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Abstract 

Program tracing is a common technique employed by software and hardware devel­

opers who are interested in characterizing the dynamic behavior of complex software 

systems. However, despite the popularity of trace-driven analyses, there are surpris­

ingly few options for encoding trace data in a standard format. 

In the past, many developers have resorted to creating their own ad-hoc trace 

encoding solutions, tailored specifically to the data they are considering. Such efforts 

are usually redundant, and in many cases lead to an obscure and poorly documented 

trace format which ultimately limits the reuse and sharing of potentially valu able 

information. 

The STEP system was created to address this problem by providing a standard 

method for encoding general program trace data in a flexible and compact format. 

The system consists of a trace data definition language along with a compiler for the 

language and an encoding architecture that implements a number of common trace 

compact ion techniques. The system simplifies the development and interoperability 

of trace clients by encapsulating the encoding pro cess and presenting the data as an 

abstract object stream. 

This thesis presents a detaHed description of the STEP system and evaluates its 

utility by applying it to a variety of trace data from Java programs. Initial results 

indicate that compressed STEP encodings are often substantially more compact than 

similarly compressed naïve formats. 



Résumé 

Le traçage des programmes est une technique couramment employée par les dévelop­

peurs de logiciels et matériel informatique intéressés à caractériser le comportement 

dynamique de systèmes logiciels complexes. Par contre, en dépit de la popularité 

des analyses effectuées à l'aide de traces, il existe étonnament peu d'options pour 

l'encodage des traces utilisant un format standardisé. 

Dans le passé, plusieurs développeurs ont eu recours à la création de leur propre 

solutions spécifiques quant à l'encodage de traces, conçues sur mesure pour pour les 

données examinées. De tels efforts sont habituellement rendondants, et mènent dans 

plusieurs cas à un format obscur et piètrement documenté, ce qui, ultimement, limite 

la réutilisation et le partage d'information possiblement pertinente. 

Le système STEP à été créé dans le but d'aborder ces problèmes en fournissant une 

méthode standardisée pour l'encodage de données générales provenant de traçage de 

programme en un format flexible et compact. Le système est consitué d'un langage de 

définition des données de traces, ainsi que d'un compilateur pour ce langage et d'une 

architecture d'encodage qui implémente plusieurs techniques de compaction de traces 

répandues. Le système simplifie le développement and l'interopérabilité des clients 

de traces en encapsulant le processus d'encodage et en présentant les données en un 

train d'objects abstrait. 

Cette thèse présente une description détaillée du système STEP et évalue son 

utilité en l'appliquant à une variété de traces provenant de programmes Java. Les 

résultats préliminaires indiquent que les données encodées et compressées par STEP 

sont souvent substantiellement plus compactes que des formats similaires utilisant 

une méthode de compression naïve. 
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Chapter 1 

1 ntroduction 

Efficiency is a quality pursued by virtually an software, hardware, and compiler 

developers. In many cases, an exact definition of the concept depends on what devel­

op ers consider relevant. Sorne use raw computing speed as a measure, while others 

use a broader definition of resource overhead. Sorne even choose to frame their defi­

nit ion in terms of more abstract notions such as interoperability and maintainability. 

Yet an such definitions of efficiency have one element in common: they are a measure 

of sorne dynamic quality of software systems. 

Historically, attempts to characterize the dynamics of software systems have fo­

cused their attention on analyses of low-level program events. The analyses are often 

based on a simulated recreation of a program's execution using a trace of the relevant 

event data. Trace-driven analyses are generally favored over simple statistical sam­

pling methods since the goal is often to characterize sequential patterns in the data 

rather than just summarize the occurrences of events. 

Sorne trace analyses can be performed on-line-streaming the data directly from 

a running program to the analysis routines-but, in many cases, it is preferable to 

record the data for use in sever al off-line analyses. Recording traces is problematic 

though, since they often contain huge amounts of data. A variety of lossy and loss­

less methods for reducing the size of traces have been proposed, but the research 

has focused almost entirely on simple, restricted forms of data such as the target 

address of load and store operations. A handful of "standard" trace file formats have 
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been suggested [SCM+95, HK\VZOO, JHBZ01] but most are wholly insufficient for 

capturing the range of events that occur in modern software systems. The lack of 

adequate trace encoding systems has led many developers to create their own ad-hoc 

solutions which are frequently tailored specifically to the data they are considering. 

This approach often results in a trace format with little or no documentation and 

trace data that goes unpublished, consequently limiting the sharing and reuse of po­

tentially valu able information. Such efforts are also usually redundant since, as this 

thesis demonstrates, a general approach to trace encoding is possible. 

STEpl is a system created to address the need for a standard method of encoding 

general program trace data in a flexible and compact format. The system provides a 

new trace data definition language, a compiler for the language, run-time support for 

the annotation features of the language, and an encoding engine that implements a 

number of common trace compaction techniques. Together, the features of the system 

simplify the development and interoperability of trace clients by encapsulating the 

encoding pro cess and presenting trace data as an abstract object stream. 

The development of STEP was motivated by a desire to collect a variety of trace 

data from Java programs and provide an interface to the data that is compatible with a 

variety of analysis tools. A review of the related literature did not reveal any solutions 

that were capable of capturing the full range of events of interest that occur during the 

execution of a Java program. However one approach, the MetaTF system [C.JZOO], 

did offer a useful starting point by suggesting that traces be defined with a specialized 

definition language. Definitions specified with such a formaI language can serve two 

purposes, namely acting as an explicit document of the trace format and providing a 

means for automatically generating routines to read and write the trace data files. 

Early attempts to build on MetaTF's general approach to trace definition and 

encoding demonstrated that a better solution could be engineered by focusing on 

support for three main features: a richer set of event record types, Integration with 

other tracing tools, and a more robust and extensible encoding architecture. STEP is 

an attempt to meet these requirements by providing a new data definition language, 

1 The name STEP derives from its original incarnation as the S.TOOP Trace ~vent 
frotocol [BDE+Ol]. A number of other equally appropriate expansions have been suggested. 
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1.1. Motivation 

STEP-DL; a compiler for the language, stepc; and an object-oriented encoding ar­

chitecture. 

This thesis provides a detailed description of the STEP system, elaborating on 

the design rationale and highlighting a number of the issues encountered during the 

development of the system. The utility of the system is evaluated by examining its 

application to the encoding of a variety of trace data collected from a set of well-known 

Java benchmark programs. The results are promising, indicating that compressed 

STEP trace files are often substantially more compact than similarly compressed naïve 

formats. 

1.1 Motivation 

To understand the design and implementation of STEP, it is best to start with a 

discussion of the roie the system was intended to play. In many ways, such a discussion 

helps to frame the boundaries of the project and reveals influences that are echoed in 

a number of the design and implementation choices. 

STEP was conceived to act as the core of a system for developing new methods 

of improving the performance of Java programs based on analyses of both pro gram 

and run-time environment dynamics. This is not a trivial aspiration considering the 

multitude of ways that trace information from Java programs can be exploited: 

@ The run-time overhead of Java's automatic memory management-garbage col­

lection (GC)-is a common concern among developers interested in building 

fast or precisely-timed applications. Modern GC implementations, such as vari­

ants on the generational approach, can be effective for a range of programs 

but are still based on broad, statistical assumptions and, thus, are not truly 

adaptive solutions. Recognizing this deficiency, a variety of approaches have 

been developed that use trace data to either guide the selection of a particular 

GC algorithm [FTOO], or target particular object types for special treatment 

[HarOO]. 

@ Program performance can often be significantly affected by the physical lay-

3 



1.1. Motivation 

out of object data values. Highly composite objects incur the cost of frequent 

dereferencing steps, while the spatial and temporallocality of object references 

can affect the performance of hardware data caches. Field access traces can be 

used in a range of type restructuring optimizations: in-lining high-use sub-field 

definitions [LH02] , and re-ordering field positions, possibly segregating low-use 

fields into separate objects [RBC02]. 

@ A number of Java program transformations such as devirtualization [SHR+OO], 

array bounds check removal [QHV02], and synchronization removal [RufOO] have 

been demonstrated as effective optimizations. However, as proposed, these 

transformations are based on static approximations of a program's caU graph­

approximations that are often costly to generate. Trace data could be used to 

accelerate such analyses by highlighting caU sites that exhibit definite polymor­

phism as well as those that are apparently monomorphic. 

@ Trace data can be used to build statistical models of a program's control flow. 

The information can be used to estimate branching behavior [W"194] which is, 

in turn, useful for performing condition or loop inversions that cooperate with 

local caching and branch prediction hardware. More generally, the statistics 

can be used for so-called probabilistic data flow analyses [l'vISOO] to estimate 

the cost jbenefit ratio of applying a given transformation to a particular code 

segment. 

@ Trace data can be used to quantify various benchmark program dynamics such 

as polymorphism, concurrency and memory usage [DDHV02]. Such measure­

ments are of clear importance to developers of compilers and run-time systems, 

in that they provide a basis for meaningful evaluation and comparison of ap­

proaches. 

This list is, by no means, exhaustive but it does exhibit the diversity of potential Java 

trace data as well as the diversity of potential trace-driven analysis clients. 

The primary assertion behind the development of STEP is that there is value in 

recording the data alluded to above in a single, universal trace format. There are two 

4 



1.2. Requirements 

advantages to such an approach. First, the existence of a univers al (and compact) 

trace format encourages developers and researchers to publish the data they collect. 

As is common in other scientific endeavors, such publicly available data can then be 

used as the basis for validation, extension, adaptation, and meaningful comparison of 

various analyses and applications. The second advantage is that recording a broad 

range of data in a single trace file allows results from several independent analyses to 

be meaningfully collated and related to one another. 

1.2 Requirements 

Having established that a system for encoding traces in a common format is desirable, 

a logical next step is to derive a series of requirements that such a system should meet. 

Based on the motivations outlined above, a number of criteria present themselves: 

Expressiveness: 

A complete range of event data structures should be supported: essentially, any 

serializable form composable from common basic types. 

Flexibility: 

The system should provide a flexible trace format that is not bound to any 

particular set of data records. Specifically, augmenting a trace with new records 

should not affect compatibility with existing tools. 

CompactneBS: 

Standard methods for trace compaction should be integral to the system. How­

ever, the default encoding should be lossless, deferring lOBsy reductions to a 

post-processing filter. 

Efficiency: 

Given that traces often comprise a tremendous amount of data, the serialization 

process, including compaction, should operate in linear (or near-linear) time in 

the size of the input data. 
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1.3. System Overview 

Documentation: 

To ensure proper use of the data, the trace files should be accompanied by a 

descriptive document that specifies both the form and interpretation of the data 

records. The document should provide sufficient detail to create a tool capable 

of reading the encoded trace and reconstructing the event data. 

Encapsulation: 

To facilitate the interoperability of tracing and analysis tools, the system should 

provide a library of routines for reading/writing trace files that encapsulates the 

encoding process so as to separate the production and consumption of events 

from their serialized off-hne representation. 

Portability: 

Both the encoding software and format should be platform independent so that 

traces collected on one architecture can be decoded and analyzed on any other 

architecture that the system supports. 

ExtensibiHty: 

Anticipating the development of new trace-based analyses or compact ion schemes, 

the system should provide an open architecture that allows the addition of new 

event types and/or encoding strategies with minimal modification. 

In addition to these criteria, it also reasonable to request that the system provide a 

simple and intuitive client interface and that its design adhere to commonly accepted 

software design principles. 

1.3 System Overview 

STEP is an attempt to capture the motivations outlined in section 1.1 and to embody 

the requirements proposed in section 1.2. The system consists of a specialized trace 

definition language, STEP-DL, and an object-oriented (00) framework, implemented 

in Java, that provides compiler and run-time support for STEP-DL definitions, as weIl 

as an encoding engine that includes a number of standard trace encoding strategies. 

6 



1.3. System Overview 

Event Producers 

STEP-DL Definitions 

Event 
Consumers 

i Lil ... ~. 

Off-line Storage 

Figure 1.1: An overview of the STEP framework 

The design of STEP synthesizes a number of ideas related to tracing, resulting in an 

entirely unique implementation approach. 

STEP is often depicted as a mediator, connecting a variety of trace data sources 

to a variety of analysis and consumer tools. Clients interested in encoding data 

in the STEP format begin by defining the format of the data records with the STEP 

definition language, STEP-DL. The definitions supply both a structural description of 

the records as well as various annotations that can be used to automatically generate 

methods for manipulating the data; for example, to serialize it into the STEP binary 

format. As figure 1.1 indicates, the definitions are converted by the stepc compiler 

into equivalent Java class definitions that act as the interface layer that both producer 

and consumer clients interact with. 

Sorne example trace data producers are indicated on the 1eft side of figure 1.1. 

In the case of Java programs, trace data can arise from several sources. Standard 
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1.3. System Overview 

data, such as method usage and allocation events can be collected through the Java 

Virtual Machine Profiler Interface (JVMPI). Information about the inner workings of 

a particular Java Virtual Machine (JVM)-such as information about a specific J ust­

In-Time (JIT) compilation strategy or Ge algorithm-is often obtained by directly 

modifying the VM. Stin more information, such as basic block or field uses, can be 

obtained by adding custom instrumentation to the target Java bytecode. 

Trace producers use the Java object definitions generated from STEP-DL to con­

vert the trace data from its original format into the STEP object format and pass the 

data on to the STEP encoding system for serialization. Individual records are encoded 

in a platform independent, binary format according to an adaptive set of strategies 

generated from annotations associated with their type. The resulting STEP trace file 

is usually passed to a standard compression tool such as gzip or bzip2 to further 

compact the data for off-Hne storage. Traces are unpacked by the encoder, regenerat­

ing the original data stream in the common object format. A variety of analysis tools 

(depicted on the right of figure l.1) can consume the data; in the figure, the EVolve 

[yVWB+02] and JIMPLEX [Eng02] visualization tools are highlighted. 

The STEP encoding engine is not specific to any particular value type. Instead 

the system uses annotations supplied in the STEP-DL record definitions--specifically, 

those referred to as encoding attributes-to generate a set of encapsulated algorithms 

(strategies) for encoding each record type. The strategies are constructed hierarchi­

cally, deferring to sub-strategies in order toencode each field value. The strategies 

employa number of established techniques that exploit known characteristics in the 

data to adaptively encode individu al values, achieving an amortized reduction in the 

number of bytes required to encode a given type. 

The STEP definition language has a simple and intuitive syntax that supports 

a reasonably diverse set of record structures. The most significant contribution of 

the language is its attention to the need for structured annotation of trace record 

definitions. The basic concept is that, in addition to defining a record's structural 

composition, other supplement al information can be associated with the various el­

ements of the record. Examples include descriptive labels, basic characteristics of 

the data, and information specific to a particular application (such as encoding). 
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1.4. Contributions 

The language supports two forms of extension: common structural inheritance and 

contextual refinement of attributes. 

Conceptually, STEP is quite straightforward. The system is a bridge, connecting 

trace producers and consumers through an interface generated from simple record 

definitions. However, as subsequent chapt ers highlight, there are a number of sub­

tleties to implementing the system as described. STEP-DL's extension mechanisms 

give ri se to a number of interesting syntactic and semantic issues, while the encod­

ing architecture must implement a sophisticated mechanism for handling values that 

deviate from an expected norm. 

1.4 Contributions 

The STEP framework offers a number of contributions to the research community. 

