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Abstract 

Understanding brain function entails disentangling the activity of different neuronal 

populations. Owing to advances in microelectrode fabrication technology, neuroscientists are 

now in position to simultaneously record extracellular potentials from multiple spatial locations 

in close proximity. In particular, a growing number of studies have been using linear electrode 

arrays to disentangle laminar processing in cortical and subcortical structures. However, in order 

to extract useful information about neural processing from such recordings, it is imperative to 

comprehend how extracellular potentials are related to the underlying neural activity. 

Uncovering the relationship between extracellular potentials and neural activity has 

proven to be particularly challenging for the low-frequency part of the potential, which in 

intracranial recording is referred to as the local-field potential (LFP). However, the LFP is of 

particular interest in studying brain function because it is thought to reflect key integrative 

mechanisms of population activity which are mostly inaccessible to traditional spike recordings.  

The difficulty in the interpretation of the LFP stems largely from the fact that electric 

potentials are a non-local measure of the neural activity due to volume conduction. To address 

this issue, it has thus become common practice in intracranial extracellular neurophysiology to 

estimate and analyze current-source density (CSD) instead of directly interpreting the LFP. This 

is beneficial because, in addition to mitigating the effect of volume conduction, correctly 

estimated CSD also represents the volume density of net transmembrane currents which 

generated the measured LFP. 

In this thesis, we analyze the process of CSD estimation as it is applied to extracellular 

recordings from linear, i.e. one-dimensional, electrode arrays inserted perpendicularly to a 

layered medium. In Chapter 2, we demonstrate the usefulness of CSD estimation in the study of 

neural processing by providing novel insights into visual orientation processing in cat area 18. In 

particular, we use standard CSD estimation to show that excitatory activity is selectively relayed 

from the input layer IV to the superficial layers II/III, with CSD sinks extending more 

superficially for gratings of the locally preferred orientation and similar orientations. 

Although we showed in Chapter 2 the usefulness of CSD estimation, our analysis also 

highlights known difficulties with the use of the standard CSD estimation method. We thus turn 
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in Chapter 3 to the study of the methods employed for 1-D current-source density estimation. In 

particular, we propose a novel estimation framework inspired by linear inverse theory with a 

special emphasis on higher-order spectral regularization methods. With this framework, we 

provide a unification of previously published inverse estimation methods under a common 

format. In addition, we introduce two novel CSD estimation methods. Moreover, the presented 

framework facilitates dealing with recording noise, a ubiquitous problem in solving inverse 

problems, by incorporating zeroth- and higher-order regularization methods with multiple 

regularization parameter selection methods. 

Although the framework presented in Chapter 3 successfully unites all previously 

published inverse methods under a common formulation, it does not provide a clear connection 

between the inverse estimation methods and the standard CSD method used in Chapter 2. We 

addressed this connection in Chapter 4, by comparing the 1-D differential (standard) and integral 

(inverse) formulation of CSD estimation in the presence of laterally extended sources. By 

expressing the standard method as an inverse problem using the Green’s function for the 1-D 

Poisson equation, we show that the two formulations converge to each other and could be 

considered similar for lateral source diameters exceeding ~2-5 mm. Moreover, we demonstrate 

that the standard 5-point CSD estimation is considerably less resistant to recording noise than its 

regularized integral formulation. We thus conclude that, with the exception of slightly reduced 

computation time, there appears to be no reason to opt for the standard CSD estimator over 

inverse estimators. 

In summary, the core of this thesis demonstrates the usefulness of 1-D CSD in the study 

of neural processing and provides novel methods for its estimation. In the process, it also 

includes a thorough investigation of the stringent assumptions involved in the estimation with a 

focus on the possible misinterpretations brought about by their violation. The particular 

challenges and open questions surrounding 1-D CSD estimation are then revisited in the 

discussion and potential future work for their resolution is proposed.  
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Résumé 

Pour comprendre le fonctionnement du cerveau il faut démêler l'activité des différentes 

assemblées neuronales. Grâce aux progrès dans la technologie de fabrication de microélectrodes, 

les neuroscientifiques sont en mesure d'enregistrer simultanément des potentiels extracellulaires 

à plusieurs emplacements spatialement de plus en plus rapprochés. Notamment, un nombre 

croissant d'études sur le traitement d’information au niveau mésoscopique (laminaire) dans les 

structures corticales et sous-corticales utilisent des réseaux de microélectrodes linéaires. 

Toutefois, afin de pouvoir extraire des informations utiles sur le traitement neuronal à partir de 

ces enregistrements, il est impératif de comprendre au niveau théorique comment les potentiels 

extracellulaires sont liés à l'activité neuronale sous-jacente. 

Pour la partie à basse fréquence du potentiel, qui dans le cas d’enregistrements 

électriques intracrâniens est communément appelé potentiel de champ local (PCL), élucider cette 

relation entre les potentiels extracellulaires et l'activité neuronale s'est avéré être particulièrement 

difficile. Cependant, le PCL est d'un grand intérêt pour la compréhension du fonctionnement du 

cerveau, car on croit que ce signal reflète l'intégration d’information au niveau des assemblés 

neuronales. Et c’est exactement cette intégration d’information qui est inaccessible aux 

enregistrements de potentiels d’actions traditionnels. 

La difficulté principale dans l'interprétation du PCL découle du fait que les potentiels 

électriques sont une mesure non-locale de l'activité neuronale dû à la conduction de volume. 

Ainsi, il est devenu pratique courante dans la neurophysiologie extracellulaire intracrânienne 

d’analyser la densité de courant source (DCS), plutôt que d'interpréter directement le PCL. Cela 

est bénéfique, car, en plus d'atténuer l'effet de la conduction de volume, la DCS, correctement 

inférée, représente la densité volumique des courants transmembranaires qui ont généré le PCL 

mesuré. 

Dans cette thèse, nous analysons le processus d'estimation de la DCS tel qu'il est appliqué 

aux enregistrements extracellulaires linéaires. Nous nous concentrons plus précisément sur les 

enregistrements effectués à l’aide d’une matrice de microélectrodes insérées perpendiculairement 

dans le cortex cérébral. Nous démontrons d'abord, dans le deuxième chapitre, l’utilité d'estimer 

la DCS pour l'étude du traitement d’information neuronale en fournissant des résultats 
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expérimentaux nouveaux sur le traitement de l’orientation visuelle au niveau du cortex visuel 

primaire. En particulier, nous utilisons la méthode standard d'estimation de la DCS pour montrer 

que, dans l’aire 18 du cortex visuel du chat, l'activité neuronale excitatrice est sélectivement 

relayée aux couches neuronales superficielles (couches II/III) à partir de la couche d'entrée 

(couche IV). Ceci est démontré par le fait que les puits dans la DCS s’étendent plus 

superficiellement lorsque les neurones proches du site d’enregistrement sont stimulés avec des 

grilles orientées parallèles à leur orientation préférée que lorsqu’ils sont stimulés avec 

l’orientation perpendiculaire. 

Bien que dans le deuxième chapitre nous démontrons l'utilité d'estimer la DCS dans 

l’étude du fonctionnement du cerveau, notre analyse met également en évidence certaines 

difficultés connues avec l'utilisation de la méthode standard d'estimation de la DCS. Pour cette 

raison, nous présentons dans le troisième chapitre une étude théorique détaillée des diverses 

méthodes d’estimation de la DCS. En outre, nous décrivons un cadre d'estimation nouveau, 

inspiré par la théorie inverse linéaire. Ce cadre met un accent particulier sur les méthodes de 

régularisation spectrale, et permet une unification de toutes les méthodes d'estimation inverses 

précédemment publiées sous une formulation commune. Un avantage de ce nouveau cadre est de 

faciliter grandement le traitement du bruit d'enregistrement. De plus, nous présentons deux 

nouvelles méthodes d'estimation de la DCS, elles aussi inspirées de la théorie inverse et donc 

aussi incluses dans notre cadre général. 

Bien que ce dernier incorpore avec succès toutes les méthodes inverses précédemment 

publiées, il ne fournit pas de lien direct et clair entre les différentes méthodes d'estimation basées 

sur la théorie inverse d’une part, et la méthode standard employée dans le deuxième chapitre 

d’autre part. Nous analysons en détails ce lien dans le quatrième chapitre pour des sources de 

courant neuronales qui ont une large étendue latérale. Notamment, nous démontrons que la 

méthode standard peut être transformée en une méthode inverse en utilisant la fonction de Green 

de l’équation de Poisson. Avec cette approche, nous démontrons que les solutions des deux types 

de méthode convergent et que ceux-ci peuvent être considérées comme similaires pour des 

diamètres de sources supérieures à 2-5mm. De plus, nous démontrons que la méthode 

d’estimation standard (avec un noyau de cinq points) est beaucoup moins résistante au bruit 

d'enregistrement que sa formulation intégrale régularisée. Nous concluons donc, qu’à l'exception 
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d'une légère réduction du temps de calcul, il semble y avoir aucun avantage à utiliser la méthode 

d’estimation standard et que les estimateurs inverses sont préférables en toute situation. 

En résumé, le noyau de cette thèse démontre l'utilité de l’estimation de la DCS dans 

l'étude du traitement d’information neuronale et fournit de nouvelles méthodes pour son 

estimation. Cette thèse comprend également une discussion approfondie des hypothèses 

contenues dans l’estimation de la DCS en mettant un accent particulier sur les conséquences 

possibles d’une violation de celles-ci. Finalement, la thèse se conclue avec une discussion sur les 

questions ouvertes autour de l’estimation de la DCS et des pistes de solution sont fournies. 
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1 Chapter 1: Introduction 

1.1 Thesis structure 

In the following thesis, I investigate the theory and application of one-dimensional 

current-source density (CSD) estimation in invasive cortical recordings. In the introduction, I 

first provide a broad overview of the use of CSD in the study of neural processing. I then 

proceed to a more detailed description of the theoretical problems encountered in CSD 

estimation. 

Three manuscripts, each focusing on a particular aspect of CSD estimation, form the core 

of the thesis. In the first manuscript, I show the usefulness of CSD estimation in understanding 

brain function by presenting novel results on orientation selectivity uncovered by applying CSD 

estimation to laminar recording in cat primary visual area 18. In the second manuscript, I 

examine the application of higher-order regularization to CSD estimation. I also provide an 

elaborate theory section highlighting the inverse nature of the estimation problem. The third 

manuscript then connects the estimation methods from the second manuscript with the standard 

estimation method used in the first manuscript by comparing CSD estimation at small and large 

source diameters. Finally, the last chapter contains a critical discussion of the obtained results, 

guidelines on the use of CSD in an experimental setting, and an overview of potential future 

work. 

1.2 Electrical Recordings in the Brain 

Neurons are electrically excitable cells. Hence, it is not surprising that, next to anatomical 

studies, electrophysiology has established itself as the gold standard in investigating the 

functioning of the nervous system. In the most general sense, electrophysiology consists in 

measuring the effects of ion flow in biological tissue (Plonsey and Barr, 2007). In Neuroscience, 

this is performed on a wide variety of scales ranging from the study of single ion channel activity 

all the way to the investigation of whole brain processing as it is done in electroencephalography 

(EEG) and magnetoencephalography (MEG). 

The various invasive electrophysiological techniques can be grouped in two broad 

categories: intracellular and extracellular measurements. Intracellular measurements are limited 

to recordings from single cells or even patches of membrane. They consist in measuring 
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fluctuations in currents or changes in voltage across the cell membrane by creating a conductive 

path with the interior of the cell either by directly inserting an electrode or by using patch clamp 

techniques (see e.g. (Li et al., 2004)). This allows for example to measure the voltage changes 

associated with the firing of an action potential. 

In contrast to intracellular measurements, extracellular techniques don’t disrupt the 

integrity of the recorded cells but instead employ electrodes with a conductive path to the 

extracellular medium embedding the neurons in order to measure broad-band field potentials 

(Nunez and Srinivasan, 2006). For example, using a high impedance intracranial microelectrode 

positioned close to a neuronal soma, this allows again the measurement of single-unit action 

potential signatures (found in the high frequency component (≳ 500 Hz) of the recorded field 

potentials) as well as broad-band potential fluctuations generated by the summed activity of 

multiple neurons (Brette and Destexhe, 2012). However, it is quite common that, even in such 

localized extracellular recordings, action potentials from multiple surrounding neurons are 

picked up on the same electrode. Hence, we then speak of multi-unit activity (MUA) recordings. 

A major difference between intra- and extracellular recordings is thus the number of 

neurons that contribute to the measured signal. In intracellular recordings only a single neuron is 

observed while extracellular recordings record from populations of neurons. Extracellular 

recordings are therefore popular experimental tools to study interactions between neural 

populations between the mesoscopic (few mm3 of tissue) and the macroscopic (few cm3 of 

tissue) scale (Nunez and Srinivasan, 2006). In this thesis, we will be exclusively concerned with 

1-D mesoscopic extracellular recordings obtained from linear high impedance microelectrode 

arrays (~400 𝜇𝑚2 surface area with a resistance of ~1 MΩ). 

Although the activity of multiple neurons provides richer information about the 

functioning of the nervous system, it also complicates the analysis and interpretation of the 

measurements. This problem is particularly pronounced in the analysis of the low-frequency part 

(≲ 500 Hz) of extracellular field potentials because of their non-local nature brought about by a 

process called volume conduction (see next section). In invasive micro-electrode recordings (i.e. 

electrodes located in the extracellular space in the brain as used in this thesis), this low-frequency 

component is called the local field potential (LFP). The low-frequency field potential is also the 
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only signal that is measured with surface (EcoG) electrodes and with EEG macro-electrodes 

located on the scalp. Besides being more invasive, a defining characteristic of the LFP is that it 

samples from more localized neural populations than EcoG or EEG and gives thus access to 

neural processing at a mesoscopic scale (Nunez and Srinivasan, 2006). However, it is important 

to note that the exact sampling distance is still highly debated (Katzner et al., 2009, Xing et al., 

2009, Kajikawa and Schroeder, 2011, Linden et al., 2011, Leski et al., 2013). 

As mentioned above, a major difficulty in interpreting LFPs stems from their non-local 

nature. In a volume conductor such as the brain, the summed action from currents generated by 

neurons located hundreds of micrometers away from an electrode will contribute to the measured 

field potentials due to volume conduction. This represents a major caveat when trying to 

understand brain function because it makes it extremely difficult to use the recorded signals for 

disentangling the location and nature of active neural populations. Hence, to try to address this 

issue, it has become commonplace in extracellular neurophysiology to resort to source 

localization techniques. As its name implies, source localization simply refers to analysis tools 

which aim to determine the sources (in our case neural activity) of a measured effect (in our case 

recorded changes in electric potential). Whenever source localization is performed on LFP 

recordings, it is referred to as current-source density (CSD) estimation, the study of which is the 

content of this thesis. 

As any source localization problem, CSD estimation is called an inverse problem because 

it aims to uncover the causal origin of a measured effect. It is the aim of this thesis to discuss 

CSD estimation in the context of 1-D cortical recordings. However, before being able to discuss 

the nature of this inversion, it is necessary to closely examine the associated forward problem 

describing how neural activity is thought to generate recordable field potentials. This step is 

crucial because the result and interpretation of the source estimation effort critically depends on 

the proper choice and understanding of the forward model. 

1.3 The Forward Problem: Contributions to Extracellular Ionic Current Flow 

Neuronal activity is the result of transmembrane ionic currents driven by electrochemical 

gradients across the cell membrane (Buzsaki et al., 2012, Einevoll et al., 2013). However, 

extracellular electrophysiology measures changes in electric potentials and not currents directly. 
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Hence, in order to study neural processing, we need to infer the neural activity from recorded 

field potentials. But as mentioned in the previous section, this is complicated by the fact that the 

field potential recorded at a given location is the linear superposition of the potentials generated 

by transmembrane currents of all excitable membranes within the volume conductor (Plonsey 

and Barr, 2007). This means that synaptic events, somatic activity, action potentials, and even 

slow fluctuations in glial cell potential contribute to the extracellular field (Buzsaki et al., 2012). 

Moreover, further complications arise from the fact that not all neuronal activity is equally 

represented in the measured signal because currents from multiple sources need to temporally 

overlap to generate detectable extracellular potentials. Hence, before delving into the 

mathematical models designed to formalize the generation of extracellular field potentials, it is 

informative to summarize what is known about the relative contribution from different neural 

sources. 

It is generally assumed that, in physiological situations, post-synaptic activity is the major 

contributor to the extracellular potential because the slow synaptic currents from different 

sources most easily overlap in time (Mitzdorf, 1985). However, based on large-scale simulations 

it has recently been proposed that in addition to post-synaptic currents, active membrane currents 

also significantly affect the recorded LFP (Reimann et al., 2013). Moreover, even for synaptic 

currents, there are differences in the contributions from different cell types. Spatially aligned 

neurons with elongated structures such as pyramidal cells are thought to contribute more heavily 

to the field potentials than spatially disorganized or radially symmetric neurons such as stellate 

cells (Riera et al., 2012, Tenke and Kayser, 2012). This is because aligned elongated cells are in 

a so-called open field configuration in which dipolar current sources generate substantial ionic 

flow in the extracellular medium and thereby allows effects from neighboring neurons to easily 

add up (Einevoll et al., 2013). This is in contrast to the closed field configurations in radially 

symmetric cells where the active source and resulting return currents tend to cancel each other 

out. Hence, in addition to the temporal alignment between transmembrane currents, geometric 

factors also need to be considered when estimating the relative contribution of neuronal sources 

to the extracellular field potentials.  

It was already mentioned that action potential signatures visible in the high frequency 

part of the measured field potentials can only be detected from neurons close to the recording 
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electrode. Since the largest action potential currents only last about 2 ms, their minimal 

contribution to the LFP is partly explained by the lack of synchronicity between action potentials 

from different neurons (Buzsaki et al., 2012). The lack of synchronicity can also result in a 

destructive interference between the depolarization and after-hyperpolarization phase of action 

potentials from different neurons. Nevertheless, it has been observed that action potentials 

exhibit a small bleed through effect that makes them detectable in the higher frequency bands of 

the LFP (Zanos et al., 2011). Moreover, the synchronous bursting of multiple neurons as well as 

the ensuing spike after-hyperpolarization can induce similar extracellular currents as coordinated 

synaptic activity (Buzsaki et al., 2012).  

Although the various membrane conductance change mechanisms generating the 

neuronal currents are quite well understood, there is still considerable uncertainty about how 

exactly these transmembrane currents lead to the measured extracellular field potentials. This is 

due to the fact that brain tissue is a heterogeneous medium made of multiple membranes 

embedded in a highly conductive extracellular fluid filling less than 20 percent of the total 

volume (Brette and Destexhe, 2012). Hence, predicting the LFP from a set of current sources 

heavily depends on the approaches taken in modeling the whole medium. 

1.4 The Forward Problem: Generation of Field Potentials from Current Sources 

The literature contains two major frameworks for modelling the generation of 

extracellular field potentials: volume conductor theory and mean-field approximations to 

Maxwell’s equations. We will briefly review both of these below since they form the basis of all 

current-source density estimation methods. 

In both frameworks we start with assuming the validity of the electro-quasistatic 

approximation. This means that we decouple the electric and magnetic variables and thus allow 

capacitive but not inductive effects. It also assumes that fields propagate instantaneously (i.e. 

𝑐 → ∞). Hence, quasistatics differs from statics in that it allows for time dependence in 

otherwise time independent laws by presuming that the dynamical system under study proceeds 

from one state to another as though it was static at every time point (Larsson, 2007). Under these 

assumptions, the electric field 𝐸⃗  is irrotational (i.e. curl-free) and Faraday’s law simplifies to 
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∇ × 𝐸⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
= 0 

Hence, the electric field can be expressed by the negative gradient of the electric potential 𝜑 

 𝐸⃗ = −∇𝜑 (1) 

From this point on, the two approaches differ from each other in the way they model the sources 

and the medium. 

1.4.1 Volume Conductor Theory 

In the volume conductor theory, the neuronal tissue is divided into an intracellular and 

extracellular space, both of which are three-dimensional conductive media (Plonsey and Barr, 

2007). The extracellular current flow giving rise to the extracellular field potential is induced by 

transmembrane current sources and sinks, where source refers to positive current flowing from 

the intracellular to the extracellular space and sink to current flowing in the opposite direction. 

From the point of view of the extracellular space, this can be seen as current appearing (source) 

or disappearing (sink) from the medium at certain points. Moreover, in the volume conductor 

model the neuronal elements are treated as core conductors and thus the membranes are viewed 

as a system of sources and sinks currents (Nicholson, 1973). In this view, the current sources can 

be approximated by a volume current source density 𝐶(𝑥, 𝑦, 𝑧, 𝑡), which can be obtained by 

averaging the total transmembrane current flux within a small volume of tissue (Nunez and 

Srinivasan, 2006). 𝐶(𝑥, 𝑦, 𝑧, 𝑡) is therefore a scalar field of the total transmembrane current at 

time 𝑡 within a small region around point 𝑥 = (𝑥, 𝑦, 𝑧). Using Kirchoff’s current law, the current 

density vector field 𝐽 (𝑥, 𝑦, 𝑧, 𝑡) can then be related to its source density 𝐶(𝑥, 𝑦, 𝑧, 𝑡) by the 

divergence relation 

 ∇ ∙ 𝐽 = 𝐶 (2) 

In a second step, the volume conductor theory approximates the extracellular space as a 

linear, possibly anisotropic, and purely ohmic (i.e. resistive) medium. These assumptions imply 

the validity of Ohm’s law relating the free current density 𝐽  to the electric field 𝐸⃗  

 𝐽 = 𝜎𝐸⃗  (3) 
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Combining Equations (1), (2), and (3), we find that the current source density 𝐶 is related to the 

extracellular field potential 𝜑 by 

 C = −∇ ∙ 𝜎∇𝜑 (4) 

Equation 4 thus represents the desired general equation relating the sources to the potential 

assuming the validity of the volume conductor model. 

In many practical settings this relationship is further modified by assuming that the 

conductivity is homogeneous (𝜎(𝑥 ) = 𝜎) and isotropic (𝜎 = 𝜎) leading to an equivalent of the 

well-known Poisson equation 

C = −σ∆𝜑 = −𝜎 (
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
)𝜑 

However, to better fit recordings from layered media, the homogeneous medium assumption is 

sometimes slightly modified by employing a piece-wise continuous instead of a homogeneous 

conductivity. This is often the case in cortical recordings, where it allows to account for the large 

conductivity jump that occurs between gray matter and the artificial CSF solution which is 

customarily applied to the brain surface to avoid it drying out (Pettersen et al., 2006). The 

mathematics of this approach, namely the method of images, and its implications are discussed in 

more depth in Chapter 3. 

It is however clear that even a two-layered medium is still a very coarse approximation to 

the actual brain geometry. Hence, a few studies have employed a three-layered medium to 

account for the layered structure of the hippocampus (Gold et al., 2006) or to simulate slice 

recordings on a micro-electrode array (Ness et al., 2015). However, the existing studies have so 

far only focused on situations where only the potential in the middle layer is used. In chapter 4, 

we expand on this approach by exploring the effect of including potentials from all three layers. 

This allows us to approximate cortical recordings in a slightly more realistic manner by including 

the conductivity jumps between the surface solution and gray matter as well as between gray and 

white matter. 

Modeling the brain as a volume conductor composed of infinitely extended layers with 

homogeneous and isotropic conductivity is certainly an acceptable first order approximation. It 
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does however gloss over many known features of the brain. First, cortex as well as the 

hippocampus are layered structures in which most neuronal processes are predominantly oriented 

perpendicular to the layers. This is the case for most pyramidal cells which make up a significant 

proportion of cortical neurons (Binzegger et al., 2004). Hence, it is reasonable to expect that the 

vertical conductivity might non-negligibly differ from the lateral conductivity. Under certain 

conditions, this can sometimes be addressed by appropriately rescaling the spatial axes 

(Nicholson, 1973). A second salient feature of the brain is that the whole brain as well as most of 

its components exhibit extensive curvature. This introduces further errors when using a medium 

approximation made of infinitely extended planar layers. To address these limitations, Goto et al. 

studied the cortical conductivity profile in Wistar rats using a layered spherical volume 

conductor. They compared their results to the infinitely extended planar volume conductor and 

reported significant differences in conductivity across laminae as well as radial/tangential 

anisotropies (Goto et al., 2010). Moreover, they showed that discounting the curvature as well as 

approximating the medium with a homogeneous and isotropic volume conductor introduced 

errors in CSD estimation mainly for charge-unbalanced source distributions. This result is 

however not easily translated to other species like cats, monkeys or humans because the brains of 

these species are much more heavily convoluted and are thus only poorly approximated by a 

spherical volume conductor. To properly account for the effects of complex tissue geometries 

such as cortical sulci and gyri, it is necessary to model the volume conductor using the more 

complicated finite element models (FEM) built from anatomical magnetic resonance images 

(Wagner et al., 2014). However, since this is currently not a scalable approach (i.e. it cannot be 

easily done for every subject), it remains common practice to use the simplified volume 

conductors like the infinite planar medium approximation discussed above. 

1.4.2 Mean-field Approximations of Maxwell‘s equations 

In the volume conductor theory, the medium is assumed to be purely ohmic with 

conductivity varying only on a relatively macroscopic scale (e.g. conductivity variations across 

brain structures or across different laminae). This view has a long history dating back to the 

inception of the standard CSD estimation method by Pitts (Pitts, 1952). It received further 

support from Mitzdorf who concluded based on experimental evidence and theoretical 

considerations that any departure from a homogeneous and isotropic conductivity would only 
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have a minor effect on CSD estimation (Mitzdorf and Singer, 1980). Recently, this assumption 

has however come under renewed scrutiny. A major point of contention is that a purely resistive 

volume conductor cannot exhibit a frequency dependent conductivity (Bedard et al., 2004). It is 

however well known that the temporal power spectrum of the extracellular field potential 

exhibits a very characteristic 1/𝑓𝛼 shape (with 𝛼 = 1 − 2 ), meaning that power at higher 

frequencies is significantly smaller than at lower frequencies (Buzsaki et al., 2012). Part of this 

low-pass filtering can be explained by dendritic filtering in passive neuron models or by neural 

network effects in which, for example, network synchrony and/or correlation could lead to self-

organized power law distributions in synaptic activity (Milstein et al., 2009, Linden et al., 2010, 

Brette and Destexhe, 2012). Although all these effects certainly play a role in shaping the 

frequency spectrum of the extracellular potential, experimental evidence suggests that neuronal 

activity cannot always explain the observed frequency scaling (Bedard et al., 2006a). Instead, it 

has been proposed that the observed frequency filtering could be explained by a frequency-

dependent macroscopic conductivity and permittivity resulting from the heterogeneous nature of 

the brain at microscopic scales (Bedard et al., 2006b, Bedard and Destexhe, 2009). 

In the electro-quasistatic approximation, electric fields in biological media can drive 

current by two mechanisms: ohmic current due to the motion of free charges and capacitive 

displacement current resulting from the polarization of paired charges (Wagner et al., 2014). The 

ease with which free charges can flow through a medium in response to an electric field is 

quantified by the electric conductivity. Similarly, the electric permeability is a measure of the 

ease of polarization of paired charges (Griffiths, 2013). 

In extracellular media, it is generally assumed that the displacement current is 

insignificant compared to the free charge current (Plonsey and Barr, 2007, Gratiy et al., 2013). 

But, it has been pointed out that this reasoning might be flawed (Bedard and Destexhe, 2013). 

Maxwell’s theory of electromagnetism requires that the generalized current density (𝐽 𝑔 = 𝐽 𝑓 +

𝐽 𝑑) composed of the free charge current density (𝐽 𝑓) and the displacement current density (𝐽 𝑑 =

𝛿𝐷⃗⃗ 

𝛿𝑡
, where 𝐷⃗⃗  is the displacement field) must be conserved: 

∇ ∙ 𝐽 𝑔 = ∇ ∙ 𝐽 𝑓 + ∇ ∙ 𝐽 𝑑 = 0 
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This relationship must be valid in any medium. However, it is only true in a 

homogeneous locally neutral medium that the free charge current density must be conserved 

independently of the displacement current density because local neutrality proscribes charge 

accumulation (i.e. ∇ ∙ 𝐽 𝑓 = −
𝜕𝜌𝑓

𝜕𝑡
= 0, where 𝜌𝑓 is the free charge density). Hence, considering 

the displacement current as negligible is equivalent to considering the medium as a 

homogeneous conductor in which charges behave like electrons in a metal. It is however clear 

that at microscopic, i.e. subcellular scales, the medium is certainly not homogeneous because it is 

mix of membranes, fluids, organelles and other cell components. Hence, the traditional 

assumption of the applicability of Kirchhoff’s laws might not be valid in neuronal tissue. The 

inapplicability of Kirchoff’s laws could be explainable by the fact that either displacement 

currents can simply not be ignored or because charges move at non-negligible finite velocities 

due to inertia and friction (Destexhe and Bedard, 2012). Especially the limited charge mobility 

could result in a delay between the ionic current induced by the opening of post-synaptic 

channels and the setting in of the extracellular and return current. Hence, the appearance of a 

membrane current might not be instantaneously equilibrated by a return current as required for 

the applicability of Kirchhoff’s laws and as assumed in the traditional dipole model of the 

volume conductor theory. As a consequence, it allows for the possibility of strong monopolar 

components in the initial, non-stationary, phase of neuronal currents as experimentally observed 

by Riera et al. (Riera et al., 2012). 

To resolve this issue, Bedard and Destexhe have proposed a macroscopic model of LFP 

generation which incorporates frequency-dependent conductivity and permittivity using a mean-

field approach (Bedard and Destexhe, 2009). They show that the frequency-dependence of the 

macroscopic (i.e. spatially averaged) electrical parameters (conductivity and permittivity) is the 

result of the microscopically non-neutral nature of the cortical medium (despite the observed 

macroscopic neutrality). In particular, they predict that ionic diffusion currents are an important 

physical cause of the frequency dependence of the LFP and are thus a major determinant in the 

genesis of the LFP. 

Although the debate over the exact nature of the medium and thereby over the important 

factors affecting the forward model is still ongoing, evidence for non-ohmic effects have recently 
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received interesting experimental support (Gomes et al., 2016). It is thus perfectly conceivable 

that in the near future the traditional forward model of field potential generation in brain tissue 

will need to be profoundly revised. 

1.5 The Inverse Problem: Current-Source Density Estimation 

As mentioned previously, CSD estimation is an inverse problem. The origin of this 

naming is schematically illustrated in Figure 1-1. The forward problem describes the physical 

mechanisms by which neural activity generates field potentials in the recording medium which 

has been discussed in detail in the previous two sections. One might think that once this process 

is understood, the estimation of neural activity from measured potentials will be a relatively 

simple and straightforward task. But it turns out that solving the inverse problem is surprisingly 

difficult. In this section, I provide a short introduction to the reasons behind the difficulties 

without going into much detail. This topic is then resumed in Chapter 3 where the particular 

solution of one-dimensional CSD estimation is analyzed in depth. Moreover, the discussion here 

is limited to CSD estimation in the context of the standard, i.e. resistive, piece-wise 

homogeneous and isotropic, forward model. The reason behind this limitation being simply the 

current lack of knowledge and data about the solution to the more complicated forward 

problems. 

In a purely resistive, homogeneous, and isotropic medium, the field potential 𝜑 is related 

to the volumetric source density C by 

Figure 1-1: Schematic of inverse nature of current-source density estimation. 
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 C = −σ∆𝑉 = −𝜎 (
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
)𝜑 (5) 

As mentioned previously, this is arrived at by combining the differential law of charge 

conservation with Ohm’s law and setting C = −
𝜕𝜌

𝜕𝑡
. As an important side note, it is worth 

mentioning that this formulation is paradoxical because it is contradictory to Gauss’s law since 

the potential is independent of Poisson’s law in a homogeneous medium (𝜀∇2𝜑 = −𝜌) and 

solely determined by the charge conservation law (Bedard and Destexhe, 2011). When including 

Gauss’s law, we find that in order for the source density C to be different from zero, the so-called 

Maxwell-Wagner time (standing for the spreading time of excess free charge carriers in a 

material) needs to be non-negligible or the electric parameters need to display strong spatial 

variations. But both of these conditions violate the assumption of a homogeneous and purely 

resistive medium. However, despite this inconsistency, the standard CSD model has a long 

history of useful contributions to the study of brain function (see e.g. (Nicholson and Llinas, 

1975, Mitzdorf, 1985, Schroeder et al., 1998, Swadlow et al., 2002, Csicsvari et al., 2003, Jin et 

al., 2008, Riera et al., 2012)). 

The paradoxical nature of the problem aside, it is well known that neither Laplace nor 

Poisson-like equations such as Eq. 5 uniquely define the potential 𝜑. It can however be shown 

using the uniqueness theorem that specifying the boundary conditions on all surfaces of the 

medium is sufficient to uniquely define the system (Jackson, 1999). Moreover, using Green’s 

second identity together with Dirichlet boundary conditions at infinity, i.e. setting the potential to 

zero at infinity, it can be shown that the potential 𝜑 produced at position 𝑟 = (𝑥, 𝑦, 𝑧) by a unit 

strength point source located at 𝑟′⃗⃗  ⃗ = (𝑥′, 𝑦′, 𝑧′) is given by (Jackson, 1999, Brette and Destexhe, 

2012) 

 𝜑(𝑟 , 𝑡) =
1

4𝜋𝜎|𝑟 − 𝑟′⃗⃗  ⃗|
 (6) 

Analogously, when dealing with a spatially extended source distribution 𝐶(𝑟 , 𝑡), the potential at 

point 𝑟  and time 𝑡 is given by the volume integral 
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 𝜑(𝑟 , 𝑡) = ∫
1

4𝜋𝜎

𝐶(𝑟′⃗⃗  ⃗, 𝑡)

|𝑟 − 𝑟′⃗⃗  ⃗|𝑉

𝑑𝑉′ (7) 

where the integration limits are chosen to cover the full support of 𝐶.  

Equation 7 is known as a linear Fredholm integral equation of the first kind and the right-

hand side of Equation 6 is sometimes referred to as the data kernel (Wing and Zahrt, 1991). The 

kernel is what is modified when dealing with non-homogeneous media, while the integral 

structure of Equation 7 is preserved since Maxwell’s equations are linear. It is however possible 

that a temporal integral needs to be added if the kernel has both spatial and temporal dependency 

(e.g. when conductivity is frequency dependent). 

At this point, the task of CSD estimation is fully defined: We want to estimate 𝐶(𝑟 , 𝑡) 

based on a limited number of data samples from 𝜑(𝑟 , 𝑡). Moreover, in an experimental setting, 

the data samples might be corrupted by noise. With this in mind, we are now ready to move on to 

the core of the thesis. We first demonstrate the usefulness of CSD in the study of brain function 

(Chapter 2). In particular, we will use the standard estimation method to study orientation 

selectivity in cat early visual cortex. It is important to mention that the traditional CSD 

estimation method is based on direct numerical estimation of the Laplace operator in Equation 5 

without the transformation to an integral equation (Freeman and Nicholson, 1975, Nicholson and 

Freeman, 1975). In order to address known limitations in the standard CSD method, we therefore 

perform a detailed analysis of the methodological approaches to solve the CSD estimation 

problem in a one-dimensional setting (Chapter 3). In particular, we propose a novel estimation 

framework inspired by linear inverse theory with a special emphasis on higher-order spectral 

regularization methods. In Chapter 4, we then return to investigate the relationship between the 

integral and differential formulation of 1-D CSD estimation. Finally, since the focus of this thesis 

is on CSD estimation, I refrain here from providing an extended introduction into the anatomical 

and functional properties of cat area 18. Instead, the next section only provides the motivation as 

well as a short overview of the information necessary to properly contextualize the work 

presented in the next chapter. The reader interested in a more thorough discussion of the anatomy 

and functional properties of cat early visual cortex is instead referred to appendix A. 
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Preface to Chapter 2 

Functional integration of activity within and between neuronal populations is essential for 

rapid and reliable information processing in the brain (Fingelkurts and Kahkonen, 2005). 

However, the complexity of brain connectivity makes investigation of functional integration a 

particularly challenging task. Analysis of anatomical connectivity suggests that the brain 

processes information in a highly parallel and distributed manner (Scannell et al., 1995, Hilgetag 

et al., 2000). This in turn imposes the question of how the brain integrates information across 

neuronal populations. We approached this question by investigating orientation selectivity in cat 

early visual cortex. In this section, I present a summary of how the lamina-specific topology of 

the anatomical connections of cat area 17 and 18 potentially influences their respective neuronal 

activity. For greater generality, I introduce both cat visual area 17 and 18 since these are 

sometimes grouped together to form the primary visual cortex due to their extensive interrelation 

(Payne and Peters, 2002). 

The visual cortex is composed of multiple areas, each containing a distinct functional map 

of visual space (Payne and Peters, 2002, Frisby and Stone, 2010). For example, both areas 17 

and 18 contain a clear retinotopic representation of visual space in addition to a superposed well-

described orientation selectivity map (other maps such as ocular dominance, direction selectivity, 

color and spatial frequency selectivity are also found albeit to a weaker extent). Moreover, the 

neuronal units constituting these areas are heavily and non-randomly interconnected, both 

laterally and by inter-laminar connections, leading them to exert an influence onto each other. 

Using the example of cat area 17 and 18, it was shown that anatomical connections preferably 

link regions of similar orientation preference (Gilbert and Wiesel, 1989). 

Cat visual area 17 and 18 both receive direct innervation from the retina via the lateral 

geniculate nucleus (LGN) (Payne and Peters, 2002). Specifically, there are three distinct 

pathways called X, Y, W that project from the retina to the cortex. Anatomical studies have 

shown that the Y-pathway innervates both area 17 and 18 while the X-pathway probably only 

innervates area 17 (Payne and Peters, 2002). Additionally, the W-pathway also innervates both 

areas, as well as higher order visual areas. However, because W-cell responses to visual 

stimulation are sluggish, I will not discuss this pathway further. 
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Y- and X- cells are optimally driven by different visual stimuli: The Y-pathway responds 

stronger to higher temporal but lower spatial frequencies while the X-pathway prefers mid-range 

to high spatial frequencies but low temporal frequencies. Additionally, both pathways are 

contrast selective. This makes it possible to preferably activate one area over the other by 

manipulating the stimulus. Moreover, responses can also be graded by modifying the contrast. 

The X-pathway forms the major input of area 17 and innervates extensively layer 4A 

(upper layer 4) and also layer 6A. On the other hand, Y-cells innervate lower layer 4 in area 17 

and the full extent of layer 4 in area 18. Additionally, they also send processes to layer 6 (Payne 

and Peters, 2002). 

Finally, area 17 and 18 extensively project to each other in a lamina-specific manner. 

Projections from area 17 to area 18 mainly originate in layer 2/3 and terminate in layer 2/3 while 

projections from 18 to 17 originate in layer 2/3 and 5 and terminate in layer 2/3 and 5 (Symonds 

and Rosenquist, 1984). The projections between area 17 and 18 have also been shown to 

preferably connect regions of same retinotopy and similar orientation preference (Salin et al., 

1995, Shmuel et al., 2005). 

An important item to add here is that it is thought that there are two general classes of 

neuronal projections, namely driver and modulatory projections (Sherman and Guillery, 1998). 

The difference between the two, as the name implies, is that driver connections can make their 

post-synaptic partner neuron fire an action potential while modulatory connections only create 

sub-threshold effects. It has been proposed that the projection from the LGN to cortex is of the 

driver kind (Sherman and Guillery, 1998). Recently, studies on the auditory and visual cortex of 

the mouse have shown evidence for two distinct classes of synapses: Class 1B, a sub-class of 

driver synapses, and Class 2, assumed to be identical to the modulatory synapses found in the 

thalamus (Covic and Sherman, 2011). Class 1B is differentiated from Class 1A, which is equated 

with the previously found driver synapses in the thalamus, in that Class 1B shows graded EPSP 

amplitude as a function of input intensity while Class 1A shows an all-or-none EPSP amplitude 

pattern (Covic and Sherman, 2011). It was found that the projections between mouse V1 and V2 

contain both Class 1B and Class 2 type of synapses in both directions, i.e. from V1 to V2 as well 

as from V2 to V1 (De Pasquale and Sherman, 2011). At this point it is not really clear how these 
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findings can be translated to the cat visual cortex due to the lack of comparable data. However, 

although it is still unknown whether cat cortico-cortical projections are predominantly driving 

(Class 1) or modulatory (Class 2), based on the results from mouse visual cortex it seems 

reasonable to assume that both types of projections could also be found in the cat. 

On functional grounds, it is interesting to note that cortico-cortical projections between 

areas 17 and 18 are sufficiently strong to drive each other without LGN input to one of the areas. 

By destroying layer A of the LGN which provides the only X-input from the contralateral eye, 

Malpeli et al. showed that activity in the superficial layers of area 17 could only be silenced if 

area 18 was inactivated simultaneously with the LGN (Payne and Peters, 2002). This indicates 

that connections between area 17 and 18 could potentially play an important role in shaping their 

mutual response. Nonetheless, studies which inactivated either supragranular or infragranular 

layers of area 18 failed to see a consistent effect on area 17 responses (Alonso et al., 1993a, b, 

Martinez-Conde et al., 1999). This again imposes the question of the use of these extensive 

mutual connections. 
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2 Chapter 2: Laminar specific, orientation selective current-source density in cat 

area 18 

Orientation selectivity in neurons in the visual cortex is the result of a dynamic process 

comprising a weighted combination of feed-forward, local, and feedback signal integration. 

