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SUl+1ARY . 

, 
The proposed thesis consists of t\..o parts. In the first part the 

calculus of variations for discontinuous fields is established. In 

order te express the first variation of the action inteqral in the 

class of discontinuous fields, in tenns of arbi trary variations, and in 

particular, in terms of arbitrary 'variations on a singular hypersurface, 

variational conditions of cànpatibility are fomrulated. These conditions 

generalize Thanas' kinenatical cond;l.tions of ccropatibility. The 

necessary and sufficient conditions for the action integral to be 

stationary in the considered class of fields are derived. In particular, 
toi 

. the jump oondi tions of field quanti ties across the singular' hyper-

surface, which qeneralize the Weierstrass-Erdmann conditions te mulÛple 

integral problems c:tre obtained. Next, the relations between trans­

fOlltlations leaving the action integ~l invariant (sym:netry transfonna­

tiens) and conservation laws are established for the case of discontinuoUs 

fierds. Finally, in this part, the ronplementary conservation laws on 

the singular hypersurface are obtained directly fran the jl.lllP conditions. 

The second part of this thesis deals with applications. In 

particular 1 the following topics are investigated. The dualisrn in the 

œscription of tQe undefonned state and the family of defo:oned states 

of 2 and 3-dirnensional media set into rrotion du ring which a singular 

hypersurface propagates thrt:nlgh these rœd1a. Balance laws which admit 

discontinui ties carried by wave fronts for the si.rrq:>le hyperelastic 

materials and materials of grade 2, in the rnaterial and spatial descrip­

tials. Finally 1 the problem of wa~ propagation in a plate i5 investigated 
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~ing a IOOdel based on a fourth qrder differential equat:!-0n for 

transverse vibrations, including the shear caused ~Y transverstr­

stresses. In this latter topic, the speed of propagation and the , 

decay law for the third order wave are derived. The rœaning of such 
, 

~ves within the 'plate model 1s studied, and sane general observa-

'" -tiens are stated. Also, the relation of 0m::' approach to those 

studied by other researchers 1s indicptéd.' 
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La presente these conslste de ueux partl.es. Dans la premi~re 

partie nos etablissons le calcul des variations pour les champs discontinus. 

De façcon à exprimer la première variation de l' int€grale d'action dans 

la classe des champs discontinus, en terme de variations arbitraires et, 

en" particulier, en termes de variations arbitraires sue une hypersurface 

singuli~re, des conditions variationnelles de compatibilit€ sont 
\ 

formulees. 
.' 

Ces conditions généralisent les conditions cinétiques de 

compatibili te de Thomas. Les conditions suffisantes et necessaires pour . 
1 

que l \int~gral d'action soit stationnaire dans la classe de champ 
-A 

consideres sont calculees. En particulier, sont obtenus les conditions 

de seut des quantités de chamn sur 1 'hypersurface singulière, qw.,' 
b -

généralisent les conditions de Weierstrass-Erdmann à des prOblèmes 

, d'integrales multiples. 

,Ensui te, nous établissons les relations entre les trans-

formations qui laissent invariante l'integral d'action (transformâtions 

d~ symmetrie) et les lois de conservations dans le cas des champs 

discontinus. Finalement, dans cette partie, les lois de conservation 

complementaires pour l thype!rsurfac~ singulière sont obtenues directement 

des contiions de saut • 

. ~ seconde partie d~ cette thèse traite d'applications. 
, 

En partiCulier sont etudies les sujets suivants. Le dualisme dans la. , 
\ 

descript'ion de l'état non de:form€ et la famille d'etat dé:form€s de 
. \. 

nul~eu 

de 2 ou 3 dimensions mises en motion pendant qu 'une hypersurf~ce se \. 
propage à travers ces milieux. Les lois de la Balance qui admettent 
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des dÏscontinuit6s ponees l'ar fronts d'onde pour des matériaux 

hyperelastiques siIIl!>les et materiaux de grade 2 dans les descriptions 

materielles et spatj~les. 
~; 

Finalement, nous etudions le problème de propagation 

d'onde dans un modèle de plaque base sur un système d' equations 

diff'erentielles de q-qatrième ordre pour vibrations transverses, 

incluant le terme d'inertie rotationnelle. Dans ce dernier sujet, 

la vitèsse de propagation et la loi de la decadance de l'onde de 

troisième ordre sont derivees. La signification de telles ondes dans 

le contexte du modèle de la plaque est etudiee et quelques observations 

g6nerales sont formulées. Aussi, sont montrées les relations des 

nos app~oches enver les autres chercheurs. 

" 
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O!API'ER l 

First order variational problems defined by multiple inteqrals, 

~.at 15 to say, variational problems wtx:lse integrands depend on independent 

\"ar1a!;les, state variables and ~nly their first order partial derivatives, 

:'ind siqnificant aWlications\ in the formulation of field theories in 

physics a"1d enqineerinq. Problems in whieh the integrand a:mtains hiqher-

ordt~r èerivatives have alse received considerable attention, ever sinee 

the orica!1 of the ealculus of variations in the early eighteenth century. 

"!'he:;c variational problems are referred ta as higher-order problems. The 

intcrest in second-order problems in particular lies in the fact that 

th<,y can he appll.ed, wit.'1 varyinq degrees of success, te various branches 

t,)f math€!J'\atles and te physies, for exarnple, in relativity and continuum 

:nechanics. In general relativity the integrand, called the Laqranqian 

dP.nslty -funetion, whieh gives rise ta the Einstein gravitational field 

equations 18 L = R /-q where R is the scalar curvature and q is the 

èeu>tminant of the metric tensor. The sca~r curvature R inherently 

c:ontains second order derivatives of the cœponents of the xœtric tenser. 

Ir. continU\.lm rrechanics the governing differential equations are often 

of fourth order, for example the oscillations of rigid plates and shells. 

The inverse problem of the calculus .of variations then leads te an associated 

Laqranq1an dE:nsity function dependent alse on second-order partial deri­

vatlves of d~splacanent. Efforts have been made te establish a generalized 
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mechanics [1,2,3] and a generalized electrodynamics [4,5] by includinq 

higher-oroer derivatives in the Lagrangian function. 

The importance of variational formulations of the laws of 

continuum physics, whenever they exist, lies in the fact that they are 

the best way to express such laws, as has been pointed out by Oden and 

Reddy in [6] and by Marsden and Hughes in [71, for example. Thl.S 15 

because the fundamental principles of continuum physics are qlobal ~n 

'-, 
character. Their local fo:r::ms can be derived fran their global forms only 

if the invol ved fields are endCMed wi th SUl. table sm::x>thness properties. 

However, this SIllCX)thness is very often unnatural. In contl.nuum mechanics, 

for example, it rules out discontinuities which are carried by \.Jave 

fronts propaqatinq through a material. In the varl.ational fonrulation 

of the fundamental princiI=les of continutm1 mechanl.cs, a s1..P1ple functional, 

caUed the action intearal, accounts for all the l.ntrinsl.c features of 

the problan: the differential equation of motlon (the Euler-Laqranqe 

equations), the natural boundary conditions and the jump condltl.OnS 

associated Wl.th propagating discontinuities. Moreover, the varl.at.lOnal 

approach allows a systematic connection to he rrade hetween syrnœtries 

and conservation laws as weIl as constituting a natural means for approxi-

mating and finding the solution. 

The significance of variational princip les for discontinuous 

fields has recently been recognized, see Nemat-Nasser [a}. For a 

histor!cal account on this subject in continuum mechanlcs we refer te 

the Introduction to the second part of this thesis. However, te the 

knowledge of the author, general variational theorans which admit 

discontinuities in the field quantities and their partial derivatives 

have not been elaborated, especially in their relation te propagat1ng 

discontinui ties. 

l 
1 
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The purpose of this thesis is te establish a general appl:Oach 

te the calculus of variations for discontinuous fields (PART I) and te 

apply it te sone probiens in continuum mechanics (PART II). Our approach, 

which has been proposed by the author in [9 ] and extended in (l0], is 

based on the theory of sipgular surfaces. This theory has been develOped 

by Thanas. His results are sUlTlT1arized in his book [11]. An extensive 

treatment of the basic mathematlcs of singutar -surfaces and a histericai 

account on contributions to the field has been given by Truesdell and 

Toupin in [12]. Thanas' theory has recently been generalized by COhen 

and Wang [13]. Their investigation 1ncluded aIse a treatment of singular 

curves propagating through a materiai surface. 

In the next b.o chapters (Chapter 2 and 3) we shall gi ve . 
a simple account on tl)e basic definitions and results of the theory of J 

singular hypersurfaces. In Chapter 3 we shall recall the geanetrical 

and kinematical conditions of canpatibility in a fonn that will be useful 

for this study. 

In Chapter 4 \\le shall extend the notion of kinernatical 

conditions of ~tibility. We shall derive new conditions which we shall 

call variational conditions of a:::.npatibility. They are associated with 

the virtual deforrnation of discontinuous fields. These conditions are 

expressions for the jt:nnps in the variation of partialderivatives of a 

tensor field, in tenns, in general, of jumps in the tangential derivatives 

of the displacesœnt variation of t:J:1e tensor field and in the nonnal 

derivative of this field at its singular hypersurface and in the nonnal 

variation of this hypersurface. For the special case of an imposed 

virtual defonnation, the displacanent variation and the nomal variation 
,0 

of "a singular hypersurface are reduced te the displacaœnt derivative 

1 

J 
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(called also Thomas' derivative) and the speed of propagation of this 

hypersurface, respectively. In this case the variational conditions of 

canpatibility are reduced te Thanas' kinematical conditions of canpati-

bility. 

Using variational conditions of canpatibility, we can 

express the first variation of the action integral for discontinuous 

field in henns of arbitrary variations on a singular hypersurface. These 

arbitrary variations are the displacement variations and the normal 

.. 
variations of the hypersurface. Before this expression for the first 

variation of action inteqral is derived in Chapter 6, first we shall 

review in Chapter 5 single integral preblerns for disc:ontinuous functions, 
" 

and in particular we shall recall the Weierstrass-Erèmann (corner) condi-

tians for such problefTlS (cf. Gelfand and Fanin [l4] and Oden and R8ddy 

[6] ). AIse in Chapter 6, we shall extend the Funda.Mental Lemna of the 

o calculus of variations ta include additional integrals induced by the 

sinqular hypersurface of discontinuous fields. , This lenma leads te 

necessary and sUfficient conditions for the action integral te be stationary 

in the considered class of fields. They are qiven in Theorem 6. L In 

particula..r:, we shaH obtain in this theorem jump conditions of field 
~ ~ 

quantities across a singular surface which generalize the Weierstrass-

Erdmann conditions te rrruitiple integral problems. 

In the next chapters of this part, we shall establish for 

the case -of discontinuou-srields, the relation between transformations 

leaving the action integral invariant (syrnretry transfonnations) and 

conservation laws. A histerical account on this subject for SIllX>th fields, 

as well as" the list of standard references will be given in Section 7.1 

of Chapter 7. Irl Section 7.2 of this chapter, the definition of 

, . , 
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invariance and the discussion of this definition in relation to the 

considered discontinuous fields will be given. In the last section of 

Chapter 7, we shall prove the fundarnental invariance theorems. For 

the considered class of fields perhaps the roost :irrportant 15 Theorem 

7.3 in' which the integral identities implied by invariance are given. 

In Chapter 8 the cqnservation theorems for discontinuous 

fields are fOnm..llated and proved. Aqa1n, perhaps the rrost important 

resul ts are gi ven in Theoran 8.1 in which we shall establish the relation 

between (integral) conservation laws and syrmetry transformations, 

mentioned aOOve. For higher-order variational problems, and in particular 

for second-order problens, frcm this theorern will be seen the conserva­

tion laws for an arbitrary s~system contain tenns describing "flux" 

conoentrated on the boundary of the singular hypersurface intersected 

by this subsystem. Finally in this Chapter, we shall establ1sh in 

Ranark 8.1 the ccmplementâry conservation laws on the singular hypersurface 

that are directly :JJnp}ied by the jurnp conditions obtained in Theorem 6.1. 

Remark. Throught this thesis, we shall enploy the surcroation 

convention with which a repeated index in a tenn is understood te he sumned 

over the p::>ssible values of this index. 
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S~ HYPERSURFACES 

In order te fiX the notation we shall let (X, t) ::. ot, t) 

(A = l, ••• ,N) denote a point of R
N+l where N = 2 or 3. 

In the study of sinqular hypersurfaces we deal only with 

",hypersurfaces given by the fOllowinq definition.A (snnoth) hypersurface 

in 'RN is a set 1: c: ~ such that for each point X E: 1: there is a ne,iqh-

N N-l bourhood V of X in R and a mapping X: U -.. V Il L of an open set U c: R 

into V 1\ t. c. RN subject to the fOllowing conditions: 

(i) X is a smooth mapping 

(ii) X is a haneanorphisrn 

(iii) X 1s reqular at each point u e: U. 

~e mapping X is, called a local parametrization or a (local) 

coordinate system at X and the neighbourhood V 11 E of X in l: a (X)()rdinate 

neighbourhood. Roughly speakinq hypersurlaces given by the above defirii-

tien have no sharp points, edges or self-intersections. M:>reover, we 

always assume that hypersurfaces are orientable (N = 3) and that we have 

made a choice of unit nonnal vector N for each X e: E, which is pet:pendicular 

to L at X. 

Let us consider a family {Lt }te:1" of hypersurfaces Et C RN 

where rC. R~ is an interval (time tnterval). For a given open set n c. RN. 

we assume that for each t e: 7", Lt divides n into 1:\\0 non-enpty danains,-

+ -denoted by nt and nt and fo~ a ccmron boundary between them. The unit 

" 

-1 
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+ nonnal N on Et is directed toward the set nt. It is assuired that a 

"~c;,e-time" representation of the family U:t } ter' is given by a snooth 

hypersurface 

r = {(X~ t) : X e: Et' t e: T} 

,in RN+ 1 • This hypersurface di vides 1T = st x 'T into two suosets 1T + and 1T-

+ + where 1T- = {(X, t), X E: Qi' tEr} (see Fiq. l). 

Let {<Ilt} tE'" he a farnily of mappings such that <Pt (X) = <P (X, t) 

,1s a scalar-valued, vector-valued or tensor-valued mappinq defined and 
o 

+ -cxmtinuously differentiable on 1T and 1T • If r is a hypersurface in TI 

given by f(X,t) = 0, where f is real-valued differentiable function defined 
o 

, 

oI} TI,{r(c)}are the neighbourinq hypersurfaces in lT given by f = c. We , 

sball assune that <Il and its partial' derivatives On,.ir (c) converge unifomly 

te bounded limits on r as c tends to zero thraugr positive and negative 
J 

values. Let A + (X, t) and A - (X, t) denote the liliii ts of a field A at any 
,/ +-

p\:>int (X, t) on the hypersurface r which 15 approached fran TI and 1T , 

respectivëly. The hyPersurface r (the ITOving hypersurface Et) is said 

to he a singular hypersurface relative ta the field <P t<llt) if the j1.l1Tp 

+ -[AD (X, t): c: A (X, t) - A (X, t) 

does net vanish for sare (X, t) e: r (X e: Et) where A denotes the field <Il 

or ,sare of its partial derivatives. In this case cj> (<Pt) will be denoted ' 

by a pair (r ,cj» (O:t' <Ilt )} where r (Et) is its singular hypersurface. 

The order of the singular sur=ace corresponds to the lowest order partial 

derj.vative of <Il <<Pt) which is discontinuous across r (Et). 

" \ 

o 
o 
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CHAPTER 3 . 

GEXlv1EI'RICAL AND KlNEMATlCAL CONDITIOOS OF 

CG1PATmn.ITY 

. 
iven (srrooth) mapping <1> on RN, let <P'A:: a <I>;axA, 

<1>,::: a2$/a0a~, .. etc. We shall adopt the fOllowing notation for 

the der1vatives of a function <1> at any point on the hypersurface E C RN: 

<I>,A = DA <1> + NA a (N) <1> 

a~N)$ = ~ <I>,AB 

:n the above NA are th~ canponents of the unit noJ:lTlàl N on E, 

" 
~J 

are .the CQnponents of the tanqential derivative of $ and L and 

1s the nonnal derivative of <1> a.t the hypersurface E. 
, -

Let us consider a pair (Et': ~t) as defined in Chapter 2. By Hadamarç.' s 

Iam1a [15, 12J \E have'" 

. (D
A
$)! = D A<I>-t 

which implies the fOllowing limit conditions 

(3.1) 

.. 
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+ 1 + + (cl> ) - = - ID D 4>- + D-fl 4>-) ,AB 2 ~ B IrA 

(3.2) 

where gAB = - DA~ = - DBNA are the canponents of the seoond fundamental 

fOIm of the hypersurface Et'. 

Fron (3.1) and (3.2) we can forrrulate conditions 

+ 2 N (IfB) [a (N) ct>D - QAB[a (N) cl>D 

2 
+ NA~ [3 (N) 4>] 

(3.3) 

(3.4) 

- , 
where parantheses enclosing indices A and B indicate syrnnetrization 

wi th respect te the se indices. 

The fonnulae for jumps of the partial derivatives of 4> given 

by (3.3) and (3.4) are the geanetrical conditions of cc.ttpatibility of 

" first order and of second order, respectivelY. 
, . 

The kinanatical conditions of ~tibility will be derived , , 
, 1 

using local parametrizations of the hypersurface. Et in the followinq way: 

We shall assume that the fOllO'Winq restrictions of 4>t' ..,.1 

4>tln~ and ct>tln~, have in the neiqhbourhood of each X E Et differentiable 

(srrooth) extensions, denoted by ~~+) and ~~-), respectively. For eaoch 

X e: Et in a chosen <Xt'9t.) where Xt is a coordinate system at 

X e: Et and Bt = V n Et islâ~rdinate 
, 
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neighbourhcv.xl, the mappinqs ~ (+) and ~ (-) can be represented by the 

fOllowing tltrace" fOIl'lUlae 

~~ ,Cu) = ~+ (u,t): = ~(+) (X(u,t),t) 

~~ (u) = 4:- (u,t): = ~(-) (X(u,t):t) 

r 

Then by the chain rule for differentiation We have 

(+) 
,,+ (+) A ( ) am-_ ... (-) .h.. + aa;-

at - <P,A at at 

Using in (3.5) the conditions (3.1) we obtain-

It is weIl known (cf.1 for examole .(12) that the quaI)tity 

a A 
_NA ft-

(3.S) 

(3.6) 

is independent of the choice of local parametrization. Hence it follows 

fran (3: 6) that the quantities 
" 

,,+ A' 4t 

a~- _ a D ,..'t.2X... at A't' at 

are ,a.lso independent of the choice of parametrization. 

In the standard notation and tenn1nology 
\ 

_ axA 
U(N) = NA at (3.7) 

• 
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is the speed of propagation of the hypersurface Et' and 

~<b± a~± a A v _ D 4>±.2L 
ôt - at A at (3.8) 

+ ' are called the displacement deriV'atives of $- at the singular hyper-

j .. 

For a more canprehensive study and a hiswrical developnent 'r 
. 

of the concept of the displacaœnt derivative we refer to Bowen and . 

Wanq [16]. Introducing the notation (3.7) and (3.8) into (3.6) we obtain 

(3.9) 

• where cp _ acp/at. ,ran (3.9) we qet conditions 

[~D = ô~tD - U (N) rra (N) 4>D (3.10) 

~ 

which are cal1ed the kinenatical conditions of canpatibi1ity of first 

order. 

