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Abstract

In this thesis, we study the effects of massless higher spin fields in three-dimensional
gravity with a negative cosmological constant. First, we introduce gravity in Anti-de
Sitter (AdS) space without the higher spin gauge symmetry. We recapitulate the
semi-classical analysis that outlines the duality between quantum gravity in three
dimensions with a negative cosmological constant and a conformal field theory on
the asymptotic boundary of AdSs;. We review the statistical interpretation of the
black hole entropy via the AdS/CFT correspondence and the modular invariance
of the partition function of a CFT on a torus. For the case of higher spin theories
in AdS3 we use those modular properties to bound the amount of gauge symmetry

present. We then discuss briefly cases that can evade this bound.



Abrégé

Cette these s’intéresse a la gravitation en trois dimensions avec une constante cos-
mologique négative, et en particulier aux effets des champs de masse nulle dont le
spin est plus grand que deux. Les interactions gravitationelles dans I’espace Anti-de
Sitter (AdS) sont d’abord décrites sans la symétrie de jauge additionnelle. Nous
présentons l’analyse semi-classique qui met en lumiere la dualité holographique en-
tre la gravitation quantique en trois dimensions avec une constante cosmologique
négative et une théorie conforme des champs (CFT) sur la frontiére asympto-
tique de 'espace AdS3. Grace a cette correspondance AdS/CFEFT et a 'invariance
sous les transformations modulaires de la fonction de partition d’une théorie con-
forme décrite sur un tore, nous réexaminons l'interprétation statistique de I’entropie
des trous noirs. Nous appliquons ensuite ces propriétes modulaires aux théories
gravitationelles avec l'invariance de jauge des spins entiers plus grand que deux,
et démontrons ainsi une limite sur le spin maximal présent dans l'espace AdSs.
Quelques remarques s’ensuivent sur certains cas particuliers pouvant se soustraire a

cette limite.
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1

Introduction

One major problem of modern theoretical physics is the quantization of gravity. The
need for a quantum theory of gravity is to address long-standing puzzles, such as the
place of gravity in a unified description of all interactions, and the characterization of
space-time down to scales our universe explored in its infancy. Another phenomenon
for which one needs a quantum treatment of gravity is the thermodynamic nature of
black holes. On the one hand, classical General Relativity (GR) leads to Birkhoff’s
theorems for black hole metrics [2]: for a given set of charges (such as mass, angular
momentum) there exists a unique black hole metric with those conserved quantities.
On the other hand, by studying dynamics of a probe scalar field in the vicinity of
a black hole, one can derive the thermodynamical properties for that system. In
particular the Bekenstein-Hawking entropy of the black hole scales as the area of
the horizon [3, 4]. In this thesis we will review the statistical interpretation for that
entropy for the particular case of gravity with a negative cosmological constant in
three dimensions [5]. Using the same line of reasoning, we will also generalize the
discussion to include higher spin fields and find non-perturbative restrictions on the

coupling of these fields to gravity.

The quantization of gravity is notably difficult. At face value, the Einstein-
Hilbert action in d > 2 dimensions leads to non-renormalizable interactions, hence
the usual tools of quantum field theory cannot be put to use. From a bottom-up

perspective, the black hole entropy serves as a guide and the ‘holographic’ approach
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to quantum gravity proposes that a gravitational theory in d dimensions can be
formulated as a quantum field theory only in d — 1 dimensions. As a top-down
approach, string theory is an ultraviolet (UV) complete theory which comprises
gravity. By smoothing out interactions over two-dimensional surfaces — the world-
sheet of a fundamental string — the theory is cured from UV divergences. However
the theory is not perfectly understood, in particular there are numerous other fields

in the spectrum of the theory. Hence it cannot answer whether the quantization of

GR by itself is sensible.

The approach that we use in this thesis lies in between the two points of view
just described. We will analyze GR semi-classically as we will define it later in the
core of the thesis. We will use the insight gained by the study of string theory over
the years, in particular the Anti-de Sitter/Conformal Field Theory correspondence
(AdS/CFT) [6, 7]. The AdS/CFT correspondence is a holographic duality which
relates quantum gravity in a space with a negative cosmological constant to a con-
formal theory on its asymptotic boundary. In chapter 2, we will give a heuristic
argument for the validity of such duality, and then use it to address the black hole
entropy.

This thesis explores three-dimensional gravity with a negative cosmological con-
stant. As we will describe in chapter 2 this theory is locally trivial. Despite this,
it has a rich quantum spectrum [8, 9], which we will be able to characterize rather
precisely. Understanding these results has broader implications than what will be
shown in the thesis. For example, certain extremal black holes in higher dimensions
are known to have a scaling limit in which their near-horizon geometry is AdSs, the
geometry we are studying here. Hence, understanding the quantum effect for GR
in AdS3 background will deepen our knowledge of the dynamics of a large class of
black holes. Moreover, some condensed matter theory systems have been shown to
be dual to black holes in various dimensions, through the AdS/CFT duality. We

refer the interested reader to [10, 11] and references therein.



The thesis is divided as follows. Chapter 2 is a short review of the literature on
the subject of three-dimensional quantum gravity and its holographic description as
a two-dimensional CFT. In particular, we will define conformal field theories in two
dimensions, and study some of their generic properties. In section 2.2, we present
semi-classical evidence for the AdS/CFT correspondence following the early work
of [12]. In section 2.3 we use this to count the degeneracies of black holes in the
large mass regime, shedding light on the black hole entropy. Chapter 3 we generalize
the three-dimensional gravity to encompass massless higher spin gauge symmetry
and discuss non-perturbative effects of these theories. We present the equation of
motions for the higher spin fields in section 3.2 and study the partition function
of these theories in section 3.3. Section 3.4 addresses the question of linearization
instability that could avoid the bound presented in the present chapter. Chapter 4
is then devoted to some recent results as well as open questions we wish to tackle

in future research.
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Three-dimensional Gravity with a Negative Cosmological Constant

In this chapter we will deal with a semi-classical study of three-dimensional gravity

with a negative cosmological constant. The classical action is

1 ; 2

where G is Newton’s constant and A = —é% is the cosmological constant. A vacuum
solution is Anti de-Sitter space (AdSs3), whose metric is
2 2
ds* = —(5 + dt* + (7 + 1) dr® + r%dg?, (2.2)
where the ¢ coordinate is identified with period 27. Spatial infinity (r — oo) is
conformally a cylinder.

General relativity is locally trivial in three dimensions. To understand this state-

ment, we look at the equation of motion of (2.1)

R 1
RPW = (5 + €—2> [my

2
= _g_zg,uw

(2.3)

where the second line is obtained by tracing over the first. The local degrees of
freedom are contained in the Riemann curvature tensor, which has =d?(d* — 1)
independent components in d-dimensions [13]. By using (2.3) and the definition of

the Ricci tensor we get the six equations (from the six metric components)

v = gaﬁRauﬁua (24)
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which completely fixes the Riemann curvature tensor. Thus any solution of (2.1)
will be locally of the form (2.2), possibly with different global identifications.

