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Abstract

Proteins are functional molecules in a cell with important roles in the structure, function, and
regulation of different biological processes. Moreover, protein-coding genes contain the
information necessary for producing different proteins. The process in which information from a
gene is used to produce proteins is known as gene expression. Gene expression is highly regulated
in a cell, and one of the primary regulators of this process are proteins known as transcription
factors (TFs). Transcription factors bind to specific regions of DNA and regulate the expression
of their target genes. Transcriptional regulatory networks (TRNs) are graph representations of the
relationship between transcription factors and their target genes. The reconstruction of these
networks based on different molecular features that capture the regulatory evidence of
transcription factors and genes is a major area of research since it elucidates the regulatory

mechanisms in a cell that play important roles in diseased and healthy states of a cell.

The rapid advances in high throughput sequencing technologies in the past decades that enable
measuring different molecular ‘omics’ profiles of different samples have provided a great
opportunity to unravel TRNs. Consequently, utilizing different ‘omics’ datasets pertaining to the
same set of samples through careful data integration, known as multi-omics analysis, allows us to
better and more accurately capture the regulatory relationships between TFs and their target genes.
In addition, methods that enable the identification of TRNs that are related to specific biological
processes or phenotypes, known as phenotype-relevant TRNs, are of great interest. This thesis
focuses on the reconstruction of phenotype-relevant TRNs in two different applications and the

development of methods for the reconstruction of such networks using multi-omics datasets.

After introducing the objectives of the research and thesis organizations in Chapter 1, we introduce
some of the key concepts in molecular biology. Then we review the rapidly evolving approaches
for reconstructing TRNs, particularly the phenotype-relevant TRNs in Chapter 2. In Chapter 3, we
discuss the application of a computational pipeline that first builds a TRN associated with the
response of the host to infection by SARS-CoV-2, when compared against other respiratory viruses,
and then utilizes random-walk based methods to identify kinases as potential regulators of this
network, as well as potential therapeutic targets. The journal manuscript of this work is currently
under review as of August 2021. In Chapter 4, we introduce a novel computational method based

on probabilistic graphical models that integrates ChIP-seq data, RNA-seq data, and phenotypic
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data to reconstruct phenotype-relevant TRNs. Following the latter, we show the benefit of this
approach compared to single-omics analysis using synthetic data. Last but not least, we use this

method to study the TRNs involved in human embryonic development.
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Abrégé

Les protéines sont des molécules fonctionnelles dans une cellule avec des roles importants dans la
structure, la fonction et la régulation de différents processus biologiques. De plus, les genes
codants pour les protéines contiennent les informations nécessaires a la production de différentes
protéines. Le processus dans lequel I’information d'un gene est utilisée pour produire des protéines
est connu sous le nom d'expression génétique. L'expression génétique est hautement régulée dans
une cellule et I'un des principaux régulateurs de ce processus sont des protéines connues sous le
nom de facteurs de transcription (FTs). Les facteurs de transcription se lient a des régions
spécifiques de I'ADN et régulent 1'expression de leurs genes cibles. Les réseaux de régulation
transcriptionnelle (RRTs) sont des représentations graphiques de la relation entre les facteurs de
transcription et leurs geénes cibles. La reconstruction de ces réseaux basée sur différentes
caractéristiques moléculaires, qui capturent les preuves régulatrices des facteurs de transcription
et des geénes, est un domaine de recherche majeur, car elle élucide les mécanismes de régulation

dans une cellule qui jouent un réle important dans les états pathologiques et sains d'une cellule.

Les progres rapides des technologies de séquengage a haut débit au cours des derniéres décennies,
qui permettent de mesurer différents profils moléculaires « omiques » de différents échantillons,
ont fourni une grande occasion de déméler les RRTs. Par cons é quent, I'utilisation de différents
ensembles de données « omiques » appartenant au méme ensemble d'échantillons grace a une
intégration minutieuse des données, connue sous le nom d'analyse multi-omique, nous permet de
mieux capturer et plus précisément les relations régulatrices entre les FTs et leurs geénes cibles. De
plus, les méthodes qui permettent l'identification des RRTs qui sont liées a des processus
biologiques ou a des phénotypes spécifiques, connues sous le nom de RRTs pertinents pour le
phénotype, sont d'un grand intérét. Cette thése se concentre sur la reconstruction de RRTs
pertinents pour le phénotype dans deux applications différentes, ainsi que sur le développement de
méthodes pour la reconstruction de tels réseaux en utilisant des ensembles de données multi-

omiques.

Apres avoir présenté les objectifs de la recherche et les organisations de la thése dans le chapitre
1, nous introduisons certains des concepts clés de la biologie moléculaire. Ensuite, nous passons
en revue les approches en évolution rapide pour la reconstruction des RRTs; en particulier les

RRTs pertinents pour le phénotype dans le chapitre 2. Dans le chapitre 3, nous discutons de



l'application d'un pipeline de calcul qui construit d'abord un RRT associé a la réponse de I'hote a
l'infection par le SRAS-CoV-2, par rapport a d'autres virus respiratoires et utilise ensuite des
méthodes basées sur la marche aléatoire pour identifier les kinases en tant que régulateurs
potentiels de ce réseau, ainsi que des cibles thérapeutiques potentielles. Le manuscrit du journal
de ce travail est en cours de révision en aotit 202 1. Dans le chapitre 4, nous présentons une nouvelle
méthode de calcul basée sur des modéeles graphiques probabilistes qui intégrent les données ChIP-
seq, les données ARN-seq et les données phénotypiques pour reconstruire les RRTs pertinents
pour le phénotype. A la suite de cette derniére, nous montrons l'avantage de cette approche par
rapport a I'analyse mono-omique, en utilisant des données synthétiques. Enfin, nous utilisons cette

méthode pour étudier les RRTs impliqués dans le développement embryonnaire humain.
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1 Introduction

1.1 Motivation

Massive studies in molecular biology have revealed that complex life phenomena result from many
gene interactions guided by regulatory networks. Studying gene regulatory networks (GRNs) can
reveal the operating mechanism of cells and life processes, provide new ideas to treat complex
diseases, and contribute to screening drug targets and developing personalized therapeutic drugs
[1]. Transcriptional regulatory networks (TRNs) are one type of GRNs in which nodes represent
either transcription factors (TFs) or potential target genes, and edges represent TF-gene
interactions (Figure 2.3B). There have been efforts to reconstruct TRNs from genomics data
computationally, and various studies have demonstrated the effectiveness of such methods [2-7].
While this thesis focuses on TRNs, various approaches developed for the reconstruction of GRNs
are also applicable to the reconstruction of TRNs; as such, we will also cover related

methodologies originally developed for GRNs in chapter 2.

1.2 Thesis Organization and Contributions

This thesis records all research work I have done during my master’s at McGill University under
the supervision of Dr. Emad. The writing and structure of the thesis have significantly benefited

from the inputs and comments obtained from Dr. Emad.
The structure of this thesis is outlined as follows:

e In Chapter 2, I present the molecular biology background required for this thesis. I start
with basic molecular concepts and then describe each process in the central dogma [§]
(Figure 2.2). After that, I introduce multi-omics data and the importance of integrating such
data over single omics analysis. Lastly, I describe the GRN inference problem and provide
a review of the rapidly growing GRN inference approaches in the past decades, with a
primary focus on TRN reconstruction methods. The focus of phenotype-relevant TRN
inference methods in chapter 2.4 is directly related to the research presented in the thesis.

e In Chapter 3, I present a computational pipeline for the reconstruction of SARS-CoV-2

relevant TRNs and the identification of therapeutic targets.



2 Chapter 1 Introduction

o Dr. Amin Emad and our collaborator Dr. Simon Rousseau designed and conceived
the study, and I implemented the computational pipeline and performed the analysis
under the supervision of Dr. Emad. The computational pipeline was comprised of
three existing methods: InPheRNo, FORWaRD, KnowEnG, which were previously
developed by authors in [7, 9, 10]. Furthermore, Figure 3.1 and Figure 3.2 in this
chapter were adapted from the manuscript [11], which were originally created by
Dr. Emad.

e In Chapter 4, I develop a new computational tool, InPheRNo-ChIP, to reconstruct
phenotype-relevant TRNs using multi-omics data. Next, I show that such data integration
improves the TRN reconstruction accuracy compared to using only transcriptomic data.
Lastly, I carry out experiments on both synthetic and real-world biological datasets to
assess model performance.

o Dr. Emad supervised the overall conception and design of the work during our
weekly one-on-one meeting. Our collaborator, Dr. William Pastor, helped to (1)
select appropriate RNA-seq and ChIP-seq data from open-source databases and (2)
design preprocessing modules in chapter 4.4. 1 generated synthetic data and
developed two preprocessing pipelines for RNA-seq and ChIP-seq data. I also
implemented an algorithm InPheRNo-ChIP and performed the experiments using
synthetic and real-world datasets. All these works were done under the supervision
of Dr. Emad. Notably, the core of the algorithm was built upon a probabilistic
graphical model (PGM), and the fundamental design of that PGM was adapted from
the original InPheRNo paper [7].

e In Chapter 5, I provide a summary of each chapter, the main contributions of the thesis,

and propose future research directions.

1.3 Submitted Work

Some portions of this thesis are based on the following submitted manuscript [11]. The work has
been performed under the supervision of Prof. Amin Emad and in collaboration with Prof. Simon

Rousseau.

C. Su, S. Rousseau, and A. Emad, "Identification of COVID-19-relevant transcriptional regulatory

networks and associated kinases as potential therapeutic targets," Accepted, bioRxiv, 2020.
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We submitted the manuscript to the Scientific Reports on July 2021, with a confirmation number

7d9dcel5-befa-4030-9854-98fc5d4b12d9. It was accepted on December 2™, 2021.
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2 Background and Literature Review

In this chapter, we start with basic concepts in molecular cell biology, such as biochemical
molecules, processes in central dogma, and multi-omics data analysis. Next, we review the
literature relating to the gene regulatory network reconstruction, with particular emphasis on taking

phenotype information into consideration.

2.1 Molecular Biology Background

2.1.1 Biochemical Molecules
Biochemical compounds can be categorized into four major groups: nucleic acids, proteins,

carbohydrates, and lipids [12].

Nucleic acids store the genetic information of an organism and can be categorized into two classes:
deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). DNA is a double-stranded molecule
and is made of deoxyribonucleotides and phosphate groups. A DNA molecule carries hereditary
information in most organisms (one exception is RNA virus [13]). RNA is typically single-

stranded and is made of ribonucleotides.

Proteins are made up of structural units (i.e., amino acids), which essentially affect the 3-
dimensional structures and functions of proteins [14-16]. Proteins include enzymes, antibodies,
and other amino acid-derived molecules whereas carbohydrates and lipids include sugars and fats

[17, 18].

2.1.2 Genes and Genome

According to the studies, the genetic differences between humans are minuscule; two randomly
selected individuals are around 99.9% genetically identical [19]. The remaining 0.1% contains
crucial genetic instructions about the variations of cell types, tissues and organs, and the cause of

diseases.

Genes are the basic functional units of inheritance; they encode functional products such as
proteins. Except for some RNA viruses that use RNA as their genetic material [13, 20], a gene
usually refers to a small stretch of the DNA sequence on a chromosome or genome. The genome

is defined as a complete set of genetic instructions in a living organism. Researchers have clarified
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that only 2% of the human genome is coding genes (around 20k-25k genes in total [21]), whereas
the last part of the genome consists of non-coding genes with other regulatory functions. Besides
the nucleus that carries chromosomal DNA (22 pairs of autosomes pairs and a pair of allosomes),

the cell also contains mitochondrial DNA [22].

A gene stores genetic information using different combinations of four DNA nucleotide bases:
adenine (A), thymine (T), guanine (G), and cytosine (C) [23]. It contains the essential information
for living cells to replicate or express particular phenotypes. During this process, gene mutations

may occur in order to adapt to environmental changes.

Despite the broad similarity between eukaryotic and prokaryotic genes [24], phenotypic diversities
in the natural world can be primarily attributed to the distinctive structure of the eukaryotic gene
[25]. A eukaryotic gene consists of alternated regions: some of which are coding regions, and some
are non-coding regions (also known as regulatory regions). The coding regions are sequences that
can be expressed as functional RNA or proteins in the cell, while the non-coding regions are the
sequences that are needed to express those genes, such as promoters and enhancers. As an example,
we present a basic structure of a eukaryotic gene in Figure 2.1. The structure of the gene consists
of protein-coding nucleotide sequences (exons), sequences that regulate gene expression before
and after the coding region, and nucleotide sequences that do not code for amino acids (introns)
[25]. Only approximately 1% of the 3 billion base pairs are protein-coding genes in the human

genome, and only about 5% of a protein-coding gene corresponds to coding exons.

Introns
Gene (DNA) /
/ \ Poly-A site
Promoter / / \
) upstream \ / z N\ j downstream ;
5’ cap Exon [ | Exon || Exon | | Exon 3’ cap
| A

Start codon Stop codon

Figure 2.1 Illustration of a eukaryotic gene structure. The promoter region (orange-coloured
segment) is most proximal to the start codon and contains the TATA box, the TSS, and the RNA
polymerase binding site. Exons (green-coloured segments) are nucleotide sequences in DNA that
code for amino acids; introns (grey-coloured segments) are nucleotide sequences in DNA that do
not directly code for amino acids but help form different proteins through RNA slicing. A Poly(A)
site (purple-coloured segment) is located proximal to the stop codon, which helps mRNA to move
into the cytoplasm from the nucleus. This plot was inspired from Figure 1 in [24] and Figure 6 in
[25].
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2.1.3 DNA Replication
Semi-conservative DNA replication is a process in which each parental DNA strand acts as a
template for synthesizing a new complementary DNA strand [26]. The output of DNA replication

is two DNA molecules with one parental strand and one new daughter strand.

2.1.4 RNA Synthesis
Based on central dogma (Figure 2.2), there are two types of RNA synthesis. One is DNA-
dependent RNA synthesis, also known as transcription. The other type is RNA-dependent RNA

synthesis, also known as RNA replication.

The DNA-dependent RNA synthesis is a process in which a DNA sequence transcribes into an
RNA using a DNA-dependent RNA polymerase enzyme [27]. Gene regulation, in principle, can
occur at any of the stages in gene expression, but most genes are regulated primarily at the
transcriptional level. Potential processing and truncation errors in RNA synthesis may lead to
severe diseases [28, 29]. Thus, regulation of the RNA transcription process is essential for

understanding many biological phenomena and medical problems.

DNA Replication RNA Replication

o e

Transcription : Translation
RNA

DNA ——— — Protein
ernanentananzases
Reverse —— General path
Transcription <eenee Special path

Figure 2.2 The central dogma in molecular biology. It presents the transfer of genetic information
in cells among DNA, mRNA and protein [8].

The RNA-dependent RNA synthesis is catalyzed by RNA-dependent RNA polymerase and is
commonly found in viruses [30, 31]. It is a unique process reserved only for RNA viruses (other
than retroviruses [32]), which uses single-stranded RNA as a template to synthesize RNA in host

cells.

2.1.5 Protein Synthesis
Proteins are complex molecules that carry out most biological activities (e.g., growth, reproduction,

and movement); the accurate synthesis and folding of proteins are critical to the proper functioning
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of cells and organisms [33]. In the protein synthesis stage, cells use a ribosome machinery to
translate the genetic information in messenger Ribonucleic Acid (mRNA) molecules into protein
molecules [34]. This dynamic process comprises three phases: initiation, elongation and
termination [35]. Proteins resulting from this process become main components of all tissues
involved in biological processes such as embryonic development, metabolism, and signal

transduction [36].

2.1.6 Gene Expression
Gene expression is a process describing how genetic information flows from DNA to protein
through RNA transcription within a biological system (Figure 2.2). This process is composed of

three stages, as mentioned earlier: replication, transcription, and translation.

The gene expression pattern is subject to temporal and spatial specificity [37-40]. It is an essential
step in biological evolution: the increasingly complex genomes have a more complex and refined

gene expression pattern.

Temporal-specificity refers to the fact that gene expression only occurs in a specific time frame.
For example, a certain stage of infection will occur after a virus infects a host [41]. As the infection
stage develops, gene expression changes in pathogens and hosts will occur: some genes get turned
on, and some genes get turned off. The development process, from fertilized egg cells to
multicellular organisms, is another example of temporal-specificity. Different genes are turned on
or off strictly in their specific chronological orders at each stage of differentiation and development

[42].

The spatial specificity refers to different expressions of the same gene in different tissues and
organs at a particular stage of development in a multicellular organism. The difference between
organs, tissues and cells in the same organism can be explored by differential expression analysis
[43-46]. The gene expression profile of a cell, that is, the type and intensity of gene expression,

determines the differentiation state and function of the cell [47-49].

2.1.7 Regulation of Gene Expression
Gene expression regulation refers to the molecular mechanism by which cells decide which genes
will be expressed at a particular body site when internal and external environmental signals

stimulate them [50]. It regulates how and when genes are expressed in different cell types and
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tissues. Since gene expression is a complex process involving many molecules and signalling
pathways and determining the characteristics of a living organism, the precise regulation of gene
expression is of great significance [51, 52]. Furthermore, it is now well accepted that changes in
these regulatory mechanisms (introduced by mutations or other means) are associated with the
development of several diseases [53]. For example, invasive ductal carcinoma is one of the
common types of breast cancer. There is evidence that this disease is not caused by a single gene
in a particular cell, but rather linked to changes in molecular mechanisms of gene regulation [54,
55]. Therefore, it is critical to understand and reconstruct the underlying regulatory networks under

different conditions and cell types.

Transcription factors (TFs) are critical players in regulating gene transcription by binding to
particular DNA sequences located in or close to their target genes, thereby controlling the
expression of those genes (e.g., by promoting or repressing a gene to be transcribed into an RNA)
[56]. A transcription factor can have multiple target genes, and a gene can be regulated by multiple
transcription factors in combination (though in most cases, the number of TFs regulating a gene is
small) [57]. These complex regulatory interactions between TFs and their targets can be
conceptualized as a network, known as a transcriptional regulatory network (TRN). TRNs are
directed graphs where each node is a transcription factor (TF) or a gene, and each TF-gene edge

can be interpreted as regulatory relationship between a TF and its target gene (Figure 2.3B).

