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ABSTRACT
P

Planetary scale stationary disturbances in the winter
stratosphere are investigated by mecans of two distinct quasi-
geostrophic models. The steady state distribution of small
amplitude perturbations superimposcd on a zonal wind distri- '
*bution are computed. A realistic paramcterization of infrared
cooling showed that radiational cffects arc a major sink of

perturbation wave encrgy in the upper atmosphere. The effecct of

artificial uppex and equatorial boupdary conditions on the

. computed wave structurc was investigated., In addition, the

non-linear intcractions betwcen stationary zonal wave numbers
one and two was found to have a marked effect on the®structure

of the former. When these interactions were included, the
e . .
resultant wave Structurc reproduced almost all the major features

found in the corresponding -observed state.
The modification of the artificial boundary conditions,

the realistic parameterization .of infrared cooling and the
. . ' M S . A - . ‘ '
inclusion of the non-linear terms considerably improve the
. » .
modeling of the stationary long waves over previous linear studies

.

on the subject. ‘
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RESUME

o

Les perturbations stationnaires & grande &échelle

obscrvées dans la stratosphérc cn hiver sont &tudiées a 1'aide

de deux moddles quasi-géostrophiques. Une version linearizée

de "chacun des mgdéles présumant un vent zonal donné est utilisée
pour calculer la structure des perturbations. 11 est démontré
que le rcfroidissgmﬁnt par rayonnement infrarouge joue-un

réle important dans le bilan energétique des perturbations 4

hautc altitude. ' L'effet des conditions aux limites imposées
- x

.

d 1'8quatcur et au sommet des modéles ‘ebt étudié. Le calcul

des interactions cntre les dcux harmoniques zonales les plus
o © A R .

longues démontre que les effets non-lindairds sont importants.

Les modélres qui contiennent ces interactions reproduisent

¢

Presque toutes les caractéristiques importantes des perturbations

t

telles qu'observées. : : .

+

La modification des conditions aux limites, une para-

méterization plus précise du refroidissement par rayonnement
. /‘\

infrarouge et 1'inclusion d'effets non-linéaires améliorent con-

sidérablement la qualité des modéles utilisés pour 1'étude des

perturbations stratosphériques stationnaires. : ’

X
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Quasi-stationary disturbances of planetary scalc arc
noted in the upper atmosphere during the winter months. These
disturbances arc generally considered to be upward ﬁropagating
Rossby waves forced from the troposphere. These forced per-
turbations can be produced mechanically by the action of mduntains
on the zonal flow and thermally by differential heating over
the contincnts and occans.

These disturbances have been investigated thcoretically
by several researchers. Charﬁey and Drazin (19615 made a
thorough analysis of the vertical propagation of small amplitudce
disturbances supcerimposed:on a horizontally uniform basic flow
on the fg'—p]anc. They found that wave energy propagates ver-
tically only if the ambient air motion is westerly and small.

As well, they demonstrated that the incroase'of the mean zonal
flow with hcight can give rise to chergy trapping (reflection).
The influence of the horizontal wind shear on the ve?tic§1/

propagation of planetary waves was studied by Dickins /(1968).

He was- able to show that planetéry wave energy shoxdld be absorbed

at a line of zero zonal velocity.’ "
7

Matsuno (1970) studied the vertjial structure of thesc

stationary disturbances by means of a Jinear quasi-geostrophic

model which allowed for the full wyériation of the Coriqlis .,

e

' ¥
parameter and a reasonably redlistic basic zonal wind profile..

He considered a winter-time situation and found that the zonal
wind distréﬁgﬁign/ﬁés conducive to strong upward transfer of

e ' -
/ N



J ~

" wave encfgy at high latitudes in the lower stratospherc. His
.computed wave structure in the meridional plane exhibited
cssent%al s;mi]arity to the corresponding ohscrved state in

the stratospherc. He concluded that the quasi-stationary
planctary scalé-distt bances in” the stratospherce are upward
extensions of those Alriven in the tropospherc. However, the
Computed wave structurc had ;ome notable defects. Particularly,
the gompufed amplitude distribution for wave number 1 was larger
t?an the observed state. At the same time, the computed "
amplitude distribution for wave number 2 could not achicve
enough amplitude. Ma tsuno postulated that the shortcomings

of his model could be duc to the ncpglect of the non-1linear

terms. *

Theinain purpose of the present study is -to investigate
the effect of the non-lincar terms on the computed wave structure
ﬂand/to sce if Matsuno's hypothesis was correct.. Two qﬁasi~

geostréphic modcls are uscd. One model- has been used and in-
vestigated extensively. It holds the Corioli; parameter constant
in all ferms excepting the planetary vorticity advection term

The other model allows for the full variation of the Coriolis

'parametef‘in every term. It is the non-linear version of Mat-
suno's model. These models will be referred to as Model A
and Modél B, rcspectively. They will be described in greater

detail in the sequel.




K

A Newtonian foymulatlon was uscd to approximate the
perturbation diabatic hecating. Dickinson (1969) concluded
that Newtonian cooling could play an important role jin the
vertical propagation of planctary waves in a weak westerly
{flow. Using the latest available information on radiational
cooling in the upper atmospherc, Dickinson (1973) obtained
£hc vertical profile of thé Newtonian cooling cocfficient that
was necessary to makc this parameterization realistic. His
results will be used in this investigation.

Onc aisadvantago of the models used in this study
and in many previous works is the utilization of a "rigid Lopd
and "equatorial wall". The influence of these artificial
boundiry conditions are studicd and are found to be apprecisble

!

in certain situations if corrective action is not taken.

~

Finally, atmospheric processes inferred in theorctical
3

works such as wave encrgy ducting, wave encrgy trapping and

singular line absorption are examingd.
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‘ 2.1 Modcl Equations : ‘

‘(a) Steady State Potential Vorticity Equation

The basic equations in spherical geomctry with

pressurc as the vertical coordinate are thc momeTtum cquations;

dv AV - - 3F _vvian® (a)

4 crep-fverdmmsi e R

:_::; - R .

( 3% * =)
rofifu=- &5 e o (b)

the thermodynamic equation,

d [3% = -4 49

dt(bp)* TX =TT ab ()

: - the hydrostatic equation, ' (2.1.1)
08 L | )

op

the continuity equation, \

VeV=- 3w T (e)
op i

and the equation of state,

P=¢RT. o | )

From the momentum equations, the vorticity equation

-

is derived in the standard way. The vertical advection of .
¢ ' ’

vo?ticity and"the tilting twisting terms are negiected. Also,

the relative vorticity .is assumed to be small in comparison
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with the planctary vorticity in the divergence term and is
% . .
neglected. With these approximations the vorticity equation

bccomc;
dt(i" § =3 3 * o'co,,e@:f ‘%a(“?s FXD, (2.1.2)

It isiconvcnicnt to_cemnmvert to a new coordinate:

Z=~Ho‘n%. " (2.1.3)

‘

The usc of the hydrostatic cquation will result in the following

expressions in the 2 coordinates: .

\

o= -Ew | : (a)
\ | |
.%\'f'g‘%i | M) (2.1.4)
and ' : '
Nz__.; e(é\nT . :T> (c) .

as the square of the Brun -Valsala frcquency

) systen of coordlnates the vorticity

1

In the (A ,0 ,z

and -thermodynamic equations become:

$i - iMoo

S0 - u;-'c-e'r‘i%) )

(2.1.5)
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N2

Following Matsuno (1970), will be given a mean

value corresponding to a mean temperature for the stratosphere.
This approximation should not.alter the solutions of (2.1.5)

considerably. However, it will greatly simplify the governing

equations. A mean tcmperature cqual to To = 239° X is chosen.

>

The corresponding values of Ho is 7 km and N2 is (4) (10-4) sec‘z.

The vertical coordinate Z is now equal to the usual height

and no interpolatioﬁ will be nceded in using observed data -or
. N .

prcseniing results.

By eliminating the vertical velocity w, equations (2.1.5)

“+. may be combined to give the potential vorticity equation:

1 ! ) a *.
o , w'@@*F'PﬁN’BJ%Q P&eﬁ( &D
. ’ -t Fo
5 __— ' cx’cou?(aaA %(Cose FAE) g (H.N (’LC? d;)
. \

[ I
<@ -
v

——

(2.1.6)

A steady statc is assumed. The potential vorticity cquation now

”

] becomes .
3 £ p 3% vé(_') £a§_
w + = = X + X
- "3 F\\?az n23i) T SQ\PF a P aeRz N’az
) . (2.1.7)

: - ’ =13 3 49

- ) ' —Q,cosé(:s_)s T Je CD‘QFQ ﬁ(ﬁ‘“’?cv 4+,

- The time independent variables Wy sV k )énd & arel
a . . pPartitioned into a zo%ally'averaged term and a perturbation
{ term that is a funttion of all threé cgordinates: - . .

& .
s DS M LNNMLES S AR T
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L ee@ededoen @ T e
“ ‘ “~
)a - ?)‘(9‘1) t Yl@,e,'z) ) . , “
” .o (2.178)
L& =3 e e - (c)
A .
and .
vV = le,B,,’f.)f . (d)

[ -—

© (b) Paramcterization of Fricfibop and Infrared Cooling ~

An accurate representation of internal dissipa®ion

.

due'.to friction is difficult. Since frictional effects arc

\

only of secondary importance in this fzﬁﬁhﬂéiggijeﬂ“vﬁig-bc ;
represented in as simple‘E/mdﬁﬁlr as possible. The zonal

}

2

. '
.

flow is assumed to be in geoétrophic balance.  Furthermore, ~_ A\

. & - . . :
friction acts only upon the perturbation fiéld as a linear
drag where the drag doefficient‘k, is a function of (®,2% ) {

only. Thds ' °
L, . ' '
o FE ko Ve, o (219

L3 ‘A

- - \
This is commonly referred to as Rayleigh friction. t
The'assumption will be'made that radiative cooling’is

the only diabatic term of significance to the stratosphetic

R ‘ s . . .
Pekturbations. The heating rate per unit mass is g1venﬂnﬁ

3t - : (2.1.10)
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whoro‘%% 1s the cooling rate duce to infrared radiation. A

smple and farrly accurate representation of infiarced ‘cool ing
In this region consists of the sum of an cxact cooling for a
reference temperature profile and a Newtonian cooling approxai-

.
matron for departures from this profile;

%{-: C“-\<(T' (2.1.11)

wheie Cq and Ky arc functions of herpht only.

2™

Using the hyd{;slutic cquation, the heating rate

3

becomes

/

dQ _ L Ho 9% 2.1.12
ELQ“CP(C“ " ai:)- ( :

In a recent study, blckln%on (1973) studicd the
above paramecterization of radiative cooling in the upper atmos-
phere. He solved the radiative transfer cquations for the
standard atmosphere temperature profile to obtagﬁ an ecxact codllng
ratc at hcights 30-70 km, (Fig. 2.1.1 b). For perturbations
from the refercnce tempcrature, he saw it possible to péramgtorizo
Tealistically fhc net temperaturc tendencies in terms of (2.1.11)
1f a specific vertical profile was used for the Newtonian cooling
co;ffiélenth,lln his study, Dickinson concerned himself only
with the 30-70 km layer. In the present study, the Newtonian
cooling ;ocfficicnt was decreased linearly {rom Dickinson's

1

value at 30 km to (S)(10—7) sec ~ at 5 km (Fig. 2.1.1 ¢). This
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Fig. 2.1.1 (a) Comparison of the standard atmosphere temperature profile and the model temperature

) profile, (b) Total cooling rate [Cr) for the standard atmosphere temperature profile
\5 (redrawn from Dickinson, 1973), (c) Newtonian cooling coefficient (kf) which when
~multiplied by a small departure from the standard atmosphere at a given level gives

the deviation from the cooling of figure (b) (redrawn from Dickinson, 1973).
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valuc was obtained by Lindzen and Goody (1965) and used by

Matsuno (1970).

