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Abstract

We motivate and develop a new model, Voronoi Topological Perception (VTP), for

the dynamics of multi-agent biological systems such as pedestrian crowds, bird flocks,

mammal herds, etc. All interactions predicted by the model arise naturally from con-

sideration of the Voronoi tessellation and its dual topological structure. We investigate

a wide variety of collective behaviors predicted by VTP in its simplest form, then after

introducing targets, and futher introducing sources and sinks. Additionally, we intro-

duce the directed Delaunay network (DDN), a generalization of the Voronoi diagram

which extends VTP to much wider contexts, and develop computational methods for

this new structure.

Nous motivons et présentons un nouveau modèle, dit de Perception Topologique de

Voronoi (VTP), appliqué à l’étude de la dynamique d’agents biologiques tels que: des

foules piétonnes, des ensembles d’oiseaux, des troupeaux de mammifères, etc. Toutes

les interactions prédites par notre modèle surviennent naturellement en considérant les

pavages de Voronoi ainsi que leur structure duale; à savoir, la triangulation de Delaunay.

Nous étudions une grande variété de comportements collectifs prédits par le modèle
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VTP; dans un premier temps sous sa forme la plus simple et de façon subséquente

nous y introduisons des cibles. Enfin nous considérons des scénarios d’entrée et de

sortie d’agents. En sus nous développons le Réseau Dirigé de Delaunay (DDN), ceci

est une généralisation du diagramme de Voronoi qui permet d’étendre le formalisme

de VTP à des contextes plus généraux. Finalement nous présentons des méthodes

computationnelles pour cette nouvelle structure.

1 Acknowledgements

I would like to thank my superviors, Rustum Choksi and Jean-Christophe Nave for there

constant support and encouragement. Also, I would like to thank Ivan Gonzalez, with
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Moreover, the model incorporates the topological and geometric structure of the Voronoi

diagram in a novel manner. The model’s repulsion interaction is based on the Voronoi

optimization techniques developed in [21] but its use of in the context of systems of self-

directed biological agents is new. VTP predicts some collective behaviors not witnessed by

other models such as co-rotating (anti-cog) mills, the spherical anti-cog analog, and mills of

oscillating radius. We design a cheap, geometrically motivated computational method for

modelling multi-agent systems with sources. Finally, we introduce the directed Delaunay

1https://arxiv.org/abs/2111.03448
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network, a generalization of the Voronoi diagram (well suited for the multi-agent systems
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of Section 6 is to featured in a publication2 co-first-authored by Tisdell and Gonzalez.
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4 Introduction

The problem of modelling collective herding, schooling, and swarming behaviors in biolog-

ical systems as well as traffic in pedestrian and animal crowds has seen myriad approaches

over the last decades in many areas. The two- or three-dimensional problem of swarming

presents vast challenges over the one-dimensional and quasi-one-dimeansional settings of rel-

atively well understood vehicular traffic patterns. The organization in multi-agent biological

systems tends to emerge from intricate mutual interactions and individual observations, with

decisions occuring simultaneously across multiple levels of control. Moreover, experimental

tools for gethering data about real crowds and swarms tend to be highly specialized for

certain species and environments. For these reasons and others, it is generally very difficult

to produce models which exhibit universal features of multi-agent systems but which also

are sufficiently complex so as to reproduce faithfully empirically observed behaviors.

Our task is to present a framework, dubbed Voronoi Topological Perception (VTP),

capable of synthesizing the complex microscopic interactions governing multi-agent systems

in a natural manner consistent with recent experimental findings. The ubiquity of Voronoi

diagrams and Delaunay triangulations in biology, engineering, computing and many other

sciences makes the structure an extremely compelling candidate for a universal approach to

the crowd problem. Building atop these structures, the VTP framework uses their inherent

geometric and topological properties whenever possible to capture the dynamics of multi-

agent systems, giving rise to a class of models which is highly amenable to generalization

and equally adapatable to specialization.

We first review existing crowd models and discuss importants classifications among them.

We then present the basic VTP model in detail. Equipped with the model, we devote much

disscussion to simulations which exhibit some of the variety of collective behaviors captured

by VTP in its simplest form and describe the full phase space for its most bare-bones version.

The rest of the main text is devoted to generalizing VTP to more sophisticated settings which

arise naturally in the crowd problem. Firstly among these is to introduce sources and sinks,
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moving from the paradigm of swamming properly into that of traffic (a distinction we will

elaborate on later). Here too, we reinforce the idea that every aspect of a universal model

should arise from the geometry and topology of the Voronoi diagram. Finally, we move

to the crucial context of non-convex domains, introducing and motivating a new structure

which generalizes the Voronoi diagram in a way suited for multi-agent systems.

5 Background

Throughout the literature, there are many approaches to the crowd modelling problem. To

classify them, we must distinguish several salient features:

discrete/continuous in space and time Continuous-time models are characterized by

evolution according to differential equations while discrete time models evolve in suc-

cessive iterations. Several authors have introduced both dicrete- and continuous-time

versions of models [11, 29, 13]. Continuous-space models allow their dynamic entities

to vary over all locations in a continuous domain while discrete-space models, often

called cellular automata or lattice-gas models, restrict this to a fixed, discrete set of

points. for more details, see [7, 16, 33] and more recently [8].

discrete/continuous in population Continuous-population models—or more succinctly,

continuum models—describe the crowd itself as a continuously distributed object, i.e.,

a density, which is subject to evolution according to the model’s dynamical equations.

Continuum models are well suited for very large crowds for which the fine-scale interac-

tions are unimportant. One such fluid-dynamic continuum theory was put forward in

[25, 26, 27]. Discrete-population or agent-based models, on the other hand, model each

individual as a dynamic entity subject to its own evolution according to the dynamical

equations. We will discuss several such models below. In the case of continuum mod-

els, “collective behavior” is intrinsic to the dynamics while in the agent-based case, it

is an emergent phenomenon. The connection between discrete and continuum models
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has been investigiated in [24, 31, 20] and others.

deterministic/stochastic Completely deterministic models are those whose dynamical

equations predict entirely the forward evolution of the system from its initial con-

ditions. Models may incorporate stochasticity in many ways. Although it is natural to

introduce probabilitic effects in pursuit of realistic dynamics, the exact role of stochatic

effects can be unclear.

flocking/traffic There are two distinct phenomena which one might lump together under

the umbrella of crowd modelling but whose interests conflict in some ways. The first is

flocking or swarming where a particular fixed population evolves over time. The second,

which we might call traffic, is where a particular enviroment is over time traversed by

populations. Clearly, there is not a sharp distinction between these notions; a fixed

population confined to a fixed environment properly belongs to both and unbounded

environments suggests a grey area. Nonetheless, this distinction can greatly inform

one’s modelling choices. For instance, if one wishes to model migratory flocks of birds,

it is essential that the flock diameter does not become arbitarily large but if one wants

to model automobile traffic at a large intersection, vechiles are compeletely forgotten

the moment they exit the intersection area.

kinematic/dynamic Kinematic models describe motion without regard for its physical

cause while dynamic models account for the physical contraints on the system. Impor-

tant examples of kinematic models include [13, 37, 4]. Dynamic models often satisfy

underlying physical principles like conservation laws but complex systems like crowds

may be better understood in terms of behavioral or social, rather than physical, causes.

Vicsek et. al. put forward a seminal discrete-time model in [39] acheiving a transition

to coherent behavior. Agents in the Vicsek model move with constant speed at each step

in directions obtained by averaging the directions of all agents in a disc of radius r. This
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direction is then perturbed by some random noise.

xi(t+ τ) = xi(t) + τui(t), (1)

∠ui(t+ τ) = 〈∠uj(t)〉j:‖rij‖<r + ηξi(t), ‖ui‖ = u (2)

where rij = xj − xi and the angle brackets denote an average. The speed u and noise

magnitude η are fixed and the random term ξi is drawn uniformly from [−π, π]. The original

Vicsek paper, with over 6000 citations, is extremely influencial and we will comment on some

of its extensions momentarily. Analysis of Vicsek’s model and other similar models appears

in [28]. The Vicsek model demonstrated emergence of decentralized coordination of even an

extremely simple mutli-agent system.

Cucker and Smale developed in [11] both discrete- and continuous-time versions of a

flocking model (C-S) and, like Vicsek, demonstrate a transition to coherent dynamics where

agents converge to a common velocity. In C-S, every agent interacts with every other agent,

that is, the communication graph is complete (and thus also fixed). The continuous C-S

model has the form

ẋi = ui (3)

u̇i =
1

n

∑
j

φij(uj − ui) (4)

where φij is a pair-wise interaction function depending on the spatial separation between i

and j. They show the long-term convergence of the flock depends only on initial conditions.

The momentum of the C-S flock is conserved due to its symmetric pair-wise interactions

and complete communication graph. This is easily seen, the velocities ui evolve according

to equations of the form u̇i = 1
n

∑
j≤n φij(uj − ui) where crucially, φij = φji for all i, j. So

the total momentum satisfies d
dt

( 1
n

∑
i ui) = 1

n

∑
i u̇i = 0.

Among the models following C-S is that introduced by Motsch and Tadmor in [32],
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hereafter refered to as M-T. M-T addresses a crucial drawback of C-S: because the influence

on each agent in C-S is normalized by the total number of agents n, the dynamics of small

subflocks in non-equillibrium configurations are essentially halted simply by the presence of

other distant, large subflocks. To solve this, M-T leverages the following insight. Introducing

a notion of relative distance, while breaking the symmetry of interactions, allows M-T to

model inhomogeneous flocks. Their model takes the form

ẋi = ui, (5a)

u̇i =
∑
j

aij(uj − ui), aij =
φij∑
k φik

(5b)

where again φij is a pair-wise interaction depending on ‖xj−xi‖. Through this modification,

M-T removes the normalization by the number of agents n from the velocity-averaging

interactions. In the homogenously distributed case, this effectively reduces to C-S but in the

inhomogenous case, it allows rich dynamics in small subflocks. We will see later a family

resemblance to the alignement interaction in the model introduced here. This insight is

further supported experimentally by the work of [2] establishing the density-invariance of

many flocking behaviors in birds.

Much work has been done to model biological behaviors beyond mere velocity consensus

including, e.g., collision avoidance, aggregation, pattern formation, goal seeking, navigation,

leadership effects, and predetor/prey interactions. One collective formation of special interest

is milling, or vortex, motion. Milling has been observed in many animal species across a wide

range of scales (see [12] for a broad survey) and in many cases is poorly understood. One

influencial model exhibiting spontaneous milling is that of D’Orsogna et. al. [13]. Their

equations of motion take the form

ẋi = ui, (6)

u̇i = αui − β‖ui‖2ui −∇Ui, Ui =
∑
j 6=i

(−Ca exp(−‖rij‖/la) + Cr exp(−‖rij‖/lr)) (7)

9



Zr Zo Zaxi

Figure 1: Schematic of the zones of interaction in the model [10]. From the inside, the
interaction in each zone is repulsion, alignment (or orientation), and attraction.

where rij = xj − xi. Their model produces spontaneous milling formations of various kinds

including double, interlocking mills and swarm vorticity of fixed angular velocity, as well as

other types of collective formations.

The class of zone-based models shares a common approach to these more sophisicated

behaviors. Specifically, the type of influence on agent i by an agents j is determined by

which of several concentric annular zones about i’s position j falls in. The familiar boids

model due to Reynolds [36] is one such zone-based model with repulsive interactions occuring

at short range, (Vicsek-esque) alignment interactions at intermediate range, and attractive

influcences at long range. Bernardi and Scianna [3] use the zone approach in the context

of predator/prey behavior. The influencial model due to Couzin et. al. [10] incorporates

overlapping zones, with the interaction types having a heirarchy within the overlap. In the

discrete-time model, each agent steers in the direction dr, do, or da accordingly as there

are other agents within the concentric sphereical shell zones Zr, Zo, and Za of repulsion,

alignment (or orientation), and attraction, repectively, centered at xi (shown schematically

in Figure 1) where

dr(t+ τ) = −
∑

j:xj∈Zr

rij
‖rij‖

, dr(t+ τ) =
∑

j:xj∈Zo

uj
‖uj‖

, dr(t+ τ) =
∑

j:xj∈Za

rij
‖rij‖

. (8)

The actual veocity updates are additionally subject to a maximum turning rate restriction
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and a Vicsek-like Gaussian noise. All agents are blind to a cone behind them—in the sense

that the volume of this cone is excluded from the zones Zr, Zo, and Za—whose interior

angle is a parameter of the model. This model spontaneously produces four qualitative

behaviors including milling through the volume of a torus (this occurs when the width of

the zone of atrraction is large compared to that of alignment). This model was used in [9]

to study leadership effects and decision-making in mostly ignorant groups. In this setting,

a subset of informed agents steer toward a preferred direction with some fixed weight. The

Couzin model directly builds upon Vicsek’s in several ways. Like all zone-based models, the

spherical shells generalize Vicsek’s disc of influence to incorporate a heirarchy of distinct

types of interactions. Also in keeping with Vicsek, agents in Couzin’s model at constant

speed and only update their heading at each time step.

One vital distinction among the above models and algorithms is whether the dynamical

equations are first- or second-order in time. By second-order, we mean, specifically, in the

sense of Newton’s second law where accelerations are determined by forces. The problem,

in our view, is applying the Newtonian paradigm to systems of cognitive, decision-making

agents when the relevant stimuli are not forces. Put another way, a cognitive agent may

self-determine its immediate motion without consideration for how it will physically execute

the motion. Thus, a model which seeks to describe the multi-agent system in terms of these

individual, self-determined motions need not, and indeed should not, describe motions at a

lower level of control. Of course, the high-level description must be physically feasible but

this can be ensured through constaints such as maximum speeds, maximum turning angles

(as in the Couzin model), sufficiently long time steps, etc. To drive this point home, a high-

level, agent-based model of a biological system composed of self-determined individuals is

much more closely analogous to a high-level control component of a robotics system with a

strictly heirarchical control structure than to a physical description of interacting Newtonian

bodies.

The use of Voronoi diagrams to derive dynamical influences in agent-based models has
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been explored in various contexts. Voronoi diagrams may enter a dynamical model cheifly

in two ways; (1) agents may in response to the geometry of their Voronoi cells or (2) the

topology of the Voronoi diagram may determine the communication graph over the agents.

Notably, the latter approach was shown by Ginelli and Chaté in [19]—also influcenced by the

aforementioned experiments of [2]—to produce qualitatively novel dynamics when applied

straight-forwardly as a “topological” version of Vicsek’s model, with agents aligning with

their Voronoi neighbors rather than those in a fixed-radius zone. They suggest, therefore,

that, especially in light of recent experimental work, realistic modeling of biological multi-

agent systems may necessarily incorporate topological, rather than metrical, interactions.

This model is extended in [22] to include repulsive body forces.

By constrast, the vehicle coordination algorithm introduced by Lindhe et. al. in [30]

only considers nieghbors within a fixed radius, like Vicsek, but from this data derives a

Voronoi region whose geometry is used to control the vehicle. They show that under this

algorithm, every vehicle makes steady progress toward the (common) goal and the flock

converges to a lattice formation. This particular scheme seems beyond the measurement

and computational capacity of biological agents but nonetheless demonstrates the idea of

deriving some individual behavior via Voronoi geometry.