Primarily, the system facilitates the development of new tracing tools by separating 

the process of encoding from those of collection and analysis. A consequence of the 

approach is that it provides a common trace format with explicit documentation of 

the trace contents in the form of STEP-DL definitions. This, in turn, encourages the 

publication and reuse of traces, allowing research results to be scrutinized, evaluated 

and r.elated to one another. Among the secondary contributions of the project are 

solutions for implementing a combination of structural and interpretive type exten­

sions, and the creation of an open and flexible platform for the studying and testing 

various trace reduction and compaction techniques. It is also worth noting that, while 

STEP is primarily intended as a trace encoding system, the system does not make any 

assumptions about the incoming data itself other than the regularity characteristic 

common to program traces. Thus, the system may provide a basis for en co ding other 

forms of highly-regular, sequential data. 

This thesis contributes a number of perspectives on the design and implementation 

of STEP. Its primary purpose is to document the features of STEP-DL and the 

functioning of the encoding architecture. It provides links to a broad spectrum of 

research related to tracing, and considers the applicability of a number of existing 

approaches to the task of tracing Java programs. The results presented in chapter 6 
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1.5. Thesis Overview 

also provide a basis for evaluating the effectiveness of the approach. 

1.5 Thesis Overview 

The primary goal in presenting this thesis is to convey a factual description of STEP. 

A secondary goal, as in an theses, is to explain and formalize the intuitions behind 

particular design and implementation choices. The discussion begins in chapter 2 

with a survey of related approaches and applications. The review is reasonably cur­

sory and somewhat eclectic, serving as much to underscore the motivations presented 

in section 1.1 as it does to present existing approaches to trace encoding. Readers 

may find it useful to skim the chapter on a first reading, returning for a second pass 

after covering the main content chapters. The actual presentation of STEP begins in 

chapter 3 with an examination of STEP-DL. The chapter covers the main language 

features, details sorne of the semantic consequences, and presents a brief historical 

review of the language's evolution. Chapter 4 continues the discussion by describing 

the approach to compiling STEP-DL definitions and the internaI, run-time represen­

tations used in both the stepc compiler and encoding architecture. The encoding 

pro cess is then detailed in chapter 5. The complications introduced by adaptive en­

co ding and type inheritance are touched upon. Following that, a categorization of 

various trace encoding strategies is presented. Experiences in using the system are 

presented in chapter 6 with a focus on the effectiveness of various encoding techniques 

and the compressibility of trace data from a range of Java benchmark programs. The 

discussion concludes with a summary of the presentation and comments on the utility 

of the approach. A final section suggests future directions for the development and 

use of the system. 
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Chapter 2 

Related Work 

The design of STEP draws from a broad range of research related to program 

tracing. The discussion that follows begins with the most relevant influences, namely 

the current approaches to trace encoding. Section 2.2 provides a brief survey of the 

plethora of tracing applications. The survey is not intended as a comprehensive re­

view but is instead meant to underscore the diversity of trace data sources and forms. 

The focus is on off-Hne tracing, since that is the area most relevant to STEP. Readers 

interested in on-Hne approaches are directed, as a starting point, towards systems 

such as Morph [ZvVG+97] or that of Anderson et al. [ABD+97], or for a Java spe­

cifie approach to the Jikes RVM project (formerly Jalapefio [AAB+OO]). Section 2.3 

concludes the chapter with a short discussion of other data file definition languages. 

2.1 Trace Collection and Storage 

STEP is a conceptual extension of the MetaTF system developed by Chilimbi, Jones 

and Zorn [CJZOO]. Their approach was developed during the pro cess of trying to 

esta,blish a common trace format for dynamic st orage allocation (DSA) events. They 

proposed a format caHed the Reap Allocation Trace Format (RATF) as an instanti­

ation of a meta-level trace specification, dubbed MetaTF. The original presentation 

of MetaTF defined a language for specifying trace formats as a collection of records, 

then used the language to define the records contained in the RATF format. In a 
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subsequent report, Jones [JonOl] discusses sorne modifications to the MetaTF lan­

guage, explains the reasons for switching from the original binary file format to a 

text-based approach, and details how the MetaTF specifications are compiled into 

Java components for reading and writing trace files. 

While it appears that MetaTF is the only previous attempt to develop a trace def­

inition language, a number of trace formats have been publicly defined. Humphries et 

al. proposed the POSSE format [HK\VZOO] for recording the behavior of persistent 

object systems (POS). Scheuerl et al. suggest the MaStA 1/0 format [SCI\F95] for 

recording database input and output operations. New Mexico State University's 

TraceBase provides address reference streams in the PDATS format [JH94, Joh99, 

JHBZ01]. As with STEP, these trace encoding systems do not provide methods for 

actually collecting trace data. Instead interested users are directed towards program 

instrumentation systems such as pixie [Smi91], ATOM [SE94] and EEL [LS95]. Java 

trace data can be obtained by explicitly modifying a JVM, providing a JVMPl [Sun] 

collection agent, or instrumenting the target bytecode with a tool such as SOOT 

[VRGIFOO] . 

2.1.1 Compaction Methods 

PDATS and MetaTF integrate methods for compacting trace data. The methods are 

generally derivatives of the difference technique developed by Samples [Sam89] for 

his Mache system. MetaTF provides methods for indicating that values should be 

recorded as the difference from a base offset or previous value (delta), or as following 

a regular stride pattern. PDATS focuses on address values, combining the differ­

ence technique with run-length encoding. Fox and Grün [FG96] propose a method 

called recovered program structure (RPS) that improves on the effectiveness of the 

PDATS approach by relating instruction address values to the structure of a program 

(Le., the composition of its various instruction blocks). Elnozahy [El1199] suggests an 

apparently similar approach, but defers details to a patent application. 

Address traces seem particularly amenable to compaction and have attracted a 

variety of research efforts. An early study by Hammerstrom and Davidson [RD77] 
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reveals that address streams often have very low entropy, an intuitive result in light 

of the commonly accepted 90-10 rule of computing behavior which suggests that 

programs often spend most of their effort in limited code and memory segments. 

Becker, Park and Farrens [BPF9l] continue this work by investigating higher order 

entropy measures. Pleszkun [Ple94] builds on these studies to develop a lossless 

reduction scheme based on measuring the second-order entropy of address streams; 

essentially resulting in a path-based Huffman encoding of the sequence. Realizing 

that many applications of address traces tolerate the deletion of a portion of the 

statistically deviant values, Smith [Smi77] initiated the research into lossy address 

trace reduction methods. A numberof other lossy approaches [AH90, PG95, KSW99] 

have followed since then. 

Reiss and Renieris [RROl, RROO] suggest applying the SEQUITUR hierarchical 

inference algorithm [NM\V97] to compact general trace data. The approach is further 

developed by Chilimbi [ChiOl] and Larus [Lar99] who describe methods for deriving 

lossy reductions. 

2.2 Applications of T racing 

Collecting event traces to study the dynamic behavior of programs is a technique that 

has been in use for many years. In fact, Smith [Smi82] points to uses that date back 

as far as 1966. 

Probably the most prominent use of tracing is in the study of caching and paging 

architectures. Uhlig and Mudge [UNI97] survey much of this work and also provide a 

good summary of the various approaches to address trace reduction. More recently, 

hardware developers have also used tracing in the development of branch prediction 

architectures [EPCP98, FFW98, \Vu02]. 

Software interactions with caching and branch-prediction hardware are addressed 

in a variety of trace-based research. Chilimbi et al. look at several issues regard­

ing the layout [CDL99] and positioning [CHL99] of data structures in memory. The 

concepts are used to develop trace-driven compiler optimizations [RBC02]. BaIl and 

Larus [BL94] suggest efficient methods for tracing the execution path of programs. 
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Wu and Larus [\VL94] subsequently use the traces to isolate various families of branch­

ing behavior and develop branch and loop optimizations that cooperate with local 

branch-prediction hardware. Applications of statistical execution models have re­

cently evolved beyond simple optimizations to drive a number of compile-time trans­

formations based on so-called probabilistic data fiow analysis [MSOO]. 

Traces have been used in a variety of work related to memory management. Several 

approaches have been developed based on object lifetime measurements. Seidl and 

Zorn [SZ98] investigate how allocator efficiency can be improved by segregating heap 

objects according to their lifetimes. Harris [HarOO] identifies objects for pre-tenuring 

in generational garbage collected systems. Shaham, Kolodner and Sagiv [SKSOl] use 

lifetime measurements to identify so-called dragged objects (those that outlast their 

utility). In more general work, Johnstone [Joh97] used traces to compare statistical 

assumptions about garbage collected systems with their actual behavior. Fitzgerald 

and Tarditi [FTOO] used traces to select appropriate GC algorithms for particular 

programs. 

Efforts to characterize program dynamics have used a variety of visualization 

techniques to reveal relations and patterns in execution and memory usage. Sev­

eral tools for visualizing Java trace data are available, they include: IBM's Jinsight 

[IBM], Borland's Optimizeit™ Suite [Bor], and Sitraka's JProbe™ [Sit]. Many of 

the visualizations these tools support are derived from the ideas of Jerding, Stasko 

and BaU [JSB97]. Reiss and Renieris build on their work to develop several com­

plex visualization systems [Rei9S, RR99], culminating in a system called BLOOM 

[ReiDl]. Shende et al. developed a similar system called TAU [SMC+98] for visual­

izing the execution of parallel, scientific applications. STEP was created to support 

two customizable visualization systems: EVolve [\VWB+02] and JIMPLEX [Eng02]. 

Other miscellaneous applications of tracing abound. InformaI tracing is often 

used to debug programs; Netzer and Weaver [N\V94] present some formaI approaches. 

Ernst et al. [ECGN99] describe a method that combines data and execution tracing 

to locate pro gram characteristics that remain invariant across some computation win­

dow; they use the information to reveal various implicit design contracts. Colcombet 

and Fradet [CFOO] describe a system that modifies code to ensure that it conforms 
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to a particular family of traces (Le. the runtime behavior is restricted). Dufour et 

al. [DDHV02] use traces to develop various metrics to formally categorize benchmark 

programs as memory intensive, numerie, polymorphie, ete. 

2.3 Data Definition Languages 

The approach of using a special definition language to define data file formats is 

definitely not new. A 1978 proposaI by Norton [Nor78] uses a language to define 

the format of medieal data files and suggests how the definitions can be used to 

automatically generate tools for manipulating the data. A recent extension of this 

approaeh was proposed by Haines, Mehrotra and Van Rosendale. Their 8martFile 

system [HMVR95] imported the object-oriented concept of inheritance to increase 

the interoperability and extensibility of scientifie data files. Their DAta File Type 

(DAFT) definition language also used specialized annotations to indicate character­

isties of the data such as units and coordinate systems. 

Many fully general data definition systems exist, including international stan­

dards such as A8N.1 [18090] and 8GML [18086], as weIl as the now ubiquitous 

XML [\V3COO]. However, specialized languages such as MetaTF, DAFT and STEP­

DL are often preferred by developers for their concise, easily-read and application­

specifie syntax. 
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Chapter 3 

The STEP Definition Language 

This chapter presents the STEP Definition Language (STEP-DL). The purpose 

of the language is to provide clients of the STEP system with a simple and concise 

means for defining records to be encoded in the STEP trace format. The definitions 

are translated (compiled) into structures that are used to represent trace data as 

objects and to convert a stream of such objects to and from the STEP binary format. 

The capabilities of the language (Le., the forms of data it is capable of expressing) 

provide the design foundation upon which the rest of the STEP architecture is built. 

A STEP-DL record definition includes both a structural description of the type (its 

name, its fields, the ordering of the fields and their type, etc.) as well as annotations 

that indicate various supplemental information such as which encoding strategy to 

use for a particular field element. The definitions are processed by the stepc compiler 

to generate Java class definitions that represent the record types. The annotations 

associated with a record are used to generate related structures both during compi­

lation of the definition and when the type is loaded at run-time. An example is the 

encoder objects that are used to encapsulate the strategies for serializing records into 

the STEP trace format. 

STEP-D L is a simple language-its only purpose is type definition-however, 

its support for features such as inheritance and contextual refinement of attributes 

leads to a surprisingly complex semantics. The sections that follow describe the 

details of the language and the reasoning behind the particular choice of features and 
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syntax. Sorne of the semantic implications of STEP-D L definitions are touched upon, 

deferring more discussion of the compile-time and run-time issues to chapters 4 and 

5 respectively. The chapter concludes by presenting a brief history of the evolution of 

STEP-DL, highlighting sorne of the original influences that shaped the language and 

its implementation. 

3.1 Goals 

A collection of STEP-DL definitions provides a so-called document type definition 

(DTD) for a given trace. The definitions are used both as a basis for generating code 

to represent and manipulate the data, and also as a formaI document that describes 

the structure and content of the data. To serve in both these capacities the language 

has been designed to support both a range of types and expressions about types (and 

their instances) while maintaining a syntax that is concise, precise and easy-to-read. 

3.2 Approach 

The design of STEP-DL seeks to improve upon that of the MetaTF language [C.JZOO, 

JonOI] by providing a new syntax that offers increased generality, flexibility, and ex­

tensibility. Specifically, STEP-DL uses a more familiar type definition syntax than 

MetaTF and borrows from the DAFT language [HIVIVR95] to introduce type in­

heritanee and a more intuitive annotation syntax. Sorne specifie contrasts between 

MetaTF, DAFT, and an earlier version of STEP-DL are presented in section 3.5. 

The fundamental concept in STEP-DL is the separation of type structure from in­

terpretation. The language permits generalized annotations, in the form of attributes, 

that contain essentially arbitrary text data. To provide sorne form of structure to the 

attributes, the values are partitioned into groups, where the group defines the per­

missible values the attribute may contain. In this sense, the language is somewhat 

open-ended. Each attribute group defines a new sub-component of the language with 

its own independent syntax and interpretation. A number of attribute groups, such 
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as the encoding group, are built in to the system but developers are free to add their 

own groups. 

3.3 Language Features 

An initial appraisal might place STEP-DL as somewhere between MetaTF and a gen­

eral mark-up approach such as XML [\V3COO], however STEP-DL's specific purpose 

(trace record definition) and its specialized notions of extension give rise to a unique 

and curious language. 

The syntax of STEP-DL is described formally in figure 3.1. The following sections 

proceed to elaborate on the various language features. To begin with, some of the 

basic structural elements are presented, then the various forms of annotation are 

introduced. Sections 3.3.5 and 3.3.6 exhibit the mechanisms for extending existing 

definitions. Readers are encouraged to relate the simple examples that follow to the 

complete, real-life examples provided in appendix C. 

3.3.1 Language Basics 

The syntax of STEP-DL is reminiscent of Java in several respects. STEP-DL files are 

written in standard ASCII text and are composed of a sequence of record definitions. 

Several standard comment forms are supported. Single-line comments begin with 

either 'II' or '#'. Comments that begin with '#' are supported to allow the intro­

duction of C-Preprocessor macros. Multi-line comments are written with the familiar 

'1*' and '*1' delimiters. 

Figure 3.2 provides examples of some basic STEP-DL record definitions. The 

record keyword begins a definition and is followed by an identifier representing 

the record's name. Identifiers in STEP-DL are of the standard letter 1 underscore , 

letterlnumberlunderscore* form. Each record is composed of zero or more fields, 

the definitions of which are bounded by the standard '{' and '}' symbols. Fields are 

specified starting with their type, followed by a comma separated list of field names, 

terminated by the ';' char acter . 
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file 

definition . 

-+ definition* 

-+ package identifier '{' definition* '}' 

record identifier string-literaI? 

( extends '!'? item-name )? 

