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Abstract 

Natural protective systems have been a source of inspiration for scientists because of their high-

performance and multifunctional properties. It is a challenge to design a material which provides 

simultaneously flexibility and puncture resistance which are mutually exclusive. Nature proposes 

a solution to this challenge, which is combining hard and soft materials together in specific ways. 

In natural flexible armors, the soft skin of the animals is covered by segmented hard plates which 

protect the animal against any external threats. The discrete hard plates also give a great flexibility 

to the skin and facilitate the mobility of the animal. To apply this idea into human-made structures, 

we first need to learn about the mechanics of such systems and the effect of the geometries and 

arrangement of the scales on the mechanical performance. To do so, we chose discrete element 

method (DEM) which is computationally more efficient than the conventional finite element 

method (FEM). We started with developing and validating 2D DEM models with two different 

configurations: hard scales attached onto a soft substrate to examine the puncture resistance, and 

hard scales bonded to a soft membrane to explore the flexural compliance. The time efficiency of 

DEM enabled us to study a large number of models (720 models) with various combinations of 

aspect ratio, slant angle and gap distance to optimize the geometrical parameters considering four 

design criteria: the tilting resistance, coverage, penetration resistance and flexural compliance. We 

learnt that the contact between the neighboring scales had a significant effect on the mechanical 

behavior of the system. The results showed that the presence of scales improved the puncture 

resistance of the system, but in the cost of low flexural compliance. Nature shows a unique strategy 

to increase the flexibility in armored skins, which is making wrinkles and folds in the skin. Inspired 

of nature, we used the DEM model of hard scales bonded onto a soft membrane to investigate the 

buckling behavior of a fish-skin-like structure and the effect of the scales on the stability of the 

buckled system. With examining the energetics of buckling in mode I and II configurations, we 

showed that the contact between the scales on the intrados side of the membrane was a source of 

stiffness in the system, which is not desirable in terms of flexibility. We also showed that we were 

able to induce a stable mode II to the system by using scales, which is necessary for forming 

wrinkles in the system. 2D discrete element models gave us helpful insights into the mechanics of 

scale-covered systems, however, had some limitations such as not being able to explore the effect 

of the base shape of the scales on the system. We therefore created a 3D discrete element model 
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using ABAQUS software to explore other aspects of scale-covered systems. We examined scales 

with different base shapes, arrangements and slant angles in different in-plane directions, and 

discussed the effect of the neighboring scales on the puncture resistance and the flexural 

compliance. We showed that by only choosing a right base shape for the scales we could highly 

improve the puncture resistance of the system. The results show that the interlocking mechanism 

between the rows of the scales plays an important role in stabilizing the punctured scale by 

engaging a large number of scales. 
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Résumé 

Les systèmes de protection naturels sont une source d'inspiration pour les scientifiques en raison 

de leurs propriétés performantes et multifonctionnelles. C'est un défi de concevoir un matériau qui 

offre à la fois une flexibilité et une résistance à la perforation qui s'excluent mutuellement. La 

nature propose une solution à ce défi qui consiste à combiner des matériaux durs et mous de 

manière spécifique. Dans les armures souples naturelles, la peau flexible des animaux est 

recouverte de plaques dures segmentées qui protègent l'animal contre les menaces extérieures. Les 

plaques dures et discrètes confèrent également une grande souplesse à la peau et facilitent la 

mobilité de l'animal. Pour appliquer cette idée dans des structures synthetiques, nous devons 

d'abord nous familiariser avec la mécanique de ces systèmes et avec les effets des géométries et 

de la disposition des échelles sur les performances mécaniques. Pour ce faire, nous avons choisi la 

méthode des éléments discrets (DEM) qui est plus efficace que la méthode des éléments finis 

(FEM) conventionnelle. Nous avons commencé par développer et valider des modèles DEM 2D 

avec deux configurations différentes: des échelles dures fixées sur un substrat souple pour 

examiner la résistance à la perforation et des échelles dures liées à une membrane souple pour 

explorer la souplesse en flexion. L'efficacité temporelle du DEM nous a permis d'étudier un grand 

nombre de modèles (720 modèles) avec diverses combinaisons de rapport hauteur / largeur, d'angle 

d'inclinaison et de distance d’écart pour optimiser les paramètres géométriques. Ces modèles on 

pris en compte la résistance à l'inclinaison, la couverture, la résistance à la pénétration et la 

compliance en flexion. Nous avons appris que le contact entre les écailles voisines avait un effet 

significatif sur le comportement mécanique du système. Les résultats ont montré que la présence 

d'écailles améliore la résistance à la perforation du système, mais au détriment d'une moindre 

compliance en flexion. La nature montre une stratégie unique pour augmenter la flexibilité des 

peaux écaillées, qui crée des rides et des plis dans la peau. Nous avons utilisé la nature comme 

inspiration pour la création d’un modèle DEM dans lequel des écailles dures ont été collées sur 

une membrane souple. Cela permet d’étudier le comportement de flambement d'une structure 

ressemblant à une peau de poisson et l'effet des écailles sur la stabilité du système bouclé. En 

examinant l'énergétique du flambage dans les configurations mode I et II, nous avons montré que 

le contact entre les écailles du côté intrados de la membrane rigidifie le système ce qui n'est pas 

souhaitable dans les aspects de flexibilité. Nous avons également montré que nous pouvions 
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induire un mode II stable au système en utilisant des écailles, ce qui est nécessaire pour former des 

rides dans le système. Un modèle d'éléments discrets en 2D nous a donné des informations utiles 

sur la mécanique des systèmes à écailles couverte, mais présentait certaines limites telles que 

l'impossibilité d'explorer l'effet de la forme de base des écailles sur le système. Nous avons donc 

créé un modèle d'éléments discrets 3D à l'aide du logiciel ABAQUS pour explorer d'autres aspects 

des systèmes à écailles couverte. Nous avons examiné des écailles avec différentes formes de base, 

arrangements et angles d'inclinaison dans différentes directions, et discuté l'effet des écailles 

voisines sur la résistance à la perforation et la souplesse en flexion. Nous avons montré qu'en 

changeant uniquement la forme de base des écailles, nous pouvions grandement améliorer la 

résistance à la perforation du système. Les résultats montrent que le mécanisme de verrouillage 

entre les rangées d’écailles joue un rôle important dans la stabilisation de l’écaille perforée en 

engageant un grand nombre d’écailles. 
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Chapter 1: Introduction 

1.1 flexible protective systems in nature 

Current engineering technologies are focusing on creating materials with lighter, stronger, tougher 

and multifunctional properties. Monolithic materials have been used for a long time, but they are 

not able to address current functional requirements [1, 2]. A modern approach to create 

multifunctional materials is to form composites in which the materials that have mutually exclusive 

properties are combined together such as combining strong and tough materials [3-6]. A high 

performance can be achieved with controlling the microstructure and the distribution of different 

phases [3, 4, 7]. Engineers and builders have always been inspired by nature for making tools and 

structures, but recently the ingenuity of nature has attracted attentions of many scientists. Research 

on natural structures shows that nature is full of novel ideas for making multifunctional composites 

with remarkable mechanical performance [8, 9]. For instance, natural flexible armors are combined 

of hard and soft materials in a well-controlled and specific architecture, to simultaneously give 

protection and flexibility to the animals [10]. Over time, engineers have used different designs to 

fabricate protective clothing with flexibility and comfort such as Loricasegmentata which is one 

of the oldest designs (goes back to ancient Rome). This tessellated armor was composed of 30-40 

metallic plates, which is similar to the one made by Samurai. Mail armor is another example where 

metallic rings were meshed together to make a protective and flexible web. More advanced armors 

are made of special textiles such as Kevlar or Spectra. These armors have down-sides including 

large weight, weakness against sharp penetration, and low flexibility and comfort. Recently, fish-

skin-like armors have attracted more attentions [11-13]. Dragon skin armor is a an example, which 

is made of overlapping ceramic disks [14]. This armor provides protection against ballistic loads 

but decreases the mobility of the users. The natural armors evolved during millions of years and 

perfectly function according to the needs of the animals. Fish skin is one of the well reputed natural 

protective systems which its extraordinary mechanical behavior is a function of the interaction of 

the scales with the underlying dermis layer and also with each other [10, 15, 16]. Besides having 

hydrodynamic properties [17], fish scales play a significant role in the protection of fish against 

predators [18, 19]. The skin beneath the scales is mainly made of fibrils of collagen type I which 

is considered as a very soft material compared to the scales [10]. In fish skin, the scales are 
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overlapped and embedded into the soft dermis layer. The interaction between the neighboring 

scales helps the locomotion by providing an exotendon-effect during swimming [15, 20]. Research 

on striped bass skin shows that each scale overlaps with six scales, also, with a particular 

arrangement any points on the skin is covered by three scales. Puncture tests on a half-striped bass 

shows that scales increase the puncture resistance of the skin by four to five times. The interaction 

of the scales together help distributing load over a large area, which prevents the local deformation 

of the skin, excessive strain and blunt damage in the dermis layer [15, 16]. The scales are about 

five orders of magnitude stiffer than the dermis layer, where this high contrast in the stiffness leads 

to three main failure modes in a fish-skin-like system (figure 1) [21, 22]. Depending on the stiffness 

and thickness ratios of the scales and the dermis layer, one of the three failure modes is dominant 

[21]: Conical cracks caused by contact stresses, radial cracks caused by flexural stresses and tilting 

of the indented scale resulting in a fast sliding of the indenter into the substrate. In the last failure 

mode, the scale itself is not damaged, but tilting of the scale exposes the vulnerable substrate to 

the tip of the indenter. 

 

Figure 1-1: The three main failure modes in a fish-skin-like system (adapted from [21]) 

 

 Osteoderm, “bony skin”, is another example of natural armors which is found in armadillos and 

alligators. The structure of this material is similar to fish skin where hard scales are attached onto 

the animals’ skin. Armadillos’ carapace is composed of scales with two different morphologies 

(hexagon and triangle), which are covered by keratin [23, 24]. The neighboring scales are 

connected together by collagen fibers, also called Sharpney’s fibers, which provide flexibility to 

the skin of the animal [25]. 
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1.2 Modeling fish-skin-like systems 

Experimental investigation on fish-skin-like systems provides insights into the mechanics of this 

particular type of structures [22, 26, 27]. Finite element method is another approach to study these 

systems such as a 2D simulation of blunt indentation into a scale-covered substrate [28], and a 3D 

flexural modeling of a scale-covered membrane [29]. Finite element method (FEM) however is 

suitable only for a limited number of scales. In the models with a large number of scales, it is hard 

to properly capture all the contact regions occurring concurrently and convergence is not ensured. 

Moreover, to model the underlying substrate a large number of elements is required which makes 

the FEM computationally inefficient. A different numerical method therefore needs to be 

considered to model large numbers of scales attached onto a thick substrate. Discrete element 

method (DEM) is used to model the motion of a large number of particles or building blocks. In 

this method, the building blocks are defined by nodes which are connected to the neighboring 

nodes with interaction laws such as Hooke’s law, contact algorithm, friction etc. [30]. Discrete 

element method (DEM) is much more computationally efficient compared to FEM because it 

reduces the degrees of freedom in the model [31, 32]. DEM was initially developed by Cundall 

and Strack for granular materials [33] where the granular materials were modeled as rigid particles 

and the contact between them was defined  by normal and shear stiffness. This method has been 

used to model various materials with a large number of rigid elements and complex interaction 

laws including granular materials [34, 35], topologically interlocked structures [31], fiber 

reinforced composites [36, 37], laminated composites [38] and porous materials [39]. This method 

has been found to be promising for modeling bio-inspired structures which are made of segmented 

hard materials connected together with a much softer material such as nacre and tooth enamel [7, 

32, 40, 41]. In this work, modeling fish-skin-like systems with traditional approaches such as FEM 

proved to be computationally extremely expensive, with contact mechanics, large deformation and 

a large number of elements to model the substrate. We therefore used DEM as an alternative to 

investigate these systems. 
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1.3 Thesis objectives 

The overall aim of this thesis was to use the discrete element method (DEM) to investigate the 

mechanics of scale-covered systems. The objectives were as following: 

 Develop and validate DEM models to investigate the behavior of scale-covered substrates 

subjected to sharp puncture 

 Develop and validate DEM models to explore the flexural response of scaled-covered 

membranes  

 Use DEM modeling to study the effect of the geometries and the arrangement of the scales 

on the performance of the system 

 Design synthetic scale-covered materials with a high mechanical performance including a 

high puncture resistance and a high flexural compliance 

 

1.4 Thesis organization 

This is a manuscript-based thesis composed of five chapters. The first chapter (current chapter) 

briefly introduces the general concepts in natural protective systems and the computational method 

we chose. This chapter also include the objectives and the structure of the thesis. 

Chapter 2 describes and proposes the discrete element method (DEM) as an approach to model a 

system of segmented hard scales bonded onto a soft material. We developed 2D models with two 

different configurations: hard scales on a soft substrate to explore the puncture resistance, and hard 

scales on a soft membrane to explore the flexural compliance of the system. After validating the 

DEM models with experiments, we investigate the effect of the scale geometries (aspect ratio and 

slant angle) and the arrangement (gap distance) on the puncture and flexural response of the 

system. We study the role of contact between the scales in improving the mechanical performance 

including the puncture resistance and the flexural compliance. At the end, we define four design 

criteria and, using a quaternary plot, show the best designs based on the criteria.  