Voronoi diagrams are commonplace in the literature of epithelia and soft tissues. In

[6, 5], Bi et. al. use a Voronoi model to explain the collective solid/liquid phase transition

in biologoical tissues. Often of interest in this context is the so-called shape index of the

cells/configuration. This geometric property is closely related to quantization error which

we introduce for our model as a system observable.
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6 VTP model

6.1 Overview and motivation

The dynamics are governed by a system of delay difference equations. However, the delay

represents a kind of inertia in the dynamics rather than memory in the agents. This is worth

emphasizing: despite the delay in the model, physical agents do not require any memory

whatsoever under plausible assumptions. In our model, agents only need access to the

direction information of other agents. We assume that the species of agents can infer accurate

directional information from the body geometry of other agents in a compuationally trivial

amount of time. We further assume that agents’ direction of motion reliably corresponds

to this body geometry—i.e., agents face forward when moving—so that for the featureless

point particles representing agents in the model, their “facing direction” is given exactly by

their normalized velocities. Thus, employing velocities in this way introduces delay into the

equations without requiring memory of the “real” agents. To put it another way, say our

agents are experimental physicists, carrying with them the usual assortment of light clocks,

meter sticks, and so on as they are wont to do and imagine each physicist is holding a compass

pointing in the direction she’s moving. At all times, the physicists can see nearby physicist’s

compasses and obtain direction information instantaneously without ever measuring each

other’s velocities.

6.2 Preliminaries

Definition 6.2.1. Let Ω be a compact, connected, metric space with (extended) metric d.

For a finite set of points X = {x1, . . . , xn} in Ω, the Voronoi cell Vi generated by xi (with

respect to d) is the set

Vi = {x ∈ Ω : d(x, xi) <∞ and d(x, xi) ≤ d(x, xj) for all 1 ≤ j ≤ n}.
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The d-Voronoi diagram V on Ω generated by X is the set of Voronoi cells V = {V1, . . . , Vn}.

Usually, the metric d is clear from context and we write simply the Voronoi cell/diagram.

Two generators xi and xj whose Voronoi cells have nonempty intersection are said to be

Voronoi neighbors (or simply neighbors, if clear from context). For every pair of neighbors

xi and xj, each connented component of Vi∩Vj is a Voronoi edge. Every point in Ω belonging

to three or more Voronoi cells is a Voronoi vertex.

Certain properties of Voronoi diagrams are readily apparent. If d is real-valued (i.e.,

never taking value ∞), then
⋃
V = Ω for every possible set of generators. Also apparent is

the fact that for any set of generators and any extended metric, the interiors of Voronoi cells

are pairwise disjoint. There is a dual structure to the Voronoi diagram.

Definition 6.2.2. If V is the Voronoi diagram in Ω generated by X, its dual V∗ is the

psuedograph over X which has an edge {xi, xj} for every Voronoi edge in V adjacent to Vi

and Vj. If d is the Euclidean metric, V∗ is called the Delaunay triangulation.

Note that in general, V∗ may include multiple-edges and loops (usually as a consequnce

of periodic geometry of the domain Ω). There is a geometric notion of the Delaunay trian-

gulation but only its graph structure is relevant to the work that follows.

Generalizing the notions of the Voronoi diagram and its dual in a manner suitable for

multi-agent systems in and more general context is the focus of Section 7. For now, we will

restrict our attention to convex domains with and without boundary where the standard

notions serve us well.

6.3 Governing equations

We set out to design an model for pedestrian traffic using an agent-based approach, each

agent having only local information about the state of the system. However, by local we

mean with respect to the structure of the Voronoi diagram generated by the positions of all

agents rather than metric distances. We refer to this framework as topological perception.
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The other crucial feature of our model is that it is first-order in time. This is for two

reasons. The system of delay difference equations which govern the dynamics relate, on one

hand, the factors which influence “intellegent” agents’ descisions about their motion and, on

the other, their achieved update. Pedestrians do not think in terms of accelerations (their

own or others’) and do not make descisions based on this kind of second order information

about the state of the system. Moreover, unlike say automobiles, human pedestrians can

break and accellerate almost instantaneously [1, pp. 409], so it is perfectly sensisble for agents

achieve arbitrary accellerations provided they are never moving implausibly fast.

Our model includes

1. a compact connected domain Ω,

2. a finite index set Λ of agents,

3. positions xi = xi(t) ∈ Ω for each i ∈ Λ such that xi(t) 6= xj(t) for all t and for all j 6= i,

and

4. closed (possibly empty) targets Ti ⊂ Ω for each i ∈ Λ.

We write ui(t) = xi(t) − xi(t − 1) for the velocity of agent i, implicitly setting the

timestep and characteric speed to 1. (We will discuss these implicit parameters later.) For

initial conditions xi(0) and ui(0) for all i ∈ Λ the system evolves according to the coupled

equations

xi(t+ 1) = xi(t) + λifi(X(t), U(t)) for all i ∈ Λ (9)

for functions fi : (TΩ)n → TxiΩ, where X and U are shorthand for X(t) = (xi(t) : i ∈ Λ) and

U(t) = (ui(t) : i ∈ Λ) and n = #Λ and λi ∈ [0, 1] is maximal such that xi(t + 1) ∈ Ω. The

vector sum above should be understood as a geodesic translation. I.e., fi : (TΩ)n → TxiΩ

takes n position-direction pairs in the tangent bundle and returns a vector ui ∈ TxiΩ. This

determines a geodesic with isometric parametrization Γ(s) ⊂ Ω with Γ(0) = xi and Γ′(0) =

αui for some α > 0. Then xi(t + 1) = Γ(λi‖ui‖) = Γ(λi‖fi(U,X)‖). For clarity, we have
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implicitly set two parameters to unity. Namely the time step τ and characteristic speed u.

Including these explictly, we have xi(t + τ) = xi(t) + τuλifi(X(t), U(t)). Most of the time,

we will ignore this subtlety but we will need to consider their relation when transforming

parameters regimes between different domains. We consider here highly symmetric domains

where tangent spaces and geodesics are nice. Namely, the flat torus and the 2-sphere. The

geometry of the torus is that of a square with periodic (orientable) boundary conditions. The

technicalities of working with vectors in this space as if it is R2 are disscussed in appendix

B. On the sphere, the geodesic translations are merely rotations and the displacements are

suitably scaled angular displacements on the surface.

At any one time, each function fi depends only on agent i’s Voronoi neighbors as we

shall see. Since their identities will change in general (that is, this is a switched system), we

formally write fi(X,U) as depending on all agents. The functions fi are given by

fi(X,U) = ρidi, di =
σiri + νai + σihi
σi + ν + biσi

. (10)

The vector di is a weighted sum of repulsion ri, alignment ai, and homing hi, with nonnega-

tive coefficients σi, ν, and σi. (The factor bi ∈ {0, 1} is 1 whenever homing is well-defined and

0 otherwise.) The terms ri, ai, and hi are defined in Equations (11,13,14) and the weights

σi, σi in (15). In general, ri, ai, hi ∈ TxiΩ and are well defined provided there are unique

smooth geodesics joining i to each Voronoi neighbor. We scale by ρi which depends on i’s

personal space (i.e. the geometry of i’s Voronoi cell) and is defined in (16). The three central

components of repulsion, alignment, and homing are illustrated schematically in Figure 2.

In general, di is not a unit vector so (10) is not a magnitude/direction decomposition.

Rather, the external influences of i are captured by di while i’s maximum speed given its local

environment is captured by ρi. Notably, fi might be small for two very different reasons. If

repulsion, alignment, and homing are competing, then di will be small. On the other hand,

if i is confined to a small region, then ρi is small. Nonetheless, ‖di‖ is bounded above by
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v̂i

δi

ri

xi

(a) Repulsion. Unit repulsion
vector ri always points away
from nearest neighbor or do-
main boundary. The distance
δi to this nearest neighbor de-
termines the relative weight of
ri and ĥi.

v̂i
ai

xi

(b) Alignment. Alignment ai
is given by a weighted aver-
age of the velocities of Voronoi-
neighbors. The circularly-
wrapped weighting functions
are indicated by the blue curves
where the relative angle marked
with light blue sectors is the ar-
gument.

v̂iĥi

Ti

xi

(c) Homing. Unit homing vec-
tor ĥi points toward target Ti,
if it is nonempty and does not
contain xi. (Here the target is
shown as a dot but may be any
region, in general.)

Figure 2: Schematic of the influences on a generic agent. Here we show one agent i
at position xi as well as its Voronoi cell and Voronoi-neighbors whose positions are marked
with black dots. We illustrate the three components which influence i’s motion in the
triptych above. Repulsion ri and homing ĥi are weighted with coefficients σ(δi/L) and
convex compliment 1−σ(δi/L), respectively, where δi is the distance to i’s nearest neighbor,
as shown in (a) above. The relative weight of alignment ai is given by the parameter ν. We
also show shaded in light gray, the region within i’s Voronoi cell in front of i whose area
(appropriately nondimensionalized) contributes to i’s next step size.

1 + 1/ν on average so we are justified in thinking of ρi as limiting i’s maximum speed (at

least on the macro scale of the system as a whole).

Throughout, we denote by V the Voronoi diagram in the Ω generated by X = (xi : i ∈ Λ)

the agents’ positions. We write i ∼V j for i, j ∈ Λ to mean that xi and xj are Voronoi

neighbors in V in the sense described in Section 6.2, that is, that the the Voronoi cells Vi

and Vj in V generated by xi and xj, respectively, have nonempty intersection. Speaking in

terms of the indices i, j, . . . of Voronoi neighbors rather than their positions (which generate

V) is often convenient.

We now describe in detail the components of the model.
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6.3.1 Repulsion/attraction

Agents attempt to avoid collisions with nearby agents in the following way. Motivated by the

move-away-from-closest-neighbor dynamics (MACN ) used in the context of Voronoi energy

minimization in [21], we define the repulsion term ri, illustrated in Figure 2a. for positions

X = (x1, . . . , xn) ∈ Ωn, the repulsion vector ri is the average of unit vectors

ri(X) =
1

#Ki

∑
y∈Ki

xi − y
‖xi − y‖

(11)

where Ki is the set of “obstacles” that minimize proximity to xi. By “obstacles” we mean all

other agents’ positions and possibly the domain boundary. Precisely, Ki = Ki(X) =
{
y ∈

Ω : ‖xi − y‖ = infw‖xi − w‖
}

where the infimum is taken over w ∈ {xj : j 6= i} ∪ ∂Ω, the

other points in the tuple X and boundary points of Ω. Equivalently, we need only consider

w ∈ {xj : j ∼V i} ∪ (∂Ω ∩ Vi) among (the positions of) i’s Voronoi neighbors and boundary

points within i’s Voronoi cell. So in fact, ri does not depend on distant effects (in the sense

of the Voronoi diagram).

Typically, Ki is a singleton containing the unique nearest obstacle to xi. Then ri is just

the unit vector pointing xi away from the obstacle. Naturally, we have defined ri above to

handle in the obvious way cases when xi is equidistant from several obstacles.

By assigning negative weight to ri, this term may function as well as an attractive effect

and we will return to this possibility below in our discussion of the weighting coefficients.

We also define

δi := dist(xi, Ki) = ‖xi − y‖

for all y ∈ Ki to be the unique distance from xi to its nearest obstacle(s), as indicated in

Figure 2a.

As the connectivity of V∗ changes, we see in many parameter ranges oscillatory structure

in ri over short time scales. (See [21] for more detailed discussion.) Consequently, in these

paramter regimes, agents move frenetically on short time scales but this frenetic motion
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averages out of larger spatiotemporal scales and collective motion emerges despite these

small effects. While these frenetic motions are not random, the resulting dynamics when in

parameter regimes where they are pronounced are qualitatively similar to those produced

by models with a stochastic noise effect in agents’ velocities or headings.

6.3.2 Alignment

Alignment is illustrated schematically in Figure 2b and is define as follows. For positions

X = (x1, . . . , xn) ∈ Ωn and headings U = (u1, . . . , un) ∈ R2n, we define the alignment vector

ãi by the weighted average

ãi = ãi(X,U) =
1

#{j ∼V i}
∑
j∼V i

g(θij)ûj (12)

where ûj = uj/‖uj‖ and θij = arccos(ûi · ûj) is the angle between ui and uj. Here g :

[0, π] → [0, 1] is a continuous non-increasing function with g(0) = 1 and g(π) = 0. Thus,

agent i considers the direction of motion of each of its neighbors and averages these, favoring

those whose motion is consistent with its own (θij near 0) and virtually ignoring those whose

motion is opposed (θij close to π). By weighting in this way, we allows the model to tolerate

very high sheer in the flow despite the averaging of velocities. Becuase opposing agents have

little aligning effect on each other, we observe subsystem behaviors that would not otherwise

occur, like co-rotating vortices (we call this an anti-cog), and other phenomena like lane

formation which do not arise easily under direction-neutral alignment.

The alignment coefficient ϕi is defined by ϕi(X) = 1
6
#{j ∼V i}. To motivate this defi-

nition, we note that in any Voronoi diagram (in the torus, sphere, plane, or planar region),

a typical cell has at most six neighboring cells (see the Lemma A.0.2 in the appendix). So

ϕi captures the “surroundedness” of agent i in the V∗ network. The alignment term is then

given by

ai = ϕiãi =
1

6

∑
j∼V i

g(θij)ûj. (13)

19



Due to ϕi, those agents with relatively few neighbors are subject to a weaker alignment

effect. The need for such a scaling is especially evident if one considers the dynamics of

systems where most agents have very few neighbors, e.g. only a handful of agents in total or

agents confined to a very narrow passage. In such situations, with out ϕi, the agents become

tethered to each other, crippling their navigation and dynamics. Introducing ϕi allows these

separated agents to navgatate more independently than those in the middle of a herd, say.

The improvement represented by ϕi is similar in spirit to that the relative distance notion

brought by [32] to improve upon [11].

One may object that the connectivity of V∗ and therefore the communication topology

mave have changed in the last time step. If i has only just gained a neighbor j, how can i be

expected to have velocity information uj of this neighbor? The key is that i only needs to

know j’s direction of motion, not j’s speed. Therefore, we take for granted that the species of

agent under consideration can infer orientation of their neighbors from their body geometry

(in a computationally trivial amount of time). Becuase we model agents as point-particles

with no oriented geometry, we assume, moreover, that normalized velocity is a sound proxy

for orientation, i.e., agents face forward when moving.

6.3.3 Homing

The homing term is shown for a point-target in Figure 2c but the target may be any convex

subset of Ω. The homing vector points from i’s position xi ∈ Ω toward its target Ti. Say

the target point x∗i ∈ Ti satisfies ‖x∗i − xi‖ = dist(xi, Ti). There is in general an issue of

uniqueness here but in practice, this ambiguity is inconsequential. The unit homing vector

ĥi is given by

ĥi(X) =
x∗i − xi
‖x∗i − xi‖

for xi 6∈ Ti (14)

Of course, i may not have a target (Ti = ∅) or i may have already reached its target (xi ∈ Ti).

So we define the dominating factor bi to be 0 in these cases and 1 otherwise and write hi = biĥi

so that hi = 0 when ĥi is ill-defined.
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6.3.4 Weighting coefficients

The weighting coefficients in (10) are defined as follows. The repulsion ri and homing hi

appear with weights σi and σi defined respectively by

σi = σ(δi/L) and σi = 1− |σi| = 1− |σ(δi/L)| (15)

where σ : [0,∞) → [−1, 1] is continuous at 0, non-increasing, and satisfies σ(0) = 1 and

σ(1) = 0. Here L > 0 is a parameter of our model we refer to as the repulsive falloff

distance. If σ is nonnegative, we see that σi and σi are convexly related. Otherwise, they are

convexly related in absolute value and the sign of σi determines whether ri acts repulsively

or attractively. Canonical choices in each case are claustrophobic σ = σcl and autophobic

σ = σau profiles, plotted below.