'{' 

string-literaI * 

attribute* 

field-defini tion * 

fieId-modifier* 

'}' 

field-definition -+ type attribute* identifier string-literal* attribute* 

( , " string-literal* attribute* )* ';' 

field-modifier -+ ('-' l '!' ) item-name attributes* ';' 

attribute -+ '<' identifier' :' string-literaI '>' 

type -+ int 

float 

data 

string 

item-name 

type' []' 

item-name -+ identifier ( , . ' identifier )* 

Figure 3.1: STEP-D L 1.1 Syntax 
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record A { 
int 
float 
string 
data 

} 

record B { 
A[] a; 

} 

i, j; Il two integers 
f; Il a floating-point value 
s; Il a text value 
d; Il byte data 

Il an array of 'A' records 

Figure 3.2: Basic STEP-DL definitions 

type 1 description 

int Integer values in the range _263 
.. 263 - 1 

float Double precision fioating-point values 

string Variable-Iength text values 

data Variable-length raw byte data 

Table 3.1: The primitive STEP-DL types 

The primitive field types are int, float 1 , string, and data; they are summarized 

in table 3.1. The STEP-DL int type abstracts over the range of Java integer types 

(byte, short, int, and long), internally representing aH values as 64 bit longs. The 

STEP-DL float type similarly abstracts over the Java single-precision (float) and 

double--precision (double) floating point types. STEP-DL string values wrap Java 

String values. The primitive data type is provided to hold arbitrary byte data. It 

is used most commonly as the basis for MetaRecords (see section 5.3.1). 

Fields may be specified as arrays. As in Java, STEP arrays are first-class objects. 

10nly basic support for the float type is provided in the initial public version of STEP 
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package p1 { 
record A { } 

} 

package p2 { 
package p3 { 

record B { 
p1.A ai 

} 

} 

} 

package p1 { 
record C { 

A a; 

} 

} 

Il p1. A 

Il p2.p3.B 

Il continue p1 
Il p1. C 

Figure 3.3: Package scopes and qualified names 

The size of arrays are defined at run-time, and multi-dimensional arrays may be 

ragged. If an array field is always of a fixed size, this fact can be indicated with a 

relative encoding attribute modifier (see section 3.3.5). 

Once defined, a record type may be used to define the fields of other records. 

3.3.2 Packages 

Record definitions may be partitioned into various packages. A package scope 

is indicated with the package keyword, followed by the name of the package and 

delimited by the '{' and 'l' symbols. As indicated in figure 3.3, packages may be 

nested or specified in several portions. In the context of multiple packages, record 
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record A "multi-word label for A" { 

} 

"description explaining what A records signify" 
" ... a continuation of the description" 

int x "description of x values"; 

Figure 3.4: Labels and descriptions 

names are specified relative to the current package or by their absolute name, using 

the' .' symbol as a qualifier. The example illustrates fields defined with both relative 

and absolute references to the A record type. 

The intention of STEP-DL packages is simply to provide a name-space partition­

ing that allows a convenient grouping of record types, or a resolution of potentially 

ambiguous type names Ce.g., a Class record which, when implemented in Java, needs 

to be distinguished from the standard java .lang. Class type). 

3.3.3 labels and Descriptions 

The simplest forms of annotation in STEP-DL are labels and descriptions. Exam­

pIes of both forms are illustrated in figure 3.4. A label indicates an alternate name 

for a record that is not restricted to the identifier syntax. Descriptions provide an 

elaboration on what a record or field value represents. The various platform specifie 

methods for terminating a text line are addressed by having multi-part descriptions, 

where a break implies a line-break in the description text. 

The reason for providing labels and descriptions is so that a tool reading the data 

can access the annotations to automatically generate on-line help (or sorne other form 

of elaboration) regarding the given record type. 
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record A { 
<g:"record attribute"> 

int x <g:"field attribute 1">, y <g:"field attribute 2">; 

int <g:"distributed field attribute"> i, j, k; 
} 

Figure 3.5: Attribute placement 

3.3.4 AUributes 

Anticipating that STEP-D L definitions could be used to interpret STEP record data in 

a variety of contexts (encoding, visualization, conversion, etc.), the language provides 

a means for generalized annotation in the form of attribut es. Figure 3.5 illustrates 

STEP-DL attributes in a variety of placements. In the example, only a single attribute 

is present in each location, however the grammar permits any number of attributes 

(written in sequence) to be associated with a given item. 

Attributes are divided into two parts, a group identifier and a text value. For 

both simplicity and generality, the examples in this section use the fictitious group 

identifier g (see appendix B for a description of the real attribute groups, such as 

encoding). The group identifier provides a context for the attribute value. For 

example, an attribute value of "constant" could indicate that an instances of a field 

have the same value or that the field represents a well known quantity. By qualifying 

the attribute with the encoding group identifier, the meaning is refined to be: "aH 

subsequent instances can be cloned from the initial field instance value." 

Attributes are delimited by the '<' and '>' symbols, a feature which suggests 

their analogy to mark-up tags from languages such as XML. An important difference 

however is the choice of the' :' symbol which separates the group name from the value. 

23 



3.3. Language Features 

The symbol is chosen to contrast the meaning of STEP attributes from that implied 

in the common 'key=value' syntax. A STEP-DL attribute specification indicates, 

not an assignment, but an addition: "add value v to the group g." 

There are two varieties of attributes, record attributes and field attributes. Al­

though no strict requirements are placed on the meaning of attributes, record at­

tributes generally indicate information that applies to the type as a whole as opposed 

to details concerning individual record values. For example, a common record at­

tribute is <property: Il event Il > which indicates that the record represents an actual 

event as opposed to other records which are used as auxiliary data types. Such at­

tributes highlight the intended separation of structure from Interpretation. Whether 

or not a record should be interpreted as an event is a secondary feature of the data 

and by deferring the information to an attribute, clients can choose to act on the 

information at their discretion. In contrast, encoding attributes do not appear as 

record attributes because doing so would imply a uniform strategy for aH instances, 

when clearly the encoding of records may vary by context. 

Record attributes are placed after any description elements, before the field defi­

nitions. Field attributes are applied to a specifie field by placing them immediately 

after the field name in a definition. In the example, the x and y fields have specifie 

attributes. Attributes that appear between the type and field name, as with the i, j, 

and k fields in the example, are distributed to each field in the list as if they preceded 

any specifie field attributes. The syntax for distributed field attributes is provided 

purely as a convenience. It is often the case that a set of attributes are applicable 

to several fields, the distributed notation simply allows for such redundancy to be 

collapsed. The syntax also allows the definition of C-Preprocessor macros that rep­

resent common combinations of type and attributes. This technique is applied in the 

examples listed in appendix C. 

The division of attributes into groups is intended as a method for distributing the 

complexity of STEP-DL definitions. The basic language is quite simple and so are 

the built-in sub-components (Le., attribute groups). If the language directly included 

elements for specifying encoding it would not only become more complicated, but also 

more rigid. The current syntax allows any developer to introduce new interpretive 
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extensions to the language in a way that does not break other clients: consulting the 

attributes is purely optional. 

STEP-DL's concept of annotation relates to the common notion of so-called meta­

data. However, the term meta-data is used in a specifie sense in this document, thus 

it is useful to refine the definition with respect to STEP. The colloquial definition 

of meta-data can be paraphrased as "data about data." In the STEP system data 

about data occurs in both static and dynamic contexts. The static context is em­

bodied by STEP-DL annotations, they are information about the data instances. As 

section 3.3.5 explains, attribute annotations can be extended and overridden. The 

annotations are however fixed for all instances of a given type. 2 On the other hand, 

the encoding process, presented in chapter 5, makes use of the term meta-data to de­

scribe data regarding the changing encoding policy that is embedded in the encoding 

stream. To avoid confusion, the term meta-data (in the context of STEP) is only used 

to refer to the dynamic variant encountered in the encoding process. Static forms are 

referred to as annotations, and in most cases, simply as attributes. 

3.3.5 Field Modifiers 

Following the field definitions in a record, any number of field modifiers may be 

specified with the ,-, (extend) and '!' (override) operators. In the case of extension 

modifiers ('-' followed by the field name), the attributes that follow are appended to 

the currently defined set. Override modifiers (those that use the'!' operator) indicate 

that aH previous attributes should be discarded, the defaults (if any) restored, and 

new attributes appended subsequently. 

Figure 3.6 illustrates both the extension and override modifiers. The first state­

ment in the definition is a definition of the x field, which assigns a base attribute 

for the group g. The first modifier extends the attributes of the x field, appending 

<g: Il extended attri bute Il >. The oveiride modifier discards the two previous at­

tributes and leaves x with the single attribute <g: "overridden attribute">. Over­

ride modifiers are often useful for experimentation, since they allow the attributes 

2Section 5.:1.2 describes a subtle exception to this ruie. 
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record A { 
int x <g: "base attribute">; 

-x <g:"extended attribute">; 

!x <g:"overridden attribute">; 
} 

Figure 3.6: Field modifiers 

for a given item to be reset and updated without adjusting other records in the type 

hierarchy. 

Modifiers were originally developed as a method for indicating changes to inher­

ited fields (see section 3.3.6), however they can also be used to modify fields within 

the same definition to enhance the readability of the definition. Basic attributes 

can be specified in the definition of a field and other more specialized or experimen­

tal attributes deferred to later in the definition. This technique is used in sorne of 

the examples in appendix C, separating encoding strategy attributes from the main 

definitions. 

Modifiers can also apply to sub-components of a field. Common examples are 

string, data, or array fields that have a fixed length. This characteristic is indicated, 

as in figure 3.7, by specifying an encoding attribute. In the example, A records are 

defined as having a string field, x, where the values of x always have the same 

length.3 Another record, B, contains an A record as one of its fields and modifies 

the attribut es for the length of the x sub-component to specify that in the particular 

context of B.a values, the values "mostly" have the same length (see section B.l.l 

for details on the constant and def aul t strategies). 

3string, data, and array types have an implicit length sub-field. A modifier may also be applied 
to the base type of an array by referring to its element field. 
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record A { 
string x; 
-x.length <encoding:"constant">; Il all same length 

} 

record B { 
A a; 

-a.x.length <encoding:"default">; Il most same length 
} 

Figure 3.7: Relative modifiers 

Modifiers can only be applied to attribut es , and not to labels and descriptions. 

The reasoning is that labels and descriptions are fixed concepts that do not vary with 

context, while other attributes may require refinement based on context. 

3.3.6 Inheritance 

STEP-DL supports inheritance from a single parent type with the use of the familiar 

extends keyword. Figure 3.8 illustrates a simple example where the type B derives 

from A, inheriting the field x and adding a new field y. 

Type inheritance is supported because it is a familiar and established method 

for promoting reuse. It also has the secondary benefit of allowing the records to be 

arranged into hierarchical groupings which are often useful for accounting purposes. 

An important consequence of supporting inheritance is that it allows traces to be 

extended without breaking existing tools. For example, a Class record might initially 

be defined with only a name field. The record could then later be extended to include 

information such as the size of its instances, the interfaces it implements and/or a 

variety of other information. By deriving the new, extended version of the record (vs. 

creating a completely new definition), a tool designed to read the original record type 
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record A { 
int x; 

} 

record B extends A { 
int y; 

} 

Figure 3.8: Simple inheritance 

would still function, accepting the new extended type in its place. 

It is often useful to view attributes as analogous to methods from other object­

oriented systems. In essence, they dictate ways (methods) in which the record data 

might be used. The encoding attributes, for example, provide rules for assembling a 

functor ob ject (i.e., an encoder) to be applied to instances of the type. The property 

attribute group supplies more nebulous information, but still acts to define how the 

data might be used. With this analogy in mind, it is then natural to see why at­

tribut es might share the same notions of inheritance that methods do: what applies 

to the parent version should, in most cases, also apply to the child, however there are 

exceptions which may require a slight modification (in the case of attributes, the act of 

extension) or a complete redefinition (in the case of attributes, overriding). Figure 3.9 

illustrates the various STEP-DL modifier operators in the context of inheritance. In 

the case of the B type, both record attributes and field attributes for the x field are 

inherited from A. For C records, the'!' operator included in the extends expression 

discards the record attributes normally inherited from A. A second override modifier 

is used to discard and update the attributes associated with the x field. 
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record A { 
<g:"record attribute for Ali> 
int x <g:"field attribute for A.x">; 

} 

record B extends A { 
Il inherit: <g:"record attribute for Ali> 
Il inherit: x <g:"field attribute for A.x"> 

-x <g:"extend x's attributes">; 
} 

record C extends lA { 

} 

Il do not inherit: <g:"record attribute for Ali> 
Il inherit: x <g:"field attribute for A.x"> 

!x <g:"override x's attributes">; 

Figure 3.9: Inheritance of attributes 

29 



3.4. Semantic Issues 

3.4 Semantic Issues 

Although STEP-DL is not a programming language, there are still several semantic 

issues that influence the resulting translations of the definitions. For the most part, 

the significant issues result from the ordering of various elements. Records may appear 

in any order in a STEP-D L file, however the order in which they are parsed does have 

consequences for the type resolution process, described in chapter 4. The ordering of 

fields within a definition has ramifications in that the generated Java class definitions 

define equality, hash-code and iteration methods that operate on the fields in the 

order of their definition (i.e., top down, with inherited fields first). 

The semantics of attribute ordering are more subtle. As with fields, there is 

an implied linearity to the order of attributes. Attributes distributed from a field 

type precede those that follow individual fields. Subsequent extensions append to the 

previous list of attributes. However, as previously indicated, the meaning of attributes 

technically lies in the definition of the particular group to which they belong. The 

built-in encoding and property attributes define a top-down interpretation with 

the most recent (bottom) value taking precedence. Having said that, sorne attribute 

values, as is the case with encoding attributes, have non-overlapping semantics. A 

review of section B.I reveals how sorne attributes have a layered interpretation. In 

such cases, a modifier may introduce a new dominant attribute in one layer that does 

not affect the others. 

STEP-DL permits recursive type definitions. An example of why such a feature 

might be useful can be drawn from the Java type system. A Class is a Type and so is 

an Interface. Each Class may implement zero or more Interfaces and thus may 

be represented as a STEP record with an Interface [] field. Thus a Type (Class) 

contains other Types, namely the Interfaces the type implements. In this case, 

the recursive definition is acceptable since inheritance is a directed relation, thus the 

record values should not directly or indirectly refer to themselves. Recursive type 

definitions are problematic for STEP only when they are used to instantiate data 

values that actually contain circular references. Since there is no simple method for 

detecting such values, they will cause the serialization pro cess to continue expanding 
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tag.width = 1; 
size.width = 4; 
size.interpretation = none; 
address.width = 4; 
address.interpretation = none; 

alloc : (tag, size, address, vfield) { 
tag.value = 4; 

} 

Figure 3.10: A simple MetaTF specification 

sub-structures infinitely. 

3.5 History 

The current version of STEP-DL is the result of many iterations. In particular the 

approach to attributes went through a numher of phases. Early on, the attributes 

related purely to en co ding issues and thus their syntax was more integrated with the 

base language. As development proceeded, it became clear that attributes could be 

used to automate (or at least explicitly document) the interface with other tools. 

This led to the partitioning of attributes into groups, each with a specifie purpose. 

To place the syntax and features of STEP-D L in sorne sort of context it is useful 

to contrast the language with its primary influences, namely MetaTF and DAFT. 

Figure 3.10 shows an example MetaTF definition, extracted from the DTD for 

HATF and simplified somewhat. The example shows the defir:ition for an alloc 

record with four fields, tag, size, address, and vfield. The example highlights 

MetaTF's implicit typing, as weIl as a misleading attributing syntax that suggests 

attributes are sub-fields. The typing is adjusted to be somewhat more explicit in 
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filetype len_t = { 
parameter n; 

} 

field Length[n] : double 
<units=meters>; 

filetype flen_t : len_t = { 

field Length[n] : double 
<units=feet>; 

} 

Figure 3.11: A simple DAFT specification 

version 1.2 of MetaTF, however the use of fixed record tag values persists. 