A. Protein-protein interaction network B. Transcriptional regulatory Network
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Figure 2.3 Examples of some common networks.a protein-protein interaction (PPI) network (B) a
transcriptional regulatory network (TRN). (A) In a PPI network, nodes represent proteins, and the
undirected edges show the physical protein-protein interactions between nodes [58]. (B) In a TRN,
nodes represent the expression levels of genes/TFs, and the directed edges represent the causality
between network nodes [59].
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2.2 Multi-omics Data

Different biological and physiological processes involve different levels of biomolecules
participating or having different natures of connectivity, such as objects from the epigenome,

genome, proteome and metabolome [60, 61].

2.2.1 Introduction

Genomics is one of the established fields of life science. The term refers to the collective
characterization and quantitative research of all genes in an organism and the comparison studies
between genes [61]. Focusing on the whole genome provides the opportunity to decipher genetic
information and study relations between different genes. Genes are transcribed and translated to
produce proteins, which are closely related to various biochemical processes in cells that in turn
affect human bodies. Therefore, there is rising attention on proteomics after genomics [62]:
proteomics studies protein expression levels, post-translational modifications, and protein-protein

interactions (PPIs) [63, 64]. A typical PPI network is shown in Figure 2.3A.

However, genomics and proteomics alone are not adequate to solve all the puzzles we have for
human life. For example, the same genotype may exhibit unique characteristics due to both genetic
and environmental factors, and mutations may explain the occurrence of a disease in some regions
of the genome or coding errors during the translation [65]. This brings in other omics science:
Transcriptomics studies the transcription of the whole genome and the regulation of transcription
[66]; Epigenomics is a holistic study of the modification characteristics of genomic DNA or DNA-
binding proteins [67]. Researchers can elucidate transcriptional networks by integrating gene
expression and epigenetic markers/transcription factors (Figure 2.3B). Metabolomics is a
quantitative analysis of all metabolites (e.g., amino acids, fatty acids, or carbohydrates) in
biological systems (e.g., tissues, cells, or organisms) and characterizes the interactions of those

with potential diseases or environments [68, 69].

2.2.2 Data Integration

Recent developments in high-throughput technologies and multi-omics databases (e.g., TCGA
[70], GTRD [71], LinkedOmics [72] and Aging Atlas [73]) have led to a growing trend towards
data integration. Subramanian et al. [74] provided a comprehensive review of multi-omics data

integration techniques and suggested that such integration has great potential in identifying key
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elements in the pre-clinical research. In review papers [75, 76], researchers discussed the
challenges and the necessities of developing integrative approaches to decipher regulatory

mechanisms further.

To date, various studies have focused on integrating multi-omics data to model biological
processes from different perspectives [77-84]. For instance, Hirai et al. [77] integrated gene
expression profiles and nontargeted metabolite profiles to form gene-to-metabolite networks and
depict global regulatory mechanisms under sulphur deficiency and stress response in Arabidopsis.
Pirhaji et al. [81] constructed a network that integrates protein and metabolites interactions to infer
disease-associated pathways and putative metabolites. They applied their model to conditionally
immortalize striatal cell lines (STHdh) of Huntington's disease (HD) and identified known and
novel vital metabolites. Xie et al. [82] combined DNA methylation signatures from several human
tissues and corresponding gene expression profiles to identify unique signatures during cell
development and tissue differentiation. As diseases are often associated with changes in gene
expression, Bouchal et al. [84] performed an integrative analysis of proteomics and transcriptomics

and identified eight pivotal therapeutic targets of low-grade breast cancer.

Overall, the incorporation of information from multi-omics data provides a better insight into
complex biological systems and accelerates the understanding in regards to the development of

specific diseases [76].

2.3 Gene Regulatory Network Reconstruction

Inferring more reliable and accurate GRNs from experimental transcriptomic data (alone or in
combination with data from other sources, such as ChIP-seq and ATAC-seq data) is a key problem
in the field of computational biology. Much progress has been made to tackle such a problem [85].
The available GRN reconstruction approaches are mainly designed for microarray and bulk RNA-
seq data, and they can be categorized into four subsets: correlation-based methods, information-

theoretic approaches, model-based methods, and regression analyses.

2.3.1 Correlation-based Methods
Correlation-based networks use different definitions of “correlation” between molecular features
of genes in different conditions to determine gene dependencies. One of the earliest correlation

measures used is the Pearson correlation coefficients, but other correlation measures such as
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Spearman correlation coefficients or weighted correlation coefficients have also been used widely.
For example, Chen et al. [86] assumed that the correlation between genes satisfies the scale-free
distribution of the network and then used a weighting coefficient to re-predict the genetic
correlation network by weighting the regulatory relationship between biological genes. Since one
gene rarely operates in isolation from other genes [2][56], a major drawback of this method is its
inability to discriminate between direct and indirect connections in the biological network. For
example, if gene A is correlated with gene B and gene B is correlated with gene C, then the
correlation-based method will likely draw a problematic conclusion that there is a direct
dependency between A and C. Some well-known methods in addressing this problem are partial
correlations [16], elastic net [87], lasso (an L1-penalized estimation of the inverse covariance

matrix) [88], and information-theoretic methods [89].

2.3.2 Information-theoretic Methods

Correctly discriminating indirect connections from direct connections is essential for reducing
false-positive predictions. To achieve this, sophisticated information-theoretic methods, such as
Bayes conditional probability tables or mutual information, have been introduced to consider the
effects of non-linearity. Information theory offers robust statistical mechanics for inferring
network links from between-gene correlation measures. Some of the most reviewed and discussed
methods include the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe)
[90], Context Likelihood of Relatedness (CLR) [91], minimum redundancy maximum relevance
concept (MRNET) [89] and Conservative Causal Core Network (C3NET) [92]. These algorithms
take gene expression profiles as inputs, estimate pair-wise mutual information (MI) values, and
filter statistically significant edges to construct the network. A detailed discussion of the

functioning of these methods can be found in the review papers [89, 93-95].

The ARACNE algorithm [90] provides a conservative network estimation through the constraint
of data processing inequality (DPI). If the data processing imbalance exceeds a certain threshold,
ARACNE evaluates all possible edges of each triplet of genes and eliminates edges with the lowest
significance values corresponding to the lowest mutual information value. One limitation of this

method is that it does not allow adding new edges to the network.

Likewise, the CLR algorithm [91] takes the often sparse nature of biological networks into account

and assumes most estimated MI values are insignificant. The method first computes MI values
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between the expression level of each TF and that of the target gene. Then, CLR compares the MI
estimates of each TF-gene pair to a complete graph (i.e., a background correction of all MI values
involving either the regulator or its target) and eliminates false connections. The output of this
method is a network containing transcriptional regulatory interactions. However, its heavy reliance

on the MI matrix prevents it from resolving a problem of causal inference from time-series data.

The MRNET algorithm [89] incorporates the maximum relevance/minimum redundancy (MRMR)
feature selection method [96] to choose important edges and infer genetic interaction networks.
The algorithm first considers each gene as a target gene and the remaining genes as putative
regulators and then relies on a feature selection method (i.e., MRMR) to select the optimal subset
of regulators. Although this method can infer the network efficiently, it suffers from high false
positive rates, indicating that there may still undetected indirect regulatory interactions in the

network.

The C3NET algorithm [92] is a two-step algorithm designed for non-directional network inference,
as it employs MI values as test statistics among genes. It first eliminates non-significant MI links
in the adjacency matrix, then selects for each gene the neighbour edge with the maximum MI value

in the remaining matrix.

Since a major part of transcriptional regulation is performed by complexes of TFs and other
proteins [97], models that depend only on pairwise interactions between genes are not powerful
enough to capture important characteristics of regulatory relationships, such as directionality and
types. In addition, employing MI scores limits the maximum possible number of inferred edges

for each gene to the number of genes under consideration.

2.3.3 Model-based Methods
Model-based methods can be divided into several categories: ordinary differential equation (ODE),
linear programming (LP) models, Boolean network, and probabilistic graph models (PGMs).

PGMs are comprised of Bayesian network (BN) and Gaussian graphical models.

Ordinary differential equations (ODE) methods are commonly seen in applying time-series gene
expression data. These methods are used to fully discover transcription generation rates, half-life
periods and degradation rates. The ODE method is suitable for establishing nonlinear relationship

models showing a wide range of dynamic behaviours [98]. Introducing constraints in the form of
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prior knowledge from known parameters or network structure is hugely beneficial for ODE-based
methods [99]. An example of this method is called Inferelator [100]. Inferelator is a method
imposing LASSO penalty on the kinetic parameters associated with regulatory interactions to infer
the network. It is originally based on the inference of explaining independent ODEs under several
experimental disturbances. The advantage of this method is that it learns the topology of networks
containing TF-gene interactions and is capable of learning the rate of change in the transcription.
More recently, Yang et al. proposed a complex-valued ODE model (CVODE) to identify the
regulations among genes for GRN inference, where model coefficients and functions are all
complex-valued [101]. The authors used Grammar-guided genetic programming (an improved
variant of genetic programming) to evolve the structure of the ODE model and complex-valued
firefly algorithm [102] to search for the optimal parameters. The model was tested on real-world
gene expression profiles, and the result shows that CVODE has a better prediction accuracy and

is more robust than the original ODE method.

Boolean network model-based methods were popularized in reconstructing gene regulatory
network (GRN) by Stuart Kauffman in 2003 [103]. It aims to model the GRN as a discrete dynamic
system with two states: ON and OFF: the ON/active state implies that a gene will be expressed
and transcribed to generate biochemical material, while the OFF/inactive state implies that a gene
will not be transcribed, and therefore no biochemical material can be produced. The changes in
those two states can be described and periodically updated by Boolean functions with a few
parameters [104]. The dynamic characteristics and simplicity of the model allow it to be widely
applicable in modelling various genetic regulatory networks, such as the Mammalian cortical area

development [105], p53-induced cell fate mechanisms [106] and CD 4+ T cell differentiation [107].

However, this type of Boolean network method is not free of limitations. The assumption of binary
states is often considered an over-simplistic representation of the actual biological network [108].
To address this problem, Shmulevich et al. proposed a stochastic extension of the Boolean network,
Probabilistic Boolean Networks (PBNs), which generalized Boolean network by adding a
probabilistic selection of parental gene sets to the framework and integrating rule-based
dependencies between genes. This method systematically studies global network dynamics and is

able to work with data uncertainty and model selection. Zhao et al. adopted the PBNs framework
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and developed a method to determine the direct dependencies and regulation orientations of genes

in time-series datasets [109].

Due to regulatory networks' complexity and uncertainty, neither differential model equations nor
Boolean networks can easily handle real-world problems, such as missing data or
randomness/noise [110]. To overcome such technical problems, Friedman et al. [111] proposed a
new gene regulatory network model on top of Bayesian networks (BNs), and Murphy et al. [112]
subsequently investigated a temporal variation of BNs (i.e., dynamic Bayesian networks) to
enhance its ability to discover complex associations. The method translates probabilistic
dependencies among random variables into a directed acyclic graph (DAG). In a DAG, vertices
represent random variables, and directed edges represent conditional dependencies between any
two variables. Also, no self-feedback loop in a DAG indicates that a variable cannot be its own
ancestor or descendant. According to Markov's assumption on the conditional probabilities of each

node in a BN, the joint probability can be written as follows:

P(Xy, Xy, ., X,) = l_[ P(X, | Parent(X,)) 21
X;€X

In Bayesian network structure learning, the most likely graph structure, G, is generally searched
through the Bayesian scoring strategy [113]. However, as the number of gene nodes increases, the
network structure graph predicted by the model increases exponentially. Thus, constructing a
network graph structure for larger-scale networks is often time-consuming and determining the
best graph that explains associations with the observed data is an NP-hard problem [114]. Several
algorithms have been drawn up in order to address the issue of time complexity, such as simulated

annealing [115, 116], Markov chain Monte Carlo search [117], max-min hill-climbing algorithm

[118] and parallel algorithm proposed by Madsen et al. [119].

Gaussian graphical models (GGMs) are another popular method used throughout computational
biology (and other fields) to characterize statistical relationships between variables. In the context
of GRN inference, the underlying assumption of GGM is that the processed gene expression data
follows a standard Gaussian distribution X~(u,0), where u and o represent the mean and
variance of the data [120]. GGMs first fit the multivariate Gaussian distribution and then construct
the accuracy matrix (i.e., the inverse of the covariance matrix) [121] to obtain a gene-gene

interaction network. A differential network can be established based on the gene networks in two
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states to find key genes. However, such methods often fail to update beliefs and make new
predictions in light of new observations. Furthermore, with the pronounced shift in technology
from microarrays to RNA-seq profiles, a necessary change in how we should model gene
expression patterns has occurred (where normal distribution is no longer suitable) [122]. Using
RNA-seq gene expression datasets from the Cancer Genome Atlas (TCGA), Zhao et al. utilized a
Gaussian graphical model to perform cancer genetic network inference and uncover hidden gene
interactions across 15 specific types of human cancer [120]. In the study, the authors performed
Ryan-Joiner (RJ) statistic test on each individual gene to ensure their log-transformed gene

expression profiles are normally distributed.

2.3.4 Linear Regression Methods

Linear regression is a statistical term used to find the best-fitting hyper-plane through observed
data points, which models the relationship between one dependent variable and two or more
independent variables [123]. While this approach is widely applied to different scenarios, since the
sample size is often smaller than the feature size for RNA-seq experiments, using this method may

lead to an over-fitting problem.

Feature selection methods provide practical solutions in handling over-fitting problems in GRN
reconstruction. Several methods have been proposed in this area, such as stepwise regression [124],
least-angle regression (LARS) [125, 126], LASSO regression [127, 128], and partial least squares
regression [129, 130]. For example, TIGRESS [131] is a method that introduces a stable selection
mechanism and uses the least angle regression method for feature selection. Considering the
complementarity of different models, the NIMEFI method [132] assembled various models based

on the feature selection framework and trained them uniformly.

2.3.5 Discussion

In this chapter, we have covered common GRN reconstruction approaches for microarray or bulk
RNA-seq data. While it is outside the scope of this thesis, it is worth mentioning that several studies
have pointed out that some of these state-of-the-art methods, such as TIGRESS and MI, have poor
performance on single-cell transcriptomic data [133, 134]. Furthermore, recent work in the field
has focused on developing computational methods for dynamic GRN inference from single-cell
transcriptomics alone (PIDC [135], GRISLI [133]) or from both time series and steady-state
expression data (dynGENIE3 [136]).
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2.4 Phenotype-relevant Regulatory Network Reconstruction

With the rapid development of high-throughput sequencing technologies, molecular phenotypes
of clinical samples can now be conceived in terms of gene expression levels [137, 138]. Nowadays,
more attention is being directed to reconstructing regulatory networks correlated with various
quantitative traits (expression phenotypes) of the clinical samples. These phenotypic traits can be
either categorical or continuous, depending on the problem setup.[139]. For example, a discrete
phenotypic label could indicate the membership of a sample in different studies: whether the
sample belongs to the control or case group; whether it is from a tumour or normal tissue; whether
it is infected by SARS-CoV-2 or other respiratory viruses. On the other hand, a continuous

phenotypic value could be a relative change in continuous manifestations of the disease.

Since the thesis focuses on reconstructing phenotype-relevant TRNs, we collect computational
approaches developed to include phenotypic information in the network reconstruction and
categorize them into three classes (chapter 2.4.1 - chapter 2.4.3). Next, we discuss InPhRNo, an
essential building block for research projects (chapter 3 and 4) in chapter 2.4.4. Lastly, we discuss

the relative strength and weaknesses of those methods in chapter 2.4.5.

2.4.1 Context-restricted Approaches

Most context-restricted approaches restrict the analysis to samples of phenotypic labels, such that
only samples with identical phenotypic labels are included in the network [7]. For example, Qin
et al. [140] and Streib et al. [141] reported the reconstruction of gene regulatory networks from
transcriptomic data from breast cancer tissue samples or cell lines. Glass et al. [142] developed
PANDA, which utilized a message-passing approach to integrate evidence from different sources

and reconstruct tissue-specific regulatory networks targeting 38 tissues from GTEx database.

2.4.2 Context-specific Approaches

Context-specific approaches [7] often first discover the phenotypic variation in gene expression
patterns across different biological conditions using differential expression analysis and then
compute the significance of the selected differentially expressed genes (DEGs) through some
statistical tests. Lastly, they relate the most significant genes with context specificity to the
expression of TFs in order to reconstruct a network. For example, Raza et al. [143] inferred a

cancer-specific gene regulatory network from prostate cancer microarray data. In this study, the
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authors first identified significant DE genes in the disease condition compared to control samples
and then applied the Pearson correlation coefficient method to obtain the pair-wise correlation

among the identified genes.

2.4.3 Differential Network Analysis Approaches

Differential network analysis (DiNA) approaches focus on detecting topological changes in
regulatory networks under different conditions [7, 144, 145]. It examines different biological
processes from context-restricted networks, each inferred from gene expression data of a specific
group. Given two group-specific networks, general DiNA methods identify edges only present in
one group-specific network but not the other and then form a differential network. For example,
Okawa et al. [146] proposed a computational DiNA approach and applied it to some binary-fate
mouse stem cell systems for lineage specifier predictions. Mall et al. [147] reported a hamming
distance-based method designed to capture local topological features by evaluating topological
differences between two networks (i.e., IDH-mutant versus IDH-wild-type glioma tumours)

examining their statistical significance.