The second order conditions are obtained in the fOllowinq 

way. FJ.rst, if we replace cp in (3.1) and (3.9) by 4> we have 

" (3.11) 

(3.12) 

Next, let us note that 

ô + ôr!- + .A' ô' . + 
ôt (a (N) $) - = F' (CP ,A)- + ~. ôt (CP ,A?-

(3.13) 

whe~·we have.applied identity ôr!-/ôt = - DAU(N) (cf. [f6]) 'and conditions 

1 

\ ' 
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(3.9) in which we have replaced cp by CP,A' NcM, by introducing (3.9) 

-" and' (3.13) into (3.10) and (3.12) we der1ve 

+ . ± - D {6<P- +} + 
(CP,A) - A ôt - UCN) <d(N)CP)- + NADBUCN)DBCP-

C
o. + 
CP) -

The .above conditions 1ead te the followinq expreSsions 

, 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

which are called the kinanatical conditions of c::arpatibility of second 

order. ' 

'J In a similar way the higher-order geanetrica1 and kine-
~ , 

ma:Ucal conditions of canpatibility can bê ·obtained. For a discussion 

of that subjeçt we refer te wang and Truesdell [17] • 

• ) 

, ' 

.. -

" 
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VARIATIQNAL CONDITIONS OF CCMPATIBILIT'l 

Il In this section we shall extend the notion of the kinernatical 

eonditions of ca:npatibility associated with a singular hypersurface, as 

~ 
they have been deri ved in Chapter 3. We sha 11 deri 'le new rondi tions which 

we shall call the VÇlriational conditions of ~tibility. As presented 

'1-. 
here they fonn a part of an extension of the variational formulation of 

the fundamental princip les of continuum physics for disrontinuous fields 

, by. including the the6ry of singular hyPersurface into the calculus of 
, 

variations. 

Let us cohsider a pair" O:t' 4>t) as ft ha; been defir.ed in 

Chapter 2. A (infinites1mal) virtual deformation of O:t' '~t) is the 

following one-parameter family of pairs 
1.[ 

(4.1) 

where € > O. In (4.1) ~t(s) (X) = 4> (X, tes), s) and for each s, rt(s) 1s 

a singular hypersurface (the carrier of a simple discontinuity of ~ or 

sane of its partial derivatives) relative te <Pt (s) such that Lt (0) :: Et 

and 4>t(O) = ~t· 
A nonnal variation Sr of the hypersurface E associated with 

'l 

o a virbJal deforrnation (4.1) is defined in the following way. For each 

_ dX~(s) 
&L(X',t) - NA ds 1 s=O 

(4.2) 

f 

" 1 
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'Mhere NA, are the c.onp:>nents of the unit no:onal N at XI = X (u,t) e: V" Et' 

'1-1 u eUe p.o' (c.f. definition of a hypersurface given in Chapter 2) and 

:(t (s) (u) = X (u, t(s), s) is a local parametrization of Lt (s) such that 
If 

:<t (0) :: y t 1s a local pararnetrization at X e: Lt' In a way similar to 

that followed for the fOIIllUla of speed of propagation (3.7) we have that 

t!lC nOtm.:l1 variation (4.2) 15 independent of the choice of local pararnetri-

zaticns of tlle hypetsurface. The prcx:>f of this staternent is presented, in 

the Appe..,dix I. 

In order te fornrulate variational conditions of carpatibility 

'Ne sMll fol lOIN closely the procedure that has been outlined in Chapter 3 .f 

!or trR der! va tion of the kinematical conditions of C'ClTpatibili ty • First 

lc-t us .... -rite 

.... A A 
d':'-f(S) 1 "' + rlX t (s) dXt (s) 

ds 1 5=0 ::: -A Ô - ds 1 5=0 + NA (Cl (N) <P) :t ds 1 5=0 

(4.3) .. 
,,+ A_ 

where ~t (s) and ~t (s) are the repre5entations of the "trace'! On Lt (s) of 

q sm:x)th extensions ~t (+) (s) and $t (-) (s) of CPt (s) In~ (s) and vept Cs) In~ (s), 

respectivcly, in a local parametrization Xt Cs) of the hypersurface Et(s) 

such that <I: t (s), 9t (s» is qi;ren by (4.1). 

+ AccordinqlY, if we define quantities 'cp - by 
,,+ " A + ~t(S) + dXt (s) 

S~- = ds Is=O DA<P- ds 15=0 (4.4) 

\ 

and recall that ~r given by (4.2) i5 independent of a choice of local 
v + 

parametrization of Lt' then we can conclude fran (4.~) that Sep- are alse 

1.ndependent of the choice of local pararnete~zation of Et" We shall' call 
). 

l ' 

, , 
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the quantity ,cp defined above, the displacement variation of Q at the 

hypersurface Et. Introducing (4.2) and (4.4) into (4.3) we ob~tai.n 

where ô4>=d<Pt (s)/ds Is=O. In a similar way te the derivation of 

equation (3.14) in Chapter 3 now we have 

(4.5) 

(4.6) 

where Ô4>,A= dCPt,A(s)/ds Is=O and we have applied the fOllowinq ic1entity 

f. NA = ,,- DASr. which corresponds te the identity ô
6
t NA = - JAU (N) used in 

Chapter 3. 
. 

Finally, on the basis of (4.5) and (4.6) we establish the 

relations 

(4.7) 

(4.8) 

':) which ttJe call the variational conditions of canpatibility of first order. 
.. . 

Other such condidons are those for [ô4>D, II 64> ,AD, .•. , where 4>:; 

a4>(X,t(s) ,s)/at(s) 1 and the hiqher order variational conditions of carpati-

, 2 2 ~ (n) 
bility are those for rrô 4>U, ITô 4>,AD, ••• , lIo 4>D,... They can he 

obtained in a similar way. However, in this work we deal, with the varia­

Banal problems for which we need only conditions (4.7) and (4.8) 1 hence 

these other variaticnal conditions of carpatibility are not cons1dered 

here. 
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t-Dreover, if we assume that the virtual defonnation (4.1) . 
has the foon 

-
then the oonditions (4.7) and (4.8) becaœ the kinematical conditions 

of bcmpatibility as they have been considered in Chapter 3, i.e. condi­

tions (3.10) and (3~16), respectively. 

As 'has been mentioned at the beginning of this section, 

the resul ts which \'Je have obtained here cU'e irr'p:>rtant in the cx:mstruction 

of variatiorlal problens for discontinuous fields. Such variational 

problems lead te field equations in Which jump conditions nust he 1mposed 

on the hypersurface of discontinuity. Towards this end, we IlUlSt now 

review the Weierstrass-Eràrnann (corner) conditions from the classical 

calculus of variations. 

,.----- - --- --

1 

• 1 
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SINGLE INI'EGRAL PROBI»1S FOR DISCCNI'INUOUS 

FONCTIONS 

In this chapter we review a single integral variational 

problem for discontinuous functions. We follow the exposition ~~ this 

problem as it has been given in Oden and Reddy [6J. However 1 our 

exposition is given in the forro which later will be extended for mul tiple 

integral variational problerns. Another useful reference for this 

sinqle in1:eqral problan is Gelfand and Fanin (14). 

Consider the inteqral 

b 
J = f F(X,$(.}{),~) dX 

a dX 
(5.1) 

-
defined,over the interval [a,b] •. ' Suppose that the statidnary value of 

,~ 0 " 

the inteiffa1 (5.1) is obtained for the function $ (X) which has a ,46tiJnple 

disoontinuity irl-' its first derivative at an arbitrary internal point 

Xc in ['a,bl, i.e. a < X < b. We can express the integral in (5.1) as 
G • 0 

the sum 

~ accordance with the previously introdu~ notation, we consider a 

paJ.r (Xo'CP) where Xc is a singular point of $ as it has been defined 
-. 

above. We embed an assumed :;;tationary "point" (Xo,$) in a one-parameter 

famil}': 



c 
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(-e,e;),,3 s.... (XO(S), <I>(s» (5.3) 
... ""..'fI' 

where Xo (s) 15 a singular point (as defined above) of the function 

<1> (s)(X) = '<l>, (X, s), such that (Xo (0), <1> (0» :: (Xo,<I». M:>reover we assume 

tbat <I>(s) (a) = ~(s) (h) = 0 for every sc (-e:,e). 

The variation 

, .,, 
Then, the resul tS of Chapter 4 imply' . 

(5.4) 

where the superscripts "_" and "+" denote lirnits approaching Xo frcm 

1eft and right, respectively. For infinitesilnal defonnation (5.3) the 

quantities ~<I> and 8xo are schernatically indicated on Fig. 2. ," . , 
The !irst variation of the integrâl (5.2) i5 

where 

ôJ1 = fXo [aF _....9.. dF J 0<1> dX + F- 8xo 
Q 

a a <1> dX a<l>x 

+ (aF )-
9<1>x 

(6<1> - (<I>x) - 8xo ) (5.5) 

b CaF _ ~ aF lô<l> dX - F+ 8x ôJ2 ::;: f 
Xo 

a <1> dX d<l>X 0 

(5.6) 

, 

Sinee ~ch of the integrals JI anœ J 2 lias a stationary value for Lep, the 

inteqral teIIl1S in (5.5) and (S. 6) must" vanish for ami trary ô$. This 

irtplies that 

"... 

}' 
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1-

and we have 

(5.7) 

(5.8) 

.r _ 

By definition, :the inteqral (5.2) bas a stationary value for (Xo,<P) .... if 

the first variation vanishes (6J = ôJ1 + ÔJ2 = 0) and this leacf te the 

condition 

[~:x n$<Il + {IF - <Px ~!X] 8xo = ~, (5.9) 

. It follows, because of the arbi trariness of G <Il (Xo) and gxo ' that 

UôF ] = 0 ôF· and {IF - <Il -D = 0 
ô <Px X ô<px 

" 

Conditions (5.10) are known as the Weierstrass-Erdrnann 
, 

for fullctions with finite jumps in their derivative • 

~", \ 
, "J 

, , 

. , . 

.' 

(5.10) 

(comer) conditions 

'Il 

/--

\ 

~ 
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CHAPl'ER 6 

MULTIPLE !N'I'EX;RAL VARIATIONAL PROBLEMS FOR 
~ , 

DI5C(lI1fiNOOJS FIELDS 

~" 

" 

Variatio~l problems qiven by single integrals find ,signi-
1 

ficant applications in the expression of the fundamental principles of 

mechanical systans ana gea:netry. \ In the same way, problerns defined by 
J ' 

mu! tiple inteqrals are important in the exPression of principles in the 
, 

theory of physica! fields and in particular in the theory of classical 
, ; 

. continuum mechanics, see Goldstein [18] ang, Lanczos [19], for example. 

This latter theory ls our main area for the application of idec!s 

devel,.oped here. u' 

Accordingly, n<Jtt we oonsider a certain integral 

1 1 

A = J L dVN dt (6.1) 

'In arder te fix the notation of the region of integration, 

we '"shall let TI = D x r denote a closed cylinder in RN+l. A polnt of 
i '_.N • ~ - 1 

TI will ,he denoted by (X, t) = (X , ••• , x-', t) and then dVN dt = dX ••• 

~ dt is the volume element of ~N+l. The history of a system lsgiven 

by a COntinuous one-parameter fanily 

<" 

" of a continuous map $t= RN + Rn (N = 2 or 3, n·natural number) such that 

<1>: RN+l :... Rn 

defined by q,i(0,t) = <j>!(>(~) (A = 1, ••• ,N; i=l, ••• ,n> and <j>{X,t) = 
(cpl(0,t>, ••. , <j>n(0,t» 1s a ~~tinuous rnapping • 

.l' 
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\ 
We assume that the integrand L in (6.1); called the 

\ 

Laqrangian dens1ty ftplction, 1s in general of the fOllowing foz:m 

_1>. 1 _~ i' • 1 1 • 1 
L = LOC, t, cp (x--, t), CP,A ' <P , cp ,AS' cf> ,A) 

. 1 
<P :: a<t> lat, ••. etc. 

The integral (6.1) will he rl::!ferred te as the action inte-

gral or action functional. 

\ c 

6.1 The First Variation of the Action Funct10nal for D1scontinuous F1elds 

Let us C'Ons1der a system 

(6.2) 

where O:t' <Pt)' t 'e: r 1s a pair defiped in Chapter 2, for which now " 
N " N ("\ 

n = R and <Pt (X) = cp (X, t), X ER, t e: 'j , bas been defined above. The . .., 

closed cylind~r D x T, D c:. RN, l' c: Rl_ 1s such that if for seme t e: r 

a (D "Et) f <P then for each t e: r a (D IlEtl f <P 1s a regular srrooth 

curve for N = 3 or a tw::rpoint boundary for K = 2, and Et intersects D 

'traI)sversallY·. Such a D x'T will be referred to as a "good" x-t . 
cylinder. The action functional for the' systan (6.2) is g1 ven by 

A (infinitesimal) v1rtual defonnation of the system (6.2) 1s the ,t~t'o 
~ 

following one-pararneter farnily 

(-e:,E) 3 s"" (D; 'T{s); Et,.':s), CPt(s» (6.4) 

such that for each s the same- aCZ3tm1pti?nS as those for the defWfion of 

the system (6.2) hold tnle. 

-, 
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In (6.4) 1"(s) = [tlCs), ~Cs») and (ItCs), <l>t(s» is 

defined by (4: 1) wi th Q = RN. 

The defonnation (6.4) induces the defonnation of. the action 

functional ( 6 • 3) 

(-e:, E) 3 S 1+ Aox,.Cs) 

where Aox,.(s) i8 given by 

4>i,AB (s), ~i,A (s» dVN dt (s) (6.5) 

in which ~i (s) :: a4>i (s)/at(s), <Pi,A(S) :: a4>i (s)/a0, ..• etc. 

It is convenient to l-eeluce the integral over the time intel:Val 

1'(s) in (6.5) te an inteqral over the oriqinal time intel:Val 1" = [tl ,t2
) 

by a chanqe of variables. The transfonnation of the time eleI'elt. fnrn . 
. . " 

:.1(s) te ris accanplished by means of the fOIIlUlla 

dt(s) = dt(s) dt 
dt 

= [ l + J!. (dt (s) 1 )] dt 
dt ds s=O s 

where the last expression is accurate to first order in s. 
, 

New,.. for the first variation ô.Aoxr of the functional (6.3) 

which is defined by 

one can wri te 

-- ------------
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+ f f L.it ôt rN dt r O\E dt 
t 

(6.6) 

where d~_l is the E.\lclidean area element for N=3 and the arc length 

'eleinent for N=2, Sr is the nonnal variation of the !:ypersurface Lt 

defined by (4.2), ôt = d~S) 15=0. Aiso 
~" 

r' • 

is the j1.lI'l'P of tf1e Lagrangian density function L across the singular 

\ . 
\ 

hypersurface Et. The fOIIrnlla (6.6) is given here without proof. HOwever, 

'sorne proof of (6.6) can be obtained along the same lines as that of 

the fonnula for the t:ime derivativé of integrals appearing in balance 

laws in continuum mechanics for discontinuous motions [12] (carq;>are 

fonnulae ( 6 • 6) and (6.14) gi ven la ter in this section) • 
. 

The ideas of a nice proof of fonnulae such as (6.6) can be 

found in Baddeley [20]. His approach follows the basic notions of 

differential geaœtry, such as differential foDnS and also, srroothly 

Changing CCIl'Ipact differentiable manifolds, possibly, with boundary 

The proof of fonnula (6.6) for sone particular case, using the notion 

of generalized functions and differential fOIlllSr will be presented in 

Appendix II. 

If the derivative dL(s)/dsls=O is carried out in (6.6) we 

obtain 

f f aL aL 
ôAoxr = at ôt + aq, 

'TD i 
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\ 

Before the analysis of (6.7) can he carried further, we 

must rea:>gnize that frc:m the definition of variation 

we have in general 

(6.8) 

" It will he convenient te define a new variation 6q, for which the 

relation (6.8) will he tumed inOO an equalityo ['0 do ,this, we note 
, 

that 
/ 

ôq, = ôq, (X, t) 

a a 1 = at q,(X,t)ôt + as <I>CX,t(s),s) s=O 

. " = <j>eSt + ôq, (6.9) 

1\ a 
'Where we have set- 6q, :: as q,(X,t(s) ,s) Is=00 

Then, i t is clear that 
A. a 1\ 

ôq, = at 6q, • 

. 
" 

rurthemo:r;e, recalling the kinematical and variational conditions Qf 

canpatibil,ity given in Chapter 3 and Chapter 4, respect!vely, we have 

fram (6.9) the foll~g s~le 

LEMvtA 6.1. The fOllowing relations 
,. 

gr = U (N) eSt + 6 E t6.10) 

+ A: -+.:!: A + 
$<1>- = ~ eSt + ~cP- (6.11) 

are satisfied for a given pair (Et' CPt). 
o 

'--
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PROOF: Fran (6.9) 'Ne have that 

(6.12) 

On introducing conditions (4.5) and (3.9) into (6.12) -we obtain 

+ ~ 
A + ,+ .l:tII.;.. + 

(ô"') - = 6"'- - ~ ôt - (a "') - {~'E - U ôt} 
'1' '1' ôt (N) '1' (N) 

1\ +' + ... = 6"'- - (a CP) - SI: '1' (N) 

The last equality impl1es (6.10) and (6.11). 0 

'\ 
\.. - ..." Let us notethat the operators ô and 6 are connected only 

with the fonn ~anqe of a pair (Lt , cl>t) i.e. they are variations without 

the variation of time. 

On making use of relations ( 6.9) and (6.10) we can wri te 

(6.7) after obvious, manipulations in the fom 

• 
aL" aL 

+ aej> .. ôcl>i AB + al 
i,AB ' 'l'i,A 

;;- d 
ôclli,A + ërt CL ôt)} dVN dt 

A 

- f f [LD (SI: + U (N) <St) d1N-l dt 
l' EIlD 

(6.13) , 

New, bear1ng in rnind the following identities (cf. (12J) 

, \ 

(6.14) 

(6;!5} 

, , " 

, , 

l, 

,~' , 

1 

'l, 
1 , 
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o 

and then perfonning the standard manipulations (including also integration 

by parts by rneans of fonnulae (6.14) and (6.15» in (6.13) we obtain 

• • - --W' aL '" 
t\A...'[= J J {_(aL) + [- aL + ( aL) + (a~ )1 A + -} ô~i dV~t 
-UX '[ D ~ a<Pi,A d4>i,AB ,B i,A' alb i 

" - f ,f [LDtI: d~_l dt 
r Lt"D 

J __ 

J\ 

64>1 sD -d~_l dt , \ 
'j 

Let us introduce the fOllowing notat.1,on 1 

i aL' 
p =~ 
, i 

EiA = _ aL 
. a<Pi,A 

HiAB = _ aL ! 
" c a<Pi,AB '\y' 

\ 

(6.16) 

(,6.17) 

" 

(6.18) 

(6.19)' 

(6.20) 

~~----

---- "1 

J 

." 
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1 

L'C 

Cl 
~ , 

(6.21) 
o 

~ (L) = _ pi + ~ + .&. 
,A a~i 

a 
(6.22) 

where the last expression is referred to as' the Euler operator. On 

introducinq the a.t::ove notation into (6.16) we have the a:mpact fonn 

- f f fILD 6r dr_-_1 dt 
Tt 0 ""N. 

t 

(6.23) 

In order te express the fonnula for ~r giv~, by (6.~3) 

in terms of, ami trary variations on the singular hypersurface Et and on 

t.~ boundary aD we need Toupin",type integral identities. First, let us 

recall that on the, singular hypersurface Et arbitrary var~q.tions are the 

displacE!l'tlent variations and the nonnai variation of this hypersurface. 