Although much effort has been devoted to understanding the emergence of orientation 

selectivity, the exact mechanisms are still incompletely understood. In particular, it is still 

unclear how orientation specific signals are selectively relayed across cortical layers. Since 

current-source density (CSD) is hypothesized to depict synchronized synaptic activity, it should 

be well suited to further our understanding of the role of intracortical signal processing in the 

emergence of orientation selectivity. Surprisingly, previous studies reported that the 

spatiotemporal CSD pattern is virtually invariant to the properties of the visual stimulus. Here we 

revisit this paradox by comparing 1-D laminar CSD responses in cat visual area 18 to gratings 

varying in contrast and orientation. Contrary to previous reports, we found clear orientation 

selective components in the CSD responses. In particular, the primary sink in layer IV extended 

to supragranular layers when the optimal orientation was presented. Similar spatio-temporal 

dynamics were also observed in response to a non-orientated stimulus but were absent in the 

non-optimal orientation. This orientation-specific modification in the extent of the sink was also 

observed in response to lower contrast stimuli suggesting that the observed effect is not due to a 

difference in overall neural activation but rather reflects differences in cortical signal processing. 

Hence, we present evidence that feature selection in early cortical processing involves selective 

information transfer between cortical laminae. 

2.1 Introduction 

Lower visual areas comprise functional modules arranged as cortical columns. The 

functional selectivity shown by neurons in such columns remains approximately unchanged 

along tracks orthogonal to the cortical surface (Hubel and Wiesel, 1962). In several species, 

these cortical columns are arranged in complex maps showing gradual changes in functional 

selectivity across the cortical surface (Swindale, 2004, White and Fitzpatrick, 2007). Several 

functional properties are organised in cortical columns and maps, including ocular dominance 

(Hubel and Wiesel, 1968), orientation selectivity (Hubel and Wiesel, 1962, Bonhoeffer and 
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Grinvald, 1991, Shmuel and Grinvald, 2000) and direction of motion (Albright, 1984, Malonek 

et al., 1994, Shmuel and Grinvald, 1996, Weliky et al., 1996, Swindale et al., 2003). 

Our existing knowledge on the emergence of orientation selectivity and its columnar 

organisation makes it a classic model system for understanding the cortical processing of sensory 

input and information transfer between layers. Current models of orientation selectivity differ in 

the specific contribution of thalamocortical versus intracortical connections. Models based on 

thalamocortical projections (Hubel and Wiesel, 1962, Palmer and Davis, 1981, Ferster, 1986, 

1988, Reid and Alonso, 1995, Chung and Ferster, 1998) propose that orientation selectivity 

results from the precise spatial arrangement of inputs from the thalamic Lateral Geniculate 

Nucleus (LGN) onto cortical cells. In contrast, models that emphasize cortical involvement 

propose that orientation selectivity results from intracortical connections (Ben-Yishai et al., 

1995, Somers et al., 1995, Ringach et al., 1997, Sompolinsky and Shapley, 1997, Adorjan et al., 

1999, Shapley et al., 2007). It has also been argued that thalamo-cortical inputs may be the basis 

for orientation preference, but are insufficient for explaining orientation selectivity (Shapley et 

al., 2007). The nature of the cortical mechanisms that contribute to orientation selectivity 

remains unclear. In particular, the importance of laminar-specific cortico-cortical synaptic 

interactions remains elusive. 

A major challenge in elucidating laminar-specific synaptic interactions is to collect 

spatially localized signals resulting from synaptic activity. This is particularly difficult because 

extracellularly recorded field potentials are volume conducted and are thus a non-local measure 

of neuronal activity. A potential solution to this problem is to estimate laminar current-source 

density (CSD) from the recorded local field potentials (LFP). Given certain assumptions, CSD 

analysis provides the pattern of local transmembrane currents that generate the LFP recorded in 

the extracellular medium (Nicholson, 1973, Nicholson and Freeman, 1975, Mitzdorf and Singer, 

1978). In contrast to the volume-conducted LFP (Kocsis et al., 1999), CSD is locally confined 

(Mitzdorf, 1985). It therefore enables the localization of synchronized synaptic activity 

integrated over all processes taking place near the probe. 

Intracortical processing is expected to contribute significantly to orientation selectivity 

(Ben-Yishai et al., 1995, Somers et al., 1995, Ringach et al., 1997, Sompolinsky and Shapley, 

1997, Adorjan et al., 1999). In addition, inter-laminar interactions are expected to play a crucial 
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role in cortical computations. Therefore, one would expect that the spatiotemporal laminar 

distribution of current sources and sinks would vary with the orientation of grating stimuli. 

However, although cortical layers differ anatomically and functionally, previous studies 

concluded that functional parameters of the visual stimuli are reflected only in minor 

modulations of the CSD (Mitzdorf, 1985). The use of CSD for analyzing intracortical processing 

underlying orientation selectivity or any other functional selectivity remains questionable, as is 

the contribution of intracortical processing to orientation selectivity. However, to our knowledge, 

no analysis of CSD specifically associated with the response to oriented gratings has been 

reported. Therefore, whether CSD reflects the intracortical processing of orientation selectivity 

remains unknown.  

Here we aim to test whether laminar specific synchronized synaptic activity as estimated 

by CSD shows orientation selective responses. We further aim at testing the hypothesis that 

layers 2/3 receive more potent synaptic input when processing the preferred orientation relative 

to the non-preferred orientation. Cat area 18 has several features that make it suitable for such an 

investigation. Both areas 17 and 18 receive their main input from layers A and A1 of the LGN in 

their respective layers IV and VI. However, area 18 receives a more uniform projection 

comprised of a strong input from the Y pathway and little to no input from the X pathway (Hubel 

and Wiesel, 1962, Hoffmann et al., 1972, Stone and Dreher, 1973, LeVay and Gilbert, 1976). 

This makes area 18 a simpler model to study intracortical processing in comparison to area 17. 

The responses to oriented stimuli in area 18 are organised in columns, i.e. orientation selective 

cells with similar preferred orientation are present in all layers (Hubel and Wiesel, 1962, Gilbert, 

1977). This includes the layers that receive input from the LGN, which is not the case for other 

species such as the macaque monkey for example (Blasdel and Fitzpatrick, 1984, Hawken and 

Parker, 1984). 

Parts of the results presented here have been previously presented in an abstract form 

(Kropf et al., 2010). 

2.2 Methods 

2.2.1 Animal preparation 

All procedures were approved by the animal care committees of the Montreal 

Neurological Institute and McGill University, and were carried out with great care according to 
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the guidelines of the Canadian Council on Animal Care. Eight adult cats weighing 2.5–3.5 kg 

were used. Cats were premedicated with acepromazine maleate (Atravet®, Boehringer 

Ingelheim, 1.0 mg/kg, S.C.) and glycopyrrolate (Sandoz Canada, 0.01 mg/kg, I.M.). Fifteen to 

thirty minutes after this injection, deep anesthesia was induced by inhalation of 5% of isoflurane 

(Baxter Medical) mixed with O2/NO2 (50:50). The level of isoflurane was gradually lowered and 

maintained at 2% for the initial stages of the surgery. Blood oxygen saturation and heart rate 

were monitored using pulse oximetry (Nonin Medical, Inc.), while end tidal CO2 pressure was 

monitored with a capnometer (Capnomac Ultima, Datex). Depth of anesthesia was determined 

by verifying lack of response to clamping the inter-digital web of the posterior paws and by 

monitoring the heart rate. Following endotracheal intubation and cephalic vein cannulation, 

muscular relaxation was induced by administering gallamine triethiodide (2%, I.V.; Sigma-

Aldrich). Upon cessation of spontaneous breathing, the animal was artificially ventilated with a 

mixture of O2/NO2 (33%/67%) using a respiratory pump (Ugo Basile, 6025). Lidocaine 2% 

(Lidocaine Neat, Pfizer) was administered at all points of pressure and incision. The cat was then 

placed in a stereotaxic frame (David Kopf instrument) modified for allowing visual stimulation. 

End-tidal CO2 partial pressure was kept between 30 and 38 mm Hg by adjusting the rate and 

stroke volume of the respiratory pump. The core temperature was maintained at 38°C by a 

feedback-controlled heating pad (Homeothermic Blanket Systems, Harvard Apparatus). The 

animals were continuously infused with 5% Dextrose in lactated Ringer’s injection solution 

(Abbott Laboratories) mixed with gallamine triethiodide (50:50, 20 mg/kg/h).  

At the end of the surgical procedures, isoflurane was switched to 0.5-1.0% halothane (2-

Bromo-2-chloro-1,1,1-trifluoroethane, Sigma-Aldrich), since halothane is less detrimental to 

neuronal responsiveness (Villeneuve and Casanova, 2003). During imaging and recordings, the 

animals were infused with 5% Dextrose in lactated Ringer’s mixed with gallamine triethiodide 

(50:50, 20 mg/kg/h), and were ventilated with O2/NO2 (33%/66%) mixed with 0.5-1.0% 

halothane. Pupils were dilated with phenylephrine hydrochloride 2.5% (Mydfrin®, Aventix 

Animal Health). The eyes were protected using contact lenses of appropriate refractive power, 

such that they were focused on a tangent screen at a distance of 30 cm. The blind spot of each 

eye was back projected on the screen and the area centralis was located accordingly (Bishop et 

al., 1962). 
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2.2.2 Visual stimulation 

All stimuli were written in Matlab 7.10.0.499 (R2010a) using the Psychophysics Toolbox 

3.0.8 extensions (Brainard, 1997) run on a Quad-CPU MacBook Pro 6.2 (Mac OS 10.6.7) with a 

NVIDIA GeForce GT 330M graphic card. The stimuli were presented on a 19 inches Dell 

1908FPt monitor set at 60Hz refresh rate. The monitor was positioned at a distance of 30cm from 

the eyes, covering a field of view of 53º by 64º. The luminance was gamma corrected using Eye-

one display II (X-rite). The mean of the maximum luminance of the monitor was set at ~30 

cd/m2. 

2.2.3 Optical imaging and analysis of imaging data 

Optical imaging was pursued at the beginning of each experiment to functionally identify 

area 18 and to locate orientation selective modules. Based on atlas and stereotaxic coordinates 

(Reinoso-Suárez, 1961), a circular chamber with inner diameter of 20 mm was implanted, 

centered on Horsley-Clarke coordinates AP +4 and ML 0, over portions of areas 17 and 18 (Fig. 

2-1A, Ai). The cortex was illuminated uniformly with green light (546 nm, BP 30). Optical 

imaging was pursued using a VDAQ 3001 system (Optical Imaging Inc., Rehovot, Israel) 

equipped with a twelve-bit CCD camera (Dalsa 1M60, Canada) and a macro lens (Nikon, AF 

Micro Nikkor, 60 mm, 1:2.8 D). Drifting oriented sine wave gratings were presented for 8s 

followed by an inter-stimulus interval of 10s, in which the next oriented grating stimulus was 

presented in a stationary manner. The parameters of the sine wave gratings were optimized for 

eliciting responses in area 17 (spatial frequency (SF) 0.5c/deg, TF 2Hz) and area 18 (SF 

0.15c/deg, TF 4Hz) (Movshon et al., 1978b). Two oriented gratings, spanning the orientation 

space at a resolution of 90 degrees were presented. Each of these oriented gratings drifted in two 

opposite directions orthogonal to their orientation. Orientation maps were computed by summing 

the raw responses to the same orientation and opposite directions and dividing the result by the 

sum of responses to the orthogonal orientation. Panels Bi and Bii of Figure 2-1 show orientation 

modules in area 17 and area 18, respectively. Dark modules indicate regions that were more 

responsive to horizontal gratings, whereas bright regions indicate a preference for vertical 

orientation. 

To map the responses to stimuli optimized for eliciting activations in area 17 (18), all 

cortical images obtained during the presentation of the corresponding stimuli were summed and 
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divided by the sum of cortical images obtained during the presentation of a blank gray stimulus. 

The mappings of areas 17 and 18 are presented in Panels Biii and Biv, respectively. Dark regions 

indicate locations for which the stimuli elicited stronger response than the blank condition. 

Functional delineations of area 17 (blue dashed curves) and area 18 (red dashed curves) were 

made based on their activation maps. 

2.2.4 Neurophysiology 

Neurons at the centers of orientation modules and those located close to orientation 

singularities (‘pinwheels’) receive synaptic inputs from neurons with a narrow and wide 

distribution of orientation preferences, respectively (Yousef et al., 2001, Schummers et al., 

2002). In order to study the orientation selectivity of the CSD response, we needed data from 

columns with a clear orientation preference. We therefore targeted each electrode insertion to the 

Figure 2-1: Functional identification of areas 17 and 18. Panels A and Ai present the reference atlas coordinates that were 

used and the corresponding position of the recording optical imaging chamber, respectively. Panel B shows analysis 

results of optical imaging of intrinsic signals. Panel B presents the cortical image under green light while Panels Bi, Bii, 

Biii, Biv present differential orientation maps for areas 17 and 18 and activation maps for areas¬ 17 and 18, respectively. 

Area-specific optimal spatiotemporal parameters were used to elicit responses in each area. Orientation modules are 

confined to area 17 and area 18 in Panel Bi and Bii, respectively. Similarly, activation maps presented in Panel Biii and 

Biv illustrate the functional segregation between the two areas. Blue and red dashed curves represent the functional 

boundaries of area 17 and 18, respectively. 
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center of an orientation module in area 18, identified based on the differential analysis of the 

optical imaging responses described above.  

Neurophysiological recordings were performed using multi-channel recording probes 

(A32, 32 channels, intervals between adjacent contacts 100 𝜇𝑚, impedance 1-2 MΩ, contact 

surface area 413 𝜇𝑚2, NeuroNexus Technologies) and a Tucker-Davis Technologies RZ2 multi-

channel neurophysiology system. The probes were inserted roughly 2.5 𝑚𝑚 deep into cortex 

perpendicular to the cortical surface. The initial screen position was first determined by listening 

through a speaker to the neuronal activity on multiple channels in response to a computer-

generated white/black bar on a black/white background. In order to quantitatively locate the 

aggregate receptive fields and to center the screen on their centroid, we pursued a reverse 

correlation analysis of sparse noise stimuli, composed of black and white squares flashed 

individually for one frame (16 𝑚𝑠) on a gray background. Once the position of the screen was 

set, we optimized the insertion depth of the probe in order to assure coverage of the gray matter. 

To this end, flashing (16 𝑚𝑠) full screen checkerboard stimuli with SF of 0.15 𝑐/𝑑𝑒𝑔 were 

presented. We then pursued CSD analysis, which guided modification of the insertion depth such 

that the fast, high-amplitude sink response (assumed to occur in layer 4) was recorded 

approximately at the middle of the probe. 

The angle of the insertion relative to the cortical surface was evaluated by computing the 

preferred orientation as a function of cortical depth. In cat area 18, preferred orientation is 

organized in columns, with the preferred orientation remaining approximately unchanged with 

increasing cortical depth (Hubel and Wiesel, 1962; Shmuel and Grinvald, 1996). The spike rate 

during the presentation of oriented gratings was used to determine the preferred orientation of all 

responding channels. We then verified that no systematic gradient in preferred orientation was 

observed with increasing cortical depth. In order to be included in the main analysis, the SD of 

the preferred orientations of action potentials recorded across contacts had to be smaller than 

22.5°. 

In order to increase the stability of the recordings, in the majority of the recordings (7 out 

of 8 animals) the exposed cortex was covered with warm (40° 𝐶) 1% agar (Sigma-Aldrich). 

During recordings in which the position of the probe relative to the surface of cortex was 

monitored by imaging (see section on histology), the brain was covered with HBSS (Invitrogen) 
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to prevent dryness. The recordings made with agar and HBSS did not show any differences in 

their neurophysiology profiles. We therefore included both for further analysis. 

Once the position of the screen (centered on the RFs) and the position of the probe (depth 

and angle) were adjusted, optimal spatio-temporal parameters for oriented gratings were 

assessed. Multiple contrasts (2.5%, 5%, 10%, 20%, 40%, 80% and 100%) were tested along with 

eight orientations, spanning the orientation space at a resolution of 22.5°. Each of these eight 

oriented gratings drifted in two opposite directions. Stimuli were presented for 1 𝑠 with 1 𝑠 inter-

stimulus interval. The inter-stimulus condition was a gray screen of luminance equal to the mean 

luminance of the grating stimuli (~30 cd/m2). Responses to stimuli of the same orientation but 

opposite-direction were averaged together. In order to compare the cortical responses of oriented 

gratings to those elicited by non-oriented stimuli, we presented a flashing (32 𝑚𝑠 on, 1 𝑠 off) full 

screen checkerboard pattern of optimal spatial frequency.  

The extracellular potentials were recorded at a sampling rate of 24414.0625 Hz. They 

were band-pass filtered with cut-off frequencies at 1 and 150 Hz using a 10th order FIR filter and 

down sampled to 1 kHz to obtain the LFP. In addition, the raw signals were separately band-pass 

filtered between 300 and 3000 Hz to obtain multi-unit activity (MUA). Custom MATLAB 

scripts (version R2012a; The Mathworks) were used to analyze neurophysiological signals. 

2.2.5 CSD analysis 

To estimate the CSD, we used the standard method based on a 5-point approximation of 

the second spatial derivative (Freeman and Nicholson, 1975): 

𝛿2𝜑

𝛿𝑧2
=
𝜑(𝑧 + 2ℎ) − 2𝜑(𝑧) + 𝜑(𝑧 − 2ℎ)

4ℎ2
 

where ℎ is the interval between electrode contacts (100 𝜇𝑚). The one-dimensional CSD was 

then computed using the following equation:  

𝐼(𝑧) =  −𝜎
𝛿2𝜑

𝛿𝑧2
 

where 𝑧 is the direction perpendicular to the cortical surface, 𝜑 the recorded LFPs and σ is the 

assumed homogeneous cortical conductivity (0.3 𝑆/𝑚) (Pettersen et al., 2006). The method of 

Vaknin was used to estimate the CSD at the top and bottom 2 electrodes (Vaknin et al., 1988). 
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2.2.6 Measurements of CSD components 

Prior to any quantification, we excluded signals with origin in dysfunctional channels (10 

times larger low and high frequency fluctuations in comparison to other channels) which we 

occasionally observed. We replaced the missing signals by interpolating the recorded LFP using 

cubic splines prior to estimating the CSD. To evaluate the changes in the CSD profile between 

different conditions, the amplitudes of the CSD responses were normalized for each condition 

separately by dividing by the maximum absolute value of the CSD. Since our probe covered 3.1 

mm, some channels were in cortex while others were in white matter or outside the brain. Hence, 

the normalization was performed by taking into account only channels that responded to grating 

and checkerboard stimuli, i.e. the ones within the gray matter. Where available, the 

appropriateness of this selection was also confirmed via histological reconstruction. 

The cortical thickness in cat area 18 is variable (Beaulieu and Colonnier, 1985, van der 

Gucht et al., 2001). This made it difficult to align multiple CSD profiles from different recording 

sessions and animals for the purpose of group analysis. Therefore, pair-wise comparisons of 

measurements obtained from single insertions were pursued (see results for details). 

In order to compare the CSD response across conditions, an analysis time window was 

set. The CSD response amplitude is higher at the beginning of the response when synchronized 

activity occurs. Therefore, we focused the analysis on the CSD signal in a time window starting 

in the range of 20 − 55 𝑚𝑠 after stimulus onset and ending 100 − 160 𝑚𝑠 after stimulus onset. 

The starting time and duration of the analysis window was determined for each insertion 

separately. To avoid biasing the analysis with a manual window selection, we used the following 

data driven approach: First we averaged the CSD responses across all orientations. We then took 

the absolute value of the CSD and averaged all the channels within the cortex (𝑊𝐶𝑆𝐷). 

Subsequently, we high-pass filtered 𝑊𝐶𝑆𝐷 using a least-square linear filter (cutoff frequency at 5 

Hz). We then defined a baseline signal (𝑊𝑏𝑎𝑠𝑒) by taking the 0.25 s prior to stimulation from the 

filtered 𝑊𝐶𝑆𝐷. To determine the window length (𝑊𝑖𝑛), we thresholded 𝑊𝐶𝑆𝐷 in the 200 𝑚𝑠 

following stimulus onset (𝑊𝑖𝑛 =  𝑊𝐶𝑆𝐷 ≥ 𝑚𝑒𝑎𝑛(𝑊𝑏𝑎𝑠𝑒) + 5 ∗ 𝑠𝑡𝑑(𝑊𝑏𝑎𝑠𝑒)). Finally, we added 

a buffer of 10 𝑚𝑠  before and 30 𝑚𝑠 after the window to get the final window length. In order to 

match the analysis of the action potential response to that of the CSD response, the same time 

window was also used for the analysis of the spiking activity. 
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For the analysis of the different CSD compartments, the raw CSD was temporally 

averaged (𝐶𝑤𝑖𝑛) over the time window (𝑊𝑖𝑛) described above. To determine the spatial extent of 

the sources and sinks, we calculated the mean and standard deviation of the baseline CSD 

(𝐶𝑏𝑎𝑠𝑒 = CSD over 0.25 s prior to stimulation) separately for each channel in cortex. We then 

computed a threshold vector comprising a threshold for each contact 𝐶𝑣𝑒𝑐 = |𝑚𝑒𝑎𝑛[𝐶𝑏𝑎𝑠𝑒]| + 2 ∙

𝑠𝑡𝑑[𝐶𝑏𝑎𝑠𝑒]. To obtain a scalar threshold (𝐶𝑡ℎ𝑟𝑒𝑠ℎ) independent of depth, we spatially averaged 

𝐶𝑣𝑒𝑐 over the channels within the cortex (𝐶𝑡ℎ𝑟𝑒𝑠ℎ = 𝑚𝑒𝑎𝑛[𝐶𝑣𝑒𝑐] over channels within cortex). 

We also computed the standard deviation of 𝐶𝑣𝑒𝑐 over the channels within the cortex to identify 

outlier data. Insertions that showed a standard deviation exceeding 0.1 were deemed too noisy 

and were excluded from further analysis. The spatial extent of the primary sink response was 

then defined as 𝑠𝑢𝑚[𝐶𝑤𝑖𝑛 ≤ −𝐶𝑡ℎ𝑟𝑒𝑠ℎ] (𝐶𝑤𝑖𝑛 ≥ 𝐶𝑡ℎ𝑟𝑒𝑠ℎ for the extent of the sources). In other 

words, we defined any response exceeding twice the baseline fluctuation as a meaningful 

response. The analysis was also performed with a threshold of 1 standard deviation which did not 

alter the results presented herein. 

2.2.7 Spiking activity 

Band-pass filtered data (300-3 kHz) was post-processed for automatic spike detection, 

sorting and clustering. The spike-sorting pipeline is based on the open-source MATLAB package 

Wave_Clus (Quiroga et al., 2004). From the filtered traces, signal with amplitude higher (lower, 

when negative) than a threshold determined as 3 standard deviations of the baseline signal were 

identified as spikes. A segment of each detected spike (0.75 𝑚𝑠 before the peak and 2.25 𝑚𝑠 

after the peak, 64 data points for each segment) was cut and saved for further processing. All 

spike segments were then aligned according to their respective peaks following interpolation of 

the spike shape with cubic splines. To avoid double detections of the same spike, only spikes 

separated by at least 1.5 𝑚𝑠 were included. Feature extraction was performed with wavelet 

coefficients analysis of the spike events by computing a Kolmogorov Smirnov test of Normality. 

Finally, superparamagnetic clustering was performed to isolate spike classes. 

Upon further inspection, the data showed two different clusters of spikes in each of the 

recording contacts; one cluster included the majority of the detected spikes. Therefore, this 

cluster was used for the analysis related to spiking activity. It should be noted that we cannot 

stipulate that the spike sorting and clustering analysis resulted in single cell activity, but rather an 
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improved, more specific MUA signal. Simple MUA involves crude thresholding of the signal; 

thus, every point above the threshold is counted as a spike. The first part of the clustering 

workflow involved thresholding for spike detection, which was followed by sorting and 

clustering analysis that removed unreliable detected signal by performing wavelet analysis. Spike 

sorting and clustering removed a large part of spurious signal that occurs when only thresholding 

is applied. To quantify and compare the spiking activity with the CSD pattern, we analyzed the 

spiking activity from the same channels as those used for CSD analysis, thus excluding signals 

from channels positioned above cortex or in white matter. In addition, we computed the spike 

rate across the same time window used for quantifying the CSD. 

2.2.8 Response latency 

In order to locate contacts within specific cortical layers, we computed the latencies of 

responses to the visual stimuli. Latencies vary significantly between cortical layers in the visual 

cortex, with the shortest latencies observed in layer IV (Best et al., 1986). Latencies of responses 

were calculated using the cumulative sum technique (Ellaway, 1978, Vogels and Orban, 1990, 

Raiguel et al., 1999, Ouellette and Casanova, 2006).The analysis was carried out on the mean 

peri-stimulus time histograms (PSTH) with a bin resolution of 1msec for each grating 

orientation. The mean and standard deviation of the spontaneous spike rate over the 150-ms 

periods preceding stimulus onset was computed separately for each orientation. Next, the mean 

spontaneous activity was subtracted from the mean PSTH separately for each grating condition. 

Then, a cumulative sum of the result was calculated. The onset of the response was defined as 

the first bin after stimulus onset where the response exceeded the mean spontaneous discharge 

rate by three standard deviations conditioned that it was followed by at least two successively 

increasing bins. The latencies were then averaged across the different orientations and the 

standard deviation was computed. 

2.2.9 Layer Identification/Histology  

In control experiments, probes were dipped in DiI (Invitrogen) prior to insertion into 

cortex. This fluorescent dye was used to stain the tracks left by the recording probe for optimal 

registration of neurophysiological responses with neuroanatomical structures (DiCarlo et al., 

1996) and to properly locate the recording sites in relation to the optical imaging data. Panels A 

and Ai of Figure 2-2 shows images taken at the end of the experiment after the skull was 
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removed (areas 17 and 18 are delineated with blue and red dashed curves respectively). Panel A 

shows the posterior part of the right hemisphere under green light, while Panel Ai shows the 

fluorescence produced by the DiI left at each recording insertion (excitation filter 535(BP 50); 

emission filter 565 (HP)). Fluorescence at each insertion site appears as a bright circular region. 

Insertions in the transition zone between areas 17 and 18 or in area 17 were excluded from 

further analysis. Imaging the fluorescence sites at the exact same plane used for the functional 

Figure 2-2: Post-processing of cortical tissue. In A, a reference image taken after the skull was removed. In Ai, the same 

cortical region is now imaged under illumination optimized for detecting DiI fluorescence. The dashed red and blue 

curves represent the functional localization of areas 17 and 18, respectively, based on the optical imaging data presented 

in Figure 2-1. In B, the frozen block used for histology presented as a reference. In Bi, the same frozen block is now 

imaged under illumination optimized for detecting DiI fluorescence. The white dashed line illustrates the plane of cut 

taken on the microtome of the slice presented in Panel C as reference and Panel Ci under illumination optimized for DiI. 
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optical imaging allowed precise alignment of electrophysiological recordings to the functionally 

identified cortical areas. Panels B and Bi present images of a smaller frozen block of tissue taken 

before histological processing, from the regions shown in Panels A and Ai. Panel B presents the 

block under white light and Panel Bi presents the same block under illumination and post filter 

optimized for DiI visualisation. The insertion sites can still be identified. Thus, the fluorescence 

allows selection of specific brain slices for further staining as shown in Panels C and Ci of 

Figure 2-2. These panels present images of the brain tissue cut along the dashed white line in 

Panel Bi. The images were taken while the tissue was on the microtome, under white light and 

under illumination optimized for DiI fluorescence, respectively. The electrophysiological 

findings were then interpreted in relation to the histology in Figures 2-8 and 2-9. 

To confirm the insertion depth of the probe, we imaged the insertion site and the part of 

the probe which was above the cortical surface at high resolution. This allowed counting the 

number of contacts that remained above the cortical surface, and helped determine the position 

of the surface relative to the probe contacts. In addition, we pursued two electrolytic lesions by 

means of current (50µAmp for 10s) administered through the bottom most contact (contact 32) 

and a contact 1 mm more superficially (contact 22). This electrolytic lesion protocol was not 

conducted in all experiments as it can be highly detrimental to the recording probes. 

At the end of the experiments, the animals were euthanized by an intravenous overdose 

of pentobarbital sodium (Euthanyl, 240 mg/ml/kg). The brain was removed from the skull and a 

block of tissue from the recorded area was immersed in paraformaldehyde (4%) for 24h, 

followed by cryo-protection in sucrose (30%) for the successive 24h. Forty micrometer thick 

serial sections (coronal plane) were cut using a sliding microtome (Leica SM 2000r). Brain slices 

showing DiI fluorescence were post-processed for cytochrome oxidase (equine heart, Sigma-

Aldrich) in order to identify cortical layers. For identification of cortical laminae we used the 

criteria from Price (1985) who stipulated that cytochrome oxidase primarily stains layer IV and 

VI. The electrolytic lesions allowed for accurate registration of the recording contacts in relation 

to the cortical laminae. We confirmed that probe insertion were in area 18 by combining 

functional information from optical imaging, optimal spatio-temporal parameters used for 

electrophysiology and cytoarchitectonic standards described by Price (1985). 
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Figure 2-3: Orientation selectivity of CSD. Panel A shows the typical CSD response obtained by averaging the responses 

to 8 different oriented grating stimuli. Panel B presents the individual responses to each of these grating stimuli. Note that 

in response to the preferred orientation of this particular column (~67.5º), the primary sink (between coordinates 0.8 and 

1.1 mm on the vertical axis) extends towards more superficial contacts. The two dark rectangles show the region where 

this extension takes place in response to the optimal (67.5º) but not to the non-preferred (157.5º) orientation. Panel C 

shows the spike rate response obtained from the same insertion, with the preferred orientation (highest spike rate 

response) at 67.5º. 
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2.3 Results 

Here we show that the lamina resolved cortical CSD response is sensitive to the 

orientation of grating stimuli. Moreover, we show that this selectivity cannot be explained by 

differences in the amplitude of neuronal response elicited by the preferred orientation. Instead it 

is a signature of the neuronal processing of orientation per se. We found that this selectivity is 

specific to sub-compartments of the CSD profile: a specific segment of the CSD response is 

orientation selective while others are invariant. 

Oriented grating stimuli elicited reliable and reproducible CSD responses in cat area 18. 

Figure 2-3A shows the CSD response obtained in one run, averaged over 20 trials and 8 

orientations. The CSD profile presents a clear pattern in response to orientated gratings, which 

has been replicated in all of our recordings. The overall pattern of the response is very similar to 

that reported in previous studies in other species or systems (Mitzdorf and Singer, 1978, 

Mitzdorf, 1985, Happel et al., 2010, Maier et al., 2010, Maier et al., 2011). The CSD response 

clearly presents a fast, high-amplitude sink (blue; here centered on 1.0 mm along the vertical 

axis; termed ‘primary’ in the remaining text), bounded by two adjacent high-amplitude sources 

(red), one deeper and the other more superficial relative to the primary sink. 

The focus of our present study is to investigate whether there are functional differences 

between CSD responses to different oriented stimuli. Figure 2-3B shows the normalized CSD 

responses to each of the 8 oriented gratings from the same run presented in Figure 2-3A. Figure 

2-3C presents the orientation tuning of the spiking activity for the same insertion. The preferred 

orientation based on the recorded MUA is approximately 67.5° (Figure 2-3C). Careful 

examination of Figure 2-3B shows that the spatial extent of the primary sink (in blue) varies 

across orientations. The orientation-dependent modulation of the CSD pattern is made clearer by 

comparing the CSD within the two black rectangles on the fourth panel (optimal orientation) and 

the eighth panel (non-optimal orientation). In particular, the sink extends to more superficial 

contacts in response to the preferred orientation. 

This spatial extension in the sink response was consistent across the majority of our 

experiments. When observed, it always extended more superficially relative to the fast high-
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amplitude sink component. In contrast, the two sources (red) surrounding the main sink remained 

approximately invariant to the orientation of the grating. 

In order to confirm these qualitative observations, we conducted a quantitative evaluation 

of the variations in the CSD responses to different orientations. Figure 2-4 presents three scatter 

plots of different measurements of the CSD responses to optimal (along the vertical axis) versus 

non-optimal orientation. All measurements were based on the CSD responses following 

interpolation, normalization, averaging, and thresholding as described in the methods section. 

The average primary sink response to the optimal orientation was 0.13 mm longer than that to 

the non-optimal orientation (Figure 2-4A; main sink optimal orientation= 0.61 ± 0.13 mm 

(mean±STD), main sink non-optimal orientation= 0.48 ± 0.16mm, computed over 15 

penetrations obtained from 10 cats; p < 0.001, paired two tailed t-test). Figures 2-4B and 2-4C 

show that this selective modification in the CSD pattern was specific to the primary sink. In 

contrast to the modification observed in the primary sink, the superficial source response to the 

optimal orientation and to the orientation orthogonal to it were not significantly different (Figure 

2-4B; average difference 0.014 mm; p = 0.62). Similarly, the spatial extent of the deeper source 

Figure 2-4: Statistical measures of the changes in the CSD response. The length of the different compartments of the CSD 

are compared in a pair-wise manner (preferred vs. non-preferred orientation) for each insertion. In A, comparison of the 

lengths of the primary sinks elicited by the preferred and non-preferred orientations. In B, comparison of the length of 

the source adjacent to- and more superficial relative to the primary sink. In C, comparison of the length of the source 

adjacent to- and deeper than the primary sink. The length of the primary sink associated with the preferred orientation is 

significantly different (p< 0.001) than that of the non-preferred orientation. In contrast, the superficial and deep sources 

associated with the preferred orientation are not significantly different than their respective counterparts associated with 

the non-preferred orientation. 
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response to the optimal orientation and to the orientation orthogonal to it were not significantly 

different (Figure 2-4C; average difference -0.005mm; p = 0.83). These findings confirm that the 

sink responses to the optimal and non-optimal orientations were significantly different, and that 

this orientation selective CSD response feature is specific to the primary sink component. These 

findings further demonstrate that the CSD response can show selectivity and specificity in 

reflecting the spatiotemporal properties of a visual stimulus. 

It is however conceivable that the observed differences in the CSD response might be 

solely explained by the higher response amplitude elicited by the optimal orientation compared 

to the non-optimal orientation. To test this hypothesis, we compared the CSD responses to 

oriented gratings of two contrast levels. The rationale behind that approach was that if the pattern 

of the CSD response merely depends on the amplitude of the response, two sets of grating 

stimuli presented at different contrasts should present different CSD patterns. On the other hand, 

if the CSD response pattern reflects intra- cortical processing underlying orientation selectivity 

rather than the amplitude of the response, CSD responses obtained with high and low contrast 

gratings should be similar. In particular, we have chosen a contrast level for which the average 

spiking response to the optimal orientation at lower contrast was similar to the spiking response 

for the non-optimal orientation at 100% contrast. 

Figure 2-5 and 2-6 present the results of comparing the CSD responses to oriented 

gratings of two contrast levels. The top panel of Figure 2-5A illustrates an example of orientation 

tuning as a function of cortical depth, reflecting spike rate for eight oriented gratings presented at 

100% contrast. The preferred orientation associated with this insertion was 157.5º. The bottom 

panel of Figure 2-5A shows the corresponding normalized CSD responses. The differences in the 

pattern of the CSD primary sinks in response to the preferred (157.5º) and non-preferred (67.5º) 

orientations can be clearly observed. Consistent with our findings from Figure 2-3B, the sink 

response to the preferred orientation extended more superficially than that to the non-preferred 

response. A similar layout is used in Figure 2-5B, which presents the responses from the same 

electrode insertion to oriented gratings presented at 40% contrast. Note the decreased spike rate 

in gratings presented at 40% contrast (top panel of Figure 2-5B) compared to 100% contrast (top 

panel of Figure 2-5A). Despite the decrease in response amplitude, the difference in the patterns 

of the CSD responses to the preferred and non-preferred orientation at 100% contrast (lower 
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Figure 2-5: Modification of the CSD response pattern in relation to response strength. Comparison of the CSD structure 

in response to oriented grating stimuli of two different contrasts. (continued on next page) 
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panel of Figure 2-5A) prevailed under stimulation at 40% contrast (bottom panel of Figure 2-

5B). Thus, the CSD pattern reflected the orientation selectivity and not the overall response 

amplitude. This suggests that the differences in the CSD patterns cannot be explained by the 

strength of the responses of the column, but are rather reflective of orientation processing per se. 

If the pattern of the CSD was determined by the strength of the response, a shorter sink would 

have been observed for a grating of the optimal orientation presented at 40% contrast, since it 

elicited an action-potential response of lower amplitude. This is clearly not the case, since the 

spatial extent of the CSD sinks elicited by gratings of 40% and 100% contrast were similar, 

while the spike rate response to the stimuli of lower contrast dropped in comparison to the 

responses of higher contrast. 

These observations are quantified by the statistical analysis presented in Figure 2-6, 

which shows a scatter plot of the sink extension for the optimal orientation at 40% contrast vs the 

non-optimal orientation at 100% contrast. The primary sink response to the optimal orientation at 

40% contrast was 0.07 mm longer than that to the non-optimal orientation at 100% contrast 

(main sink optimal orientation at 40% = 0.54 ± 0.19 mm (mean ± STD), main sink non-optimal 

orientation at 100% = 0.47 ± 0.18mm, computed over 10 penetrations obtained from 5 cats; p = 

0.04, paired, one-tailed t-test). The difference in the spike rate was not significantly different 

between these two conditions (p = 0.77, paired, two-tailed t-test). Thus the difference in the sink 

pattern observed between the optimal and the non-optimal orientation cannot be explained by 

differences in response amplitude but instead is related to the underlying intra-cortical processing 

involved in orientation selectivity. 

So far, we have shown that the spatial extent of the sink response to the optimal 

orientation is larger than that to the non-optimal orientation. However, it is not yet clear whether 

this response is also larger than that to non-oriented stimuli; or alternatively, that the sink 

Figure 2-5 (continued from previous page) The top panel in A presents the response strength (rate of action potential 

response) to grating stimuli of 100% contrast. The bottom panel in A shows the CSD response to each orientation. The 

primary sink extends more superficially in response to the preferred orientation (157.5º). Section B presents the responses 

to oriented grating stimuli of 40% contrast in a format similar to that presented in A. Note the decrease in response 

strength (top panel) relative to that shown at 100% contrast. Despite this decrease in response amplitude, the primary 

sink extends more superficially in response to the preferred orientation. 
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response to the non-optimal orientation is smaller than that to a non-oriented stimulus. A third 

alternative may suggest that a combination of both these mechanisms takes place. In order to 

address this question, we compared the CSD patterns elicited by the optimal and non-optimal 

orientations to that obtained in response to a flashing checkerboard of the same spatial 

frequency. We used the checkerboard stimulus as a reference because it is a more isotropic 

stimulus which should not activate orientation selective processes to the same extent as oriented 

gratings. 

Figure 2-7 presents a comparison between the extent of the sink responses to the optimal 

(A) (and non-optimal (B)) orientation vs the response to a checkerboard presented at the same 

luminance contrast. We found that the primary sink response of the optimal orientation (0.59 ± 

0.12) was not significantly different than that to the checkerboard stimulus (0.56 ± 0.18; p = 

0.33; Figure 2-7A; computed over 14 penetrations obtained from 10 cats). In contrast, the spatial 

extent of the primary sink response to the grating of non-preferred orientation (0.46 ± 0.15mm) 

was significantly shorter than that to the checkerboard stimuli (p=0.03, two-tailed paired t-test; 

Figure 2-6: Statistical measures of the structural changes in CSD for different contrasts. The distribution of the sink 

length in response to the optimal orientation at low contrast (40%) along the vertical axis vs. the sink length in response to 

the non-optimal orientation at high contrast (100%) along the horizontal axis. The primary sink associated with the 

preferred orientation at low contrast was significantly longer (p= 0.04, one-tailed paired t-test) than that of the non-

preferred orientation at high contrast. The spike rates were not significantly different between these conditions (p= 0.77, 

two-tailed paired t-test). Therefore, the modification of the structure of the CSD quantified in Figure 2-4 cannot be 

explained by the larger response amplitude elicited by the preferred orientation, but rather reflects the processing 

involved in orientation selectivity. 
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Figure 2-7B). The source responses to the preferred/non-preferred oriented gratings were not 

significantly different from those elicited by the checkerboard stimulus; non-preferred 

orientation vs. checkerboard: p=0.58; Bottom source: preferred orientation vs. checkerboard: 

p=0.62; non-preferred orientation vs. checkerboard: p=0.59, two-tailed paired t-test). These 

findings show that relative to a non-oriented stimulus, the sink is shorter when the non-optimal 

orientation is presented, and is approximately equal when the optimal orientation is presented. 

