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Abstract

I designing compilers for high-performance computers, the development of program
analyses and optimizations are of fundamental importance. In order to perform so-
phisticated code-tmproving optimizations, it is essential to: (i) design appropriate
intetmediate representations, and (i) develop advanced program analyses on these
nermediate representations. This thesis deals with the development of structured
intermediate 1epresentations for the programming language C, and the development
of a framework for the implementation of new and sophisticated flow analysis tech-
nigues which have been incorporated in the McCAT (McGill Compiler Architecture

Testhed) compiler.

In the first part of this thesis we discuss the design and implementation of FIRST
and SIMPLE | the structured intermediate program representations used in the front-
end of the MecCA'T compiler. Furtherniore, we illustrate how SIMPLE forms a natural
platform to perform sophisticated analyses and high-level program transformations.

[n the second part of this thesis we describe the development of an analyzer-
generator tool which works on SIMPLE to produce both intra- and interprocedural
analvzers quickly and efficiently in a structured, rule-based manner. We illustrate the
benelits of our tool by automatically generating analyzer modules for interprocedural
five varable analysis, reaching definitions and constant propagation.



Résumé

Dans la conception de compilateurs pour ordinateurs de haute performance, le déve-
loppement d’analyses et d’optimisations de programmes est d’nne importance fonda

mentale.

Afin d’effectuer des optimisations sophistiquées, il est essentiel @ (i) de concevoi
des représentations intermédiaires approprices et (ii) de développer des proeédures
d’analyses avancées sur ces représentations. Cette these porte sur le développement
de représentations intermédiaires structurées pour le langage de programmation € et
sur le développement d’une infrastructure pour 'implantation de nouvelles techniques
sophistiquées d"analyses de flux qui ont ¢.¢ incorporées dans le compilateur du projet,
de recherche McCAT (McGill Compiler Architecture Testhed).

Dans la premiere partie de la these, nous discutons de la conception et de Pimplan-
tation de FIRST et SIMPLE : la représentation intermédiaire structurée de programme
utilisée dans la phase initiale du compilateur McCA'T. De plus, nous illustrons com
ment SIMPLE forme une plate-forme pour effectuer des analyses sophistiquées et des

transformations avancées de prograimmes.

Dans la seconde partie de la these, nous décrivons le développement d'an ontil de
génération d'analyseurs s’exécutant sur SIMPLE pour produire & la fois des analy
seurs intra- et interprocedurals, et ce rapidement,, efficacement, d’une maniere réglée
et structurée. Nous illustrons les avantages de notre outil en produisant automa-
tiquement les modules d’analyse interprocédural pour les variables et les définitions

accessibles ainsi que pour la propagation des constantes.
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Chapter 1

Introduction

Rapid advances in VLSI technology have provided new challenges to compiler and
architecture designers in the development of both uniprocessor and multiprocessor
svstems. In order to effectively exploit the ample resources provided by these new
architectures, aggressive compilation techniques and innovative architecture designs
are essential. New approaches in compiler technology are required to suit the different
architecture design philosophies emerging today, from RISC machines to multiproces-
sors to multithreaded architectures. It is essential that compilation techniques and
architecture models are developed together, so that the effects of one on the other

can he studied.

The design of a good optimizing or parallelizing compiler is crucial in the de-
velopment of high performance single and multi-processor architecture systems. An
optimizing compiler performs a series of code-improving transformations, such as
constant propagation {WZ85], common subexptession elimination [ASUSG], and in-
struction scheduling [A1t90, BEHI91, GMS86, Lam90, Muk91], before producing effi-
cient machine code. In order to perform any sort of optimizing transformation, it
is essential to colleet accurate information about the variables used in the program.
Data-flow analysis is a process of collecting information about definitions and nses
of variables in a program. Typical examples of tiaditionally performed data-flow
analyses are reaching definitions, live-variable analysis, and last-use information. A
different kind of analysis that is receiving an increasing attention is ahas and arriy
dependency analysis[Bar78, Ban79, Coodh, CK89, LR92, Lan92, HDGY92, Kina92).
Alias analysis determines whether or not two variables refer to the same memory



location at any point during program execution. Qptimizing compilers make use of
data-flow and alias information to produce cfficient coue. Furthermore, parallelizing
compilers need this information to extract paiallel threads from a sequential program.

Intra-procedural data-flow analysis, i.c., analyzing one procedure at a time [ASUS86),
has been widely studied and implemented in existing compilers. Gathering informa-
fion about many interacting procedures, known as interprocedural analysis, is es-
sential 1o accurately analyze Tuge programs. Performing interprocedural analysis is
much more challenging, especially in the presence of recursion. Analysis of pointer
and structme variables [HN89, Deu92, HDG*92, LR92, Lan92, Ema92] is critical too,
patticularly when one wants to handle non-scientific programs.

While the need to produce bighly efficient code is generally on the increase in
all application areas, modein RISC architectures demand much more from the com-
piler designer. In particular, register allocation and instruction scheduling are vital
for high petformance in RISC-based processor systems. Further, with all the other
sophisticated and novel aichitecture designs emerging today, like superscalar and mul-
titlreaded architectares, we need new compiling techniques for these as well. Thus,
developing the necessary framework and tools for analyzing programs to produce ef-
licient code for a variety of architectures is crucial in compiler design and forms the

maim goal of this thesis,

1.1 The McGill Compiler Architecture Testbed

The design of any high performance processor system requires architectural designers
and compiler writers to coalesce their efforts and work hand-in-hand. To study quan-
titatively the effect of various compilation techniques on sophisticated architectures, it
is necessary to develop a complete compiler-architecture testhed. The first compone:nt
of such a testbed is the compiler that supports both high-level and intermediate-level
compiler transformations that translate high-level programs to low-level programs
suitable for an architecture simulator - The second component consists of architec-
ture simulation tools that proceas tire output of the compiler to produce a variety of
performance results. The McGill Compiler Architecture Testbed(McCAT) is being
designed and developed with the above objectives in mind.

Figure 1.1 presents an overview of McCA'T and its major components. As shown
in the figure, the input program passes through three phases before it is converted into



machine code. For each of the three intermediate phases, different kinds of Abstract
Syntax Trees (ASTs) are used to represent the program. An AST was chosen to be
the intermediate representation since it retains all the information about the input
program in a structured manner.

The programming language C was chosen to be the source language for oumr com-
piler because of its wide-spread use. Further, C is very powerful and supports a wide
variety of programming language constructs and user defined data types. We decided
to take an existing C compiler and modily its front-end to meet our goals. The rea-
sons for this choice are: (i) it relieves us from the mundane task of writing the parser
and the lexical analyzer; (i1) the front-enrd of a production compiler is more reliable
and supports all constructs of the language; and (iii) it generally has a very good
error recovery. For these reasons, the frout-end of McCAT compiler is based on the
GNU (-compiler. The source code for GNU ("' compiler is freely available.

1.2 Thesis Contributions

This thesis concentrates on the development of the compiler component of the testhed.
In the compiler component, our interests are in the front-end of the compiler, which
parses the input program and translates it to an intermediate form, and the anal-
ysis components of the compiler which operate on the intermediate form. The first
important contiibution is the design and development of intermediate representa
tions suitable for various high-level analyses and optimizations. A major portion of
the analyses and optimization transformations takes place on the intermediate code,
'hus the appropriate choice of an intermediate representation is vital in the design of
an optimizing compiler. Traditionally, the intermediate code consists of three-addiess
statements and control flow graphs[ASUS6). The program represented by these three
address statements is partitioned into basic blocks, where cach basie block consists of
M e . . .
a sequence of consecutive statements with no branches in between. The optimizations
are petformed on contiol flow-graphs, in which the edges represent flow of control and
the nodes represen. basic-blocks. The main diawback of this 1epresentation is that

the types of loops and the structure of the program in general is completely lost.

In order to perform accurate optimizing transformations, it is necessary to retain

the structure of a program and high-level information about the data structures used.

IGNU C s a production compiler developed and distributed by Free Software Foundations Ine
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For example, high-level optimizations like loop unrolling [DHT7Y] and loop transforma-
tions [PW86, ACKS7, Wol39] require the structure of the program and the identity of
record and array references to be retained in the intermediate representation. Thus
the first part of this thesis concerns the design and development of the front-end of
a compiler which translates C programs to a structured intermediate representation
that is suitable for performing various high-level optimizing transformations.

We modified the GNU C Compiler front-end significantly to create the FIRST Ab-
stract Syntax Tree (henceforth called FIRST) for the entire program. Next, a series of
trec transformations are performed on FIRST to create SIMPLE, which is a simplilied
AST and forms the intermediate tree 1epresentation for optimizing transformations
in our testhed. The grammar of SIMPLLE is powerful enough to incorporate all of the
(' language constructs 2, yet simple and 1egular enough so that the optimization and

analyses rules can be specified in a stiuctured and straightforward manner.

The second important contribution of this thesis is the development of a analyzer
generating tool called McGill Tree-based Analyzer Generator (McTAG) which can
be used to produce various interprocedural data-flow analyzer modules. Such pro-
gram generating tools are popular because they (1) simplify the task of a compiler
writer and (i) produce certain well-defined and straightforward parts of a compile
quickly and reliably.  Automating the genceration of compilation modules has met
with reasonable success. Program-genciating tools like LEX [LS75], YACC [JohThH]
and BURG [FHP92] are used extensively to automate producing the lexical analyzer,
the parser, and the code generator respectively. The optimization phase, however, is
complicated and cannot be automaied so casily. One reason for this is that there is a
wide variety of optimizations and program transformations repotted in the literature;
some of these optimizations may interfere with one another and the questions of which
subset of these optimizations to apply and in what order arve still unsolved. However,
the different data-flow analyses can be dlassiflied into cettain categories; these could
then be automated given a certain set ol specifications. For example, the analyses
could be classified as cither forward or backward ones and the merge operator conld

be either union or intersection.

The framework for McTAG is based on SIMPLE, and the data-flow analyzer au-
tomatically generated by the tool also works on SIMPLE. Structure-based algorithims
arc used to implement the data-flow analyses; this has the limitation that it cannot

*Restructuring of prograims can be performed to ehmate arbitrary goto’s [Ero92)



support arbitrary goto’s, but has the advantage that the rules for the different kinds
of langnage constructs can be specified in a neat, compositional and elegant manner.

In sumimary, the main contributions of this thesis are:

o The creation of a high-level AST representation of the program, FIRST;

o The design and implementation of SIMPLE, a simplified intermediate tree repre-
sentation, which retains the program structure so that high-level data analyses
and program transformations could be performed in a relatively straightforward

manner;
o The design of a general framework for structural interprocedural data-flow anal-
ysis, which handles recursion;

e The design and development of a tool which automatically generates differ-
ent intraprocedural and interprocedural data-flow analyzers for a set ol input

specifications,

1.3 Thesis Organization

The rest of this thesis is organized as lollows. In Chapter 2 we describe the major
modifications made to the GNU compiler front-end to create FIRST and the series of
translormations implemented to create SIMPLE. In Chapter 3 we present our data-
How analyzer tool and the framework on which the data-flow analyzer tool is based.
Weallustrate the effectiveness of our tool using concrete examples of different data-
flow analyzers automatically generated (‘hapters 4 and 5. Qur case studies include
constant-propagation, reaching definitions and live-variable analysis. Finally, we put
forward some conelusions and give suggestions for future work after discussing related

tescateh in these arcas.

)



Chapter 2

Design and Development of
SIMPLE

The proper choice of intermediate representations is crucial in the design of any op
timizing or parallelizing compiler. As shown in Figure 1.1, in our compiler, we have
designed a family of three intermediate representations, FIRST, SIMPLE and LAST.
These intermiediate representations range from a high-level abstract representation,
FIRST, that accurately captutes the original program, to a low-level representation,
LAST, that is suitable for register allocation, instruction scheduling, and code gener-
ation. The design of each intermediate representation is driven by the requirements
of the analyses and transformations that we considered most important. In addition,
we considered how each intermediate representation related to the next lower level
so that the results of the analysis performed at a higher-level tepresentation could he

used at lower-level representations.

In this chapter, we describe the design features of FIRST and SIMPLE. Section 2.1
describes the creation of FIRST. FIRS'T retaius program and data structures as is
written by the programmer. Analyzing a progiram with such an intermediate repre
sentation would be more involved in the presence of complex structures, especially
if the programmer has 1esorted to various tricks allowed by the high-level language.
In order to make the analysis simple and regular, we transform FIRS'T to SIMPLE.
In SIMPLE, complex program and data structures are represented in a simphfied
form. Section 2.2 discusses the design criteria of SIMPLE. As the name suggests, the

grammar of SIMPLE is simple, yet powerful enough to represent all constructs of €,



In Section 2.2, we describe the various tice transforimations used in the creation of

SIMPLE. In chapters 4 and 5, we illustrate how the design of SIMPLE is eminently

suited for high-level analyses and optimizations.

2.1 Design of FIRST

As seen from Figue 1.1, the first translation step converts a C program to FIRST,
a Ighi-level abstract syntax tree repiesentation. The main purpose of the FIRST
mtermediate 1epresentation is to cleanly separate the front-end processing namely,
patsing and type-checking from the back-end processing viz. analysis, transformation,
and code-generation. Since this translation step originated from the GNU C compiler,
there was a natural abstract syntax tree form that already existed at the expression
level. We have extended this form so that it captures completely and accurately the
stineture of an entire module o1 program. An important characteristic of FIRST is
that all information about declarations. types, and type casting is completely and
accmately encoded. I this section, we first give a brief description of the original
GNU (" compiler, and then describe the major modifications made to it to create
FIRS'T.

2.1.1 The Original GNU C Compiler

The front-end of the McCAT compiler is based on the GNU C compiler(version 1.37.1).
In this section, we present some aspects of the front end of the original GNU C com-
pilet (GCC), that are relevant to further discussions in this and in the following

chapters of the thesis,

In the original GCC compiler [StaY0], the intermediate representation employed
is the Register Transfer Language(RTL). in which each statement has almost a one-
to-one mapping to a machine-level instruction. The parser parses each statement of
the program, builds a syntax tree for it and then converts it into RTL. Once the RTL
for a statement is generated, the storage used for the syntax tree is reclaimed. In
this manner, the RTL intermediate code for an entire function is generated. Several
mtraptocedural optimizations are perfoimed on the RTL to produce the target code
for one function. In a similar way. the assembly code for a program is generated, one

function at a thne.



Storage for types, declarations, and the representation of binding contours and
how they nest remains until the comp'etion of the compilation of a function. After
generating code for a function or a top-level declaration, all storage used by the
function definition is freed completely unless the function is ‘inlined’. As a result,
interprocedural optimizations cannot be performed by the original GC'C'.

Tree Node Structure:

We briefly desciibe the general structure of a tice_node used in the syntax tree of the
original GC'(". The syntax tree is built fiom different kinds of tree_nodes; there are
distinct tree_nodes to represent various data types and expressions in €. A treenode

consists of two basic parts:

o A common part, which is present m all tree nodes. The major fields found here
are:
IR} . il . . . . - 3
= Trec_uid : Every tree node is associated with an unique integer as pait. of
its identification.
= Treetype: This points to the type of the node.
— Tree_code: This contains an enumerated type integer, which esseutially
gives the name of the node.
— Tree_chain: This field is used to chain nodes together.
— Treebit fields: There are a number of bit ficlds, to indicate varions node
characteristics.
Figure 2.1 illustrates the macros used to access these various fields. The Tree_info
field is an extra field that has been added while ereating FIRST to store data-flow

analyses information. We shall see how this field is used in the next <hapter.

o A tree specific part, where different node types have different fields in them. For
example, the PLUS_EXPR node has two specific fields to hold its two operands.
A TREE.LIST node, which is a general purpose node used for chaining nodes
together. has the specific fields TREE_PURPOSE and TREE.VALUE,

2.1.2 Creation of FIRST

The two major disadvantages of working with the front-end of GCC are:




Common Fields

TREE_UID
TREE_TYPE
Special Fields — <— Tree Node TREE_CODE
TREE_CHAIN
TREE_INFO
Bit Fields

Figure 2.1: Basic Tree Node Structure

[. High-level compiler optimizations such as loop transformations and array op-
tinizations are extremely difficult to perform on the RTL code because the
identity of loop structures and array references are completely lost at this low
level, For example, array dependence analysis is difficult to perform as array
references are broken down to lower-level statements. Similarly, since loops are
transformed into blocks with goto’s and labels, high-level loop transformations
are diflicult to perform. Retaining the identity of loop structures and array ref-
erences enable us to perform a number of high-level loop transformations which

are lar more diflicult to perform otherwise.

te

Since the intermediate code for the entire program is not available, high-level
interprocedural analysis and detailed alias analysis techniques cannot be per-

formed.

We moditied the front-end of the GCC compiler significantly 1o create FIRST.

'hese modifications arve highlighted helow.

e [n the original GNU €' compiler, as mentioned above, the syntax tree is created
up to the expression level. The tiee nodes representing these expressions are

10



freed once the statement has been parsed. Since we are now interested in
building the syntax tree for the entire program, we modified the parser so as to
retain the tree nodes.

o We f{urther modified the parser to continue building the AST for the complete
program. New nodes to construct different kinds of loop structures, such as,
while-loop, for-loop, and do-loop constructs, have been added. The tree node
structure used in the modified front-end is based on that of the original GC'(",
The parser now builds the FIRST tree for the entire program.

o An additional tield, the TREEINFO field, has been incorporated in the basic

tree_node structure to store data-flow analysis information.

Notation:

Before we proceed any further, certain conventions that are used in the diagrams are
explained here. Boxes represent tiee nodes, and the text within them epresents the
name of the node. Ares from one node (say a’) Lo another (say b’) means that o
particular field in the starting node “a’ points to node *h’. Ares are labeled with the
macros which may be used to access the paiticular field of the node. Sometimes the
labels on the nodes or ares are shortened for the sake of clarity; the full names are
listed as a legend in the diagram. Certain subtices which are ierelevant to the curtent
discussion are denoted by ellipses and the details of these subtiees are not shown in
the figure: these are labeled with the respective (C expressions that the subtices stand

for.

2.1.3 Representation of Statements in FIRST

We illustrate the construction of FIRST using the following examples.

We firet consider an example consisting of two simple statements.

a=>b+c;
f(a);



r}m“

Figure 2.2 depicts the AST for the above example. Every statement is headed by a
TREF_LIST node. The TREE_VALUE field of this node points to the tree for that
statement. The statements are connected together by the TREE_CHAIN field in the
TREF.LIST node.

Next, we illustrate how a set of compound statements are represented in the AST
and how the variable nestings are taken care of. Consider the tollowing example:

{
int 1; ... .. (1)
stmtl;
{
float j; ............ (2)
stmt?2;
}
stmt3;
{
int j; oo (3)
{
float i,k ; ..... (4)
stmt4;
}
stmt5;
}
}

The Abstract Syntax Tree constructed for the above example is given in Figure 2.3.

A ist of statements consists of a sequence of TREE_LIST nodes connected by the
TREE_CHAIN field and terminated by a NULL pointer. Every statement is headed
by a TREE_LIST. In the case of simple statements, the TREE_PURPOSE field of a
TREE_LIST node is NULL, and the TREE_VALUE field points to the bod, of the state-
ment. The TREE_PURPOSE field for compound statements points to the LET_.STMT
node, which contains the scoping information. The LET_STMT is used to hold the

vartables declared in that block.