Ql the b:lulldary aD the cll'bit.ra..ry variations are the variations of field 
) 

and their nonnal derivative. 

One of the above mentioned !dentities on a surface in R3 

bas been introâuced by Toupin [211 in his early \«)rk on the ~eory of 

elastic materiais with couple-stresses. 'Ibis identity has aIse been 
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frequently used in many \oA:>rks related to this subject [22,23). A noŒ 

cxrnprehensive treatrnent of such integral identities has been given in 

Cheverton and Beatty (24) and in references ci ted there. 

Let us first consider the case N=3. New, O::,,p) 15 a pair 

süch that E 1s a singular surface in R
3 relative te field ~ defined 

on R
3

• We asS'lmle that for a canpact set D c. R
3 with a srrooth two-dimen-

sional bounda.l:y aD, the surface r marks out on aD a regular closed curve 

c.' The unit nonnal vectors on aD and E are denoted by NaD and ri-, 
,respectively. This notation will be used wherever any confusion might 

arise. Let us define the fOllowinq unit vectors 

in wht<;;h l: :l.s the uSual left-oriented tanqent unit vector on the CUIVe 

1 

, '(see Fig. 3).' 

,The integral identities (N=3) we need are the fOllowing 

l D-i/} dA = - f 4>.~O n dA - J [4>-M"D dL (6.24) 
dO aD c 

f D·[~D dA = - f Œ~'~D n dA + f [4>·M" D dL (6.25) 
mD ~D c 

wnere dA is the Euclid,ean area elernent, dL ls the arc length èlement 

and 11 = t:r [Q~, n! being the c:anponents of the second r~l1darre!ltal fom 

of the surfac~ ï or the boundary aD. No~ that the curvature o,f a surface 
'V 

is definew. as Q.fil n. 
" , " 

" 
In the, case of N=2 the boundat:y aD and the hYPersurface L 

::u:e ~tb œgular curves. The orientation of the yectors M~ and ",', in 
o 

this case, are ,indicated on Fig. 4. Also,. the points XCI) and X(2 ) fom 
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the boundary a 0: 0 D) which in the asSUIœd positive orientation is given 

by X(2J - XCi)' ' 

The corresponding identi ties can he obtained in the 
" 

following way. First let us note that 

where * = A for aD and * = v for r and, the curve parame~ JI, 15 the 

length pararneter (i.e. the unit speed parameter). The Frenet fODm.lla 

of a curve (cf. [25], for example) gives 

..9.. MI\ - $?NaD dR. -
o 

where Q, is the cw:vature of the appropriate curve. 
, '"' , ' 

Fran the above equations we can easily obtain 

'X(2) 

f D·~ dR. =~, J n NaD.~ dR, - ITMI\·~lI, 1 
aD aD' X(l) 

The integral identities (6.24) and (6.25) for N=3 "and 

(6.26) and (6.2,7) for N-2 we will write in the fOIm 

, J D.~ Br__ = - J Nao.~ Q dL - f [MA ·~lJdr~-
aD "'"N-l aD ~-l c ri-2 

'* J D·[~D dIN-l = - J [NE·~D dr__ + J [M~·~D d~--_2 
1:no EI\O ,il ~-l C -"N 

" 1 
1 

(6.26) 

(6.27) 

. 
• 

(6.28) 

(6.29) 

where ~-l ànd ~-2 are induced measures on r or aD and on C = ~ U:nO), 



• 

o 

.. ~ \ . 
" 35 ... 

respectively, and they are, understood in the senses in which the~ were 
c , 

-already presented'for êach case of N=3 or N=2.' 
• A 

On substituting conditions (4.5) and (4.6) with ô = ô 

'into (6.23), and after manipulations which include an inteq"ration of 

certain œIIllS by parts using the fonnulae (6.28) and (6.29), we finally 

der1ve the sought express~on for ~1' ,as fOllows 

'" 

+f 
, T 

c • 

+f ':f. -1Itf" + iu (N) D ~ DA<Pi 61: d~_2 dt 
r Ct 

+f (pig<Pi + niA ~<Pi,A + L 'ôt) dVN I
t
2 

o t 1 

.' " . 

(6.30) 

!, ,. 



! 

c 

- e 

36 

0, 

where Ct = a (Et fl D) and the following notation bas been introduced 

:~ 

'" i jA-1T = lT-N 
A 

, 
'0' .' 

Let us note that for N=2 ô Ut '" D) = X(2) - X(l) and the integrals over 

Ct are reduced to the difference of jumps of appropriate quanti ties at the 

boundary points X(2) and X(l) • 1,,-

In (6.30) the variations 15<1> and a (N) 15<1> are arbitrary varia-

tions on aD, also'Scj> , gL L 6<d(N)<I».:!:. such that S(d(N)cj»+ = S(ô(N)<I»- : 

if rra (N) <1>] = 0, are arbi trary variati-ons on Lt. 

•• Before we state the so-called stationary problen in the 

multiple, second order, calculus of variations for discontinuous fields, 

first let us recall that (r ,<1» is a pair such- that 

r = { (X, t): X €: Lt' t €: 'T } 

N+l' 
~s a smooth hypersurface in R swept out by a singular hypersurface 

Lt c: RN relative to the field <l>t (X) = <1> (X, t) 

The stationary "point" of the action integral (6.3) is a 

pair (r, <fj (or (Lt,<I>t» such that the first variation given by (6.30) 

vanishes for all variations of (f ,cj» «Lt,cj>t» ob . ed by anbedding of 

({',<I» ({Lt<l>t» in a one-parameter family (infinite imal, virtual defolltla­

tion) 

1) 

where E > 0 Is small, 

r (5) = {(x, t): X €: Lt (5), t € !T(s)} 
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and 
~ 

$t(S) (X) = tes) (X,t) = t(X,t(s),s) 

The variational problan which we now consider is the following stationary 

problem. For a given action inteqral (6.3) we wish te find a necessary 
/1 

7Ondition such that é~r = 0 for aIl variations ôq, = ét (Le. ôt = 0) 

associated with cr ,t) such that they vanish at the boundary of time interval 

T = [tl , ~ J. These variations are referreà te as the Lagrange variations. 

This variational problem leads te the (X)rrespondinq Euler-Laqrange 

equations, natural boundary conditions and jump (X)nditions associated 

with the singular hypersurface Et. These jump conditions qeneralize the 

Weierstrass-Erdmann (corner) conditions of: the single integral variational 

calculus which we have reviewed in Chapter 5. Tc this end we need te 

extend, the so-called Fundamental Lerrma of the calculus of variations 

(cf. Logan [26J, for example), te include the additional integrals 

induced by the dis(X)ntinuity of the partial derivatives of the field ( 

variables across their singular hypersurface. 

6.2 Fundamental Lemna of calculus of Variations for Discontinuoas Fields 

Let us assume that r is a srrooth, oriented and closed hyper­

surface of dimension rn-l ,9iven in rfl. Consider real-valued functions 

h, hl' h2 where h is a continuously differentiable, bounded ~ctiçm on 

R~r and h l ,h2 are (X)ntinuously differentiable bounded functions on r. 

The sought extension of the Fundamentâl I.am\a. of the calculus 
~,~", 

.r.;. 

of variations is the following. 

" 

>, 
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LfM.1A 0.2 • let lT C If! be a carpact set with m-l di.rnellSional sroooth 

bowldary JllT such that r divides TT into two llon-empty parts lTl and lT2 , 

and crosses alT transversall y . If f, g k ,r (a = l, 2) are real-
a a . . ' 

valuec1 contilluouS functiolls defined 011 lT\r, an\r , r Il lT and a (r f\ n) , 

respectively, and if 

l(lT) = f f(X) h(X) dVrn + J g(X) h(X) drm-l 
lT alT 

+ f ka (X) ha (X) drm_l + J' ", r:"(x) ha (X) drm-2 

rAlT a (rll'IT) 

= 0 (6.31) 

holds for every h, h (a=1,2) as defined above thell 
a 

f(X) = 0 for aIl' X E n\r 

g(X) = 0 for all X E a-:r\r 

ka(X) = 0 a=I,2 for all X E rAll' 

ra(X) = 0 a=1,2 for aIl X e: ô(rf\lT) 

l Il ~ • .m l . .m m 
III (6.31) dV

rn 
= dX , •••. ,ax , (X , .... ,x ) E Rand drj{ (k = m-l or 

m-2) are induced measures on appropria:te hypersurfaces'; 

PROOF • On:the contrary, asst.nTe f irst that there is Xl in the interior 

of lT\r ~or which f (Xl) > 0 o. 'lben b'l continui ty of f there is an open 

baIl BI = f X: IX-XII < Pl} in the interior of TT" r, of radius Pl > 0 

for which f(X) > 0 for X e: BIO New, define the function h(X) by 

h(X) = 
{ 

0 outside of BI 

[ 2 2 J2 (X-Xl) - Pl illside of BI 

l'L' ) 
. 

'l'hen, h(X) is differelltiable in n,r and 

• 
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l(n) = f f(X) h(X) dV
M 

> 0 
BI 

This fact provides the contradiç:tion, hence f (X) = 0 on :r \ r. Next, 

assume that there 15 X2 E: d1T\r for which g(X2) > o. Then, by oontinuity 

of g on dn\r there is an open baIl B
2 

=. {(X: IX-X2
1 < P2} inR'r of . 

1 

x:adius P2 > 0 such that <P 1: B2 " dnc'd1T\r . and g(X) > 0 for XC B2 1\3TI 

New, de fine the function h (X) by 

h(X) = 
[ 

0 '~tside of B2 

[(X-X2) 2 - P~~ 2 inside of ~2 

Then i t is well defined and (f (X) :: 0 on n\r> \, 

== J g(X) h (X) dr 1 > 0 
B

2
" Ô 'li' m-

Hence g(X) :: 0 on d1T\r • 

. Next, assume that there 15 XJ in the interior of r Il TI such 

that k1 (~) > 0 (k2 (XJ ) > 0) then by continuity of k1 (~) there i5 an 

" : open ball BJ = {X: 1 X-XJ ' < PJ} in th: interior of 1T such tha t k1 (X) ::. 0 
, -

(k
2 

(X) > 0) for X € BJ fl r. Define the function h by 

New, let ha <a=1,2) he taken, as 
'. 

1 - for X € r' hl (X) = ,h(X) , . 
h

2
(X) = 0 for X € r 

(hl (X) = 0 ' for X E r) 
-h

2
(X) = h(X) for X € r , 

1 

-. 

. " 
-. 
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Then ha (a=1,2) are well defined and 
J 

'. 

Hence,l ... by contradiction we have that ka (X) = 0 (a=1,2) on r fllT. 

Finally, in a way similar ta the derivation of the last 

contradiction, we obtained that ra (X) = 0 (a=l,2) on a CrlllT) • 0 

..,\-) 

6.3 Stationary Principle for Disoontinuous Fields ~' 

Let us consider the Laqrange problan for the action integral 

Aoxr :iven by (6.3). First, recal1~J that ô<I> and a (N) ô<p are arbitrary 

+ + variations on aD and that 6$, SE, 6(a (N) $)- such that 6(a (N) <1» = . 
--- ,-S(a (N) <1» - if [a (N) <pD = 0 aœ arbitrary variations on Et " we prove the 

follow41g 

'ImXlŒM 6.1. The first variation ôAoxrof the action integral (6.3) 

vanishes for aU Lagrange variations associated with (r,<p) if and only 

if for each _t ê (t1,t2) the Euler-Lagrange equations 

Ef(L) = 0 (6.32) 

and the following jurrp. condi tiODs on Et {\ D 

[~A + plu (N) - Li ~ (H~ + lTiAu (N) ) D= 0 (6.33) 

Il {~A + plu (N) - DA (~ + lTiAU (N» } a (N) <1>1:, 

(6.34) 

'" 

.. 
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(6.36) 

~ , 

hold true. "'M:>~r we have on aD the followinq natural boundary 

conditions " 

(6.37) 

~A~=O (6.38) 

and the fOllowing jump conditions in a (D /\ Et) Co aD 

[lIfABN!~n + [(H~i + niBu (N» ~D = 0 

f if Œ a (N) 4> D = 0 (6.39) 
, 

•. , nf.A~!D~)± + {(~i + 1T
iBU (N» ~}:!: = 0 

(6.40) 

PROOF. It follows fran expression (6.30) for ~x1' and the renarks 

g1y:en after the proof of Lemna (6.2) and finally on applying this lemna 

, to (6.30).0 

• 
. 

Let us assume 4that the sinaular hypersurface Et ls a wave, 

i.e. tbat U(N) :f: 0 at each point (X,t) of r. In'th,is case, if the condi­

tions (6.32) - (6.36) hold then (6.34) can be written in the following 

equivalent fol:lllS 

, , 

(6.41) 
, ' 

~,--

.. 

, " 

\ 
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0' 

\' 

The proof follows fran the fdnematical conditions of 

(6.42) 

oompatibility (3.10), (3.16) and (3.17) which for the oonsidered field 

variables (r ,4» can be written in the following way , 

" 

r 
, . 

. Applying these contfitions, together witb (6.33) ,(6.35) and 
, " 

, (~.36) in (6.34), \\le obtain (6.41) and (6.42) • 

.... .:. We shall prove later, that the energy density E for the 

Lagrangian densi ty function 

~ r , ,;' , 
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.' Introducing E into (6.41), after siJT!ple manipulations 
~ 

we obtain 

(6.43) 

which is another fonn of (6.34) 

New, let us take an arbitraIy "good""cylinder D*xTc 
q 

o xTand integrate conditions (6.33) and (6.43) over r~ = 0*" r~, then 

we obtain 

f II~~ + Piu(N) D ~-l = 
L~ 

J II (H~ + niAu (N) ) ~])jE N-2 

Ct (6.44) 

f* IIT~A~i + H~~i,A + EU (N) D dl1!-l = 
t , 

= I; [(~ /.:Au(~»'\.iD d;"'2 
Ct 

.. 

(6.45) 

where C~ '= a (0* n L,t). In the derivation of the above identities we 

have integrated by Parts, using fODTIUlae (6.25), the last tenns in 

(6.33) "and (6.43)' and then, we have applied conditions (6.35) and (6.36). 

o 

,.." 
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;' 

ŒIAPI'ER 7 

INVARIANCE OF ACTION INrmRALS 

... -----
7.1 Invariance - fit Prevlew 

If the equatlOl1S of rrotion of a physical system are 

derivable fran a variatlonal prü.ciple a general and systerratic 

procedure for the relation between conservation laws and transfonnatiolls 

leav~l1g invar~ant the action integral can be established. The fUllda­

mell~l work 011 this problem for sm:x:>th .fields, was done in the early 

part of this century by Enmy Noether [27]. Influenced by the work 

of Klelll ~ 28 J and of Lle [-:29] on the transfonnation properties of 

dlfferentlal equatiOllS wlder a continuous group of transfonrations, 

~th!:?r proved two fundamental resul ts , now knowll as Noether theorems; 

èlass icall y, they can be stated as follows: 

, , 

(I) If the action integral ~; lllVariallt under ail r-pararœt~ • 

colltinuous group of transforrratiolls of the variables, 

then there result r identities between the Euler operator 

E1(L) and quantities which can be written as divergences. 

(II ) If the action integral is invariant \.lllder a group of 

transformations which de pend upon q arbitrary fUllctiollS 

and their derivatives up ta sare order ,S thell there 

~st identities betweell the Euler operator Ei(L) and 

their deri vati ves up to order s. 

.... 

'l11e Noether identi ties ,have iITp::lrtant physical ,collsequenCi!s. 

1be invariance of the actioll integral of the physical system under a, ., 
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r-pararreter group of transformations (a qroup of syrrrnetry transfonna­

tions) leads cÙrectly to conservatioll laws for the system illvolved. 

ln thA single integral variatioll.al problem this means that the 

synmetry property leads to expressions which are cOlistaut alollg the 

stationary paths, Le. f~rst integrals of the equatiOllS of notioll. 

For mult.i.ple integral problems tJ1e conservations laws have the form 

of a vaIùshing divergence which ~s interpreted as conservatioll of a 

"flux lf qualltity. The second Noether theorern ~s related to pararœter 

invariaIlt variahonal problems, i.e. action integrals which are 

illVariaIlt wlder arbitrary C transformation -of the independent variables, 

and will not be considered in this work. 

Our treatrrent of multiple integrals of calculus of varia-

-tions, though extended for dlscontinuous fields, was 1l111ited ta special 

fonns of the Lagrallge density fWlctiolls and requires a spec~al form 

for variations of dependellt aIld 1l1dependent varl.ables. For example, 

we shall not cOllsider variatiolls of the illdependent variable X. r-bre­

over this treatrœl1t is exclusively in Euclidean spaces using standard 

EuclideaIl coordin.ates. Accordillgly, we shall .1.IrpOse similar lliTUtations 

for derivatioll of conservation theorerns for disconhlluous helds. 

The classical variational' rnethods of obtaining the tbether 

theorerns are presented in many liOnographs, textl:x:xJks and papers. Let 

us rœntion only sare popular and staIldard references: the books by 

Courant and Hilbert [30J, Fwlk [31J, GelfaIld and Fœu.u [14 J, Rwld [32], 

Sagan [33 J, Logan [26] aIld the paper by Hill [34], the latter of wtuch 

is a carm:>ll source quoted by physicists. A roc>denl version of the 

Noether theorerns using the fonnalism o~ m::x:ienl dlfferelltlal gearetry 

(bulldles , jets, ••. etc.) ca11 bè found in papers by KarorC1NSki [35], 
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Tralltmall [36], Garcia. [37], Goldshrnidt éUld Sten1berg [38], aroong ethers. 

AIso the rronograph by Marsden [39] discusses a m::>denl version of the 

theorem. In the general setting of llonlocal variations the Noether 

theorem is discussed by Edelell [40]. 

The defllùtion of invariance of an action llltegral under a 

group of transformations has a strict 1 y local character. Therefore, \\le 

cau cOllclude .i.rtnediately theIl 'the so-called (local) fWldarrental 

invariance identities and the Noether ideIltities hold, for discontinuous 

fl.elds as well at: each p:>int which is not 01'1 a singular hypersurface. 

However, the above invariance identities we shaH obtain directly, 

starting with the action llltegrai collsidered in the class of discontinuous 

\ fields. 

For the ciassicai Celse, Le. for the case of srrooth fields, 
, 

our presentation of the invariance éUlà conservation theorems follows 

perhaps the rrost ciosely the exposition pf these problems gb{§u. in the 

book by Legal) [26]. 

7.2 InvariallCe of Multiple IntegraIs 

Tc facilitAte the exposition, and in particular to àvoid 
, , 

, the' ambiguities of the infinitesimal language, we shall use exciusively 

a one-pararœter group of transfonnatiolls. 