2.4.4 InPheRNo

However, methods discussed in chapters 2.4.1-2.4.3 may not be capable of constructing TRNs that
are linked to various phenotypes due to the inefficiency of incorporating phenotypic labels/values
of different biological conditions in their analysis. Addressing these deficiencies, Emad and Sinha
developed InPheRNo [7], a computational tool that utilizes a probabilistic graphical model (PGM)
trained to integrate the summary statistics (i.e. p values) of sample-level phenotypic labels and TF-

gene associations and thereby to identify ‘phenotype-relevant’ TRN.

As inputs, it takes a gene expression matrix of all genes (including TFs), a list of human TFs, and
phenotypes of the samples from RNA-seq data. Notably, InPheRNo uses a two-step procedure to
measure (1) the combinatorial effects of multiple TFs on each gene and (2) the effect of a limited

sample size.

InPheRNo first uses the ElasticNetCV function from statsmodels API library and restricts the
number of non-zero coefficients in the model to be not greater than a pre-defined maximum
number of candidate TFs, specified as the ‘m,,,,’ and a positive integer scalar. The use of the pre-

defined upper limit m,,,, imposes the prior knowledge that a gene can only be regulated by a
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handful of TFs rather than all 1.5k TFs. The hyperparameters of the Elastic Net (i.e., alphas) are
estimated by iterative fitting along a regularization path with 5-fold cross-validation and a default
value p=0.5. Gene-level matrices are formed at the outputs of Elastic Net, where each matrix
contains the expression of TFs for a specific gene across the samples. Then, InPheRNo performs
a multivariate ordinary least squares (OLS) regression model to express the expression of each
gene in terms of a set of independent features (i.e., candidate TFs). The resulting pseudo p values
represent the statistical significance of the combinatorial regulatory effects of the candidate TFs

on genes of interest.

The p values of associations between TFs and genes, along with the p values of associations
between genes and their phenotypes, are put into step 2 of InPheRNo. In step 2, those three sets of
p values are used as observations in the PGM to estimate posterior probabilities for relationships
within (TF, gene, phenotype) triplets. The alternative hypothesis states that a TF regulates a gene
to affect its phenotype. The last step of InPheRNo uses min-max normalization to normalize the
averaged posteriors; this normalization step allows the algorithm to be widely applicable for other
downstream analyses. The output of InPheRNo is a TF-gene matrix showing the confidence score

for each TF-gene edge concerning its phenotype relevance.

To assess the performance of InPheRNo, the authors applied InPheRNo to infer transcriptional
regulatory networks for normal/cancer tissue samples in the GTEx data portal [148] in their study.
They used these tissue-relevant TRNs to compare the underlying regulatory mechanisms between
cancer and normal tissues and understand how phenotype specificity manifests itself globally. By
studying the predicted cancer type TF-gene edges in the inferred TRNs and comparing to the TF-
gene relationships in the global TRNs reconstructed from the ENCODE’s ChIP-seq data [22], they
were able to observe significant enrichments of the overlap for each cancer type and bring

important insights into phenotype-relevant gene regulation.

2.4.5 Discussion

Even though various methods have been developed to incorporate phenotype information in
network construction, their limitations still exist. As to the first type of approaches, context-
restricted approaches can only capture regulatory mechanisms relevant to a specific context (e.g.,
breast cancer) but cannot embed the variation of the phenotypic values/labels (e.g., tumour grades,

disease versus control) in the resulting network. Also, context-specific approaches are highly
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dependent on the cut-off used for choosing the phenotype relevance of genes (i.e., DEGs);
therefore, they cannot utilize the phenotype information to its fullest extent. As for the last type of
methods, differential network analysis methods also remedy their ignorance by neglecting the
potential phenotype-relevant regulatory edges in the inferred TRN. InPheRNo [7] is an exception,
which utilizes PGM to model the association within each possible (TF, gene, phenotype) triple.
The use of summary statistics and the sophisticated design of PGM in the InPheRNo paper lays
the foundation for future generalization and integrative analyses of other regulatory evidence such

as ChIP-seq data (see chapter 4 for details).
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3 Identification of TRIN Associated with Response of Host
Epithelial Cells to SARS-CoV-2

3.1 Introduction

As of the submission of this manuscript [11] (July 2021), the emergence of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused 195 million global cases of the
severe pneumonia-like disease coronavirus disease 2019 (COVID-19) [149] and effective antiviral
medication available for COVID-19 has remained elusive [150]. Therefore, there is a great need
to unravel the underlying mechanisms involved in the host immune responses to SARS-CoV-2

infection and predict candidate therapeutic targets for the treatment of COVID-19.

To achieve this goal, we developed an automated computational pipeline that strings together
algorithms previously developed in our lab to study the host response to SARS-CoV-2 infection.
Through pathway enrichment analysis of identified TFs and their target genes, we demonstrated
that our pipeline was able to reliably unravel the underlying mechanisms of TF-gene interactions
involved in the corresponding SARS-CoV-2 infections. Moreover, we conducted an extensive
literature search on kinases in our prioritized list to validate the prediction of our algorithm. The
findings supported the belief that our pipeline can identify known kinase, and therefore the novel
(and often less experimental studied) kinases may be used as drug target candidates with potential

interest for SARS-CoV-2 treatment.

3.2 Problem Statement

Our first task is to use InPheRNo (discussed in chapter 2.4.4) to identify a transcriptional
regulatory network (TRN) that differentiates the response of the host to SARS-CoV2 infection
versus other respiratory viruses (denoted by SvOV). The SvOV network is a bipartite directed
graph where nodes are either transcription factors (TFs) or genes, and edges are regulatory
interactions between TFs and regulated genes. Considering the direct and indirect connections
between identified TFs and human kinases, our second task is to identify protein kinase genes and
prioritize candidate therapeutic targets for treating SARS-CoV-2 infection. We completed this task
by combining the inferred SvOV TRN with other network information (i.e., HumanNet [151]) to

form a heterogenous network and then apply FORWaRD to it.
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3.3 Methodology

3.3.1 Data Sources

We downloaded a list of kinase information of human non-pseudogenes from www.kinase.com
(Kincat Hsap 08.02; update December 07th) [152]; a list of human TFs from AnimalTFDB 2.0
[153]; as well as a HumanNet 2.0 [151] integrated network of gene-gene interaction from the
address https://github.com/KnowEnG/KN_Fetcher/blob/master/Contents.md, on July 28", 2020.
According to KnowEnG’s documentation, the integrated HumanNet has 469,784 edges, 15,999
gene nodes, and a density measure of 0.00367. The log-likelihood score in the dataset ranges from

0 (the worst) to 10 (the best).

We downloaded RNA-seq profiles of human lung epithelial cells infected by SARS-CoV-2,
respiratory syncytial virus (RSV), human parainfluenza virus type 3 (HPIV3), influenza A virus
(IAV), and TAV that lacks the NS1 protein (IAVANS1) from the GEO database under the accession
number GSE147507. This bulk RNA-seq dataset was generated from both virus-infected and
mock-infected experiments across various cell lines and animal models, and stored in .#sv format
[154]. The downloaded matrix contains 110 columns (samples) and 21,797 rows (human genes),
and each entry of the matrix is a raw read count for a gene in a given sample. Out of 110 samples,
we selected samples corresponding to three cell lines: normal human bronchial epithelial cell lines
(NHBE), human lung adenocarcinoma cell lines (A549), and human bronchial/sub-bronchial gland
cell lines (Calu-3). These viruses-infected cells were collected at various time points post-infection
with different multiplicity of infections (MOIs). Detailed sample information can be found in

Table 3.1.

We downloaded the LINCS L1000 dataset from Broad Institute LINCS L1000 Phase I datasets
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742). This dataset contained the
expression levels of 978 landmark genes induced by short hairpin RNA (shRNA) knockdown in
different cell lines and provided five levels of data depending on the different stages of data
preprocessing. In this project, we only used its level-5 differential gene expression signatures since
this level of processing is often considered more reliable for downstream analysis than other levels

[155].
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We obtained a list of target genes that support the findings of our study from the GTRD database
at the following address:

http://gtrd.biouml.org:8888/downloads/20.06/intervals/target genes/Homo%?20sapiens/genes%2
Opromoter%5b-1000,+100%5d/.

In the GTRD dataset, if a gene's promoter region (defined as the interval [-1000bp, 100bp] relative
to its TSS) contains at least one GTRD meta-cluster for a given TF, then this gene was identified
as a target of the TF. The meta-cluster was a collection of the binding sites for individual TFs from

all experimental conditions, such as tissues, cell lines and treatments.

To form an aggregated kinase-substrate interaction (KSI) network that was only focusing on
experimentally determined kinase-substrate interaction pairs, we downloaded three datasets from
the following studies/databases: PhosphoSitePlus database [156], PhosphoNetworks database [157]
and the supplementary material of an independent study [158]. The aggregated network contained
29,594 kinase-substrate relationships corresponding to 406 unique kinases and 3942 unique

substrates

3.3.2 Computational Pipeline

Computational pipelines are joining the advantages of previously developed computational tools
(mostly open source) to speed up the process of identifying the hidden relationships in the large-
scale experimental data, and provide easy access to non-programmers [ 159]. Numbers of pipelines
have been developed to combat COVID-19 pandemics. For example, V-Pipe [160] performed an
analysis of SARS-CoV-2 high-throughput sequencing data. UniProt portal [161] provided early
access to SARS-CoV-2 annotated protein sequence, protein information from the same
coronavirus family as well as visualization for data scientists. In June 2021, Le et al. [162] applied
their existing computational drug repositioning pipeline to differentially expressed genes from

three transcriptomics data and identified potential drugs associated with SARS-CoV-2.

In this project, we designed a computational pipeline to identify TRNs associated with the host’s
response to SARS-CoV-2 infection and identified associated kinases as potential therapeutic

targets.
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Figure 3.1 Illustration of the overall computational pipeline. (A) A differential expression (DE)
analysis is performed to compare the expression levels of genes in SARS-CoV-2 infected samples
versus samples infected by other viruses. The results of the DE analysis, along with the gene
expression profiles of all samples, are inputted to InPheRNo [7]. InPheRNo first models the
distribution of TF-gene association, and gene-phenotype associations, then assigns a confidence
score to every possible TF-gene edge relevant to a phenotypic label and utilizes them to construct a
SvOV TRN. (B) FoORWaRD [9] integrates several inputs, (a) a list of top TFs identified by
InPheRNo, (b) an aggregated kinase-substrate interaction network, and (c) a HumanNet dataset, to
construct a heterogeneous network. Then, FORWaRD utilizes a random walk with restart (RWR)
algorithm to compute a proximity score for each kinase and form a ranked list. Adapted from [11].

This pipeline combined our recently developed computational tools (i.e., InPheRNo [7],

FoRWaRD [9], KnowEnG [10]) in a stepwise manner (Figure 3.1):

(1) The pipeline uses InPheRNo [7] to construct a TRN associated with gene expression
changes between SARS-CoV-2 infected samples, and other respiratory viruses infected

samples.
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(2) The pipeline uses FORWaRD [9] to score and identify kinases associated with the SOV
network.
(3) The pipeline uses KnowEnG [10] to identify the functional characterization of the SOV

network.

The detailed implementations and documentation of three previously developed algorithms

(InPheRNo [7], FORWaRD [9], KnowEnG [10]) are available in their publications [7, 9, 10].
InPheRNo

InPheRNo utilizes a probabilistic graphical model to integrate regulatory evidence between TFs
and target genes with phenotype information to reconstruct a phenotype-relevant TRN. The inputs
to InPheRNo are as follows: (1) a list of p values of TF-gene associations; (2) a list of p values of
gene-phenotype associations; and (3) a list of human TFs. The output of InPheRNo is a TRN
associated with the host response to SARS-CoV-2 infection. Details of the algorithm are provided
in Chapter 2.4.4 and its original paper [7].

To obtain significantly differentially expressed genes between two biological conditions, we began
by downloading gene expression profiles from the GEO database. After filtering several series
corresponding to human sapiens in GSE147507, we obtained RNA-seq profiles containing gene
expression information for genes measured across SARS-CoV-2 infected samples, and other

viruses infected samples (Table 3.1).

To prioritize genes that were more likely present in one of these two biological conditions: (1)
SARS-CoV-2-infected epithelial cells, (2) other respiratory viruses infected epithelial cells, we
employed data corresponding to samples contaminated by SARS-CoV-2 and samples
contaminated by the aforementioned other viruses (e.g., RSV, IAV, and HPIV3). Next, we
executed differential expression analysis (DE analysis) using the package EdgeR [163]. During
the DE analysis, we categorized samples into two groups based on the virus types of concern and
adjusted for confounding factors (i.e., the duration of infected time and the cell type). As outputs,
we extracted the top 500 DEGs for each sample with FDR < 1.43E-3, and we hypothesized that
these DEGs tended to be associated with the relevant phenotypes (i.e., SARS-CoV-2 or other

respiratory viruses). In line with the DE analysis, we applied quantile normalization with voom in
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Limma package [164], followed by a z-score normalization to obtain a list of p values indicating

the gene-phenotype associations.

Table 3.1 GSE147507 sample information. The column 'sample _title' provides information about
which series those replicates are coming from, which cell lines, and the specific virus it infected.
The second column indicates the number of replicates for each sample. The fourth column shows
the duration of infected time for each sample and is used as one of the confounding variables in
the DE analysis. The last column specifies the phenotypic labels in our analysis. (LUAD: Lung
adenocarcinoma; HBECs: primary human bronchial epithelial cells.)

Series Rep Cell Type Time Group
Series] NHBE SARS-CoV-2 3 HBECs 24 hours Sars-Cov-2
Series2_A549 SARS-CoV-2 3 LUAD 24 hours Sars-Cov-2
Series3_A549 RSV 2 LUAD 24 hours Other-Viruses
Series4 A549 IAV 2 LUAD 9 hours Other-Viruses
Series5_A549 SARS-CoV-2 3 LUAD 24 hours Sars-Cov-2
Series6 AS549-ACE2 SARS- LUAD
CoV-2 3 24 hours Sars-Cov-2
Series7_Calu3_SARS-CoV-2 3 LUAD 24 hours Sars-Cov-2
Series8 A549 RSV 3 LUAD 24 hours Other-Viruses
Series§ _A549 HPIV3 3 LUAD 24 hours Other-Viruses
Series9 NHBE AV 4 HBECs 12 hours Other-Viruses
Series9 NHBE TAVdNSI 4 HBECs 12 hours Other-Viruses

Lastly, a list of p values of TF-gene associations, p values of gene-phenotype associations, along
with a list of human TFs downloaded from AnimalTFDB 2.0 [153], were then fed into InPheRNo
[7] (the methodology of this method is discussed in Chapter 2.4.4). We iteratively ran InPheRNo
1000 times with 500 repeats and default settings for other parameters. The output of this step was
a TRN capturing high confidence TF-gene interactions involved in the host response to SARS-

CoV-2 infection versus the host response to other virus infections.
FoRWaRD

In order to identify kinases associated with the top TFs in the SOV TRN, another computational
tool, FORWaRD [9], was added to our pipeline.
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FoRWaRD is a method based on the random walk with restart (RWR) algorithm to rank the kinases
in a heterogeneous network based on their relevance to top TFs identified in the SYOV TRN. A
heterogeneous network is a superimposing network containing two networks with different nodes

and edges linked through bipartite interactions [165].
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Figure 3.2 Illustration of the FORWaRD algorithm. The inputs to FORWaRD are an aggregated
KSI network and an integrated humanNet as inputs. The output of FORWaRD is a table with the
kinases and their importance measures, including ‘difference score,” ‘normalized difference,” and
‘ratio of the former metrics.” Adapted from [11].

The inputs to FoRWaRD were the known kinase-substrate association pairs, a gene-gene
interaction network, and a query set containing TFs found in the inferred TRN. The algorithm first
ranked the network nodes according to their proximity to the query set and ran RWR twice on this
formed heterogeneous network using either (1) the query set or (2) all network nodes as the restart
set; and then produced a probability rating for each node in the network. The sets of scores were
essentially standing for the relevance of the node to the restart set. As the last step, FORWaRD
normalized those scores and ranked kinases based on how much more significant their query set
score was than their control score. The output of FORWaRD was a table with the kinases and their
importance measure including ‘difference score,” ‘normalized difference,” and ‘ratio of the former

metrics.’
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KnowEnG

In order to identify critical pathways and biological processes associated with TFs and their targets
in the inferred TRN, we incorporated the gene set characterization (GSC) computational tool of

Knowledge Engine for Genomics analytical (KnowEnG) platform [10] into our pipeline.

KnowEnG is a platform that integrates multiple tools, such as GSC analysis, signature analysis,
and sample clustering, for analyzing genomics data sets. The GSC pipeline of KnowEnG platform
has two modes: (1) the standard mode and (2) the network-guided mode. The standard mode uses
a simple Fisher’s exact test to identify important pathways, while the network-guided mode uses
an algorithm called DRaWR [166] to encode prior knowledge from other well-established

networks (e.g., a protein-protein interaction network) in their pipeline.

The input to the GSC analysis was a TF-Gene matrix, and the output of the analysis was a .zxt file
with two columns: a list of genes of interest and a list of relevant biological processes or pathways

with corresponding statistical significance of the enrichment scores.

3.4 Results

3.4.1 Identification of Top TFs in the SvOV TRN
Given the SvOV TRN, we ranked TFs based upon the number of differentially expressed target
genes in the network. We hypothesized that top-ranked TFs were key regulators for distinguishing

the host response to infection by SARS-CoV-2 versus other viruses.

The sorted listing of the top 21 TFs targeting at the very least 1% of the considered DEGs in the
SvOV TRN is shown in Table 3.2. Based on this list, we mined the literature to scope the evidence
concerning the role of those TFs in the host response to SARS-CoV-2 infection. Encouragingly,
some of those top TFs have been formerly revealed to be activated throughout COVID-19, such
as STATI1 [167], STAT2 [168], TP53 and IRF9 [169].
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Table 3.2 Top 21 TFs implicated in the SVOV (SARS-CoV-2 vs. other viruses) TRN. We ranked
TFs based on their number of DEGs identified by InPheRNo. The 1% column represents the top 21
TFs, and the 2™ column represents the percent of the considered genes for each TF.