The DAFT language uses asignificantly different syntax, which is illustrated in 

figure 3.11. Sinee DAFT definitions equate a single record type with a file, the example 

actually defines two file formats, where each record in the file is a fixed size array 

of double values. Despite the limited focus of DAFT, the language does offer sorne 

interesting features. It supports inheritanee (one file type derives from another) and 

a more familiar annotation syntax that uses the '<' and '>' symbols. One confusing 

element of DAFT is the approach to overriding attributes. To override an attribute, 

the field must be redefined in a sub-type with new attributes. A similar mechanism 

was implemented in early versions of STEP-DL, however it quickly became apparent 

that such an approach led to definitions where it was unclear which elements were 

inherited and which were being defined for the first time. To alleviate this problem, 

the modifier syntax was introdueed. 

As depicted in figure 3.12, early versions of STEP-DL bore a significant resem­

blanee to DAFT definitions. In particular, the type is seen as following the name 

of a field and the attribute syntax uses the 'key=value' form. One notable feature 
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record Allocation { 

} 

type identifier; 
size : int <width=1>; 

Figure 3.12: An early STEP-DL specification 

record Allocation { 
string type <encoding:"identifier">; 
int size <encoding: "size=1">; 

} 

Figure 3.13: A modern STEP-DL definition 

of early STEP-DL is the existence of an identifier type. The identifier strategy 

(discussed in several subsequent sections) was prevalent enough in early experiments 

to suggest that it form a separate type. However, once the separation of structure 

from interpretation was refined, it was clear that the "identifier" characteristic was 

independent of the type. 

Contrasting the Allocation record defined in figure 3.12 with a more modern 

expression in STEP-DL illustrates the clear partitioning of encoding information into 

explicit annotations. 
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Chapter 4 

The stepc Compiler 

The stepc compiler provides a mechanism for processing STEP-DL definitions. 

The current version is capable of parsing the definitions, validating certain built­

in attributes and generating output in the form of Java class definitions suitable 

for interfacing with the STEP encoding system. The discussion that follows focuses 

primarily on the internaI representation (IR) for STEP types and how this internaI 

form is initially generated and subsequently regenerated from the compiler outputs. 

While an understanding of the run-Ume representation of STEP types is helpful for 

understanding elements of the STEP-D L language and STEP encoding architecture, 

it is not an essential part of the presentation of STEP. The material presented in this 

chapter will, however, be of interest to those who wish to create extensions to the 

encoding architecture or extensions that define and utilize new attribute categories. 

4.1 Goals 

The stepc compiler exists as a platform for working with type representations spec­

ified in STEP-DL. The aim is to provide a modular solution where the aspects of 

the compilation pro cess (parsing, IR construction, validation, and output) operate 

reasonably independently. Clearly, the primary goal is to have a method for generat­

ing elements to interface with the STEP encoding system however, the hope is that 
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the design of stepc will also open the door to a variety of extensions for processing 

STEP-DL definitions. 

4.2 Approach 

A STEP-DL input stream is processed by creating a compiler object that completes 

the parsing of the input and builds the intermediate type representations. Once the 

resolution of the types is complete, a series of attribute verifiers can be applied to the 

definitions, followed by a series of emitters that generate output from the definitions. 

The mechanism for representing (and creating) type objects in stepc is the same 

one used to create the definitions within the run-time environment in which STEP 

records are instantiated. The reason for using the same representation is that the 

definitions remain compatible: information available at compile-time is also available 

at run-time. 

4.3 STEP-DL ----* Intermediate Form 

Generating the intermediate, object representation of STEP-DL record definitions 

with stepc proceeds in four phases: 

l. The input STEP-DL files are parsed to generate an abstract syntax tree (AST) 

representation of the input. 

2. Skeleton type structures are built from the AST representation. 

3. The type structures are resolved in two sub-phases. The first resolves structural 

information such as the existence of referenced types and inherited field infor­

mation for derived types. The second sub-phase applies the attribute modifier 

statements to complete the set of attributes associated with various elements. 

4. For attribute groups that are known to the compiler, the resolved definitions 

are checked to ensure valid attribute values. 
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Each of the four phases is applied to the set of input files in sequence. Types defined, 

resolved and validated from earlier inputs persist in the run-time environment and 

thus may be referenced (without definition) in subsequent input files. 

4.3.1 Parsing STEP-DL 

The first phase in the compilation of STEP-DL files involves parsing the input to 

create an AST representation of the definitions. The parsing mechanism used in 

stepc is generated using the SableCC [Gag98] compiler generator tool. The tool 

generates Java classes for scanning and parsing a given syntax and also provides 

skeleton methods for traversing the subsequent ASTs using the visitor design pattern. 

4.3.2 Building STEP Record Definitions 

Once an AST has been created for a given input file, the stepc compiler then tra­

verses the tree constructing object representations of the STEP record definitions. 

STEP'S internaI type representations are conceptually similar to Java's Class objects 

in that they contain an abstraction of the type as various field and attribute objects. 

The reason for creating object representations of the record types is twofold. First, 

they serve as a usefui intermediate form that various back-ends of the stepc compiler 

can query to generate output. The second role of the object type definitions is their 

use in the run-time generation of elements for processing STEP records. In particu­

lar, the encapsulated encoder objects (described in chapter 5) are generated, not at 

compile-time, but on-demand as various records are passed to the encoding system. 

The encoders are created by inspecting a definition object that is equivalent to the 

one generated at compile-Ume. The definition object is recreated in the run-Ume en­

vironment by code that accompanies the Java source output for the type definition. 

This pro cess is best illustrated with a simple example. 

Figure 4.1 presents a simplified STEP-DL definition for JVMPI method entry 

events (one extracted from those presented in section C.1). In the second processing 

phase of stepc, a variant of the builder pattern is used to assemble type objects by 

traversing the AST and adding elements to the definitions as they are encountered. 
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package jvmpi { 
record METHOD_ENTRY2 "Method Entry" extends MethodEvent { 

int <property:"address"><encoding:"size=4"> 
targetObjld "Target Object Address"; 

-targetObjld <encoding:"cache=65536">; 
} 

} 

Figure 4.1: STEP-DL for a method-use record 

DEFINITION = RecordDef .builderO .newRecordDef("METHOD_ENTRY2", "jvmpi ") 
.setParent(IIjvmpi . MethodEvent" • false) 
. setLabel( "Method Entry") 
. addFieldCFieldDef. builderO . newFieldDef ("targetObjId", "step .StepInt") 

.addDescriptionLine("Target Object Address") 

.addAttribute(new Attribute("property", "address"» 

.addAttribute(new Attribute("encoding", "size=4"» 

.addAttribute(new Attribute("encoding", "cache=65536"» 

.makeFieldDef 0) 
.makeRecordDef(); 

Figure 4.2: Java code for building an internaI STEP type definition 
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An equivalent sequence of build operations can then be distilled from the completed 

type and included in the generated Java output for the type. A segment of the out­

put Java code for building a representation of METHOD-ENTRY2 records is illustrated in 

figure 4.2. The sequence of construction operations (newRecordDef 0, setParent 0, 

addField 0, etc.) acts on a builder object (the singleton RecordDef . builder 0 ), ap­

pending various items to the current build state. When an the necessary elements have 

been setjadded the builder combines the information to create a new definition ob­

ject. The example also shows the use of a subordinate builder (FieldDef . builder 0 ) 

to create individu al field definitions. One step in the build pro cess that is not shown 

in figure 4.2 is the addition of modifiers (such as the one that modifies targetObj Id 

in the example). Local modifications are expanded by stepc, and thus only modifi­

cations to inherited fields or sub-fields appear in the generated Java output. 

Note that newly constructed type definitions only have indirect references to other 

types; specifically, the parent and field types are referenced only by name. 

4.3.3 Resolving Type Information 

After the traversaI of the AST and construction of the skeleton type definitions, stepc 

assumes that aU the necessary type information has been loaded and then proceeds 

to resolve the dangling references alluded to in the previous section. The resolution 

phase iterates over the definition objects, completing their type information in two 

steps. The first resolves references to other types, ensuring that fields have types that 

are defined, and in the case of derived records importing the inherited attribute and 

field structures. The second resolution step applies the various modifiers included in 

the original STEP-DL definition. 

Types are resolved by stepc roughly in the order that they were defined in the 

STEP-DL input. Out-of-order resolutions arise from two requirements. First, in the 

case of derived types, it is necessary for the parent type to be complete prior to 

importing the inherited structures. Thus, if a derived type precedes its parent in the 

input, the parent will be resolved on-demand before the derived type. The second 

case where a type may be resolved on-demand occurs in the application of relative 
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record A { 
B b; 
-b.x <encoding:"size=1 .. ">; 

} 

record B { 
int x <encoding:"size=1+">; 

} 

Figure 4.3: A field that requires an alternate type definition 

modifiers (see section 3.3.5). 

Figure 4.3 illustrates a situation where a relative modifier leads to on-demand 

resolution. In the example, the modifier applies to a sub-component of the b field, 

thus a complete definition of the B type is needed to interpret the modification. Since 

the definition for B follows after A, it is resolved ahead-of-time during the resolution 

of A. 

The example also provides an introduction to the concept of alternate type def­

initions. Without the modifier, the definition of A's b field would simply require a 

reference to the B type. However, the inclusion of a relative modifier requires that the 

field be defined in terms of a refined version of the B record type. To implement the 

refinement, the definition of b to refers to an alternate version of the B type, where 

the x field is extended to include the additional <encoding: "size=l .. 11 > attribute. 

The alternate type definition is created by copying the definition of Band adding the 

extra attribute to the copy's x field. 

4.3.4 Attribute Verification 

The fourth stage in the compilation of STEP-DL definitions provides developers with 

an opportunity to support verification of the content of various attribute values. The 
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current version of stepc only checks encoding attributes, essentially ensuring that 

the values are syntactically valid (according to the definitions in section B.l) and that 

they are applied to the correct types of fields. 

4.4 Compilation Errors 

Errors in STEP-DL definitions that stepc is capable of detecting can essentially be 

divided into categories that follow the four phases of compilation. The errar messages 

that are produced follow the SableCC approach of specifying the location of the error 

with a Une number and offset (e.g., [3,12] expecting: '; '). Parse errars and 

those that occur during the building of the type object (e.g., redefinition of a local 

field) can often be associated with a specific location, whereas errors in the resolution 

and attribute verification phases are associated with a given type definition, and 

thus identified by the start of the corresponding STEP-DL record definition. Some 

example errar messages and their interpretation are presented in table 4.1. 

4.4.1 Circular Dependency Errors 

The multi-phase type resolution in stepc provides the f1.exibility needed for defin­

ing directly and indirectly recursive types. However, as a byproduct, this f1.exibility 

also creates the potential for circular dependency errors. Examples of the two kinds 

of circular dependencies are illustrated in figure 4.4. The first error is common to 

an languages that support type inheritance, namely that a type cannot derive from 

itself. The second error is specifie to STEP-DL. The problem occurs in recursive types 

when a relative field modifier is applied to a sub-component of the type, where the 

sub-component has the same type as that being resolved. In the example, the type C 

has a field d of type D which in turn has a sub-component c of type C. To apply the 

modifier ! d. c during the resolution of C, it is necessary to have a complete definition 

for the type of d, namely D. However, resolving D results in a similar dependence on 

C, completing the cycle and preventing the resolution of either type. These examples 

are rather trivial, but it is reasonable to think a larger and more complex definition 
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Error Message 

Unknown token: é 

expecting: ,. , , 

redefinition of type "T" 

parent type "T" is undefined 

redefinition of field "f" 

the type of field "f" (T) is 
undefined 

can't modify field "f", it i8 
not defined for "Til types 

circular inheritance; "T" 
derives from itself 

Description 

Lexical Error: The character 'é' is not al­
lowed in STEP-DL 

Parse Error: The statement requires a termi­
nating ';' 

Semantic Error: The record type T was al­
ready defined earlier 

Semantic Error: A record is defined as in­
heriting from a non-existent type named T 

Semantic Error: A field named f was already 
defined in the current or parent record 

Semantic Error: The type T is not defined, 
thus f cannat be defined as being of type T 

Semantic Error: A modifier ('-' or '! ') was 
applied ta a field that is not defined in the cur­
rent or parent record 

Semantic Error: Type T is defined by inher­
iting directly or indirectly from itself 

circular dependency detected Semantic Error: A modifier requires the 
complete definition of the current type (which 
is impossible without the completed modifier) 

field "f" has illegal encoding Attribute Error: The attribute value is un-
attribute: "size = -1" known or incorrect for the encoding group 

Table 4.1: Interpreting stepc compile errors 
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record A extends B { 
} 

record B extends A { 
} 

(a) Circular inheritance 

record C { 
D d; !d.c; 

} 

record D { 
C c; !c.d; 

} 

(b) Circular relative modifiers 

Figure 4.4: Circular type dependencies 
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hierarchy could contain such errors through several levels of indirection. 

4.5 Generated Java Output 

The Java class definitions generated from the internaI type representation are rea­

sonably simple. Code for recreating the definition object is included in the static 

initializer of the class. Various instance methods are generated for iterating over a 

record's fields, comparing two records for equality, and computing a hash-code for the 

record. The equality and hash-code methods are necessary for records to be compat­

ible with the identifier strategy. Finally, since the encoding engine must be able to 

create instances of the records without directly invoking a specific constructor, the 

Java output includes an inner factory class that can be used to instantiate records 

from a set of field data. 

Java output for the METHOD-ENTRY2 record defined in figure 4.1 would appear as 

follows: 

package jvmpi; 

import step.*; 
import step.typedef.*; 

public class METHOD_ENTRY2 extends jvmpi.MethodEvent 
{ 

public static final RecordDef DEFINITION; 

static 
{ 

} 

DEFINITION = RecordDef. builderO .newRecordDef ("METHOD_ENTRY2", Il jvmpi") 
. setParent ("jvmpLMethodEvent" , false) 
.setLabelC"Method Entry") 
.addField(FieldDef.builder().newFieldDef("targetObjId", "step.StepInt") 

.addDescriptionLine("Target Object Address") 

.addAttribute(new Attribute("property", "address"» 

.addAttribute(new Attribute("encoding", "size=4"» 

.addAttribute(new Attribute(IIencoding", "cache=65536"» 

.makeFieldDef(» 
.setFactory(new Factory(» 
.makeRecordDef(); 
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} 

public Steplnt targetObjld; 

public METHOD_ENTRY2(Steplnt envld, Steplnt methodld, Steplnt targetObjld) 
{ 

} 

super (envld, methodld); 
this.targetObjld = targetObjld; 

public Fieldlterator fieldlterator() 
{ 

} 

StepObject[] fields = { envld, methodld, targetObjld }; 
return new Fieldlterator(fields); 

public boolean equals(Object 0) 
{ 

} 

METHOD_ENTRY2 rhs = (METHOD_ENTRY2) 0; 
return envld.equals(rhs.envld)&&methodld.equals(rhs.methodld)&& 

targetObjld.equals(rhs.targetObjld); 

pUb:i:i.c-iiit-h-as!iCodeO -_. 
{ 

return envld.hashCode()+methodld.hashCode()+targetObjld.hashCode(); 
} 

private static class Factory implements RecordFactory 
{ 

} 

public StepRecord newRecord (StepObj ect [] fieldData) 
{ 

} 

return new METHOD_ENTRY2( 
CSteplnt) fieldData[O] , 
(Steplnt) fieldData[l] , 
(Steplnt) fieldData[2] 

) ; 
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Chapter 5 

Encoding Architecture 

Chapters 3 and 4 established how to define trace data records and create the type 

structures associated with the records. This chapter focuses on the main function 

of STEP, namely encoding a stream of such records in a compact file format. The 

discussion reveals the inner workings of the central portion of figure 1.1, detailing 

how the run-time record definitions are used to create modular, adaptive encoding 

policies for each data element. Some of the subtleties of the approach are described 

including how so-called meta-data regarding the encoding pro cess is embedded in the 

output stream, and how dynamic polymorphism is handled by the encoding policies. 