A VARDECL node represents a unique variable, and has fields pointing to the
name of the variable (DECL.INAME) and the type of the variable (TREE.TYPE). Note
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TREE_LIST IST
TREE_CHAIN TREE_LIS TREE_CHAIN 3 NULL

TREE_VALUE TREE_VALUE
EXPR_STMT EXPR_STMT
STMT_BODY STMT_BODY

MODIFY_EXPR

TREE_OPERAND(node,0

VAR DECL ) TREE_OPERAND(node,1) ADDR_ExPR ) TREE_OPERAND(node.1)

PLUS_EXPR TREE_OPERAND{node.0) TREE_LIST
FUNCTION_
DECL

TREE_OPERAND(node, 1)

CALL_EXPR

TREE_OPERAND(node.0)

g

TREE_OPERAND(node.0)

VAR_DEGL

TREE._VALUE

VAR_DECL

o

EXAMPLE : two consecutive simple statements
a= b+ c
f(a);

Figure 2.2: Examples of Basic Statements




TREE_VALUE
TREE_CHAIN
TREE_PURPOSE
DECL_NAME

TV
TC

TYPE _ TYPE

INTEGER_
TYPE

SC = STMT_SUPERCONTEXT
8B = STMT_SUBBLOCKS
SV = STMT_VARS

TYPE = TREE_TYPE

FFigure 2.3: Examples of Compound Statements
£ | |



that two variables which are in two different scopes but have the same name are rep-
resented by two different VAR_DECL nodes, though the DECL_NAME field in both of
them point to the same IDENTIFIER_NODE. For example, the variable ‘1" in the dec
laration (1) and the variable ‘i’ in declaration (3) have their own unique DECL.NODLE,
but the DECL.NAME in both of them point to the sanmie IDENTIFIER_NODE having
the string “1”.Thus, every logically different variable has its own VAR_DECL node,
and an IDENTIFIER_NODE is created for ¢very unique variable name string in the
program.

The LET_STMT blocks at nested levels are connected by the STMTSUPER-
CONTEXT and the STMT_SUBBLOCKS ficlds. The STMTSUPERCONTEXT point
ers are backward pomters and are represented by dashed lines in the figure.  The
LET_STMT blocks at the same level are connected by TREE_CHAIN fields.

2.1.4 Global Functions and Variables

We now iilustrate how top-level declarations and definitions of global variables and
functions are represented in an AS'T via the following example.

int i;

int funci(int p) {
int x,y;
body_funci;

}
typedef struct mm {

} nn;

void func2(int q) {
int a,b;
body_func2;

}

The ASTs constructed for the above program are shown in Figure 2.4,

In general, cach function definition in C constitutes one AS'T. The complete AST
for a function is headed by an AST_.DECLNODE. The AST_DECLPTR field points
to the function declaration, and the AST DECL.BODY field points to the compound
statement which 1s the body of the function. i the case of global variables, the
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dacl_fist NULL
b 4

TC
AST_DECL AST DECL AST_DECL
_NODE _.ODE _NODE
AST_DECL_PTR
AST_DECL_P
AST_DECL_PTR
AST_DECL_BODY

1

AST_DECL_BODY FUNCTION
AST_DECL_PTR TYPE_DECL _DECL

VAR_DECL )

AST_DECL_300Y

AST_DEC.

_NODE

TC

TC TC

A"T_DECL_BODY

NULL

FUNCTION TREE_LIST

_DECL

TREE_ ST
TREE_VALUE

@ TREE_PURPOSE TREE_PURPOSE
NULL
TREE_VALUE
LET_STMT
LET_STMT

STMT_VARS

STMT_VARS

Figure 2.4: Representation of Global Variables and Functions
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AST_DECL_PTR field points to the VARDECL or the TYPE_DECL node, and the
AST_DECL_BODY field points to NULL. All these ASTs for global functions, vari-
ables and types are chained together into a linked list structure in the order in
which they are parsed. Thus, global variables are found in this top-level list of
AST_DECL_NODEs, whereas local variables are attached to the LET_STMT node.
Note that decl-list is a global pointer which provides access to the list of ASTs. Thus,
FIRST retains program and data structures as is written by the programmer. For
more details about the working of the GNU (* parser and the ereation of FIRST, refer
to [Sri9l].

In order te simplify the analysis of a complicated program, we need to break down
complex structures into simpler ones, to a level that is most suited to high-level analy
sis and transformations. Therefore, we transform FIRS'T to SIMPLE, the intermediate
representation that has been designed to support alias and array dependeney analy-
ses, and high-level loop and parallelization transformations. In the following sections,

we discuss the design and implementation of SIMPLL.

2.2 Design of SIMPLE

The second intermediate representation, SIMPLE, has been designed to be most suit-
able for high-level analyses like accurate alias analysis and dependence analysis. The

following criteria have influenced the choices made in the design of SIMPLE.

Compositional Representation: T'he intermediate representation should be a com-
positional representation of the programy, where the control flow is regular and
explicit. For example, it should be possible to analyze a while loop by analyz-
ing only its components: the conditional expression and the body. This kind
of compositional representation has three advantages: (i) the flow of control is
structured and is explicit in the program representation, (i) strnctured analy-
ses techniques and tools supporting such techniques can be used to analyze all
the control-flow constructs, and (iii) it is simple to find and transform groups
of loop nests. It should be noted that in addition to ordinary compositional
constructs such as conditionals and loops, our compositional approach should
directly support the cominonly used break and continue statements for loops,
and the return statement for procedures and functions. However, unrestricted
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nse of goto is not compositional and cannot be supported directly. Any program
with unstructuied control flow must be converted into an equivalent program
with stiuctured control flow [WOT5, Bak77, Amm92].

Explicit Array and Structure References: The identity of array and structure
1eferences should be retained i.e., the arr y and structure references should not
he broken down into a series of lower-level statements that perform address cal-
culations. This is required so that we can make full use of high-lzvel information
such as array dimension, atray size, pointer types, and recursive structure types.

Types and Typecasting: The exact type information and type casting should also
be retained.  Often alias analysis can take advantage of type information to
provide more accurate results. For example, it can be inferred that a variable of
one type cannot be aliased to a variable of another type using type information
il there are no type casts. A moie advanced example is the use of recursive
types for dynamically-allocated pointer structures [HN8Y, Deu92].

Pervasive Data-flow Information: It should be possible to transmit important
data-flow information collected at higher-level intermediate representations to
the lower-level representations, and thus improve the eflectiveness of the low-
level transformations.  For example, alias analysis information collected at a
high-level can be used to perform better dependence analysis and therefore
better instruction scheduling at a lower-level.

Simple to Analyze: The intermediate representation should be simple enough so
that it could be analyzed in a straightforward manner. A proficient programmer
will use complex structures and all the tricks allowed by the language (especially
(') to develop his/her software. To simplify accurate analysis of such a program
we need to break down complex structures and statements into simpler ones.
There should be a restricted number of basic statements so that the structured
analyses rules could be specified easily and in a regular fashion. Further, we
should be able to represent any complicated C statement or expression as a
sequence of these statements. Similarly, the conditional parts of while-loops,
for-loups, do-loops and if-statements should be simple expressions. Any com-
plicated expression should be simplified when represented in the intermediate
representation. Farthermore, in ('L side-effects can eecur in many places where
one eapects an expression. In our simpler form we would like to clearly sep-
arate statements that can have side-effects from expressions that cannot have

side-cifects.

—
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Clear Semantics: The intermediate iepresentation should have a clear and obvious
semantics. One part of this process is clarifving some of the implicit meanings in
C programs. The example program in Figure 2.5 illustrates one of the implicit
meanings in C. Let us first consider the statement, b = a. Since there is a
special correspondence between pointers and arrays in () this statement really

means “assign to b, the address of the first item of @”, and not “assign to b the
value of a™ as one would expect for a scalar assignment. These implicit semantic
rules in C must be made explicit in the intermediate representation. Sunilaly,
the meaning of the two array relerences b[2] and a[2] are quite different. In
the first case there is an implicit derveference of b, while in the second case a

denotes the address of the array.

al9]
{ int a[10], *b, p, q;
b = a;
p = blz]; alo] .
«
q = al2]; I
} — R

Figure 2.5: An Example of C Array and Pointers

Interprocedural Analysis: The intermediate representation should retain all the
information about the complete program or module, so that interprocedural
data-flow and alias analyses can be performed. This is particularly important
when we have non-scientific code that is composed of many small and possibly

recursive procedures.

Standard Representation: Similar to the spirit of DIANA[Ros85], we are aiming
at a standard intermediate representation for programs, so that a large number
of researchers and students can have a common ground to independently develop
analysis and optimization technigues. This also allows a number of users to

share a class of softwate tools.

Automating the Analysis and Optimization Phases: The intermediate repre-
I sentation should be able to support the automatic generation of the analysis
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and optimization phases of the compiler.

SIMPLE to C: After performing certain high-level transformations and program
restructuring, there should be a straight-forward translation from the interme-
diate 1epresentation back to C. This will help in two ways: (i) we can verify the
syntactic and semantic correctness of our tiansformations by testing the output
¢ program with a standard C compiler, and (ii) we can check the effectiveness
of high-level transformations without requiring a complete back-end for every

architecture.

2.2.1 Overview of SIMPLE

I this section, we give an overview of the salient features of SIMPLE. As illustrated
in Figure 11, the simphfy translation takes a high-level FIRST representation of a
progiam and produces an output representation at the SIMPLE level. As its name
suggests, the SIMPLE intermediate form is a simplified form of FIRST; control flow is
structured, complex statements are broken down into a series of simpler statements,
complicated variable names are split. whenever possible and all loops, switches and
conditionals are modified to adhere to the restricted SIMPLE forinat.

The following subsections describe the special features found in SIMPLE, while a
complete graommar is given in Appendix A, and a complete description of SIMPLE is
given in [Sri92]. While transforming FIRST to SIMPLE, simplifications are performed
in these three major arcas: (i) in the representation of variables, (i) in the format of
hasic statements  only a restricted number of operands are allowed, and (iii) in the

tepresentation of control flow constructs  these are simplified.

Variables

In high-level programming languages such as C and Pascal which allow user defined
type structures, arbitrarily complex types can be defined by the programmer. One
could have nested array and structure references, with pointers in them to further
complicate matters. ‘To perform accurate analyses of the variables of these types, we

need to break them up in a systematic manner.

As indicated by the grammar rules in Figure 2.6, we define a varname to be
a simple variable name (e.g.. ‘myname’). a pure structure reference(e.g., ‘a.b.c’ ),
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a pure array reference (e.g., ‘a[6][7]7). or a pointer to a structure reference (e.g.,
‘(*¥a) .b.c’). Any other complicated arrvay/structure reference is broken down to the

abovementioned form.

val : ID reflist : ‘[* val ‘]’
| CONST | reflist ‘[* val ‘]’
varname : arrayref idlist : idlist “.’ ID
| compref | ID
| ID

compref : ‘(> ‘x* ID ‘)’ ‘.’ idlist
arrayref : ID reflist | idlist

Figure 2.6: SIMPLIC Grammar for a varname

For example, the array/structuie reference shown on the lefi-hand side of Fig-
ure 2.7 is transformed into the sequence of statements shown on the right-hand side
of Figure 2.7. The variables temp1 through temp4 aie temporary variable names gen-
erated by the simphfy translation. The translation ensures that these new variables
are created with proper declarations and types which are fully represented in the
transformed SIMPLE tree. By standardizing the variable references in this way we
can reduce the number and complexity of advanced alias analysis rules that must, he
defined. Thus, structure and array names are kept at the right level for high-level

analyses and transformations.

templ &a.b;
temp2 = &tempi(3];

£ = a.b[3].c.d[2][5].e = temp3 = &(*temp2).c.d
temp4 = &temp3[2][S5];
f = (*temp4) .e;

Figuire 2.7: Variable Transformation

Detailed trees for array reference and structure reference nodes are shown in FFig-

ures 2.8 and 2.9,
A COMPONENT_REF node denotes a structure reference. It has two main ficlds,

TREE_OPERAND(node,0), and TREE_LOPERAND(node,1) (where node points to the

‘)1
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COMPONENT_REF node), which points to the two parts of a structure reference.
For example, in Figure 2.8, the topmost COMPONENT_REF node which denotes
the structure reference e.a.d points to e.a and d. The variable e is represented
by a VAR_DECL node. and its TREETYPE ficld points to a RECORD.TYPE. The
RECORD_TYPE node has pointers to the name of the record, and also points to a list
of FIELD_DECL nodes cortesponding to all the fields in that record. Each of these
FIELD.DECL nodes have pointers to their » ues and types; for example, the ficld
a of the structre bb is itselfl a record -- sviact cc. Notice too that the type of
the field d in record cc is a pointer to the 1ccord cc; this is denoted by the node
POINTER_TYPE, whose type is the record cc.

An ARRAY_REF node denotes an array reference. The two main fields of this
node points to the base and the index of the array reference. A two-dimensional
artay is treated in a hierarchical fashion, as an array of arrays. In the example shown
in Figure 2.9, the array reference al[3][4] is treated as (a[3])[4]. The reason for
the additional ADDR_EXPR operator is to distinguish between pure array references,

and pointers treated as arrays.

Further, the semantics of C is made obvious wherever possible. In the example
shown in Figure 2.5, special ADDR_EXPR nodes are inserted in the SIMPLE tree to
clanfy where the variables should be dereferenced. Figure 2.10 shows the differences
between the trees built for a pure array reference, and for an array reference when a

pointer is ticated as an array.

IFigure 2,11 shows the tree when arrays are assigned to pointers. Since a is defined
to be an array of integers, and b is a pointer to an integer, the statement b = a has
an ADDR_EXPR node in front of the node for a to clarify that the address of a is

assigned to b,

Basic SIMPLE Statements

Iu the design of SIMPLE, we have identified fourteen basic statements. Any other
complicated statement in C can be broken down into a sequence of these statements.
Figure 2.12 gives an example of an assignment statement which is broken down into a
series of simipler statements. In Figure 2.13, we list the set of basic simple statements.!
Note that variables ‘x” and ‘y’ denote varnames, whereas the variables ‘a’, ‘b’, and
¢’ denote vals. Refer to Figure 2.6 for the definition of a varname.

"IMhese basie statements are formally specified in the SIMPLE grammar included in Appendix A
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COMPONENT _
REF

TREE_OPERAND(n0de,0)

COMPONENT_
REF

TREE_TYPE

TREE_OPERAND(node,0)

VAR_
DECL
DN T

e
IDENTIFIER
NODE

R4 T
TREE_CHAIN
POINTER_
TYPE
IDENTIFIER_ FIELD_
NODE DN DECL 18]
T

TREE TYPE TREE_OPERAND(node, 1)

TREE_OPERAND(node,1)

1T

ubn
T

DN= DECL_NAME TT = TREE_TYPE
TF = TYPE_FIELDS TC = TREE_CHAIN

INTEGER_
TYPE

EXAMPLE : the structure reference e.a.c
where the structures are defined as :

struct bb { struct c¢ {
struct cc a, intc;
int b; struct cc * d,
} e; )i

Figure 2.8: Representation of a Structure Reference




LV

ARRAY_REF
TREE_TYPE j

TREE_OPERAND(node,0) TREE_OPERAND(noda,1)

ARRAY_REF INTEGER_CST

TREE_OPERAND({node, 1)
TREE_OPERAND(node 0)
INTEGER_CST

TREE_TYPE 3

POINTER_TYPE
TREE_OPERAND(node,0) TREE_TYPE ARRAY_TYPE
TREE_TYPE

TREE_TYPE

TREE_TYPE

ADDR_EXPR

8

ARRAY_TYRE

TREE_TYPE
D '
VAR_DECL INTEGER_TYPE

L

DECL_NAME
Y TYPE_NAX_VALUE(

TYPE_DOMAIN(node))

IDENTIFIER_NODE
TYPE_MAX_VALUE(TYPE_DOMAIN(node))

INTEGER_CST INTEGER_CST

10 20
EXAMPLE : a[3]{4] when ais declared as int a[10](20]

Figure 2.9: Representation of an Array Reference



ARRAY_REF

TREE_OPERAND(node,0)

TREE_OPERAND(node, 1)
ADDR_EXPR
INTEGER_CST

TREE OPERAND(node 0)

VAR__DECL
4
EXAMPLE: af4] when a isdeclared as int a[10];

ARRAY_REF

TREE_OPERAND(node,0)

TREE_OPERAND(node, 1)
VAR_DECL
INTEGER_CST
4

EXAMPLE. t[4] when i is declared as int *t,

Figure 2.10: Diflerences in Pointer and Array Representations



MODIFY_EXPR

TREE_OPERAND(n0de,0) TREE_OPERAND(node,1)
VAR_DECL i AUDR_EXPR '
DECL_NAME TREE_OPERAND{node,0)
O l VAR_DECL '

DECL_NAME

EXAMPLE. int*t, a[10]

t= a;
MODIFY_EXPR

TREE_OPERAND(node,0) TREE_OPERAND(node,1)

TREE__OPEFrND(node.O)
l STRING_CST l

TREE_STRING_POINTER
EXAMPLE char*t;

*howdo you do"

Figure 2.11: Assignment of Array Addresses

t = " howdc youdo”;
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templ = b * c;
temp2 = *d;
a=brc+ (xd) /e —7 temp3 = temp2 / e;

a = templ + temp3;

Figure 2.12: Basic Statements Transformation

X = aopb
*p = aopb
X = opa

*p op a

X a

*p a

X f(args)
*p f(args)
x (cast)b
*p (cast)b
X Ly

*p = &y

X = ¥q

Xp = ¥q
f(args)

where op is any hinary operation

where op 1~ any unary operation

where args is a possibly empty list of arguinents

where cast s any Lypecast

Figure 2.13: List of Basic Statements
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expr : rhs | modify_expr

arglist : arglist ‘,’ val
| val

modify_expr : varname ‘=’ rhs
| ‘%> ID ¢“=? rhs

rhs : binary_expr
| unary_expr

unary_expr : simp_expr
I ‘% ID
| ‘&’ varname
lcall_expr
| unop val
| ¢(’ cast ‘)’ varname
/* cast here stands for all */

call_expr : ID ‘(’ arglist ‘)’
binary_expr : val binop val
unop : ‘4’ | ‘=2 | pr | =
binop : relop
I N I AN IS
e e | e

I (>>) l €~

relop : ‘<’ | ‘<=2 | 7 | >=?

| ‘==2 | ‘1=

condexpr : val
| val relop val

simp_expr : varname

/* valid C typecasts */ | CONST
IYigure 2.14: SIMPLE Grammar for an expr
templ = a.b;
c = x(a.b);
= %Xt ’
d = &(a.b); = < emp1

d = &(a.b);

Figure 2.15: The *¥" and ‘&’ operators
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As seen from the grammar of SIMPLE presented in Figure 2,14, an unary _expression
could be either a varname or a constant. It could also be an indireet reference Only
a simple variable name is allowed after the '+ operator. Complex varnames alter the
* operator arc translated as shown in IYigure 2.15. On the other hand, a varname
is allowed to appear after an ‘&’ operator. Thus the expression t = & (a.b) will
be kept as it is, and will not be simplificd turther. The intuition is that when we
apply the address operator, we are taking the address of a variable (which could be a
complex one), and this should not be simplified into a temporary variable, otherwise
we will get the address of the temporary variable, which is incorrect.