0 1
−1

0

1

σcl(s) =


1 if s = 0,

exp(− 1
1−s )

exp(− 1
s

)+exp(− 1
1−s )

if 0 < s < 1,

0 if s ≥ 1

0 1
−1

0

1

σau(s) = − tanh(π
2

log s) = 1−sπ
1+sπ

Recall δi gives the distance between i’s position and the nearest obstacle. So the combination

σiri + σihi facilitates the following behavior. In the claustrophobic case (i.e. σ(s) = 0 for

s ≥ 1), if xi is at least a distance L from all obstacles, then full priority is given to target-

seeking via hi. On the other hand, as obstacles encroach on xi at distances less than L,

collision avoidance via ri takes priority over target seeking. Additionally, in the autophobic

case (i.e. σ negative eventually), if xi is further than L inf{s : σ(s) < 0} from all neighbors,

than i will try to close the gap to its nearest neighbor. Strictly speaking, when allowing
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σ < 0, we should also distinguish between cases when repulsion/attraction is due to another

agent or to the domain boundary (i.e., environmental obstacles). It usually will not make

sense for walls to attract agents so σi should generally be a function not only of the distance

ratio δi/L but also of the type of i’s nearest obstacle, for instance taking σ = σau if the

witnessing obstacle is another agent but taking σ = σcl if it is the domain boundary.

The remaining coefficient ν ≥ 0 in (10) determines the overall strength of the alignment

effect compared to the combined homing-repulsion effect.

6.3.5 Personal-space speed scale

Until now, we have relied only on the dual V∗ of the Voronoi diagram. That is, only on

the topological structure of V . The final piece is to consider the geometry of the Voronoi

cells—the agents’ personal areas—to scale their speed. The scalar ρi in (10) rescales the step

size accordingly as i’s Voronoi cell allows more space. Precisely, for x, u ∈ R2 we define

H(x, u) = {x+ w ∈ R2 : u · w ≥ 0}

to be the half plane whose boundary contains x and inward normal is (parallel to) u. Then

for locally flat spaces Ω, for X = (x1, . . . , xn) ∈ Ωn and U = (u1, . . . , un) ∈ R2n and Voronoi

diagram V = {V1, . . . , Vn} generated by {x1, . . . , xn}, define

Aforward
i = Aforward

i (X,U) =


Area(Vi ∩H(xi, ui)) if ui 6= 0,

1
2

Area(Vi) if ui = 0.

The ui = 0 case is understood probabilistically as the expected value of V ∩ H(xi, ui) for

arbitrary xi and measurable set V over ui from a radially symmetric distribution. The proof

is given in the appendix (Lemma A.0.1).

Interpretting Area(Vi) as agent i’s personal space, then Aforward
i gives a natural measure of

how much of the space available to i in its facing direction. Note that in two dimensions (or
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in three under the obvious generalization), Aforward
i is of full dimension in the space. There

is an alternative, strictly one-dimensional measure we will discuss shortly.

We nondimensionalize Aforward
i via the length scale L we have already introduced, the

repulsive falloff distance, taking
Aforward
i

ω2(L)/2
, where ω2(L) is the area of the disc of radius L.

On the sphere Ω = RS2, we define Aforward
i analogously. For (x, u) ∈ TΩ in the tangent

bundle, we take H(x, u) to be the hemisphere whose bounding great circle γ includes x

and whose tangent at x is orthogonal to u. Then Vi ∩H(xi, ui) describes the desired region

provided Vi itself is contained in a hemisphere, which is gauranteed for at least two generators.

We now rescale Aforward
i by ω2(L)/2 where now ω2(L) is the area of a spherical cap of geodesic

radius L ∈ [0, πR].

Finally, to ensure a physically reasonable, bounded characterisic speed, we enclose
Aforward
i

ω2(L)/2

in an increasing function η that behaves like the identity near zero and goes to unity asymp-

totically so that agents attain maximum speed when unobstructed. The coefficient ρi is

given by

ρi = ρi(X,U) = η

(
Aforward
i

πL2/2

)
. (16)

We make the canonical choice η = tanh.

As an aside, for general manifolds, we need to be more careful to define the “intersection”

Vi ∩H(xi, ui). Even on the flat torus, one can concoct Voronoi digrams where it is not clear

what the region Vi ∩ H(xi, ui) should be. The problem, of course, is that Vi lives in Ω

while H(xi, ui) naturally lives in the tangent plane TxiΩ. (Notice, we have been careful to

circumvent this issue on the sphere.) To capture the same idea in full generality, consider

the following. Fix (x, u) ∈ TΩ and a closed subset V ⊆ Ω containing x. Let D = {w ∈ TxΩ :

‖w‖ = 1, w·u ≥ 0} be the unit semicircle (or d-hemisphere) in TxΩ which is symmetric about

the ray extending x through u. For each w ∈ D, let Γw : Iw → Ω continuously parametrize

a geodesic where I is the largest closed interval whose minimum is 0 and satisfies

• Γw(0) = x and Γ′w(0) = w,
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• For all s ∈ I, we have d(Γw(s), x) = s and Γ(s) ∈ V

Lastly, for all s ≥ 0, let γs =
⋃
{w∈D:s∈Iw} Γw(s). To understand this, imagine sending a

unit speed (with respect to the metric d) pulse in Ω from x in all the directions D. Say the

boundary ∂V of the region absorbs the pulse. Then γs is the pulse front at time s. Now we

are equipped to properly define H(x, u) in general. We have

H̃(x, u, V ) =
⋃
s≥0

γs.

In other word, H̃(x, u, V ) is the subset of V seen from x in all the directions D.

There is an alternative (inequivalent) definition of ρi which will be preferable in some

contexts. It uses the one-dimensional analog of the quanitity Aforward
i defined above. Let

R(x, u) = {x+ lu ∈ R2 : l ≥ 0}

be the ray with vertex xi in the direction ui. Then define

sforward
i = sforward

i =


length(Vi ∩R(xi, ui)) if ui 6= 0

si if ui = 0,

where si is chosen suitably. (The analogous probabilistic argument does not yield freindly

results3.) For example, one reasonable choice of si is the average of Voronoi neighbors’ speeds

along direction di. Now we may define

ρi = ρi(X,U) = η
(sforward

i

L

)
, (17)

where here L is naturally understood as the non-dimensionalizing constant as the 1-measure

of the one-dimensional half-ball of radius L.

3Employing the same argument, we find 1
2π

∫ 2π

0
length(V ∩ R(0, φ)) dφ = 1

π Area(
√
V ) where

√
V is

obtained from V as follows. If ∂V is given by the polar paramtrization r = w(θ) for function w : [0, 2π) →
[0,∞), then

√
V is the region enclosed by {

√
w(θ) : 0 ≤ θ < 2π}.
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6.4 Effective parameters

parameter takes values in dimensions interpretation

Ω convex subsets of R2 – environment
τ positive reals time time step
u positive reals velocity characteristic speed
n positive integers 1 number of agents

g
monotonic C([0, π]; [0, 1]) functions

with b.v. g(0) = 1 and g(π) = 0
1

alignment transition
function

σ

monotonic C([0, 1]; [0, 1]) (or
C([0, 1]; [−1, 1]) functions with
b.v. σ(0) = 1 and σ(1) = 0 (or

σ(∞) = −1)

1
repulsion transition

function

L positive reals length repulsive length scale
ν positive reals 1 alignment strength

η
monotonic C1([0,∞); [0, 1])
functions with b.v. η(0) = 0,
η(∞) = 1, η′(0) = 1, η′(∞) = 0

1 speed scaler

Ti (∀i ≤ n) convex subsets of Ω – target regions

Table 1: Degrees of freedom for VTP with fixed number of agents. Note that τ and u are
suppressed in most equations. They need only be considered when establishing equivalences
of the effective parameters between manifolds or if attempting to model a real-world species
from experimental observation.

All degrees of freedom are summarized in Table 1. The number of effective parameters

however is much smaller. Firstly, we think of the domain Ω and the targets Ti as fixtures

of the setup rather than control parameters. Secondly, all dynmaics discussed hereafter

are robust under small changes to the transition functions σ, g, and η, for which we make

canonical choices, so we need not consider these as parameters. Lastly, the time step τ , the

characteristic speed u, and the domain scale are not independent degrees of freedom and we

can assume τ = u = 1 (as we have been), rescaling Ω if necessary.

So including the freedom to rescale Ω, we are left with four parameters: the alignment

coefficient ν, the repulsive falloff distance L, the number of agents n, and the domain size

|Ω|. All the other “weights” are directly determined by the local Voronoi geometry.

However, in the model’s simplest applications these can be futher reduced to only two
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effective dimensionless parameters. The first is ν > 0 which determines the strength of

alignment compared to the combined repulsion-homing effect. The second effective param-

eter µ > 0 combines n, L, and |Ω| and represents the ratio of the repulsive length scale to

the average inter-agent distance. It is defined to be

µ =
L

(|Ω|/n)1/2
.

Thus, on the torus R2/lZ2 of primary domain [0, l)2, we have µ = L
√
n/l2 =

√
nL/l and on

the sphere of radius R, we have µ = L
√
n/(4πR2) =

√
n
π
L

2R
.

The parameter µ is applicable in the absense of homing (i.e., Ti = ∅ for all i ∈ Λ). For the

sake of universality, we will also use µ for certain situations with homing but we should note

that specific configurations of targets introduce new characterisic length scales particular to

those configurations. (Will we see examples of this.) Nonetheless, where µ does apply, we

can study the µ-ν phase plane to understand the dynamical regimes. First, we need to define

and motivate several observables relevant for these systems

6.5 Note on a related model

The model presented by Grégoire, Chaté, and Tu (G-C-T) in [22] bears some cosmetic

similarity to ours deserving comment. The motivation behind C-G-T is to demonstrate

a “minimal” extension of the model due to Vicsek et. al. [39] which achieves collective

motion in highly unfavorable circumstances, as characterized by a handful of criteria. In

particular, they seek to achieve aggregation in of agents. The goal of VTP, on the other

hand, is to demonstrate a simple (if not “minimally” so) and highly generalizable model

which achieves a wide variety of collective behaviors including some proper to explicitly

“realistic” models. Moreover, VTP mostly diregards sponaneous aggregation instead opting

to indivudual homing as a means to achieve consensus among sub-crowds. Thus, the two

models serve very different purposes. Still, given the cosmetic similarities, it is worth a closer
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look at exactly where they differ.

For one, the alignment interaction, which is taken to be fundamental by VTP, C-G-T,

and of course Vicsek upon which C-G-T is based, occurs strictly among Voronoi neighbors in

VTP. Meanwhile, C-G-T imposes simulataneously Voronoi and metrical restrictions on this

interaction. Imposing the Voronoi structure on top of the radial zone structure in this way

seems somewhat ad hoc but, on the other hand, ensures consistency between the alignment

neighborhood and the body force neighborhood. VTP resolves this consistency issue by

restricting the body-force-type interaction to only the nearest neighbor. This allows us to

consider alignment over all Voronoi neighbors rather than only those also within a fixed

radius. Whereas the Voronoi structure is fundamental to VTP’s dynamics, it is merely and

additional constraint in C-G-T over Vicsek to ensure that the body-force term only acts

between physically adjacent agents.

Secondly, G-C-T is stochastic whereas VTP is completely deterministic. Stochasticity is

necessary in G-C-T since one of their unfavorability critera is “strongly noisy environment

and/or communication”. The determinism of VTP is a modelling choice for which we can

offer a philosopical justification. Under VTP, agents must measure several quantities of

the local environment and their neighbors. Once these quantities are know, we take the

error in the subsequent calculation to be insignificant. It certainly makes sense to adopt the

noisiness criterion of G-C-T; however, in the VTP context, this noisiness should affect not the

final update, but rather the measured quantities that determine the update (e.g. neighbors’

orientations). But deterministic VTP is robust to small changes in these quantities as they

are arguments of continuous functions. Thus, the qualitative features of VTP are unaffected

if the agents have imperfect knowledge of the world.

As an exception to the above claim. VTP’s move-away-from-closest-neighbor (MACN)

repulsion component is highly discontinuous in an agent’s neighbors’ positions. However,

this component’s frenetic nature is averaged out over large temporal and spatial scales. So

since the system’s qualitative behavior depends only on MACN’s typical behavior over many
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agent-neighbor interactions, introducing noise to the neighbor positions in each instance of

its calculation, provided this noise is suitably symmetric, will not influence the qualitative

behavior. (An asymmetric noise scheme might reflect higher aptitude for estimating dis-

tances ahead than to the side, for example.) The MACN repulsion itself represents another

significant distinction from G-C-T whose repulsion averages over all neighbors. VTP pri-

oritizes computational economy when it can be afforded. The fact than MACN works is,

in that sense, enough justification. See [21] for more on MACN in the context centroidal

Voronoi tesselation energy landscapes.

Also apparently similar in form are the alignment terms in the two models. However,

VTP’s aligment interaction is more sophisticated, not merely averaging neighbor’s direction

but also weighting them in such a way that neighbors moving against an agent i will be

ignored by i. Consequently, VTP produces stable behaviors where parts of the flow main-

tain high sheer such as adjacent, co-rotating vorticies and emergent lanes amidst opposing

streams. Although the examples just given incorporate homing, let this not eclipse the role

of the weighting in the alignment component; these behaviors do not emerge without the

more sophisticated weighted alignment interaction.

Finally, G-C-T is constant speed while this is variable in VTP. Moreover, speed in VTP

depends on the geometry of the Voronoi diagram. This emphasizes the primary tenet of VTP:

the Voronoi diagram provides a natural means to sythesize several sophisticated featues of

agent-based crowd models that are otherwise ad hoc.

6.6 Observables

Before we can discuss the model, we must introduce the observable quantities we use to

distinguish distinct qualitative regimes. Thoughout, we use three global observables to

qualify and distinguish different behaviors. The simplest observable, polarization, concerns

only the velocites of all agents. It is given by P(U) =
‖
∑
i ui‖∑
i‖ui‖

. for U = (u1, . . . , un) ∈ R2n.

Obviously, this functional is bounded above by 1 and is continuous in U . As the term
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suggests, maximal polarization of 1 occurs only when all velocities are in the same direction.

The second observable, angular momentum (with respect to the origin), takes into ac-

count velocites and positions and is given by L (X,U) =
‖∑i xi×ui‖∑

i‖xi‖‖ui‖
for X = (x1, . . . , xn) ∈

Ωn and U = (u1, . . . , un) ∈ R2n. Recalling that the 2D cross product is given by a × b =

‖a‖‖b‖ sin θ where θ is the (signed) angle between a and b, we see that L is maximized

when the angle between xi and vi is ±π/2 for all i, that is, circular motion (in one direc-

tion) about the origin. Closely related is the absolute angular momentum Labs given by

Labs(X,U) =
∑
i‖xi×ui‖∑
i‖xi‖‖ui‖

. Anglular momentum about an arbitrary center is obtained by shift-

ing the X coordinates. One can easily convince oneself that, for a given configuration (with

at least two agents), P and L cannot both be large. As such, only one one these observables

will be relevant in each setup but it will always be clear which we are considering.

The third observable is defined in terms of only agents’ positions. It may be less familiar

than polarization or angular momentum from a particle systems viewpoint, however, it arises

frequently in Voronoi literature—especially in the context of centroidal Voronoi tesselations,

see [14, 15]. Given X = (x1, . . . , xn) ∈ Ωn, consider the functional

E(X) =

∫
Ω

dist(x,X)2 dx =
∑
j

∫
Vj

‖x− xj‖2 dx. (18)

where Vj is the Voronoi cell containing xj in the Voronoi diagram generated by X. The

quantity E(X) is called the quantization energy of the configuration in variational contexts.

