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Abstract

We use a computational homogenization approach to derive a non linear
constitutive model for lattice materials. A representative volume element
(RVE) of the lattice is modelled by means of discrete structural elements,
and macroscopic stress strain relationships are numerically evaluated after
applying appropriate periodic boundary conditions to the RVE. The influ-
ence of the choice of the RVE on the predictions of the model is discussed.
The model has been used for the analysis of the hexagonal and the triangu-
lated lattices subjected to large strains. The fidelity of the model has been
demonstrated by analysing a plate with a central hole under prescribed in
plane compressive and tensile loads, and then comparing the results from the
discrete and the homogenised models.

Keywords: lattice materials, periodic cellular materials, multiscale
mechanics, non linear mechanics

1. Introduction

Lattice materials are a class of cellular materials characterized by a reg-
ular, periodic microstructure that can be idealized as a network of slender
beams or rods. As all cellular materials, they combine properties such as
lightness, stiffness, strength and high energy absorbing capabilities that can-
not be achieved by uniform fully solid materials (Ashby, 2005; Fleck et al.,
2010; Gibson and Ashby, 1999; Banhart, 2001). In addition, due to their
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regular and controlled microstructure, lattice materials can be designed to
fulfil specific requirements, such as prescribed stiffness and strength along
given directions and predetermined collapse modes.

Recent advances in manufacturing techniques allow the production of lat-
tice materials from a variety of solid materials, at a very fine scale, with high
accuracy and within acceptable costs (Bidanda and Bartolo, 2008; Ramirez
et al., 2011; Schaedler et al., 2011). Such technologies make lattice mate-
rials a viable option for use in the design of consumer products, and have
driven the interest in modelling tools for the analysis of complex components
made of lattice materials. Applications that exploit the design of bending
dominated lattices for morphing structures, and that focus on stretching
dominated lattices suitable for reconfigurable and smart actuated structures
(Fleck et al., 2010; Wang et al., 2007; Spadoni and Ruzzene, 2007) typically
require modelling lattice materials into the nonlinear regime. However, the
literature on the modelling of the mechanical properties of lattice materials
is generally restricted to the geometrically linear regime.

In this paper, we are concerned with the derivation of a constitutive
model for the analysis of the geometrically non linear behaviour of lattices. A
number of studies have analysed simple topologies and obtained closed-form
expressions of the lattice stiffness and strength by solving the equilibrium
problem of the unit cell (Gibson and Ashby, 1982; Wang and McDowell,
2004; Gibson et al., 1982; Zhu et al., 1997; Hutchinson and Fleck, 2006).
This approach cannot in general be extended to include geometrical non lin-
earities, because closed-form solutions are typically unavailable for a beam
under large displacement. In other homogenization approaches (Kumar and
McDowell, 2004; Langley, 1996; Suiker et al., 2001; Gonella and Ruzzene,
2008; Elsayed and Pasini, 2010a,b; Vigliotti and Pasini, 2012a,b), the equiv-
alent stiffness of the lattice is determined by comparing selected physical
quantities of the discrete lattice, such as the dispersion relation of harmonic
waves, or the coefficients of the elastic equilibrium equation, to those of an
equivalent continuous medium. These models are necessarily restricted to the
linear regime and cannot be extended to consider the effects of geometric or
material non linearity. Despite the lack of a specific literature on non-linear
models for lattices, several works, mainly focused on the modelling of com-
posites and of heterogeneous media, are available. These studies can offer
insight into the general framework and theoretical basis for the development
of a non linear constitutive model for lattices. Extensive reviews of these
works have been produced by Pindera et al. (2009), and by Charalambakis
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(2010).
The approach presented in this study belongs to the class of representa-

