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Reply to Reviewers Comments
Editor:
Please use "sex" rather than "gender" in accordance with Appetite's Guidelines.  
This was corrected throughout the manuscript as requested.

Reviewer 1:
 
General
This is an interesting paper. I believe that the correlations may be sufficiently interesting to merit 
publication, but that the authors do not highlight the weakness of the data strongly enough. 
Thank you for the comments and we hope that the corrected version is more suitable. 

 Major
The main weakness as I understand it is that the key result is not really established. The authors 
write, “Post hoc analysis showed that in the IUGR group there is an increased intake of sugars 
[estimated =4.01, p=0.04] as a function of an increased multi-locus, high DA signaling 
genotype score.” They discuss this as though it is specific to the IUGR children. I believe that the 
key point is whether the DA gene score – intake differs in IUGR and non-IUGR children. It is a 
basic tenet of statistical hypothesis testing that one significant result (sentence above) and one 
non-significant result (non-IUGR group) does not prove that the two are different. If this cannot 
be shown, then it needs to be discussed as a limitation and the data need to be described as 
merely suggestive.
In fact, our main finding shows that the effect of the multilocus score on sugar intake is different 
between IUGR and non-IUGR children, which is demonstrated by the significant interaction 
coefficient [  =-4.56, p=0.042]. The analysis of the simple slopes shows that in IUGR children β
there was a positive association between the genetic score and sugar intake [  =4.01, p=0.04]. β
No association between the multilocus score and sugar intake was seen in non-IUGR children [  β
=-0.54, p=0.60]. 

According to the suggestions, we edited the description of the Results to make them clearer:

“As seen in Table 3, a linear regression analysis showed a significant interaction between IUGR 
status and the multilocus score for sugars intake [  =4.56, p=0.04] during the Snack Test. The 𝛽
effect was specific for sugars as there were no significant interactions observed between IUGR 
status and the multilocus score for complex carbohydrates [  =2.62, p=0.20], fiber [  =0.39, 𝛽 𝛽
p=0.19], protein [  =0.72, p=0.55] or fat [  =0.37, p=0.82]. Simple slopes analysis showed 𝛽 𝛽
that in the IUGR group there was a positive relationship between the multilocus score (DA 
signaling genotype score) and the intake of sugars [  =4.01, p=0.04]. In other words, variations 𝛽
in dopamine signaling capacity were associated with differences in the consumption of sugars in 
IUGR children only. There was no significant effect of the dopamine multilocus genetic score on 
sugars intake in non-IUGR children [  = 0.54, p=0.60], Figure 1 A.”𝛽

Other
 
(line) 6 – Does the first sentence refer to humans or rodents?



We and others have described increased palatable foods in IUGR individuals both in humans 
(Barbieri et al., 2009, Ayres et al., 2012, Lussana et al., 2008, Migraine et al., 2013) and rodents 
(Alves et al., 2015, Dalle Molle et al., 2015, Laureano et al., 2016). This was clarified in the 
abstract. 

35 – Please describe results in past tense throughout.
This was corrected as requested.

102 – No need for a double conditional. Suggest “A potential mechanism linking prenatal growth 
with feeding behavior and postnatal metabolic risk is changes in the central nervous system 
circuitry that underlie palatable food intake.”
Thank you, this was corrected. 

100 – Why not just “eating” (feeding is a behavior, so “feeding behavior” is redundant, and 
“feed” can mean either “provide food for” or “eat food”, whereas “eat” is just the latter. I 
recommend this change throughout.  
This was corrected as requested.

112 – Incentive rewards is only a single reward mechanism, is variously defined, and is not 
crucial to this work. I suggest simply “reward” or “hedonics” here. “Metabolic status” is 
completely unclear here. I would delete it. Perhaps, “…integrates information related to both 
hedonic and homeostatic food stimuli.”
This was corrected as requested.

136 – The last two sentences should be merged as they mean the same thing. The second adds 
only the term “moderate.”
This was corrected as requested.

232 – “Exposed to” should be “offered.” What were the instructions?
This was corrected. As mentioned in the manuscript, mothers were asked to offer a light 
breakfast to participants at home beforehand (milk/bread but not eggs or bacon) and literally 
asked not to share plates or encourage/inhibit the intake of specific foods to avoid influencing the 
children’s choices.

