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SUMMARY |
1

The proposed thesis oons}.sts of two parts. In the first part the
calculus of variations for discontinuous fields is established. 1In
order to express the first variation of the action integral in the
class of discontinuous fields, in temms of arbitrary variations, ar;d in
particular, in terms of arbitrary ‘variations on a singular hypersurface,
variational conditions of cc'm;;atibility are formulated. These conditions
generalize Thomas' kinematical conditions of compatibility. The .
necessary and sufficient conditions for the action mtggml to be

stationary in the considered class of fields are derived. In particular,

=
. the jump conditions of field quantities across the singular hyper-

surface, which generalize the Weierstrass-Erdmann conditions to mulQ:iPIe
integral problems agre obtained. Next, the relations between trans-
formations leaving the action integral invariant (symmetry transforma-
tions) and conservation laws are established for the case of discontinuous
fields. Finally, in this part, the complementary conservation laws on
thé siﬂgular hypersurface are cbtained directly from the jump conditions.
The second part of this thesis deals with applications. In s
particular, the following topics are investigated. rThe dualism in the
description of the undeformed state and the family of defommed states
of 2 and é—dimensional media set into motion during which a sinqular
hypersurface propagates through these media. Balance laws which admit
discontinuities carried by wave fronts for the simple hyperelastic
na;:erials and materials of grade 2, in the material and spatial descrip-

tions. Finally, the problem of wave propagation in a plate is investigated



ii

usingua model based on a fourth qrdér differ;ntial equation for
transverse vibrations, including thé shear caused by transvers&-‘
stresses. In this latter topic, the speed of propagation and thé
decay law for the third order wave are derived. The meaning of such
waﬁres within the’'plate model is studied, and scme general observa-
“tions are sta;:ed. Also, the relation of our approach to those

studied by other researchers is indicated.
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RESUME
o |

La présente thése consiste de deux pgrties. Dans la premiére
partie nos &tabligsons le calcul des variations pour les champs discontix;us.
De fagcon & exprimer la premiére varia.‘t',i;n de 1'intégrale d'action dans
la claése des champs discontinus, en terme de variations arbitraires et,
" en‘particulier, en termes de variations arbitraires sue une hypersurface
sin}guliére, des conditions variationnelles de compatibilité sont
formulées." Ces conditions généralisent les conditions cinétiques de
compq.tibilité de Thomas. Les conditions suffisantes et necessaires pour
que 1‘,x;inte”gral d'action soit stationnaire dans la classe de champ
considérés sont calculées. En particulier, sont obtenus les conditions ’
gie seut des quantités de champ sur 1'hypersurface singulieére, qui
généralisent les conditions de Weierstrass-Erdmann & des problémes
\ d'integrales multiples.

Ensuite, nous &tablissons les relations entre les trans-
formations qui laissent invariante 1l'intégral d'action (transformations
de gymmétrie) et les lois de conservations dans le cas des champs
discontinus. Finalement, dans cette partie, les lois de conservation
complémentaires pour 1'};ypersurfacé singuliére sont obtenues directement
des contiions de saut.

- La seconde partie de cette thése traite d'applications.
En particulier sont &tudiés les sujets suivants. Le dualisme dans la
\

description de 1'état non déformé et la famille d'etat déformés de mi]}ieu

de 2 ou 3 dimensions mises en motion pendant qu'une hypersurfdéce se \

propage & travers ces milieux. Les lois de la Balance qui admettent
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des discontinuités portées var fronts d'onde pour des matériaux

hyperélastiques simples et_maf,ériaux de grade 2 dans les descriptions

matérielles et spaﬁigles.

Finalement, nous étudions le probléme de propagation

d'onde dans un modéle de plaqﬁe basé sur un systéme d'équations

«

différentielles de quatriéme ordre pour vibrations transverses,
incluant le terme d'inertie rotationnelle. Dans ce dernier sujet,

la vitesse de propagation et la loi de la décadance de l'onde de
troisiéme ordre sont derivées. La signification de telles ondes dans
le contexte du modéle de la plaque est étudiée et quelques observations

gnérales sont formulées. Aussi, sont montrées les relations des
g ’

17

nos approches enver les autres chercheurs.
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CHAPTER 1
<INTRODUCTION

First order variational problems definea by multiple integrals, °
that 1s to say, variational problems whose integrands depend on independent
varialk:les, state variables and only their first order partial derivatives,
finc'i significant apblications‘ in the formulation of field theories in
physics and engineering. Problems in which the integrand contains higher-
order derivatives have also received considerable attention, ever since
the oricin of the calculus of variations in the early eighteenth century.
These variational problems are referred to as higher-order problems. The
interest in second-order problems in particular lies in the fact that
they can be applied, with varying degrees of success, to various branches
of mathematics and to physics, for example, in relativity and continuum
mechanics. In general relativity the integrand, called the Lagrangian
density -function, which gives rise to the Einstein gravitational field
equations is L = R /-g where R is the scalar curvature and g is the
deteminant of the metric tensor. The scalar curvature R inherently
ocontains second order derivatives of the components of the metric tensor.
In continuum mechanics the governing differential equations are often
of fourth order, for example the oscillations of rigid plates and shells.
The inverse problem of the calculus .of var;iations then leads bo an associated
Lagranaian density function dependent also on second-order partial deri-
vatives of displacement. Efforts have been made to establish a generalized



mechanics (1,2,3] and a generalized electrodynamics {4,5] by including
higher-order derivatives in the Lagrangian function.

The importance of variational Qformulations of the laws of
continuum physics, whenever they exist, lies in the fact that they are
Fhe best way to express such laws, as has been pointed out by Oden and
Reddy in (6] and by Marsden and Hughes in [7], for example. This is
because the fundamental principles of continuum physics are global in
character. Their local forms can be derived from Ii;heir global forms only
if the involved fields are endowed with suitable smoothness properties.
However, this smoothness is very often unnatural. In continuum mechanics,
for example, it rules out discontinuities which are carried by wave
fronts propagating through a material. In the variational formulation
of the fundamental princirles of continuum mechanics, a sumple functional,

called the action intecral, accounts for all the intrinsic features of
the problem: the differential equation of motion (the E\Jler-Laqrar;qe
equations), the natural boundary conditions and the jurp conditions
associated with propagating discontinuities. Moreover, the variational
approach allows a systematic connection to be made between symmetries
and conservation laws as well as constituting a natural means for approxi-
mating and finding the solution.

) The significance of variational principles for discontinucus
fields has recently been recognized, see Nemat-Nasser [g]. For a

historical account on this subject in continuum mechanics we refer to

the Introduction to the second part of this thesis. However, to the

o

knowledge of the author, general variaticnal theorems which admit
discontinuities in the field quantities and their partial derivatives
have not been elaborated, especially in their relation to propagating

discontinu‘itieS .




The purpose of this thesis is to establish a general approach
to the calculus of variations for discontinuocus fields (PART I) and to
apply it to some problems in continuum mechanics (PART II). Our approach,
which has been proposed by the author in [9 ] and extended in [(10], is
based on the theory of sinqular surfaces. This theory has been developed
\ by Thomas. His results are summarized in his book [11]. An extensive
treatment of the basic mathematics of singutar—surfaces and a historical
account on contributions to the field has been given by Truesdell and
Toupin in [12]. Thamas' theory has recently been generalized by Cohen
and Wang [13]. Their investigation included alsoc a treatment of singular
curves propagating through ma material surface. .

= In the next two chapters (Chapter 2 and 3) we shall give
a simple account on 'tl;e basic definitions and results of the theory of
singular hypersurfaces. In Chapter 3 we shall recall the geometrical
and kinematical conditions of compatibility in a form that will be useful
for this study.

In Chapter 4 we shall extend the notion of kinematical
conditions of compatibility. We shall derive new conditions which we shall
call variational conditions of compatibility. They are associated with
the virtual deformation of discontinuous fields. These conditions are
expressions for the jumps in the variation of partial derivatives of a
tensor field, in temms, in general, of jumps in the tangential derivatives
of the displacement variation of the tensor field and in the normal
derivative of this field at its singular hypersurface and in the nomal
variation of this hypersurface. For the special case of an imposed

virtual aeformation, the displacanent‘_ variation and the normal variation

of a singular hypersurface are reduced to the displacement derivative
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(.célled also Thomas' derivative) and the speed of propagation of this
hypersurface, respectively. In this case the variational conditions of
campatibility are reduced to Thaomas' kinematical conditions Qf compati-
bility.

Using variational conditions of compatibility, we can
express the first variation of the action integral for discontinuous
field in bems of arbitrary variations on a singular hypersurface. These
arbitrary variations are the displacement variations and the nomral
“ariations of the hypersurface. Before this expression for the first
variation of action integral is derived in Chapter 6, first we shall
z‘éyieur in Chapter 5 single integral problems for discontinuous functions,
and in particular we shall recall the Weierstrass-Erdmann (corner) condi-
tions for such problems (cf. Gelfand and Fomi_n‘ (14) and Oden and Reddy
{6}). Also in Chapter 6, we shall extend the Fundamental Lemma of the
calctllus of variations to include additional integrals induced by the
sinqular hypersur%ace of discontinuou;e, fields. This lemma leads to
necessary and sufficient conditions for the action integral to be stationary
" in the considered class of fields. They are given in Theorem 6.1. In
particular, we shall obtain in this theorem jump OOnditiOr:ls of field
quantitiesi) across a singular surface which generalize the Weierstrass;
Erdmann conditions to multiple integral problems.

In the next chapters of this part, we shall establish for
the case of discontinuous fields, the relation between transformations
leaving the action integral invariant (symmetry transformations) and
conservation laws. A historical account on this subject for smooth fields,

as well as, the list of standard references will be given in Section 7.1

of Chapter 7. 1In Section 7.2 of this chapter, the definition of
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invariance and the discussion of this definition in relation to the
oconsidered discontinuous fields will be given. In the last section of
Chapter 7, we shall prove the fundamental invariance theorems. For
the considered class of fields perhaps the most important is Theorem
7.3 in which the integral identities implied by invariance are given.

In Chapter 8 the conservation theorems for discontinuous
fields are formulated and proved. Again, perhaps the most important
results are given in Theorem 8.1 in which we shall establish the relation
between (integral) conservation laws and symmetry transformations,
mentioned above. For higher-order variational problems, and in particular
for second-order problems, fram this theorem will be seen the conserva-
tion laws for an arbitrary subsystem contain temms describing "flux"
concentrated on the boundary of the singular hypersurface intersected
by this subsystem. Finally in this Chapter, we shall establish in
Remark 8.1 the complementary conservation laws on the singular hypersurface
that are directly implied by the jump conditions obtained in Theorem 6.1.

Remark. Throught this thesis, we shall employ the summation
convention with which a repeated index in a temm is understood to be summed

over the possible values of this index.

o




CHAPTER 2

SINGULAR HYPERSURFACES

In order to fik the notation we shall let (X, t) = (xA,t)

N+1

A=1,...,N) denote a point of R where N = 2 or 3.

In the study of sinqular hypersurfaces we deal only with

‘ -hypersurfaces given by the following definition.A (smooth) hypersurface

in 'RN is a set I c RN such that for‘each point X ¢ I there is a neigh-
bourhood vV of X in RN and a mapping y: U + VAL of an open set Uc RN-1
intovnge RN subject to the following conditions: |
(1) x is a smooth mapping
(i1) x 1is a homeocmorphism

(iii) x is ©reqular at each point u e U.

The mapping x is,called a local parametrization or a (local)
coordinate system at X and the neighbourhood Vv n § of X in I a ocoordinate
neighbourhood. Roughly speaking hypersurfaces given by the above defini-
tion have no sharp points, edges or self-intersections. Moreover, we ,
always assume that hypersurfaces are orientable (N = 3) and that we have
made a choice of unit nor;na]. vector N for each X ¢ I, which is perpendicular

to £ at X.

——

N

Let us consider a family {I of hypersurfaces I,C R

]

t}te.’f
where 7 ¢ R:.L is an interval (time interval). For a given open set (i < RN'

we assume that for each t ef; f, divides Q@ into two non-empty domains,

denoted by Q: and Q; and forms a common boundary between them. The unit

o




in R™, This hypersurface divides 7 = @ x T into two subsets r* and 7

normal N on Et is directed toward the set Q:. It is assumed that a

"space~-time" representation of the family {zt}teg' is given by a smooth

-

hypersurface

F={(Xt):XeZ, teT}

where 17 = {(X,t), Xe Q::-', t € 7} (see Fig. 1).

Let {¢t} be a family of mappings such that ¢t(x) = ¢ (X,t)

teT

. 1s a scalar-valued, vector-valued or tensor-valued mapping defined and

U ocontinuocusly differentiable on 7r+ and 1 . If T is a hypersurface in n

given by f(X,t) = 0, where f is real-valued differentiable function defined
on w,{l'(c)}are the neighbouring hypersurfaces in gi\{en by £ = c. We
shall assume that ¢ and its partial derjivatives on/)I‘ (c) converge uniformly
to bounded limits on T as ¢ tends to zero thmug}‘i'positive and negative
values. Let A" (x,t) and A7(X,t) denote the 1}.1&’51.ts of a field A at any
point (X,t) on the hyp:ersurface T which is a/;proached from 7 and T,

respectivély. The hypersurface I' (the moving hypersurface Zt) is said
to be a singular hypersurface relative to the field ¢ {¢,) if the jump

Ia] (X,t): = AT (X,£) - A (X,t)

does not vanish for same (X,t) e ' (X ¢ Zt) where A denotes the field ¢
or same of its partial derivatives, In this case ¢ (¢t) will be denoted -
by a pair (T,6) ((Z_, ¢,)) where I (I) is its singular hypersurface.

The order of the singular surface corresponds to the lowest order partial

derivative of ¢ (¢t) which is discontinuous across I' (I,).
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CHAPTER 3

GEOMETRICAL AND KINEMATICAL CONDITIONS OF

COMPATIBILITY

For a {iven (smooth) mapping ¢ on RN, let brp = a¢/axA,

L) y .
E I LN e [ ]
¢' AB 9 ¢/8XA3XB tc. We shall adopt the following notation for

the derivatives offa function ¢ at any point on the hypersurface I < RN:

¢A=DA¢,+NA B(N) ¢

4
2 = OB
Im¢ = ¢ ap

. in the above NA are the components of the unit normal N on I,

- (B
Dy = (85 = MND) ¢

B

are the components of the tangential derivative of ¢ and I and
NA¢' A ] |

is the nomal derivative of ¢ at the hypersurface I.

3wy ¢

Let us consider a pair (I, ¢,) as defined in Chapter 2. By Hadamard's

Levma [15,12] we have ™
s +
. (DA¢)- - DA¢- l
which implies the following limit conditions .

(6 % =D,0% + M, (3 00 (3.1)

—
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pa

=4 + +

4
1 C + c +

+ L+ +

2 +
+ NANB (B(N)cb)— (3.2)

where QAB = - DANB = - DBNA are the comwponents of the second fundamental
form of the hypersurface ¢ t"

Fram (3.1) and (3.2) we can formulate conditions

06 50 = Dp100 + Ny13 0] (3.3)

— C
Uo agl = Gl U6l + N0, p . 16]

+ 2N ,D00 1300 61 - 2500 00 60

+ NNy [a%, 01 (3.4) N

where parantheses enclosing indices A and B indicate s&nmetrizatiorl
with respect to these indices. ‘
. . The formulae for jumps of the partial derivatives of ¢ given
by (3.3) and (3.4) are the geometrical conditions of_ compatibility of 4
. first order and of second order, _respectively'.
The kinematical conditions of compatibility will be derived
using local parametrizations of the hypersurface, Et in the éollcswinq way':
We shall assume that the following restrictions of ¢t' A
6.9 and ¢,|p, have in the neighbourhood of each X ¢ I, differentiable

(smooth) extensions, denoted by 5,((;") and ‘;t(:—)

, respectively. For each
X e L, in a chosen (x,,6) where x, is a coordinate system at - -

XeZtandG{:=Vf\£tis/é rdinate

/

.
Y
d . . « R
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neighbourhcod, the mappings $(+) and $(-) can be represented by the

following "trace" formulae o

b =4 @o:= i xeo,0

~

bp (@ = ¢ (b):

r

5(-) (x(a,t); t)

Then by the chain rule for differentiation we have

(+)
a4 (+) A ~ (=)
A= _ 2=} . L 36 ’
3t - %A Bt t
= (6 )% .@.Xf. + @Yyt ] ' (3.5)
= 10,27 3t 3t , .

Using in (3.5) the conditions (3.1) we obtain-

o A A
= _p tOX g X
. 3t = 0073t B¢~ My ¢
a9, +

It is well known (cf., for example [12]) that the quantity

ot
-Ny 3t

is independent of the choice of local parametrization. Hence it follows

from (3.6) that the quantities

, ot A

are also independent of the choice of parametrization.