Several common adaptive compaction strategies are discussed and a classification of 

the various techniques is presented. The chapter concludes with a discussion that 

touches on some of the other design factors that influenced the particular approach 

of STEP. 

5.1 Goals 

The primary goal of the encoding engine is to embody a method that, in most cases, 

pro duces an encoding that is significantly more compact than a naïve serialization 

of the data. This goal must be balanced against the need to provide a solution that 

is efficient both in the time and memory needed to encode a trace. Specifically, the 

approach should be constrained to operate in linear time, O( n), and use a bounded, 
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0(1), amount of memory, both with respect to the input trace size. Furthermore, an 

effective (or at least desirable) solution should aiso provide an open, flexible architec­

ture that makes few assumptions about the forms of data to encode and the strategies 

used to implement the encoding. Finally, to address the portability requirement, both 

the encoding system and format should be compatible with various platforms. 

5.2 Approach 

The wealth of tracing research highlighted in chapter 2 indicates that trace data 

is highly compactible. Experience has demonstrated that the compactibility is due 

to patterns and redundancy that exist on two levels: in the instances values of a 

particular record type and in the sequence of records within a given data stream. 

The philosophy of the STEP encoding system is to attack the first form of patterns 

and redundancy, striving for a near-optimal byte-Ievel encoding of record values. The 

compression of record sequences is deferred to an established tool such as gzip [CAF] 

or bzip2 [Sew]. This approach requires special attention to ensure that the record 

reductions achieved by the STEP encoding system do not adversely affect the overall 

compaction of traces when combined with sequence compression techniques. The 

discussion of such issues is continued in section 5.4 and chapter 6. 

To address the efficiency goals stated above, the encoding pro cess operates in a sin­

gle pass, converting the input record stream directly to the binary format without any 

buffering. To obtain an amortized reduction in the average size of records, the pro cess 

is implemented by creating encoder objects that encapsulate an encoding policy for a 

particular type where the encoders adapt their policy based on the sequence of values 

they encounter. The basic concept is illustrated in figure 5.2. OBJECLALLOC records 

(defined in figure 5.1) have a newOb j Id field that contain address values which are 

likely to be steadily increasing by small increments. These values are passed through 

a delta encoder object that outputs just the difference from the previous value. Policy 

changes are included in the binary output stream in the form of meta-data, that is 

"data about the encoded data." 

The mechanism that implements the encoding process is completely isolated from 
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record OBJECT_ALLOC extends JVMPI_Event { 
int arenald; 

} 

int classld <property:"address"> <encoding:"size=4">; 
int arrayType <property:"unsigned"><encoding:"size=l">; 
int size <property: "unsigned">; 
int newObjld <property:"address"> <encoding:"size=4">; 

-classld <encoding:"identifier">; 
-newObjld <encoding:"delta">; 

Figure 5.1: STEP-D L for an allocation record 

Input Records 

Encoding Strategy for 
example.jvmpi.OBJECT_ALLOC.newObjId 

Figure 5.2: The encoding pro cess 
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StepRecordOutput stepOut = new StepEncodedOutput(file); 
stepOut.writeCnew OBJECT_ALLOC( ... )); 

(a) Producer 

StepRecordlnput stepln = new StepEncodedlnput(file); 
StepRecord record = stepln.readRecord(); 

(b) Consumer 

Figure 5.3: The basic STEP client interface 

clients of the system. Figure 5.3 shows the only operations that clients need to be 

aware of. Trace producers simply create an output stream and write objects to the 

stream, while consumers just create an input stream an read records from it. The 

run-time definitions associated with each record (mentioned in previous chapters) are 

used internally by the encoding system to assemble the encoding policy objects based 

on the encoding attributes associated with the original definition. 

5.3 The Encoding Process 

The contents of a STEP data file begins with an identification and options header 

which is followed by a series of [size] [record] entries. The size, in bytes, of each 

record is included so that record types that are unknown, or unavailable, during 

the decoding pro cess can simply be passed over. Each record entry begins with an 

identification of the subsequent type, where the ID values for each type are assigned 

automatically, and thus are not bounded or prone to conflict as in the MetaTF [CJZOO] 

system. 

One of the key differences between STEP and other trace encoding systems is its 
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use of an adaptive encoding process. Instead of using a fixed encoding policy (or a dy­

namic policy with explicit changes, as is possible with MetaTF), the system monitors 

various characteristics of the input data and, when appropriate, makes adjustments 

to the encoding policy automatically. The pro cess is implemented by associating each 

record type with a separate encoder object. Each encoder encapsulates a policy for 

translating values of the given type to and from the binary representation. Sorne en­

coders implement a direct translation, while others implement a more sophisticated 

transformation based on properties of the underlying values. Encoders are arranged 

to form a tree- or DAG-like hierarchy, with record encoders deferring to sub-encoders 

to handie their various fields. The encoders are assembIed, as needed at run-time, by 

a factory object which queries the type definition for a record to get the policy basis 

from the encoding attributes. As records are received by the system, the encoders 

adjust their internaI policy based on the parameters of their particular strategy, com­

municating their state changes in the form of meta-events. When the trace is decoded, 

the meta-events are applied so as to recreate the same sequence of policy adjustments 

made by the encoding process. 

Encapsulating the encoding policies inside independent objects provides a great 

deal of flexibility. Encoders may be nested, chained or shared in a variety of ways 

and their interface makes few assumptions about the data being encoded. The design 

facilitates experimentation with encoding techniques, as new strategies can be added 

with only minor modifications. Furthermore, if the definition for a particular trace 

record is not available during the decoding process, the record is simply skipped with 

no effect on the other encoders. 

5.3.1 Meta-Events and Meta-Records 

The term meta-data is generally used to refer to information about the content of 

sorne underlying data stream. Using this definition, virtually aH STEP-DL attribute 

information could be viewed as meta-data. However, with regards to STEP, the term 

is used to refer to information about changes in the encoding policy. This information 

is transmitted in the form of meta-events, which are in turn packaged in meta-records. 
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record A { 
int [J x; 
-x.element <encoding:"size=l+">; 

} 

Figure 5.4: A definition that causes meta-events 

To understand the role of meta-events and meta-records in the STEP data stream, 

it is useful to consider a simple example. Suppose a record A is defined as in figure 5.4. 

The definition indicates that the x field is an array of integers, where most of the values 

are expected to require a single byte to encode but sorne larger deviants are allowed. 

Consider then what happens when an A. x field holds the data [3, 10, 1, 13563, 

2, 19]. In this case the first three values conform to the baseline policy (Le., they 

only require 1 byte to encode) however, the policy must be adjusted part way through 

the encoding of x to account for the deviant value (the value 13563 requires 2 bytes 

to encode). 

The approach used in the initial version of the MetaTF system is to insert an 

independent record ahead of the current one--in this example, the A record-that 

expresses the policy adjustment. Thus, the decoding of A. x would be adjusted to 

expect 2 byte values for aU the array elements. It should be clear from the example 

that such an approach results in policy changes that are often premature, excessive, 

and depending on the type of adjustment, potentially even error-prone. Consider an 

extension of the example. Suppose the A. x field also includes the value 78321, which 

requires 2:: 3 bytes to encode. If meta information is automatically generated on­

demand and prepended to the current record, which change should apply? In what 

order? 

The STEP approach to meta-data is designed to provide specific targeting of policy 

adjustments. The basic idea is to introduce a new form of meta-record that bundles 
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data: [3, 10, 1] [13563, 2, 19J 

1 

meta: [A.x.element, size:=2] 

Figure 5.5: Data and meta-data 

together both the policy change information and the particuIar data record that the 

change applies to. The structure of meta-records is quite simple. The data record 

is partitioned into sections, where the end of a partition indicates that a meta-event 

(i.e., a policy adjustment) should be applied before continuing to decode the data. 

To continue the example above, the A record would be packaged in a meta-record as 

follows: The data is partitioned into 2 segments, one including the data for the x 

field before the adjustment and a second with the data that follows immediately after 

the adjustment. The meta-record aIso contains a meta-event record that specifies 

the policy change, in this case that the next element of an A. x field is a 2-byte 

value. Following the encoding strategy shown in figure 5.4, resizing adjustments of 

A. x. element are elastic, and thus the policy promptly returns to using a single byte 

encoding for the subsequent element values. Figure 5.5 illustrates the contents of the 

meta-record. 

This definition of meta-records allows several policy changes to be applied through­

out the decoding of a given record. The general property of meta-records is that for 

n data segments, there are n - 1 meta-events to be applied between each partition. 

The decoding of meta-records is implemented with a sort of buffer stack. When the 

current data segment is exhausted, the next meta-event is immediately applied to the 

current context. 

The encoding and decoding of meta-records is complicated somewhat by the fact 

that the meta-events are implemented as STEP records themseIves. This is useful since 
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meta-events often contain data that can benefit from common encoding strategies such 

as the identifier strategy (see section 5.4.4). However, the implication is that, in sorne 

cases, one of the meta-data segments of a meta-record-normally a meta-event-can 

actually be another embedded meta-record, which contains the meta-event and rneta­

meta-data. The result is that the encoding engine must be structured to allow for 

such, potentially recursive, record constructions. The implementation of the engine 

accounts for this while maintaining a low-cost execution path for the common (Le., 

non-recursive) case. 

This design may seem excessive, however the benefits are twofold. First, by com­

bining data and meta-data into a single record, encoding policy changes can be tar­

geted at the exact byte position that the change is relevant, rather than at the coarse 

record level. Second, using STEP records to encode meta-events ensures that the 

amortized size overhead of meta-data is minimized. 

Common Meta-Event Types 

The current STEP implementation uses two kinds of meta-events. The first, and most 

often used, is the IrregularValueEvent. Such events indicate that the next value 

to be decoded is a deviation from those normally expected by the so-called regular 

value strategies discussed in section 5.4. In this case, the decoder defers to sorne 

baseline strategy to decode the value. The second, and more general, meta-event 

is the EncoderMessageEvent. These events pass an arbitrary text message to the 

decoder. In the example above, the message "size: =2" is passed to the decoder for 

elements of A.x. In this particular case, the policy is elastic and thus the value size 

returns to 1 immediately after decoding the deviant value. 

5.3.2 Accounting for Polymorphism 

The fact that STEP allows inherited record types introduces sorne subtleties to the 

encoding pro cess that are necessary to handle the case when a derived type is used in 

place of its parent. The issue is that sub-types must be correctly detected, indicated, 
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record A { 
int x <encoding:"size=1">; 

} 

record B extends A { 
-x <encoding:"size=2">; 

} 

record C { 

} 

A a' , 
-a.x <encoding:"size=3">; 

Figure 5.6: Confiicting modifiers 

and encoded to prevent so-called object slicing. 1 In other words, the decoding process 

must have sufficient information to recreate the polymorphic data stream instead of 

sim ply generating base-type versions of those that were encoded by the producer. 

The presence of polymorphism thus requires that fields that are record types 

themselves must be encoded with an additional, hidden sub-field that indicates the 

exact type of each instance value. To minimize the added overhead of identifying the 

type of each field, encoding strategies are applied to the type values according to one of 

three variants: the fields are indicated as definitely monomorphic, rarely polymorphic, 

or often polymorphie. The encoding attributes for these variants are described in 

section B.1.4. The root encoder for all records uses the polymorphie variant, whereas 

the default strategy for other record fields is to use the rarely polymorphic version. 2 

lObject slicing occurs when an object is copied or exported through a reference that views the 
objeet as one of its parent types. In sueh cases, fields that are not defined in the parent get lost (or 
sliced) during the copy process. 

2In the common ease were fields are never polymorphie, the overhead of the "rarely polymorphie" 
encoding is essentially nil. 
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One particular difficulty with polymorphism arises when there is a confiict between 

attribute extensions. Figure 5.6 illustrates a situation where a modifier that applies 

to an inherited field conflicts with a relative modifier. If a B record is used in place of 

an A for the C. a field, the modifiers applied to the x sub-field differ on how to encode 

the values. Specifically, it is unclear which of the "size=2" or "size=3" rules shouid 

take precedence. To account for such discrepancies-which can only be detected 

at run-time-the encoding system implements a mechanism for merging inherited 

field attribut es with relative modifier attributes, where the contextual modifications 

take precedence (i.e., they follow) the inheritance modifications. The reasoning is 

that when the rules disagree, the contextual modification is assumed to be the most 

relevant. 

5.4 Encoding Techniques 

The strength of the STEP system is that it permits a wide range of techniques for 

reducing the average size of record data. Sorne of the strategies are based on simple 

transformations, such as using a minimal number of bytes to encode integer values. 

However, the most significant reductions can be attributed to strategies that exploit 

certain "regularity" characteristics of the underlying values. 

To be effective, these strategies must address two issues. First, there must be 

a simple method for handling values that deviate from the expected pattern. The 

STEP encoding process addresses this issue with a solution based on the well known 

decorator design pattern. Strategies are stacked one on top of another. When the 

top of the stack encounters a deviant value, it simply defers to the next strategy 

in the stack; the deviant value is signaled by an IrregularValueEvent meta-event. 

Generally, strategies are arranged in two levels, one implementing a complex pattern­

based strategy and a second baseline rule to handle deviants. However, the design 

permits essentially any form of multi-Ievel reduction strategy. The second criteria 

for effectiveness is that pattern-based reduction strategies must be designed and used 

carefully so as not to introduce new complex data patterns that will frustrate aggre­

gate compression of the output data. Samples discusses this effect in his work on 
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address trace reduction [Sam89]. For example, if address reference data are separated 

into separate instruction-read, data-read, and data-write streams, each stream is in­

dividually more reducible than the whole. However, this separation requires a fourth 

stream to identify the category of each reference. It turns out that this fourth stream 

is highly incompressible, thus resulting in no overall benefit. 

The current strategies implemented in the STEP system faH into three main cate­

gories. Values are either removed entirely, reduced according to sorne computational 

rule, or replaced by a sm aller representative value. In addition to the descriptions 

below, the strategies are a1so described in more detail in section B.I. Section 6.2.2 

discusses the application of several of the following strategies to a collection of real 

traces, and includes examples that express the strategies in STEP-DL attributes. 

5.4.1 Translation Rules 

The basic translation rules implement a direct mapping of data values onto portable 

byte enc?dings. The most significant are the various methods for encoding integer 

data. Integers may be indicated as requiring a fixed number of bytes to encode, 

where, in sorne cases, a meta-event can signal a permanent or elastic resizing. The 

overhead of meta-data can often be avoided by using a variable sized encoding that 

uses the high bit of each byte to indicate whether there are more bits to follow. 

5.4.2 Removal Techniques 

Sorne trace values are extremely repetitive. A good example are thread identifiers for 

single-threaded programs. In this case, it is sufficient to encode the initial occurrence 

of the value and then simply assume the same value for aIl subsequent occurrences­

thus effectively reducing the amortized encoding size to 0 bytes. 