(¢) Basic Model Lquation

Substituting (2.1.8), (2.1.9) and (2.1.12) anto

(2.1.7) results in the basic model cquation

ARV PN XX ' 3§ I oo'ake . £ ad
OBl FRRAE) AT - B BSE R

where the lincar terms arce kept on the left hand side and the

non-lincar terms arc placed on the right hand side. Note that
_?3 ) b
L FszHoN‘FTC (h)

is the effect of infrared coollng‘on the basic state. 3d /38

L3

1s the latitudinal gradient of potential vorticity of the basic

TTstate. It is defined as ° ' ‘ (2

A

A 37 flalcosn d [P 3D |
%“%’5’%&(«1’-31 (c)

. where '7: ,® the absolute vorticity of the basic state, is
P r

Z=F+ ‘.f = 2SLswQ~ &L—ség-é(&)nc::s"e). . @)

“

This results in the foltow1ng form for the latltudlnal gradient

of potentlal -vorticity;

| e AR

.1,

13,




@
Equation (2.1.13) has depcndent variables &' , v,
o, § , @, and B,. The simplest way of relating thesc

variablcs is by the gcostrophic approximations.

u'=-L 3% (a)
[ a !

Vs o 3X (h)

¥ = Ve (c)

A
where the operator \/ 1s defined by

\A/:Qlcos %7\("%.—65?9%7) —g_@(—%sc%eg—e-)). (d)

(2.1.14)

Also, the zonal wind may be written

= - .1 ag, ,
. U= ?_Q.Yé- . (e)

[y A

so the angular velocity of the basic state is given by

Daz U -t )

“Wa acoss ~ -¢Q'cosa'a% . (£)
Using (2.1.14), cquation (2.1.f3 a) may now be written with the
angular velocity of the basic state and the pérturbation geo-

potential as the only dependent variables., )

'

' (d) Fourier Expansion Formulation of '

Since the perturbation geopotential is periodic
- 4

with respect to A , it may be written in terms of its component
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WAVCS 4s
§J(A,G‘Z)ZZ RMLG,Z) COS(MX +;(m(9.2) N (a]
med

The coefficients Am arc recal and phasc oL is defined in terms:

of the posi?ion of the ridge )‘R by

(2.1.15)
X m :"W\)R; (b) .
The more convenient Fourier cxpansion {or @' is
. ™ = o0 l
3'(2,6,9) = Z dm(0He ™" (2.1.16)
b1y

* ' *
(Note that the notation {—m or fm is used wnterchangeably to

represent the complex conjugate of ‘any variable fm )
-

It 1s convenient to converﬁ‘;rfa new variable
defined by )

1

4,:3@(%%5.) (2.1.17)

2y

It is further assumed that thec two longest waves explain most
of the wave structure. Equation (2.1.16) may now be written
-5y m=2
§'=,9e(r‘a)z % (eDe<™ (a)

3
me-2 .
wmy 0O

. : (2.1.18)
or ‘ )

.

wmzi

) ol
3'= q¢ Z Conl®7) cos(md + Lmled)  (b)
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&
g I'd
where )
me:' Q_m.e_“"’c (C) -
2
El]fd "
» g 2.1.18
2 T2 ( )
Cm= 2(:(21-““) T4 (zh..;) (d)
u'ﬁ“
’ }
2.2 System of Dquations for the Fouricr Cocfficicents

In this section the governing cquations for two
distinét quasi-geostrophic models will be derived. As tﬁc
basic state, w0’w111 speccify a distribution of z&nal wind
velocity in the meridional section. Therefore, the basic

state angular velocity (&g ) is known.

(a) Model A

This model is a quasi-geostrophic model that has been
used exteﬁsively. Its prihafy feature is that it kceps the
Coriolis parameter constant except where it enter$ the advection
of planetary vorticity. fThe potential vorticity eqﬁation

(2.1, 6) can now be written

x B 5l = e - o) + B i )

~

where fo is the value of the Coriolis parameter at 4§3N.‘ In

the absence of friction and diabatic heating, the potential

-

.




. vo'rtlc‘i’ty is conscrved. Morcover, the steady state version of the

above cquation would show that a stationary state is main-

tained only if the dissipative effects of friction and the
-contribution of the drabatic tcrms is balanced exactly by‘ghc
advection of potential vorticity. This model "has the advantage
of having an energy conserving governing equation. It has the
possible disadvantage of not being too rcalistic except at
mid—]atitudesx

The governing cquation for this model is found by

substituting (2.1.14) 1nto (2.1.13 a) and keeping £. (?o =

2 52 sin 45° everywhore cxcept where it enters (2.1.13 d). The
resulting cquation 1s

| P 28, 1 3333 , 1 3% My, £ ey A

“ @"“‘@@V;) (T_‘“‘“ \ps“u*r Y ey $8 TR Y iSeE ST IR

_3%'d 4+ 23'2 3 paq’D .
=T fq‘coso 30 aA a‘).z,%OVé"’ng(ﬁzﬁ . (2.2.1)

Subst1tut1n5 (2.1.18a) into (2.2.1) amé, realizing that wave
number 1 interacts with wave number 2 to produce wave number 1

and 3, while at the samc time wave number 1 interacts with

$ itself{ to produce wave numbér ‘0 and wave number 2, it 1is then -

possible to obtain an equation for each of the Fourier coefficients

(see Appendix I):

Wave number 1 @*1

3 zh - o | D o
Mo S 9 ( :‘*k)@ose 3'5%“93 . c“‘e) "@ -,.m)co..er b“

. R _
'S :(é;%%-%%‘(\.;r él*.a(\.v)+ %‘&Q.&b 22‘-,_3_9(_14-)

I AT Y AT R T i
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. Wave numbel_g (42

___.Z L) sG
/u 31‘ ) (Z.G)n ik c.osQ_Gco cos RoLKL C°$9-SF

é%%?:wtﬁi@J%%E-l*'—& G%“‘::qksa( ) (b)
R S

where

(2.2.2)
l~2_ £a) (c)
Mo = (ocﬁ

T_ = doza 3eleos03) ~ Bl + 3 (L '4'—-1) " 4
[a 5]

", f ok r.osG

(e)

For the pyrpose of s&lution, (2.2.2 a) and (2.2.2 b)

Will be put into a standard form;

(LH )2 = R, ' @
where ¢ ~ i ) .
=(3% .c 3 1 3 (2.2.3)
Q‘Hs)n (éag *Gmé‘z + ng—ag + QmSé "'-. Sm) (b)

with

CGes ) b ©




N | mwg‘-i\‘f ]
Hm "/a‘uz(m':wa (¢ )

L & _A.k,.anea-l'\«)
Qm= A (v a7~ W) el ) ba ae(‘ § () (2.2.3)

R R e TR A S I \ S '\‘t)
Sm - }Toz(ma:-a\\{)c.o.‘e PNV EEE Y R PP T A Y
A )
| m "’ ‘ aq— ?
+,&'o‘(m G.),,-;..K)(cosﬂ-) b)) ()

L

and

R, = el 3 - B ) + 3

\ : . ,—2_“13’3‘6(\-\1\.\'3‘) (g)

\oo s
-“_- K é__.'lh'\ N 9‘_" ‘Z.\.:) -
ReafiBim) o

The method of solving (2.2.3 a) will be discussed in
section 2.4. When the Fourier coefficients hl and2¢2 are

obtained, then the perturbation geopotential can be computed

by use of (2.1.18 d) and (2.1.18 e).

(b) Model B

This is another quasi-geostrophic model. 1Its

primary feature is that it allows for the full variation of
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‘ the Coriolis parameter in all terms. In th‘e absence of
friction and drabatic heating, this model does not conserve
potential vorticity (sce equﬂtion 2.1.6). The non-lincar
model equations arc an extension of the lincar modei equations
uscd by Matsuno (1970). The J}nourizod oquation% may be shown
to conscrve cnergy {or adiabatic, frictionless flow. Unfor-
tunatcly, this could not be concluded positively for the non-
linecar cquations. This model was usced mainly to provide some
comparisons with Model A.

As discusscd by Matsuno, the lincarized quasi—gco;}rophic
version of the vorticity equation results in a spurious term
in the cnergy cquation when the latitude dependence of f 1s
retained everywhere.  An energy conserving system of equations
may be obtained by following the procedurc uscd by Matsuno.
A better than geostrophic approximation for v' is used in the
advection of planetary vorticity.  This better appraximation
for v' can'bé obtained from the first cquation of motion

. R \
(2,1.1 a) after neglccting the sphericity and all but the first

advection term:

-
1 !
- V‘:-_* %(&g%& + a‘—cm%% +kg\!> (2_2.4)

.where the model parametcrization of friction is included. W'

is now evaluated using;the geostrophic approximation (2.1.14 a).
The same procedure will be followed with the non—lineaf equation

'(2.1.13a). Equations (2.1.14) will be substituted into (2.1.13a)

-




- 18 -
‘ as before. The only exception will be where v multiplies
the planctary Qorticity term in 3R/3® . Then (2.2.4) will
be used. This results in'the following equation analogous
to (2.2.1): .
'Y\ R 2 5&) " pA
o3 W) (‘““’"%az(% ) - Bl (e Ry
L 3% dky 0%
+€: S-é ¥ ‘L’aa ¥z
[
' (&g £2 (PR
_ | 28 [cos0 ¥ 1 ﬁa(va£+_ (____
**-"io‘coses—e m(S\'ne S_é) #a"wse 20 S-S‘ PS’}.N"E}Z ‘
o . ‘ é§‘ |
L o%a () - bib*ié%_‘_’__.)
T faiese 3k ae(Vi’) Fodcose A PIC\§Z N23Z/. 4
(2.2.5)

Using the Yourier cxpansion (2.1.18 a) of iﬂ into
(2.2.5) and procceding in a similar manner as before results
lin the following cquations for the Fourier coefficients (see
Appendix II): ' o '

' ‘Wave number 1 ;) ’

b"-"h - —-ik . uN %, \ 33
311 Q'H‘) Qaﬁ—* 3(:055 'S_é‘) GOQ.Q ‘((:‘:’H ’*chmexg 2"\
&2 . Ot 5 W \_ } . 1.‘.).\ ‘ J
+(;.u.-—~ D(Sﬁe@ 5T ° 2'4“) (::,;:1\?)@%@‘%5 (a) (2.2.6)
*@-rzr)(: ket (M;’*,) z(M‘w,) * 1\-',(N“i-,)- zm(mu@
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Wave number 2 (5)
® x

3 e _ uu\ [amo-ake)fs1n?0 3 (cose B"-\- ‘ 3‘12*
o3t ¥ 2 wa-~kiflcos© 9B\ s1n?8 ae °°5" ?_(,.) - Ky} cos0 2
i tsM(s—‘ 3 - e g
5 )[ (1)- i)

where
\ 2
= ta (c)
~ (N)
. : (2.2.6}
A 1~
| K = 19._1_“51)_ ()
fatcoe®
}
’ .
: and
$ 1g 3 f[cose 2 \
- § °
M" - c‘o“se g—B(sm‘Qé C°$ /UJ(B-—! W) (e)

=Z>
3
i

. ', . | : *‘“Bg-e[mga(s?i% ® 5;5;3:)) 'a(') 2= ‘Hi)
' GR

1 v

As beforc equations (2.2.6 a) and (2.2.6 b) will bé

put ‘into a standard form,

(LH9)Hrm=Ren - | ‘ (@) (2.7

PR Y P W
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. where
' [ >, % 3 : 3
{\-HS)M*(;;:* G + He gt Om3g* gm> (M) \

with , P
o \afs
Gm" (ma‘—.t.ﬁbﬁ(kké (c)
§ Hm ﬂ(ngﬁ;—ﬂf) (@
Qm- _)erwmu ﬁmw“-.&.\(g)(kane x2 ctan B) 4 k/.\(§
( )
: © (2.2.7
) (nPa-ake\m? _ VA () S [
S =~ [ mBR ) - e zuo(maw:\?)at(‘k‘)
- f [R5
+,(Iz(m LT)?—.&\(\){CO&Q}%E - ()
¥
o \
. \ .
and - )';a . .
, A . -
: = ,Lz[—wa,_J,. Xz %%‘(qu’;) 1(M )b (Nzl*)
. ! —Z’f,_qu-) (g) »

u

ST 'Y R

which are analogous to (2.2.3). When the Fourier coefficients

41 and %2 are known then the’pertﬁrbation-geopotential can be
. s ,

computed by use of (2.1.18 d) and (2.1.18 é). ' A
, * ¢ . - T .
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. ‘ For the wave structurc equations of both modcls, the

non-lincar terms were placed on the right hand side and all

lincar terms were kept on the left hand sfide by design. If

N

) . . . L,
The. field of interest is the wave structure due to the lincarized
equations, then 1t is sufficient to set Rm equal to zcro before
solving the wa® stricture equations. This is equivalent-to

.,
N )
ncglecting all the non-lincar terms. -

2.3 Boundary Conditions’

- »
g N B s TR

(a) Equator
Dickinson (1968 a) studicd a lincar model that
similated a frictionless adiabatic atmospherc. He demonstrated
A that wave cnergy flow tcrminates on a vertically inclined
singular line in a region of wcak zonal flow. Since there is

usually a linc of zero zonégwwinds somewhere necar the equator

?t all elevations, then the perturbation wave energy should

.
-

Y 4

be small somewhere-in the\yicinity of the equator.
: )

It will be assumed thatf the perturbation geopotential
‘. \ v . '
is zero at the equator. By (2.1.17) and”(2.1.18 a) this
\ E
\

>

%m -0 for all ¥ at @ = 0. . (2.3.1)

implies ;xat

qgt must be ‘emphasized that this, is not a physical
boundary. conditiont It can only be realistic if wave energy
flow term§nates gr decays to practically zero before reaching

the boundary. Foliowingdgjékinson, this condition is expected
. . .
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M 4 , .
to be et when there 1 a sinpular line present at all clevatyon

he usced a simple lincariged

It 1s not clecar hou

north of the cquator.  [lowever,

model with {rittionless adiabatic flouw.
the inclusion of frittion, infrared coolimy and the non-lincar .
¢

Interactions will af fect thls_]‘oxull..

a

If wavefenergy flow

‘

1s st111 appreciable near or at the ecquatorial wall, then )
~ . \
complete reflection will occur. .=

«

t i

M'ole

/ _ .

