva1uated ana1ytical1y. A 

table of severa1 of the integrals ar~ given in Appendix B. 

For magnetic transitions the mhltipole operator in units of 

Bohr nuc1ear magnetons is 

~M = l \7k(rk~LM(ek,CPk»(L!l U:+J,LQ} • 

k 

(A-42) . 

l is the isospin reduction factor defined previously and ~ is a 

magnetic reduction factor. The magnetic reduction factor is identical 

to l with E and E rep1aced by ~ (=2.79) and ~ (=-1.91), respective1y. 
p n p n 

It is convenient to separate (A-42) into an orbital and a spin part, 

with 

and 

~M(.t) = l \7k(rk~LM(ek'~» L!l I! 
k 

MiM(a) = L \7k(rk~LM(ek'CPk» ~a 
k 

(A-43) 
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For the single-particle states (A-2) the reduced matrix elements 

of the magnetic multipole operators are 

(A-44a) 

and 

j -~-L 

< (.t f~) jfll~ (cr) Il (.t i~) ji > = ~(-l) f li < jfji~-~ ILO > 

(A-44b) 

where 

The reduced si~gle-particle matrix elements (A-41) and (A-44), 

combined with the one-body operator matrix elements of Sec. A-e, 

can be used to evaluate electromagnetic transition rates for the 

various shell model states considered. 
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APPENDIX .B 

RECURRENCE RELATIONS FOR TALMI COEFFICIENTS AND 

SHELL MODEL RADIAL INTEGRALS 

Harmonic oscillator functions are used as the unperturbed 

single-particle wave functions in most nuclear shell model calcula-

tions. Apart from being a good representation of the single-particle 

wave functions in most cases, the oscillator functions have conve~ 

ient mathematical properties. The best ~nown properties are the 
132 

Talmi transformation 
132 

from laboratory coorindates and the Talmi 

method for evaluating radial integrals. Brody, Jacob and Moshinsky 

have discussed the evaluation of shell model matrix elements using 

the above metho.ds. Since any radial wave function can be expanded 

in terms of oscillator functions, the transformation properties of 

the oscillator functions can always be used to simplify calculations. 

As shell model calculations become increasingly complex the methods 

used to evaluate matrix elements become more 'important. For example, 

the calculation of oscillator brackets required in Hartree-Fock 
134 

calculations. 

We have found that radial oscillator function recurrence 

relations provide a convenient method for obtaining recurrence 

relations for radial integrals and Talmi coefficients. These rela-

tions are particularly useful when a large number of radial integrals 

are required. For instance, the case of radial wave functions which 

133 
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have been expanded in terms of oscillator functions. Several 
133,135,136 . 

authors have obtained various expressions for the Talmi coeffi-

cients. The recurrence relations given here are more general and 

have the advantage that ail possible coefficients may be generated. 

The methods discussed are applied to the simple case of 

evaluating radial integrals required in calculations of electromag- . 

netic multipole moments. 

B-a The Radial Integrais 

The various matrix elements required in nuclear shell model 
129 

calculations have been discussed in detail by Moshinsky and Brody, 
133 

Jacob and Moshinsky. In Moshinsky's notation the radial integrals 

required for the matrix elements are 

(B-l) 

V(r) is the radial dependence of the potential in the relative coor-

dinate and (n,t) are the"usual quantum numbers of relative motion. 

The radial osci1lator function is 

where 

and 

x = a:r .Mw ~ ex = ~r;-) 

n,t = 0,1,2, •••• 

(B-2) 
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The Laguerre polynomials L .e+1:z(x2) are those defined by Erdelyi, 
137 n 

The radial oscillator functions, as defined in (B-2), are 

normalized such that 

Ô' 
mn 

(B-3) 

For central, spin-orbit and tensor forces the radial integrals 

required satisfy the condition .e' = t, t+2. The values of n and n' 

are determined by energy conservation in the Moshinsky transformation~ 

If the radial wave function being used has been expanded in terms 

of radial oscillator functions, n and n' cau vary over a wide range 

in a given matrix element. 