234 – Please give the manufacturers for any processed foods used.
250 – “would have” should be “had.”
254 “orientation” should be “assistance.”
These were corrected as requested.

260 – I do not understand “share plates.” Do you mean not share food chosen by the child?
Mother and child had each a set of plates with the different types of foods on it, and they were 
not supposed to share.

273 – “Various efforts were made…” So the procedure was not standardized in some respects? 
Which? It would be better to identify specific aspects that varied during the course of the 
experiment. I assume this is a minor issue, but would like more details.



Understandably, there were minor variations between the subjects, e.g. the precise time of the 
test start (between 10-11h), some children did not need a cushion, etc. What we mean by this 
sentence is that despite these small inevitable variations we indeed were careful to make this 
experiment as most “natural” and “standard” possible for a 4-year-old child eating a Snack in the 
lab, as well as to register any form of deviance on the charts.

290 – “The genetic model was driven by the biological function.” I have no idea what this 
means; please clarify.
The 5 polymorphisms that compose the genetic score have well defined biological function 
described by molecular studies. In other words, we know the molecular effect of carrying that 
specific polymorphism (increase or decrease dopamine biological function), and this defined the 
choice of these specific gene variants for composing the score. We edited the text to clarify this.

306 – “receipt” is too general. Do you mean sight of, consumption, or what?
It’s consumption, and this was corrected as requested.

337 – should be “Student’s t test” (throughout)
346 – suggest “IUGR was analyzed as a categorical variable (normal or IUGR)” rather than 
“Considering the clinical relevance of IUGR as a vulnerability factor, we opted for
using this variable as categorical in the analysis and for graphing the results in Figure
1.”
372-452-  Please use only past tense to describe results. Do not alternate!
376 – omit “it”
These were corrected as requested.

385, 387 – Do you really mean “simple sugars”? I think this term is not used in a standard way. I 
understand simple sugars to mean monosaccharides, but I assume you mean mono- or 
disaccharides. And what are “simple carbohydrates”? Do you now mean to include 
oligosaccharides (as in high fructose corn syrup)?
In fact, simple sugars and simple carbohydrates were used as synonyms throughout the text. We 
understand that this may be confusing and therefore we corrected it as requested and left only 
“sugars”, “complex carbohydrates” and “fiber”.
 
434 -  Should be “outlier” rather than “influential point.” Is it really an outlier? If you consider 
all the intakes ignoring gene scores, is this point an outlier? (or the low value at gene score 3)?
The point mentioned by us is not the same that the reviewer is referring to. The observation that 
we mention belongs to the IUGR group, and has low genetic score and high intake of sugar 
(Please see Figure 1). This observation is indeed an outlier and an influential point. This was 
clarified in the Results section:

“(…)the graph suggests the existence of one outlier in the IUGR group with low 
multilocus score/high sugar intake. We performed a diagnostic check to see if this observation 
would have an impact on the regression coefficients, using a measure of influence, DFBETAS, 
which characterized it as an influential point. When excluding this subject from the analysis, the 
interaction between IUGR status and the genetic score became significant for total caloric 
consumption ( =58.38, p= 0.04), and remained significant for sugars (  =6.17, p<0.01), but 𝛽 𝛽



not for complex carbohydrates ( =3.70, p=0.08), fiber ( =0.49, p=0.11), protein ( =1.51, 𝛽 𝛽 𝛽
p=0.22), or fat ( =1.24, p=0.46).”𝛽

468 – “Additionally” rather than “accordingly”
543 – “with regard to” rather than “with regards to”
594 – Do not capitalize “Pediatric Care”
Table 2 – should be “p” not “P” to coordinate with rest of manuscript.
Table 4 – Data are reported in a totally unrealistic degree of precision. Please round to 1 kcal, g, 
% (and even that is probably more precise than truly the case).
These were corrected as requested.