1t was demonstrated by Beaudo in (1974) that
* ' -

only the benndary condition ; .

o= 0

[

6 -2 (2.3.2)

for all m at
glave finite solutions for the Tincarized equations at the

north polc.  This procedure may be pencralized 1o show that
’ “ .

{(e) o™

near the pole and hence r@;.of;g

“+any sdalar .which may be wraitten in the form

must lave £(6) coa™o

& - /2. This result 1s.andepepdent of any model used.

-
-t

‘

Lower Roundary’Condition

(c)

. .

As discusscgd in Chapter 1, th¢ longest waves

in the atmosphere are generated mainiy by land-sea differential
h .

hcating and orographic effegcts. These two sources of wave

encrgy arc confined - mainly to the lower part of the troposphere.
" -
The governing cquations, (2.2.1) and (2'.2.'5), for both models

do nét inclydé¢- cexplicitly the wave generatiﬁg effects of orography

< -
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and diffcarentral heating. Also some of the assumptions that

were necessary to derive these equations arc valid mostly in
‘

the upper atmouphere. lor these reasons, the wave structure

cquations are considered val:d only in the upper part of the,

3

atmosphere.  We will follow Matswmo's proccdure and fix the

lTower boundary of the domain at the 5 km level., Tor the
. /

boundary condition 1tsclf, a horizontal drstribution of Y, .

equal to that 'at the 500 mb level will be specifred. Referring

to cquation (2.1.18 ¢}, 1t 15 scen that [or cach wave number

% (02=9= Cml8E=5), «ctmlaz=s) (2.3.3)
' 2
¢
at the lowgr boundur&. o .

ot )
Tt 1s sufficient to specify horizontal distributions

of the amplitude Cm and the phasce < at the 5 km level for
both wave numbers.  The same case that was investigated by
Matsuno will be considered in this study. !e selected the

L4

monthly mecan statc for January ;967 as a representative winter
situation. Thg‘d;stributlon and phases of waves at 500 mb

for wave numbers 1 and 2 are shown in Fig. 2.3.1. They were
obtained by Matsuno from the monthly mcan ghdrt publiéhed by
the Berlin Free University and from the Northern Hemisphere

climatological grid data tapeiprepqyed by National Weather

Records Center. ' *

hy

£
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. (d) Upper Boundary Condition
The atrosphere has no natural uppe: boundary .
All numerical models must have a finite atmosphere and cmploy
some drtificial wpper boundary condition. We will assume a
so-called "rigid top" boundary condition at 65 km. In other
words, all vertical motion is made to be zero at this level. .
P Using the thCImOdYPHmlC equation (2.1.5 b) and the Fourier
T 3 - €Xpansion for the perturbation géopotential (2.1.18 44, the
following CXDFOS%JOHS may be obtained (s%o Appendia I111):

Wayo number 1

%, 4 W, \_ éw. b (3% ut Yoo O (3. Eﬂ\)
(3‘; - ﬂ) B ”( Sa <R D( (Te % Zhae(ﬁ TR
U 3%, * 3 QY
P2 R T 3 z@
<& . (a) .
(2.3.4)

Wave number 2

‘ & ’ Ay, U S [ .
2 d&0m, K ' AV P __4 ¥ .)
?—)32—2 ¥ 17%\.,* 2Dg- Ak B2 7 Uy (; A i 39(5— 24 J (hQ)[ bL) ]

Equations (2.3.4 a) and (2.3.4 b) may be put’'into a standard

. form:
: (URw) % = UL (a)
where (2.3.5)
\ wm \em b
i : URMZ(%_E“"%E,)_(MG“—J.R S ®)

&




T4

DO BT 2> it
e

3o e TR
IERTY ST L e | AN
WA 1] :

L%

-

v L
MRS LR x

xie
.

<t B

¢
v, B

"
- 20 - ’

and '

A
_ T (3, HTY o 3 [0 L N, o W O,
UL, (w"ﬁ'wn-&)( TZ(SE f zz*zaek“é*iﬁ)*zﬁ.té‘z‘ ”ZED
+4fa- el +zl:a) (c)
, 59(“ ‘*J (2.3.5)

2.4 , Mcthod of Solution of the Systems of Equations

The wave structurc equations (2.2.2, Model A, or
2.2.06, Model B) ainng with thce boundary conditions (2.3.1,
2.35.2, 2.3.3 and 2.3.4) form a complete sct of coupled differential

Cquatdions witﬁln unique solution for hl and %, for a specific

basic state :

A
(LHS ™ = RGrs (a)
with -
'l\'l =0 at ©=0 (b)
=0 t o= T/2 . -
41 a (c) 2
%y = Fp(8) at Z =5 k:: (d) )
(L?J.)‘n-:RU.(%.,‘h) at 2= 65 km (e)
also
(LHS) %= R, () | (a)

) 1
with ]
Y, = 0 _ at 8 =0 )

- = 0 _ t 0= T/2 ¢
"2 ) ) (2.4.2)
4, = F,(8) °  at -5 km . (d)
L U) = RU (%) at ©s 65 km, (¢)




. (a) Finite Difference Scheme and Grad Used

The model grid covers the region from the cquator

to pole. The latitudinal grid increments is A® = 5 degrees

»
and the vertical grid increment 1s Az = 2.5 km. Thc number

of grid.points is (25 x 19) including the end points. Scec

’

Fig. 2.4.1.
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(b) Mecthod of Numerical Intcgration of the Basic

Diffcrential Equation

-

A system of cquations such as (2.4.1) or (2.4.2)

(where R R RU

12 72 1’
dircectly by a method developed by Lindzen and Kuo (1969).

RU, arc known functions) may be solved

They were able to show that a differential equation of the

form
Y - :
e LD =rtun @9
where L is a differential operator of arbitrary order 1in

hz

y but no greater than first order in z, has a finite dif{erence

form

- - e P

ﬁnf\.’\-l By + Cofoey = Da (2.4.4)

~
i

where fn is the set of valucs of f at the nth lcvel in z for

all the giid points in y. The solution to (2.4.4) has the

¥
4

form
——

‘Fn = ;anh‘ti ¥ _é.
Knowing Ao and B, from the lower boundary condition all the
&K, and Bn can be calculated and then ¥n at all n‘g may “be

-computed after making use of the upper boundary condition to
obtain?& . The solution is then formally complete. Note
that the wave structure equations (2.2.3 a and 2.2.7 a) are

of the form (2.4.3).

¥
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" (¢) Iteration Method Used to Solve Coupled Systems

of Equations

Initially, we do not know how the non-lincar

1 ) vary with latitude and height. Our

approach will be to use a successive approximation technique.

terms Rl’ RZ’ RU RU

First, it will be assumed that Rl’ RZ’ RU]’ RU2 arc identically

equal to zcro. Equations (2.4.1) become

LHS) ™ =0

LuYs°® =0 S 2= 65 km

with the other boundary conditions of (2.4.1) unchanged. As'

well, (2.4.2) become

4

¥ O LMS)u =0
s LU) =0 2= 65 km

with the other boundary conditions of (2.4.2) also unchangeé.
Note that the superscript refers to the order of approximation.
As previously discussed in section 2.2, setting Rl’ Rz,‘RUI, RU,

identically equal to zero is equivalent to neglecting all the

non-linear terms in the wave structure egquations. These two
sets of equations are solved by the Lindzen and Kuo method and

values of%f% hnd'hzo at every grid point are obtained. These

(j . Zero order solutions are the solutions of the linearized equations.

s

3
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. ¢ The next step 1s to make a first order approximation
for R], RZ’ RU]’ RU2 at cvery grid point by using 410 and
0
Lo
The cquations then become
( A N ) ..
LHS) != R\(nlh,]rz)
LU, e, - 65 k&
LuPn = RUCRS,w) 2= 65 km
p
and
A ' (a0
1 (LHSz) 2*‘1 = Rtklrt ) 4
A !
!
LU, = RU (W) 2= 65 kwm

where the other boundary conditions are the same asuin (2.4.1)
and (2.4.2). These two systems of cquations are now solved
by the Lindzen and Kuo method to obtain2+i and Aé

This procedure is continued until the solution of

A ) {
(LHS ) = RI(R, k)

(Lu,) = RUS ()

S A

and

(LSl = REGrr)

O (LU) % = RUS(™) o

[



by

2.5

of the non-linear model cquations.

of the non-linear terms to the wave structurc

W o
2+\NLT = --FT‘

- k,_ o
z‘-zN\:\' - 'Lkz_ 7.'—1 e

Energy Considerations -

(a) Energy Expressions

K K-
il S PRV
\Tk-‘ ~
\
k w-)
%zl;-k):l kos
- 2
. . - k k .
at cvery grid point. lhcn.%l and u7 arc considered to be the

solutions of the (2.4.1) and (2.4.2) and thus the solutions

Note that the contribution

is then computced

We are interested in the total energy of the

_ perturbation in a zonal ring of vplume\/ bounded by

‘ .

N

GQSEB£=9|
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+ The perturbation kinetic cnergy 1n the volume 1is

given by
' N !
bl ' . 2.5.1
k(v__i €(U +v')dV ( )

Vv

After Lorenz (1955), the available potential energy

1s ﬁﬁven by

-

1 ] "
=3 :%‘Jiz(g‘) av . (’7;.5.2)
v

The total perturbation wavé cnergy in the volume is

&

EL =K, +P,. (2.5.3)

For a stcady state model ;, ¥
|
3ty - 0. (2.5.4)
At

Clearlyz in order to maintain a steady state, the net.
flow of energy into ar out of a volume must balance the sum of
all sources and sinks within that volume.

Since all reéuits will bé presented in terms of the
amplitude and phasc of %w, a more uscful representafion of the
kinetéc and potent;al energies of the perturbation in the

volume V is‘found by using (2.1.18).

The resulting expressions are (see Appendix 1IV)

N

“y
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(2.5. 6)
I'he dCYlVdL]OH of the onorgy-hulance cquation of the
dorm (2.5.4) 1s possible for both models. This derivation is

beyond the scope of this study and will not be presented here

Several terms arc of primary concern i discussing results

- R TR

Namely, they are the cnergy flux terms and the energy sink

terms for friction and perturbation cooling
ey

These terms will
be introduced and discussed individually.

(b) Energy Flow ‘ . ‘

¢
¢

Since the non-lincar
»

terms act ‘as sources withmn
. .the volume, V,

then the energy flow terms are.identical in
form to the linearizcd equations Matsuno (1970) has derived
the expressions for the horizontal and vertical cnergy {luxes

¢ér unit arca. Utilizing.thesce equations we can obtain the
P g q

total meridional energy flow through any vertical surface bounding
the volume by 1ntegrat1ng around a latitude circle, ,
" .
HF‘Ux"ITJ' C) %i' Sicosed!d) (2,5.7)
i, o

and the vertical energy flow through a horizontal surface bounding

the volume, . ) e ‘
. ) n

“ VF\ux = S ?w'§' alcos®dodN ,

N °° (o] -
® ' | |

(2.5.8)
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e

flux becomes (sce Appendix IV)

As before, more uscful expressions for the energy

‘fluxes are in tcrms of the amplitude and phase of W m. Using

N
°

,the Tourigw expansion of &' (5.1.18 a), the horizontal eneigy

e '

.
]

A

el ) r

’“":lux: ﬁ%_&:,.glz cogei (m('f.)“c—v:é_‘i!n). g2.5.9]r

.
i

- T
4 "

.