Chapter 3 focuses on the flexural behavior of scale-covered systems. We use the DEM model 

which was developed in chapter 2 (hard scales on a soft membrane) to investigate the post-buckling 

stability of such systems in mode I and mode II. After validation of the numerical results with 
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experiments, we discuss the stability of buckled systems considering the strain energy stored in 

them. We then explore the effect of the scale geometries (aspect ratio) and arrangement (gap 

distance) on the post-buckling stability. First, we investigate the stability of the mode I 

configuration where the scales are placed on the intrados and extrados sides of the membrane. We 

then study the stability of mode II configuration and propose a design (bonding scales onto both 

sides of the membrane) to induce a stable mode II to the system. 

Chapter 4 explores the 3D mechanics of scale-covered systems. We therefore made 3D DEM 

models of hard scales on a soft substrate and hard scales on a soft membrane in ABAQUS/CAE to 

investigate the puncture resistance and the flexural compliance of the system, respectively. After 

validating the models with experiments, we study the effect of the base shape and the arrangement 

of the scales on the mechanical performance of the system. We then discuss slant angle as another 

effective design parameter, and explore scales with different combinations of base shape, slant 

angle and arrangement. Specifically, we study the puncture resistance and the flexural compliance 

of such systems, and how to maximize them. The results give useful insights into designing scale-

covered systems with a high mechanical performance (puncture resistance and flexural 

compliance). 

Finally, chapter 5 highlights the main conclusions and the research contribution of this thesis, also 

gives a few guidelines for future works. 
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2.1 Abstract  

Natural protective systems are attracting an increasing amount of attention for their ability to 

provide simultaneous flexibility and puncture resistance by combining hard and soft materials in 

mechanically efficient ways.  In typical flexible natural armors, a continuous layer of soft material 

is either covered or embedded with segmented hard scales. The interaction between the hard scales 

and the softer surrounding materials give rise to unusual and attractive mechanisms which are not 

fully understood to this day. Here we propose and validate the discrete-element method (DEM) to 

capture the mechanics of stiff scales on soft substrates including scale-substrate elastic 

deformations, scale-scale interaction through the substrate, and direct scale-scale interaction by 

contact. We considered two configurations: (i) hard scales on soft substrates to capture scale tilting 

and penetration resistance, and (ii) hard scales on soft membranes to study flexural compliance. 

The computational efficiency of the DEM algorithm allowed for large parametric studies with 

many combinations of aspect ratio, slant angle, and gap size to identify the best designs in terms 

of resistance to unstable tilting, coverage, penetration resistance, and flexural compliance. DEM 

is a promising tool for the design and optimization of fish-skin-like protective structures, also 

providing new insights into the synergistic role of the hard scales and the soft substrate. 

mailto:francois.barthelat@colorado.edu
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Keywords: Bioinspiration, discrete element method, segmented hard material, penetration 

resistance, flexural compliance 

 

2.2 Introduction 

Modern engineering applications are requiring lighter, stronger, tougher, and multifunctional 

materials. In this quest for better engineering materials, nature can provide outstanding models and 

inspiration for new designs. Natural materials have high mechanical performance, can produce 

seemingly mutually exclusive properties [1], and are inherently multifunctional [2]. A powerful 

paradigm in structural biological materials is the combination of hard and soft materials in well-

controlled micro-architectures [2-8]. Scaled natural flexible armors (figure 2-1) are excellent 

examples of this concept: They combine hard materials (mineralized collagen, dry keratin) with 

soft materials which are orders of magnitude more compliant [9, 10]. Natural scaled armors 

combine two properties which are typically mutually exclusive: high surface hardness for 

protection against puncture or laceration, combined with high flexural compliance for fast 

locomotion. In fish skins the hard scales are attached to a soft substrate (figure 2-1a and 1b). Under 

flexural deformation the scales can glide on one another, providing high compliance to the system 

[11-13]. Moreover, interactions between neighboring scales can improve the penetration resistance 

[14], and distribute the localized puncture force over a larger area to prevent excessive strains in 

the underlying tissues, thereby delaying blunt injuries [10, 15, 16]. Experiments on synthetic scaled 

systems made of hexagonal glass plates on elastomeric substrates showed that discrete glass plates 

not only provide flexural compliance to the system, but also increase puncture resistance by up to 

70% compared to a continuous glass layer [9]. Decreasing the size of the plates reduces their 

flexural span which delays fracture up to a point where the scales are small enough to tilt from the 

action of the sharp indenter [9, 10, 17]. The tilting of individual plates is indeed an important 
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failure mode in scaled skin which is prominent in animals with very hard scales such as in alligator 

gar [10]. A mechanical criterion was recently proposed for the tilting and instability of hard plates 

on a soft substrate [10]. Experiments on 3D printed scales have later suggested that the indented 

scale can be stabilized by neighboring scales, and that scale geometry and arrangement have a 

deep impact on this mechanism  [4]. Despite these recent advances, the mechanics of scaled skins 

is still not fully understood. For example, how scales interact during flexural deformation and 

puncture, how they distribute concentrated forces over wide areas, and how the geometry and 

arrangement of the scales govern mechanical performance are important effects that are not fully 

understood.  

 
Figure 2-1: Examples of animals with armors made of combinations of segmented hard elements and soft 

materials together: (a)-(b) alligator gar (Atractosteus spatula, adapted from [18]); (c)-(d) Armadillo 

(Dasypus novemcinctus, adapted from [19, 20]); (e)-(f) Northern pine snake (Pituophis melanoleucus, 

adapted from [21]) 

 

Some insights can be provided from experiments on synthetic scales [4, 22, 23], also from finite 

element modeling such as a 2D simulation of a scale-covered substrate under blunt indentation 

loading [16], and a 3D flexural modeling of a system of hard scales on a soft membrane [24]. But 

in the both finite element models, a limited number of scales were used. The large number of 



21 

 

contact regions occurring concurrently are difficult to properly capture with standard numerical 

methods such as finite elements where convergence is difficult (if at all possible). In this article, 

we propose the discrete element method (DEM) as an approach to model the deformation of scaled 

skins, including multiple scale-scale interactions. The discrete element method (DEM) offers a 

computationally efficient alternative to the conventional finite element method (FEM) by reducing 

the degrees of freedom in the problem [25]. DEM is also well suited for the systems containing a 

large number of rigid elements with complex interaction laws [25-33]. For instance, we recently 

used DEM on nacre which had a structure similar to fish skin: both are made of hard plates 

connected by much softer material [28, 29]. After validation of this numerical tool, we used DEM 

to explore the design space of a large number (720) of scale-covered systems with interesting 

combinations of puncture resistance and flexibility. 

 

2.3 Discrete element method (DEM) for scales: formulation and validation  

For this study we developed a 2D DEM model of hard scales perfectly bonded onto a soft substrate 

(figure 2-2a). The scales were identical and modeled as parallelograms defined by a thickness t, 

length 2L, and slant angle α. The bases of the scales were assumed to be perfectly bonded to a soft 

substrate and uniformly spaced, with a gap distance d. To model puncture, a concentrated force 

was applied on the upper face of the middle scale along the direction normal to the surface of the 

substrate (figure 2-2a), while the substrate was modeled as a half-space. The position of each scale 

was represented by a node coinciding with the midpoint of the lower side of the scale. Each of the 

nodes has three degrees of freedom: translations in the x- and y-directions, and rotation about the 

z-axis. The substrate was modeled as a linear elastic half-space (modulus Es, Poisson’s ratio ) 

with small strains. The scales were assumed to be several orders of magnitude stiffer than the 



22 

 

substrate [34], and therefore we modeled the scales as rigid for the purpose of efficiently capturing 

scale-substrate interactions (scale-scale interactions were captured using a simplified contact 

model that takes in account the deformability of the scale, as detailed below). For simplicity the 

substrate was modeled with spring elements (figure 2-2a) that captured not only the reaction of the 

substrate onto individual scales, but also the elastic coupling between neighboring scales. More 

specifically, the two reaction forces and the reaction moment from the substrate to the individual 

scales were captured with three “direct” stiffness coefficients x, y and and the effect of the 

neighboring scales on a given scale were captured with another three “coupling” coefficients x, 

y and. The forces (Fx, Fy) and the moment Mz (about the z axis) on the ith node were expressed 

as: 
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Where Es is the Young’s modulus of the substrate, and ν is the Poisson’s ratio of the substrate. ux, 

and uy are the nodal displacements in the x- and y-directions, respectively, and ϕ is the nodal in-

plane rotation. To appreciate the effect of coupling between the scales, consider a simple example 

where all the scales are clamped, except scale i+1 which is displaced by 
( 1) 0i

xu   . Displacing that 

scale deforms the surrounding substrate, so that a force 
( ) 0i

xF   must be applied onto scale i to keep 

it immobile (equation (2.1)). To calibrate the coefficients x, y,, x, y and we used 

Boussinesq’s and Cerruti’s close-form solution for the substrate as an elastic half-space where we 

assumed that the substrate is adequately thick [35, 36]. For the case of thin substrate assumption, 
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other theories are available to be used which is beyond the scope of this work [37-39]. We 

considered three scales on the elastic half-space, first subjecting the middle scale to a tangential 

displacement ux (figure 2-2b) while the other two scales were clamped.  

 

Figure 2-2: (a) The system of hard scales attached to a soft substrate, The DEM model in which the substrate 

is replaced by spring elements in the x- and y-directions, and torsional spring elements; The distribution of 

the shear load q(x) and the normal load p(x) for the models with (b) a horizontal displacement boundary 

condition (the surfaces at the sides are fixed, and the middle one is displaced);  (c) a vertical displacement 

boundary condition (the surfaces at the sides are fixed, and the middle one is displaced); (d) applying a 

rotation boundary condition (the surfaces at the sides are fixed, and the middle one is rotated) which makes 

both the shear and normal loads on the surfaces (q(x) + p(x)); (e) Intersection of two scales with a triangle 

shape which makes a force along the line of action (the red line), or with a four sided shape which makes 

two separate forces along their line of actions (the red lines).  
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The relation between the tangential displacement ux and the horizontal (x-direction) distributed 

shear load q(ζ,γ) on the surface of the substrate underneath the scales (figure 2-2b) is given as: 
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Where z is the out-of-plane direction. We obtained the distributed shear load q(x,z) from equation 

(2.2), which we then integrated over the area of the scales to obtain the shear force for each scale. 

Dividing the shear forces on the middle scale, and on the neighbouring scales by the imposed 

displacement of the middle scale (ux0
) provided the stiffness coefficients αx and x, respectively. 

The process was repeated for a normal displacement uy (figure 2-2c) where we imposed a 

displacement uy0 
to the middle scale. To compute αy and y we used the equation: 

2

2 2

1 1
( , )

( ) ( )
y

s

u p d d
E x z


   

  




  
                                                                   

(2.3) 

Where p(ζ,γ) is the distributed normal load in the vertical (y) direction on the surface of the 

substrate below the scales (figure 2-2c).  Finally, we imposed a rotation  on the middle scale by 

still keeping the other two scales clamped (figure 2-2d). Using equations (2.2) and (2.3), we 

obtained the distributed shear and normal loads and the resultant moment on each scale.The 

coefficients αϕ and ϕ were computed by dividing the moment on the middle and neighbouring 

scales (respectively) by the imposed rotation on the middle scale . The coefficients x, y,, 

x, y and are expressed as 
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In which Am and An are the areas of the middle scale and either of the neighbouring scales, 

respectively.  xm and xn are the x-coordinates of the midpoint of the lower side of the middle scale 

and either of the neighbouring scales, respectively. An important implication of this result is that 

individual scales can interact with their neighbors not necessarily only by direct contact but also 

through deformations in the substrate. Direct contact between the scales is another feature of the 

model which is critical to capture puncture and flexural deformations. In our model the contacting 

scales were assumed to be rigid and frictionless, and we used a simple yet accurate and 

computationally efficient contact algorithm inspired by the Winkler elastic foundation model [40]. 

We first used shape intersection algorithms to detect collision between pairs of scales, and we used 

kinematics to compute the penetration distance p (figure 2-2e) between the contacting scales. The 

contact force was then computed from p using:  
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                                                                              (2.5)     

Where Ect is the contact modulus, and b is the out-of-plane dimension (width) of the scales. The 

calibration constants C1 and C2 were obtained using a 2D finite element model (ANSYS V16 2016, 

PA, US) in which the corner of one scale penetrated into the edge of another scale under controlled 
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displacement (figure 2-2e).  From the finite element calculations we computed the resultant contact 

force (the interfaces were assumed to be frictionless) and determined C1 =1.1 and C2 =0.23.  We 

also defined the line of action of Fct so that it is intersecting the penetrating corner of one the scales, 

and is perpendicular to the edge of the other scale (figure 2-2e). For the case of four-sided overlap 

area (figure 2-2e), we applied the procedure to two instances of corner contact and applied equation 

(2.5) twice.  In addition to forces, direct contact between scales may induce moments about the 

out-of-plane axis z. We computed the effective nodal moment due the contact forces as: 

,ij ct ct ijM r F                                                                                  (2.6) 

Where Mij is the effective nodal moment induced by scale i onto neighboring scale j, rct is the 

position vector of the contact force relative to node i and Fct,ij is the contact force which scale i 

exerts on scale j. Since the contact model introduces geometrical nonlinearities we used the 

iterative Newton-Raphson method to obtain numerical solutions [28]. 