We handle casting of expressions and function calls in o similar manner. In a
function call, all the complex argument expressions are simplified to vals. Casting,
of expressions is represented by special NOP_FXPR nodes, the TREESTYPE field of
which points to the type to which the expression is being cast. For more details, 1efer
to [Sri92).

Certain special kinds of expressions allowed by C, namely compound and con
ditional expressions, are also transformed into equivalent SIMPLE statements.  For
example, conditional expressions are transformed into if-else-statements, and con-
pound expressions are transformed to a sequence of simple statements of the above

form as shown in I'igures 2.16 and 2.17.

a = C;
c; =

(a>b)? a : b

Figure 2.16: Conditional Expressions

— zZ=x+y,
c=z=x+y,2>p; 7 c=2z>p;

Figure 2.17: Compound Ixpressions

As illustrated by the example in Figure 2.18, special care needs to be taken to
handle expressions involving the logical operators && and ||. This is becanse, in C,
the second operand in the following example is evaluated only if the first operand

evaluates to tiue,



templ = exprl;

- if (templ)
c = exprl && expr2; templ = expr2;
c = templ;

Figure 2.18: Logical Operators
Compositional Control Statements

The compositional control statement forms supported directly by SIMPLE are re-
strrcted (simplified) versions of statement sequences, for-loops, while-loops, do-
loops, switch/case statements, and 1f-else statements. In addition, return is
supported for exiting a procedure or function, and break and continue are sup-

ported for exiting a loop.

In cach of the simple contiol constructs the complexity of the conditional expres-
sions is reduced. For example, Figure 2.19 shows how the conditional expression in a
while-loop is simplified. The conditional paits in do-loops, and 1£/else-statements
are handled in o similar fashion For-loops are given special treatment because com-

pomnd expressions are possible in the for-loop header.

templ = a+ b;

while (a + b > c) while (templ > c)
{ = {

} templ = a + b;
}

Figwe 2.19: Simplification of a WHILE Loop Conditional Expression

In simplifving switch/case-statements, special care must be taken. In C, the
case labels are implicit gotos and therefore a switch/case statement may have a
unstructured control flow. In fact, the switch/case statement may not even have
structured block nesting because a block may begin in oue branch of the switch
and end in another branch of the switch. As illustrated in the grammar detailed in
\ppendin A, the body of a simplified switch/case statement consists of a sequence
ol case statements, finally ending with a default statement. Each case statement is
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made up of one or more case expressions, followed by a statement list, and ending with
a stop statement, which could be either a break, a continue or a return statement.
Various transformations are performed on FIRST to bring it to the above format.
If a default statement is missing, one is created and appended to the end of the
switch statement. If a case does not end with a stop statement (a return, break or
a continue), then code is replicated so that the above form is achieved. If there are
unstructured block nestings, these are taken care of by a process called an unnesting
transformation where block nestings are removed by yanking variables to the function
level[Sre92]. Here, renaming of variables is performed whenever necessary. Figure 2.20
shows an example of some of these transformations.

switch (a)

switch (a) { . .
int i;
{ .
case 12:
case 12:
case 13:
default:
stmtl;
case 13:
stmt2;
t . . break;
int i; =
case 14:
stmtl;
stmt2;
case 14:
Stmt2: break;
} default:
stmt1;
break;
} stmt2;
break;
}

Figure 2.20: A Switch Statement 'Fransformation

2.3 Conclusions

Different. types of compiler analyses and optimizations can be performed on SIMPLE.
The main advantage of working with SIMPLE rather than with FIRST is that any
variable in SIMPLE is either a scala1, a simple array reference, a structure reference
or a structure reference through a pointer. Similarly, the type of a statement is
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one of a fixed number of types discussed in Section 2.2. The SIMPLE grammar is
powerful enough to incorporate all of the C Language constructs, yet simple and
regulan enough so that the optimization and analyses rules can be specified in a
structured and straightforward manner.

FFurther, we have a developed a dump-C-routine which produces C code by per-
forming a tree-walk over SIMPLE. Thus, after performing simplifying transformations
on the tree and ereating SIMPLE, we can dump the C code corresponding to the SIM-
PLE tree. This C dump program could be recompiled and executed to verify the
correctness of the transformations used to create SIMPLE.
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Chapter 3

The Analyser Generator

3.1 Introduction

There are strong similarities among different data-flow analyses problems[ASUSG.
The data-flow problems are distinguished by

o The ditection of ropagation of information: it is cither forward or backwaid.
o The abstraction and the operators used to manipulate the abstraction.

o The type of analysis: it is either intraprocedural or interprocedural,

Since flow analysis problems are well-structured, it should be possible to treat all
of them in an unified way. Developing a tool which helps in the implementation
of different data-flow analyses by treating them all in an unified fashion will help o

compiler writer to produce data-flow analyzers quickly and efficiently.

Traditionally, data-flow anaiyses were implemented on flow-graphs and many of
the analyses were intraprocedural. Auother way of implementing data-flow analy-
ses when the input is structured and compositional, is Lo use a structure-based ap-
proach and to specify the analysis rules for each program component. ‘This kind of
implementation is closer to how one specifies analyses using abstract interpretation

techniques. In this approach one specifies the data abstraction, the operations on
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the abstraction, and rules or functions for each kind of program component includ-
ing simple statements, conditionals, and loops. This sort of approach has been used
siccessfully for many complex analyses pioblems including a variety of alias analysis
problenis [HN89, Deu92, Ema92]. Performing these sophisticated analyses as well as
the traditional analyses in a rule-based and structured manner has two advantages:
(i) it makes the implementation clear even when the abstraction is very complex, and
(i1) it simplifies proving the correctness of the implementation. Furthermore, having a
structured and compositional representation of the program (like SIMPLE) makes the
job of implementing these sophisticated analyses more straightforward and elegant.

In this chapter, we deseribe the implementation of an analyzer-generator, McTAG
(McGill Tree-based Analyzer Generator), which takes advantage of the structured
and compositional nature of the SIMPLE intermediate form to provide a straight-
lorward way ol specifying new analyses. This tool allows us to quickly implement
the traditional flow analyses, as well as providing the backbone for the development
of 1elatively advanced analysis techniques like alias analysis. McTAG takes a set of
specifications which desctibe the data-flow problem as input, and the output is the
data flow analyzer module which operates on SIMPLE. The following section describes
the overall stiucture of the generator, and gives examples of the generator input and
output. Our approach to gencrate data-flow analyzers has an additional advantage in
that parallelism can be easily exploited in executing these analyzers., In Section 3.3,

we mahe a briet remark on parallehizing these analyzers.

3.2 The Tool

The overall structure of McTAG is shown in Figure 3.1. The generator takes as
input a set of specifications for the abstraction being computed (sets, stack matrices,
path matrices, ete.) for a particular data-flow problem, and a set of pattern-action
tales, one rule for cach expression and statement type supported by SIMPLE The
out put is a data-flow analyzer program which traveises the SIMPLE tree applying the
appropriate rules and collecting the specified data-flow information at each program
point. The analyzer specifications are completely independent of the SIMPLE tree
characteristics: they only specify precisely how to collect the particular data-flow
mtormation.  The generator generates all the extra information pertaining to the
SIMPLE tree and generates the tree walk automatically.

3
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Figure 3.1: Overall Structure of McTAG: McGill Tree-based Analyzer Generator
3.2.1 Input for McTAG
The input specification file is made up of three main parts:

e a C code section, which has all the routines to implement the abstraction,

o the characterization section, which specifies the general characteristics of the
data-flow problem, and

e the main section, which has a list of pattern-action pairs, one for every state-
ment/expression type found in SINPLE.

Thus. the input specification file has the general structure shown in Figure 3.2,
| I g g

The complete grammar in BNEF notation for the above specification is included in
Appendix B. We shall now describe each of the above sections in detail by illustiating

the specification file for the following data-flow analysis problem.

Let us consider the problem of determining the set of available expressions at every
point in a program. An expression x+y is available at a point p in the program if
every path fromn the initial node to p evaluates x+y, and after the last such evaluation
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C code to implement the abstraction being approximated.

h}

<characteristics of the data-flow problem>

PROCEDURE analyzer_name(parameters):returntype
<pattern> {action}
<pattern> {action}

FFignie 3.2: General Structure of the Input Specification for McTAG

prior to reaching p, there are no subsequent assignments to x or y [ASU86]. The
abstraction in this case is a set of expressions. Since we want the expression to be
available on every path, the merge operation is an intersection. A sample C-code
section of the specification file for the above flow problem is shown in Figure 3.3.

More detailed examples are presented in Chapters 4 and 5.

As shown in Figure 3.3, the C routines are inserted between the delimiters %{ and
h} and these are used in the action part of the specifications. These are the routines
that will be used to manipul! te the abstraction. Since the abstraction here is a set of
crpressions, there are routine to add expressions to the set, delete expressions from
the set, to cheek if two sets are the same, and, of course, the merge operation has to be
detined between two sets. These will be copied verbatim to the output file. It should
he noted that the programmer might use a much more complicated abstraction like
path matrices for a different problem [IIN8Y)].

The characteristics of the specific data-flow problen: are specified next. A sample
characteristics section for the above available expressions data-flow problem is given
below and the varions possibilities that can arise are discussed subsequently.
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typedef struct {

} * SET_TYPE;
/** This merges setl and set2 and returns the new merged set *#/
static SET_TYPE merge_avail (SET_TYPE set1, SET_TYPE set2) { ... }

/** This returns a copy of the set setl 17}
static SET_TYPE copy_avail(SET_TYPE seti) { ... }

/*x This prints setl x/
static void print_avail(SET_TYPE setl) { ... }

/** This is a routine to build the call graph %/
static void build_cg(SET_TYPE setl) { ... }

/** This deletes all the expressions in exprlist from wx/
/** setl and returns the new set. %/

static SET_TYPE delete_expr(SET_TYPE exprlist, SET_TYPE seti) { ...

/** This adds expr to setl and returns the new set o/
static SET_TYPE add_expr(SET_TYPE expr, SET_TYPE setl1) { ... }
/** This returns all the expressions that have the *x/
/** variable var in them. 1Y)
static SET_TYPE get_expr(tree var) { ... }

/** given the variables and the operators, it creates and *x/
/** returns expressions 17

static SET_TYPE create_expr(tree op, tree varl, tree var2) { .

/** given twou sets, this routine returns a ! if they are *kf
/** both the same; 0 otherwise. *k/
static int same_sets(SET_TYPE set1l, SET_TYPE set2) { ... }
%W

Figure 3.3: C-code inclusion in the Specification File
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ANALYSIS : FORWARD
STOREOPTION: STORE
PROCTYPE : INTER
DATANAME: set

DATATYPE: SET_TYPE
TREEINDEX: TREE_AVAIL_INDEX
CGINDEX: CG_AVAIL_INDEX
MERGER: merge_avail
COPIER: copy.avail
PRINTER: print_avail
CGBUILDER: build_cg

e ANALYSIS: This is specified as either FORWARD or BACKWARD, depending on
whether it is a forward or a backward analysis. This information will be used
when we group the analyses to run a number of analyses in parallel.

e STOREOPTION: If this option is specified as STORE, then extra code is generated
by the tool to store the data-flow information in the tree. Otherwise, if the
option is NO_STORE, the computed data-flow information is not stored in the

frece,

e PROCTYPE: 'I'his option specifies whether the analysis is interprocedural or in-
traprocedural, If the analysis is intraprocedural, then all the procedures are
traversed once in random order. If it is interprocedural, then a call-graph is
constructed and traversed, collecting information across procedure calls.

o TREEINDEL: This shiould be specilied only if the STORE_OPTION option is specified
as STORE. This is used to specify an unique field in the AST the computed data-

flow information is stored.

e CGINDEX: T'his is similar to the TREEINDEX. This specifies a unique index in the
call graph where the computed information is stored.

e DATANAME: The name of the set or abstraction is specified here. This is used
by the generator to automatically generate a default action when the pattern-
action pair for a particular statement type is not given.

e DATATYPE: The type name of the set or abstraction is specified here.
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e MERGER: The name of the merging routine (to merge two sets of information)
is specified here. This is required if the STORE.OPTION is set to STORE. The
merging routine has to have the function prototype as shown below:

SET_TYPE merge_avail (SET_TYPE seti; SET_TYPE set2);

That is, it takes in two sets or abstractions and returns a merged set. This
routine has to be defined previously in the C code section.

¢ COPIER: The nanie of the copying routine (to copy two sets of information) is
specified here. This is also required if the STORE.LOPTION is set to STORE. 'T'he
copier routine has to have the function prototype as shown helow:

SET_TYPE copy_avail (SET_TYPE set1; SET_TYPE set2);

That is, it takes in a set or abstraction and returns a copy of that set. T'his
routine also has to be defined previously in the € code section.

o PRINTER: This is the name of the routine that is used to print the information

collected. The routine has to have the function prototype as shown below:
void print_avail (SET_TYPE set, FILE * filename);

That is, it takes in a set and priuts the set information in the file given by
‘filename’. Default file used is “stdery’.

e BUILDCG: This is an optional routine that could he specified by the user if he/she
wants to build the call-graph in his/her own way. Otherwise, the standard
built-in routine to build a call graph is called. This option has not yet heen
implemented.

We now discuss the main part of the specification file. This starts with the name
of the main routine which implements the data-flow problem, followed by the hist of
inputs and output to this routine, and the pattern-action pairs. The gramman for
this part of the specification file is specified in Figure 3.4. We start with the keyword
PROCEDURE, followed by the name of the procedure, and zero or more parameters.
The body of the pattern-action pairs starts with the keyword CASE, followed by the
identifier name which represents the tree-node, folowed by OF and a list of pattern
action pairs. Everv pattern could have one or more templates, where each template
represents a statement type/expression type found in SIMPLE, and they all can shaie

the same action. For example, we could have
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<[1d1: WHILE cond DO stmt][1d2: DO stmt WHILE cond]>
{

process_loop(stmt);

}

That is, for hoth the WHILE and the DO loops, we want a common action to be executed.
Every template which represents a statement /expression type has the following format
[ stmtid : stmt-template ].

A sample of the main section for the above available expressions data-flow problem

i shown in Figaie 3.5.

Thus, the name of the main 1outine is avail_expr, and it takes in the input set
indata and a pointer to the treemnode, and, depending on the type of tree_node,
computes the output set outdata. The pattern part of each rule matches a particular
statement type in SIMPLE. For example, if you consider the first pattern, it matches
a while-loop. The words in capitals like WHILE and DO are the keywords used to
distinguish it as a while-loop. The words in small letters are any identifier names
which represent the different parts of the while-loop. The generator maps these
identifier names to the actual parts of the SIMPLE tree they represent. In the action
part, these identifier names are used to perform an operation on that part of the
while loop. Other than this, in the action, we can use any other variables which we
define either in the C-code header or as a parameter, or defined within the action
part itsell. For example, in the rule for a *while-loop’, the action part uses some
vatiables like “next_approx’ which is defined right there, ‘indata’ which comes in as a
parameter, and “stmt’ which is a used in the pattern to represent the statement part

of the ~while loop”.

3.2.2 Output of McTAG

Phe ¢ code output of the generator tool just for the 1£- statement rule is given in

Figuie 3.6,

The generator works in two phases. Since SIMPLE has a fixed number of state-
ment /expression types, the generator has a table consisting of one entry for every
statement/expression type found in SIMPLE. In the first phase, as the generator
patses the specification file, it fills up the table entries with the variable names used
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routine: PROCEDURE identifier ‘(’ paramlist ‘)’ ‘:’ type body
paramlist: param | paramlist ¢,’ param |

param : identifier ‘:? type

type : identifier

body : CASE identifier OF cases

cases : case | cases case

case ‘¢’ caseheadlist ‘>' C_CODE

caseheadlist : caseheadlist casehead | casehead

casehead : ‘[’ identifier ‘:' stmttype ‘]’

stmttype : WHILE identifier DO identifier

D0 identifier WHILE identifier

FOR identifier identifier identifier DO identifier
RETURN

BREAK

CONTINUE

BREAK identifier

RETURN identifier

SWITCH identifier DO identifier

CASE identifier DO identifier

DEFAULT DO identifier

IF identifier THEN identifier ELSE identifier

IF identifier THEN identifier

CALL ‘(’ identifier ¢,’ identifier ‘)’

identifier ‘=’ identifier identifier identifier

‘%’ jdentifier ‘=’ identifier identifier identifier
identifier ‘=’ identifier

identifier ‘=’ ‘x’ identifier

identifier ‘=’ ‘&’ identifier

identifier ‘=’ identifier identifier

identifier ‘=’ CALL ‘(’ identifier ¢,’ identifier ‘)’
identifier ‘=’ CAST ‘(’ identifier ‘,? identifier ‘)’
‘%’ jdentifier ‘=’ identifier

‘%’ identifier ‘=’ ‘%' identifier

‘%’ jdentifier ‘=’ ‘&’ identifier

‘x’ jdentifier ‘=’ identifier identifier

‘x? jdentifier ‘=’ CALL ‘(’ identifier f,’ identifier
‘%) jdentifier ‘=' CAST ‘(’ identifier ‘,’ identifier
identifier ;* identifier

identifier identifier identifier

identifier

DEFAULTACTION

Figure 3.4: Grammai for the Specification File
11
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PROCEDURE avail_expr (node:tree, indata:SET_TYPE) :SET_TYPE
CASE node OF
<[stmtid: WHILE cond DO stmt]> {

SET_TYPE next_approx,out2;

SET_TYPE outl,last_approx;

next_approx = avail_expr(cond,indata);
do {
last_approx = next_approx;
outl = avail_expr(stmt,last_approx);
out2 = avail_expr(cond,outl);
next_approx = merge_avail(last_approx,out2);
} while (next_approx !=last_approx);
return next_approx;

}
<[stmtid: IF cond THEN thenpart ELSE elsepart]> {

SET_TYPE outl, out2;
outl = avail_expr(thenpart, indata);
out2 = avail_expr(elsepart, indata);
out = merge_avail(outl, out2);
return out;
}
<[stmtid: varl = vall binop val2]> {
indata = delete_expr(get_exprs(varl), indata);
indata = add_expr(create_expr(binop,vall,val2), indata);
return indata;

}
<{stmtid: varl = unop val }> {
indata = delete_expr(get_exprs(varl), indata);
indata = add_expr(create_expr(unop, val), indata);
return indata;
}
<[stmtid: stmtl ; stmt2]> {
SET.TYPE out1,out2;
out! = avail_expr(stmtl, indata);
out2 = avail_expr(stmt2, outi),
return out?2;

Figure 3.5: .\ Samiple Specification File for the Analyzer Generator



case IF_STMT: {

/** extra code generated to declare variables used in the #*#*/

/** pattern part of the specification
tree fi = node ;

tree cond = STMT_COND( node );
tree thenpart STMT_THEN( node );
tree elsepart STMT_ELSE( node );

if (STMT_ELSE(node) '= NULL) {

/** Extra Code generated to store the output in the
/** tree, because the STORE option is specified
if ((TREE_0.INFO(node)) [0_TREE_FIELD_INDEX] == NULL)
(TREE_0_INFO(node)) [0O_TREE_FIELD_INDEX] =
copy.avail(indata);
else
(TREE_0_INFO(node)) [0_TREE_FIELD_INDEX] =
merge_avail(copy_avail(indata),
(TREE_.O_INFO(node)) [O_TREE_FIELD_INDEX]);

/*% code that is a part of the specification input **/

{

0_SET_TYPE outl, out2,out;

outl = avail_expr(thenpart, indata);
out2 = avail_expr(elsepart, indata);
out = merge_avail(outl, out2);
return out;

}

Figure 3.6: A part of the Generator Qutput
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m the templates and the actions corresponding to every statement /expression type.
In the second phase, it makes one full pass over the table and spits out C-code.