Fig 1 – The crucial comparison is whether the two regression lines differ significantly, especially 
in slope. Do they? The figure is unclear due to the many points – I suggest breaking the IUGR 
and non-IUGR into separate scatter plots.
 As explained above, yes, the slopes are significantly different. The figures were adjusted 
according to the request:
Fig 1A



Fig 1 B
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ABSTRACT

Background: We have shown that intrauterine growth restriction (IUGR) leads to increased 

preference for palatable foods at different ages in both humans and rodents. In IUGR rodents, 

altered striatal dopamine signaling associates with a preference for palatable foods. Objectives: 

Our aim was to investigate if a multilocus genetic score reflecting dopamine-signaling capacity 

is differently associated with spontaneous palatable food intake in children according to the fetal 

growth status. Methods: 192 four-year old children from a community sample from Montreal 

and Hamilton, Canada, were classified according to birth weight and administered a snack test 

meal containing regular as well as palatable foods. Intrauterine growth restriction was based on 

the birth weight ratio below 0.85; children were genotyped for polymorphisms associated with 

dopamine (DA) signaling, with the hypofunctional variants (TaqIA-A1 allele, DRD2-141C 

Ins/Ins, DRD4 7-repeat, DAT1-10-repeat, Met/Met-COMT) receiving the lowest scores, and a 

composite score was calculated reflecting the total number of the five genotypes. Macronutrient 

intake during the Snack Test was the outcome. Results: Adjusting for z-score BMI at 48 months 

and sex, there was a significant interaction of the genetic profile and fetal growth on sugar intake 

[   = 4.56, p = 0.04], showing a positive association between the genetic score and sugar intake 𝛽

in IUGR children, and no association in non-IUGR children. No significant interactions were 

seen in other macronutrients. Conclusions: Variations in a genetic score reflecting DA signaling 

are associated with differences in sugar intake only in IUGR children, suggesting that DA 

function is involved in this behavioral feature in these children. This may have important 

implications for obesity prevention in this population.
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ABSTRACT

Background: We have shown that intrauterine growth restriction (IUGR) leads to 

increased preference for palatable foods at different ages in both humans and rodents. 

In IUGR rodents, altered striatal dopamine signaling associates with a preference for 

palatable foods. Objectives: Our aim was to investigate if a multilocus genetic score 

reflecting dopamine-signaling capacity is differently associated with spontaneous 

palatable food intake in children according to the fetal growth status. Methods: 192 

four-year old children from a community sample from Montreal and Hamilton, 

Canada, were classified according to birth weight and administered a snack test meal 

containing regular as well as palatable foods. Intrauterine growth restriction was 

based on the birth weight ratio below 0.85; children were genotyped for 

polymorphisms associated with dopamine (DA) signaling, with the hypofunctional 

variants (TaqIA-A1 allele, DRD2-141C Ins/Ins, DRD4 7-repeat, DAT1-10-repeat, 

Met/Met-COMT) receiving the lowest scores, and a composite score was calculated 

reflecting the total number of the five genotypes. Macronutrient intake during the 

Snack Test was the outcome. Results: Adjusting for z-score BMI at 48 months and 

sex, there was a significant interaction of the genetic profile and fetal growth on sugar 

intake [   = 4.56, p = 0.04], showing a positive association between the genetic 𝛽

score and sugar intake in IUGR children, and no association in non-IUGR children. 

No significant interactions were seen in other macronutrients. Conclusions: 

Variations in a genetic score reflecting DA signaling are associated with differences 

in sugar intake only in IUGR children, suggesting that DA function is involved in this 

behavioral feature in these children. This may have important implications for obesity 

prevention in this population.
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INTRODUCTION

Intrauterine growth restriction (IUGR) refers to a situation in which the fetus 

does not reach its full growth potential during pregnancy (Chatelain, 2000). IUGR 

results from placental dysfunction, which occurs in many prevalent conditions during 

gestation such as infections, hypertension, drug and tobacco exposure, as well as 

under or over nutrition (Nohr, et al., 2005). The prevalence of IUGR is constant 

worldwide, affecting 7-15% of all births independent of regional economic 

development (Organization, 2004).