N Y
In (2.5.8) the ‘vertical velocity is evaluated by use of the X

X \

stecady,state thermodynanic equation (2.1.5 h) with the model
representation of {fe heating rate (2.1.12). The result is
(see Appendix TV) “

A
) -
e

2 ) .
2 2 . i -
= |98 Q AQC058§ < = (S Em _ acd L ¢ ,
. \/‘:,‘w “—;‘qz ™ Gy 52 \“'CM(S—*'L + —'m?_\.lo (_‘ .5. 1())

M=l

. . ¥ Terms arising from non-1inear inter-

actions. , .

* .

‘When the wave structure derived from the lincarized
équations only is being considered, there is no interactiQn'

among waves and only the terms in curly brackets arise. Note
that "for Model A, @ = fo wherever it énters'the;equations.
, -

" (c) Ene é& Sink Terms Due to Friction and Infrared

b

From ;he equatiom of ﬂgiipn and the model para-

. . T
meterization of friction, the loss of perturbation wave energy

due to friction may be computed and is found tobe

f
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In terms of the amplitude and phase of .Wm (using

2.1.18 ), the’above, equation may be written (sce Abpcndlx V)

\.
B| H * ’ ’
: B acm CIRAY, 1t ) okoenanaz |
! Y'\c:\:\en (:)(k ée, ¥ (Sé} cos‘9 ™ j&cos .
L gn . (2:5.14%)
*\' . _ . ’
Slmilarly the loss of available potcential cnerpy due
to infrared radiatwon s calculated by using the thermodynamic
’equation and the modol‘paramet&rization of perturhationégfoling:
= . ] .
& I N *
. [aPv d
. i (A t Rnd\o*_\ov\ ktN V. i
e ? \Y) . ) ’
In terms fof the amplltude and phase of “-m (us:ng 2 1.18 ) .
%} P 2 ‘
v farl BCM&: e (“‘} *cos9d0
\ (31; )Rnd\q*_\oﬂ NzH !Z'gi' ZH., ™m §— Q dic ,
N ™z
) A o to - (2 5. 12)
R,
2.6 . Basic State
o (a) Zonal Wind Distributions
As the basic state, the distribution of the zonal
‘ . N, . Cfe '
wind velocity in the meridional section will be. specified. Ob-
4 served states of the zonal ¢irculation up to the meso;ﬁause have

been pregented by several authors @Murgatroyd et ‘al,‘1965). All

~
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o ) - N / ’ N - .

the varrous distributions™wive the major large <cale features

¢

I Ccommon ey en thouph theyr positron an the meradional planc
T
may vary., Batten (1901) pives two representatinve winter
rd

5

scctions (lrveo 2 601, (o) the polar vortex 1ype nost ]1]\'(‘1')

to occur an November-hecember, and (b)) the <sudden varming tvpe

«

more representative of Janunary-tcbruary.,  Both have the suamce

major featurces such as the middle latitude tropospheric et
ld

and the polar night jet (upper west wind center). However, the

posttion of the polar night jet has a large Jatitudinal dis-

placement. e also presents an average wintor zonal wind \

-

-
component drstribution (lig. 2.06.2) which resembles bhoth casces

shown 1n (lre. 2.0.1).
/ -
/

These zondl wind distributions must be used with
caution since they include some small scale {eatures that are
uncertain.  These uncertainties may have significant influence

~
on the solution of they governing equatvons duc to the sccond-
order derivatives of the basic wind ficld that arc included

in a coef{ficient of the govewping equations, (2.1.13 e). More-

over, the boundary condition at the equator was formulated by

Presuming a special configuration of the zohal wind ncar the

equator (section 2.3). Thesc problems were encountered by Matsuno

(1970) in his study. Ilis solution was to construct an idcalized

model for winter rétalning.on]y the major features of the ob-

sérved wind system. His model basic state zonal wind distri-

-

bution is shown 1n Fig. 2.9.3. Eastcrlx\ﬁ}nds were placed near
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¢ - 38 - g
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A .
b
i ~
gﬁ' " i cand north of the cquator at a1l heights 1n order to try to
ﬁ’” be compatible with the boundaiy condition there Otherwise,
i
; Matsuno's zonal wind distraibution closely r1escembles Batten's

polar-vortes type (lig. 2.06.1 a) distribution., Both jets arce
. placed in the same place and the configuration of the 1solines
1s quite similar north of 359 latitude. Tor the 1casons dis-
cussced above and 1o facilitate comparison with Matsuno's
results, the zonal wind profile of Tirg. 2.6.3 will be uscd

for all the results presented 1n this study and should be . )

assumed as the model basic state.

P

As discussed, by Matsuno, scveral parameters that arce
‘ functions of the basic state only influence the computed wave

Structure 1 a dominant manner. The varration of ‘thesce para-
¢ meters i1n the meridional planc serves to cxplain the non-

Isotropic propagation of wave cnergy and the resultant steady

—~—

statc energy distribution. The first paramctcr considercd will

“

be the "latitudinal gradient of potential vorticity" of the

basic state.

ORI
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(b) Latitudinal Gradient of Potcntial Vorticity

of the Rasic State, 33/30 -

The ]3t}tudxnal‘grad1cnt of the potential vor-
ticity of the basic state 1s computed using (2.1.13 e¢). The
finite difference version of this function can be erratic and
has been slightly smoothed for prescentation.  The resulting
distributions arc shown inm Tigs. 2.6.4 and 2.0.5 for Modcl A
and Model I, respectively. The unit of 39/3 1s the rotation
ratc of the carth. The contribution of the latitudinal gradient
of planctary vorticity is then 2cos® . Trom Figs. 2.6.4

and 2.06.5, we can sce that the contribution of the zonal wind

profile 1s comparable to and sometimes greater than that of
the planctary vorticity.

Both models show hasically the same distribution.
Therce is a region of small ¥R /2@  found centered at 45° N
and 17.5 km. There is a maximum coinciding with the tropospheric
jet and the polar vortex jet. In this study, the primary
importance of 3%/R® is its e{fect on another important para-

meter, the "refractive index squared'.
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Fig. 2.6.4 The latitudinal gradient of potential vorticity (33/3e8 ) for Model A, expresced

as a multiple of the earth's rotation ratce.
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. ) (c) Refractive Index S(lmn‘o‘q_‘]_rlz_

u The other parameter, related to /30 , 15 the
Y ) . 2

5 "refractive index squared", Im~, of the wave number. Neglecting
i

3}

%’ the non-linecar terms and assuming that the model atmosphere

N ?

P '

3. 1s adiabatic and {rictionless, the wave structurc cquations

L

(2.2.2 a) and (2.2.2 b) for Modecl A may be written as

~ 2% 3 3, 2

HMe Y:a +coseae(('°seée ) '*'X(ml\'mzo Cor m:&'2 (a)

i ' i

: (2.6.1)

i where ¢ :

i IZ _ | q_ M ml 1

g m 7 acose §— T avTe (b)

i ,

2 Similarly for Model D, equations (2.2.6 a) and (2.2.6 b) may be

: written ’

! . * 2

Lo S0 d coseé?rm> 238 T2 = B omel2 (4
cosq 3@(3\“283—6— +f" azz +I"\‘L"m O or ™ J. ( )

: (2.6.2)

% where

|

‘ \ 4 Mz _ m?' )
I 5 o 8 SBB 4“3 cos*© (h)

which are identical t{rthe cquatioﬁs derived by Matsuno.

' / .

’ Charney and Drazin (1961) considered the vertical

: propagation of waves in a horizontally uniform basic flow on

F the B -plane. Formulation of the problem resulted in an equation

L similar to (2.6.1) but with constant Imz. They were able to

C |

Dt S e e ey o e
-




11lustrate the uscfulness of an analogy with the propagation

3
LR
i

X. \ N

RN - ' of electromagnetic waves. Their cquation was of the same

1 i : .

Py form as the differentyal cquation governing the one dimensional
i

,

stcady state propagation of clectromugnetic waves in a medrum
of refractive index, Im. They concluded that when Iy is

purc imaginary (lm2<(ﬂ only external waves arce possible, that

fs'{"‘xhw?t' s

is, Mm varics caponentially with z. This means that the
vertical propagation of energy 1s 1nhibited and there is some
reflectron of wave encrgy. When Ty 1s real (In3:70[, thereo

arc immternal waves and vertical propagation 1s {recly permitted.

Beaudoin (1974}, wusing the same model, considered

o i KRR YOI Py S M

the problem where the basic state angular velocity was constant

but %m was allowed to vary in both the latitudinal and vertical’

-

directions. The refractive index squared then became a
function of latitudc only and the wave structurc equation wdas
RN separable. An oscillatory solution was permitted in the

latitudinal direction. The result was that an internal wave

was possiblc only if{ the paramcter analogous to the refractive
index squared was greater than an undetermined positive ‘constant.
If the refractive index 'squared was smaller than this positive

constant then the solutions were exponential and the 'wave was

external. Furthermore, it was seen that the refractive index
sqparcd was sufficiently Iarge to give vertical wave propagation

nl¥.when the zonal flow was westerly but not too strong.

o




Equation (2.06.1) is 1dentical in (orm to Eho two
dimensional wave oquu}1on describing the steady state pro-
pagation of clectromagnetic waves away {r&m a circular source
where the transmitting wedium has a variable rvrefractive 1ndex.
THus the cloectromagnetic analogy can be extended to this
problem a; well.s Tquation (2.0.2) also describes wave pro-
pagatron 1n both the 8 and Z directions, but 1n a more non-
isotropic manner. In hoth cuascs, Tmz will be assumed analogous
to the refractive i1ndex squarced of the medium, i.c. the basic
flow. \ .

M ’

Extending the results of Charney and Drazin (1961)
and Beaudoin (1974) to tnis problem, 1t will be assumed herve
that with L a small positive constant
3 ,

o T <k (a)

indicates an cxternal wave, and (2.0.3)

L TIvk (b

~

~

indicatesan internal wavd. From (2.6.1 b) or (2.6.2 b), it is

secn that Imz can be small positive or negative where &g is
easterly or large weéterly: As well, I"F may be small pOSitiye
Or negative where b%J%é is small and near the north pole since
the last term of (2.6.1 D) or (2.6.2 b) becomes significant -
there. These areas arc expected to inhibit the propagation
of wave encrgy. Conversely, Imz is large and positive in

)

areas where the mean flow is westerly and sufficiently weak

and/or 33/3® is sufficiently la}ge. These' arcas are expected

N

W
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. to allow frece propagation of wave cnergy and an internal wave
may be expected. -
Figs. 2.6.6 and 2.06.7 show ]02 for Model A and Model
B, respectively. The distributions have several features
in common. There 1s a mimsmum 1n the ficld centered at 45°

and 17.5 km. This is caused by the minimum of 389/38 ‘centercd

at the samce position. At high latitudes, ]OZ‘dOkYCﬂSCS with

v

imcreasing height (ancreasing @q ). With decreasing latitude,

L

IO2 increases rﬁp1d]y (decreasing &g ) until 1t reaches in-
finity at the sainpular line. One important difference between
the two distributions 1s the way'Ioz decreases with increasing
height at high latitudes. For Model A, IO2 decreases less
rapidly with incrcasing height than for Model B. Althoupgh the
contrast is small, %t may have an important cffcct on wave

propagation as will bc scen later.

Figs-. 2.6.8 and 2.6.9 show 112 and 122, respectively,

for Model B. It is seen that the refractive index squared

becomes sharply negathc in the vicinity of the pole. Thus,

it can be expected that wave propagation is inhibited there.

{ For Model A, Plz and Izzkchénges from IO2 in the same manner.

(&
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Matsuno (1970) vsed the Tincarized equations o

7
¢ neglected

—

Model B owhth 1\t =L, = (5)(10 )sor-], Hence 1

f

all terms that arise due to the pp5q1h]< variration of theoe

N

coclCicients.  TInitial attempts to compute the wave structue
f1om the non-lincar cquations with the same conditions was
unsuccessfnl,  The 1teration method described 1n scction 2.4

proved lo give unstable solutions.

Scveral factors may have contributed to this bebhavisur.