The generator has built-in information about the structure of SIMPLE. In order to
create the data-flow analyzer routine, additional code has to be added to traverse and
aceess the right sub-parts of the SIMPLE tiee. The generator defines and initializes
the variable names used in the pattern-templates (which it has stored in the table),
with the actual parts of the SIMPLE tice they represent. For example, in the case
of the 1f-statement, the variables ‘thenpart’ and ‘elsepart’ used in the patterns are
initialized to be the tree representing the then-part of the if-statement and else-part

of the 1f-statement 1espectively.

Since the STOREQPTION is specified to be STORE in the specification input, addi-
tional code las to be generated to store the collected information in the tree. The
TREE_OINFO ficld has a pointer to the information stored. TREE_AVAIL_INDEX is the
mique index of the mformation array which points to the list of available expressions.
This is deseribed in more detail in the next section. Notice that the actions performed
ate different if the tree already has some information stored in it. If the information
in the tree is NULL, which means that this is the first time we are analyzing that
subtree, we just store the new information. Otherwise, (this means we are in a loop
or in a recursive proceduare call where we are computing the fixed point), we merge
this new information with the information already present in the tree.

The (" code given in the action part of the rules is inserted as it is in the output. If
a tide for a particular type of statement is not given, then the table entry correspond-
ing to that pattem-template is empty and the default action specified in the input
specification is used. However, if there is no default action in the specification file,
the identity function is performed, i.e.. the data-set which comes in as a parameter is

teturned as the output.

The entire output analyzer produced by the generator for the specification input

for reaching definitions is shown in Appendix ('

3.2.3 Storing the Data-Flow Information in the Tree-Node

\sindicated in Figure 3.1, cach analysis is specified independently, and a unique
index s ancluded in each specification which is used to specify a unique position in

14



il

a tree-node for storing the appropriate computed values (refer to Figure 3.7). This
provides a way of ensuring that cach analysis has an appropriate place for storing, its
results. There is a field in all relevant tice-nodes that points to an array of pointers.
Each element of this array points to the information computed by different data-
flow analyzers. The array-index for a particular data-flow analysis is specified in the
input specification file. Similarly, in the case of interprocedural analysis, we store the
additional information in the call-graph.

ALIAS_INFO -

CONST_INFO
TREE_NODE e T

AVAIL_INFO

VYVYY

/)

Figure 3.7: Data-flow information stored in a 'ree-node

3.3 Parallelizing the Data-Flow Analyzers

In generating data-flow analyzers ina structuied manner, parallelism can be exploited
at two levels: one between various data-flow analyzers and one uside a specifie data-
flow analyzer.

o Asshown in Figure 3.1, a number of data-flow analyzers could be produced using
the generator tool. The places to store the 1esults of these analyses are mique
to the particuliar analysis. This provides an opportunity to exploit the eoarse
grain patallelism existing among these analyses. However, certain analyses have
some kind of dependency with some other analyses and therefore enforce an
order in the exeention of these analyses. For example, alias information needs
to be computed before computing live variables or 1eaching definitions (refer to

15
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Chapter 4). Thus, except for the partial order enforced by the dependencies
among analyses, parallelism at a coarse grain level can be exploited by executing

the analyzers in parallel.

o Smce we are building structmed data-flow analyzers to work on SIMPLE, which
itsell is a structured compositional representation of the program, it is guaran-
teed that different subtrees will not interfere. As a consequence, they could be
analyzed in parallel. For example, the two conditional parts of an if-statement
could be analyzed in parallel. Similarly, all branches of a switch-statement

could be analyzed in parallel.

3.4 Summary

In this chapter, we have presented a tool which helps us build structured, sophisticated
analyzers in a relatively straightforward and elegant manner. The framework of the
McTAG is based on SIMPLE, which is a structured and compositional representation

of the entire program.
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Chapter 4

Introductory Examples

Iu this chapter, we desciibe two analyzers that have been generated using the analyzen
tool discussed in Chapter 3. The first analysis presented is a forward analysis for
reaching definitions while the second analysis is a backward one for live variables. For
cach of the analyses, we first define the problem, the abstraction used, the operations
performed on the abstraction, and then desciibe how the data-flow analysis problem
is solved using the analyzer tool. Further, we extend the analyses to handle the
break and continue constructs in a structured manner. Finally, in order to make
our analyses interprocedural, we constiuct a special call graph that is employed o

analvze both ordinary and recursive procedune calls.

4.1 Reaching Definitions

Reaching definition analysis helps us to determine what definitions reach a particular
point in a program. This is a forward analysis, as discussed in [ASUS6], where we

analyze a program from top to bottom.

4.1.1 Problem Definition

Reaching definitions have been formally defined in [ASU86] as: A definition of a
variable x is a statement that assigns. or may assign a value to x; A definition d

17



reaches a point p, if there is an execution path immediately following d to p, such
that d is not ‘killed” along that path.

For the purposes of our analysis, we extend this to define definitely-reaching and
maybe-reaching. A definition 4 of a vatiable x i1s said to definilely-reach a point p if
d is the only definition of the variable x that reaches the point p. The definition d of
a vatiable x is said to maybe-reach the point p if there is more than one definition of
the variable x that reaches point p. The following piece of code illustrates the above

definitions.

(1) y=3;
Cemmomme-e Definition (i) of y definitely-reaches. (4)
(i1) x = 4;
Cmmmmm - Definition (i) of y definitely-reaches,
Definition (ii) of x definitely-reaches. (B)
if (cond)
(1i1) X = 2;
R After the if-statement,

the definition (i) of y definitely-reaches,
definition (ii) of x maybe-reaches,
definition (iii) of x maybe-reaches. )

We extend this definition to include structure references. Rather than computing
the teaching definitions of structure references by enumerating all the subfields in
the structure, we use the following conservative approximation. The definition of
a stincture s de fimlely-reaches a point p in the program if the definition of all the
sublields of s definitely-reaches that point p in the program. If the definition of any
field of s is redefined on any path starting at point p in the program, the definition

of s maybc-rcaches the point p.
We illustrate this with examples.

Example 1-

(1) a.b.c= ...

<-- a.b.c defined in (i) definitely-reaches here (K)
(ii) a.b = ...

<-- a.b defined in (ii) definitely-reaches here (B)

I8
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As we analyze the program from top to bottom, we first encounter statement (i).
The definition (i) of a.b.c reaches point (A). In (i1), we are defining a larger part of
the same structure, therefore, only (ii), defining a. b, definitely-reaches point (B).

Example 2:

(i) a.b=...
<-- a.b defined in (i) definitely-reaches here (4)
(ii) a.b.c= ...
<-- a.b defined in (i) maybe-reaches, and that defined
in (ii) definitely-reaches (B)

The complete definition of all the subficlds of the structure a.b defined at (i) does
not reach point (B), because definition (it) kills a part of it. Therefore we say (i)
maybe-reaches point (13), but (ii) definitely-reaches (B).

This is where we make the choice between being as accurate as possible and heing,
time and space efficient. We could have analyzed and could have bheen more aceurate
regarding which pait of the definition (i) of a.b definitely-reaches (B). The following,
example brings out the difference bhetween the two approaches,

struct {
int a;
int b;
}c, b
=t; === (1)
a=1; =--- (ii)
b= 2 --- (iii)
{emrmeeemmm—m- The definition (i) of ¢ does not reach here,

because the structure c is completely defined
by (ii) and (iii). But our conservative analysis
will say definition (i) ot c maybe-reaches.
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Example 3.

(1) t.b = ...
<-- t.b defined in (i) definitely-reaches here (4)

(ii) t.c = ...
<-- t defined in (i) maybe-reaches, and that defined
in (ii) definitely-reaches (B)

This is also a conservative approximation, because we say definition (i) maybe-

reaches point (13). This is a safe approximation.

Example 4.

1f (cond)
x.a = (i)
else
x.b = ... (ii)
<-- Here, x defined in (i) maybe-reaches, and that
defined in (ii) also maybe-reaches. (A)

Since definitions (i) and (it) are on cither branches of an 1f-statement, they both

mavhe-reach point (A).

However, in the case of pointers, we make usc of alias information to be as accurate

as possible. Consider the following example:

When we reach the statement (i), we look at all the aliases of *t. If *t is aliased
to a single scalar variable, say a, we say the definition (i) of a definitely-reaches (A).
It *t is aliased to more that one scalar variable (these are ‘maybe’ aliases), say a and
b. then we say that definition (i) of both a and b maybe-reach (A). If *t is aliased to
strneture references, then they have to be dealt with in a similar fashion. Lastly, if
we have the reference (¥t) .b.c, we get the aliases of *t, say a, and then deal with

the reference a.b. ¢ in an appropriate manuer.
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4.1.2 Data Structure Abstraction

The data structure abstraction used to capture the information about reaching def-
initions is a set of 1tems, where cach item is of the form (varname, list), where
list is a list of defanition pairs of the form (defainition, flag), and flag is
cither may-reach or def-reach. Thus at every point in the program we associate a
set of 1tems containing all the definitions that may or definitely-reach that point.

4.1.3 Operations on the Abstraction

We define the following terms: The base-name of a varname (defined in Figure 2.6)

is defined as:

. The hase-name of a scalar variable of the form x is x.

(S

The base-name of a structure relerence of the forma.b.c.... isa.
3. The basc-name of a structure-pointer reference of the form (*t) .b.c... is t.

[. The basc-name of an array reference of the form al1l(3]. .. is a.

The common-prefir of two varnames is the same base-name as the largest prefix
of these varnames. For example, the common prefix of two scalar variables x and x
is x,of a.b.cand a.b.dis a.b, of (*t).y.z and (*t).y is (*t).y. We treat an
entire array as a single scalar element: the common-prefix of two array references of
the form al1][3] and ali][3] is just a, the common base-name of the two array

references.

We define the function common_prefix (a,b) to return the common-prefix of
two varnames having the same base-name. The merge operation on two sets of
1tems (defined above) is defined in Figure 4.1, The rontine merge reach calls fune
tion merge_item to merge two 1tems with the same base-name. The operation
concat_lists concatenates two lists of definition pairs together. If the same def
inition is present in both the lists, it comes out as it is; if a deflinition appears on only
one of the lists, it is always converted to a maybe-reach. The rontine change. flag
changes the flag of all the elements in a list to maybe-reach.

a1



merge_item (({varl, listl),(var2, list2))=(prefix(vari,var2), concat.lists
(1l1stl, 1list2))

concat_lists(listA.listB):1istC

{
listC = {};
For all pairs (def, flag) of listA do {
if (pair (def, flag) exists in listB) {
listA = listA - {(def, flag)};
listB = 1istB - {(def, flag)};
listC = 1listC U {(def, flag)};
}
}
For all remaining pairs (def, flag) of listA and listB do
listC = listC U {(def, maybe-reach)};
return 1listC;
}
merge_reach(setA, setB) : setC
{
setC = {};
For all items itemA of the form <nameA, listA> of setdA do {
/*x get corresponding item from setB and merge them *k /
itemB = get_item_with_same_base_name(itemA, setB);
if (itemB !'= NULL) {
setC = setC U {merge_item (itemA, itemB)};
setB = setB - {itemB}; /** Delete itemB from setB *x*/
}
else {
/** setB does not have a item with the same basename as itemA **/
setC = setC U {<nameA, change_flag(listA, maybe_reach)>};
}
}
For all remaining items itemB of the form <nameB, listB> of setB do {
setC = setC U {<nameB, change_flag(listB, maybe-reach)>};
}
return setC;
}

Figure L1: Merge Operation for Reaching Definitions



4.1.4 Specification to the Generator Tool to Create the An-
alyzer Module

McTAG, described in Chapter 3 takes a set of specifications describing the data-flow
problem and creates an analyzer module that operates on SIMPLE. The main part
of the input to the tool is a series of pattern-action pairs for every kind of statement
type found in SIMPLE. We list the pattern-action pairs for some illustiative statement
types for computing reaching definitions. This example also illustrates how structured
flow analyses are implemented in general. We start with writing the rules for basie
statement types, and then move on 1o sequences and other control constructs,

PROCEDURE reach_def(node:tree, indata:SET_TYPE) :SET_TYPE
CASE node OF
<[stmtid: val = varl op var2]> {
indata = delete_def (indata, val);
indata = add_def (indata, stmtid, val, DEFINITELY_REACH);
return indata;

This describes a pattern-action pan for a basic statement. We first delete the
previous definitions of val from the input set, and add this new definition to it.

Let us now consider a rule for a slightly more complex statement, one with aliases
i it.

<[stmtid: *val = varl op var2 1> {
/*x The routine ‘get_alias’ gets all the variables that are #**/
/*x aliases of ‘*val’ wx/
aliases = get_alias(val);
indata = update_def (indata, stmtid, aliases);
return indata;

The routine update_def docs the job of the delete.def and add.def. It is more
complicated because aliases are involved. I fitst checks if val is aliased to a single

scalar variable. 1 it is. the previous definitions of this scalar variable can be deleted,
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and the new definition can be added. If it is aliased to more than one scalar, then
the new definition is added as a maybe 1caching definition for each scalar to which it
was aliased. Similarly, it has to deal with the cases when val is aliased to structures.

Next, et us consider a sequence of statements.

<[stmtid: stmtl; stmt2 J> {
SET_TYPE outdatal, outdata2;
outdatal = reacu_def (stmtl, indata);
outdata2 = reach_def (stmt2, outdatal);
return outdata?2;

Sinee this is a forward analysis, stmtl has to be analyzed first before stmt2. So
we call the routine reach.def recursively first on stmt1, and then on stmt2. Notice
that the input information for stmt2 is the output information that is collected after

analyzing stmtl.

We shall now illustrate the rules for an 1f-statement.

<[IF cond THEN chenpart ELSE elsepart ]> {
SET_TYPE outl, out2;

indata = reach_def(cond, indata);
outl = reach_def(thenpart, indata);
out2 = reach_def(elsepart, indata);
outdata = merge._reach (outl, out2);
return outdata;

We first analyze the cond part of the 1f-statement. Notice that for reaching defini-
tions, analyzing the cond part is not really necessary since all conditional expressions
in SIMPLE ate reduced to simple scalar variables and cannot have any side-effects.
I'herefore, after this step, 1ndata is unchanged. We analyze the thenpart and the
elsepart of the af=-statement in turn. Notice that the input information to both
of these is the information that enters the 1f-statement. After this, we merge the
imformation obtained from both the branches of the if-statement.
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In the above actions, we use a number of routines like merge_reach and update def

which should be defined in the C-code section of the specification file.

Switches are analyzed in asimilar mannet. Just as we have a two-way branch and a
merge in an if-statement, we have an n-way branch and merge in a switch-statement.

We shall now demonstrate how loops are analyzed in a structured manner. We
first look at loops that do not contain break, continue or return statements. Loops
with breaks, continues or returns aic dealt with in Section 4.3,

(‘onsider the while-loop depicted in Figure 1.2, The code to analyze the while-loop
is also listed in I'ig 1.2, The while-loop body, depending on the condition cond, could
be executed n times, wheren = 0, 1, 2, ... This is what we are approximating
when we analyze the loop. That is, we are approximating the information at the
point * in the Figure 4.2. The first approximation of our output information is what
we have after analyzing only cond. With this first approximation, we analyze stmt,
the hody of the while-loop, and cond. We now obtain our second approximation,
and we continue till the last approximation equals the new approximation computed,

i.e.. a fixed point is reached.

<[11: WHILE cond DO stmt]> {
SET_TYPE next_approx,out2;
SET_TYPE out1l,last_approx; ndata

next_approx = reach_def(cond,indata);
do {
last_approx = next_approx; */ ouz
outl = reach_def(stmt,last_approx);
out2 = reach_def (cond,outl);
next_approx = merge_reach(last_approx,out2);
} while (next_approx !=last_approx);
return next_approx;

out 1

Y

next_approx

Figure 4.2: Forward Analysis ol a WILI Loop
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A similar fixed-point computation is performed for do-loop and for for-loops.
Do-loops are illustrated in Figure 4.3. We now approximate the information at the
point, * in the figure. Since the do-loop will be execnted at least once, the first
approximation to the do-loop is what we have after analyzing stmt and cond once.
After this, we do a fixed-point calculation similar to that of the while-loop.

<[11: DO stmt WHILE cond]> Indata

{
SET_TYPE next_approx,out2;
SET_TYPE outl,last_approx;

outl = reach_def(stmt,indata);
next_approx = reach_def(cond,outl);
do {
last_approx = next_approx;
outl = reach_def(stmt,last_approx);
out2 = reach_def(cond,outl); m
next_approx = merge_reach(last_approx,out2);
} while (next_approx !=last_approx); » Out2

return next_approx;
} next_approx

outi

IYigure 4.3: Forward Analysis of a DO Loop

For-loops ae handled in a similar manner, except that the start, end and

1teration conditions have to be handled carefully.

Notice that there ate a number of ways to compute the fixed points of loops. We
have presented one very general method. McTAG is flexible and general enough to
allow the encoding of any of the methods to compute fixed points

We shall deal with procedure calls in detail in Section 4.4.

4,2 Live-Variable Analysis

Five variable aualysis helps us to determine the live-ranges of variables used in the
program. Tlis is a backward analysis (the program is analyzed from bottom to top)
and s absolutely essential for optimizations like register allocation. Qur approach
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liere is similar to that of reaching definitions; the main difference is that this is o
backward analysis.

4.2.1 Problem Definition

A variable x is livc at a point p in the program if the value of x at p could be used
along some execution path in the program starting at point p [ASUS6]. Thus, during,
live-variable analysis, at every point in the program, we compute a set of variables
that arve live at that point in the program.

We now extend this notion of liveness to de fimitely-live and maybe-live. We first
define these for scalar variables and later extend them for structure and pointer
references. A scalar variable x is said to be definitely-live at a point p in the program
il the value of x 15 definitely used along every execution path in the program stiting,
at point p. Counsider the following piece of code.