Hence, this contributes to a better understanding of the mechanisms involved in orientation 

selectivity since it supports previous reports which suggested that active intra-cortical processes 

contribute to orientation selectivity (Crook and Eysel, 1992, Ben-Yishai et al., 1995, Douglas et 

al., 1995, Somers et al., 1995, Adorjan et al., 1999). 

2.3.1 Laminar specific CSD 

So far, all the findings were discussed only in relation to differences in the spatial extents 

of sink and source responses, but nothing has been said about their location within cortex. In 

order to better understand laminar processing, it is important to identify how these changes relate 

to information transfer between cortical layers. 

Figure 2-7: Comparison between the CSD patterns elicited by grating stimuli vs. checkerboard stimulus. In A, the length 

of the primary sink in response to the preferred orientation is shown as a function of the primary sink in response to 

flashing checkers. The sink elicited by the optimal orientation is not significantly longer than that elicited by the 

checkerboard condition (paired t-test, p = 0.33). In contrast, the sink elicited by the non-preferred orientation is 

significantly shorter than that elicited by the checkerboard (paired t-test, p = 0.03). 
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Figure 2-8: Histology and layer correspondence of electrophysiological data. In A, high resolution image of the recording 

probe near the point where it penetrated cortex. In Ai, a magnification of the part of the probe close to the insertion point, 

showing contacts just above the surface of cortex (scale bar is 100µm). Panels B, C D, E and F present CSD response to 

checkerboard, CSD response to grating, orientation selectivity of the action potential response, LFP response, and action 

potential response latencies, respectively. (continued on next page) 
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To localize the electrode contacts within cortex, we performed electrolytic lesions by 

injecting current via two channels (22 and 32; 1mm apart). In addition, we imaged the inserted 

probe near the site where it penetrated cortex, in order to determine which of the contacts was the 

closest to but still outside of cortex (Figures 2-8A and 2-8Ai). The exact position of the surface 

of the brain relative to the contacts could not be precisely determined, because of the presence of 

the pia, arachnoid and cerebro-spinal fluid. However, given the thickness of these structures (50-

150ɥm), imaging of the contacts contributed to the localization of the probe relative to the 

cortical surface. The insertion presented in Figure 2-8 corresponds to the slice presented in 

Figures 2-2C and 2-2Ci. The tissue was processed for cytochrome oxidase, in order to precisely 

localize layers IV and VI (Price, 1985). The position of the recording probe relative to histology 

was established by the electrolytic lesions at channel 22 and 32. Moreover, various 

electrophysiological properties of the signal (spiking activity, LFP and latencies) were used to 

validate the probe alignment with histology. In contrast to the data presented so far, the 

electrophysiological data presented in Figures 2-8 and 2-9 were not interpolated between 

channels, since the aim was to spatially relate the channel position to cortical laminae. 

Figure 2-8, B, C, D, E and F present the spatial correspondence between 

electrophysiological responses and the cortical layers from which they were recorded. Panel B 

presents the CSD response to the checkerboard stimulus. The sink with the highest amplitude can 

be observed in channels 11-13. In Panel Bi (and all other panels depicting histological slices), 

channels have been positioned relative to the slice by aligning the two contacts (marked in red) 

used for injecting the lesioning current to the two lesions in the tissue. By aligning and rescaling 

the probe according to the distance and angle of a line drawn between the two lesions, the 

neurophysiological responses were superimposed on the histological slice. As a first control, we 

see that following the alignment of the probe contacts to the electrolytic lesions, the sink with the 

highest amplitude was localized in layer IV (Figure 2-8Bi). Panel C presents the CSD response 

averaged across all oriented grating stimuli from one test. It can be seen that the sink response to 

Figure 2-8: (continued from previous page) Representative portions of these measures are superimposed on cytochrome 

oxidase histology in their respective right-side panels. The delineation of cortical layers is shown in Panel Bi. Small bright 

circles, representing the recording contacts are superimposed on the histological images. In this insertion, channels 22 and 

32 were used for electrolytic lesion; here they are illustrated in red. Scale bars in Bi, Ci, Di, E, Fi, 1mm. The data here are 

from the same insertion presented in Figures 2-1 and 2-2. 
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gratings spatially corresponds to layer IV too. Panel D presents the tuning curves computed 

according to the spike rate responses in the same penetration. The main action potential response 

is located at the center of the cortex. Further evidence that the match between the 

electrophysiological data and histology is accurate is the spiking activity observed in channels 31 

and 32. This observation was initially confusing. However, Panel Di shows that these channels 

are in grey matter on the other side of the gyrus, explaining the action potential responses 

observed in these channels. 

LFP of all the oriented gratings is presented in Panel E with a window of the signal 

superimposed on the histological slice in Panel Ei. The LFP response of the largest amplitude 

was centered on layer IV. Panels F and Fi present the mean latency computed across all oriented 

gratings. As expected, the fastest responses were found in layer IV. Moreover, stable latencies 

could only be calculated in channels that were inside cortex, thus providing another indication 

that our alignment was accurate. 

These converging findings confirm that the primary sink of the CSD response reflects the 

activity in layer IV in cat area 18. Therefore, it can be used as a functional marker of the position 

Figure 2-9: Selective modification of CSD correspondence with layer information transfer. Inset, cytochrome oxidase 

stain histological reconstruction of the same insertion presented in Figure 2-8. The CSD profiles obtained in response to 

gratings of optimal and non-optimal orientation for this insertion are presented in panel A and B, respectively. Cortical 

layers are labeled. The change in extent of the main sink can be appreciated when the optimal orientation is presented, 

extending from layer IV to layer II-III. This transfer of signal does not take place when the non-optimal orientation is 

presented. This can be seen by inspecting the response in the black rectangles located in layers II-III in both panels. 
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of layer IV. The correspondence between electrophysiology data and histology were reproduced 

in several animals and insertions. 

Following the demonstration of the correspondence between the CSD pattern and cortical 

layers, we can map our findings on orientation selective CSD responses to cortical laminae. The 

preferred orientation stimulus induced an increase in extent of the primary sink (mean 0.13 mm). 

This extension was always towards contacts more superficial relative to the primary sink, and 

took place at a lag relative to the primary sink (Figure 2-3B and 2-5). Given that we associated 

the primary sink with layer IV, we can specify that following the primary sink in layer IV, 

supragranular layers II-III show a sink when the preferred orientation is presented, but not when 

the non-preferred orientation is presented. This result is presented in Figure 2-9, where the CSD 

responses to the preferred (Figure 2-9A) and non-preferred (Figure 2-9B) orientations are 

mapped to cortical layers. When the optimal orientation is presented, the sink signal extends 

towards layer II-III. In response to the non-optimal orientation, such extension either does not 

take place (Figures 2-3 and 2-5) or shows much smaller amplitude (Figure 2-9B). Hence, we 

conclude that there is a selective transfer of information from layer IV to layer II-III when the 

optimal orientation is presented. Our work suggests that this intra-cortical transfer of information 

is functionally gated and provides an effective means for feature selection. 

2.3.2 Validation of the use of standard CSD estimation 

A potential objection to the results presented herein is that spatially non-homogeneous 

activation of cortex with an oriented stimulus violates the infinite plane assumption behind 

standard CSD estimation. Because, CSD estimation is an inverse problem, its solution always 

depends on the assumptions built in the chosen forward problem. Indeed, by assuming that the x 

and y components of the Laplacian are zero, one technically assumes that the sources are 

infinitely extended in space. This assumption is clearly violated when presenting a stimulus such 

as orientation which activates cortex in a patchy manner. It is therefore reasonable to ask whether 

the smaller spatial extent of the sink observed in the non-optimal orientation is simply an artifact 

from the off-center placement of the recording electrode relative to the center of the non-optimal 

orientation column. Moreover, inverse CSD methods have been developed exactly to address  

 

 



42 

 

 

Figure 2-10: Validation of standard CSD method. In A, orientation map simulated using the Topographica toolbox (pixel 

size 50x50 µm, total width = 7.5 mm). Black and white dots show the simulated electrode positions. The optimal 

orientation at the location of the black dot electrode is 69.2º. In B, orientation selectivity of the dipolar and monopolar 

components of the simulated CSD depth profile. The variation of the CSD depth profile is shown in Panel C for 8 

orientations. Panel D shows the field potential recorded at the black dot electrode in response to the presentation of 

gratings closest to the optimal (67.5º) and non-optimal (157.5º) orientation. Panels E and F show the simulated CSD 

response (black) at the location of the electrode overlaid with the estimation from the standard CSD method in response 

to the presentation of an optimal and non-optimal grating respectively. Panels G and H show the same as E and F but for 

CSD estimation based on the inverse CSD method rCSD with various diameters. For the inverse CSD estimation, the 

sources were assumed to be uniformly distribution in a cylinder of diameter D. We see that in both the optimal (G) and 

the non-optimal (H) condition, the estimation becomes better with increasing diameter. 
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issues in CSD estimation with sources of limited lateral extent (Pettersen et al., 2006, 

Potworowski et al., 2012, Kropf and Shmuel, 2016). It is therefore reasonable to ask why these 

methods were not employed here. 

In order to address this potential shortcoming, we validated our CSD estimation on 

simulated data. To do so, we have simulated the orientation map shown in Figure 2-10A using 

the open-source MATLAB toolbox Topographica (Bednar, 2009). The map is discretized at a 

pixel resolution of 50x50 μm and has a total width and height of 7.5 mm. In other words, the 

simulation assumes that the orientation preference is constant within a region of 50x50 μm. 

To get the LFP response to a presentation of a fullfield grating stimulus, we inserted a 

simulated electrode in the center of a pixel (shown by the black dot in Figure 2-10A). We then 

created a hypothetical orientation-selective CSD response aimed at mimicking the result that we 

observed (see Figure 2-10B). In particular, the CSD is composed of a weakly orientation-

selective dipolar component with a sink located around layer 4 and a strong orientation-selective 

monopolar component in the superficial layer (see Figure 2-10C). The LFP response was 

simulated by summing the potential generated from each pixel following a stimulation with a 

fullfield grating of optimal and non-optimal (orthogonal) orientation (discretized in steps of 

22.5° like in the experiment). The forward model employed here was made of 2 semi-infinite 

media with continuous conductivity separated at z = 0 (top conductivity = 1.7 S/m, bottom 

conductivity = 0.3 S/m). This forward model aims at emulating a recording from a cortical site 

covered with saline, as used by (Kropf and Shmuel, 2016). The resulting LFP responses are 

shown in Figure 2-10D.  

To validate the use of the standard CSD estimation method, we calculated the CSD for 

both the optimal and non-optimal condition. Figure 2-10E shows the true CSD depth profile of 

the pixel containing the simulated electrode (black) in response to the optimal orientation, along 

with the estimated CSD using the standard 5-point method (the same is shown in Figure 2-10F 

for the non-optimal orientation). These results clearly demonstrate that the standard CSD 

estimation method is sensitive to the simulated orientation-selective component. Due to the 

smoothening effect of the 5-point estimator, the overall amplitude of the components is under-

estimated but no artefactual sink is introduced by the off-centered position of the electrode with 

respect to the non-optimal orientation columns. The only artefactual component observed is the 
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source estimated at the surface of the brain which likely stems from the discontinuity of 

conductivity that is not accounted for in the standard CSD estimation. 

Although these results indicate that the use of the standard CSD estimation seems 

warranted, it is still possible that the use of the inverse methods with a cylindrical or Gaussian 

forward model might provide more accurate estimation. To test this, we also estimated the CSD 

using the rCSD method with a range of lateral source diameters (Kropf and Shmuel, 2016). 

Figures 2-10G and H show the resulting CSD estimates for the optimal and non-optimal 

orientation. It was quite a surprise to us that the larger the diameter, the closer the estimated 

sources are to the true underlying profile. We therefore conclude that the violation of the infinite 

lateral source extension in the standard CSD does not appear to be a limitation to the results 

presented in this work. Finally, in order to make sure that these results are not due to placing the 

simulated electrode in the center of an orientation domain, we have repeated the same analysis 

for an electrode placed closer to a pinwheel (see white dot in Figure 2-10A). The orientation 

selectivity of the standard CSD estimation was preserved (data not shown). The only, rather 

unsurprising, difference was that the overall amplitude of the estimation was reduced. 

2.4 Discussion 

CSD analysis is a potent tool for investigating cortical processing since it allows the 

investigation of the flow of activity within and between cortical layers (Mitzdorf and Singer, 

1978). However, its sensitivity and specificity to spatio-temporal properties of visual stimuli has 

been debated (Mitzdorf, 1985). Here we show for the first time that CSD responses reflect the 

neuronal processing involved in signalling the orientation of grating stimuli. We specifically 

compared CSD responses to optimal and non-optimal orientations, and showed that the primary 

sink is shorter in the non-preferred orientation than in the optimal orientation. Moreover, it is 

also shorter in the non-optimal orientation compared to a non-oriented (checkerboard) stimulus. 

Hence, this change in the CSD pattern appears to be linked with a layer specific processing of 

orientation signals. This is at odds with Mitzdorf (Mitzdorf, 1985) who stipulated that the 

specific stimulus properties are reflected only in minor modulations of the basic properties of the 

CSD. 
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2.4.1 Information transfer between cortical laminae 

Features of the visual scene are represented at various levels of cortical processing. This 

is true for different cortical areas, but also for different cortical layers (Hubel and Wiesel, 1962, 

Gilbert, 1977, Movshon et al., 1978a, DeAngelis et al., 1995, Ringach et al., 1997, Martinez et 

al., 2005). Layer IV is often seen as the first step of cortical processing in the visual system since 

it is the main recipient of thalamic input (Hubel and Wiesel, 1962, LeVay and Gilbert, 1976). 

Hubel and Wiesel (1962) proposed that the orientation selectivity of simple cells in layer IV is 

based on the specific configuration of the receptive fields of the presynaptic thalamic relay cells. 

Our electrophysiological analysis reflects this synchronized and fast synaptic activity in 

layer IV, as presented in Figure 2-8. The primary sink of the CSD profile is confined to layer IV, 

which also coincides with the shortest latencies. The locus of this early synaptic activity does not 

appear to be modified by the properties of the stimuli, whether it is a checker board, an optimal, 

or non-optimal oriented grating. As was already shown by Mitzdorf (Mitzdorf, 1985), this CSD 

response reflects the fast input from the thalamus and does not reflect any spatio-temporal 

properties of the stimulus. Hence, it reflects the input from the LGN and not the intracortical 

processes that appear at later stages of the response (Ben-Yishai et al., 1995, Somers et al., 

1995).  

The second stage of cortical processing is expected to occur in layer II-III, which receives 

a direct projection from layer IV (Gilbert and Kelly, 1975, Gilbert and Wiesel, 1979, Fitzpatrick, 

1996, Callaway, 1998, Hirsch et al., 1998). As revealed by our CSD analysis, this stage of 

cortical processing appears to reflect the properties of the stimulus, since the primary sink 

extends from layer IV to layer II-III only when the optimal orientation or a non-oriented stimulus 

is presented. This functional pathway between cells in layer IV and II-III has been investigated 

before from many different angles. First, numerous studies that showed dense anatomical 

connections between layer IV cells and supragranular layers of the cortex (Callaway 1998; 

Fitzpatrick 1996; Gilbert and Kelly 1975; Gilbert and Wiesel 1979; Hirsch, et al. 1998). 

Moreover, the functional strength of the connection from layer IV to layer II-III was estimated 

by fitting a model that captures the effective connectivity between cortical laminae to the CSD 

response in rat area S1FL (Sotero et al., 2010). In the visual cortex, the functional strength of this 

connection was demonstrated in vivo using a cross-correlogram analysis (Hubel and Wiesel, 
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1968, Alonso and Martinez, 1998, Martinez and Alonso, 2001). Strong functional coupling was 

found between a high proportion of extracellularly recorded simple cells in layer IV and complex 

cells in layer II-III (50%) of similar orientation preferences. Moreover, it has been shown that 

this functional coupling between layer IV cells and layer II-III cells arises only when coordinated 

or nearly synchronous activity among a large population of layer IV cells is produced 

(Bonhoeffer and Grinvald, 1991, Yu and Ferster, 2013). 

In line with these previous findings, our study suggests that the coupling between layer 

IV cells and layer II-III cells is functionally gated, since information is selectively relayed 

between the first and second stages of cortical processing. Moreover, this is consistent with a 

prior study which proposed that the intrinsic circuitry in layer II/III acts in concert with inputs 

from layer IV to generate the orientation selectivity of layer II/III neurons (Bosking et al., 1997). 

But what are the mechanisms that control the opening/closing of this functional gate? Or 

in other words, why is information relayed to superficial layers in the optimal but not in the non-

optimal orientation? It was proposed that facilitatory interactions between converging excitatory 

inputs establish the foundation of more complex stimulus selectivity. Hirsch et al (2002) suggest 

that any post-synaptic events generated by a single stream are negligible if not accompanied by 

the arrival of succeeding inputs. Thus, it is possible that the feed forward stream from layer IV 

has to be co-activated with a secondary stream to selectively open the gate so that signal is 

transferred to layers II-III, as proposed by Bosking et al. (1997). 

Complementing the feed forward stream is the presence of horizontal connections which 

are most prominent in the layers II-III (Rockland and Lund, 1982, Gilbert and Wiesel, 1983, 

Rockland and Lund, 1983, Fitzpatrick, 1996, Bosking et al., 1997, Chisum et al., 2003). These 

connections are largely viewed as contributing to receptive field surround effects (Rockland and 

Lund, 1982, Gilbert and Wiesel, 1983). However, these contributions are limited since they link 

non-overlapping receptive fields under 10% of the time, while the vast majority of the 

connections link neurons with receptive fields that overlap by 50% (Chisum et al., 2003). 

Moreover, horizontal connections preferentially link sites with similar orientation preference, 

suggesting that they might play a role in shaping orientation tuning in layer II-III neurons 

(Fitzpatrick, 1996, Bosking et al., 1997, Chisum et al., 2003). Therefore, it has been suggested 
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that the functional contribution of horizontal connections is not restricted to surround effects, but 

that it also plays a significant role in shaping the responses within the classical receptive field 

(Crook and Eysel, 1992, Girardin and Martin, 2009). We propose that since horizontal 

connections provide a powerful amplification of an orientation bias provided by feedforward 

inputs (Douglas et al., 1995, Chisum et al., 2003, Hang and Dan, 2011), they are possibly 

responsible for the opening of the proposed functional gate between layer IV and II-III due to a 

convergence of orientation preference signals. This would explain why some signals but not 

others propagate from layer IV to II-III in a selective manner. The optimal orientation would 

activate horizontal intracortical pathways, which in conjunction with feed forward signals from 

layer IV, would open the gate and allow effective information transfer to layers lI-III. The same 

might be true for an unoriented stimulus which activates the cortical sheet in an approximately 

even manner. In contrast, the gate would remain closed in the non-optimal orientation because 

insufficient reinforcement would be provided by horizontal connections in layer II-III. This 

interpretation is also supported by computational models that suggest that interactions between 

orientation columns play a pivotal role in signal processing and influence the speed of 

information transport, which may have a greater influence than inner-columnar interactions 

(Stoop et al., 2013). 

It is worth noting that when intracortical pathways are silenced by topical application of 

muscimol (Happel et al., 2010), the resulting CSD profile obtained is very similar to the one 

obtain with non-optimal orientation stimuli (present data). This supports the concept that 

intracortical signalling is reduced for non-optimal orientations.  

Although we have so far emphasized the contribution of intra-area horizontal 

connections, one cannot rule out the contribution of axons with origin in area 17 that project to 

layers II-III of area 18 (Gilbert and Wiesel, 1989). The contribution of this pathway has been 

shown to be significant in building the functional properties of cells in area 18 (Casanova et al., 

1992), and might therefore play a role in their orientation selectivity.  

2.4.2 Validation of the standard CSD estimation method 

The CSD methods used here is based on the “standard” forward model of electric 

potentials in biological tissue (Mitzdorf, 1985, Nunez and Srinivasan, 2006, Plonsey and Barr, 

2007) which rests on the hypothesis that the extracellular medium is purely resistive, isotropic 
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and homogeneous. These assumptions have recently come under challenge, and it has been 

suggested that non-ohmic effects such as ionic diffusion could play a significant role in the 

spread of current within cortical tissue (Bedard and Destexhe, 2009, 2011, Brette and Destexhe, 

2012, Riera et al., 2012, Wagner et al., 2014, Gomes et al., 2016). Although of great relevance 

and interest, the importance of these possible confounders is still under heavy debate and it is too 

early to speculate on their effect on the results presented here.  

In addition to the assumptions on the medium properties discussed above, the 1-D 

standard CSD estimation method also assumes that sources are infinite planes perpendicular to 

the electrode. This assumption has been shown to significantly falsify estimation when sources 

are spatially localized or off-centered with respect to the recording electrode (Pettersen et al., 

2006). To deal with this issue, inverse CSD methods have been developed (Pettersen et al., 2006, 

Potworowski et al., 2012, Kropf and Shmuel, 2016). However, it has never been tested how 

responses to a fullfield stimulus (such as orientated gratings), which result in a patchy cortical 

activation, should be treated. To address this potential shortcoming, we have validated the use of 

the standard CSD estimation on simulated data. We found that for our fullfield grating stimulus, 

the standard CSD was appropriate and sensitive to the orientation selective component that we 

introduced in the simulated signal. 
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Preface to Chapter 3 

In this chapter, we have shown the usefulness of CSD estimation for the study of neural 

processing. However, our analysis has also highlighted known difficulties with the use of the 

standard method. Therefore, in the next chapter we conduct an in-depth study of the methods and 

assumptions behind 1-D CSD estimation. In particular, we propose a novel estimation 

framework inspired by linear inverse theory with a special emphasis on higher-order spectral 

regularization methods. With this framework, we provide a unification of previously published 

inverse estimation methods under a common format and introduce novel estimation tools. In 

addition, we will see that the presented framework greatly facilitates dealing with recording 

noise through the incorporation of zeroth- and higher-order regularization methods with multiple 

regularization parameter selection methods. 
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3 Chapter 3: 1-D current-source density (CSD) estimation in inverse theory: a 

unified framework for higher-order spectral regularization of quadrature and 

expansion type CSD methods 

Estimation of current-source density (CSD) from the low-frequency part of extracellular 

electric potential recordings is an unstable linear inverse problem. To make the estimation 

possible in an experimental setting where recordings are contaminated with noise, it is necessary 

to stabilize the inversion. Here we present a unified framework for zero- and higher-order 

singular-value decomposition (SVD) based spectral regularization of 1-D (linear) CSD 

estimation from local-field potentials. The framework is based on two general approaches 

commonly employed for solving inverse problems, quadrature and basis function expansion. We 

first show that both inverse CSD (iCSD) and kernel CSD (kCSD) fall into the category of basis 

function expansion methods. We then use these general categories to introduce two new 

estimation methods, quadrature CSD (qCSD), based on discretizing the CSD integral equation 

with a chosen quadrature rule, and representer CSD (rCSD), an even-determined basis function 

expansion method which uses the problem’s data kernels (representers) as basis functions. To 

determine the best candidate methods to use in the analysis of experimental data, we compared 

the different methods on simulations under three regularization schemes (Tikhonov, tSVD and 

dSVD), three regularization parameter selection methods (NCP, L-curve and GCV) and seven 

different a priori spatial smoothness constraints on the CSD distribution. This resulted in a 

comparison of 531 estimation schemes. We evaluated the estimation schemes according to their 

source reconstruction accuracy by testing them using different simulated noise levels, lateral 

source diameters and CSD depth profiles. We found that ranking schemes according to the 

average error over all tested conditions results in a reproducible ranking, where the top schemes 

are found to perform well in the majority of tested conditions. However, there is no single best 

estimation scheme that outperforms all others under all tested conditions. The unified framework 

we propose expands the set of available estimation methods, provides increased flexibility for 1-

D CSD estimation in noisy experimental conditions, and allows for a meaningful comparison 

between estimation schemes. 
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3.1 Introduction 

Understanding brain function entails disentangling the activity of different neuronal 

populations. Owing to advances in microelectrode fabrication technology, neuroscientists are 

now in position to simultaneously record extracellular potentials from multiple spatial locations 

in close proximity. In particular, a growing number of studies are using linear electrode arrays to 

disentangle laminar processing in the cortex. In order to extract useful information about laminar 

processing from such recordings, it is imperative to comprehend how extracellular potentials are 

related to the underlying neural activity. 

With extracellular recordings, it is not possible to measure the neuronal activity directly. 

Instead we measure electrical potential differences that result from the flow of currents. In 

particular, the low-frequency part of extracellular potentials, called the local field potential 

(LFP), is thought to be related to currents generated during synaptic activity (Nunez and 

Srinivasan, 2006, Einevoll et al., 2013). Direct interpretation of LFP is problematic given that 

electric potentials are a non-local measure of the neural activity due to volume conduction. Thus, 

estimating current-source density (CSD), which represents the volume density of net 

transmembrane currents generating the LFP, has become common practice in extracellular 

neurophysiology (Freeman and Nicholson, 1975, Mitzdorf, 1985, Schroeder et al., 1998, Bedard 

and Destexhe, 2011, Tenke and Kayser, 2012).  

In a homogeneous, isotropic and purely resistive medium with electrical conductivity 𝜎, 

current-source density 𝐶 is related to the extracellular potential 𝜑 via the Poisson equation: 𝐶 =

−𝜎∆𝜑 where ∆ is the Laplace operator (Nicholson and Freeman, 1975, Tenke et al., 1993, Brette 

and Destexhe, 2012). Originally, CSD was estimated by approximating the Laplacian by a 

discrete second derivative (Freeman and Nicholson, 1975). Moreover, in the analysis of linear 

(laminar) electrodes inserted perpendicularly to cortical layers, it has been commonplace to 

simply ignore the lateral, i.e. 𝑥 and 𝑦, derivatives in the Laplacian (e.g. (Mitzdorf, 1985, 

Schroeder et al., 1998)). This is equivalent to assuming that potentials have minimal curvature in 

the lateral direction, a situation which can only be achieved with laterally extended current-

source density profiles. In recent years, a novel CSD method called iCSD has been developed to 

circumvent the difficulties associated with spatially localized sources (Pettersen et al., 2006, 

Leski et al., 2007, Leski et al., 2011). Instead of simply computing the derivative, iCSD assumes 



52 

 

a particular parametric form for the CSD and uses a forward-inverse scheme for estimating CSD 

amplitude. This method has the advantage of allowing the estimation of CSD at the outermost 

electrode contacts, something which in the standard method is only doable under strong 

assumptions (Vaknin et al., 1988, Pettersen et al., 2006). Additionally, it also facilitates the 

incorporation of slightly more complex medium assumptions like the parametrization of the 

medium as two semi-infinite media with different electrical conductivity. Recently, a generalized 

version of iCSD called kCSD (short for kernel CSD) has been introduced (Potworowski et al., 

2012). Using results from machine learning, kCSD transforms CSD estimation into an 

underdetermined problem where uniqueness of the solution is enforced using a minimum-norm 

requirement. This approach allows greater flexibility in changing the electrode arrangement. This 

is of particular interest when working on non-regular grids which occurs when the recording 

electrode has non-functional contacts. 

In the present work, we propose a unification of all 1-D current-source density estimation 

methods in a single framework, by adding elements of linear inverse theory. In particular, we 

focus on comparing regularization methods based on spectral filtering to deal with recording 

noise. It is a well-known fact from linear inverse theory that inverse problems with smoothening 

kernels are ill-posed resulting in a high sensitivity to noise. We start by presenting two general 

approaches that are common in solving inverse problems, quadrature and basis function 

expansion. This will allow us to show that both iCSD and kCSD fall into the category of basis 

function expansion methods. We then use these general categories to introduce two new methods 

for CSD estimation which we call quadrature CSD (qCSD) and representer CSD (rCSD). As its 

name implies, quadrature CSD is based upon discretizing the CSD integral equation using a 

chosen quadrature rule while rCSD is an even-determined basis function expansion method 

which uses the problem’s data kernels (also called representers) as basis functions. We will see 

that our approach is in line with the approach presented in Riera et al., 2014 (Riera et al., 2014) 

which focuses on 3-D CSD estimation using a realistic volume conductor model for rat barrel 

cortex. In a second step, we compare the different methods under various regularization schemes 

(Tikhonov, tSVD and dSVD), different regularization parameter 
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Figure 3-1: Flowchart describing the spectral regularization framework. 
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selection methods (NCP, L-curve and GCV) along with different a priori spatial smoothness 

constraints on the CSD distribution. We compare these different estimation schemes using 

simulations and rank them according to their source reconstruction accuracy under a range of 

source diameters and noise conditions. We found that no single estimation scheme outperforms 

all others under all tested conditions. Nevertheless, we found that ranking schemes according to 

the average error over all tested conditions results in a reproducible and meaningful ranking 

where the top schemes are found to perform well in the majority of tested conditions. 

3.2 Theory 

In this section, we describe the different aspects of 1-D CSD estimation from the 

standpoint of linear inverse theory. We discuss the theoretical aspects in more detail than what is 

common, in the hope of making it more accessible to newcomers to the field. Figure 3-1 shows a 

schematic of the steps leading to the final formulation and proposed solution of the problem. 

3.2.1 Forward and inverse problem 

Before attempting to solve the inverse problem of CSD estimation, it is necessary to have a 

clear understanding of the associated forward problem. This is crucial because current CSD 

estimation methods do not allow for the verification of the forward model assumptions from 

within the model (Bedard and Destexhe, 2011). In the case of current CSD methods, the forward 

problem is described by the Poisson equation for volume conductors, which is obtained by 

combining the quasi-static approximation with Ohm’s law (Plonsey and Barr, 2007). Moreover, 

in line with iCSD and kCSD, we describe the recording medium as being composed of 2 semi-

infinite media with different but constant electrical conductivity (σ) as graphically depicted in 

Figure 3-2A. The plane 𝑧 = 0 represents the brain surface and separates the extracellular space 

(assumed unbounded from below) from the medium above the brain. The upper medium is added 

to model the effect of substances such as artificial cerebro-spinal fluid (aCSF) or mineral oil on 

potential generation. It is common in invasive in vivo electrophysiological experiments to add 

liquids onto the skull opening to avoid drying of the brain surface. 

Taken together, the electrostatic assumption as well as the semi-infinite medium 

parameterization with constant conductivity form the basic set of assumptions defining the 

forward problem for CSD estimation. Under these circumstances, the potential 𝜑(𝑥, 𝑦, 𝑧) 
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generated at any point in space by a current-source density distribution 𝐶(𝑥, 𝑦, 𝑧) can be found 

using the method of images (Jackson, 1999) 

 
𝜑(𝑥, 𝑦, 𝑧 ≥ 0) =

1

4𝜋𝜎𝑒
(∭

𝐶(𝑥′, 𝑦′, 𝑧′)

|𝑥 − 𝑥′⃗⃗  ⃗|
+
𝜎𝑒 − 𝜎𝑡
𝜎𝑒 + 𝜎𝑡
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∞
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) 

𝜑(𝑥, 𝑦, 𝑧 < 0) =
1
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+
𝜎𝑡 − 𝜎𝑒
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+
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∞
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(1) 

with 𝑉′ = 𝑑𝑥′𝑑𝑦′𝑑𝑧′ and 𝑥 = (𝑥, 𝑦, 𝑧), while 𝜎𝑒 and 𝜎𝑡 are the electrical conductivity for 𝑧 ≥ 0 

and 𝑧 < 0 respectively. The limits of integration are chosen to cover all current sources. Here, 

Figure 3-2: Simulation of extracellular potential. (A) Schematic of the medium parameterization and cylindrical lateral 

source assumption. A 32 channel electrode is located in the center of the cylinder. (B) Effect of lateral source 

parameterization choice on simulated potential. The value of extracellular potential (dots in last panel) is obtained by 

integrating the CSD depth profile (first panel) with the corresponding representer (middle panel). The depth profile of the 

representer is shown for an electrode located at a depth of 0.55 mm. It shows how the potential at this electrode is affected 

by sources at different depths. Representers for a uniform cylinder (UniCyl) and Gaussian lateral source 

parameterization with a diameter of 0.5 or 1 mm are shown. To obtain the simulated potential (last panel) as a function of 

depth, the integration is performed using representer proper to each electrode. 
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we slightly expand on the approach used in (Pettersen et al., 2006) because we make it possible 

to use electrodes located in both media. 

The above formulation defines a classic linear inverse problem for 𝐶(𝑥, 𝑦, 𝑧). Here, the 

particular problem we are interested in solving is: what information about 𝐶(𝑥, 𝑦, 𝑧) can be 

recovered from 1-D linear (laminar) depth electrode recordings 𝜑(𝑧)? 

3.2.2 Source parameterization 

To solve this inverse problem for laminar recordings, the 3-dimensional problem needs to 

be reduced to 1-dimension. This is required because in laminar recordings all electrode contacts 

are located on a line approximately orthogonal to the local cortical surface. Therefore, the 

contacts provide no information about the in-plane potential variation. The dimensionality 

reduction is achieved by assuming a fixed lateral profile for the function 𝐶(𝑥, 𝑦, 𝑧), i.e. 

 𝐶(𝑥, 𝑦, 𝑧) =  𝑓(𝑧) ∙ 𝐿(𝑥, 𝑦) (2) 

It is customary to choose 𝐿(𝑥, 𝑦) to be either a Cylinder (see (Pettersen et al., 2006)) or a 

Gaussian function 

 
𝐿(𝑥, 𝑦) = { 

1, 𝑥2 + 𝑦2 < 𝑅2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    𝑜𝑟    𝐿(𝑥, 𝑦) = 𝑒

−
(𝑥2+𝑦2)
2𝑅2   (3) 

It is important to note that these parameterizations impose very strong assumptions on the 

underlying function 𝐶(𝑥, 𝑦, 𝑧). ). Their choice stems from a plausibility argument relying on the 

columnar organization of sensory cortices as main justification. However, to our knowledge, it 

has never been experimentally verified whether and under which circumstances these 

assumptions are warranted. 

Inserting Equation 2 into Equation 1 and integrating over x and y provides us with the 

desired 1-dimensional linear inverse problem 

 
𝜑(𝑧) = ∫ 𝐾(𝑧, 𝑧′) ∙ 𝑓(𝑧′) 𝑑𝑧′

𝑏

𝑎

 (4) 

where 𝐾(𝑧, 𝑧′) is called the kernel of the linear operator. Certain authors also refer to 𝐾(𝑧𝑖 , 𝑧) as 

representers or data kernels (Parker, 1994, Aster et al., 2005). If we assume that the electrode is 
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located at the center of a Cylinder or a Gaussian, i.e. 𝑥′ = 𝑦′ = 0, then the kernel can be found 

in closed form using 

 

∬
𝐿(𝑥, 𝑦)

|𝑥 − 𝑥 ′|
𝑑𝑥𝑑𝑦 = { 

2𝜋(√(𝑧 − 𝑧′)2 + 𝑅2 – |𝑧 − 𝑧′|), 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟

2𝜋
√2𝜋𝑅

2
∙ 𝑒𝑟𝑓𝑐𝑥 (

|𝑧 − 𝑧′|

√2𝑅
) , 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

 (5) 

where 𝑒𝑟𝑓𝑐𝑥(𝑥) = 𝑒𝑥
2
∙ 𝑒𝑟𝑓𝑐(𝑥) and erfc is the complementary error function. 

More generally, Equation 4 is an example of a general form of well-studied problems 

known as Fredholm integral equations of the first kind. Problems of this form are ubiquitous in 

science and therefore a large body of literature is devoted to their potential solution. 

Unfortunately, inversion of linear Fredholm integral equations of the first kind is often plagued 

with issues of uniqueness and/or stability (Wing and Zahrt, 1991, Aster et al., 2005, Hansen and 

Society for Industrial and Applied Mathematics., 2010). 

3.2.3 Discretizing the inverse problem 

To make the solving of equation 4 amenable to numerical treatment, the problem needs to 

be discretized. Since in an experimental setting 𝜑(𝑧) is only known at a discrete number of 

recording positions, we will first discretize the left side of equation 4 by projecting 𝜑(𝑧) onto a 

set of delta functions centered at the recording points, i.e. 𝜑(𝑧𝑖) =< 𝜑(𝑧), 𝛿(𝑧 − 𝑧𝑖) > (Wing 

and Zahrt, 1991). This results in 

 
𝜑(𝑧𝑖) = ∫ 𝐾(𝑧𝑖 , 𝑧

′) ∙ 𝑓(𝑧′) 𝑑𝑧′
𝑏

𝑎

 (6) 

where 𝑧𝑖 is the position of recording electrode 𝑖. 

Next, we will add the assumption that the function 𝑓(𝑧) is a 𝐿2 function on an 

interval [𝑎, 𝑏]. It is necessary to make the interval finite because neither the cylindrical nor the 

Gaussian 1-D CSD kernels are 𝐿2 operators on an infinite interval. 

Here, we investigate 2 approaches to discretize the right-hand side of Equation 6. In line 

with tradition, we will call these approaches qCSD for quadrature CSD and rCSD for representer 

CSD. Moreover, we also add a variant of kCSD which omits the kernel trick (by ‘kernel trick’ 

we refer to a method in machine learning, which allows to operate in a high-dimensional, 
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implicit feature space by computing the inner products between the images of all pairs of data in 

the feature space). 

3.2.3.1 qCSD 

First, we investigate how the problem is solved with simple quadrature methods, i.e. 

replacing the integral in Eq. 6 by a sum. Using an N-point quadrature formula with associated 

weights 𝑤(𝑧𝑗), Equation 5 is transformed into (Wing and Zahrt, 1991) 

 

𝜑(𝑧𝑖) ≅  ∑𝐾(𝑧𝑖 , 𝑧𝑗) ∙ 𝑤(𝑧𝑗) ∙ 𝑓(𝑧𝑗)

𝑁

𝑗=1

 (7) 

where the sampling points 𝑧𝑗 are given by 

  
𝑧𝑗 = 𝑎 +

∆𝑧

2
+ (𝑗 − 1)∆𝑧 

∆𝑧 =  
𝑏 − 𝑎

𝑁
 

(8) 

For M recording electrodes, we see that the original integral equation has been 

transformed into a matrix equation 

 𝜑 = 𝑲𝑓    𝑲 ∈ 𝑀 ∗ 𝑁 

𝑤𝑖𝑡ℎ 

𝑲𝑖𝑗 = 𝐾(𝑧𝑖 , 𝑧𝑗) ∙ 𝑤(𝑧𝑗) 

𝑓 = [𝑓(𝑧1), 𝑓(𝑧2), … , 𝑓(𝑧𝑁)]
𝑇 

𝜑 = [𝜑(𝑧1), 𝜑(𝑧2), … , 𝜑(𝑧𝑀)]
𝑇 

(9) 

If the number of quadrature points N is larger than the number of electrodes M, the 

problem is underdetermined, meaning that there is an infinite number of source functions 𝑓 that 

can satisfy the measurements 𝜑. 

3.2.3.2 rCSD 

A second option for discretizing the right hand side of Equation 6 is to expand 𝑓(𝑧) in a 

finite set of linearly independent functions 𝜗𝑗(𝑧) 

https://en.wikipedia.org/wiki/Inner_product
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𝑓(𝑧) ≅  ∑𝛼𝑗 ∙ 𝜗𝑗(𝑧)

𝑁

𝑗=1

 (10) 

Inserting this expansion into Equation 6 results in 

 

𝜑(𝑧𝑖) =∑𝛼𝑗 ∙

𝑁

𝑗=1

∫ 𝐾(𝑧𝑖 , 𝑧
′) ∙ 𝜗𝑗(𝑧

′)𝑑𝑧′
𝑏

𝑎

 (11) 

Again, we see that for M recording electrodes, the original integral equation has been 

transformed into a matrix equation 

 𝜑 = 𝑲𝛼    𝑲 ∈ 𝑀 ∗ 𝑁 

𝑤𝑖𝑡ℎ 

𝑲𝑖𝑗 = ∫ 𝐾(𝑧𝑖 , 𝑧
′) ∙ 𝜗𝑗(𝑧

′)𝑑𝑧′
𝑏

𝑎

 

(12) 

This approach is also referred to as projection or Galerkin method (Wing and Zahrt, 

1991). 

One can see that this is similar to the approach taken by both iCSD and kCSD. In iCSD, 

the basis functions 𝜗𝑗(𝑧) are either delta, step or spline functions and 𝑁 is chosen to be the same 

as 𝑀, i.e. same number of basis functions as recording electrodes (Pettersen et al., 2006). In 

contrast, kCSD chooses either Gaussian or Step functions as basis functions. Moreover, kCSD 

allows the system to be underdetermined by making 𝑁 > 𝑀 (Potworowski et al., 2012). 

An obvious question arises at this point: What is the best choice of basis function and 

why? The general answer is that the best choice is given by basis functions that resemble the 

underlying sources most closely as already hinted at in (Potworowski et al., 2012). This is 

apparent from Equation 10 since such basis functions will best approximate the underlying 

function 𝑓(𝑧). The difficulty is that under experimental conditions it is not known a priori what 

form 𝑓(𝑧) takes. Therefore, we propose to expand 𝑓(𝑧) in a set of basis functions naturally given 

by the problem. 