In this chapter we will give a semi-classical argument for the AdS/CFT corre-
spondence, which we will then use to compute the microscopic entropy of black

holes.

2.1 Conformal Field Theory in two dimensions

We review in this section some basic results from quantum field theories in two
dimensions invariant under conformal transformations. We denote the coordinates
z, z. A conformal transformation of the plane can be written as z — f(z) where f(2)

is holomorphic. The stress-energy tensor is constrained by conformal invariance

T.=0, T.=T(), T==T(2). (2.5)

One important tool to study Conformal Field Theories (CFT) is the Operator
Product Expansion (OPE). In any QFT one can write a product of two local oper-

ators as a sum of local operators:

(’)i(zl)(’)j(zQ) = Zcfj(zl - z2>0k<z2)7 (26)

k

in the limit z; — 2. The coefficient functions cfj can be singular in that limit, and we
will write OPEs up to non-singular terms with the ~ symbol. Conformal invariance
constrains the coefficient functions and makes the OPE convergent around z,. From
the singular terms of the OPEs of operators in the CFT, one can reconstruct the
entire theory [14].

Under infinitesimal conformal transformations z — z + ev(z), the stress-energy

tensor transforms as [14]

16T (2) = —%83@(2) —20.0(2)T(2) — v(2)0.T(2), (2.7)
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and similarly for 7. This defines the central charges ¢, ¢ of the CFT. Using this
transformation, and the definition of the stress-energy tensor as the generator of

coordinate transformations, we arrive at the OPE [14]

T(2)T(0) ~ 2—’;4 n %T(O) v %aZT(o). (2.8)

We define the Virasoro generators by the Laurent expansion of the stress-energy

tensor:

dz - dz N
L, = ¢ — 2T L, = ¢ —zm2T 2.
= § o TE), L= § o) (29

where the integral is performed around the origin. For a general charge associated

to a current

Qr = 7{ d—z.jk<z)7 (2.10)

271

knowing the OPE of the currents will give the algebra of the charges:

@0, Qil = P 52 Ressei(e1)i(2). @.11)

In the case of the Virasoro generators, we get the Virasoro algebra,

C
[Lma Ln] = (m — n)Lm+n + E(mg — m)5m+n70
[z/mu zn] = (m - n)f/m+n + %(ms — m)5m+n70 (212)

(L, Ly) = 0.
In a CFT, there is an isomorphism between local operators and states of the
theory [14], which we won’t describe here but we will use it in an abstract way. We

can study the spectrum of simultaneous eigenstates of Lo, Lo rather generically. We

label states by their weights (A, A):

Lo|Q) = A|Q), Lo|Q) = A|Q), (2.13)
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where the action of the Virasoro generators is understood as the OPE of the stress-
energy tensor with the operator isomorphic to the state [§2).

We can now state Cardy’s Formula [15]. For a CFT on a torus, with a unique
vacuum and an energy gap between the vacuum and the first excited state, the

asymptotic growth of the density of states as a function of their weights is given by

N(A,A) ~ exp (27?\/ %) exp | 2m\/ % . (2.14)

We will use this formula in section 2.3 and chapter 3.

2.2 Brown-Henneaux and the AdS/CFT correspondence

In this section we do a thorough classical analysis of Anti-de Sitter gravity, following
the pioneering work of Brown and Henneaux [12]. We motivate the importance of
boundary conditions at spatial infinity and compute the algebra of the canonical
generators. We find that it is the same as that of the conformal group in two
dimensions with a non-trivial central charge.

A solution of (2.1) has a metric [12]

7,2_142

62

ds® = — (2—2 + a2) dt* + 2 Aadtde + ( + a2) 1 dr? + (r* — A%)de?,

(2.15)
for a choice of coordinates with the same global identifications as AdS3 in the form
(2.2). Notice that the dominant terms in the r — oo limit of (2.15) match with
those of (2.2).

We can now define the boundary conditions for our solution to be ‘asymptotically
Anti-de Sitter’. We act on (2.15) with the isometry group of AdS3 to generate the
boundary conditions

—E+O(M) oust) oW
G = 2o/ oa) |, (2.16)
r?+ O(1)
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where x# = (t,r,¢). We then consider the asymptotic symmetries that leave a
metric in the form (2.16) . We describe those with vector fields whose Lie derivative

of the metric effects the symmetry. These vectors satisfy [5]

3
€ = (T +17) 4 55 (2T +217) + O(1/r"),

&= —r(0. T +0_T7) + O /r), (2.17)
62
P =Tr T — 272(81% — T )+ 01 /rh),
with
20, =12+ 2
AT (2.18)
0.TF = 0.

The gauge freedom is contained in the O(1/r) and O(1/r) of the r and ¢, ¢ com-
ponents respectively. Deformation vectors with only those terms will be referred to
as ‘pure gauge’. The Asymptotic Symmetry Group (ASG) is then defined by the
vectors (2.17) modulo pure gauge transformations. The ASG is isomorphic to the
pseudo-conformal group in two dimensions [12], since (2.18) is the conformal Killing
equation in two dimensions for T%.

Our goal is to get a canonical realization of the asymptotic symmetries with a
non-trivial central charge. We work in the ADM formalism [16], and we write the

Hamiltonian generators [12]

mﬂszM”M@+ﬂ& (2.19)

where H,, are the constraint of general relativity, and the J[{] are the charges defined
so that the generators have well defined variational derivatives. Using the fact that
the Poisson bracket of generators is itself a generator up to a constant that can

depend only on the asymptotic form of the deformations [12], we can write

{H[¢], Hinl} = H[C] + K[&,n]. (2.20)
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We need to check that ¢ is an element of the ASG. To do so, we work with pure

gauge & and 7, for which K¢, n] = 0. We arrive at

{H[¢], Hnl} Z/d%dzyf“(x)n”(y) {H,u(2), Ho(y)} + {&"(x), 0" (y)} Hul(z)Ho (y)

+ [ (@) Hlul) Hy(a) = {1 (0), HIEY (o).
(2.21)

With our boundary conditions (2.16), we get that ( — [£, ], the Lie bracket, to

leading order in 1/r. Hence

{H[¢], Hnl} = H[[E,n]] + K[, n]. (2.22)

We then compute the central charge K[¢, n], by calculating the Dirac Bracket of
the charges J[¢]. We decompose our asymptotic symmetries (2.17) in Fourier series

ot
with TF = ¢™7*% To make a link with the previous section we use the notation

L, = JIE(TH)], L, = J[E(T;)]. The Dirac brackets are then [12] [5]

C
[Lma Ln]D.B. - (m - n)Lm-l—n + E(mg - m)5m+n,0
7 ¥ ~ C
[Lm; Ln]DB - (m — n)Lern + E(Tﬂg — m)5m+n70 (223)

[Lmu zn]D.B. - 07

with the central charge

3¢

ot (2.24)

c=c¢c=

While this derivation is semi-classical in nature, the conclusion is that quantum
gravity on AdS3 can be represented by a CFT on the (¢, ¢) cylinder at asymptotic
infinity.

The ADM mass and angular momentum of the bulk solution are given by

1 ~ ~
M = Z(LO + Ly), J=Lo— L. (2.25)
Note that the AdSs; background has M = —% = —1.