Hopefully, the first form above makes it clear that this is a natural to consider if we want

a global quanity which captures The variance of the spatial distibution of Ω with respect

to the distinguished set X. The second form, on the other hand, should make it clear why

Voronoi diagrams are intimately linked to this functional. Gersho’s conjecture [17], proven

in two dimensions, states that for large n, the minimum value of E approaches the value

obtained by organizing the generators nearly on a triangular lattice (wherein Vj is close to a
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regular hexagon centered at xj for all j). Precisely,

inf
|X|≤n

E(X) ∼ n

∫
Hn

x2 dx =: En as n→∞

where Hn is a regular hexagon of area |Ω|/n centred at the origin. We refer the reader to

[38, 34, 23] for the subtleties of Gersho’s conjecture. For our purposes, it shall suffice to

note that this gives us a means to scale E in such a way that its value can be compared for

different values of n. Our third observable E is then

E (X) =
E(X)

En

where En = n
∫
Hn
x2 dx = 5|Ω|2

n·18
√

3
here4. (This value can be verified by direct calculation).

In this context, this quantity should be understood as follows. Large values of E(X)/En

correspond to clustering in the agents’ positions X and values close to 1 indicate a lack of

clustering. In some figures, we plot log E rather than E to save space and superimpose it

with other data on one scale. Each figure specifics which version is plotted. This quantity

is highly correllated with the mean shape index, given for each cell by the square root of the

perimeter-to-area ratio. The shape index of Voronoi cells is of particular interest in epithelia

and biological tissue literature.

6.7 Results

6.7.1 Homing-free systems in domains without boundary

We call a system homing-free under VTP if targets Ti = ∅ are empty for all i. In this

circumstance, the homing coefficient bi = 0 vanishes for all i and (10) reduces to

fi(X,U) = ρi
σiri + νai
σi + ν

= ρi
σ(δi/L)ri + νai
σ(δi/L) + ν

. (19)

4On the sphere, En is computed differently but has the same scaling properties.
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and repulsion and alignment alone determine the dynamics.

First we consider the square torus Ω = R2/lZ2 with fundamental domain [0, l). As

0 1 2 3 4
0

1

2

gaseous

solid

high

clustering jamiton

polarized velocity field

(a) (b) (c)

(d)

(e) (f) (g)

µ

ν

Figure 3: Phase portrait sketch where Ω = [0, l)2 (with periodic boundaries). The dimen-
sionless parameter µ is given by µ = L(n/|Ω|)1/2 =

√
nL/l. The dashed lines are merely

conceptual delineations, not sharp bifurcation loci. Their rough shape is based on coarse
probing of phase space with simulations. The indicated features of the phase landscape are
merely suggestive; the precise features of the phase diagram of course also depend on the
particular choices of transition functions and a finer parameter sweep is appropriate only fol-
lowing tuning of those transition functions for specific application. At this level of generality,
we only highlight the coarse structure of phase space.

mentioned above, the parameter µ is vital for homing-free systems. Figure 3 shows a sketch

of the µ-ν phase plane with key values indicated. The labels correspond to the regimes

shown in Figure 4. Here, we wish to conceptually distinguish the dynamics at the top and

bottom of the diagram from those between the dotted curves. We think of this intermediate

zone as a transitional region between the upper and lower parts of the diagram.

At the top of the diagram, where ν is large, we observe high polarization with agents

tending to align globally. Regimes at the bottom of the diagram by contrast do not spon-

taneously acheive any velocity consensus. The dashed curves are meant to suggest the
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transitional region where the consensus behavior is harder to characterize.
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(a) fast, polarized
µ = 0.87, ν = 2

(b) slow polarized
µ = 1.73, ν = 2

(c) very slow, polarized
µ = 3.46, ν = 2

(d) uncoordinated
µ = 0.87, ν = 1
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(e) highly clustered
µ = 0.87, ν = 1

(f) traffic flow
µ = 1.73, ν = 1

(g) solid
µ = 3.46, ν = 1
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Figure 4: Different qualitative long-term behaviors of homing-free systems in the torusg.
In the digital version of this document, click on an image to view the corresponding animation
online. Each image above is a still (at time step 200) representative of the long term behavior for
the indicated parameter values with n = 300 agents. The qualitative features of each image are
persistent into the future for that nieghborhood of parameter values. The obscure values of µ are
due to the factor of n1/2 =

√
300 but L/l is a simple ratio in all cases. Shown also are time series

plots over the first 1000 iterations for the polarization P in red and quantization error (or clustering
measure) E in blue and scatter plots of all n = 300 velocities superimposed at time t = 200. Each
radial increment is a speed increment of 1

2
.



We argue that all qualitative behaviors are captured within this bounded region of the

phase plane. As ν becomes very large and we move far upward, we see from (19) that fi ≈ ρiai

and the dynamics cease to depend on ν. Moving the far right of the phase space, we see

the following. Keeping n fixed, we have the asmyptotic behavior ρi = O(|Ω|/L2) = O(µ−2)

and so agents move ever more slowly as L grows. The long-term consensus behavior is

nonetheless unchanged. Let s > 0 such that no two neighboring agents are separated by

more than a fixed multiple s|Ω|1/2 at any point in the evolution. (The very crude choice

s = diam(Ω) = supx,y∈Ω‖x − y‖ suffices for this argument.) Then, σ(s/L) ≤ σ(δi/L) ≤ 1.

By the continuity of σ at 0, if L � s, then σ(δi/L) ≈ 1 for all i and fi ≈ ρi
ri+νai

1+ν
depends

on L only through ρi.

For regimes near the left of the diagram where µ is small, we tend to find high clustering,

corresponding to large values of E , and the states have Voronoi diagrams with more irregular

cells of varying area. As µ increases, repulsion strengthens and agents spread out and

acheiving more regular Voronoi diagrams with less eccentric cells of nearly uniform area,

corresponding to low values of E . Near the bottom of the diagram, no spontanteous velocity

consensus emerges and directions vary frenetically, reflecting low values of P. Increasing ν,

the velocity field attains a very high polarization P as the system spontaneously gains a

stable nonzero drift velocity. Across this highly polarized region of the phase space, there

is a tradeoff between extremely high polarization P ≈ 1 at the left and high regularity

of the Voronoi diagram at the right, E ≈ 1. Hence, the (scaled) quantization error E

and polarization P, naturally mirror the µ-ν phase plane. Figure 4 shows representative

simulations for each of the marked points (a)–(f) on the phase plane sketch for n = 300.

Now let’s characterize the distinct regimes observed here. The regimes of (spontaneous)

high polarization are represented in 4(a), 4(b), and 4(c). Here, ν is large and the polar-

izaiton P quickly rises to a stable value, as can be seen in the plots above each subfigure.

In the regimes of 4(c) and 4(g), where L/l (and hence µ) is large, agents tend to crystalize,

locally organizing into a triangular lattice. The “solid” regime is shown in Figure 4(g). Here,

33



the system is pushed toward contant density by the large repulsion and the weak alignment

cannot donimate the frenetic nearest-neighbor repulsion. So the system remains stationary

macroscopically with only small jittering at the scale of individual particles. Even in this,

strong repulsion range, increasing ν slightly is enough to cause a spontaneous overall drift,

as shown in Figure 4(c).

Where both paramters are small, as in 4(d), no spontaneous consensus is acheived and

the long-term behavior depends highly on initial conditions. These small-parameter states

are characterized by very weak alignment and a sufficietly sparse agents that, typically, an

agent is within L of at most one of its neighbors. Becuase both alignment and repulsion

are too weak to alter the qualitative dynamics significanly, the long-term behavior tends to

roughly preserve polarization and energy of the initial conditions. The other regimes are

independent of initial conditions.
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(a) fast, polarized
µ = 0.87, ν = 2

(b) slow polarized
µ = 1.73, ν = 2

(c) very slow, polarized
µ = 3.46, ν = 2

(d) small parameter
µ = 0.87, ν = 1
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(e) highly clustered
µ = 0.87, ν = 1

(f) jamiton
µ = 1.73, ν = 1

(g) solid
µ = 3.46, ν = 1
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Figure 5: Different qualitative long-term behaviours in the homing-free sphere. In the
digital version of this document, click on an image to view the corresponding animation online.
Each image above is a still (at time step 400) representating the long-term behavior for the indicated
parameter values with n = 300 agents. The qualitative features of each image are persistent into
the future and robust under small changes to µ and ν. Shown also are time series plots over the
first 1000 iterations for the polarization P in red and the logarithm clustering measure log E in
blue. The scatter plots represent the magnitude and angular deviation from the mean of all n = 300
angular velocities at time t = 400. Each radial increment is a speed increment of 1

2
.

https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=0&dom=sphere&ic=UU&mu=0.87&nu=2
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=0&dom=sphere&ic=UU&mu=1.73&nu=2
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=0&dom=sphere&ic=UU&mu=3.46&nu=2
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=0&dom=sphere&ic=UU&mu=0.87&nu=0.5
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=0&dom=sphere&ic=UU&mu=0.87&nu=1
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=0&dom=sphere&ic=UU&mu=1.73&nu=1
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=0&dom=sphere&ic=UU&mu=3.46&nu=1


In Figures 4(e) and 4(f), we see examples of regimes in the transitional region of the

phase plane. In both, we see that clusters of agents spontaneous align for a time and then

fall out of alignment. We also see fluctuations in the density which do not dissappear int the

future. In 4(e), this transient density fluctuation is especially pronouced, giving rise to the

high and E values with large deviation from the mean. In this regime, alignment is simply

too weak to ever eradicate the tight clusters where repulsion is strongest and even out the

density. Increasing µ within the transition region, the stronger repulsion does begin to even

out the density but the spatial variation in local polarization persists. In Figure 4(f), we

see a sensitive regime where E is low and P stabilizes on an intermediate value. Here, the

alignment information propogates through the system but the alignment interaction is not

strong enough for its influence to spread through the entire system.

We do not observe sustained regimes wherein agents form (multiple) groups which move

coherently but mostly independently of each other, i.e., emergence of subflocks. Introducing

an attractive effect through σ as described in the previous section allows for behaviors like

this but because the attraction only acts between nearest neighbors, the subflocks will not

have any mutual attraction to each other once sufficiently separated. Emergent subflocks

driven by this mechanism will continue to form, dissipate, and interact in bounded domains

but will do so less moving toward the zero-density limit.

Under a suitable transformation we implement the same paramter values on the sphere

Ω = S2 as on the torus. We find extremely good agreement of qualitative behaviors on

the two manifolds in all ((a)–(c), (f), (g)) but the smallest parameter cases ((d), (e))

where spontaneous emergence effects are very weak. Figure 5 show each regime, again for

n = 300 agents, with the corresponding parameter values from Figure 4. Here, µ is defined

as µ = L
√
n/|Ω| =

√
nL√
π2R

. As reasoned above, very large values of the parameters do not

produce new behavors (the argument applies verbatim on any bounded domain). In Figure

5, we depict iteration t = 400 rather than t = 200 as in Figure 4 only because the initial

transient tends to be slightly longer on the sphere (as can be seen in the plots). Also we

35



plot here log E rather than E because its values are typically much higher on the sphere (the

agreement with the torus here is in the shape of the the curve).

Since the velocities on the sphere do not lie in one plane, we cannot superimpose them

as we did in Figure 4. Instead, we calculate the mean angular veloicty 〈ω〉 at each time step,

and plot the deviation from the mean of i’s angular velocity ωi. Contrast Figure 5(a) and

Figure 5(f). In the former, we find ωi∠〈ω〉 near 0 for all i, corresponding to high P, and

that the angular deviation increases with speed. So the fastest agents deviate the most from

the overall tendency. In (f), the opposite is true, the fastest agents determine the trend in

the angular momenta while the slower agents have uncorrelated angular momenta.

6.7.2 Pinwheels, rings, and cogs with point-target homing

In the previous section, in the homing-free setting, we saw a number of emergent qualititave

behaviors from dynamics governed only by alignment and repulsoin. Introducing targets,

the model predicts a variety of interesting behaviors. Returning to the torus Ω = lT2, we

consider point-targets, Ti = T for some discrete T , which are the same for all agents. For

very large ν or µ, targets have little effect on the dynamics. The arugment follows basically

as above. If ν is very large, alignment dominates homing and fi ≈ ρiai does not depend on

the targets. For L very large σi = 1− σ(δi/L) ≈ 0, and repulsion domaintes homing.
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(a) pinwheel
µ = 0.87, ν = 2.5

(b) steady ring
µ = 0.35, ν = 3

(c) periodic-inflation ring
µ = 0.52, ν = 3

(d) cog
µ = 1.30, ν = 2

(e) anti-cog*
µ = 0.87, ν = 2

(f) three co-circular targets
µ = 0.87, ν = 2.5
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Figure 6: Example behaviors in the torus with one, two, and three point-targets. In
the digital version of this document, click on an image to view the corresponding animation online.
We show here configurations with one, two, and three point-targets, marked by green dots, at the
indicated parameter values after an initial transient. Above each image is a plot over the first 1000
iterations of the log-energy log E in blue and both the angular momentum L and absolute angular
momentum Labs of the system in green with respect to the point at the image center.

https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=1&dom=torus&ic=UU&mu=0.87&nu=2.5
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=1&dom=torus&ic=UU&mu=0.35&nu=3
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=1&dom=torus&ic=UU&mu=0.52&nu=3
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=2&dom=torus&ic=UU&mu=1.30&nu=2
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=2&dom=torus&ic=UU&mu=0.87&nu=2
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=3&dom=torus&ic=UU&mu=0.87&nu=2.5


Figure 6 shows representative simulations for one-, two-, and three-point targets. As

for the homing-free systems, we catalogue the regimes based on µ and ν. This is mainly

for reproducability. But we emphasize again, µ is not really the right parameter here and

indeed, we expect there is no natural one-size-fits-all parameter for different configuartions

of targets becuase targets introduce new characteristic length scales.

We find three distinct milling regimes with a single point target. They are shown in

Figures 6(a), 6(b), and 6(c). Of course, all points are created equal in the torus. The

target point p is shown at the center of each image. With Ti = {p} for all i, every agent’s

homing vector hi points from its position xi (along the shortest geodesic) to p always. The

milling regimes emerge for larger values of ν than considered in the last section. At ν = 2.5,

we obtain a “pinwheel” (Figure 6(a)), a dense disc of agents orbiting a point near the target

point p with roughly constant angular velocity akin to a rigid-body rotation. In the right

range of µ, as ν increases to 3, the center of the pinwheel becomes unstable and the system

settles into a rotating ring (Figure 6(b)). Then increasing µ and the repulsion scale, the

ring radius is no longer stable, instead it oscillates. The ring repeatedly expands in radius

slowly until reaching a critical diameter whence it becomes unstable and spirals in to again.

This periodicity is mirrored in E and is appearent in the plot.

Panels (d) and (e) have a two-point target. As one might expect from the single-point

target cases, two vortices form after a brief transient. However, we observe both counter- and

co-rotating (resp., (d) and (e)) vortices. This manifests strongly in the angular momentum

measurements. In both cases, we see high absolute angular momentum but the counter-

rotating case has near zero angular momentum, i.e., perfect cancellation. The anti-cog is

stable for µ sufficently small but is not as robust as the cog. In particular, for certain

distributions of random initial conditions, either state may be reached but there exist more

restrictive initial conditions for which the anti-cog appears consistently.