Epidemiological studies show that impaired fetal growth reflected in low birth 

weight is associated with increased risk for cardiovascular disease (Barker, Winter, 

Osmond, Margetts, & Simmonds, 1989; C. E. Stein, et al., 1996), type II diabetes 

(Hales & Barker, 1992; Phipps, et al., 1993), and increased adiposity (Bettiol, et al., 

2007; Ravelli, Stein, & Susser, 1976) in adulthood. We and others provided evidence 

suggesting that IUGR individuals have altered food preferences from early infancy 

until adult age, favoring the intake of palatable foods that are rich in sugar and/or fat 

(Ayres, et al., 2012; Barbieri, et al., 2009; Lussana, et al., 2008). This “thrifty-eating” 

phenotype could contribute to the development of chronic metabolic dysfunction.

A potential mechanism linking prenatal growth with altered eating and 

postnatal metabolic risk is changes in the central nervous system circuitry that 

underlie palatable food intake. The over-consumption of palatable or ‘rewarding’ 

foods likely reflects an imbalance in the relative importance of hedonic versus 

homeostatic signals (Egecioglu, et al., 2011). Central to the neurobiology of the 

hedonic mechanisms is the mesolimbic dopamine (DA) system, which receives and 

integrates information related to both hedonic and homeostatic food stimuli (Murray, 

Tulloch, Gold, & Avena, 2014).
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We have shown that dopamine-related behaviors such as impulsivity (Silveira, 

et al., 2012) and poor inhibitory control (Reis, et al., 2015; Reis RS, 2016) are 

important moderators of the association between IUGR and altered eating in children 

and adolescents. We also demonstrated that differential dopamine signaling in cortical 

and striatal regions is implicated in the specific adult food preferences associated with 

IUGR in rodents (Alves, Molle, Desai, Ross, & Silveira, 2015; Molle, et al., 2015). 

Based on these various findings, we hypothesized that the exposure to an adverse 

environment culminating in IUGR moderates the association between a multilocus 

genetic score reflecting dopamine functioning and the consumption of palatable foods 

(sugar and/or fat) in preschool children. 

MATERIAL AND METHODS

General Method

We used data from an established prospective birth cohort (Maternal 

Adversity, Vulnerability and Neurodevelopment - MAVAN) (O'Donnell, 2014). The 

study sample included 4-year old children from Montreal (Quebec) and Hamilton 

(Ontario), Canada. Eligibility criteria for mothers included age ≥18 years old, 

singleton pregnancy, and fluency in French or English. Mothers were excluded from 

the study if they had severe chronic illness, placenta previa, a history of incompetent 

cervix, impending delivery, or had a fetus/infant born at gestational age <37 weeks or 

born with a major anomaly. Birth records were obtained directly from the birthing 

units. Dyads were assessed longitudinally, with multiple assessments of both mother 

and child in home and laboratory across the child’s development. Approval for the 

MAVAN project was obtained from obstetricians performing deliveries at the study 

hospitals and by the institutional review boards at hospitals and university affiliates: 
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McGill University, l’Université de Montréal, the Royal Victoria Hospital, Jewish 

General Hospital, Centre Hospitalier de l’Université de Montréal, Hôpital 

Maisonneuve-Rosemont, St Joseph’s Hospital, and McMaster University. Informed 

consent was obtained from the parents/guardians of the participants. 

At 4 years of age children came to the laboratory for various food-related 

tasks, and their standing height, without shoes, was measured (to the nearest 0.1 cm) 

with the use of a stadiometer (Perspective Enterprises, PE-AIM-101, Portage, 

Michigan). Body weight, in light clothing, was measured (to the nearest 0.1 kg) with 

the use of a digital floor scale (TANITA BF625, Arlington Heights, Illinois). Body 

mass index (BMI) was calculated as weight in kilograms divided by height in meters 

squared (kg/m2). We calculated the z-scores for BMI at 48 months according to 

World Health Organization (WHO) standards (WHO, 2006).

Fetal growth restriction definition

The definition of IUGR was based on the birth weight ratio (BWR), namely, 

the ratio between the birth weight and the sex-specific mean birth weight for each 

gestational age for the local population (Kramer, et al., 2001). A BWR of <0.85 was 

classified as IUGR (Kramer, Platt, Yang, McNamara, & Usher, 1999). 