2.3 Microscopic Degeneracies of Black Holes 11

2.3 Microscopic Degeneracies of Black Holes

In this section, we want to illustrate one of the main achievements in the study
of three-dimensional gravity with a negative cosmological constant: the counting of
microscopic states for black holes. The BTZ [8, 9] black hole of mass M and angular
momentum .J metric can be written as [5]

2

2 r
ds* = —N?dt* + p* (N°dt + d¢)” + N dr?,
N2 _ T2<T2 B T-Ql-)’
02p2
No _ _AGT (2.26)
P

P =1+ 4GM* — %'r’i,
r? = 8G(VM2I2 — J2,

where ¢ has period 27. The Bekenstein-Hawking entropy is [5]

_Area 2mp(ry) 14 9 97
§ =St = Tl s (VMET T+ VA=), (220)

and the goal of this section is to give a statistical interpretation of this entropy.
To calculate the partition function, we need to analytically continue our metric
to Euclidean signature. The asymptotic boundary is now a torus, and we can write

the periodic identification with the complex coordinate

zr~ 242w~ z+ 27T, (2.28)
= 50+
T o W

where tg is the Euclidean time, 6 is the angular potential and 3 is the inverse

temperature. The conformal structure of the asymptotic torus 7 labels classical
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solutions to (2.1). The BTZ solution is locally AdS; and differs from the AdS;
state through global identifications. For the thermal AdS; geometry, we know that
there is one contractible cycle in the bulk since the ¢ coordinate shrinks smoothly
at the origin. By smoothly, we mean that the g4, component has a double zero at
the origin. The BTZ black hole has its time coordinate shrink to zero size at its
horizon. The constraint of having a double zero for g, fixes the temperature and
angular potential in terms of mass and angular momentum. The explicit modular
transformation that turns thermal AdSs3 into BTZ is 7 +— —%. We can calculate the
partition function for thermal AdS3, and use the modular transformation to relate
it to the partition function for the BTZ black hole.

We formally define the canonical ensemble partition function

Zags(T) = / Dge 59, (2.29)

for metrics g that are small fluctuations of AdS; in the sense of (2.16). More
precisely, the integral in over metrics whose asymptotic boundary is a torus with
conformal structure 7. To compute this partition function, we expand (2.29) in per-
turbation theory. The classical contribution and the one-loop part can be computed
directly from the gravity theory [17], but we won’t reproduce this here !. Instead,
we use what we have learned in section 2.2, and write the partition function as
Z(1) = Tryyexp(—BM —i6.J), where ‘H is the Hilbert space of the Virasoro descen-
dants of the vacuum. A generic state in this Hilbert space can be represented by
(18, 17]

(e o] o0

| R ) ) (2.30)

n=2 n=2
for the CFT ground state |Q2). Those states are called boundary gravitons, since

there are no local propagating degrees of freedom in our theory. Using the Virasoro

'This computation shows that the partition function is one-loop exact (since the CFT and gravity

computation agree), and is a non-trivial check of the derivation of Brown and Henneaux [12]
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Algebra (2.12) and the relationship between (M, .J) and (Lo, Ly) we arrive at the
partition function for AdS; [18]

1
n(7)[?

with the Dedekind 7 function n(7) = ¢/ [[>2,(1 — ¢"), where ¢ = €*7.

Zaas(T) = lqq) =41 — g, (2.31)

We can now evaluate the microscopic degeneracy of a BTZ black hole at fixed
energy M and angular momentum J. We first notice that in the large mass regime,
we can apply Cardy’s formula to count the number of states at large weight (A, A),

and get the entropy [5]

S(A,A) = 27r\/% + zw\/% = W\/% (\/ME +J+ VMl — J) . (2.32)

We thus reproduce the Bekenstein-Hawking entropy.

We present the derivation of the number of states of [18], which addresses the
regime of validity of approximations of the microscopic entropy and its matching to
the black hole macroscopic entropy. We apply the transformation 7 +— —1/7 to the
AdSj3 partition function to get

ZBTZ<T) = Z(T)Z(’?_'),

q:(cfl)/24<1 B q7>

n(=1/7)

. We can use the relationship between the Dedekind 7 function and

(2.33)

Z(1) =

for g_ = e 27

the partition of integers p(N) [19] to rewrite the holomorphic piece of the partition
function
Z<T) = Z CAQ%,
A=—c/2 (2.34)
Ca=p(A+c/24) — p(A+c/24—1).
We then compute the microcanonical entropy, to count the density of states at fixed

weights N (A, A) The partition function is holomorphically factorized, and hence
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N(A,A) = N(A)N(A). We perform a Laplace transform to get [18]

1€4-00
N(A) = / qu_AZ(T)

€—0Q

> 1€+00
= Z C’A// drq 2¢® (2.35)

=21 Y  Cu _AA I (4mvV/—=AA),

where [; is the modified Bessel function of the first kind. We can compare the first

two terms in the sum

Li(4my/(c —24)A/24) - o-2n\/21B)C (2.36)
L(4m\/cA/24)
for Ac — oo. This limit is the semi-classical approximation ¢ > G, the same limit
one uses to derive the Bekenstein-Hawking entropy. To simplify (2.35) we take the
limit A > ¢, in which only the first term of the sum contributes. This limit is that
of a black hole large in AdS units. We use the asymptotic formula for the Bessel
function and the truncated sum of 2.35 [18]

S(A,A) =log N (AN (A) ~ QW\/% + 27‘(\/%. (2.37)

Hence we can reproduce the Bekenstein-Hawking entropy in the large black hole

limit.



3

Higher Spin Theories in AdS3 and a Gravitational Exclusion Principle

Alejandra Castro, Arnaud Lepage-Jutier & Alexander Maloney
MecGill Physics Department, 3600 rue University, Montreal, QC H3A 2T8, Canada

Abstract

We consider theories of three-dimensional quantum gravity in Anti-de Sitter space
which possess massless higher spin gauge symmetry. The perturbative spectrum
of the theory includes higher spin excitations which can be organized into vacuum
representations of the Wy algebra; these are higher spin versions of the boundary
gravitons. We describe a fundamental bound which relates the value of the cos-
mological constant to the amount of gauge symmetry present. In the dual CFT
language, this is the statement that modular invariance implies that the theory can
not be quantized unless the central charge is sufficiently large, i.e. if ¢ > N — 1.
This bound relies on the assumption that all of the perturbative excitations exist as
full states in the quantum theory, and can be circumvented if the theory possesses
a linearization instability. The Wy minimal models — recently conjectured to be
dual to certain higher spin AdS theories by Gaberdiel and Gopakumar — provide
an example of this phenomenon. This result can be regarded as an example of a
“gravitational exclusion principle” in Anti-de Sitter space, where a non-perturbative
quantum gravity mechanism involving black holes places a limit on the number of

light degrees of freedom present.