The ConstantValueStrategy encoder implements three versions of this approach. 

The first assumes that the values are truly constant, encodes the initial value and 

generates an error if any other value is given. The second approach is similar to the 

first, but allows sorne deviant values, signalling the irregularity with a meta-event. 

This is often the preferable version for data such as thread identifiers (given that the 
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program is single--threaded) because, at least in the Java environment, some other 

threads used by the virtual machine may still exist and generate a small number of 

events. The last variant is useful for values that are comprised of long sequences of 

repeats. Essentially, the default value is reset each time a new value is encountered. 

These strategies are indicated in STEP-DL as the encoding attributes "constant", 

"default", and "repeat" respectively. 

It is worth mentioning that another common trace reduction technique, run-length 

encoding, is essentially a version of the repeat strategy. The idea is to encode the 

number of repeats along with the initial value, so that changes in the default need 

not be conveyed with meta-data. The reason STEP does not currently implement 

run-Iength encoding is that it would require look-ahead information. To compute 

run-Iengths, the encoder would need to either make two passes over the input or 

implement a buffer where output records are suspended until the end of a run. 

5.4.3 Computational Techniques 

Computational reduction techniques can be summarized as those that exploit some 

known formulaic pattern in the data sequence. In other words, the next value in 

the input sequence can be reconstructed with knowledge of the previous values and 

some piece of information that can be encoded with fewer bytes than the actual 

value. This is a rather broad definition that actually includes the removal strategies 

mentioned earlier. However, in the current STEP implementation the definition is 

most applicable to the arithmetic strategies known as delta and stride. 

The delta strategy, often referred to in the literature as the difference technique, 

is most useful for sequences of numeric values that exhibit an increasing or decreas­

ing pattern. The strategy works by computing the difference between the current 

value and the previous value. If the absolute value of the difference is below a given 

threshold then only the difference value is encoded, otherwise the value is considered 

a deviant, signalled with a meta-event, and encoded with the baseline rule. The 

difference technique has proven to be a particularly effective way to reduce address 

values in both allocation and load/store traces. Furthermore, it appears that in 
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many cases the difference values themselves exhibit a high degree of regularity. For 

example, load/store addresses increase or decrease in multiples of 4 (on a 32-bit archi­

tecture), whereas allocators often proceed sequentially through free-space, producing 

a number of common object sizes. The difference technique is the primary reduction 

strategy used by both Mache [Sam89] and PDATS [.JRBZ01] and is also used in the 

RATF [CJZOO] format. 

Another ari thmetic technique is the stride strategy. The st ride strategy is, es­

sentially, a version of the difference technique where the delta values are constant. 

As with the other constant value strategies, only the initial value is encoded and an 

subsequent values are computed by simply adding the fixed increment to the previous 

value. 

5.4.4 Substitution Techniques 

Substitution techniques apply when a more compact representative can be output 

instead of the complete value. The two examples implemented in STEP are numeric 

offsets and ID substitutes. 

The offset strategy outputs the difference between a value and a given fixed base. 

The window strategy is an adaptive variant of the offset strategy where the base is 

shifted whenever the difference exceeds a given threshold. The two variants of the 

offset strategy are often useful for encoding address values when no other strategy 

applies. For example, the window strategy may be a good choice for encoding the 

addresses of garbage collected objects. In this case, the values are unlikely to exhibit 

any particular pattern, however it is likely that the collector will reclaim dead objects 

in the same memory region at roughly the same time. 

One encoding strategy, in particular, has a significant effect on the compactness 

and compressibility of STEP traces. The strategy arose from an early observation 

that traces often contained fields that are limited to a certain fixed set of values. In 

many examples, the values are text identifiers used to label various entities (methods, 

types, threads, etc.). Clearly it is wasteful to store the full representation of such 

values (e.g. "spec. benchmarks. _213_javac. Uns ignedShiftRightExpress ion" for 
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a type field) in each record. Instead, the identifier strategy encodes the values using 

a compact integer ID, signalling the mapping of value to ID with meta-events. The 

current version of STEP, extends this idea beyond string values to include arbitrary 

field data that exhibit an identifier distribution. For ex ample , JVMPI data uses an 

address value to refer to class and method structures, but the number of distinct 

values is often small enough that values can be indicated using 1 or 2 byte identifier 

values. 

In cases where the total number of distinct values is large and the actual values 

are reasonably small (as is the case with address data), the identifier strategy can 

begin to lose its effectiveness. However, if the distribution of values remains limited 

within a given input window then the cache strategy may be a viable alternative. 

The approach is similar to the identifier strategy in that values are indicated by their 

cache slot ID. The current implementation of the cache strategy is rather basic, using 

a simple rotational replacement policy, signalling replacements with a meta-event. 

Not many forms of data are suited to the cache strategy, since frequent replace­

ments generate an unacceptable amount of meta-data. Samples encountered this ef­

fect in his initial attempts to use a caching strategy for his Mache encoder. Although 

Samples abandoned the idea in favor of the much simpler (and apparently equally 

effective) difference technique, caching remains useful for sorne pernicious forms of 

data such as the target object address for virtual dispatch calls. 

5.5 Other Framework Design Factors 

Like the approach of Haines et al. [Hl\IVH95], the STEP system is designed to embody 

the major elements of Booch's definition [Bo094] of an object model: abstraction (data 

objects appear uniform, while they exhibit variable encoding), encapsulation (clients 

are isolated from the encoding process), modularity and hierarchy (interpretation 

strategies are modular and composable; record types are extensible). The system 

also embodies sorne minor elements including typing, and persistence. 

Also, an attempt is made to implement the system using a number of common 

object-oriented design patterns. Construction al approaches such as the factory and 
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builder patterns are used to create encoder and type definition objects, respectively. 

The adaptive encoding policy objects are a clear instance of the strategy pattern. 

The hierarchy of encoders is enabled through the use of the composite and decorator 

patterns. 
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Chapter 6 

Experiences 

The preceding chapt ers have addressed a number of the requirements for a gen­

eral trace encoding system established in section 1.2. This chapter completes the 

discussion by illustrating how STEP addresses its primary objective, namely to gen­

erate compact trace representations. The presentation considers the application of 

STEP to encoding a variety of trace data collected from a number of different Java 

programs. The results indicate that STEP encodings are significantly more compact 

than naïve alternatives, and also that in many case the compressibility of the data 

is improved when encoded in the STEP format. The chapter concludes with a brief 

discussion of applications that have been developed to consume STEP data. 

6 .1 Trace Collection 

In total, 8 Java programs were used as a source of trace data. They are summarized 

in table 6.1. The first six are from the standard SPECjvm98 [SPEC98] suite of 

benchmarks and the last two are adapted from programs included in the Ashes [VRSa] 

suite of programs. Appendix D offers a slightly more detailed description of the 

programs, and in sorne cases their input. 

Three different trace groups were collected to provide a range of data values. The 

first two were collected through the Java Virtual Machine Profiler Interface [Sun] by 

writing the records out verbatim and then converting the raw data format to a STEP 
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1 program 

compress 

jess 

db 

javac 

mpegaudio 

mtrt 

jack 

sablecc 

soot 

description 

Lempel-Ziv compression program 

the Java Expert Shell System 

database simulation 

Sun's Java compiler from JDK 1.0.2. 

MP3 audio decoder 

multi-threaded raytrace program 

parser generator 

object-oriented compiler compiler 

Java bytecode transformation framework 

Table 6.1: Traced Java programs 

encoding. The third set of traces was collected by instrumenting the application 

bytecode with the SOOT tool [VR.OO] where the instrumentation wrote the events 

directly in the STEP format. The number of events collected from each program is 

summarized in table 6.2. 

The first set of traces (subsequently referred to as the "memory" set) consists of 

heap allocation and free events, garbage collection start and stop events, and class 

load events. The memory traces provide a heterogeneous mix of records that consist 

mostly of integer data. Two of the traces (compress and mpegaudio) have relatively 

few allocations and thus are given separate treatment in sorne of the analyses. 

The second set of traces (subsequently referred to as the "method" set) consists 

of method usage events and class load events. The method traces provide large and 

mostly homogeneous event sequences that permit a statistically meaningful discussion 

of the average record reduction achieved by the STEP encoding. The traces from 

compress, mtrt, sablecc, and soot were truncated due to limitations of the JVMPI 

profiling agent. 

The third set of traces (subsequently referred to as the "invokejfield" set) consists 

ofinvoke (vs. dispatch receiver) and field access events for only the application classes 

in the benchmarks (i.e., events from the standard library classes are not included). 
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program total events 

memory method invokejfield 

compress 20669 165170511 100000000 

jess 15889150 96347193 100000000 

db 6428666 117540344 100000000 

javac 12743801 94254338 100000000 

mpegaudio 26946 99511817 100000000 

mtrt 13303965 165169490 100000000 

jack 11962806 58057376 76468069 

sablecc 66705675 165159324 100000000 

soot 29412399 165143277 59416025 

Table 6.2: Trace event summaries 

The invokejfield traces supply a highly regular, heterogenous sequence of text-based 

events. In most cases the traces are truncated after encountering 100 million events. 

The soot run is an exception since the benchmark prematurely terminates (after 

roughly 50% execution) due to a virtual machine error not encountered during the 

JVMPI runs. 

6.2 Encoding 

To begin with it is useful to relate the STEP encoding format to other more naïve 

encodings. Figures 6.1 and 6.2 relate the size of STEP trace files for the memory 

and method traces to versions that simply record the data in a raw format with no 

attempt at reduction. The raw format consists of standard JVMPI event structures 

encoded verbatim (Le., 4 bytes for an integer, etc.), using a single byte to indicate 

the event type. On average the STEP format achieves a better that 50% reduction in 

total trace size. Another perspective, illustrated in figures 6.3 and 6.4, considers the 

average number of bytes per record (bpr) used by the encoding. The STEP encoding 

similarly reduces the average record size to less than half of that required by the 
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raw format. The results for the method traces also indicate that the STEP encoding 

actually does achieve a nearly optimal byte-level encoding of 6 bytes per record (vs. 

13 bpr for the raw format). The encoding is near-optimal in the sense that method­

use events, which comprise on average 99% of the data, are composed of five values 

(record size, record type, thread, method, and target object), where the method ID 

values require 2 bytes to encode since there are often weU over 256 different values. 

Since the invokejfield traces were encoded directly in the STEP format, an alter­

nate comparison considered a conversion of the traces to a text version of the records. 

Although the text record format was engineered to be reasonably concise, the fre­

quent occurrence of large text (string) field values resulted in a striking contrast 

when compared to the STEP format. On average, the text encoding was nearly 40 

times the size of the STEP version, with an average record size of 205 bytes (vs. 5.2 

bpr for the STEP format). These results indicate that decision of Jones et al. to 

modify version 1.2.1 of MetaTF [JonOl] to use text-based encoding should be called 

into question when considering mostly text-based trace values. 

6.2.1 Compression Results 

After adjusting the encoding strategies to achieve a reasonably good byte-Ievel encod­

ing of the STEP records, the resulting traces were then compressed using the standard 

gzip [GAF] and bzip2 [Sew] tools, which are freely available for most UNIX plat­

forms. The compressibility of the traces is summarized in table 6.3. Compressibility 

is expressed as a percent age of the original size of the STEP encoding. There are 

several elements to note in the results. First, the small number of allocations in the 

compress and mpegaudio benchmarks skew the compression results for the memory 

traces since the small traces are more biased by class loading events. Removing the 

deviants results in average reductions to 6.44% with gzip and 2.64% with bzip2. The 

variance in regularity of the method traces is highlighted by the range of compression 

results, from db which is hard to compress to compress which is highly compressible. 

The regularity introduced by eliminating library code events is prominent in the high 

compressibility of the invokejfield traces. 
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program compression ratios 

memory method invoke j field 

gzip bzip2 gzip bzip2 gzip bzip2 

compress 28.86% 23.82% 1.77% 0.80% 0.97% 0.35% 

jess 7.54% 2.43% 14.97% 11.51% 1.53% 0.40% 

db 1.42% 0.71% 26.12% 22.08% 0.82% 0.24% 

javac 11.06% 5.04% 15.48% 12.91% 4.11% 1.69% 

mpegaudio 26.73% 21.74% 3.37% 0.91% 2.05% 1.02% 

mtrt 3.13% 1.34% 19.22% 14.60% 7.88% 2.86% 

jack 8.15% 3.21% 17.57% 14.74% 2.53% 0.78% 

sablecc 2.56% 1.13% 1.95% 1.47% 0.66% 0.22% 

soot 7.88% 3.33% 17.66% 14.67% 3.37% 0.92% 

average 10.81% 6.97% 13.12% 10.41% 2.66% 0.94% 

Table 6.3: Compression of STEP traces 

The results indicate that the block-sorting approach [B\V94] ofbzip2 often achieves 

significantly better compression versus the Lempel-Ziv [ZL 77] variant used by gzip. 

However, it is worth noting that empirical observations suggest compressing with 

bzip2 often takes an order of magnitude longer that gzip. On a dual AMD Athlon 

2000MP system gzip required roughly 5-10 minutes to compress the traces whereas 

bzip2 often required more than an hour. Thus there is a costjbenefit factor to be 

considered when compressing traces. 

Again, comparing the STEP encodings to the raw encodings of the memory and 

method traces, figures 6.5 and 6.6 show the relative sizes of the compressed raw 

and STEP traces. In the case of the memory traces, the results are quite dramatic. 

For example, the gzipped, raw sablecc trace is 176MB, while the gzipped STEP 

version is just 9.6MB. These results are considered further in section 6.2.2. The 

results are somewhat more variable for the method traces, but still, on average, are 

an improvement over the naïve encoding. A measurement of the average number 

bytes per record for the compressed traces is also presented in figures 6.7 and 6.8. 

66 



6.2. Encoding 

180 

Jess db javac m!rI jack sablecc sool 

-- 1 

ILOC--9=-z_jp_R_a_w_--,--O bzip2 Raw 0 9zip STEP Cl bzip2 STEP i 

Figure 6.5: Compressed memory trace sizes 

280 

240 

200 

al 160 
::2 
.5 
<D 
N 

ëi5 120 

80 

40 

0 
compress jess db javac mpegaudio mtr! jack sablecc soot 

:a9zlPRaw l1li bzip2 Raw [j 9zip STEP [J-bZip2 STEP 1 

Figure 6.6: Compressed method trace sizes 

67 



6.2. Encoding 

compres$ Jess db javac mpegaudio mtrt jack sablecc soot a.verage eigni"ficant 

Iii gzip Raw l1li bzip2 Raw 0 gzip STEP GJ bzip2 STEP 1 

Figure 6.7: Compressed memory trace bpr rates 

~ 1.25 +---------
(.) 
Q) 

cr: 
li> 
0.. 
<JI 

i 0.75 -)--------IIIIiJ---I 

0.25 +---~--

cornpress jess db javac mpe-gaudio mtrt jack sablacc soot 

lD gzip R_aw __ l1li bzip2 R~w 0 gzip S"!~ EJbziP2 STEPl 

Figure 6.8: Compressed method trace bpr rates 

68 

average 



6.2. Encoding 

6.2.2 Choosing Appropriate Strategies 

Experience has demonstrated that an appropriate choice of encoding strategies can 

have a significant impact on the both the average record size and the ultimate com­

pressibility of traces encoded with STEP. 