Transcription Factors Percent of target genes
STATI 5.89%
STAT2 2.95%

MLX 2.74%
EGR4 1.47%
RCORI 1.47%
SP140L 1.47%
TP53 1.26%
RCOR2 1.26%
MAX 1.26%
ZNF496 1.26%
ZNF512B 1.05%
SMAD7 1.05%
SOX12 1.05%
IRF2 1.05%
HDX 1.05%
EGRI1 1.05%
SP110 1.05%
IRF9 1.05%
ZNF143 1.05%
NFIX 1.05%
ZBTB32 1.05%

Next, we sought to assess the regulatory relationships between the identified TFs and their targets
in the SvOV network. While a systematic evaluation was not possible because most experimental
databases were formed by conditions that did not purely target the host response to respiratory
viral infections, we could still expect the identified regulatory relationships in the SvOV network

to appear in some comprehensive databases such as Gene Transcription Regulation Database
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(GTRD) [170]. GTRD contains published ChIP-seq data sets from various studies and reprocessed
them in a uniform computational pipeline, and we hypothesized that regulation relationships

identified in SvOV would highly overlap with regulatory evidence found in GTRD ChIP-seq data.

Among the 21 top TFs identified by InPheRNo (Table 3.2), four of them were present in the GTRD
ChIP-seq dataset. Using these four shared TFs, we first filtered a subset of the SvOV TRN, which
contained those four TFs and their target genes identified in the SOV network. Next, we treated
the filtered SYOV TRN as a sample of » selected individuals (without replacement) and the GTRD
database as the population set. Each individual in the sample set can be characterized as ‘found’
or ‘not-found’ in the population. Since this setting fulfilled all the assumptions of the
hypergeometric test, we then employed that test to measure whether our subset of the SvOV
network (sample set N) was significantly enriched in known regulatory mechanisms from the
GTRD (population set M). As a result, 37 out of 45 target genes were confirmed, with a highly

significant enrichment p-value of 2.36E-15.

3.4.2 Identification of Significant Signalling Pathways
In order to gain mechanistic insights into gene expression programs involved in the SOV TRN,
we performed the network-guided pathway enrichment analysis for each inferred leading TFs

(Table 3.2) and their target genes in the inferred network.

As depicted in Figure 3.3, we identified the biologically relevant pathways enriched in each TF
and their target genes. Cytokine signalling and interferon (IFN) signalling pathways had relatively
high enrichment scores among those pathways. Also, induction of type I interferons has been
shown to be a promising method in mediating immune response against SARS-CoV-2 infection

[171, 172].
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Figure 3.3 Pathway enrichment analysis using network-guided GSC pipeline of KnowEnG platform.
Annotation on top of the heatmap shows top TFs (and their target genes identified in SYOV TRN);
annotation on the left-hand side of the heatmap shows pathways that have been implicated for at
least two TFs (along with their targets). The color intensity scale represents the ‘difference score’
in the analysis.

3.4.3 Identification of Kinases Associated with the SvOV TRN as Possible Therapeutic
Targets

Kinases are enzymes involved in regulating most human proteins (i.e., substrates) activities
through phosphorylation and are considered as one of the significant categories of drug targets for
human diseases [173-175]. Turning our attention to identifying the potential therapeutic targets
associated with the inferred TRN, we aimed to aggregate across the three aforementioned
experimental KSI networks and retain protein kinases encoded in the human genome [152]. Our
desired KSI network was a directed graph where each node was a kinase or its substrate protein,

and an edge was associated with a phosphorylation reaction between a kinase and its substrate.

Based on the human genome project [152], at least 518 protein kinases were considered to be
included in the human kinome, and these kinases phosphorylate a majority of human proteins (i.e.
substrates). Therefore, after downloading all KSI pairs collected from three publicly available
datasets mentioned earlier, we performed a filtering step to keep putative protein kinase genes in

the aggregated network and remove the redundant kinase-substrate pairs. As a result, we obtained
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an aggregated KSI network consisting of 406 kinases and 3942 non-kinase substrates (29,594

unique KSI pairs in total).

Next, we applied FORWaRD [9] to rank kinases based on their relevance to the query set (i.e., top
TFs and target genes). As shown in Table 3.3, MYO3A, JAK3 and VRK3 are the kinases with the
highest-ranking scores. We searched for other studies to support our findings to ensure that our
identification was scientifically substantiated. As expected, other research groups have found that

JAK-STAT pathway inhibitions may help alleviate adverse inflammatory responses [176-178].

Table 3.3 Top 15 kinases identified using foRWaRD for the top TFs in the SvOV network.

Top Kinase FoRWaRD Score

MYO3A 11.60

JAK3 10.74

VRK3 10.34
ADCKI1 9.74
JAK1 8.69
MAP2KS5 8.19
BMX 7.97
HIPK4 7.48
JAK2 7.46
MAP3K13 7.34
LCK 6.63
CAMK2B 6.34
MAPK14 6.32
BTK 6.13
MAPKI11 6.05

3.4.4 Evaluation of the Predicted Kinase-gene Interactions
Above, we applied FORWaRD [9] to utilize direct and indirect interactions between kinases and
the input query gene set to identify the top kinases. To complete the analysis, we aimed to examine

the effects of kinase knockdown on the expression of genes identified by InPheRNo. More
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specifically, we would like to test whether the knockdown of a specific kinase gene can directly
or indirectly interfere with the expression of its substrate (i.e., TF) and associated target genes in
the SOV TRN. To achieve this goal, we first visualized the interconnectivity of interactions
between kinases, top TFs and/or substrates, as well as target genes in the SvOV network using

Cytoscape [179].

In Figure 3.4, we showed direct interactions between kinases, TFs, and their target genes in the
SvOV network. Only direct kinase-TF interactions presented in the aggregated KSI were included
in this scenario. In Figure 3.5, we showed indirect interactions between kinases, substrates, (non-
substrate) TFs and their target genes in the SvOV network. Kinases were recruited to TFs through

indirect interactions mediated by non-TF substrates in this scenario.
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Figure 3.4 Network representation of the direct interactions between kinases, TFs, and their target
genes using Cytoscape software. Kinases are depicted as orange ellipses, TFs are depicted as green
rectangles, and target genes are depicted as grey ellipses.
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Figure 3.5 Network representation of indirect interactions between kinases, (non-TF) substrates,

TFs, and their targets using Cytoscape version 3.8.2. Kinases are depicted as orange ellipses, non-

TF substrates are blue triangles, TFs are green rectangles, and target genes are grey ellipses. Only

the substrates with a minimum of one link to the implicated TFs in the HumanNet network are

selected and coloured as light blue.
Next, we compared implicated TFs and their targets to gene expression signatures in the LINCS
L1000 shRNAs-perturbation database [155]. Although shRNAs-mediated gene knockdown
experiments were conducted on multiple disease cell lines, we only focused on experiments

corresponding to the A549 cell line as this cell line was part of what we have included in the

reconstruction of TRN.
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Figure 3.6 Histogram of z-score normalized gene expression changes of LINCS L1000 landmark
genes in A549 cells due to knockdowns of kinases implicated in the SvOV analysis [11]. The 15%
and 85" percentiles are shown as two vertical lines, and the gene expression changes in knockdown
experiments are shown as red stars with arrows linking to their gene symbols.

The gene expression signatures in the GSE92742 dataset correspond to z-score normalized
expression changes versus control in a series of sShRNA knockdowns of a target gene of interest
[155]. We only focused on using gene expression signatures for ‘L1000 landmark genes’,
considering these were the only ones experimentally determined in the database (the other genes
were computationally forecasted). Out of 15 implicated kinases using the ForWaRD algorithm in
Table 3.3, only 7 of them have knockdown signatures. Meanwhile, out of all identified TFs and
targets in the SOV TRN, only 14 targets and 3 TFs were presented in the list of L1000 landmark
genes. To better visualize our analysis, we only reported genes with their normalized expression
changes (captured in the signature) amongst the top (or bottom) 15% of all landmark genes in
Figure 3.6. In each histogram, the knockdown of a kinase was shown to positively (negatively)

influence a landmark gene if its expression was increased (decreased).
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3.5 Discussion

This study identified regulatory mechanisms specific to the SARS-CoV-2 virus compared to other
viruses in contract to patient data. This decision was made based on the limited accessibility of
data on different epithelial cell lines that infected several respiratory viruses that were
experimented with under the same lab procedure. Combining varied data across multiple sources
or laboratories can be a challenge: we will have to consider correcting lab-specific and sample-
specific measurement errors with multiple references because these differences may introduce

batch effects or significant technical/biological variations in the processed data.

The genetic diversity and frequent recombination nature of the coronavirus genome render the
variation of this virus highly unpredictable [180, 181]. Despite our efforts to include the response
of epithelial cells to infection by SARS-CoV-2 and various respiratory viruses, these findings may
not translate to new SARS-CoV-2 variants such as B.1.351 (Beta), B.1.617.2 (Delta), C.37
(Lambda) initially found in the United Kingdom, South Africa and Peru [182-184]. Future studies
using integrated bioinformatics methods to explore biomarkers of SARS-CoV-2 variants and the
combined effects of these variants remain to be done. Nonetheless, the fact that we only included
one RNA-seq dataset in our analysis may limit the predictive power of our models. Thus, we
hypothesize that the accuracy of the TRN reconstruction can be improved with a cross-dataset
integration (i.e., more samples could be included in the study to infer the TRN). In the future, as
more datasets become available in these matters, we will incorporate multi-omics analyses in the

proposed pipeline.

Despite those limitations mentioned above, the implications of the study’s results are promising.
In this study, we developed a computational pipeline that combines three practical algorithms
(InPheRNo, KnowEnG GSC and FoORWaRD) to identify TRN, significant pathways and kinases.
Among those results, a significant number of them have been proved to be related to SARS-CoV-
2 infection in previous research studies. This study facilitates understanding of putative regulatory
mechanisms associated with the response of host epithelial cells to SARS-CoV2; and then
identifies novel therapeutic targets that can function as the key components for future development
of medicines, which tend to reduce the symptoms of COVID-19. Our collaborator is currently

working on the experimental verification of some of the identified therapeutic targets.
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4 InPheRNo-ChlIP: Inference of Phenotype-relevant
Transcriptional Regulatory Networks using Multi-omics

Data

4.1 Problem Statement

The focus of this study was to develop a method that incorporates multi-omics data (i.e., RNA-seq

and ChIP-seq data) and phenotype information together to study human embryonic development.

4.1.1 Biological Aspect

One of biology's basic but fascinating questions is how a single fertilized egg cell eventually
develops into a mature, multicellular organism containing different cell types capable of organ
development and regeneration, while the cells’ genomic content remains the same [185]. Once
fertilization takes place, the resulting zygote starts dividing and then forms a blastocyst [186].
After implantation, the blastocyst's innermost layer forms three germ layers: ectoderm, mesoderm,
and endoderm (Figure 4.1). The differentiation from the germ layers into different organs and

tissues is of specific interest to studying human development and stem cell research [187, 188].

Studies have shown that abnormal early embryonic development contributes to adverse pregnancy
outcomes, including recurrent implantation failure [189], recurrent pregnancy loss and congenital
disabilities such as Craniosynostosis and Anophthalmia [190]. With the advent of genomic
sequencing and statistical methods, regulatory mechanisms involved in embryogenic development
in mice and other types of organisms have been well-studied. However, due to ethical constraints
in scientific research [191], scientists cannot directly study human embryonic development in vivo.
Fortunately, incredible progress in in-vitro models for mammalian embryos provides an excellent
opportunity to study regulatory networks and other pathogenic mechanisms that lead to abnormal

human development.
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Figure 4.1 Tllustration of human embryonic stem cells (hESCs) differentiation. Adapted from
“Human Embryonic Stem Cell Differentiation” by BioRender.com (2020). Retrieved from
https://app.biorender.com/biorender-templates.

4.1.2 Computational Aspect

Over the past two decades, decreasing cost of high throughput sequencing and new
biotechnological approaches allow researchers to infer regulatory mechanisms in different
biological processes. Among these methodologies, gene expression profiling is the most common
approach for relating molecular-level differences in the expression level of the gene in response to

different phenotypes and using this relationship to construct gene/transcriptional regulatory
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networks, as discussed in chapter 2. Furthermore, multi-omics data integration has been shown to

better characterize complex biological processes than using a single source of data [75, 192-194].

Chromatin immunoprecipitation combined with sequencing (ChIP-seq) [195] is one such data
modality that can provide evidence of regulatory relationships between TFs and their target genes,
complementary to gene expression data. ChIP-seq is a technique to facilitate the study of protein-
DNA interactions at the genomic level [196]. This technique is used primarily to determine how
TFs and other chromatin-associated proteins, such as histones and RNA polymerase, influence
phenotype-affecting mechanisms, such as morphology, biochemical or physiological properties
and behaviours. Commonly, there are two different classes of protein-chromatin interactions:
histone modifications with broad peaks and transcription factors ChIP-seq with narrow peaks. The
most common application is to identify transcription factor binding sites (TFBS), and the resulting

genomic regions are called "peaks."

Even though various methods have been developed to take advantage of multi-omics studies and
construct regulatory networks [76], the main problem of these methods is their ignorance of any
gene-phenotype association existing under different experimental conditions (e.g., control versus
case samples) [7]. On the other hand, to the best of knowledge, network inference methods
incorporating phenotype information (discussed in Chapter 2.4) cannot integrate multiple data

Sources.

To address both issues, we proposed InPheRNo-ChIP, an improvement variant of the original
InPheRNo [7], that integrated high-quality RN A-seq, ChIP-seq, and phenotypic information of the
samples to reconstruct a TRN, which was specific to the differentiation of human embryonic stem
cells (hESCs) to endoderm (EN). It is acknowledged that ChIP-seq data provides genome-wide
information about interactions of DNA target sites (i.e., target genes) against their corresponding
TFBS [75]. Thus, we hypothesized that its integration with gene expression profiles and sample-
level phenotypic data could improve the identification accuracy of phenotype-relevant regulatory
mechanisms, which may also enhance our understanding of molecular dynamics during the early

differentiation of hESCs.

The schematic illustration of InPheRNo-ChIP is deciphered in Figure 4.2. In order to verify our

hypothesis for data integration, we first generated in silico gene expression data and ChIP-seq
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peaks with certain constraints based on real-world biological datasets, and then reported several
performance assessments of InPheRNo-ChIP concerning different input data options: using (1)
only gene expression data, (2) perfectly matched RNA-seq and ChIP-seq data, and (3) partially
unmatched RNA-seq and ChIP-seq data (Chapter 4.3). To further illustrate the insights InPheRNo-
ChIP enables, we applied InPheRNo-ChlIP to in vitro RNA-seq and ChIP-seq data corresponding
to hESCs and hESC-derived endodermal lineage (Chapter 4.4). Last but not least, we summarized

the key findings and indicated some future perspectives in Chapter 4.5.
4.2 Methodology

A Gene Expression B Gene-Phenotype p values
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Figure 4.2 The overall depiction of the InPheRNo-ChIP framework. (A) The inputs include a list
of TFs, a matrix of gene expression profiles, multiple ChIP-seq peaks and a phenotypic vector
indicating which group the sample belongs to. The colour and intensity of the boxes in the heatmap
representation indicate changes in gene (or TF) expression. The list of TFs is used to filter legit
human TFs and separate the expression matrix into two matrices: a matrix of TF expression data
and a matrix of gene expression data. The ChIP-seq peaks are obtained from peak calling algorithms
such as MACS/MACS?2, SISSRs and PICS [197]. (B) Prior to inferring phenotype-relevant TRN,
InPheRNo-ChIP computes three sets of (pseudo/true) p values, representing gene-phenotype
associations (denoted by P;), TF-gene associations from RNA-seq (denoted by 7;;), and TF ChIP-
seq peaks (denoted by q; ), respectively. (C) The core of the InPheRNo-ChIP is a probabilistic
graphical model models the variables of interest. The output of the algorithm is a phenotype-relevant
TRN composed of TFs, genes with a confidence score associated with TF-gene edges.
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We present InPheRNo-ChIP, a computational tool for reconstructing phenotype-relevant TRNs
from gene expression and ChIP-seq data. As shown in Figure 4.2, the main pipeline is comprised

of four steps:

1) Calculation of gene-phenotype p values using gene expression data.

2) Calculation of TF-gene p values using gene expression data.

3) Calculation of TF-gene pseudo p values using TF ChIP-seq peaks.

4) Calculation of confidence scores for the identified TF-gene edges and constructing the
phenotype-relevant TRN by utilizing a carefully designed probabilistic graphical model
(PGM).

4.2.1 InPheRNo-ChlIP step 1: Gene-phenotype Associations from RNA-seq Data
The inputs to step 1 of InPheRNo-ChlIP are a gene expression count matrix where rows correspond
to genes and columns correspond to samples, and a vector containing the phenotypic variation for

all samples.

The output of this step is a list of p values (denoted as P;) that summarizes the significance of the
associations between the gene expression and the phenotypic labels for each gene. Under the null
hypothesis that TF; is not associated with Gene; to affect the phenotype, the distribution of P; is

uniform (based on the behaviour of a p-value under the null hypothesis).

We specify the term ‘phenotypic labels’ (or ‘phenotypic scores’) to recognize distinct phenotypic
attributes (i.e., discrete versus continuous data types) that are associated with each sample.
Depending on whether the type of phenotype is continuous or categorical, InPheRNo-ChIP

generates p values accordingly:

1. In the case of having categorical phenotypic labels, such as SARS-CoV-2 versus other
viruses or cases versus control in disease study, the p values of gene-phenotype
associations can be obtained using differential expression analysis, such as EdgeR [163],
DESeq?2 [198], and EBSeq [199].