Using the Talmi transformation the radial integrals (B=l) 

can be expressed as the sum of Talmi integrals, i.e. 

À+n+n' 

\' 
< nit 'I/V(r) I/nt > = L B(n'.e' ,nt;P)Ip (B-4) 

P=À 

"II. _- t+
2
t' where A and is an integer. The Talmi integrals are 

2 J 2p+2 _x2 
Ip = r(l:z+3/2) x e V(r)dx (B-5) 

and the coefficients B(n't,nt;p) are the Talmi coefficients. Expres-

sions for the Talmi coefficients can be obtained by us~ng the explicit 

form of the Laguerre polynomials. 



-252-

B-b Recurrence Relations for the Oscillator Functions 

It is convenient in the following discussion to use the 

notation 

1 nt .> == Rn,t (x) (B-6) 

The recurrence relations for the Laguerre polynomials can he used 

to write down the following recurrence relations for the radial 

oscillator functions: 

xln,j > = (n+t+~)~ln,t-l > - (n+l)~ln+l,t-l > (B-7) 

xln,t > = (n+t+3/2)~ln,t+l > - n~ln-l,t+l > (B-8) 

and 

2 k 
x In,J > = -[(n+l) (n+t+3/2)]21n+l,t > 

k 
+ (2n+t+3/2) In,,t > - [n(n+tt~)J :il_ln-l,,, :>. (B-9) 

From (B-8) and $-9) we have the useful relation 

k k 
(n+t+5/2) 2In,.t+2 > = n 21n-l,.t+2 > 

1: k 
+ (n+t+3/2) 21n,t > - (n+l) 21 n+l,t > . (B-IO) 

B-c Recurrence Relations for Radial IntegraIs 

The oscillator function recurrence relations can he used to 
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obtain recurrence relations for the radial integrals < n'.t 'IIV(r) IlnJ >. 

From (B-10) we have immediately that 

(n+.e+5/2)~ < n',,t'IIV(r)lIn,.t+2 > = n~< n',,t'IIV(r)lIn-l,.e+2> 

1: 
+ (n+.t+3/2) 2 < n',,t 'IIv(r) Iln,.t > 

1: 
- (n+l) 2 < n '.t 'llv (r) Iln+l,.t > • (B-11) 

Equation (B-12) may be used to obtain the set of integrals 

< n',.t'IIV(r)l!n,.t+2 > from the set < n·~,,t'IIV(r)l/n+l,.t >. It is obvious 

that both sets of integrals must require the same set of Talmi inte-

grals, that is, moments of the potential Ver). 

For potentials that commute with x equations (B-7), (B-8), 

and (B-9) may be used to obtain relations among the radial integrals 

of the potentials. Using (B-lO) and the relation 

2 2 < n'.t '11x Ver) 1In.e > = < n',t '11v(r)x lInt > (B-l2) 

we have that 

1, 
[(n'+l) (n'+,t'+3/2)]2 < n'+l,,t'I/V(r)lln,.t > = 

1: 
-[n' (n'+,t ,+~)] 2 < n'-l,.t 'I/V(r) IIn,,t > + 

+[n(n+t+~)]~ < n',t 'I/V(r) I/n-l,,t > + 
1 

+(2n '+,t 1-2n-J) < ni ,i. 'llv (r) IIn,,t > + 

1-
+[(n+l) (n+t+3/2)]2 < n',t'I/V(r)lln+l,.t > . (B-13) 
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From the relation 

2 < ni ,tllxV(r)xlln.e > = < nit 1 IIV(r) x 1In.e > (B-14) 

and (B-8) and B-9) we have that 
'. 