Irnproving Mernory Trace Cornpaction 

The memory traces provide an excellent opportunity to study the incremental effect 

of various strategies. The content of the traces is dominated by the heap allocation 

and free events, each comprising almost 50% of the data stream. All the records 

have implicit size and type fields, and also share an explicit environment identifier 

field (essentially the thread in which the event occurred). The allocation records 

additionally have fields for the arena of allocation, the type allocated, whether or not 

the allocation was an array, the size of the allocated object, and the address of the 

newly allocated object. The free records have one additional field, namely the address 

of the freed object. STEP-DL for the allocation and free records is shown in figure 

6.9. 1 A series of four incremental improvements are applied to improve the encoding 

of these fields. The reduction in the bytes per record of both the STEP encodings 

and the compressed STEP encodings are summarized in figures 6.10 and 6.11. (Note, 

only the traces with a significant number of allocations are considered.) 

The baseline measurement considers a version with no intelligent encoding strate­

gies, just appropriate use of the basic integer encoding rules. Already, this encoding 

otIers a 3.5 bpr over the raw version and a 1 bpr improvement in the compressed 

versions. 

The first improvement applies the repeat strategy to the environment (thread) 

identifier values. Since the traces are from single-threaded programs, the 4 bpr im­

provement is to be expected. The 4-byte address values used for the environment ID 

are essentially eliminated from the trace. 

The second improvement applies the identifier strategy to the class ID values in 

lSome attributes and descriptions have been omitted for c1arity. See section C.I for the complete 
listing. 
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#define ADDRESS int <property:"address"><encoding:"size=4"> 

record JVMPI_Event 
{ 

ADDRESS envId "Environment Identifier" i 

-envId <encoding:"repeat">i Il improvement #1 
} 

record OBJECT_ALLOC "Object Allocation" extends JVMPI_Event 
{ 

} 

int arenaId; 
ADDRESS classId; 
int arrayType <property:"unsigned"><encoding:"size=1">; 
int size <property: "unsigned">i 
ADDRESS newObjId; 

-classId <encoding:"identifier">i Il improvement #2 
-newObjId <encoding:"delta">; Il improvement #4 

record OBJECT_FREE "Object Free" extends JVMPI_Event 
{ 

ADDRESS objId "Freed Object Address"; 

-objId <encoding:"window=8192">; Il improvement #3 
} 

Figure 6.9: STEP-DL for object allocation and free records 
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Figure 6.10: Memory trace encodings 

the allocation records. The result is another 1.2 bpr improvement, which can actually 

be read as 2.4 bpr for the allocation records since they comprise roughly half of the 

stream. In other words, the original 4-byte class ID value (the address of the Java 

class structure) only requires 1.6 bytes to encode, on average. 

The third improvement applies the window strategy to the freed object address 

field of object free records. The technique is surprisingly effective. The strategy used 

a threshold that restricts the resulting offset values to be encodable in 2 bytes with 

the variable size "creep" integer encoding (i.e., 2 x 7 us able bits, -1 for the sign 

::::? a threshold of 213 = 8192). The theory is that while the address of objects freed 

by a Java garbage collector is unlikely to follow any specifie pattern, a sweeping or 

copying collector is likely to free objects in the same memory region at roughly the 

same time. The conjecture pays off, reducing the encoding by 1 bpr (or 2 bpr for 

the 50% of records that are free events), thus effectively achieving the desired 2-byte 

maximum for the encoded version freed object addresses. 
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The fourth and final improvement yields the most dramatic results. The delta 

strategy is applied to the address values of newly allocated objects. The theory is 

that an allocator is likely to proceed sequentially through memory allocating objects 

at steadily increasing memory addresses. Again, the guess pays off and the average 

record size decreases by another 1.4 bpr (2.8 bpr for allocation records). On its 

own, the fact that the addresses can be represented with an average of 1.2 bytes is 

a satisfying result. However the real benefit of the strategy is in the improvement 

it introduces in the compressibility of the traces. Apparently the delta patterns 

are significantly more regular than the underlying progression of new object address 

values. This is an intuitive result since the delta essentially captures the size of the 

new object (its offset from the last one allocated). A number of researchers have 

remarked that there are often strong patterns in object allocations sizes. 

While the first three improvements do not change any of the patterns in the record 

values (as the delta strategy does in the fourth case), the speculation is that they still 
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6.2. Encoding 

pro duce incremental improvements in the compressibility of the traces by allowing 

more complete records to fit into the pattern space of a sequential compressor such 

as gzip or bzip2. This notion is reinforced by the next set of results that consider 

improvements to traces from the lone multi-threaded program. 

Although the results for the memory traces are not directly comparable to those 

presented for the HATF format [CJZOO], they do offer sorne opportunity for a rough 

comparison with other trace encoding approaches. In both cases the traces are com­

posed of memory management events, and it seems reasonable to assume that alloca­

tion and free events dominate the traces in proportions similar to those seen in table 

6.5. As with the STEP format, the HATF traces also achieve a near-optimal byte-level 

encoding. However, the strategies applied to the STEP traces are clearly advantageous 

with regards to compression, since the STEP encodings are significantly more com­

pressible (with gzip ratios of 10.8%, or 6.4% omitting compress and mpegaudio for 

the STEP traces vs. 27-33% for the best HATF methods). 

Improving Multi-Threaded Trace Compaction 

As indicated in section C.1 an of the records used in the memory and method traces 

derive from a base JVMPLEvent type which has one field for the environment (thread) 

in which the event occurred. For most of the benchmarks, this field is highly redun­

dant since the programs are single-threaded. On the other hand, the mtrt benchmark 

is multi-threaded and warrants a different strategy for encoding the environment ID 

than is used for the other programs. 

Figures 6.12 and 6.13 exhibit two progressions in the encoding ofthe environment 

ID field. First, as in the previous section, a baseline version of the encoding is 

produced where the values are recorded verbatim as a 4-byte addresses. The next 

version uses the repeat strategy in the same way that it is used for the single-threaded 

traces. Surprisingly, there is reduction of 3 bpr in the STEP encoding, suggesting that 

while mtrt is multi-threaded, long sequences of events occur between context switches. 

The second improvement applies the identifier strategy to the environment ID field, 

a more natural choice given that there are only a few active threads in the program. 
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6.2. Encoding 

The change leads to another, albeit small, reduction in the average record size. 

The strategy changes also improve the compressibility of the traces, as indicated 

in figure 6.13. The fact that method traces are slightly more compressible when 

using the repeat strategy with bzip2 lends support to the proposaI that squeezing 

more records into a pattern buffer can resuit in better compression. The reasoning 

is that the repeat strategy eliminates values whereas the identifier strategy compacts 

them. Thus long sequences without any deviations from the default williocally have 

a smaller average record size when using the repeat variant. 

6.2.3 Overhead 

Measuring the overhead of encoding STEP traces is not as straightforward as measur­

ing the compactness and compressibility of the traces. However, during the process 

of encoding the traces a number of informal attempts to monitor execution time, 

memory use, and meta-data overhead were undertaken. 

Encoding Time 

Given the variations in hardware, software and system load that factor into the run­

ning time of a program, exact timing values are not particularly meaningful. Sorne 

empirical observations suggest that converting the raw JVMPI data files to the STEP 

format requires roughly the same time as does compressing the traces with gzip. In 

the case of the invokejfield traces, it appears that the actual encoding of the trace 

data increases the execution time by a factor of 5 to 10 times. 

Memory Requirements 

As expected from the nature of the encoding strategies, the goal of using a bounded, 

0(1), amount of space is apparently achieved. Table 6.4 indicates the average memory 

load for decoding traces. The values are obtained by taking an average of the total 

memory less free memory (after requesting garbage collection), measured at every 

10000th record decoded. As the table shows, even decoding the large traces from 

mtrt and soot (which exceed 1GB) requires less than 4MB of memory. 
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6.2. Encoding 

progmm average memory use 

memory method 

eompress 562.34 KB 2720.16 KB 

jess 590.32 KB 3795.57 KB 

db 562.30 KB 3703.10 KB 

javae 688.93 KB 3936.27 KB 

mpegaudio 582.41 KB 2790.49 KB 

mtrt 573.10 KB 3731.25 KB 

jaek 570.49 KB 3777.67 KB 

sableee 670.03 KB 3895.02 KB 

soot 767.08 KB 4051.07 KB 

Table 6.4: Average memory overhead 

program trace composition 

memory method 

meta-data object object free meta-data method 

allocation enter 

eompress 4.2% 62.5% 31.6% < 0.1% 99.9% 

jess 0.3% 49.9% 49.9% 0.6% 99.4% 

db 0.1% 50.0% 49.9% 2.2% 97.8% 

javae 0.3% 49.4% 50.2% 4.0% 96.0% 

mpegaudio 2.6% 65.5% 30.6% < 0.1% 99.9% 

mtrt 0.2% 49.9% 50.0% 1.0% 99.0% 

jaek 0.2% 49.9% 49.8% 0.9% 99.1% 

sableee 0.3% 50.3% 49.4% 0.2% 99.8% 

soot 0.2% 52.2% 47.6% 6.1% 93.9% 

Table 6.5: Meta-data overhead 
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Impact of Meta-Data 

InformaI measurements,2 summarized in table 6.5, indicate that meta-data often com­

prise only a small fraction of the data stream. Some notable exceptions are the mem­

ory traces from compress and mpegaudio, where start-up effects are visible in the 

smaU traces, and the method traces from javac and soot, where it is believed that 

the cache strategy used for dispatch targets encounters frequent cache-misses (which 

result in the generation of meta-events). However, even such poorly behaved traces 

require no more than 6% of the output stream to be composed of meta-data. 

6.3 Analyzing Trace Data 

STEP was originally developed as part of a larger framework for tracing and analyz­

ing Java programs. Two systems for visualizing trace data were designed to act as 

consumer clients of STEP. 

EVolve [WvVB+02] is a customizable event visualization system designed to reveal 

a wide variety of trace patterns and characteristics. Figure 6.14 shows several graphs 

generated with the tooi based on trace data from a very simple Java application. 

The Java Intermediate Language (JIL) [Eng02] was created to augment Java inter­

mediate representations with information from a number of static, compiler analyses. 

The JIL representation was later extended to incorporate dynamic program charac­

teristics and present the data along side the relevant static results. A JIL document 

browser called JIMPLEX is illustrated in figure 6.15. The display shows counts of 

field and method use for a given class. 

2The measurements do not account for the nesting of meta-data described in section 5.3.1. Thus, 
the results over-estimate the proportion of meta-datasince meta-data bytes may be counted multiple 
times as meta-records are unpacked. 
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Figure 6.15: Browsing program dynamics with JIMPLEX 
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7.1 Summary 

Chapter 7 

Conclusion 

This thesis has presented STEP, a system designed to facilitate the definition, encod­

ing, and sharing of arbitrary program trace data. The system was motivated by the 

need to capture the rich variety of events and behaviors exhibited by modern software 

systems such as Java programs running on a Java Virtual Machine. 

The approach uses a new and powerful trace data definition language, STEP-DL, 

that supports features such as type inheritance and generalized annotation. The 

stepc compiler uses the trace definitions to generate Java class definitions for inter­

facing with the included encoding engine. The design of STEP builds on a number 

of existing approaches to provide a robust and effective solution for encoding general 

trace data. 

The utility of the system was evaluated by encoding a variety of trace data from a 

range of well-known Java benchmark programs. The discussion considered both the 

compactness and compressibility of the encoding, as weIl as the overhead of operating 

the system. 
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7.2. A Success? 

7.2 A Success? 

The preceding chapters have illustrated how the design and implementation of STEP 

have addressed the requirements outlined section 1.2. The STEP Definition Language 

is capable of expressing a wide range of trace data types and the annotation features 

of the language provide a structured method for documenting the data. The encoding 

architecture that supports the language implements a flexible and portable file format, 

and offers a simple input/output interface to clients by encapsulating the details of 

the encoding process. STEP-DL supports extensibility in the form of inheritance and 

attribute refinement, while the encoding architecture uses modular encoding policies 

to allow extension and experimentation with new reduction strategies. In combination 

with standard compression tools, the encoding strategies included with the system 

provide an efficient method for creating particularly compact trace representations. 

In several examples, the compressed STEP encodings were less than 1% of the size of 

equivalent naïve encodings. 

The STEP system can be considered a success in the sense that it meets its design 

goals of fiexibility and interoperability while still producing an encoding format that is 

competitive with other approaches, both in terms of bytes-per-record size and overall 

compressibility. 

7.3 Future Directions 

STEP was conceived as an openly extensible framework, and a variety of future en­

hancement possibilities exist. The STEP-DL attribute partitioning described in chap­

ter 3 was specifically designed so that developers of trace production and consumption 

tools could add their own attribute groups and extend the stepc compiler to generate 

additional interface components. The current set of encoding strategies is effective but 

by no means complete or optimal. The identifier and cache strategies cou Id benefit 

from more sophisticated implementations, and other refinements on the removal and 

computational techniques would be a welcome addition. Finally, the most obvious 

extension would be to integrate sequential compression as part of the STEP encoding. 
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7.3. Future Directions 

A number of researchers have shown that the SEQUITUR hierarchical inference algo­

rithm is particularly well suited to compressing trace data. A space-restricted version 

of the algorithm [NM\V98] would be an excellent addition to STEP. 

82 



Appendix A 

On-line STEP Resources 

STEP is software made publicly available, at no cost, under the terms of the GNU 

General Public License (version 2, or later). The source code for STEP, compiled 

Java binaries, javadoc API documentation, and other related documents (including 

a copy of this thesis) are available from McGill University's Sable Research Group at: 

http:j jwww.sable.mcgill.cajstepj. 
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Appendix B 

STEP-DL Attribute Groups 

B.1 encoding Attributes 

The encoding attribute group is the most prominent and integral to the STEP sys­

tem. The encoding techniques faIl into 3 categories: general regularity strategies, 

which may be applied to any data value; specific regularity strategies, which target a 

particular data type; and simple, property based rules. The precedence of encoding 

strategies is based on these three categories. First, the most recent general strategy is 

applied. If an irregular value is encountered, the next available rule is used: either a 

targeted strategy or basic rule. Again, if a targeted strategy encounters an irregular 

value, it defers to the most recently defined basic rules. If no basic mIe is given, 

the encoder factory assigns certain default rules. When a strategy must defer to its 

subordinate, the irregular value is indicated through the use of a meta-event record. 

B.1.1 General Strategies 

identifier 

This strategy is applied when the values are expected to derive from a relatively 

smaIl, fixed distribution. As new values are encountered, they are written as 

< value, 1 D > pairs. AH subsequent occurrences of the value result in only the 

ID being written to the trace. The decoder reads the IDs and converts them to 
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values based on the initial mapping. 

cache=size 

The cache strategy is similar to the identifier approach. size values are kept in 

a table. When a value's equivalent exists in the table, only the table index is 

encoded. New values are placed in the table on a rotational basis. Generally, 

the cache strategy is only useful when the size of the value distribution is too 

large for the identifier strategy to be effective. 

constant 

This strategy assumes that an values for the given field are the same. The value 

is only written for the initial occurrence. If any subsequent value differs from 

the initial value, an error is generated. 

default 

This strategy is similar the the constant strategy, but deviant values are allowed 

and are signalled with meta-data. This strategy is effective for fields which 

almost always have the same value. 

repeat 

The repeat strategy is similar to the default strategy, except that deviant values 

change the base value. The strategy is useful for data with long repeating 

sequences, or when the best default is not the initial value. 

8.1.2 Integer Strategies 

Integer (int) field values may be encoded using a variety of targeted strategies and 

basic rules. 