In Figure 6(f), we have three-point target T = {p1, p2, p3} where p1, p2, and p3 are equi-

spaced on a circle of radius one quarter the length of a minimal geodesic so that the minimal
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geodesic through p1 and p2 is a minimal geodesic of the torus. As expected, we see three

vortices under suitable parameter values. Here, a cluster forms at the interface of the two

co-rotating vortices where inflow of agents exceeds outflow. After enough agent accumulate

here, the whole configuartion becomes unstable and we have a transient regime before three

new vortice emerge, restarting the process. One such recurring transient happens in the

pictured simulation near t = 600, corresponding to the spikes in the angular momentum and

quantization error.

We examine next the two-point target T = {p, q} where p and q are equi-spaced along a

minimal geodesic in the torus. This choice is arbitrary but exhibits the interesting regimes

we wish to discuss, shown in Figures 6(d) and 6(e). Recall that each agent seeks the nearer

of p and q at each time. For the right parameter range, we see a vortex form spontaneously

about each target point. What is more, within this parameter range, both counter-rotating

(Figure 6(d), “cog”) and co-rotating (Figure 6(e), “anti-cog”) mills are dynamically stable.

Readers are encouraged to view the animations (linked from the images) to appreciate the

difference but it is also clear from the angular momenta, plotted in green above each subfig-

ure. (Arbitrarily, the angular momenta are computed with respect to the point at the image

center.) For both the cog and anti-cog, Labs is high, but L is near zero for the cog, indi-

cating near cancellation. Near the indicated parameter values, the cog is extremely robust.

The anti-cog, on the other hand, is very stable but its spontaneous emergence is sensitive to

initial conditions. In the extreme case, at indicated parameter values allowing for the anti-

cog, the cog is also stable and either may emerage from uniformly random initial positions

and direction. However, we can design initial conditions which do settle into the anti-cog

consistently. On the torus, if the targets lie on an equator, we can start with all agents in

the “northern” cylinder moving “westward”. This configuration has built-in relatively high

counterclockwise circulation about each target but is (perhaps) not too contrived (depending

of course on the precise species and environment one wishes to model). Indeed, this settles

into the anticog and is robust under the addition of subtantial noise to the initial directions.
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On the sphere, the analogs of the cog and anti-cog for antipodal targets are the rolling and

anti-rolling regimes, respectively. In each case, there is a vortex about each target point but

in the former, their angular momenta align while in the latter, they cancel. The anti-rolling

behavior never results from random initial condition within the explored parameter ranges,

however, the analogous tailored initial conditions (here a single vortex about a point on the

equator between the targets with noise) consistently produces the anti-rolling regime.
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(a) pinwheel
µ = 0.87, ν = 2.5

(b) steady ring
µ = 0.35, ν = 3

(c) periodic-inflation ring
µ = 0.52, ν = 3

(d) rolling
µ = 1.30, ν = 2

(e) anti-rolling*
µ = 0.87, ν = 2

(f) three equatorial targets
µ = 0.87, ν = 2.5
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Figure 7: Example behaviors in the sphere with one, two, and three point-targets. In
the digital version of this document, click on an image to view the corresponding animation online.
Here we consider configurations with one, two, and three point-targets, marked by green dots.
Above each image is a plot over the first 1000 iterations of the log-energy log E in blue and both
the angular momentum L and absolute angular momentum Labs of the system in green.

https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=1&dom=sphere&ic=UU&mu=0.87&nu=2.5
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=1&dom=sphere&ic=UU&mu=0.35&nu=3
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=1&dom=sphere&ic=UU&mu=0.52&nu=3
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=2&dom=sphere&ic=UU&mu=1.30&nu=2
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=2&dom=sphere&ic=UU&mu=0.87&nu=2
https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&numtar=3&dom=sphere&ic=UU&mu=0.87&nu=2.5


6.8 Introducing sources and sinks

6.8.1 Source algorithm

Introducing sources and sinks allows us to study, within the VTP framework, collective

behaviors—like lane formation or queuing, efficiency of multidirectional flow through differ-

ent environments—which are not characterized by dynamical stability of a fixed collection

of agents but rather by emergent features which manifest continually in transient collections

of agents.

We introduce here a computationally cheap scheme for implementing sources under VTP.

This proceedure is motiviated cheifly by pedestrian crowds but is very simple and relies only

on the Voronoi geometry and the motion of agents.

For each entrance region B ⊆ ∂Ω, agents may enter at some point in B according to the

following rules. Suppose at time t, the agents in Ω are indexed by Λt and have positions

X = {xi}i∈Λt and velocities {ui}i∈Λt . New agents may now enter in B according to a

probability distribution. Let V = {Vi}i∈Λt be the Voronoi diagram generated by X so that

Vi is the Voronoi cell with generator xi. Notice that B is partitioned into Voronoi edges as

B =
⋃
i∈Λt

B ∩ Vi. Assume that B is C1 so that the outward normal to ∂Ω is well-defined

on B. Then for almost every y ∈ B, there is a unique iy ∈ Λt such that y ∈ Viy , i.e.,

y ∈ B almost surely belongs to exactly one Voronoi cell in Viy in V . Denote the outward

unit normal to B at y by n̂y. Let

Q(y) =


1 if Λt = ∅,

1− σ
(
‖y−xiy‖

L

)
g(arccos(n̂y · ûiy)) if ‖y − xiy‖ ≥ Lc,

0 if ‖y − xiy‖ < Lc,

(20)

where Lc is a new parameter which in essense limits the maximum flow. (Here σ and g are

the same functions as previously introduced.) A brief aside, it may seem unruly to introduce

this new parameter Lc. However, in some sense this does represent a simplification in that
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this whole scheme subsumes initial conditions, a space with many more degrees of freedom.

Pseudocode for the VTP algorithm including sources is given below. The inner loop will

always terminate as long as Lc is positive and each Bi has finite length. This is because at

each iteration (of the inner loop), some point xi is specified in the entrance region B which

has the effect of forcing Q to zero on a interval (inside the curve B) centered at xi of width

Lc. Thus, on the next iteration, the new point xi cannot appear in this interval and after

blength(B)/Lcc+ 1 iterations, Q vanishes everywhere on B with probability 1.

In practice, one need not compute the Voronoi diagram in every iteration of the inner

loop. Rather, we need to keep track of only the distances between generators (including those

introduced during the loop), significantly improving the runtime of the source alogrithm. The

Voronoi diagram need only be computed at the end of each loop in preperation for the next

step of the dynamics subroutine. Practically, the algorithm with sources is nearly as fast as

without, the brunt of the computation being due to Vonoroi methods which the sources do

not invoke.

6.8.2 The bi-directional corridor

Here we discuss the motivating example for VTP with sources and sinks, the bi-directional

corridor. The corridor Ω is a rectangle [0, l] × [0, 1] of fixed aspect ratio l. The left wall

acts as a source for a class of ΛR of rightward-moving agents. All agents in ΛR take the

entire right wall as a target and this wall acts as a sink for ΛR, those agents dissapearing

if they reach the wall. Similarly, there is a class ΛL of leftward-moving agent for whom

the left and right walls have reversed roles to those of ΛR. The corridor is initialized with

no agents and the source distribution density paramter Lc is fixed. Representative stills

for three different values of Lc are shown in Figure 8. Beneath a critical value of Lc, we

observe steady percolation of the rightward- and leftward-moving agents past each other

and we see emergent single-file lanes. Above this critical value, we see opposing fronts form

while agents continue to pour in from the sources. By design of the entrace algorithm, this
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Algorithm 1: VTP with domain entrances

Data: Domain Ω, finite set of finte-length C1 entrance regions B1, . . . , Bk ⊂ ∂Ω,

Dymanics subroutine

begin

Λ← ∅;

i← 0;

while true do

foreach entrance region B ∈ {B1, . . . , Bk} do

define Q : B → [0, 1] as given by Equation (20);

Z ←
∫
B
Q(y) dy;

while Z > 0 do

let Q̃ = 1
Z
Q;

i← i+ 1;

Λ← Λ ∪ {i};

choose xi ∈ B according to the probability density Q̃;

ui ← inward unit normal to B at xi;

V ← Voronoi diagram in Ω generated by {xj}j∈Λ;

update Q; // for new Λ and V

Z ←
∫
B
Q(y) dy;

end

end

run Dymanics on (xj, uj)j∈Λ one step; // in general, modifies Λ and V

end

end



cannot continue indefinitely. The hallway become saturated and no more agents enter. It

is unclear whether this stalled state lasts indefintely or if ΛL and ΛR eventually escape past

each other. Interestingly, intermediate values of ν facilitate easier flow through the hallway

for fixed values of Lc. Moderate alignment destabilizes a stalled front perpendicular to the

length of the corridor by causing it to precess, allowing ΛR and ΛL to slip past each other.

For large ν, this rotation effect become very pronouced, even leading groups of agents away

from their targets. Detailed study of the bi-directional corridor and related domains is the

subject of future work.

7 The directed Delaunay network

7.1 Motivation: Obstacles and VTP in non-convex domains

We would like to model the behavior of multi-agent systems in complex environments which

may include internal obstacles like walls, pillars and chokepoints or in environments like

hallways with corners whose large-scale geometry is essentially non-convex. Thoughout this

section, we consider only planar domains, that is, pre-compact, connected subspaces of R2.

Most of what follows generalizes straight-forwardly to higher dimensional Euclidean spaces,

but not as easily to general manifolds and non-Euclidean spaces. In the context of VTP,

we take the domain boundary to represent an impassable and opaque barrier. Moreover,

we assume that agents’ perception of their environment and other agents is mediated along

straight lines. These assumptions are motivated by human crowds whose primary perceptive

aparatus is sight. We wish therefore to clearly delineate the domain of applicability of

the notions introduced here. For a robotic fleet, for example, a given environment may

present impassable but radio-transparent barriers and these constructions will not apply.

Contrastingly, humans whose environment is partitioned by various walls and closed doors

(opaque but passable) are not well described by these contructions. Nonetheless, a wide

variety of human and animal settings fall within this section’s relevance.
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(a) Light influx: L/w = 1/12 and Lc/w = 1/3

(b) Moderate influx: L/w = 1/12 and Lc/w = 1/4

(c) Heavy influx: L/w = 1/12 and Lc/w = 1/6

Figure 8: Bi-directional corridor. Agents marked in orange emerge from the left edge ac-
cording to a probability distribution determined at each time step by the local configuration
of the system and they target the right edge, exiting if they reach it. Agents marked in green
have the reciporocal instruction. Readers are encouraged to view the animated version of
these simulations. Among the three pictures scenarios, only Lc varies. Notice how nearby
agents with the same objective tends to file to avoid counter-moving agents.

https://jacktisdell.github.io/Voronoi-Topological-Perception/?n=300&ic=UU&dom=corridor&influx=heavy&nu=1


Firstly, let us see why the standard Voronoi notions are inadequate in this setting. Under

the assumptions listed above, multi-agents systems in non-convex domains are characterized

by incomplete perceptual information. In general an agent cannot percieve the entire domain

and all other agents within it. The standard Voronoi diagram, even in metrics which somehow

respect the non-convexity, generally requires of agents information they do not have access

to. Consider the “horseshoe” domain Ω shown in Figure 9. Here we consider only two

generators. The horseshoe domain represents the simplest class of (non-convex) domains we

would like to consider: simply-connected polygonal regions. What follows applies equally

well to more complicated domains but even this simplest class exhibits most of the difficulties

we will need to overcome. The horseshoe domain with the inherited Euclidean metric yeilds

a Voronoi digram which is totally incongruous with the VTP assumptions. As Figure 9a

shows, cells need not even be connected, not at all in keeping with the local personal space

interpretation VTP assumes valid. To resolve the connectedness issue, one might propose

using a metric which respects the domain’s non-convexity like the geodesic, or shortest path,

metric. The geodesic Voronoi diagram for the same configuration is sketched in Figure 9b.

While this solves the connectedness problem, it yields cells with complicated, non-polygonal

boundaries. More importantly though, both metrics badly violate the assumption that every

agent can compute its own Voronoi cell because, to drive home the obvious, the two agents

in each example cannot percieve each other. This problem cannot be remedied by designing

a clever metric. Even by restricting the metric to have finite values only when points are

muturally visible (in the sense that the segment connecting them is contained in Ω), as in

Figure 9c, one does not circumvent the fact that agents need inaccassible information to

construct their own Voronoi regions. Indeed, if Ω is non-convex, then for any non-trivial (R-

or (R ∪ {+∞})-valued) metric d on Ω, if there exist three points p, q, r ∈ Ω such that the

segment pq 6⊆ Ω while pr ⊆ Ω and qr ⊆ Ω and d(p, r) and d(q, r) are finite, then we can

reproduce this dilemma by simply placing generators at p and q because to determine wether

r belongs to each of their Voronoi cells, p and q must each know d(p, r) and d(q, r). To extend
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VTP to non-convex domains, we require a new generalization of the Voronoi diagram. We

will argue that the right generalization is given by the directed Delaunay network.

Before we describe the directed Delaunay network in detail, let us address one other pos-

sible approach to the non-convexity problem. One could partition the domain into convex

pieces and take the Voronoi diagram to be the union of the Voronoi diagrams in each piece,

adopting suitable rules for how agents interact across pieces. This approach has the advan-

tage that its implementation is essentially no more costly than standard Voronoi methods

and this certainly may provide an adequate solution sometimes. However, two problems are

evident. Firstly, it is not hard to imagine situations for which it is not at all clear how to

choose the convex partitioning; consider for example a forest, modelled as a (non-simply-

connected) region with many, irregularly placed “holes” at tree trunk sites. Secondly, this

approach might be intolerable depending on what behaviors one wishes to study. For in-

stance, if one wants to apply the VTP framework to study predetor-prey dynamics, then

correctly accounting for occlusion and visibility of agents within the domain may be crucial.

Finally, even if one adopts a simpler solution than what follows, consideration of the pros

and cons of the more sophisiticated approach may be informative nonetheless.

7.2 Construction and computational methods

The guiding principle behind the directed Delaunay network is that each agent should behave

as if the visible part of the domain and only those agents it contains are the entire configura-

tion. In particular, the analog of the Voronoi cells we shall construct will correspond exactly

to the usual Voronoi cells each agent would construct if using only the accessible information.

We expect to lose some nice properties of standard Voronoi diagrams like symmetry in the

notion of neighboring cells, partitioning of the domain, and convexity of the cells. However,

we will—as a matter of principle—be rid of the ails described above. Cheifly, we will respect

the hidden information characterisic of non-convex domains.

Here we outline the construction of the directed Delaunay network. This notion general-
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(a) Voronoi diagram with the
(inherited) Euclidean metric.

(b) Voronoi diagram sketch
with the geodesic (shortest
path) metric.

(c) Voronoi diagram under
the visibilty geodesic metric

Figure 9: Horseshoe domain demonstrates failure of stadard Voronoi diagram in non-convex
domains regardless of metric.

izes the Delaunay triangulation in the sense that for convex domains, they are isomorphic.

However, in general, the directed network is very far from being a triangulation. The con-

struction proceeds as follows. Begining with a domain pre-compact Ω ⊂ R2 and a finite set

P ⊂ Ω,

I. Let G be the complete undirected graph over P (where here the notion of complete

excludes loops).

II. Consider the map η : G→ R2 which preserves P and maps each (abstract) edge {p, q}

in G to the segment η{p, q} = pq ⊂ R2. Next, remove from G all edges {p, q} for which

η{p, q} intersects the domain boundary ∂Ω.

III. Now, for every vertex p ∈ P , we obtain an undirected graph Gp with vertices G0
p =

{p}∪{q ∈ P : {q, p} ∈ G1}, i.e. p and all q adjacent to p in G, and edges G1
p = {{p, q} :

q ∈ G0
p \ {p}}—all edges incident to p in G.