1: . 
[(nl+.t '+3/2) (n+.t+3/2)] 2 < nl,t 1+1 IIv (r) IIn,.t+l > = 

1: 
[n(n ' +.t+3/2)] 2 < nl,.t 1+1 Ilv (r) Iln-l,.t+l > + 

+[n'(n+.t+3/2)]~ < n'-l,.t'+lIIV(r)lln,t+l > - [n,nl]~ x 
. 1: 

< n'-l,.t '+1 IIv (r) IIn-l,.t+l > - [(n+l) (n+.t+3/2)] 2 X 

< nl,t 'IIV(r) IIn+l,.t > + (2n+.t+3/2) < nl,t IIIV(r) IIn,t > 

-[n(n+.t+~)]~ < ni ,.tIlV(r) IIn-l,t > (B-15) 

Equation (B-13) is a relation. among integrals of the same t and t l 

while (B-15) gives the set of integrals < ni ,t '+lllv (r) IIn,t+l > in terms 

of the set < n',.t'IIV(r)lln+l,.t >. Other relations may be obtained 

in a similar manner. 

Although (B-13) and (B-l5) are only valid for potentials that 

commute with x, a simple velocity dependent potential of the form 

2 2 
W(p,r) = ~M V(r) +V(r) ~ (B-16) 

(where p is the relative radial momentum operator) can be handled 

conveniently by these methods. The oscillator potential for relative 

motion is 
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2 12 H =.L+-~wx 
rel 2M 2 (B-11) 

Using (B-17) and (B-9) the radial integrals of W(p,r) are 

k 
< n',.t'IIW(p,r)lln,.t > = [(n+l)(n+.t+3/2)]2~w < n',.t'IIV(r)lln+l,.t > 

+ (2n+.t+3/2)~w < ni ,.t 1 Ilv (r) IIn,.t > 

+ [n(n+t+3:i) ]3:ii'iW < nl,.t' IIV(r) IIn-l,.t > . 

(B-18) 

B-d Recurrence Realtions for the Talmi Coefficients 

To obtain a recurrence relation for the coefficients 

B(n'.t',n.t;p) we use (B-9) and the equation 

2 < n',.t 1 JlV(r)x IIn,.t > = (2n+t+3/2) < n',.t' IIV(r) IIn,.t > 

-[ (n+l) (n+.t+3/2)]3:i < nl,.t' IIV(r) IIn+l,.t > 

-[n(n+t+3:i)]3:i < ni ,tIIV(r) Iln-l,.t > . (B-19) 

Expanding both sides of (B-19) in terms of Talmi integrals, using 

the result 

(B-20) 

and equating the coefficients of the integrals we have that 

B(nlt' ,n+l,.t 'p) = o:B(n't 1,n.t;·p)+(3B(n'.t' ,n.t;p-l)+rB(n'.t' ,n-l.t;p) 

(B-21) 
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where 

À "' p "' À+n l+n+l, À "" .t ~+.t 

The coefficients in (B-21) are given by 

ok 
[(n+l) (n+t+3/2)] 2 

[(n+l)(n+.t+3/2)]~ 
k 

[ (rt+l) (n+.t+3/2) ] a 

a "" 2n+.t+3/2 

~ "" -(p+}z) 

1 "" -[n(n+.t+}z)]~ (B-22) 

In (B-21) it is to be understood that a Talmi coefficient is zero, 

if the value of p is outside the range allowed for that coefficie~ • 

To obtain a recurrence formula for the coefficients 

B(n'.t'+l,nJ+l;p) we use the relation 

< n'.t'IlV(r)x
2

IlnJ > = < n'.e'/IxV(r)xllnt >. (B-23) 

Using (B-8), (B-23) can be written as 

< nI ,.t l IlV(r)x2 Iln,.t > = al < nI ,.tl+lIIV(r) Iln-l,.t+l > + 

+ D2 < n l -l,.t l+lIlV(r)/In,.t+l > + OJ < n'-l,.t'+lIlV(r)/In-l,.t+l > 
2 . 