To validate our model we performed puncture tests on a system composed of a pair of Acrylonitrile 

butadiene styrene (ABS) blocks glued onto a softer elastomeric substrate. The blocks were 3D 

printed with a high resolution Direct Light Projector (DLP) 3D printer (Micro HiRes Machine, 

EnvisionTech, 2019), which produced fully dense and pore-free blocks. We tested 3D printed ABS 

along different directions and verified that the blocks were isotropic, with a modulus EABS=3 GPa. 

The blocks were then glued onto the surface of a thick polyurethane substrate using cyanoacrylate. 

The polyurethane we used is four orders of magnitude softer than ABS, with a measured modulus 

of Es=310 kPa (we used a Poisson’s ratio ν=0.5 [4]). The assumption of rigid blocks compared to 

the substrate, required for our DEM simulation, was therefore verified. For the puncture test, a 
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needle was pressed on the upper surface of one of the blocks, which caused the substrate to deform 

and the blocks to displace and tilt (figure 2-3a).   

 
Figure 2-3: (a) Experimental and DEM puncture tests on a pair of ABS blocks on a polyurethane substrate; 

(b) Force-displacement curve showing a good agreement between the experimental and DEM results.  

 

For validation we compared the force-displacement curves obtained experimentally and through 

DEM, which showed excellent agreement (figure 2-3b). The model properly captured the initial 

stiffness of the system and the onset of contact between the blocks. Following contact, the stiffness 

of the system suddenly increased (which shows as a ‘kink’ on the puncture force-displacement 

curve in figure 2-3b), a phenomenon that the DEM model also accurately captured.  

 

2.4 Parametric study and exploration of geometry-puncture resistance relationships 

We used the DEM model to systematically explore the effects of scale geometry and arrangement 

on puncture resistance. In this first study, we focused on parallelogram-shaped scales placed at 

regular intervals over the softer substrate. Since there is no length scale associated with the elastic 

deformation, we use non-dimensional geometrical parameters: the aspect ratio of the scales (L/t), 

the slant angle of the scales (α), and the normalized gap distance between the scales (d/t). Figure 
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2-4 illustrates models with different combinations of these three geometrical parameters, showing 

that this approach covered a wide range of possible scale designs.  

  

Figure 2-4: Models with different combinations of scale gaps (d/t), aspect ratios (L/t) and slant angles (α). 

 

A first inspection reveals that some designs do not provide adequate coverage, leaving the substrate 

directly exposed to outside mechanical threats. This issue occurs for all designs with no slant angle 

(α=0), and more generally when the spacing of the scale is too large and/or the slant angle is too 

low. On the other hand, designs providing good coverage involve neighboring scales that overlap. 

To characterize the extent of coverage for each design we defined a non-dimensional coverage 

parameter =ts/t where t is the thickness of the scales, and ts is obtained by first drawing a vertical 

line from the upper right corner of a scale. ts then was computed as the sum of the intersect lengths 
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between that line and the neighboring scales (figure 2-5).  By this measure,  ranges from  =0 

(no coverage) to  =1 (full coverage).  

 

Figure 2-5: Diagrams showing three examples on how to compute ts and =ts/t: (a) Example with no scale 

overall and no coverage ( = 0); (b) Example with two scales overlapping, leading to intermediate   ; (c) 

Example with three scales overlapping, leading to high . 

 

For all models, we imposed a vertical force on the upper right corner of the middle scale so that 

the force applied the largest possible tilting moment on the scale, which represented the “worst-

case scenario” for loading. We first present the effect of each parameter on the puncture force-

displacement curves (figure 2-6). For all results, we normalized the applied force on the middle 

scale as F*=F(1-ν2)/EsLt (consistent with equation (2.1)) and the displacement of the punctured 

point as u*=u/t. Figure 2-6a shows the effect of the slant angle  on the deformation of the system 

for a fixed aspect ratio of L/t=1 and gap of d/t=0.1. Initially, the imposed force simultaneously 

pushes the scales into the substrate and increases the tilt angle. At the initial stage the puncture 

stiffness is relatively low, especially at larger slant angles (figure 2-6b) because of the larger 

moment arm of the applied force. At some point during the simulation the scales start contacting 

each other (on the snapshots of figure 2-6a, the contact areas are marked in red and on the puncture 

force-displacement curves in figure 2-6b a (×) symbol marks every new contact event). For the 

cases of α = 0° and α = 45° the punctured scale contacts with the neighboring scales at about 

u/t=0.08, which translates into a kink on the force-displacement curve and a stiffer response.  For 

the case of α=0, the corner of the punctured scale slides on the side of the neighboring scale with 
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little resistance and the contact force between the scales is mostly horizontal. Introducing a slant 

angle generates a vertical component to the contact force and a much stiffer response (this result 

is consistent with our previous experimental study on 3D printed scales [4]). For the model with 

the largest slant angle (α=75°) the initial contact occurs earlier due to the larger tilting moment. 

The first four contacts do not have a significant effect on the stiffness because of the high tilting 

moments in the scales. By engaging more scales by contact during loading, the resistance from the 

contact eventually overcomes the high tilting moment and the stiffness starts increasing. The post-

contact stiffness also increases significantly with the scale slant angle. Interestingly, the puncture 

force can become high enough that additional scales enter contact (figure 2-6a), which distributes 

the puncture force over an even greater area. Figure 2-6c shows the effect of varying the aspect 

ratio on the response of the system, with a fixed gap of d/t=0.1 and fixed slant angle of α=45°. 

Larger aspect ratios cause less penetration, but larger tilting moments induced by the loading in 

the punctured scale, which implies that individual scales offer less resistance to tilting resulting in 

low initial stiffness (figure 2-6d). In contrast, smaller scales (smaller L/t) penetrate more into the 

substrate but showed less tilting.  This stability effects the post-contact stiffness of the system as 

well, where the contacting scales with smaller aspect ratios show more resistance against tilting 

resulting in higher system stiffness (figure 2-6d).  Finally, figure 2-6e and 6f show the effect of 

the gap size for a fixed aspect ratio of L/t=0.5 and slant angle of α=45°. The gap size has no 

significant effect on the initial stiffness of the systems and little effect on post contact stiffness. 

The main effect of increasing d/t was to delay scale-scale contact (figure 2-6f).    
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Figure 2-6: Deformation of three systems of scales at u/t=0.7 on a soft substrate in a puncture test, and the 

related force-displacement curves: for (a) and (b) a fixed aspect ratio of L/t=1 and a gap size of d/t=0.1, (c) 

and (d) a fixed gap size of d/t=0.1 and a slant angle of α=45º, (e) and (f) a fixed aspect ratio of L/t=0.5 and 

a slant angle of α=45º. 

 

In addition to puncture stiffness, we considered the puncture resistance of the scaled surface. There 

are several possible failure modes for this system, including fracture in the scales, failure of the 

interface or tearing of the substrate. However, in this study the combination of the materials, 
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geometries and load range was such that we did not observe any of these failure modes. Instead, 

we focused on a failure mode that occurred by tilting of the indented scale. In this failure mode 

the indented scale tilts from the action of the needle, and when the tilt reaches a critical angle 

ϕc=tan-1() (where  is the friction coefficient between the scale and the needle), the needle 

suddenly slides on the surface of the tilted scale and finds its way into the substrate (figure 2-7a).  

 

 
Figure 2-7: (a) Reaching the critical angle causes the needle to slide off the scale surface; (b) the effect of 

the slant angle (α), the aspect ratio (L/t) and the gap (d/t) on the critical force of the system. The critical 

force is denoted as Fc and is normalized by Fc*= Fc (1-ν2)/EsLt. 

 

This failure mode was identified on scales from gar fish and duplicated in puncture experiments 

on 3D printed scales [4, 17].  For each of the models discussed above, we computed a critical force, 

corresponding to the point where the tilting of the scale reached a critical angle which we took as 

ϕc = 10° to be consistent with previous experiments [17]. Figure 2-7b shows that the gap size, 

aspect ratio and slant angle, all had a significant effect on the critical force. In general, decreasing 

the gap between the scales (d/t) increased the critical force, because early contact between the 
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scales increased stability and delayed tilting. Smaller scales (small L/t) were also more stable, 

because of the reduced lever arm of the applied force. Higher slant angles also increased the critical 

force as long as the scales contacted early in the puncture process. If the contact was delayed 

because of a large initial gap between scales, larger slant angles led to larger lever arm for the force 

and less stability. Compounding all these effects, the smallest aspect ratio (L/t=0.1), the smallest 

gap (d/t=0.1) and the largest slant angle (α=75°) produced the system with the highest critical force 

(Fc(1-ν2)/ELt=64). Figure 2-8 maps the puncture stiffness and the critical force for all models of 

scale designs, showing a strong correlation between these two properties. The highest puncture 

stiffness was achieved for the case with an aspect ratio of L/t=0.1, a slant angle of α=75°, and a 

gap of d/t=0.1. This system also has the highest critical force. Among all the design parameters 

considered here, we found that the slant angle had the most significant effect on the puncture 

stiffness and critical force.  

 

 
Figure 2-8: The relation between the normalized stiffness and the critical force for different combinations 

of slant angle (α), aspect ratio (L/t) and gap (d/t). The stiffness and critical force are denoted as K and Fc, 

and are normalized by K*= K/Est, and Fc*= Fc (1-ν2)/EsLt, respectively. 
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Contact interaction between scales not only improves critical force, it also improves how the 

puncture force is distributed onto the substrate (see, for example, figure 2-6a). To better illustrate 

this effect, figure 2-9 shows the spatial distribution of vertical reaction forces from the substrate 

onto the scales, for models with different slant angles (under the same puncture force). In the model 

with no slant angle (α=0), only one scale is engaged by the point force, and the force is transmitted 

to the substrate over a small area. This concentrated distribution could lead to flexural failure of 

the scale, or damage in the underlying tissues (“blunt damage”). As the slant angle is increased, 

more scales enter in contact and distribute the force over a larger region of the substrate. This effect 

is very pronounced for the case α=75°, where scales tilt and contact in “domino effect” that involve 

about eight scales, distributing the puncture force over a large surface. Slanted scales can therefore 

improve the critical force of the system by distributing the force over a wider area.  

 

Figure 2-9: Force distribution over the models with different slant angles in a puncture test 
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2.5 Hard scales on a soft membrane: flexural compliance 

In addition to resistance to puncture, flexural compliance is a desired property in scaled skin. In 

this section we used the DEM model to explore how the architecture of the scales affects flexural 

stiffness. In the model, a set of scales is perfectly bonded to a thin membrane of thickness h, depth 

b, and modulus Em (figure 2-10a). The membrane was modeled with nonlinear co-rotational Euler-

Bernoulli beam elements which assumed linear elasticity and small strains within the membrane, 

but allowed for arbitrarily large elemental rotations. The section of the membrane located below 

the rigid scales was also assumed to be rigid (figure 2-10a). In order to induce flexural 

deformations to the model, two self-equilibrated moments M were imposed at the ends of the 

membrane, inducing a state of pure bending. Figure 2-10b shows the bending moment-curvature 

response for a membrane covered with cubic scales. Initially the flexural deformation of the thin 

membrane is the only contributor to the bending moment, so that the flexural stiffness is very low. 

As curvature increases the scales contact each other, which is characterized by an abrupt stiffening. 

In that second stage, the contact forces between the scales are balanced by tension in the 

membrane. These two forces create a couple which becomes the largest contributor to flexural 

stiffness. To better appreciate this mechanism we partitioned the total strain energy in the DEM 

model into the contributions from bending and axial strain energy in the membrane (figure 2-10c). 

In the initial stage the energy from axial stretch of the membrane is negligible compared to the 

energy from flexural deformation. After contact of the scales however, the energy from axial 

deformation increases dramatically.  
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Figure 2-10: (a) Schematic for the DEM flexural model; (b) Bending moment-curvature curves showing 

good agreement between the experiment and DEM results; (c) Evolution of strain energy from axial stresses 

and strain energy form bending stresses during loading, computed from the DEM simulations. (d) 

Comparison between a DEM simulation and an experiment on 3D printed blocks on elastomer strip. 