In the standard notation and terminology

A
3
N, 5{— (3.7)
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is the speed of propagation of the hypersurface E:t, andn

+ a4 A
So- _ 0= _ p  EOX
st = 3t " abT 3t (3.8)

are called the displacement derivatives of ¢t at the sinqular hyper-

-
}J

surface Zt.
For a more camprehensive study and a historical development
of the concept of the displacement derivative we refer to Bowen and

Wang [16]. Introducing the notation (3.7) and (3.8) into (3.6) we obtain

8

+ ;
8= _ gy et (3.9)

where & = 3¢/3t. }-”rom (3.9) we get conditions N
[61 = §%%ﬂ - U(N) [[a(N)¢D A (3.10)

A
which are called the kinematical conditions of compatibility of first

order.

The second order conditions are obtained in the following .

way. First, if we replace ¢ in (3.1) and (3.9) by ¢ we have

(b T =N Qg HF + 0 (97 SRREREY
HE =S GE-uy (g0t (3.12)
Next, let us note that , ) ) )
o
t(a(N)q’) =5 (o %+ NA 3 (0,20F
= DU teu (30t G bt (3.13)
Pt * Uy Pyt an? .

A" (N)

L]

where we have,applied identity §N°/8t = - DaUgy (cf. (T6]) and conditions
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(3.9)\ in which we have replaced ¢ by ¢ A* Now, by introducing (3.9)
' »

and (3.13) into (3.10) and (3.12) we derive

+ B
i yiop (8¢ * ¥

-

K3 + 2 .+
N, Gt (@ g9 = Uy Ny 3y ®) (3.14)
st 8 o et +
®F =gp g Uy Quu® T} = Upyoa Ugy0ps™
- Uy G—i (a(N)¢)i + qu) (afN)cp)i (3.15)
The above conditions lead to the following expressions
H&’.An =0 {651: Uy 18y 01} + NuBpU ) D00
T+ N Gt [Ia(N)qﬂl MU ) [Ia(N)cpn | (3.16)
- [ 4
e 6 (Sle] _ '.
, Dol = Gt ~ Uy Papol = Yy Bl ny Pal6D
Y Gt 09 oy 61 + U(N) [d (N)dﬂ] (3.17)

which are called the kinematical conditions of compatibility of second
order. - ’

// In a similar way the higher-order geometrical and kine-
matical conditions of compatil\)ility can be ‘obtained. For a discussion
of that subject we refer to Wang and Truesdell (17].
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CHAPTER 4 ' ’

VAR'IATIQNAL CONDITIONS COF CCMPATIBILITY

vIn this section we shall extend the notion of the kinematical
conditions of campatibility associated with a singular hypersurface, as
they have been é\erived‘ix—q Chapter 3. We shall derive new conditions which
we shall call the variational conditions of compatibility. As presented

) LN
here they form a part of an extension of the variational formulation of

" the fundamental principles of continuum physics for discontinuocus fields

by»ipcluding the thedry of singular hypersurface into the calculus of
variations. ”

V Let us consider a pair’ (Zy, ¢,) as it has been defired in
Chapter 2. A (infinitesimal) virtual deformation of (Zt, ‘t’t) is the

following one-parameter family of pairs
q

(~e,€) 35 = (Zt(s) ’ ¢t(s)) . (4.1)

where € > 0. In (4.1) q)t(s) (X) = ¢(X, t(s), s) and for each s, I (s) 1is
a sinqular hypersurface (the carrier of a simple discontinuity of 4 or

some of its partial derivatives) relative to ¢t(s) such that £t(0) z Zt

and ¢t(0) Z 0.

A normal variation $I of the hypersurface I associated with

* a virtual deformation (4.1) is defined in the folla&ing way. For each

X €. Zt we set

@

A s
: dy,. (s)
= L ]
$Z(x',t) "NA__ | o= .

[ N

(4.2)
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0o,

are the camponents of the unit normal N at X' = yx(u,t)e Vv~ Zt,

N
ucU(P."l

where NA

(c.f. definition of a hypersurface given in Chapter 2) and
Xy (s) (u) = ylu, t(s), s) is a local parametrization of I, (s) such that
;(t(O) Z Yy is a local parametrization at X ¢ Zt. In.; way similar to
that followed for the formula of speed of propagation (3.7) we have that
the normal variation (4.2) is independent of the choice of local parametri-.
zaticns of the hypetsurface. The proof of this statement is presented, in
the Appendix I.

In order to formulate variational conditions of compatibility
we shall follow closely the procedure that has been outlined in Chapter 3 *
for the derivation of the kinematical conditions of compatibility. First

let us write

GE%(s) | . s , ads
ds lg=0 = "a®~ T as ls=o+NA‘3(N)¢’“ ds 's=0

-
~

[

d¢t(s) + v

* ds ls==0'

(4.3)

where 5:(5) and 3;(5) are the representations of the "trace' on Zt(s) of
~ (4) .y =~ (=) + -
smooth extensions 4, ' (s) and ¢, ' (s) of ¢t(s)[Qt(s) and ¢, (s) IQt(s),

respectively, in a local parametrization xt(s) of the hypersurface Zt(é)

kY

such that (Zt(s), Qt(s)) is given by (4.1).

Acocordingly, if we define quantjkties 40 pa by

A A
+ d¢E(s) + dXt(S)

60- = a5 ls=0 " B¢” Ta& ls=o “@a

and recall that §1 given by (4.2) is independent of a choicé of local
1%
parametrization of Et' then we can conclude from (4.3) that $¢t are also

independent of the choice of local parameterization of I, We shall call -

4
§
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the quantity $¢ defined abové, the displacement variation of ¢ at the

hypersurface Zt. Introducing (4.2) and (4.4) into (4.3) we obtain
§0% = (50)T+ (30T b2 (4.5)

where §¢ =dd, (s)/ds [s=0' In a similar way to the derivation of

equation (3.14) in Chapter 3 now we have

(80 )T = Dy{ 86T = (3,0 £2} + N, 63y, 0)*

t_ 2 +
+NADB(5£)DB¢ N, (a(N)¢) & (4.6)

23

wheFe 8¢ A2 dcbt'A(s)/ds |s=0 and we have applied the following identity

‘8NA = - D8I which corresponds to the identity % Ny == 200 used in
Chapter 3.
Finally, on the basis of (4.5) and (4.6) we establish the
, relations
o LoD = 661 - T2 0D 4% (4.7)

060 ,1 = b, (800D = 0 6D6Z } + N, 613 ) 0] + N, 55(82) Dl0]

3
L

5 B

“

which we call the variational conditions of compatibility of first order.
Other such conditvions are those for [§¢], lI<Sd'>,AIl, ..., where & =

34 (X,t(s),s)/at(s), and the higher order variational conditions of compati-
bility are those for [6%1, 015% ,1,..., 05D, ... They can be
obtained in a similar way. However, in this work we deal with the varia-

‘ tional problems for which we need only conditions (4.7) and (4.8), hence

these other variaticnal conditions of campatibility are not considered
here,




~

Moreover, if we assume that the virtual deformation (4.1)
has the form
(-e,e) 3s » (T o 0p,.)
then the conditions (4.7) and (4.8) become the kinematical conditions
of tampatibility as they have been considered in Chapter 3, i.e. condi-

tions (3.10) and (3.16), respectively.
As ‘has been mentioned at the beginning of this section,

the results which we have obtained here are important in the construction

of variatiorial problems for discontinuous fields. Such variational

problems lead to field equations in which jump conditions must be imposed
on the hypersurface of discontinuity. Towards this end, we must now

review the Weierstrass-Erdmann (corner) conditions from the classical

calculus of variations.

e e
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Y CHAPTER 5
SINGLE INTEGRAL PROBLEMS FOR DISCONTINUOUS

FUNCTIONS

In this chapter we review a single inteqgral variational
problem for discontinuous functions. We follow the exposition qf this‘
problem as it has been given in Oden and Reddy [6]. However, our
exposition is given in the form which léter will be extended for multiple
integral variational problems. Another useful reference for this
single inteqgral problem is Gelfand and Fomin ([14].

Consider the integral

b J
J= | F(X,6(X), g%) dx (5.1)
a

-

* defined, over the interval [a,b]. .Suppose that the statio"nary value of
m"*‘m o "

the integ¥al (5.1) is obtained for the function ¢(X) which has a gimple

discontinuity in-its first derivative at an arbitrary internal point

X, in (a,b], i.e. a < X, < b. We can express the integral in (5.1) as

the sum
%o i s 30 b d
J= [° Fxem, P+ [ Fem, D ax
a : X,
L4 F, -
z Jl + J2 (5.2)

In accordance with the previously introduced notation, we consider a
pair (Xo,cp) where X, is a singular point of ¢ as it has been defined
above. We embed an assumed statidhary "point" (Xo,cb) in a one-parameter .

s

family



¢
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(-e,e)3s+= (X (s), ¢(s)) (5.3)
where Xo(s)h is a singular point (as defined above) of the function
¢ (s} (X) =¢(X,s), such that (XO(O), $(0)) = (Xo,cp) . Moreover we assume

that ¢(s) (a) = ¢(s)(b) = 0 for every s € (-€,¢€).

The variation §¢ of ¢ in [a,xo) U (Xo,b] is given by

65' = ‘ddéS) Is==0

A

Then, the results of Chapter 4 imply '

(80)F (X)) = 66X ) - (8% &%,

(5.4)

where the superscripts "-" and "+" denote limits approaching Xo from

left and right, respectively. For infinitesimal deformation (5.3) the

quantities 8¢ and SXO are schematically indicated on Fig. 2.

! The first variation of the integral (5.2) is

=9 ‘
8 =35 J(s)| g + dt 2(s)l =483, + &7,
where
X
o £
&3 i [—;5 ax—a¢]6¢dX+F 8%
#
+ (%x (80 - (o) 8x) SRR
b a
83, = )j( [a¢ o a¢1a¢ ax - F' 8
(o] o

3F+

Gs, (B0 oy *8x) °

(5.5)

(5.6)

Since each of the integrals J, ané J2 has a étationary value for ,p, the

integral tems in (5.5) and (5.6) must .vanish for arbitrary &§¢. This

!

\1 implies that
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] 36 X 36y -
and we have
| @B _ o OE - o
87 = () 8o + (F - oy 36, 8x (5.7)
Y aF |+
83, = 3“’x 8¢ = (F - ¢y 34’}() 8%, ’ (5.8)

s

By deé.nition, the iriteqral (5.2) has a stationary value for (Xo,qb)» if
the first variation vanishes (6J = &J; + &J, = 0) and this 1eaqs to the
condition '
E 3o +IF - Oy a¢xn 8x, (5.9)

acbx

2

"It follows, because of the arbitrariness of 8 (Xo) and Gxo, that

= - o Eog.o

-——

Conditic;ns (5.10) are known as the Weierstrass-Erdmann (corner) conditions
for functions with finite jumps in their derivative .

e

&

%
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CHAPTER 6
MULTIPLE INTEGRAL VARIATIONAL PROBLEMS FOR

-

DISCONTINUOUS FIELDS

Variational problems given by single inte;;rals findfsigni-
_ficant applications in the expression of the fundamental principles of
mechanical systems and geometry.} In the same way, problems defined by
multiple integrals ’are important in the exbression of princ:iples in the
theory of physical fields and in pa:rticular in the theory wof classical
continuum mechanics, see Goldstein (18] and Lanczos [19], for example,
This latter theory i; our main area for the application of ideds
developed here....

Accordinély, now we consider a .certain integral

. a=[Ldy dt \ (6.1)

I3

‘In order to fix the notation of the région of integration,

we shall let m = D x7 denote a closed cylinder in RN+1 A point of
m will be denoted by (X,t) = (X, ..., X', t) and then v, dt = &' ...

1

dXN dt is the volume element of RN+ . The history of a system is" given

by a cbntinuous one-parameter fanﬁly

1
R Gtr"-¢t

,of a continuous map ¢t: RN +R? (N = 2 or 5, n-natural number) such that

¢: RVL 5 gD N ' .

defined by ¢i(xA,t)‘ = ¢f:_(x“) (A =1,...,N; i=1,...,n) and ¢ (X,t) =
(¢1(XA,t),..., ¢n(xA,t)) is a continuous mapping.
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|
We assu\me that the integrand L in (6.1)y called the

Lagrangian density function, is in general of the following form

Le RN-f-]. X & % R3 (N+1)n . R3N(N+1)r1 - Rl

= L(XArtr ¢i(XArt)l (b-}A r J)il ¢:}ABI &)j’.A)

where 4>iA = ael/ad, & = 3ei/at, ... etc.

Tﬁe integral (6.1) will be referred to as the action inte-
gral or action functional. )

\ Ly
6.1 The First variation of the Action Functional for Discontinuocus Fields

Let us consider a system

(D 75 Ty 0p) (6.2)

3

where (Et, ¢t) t ¢ T is a pair defined i.n Chapter 2, for which now

Q =R and b (X) = ¢(x,t), X e &Y, t e T , has been defined above. The

closed cylinder D xT, Dc RN, Tc R1~ is such that if for some t €T
a(bn zt) # ¢ then for éach teT B(Dnzt)/# ¢ is a regular smooth
curve for N = 3 or a two-point boundar’y for N.= 2, and Zt intersects D
'transversally'. Such aD ’fT will be referred to as a "good" X-t

cylinder. The action functional for the system (6.2) is given b)f

A;Dxa'

D\z LOC/E0ys by nr b0 05 ppr &y 5) Vg dt  (6.3)

e

A (infinitesimal) virtual deformation of the system (6.2) is the
'
following one-parameter family

(~e,e)as = (D; T(s); I,:8), ¢(s)) (6.4)

such that for each s the same assumptions as those for the definition of
the system (6.2) hold true.
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defined by (4.1) with Q =

N ) SR 25

In (6.4) Tis) = [t)(s), ty(s)] and (Z.(s), ¢.(s)) is
N
R".

The deformation (6.4)' induces the deformation of the action

functional (6.3) . -

(-e,e) asw ADxfr(S) 4

where ADx:r(s) is given by

© Apgle) = [ [ LG, ee), 04(s), by Als), by (s),

T(s) D\Zt(s)

¢1,AB(S)’ ¢i,A(S)) dVN dt(s) (6.5)

in which ¢, (s) = 3¢, (s)/3t(s), R 3¢i(s)/aXA, ... etc.

It is convenient to reduce the integral over the time interval
T(s) in (6.5) to an integral over the original time interval 7 = [tl,tzl

by a change of variables. The transformmation of the time element from

= J(s) 'to T is accamplished by means of the formula

dt(s) at

dt(s) = 3t

=1 +4 &8 )6l at

where the last expression is accurate to first order in s.
Now,, for the first variation GADxT of the functional (6.3)

-

which is defined by
- _ d .
B =3 Poxr(s) IS‘-'O

one can write
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| L we)|_avat-] I ILI6T d

r

+f L2 stavat (6.6)

T b\ Gt
t

where dZ,_, is the Fuclidean area element for N=3 and the arc length

Ao

‘element for N=2, &I is the normal variation of the hypersurface Zt
dt(s) |
ds

defined@by (4.2), ot = . Also

gl = ¥ - 1" \

is the jump of the Lagrangian density function L across the singular
hypersurface Xt. The formula (6.6) is given here without proof. However,
-gsome  proof of (6.6) can be cbtained along the same lin'es as that of
the formula for the time derivative of integrals appearing in balance
laws in continuum mechanics for discontinucus motions (12 ] (compare
foxmuiae (6.6) and (6.14) given later in this section).

The ideas of a nice proof of formulae such as (6.6) can be
found in Baddeley [20]. His approach follows the basic notions of
differential geametry, such as differential forms and also, smoothly
thanging compact differentiable manifolds, possibly, with boundary
The proof of formula (6.6) for some particular case, using the notion
of generalized functions and differential forms, will be presented in

- Appendix II. -
| If the derivative dL(s)/ds|__, iS carried cut in (6.6) we

obtain
o[ (2L, 0L L %L ;oL
ok = }r{ 3t Ot ¥ ey 0% T ey ,00,a TR 0% YT, o e

L _J . d -
C | + 55:-{.-,’5 8; \* Lgg Ot) ayy at [ [ D frD $zdr, ,dt

TLy (6.7)
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\

Before the analysis of (6.7) can be carried further, we

mast recognize that from the definition of variation
86, (X) == ¢ (X,t(s),8)|
t ds ’ IR0 g=0

N\

5 £ 86 (6.8)

#

we have in general

It will be convenient to define a new variation 3¢ for which the
relation (6.8) will be tumed into an equality. To do_f.his, we note
| that -
8¢

-~

§¢ (X, t)

p:} ]
T d(X,t)ét + 3s (X, t(s),s) IS=0

st + &0 (6.9)

Ore

where we have set 3¢ = a—as ¢ (X,t(s),s) ls=0.