15



16 3 Higher Spin Theories in AdS3 and a Gravitational Exclusion Principle

3.1 Introduction

Three-dimensional quantum gravity has proven a useful testing ground for many of
our ideas and conjectures concerning the microscopic nature of gravity. One of the
most interesting and important conjectures is the proposal that quantum gravity
places a fundamental limit on the number of light degrees of freedom present. This
conjecture is most commonly discussed in the context of black hole entropy, where it
was observed that a large number of light species of identical particles would violate
holographic entropy bounds [20, 21]. However, this notion has surfaced in a variety
of different guises over the last several decades (for example in [22, 23, 24]). The
goal of this paper is to describe a specific three-dimensional scenario where this idea
can be put to the test using the precision techniques of AdS/CFT.

We will focus on the case of three-dimensional gravity in asymptotically Anti-
de Sitter (AdS) space, and consider theories with massless higher spin gauge fields.
These theories possess a large symmetry group which can be regarded as an enhanced
version of the conformal symmetry present in every asymptotically AdS theory of
gravity. The states organize into representations of this enhanced symmetry group,
hence these theories contain a large number of light degrees of freedom. In the
context of AdS/CFT, the inclusion of higher spin fields is interesting in its own
right. In string theory realizations of AdS/CFT, an infinite tower of massless higher
spin fields is expected to emerge when the AdS radius becomes small [25, 26, 27,
28, 29, 30]. The study of such higher spin fields should therefore be regarded as a
first step in the study of quantum gravity in AdS beyond the supergravity regime.

We note that the construction of theories of massless higher spin fields is a no-
toriously delicate procedure. In four space-time dimensions, a consistent theory
with an infinite tower of interacting higher spin fields was constructed by Vasiliev
[31, 32, 33, 34] (see also the recent progress of [35, 36, 37, 38]). In three space-time
dimensions the story is somewhat more straightforward. A simple class of massless

higher spin theories in AdS3 can be formulated using Chern-Simons theory [39, 40].
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Unlike Vasiliev’s four dimensional theory, which can be formulated only when there
are an infinite number of higher spin fields, this theory exists for both a finite and an
infinite number of higher spin fields [41, 42]. These theories describe massless higher
spin gauge fields which possess no local degrees of freedom and can be regarded as
higher spin versions of the graviton, which itself has no local degrees of freedom in

three dimensions.

Despite the fact that these theories have no local degrees of freedom, they have
interesting quantum properties which can be understood rather precisely. There are
“non-local” degrees of freedom which are associated with boundary excitations of the
fields, generalizing the classical results of Brown and Henneaux [12]. In particular,
the algebra of the asymptotic symmetry group is enlarged from two copies of the
Virasoro algebra to two copies of the Wy algebra, where N is the highest allowed
spin [43, 42]. The central charge of the dual CFT can be computed, and remarkably
remains unaffected by the presence of the higher spin fields. A non-trivial check
of this story was provided by [44], who computed the one-loop determinant of the

gravitational theory and showed that it is precisely the vacuum character of Wy.

Here we will investigate the effect of these higher spin fields on the spectrum of
the theory. Classically and at the linearized level the theories seem to be well defined
and free of pathologies. We would like to ask what happens once quantum effects are
taken into account. Our primary tool will be the AdS/CFT correspondence, which
states that to every theory of gravity in asymptotically AdS space there is a dual
CFT. Thus the structure of the theory is constrained by conformal invariance. In
particular, modular invariance — invariance under large conformal transformations
in Euclidean signature — allows us to determine the spectrum of the theory at high
energies. This gives Cardy’s formula, which determines the rate of growth for the

density of states at high energies.

The basic observation of this note is a simple one. When the value of N is

sufficiently large, the number of linearized states in the bulk theory — the number
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of higher spin versions of boundary gravitons — exceeds this upper bound set by
Cardy’s formula. In order to prevent this we must require that

3¢

Nol<e=2t.
=75

(3.1)

Here we have used the Brown-Henneaux expression for the central charge of the
theory in terms of the AdS radius ¢ and Newton constant G. Thus the existence
of a dual CF'T, along with the existence of these boundary excitations, provides a
bound on the amount of higher spin gauge symmetry present. An important feature
of this result is that when N is large it applies to theories in the semiclassical
(¢ > @) regime. This can be regarded as a “gravitational exclusion principle,”
where quantum gravitational effects place an upper bound on the number of light
states in the theory.

We note that this bound appears only when non-perturbative effects are included,
and that the classical theories discussed above appear to be free of pathology for
every value of ¢ and N. It is interesting then to ask exactly what happens when we
try to quantize a theory with values of N and ¢ which violate the bound (3.1). One
of two things must occur. The first possibility is that the value of ¢ (or GG) will be
renormalized by quantum effects so that (3.1) is satisfied. In effect, quantum correc-
tions will drive the value of the cosmological constant towards zero to accommodate
the large number of degrees of freedom. The second possibility is that some of the
dangerous perturbative states are removed from the spectrum upon quantization.
This would mean that the theory has a linearization instability; apparently innocu-
ous perturbative states are not in fact linearizations of true states in the Hilbert
space. Roughly speaking, these perturbative states are removed to accommodate
the finite size of Anti-de Sitter space. It appears that both of these possibilities
can be realized in theories of AdS quantum gravity. To see this, we will consider
a simple set of CF'Ts with Wy symmetry, namely the YWy minimal models, whose

bulk duals were recently discussed in [45].
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Finally, we wish to emphasize the intimate connection between the bound (3.1)
and the physics of asymptotically AdS black holes. Every classical theory of AdS;
gravity possesses black hole solutions, the BTZ black holes. The Bekenstein-Hawking
entropy of these black holes is precisely given by Cardy’s formula for the asymptotic
density of states. Thus the bound (3.1) reflects the fact that black holes dominate
the spectrum of the theory at high energy. Indeed, we will see that there is a precise
sense in which those CFTs which violate the bound (3.1) — such as the YWy minimal

models — are dual to theories of gravity without macroscopic black holes.

In the next section we will review a few salient features of Wy symmetry and
higher spin theories in AdSs;. In section 3.3 we discuss the bound (3.1) and its
application in both the finite N and N — oo case. In section 3.4 we comment on
the specific realizations of these conjectures in the YWy minimal models. In section

3.5 we describe the asymptotic properties of Wy and W, vacuum characters.

3.2 Higher spin fields in AdS;

In this section we summarize the main results of [43, 42, 44| concerning higher spin

theories in AdSs.

Classical three-dimensional general relativity with a negative cosmological con-
stant can be rewritten as a Chern-Simons gauge theory with gauge group SO(2,2) ~
SL(2,R)x SL(2,R) [46, 47, 48]. Tt is easy to generalize this to include a theory with
fields of up to spin N. We simply replace the SL(2,R) gauge group by SL(N,R)
[42]. In this case the higher spin fields are massless and have no local propagat-
ing degrees of freedom; the theory is topological, just as with the spin 2 graviton
case. Further, one can take the infinite dimensional extension of SL(2,R) — de-
noted hs(1, 1) — which will describe a infinite tower of spins in a similar spirit as the

Fradkin-Vasiliev theory [39, 40].