 

To validate the flexural models we also fabricated and tested a membrane covered by ABS cubic 

scales (8mm×8mm×8mm). The scales were 3D-printed and glued onto a 1mm thick strip of 

polyurethane (Young’s modulus =4.5 MPa, measured in three-point bending). In the experiment, 
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pure bending was induced in the membrane using a four-point bending configuration (figure 2-

10d). Figure 2-10b shows an excellent agreement between the experiment and the DEM model, 

except near the contact point. In the DEM model, contact is initiated simultaneously between all 

the scales which gives rise to a sharp transition in stiffness. In the experiments contact was initiated 

at slightly different deformation stage due to imperfections, which gave rise to a more progressive 

transition in the slope. We used the DEM approach to explore the effect of the scale geometry and 

arrangement on the flexural compliance of the scaled-membrane system. The moment was 

normalized according to classical beam theory as M*=Mt/EmIm, and the curvature normalized as 

κ*=κt. Figure 2-11 shows the effect of slant angle, scale length and scale gap. The normalized 

moment-curvature response followed the behavior described above: initially negligible stiffness, 

followed by rapid stiffening immediately after the scales enter contact. Interestingly, the post 

contact behavior shows softening, because the sliding of the contact points increase the moment 

arm on individual scales, effectively making the entire structure more compliant (softening is 

absent for cases with no slant, α=0 because the contact points remain at the corner of the scales 

during the entire simulation). The deformation at which the scales contact, the amount of stiffening 

and softening depend largely on the geometric parameters. In addition, we observed that for 

designs with high slant angles, large scale size or small gap, the conformation induced a ‘zig-

zagged’ deformation in the membrane.  
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Figure 2-11: Deformation of three systems of scales on a soft membrane under pure bending, and the related 

moment - curvature curves: for (a) and (b) a fixed aspect ratio of L/t=1 and a gap size of d/t=0.1, (c) and 

(d) a fixed gap size of d/t=0.1 and a slant angle of α=75º, and (e) and (f) a fixed aspect ratio of L/t=0.5 and 

a slant angle of α=75º. 
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Figure 2-12 summarizes the flexural compliance for different combinations of gap sizes (d/t), 

aspect ratios (L/t) and slant angles (α). For all models, we considered a constant total membrane 

length of Lwhole/t = 100. also, we put a limitation on loading where the system is loaded up to a 

maximum end rotation of 180º. In some designs, contact was never initiated in the simulation due 

to geometry (large gap sizes) and, therefore, were unaffected by the scale angle; these cases were 

plotted as unfilled dots in figure 2-12. Considering all other cases in which contact occurs during 

the loading (filled dots in figure 2-12), contact significantly decreases the flexural compliance of 

the system by up to three orders of magnitude. For small slant angles of α=0° and α=30°, the 

highest flexural compliance is for the models with the smallest gap (d/t=0.1) and the smallest 

aspect ratio (L/t=0.1). For slant angles of α=60° and α=75°, the highest flexural compliance is for 

the model with d/t=0.5, L/t=0.1, and the model with d/t=1, L/t=0.1, respectively. For the models 

with large slant angles, larger gaps therefore increased the flexibility to the system. Also, by 

increasing the aspect ratio of the scales the system gets stiffer, so smaller aspect ratios are desirable.   

 
Figure 2-12: The effect of the gap size, aspect ratio and slant angle on the flexural compliance of a series 

of scales on a soft membrane. The flexural compliance is denoted as Cf and normalized by Cf *= Cf EmIm. 

 

2.6 Optimum mechanical performance 

From the previous sections, it is clear that several of the design parameters have conflicting effects 

on puncture resistance and flexural compliance. For example, increasing slant angle increases 
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puncture resistance, but also decreases flexural compliance. In this section we seek designs which 

offer optimum combinations of four mechanical properties: (i) the coverage parameter  

(determined using geometry, figure 2-5) (ii) the critical force (force at which the indented scale 

become mechanically instable), (iii) the penetration resistance (defined as the inverse of the 

maximum penetration of the scales into the substrate when the punctured scale reaches the critical 

tilting angle), (iv) the flexural compliance (defined as the inverse of the maximum slope in the 

moment-curvature curve). In order to find the best design, we parameterized the scale gap size d/t 

= {0.1, 0.2, … , 1} , aspect ratio L/t = {0.025, 0.05, 0.1, 0.2, … , 1}, and slant angle α ={0°, 15°, 

… , 75°}.  We eliminated the designs where the coverage  is zero, because these designs leave 

the substrate partially exposed to mechanical threats. We compared a set of models with various 

combinations of the three design parameters (the gap size, the aspect ratio and the slant angle) 

using a quaternary plot to find the best design for a given design performance criteria. As the four 

criteria have values with different orders of magnitude, we rescaled each criterion to a range from 

0 to 1 in which the minimum and the maximum of each criterion are 0 and 1, respectively. We 

defined a fitness score as: 

f = (Coverage)m(Critical force)n(Penetration resistance)k(Flexural compliance)l                       (2.7) 

The individual values of m, n, k and l can be tuned to control the influence of each criterion on the 

fitness score, but we required m+n+k+l=1. The best designs for any combinations of m, n, k and l 

can therefore be displayed on a quaternary plot, shown on figure 2-13. The corners of the 

tetrahedron shows the four designs that optimize one of the four criteria while the other three are 

ignored. High coverage (m=1) is obtained with small gap size, large aspect ratio and intermediate 

slant angle (45°). Maximum critical force (n=1) is obtained for small gap size, small aspect ratio 

and large slant angle. The best penetration resistance is obtained for a large gap size. Finally, the 
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most flexible designs among the models (l=1) are achieved with scales with the smallest aspect 

ratio (L/t = 0.025) and a large slant angle (α = 60°). These four designs are very distinct, especially 

in terms of aspect ratio and gap distance. In order to identify the design with the best “balanced” 

set of properties, we sought the design that maximized f with m=n=k=l=0.25, to give equal weight 

to each performance metrics.  

 
 

Figure 2-13: The quaternary plot showing the best designs for the fitness indices of m=1, n=1, k=1 and l=1 

(the four corners of the plot). Also the best balanced design is shown for the case with (m=0.25, n=0.25, 

k=0.25, l=0.25). 
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The design with the best balanced performance was d/t=0.7, L/t=0.1 and α=60°. Our approach also 

showed that this particular design dominates not only for m=n=k=l=0.25, but also for a wide 

variety of fitness parameters depicted by the orange volume on figure 2-13.  

2.7 Summary 

In this study we proposed the discrete element method to investigate the mechanical behaviour of 

systems of segmented scales attached to a soft substrate and a soft membrane. DEM is appropriate 

for this kind of system where the scales can be assumed to be rigid compared to the surrounding 

materials, and we validated the simulations with puncture and flexural experiments. The focus was 

to learn about the effect of the architecture (the aspect ratio and slant angle of the scales) and the 

arrangement (the gap size between the scales) of the scales on the mechanical performance of the 

scaled systems. The study gives us useful insights into the mechanics of this type of system, 

optimization of its mechanical performance, and eventually, a better design of synthetic fish-skin-

like protective systems. The computational efficiency of DEM allows us to run a large number of 

nonlinear models (720 Models) with different combinations of the design parameters. To identify 

the best designs, we considered four criteria: critical force, coverage, penetration resistance and 

flexural compliance. The results show that the contact between the scales play a critical role in the 

behaviour of the system. The contact helps to distribute the load over a wider area therefore the 

system becomes more resistant to tilting and penetration. The main conclusions are as follow: 

 The models with a high stiffness have a high critical force as well. 

 The model with the highest critical force requires the smallest gap size and aspect ratio, 

and the largest slant angles. 

 The smallest gap size, the largest aspect ratio and a moderate slant angle of 45° give the 

best coverage. 
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 Contact makes the force distribution occur over a wider area which results in a higher 

critical force and penetration resistance. On the other hand, too many contact points has 

negative effects on the penetration resistance. 

 To have the highest flexural compliance the aspect ratio needs to be the smallest. 

 There is limitation on the positive effect of the slant angle on the flexural compliance: too 

large slant angle decreases the flexibility of the system. 

We used a quaternary plot to examine the influence of the design parameters (gap size, aspect ratio 

and slant angle) on the four mechanical properties: coverage, critical force, penetration resistance 

and flexural compliance. The quaternary plot shows that changing each design parameter can 

improve one mechanical property while having a negative effect on the other ones. Also, based on 

which mechanical properties are more important to be considered, we give a weight to each 

criterion (m, n, k and l), which results in different combinations of design parameters. The best 

response of the system considering the four criteria with the equal weights (m=0.25, n=0.25, 

k=0.25 and l=0.25) belongs to the model with a small aspect ratio (L/t=0.1), intermediate gap size 

(d/t=0.7) and large slant angle (α=60°). This article provides a strong basis for future design of 

synthetic fish-skin-like protective systems. Further simulations would be needed to optimize the 

design parameters for specific applications and boundary conditions, and could include material 

nonlinearity in the substrate for better accuracy at large deformations. Adding nonlinearities and 

unusual behavior to the substrate could indeed enrich the problem and possibly lead to new and 

interesting interactions between the scales and the substrate. The focus on this DEM-based method 

is on systems where the scales are orders of magnitude stiffer than the substrate, which is relevant 

for many types of flexural armor (biological and engineered). For the cases where the deformation 

of individual scales cannot be neglected, other numerical approaches such as finite elements must 
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be used. Finite element is however much more expensive computationally because of contact 

penalty methods and much greater number of degrees of freedom. 
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Link between the chapter 2 and chapter 3 

In the previous chapter (chapter 2), we proposed discrete element method (DEM) as an approach 

to model a scale-covered system with two different configurations: hard scales on a soft substrate, 

and hard scales on a asoft membrane. After validating the models with experiments, we 

investigated the puncture resistance and flexural compliance of the system, and the effect of the 

scales on the mechanics and the performance. We showed that by optimizing the geometries and 

the arrangement of the scales we can improve the flexural compliance, within limitations (by 

increasing the flexural compliance, the puncture resistance decreases). In the next chapter (chapter 

3), inspired from nature, we approached a different solution to provide flexibility for the system, 

which was imposing wrinkles in the system. We explored the post-buckling stability of a scaled 

membrane in the mode I and mode II configurtions, and how to control a buckling mode using 

scales. 
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3.1 Abstract 

Natural flexural armors combine hard, discrete scales attached to soft tissues, providing unique 

combinations of surface hardness (for protection) and flexibility (for unimpeded motion). Scaled 

skins are now inspiring synthetic protective materials which offer attractive properties, but which 

still suffer from limited trade-offs between flexibility and protection. In particular, bending a 

scaled skin with the scales on the intrados side jams the scales and stiffen the system significantly, 

which is not desirable in systems like gloves where scales must cover the palm side. Nature appears 

to have solved this problem by creating scaled skins that can form wrinkles and folds, a very 

effective mechanism to accommodate large bending deformations and to maintain flexural 

compliance. This study is inspired from these observations: we explored how rigid scales on a soft 

membrane can buckle and fold in a controlled way. We examined the energetics of buckling and 

stability of different buckling modes using a combination of discrete element modeling (DEM) 

and experiments. In particular, we demonstrate how scales can induce a stable mode II buckling, 

which is required for the formation of wrinkles and which could increase the overall flexural 

compliance and agility of bioinspired protective elements. 

Keywords: Bioinspiration, discrete element method, segmented hard material, buckling, stability 
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3.2 Introduction 

The need for protection against predation and other threats in nature has led to high performance 

protective systems that evolved over millions of years. Among natural flexible armor, scaled skins 

are common in animals including fish, snakes, lizards, and armadillos. The main idea in scaled 

skins is to cover flexible tissues with hard plates of finite sizes [1-5]. The hard plates provide 

surface hardness and resistance to puncture and laceration [6-9], while also maintaining high 

flexural compliance due to the ability of discrete scales to move relative to one another. These 

systems have been inspiring synthetic scaled protective systems [2], [1-5], where a central design 

challenge is to combine high puncture resistance with flexural compliance [2, 10-19]. In these 

systems the architecture and arrangement of the scales can be tuned to maximize combinations of 

compliance and protection [1-3, 10, 11, 15, 17, 20, 21]. However, a major challenge remains: It is 

difficult to achieve high compliance when hard scales are placed on the “intrados” side of the skin 

(i.e. inside the curvature) because at large flexural deformations the scales come closer together, 

enter contact and can jam, causing significant stiffening in flexion [10, 11, 16, 22, 23]. This 

scenario is not observed in flexible skins made purely of soft tissues, for example in the skin on 

the palm of human hands. When the hand closes the skin undergoes flexural deformations 

combined with compression in the plan of the skin, because the skin is offset by ~10mm from the 

rotation axes of the joints. The skin can buckle and form wrinkles to accommodate deformations 

(Fig. 1a, [24]), which maintains large compliance even when the hand is completely closed. In 

contrast, we recently covered the palm of Kevlar gloves with alumina scales following a stretch 

and release protocol [11]. This glove is impervious to lacerations and sharp punctures, but the 

wearer of the glove feels a sharp stiffening as they close their hands and as the ceramic scales jam 

together (Fig. 1b). In this glove the scales completely suppress the wrinkling and folding 
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mechanisms which are so important for the overall compliance of skin (and also for the compliance 

of a scale-less protective glove). Is it possible to create scaled skins that can buckle and form 

wrinkles? This design, which would be very attractive for regions of high deformation like the 

palm of a glove, does not exist in synthetic systems. Interestingly however, buckling and wrinkling 

of scaled skins do exist in nature. Figure 3.1d and 3.1e show examples of a snake and a lizard with 

sections of their bodies undergoing high flexural deformations. The intrados side of the scaled skin 

clearly forms wrinkles to accommodate for large deformations without resistance, preventing the 

scales from jamming together in these regions of high compression. Can we duplicate these 

buckling and folding mechanisms in synthetic scaled skins? The objective of this work is to 

investigate how hard scales on a flexible membrane affect the buckling energy landscape, and how 

in certain cases the stability of buckling modes can be manipulated.  