+ a4 < n',.t '1IV(r)x Iln,.t > (B-24) 

where 
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1. 

r 
(n+t:3/2) ]'2 ~ = 1 .-

[ n' f ~ = (n ,+.t '+3/2) 

= .-[ nn' ]' ~ (n+.t+3/2) (n '+.t '+3/2) 

[ 1 
l~ 

a = (n+.t+3/2) (n ,+,t '+3/2) J (B-25) 4 

In the same manner that (B-21) was obtained we have from (B-24) that 

where 

B (n'.t '+1 ,n.t+1; py = a lB (n'.t '+1 ,n-1.t+1; p) + D2B (n ,-l,t '+1 ,n.t+1 ;p) 

.t '+.t+2 
2 

+ ~B(n'-U'+1,n-l.t+1;p) + a4(p+~)B(n'.t',n.t;p:-1) 

(B-26) 

= À':;: p .s;: À+n+n' 

Expanding both sides of (B-11) in terms of Ta1mi integra1s 

and equation the coefficients we have that 

where 

(n+t+5/2)~ B(n'.t',nt+2;p) = n~ B(n't',n-lt+2jp) + 

+ (n+.t+3/2)~ B(n't',n.t;p) - (n+1)~B(n't"n+U;p) 

t '+.t+2 = À ~ p ~ À+n+n' 
2 

(B-27) 

Since the range of p for the two sets of coefficients in (B-27) is 
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different we have that 
1 

(n+l)~g(n,t"n+u;.t';.t) = (n+.t+3/2)~B(n't',n.t; t;+t). (B-28) 

Equations (B-2l) , (B-26) and (B-27), combined with the 

s~etry 

B(n',t',nt;p) = B(nt;n',e';p) 

and the normalization 

B(OO,OO;O) = 1 

can be used to generate all of the Talmi coefficients. 

B-e The Radial Integrals < n'.t '1Ix"'lInt· > 

(B-29) 

(B-30) 

The calculation of transition moments involves radial inte-

grals of the form 

l (À;.6t ,ln) = < n'.t '1IxÀlln,t > (B-31) 

where À is the multipole order of the transition and .6t = ,t'-t; 

~ = n'-no From (B-3l) it is obvious that 

(B-32) 

The radial integrals I(À;.6t,tn) can be evaluated analytically when 

oscillator function basis states are used. A formula involving a 
138 

finite sum has been given by Nilsson. However, the oscillator 
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function recurrence relations may be used to generate the desired 

integrals without recourse to a summation. Consider the case of a 

dipole transition. From angular momentum considerations the desired 

integrals are < n'.t-lIIx!ln.t > and < n'.t+lllxlln.t >. 

Using (B-3) , (B-7) and (B-8), the non-zero integrals are 

< n,.t -llix Ilnt > = (n+.t+J;z) J;z 

< n,.t+ll!xlln.t > = (n+.t+3/2) J;z 

< n-l,.t+ll!xlln.t > = 
J;z -n 

~ 
< n+l,.t-1I!xlln.t > = -(n+l) 2 (B-33) 

Any desired integral may be obtained by repeated application of 

(B-7), (B-8) and (B-9) • The integrals for À = 1,2 and 3 are tabu-

lated in Table B-l. 

Inspection of the recurrence relations for the'oscillator 

functions leads to selection rules for the radial quantum numbers as 

well. The result is 

I(2t; +2m,~) = 0 

I(2t; ±2m+l,~) = 0 

and 

I(2t+l; +2m-l,~) = 0 

where 
t = 0,1,2, •••• 

m = 0,1, ••• ~ t 

if ~ > +t-hn 

~ < -t-hn 

if ~ > +t-hn 

if ~ > +t+m+l 

~ < -t-hn 

'(B-34a) 

(B-34b) 

(B-34c) 
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Table B-l The ,;.. mw k integrals of where X = r(r;-)z. 

À n' 1, r < n't '11i"11n.t > 

1 n 1,-1 (n+t~) ~ 

1 n 1,+1 (n+I,+3 12) ~ 
k 

1 n+1 .t-1 -(n+1) Z 
1 ,. 