A family 

Il ::> cr 3 s ... g(s) 

of maps g ( s ): rF -fi' tf1, where an llltervai & in RI contalllS the origin as 

1 
.; 

an lllterior point, is called a one-pararœter group of transfonnatiollS "-

of FfI if G: lf1 x U -. If', defined 'by G(X,s) = g(s) ÙO is a mapping and 

,~ , 1 .. 
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-
The curve s ...... G (X, s) is called a trajectory of the group. 

o Through any point X C If1 there passes e.xactly one trajectory of the 

group. Denoting ~~ (X,s) by d~S) (X), one can write the generator (Le. 

the vector field tangent te the trajectories) as 

r = dg(s) 1 
.. ds s=o 

The 't;ype of transfolJT\ations that will be cons1dered here are 

transfonnatlons of (x; •••• ,xn, t) - space associated wi th the action 

integra1..J..6.3), i.e. physical space-tirne. To he roore precise, we require 
'\ 

that the transfol:lI'1ations are gi ven by 

-i i( --1- ~-- -) 
x =G x,t,st----(=:l, ••. ,n 

-- ---
- :..n+l t = u (x,trs). 

The generators of the transforrn.:itions Gi and <f1+1 are given by 

ri (x, t) aGi ,- '1 

... = as- (x,t,s) s=o 

" 
a<f1+1 

= as (x, t,s) Is=O • 't (x, t) 

Exanple 7.1. A·one-parameter transfonnation of the (x,t) plane i5 . . . 
given by 

x = x 008 € - t sin e: 

, t = x sin € + t cos e: 

(7 .. 11 

(7.2) 

(7.3) 

(1.4) 

/' J 
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Geanetncally, i t i5 a rotation through an angle e:. In this case the 

generators are given by ~ = -t, T = x. By expanding sin e: and ros e: in 

Taylor series aÉ&:J.t, e: = 0 we obtain the "infinitesima1" rotations . ~ 

f,J • x = x - . e:t + 0 (e:), t = t + e:x + 0 (e:) 

where 0 (e:) denote teons which go to zero faster than 1 e: l , i.e. 
1 

:çp genera1, by Taylor's theorem (under suitable SlllX>thness 

• . +1 assumptions on Gl., cf' (i=1, ••• ,n» the right-hand sides of (7.1) and 

(7.2) can he expanded about s = 0 to obtain 

-i i i x = x + E;; (x, t) 5 + o(s) (7.5) 

t: = t + T (x,t)s + o(s) (7.6) 

where E;;i (x, t) and T(X, t) are generators of the transfonnation. The 
'.. / 

transfoImati,cil; (7.5) and (7.6) are the infini tesimal transfoImations 
1 

associated wfth the transfonnations (7.1) and (7.2). 

Let us recall that the first variation of the action integral 

(6.3) has been derived in the class of fields (f ,$), where r c. RN+1 is 

\ a sinqu1ar hypersurface relative to the mapping $ : RN+ 1 + Rn, wi th 

restriction te the "good "closed cylinder 1T = D x 'T C. RN+ l as a dana.in of 

integration of this mtegral. The graph of the rnapping <p, denoted by 

Gr(<p), is a piecewise-srrooth manifold and r 15 the projection on RN+1 '~ 
.) 

i ts singu1ar subset. 

We assume (it can be proved, however, this proof is very 

technical and i5 anitted) that for sufficiently Bllall s, say 1 si < 'e: 
! 



• 

o / 

a one-parameter groy.p.of transfonnation (7.1) and (7.2) carries a piece­

wise-sroooth mariifold ~(<p) lDx7 into Gr(<p(s» 'DxT(s) with the same order 
~ , .~ 

as that of sinqular h:9Persurface r. (The order of a singular hypersurface 

has been defined in Chapter 2.) 

Instead of a proof of this assumption, it will he justif1ed 

by considering the following important exarrple. 

ExaIrple 7.2. We subject Gr(cj» te the fOllowing transformations 

-1 i( ) x = G x,s (i=l, ••• ,n) (7.7) 

- -Il+1 t = (;i (t,s) (7.8) 

where Gi is an infinitesimal rotation in Rn around a fixed, arbitrary 

direction, and cf+1 is an infin1tesilnal translation in Rl • Then we 

obtain 

- -Il+1 t = (j (t,s) 

The second equation may he solved (for a general srrooth transformation 

(7.8) may be solved for sufficient.ly small s) te obtain 
• 

t=T(t,s) 

U};X)n substitution of these quantities into the f1rst equation we obtain . 
-1 i -x = G (cp(X,T(t,s) ,s} 

= $i{X,t) 

Therefore, the functions xi = q,i(X,t) and the functions xi = ~1(X,t) 

are related by means of transfotmations (7.7) and (7.8) via the conditions 

1. 

, 
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i -i-G (~(X,t),s) = ~ (~,T(t,s». 

Tc be rrore explicit 

~i(X,t(s),s) :: $i(X,t) = $1(X,t) + €~ $j (X,t) s 
J 

tes) :: t = t + cs 

where €~ are canponents of the infin1tes.imal rigid rotation tensor in 
J 

Rn and c 1s a constant. , 

Clearly, in the above example' the pair Cf ,$) 1s catr1ed into 

a one-parameter family (f (s), ~ (s» where r and r (s) are sinqular hyper­

surfaces relative to ~ and ~ (s), respectively, with the sarne order of 

sinqularity. Note that ~der the transfofmations (7.7) and (7.8) the 

danain of integration 0 x ris transfonned into 0 x r(s), where 

The exarnple considered alx>ve is crucial for applications to 

classical continuum rnechanics. However, the general characterization of 

the problem of a group of transfonnations for discx:>ntinuous fields 
" 1 

(~cept obvious sm:x>tlmess assumptions) should he carried out in full 

detail in order ta fODmllate a general invariance property of action 
f 

integrals for discontinuous fields. We will not attanpt te resol ve this 

problen here. 

We can now define, wpat is inplied by stating that the 

:, rultiple integral (6.3) is invariant under the one-parameter group bf 
t 

transfoIItlations (7.1) and (7.2). 

The action integral (6.3) 15 invariant under the one­

pararœt:et' transfonnation (7.1) and (7.2) if and only if g1ven any (f ,~) , 

and any '\p::>d' cylinder 1T = D x r c "RN+ 1 we have ., 

rr 
\ 
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• L(~,' " J- f_ t, $1' <Pi A' ti~ ~i,AB' ti,À) dVN dt 
D\I:- ' , 

t • 

, 
". 

-J f L(~, • • 
t, <l>i' <Pi,A' <Pi' <l>i,AB' ·<I>i,A) dVN dt 

r D\It 

= o(s) 
\ 

~i'c'>(7.9) 

for every s sufficiently small, say Isi < e:. 

The cxmdition (7.9) means that 

! f f L(0,t(s), <l>i (s), <l>i A ès), ~i (s), <l>i AB (s), 
1'(s) D\1:

t 
(s) , , , 

=0 (7.10) 

where 

t :: tes) 

~(X,t):: <p(X,t(s),s) 

and 1(s) :: f are related by a one-parameter group of transformations. 
C' • 

Before proceeding with a derivation of invariance identities 

and conservation laws for the action integral for discontinuous fields 

we ITUlSt clarify the variations, induced by s}~try transfonrlation on the 
. . 

hypersurface of discontinuity,of partial derivatives of such fields. 

First, let us do this for the special case considered in Example 7.2 

Example 7.2 (cont.). We have had that 

i -i - i i' 
,<1> (X,t(s) ,5) :: <P (X,t) = <1> (X,t) + e:j <l>J (X,t) s 

tes) :: t = t + cs 
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follows fIan the infinitesim":l rotation in Rn and the translation in 

RI. 

Fran the above \'Je obtain (;) 

(7.11) 

ôt = c (7.12) 

where 6<1> - aês <I>(X,t(s;,s)ls=o is the variation'Of the fOD11 of <p. Because 

ct> is a continuous mapping, \ then recalling the kinanatical and variational 

conditions of canpatibility given by (3.10) and (4.7), respectively, we 

obtain fran (7.11) that (cf. also Lemna 6.1) 

(7.13) 

" bold for an arb1traIY CC/ef». In (7.13) St 15 the nonnal variation of the 

hypersurface Lt (with ôt = 0) and U (N) is thè speed of propagation of L~. 

New, by taking limits of (7.11) on the singu1ar: hypersurface 

r, ~d using con&tions (3.9) and (4.5) together with (7.13) we obtain 

that 

Ô
i " i' a ôt + S",i = "') ôt 't' e:j 't' 

(7.14) 

holds on r. In (7.l4r ô~ $1 is the disp~ceœnt derivative and S<I>i is 
" , 

the displacenent variation of ct> relative to the singlÎlar hypersurface Et 

(with ôt = 0). Recall that 

r {(X t) x ' t e: RI""")} = , : e: 1 Et' 

~1· N ls swept out in R by a rroving singular hypersurface, Et in R relative 

ta <l>t(X) = <I>(X,t). 

'J 
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• 0 , 

For an amitrazy one-pararneter group oI ,transfonnati~I;ls 

(7.1) and (7.2) the extensions of the fonnulae (7.13) and (7.14) can 

he obtained as follows. First, let us introduce the notation 

, 

1 - "i <p <X, t (s) , s) :: ~X, t) = G (<I,(X,~) t, s) (1=1, ••• ,n) 

tes) :: t = GP+1 (<j>(X,t), t, s) 
... 

~~ 
t 

Then, frou 'these equations we obtain 

·i 4 1 1 '_ i-
<j> T(<j>, t) + ô<j> ="f; (<j>, t) = ~<j> (i=l, ••• ,n) 

T (<P, t) :: ôt 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

1 '). 
where f; (x, t) and T (x, t) are the generations of the transfonna4ôns (7.1) 

• 1 

and (7.2) qiven by (7.3) and (7.4) respectively. FOllowing the same remarks 

as those ~ Exarnple 7.2 consldered before we obtain fran (7.17) the 

" condition q 

,.. 
U(N) T(<I>, t) + gr = 0 (7.19) 

AIse, in a sirnilaJ;' way to the last e.xample, we have 

iê ,.. i 1 
ôt T(<P, t} + $<f> ' := ~ (<P, t) ('1.20) 

The conditions (7.19) and (7.20) are satisfied on an amltrary' sd.nqular 

h~surface. We have just proved the following. 

LJM.1A 7 .1. For ~ch pair Cr 1 <p>' where <1>: p.N+ 1 ... Rn ls a piecewise-sroooth 

mapping ~d r, ls its singular hypersurface' (Le. r is a projection on 
3 , 

o RN+l of 'a singular subset of a piecewise-sm:oth N+l-ditnensiohal manifold 

c' 0 

~. 

" 

0, , 
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Gr(~) c: RN+1 x ~) and for each group of transfoxrnations 

-i i x =.G (x, t,s) (i=1, •• 'O ,n) 

t = cf+1 (x,t,s) 

with the generators 

/ aGi 
~i(x,t) = as- (x,t,O) 

acf+1 
= .:.;:;..-as 1" (x, t) (x,t,O) 

the fOllowinq .c(~nqi tion 

JI. 

U(N)'t(~, t) + SE = ° 
ôwi . A i i 
ôt ~ (~, t) + Sep = ~ (~, t) 

1 

are satisfied at. each point of r where U (N)' and * are respect1ve1y, the 
1 A A i 

speed of propagation and displacement derivatives, and Sr and ~~ are 

respect1ve1y, the nOI:mal variation of r (in RN) and the displacement 

variation~ both induced by the transfonnations.O 

As an addit;ional observation, we note that Lemna 6.1 fzan 

Chapter 6 and Lemna 7.1 imply that the "total" noxrnal variation ~E is 

zero and the "total" displacemept variation 8ep i equals ,~i (~ , t). 
1 

1 
7.3 '!he FUndamental Invariance Theorans 

NcM, we shall prove that the invariance of the action 

integral c:onsidered in the class of disc:ontinuous fields under an admissible 

9'l:OUp of transfox:mations inplies the existence of differential and integral 

identities. 

r' 
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THEXmM 7.1. A necessary condition for the act~Qn integral (6.3) ta be 

invariant under the group of transfol:Itlations (7.1) and (7.2) is that the 

Lagrangian densi ty function L gi ven by 

.smd its derivatives satisfy outside of r the following identity 

~ T + ~~i E;i + a:~ A (~;A - ~iT lA) + ~ti ( ti 
- ~if) 

fi 1 

aL i • i • i . i aL' i 
+ acl>i/AB (~,AB - $ ,AT ,B - cl> ,B T,A - cj> \AB) + a~i,A (E;A -

-1 • .. . i- · 
- $ T - ~T - $ T ) + L T = 0 ,A ,A ,A 

(7.21> 

. N+l i .' 
where, r is a singular hypersurface in R relative to cj> and ~ and" 

T are the generators of the 1;:ransfonnation and are given by (7.3) and 

(7.4), respectively. 

~ Tc prove this theorem, first let us note that equation (7.17) 

:UrPlies '~ • fOllowin~ set of identit!es ~ VaUd:" 

. ~= ~ - <PT ' 
~ .. 

A •• , 

ôcj> lA = E; lA - <1> lAT - cj>T lA 

..:.... 
A • •• • • 

154> = ~ - 4>T - 4>T 

"- .. . . 
154> AB = E; AB -. 4> ABT ~ 4> AT B - cl> ST A - $T AB 

, l , " " , 

AIso fIan LEmna 7.1 'Ne have that 

,on r. 

.. -~ .. ---
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... NaL,' by the chain mIe for partial differentiation we have the following . , 

;dentity 

d aL aL· aL· aL·· 
- (LT) = - T + - <II T + <II T + 'i\"r q, T dt at aq,i 1 aq,i,A 1,A alpi - 1 

~i,AT + L t . 

Upon substitutinq all of the above identities !nto Equation (6.1.) (T:: ôt) 

we optain, after simplification, the expression 

(A,B=l, .... ,N; 1=1, ••• ,n) , (7.22) 

By the arbitrariness of D x r we obtain fran (7.22) that the 1denti~ 

t9.21) holds true at each point, (X, t) \ r. 0 

Femark 7.1. The invariance identities (7 • .21) can he ~ressed in an 

equivalent fom 

(7.23) 

where .. 

(7.24) 
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Identities (7.21) (or (7.23», exactly as in the case of 

snooth fields, can be ,interpreted in two ways. If the transformations 

and an invariant action integral is known, the equations (7.21) (6:1. 

(7.23» "represent a set of identities in 0,t and the partial derivatives 

of <1>_ On the other hand, if the Lagrangian density function'L is 

unknown then the equation (7.21) (EtJ. (7: 23» represent quasi-linear 

partial differential equations for L, and consequently they can serve 

\ te characterize the Lagranqian densi ty ftmction, or -action inteqrals, 

'that possess given invariance properties. 

Noether' s identities,. or more precisely their local forms, 

fol1ow directly fran the invariance identities given by (7.23). At any 
, 

point (X, t) ~ r we obviously have the fol1ow~g set of identi ties ~ ~ 

aL ci = 
a<l>i,A ,A 

(aL Ci) 
aq,i,A ,A 

( aL ci 
aq,i,A ,A 

• 0 

.. • aL ·i aL ci _ (aL) ci 
~,c = ~ a~i 

aL ci = 
,a<l>i,AB ,AB 

[aL ci 
a<l>i,AB ,B 

_ (aL ) ci 
a41i ,AB ,B } ,A 

• 

i 

Substitut:fpq these expressions into (7.23) \\le get 

/ 
/ 

\ . 
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where"we have introduced notation (6'.17) (6.22) • 

In this way, we have derlved the extension of the (local) 

Noether' s theorem for discxmtinuous fields which we ne", state. 

'l'IiFDŒJ.1 7. 2. A necessâl:y condition for the action integral ( 6.3), which 

~s c:>nsideted in the class of discontinuous fields, to be invariant under 

the group of transfollTlations (7.1) and (7.2) ls that the following 

identities 

• 

'" 

(,.t (7.26) 

hold true at any point which is net on the singular hypersurface. In 

(7 .26) ~(L) ~s the Euler operator given by 
• 

Ef(L) = - ,aL) aL aL 
'aç (a4> ) A + (a4> ) BA 

i,A ' . i,1' 

• 
+ (aL ) + aL 

a~i,A,A a4li 
(7.27) l) 

aIld t1 and i are the qenerators of the transfonnations given ~ (7.3) 

and (7'.4), respect1vely. " 

-' 
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The identities (7.26) are knQWn as (local) Noether 

identities • 

The next theorem is an integral version of Theorem 7.2. 
y • 

Using the notation for derivatives of L given by (6.17)-(6.22) we 

have 

, 

'J.'HEX:IU:'M 7 .. 3 • If the assumptions of Theorem 7.2 are sa tisf ied then the 

following ~tegral identities 

1 

+ J J '11 (~A + ~ eN» (;i - ~iT) n d~_l dt 
r* 1:t"O* , , 

\....:. 

+ f J cr (~A + 1TiBu (N) ) (ti - ~i T) B ~ LU (Ni" il d~_l dt' 
TIr Et'0* . ' 

= 0 (7.28) 

hold true for an arbitral:Y '9ood'!cylinder 0* x T* c: 0 x T. 
j •• 

PROOF. Theoran 7.3 follows by substituting expressions on ô4> and ôt 

given by (7.17) and (7.18), ~spectivelY, into ôAoxr = 0 where 6Aoxr 
is given by expression (6.1'>. AlSO, this th~rem follows directly 

fran Theoran 7.2 by integrating (7.26) over 0* x T* and using (6.14) 

and (6.15).0 

ft 

.. 

, . 
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The conservation theorems in the case of $l'OOth fields 
J 

(aIl j1.m1Ps vanish) are simple co.rollaries of the fundamental invariance 
Q 

theorems, i. e. Theorem 7.2 and Theorern 7.3 for this case. The Noether 

identities ho.ld everywhere in the danain of integration of the action 

integral and they imply the local conservation" laws which take the fOIm • 

of a vanishing divergence. 

The integral conservation laws are trivially obtained by 

integration of local conservation laws over an arbitrary subdanain and 

applyinq the Divergence Theorem. For discontinuous fields we have the 

ri 'following fundarrental conservation theol:effi. (A very :i.rrportant application 

of this theorem we shall consider in the second part of this thesis). 

.. 

'l'IiEX:.mM 8.1. If the action integral defined by (6.3) 1s invariant undei 

the group of transfonnations given by (7.1) and (7.,2) and if the Euler­

Lagrange equat;ions (6.32) and the jtunp conditions (6.33) - (6.36) of 
. , 

the 'theorem 6.1 are satisfied, the following integral identities 

",' 
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\ 

(8.l) 

, 1l 

bold true for an arbitrarY"good"cylinder D* x r* c: 0 x T. In (A.1) ~i' 

t' are the gènerators of the group of transformations given by (7.3) 

and (7.4), respectively, c~ = a{D* nEt) c aD*, and ~ are the 

ccrnponents of the vector M v defined in Chapter 6 (c. f. Fig. 3 and Fiq. 4) 
1 

PROOF. In t1!e notation of (6.17) - (6.22) and (7.24) the identity (8.l) 

-~ 4. [(~B + niAu (N) )~Ci D d1N_2 dt = ~' (8.2) 

cFl:tJI\ Theoran 7.3 Oit fo11ows that we only need te prove that 

(8.3) 

where L~ = D* (\ Lt. 