It 1s possihle that the qu&s:—gooitrophlc cquations arc grossly
umcalistic an the lower lTatitudes. I0 so, then the -method

of cvaluataing the non-Trncar terms 1s also not valid at Tower
Fatitudes.  Jhrs s particularly true an the vacinity of the

-

singular line. The entire iteration method of cvaluating the

non-lincar terms presumes that the non-1lincar teims are smull 7

or comparable 1n magnitude to the lincar terdds . In the vicinitly

of the singular linc, th¢ ratio of perturbation velocity to!

zonal velocity becomes cxcessive and this condition brecaks

e —

%

down. The iteration method is therefore unstablc. The influence

of the értif{cial boundary condigions on the computed wave I
structure was examined and found to be of crucial importance.
Finally, the values for the friction and cooling coefficients
used by Matsuno weresunrealistic. The effect of the above and

subsequent 'corrective action' are detailed and discussed in

this chapter.

s
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The model atmospher e can be thoupht of os soverned
by the Pincor terws only but subject to fvo genceral type: of
forcing.  Once 1s the usual forcing at the lover boundary as
prescribed hy the lover boundary conditrons (Lip  2.5.1). The
other 1s an anternal forcimg frow the non-tiner exchange of

encrgoy.  Jhe gmportance ol studying the responsc of the model

atmosphere to these types of forcing 1s then cvadent. o
< .
avord prosenting an unnecessary amount of material, only the
Tincarized Model B atmospherc was itnvestipated. [t wi1ll be
‘
& assumed that most 1esults apply cqually 1o the analogous
4 Snru:gmn in the Model A atmospherc.  As &c]], since wave numher
i
; 1 was found to be dominant over wave number 2, most wOorh was
X done with wave number 1.
b .
N A11 wave structurce distributions presented show the
¥

variation. of the amplitude ((‘m) and phasc (Ocm) of the function
21'111 over the meridional plane.’ Incergy density, cnergy flow
and the Tateof eneigy dissipation by Jfrictien and infrared

cool ing may bhe gomputced using the cquations qfrscction 5,

Chapter 2.

3.2 Forcingswith Wave Encrgy of the lower BRoundary
In this ssction, the rcspoﬁso of the lincarized atmos-

{
phere subject to various conditions and forcing from the lower

§\boundary is studied. First of all, the cffect of assuming
different vakyes of the friction»(kf) and radiative cooling (kt)

¢ W
) .
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coctfrcrents s shovn.  The ¢xample <honn an bag. 3.1.1 has

kt = kf = (5)(10“7)x0(_]: Thie 19 alnoat the, same resplt as

obtarned by “Matsuno.  Tips. 3,102 and 70103 show the wave

i

structure obtarnced by having k1 = k{ = (]U)(IH_7) sc<v] and .

]\1 = K r- (20)(10° 7) e ) l, respectively. . -
Fig. 3’”.] shows a primary stnlnlxné wdave centered

at 657 N and 22 5 kn As well, "there arc two weak standing

waves present at low latitudes that are of sccondary 1mportance.
The phase incrcases with herpht and decrcasing Tatitude. I‘({ll.l%ix

tions (2.5 9) and (2.5.10) andicate an upward and cquatorward
’

propagation of wave cnergy. Incrcasing the magnrtude of K 1

and kl decreases the amplitude unt1l the nrainary standing wavce

cvadent an Trg. 3.1.1 1 no longer visiboe 1 Fip. 3,105,
Equatirons(2.5.5)and(?.5.0)1ndrcate that a decreasc of amplytude

a1 the same point in the domain due to increasing kf and k(

MCANSs an cven more rapid decrcase 1n the steady state onvlgyJ
density there. ’

Dickinson (1969) conciudcd that Newtanian coolinp
may play an important role in the vertical propagation of

Planetary wave cnergy in regions of weak wesforly_{low. Applying

(2.5.10) to the wave structurc of TFig. 3.1.1, it is scen that
o

the term which arises because of perturbation cogling is comparablc
%o the first term in regions where the mean flow is small.
As previously discussed, Dickinson (1973) obtained the vertical
profilc for the Newtonian cooling cgffficient that made this
( :
Q\

v o
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pardweteritatron realistrc. This profile (Tig. 2.1.1) vwill be
uscd 1 oall fTuture computations, The wave structumie of l1g.
) -7 -1

3.1.1 has K [ (5) €10 ") scc but }‘L cqual to Dickinson's
profilce. This wave structwme dostribution may be compared ‘
ditectly with Tig. 5.10.1. Note the sizable decrease in the
amplitude and thus the steady state enerey demsity near the
center of the pramary standing wove.  Since Pichinsan's profile #
for kt mcredgses raprdly relative to (R)(]0_7) sccnl only
above 35 b, an anmportant question concerns the loss in the
s teddy SIJ{U cnergy densaity mn o the 20-25 kw arca.

“ To caplain the existence of the primary standing vayv e,
Matsuno cenvisioned a cavity in the zonal flow that concentiates
wave encrgy there.  In the analogy with clectromagnctic wave s,
1t was deduced that repions of small and negatinnve refractinve
index squared anhabit wave propagation and cause reflection
Matsuno (1970) produccd a schematic representation of ]E,

(Fig. 2.06.8). Wave cnergy undergoes repeated reflections
at the sugroundlng "walls' and ecventually a standing wave 1s
formed. Mat&bno's picturec has bccﬁ reproduced 1n Fzy. 3.1.5.

. It 1s clear now that aﬁy process affectinf the
wave-cnergy in the upper stratosphere can affect the wave structurc
in the lower stratoéphere. The wave energy prescent-at the
center of the standing wave resﬁlts from the cumulafion of
upward flowing wa&b energy and reflected wave energy propagated
dewnwvard from the top layers. When the Newtonian cooling co- .

/ | /ﬂ

/
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clfficrent 1s 1ncreased neay the stigtopamsce, More Lave Cnel ey

- N .

15 absorlicd there and tess 1s left to be J“/:‘Hc‘clvd buack. The
enerygy density of the <tanding wave 1s then sipnificaontly
reduced. Tt scems that yadiational effects, as represcented
by the Newtonran cooling term, can sippnificantly alter the
wave structurce 1n all reprons. Hence, 1t s amportant that

| 4
tnfrared r1adratron be coriectly modeled.

4]
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Fig. 3.1.5 Schematic picture of\fistribution of barriers and resultant propapation of repre-
. sentative rays as envisianed by Matsuno {redrawn from Matsuno, 1970).
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the Raylergh type frictien used o the model s 0
pencrally considered unrealistic in the actual atmosphere.
A furthey drsadvantage 15 that no kpown representative values
of the (oeffi1¢rent ]\( arce avarlable. Tt might seem that the ‘
best procedurc would bLe to lceave out this ternm a1 ogcther.
However, for rcasons which will be discussed later, this type
of firction serves a uscful purposc and so 1t will be kept.
It 1s anstructive to sce how scn;’tlvo the computed

wave structure gs to the magnitude of the Raiylergh friction

/ M .
cocffrcrent, kr. Frg. 3.7.6 shows the computed wave structure
1
. e _ .
with L' - 1077 wc ]. This can be comparced directly with

Fig. 3.1.4 where R“: (%)(10~7) se¢ —l. The affcct ol using
the lower value 1s to increase the amplitude of the primary
standing wave by almost ~25%. Another result 1s the laépc
mdgnlflcdtndn of the two sccondary standing waves present
at lowcyg latitudes. ’ ' |
A modificd picturc of the barricrs te wave cnergy
propagation in the model atmosphcre is needed to cxplain the
wave structurc of Fig. 3.1.0. A proposed model is shown in
Fig. 3.1.7. The secondary standing wave at higher elevations
seems to be formed by ropcagsd reflections between the rigid
top, the equatorial wall and region of small d4./3® . The
secondary standing wave at lower elevations scems tq be formed

by repeated.reflcctions of wave encrgy between the region of small

~3%/30 , tht lower boundary and the equatorinl wall.
. \ )

- 4 -
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reason for the Targe increase 1n the amplitude

of the primary Qtlmlmv wave 18 the increased reflcction £1ow

the artificial *mmliri(‘s. In the

ki
-
I3
»
-~
4

arca of the primmy <tanding

Y

- wave, this reflected wagewe cnergy could interferce constructively
3 .
. witly the wave cnergy propagated up from the lower boundary and
M #

the net cffect would he a large incrcase in the energy density

there. This 1s shown schewatacally i Fip. 3.1.8.
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Fig. 3.1.8

Schematic picture of representative streams of stendy state energy flow of both

wward propagating wave cnergy (#==) and “'spuriously'’ reflected wave energy (—e)
" . that could result in the wave structure of Fag. 3.1.6.
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heaudorn (1971) <tudied 1u detar)] 1he contry ¢
\

the wave structuore usihg the u‘p’pcr boundary condy tren lli‘illk(,‘\al
by Matsuno, the so-cglled "radratiron condrtion) and the same
model using the rigrd top. She found that when usipe the ricid
top some rc¢llection from the top 1s vicible but there was 11ttle
Change in the amplitude of the primary <tandin: wave. Baith

L4

»
thyis an mind Peaudorn concluded that o rigid top at 65 1o Lad

¢

Little effect on the computed wave structurc. lowever, she
uscd the same amount of friction as Matsuno. Hence, not as !
much wave ancy gy reached the rigid top and consoqnent]y‘@nt
as much was rell¢octewl bacl.
. Foldowing Dickinson (1968), and Matsunc (1070), 1t
had heen cxpccloﬁ-lhdi the sinpular e 1n the zonal wiid
profitle nor{h of the cquétor vould pr¥vent the flow of cnerpy
1o the cqunlelallhull. Unfortunnto]f, rﬁ1s does not sceoen

L ]
to be happening in the example of Fig. 3.1.6. Reflcection

»

. by
froQXZIC cquatorial wall is almost certainly the cause of the

scconary standing wave of lower latjtudes. Comscquently, 1n

N

a fini;e difference madel with friction and Newtonian cooling,
»

it is not clear how much energy can flow through thc singular
¢ 1 ' .

v

line to be reflected at the equator. ///

oo~ \f )
To prevent reflection of the cquatorial wall, a com-

pletecly artificial device will be used. By (2.5.11), it 1s

<

seeh that the model® friction orbs an/ amount of energy In
: g

ki
cvery unit volume directly proQSrtiona] to the magnitudc of whe

\ . ¢
b ;

% e o W*WW -
. oA . "
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frpetion o ctoer, } We thon drvade

{
caen A\ 0O

the Jo, o intoe tue
s

20 O -
POy roirs, b Z 3N . vher oot Fyroty oy parbotor s

R
vittually  cro o aud yoyaon b, 6 < »R‘, vhaere the friction

(\)(“1‘ lli‘, 31.0

puoapeter gnarcdases bnea by tovards dhe equaton

Thic s to ensure that no wimve encrgy propapgates to and reflects
from the wguatorval wall. -
A
The wave styucture obtarned 3¢ shown on Tag. 3.1.90 b,
, - .
This result may now bo dricctly compared with Fig. 3.1.06 The

a

maximun amplitude of the primary «tanding wave has decreased

As well, the top sccondary «tanding wave present

*

The scopndary

by ~ 250,

+

o dag., 3 1.0 has @sappeared in Fig. 3.1.9 Db.