-

Then, it is clear that

A - _.Q_ A
Furthem;oxe, recalling thé kinematical and variational conditions of
campatibility given in Chapter 3 and Chapter 4, respectively, we have
from (6.9) the following simple

-

IEMMA 6.1. The following relations

82 = Uy st + b1 ¢6.10)
+ o
S = g%—' st + Bo= | (6.11)

are satisfied for a given pair (Zt, ¢t) . ’ N
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PROCF: From (6.9) we have that

Gt = ot - st (6.12)

On introducing conditions (4.5) and (3.9) into (6.12) we obtain

\ £ A
(B0 = go% ~ 9 st - (3, 0% (82 - Uy, 6t}

= §oF - iam)q»t g1

The last equality implies (6.10) and (6.11). [

\ A
Let us note\that the operators 3 and 8 are connected only

with the form change of a pair (Zt, cbt) i.e. they are variations without
the variation of time. "

On making use of relations (6.9) and (6.10) we can write

(6,7) after obviocus manipulations in the form

A A aL ::—
= [ 3L &, + =L 8o, . + Sb, |
SApyy Fp oey 1T L %A TR %%

AL 2 ST d
+ '_'—a¢ T 6¢i,AB + -a-({—— 6¢1,A + a—E (L Gt)} dVN dt
i,AB i,a

-} z:{n [LD (82 + Uy, 8t) df, dt (6.13)

Now, bearing in mind the following identities (cf. [12])

d

T £¢va= g«sva- [ 1D Uy, dg, (6.14)
ZtnD

Jo,av, = [ Nodr, .- | [eI N, d (6:I5F

D A N 3D “A z:N 1 Zt/\D ‘.A EN—I ,
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and then performing the standard manipulations (includinqnalso integration

by parts by means of forrmulae (6.14) and (6.15)) in (6.13) we obtain

8Ap. 7 = fJ;IJ;{ (3'(},;) + [ 3¢1,A+ (3¢1,AB)'B R T T B

L S
o[- gk 2 e ) I, S6y - ga— Nydey pldn dt

70 ¥1,a %i,ap B 0 4,a8
3L 3L L aL A at
+ a{l- + ) o+ ) IN, + Ut S04045, ¢
. } ztnID %y » 00; ap /B 05 p A 3%, (N i 1

{

3L oL A
+ ] [ Q=557 N, + 50— Uy 6¢i,Bn'd£N-kl at

’ T 1AD %, 2 a O w
A s 2
- [ DM azg at ik
T ZtnD .
tl 'f)
: 3L 4 aL & \
+ : + 3 + .16
,{, (55; 8¢, + 3 T 86; p*+ L 8t) vy ¢, (6.16)
Iet us introduce the following notation. .
k i_ 9L~ : '
Pt = (6.17
. N )
E M) 4
A = -5-§L—— : (6.18)
%A
, \
u P (6.19)°
' %,a :
‘ : . ’ ’ B { ’ HiAB = e a'i'L" — Q\Wl . (6-20) ‘
, ‘ e i,AB : )
o ! f
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A o A _ AAB 5+ A (6.21)

’ [+]

. o

ey = -8t + 'I'iAA + %%— (6.22)
' i

where the last expression is referred to as' the Euler operator. On

introducing the above notation into (6.16) we have the compact form

& =[] si(L)&pi aydt - | [ (TiANA 3¢i +HiABNA 86, plany ) dt

xI 1D T 3D a
i A
+f [ nrtPu, e ptug6e,ldn, ) de
T Et D
iA . A
+1I_ ”! [IHiABNB 1 Uy 6¢1’AD dar,_, dt
Ly D
- [ mupézag,, at
TI, D -1
t, ‘ .
is iA2 ‘ (6.23)
+ [I,' (P 6¢i.,+ m 6¢1,A + L &t) dvy ltl

In order to express the formla for SADxT given by (6.23)

. in temms of arbitrary variations on the singular hypersurface D and on

the boundary 3D we need Toupin type integral identities. First, let us
recall that on the singular hypersurface Zt arbitrary variations are the

displacement variations and the nomal variation of this hypersurface.

On the boundary 3D the arbitrary variations are the variations of field

/\
and their nommal derivative. |

One of the above mentioned identities on a surface in R3

has been introduced by Toupin [21] in his early work on the theory of
elastic materials with couple-stresses. This identity has also been
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“ frequently used in many works related to this subject [22,23]. A more
camprehensive treatment of such integral identities has been given in
Cheverton and Beatty ([24] and in references cited there.

Let us first consider the case N=3, Now, (I,¢) is a pair

3

such that I is a sinqular surface in R® relative to field ¢ defined

on R3. We assume that for a compact set D¢ R3 with a smooth two-dimen-

sional boundary 3D, the surface I marks out on 3D a regular closed curve

C. The unit nomal vectors on 3D and [ are denoted by NaD and Nz,

respectively. "I'his notation will be used wherever any confusion might
arise. Let us define the following unit vectors

aD

A

™ - xN

]

! . M' = E x N°
0 C inﬁxiéh I is the usual left-oriented tangent unit vector on the curve

v X/(see Fig. 3) o\
lThe integral identities (N=3) we need are the following

f Dpan=- [ 0.8 o aa-[LoM]d (6.24)
” a0 3D c
- [ oMelaa=- [ [eNIRda + [ (oM ] (6.25)

o InD inD c

where dA is the Euclidean area element, dL is the arc length element

and @ = tr [Qﬂ, QIB\ being the components of the second fundamental form

.. of the surface I or the boundary JD. Note that the curvature of a surface
4

«
[

) is defined as 0/2 Q.
In the case of N=2 the boundary 3D and the hypersurface I
are smooth reqular curves. The orientation of the vectors M and MV, in

this case, are indicated on Fig.04. Also,. the points x(l) and x(z) form

o




'N




3,

o
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8 . et

the boundary 3(Z N D) which in the assumed positive orientation is given

bY X(3) ~ ¥y~
The corresponding identities can be obtained in the

. following way. First let us note that -
VY R - (PN - R

an
where * = A for 3D and * = v for I and the curve parameter & is the

length parameter (i.e. the unit speed éararreter) . The Frenet fornmla

of a curve (cf. (25], for example) gives

- .
'd.Q,M N
(?‘%-Mv=mz \

' "where @ is the curvature of the appropriate curve.

From the above equations we can easily obtain .
. ‘X
[ 00 qr = K | e NPeo ag - IM"+0] | @ (6.26)

= | g .
aD ab (1) .

” ¢ x
[ o[olE =~ | aIN"-0] AL + [u" -0l |"@ C O (6.27)
InD LAD X(l)

The integral identities (6.24) and (6.25) for N=3 and

" (6.26) and (6.27) for N-2 we will write in the form

[ 0.9 4 =-] NP0 0a - [ mm"-00a ‘ (6.2é)
. IN-1 - -1 c | IN-2

b

t

D. = - L, v, \
ghp TTOB OBy == [ INTelan, ¢ ICIIN, ol dgy .,  (6.29)

where df,_, and df, , are induced measures on I or 8D and on C = 3 (ZnD) ,

p



-already presented for each case of N=3 or N=2.
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respectively, and they are understood in the senses in which they were

'
A

On substituti.nq conditions (4.5) and (4.6) with § = §

“into (6.23), and after manipulations which include an integration of

certain temms by parts using the formulae (6.28) and (6.29), we finally

derive the sought expression for 5Ang--as follows

GADxT=:,J: l];El(L)'Mi av,, dt “ \
-1 L {irthy, - a'o - DA(HjABNB)]wr +H'D (N)aq»i} ary, at
+ 7): z{:no o', + ?i”(m) H + niU(N?S? D, By )|
A ' ¢
§p, dr,_, dt

- ] mrty, +Plug - @ +1riU(N))ST‘ D, BN

T LD

1 2
+ "iAU(N)?} gy + H A "iU(N))a(N)¢i

- i » A L .
+ D, [(H" + 77U ) a0,] + LD 82d1_,dt s

i A
# fonmt e rug) e dan, a8
TEAD | .

T

+ HiABNa MB + (HIABNE + nmU(N))MA}chiD diy_, 4
N Ct

+ [It-ri + 1iU L. M; Dp¢; I dry_, dt

T Ct
A ‘ ia A ) ’tz
+f (P 8¢y + T 8oy 5 + L SL) NV (6.30)
D ’ t1
e




N

]

o,

where Ct = a(ztn D) and the following notation has been introduced

® o
k)

. ub - iRy
- TTi-"-'TTiANA

Let us note that for N=2 a(ztn D) = X(2) - X(l) and the integrals over

t

boundary points X and X,., .

(2) (1) ”

In (6.30) the variations §¢ and 3 ,,, 8¢ are arbitrary varia-

(N)
tions on 9D, also 8¢ , &I , s(a(N)¢)i such that S(a(m¢)+ = 50 ) 9"
if ua(N) ¢]] = 0, are arbitrary variations on Zy.

Before we state the so-called stationary problem in the

multiple, second order, calculus of variations for discontinuous fields,

first let us recall that (T,¢) is a pair such that
r ={ (X,t):XeZt,teT}

is a smooth hypersurface in RN+1\

Zt < RN relative to the field ¢t(X) = ¢(X,t)

swept out by a singular hypersurface

The stationary "point" of the action integral (6.3) is a
pair (I, & (or (Z,,9,)) such that the first variation given by (6.30)

vanishes for all variations of (T',¢) ((E )) obtgined by embedding of

'd
t''t
(T,9) ((Xt¢t)) in a one-parameter family (infinitegimal, virtual deforma-
tion)
(-€'€)3S lad (F(S)l ¢(S)) o

((-e, €)as (‘Zt(s), ¢t(s)))

where € > 0 is small, .

F(s) = {(x,t): X ¢ L(s), te T(s)}

C, are reduced to the difference of jumps of appropriate quantities at the



and

¢p(8) (X) = ¢(s) (X,t) = ¢(X,t(s),s)

The variational problem which we now consider is the following stationary
problem. For a given action integral (6.3) we wish to find a necessary
condition such that tSADx7= 0 for all variations 8¢ = g¢ (i.e. &t = 0)
associated with (I',¢) such that they vanish at the boundary of time interval
T = [t1 ,t2]. These variations are referred to as the Lagrange variations.
This variational problem leads to the corresponding Euler-Lagrange
equations, natural boundary conditions and jump conditions associated
with the singular hypersurface Zt. These jump conditions generalize the
Weierstrgss—Erdrtmn (comer) conditions of the single integral variational
calculus.which we have reviewed in Chapter 5. To this end we neec‘i~ to
extend, the so-called Fundamental Lemma of the calculus of variations ’—
(cf. Logan [26], for example), to include the additional integrals
induced by the discontinuity of the partial derivatives of the field (

variables across their singular hypersurface.

3

6.2 Fundamental Lemma of Calculus of Variations for Discontinuous Fields

-

Let us assume that ' is a smooth, oriented and closed hyper-

. surface of dimension m-1 given in R". Consider real-valued functions

h, h h, where h is a continuously differentiable, bounded function on

1’ )
R™I and h,,h, are continuously differentiable bounded functions on T.
The sought extension of the Fundamental Lemma of the calculus

of va;iations is the following.
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LEMMA 6.2. Let Tc R bea compact set with m-1 dimensional smooth
boundary .97 such that ' divides 7 into two non-empty parts ™y and LY
fl

and crosses m transversally. If £, g ka’ r, (a =1,2) are real-

valued continuous functions defined on w\l', 3n\l' , Tan® and 8(I'A ),

respectively, and if

\ 2(m) = [ £(X) h(X) v+ | g(x) nx) ar_,

1r ) an
+ | k,(X) h (X) df; ; + f r (X) h_(X) dr__,
Tan 3(Tam)
=0 : (6.31)

. holds for every h, k, (a=1,2) as defined above then

-+

f(X) =0 for all: X e m\T
g(X) =0 for all X e 37\T
ka(X) =0 a=1,2 forall XeTlnAnnw
r,(X) 20 a=l,2 forallXe a(rnm)

In (6.31) @v_ = ad, . el od, X e RN and ary (k = 1 or

m-2) are induced measures on appropriate hypersurfaces®

PROOF. On the contrary, assume first that there is X1 in the interior
of m\I' for which £(X;) > 0.. Then by continuity of £ there is an open
ball B1 = {X: |X—X1| < ol} in the interior of w \TI, of radius Py > 0

for which £(X) > 0 for X ¢ By . Now, define the function h(X) by

4

0 outside of Bl

’ h(X) = 2 2 12

[(x-%))° - o] ]° inside of B,
€ 0 ,A-)

Then, h(X) is differentiable in w\I' and -
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p(m) = [ £(X) h(X) vy, > 0
By

This fact pmvidesl the contradiction, hence £(X) = 0 on m\T. Next,

assume that there is X, € 3w\l for which g(Xz) > 0. Then, by continuity

2
of g on 3m\I' there is an open ball B, =-{(X: |X-X,| < Py} inHN\T of

| R
radius py > 0 such that ¢ # an amcom\l - and g(X) > 0 for X € BZ/\an .

Now, define the function h(X) by - .

0 ‘outside of B,

h(X) = 2

((x-%,)2 - p2)? inside of B,

Then it is well defined and (£(X) = 0 on 7\[) Vo

a(m = | g{X) h(x) ar,_, > 0 .

an an

%}

Hence g(X) = 0 on 3am\TI.
-Next, assume that there is X3 in the interior of T n 1 such
that kl(x3) >0 (kz(x3) > 0) then by continuity of kl “‘2) there is an
. ”-open ball B, = {x: ]X—x3| < p3} in the interior of 1 such that kl(X) >0

3

(ky(X) > 0) for X ¢ B, n T. Define the function h by

0 outside of B
2 ] 2

3
inside of B

. ’ E(X) =: .9

Now, let ha (a=1,2) be taken.as

/ hy(X) =h®)  forXer

/ hz(X) =0 for X e Tl
- hl(x)=0 for X e T °

hy(X) =h(X) forXeT



N
( Then ha (a=1,2) are well defined and
J
. g(m = BI ) k (¥h (x)ar,_, >0
8 3 t r
¢
(@(m = [ k(X hy(x)dr_, >0 -
. Byn T

_ Hence,,by contradiction we have that k, (X) =0 (a=1,2) on Tn .

Finally, in a way similar to the derivation of the last

L

m— contradiction, we obtained that r_(X) = 0 (a=1,2) on d(Tam). O

".“ 7
6.3 Stationary Principle for Discontinuous Fields

v

Let us consider the Lagrange problem for the action integral
" A, given by (6.3). First, recalling that 69 and 3 6¢ are arbitrary
varia;:ions on 3D and that 64, 6, S(G(N)cb)i such that 8(8(N)¢)+ =
g ‘S(a(mm' if 03 )00 = 0 are arbitrary variations on I_ , we prove the

following ‘

b3
THEOREM 6.1. The first variation GADxTOf the action integral (6.3)

vanishes for all Lagrange variations associated with (T',¢) if and only
if foreach t ¢ ( tl,tz) the Euler-Lagrange equations

B (L) =0 X € DAL, - (6.32)

and the following jump. conditions on Etn D

0T, + Pru gy, - D8y + wPu 3= 0 (6.33)
[I{'rmNA + Pj'U(N) - DA(HiANB + viAU(N))} 3(N)¢i,
0 o+t nium)) oy oy +LI=0 (6.34)

wE
RN
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2

+ —
wt o+ niU(N) =0 48 130,01 # 0 (6.36)

hold true. mx:éover we have on 3D the following natural boundary

conditions u

~

i _ . -
TiANA - uiq - DA(HiAgNa) =0 (6.37)
HiAENA =0 , . (6.38)

and the following jump cenditions in 3(D N Zt) < 3D

HﬂmaNgnwlgD + tI(HiAaNg + nj'BU(N)) M;B]] =0

v 1€ [3 ) 01 = (6.39)
PO - P+ ABu ) M=o
» 1£ 13 g, 01 # 0 (6.40)

L

3

PROOF. It follows from expression (6.30) for GADxT' and the remarks
given after the proof of Lemma (6.2) and finally on applying this lemma
to (6.30).[ ]

L

,1

Let us assume ¢hat the sinaqular h{/persurface Et is a wave,
i.e. that U(N) # 0 at each point (X,t) of I'. In this case, if the ocondi-
tions (6.32) - (6.36) hold then (6.34) can be written in the following

equivalent forms
Lerfyy, + PUgy - BE N+ athu ) 21

‘i . _ . ’ ’
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o LT 4 Pl - 0 + "iAU(N))} J1

" 1 i . i _ ' .
The proof follows from the kinematical conditions of
campatibility (3.10), (3.16) and (3.17) which for the considered field

variables (T,¢) can be written in the following way

1 .
09,y ¢ (0 =~=— [¢,0
™ 1 Oy 04
D8 6.0 + 55— 03, .0
(N)*1 U st (N) i

(N)

2 .. 1
o7 d: 1 = = =5
(N)o i U

p]

N U R T |
;[IB(N)’d’inn,— 72 0640 + == 3£ Uy 13y 441

[ () Y
‘ 1§
+ 27— {3 ,,9:1.
. - Uy St °mPite .

5 4

‘ . Applyiﬁg these conditions, together with (6.33) (6.35) and

© (6.36) in (6.34), we obtain (6.41) and (6.42).