Fran the jump conditions (6.34) - (6.36) and (6.43) we have 

[(~A + piu (N» Ci + (H~A + lTiBu (N) ) C~,B + LU (N) T D 

= n{~A + piu CN) - DA{H~ + niAu(N»} Ci + DA{(H~ + niAu(N»C~} 
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On substitutinq this into the left side of (8.3) and then using integration 

by parts by means of the fomrulae (6.28) and (6.29) we obtëU;1 that (8.2) 

hoids true. Thus the proof 15 carpleted. D 

The "local" conservation theorem is a simple consequence of 

Theoran 7.2 and Theorem 6.1 as the fOllowing corollary shows. 

COro11ary 8.1. If the assurnptions of Theorem 8.1 are satisfied then tl)e 

fOllowing identi ty 

(X,t) ~ r (8.4) 

'holds true. ' In (8.4) 

and ~i and 't are the generators of the group of transformations given 

by (7.3) and (7.4), respect1vely. D 

Let us note that the identity (8.2) can be written in the 

equivalent fOIIn 

: 
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Ci:n d~_2 dt = 0 (8.5) 

where 

, ,.. " . 
and MA are the cx:rrponents of the vector M defined in Chapter 6 (c. f. 

Figs. 3 and 4) • 

Renark 8.1. The conservation laws expressed by (8.2) or (8.5) are 

carplanented by the conservation laws for jumps on the singular h} per­

surface. They are gi ven by 

(8.6) 

, Wheœ Et = Et" D*, ct = a O:t,1l 0*) and E;i .and T are the generators of 
. t 

the group of transfanration given by (7.3) and (7.4), respectively. 
o 
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PROOF. ldentitles (8.6) and (8.7) are derived directly fran jurrp 

cxmd1tions given in Theorem 6.1 and in,~. (6.4).0 

.., 

- '" , 

, 
i t 

\ 

~ 

, . ' 
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PART II • 
APPLICATIONS 'l'O SELEX::TED TOPles 

IN 
'w ,J 

CCM'INUUM MEOIANICS 

o 

------------------------------
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, 
'lbe use of variational princip les in continuum mechanics 

has been established over the years by rnany outstanding researchers. 

Sone of them we have a1ready ci ted in Part l of this thesis. Since 1 

~ .... ' 
the number of published papers, books and rronographs on this subject 

is very large', we shaH refer here on1y to the book by Washizu [41), 
" , 

~ch deals with the variationa1 princip1es of elasticity and plasticity 

in their classical setting, and to the recent ôook by Marsden and 

; Hughes [7 J where the subject is treated wi thin the f~work of m::rlem 

analysis on manifolds. These references contain full bibliographies 

on the subject. The latter of ~em also gives an account of the 

related parts of pure and applied mathematics. For general variational 

methods in applied science 1 in particular in fini te-element rnethods, 

we refer to Oden [42) and Zienkiewicz [43j. 
) 

The variational theorems for discontinuous fields have 

,recently been reco9l"ized in connection with the static and dynamics of 

canposite materials, fracture mechanics and finite-eleœnt fonnulations 

\ 
of problems in colltinuum mechanics. 

OriginallY, discontinuity conditions were trea.ted as part , ' 

of a variational theorem in linear elasticity by prager [44]. More 
• l' 

general cases of such theorems in Iinear and nonlinear elasticity have 

been developed by Nemat-Nasser [45, 46,47) where sone of thier applications 

have been studied aiso. For a large class of materials i,n continuun 
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\ 

mechanics, using variatiO~l methods, the jurnp conditions for discon-
, 

tinuous fields have been treated in Oden and Reddy r 6]. The general 
, 

theorems of the calcUlus of variations which adrnib propagating discon-
~ , 

" 

tinuities in the field quantities have been elaborated in the first 
." 

part of'this thesis. 

In this part of the thesis, we shall deal with applications, 

of the results established in Part I, te selected topics in continuum 

mechanics. In particular, we shall investigate the fOllowing topics: 

1. Kinenatics of elastic defonnation with discontinuities 

carried by wave fronts and in particular, the dualism in 

the description of the undefonned state and the farnily 

of defonned states of 2 and 3-d1mensional media set into 

rrotion, during which a singular hypersurface propaqates 

~gh these media. 
c . 

2. Balance laws, in the material and spatial descriptions 1 

for simple hyperelastic materials and materials of qrade 

2, which admit discontinui ties carried by wave fronts 

in these materials. 
" 

3. The problem of wave propagation in a plate IOOdel based 

on a fourth order differentia~ equation for transverse 
• ù 

vibrations, includinq the shear caused by transvers~ stresses. 
, t' 1 

, . 
" .c'" The first topic will be presented in Chapter 10 (dualism 

, m the description of a sinqular hypersurface) and in Sections 11.2 and 
, < ' 

11.4 of Chapter 11 (dualism in the description of balance laws of 

3-dimensional elasticity theories). Our approach (though set in the 

standard coordinate system on~) is based on classical tensor analysis 

following nonographs by Truesdell and Toupin (12] and Truesdell and 
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Noll [48 J. SaTIe defini tions and proofs using the notion of differential 

fonns' 'will he prese:nted in Appendix III. 

In Chapter 11 we shall deri ve balance Ü1WS (balance of the 

linear m;rnents, angular ma't1enta and energies) in a 3-dimensional simple 

hyperelastic material and materials of grade 2, through which a singular 

surface, Le. a wave surface across which partial derivatives of l'IOtion 

, are discontinuous, is propagating. These balance laws will he given in 

both material and spatial descriptions. In the above we fOllCM Toupin 1 s 

te rminology , see Toupin [3). For a review of the generalized elasticity, 

including materials of grade 2, and their historical developœnts, we 

refer to' the article by Tiersten and Bleustein [2J. The interest in 

various generalizations of classical elasticity and their appU,cations has 

existed since the \\.Url<: by Cosserats [49 J. For recent develq:ments we 

. mention the theory of grade consistent micropolar rnaterials by Brulien 

and Hjalmars [50] or Ielian [51], arrong others. Applications of higher 

order materials can he found in COllet [52] (elastic ferrcmagnets) or in 

Sun and Yang [53], Kanatani [54] and Kerr and Accorsi [55] (c:ontlnuous 

models for frame-type structures). 

It should he clear, that our results frcm Part l provide 

r a qeneral frame\\.Urk for the investigation of propaqating discontinuities 

in such models. However, such a study is postponed until the future, 

because, presently there does not exist a general, consistent dynamical 

continuous rrodel for frame-structures such as gridworks, trusses, etc. 

For such static rrodels we refer to Kanatani [541. 

In this thesis and in particular in Chapter 12 we shall 

investigate $e problem of wave propagation in a 2-d.irœnsional plate \ 
\. 

.. 

.. , 

nodel gove~~ \py the fourth order differential equation for transverse 

vibrations, inc~uding the shear caused by transversé stresses. Such equations have 
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been studied by Duvaut and Lions [56J and they have recently been 

derived from' 3-dl.mensional linear elasticity for plates using the method 

of asymptotic expansion by Gusein-Zade [57J and Raoult [58J. These 

authors have studied the applicability of the plate rrodels and the 

latter bas also qi~nve.rgence estimates. 

Using the inverse methods of the calculus of variations 

(c.f. Santilli [59J andBampi and M:>rro [60J) we shall associate with 
~ 

the evolution equÇltion for plates a 2-dirnensional Lagrangian density 

function. We shaH investigate only thim-order waves Within the plate 

rrodel. Recall that the k-order wave front in the plate rrodel corresponds 

, to a wave curve across which the lowest, k-order derivative of the 

vertical displacanent of the middle surface of the plate, with respect 

to time, is discontinuous. Applying the variational theorem for 

discontinuous motions (Theorem 6.1 frcrri Chapter 6) we obtain the speed 

of propaqat1on of such a wave front in the plate rrodel we have chosen. 

-'This speed of propaqation which is expressed only by rraterial constants, 
" 

irnplies that the wave front consists of a parallel family of curves. 

With this infonna~on we can integrate the wave amplitude equation to 

find the decay law for third order waveS in the plate rrodel. AIse in 

_ this chapter we shall study the meaning of such waves and, as well, we 

shall state sane general observations conceming their decay law. 

Finally, we shaH indicate the relation of our approach te thOse stl,XUed 

by other researchers. 

- '0 

.. 
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CHAPrER 10 

KINEMATICS OF ELASTIC DEFORMATION .. 
FUNDAMENl'AL FORMUIAE 

The key to understanding finite deformation theory 15 

an appreciation of the dualism in the description of the undeforrred 

and the defonœd states of matter. In C1assica1 Field Theory, which 
-

arp10ys classical tensor analysis ,. the key is an appreciation of the 

b..u sets of .(curvilinear) coorclinate systems, material,and spatial, 

that are used to describe deformation processes. For. this approach, 

wa refer ta !l'rUesdell and 'Toupin [12]. and Truesdell and NoE [48]. 

M:x1epl Field Theory, ernploys tenso~ analysis 6n manifolds, and the' 

dua1ism mentioned above 1S formp1ated usi?g manifold ideas; the pull­

back alld push-for.-:ard. For this apprao:ch we refer ta Marsden and 
1 

Hughes [7] in which also the relations and notations of classica1 

tensor ana1ysis and' tensor ana1ysi~ on manifolds are indicated. The 

referenc!s mentioned above, conta in a full list of references on the 

subject and its historica1 deve1opnent. ' 
.', 

In this part of the thesis and in particular, in this èhapter 

'We shall employ classical analysis on Rn using standard eartesian 

coordinate systems, tne sa.Jœ as we d id in Part 1. This choice, of 
n 

course, cannot affect the physics invo1ved. 
~ , 

An N-dinensional materia1 body is ideutified wit:h a cœpact,p,Eet 
, , " 

,B C RN which has a Sloooth boundary as hoœarorphic to a (N-l) sphere. 

'. 
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. 
This identification is referred to q,s rl1e reference conflguratlon. '!'ne 

points X of 8 represent the positlons of l.'aterial or ,1'aSS poInts ot .. a 

body in this configuratIon. ~.p- sha11 conslder 2 or 3-dlIlê:IlSl.0Ilal bcxües, 

i.e. we shall aSSUlïle tha": N = 2 or,"J-'.,Iespe.c~l.vely. 

A lrotioll of the body, as useà here, refers l:0 a chaJlge' 111 ItS 

size, shape, orientatl.on and location l.1l pnysl.ca l space \Vl thout: causlllg 

weakage, crackJ.ng or slippage, .... tll.én .... ould destroy the COllt!.1l1jl.ty of 

the process. Accordillgly, the motl.Oll of a\bodY ln pnyslcal E
3-,space is 

giVeIl by a olle-paraJTleter farnily {IVt } of ~rphlSI'1"G ':'t: B - B t' 

B ... c E3 bel.ng an. N-ùimensional manifold '.vith boW1dary, such that 
\,. 

ID: 8 x Rl~ E3 d~fined by 'v(X,t) = 'Pt (X) is a contl.r.u8'JS r;-appinq .... 11lch 

gives the spatial position 

x=I(J(X,t), XCB (lO.!) 

at each tirne t of each material point X. The irrage bt (0) of ally Sub!3et 

D c:. B is caUed the configuration of D at tüne t. The (Cartesiall) 

_ coordi~tes XA (A=l, ... , N) of X are called t!1e r.laterlal coord':"!lates. 

'l'hey are the llaI'ile. of a rnass point and as such rell'ain ',Ji th t!"le Iless polllt 

in the configuration of the body at each tlJile t. The (cartesléUl) coordl-

llates Xi (i=1,2,3) of the position x are called the spatIal cocrdl1lates 

of tbe mass };X>illt. 

The existeI1Ce of a hOilEQ'OO17phism t't: B ~ Bt for eacn) t lJ\1[llles 
,. 0 

that \Ve can write the inverse relation to (l0.1) 

(l0.2) 

'l'he mappillg If for each t il'aps the manifold Bt Qnto 8; The relation 

(l 0 ~ 2) can be intetp.reteà in another way. One cali collsider (lO. 2) as 

. . 

,.., 
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a (g loba 1) curv111llec:U" cooràillate syster,l 011 B t . This ti.'1'E àependellt 

coordinate system is calleâ a COllVected COOrcL.lla.te system on St' 
(; 

The'~ial derivatives 

ij,!.,A -

a\!Ji(x,t) 

aXA 

. . " ·i 
u \ 

..: 1~i (X,t) 

- êt 

-of t.1e ::-ot'ion !- are, re,spectivel y, the canponents of the so-called 

defor.rat101l gradient and t.'1e velocity of the Inateri~l p::>Ï!lt X at tinÉ 

t. Let us Ilot:.e t:1ëIt the aSSUi,~tioll that Bt is 311 N-di.Iœllsional mani­

fold .1.11 EJ 
15 equlvalellt 'tO the foi.lg,.~illg condition 

rani< ('1: ) = N 
l,A 

':or éach t. For N = 2, t.:'e refei:'el~Ce .::ol1E~guratioll of a boày and its 

collEguratlOll at Urie i.: are àepicted in ~ 19. 5. 

~'le aS3i..Uœ that âuring tllre ~llterval r = l t 1 ' t 2 ] a singular 

:.:p~rs'Jr:ace of the =:-ot::..on '~J ol 8 is propagatlilg trrrough the material. 

'1'0 be :oorr:·,preclse, I,o,'e cOllSlcJer a olle-paranY~ter tarr.i.ly f Lt} , t e: r 
For a g1 vell ~iDtion t/lt : B ... St' t e: r , 0; ,a. closed subset Z ... 111 B. 

'-

, N 
let us assl.r.'I? t.'li\t for eélch t 10: r ~~ere e:usts an Opell set U ln R 

" 

1o..'"Ollta111~:lg B, a harecr.orpillsm .\: U ... 'Ut anà a péur ([t' ;-t) as \-ras 

dc?Ù'ied 11\ C:lapte!" ~, ::il.cn t:t.lt' B x r c. RN+l is a gcx:xl cyllllder 

(c.L C"upte'r il ar.':! ::t () ~ = :~, -:-t l B = ,1 
" ... 

'-

.. 
If a élosed hypersurface 

<At 11: :.; 15 d :n:.s-ular ~:.:-persurfilce suc:"! th...:.t as s~ of propagation 

-:';(:~)f clet"l .. €(: {Y'_" (3.7) U(,Y.!S Ilot \"ua.5h ai:. ~3C!1 p::ant of =t for each 

t.' .- r, the11 =t :"::i c~! 1-21..1 a · ... n\'~ propagatlll-! through t.'1C ixx.lY, B. Let; 
, , 

\ 

b . ': t:.!le arder of ',.ave correslX)l rls ta :lle l~.:;t .xder of 
,> 

" . 

..~--------------------------------------~ 
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deriyative of tL'le m:rdOll -:.vith respect to tiIre whic.o is d~SCOlltillUOUS 

a~ross the \Yavefront. AIso, let us note that if for soree t e: r 
j'J~ ~ ,.. 

Et 11 ,as ~ 0 the.tl for eacn t lE: 'T Ct = Lt () aB is an (N-2 }-c:umen-

sional sWl'\allifold ill a8, miel as 'Nell Lt approaches'aS transversely. 

'l'he subset 0t in Bt given Dy tVt O::t) is a spatial represen1;atioll of a 

wave at ti.rre t and is also rererred to as 'a wave. 

In a lratlller sinùlar 1:0 mat in Chapter 2, a "space-time" descrip-

tion of the wave Lt 1s given by 

r = {(;c,t): X e: Lt' t E:1"} 

in TT = B x r. Aiso its'space.:.time ima<je in fT = U (Bt X {~}) is 
te:r 

derineà by 

, y = {(x,t): x E: Dt' t e:T} 

where 0t = tUtO:t). SCherœ.tically, it is depicted in Fig. 5 wnere 

for Sii11plici ty N=2 and physical sp.lce 1.5 r~presellteà by E
2. 

'rhe: wave 0t (or [t~) of Ïirst oràer is called a shock wave. The 

vèctor fiel<!i s, def ined 011 ° bv 
l. t .1. 

s = [~,] 
l. l. 

( 10.4) 

, 
is called an anplitude of the snoc.k. wave. The wa~e 0t (or Et) of 

second arder .is called ail acceleration tNave. 'l'he arrplitude of au 
, 

acceleratioll wave is defil).ed
f 

by a 

( 10.5) 

where ~1. - a2
11ri (X,tl/3t2 is the accelerat1.011 of the rnass point X at 

time t. In gelleraW the arrplitude of i a \t.ave of ord~ k is gi ven by 

\. 

,'" 
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k k a IVi (X, t) lat. Fran the kine.matical conditions of 

c::arpatibllity of order k (for k > 3 such conditions can he obtained fran 

those of orde;r 1 and 2 by the 1 teration process) we have 

where 

in Which NA is a canponent of the nonnal vector N on ' Et' 
i 

(l0.6)-

In I!1BIlY practical cases defonnations of elastic bodies are 

"smaU" • A useful quantity in describing such defonnations is the 

displacanent vector which qives the change in position of a mass point, 

namely its position in the confiquration at time t minus its position in 

_ the reference configuration. The mathematical defini tion of the cr:mponents 
, 

of a displacement vector nrust invol ve the relation of the material and. 

spatial coordinates. We assmne that the rnaterial, coordinates of an 
1 

N-dirnensional body are identical with the first Nth 'coordinates of the 
o 

spatial coordinate system. The displacement vector ls defined by 

(l0.7) 

(r,s=l, ••• ,N;i = N+l, ••• ,3) 

j 

By a "small" defonnation wè understand a defonnation such that, for 

each t, 

IV1(B,t) 

IVr(Xs,t) prescribes a hanearorphism tlJI = (IVr,O) between B and 

II and the mappinq IV = (O,tlJ
i

) ls an "infinitesirnal" displacerrent. 

For a "small" defonnatlon, the spatial representation of a (material) 

sinqul"lr hypersurface ~t 15 defined by 
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'(r,s=l, ••• ,N) 

" l 
i.e .. O't = l/It: (Lt ) • Fran (10.7) we have carrponents of the displacement 

graa!ent gi ven by 

U '= \j) 1,s ~,s 

-~ 

) 
(r,s=l; ••• ,N; ~ ,= Nti, ••• ,3) 

, \ __ J 

is the Kronecker deI ta, and also ~at the ma.terial time 

(lO.S) 

derivative of displacanent u is equal ID the velocity~. It should 

he pointed out now, • that for N=2 the ab;?ve description of a defonnation 

will he used in the linear, theory of elastic plates in the frame\ "Jrk of 

which we shall investigate propagating discontinuities. 

A function F (X, t), X e: B 1s referred ta as a function given 

in material description. Ifs spatial description, when the arguments 

of F are transfonned to the position xr = I\lr (X, t), (r=l, ••• ,N) is denoted 

by f and is gi ven by 

f(Xr , t) = F (Xr , ~) (10.9) 

/ 
The connec tian behveen mh.teri,:,-l and spatial descriptions is important 

because final EqUations are often e.xpressed in spatial coordinates, 

since they correspond ID a la}x)ratary coordinate system. In other ~rds, 

nost measurements (but not aIl, for exarnple, in a simple tension 

experiment) are made relative to spatial position in the laboratory 
Il l' 

rather than, ID the material position fixed to and rrovlnq Wl th the 

" , 

defonred l:xx3y. The transfonnation between the mat€: nal and spatla l 

descriptl.ons of varlOUS tensors of the elasticlty t:n.."'Ones · .... 111 be al'Jf'::n 

.J 
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in the next chapter. New, we present such a transfollllation connecting 

material and spatial representations of the singular hypersurfaces Et 

and 0t' respectively. 