Remember that we assumed that 𝑓(𝑧) is an element of the Hilbert space 𝐿2[𝑎, 𝑏]. As long 

as 𝐾(𝑧𝑖 , 𝑧
′) is bounded (as it is in our case), the forward problem described by Equation 6 can be 
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expressed as a bounded linear functional. Then, using the Riesz representation theorem, we can 

rewrite Equation 6 as an inner product (Parker, 1994) 

 𝜑(𝑧𝑖) = < 𝐾(𝑧𝑖 , 𝑧
′), 𝑓(𝑧′) > (13) 

Moreover, because we are working in a Hilbert space, we can employ the decomposition 

theorem to write 

 𝑓(𝑧) =  𝑝(𝑧) + 𝑞(𝑧),    𝑝 ∈ Ƙ, 𝑞 ∈ Ƙ⊥ (14) 

where Ƙ is the subspace spanned by the M representers 𝐾(𝑧𝑖 , 𝑧
′) and Ƙ⊥ is its orthogonal 

complement. 

Since any function in Ƙ⊥ is orthogonal to a function in Ƙ it follows that 

 𝜑(𝑧𝑖) = < 𝐾(𝑧𝑖 , 𝑧
′), 𝑓(𝑧′) > 

= <  𝐾(𝑧𝑖 , 𝑧
′), 𝑝(𝑧′) +  𝑞(𝑧′) > 

= <  𝐾(𝑧𝑖 , 𝑧
′), 𝑝(𝑧′) > +< 𝐾(𝑧𝑖 , 𝑧

′), 𝑞(𝑧′) > 

= <  𝐾(𝑧𝑖 , 𝑧
′), 𝑝(𝑧′) > 

(15) 

This means that any part of 𝑓(𝑧) which lies in Ƙ⊥ has no effect on the recorded potential. 

Moreover, the existence of Ƙ⊥ also implies that there is an infinite number of functions 𝑓(𝑧) that 

satisfy the recorded data perfectly. 

In order to single out a particular solution, it is customary to pick the one with the 

minimum norm (Parker, 1994). In this case, this amounts to set 𝑞(𝑧) = 0 because 

 ‖𝑓(𝑧)‖2 =< 𝑓(𝑧), 𝑓(𝑧) > 

= < 𝑝(𝑧) + 𝑞(𝑧), 𝑝(𝑧) + 𝑞(𝑧) > 

=  ‖𝑝(𝑧)‖2 + 2 < 𝑝(𝑧), 𝑞(𝑧) > +‖𝑞(𝑧)‖2 

= ‖𝑝(𝑧)‖2 + ‖𝑞(𝑧)‖2  

(16) 

Hence, by setting 𝑞(𝑧) = 0, the minimum norm solution is given by 

 𝑓(𝑧) =  𝑝(𝑧) 

=  ∑𝛼𝑗 ∙ 𝐾(𝑧𝑗 , 𝑧)

𝑁

𝑗=1

 
(17) 
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with 𝑁 = 𝑀. Comparing Equation 17 with Equation 10 shows that this approach leads to 

choosing the basis functions 𝜗𝑗(𝑧) =  𝐾(𝑧𝑗 , 𝑧). 

Thereby, inserting Equation 17 into Equation 12 produces 

 
𝑲𝑖𝑗 = ∫ 𝐾(𝑧𝑖 , 𝑧

′) ∙ 𝐾(𝑧𝑗 , 𝑧
′)𝑑𝑧′

𝑏

𝑎

=< 𝐾(𝑧𝑖 , 𝑧
′), 𝐾(𝑧𝑗 , 𝑧

′) >= 𝑲𝑗𝑖 (18) 

A matrix created from the inner products of a set of functions is called a Gram matrix and 

has a number of interesting properties (Olver and Shakiban, 2006). Most importantly, the linear 

independence of the representers guarantees that the matrix is full rank which in turn means that 

it is invertible. Hence, the Gram matrix approach produces a full rank linear system 𝜑 = 𝑲𝛼. 

3.2.3.3 eCSD 

To facilitate the comparison of the expansion methods with the kernel method, we also add 

a small variation of kCSD. Instead of employing the kernel trick from machine learning to 

reduce the model estimation dimension, we directly use the expansion into Gaussian basis 

functions to create an underdetermined inverse problem. This means we simply choose 𝜗𝑗(𝑧) in 

Equation 10 to be 

 

𝜗𝑗(𝑧) =
3

√2𝜋𝑤
𝑒
−
(𝑧−𝑧𝑗)

2

2∙(
𝑤
3)
2

 (19) 

The number of sources 𝑗 can be chosen freely in the same way as in kCSD. Note that in 

kCSD the width of the sources 𝑤 is called 𝑅. We have avoided this choice here to prevent 

confusion with the lateral source radius in iCSD. Finally, although we describe eCSD as a 

variation of kCSD, it could equally well be viewed as an underdetermined version of iCSD with 

a different choice of basis function. However, since we added eCSD specifically to explore the 

effect of the kernel trick in a 1-D setting, we will refer to it as a variant of kCSD. 

3.2.4 Solving the discretized inverse problem using SVD  

Both the quadrature (qCSD) and the expansion-type (rCSD, kCSD, eCSD and iCSD) 

discrete inverse problem can be solved numerically using the singular value decomposition 

(SVD). As we will see in the next section on Regularization, the SVD approach is particularly 
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attractive for solving Fredholm integral equations because these problems are often ill-posed and 

highly sensitive to noise. In the SVD, an 𝑀 by 𝑁 matrix 𝑲 is decomposed into (Aster et al., 

2005, Olver and Shakiban, 2006) 

 𝑲 = 𝑼𝑺𝑽𝑻 (20) 

where 

 𝑼 is an 𝑀 by 𝑀 orthogonal matrix (i.e. 𝑼𝑻𝑼 = 𝑰 where 𝑰 is the identity matrix) whose 

columns span the data space 𝑅𝑀 

 𝑽 is an 𝑁 by 𝑁 orthogonal matrix whose columns span the model space 𝑅𝑁 

 𝑺 is an 𝑀 by 𝑁 diagonal matrix with 𝑝 positive diagonal elements called singular values. 

The number of non-zero singular values 𝑝 is equal to the rank of the matrix 𝑲. Moreover, 

the singular values are customarily arranged in decreasing order 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥

𝑠min (𝑀,𝑁) ≥ 0 

Because there are only 𝑝 non-zero singular values, the SVD of 𝑲 can also be written in 

the more compact form 

 𝑲 = 𝑼𝒑𝑺𝒑𝑽𝒑
𝑻  (21) 

The compact form simply clarifies that the last 𝑚− 𝑝 columns of 𝑼 and the last columns 

𝑛 − 𝑝 of 𝑽 are multiplied by 0. More importantly, the compact form allows the computation of 

the Moore-Penrose pseudo-inverse 

 𝑲+ = 𝑽𝒑𝑺𝒑
−𝟏𝑼𝒑

𝑻 (22) 

which provides us with the solution to both the qCSD and rCSD-type discrete inverse problem. 

For full rank matrices 𝑲 (like the ones given by iCSD, kCSD and rCSD), there is no 

difference between the pseudo-inverse and the regular matrix inverse, i.e. 𝑲+ = 𝑲−𝟏. This is not 

so for the underdetermined problems (i.e. 𝑁 > 𝑀) like qCSD and eCSD where a regular matrix 

inverse does not even exist. In the underdetermined CSD methods, the model null space 𝑁(𝑲) is 

nontrivial while the data null-space 𝑁(𝑲𝑻) is trivial as long as the 𝑀 recording electrodes are at 

different spatial locations. As a result, there are an infinite number of source distributions 𝑓(𝑧) 

that can fit the recorded data vector 𝜑 = [𝜑(𝑧1), 𝜑(𝑧2), … , 𝜑(𝑧𝑀)]
𝑇 exactly. Hence, an important 
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question is which solution is found when using the pseudo-inverse? It turns out that the pseudo-

inverse solution has the nice property of being unique as well as being the solution with the 

minimum norm ‖𝑓(𝑧)‖
2
 (Aster et al., 2005). 

As it seems, the problem has now been solved and the estimated current-source density 

distribution 𝑓(𝑧) is uniquely given by 

 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑢𝑟𝑒:   𝑓 = 𝑲+𝜑 

𝑏𝑎𝑠𝑖𝑠 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛:   𝛼̃ = 𝑲+𝜑 = 𝑲−𝟏𝜑 

𝑓 =  ∑𝛼̃𝑗 ∙ 𝐾(𝑧𝑗 , 𝑧)

𝑁

𝑗=1

 

(23) 

Unfortunately, this solution is often useless in practical settings because even under mild 

noise levels the estimated solution 𝑓(𝑧) bears barely any resemblance with the true source 

distribution 𝑓(𝑧). To circumvent this difficulty we turn to so-called regularization techniques. 

3.2.5 Regularization 

It can be shown that Fredholm integral equations of the first kind with a square integrable 

kernel are ill-posed (Vogel, 2002). Ill-posed problems are defined in opposition to well-posed 

problems, which require that the following three properties be given (Parker, 1977): 

(i) Existence of a solution: For each 𝜑(𝑧), there exists a solution 𝑓(𝑧) satisfying 

Equation 6. 

(ii) Uniqueness: the solution 𝑓(𝑧) is unique 

(iii) Stability: the solution is stable with respect to perturbations in 𝜑(𝑧) 

So how well does our discretized 1-D CSD problem align with these properties? First, as 

long as the matrix 𝑲 has full row rank, which is the case if all recording sites are at different 

locations, any data vector 𝑉 will be in Range(K) and therefore condition (i) will be satisfied. 

Second, we already know that underdetermined problems like qCSD or eCSD admit an infinite 

number of solutions, thereby violating condition (ii). However, we have circumvented this 

problem by limiting ourselves to the minimum norm solution which we have found to be unique. 

Third, because discrete inverse problems always have a finite condition number, they cannot 
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formally be unstable. Instead, they are referred to as numerically ill-posed or ill-conditioned 

(Aster et al., 2005). This last part is worth investigating more thoroughly because it is a major 

reason why the CSD inverse problem is difficult to solve. 

Let’s recall that the solution to the discretized problem is given by 

 𝑓 = 𝑲+𝜑 

= 𝑽𝒑𝑺𝒑
−𝟏𝑼𝒑

𝑻𝜑 

=∑
𝑼∙,𝒊
𝑻𝜑

𝑠𝑖

𝑝

𝑖=1

𝑽∙,𝒊 

(24) 

It can be easily seen from the above relationship that small singular values 𝑠𝑖 can heavily 

amplify the contribution of the corresponding model space basis vector 𝑽∙,𝒊 and thereby make it 

dominate the solution. We have already discussed in the previous section that it is customary to 

arrange the singular values in a decreasing order. But we have not mentioned yet that the 

singular values always decay to zero. In fact, the smoother the kernel 𝐾(𝑧𝑗 , 𝑧) of our Fredholm 

integral equation, the faster the decay (Hansen and Society for Industrial and Applied 

Mathematics., 2010). Moreover, the singular vectors can be compared to spectral basis in the 

sense that they exhibit increasing numbers of zero-crossings (i.e. oscillations) for smaller 

singular values (Hansen and Society for Industrial and Applied Mathematics., 2010). Thus, the 

amplification of singular vectors corresponding to small singular values introduces more and 

more high frequency oscillations into the estimated solution 𝑓. This explains why even small 

noise in the data vector 𝜑 can have a substantial effect on the solution 𝑓 as exemplified by 

 𝜑 = 𝑲𝑓 + 𝜀 = 𝜑′ + 𝜀 

𝑓 = 𝑲+𝜑 = 𝑓 +∑
𝑼∙,𝒊
𝑻 𝜀

𝑠𝑖

𝑝

𝑖=1

𝑽∙,𝒊 
(25) 

where 𝜀 is an additive noise vector and 𝜑′ is the noise free data. Considering that 

 𝑓 − 𝑓 = 𝑲+(𝜑 − 𝜑′) = 𝑲+𝜀 (26) 

an upper bound for this noise amplification is given by 
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 ‖𝑓 − 𝑓‖
2

‖𝑓‖2
≤
𝑠1
𝑠𝑝

‖𝜑 − 𝜑′‖2
‖𝜑‖2

 (27) 

where ‖∙‖2 denotes the regular 2-norm and 𝑐𝑜𝑛𝑑(𝑲) = 𝑠1 𝑠𝑝⁄  is the condition number of 𝑲. As 

shown in the Results, it is not rare in 1-D CSD estimation to have condition numbers largely 

exceeding 1000. This means that unless there are some very lucky cancellation effects, noise at a 

level of 1 part in 1000 is potentially enough to make the solution practically useless. 

A common way to circumvent this difficulty is to filter the singular values by multiplying 

them by a regularizing function 𝜔𝜆(𝑠𝑖) designed such that 𝜔𝜆(𝑠) → 0 for 𝑠 → 0 (Vogel, 2002). 

Thereby, the exact solution from Equation 24 is replaced by the regularized solution 

 

𝑓𝜆 =∑𝜔𝜆(𝑠𝑖)
𝑼∙,𝒊
𝑻𝜑

𝑠𝑖

𝑝

𝑖=1

𝑽∙,𝒊 (28) 

This approach is sometimes referred to as regularization by spectral filtering with the 

individual entries of the regularization function being called filter factors (Hansen and Society 

for Industrial and Applied Mathematics., 2010). In the present work, we focus on 3 

regularization schemes differing only in their regularizing function 𝜔𝜆(𝑠): 

- Truncated SVD (TSVD) 

 
𝜔𝜆(𝑠) = {

1       𝑖𝑓     𝑠2 > 𝜆

0       𝑖𝑓     𝑠2 ≤ 𝜆
 (29) 

- Tikhonov 

 
𝜔𝜆(𝑠) =

𝑠2

𝑠2 + 𝜆2
 (30) 

- Damped SVD (dSVD) 

 𝜔𝜆(𝑠) =
𝑠

𝑠 + 𝜆
 (31) 

It is obvious that all these methods function in the same way: they dampen the effect of 

small singular values by reducing the contribution of their corresponding singular vector 𝑽 to the 

solution. As mentioned above, this process can be likened to a low pass filter because the 

singular vectors associated with the smaller singular values are increasingly oscillatory. Damped 
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SVD is similar to Tikhonov regularization but the transition between including large and 

excluding small singular values is slower. 

3.2.6 Choosing a prior 

So far we have only considered the case where the minimum norm of the model (in the 

case of quadrature) or the minimum norm of the coefficients in expansion methods is enforced 

using SVD. However, it is also possible to enforce the minimum norm of smoothness measures 

of the model ‖𝑳𝑓𝜆‖2 (‖𝑳𝛼̃𝜆‖2 for expansion methods) using generalized SVD (GSVD) instead of 

SVD. The matrix 𝑳 is called a prior and is usually chosen to measure the size or the roughness of 

the function 𝑓𝜆. In the case of quadrature methods, 𝑳 would then respectively be the identity 

matrix 𝑰 or a discrete approximation to a derivative of the function (the first and second 

derivative are the most common choices). The situation is a bit more difficult with expansion 

methods because the expansion coefficients 𝛼𝑗 do not represent the function 𝑓𝜆 but only the 

contribution of their respective basis function. It is however still possible to define measures of 

the size and/or the roughness of 𝑓𝜆 in terms of its expansion coefficients. By expressing the 

function 𝑓 in terms of its expansion as in Equation 10, we find that the norm of its derivative of 

order d is given by 

 

‖𝑓(𝒅)(𝑧)‖
2

2
= ∫ (∑𝛼𝑖 ∗ 𝜗𝑖

(𝑑)(𝑧′)

𝑁

𝑖=1

)(∑𝛼𝑗 ∗ 𝜗𝑗
(𝑑)(𝑧′)

𝑁

𝑗=1

)𝑑𝑧′
𝑏

𝑎

 

= ∑∑𝛼𝑖𝛼𝑗

𝑁

𝑗=1

𝑁

𝑖=1

∫ 𝜗𝑖
(𝑑)(𝑧′)𝜗𝑗

(𝑑)(𝑧′)𝑑𝑧′
𝑏

𝑎

 

=  ∑∑𝛼𝑖𝛼𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝛬𝑖𝑗  

=  𝛼𝑇𝜦𝛼 

(32) 

Since 𝜦 is composed of the inner products of the basis functions 𝜗𝑖
(𝑑)

, it is a positive 

definite matrix (Olver and Shakiban, 2006). This allows us to decompose it into a lower 

triangular matrix and its transpose 𝜦 =  𝑳𝑻𝑳 by means of the Cholesky factorization. Thereby, 

we can rewrite the above relation as 
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 ‖𝑓(𝒅)(𝑧)‖
2

2
= 𝛼𝑇𝜦𝛼 

= 𝛼𝑇𝑳𝑻𝑳𝛼 

= ‖𝑳𝛼‖2
2 

(33) 

and fulfill the goal of expressing the size of 𝑓(𝒅) as a function of its expansion coefficients 𝛼. 

3.2.7 Methods for choosing the regularization parameter 

The main difficulty remaining to be solved is to find ways to choose a good value for the 

regularization parameter 𝜆. The objective of a regularization parameter selection method is to 

automatically find the value of 𝜆 which minimizes the error between the true function 𝑓 and the 

regularized solution 𝑓𝜆. It is therefore informative to examine the nature of these errors. 

Regularization by spectral filtering stabilizes the solution by introducing bias. This implies 

that there are two types of errors that are traded off against each other. First, there is the bias 

error introduced by filtering the singular values and second there is the perturbation error 

resulting from inverting the noise component in the data. Writing the filter factors 𝜔𝜆(𝑠𝑖) as a 

diagonal matrix 𝑾𝜆 allows us to express these as 

 𝑓 − 𝑓𝜆 = 𝑽(𝑰 −𝑾𝜆)𝑽
𝑻𝑓 − 𝑽𝑾𝜆𝑺

−𝟏𝑼𝑻𝜀 (34) 

where 𝑰 is the identity matrix and all the other quantities are the same as in Equation 24 and 25. 

The contribution of these errors depends monotonically on the value of the regularization 

parameter 𝜆: If 𝜆 is large (oversmoothing), most of the noise will get filtered out but the bias will 

be increased. If 𝜆 is small (undersmoothing), there will be almost no bias but the noise will 

dominate the solution. 

Successful regularization therefore hinges on choosing the regularization parameter in a 

way to minimize the bias while preventing the perturbation error from blowing-up. In practice, 

this is far from trivial because neither the true solution 𝑓 nor the error term 𝜀 is known. 

Therefore, it is necessary to find other measures on the data to choose 𝜆 and the literature 

abounds with regularization parameter selection methods. Here, we have tested three: L-curve, 

generalized cross-validation (GCV) and the normalized cumulative periodogram (NCP). 
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The L-curve method aims to balance the residual norm ‖𝑲𝑓𝜆 − 𝜑‖2 and a measure of the 

size of a desirable characteristic of the solution, e.g. ‖𝑳𝑓𝜆‖2 (respectively ‖𝑲𝛼̃𝜆 − 𝜑‖2 and 

‖𝑳𝛼̃𝜆‖2 for expansion methods). The balance is achieved by changing the value of the 

regularization parameter 𝜆. The L-curve rests on the observation that, away from the optimal 

solution, the model norm tends to increase rapidly with decreasing 𝜆 (undersmoothing) or the 

residual norm increases rapidly with increasing 𝜆 (oversmoothing). Therefore, sweeping through 

various values of 𝜆 optimally generates an L-shaped curve giving the name to the selection 

method. The regularization parameter is then chosen by identifying the point of maximal positive 

curvature in the L-curve. 

In contrast, GCV selects 𝜆 by minimizing the prediction error of the potential  𝜑 under 

the assumption that the additive noise is white. In practice, this is done by separating the data in 

two sets. An estimate of the solution is found using the first set and then used to predict the 

values in the second set. The parameter 𝜆 for which the error between the predicted values and 

the values in the second set is minimized is then selected. Here, we have used leave-one-out 

generalized cross-validation as described in (Hansen, 2007). 

Finally, also based on the assumption that the additive noise is white, NCP chooses the 

regularization parameter 𝜆 such that the vector of residuals, 𝑟 =  𝑲𝑓𝜆 − 𝜑 or (𝑟 =  𝑲𝛼̃𝜆 − 𝜑 for 

expansion methods), is closest to flat (white residuals). In practice, this is done by choosing 𝜆 

such that the cumulated sum of the power spectrum of the residual vector (also called the 

normalized cumulative periodogram) is closest to linear (Hansen and Society for Industrial and 

Applied Mathematics., 2010). 

3.2.8 Solution resolution 

We have already mentioned that regularization stabilizes the estimation at the cost of 

introducing bias. However, this is not the only cost because the filtering of singular values also 
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affects the resolution of the solution. This concept is easiest to understand by looking at the 

forward and inverse estimation process assuming no noise 

 𝜑 = 𝑲𝑓 

𝑓 = 𝑲+𝜑 

⇒ 𝑓 = 𝑲+𝑲𝑓 

(35) 

By identifying the estimation resolution with 𝑹 = 𝑲+𝑲, we see that the resolution matrix 

will not be an identity matrix if 𝜆 > 0 in 𝑲+. Therefore, whenever a regularized inverse is 

obtained, it is useful to check the resolution of the estimation to verify that interesting variations 

in the solution are indeed within the resolution capability of the inversion method. 

In practice, the model resolution is usually qualitatively evaluated using a so-called 

spike-test (we have called it delta test here in order to avoid confusion with a neural action 

potential). This means simply to replace the model 𝑓 with a delta function and then to evaluate 

how well the delta function is resolved using the inversion matrix 𝑲+ with the estimated 𝜆 from 

the experimental data of interest. The full mathematical treatment of this topic goes beyond the 

Figure 3-3: Flowchart describing the estimation scheme comparison process. (A) Simulation process and computation of 

the source reconstruction error. (B) Ranking of estimation schemes according to the mean over all conditions of the mean 

of the sampling distribution of the mean. 
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scope of this work but interested readers are referred to (Menke, 1989, Parker, 1994, Aster et al., 

2005) for a detailed discussion. 

3.3 Methods 

We have compared the accuracy of different CSD methods under various regularization 

schemes in order to identify the methods that are likely to work best in a noisy experimental 

setting. We have compared the previously published (1) spline iCSD (Pettersen et al., 2006), (2) 

kCSD with Gaussian basis functions (Potworowski et al., 2012) and the newly presented (3) 

eCSD which uses the same Gaussian basis function expansion as kCSD but without the kernel 

trick, (4) qCSD using Simpson’s quadrature rule and (5) rCSD. Each of these CSD methods was 

tested under 3 regularization schemes (Tikhonov, dSVD, tSVD), 3 regularization coefficient 

selection methods (l-curve, GCV, NCP) and 7 different priors. Moreover, we have applied the 

priors in 2 different ways for the expansion methods. We called a particular combination of these 

methods an estimation scheme. Hence, each scheme is composed of 5 parameters: a CSD method 

(iCSD, kCSD, eCSD, qCSD, or rCSD), a regularization method (Tikhonov, dSVD, or tSVD), a 

regularization parameter selection method (NCP, L-curve, GCV), a prior (see below for detailed 

explanation) and a way of enforcing the prior (model or coefficient). This results in a total of 531 

different estimation schemes after removal of impossible or redundant schemes (e.g. qCSD with 

model prior enforcement). The behavior of each estimation scheme has been evaluated for 5 

diameters (0.5, 1, 2, 3 and 5 mm) under 7 noise levels (0, 1, 2, 3, 5 and 10 dB). The 

reconstruction accuracy of each scheme was evaluated using the process schematically shown in 

Figure 3-3A. The following describes these steps in more detail. 

3.3.1  “True” CSD function 𝒇(𝒛), forward model and noise 

For the underlying “true” CSD function 𝑓(𝑧) we have chosen 8 different CSD depth 

profiles. As ground profile, we used a sum of Gaussians similar to the one used in (Pettersen et 

al., 2006) 

 

𝑓(𝑧) = {

0, 𝑧 ≤ 0

𝑒
−
1
2∙
(𝑧−0.3)2

0.082 −
𝑒
−
1
2∙
(𝑧−0.8)2

0.232

√2𝜋
, 𝑧 > 0

 (36) 
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The detailed description in the results section is based on this profile. In order to assess 

the stability and reproducibility of the methods ranking obtained from this “Sum of Gaussian” 

profile, we repeated the ranking for 7 additional CSD depth profiles: 

1, 2 and 3: Small 1 (𝜇 = 0.3 mm; 𝜎 = 0.08 mm), Small 2 (𝜇 = 1 mm; 𝜎 = 0.08 mm) 

and Large (𝜇 = 1 mm; 𝜎 = 0.2 mm) monopole 

 
𝑓(𝑧) = {

0, 𝑧 ≤ 0

−𝑒
−
1
2
∙
(𝑧−𝜇)2

𝜎2 , 𝑧 > 0
 (37) 

4: Large dipole (the sum of Gaussians negates the need for an additional small dipole) 

 
𝑓(𝑧) = {

0, 𝑧 ≤ 0

𝑒
−
1
2∙
(𝑧−0.75)2

0.152 − 𝑒
−
1
2∙
(𝑧−1.5)2

0.152 , 𝑧 > 0
 

 
(38) 

5 and 6: Small (𝜇 = [0.3, 0.6, 0.9] mm; 𝜎 = 0.08 mm) and Large (𝜇 = ([0.5, 1, 1.5]; 𝜎 =

0.13 mm) quadrupole. In both cases 𝐴 = [0.5, −1, 0.5]. 

 

𝑓(𝑧) = {

0, 𝑧 ≤ 0

∑ 𝐴𝑖 ∙ 𝑒
−
1
2∙
(𝑧−𝜇𝑖)

2

𝜎2
3

𝑖=1
, 𝑧 > 0

 (39) 

7: CSD depth profile described in Glabska et al. (Glabska et al., 2014). In order to obtain 

the Glabska profile, we first extracted the CSD depth profile at 𝑥 = 0 from their Figure 3-4B. 

We then transformed their color coded image into intensity values using a reverse lookup table 

approach and fitted the obtained depth profile with 7 Gaussian functions. This provided us with a 

parametric description for the Glabska profile given by 

 

𝑓(𝑧) = {

0, 𝑧 ≤ 0 ∪ 𝑧 ≥ 2.045

∑ 𝐴𝑖 ∙ 𝑒
−
1
2∙
(𝑧−𝜇𝑖)

2

𝜎𝑖
2

7

𝑖=1
, 0 < 𝑧 < 2.045

 (40) 

with 

𝐴 = [−2.810, 5.925,−14.202, 13.283, 9.637, 6.356,−7.89 ] 
𝜇 = [0.021, 0.175, 0.812, 0.84, 1.142, 1.305, 1.680 ] 
𝜎 = [ 0.062, 0.145, 0.281, 0.148, 0.111, 0.216, 0.104] 

For the lateral source profile we have used the cylinder assumption (see Eq. 3) with 

diameters of either 0.5, 1, 2, 3 or 5 mm. 
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From these CSD distributions, we simulated the potential 𝜑(𝑧𝑖) for 32 electrodes (inter-

electrode spacing of 100 µm) according to the procedure described in Figure 3-2B. The choice of 

this setup is meant to simulate a cortical recording with a linear 32 channel electrode. The 

medium was parameterized as 2 semi-infinite media separated at 𝑧 = 0 differing only in their 

electrical conductivity (homogeneous and isotropic conductivity of 𝜎𝑡 = 1.7 𝑆/𝑚 for the top 

medium and 𝜎𝑒 = 0.3 𝑆/𝑚 for the bottom medium). The bottom medium conductivity 𝜎𝑒 

corresponds to the conductivity generally assumed for extracellular cortical tissue while 𝜎𝑡 is the 

conductivity of saline (Wagner et al., 2004). The virtual electrode was positioned to have 4 

contacts in the top medium and the 5th contact positioned at 𝑧 = 0.05 𝑚𝑚, i.e. 50 µm below the 

surface. This setup is a realistic representation of a feasible cortical recording because a 32 

channel electrode has a larger span (3.1 mm) than most mammalian cortices. The assumed setup 

is schematically displayed in Figure 3-2A. 

For each level of signal-to-noise ratio (SNR) we then generated 1000 noise realizations of 

the appropriate amplitude and added them to the noise-free potential 𝜑. The resulting noisy 

potential 𝜑𝑛𝑜𝑖𝑠𝑦 = 𝜑 + 𝜀 was used as an input to the different source estimation schemes. It 

should be noted that the 531 estimation schemes were evaluated on the same data, i.e. we did not 

regenerate different noise for each scheme. 

3.3.2 Priors 

We have tested the methods under 7 different priors (the symbol used for each prior is 

shown in square parentheses): 1) minimization of the quadrature/expansion coefficients []; (2) 

minimization of the model norm [0], i.e. 𝑳 = 𝑰 for qCSD or 𝑳 corresponding to 𝑑 = 0 in 

Equation 33 for the expansion methods; (3) minimization  of the first derivative [1]; (4) 

minimization of the second derivative [2]; (5) minimization of the combination of the model 

norm and the first derivative [0 1]; (6) minimization of the combination of the model norm and 

the second derivative [0 2]; (7) minimization of the combination of the model norm, the first 

derivative and the second derivative [0 1 2]. In the case of qCSD each of these methods is 

implemented using the identity matrix 𝑳 = 𝑰 for measuring the model norm or with 𝑳 chosen as a 

discrete approximation to the d-th derivative. In the case of expansion methods there are actually 

two ways in which the priors can be applied. In the first case, we can construct 𝑳 such that it 
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measures the relevant characteristic, i.e. norm or norm of a derivative of the function 𝑓, as shown 

in Equations 32 and 33. In the second case, we can directly minimize the norm of the coefficients 

𝛼 (or its derivative). For example, minimizing the first derivative would then prioritize all 

coefficients having the same value instead of directly enforcing a small norm for the first 

derivative 𝑓′. We decided to explore both these options here because calculating the matrix 𝑳 

involves numerical approximation of the integral from Equation 32 which potentially introduces 

errors/instability into the problem. Thus, we also applied all the priors used in qCSD, i.e. the 

identity matrix and the discrete derivatives, to the expansion methods. We refer to these priors as 

the coefficient priors in contrast to the model priors. Note that this distinction is meaningless for 

qCSD because it is not a basis function expansion method. 

Finally, all priors except the first are implemented using GSVD instead of SVD. We note 

that prior [] and [0] (for the coefficient priors) are enforcing the same condition but using either 

SVD or GSVD. Hence, these conditions are useful in assessing the effect of numerical 

differences between the two methods. 

3.3.3 Reconstruction error 

The source reconstruction error was estimated using a discrete approximation (361 

samples regularly spaced in 10 micron steps) to the 2-norm of the error 

 

𝑒 =
‖𝑓 − 𝑓𝜆‖2
‖𝑓‖2

≅ √∑
(𝑓(𝑧𝑠) − 𝑓𝜆(𝑧𝑠))

2

𝑓(𝑧𝑠)
2

∆𝑧

361

𝑠=1

 

𝑧1 = −0.6 𝑚𝑚; 𝑧361 = 3 𝑚𝑚 

(41) 

3.3.4 Comparison of estimation schemes 

We compared the 531 estimation schemes under 7 different noise levels and with 5 

different source diameters (a total of 35 conditions). In order to rank the estimation schemes, we 

first created a sampling distribution of the mean estimation error by subsampling the full 1000 

trial dataset 1000 times with a sample size of 20 samples without replacement. We then 

computed the mean of the sampling distribution of the mean and the standard error of the mean 

and ranked the estimation schemes from lowest to highest mean error. This approach was chosen 

to answer the following question: “If one records 20 trials of noisy potential, which method will 
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most likely provide the lowest average CSD estimation error?” Moreover, to avoid excessively 

contaminating the estimate with outliers, we have discarded the worst 10% of trials for each 

estimation scheme. Thereby, any method that has a larger number of outliers is implicitly 

penalized because the remaining outliers will increase the mean error. A schematic of the whole 

procedure is shown in Figure 3-3B. 

3.3.5 Simulation environment 

All the simulations were conducted using a custom-made MATLAB (MathWorks) package 

which we made available for download at http://www.bic.mni.mcgill.ca/~amirs/. This package 

builds on the freely available regu-tools by Hansen which implements all the SVD and GSVD 

based regularization methods (Hansen, 2007). In order to handle the large amount of 

computation required for the comparison we have used a high-performance computing cluster 

(Guillimin, McGill University) for running the simulations. 

3.4 Results 

3.4.1 Noise sensitivity 

We first evaluated the condition number associated with the naïve (unregularized) CSD 

estimation to assess the upper bound of noise amplification as defined in Equation 42. Table 3-

1A shows the condition number for each estimation scheme and each evaluated source diameter. 

As expected, increasing the source diameter leads to a larger condition number because of the 

increased smoothness of the forward kernel K (see Equation 4). This in turn implies that CSD 

estimation is more difficult at larger source diameters. Moreover, the large condition number 

suggests that CSD estimation is potentially highly sensitive to noise. In fact, a condition number 

of 106 means that noise at an amplitude of 1 part in a million could be enough to significantly 

affect the estimation quality. However, it is important to keep in mind that Equation 42 only 

provides an upper bound on noise amplification. Therefore, to get a better picture of the need for 

regularization, we have explicitly computed the average noise amplification over trials for the 

naïve CSD estimation using the following equation 

 
𝑁𝑜𝑖𝑠𝑒𝐴𝑚𝑝 = 𝑀𝑒𝑎𝑛 [

‖𝑓 − 𝑓‖
2

‖𝜑 − 𝜑′‖2
] = 𝑚𝑒𝑎𝑛[𝐴] ∙

‖𝑓‖2
‖𝜑‖2

 (42) 
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A) Condition Number:   
  

  Diam 0.5 Diam 1 Diam 2 Diam 3 Diam 5 

rCSD 4.76E+04 3.85E+05 2.62E+06 7.18E+06 2.22E+07 

kCSD 2.44E+05 1.94E+06 1.31E+07 3.59E+07 1.11E+08 

qCSD 2.50E+02 7.08E+02 1.85E+03 3.05E+03 5.38E+03 

iCSD 1.15E+03 1.13E+03 2.08E+03 3.43E+03 6.02E+03 

eCSD 4.94E+02 1.39E+03 3.62E+03 5.99E+03 1.05E+04 

 

B) Noise Amplification:    

  Diam 0.5 Diam 1 Diam 2 Diam 3 Diam 5 

rCSD 63.54 61.48 60.70 60.61 61.12 

kCSD 67.23 64.86 63.97 63.82 64.46 

qCSD 68.53 66.20 65.29 65.11 65.73 

iCSD 64.70 62.65 61.84 61.70 62.28 

eCSD 67.23 64.86 63.97 63.82 64.46 
Table 3-1: Condition Number and Noise Amplification. (A) Condition number for each CSD methods and each evaluated 

source diameter. As expected, the condition number increases for increasing source diameter because representers 

become flatter. (B) Noise amplification for all methods and source diameters computed according to Eq. 38. Note that the 

noise amplification was averaged over the different SNRs. 

Table 3-1B shows the computed noise amplification for all methods and source diameters 

(the noise amplification was averaged over the different SNRs). Although the picture is not as 

bleak as suggested by the condition number, we can see that noise still has a considerable effect 

on estimation accuracy. It is interesting to see that the noise amplification as defined above is 

independent of the diameter for all methods. 

3.4.2 Demonstration of the regularization 

Before proceeding to the comparison of the various CSD estimation schemes, it is useful to 

build some visual intuition about the functioning of regularization. This is especially important in 

the present case because the large number of compared schemes makes it impossible to show the 

reconstruction for each case. Moreover, because a central aim of this work is to assess the 

performance of the estimation under various noise conditions, a visual inspection of every trial is 

impossible. Therefore, the following section will present the general characteristics of the SVD 

regularized CSD estimation using rCSD as an example. 
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In Figure 3-4, we demonstrate the average CSD estimation over 10 trials using the rCSD 

expansion method, Tikhonov regularization, NCP regularization parameter selection and a 

minimum model norm. Figure 4a shows the noise-free potential 𝜑 (black curve) and the potential 

with additive Gaussian white noise at a signal-to-noise ratio of 3 dB, simulating experimentally 

measured potential. The potential has been calculated for an electrode with 32 contacts spaced 

100 𝜇𝑚 apart using the method demonstrated in Figure 3-2B and the true CSD depth profile 

named “True CSD” from Figure 3-4B (same as Fig. 3-2B). A cylinder with a radius of 0.25 𝑚𝑚 

was used for the lateral CSD source profile (see Eq. 3). The electrode was positioned in a way to 

leave 4 contacts above the brain surface which is shown by the horizontal green dotted line at 

depth 𝑧 = 0. The 5th electrode is positioned 50 𝜇𝑚 below the brain surface. The electrical 

conductivity above the brain (𝑧 < 0) was set to 1.7 𝑆/𝑚 to emulate the conductivity of artificial 

Figure 3-4: Demonstration of CSD estimation using the rCSD expansion method, Tikhonov regularization, NCP 

regularization parameter selection and a minimum model norm. (A) Simulated potential without noise (black) and with 

additive Gaussian white noise at an SNR of 3 dB (red). (B) CSD estimation averaged over 10 trials. Ideal (blue) estimation 

is computed assuming no noise. Optimal (red) is computed by finding the λ that minimizes the reconstruction error. Naive 

(cyan) estimation corresponds to the source reconstruction obtained without regularization (λ = 0) 
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cerebro-spinal fluid (aCSF) and the typical conductivity for gray matter, 0.3 𝑆/𝑚, has been 

chosen for 𝑧 ≥ 0 (Wagner et al., 2004, Pettersen et al., 2006). All these parameters were chosen 

to emulate a laminar cortical recording with aCSF covering the brain surface. 

Figure 3-4B shows the average reconstruction over 10 trials using the rCSD expansion 

method, along with the regularization scheme described above. The ideal estimation (blue curve) 

was calculated by using a naïve estimation (𝜆 = 0) on the noisefree potential. This gives a bench 

mark value for the best possible estimation using the chosen expansion method. It is interesting 

to note that the ideal estimation is not perfect as shown by the small dent on the positive peak of 

the CSD curve. This could potentially be explained by the fact that the rapid fluctuation of the 

CSD profile at the peak does not lay within the span of the expansion functions. However, as can 

be seen by the actual estimation (magenta curve), this small lack in fidelity is meaningless for the 

CSD estimation under noise. The naïve estimation (cyan curve) is found using 𝜆 = 0 on the 

noisy potential. This is the estimation one would get without regularization. As expected, there is 

substantial noise amplification even after averaging over 10 trials. Moreover, it is interesting to 

note that the noise amplification seems larger outside of the brain where the conductivity is 

higher. The optimal lambda estimation (red curve) is calculated by finding the regularization 

parameter 𝜆 which minimizes the error between the ideal CSD and the estimated CSD. This 

estimation represents the best possible estimation from the noisy potential under the chosen 

estimation scheme. The optimal estimation depends on the chosen CSD method (in this case 

rCSD), the regularization method (Tikhonov), the prior and the particular noise realization. 

However, because the regularization parameter 𝜆𝑜𝑝𝑡. is found by minimizing the error with the 

ideal CSD, it is independent of the particular regularization parameter selection method. In fact, 

the quality of a regularization parameter selection method can be evaluated by looking at how 

similar the value of the regularization parameter 𝜆 (found using the particular scheme) is to 𝜆𝑜𝑝𝑡. 

It is clear from Fig. 3-4B that the regularization stabilizes the estimation since the rCSD 

estimation (magenta curve) is much smoother than the naïve estimation. However, it also 

exemplifies the cost of the increased stability. Because of the filtering of the right singular 

vectors 𝑽 associated with small singular values, the estimation is now biased as seen by the 

reduced amplitude of the estimated CSD compared to the “True CSD”. Furthermore, the 
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closeness of the rCSD estimation and the optimal estimation suggests that the blind application 

of the NCP regularization parameter selection works almost optimally in this case. 

3.4.3 Comparison of regularization parameter selection methods 

A major challenge in regularization is the choice of the regularization parameter 𝜆. We 

have compared 3 different regularization parameter selection methods: NCP, L-curve and GCV. 

Figure 3-5A-C shows the process of regularization parameter selection for 1 trial for each of 

these selection methods. All parameters for the generation of the potential and the source profile 

are the same as in the previous section. In NCP (Fig. 3-5A), the regularization parameter 𝜆 is 

chosen such that the vector of residuals is closest to flat (white residuals). In practice, this is done 

by choosing 𝜆 such that the cumulated sum of the power spectrum of the residual vector (also 

called the normalized cumulative periodogram) is closest to linear (Hansen and Society for 

Industrial and Applied Mathematics., 2010). The changing of shape of the NCP as 𝜆 is varied is 

shown in Fig. 3-5A. 

Instead of focusing on the shape of the residuals, the L-curve criterion attempts to 

balance the residual norm and the model (semi-) norm. The L-curve rests on the assumption that, 

away from the optimal solution, the model norm will increase rapidly with decreasing 𝜆 

(undersmoothing) or the residual norm will increase rapidly with increasing 𝜆 (oversmoothing). 