-n~ 1 n-1 1,+1 

k 
2 n+1 J, -[ (n+1) (n+t+3/2) ] 2 

2 n J, (2n+J,+3/2) 

2 n-1 J, -[n(n+I,+--~) ]~ 
k 

2 n J,-2 [ (n+J,+~) (n+.t _~) ] Z 

k 
2 n+1 ,t-2 -2[(n+l)(n+J,+~)]Z 

1. 

2 n+2 ,t-2 [ (n+1) (n+2) ]~ 

k 
2 n .t+2 [(n+.t+3/2) (n+t+S/2)]Z 

k 
2 n-l .t+2 -2(n(n+J,+3/2)] Z 

2 n-2 .t+2 [n(n-1) ]~ 
k 

3 n-1 J, -1 -[n(n+.t-~)(n+t+~)]2 

3 n J,-1 (n+J,~)~(3n+J,+3/2) 

3 n+1 J,-1 
L 

- (n+l) "2 (3n+2.t+3) 

3 n+2 J,-1 [(n+1)(n+2)(n+.t+3/2)]~ 

3 n+l J,+1 - [ (n+ 1) (n+J,+3/2) (n+.t+S 12) ]~ 
l. 

3 n .t+1 (n+.t+3/2) ';t (3n+.t+S/2) 
l. 

3 n-1 .t+1 _n'z (3n+2.t+2) 

3 n-2 t+1 [n(n-1) (n+.t+~) ]~ 

e 3 n ,t-3 [ (n+.t -3/2) (n+J,-~) (n+t+~) ]~ 
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Table B-1 (continued) 

n' J,' < n '.e' 11~1In.t > 

3 n+1 .e-3 -3[ (n+1) (n+t~) (n+J,-~)]~ 

3 n+2 .t-3 +3[(n+1)(n+2)(n+.e+~)]~ 

3 n+3 .e-3 -[(n+1)(n+2)(n+3)]~ 

3 n t+3 [(n+J+3/2)(n+J,+S/2)(n+.t+7/2)]~ 

3 n-1 .t+3 -3[n (n+t +3/2) (n+.t+S/2)]~ 

3 n-2 .t+3 +3[n(n-1) (n+.t+3/2) ]~ 

3 n-3 t+3 -[n(n-1) (n-2) ]~ 
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APPENDIX C 

WOODS -SAXON RADIAL MATRIX ELEMENTS 

Radial matrix elements with Woods-Saxon (W§) _ single-par"ticle 

wavefunctions are a series in terms of the same reduced integrals 

that are required when harmonie oscillator (HO) wavefunctions are 

used as basis states. Special cases of matrix elements with WS 

wavefunctions are examined to illustrate the effects of using WS wave-

functions as opposed to harmonie oscillator functions. 

It is convenient to write the radially dependent part of the 

particle-particle interaction matrix element (A-20) in the form 

RME \' 
= ·L 

x L < nctc,nd.td;L!nt,N.;c;L > < nf.,tI,Nt;Lflna.ta,nb.tb;Lf > 
nt ,n ft 'N;(. 

x RI(nJ,nf,tr) '(0-1) 

RI includes both the coupling and the radial integrals. Only the 

(n.t,nf.t f) dependence is retained explicitly since it contains aIl 

of the information required in the following discussion. To obtain 

the desired expressions for RME we utilize the properties of Moshinsky 

brackets that are derived in Appendix D. 

For the case ta=.tb we use the symmetry (D-3) to write (0-1) 

in the forro 
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n ,nd,n c a 
~:::> na 

\1 a (c)a (d) L n n 
n.tn It' c d 

N;e. 

x < nctc,ndtd;Llnt,~;L > 

[a (a)a (b)+(_l)L-L'a (a)a (b)J 

x 
na nb nb na 

-...:::.--..::..------..::..--.::...-- < n' t ' ,NX',; L' 1 n at a' nb" a ;L' > 
(1-1-5 (na' nb) J 

x RI (q.t ,n'.t ') (C-2) 

For the case of HO wavefunctions with na = nb and "a = "b the 

Moshinsky bracket vanishes unless L-L' is even. However, for WS 

wavefunctions the terms in the summation over na and ~ add or sub­

tract if L-LI is even or odd. 