If the singular hypersurface 0t is represented by 

1 
(:r=l, ••• ,N) (l0.10) 

then for each t, the material description of this hypersurface 1s given 

" by 

- ~r(Xs,t),t) = 0 > (10.11) 
'-- " 

(r,s=l, ••• ,N) 

Let d~_l and ~N-1 denote the (induced) Euclidéan measure elements on 

Et and 0t' respectively. Their definitions, using the notion of 

diffe~ential fonus, will he presented in Appendix III. Here, let us 

note that for N=3, dE2 and 002 aie the ~clidean area elernents dA and 

da çmd for N=2 dE!, do'l are the arc length e..lernents dL and dII.,in the " 

material and spatial descriptions, respectlvely. The unit normal vectors 

on Et and ° t are gi ven by the following fOlJtlUlae 

Grad ~ 
N = IGrad ~I 

n = grad cl> 
Igrad <1>1 

1 
/ 

/ 

We shaH prove in 1\~dix III the follQWinq relation 

~ 

.(r,s=l, •.• ,N; N=2 or 3) 

where J = det (IjJr,s) 1s the Jacobian of tLe mappinq xr = Ij!r(Xs,t). 

(10.12) 

(10.13) 

For N=3 (10.13) is Nanson' s fonnula (see [12) 1 for exarrple) which relates 
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area elements in the reference configuration and defonœd. configura tions . 

New, we shaH prove that the fODl1Ula (10.13) i5 in fact well defÙled 
, 0 

for discontinuous rotions. Fran the well known Euler-Piola-Jacobi 

identi ty (c f. L 12]) 

-1 
(J Wr s) r = 0 

. " 
(10.14) 

we have that 

(10.15) 

on O't' which justifies' (10.13). 1 

, ~ j 
The speed of propagation in the material d~5criptiC'n 1s 

·given by 

a~ at 
. U (N) = - Grad ~ 1 

and i ts spatial vers;i.on, which is denoted by C (n) is qi ven by 

__ aplat 
c (n) - 1 grad <p 1 

From (10.12), (10.13), (10.16) and (10.17) we obtain 

-1 • r 
U (N) d~_l = J (c (n) - IVrn ,) dON_1 ' 

, 
~ f~ (10.13) and (10.18), it fOllows that 

-1 • r + -1 . r-
[J (c(n) - I\Ir n )] ::= [J (c (n) - IV r n ») 

(it can also he pràved clirectly). The quantity 

• r 
U == c (n) - 1Vr n 

• r = C (n) - ur n 

(10.16) 0 

, 
(10 .17) 

(la .18) 

nO.19) 

(10.20) 

\ 
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SQ -
is called the local speed of propagation. It gives a measure of the , 

nOIInal speed of the hypersurface O't with respect te the material points 
~ 

that are instantaneously situated upon this hypersurface (cf. ,"'150 Chen 

[61] ) • It should b..~ noted that the above transformation fonnulae" have ' 

been established for singular hypersurfaces inc~u~g also sh~ waves. 

If a sinqular hypersurface is an acceleration wave or higher order 

wave than aH quantities' such as the local speed of propagation, the 

Jacobian J, are defined uniquely on cr t. 
, 1 

FinaHy, let us stress that the above treabnent of the 

duaÙsm mentloned at the beginning of this chapter, in the case of 

discontlnuous fields has te be, elaborated in the language of tensor 

analysis on a manifold. It is a beautiful, challenging pl:Oblem. 

." ( -.. . ,~. 

1 

',' 

.-
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CHAPl'ER 11 

~ IAWS (CONSERVATION '1'HEX)REM5) FOR DISCONrINUOUS 

M:11fONS IN 3-DIMENSICNAL THEORIES" OF ELASTICITY 
, , 

() 'h'" 
,The dYnarnical Iaws of physics a~ unchanged in forro by 

several transfonnations, called symnetry transfonnations, in tirrIe and 
. 

space. A symnetry transfOl:mation that consists of a simple displacement 

in time, t .. t + c leads to no change in the basic physical laws. 5ii~ce 

time is horrogeneous. Similarly, the horrogenei ty of !?pace leads to the 
, . 

laws of physics beinq invariant in fom tQ mspl?cement :ip space 
, 

x = ~x + a, while the isotropy of space leads te the physicai laws beinq 

invariant in fom te rotations in space x .. R·x. AIl of the synmetry 

trânsfonnations menlloned above are rnembers of the Euclidean group of 

transfonnations and they fonm a basis of pre-relativistic mechanical 

theories. 

!JI • 

.",-

In continuum mechanics the invariance properties of thf:! 

laws of elasticity are expressed by the postulate that the (elastic) 

action inteqral is invariant under the group of. EucU dean transformations 

in ~ x R
1 

x = R·x + a ( 11.1) 
l' 

-
t = t + C 

whe~ R is a constant orthoqonal tensor (rotation in E
3

) 1 a ls a pnstant 

vector (displacanent in ~) and c is a oonstant" (dlsplacenent in RI) . 

--------------------------
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It will suffice to oonsider pnly infinitesirnal transfoIItlations (cf. 

ToÙpin [3]) of the group (11.1) given by 

- i xi = xi + (€ij x + ai)s 
(11.2) 

t = t + cs 

~ere 5 15 an infin1teSbnal2:te~Y' S&(-e:,e:), and e: > 0 a small ~ 
number. Also in (lI. 2) ai an c are ~~ry constants and 5 E:ij are 

the canponents of the infin tesimal rigid rotation tensor a-I, Le. 

except for the antisynmetry conditions e:ij = - e:ji, they are arbitrary 

constants. " 

Under the infinitesimal transfonnation (11.2) the notion 

Wi (X1;\' t) (i=1,2,3; A=l, 2, 3) is mapped tû a, one-parameter family -o~ 

rootions 

, , 

Assuming that a singular surface (a wave) I:t is propagating ~gh a 

material we obtain fran LatIna ?1 the following relatiops 

" 
U(N) 'C + -SI: = 0 (11.4) 

ÔWi " . ", 

ôt c + S Wi = €ij wJ ~ (11.5) 

A 

where U (Nf is the speed of propagation, ~l: is the nonnal variaton of 
A 

Et and S IVi is the displacement variation, both of them induced by the 

group of Eucidean transfonnations. 

• 
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11.1 Balance Laws 'for Simple Elastie Materials. Material Description 

The action densi ty function L for a silrple hyperelastie 

material (see ,Toupin [3] for this tenninology) is qiven by 

1 

.where ljJi(~,t~ (i=1,2,,3'7 A = 1,:,3) 

. \ 

• 
In (11.6) l ' 1 

Il -2 
2' Pq \JI 

(11.6) 

is a ItOtion. 

is the kinetic energy pei unit volume in the referen~ configurattl0n, 

and 

is the energy of ~efo:onation per unit volume in the reference configùration. 

First, let us note that (7'.24) now is given by 

(1,)..7) 

Then assuming ~t a singular surface (a wave) Et is propaqatinq through 

a material during the tim: interval, we obtain ftem conserva tion theorem 

(Theorem 8 .1) wri tten in the fonn (8.2) that the fOllowinq inteqral 

identities (recall that €:ij = - €:ji' aiarurc are arbitrary constants 

as they have been considered above), 

(11.8) 

Cl 1. 9) 

(11.10) 

Î 
1 

f 
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~ hold true for an arbi trary sub-OOdy 0 c· , B. In the aOOve id~ti ties 

i9 the P101a -Ki~chhoff stress tensor 

i " aL 
p =~ , a 

1 

1s the density of linear m:rnentum, 

~i~ = p(i 'iJj) 

= P ~ti 'iJj] 
o . 

• '"", 

D 

(11.11) 

(11.12) 

(11.13) 
~ 

is the ç}ensity of _ angular rocmentum (wi th re~t to. the orlgin of E3) 
• 

and 

1 ·2 
= '2 Po 'iJ + w 

, 
(11.14) , 

is the density of energy. In (11.9) the brackets, enclosiÎ1g indicies 

i and j indica te antisymnetrization wi th respect to these indicies. 
, 

i .i . 
The equations (11.8) - (11.10) are balance 1aws for P , ,wJ and E, 

;" ~---,-

respectively in an arbltrary demain of the body thr009h which a 

singular surface may he propaqating. ' 

For ~i'l1ple hyperelastic materials the jurrp conditioœ across 

the wave Et' obtained in 'nleoran 6.1, take the following fona 

U (N) lIpi D = - lI~AD 

U {N)lIED = - [I~A~i D 

(11.15) 

(11.16) 

" 
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1 c. 
Where ~, P and E a~ qiven by (11.11), (1l.12t ànd (iL 14) , 'respec-

/ 

tively. The jump conditions (11.15) and (11.16) are well-knO\.tJl'l 
"<J .,1 

, 
cWnamical conditions of canpatibility for hyperc ... astic materials, Le,.' 

, .. 
they are equations for j~s of th~ rocmertt:un:t and energy densities across, 

. .,J' , 1 

a wave~ The èOndition~ (11.15) and (11.16) imply the fOlldw1.nq balance 

laws 

f i 0 J iA... 
'(lp TI 0 (N) dA = ,- [T-"NA n dA 

1:t , ~' 
) (11.17) 

J 

(ll.lë) , 
< ' 

for an a~i ~ry part Et of the singu~ar surface Et. They can he deri ved ' 

also by applying the Kotchine theorem (for this theorem see WanlJ and, 
• 0 

Truesdell (171) bD balance laws (11.8) and (11.10) •. 
• ~ J 

r . 
Il. 2 Balance Làws for SiIpPle Elastic Mater:ials. 

, • r 

Spatiél1 Descx;-iption 
, .... 

In this section we, give the spatial description for balanœ 

laws (H.8) - <11.10) and (11.17) '- (11.18). Because f(!jr, hyP€relastic 
tI 

materials i t 1s a standard procedure (see Eringen and Suhubi f 62.)., for 
t' <1 {) 

exanple) we shaH only state the final, resul ts. 
, , 

" 
The balance laws (11.8) - b(11.10) have the fOllowing . 

spatial representation, .. 

, . 
,(11.19) 

(t 1. 20) 

~ 

, <U.2U 
-~~-I'-

\, 

f 

o ' 

" 

" 

, , 

• lIo 
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In (11.19) - (11.21), Lt = \j!t(D) ,De B, ~ are ~nents of the unit 

normal vector n on' a 11:' 

(11.22) 

is the Cauchy stress tensor, 

(11.23) 

is the spatial density of 1inear m::menturn and 

-1 is the spatial densi ty of enerqy in which P = J P't) i5 the rrass dens:!. ty 

per unit volume in E3 . To obtain (11.19) ~- ·(11.21) frcm the balance' laws 

in the material description qiven in (11.8) - (11.10) it is enouqh te 

note tha t dv = J d:v and tha t 

(11.25) 

~ 

~ch f01~ fran (lO.l3) and (11.22). 

On substituting (11.22) 1 (11.23), (11.24), (1I.25) and 

(10.18) into (11.l7) and (11.18) we obtain 

where at = Wt (Et) • The identities (1l.26) and (11.27) express the 

oorresponding balance laws in the spatial description. 

(11.26) 

(11.27) 



( 

() 

, 

87 

, 11. 3 Balance Laws for Elastic Material of Grade 2. Material Description 

We consider elastic ma ter1als of grade 2 wi th dynamical and 

structural properties defined by the following Lagrar.ge density function . 
(for a nonlinear static theory of elastic materials of grade 2 we refer 

-.:;;iiiiJ- te Toupin [ 3 ] ) • 

(11.28) 

where ~ 15 a positive syrnnetric tensor called the rotational inertia 

tensor, and W 1s the densi ty of elastic de forma tion. In this case 

, (11.29) 

15 the qeneralized Pi9la-Kirchhoff stress tensor and 

(11.30) 

19 the hypers tress t:.Ejsor. 
/ 

Now, theidentity (8.2) withC
J

/g1venby (11.7) (this 

1dentity has been derived in the oonservation theoren, i.e. Theorem 8.1) 

inplies the fOllowing 1dentities 

(11.32) 

. , 
" 

_.'~---~--------- .~~ 
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(11.33) 

where 0 is an arbitrary sub-body and 

(11.34) 

i.s the generali.zed traction, 

(11.35) 

is the hypertraction, bath are defined on aDt = IIIt (aD) and are related 

te the qeanetry of aD (Le. they are given in the material description}, 

(11.36) 

i.s the Une force on ~ = Wt (ct) and is related to <1 = a O:t'" aD) c. o. 

In the above we have a1so that 

iA aL -.AB-i 
1T = alJj = r-III B 

i·,A ' 
(11.37) 

The identities (11-:31) - (11.33) are balance laws for the considered 
. 1 i \ 

material. Thus idEftifying p~ = 2" Po~ as the density of linear rranentum, 

Mi.j = p[illljJ + n[:lAllljJ as the density of anqular rranentum (with respect 
,~ < 

te the oriqin in E3) and 

/ 
1 

L, ' 

i· jA. 
E = P 1jJi + 1T lIIi,A - L 

(11.38) 

'''''-1 

--
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as the densi ty of energy, aIl of them in the rnater1al description. The 

1dentities (11.31) - (11.33) express the laws of conservation of the 

(rnaœrial) linear mcmenturn, angular rranentum and energy, respectively 

for an arbi trary sub-body D through which the singular surface Et is 

propaqating. It 15 easy te verify, using (11.36), (11.34) and (6.24) 

that the balance laws (11.31) - (11.33) can be written in the following 

equiva~nt forro 

where 

+ f f ŒK~~i + 1T~U (N) ~1 D dL dt 
Te* t . 

(11.40) 

(11.41) 

15 a patt of the (total) line force Ki which 15· ~lateO only to - the 

g& . .''IIle1:ry of the,5ingular surface Et. The rema1ning part tS-D of K1 i5 

related only te the geaœtry of aD. 

The canplementary balance laws on the singular surface Et' 

for elastic materials with the Lagrangian denslty function (11.28) are 

obtained fran (6.44) and (6.45) as follows 

r 
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. , 
f U(N)ITpin dA = - f [~A~ + f aK~ + lT~U(N) D dL 
E* E*' c* t t t 

(11.42) 

( 
c 

f* U(N) [ED dA = - f* [T~A~i + H~~i,AD dA 
t . t 

(11.43) 

The physical meaning of the identities (11.42) and (11.43), 

which are irnplied directly frou the jump conditions derived in Theorem 

6.1, 15 that these identities express the conservation of linear rranentum 

and enerqy on a singular surface in the considered ma.terial. Thus, by 
, 

applying the Kotchin theorem to balance laws (11.39) and (11.41) one 

can obtain the identities -(11.42) and (11.43) • 

... -
11.4 Balance Laws for Elastic Materials of Grade 2. Spatial Description 

For elastic materials of grade 2, following Toupin [3] we 

.1, let 

(11.44) 

(11. 45) 

be the qeneralized cauchy stress tensor and the hyperstress tensor, 

respectively. Let us note that in (11.44) and (11.45) ~ and HiAS 

are given by (11.29) and (11.30) respectively. 

On substituting (10.13) into (11.44) and (11.45) we obtain 

(11.46) 
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---
New, let us define pi, 9T

ij and e by 

(11.47) 

(11.48) 

(11.49) 

(11.50) 

Then, cxrnb1ning (11.48), (11.49), (11.50), and the definitions of pi, 

~j and E given in the balan~ laws for elastic maœrials of grade 2 in 

the material description, and aiso recalling that dv = J a;v we obtain . 

(11.51) 

(11.52) 

edv =EdV .(11.53) 
, ' 

whete 

(11.54) 

and 

i· ij. -1 
e = P "'i + gr ("'i) ,j - J L (l1.55) 

'lbus, fran (11.52) and (11.53) we conclude thât' mij given 1:>y (11.54) 

and e given by (11.55) are the density of angular m::menturn and the density 

of energy expressed in spatial description. 

In substituting (11.46), '(11.47), (11.51), (11.52) and 

(11.53) into (11.39), (11.40) and (11.41) we obtain 

(11.56) 

--
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+ f J (lk[inpj] dg, dt 
'fct 

l 1 
t2 l J ij. ji • 

e dv t = Ct n ·l\Ji + h (tlli ).) da dt 
Dt -1 1" aD t] , J 

+ J J [ki~iD dt dt 
r Ct 

where Ct = a (Ot Il Dt)' Dt = I\Jt (D) and 
(JO 

ki 
dR. = K~ dL + 1T~U (N) dL 

= ki dQ, + gr\; d.Q, a 

C 11. 57) 

<11.58) 

(11.59) 

where k~ i5 th~ line force on Ct and grfu is the "~eneralized" force on 

Ct which will be discussed later (U is the local speed of propagation 

defined in (10.20». The identi ties (11. 56), Cl1. 57 ) and (11. 58) are 

balance laws for the linear m::rnentum, angular nanen1:"..nn and energy, 

respectively, in the spatial description". 

The equivai.ent fonn of the ~lance laws in the spati.,1 

description can he obtained in the f011CMing way. 

u i 
First, let us define the qeneralized traction t as follows 

_i i' ï i 
1: = t Jn . - d .n] - h b 
- ] J (11.60) 

where 

( 11.61) 

and • 
il 

Cl 1. 62) 

--- ~ 

.-
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'1 [, 
is the surface divergence pf h J and b = tr(~) in wJ?ich 

. , 

~~ = - ,\nR, = - dQ.~ are the cnt1?Onents of the secon~ fundamental fOIIl1 

of the surface. 

On in~cing (11.60) into (11.56), (11.57) and (11.58), 
1 t 

after inteqration by parts by means of the fonmÜa (6.,25) (in spatial 

representation) we de rive 

r ' ij 
bm dv 
t 

where 

---
= J J t

i 
da dt + f J [kin dR. dt 

,.. aD
t r Ct 

(11.69) 

(11.64) 

(11.65) 

k i = hj~i + jèi (11.66) 

. \"0' ' _ \ 
is the U.ne force on Ct (on tmit arc length of this ~) and mi are 

the canponents of unit tangent vector on aDt at a point of Ct which is 

alse noIl'tlal to Ct ( canpat:e the corresPonding vector M" on Fiq. 3) • 

On introducting (10.18), (11.53), (11.46) (11.47), (11.59) 

and (11.53) into (11.42) and (11.43) we have 

(11.67) 
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f f ij. ji • [euD da = - -lIt n.\jIi + h ('IIi) .n da 
cr. o. J ,J 

t t 

+ f [j{i1ÏJi n dR. 
a~ 

(11. 68) 

where 'ki was defined in (11.59), as the ccrnplementary balance laws for 

the singular surface 0t. Of course, these identities c~ he derived 

fron the balance laws (11.56) and (11.58) by applying te them the Kotchin 

theorem. 