standing wave at the hottom has chanped form, Yhere is now 4

standiny war e that piotiudes anto lower latitudes in the arcea

0L the tropospharic jet.  This will be shown later to be a

correct and wantoed !ﬁunmc of &the amplitude distiihution.
i

- . ;
‘ Without the dbsorbing layer B next to the equator, the

amplitude distribution was yery sensitive to 'small changes -

' ¢

S . .
. 1 }\(. This can be scen by comparing 1a1g. 3.1.0 to lag. 5.1.4.
- W‘\
With the absoibing layer B neat t& the cquator, the amplitude
was no longer very sensitive to the magnitude 'k{. When L1
-9 -1 N -7 ~1
i region A was increased from 10 sec (2)(10 ) scc
very little decrcasce in the amplitude dpétribution was obscived.
The computed wave structurce of Ijg. 3.1.9 1s now
% assumed to be free of any gross defedts in modeting. Sub-
scequently, it 1s considered to be a (fairly 1calistic solution
(‘ o -
- e
w— -
) ' . !
) ' - ;
st s PUNRERRRRRm S o " et e -
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in (a) and \t equal to Diclanson's profile
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to the problenm. It o« anteresting to conpare the

coppitca
) »
wave sgructure ond apparyent encerey flow with the distrihution
o2 7
of I] (Frg. 2.0.8)0 Particularly, 71 18 instinctive to sce

v the analopy with the propagation of (lectionmonet 1c waves

(scction 2.0 ¢) seems 1easonablc, B

‘ >
As belore, steady state enerpy flow 1s deduced in u

qualirtatrve manner using (2.5.9) and (2.5.10). A quintitative
computation frow stmilar wave struclure distributions was done
by Matsuno (1970) In reptons where wave encryy 1+ propagated
. 2 : 2 .
from Targe Iy into smaller 147, the wave cnergy 1s refracted
. 2 . ‘
away from the normal of Iy 7. Conversely, when wave cnelygy
b
; 1y - ¢ 7 7
is propagated® from omall 1) ° to larger Iy ", then waveé energy
is refracted towards the norwsl o The above offects result in
L]
wave energy {low that 15 upwards and cquatorwards. As well,

thgestrongest cnergy flow is around the repgion of swall 33 /38

. *
3.3 lorcing wrth a Point Source in the Integration Domtin
. The wave numbers 1-2 interaction acts as a source

for wave number 1. Likewise, wave number 1-1 interaction acts

as a source for wave number 2. Thesce interactions may be

regarded as internal sources to the lincarized model ecquations.
To see how the non-lincar interactions at various points in
the domain could possibly contribute to the wave structure,

the responsc of the lincar model atmospherc to forc?ﬁg from

internal sources has been studied. This is accomplished by

-

.
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, a4
cquiting the entire rapht hand of (2.2.04) to 107 /o
onc gryd point o and cero elsewhereo This 1o cquiveiont 1
- 4 7 2 O i
placing a point source =of amplitule 10 m" /oo™ at 00W sore .
1n the meryadional plance,

®

In the previous scection, 1t was established that all
wave cenergy ancident on the artificial boundaries 1s rchCftcd.
An cner gy nh“mt"lnng layer neat to the cq“ﬂ:ltg)x" prevents wave
energy frém reachimg the wall. 1t was scen in Jig% 3.1.60
that reflection may occnr from the “ragid top" as well. 1t
will bhe shown that this can be ynlrllculxa1]y' anorllnlt when wave
cnergy 1s Qprlvud from a non-lincar 1ntcraction ncar the top.

L4
For this reason 11 was nccessary to place an cenergy absorbing
laycr neat to the rigid _top as well,

In an c¢ffort to prevent reflection of wave cnergy
from both artificial boundarics, a distribution of kr shown
m Fig., 3.2.1 will be used. To further study the cffect of

wave cnergy reflection from these houndarics, the wave structure

resulting from a point source was computced once with kf = (2)
-1

(10_7) scc and again with kf cqual to the distribution of

Fig. 3.2.1, To facilitate comparison, the distribution com-

4
puted for the former case is.placed at the top of the page and
the distribution computed fof the latter casc is placed at the
bottom of the page. The position of ‘the source in the meridional

planc is marked with a e (éee Figs. 3.2.2,/3%3.2.%3 and 3.2.4).

Many experiments were done with point sourges represcnting a
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‘ nen-tTinoar anterac tion placed gt various posatrens an the 1er -
“dronal i o mord precentinge an excessn o oapount of

N

material, only ropresentaiie distrihutions willohe shown here

Hovever, all relavant results will be discu-ced hrrefy Fnerpy
L)
¥ flow 15 1ntarred tnea qualitative manber usine (J05.9) and .
2:5.10).
‘ ‘J? In cach caample, cnergy flows 1o a non-i1sotroepirc
5‘
manncet away (1om the source.  Thero alvavs exists standine
wave centered at the same position os the somce. Also, a
1 standing wave 15 always cvident centered at the same position
é‘ ) N
1 as the promary standimg wave tn the examples of the previous
] .
! section.  Agarn, 1t would scem that waive cnargy that 15 pro-
4
pagaled into this wrea 1s trapped by the cavity Tihe stiucture
in the sonal flow there. llencco, a standine wvave forns.
When a source wae placed inoan ‘rcu’whoxc the mean
i flow was casterly (nepative and larpe liz), cneapy flow decayed
rapidly and very little amplitude resulted at higher latitudes.
b .
v “1f a source was placed in a region of weal westerly flovw (large

2 .
I, ), it was found that wave encrgy propagated readily throughout

.

the atmosphere and the effect on the amplitude distribution

could he appreciable. GConverscly, 1€ the source was placed
o

2
1in a region where the zonal flow was large (negative Iy ), the

-

amount of cnergy flow was small and the resultant amplitude

rclatively small.

In Figs. 3.2.2 a and 3.2.3 a, reflection from the top

o

’ 2 e ~ g
( results in a standing wave ncar the top. This cffect was scen
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Corpuited distribution of The amplitude (€ ) and phasc () of \4‘ m the model
atrosphere subject to forcing frun a pomz sources :!mp]lrudt' 10* nrsec? wd
phase § radidans with b f" (35107 ) see™d ant k( il to Dackinsun's profile

Sanc as (a) except with kr tqual to distribution <hovn 1n Tag 3.2.1.
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. Before 1 iy 31000 Traso 5 200 b oand o 2.3 bodo not ha
th  feature, indicating that i (lection Sfrom the top ts nel
. ‘

Gocurpng an o obvious wav, Anctiher interosting feature

> -

1o the emall dpercedane an thowave amplitnde near the tep an
Faps. 5.2.4 L oand 5.0 b (\\'L‘;' Pigs. 3.2.2 4 and 3.2.3 &,
respectively. V -

Apaon, o Dilely oplanatron for this ¢f fect Tres
in the presence of warve cnerpy reflection fron the pigid top.

. y

The mportant question s he 1celative mapnitude of the
dreflected” wave encroy {low and hq&' (1 anterferes with the
tpyorma 1Y wave energy [low. {63 the puwipose of this discussion,

et us constder Tag. 5.2.3 as @ pecibic caose In g, 3.2.5

d,
! the vave cnerey reflected from the 10D 1n1v:fcrva with wave
enerovy propagated upward directly from the source. The resnlt,
)
iy the standing wave near the top where the interflerence s
constructive and the low amplitudes where the mmter férence 1s
more destructive.  lowever, in fig. 3.2.3 Db (1f the absorbing
laycer near the top 1S functioning as 1s hoped), no reflection
occurs from the Lop~und this c¢ffect 15 not scen.
In Fig. 3.2.2 b, w;vc energy flows southward below
the arca of small 33 /30 and northward as well as upwards around
the same arca of small ¥d/8 . In both Figs. 3.2.3 b and
3.2.4 b, wave cnergy flows away Trom the source in all darections

but the maximum flow 1s downward, northward and arouPd the

. same arca of small 38 /30 . 1n each cxample, wave cnergy

'
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tiapping occurs wheie fy s a rclative maximun (65N and 2 6

Fm) This 1s consistent waith the rosult: aof the Previons
scection. d .

Frg. 53.7.5 <hows the wive stiuctuie of wave mmbos
obtarned for o point <omwmce located at the mid-point of the
merivdional ptance  Jhis distyibution may be comnared with
Prg. 3.2.3 b whadh os the ecquavalent situation for wave nunber 1.
Ore important difference ;x the lack of any obvious wave '
trappang by a cavity-lile stiucturc an the sonal flow. Alwo
tmpor tant 1< the fact that wave encrgy for wave nupher 2 doces
not scem to propagatc as veadi Iy throuphont the repion as vave
cnerpy does o1 wave nupber 1. This would indicate that )ﬂlw

Z s aE "
vadues of I " (lose to the source arc penciaily bolow the
criti®al valuce needed for the free propafietion of wave enct ey .
Thrs means that ]ntorachng waves that act as o source of encioy
for wave number 2 probably result an wmore localized changes

»

to the wave stiucture. «
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CHAPTER 4

COMPARTSON 0] THE WAV STRUCTURE ORTATNID

FRON T LINTARTZED [OQUATIONS ARD FHIEE NON -1 INLAR TQUATTONS
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~ . .
g . 4.1 Prelivoannies .
N Follovwiiy the procedure outlined n Lhipter 7 AUy 1]
1 .
% colutions to the wave stilcture equations vere found.  The lower
g boundary conditions are the January, 1907 500 mb distirhutions ’
]
. ¢ v - - - .
7 (Fig. 2.51). The actual January, 1907 zonal wind distiibution
ts unknown soa limmatolopical distribution 15 used as a basic
. *state.  For reason. previously discussed, Matsuno's zopal waind
- ¥ .
: distirthution was chosen. _The Newtonhtan cooling coeflflicient
‘ A
(kl) was sct egual to Dichinson's profile (frg. 2.1.1). The
frictiron parameter (kf) was grven the distribution shown in
+
‘ Fig. 3.2.1 for the rcasons alrcady discussced an Chapter 5. The
i .
3 . . . -
" solutions wereé found for both the Tincarized cquations and .
Al
. complcte non-lincar equations. These arc compared with both .
! Matsuno's computed results and the observed state of January,
¥
H l()()7. -
¢
: ]
¢ A possible disadvantage of the k( distiibution used

1s that 1t excludes the possibility that encrgy derived at

N

lower latitudes (rcpron B) may contribute heavily to the cnergy

of the perturbation at higher latitudes (region A). This includes

both the wave encrgy forced up at the lower boundary and cnergy

derived from non-linear exchange. ILven if the reflectuion pro-
WO

blem at the equatorial wall did not cxist, this‘ﬁrofifc of

kf may be nceded since therc is considerable doubt as to the '

applﬂcab]]ity of the quasi-geostrophic equations at- lower
latitudes. Hence, 1t is doubtful if fthe non-lincar terms may '

( ,

. P
)

| a—
\
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he properly estimated by the presceribed procediffe.  The resultane
wave structurce could be shown with a ercater degree of con-
' ~

Mdence 11 1t could be assummd that the steady wtate encrgy
distributron of hioher latitodes is a result of wave cnergy

derived mostly from higher latitudes., <

This assuwption was V(TlTl(d by numerical v\porlmcntlrlon

¢

—r

‘when the absorbing layer B next !%'thv cquator was not usecd.

'Thq wave structure was computed with the lower boundary con-

ditions (lig. 2.3.}) and again wirth the cquivalent, profiles

but the amplitude sct equal to zero at Tatitudes 309 and below.

The contrast 1n the wave structure ovoq-ut lower latitudes was

very small.  As previously discussed, the 1teration method for

solving the don lincar cquations was unstable.  Thi's was caused

by the cxcessive valuces generated for the non-lincar teims in ,
p

the vicinity of the singular line and near the cquatorial boundary

(where appreciable reflection was occurring). llowever, only

after the sccond iteration did the magnitude of the. non-linear terms

become so excessive there that they contaminated in .an obvious

wvay the wave structure at higher-latitudes. It will be assumed -

that the true hagnitudc of the non-lincar terms at lower ]atitudcg

s comparable to or less than the values obtained after the

first iteratign. Under the limitation of the above assumption,

it can be¥stated that encrgy derived from the non-lincar cnergy

v

éxchange at lower latitudes docs not contribute to the wave

structure at higher latitudes.
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;:*h . ) . The obscrved wave structure 1s 51110\.11 m Fig., 4.1.1
%\ and 1.1.2 %or wave nnﬁhors 1 and "2, rosp;ctivfly. Wave numbey
‘ g‘f 1 shows a sranding{kﬁvc extending towards, lower latitudes n
L ~ ) -
o v the region of the tropospheric jet,. In the arca 15-20 km, thé
i» amp i 1.udc decays rapidly hefore it incrcases again to form a
? standing wave centered close to 30 km and 657 latitude. Yronm
‘ the (‘(‘.ntcr, the ampla tude decreases rapidly 1n cach dJrcotion.’
;
i ThC phasce increascs with height and decreasing latitude. These
; same featurcs,are also present for wave number 2 but to a lesser
E degrec. -
% Matsuno's computed wave structurce is shown in ig.
a ‘ ’ 4.1,% and 4.1.4 {or wave number 1 and 2, respectively.  The
‘ - computed phase 1lines show satisfactory agrcement with the observed.
'?Mmparjng Figs., i.l.S and 4.1.1, onc secs that Matsuno's
cgmputod amp]jtﬂdo for wave number L misscs scveral impoytani‘
E {éatd?os. Thc computed standing wave extondiné into the arca
) ‘ 1 of the tropospheric jet is vyery weak. As well, Fhe zone orl
| minimuw}amplitudos at the 15-20 km Tevel is ﬁissed. Matsuno's
: 1 . . ,
c0mputoé distribution has a standing wavo’centercd at 65° N
and 22.5—km with maximum amplitude about.IGO m, The obscrved
! amplitude of this point ig 85 m, almost onc half. Comparing
Figs. 4.1.4 and 4.1.2, it éah be seen that the major fault with .
Matsuno's computcd amplitude for wave number 2 is thelow values
. ’above 20 km. In parficular, his.computed distribution docs not
- “indicate’ in any way a tendency to reproduce the secondary maximum
o (} present at 60° N, 25 km.: In summary, Matsuno's,ﬁbdel reproduced
\ » o ! ) - L g
' ¢
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4

from some seriove defects. . V
. . , , Yz
In Chapter 3, we have shown that the e]iny’r/nation of .