Therefore, sweeping through various values of 𝜆 optimally generates an L-shaped curve giving 

the name to the selection method. The regularization parameter is then chosen by identifying the 

point of maximal positive curvature in the L-curve. It is not necessarily the case that the optimal 

𝜆 really lies at the point of maximal curvature as can be seen in Fig. 3-5B, but it generally lays 

close by. However, especially with very smooth models, the L-curve does not always have a 

point of positive curvature in which case the L-curve method will fail (Hansen and Society for 

Industrial and Applied Mathematics., 2010).  

Finally, GCV selects 𝜆 by minimizing the prediction error of the potential  𝜑 under the 

assumption that the additive noise is white. Here, we have used leave-one-out generalized cross-

validation as described in Hansen 2007 (Hansen and Society for Industrial and Applied 

Mathematics., 2010). The same approach is used in Potworowski et al. (Potworowski et al., 

2012). However, it is important to mention that, although the principle is the same, the  
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Figure 3-5: Demonstration of regularization parameter selection methods. (A) NCP attempts to find the normalized 

cumulative periodogram that is closest to linear. The selected curve is shown in cyan and the optimal in red. The optimal 

is found by minimizing the estimation error as measured by the 2-norm. (B) The l-curve chooses the regularization 

parameter by identifying the point of maximal positive curvature. (C) In GCV the minimum of the leave-one-out 

prediction error is used for selecting λ. (D) Overlay of the estimated CSD using the regularization parameter identified 

using the methods in (A)-(C). (E) Boxplot of the estimation error for 100 trials. (F) Boxplot of the success of each 

regularization parameter selection method as evaluated by the ratio between the selected and optimal λ. A value of 1 

means optimal parameter selection. 
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implementation of GCV used here differs from theirs. Figure 3-5C shows the value of the 

generalized cross-validation function as a function of the regularization parameter 𝜆. We see that 

the chosen regularization parameter is quite close to the optimal. Interestingly, the cross-

validation exhibits two local minima suggesting two different solutions where the prediction 

error is small. This can be problematic and leads to a higher level of outliers. 

Fig. 3-5D shows an overlay of the CSD estimation for 1 trial using the three different 

regularization parameter selection methods. However, Fig. 3-5D does not necessarily provide a 

representative view of the general situation since it only shows the resulting estimation for a 

single trial. In order to get a better picture of the quality of each of the selection methods, we 

have computed the estimation error for 100 trials (outliers removed). The resulting distribution of 

the error is shown as a boxplot in Fig. 3-5E. We see that for this particular estimation scheme 

(i.e. rCSD, Tikhonov, minimum model norm prior) NCP performs best followed by the L-curve 

criterion. In fact, NCP performs almost optimally. In order to show how each of the selection 

methods compares to the optimal case, we have also investigated how close the regularization 

parameter lies to the optimal one. Fig. 3-5F shows the ratio between the regularization parameter 

𝜆 and 𝜆𝑜𝑝𝑡 for each trial. The closer this ratio is to one, the better the performance of the 

regularization parameter selection method. As expected from Fig. 3-5E, NCP also performs 

better in this respect. Moreover, it is interesting to note that NCP tends to overestimate 𝜆 under 

the chosen conditions while both the L-curve and the GCV tend to underestimate it. 

3.4.4 Regularization and resolution 

It has already been mentioned that regularization stabilizes the solution at the cost of 

introducing bias. However, the magnitude of the regularization parameter 𝜆 also affects the 

resolution of the solution. We have explored this reduction in resolution by performing a delta-

test which consists of looking at the noise-free source reconstruction assuming 𝑓(𝑧) = 𝛿(𝑧 −

𝑧′′). Figure 3-6A shows the CSD estimation for 𝑧′′ = 0.55 𝑚𝑚. It is clear that there is a marked 

difference between the unregularized (𝜆 = 0) and the regularized case. Most importantly, the 

estimation goes from a wavelet type shape resembling the impulse response of a high pass filter 

to a smoothening function akin to a low-pass filter. 
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Figure 3-6B shows the resolution profiles obtained using a delta-test with the discrete 

delta functions located at different depths. We see that the conductivity jump at 𝑧 = 0 affects the 

estimation resolution for ~150 𝜇𝑚. Moreover, we note that the higher conductivity at 𝑧 < 0 

dramatically reduces the estimation. Finally, we also observe a small reduction in resolution 

towards the bottom-most electrode stemming from the fact that there is no data from below that 

can be used to constrain the estimate. 

The width of the low-pass resolution profile is very useful for a qualitative assessment of 

estimated CSD profiles because it provides an approximation of the size of the features that can 

be resolved under the given conditions. In fact, the estimated CSD profile 𝑓(𝑧) (assuming no 

noise) is simply the convolution of the resolution profile with the true CSD profile  𝑓(𝑧). This 

can be nicely approximated by multiplying each column in Figure 3-6B by the corresponding 

magnitude of the true CSD profile and summing over all rows (the result has to be multiplied by 

the distance between the delta functions to get the correct magnitude). 

3.4.5 Comparison of CSD estimation schemes for each condition for “Sum of Gaussians” profile 

So far, we have only demonstrated the working of one estimation scheme under one single 

condition. This obviously does not give us a very good picture about which estimation scheme  

Figure 3-6: Effect of Regularization on Solution Resolution. (A) Resolution of a delta function located at z = 0.55 mm 

using estimation naive (blue), optimal (red) and NCP-selected (magenta) regularization parameter. The estimation 

scheme and trial is the same as in Figure 3-5. (B) Pseudo-color image of the resolution of a delta function located at 

various depths. 
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Diam SNR 
CSD Regu. λ Sel. 

Prior 
Prior Mean Standard Mean Noise 

Method Method Method Method Error Error Amp. 

0.5 

0 eCSD Tikhonov NCP 0 Model - 0 0.6971 0.0189 3.12 

1 kCSD dSVD L-curve 0  2 Coeff + 0.6623 0.0212 3.29 

2 kCSD dSVD L-curve 0  2 Coeff + 0.6311 0.0163 3.52 

3 iCSD Tikhonov L-curve 0 1 2 Coeff + 0.6022 0.0181 3.75 

5 iCSD Tikhonov L-curve 0  2 Coeff + 0.5497 0.0157 4.34 

7 iCSD Tikhonov L-curve 0  2 Coeff + 0.5085 0.0133 5.07 

10 iCSD Tikhonov L-curve 0  2 Coeff + 0.4404 0.0111 6.20 

1 

0 kCSD Tikhonov NCP 0 Model - 0 0.7686 0.0217 1.61 

1 kCSD Tikhonov NCP 0 Model - 0 0.7403 0.0201 1.75 

2 iCSD Tikhonov L-curve 0 1 2 Coeff + 0.7016 0.0233 1.84 

3 iCSD Tikhonov L-curve 0 1 2 Coeff + 0.6804 0.0204 2.02 

5 iCSD Tikhonov L-curve 0  2 Coeff + 0.6199 0.0173 2.30 

7 iCSD Tikhonov L-curve 0  2 Coeff + 0.5734 0.0145 2.69 

10 rCSD Tikhonov L-curve 0 1 2 Model + 0.5109 0.0129 3.40 

2 

0 rCSD Tikhonov NCP 0  2 Model + 0.8489 0.0241 0.91 

1 rCSD Tikhonov NCP 0  2 Model + 0.8247 0.0251 1.00 

2 rCSD Tikhonov NCP 0  2 Model + 0.7987 0.0236 1.07 

3 rCSD Tikhonov NCP 0  2 Model + 0.7627 0.0213 1.16 

5 rCSD Tikhonov NCP 0  2 Model + 0.7235 0.0183 1.38 

7 rCSD Tikhonov NCP 0  2 Model + 0.6795 0.0159 1.63 

10 iCSD Tikhonov L-curve 0  2 Coeff + 0.6175 0.0155 2.08 

3 

0 kCSD dSVD NCP 0  2 Model + 0.8941 0.0179 0.67 

1 iCSD dSVD NCP 2 Coeff + 0.8822 0.0191 0.74 

2 rCSD Tikhonov NCP 0  2 Model + 0.8685 0.0198 0.81 

3 iCSD dSVD NCP 2 Coeff + 0.8559 0.0187 0.89 

5 rCSD Tikhonov NCP 0  2 Model + 0.8090 0.0206 1.08 

7 rCSD Tikhonov NCP 0  2 Model + 0.7656 0.0186 1.29 

10 rCSD Tikhonov NCP 0  2 Model + 0.7165 0.0176 1.68 

5 

0 kCSD dSVD NCP 0  2 Model + 0.9316 0.0144 0.46 

1 iCSD dSVD NCP 2 Coeff + 0.9188 0.0166 0.51 

2 iCSD dSVD NCP 2 Coeff + 0.9071 0.0169 0.57 

3 kCSD dSVD NCP 0  2 Model + 0.8934 0.0181 0.63 

5 iCSD dSVD NCP 2 Coeff + 0.8646 0.0184 0.77 

7 iCSD dSVD NCP 2 Coeff + 0.8313 0.0181 0.93 

10 kCSD dSVD NCP 0  2 Model + 0.7795 0.0178 1.24 
Table 3-2: Best ranked estimation scheme for each SNR and source diameter for “Sum of Gaussians” profile. The 

ranking was obtained according to the procedure described in Figure 3-3B. Note that in this case the last step of 

averaging over all tested conditions is omitted and each condition is considered independently. 
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should be preferred in a general situation. For instance, the exact signal-to-noise ratio and the 

source diameter is usually unknown in an experimental setting. Therefore, we decided to 

compare the 531 estimation schemes under 7 different noise levels and with 5 different source 

diameters (a total of 35 conditions). We ranked the estimation schemes based on the mean error 

of their sampling distribution of the mean computed from subsampling without replacement the 

dataset 1000 times with a sample size of 20 samples. This approach was chosen to answer the 

question: “If one records 20 trials of noisy potential, which method will most likely provide the 

lowest average CSD estimation error?” Moreover, to avoid excessively contaminating the 

estimate with outliers, we have discarded the worst 10% of trials for each method. Thereby, any 

method that has a larger number of outliers is implicitly penalized because the remaining outliers 

will increase the mean error. 

Table 3-2 shows the best ranked estimation scheme for each SNR and source diameter 

combination. As expected from the analysis of the condition number, the mean error increases 

with increasing diameter. Moreover, unsurprisingly the mean error decreases with increasing 

SNR. The opposite is true for noise amplification. Moreover, there are some interesting trends in 

the distribution of the parameters in the top methods. First, regularization involving a prior 

minimizing the second derivative is dominating the top ranks. In all but 3 conditions the prior 

involves minimizing the second derivative. Second, there is a clear tendency to favor Tikhonov 

regularization over dSVD for smaller diameters. A similar tendency is observed for the 

comparison between the L-curve and NCP regularization parameter selection method. However, 

the main finding that sticks out from Table 3-2 is that there is no single estimation scheme that 

completely outperforms the others across all tested conditions. It is therefore necessary to 

investigate further which types of schemes perform well in the different conditions. 

In order to get a better idea of the type of estimation schemes that are found in the top of 

the ranking in each condition, we chose to consider all schemes whose mean estimation error 

was within the one-tailed 99% confidence interval of the best scheme’s mean error. Each 

estimation scheme that fulfilled this criterion was considered a good candidate to use in that 

condition (i.e. 𝜀𝑗̅,𝑑,𝑛  ≤ 𝜀𝑗̅=𝑏𝑒𝑠𝑡,𝑑,𝑛 + 2.54 ∙ 𝑆𝐸[𝜀𝑗̅=𝑏𝑒𝑠𝑡,𝑑,𝑛]). The number of estimation schemes 

that satisfied this selection criterion in each condition is shown in Table 3-3A. 
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A) # of Methods:   
 

B) Percent Difference: 

SNR 
Diam 
0.5 

Diam 
1 

Diam
2 

Diam
3 

Diam 
5 

 

SNR 
Diam 
0.5 

Diam 
1 

Diam 
2 

Diam 
3 

Diam 
5 

0 47 84 109 98 114 
 

0 6.96 7.27 7.35 4.76 3.99 

1 48 83 87 100 111 
 

1 7.62 7.03 7.51 5.35 4.36 

2 38 82 67 103 94 
 

2 6.40 8.58 7.71 5.82 4.66 

3 40 65 30 90 92 
 

3 7.64 7.55 6.70 5.88 5.13 

5 31 41 14 82 87 
 

5 6.71 6.97 6.19 6.21 5.47 

7 27 22 10 65 77 
 

7 6.78 6.40 5.68 6.02 5.53 

10 20 23 31 55 66 
 

10 6.24 6.26 6.12 6.06 5.68 
Table 3-3: Distribution of methods within the Top Rank. (A) Number of estimation schemes in each condition whose 

mean estimation error is within the one-tailed 99% confidence interval of the best scheme’s mean error in that condition, 

i.e. 𝜺̅𝒋,𝒅,𝒏  ≤ 𝜺̅𝒋=𝒃𝒆𝒔𝒕,𝒅,𝒏 + 𝟐. 𝟓𝟒 ∙ 𝑺𝑬[𝜺̅𝒋=𝒃𝒆𝒔𝒕,𝒅,𝒏]). (B) Percent difference in error between the best scheme and the last one 

accepted within the top rank. 

Additionally, Table 3-3B shows the percentage difference in mean error between the best scheme 

and the last accepted as a possible candidate. It is interesting to note that although a fewer 

number of schemes satisfy the selection criterion at smaller diameters, the percentage difference 

in mean error is larger. This suggests that the difference among estimation schemes is smaller at 

larger diameters where CSD estimation is more difficult. 

Figure 3-7A displays the number of estimation schemes that satisfy the chosen selection 

criterion as a function of the number of tested conditions. We see that a small number of schemes 

(3 – see Table 3-4) satisfy the selection criterion in all conditions. This is an encouraging result 

for our attempt to identify schemes that are likely to perform well across a range of experimental 

conditions. To investigate whether certain characteristics dominate the ranking within and across 

each condition, we counted the number of times the labels identifying each estimation scheme 

parameter were found within the top ranked schemes (see Fig. 3-7B-F). Each bar within a 

diameter block corresponds to an SNR value, e.g. the first bar is for SNR = 0 and the last for 

SNR = 10 dB. It is important to remember that the different labels are not present in equal 

numbers in the whole set of estimation schemes. For example, because qCSD can only be 

regularized on the coefficients and not on the model, it makes up only 12% of the schemes 

instead of 22% for the other CSD methods. This means that if the top ranking was insensitive to 
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 the CSD method, we would expect only 12% of the labels to be qCSD in Figure 3-7B. 

Figure 3-7: Distribution of labels within the top rank. (A) Number of conditions in which a particular estimation scheme 

was found in the top rank. (B) - (F) Percentage with which the given label appears in the top rank of each tested 

condition. Note that the number of schemes that were considered in the top rank varies in each condition and is shown in 

Table 3-3A. Each block corresponds to a diameter and each bar within the block represents a signal-to-noise ratio ([0 1 2 

3 5 10] dB). The relative frequency of each label within the 531 estimation schemes is shown as a percentage in each panel 

legend. The relative frequency is important in order to judge whether a label appears more/less often than expected by 

chance. 
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Therefore, we show the relative frequency of each label in the full set of schemes in the 

respective panel legend. 

Figure 3-7B shows the relative distribution of CSD method labels. We see that at small 

diameters, iCSD is represented less frequently than expected by chance thus suggesting that 

iCSD is not an ideal choice in this situation. Moreover, iCSD appears to perform better at larger 

SNRs in contrast to kCSD. In fact, there is an interesting trade-off between kCSD and eCSD. At 

the smallest diameter, it is very clear that kCSD and eCSD evolve in opposite directions with 

increasing SNR. These variations are much less pronounced at larger diameters where all 

methods occur roughly proportionally to their relative frequency in the dataset. However, 

overall, the top ranking scheme identity seems only weakly related to CSD label. This means that 

the type of CSD method chosen is not a major predictor of estimation accuracy. This is in clear 

contrast to the relative occurrence of regularization scheme shown in Panel 3-7c. First, we note 

that tSVD is almost absent from the top ranking. This is not particularly surprising because tSVD 

is a cruder method than the two others. Second, there is a clear trend for Tikhonov to perform 

better than dSVD especially at small diameters and large SNRs.  

This discrepancy is even more pronounced in the frequency distribution of the 

regularization parameter selection methods. Again, the top rankings contain almost exclusively 

L-curve and NCP. Moreover, it is obvious that NCP outperforms the L-curve except for small 

diameters and large SNRs. It turns out that the absence of GCV is mainly explained by its 

increased rate of outliers. When increasing the rejected trials to 25%, GCV is much more heavily 

represented (data not shown). 

For the predictive power of the choice of prior, the situation is again split between small 

and large diameters (see Fig. 3-7E). At large diameters, the methods appear more equal and the 

priors are more evenly distributed. This is not the case for small diameters where penalizing the 

model norm (either directly the model or simply the coefficients) seems to be a promising 

approach. In order to study the choice of priors in more depth, Figure 3-7F also shows the priors 

broken up according to the way they are applied. Again, the discrepancy between small and large 

diameters is clearly visible. While penalizing higher order functions seems to be a promising 

approach for larger diameters regardless of the way it is done, i.e. measuring the model norm or 
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the norm of the coefficients, it is clearly preferable to penalize the coefficients at smaller 

diameters. Moreover, at smaller diameters it seems best to implement a minimum norm prior 

directly. Finally, we also observe that penalizing the coefficients norm using SVD directly 

(Coeff –[]) is preferable over its GSVD alternative (Coeff – 0) despite them implementing the 

same prior. The increased algorithmic complexity and numerical approximations of GSVD 

appears to negatively influence the estimation accuracy. 

3.4.6 Comparison of CSD estimation schemes over all conditions for “Sum of Gaussians profile” 

Since it is notoriously difficult to know the true source diameter in an experimental setting 

and one generally does not know the exact signal-to-noise ratio, it is useful to try to select a CSD 

estimation scheme that performs well across a large set of conditions. We have already observed 

in Figure 3-7A that there are estimation schemes that consistently appear in the top of the 

ranking suggesting that it should be possible to create a meaningful ranking across conditions. 

Therefore, we created an overall ranking of the estimation schemes by ordering the schemes 

according to the mean over the mean of the sampling distribution of the mean errors of each of 

the 35 conditions. The top 40 estimation schemes in the overall ranking are shown in Table 3-4. 

Looking at the characteristics of these top estimation schemes, it stands out that NCP clearly 

outscores the other regularization parameter selection methods since every scheme in the list 

relies on it. Next, the results for the preferable regularization methods are slightly favoring dSVD 

over Tikhonov (tSVD did not make it into the list at all): dSVD (25), Tikhonov (15). In terms of 

CSD methods, the results are distributed as follows: rCSD (10), kCSD (13), eCSD (11), qCSD 

(3) and iCSD (3). Although there is a clear preference towards rCSD, kCSD and eCSD, the fact 

that all methods are represented shows that none of them is definitely worse than the others. 

To examine the results for the top estimation schemes in more detail, a distribution of the 

error (with outliers removed) over the whole dataset is shown as a violin plot in Figure 3-8A. We 

see that their error distributions are very similar which supports our choice of considering them 

as similarly good candidates. We also performed a similar analysis on the noise amplification as 

defined in Eq. 42. Again, the distributions were found to be very similar with a mean noise 

amplification of ~2 (median of ~1.5), which constitutes a substantial improvement over the 

mean noise amplification of ~60 for naïve CSD estimation (see Table 3-1B). Finally, Figure 3-

8B shows the distribution of the ratio of the estimated regularization coefficient 𝜆 and the
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Rank 
CSD Regularization λ Selection 

Prior 
Prior # Top Mean Standard Mean Std % 

Method Method Method Method Ranks Error Error Rank Rank Diff. 

1 rCSD Tikhonov NCP 0 Model - 0 35 0.7581 0.0184 14.89 6.26 0.00 

2 kCSD Tikhonov NCP 0 Model - 0 35 0.7585 0.0182 16.51 10.98 0.06 

3 iCSD Tikhonov NCP [] Coeff - [] 35 0.7590 0.0183 14.49 8.25 0.12 

4 rCSD dSVD NCP 0 1 Coeff + 31 0.7591 0.0177 15.77 7.84 0.14 

5 rCSD dSVD NCP 0 2 Coeff + 31 0.7596 0.0177 15.00 7.02 0.19 

6 eCSD Tikhonov NCP 0 Model - 0 32 0.7603 0.0174 18.86 15.03 0.29 

7 kCSD dSVD NCP [] Coeff - [] 33 0.7605 0.0183 16.94 7.84 0.32 

8 eCSD Tikhonov NCP [] Coeff - [] 33 0.7605 0.0183 16.97 8.05 0.32 

9 rCSD dSVD NCP 0 1 2 Coeff + 31 0.7609 0.0176 17.66 8.67 0.37 

10 rCSD dSVD NCP [] Coeff - [] 34 0.7615 0.0182 19.63 7.57 0.44 

11 rCSD dSVD NCP 0 Coeff - 0 32 0.7625 0.0181 21.40 15.95 0.58 

12 qCSD Tikhonov NCP 0 2 qCSD + 30 0.7628 0.0174 19.17 6.66 0.62 

13 qCSD Tikhonov NCP 0 1 qCSD + 31 0.7634 0.0168 20.57 9.91 0.71 

14 rCSD dSVD NCP 1 Coeff + 28 0.7665 0.0181 26.40 12.00 1.10 

15 eCSD Tikhonov NCP 0 Coeff - 0 27 0.7683 0.0171 28.34 7.82 1.35 

16 kCSD dSVD NCP 0 Coeff - 0 30 0.7687 0.0170 31.26 9.07 1.39 

17 qCSD Tikhonov NCP 0 1 2 qCSD + 25 0.7690 0.0169 29.97 8.97 1.44 

18 iCSD dSVD NCP 2 Coeff + 23 0.7702 0.0171 29.63 30.12 1.60 

19 kCSD dSVD NCP 0 2 Model + 22 0.7723 0.0171 31.97 28.97 1.88 

20 kCSD dSVD NCP 2 Model + 22 0.7724 0.0171 32.97 29.06 1.88 

21 eCSD dSVD NCP 0 2 Model + 23 0.7725 0.0166 32.54 22.23 1.90 

22 kCSD dSVD NCP 0 1 2 Model + 22 0.7725 0.0171 33.89 28.68 1.90 

23 kCSD dSVD NCP 0 2 Coeff + 25 0.7728 0.0173 36.31 11.43 1.94 

24 eCSD dSVD NCP 0 1 2 Model + 21 0.7729 0.0169 32.57 27.19 1.95 

  



89 

 

 

(Table 3-4 continued) 

Rank 
CSD Regularization λ Selection 

Prior 
Prior # Top Mean Standard Mean Std % 

Method Method Method Method Ranks Error Error Rank Rank Diff. 

25 eCSD dSVD NCP 2 Model + 23 0.7740 0.0169 33.57 23.54 2.10 

26 kCSD dSVD NCP 0 1 2 Coeff + 24 0.7755 0.0177 41.34 7.41 2.30 

27 eCSD Tikhonov NCP 0 1 2 Coeff + 26 0.7763 0.0170 44.46 10.86 2.40 

28 eCSD Tikhonov NCP 0 2 Coeff + 27 0.7772 0.0174 45.51 13.81 2.52 

29 eCSD Tikhonov NCP 0 1 Coeff + 25 0.7777 0.0171 46.29 10.98 2.58 

30 kCSD dSVD NCP 0 1 Coeff + 23 0.7798 0.0171 48.06 16.31 2.86 

31 kCSD dSVD NCP 1 Coeff + 24 0.7801 0.0179 47.06 11.72 2.90 

32 eCSD dSVD NCP 0 1 Model + 20 0.7826 0.0162 48.97 32.81 3.24 

33 rCSD Tikhonov NCP [] Coeff - [] 23 0.7827 0.0176 55.40 16.43 3.25 

34 eCSD dSVD NCP 1 Model + 19 0.7830 0.0162 48.97 32.97 3.28 

35 kCSD dSVD NCP 0 1 Model + 20 0.7831 0.0161 49.40 32.25 3.30 

36 kCSD dSVD NCP 1 Model + 20 0.7834 0.0161 50.71 31.31 3.34 

37 rCSD Tikhonov NCP 0 Coeff - 0 20 0.7835 0.0167 58.94 24.65 3.35 

38 rCSD dSVD NCP 2 Coeff + 19 0.7842 0.0216 54.74 30.42 3.44 

39 iCSD dSVD NCP 1 Model + 20 0.7845 0.0169 51.94 24.89 3.48 

40 kCSD Tikhonov NCP [] Coeff - [] 22 0.7858 0.0174 60.03 14.94 3.65 
Table 3-4: Top estimation schemes over all tested conditions for “Sum of Gaussians” profile. The top 40 estimation schemes in ranking over all tested conditions. This 

overall ranking is obtained by ordering the estimation schemes according to the mean over the mean of the sampling distribution of the mean errors of each of the 35 

conditions. 
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Figure 3-8: Distribution of error (A) and lambda ratio (B) for top 40 schemes in the final ranking. The violin plots are 

computed over the full dataset but without the worst 10% of trials in each condition. The green line in B marks a ratio of 

1, which represents optimal regularization 
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optimal regularization coefficient 𝜆𝑜𝑝𝑡 over the whole dataset. A ratio of 1, shown by the green 

dotted line, represents optimal regularization. In contrast to Fig. 3-8A, there is a much larger 

heterogeneity between estimation schemes. Although all estimation schemes tend to slightly 

oversmooth (ratio greater than 1), the oversmoothing tends to be more pronounced for estimation 

schemes employing dSVD as the regularization method. However, it is interesting to see that the 

increased spread of 𝜆 ratios does not affect the overall distribution of error or noise 

amplification. 

To assess the robustness of the final ranking and make sure that the ranking is not simply 

fitting to the noise of this particular dataset, we have repeated the whole procedure for another 

set of 1000 trials. We found that almost exactly the same estimation schemes were found in the 

final ranking of both datasets (only 1 difference out of 160 schemes). Moreover, we then 

compared the similarity of the two final rankings using Spearman rank correlation. We found a 

correlation coefficient of 0.96 when the correlation was computed over the first 160 estimation 

schemes of the final ranking. Computing the rank correlation over only the top 40 schemes, the 

schemes displayed in Table 3-4, the correlation coefficient was 0.99. Both correlation 

coefficients are statistically significant at a significance level of 0.001. Moreover, the average 

absolute rank difference between the two datasets is 1.56 ± 1.86 when computed over the top 160 

schemes, and 0.75 ± 1.13 when computed over the top 40 schemes. Thus, the final ranking was 

found to be highly reproducible for two realizations using the same “Sum of Gaussians” spatial 

CSD profile. 

3.4.7 Effect of conductivity on the stability of the final ranking 

The CSD forward problem used herein depends on 4 general parameters: 1) Lateral Source 

Profile (in our case the Uniform Cylinder); 2) Lateral Extent of Sources (i.e. the diameter of the 

cylinder); 3) the electrode positions, and 4) the medium conductivities. Assessing the effect on 

estimation accuracy of errors in these parameters is a very difficult task and it is beyond the 

scope of our current work to do this systematically. However, due to the pronounced effect of a 

discontinuity in conductivity on the amplitude of the potential close to the interface (as 

demonstrated by Pettersen et al. (Pettersen et al., 2006) and Ness et al. (Ness et al., 2015)), we 

decided to validate the final ranking assuming a mismatch in conductivity between the forward 
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and inverse model. In particular, we assumed a conductivity of 𝜎𝑡 = 1.7 𝑆/𝑚 for the top medium 

in the forward model but we estimated the CSD using 𝜎𝑡 = 1 𝑆/𝑚. The conductivity of the 

bottom medium remained 𝜎𝑒 = 0.3 𝑆/𝑚 as previously. We then repeated the previously 

presented analysis using the “Sum of Gaussians” profile and compared the final rankings. We 

found that the fidelity of the ranking was well preserved. In order to investigate the relationship 

between the two rankings, we display in Fig. 3-9 the percentage of estimation schemes which are 

found in both rankings within the top N ranks (computed as 𝑓(𝑁) = 100 𝑁⁄ ∙

#{𝑟𝑎𝑛𝑘𝑖𝑛𝑔1[1: 𝑁]} ∩ {𝑟𝑎𝑛𝑘𝑖𝑛𝑔2[1: 𝑁]}). The “chance” curve shows the expected percentage of 

matches when twice randomly drawing N samples from a population of 531 elements, which 

follows a hypergeometric distribution. On average, approximately 80% of the estimation 

schemes can be found within the same top ranks of both rankings, confirming the similarity 

between the two rankings. 

Figure 3-9: Validation of the ranking for a mismatch in conductivity between the forward and inverse model. The 

potential was simulated using a conductivity of 𝝈𝒕 = 𝟏. 𝟕 𝑺/𝒎 for the top medium in the forward model but the CSD was 

estimated with 𝝈𝒕 = 𝟏 𝑺/𝒎. The conductivity of the bottom medium was kept constant at 𝝈𝒆 = 𝟎. 𝟑 𝑺/𝒎 S/m. The black 

curve shows the percentage of estimation schemes which are found in both rankings within the top N ranks (computed as 

𝒇(𝑵) = 𝟏𝟎𝟎 𝑵⁄ ∙ {#𝒓𝒂𝒏𝒌𝒊𝒏𝒈𝟏[𝟏:𝑵]} ∩ {𝒓𝒂𝒏𝒌𝒊𝒏𝒈𝟐[𝟏:𝑵]}). The “chance” curve shows the expected percentage of 

matches when twice drawing N random samples from a population of 531 elements. It follows a hypergeometric 

distribution. 
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3.4.8 Validation of final ranking with different CSD depth profiles 

The robustness of the final ranking described in the previous section for the “Sum of 

Gaussians” depth profile does not guarantee that the ranking will turn out the same for different 

spatial CSD profiles. Discrepancies can be expected because, at least in the case of expansion 

methods, the estimation accuracy will always depend on the similarity between the spatial profile 

and the basis functions used in the expansion. This was already pointed out by Potworowski et 

al. in their discussion about the factors affecting the optimal choice for the width of the Gaussian 

expansion functions (Potworowski et al., 2012). Hence, it is important to assess how stable the 

ranking of estimation schemes is to a change in the CSD depth profile. We addressed this issue 

by repeating the previously presented analysis for 7 additional CSD depth profiles: 1) small 

monopole close to the surface (Fig. 3-10A); 2) small monopole further away from the surface 

(Fig. 3-10A); 3) large monopole (Fig. 3-10A); 4) large dipole (Fig. 3-10B); 5) small quadrupole 

(Fig. 3-10C); 6) large quadrupole (Fig. 10C), and 7) the CSD depth profile from Glabska et al. 

(Fig. 3-10B) (Glabska et al., 2014). The Glabska profile was added because it provides an 

interesting additional validation case since it differs from the Gaussian profile on three important 

points that could affect estimation performance: It is unbalanced, i.e. the sum over the profile is 

positive, indicating that sources are stronger than sinks. In addition, the amplitudes in Glabska’s 

profile are larger than in the Gaussian profile. Lastly, this profile shows 2 dipole-like structures 

instead of a single one. 

We repeated the same analysis as presented for the “Sum of Gaussians” profile with these 

new CSD profiles and then performed a pairwise comparison of the overall rankings. When 

computed over all 531 schemes, the Spearman rank correlation is highly significant (p << 0.001) 

for all pairwise comparisons (smallest rank correlation coefficient 𝜌 = 0.73) and remains highly 

significant under Bonferroni correction for multiple comparisons. However, this is rather 

unsurprising since we would not expect the rankings to be completely random. Hence, such a 

null hypothesis is too liberal to serve as a good measure of the usefulness of our rankings. To 

provide a more focused comparison on the similarities in the top ranks, we show in Figure 3-

10D-K the percentage of estimation schemes which are found within the top N ranks in a 

pairwise manner for all CSD profiles. It is calculated in the same way used for Fig. 3-9 with 

“chance” again referring to the expected percentage of matches if the rankings were random  
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Figure 3-10: Pairwise comparison of the similarity in rankings between different CSD depth profiles. Panels (A)-(C) show 

the eight tested CSD depth profiles (the amplitude of the Glabska profile was divided by 10 for visualization purposes). 

Panels (D)-(K) show the percentage of estimation schemes which are found within the top N ranks in a pairwise manner 

for all CSD profiles. It is calculated in the same way as in Fig. 3-9 with “chance” again referring to the expected 

percentage of matches if the rankings were random permutations of 531 elements. 
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permutations of 531 elements (i.e. expected number of identical elements within two 

independent draws of N elements from a population of 531 elements). We found that there are 

only 3 situations where the percentage of matches lies below the chance level, namely between 

the small dipole and 1) the small monopolar source further from the surface, 2) the large 

monopole and 3) the large quadrupole. Hence, it appears that the presence of a source close to 

the conductivity jump affects the estimation accuracy of the different estimation schemes in a 

non-uniform manner. When looking at these discrepancies in more detail, we find that it 

originates mainly from the higher prevalence of the l-curve among these rankings. For example, 

the large quadrupole ranking has 37 l-curve estimation schemes within the top 40 ranks while the 

small dipole has none. When removing the differentiation according to the regularization 

parameter selection methods, only the comparison between the small dipole and the large 

quadrupole fails to show a number of matches exceeding the chance level within the top 20 ranks 

(results not shown). It is however not obvious how this effect comes about. A qualitative analysis 

of the final rankings suggests that more extended sources with lower spatial frequencies are 

better captured with the l-curve method. However, this effect is not clearly differentiable from 

other factors such as the overall extension of the sources or the presence of a source near the 

discontinuity in conductivity. Moreover, it is probable that these differences affect the estimation 

differently for small or large diameter sizes or for different SNRs. Hence, although clearly of 

interest, such an in-depth analysis will have to be deferred to future work. Nevertheless, despite 

the discrepancies discussed above, Figure 3-10D-K shows clearly that the final ranking for the 

tested profiles are not independent of each other but rather share common features. 

It is important to note however that pairwise similarities don’t guarantee that there are 

estimation schemes that perform well across all tested spatial profiles. To test whether it is 

possible to come up with a suggestion for optimal estimation schemes, we ranked the estimation 

schemes according to their average ranking in each of the eight spatial profiles. The results for 

the top 20 estimation schemes are shown in Table 3-5. The general features already discussed in 

the final ranking of the “Sum of Gaussians” profile remain valid for this global ranking. First, 

expansion methods outperform the quadrature methods. Second, there is no preference between 

the Tikhonov or dSVD regularization method.
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Rank 
CSD Regu λ Sel. 

Prior 
Prior Mean Mean % Mono Mono Mono Dipole Dipole 

Glabska 
Quad Quad 

Method Method Method Method Rank Error Diff. S1 S2 L S L S L 

1 iCSD Tikhonov L-curve 0 2 Coeff + 7.4 0.6809 0.00 1 1 2 42 2 8 1 2 

2 iCSD Tikhonov L-curve 0 1 2 Coeff + 8.4 0.6828 0.28 3 6 1 46 1 6 3 1 

3 kCSD dSVD NCP 0 Coeff - 0 24.0 0.7066 3.78 15 19 33 16 10 14 28 57 

4 eCSD Tikhonov L-curve 0 1 2 Coeff + 25.4 0.7030 3.25 10 13 5 75 7 57 9 27 

5 eCSD Tikhonov L-curve 0 1 Coeff + 27.3 0.7061 3.70 6 7 4 68 6 52 47 28 

6 eCSD Tikhonov NCP 0 Coeff - 0 28.6 0.7097 4.23 14 22 29 15 28 23 37 61 

7 iCSD Tikhonov NCP [] Coeff - [] 29.0 0.7063 3.73 20 37 88 3 30 7 7 40 

8 eCSD Tikhonov NCP [] Coeff - [] 29.1 0.7062 3.72 28 44 86 8 18 4 10 35 

9 kCSD dSVD NCP [] Coeff - [] 29.1 0.7062 3.72 29 43 87 7 17 5 11 34 

10 rCSD dSVD NCP 0 2 Coeff + 31.3 0.7101 4.29 7 41 69 5 4 13 43 68 

11 kCSD dSVD NCP 0 2 Coeff + 31.5 0.7109 4.42 22 20 30 23 5 44 50 58 

12 eCSD dSVD NCP 0 2 Model + 31.9 0.7125 4.64 8 3 26 21 29 50 35 83 

13 eCSD dSVD NCP 2 Model + 32.3 0.7125 4.64 5 9 34 25 27 28 54 76 

14 kCSD dSVD NCP 0 1 Coeff + 33.6 0.7120 4.58 34 17 18 30 32 19 57 62 

15 kCSD Tikhonov NCP 0 Model - 0 34.0 0.7087 4.08 42 35 85 2 44 3 17 44 

16 rCSD Tikhonov NCP 0 Model - 0 34.8 0.7103 4.32 43 25 77 1 48 21 15 48 

17 eCSD Tikhonov NCP 0 Model - 0 34.8 0.7121 4.59 13 23 66 6 71 17 29 53 

18 rCSD dSVD NCP 0 1 2 Coeff + 34.8 0.7122 4.61 9 47 70 9 8 15 48 72 

19 eCSD dSVD NCP 0 1 2 Model + 35.8 0.7137 4.82 4 15 28 24 31 41 65 78 

20 rCSD dSVD NCP [] Coeff - [] 35.9 0.7102 4.31 27 50 105 10 34 10 8 43 

Table 3-5: The top 20 estimation schemes in ranking over all CSD depth profiles. This global ranking is obtained by ordering the estimation schemes according to their 

average rank over the eight tested CSD depth profiles. The ranks for each of the depth profiles were calculated in the same way as in Table 3-4. They are presented in 

the eight columns to the right (Dipole S = “Sum of Gaussians” profile).



97 

 

Finally, NCP is generally preferred over the l-curve for the selection of the regularization 

parameter and GCV is completely absent from the list. However, in contrast to the “Sum of 

Gaussians” ranking, four of the top 5 estimation schemes in the global ranking use the l-curve. 

Although it is clearly not straightforward to predict the accuracy of a particular estimation 

scheme on a new spatial CSD profile, the consistency of the rankings across the tested subset of 

profiles suggests that the list in Table 3-5 represents the candidate schemes most likely to 

achieve good estimation accuracy on a new spatial CSD profile. 

3.5 Discussion 

In this paper, we have introduced a unified framework for zero and higher-order 

regularization of 1-D CSD estimation problems. In particular, we have focused on showing how 

the current (iCSD and kCSD) and the newly presented methods (rCSD, eCSD (variation of 

kCSD) and qCSD) can be understood as special cases of two approaches for the discretization of 

linear inverse problems: quadrature and basis function expansion. Moreover, the presented 

framework greatly facilitates dealing with recording noise, a ubiquitous problem in solving 

inverse problems, by incorporating zeroth- and higher-order regularization methods with 

multiple regularization parameter selection methods. To show the utility of the presented 

framework, we have compared the performance of the different estimation schemes under 

various noise conditions and source diameters. We show that no single estimation scheme 

outperforms all others under all tested conditions. Nevertheless, we found that ranking schemes 

according to the average error over all tested conditions results in a reproducible and meaningful 

ranking where the top schemes are found to perform well in the majority of tested conditions. 

We have further validated this ranking procedure by repeating it over a set of spatial CSD 

profiles. The general features of the ranking are preserved across this comparison as well. 

However, a qualitative analysis of the distribution of the ranks across the eight spatial profiles 

reveals a structure that suggests the presence of unidentified features that influence estimation 

accuracy. The identification of source characteristics (e.g. spatial frequency, extent, and/or 

position of source) which could be better resolved with certain estimation schemes goes however 

beyond the scope of our current work. In fact, it is easily conceivable that these features could 

affect the estimation differently for small or large diameter sizes (or different SNRs) which 

would require an additional level of detail in the analysis. 
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Our study also presents a set of additional, smaller contributions: it shows the detrimental 

effect of noise on the spatial resolution of the solution; it facilitates the use of electrodes from 2 

media with different conductivities in the estimation process; and it provides a thorough 

introduction into the difficulties of solving inverse problems in the hope of making the problem 

more easily accessible to experimentalists. Finally, our work makes available a ready-to-use 

open-source MATLAB toolbox containing all the CSD estimation methods discussed, including 

existing methods and the 2 novel methods we introduce, along with all the regularization 

methods that we have tested. 