<-- nothing is live (<)
X = 3;
<-- x is definitely-live (B)
z =4,
<-- x is definitely-live and z is maybe-live (A)
if (cond)
y=x+2z;
else
y=x

As we do a backward analysis of the program, after analyzing the 1f-statement,
at pomnt (A) in the program, we find x is definitely-live and z is maybe-live Tlis is
because x is used on both the branches of the 1f-statement, whereas z is used only
in one branch. At point (B) in the program, only x is definitely-live, (z is ‘killed?

because it is defined). and at point (C) in the program, nothing is live,

We now extend the above definitions for structure, array and pointer references,
We define a structe s to be de findddy-love at a point p in the program if the values
of all the subfields of s are definitely used along every execntion path in the program

starting at point p. Otherwise, if at least one field of structure s is used along some

f |
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excention path starting at point p in the program, the structure s is said to be

maybhe-live. We illustrate the above by some examples.

Example 1.

<---nothing is live (B)

(i1) a
<---a.b is definitely-live (4)

(1) a.b

As weanalvze the program backwards. we encounter the statement (i). Since this
is an use ol a.b, at point (A), the structure a.b is definitely live. Statement (it)
completely defines the structure a. Thus. at point (B). nothing is live.

L)

Example 2.

<-- a.b is definitely-live (B)
(11) ...= ab

<--a.b.c is definitely-live (4)
(1) ..= a.b.c

Here, sinee statement (i) uses a superset of the structure used in statement (i),

we say the superset structure is live, e L a.bis live

Example 3.

<--a.b is definitely-live (B)
(11) = a.b.c

<--a.b is definitely-live ()
(1) = a.b

Sinee statement (i) uses only a part of the structure used in statement (i), we say
a bis delimtely -live at point (B) as well.

'.)(‘




Example 4.

<--a.b is maybe-live (B)
(ii) a.b.c = ...

<--a.b is definitely-live (Aa)
(1) ... = a.b

At point (A), a.b is definitely live. However, at point (B), since a part of the
structure is defined, we say a.b is maybe-live, since we are not sure, at that point, il
the structure is completely defined or not.

Once again we make a compromise between being as aceurate as possible, and

being time and space efficient. This is illustrated in following example.

Example 4a.

struct {
int b;
int ¢;
}a, t;
<--- At this point, nothing is live, but our conservative analysis
will say that a is maybe-live.

a.b=1;

.c = 2;

= a;

In the case of arrays, we treat each array as one object. Array ais de finalely-live
at a point p in the program if the value of at least one element of a is definitely used
along every execution path in the program starting at point p. Similarly, an array a
is defined to be maybe-live at a point p in the program if the value of at least one
clement of a is used on some execution path in the program starting at point p

For pointers. we make uses of aliasing information to deternnne liveness accurately

Consider the following example:

<--a is definitely-live
= *t; (1)



When we reach the statement (i), we look at all the aliases of *t. If *t is aliased
to a simgle scalar variable, say a, we say both t and a are definitely-live at that point.
Il *t is aliased to more that one scalar variable (these are ‘maybe’ aliases), say a and
b. then we say that a and b are maybe-live and t is definitely-live. If *t is aliased to
stracture references, they have to be dealt with in a similar fashion. Similarly, if we
have the ieference (#t) .b.c we get the aliases of *t, say a, and then deal with the

relerence a.b.cinan approptiate manuner.

4.2.2 Data Structure Abstraction

We now define the data structure abstraction used to capture the information about
live vatiables. The representation used is a set of tuples of the form (name, flag).
where name tepiesents the variable reference. and flag is cither definitely-live or
may be live, 'Thus, at every pointin the program we associate a set of tuples containing
all the variables that are either definitely-live o1 maybe-live at that point.

4.2.3 Operations on Sets

Fhe algorithim for merging two sets and two tuples is given in Figure 4.4. The
toutine merge_tuple merges two tuples having the same basename. It is called by
the merge set. to merge cottesponding tuples  The routine merge_set goces through
all the elements ol the two sets and merges the corresponding elements one by one.

4.2.4 Specification to the Generator Tool to Create the An-
alyzer Module
Fhis s vers similar to what is deseribed in Section 4.1.4. The main difference, of

contse is that this s a backward analy <. This difference is especially seen when we

analvze sequences and loop constructs, which is illustrated below.
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/** merging of two tuples wu/
merge_tuple(tupA, tupB) : tupC
{

extract_name_from_tuple(tupA);
extract_name_from_tuple(tupB);
flagAh = extract_flag_from_tuple(tupA);
flagB = extract_flag_from_tuple(tupB);
if ((flagA == definitely_live) && (flagB == definitely_live)) {
/** same_name is a routine which returns 1 if both nameA and *%/
/** nameB are exactly the same, e.g., a.b and a.b *%/
if (same_name(nameA,nameB))
tupC = <nameA, definitely_live>;
else
tupC = <common_prefix(nameA,nameB), maybe_live>;
} else
tupC = <common_prefix{(nameA,nameB), maybe_live>;

nameA
nameB

}
/** merging of two sets of live variables %/
merge_set (setA, setB) : setC
{
setC = {};
For all tuples tupA of setA do {
/** get corresponding tuple from setB and merge them “x/
tupB = get_tuple_with_same_base_name(tupA, setB);
if (tupB '= NULL) {
setC = setC U {merge_tuple (tupA, tupB)};
setB = setB - {tupB}; /** Delete tupB from setB *%/

}

else {

/** setB does not have a tuple with the same basename as tupA *#*/
name = extract_name_from_tuple(tuph);
setC = setC U {<name, maybe-lived>};

}

}

For all remaining tuples tupB of setB do {
name = extract_name_from_tuple(tupB);
setC = setC U {<name, maybe-live>};

}

return setC;

Figure 4.4: Merge Operation for Live Variable Analysis
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PROCEDURE live_anal(node:tree, indata:SET_TYPE) :SET.TYPE
CASE node OF
<[stmtid: stmt!; stmt2 }>

{
SET_TYPE outl, out2;

outl = live_anal(stmt2, indata);
out2 = live_anal(stmtl, outil);
return out2;

}

Notice that here, unlike in reaching definitions, we analyze stmt2 first, and then
analvze stmt1. This ordering is what that drives the backward analysis.

We illustrate the bachward analysis of whale-loops and do-loops below.

Figne 1.5 illustrates the while-loop during backward analysis. Notice here that
the direction ol all the attows have been reversed when compared to Figure 4.2
Again, we try 1o approximate the information at point * in the figure. The first
approximation we use here is the output we get after analyzing the conditional part,
cond. Figiuie 1.6 illustrates the do-loop which is analyzed in a simila: fashion.

<f[11: WHILE cond DO stmt]>
next_approx

{ —\
SET_TYPE next_approx,out2; out2
SET_TYPE outl,last_approx; m
gex;_approx = live_anal(cond, indata); out 1 ndata
(o]

last_approx = next_approx;

outl = live_anal(stmt,last_approx);

out2 = live_anal(cond,outl);

next_approx = merge(last_approx,out?2);
} while (next_approx !'=last_approx);
return next_approx;

Figure L5 Bachward Analysis of a WHILE Loop

We shall discuss procedure and function calls in detaii separately in Section ..



<[11: DO stmt WHILE cond]> next_approx

{ %
SET_TYPE next_approx,out2; out2
SET_TYPE outl,last_approx;
outl = live_anal(cond,indata); stmt
next_approx = live_anal(stmt,outi);
do {

last_approx = next_approx; out 1
outl = live_anal(cond,last_approx);

out2 = live_anal(stmt,outl); “
next_approx = merge(last_approx,out2);

} while (next_approx !=last_approx);

return next_approx;
indata

Figure 4.6: Backward Analysis of a DO Loop

4.3 Analyzing Break and Continue Constructs

This section describes how we analyze break and continue constructs of € in a
structured manner. We shall extend both our forward and backward analysis tech
niques to handle break and continue constructs. We shall do this by extending ou
abstraction to include not only the infermation set, but also information about the

data at the break and continue points of the program.

Forward Analysis:

We shall first discuss forward analysis of a while=loop. As shown m Figure 4.7, when
we encounter a break in the body of a loop, the contiol goes to the end of the loop.
Hence, one of the valid outputs of the while-loop is the information collected pust
before the break statement. Similarly. a continue statement transfers control to the
beginning of the loop. In this case, one of the valid inputs to the whaile=loop 1s the

data collected just before the continue statement

We shall thetefore extend our abstiaction to ndude two hsts. a breaklist and
a contlist. The code to analyze while-statements with breaks and continues is
given in Figure 1.7. When we reach a break or a continue, we store the information
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colleeted up to that program point in the breaklist or the contlist respectively,
and return a new entity which we call as BOTTOM. BOTTOM essentially means that a
path after the break or the continue is invalid — a statement immediately following
a break is never reached. Therefore, the output after analyzing any statement with
BOTTOM as input is BOTTOM. But if we merge any set with BOTTOM, the result is the set.

After the fist pass over the body of the loop, we have collected some information
whndis an approximation. We merge this with all the information sets present in
the contlast and is used as an input to obtain the next approximation. We continue
this way until we reach a fixed point. We now merge this fixed point output with
Al the information sets present in the breaklast. This newly ierged information is

retured as the result of analyzing the while-loop.

The followmg small example with o break statement gives an intuition behind
how BOTTOM worhs. At point (A), we have collected some information, which enters
both the branches of the 1f-else statemient. As we analyze the then part of the
1f-statement, at point (B), just before the break, we have some valid data. This is
stored i the break-1ist and BOTTOM is retuined. Thus, the result of analyzing the
then-patt of the 1f-statement at point (') is BOTTOM. After analyzing the else-part
ol the 1f-statement, at point (D), we get some valid data. This, merged with the
output of the then-patt (i.c.,BOTTOM) results m the valid data. This is used to as
mput to the statements after the 1£. \fter analyzing the while-loop completely, at
point (), we are going to merge the data collected in the break-1ast; at this point
we mdlude the information collected at point ('), which is what is required because
alter a break contiol goes to the end of the whaile-loop.
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vhile (condl) {

........... > (4)
if (cond2) {
........... > (B)
break;
........... > (C)
}
else {
........... > (D)
}
..... wrweere——e==> (E)
}
----------------- > (F)

Backward Analysis:

In a backwaid analysis, we analyze a program from the bottom to the top. As shown
in Figure 1.9, when we perform a backward analysis, break points act as entry points
to the loop. At this point, the data coming in will be the information collected just
ontside the bottom of the loop. Therefoie, the rule for the break-statement needs to
be different for this case. Similarly, since continue transfers control to the beginning
of the loop. the input information at the continue points will he what is colledcted

cach time at the top of the loop.

In a forward analysis, we extend the abstiaction to hold data collected at break
and continue points. Here, in a backward analysis, we extend the abstiaction to
store the input for the break and continue points in the break- and continue-lists.
The code for a backward analysis of these statements is given in Figure 4.9,

Handling Return Statements:

I hese are handled ina manner similar to break and continue statements, by extend

ing the abstraction and by having a return-11st. The picces of information collected
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<[11: WHILE cond DO stmtl> {

blist = NULL; /** break list *x/
next_app = reach(cond,indata);
do {

clist = NULL; /** continue list *%/

last_app = next_app;
out! = reach(stmt,&blist,&clist,last_app);
/** merge continue list *x/
outl = merge_reach(outl, clist);
out2 = reach(cond, &blist, &clist, outl);
next_app = merge_reach (out2, last_app);
} while (next_app!= last_app);
/* merge break list */
next_app = merge_reach(next_app, blist);
return next_app;

} .
L3
<[11: BREAK]> { 'wnﬁwmzh~

store_data_in_break_list(indata);
return BOTTOM;
}

out 1

<[11: CONTINUE]> {
store_data_in_cont_list(indata);
return BOTTOM;

}

Figwe L7 Breaks and Continues in WIHILE Loops: Forward Analysis

(6



<[11: DO stmt WHILE cond]> {

blist = NULL; /%% break list *x/
clist = NULL; /** continue list *x/
outl = reach(stmt, &blist, &clist, indata);
next_app = reach(cond, &blist, &clist, outl);
/** merge continue list *%/

next_app = merge(next_app, clist); _

do { indata / -
last_app = next_app; V:‘~‘~:\
outl = reach(stmt,&blist,&clist,last_app); D
out2 = reach(cond,&blist,&clist, outl); ‘\\\
next_app = merge._reach(last_app,out2); L] trosh. ’,} "
/** merge continue list **/ S S
next_app = merge(next_app, clist); ; R M ot K
} vhile (next_app!=last_app); /' ,/ conemue ”’,»'
/* merge break list */ R comne <
next_app = merge(next_app, blist); ! '/ /‘ resh
. [}
return next_app; \\i ’/ T
v
<[11: BREAK]> { Wi - ouz
store_data_in_break_list(indata); W
naxt approx

return BOTTOM;

<[11: CONTINUE]> {
store_data_in_cont_list(indata);
return BOTTOM;

Figure LS. Breaks and Continues in DO Loops: Forward Analysis
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<[11: WHILE cond DO stmt]> {
/* set input at the break points */
blist = copy_data(indata);
next_app = reach(cond,indata);

/*initial input at continue points is NULLx*/

clist = NULL; /** continue list *x*/
do {

last_app = next_app;

out! = reach(stmt,&blist,&clist,last_app);

L]

out2 = reach(cond, &blist, &clist, outl);
next_app = merge (out2, last_app);
/** update input for continue points **/
clist = copy_data(next_app);

} while (next_app!= last_app);

return next_app;

}

<[11: BREAK]> {
/* new input at break point */
indata = get_data_from_break_list(indata);
return indata;

}

<f11: CONTINUE]> {
/* new input at continue point */
indata = get_data_from_cont_list(indata);
return indata;

¥

o ok B

~
‘7, N \

continue,

break,

continue,

break,

Figure 1.9, Breaks and Continues in WHILE loops: Backward Analysis
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<{11: DO stmt WHILE cond]> {
/* initial input at break and cont. points*/
blist = copy.data(indata);
clist = NULL;
outl = reach(stmt, &blist, &clist, indata);
next_app = reach(cond, &blist, &clist, outl);
/* update continue input */
clist = copy_data(next_app);
do {
last_app = next_app;
outl = reach(stmt,&blist,&clist,last_app);
out2 = reach(cond,&blist,&clist, outl);

next_app = merge(last_app,cut2); ‘o

clist = copy_data(next_app);
} while (next_app!=last_app);
return next_app;

<[11: BREAK]> {
/* new input at break point */
indata = get_data_from_break_list(indata);
return indata;

}

<[11: CONTINUE]> {
/* new input at continue point */
indata = get_data_from_cont_list(indata);
return indata;

¥

next_approx

break,

continue,
continue,

out 1 VY
\\
W
= )
(9
A\ Y
L)
Indata

Figure 1.10: Breaks and Continues in DO loops: Backward Analysis
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at the vatious return points in a procedure are all stored in the return-1ist. These
are erged when we return from the procedute. Refer Figured.11 for an illustration.

indata
\

\

|

procname()
relurn,

return, A
\

\
return, AN
\

Qutdata

Figmre 111 Handling Return Statements

4.4 Interprocedural Analysis

In the previons sections, we have not described what exactly we do when we cn-
counter a procedmre/function call. This section deseribes the special call-graph built
to perform interprocedural analysis. The generator tool makes use of this call-graph

by defanlt when the analysis as specified as interprocedural.

4.4.1 Analysis of Nonrecursive Procedure Calls

In this subsection, we shall deseribe the call graph and the analysis for nonrecursive
procedite callscand in the next subsection, we shall extend this to handle recursive
procedure calls. Figure 112 shiows a non recursive program and its call graph. The
call-graph is made up of nodes, which represent procedure calls, and edges, which
specily the calling sequence. Every node in the call-graph (except main) corresponds
to a calling site in the program. The nodes in this nonrecursive call-graph are called
ordinary nodes and the edges are called calling ares. Later, when we consider recursive

call graphs, we shall introduce other diflerent kinds of nodes and arcs.
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_________ (B) main
--------- (©) (A) ¢
--------- (D)

(C) h

Figuie 4.12: Nonrecursive Call Graph
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When we do interprocedutal analysis, we move back and forth between the call-
node and the SIMPLE tree. Figure 4.11 illustrates what we do when we encounter
o procedure call. When we encounter a procedure call in the SIMPLE tree, we ana-
Ivze the arguments and then call the procedure traverse_cg with the corresponding
call node. Traverse_cg fitst calls a 1outine called map to map the information as-
sociated with the actual parameters to the formal parameters. Map and unmap are
tontines that map the iformation associated with actual parameters to the formal
pataineters, and vice-versa (1efer to Fignie 1.13). We then go back to SIMPLE to an-
alvze the bhody ol this new procedure. When we return after analyzing the procedure.
we petfonn the nnmapping of information

CALLING
CALLED

ROUTINE /
ROUTINE

Q

P

unmap(}

Figure 4.13: Map and Unmap Routines

In the nest section, we shall see how the call-graph is built for recursive procedures,
and the extensions made to the routine traverse_cg to traverse this new call-graph.

4.4.2 Analysis of Recursive Procedure Calls

In order to take cate of recursion, we eatend the ordinary call graph to contain special
recurstee nodes and approximale nodes, \We illustrate a recursive call-graph through

an example.

Call Graph Construction

We shall deseribe how the call-graph is constructed for the example shown in Fig-
wre LA Sinee routine main calls £ we ereate erdinary nodes for maan and £, and

-1
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<{11: CALL (fr_name, arglist)]> {

{

}

/* collect vhatever information you want about the arguments */
/* depending on the type of analysis we are performing */
collect_info_about_arguments (arglist);

/** get the pointer to corresponding node in the call graph #/
callnode = get_corresponding_call_node(fn_name);

/** Call function to traverse call graph */
outdata = traverse_cg(call_node,1ndata);
return outdata;

Procedure traverse_cg(cg.node, indata): outdata;

{

/* map information onto the formal params of the new proc  */
/* before analyzing the new proc */
data = map(cg_node, indata);

/*get the SIMPLE tree_node corr to the body of the new proc */
tree_node = get_tree_node(cg_node);

/*go to SIMPLE tree and start analyzing the new procedure  */
data = analyze(tree_node, data);

/*After returning from analyzing the new proc, perform */
/* unmapping */

outdata = unmap(cg_node, data);

return outdata;

Figure 4.14: Code for Analyzing Procedure Calls
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main()
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connect them by a calling are. Now, £ calls routines g and h, and so we create two
more ordinary nodes for g and h and connect them by calling ares. Now g calls f
recuisively. Since £ has already occurred once in the call-chain from the root, we
petform three special actious: (i) we change the first occutrence of £ to another kind
of node, the recursere node, vepresented e Figure 115 as £=%; (1i) we create an ap-
proronale node lor £, called f-a, and connect g and f-a by a calling are, () we
connect the approximate node f-a and its corresponding, recursive node =% by an
approrimate are. Approximate arcs are shown by dotted lines in the figuie. Sinnlarly,
we see that the routine h calls itself recusively. So, we convert the first ocennence

of h to h-*, create a new h=A node, and connect them by an approximate arc.

T hus, the call graph could be made up of three different kinds of nodes:  an
ordinary node, a recursive node ot an approximate node, whereas edges could be

cither calling edges or approximate edges.

Interprocedural Analysis:

The recursive call-graph essentially represents the unvolling of the call-graph during
recursion to an unbounded depth. We now extend the 1outine traverse_cg to take
care of the different kinds of nodes found in the call-graph. Depending on the type
of the call-node, routine traverse_cg performs different actions.