‘1 // 2]

reflectijon from the eqratorial wall, reduced the 'nplitd_d/c of -

the primary- standing wave. As well, the sccopdary standingN\
- M i

wave protruding into the region of the tropospheric jet was
' 1

accentuated. Therefore, the discrepangy between the, computed
S Al * *

and the observed state of wave numb 1 is decreased. The

remaining discrepancy could be. axtributed to scveral factors,

i B -

R ’ .
‘ave Structure - Model A

The wave structure of wave number 1 and 2 was computed
<ing Model A. The wave structure computed from the linear

| 1N /equations only is shown in Figs.4.2.1 and 4.2.2 for '\T;ve number

' / 1 and 2, respectively. This wave 'structurec reproduces the
cssentia)l fcaturcs of the-obsérved distribution quite well.

i h Tﬁe phase lines are in satisfactory agreement. 'i‘he major dis-
;repéncy is the lack of amplifuds:of’both wave snumber 1 and .
"wave number 2 in the regien above.20 km, Also, wave num?er 1

' .ovqrestimatés thq'amplitude in the region.15-20 km.” Including

) . the non-linear terms results in computed wave structure fields.
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4.2.6 for .wave numbers 1 and 2, respectively.

s

that are in very good apreement with the observed state in
almost cvery major featute.  These fields are shown in Tigs.

- . ¥ ! M “vv
1.2.3 and 4.2.4 for wgve number 1 and 2, respectively. "The

c

only major defect is whe continued lack of amplitude for wave

A J

) ) . .
number 2 ing¢the 20-30<Sm arca.  llowever, 1t 1s significant to

note that the inclusion of the non-linear terms does act to
reduce the discrepancy.
a x
1o the wave structure due to the

The contribution

non-Tincar 1nteractions is shown separately in Figs. 4.2.5 and

For wave number

v

1, almost all the amplitude and hence the cnergy density is

concentrategd at higher latitudes. This is a gesult of the

. -

cavity Jike structurce in the T 2 field. This is not truc
by ! A i

for wave number 2. The amplitude distribution is spread mone

. 4
cvenly throughout the domain. Wave cnerg*{is not concentrated o
in any onc region by the Izz field. . o
9
1 p , /
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® 1.3 Kave Stiuctuie - Model B
The wvave structure obtained from the lincar:oced

cquations 1s <hown in-Figs. 4.3.1 and 4.3.2 for wave number

f ‘

. o
and respegtively. The wave < CCO *d Crom the
1 and 2, pegtively ] HR! trug ture computcec {100 )
. non-lincar CQUJTIODS'IZ/ShOWH i Frgs. 4.3.3 and 4.3.4, respec-
tivolyf Irnally, the contribution to- the wave structure duc to

. v » 8
the non-limecar terms 1s shown in higs. 4.3.5 and 4.%3.0 o

wave numbers -1 and 2, FOQPCC{jVOIy. |

Looking at Jigs, 4.3.1 and 4.3.5, one sces that for
wave numbet 1 both the lw1671;y forced up from the lower boundary
and cncer ey devived from notblincar cachanpge 1 conécntrutcd n
the vavity like structure at higher latitudes. At the .centyc
of the cav1ly,'650 N and 20 hkm, phc amplitude due to the non-
Lincar terms 1s 40-45% that duc solely to the }1noar terms. '

(g

For wave number 2, the contribution of the non-lincar
terms (Fig. 4.3.0) is much smaller than the contribution of
the linear terms (Fig. 4.3.2). ngnificantly, most of the
energy derived from the-non-linear encrgy oxthange seems  to
be wcékly concentrated §in'an area centerced at 60° N and 30 knm.
So the non-linear terms do succeed in incrcasing the amplitude

s ©0f -the computed wave structure there. This reduces the dis-

crepancy between‘thefcomputcd and the observed state.
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4.4 . Discussion ‘

For wave number 1, both modelsypave amplitude dis-
tributions that rescmble the corrConnJiEi obscrved state in
the most vssential features. The computed amplitude given by
the linecavized Fquations is pgencerally underestinated by Model A
and overestimatéd by Model B. Including the non-lincar‘tcrms

\

results in amplitude distributions that resemble onc anether
and also reproduce most of the major feuatures of the obscerved
states As Tar as the ‘distribution of the phase fuctor 1S
concerned, the agreement betuween obscrvation and computation is
Ssatisfactory. Above 30" kms, the computed fields of the respective
npdels diverpge from one another. -Model A predicts. thdl the
phasc increases mu?h more rapidly with height than Model B.

lor wave number 2, the computed amplitude resulting
{rom the linecarized cquations is generally the same for both
models and is lower than the obscrved field. Including the
nqp—linear terms reduces the discrepancy only slightly in Model A
but fairly substantially in Modgl B. The wave structure given
by Model B dgds reproduce almost all the major featurcs of the
amplitude distribution although'%he computed amplitudes pcrsisg
in remaining too low in the region above 20 km. Again the phase
angle distribut}on ;hows satisfactory agreement with the observed
field below 30 km. Above 30 km, the computed fields from the

respective models diverge from one another.® As before, Model A

predicts that the phase increases much more rapidly with height

$

than Model.B. ’ » - | . ¢
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. ., In cach of the wave structures from both lincar and
. non-lincar models, the phase increascs with height and decreasing

lTatitude over most of the meridional pltane. This means the

. . . . . 4
trough and ridge axes tilt westward with height and shif{t west-
ward when going t()wm}l the equator. Using (2.5.9), it is

scen that @Wa 3 0 an 3m/38 £ 0 1ndicates a horizohtal flow

EPLCT

of cnergy taward the cquator. Similarly, (2.5.10) shows that

r @ 2 0 and wAE¥N ndicates an upward propagation of wave

-~
5

energy.

Aq was previously scen, cnerpgy of wave number 1 flows
upwérd, oqu:ﬁ;nwvnrd and around the arca of small /30 . For
wave number 2, there is a compurnt}vo]y smaller amount of cncrgy

flow upward. This would indicate that ]72 (scc lig. 2.0.9)

/decreases quickly to below the value necessary to allow for the

e v e

free propagation of wave cenerpy and no strong wave energy ducting

or trapping is possible. Note that the 122 0

Fig. 2.6.9 and
the rcsultamnt contribution of the non-lincar terhs for wave

number 2 (Fig. 4.3.6) scem to indicate that the \ del B atmospherc

D : may tr?p encergy of wave number 2 in a weak manp€r. This results
in a tendency to reproduce a secondary @aximum of higher
elevations (Fig. 4.3.4) in\% manner‘consiétenﬁ with the obscrved
‘ field (Fig. 4.1.2). .

N ) Model A predicts the ve}tical tilt of a system to be
o . much greater than Model B. As I"F decre;ses with héight,‘the

free propagation of wave energy.is decreased until some critical

() ' value is reached below whith the propagation of wave energy is
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thib;tcd and the amount of réf]oction increases. The upward
flow of wave cnergy is greatest between the region of small
d4/38 and the north pole. Figs. 2.6.0 and 2.6.7 Shéw that
102'dccroaso< with heipht less rupadly.for.MUQC1 A than with
Model B at these latitudes. Thus, more propagation of”wévo

cnerpy 1s allowed 1nto fhf/uppcr stratosphere by Model A, This

Tesults in a greater tilt of a.system and' a morc rapid dncreasc

LY

of phase with herght.
Wave energy derived from the non-lincar cxchange is

predicted to be of the same order of magnitude by hoth models.

However, the ro(;su]tfng wave structure distribution is quite

different.” [lor wave number 1, both models have the mechanism
by which encrgy is concentrated in a cav1}y-likc structurc al
higher latitudes. Model A allows morc wave cnergy to bé pré—
pagatcd'thfuugh all depths of the stratosphere, thlc Model B ,
Conaonfrates this energy‘into the lower part. As beforce, this

is the result of the distributions of Iiz in the resRcctive model
atmospheres.

It is intercsting to note that it is wave number 1 that

o

'is the most affected by the non-linear energy exchange: The
most likely reaQOn secms to be that wave number 2 does not have a
12? field that readily propagates, du;ts and concentrates wave
lenergy. This is perhaps the reason why not enough amplitude

could be achieved for wave number 2. . .
¢
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" A different representative winter zondl wipd profile

may yield a significantly different result. In an attempt

to sece 1f this was the case, the zonal wind profile of Fig.

2,6.,2 was assumed as the basic state for Model B. The wave ¢

? e
3

%

¢

.structurc from th& lincarized cquations exhibited cssential

similarity wfth the correcsponding observed state. The most

result- was obvious wave trapping for both wave

.

crally, the lirear Model B with this hasic state - .

significan

v ‘ [ 4 ’

- numbers. Ge
-

reproduced the wave structure for wave number 2 better than

‘thé/;bn~lincar Model B with Matsung's basic state (Fig. 2.@.3).

Unfortunately, the iteration method of solving the non-lincar ;

'

equations does not scem to give reasonable results for this

o
1

basic-statc, +The 'difficulty seems to involve the prescnce of

ERer

the gingular line at high Jatitudes. Excessive values arc .

w

generated for the non-lin€ar terms in the vicinity of the singu-

o &

lar line and the iteratidon method does not give convergent
g .
solutions. 1t would seem that the method cannot be applied to

.

/ 411 zonal wind distributions.
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‘ . A Newtonian cooling term was used to represent the ’

-

2 temperature on the net cooling rate
. .

effect of the perturbati

: due 1o infrared radiation. This term scems to have an imgortant
3 3 , R ' PR
B . effect on the prapagation of "wave cenergy in regions of weak

4 -

wester ly flow (pp. 53-58). It was found to représenl an important

’

sink of wave cnergy near the stratopausce where the Newtonian

ooty

g . . coling cocfficient gncrcases rapidly (Fig. 2.1.1 ¢). The nct
: - . ;

; 2 ‘ N ) - ) .
€ - result was a decrcase in the steuady state encergy density of ,

the pcituTBatlon 1n all regions of the stratospherce.s The greatest

I\
‘ change in the amplitude distribution was found .“to occur in

the lower stiatosphere.

‘ The intensity and the meridional variation of the
*
[ 4 I3
zonal wind affects wave cnergy propagation and the resultant

-

,Steady state cnergy distribution in a dominant manner. The

PO

propagation of perturbation wave cnergy in a zonal wind fiecld

N

Seens to be analogous to the transmission of clectromagnetic |

‘ i

- 3 -

' waves in a hetcrogcencous medium. Conscquently, one parameier

.

[

that scems to bc a good indicator of thc effect of. the zonal «

. * Wwind distribution on the ‘perturbation wave cnergy is_ the
. Q -

J [

E ) effective "refractive indcx" of the "basic statc. This parameter

is influenced primarily by the magnitude, the grgdient and the

curvature of the zonal wind velocity in the meridional plane.