Ta canplete our discussion in this chapter we have te 

oonsider the q'.:anti ty gri defined in (11.59) by 

(11.69) 

First let us note that fran the definition of the Jaoobian 

we can obtain 

(11.70) . 

where ~ and e:i 'k are the pennutation symbols in the material and 
J J 

spatial description, respectively. Then, recalling that the vector MY 

is defined by 

where l is tangent unit vector to ~ = a (Et r. 0) we can write 
'~ 

~~U(N) dL = 1TiAe:ABC~~ UCN) dL 

-1 ~ ï 
= J 1T e:j]dlVj,A"k,B 1jJ~/C~C U(N) dL 

i' ï 
= ST Je:jkR,~,BIjJR"CEaNC U(N) dL 

(11.71) 

(11.72) 

-----_ .. ~~ -_.-
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where in the last equality wè have used (11.49). -

Now', let us note that (cf. Eringen and SUhuhi [62J, for exarrple) 

-1 da -1 
U (N) = J dA U = 'tn, U (11. 73) 

where 

in which 

1s the Finger defonnation tensor,and that 

(11.74) 

where ok is tangent unit vecter te c~ = IJJt(~) and À defined by ÀdL = dR, 

1s the stretch. 

Fran the above we can wri te 

~ -1 da 
lIIR"cfc (N) = J npt\1p,C dA I\JR"C U (N) 

= npc;i ~2 U (11. 75) 

Finally, on substituting (11.75) and (11.74) into (Î1. 72) 

we obtain 

(11. 76) 

wh -1 -2 -
ere et =-= nk<1d <in). By canparing this with (11.69) we have that 

(11.77) 

'lhis oœpletes our discussion in Ws chapter. 

1 . ,;:-

• 

", 
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omP1'ER 12 

WAVE PROPlIGATION IN EIASTIC PLATES 

A plate .is a 3-dimensional body with one dimension, the 

thickness, beinq much smaller than the other two. This fact is used 

to derive various app:roximate 2-dimensional theories of plates. It is 

sufficient for our purpose to mention two main approaches for constructinq 

2-dimensional equations of rrotion of thin elastic plates. The first one 

,/ is the so-called direct appr:oach for Cosserat plates. For this approach, 

we refer to the rnonograph by Naghdi [63] where a canplete list of 

references for this subject is qi ven. In this approach the dynamical 

properties of a plate are represented by asstnning the fonn of a 2-

dimensional Laqrangian. Its Lagrangian densi ty function depends on 

the first order partial der1vatives of the position vector of points 

on the rniddle surface of a plate (the displacement vector in the linear 

theory) and on the director field defined over this surface and 1 ts 

partial derivatives of the first order. Thus, this 1s a first order 

variational problen. For a concise exposition of this subject we 

refer to Ericksen [641, in which the problem of wave propagation in 

elastic shells is also treated. 

In the second approach 2-dirnensional equations of_rrotion of 

thin elastic plates are derived fran 3-dimensional linear elastici ty 

using the methods of asymptotic expansion wi th the thickness of the 

plate -as a srnall pararneter. For this approach we refer ta Ciarlet_and 

." 
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and Destuynder [65], Gusein-Zade [57J and Raoult [58], arrong others. 

The analysis of asymptotic expansions not only justifies various plate 

rrodels, usually derived by employing a number of approximations or 

special assurnptions (sanetimes in an ad-hoc manner) but also gives the 

Uroit of applicability of 2-dirnensional equations and the corresponding 

l:::oundary and initial conditions together with sharp convergence estl.m3.tes 

(c.f. [65] and [58]). A particular feature of this approach is that 

the resul tinq t JO-dimensional equations of motion are fourth or higher 

" 
order differential equations. The inverse problern of the calculus of 

variations associates with these equations Lagrangian density functions 

which depend also on the second or higher order partial derivatives 'of 

rootion (Le. leads ta a higher order variational problem) . 

Finally, let us mention also a (direct) nonlinear theory of 

elastic shells in which the strain measures depend on the first and second 

order defonnation gradients. The static case of this theory, which is 

a oo-dimensional analog of nonsimple elastic materials and in particular . -
elastic materials of grade 2, has been deve10ped in Cohen and DeSilva [661. --- -_ ..... \ 

Origina11y, the theory of wave propagation on surfaces in 

which a wave curve corresponds to a rroving wave front and is a carrier 

of discontinui ties has been ela1:x:>rated by Cohen and Suh [67]. This 

theOIy has been applied te the problems of wave propagation in membranes 

and shells by Cohen and Barka1 in [68,69] and by Pop and Wang in [70]. 

The problans of wave propagation within the framework of a (direct) 
'. 

linear theory of elastic COsserat plates was treated by CohE!I1 [71], and 

in a nonlinear theory of COsserat shells by Ericksen [64]. 

In this chapter we sha11 investigate the problems of wave 

PJ:Opagation within the fraIœ\o.Ork of a linear theory of elastic plates 
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based upon the second approach, using resul ts established in Part l of 

Ws thesis. Fran what we have said, i t follows that this approach 

invoives higher order variational problems and as such the variational 

theorerns for discontinuous fields fron Part I of this thesis can be 

applied to the investl.gation of wave curves in the consid~d plate 

m::x1el. 

The fIat plate ls asstnned to he a cylindrlcal body in R3 
1 

denoted by B x [-h"hl (see Fig. 7). The thickness 2h of the plate is 

small 'cCmpared with its ~ other dimensions. FOllowing the results 

deri ved in Raoult [58] and Gusein-Zade [57] we consider the plate nodel 
[, 

gi ven by the fOllowing 2-dimenslonal evolution equation for vertical 

vibratiqns 

~2w 2 
2ph.E- +-

'at2 3 
(12.1) 

, ~ (j .. 
where ,,:(X

1' 
x2 ' t) i5 the vertical displacement of the middle surface of 

the ;>late, p ls the density of the material (2ph is the surface mass 

density), E is the Younq' 5 rrodulus and \.1 ls the Poisson ratio. Also 

in' (12.1) IJ. is the 2-dimensional Laplace operator 

, 
e 

'and 1J.2 ls the ?-dimensiohal bi-ha.rmJnic o~rator 
" 

4 
1::.2 = _d _ + 2 

dX
4 
l 

c, " 

':the equation (12.1) describes linearized transverse vibrat:ions of ,a 
\1 

pl'ate for wtUch the' boundary conditions and the gravitational force 
1/ ) ,\ 

" v 
have been negJ.ected. If the last teDn in (12.1) is dropped then the 

" 

-
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resultinq equation 1s the classical bi-hamonic evolution equation. 

In Raoul t [58] this equation has been obtained as a "0-0rder" asymp­

totic expansion and in Gusein-Zade (57J as an equation te an accuracy 

2-w 2h' o (E: ) where E: = T is the relative thickness w1 th .Q. being the 

characteristic dimension of the middle surface of a p'late and w is the 

quanti ty which characterizes the variabili ty of the state of defolJ\'lation 

in tirne. The equation (12.1) is referred te as a "2-order" asymptotic 

4-2w . 
expansion or as an equation te an accuracy 0 (E: ) in the references 

mentioned above. 

Followinq [57 J, if'-the w increases in 0 (e:2-w ) and 0 (e: 4-2w) 

the accuracy clirninishes and for w=2 the characteristic dimension of the 

defonnation pattern for the plate becanes equal te h. This indicates 

the essentially 3-dimensional nature of the process. 

As an addi tional observatl'èn, let us note that the coefficien t 

34 - 14v h3 
15 (l-v) P 

has a negative value. Hence it irnplies that the fourth order differen-

tial teDllS in (12.1) fOIm a "wave operator" for the quanti ty tJ.w, which 

as a second derivative of w 15 connected wi th the curvature of the 

defonned plate and ls aIse proportional to the bending rroment '(it will 

be shown Iater) • 

We shall introduce the following notation 

l = 17 - 7v h 2 
15 (1-v) 

into (12.1). 'Iben the correspondinq &lIer operator ls given by 

,. 

4Q 
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( ) .. .. 2 
E L = - ~ + J.lI6w - D.1 w 

il:, \ 
(12.2) 

tt a2w 
where lJ = 2ph 1s the surfaCe mass density and w :: 2 . 

at 

, The Laqrangian dens1 ty function L, which has i ts Euler 

operator g1ven by (12.2), lù3.s the rrost general fODll as follows: 

l .2 l (')2 l ( )2 di L = - IIW + - Il l IJW - - D l!:,.w - v 0 2 ~ 2 ~ ~ 
(12.3) 

where 0 = (01 ,°2) 1s a ~-di.mensional vector field on the middle surface 

B of the plate. Let us note that di v Q does not contribute te the Euler 

operator (12.2), however, it affects the bounclary tenn of the var1ational 

problem defined by the Laqrang1an density function (12.3). 

New, let us consider the static case of (12.3). In this 

case .-~-_--

(12.4) 

1s the energy of elastic defonœtion, denoted by W. , We require that 

this W be a quadratic function in w (ris = 1,2) (W does not involve , ,rs 

w, r because no \ooOrk il? done in stretr.:..'"'..i1'1g the plate) which does not 

depend on the orientation of the coonllnate system. 5ince the matrix 

W,ll _, _W-,,12 ' 

W,21 ' W,22 

bas just t\«) invariants under :rotation, i.e. trace and 1ts detemdnant, 

1t follows that (cf., Gelfand and Fanin [14]) the density of elastic . . 
defonnation has the fOIIll 

1 2 2 
W = '2 D(âw) - (1-\) D[W,llW,22 - (W,12) ] (12.5) 

.. 

WIJiJj", ____ , _______ ._. _____ ~. 
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It is easy te see that w,1Iw,22 - (W,12) 2 1s the diverqence of the 

vector ,(w,lw,22' - w,lw,12) then fran (12.4) and (12.5) we can 

conclude that the Lagrange density function (12.3) takes the fonn 

l .2 l (.) 2 l ( ) 2 ( ) [ 2]) 
L = '2 lJw + '2 J.lI 'VW - '2 D l:!.w + l-v 0 w,llw,22 - (w,12) (12.6 

and accordingly, the Lagrangian L has the following fom 

L = J L dX
l 

dX2 
B 

(12.7) 

where L 15 gi ven by (12.6) and B is the ihiddle surface of the plate. 

For the Laqranq1an density function (12.6) the generalized 

Cauchy stress tensor t
3r 

and the hyperstress tensor h 3rs (compare 

(11.29) and (11.30», respectively are given by 

.. 

and 

t3 r = ( aL) + aL 
aw s ~ ,rs ' ,r 

rI r2 = - O(w,lll + W,122) ô - O(w,222 + W~121) ô 

+ III w ,r 

h3rs = _ aL 
aw,rs 

rlsl = D(w,11 + VW,22) Ô ô 

- r2 52 
+ O(W,22 + \M,11) ô Ô 

(12.8) 

(12.9) 

œ 
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Let us not.e~t the generalized cauchy stress tensor does not depend 

(f on the second invariant of the matrix [W,rs] and that the hyperstress 

tensor does. The corresp::mding tractions (cf. (11.34) and (11.35» 

6 

,~I' -,"Jtthethe cu.rve c, which can he the boundazy aB or an intemal cw:ve, take 

(- th fom 

+ ttIW, n
r 

- h3n Del { ( + ) ... r . U - 1 w, Il VW, 22 nI 

(12.10) 

and 

(12.11) 

~ where dr (·) :: (ô~ - n~s) (.) ,s is the tangential derivative on a CUJ:Ve 

c, nr (r=1,2) are the c:on;x:ments of the unit nonna1 vector ~ B te a 

curve and Q is the curvature of this curve. The tractions (12.10) and 

(12.11) can he wri tten~ in a m:>re farniliar fOIm. Tc this end, first let 

us note that 

(12.12) 

" where rnr (r=1,2) are cx:mponents of the left-oriented tangent vector te 

-
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= h 3n + a (m) (h3rsm~s) - h
3rs

ns d Cm)mr 

= h3~ + Cl (m) (~3rsm~s) - h 3n 

_ 3rs 
- a (m) Ch m~s) 

For the thil:d equali ty we have used the Frenet fomula for curves 

(-cf. [25], for exarrple) • 

(12.13) 

On substituting (12.13) with h3rs given by (12.9) into 
, 

(12.10) and after simple manipulations in (12.11) we obtain 

. . 
- w,12(~1 + ~n2) + w,22n1m1J (12.14) 

(12.15) 

which have the same fOIm (except that in (12.14) we have aIse the, tenn 

lJ1a (m) w related to the shear effect) as those given in Duvaut 

and Lions [72] (eq. (2.54) on p. 206) and in Gelfand and J:'anin [14J 

(eqs. (61) and (62) on p. 166). 

New, W~ shall investigate the,problems of wave propagation 

in the plate rrodel we have considered above. Recall that a wave curve 

Et in the middle surface B of the plate corresponds te a rroving wave 

front and is a carrier of simple discontinuities in the partial deriva-

ti ves of the vertical displacement W(X1 , X2' t). 

The order of the wave corresponds to the lowest order 

deriwtive of W with respect te time which is disoontinuous across the 

wave curve Lt' It is very iIrportant to point out clearly that the wave 

- . 
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\ 
front propagating through B represents a two-dimensional process within 

the fraItle'NOrk of a two-dimensional plate rrodel as we ha~ described 

this rrodel in the first part of this chapter. Fran the previous discussion 

of the accuracy and the lirnits of applicability of this rrodel derived 

fran the asymptotic expansion of three-dimensional plate equations and 

fIOn the fact that a wave curve is a mathematical idealization of a 

danain in B of finite area where derivatives of w(Xr,t) (r=1,2) change 

rapidly, it is obvious that a justification of the considered ~ve 

problen ha.s ta be given. In other ~rds, the consistency of the order 

of the wave with the accuracy and limits of applicability of the plate 

rrodel deri ved by asymptotic expansion methods has te he studied in order 
<:l 

to ensure tha t this wave represents a meaningul process. Any such 

analysis must technicallY he very involved and is outside the s~ of 

this work. 

In this thesis, we shall consider third order waves; their 

meaning within the plate rrodel 15 given by the following simple observa-

tion. If we apply te an infinite plate on elastic support a constant 

load P concen trated on the line X2 = 0, then by the synrnetry of this 

problen, the resul ting deflection w is independent of Xl' Formally, this 

problen is identical to the problem of a beam on elastic support wi th 

a constant load applied at a point. This latter problem has been 
, , 

investigated by v.Kannan and Biot [73J. The explicit solution for 

deflection of this beam problem (p. 273 in [73]) shows that the resulting 

deflection curve has the shape of darnped waves wi th a discontinuous third 

derivatitre at the point of load application . Also, it can he easily 

seen that the first and second order derivatives of this deflection 

cw:ve are continuous everywhere. In our case of a plate this solution 
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irnplies that the first and second derivative of w are continuous every-

~ere and that the third order derivative w,222 suffers a discontinuity 

across the Une X2 = 0 (see Fig. 8). Let us note tha t this third 
. -

derivative of w is proportional te the shear force (cf. <12.10», Le. 

the jump of the shear force across the line X
2 

= 0 is equai te a constant 

load P concentrated on this line. 

The existence of this jurnp and i ts physical meaning justifies 

the investigation of third order waves in the plate rrodel. The consistency 

of the acceleration waves (recall that the seCXJnd derivatives of w with -respect te Xl and X2 are proportional te the bending rranents - cf. 

(12.9» ranains an open problem. 

Fran Theorem 6.1 and eqs. (12.8) and (12.9), it follows that 

for the third order wave, the only nontriviai jump is (6.33). This 

jump is now gi ven by 

(1? .16) 

Fran kinematical conditions of canpatibility (or directly frçm (10.6» 

we have that 

and 

rD -3-
Œ6W,~ = - U(n) a 

IT" rD -1 -uW,rP = - u(n) a 

where a = ŒWD is the wave amplitude. 

(12.17) 

(12.18) 

On substituting (12.17) and (12.18) into (12.16) we obtain 

the follCMing propagation condi tien 
1 

2 -(-0 + ~I U (n~) a = 0 (12.19) 

fIan which it fo11ows that the speed of propagation U en) i8' given by 
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, 

w ~ C e taX2 (cos ~+ sin ~) 

where the upper siqn holds for X
2 

< 0 and the lower 

sign holds for X2 > o. 

3 
[Iw 2D = IIw 22D = 0, IIw 222D = 8ea 
., 1 1 

FiQUre 8 
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~ en) = (~)1/2 (12.20) 

~ / 

'll1e equation for the wave amplitude a ,dm he obtained fran the equation 

of l'OC)tion (12.1). By taking the jump of this equation across the singular 

curve Lt we obtain 
~~ 

2 .on JI -Dfl w + lJItM = 0 (12.21) 

First, let us note that fran kinematical conditions of c:x:rrpatibility we 
\.. 

""n'Ô Il • TI II· rD IIfl~ = ôt 6w - U (N) flW,r? 

2U- 2 ..i. - _.2 [A'W' nrnsn = (n) ôt a + UCn) U ,rs (12.22) 

whe~ we have used (12.17) and the fact that [6wD = 0 and 

(U(n) is a constant) • 

on substituting (12.22) into (12.21) we obtain 

(12.23) 

e, New, fran the geanetrical and kinematical conditions of 

CXll'Çatibility we have 

o 

/ 
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(12.24) 

where nrs = -drns = - dsnr and n = nrr is the cw:vature of a wave curve. 

Introducing (12.24) into (12.23) we obtain the following 

equation for the wave amplitude êr" 

0"" l ,..., 
St a = 2' n U (n) a (12.25) 

Tc integrate this equation, first, let us introduce the distance 

parameter cr along·the nonnal trajectoty of the wave front defined by 
" 

(12.26) 

for t > t 1 and then notice that this wave front consists of a parallel 

family of curves (U (n) 15 constant). This last remark implies that the 

curvature for this farnily of curves is gi ven by (cf. Cohen and Suh 

(67) 

_ n(o) 
o - l-Q(o)a (12.27) 

for aIl ~ficiently small a, where n(o) 15 the initial curvature for 

ta t 1 (l.e. a,= 0). 

If we notice that 

.112.28) 
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then introducing (12.28) and (12.23) into (12.25) we obtain 

da O(o)..w 
da ~(l-Q (0) cr) a 

This eq:uation can be easily integrated and the resul t ls 

,-1/2 
a(a) = a(o) II-Q(O)cr 

which expresses the decay law for the wave arrpli tude. 

(12.29) 

(12.30) 

The first observation is that the decay law (12.30) (and 

eq. (12.29» does not involve any materiat constant. AIso, the amplitude 

equation (12.29) has exactly the same fom as that obtained by Cohen and 

Suh [67] (eq. (4.23) in [67]) for waves p!opagating thJDugh elastic 

surfaces. In conclusion, we should e.xpect that the amplitude ~ation 

(12.29) (and also the decay law (12.30» 15 rather W1iversal for waves 

propagating through thin elastic plates and shells, al though future 

study i5 needed te justify fully this expectation. 

l' The similar statenent has been made by Chen [74]. He 

concluded that the amplitudes of acceleration waves in 3-dimensional 

media alIrost always ohey the Bernoulli equation. 

Finally, let us mentirn that our approach te wave propaga­

tion in the plate IOOdel consider here is carq:>lementary ta that studied 

by Ericksen [64] and Cohen [71J where a direct approach te Cosserat 
< 
1 

plates has been employed. 

" 

o 
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APPENDIX l 

An (infinitesimal~ defonnation of a (sm:::>Oth) hypersurface 

E in RN i5 a one-parameter family of (srrooth) hypersurfaces 

N (-e:, e:) ;) s -+ E (s) CR. CI.l) 

1 . 
There exists a differentiable function' f: Q .... R defined in an open set 

~ 
n C RN containing E (s), s C (-E, e:), such that each s is a regular value 

• -1 
of f and r (s) = f (s), E (0) :: r. For each X, in a coordinate neigh-

bourhood V of X in RN the defonnation (LI) induces the following mapping 
... 