To formulate this theory more precisely, we introduce a pair of tensor-valued one
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forms

w, 00 (3.2)

where a; are Lorentz indices. If the gauge group is SL(2,R) we identify e, with the
dreibein and w,” with the spin connection. The Chern-Simons gauge fields are the
linear combinations
a 1 a
Aé) =Ju <wu + 76 ) dz* | (3.3)
where J, are the generators of sl(2,R). The equations of motion are found by

extremizing the Chern-Simons action
k 2
Ics[A] = 4—/tr(A/\dA+§A/\A/\A) : (3.4)
T

where tr is the symmetric bilinear form on SL(2,R). The Einstein-Hilbert action is
given by

Ipn = Ios[Ah) — Ies[Ay)) . k= el (3.5)

where ¢ is the AdS; radius and G' Newton’s constant.

To include the dynamics of the spin s field, we define

1

2 AL
_ _ arasy L arean
A" = Ag + Topa, (wul e ) dz" (3.6)

with s > 2 and T}, ...,,_, are generators of the extended gauge group. We can then
identify the gauge fields (3.2) with higher spin fields as defined by Fronsdal [49]

provided the generators T, obey the correct algebra. First, the generators

1°Qs—1

T, .a,_, must be taken to be symmetric and traceless. Second, the J, and T, ...q, ,

must form the Lie algebra
[Jaa Jb] = €abed” ) [Jav Ta1~~~asf1] = Ema(alTGQ---asﬂ)m : (3-7)
One can then consider the Chern-Simons action

Iy = Ios[AY] = Ios[AT] (3-8)
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For N > 2, one can check that the linearized fluctuations of the gauge fields around
a fixed metric background should satisfy the equations of motion of higher spin

fields. More precisely, we have

a _ _(0)a 1a a _, (0)a 1a
eu—e£ —i—e& , W, —w;g —|—w£ : (3.9)

where the upper script (0) denotes the background and (1) are fluctuations. Treating
all other higher spin fields as fluctuations, the linearized Chern-Simons equations

are reduced to

A

2 A _
\ Purops — V(Ml\v Plpg-ps) A + v(ulvugwug---us)A =0, (3-10)
where
1 0)a a
Dyt = ;egu)l R (3.11)

for s > 2. At this level the connection w,*"“~! becomes an auxiliary field. Equation
(3.10) is exactly the equation of motion for a free spin s field propagating on a curved
space-time.

There are two very interesting results for these higher spin theories in AdSs.
First, in [43, 42] the authors computed the asymptotic symmetries of the SL(N, R) x
SL(N,R) Chern-Simons theories for a given set of boundary conditions. Taking the
connection Aé) on empty AdSs as the definition of “asymptotically AdS configura-
tions”, they found all gauge transformations that left the connection invariant up
to a constant term with respect to AdS3 near the boundary. The remarkable result
is that the algebra of the asymptotic symmetries is given by two copies of the Wy

algebra. Further, the algebra allows for a central extension and its central charge is

_ 3t
- 2G

. (3.12)

It is surprising that the addition of higher spin fields does not affect the central
charge. The value in (3.12) is the same as computed by Brown-Henneaux [12] for

Einstein gravity with a negative cosmological constant. This results also holds in
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the infinite N limit, where the algebra is W, and the central charge is still (3.12)
[43].

The appearance of the centrally extended algebra as studied in [43, 42| is purely
classical. The analysis presented in [44] goes one step further and tests whether the
Wi persists at the quantum level. These authors computed the 1-loop determinant
associated to the linearized fluctuations (3.11). They found that the full 1-loop

contribution of a single spin s field is simply

79 =1 -q"1, (3.13)

where ¢ = exp(27mit) and 7 is the complex structure of the torus at the boundary
of thermal AdSs;. Therefore for a SL(N) x SL(N) Chern-Simons theory, which
contains a family of spin fields from s = 2 up to s = N, the 1-loop determinant is

given by

7P = HHu 2= YN X XN, (3.14)

s=2n=s

w=]IT[a-a)". (3.15)

s=2n=s

X is precisely the vacuum character of the Wy algebra. For infinite N the resulting

with

1-loop determinant is

Z1-loop — HH 11— = Yoo X Xoo » (3.16)

s=2n=s
where
Xeo = M(q) JJ(1 = ¢") (3.17)
n=1
and the MacMahon function is defined as
M(q)=JJa-qH™. (3.18)
n=1

The function x is the character of the W,, algebra. One nice and unexpected fea-
ture is that equations (3.14) and (3.16) can be written as the square of a holomorphic

function of q.
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Although these one loop determinants were computed directly in the bulk using
heat kernel methods, in fact they have a simple physical interpretation. They can be
derived using strictly algebraic methods, as traces over the vacuum representations
of Wy and W,,. This is the representation where all of the Wy descendants are
linearly independent and have positive norm; i.e. the representation without null
vectors. Using this fact, it was further argued in [44] that the partition functions

(3.14) and (3.16) are one-loop exact, following [18].

3.3 Partition function and growth of states

We would now like to study the general properties of the partition function of an
asymptotically AdS theory of gravity with Wy symmetry. Our basic observation
is that there is a tension between the two essential features described above — the
existence of asymptotic conformal symmetry with a finite central charge, and the ap-
pearance of the infinite tower of linearly independent, finite norm Wy descendants.
In some cases these features are mutually incompatible.

We start by considering the partition function
Z(r,7) =Y _d(A,A)g g (3.19)
AA

where d(A, A) is the number of states with weight (A, A). We will use the conven-
tional “CFT normalization” for the weights so that the ground state (i.e. empty
Anti-de Sitter space) has A = A = —c/24. This partition function can be regarded
as a Euclidean path integral in three dimensions, where we sum over all field con-
figurations such that the metric approaches a torus at asymptotic infinity.! With
standard Brown-Henneaux boundary conditions this partition function will be a
function only of the conformal structure 7 of the torus at infinity, and will hence

be invariant under the modular transformation 7 — —1/7. In the gravitational

!The literature on the partition function of AdSz gravity is extensive, see e.g. [50, 51, 52, 53, 18]

and references therein.
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language, this modular transformation is a large diffeomorphism of the bulk which
induces a large conformal transformation of the boundary torus.

Modular invariance leads to Cardy’s formula [15]

log(d(A, A) ~2m/ +2m/cA (3.20)

for the number of states at large A, A. The first assumption involved in the deriva-
tion of this formula is that the bulk theory is diffeomorphism invariant in Euclidean
signature. The second is that the ground state has finite norm, so that the first
excited state has A, A > —¢/24 and is separated by a gap from the ground state.
Provided these assumptions are satisfied, equation (3.20) is universal. The details
of the bulk theory, such as the specific matter content, will only enter into the
subleading corrections to this formula.

This universal behaviour is a consequence of the physics of AdS3 black holes.
Every classical theory of AdSs gravity contains black holes [8, 9]. These black holes
are quotients of AdSs, so will necessarily exist as solutions to the equations of motion
if AdSs itself is a solution to the equations of motion. Their Bekenstein-Hawking
entropy is precisely given by equation (3.20) [5]. Thus we expect that in a quantum
theory of AdSs gravity, there should be states with arbitrarily large weights which
describe the BTZ black hole.