Equation (C-2) can be reduced further to compare with a matrix 

element evaluated using HO wavefunctions. In the following we adopt 

the notation 

(C-3) 

For a central force, performing the summation over nb in (C-2) leads to 

l 
n ,nd,n c a n.tn'N~ 

,. 
x < nt, ndt d ; L 1 nX, N,t; L > x {[ 0 J < nit, N~; L ' 1 n J. ,n J. ; LI> c c a a a a 

+ [ 1J RI ~nJ z n I+U~ < n I+l.t N'-f·L 1'1 n.t n +l.t ·L' > RI(n.t,n't) ,~ a a' a a' 

+ [2J 
RI {nt zn 1+2.t l < n*+2,t N~·L' In.t n +2,t ·L' > 
RI(nl,n't) " a a' a a' 

+ [3] 

+ ..... . } x RI (nt , n ' t) (C-4) 
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When L-L' is odd the coefficients [nd-nb ] tend to. cancel making the 

dontributions to the matrix element small. 

For the case that L-L' is even (C-4) can be reduced further 

by using Eq. (D=6). The result is 

+ C < n'+2.e N-2~·L'ln.t n J ·LI > + C
4 

< n·+2.t,~T.pL·ln +U ,n +U ;L' > 3 "a a' a a' ~"V a a a a 

+ [3] ••.. 

+ . . . . . . . . } x RI (nt , n ' 1.) (C-5) 

where 

Cl = ", [0] + [1] RI(n$,n'+U) 
RI(nt .n'J.) 

. ~ 

RI(nt;n'+2t) l r(n'+2) (n'+t+S/2) (n'+l) (n'+t+3/2)1 
+ [2] RI(nt,n't) 2. (na+l ) (n

a
+J.

a
+3/2) J 

= [1] RI(nt,n'+U) -21 [N(N-h'(+1/2) l~ 
C2 RI (nt ,n It) (n +1) (n +1. +3/2) J a a a 

+ [2] RI(nt,n
l
+2t) [(n'+2)(n'+.t+5/2)]~[ N(N+.(+1/2) l 

RI (nt ,n' t) (n +1) (n +.t +312) a a a 

~ 
= [2] RI(nt,n l +2t) 1 ~ / ]~ r N(N~~r1/2) J 

. C3 RI(nt,n't) ï[(N-l) (N-wc.-l 2) L(na+l) (na+t a+1/ 2) 

and 

~ 



C = -[2] 
4 

RI (nt, n ,+2.t) 
RI (n.t , n ' J) 
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] 

r (n +l)(n +l +3/2)l~ a a a 

For the special case n = 0 (D-14) and (D-1S) can be used to write 
a 

(C-S) as 

RME = \' \ ex (c)ex (d) x < n J ,ndJd;LlnJ,N~L > /. L n n
d 

cc. 
n ,nd nJn'l'C( c . 

c ., ~ 

{ [ . r N(N~+1/2) l 
x C1-C2 ~(n'+1)(n'+t+3/2) 

. ~ 

+ f(N-l) (N+".I,-1/2)N(N+tH/2) l l 
C3 _ (n '+2) (n '+J+5/2) (n '+1) (n '+.t+3/2) . 1 

x < n'.t ... ,..., L ' 1 Ol O.t • L' > ,.I.~, a' a' 

x C4 <n'+2t,N;(;L'IUa ,lta ;L' > 

+ 

+ } x RI (nt , n ' .t ) (C-6) 

In many cases for wavefunctions with zero nodes the WS wavefunction 

ca~ be represented as mainly one HO wavefunction with n=O plus small 

amplitudes of n=l and 2. For these cases (C-6) gives the dependence 

of the matrix element on the (n,n') structure of the interaction. 
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APPENDIX D 

PROPERTIES OF MOSHINSKY. BRACKETS 

The osci11ator function recurrence relations (Appendix B) 

are used to obtain relations among Moshinsky brackets for states having 

the sarne total energy. 