 

Figure 3-1: (a) Buckling / folding / flexure of skin at the palm of a hand allows for high compliance; (b) 

However hard ceramic scales at the palm of a Kevlar glove suppress these mechanisms: The scales jam and 

significant stiffening is felt when the hand is closed. Nature demonstrates that the buckling / folding of 

scaled skins is possible: (c) Emerald tree boa snake (Corallus caninus, the photo taken by William Warby 

[25]); (d) Christmas Island chained gecko (Lepidodactylus listeri, adapted from [26]). 

 



52 

 

To investigate these mechanisms we used the discrete element method (DEM), a computational 

efficient approach which was initially developed by Cundall and Strack for granular materials [27] 

and which was more recently used to model deformation and fracture in staggered composites such 

as enamel, nacre, Bouligand-type structures, and fish-skin-like material [16, 28-32]. For this study 

we applied DEM to the buckling of scaled membranes, and after validation against experiments, 

we examined the effect of the architecture and the arrangement of the scales on buckling response 

and stability of different buckling modes.  

 

3.3 DEM model setup and validation 

The objective of this work is to capture the mechanics of deformation of bioinspired scaled 

membranes using 2D models and experiments, focusing on the interplay between membrane 

deformation and scale-scale interactions. These mechanisms involve contact mechanics and large 

deformations, making them computationally expensive to capture with traditional modeling 

approach such as finite elements. As an alternative we used the discrete element method (DEM), 

which is much more computationally efficient for this type of problem [27]. The main assumption 

of this modeling approach is that the scales are rigid in comparison to the membrane on which they 

are attached. Each scale was therefore modeled as a discrete element with its own given geometry 

and three degrees of freedom (two translations and one rotation). The scales were perfectly bonded 

on the surface of a 2D flexible membrane which was modeled with a series of nonlinear beam 

elements [16]. While the scales were assumed to be rigid compared to the membrane, their elastic 

deformation was taken into account in the case of direct contact with other scales (more details are 

provided below). The membrane was modeled as a linear elastic material (modulus E) with second 

moment of area I (which included the effect of membrane thickness) using nonlinear co-rotational 
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Euler-Bernoulli beam elements which were allowed to have large rotations. To induce buckling 

numerically we introduced an infinitesimally small imperfection in the membrane, in the form of 

an initial curvature κ*=10-4 (κ*= κLm where κ is the curvature of the membrane and Lm is the length 

of the membrane). Buckling of the membrane was produced by clamping one end while imposing 

a clamped-longitudinal compressive displacement δL
*= δL/Lm  onto the other end (Figure 3-2a). 

More details on the DEM formulation we used can be found in [16]. This nonlinear system was 

solved using the iterative Newton-Raphson method [16, 29]. We first present results from the DEM 

modeling of a plain membrane (free of scales), which we used for validation. The DEM buckling 

model was compared with buckling experiments on a strip of polyurethane (Young’s modulus = 

4.5 MPa, measured in three-point bending) with a length Lm =50 mm, thickness tm = 1.4 mm thick 

and a width wm =10 mm. These buckling experiments were conducted in displacement controlled 

mode on a dual column universal testing machine (ADMET, model eXpert 5000, MA US) which 

continuously recorded the axial force FL as δL was increased at a quasi-static rate. Figure 3-2 shows 

two representative snapshots of these experiments and a representative FL - δL curve. As expected, 

the initial response is linear up to a critical force Fcr which marks the onset of buckling. Beyond 

the point the increasing stresses in the membranes are offset by the geometric softening of 

buckling, so that the force is decreasing with displacement. The DEM model of the bare membrane 

is in very good agreement with the experiments in terms of initial stiffness and critical force at 

buckling. The forces in the buckling region are lower than in the DEM model which we attributed 

to imperfections in the membrane [33]. We also compared these results with Euler’s theoretical 

critical load of a beam with identical end conditions given by [34]: 
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Figure 3-2: (a) Snapshots and schematics of a buckling experiment on a bare polyurethane membrane with 

fixed-ends conditions (no rotation); (b) Corresponding longitudinal force – longitudinal displacement 

curves. 

 

 

Using the experimental parameters we computed a theoretical critical force Fcr = 0.162 (N) which 

is also in agreement with the DEM model and buckling experiments (Figure 3-2b). The next step 

was to develop DEM models with hard scales perfectly bonded onto the membrane (figure 3-3a). 

We placed Ns identical scales with normalized length L/Lm and normalized thickness t/Lm on the 

elastic membrane. The scales were uniformly spaced with a normalized gap distance d/Lm. These 

geometrical parameters are therefore related by the equation L/Lm = (1+ (Ns+1) d /Lm)/Ns. The 

thickness of the membrane was on the same order as the thickness of the scales or thinner, and 

therefore we assumed that the segments of the membrane which were bonded to the scales were 

perfectly rigid. Only the sections of the membrane which were “free-standing” between the scales 

were allowed to deform. In the model, the scales could also interact by direct contact. Scale-to-
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scale collisions were detected using a shape intersection algorithm (Sutherland-Hodgman polygon 

clipping [35]) which detected whether a vertex entered the contour of the scale. When a scale-to-

scale collision was detected we first established whether interaction occurred by “sharp contact” 

where a corner of a scale penetrates a flat edge of another scale, or by “flat contact” where the 

neighboring edges from contacting scales interpenetrate and make a four-sided-shape overlap (in 

this case, the shape intersection algorithm detects two penetrating corners). For the case of a sharp 

contact the penetration distance p was determined as defined on Figure 3-3b. p was then used to 

compute the contact force  using a model inspired by a Winkler elastic foundation [16, 36]. 

Assuming that the scales are frictionless the contact force Fct for a “sharp" contact is written: 
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                         (3.2) 

Where ct is the contact modulus, and w is the out-of-plane width of the scales. The 

interpenetration of the scales was a streamlined was a streamlined approach to capturing the 

localized deformation of the scales due to contact forces.  To calibrate C1 and C2 we used a 2D 

finite element model of a sharp contact between two identical square scales (ANSYS, V16 2016, 

PA, US) where one of the scales was rotated by ϕ0 = 45° (incidence angle) from the other one. In 

this model one scale penetrates the other under controlled displacement [16], and the normalized 

resultant contact force Fct /LwEct was computed as a function of the normalized penetration p/L 

(figure 3-3d). These results were then fitted with equation (3.2) to determine the constants in model 

(2):  C1 = 1.1 and C2 = 0.23. We repeated the test with different angles of incidence for the 

penetrating scale (figure 3-3d) and obtained almost identical values for C1 and C2. An important 

ingredient in the scale-scale contact model is the line of action of the contact force Fct, because it 

governs the moment generated by Fct on individual scales, which in turn govern their rotation. Our 
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definition of the line of action for a “sharp” contact is shown on Figure 3-3b: The line of action 

was defined as a line perpendicular to the edge of the flat contact and intersecting the tip of the 

sharp contacting scale. The other contact configuration of interest is the “flat” contact, where the 

domain of intersection between the scales is four-sided (figure 3-3c). For this case we simply 

applied equation (3.2) twice to compute two contact forces (and two distinct lines of actions) 

generated by the normal penetration p1
 and p2

. 

 
 

Figure 3-3: (a) DEM model of a system of hard scales bonded onto a soft membrane with fixed-ends 

conditions; Schematic showing the penetration of two scales for the case of (b) a “sharp” contact and (c) a 

“flat” contact. For both cases the lines of action of the contact forces are shown in red; (d) The normalized 

resultant contact as a function of the normalized penetration for the models with different incidence angles, 

which was used to obtain the constants C1 and C2. 
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For validation, we compared a full DEM model of the scaled membrane (including contacts) with 

experiments. Buckling experiments were performed on a strip of polyurethane covered with scales. 

The scale dimensions were t =2.5 mm, L =7.75 mm, w =10 mm and were 3D printed with a high 

resolution Direct Light Projector (DLP) 3D printer (EnvisionTech Micro HiRes) which produced 

fully dense, isotropic and pore-free scales with a Young’s modulus of 3 GPa (measured 

experimentally [16]). The scales were then glued onto the surface of the membrane using 

cyanoacrylate and with a gap distance of d=0.5mm. The scaled membrane was placed into a 

loading machine and buckled following the same protocol as for the bare membrane. Since the 

scales were only attached to one side of the membrane, the system was not symmetric and there 

were two asymmetric mode I buckling. Following a terminology we previously used to 

characterize the flexural response of scaled membrane [11], we defined the “mode I-extrados” 

buckling as the buckling configuration where the scales, placed on the “extrados” side of the bent 

membrane, move apart as bending deformations increase (figure 3-4a). We defined the “mode I-

intrados” buckling as the buckling configuration where the scales, placed on the “intrados” side of 

the bent membrane, move closer together and may enter contact as bending increases (figure 3-

4b). To steer the experiments into either of the mode I-extrados or -intrados, we imposed a small 

pre-curvature (κ ≈ 0.0005) to the system. Figure 3-4c shows the experimental FL - δL curves for 

mode I-intrados and mode I-extrados buckling modes, together with the results from the bare 

membrane for comparison. As expected the scales made the membrane significantly stiffer, which 

also increased the critical buckling force by a factor of ~3. The effect of the scales on the initial 

stiffness and critical force was identical for the two buckling modes, and the two buckling 

responses were identical until the scales entered contact. For the mode I-extrados, the scales moved 

away from one another and the deformation mechanism was unchanged until the end of the 
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experiment. On the other hand, for the mode I-intrados buckling mode and starting at δL=1.2mm 

the scales started to enter contact in the mode I-intrados buckling, which added significant 

stiffening to the buckling response. We observed a transition regime where the scales progressively 

entered contact (1.2 < δL < 4.2 mm), followed by an extremely stiff regime where all scales where 

in contact (δL > 4.2 mm). In this particular regime, a large contact force is generated between the 

scales, balanced by a large tension in the membrane that predominantly acted as a tensile ligament. 

This “jamming” effect is what generates unwanted stiffening on bio-inspired scaled skin, for 

example at the palm of gloves (figure 3-1b, [11]). Another effect of contacting scales in the intrados 

mode is the redistribution and “equalization” of flexural deformations. Figure 3-4a and 4b show 

snapshots of the buckled scaled membrane well into the stiffening regime (δL=6 mm). Mode I-

extrados shows flexural deformations which are localized at the ends and at the middle of the 

membrane. In contrast, the membrane in mode I-intrados shows more distributed flexural 

deformations, so most of the membrane forms an almost perfect arc of circle. This effect is better 

seen by plotting the local curvature of the membrane as function of position (Figure 3-4d), showing 

a near-uniform curvature along most of the membrane.  The scales can therefore be used not only 

to stiffen the membrane and to increase the buckling critical force, but also to control the buckled 

geometry (in the next section we also explore how the scales can be used to manipulate the stability 

of the system). Finally, figure 3-4 also shows that DEM predictions are in excellent agreement 

with the experiments, except in the mode I-intrados stiffening where the DEM model 

overestimates the force (but the onsets of the transitions are captured accurately). We attributed 

this discrepancy with imperfections in the geometry of the 3D printed scales (imperfect, rounded 

corners) and their spacing. Nevertheless, the level of accuracy of the DEM model was deemed 
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sufficient to use it as exploratory tool for the design of the scaled membranes, focusing on the post-

buckling regimes. 

 

 
Figure 3-4: Experimental and DEM buckling test on a scaled polyurethene strip where the system buckles 

into (a) mode I-extrados and (b) mode I-intrados; (c) longitudinal force-longitudinal displacement curves 

showing a good agreement between the experimental and DEM results; (d) Curvature of the membrane as 

a function of the position along the membrane in the mode I-extrados and mode I-intrados configurations 

at loading point δL=6mm.  