Let us now reconsider the higher spin theories in this light. Although we will not
be able to compute the partition function exactly, we can compute the tree and one-
loop contributions. The vacuum state will just be empty AdS, which contributes to

the tree level partition function
Z(O) — qfc/2467c/24 ) (321)
The one loop piece is also easy to compute. It is given by the trace

70 = Ty, (qLOqEO) , (3.22)
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over the Hilbert space H of linearized excitations of the theory. This is the space
of solutions to the linearized equations of motion (3.10) modulo gauge transforma-
tions. Since all local excitations are pure gauge, one might guess that there are
no such contributions. However, this is not quite the case as the set of allowed
gauge transformations includes only those which vanish sufficiently quickly at in-
finity. Thus the spectrum includes states obtained by acting on the vacuum state
by a linearized gauge transformation at the boundary. Indeed, it was argued that
these gauge transformations generate the algebra Wy, which is an extension of the
usual Virasoro algebra W,. Thus the linearized fluctuations of the spin fields are

organized into a Wy character [44],

ZW(q) = g xn(g) . (3.23)

Here x(q) is given by the vacuum character (3.15) or (3.17) depending on whether
N is finite or infinite.

It is important to emphasize that there is nothing mysterious about the states
which contribute to the partition function (3.23). They describe solutions to the
equations of motion and can be written out explicitly in the Chern-Simons language.
For N = 2, of course, they have a simple interpretation; they are the usual boundary
gravitons. At the linearized level, these states have finite norm with respect to Klein-
Gordon inner product, so appear to represent legitimate states of the free higher
spin field theory. The question is whether these states will survive at the non-linear
level, and if they do what the implications are for the quantum theory.

The most immediate effect of the higher spin fields is to increase the number
of states at each level. In particular, the number of Wy descendants of a given
dimension is larger than the number of Virasoro descendants. But the total number
of states is constrained by Cardy’s formula (3.20). If the linearized states appearing
in (3.23) are to appear as states in the full theory, this a significant constraint.

To see this let us first consider the case where N is finite. The coefficients pX of
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the Wy vacuum character
N oo
v =TT -7 => pNe* . (3.24)
s=2n=s A
can be estimated at large A. They grow like

-1,

. : (3.25)

log (pX) ~ 27

when A is large (and in particular if A > N3). A derivation of this is given in
the appendix, but the origin of this growth can be understood intuitively. When
N = 2, x5 is the vacuum character of the Virasoro algebra. In the absence of null
vectors, the number of Virasoro descendants of a given primary state increases like
the number of states in a CFT of central charge ¢ = 1. That is why the construction
CFTs with ¢ < 1 (the minimal models) is a highly constrained algebraic problem
which requires the existence of null vectors. For NV > 2, we observe that the character
(3.24) is equal to the (N — 1) power of the Virasoro vacuum character times a finite
polynomial in ¢g. Thus it is natural to guess that the number of descendants grows
like the number of states of a CFT with central charge (N — 1). From equation
(3.25) we see that this is indeed the case. Omne just has to verify that this finite
polynomial does not lead to cancellations which will spoil this heuristic argument;
this computation is described in appendix 3.5.2.

Comparing equations (3.25) and (3.20) it is clear that if N —1 > ¢ then there
will be a value of A for which pX will exceed the allowed density of states d(A, A).
Thus some of the linearized states must be removed from the spectrum. Indeed, we
will see explicitly that this can happen in certain cases in the next section for the
bulk theories dual to the YWy minimal models.

We note that the situation is even more drastic if N is infinite. The descendants
are counted by the W, character

Xoo = M(g) JJ(1 = ¢") =D pRe™ (3.26)

n=1 A=1



3.3 Partition function and growth of states 27

whose coefficients grow like

o 1/3
Q(?’)A) | (3.27)

log (pX) ~ 3 ( 1
as we show in appendix 3.5.3. The growth of states in (3.27) will always exceed the
Cardy growth (3.20) for any finite value of the central charge. Thus in the absence
of a linearization instability, the number of perturbative states vastly exceeds the
number of black holes states.

Finally, we note that the convergence towards the asymptotic values (3.25) and
(3.27) is rather slow. In some cases, this might mean that in order to see that the
number of Wy descendants exceeds the Cardy bound we have to look at states of
very high dimension.

As an illustration of this phenomenon, we will consider the following simple ex-
ample. Let us ask if it is possible to construct a “pure” theory of gravity with
Wy symmetry, in the sense that the only perturbative states are the Wy descen-
dants described above. Following [51], it is natural to conjecture that this theory
is holomorphically factorized. In this case the partition function will be the square

~¢/2 as ¢ — 0. Z(7) will be a

of an analytic function Z(7) which diverges like ¢
holomorphic, modular invariant function on the upper half 7 plane. Using general
properties of modular functions (see e.g. [19]) it follows that Z(7) is determined
uniquely provided we specify the ¢/24 polar terms in the expansion of Z(7) around
q = 0. If the theory is “pure” in the sense defined above, then these polar terms
are found by demanding that they match the polar terms in the one loop partition
function (3.23). It is then straightforward to compute Z(7) for any desired values of

N and ¢ and hence determine the number of states of any dimension A, using an al-

gorithm similar to that presented in [51].! Tt is then possible to check explicitly that

LOne could also compute Z(7) by performing a sum over geometries, following [52]. If we simply sum
the holomorphic part of the one-loop determinant over the coset SL(2,7Z)/Z, then the resulting

Z(1) will be the same as that described above. However, if one does not assume holomorphic
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for any N —1 > c there is some value of A for which the number of Wy descendants
exceeds to total number of states counted by the partition function Z(7).

It is amusing to work this out explicitly for the case ¢ = 24 where the holomorphic
part of the partition function is, up to an additive constant, equal to the Klein’s

J-invariant J(7). The ¢ expansion is
Z(1) = ¢ ' + (const) + 196884q + 21493760q* + 864299970¢> + . . . (3.28)
One can compare this to the asymptotic growth of the vacuum character
ZO(r) =g \v=qg ' +q+27+3¢8... . (3.29)

It is a surprising (but true) fact that when N > 25 the coefficients of (3.29) become
larger than those of (3.28) for some value of A. For N very large this occurs when
A ~ 10° and the coefficients are of order 101°°.! The explanation of this curiously
large value of A is the following. The J-function happens to be well approximated
by Cardy’s formula for small values of A, whereas the corresponding asymptotic
formula for yy is only a good approximation for relatively large (of order 10%)
values of A. The lesson is that while the first few coefficients in expressions like

(3.29) may appear small, this does not tell the full story!

3.4 Minimal Models and Black Holes

In this section we comment on the Wy minimal models, which provide specific
and calculable examples of Wy symmetric CFTs with central charges ¢ < N — 1.

Thus they lie on the other side of the bound (3.1). This bound was motivated in

factorization and instead sums the full one loop determinant (3.23) over SL(2,Z)/Z one finds

results which are not consistent with a quantum mechanical interpretation, as in [18].