2. In the case of having continuous-valued phenotypic scores, where the range of variability
of the phenotype is continuous (not categorical), such as IC50 drug response measurements
in the pharmacogenomic study, the p values of gene-phenotype associations can be found

through regression or correlation analysis.
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4.2.2 InPheRNo-ChlIP step 2: TF-gene Associations from RNA-seq Data

Step 2 of InPheRNo-ChIP takes properly normalized gene expression data and applies one of the
following two options to estimate the p values of gene-TF associations. Although our algorithm
prefers quantile normalized count-per-million (CPM) values across all samples, other normalized

measurements are also acceptable as inputs in this step.

It is worth mentioning that in this step, we assume that the sample size is greater than or equal to
the feature size (i.e., the number of TFs with known RNA-seq and ChIP-seq data). This is because
we are currently only interested in applying this methodology to publicly available human
embryonic datasets, where we have 28 RNA-seq samples and 25 TFs that are shared in both RNA-
seq and ChIP-seq (see chapter 4.4 for more details). On the other hand, if the sample size is smaller
than feature size, a two-step procedure similar to the one used in InPheRNo can be adapted to
compute ‘pseudo’ p values instead of the ‘true’ p values above (a direction that we are going to

pursue in the future for other applications).

Two options are introduced in this step to compute a p-value of association between Gene; and

TFi:

(1) We use linear correlation coefficients, such as Pearson correlation coefficients, as a first
option.
(2) We use the multivariate regression model, such as Ordinary Least Squares (OLS), as a

second option.

In the first option, InPheRNo-ChIP computes Pearson’s correlation coefficients as a baseline mode
to obtain the p values of associations between the gene and its regulator. However, such methods
likely fail to consider the nature of TRNs that comprises simultaneous observations and analysis
of more than one feature. Thus, InPheRNo-ChIP addresses this potential concern by introducing

another option to generate the p values of TF-gene associations.

In the second option, InPheRNo-ChIP applies OLS regression model to estimate a statistical
dependency between the response (i.e., the expression of a gene) and the feature variables (i.e., the
expression of gene j’s candidate TFs). Notably, OLS is a linear model estimation method for
estimating the unknown parameters in the linear regression model by minimizing the following

objective function between the response variable and the features:
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n 4.1
Lbasicform(ﬁ) = Z(yi - xi,BA)Z,
i=1

where n is the sample size, y; is the response variable, x; is the feature variable corresponding to
the i-th sample. In this most basic form, our features are the TF expression, and the response
variables are the expression profile of each gene. Our study hypothesizes that the variation of the
gene-expression values of a gene across samples can be explained by a linear combination of the

expression of this gene’s regulators.

The output of the second step is a p-value of TF-gene association, denoted by 7;;. Under the Null
hypothesis that TF; is not associated with Gene;, the p-value 7;; is uniformly distributed between

0 and 1 [200].

4.2.3 InPheRNo-ChIP Step 3: TF-gene Associations from ChIP-seq Data
Step 3 of InPheRNo-ChlIP utilizes a set of p values capturing the regulatory effects of the TF on

its putative target genes using ChIP-seq peaks, denoted as q; j.

Since the upstream analysis is not the objective of this study and various methods have been
developed to address similar problems [201-204], we use an existing tool T-Gene [204] to identify
the TF-gene relationships from ChIP-seq data. T-Gene hypothesizes that genes which locate near
TF binding sites (TFBS) are more likely to be regulated than those which locate far from TFBS.
The algorithm defines a uniform null model to describe the distribution of the genome distance
(i.e., the number of base pairs) between the closest edge of the TFBS and transcription start site

(TSS) of the transcript in the reference genome, and outputs a set of Distance p-values.

After running T-Gene on our ChIP-seq datasets, we remove non-CT links and keep only those p
values of CT links smaller than one for the following two reasons. (1) T-Gene manually assigns a
Distance p-value of 1 to the putative link if its length (denoted by d) exceeds the user-defined
maximum distance D = 500kbp; (2) In their paper [204], a comparison in terms of the prediction
accuracy using closest TSS links (CT links) versus non-CT links shows that CT links can produce
more reliable results than non-CT links. Because of this post-processing step, those filtered
Distance p values no longer satisfy the complete characteristics of true p values. Thus, we have to

treat them as ‘pseudo’ p values. Adapting the same terminology from the InPheRNo paper [7],
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under the null hypothesis that the expression of a Gene; is not regulated by a TF;, each ‘pseudo’ p

value can be modelled as a Beta distribution in the step 4 of InPheRNo-ChIP.

4.2.4 InPheRNo-ChIP Step 4: PGM

With the above three sets of p values capturing either TF-gene associations or gene-phenotype
associations, the biological hypothesis about how those elements (i.e., TFs, genes, phenotypic
variations) influence one another remains unmodelled. Thus, in the fourth step of InPheRNo-ChlIP,
a Bayesian network (BN), one of the well-known branches of PGMs, is used to represent
conditional independencies between nodes (i.e., a set of random variables) in a directed acyclic
graph (DAG). Using plate notation, Figure 4.4 illustrates a schematic view of the model for
identifying which TFs regulate genes and which biological processes are associated with these
genes. Each variable in the PGM has an associated set of parameters underlying the distribution,

and each directed edge represents the conditional dependency between the latent variable (T5;s)

and the observed variables (P;s, 7;js, and q;jxs) for a Gene;.

v N v
Tl.. — 1 e Casel TF; r@ » Phenotype
v X
Case 2
X v
Tij — 0 Case 3 @ Phenotype

j

Case 4 Phenotype

Figure 4.3 Illustration of four cases of the latent variable T;;. T;; = 1 implies TFi regulates Gene;
to affect phenotype (case 1), T;; = 0 indicates its logical complement (case 2-4).

The binary latent random variable T;; represents the idea of ‘a TF; regulates the Gene; to affect its
phenotype’ (the alternative hypothesis). On the one hand, when the value of Tj; is 1, the definition
of T;; implies that there is a valid association between TF; and Gene; to affect the phenotype of
Gene; ‘s (i.e., the first case in Figure 4.3). On the other hand, if the value of Tj; is 0, then the
definition of T;; implies one of the following: (a) TF; regulates Gene; but there is no association

between Gene; and its phenotype (i.e., the second case in Figure 4.3); (b) TF; does not regulates
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Gene; to affect the phenotype (i.e., the third case in the Figure 4.3); and (c) TF; does not regulate
Gene; and no valid association exists between a gene and its phenotype (i.e., the fourth case in the

Figure 4.3).

We model the prior distribution of this random variable T;; by using a Bernoulli distribution with

parameter y. Hence, the probability mass function (PMF) of Tj; is given by:

p()=P(T;;=1)=y 4.2
p(0)=P(T; =0)=1-y 4.3

and the cumulative distribution function (CDF) of T;; is given by:

0, t;j <0 4.4

1, t;>1

where y is held fixed to the multiplicative inverse of the number of TFs in this project.

Next, as depicted in Figure 4.4, we use three observed variables to encode the following three sets
of p values in the PGM: (1) P; - representing a p-value of the association between target genes and
the phenotypic labels (e.g., cell types or virus types); (2) 7z;; - representing a p-value of the
association between the expression of each gene and its regulator; (3) q;j, - representing a

Distance p value of TF-gene regulatory relationship obtained from the T-Gene algorithm [204].

Since the first observed variable P; is an actual p-value and it is uniformly distributed when the
null hypothesis is true. Under the null hypothesis, the phenotypic variation is not associated with
the expression of Gene;. In other words, if Ty j; =T,; =-- =T, ; =0, then the conditional
distribution of P; can be modelled by a uniform distribution. In contrast, if any T;; is equal to 1,
following the same approach used in InPheRNo paper [7], the conditional distribution of P; under
the alternative hypothesis (where the definition of T;; implies that Gene; is associated with the
phenotype) can be modelled by a Beta distribution. Since the shape of the beta distribution is often
characterized by two parameters, « and 8, we fix the value of § to 1 to limit the value of a to a

range of [0,1]. Note that the uniform distribution on the interval [0,1] is a special case of this

family (i.e., Beta(a = 1,5 = 1)).
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Overall, the conditional distribution of this observed variable P; given the value of T;; can be
modelled as:

Unif (0, 1), ifTy; =Ty = =Tp; =0 45
j Beta (a = Qp, B = 1)’ if any of Tij =1

where we estimate the prior distribution of the unknown «a by fitting a mixture of a uniform and

distribution to the histogram based on the p values of gene-phenotype associations across all genes.
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Figure 4.4 The PGM used in InPheRNo-ChIP is represented in the plate notation. The PGM
characterizes the relationship between the latent variable (T;;) and a set of the observed variables
(P;, m;.and q;jx ). The plate notation provides an easier way to encode models with repeated
structure and shared variables, whereas circular shaded nodes are observed random variables with a
distribution, and plain nodes are learnable parameters and latent variables. The directed edges show
how information flows from a set of parent variables of a node to itself. In terms of model
construction, the most outer plate is for all the genes we have selected for InPheRNo, and n%émes
—1), we
construct two inner plates to separate RNA-seq and ChIP-seq information. As shown in the figure,
the observed variable 7;; is associated only with the RNA-seq plate, and the observed variable g;

specifies the number of genes of interest. For each gene j (j ranges from 0 to n¢emes

is associated only with the ChIP-seq plate. The interpretation of such dependence is that, for any
pair of (TF, Gene) objects i and j, the node T;; depends on (1) attribute q;jx, (2) attribute 7z;;, and
(3) attribute P; in the outer plate. The value of observed variables refits for each (TF, gene) pair
based on their data sources.

The second observed variable, denoted by 7, represents the p-value of the association between

TF; and Gene; (regardless of the relationship between the expression of Gene; and its phenotype).
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Under the assumption that the number of samples is equal to or greater than that of features, the
obtained m;; is uniformly distributed under the null hypothesis. Based on the implications of Tjj,
we model the conditional distribution of w; ; differently. As shown in Equation 4.8, we use a Beta
distribution to model the conditional distribution of a TF-Gene association when TF; regulates
Gene; to affect the phenotype (T;; = 1). On the other hand, when T;; # 1, itis indicating one
of the following two scenarios (correspond to cases 2-4 in Figure 4.3): (1) TF; does not regulate
Gene;j in a phenotype-independent manner; (2) TF; regulates Gene; but is not relevant to a

phenotype. As a result, we use a mixture of a Beta and uniform distribution to model the

conditional distribution of ; ;.

5 ~ Unif (0,1) 46
af®* ~ Unif (0, 1) 4.7
Beta (a = af**, B = 1), ifT; =1 4.8
7[. . o~ ,
v 75 Beta (a = af**, B = 1) + (1 —f5*)Unif (0,1), otherwise

where we assigned ajGEx as a weak prior distribution to the shape parameter a in the Beta

distribution and assigned erEx to the mixing proportions.

The last set of observed variable g; j represents the p values of regulatory effects of TFs and their
putative target genes identified by the algorithm T-Gene [204]. Depending on the value of T;;, we
model the conditional distribution differently. When T;; equals to 1, the conditional distribution of
this random variable under the null hypothesis is modelled by a Beta distribution with parameters
a= ajChIP and B = 1. Here, we use a Beta distribution instead of a uniform distribution to
illustrate the fact that the distribution of p-value g, is bias towards small values because we have
restricted T-Gene's outputs to CT links with Distance p values smaller than 1. When T;; equals to
0, the definition of T;; implies that TF; does not regulate Gene;. Thus, following a similar

modelling strategy described in InPheRNo, the conditional distribution of g;; can be modelled by

a mixture of two Beta distributions.
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afMP-t ~ Unif (0, 0.5) 4.9
af™P-* ~ Unif (0.5, 1) 410
rMP ~ Unif (0,1) 411
Beta (a = af"'?, B = 1), ifT,; =1 4.12
Qijk rjcmp Beta (a’ — o:jChIP-l, B = 1) + (1 —r]-Ch'P)Beta (a’ — a].ChIP-O, g = 1)’ ifT,; =0 )

where rjcm P stands for the proportion in the mixture.

As for prior distributions, we restrict the range of « to (0,1) and set the second shape parameter
equal to 1 to have the flexibility in modelling an extensive range of distributions tend for small
values. As a increases, the degree of bias drops; when it approaches 1, the resulting distribution
will be closed to a uniform distribution. On top of that restriction, we assign different upper/lower

ChIP_0 _ , ChIP_1

limits to the probability density functions for uniform distributions to ensure that «; > q;

(i.e., a more significant bias towards small values exists when TF; is regulates Gene;).

4.2.5 Inference
In terms of approximate inference, we conduct Markov chain Monte Carlo (MCMC) sampling to
generate the empirical posterior probabilities of the hidden variable T;; given the observations. A
python module PyMC3 [205], is introduced in the process.

Table 4.1 Main parameters in the MCMC sampling The thin value is determined based on the

settings in the original InPheRNo [7] and the other three parameters simply used default values of
pymc3.sample() function, suggested by PyMC3 documentation [205].

Parameter Description
N, Number of iterations to thin, set to 100
N, Number of chains, by default, set to 4, for multi-process sampling and model
checking
N; Number of iterations by default, set to 1000
N, Number of tuned/burn-in samples to be discarded by default, set to 500

By default, PyMC3 assigns a Metropolis-Hastings sampler (MH) for binary latent variables such
as T; j and assigns a No-U-Turn Sampler (NUTS) for continuous variables such as q;j,. MCMC



48  Chapter 4 InPheRNo-ChIP: Inference of Phenotype-relevant Transcriptional Regulatory Networks
using Multi-omics Data

parameters are set to values that aim to balance the trade-off between inference accuracy and
computational efficiency, and PyMC3 has an auto-tuning step during the warmup/burn-in phrase
to optimally tune the MCMC algorithm and speed up the convergence (Table 4.1). With this setting,
the total number of iterations per chain is (N; + N;). Since the N, tuned samples are generated
and auto removed during the sampling process, and N, posteriors are thinned afterwards, the

number of posterior samples for downstream analysis is (N; — Np).

During the sampling, we printed out the divergence rate for each run of PGM and implemented
the model in a way such that zero divergence was detected by PyMC3. Furthermore, we randomly
selected some genes, plotted traces for each random variable in PGM as differences among chains
can indicate problems with tuning and convergence. Also, we used summary() function of ArviZ
[206] to check their Gelmen-Rubin split index R-hat values as MCMC chains can be assumed to
be converged to the stationary distribution if R-hat values are less than 1.1 [207]. The convergence

of chains was achieved for these selected genes, with R-hat values less than 1.1.

Given that the Markov chain can sometimes get stuck in the local minima [208], the PGM step is
designed to run multiple times with different random initializations and then to average all those

repeated posteriors for each T;; to ameliorate this problem. InPheRNo-ChIP then forms a

phenotype-relevant TRN based on the posterior probabilities of T; js.

4.3 Experiments on Artificial Data

One of the main challenges in assessing unsupervised learning methods for TRN reconstruction is
the absence of the underlying network (i.e., gold standard/ground truth) [209]. Since the
experimental ground truth is unknown and our focus of the study is about embryonic development
with emphasis on differentiation of hRESCs to endoderm, there is a clear need to generate synthetic
data that can statistically mimic some properties of RNA-seq and ChIP-seq data to test our model

performance in a reproducible manner.

4.3.1 Assumptions
Although gene regulation is generally considered a nonlinear problem [210], linear models have
simplicity as an asset and may give researchers insights into how some genes are regulated. To

simplify the analysis of the data generation process, we made the following assumptions: (1) A
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gene must have at least one regulator (i.e., TF), and a TF must regulate at least one gene [211]; (2)

The expression of the gene follows a linear relationship that embeds cellular phenotypes and noise.

In addition, based on our actual biological data from the human embryogenesis study, we fixed
the sample size to 28 and the feature size (i.e., the number of TFs) to 25. We also synthesized the
distribution of peak information from ChIP-seq data (see Chapter 4.4 for details).

4.3.2 Data Generation Process

We began by constructing a bipartite adjacency matrix INDyp_gene to indicate regulatory

relationships between TFs and genes. Meanwhile, we constructed a binary vector INDgy, to

indicate whether the expression of a gene is associated with biological conditions (e.g., case versus

control).
A B AND Gate
INDlTlngene
IND1F—gene | ground
GeneO0 Genel1 Gene2 Gene3 Gene 4 IND,, __| truth
TFO 0 0 1 1 0
TF 1 0 1 0 0 0
TF 2 1 0 0 1 0
TF3 [ 1 0 0 0 L = 1
J
INDgene—phpno[ype Q
GeneQ Genel1 Gene2 Gene3 Gene 4 1
Phenotype [ 1 [0 ] 1 | 0 | 1 ]
Gy,
C TF—gene—phenotype
“True” Underlying Network (Gold standard)
Gene0 Gene1 Gene2 Gene3 Gene 4
TF O 0 0 1 0 0
TF 1 0 0 0 0 0
TF 2 1 0 0 0 0
TF 3 1 0 0 0 1

Figure 4.5 Illustration of the underlying network for synthetic gene expression data. (A) A bipartite
adjacency matrix for TF-gene relationships from simulated RNA-seq data, denoted by IN DiTjF_ gene>
whose element corresponds to the regulatory interaction between each pair of a TF i and a gene j.
A binary vector for gene-phenotype relationships, denoted by INDQ,,. A value of 1 indicates that

there is a valid association between a gene and a TF (or a phenotype), and a value of 0 indicates the
opposite. (B) A logic AND gate is used to determine the underlying network. The truth table
represents all possible outcomes of input-output combinations for the gate. (C) A 0/1 matrix whose
row indices correspond to TFs, column indices correspond to genes, and cell values correspond to
regulatory interactions among TFs, genes, and phenotypes. A graph representation of the gold
standard is also shown in the figure.
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In a simple example (Figure 4.5), we illustrated the construction process of the ‘true’ underlying

network using those two tensors. To build an index matrix INDrp_gene, We used a Bernoulli
distribution with parameter Py, to determine whether a TF is regulating a gene or not. Similarly,

to build an index vector IND we used another Bernoulli distribution with parameter

gp >

Fyp to determine whether a gene is associated with a phenotypic label or not. Then, those two

tensors were fed into a 2-input AND gate to obtain a new index matrix specifying which TF

ij

TF—gene—phenotype (OI'

regulates which gene to affect its phenotype. The resulting index matrix G

Gfép for short), that came about as follows: for a specific pair of TF i and gene j, if
IND%,_ gene=1NDép=l, then a value of 1 was given to Gti;p. Otherwise, a value of 0 was given.