The Moshinsky transformation 
J... 

(2) 2!R = ~1-x2 
(2) ltix = x +x -cm -1-2 

129 

(relative) 

(centre-of-mass) (D-1) 

for the oscillator functions (B-2) introduces the transformation 

brackets < nt,~;Llnltl,n2t2;L >. Energy and momentum conservation 
j 

impose the restrict'ions 

2nl +.t 1 +2n2 +,t 2 = 2n+.t+2N+.;C 

!1+~ = !+;{ 
,t +.t .....p 

(-1) 1 2 = (_l)t+~ 

Fur~~ermore, the brackets have the symmetries 

(D-2) 

o.,P 1 ~ -L ..p 1 < n.t,N~;L n1.t l ,n2.t2 ;L > = (-1) < n.t,N"'\.;L n2.t2 ,nl't l ;L > 
.tl-L ,.f) 1 = (-1) < NoI..,.,nJ;L nl.tl,n2.t2;L > 

= (_l),tl+,t< NY-,nJ;L!n
2
t

2
,n

l
,tl;L" > • (D-3) 

Since the recurrence relation (n-9) only changes the radial 

quantum number of the oscillator function, t~e two-particle states 

of the Moshinsky transformation satisfy the same equation. For 

example, 
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x12jnltl,n2t2;L> = -[(nl+l)(ni+tl+3/2)]~jnl+1Jl,n2t2;L > 

+(2nl+Jl+3/2)jnltl,n2t2;L> 

-[nl (nl+.tl+~) ]~jnl-Ul'n2t2;L >. (D-4) 

Similar relations may be obtained for the relative and centre-of-mass 

'. coordinate eigenfunctions. If both sides of (D-4) are multiplied by 

< n.t,N~;Lj only one bracket on the right hand side will be non-zero 

by energy conservation. Using the equality 

< nt,N~;Lj (~2+xcm2)lnltl,n2t2;L > = 

< n,t,N.;e>;Lj (X1
2

+X2
2
) jnl'tl'n2t2;L > (D-5) 

and the expansions analogous to (D-4). We obtain the relations: 

and 

C(nl+l)(nl+Jl+3/2)]~ < n.t,N~;Llnl+Ltl,h2t2;L > 

+[(n2+l)(n2+J2+3/2)]~ < n.t,N~;Ljnltl,n2+U2;L > 
J.. ..p 

=[n(n+t+~)]2 < n-l,t,Np{ ;Ljnrt l ,n2.t2;L > 

+[N(N+~+~)]~ < n.t,N-l~;Ljnl.tl,n2t2;L > (D-6) 

J.. 
[(n+l) (n+t+3/2)]2 < n+U,N;(;L!nltl'n2t2;L > 

+[(N+l)(N+~+3/2)]~< nt,N+l~;L!nltl,n2.t2;L > 

=[l.?-l (nl+.tl+~)]~ < nt,N;'\';L!nl-Ul,n2.t2;L > 

~[n2(n2+t2~)]~ < nt,N.;e;Ljnltl,n2-U2;L >. (D-7 

In a similar manner the integrals of 

and 
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may be used to obtain several relationships among transformation 

brackets. Two such relations are 

and 

where 

and 

~l < nt,Ni';L!nl+2.t l ,n2.t2;L > + ~2 < n.t,N.;t';L!nl.tl,n2.t2;L > = 

~3 < n-l.t,n~:1!nl+lJl,n2.t2;L > + ~4 < nJ,N-l~;Llnl+lJl,n2,t2jL > + 

~5 < n-1J,~;Llnl.tl,n2+U2;L > + ~6 < nJ,N-IX;Llnl.t1,n2+1.t2;L > 
(D-10) 