7

. Analogous to the electromagnetic case, when wave encrgy

is propagated from a region of large refractive index squared

. R (O s

to a region of smaller refractive index squared, it is refracted
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crther medn~1 cepe odaces the ohiserved Treld mn almest cvery

major fcaturc. Jhe only excoption s the centynuced lack of
amplitude of wave number 2 at 20 km ond above. Modcl B docs
better thun Model A here. It gives a slightly bigger amplitude
and almost reproduces the secondary maximum found in the observed
ﬁmplitudc distribution of wave number Z in thG-ZS kim arca. As
well, Moded B reproduces the phase lines a little bettcer thun N
Model A an regiont where observations arc available. Above thc re

30 km level, ‘the respective computed ficlds diverge. Model A

gives a phase angle distribution that incrcascs smuch more rapidly
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with hovght. Tt was found that encigy devived from a noa-linear
exchanpe seems to be readity concentrated duoany cavity-like
structure 1n the ?dnAl flow. So the wive energy density can
be considerably altered when the non-lincar rerms e imnciuded.
For wave number 1, 1t scems that the non-linear teres have {hCIF

. .
greatest effect an the arca qust above the tropopausc. In

.

this arca, both models prodict a an_ck?ccrcuxc noanplirtude
when the non-linear terms ore ancluded.  What offect this has
on the strength of the upwnrd ffow of energv s diffrcult to

ascertain in a qualitative sense. 1t would he desirable to

catend 1]111& study by computing the cncrgy {low using hotim
lincar and non-linear models in a qlm‘ntltnlwc manner. By doing
so, onc may obtain a better understanding of how the tropopause
af fects the upward flow of energy into the stratosphere during
wintertine,

“The results of this study demonstrate unquestionably
that the non-1inecar interaction, of the stationary ultra-long
waves in the stratospherce can be important. It 15 concluded
then that any modcel dcsigned'to study the wltra-long waves in

the stratosphere must inciude the non-linear terms as thesc waves

cannot be adequatcly represcnted b)ﬁ purely lincar models. .
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Model A

I'le poverning equation was shown to he (equation
2.1.135 a)
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The Fourier capansion of the perturhation_gcofaotcntja] in terms
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ma2 l
B0 = g5 ualede’™ | 12
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A Substituting I-2 into I-1 results in the equation
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IR TR R
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w2 ke2

f él‘r oK Xk i) A
(k )éa?bé_é OSG k) _cos"G‘q— +M°(3122;k 7"-:\)‘(() S ‘

N— nz-2 he-2

w0 K#0
A m=2 k=2 ( akk) . 37-1} ,q;k' ejammﬂ\
e wm COs ° —_
KZ Z (:Y‘ﬂ ¥ 59@05989 S—é Zh( M ( Eik Iw:)
. m=-2 k=-2{ . o
mE0 Ko
where
f- ' ud = (ﬂ,_gf . ®)
- N . ) 1-3
C e )
K - ‘q’,,o.'cosee . (c)

NDefining fh5~opcrutor “}rﬁ

Lk coae g'é(“’se Tl cos (3'2— '?%‘T:) 1-4

&
_ . . L. . Al A .
and extracting all ¢oefficients to @€ where m ¢ k =31

from both sides of the equations results in the following

expression for wave number 1,

: . 2 wre 7‘h )
Q(H"‘-“’ ‘6‘3@%@("“9 3"+) w——sz—-é"'\r) +ﬂo@k+kw§(§§ +2H

. - ék aH 2 3Ry {3 ."\"-il~ | -5
‘ , & + %geg-é 2“" S-j 39‘ +j-*c é—i‘(s.z— + 2_9‘) ’(a) I

IR FTET SRR T, A S R e
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and for wave number 2, m ¢ Kk =

2, \
( v 24 w}( (cosBm“) -J-Telr} o (\}t\'zhl&m L 7*1 A \{,)

24 3% ke 3, 2 3k [ ‘
¥ J; 2y, ¢+ 2%F A AL ( zn) (b)  1-5
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Jave Structure ]qum ions
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The governing equation was shoun to be

Q‘“ “’“@@i’) Q“ TS \P Az(%%@j %" z(%%%%‘)

v l 513@'\3@ Skr o £ ki dd .
+.¥G 2cosB Y: iy *f‘;‘lgg PY:) +§1."'i Sz P (a) T1-1
. —— 33'd (cos8 3B _ 1 T3 aY s, £3(P 33
T T Anen 30 &(?T\T@ 'S'é) otcos@d\ 9B %\__ 2+ Paz N“§2)

- LA zé__%
. ?qzcose(sa é@(\/@) o Cose( QN PO é"i!. Nt 3%
! N ,

<

¢

A
where the opcrator V. is defined by

V= oeblriedl - e l). o ©

A

As before, the pe}turbation geopotential is written

\

A
FA02 = 94*37Z LTS (B ﬂﬁ’““ - I1~2
mea-2 ¢ .
meo N h
3 : ‘ - b
: Substituting II-2 into II-1 results In the equation

]
a
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mz k=
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where . -
2.
2 !':_9_) 1
yn ‘(N _ O
S
{_LL______% ZZ“: ((_‘)
Q*COos
.~ ) m . ’ A
Defining opexators Mm and N,
[Ct — -268 coud ‘ mlz 23t i
m 7 .50 smfe?e} - C05%0 A (S’iz"’ r\_\i) (a)

Y D (cos8 9 Qr _ 11-4
Nm"“"meg'e@"“ég'e( mg SW—_TC_OETQ ¥ A S +

q (b)
t

“and following the same procedure as in Appendix I, the following

equations are obtained:

L




. R e e poe ¥

Waye Number ]

- o S o5 0 é-)# — ! !
(ke 2 ofonts o250 ~ o wertfBy(§3 + o)

e M 4 e da (3,
+&s oy SR 37 (éz ' ?.H)

=l ez e a2 7‘*5*”"‘(‘”@}

(1) 11-5

Wa ‘{E_NU“,‘)_’,E‘ r 2

an'B o cose 87+ %
Q‘v*“‘*’)@me 38tz 70 ) - osteq)“‘ (}’2* jyé)z S r A,né

:\fg{ % (% (M 2)- i ‘Lr)} o)

o

N




APPERDIN TIT

< Upper Rounda1\ Condition
The upper boundmry condition 1s formulated by using
the therwodynamic cquation (2.1.5 h) with (Z.1.12) after assuring

a stationary state (i.c. g‘t = 0) and a rip1d top ('QV' = 0).

The thermodynamic equatioh bhecomes ,
“in N ! ‘
V-V(i—%): %C.-—kt%%, 1171

Using 2.1.8 and expanding, onc obtains

—~ 3p3 3 (3% _ R — [y S . vialaa _
(“t*“’msz R r.) o Cr = (5‘@3‘1 as)s* Hi-2

2>

where the lincar terms arce kept on the teft hand side and the

non-Itnmear terms are kept on the right hand side. Using ecquations

{

2.1. 14i cquations T11-2 Dbecomes v
AW R - .
(“t* Rt - 3 52 —;CV« s

3 >%)3 22
fc; cose[(gé é.) )c)atal) .
Using the Fourier expdnqlon for §> Ilbquationsz.l.lﬁ),

m

Ll tiehfe Re

me-2 ”
MmO -
& B o o a2 A . Ty Y], < ek
KZZ{ (N + ) o ”"“:e( \ } :
:\’0 k*0 ‘ B }
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e | 111-4




) I3
T e L CEORMEE L R TN IR SR TR IR ¢ > S R 0 LA L s SO W TR
: . ; \ '

’ - 111 -
AN
. Procecding as bhefore, the upper boundary condition (o
cach of the component wave numbefs is found to he

Wave Numher | | “
CBlh . h Awg}é? \ i
‘gi— 7—Ho haid N *‘i:‘- 4 ,
. i A
, S o X e = :
' Wy~ kel DB \dZ 2W 236\3@ " 24 (a) '
S . WU, , u 1) b ) ’
. +Z§6'(*z'*f@+ e z‘fﬂ :
4 i
Wave Number 2 ;
| e e 111-5
3 L e 2 dDg /
"i JZ 2, 20g ARy O e * (h) |
. _ v B a‘):.‘. 7,*. 3 é-’-h Y,
’ - 20&—&&( ( ot \-k) lh)e ot ZH)

where -

()

A elzv, ) . R '
K - 2q’cose . ) (c)

For Model A, f is replaced by fo

o
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As before, the perturbation geopotential may. be written

‘ (Esjm'z AvA o - ‘
¢ ¢ @'(e,)\'z) :cie_ 2% [ %m(e,z)e iv-1
- me=2
and the density is given by
B “ _S -
T =t = DB (!“:) V-2
| T U - -\ e .
\
The volume in question is bounded by _
e@ 0. £ B8, o
ZEZEE o g V-3
OcA&2T | :

4

Perturbation Kinetic Energy

EA

The perturbation kinetic energy is

_I{:,; %.f?(uﬂ.; viev | | V-4

\'

Using the geestrophic assumptions {equations . 2. 1.14],

Ky=4 [1 a§ #_L__%a)) v \'W_S"
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- ': Substituting equations IV-1 and 1V-2 inte JV-5 results in the
2 , capression
‘f' - 8‘ [ 3% A 2 ke
: 1 AN
. ~-91% é J B’L*\ﬂ Y- G{'T) Almriia
\ v~ mu ?Q Zf COS‘G m Q C%eaga)&l
H w2 Ke-2
! mi0 k0 .
f 8 %00 4 V-6
§
H
: The intcgral around the latitude circle issnon-zero only when

m = -k, so that . .
Ve
// - .
Y. : : 2 a%dz
Sokse) + Zrbrtm))ateose "
1v-7
In terms of the tude and phase of 4y (cquation 2.1.18 ¢)

C pa%m V-8

tutaing I1V#8 into IV-7 results in the following cxpression.

f klnetlc en rqy 1n 4 volume in terms of the amplitude and phasc

\
1

2 .
P
el

6z, V-0

Perturbation Available Potential Energy

! / | P\,ﬁ fg(gi)dv .o IV;IO

oV

By the same procedure as above,

© 312.
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Horizontal Energy 1'low

?
The horizontal flow of energy through a

vertical side of the volume is given by

©og, W
B 5.9 3% cosp ai =12
HF\UK~Jjﬁwﬁ S 56 cosBdz Iv-1
lgo > \
Procceding as before, ,
Heo = %(cosez m@p Cn 5——) v-13 -

bt
-

‘where the quantity. in brackets is ayeraged over Az .
<

)

Vertical Tnerpy Tlow 5 .4

\/ = ?w' 3 a®cos® dedA ’ TV-14
Flux ) T )

9, @ /'\7

where the vertical velocity is eva]'natedb"by using thc steady

-

state thermodynamic equation; ‘ ’ .

’w‘:“N( RCR.*.VV%%"*\{t%%.)- ' K .'..

e

Using eqﬁations 2.1.8 and the geostrophic assumptions (2.1.14)

| Q'z_éﬂ,(;goc. ran3(B) - Er3Y vk %};_)

> , R non\memr {:erms

¢

py
s\

v

N
“
- v

Substituting into IV-14 results in the expression

Vn“ J[L’ ch—ung)(ﬁ}, awnéﬁ kﬁg)§ a 'coseded]

IV-15
+ terms ar15°1ng from non- 11near 1nteract10ns.

-
o N . .
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he second term on the right hand side may be written n a

¢

bBetter oy sinece

LEY)- e ).

-

t

Substartuting the above anto V=15 1csults an the following -

pression; .

g, 211

\/F\Ux:g ‘%i R C @ wﬂa)\@.’ C\f) b e %‘gl %d; k\ l Qﬁ’— QlcosGde)

toterms arising freom non-Tinedr interactions,

9, O

After antegratihy around a tatitude (‘Jr{lo, the

Mirst and scoond terms give no contribution. Therefore,
Q, 21
? d
- i <i> D)
= —_— —_ 5
Vi _( Ni( K §> atces0dQq
evo

+ terms arising from non-linecar intcracljon;.
/
« Using equations IV-1, TV-2 and TV-8 and proceodlnp
¢

in the same manner as before, it may be shown that

v
1) ]

2
— TP’ ABcssd écﬂ Cen
Vet = HoN? 6"“’ N )

. + terms arising {from non-linear interactions

TV-10

F) el

where the quantity in brackets is aversged bver AG.
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Rate ol Imerev Locs e 1o Friction
Tht rate of

‘“friction is

! 2
<%<—‘Y) fﬂ‘\r\_\on: - k{"?(ulz*vl )dv o

<

Alter procecding 1n the same

(c) Ky ) - T3
at Y‘\(_\_.\Dﬂ H

1{_:11_0 Qi }nmwv ]c_)_s;%_*l}\x_(;_pg 11 ﬁugcd Coo]l nw

. 9
manne T,

O, % 2

The rate of 1ows of

mmfrared cooling is
Y 7 | (a8)av |
ST ‘ﬁzkt(aJ ’

v

After procecding in thc same manner,

Y

loss of perturbation wave

) i ) 2

LR W-18
= Dcw)ozcose Jdode

verturbation wave

energy due to

=17

cnergy duc to

’

1v-19

1 N
(%_P{\_/) = - TF?Po }:‘&(QCM + C2 (é;_?:_“)}ozcose d@éz“ 1V=-20
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