(-e:, e:) :3 S -+ X(s) (u) = X(u,s) C V 1\ r (s) (L2) 

such that -
RN- 1 ::> U :l u .... X(u,s) E: V 1\ E (s) (I.3) 

18 a local pararnetrization of E (s) and for s=O (L3) i9 a local pararœtrlza-

tien at X e: E 

A unlt normal vecj::or N at XI c LeS) is given by 

~"-1a~ fl-l_f,A Ixrè',f-l(s) 
~ ./'.' 

\ 

(I.4) 

By differentiation of the superposition 5 .... f 0 X(s) 1 of 

thé mapping (I.2) and the function f, we obtain 

A 
f dx (5) 1 = 1 
,A ds s=O 

(I.s) 

On substituting the expression (I.4) into (I.s) we conclude that the 

quantity 
'J 

Î 
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, 
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APPENDIX II 1) J 

Consider a one-parameter family 

(-e:,d 3S- (l:(s), 4>(s» (ILl) 

where e: > 0 and (or each s,4> (s) (X) = 4> (X,s), X = (~) E Rm, 1s a tensor 

valued mapping such that l: (s) ls lts singular nypersurface ( cf. defin1-

tiens in Chapter 2). We assume that for each s the hypersurface E (s) ls 
,1 

i 

a cc:mpact manifold (Le. without boundary). 'l'hese hypersurfaces can he 

given by 

l:(s): ~(X,s) = 0 (IL2) 

a~ where ~ ls a smooth function such that Grad ctl #: 0 and as '/: 0 on E (s) • 

ctl > 0, i.e. 

then \Ve_ have 

Let e (~) be the characterlstic function of the reg10n 

(

0 for 

l for 
e(~) = 

f e (~) f(X) ~ = 

FfI 
f f(X) éN 

~>O 
(II.3) 

where f 15 a snooth funct10n wi th carpact support and eN = dX
1 

••• ~. 

Followinq 1deas presented in Gelfand and Shilov [75] we 

have 

e' (~) = ô(~) (II.4) 
\) 

S' 
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which is understood in the sense that 

Grad e (~) = ê (~) Grad ~ 

wheœ the generalized functIem-Mg» is defined by 
,~ 

J ô (~) f(X) é1J = J f(X) w 
If' ~o 

in which the (m-l) -differentia1 fonn w has been defined by 

d$I\w=dV 

--~.w 
;/9 

1 

In [75}, it is proved that such fonn in fact exists in seme reqion 

(ILS) 

(11.6) 

(11.7) 

o:::mtaining L (s) and i5 unique in the sense that it depends only on ~ (X,s) 

by which this r(s) is qiven in (II.2). Of course, (II.6) is independent 

of the choice of ~ (X,5) • 

Consider a one-pararneter family of action integrals 

A(s) = f L(s) dV 
n\E (s) 

(ILS) 

wheœ (E (s), cp (s» is a pair as it has been defined in (11.1) and such 

that $(s) and its partial derivatives vanish outside of a OOunded region 

n in ~ containing r(s) for each s f: (-e:,e:). 
'-

where 

o , ' 

NeW', let us wrlte the integra1 (II. 8) in the following way 

A(s) = f [L+ (s) e (~) + L_ (s) e (-~)} dV 
n 

(11.9) 

1 

U 1 
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in which $(+) (s) (X) = ;(+) (x,s) and ;(-) (s) (X) = ;(-) (X,s) are smx>th 

extensions of cpl~t(s) and cplS'r(s) , respectively, such- that $(+) (s), 

;(-) (s) and their partial derivatives vanish outside of Q. In the above 

Q+ (s) and n- (s) are the sub-dcmains of n divided by E (s), Le. Q = 

+ -Q (s) V n (s) v E (s) • 

By differentiation (II. 9) we obtain 

dA(s) 1 ::: f 
da s=O Q 

, 
First, let us note that 

(II.11) 

Next, let us assume that ~ (X, s) ls the Euclidean qistance of X fran 

'\:" the ~ = 0 hypersurface. Then, fOllowing [75J, we have that the differen-
"-. 

tial fonn w, coincides with the Euclidean element area d~_l on E (s) • 

In this case, it should he clear (.cf. eq. (10.16» that 

a~ 1 = - -SE as s=O 
(II.12) 

where 6t ois the nonnal variation of the' hypersurface E defined in 

Chapter 4. 

On substituting (II.11) and (I1.12) inm (1;I.10), and on 

usin~ (11.6) with w = ~l' we finally derlve 

\ 
I.:..~~ _-... ________________ . ----".- -
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o dA(s) 1 = f dL(s) 1 ~àV - J [LD 6E dr._
1

-
ds s=O n ds s=O E -m 

which does not depend on srrooth extensions. 

By using ideas developed in Gelfand and shiiov [7SJ, and in , 

particular in Chapter III of this reference, we could find the expression 

for the second variation of the action integral in the class of discon-

tinuous fields, however, we have not oonsidered the second variation in 

this thesis, hence this .ùrq;x>rtant problem is left for the future. 

1 

-0 
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APPENDIX III 

Let us œcall that a singular hypersurface pmpagating 

through a material: has been represented by 

O't: lP(xr,t! = 0 (r=l, ••• ,N) (III.l) 

or by - 1 

Lt'! ~ (Xr,t) = 0 (r=l, ••• ,N) (III.2) 

in the spatial and material description, respectively, where 

in which xr = I\Ir(Xr , t) has been defined in Chapter 10 in the case of 

"small" defonnations. Because the pypersurface has no singular points 

then we have that grad lP and Grad ~ on O't and Et' respectively, èb not 

vanish. 

NcM, let us define $ and ~ by , 

- - <P 
cf> -, Igrad 4>1 (III.3) 

(III.4) 

respectively, then the induced Euclidean measures on O't and Et are defined 

respect!vely, by 

~ 1\ daN- l = dvN (III.S) 

di 1\ ~-l = dVN (III.6) 

\ 
1 
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where d4) and d~ are the differentials of $ and i, respectively. If 

we recall that cnrN = J dVN where J is the Jacob.ian of the transfoll'lla­

tien x = IIIr(X ,t), then fIan (IlI.S) and (III.6) we have that r r . 

Fran (III.3), (III. 4) and (10.12) we can obtain on <Pt and Et: 

- r d4>=ndx r 

, . 

(III.7) 

(III.S) 

(III.~) 

On substituting (III.8) and (III.9) inm (III.7) and on 

usinq the fact that dx ~ III ~ we obtain r r,s 

(III.IO) ... 

wtlich by (10.15) is well-defined. 

New, te prove (10.11) i t is enough to introduce into '( III .10) 

the :relation 

-1 1 (grad <1» s Grad 11151 1 n' 

J. Igrad <pI Nr = J- ns"'s,r 

which follows f:r:cm (10.12), and then using the faCt, that if Y is a (N-l)­

diffe:œntial fom then 

, 
'implies that y = 0 on thé 4> = 0 hypersurface (. cf. Gelfand and Shllov 

[75]; p. 221). 

-



j • 

• 

119 

REFERENCES 

.' ' 

1. E. L. Aero and E. V. Kuvshinskii, Fundamental equations of the theory 
of elastic medIa ~i th rotational interacting partIcles, F izika 
Tverdogo Tela 2,1J399 (1960); translation: Soviet Physics Solid 
State l, 1272 (1961). '. 

2. H.F. Tiersten and J.L. Bleustein, Generalized elastic continua ln: 
R.D. Mindlin and Appiled Mechanics ed. G. Herrmann, 67, Pergamon 
Press 1974. 

3. R.A. Toupln, TheorIes of elasticity with couple-stresses, Arch. 
Rational Mech. Anal. 11., 85 (1964). 

4. L.M.C. Coelho de Souza and P.R. Rodriques, Field theory with higher 
derivatives - HamIlton structure, J. Phys. AI, 304 (1969). 

5. J. Lenz, The oriented elastlc contInuum as a model for the magneto­
static body, Int. J. Sollds StructlJres, ~, 1235 (1972). 

6. J.T. Oden and J.N. Reddy, Varlatlonal Methods in Theûretical 
Mechanics, Springer-Verlag (2nd ed.) 1983. 

7. J.E. Marsden and T.J.R. Hughes, Mathematlcal Foundations of 
ElasbcJ.ty, Prenbce-Hall, Inc. 1983. 

8. 5; Nemat-Nasser, General varlationai prInciples in nonlinear and 
linear elastlcity wIth applicatIons, MechanIcs Today, l, ed. 
S. Nemat-Nasser, Pergamon Press, 1972. 

9. J. Turski, Variational formulation of the slngular surface propaga­
tion in nonslmple elastIc mater lais ln: Wave Phenomena Modern 
Theory and ApplIcations, eds. C. Rogers and T.B. Moodie, 153 
North-Holland, 198~. • 

10. J. Turski, Variational principles in continuum mechanics and their 
application in the study of propagating discontinuities, pre-

l , • 

sented to the Int. Symp: on Variational Methods in Geosciences, 
held 15 October, 1985 in Oklahoma. (to appear in the proceedings). 

Il. T. Y. Thomas, Plastic Flow and Fracture in Solids, Academic Press, 
1961. 

12. C. Truesdell and R.A. Toupin, The C1assical Field TheorIes, Flugge's 
Handbuch der Physik, Vol. III/l, Sprlnger, 1960. 

13. H. Cohen and C.-C. Wang, On compatibility conditions for singular 
surfaces, Arch. Rational Mech. Anal. 80, 205 (1982). 

14. I.M. Ge1fand and S.V. Fomln, Calculus of Variations, Prentice-Ha11 
Inc., 1963. 



o 

120 

15. J. Hadamard, Leçons sur la Propagation des Ondes et les Equatlons 
de 1 'Hydrodynamique, Hermann, 1903. 

16. R.M. Bowen and C.-C. Wang, On displacement derlvatives, Q. Appl. 
Math. ~, 29 (1971). 

17. C.-C. Wang and C. Truesdell, Introductlon to Rabonal Elasticlty. 
Noordhoff Int. Publishlng, Leyden, 1973. 

18. H. Goldsteln, Classlcal ~lechamcs, (2nd ed.) ReadIng, ~1A: Addison­
Wesley Pub1ishing Co. Inc., 1980. 

19. C. Lanchos, The VariatlOnal Prlnclp1es of MechanIcs, Univ. of 
Toronto Press, 1949. 

20. A. Baddeley, IntegraIs on a moving manifold and geometrical probablllty, 
Adv. Appl. Prob. 9,588 (1977). 

21. R.A., Toupin, Elasbc materials with coup1e-:Dtresses, Arch. Rabonal 
Mech. Ana]. Q, 358 (1962). 

22. R.D. Mindlin, Second gradlent of strain and surface-tenSIon ln 
llnear elastIcüy, Int. J. Sollds Structures l, (1965). 

23. A.E. Green and P.~1. Naghdl, A note on simple dlpolar stresses, J. 
MecanIque l, 465 (1968). 

24. l<'J. Cheverton and ~1.F. Beatty, An l.ntegral ldentIty with application 
in contInuum mechamcs, J. Elasticity 6, 81 (1976). 

25. A.J. McConne11, Appll.catlon of Tensor Analysis, Dover Publications 
Inc., 1957. \ 

26. J.O. Logan, Invariant Vanational Prlnclples, Acadeffilc Press, 1977. 

27. E. Noether, Invariante 'Vanatlonsprobleme, Nachr. Akad. i.altss. 
Gottingen, Math.-Phys., 235 (1918). 

28. F. Klein, Uber die Dl. fferentialgesetze fur dle Erhaltung von Impuls 
und Energie in der Elnstel.nschen Gravltabonstheone, Nachr, 
Akad. Wiss. Gottingen, Math.-Phys., 171 (1918). 

29. S. Lie, Vorlesungen über dlfferentlalglelchungen mIt bekannten 
infinitesima1en Transformatlonen, Teubner, LeIpzig 1912. 

30. R. Courant and D. Hllbert, i"lethods of Mathemat!ca1 Physics, Vol. 
l, Wiley (Interscience) 1953. 

31. P. Funk, Variatlonsrechnung und lhre Andwendung ln PhySlk und TechnlX, 
Springer-Verlag, 1962. 

32. H. Rund, The Hamilton-Jacobi Theory in the Calculus of Var lations, 
Van-Nostrand-Reinhold ,. ~ inceton, 1966. 



121 

33. H. Sagan, Introduction to the Ca1cu1us of Variations, McGraw­
Hill, 1969. 

34. E.l. Hill, HamIlton's principle and conservatIon theorems of 
mathematical phySICS, Rev. Mod. Phys. 12, ~53 (1951). 

35. J. Komorowski, A 'modern verSIon of E. Noether' s theorem in the 
calculus of variatlOns, 1. Studia Nath. ~, 261 (1968). 

, 
36. A. Trautman, Noèther's equations and conservation laws, Commun. 

Math. Phys. ~, 248 (1967). 

37. P.L. Garcia, Geometrla simplectlca en la theoriâ clasica de campos, 
Co1lect. Math. 1:2., 73 (1968). 

38. H. Goldschmldt and S. Sternb-erg, The Hamilton-Cartan formalism in 
the calcu1us of variahons, Ann. Inst. Fourier (Grenoble) 23, 
203 (1973). 

39. J.E. Marsdell, Appllcahons of Global Analysls in Mathematical 
PhyS1CS, Publlsh or Pel'lsh, Boston, 1974. 

40. D.G.t3. Edelen, NonlocR1 Variations and Local Invariance of FIelds, 
Amer. ElsevIer, 1969. 

41. K.Washizu, VarIatIonal Methods in Elasticity and Plas~iclty (3rd 
ed.) Elmsford, Pergamon Press, Ine., 1982. 

42~ J. T. Oden, F inite Elements of Nonl1near Continua, McGraw-Hill 
Book Company, Ine. 1972. 

43. O.C. ZienkIewIcz, The FinIte Element Method in EngIneering Science, 
McGraw-HI11, 1971. 

44. W. Prager, Variabonal prrnclples of linear elastostatics for 
discontinuous displacements, strains and stresses, in: Recent 
progress in Appiled Meehanics, The Fo1ke-Odqvist Volume eds. 
B. Broberg, J. HuIt and F.'Niordson, Almqvist and Wiksell, 
Stockholm, 463 (1967). 

45. S. Nemat-Nasser, On variatlonai methods in finIte and incremental 
elastic deformabon prob1em wi th disconhnuous fields., Q. 
Appl. r1ath. 30, 143 (1972). 

46. S. Nemat-Nasser, General variational methods for waves in elastic 
composites, J. Elasticity l, 73 (1972). 

47. S. Nernat-Nasser and K.N. lee, Application of general variatIons1 
rnethods with diseontinuous fields to bending, buckling, and 
vibration of bearns, Computer Methods in Appl. Mech. Engng. l, 
33 (1973). 



o 

o 

- 122 

48. C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics. 
Flugge's Handbuch der Physik Vol. III/3, Springer-\ierlag, 1965. 

49. E. and F. Cosserat, The'or ie des Corps Olformables, Paris-Hermann 
and FIls, 1909. -50. O. Brulin and S. HJalmars, Llnear grade-conslstent mlcropo1ar theory, 
Int. J. Engng. SCI. .!.2., 1731 (1981). 

51. D. Ie~an, Some theorems ln a grade conSIstent micropo1ar theory of 
elasticlty, ZAMM 62, 35 (1982). 

52. 

53. 

54. 

55. 

~ 
\ 

56. 

57. 

B. Collet , Hlgher arder surface coupllngs IQ e1astlc ferromagnets, 
Int. J. Engng. SCl. 16, 349 (1978). 

C.T. Sun and T.Y. Yang, A contInuum approach toward dynamics of 
gridworks, Trans. ASME, E40, 186 (1973). 

K. Kanatani, A theory of continua wlth proJectlve microstructure as 
a mode1 for large trusses, J. Engng. Math. 11, 341 (1978). 

A.D. Kerr and M.L. Accorsl, Generalizatlon of the equatlons for 
frame-type structures; a varlatlonai approDcn, Acta MechanIca 
56,55 (1985). 

" , G. Duvaut and J.-L. Lions, Probleme unilateraux dans la theorre de 
la flexion forte des plaques; la case d'évolution, J. r~echanlque 1 

Q, 245 (1974). 

M.I. Gusein-Zade, Asymptotlc analysis of three-dimensional dynamic 
equations of' a thin plate, PMM 38, 1072, (1974). 

58. A. Raoult, ConstructlOn d'un modèle d'évolution de plaquës avec 
terme d'lnertiede rotatlon, Ann. dl Mat. Pura ed Appl.<>-139, 362, 
(1985) . 

. 
59. R.M. Santilli, Ann. Phys. (NY) 103, 354 (1977); 103, I~09 (1977); 

105, 227 (J977). - -

60. F. Bampi and A. Morro, The inverse problem of the calcu1us of 
varIations appiled ta continuum physics, J. Math. Phys. Q, 
2312 (1982). \ 

61. P.J. Chen, Growth and decay of waves in solids, Flugge's Handbuch 
der Physj k. Vol. VIa/3, Sprlnger-Verlag,~ 1973. 

62. A.C.- Eringen and CS. Suhubi, Elastodynamlcs, Vol. l, Academie 
Press 1974. 

63 .• P.M. Naghdl, The Theory of Shells and Plates, Handbuch 
der P~ysik, Vol. VI/2 (2nd ed.) ed. C. TruesdeÏl, 1971. 

64. J,L. Ericksen, Wave propagatlon 1n thin elastic shells, Arch. 
: Rational, Mech. ~n~fl. 43, 167 (1971). 



<i 

o 

ft 

'65. 

66. 

67. 

68. 

69. 

70. 

c 123 

P.G. Ciarlet and P. Destuynder, A justification of the two­
dimensional 1lnear plate 'model, J. MecanIque, 18, 315 (1979). 

H. Cohen and C.N. DeSilva, Nonlinear theory of elastic dlrected 
surfaces, J. Math. Phys .. l, 970 (1966). 

H. Cohen and'S.L. Suh, Wave propagation in elastic surfaces, 
J. Math. Mech. 19, 1117 (1970). 

H'b Cohen and A. B. Berka1, Wave propaga tian in elastic membranes, 
J. Elasbclty l, 45 (1972). 

H~ Cohen and A.B. Berka1, Wave propagation in elastic shells, 
J. ElastIcity l, 35 (1972). 

J. J. Pop and C. -C.' Wang, Acceleration waves in isotropie elastic 
membranes, Arch. RatIonal Mech. Anal. 77, 47 (1981). 

71. H. Cohen, Waves propagation ln elast~e plates, J. Elasticity, ~, 
245 (1976). 

72. G. Duveut and J.-L. Llon~, Inequalities ln Mechanlcs and Physics, 
Sprinqer-Verlag, 1976. \ 

. 
73. T. v.Karmâ'n and rvJ.A. Biot, Mathematieal Methods in Engineering, 

McGraw-Hill Book Company, Inc. 1940. 

74. P.J. Chen, Selected TOplCS ln Wave Propagation, Noordhoff lnt. 
Publlshing, Leyden, 1976. 

75. I.M. Gelfand and G.E. Shilov, Generalized Functions, Vol. 1., 
Academie Press, 1964. 

J 

, , 
" ., 

-~ 