The final matrix G4, was then used as the gold standard to evaluate the performance of

InPheRNo-ChlIP in the following chapter.

i

tpg- For each gene, the general

Next, we simulated gene expression data based on the ground truth G

form of its expression could be written as:

noise, Gti{;g =0 413

ayTFy + oqTF, + -+ + 04 TF;4 + phenoj + noise, Gg,g =1

Gene; =

In the case of G

tpg = 0, a noise vector was assigned to the expression of the gene j. The noise

vector was assumed to be normally distributed, whose parameter was computed based on the
signal-to-noise ratio SNR;z [212] defined by the user. We included this noise term because
unpredictable features (i.e., biological/technical variation) are often observed in gene expression
measurements [110]. In addition, adding noise to the synthetic data allowed us to access the

generalization performance of the proposed method.

In the case of G

_ . . " .
tpg = 1, the response variable (i.e., a gene j’s expression level) was assumed to be

a linear combination of features (i.e., expression of TFs), phenotypic information, and random
noise. The parameter ¢; in equation 4.13 was a coefficient varying from 0 to 1, which indicated
the strength of the linear relationship between the expression of a specific TF i and the expression
of gene j. The expression of TF was generated by a Gaussian distribution whose shape was

equivalent to the sample size.
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In addition to simulation of gene expression profiles, we aimed to synthesize ChIP-seq data to

approximate real-world experimental data. One general strategy to generate such data is to draw

samples from a real data distribution [213]. To achieve this, we plotted a real statistical distribution

of the average number of peaks for all TF-gene pairs in T-Gene’s processed data. Then, we

randomly drew samples from this simulated population (Appendix A.4) to obtain the number of

peaks for each TF-gene pair. Note that the number of peaks corresponds to the number of Distance

p values obtained from the T-Gene algorithm.
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TF3

TFO
TF1
TF2
TF3

INDyp_ RNA-se B

TF—gene ( q) XOR Gate C

Gene0 Gene1 Gene2 Gene3 Gene 4 INDTFﬁy(,M,’
0 0 1 1 0

(ChIP-seq data)

IND7F_gene
0 1 0 0 0
Gene0 Gene1 Gene2 Gene3 Gene 4
1 0 0 1 0 IND7r_gene
TFO 0 0 1 1 1
1 0 0 0 1 Noise
TF1 0 0 0 0 0
Mask matrix (F,;.) = »TFZ 0 1 0 0 0
Gene0 Gene1 Gene2 Gene3 Gene 4 1 TF 3 1 0 0 0 1
0 0 0 0 1 1
0 1 0 0 0 0
1 1 0 d 0
0 0 0 0 0

Figure 4.6 Illustration of the underlying network for synthetic ChIP-seq data. (A) As inputs, the
XOR gate accepts an index matrix of the TF-gene association from RNA-seq, and a mask matrix
specifies the level of mismatches between simulated RNA-seq and ChIP-seq data. The mask matrix
was generated based on a user-defined error rate P, with an acceptable range of 0% to 50% (Table
4.2). (B) A logic XOR gate with two inputs, one output and a truth table. (C) As the output, the XOR
ij

gate produces a new binary matrix INDpp_ ;..

’. For a pair of TF i and gene j in the matrix: if
Noise;j equals to 1, a logic complement value of IND;jF_gene
ij

TF-gene

will be assigned to the pair (red-
colored values); otherwise, the same value of IND will be assigned to the pair (black-colored

values).

To test the effects of model performance on the integration of RNA-seq and ChIP-seq data when

different data types contribute complementary or slightly contradictory information to each other,

we generated ChIP-seq data based on two scenarios:

(1) Ideal scenario: we hypothesized that the regulatory evidence from ChIP-seq was

complementary to that from RNA-seq. Therefore, we used the same bipartite adjacency

matrix from RNA-seq data (i.e., INDrp_gene) as the underlying network to generate ChIP-

seq data. The underlying network indicates whether a TF regulates a gene.




52 Chapter 4 InPheRNo-ChIP: Inference of Phenotype-relevant Transcriptional Regulatory Networks
using Multi-omics Data

(2) Mismatch scenario: we hypothesized that the regulatory evidence from ChIP-seq data was
slightly contradictory to that from RNA-seq data. Therefore, we constructed a new Boolean
network (denoted as INDrp_gene') by applying a logical exclusive-OR gate to the noise
matrix (denoted as N) and the original index matrix INDrp_gene : INDrp_gene' =

XOR(IND7p_gene, N). A simple example to illustrate this process is shown in Figure 4.6.

It is worth mentioning that the ground truth for both scenarios remain the same: a binary matrix

GY

tgp Where a value of 1 indicates a valid TF-gene-phenotype association and a value of 0 indicates

its logical complement (Figure 4.5).

Considering the randomness and reproducibility of the data generation process, we ran the data
generation process ten times with different global random seeds (using the ‘random” module from
the ‘NumPy’ library) and obtained ten sets of synthetic data for each ideal/mismatch scenario. The

detailed pseudo-code for the data generation process can be found in Appendix A.1.

4.3.3 Results
As discussed in Chapter 4.2.2, there are two options available for obtaining the p values of TF-

gene associations in step 2 of InPheRNo-ChIP:

- Model A: InPheRNo-ChIP with Pearson correlation as step 2.
- Model B: InPheRNo-ChIP with OLS method as step 2.

Thus, we conducted performance tests on these two options to examine which method was more
appropriate for further analysis. In terms of the evaluation metric, we used the Area Under

Receiver Operating Characteristic (AUROC) [214], also known as the area under the ROC curve.

TN e TP
, ) and sensitivity (i.e.,
TN+FP TP+FN

It measures both the specificity (i.e. ) of continuous variables

across all possible thresholds range from 0 to 1. The false negative (FN) is defined as the case
where a TF-gene-phenotype link can be found in the ground truth network but cannot be found in
the reconstructed network. The true positive (TP) is defined as those links on the ground truth
network that remain on the reconstructed network, and the false positive (FP) is defined as the

number of false links inferred in the reconstructed network.
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We aimed to evaluate two models using only synthetic gene expression data with different values

of P

yp> Prg and SNR (Table 4.2) to have a baseline understanding of their performance. Note that

there was no Pgy involved because we were not including ChIP-seq information.

Table 4.2 User-definable parameters in the synthetic data generation.

Parameter Description Value
Py The probability of a TF is regulating a gene [0.1,0.2,0.4, 0.6, 0.8]
Py The probability of a gene is associated with phenotype [0.1,0.2,0.4, 0.6, 0.8]
SNR;p Singal-to-noise ratio for gene expression data, in dB [1, 10, 20, 30, 40, 50]
P, The error rate in the ChIP-seq underlying network [0.05, 0.1, 0.15, 0.25, 0.5]

In Figure 4.7, we observed that both models were pretty sensitive to Py, as we increased the value
of Piy from 0.1 to 0.8, the averaged AUROC scores of both models dropped from 0.75 to
somewhere close to 0.55. Meanwhile, we observed better performance of Model A compared to
model B when SNR was relatively small (e.g., SNR=5 or SNR=10). On the other hand, model B
tended to achieve better AUROC results than model A when SNR > 20 (regardless of the choice
of P;4). Note that we only included AUROC results for the fixed Py, = 0.2 because both models

were robust with respect to the change of F,,
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A ROC Curve - synthetic data (params: ptg0.1 pgp0.2)
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Figure 4.7 Average AUROC performance using only simulated RNA-seq data. Here, model A
and model B were trained on 10 randomly generated gene expression profiles with various SNR
and P, 4. Each subplot depicts the overall tendency for a particular value of P4 in Table 5. In each
figure, each dot represents the mean AUC scores across ten different TRNs generated by
InPheRNo-ChlIP, and the error bar overlays on each dot representing the standard deviation of
the data. The Y-axis shows the AUROC score ranges from 0 to 1, and the x-axis shows the
variation in the noise levels. The green-coloured line shows the performance of the model when
Pearson correlation is used to compute the p-value of TF-gene associations, while the black line
shows the AUC value when OLS is used.

In order to investigate model performances with respect to different error rates, we conducted two

experiments: (1) fixing Pr; = 0.2,F;, = 0.2,SNR = 20 and varying the error rate P, from 5%

to 50% (2) fixing Pry = 0.4, F;, = 0.2, SNR = 20 and varying the error rate F,,. from 5% to 50%.

We randomly generated ten datasets for each experiment and computed the average AUC score

across those datasets concerning different error rates for each model.
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As shown in Figure 4.8, increasing the error rate from 5% to 50% showed proportional decreases
in model A performance (yellow-coloured line) and model B performance (purple-coloured line).
The observed tendency indicated that a high perception of contradictory information from multi-

data sources could result in noticeable changes in AUROC performance.
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Figure 4.8 Average AUROC performance using simulated RNA-seq and ChIP-seq data. Here,
model A and model B were trained on 10 randomly generated synthetic datasets with various P,

and Pyg. (A) The figure depicts the result obtained from experiment #1: fixing P,y = 0.2, F,, =

0.2,SNR = 20 and varying the error rate P,, between 5% and 50%. (B) The figure depicts the

results obtained from experiment #2: fixing P,y = 0.4, Py, = 0.2, SNR = 20 and varying the

error rate P, between 5% and 50%.
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Also, regardless of how much noise was generated or what value was used for P4, we observed

that the performance of model B (i.e., InPheRNo-ChIP with OLS model as step 2) was generally
better than that of model A (i.e., InPheRNo-ChIP with simple correlation analysis as step 2).

To test the hypothesis that incorporating ChIP-seq and RNA-seq improves the performance of
InPheRNo-ChIP compared to that of utilizing only gene expression data, we combined ideal and

mismatch scenarios in chapter 4.3.2 and introduced the following settings:

- Setting I: testing the model performance on gene expression data only, with simulation
parameters: Py, = 0.2, P, = 0.2,SNR = 20.

- Setting Il and III (ideal/mismatch scenarios): testing the model performance on
perfectly/partially matched RNA-seq and ChIP-seq data, with simulation parameters:
Pyp =0.2,P;y =0.2,SNR = 20,F,, = 0.1 o7 0.

o Setting II: If P, = 0, then the ChIP-seq data is perfectly matched to the underlying
regulatory relationships in gene expression data.
o Setting III: 1f P,,. = 0.1, then the underlying network for simulated ChIP-seq data

is partially matched (or mismatched) to that for gene expression data.

Table 4.3 reports AUROC scores for models in different settings. Each cell contains the mean and
standard deviation for AUC measurements over ten reconstructed TRNs with different random
initializations.

Table 4.3 Performance comparison of model A and model B in different settings. The AUROC is
indicative of the overall performance of the inference algorithm [121]: a perfect predictor tends to
give an AUC score of 1, while a random predictor will have a value close to 0.5. If the score is less
than 0.5, it implies that the algorithm does not confer any predictive power (its performance is
worse than random selection).

Setting I: Setting II: RNA-seq +ideal  Setting I11: RNA-seq + mismatch
RNA-seq only ChlIP-seq (P, = 0) ChIP-seq (P, = 10%)
Model A 0.762+0.036 0.916£0.01 0.854+0.013
Model B 0.852+0.017 0.919£0.015 0.870+0.009

As depicted in Table 4.3, regardless of choice in estimating TF-gene associations in step 2 of
InPheRNo-ChlIP (i.e., Pearson correlation versus OLS method), it was apparent that the integration
of ChIP-seq data resulted in a vast improvement. In the first row, the accuracy of results was

increased from 76.2% to 91.6% when ChIP-seq information was perfectly matched RNA-seq’s
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story. This value dropped to 85.4% when the error rate was 10%, which was still more remarkable
than the AUROC score using only gene expression data. A similar conclusion can be drawn for

the 2" row of the table, where we used OLS as the first step to estimate TF-gene associations.

In summary, we conducted several experiments on synthetic data and were able to explore the
behaviour of our proposed method using different input data (1) RNA-seq data only; (2) RNA-seq
with perfect ChIP-seq data that matches the underlying assumption; and (3) RNA-seq with
mismatch ChIP-seq information; and different options (e.g., model A and model B). We evaluated
the performance of InPheRNo-ChIP on our simulated data in different settings by computing the
corresponding AUROC scores. Overall, the results indicated that Model B (utilizing the OLS
method as the second step of InPheRNo-ChIP) would be more appropriate to determine the TF-

gene associations. Therefore, we employed this model as the default option in our algorithm.

Although the construction process was biased and the model's effectiveness was partially
dependent on the quality of the data generation process and the choice of parameters, these results
indicated that the integration of ChIP-seq and RNA-seq could still improve the TRN reconstruction
accuracy compared to utilizing only gene expression data. Another limitation of this experiment
was that synthetic data might not mimic the complexity of regulatory mechanisms in the living
organism. For example, although we used SNR to include additive noise in the gene expression, it
is still unlikely to be a good approximation of the technical/biological noise resulting from a series
of complex experimental processes in the real world. Despite these limitations, we believe
synthetic data generation can still provide some guidance to help us evaluate the performance of

our algorithm under controlled conditions and set a ground truth for different measures.

4.4 Experiments on Real Data

Having analyzed the impact of integrating different data types on the resulting performance in the
previous chapter, we now take a closer look at a real-world application of InPheRNo-ChIP in

human embryogenesis.

As mentioned in chapter 4.1.1, hESCs have the potential to self-differentiate into ectodermal,
mesodermal, and endodermal cells of multiple tissues. It is widely used in research fields such as
early embryonic development, diseases, epigenetics, and human pathophysiology and provides an

unlimited source of multiple tissue cells for cell replacement therapy in regenerative medicine,
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which is of utmost clinical importance. As a use case, we applied the proposed InPheRNo-ChIP
algorithm to multi-omics data from the GEO repository [215], and reconstructed a TRN
unravelling the underlying molecular mechanisms in the embryonic specification of endoderm.
The inputs to InPheRNo-ChIP were published RNA-seq and ChIP-seq data obtained from several
human embryogenesis studies, with an emphasis on employing samples from hESCs and
endoderm lineages. The output of the algorithm was a phenotype-relevant transcriptional
regulatory network, whereas phenotypic labels (i.e., hESC or EN) indicate the group information
for each sample. In this study, we hypothesized that integrating multi-omics data would potentially

improve the predictive performance of our model.

4.4.1 Data Sources
We downloaded a list of 1665 human TFs from a comprehensive animal TF database,

AnimalTFDB 3.0 [216], on February 4%, 2021.

We downloaded TF ChIP-seq data from the GEO repository [215] under accession GSE61475.
This dataset contains 204 ChIP-seq samples, generated using an MNase-based ChIP-seq technique
from early stages of endoderm, mesoderm, ectoderm and mesendoderm tissues derived from

human embryonic stem (ES) cells.

Furthermore, we had searched GEO for related gene (including TF) expression profiles. Two
keywords, "endoderm" and "hESCs differentiation," were used to identify potential human
datasets of interest. As of April 4th, three GSE datasets GSE164361, GSE143371, and GSE160981,
have been considered for this use case. The details of the RNA-seq profiles in terms of sample

information are given below:

The GSE164361 dataset contains gene expression data measured across sets of neural progenitor
and definitive endoderm lineage differentiation in rat and homo sapiens (118 samples in total). The
GSE143371 dataset contains 55 samples corresponding to transcriptional profiles of four lineages
(i.e., definitive endoderm, early mesoderm or neuroectoderm, and embryoid bodies) differentiated
from mutant and control hESCs, with two or three replicates each. The GSE160981 dataset
contains 24 cell line samples, including pre-treated hESCs (i.e., H9 cells) and differentiating

lineages for three days with three biological replicates generated by RNA-seq technology.
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Complete experimental details are available in reference publications in the summary table in

Appendix A.2.

4.4.2 RNA-seq Data Processing

In order to obtain two sets of p values of TF-gene associations and gene-phenotype associations,
we first identified consistently up/down-regulated genes in all selected datasets using two R
packages: EdgeR (Empirical Analysis of Digital Gene Expression Data in R) [163] and Limma
(Linear Models for Microarray Data) [164].

The essential steps in the preprocessing of analyzing bulk RNA-seq data are outlined in Figure 4.9.
The pipeline started with downloading gene-level counts from the Gene Expression Omnibus
(GEO) repository for a given GSE accession number. After downloading gene expression profiles,
we kept samples (see the table in Appendix A.2) relevant to hESCs and endoderm lineages because
those two lineages were our focus in this application. As a result, the total number of samples
across multiple datasets was narrowed down to 28 samples: 12 samples for GSE164361, ten

samples for GSE143371 and six for GSE160981.

ﬁyj,;o
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—_
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— Format dat43 (genes existin all | DET:E\:; gcehl:e;
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Figure 4.9 RNA-Seq data processing and gene expression analysis.
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To leverage heterogeneous gene annotations across different data sources, we translated common
gene IDs (e.g., Ensembl gene IDs [217] or Entrez gene IDs) to universal gene symbols.

Furthermore, we filtered autosomal genes.

As previously mentioned, out of 200 raw samples from the GEO repository, only 28 fulfilled our
planned criteria (i.e., samples correspond to hESCs or hESC-derived endoderm). To overcome the
problem of the small sample size in each dataset, we decided to aggregate three datasets together
and then performed a systematic analysis on the aggregated dataset. However, unwanted noise and
unmodeled artifacts could emerge if we integrated datasets processed at different times and in
different facilities [218]. These batch effects sometimes create bias and add variability to the
results of biology experiments, which may cause a dramatic reduction in the accuracy of statistical
inference later. Thus, it is critical to adjust batch effects on the aggregated RNA profiles and a
package ComBat-seq [218] was introduced in this process (Appendix A.3).