tive volume element (RVE) methods (Kouznetsova et al., 2001, 2002, 2004;
Van Der Sluis et al., 2000; Terada et al., 2000; Smit et al., 1998; Matsui
et al., 2004; Fish and Wagiman, 1993; Mohr, 2005; Ohno et al., 2002), which
evaluate the constitutive relationships of a heterogeneous medium from the
analysis of a small portion of it. The RVE consists in a limited region of
the domain that contains the main microstructural features of the mate-
rial and responds as the infinite medium, if uniform strain, or stress, and
boundary conditions are imposed. All these methods are based on the self-
consistent scheme developed by Eshelby (1957), who studied the mechanics
of an ellipsoidal inclusion in an infinite matrix with homogeneous boundary
conditions. In general, RVE methods resort to a two-scale approach. On
one hand, there is the macroscopic finite element model of the component,
whose boundary conditions are defined by the general problem, where the
material is treated as a homogeneous continuum. On the other hand, there
exists the microscopic model of the RVE, which numerically evaluates the
stress-strain relationship, whose boundary conditions are generated by the
macroscopic model. The RVE model is interrogated at every integration
point of the component model, a process that allows the assembly of the
macroscopic internal force vector and of the tangent stiffness matrix, as it is
done for a fully solid material. These methods, developed for random me-
dia, where the RVE is modelled by means of continuous elements, evaluate
the macroscopic stress as the average of the microscopic stress on the RVE.
Such techniques while feasible for lattice materials (Kouznetsova et al., 2001,
2002, 2004; Van Der Sluis et al., 2000; Ohno et al., 2002) are numerically very
cumbersome. It is more natural for these materials to consider RVEs with
discrete structural elements, such as beams or shells. However, we typically
do not want to carry higher order stresses, such as moments, from the micro
to the macro scales. For instance, we could not evaluate the contribution
to the macroscopic stress of the lattice of a single beam in pure bending,
because the stress average over the cross section would be null everywhere
along the beam, even though a lattice comprising such elements will sustain
a finite macroscopic stress. Other works (Kumar and McDowell, 2004) de-
rive macroscopic constitutive relations for trusses assuming a homogeneous
displacement model for the RVE. Such an approach is valid for RVEs that
hold central symmetry; nevertheless, if the RVE looses its symmetry during
loading, as a consequence of large macroscopic strain, or post bifurcation,
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the displacement field of the RVE cannot be described as homogeneous and
it should be determined enforcing the equilibrium.

In this study, we use an alternative approach, which allows determine the
macroscopic stress as the gradient of the strain energy density with respect to
the components of the macroscopic displacement gradient. This formulation
leads to a compact matrix expression for the macroscopic stress as a function
of the macroscopic displacement gradient that can handle both geometrical
and material non linearity. The kinematic assumption undertaken here is
that the deformation of the lattice periodic directions is congruent with the
macroscopic displacement gradient, while the RVE configuration is deter-
mined by imposing periodic equilibrium conditions on the RVE. As with any
RVE approach, the analysis presented here also assumes periodic deforma-
tions and thus cannot account for random spatially distributed imperfections
within the lattice material.

The choice of the RVE plays an important role in the framework of a
computational homogenization approach (Gusev, 1997; Kanit et al., 2003;
Gitman et al., 2007; Terada et al., 2000; Graham and Yang, 2003; Stroeven
et al., 2004). Most of these studies focus on materials with a stochastic
microstructure, and are aimed at determining the conditions that ensure a
statistical representativeness of the RVE, both for the purpose of numerical
homogenization and for the definition of the size, shape, and number of
samples required for experimentally measuring the material properties. Since
our focus is on periodic lattices, a natural choice for the RVE is the unit cell,
which we intend as the minimal entity capable of generating the lattice. Such
choice, however, is not unique; any collection of contiguous unit cells can be
used as RVE. Hence, the following question arises: how does the size of the
RVE affect the response of the material? For example, Braides (1985) and
Müller (1987) have shown that one should not generally expect a finite RVE
in the context of finite deformation and that bifurcations can occur at any
length scale. Triantafyllidis and Schraad (1998) and Gong et al. (2005) have
taken these works ahead by showing explicitly, using Bloch wave boundary
conditions, that some bifurcations occur only as the RVE size goes to infinity.
This paper addresses this issue of RVE size choice with particular reference
to the effect of geometric non linearity. We show that the size of the RVE has
no influence on the model prediction, until a bifurcation point is encountered
in the load path. After passing bifurcations, the predicted post bifurcation
behaviour depends on the size of the RVE; hence, preliminary investigations
should be carried out for a proper selection of the RVE.
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The constitutive material model presented in this paper is validated by
comparing the results of a discrete and a continuous model of a rectangular
plate with a central hole under in-plane loads. In one case, a direct numerical
simulation has been carried out on the discrete lattice, whose elements have
been individually modelled as beams. In the other case, the domain was
modelled with continuous plane stress elements whose constitutive law was
numerically evaluated using the homogenization approach developed in this
study.