Snack test

Children and mothers were offered a test meal at approximately 10:30 a.m. 

including different types of foods in pre-weighed portions for 30 min: Frosted 

Flakes (Kellogg's), sliced apple, muffin with chocolate drops, 3.25% milk, maple 

syrup flavored baked beans, croissant, cooked egg, cheddar cheese, All Bran  

(Kellogg's), white bread, orange juice (Levitan, et al., 2015; Silveira, et al., 2014). 
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Pre-weighed plates of the different foods were displayed in a buffet to which the child 

had total access. At the end of the session, the remaining foods were weighed again to 

measure the intake. Foods were chosen with the assistance of a nutritionist to 

represent local habitual snack items and to have similar colours (Addessi, Galloway, 

Visalberghi, & Birch, 2005). Mothers were instructed to offer a light breakfast to 

participants at home beforehand and not to share plates or influence the children’s 

choices. Based on the nutritional content of each food and the amount eaten, we 

calculated the amount of fat, carbohydrates and protein ingested (Vozzo, et al., 2003). 

The test meal was eaten in the laboratory, in a 30 m2 room. A table with two sets of 

plates was placed in the center of the room, with chairs for mother and child on both 

sides (facing each other). A cushion was placed on the child’s chair to facilitate 

accessibility of the different foods. Various efforts were made to standardize this 

procedure between subjects. 

Genetic data and multilocus score definition

Saliva samples were collected and genotyping of the DNA was performed 

blind to the children’s behavior and phenotype. The five polymorphisms, later used to 

create the multilocus genetic score, ANKK1/DRD2 markers (rs1800497 [Taq1A]), 

COMT Val158Met (rs4680) SNP, DRD2 rs1799732 [−141delC], DAT1 and DRD4 

VNTRs were amplified with polymerase chain reaction (PCR) techniques with 

primers and conditions previously described(Davis, et al., 2013). The construction of 

the multilocus genetic score was based on the biological functions described in the 

literature and on the approach proposed by Stice et al(Stice, Yokum, Burger, Epstein, 

& Smolen, 2012), who showed that this multilocus genetic composite is positively 

correlated with the degree of activation of different brain regions in response to 
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milkshake intake in contrast to a tasteless solution receipt. In this score, genotypes 

associated with putatively low DA signaling received a score of 0; those associated 

with putatively high DA signaling received a score of 1; intermediate heterozygotes 

received a score of 0.5. Specifically, TaqIA A1/A1 (Noble, Blum, Ritchie, 

Montgomery, & Sheridan, 1991), DRD2-141C Ins/Ins carriers (Jonsson, et al., 1999), 

DRD4-7 repeat carriers (Asghari, et al., 1995), DAT1 10R/10R (Mill, Asherson, 

Browes, D'Souza, & Craig, 2002), and COMT Met/Met (Lachman, et al., 1996) 

genotypes were assigned a score of 0 (“low”); TaqIA A2/A2, DRD2-141C Del/Del 

carriers, DRD4 non 7-repeat carriers, DAT1 9/9 carriers, and COMT Val/Val 

genotypes were assigned a score of 1 (“high”), and DRD2-141C Ins/Del, TaqIA 

A1/A2, DAT 1 9/10 and COMT Met/Val genotypes received a score of 0.5. The 

scores were then summed to create a multilocus composite.

Statistical analysis

Statistical analysis of the baseline characteristics was performed using 

Student’s t-test for continuous data and chi-square test for categorical variables. A 

series of linear regression models were performed to investigate the association 

between fetal growth and the multilocus score as independent variables on the intake 

of the different macronutrients during the Snack Test, adjusting for BMI at the time of 

the test and sex. IUGR was analyzed as a categorical variable (normal birth weight or 

IUGR). Additional analyses were performed adjusting for ethnicity (children 

classified as Caucasians and non-Caucasians). Data were analyzed using the 

Statistical Package for the Social Sciences (SPSS) 22.0 software (SPSS Inc., Chicago, 

IL, USA). Significance levels for all measures were set at p< 0.05.
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RESULTS

One hundred and ninety-two 48-month-old children were classified as IUGR 

or normal birth weight. Children born IUGR or not did not differ in many 

confounders as can be seen in Table 1. Genotype distribution for each gene is 

depicted in Table 2. Hardy-Weinberg equilibrium criteria were met in all cases, 

except for DRD4 7-repeat (p=0.04).