The modified routine traverse.cg() is smmmarized in the Figure 4.16.

If the call-node corresponding to the procedure call in the SIMPLE tree is an ordi
nary node, then we essentially do the saime as we do for non-recursive procedure calls.
We call routine map to map the information associated with the actual parameters to
the formal parameters. We then go back to SIMPLE to analyze the body of this new

procedure. When we return, we perforin unmapping of information.

If the call-node corresponding to the procedure call is a recursive node, we have
to iterate until a fixed point is reached. We have a list ol input-output pans of
information stored at a recursive node. These correspond to all the different types
of inputs and outputs possible during one iteration of the fixed-point caleulation.
During every iteration, we check if there is more than one input at this node. If there
is, then this indicates that a recursive call was found with an mput not included i

the curtent iuput approximation. In this case, we merge all these inputs, store this

-1
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Procedure traverse_cg(cg_node, indata): outdata
{
switch (typeof (cg.node)) {
case Ordinary_noda:
/** map information %/
data = map(cg_node, indata);
/** go to SIMPLE tree and start analyzing the new procedure*#*/
data = analyze(tree_node, data);
/** perform unmapping w*/
outdata = unmap(cg_node, data);
return outdata;
case Recursive_node:
data = map(cg_node, indata);
data = analyze(tree_node, data);
/** repeat until fixed point is reached ok /
while (more_than_one_input(call_node) | |output(call_node) != data) {
if (more_than_one_input{call_node)) {
newin = merge_inputs{call_node) ;
store_input_in_call_node(newin) ;
} else {
newout = merge(data, output(call_node));
store_output_in_call_node(newout);
newin = input(call_node);
}
data

analyze(tree_node, newin);
}
outdata = unmap(cg_node, data);
return outdata;
case Approximate_node:
/** get the recursive node corresponding to this approx.node**/
recur_node = get_recur_node(cg_node) ;
newout = output(call_node, indata)
if (newout != NULL) return unmap(newout);
else {
store_input_in_call_node(recur_node, indata);
return BOTTOM;

Figure 1.16: Procedure to Traverse Call Graph
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newly merged input in the tree, and start again with the new merged input. I there
15 a single input-output pair, but that output and the newly created output from
the most recent iteration are not the same, we merge the two outputs, store the new
merged output in the tree, and start again with the input present theie  Finally,
when a fixed point is reached, there is a single input-output pain which corvesponds
to a superset of all the input-output paits possible for this procedure. Intuitively, this

input-output pair summarizes all the possible unwindings of the cail-graph

If the call-node corresponding to the procedure call s an approximate node, we find
its corresponding recursive node in the call-graph. We check the list of input-output
pairs to see il an output exists for this particular input. If 1t does, we just tetun
this output. Otherwise, we store this new input in the recursive node, and retunn
BOTTOM. BOTTOM here means 1 dont hnow™, i.e., we still don’t know the output fo
this particular imnput, but essentially has the same properties as the BOTTOM described

in Section 1.3,

The routine traverse_cg() is fixed for this particular kind of call-graph. Ouee
the user provides the routines map() and unmap(), McTAG can be extended to a

tomatically generate this routine.

4.5 Summary

In this chapter. we have presented two commonly performed analyses, live-variable
analysis, which is a backward analysis and reaching definitions, which is a forwad
one. The analyses have been extended to handle break and continue constiucts
in a structured manner, and later made interprocedural. Though we have deseribed
two specific flow analysis problems in this chapter, these demonstrate in general, how
other simple or comiplex interprocedural flow analyses, both forward and hackward,

can he implemented in a structured manner.

-
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Chapter 5

An Advanced Example:
Determination of Constants

In the previous chapter, we presented some traditional flow analysis problems and
we showed how to make these analyses interprocedural. In this chapter, we give an
overview of a completely different sort of analysis, the determination of constants.
The purpose of this discussion is to illustrate the diversity of analyses that can be
miplemented with the analysis generator tool. A formal study of the analysis problem

isell s outside the scope of this thesis.

The goal of constant propagation is to discover values that are constant in all
possible executions of the program and to propagate the values as far as possible. We
can casily implement constant propagation in the same way as we have implemented
Iive variable analysis and reaching definitions, as shown in the previous chapter. In-
stead, we have approached the problem of finding all the constants in a program in
a dilferent manner. Instead of moving to and fro between the call graph and the
SINMPLE tree while performing an interprocedural analysis, we make two passes. The
lirst pass is an intraprocedwal one, and this collects as much information as possi-
ble without analyzing procedure calls. and also sets up some dependence relations
between variables and procedure calls. The second pass is an interprocedural one,
where we resolve these dependencies, and determine all the constants at every point
in the program. The main advantage of this method is that we perform a statement
by statement analysis of every procedure body only once, and not as many times as

the procedure is called.

~.
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The generator tool is employed to generate both the intraprocedural and the inter-

procedural modules. In the input specification tile for the intraprocedural module, in

the action part for a procedure call, we do not have a jump to the call-graph; we just

encode the dependencies of the variables on that procedure call. The tool generates

the additional code to traverse all procedures once. in the input specification file for

the inter-procedural module, in the action part for a procedure call, we have a jump

to the call-graph, and then subsequently a jump to the called procedure.

5.1

An Overview

We shall introduce our method through an example. Figures 5.1 and 5.2 illustrate

how the information of variables and their dependencies are encoded i the first pass.

and later resolved in the second pass.

PASS 1:

Figure 5.1 shows the information collected during the first intraprocedural pass at

cach point in the program. The information is collected as a set of tuples Since this

pass is intrasrocedural, the order in which we amalyze the procedures is immaterial.

We start with the first procedure, in this case, it is main.

At point (A), we have variable 1 which is a constant. We represent this as a
three-field tuple, (tuple-number, variable-name, value),and in this case it
is (#1, 1, constant[2]), which essentially means that this is the first tuple,

the variable name is 1, and it is a constant with a value 2.

At point (B3), we are within the then~ part of the inner conditional, and we see
that variable j is definitely a constant with a value 4 bhecause 1 is a definitely a
constant with a value 2. We represent this in a similar manner. The information
set at pomnt (B) now contains two tuples, #1 and #2, representing variables 1

and 7.

At point (C), we are within the else-pait of the inner conditional, and we see
that the value of j could be a constant, but it depends on the procedure call
square. \We encode this information as shown in the figure, and later, during

the second pass, resolve it to be either a constant or not a constant.
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{
1 = 2;
---------------- > {<#1, i, constant[2]>}
1f (conil) {
if (con2)
j=1i+2;
-------- > {<#2, j, constant[4]>, <#1, i, constant[2]>}
else
j = square(i);
-------- > {<#3, j, call_depend[square]>,
<#1, i, constant[2]>}
------------------ > {<#4, j, (#3 @ #2)>, < #1, i, constant[2]> }
k=3j+1i;
------------------ > {<#4, j, (#3 @ #2)>, <#1, i, constant{2]> ,
<#5, k, var-depend[(#4 + 2]> }
}
else {
k = square(3);
-------- > {<#6, k, call_depend(square]>,
<#1, i, constant[2]>}
j=k-5;
-------- > {<#6, k, call_depend[square]>,
<#1, i, constant[2]>
<#7, j, var-depend[#6 - 5]>}
}
--------------------- > {<#3, j, (#7 @ #4)>, <#1, i, constant[2]>
<#9, k, (#6 0 #5)>}
}
int square(int m)
{
int n;
----------------- > {<#10, m, proc_entry(square)>}
n=m*m;
----------------- > {<#10, m, proc_entry[square]>
<#11, n, var-depend[#10 * #10]>}
return n;
----------------- > {<#10, m, proc_entry[squarel>
<#11, n, var-depend[#10 * #10]>}
}
Figure 5.1 Determination of Constants - Pass 1
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o At point (D). we have to merge the then- and else- parts of the inner condi-
tional. The variable j could be a constant provided the then- and else- paits
of the conditional assign the same value for 3. We thus represent the value of
J as a new tuple #4, where the value of 3 depends on tuples #2 and #3, The
operator @ essentially denotes two operands that have to be resolved into one

in the second pass.

e At point (E), we find that the value of k depends on the value of 3 represented
by the tuple #4, and i, which is definitely a constant. ‘Fhus, we represent k by
tuple #5 and the code var-depend, which says the value of k is the value of the
variable represceuted by tuple #4 plus the constant 2.

o Points (I) and (G) are straightfonward and similar to the ones described above,

e At point (I1), we have to merge the sets obtained at the end of the then and
else parts of the outer if- statement, i.c., we have to merge the sets obtained
at points (E) and (G). We then obtain the set illustrated in the figure at point
(H). The variable 1 is still a constant, because it has the saime constant value
on both sides of the if-then-else statement. But we have to form new tuples
#8 and #9, for variables 3 and k. showing new merged values, which will he
tesolved later during the second pass.

o At point (1), we have just entered procedure square. We say the parameler m
that comes in could be a constant, but it depends on the input to the procedune.

We encode this information saying that t depends on proc-entry.

o At point (J), the local variable n is a constant, depending on m. We record this
as a var-depend.

PASS 2:

During this pass, we go over the call-graph and the program, resolving the dependen

cies collected in pass 1. Since the information is already encoded, we don’t have to
analyze every statement again during this pass. Figure 5.2 shows the points at which
the information gets resolved in the sccond pass while going over the call-graph.

During the second pass, we directly come to the point just before the first call to
the procedure square (program point A') At this point, we have the infotination that.
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main()

{
1= 2;
if (conl) {
if (con2)
j=i+ 2
else
--------- > {<#1, i, constant{2]>} (A")
j = square(i);
--------- > {<#3, j, constant[4]>,
<#1, i, constant[2]>} (B")
------------------- > {<#4, j, constant[4]>,<#1, i, constant[2]>} (C’)
k =3+1;
------------------- > {<#4, j, constant[4]>,<#1, i, constant[2]>,
<#5, k, constant[6]> } (0’)
}
else {
k = square(3);
--------- > {<#6, k, constant[9]>,
<#1, i, constant[2]>} (F")
j=k -5
--------- > {<#6, k, constant[98]>,
<#1, i, constant[2]>
<#7, j, constant[4]>} 6"
}
----------------------- > {<#8, j, constant[4]>, <#1, i, constant[2]>
<¥9, k, not_a_constant>} (H*)
}
int square(m)
int m;
{ (First Call) (Second Call)
int n;
n=m*m; |
return n; |
........... > {<#10, m, constant[2]> | <{<#10, m, constant[3]>} (I’)
<#11, n, constant[4]>} | {<#10, n, constant[9]>}
}

IMigure 5.2: Determination of Constants - Pass 2



1. which is the actual parameter to procedure square, is a coustant. We then jump to
procedure square. Since procedure square does not call any other procedure, as can
be seen from its call-graph, we can go directly to the end of procedure square, and
check the information encoded there. We find that the return value n is a constant
il the parameter m is a constant. Since m is a constant, equal to 2, during this call
to square, we return to the calling procedure with the information that the veturn
value is a constant equal to 4 (program point. 1'). Therefore, at point B, we have the
imformation that both i and j are constants. At point (C), we resolve the value of
3. The information encoded there in the first pass, says that the value of j is #3 @
#2, i.e., we have to resolve tuples #2 and #3. At point (B'), we have rvesolved tuple
#3 to be a constant 1. Since both the tuples #3 and #2 have the constant value 1, 3
is resolved to be a constant <1 at this point. This information, propagated down to
point (D), makes k a constant, with the value 6.

The second call to square has its actual parameter equal to a constant 3 We
then jump to the routine square and return with a constant value 9, after resolving,
information at the end of the procedure square. When we return to the calling
procedure, at point (I'), we have both k and 1 as constants.  This information,
propagated to the end of the else-part of the outer 1f, gives us k = 9, 3 = 4 and
1 = 1. If we now merge the then- and else- parts of the outer 1f- statement, we
get that both 1 and 3 are constants and k is not a constant,

5.2 Pointer and Structure References:

We use aliasing information to deal with pointers. For example, if we have *t = 3,
we determine the aliases of *t and track them down as constants. Different. paits
of a structure reference are treated as different entities: we could have a.b = 3 and

a.c.d = 4; these are treated differently. independent of cachi other,

5.3 Summary

The above method has been implemented using the generator tool. The generator
tool creates both the intraprocedural first pass module and the interprocedural second
pass module, with the help of input specifications,

53



Chapter 6

Related Work

In this chapter, we shall classify and describe 1elated research under three categories:
intermediate representations used for analysis and optimizations, automating the
analyses and optimization phases in a compiler, and other general data-flow anal

vses methods,

6.1 Intermediate Program Representations:

Traditional optimizations are implemented on control flow-graphs, The intermediate

representations used were very close to the machine level code.

RTL is a 1egister transfer langnage that compilers can use Lo represent, prograims
during optimization [JMI1). It is used in the GCC compiler and in TS, an optimizing
compiler for Smalltalk. RTL provides a typical set of numeric operations, as well
as operations to rcad and write memory and to change the flow of control. "The
RTL System is a toolkit for constructing code-optimizers; it consists of a nmmber
of predefined algorithis that the compiler writer can customize. It is used in the
Smalltalk compiler. This forins machine code by combining as many RTL instructions
as it can; it never breaks them up into simpler ones. Thus, RTL represents the
program at a very low-level, and is at a level even lower than machine code. 'T'he
design philosophy behiind the design of RTL s that a program shouald be represented
with the simplest possible instructions for optimization because a complex instiuction
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may possibly lide an optimization. Thus R'TL has no way of representing high-level
structimes. Types of loops and loop structuies are completely lost; these are all
converted to branchies and labels in the RTL representation. Array and structure

references are broken down to address arithimetic,

Another intermediate representation 1s U-code [Nye81] which is for Pascal and
FORTRAN. It is also a low-level 1epresentation, consisting of a linear list of instruc-
tions with labels and jumips to change the flow of control. It is also similar to RTL
i the sense that it has no way to represent high level program structures and array

telerenees,

SULE (Stantord University Intermediate Format) [TWL*91] is an intermediate
form that integrates both high- and low-levels of program representation. It has the
ability to represent high-level constructs such as for-loops; thus it can maintain
progiam structure while exposing low-level details such as array reference address
caleulations. SUTE is derived from a hottom-up perspective; the program is rep-
resented in low-SULE, with high-SUIE instiuctions added at critical points.  Thus,
SUTE is one intermediate representation that is used for all optimization phases. In
o MeCA'T compiler (refer Figure 1.1). we have both SIMPLE and LAST intermedi-
ate representations, and we perform analysis and apply optimization transformations
at the appropriate representation level. For example, alias analysis is best done at
the SIMPLE level, while instruction scheduling is best. done at the LAST level.

6.2 Automating the Analysis and Optimization
Phases:

Rescard in aniomating the analysis and optimization phases of a compiler is still
tmats catly stages. Few tools exist to help build optimizers, which are usually large
and complex,sinee they must petform many program transformations to get the best
code Sharlit[ THY2) is a system which is designed to simplify building of optimizers in
compilers. Sharlit merges the data-flow collection phase and the optimization phases;
1t tahes ina specification and performs one type of data-flow analysis and a code-
transtormation that relies on that analysis. This works on the traditional flow-graphs
and basic-blochs. Sharlit uses the following abstractions to develop global analyses

and optimizations in a modular fashion
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e The nodes of the flow graph.

Values that flow through the flow graph.

Flow functions that represent the effect of flow graph nodes and paths on the

flow values,

Action routines to perform the optimization,

Rules to combine the flow functions to other flow functions for path simplifica-

tion.

The data-flow analyzer consists of four major components: (i) the control flow ana

Iy zer that summarizes the structure of the tow graph, (i) the path simplifier, gen

crated from the path-simplification rules i the input description and uses contiol
flow information to climinate some flow nodes, (iii) the iterator makes use of the
flow functions and iterates to find a solution for the data-flow equations, and (iv) the
propagator that uses the action routines to perform the optimization. Thus, Shatlit
does not consider the cases when a particular data-flow analysis is required for more
than one optimization, or when an optimization requires more than one data-flow
analysis. FFurthermore, Sharlit perforins intraprocedural analyses and optimizations
on flow-graphs, whereas we are looking at interprocedural analyses and optinzations

on structured intermediate representations.

Whitficld and Soffa]WS91] describe the automatic generation of global optimizets.,
They have introduced a General Optimization SPecification Language (GOSpel.) and
an optimizer generator (GENesis) that is used to create global optimizers from com-
pact, declarative specifications made in GOSpel.. The specifications mainly consist of
a set of preconditions and the actions to optimize the code, The preconditions, in turn,
consist of the code pattern to match and the global dependence information (i.e., the
control and data dependencies that are requirved for the specific optimization). The
actions take the form of primitive operations that make up the optimization trans
formation. GENesis analyzes GOSpell specifications and produces the optimizer It
first produces code (i) for the data stinctures defined, (ii) for matching the required
code pattern, (i) for checking if the particular data dependences hold, and (1v) for
performing the required optimizing transformations.  Thus, unlike Sharlit, they do
not generate the data-flow analyzer along with the optimizer, but they do assume the

data flow information such as anti. output and flow dependence relations are alicady
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computed and available. Further, they also woik on flow-graphs, and do not perform

amy interprocedmal optimization.

hi the MUG2 Compiler Generating System[Wil81], Wilhelm describes separate
analyses and optimization phases which work on a structured abstract syn.ax tree
intermediate representation.  Global data-flow analysis is specified using modified
attnbute grammars and the abstract syntax tree, decorated with the data-flow infor-
mation, is called an attributed program tree. in a single analysis pass, which may he
made up of several semantic analysis passes, global data-flow information is collected
as attiibutes associated with nodes in a program tree. Attributes are classified as
cither devived o inherited  and they are evaluated according to the rules specified
lor every different kind of node. The optinuzation passes are mmplemented as tice
translormations. and conld also update the data-flow information present in the tree
nodes, The svstem which we are trying to build is similar to this, in the sense that we
fao work on syntax trees; but we do not use attribute grammars to collect data-flow
miormation. Further, in MUG?2, interprocedural analysis is not performed. Moreover,
it 1~ complicated to deseribe or classify more complex analyses like alias-analysis in

the form of attribute grammars.

6.3 General Data-flow Analyses Methods:

Traditionally, data-flow analyses are intraprocedural and are implemented on flow-
gtaphs  Each procedure is analyzed independently, and the optimization transforma-

tions are petlormed on the flow graph.

Constant propagation is a well-known global flow analysis and optimization prob-
ey that has been approached and solved in several different ways. The first global
constant propagation algorithm was developed by Kildall [Ril73]. Several variations
of this algorithm have also been published, and a generalization was also published by
Nanand Ullman [(NUT7,WZ91]. The Conditional Constant algorithim [Weg75], is a
vattant of Wegbreit's algorithm [WZ85]. and this finds all constants that can be found
by evaluating all conditional branches with all the constant operands. Thus it per-
totms a combination of dead code elimination and constant propagation. The Sparse
Conditional Coustant algorithim, developed by Wegman and Zadeck [WZ91], finds the
same class of constants as the C'Calgorithm, but runs much faster since it works on
a sparse representation (the 85\ graph). Thus, almost all the well-known constant
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propagation algorithms work on flow graphs  Further, these algorithms arve all i
traprocedural. OQur implementation of the constant propagation is basically ditferent
since it is a structure-based interprocedural algorithm. We can extend our implemen
tation very casily to find the same class of constants as that of the C'C algorithm: we
need to do additional tests on the conditional expressions of the 1f=statements and
loop constructs, to see if they could be completely evaluated to either true or false, so
that we never evaiuate the roctions of the progiam that are never executed. Further,

we use a rule-based method aad a tool to generate the actual analyzer.