 

3.4 Post-buckling response  

Mode I buckling is the only stable mode for a simple and uniform column or membrane in 

compression. Higher buckling modes exist in theory, but they are not seen in practice because they 

are unstable. In this study we hypothesised that the scales can be used to manipulate the stability 

of higher order modes. In particular, we were interested in promoting mode II buckling, which can 



60 

 

create wrinkles in natural scaled skin as seen in snake and lizard skins (Fig. 1). We first started by 

investigating the stability of a bare membrane in buckling. A buckled system tends to stay in a 

configuration with the lowest strain energy, therefore, the mode shapes which have a local 

minimum energy are stable [34]. A possible approach to assess stability is to disturb the buckled 

configuration with a transverse load and to examine the change in energy and force, and whether 

these changes induce the system to return to the stable configuration when the disturbance is 

removed. Here we used the DEM models to apply a transverse displacement to the buckled 

membrane, while monitoring total strain energy. Figure 3-5a shows a membrane subjected to a 

normalized longitudinal displacement of δL
*= δL/Lm =0.1 and buckled in mode I (We kept the 

longitudinal displacement δL
*=0.1 constant for this numerical experiment). Initially the transverse 

defection of the midpoint is δT
*=-0.19 and the force FT

* is equal to zero (figure 3-5b), and the 

system is in a stable equilibrium which occupies a state of minimum energy. We then imposed a 

transverse displacement to the mid-point of the membrane to steer the system away from that first 

stable equilibrium position. Figure 3-5b and 5c show the corresponding transverse force FT
* 

applied at the mid-point (normalized by FT
*=FT

 Lm
2/EI), and the strain energy of the membrane U* 

(normalized by U* = U/U0 where U0 is equal to the strain energy of the bare membrane in the mode 

I) during the transverse displacement, respectively. As the midpoint of the membrane is displaced 

to the right, FT
* increases, and the system then undergoes a bifurcation at point δT

*=-0.18 to 

transition from a “C” shape to a “S” shape deformation profile. Following this transition FT
* 

decreases as δT
* is increased further, to reach FT

*=0 at δT
*=0. This state of the membrane 

corresponds to mode I buckling, another equilibrium solution, which is unstable. Increasing δT 

from that point takes the system to the symmetric mode I buckling configuration, following an 

antisymmetric FT
*- δT

* response and a symmetric U*- δT
* response. 
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Figure 3-5: Buckling results from DEM on a bare membrane: (a) Buckling profiles, (b) force landscape and 

(c) strain energy landscape. To generate this plot a transverse displacement is applied to the mid-point of 

the membrane. 

 

This simple approach therefore captures the main buckling characteristics of a bare membrane: by 

two symmetric and stable mode I buckling modes, and one unstable mode II buckling mode. In 

the next step, we investigated the effect of the scales in the post-buckling behaviour of the system. 

Figure 3-6 shows how scales bonded on the membrane (in this example the size of the scales was 

t/Lm=0.05 and L/Lm=0.15) can drastically change the energy landscape of buckling (if the scales 

are close enough).  If the scales are far apart (blue line in figure 3-6) no contact is made during 
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buckling, and the only effect of the scales is stiffening (i.e higher strain energy in the system). If 

the scales are close enough (green and red lines in figure 3-6), the scales enter contact during 

buckling in mode I-intrados, which greatly increases the strain energy and changes the shapes in 

the energy curve, with a significant rise in energy on the intrados side (right side on the graph). As 

a result, the mode II positions are shifted to the right (but they remain unstable). We also note that 

the mode Ii becomes a higher energy mode compared to Ie, and that Ie is more stable (i.e. the 

energy barriers around Ii are steeper than around Ie). Reducing the gap between the scales (which 

adds more scales on the membrane) accentuates these effects.  

 
Figure 3-6: Buckling energy landscape for a bare membrane and a membrane uniformly covered by three, 

five and six scales with fixed sizes of t/Lm =0.05 and L/Lm =0.15. 

 

These effects and asymmetries can also be amplified further with thicker scales and larger numbers 

of (shorter) scales, as shown on Figure 3-7. Figure 3-7b also shows an extreme configuration where 

the system is completely jammed around the mode Ie buckling configuration. In this design the 

scales generate so much locking with such high energy barriers that is it not possible to evolve the 
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system towards mode II and mode Ie buckling. We also captured this phenomenon in experiments 

where two different models were loaded transversely about a jammed configuration using a wire 

where one end was glued to the middle of the membrane and the other end was pulled horizontally 

to the right (figure 3-8). 

 

 
Figure 3-7: Buckling energy landscape for three different scaled membranes: (a) Varying scale thickness 

with a fixed gap distance of d/Lm=0.05 and scale number of Ns=3; (b) Varying number (and length) of the 

scales for a fixed gap distance of d/Lm=0.01 and scale thickness of t/Lm=0.05. The energy of the bare 

membrane is also shown for comparison.  
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In these experiments, the only buckling mode that could be achieved was mode Ie. Increasing the 

transverse force instead resulted in the delamination of the scales from the membrane or failure in 

the membrane itself. This type of design can be used to only trigger and promote mode Ie, while 

forbidding the other buckling modes entirely.  

 

Figure 3-8: DEM and experimental results on scaled membranes in jammed configurations: with (a) 

t/Lm=0.1, Ns=3, d/Lm=0.01 and (b) t/Lm=0.1, Ns=6, d/Lm=0.01. 

 

 

3.5 Buckling of symmetrically scaled membranes  

The results above are representative of a large parametric study on scale size and spacing, and 

while these parameters can change the buckling energy landscape significantly, we did not identify 

any design that could increase the stability of mode II buckling. Additional design explorations 

however revealed that bonding scales on both sides of the membrane could be a powerful approach 

to stabilizing mode II. Figure 3-10a shows the energy landscape for membranes with scales 

(t/Lm=0.04 and d/Lm=0.05) bonded to either the left or the right surface of the membrane. As 

expected, the energy results are asymmetric and both produce higher energy on the intrados side 

and an unstable mode II buckling mode. Figure 3-10b shows the results of “superimposing” these 

two designs by bonding the same scales to both left and the right surfaces of the membrane. This 
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symmetric design takes advantage of the stiffening mechanism associated with contacting scales 

in both buckling directions, and creates a symmetric energy landscape. The most interesting feature 

of this design is the emergence of a mode II buckling which is stable, while also preserving the 

stability of the two modes I. We could validate this result experimentally, creating a scaled 

membrane with a stable mode II buckling mode (Figure 3-10b).  

 

 
Figure 3-10: (a) Buckling energy landscape for two models symmetric from one another; (b) the two designs 

are combined to create a stable mode II.  
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In these symmetric designs, the geometrical parameters (t/Lm, d/Lm, Ns) can be adjusted to increase 

or decrease the stability of mode II. For example, increasing the thickness of the scale increases 

the stability of mode II buckling but only up to t/Lm=0.06. Increasing the thickness to t/Lm=0.09 

made the maximum strain energy shift to δT
*=0 and, as a result, makes the mode II an unstable 

configuration. Figure 3-11b and 11c show how the spacing of the scales and the number of scales 

can be tuned to create a stable model II buckling.  

 

 
Figure 3-11: Buckling energy landscape for membranes covered with scales on both sides: (a) varying scale 

thickness for fixed gap distance of d/Lm=0.05 and scale number of Ns=3; (b) varying scale spacing for fixed 

scale thickness of t/Lm=0.04 and scale number of Ns=3; (c) varying number (and therefore length) of scales 

for fixed gap distance of d/Lm=0.03 and scale thickness of t/Lm=0.04. 



67 

 

3.6 Summary 

A variety of bio-inspired scaled protective systems with useful combinations of flexibility and 

protection have recently been developed. However synthetic scaled skins stiffen in mode I intrados 

bending, which reduces the flexibility and dexterity or protective elements like gloves. Nature on 

the other hand displays examples of scaled skins that can buckle and form wrinkles to 

accommodate large deformations, a phenomenon which requires higher buckling modes. Inspired 

from these observations, we explored how rigid scales on a soft membrane impact the energetics 

of buckling and stability. The main conclusions are as follows: 

 Scales increase the strain energy stored in the system by stiffening the membrane and by 

making direct contact. 

 If the scales (bonded on one side of the membrane) are close enough to go in contact in the 

mode I-intrados, this mode creates a higher energy, and mode I-extrados becomes a more 

stable configuration. 

 “Jamming” was observed in some designs. This phenomenon can be used to achieve 

particular buckling modes while excluding others.   

 By adding scales onto both faces of a membrane and creating symmetric design, we could 

create and manipulate a stable buckling mode II. 

Greater control of buckling in bio-inspired scaled membrane should lead to better designs of 

synthetic scale-covered systems. This study provides a strong basis for future designs that guide 

scaled membrane into specific buckling mode configurations by judicious design and arrangement 

of rigid protective scales. In particular, the creation of stable mode II buckling configurations can 

induce wrinkles and folds which can increase the overall flexural compliance and agility of 

bioinspired protective elements. A prime application of these mechanisms is therefore flexible 
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protection, but there could be other applications in foldable structures or metamaterials where high 

control and programmability over buckling is desirable. The models we presented here (DEM and 

3D printed) are highly idealized and relatively far from natural scaled skin. There are however 

many obstacles to overcome before a comparison between our model and natural scaled skin can 

be successful: Non-linearities and anisotropies in biological tissues, effect of hydration, rate 

effects, and last for not least 3D effects. The current model presented here is simplified, but it can 

nevertheless guide the design of synthetic scales. In addition the design space for scaled skin is 

vast, and in this study we only focused on 2D rectangular scales. Scales with slanted sides and 

which overlap, or 3D scales with more complex geometries are known to have a profound impacts 

on scale-scale interactions and on overall mechanical properties [2-4, 37]. It is also highly probable 

that buckling is also affect by these additional geometrical features. Further work is needed to 

examine how enriching the geometry of the scales can be used to access additional buckling modes. 

These designs may also include non-uniform scales to generate localized deformation mechanisms 

or to adapt to specific combinations of deformation and constraints [38]. In addition, in this study 

we only considered perfectly bonded scales and smooth and continuous membranes in this study. 

In the future, designing and dispersing imperfections in the membrane or incorporating partially 

debonded scales could be combined to the design of scales for additional tunability of material 

response [39]. 
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Link between chapter 3 and chapter 4 

In previous chapters (chapter 2 and chapter 3), we developed a 2D DEM model and explored the 

puncture and flexural mechanics of fish-skin-like systems. We studied the effect of the aspect ratio 

of the scales, the scale slant angle and the gap distance between the scales on the mechanical 

performance of the system (puncture resistance and flexural compliance). These chapters provided 

some helpful insights into the mechanics of scale-covered scales, however, some aspects cannot 

be examined using a 2D model such as the effect of the scales base shape. In the upcoming chapter, 

we made a 3D DEM model using ABAQUS/CAE to study the 3D mechanics of fish-skin-like 

systems. We investigated the effect of the geometries (base shape and slant angle) and the 

arrangement of the scales on the puncture resistance and the flexural compliance. 
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4.1 Abstract 

Scale-covered skins are excellent examples of natural flexible protective systems. With segmented 

hard scales bonded or embedded onto a deformable skin, these natural structures provide useful 

combinations of puncture resistance and flexural compliance. The interaction of the scales with 

the substrate and the scales themselves is the key to such high-performance systems. In this work 

we investigate the 3D mechanics of puncture and flexion for a range of designs for scale-covered 

systems, using validated discrete element models (DEM) of the scales. The scales are orders of 

magnitude harder and stiffer than the substrate, so that they can be considered rigid for the purpose 

of mechanical modeling. Our main findings are that scales with no slant angles positioned in arrays 

increase puncture resistance compared to isolated scales, but only by way of interactions through 

the substrate and with much less extent by direct contact between scale. Direct scale-scale 

interaction can however be much improved by slanting the scales which we also examined in this 

work. We also examined the in-plane kinematics of scales, and identified interlocking mechanisms 

between rows of scales that further increase toughness. Dart- and hexagon-shape scales combined 

all these mechanisms in the most effective way among the designs we explored here. This study 

provides new insights into the effect of the base shape and the slant angle of the scales on the 

mechanical behavior of scale-covered systems, which in turn can help in the design and 

optimization of improved protective systems. 

 

mailto:francois.barthelat@colorado.edu
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Key words: Bioinspiration, 3D discrete element method, segmented hard material, puncture 

resistance, flexural compliance 

 

4.2 Introduction 

Natural materials often combine very hard and very soft components, in specific architectures that 

generate outstanding mechanical performance [1-5]. For example the skin of fish, armadillos or 

crocodiles consist of discrete hard scales which are orders of magnitude stiffer than the 

surrounding tissues and bare skin [4, 6, 7]. This specific construction enables high surface hardness 

and protection, while minimizing hindrance and enabling agile locomotion [4, 8-10]. Individual 

scales can also interact with each other by direct contact, which increases puncture resistance [8, 

11, 12]. In fish skin, the scales are slanted and have overlaps which promote scale-scale 

interactions [13-15]. These contacts promote the distribution of highly localized puncture forces 

over wider areas, which can prevent blunt trauma to underlying tissue [16-19]. The construction 

and mechanics of fish scales and other dermal armors have been the focus of numerous studies on 

the effect of the geometry and arrangement of the scales on the mechanical performance, with a 

strong focus on puncture resistance and on flexural compliance, two mechanical properties which 

have been shown to be mutually exclusive [6, 9, 10, 12, 16, 18, 20-23]. Failure of a scaled skin 

may occur in one of two ways: by fracturing or puncturing individual scales, or by unstable tilting 

of the scales [8, 16, 24, 25]. Fracturing individual scales is delayed by the strength and toughness 

of individual scales, while unstable tilting can be delayed by direct contact between the scales [18, 

21, 23] (in particular for configurations where scales overlap [8, 16, 23]). To this effect, 

experiments suggested that the shape and the arrangement of the scales had a significant effect on 

the puncture resistance and flexural compliance of the system [8, 21, 22, 25]. Experimental studies 

on 3D designs are however limited in terms of the geometries explored, so that the effect of the 
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shapes and the arrangement of the scales on the mechanical behaviour of the system is not fully 

understood yet. The interaction of the scales in 3D may also be captured with numerical models, 

but typical method such as finite elements require a large number of contact elements and a 

multitude of contact pairs which are computationally expensive and which can even prevent 

numerical convergence [23, 29, 30]. In this study we used instead the discrete element method 

(DEM) where we considered the scales as three dimensional rigid blocks and replaced the substrate 

with springs which connect the scales together and to the ground [23, 31-34]. After validating with 

experiments, we investigated the mechanical behaviour of scale-covered system with a variety of 

scale shapes and arrangements. 