As seen in Table 3, a linear regression analysis showed a significant 

interaction between IUGR status and the multilocus score for sugars intake [  =4.56, 𝛽

p=0.04] during the Snack Test. The effect was specific for sugars as there were no 

significant interactions observed between IUGR status and the multilocus score for 

complex carbohydrates [  =2.62, p=0.20], fiber [  =0.39, p=0.19], protein [  𝛽 𝛽 𝛽

=0.72, p=0.55] or fat [  =0.37, p=0.82]. Simple slopes analysis showed that in the 𝛽

IUGR group there was a positive relationship between the multilocus score (DA 

signaling genotype score) and the intake of sugars [  =4.01, p=0.04]. In other words, 𝛽

variations in dopamine signaling capacity were associated with differences in the 

consumption of sugars in IUGR children only. There was no significant effect of the 

dopamine multilocus genetic score on sugars intake in non-IUGR children [  = 0.54, 𝛽

p=0.60], Figure 1 A.

See figure 1. 

Figure 1B depicts the data for total calories consumed during the Snack Test 

in IUGR and non-IUGR children. Although there were no significant interactions 

between IUGR and the multilocus genetic score on total caloric intake as seen in 

Table 3 [  =35.82, p=0.21], the graph suggests the existence of one outlier in the 𝛽

IUGR group with low multilocus score/high sugar intake. We performed a diagnostic 

check to see if this observation would have an impact on the regression coefficients, 

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480



9

using a measure of influence, DFBETAS, which characterized it as an influential 

point. When excluding this subject from the analysis, the interaction between IUGR 

status and the genetic score became significant for total caloric consumption (𝛽

=58.38, p= 0.04), and remained significant for sugars (  =6.17, p<0.01), but not for 𝛽

complex carbohydrates ( =3.70, p=0.08), fiber ( =0.49, p=0.11), protein (𝛽 𝛽 𝛽

=1.51, p=0.22), or fat ( =1.24, p=0.46). 𝛽

We also repeated the analysis adjusting for ethnicity. The results were similar 

to the previously described: the interaction between IUGR and the genetic score 

remained significant for sugars ( =5.42, p=0.03), but not for total caloric 𝛽

consumption ( =32.58, p= 0.32), for complex carbohydrates ( =2.29, p=0.32), 𝛽 𝛽

fiber ( =0.27, p=0.45), protein ( =0.22, p=0.88), or fat ( =0.04, p=0.98).𝛽 𝛽 𝛽

IUGR and non-IUGR children did not differ in the consumption of the 

different macronutrients as shown in Table 4.

DISCUSSION

We showed here an interaction between fetal growth and a dopamine 

multilocus genetic score, suggesting that variation in the dopamine signaling capacity 

is positively correlated to spontaneous sugar intake in IUGR children at 48 months of 

age. This is in agreement to our study in rodents (Molle, et al., 2015), in which altered 

levels of accumbal D2 receptors accompanied the increased preference for palatable 

foods in IUGR rats. Additionally, positron emission tomography studies show that the 

availability of striatal dopamine D2 receptor is decreased in obese individuals (Wang, 

et al., 2001). Brain fMRI studies demonstrate that individuals with elevated 

multilocus composite scores show less activation in the striatum in response to 

monetary reward (Nikolova, Ferrell, Manuck, & Hariri, 2011; Stice, et al., 2012). 
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Moreover, a higher multilocus score is associated with food addiction, binge eating, 

food cravings and emotional overeating (Davis, et al., 2013). 