Soffa and Harrold [HS90] give a method to compute interprocedural de finition and
ust dependendies. First, they abstiact out the definition and use information for cach
procedure and then propagate the information throughout an interprocedural flow
graph. This method is similar to what we do with constant propagation, except that

they work on flow graphs, and ours works in a structwred, rule-based manner.
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Chapter 7

Conclusions

T'he design of an experimental compiler/architecture testhed helps to coordinate the
efforts of compiler writers and architecture designers when designing high-performance
computer systems. In the compiler component of a testbed, the optimization phase
is. pethaps, the most aucial oned which completely determines the quality of the ma-
chine code produced. Tnorder to do a good job of optimization, we need sophisticated
attalvzang techuigues to gather accurate information about the various variables and
structes nsed ina program. This thesis deals with the design of a general ana-
Ivzer framework for the McCAT (MceGill Compiler Architecture Testbed) compiler.
In order to experiment with both high-level and low-ievel optimization techniques
and their effeets on the underlying architecture, we needed to design suitable inter-
mediate representations of the program The first part of this thesis deals with design
and implementation of the front-end of the compiler with its two intermediate forms,
PIRST and SINMPLL

Phe PIRST mtermediate form provides a complete high-level abstract representa-
tion of an entite module or programa. It cleanly separates the front-end processing of
patsing and type-cheching from the bach-end processing of analysis, transformation.

and code-generation,

Fhie next mtermediate form, SINIPLE | forms the right level of program repre-
sentation on which sophisticated high-level analyses and optimizations could be im-
plemented  \s the name suggests, its grammar is simple, vet powerful enough to
tepresent all construets of Co ln SIMPLHE | the control flow is structured, complex

statements are bhrohen down to a series of simpler statements. coniplex variable names
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are split whenever possible, and all conditionals, loops and switches are transformed
to adherc to a fixed format. Complex alias analysis and dependence analysis tech
nicques have been implemented on SINMPLE [Fmay2, HDG492].

The second part of the thesis deals with the development of an analyzer-generator,
McTAG, which takes advantage of the compositional nature of SIMPLE to provide
a straight-forward, rule-based way of specifving new analyses. The generator tahes
in a set of specifications which describe the analysis completely independent of the
SIMPLE tree, and produces an analyzer thet works on SIMPLE  "This allows the
development of both intraprocedutal and interprocedural analyzers. With this tool,
we have developed modules for interprocedural live-variable analysis, reaching deli
nmitions and constant propagation. The constant propagation algorithimm works in two
passes: in the first intraprocedural pass, it colleets all information and dependencies,
while in the second interprocedural pass, it resolves these dependencies to determine

constants across procedure boundaries

Future YWork:

We now have a solid foundation to expetiment with a number of new analyses and
optimization techniques. Other classical analyses like available expressions, conmon
subexpressions, fiist-use and last-use wformation, ete, can be implemented on SIM
PLE . using the analyzer generator. SIMPLE facilitates the development of other new
and relatively complex analyses like analyzing dynamically atlocated pointers.

Detailed array dependence analysis is carrently being unplemented on SIMPLE
[Jus92]; once this s done, various loop and array optunizations can be experimented
with. It would he very interesting to think about an optimizer generator tool that
wot ks on SINIPLE . so that different optimizers can be implemented with relative case,

SIMPLE can he targeted towards different architectures; the third and the lowest
level intermediate representation LAST [Don92] curtently being developed is targeted
towards generating code for RISC machines. We expect that other low-level interme
diate 1epresentations suitable for other new and different dasses of architecus s like

supersealar and multi-threaded design models can also be designed and studied.
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Appendix A

The SIMPLE Grammar

all_stmts : stmtlist stop_stmt
| stmtlist

stmtlist : stmtlist stmt
| stmt

stmt : compstmt

expr ‘;’

IF ‘(’ condexpr ‘)’ stmt

IF ‘(' condexpr ‘)' stmt ELSE stmt

WHILE ‘(' condexpr ‘)' stmt

DO stmt WHILE ‘(' condexpr ‘)’

FOR ‘(’exprseq ',’ condexpr ‘;’'exprseq ‘)’ stmt
SWITCH ‘(’ val ‘)’ casestmts

.
’

compsmt . ‘{' all_stmts ‘}’

| )
| ‘{* decls all_stmts ‘}’
| {* decls '}’

/++x decls denotes all possible C declarations. The only difference is that*s/
/++ the declarations are not allowed to have initializations i1n them. *x/

exprseq : exprseq ‘,’' expr
| expr

stop_stmt : BREAK ‘;’
| CONTINUE *;°
| RETURN ¢;°
| RETURN val *;°

\)1




| RETURN ‘(’ val ¢)' *;?

casestmts : ‘{’ cases default‘}’
l(.)

IO

cases : cases case
| case

case : CASE INT_CONST':’' stmtlist stop_stmt
default : DEFAULT ‘:’ stmtlist stop_stmt

expr : rhs
| modify_expr

call_expr : ID ‘(’ arglist ‘)’

arglist : arglist ‘,’ val
| val

modify_expr : varname ‘=’ rhs
| ‘%’ ID ‘=’ rhs

rhs : bainary_expr
| unary_expr

unary_expr : S1mp, expr
| “* ID
| ‘&' varname
lcall_expr
| unop val
I *(’ cast ‘)’ varname

/** cast here stands for all valid C typecasts *»/
binary_expr : val binop val

unop : ‘4’
l «_
|

binop : relop
I I A I R L
I (&) I (I) ' l<<) I l>>) I t~)



>

relop ‘¢’ | ‘<=2 ] 1!

condexpr . val
| val relop val

S1mp_expr . varname
| INT_CONST
| FLOAT_CONST
| STRING_CONST

val ID
| CONST

varname arrayref
| compref
| ID

arrayref ID reflist

reflist : ‘[’ val ‘]’
| reflist ‘[’ val '}’

1dlist . adlast ‘.' ID
| ID

compref : ‘(’ ‘' ID ‘)’ ‘.’ idlist
| 1dlist
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Appendix B

The Generator Specification
Grammar

program: /*empty*/
| C_CODE set_all_specs routine
set_all_specs : set_all_specs set_specs

set_specs * DATA_NAME COLON IDENT1FIER
DATA_TYPE COLON IDENTIFIER
TREE_FIELD_INDEX COLON IDENTIFIER
CALL_GRAPH_INDEX COLON IDENTIFIER
set_anal

set_proc

set_store

set_merge

sei_copy

set_nrint

set_cg

set_anal : ANAL_TYPE COLON FORWARD
| ANAL_TYPE COLON BACKWARD

set_proc - PROC_TYPE COLON INTER
| PROC_TYPE COLON INTRA

set_store ' STORE_OPTION COLON STORE
| STORE_OPTION COLON NOSTORE

set_merge : MERGER COLON IDENTIFIER

B!



set_copy COPIER COLON IDENTIFIER

set_print : PRINTER COLON IDENTIFIER

set_cg - CGBUILDER COLON IDENTIFIER

routine. PI;tOCEDURE identifzer ‘(’ paramlist ‘)’ ‘:’ type body

paramlist: param

| paramlast ‘,’ param

!
param ;dentlfler ‘1! type
type I identifier
body ' CASE 1dentifier OF cases
cases ' case

| cases case
case . ‘<’ casebeadlist ‘>’ C_CODE

caseheadlist ' caseheadlist casehead
| casehead

casehead . ‘[’ 1dentifier ‘:’ stmttype ‘]’

stmttype : WHILE identifier DO identifier
| DO 1dentifier WHILE identifier
| FOR 1dentifier identifier identifier DO adentifier
| RETURN
| BREAK
| CONTINUE
| BREAK i1dentifier
| RETURN identifier
| SWITCH 1dentifier DO identafier
| CASE 1dentifier DO adentifier
| DEFAULT DO 1identafier
| IF identifier THEN identifier ELSE identifier
| IF identifier THEN 1identifier
| CALL ‘'(’ aidentifier ‘,’ identifier ‘)’
| 1dentifier ‘=’ i1dentifier i1dentifier identifier
| ‘*’ i1dentifier ‘=’ 1dentifier i1dentifier identifier
| 1dentifier ‘=’ identifier
[
!
I

{

identifier ' ‘«? 1dentifier
i1dentifier ' ‘&' a1dentifier
identifier ‘=' i1dentifier 1identifier
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1dentifier ‘=’ CALL ‘(' identifier ‘,’ identifier ‘)’
identifier ‘=’ CAST ‘(’ identifier ‘,' identifier ‘)’

‘%’ 1dentifier
‘** 1dentifier
‘x’ 1dentifier
‘** 1dentifier
‘%’ 1dentifier
‘%’ 1dentifier
identifier °

€=

identifier

‘#’ 1dentifier

‘¢’ 1dentifier

1dentifier aidentifier

CALL “(’ identafier ‘,’ adentifier
CASI ‘(’ identaifier ',’ 1deatifaier

;! 1dentifier

1dentifier identafier i1dentifier

identifier
DEFAULTACTION
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Appendix C

A Sample Input and Output for
McTAG

C.1 Generator Input for Reaching Definitions

A

0_DATA process_uhile_loop();
G_DATA process_do_loop();
O_DATA process_for_loop();
O0_DATA process_return();
0_DATA process_break();
0_DATA process_continue();
O_DATA process_switch();
0_DATA process case();
O_DATA process_default();
O_DATA process_1f();

0_DATA process_call(};
0_DATA process_ORD_BINOP();
0_DATA process_STAR_BINOP();
D_DATA process_ORD_ADDR();
O_DATA process_ORD_STAR();
0_DATA process_ORD_UNOP()
0_DATA process_ORD_FUNC_CALL();
0_DATA process_ORD_CAST();
D_DATA process_DRD_ASSG();
0_DATA process_STAR_ADDR();
0_DATA process_STAR_STAR();
O_DATA process_STAR_UNOP();
0_DATA process_STAR_FUNC_CALL();
O_DATA process_STAR_CAST();
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0_DATA process_STAR_ASSG();
0_DATA process_seq();
0_DATA process_expr();
0_DATA process_var();

W}

DATA_NAME : aindata
DATA_TYPE : O_DATA
ANAL_TYPE : BACKWARD
PROC_TYPE : INTER
STORE_OPTION: NOSTORE

PROCEDURE reach_def (node:tree, indata:0_DATA) :0_DATA
CASE node OF

<[11:

}

<{11:

}

<[11:

}

<[11:

}

<[11:

}

<[11:

}

<[11:

}

<f11:

}

<fl1:

}

<[11:

}

<[11.

}

<[sa:

WHILE cond DO stmt]> {
return process_while_loop(11, cond,stmt,1indata);

DO stmt WHILE cond]> {
return process_do_loop(1l1, cond,stmt,indata);

FOR 1init final 1ter DO stmt]> {
return process_for_loop(11, init,final,1iter,stmt,indata);

RETURN vall> {
return process_return(l1,val, indata);

BREAK ]> {
return process_break(1l1,indata);

CONTINUE]> {
return process_continue(ll,indata);

SWITCH val DO stmt]> {
return process_switch(l1,val, stmt,1indata);

CASE expr DO stmt 1> {
return process_case(l1,expr,stmt,indata);

DEFAULT DO stmt 1> {
return process_default(ll,stmt,indata);

IF cond THEN thenpart ELSE elsepart]> {
return process_1f(11,cond,thenpart,elsepart,1ndata);

IF cond THEN thenpart ]> {
return process_1f(11,cond,thenpart,NULL,1ndata);

CALL (procname, arglist)]> {
return process_ca11(31,procname,argllst,1ndata);
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<[s1:

<[s1:

<[s1:

<[s1.

varl = vall binop val2]> {
return process_ORD_BINOP(51,var1.vali,binop,va12,indata);

STAR 1d = vall binop val2]> {
return process_STAR_BINOP(s1,1d,va11,b1nop,va12,1ndata);

varl = ADDR var2 1> {
return process_ORD_ADDR(51,vari,var2,1ndata);

varl = STAR 1d 1> {
return process_ORD_STAR(s1,varl, 1d,indata);

* varl = unop val ]> {
return process_ORD_UNOP(si,varl, unop,val,indata);

. varl = CALL (procname, arglist))» {
return process_ORD_FUNC_CALL(s1i,vari, procname,argllst,indata);

: vart = CAST (var2, type)]> {
return process_ORD_CAST(s1,varil,var2,type ,indata);

varl = var2 1> {
return process_ORD_ASSG(sx,varl,var2 ,indata);

: STAR vali = ADDR var2 1> {
return process_STAR_ADDR(s1,vall,var2 ,indata);

: STAR vall = STAR ad 1> {
return process_STAR_STAR(s1,vall,id ,indata);

- STAR vall = unop val 1> {

return process_STAR_UNOP(si1,vall,unop, val ,1indata);

: STAR vall = CALL (procname, arglist)]> {

return process_STAR_FUNC_CALL(s1,vall, procname,arglist,indata);

: STAR vall = CAST (var2, type)l> {

return process_STAR_CAST(s1,vall,var2,type ,indata);

: STAR vall = var2 ]> {
return process_STAR_ASSG(s1,vall,var2 ,indata);

stmti ; stmt2]> {
return process_seq(si,stmtl,stmt2 ,indata);

:vall op val2l> {
veturn process_expr(si,vall,op,val2,indata)};
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}
<[s1: varl> {
return process_var(si,var,indata);
}
<[s1: DEFAULTACTION 1> {
return indata;

}

100




C.2 Generator Output for Reaching Definitions

#1nclude "stdio.h"

#include "/labs/acaps/acaps2/dlx/compilerwork/bhama/c-ast-c/tree.h"
#include "struct.h"

0_DATA process_while_loop();
0_DATA process_do_loop();
0_DATA process_for_loop();
0_DATA process_return();
0_DATA process_break();
O_DATA process_continue();
0_DATA process_switch();
O_DATA process_case();
0_DATA process_default();
0_DATA process_1f();

0_DATA process_call();
0_DATA process_ORD_BINOP();
0_DATA process_STAR_BINOP();
O_DATA process_ORD_ADDR();
0_DATA process_ORD_STAR();
0_DATA process_0ORD_UNOP();
O_DATA process_ORD_FUNC_CALL();
0_DATA process_ORD_CAST();
0_DATA process_ORD_ASSG();
0_DATA process_STAR_ADDR();
O_DATA process_STAR_STAR();
0_DATA process_STAR_UNOP();
0_DATA process_STAR_FUNC_CALL();
O_DATA process_STAR_CAST();
0_DATA process_STAR_ASSG();
0_DATA process_seq();

O_DATA process_expr();
0_DATA process_var();

O_DATA reach_def ( node , andata )
tree node ;
O_DATA indata ;

{
1f  node == NULL)
1eturn 1indata

switch (TREE_CODE( node )) {
case WHILE_STMT: {

tree 11 = node ;
tree cond = STMT_WHILE_COND( node );
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tree stmt = STMT_BODY( node );
{

return process_while_loop(ll, cond,stmt,indata);

}

}

break;

case FOR_STMT: {
tree 11 = node ;
tree init = STMT_START( node );
tree final = STMT_END( node );
tree 1ter = STMT_ITER( node );
tree stmt = STMT_BODY( node );
{

return process_for_loop(li, ainit,final,iter,stmt,indata);

}

}
break;
case DO_STMT: {
tree 11 = node ;

STMT_DO_COND( node );
STMT_BODY( node );

tree stmt
tree cond

{

return process_do_loop(l1, cond,stmt,indata);

}

1
break;
case SWITCH_STMT: {
tree 11 = node ;
tree val = STMT_SWITCH_EXPR( node );
tree stmt = STMT_SWITCH_STMT( node );
{
return process_switch(li,val, stmt,1indata);
}
}
break;
case RETURN_STMT: <
tree 11 = node ;
tree val = STMT_BODY( node );
1f (STMT_BODY( node ) !'= NULL) {
{
return process_return(li,val, indata);
}
}
}
break;
case BREAK_STMT: A
tree 11 = node

1f (STMT_BODY( node ) == NULL) {
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{
return process_break(ll,indata);
}
}
}
break;
case CONTINUE_STMT: {
tree 11 = node ;
{
return process_continue(l1,indata);
}
}
break;
case CASE_STMT: {
tree 11 = node ;
tree expr = STMT_CASE_EXPR( node );
tree stmt = STHT_CASE_STMT( node );
{
return process_case(li,expr,stmt,lndata);
}
}
break;
case DEFAULT_STMT: {
tree 11 = node ;
tree stmt = STMT_DEFAULT_STMT( node );
{
return process_default(1l1,stmt,1indata);
}
}
break,
case IF_STMT: {
tree 11 = node ;
tree cond = STMT_COND( node );
tree thenpart = STMT_THEN( node );
1f (STMT_ELSE( node ) == NULL) {
{
return process_1f(11,cond,thenpart,NULL,1ndata);
}
}
}
{
tree 11 = node ;
tree cond = STMT_COND( node );
tree thenpart = STMT_THEN( node );
tree  elsepart = STMT_ELSE( node );
1f (STMT_ELSE( node ) !'= NULL) {
{

return process_1f(11,cond,thenpart,elsepart,indata);
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}
}
}
break;
case TREE_LIST: {
tree s1 = node ;
tree stmtl = TREE_VALUE( node );
tree stmt2 = TREE_CHAIN( node );
{
return process_seq(51,stmt1,stmt2 ,indata);
}
}
break;

case EXPR_STMT:
switch (TREE_CODE(STMT_BODY( node ))) {
case CALL_EXPR: {
tree s1 = node ;
tree procname = TREE_OPERAND(TREE_OPERAND(STMT_BODY(s1),0),0);
tree arglist = TREE_OPERAND(STMT_BODY(s1),0);
{
return process_call(si,procname,arglist,indata);
}
}
break;
default:
switch (TREE_CODE(TREE_OPERAND(STMT_BODY( node ),0))){
case INDIRECT_REF: {
tree mod_expr = STMT_BODY( node );
switch (TREE_CODE(TREE_OPERANL( mod_expr,1))){
case ADDR_EXPR: {

tree s1 = node ;
tree val1=TREE_OPERAND(TREE_OPERAND(STMT_BODY(s1),0),0);
tree var2 = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),0);
{
return process_STAR_ADDR(s1,vall,var2 ,indata);
}
}
break;
case INDIRECT_REF: {
tree s1 = node ;
tree vall = TREE_OPERAND(TREE_OPERAND(STMT_BODY(s1),0),0);
tree 1d = TREE_OPERAND(TREE_CPERAND(mod_expr, 1),0);
{
return process_STAR_STAR(s1,vall,id ,indata);
}
}
break;

case CALL_EXPR: {
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tree 81 = node ;
tree vali=TREE_OPERAND(TREE_OPERAND(STMT_BODY(s1),0),0);
tree procname=TREE_OPERAND(TREE_OPERAND(
TREE_OPERAND(mod_expr, 1),0),0);
tree arglist-TREE_OPERAND(TREE_OPERAND(mod_expr,1),1);
{
return process_STAR_FUNC_CALL(s1,vall, procname,
arglist,indata);
}
}

break;
case NOP_EXPR: {
tree s1 = node ;
tree vall=TREE_OPERAND(TREE_OPERAND(
STMT_BODY( s1 ),0),0);
tree var2=TREE_OPERAND(TREE_OPERAND(mod_expr, 1),0);
tree type = TREE_TYPE(TREE_OPERAND(mod_expr, 1));
{
return process_STAR_CAST(s1,vall,var2,type,indata);