IV. We compute the (usual) delaunay triangulation Tp over each G0
p by a conventional

algorithm.
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Va. For each p ∈ P , construct the directed graph G′p by taking the intersection of Gp and

Tp (in which all edges are incident to p) and set every edge exiting p and no other

(directed) edges.

Vb. We then obtain a single directed graph via the union
⋃
p∈P G

′
p = (

⋃
p∈P G

0
p,
⋃
p∈P G

1
p) =

(P,
⋃
pG

1
p). We denote this directed graph by DDN(P,Ω) or simply DDN(P ) if the

domain of dicourse is clear.

Consider the example of the DDN construction illustrated in Figure 10. This simple

example shows the emergence of the asymmetry and the constructive proceedure. Here,

three of the four intermediate Delaunay triangulations are trivial—each having at most

three vertices—but the the first is not and even in a situation this simple, we can see

its consequence on the final network, giving an asymmetry between the top and bottom

generator. Hopefully, the example makes clear the sense in which the directed Delaunay

network generalizes the standard Delaunay triangulation. Each generator in the DDN, upon

considering its out-neighbors, “thinks” it sees the planar Delaunay triangulation generated

by itself and all other generators visible to it. The proof is the construction itself: for

each generator p, we effectively disregard those other generators occluded from p by the

(non-convex) domain and compute the Delaunay triangulation Tp on those remaining. We

then retain only the information of Tp local to (i.e., incident to) p. This information is not

generally symmetric so a directed graph is the natural structure.

Let’s make a few key observations about the directed Delaunay network and then we

will consider optimization of the construction. The first obvious observation is that if the

convex hull of P is contained in Ω, then the directed Delaunay network is isomorphic to the

standard Delaunay triangulation. Clearly, as suggested by Figure 10, it would be wise to

parallelize steps III and IV in the worst case. However, the previous observation and the

given example suggest that there is a middle ground, somewhere between the cases when

every generator p gives a unique triangulation Tp and the case conv(P ) ⊆ Ω where they all
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I

Initialize complete graph over P .

II

Remove edge {p, q} if η{p, q} ∩ ∂Ω 6= ∅.

III

For each p construct the graph Gp from the neighbors of p in II.

IV

Construct the standard Delaunay triangulation Tp over each vertex set G0
p,

V

For each p ∈ P , take Gp ∩ Tp with all (directed) edges exiting p and take
the union of digraphs over all p.

Figure 10: Directed Delaunay network construction



give the same triangulation.

Assuming feasiblilty of step II, we can be more discriminating using only the adjacency

matrix of the (undirected) graph at that stage. Precisely, if GII is the graph after step II

and A is its adjacency matrix, we can define an equivalence relation ∼ on P by p ∼ q if

and only if the p and q-th rows of A + I are identical where I is the identity matrix. We

call an equivalence class under this relation a coterie5. This works because identical rows of

A+ I correspond exactly to p and q neighboring each other and having the same neighbors

among P \ {p, q}. Put another way, over each class [p], the (sub)graph is complete and if

r 6∈ [p] is connected to some q ∈ [p] by an edge, then r is connected by an edge to every

point in [p]. Then, if p ∼ q, they will generate the same triangulation in step IV (simply

because they determine identical subsets of P ). So we need only compute one triangulation

for each coterie. The necessary modification to step III is to construct a graph G[p] for

each coterie rather than for each p and indeed G[p] =
⋃
q∈[p] Gp is just the union. That is

G0
[p] = {r ∈ P : {q, r} ∈ G1 for some q ∈ [p]} and G1

[p] = {{q, r} : q ∈ [p], r ∈ G0
[p] \ {q}}.

The modified algorithm is illustrated for the same example in Figure 11.

In all, the algorithm described above is not cheap, requiring O(n3) or O(n2 log n) time

depending on the intermediate Delaunay algorithm. If Ω is an m-gon6 (or a difference

of polygons with m-sides total) and #P = n, then the first step involves determining (the

existence of) intersections between a family of
(
n
2

)
segements (the edges of the initial complete

graph) and a family of m segments (the sides of Ω). We must then pairwise compare the rows

of the n×n matrix A+I which in the worst case is O(n3) binary comparisons (1
2
n(n+1) pairs

of rows, each which n entries). We proceed to compute (in parallel or otherwise) a Delaunay

triangulation for every equivalence class. It is in this step where we see the salient feature:

the number of coteries the most significant factor in the complexity of the computation

5The word coterie is a seldom used synonym of clique, which of course has a distinct meaning in the
context of graphs. Unlike cliques, coteries are disjoint, very elite!

6We can in fact weaken the conditions on Ω futher. We need only the ∂Ω − ∂ conv(Ω) is a union of
polygonal curves.
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(provided the network is connected7).

We make the following general observations about coteries.

Proposition 7.2.1. Given an undirected graph G = (G0, G1) with no loops (i.e., an edge

whose vertices are the same), let C ⊆ G0 be a subset of vertices of G. Then the following

are equivalent.

1. C is a coterie.

2. If q ∈ G0 is connected to C by an edge, then q is connected by an edge to every point

of C (except itself if q ∈ C).

3. For all p, q ∈ C, we have {p, q} ∈ G1 and if {p, r} ∈ G1 for some r ∈ G0 − {p, q}, then

{q, r} ∈ G1 as well.

Proof. Recall that coteries are equivalence classes of the relation ∼ given by p ∼ q if and

only if the p-th and q-th rows of A + I are identical where A is the adjacency matrix of G.

Let’s show first that 1 implies 2. Assume C is a coterie and say apr = 1 for some p ∈ C and

r ∈ G0. Since C is a coterie, it must be that also aqr = 1 for all q ∈ C. If r 6∈ C, this shows

that r is connected to every point of C. If r ∈ C, then this shos that r is connected to every

other point of C by an edge (although not itself because arr = 1 only due to I fixing the

diagonal). That 2 implies 3 is obvious. Finally, assueme 3. Let p, q ∈ C. We need to verify

that apr = aqr for all r ∈ G0. But this exactly out assumption if r 6∈ {p, q}. Otherwise, since

G has no loops, app = aqq = 1. By assumption apq = aqp = 1.

Note that the above is equally true if one allows looped edges in G provided we define our

equivalence relation over A∨ I where ∨ is the bitwise OR operation. (Clearly, A∨ I = A+ I

is the loop-free case becuase the diagonal of A is zero.)

Corrolary. Every coterie is a clique.

7it is not hard to construct examples where the number of equivalence classes is maximal but where also
every vertex is isolated so the triangulations are trivial.
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I

Complete graph over P .

p q

r

s

A+ I =


p q r s

p 1 1 1 0
q 1 1 1 0
r 1 1 1 1
s 0 0 1 1



II

Remove edge {p, q} if η{p, q} ∩ ∂Ω 6= ∅.

III′

For each class [p] construct the graph G[p] from the neighbors of [p] in II.

IV

Construct the standard Delaunay triangulation T[p] over each vertex set G0
[p],

V

For each class [p], take G[p] ∩ T[p] with all (directed) edges exiting p and
take the union of digraphs over all classes.

Figure 11: Directed Delaunay network reduced construction



The obvious question to ask is how significant an improvement does the modified algo-

rithm represent over the original? Moreover, is the number of equivalence clases a quantity

of independent interest? To explore the first question, consider the following two-room ex-

periment. Let Ω be the square (−1, 1)2 bisected by a (zero thickness) partition parallel to

two sides. Allow a gap at the center of the divider whose width is some fraction δ of the

square’s side length. That is, Ω = (−1, 1)2 \Dδ where Dδ = {0} × ([−1,−δ] ∪ [δ, 1]). Thus,

Ω consists of two rooms with a doorway between them. Note that Dδ ⊂ ∂Ω. Now fix n and

consider random sets P of n generators.

Two observations are immediate. If δ = 1, i.e. the doorway fills the entire wall, the

situation reduces to the convex case and the number of coteries is exactly one for all P . At

the other extreme, if δ = 0, the domain becomes disconnected and each component is convex

so the number of coteries is exactly two for all P . For intermediate values of δ, on the other

hand, we expect many coteries! It certainly is not clear whether the extremes correspond

to continuous limits in any natural sense but it seems reasonable that they should. In the

intermediate case we have great visibility between the left and right rooms on account of the

wide doorway but also we have significant occlusion due to the large walls. As δ increases,

occlusion diminishes and as δ decreases, visibility diminishes.

For n = 100, probing over P from the uniform distribution and from a quasi-random

process (see Figure 12) yield the same results. Histograms over 10,000 configurations are

shown for different values of δ in Figure 13 and Figure 14. For uniformly distributed gen-

erating sets, even for the least favorable values of δ, the mean number of coteries is about

15% less than than the number of generators n. We believe this result is generic for some

appropriately nice domains and generator distributions. Conversely, one might assume the

mean number of coteries (as a fraction of n, say) over appropriate distribtions of generators

as a “niceness” measure of the domain. The coterie statistics for the two-room experiment

in particular have a notable feature. Letting δ approach its extreme values, we find not only

that the mean decreases but also strong preferences emerge for the parity of the number of
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(a) Generating set P from uniform distribu-
tion.

(b) Quasi-random generating set P .

Figure 12: Example initializations for the two-room experiment. Here δ = 0.1.

coteries. As δ → 1, even numbers of coteries become much rarer than odd and the opposite

holds as δ → 0. Moreover, in all cases, the even and odd histograms individually look like

bell curves with the diminished one of the two having the higher mean. The quasi-random

configurations perform slightly worse in the sense that the mean number of coteries is higher

in the unfavorable δ range but this is to be expected as “clumping” should promote larger

(and hence fewer) coteries. The same qualitative distributions also apprear for the analogous

experiment in a circular domain. This shows that the apparent difference between the rate of

convergence to each of the extreme cases is not due to shape effects of the square. The profile

of distributions over the entire range of δ does change subtantially with n. In particular, for

smaller n, the unfavorable range shrinks.

Although the algorithm for computing the DDN is costly, it is also highly parallelizable.

With the fast preprocessing step of computing the coteries, the rest of the construction

may be executed in O(n log n)-time on O(k) processors where k is the number of coteries.

The feasibility of this algorithm depends very strongly on the domain under consideration.

Consider the corner experiment in contrast to the two-room experiment. Here the domain is
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Figure 13: Number of coteries over 10,000 generating sets P drawn from the uniform distri-
bution where n = 100. The unfavorable range roughly 0.1 ≤ δ ≤ 0.4 is characterized by a
very high mean (≈ 80). As δ moves outside this range however, the mean number of coteries
drops radically. As δ → 1, even numbers of coteries become exceedingly rare and as δ → 0,
odd numbers become rare.

Ω = [0, 1]\ [0, δ] where δ ∈ [0, 1] represents a kind of aspect ratio. Here, we consider consider

denisty of 133.33 generators per unit area (corresponding to 100 agents when δ = 1
2
) and

vary δ. See Figure 15. The histograms are shown in Figure 16. Here, in all cases, considering

only coteries rather than all generators represents a huge savings.

7.3 The DDN dual diagram and VTP implementation

To define the Voronoi analog dual to the DDN, we need the notion of visibility subsets.

Definition 7.3.1. If Ω ⊆ R2 is precompact and p ∈ Ω, we define the visibile part of Ω from

p by Ω|p = {q ∈ Ω : pq ⊂ Ω}. If Ω is a polygon, then Ω|p is called the visibility polygon

inside Ω from p.

Lemma 7.3.1. If Ω ⊆ R2, then Ω|p =
⋃
{C ⊆ Ω : p ∈ C and C convex}. for all p ∈ Ω.

Proof. The proof is elementary. If q ∈ Ω|p, then by definition pq ⊂ Ω. But p ∈ pq and pq
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Figure 14: Number of coteries over 10,000 quasri-random generating sets P where n = 100.
Notice the same qualitative features as the uniformly distributed samples.

is convex and therefore C = pq witnesses the union. Since q ∈ pq, this shows Ω|p ⊆
⋃
{C ⊆

Ω : p ∈ C and C convex}. On the other hand, if q belongs to the union of convex sets, then

q and p both belong to some convex set C ⊆ Ω. Then by convexity, pq ⊆ C ⊆ Ω and

q ∈ Ω|p.

The directed Delaunay network gives us a particular analog of the Voronoi diagram which

we call the directed Delaunay dual diagram and denote by DDN∗(P ). It is a collection of

regions {Vp}p∈P defined as follows. We say that q is a directed Voronoi neighbor of p if p→ q

in DDN(P ). For every p ∈ P , we define the proto-cell Ṽp to be the (standard) Voronoi cell

about p in R2 generated by p and its directed neighbors. Then Vp = Ṽp ∩ Ω|p. Figure 17

shows the DDN dual diagram for the continuing example. The diagram lacks many of the

desireable properties of the standard Voronoi diagram. In general, cells overlap and their

union need not be all of Ω. However, it is very natural in the sense that Vp is precisely the

standard Voronoi cell about p in Ω|p generated by P ∩ Ω|p, which is all p “knows about”.

Clearly, certain properties of the DDN∗(P ) cells require computation of Ω|p for arbitrary

p ∈ P . The literature on computing visibility polygons is quite rich (c.f. [18]). However,
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(a) Generating set P from uniform distribu-
tion with δ = 0.4.

(b) Generating set P from uniform distribu-
tion with δ = 0.7.

Figure 15: Example initializations for the corner experiment.

even in the case of simple polygons, to do this for every generator will be costly (O(nm) where

m is the total number of vertices of Ω). Instead, we can modify VTP to avoid computation

of the DDN∗(P ) cells all together. Implementation of VTP with the speed scales ρi given

by Equation (17) only requires computation of the proto-cells Ṽi. We then need to find the

intersections of the ray {xi + lui : l ≥ 0} with ∂Ṽ ∪ ∂Ω. The intersection closest to xi will

necessarily lie in Ω|xi since, by definition, there are no boundary points of Ω between this

intersection and xi.

Aside from this, VTP works just as in convex domains but everywhere we considered

Voronoi neighbors before, we now consider directed Voronoi neighbors. The normalization

factor #Ni/6 appearing in the alignment term still applies—even through we cannot say

anything about the average number of directed Voronoi neighbors—because of the guiding

principle: every agent behaves as if its Voronoi diagram is standard.
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Figure 16: Number of coteries in the right-angle corner domain over 10,000 random gener-
ating sets P where n/Area(Ω) = 133.33 for all δ.

7.4 Summary

We have examined the challenges of extending the VTP framework to non-convex domains

and presented a novel generalization fo the Delaunay triangulation, the directed Delaunay

network, as a solution. Although the DDN is motived by the crowd modelling problem, its

structure and corresponding dual structure may be of much broader applicability and inter-

est, like most Voronoi/Delaunay generalizations. Moreover, the DDN construction suggests

a handful of compelling avenues of research including the following. For the application to

VTP simulation, we hope to develop a GPU (graphics processing unit) algorithm for com-

puting DDNs leveraging the highly parallelizable nature of the construction. The notion of

coteries in a geometric graph which arises in the DDN construction is also potentially of

broader interest in problems (like VTP) involving physically distributed nodes with possibly

obstructed communications. We have here presented a brief study of the coterie proper-

ties of such networks with random and quasi-random nodes in the two-room and corner

experiments.
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Figure 17: Directed Delaunay dual diagram DDN∗(P ).

A Lemmas

Lemma A.0.1. Let V ⊆ R2 be a measurable set and let p ∈ R2. Define S(φ) to be the half

plane whose boundary contains p and whose inward normal makes an angle φ with some

fixed reference line, say, the horizontal (inclusion of boundary points is irrelevant). Then,

the average measure of V ∩ S(φ) over φ ∈ [0, 2π) is half the measure of V .