In fact, we can improve this argument a bit by noticing that the full partition function must be a
Wy character, so that every time a primary state appears in the theory this leads to additional
Wy descendants at higher order. When N = oo and ¢ = 24, for example, this leads to a negative

number of Wy primaries at A ~ 60000 if there are no null vectors.
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part by bulk gravity considerations, so one might expect that the bulk duals to
these minimal models have several rather unusual properties. Indeed these minimal
models are just like their Virasoro cousins in that they contain only a finite number
of primary states, so in a sense they are dual to theories of gravity without black
holes.

The Wy minimal model at level k can be described in terms of the coset WZW

model
N N
SulN)i & sulN) (3.30)
SU(N )41
where the subscripts give the level of the algebra. The central charge is
N(N +1)
c=(N—-1)(1- , 3.31
( )< (N—l—k)(N—i—k—i—l)) ( )

and is strictly less than N — 1 for finite values of N and k. When N = 2 these
coincide with the usual (Virasoro) minimal models, and it can be proven that there
are no other unitary CFTs with ¢ < 1. We do not know of a similar proof for higher
values of N.

We note that, from a quantum gravity perspective, these higher N minimal
models are much more interesting than their Virasoro (¢ < 1) cousins. That is
because ¢ can be taken to be large provided that N is also large, so that the theories
are dual to macroscopic theories of three-dimensional gravity with AdS radius large
in Planck units. Thus one would expect that all of the familiar features of classical
three-dimensional gravity — in particular the BTZ black holes — to arise in this limit.

Unfortunately, the bulk duals of these theories are not known explicitly. However,
when N and k are taken to infinity with the ratio k/N fixed, the bulk dual was
conjectured to be an infinite tower of higher spin fields along with a pair of complex
scalar fields [45]. In this limit the central charge goes to infinity, meaning that the
AdS radius is infinite in Planck units. For finite values of N this bulk theory should
presumably be augmented by terms involving the curvature of AdS space. These

modifications are not known, but based on the above considerations we can describe



30 3 Higher Spin Theories in AdS3 and a Gravitational Exclusion Principle

some basic features of the bulk dual of the YWy minimal models for finite N and k.

We first note that, as emphasized in the previous section, the theory must have
null vectors, meaning that certain higher spin versions of the boundary gravitons are
removed from the spectrum. Indeed, one can check explicitly that the YWy minimal
models have null vectors. For the Wy descendants of the vacuum, the first null
vector appears at dimension A =k + 1 — 5. Indeed, the vast majority of the Wy
descendants will be projected out of the spectrum at high order.

In fact, for large values of A the spectrum of the Wy minimal model consists

L' In particular, these

entirely of descendant states, rather than primary states.
theories have only a finite number of primaries, hence they have a state with largest
dimension. The dimension of this highest dimension state can be estimated, and is

of order

Apax ~ k2N (3.32)

when k and N are large.
We note that this is in drastic contrast to our semiclassical expectations. BTZ
black holes exist as classical solutions of the equations of motion for any value of

2. In particular the theory contains black holes

the mass and angular momentum
whose horizon size () is large compared to both the Planck length G and the AdS
radius ¢. In the dual CFT language, this means that we expect there to be primary
states of arbitrarily high dimension. More precisely, we expect that the CF'T should
include primary states with dimensions A such that

T2
cA ~ <G—+2) > 1, (3.33)

3

()~

We are grateful to M. Gaberdiel for discussions related to this point.

and

2More precisely, BTZ black holes exist for values of mass and angular momentum such that M¢ > J.
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For states where the second inequality is valid, Cardy’s formula can be used to
compute the entropy. Although we might expect that the allowed values r, (and
hence A) will be quantized in the full quantum theory, we still expect that there
should still be a tower of black hole states with arbitrarily large dimension.

However, this is not what is indicated by equation (3.32) for finite values of k
and N. The only states with arbitrarily high dimension are descendant states, i.e.
higher spin versions of the boundary gravitons, as well as lower order primaries
dressed with descendants. We conclude that the bulk theory dual to these minimal
models must be a strange object indeed, in that it does not possess standard BTZ
black holes with arbitrarily large mass and angular momentum.

It is also worth investigating how the large N and £ limit is approached, and
whether in this regime the minimal Wy models contain large black holes in the
sense of (3.33) and (3.34). In the 't Hooft limit, as defined in [45], both N and k

are infinity with the ratio
)= N
k+N

fixed and the highest dimension growth is given by (3.32). The central charge in this

(3.35)

regime becomes infinitely large, ¢ ~ N(1 — A\?), and therefore the bulk cosmological
constant is effectively zero. Instead we could take the limit k — oo and N large but
fixed. This corresponds to the free theory limit where the central charge is simply
¢~ N — 1, but AL, can now be arbitrarily large. In this limit we see that the
linearization instability disappears and the theory has arbitrarily large dimension
states which can be interpreted as black hole microstates. It would be interesting to
compute the degeneracies of these states and see if they can indeed be interpreted

as black holes (see [54] for recent progress in this direction).
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3.5 Asymptotic Behaviour of xn and X

Here we collect several asymptotic formulas for Wy characters used in section 3.3

and sketch the derivations of these formulas.

3.5.1 Asymptotics of the Partition Function F(q)

As a warmup we first estimate the growth of the coefficients of partition function

F(q) defined as

F(q) =) pn)g" =] —q")". (3.36)

where p(n) is the number of partitions of the integer n. Our goal is to approximate
p(n) for large values of n. This is a classic computation which we review here for
the sake of completeness.

We start with the inverse Laplace transform

b =5 [ Ha),, (3.37)

27 Jo gt ’

where C is a simple contour that encloses the origin. Since F'(¢) has poles for |g| =1
we must keep the contour C inside the unit circle in the complex ¢ plane. Our
strategy is to choose a contour C which approaches the unit circle |g| = 1 where we
can approximate F'(q) by elementary functions.

Our next step is to write F'(q) as an elliptic modular function
F(627ri7-) — 6i7rr/1277(7_)—1 ’ (338)

with 7(7) the Dedekind eta function and ¢ = ¢*™7. The eta function transforms

simply under modular transformations. In particular,

n(=1/7) = (=ir)*n(7) , (3.39)
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so that
2miTY __ v —1 - \1/2 —2mi/T
F(e*™) = exp E(T +770) ) (—iT) 7/ F (e ) - (3.40)

When the imaginary part of 7 is very small, so that we are close to |¢| = 1, F(e=2™/7)

approaches one and equation (3.40) becomes

F(e*™™) ~exp (im(T + 771)/12) (=it)"/* (3.41)
so that '
(n) /Me 2mir(n — o) + 1 ) (=ir)1/%d (3.42)
~ xXp | — - — — | (= . .
b e WA S YRR D

Using the saddle point approximation we obtain

p(n) ~ (const)%exp <7T 2371) . (3.43)

This estimate is valid only in the limit n — oo. By refining the above argument we

can estimate the size of the error terms in this approximation (see e.g. [19]).