}

}
break;
default:
1?7 (1s_binary(TREE_OPERAND (mod_expr,1) )) {
tree s1 = node ;
tree id = TREE_OPERAND{TREE_OPERAND(STMT_BODY{ si ),0),0);
tree vall = TREE_OPERAND(TREE_OPERAKD(mod_expr, 1),0);
tree binop = TREE_OPERAND(mod_expr, 1);
tree val?2 = TREE_OPERAND (TREE_OPERAND (mod_expr, 1),1);
{

return process_STAR_BINOP(si,1d,vall,binop,val2,indata);
}

break,
}
1f (1s_unary(TREE_OPERAND(mod_expr,1) )) {
tree s1 = node ;
tree vall = TREE_OPERAND(TREE_OPERAND(STMT_BODY( si ),0),0);
tree unop = TREE_OPERAND(mod_expr, 1);
tree val = TREE,OPERAND(TREE_OPERPND(mOd_expr, 1),0);
{
return process_STAR_UNOP(si1,vall,unop, val ,indata);
}
break;
}
{
tree si = node ;
tree vall = TREE_OPERAND(TREE_OCPERAND(STMT_BODY( si ),0),0);
tree var2 = TREE_OPERAND(mod_expr, 1);
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{
return process_STAR_ASSG(si,vall,var2 ,indata);
}
break;
}
return indata ;
}
break;
default:
{
tree mod_expr = STMT_BODY( node );
switch (TREE_CODE(TREE_OPERAND( mod_expr,1))){
case ADDR_EXPR: {

tree s1 = node ;
tree varl = TREE_OPERAND(STMT_BODY( si1 ),0);
tree var2 = TREE_OPERAND(TREE_GPERAND(mod_expr, 1),0);
{
return process_ORD_ADDR(si,varl,var2,indata);
}
b
break;
case INDIRECT_REF: {
tree si = node ;
tree varl = TREE_OPERAND(STMT_BODY( si ),0);
tree 1d = TREE_OPERAND(TREE_OPERAND(mod_expr. 1),0);
{
return process_ORD_STAR(s1i,var1l, id,indata);
}
}
break,
case CALL_EXPR: {
tree s1 = node ;
tree varl = TREE_OPERAND(STMT_BODY( sai ),0);
tree procname = TREE_OPERAND(TREE_OPEKAND(
TREE_OPERAND (mod_expr, 1),0),0);
tree arglist = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),1);
{
return process_ORD_FUNC_CALL(s1,varl, procname,arglist,indata);
}
}
break;
case NOP_EXPR: {
tree s1 = node ;

tree vari = TREE_OPERAND(STMT_BODY( si ),0);

tree var2 = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),0);
tree type = TREE_TYPE(TREL_OPERAND(mod_expr, 1));

{

return process_ORD_CAST(si,vari,var2,type ,indata);
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}

}
break;
default:
17 (1s_binary(TREE_OPERAND(mod_expr,1) )) {
tree s1 = node ;
tree varl = TREE_OPERAND(STMT_BODY( s1 ),0);
tree vall = TREE_OPERAND(TREE_OPERAND (mod_expr, 1),0);
tree binop = TREE_OPERAND(mod_expr, 1);
tree val2 = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),1);
{
return process_ORD_BINOP(si,vari,vali,binop,val2,indata);
}
break;
}
1f (1s_unary(TREE_OPERAND (mod_expr,1) )) {
tree s1 = node ,
tree varl = TREE_OPERAND(STMT_BODY( si ),0);
tree uncp = TREE_OPERAND(mod_expr, 1);
tree val = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),0);
{
return process_ORD_UNOP(si,varl, unop,val,indata);
}
break;
}
{
tree s1 = node ;
tree varl = TREE_OPERAND(STMT_BODY( si1i ),0);
tree var2 = TREE_OPERAND(mod_expr, 1);
{
return process_ORD_ASSG(si,varl,var2 ,indata);
}
break;
}
return indata ;
}
break,
}
}
break,
}
break,
default:

1f (TREE_CODE( node ) == MODIFY_EXPR) {

switch (TREE_CODE(TREE_OPERAND( node ,0))){
case INDIRECT_REF: {
tree mod_expr = node ;
swarch (TREE_CODE(TREE_OPERAND( mod_expr,1))){
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case ADDR_EXPR: {

tree s1 = node ;
tree vall = TREE_CPERAND(TREE_OPERAND( s1 ,0),0);
tree var2 = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),0),
{
return process_STAR_ADDR(s1,vall,var2 ,indata);
}
}
break;
case INDIRECT_REF: {
tree s1 = node ;
tree vall = TREE_OPERAND(TREE_OPERAND( si ,0),0);
tree 1d = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),0);
{
return process_STAR_STAR(s1,vall,»d ,1indata);
}
}
break;
case CALL_EXPR: {
tree s1 = node ;

tree vall = TREE_OPERAND(TREE_OPERAND( si1 ,0),0);

tree procname = TREE_OPERAND(TREE_OPERAND(
TREE_OPERAND(mod_expr, 1),0),0);

tree arglist = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),1);

{

return process_STAR_FUNC_CALL(si,vall, procname,arglist,indata);

¥

}

break;

case NOP_EXPR: {
tree s1 = node ;
tree valt = TREE_OPERAND(TREE_OPERAND( s1 ,0),0);
tree var2 = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),0};

tree type = TREE_TYPE(TREE_OPERAND(mod_expr, 1));

{
return process_STAR_CAST(s1,vall,var2,type ,indata);

}

}
break;
default:
1f (1s_banary(TREE_OPERAND(mod_expr,1) )) {
tree 1 = node ;
tree 1d = TREE_OPERAND(TREE_OPERAND( sa1 ,0),0);
tree vall = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),0);

tree binop = TREE_OPERAND(mod_expr, 1);
tree val2 = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),1);

{
return process_STAR_BINOP(s1,1d,vall,binop,val2,indata);
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}
break
}
1f (1s_unary(TREE_OPERAND(mod_expr,1) )) {
tree s1 = node ,
tree valt = TREE_OPERAND(TREE_OPERAND( si ,0),0);
tree  unop = TREE_OPERAND(mod_expr, 1);
tree val = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),0);
{
return process_STAR_UNOP(si,vali,unop, val ,indata);
}
break;
}
{
tree s1 = node ;

tree vall = TREE_OPERAND(TREE_OPERAND( s1 ,0),0);
tree var2 = TREE_OPERAND(mod_expr, 1);
{
return process_STAR_ASSG(s1,vall,var2 ,indata);
}
break,
}
return indata ;
}
}
break,
default {
tree mod_expr = node ;
switch (TREE_CODE(TREE_OPERAND( mod_expr,l))){
case ADDR_EXPR: {
tree s1 = node ;
tree vari = TREE_OPERAND( si1 ,0);
tree var2 = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),0);
{

return process_ORD_ADDR(si,vari,var2,indata);

}

}

break;

case INDIRECT_REF: {

tree s1 = node ;

tree varl = TREE_OPERAND( s1 ,0);

tree ad = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),0);
{
return process_ORD_STAR(s1,varl, id,indata);
}

}

break;

case CALL_EXPR: {
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tree s1 = node ;
tree vari = TREE_OPERAND( si1 ,0);
tree procname = TREE_OPERAND (TREE_OPERAND(
TREE_OPERAND (mod_expr, 1),0),0);
tree arglist = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),1);
{
return process_ORD_FUNC_CALL(s1,varl, procname,arglist,indata);

}

}
break;
case NOP_EXPR: {
tree s1 = node ;
tree vari = TREE_OPERAND( si1 ,0);
tree var2 = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),0);
tree type = TREE_TYPE(TREE_OPERAND(mod_expr, 1));
{
return process_ORD_CAST(s1,vari,var2,type ,indata);
}
}
break;
defauls:
1f (1s_binary(TREE_OPERAND(mod_expr,1) )) {
tree s1 = node ;
tree vari = TREE_OPERAND( si1 ,0);
tree vall = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),0),
tree binop = TREE_OPERAND(mod_expr, 1);
tree val2 = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),1);
{

return process_ORD_BINOP(si,vari,vall,binop,val2,indata);

}

break;
}
1% (1s_unary(TREE_OPERAND(mod_expr,1) )) {
tree si = node ;
tree varl = TREE_OPERAND( s1 ,0);
tree unop = TREE_OPERAND(mod_expr, 1);
tree val = TREE_OPERAND(TREE_OPERAND(mod_expr, 1),0),
{

return process_ORD_UNOP(si,varl, unop,val,indata);

}

break;

}

{

tree s1 = node ;

tree var!l = TREE_OPERAND( si1 ,0);

tree var2 = TREE_CPERAND(mod_expr, 1);
{

return process_ORD_ASSG(si,varil,var2 ,indata);
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}

break;
}
return indata ;
}
break;
}
break;
}
1f (1s_var_or_const( node )) {
tree s1 = node ;
tree var = node ;
{
return process_var(51,var,lndata);
}
break;
}

1f (1s_bainary( node )) {
tree s1 = node ;
tree valil TREE_OPERAND( node ,0);
tree op = node
tree val2 TREE_OPERAND( node ,1);
{
return process_expr(si,vall,op,val2,indata)};
}

break;

}

return indata ;

}

i1




é

Bibliography

[ACKST]

[A1190]

[AmmY2]

[ASUSG]
[Bak77]

(Ban79]

[Bar78]

[BE191]

[C'K89)

Randy Allen, David Callahan. and Ken Kennedy, Automatic decompo
sition of scientific programs for parallel execution. Conference Record of
the Fourteenth Annual ACM Symposcun on Principles of Programming
Languages, pages 63-76, January 1987,

E. R. Altman. Minimizing Pipeline Interlocks through Instiuction
Scheduling. Course Project for Spring 1990 Csc 308-7628 with Prof. Gi.
Gao. 1990.

Zahira Ammargucllat. A control-flow normalization algorithm and its
complexity. TEEE Transactions on Software IXngimcering, 18(:3):237 251,
1992.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers  Principles, Toeh-
niques, and Tools. Addison-Wesley Publishing Co., 1986.

B. Baker. An Algorithm for Structuring Flowgraphs. JACM, 24(1):98
120. 1977.

J. P. Banning. An effident way to find the side effects of procedure calls
and the aliases of variables. In Proceedings of the 6th ACM Symposium
on Principles of Programming Languages, pages 29 41, 1979,

J. Barth. A practical interprocedural data flow analysis algorithin Com-
muntcalions of the ACM, 21:721 736, 1978.

D. G. Biadlee, S. J. Eggers, and R. R. Henry, Integrating register alloca-
tion and instruction scheduling for RISCs. International Conference on
Arclatectural Support for Programmeng Languages and Operaling Systomns

(ASPLOS TV), pages 122-131. Apnl 1991,

Keith D. Cooper and Ken Kenuedy.  Fast interprocedural alias analy-
sis. Seteenth ACM Symposiune on Prowcples of Programaming Language s,
pages 19-59, January 11 13 1989. Austin, TX.

112



[CooRh)

[Deuy2]

[ 1179]

[Don92]

[Fina92]

[ D) l‘u?)‘.’]

(FH1P42)

[ N80)

(11D G 92]

|1 Ny

[H1S90]

Keith Cooper. Analyzing aliases of reference formal parameters. Confer-
cnce Record of the Twelfth ACM Symposium on Prinaples of Program-
mg Languages, pages 281 290, January 1985.

Alain Dcutsch. A storeless model of aliasing and its abstractions using
finite representations of right-regular equivalence relations. In 1992 In-
ternational Conforence on Compuler Languages, pages 2-13, April 1992.

J.J. Dongarra and A.R. Hinds. Unrolling loops in FORTRAN. Software-
Practice and Erperience, 9:219-226, 1979.

Clhristopher Donawa, The LAST McCAT Intermediate Representation.
McCA'L ACAPS Design Note 2, McGill University, School of Computer
Scienee, 1992,

Marvionm Emanmi. An Alias Analysis for Stack-allocated Data Structures.
Master’s thesis, McGILL University, expected December 1992,

A. Frosa. Restructuring SIMPLIS. McCAT ACAPS Design Note 9, McGill
University, School of Computer Science, 1992,

(‘hristopher W. Fraser, Robert R. Henry; and Todd A. Proebsting. BURG
Fast Optimal Instruction Selection and Tree Parsing. ACM SIGPLAN
Notiees, 27(4):68 76, 1992.

P. B. Gibbons and 5. 5. Muchnick. Efficient instruction scheduling for a
pipelined architectwe. In Proccedings of the ACM Symposium on Com-
prlcr Construction, pages 1116, Palo Alto, CA, June 1986.

Lawmie Hendren, Clitis Donawa, Guang Gao, Justiani, Maryam Emami,
and Bhama Sridharan. Designing the McCAT Compiler based on a Family
of Structured Intermediate Representations. ACAPS Design Memo 46,
MecGill University, School ol (‘fomputer Science, 1992.

Lautie J. Hendven and Alexandru Nicolau. Interference analysis tools
for pavallelizing programs with recursive data structures. In Proceedings
of the International Conferonce on Supercomputing, pages 205-214, June
14989,

Mary Jean Harvold and Mary Lou Soffa. Computation of Interprocedural
Definition and Use Dependencies. Proceedings of the 1990 International
Conference Computing Languages, IEEE, pages 297-306, 1990.

113



PN YT AT e

[INI91)

[Joh75)

[Jus92)

[Kil73]

[KU77)

[L.am90]

[Land?2]

[LR92)

[1.575)

[Muk9t]

[NyveSl]

[P\VSG]

[Ros85)

Ralph E. Johnson and Carl McCennell. The RTL Systemi: A Framework
for Code Optimization. Technical veport, University of Hlinois at Urbana-
Champaign, 1991.

S.C. Johnson. YACC: Yet Another Compiler Compiler. Computing Sci-
ence Technical Report 32, Bell Laboratories, 1975.

J. Justiani. Array Dependence Analysis on SIMPLE. McCA'TY ACAPS
Design Note 10, McGill University, School of Computer Science, 1992,

G. Kildall. A unified approach to global program optimization. Con-
ference Record of First ACM Symposiwm on Prineples of Programnng
Languages, pages 194- 206, January 1973,

John B. Kam and Jeffiey D. Ullman. Monotone data flow analysis frame
works. Acla Laformatica, 7305 317, 1977.

Monica S. Lam. Instruction scheduling for superscalar architectures. An-
nual Revicw of Computer Scicnee, 11173 201, 1990,

William A. Landi. Interproccdwral aliasing in the presence of pownlors,
PhD thesis, Rutgers University, 1992,

William Landi and Barbara G. Ryder. A Safe Approximate Algorithin
for Interprocedural Pointer Aliasing. lu Procecdings of the 1992 ACM
Symposium on Programming Language Design and lmplementateon, pages
235 248, June 1992,

M.E. Lesk and E. Schmidt. LIEX - a Lexical Analyzer Generator. Com-
puting science techuical report, Bell Laboratories, 1975.

Chandrika Mukerji. Instruction scheduling at the RTL level. Technical
Report ACAPS Note 28, McGill University, 1991.

P. Nye. S-1 U-code: An lntermediate Language for Pascal and FOR
TRAN. S-1 Project Document PALL-8, Computer System LAB, Stanford
University, 1981.

D. A. Padua and M. J. Wolle. Advanced compiler optimizations for super-
computers, Communications of the ACM, 29(12):1184 1201, December
1986.

David S. Rosenblum. A Methodology for the Design of Ada Transfor-
mation Tools in a DIANA Lnvitonment. [EIE Software, pages 24 33,
1985.

111



[Sl(-‘)‘.l]

[Sri91]

[5r192]
[Sta90]

[T152]

[IWLH9I]

[Weg75]

Wils1]

[WOT5]

[Woly]

[WSH1]

V. Sreedhar. Unnesting Nested Blocks in SIMPLE. McCAT ACAPS
Design Note 7, McGill University, School of Computer Science, 1992.

Bhama Sridharan. Creation and transformations of the abstract syntax
tree. ACAPS Design Note 27, School of Computer Science, McGill Uni-
versity, 1991.

Bhama Sridharan. The SIMPLIS AST - McCAT Compiler. ACAPS Mc-
CAT Design Note 2, School of Computer Science, McGill University, 1992.

R. M. Stallinan. Using and porting the GNU CC. Technical report, Free
Software Foundation, Cambridge, NMA, 1990.

Steve W, K. Tjiang and John L. Hennessy. Shatlit — a tool for build-
ing optimizers. In Procecdings of the ACM SIGPLAN 92 Conference on
Programmeng Language Design and Implementation, pages 82-93, June
1992,

Steven W.K. Tjiang, Micheal E. Wolf, Monica S. Lam, Karen L. Pieper,
and John L. Hennessy. Integrating Scalar Optimization and Paralleliza-
tion. In Proccedings of the Fourth International Workshop on Languages
and COmpilers for Parallel Computing, pages 137-151, Santa Clara, Cal-
ifornia, USA, August 1991. Springer-Verlag, Lecture Notes in Computer

Sdience.

B. Wegbreit. Property extraction in well-founded property sets. IEEEL
Transactions on Software 'nginecring, 1:270-285, 1675.

Reinhard Wilhelm. Global Flow Analysis and Optumization in the MUG?
Compiler Generating System, pages 132-159. Prentice-Hall, Inc., 1981.

M. Il Williams and H.L. Ossher. Conversion of unstructured flow dia-
grams to structured. Comput. J., 21(2), 1975.

Michael J. Wolfe.  Optanizeng Supercompilers for Supercomputers. Pit-
man, London and MIT Press, Cambridge, MA, 1989. In the series, Re-
search Monographs in Parallel and Distributed Computing. Revised ver-
sion of the author’s Ph.D. dissertation, Published as Technical Report
UTUCDCS-R-82-1105, University of Illinois at Urbana-Champaign, 1982.

Deboral Whitfield and Maiy Lou Soffa. Automatic generation of global
optimizers. In Proceedings of the ACM SIGPLAN 91 Conference on Pro-
gramnung Language Design and Implementation, pages 120-129, June
1991,




[WZ85)

[WZ91]

Mark Wegman and Ken Zadeck. Constant propagation with conditional
branches. Conference Ree. Twelfth ACM Symposium on Prinewples of
Programming Languages, pages 291- 299, January 1985.

Mark Wegman and Ken Zadeck. Constant Propagation with Couditional
Branches. ACM Transactions on Programming Languages and Systems,
pages 181-210, April 1991.

116