Proof. Without loss of generality, take p to be the origin. Let | · | denote measure. Notice

that S(φ) and S(φ+ π) overlap on a set of measure zero for all φ and S(φ)∪S(φ+ π) is the
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entire plane up to a set of measure zero. Then the average measure of V ∩ S(φ) is given by

1

2π

∫ 2π

0

|V ∩ S(φ)| dφ =
1

2π

(∫ π

0

|V ∩ S(φ)| dφ+

∫ 2π

π

|V ∩ S(φ)| dφ
)

=
1

2π

∫ π

0

(
|V ∩ S(φ)|+ |V ∩ S(φ+ π)|

)
dφ

=
1

2π

∫ π

0

|V ∩ (S(φ) ∪ S(φ+ π))| dφ

=
1

2π

∫ π

0

|V | dφ

=
1

2
|V |,

as desired.

Lemma A.0.2. If Ω is a compact, connected 2-manifold without boundary of Euler char-

acterisic χ ≥ 0, then the average number of Voronoi edges per Voronoi cell in a Voronoi

diagram is at most 6 (expect possibly for degenerate configurations).

Proof. Let v, e, and n be the total numbers of vertices, edges, and cells respectively in a the

Voronoi diagram. Assume that every edge has exactly two vertices (this is the nongeneracy

assumption8) so that 2e ≥ 3v. By definition v − e + n = χ. Combining these we have that

e ≤ 3(n − χ). Then, since every edge belongs to exactly two cells, the average number of

edges per cell obeys

2e

n
≤ 6(n− χ)

n
= 6− χ

n
< 6.

Lemma A.0.3. The average number of neighbors per Voronoi cell in a Voronoi diagram in

a compact domain Ω ⊂ R2 is at most six.

Proof. Let v and n be the total numbers of vertices and cells respectively in the Voronoi

diagram. Let e be the number of edges where two Voronoi cells meet and eb be the number

8the only degenerate configurations in the sphere are those with fewer than three generators. In the torus,
the only degenerate configurations are those in which all generators lie on a single minimal geodesic in which
case the edges will be parallel and closed, having no vertices.
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of boundary edges, i.e., edges where a Voronoi cell meets the boundary of Ω. Since every

edge has exactly two vertices and at least three edges meet at every vertex, 2(e + eb) ≥ 3v.

Recall that the Euler characteristic of the plane is 2 so v− (e+ eb) + (n+ 1) = 2, where the

n+1 accounts for the one (unbounded) face R2\Ω to complete the planar graph. Combining

these we have that e + eb ≤ 3(n − 1). Then, the average number of neighbors per cell is

exactly twice the number of non-boundary edges divided by the number of Voronoi cells and

obeys

2e

n
≤ 2(e+ eb)

n
≤ 6(n− 1)

n
= 6− 6

n
< 6.

Lemma A.0.4. For all X ∈ Ωn and U ∈ R2n,

1

n

∑
i

|fi(X,U)|
ρi(X,U)

=
1

n

∑
i

|σihi + σiui + νai|
biσi + σi + ν

≤ 2 + ν

1 + ν
.

Moreover, if bi = 1 for all i, this bound is tightened to 1.

Proof. From thier definitions, it is clear that |hi|, |ui|, and |ãi| are all at most 1. So,

1

n

∑
i

|σihi + σiui + νai|
biσi + σi + ν

=
1

n

∑
i

|biσiĥi + σiui + νϕiãi|
biσi + σi + ν

≤ 1

n

∑
i

biσi + σi
biσi + σi + ν

+
1

n

∑
i

νϕi
biσi + σi + ν

≤ 1

n

∑
i

biσi + σi
biσi + σi + ν

+
1

n

∑
i

ϕi

=
1

n

∑
i

biσi + σi
biσi + σi + ν

+
1

6n

∑
i

#Ni

≤ 1

n

∑
i

biσi + σi
biσi + σi + ν

+ 1 (21)

where the last inequality follows from Lemma A.0.2. For the remaining sum, consider the
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bi = 0 and bi = 1 cases. If bi = 1, then

biσi + σi
biσi + σi + ν

=
1

1 + ν

and if bi = 0, then

biσi + σi + ν

biσi + σi
=
σi + ν

σi
= 1 +

ν

σi
≥ 1 + ν

so

biσi + σi
biσi + σi + ν

≤ 1

1 + ν
.

So continuing from (21), have

1

n

∑
i

biσi + σi
bσi + σi + ν

+ 1 ≤ 1

1 + ν
+ 1

and we are done. In the special case bi = 1 for all i, we have

1

n

∑
i

|σih̃i + σiui + νãi|
biσi + σi + ν

=
1

n

∑
i

|σihi + σiui + νϕiai|
1 + ν

≤ 1

n(1 + ν)

∑
i

(σi + σi + νϕi)

=
1

n(1 + ν)

∑
i

(1 + νϕi)

=
1

1 + ν

(
1 +

ν

n

∑
i

ϕi

)
≤ 1

where again, the last inequality follows from Lemma A.0.2.
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B Technicalities concerning vector translations in the

torus

The torus T2
l = R2/lZ2 is not a vector space but despite this, we employ seemingly vector-

like operations on points in T2, including a operator +, a difference operator −. There is

however, no scalar multiplication as there is no “zero vector” in T2. Thus, unlike in a vector

space, the − and + operations function entirely differently. Indeed, − : T2 ×T2 → R2 takes

two points in the torus and gives a vector in R2 (more precisely in [−l/
√

2, l/
√

2]2) while

+ : T2 × R2 → T2 takes a point in T2 and a vector in R2 to give another point in T2. It is

the case that for all x, y ∈ T2, we have x + (y − x) = y but y − x is only one of countably

many vectors with this property.

For real numbers s, we write [s]l for [s]l = lbs/lc. (This may be familiar to programmers

as s%l.) For vectors ξ ∈ Rd, we write [ξ]l = ([ξ1]l, . . . , [ξd]l) for the component-wise operation.

Points in T2
l are by definition lZ2 cosets over the additive group of R2. Thus, for x ∈ T2

l , we

write x̂ ∈ R2 for the unique representative of the coset x in [0, l)2.

Then, the map + : T2
l × R2 → T2

l takes a point in T2
l and a displacment vector in R2 to

yield a new point in T2
l via

x+ ξ = (x̂+ ξ) + lZ2 = [x̂+ ξ]l + lZ2 ∈ T2
l .

Now, the map − : T2
l ×T2

l → R2, gives a partial solution to the inverse problem of finding

a displacement vector ξ = y − x between two points such that for all x, y ∈ T2
l , we have

x+ (y− x) = y, as one would expect. This property however only distinguishes a countably

infinte family of vectors. In most cases (in a sense we will make precise momentarily), there

is a unique shortest possibility. With this in mind, we write

‖x− y‖ = min
a∈lZ2
‖x̂− ŷ + a‖R2 = min

a∈{−1,0,1}2
‖x̂− ŷ + la‖R2 . (∗)
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The last equality can easily be seen to follow from the fact that x̂ and ŷ belong to [0, l)2. So

x̂ − ŷ ∈ (−l, l)2 and shifting by ±kl in either component for k ≥ 2 can only put us further

from the origin, increasing the magnitude. If (∗) has a unique minimizer a∗, then we define

x− y = x̂− ŷ + la∗ ∈ R2, a∗ ∈ arg min
a∈{−1,0,1}2

‖x̂− ŷ + la‖R2

Indeed, for all x, y ∈ T2
l ,

y + (x− y) = y + (x̂− ŷ + la∗)

= (ŷ + x̂− ŷ + la∗) + lZ2

= (x̂+ la∗) + lZ2

= x̂+ lZ2

= x

The question remains, for which r ∈ R2 does the minimization problem arg min
a∈{−1,0,1}2

‖r+la‖R2

fail to have a unique solution? To get a feel for this, suppose r = (0, l/2). Then we find

arg mina∈{−1,0,1}2‖r + la‖R2 = {(0, 0), (0,−1)} because ‖r + (0, 0)‖R2 = ‖r − (0, l)‖R2 = l/2.

This reflects the fact that there are two shortest displacements to translate (0, 0) + lZ2 to

(0, l/2) + lZ2, namely translation by (0, l/2) = r + (0, 0) or by (0,−l/2) = r − (0, l).

To answer this question, consider the following. For two points ξ, ξ′ ∈ R2, let J(ξ, ξ′) be

the set

J(ξ, ξ′) = {ζ ∈ R2 : ‖ζ + ξ‖ = ‖ζ + ξ′‖}

such that for ζ ∈ J(ξ, ξ′), the translates ζ + ξ and ζ + ξ′ are equal in magnitude. We can
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find an explicit form for J(ξ, ξ′) as follows.

ζ ∈ J(ξ, ξ′) ⇐⇒ ‖ζ + ξ‖ = ‖ζ + ξ′‖

⇐⇒ ‖ζ + ξ‖2 − ‖ζ + ξ′‖2 = 0

⇐⇒ 2ζ · (ξ − ξ′) + ‖ξ‖2 − ‖ξ′‖2 = 0.

Thus, J(ξ, ξ′) is a line for all ξ 6= ξ′.

Clearly, if a∗, b∗ are distinct solutions of arg mina∈{−1,0,1}2‖ζ+la‖, then we have ‖ζ+la∗‖ =

mina∈{−1,0,1}2‖ζ + la‖ = ‖ζ + lb∗‖ so therefore ζ ∈ J(la∗, lb∗). Thus, we have a nessesary

condition on ζ for the existence of distinct solutions of arg mina∈{−1,0,1}2‖ζ + la‖, namely

that ζ ∈ J(la, lb) for some a, b ∈ {−1, 0, 1}2. That is

ζ ∈
⋃

a,b∈{−1,0,1}2
a6=b

J(la, lb).

The germane observation here, is that the set on the right hand side is a union of
(

9
2

)
= 36

lines in the plane (becuase J(ξ, ξ′) is symmetric in ξ and ξ′).

So we have that x−y for x, y ∈ T2
l is well-defined except possibly if x̂−ŷ ∈

⋃
a,b∈{−1,0,1}2

J(la, lb).

Denote S = [0, l)2 × [0, l)2 ∼= [0, l)4 ⊂ R4. Then

M =
{

(u, v) ∈ S : u− v ∈
⋃

a,b∈{−1,0,1}2
a6=b

J(la, lb)
}

=
⋃

a,b∈{−1,0,1}2
a6=b

{
(u, v) ∈ S : u− v ∈ J(la, lb)

}

=
⋃

a,b∈{−1,0,1}2
a6=b

{
(u, v) ∈ S : 2(u− v) · (a− b) + l(‖a‖2 − ‖b‖2) = 0

}
.

Writing (u, v) = (u1, u2, v1, v2), the equations defining each of the 36 sets in the above union

all take the form C1(u1 − v1) + C2(u2 − v2) = C for real constants C,C1, C2 (depening on
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a and b) where C1 and C2 are not both zero (because a 6= b), and thus define 36 smooth

three-dimensional hypersurfaces in S.

C Alternate metrics

C.1 Ray-marching algorithm for computing approximate Voronoi

diagrams in arbitrary metrics

In many discretized Voronoi algorithms, the domain is rasterized, every pixel is scanned, its

metric distance to generators determined, and its Vonoroi cell determined.

The algorithm presented here offers an alternate approach. The result is still an ap-

proximation of the true Voronoi diagram but we do not rasterize the domain. Instead, the

proceedure locates approximate points on the Voronoi edges within a user-specified tolerance

(bounding both their distance from the true Voronoi edge and from each other). The essen-

tial idea is to emanate rays from each generator at constant speed9 in the metric with respect

to which we define the Voronoi diagram. We stop pairs of rays from different generators if

they come suffiently near each other. Both points where rays have halted are taken to lie

on the approximate Voronoi edge. The details involve setting the angular resolution of the

emanating rays so that they are sufficiently dense when appraoching the true Voronoi edges

that the “collisions” are detected.

In more detail, we have a differentiable metric d, the generators x1, . . . , xk, and the

tolerance ε > 0. We compute the angular tolerance δ > 0 which depends on ε and diam(Ω)

and a refined tolerance ε̃ dpending on ε and d. We initialize a time parameter t at 0

and compute its increment ∆t which will depend on ε and (partial derivatives of) d. For

each generator xi we initialize “rays” at angles of increment at most δ. Each ray consists

of the identity of its generator, its (fixed) direction, its current (Euclidean) distance from

9Note that we can take the speed of the emanating rays to be 1 without loss of generality becuase changing
this is equivalent to globally rescaling the metric which has no bearing on the Voronoi diagram. The crucial
feature is that the speed is the same for every ray and every generator.
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its generator (initially 0), and its status (propogating or terminated). We then iterate,

propogating all (not yet terminated) rays in their direction with speed 1 as measured in

d over time ∆t. At each iteration, we terminate all rays which have crossed the domain

boundary or are within d-distance ε̃ of a ray from a different generator.

We need to determine bounds on ∆t and δ to ensure that (1) no ray propogates more

than a distance ε̃ in d each iteration and (2) rays are dense enough that they pass within

ε̃ or each other near Voronoi edges. Further ε̃ itself must be bounded so that the resulting

points are within ε in the Euclidean metric of the Voronoi edges.

For each generator i and direction α, let nα be the unit vector in the direction (indexed)

α and define the function uiα : [0, b]→ [0,∞) where b = sup{b′ ≥ 0 : xi + b′nα ∈ Ω} by

uiα(s) = d(xi, xi + snα).

That is, uiα(s) gives the d-distance from xi of the (i, α) ray after propogating a Euclidean

distance s. The speed constraint on all rays amounts to varying the argument s with t so

that

1 =
d

dt
uiα(s(t)) = ṡu′iα(s)

is satisfied for each i and α. Rewrtting, we have the (independent) nonlinear ordinary

differential equations

ṡiα =
1

u′iα(siα)
, siα(0) = 0 ∀i, α

defining the growth paramters siα. These equations give us a bound on ∆t as the quantity

s(t+ ∆t)− s(t) =

∫ t+∆t

t

ṡ(τ) dτ ≤ ∆t
(
inf
j,β

inf
s∈domujβ

u′jβ(s)
)−1

=: ∆s

must satisfy

sup
‖x−y‖≤∆s

d(x, y) ≤ ε̃
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to meet condition (1). If d is homogeneous and translation invariant, then it metrically

equivalent to the Euclidean distance d2 and there are positive constants c, C such that

cd ≤ d2 ≤ Cd. Then the above becomes

ε̃ ≥ sup
d2(x,y)≤∆s

d(x, y) ≥ 1

C
sup

d2(x,y)≤∆s

d2(x, y) =
1

C
∆s =

1

C
∆t
(
inf
j,β

inf
s∈domujβ

u′jβ(s)
)−1

and

∆t ≤ Cε̃ · inf
j,β

inf
s∈domujβ

u′jβ(s)

Writing Ux : Ω→ [0,∞) by Ux(y) = d(x, y), we may strengthen the bound on ∆t to

∆t ≤ ε · inf
x,y∈Ω
‖∇Ux(y)‖ ≤ ε · inf

j,β
inf

s∈domujβ
u′jβ(s)

if the infimum on the left is more convenient than the one on the right. It may seem

counterintuitive that we require inf u′jβ > 0 over the whole domain so let’s make sure we

understand why this is so. If along some ray, ujβ increases very slowly, then unit speed

propogation of the ray with respect to d amounts to relatively fast propagation with respect

to the Euclidean distance and thus, forces shorter time steps to keep the Euclidean step

length small. So the more slowly ujβ increases, the smaller ∆t must be.

the bound on δ is more complicated. to see where it arises, we need that for every

point y on a Voronoi edge, rays from each neighboring generator pass within ε̃ of y and of

each other simulataneously and, secondly, that whenever two rays from distinct generators

simultaneously pass within ε̃ of each other, they are each within ε̃ of the corresponding

Voronoi edge.