After correcting batch effects, we performed DE analysis (using EdgeR [163]) and quantile
transformation (using Limma-Voom [164]) on the remaining genes. For DE analysis, the goal was
to find DEGs between two or more phenotypic labels (e.g., biological/treatment conditions) and
compute the statistical significance of the DEGs. In general, a gene is differentially expressed if a
statistically significant change is observed in expression levels between two or more conditions

[198].

The inputs to EdgeR were (1) a text file containing raw read counts after aggregation and (2) a
target file specifying sample information (e.g., lineages and confounding factors in experiments).
EdgeR first filtered out lowly expressed genes (i.e., genes that have CPM below 1 CPM in less
than two libraries), normalized the library size and fitted a negative binomial generalized log-linear
model [46] (and corrected the confounding effects of day information) to the remaining counts for
each gene in each sample. The output of EdgeR was a list of p values presenting gene-phenotype
associations. With Benjamini & Hochberg FDR (False discovery rate) strictly smaller than 0.01
(i.e., FDR < 0.01) and absolute fold change greater than 2 (i.e., |logFC| > 2) as the screening
criteria, we obtained a total of 2298 DEGs that were all consistently up-/down-regulated in the

aggregated dataset.

Separately, we performed a quantile normalization for the genes from gene expression profiles

using the package Limma-Voom and performed the z-score transformation across the samples on
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the filtered counts. The transformed values were then used to compute p values of the associations

among genes and their regulators (7;;s).

4.4.3 ChlIP-seq Data Processing

Similar to RNA-seq analysis, we also limited our ChIP-seq dataset (GSE61475) to hESCs and
endoderm lineages. The GSE61475 dataset contains multiple peak files identified by the MACS
algorithm using aligned ChIP-Seq reads [219]. Each peak file contains the identified peak locations
together with peak summits and statistical significance scores such as p values and q values. The
flow of preprocessing is shown in Figure 4.10, and three existing packages were applied to
accomplish the steps: Irreproducibility Discovery Rare (IDR) analysis from ENCODE [220, 221];
BEDTools [222]; and T-Gene [204].

Yes

Get peaks passing IDR
threshold of 5%

ENCODE - DR N BedTools
Analysis
No

Replicates
?

oz catd et My —

Remove Peaks that
overlapped with ENCODE
blacklisted regions

Figure 4.10 illustration of the pipeline for ChIP-seq Pre-processing.

Among these ChIP-seq BED files, we first removed samples of (1) ES cell lines derived from
shRNA-mediated knockdown of GATA4 and differentiation toward endoderm (labelled as
“dEN_shGATA4” in the series matrix file downloaded from the GEO database) and (2) lineages
from mesoderm or ectoderm. After that, we filtered the antibodies (TFs) with a human TF list
obtained from HumanTFDB. This filtering step led to 10 unique TFs for ectoderm, 25 unique TFs
for mesoderm, 24 TFs for endoderm, 22 for mesendoderm, and 29 TFs for hESCs (Table 4.4).

Next, we examined the data quality of ChIP-seq replicates and aimed to find the highly
reproducible peaks for each TF using the IDR method [221]. Since IDR analysis took a pair of
peaks as input, we had to categorize our samples from different lineages into 3 cases: samples with

one replicate, samples with two replicates, and samples with more than two replicates (Table 4.4).
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Table 4.4 MNChIP-seq data sample information in GSE61475. Shaded rows are lineages of
interests. dEN designates samples of hESC-derived endoderm, HUES64 designates samples of
hESCs. dEC designates samples of hESC-derived ectoderm, dMS designates samples of hESC-
derived mesendoderm, and dME designates samples of hESC-derived mesoderm.

Cell Type Number of Unique TFs 1rep 2 reps >2 reps
dEC 10 9 1 0
dMS 25 23 2 0
dEN 24 13 7 4
dME 22 18 3 1

HUES64 29 21 3 5

We ran IDR analysis on TF files with two replicates and ignored samples with only one replicate.
Because ENCODE’s IDR package [221] can only handle two replicates simultaneously, we first
obtained all pairwise combinations from an individual TF’s replicates, performed IDR on each
pair, and then selected the paired one with the most significant number of peaks post-merging. As
a final step in IDR analysis, we removed peaks that failed to pass the IDR threshold of 0.05. Here,
an IDR score of 0.05 is equivalent to a score of int(—125log2(0.05)) = 540 in the outputted
IDR table and a higher IDR score stands for a more reproducible peak [221].

Since the blacklisted regions (e.g., unstructured/anomalous reads) were reduced in the latest
genome assemblies (GRCh38), “blacklist filtering” has been excluded in most analyses. However,
since our dataset was produced in 2016 and used hgl9 as a reference genome, it was still best
practice to remove these troubling regions in the preprocessing pipeline. To achieve this, we used
the intersect() function from BEDTools [222] to intersect IDRed peaks with ENCODE blacklist
[223] and only kept the ones that did not appear in the blacklist. As a result, we obtained 21
endoderm-specific TFs and 28 hESC-specific TFs.

After removing IDRed peaks in blacklisted regions, we used T-Gene to compute the likelihood
that a TF regulates a putative gene in a cell line of interest. The inputs to T-Gene were processed
peak files. Inside each file, each row corresponded to a peak identified by MAC and passed IDR
analysis; each column corresponded to the chromosome's name and start/end coordinates of a peak.
We ran T-Gene with default settings and obtained a list of p values corresponding to the TFs of

interest and their putative regulatory targets. In addition, we filtered the links with 'Closest TSS=T'
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and only kept links with Distance p values smaller than 1, as shown in the histogram (Appendix

A.5). As aresult, we obtained a third set of p values of TF-gene associations from ChIP-seq peaks.

4.4.4 Results

The p values of TF-gene associations from ChIP-seq, the p values of TF-gene associations from
RNA-seq, along with the p values of gene-phenotype associations, are fed into InPheRNo-ChIP to
obtain a TRN specific to hESC-derived endoderm.

Instead of using an arbitrary value of 0.5 to threshold the confidence scores in the inferred network
(as in chapter 3), we employed a Kneedle algorithm [224] to eliminate any edge with a confidence
score lower than the knee/elbow score. This algorithm is a mathematical tool aiming to find the
maximal curvature of a decreasing convex curve, and the result is highly dependent on the choice
of sensitivity (S). In order to select the appropriate value of S, we converted the SYOV TRN to a
ranked edge list according to the confidence score (Figure 4.11). We observed a decreasing number
of qualified TF-gene edges as we increased the value of S from 1 to 100. Since no edge was

detected using S = 1, we chose S = 2 as the final sensitivity value to report.
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Figure 4.11 Illustration of the Kneedle algorithm with different sensitivity values. We converted the
SvOV TRN to an edge list, and then ranked the list by the confidence score for each identified TF-
gene pair. Each pair has its unique index number to differentiate itself from other pairs. In both plots,
the x-axis depicts the index of each identified TF-gene edge in the ranking list (e.g., index #0 depicts

depicts the zoom-in view of the bottom one.

the 1% TF-gene edge with the highest confidence score, index #1 depicts the 2" TF-gene edge in the
list), and the y-axis depicts the confidence score for each TF-gene association. The plot at the top

As depicted in Figure 4.12, after applying the Kneedle algorithm with sensitivity S = 2 to

InPheRNo-ChIP identified TF-gene edges (consisting of 25 TFs and 2298 DEGs), we obtained

310 TF-gene edges (consisting of 24 TFs and 259 DE genes).
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Figure 4.12 Network representation of the filtered endoderm network. In this network, nodes
correspond to identified TFs/genes in the endoderm network; directed edges correspond to
regulatory effects of TFs (gradient colours from cyan blue to light green) on their targets (light
yellow colour). The size and colour of each TF node are associated with its out-degree: a TF with
more target genes will have a darker and a larger node; and the size and colour of each Gene node
are fixed. The edge thickness is associated with the confidence score assigned by the algorithm.
Notably, the filtered network only includes interactions with a confidence score above 0.0974
(which is determined by the Kneedle algorithm with S=2). Overall, the filtered endoderm network
comprises 310 edges, including 24 TFs and 259 target genes.
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Next, we ranked the filtered TFs based on their number of target genes and listed the percent of
target genes for each TF; in Table 4.5. As proof of predictions, we mined literature to search for
evidence regarding the role of top TFs (i.e., TFs with the most significant number of phenotype-
relevant targets) in early human endoderm development. It has been acknowledged that the
knockdown of CTCF increases the contact between endodermal enhancers and IGF2 promoters
[225]. Also, there is some evidence that PAXG6 is a key factor in the differentiation of pancreatic
endoderm derived from hESCs [226], and SOX17 is an indispensable factor in the differentiation
of extraembryonic endoderm (ExEn) cells [227, 228]. Furthermore, Li et al. [229] studied the
functions of SMAD4 in mouse embryos and found that the lack of SMAD4 can lead to the failure

of anterior embryonic patterning and head induction.
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Table 4.5 List of top TFs identified by InPheRNo-ChIP and evidence for their roles in human
embryogenesis. The evidence is denoted as “strong” if more than three pieces of literature
evidence were found.

Percent of Literature Evidence
TFs Genes target genes
SRF 75 28.96% Strong
HNF1B 42 16.22% Moderate
CTCF 23 8.88% Strong
PAX6 19 7.34% Strong
SOX17 15 5.79% Strong
NANOG 14 5.41% Strong
POUSF1P3 14 5.41% Moderate
NRS5A2 10 3.86% Moderate
EOMES 10 3.86% Strong
SP1 10 3.86% Moderate
THAPI11 9 3.47% Strong
GATAG6 9 3.47% Strong
FOXA1 9 3.47% Strong
STAT3 8 3.09% Strong
FOXA2 8 3.09% Strong
SMAD4 6 2.32% Strong
PRDM1 6 2.32% Strong
SOX2 4 1.54% Moderate
oTX2 4 1.54% Strong
TBXT 4 1.54% Moderate
KLF5 4 1.54% Strong
SNAI2 3 1.16% Weak

Next, we ranked the TF-gene relationships according to their confidence scores in the inferred
network and extracted the top 20 edges with the highest confidence scores in Table 4.6. We

validated the identified 310 TF-gene edges using experimentally validated TF-gene associations
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in the mouse embryogenesis ESCAPE database [230]. The ESCAPE database contains TF-gene
regulatory evidence in mouse embryonic stem cells (mESC) based on loss-of-function or gain-of-
function. We performed a hypergeometric test and found that the InPheRNo-ChIP edges are

enriched in experimental TF-gene mESC edges with a significant p-value of 9.20e-09.

Table 4.6 Top 20 TF-target edges in the inferred TRN with their confidence scores. A higher score
indicates a stronger TF-Gene-Phenotype association.

TFs Genes Scores
HNF1B KCNS3 1
HNF1B SORCS3 1
HNF1B POSTN 0.9998
HNF1B NECTIN3 0.9980
HNF1B SULF2 0.9895

SRF C50RF38 0.9843

SRF HCNI1 0.9619

CTCF HCNI1 0.9486
FOXA1 SORCS1 0.9419
HNF1B SPOCK1 0.9106
NANOG DIRAS2 0.8749
HNF1B CCDC182 0.8631
HNF1B ASIC2 0.8343
CTCF C50RF38 0.6713
CTCF GRM1 0.4267
HNF1B LPARS 0.4224
SOX17 PRR16 0.4036
HNF1B LHFPL3 0.3874
FOXA1 RIPK2 0.3767
FOXA2 FZDS§ 0.3747

Next, we performed gene ontology (GO) analysis by using the standard GSC computational
pipeline (with the Fisher’s exact test) of KnowEnG [10] to assess functional relationships between

identified TFs’ targets. Then, we performed multiple testing corrections for KnowEnG results
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using the standard Benjamini and Hochberg's False Discovery Rate (BH-FDR) analysis. As a result,
we found that the regulator PRDM1 was associated with some critical GO terms such as cell fate
commitment, epithelial to mesenchymal transition and positive regulation of cartilage

development.

In addition, we performed GO analysis by using the advanced network-guided GSC computational
pipeline of KnowEnG [10] to assess functional relationships between identified TFs’ targets. This
advanced mode encodes prior knowledge of gene-gene interactions (e.g., an experimentally
verified protein-protein interaction (PPI) network from the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) database [231]) into its statistical analysis of the input query
data set. Such knowledge-guided analysis allows more important GO terms to be exploited in
grouping gene sets. We first formed a matrix of genes (rows) by TFs (columns), which embedded
the regulatory effect of each TF on each gene, and then we analyzed this matrix through a network-
guided (using STRING PPI network) GSC pipeline with default parameters. Heatmap of the results
from GSC analysis with GO terms was drawn in rows and TFs in columns (Figure 4.13). For a
more straightforward presentation of important GO terms that were associated with TFs (and their
target genes), we chose a cut-off value of 0.5 for the difference score and only included the
enriched GO terms that were implicated for at least two TFs (and their target genes) in the final
TRN. Notably, GO terms related to the control of dendrite development and eye development were

implicated in this analysis.



Chapter 4 InPheRNo-ChIP: Inference of Phenotype-relevant Transcriptional Regulatory Networks using
Multi-omics Data 71
S TS0 E STTERE 0 TN
S ST TEE 5T EETFE
TH 0L GTLCHLAOOUHAT KNGS KVYG GO
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
plasma membrane -
integral component of membrane . . .
molecular_function .
protein binding . -
Golgi apparatus - .
cellular_component . L
integral component of plasma membrane - .
sensory perception of smell 4 . . 0.75
positive regulation of protein targeting to mitochondrion - . .
regulation of dendrite development - .
extracellular region 1 [l 0.50
intracellular membrane-bounded organelle 4 . . Y
cell adhesion B g
RNA binding - [ | £ 5
nucleoplasm - . e
protein O-linked fucosylation I l
endoplasmic reticulum lumen -
visual perception -
camera-type eye development -
extracellular matrix .
proteolysis - .

Figure 4.13 Heatmap of GO analysis using network-guided (STRING PPI) GSC pipeline of
KnowEnG platform. The columns depict TFs (and their target genes) identified using InPheRNo-
ChIP; the rows depict GO terms that have been implicated for at least two TFs (and their targets).
The gradient colour from black (high difference score) to blue (low) depicts the ‘difference score’
above 0.5 and indicates that the GO term is associated with the input gene sets; the white colour

indicates that there is no association between the GO term and the input gene sets.

Last but not least, we used the same set of TFs (and their targets) as a query gene set and performed

network-guided pathway enrichment analysis (using Reactome pathways [232]) to determine the

functional characterization of the identified TRN that were associated with hESC-derived
endoderm. As shown in Figure 4.14, the functional role of several TFs (e.g., NANOG and STAT3)

and their target genes are related to WNT signalling pathway activation, and the WNT signalling

pathway has been known in inducing the differentiation potential of definitive endoderm from

hESCs [233, 234]. Additionally, our results suggest that HNF1B, CTCF, and OTX2, along with

their targets, may be key components of the neuronal system.



72 Chapter 4 InPheRNo-ChIP: Inference of Phenotype-relevant Transcriptional Regulatory Networks
using Multi-omics Data

»
<

2 ~PAN © SITENE . va

G SFEFTEL 08, SILETGe 0 78

Metabolism of proteins
Signal Transduction | | || B | [ [ |
Post-translational protein modification H BN
O-linked glycosylation { [l [ ]
Metabolism of carbohydrates [l | ] | | | ]
Transport of small molecules{ [l | | |
GPCR ligand binding 4 | | ] | [ ]
Neuronal System Jll [l [ ]
Neutrophil degranulation - . . .
Diseases of glycosylation 4 -
Diseases associated with O-glycosylation of proteins -
0O-glycosylation of TSR domain-containing proteins -
Defective B3GALTL causes Peters-plus syndrome (PpS)-
G alpha (s) signalling events | | ] B
Class A/1 (Rhodopsin-like receptors) - | | ||
Signaling by GPCR | | =-
Developmental Biology - .
Disease - | | | ]
GPCR downstream signaling ||
Signaling by Interleukins - .
Glycosaminoglycan metabolism - =
Extracellular matrix organization -
Cellular response to heat stress - [ | | |
Transport of glucose and other sugars, bile salts and organic acids, metal ions and amine compounds - . .
Transcriptional regulation of pluripotent stem cells- .
Amine ligand-binding receptors -
Immune System - H B
Olfactory Signaling Pathway -
Surfactant metabolism - | | ||
HSF1-dependent transactivation -
Regulation of HSF1-mediated heat shock response
Attenuation phase -
HSF1 activation -
Cell-Cell communication -
POUSF1 (OCT4), SOX2, NANOG activate genes related to proliferation 4 .
Cellular responses to stress -
Signaling by FGFR -
Signaling by FGFR1 -
Downstream signaling of activated FGFR1 -
Transcriptional Regulation by TP53+
Cellular responses to external stimuli 4
Signaling by PDGF
Innate Immune System [ ]
Generic Transcription Pathway-
TP53 Regulates Transcription of Cell Cycle Genes+
TP53 regulates transcription of additional cell cycle genes whose exact role in the p53 pathway remain uncertain -
RNA Polymerase Il Transcription -
Metabolism of water-soluble vitamins and cofactors 4 .
Regulation of beta-cell development Jill | ]
Gene expression (Transcription) -
Glucose metabolism -
Heparan sulfate/heparin (HS-GAG) metabolism - | ] | |
Plasma lipoprotein assembly, remodeling, and clearance -
HS-GAG degradation || [ ]
Plasma lipoprotein remodeling 1 | ]
Signaling by Wnt - .

TCF dependent signaling in response to WNT - . .

HEE
H EEEEN
| [ ] ]
||
||
Difference
Score

Figure 4.14 Heatmap of pathway enrichment analysis using STRING PPI-guided GSC pipeline of
KnowEnG platform. The columns depict TFs (and their target genes) identified using InPheRNo-
ChIP; the rows depict pathways that have been implicated for at least two TFs (and their targets).
The gradient color from black (high difference score) to blue (low) depicts the ‘difference score’
above 0.5 and indicates that a pathway is associated with the input gene sets; the white color
indicates that a pathway is not associated with the input gene sets.