An unexpected finding of the present work is the overall performance of the NCP 

regularization parameter selection method. It is interesting to ponder whether this dominance is 

likely to translate to the experimental setting. Unfortunately, as discussed by Hansen, there is no 

simple method to predict which parameter selection method is optimal for a given problem 

because each inverse problem has its own characteristics and error model (Hansen and Society 

for Industrial and Applied Mathematics., 2010). By construction, NCP will perform best under 

white noise. This might explain its success here but could affect its performance in an 

experimental setting where noise characteristics might be non-white. Although the derivation of 

GCV also relies on noise being white, it was almost totally absent from the top ranking which is 

especially surprising given its successful application in Potworowski et al. (Potworowski et al., 

2012). A potential explanation for this discrepancy can be found in the higher level of outliers 

with GCV. Occasional failures of GCV are a well understood phenomenon and tend to occur 

whenever the minimum is located in the flat part of the GCV function (Hansen and Society for 

Industrial and Applied Mathematics., 2010). However, in the simulated situation used here the 

failure rate appears to be further increased by the occasional existence of two local minima (see 

Fig. 3-5C for example). We have observed a similar situation with the L-curve in certain trials 

where the L-curve shows two locations of positive curvature. These situations can technically be 

avoided by setting bounds on the regularization parameter. Although this is quite easy to do in 

practice, we have not pursued this avenue because the bounds are problem-dependent, thus 

making this approach impractical in a large scale comparison like here. It has also been 

suggested that GCV can potentially be improved further by adding a weighting factor to the 

GCV function (Hansen and Society for Industrial and Applied Mathematics., 2010). Finally, 
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since the L-curve is the only regularization parameter selection method that is not based on noise 

being white, it has been advocated for applications where no prior information about noise is 

available (Vogel, 2002). 

A similar problem-dependent optimization of parameters could also be pursued for eCSD, 

kCSD and qCSD. In both eCSD and kCSD the width and number of basis could be adapted to 

the problem at hand. Here we chose the basis width (three sigma point) to be 1.5 times the 

interelectrode distance following the guidelines from Potworowski et al. where a factor of 1-2 

was suggested (Potworowski et al., 2012). It is interesting to note that eCSD and kCSD were 

found to perform equally well suggesting that the kernel trick does not provide any advantages in 

the 1-D case. However, this should not be interpreted as being generally valid. Especially in 

higher dimensions, it is quite probable that it provides additional stability to the estimation. The 

only reason eCSD was included here is to assess the similarity between the expansion and kernel 

method in the 1-D setting. It remains to be shown whether this similarity also applies in an 

experimental setting. 

A central question arising in any computational study based on simulations is the 

applicability of the results in an experimental setting. As we have hinted at on various occasions, 

CSD estimation contains a large amount of built-in assumptions which have the potential to 

dramatically affect source reconstruction accuracy. Therefore, in order for CSD estimation to 

become a more streamline technology to be applied to the analysis of intra-cranial 

electrophysiology data, the theoretical assumptions incorporated into the estimation need to be 

carefully addressed. In the following we will attempt to critically discuss the major factors that 

could affect the applicability of the proposed methods to the experimental setting.  

3.5.1 Accuracy of the volume conductor model 

The volume conductor model employed here relies on the tissue being purely resistive 

and thus justifying the use of Ohm’s law for explaining the relation between the extracellular 

electric field and neuronal currents. The literature contains both experimental results validating 

this assumption (Logothetis et al., 2007) and others reporting significant non-ohmic effects 

(Gabriel et al., 1996a, Gabriel et al., 1996b, c). The interpretation of these contradictory findings 

is further complicated by the fact that a newer study from Gabriel et al. critically analyses the 
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usefulness and limitation of their previous measurements. In particular, they point out that their 

previous work is based on excised tissue instead of in vivo measurements. In addition, they 

mention that the frequency region below 1 MHz is particularly error prone and hence the results 

only provide best estimates of the conductivity values (Gabriel et al., 2009). On the other hand, 

recent experimental findings from Riera et al. find potential problems with the resistive 

assumption based on an unbalanced ratio of current sinks and sources during evoked neuronal 

activity (Riera et al., 2012). Similar findings were also reported by a study of the brain tissue’s 

effect on the propagation of neurostimulation fields (Wagner et al., 2014). The authors conclude 

that “living tissue carries currents through both dipole and ionic mechanisms, in a frequency 

dependent manner”. Although Wagner et al.’s results found ohmic mechanisms to be dominant, 

permittivities were deemed to be of sufficient magnitude to support significant displacement 

currents. Finally, based on a theoretical study, Bedard and Destexhe proposed that ionic diffusion 

could play a significant role in the re-equilibration of extracellular potential following neural 

activation (Bedard and Destexhe, 2009). This is corroborated by recent experimental evidence 

which found non-ohmic properties of the extracellular medium around neurons which could 

possibly be related to ionic diffusion (Gomes et al., 2016). In conclusion, the electric properties 

of extracellular tissue (e.g. ohmic, capacitive, polarizable or diffusive) are currently under heavy 

debate and will likely remain debated in the near future. However, it is clear that a modification 

to the resistive tissue assumption would require a reevaluation of all source estimation methods. 

In particular, it would entail that the spread of potential would depend on both the spatial and 

temporal components of neuronal currents instead of only the spatial component as assumed in a 

purely resistive medium. 

A second assumption of the current volume conductor model is that electrical 

conductivity is homogeneous and isotropic within each medium. This assumption has also been 

challenged in Goto et al. who found that there is likely a noticeable difference in conductivity 

between the different cortical layers (Goto et al., 2010). However, in contrast to the non-

applicability of the resistive assumption, a non-homogenous conductivity as proposed by Goto et 

al. could be relatively easily incorporated into the current framework because it only involves 

changing the Equations describing the induced potential (Eq. 1). The inaccuracies arising from 

substituting a layered conductivity by a homogeneous conductivity profile are hard to assess 
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since no data is available on the conductivity in each layer. However, even with current 

knowledge, it is clear that the assumption of 2 semi-infinite media represents a significant 

simplification of the actual brain geometry. In fact, simply the presence of the white matter 

bordering the cortex clearly forms another discontinuity in conductivity analogous to the 

discontinuity between cortex and the medium above it. To address a similar issue, Ness et al. 

implemented the method of images in a 3-layer medium (Ness et al., 2015). However, in contrast 

to our situation, their problem only required to model sources and potentials within the middle 

layer. Hence, we have refrained from adopting this approach in this work because the method 

would have to be extended in order to allow the use of electrodes from all three media. To our 

knowledge, such an extension of the infinite series of image charges has not been presented so 

far. Alternatively, several papers have discussed an extension to multi-layered media based on 

the Fourier transform (e.g. (Barrera et al., 1978)). However, the lack of closed form solutions 

makes these approaches unsuitable for our purposes since both the forward and inverse problem 

calculation would require a significantly longer computation time. On the other hand, it is 

unquestionable that even the approximation of the medium by planar surfaces represents a 

significant simplification of the brain geometry. Addressing this would require employing more 

elaborate models for medium parametrization such as models based on finite element modeling 

(e.g. (Ness et al., 2015) or a spherical volume conductor as proposed in Goto et al. (Goto et al., 

2010). Although such issues are certainly important for CSD estimation, the comparison of 

volume conductor models goes beyond the scope of our current work. Hence, we have used the 

most commonly employed medium parametrization. 

3.5.2 Accuracy of forward model assumptions 

To our knowledge, the applicability of the cylindrical source assumption has never been 

experimentally validated. This is most likely due to the fact that such a validation is quite 

difficult because it requires a way to manipulate the source diameter while at the same time 

having a good knowledge about the depth variation of current sources. Nevertheless, the choice 

of source diameter is a major challenge in the application of the current CSD methods and can 

potentially affect different estimation schemes in different ways. Although we have evaluated the 

accuracy of estimation under various levels of noise, we have not attempted to systematically 

assess the robustness of the presented framework to errors in the forward model parameters. 
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However, because of the pronounced effect of a discontinuity in conductivity on the amplitude of 

the potential close to the interface, we have performed a single point validation of our ranking 

approach assuming a mismatch in conductivity between the forward and inverse model. In 

particular, although we assumed a conductivity of 𝜎𝑡 = 1.7 𝑆/𝑚 for the top medium in the 

forward model, we estimated the CSD using 𝜎𝑡 = 1 𝑆/𝑚. The conductivity of the bottom 

medium remained 𝜎𝑒 = 0.3 𝑆/𝑚. A comparison of the final ranking for the “Sum of Gaussians” 

profile showed that the fidelity of the ranking was well preserved between the matched and 

unmatched conductivity values. Although encouraging, this should not be understood as ruling 

out an important effect of conductivity but rather gives us some confidence that the sensitivity to 

its choice is manageable. Moreover, the validation presented here relies on a single set of values 

whereas errors in the forward model can take various forms (e.g. error in electrode placement, 

error in conductivity, inhomogeneity of conductivity, error in source diameter, non-cylindrical 

source distribution, and/or combination thereof). Therefore, our current analysis does not 

alleviate the need to perform a more thorough analysis of the errors introduced by mismatches 

between the forward and inverse model. To our knowledge, a partial assessment of such errors 

has only been performed on noiseless data so far (Pettersen et al., 2006) but would merit to be 

further investigated in order to facilitate the application of these methods in an experimental 

setting. 

  



103 

 

Preface to Chapter 4 

The 1-D CSD estimation framework presented in this chapter provides a successful 

unification of all previously published inverse methods under a common formulation. But its 

connection with the standard estimation method used in Chapter 2 remains elusive. In the next 

chapter, we develop this question by comparing the differential (standard) and integral (inverse) 

formulation of CSD estimation in the context of laterally extended sources. In particular, we 

transform the standard method to its integral formulation by using the Green’s function for the 1-

D Poisson equation. By comparing the two inverse formulations we then show that the standard 

and inverse estimation methods converge to each other and could be considered similar for 

lateral source diameters exceeding ~2-5 mm.  
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4 Chapter 4: Comparison of 1-D current-source density estimation methods for 

large diameter sources in a three-layer volume conductor 

The standard current-source density (CSD) estimation method has a long history in 

neurophysiology and remains heavily used even nowadays. However, in an experimental setting, 

discrete estimation of derivatives is afflicted with certain mathematical limitations. In particular, 

derivative estimation is an unstable operation which heavily amplifies noise. Moreover, the 

standard CSD estimator is insensitive to jumps in electrical conductivity such as those 

encountered at transition between cerebro-spinal fluid and gray matter, or between gray and 

white matter. In addition, 1-D standard CSD estimation is based on an assumption of large lateral 

source extension, a condition which is not always clearly defined. In order to address some of 

these caveats, estimation methods based on inverse theory have been introduced. However, these 

methods have mainly aimed at dealing with restricted source diameters and, up to now, the 

relationship between inverse estimators and the standard method have not been thoroughly 

studied. In this work, we have investigated the relationship between 1-D standard and inverse 

CSD estimation in the presence of laterally extended sources. We have approached this by first 

showing that the 1-D Poisson equation can be transformed into an integral equation akin to the 

common inverse formulation. We have then used this formulation to compare the standard and 

inverse estimators and found that they converge to each other in the presence of lateral source 

cylinders of uniform density with a diameter exceeding ~2-5 mm. Moreover, errors in the 

assumed source diameter affects estimation mainly at the edge electrodes, which can be 

explained by errors in the enforced boundary conditions. In addition, the 5-point standard CSD 

estimator is more sensitive to noise than the inverse methods. In a second step, we have also 

investigated the effects on CSD estimation when simplifying a cortical medium parameterization 

from a three- to a two-layered medium. In particular, we have focused on the impact of ignoring 

the transition from gray to white matter. We found that the introduced estimation errors were 

small and mainly limited to the boundary. We thus conclude that (1) there is no particular benefit 

in using the standard estimation method over the various inverse estimators, and that (2) whereas 

a three- layered medium describes the conductivity better than a two-layered medium, the 

difference between these models in 1-D CSD estimation is small for typical cortical 

conductivities.  
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4.1 Introduction 

Disentangling the interactions between neural populations located in different cortical 

laminae is an important step for understanding the principles governing neural computation. 

However, because of their close spatial proximity, it is very difficult with extracellular electrical 

measurements to localize the laminar origin of neural activity. This difficulty is explained by the 

fact that, due to volume conduction, extracellular potentials are a non-local measure of the 

activity generating it. In other words, variations in electrical potential caused by some given 

neural activity can theoretically be measured throughout the full volume conductor, although in 

practice, this is obviously limited by the strength of the source and the signal-to-noise ratio of the 

recording. But, in the case of spatially close recordings, the non-local nature of electrical 

potential recordings is sufficient to make direct localization quasi impossible. 

To circumvent the limitations imposed by volume conduction, it has become common 

practice in extracellular neurophysiology to estimate and interpret current-source density (CSD), 

instead of directly interpreting the electrical recordings. This is advantageous because, in 

addition to mitigating the effect of volume conduction, correctly estimated CSD represents the 

volume density of net transmembrane currents that generated the measured potential. Although 

CSD is based on the same approach as source localization in EEG, the term CSD analysis has 

been principally used for source localization in the context of invasive electrical recording with 

microelectrodes. In this context, CSD analysis has been extensively applied to the study of the 

low-frequency part of the electrical potential, called the local field potential (LFP). This focus on 

the LFP makes sense for two major reasons: First, it is believed that synaptic trans-membrane 

currents are the major generators of the LFP (Buzsaki et al., 2012). Hence, their analysis and 

localization provides interesting complementary information to the information provided by the 

analysis of action potentials. Second, in contrast to action potentials, which for SNR reasons can 

only be recorded from a few neurons close to the electrode, the LFP gives access to the summed 

activity of multiple neuronal populations. It is thus mostly reflective of population activity in the 

mesoscale range (Brette and Destexhe, 2012). Hence, CSD estimation represents a very 

interesting tool to study the interactions between different neuronal populations. 

In a homogeneous, isotropic and purely resistive medium with electrical conductivity 𝜎, 

current-source density 𝐶 is related to the extracellular potential 𝜑 via the Poisson equation: 𝐶 =
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−𝜎∆𝜑 where ∆ is the Laplace operator (Nicholson and Freeman, 1975, Tenke et al., 1993, Brette 

and Destexhe, 2012). This relationship is obtained by combining the a priori quasi-static 

approximation of Faraday’s law (leading to 𝐸⃗ = −∇⃗⃗ 𝜑) with Ohm’s law (𝐽 = 𝜎𝐸⃗ ) and taking the 

divergence of the result (Plonsey and Barr, 2007). Given the mentioned assumptions, there are 

two main strategies for estimating the CSD 𝐶 from the measured potential 𝜑: numerically 

approximating the Laplace operator by discrete differences or solving the electrostatic linear 

inverse problem. With both strategies, the estimation depends on the spatial arrangement of the 

electrodes used in recording the potential. Here, we will focus on CSD estimation from 1-D 

linear electrodes such as those used in cortical depth recordings. 

Direct approximation of the Laplace operator was first introduced by Pitts who used it to 

study synaptic transmission in the spinal cord (Pitts, 1952). Since then, the method has been 

employed in a variety of brain structures and in many different animal models (see e.g. (Freeman 

and Nicholson, 1975, Newman, 1980, Mitzdorf, 1985, Di et al., 1990, Schroeder et al., 1998, 

Swadlow et al., 2002, Jin et al., 2008, Szymanski et al., 2009, Sotero et al., 2010, Buzsaki et al., 

2012)). In particular, it has been extensively used with 1-D multi-channel linear electrodes and 

on successive recordings from linear tracks. Due to its popularity, the direct approximation of the 

Laplacian is now commonly called the standard CSD method. 

Although the standard CSD method has provided valuable information about brain 

function, it is often complicated by various experimental and mathematical limitations. In 

recordings with a multi-channel linear electrode (e.g. an electrode inserted perpendicular to 

cortical layers), no data is available to estimate the lateral (x and y) derivatives in the Laplacian. 

Hence, the lateral components of the Laplacian are simply ignored, which is equivalent to 

assuming that sources are infinitely extended sheets (Mitzdorf, 1985). Moreover, derivative 

estimation is an unstable operation, which means that it heavily amplifies recording noise. Also, 

discrete approximation of the derivative cannot be done at edge electrodes without introducing 

boundary conditions. Finally, standard numerical estimation of the second derivative is 

insensitive to conductivity jumps within the medium. However, such jumps occur at transitions 

between different structures such as the border between cerebro-spinal fluid (CSF) and cortex, 

the border between gray matter and white matter, and to a lesser extent between adjacent cortical 

layers (Goto et al., 2010). 
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To address some of these shortcomings, methods to directly solve the electrostatic 

inverse problem have been developed (Pettersen et al., 2006, Leski et al., 2007, Leski et al., 

2011, Potworowski et al., 2012). By assuming particular parametric forms for the lateral source 

distributions, e.g. a uniform cylinder or a Gaussian distribution, these methods provide accurate 

estimation with 1-D linear electrodes even in the presence of spatially localized sources as well 

as naturally providing source amplitude estimates at the edge electrodes. Recently, these methods 

have also been augmented with a range of regularization methods to stabilize estimation on data 

corrupted by noise (Kropf and Shmuel, 2016). Moreover, the inverse approach has the advantage 

of facilitating the incorporation of more complex medium assumptions. In practice, the most 

common way to do this has been to assume that the volume conductor is made of two semi-

infinite media with different but constant conductivity. The forward model can then easily be 

modified accordingly by using the method of images (Jackson, 1999). It is clear that this is still a 

major simplification of the actual brain geometry but, at least in cortical recordings, this method 

is well suited to account for the large conductivity jump from CSF (or saline) to gray matter. 

This approach does however ignore the presence of a conductivity jump between gray and white 

matter. It is possible in theory to extend the method of images to account for a multi-layered 

medium but this has not yet been extensively used (Barrera et al., 1978, Gold et al., 2006, Ness et 

al., 2015). In addition, to our knowledge, no previous study has investigated the type of errors 

introduced when using a two-layered medium instead of a three-layered one. 

Although the inverse methods were introduced a decade ago (Pettersen et al., 2006), the 

standard method remains popular (see e.g. (Jin et al., 2008, Kajikawa and Schroeder, 2015)). A 

possible reason for this is the apparent ease of using the standard CSD method. In contrast to 

standard CSD, the use of the inverse CSD methods is complicated by the need to specify 

parameters that are often unknown. In particular, the lateral source distribution and especially its 

spatial extent is difficult to choose. Although it has been well established that the standard 

method does not provide adequate estimation for laterally constrained sources (Pettersen et al., 

2006), it is not yet fully understood under what conditions it remains applicable. This is 

especially difficult when dealing with extended but non-uniform activations, which might be 

encountered for example with cortical recordings from primary visual cortex in response to a 
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large oriented stimulus. Hence, it is unclear whether standard CSD or inverse CSD is the optimal 

choice for CSD estimation in the presence of laterally extended sources.  

In the present work, we show that the standard CSD method, routinely applied by taking 

the second derivative of the measured potential along the cortical depth, can also be formalized 

and written as an inverse problem. We then use this description to compare the estimation 

accuracy between the standard CSD method and classical inverse methods for large diameter 

sources. Finally, we investigate the errors introduced by approximating a 3-layered volume 

conductor with a 2-layered medium. In particular, we investigate the effect of neglecting the 

conductivity jump between gray and white matter in cortical CSD estimation. 

4.2 Theory 

As mentioned in the introduction, 1-D standard CSD estimation suffers from 4 major 

experimental and mathematical limitations:  

1. In recordings with linear multi-channel electrodes, no data is available to estimate the 

lateral derivatives in the Laplacian. 

2. Derivative estimation is unstable, which means that recording noise gets heavily 

amplified.  

3. Discrete approximation of the derivative cannot be done at edge electrodes without 

introducing boundary conditions.  

4. Standard numerical estimation of the second derivative is insensitive to conductivity 

jumps within the medium. 

To most of these difficulties, workarounds can be found in the literature. We will shortly 

discuss the most common ones here. In the following section, we will then propose a way to 

transform the standard CSD method into an inverse problem which will allow us to study the 

relationship between the direct and inverse CSD estimation methods. 

4.2.1 Common Approaches to Standard CSD Estimation 

The lack of data available with linear electrodes is commonly addressed by simply 

ignoring the lateral, i.e. 𝑥 and 𝑦, derivatives in the Laplacian (e.g. (Mitzdorf, 1985, Schroeder et 

al., 1998)). In other words, the Poisson equation is simplified from 

 
𝐶 = −𝜎∆𝜑 =  −𝜎(

𝛿2

𝛿𝑥2
+
𝛿2

𝛿𝑦2
+
𝛿2

𝛿𝑧2
)𝜑 (1) 
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to 

 
𝐶 = −𝜎

𝛿2

𝛿𝑧2
𝜑 (2) 

This assumption is approximately valid when sources are laterally extended so that 

potentials have minimal curvature in the lateral direction. For this approximation to be exact, the 

sources would need to be infinitely extended in the lateral direction. However, it has been shown 

that the approximation introduces minimal error when sources are distributed within a uniform 

cylinder with a diameter larger than ~5 mm (Pettersen et al., 2006). 

The simplest way to numerically estimate the second derivative in Eq. 2 is to 

approximate it with a centered difference. In this way, 
𝛿2

𝛿𝑧2
𝜑(𝑧) is estimated by replacing it with 

𝛿2

𝛿𝑧2
𝜑(𝑧) ≅ (𝜑(𝑧 − ℎ) − 2 ∙ 𝜑(𝑧) + 𝜑(𝑧 + ℎ)) ℎ2⁄  

where ℎ is the spacing between recording electrodes. However, derivative estimation is unstable 

and leads to a large amplification of noise. Hence, to minimize its noise sensitivity, it has 

become commonplace to combine the estimation with a smoothening filter. Multiple options 

have been proposed by Freeman and Nicholson but the most commonly employed one is the 

five-point estimator (Freeman and Nicholson, 1975, Rappelsberger et al., 1981) 

𝛿2

𝛿𝑧2
𝜑(𝑧) ≅ (𝜑(𝑧 − 2ℎ) − 2 ∙ 𝜑(𝑧) + 𝜑(𝑧 + 2ℎ)) 4ℎ2⁄  

This 5-point estimation kernel ([1 0 − 2 0 1]/4) is obtained by combining the basic 

three-point estimator [1 − 2 1] with a smoothening filter [1 2 1]/4. Using this kernel, the 

standard CSD estimator can then be written as a [𝑁 − 4 𝑥 𝑁] matrix in which each row contains 

an appropriately shifted version of the 5-point kernel. 

Although the five-point estimator increases estimation accuracy under noisy conditions, it 

comes at the cost of reducing the effective spatial resolution. In this sense, it is akin to spectral 

regularization which also comes at the cost of reduced resolution (Kropf and Shmuel, 2016). 

However, the five-point kernel also amplifies the problem of estimation at edge electrodes 

because discrete second derivative estimation cannot be obtained at 2 electrodes from the edge 
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instead of 1 with the three-point estimator. In other words, with a 32-channel electrode, one can 

only estimate CSD at the 28 inner electrode positions without introducing assumptions on 

boundary conditions. To alleviate this issue, Vaknin et al. proposed to introduce virtual 

electrodes at the edge by simply replicating the potential at the edge electrode (Vaknin et al., 

1988). This implicitly assumes that the sources are zero outside of the range covered by the 

electrode. In the terms used in the field of differential equations, this is equivalent to enforcing 

Neumann boundary conditions of 0 (Hansen and Society for Industrial and Applied 

Mathematics., 2010). This also has the side effect of reducing the null-space of the estimator to 

𝑠𝑝𝑎𝑛{(1,1, … ,1)} instead of 𝑠𝑝𝑎𝑛{(1,1, … ,1), (1,2, … ,𝑁)} for the estimator without boundary 

conditions. In other words, linear trends in the recorded potential will affect the estimation at the 

edge electrodes with the method of Vaknin but won’t affect the inner electrode estimation. It is 

clear that, in an experimental setting, Vaknin’s approximation is only valid if the potential varies 

minimally at the edge electrodes. It is therefore natural to ask under what conditions this 

assumption is applicable. Pettersen et al. have proposed that whenever the sources are balanced, 

i.e. they sum to zero, Vaknin’s procedure is asymptotically correct as sources become infinitely 

extended in the lateral direction (Pettersen et al., 2006). In practice, it suffices that sources are 

balanced and the radius of the sources is significantly larger than the extent of the probe, i.e. the 

distance from the first to the last electrode. In Section 3.3 we return to this point and explore the 

effect of boundary conditions in more detail. 

The last major difficulty encountered when employing the standard numerical estimation 

of the second derivative in an experimental setting is that the estimation is insensitive to 

conductivity jumps within the medium. However, jumps in conductivity are common in neural 

tissue such as at transitions from cerebro-spinal fluid (CSD) to gray matter or from gray to white 

matter. The literature comprises two approaches to solve this issue: In the inverse CSD 

formulation, it is quite simple to introduce one discontinuity in conductivity by modifying the 

forward model using the method of images (Jackson, 1999, Pettersen et al., 2006, Kropf and 

Shmuel, 2016). Moreover, extending the method of images to an infinite series of images sources 

also allows incorporating additional layers (Barrera et al., 1978, Gold et al., 2006, Ness et al., 

2015). We will explore this approach in more detail in Section 2.3. Alternatively, it is also 

possible to take into account conductivity jumps in the direct numerical approximation of the 1-
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D Poisson equation by correcting the estimator for the two electrodes on each side of the 

boundary (Liu et al., 2000). In particular, if 𝜎𝑡 and 𝜎𝑒 are the conductivities of the top and 

bottom medium respectively, the three-point estimator of the CSD for the electrodes closest to 

the boundary are modified as follows (see Fig. 4-1A for a schematic of the described situation): 

The estimator for 𝐶𝑖 is corrected from 

𝐶𝑖 = 𝜎𝑡[𝑉𝑖+1 − 2𝑉𝑖 + 𝑉𝑖−1]/ℎ
2 

to 

𝐶𝑖 = [𝜎𝑥(𝑉𝑖+1 − 𝑉𝑖) − 𝜎𝑡(𝑉𝑖 − 𝑉𝑖−1)]/ℎ
2 

with 

𝜎𝑥 = 𝜎𝑡𝜎𝑒ℎ/(𝜎𝑡𝜃 + 𝜎𝑒(ℎ − 𝜃)) 

where 𝜃 is the distance from the i-th electrode to the boundary, and ℎ is the inter-electrode 

separation. Similarly, the three-point estimator for 𝐶𝑖+1 is corrected from 

𝐶𝑖 = 𝜎𝑒[𝑉𝑖+2 − 2𝑉𝑖+1 + 𝑉𝑖]/ℎ
2 

to 

𝐶𝑖 = [𝜎𝑒(𝑉𝑖+2 − 𝑉𝑖+1) − 𝜎𝑥(𝑉𝑖+1 − 𝑉𝑖)]/ℎ
2 

To our knowledge, such a boundary correction has never been discussed in the context of 

standard CSD estimation. 

4.2.2 Standard CSD as an integral equation 

In the previous section, we have discussed two approaches for estimating CSD with 

extended sources. The first is the standard method which consists in a dimensionality reduction 

by ignoring the lateral components in the Laplacian (i.e. approximate Eq. 1 with Eq. 2), followed 

by the numerical approximation of the second derivative (see Eq. 2) using a three- or five-point 

kernel. The second is the inverse CSD approach with sources of large diameters (e.g. large 

cylindrical or Gaussian source). Here, we will propose a third approach which consists in solving 

Eq. 2 using Green’s function for the 1-D Poisson equation. This is equivalent to transforming the 

standard differential CSD equation (Eq. 2) into an integral equation. 
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Green’s function for a uniform medium with conductivity 𝜎 with Dirichlet boundary 

conditions at 𝑧 = 𝐿𝑇 on top and 𝑧 = 𝐿𝐵 on the bottom is given by 

 
𝐾(𝑧𝑒 , 𝑧𝑠) =  

−1

𝜎(𝐿𝐵 − 𝐿𝑇)
{
(𝐿𝑇 − 𝑧𝑠)(𝐿𝐵 − 𝑧𝑒), 𝐿𝑇 < 𝑧𝑠 ≤ 𝑧𝑒 ≤ 𝐿𝐵
(𝐿𝑇 − 𝑧𝑒)(𝐿𝐵 − 𝑧𝑠), 𝐿𝑇 ≤ 𝑧𝑒 < 𝑧𝑠 < 𝐿𝐵

 (3) 

where 𝑧𝑠 is the position of the source and 𝑧𝑒 the position of the electrode (Olver and Shakiban, 

2006). As shown by the blue line in Figure 4-2, this forward model is composed of two linear 

functions decaying to zero at 𝐿𝑇 and 𝐿𝐵 on each side of a given source position. 

Using Equation 3, the potential 𝜑 generated by a CSD depth profile 𝑓(𝑧) at an electrode 

located at 𝑧𝑒 = 𝑧𝑖 is then found using the standard linear integral equation 

 
𝜑(𝑧𝑖) = ∫ 𝐾(𝑧𝑖 , 𝑧

′) ∙ 𝑓(𝑧′) 𝑑𝑧′
𝐿𝐵

𝐿𝑇

 (4) 

As with the other inverse methods, Equation 3 can be extended to a 2-layered medium 

using the method of images (Jackson, 1999). Assuming 𝜎𝑡 and 𝜎𝑒 are the conductivities in the 

top and bottom medium respectively, the method of images will result in the following forward 

operator (see red line Fig. 4-2 for illustration): 

Figure 4-1: Graphic demonstration of the boundary correction method at conductivity jumps in recording medium. A) 

Electrode position labeling used in the explanation of the boundary correction in second derivative. B) Position of image 

source in a 2-layered medium. C) First few image sources in the infinite image source series used for approximating 

potential in a 3-layered medium. The middle layer is assumed to be 2 mm thick. In both Panels B) and C) the position of 

the electrode is indicated by a triangle and the position of the source by a circle. The blue and red stars denote the positive 

and negative image sources respectively. 
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𝐾(𝑧𝑒, 𝑧𝑠 ≥ 0) =

−1

𝜎𝑒(𝐿𝐵 − 𝐿𝑇)
 

{
 
 
 

 
 
 (𝐿𝐵 − 𝑧𝑒) ((𝐿𝑇 − 𝑧𝑠) +

𝐿𝑇(𝜎𝑒 − 𝜎𝑡)

𝐿𝐵𝜎𝑡 − 𝐿𝑇𝜎𝑒
(𝐿𝐵 − 𝑧𝑠)) , 0 ≤ 𝑧𝑠 ≤ 𝑧𝑒 ≤ 𝐿𝐵

(𝐿𝐵 − 𝑧𝑠) ((𝐿𝑇 − 𝑧𝑒) +
𝐿𝑇(𝜎𝑒 − 𝜎𝑡)

𝐿𝐵𝜎𝑡 − 𝐿𝑇𝜎𝑒
(𝐿𝐵 − 𝑧𝑒)) , 0 ≤ 𝑧𝑒 < 𝑧𝑠 < 𝐿𝐵

𝜎𝑒(𝐿𝐵 − 𝐿𝑇)

𝐿𝐵𝜎𝑡 − 𝐿𝑇𝜎𝑒
(𝐿𝑇 − 𝑧𝑒)(𝐿𝐵 − 𝑧𝑠), 𝐿𝑇 ≤ 𝑧𝑒 < 0

 

(5) 

𝐾(𝑧𝑒 , 𝑧𝑠 < 0) =
−1

𝜎𝑡(𝐿𝐵 − 𝐿𝑇)
 

{
 
 
 

 
 
 (𝐿𝑇 − 𝑧𝑠) ((𝐿𝐵 − 𝑧𝑒) +

𝐿𝐵(𝜎𝑒 − 𝜎𝑡)

𝐿𝐵𝜎𝑡 − 𝐿𝑇𝜎𝑒
(𝐿𝑇 − 𝑧𝑒)) , 𝐿𝑇 < 𝑧𝑠 ≤ 𝑧𝑒 < 0

(𝐿𝑇 − 𝑧𝑒) ((𝐿𝐵 − 𝑧𝑠) +
𝐿𝐵(𝜎𝑒 − 𝜎𝑡)

𝐿𝐵𝜎𝑡 − 𝐿𝑇𝜎𝑒
(𝐿𝑇 − 𝑧𝑠)) , 𝐿𝑇 ≤ 𝑧𝑒 < 𝑧𝑠 < 0

𝜎𝑡(𝐿𝐵 − 𝐿𝑇)

𝐿𝐵𝜎𝑡 − 𝐿𝑇𝜎𝑒
(𝐿𝑇 − 𝑧𝑠)(𝐿𝐵 − 𝑧𝑒), 0 ≤ 𝑧𝑒 ≤ 𝐿𝐵

 

(6) 

These expressions look considerably more complicated than what we are used to get from 

the image method in the 3-dimensional case for a boundary located at 𝑧 = 𝑏 

𝐾(𝑧𝑒, 𝑧𝑠 ≥ 𝑏) =  
1

𝜎𝑒
{
 

 𝜑(𝑧𝑒 , 𝑧𝑠) +
𝜎𝑒 − 𝜎𝑡
𝜎𝑒 + 𝜎𝑡

𝜑(𝑧𝑒, −𝑧𝑠 + 2𝑏), 𝑧𝑒 ≥ 𝑏

2𝜎𝑒
𝜎𝑒 + 𝜎𝑡

𝜑(𝑧𝑒 , 𝑧𝑠), 𝑧𝑒 < 𝑏
 

where 𝜑(𝑧𝑒 , 𝑧𝑠) is the potential at position 𝑧𝑒 generated by a source at position 𝑧𝑠 in a 

homogeneous medium of conductivity 𝜎 = 1 (see Fig. 4-1B for the position of the source and its 

image). But most of the complexity observed in the 1-D case is due to the (possibly) non-

symmetric bounding interval around the discontinuity. When setting 𝐿 =  𝐿𝐵 = −𝐿𝑇, we see 

that we recover the familiar form of the image method. A small peculiarity worth mentioning is 

that when 𝑧𝑒 < 𝑧𝑠 then computing the contribution of the image source 𝜑(𝑧𝑒, −𝑧𝑠) will require 

using the branch with 𝑧𝑠 < 𝑧𝑒 since the position of the image source (−𝑧𝑠) will be smaller than 

𝑧𝑒. 
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So far, we have only discussed 2-layered media, which can account for a single jump 

discontinuity in conductivity. A natural extension would be to approximate the volume 

conductor by a three-layered medium where the two outer media are again taken to be semi-

infinite. In the case of cortical recordings, one could think of these three layers as representing 

CSF (or saline), gray matter, and white matter respectively. 

4.2.3 3-Layer Medium Parametrization 

The extension of the method of images to a three-layered medium is complicated by the 

fact that the solution is theoretically composed of an infinite number of image sources (Barrera et 

al., 1978). This is explained by the fact that the purpose of introducing an image source is to 

satisfy a boundary condition at the interface between two media. But in a 3-layered medium, 

every time an image source is placed to satisfy the boundary condition on one interface, it 

disrupts the boundary condition at the other interface, thus requiring the addition of another 

image source to counter-balance the first one. It is clear that this leads to a situation akin to an 

infinite regress. 

Figure 4-2: InfPlane forward model for a source of unit strength positioned at z=1 mm. The blue, red and green curves 

show the potential as a function of depth for a homogeneous, 2-layered and 3-layered medium respectively. In the 

homogeneous medium the conductivity is assumed to be 𝟎. 𝟑 𝑺/𝒎 (gray matter). In the 2-layered and 3-layered case the 

conductivity in the top layer is set to 𝟏. 𝟕 𝑺/𝒎 (CSF conductivity) while in the 3-layered medium the bottom conductivity 

is set to  𝟎. 𝟏 𝑺/𝒎 (white matter conductivity). In all three cases 𝑳𝑩 = −𝑳𝑻 = 𝟓 𝒎𝒎. 
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In practice, the situation is however not as dire as it might look because the image 

sources have the characteristic of being placed further and further away from the original source 

(see Fig. 4-1C for an illustration of the image source positions for given source and electrode 

locations). Moreover, the strength of each image source is always a fraction of the strength of the 

previous one. Hence, their effect on the potential is continuously diminished. This makes it 

possible to compute a good approximation to the true solution by truncating the infinite series at 

a given number N. As described by Barrera et al., another option would be to move to the 

Fourier domain and evade the issue of the infinite sum altogether (Barrera et al., 1978). 

However, recovering the potential in space from its description in Fourier space results in an 

integral expression containing the zero-order Bessel function. Since it can be quite difficult to 

approximate such an integral numerically, we have preferred to explore the series expansion in 

the space domain. 

In Appendix B we show the resulting equations for approximating the potential for the 

nine possible combinations of source and electrode locations in a 3-layered medium. To our 

knowledge, only the case where both the source and electrode are located in the middle layer has 

been considered previously (Gold et al., 2006, Ness et al., 2015). 

4.3 Results 

4.3.1 A motivating example 

The purpose of this work is to investigate 1-D CSD estimation in presence of laterally 

extended sources. In particular, we are interested in understanding which CSD estimation 

method is the best choice when the extension of the sources is large but not exactly known. 

There are multiple ways in which such a situation can occur in an experimental setting. As a 

motivating example, we will consider the particular case in which the recorded potential is 

composed of the superposition of a global and a local activation. Similar situations can be 

expected when recording from primary sensory cortices in response to a large stimulus 

containing local features. It also represents a simplification for recordings in response to a 

stimulus leading to non-homogeneous cortical activation such as the response of the primary 

visual cortex to oriented gratings for example. For such a situation the potential 𝜑 at an electrode 

located at 𝑧𝑒 = 𝑧𝑖 is given by  
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Figure 4-3: CSD estimation of a localized source overlaid with a laterally extended global activation. A) Plot of the CSD 

depth profiles. The green curve shows the local activation which is assumed to be laterally distributed as a Gaussian with 

a standard deviation of 0.5 mm. The profile is the same as used in the modelling study by Glabska et al. The blue curve 

shows the dipolar global activation which is assumed to be uniformly distributed within a cylinder of 10 mm diameter. 

Both the cylinder and the Gaussian are centered on the recording electrode. The black curve is the sum of the local and 

global activation and therefore represents the estimation target. B) The noiseless (black) potential generated by the total 

activation in A). The potential was generated assuming a 3-layered medium with conductivities of 𝟏. 𝟕, 𝟎. 𝟑, 𝟎. 𝟏 𝑺/𝒎. The 

red curve shows the same potential with additive Gaussian white noise with a standard deviation of 𝟏𝟎 𝝁𝑽. C) and D) 

show the non-regularized and regularized CSD estimation for various assumed source diameters using the noiseless and 

noisy potential respectively. The sources were estimated assuming a 2-layered medium (the bottom layer was omitted). 
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𝜑(𝑧𝑖) = ∫𝐾𝑔(𝑧𝑖 , 𝑧
′) ∙ 𝑓𝑔(𝑧

′) + 𝐾𝑙(𝑧𝑖 , 𝑧
′) ∙ 𝑓𝑙(𝑧

′) 𝑑𝑧′ (7) 

where 𝑓𝑔 and  𝑓𝑙 are the global and local CSD depth profiles respectively and 𝐾𝑔 and 𝐾𝑙 the 

associated forward problems. 

Given Eq. 7, the question is thus what CSD estimation method will provide the best 

estimate of the overall activity and how are 𝑓𝑔 and 𝑓𝑙 represented in the estimated CSD. 

Currently, most researchers prefer approaching this problem using the standard CSD estimation 

method instead of the inverse methods despite the limitations of the standard method discussed 

in Section 2. 

In Figure 4-3 we investigate this problem using simulated data. Panel 4-3A shows a large 

dipolar global CSD depth profile overlaid with a patterned local profile. The local response is the 

same CSD profile as used in Glabska et al. (Glabska et al., 2014). To simulate the potential in 

Panel 4-3B, we assumed that the global activation was a uniform cylinder of 10 mm diameter 

and the local sources were distributed as a Gaussian function with a standard deviation of 0.5 

mm. Both the uniform cylinder and the Gaussian were centered on the electrode position. We 

also included additive zero-mean Gaussian white noise with standard deviation of 10 𝜇𝑉 to 

simulate recording noise. The medium was parametrized as a 3-layer setup with aCSF 

conductivity 𝜎𝑡 = 1.7 𝑆/𝑚 in the top medium (blue shading 𝑧 < 0), extracellular gray matter 

conductivity 𝜎𝑒 = 0.3 𝑆/𝑚 for the middle medium (gray shading 0 ≤ 𝑧 ≤ 2 𝑚𝑚, and white 

matter conductivity 𝜎𝑏 = 0.1 𝑆/𝑚 for the bottom medium (Wagner et al., 2004). The recording 

points were chosen to simulate a 32 channel electrode with 100 𝜇𝑚 channel separation. The 

electrode was positioned with 4 channels in the top medium and the 5th channel located 50 𝜇𝑚 

below the surface. This setup simulates a cortical recording with an electrode spanning the whole 

cortical depth along with contacts in aCSF and white matter. 

Panels 4-3C and 4-3D show the estimated CSD using different inverse model diameters 

and the standard method for the noiseless (black curve in 4-3B) and noisy (red curve in 4-3B) 

potential respectively. For the inverse methods, UniCyl refers to an assumed uniform cylinder 

forward model and the InfPlane is the 1-D Poisson inverse problem presented in Section 2.2. For 

the InfPlane, the bounding box was measured from the edge of the electrode, i.e. 𝐿𝑇 = 1.2 −
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(𝐿 + 1.55) and 𝐿𝐵 = 1.2 + (𝐿 + 1.55). In all the inverse methods, the rCSD expansion method 

was used to parametrize the sources (Kropf and Shmuel, 2016). For Panel 4-3D, all inverse 

methods were regularized using a minimum coefficient norm prior with a regularization 

coefficient of 0.01. 