We use latin indices i, j, . . . for generators and greek indices α, β, . . . for ray directions

(that is, greek letters index the angles at increments of at most δ). Generator-direction

pairs (i, α) are then in correspondence with rays. For each generator-direction pair (i, α)

let rtiα ∈ Ω be the point in direction α from its generator xi where d(xi, r
t
iα) = t. Also let
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−→riα = {rtiα : t ≥ 0} be the entire (i, α) ray. Suppose then that at iteration T , the (i, α) ray

and the (j, β) ray are within ε̃ of each other in d, that is, d(rT∆t
iα , rT∆t

jβ ) < ε̃. Then

d(xi, r
T∆t
jβ )− d(xj, r

T∆t
jβ ) ≤ d(rT∆t

iα , rT∆t
jβ ) + d(xi, r

T∆t
iα )− d(xj, r

T∆t
jβ )

= d(rT∆t
iα , rT∆t

jβ ) + T − T

≤ ε̃

and

d(xj, r
T∆t
jβ )− d(xi, r

T∆t
jβ ) ≤ d(xj, r

T∆t
jβ )− (d(xi, r

T∆t
iα )− d(rT∆t

iα , rT∆t
jβ ))

= T − T + d(rT∆t
iα , rT∆t

jβ )

≤ ε̃

so |d(xi, r
T∆t
jβ )−d(xj, r

T∆t
jβ )| ≤ ε̃. Then by continuity of the metric, rT∆t

jβ is within ε̃ (w.r.t. d)

of the curve Γij = {z ∈ Ω : d(xi, z) − d(xj, z) = 0} which contains the ij Voronoi edge.

Knowing then that rT∆t
jβ is within ε̃ of Γij, it is either within ε̃ of the ij Voronoi edge or it is

in a Voronoi cell other than i or j’s. But in the latter case we have the following. If rT∆t
jβ lies

in a third Voronoi cell k, then it must have already (i.e., at some iteration T ′ ≤ T ) crossed

the jk Voronoi edge, where it would have been terminated upon grazing some (k, γ) ray at a

point rT
′∆t

kγ . So it must be that T ′ = T (since by assumption the ray is still propogating up

to time T ) and rT∆t
iα , rT∆t

jβ , and rT∆t
kγ are all within ε̃ of each other simultaneously, putting

them within ε̃ of the ijk Voronoi vertex. Exactly the same holds for rT∆t
iα .

Now we need to check that every point along a Voronoi edge is seen by some pair of

rays simultaneously. Here it will be crucial to distinguish not only between d- and Euclidean

distances but also between derived figures such as circles and balls.
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For all r > 0, define the quantities

mr := inf{d2(x, y) : x, y ∈ Ω, d(x, y) ≥ r},

Mr := sup{d2(x, y) : x, y ∈ Ω, d(x, y) ≤ r}.

Note that mr ≤Mr for all r. This is because otherwise, if Mr < mr, then fix Mr < a < mr.

By defintion of Mr and mr, pairs of points in Ω achieve d2 separations in both intervals

(Mr, a] and [a,mr). By convexity then, there are points x, y ∈ Ω where d2(x, y) = a. But

then, since d2(x, y) = a < mr, necessarily d(x, y) < r and, similarly, since d2(x, y) = a > Mr,

we have d(x, y) > r and we have a contradiction.

Now, fix y ∈ Ω on the ij Voronoi edge, say. Consider the continuous pulse fronts

Φt
i = {z ∈ Ω : d(xi, z) = t}. Let t∗ = d(xi, y) = d(xj, y). Let T be the greatest integer such

that T∆t ≤ t∗ and write yi ∈ ΦT∆t
i ∩xiy (this intersection contains exactly one point) and yj

similarly. We can take ∆t small enough that ∆s ≤ mε̃/4. Then d2(yi, y) < ∆s ≤ mε̃/4. The

ray (i, α) nearest to yi is at an angular separation of θ ≤ δ/2. Since d(xi, r
T∆t
iα ) = d(xi, yi) =

T∆t, we have by Lemma C.1.1 that d2(rT∆t
iα , yi) ≤ diam(Ω)2K( δ

2
, κ) so long as δ/2 < arcsin 1

κ

where κ is the condition number of d. By choosing δ small enough, we can make this as

small as we like, in particular, so that d2(rT∆t
iα , yi) ≤ mε̃/4. Doing the same for j, we have

by the triangle inequality

d2(rT∆t
iα , rT∆t

jβ ) ≤ d2(rT∆t
iα , yi) + d2(yi, y) + d2(y, yj) + d2(yj, r

T∆t
jβ )

<
mε̃

4
+
mε̃

4
+
mε̃

4
+
mε̃

4

= mε̃

for some α and β. By definition then, d(rT∆t
iα , rT∆t

jβ ) < ε̃, as desired. Finally we must take ε̃

so that Mε̃ ≤ ε.

Considering the runtime, beacuse rays propogate at unit speed with respect to d, each
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ray travels a d-distance of ∆t each step and the total number of iterations is at worst

diamd(Ω)/∆t where diamd(Ω) = supx,y∈Ω d(x, y). The number of rays emanating from each

generator is 2π/δ and at each iteration t, we must compute for every ray (i, α) the integral∫ t+∆t

t
ṡiα(τ) dτ . Say this problem takes computation time M . Finally, we need to find the

n-th nearest neighbors in d among all k · 2π/δ propogating rays to test the termination

condition. (If we can dominate d by some scaling of the Euclidean metric, we can speed

up this step but at the cost of a tighter tolerance ε̃ which will multiplicatively increase the

number of comparisons we must perform. The best way to do this depends entirely on the

ease of evaluating d.) The main draw of this algorithmic approach is that one only needs

global informatino about the metric during the preprocessing stages when computing the

condition number in order to determine the angular resolution δ. During the execution of

the ray-marching phase, only local information—the partial derivative of the metric and

presence of other rays sufficiently nearby—is required.

One might point out that the standard rasterization approach to computing approximate

Voronoi diagrams locates the approximate interiors of Voronoi cells as well as edges while the

algorithm presented above only locates edges. To locate interiors, we need only the following

simple modification. At each iteration, after checking the termination conditions on each

ray, if the ray is not yet terminated, assign its generator to its current location. At the end,

every point where a ray was checked will have been assigned a generator or become an edge

point. Interestingly, unlike the rasterization approach, the resolution of the resulting image

will not be constant but rather, will be highest at the generators and maintain constant

angular resolution about each generator within its Voronoi cell. The resolution of the image

is as good or better than one dot per area ε2 everywhere.

Lemma C.1.1. Suppose Ω ⊂ R2 is compact, convex, and 0 ∈ Ω. Further assume Ω is

equipped with a metric d : Ω → Ω that is continuously differentiable in each argument

(except possibly where d = 0) and satisifies the well-conditioning condition described below.

Then if θ > 0 is sufficiently small, there is a constant K depending only on d, θ, and diam2(Ω)
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such that if y, y′ ∈ Ω are d-equidistant from the origin and have angular separation at most

θ (with respect to the origin), then ‖y − y′‖ ≤ K.

Proof. Write ϕx(y) = d(x, x + y) for the univariate function obtained by fixing the first

argument of d (and translating the second so that ϕx(0) = 0) and define

G = sup
x∈Ω

sup
y∈(Ω−x)\{0}

‖∇ϕx(y)‖ and g = inf
x∈Ω

inf
y∈(Ω−x)\{0}

∂rϕx(y)

where ∂r denote the partial derivative in the radial direction. Note that G is finite because

∇ϕx is continuous and Ω is compact. That g > 0 is the well-conditioning requirement

mentioned above. Then, if d is well-conditioned, write

κ =
G

g
.

In the following, we take x = 0 so that ϕx(y) = ϕ0(y) = d(0, y) for all y. We have defined ϕx

more generally so that the bound we prove is translation invariant. That is, because G and

g do not depend on x, we may take the origin to be any point of Ω and the derived bound

will hold. Let y and y′ in Ω with angular separation θ > 0 and ϕ0(y) = ϕ0(y′). Assume

‖y′‖ ≥ ‖y‖. Define

h := ‖y′‖ − cos θ‖y‖ = ‖y′ − projy′(y)‖.

We would like to find an explicit upper bound for h in terms of ‖y‖, θ, and κ. We will then

weaken this bound so as not to depend on ‖y‖ then derive a bound on ‖y−y′‖ from it. First,

let’s explain intuitively why the bound on h ought to exist given the assumptions. Using

differentiability and the fact that ϕ0 has no stationary points (because g > 0), the Mean

Value Theorem guarantees a point w∗ between y and y′ where ∇ϕ0(w∗) is perpendicular to

y′ − y. So by increasing h, the orientation of y′ − y becomes closer to radial and therefore

∇ϕ0(w∗) closer to tangential. If θ is small enough, then eventually the gradient at w∗ is so

close to being tangential that its radial component cannot remain larger that g without its
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own magnitude exceeding G. With this in mind, let us treat the proof in detail.

Let R = ‖y‖. Let w(φ) for φ ∈ [0, θ] parametrize the segment yy′ so that the angle

between w(φ) and y is φ. By the Mean Value Theorem, there is some φ∗ ∈ [0, θ] such that

w∗ := w(φ∗) satisfies ∇ϕ0(w∗) · (y − y′) = ϕ0(y) − ϕ0(y′) = 0. By assumption, y − y′ 6= 0

and because ‖∇ϕ0‖ ≥ g everywhere, ∇ϕ0(w∗) 6= 0. Therefore, ∇ϕ0(w∗) is perpendicular to

y − y′. Let n be the unit normal to
←→
yy′ which points away from the origin at w∗ and let

r(φ) = w(φ)/‖w(φ)‖ be the unit vector in the radial direction at w(φ) and let α(φ) be the

angle between n and r(φ). See the diagram below. We have just shown that at w∗, the angle

α∗ = α(φ∗) is given by cos(α∗) = ∂rϕ0(w∗)
‖∇ϕ0(w∗)‖ ≥

g
G

= κ−1. We will show that if h is too large,

this inequality will fail for all α(φ).

R

0
R sin θ

projy′(y)

θ

R cos θ

h
y′

y

w(φ)

φ

α(0)

α(θ)

α(φ)w∗

∇ϕ0(w∗)

w∗ ∂rϕ0(w∗)
α∗

Figure 18: Diagram for the proof of Lemma C.1.1. By the Mean Value Theorem, for all h,
there exist some w∗ on yy′ for which we have the situation depicted at the top right. The
Mean Value Theorem and the finite condition number of d therefore impose a bound on α∗,
and thus on h and ‖y − y′‖.

Consider the right triangle Σ formed by 0, y, and projy′(y). Again, the angle at 0 is θ

and the sides incident to 0 are of length ‖y‖ = R and ‖projy′(y)‖ = R cos θ + h. Demand

θ < π/2. If 0 ≤ h ≤ R tan θ sin θ, then it is easy to see that Σ is not obtuse and therefore the

altitude from the vertex at 0 intersects the opposite side. At this point of intersection, α = 0.

So in order to violate the bound cos(α) ≥ κ−1 on the whole segment, we need only consider

h > R tan θ sin θ, for which Σ has an obtuse angle at y. For h in this range, the angle at y
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is obtuse and α increases monotonically as we move from y to y′, precisely, α(φ) = α(0) + φ

for all φ ∈ [0, θ]. To meet our condition then, we need that only the lower bound for α(0).

So it suffices to ensure cos(α0) < κ−1 where α0 = α(0). Notice that α0 = γ − π
2

where

γ is the internal angle of our triangle at y. Hence cos(α0) = sin γ = ‖y′‖
‖y−y′‖ sin θ by the

law of sines. But also, using the right triangle formed by y, projy′(y), and y′, we see that

‖y − y′‖2 = h2 +R2 sin2 θ. Combining these, we obtain the quadratic

h2(κ2 sin2 θ − 1) + h2κ2R cos θ sin2 θ +R2 sin2 θ(κ2 cos2 θ − 1) < 0

in h. Provided θ is small enough that the second-degree coefficient κ2 sin2 θ − 1 is negative,

then we will satisfy this inequality for all h > h∗ where h∗ is the larger root of the quadratic

gvien by

h∗ = R sin θ
κ2 cos θ sin θ +

√
κ2 − 1

1− κ2 sin2 θ

To recap, provided θ < arcsin 1
κ
, if h > h∗, then

h2(κ2 sin2 θ − 1) + h2κ2R cos θ sin2 θ +R2 sin2 θ(κ2 cos2 θ − 1) < 0

=⇒ κ2(h+R cos θ)2 sin2 θ < h2 +R2 sin2 θ

=⇒ κ2‖y′‖2 sin2 θ < ‖y − y′‖2

=⇒ ‖y′‖
‖y − y′‖

sin θ <
1

κ

=⇒ sin γ <
1

κ

=⇒ cosα0 <
1

κ

=⇒ cos(α(φ)) <
1

κ
for all φ ∈ [0, θ].

This contradicts the mean value theorem which ensures cosα∗ ≥ 1
κ
. So h cannot exceed the

critical value h∗ = R(
√
κ2 − 1 θ + κ2θ2 + O(θ3)). Recalling that R = ‖y‖ by definition, we

can weaken this bound by replacing R by diam(Ω) for a global result. That is, regardless of
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‖y‖, we have the upper bound

h < hgl = diam(Ω) sin θ
κ2 cos θ sin θ +

√
κ2 − 1

1− κ2 sin2 θ
.

Finally, this gives us a bound on ‖y − y′‖,

‖y − y′‖2 = h2 +R2 sin2 θ

≤ (hgl)2 + diam(Ω)2 sin2 θ

= diam(Ω)2 sin2 θ

((κ2 cos θ sin θ +
√
κ2 − 1

1− κ2 sin2 θ

)2

+ 1

)
= diam(Ω)2(κ2θ + 2κ2

√
κ2 − 1θ2 +O(θ3)).

To complete the proof, we note that the right hand side in an increasing function of θ so the

same bound holds as well for pairs y, y′ with lesser angular separation.
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[24] Daniel Grünbaum. Translating stochastic density-dependent individual behavior with

sensory constraints to an eulerian model of animal swarming. 33(2):139–161, dec 1994.

[25] R.L. Hughes. The flow of large crowds of pedestrians. 53(4-6):367–370, oct 2000.

[26] Roger L. Hughes. A continuum theory for the flow of pedestrians. 36(6):507–535, jul

2002.

[27] Roger L. Hughes. THE FLOW OF HUMAN CROWDS. 35(1):169–182, jan 2003.

[28] A. Jadbabaie, Jie Lin, and A.S. Morse. Coordination of groups of mobile autonomous

agents using nearest neighbor rules. IEEE Transactions on automatic control, 48(6):988–

1001, jun 2003.

[29] Herbert Levine, Wouter-Jan Rappel, and Inon Cohen. Self-organization in systems of

self-propelled particles. Physical Review E, 63(1), dec 2000.

[30] M. Lindhe, P. Ogren, and K.H. Johansson. Flocking with obstacle avoidance: A new

distributed coordination algorithm based on voronoi partitions. In Proceedings of the

2005 IEEE International Conference on Robotics and Automation. IEEE.

[31] Daniela Morale, Vincenzo Capasso, and Karl Oelschläger. An interacting particle system
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