2. Description of the methodology

Given a lattice material comprising a periodic array of connected struts
or beams, a direct numerical simulation would involve performing structural
calculations in which every strut of the lattice material is modelled individu-
ally. This is however very computationally expensive, even for a very simple
geometry. In this study, we derive a non linear numerical constitutive model
for lattices that allows the modelling of components made of lattice material
using a continuum description, wherein every strut of the underlying lattice
is not explicitly modelled. Figure 1 illustrates the multiscale scheme for the
derivation of the macroscopic stress by means of a finite element model of
a representative volume element of the lattice. At every integration point
of the macroscopic model, the first Piola-Kirchoff tensor, P, is evaluated by
means of a finite element model of the RVE. The macroscopic displacement
gradient, G, defines the variation of the periodic directions of the lattice, and
introduces the boundary conditions for the microscopic model. Once the mi-
croscopic boundary value problem (b.v.p.) is solved and the equilibrium
configuration of the RVE has been found, we can determine the components
of P as the derivatives of the strain energy density of the lattice with respect
to G. We emphasize here that the microscopic problem contains higher or-
der stresses (moments) as the struts of the lattice are modelled as beams.
However, these moments are not explicitly retained as we move from the
macro to micro-scale with only P and G, used to describe the state at the
macro-scale. This homogenization is done consistently via the principle of
virtual work as shall be described subsequently.

Let s be the array of the nodal degrees of freedom of the RVE, the cor-
responding array of the nodal forces, F (s), can be calculated by a Finite
Element (FE) analysis of the RVE. The first order variation of the strain
energy, due to a variation of the macroscopic strain, can then be obtained
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Macroscopic b.v.p. Microscopic  b.v.p.

=a a=

Figure 1: Multiscale scheme. At each integration point of the macroscopic
model the constitutive relations are found by solving a boundary value prob-
lem (b.v.p) on a RVE of the lattice.

by applying the principle of the virtual work as follows

dW =

∫
VRV E

PijdGij dV = FTds (1)

where: Pij and Gij are respectively the components of the macroscopic first
Piola Kirchoff (1PK) stress tensor and of the macroscopic displacement gra-
dient; ds is the variation of the nodal displacements corresponding to dGij.
Assuming that Pij and Gij are uniform over the RVE, we obtain the following
expression for the macroscopic stress tensor

Pij =
1

VRV E

∂W

∂Gij

=
1

VRV E
FT ∂s

∂Gij

(2)

To calculate the derivatives on the right hand side of equation (2), we intro-
duce the following kinematic assumptions:

(i) the periodic directions of the lattice change according to the macro-
scopic displacement gradient;

(ii) the lattice remains periodic during deformation.

We remark that assumption (i) applies only to the periodic directions; no fur-
ther restrictive hypothesis is made on the displacement of the internal points
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of the RVE, whose configuration is determined by imposing the equilibrium.
We also note that the above assumptions are equivalent to considering that
the size of the RVE is negligible with respect to the size of the macroscopic
domain, and that the typical length of the lattice elements is negligible with
respect to the local wavelength of the macroscopic strain field. In other
words, the RVE is considered as a material point of the macroscopic contin-
uum; hence in this formulation, the macroscopic and the microscopic length
scales are completely decoupled.

To determine the array ∂s
∂Gji

, consider, as an example, the lattices in

Figure 2. In this section, for the sake of simplicity, we consider RVEs that
contain a single Unit Cell (UC)1. As we can note, all the boundary nodes

X1

X2

(a) Hexagonal lattice

X1

X2

(b) Triangular lattice

Figure 2: Sample lattice topologies. Thick blue lines represent the unit cell
elements; dashed red lines describe RVE boundaries while a1 and a2 are the
tessellation vectors. X1 and X2 are the coordinate directions of the Cartesian
reference system.