 

4.3 Modeling and validation 

For this study, we investigated the puncture resistance of a 3D model of identical hard scales fully 

bonded onto a soft substrate which was modeled as a linear elastic half-space (Young’s modulus 

Es, Poisson’s ratio s). We first modeled some of the configurations examined experimentally in 

our previous study [21]: Slanted square scales arranged in a square array and with overlap 

generated by the slandered sides of the scales (figure 4-1). Each scale was constructed from a 

square base with the size 2L×2L, extruded in the out-of-plane direction by a thickness t and 

following a slant angle 0 towards the x-direction. The scales were arranged in a square array with 

a uniform gap distance d (figure 4-1). To fully cover the substrate with the scales we assumed the 

gap distance to be very small compared to the sizes of the scales (d/L=0.005, to avoid convergence 

issues one must have d >0). The objective was to model stiff scales, which are several orders of 

magnitude stiffer than the substrate, and therefore the scales were modeled as rigid blocks [7, 23]. 
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The sharp puncture experiment on the scaled system was duplicated in the model by applying a 

vertical displacement into the center of central scale in the model (red arrow in figure 4-1). 

 

Figure 4-1: Typical system considered in this study: 5 x5 Array of hard scales bonded to a soft substrate 

and subjected to puncture. Key dimensions for individual scales are shown. 

 

We used the 3D discrete element modeling capability of ABAQUS/CAE to capture the puncture 

mechanics of this system. Individual scales consisted of six faces where each face was made of a 

4-node discrete rigid element R3D4. The displacement and rotations of the six face elements were 

defined in relation to a reference framework centered on a reference point associated with each 

scale which we placed at the centroid of the basal face of the scale (point RP on figure 4-1). The 

reference points were given five degrees of freedom: translation in x-, y-, z-directions, and rotation 

about the x- and y-axes. Since experiments mainly showed scale rotations about the x- and y-axes 

and negligible rotation about the z-axis (out of plane axis), that rotation was maintained to zero 

during the simulations to facilitate numerical convergence. To apply puncture forces to individual 

scales, a node was created on the top surface of the punctured scale as the loading point. A rigid 

connector then was defined between the loading point and the reference point of the scale, and a 

controlled vertical displacement was applied to the loading point (red arrow in figure 4-1). Through 
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the rigid connector, the applied displacement and the resulting force were transferred to the 

reference point of the punctured scale. The model captured the interaction of individual scales with 

the substrate with a system of linear springs (figure 4-2). Some of the springs captured the elastic 

interaction of individual scales with the substrate, and other captured the elastic interactions of 

each scale with its neighbors through the substrates. The scales indeed can interact through the 

substrate, for example pressing a scale into the substrate scale will also displace neighboring scales 

to some extent, depending on the separation distance between the scale and depending on the 

elasticity of the substrate. The system of springs was set as follows: The reference point of each 

scale was connected to the ground (a reference plane “far below” the surface of the substrate) by 

two-node connector element CONN3D2 with extensional and rotational stiffness coefficients K0x, 

K0y, K0z, K0ϕx and K0ϕy. Neighbouring scales were connected by their reference points by a two-

node connector element CONN3D2 with “interaction” stiffness coefficients K1x, K1y, K1z, K1ϕx and 

K1ϕy. We then calibrate the stiffness coefficients using Boussinesq’s and Cerruti’s closed-form 

solutions for point forces on an elastic half-space [23, 35, 36]. For example, to obtain the 

coefficients K1x and K0x, we applied a tangential displacement ux to the central scale while keeping 

all other scales immobile. The distributed shear load qx(ζ,γ) on the surface of the substrate 

underneath the scales in x-direction was computed using [23]: 
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We then integrated the shear load qx(ζ,γ) over the area of the scales to get the shear force, which 

divided by the applied displacement of ux produced the stiffness coefficients K0x and K1x. The same 

approach was used to calibrate K0y and K1y, except we applied a displacement uy to the central scale 

to compute the shear load qy(ζ,γ) in the y-direction. To obtain K0z and K1z,we imposed a normal 
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displacement uz to the central scale and computed the normal distributed load p(ζ,γ) on the surface 

of the substrate underneath the scales using [23]: 
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We applied a rotation ϕx about the x-axis to the central scale, used equations (4.1) and (4.2) to 

obtain the distributed shear and normal loads (qy(ζ,γ) and p(ζ,γ)), and calculated the resultant 

moment for each scale [23]. We divided the moment on the central scale and on the neighbouring 

scales by the imposed rotations about either x-axis or y-axis to obtain the stiffness coefficients K0ϕx, 

K1ϕx, K0ϕy and K1ϕy respectively.  

 

Figure 4-2: Setup of linear springs captures the interactions of individual scales with the substrate, and also 

the interactions between neighboring scales through the substrate.  

 

In addition to interacting through the substrate, scales can also interact by direct contact with their 

neighbors. For our model we defined a frictionless contact with a linear penalty method where the 

contact force is proportional to the interpenetration distance between the scales. Once the model 

was in place and all parameters calibrated, we compared its predictions with our previous 

experiments [21] which consisted of a series of puncture tests on ABS scales attached onto a soft 

polyurethane substrate. The geometry and sizes of the scales (L =2mm, t =2mm and two different 

slant angles of α0 = 0 and α0 = 63.4°) as well as the material properties of the substrate (Es = 150 

KPa) were identical to those used in the experiments [21]. In the experiments the elastic modulus 
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of the scales (EABS = 3 GPa [21]) was four orders of magnitude greater than the substrate, which 

indeed justified the assumption of rigid scales compared to the substrate. We considered the four 

different configurations shown on Figure 4-3a: An isolated scale, and three different 5×5 arrays of 

scales with small gap distances (d/L=0.005).  Each of these models was subjected to a puncture 

displacement, and the corresponding reaction force was collected to generate a puncture force 

displacement curve (Figure 4-3b). We found good agreement between the model and the 

experiments in terms of puncture stiffness.  

 
Figure 4-3: (a) Snapshots of experiments and models for a puncture test on four different designs; (b) 

Corresponding puncture force-displacement curves showing a good agreement between models and 

experiments.  

 

The only numerical parameter we calibrated from the puncture experiments was the critical tilt 

angle which was defined as follows: By puncturing the top surface of the middle scale, the scale 
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started to tilt, and at a critical force the needle starts sliding off the scale into the substrate which 

is considered as a failure in the system [23]. In the experiments, this event causes a sudden drop 

in the puncture force on the curve (figure 4-3b). In the numerical model, failure occurs at the end 

point of the curve where the maximum tilting angle of the top surface of the punctured scale 

reaches the critical tilting angle. Our previous experiments using an ABS indenter on ABS scales 

[21] indicated a critical angle of ϕc = 13° for this set of materials, a value which we therefore also 

used in the model.  

 

4.4 Puncture resistance of isolated 3D scales 

In the following sections of this report we used these validated models to systematically investigate 

the effects of the 3D scale geometry and arrangement on the response of the system. For this study 

we focused on scaled skins made of identical scales that were designed to cover a soft substrate 

entirely. Therefore we only considered scale geometries that tessellate the plane, focusing on the 

regular triangle, square, isosceles trapezoid, symmetric darts and regular hexagons. To isolate the 

effect of shape, we kept the surface area for the individual scales constant across all models. We 

first examined the puncture resistance of individual, isolated scales with no slant angle (figure 4-

4). Our previous experiments showed that the critical force strongly depends on the location of the 

puncture on the surface of the scale [21]. For this study we adopted a conservative approach where 

for each geometry we puncture the scale at the “worst possible” location, i.e. the location leading 

to the least puncture resistance. This study therefore provides lower bounds for the puncture 

resistance of each scaled skin design. The “worst case” indentation points produce the longest 

moment arm δc of the puncture force (normalized by δc
* = δc/L) from the centroid of the scale, and 

they are generally located at the corners of the upper surface pf the scale (indicated by red dots on 
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figure 4-4). Figure 4-4 shows the puncture resistance Fc normalized by Fc
* = Fc(1-υs

2)/EsL
2 for 

these five geometries. Closer examination revealed that the puncture resistance is governed by two 

parameters: the moment arm δc created by the indentation force, and the rotational stiffness Kϕ
 

which is a function of the substrate elasticity and the scale geometry and size (normalized by Kϕ
* 

= Kϕ(1-υs
2)/EsL

3). The moment caused by the critical force on the punctured scale is equal to M 

*=Fc
*× δc

*, which can also be expressed as M *= Kϕ
*× ϕc. By combining these two equations, the 

puncture resistance therefore is obtained as Fc
*= ϕc (Kϕ

*/ δc
*) which shows that the puncture 

resistance is proportional to the ratio of the rotational stiffness over the moment arm. Figure 4-4 

indeed shows a near-proportional relationship between Kϕ
*/ δc

* and puncture resistance. The dart 

and hexagon shapes show the highest puncture resistance. 

 

Figure 4-4: Puncture resistance of isolated scales with five different base shapes as function of rotational 

stiffness. All the scales have an equal base area. 

 



83 

 

4.5 Puncture resistance of arrays of scales 

In the next steps, we considered the puncture resistance of arrays of scales. Figure 4-5 shows the 

different combinations of base shapes and arrangements which we examined. For the shapes of 

triangle, square and trapezoid, we considered two possible arrangements: “arrayed scales” and 

“staggered scales”. Other shapes like the dart and the hexagon only had one possible tiling 

configuration. The corresponding 3D arrays of scales for these designs were created by extruding 

the 2D patterns along the out-of-plane direction by a distance equal to the thickness of the scales, 

while creating very small gaps (d/L=0.005) between the 3D scales to avoid convergence issues. 

 

Figure 4-5: Eight designs for the base shape and arrangements we considered in this study 

 

Figure 4-6a compares the puncture resistance of systems with different base shapes and different 

arrangements of scales. To emphasize the effect of scale-scale interactions, we normalized the 

puncture resistance of each array of scales by the puncture resistance of one isolated scale with the 

same geometry. As expected, the array of scales produced a significantly increased puncture 
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resistance compared to isolated scales, with improvements by factors of 4 to 8. The highest 

improvements were for the hexagonal and dart scales, which were 20-30% higher than the rest of 

the designs. Closer examination of the models made it evident that surrounding the indented scales 

with other scales stabilizes the indented scale. More specifically, the interactions of the scales by 

direct contact and through the substrates increase the rotational stiffness of the indented scales, 

with the effect of delaying tilting and increasing puncture resistance. To highlight these effects, 

we ran additional models where we turned off the contact algorithm, that is scale-to-scale 

interpenetrated without producing any contact force. The scales could still however interact 

elastically through the substrate. Even when direct contact was turned off, scales directly 

neighboring the indented scales (marked by orange dots on fig. 6a) still had a significant stabilizing 

effect on the indented scale, while scales further away had negligible effects. These effects were 

assessed by examination of the coupling stiffness for each neighboring scales, where a coupling 

stiffness larger than K1i 
/ K0i 

> 0.01 was considered effective. The designs that promoted effective 

neighbour interactions in terms of number of interactions and configuration produced higher 

puncture resistances (blue columns on fig. 6a). Dart- and hexagon-shape scales were the most 

effective in this regard, increasing the puncture resistance by almost six times of magnitude 

compared to the isolated-scale models. To further establish the various contributions to puncture 

resistance, we ran a third set of models where this time direct scale-to-scale contact was enabled, 

but where the scale to scale interaction stiffness through the substrate mostly turned off (the 

corresponding stiffness terms were reduced to 4% of their original value, further reductions 

creating convergence issues). In this set of models the scales therefore mainly interacted by direct 

contact. Figure 4-6a (grey columns) shows that all puncture resistances in this this set of models 

are significantly lower than the other sets, with puncture resistance barely above the puncture 
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resistance of isolated scales. This indicates an important and unexpected feature of the puncture 

mechanism: neighboring scales stabilize the indented scale predominantly by elastic interaction

  

Figure 4-6: (a) Puncture resistance for eight difference scale arrays normalized by the puncture resistance 

of an isolated scale with the same geometry. For each design, results with full interaction and only partial 

interaction through substrate or through direct contact are shown. The punctured scales are marked with 

red dots, and the effective neighboring scales are marked by orange dots; (b) the displacement distribution 

in the complete model at the point where the punctured scale reached the critical tilting angle. 
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through the substrate, but by a much lesser extent by direct contact between the scales (at least 

with non-slanted sides). Finally, we note that scale-scale interactions not only delay the tilting of 

the indented scale, but also distributes the load over a larger area (figure 4-6b). Because mechanical 

interactions were more pronounced for dart- and hexagon-shape scales, the re-distribution of the 

puncture load over wide area was more effective for these geometries. By examining the 

displacements of the scales near the puncture site we identified another mechanism where the 

scales generate interlocking, preventing the collective motion of groups of scales in the in-plane 

direction. The interlocking mechanism functions differently in different in-plane directions. Figure 

4-7a shows examples where in some models a row of scales in y-direction can easily slide against 

the neighbouring rows with no constraint from contact. On the other hand, shown in figure 4-7b, 

a row of scales in x-direction hinders the movement of the neighboring rows in this direction by 

contact (scales are interlocked). This interlocking mechanism engages a larger number of scales, 

 

Figure 4-7: In-plane sliding of rows of scales may be (a) kinematically allowed by the shape and 

arrangement of the scales or (b) prevented because of interlocking.  
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which therefore can improve the puncture resistance of the system. In the “arrayed square scales” 

model, the free motion of the rows of scales is seen in both x- and y-directions, while the 

interlocking mechanism occurs along the diagonal (x=y) of the scale. In the “dart scales” and 

“hexagon scales” models, the interlocking mechanism exists in any in-plane directions, which is 

considered as an advantage in terms of resistance against tilting (will be discussed next). 