Targeted Strategies 

delta 1 delta=threshold 

This strategy assumes that values are arithmetically "close" to the previous 

value, and only encodes the difference. In the case when a threshold is specified, 
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absolute delta values greater than the threshold cause the deviant value to be 

transmitted with a meta-event instead. This is a version of Samples' difference 

technique [Sam89]. The strategy is use fuI for data such as allocation addresses 

where the values often exhibit a sequentially increasing pattern. 

stride=increment 

This strategy assumes that values occur with a regular increment from the 

previous value. In such cases, nothing is written to the trace and the decoder 

reconstructs the value from the previous value and the increment. 

offset 1 offset=base 

This strategy assumes that values are clustered about a given base value and 

that it is more economical to transmit the difference from the base than the 

absolute value. If no base is specified, the initial value is used as the base. 

window=threshold 

This strategy can be viewed as an adaptive version of the offset strategy. The 

initial value is used as the base, and subsequent values are encoded as the offset 

from the initial value. If the difference exceeds the given threshold, the base is 

shifted. 

Basic Rules 

size= fixed 1 start .. 1 min+ 1 creep 

The number of bytes used for an integer value (i.e., its size) can be defined in 

a number of ways. The rule may state that values always use the same fixed 

number of bytes. The rule may begin using a particular size, and then grow to 

use more bytes as larger values are encountered. The resizing may be elastic, 

in the case where values requiring more than the minimum are rare. Finally, 

a variable size encoding may be used, where the high bit of each byte is used 

to signal whether more bytes should be read. The default rule is to use the 

variable size "creep" rule. 
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signed 1 unsigned 

Values that are always ~ 0 are indicated as unsigned. The default is to as­

sume signed integer values. Unsigned values are also implied by the property 

attributes "unsigned" and "address", and is often omitted in favor of the 

property version. 

8.1.3 String Rules 

String (string) types currently have just a single basic rule which states character 

encoding of the string in bytes. 

charset=UTF-8 1 US-ASCII 1 

The encoding of string values parallels Java's string encoding rules. The de­

fault rule is to encode values using the UTF -8 character set. 

8.1.4 Record Rules 

type=variable 1 default 1 constant 

Since STEP supports inheritance of record types, it is possible that sub-types 

may be used in the place of a field's defined type. To avoid object slicing, the 

record encoder must indicate the type of the specifie value. The strategy for 

tagging the type of a record value assumes that either a) the types are uniform, 

in which case the default or constant options are appropriate, or that b) a 

number of different types are used, in which case the variable option (based 

on the identifier strategy) is a better choice. 

General Notes 

@ string, data and array objects write a length field when encoded. The length 

encoding strategy may be adjusted with a relative modifier (e.g., -x .length 

<encoding: "default"». 
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@ The strategy for elements of an array field can also be changed by applying a 

modifier to the element field. 

8.2 property Attributes 

8.2.1 Record Properties 

event 1 entity 

STEP does not make an explicit distinction between records that represent an 

event or those that are used as auxiliary structures to describe complex entities. 

Indicating whether a record signifies and event or entity is useful for tools that 

consume the trace data to distinguish the two forms. 

8.2.2 Integer Properties 

signed 1 unsigned 

Values that are always ~ 0 are indicated as unsigned. The default is to assume 

signed integer values. 

address 

Address values imply the "unsigned" property and also indicate a memory 

coordinate. 

boolean 

Values that should be converted to an appropriate boolean representation, 

where non-zero '* true and zero '* false. 
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Appendix C 

STEP-DL Examples 

C.I STEP-DL Definitions for JVMPI Data 

This section presents a listing of the STEP-DL definitions used to encode the 'method' 

and 'memory' traces discussed in chapter 6. The definitions parallel the standard 

JVMPI event record definitions. 

#define ADDRESS int <property:"address"><encoding:"size=4"> 

package example { 

package adapt { 

record AdaptHeader { 
int magic <property:lOunsigned lO ><encoding:"size=4">; 
data options; 

} 

} 

package jvmpi { 

record JVMPI_Event { 
<property:" event"> 

ADDRESS envId "Environment Identifier"; 
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} 

-envId <encoding:"repeat">; Il nearly constant for single-threaded apps 
l;-envId <encoding: OI identifer">; Il variable for multi-threaded apps 

record JVM_Entity { 
<property:"entity"> 

} 

record Method "JVM Method" extends JVM_Entity { 
string methodName "Method Name"; 

} 

string signature "Method Signature"; 
int startLine "First Source Line"; 
int endLine 
ADDRESS methodId 

"Last Source Line"; 
"Method Identifier"; 

record Field "JVM Field" extends JVM_Entity { 
string fieldName "Field Name"; 
string signature "Field Signature"; 

} 

record Thread "JVM Thread" extendfl JVM_Entity { 
string threadName "Thread Name"; 
string group "Thread Group"; 
string parent "Parent Thread"; 
ADDRESS threadId "Thread Identifier"; 
ADDRESS threadEnvId "New Thread's Environment Identifier"; 

} 

Il -- Definition Events ------------------------------------------------------

record ClassEvent extends JVMPI_Event { 
ADDRESS classId "Class Identifier"; 

} 

record CLASS_LOAD "Class Load" extends ClassEvent { 
"a class was loaded into the VM" 

} 

string 
string 
int 
Method[] 
Field[] 

className "Class Name"; 
source "Source File"; 
numInterfaces; 
methods; 
staticFields, instanceFields; 

record CLASS_UNLOAD "Class Unload" extends ClassEvent { 
"a class was unloaded from the VM" 

} 
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Il -- Memory Management ------------------------------------------------------

record OBJECT_ALLOC "Object Allocation" extends JVMPI_Event { 
"an object was allocated on the heap" 

} 

int 
ADDRESS 
int 
int 
ADDRESS 

arenaId 
classId 
arrayType 
size 
newObjId 

"Allocation Arena Identifier"; 
"Allocated Type Identifier"; 
"Array Type" <property: "unsigned"><encoding: "size=1">; 
"New Object Size" <property:"unsigned">; 
"New Object Address"; 

-classId <encoding:"identifier">; 
-newObjId <encoding:"delta">; Il capture patterns in allocation size 

record OBJECT_FREE "Object Free" extends JVMPI_Event { 
"a heap object was freed" 

ADDRESS objId "Freed Object Address"; 

-objId <encoding:"window=8192">; Il gc freeing objects in nearby locations 
} 

record ArenaEvent extends JVMPI_Event { 
int arenaId "Allocation Arena Identifier"; 

} 

record ARENA_NEW "Arena New" extends ArenaEvent { 
"an allocation arena was created" 

string arenaName "New Arena Name"; 
} 

record ARENA_DELETE "Arena Delete" extends ArenaEvent { 
"an allocation arena was deleted" 

} 

record GC_START "Garbage Collection: Started" extends JVMPI_Event { 
"a garbage collection cycle has begun" 

} 

record GC_FINISH "Garbage Collection: Finished" extends JVMPI_Event { 
"a garbage collection cycle has ended" 

int <property: "unsigned"> 
usedObjects, 
usedObjectSpace, 
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usedTotalSpace; 
} 

Il -- Execution --------------------------------------------------------------

record MethodEvent extends JVMPI_Event { 
ADDRESS methodId "Method Identifier"; 

-methodId <encoding:"identifier">; 
} 

record METHOD_ENTRY extends MethodEvent { 
} 

record METHOD_ENTRY2 "Method Entry" extends MethodEvent { 
ADDRESS targetObjId "Target Object Address"; 

-targetObjId <encoding:"cache=65536">i 
} 

record METHOD_EXIT "Method Exit" extends MethodEvent { 
} 

record JVM_INIT_DONE "JVM Initialization Complete" extends JVMPLEvent { 
"the JVM has finished its initialization phase" 

} 

record JVM_SHUT_DOWN "JVM Shut Down" extends JVMPLEvent { 
"the JVM is exiting" 

} 

Il -- Concurrency ------------------------------------------------------------

record THREAD_START "Thread Start" extends JVMPI_Event { 
lia new thread of execution was started" 

Thread newThread "New Thread"j 
} 

record THREAD_END "Thread End" extends JVMPI_Event { 
na thread of execution ended" 

} 

record MonitorEvent extends JVMPI_Event { 
ADDRESS lockObjId "Lock Object Address"; 

-lockObjId <encoding:"identifier">; Il limited number of locks? cache? 
} 
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record MONITOR_CONTENDED_ENTER "Monitor Contend: Enter" 
extends MonitorEvent 

{ 

"attempt to acquire contended monitor lock" 
} 

record MONITOR_CONTENDED_ENTERED "Monitor Contend: Lock Acquired" 
extends MonitorEvent 

{ 

"acquired contended monitor lock" 
} 

record MONITOR_CONTENDED_EXIT "Monitor Contend: Exit" 
extends MonitorEvent 

{ 

"released contended monitor lock" 
} 

record MonitorWaitEvent extends MonitorEvent { 
int timeout "Wait Timeout" <property:"unsigned">; 

} 

record MONITOR_WAIT "Monitor Wait: Begin" extends MonitorWaitEvent { 
"wait for a monitor lock" 

} 

record MONITOR_WAITED "Monitor Wait: End" extends MonitorWaitEvent { 
"done waiting for a monitor lock" 

} 

record RawMonitorEvent extends JVMPI_Event { 
string monitorName "Monitor Name"; 
int monitorId "Monitor Identifier" <property: "unsigned">; 

-monitorName <encoding:"identifier">; 
} 

record RAW_MONITOR_CONTENDED_ENTER "Raw Monitor Gontend: Enter" 
extends RawMonitorEvent 

{ 

"attempt to acquire contended raw monitor lock" 
} 

record RAW_MONITOR_GONTENDED_ENTERED "Raw Monitor Gontend: Lock Acquired" 
extends RawMonitorEvent 

{ 

"acquired contended raw monitor lock" 
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} 

record RAW_MONITOR_CONTENDED_EXIT "Raw Monitor Contend: Exit" 
extends RawMonitorEvent 

{ 

"released contended raw monitor lock" 
} 

} Il jvmpi 

} Il example 
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C.2 STEP-D L Definitions for Java Run-Time Data 

This section presents a listing of the STEP-DL definitions used to encode the 'in­

vokejfield' traces discussed in chapter 6. The definitions include a number of static 

Java entities and run-time events. 

#define TYPE_ID example.java.Type 
#define METHOD_ID example.java.Method 
#define SITE_ID example.java.MethodSite 
#define FIELD_ID example.java.Field 

package example { 

package java { 

record JavaEntity { 
<property:"entity"> 

} 

record Thread extends JavaEntity { 
string name; 
string group; 

} 

<encoding:"identifier"> 
<encoding:"identifier"> 
<encoding:"identifier"> 
<encoding:"identifier"> 

record Type "Java Type" extends JavaEntity { 
string name; 

} 

record Method extends JavaEntity { 

} 

string 
Type 

signature; 
declaringClass; 

record MethodSite "Method Site" extends JavaEntity { 
Method method; 
int number <property: "unsigned "><encoding: "size=l + ">; 

} 

record Field extends JavaEntity { 

} 

string 
Type 
Type 
int 

name; 
type; 
declaringClass; 
isStatic <property: "boolean 1O><encoding: "size=l ">; 
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package rt { 

record RuntimeEvent "Runtime Event" { 
<property:"event"> 

example.java.Thread thread; 

-thread <encoding: "repeat">; 
Irthread <encoding:"identifier">; 

Il for single-threaded apps 
Il for multi-threaded apps 

} 

record Allocation extends RuntimeEvent { 
TYPE_ID allocatedType; 
SITE_ID allocationSite; 

} 

record MethodEvent extends RuntimeEvent { 
METHOD_ID method; 

} 

record MethodEnter extends MethodEvent { 
} 

record MethodExit extends MethodEvent { 
SITE_ID exitSite; 

} 

record FieldAccess extends RuntimeEvent { 
FIELD_ID field; 

accessSite; 
} 

record FieldRead extends FieldAccess {} 
record FieldWrite extends FieldAccess {} 

record Invoke extends RuntimeEvent { 
METHOD_ID method; 
METHOD_ID callerMethod; 
SITE_ID callSite; 

} 

record DispatchInvoke extends Invoke { 
TYPE_ID targetType; 

} 

record InterfaceInvoke extends DispatchInvoke 
record VirtualInvoke extends Dispatchlnvoke 
record StaticInvoke extends Invoke {} 

record SpecialInvoke extends Invoke {} 

} Il rt 
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} Il java 

} Il example 
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Appendix D 

8enchmark Program Descriptions 

The programs used to collect the traces discussed in chapter 6 are briefiy summa­

rized below. The first six are taken from the weIl known SPECjvm98 [SPEC98] suite 

of Java benchmarks. The remaining two (sableee and soot) are modified versions 

of those found in the Ashes [VRSa] benchmark suite. The descriptions of the SPEC 

programs are adapted from those included with the benchmark bundle. 

_20Leompress 

A modified Lempel-Ziv compression method (LZW). Basically, the program 

finds corn mon substrings and replaces them with a variable size code. The 

method is deterministic, and can be done on the fiy. Thus, the decompression 

procedure needs no input table, but tracks the way the table was built. 

_202_j ess 

JESS, the Java Expert She11 System, is based on NASA's CLIPS expert she11 

system. In simplest terms, an expert shen system continuously apphes a set 

of if-then statements, called ruIes, to a set of data, called the fact list. The 

benchmark workload solves a set of puzzles commonly used with CLIPS. To 

increase running time, the benchmark problem iteratively asserts a new set of 

facts representing the same puzzle but with different literaIs. The oIder sets 

of facts are not retracted. Thus, the inference engine must search through 

progressively Iarger rule sets as execution proceeds. 
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_209_db 

Performs multiple database functions on a memory resident database. Reads in 

a 1 MB file which contains records with names, addresses, and phone numbers 

of entities and a 19KB file called scr6 which contains a stream of operations to 

perform on the records in the file. The program loops and reads commands till 

it hits the 'q' (quit) commando The commands performed on the file include, 

among others: 

® add an address 

® delete and address 

® find an address 

® sort addresses 

_213_javac 

This is the Java compiler from the Sun's JDK 1.0.2. [No further details are 

provided.] 

_222-.lIlpegaudio 

This is an application that decompresses audio files that conform to the ISO 

MPEG Layer-3 audio specification. As this is a commercial application only 

obfuscated class files are available. The workload consists of about 4MB of 

audio data. 

_227 -.lIltrt 

This is a variant of _205.xaytrace, a raytracer that works on a scene depicting 

a dinosaur, where two threads each render the scene in the input file time-test 

model, which is 340KB in size. 

_228_jack 

A Java parser generator that is based on the Purdue Compiler Construction 

Tooi Set (PCCTS). This is an early version of what is now called JavaCC. The 

workload consists of a file named jack. jack, which contains instructions for 
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the generation of jack itself. This is fed to jack so that the parsergenerates 

itself multiple times. 

sablecc 

soot 

An object-oriented compiler generator. The tool generates classes to repre­

sent lexical and grammatical units, state machines for scanning and parsing the 

given syntax, and methods for generating and traversing an abstract syntax tree 

(AST) representation of an input sequence. This benchmark uses SableCC ver­

sion 2.16.2 and executes on a grammar for version 1.1 of the Java programming 

language. SableCC is available for download at: http:j jwww.sablecc.org. 

A Java bytecode transformation and optimization framework. The framework 

provides a numberof static program optimizations that are applied to a 3-

address intermediate representation called Jimple. This benchmark uses SOOT 

version 1.2.4.dev.12 and optimizes severallarge class files from the framework 

itself (requiring many other context classes to be analyzed in the process). SOOT 

is available for download at: http:j jwww.sable.mcgill.cajsootj. 
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