~,We shall prove later, that the energy density E for the

2

Lagrangian density function

L, ¢, bg1, \¢1;Ar 3’1: 9,28’ ®1,2) -
is given by .
aL - oL
E =37 ¢, + ¢ L
%_i- i a¢i'A i’A »
= pt 1A '
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’ IPtmducmg E into (6.41), after simple manipulations
we obtain ‘
- (U B+ T Nyoy + B Npoy 2

-0, (B 4 1P 06,30 = 0 (6.43)
which is another fom of (6.34)

Now, let us take an arbitrary "good" cylinder D*xTc

; L4
D x7Tand integrate conditions (6.33) and (6.43) over EE = D*n }:é, then
we qbtain
[ty vpugglang, = JUe N - v mmer
I* C* .
t t (6.44)

-

{:,, Ir*Nyd; + B Ngby,p * Byl dzy, =
t .

g*' | fC +$AU(N))%\¢1D ax,_, - (6.45)
x .,

»

wi'xere c* g{D* N L In the derivation of the above identities we

t t) -
have integrated by parts, using forrnulae (6.25), the last temms in

i

(6.33) ‘and (6.43) and then we have applied conditions (6.35) arnd (6.36).

N
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CHAPTER 7
INVARIANCE OF ACTION INTEGRALS

- o —— ——

7.1 Invariance - A Preview

If the equations of motion of a physical system are
derivable from a variational principle a general and systematic
procedure for the relation between conservation laws and transformations
leaving invariant the action integral can be established. The funda-
mental work on this problem for smooth ‘fields, was done in the early
part of this century by Bmmy Noether [27]. Influenced by the work
of Klein 281 and of Lae [29] on the transformation properties of
differential equations under a continuous group of transformations,
Noether proved two fundamental results, now known as Noether theorems;

Classically, they can be stated as follows:

&

{I) If the action integral /15/ mwariant under an r—parametef
continuous group of transformations of the variables,
then there result r identities between the Euler operator
E'(L) and quantities which can be written as divergences.

( II) If the action integral is invariant under a group of
transformations which depend upon g arbitrary functions
and their derivatives L;p to some order s then there
exist identities between the Euler operator Ei(L) and
their derivatives up to order s.

The Noether identities have important physical consequences.
The invariance of the action integral of the physical system under a.
Cf

o



r-parameter group of transformations (a group of symmetry transforma-
i:’ions) leads directly to conservation laws for the system involved.
In the single integral variational problem this means that the
syimmetry property leads to expressions which are constant along the
stationary paths, i.e. first integrals of the equations of motion.
For multiple integral problems the conservations laws have the form
of a vanishing divergenice which 1s interpreted as conservation of a
"flux" quantity. The second Noether theorem i1s related to parameter
invariant variational problems, i.e. action integrals which are
invariant under arbitrary transformation of the independent variables,
and will not be considered in this work.
Our treatment of multiple integrals of calculus of varia-
~tions, though extended for discontinuous fields, was limited to special
fonrg of the lagrange density functions and requires a special form
for variations of dependent and independent variables. For example,
we shall not consider variations of the independent variable X. More-
over this treatment is exclusively in {E:pclidean spaces using standard
Euclidean coordinates. Accordingly, we shall impose similar limitations
for derivation of conservation theorems for discontinuous fields.

The classical variationaiL methods of obtaining the Noether
theorems are presented in many monographs, textbooks and papers. Let
us mention only some popular and standard refereinces: the books by
Courant and Hilbert ([30], Funk [31], Gelfand and Fomin {14], Rund (32],
Sagan [33], ng;ul [26] and the paper by Hill [34], the latter of whach
is a camon source quoted by physicists. A modern version of the
Noether theorems using the fomalism of modern differential geometry

(bundles, jets, ... etc.) can be found in papers by Komorowski [35],



the' ambiguities of the infinitesimal language, we shall use exclusively ,
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* Trantman [36], Garcia.[37], Goldshmidt and Sternberg [38], among others.

Also the monograph by Marsden [39] discusses a modern version of the
theorem. In the general setting of nonlocal variations the Noether
theorem is discussed by Edelén [40].

The definition of invariance of an action integral under a
group of transformations has a strictly local character. Therefore, we
can conclude immediately then the so-called (local) fundamental
invariance identities and the Noether identities hold, for discontinuous
fields as well at each point which is not on a singular hypersurface.
However, the above invariance identities we shall obtain directly,
starting with the action integral considered in the class of discontinuous
fields. /
- For the classical case, i.e. for the case of smooth fields,
our p;:esentation of the invariance and conservation theorems follows
perhaps the most closely the exposition of these problems g.u@ in the

i

book by Logan [26].

7.2 Invariance of Multiple Integrals .

To facili%éte the exposition, and in particular to avoid

a one-parameter group of transformatiomns.
A family .
RS0 asm g(s)
of maps g(s): -+ R, where an interval ¢ in R™ contains the origin as
an interior point, is called a one-parameter group of transformations

of K" if G: R" x & - R", defined by G(X,s) = g(s)(X) is a mapping and

-t LIS
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s{(O) = id
S
) gls)) ° glsy) = g(s;+s,)

'ty

-
for any S1r8, € O such that S; + s, € 0.

The curve s = G(X,s) is called a t}éjectory of the group.

uThrough any point X ¢ R" there passes exactly one trajectory of the

group. Denoting —g—g— (X,s) by gg_;S_)(X)' one can write the generator (i.e.

the vector field tangent to the trajectories) as

€=gg'(ﬂ|
ds So=0

N

The type of transformations that will be considered here are

transformations of (x}. .ee ,xn,t) - space associated with the action

integral (6.3), i.e. physical space-time. To be more precise, we require
\ a ¥ .

that the transformations are given by

® =cl(x,t,5) - - U=l,...n) SRS}
t =it a (7.2)

The generators of the transfonnéitions G* and G° +1 are given by

L4 4

i T
| gi(x,t) -_—-g—Gé— (x,t,s) |S=0 (7}.3)
\ +1
’ : _ 36"
0 T (x,?) = 3s (x,t,s) |S=0 . (7.4)

%

Examplé 7,.1_. A.one-parameter transformation of the (x,t) plane is

given by

= X005 ¢ - tsin ¢

=i

t=xslne+tcose
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ra ¢ 3
Gecometrically, it is a rotation through an angle €. In this case the

generators are given by § = -t, 1 = x. By expanding sin € and ocos ¢ in
Taylor series abdut,e = 0 we obtain the "infinitesimal" rotations

5 ‘X =x-¢et+0(e), T =t +ex +O0(e)

.

where o(e) denote terms which go to zero faster than |e| , i.e.

ole) 0
lel~0

,

N

Ip general, by Taylor's theorem (under suitable smoothness
4 .
assumptions on G-, G**1 (i=1,...,n)) the right-hand sides of (7.1) and

(7.2) can be expanded about s = ( to obtain

= x* + Ei(x,t)s + o(s) (7.5)

t=t + t(x,t)s + o(s) (7.6)

where 5 (x,t) and 1(x,t) are generators of the transfcnnation. The
transfonr\ati,o/ ns (7.5) and (7.6) are the infinitesimal transformations

associated with the transformations (7.1) and (7.2).

let us recall that the first variation of the action integral

(6.3) has been derived in the class of fields (I,¢), where ¢ RV'T is

+1

a sinqular hypersurface relative to the mapping ¢ : R + R? , with

N+1

restriction to the'good'"closed cylinder r = D x7T < R as a damain of

integration of this integral. The graph of the mapping ¢, denoted by

Gr(¢), is a piecewise-smooth manifold and I' is the projection on RN 1

.

r

its singular subset. .
- [

" We assume (it can be bmved, however, this proof is very
technical and is amitted) that for sufficiently small s, say [s| < ¢

D



49,

a one-parameter group.of transfommation (7.1) and (7.2) carries a piece-

wise-smooth manifold Gr(¢) leT into Gr(¢(s))] with the same order

DxT(s)
*, ‘ "
as that of sinqular h¥ypersurface I'. (The order of a singular hypersurface
has been defined in Chapter 2.)

Instead of a proof of this assumption, it will be justified

by considering the following important example.

\)

ol

5
Example 7.2. We subject Gr(¢) to the following transformations

% = clix,9) (4=1,...,m) (7.7)
t= s (7.8)

where Gi is an infinitesimal rotation in R" around a fixed, arbitrary

1

direction, and Gm'l is an infinitesimal translation in R™. Then we

obtain

=6l wxb,s

t = Gn+l(t,s)

The second equation may be solved (for a general smooth transformation

(7.8) may be solved for sufficiently small s) to obtain
: 1 t = T(t,s)
Upoﬁ substitution of these quantitie;‘, into the first equation we obtain
%t = Gi(¢(X,T(t°:,s),s)

Ei(x,i)

Therefore, the functions xi‘ = ¢i(X,t) and the functions )‘Ei = $i (X,

are related by means of transfomations (7.7) and (7.8) via the conditions



.
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clox,t),8) =5+ K,T(E,9)).
kY

To be more explicit -

"y

¢1(X,t(s),s) 6i(x,'f:) = ¢1(X,t) + e% ¢j X,t) s -

t(s) =t=t+ cs

where e;.' are camponents of the infinitesimal rigid rotation tensor in
R? and ¢ is a constant.

a

Clearly, in the above example the pair (I',¢) is carried into
a one-parameter family (I'(s), ¢(s)) where I and I'(s) are sinqular hyper-
surfaces relative to ¢ and ¢(s), respectively, with the same order of v
sinqularity. Note that under the transformations (7.7) and (7.8) the

domain of integration D x7 is transfommed into D x 7(s), where x
7 =T = Gt,9): t eT)

The example considered above is crucial for applications to

classical continuum mechanics. However, the general characterization of

the problem of a group of transfomations for discontinuous fields

(except obvious smoothness assumptions) should be carried out in full
detail in order to formulate a general invariance property of action
integrals for discontinuous fields. We will not attempt to resolve this

problem here. .

We can now define, what is implied by stating that the

. maltiple integral (6.3) is invariant under the one-parameter group of

transfomations (7.1) and (7.2).

The action integral (6.3) is invariant under the c:ne-
parametet tran;fonnation (7.1) and (7.2) if and only if given any (I',¢) -
and any'tood'cylinder 1 = D x T <€ B e have

Ty
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’ L - _
. ; f__ L(XAJ t, d)il. ¢1,A' ¢il $i,AB' $1,A) dVN dt

X
5,
~ id

-J I L(XA,t¢,¢ rC.Pr¢ ,.(i) )vdth
T D\Et rvi i,A" i’ ¥i,AB .'I:,A N

O
P

(€l

= ols) : ) (7.

for every s sufficiently small, say |s| < e.

The condition (7.9) means that

d > . )
2 LOEES), 0,(8), 6, A (S), b,(S), &, alS),
ds T(s) D\Zt(s) i i,A LS 1 i,aB""

g
e
b

¢1’A(s)) vy dt(s) | g

=0 : | (7.10)
where “

- t= t(s)

¢ (X, t) = ¢(X,t(s),s)

and 7(s) s T are related by a one-parameter group of transformations.
Before proceeding with a derivation of invariance identities
and oconservation laws for the action integral for discontinuous fields
we must clarify the variations,induced by syﬁﬁﬁetry transformation on the
hypersurface of discontinuity, of partial derivatives of such fields.
First, let us do this for the special case considered in Example 7.2 ,

Example 7.2 (cont.). We have had that .

et 23t = el e P s

t(s) st =t+cs "
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follows from the infinitesimdl rotation in R" and the translation in

Rl. Al

From the above we obtain © .

dloce 8ot = e}bj (7.11)

2

5t = ¢ (7.12)

- A (RN ’ ' i
where §¢ = ais d)(X,t(s?',s)]s:O is the variation of the form of ¢. Because

¢ is a continuous mapping, then recalling the kinematical and variational

‘conditions of campatibility given by (3.10) and (4.7), respectively, we

obtain fram (7.11) that (cf. also Lemma 6.1) ‘

U St + éz =0 | (7.13)

’ A
hold for an arbitrary (I,4). In (7.13) &I is the normmal variation of the

hypersurface Iy (with §t = 0) and U is the speed of propagation of i

(N) .
Now, by taking limits of (7.11)‘ on the singular hypersurface
', and using conditions (3.9) and (4.5) together with (7.13) we obtain

that

i A i

So i._ 3 '
" ‘ Gt st + s¢ = Ej ¢ * (7-14)

holds on T. In (7.14) - ¢* is the displacement derivative and §¢' is

the displacement variation of ¢ relative to the sin;tilar hypersilrface Ze
(with 6t = 0). Recall that

e

: I= {(t): X ¢'5ys t e RY

is swept out in i by a moving singular hypersurface, Iy in RY relative
to ¢, (K) = ¢(X,b). ’
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3
For an arbitrary one-parameter group of transfonnatior:xs)
(7.1) and (7.2) the extensions of the formulae (7.13) and (7.14) can :

be obtained as follows. First, let us introduce the notation

i
.

ot x,ti9),9 = %D = o0, 8 (i=1,...,n) (7.15)

vot(s) = =6 px,0), t, s) (7.16)

-
H

Then, fram these equations we obt?ain

sol  (=1,...,n) (7.17)

drre, © + St =ct, v

(¢, t) = 6t . (7.18)

1

where E;i (x,t),énd 7(x,t) are the generations of the transformatiéns (7.1)
and (7.2) given by (7.3) and (7.4) respectively. Following the same remarks

as those in Example 7.2 considered before we obtain from (7.17) the

condition e

Uy Tlbs ) +8z =0 ' (7.19)

(N

Aiso, in a similar way to the last example, we have

1 o
N e ) + BeT =N (7.20)

The conditions (7.19) and (7.20) are satisfied on an arbitrary sinqular

hypersurface. We have just proved the following.

1

LEMA 7.1. For each pair (T',¢) where ¢: RN, R 5 a piecewise-smooth

mapping and I'.is its singular hypersurface' (i.e. I' is a projection on
R of a sinqular subset of a piecewise-smooth N+l1-dimensiohal manifold

-
y

§
h')
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Gr(¢) € RN+1 x RY and for each group of transformations

o ®acdlegts (=100

T =gt (x,t,s)

with the generators

elix,e) = & (x,¢,0)

|
—
b
-
o
-
e

T(?{it) = Re

the following condition
. 3 .
Unytlo, &) +8 =0
st 2 1
T +ET =8, B
s
are satisfied at, each point of T' where U(N)’ and %% are respectively, the
A A
speed of propagation and displacément derivatives, and 8% and £¢i arxe
respectively, the normal variation of I' (in RN) and the displacement

variation, both induced by the transformations. [:]

As an additional observation, we note that Lemma 6.1 from
Chapter 6 and Lemma 7.1 imply that the "total" nommal variation 8% is

zero and the "total" displacement variation 8¢° equals £l(¢, t).
- /

7.3 The Flmdament;l Invariance Theorems !

Now, we shall prove that the invariance of the action
integral considered in the class of discontinuous fields under an admissible
group of transformations implies the existence of differential and integral

identities. ) -
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THEOREM 7.1. A necessary condition for the action integral (6.3) to be 4
' invariant under the group of transformations (7.1) and (7.2) is that the

Lagrangian density function L given by - |

.

L = L(XA' t’. ¢i’ ¢i’AI éi’ ¢1,ABI &i'A)

and its derivatives satisfy outside of T the following identity
L L _ L &

e aL_ , zi _ ad.
8tT+8¢i€ +3¢1A(E 'A)+%I(E ¢7T)
6 r
5L 1 _d i ed oL i _
+ %1 an €ap “ ¢ AT, " BT,a~ ¢ T,as) * 3, (Ep
oi . e -i. o _ !
¢'A'l' d,)r’A ) T'A)‘ +L T=0 ) (7.21) b
N+1

where, ' is a sianular hypersurface in R relative to ¢ and gi énd )

T are the generators of the transformation and are given by (7.3) and

(7.4), respectively.
m\ To prove this theorem, first let us note that equation (7. 17)

implies the following set of identities are valid: ) .
. A ) ° , . ) ‘ 1 ._
- =& = ¢t ﬂ , S e

-

Also from Lemma 7.1 we have that
A

0 | Uy T +8r=0



';-Nex:;by the chain rule for parf:ial differentiation we have the following
identity
= _al_! [ aL e
g @ T+ 30, 3¢1 84T * 50, o AT *T 041
14

— o

L

* aL LX) -
+ 7 ¢ T + b, T +LT.
8¢1’AB i,AB 3$1,A i,A"

Upon substituting all of the above identities into BEquation (6.13) (t = &t)

we optain, after simplification, the expression

oL ) . 3L ej ej.
-— T E+ (E ¢T)+T(€ -¢ 1)
?'r“lj; ot ) a¢1 A A 1
(Elyg = $aT 5 = 15T 5 = 4'7 pp)
a¢i,AB ,AB ,B lA ’AB

-

R TS T R | 21 . _
+m (gIA ¢’A’t ¢ Ta ¢ T’A) + L 1} dVth— 0.