4.5 Discussion

As the cost of high-throughput technologies decreases, more astounding findings are becoming
available, and the possibility of modelling biological processes from different perspectives (instead

of purely relying on gene expression profiles) is becoming a reality.
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In this chapter, we presented InPheRNo-ChIP, a computational approach that enables the
identification of phenotype-relevant TRNs. InPheRNo-ChIP generalizes InPheRNo [7] to
incorporate information from both gene expression and ChIP-seq data under the assumption that
the sample size is no smaller than the feature size in gene expression data. The method is applicable
to any differentiation processes in human embryogenesis, such as the differentiation from hESCs
to three germ layers and the differentiation of germ layers to their sub-lineages, for which gene
expression data and/or ChIP-seq data are available. Additionally, it is important to note that both
InPheRNo-ChIP and InPheRNo are scalable, meaning that both methods can efficiently include
many genes and TFs. Performance assessments based on the generated synthetic data verified the

hypothesis of how data integration can improve predictive accuracy.

Next, we applied InPheRNo-ChIP to publicly available RNA-seq and ChIP-seq data for
investigating the mechanism underlying the in vitro differentiation of hESCs to endoderm lineages.
Notably, the transcription factors HNF1B, CTCF, SRF and SOX17 identified by InPheRNo-ChIP
are vital elements in the mechanisms because they actively control the expression of downstream
targets to govern hESCs differentiation to endoderm. We plan to validate some of the identified

TFs in wet-lab experiments.

Although we have addressed important challenges for integrating multi-omics data to reconstruct
phenotype-relevant TRN, the application of InPheRNo-ChlIP in the study of human embryogenesis
is not free of limitations. For instance, the ChIP-seq dataset was highly biased toward a small
fraction of well-studied TFs known to be relevant to either endoderm or hESCs, and therefore no
novel TFs could be extracted from the inferred TRN. In order to address this issue, we plan to
apply the algorithm to a more extensive database (e.g. GTRD database [71]) that contains more
TFs, which can hopefully unlock InPheRNo-ChlIP to its full potential. Finally, while we focus our
attention on introducing more complex data into model training, future extensions could attempt a
more optimized way of implementing the PGM that reduces the overall computational complexity

of InPheRNo-ChlIP.
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5 Conclusion

5.1 Summary

In Chapter 1, we started with the motivation of the research and detailed organization. In Chapter
2, we introduced basic concepts in molecular biology, talked about the importance of
reconstructing GRN/TRN, and performed a literature review about this topic. In Chapter 3, we
focused on constructing a computational pipeline that can reconstruct a TRN specific to the host
response to SARS-CoV-2 infection and combine the inferred TRN with other tools for the
identification of potential therapeutic targets. In Chapter 4, we proposed a computational method,
InPheRNo-ChlIP, to infer TRNs by integrating RNA-seq, ChIP-seq and phenotype information.
Instead of modelling the raw data from ChIP-seq and RNA-seq, we used summary statistics (e.g.,
p values) to reduce computational complexity. P values can come from different types of tests
depending on the different types of information, which extends its applicability to a wide range of
data sources. In addition, we conducted several experiments on synthetic data to analyze the
performance of InPheRNo-ChIP under different setting scenarios. Using simulated data, an
assessment of InPheRNo-ChlIP verified our hypothesis that successive integration of various data
types (i.e., RNA-seq, ChIP-seq and phenotypic information) could improve the TRN
reconstruction accuracy. Lastly, InPheRNo-ChIP was applied to gene expression profiles and
ChIP-seq samples corresponding to hESCs and endoderm lineages, where we were able to identify
well-studied TFs and predicted target genes that are involved in the earliest stages of endoderm
development. We believe that methods like InPheRNo-ChIP would help provide mechanistic

insights into the dynamic process in stem cell lineage specification.

5.2 Future Work

From a methodology perspective, the current algorithm can be extended to incorporate other data
sources such as histone ChIP-seq and ATAC-seq data [235-237]. Furthermore, the high
computational costs during the inference can be circumvented by replacing MCMC sampling with
variational inference [205, 238], or implementing the model on the GPU. From an application
perspective, our study of human embryonic development (discussed in chapter 4.4) focused only
on the shared TFs between gene expression and ChIP-seq data due to the lack of matching data

sources, limiting the power of InPheRNo-ChIP in inferring relationships for unseen TFs in the
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human genome. One way to solve this issue is to include other unmatched TFs from ChIP-seq
datasets from the GTRD database [71]. Another alternative is to use in vivo patient data from the
Japan NBDC human database [239], under accession numbers hum0086.v3 and hum0112.v1, to

construct more robust lineage-relevant TRNs.
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A.l. Pseudo Code

Algorithm: Synthetic Data Generator

Inputs: A set of parameters: Pyg, P gy, Prgp, SNRap, Per, Nsampies> N genes» Nrrs, ChIP_real_distribution

gp°

Outputs: A dictionary contains RNA-seq data, ChIP-seq peaks, parameters, and ground truth

Initialization:
Initialize the number of total samples Ngampies = 2 * Nexperiments; Set €ps to 1e-100.
Initialize a dictionary expr_gene to store gene expression values; each key-value pair has shape (1, Nygmpies)

Generate a normalized vector pheno_vec of size Nggmpies, Where -0.1 means control sample, +0.1 indicates
treated samples.

Generate a binary matrix TF_gene_ind with probability P4, shape: (N genes, N7rs)

Generate a binary vector gene_pheno_ind with probability P g, with a length of N gepes

RNA-seq data generation:
Initialize a dictionary expr TF with Ny as keys to store expression values for each TF
FORj =0,...,Ngenes — 1 DO
Expr_gene[j] = np.random.normal(0, eps, Nsamples)
IF 3j: (j, val) € gene pheno_ind: /* a valid gene-phenotype association*/
expr_gene[j] += pheno_vec
FORTFi=0,..,Nrps—1DO
IF TF gene ind[i, j]==1: /* a valid TF-gene binding*/
expr_TF[i] = Draw Nsqmpies random samples from a normal distribution with mean = 0,std = 1
expr_gene[j] += coefficients * expr TF[i]
END FOR
Compute the variance of expr_gene[j], stored in Signalyg.
Compute Noise g = Signalz — SNR 45, and convert to linear form Noisejeqr-
noise_vec = draw N ggmpies random samples from a normal distribution with mean = 0, std = (Noisejinear)®®
Update Expr_gene[j] += noise_vec
END FOR

Output 1: synthetic gene expression data.
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ChIP-seq peaks generation (mismatch case):
Initialize a dictionary tf gene peak to store simulated ChIP-seq peaks.

Construct an error rate mask using Bernoulli distribution of shape (N genes, N7rs), With probability P,

ChIP_TF gene ind = Take bitwise XOR of (1) TF_gene_ind for gene expression data, and (2) error_rate mask.

FORj =0,..,Nyepes —1 DO
Initialize a tmp variable to store TF-peaks information for one gene.
FORTFi=0,..,Nyzs—1 DO
Draw random variable Npeqis from ChIP_real distribution
IF ChIP_TF gene ind[i, j] == 1: /*There is a valid TF-gene binding*/
Generate Ny, eqrs random samples from a Beta distribution with two shape parameters: P,g), and 1
Store in tmp[i]
END FOR
tf gene peak [j] =tmp
END FOR
Output 2: synthetic ChIP-seq data.
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A.2. Sample Information

Table A.2 Sample information for three gene expression datasets in Chapter 4. Each sample is
associated with GSE number, lineage information (main factor), number of replicates, and other
confounding factors. Among these samples, only lineages labelled as “EN/hESC|EIM|ESC” are
used in the analysis. *NANs mean not applicable.

Accession number Lineage Rep Other Factor Day Info
GSE143371 DE 2 CTRL NANs
GSE143371 DE 2 EmptyVec NANs
GSE143371 hESC 3 CTRL NANs
GSE143371 hESC 3 EmptyVec NANs
GSE143371 ME 3 CTRL NANs
GSE143371 ME 3 EmptyVec NANs
GSE143371 NE 3 CTRL NANs
GSE143371 NE 3 EmptyVec NANs
GSE160981 EIM 3 DMSO NANs
GSE160981 hESC 3 DMSO NANs
GSE160981 MIM 3 DMSO NANs
GSE160981 NIM 3 DMSO NANs
GSE164361 DE 2 Day1 Dayl
GSE164361 DE 2 Day?2 Day?2
GSE164361 DE 2 Day3 Day3
GSE164361 DE 2 Day4 Day4
GSE164361 DE 2 Day5 Day5
GSE164361 ESC 2 Day0 Day0
GSE164361 NPC 2 Day1 Day1
GSE164361 NPC 2 Day?2 Day2
GSE164361 NPC 2 Day3 Day3
GSE164361 NPC 2 Day4 Day4
GSE164361 NPC 2 Day5 Day5
GSE164361 NPC 2 Day6 Day6
GSE164361 NPC 2 Day7 Day7
GSE164361 NPC 2 Day8 Day8
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A.3. Batch Effect Adjustments

Some batch effects are expected when we integrate pre-computed raw read counts for RNA-seq
datasets generated by three different labs. Principal component analysis (PCA) [197] was
performed on the unadjusted counts to show the potential batch effects in the aggregated data.
PCA is an exploratory data analysis approach that provides visualization on samples as groups
based on their overall pattern of gene expression values [240]. The figure below shows PCA results
before and after batch correction, where samples are coloured according to their original accession
number and lineage information. The PCA plot in the left upper corner suggests a distinct grouping

influenced by which dataset it came.

A Unadjusted data c Unadjusted

PC2: 4% Variance

Group
* ENDO
A hEsC

PC1: 91% Variance
B ComBat-Seq Batch

ComBat-Seq

Explained variation

PC2: 22% Variance

PC1: 58% Variance

Figure A.3 PCA and Boxplot before and after applying ComBat-seq. (LHS) Note that prior to
correction, the unadjusted samples group into three fairly distinct clusters. It means that the overall
expression signatures of these samples reflect both the biological condition (e.g., hESCs versus
Endoderm), and sources (e.g., different GEO accession numbers). After correcting for the batch
effect of different libraries, we observed that hESCs samples from three GSE datasets are clustered
together (as if there was no batch effect in the first place). (RHS) Compared to variation explained
by batch in unadjusted data, variation explained by the batch is significantly reduced after
adjustment.
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A.4. Histogram of the Average Number of Peaks (ChIP-seq data)
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Figure A.4 Distribution of the average number of peaks per gene across all 25 TFs obtained by
applying T-Gene and filtered with a condition ‘Closest_ TSS=True’ to real-world ChIP-seq data (i.e.,

GSE61475).
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A.5. Histogram of filtered T-Gene’s outputs (ChIP-seq)

dEN3d:PAX6

dEN:CTCF
200 8000
# valid CT links = 2075 # valid CT links = 53833
# unique genes = 1274 # unique genes = 12201
150 6000
4000
2000
0 ¥ y T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distance p values Distance p values
dEN:EOMES dEN:FOXA1
100 800
80 # valid CT links = 957 # valid CT links = 5461
# unique genes = 774 600 # unique genes = 3303
0.4 0.6 0.0 0.2 0.4 0.6 0.8 1.0
Distance p values Distance p values
dEN:FOXA2 dEN:GATA4
1000
200
800 # valid CT links = 7444 # valid CT links = 2161
# unique genes = 4037 # unique genes = 1542
£ 600
-]
S
400
200
0 | .
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Distance p values Distance p values
dEN:GATA6 dEN:HNF1A
350 175
300 # valid CT links = 3604 150 # valid CT links = 793
# unique genes = 2316 # unique genes = 641
. 250
52
8 00
150
100
50
0 {n {1 e,
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 04 0.6 0.8
Distance p values Distance p values
dEN:KLF5 dEN:NANOG
400 1200
# valid CT links = 2435 # valid CT links = 11157
# unique genes = 1484 1000 # unique genes = 4938
] < 800
2 3
o o

04 0.6
Distance p values

600

400

200

0.4 0.6 0.8
Distance p values

1.0



82

Appendices
dEN:OTX2 dEN:PAX6
60
200
50 # valid CT links = 427 # valid CT links = 2075
# unique genes = 360 150 # unique genes = 1274
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distance p values Distance p values
dEN:POUSF1 dEN:PRDM1
3000
50
2500 # valid CT links = 16157 # valid CT links = 304
# unique genes = 7044 20 # unique genes = 265
2000
o
S
S 1500
o
1000
500
° 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distance p values Distance p values
dEN:SMAD4 dEN:SOX17
800
1750
600 # valid CT links = 5100 1500 # valid CT links = 15794
# unique genes = 3090 # unique genes = 6271
1250
o o
5 5 1000
3 400 3
750
200 500
250
0 b Lot oo 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0
Distance p values Distance p values
dEN:SOX2 dEN:SP1
600
3000
500 3 A ; ‘
# valid CT links = 5341 2500 # valid CT links = 11549
200 # unique genes = 2751 # unique genes = 6127
.g. g 2000
300
S 3 1500
200 1000
100 500
0 { DL o 0 g - - - -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distance p values Distance p values
dEN:SRF dEN:STAT3
14000 1400
12000 # valid CT links = 78682 1200 # valid CT links = 7152
# unique genes = 13519 # unique genes = 4229
10000 1000
H €
3 8000 3 800
’ 6000 © 600
4000 400
2000 200
0 0 il
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distance p values Distance p values
dEN:TCF4 dEN:THAP11
2500
2000 # valid CT links = 14808 2000 # valid CT links = 8724
# unique genes = 6249 # unique genes = 4705
+ 1500 + 1500
c <
3 3
o o
© 1000 © 1000
500 500
0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Distance p values

Distance p values



Appendices

83

h64:CTCF h64:EOMES
1750
80001
# valid CT links = 44454 1500 # valid CT links = 12709
60001 # unique genes = 12038 1250 # unique genes = 5898
€ €
3 3 1000
© 40004 O 750
20001 =00
250
0- 0
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distance p values Distance p values
h64:FOXA1 h64:FOXA2
12001 1500
# valid CT links = 11439 1250 # valid CT links = 10334
1000+ # unique genes = 5297 # unique genes = 5357
c 8001 + 1000
3 3
O 6004 o 750
400 500
2001 250
o L 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distance p values Distance p values
h64:GATA4 h64:GATA6
400
1500
# valid CT links = 8989 # valid CT links = 2406
12501 # unique genes = 5038 300 # unique genes = 1818
# 1000 ¢
3 3
8 750 S
500
2501
0- ¥ T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distance p values Distance p values
h64:HAND1 h64:HNF1B
2501 5000
200 # valid CT links = 1281 4000 # valid CT links = 25731
# unique genes = 877 # unique genes = 2276
< 150 3000
3
S
1004 2000
504 1000
0- 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distance p values Distance p values
h64:HNF4A h64:KLF5
1200+ 1200
10001 # valid CT links = 5890 # valid CT links = 5801
# unique genes = 3763 1000 # unique genes = 3784
& 8001 < 800
3 3
8 6001 S 600
4001 400
200 200
0- -, 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distance p values Distance p values
h64:NANOG h64:NR5A2
1400 600
1200
# valid CT links = 11380 500 # valid CT links = 2764
1000 # unique genes = 4955 # unique genes = 1752
400
€ 800 €
3 3 300
O 6001 o
4001 200
200 100
o_ o | ol o
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Distance p values

Distance p values



84

Appendices
h64:0TX2 h64:POUSF1P3
1
500 50
1250 # valid CT links = 8710 # valid CT links = 432
# unique genes = 4579 40 # unique genes = 364
. 1000
c
g 750
o
500
250
5o 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 06 0.8 10
Distance p values Distance p values
h64:PRDM1 h64:SALL4
200
800
# valid CT links = 4349 # valid CT links = 1934
# unique genes = 3017 150 # unique genes = 1335
., 600 -
[ c
3 =
8 400 8
200
0
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distance p values Distance p values
h64:SMAD1 h64:SMAD4
175
2000 150
# valid CT links = 17303 # valid CT links = 633
# unique genes = 6200 125 # unique genes = 497
1500
2 € 100
3 3
S 1000 S s
50
500
25
0 ik 0 —— — a
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 04 0.6 0.8 1.0
Distance p values Distance p values
h64:SNAI2 h64:50X17
200 350
300
# valid CT links = 1561 # valid CT links = 2054
150 # unique genes = 1131 250 # unique genes = 1502
€ 200
2
°
0150
100
50
0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distance p values Distance p values
h64:50X2 h64:SP1
600
80
# valid CT links = 717 500 # valid CT links = 1496
# unique genes = 599 # unique genes = 1050
o 400
3
§ 300
200
100
0 T
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Distance p values Distance p values
h64:SRF h64:STAT3
7000 1400
6000 1200
# valid CT links = 33360 # valid CT links = 5676
5000 # unique genes = 10736 1000 # unique genes = 3696
€ 4000 € 800
3 S
8 3000 8 600
2000 400
1000 200
) y T T T 0 ¥ T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Distance p values

Distance p values



Appendices

85

h64:TAL1 h64:TBXT
800
2000
# valid CT links = 9442 600 # valid CT links = 4434
# unique genes = 5074 # unique genes = 2966
1500
" o
3 5 400
S 1000 S
500 200
0 0 o
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Distance p values Distance p values
h64:TCF4 h64:THAP11
2500
1000
2000 # valid CT links = 18612 # valid CT links = 4009
# unique genes = 7095 800 # unique genes = 2265
< 1500 o
E S 600
S S
1000 400
500 200
0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0

Distance p values

Figure A.5 Histograms of Distance p values of associations between TFs and their putative targets
obtained by applying T-Gene [204] to real ChIP-seq data (i.e., GSE61475). Each figure corresponds
to one TF on a specific lineage in a form of “lineage: TF name”, where we use a phenotypic label
“h64” for samples from hESCs, and another label “dEN” for samples from hESC-derived endoderm

lineages.
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