It is obvious from both Panel 4-3C and 4-3D that small diameter source estimation 

methods are not well suited for estimating the CSD in this situation. Moreover, the large 

diameter estimations (𝐷 ≥ 5 𝑚𝑚) as well as the InfPlane perform very similarly with the main 

differences being located at the edge of the electrode. These edge effects are particularly 

apparent in the noiseless estimation where there is no smoothing due to regularization. Although 

the standard estimation method performs reasonably well, it appears to be more sensitive to noise 

than the regularized inverse methods with D ≥ 5 mm, even when it is supplemented with the 

additional smoothing step (i.e. 5-point method). 

Interestingly, all large diameter estimation methods as well as the standard method are 

able to capture the features of the summed CSD despite the large differences in the extent of its 

components. Hence, we see from this example that the CSD is mainly sensitive to local features 

even when assuming extended sources. To understand why this is the case and why small source 

estimation methods perform poorly in this situation it is worth looking at the contributions to the 

potential from distant sources. 

In Figure 4-4A, we show the potential generated by a point source of unit strength (1 𝜇𝐴) 

located at position 𝑥 = (0,0,0) in a uniform medium with conductivity 𝜎 = 0.3 𝑆/𝑚. It is well 

established that in a homogeneous and isotropic medium, the potential decays as 1/𝑟 where 𝑟 

denotes the distance from the source to the recording point (Plonsey and Barr, 2007). The 

potential is shown for a depth of 3 mm to show the extent to which the potential generated by a 

point source varies across a 32 channel electrode with an inter-contact separation of 100 𝜇𝑚. We 

see that the further we are laterally displaced from the source, the less the potential varies across 

the electrode. This is highlighted in Panel 4-4B which shows the percentage difference between 

the potential at depth 𝑧 compared to the potential at 𝑧 = 0. The fact that the potential varies only 
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slightly across the electrode the farther it is laterally displaced from the source has an important 

consequence for CSD estimation. This is further highlighted in Panel 4-4C which shows the 

potential generated at the center of 1 mm thick donuts of various diameters. The CSD depth 

profile is the same as the local profile in Figure 4-3A. The major point to note is that the distant 

sources produce increasingly smoothed potentials until they contribute only approximately linear 

and then constant functions. Hence, all the structure in the potential is due to the sources close to 

the electrode. But as mentioned in Section 2.1, constant and linear functions are in the nullspace 

(also termed kernel) of the standard CSD estimator for the inner contacts (in other words, given 

constant or linear field potentials, the standard CSD estimation for the inner electrodes is zero). 

They thus do not affect estimation. This is however not the case for the small diameter inverse 

estimators which explains why these perform badly in presence of laterally extended sources. 

We have seen in Figure 4-3 that large diameter uniform cylindrical (UniCyl) inverse 

models perform very similarly to the infinite plane (InfPlane) estimator described in Section 2.2. 

Moreover, we found that both methods were more resistant to noise than the standard CSD 

method. It is however not yet clear at what diameters these formulations converge to each other. 

We will thus investigate the relationship between these two formulations in the next section. 

Figure 4-4: Demonstration of effect of source distance on recorded potential. A) Potential generated by a point source 

located at (𝝆, 𝒛) = (𝟎, 𝟎) in a homogeneous medium (𝝈 = 𝟎. 𝟑 𝑺/𝒎) as a function of depth 𝒛 and lateral distance 𝝆. The 

total depth 𝒛 is chosen to match the typical extent of a cortical electrode. B) Same as A) but shown as the percentage 

difference from the potential at 𝒛 = 𝟎. C) Potential generated by source donuts of various diameters assuming the local 

Glabska source profile from Figure 4-3A. It is very apparent that the source structure is very rapidly smoothed out in the 

potential because of the small percentage variation across the span of the electrode shown in B). 
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4.3.2 Infinite plane versus uniform cylinder CSD estimation 

We have shown in Section 2.2 that the standard CSD estimation method can also be 

expressed as an inverse problem by using the Green’s function for the 1-D Poisson equation as 

the forward operator. The most straightforward way to compare this estimator to the uniform 

cylindrical inverse formulation is by explicitly comparing their forward models. 

In a homogeneous and isotropic volume conductor with conductivity 𝜎, the forward 

model for cylindrical sources of radius 𝑅 and uniform lateral density is given by (Pettersen et al., 

2006) 

 
𝐾𝑈𝑛𝑖𝐶𝑦𝑙(𝑧𝑒, 𝑧𝑠) =

1

2𝜎
(√𝑅2 + (𝑧𝑠 − 𝑧𝑒)

2 − |𝑧𝑠 − 𝑧𝑒|) (8) 

In comparison, the forward model for the inverse formulation of the standard method 

(𝐾𝐼𝑛𝑓𝑃𝑙𝑎𝑛𝑒) with boundaries chosen symmetrically around a point 𝑎 (i.e. 𝐿𝑇 = 𝑎 − 𝐿 and 𝐿𝐵 =

𝑎 + 𝐿), is found from Eq. 3 to be given by 

 
𝐾𝐼𝑛𝑓𝑃𝑙𝑎𝑛𝑒(𝑧𝑒, 𝑧𝑠) =

1

2𝜎
(𝐿 − |𝑧𝑠 − 𝑧𝑒| −

(𝑧𝑠 − 𝑎)(𝑧𝑒 − 𝑎)

𝐿
) (9) 

It is clear that the two formulations share a number of features starting with the term 

containing the distance between the source and the electrode (|𝑧𝑠 − 𝑧𝑒|). Moreover, whenever 

the radius 𝑅 ≫  max (|𝑧𝑠 − 𝑧𝑒|), 𝐾𝑈𝑛𝑖𝐶𝑦𝑙 can be approximated by 

 
𝐾𝑈𝑛𝑖𝐶𝑦𝑙(𝑧𝑒, 𝑧𝑠) ≅

1

2𝜎
(𝑅 − |𝑧𝑠 − 𝑧𝑒|) (10) 

If we assume that the sources are all located within the span of the electrode contacts, the 

constraint 𝑅 ≫  max (|𝑧𝑠 − 𝑧𝑒|) is equivalent to say that the radius should be larger than the 

extent of the electrode. Under this condition, comparison of Eq. 8 and 9 shows that the length 𝐿 

of the bounding box in 𝐾𝐼𝑛𝑓𝑃𝑙𝑎𝑛𝑒 plays a similar role to that of the radius 𝑅 in 𝐾𝑈𝑛𝑖𝐶𝑦𝑙. An 

approximation similar to Eq. 9 can also be found for a Gaussian forward model with a standard 

deviation of 𝑅 (see (Kropf and Shmuel, 2016) for the forward model). In this case, the first order 

McLaurin expansion is given by 

𝐾𝐺𝑎𝑢𝑠𝑠(𝑧𝑒, 𝑧𝑠) ≅
1

2𝜎
(
√2𝜋

2
𝑅 − |𝑧𝑠 − 𝑧𝑒|) 
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In this case, the length 𝐿 of the bounding box of the bounding box is then obviously 

related to a scaled version of the standard deviation. 

The same relationship can be shown to hold for the case of a two-layered medium, for 

which the image source contribution in the bottom medium (assuming the source is in the bottom 

medium as well) is given by 

1

2𝜎𝑒

(𝜎𝑒 − 𝜎𝑡) (1 −
𝑎
𝐿
)

(𝜎𝑒 + 𝜎𝑡) −
𝑎
𝐿
∙ (𝜎𝑒 − 𝜎𝑡)

(𝐿 − |𝑧𝑠 + 𝑧𝑒| + 2 ∗ 𝑎 −
(𝑎 − 𝑧𝑠)(𝑧𝑒 − 𝑎)

𝐿
) 

Similarly, the potential in the top medium is given by 

1

(𝜎𝑒 + 𝜎𝑡) −
𝑎
𝐿
∙ (𝜎𝑒 − 𝜎𝑡)

(𝐿 − |𝑧𝑠 − 𝑧𝑒| −
(𝑧𝑠 − 𝑎)(𝑧𝑒 − 𝑎)

𝐿
) 

Since the two formulations clearly converge to each other at large source diameters, the 

main questions left to answer are: (1) the diameter at which they are sufficiently similar to be 

exchangeable, and (2) the errors that are introduced when using a wrong diameter. 

4.3.2.1 Similarity between discrete uniform cylinder and infinite plane delta estimator 

To determine the similarity between the two estimators as a function of the source 

diameter, we first looked at methods from perturbation theory. Assume that 𝑭𝑈𝑛𝑖𝐶𝑦𝑙
−1 𝜑 = 𝑓𝑈𝑛𝑖𝐶𝑦𝑙 

is the CSD estimation (𝑓𝑈𝑛𝑖𝐶𝑦𝑙) obtained with the cylindrical source estimator 𝑭𝑈𝑛𝑖𝐶𝑦𝑙
−1  and 

𝑭𝐼𝑛𝑓𝑃𝑙𝑎𝑛𝑒
−1 𝜑 = 𝑓𝐼𝑛𝑓𝑃𝐿𝑎𝑛𝑒 the same for the InfPlane estimator (note that the same potential 𝜑 is 

used in both cases). It is then possible to get the following upper bound on the difference in 

estimation 𝑓𝐼𝑛𝑓𝑃𝑙𝑎𝑛𝑒 − 𝑓𝑈𝑛𝑖𝐶𝑦𝑙 

‖𝑓𝐼𝑛𝑓𝑃𝑙𝑎𝑛𝑒 − 𝑓𝑈𝑛𝑖𝐶𝑦𝑙‖

‖𝑓𝑈𝑛𝑖𝐶𝑦𝑙‖
=
‖𝑬 𝑭𝑈𝑛𝑖𝐶𝑦𝑙𝑓𝑈𝑛𝑖𝐶𝑦𝑙‖

‖𝑓𝑈𝑛𝑖𝐶𝑦𝑙‖
≤ ‖𝑬 𝑭𝑈𝑛𝑖𝐶𝑦𝑙‖ 

where 𝑬 = 𝑭𝐼𝑛𝑓𝑃𝐿𝑎𝑛𝑒
−1 − 𝑭𝑈𝑛𝑖𝐶𝑦𝑙

−1  (Olver and Shakiban, 2006). However, when comparing this 

upper bound to errors obtained in simulations, it turns out that the upper bound is too generous to 

serve as a useful measure of the similarity between the estimators. We thus turned to more direct 

comparison methods. 
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Pettersen et al. have shown that, at large source diameters, the delta estimator converges 

to the standard CSD method for the interior electrodes (Pettersen et al., 2006). Interestingly, we 

found that this also applies to a two-layer medium in which the delta estimator converges to Liu 

et al.’s estimator presented in Section 2.1 (Liu et al., 2000). Moreover, it was shown that the 

diagonal element of the delta estimator at the edge electrodes converged to 1 + ℎ 𝑅⁄  at large 

diameters with ℎ being the interelectrode separation and 𝑅 the radius of the cylindrical source 

disks. Figure 4-5A shows that the same behavior is observed for the InfPlane forward model 

using the delta source parametrization with the box edges set a distance 𝑥 from the first and last 

electrode (i.e. 𝐿𝑇 = −𝑧𝑒1 − 𝑥 and 𝐿𝐵 = 𝑧𝑒𝑁 + 𝑥 leading to 𝑎 =
𝑧𝑒1+𝑧𝑒𝑁

2
 and 𝐿 = 𝑥 +

|𝑧𝑒𝑁−𝑧𝑒1|

2
). 

However, in contrast to the UniCyl forward model, the edge electrodes for the delta InfPlane 

forward model follow a strict 1 + ℎ 𝑥⁄  pattern even at small values of 𝑥. Hence, a possible way to 

identify the radius at which both estimation methods are sufficiently similar to each other is to 

set 𝑥 = 𝑅 and measure the amount by which the edge estimator in 𝑭𝑈𝑛𝑖𝐶𝑦𝑙
−1  differs from 1 + ℎ 𝑅⁄ .  

From the red curve in Figure 4-5A, we see that the difference is below 0.1 % at radii larger than 

~5.5 mm. 

Figure 4-5: Difference between the InfPlane and UniCyl forward models. A) Decay of diagonal elements in delta iCSD 

estimator. The target in this case is a 𝟏 + 𝒉/𝑹 decay for the edge electrode and a constant value of 2 for the inner 

electrodes. The red and blue dashed lines denote the source diameter at which the percentage difference between the 

UniCyl model and the target is below 0.1% as shown by the black dashed line. B) Percentage difference between UniCyl 

and best fitting InfPlane forward models as a function of source diameter and depth. The error is averaged over sources 

positioned in 0.01 mm steps between [-0.45, 2.85] mm. 
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Hitherto, we have only compared the edge electrode estimators but a similar comparison 

can be done for the inner electrodes. The blue curve in Fig. 4-5A shows the average percentage 

by which the diagonal elements differ from 2 (excluding the edge estimators). We find that the 

estimation at the inner electrodes converges even faster than at the edge since the difference is 

below 0.1 % at radii larger than ~2 mm. Hence, we conclude that for the delta estimator, the two 

formulations can be considered interchangeable for diameters exceeding ~2-5 mm. 

4.3.2.2 Similarity between continuous uniform cylinder and infinite plane estimator 

A limitation of the comparison approach used in Fig. 4-5A is that it is only applicable to 

the discrete delta source parameterization method. In order to extend the comparison to any 

source parameterization, we also compared the forward models directly. In a first step, we set out 

to determine the boundary conditions imposed on the InfPlane forward model (i.e. Eq. 8) that 

minimize its difference with the UniCyl forward model. We found that choosing 𝐿 = 𝑅 +

1

(1+ℎ)𝑅
−
3ℎ

𝑅2
 yielded the minimal average error over electrode and source positions (this obviously 

only applies when the radius is large enough to put the boundary box beyond the edge of the 

electrode). We also tested this boundary condition on simulations and found that it indeed 

markedly reduced the source reconstruction at the edge electrodes at small source diameters. In 

Figure 4-5B, we show the percent difference between the forward model equations 7 and 8 

averaged over sources positioned in 0.01 mm steps between 𝑧𝑠 = 𝑧𝑒1 − ℎ and 𝑧𝑠 = 𝑧𝑒𝑁 + ℎ. For 

the purpose of this comparison, we assumed a homogeneous medium with conductivity 𝜎 =

0.3 𝑆/𝑚. For each source diameter, the percentage error was calculated by dividing the average 

over source positions of the absolute difference between the UniCyl and InfPlane forward model 

by the largest value in the UniCyl forward model 

𝜀 = 100 ∙ 2𝜎
|𝐾𝑈𝑛𝑖𝐶𝑦𝑙(𝑧𝑒, 𝑧𝑠, 𝑅) − 𝐾𝐼𝑛𝑓𝑃𝑙𝑎𝑛𝑒(𝑧𝑒, 𝑧𝑠, 𝐿)|
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑅
 

Again, we find that there is a marked drop in the average error at diameters between ~2-5 

mm. Hence, the findings from the delta source parameterization seem to remain valid for other 

source parameterizations. It is important to note that the error in Figure 4-5B should not be 

directly compared to the one from Figure 4-5A because the former compares the forward 

equation while the latter is based on the inverse estimator. 
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4.3.2.3 Effect of diameter mismatch between forward and inverse model 

So far, we have shown that the two forward model formulations from Eqs. 7 and 8 

converge to each other and can be used interchangeably at diameters larger than ~2-5 mm. 

However, in most experimental settings, it is very difficult to get a good approximation of the 

activation diameter. It is thus interesting to investigate the errors that are introduced when wrong 

source diameters are assumed for estimation. Figure 4-6A shows CSD estimation using the rCSD 

source parameterization and a uniform cylinder (UniCyl) forward model of various diameters. 

The electric potential data was generated using the local CSD profile from Fig. 4-3A and a 

uniform cylindrical lateral source profile with a diameter of 2 mm. For the forward problem, the 

medium was assumed to be 3-layered with the same parameters as in Fig. 4-3. The inverse 

problem was solved without including the white matter (i.e. using a 2-layered medium). The 

same setup is used in Figure 4-6B but with a UniCyl lateral source profile with a diameter of 5 

mm for the forward problem. No noise was added to the potential and no regularization was used 

for the estimation shown in Panels 4-6A and B.  

For both 2 and 5 mm real source diameter, we find that the estimation is quite insensitive 

to the assumed source diameter. Moreover, we find that, as predicted from the comparison 

between the forward models, the estimation is comparable between the UniCyl and InfPlane 

forward models. In order to determine which of them performs better, we show in Panels 4-6C 

and 4-6D the subtraction of their respective errors. We find that at the edge electrodes, the 

UniCyl forward model performs better than the InfPlane, while the InfPlane seems slightly less 

prone to errors in the middle electrodes. However, from Panels 4-6A and B it is very apparent 

that the overall error introduced by assuming wrong diameters is small whenever the activation 

diameter exceeds ~2 mm. This behaviour is also preserved when using noisy potential data. 

Panels 4-6E and F show the estimation when using the same forward model and source profile 

used for Panels 4-6A and B but with adding zero-mean Gaussian white noise with a standard 

deviation of 25 𝜇𝑉 (the same noise realization is used in both cases). All inverse methods were 

regularized using a minimum coefficient norm prior with a regularization coefficient of 0.01. 

Again, the estimations are stable under changes in the assumed source diameters. 
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Figure 4-6: Comparison of errors introduced by mismatch in source diameters. (continued on next page) 
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As mentioned previously, a major appeal of the standard CSD method is its apparent ease 

of use. However, as we have just shown, the difference between the forward model of the 1-D 

Poisson equation (InfPane) and the inverse formulation with cylindrical sources (UniCyl) 

diminishes for large source radii. It thus raises the question of where the parameters of the 

inverse methods are hidden when using the standard CSD method. 

4.3.3 Inverse CSD versus Standard CSD 

There are 4 types of parameters that define the forward problem in the inverse CSD 

methods: the electrode positions, the conductivities, the lateral source distribution (e.g. uniform 

cylinder), and the lateral extent of the sources (i.e. the radius in the cylindrical source case). In its 

most common application, the standard CSD method is applied with the assumption of a 

homogeneous medium. In this case, the requirements on the electrode positions and on the 

conductivities are the same between the standard and inverse methods. The conductivity will 

simply scale the estimation and electrode positions only need to be known relative to each other, 

which means that only the channel separation is of importance. And even if one would use the 

standard method in a non-homogeneous medium, the same requirements as for the inverse 

methods would apply for the electrode positions and the conductivities (see Liu et al.’s estimator 

in Section 2.1). For the lateral source distribution, we have shown above that in the case of a 

cylinder with radially uniform density (UniCyl) as well as for a Gaussian lateral profile, the 

forward models of both methods converge to the same formulation. Hence, the only remaining 

parameter to be found is the radius of the sources. 

As mentioned in Section 2.1, reducing Poisson’s equation (Eq. 1) from 3-D to 1-D (Eq. 

2) theoretically requires working with laterally infinitely extended sources. Therefore, it is 

tempting to assume that the standard method is simply retrieved in the limit of cylindrical 

sources with infinite radius. However, examination of the forward model (Eq. 7 or 9) shows that 

Figure 4-6: (continued from previous page) The rCSD source parameterization was used for all estimations. A) Source 

estimation for Glabska CSD profile distributed within a uniform cylinder (UniCyl) of 2 mm diameter. We see that using 

larger diameters does not significantly affect the estimation. B) Same as A) but for a source diameter of 5 mm. We see 

that assuming smaller source diameter tends to introduce errors at the edge electrodes. C) and D) Estimation errors using 

the InfPlane forward model subtracted from the errors obtained with the UniCyl model. E-H) Same as A-D) but with 

added white Gaussian noise (standard deviation of 𝟐𝟓 𝝁𝑽). All estimations in the presence of noise were regularized using 

a minimum coefficient norm prior with a regularization coefficient of 0.01. 
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this is not possible because the potential diverges in the limit of 𝑅 → ∞. This is actually a well-

known situation in electrostatics and is reflected in the fact that Poisson’s equation in 1-D 

doesn’t allow for a Green’s function which decays to zero at infinity. Hence, there seems to be 

no obvious way to relate the radius of the sources to the standard method. 

To gain insight into how the source radius affects the standard CSD method, we 

examined the result of applying the standard method to the large diameter forward equations 8 

and 9. For the inner electrodes, this means computing 

𝐶̃(𝑧𝑒) = 𝜎
−𝜑(𝑧𝑒 + ℎ) + 2𝜑(𝑧𝑒) − 𝜑(𝑧𝑒 − ℎ)

ℎ2
 

=
𝜎

ℎ2
∫𝑑𝑧𝑠 𝐶(𝑧𝑠) ∙ (−𝐾(𝑧𝑒 + ℎ, 𝑧𝑠) + 2𝐾(𝑧𝑒 , 𝑧𝑠) − 𝐾(𝑧𝑒 − ℎ, 𝑧𝑠)) 

which is obtained by applying the 3-point kernel to Equation 4 assuming an inter-electrode 

separation of ℎ. The integration boundaries are chosen such that they completely encompass the 

sources 𝐶(𝑧𝑠). For both the InfPlane forward operator (Eq. 8) as well as the large diameter 

approximation to the cylindrical source forward model (Eq. 9), this results in 

Figure 4-7: Standard CSD estimator applied to the InfPlane and the large source approximation of the UniCyl forward 

model. A) Inner electrode estimator is found to compute a weighted average of sources between adjacent electrodes. B) 

and C) Edge estimators assuming Vaknin’s and Pettersen’s 𝟏 − 𝒉/𝑹 boundary conditions, respectively. The red curve 

shows the result of applying the standard three-point estimator on the large diameter approximation of the cylindrical 

forward model. The cyan curve shows the added contribution from the 1/L terms in the InfPlane forward model. The 

blue curve is the sum of the red and cyan curves: it represents the total source weighting at the top-most electrode for the 

InfPlane forward model. We see that the sources beyond the electrode span affect the estimation for both boundary 

conditions. Moreover, sources within the electrode span are not evenly weighted. 
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𝐶̃(𝑧𝑒) =
1

ℎ2
∫ 𝑑𝑧𝑠 𝐶(𝑧𝑠) ∙ (ℎ − |𝑧𝑠 − 𝑧𝑒|)
𝑧𝑒+ℎ

𝑧𝑒−ℎ

 

which is simply a weighted average of the true sources between 𝑧𝑒 − ℎ and 𝑧𝑒 + ℎ as shown in 

Figure 4-7A. We note here that, as expected, this estimator is independent of the source radius 𝑅 

and the extent of the bounding box.  

As mentioned in Section 2.1, the standard estimation at the edge electrodes is 

complicated by the fact that it depends on the choice of boundary conditions. For example, the 

estimator for the top most electrode is given by 

𝐶̃(𝑧𝑒1) = 𝜎
−𝜑(𝑧𝑒1 + ℎ) + (2 − 𝑥)𝜑(𝑧𝑒1)

ℎ2
 

where 𝑥 depends on the choice of boundary condition (a similar equation applies to the bottom 

most electrode). Applying this estimator to the forward equations 8 and 9 yields 

 𝐶̃(𝑧𝑒1)

=
1

2ℎ2

(

 
 
 
 

(1 − 𝑥)∫𝑑𝑧𝑠 𝐶(𝑧𝑠) ∙ (𝑅 − |𝑧𝑠 − 𝑧𝑒1|) + ℎ∫𝑑𝑧𝑠 𝐶(𝑧𝑠)

−2∫ 𝑑𝑧𝑠 𝐶(𝑧𝑠) ∙ |𝑧𝑠 − 𝑧𝑒1|
𝑧𝑒+ℎ

𝑧𝑒−ℎ

− 2ℎ∫ 𝑑𝑧𝑠 𝐶(𝑧𝑠)
𝑧𝑒+ℎ

+(1 − 𝑥)𝑏∫𝑑𝑧𝑠 𝐶(𝑧𝑠) +
ℎ − (1 − 𝑥)(𝑧𝑒 − 𝑎)

𝐿
∫𝑑𝑧𝑠 𝐶(𝑧𝑠) ∙ (𝑧𝑠 − 𝑎))

 
 
 
 

 

 

(11) 

The last two terms only apply to Eq. 8. The first one accounts for the difference between 

𝐿 and 𝑅 (i.e. 𝑏 = 𝐿 − 𝑅) whereas the second term accounts for the 1 𝐿⁄  term in Eq. 8. 

In this formulation, Vaknin’s method (i.e. Neumann boundary conditions) is enforced by 

setting 𝑥 = 1, which simplifies Eq. 11 to 

𝐶̃(𝑧𝑒1) =
1

2ℎ2

(

 
 
ℎ∫ 𝑑𝑧𝑠 𝐶(𝑧𝑠)

𝑧𝑒

−∫ 𝑑𝑧𝑠 𝐶(𝑧𝑠) ∙ (ℎ − 2|𝑧𝑠 − 𝑧𝑒1|)
𝑧𝑒+ℎ

𝑧𝑒−ℎ

− ℎ∫ 𝑑𝑧𝑠 𝐶(𝑧𝑠)
𝑧𝑒+ℎ

+
ℎ

𝐿
∫𝑑𝑧𝑠 𝐶(𝑧𝑠) ∙ (𝑧𝑠 − 𝑎)

)
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The resulting estimator is shown in Figure 4-7B for the cases with and without the 1 𝐿⁄  

component and under the assumption that 𝑎 = 𝑏 = 0. There are a few findings worth pointing 

out here: First, Vaknin’s procedure will provide a correct estimate as long as the sources are 

balanced, the electrode span encompasses all the sources, and the radius is sufficiently large 

compared to the electrode span. This is well explained by electrostatics from where we know that 

the electric field vanishes outside of a region containing a set of balanced infinitely extended 

sheets, thus leading to a constant potential (Griffiths, 2013). In contrast, all unbalanced sources 

both within or extending beyond the span of the electrode will affect the estimation at the edge 

electrodes. This represents a generalization of the result proposed by Pettersen et al. (Pettersen et 

al., 2006). Moreover, in the case of smaller bounding boxes, the position of the electrode with 

respect to the center of the box affects the estimation at the edge electrodes because the 1 𝐿⁄  

component adds a linear trend with an intercept of 0. 

Following the observation of the delta iCSD estimator at large diameters, Pettersen et al. 

also proposed a modified boundary condition corresponding to setting 𝑥 = 1 − ℎ 𝑅⁄ . In this case, 

Eq. 10 is reduced to 

𝐶̃(𝑧𝑒1) =
1

2ℎ2

(

 
 

2ℎ∫ 𝑑𝑧𝑠 𝐶(𝑧𝑠)
𝑧𝑒

− 2∫ 𝑑𝑧𝑠 𝐶(𝑧𝑠) ∙ (ℎ − |𝑧𝑠 − 𝑧𝑒1|)
𝑧𝑒+ℎ

𝑧𝑒−ℎ

+
ℎ

𝐿
(1 −

𝑧𝑒1 − 𝑎

𝑅
) ∙ ∫𝑑𝑧𝑠 𝐶(𝑧𝑠) ∙ (𝑧𝑠 − 𝑎) +

ℎ𝑏

𝑅
∫𝑑𝑧𝑠 𝐶(𝑧𝑠)

)

 
 

 

The resulting estimator is shown in Figure 4-7C again for the cases with and without the 

1
𝐿⁄  component. A particularly interesting choice of parameters is 𝐿 = 𝑅 + 𝑏, 𝑎 = 𝑧𝑒1 + 𝑏 and 

𝑏 = (𝑧𝑒𝑁 − 𝑧𝑒1) 2⁄ . This corresponds to a situation where the bounding box is centered on the 

electrode and the top and bottom edges of the box are distance 𝑅 away from the top most and 

bottom most electrode respectively (as used in Figure 4-3 and 4-6). As mentioned by Pettersen et 

al. we see that this estimator is indeed insensitive to the sources within the span of the electrode. 

However, as an extension to Pettersen’s previous findings, we show here that the same is not true 

for unbalanced sources extending beyond the span of the electrode. Also, when adding the 1 𝐿⁄  

term, the estimator is again found to be affected by the position of the electrode within the 

bounding box. 
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4.3.4 Effect of Noise on Estimation 

So far we have only compared the methods assuming a noiseless potential. But in Section 

2.1 we have already mentioned that derivative estimation is an unstable operation and that the 5-

point estimator has been introduced precisely to deal with the inevitable recording noise in 

experimental conditions. However, as of now we don’t know whether regularized inverse 

methods or the 5-point standard estimator are more sensitive to recording noise. To address this 

question, we show in Figure 4-8 the estimation error for the standard and inverse methods as a 

function of noise level.  

To simulate the potential we again used the local activation profile from Figure 4-3 with 

a uniform cylinder of 10 mm diameter and a 32-channel electrode with 100 𝜇𝑚 inter-contact 

separation. The recording medium was set to have a uniform conductivity of 𝜎 = 0.3 𝑆/𝑚. We 

then added white, zero-mean Gaussian noise with a standard deviation equal to the noise level. 

For every noise level, we created 100 noise realizations of the appropriate amplitude. Figure 4-8 

shows the average and standard deviation of the estimation error over these realizations. The 

Figure 4-8: Noise sensitivity as a function of noise amplitude. For each noise amplitude, the source estimation error was 

computed for 100 realizations of zero-mean white Gaussian noise. The same noise realization was used for all estimation 

methods. It is quite obvious that the 5-point standard estimator (green curve) is less stable under noise than the inverse 

estimators. Moreover, the InfPlane (red and magenta curves) and UniCyl (blue and orange curves) estimators show 

highly comparable noise tolerance. 
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same noise realizations were used for each method. We evaluated the error for both the delta 

iCSD and the rCSD source parameterization assuming a source diameter of 5 mm. This situation 

was intentionally chosen to favor the standard CSD method because we incorporate the 

uncertainty of the actual lateral source diameter by choosing the wrong source diameter in the 

inverse estimator. For the continuous rCSD estimation, the error was evaluated only at the 

electrode positions to allow a fair comparison with the delta iCSD and standard estimation. For 

all methods the error was only evaluated for the inner electrodes (i.e. electrode contacts 3-30).  

All inverse methods were regularized using a minimum coefficient norm prior and the 

regularization coefficient was automatically selected using the normalized cumulative 

periodogram (NCP) method (Kropf and Shmuel, 2016). We find that all inverse methods 

outperform the standard 5-point CSD. Moreover, in accordance with the results presented in 

Section 3.2, we find that the difference between the InfPlane and UniCyl forward model is 

negligible. 

In summary, we have shown that the ease of use of the standard CSD method is largely 

illusory since all the parameters from the inverse methods are implicitly contained in the 

standard estimator. In particular, the lateral source extent is affecting the standard estimation at 

the edge electrodes even at large source diameters. Moreover, we have found that the 5-point 

standard estimator is more sensitive to noise than the inverse methods. Hence, there appears to 

be no particular advantage in using the standard estimation method over any of the inverse 

estimators.  

4.3.5 Three- versus Two-Layered Medium Parameterization 

The final point that we investigate is the effect on estimation accuracy of simplifying the 

medium from a three- to a two-layered medium. In particular, we will focus on emulating a 

cortical recording by choosing electrical conductivity values expected from CSF (1.7 𝑆/𝑚), gray 

matter (0.3 𝑆/𝑚), and white matter (0.1 𝑆/𝑚). 

Figures 4-9A and 4-9B show the potential generated by a unit strength point current 

source located at various positions in a two- and three-layered medium respectively. For the 

three-layered medium, the infinite series of image sources was truncated at 𝑁 = 20 as in Ness et 

al. (Ness et al., 2015). The gray and white lines mark the beginning of the gray and white matter 
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respectively. The color scale in the two panels was clipped at a potential of 1 mV to facilitate the 

comparison. To highlight the discrepancies between the two medium parameterizations, Figure 

4-9C shows the percentage difference between the potential in the two media. We see that adding 

the white matter mainly affects the potential generated by the sources located within the white 

matter and to a lesser extent the potential generated at the boundary between the gray and white 

matter by sources located within CSF or gray matter. This border effect is emphasized further in 

Figure 4-9: Effect of medium parameterization on potential. A) and B) show the potential in depth generated by unit 

strength point sources located at various depths in a 2- and 3-layered medium, respectively. C) Percentage difference 

between the 2- and 3-layered medium. As expected, the largest error is found for sources positioned in the bottom layer. 

D) Potential difference averaged over sources in the gray matter (red curve) or over all sources (blue curve). 
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Figure 4-9D which shows the average potential difference over all source positions (blue line) as 

well as the average over sources within the gray matter (red line). It is very clear that the 

Figure 4-10: Error introduced by a mismatch between forward and inverse medium parameterization assuming unit 

strength uniform source disks with a diameter of 2 mm. For all panels, the potential is generated using a 3-layered 

medium with conductivities of 𝟏. 𝟕, 𝟎. 𝟑, 𝟎. 𝟏 𝑺/𝒎. In each case the rCSD source parameterization without regularization 

was used. A) Matched 3-layer estimation. We see that the sources are estimated at the correct positions and with minimal 

spreading. B) and C) shows the estimations using a 2-layered medium omitting the bottom (white matter) or top (CSF) 

layer, respectively. In both cases we see a boundary artifact at the omitted interface. Moreover, the sources within the 

omitted medium are found to be wrongly scaled. D) Estimation using a homogeneous medium. Again, clear boundary 

artifacts are observed. We also note that the artifacts generated at the boundaries by sources located within the gray 

matter are of opposite sign and more significant at the top than at the bottom interface. This is explained by the size and 

polarity of the jump discontinuity in conductivity. 
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discrepancies between the two media disproportionally affect the white matter as well as the 

boundary between white and gray matter. Hence, it can be expected that the same will be true for 

the source estimation accuracy. 

In Figures 4-3 and 4-6 we already observed that estimating sources assuming a 2-

layered forward model when the potential was generated using a 3-layered medium introduces 

errors at the transition between gray and white matter. This is further highlighted in Figure 4-10 

which shows the rCSD estimation of unit strength uniform source discs of 2 mm diameter 

located at various positions within a three-layered cortical medium. The recording electrode is 

again assumed to be a 32 channel electrode with 100 𝜇𝑚 channel separation. The fifth channel is 

positioned 50 𝜇𝑚 below the border between CSF to gray matter. The gray matter is 2 mm thick. 

Panel 4-10A shows the estimation using the correct three-layered forward model, demonstrating 

that all sources are equally well reconstructed. Moreover, we can observe the boundary effect at 

the edge of the electrode (i.e. sources located above -0.35 and below 2.75 mm) introduced by the 

lack of data beyond the edge. In contrast, when the white matter is ignored in the estimation (Fig. 

4-10B), a spurious source is estimated at the boundary between gray and white matter. This 

border effect is most pronounced for sources deeper than ~750 𝜇𝑚. Moreover, sources within 

the white matter are amplified in comparison to the gray matter and CSF sources. A similar 

phenomenon can be observed when instead the CSF layer is ignored (see Fig. 4-10C). However, 

in this case the source at the border induced by sources within the gray matter is negative and of 

higher amplitude than in Figure 4-10B. This difference in polarity and amplitude is expected 

since the jump in conductivity is larger and of opposite polarity at the boundary between CSF 

and gray matter. Hence, neglecting the gray to white matter boundary introduces less error than 

omitting the conductivity jump between CSF to gray matter. It is however important to note that 

the size of the error introduced at the boundary always depends on the spatial profile of the 

sources. In any given situation, the estimated CSD is given by the summed profile shown here 

weighted by the source intensity at each depth. Hence, because the strength of the border artifact 

varies as a function of depth, its summed size will depend on the spatial source profile. Finally, 

for comparison, Panel 4-10D shows estimation assuming a homogeneous medium with a 

conductivity of 𝜎 = 0.3 𝑆/𝑚 (i.e. same conductivity everywhere). As expected, the result is an 

overlay of the boundary and intensity effects observed in Panel 4-10B and 4-10C. 
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4.4 Discussion 

The standard CSD estimation method has a long history in neurophysiology. However, in 

an experimental setting, discrete estimation of derivatives is afflicted with certain mathematical 

limitations. In particular, derivative estimation is an unstable operation which heavily amplifies 

noise. Moreover, the standard CSD estimator is insensitive to jumps in electrical conductivity 

such as those encountered at the transition between CSF and gray matter, or between gray and 

white matter. In addition, 1-D standard CSD estimation is based on an assumption of large lateral 

source extension, a situation which isn’t necessarily fulfilled in all experimental settings. In order 

to address some of these limitations, estimation methods based on inverse theory have been 

introduced (Pettersen et al., 2006, Potworowski et al., 2012, Kropf and Shmuel, 2016). However, 

these methods have mainly aimed at dealing with restricted source diameters and up to now the 

relationship between inverse estimators and the standard method have not been thoroughly 

studied. 

In this work, we have investigated the relationship between 1-D standard estimation and 

inverse CSD estimation in the presence of laterally extended sources. We have approached this 

by first showing that the 1-D Poisson equation can be transformed into an integral equation akin 

to the common inverse formulation. This novel formulation has allowed us to expand on 

Pettersen et al.’s findings by comparing the standard estimator to both the discrete (iCSD delta) 

and continuous inverse estimators. In particular, we found that the standard and inverse 

estimators converge to each other for lateral source cylinders of uniform density with a diameter 

exceeding ~2-5 mm. The range of this diameter dependence is mainly determined by the type 

and level of error considered. The smaller end of this range is found when looking at the 

discrepancies of the inner electrode delta estimators whereas the larger error reflects the 

discrepancy of the delta estimators at the edge electrodes. In the case of the continuous 

estimators, this range also denotes the region where the discrepancy between the InfPlane and 

UniCyl forward model drops considerably (Fig. 4-5). In line with these findings, we have also 

found that errors in the assumed source diameter affects estimation mainly at the edge electrodes, 

which can be explained by errors in the enforced boundary conditions. The interior electrode 

estimation was largely unaffected by errors in source diameter as long as the source diameter 

exceeds the large diameter threshold (~2-5 mm) mentioned above. This is explained by the fact 
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that sources far away from the electrode contribute approximately linear or constant functions to 

the measured potential. But as long as the diameter is large enough, linear and constant functions 

are in the nullspace of the estimator and thus do not contribute to the estimated CSD. 

Despite the development of the inverse estimators, the standard CSD method remains 

popular in the field. This might be due to the fact that it appears easier to use. However, here we 

have shown that this ease of use is largely illusory because all the parameters required for the 

inverse methods are implicitly contained in the standard estimator. In particular, the source 

diameter which is often difficult to estimate in an experimental setting has been shown to mainly 

affect the edge estimation as mentioned above. Hence, not only does the inverse estimator for the 

standard method (the InfPlane estimator) converge to the uniform cylinder estimator (UniCyl) at 

large diameters, but both these estimators are more stable under noisy experimental conditions 

than the 5-point standard estimator (Fig. 4-8). Thus, except slightly reduced computation time, 

there appears to be no particular advantage in using the standard estimator over inverse 

estimators. As we have shown here, in presence of laterally extended sources, the standard 

method is in fact equivalent to using the inverse methods but without the added benefits of 

continuous function estimation, flexibility in medium and boundary parameterization, and 

regularization. 

4.4.1 How likely are extended sources? 

The 1-D standard CSD estimation method has unquestionably contributed useful 

information about neural function as attested by the vast body of literature devoted to it (e.g. 

(Brette and Destexhe, 2012, Buzsaki et al., 2012)). It is thus interesting and important to ask 

about the reasons behind this success. One of the major assumption limiting its validity is the 

need for spatially extended sources. This is often interpreted as it being sensitive mainly to 

laterally extended dynamics. However, we have shown in our motivating example that CSD 

estimation is in fact sensitive to local dynamics as well. Moreover, we have shown that the 

estimation is quite insensitive to the real source diameter as long as the overall activation 

diameter exceeds ~2-5 mm. The success of the standard method could thus be explained by the 

fact that activation exceeding this threshold is the norm rather than the exception (see e.g. 

(Kajikawa and Schroeder, 2011)). Moreover, this view is in line with voltage sensitive dye 

recordings which show that sensory activation often leads to spatially extended waves of activity 
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within cortex even with spatially localized stimuli (see e.g. (Ferezou et al., 2006, Jin et al., 

2008)). This could thus possibly correspond to an overlay of a global activation superposed over 

a local activation as presented in our motivating example. 

4.4.2 Two- versus three-layered medium 

We have shown that in the case of cortical recordings, the CSD estimation errors 

introduced by omitting the conductivity difference between gray and white matter are small. In 

particular, assuming that the white matter is completely source free, the estimation errors are 

concentrated around the location of the boundary. The reason why this error is smaller than the 

one introduced by omitting the discontinuity in conductivity between CSF and gray matter is 

entirely based on the physics of the situation. The magnitude of the error is directly related to the 

size of the conductivity jump. Hence, the smaller difference between gray and white matter leads 

to a smaller induced source density at this boundary. In practice, we have found that this error 

along with the error introduced by omitting the CSF to gray matter conductivity discontinuity 

can even provide a useful cue in an experimental setting because it allows for an approximate 

localization of the gray matter. 
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5 Chapter 5: Discussion 

The aim of this thesis was to investigate the application and methods of estimating 

current-source density from 1-dimensional electric potential recordings. To do so, we first 

showed the usefulness of CSD estimation in the study of cortical processing by using the 

standard CSD approach to study orientation processing in cat cortical area 18 (Chapter 2). I then 

proceeded to an in-depth analysis of the 1-D CSD estimation problem in the context of linear 

inverse theory with a special emphasis on higher-order regularization to deal with the inevitable 

recording noise in experimental settings (Chapter 3). Finally, I extended the inverse formalism to 

the standard method to investigate the relationship between the two estimation frameworks in the 

presence of laterally extended sources (Chapter 4). In this last chapter, I will provide a short 

summary of the results followed by a discussion about the limitations of this work. I then 

conclude the thesis by proposing some future directions that could address some the discussed 

challenges. 