IUGR persistently affects the functioning of neuroendocrine axis such as the 

hypothalamic-pituitary-adrenal (HPA) axis (Osterholm, Hostinar, & Gunnar, 2012), 

as well as the sensitivity to insulin (Hales & Barker, 1992) and leptin (Desai, Gayle, 

Han, & Ross, 2007), and these hormones are known modulators of the mesolimbic 

dopaminergic system (Murray, et al., 2014; Rouge-Pont, Deroche, Le Moal, & Piazza, 

1998). For instance, variations in the HPA responsivity to acute stress influence 

palatable food intake in women (Epel, Lapidus, McEwen, & Brownell, 2001). Insulin 

sensitivity is inversely associated with activation in the anterior cingulate, insula, 

orbitofrontal cortex and the frontal and rolandic operculum (Adam, et al., 2015). It 

has been shown that while mild hypoglycemia activates limbic-striatal brain regions 

in response to food cues to produce a greater desire for high-calorie foods, 

euglycemia activates the medial prefrontal cortex and decreases interest in food 

stimuli (Page, et al., 2011). Therefore, it makes sense that variations in the sensitivity 

to glucocorticoids and insulin associated with fetal programming interact with the 

mesocorticolimbic response to palatable foods, consequently affecting intake as seen 

in the current study. In agreement with previous findings (Barbieri, et al., 2009), we 

show here once more that the link between low birth weight and increased palatable 

food intake occurs before obesity emerges, and therefore is not secondary to its 

consequent metabolic disarrangements; these subtle nutritional differences may in fact 

mediate the development of adiposity in IUGR individuals, as proposed before 

(Portella, et al., 2012; Portella & Silveira, 2014a; Silveira, et al., 2012).

With regard to the specificity to sugar, as mentioned above, it is in agreement 

to our previous data (Barbieri, et al., 2009). However, other studies have found 
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associations between low birth weight and other types of preference. For instance, 

studies of the Dutch famine have shown preference towards fats in older adults whose 

mothers were exposed to the famine (Lussana, et al., 2008; A. D. Stein, Rundle, 

Wada, Goldbohm, & Lumey, 2009). Perälä et al had similar findings, with a positive 

correlation of small size at birth and increased consumption of fats, as well as a lower 

intake of carbohydrates, sucrose, fructose, fiber and fruits in adults of 56 to 70 years 

old (Perälä, et al., 2012). In a different sample, Kaseva et al demonstrate a higher 

intake of polyunsaturated fatty acids and essential fatty acids, and reduced use of 

vegetables, fruits, and milk products in very low birth weight at 19-27 years of age 

(Kaseva, et al., 2013). It appears to us that despite the apparent discrepant food 

preferences described in the several studies, we should consider that these were 

performed in different ages and using diverse tools (questionnaires, food diaries and 

actual consumption, as in the current work). All of these variables may explain the 

differences (for instance, food preferences change as the individuals age)(Cooke & 

Wardle, 2005); in addition, all studies seem to converge to an increased intake of 

palatable foods (sugar and/or fats) in IUGR children (Portella & Silveira, 2014b). 

This study reinforces the idea that IUGR associates with persistent alterations 

in the brain circuitry related to palatable food intake and energy expenditure (Alves, 

et al., 2015; Cunha Fda, et al., 2015; Molle, et al., 2015). The importance of the 

current findings resides on the early identification of vulnerability to increased 

adiposity and its metabolic consequences, prompting the proposal of preventive 

measures and careful consideration of food preferences in these children in early 

pediatric care. 
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FIGURE AND TABLES LEGENDS

Table 1 - Study participants’ baseline characteristics according to IUGR status. 

aStudent’s t-test and bchi-square test. Data are expressed as mean (standard deviation), 

or proportions (percentages). LICO=Low Income Cut Off. Differences between IUGR 

and non-IUGR groups were not significant for all variables shown (all p-values 

>0.05).

Table 2 – Genotype distribution in the study sample. Criteria for Hardy Weinberg 

Equilibrium were met for all genes except for DRD4 VNTR.

Table 3 – Estimated beta coefficients for analyses of different macronutrients. The 

baseline on the analysis was the IUGR group and female sex.

Table 4 - Consumption, displayed as means (standard deviations), of the different 

macronutrients by IUGR and non-IUGR children. No significant differences in 

consumption were seen between the groups.