(A'B=l’-c.- 'N; i=l’ooc’n) s (7-22)

&

By the arbitrariness of D x T we obtain from (7.2i) that the identity

{9.21) holds true at each point. (X,t) { T.[]

Femark 7.1l. The invariance identities (7.21) can be expressed in an

»

equivalent form

d 9L .1, AL i 3L al
(L‘t) + —C" + Cc, + T C ~
. T 3¢i a¢i'A ,A 3 i‘ .
+o—cl L_ ¢ =0 (7.23)

C + T—
° a¢i'AB IAB a i A 'A

where ™ -

0 : ct = gt - 4. . (7.24)

?gf@"r i *
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Identities (7.21) (or (7.23)), exactly as in the case of
‘smooth fields, can be interpreted in two ways. If the transformations
and an invariant action integral is known, the equations (7.21) (Bq.
(7.23)) hrepresent a set of identities in XA ,t and the partial derivatiyes
of ¢. On the other hand, if the Lagrangian density function~L is
unknown then the equation (7.23.) (Bg. (7.23)) represent quasi-linear
partial differential equations for L, and consequently they can serve
to characterize the Lagrangian density function, or-action inteqrals,
‘that possess given invariance properties.

Noether's identities,.or more precisely their local forms,
follow directly from the invariance identities given b}r (7.23). At any

point (X,t) Y I' we cbviously have the following set of identities, =

8L i _ (Lo (8L

. oL i 3L i 3L i —
8= 5 - GF C
AL i oL i 3L i
o = [ Cp = ) n C )
3,25 +AB 90y ap /B 00; a5 /B A
AL i
Y + ( ) C
%y ,ap 2B
¢t = ci ] - [t 3L Read
Er S et A
AL i
. . + (T_) C
T ? i,A oA

’

Substituting these expressions into (7.23) we get
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In this way, we have derived the extension of the (local)

Noether's theorem for discontinuous fields which we now state.

THEOREM 7.2. A necessary condition for the action integral (6.3), which
is considered in the class of discontinuous fields, to be invariant under

the group of transformations (7.l1) and (7.2) is that the following

, identities "
i . oL
. E (L) (§; - ;7). + [{ - - { )} (E "d) uk
; - i axA, 34 ,a 3¢1 BB & —‘f’— i :
,_.;//- ~ +~-a—¢z—5‘g (6; - 657 5l + 5 (Lt +%I (&, = $;7)
N \ ’
AN i .
9L . _ .
+ m (£ =¢,7) ,B] =0 s & (7.26)

N

hold true at any point which is not on the singular hypersurface. In

(7.26) Ei(L) is the Euler operator given by

) s‘(m-—--(“‘ JEPA:) T S| TR
a$i ‘a¢i'A A

°

and g and 1 are the generators of the transformations given by (7. 3)
and (7 4), respectively.

a d i iB i
[ - Ew g+ = (rthe, - 5%, o1+ §¢ o+ Pl + o) = 0 (7.25)
L where-we have introduced notation (6.17) - (6.22).

-t
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The identities (7.26) are knewn as (local) Noether
identities. |

The next theorem is an integral version of Theorem 7.2.
Using tﬁe notation for derivatives of L given by (6.17)=(6.22) we

have

THEOREM 7.3. _If the assumptions of Theorem 7.2 are satisfied then the
following jintegral identities

<

i ‘e .
AL EwW G- bpayga- [ (i, (g - $y0)

-~

. i .
+ HiABNA € - ¢1T),B} dIy.; dt + g* P~ (g, = 0,7

* )
3

t*

Ei-$ir),A+LT}dVN| :
1. ‘

+ 7
.

+ [ | aty + g g - dlag, ) at

T* ZnD*
+ l‘ K‘; , |
+ ey, + v B ) - b1 o %o ctlaz,_, dt
7 Z{g\D* A a6y — &0 g Wigytldly

=0 (7.28)

IS

hold true for an arbitrary "good'cylinder D* x T* < D x T

»,
— —

PROOF. Theorem 7.3 follows by substituting expressions on §¢ and §t
given by (7.17) and (7.18),]1(:espective1y, int? GADx'J"_' 0 where BADxT
is given by expression (6.16). Also, this theorem follows directly

from Theorem 7.2 by integrating (7.26) over D* x T* and using (6.14)

and 1(6.15) []

-



CHAPTER 8

b

CONSERVATION THEOREMS FOR DISCONTINUOUS FIELDS _

The conservatiqn theorems in the case of smooth fields
(all jumps vanish) are simple corollaries of the funcaiamental invariance
theorems, i.e. The;orem 7.2 and Theorem 7.3 for this case. The Noether
identities hold everyvthere in the domain of integration of the action
integral and they imply the local conservation’ laws which take the form -
of a vanishing divergence.

The in;:egral conservation laws are trivially obtained by
integration of local conservation laws over an arbitrary subdomain and

applying the Divergence Theorem. For discontinuous fields we have the

'following fundamental conservation theorem. (A very important application
¥ | ' ' .

of this theorem we shall consider in the second part of this thesis).

THEOREM 8.1. 1If the action integral defined by (6.3) is invariant under
the group of transformations given by (7.1) and (:7.2) and if th; Euler-
Lagrange equations 0(6.32) and the jump c;onditions (6.33) - (6.36) of
the ‘theorem 6.1 are satisfied the féllowing integbral identities

8L

‘ L . tx
g* {Lt *%&Z (gi ¢ir) + o 3¢i Ei - cbir) 'A} dVN ltf n
A 1. -
~f L s Ry v @ - 0 Gy,
7% 3D% T 31,a8 B 3"1. R i, A
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9I* g Lay g ' * By ey ~ 0D, de = 0 (6.2

\ -
hold true for an arbitrary"good"cylinder D* xT*c D xT. In (8.1) Eqr
T are the generators of the group of transformations given by (7.3)
and (7.4), respectively, C;:_ = 3(D* N Zt) < 3D*, and M; are the

components of the vector M” definedlin Chapter 6 (c.f. Fig. 3 and Fig. 4)

PROOF. In the notation of (6.17) - (6.22) and (7.24) the identity (8.1)

can be written in an equivalent compact form

i
é* (Lt + PC; + niAC ) vy |:3 -i[_* aé* (Tj'AN c; + HiABNBCi Ardh, , at
$ .

A c:Jg LNy + 70 g ey Tan , de = @ (8.2)

‘From Theorem 7.3 it follows that we only need to prove that

[ ] mrthe + PiU(N))Ci + By, + "iBU(N))Ci,B + 10 g Than, dt

T* If
-7!* % TP + w200 g 1, iy, (8.3)
where Z:_ =D*N e
From the jump conditions (6.34) - (6.36) and (6.43) we have

[[(TjANA + PLU(N))C + (HmBN + nj‘BU(N))Ci,B + W0y Tl
= u{T“"m{A +PlU = 0 BN+ rPu 0 ) ¢ o (BN oMU 0cy )

LU ™) Tl



~

) &
( ) H{TMNA + Pi”(m - DA(HIABN'B + "m"m)} g - By + T8,

. siBg, - D By + wPu it + oy (PN + 1w Pu g ]

= DAII (H Ny + 7 __(N))Cill.

On substituting this into the left side of (8.3) and then using integration
o by parts by means of the formulae (6.28) and (6.29) we obtain that (8.2)

. holds true. Thus the proof is completed.[ |

8

The "local" conservation theorem is a simple consequence of

Theorem 7.2 and Theorem 6.1 as the following corollary shows.

Corollary 8,1.If the assumptions of Theorem 8.1 are satisfied then the

. following identity

3 .
;;i {- TllACi - HiABCi'B

i ia

2 -
}+at {LT+PC1+TII Ci,A}"O

X,t) x T (8.4)

'holds true.: In (8.4)

BT Tl PR

4 t

and Ei and 1 are the generators of the group of transformations given

by (7.3) and (7.4), respectively.[ | w

Let us note that the identity (8.2) can be written in the

equivalent form
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i ©
IJ;* (Lt + P°Cy + 1r:l'ACi’A)dVN lti 7 aD*[{TiAN Hia -D (Hj'ABNB)} Cy

aD | 4 AB I
+ H‘ta(mci] dg,_, at - T{ {* LB w + BN 4 0 g 41}
£ .

—

c;Ddr, ,dt =0 - (8.5)

where

o= N

A

"and Mg‘ are the camponents of the vector M" defined in Chapter 6 (c.f.

Figs. 3 and 4).

. Remark 8.1. The conservation laws expressed by (8.2) or (8.5) are

complemented by the conservation laws for jumps on the sinqular hyper-

surface. They are given by

[y, + P e, + e+ rPu e Jlan

d
- c{; 1 EPENE 4 niAU(N))Mz: £,la5,_, =0 (8.6)

[* [I(TiANA&)i“+ HiABNE &’i,A + B )T+ (H“ABNB + niAU(N)%T'AﬂdZN_l

I

- J‘c% EaoN + v Pu ) h el azy ) = 0 8.

_ Where Z z N D%, c*-a(z N D*) and Ei and 1 are the generators of

the group of transfomration given by (7 3) and (7.4), respectively.




C

4
N

]

PROOF. Identities (8.6) and (8.7) are derived directly from jump
conditions given in Theorem 6.1 and in By. (6.4).[ |

4]
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PART II - .
APPLICATIONS TO SELECTED TOPICS
R
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The use of variational principles in continuum mechanics
has been established over the years by many outstangling researchers.
Same of them we have already cited in Part I of this thesis. Since,
tt;e ;xumber of published papers, books and monographs 'on this subject
is very large, we shall refer here ‘only to the book by washizu [41], °
which deals‘wi!th the variational principleé of elasticity and plasticitfr

in their classical setting, and to the recent book by Marsden and

‘Hughes (7] where the subject is treated within the frangmrk of modern

analysis on manifolds. These references contain full bibliographies
on the subject. The latter of them also gives an account of the
related parts of pure an;i applied mathematics. For general variational
methods in applied science, in particular in finite-element methods,

we refer to Oden {42] and Zicinkiewicz [43;.

The variational theorems for discontinuous fields have

. recently been recogrized in connection with the static and dynamics of

camposite materials, fracture mechanics and finite-element formulations
of problems in céntinuum mechanics.

Originally, discontinuity conditions were treated as part
of a variational theorem in linear elasticity by Prager [44]). More
general c;ases of such theorems in linear and nonlinear elasticity have
been developed by Nemat-Nasser [45,46,47] where some of thier applications‘

have been studied also. For a large class of materials in continuum




67

§

mechanics, using variationa?l methods, the jump conditions for discon- ’

tinuous fields have been treated in Oden and Reddy (6]. The lgeneral
theorems of the calculus of variations which admit propagating discon-
tinuities in the field quantities have been elaborated in the first

part of this thesis.

L3

In this part of the thesis, we shall deal with applications

of the results established in Part I, to selected topics in continuum
mechanics. In particular, we shall investigate the following topics:
1. Kinematics of elastic deformation with discontinuities .
carried by wave fronts and in particular, the dualism in
the description of the undeformed state and the family
of deformed states of 2 and 3~-dimensional media set into
motion, during which a singular hypersurface propaqatés
) through thes? media.
2. Balance laws; in the material and spaﬁal descriptions,
for simplé hyperelastic materials and materials of grade
2, which admit discontinuities carried by wave fronts
in these materials.
- 3. The problem of wave prépagation in a plate n;c;del based
S on a fourth order differential equaticsn for transverse

. vibrations, including the shear caused by transversg stresses.

L The first topic will be presented in Chapter 10 (dualism
n in the des;é:ription of a sinqular hypersurface) énd in Sections 11.2 end
-\il.4 of Chapter 11 (dualism in the description of balance laws of
3-dimensional elasticity theories). Our approach (though set in the
standard coordinate system on R") is based on classical tensor analysis

following monographs by Truesdell and Toupin (12] and Truesdell and

]

L
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Noll (48). Same definitions and proofs using the notion of differential
( , forms will be presented in Appendix ITI. &3 -

In Chapter 1l we shall derive balance laws (balance of the
linear moments, angular matenta and energies) in a 3-dimensional simple
h;(perelastic material and materials of grade 2, through which a singular
surface, i.e. a wave surface across which partial derivatives of motion

. are discontinuous, is propagating. These balance laws will be given in
both material and spatial descriptions. In the ébove we follow Toupin's
teminology, see Toupin [3}. For a review of the generalized elasticity,
including materials of grade 2, and their historical developments, we
refer to the article by Tiersten and Bleustein [2]. The interest in

various generalizations of classical elasticity and their applications has

existed since tr'{e work ISy Cosserats [49]. For recent developments we
> mention the theory of grade ?onsistent micropolar materials by Brulien
\ and Hjalmars [50] or Iegan [51], among others. Applications of higher
f order materials can be found in Collet [52] (elastic ferromagnets) or in
Sun and Yang (53], Kanatani [54) and Kerr and Accorsi [55) (continuocus °
models for frame-type structures).

It should be clear, that our results from Part I provide
a general framework for the investigation of propagating discontinuities
s "~ in such models. However, such a study is postponed until the future,'
because, presently there does not exist a general, consistent dynamical
continuous model for frame-structures sucix as gridworks, trusses, etc.

For such static models we refer to Kanatani [54].

In this thesis and in particular in Chapter 12 we shall |
investigate th\e problem of wave propagation in a 2-dimensional plate | \
model goveméﬁ 'by the fourth order differential equation for transverse
c vibrations, including the shear caused by transverse stresses. Such equations have



o

been studied by Duvaut and Lions [56] and they have recently been ’
derived from 3-dimensional linear elasticity for plates using the method
of asyntptot;ic expansion biz Gusein-Zade [57] and Raoult (58]. These
* authors have studied the applicability of the plate models and the
latter has also qivenjsggc:-bnvergence estimates.
Using the inverse methods of the calculus of variations
(c.f. Santilli [59] andBax{rpi and Morro [60]) we shall associate with
the evolution equation for plates a 2-dimensional Lagrangian density
function. We shall investigate only third-order waves within the plate
model. Recall that the k-order wave front in the plate model corresponas
» to a wave cu‘rve across which the lowest, k-order derivative of the
vertical disf)lacanent of the middle surface of the plate, with respect
to time, is discontinuous. Applying the variational theorem for
discontinuous motions (Theorem 6.1 from Chapter 6) we obtain the speed
. of propagation of such a wave front in the plate model we have chosen.
"‘This speed of propagation which is expressed only by material constants,
'implies that the wave front consists of a parallel family of curves. ,,
With this informat.’gén we can integrate the wave amplitude equation to
w find the decay law for third order waves in the plate model. Also in
o . this chapter we shall study the meaning of such waves and, as well, we

shall state same general observations concerning their decay law.

Finally, we shall indicate the relation of our approach to those studied

A

- ’

by other researchers.
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CHAPTER 10 .
KINEMATICS OF ELASTIC DEFORMATION -

PUNDAMENTAL FORMULAE

The key to understanding finite deformation theory is
an appreciation of the dualism in the description of the undeformed
and the deformed states of matter. In Classical Field Theory, which
employs classical tensor analysis,. the key‘is an appreciation of the
two sets of -(curvilinear) coordinate systems, material and spatial,
that are used to describe deformation processes. For, this approach,
w2 refer to Truesdell and Toupin [12] and\‘I‘ruesdell and Noll [48].
Modern Field Theory, employs tensor analysis &n manifolds, and the-
dualism mentioned abov; 1s fornmlat':ed using manifold ideas; the pull-
back and push-forward. For this appraoch we refer to Marsden and
Hughes [7] in which also the relaEioxxs and notations of ;;assical
tensor analysis and tensor analysig on manifolds are indicated. The) “
referenc :s mentioned above contain a full list of references on the
subject and its historical development. g

In this part of the thesis and in pdarticular, in this chapter
we shall enploy classical analysis on rR" using standard Cartesian
coordinatie systems, tné same as we did in Part I. This choice, of
course, cannot affect the physics involved. o ° p

An N-diI;\ensional material body is identified with a cm‘pact;;@eﬁ

Bc R which has a smooth boundary 3B haneamorphic to a (N-1) sphere.

v




coordinates

This identification is :referred to 3s the reference contiguration. The .
points X of B represenf the positions of raterial or wmass points ot .a
body in this configuration. e shall consider 2 or 3-dinensional boclles{
i.e. we shall assune that N = 2 or.3, respectively.

+ A motion of the body, as used here, refers to a change' in its
size, shape, orientation and location in pnysical space without causmé
¥¥eakage, cracking or slippage, whicn would destroy the continuity of
the process. Accordingly, the moticn of a\body in pnysical 83—space is
given by a onie-parameter family {\Lt} of n rphisms v : B> B,

B < E3 being an N-dirmensional manifold with boundary, such that ,
1

t: BxR 4>E3 defined by V(X,t) = x,ut(x) is a continuous rappina which

gives the spatial position

.

X = y(X,t), X€8 (10.1)
at each time t of each material point X. The image Dt(D) of any subset
D < B 1is called the configuration of D at time t. The (Cartessian) -

XA (A=1,...,N) of X are called the material cocordinates.