71 < n+2,t,N~;Lln1.t1,n2.t2;L > + 72 <nt,N+~;LlnlJ1,n2.t2;L > = 

73 < n+l.t,N~;Lln1-lJl,n2.t2;L > + 74 < n+l.t,N~;Llnl.t1,n2-1J2;L > + 

75 < n.t,N+~;Lln1-l.t1,nzt2;L > + 76 < nJ,N+l~;Lln1.tl,n2-l.t2;L > 

~l = [(n1+1) .(nl+.t1+3/2) (n1+2) (nl+,tl+5/2)]~ 
~ 

~2 = -[(n2+1) (n2+.t2+3/2) (n2+2) (n2+.t2+5/2)]2 

133 = [n(n+.t+~) (n1+1) (nl+,t1+3/2)]~ 

~4 = . [N(N-nt+~) (nl+1) (n1+,tl+3/2)]~ 
k 

135 = -[n(n+.t+~)(n2+1)(n2+.t2+3/2)]2 

~6 = -[N(N~+~)(n2+1)(n2+t2+3/2)]~ 

71 = ~(n+1)(n+.t+3/2)(n+2)(n+.t+5/2)]~ 

72 = -[ (N+l) (N+~ +3/2) (N+2) (N+.~~5/~) ]~ 
k 

73 = [(n+l) (n+t+3/2)n1 (nl+.tl+~) p 

74 = [(n+l)(n+.t+3/2)n2(n2+.t2+~)]~ 
..p k 

75 = -[(N+l)(N+~+p/2)n1(n1+J1+~)]2 

76 = -[(N+1)(N+~+3/2)n2(n2+~2+~)]~ . 

(D-11) 

(D-12) 

(D-13) 
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The same method can be used to obtain relations f~r the unequalmass 
139 

transformation brackets. 

The preceding relations give useful results for special cases: 

nl=O, n2=O 

(n+l) (n+.t+3/2)]lz < n+l.t,N~;Llo.tl,O.t2;L > = 

- [(N+l) (N~ +3/2) < nt ,N+l;GL! O.t l ,O.t2 ;L > (D-l4) 

n=O.N=O 
l 

[(n1+l)Çnl +.t l +3/2)]"'2 < O.t,O"<::;L!nl+l.tl,n2t2;L > = 

-[(n2+l) (n2+t2+3/2)]lz < O.t,O~;Llnl.tl,n2+l.t2;L > (D-l6) 

131 < O.t,o.:!.:1Inl +2.t l ,n2"2;L > ~',-f32 < Ot,O,.z;L!nl.tl,n2+2.t2;L > 

(D-171 

<;(-L) 1s ev en 

. 1: 
2( (nl+l) (nl +,tl+3/2)] 2 < ntl,N :t::;L!nl +l.t l ,nl.tl;L > = 

<'?<,-L) is odd 

[n(n+t+lz)]lz < n-l,t,N ~;L!nl.tl ,nl"l;L > + 

[N(N+t"+lz)]lz < n.t,N-l~;Llnl.tl,nl.tl;L > 

[(nl +2) (nl +.t l +s/2)]lz < n.t,N~;Llnl+2tl,nl.tl;L > = 
1: . 

[n (n+.t:t-3:â) ] 2 < n-l.t,N :C;L! n l +l.t 1 ,nlt l;L > .+ 
]~ 

[N(N+i:+~)]~ < nJ,N-l~;L!nl+ltl,nltl;L > 

1 
1 

(D-l8) 

(D-19) 
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l~ 

2[(n+l)(n+t+3/2)]~ < n+Lt,nt;L!nltl,n2J2;L > = 

[nl (nl+tl+~)]~ < nt,nt;L!n1-lJ l ,n2J 2;L > + 
~ . 

[n2(n2+t2+~)]2 < nt,nt;L!nlt l ,n2-lt2;L > (D-20) . 

~ 
[(n+2) (n+t+S/2)]2 < n+2t,nt;L!nltl,n2t2;L > = 

~ 
[nl(nl+tl+~)]2 < n+U,n.t;L!n1-Lt l ,n2J 2;L > + 

[n2(n2+t2+~)]~ < n+Lt,nt;L!nltl,n2-lt2;L > (D-21) 

1 
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