3.5.2 Asymptotics of the Wy character

We now turn to the vacuum character for Wy,

XN = (H (1- Q")N"> FoM " => plq". (3.44)

n=1

whose coefficients are again given by the contour integral

X
N = /C qnfldq. (3.45)

Again, it is necessary to keep the contour within the unit circle |¢| = 1, where xy

diverges. Our goal is to obtain an approximate expression for p» by estimating yx
when |¢| — 1.

We start by noting that yy differs from F(q)¥~! only by the prefactor in paren-
thesis in (3.44). We then define the log of the polynomial prefactor in (3.44)

N—-1 oo N—-1

9(z) = D (N—n)log(l—¢") = - (N —n)

n=1 m=1 n=1

6727rznm

(3.46)

m
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where ¢ = ¢, Our strategy will be to apply the Abel-Plana formula

S fn) = /OOO f@)de + %f@) +¢/OOO f(i‘”;; i<1_m)d:c (34

which relates an infinite sum to the residues of a complex function. To use this

formula we will first take a derivate of (3.46) and add the m = 0 contribution

g(z)=2m) i(z\f — n)ne 2T gN(Nz —-1). (3.48)
so that (3.47) gives
J(z) = %N(N —1) - %N(Nz — 1)+ 0(z) (3.49)

where we neglect terms which vanish in the z — 0 limit, where |¢| — 1. Thus

o) = YD 10g() 4 g0~ TNV~ 1)z 4 O() (3.50)

where we have introduced a constant of integration go.
Following the arguments of section 3.5.1, we approximate the contour integral by

the value of x close to |g| = 1 where

xn ~ 2N exp (—%N(N2 — 1)z — %(N —1)(z — z_l)> . (3.51)

We have neglected an overall constant prefactor. Thus

PN~ i/zN(Nl) exp (—%N(N2 — 1)z — 17T—2(N —(z—2z1+ 27mz> dz . (3.52)
c

and the saddle point approximation

2(N —1
Py~ (const)n_%N(N_l)_% exp <7T %) : (3.53)

gives an estimate for p) which is valid in the large n limit. We note that the constant
multiplying (3.53) depends on N. In the figure(3.1) we compare the asymptotic
formula (3.53) with the actual values (3.44). We note that the p) approach their
asymptotic values more slowly as N increases. Indeed one can check that the error

terms in this approximation are negligible only when n > N3.
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Figure 3.1: For N = 2 (straight line), N = 3 (long dash) and N = 6 (short dash), we plot the
ratio of numerical value of log(plY) over the approximated value given by (3.53). As N increases,
we require larger values of n to reach the Cardy regime.

3.5.3 Asymptotics of the W, character x~, and the MacMahon Function

For the character of W,, we need to be a little more careful; we refer the reader to

[55] for a more detailed analysis. The character is given by

Xoo = M(q)F(q)~" | (3.54)

with F(q) given by (3.36) and M(q) the MacMahon function

(e o]

M(q)=JJ(-¢m (3.55)

n=1

As before we compute the coefficients of x., using a contour integral

o_ 1 [xx(d),
n Q71 c qn+1

(3.56)

where C encloses the origin and is contained in the unit circle.

We start by approximating the MacMahon function M (q). Defining the loga-

rithm
g(z) =logM(q) = — anog(l — e 2mE) (3.57)
n=1
with ¢ = ¢ and applying (3.47) we find

g(z) = —/ xlog(l—e_%w)derZ/ %log@sin(wzx))dw
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g(z) = 4C7r(232)2 + 1—12 log 2z + 1—12(1 — 7 +6¢"(2) + O(2%) (3.58)

where we have used the Taylor expansion of log(2sin(mzx)) at z — 0 and computed

the integrals explicitly. From this we can read off the behaviour of M(q) at small z

M(e™ ™) ~ 2112 exp < ¢(3) ) : (3.59)

47222
where we have neglected an overall constant prefactor.

This leads to an approximate expression for y.

—2mz —5/12 ¢(3) T -1
Xoo(€72) ~ 2752 exp <47T222 + E(z -z )) : (3.60)
so that
3
P = z’/cz_5/12 exp <4€T(22)2 + %(z -z Y+ 27?712) dz (3.61)

and the saddle point approximation gives

P2 ~ (const) % xp (3 (€9,)™ [1 -2 4(32)%)”3]) e

for large n. We note that this grows like 6"2/3, which is faster than the e"'’* behaviour

obtained for finite N. In figure (3.2) we compare the asymptotic growth (3.62) with
the actual coefficients of (3.54).

1 T T T T T

0.8 —

0.6 1

04 .

O 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

n

Figure 3.2: Ratio of log(pS®) over the saddle point approximation (3.62).
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Discussion

In this thesis we have reviewed the current status of quantum gravity in three di-
mensions with a negative cosmological constant. We also considered massless higher
spin fields and their interaction with gravity. We have found non-perturbative re-
strictions on the coupling of higher spin fields to gravity. We discussed YWy minimal
models which provide an example of higher spin theories in AdS3 that avoid the
bound presented in chapter 3. This is understood by the presence of null vectors,
which remove certain higher spin versions of the boundary graviton from the quan-
tum spectrum. However, these theories appear to lack black holes with arbitrarily
large charges.

To address the issue of black holes in higher spin theories on AdSs, we study
the recent proposal of [56] for a spin-3 charged black hole. In chapter 3, we de-
fined our boundary conditions by the requirement on the Chern-Simons connection
A — Aygs ~ O(1) at the asymptotic boundary. We can try to relax our boundary
conditions to allow for a finite spin-3 charge. In [56] it is shown to be equivalent
to a deformation of the boundary CFT by source terms for weights (3,0) and (0, 3)
primary fields. We rewrite (3.7) for the SL(3,R) case as in [56]

[Li, L] = (i = j) Liv;
(L, Win] = (20 — m) Wi (4.1)
(Wi, W] = %(m —n)(2m? +2n* — mn — 8) Lyin

37
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where ¢ is a negative parameter appearing as a prefactor in the representation of
the W’s. Note that Ly and Wy commute. Hence we can generalize our partition
function to be taken as the trace over simultaneous eigenstates of Ly and Wy [56]

Lo—c/24 zLo—c/24,,Wo 7 Wo (4.2)

Z(T,O[,?,O?) = Tr'Hq q

where u = e?™®. Define the weight with respect to W to be
Wo|Q) = 6|Q) (4.3)

and similarly with .

In [56], the authors find a solution for the Chern-Simons connection for which
%—é = % and that has the same holonomies around the z, z cycles in the Euclidean
geometry as the BTZ black hole. The first condition is necessary for their solution to
have charges that obey the first law of thermodynamics. The holonomy is a gauge
invariant quantity that the authors of [56] use to characterize their solution as a
black hole. However, in the gauge they use the g;; component never vanishes.

There are several interesting questions emerging from the analysis in [56]. The
most basic question is whether there exists a gauge transformation of their solu-
tion for which the metric has an event horizon. The issue of boundary conditions

should also be analyzed in terms of the metric and the spin-3 field. The generalized

characters [56]

x (g, u) = Trypqho= /2o (4.4)

and their asymptotic behaviour could also reveal intriguing properties of higher spin

theories in three dimensions with a negative cosmological constant.
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