‘They are the name of a mass point and as such rewmain with the mass point
in the configuration of the body at each time t. The (Cartesian) coordi-

nates X; (i=1,2,3) of the position x are called the spatial cocrdinates

of the mass point.
4

The existelnce of a homeamorphism Yot B '*Bt for eacn)t mplies

that we can write the inverse relation to (10.1)

L= Y¥(x,t), x € B, (10.2)

The wapping ¥ for each t maps the manifold B_ onto B: The relation

(10.2) can be interpreted in ancther way. One cai consider (10.2) as

Inl

N

..
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o

e

o

a (global) curvilinear coordinate system on 5. This tine dependent

.

coordinate system is called a convected coordinate system on B

£

The partial derivatives

' i

«

1"

SXA

Ng‘bi()(,t)

Tt

s

of the motion ! are, respectively, the components of the so-called

@ -

deformation graéheut and the velocity of the material point X at time

assubtion that B_ is an N-dimensional mani-

t

to the follewing condition

’

t. Let us nhote tahat the

fold in EJ 1s equivalant

; iR = i
. / rans (‘1,A) N .

.

-or éacnh t. For N = 2, the reference coufaguration of a bodv and its

-~

configuration at time t are depictad in Fig. 5.
% assune that during tume interval 7T = (t),t,] a singular

raersurface of the motion w of B is propagating through the material.

10 be more.pracise, we consider a one-parameter family fz.}, te7T

t

o/ a closed subset I_ 1in B.

- 198

ler us assire that

For a given motion tpt:B + B, teT,

. o e
for each t ¢ J there exists an open set U in R

~

containing 8, a homecmorphism "vt:

defited in Chapter 2, such that B x 7 ¢ R

U *'dt and a pair (ft, "';t) as was

N+1

1s a good cylinder

(c.f. Chupter 7) and 1 N B =T, .tIB = _. If a ¢losed hypersurface
/ [
:t iy U018 a zugular hypersurface such tnat its spead of propagation

o~

Vi defleedt o (3.7) uoos not vaiash at each peint of [ for each

A
v T, then :t 15 callaa a wave propagacans taroush the pody 8.

- AN
as recali bh-¢ the order of “ave corresponds to zhe lowest order of

3

Let

.
.
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o

Confiaquration at time t

Y i
. |
\ x = (X, t)
'v
'/ . -
.’ i — -
/. ( X2 N
.‘ 14
\ xl i
\ % ' Figure 5 '




derivative of tne mocion with respect to time whica is discontinuous

across the wavefront. Also, let us note that if for some t € T

Et Nn-® # O then for eacn t €7 Cp = 'Etn 3B  is an (N-2)-dimen-

sional sutmanifold in 38, and as well Zt approaches ‘3B transversely.

The subset Op in By given oy wt(Zt) is a spatial representation of a

wave at time t and is also referred to as a wave.

In a wmamer sinilar to that in Chapter 2, a "space-time" descrip-

tion of the wave Zt is given by
- . N (’
' P={(xt): XL, teT}

inm=8x9. Also its'space“time image ins = U (B x {th is
* . teT '
defined by

vy = {(x,t): X € 0, t e}

where o, = wt(z Schematically, it is depicted in Fig. 5 where

t t) )
for simplicity N=2 and physical space 1s represented by E?'.

,m

The wave’ O (or Et°) of first order is called a shock wave. The
vector field s; defined on o_ by
s, = IIwi]] ' - 4 (10.4)
is called an amplitude of the s}xock wave. The wave oy (or Zt) of
- second order is called an acceleration wave. The amplitude of an
acceleration wave is defined, by =
\ a, = [, (10.5)
where ;ﬁl z aleri(x,t)/at:2 is the acceleration of the mass point X at

time t. In generaL} the amplitude of a wave of order k is given by
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Figure 6



g (K)
[I\pi i where\tp
campatibility of order k (for k > 3 such conditions can be obtained from

(k)
i

akwi (X,t)/atk. From the kinematical conditions of

those of order 1 and 2 by the iteration process) we have

Ky _ o koK (
o1 = (0% 18, w0 0.6
where
k
03 v, 1=0N, ...N, ¢} Ji]
) Yy VAR VLT N
in which N, is a component of the normal vector N on'I,. "

i
In many practical cases deformations of elastic bodies are

"small”. A useful quantity in describing such defonmations is the
displacanent vector which gives the change in position of a mass point,

namely its position in the confiquration at time t minus its position in

.the reference confiquration. The mathematical definition of the cnmponents

of a displacement vector must involve the relation of the material and,

' spatial coordinates. We assume that the material coordinates of an

N-dimensional body are identical with the first nth coordinates of the

spatial coordinate system. The displacement vector is defined by

X = (X, t), ¥ (K t))

= (X.0) + (u (X,t), u (X,t)) (10.7)

(r,S=l, ...,N;Q, = N+l, . -0,3)
v 0

' J
By a "small" deformation we understand a deformation such that, for

each t, q,r(xs,t) prescribes a homeomorphism \pI = (Lpr,O) between B and

wI(B,t) and the mapping q;II = (O,q;Q) is an "infinitesimal" displacement.

For a "small" defomation, the spatial representation of a (material)

singular hypersurface Iy 1s defined by
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\
\)a-\ . ‘
Op = {22 XpZ 4y (X, t), X, e I} )
‘(r,S=1,...,N) I3

i.e."ot = q,tI:(zt). Fram (10.7) we have components of the displacement

gradient given by

. ~(10.8)

(r,5=1,'. o-,N; 2 = N<1,. --'3)

+ ﬂ—
A u!!,,s - ‘pﬂ,,s

where’ Grs is the Kronecker delta, and also that the material time
derivative of displacement u is equal to the velocity 1]; It should
be pointed out now, ‘that for N=2 the above description of a deformation
will be used in the iinearttheory of elastic plates in the framet-rk of
which we shall investigate propagating discontinuities.

A function F(X,t), X € B is referred to as a function given
in material description. Its spati\al descr;i.ption, when the arguments
of F are transfo:émed to the pogiﬁon X, = \Dr(X,t) , (r=1,...,N) is denoted
by f and is given by

f(?cr,t) - F(Xr’t) (10.9)

The connection between mla/terial and spatial descriptions is important
because final equations are often expressed in spatial coordinates,
since they correspond toua laboratory coordinate system. In other words,
most measurements (but not all, for example, in a si@le tension °
experiment) are made relative to spatial position in the laboratory
rather than. to the material position fixed to éhd movn;q with th(la

o
deformed body. The transformation between the material and spatial

descriptions of various tensors of the elasticity thoories will be aiven
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in the next chapter. Now, we present such a transformmation connecting
material and spatial representations of the singular hypersurfaces zt

and Oy respectively.
If the singular hypersurface Oy is represented by

d(x.,t) =0 (r=1,...,N) (10.10)

then for each t, the material description of this hypersﬁrface is given

by
(X, ) = Ghb (X, b)) =0 - (10.11)

(r,S=l, .e .,N)

o

Let dr, , and doy_; denote the (induced) Euclidean measure elements on
Zt and Opr respectively. Their definitions, using the notion of

differential forms, will be presented in Appendix III. Here, let us

note that for N=3, dI, and do, are the Euclidean area elements dA and -
da and for N=2 le, dcrl are the arc length elements dL and d,in the
material and spatial descriptions, respectively. The unit normal vectors

. on Et and o, are given by the following formlae

Grad ¢

N = Torad 9|

We shall iarove in Appendix III the following relation

(10.12)

S|
NdIyy =3~ ng g o doy (10.13)

A
{r,s=1,...,N; N=2 or 3)

where J = det (\br s) is the Jacobian of the mapping X, = \pr(Xs,t).
. ’

For N=3 (10.13) is Nanson's formula (see [12], for example) which relates




area elements in the reference configuration and deformed configurations. )
Now, we shall prove that the fomula (10.13) is in fact well defined
for discontinuous motions. From the well known Buler-Piola—Jacobi

identity (cf. [12])

-] _ . ’
(Ji wrrs)’r-o ‘ (10.14)

we have that

13

@in v )t=w

r Y,s n, \br's (10.15‘)

- J

f

on gy, which justifies (10.13).

The speed of propagation in the material descripticn is

. __ a%/at O
Yy =~ TGrad 9 \ (10.16)

) is given by

-given by

and its spatial versjion, which is denoted by c(n

1

- _ _ 3¢/t " , a
c(n) = grad ¢ ) (10.17)

From (10.12), (10.13), (10.16) and (10.17) we obtain

| *
~

= 71 _ s T .
U(N) di—l =J (C(n) wrn‘) ch-l ‘ (10.18)

Now from (10.13) and (10.18), it follows that
3 e, , -y nD1t = w0t e, -0 a0 (10.19)
(n) r (n) r
(it can also be proved directly). The quantity
USC) ~ ¥ D

r (10.20)

fl
(p]

I
e
o)
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is called the local speed of prop;agation. It gives a measure of ;:he
nomal speed of the hypersurface O with respect to the material points
that are instantaneoasly situated upon this hypersurface (cf. olso Chen
[61]). It should be noted that the above transformation formulae have ;
been established for singular hypersurfaces inc;ud_'}ng also shock waves.
If a sinqular hypersurface is an ac'celerat;i.on wave or higher order

wave than all quantities-'such as the local speed of propagation, the

Jacobian J, are defined uniquely on g.

S . Finally, let us stress that the above treatment of the

dualism mentioned at the beginning of this chapter, in the case of
discontinucus fields has to be elaborated in the language of tensor

analysis on a manifold. It is a beautiful, challenging problem.

-t
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CHAPTER 11 -
BALANG§2 LAWS (CONSERVATION THEOREMS) FOR DISCONTINUOUS

I‘/UI‘\IONS IN 3-DIMENSICNAL ’I‘HEDRIES OF ELASTICITY

The djnamical la:ws of physics aEe unchanged in form by
several transformations, called symmetry transformations, in time and
space. A symmetry trhansfomati'on that consis‘ts of ‘a simple displacénent
in time, t » t + ¢ lga;ds to no change in the basic physical laws, .lsj.nce
time\ is homogeneous. Similarly, the homogeneity of épace leads to the
law; of physics being invariant in form t;o. displacement in space ‘
X ='ax + a, while the isotropy of space leads to the physical la;Js 'beinq
invariant in formm to rotations in space x + R-x. All of the symmetry
i:ransfonnations men;:ionegi above are members of the Euclidean group of
transformations and they form a basis of pre-relativistic mechanical
theories. '

’ "o In continuum mechanics the invarianée properties of the
laws of elasticity are expressed by the postulate that the (elastic)

action integral is invariant under the group of Euclidean transformations

in};‘.‘:3 le

I

x=Rx+a " (11.1)

t=t+c
where R is a constant orthogonal tensor (rotation in E: ), ais a?nstant

vector (displacement ln E3) and c is a constant (displacement in R L.

.

"
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It will suffice to consider only infinitesimal transfommations (cf.

Toupin [3]) of the group (11.1) given by

= _ i
ERCC (11.2)
t=t+cs
where s is an infinitesifnal ter say se(~¢,e), and € > 0 a small <
number. Also in (11.2) a; and-c are}étrary conistants and s eij are

~

the components of the infinitesimal rigid rotation tensor R-I, i.e.
except for the antisymmetry conditions €y = - €y, they are arbitrary
constants. N

. Under the infinitesimal Itransfonnation (11.2) th;a motion
\I)i(XA,t) (i=1,2,3; A=1,2,3) is mapped to a one-parameter family .ofi
motions ' \ ‘
lj)i(XA,t(s),s) = lbi(XA,t) + (eij llJi(XA,t)< + ai)s
(-g,€) a8 =" | , o , (11.3)

t(s) = t + cs

Assuming that a sinqular surface (a wave) I is émpagatiﬁg through a
material we obtain from Lemma 7.1 the following relations

’

(N)

Ell-)-j-=‘c:+’é':\p=»‘-: \bjd LT ) (11.5)
st i 17 *

A .
U c+48Z =0 ' (11.4)

J
- A
where U Ny is the speed of propagation, §I is the normal variaton of
( A :
£, and 8\1»1 is the displacement variation, both of them induced by the

group of Eucidean transfommations.

+
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3

11.1 Balance Laws for Simple Elastic Materials. Material Description

The aétion density function L for a simple hyperelastic

material (see Toupin [3] for this terminology) is given by

- /

L=z oo - (Xpr ¥y ) (11.6)
.‘ ‘
, ) .
:where lbi(xA,q (i=l,2’,3,:( A= 1,2/3) is a motion. °/ ’
In (11.6) | Vi
&» 1 «2 - .
2P V¥ “

is the kinetic energy per unit volume in the reference configuration,
and . ’
WXar ¥3,a)
is the energy of deformation per unit volumé in the reference configuration.

First, let us note that (7.24) now is given by ’

.

c, = Eijwj +a; - y;c, (11.7)

Then assuming that a singular surface (a wave) Et is propagating through
a material during the time interval, we obtain from conservation theorem
(Theorem 8.1) written in the form (8.2) t;xat the following integral
identities (recall that €14 = = €34/ ai"aFc are arbitrary constants

as they have been considered above),

[ Pt av |:2 = | [T _aat "(11.8)
D 1 T ‘
[ plt 31 |:2 = [ [ Tl 3 anat (11.9)
D 1 T ,

. |
feN -uavi =] [t aade (11.10)
D l T 3D A

ﬂ o K o




<

[
t

¢

- is the density of angular mcmentum (with respe&t to. the origin of E3)
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hold true for an arbitrary sub~body D < 'B. In the above identities

»

~

A } BT Y
Y “ ~

is the Piola-Kirchhoff stress tensor

. ) o
P = -a-‘L— o (11.12)
= po“"'j.

«

T

is the density of linear momentum,

Mi;j=P[i I e, (11.13)

. o=egtte L S

o

-

and
_p i ‘ .
E=p " -L . , ,
=1o P ew o ) (11.14)

is the density of enerqy. In (11.9) the brackets. enclosing indicies
i and j indicate antisymmetrization with respect to these ‘indicies.
The equations (11.8) ~ (11.10) are balance laws for Pi, MI ang E,

respectively in an arbitrary domain of the body through which a
sinqular surface may be propagating. '’ _
For éiwple hyperelastic materials the jump conditions across
the wave Zt, obtained in Theorem 6.1, take the following fomm
i [
Uy 091D = - 074y, D (11.15)

4

Uy TED = - 0T34, D . - (11.16)
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where T, P! and E are aiven by (11,11), (11.12) and (i1.14), mspec-

tively.

The jump conditions (11. lS) and (11.16) are well-knwn

dynamical conditions of campatibility for hypere.astic materials, i.e.

L

‘ they are equations for Junps of the momentum and energy densities across,

a wave. The c0nd_1tions (ll 15) and (11.16) imply the followinq balance ‘
laws " > “
[ -gpty Uy B =r | [ITiAN 1 aa C (11D
\ Tk ) * . A )
t ] g 5
c 4 ’ '
)I:* OED Uy, A= - TiA'N M?A oL

[
¢ ! *

for an arbitrary part Zg of the singular surface Et.

b

They can be derivéd»

also by applying the Kotchine theorem (for this theorem see Wanq and,

Tmesdgil (171 ,to balance laws (11.8) and (11.10).

7
o

11.2 Balance Laws for Simple Elastic Materials.

°
-~ »
’
.

Spatiél Description

In this section we give the spéf:ial description for halance

laws (1}.8) - (11.10) and (11.17) °= (11.18).

Because for. hyperelas tic

materials it is a standard procedure (see Eringen and Suhubui~ f 62~]T, for

example) we shall only state the final results.

The balance laws (11.8) - (11.10§ have the following ®

spatial representation.

t,.

o

]

| ptavi 2= 1§ tHnjaaae T 7 gl
1‘ M o J AN ' . "
t ;T ABE
L ] .

Hfoplioydl dv| ©2 =f t[,iknk I aaar (11.20)
B¢ 1 T3 Bt . “ o' . a
f e(‘dvlt =f tiknklsi”da dt (11.21)

. B . 1, T 3B s e

N e e e L .

2 o f
s L

.
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In (11.19) - (11.21), 4 = \pt(D), D< B, n, are camponents of the unit

nomal vector n on’ 3 q:,
R W (11.22)
is the Cauchy stregs tensor,

pt ‘ (11.23)

is the spatial density of linear momentum and

il

Soif +atw , [(11.24)
v
is the spatial density of energy in which p = J-l

per unit volume in E3. To obtain (11.19) - (11.21) from the balance laws

o is the mass density

in the material description given in (11.8) - (11.10) it is enough to

note that dv = J dV and that

4

t“‘nk da = TN, @ ‘ (11.25)

which féllgws from (10.13) and (11.22).
) "On substituting (11.22), (11.23), (11.24), (1I.25) and

(10.18) into (11.17) and (11.18) we obtain

{ Opul da = - | 1tJn, 1 aa (11.26)
OE Gt ' e

f GevDda=-f OtngDaa : (11.27)
ot ot

where of = (£}). The identities (11.26) and (11.27) express the

corresponding balance laws in the spatial description.