In Chapter 2 we demonstrated that laminar CSD estimation is a potent tool for 

investigating cortical processing. Using the standard CSD method, we were able to show for the 

first time that CSD is sensitive to the neuronal processing involved in signaling the orientation of 

grating stimuli. Through the comparison of CSD responses elicited by optimally and non-

optimally oriented grating stimuli, we found that excitatory activity is relayed from the input 

layer IV to the superficial layers II/III only in the optimal condition. This finding was replicated 

with lower contrast gratings suggesting that it was not a by-product of activation strength but 

rather intrinsically related to the processing of the stimulus. We thus proposed that the coupling 

between layer IV cells and layer II/III cells is functionally gated. To study the mechanisms 

governing this putative gate, we also investigated the CSD responses to a checkerboard stimulus 

and found that the sink extended to superficial layers in a similar manner as in the optimally 

oriented condition. Hence, we proposed that, in accordance with the study of Bosking et al., 

activity is only relayed to layer II/III when the feed-forward stream from layer IV is co-activated 

with a secondary stream (Bosking et al., 1997). In the case of cat area 18, this secondary stream 

could be generated by intra-cortical horizontal pathways and/or by signals from area 17. As 

discussed in Appendix A, both types of connections are known to preferably link neurons with 

matched orientation preference and could thus explain the orientation specificity observed in our 
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results. Moreover, this interpretation is consistent with the responses to checkerboard stimulus 

since a non-oriented stimulus is expected to evenly activate the cortical sheet and thus would also 

generate a sufficiently strong secondary stream to open the putative gate. Although this 

interpretation is consistent with the observed data, it is important to mention that it entirely 

depends on the assumption that standard 1-D CSD estimation is an appropriate tool in the context 

of laterally non-uniform cortical activation. This assumption was however far from trivial since 

the patchy cortical activation elicited by an oriented stimulus violates the in-plane homogeneity 

assumption underlying the standard CSD method. In order to address this potential limitation, we 

have validated the application of standard CSD to a full-field oriented stimulus on simulated 

data. In particular, we generated an orientation map similar to the one observed in cat area 18 and 

simulated a potential recording assuming an orientation-specific sink in superficial layers 

overlaid with a broadly amplitude-modulated dipolar activation of layer IV. We found that in 

such a situation, the standard CSD was appropriate and sufficiently sensitive to pick up the 

orientation selective component that we introduced in the simulated signal. We thus concluded 

that it was unlikely that the orientation-specific CSD responses observed in the experimental 

setting are artifacts of employing the standard CSD estimation method. 

Although we showed that the standard CSD method is useful in the study of cortical 

orientation processing, the direct derivative estimation procedure used in it does not optimally 

account for the inverse nature of CSD estimation. Therefore, we decided to conduct an in-depth 

analysis of the 1-D CSD estimation problem in the context of linear inverse theory with a special 

emphasis on higher-order regularization. In Chapter 3, we presented a 1-D CSD framework that 

unifies previous inverse methods (iCSD and kCSD) under a more general umbrella of function 

expansion methods. We added to that another expansion method which we called rCSD as well 

as a method based on quadrature (qCSD). We then supplemented these estimation schemes with 

various spectral regularization method to deal with the inevitable recording noise in experimental 

settings and tested them using a range of source diameters, noise levels and CSD depth profiles. 

We found that although the best estimation scheme is problem dependent, a reproducible ranking 

can be established by ordering the schemes according to the average source reconstruction error 

over all tested source diameters and noise levels. In addition to providing a ready-to-use toolbox 

for 1-D inverse CSD estimation, this study also extensively focused on the challenges and 
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stringent assumptions involved in solving the 1-D CSD inverse problem. This is an important but 

often underrepresented aspect in discussions about CSD estimation despite the fact that the 

difficulties and particularities of solving inverse problems are often confounding even to 

specialists (Wing and Zahrt, 1991). 

Although the framework presented in Chapter 3 successfully united all previously 

published inverse methods under a common formulation, it does not provide a clear connection 

between the standard and inverse estimation methods. We addressed this shortcoming in Chapter 

4 by comparing the standard and inverse CSD estimation with a focus on laterally extended 

sources. By expressing the standard method as an inverse problem using the Green’s function for 

the 1-D Poisson equation, we show that the two formulations converge to each other and could 

be considered similar for lateral source diameters exceeding ~2-5 mm. Moreover, we found that 

errors in the assumed source diameter affected estimation mainly at the edge electrodes, which 

can be attributed to errors in the enforced boundary conditions. In contrast, the interior electrode 

estimation was found to be largely unaffected by errors in source diameter as long as the lateral 

source diameter exceeds the large diameter threshold (~2-5 mm). Nevertheless, despite similar 

estimation at inner electrodes, the standard 5-point CSD estimation was found to be considerably 

less resistant to recording noise. We thus concluded that, with the exception of slightly reduced 

computation time, there appears to be no particular advantage in using the standard estimator 

over inverse estimators. 

5.1 Challenges and Limitations 

The validation of the regularization framework presented in Chapter 3 as well as its 

comparison with the standard CSD method (Chapter 4) have been performed on simulated data. 

This has the clear advantage of providing clear measures for evaluating the estimation accuracy 

and thus providing a well-controlled testing environment for the various estimation schemes. 

This is crucial since, as discussed in the previous section, inverse problems are extremely 

difficult to solve. However, it also means that certain particularities of dealing with experimental 

data are left unaddressed. It is thus important to discuss the practical issues and potential 

limitations that could be encountered when estimating CSD in an experimental context. 
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5.1.1 Dealing with multiple time points 

A first question arising when dealing with experimental data is how to deal with the 

temporal dimension of the data. In the context of volume conductor theory, the temporal and 

spatial dimensions are decoupled and thus CSD is estimated separately for each time point. This 

means that a regularization coefficient needs to be determined for every sample. But we have 

shown in Chapter 3 that the resolution of the estimation depends on the value of the 

regularization coefficient. Hence, the interpretation of the data will be complicated if automatic 

regularization parameter selection methods return markedly different values for different time 

points due to, for example, changes in the structure of the noise. There are essentially two ways 

in which this difficulty can be handled. First, instead of defining a regularization coefficient for 

every time point, one might choose a single one for the entire window of interest. This option is 

already included in the current version of the toolbox. Alternatively, it is possible to define the 

regularization problem in a two-dimensional way and include assumptions about the expected 

temporal dynamics of the signal. Especially if the data is oversampled as is usually the case, it 

would be perfectly reasonable to impose a temporal smoothness prior analogous to the spatial 

smoothness priors discussed in Chapter 3. 

It is important to note that the points raised above are not unique to dealing with 

multiple time points but are also encountered when comparing different stimulation conditions. 

For example, the discussed issues with point-wise automatic regularization coefficient selection 

would be encountered when using the inverse framework to reanalyze the data from Chapter 2. 

Since we compare the spatial extent along the cortical depth of particular CSD domains for 

different orientations and contrasts, it is crucial that the spatial resolution of the estimate remains 

comparable over conditions. However, the fixed resolution assumption would be violated if the 

regularization coefficient selection method returned different regularization parameters for 

different conditions. We would thus need to enforce constraints in the form mentioned above to 

deal with this data. 

5.1.2 Dealing with multiple trials 

Another commonly encountered question is whether it is preferable to average the 

potential over multiple trials and then estimate the CSD or to estimate the CSD for every trial 

and average the estimates. In the case of the standard CSD method this does not matter because 
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the estimation procedure is linear. But in the case of the inverse methods the order of operations 

is important because finding the regularization coefficient introduces a non-linear step. Only for 

a given regularization coefficient is the problem linear. So which of the two approaches should 

be preferred? 

An argument in support of both strategies can be made. The higher the noise, the more 

regularization will be required to stabilize the estimate. This means that the average of CSD 

estimates obtained from different trials will have a larger bias than if a single estimate is found 

from the averaged potential. This is simply due to the fact that averaging the potential over 𝑁 

trials reduces the noise amplitude by 1/√𝑁, if we assume that the noise is additive and has zero 

mean. On the other hand, for statistical purposes it might be interesting to have multiple CSD 

estimates to get a measure of the variance of the estimate. In this case, it would thus be necessary 

to avoid averaging the potential. In any case, the benefit of averaging the potential is also heavily 

dependent on the quality of the data. If the signal is already very clean it is clearly better to 

estimate every trial separately because only very little regularization will be required. 

5.1.3 Channel-Dependent and/or Non-White Noise 

The two last experimental challenges that I will discuss here are the potential variation 

of noise levels across channels and the possibly non-white distribution of noise. Due to the fact 

that thermal noise varies with the square root of the impedance, variations in the impedance 

across electrode contacts will lead to different noise levels on each of them (the thermal noise is 

~10 𝜇𝑉 for a contact with an impedance of 1 MΩ and a 10 kHz bandwidth). These variations 

will in turn introduce systematic errors in both the standard and the regularized CSD methods. 

There are again two ways to deal with this. 

One possibility is to equalize channel impedances prior to data acquisition through a 

process called electrode activation. With the commonly employed iridium electrodes, it is 

possible to form a hydrous oxide on the surface of the electrode by running a square-wave cyclic 

voltammetry protocol while the electrode is dipped into 0.3 𝑀 Na2HPO4 (Robblee et al., 

1983)(see also tech notes from NeuroNexus). This allows to reduce the channel impedance by 

increasing the surface area of the contact. By forming different thicknesses of hydrous oxide on 

each electrode contact, their impedances can be equalized. This approach also has the side 

benefit that activation increases the charge capacity of the electrode. Hence, if micro-stimulation 
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or electrolytic lesioning is performed during the experiment, higher levels of current can be 

delivered without damaging the electrode. 

Another possibility is to account for the different noise levels during regularization. We 

will discuss it in the larger context of how non-white noise affects CSD estimation because the 

solution is the same in both cases. But in order to answer this question, we first need to define 

what we consider noise and where a potential non-white component could originate from. 

So far, we have only considered the thermal electrode noise which is usually modelled 

as Gaussian white noise because it results from the random motion of charge carriers in a 

conductor (Barry et al., 2004). However, neural recordings are also contaminated by line noise 

and mostly non-white physiological noise such as heart beat artifacts, motion induced by 

breathing, temporal variations in temperature and blood flow, and many more. Most of these 

noise sources generate predominantly low frequency noise. This is problematic for regularized 

CSD estimation because spectral regularization dampens the contribution of the small singular 

values associated with rapidly oscillating (i.e. high spatial frequency) singular vectors. In other 

words, low frequency noise is harder to eliminate because it resembles a valid representation of 

the potential and thus affects estimation accuracy more heavily. A possible way to deal with non-

white noise is to prewhiten the data by premultiplying both the potential and the forward matrix 

with the transposed inverse of the Cholesky factorization of the covariance matrix of the noise 

(Hansen and Society for Industrial and Applied Mathematics., 2010). This is however not as 

straightforward as it sounds because it is often quite difficult to get a good estimation of the 

covariance matrix of the noise. The only exception is when we are confronted with white noise 

with channel-dependent amplitude as discussed above. In this situation, the inverse covariance 

matrix is simply a diagonal matrix with the reciprocal of the channel-specific noise variance as 

entries. Hence, the whole prewhitening process is simply rescaling the problem with the 

reciprocal of the noise variance. Finally, it is important to note that prewhitening does not lower 

the obtainable error but only creates a problem with a flat spectrum (Hansen and Society for 

Industrial and Applied Mathematics., 2010). But this is still useful because it has the advantage 

of making the problem more accessible to regularization parameter selection method based on 

the assumption of white noise (e.g. NCP or GCV). 
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5.1.4 Open Challenges 

Up to this point, I have only discussed practical challenges for which possible solutions are 

known. There are however also important open questions which can significantly influence the 

validity of current CSD estimation methods. In this section I will focus on three of them: the 

accuracy of the volume conductor model, the accuracy of the forward model parameters, and the 

general validity of one-dimensional CSD estimation. However, since these have already been 

discussed in detail in the discussion of Chapter 3, I will only provide a short summary here and 

move on to propose potential future work that could address these issues. 

The most significant challenge to the work presented in this thesis clearly is the question 

about the validity of the volume conductor model. As already discussed in the introduction, we 

have assumed throughout the thesis that the neural tissue can be modelled as purely resistive 

with piece-wise constant electrical conductivity. This is equivalent to considering the flow of 

ions in tissue akin to the flow of electrons in a metal. As a consequence, this model dictates that 

any active sink or source instantly generates a compensatory return current that assures that the 

total sources are always balanced (i.e. the sum of all sinks and sources is zero). This view has 

however recently been challenged on experimental grounds by Riera et al. who found monopolar 

components in current-source density in response to sensory stimulation (Riera et al., 2012). 

Similar results have been reported by Wagner et al. based on modelling studies where they found 

non-ohmic effects influencing the propagation of neurostimulation fields in the brain (Wagner et 

al., 2014). Finally, based on mean-field approximations to Maxwell’s equations, Bedard and 

Destexhe have proposed that ionic diffusion (a non-ohmic effect) could significantly affect 

current flow in the brain, a view for which they have also provided interesting experimental 

evidence (Bedard and Destexhe, 2009, 2011, Destexhe and Bedard, 2012, Bedard and Destexhe, 

2013, Gomes et al., 2016). These findings could have major implications for all source 

estimation methods because incorporating non-ohmic effects would significantly alter the 

problem formulation. In particular, it would not be possible anymore to decouple the spatial and 

temporal dimensions and it might become preferable to estimate sources in frequency space 

instead. 

The second major open question is the extent to which errors in forward model parameters 

affect CSD estimation. We have shown in Chapter 3 that already for different spatial CSD 
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profiles, the optimal estimation methods can vary even when matched forward and inverse model 

parameters are used. Hence, at the moment we can only guess how errors in the forward model, 

e.g. error in electrode placement, change in the lateral distribution of sources, or errors in the 

source diameter, affect estimation accuracy and which estimation scheme is most stable under 

such perturbations. This problem is particularly difficult to address because the error sources 

potentially affect each other and the errors are also likely to be state dependent. We have already 

shown some state-dependency of the error in Chapter 4 where we found that an error in lateral 

source diameter is increasingly problematic the smaller the true diameter is. Hence, assuming 

that the current resistive forward model is found to be correct, it is still a complicated task to 

quantify the sensitivity of regularized CSD estimation to errors in the forward model parameters. 

The last open question that I will discuss here is the general applicability of 1-D CSD 

estimation. To my knowledge, it has never been experimentally verified that either the Gaussian 

or the Uniform Cylindrical lateral source profiles are valid approximations to the general source 

distributions in experimental conditions. It has only been shown that the 1-D standard CSD 

formulation is appropriate in the presence of laterally extended sources (Mitzdorf, 1985). 

Moreover, we have shown in Chapter 4 that the standard CSD and the inverse models converge 

to each other at diameters exceeding ~2-5 mm. But it remains to be shown that the 

dimensionality reduction from a 3-D to a 1-D forward model using a cylinder or Gaussian of 

fixed lateral extent faithfully represents the sources in an experimental setting. 

5.2 Future work 

In this last section, I will now outline potential future approaches to deal with the three 

major open points raised in the previous section, namely testing the accuracy of the volume 

conductor model, addressing the sensitivity of CSD estimation to errors in the forward model 

parameters, and assessing the applicability of 1-D CSD estimation. 

A particular challenge in finding the correct volume conductor model is that 

determining the impedance of the medium is heavily dependent on the interface between the 

tissue and the recording electrode (Logothetis et al., 2007, Gomes et al., 2016). In fact, Bedard 

and Destexhe have shown that it might be possible to account for the discrepancies in findings 

about brain tissue impedance only by looking at the method with which the recordings were done 

(Bedard and Destexhe, 2009). In particular, it is highly probable that the non-ohmic nature of the 
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extracellular medium only becomes apparent under physiological neuronal activation (Gomes et 

al., 2016). Hence, I propose as a potential future project that it might be possible to test the 

importance of non-ohmic effects for current-source density estimation by combining optogenetic 

neural stimulation with voltage-sensitive dye recordings. In particular, I propose to insert a 

tapered optical fiber into neural tissue while recording extracellular potential with an electrode 

and membrane potential using voltage sensitive dyes. This setup would have the advantage of 

preserving the cellular integrity while eliciting physiologically relevant membrane currents 

through the activation of light-sensitive ionic channels. Moreover, such an experiment could be 

conducted in both in vitro and in vivo conditions. Since it has been shown that voltage-sensitive 

dye activity is well correlated with membrane potential fluctuations, its recording would provide 

a meaningful measure of the trans-membrane potential generated in response to optical 

stimulation (Ferezou et al., 2006). By comparing the optically induced trans-membrane voltage 

changes with the extracellularly measured potential, we could then estimate the filtering 

properties of the extracellular space and possibly uncover non-ohmic effects. 

To address the second open challenge, I propose to evaluate the sensitivity of CSD 

estimation to errors in the forward model parameters using a Bayesian framework. Such an 

approach would have the advantage of allowing an easy incorporation of priors on the form of 

the forward model into the estimation process. Moreover, given a set of noisy data and priors on 

the form of the CSD depth profile, a Bayesian framework would also provide the likelihood of 

different forward models. Hence, this formulation would be ideally suited to evaluate the 

sensitivity of the estimation to the forward model parameters. Also, expressing CSD estimation 

in this form would not even require extensive effort because the mathematical formulation of 

inverse theory in a Bayesian framework has already been well developed (see e.g. (Tarantola, 

2005)). 

Lastly, I propose that the applicability of 1-D CSD estimation could be tested by 

comparing it directly to 3-D estimation. Recently, Riera et al. have published a set of technically 

impressive results using novel 3-D multi-shank electrode arrays (Riera et al., 2014). This novel 

technology now makes it possible to experimentally verify some of the assumptions behind 1-D 

CSD estimation. In particular, by comparing the volumetric CSD obtained from a 3-D recording 



147 

 

with the 1-D estimations from the individual electrode shanks, it should be possible to find the 

best fitting lateral source parameterization to use in the 1-D forward model. 

In conclusion, although 1-D CSD estimation has clearly provided valuable contributions 

to the study of neural processing, there remains important open question to be addressed. In this 

thesis, I have laid the ground work to address some of these issues and it is my hope that through 

the potential future work outlined here CSD estimation can be established on even firmer ground. 
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Appendices 

A. Anatomical and functional properties of cat primary visual cortex  

In this section, I summarize the anatomical and functional information of the projections 

from the retinal ganglion cells up to primary visual cortex in the cat. It includes the projection 

profile from both area 17 and 18 to higher order areas but does not include information on 

projections from higher to lower order areas. 

From retina to cortex 

The cat retina contains three major classes of retinal ganglion cells: α, β, γ, which are 

found in different relative abundances and give rise to three distinct streams of projection to the 

cortex. The α cells are the source of the Y-pathway. They account for only 5% of the total 

number of retinal ganglion cells. The β cells are the most abundant sub-type of retinal ganglion 

cells (55%) and they give rise to the X-pathway. Together, the X- and Y-pathway form the most 

reliable visually driven input to cortex. The remaining 40% of retinal ganglion cells are of 

diverse subtype but they are generally grouped under the umbrella term γ. They form the basis of 

the W-pathway whose function in visual processing is only poorly studied because they respond 

inconsistently to visual stimulation. 

The X- and Y-pathway can also be distinguished on functional grounds. Due to their 

smaller receptive fields, β-cells are more selective to higher spatial frequencies (Payne and 

Peters, 2002). They also respond briskly to visual stimulation; they respond preferably to low 

temporal frequencies and are highly sensitive to contrast at mid-range spatial frequencies (Payne 

and Peters, 2002). In contrast, the Y-pathway responds preferably to low spatial but high 

temporal frequencies and is sensitive to contrast at those lower frequencies (Payne and Peters, 

2002). By virtue of their non-linear sub-units, α-cells also respond to high spatial frequencies, 

but because of their large receptive-fields their sensitivity is associated with low spatial 

resolution (Payne and Peters, 2002). Under high contrast conditions, α-cells generate the 

dominant signal up to the limit of α-cell acuity (Payne and Peters, 2002). For low contrast 

stimuli, both α- and β-cells signal contrast to the brain and the Y and X cells are equally sensitive 

to their preferred spatial and temporal frequencies (Payne and Peters, 2002). However, β cells are 
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much more abundant which confers a clear advantage to the X-system in signaling contrast to the 

brain even at low temporal and spatial frequencies (Payne and Peters, 2002). 

From the retina, the major part of the connections project to the lateral geniculate nucleus 

(LGN) although part of the connections also innervates other sub-thalamic regions such as the 

medial interlaminar nucleus (MIN), the claustrum, the pulvinar and the superior colliculus. 

Before reaching the LGN, the fibers originating in the nasal part of the retina of both eyes 

cross the midline in order to provide innervations solely from the contralateral visual field. 

Although the LGN receives input from both eyes, the input from each eye remains segregated in 

different layers (Payne and Peters, 2002). Figure A-1 shows the laminar pattern of the retinal 

input to both the LGN and the MIN.  

As mentioned previously, we are mainly interested in the X- and Y-pathway because they 

provide the most reliable visually driven input to the cortex. Before continuing to describe the 

Figure A-1: View of the Lateral Geniculate nucleus and the adjacent MIN. The three parvocellular layers have been 

combined to a single one labeled CP and layer CM is equivalent to layer C1. Angles a and e stand for azimuth and 

elevation angles in the visual field respectively. OT = optic tract (retina to LGN), OR = optic radiation (LGN to cortex), C 

= caudal, R = rostral, M = medial, L = lateral. Adopted from (Payne and Peters, 2002) 
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innervations of area 17 and 18, there are a few interesting details that should be noted: 1) X-

fibers only innervate layer A and A1 of the LGN. This means that the only X-input to cortex 

from the contralateral eye comes from the layer A of the LGN, which has been used to study the 

effect of the X-pathway on cortical responses. 2) X-fibers only innervate a single layer in the 

LGN while single Y-fibers may innervate both cells in layer CM and in layer A. This amplifies 

the effect of the Y-pathway even though the α-cells are less abundant in the retina. 

The LGN forms the most important relay of visual information between the retina and 

cortex. While Y-fibers innervate both area 17 and 18, X-fibers project only to area 17. As shown 

in Figure A-2, W-fibers also innervate area 17 and 18 as well as higher-order visual areas. 

Additionally, some Y-fibers from the MIN project to area 19 (Payne and Peters, 2002). Y-cells 

from layers A and A1 of the LGN probably innervate both area 17 and 18 through collateral 

branches while Y-cells from layer C probably innervate only area 18 (Payne and Peters, 2002). 

Based on latency and current-source density studies, Mitzdorf proposed that there are 

three functionally distinct Y-pathways that project to the primary visual cortex (Mitzdorf, 1985). 

The one with the fastest conducting fibers innervates only area 18. A slower conducting pathway 

Figure A-2: Projections from LGN to cortex separated according to the different pathways. Adopted from (Payne and 

Peters, 2002) 



167 

 

would preferably innervate area 17. Finally, a third also fast conducting pathway would 

innervate both area 17 and 18 but would exclusively target inhibitory neurons. The latter 

pathway is particularly interesting because it has been shown in vitro that fast-spiking inhibitory 

neurons play an important role in the generation of the cortical gamma oscillations (Cardin et al., 

2009). 

Within cortex 

The pathway origin of innervation is mostly preserved in area 17 where the X-fibers 

preferably terminate in the lower part of layer 4, also called layer 4B, and the Y-fibers terminate 

in the upper part called layer 4A. This distinction is absent in area 18 since only Y-fibers 

innervate it. Therefore, layer 4 in area 17 shows a bilaminar structure while layer 4 in area 18 is 

unilaminar. In both areas, a portion of the LGN-projections terminate in layer 6A, but the layer 6 

innervation is much more pronounced in area 17 probably due to a large innervation by X-fibers. 

However, even in area 17 the proportion of layer 4 and layer 6 innervation is in a ratio of 9:1 

(Payne and Peters, 2002). Figure A-3 and Figure A-4 show a summary of the projections from 

the retina to the LGN and from the LGN to area 17. The projections to area 18 are similar except 

that the X-projections are replaced by Y. In addition, it has been shown recently that W-cells 

innervate mostly layer 1, 2/3 and 5 in area 17 (Anderson et al., 2009). 

Figure A-3: Parallel projections emanating from cat LGN. Top-down is the proportions of cells found as a function of 

depth in the layer. Left-right shows the proportions as a function of eccentricity in the visual field with left being the most 

eccentric and right being the area centralis. We see that layer A and A1 have a bias towards a larger proportion of X cells 

near the area centralis. Adopted from (Alonso, 2002) 
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Primary visual cortex is the first processing step where the visual input from both eyes is 

combined. The termination fields from fibers of the two eyes form interdigitated patterns, which 

gives rise to ocular dominance columns. In contrast to the monkey visual cortex, the ocular 

dominance columns are more diffuse in the cat. This is mainly due to the fact that innervations of 

the contralateral eye are spread out to a larger extent (Payne and Peters, 2002). 

The connection profile within the areas is quite complicated and would necessitate the 

discussion of the structure of each lamina. Therefore, I will only describe the general pattern here 

(see Figure A-5 for details). A more detailed description can be found in (White and Keller, 

1989, Payne and Peters, 2002, Binzegger et al., 2004). 

Most of the data on intra-areal connectivity comes from anatomical studies on area 17. 

Due to the proposed similarity between area 17 and 18 and because of the lack of information, 

we can only assume a similar structure of intra-areal connections for both areas. The right panel 

of Figure A-5 shows the intrinsic circuitry of spiny cells in area 17. Spiny cells are different from 

smooth cells in that the former are excitatory (glutamergic) and the latter inhibitory 

(GABAergic) (White and Keller, 1989). There are two major classes of spiny cells: the spiny 

stellate and the pyramidal neurons, which are distinguished by the absence (existence) of a 

pronounced apical dendrite respectively. This distinction is of importance in our case because it 

Figure A-4: Feed-forward projections from LGN to area 17. For simplicity the projections of certain X-cells to the entire 

layer 4 are omitted. Additionally, the graphics does not take into account the strength of the connections, e.g. the 

projection of X-cells to layer 4 is 9 times stronger than to layer 6. Top-down is the vertical extent of the projection in 

cortex, e.g. X-cells project to the bottom of layer 4. Left-right corresponds to the lateral spread of the projection. Finally, 

it has to be considered that the projections of the W pathway are based on relatively sparse data. Adopted from (Alonso, 

2002) 
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affects the laminar localization of extracellularly measured potentials. Spiny stellates are mainly 

found in layer 4 where they form the main target of the LGN innervations to cortex. From layer 

4, axonal projections go to both supragranular (layer 2/3) and infragranular (layers 5 and 6) 

layers. As shown in Figure A-5, the visual signal is then further processed within the area and 

also sent to other sub-cortical and cortical targets. 

Although it is of great interest to consider the projection profile in order to explore the 

possible pathways of signal flow, this approach is limited by the fact that simply knowing the 

projection profile does not reflect the relative strength of these projections because the number of 

synaptic contacts might be very different for different projections. Binzegger et al. addressed this 

problem by making the assumption that the probability that a given neuron i makes a synapse 

with another neuron j in a given layer is proportional to amount of axonal membrane of neuron i 

and dendritic membrane of neuron j in this layer (Binzegger et al., 2004). This allowed them to 

come up with a graph of the intra-areal connections in cat area 17 and their respective weights. A 

major finding of their study was that the whole map of intra-areal cortical circuits is 

Figure A-5: Innervation profile of area 18 and 17 (Panel A and B respectively) along with the intrinsic circuitry of area 17 

(Panel C). Adopted from (Payne and Peters, 2002) 
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characterized by “very few ‘strong’ but many ‘weak’ excitatory projections, each of which may 

involve only a few percentage of the total complement of excitatory synapses of a single neuron” 

(Binzegger et al., 2004). Until now, this is one of the most if not the most complete investigation 

of intra-areal anatomical connections conducted. Figure A-6 shows a modified version of the 

intra-areal circuit model omitting contributions from layer 1. The left column corresponds to 

excitatory populations and the right one to inhibitory populations within the specified layers, 

while the width of the arrows shows the connection strength. The connection strength is 

specified as the fraction of the total number of synapses formed by a given connection type. I.e. 

connections among the left column only involve synapses between excitatory cell pairs (there is 

an estimated total of 13.6·1010 synapses between excitatory cells in cat area 17). On the other 

hand, the width of the arrows which go from the left to the right column represent the proportion 

of synapses between excitatory and inhibitory cell pairs (there is an estimated total of 2.1·1010 

synapses between excitatory and inhibitory cell pairs). In other words, the size of the arrows is 

not given as a percentage of the total number of synapses but only as a proportion of the 

synapses formed between the different cell types, i.e. excitatory-excitatory (within the left 

column), excitatory-inhibitory (from left to right), inhibitory-excitatory (from right to left) and 

inhibitory-inhibitory cell pairs (within the right column). 

Finally, after considering the connections that lead to area 17 and 18 as well as the intra-

areal circuitry, I will now discuss the connections between these two areas. It has been proposed 

that cortical neurons receive 3,000–10,000 synaptic inputs, of which 85% are excitatory. Nearly 

half of the excitatory input to any one neuron comes from nearby neurons that fall within a 100–

200 um radius cylinder, arranged as a column. The remaining half can be traced mainly to a local 

network of horizontal connections originating in the nearby cortex, leaving a minority of inputs 

from more remote cortical and subcortical structures (Shadlen and Movshon, 1999). In fact, it 

has been proposed that thalamo-cortical projections only account for 5% of the total synapses of 

layer 4 (Payne and Peters, 2002). However, the number of synapses cannot necessarily be used 

as an indicator of the importance of the projection because it may diverge from the strength of 

the synapses. It is quite likely that the thalamo-cortical synapse is more potent than others and 

the same might be true for cortico-cortical projections. 
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The major projection from area 17 to area 18 originates in the supragranular layers 2/3 of 

area 17 and terminates in the supragranular layer 2/3 and infragranular layers 5 and 6 of area 18 

(Symonds and Rosenquist, 1984, Price and Zumbroich, 1989). Additionally, sparse projections 

from spiny stellates located in top of layer 4 and from neurons in layer 5 of area 17 have also 

been found to project to area 18 (Meyer and Albus, 1981, Einstein and Fitzpatrick, 1991). 

However, no mention of the termination field was made. Conversely, there are two main 

projections from area 18 to area 17: First, there is a projection from supragranular layer 2/3 of 

area 18 to supragranular layer 2/3 of area 17 (Symonds and Rosenquist, 1984, Martinez-Conde et 

al., 1999). However, it is not well studied whether these projections also send collaterals to 

Figure A-6: Model of intra-areal projections using one excitatory and one inhibitory population per layer. This scheme 

forms the basis of the projected anatomical connection strength between populations. A shows the full model of the 

connections. B shows only the connections which contain more than 3% of the total number of synapses of the given 

connection type. This last rule was not applied to the connections from the thalamus to cortex which account for only 

0.8% of the connections to excitatory cells and 0.7% of the connections to inhibitory cells. Adapted from (Binzegger et al., 

2004, Sotero et al., 2010) 
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layers 5 and 6 in area 17 (Martinez-Conde et al., 1999). Secondly, there is a projection 

originating in infragranular layers 5 and 6 of area 18 and terminating in infragranular layers 5 

and 6 of area 17 (Symonds and Rosenquist, 1984). It has also been suggested that many 

projections from area 18 to area 17 terminate in the top of layer 4 (Salin and Bullier, 1995). 

Finally, it is generally suggested that cortico-cortical connections in early sensory areas mainly 

originate from layer 3 while cortical-subcortical projections usually originate in layer 5 and 6 

(Thomson et al., 2002). For example, projections from both area 17 and 18 to LGN originate in 

layer 6 and they are generally reciprocal connections (Payne and Peters, 2002). 

Figure A-7 shows a summary of the laminar origin of inter-areal projections originating 

from area 17 and 18. The thickness of the arrows shows the relative weight of a projection to a 

Figure A-7: Laminar origin of cortico-cortical projections in the cat. For further clarity, the extent of the projection 

originating in each layer is shown in histogram form in the lower part of the figure. Adopted from (Symonds and 

Rosenquist, 1984) 
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given area compared to the total strength of the projection to that area. For example, we see that 

the projection from area 18 to area 17 is quite evenly distributed in origin from layer 2/3 and 

from layer 5 and 6. The histogram below shows again the weight of the projection but in bar 

form. 

On functional grounds, it is interesting to note that cortico-cortical projections between 

areas 17 and 18 are strong enough to drive each other without LGN input to one of these areas. 

By destroying layer A of the LGN which provides the only X-input from the contralateral eye, 

Malpeli et al. showed that activity in the superficial layers of area 17 could only be silenced if 

area 18 was inactivated simultaneously with the LGN (Payne and Peters, 2002). This indicates 

that connections between area 17 and 18 could potentially play an important role in the shaping 

of their mutual response. However, studies which inactivated either supragranular or 

infragranular layers of area 18 failed to see a consistent effect on area 17 responses (Alonso et 

al., 1993a, b, Martinez-Conde et al., 1999).  

The projections between area 17 and 18 have also been shown to preferably connect 

regions of similar retinotopy and similar orientation preference (Gilbert and Wiesel, 1989, Salin 

et al., 1995). In fact, the connections from area 17 to 18 originating from a given point diverge to 

connect a wider region in area 18, while also receiving converging connections from the same 

region. This may sound a little obscure but it should be clarified in Figure A-8. We can see that a 

point in area 17 (A17) sends diverging projections to a wider region in area 18. This same region 

in area 18 in turn sends converging projections to this point in area 17 (this is also true for area 

Figure A-8: Reciprocity of projections between area 17 and 18. A point in area 17 sends diverging projections to a wider 

region in area 18 and also receives converging projections from the same region. The same is true for a point in area 18. 

Adopted from (Salin et al., 1995) 
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18). Therefore, area 17 and 18 are reciprocally connected. The extent of the divergence was 

found to be about 6 mm with no significant laminar difference (Salin et al., 1995). 
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B. Potential in a three-layered volume conductor 

Here we provide the equations for approximating the potential for the nine possible 

combinations of source and electrode locations in a 3-layered medium. The notation is the same 

as previously: namely 𝜎𝑡, 𝜎𝑒, and 𝜎𝑏 are the top, middle and bottom conductivities respectively. 

The electrode and source positions are given by 𝑧𝑒 and 𝑧𝑠. Moreover, we set 𝑧 = 0 in the middle 

of the middle layer which we assume has a thickness D. The top medium is thus located at 𝑧 <

−𝑎 and the bottom medium at 𝑧 > 𝑎 with 𝑎 = 𝐷/2. To facilitate the notation we also use 

𝐿12 =
𝜎𝑡 − 𝜎𝑒
𝜎𝑡 + 𝜎𝑒

      𝑎𝑛𝑑       𝐿32 =
𝜎𝑏 − 𝜎𝑒
𝜎𝑏 + 𝜎𝑒

 

1. Source in the top layer ( 𝑧𝑠 < −𝑎): 

1.1. Electrode in the top layer (𝑧𝑒 < −𝑎): 

𝐾 =
1

𝜎𝑡
(𝜑(𝑧𝑒, 𝑧𝑠) + 𝐿12𝜑(𝑧𝑒, −𝑧𝑠 − 𝐷) −

4𝜎𝑡𝜎𝑒
(𝜎𝑡 + 𝜎𝑒)

2
∑(𝐿12𝐿32)

𝑛𝜑(𝑧𝑒, 𝑧𝑠 + 2𝐷𝑛 + 𝐷)

𝑁

𝑛=0

) 

1.2. Electrode in the middle layer (−𝑎 ≤ 𝑧𝑒 ≤ 𝑎): 

𝐾 =
2

𝜎𝑡 + 𝜎𝑒
(𝜑(𝑧𝑒, 𝑧𝑠) − 𝐿32𝜑(𝑧𝑒, −𝑧𝑠 + 𝐷)

+∑(𝐿12𝐿32)
𝑛(𝜑(𝑧𝑒, 𝑧𝑠 − 2𝐷𝑛) − 𝐿32𝜑(𝑧𝑒, −𝑧𝑠 + 2𝐷𝑛 + 𝐷))

𝑁

𝑛=1

) 

1.3. Electrode in the bottom layer (𝑧𝑒 > 𝑎): 

𝐾 =
4𝜎𝑒

(𝜎𝑏 + 𝜎𝑒)(𝜎𝑡 + 𝜎𝑒)
(𝜑(𝑧𝑒 , 𝑧𝑠) +∑(𝐿12𝐿32)

𝑛𝜑(𝑧𝑒 , 𝑧𝑠 − 2𝐷𝑛)

𝑁

𝑛=1

) 

2. Source in the middle layer (−𝑎 ≤ 𝑧𝑠 ≤ 𝑎): 

2.1. Electrode in the top layer (𝑧𝑒 < −𝑎): 

𝐾 =
2

𝜎𝑡 + 𝜎𝑒
(𝜑(𝑧𝑒, 𝑧𝑠) − 𝐿32𝜑(𝑧𝑒, −𝑧𝑠 + 𝐷)

+∑(𝐿12𝐿32)
𝑛(𝜑(𝑧𝑒, 𝑧𝑠 + 2𝐷𝑛) − 𝐿32𝜑(𝑧𝑒, −𝑧𝑠 + 2𝐷𝑛 + 𝐷))

𝑁

𝑛=1

) 
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2.2. Electrode in the middle layer (−𝑎 ≤ 𝑧𝑒 ≤ 𝑎): 

𝐾 =
1

𝜎𝑒
(𝜑(𝑧𝑒, 𝑧𝑠) −∑(𝐿12𝐿32)

𝑛(𝐿12𝜑(𝑧𝑒, −𝑧𝑠 − 2𝐷𝑛 − 𝐷) + 𝐿32𝜑(𝑧𝑒 , −𝑧𝑠 + 2𝐷𝑛 + 𝐷))

𝑁

𝑛=0

+∑(𝐿12𝐿32)
𝑛(𝜑(𝑧𝑒, 𝑧𝑠 + 2𝐷𝑛) + 𝜑(𝑧𝑒, 𝑧𝑠 − 2𝐷𝑛))

𝑁

𝑛=1

) 

2.3. Electrode in the bottom layer (𝑧𝑒 > 𝑎): 

𝐾 =
2

𝜎𝑒 + 𝜎𝑏
(𝜑(𝑧𝑒, 𝑧𝑠) − 𝐿12𝜑(𝑧𝑒, −𝑧𝑠 − 𝐷)

+∑(𝐿12𝐿32)
𝑛(𝜑(𝑧𝑒 , 𝑧𝑠 + 2𝐷𝑛) − 𝐿12𝜑(𝑧𝑒 , −𝑧𝑠 − 2𝐷𝑛 − 𝐷))

𝑁

𝑛=1

) 

 

3. Source in the bottom layer (𝑧𝑠 > 𝑎): 

3.1. Electrode in the top layer (𝑧𝑒 < −𝑎): 

𝐾 =
4𝜎𝑒

(𝜎𝑡 + 𝜎𝑒)(𝜎𝑏 + 𝜎𝑒)
(𝜑(𝑧𝑒 , 𝑧𝑠) +∑(𝐿12𝐿32)

𝑛𝜑(𝑧𝑒 , 𝑧𝑠 + 2𝐷𝑛)

𝑁

𝑛=1

) 

3.2. Electrode in the middle layer (−𝑎 ≤ 𝑧𝑒 ≤ 𝑎): 

𝐾 =
2

𝜎𝑒 + 𝜎𝑏
(𝜑(𝑧𝑒, 𝑧𝑠) − 𝐿12𝜑(𝑧𝑒, −𝑧𝑠 − 𝐷)

+∑(𝐿12𝐿32)
𝑛(𝜑(𝑧𝑒 , 𝑧𝑠 + 2𝐷𝑛) − 𝐿12𝜑(𝑧𝑒 , −𝑧𝑠 − 2𝐷𝑛 − 𝐷))

𝑁

𝑛=1

) 

3.3. Electrode in the bottom layer (𝑧𝑒 > 𝑎): 

𝐾 =
1

𝜎𝑏
(𝜑(𝑧𝑒, 𝑧𝑠) + 𝐿32𝜑(𝑧𝑒, −𝑧𝑠 + 𝐷) −

4𝜎𝑏𝜎𝑒
(𝜎𝑏 + 𝜎𝑒)

2
∑(𝐿12𝐿32)

𝑛𝜑(𝑧𝑒, −𝑧𝑠 − 2𝐷𝑛 − 𝐷)

𝑁

𝑛=0

) 

                                                                                                                                                

 