Figure 1 – Association between the multilocus score and sugars (A) and calories (B) 

intake in IUGR and non-IUGR children. Variation in the genetic score is associated 

with different sugar intake only in IUGR children. Dotted line represents the 

regression line when excluding an influential observation (see text for details). The 

predicted values for sugar consumption and total calories consumption were shown 

for females and z-BMI at 48 months=0.54.
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Table 1 - Description of the baseline characteristics of the sample

Sample characteristics Non IUGR (n=155) IUGR (n=37) p-values

Females (%)b 50% (77) 51% (19) 0.85

Maternal age at birth (y) a 30.8 (4.6) 29.5 (4.9) 0.15

Maternal smoking during 

gestation (%)b

10% (14) 24% (7) 0.06

Maternal education below 

10 years of schooling (%)b

3% (5) 6% (2) 0.62

Family income below 

LICO (%)b

16% (23) 17% (6) 0.95

Total duration of 

breastfeeding (weeks)a

29 (19) 28 (20) 0.74
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Table 2. Genotype distribution in the study sample.

Gene H-W equilibrium

DAT1 VNTR 10/10 (104, 54.2%); 9/10 (73, 38%); 9/9 (15, 7.8%) p=0.66

DRD2 141C 

(rs1799732) 

BstNl

Ins/Ins (142, 74%); Ins/Del (46, 24%); Del/Del (4, 2.1%). p=0.90

DRD4 VNTR 7R homozygous (4, 2.08%); 7R heterozygous (74, 

38.5%); non-7R/non-7R (114, 59.4%)

p=0.04

Taq IA 

(rs1800497)

A1/A1 (10, 5.2%); A1/A2 (55, 28.6%); A2/A2 (127, 

66.1%)

p=0.22

COMT (rs4680) A/A (49, 25.5%); A/G (92, 47.9%); G/G (51, 26.6%) p=0.56
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Table 3. Estimated beta coefficients for analyses of different macronutrients 
consumption

Macronutrients 𝛽 p-values

Total calories consumption z-BMI 48m 25.60 <0.01

IUGR status 101.69 0.16

Sex 45.91 0.01

Multilocus score 23.35 0.35

IUGR status x Multilocus score 35.82 0.21

Sugar consumption (g) z-BMI 48m 1.72 <0.01

IUGR status 11.83 0.04

Sex 4.60 <0.01

Multilocus score 4.01 0.04

IUGR status x Multilocus score 4.56 0.04

Complex carbohydrates 

consumption (g) 
z-BMI 48m 1.31 0.02

IUGR status 6.34 0.22

Sex 2.24 0.08

Multilocus score 0.81 0.65

IUGR status x Multilocus score 2.62 0.20

Fiber consumption (g) z-BMI 48m 0.06 0.48

IUGR status 0.93 0.22

Sex 0.26 0.16

Multilocus score 0.29 0.26

IUGR status x Multilocus score 0.39 0.19

Fat consumption (g) z-BMI 48m 1.07 0.02

IUGR status 1.71 0.68

Sex 1.49 0.14

Multilocus score 0.03 0.98

IUGR status x Multilocus score 0.37 0.82

Protein consumption (g) z-BMI 48m 0.80 0.02

IUGR status 2.45 0.43

Sex 0.98 0.20

Multilocus score 0.73 0.50

IUGR status x Multilocus score 0.72 0.55
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Table 4: Consumption of the different macronutrients by IUGR and non-IUGR 
children: means (standard deviations)

Non-IUGR IUGR p-values
Total calories 318 (127) 300 (122) 0.44

Carbohydrates Total (g) 37 (17) 36 (18) 0.70

Total (%) 48 (15) 48(14) 0.93

Sugars (g) 21 (10) 20 (11) 0.63

Sugars (%) 27 (11) 26 (10) 0.69

Complex (g) 15 (9) 14 (9) 0.84

Complex (%) 19 (8) 19 (9) 0.56

Fiber (g) 2 (1) 2 (1) 0.99

Fiber (%) 2 (2) 2 (2) 0.69

Fat Total (g) 13 (7) 12 (6) 0.46

Total (%) 37 (11) 37 (11) 0.95

Protein Total (g) 12 (5) 11 (4) 0.45

Total (%) 15 (4) 15 (3) 0.81
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