N ~
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"11.3 Balance Laws for Elé.stic Material of Grade 2. Material Description

We consider elastic materials of grade 2 with dynamical and
structural properties defined by the following Lagrange density function
(for a nonlinear static theory of elastic materials of grade 2 we refer

= to Toupin [3]).
L=% lIABlL

where I‘u‘B is a positive symmetric tensor called the rotational inertia

W (X (11.28)

A‘”i B~ A’ ¥i,ar Vi, ap)

tensor, and W is the density of elastic deformation. In this case

o

- b= W +rAB (11.29)

v e‘pi,A aq;i AB ’B

is the generalized Pidla—Kirchhoff stress tensor and

-~ H“‘B W (11.30)

v
\,\ i,AB
3 ~

is the hyperstress tensor.
Now, the identity (8.2) with C, given by (11.7) (this
identity has been derived in the conservation theorem, i.e. Theorem 8.1)

implies the following identities

r

t
[ptav | 2= ITidAdt+f | @K'y + Ivhu o, I dL
D 1 T T Ct
(11.31)
L L el watiAdl a1 201 raltd) alh yta ae
D ~ ‘ 1 T3 :
. ! \.. ~

. i y

TN }\Cj'i/mf[ + i oo W aar (11.32)
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. iAo t2 i.&‘
[y, + o™, -man | 2= Jerté, +uls b aa at.
O D 1 i,Aa t F i (N) 175
+q[ ] Txh, + 7 U 0,0 A at (11.33)
(o
- t kY

___ where D is an arbitrary sub-body and

i
T =y - e -0, @By (11.34)

e

is the generalized traction,

H- = g B , (11.35)

is the hypertraction, both are defined on D, = wt(ao) and are related

to the geametry of 3D (i.e. they are given in the material descriptiony,

’ k! = BN+ NI 0

S | i <o
= KaD + KZ (11.36)
~ is the line force on c:‘: = wt(c’f:) and is related to Cg = B(Etn D) ¢ D.
In the above we have also that
ia _ 3L ABii
T = = Y (11.37)
0y, B

The identities (11.31) - (11.33) are balance laws for the considered

material. Thus id?ntifying Pi = % pod,i as the density of linear momentum,
Mij = P[i\pjl + “[ﬂ\wji as the density of anqular momentum (with respect
' (

to the origin {n ,E3) and

/
/ — i‘ iA’ -
/ E=Py + 1 "’i,A L
) 1 2 .1 oi .
O . = 3 po\p + 3 wiAwi,B + W (11.38)

Q
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as the density of energy, all 'of them in the material description. The
identities (11.31) - (11.33) express the laws of conservation of the
(material) linear momentum, angular momentum and energy, respectively
for an arbitrary sub~body D through which the singular surface Zt is
propagating. It is easy to verify, using (11.36), (11.34) and (6.24)

that the balance laws (11.31) - (11.33) can be written in the following

equivarent form

t
i 2 _ i v
l.g P Qv Itl —gf_ QIJ; TmNA da dt +:{_£€IIKZ + nj'AMAU(N)I] dLdt  (11.39)

.- , .
futd av) 2= 11 ety 4 a0 0] ) an ae
D 1 : ’ -

T 3D
(i [ jl i
+ [ DK + Uy’ duat (11.40)
7o R c |
t é
JEav | %=1 (TP, + ), .) dA dt ’
D & fw A g
¥ 71. o DGy + 7 MU by & e (11.41)
t ‘ :

where

is a parv of the (total) line force Ki which is rglated only to the

gecmetry of the‘ singqular surface Et. The remaining part Kja-D of Ki is

related only to the geametry of 3D.
The complementary balance laws on the singular surface Et,

for elastic materials with the Lagrangian density function (11,28) are

obtained from (6.44) and (6.45) as follows
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] U(N)IIPiII a =-| ’lITiAN Daa + | [[K% + MU I A (11.42)

£ i
je v .
+ i* IKSd, +1riAMAU(N)wiD daL (11.43)
t

”

where Zf__ = Zt/'\ D and C% = B(Etf\ D) =32'€.

The physical meaning of the identities (11.42) and (11.43),
which are implied directly froam the jump conditions derived in Theorem
6.1, is that these identities express the conservation of linear momentum
and energy on a singular surface in the considered material. Thus, by
applying the Kotchin theorem to balance laws (11.39) and (li.4l) one

—

can obtain the identities .(11.42) and (11.43).

11.4 B'é‘lance Laws for Elastic Materials of Grade 2. Spatial Description

0

For elastic materials of grade 2, following Toupin (3] we

+let °
SR B N (11.44)
4
{
. - iAB .
\ pitk o g7lg Ik (11.45)
\ 'A ,B
~ .
be the generalized Cauchy stress tensor and the hyperstress tensor,

respectively. Let us note that in (11.44) and (11.45) T and giP

are given by (11.29) and (11.30) respectively.

On substituting (10.13) into (11.44) and (11.45) we obtain

tijnj da = 'I'iANA aA (11.46)




- \ 5
= H’ABNBQA aa (11.47)
i 45
Now, let us define p, ¢~ and e by
) pt = gt | (11.48)
il = g7heiAd . (11.49)
I
-1
e=J  E (11.50)

Then, combining (11.48), (11.49), (11.50), and the definitions of P,

Mij and E given in the balance laws for elastic materials of grade 2 in

” the material description, and also recalling that dv = J dV we obtain .
olav = o1 av . | (11.51)
wd av =t av (11.52)
edv =Eadv ' {11.53)

where \ s
mij/= p[i\pjl + qr[ijl : (11.54)
) and . o

- e =%, + a5y 4" R (11.55)

Thus, from (11.52) and (11.53) we conclude that m™) given by (11.54)
and e given by (11.55) are the density of angular momentum and the deﬁsity
of energy expressed in spatial description.

T In substituting (11.46), ‘(11.47), (11.51), (11.52) and
(l}.SB) into (11.39), (11.40) and (11.41) we obtain

(} { ptav |:2 =f tijn‘j da at + [f gklDae at (11.56)
Dt 1 T BDt T ey
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§, n av 2] g (elkn I 4 n0) ga ae

0 ' -1 T,

[ [ oRMyd! @ et . (11.57)
Tct ) .

t .
[ eav [2=] [ 'y, + ) 1) aaat
b, 1 T 3D, J ']
+[ okt 0,1 e at (11.58)

‘Tc

where ¢ = g(ct N Dt), Dy = \bt(D) and

L. + HLPMZ-\U(N)

ay + gu de ) (11.59)

i

km & =K

ql—'- Sl

»

where k‘j" is the line force on ¢y and qriU is the "qeneralized" force on
S which will be discussed later (U is the local speed of propagation
defined in (10.20)). The identities (11.56), (11.57) and (11.58) are
balance laws for the linear momentum, angular momentum and energy,
respectively, in the spatial description.

The equivalent form of the balance laws in the Jspatial
description can be obtained in the following way.

First, let us define the &eneralized traction ti as follows )
= tijnj - djnji - nlp (11.60)
where
ht = hjinj : (11.61)
and ¢ ' o
ant = (65 - ooy nit (11.62)
J J J ' )

Lo




Pad) A oy .- - o n
LY .
J—— ‘ ) .
\
v
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. [
is the surface divergence of h:]:L and b = tr(bkz) in which
bkﬂ, = - dknz = - dznk are the camponents of the seoonc% fundamental fom
of the surface.
On introducing (11.60) into (11.56), (11.517) and (11.58),
after inteqration by parts by means of the formmila (6.25) (in spatial

re;iresentation) we derive

—

j | ttaaat+f | miDan at (11.63)
C,

t

i
[ P av |2
t 1 e, T o

. t . .
t 1 T oo ‘

1 Py an et ' ' (11.64)
T S

t .
2 _ i ik
{Jedvlt =f [ (ty; +h (zpi)ij)dadt

t 1 Tab
/] ,
+ [ oteda at (11.65)
, T ¢ ‘ )
where
ki = hjim;_ + %t (11.66)

"is the line force on cy (on unit arc length of this curve) and my are \

the camponents of unit tangent vector on ap, at a point of ct which is
also nomal to ¢, ( compare the corresponding vector M* on Fig. 3).

| On introducting (10.18), (11.53), (11.46) (11.47), (11.59)
and (11.53) into (11.42) and (11.43) we have

[ tplvlda=-f gtth.paa+ | mipa (11.67)
o{ cg J c¥.
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o i i 4
[ Teul da = (J;*-IIt ngy + 77 (hy) ;0da

ot t
=i .
+ [ Ik, 0 (11.68)
c*
t
where Tci was defined in (11.59), as the complementary balance laws for

the singular surface ¢ Of course, these identities can be derived

.
fram the balance laws (11.56) and (11.58) by applying to them the Kotchin
theorem.

To camplete our discussion in this chapter we have to
consider the quantity - defined in (11.59) by

4

au dag= niAM;U(N) an (11.69)

First let us note that fram the definition of“ the Jaocobian

we can obtain ’

_ Al
pc =Y €14k%,a%3,8%,c (11.70) .

where e, and €4 are the permutation symbols in the material and
spatial description, respectively. Then, recalling that the vector MY
is defined by
v _ Zy _ z
MA = (ZxN )A = CABCZBNC . (11.71)

where X is tangent unit vector to C,‘Cf= a(ztn D) we can write

&
v _ ia X
’f?”n”(m dl = 7 eppalgNe Ugyy AL
- 1 1A b
=J e ¥,a%, 8 Y, e Yoy
_ :
= €50%,BY%,c%B% Yoy T (11.72)
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where in the last equality we have used (11.49).

Now, let us note that (cf. Eringen and Sulubi(62], for example)

Ug =9 BU=¢lu (11.73)
where |
2 = ¢ o't
in which
Gy = %,a%,a

is the Finger deformation tensor,and that
)\Uk = \pk,A ZA (11.74)

where T is tangent unit vector to c; = Wt‘C{) and A defined by AL = 4L
is the stretch.

Fram the above we can write
_ 1 da
“’z,cNgU(N) =J " nbscaY,e%m -
- -1 -2 .
= npcpﬂ, C(m 6] (11.75)

0
i

{ Finally, on substituting (11.75) and (11.74) into (11.72)

Ny
ﬂj'AMAU(N) & = ey 000, U (11.76)
vhere e, = nkC;'% c;;,z By comparing this with (11.69) we have that
al = ﬂijejf’kgokez (11.77)

This campletes our discussion in this chapter.
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CHAPTER 12
WAVE PROPAGATION IN ELASTIC PLATES

A plate _ié a 3—dimensional body with one dimension, the
thickness, beinag much smaller than the other two. This fact is used
to derive various approximate 2-dimensional theories of plates. It is
sufficient for our purpose to mention two main approaches for constructing
2-dimensional equations of motion of thin elastic plates. The first one
is the so-called direct approach for Cosserat plates. For this approach,
we refer to the monograph by Naghdi [63] where a canplete list of
references for this subject is given. In this approach the dynamical
properties of a plate are represented by assuming the form of a 2-
dimensional Lagrangian . Its Lagrangian density function depends on
the first order partial derivatives of the position vector of points
on the middle surface of a plate (the displacement vector in the linear
theory)v and on the director field defined over this surface and its
partial derivatives of the first order. Thus, this is a first order
variational problem. For a concise exposition of this subject we
refer to Ericksen ([64], in which the problem of wave propagation in
elastic shells is also treated. -

In the second approach 2-dimensional equations of motion of
tl};l.n elastic plates are derived from 3-dimensional linear elasticity
using the methods of asymptotic expansion with the thickness of the

plate as a small parameter, For this approach we refer to Ciarlet.and

b
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and Destuynder [65), Gusein-Zade [57] and Raoult [ 58], among others.

The analysis of asymptotic expansions not only justifies various plate

models, usually derived by employing a number of approximations or

special assumptions (sometimes in an ad-hoc manner) but also gives the

limit of applicability of 2-dimensional equations and the corresponding

boundary and initial conditions together with sharp convergence estimates |

(c.f. [65] and [58]). A particular feature of this approach is that

the resulting tmo-dimensional equations of motion are fourth or higher

order di%ferential equations. The inverse problem of the calculus of

variations assoclates with these equations Lagrangian density \functions

which depend also on the second or higher order partial derivatives-:of

motion (i.e. leads to a higher order variational problem).
Finally, let us mention also a (direct) nonlinear theory of

elastic shells in which the strain measures depend on the first and second

order deformation gradients. The static case of this theory, which is

a two-dimensional analog of nonsimple elastic ma}:erials and in particular

elastic materials of grade 2, has been developed in Cohen andDeSilva [66]. -7~ "’/\\
Originally, the theory of wave propagation on surfaces in

which a wave curve corresponds to a moving wave front and is a carrier

of discontinuities has been elaborated by Cohen and Suh [67]. This

theory has been applied to the problems of wave propagation in membranes

and shells by Cohen and Barkal in [68,69] and by Pop and Wang in ([70].
The problems of wave propagation witl}in the framework of a (direct) ;
linear theory of elastic Cosserat pla;tes was treated by Cohen [71], and
in a nonlinear theory of Cosserat shells by Ericksen [64].
In this chapter we shall investigate the problems of wave .

propagation within the framework of a linear theory of elastic plates
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based upon the second approach, using results eostablished in Part I of
this thesis. From what we have said, it follows that this approach
involves higher order variational problems and as‘such the variational
theorems for discontinuous fields from Part I of this thesis can be

applied to the investigation of wave curves in the coﬁsid@red plate

¢ 3

model.

The flat plate is assumed to be a cylindrical body in R3,

)

denoted by B x [-h,h] (see Fig. 7). The thickness 2h of the plate is

small compared with its two other dimensions. Following the results

v \

derived in Raocult [S8] and Gusein-Zade [57] we consider the plate model

given by the following 2-dimensional evolution (‘equation for vertical

3

vibrations
20h w2 E 32, 30l oh3 4 P (12.1)
5e2 3 3.2 15(1-v) a2 ‘

2
L}

, ’ & £y -
]
where w(Xl,Xz,t) is the vertical displacement of the middle surface of
the plate, p is the density of the material (2ph is the surface mass
density), E is the Young's modulus and v is the Poisson ratio. Also ‘

in (12.1) A is the 2-dimensional Laplace operator

y =, 80 :
K ox D
and A® is the 2-dimensional bi-harmonic operator
{, 4 4 4
A2 =2 4 3 + 3

T a8 2.2
3X; 39Xy X5 3X,,

The equation (12.1) describes linearized transverse vibrations of .a‘

plate for which the boundary conditions and the gravitational force
have been neglected. If the last teim in (12.1) is dropped then the
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0 resulting equation is the classical bi-harmonic évolution equation
In Raoult (58] this equatic?n has been obtained as a "O-order" asymp-
totic expansion and in Gusein-Zade [57] as an equation to an accuracy
O(ez-w) where € = ?;Th is the relative thickness with 2 being the
characteristic dimension of the middle surface of a plate and w is the
quantity which characterizes the variability of the state of 'deformation
in time. The equation (12.1) is referred to as a "2-order" asymptotic
expansion or as an equation to an accuracy 0(e*2®) in the referen‘ces
mentioned above.

4-2w)

Following [57], ifvthe w increases in 0(c® ™) and O (e
the accuracy diminishes and for w=2 the character?l.stic dimension of the
defomation pattem for the plate becomes equal to h. This indicates
the essentially 3-dimensional nature of the process.

As an additional observat:tbn-, let us note that the coefficient

_34-14v
15(1-v)

ph3

has a negative value. Hence it implies that the fourth order differen-
tial terms in (12.1) form a "wave operator” for the quantity Aw, which
as a second derivative of w is connected with the curvature of the
deformmed plate and is also proportional to the bending moment (it will
be shown later) .

We shall introduce the following notation

2 E .3
p=2_E_
352
_g -y .2
I=fma=y b

O into (12.1). Then the corresponding BEuler operator is given by

15
ye
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- - E(L) = - 1% + uIf¥ - DA%w (12.2)
\S ‘ [ azw .
where yu = 2ph 1is the surface mass density and w = - .
. The Lagrangian density function L, which has its Euler

operator given by (12.2), has the most general form as follows:

2+l itwm? - ipaw? - daivo (12.3)

3

+

N

_L o
| L—zuw

where Q = (01,02) 1s a two-dimensional vector field on the middlé surface
B of the plate. Let us note that div Q does not contribute to the Euler
operator (12.2), however, it affects the boundary term of the variational
problem defined by the Lagrangian density function (12.3).

a

Now, let us consider the static case of (12.3). In this

case ——

-1 = %D(Aw)2 +divg = W Y (12.4)

is the energy of elastic defotmation, denoted by W.  We require that

this W be a quadratic function in w rs (r,s = 1,2) (W does not involve
' I 4

w _ because no work is done in stretc-hing the plate) which does not

5 o
depend on the orientation of the coordinate system. Since the matrix

» -

Yiu Y12

Wa » V.22

‘“‘ has just two invariants under rotation, i.e. trace and its determinant,
it follows that (cf.. Gelfand and Fomin [L4]) the density of elastic

defonnation has the fom

_1 2 _ 4. . 2
W =3 D08 = (1=v) DIW 13w 55 = (0 35)] (12.5)
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It is easy to see thatw ,.w -Zw )zismediverqenceofthe
117,22 12

vector (w,lw,22' - w’lw,lz) then from (12.4) and (12.5) we can

I3

conclude that the Lagrange density function (12.3) takes the form

_1 .2 1 w2 _ 1 2 _ _ 2
L—2 W+ 5 I (Vw) 5 D{AW) © + (1-v) D[w'llw'22 (w'12) ] (12.6).

and accordingly, the Lagrangian L has the following form

L= | L a, d& (12.7)

B 172
where L is given by (12.6) and B is the middle surface of the plate.