 

4.6 Effects of slant angles in arrays of scales 

The previous section discusses how the effects of direct contact for the case of non-slanted scales 

with straight sides is small, but this effect can be increased by slanting the sides of the scales.  In 

this section we explored the mechanics of arrays of scales with a slant angle towards three possible 

directions (figure 4-8): a slant angle of α0 = 60° towards the x-direction, a slant angle of α45 = 60° 

towards the diagonal (x=y) direction, and a slant angle of α90 = 60° towards the y-direction. 

 

Figure 4-8: Starting from scales with straight faces, we considered 60 degree slant angles towards three 

different directions.  
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Figure 4-9a shows that slanting the scales towards any of the three directions (α0, α45 and α90) 

roughly doubles the puncture resistance. This added stabilization effect can be explained by the 

slant angle changing the direction of the contact force towards the vertical direction, so this force 

generates a higher moment about the center of the scale. Slanted designs also result in more scales 

involved in the puncture mechanism through direct contact mechanism. The results show that slant 

angle in specific directions are more effective than others. Giving a slant angle to the scales toward 

the x-direction promotes interlocking, which results in a high puncture resistance. The “arrayed 

square scales” model with α45 = 60° shows the highest resistance against tilting compared to the 

other slant angles (α0 and α90), since the interlocking mechanism occurs along the diagonal (x=y) 

of the scale. Finally, figure 4-9a and 9b show that the dart shape and hexagon shapes have a 

superior puncture resistance because the interlocking mechanism occurs over multiple directions 

and between a large number of scales. 
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Figure 4-9: (a) Puncture resistance of arrays of scales.  Within each design the effect of slant angle is also 

shown; (b) In-plane displacement maps for these designs. The red arrows show the direction of the slant 

angle.  
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4.7 Flexural response 

In addition to puncture resistance, flexural compliance is another important criterion for flexible 

protective system. In this section, we created numerical models to investigate the effect of the base 

shape, the arrangement and the slant angle of the scales on the overall flexural compliance of the 

scaled skin. We used the same modeling configuration as in section 2 to create the scales, but this 

time the scales were bonded onto a membrane composed of linear elastic 8-nodes brick elements 

C3D8R with a modulus Em and Poisson’s ratio m  and a very small gap distance of d/L=0.005 

(figure 4-10a and b).  We built a 10L×10L×1.5L membrane placed in a three-point bending with a 

support span length of 8L. Our first task were to duplicate our flexural experiments [21] and for 

this purpose we used Em = 700 kPa, m = 0.5, L=2 mm and t=2 mm. The scaled membrane was 

loaded in flexion by a narrow rigid plate (figure 4-10a and b) aligned either with the x-direction 

(figure 4-10a) or with the y-direction (figure 4-10b). 

 

Figure 4-10: Configuration for the three-point bending (experiments and models). We considered two 

orientations for the loading pin (load line): (a) parallel to x-direction and (b) parallel to y-direction. 

 

The model predictions in terms of force-deflection are compared with the experiments (from [21]) 

in figure 4-11. No fitting procedure or calibration of parameters was used for this comparison, and 

the predicted force-deflection curves show a good agreement with the experimental results (figure 

4-11b and d).  
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Figure 4-11: (a) Three-point flexural tests (diagrams and DEM results) on arrays of scales bonded onto a 

soft membrane where the line load is parallel to x-direction and (b) corresponding force deflection curves 

from experiments and DEM models, showing good agreements; (c) Same test with the line load parallel to 

y-direction with (d) corresponding force deflection curves from experiments and DEM models also showing 

good agreements. 

 

The flexural model can now be extended to other base shapes. Figure 4-12 shows the normalized 

flexural compliance Cf
* (normalized by Cf

* = Cf EmIm/L3 where Im is the second moment of the area 
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of the membrane) for the models with different combinations of base shapes, slant angles and 

arrangements. 

 

Figure 4-12: Flexural compliance of arrays of scales on soft membrane with different combinations of base 

shapes, slant angles and arrangements and where the line load is applied (a) parallel to the x-direction and 

(b) parallel to the y-direction. 
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Compared to an isolated scale because of the very small gap distance between the scales and also 

the direct contact, the scales limit the flexion of the membrane, and as a result the flexural 

compliance in all the scaled systems decreases by 85% - 93%. The dart is the shape with the largest 

geometrical size, and therefore for this shape the stiffening in flexion was more pronounced than 

for the other shapes. Moreover, the interlocking mechanism which is more pronounced in the “dart 

scales” was beneficial to puncture performance, but our results show that it is detrimental to 

flexural compliance. This observation, along with similar trends from other  scale geometries, 

confirms that puncture resistance and flexural compliance are mutually exclusive [16, 21, 23]. The 

results (figure 4-12) also show that for design purpose, the orientation that we set the three-point 

bending configuration must be considered, because depending on the orientation, the models show 

different flexural response. If the direction of the slant angle is parallel to the orientation of the 

line load the system shows a higher flexural compliance, while the lowest flexural compliance 

happens when the slant angle direction is perpendicular to the line load orientation.  

 

4.8 Summary 

In this study we explored the mechanisms of puncture and flexural deformation in soft substrates 

and membranes covered with rigid scales of various shapes and arrangements. The discrete 

element modeling approach we used for this work was validated with puncture and flexural 

experiments. This modeling method brought more insights than the experiments, because a broader 

range of geometries and interaction parameters could be used, and the mechanisms involved in 

puncture and flexion could be explored with greater details. Our main findings are as follow: 
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 For scales with no slant angles, the puncture resistance increases mainly by elastic 

interactions through the substrate, and with much less extent by direct contact between the 

scales. 

 The interlocking mechanism between rows of scales plays an important role in engaging a 

larger number of scales during loading, which results in a higher puncture resistance 

 Slant angle towards any directions improve the puncture resistance of the system, however, 

a slant angle towards the direction with interlocking mechanism makes the effect of the 

slant angle more pronounced. 

 Dart- and hexagon-shape scales show the best performance in terms of puncture resistance 

compared to the other models 

 To have a better flexural performance, the direction of the slant angle must be considered 

parallel to the orientation of the three-point bending configuration  

This exploration of mechanisms finally produced a comparative database of the flexure- 

compliance performance of various designs, which can be conveniently summarized using the 

Ashby chart showed on figure 4-13. Isolated scale (with any base shapes) shows the highest 

flexural compliance but the puncture resistance is the lowest. Covering the substrate with scales 

improves the puncture resistance, but, at the cost of low flexibility. Simple system of “arrayed 

square scales” with no slant angles (α=0) increases the puncture resistance by five times. By only 

giving a slant angle of α45=60° to the scales, we can improve the puncture resistance even more by 

about three times of the model with no slant angle. Changing the base shape of the scales also has 

a significant effect on puncture resistance. When all these effects and mechanisms are combined 

they can produce a puncture resistance about 42 times higher than an isolated scale (“dart scales” 
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model with α0=60° slant). This puncture resistance only come at the cost of a small decrease in 

compliance compared to the other designs. 

 

Figure 4-13: Ashby chart showing the normalized puncture resistance and the normalized flexural 

compliance for different combinations of base shapes, slant angles and arrangements. 

 

This study provides new insights into the effect of the base shape and the slant angle of the scales 

on the mechanical behavior of a scale-covered system and the interlocking mechanism of the 

scales, which in turn can help in the design and optimization of improved protective systems.  
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Chapter 5: Conclusions 

5.1 Summary of findings 

In this thesis, we used the discrete element method (DEM) to study the mechanics of scale-covered 

protective systems. This method helped us vastly explore different combinations of scale 

geometries and arrangements to learn useful insights about the role of the scales in the mechanical 

performance of such systems. The main findings of this thesis are summarized below: 

1 Discrete element method (DEM) was successfully utilized to model fish-skin-like systems with 

two different configurations: hard scales on a soft substrate to study puncture resistance, and 

hard scales on a soft membrane to examine flexural compliance. The time efficiency of DEM 

enabled us to run 720 models (chapter 2) which cover a variety of scale geometries and 

arrangements. Our study shows that DEM can be an excellent alternative to finite element 

method (FEM) to numerically model fish-skin-like systems. 

2 The presence of scales has a significant effect on the puncture resistance of the system. The 

interaction of the neighboring scales through contact distributes the load over a larger area. By 

engaging the neighboring scales in the loading, the resistance of the punctured scale against 

tilting increases, which results in a higher puncture resistance. Slant angle helps the resistance 

against tilting by making the effect of the contact mechanism more pronounced. Too large slant 

angle however shows a negative effect on the puncture resistance. 

3 In general, adding scales onto a soft membrane decreases the flexibility of the system. 

Optimizing the geometries and the arrangement of the scales therefore are important to reach 

a high puncture resistance and flexible system at the same time. Large gap distance is the best 

way to improve the flexural compliance, but it is obtained at the cost of low puncture resistance. 

Choosing scales with small aspect ratio is another way to increase the flexural compliance. The 

results also show that large slant angles have a negative effect on the flexibility of the system. 

4 Inducing wrinkles in the system is another way to increase the flexibility. Contact between the 

scales on the intrados side of the membrane stiffens the system, creates a high energy in it, and 

makes the mode-I intrados a less stable configuration than the mode I-extrados. Also, in some 

designs we observed “jamming” which can be used as a method to keep the system in a 

particular configuration. By adding scales on the both sides of the membrane we were able to 
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impose a stable mode II configuration to the system, which is a requirement for forming 

wrinkles and increasing the overall flexural compliance. 

5 The base shape of the scale has a significant effect on the puncture resistance of the system. 

The dart and hexagon shapes show the highest resistance against tilting, where both shapes 

benefit from better interlocking mechanism compared to the other shapes that we examined. 

The interlocking mechanism improves the interaction between the scales through contact, 

therefore the punctured scale receives a better support from the neighboring scales. Giving a 

slant angle to the scales increases the effect of the interlocking mechanism, however, slant 

angles in different directions show different results. 

 

5.2 Original thesis contributions and accomplishment 

The following list summarizes the main original contributions and accomplishment achieved 

during the present study: 

 Proposed DEM as a validated method to model scaled skins. 

 A thorough exploration of scale-covered systems in both 2D and 3D with a various 

combination of scale architecture (aspect ratio, slant angle and base shape) and 

arrangement (gap distance and staggering scales) to optimize the system for a high puncture 

resistance and a high flexural compliance. 

 Studied post-buckling behavior of scale-covered systems in mode I and II, which was, 

inspired of nature, taken as an approach to create wrinkles in the system and increase the 

flexural compliance. 

 This study produced three journal papers, where one is published in the Journal of the 

Mechanics and Physics of Solids, one is accepted in Bioinspiration & Biomimetics, special 

issue and the last one is submitted to the International Journal of Solids and Structures.   

5.3 Possible future directions 

In this work, the main structural features of scale-covered protective systems were explored 

and discussed through numerical modeling based on the discrete element method (DEM). The 
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findings provide guidelines for the future design of synthetic high-performance fish-skin-like 

systems. The following points are proposed as a continuation of this work: 

 For specific applications and boundary conditions, the model may be adjusted, and 

further simulations would be required.  

 In this work we assumed a linear elastic substrate and membrane. For a better accuracy 

at large deformation, material nonlinearity can be considered, which will enrich the 

problem and bring new interactions between the scales and the substrate or membrane. 

 Using scales is not the only way that nature uses to control buckling. Initial conditions 

such as imperfection in the system is another strategy to control buckling, which can 

be investigated in the future works. 

 Aside from slant angles, using compliant tethers is another way in some natural armors 

to increase the stability of the scales under puncture loads. This matter can be explored 

in the future works. 

 In each model, we used identical scales which were uniformly positioned (with equal 

gap distance). In further works, models with different scale sizes and gap distances 

could be considered. Also, it would be interesting to explore scales with more complex 

shapes and partial interface debonding. 
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