For the Lagrangian density function (12.6) the generalized

Cauchy stress tensor t3r and the hyperstress tensor h3rs (compare

(11.29) and (11.30)), respectively are given by

3r _ aL aL
N (BW )IS + aw
’ ' -

t
rs

- rl _ r2
DW 111+ W 192) 87 = DWW oy + W 191) 8

+uI W (12.8)
T

and

p3rs _ . oL
Y rs

_ rl sl

- r2.s2
+ D(w'zz + vw’ll)é )

+ (=D w ), (6F1s32 4 §T2451 (12.9)
1 4
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| Let us note-that the generalized Cauchy stress tensor does not depend

on the second invariant of the matrix [w’ rs] and that the hyperstress

tensor does. The corresponding tractions (cf. (11.34) and (11.35))
the curve ¢, which can be the boundary B or an intemmal curve, take

the fom

3

t7 = -D(w - D(w

J11 T VY1220, ,222 W 0)m,

3

. I
+ - - +
uI{v,rn h™Q Ddl {(w,ll \Jw'zz)nl

* (A=vw jomp} = D, {(w o) + W )0,

] + (l—v)w’ 12nl} (12.10)
and )
3 _ 2 2
BT =D(w 1) + W )y +DW oy + W 1905
+ 2(1-v)D w'lznln:Z (12.11)

;where dr(') = ((Si - nrns) (-)'s is the tangential derivative on a curve
c, n. (r=1,2) are the components of the unit normmal vector i.n?B to a
curve and Q is the curvature of this curve. The tractions (12.10) and
(12.11) can be written,in a more familiar fom. To this end, first let

us note that
dp() = mu(s) ' = md e (0) (12.12)

where m,. (r=1,2) are components of the left-ouriented tangent vector to

no(e) s Then we can write -
’

a curve and a(m)(°)
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3 3rs 3 3rs I
h9+d(h n)-h9+ma(m)(h s) -

=h’e + 3 0mn) - B3 m

. m) s (m) r
.3 ‘3rs 3
—hf%-*-a(m)(h mrns)—hQ
- 3rs
= B(m) (h mrns) | (12.13)

For the third equality we have used the Frenet forrmula for curves
(cf. [25], for example).

3rs

On substituting (12.13) with h given by (12.9) into

(12.10) and after simple maﬁipulations in (12.11) we obtain

3 .
t™ = «D3 (m) (Aw) + uIa(m)w+ D(l—v)a(m) [w'llnzm2

w’lz(mznl + m2n2) + w,22“1m1] | (12.14)

%

h3 = Dlaw - (1-v) (W - 2w (12.15)

1175 = 20 1onny + W )]

which have the same form (except that in (12.14) we have also the. term

pId (m)'v'z related to the shear effect) as those given in Duvaut

and Lions [72] (eq. (2.54) on p. 206) and in Gelfand and Fomin [14)

(egs. (61) and (62) on p. 166). .
Now, we shall investigate the problems of wave propagation

in the plate model we have considered above. Recall that a wave curve

Iy in the middle surface B of the plate corresponds to a moving wave

front and is a carrier of simple discontinuities in the partial deriva-

tives of the vertical displacement w(xl, Xy, t).
The order of the wave corresponds to the lowest order

derivative of w with respect to time which is discontinuous across the

wave curve Et. It is very important to point out clearly that the wave
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[front propagating through B represents a3 two-dimensional process within

the framework of a two-dimensional plate model as we hav/e described

this model in the first part of this chapter. From the previous discussion
of the accuracy and the limits of applicability of this model derived

from the asymptotic expansion of three-dimensional plate equations and
from the fact that a wave curve is a mathematical idealization of a

domain in B of finite area where derivatives of w(Xr,t) (r=1,2) change

rapidly, it is obvious that a justification of the considered wave

problem has to be given. In other words, the consistency of the order

of the wave with the accuracy and limits of applicability of the plate

model derived by asymptotic expansion methods has to be studied in order
Q

to ensure that this wave represents a meaningul process. Any such

analysis must technically be very involved and is outside the scope of

this work.

In this thesis, we shall consider third order waves; their
meaning within the plate model is given by the following simple observa-
tion. If we apply to an infinite plate on elastic support a constant
load P oconcentrated on the line x2 = 0, then by the symmetry of this
problem, the resulting deflection w is independent of Xl' Formally, this
problem is identical to the problem of a beam on elastic support with
a constant load applied at a point. This latter problem has been
investigated by v.Karmah and Biot [73]. The explicit solution for
deflection of this beam problem (p. 273 in [73]) shows that the resulting
deflection curve has the shape of damped waves with a discontinuous third
derivgtiVe at the point of load application . Also, it can be easily
seen that the first and second order derivatives of this deflection

curve are continuous everywhere. In ocur case of a plate this solution
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implies that the first and second derivative of w are continuous every-
t\fpere and that the third order derivative w, 222 suffers a discontinuity
across the line X2 = (0 (see Fig. E ). Let us note that this third
derivative of w is proportional to the shear force (cf. (12.10)), i.e.
the jump of the shear force across the line X, =0 is equal to a constant
load P concentrated on this line.

The existence of this jump and its physical meaning justifies

the investigation of third order waves in the plate model. The consistency

of the acceleration waves (recall that the second derivatives of w with
respect to X; ;d X, are proportional to the bending moments - cf.
(12.9)) remains an open problem. ‘

From Theorem 6.1 and egs. (12.8) and (12.9), it follows that
for the third order wave, the only nontrivial jump is (6.33). This

jump is now given by

O-D(aw) n" + uI @ ran] =0 ' (12.16)

r

From kinematical conditions of campatibility (or directly from (10.6))

we have that
’ [aw rn"'I] = - U-(g) a . (12.17)
and
it ran] = - u('nl) Ft ’ N (12.18)

where 3 = W] is the wave amplitude.
On substituting (12.17) and (12.18) into (12.16) we obtain

the following propagation condition
)
2 ~
(<D + pI U(n9) a=0 (12.19)

]
fram which it follows that the speed of propagation U (n) is given by
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L 4

R X, = cohst.

o '. w;=Cet°’X2(cosax2-T-sinaX2)

where the upper sign holds for x2 < 0 and the lower
Ny

sign holds for X, > 0.

_ _ _ 3
. — ' [[wlzﬂ = HW,ZZD =0, [Iw,222n = 8Cqy

) Fiqure 8




O

€

las8

i

= (D\1/2 ' :
U(n) = (UI) - (12.20)

The equation for the wave amplitude 3 cén be obtained from the equation

of motion (12.1).

curve Zt we obtain

?
2

[-DA“w + pIAW] = 0 ' (12.21)

First, let us note that fram kinematical conditions of compatibility we

‘have

AW

Ia%D = 5 0840 - Uy 043 ']

=8 (6 - ' r
= 3€ {Gt Taw] U(n) [[Aw'rn D}
r ¢ . s
- U(n)n {6tnAw,rn U(n) HAw,rsn I r

- o S r rs
== 22U 3¢ [[Aw,rn D+ U2(n) [IAW,rsn n"l

-2 8§ ~ ' X s
WeE T Uz(n) Itw . n'n°] (12.22)

where we have used (12.17) and the fact that [Aw] = 0 and

v
13

U

N

én

L _ _ -
st drU(n) 0

is a constant).

On substituting (12.22) into (12.21) we obtain

Oaw (87 - o)1 = 2U-(r21) &'5 (12.23)
!

" Now, from the geometrical and kinematical conditions of

campatibi iity we have

7

By taking the jump of this equation across the singular

s

—
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)

rs rLS n._ rs _ r.s
lIAwrs(G -nn)]]—-QrS[IAw’pan] (8 nn°)

4

+nng [[Aw'pqnpnq]] (6™ = n*n%)
= -0 [IAw,pan ’

Q U-('g) Py (12.24)

where Qrs = --drns = - dsnr and Q = er is the curvature of a wave curve.

Introducing (12.24) into (12.23) we obtain the following

" equation for the wave amplitude a.

iﬂ_ ~
€2 = QU a (12.25)

[ Y1

(n)

To integrate this equation, first, let us introduce the distance

parameter ¢ along -the norn‘}al trajectory of the wave front defined by

g= U(n) (t-t,) (12.26)

for t > tl and then notice that this wave front consists of a parallel
family of curves (U(n) is constant). This last remark implies that the
curvature for this family of curves is given by ( cf. Cohen and Suh

[67])

Q= -H)%‘%L (12.27)

for all syfficiently small o, where Q(o) is the initial curvature for

t = tl (i.e. o. = 0) - -
If we notice that b
s _ & - ‘
t = U(n) 3 ' .{12.28)
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then introducing (12.28) and (12.23) into (12.25) we obtain

__ Qo) ~
STs(ors) & (12.29)

818+

This equation can be easily integrated and the result is

-1/2
| (12.30)

30 =3 1000

which expresses the decay law for the wave amplitude.

The first observation is that the decay law (12.30) (and !
eq. (12.29)) does not involve any material constant. Also, the amplitude
equation (12.29) has exactly the same formm as that obtained by Cohen and
Suh (67] (eg. (4.23) in [67]) for waves pfopagating through elastic
surfaces. I’r}_conclusion, we should expect that the amplitude equation
(12.29) (and also the decay law (12.30)) is rather universal for waves
propagating through thin elastic plates and shells, although future
study is needed to justify fully this expectation.

, The similar statement has been made by Chen [74]. He
concluded that the amplitudes of acceleration waves in 3-dimensional
media almost alv;'ays obey the Bernoulli equation.

Finally, let us mention that ocur approach to wave propaga-
tion in the plate model conside here is complementary to that studied
by Ericksen [64] and Cohen [71] where a direct approach to Cosserat
plates has lgeen employed.

T
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APPENDIX I

An (infinitesimal) deformation of a (smooth) hypersurface

Z in RN is a one~-parameter family of (smooth) hypersurfaces

(-e,€) 3 s= I(s) c RN. (I.1)

There exists a differentiable fu%ction' f: Q » Rl defined in an open set

R C RN containing IZ(s), s ¢ (-g,e), such that each s is a regular value
of £and £(s) = £ 1(s), £(0) =L . For each X, in a coordinate neigh-

bourhood V of X in R the deformation (I.1) induces the following mapping

h~

(-e,€) 3 8= y(s)(u) = x(u,s) e vn L(s) (1.2)

such that

RN.J‘D Usuw x{u,s) € Va £(s) (I.3)

is a local parametrization of I(s) and for s=0 (I.3) is a local parametriza-

tionat X ¢ L
A unit normal vector N at X' € I(s) is given by
N.
A
/ A
By differentiation of the superposition s+= £ ° X(s), of

e -1 .
="|Grad £| £fa |&,, é\f—l(%) (I.4)
P ;

the mapping (I.2) and the function f, we obtain

. -
g X (s) 1 (I.5)

1A ds Is=0 =
On substituting the expression (I.4) into (I.5) we conclude that the

quantity ’ .




)

O |

is independent of the choice of local parameterizations.
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APPENDIX II o

Consider a one-parameter family

(~e,e) s~ (I(s), ¢(s)) (I1.1)

where ¢ > 0 and for each s,¢(s) (X) = ¢(X,s), X = X)) e R", is a tensor
valued mapping such that I(s) is its sinqular nypersurface ( cf. defini-
tions in Chapter 2). We assume that fo;‘ each s the hypersurface I(s) is
a campact manifolé (i.e. without boundary) . These hypersurfaces can be
given by :

I(s): o(X,s) =0 (I1.2)

where ¢ is a smooth function such that Grad ¢ # 0 and %g# 0 on 5(s).
Let 6(¢) be the characteristic function of the region

> 0, i.e.
0for ¢<0O i
8(P) = .
lfor ¢>0
then we have
J 600 s av= [ A% av i (II.3)
Rm $>0

B

where fis a smooth function with compact support and dv = dxl d}g,n
Following ideas presented in Gelfand and Shilov [75]) we
have

8'(¢) = &6(¢) (II.4)
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which is understood in the sense that
Grad 6(9) = §(¢) Grad ¢ (I1.5)

where the generalized function-&{9) is defined by

———

[ 8(0) £X) &= [ £(X w S (II.6)
o &=0

in which the (m-1)-differential form w has been defined by
doe A w=av (I1.7)

In [75], it is proved that such form in fact exists in some region
containing I(s) and is unique in the sense that it depends only on ¢(X,s)
by which this I(s) is given in (II.2). Of course, (II.6) is independent
of the choice of ¢(X,s).

Consider a one-parameter family of action integrals

U

A(s) = [ L(s) av
A\Z(s)

. = [ L(X,,4(5),06 A(S),0 An(s)) AV (I1.8)
. TR SR S

where (Z(s), ¢(s)) is a palr as it has been defined in (II.l) and such

that ¢(s) and its partial derivatives vanish outside of a bounded region

Q in R containing I(s) for each s & (-¢,¢) .
Now, let us write the integral (II.8) in the following way

A(s) = [ (L,(s) 6(9) +L_(s) 6(-9)} Qv ( (I1.9)
Q

o

where

‘ L,(s) = L0g, %), 85, (01, § gk
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in which $(+) (s) (X) = ¢(+) (X,s) and 5(—) (s) (X) = 3"’ (X,s) are smooth
(r extensions of ¢|Q+(s) and ¢|Q (s), respectively, such that $(+) (s),
;(-) (s) and their partial derivatives vanish outside of 2. In the above
2*(s) and 27 (s) are the su-domains of @ divided by I(s), i.e. @ =
2'(s) V 27(s) V L(s).

By differentiation (II.9) we obtain

dL, (s) dL_(s)

'+ - .
ds ,|s=o"'ffz (g5 lgp 0O + —55— |gp0(-0) av

+ 0L @iy +1 0 L (e ol (r.10)
1Y)

:E‘irst, let us note that
9 = ¢
. (I1.11)

2 = - 2
as [B8(-0)] o = =6(®) = |__

——

Next, let us assume that ¢(X,s) is the Euclidean distance of X fram
AN the ¢ = 0 hypersurface. Then, following [75], we have that the differen-
tial form w coincides with the Fuclidean element area di .y on Z(s}.

In this case, it should be clear (cf. eq. (10.16)) that

2 _,=- 8z : (I1.12)

where 67 “is the nomal variation of the’ hypersurface I defined in

Chapter 4.

On substituting (II.1l1l) and (II.12) into (II.10), and on

' 0 : using (II.6) with wu= dzm_l, we finally éerive
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B o = é e g - J; Oup 82 dz,-

which does not depend on smooth extensions.

By using ideas developed in Gelfand and Shilov [75], and in |
particular in Chapter III of this reference, we could find the expression
for the second variation of the action integral in the class of discon-
ti-nuous fields, however, we have not considered the second variation in

o»

this thesis, hence this important problem is left for the future.
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APPENDIX III

Let us recall that a singular hypersurface propagating
through a material has been represented by

Oyt ¢(xr,t\) =0 (r=1,...,N) (I1II.1)
or by LT "y
£t°: ¢(Xr,t) =0 (r=1,...,N) (III.Z)Q

in the spatial and material description, respectively, where
¢(\br(xr,t) (t) = <D(Xr,t)

in which X, = \br(Xr,t) has been defined in Chapter 10 in the case of
"small" deformmations. Because the hypersurface has no singular points

then we have that grad ¢ and Grad ¢ on Op and Zt’ respectively, do not

vanish. | -
Now, let us define ¢ and & by
R =y (III.3)
and
F = d (III.4)
Grad ¢| .

respectively, then the induced Euclidean measures on Ot and }:t are defined

respectively, b_y
dp Adoy, =dvy (II11.5)

b aan = av L (III.6)
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where dp and dé are the differentials of ¢ and ¢, respectively. If
we recall that va =J dVN where J is the Jacobjan of the transforma-

tion X. = wr(xr,t), then fram (III.5) and (III.6) we have that

1

as a ary, = apg A 3" doy_; (III1.7)
From (III.3), (I:'II.4) and (10.12) we can obl:ain on ¢, and I:

dp = n ax" | (TII.8)

dé = N a&x” L (II1.9)

On substituting (III.8) and (III.9) into (III.7) and on

using the fact that dxr = \pr sdxs we obtain
4

_ 1 r
N X" Adp =4 ngbg X A do (I11.10)

N-1

which by (10.15) is well-defined. ,
Now, to prove (10.1l1) it is enough to introduce into (III.10)

the relation

griemd o omil v
’ grad ¢| r s's,r

which follows from (10.12), and then using the fact that if y is a (N-1)-

differential form then
’ Nrer AY =0

-:lmplieé that y = 0 on the ¢ = 0 hypersurface (-cf., Gelfand and Shilov

(75); p. 221).
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