of the RVE are necessarily positioned along the periodic vectors, a1 and a2,
while the position of the internal nodes cannot be written in terms of other
nodes in the RVE via ai. For instance, in Figure 2a the position r3 of node
3 can be written in terms of r2 as r3 = r2 + a1, while the position of node 4
in terms of the position of node 2 is r4 = r2 + a2; in the same figure, node
1 is internal and has no corresponding node along any periodic direction in
the RVE. Similarly in Figure 2b, the position of node 2 in terms of node 1 is
written as r2 = r1 + a1, while the position of node 3 is given as r3 = r1 + a2,

1The effect of RVE size is considered in detail in Sections 2.1 and 3
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and in this case we do not have an internal node. It follows that we can
express the position of all the nodes of the unit cell by means of the position
of the independent nodes as

ri = rj + k a1 + h a2 (3)

where rj are the positions of the independent nodes with k, h ∈ −1, 0, 1 (for
internal nodes k = h = 0), j ∈ 1..N, with N the number of independent
nodes of the RVE, and i ∈ 1..N, where N are the number of the dependent
nodes of the RVE. The displacement si of the ith dependent node is written
in terms of the displacement sj of the independent nodes as

si = sj + k∆a1 + h∆a2 (4)

where ∆ai is the change in the ith tessellation direction. Collecting all the
DoFs of the UC in the array s allows writing the following equation in a
compact matrix form as

s = B0s + B1∆a (5)

where the entries of the matrices B0 and B1 are 1, 0 or −1, and do not
change during the deformation; s is the array that collects all the independent
degrees of freedom (DoF) of the unit cell, while ∆a groups the components
of ∆ai and is defined as

∆a =
[

∆a11, ∆a12, ∆a21, ∆a22
]T

(6)

where the first index refers to the periodic direction, and the second index
to the Cartesian component. If Gij = ∂ui

∂Xj
are the components of the macro-

scopic displacement gradient, the following holds

∆aki = Gijakj (7)

After collecting the components of the gradient in the array G = [ G11,
G12, G21, G22 ]T , we can express the change in the periodic directions as a
function of the components of the displacement gradient as

∆a = BaG (8)

where the matrix Ba gathers the components of the tessellation vectors re-
arranged as

Ba =


a11 a12 0 0
0 0 a11 a12
a21 a22 0 0
0 0 a21 a22

 (9)
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Hence, all the DoFs of RVE can be directly expressed as a function of the
DoFs of the independent nodes and of the components of the displacement
gradient as

s = B0s + BGG (10)

where BG = B1Ba and depends on the topology of the RVE only. Equation
(10) expresses the kinematics of the RVE, and relates the macroscopic dis-
placement gradient G to the nodal displacements of the RVE. We remark
that the deformed shape of the RVE can be found after the DoFs of the
independent nodes, s, have been determined; this can be done by enforcing
the periodic equilibrium condition on the RVE.

Thanks to assumption (ii), we can write the equation for the equilibrium
of the RVE, under the action of the surrounding elements, in terms of the
nodal forces of the same RVE. In particular, the following holds for the
hexagonal lattice

F1 = 0
F2 + F3 + F4 = 0

(11)

where the subscript refers to the nodes numbers as marked in Figure 2.
Similarly for the triangulated lattice, we can write the following periodic
equilibrium equation

F1 + F2 + F3 = 0 (12)

It is possible to show (Vigliotti and Pasini, 2012a) that for an arbitrary lattice
the periodic equilibrium equation can be written in terms of the B0 matrix
as

BT
0 F (s) = 0 (13)

and by means of equation (10) as follows:

BT
0 F (B0s + BGG) = 0 (14)

The above equation expresses the equilibrium of the unit RVE under the
action of the surrounding cells, for a uniform deformation field. Given G,
equation (14) can be solved using a Newton Raphson scheme, i.e. updating
the nodal DOFs si of the independent nodes after the ith iteration via

Ri = BT
0 F
(
B0s

i + BGG
)

(15)

si+1 = si −
(
∂R

∂s

)−1
Ri (16)
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where Ri is the residual after the iteration i and ∂R
∂s

= BT
0
∂F
∂s

B0. It now
remains to calculate the macroscopic 1PK tensor by means of equation (2).
To determine ∂s

∂Gij
, we differentiate equation (10) with respect to G to obtain:

∂s

∂G
= B0

∂s

∂G
+ BG (17)

and thereby the components of the 1PK tensor, collected in the array P, are

P =
1

VRV E
FT

(
B0

∂s

∂G
+ BG

)
(18)

This is further simplified by employing equation (13) to give

P =
1

VRV E
BT
GF (s) (19)

We now proceed to determine the solution to the macroscopic problem. To
do this we need to calculate the Jacobian of the stress tensor with respect
to the displacement gradient, i.e. ∂P

∂G
. Differentiating equation (18) with

respect to G allows writing:

∂P

∂G
=

1

VRV E

[(
∂F

∂s

∂s

∂G

)T (
B0

∂s

∂G
+ BG

)
+ FTB0

∂2s

∂G2

]
(20)

where ∂F
∂s

is the tangent stiffness matrix of the unconstrained RVE, and ∂s
∂G

is

given by eq. (17). Equation (13) implies that the term with ∂2s
∂G2 in equation

(20) vanishes and using the symmetry of ∂F
∂s

, we obtain

∂P

∂G
=

1

VRV E

(
B0

∂s

∂G
+ BG

)T
∂F

∂s

(
B0

∂s

∂G
+ BG

)
(21)

It now remains to calculate ∂s
∂G

which represents the first variation of the
internal DoFs of the RVE corresponding to a variation in G. Since s has
to satisfy the RVE equilibrium always, ∂s

∂G
can be found by differentiating

equation (13) with respect to G, and recalling (17), which yields

BT
0

∂F

∂s

∂s

∂G
= BT

0

∂F

∂s

(
B0

∂s

∂G
+ BG

)
= 0 (22)
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We can calculate ∂s
∂G

by solving(
BT

0

∂F

∂s
B0

)
∂s

∂G
= −BT

0

∂F

∂s
BG. (23)

We observe that the matrix BT
0
∂F
∂s

B0 is square but not invertible. Yet, since
both the terms in equation (23) belong to the column range of BT

0 , a solution
must always exist and is given by

∂s

∂G
= −

(
BT

0

∂F

∂s
B0

)+

BT
0

∂F

∂s
BG (24)

where ()+ denotes the Moore-Penrose pseudo inverse. Equation (24), sub-
stituted in Equation (21), yields the numerical expression for the sought
Jacobian.

Through equations (19) and (21), we can evaluate the 1PK tensor and its
Jacobian for any given G, and solve the equilibrium problem of a macroscopic
component made of lattice material by means of standard displacement-based
finite element procedures. We observe that the boundary conditions for the
RVE problem are produced during the iterations at the macro level; therefore,
a robust algorithm capable to handle instabilities and snap-through of the
RVE is necessary to solve equations (14). The algorithm should be able to
automatically detect if a bifurcation point has already been crossed, or if
a bifurcation is close to the current equilibrium point, and perform branch
switching to bring the structure in the lowest potential energy configuration.
The method described by Crisfield (Crisfield, 1981, 1998) meets these criteria
and was thus used to generate the results presented here. At the beginning of
each increment, the eigenvector of ∂R

∂s
corresponding to the lowest eigenvalue

is extracted, and a line search along this eigenvector is performed to minimize
the norm of P; subsequently, this point is used as initial guess for the local
iterations. A combination of Newton Raphson and Riks steps is performed
in proximity of the bifurcation points to improve convergence. The technique
proved to be satisfactorily robust and was able to detect the occurrence of
buckling and deviation from the equilibrium path on low energy branches.

In the formulation presented in this paper, all boundary conditions are
on the components of G, which ensures the existence of a solution. It is also
possible to pose the inverse problem, that is to consider boundary conditions
given on the P tensor and solve for G. Yet in this case, the existence of the
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solution is not guaranteed due to the existence of limit loads for the RVE. We
can alternatively consider mixed boundary conditions, where certain compo-
nents of P and G are prescribed and others are free. Nevertheless, since the
components of G and P are directly work conjugated, the same component
cannot be prescribed on both tensors.

3. Effect of the RVE size

A key element of a homogenization approach is the choice of the RVE.
Given the unit cell of the lattice and the periodic directions, alternative RVEs
can be generated including more unit cells along the periodic directions.
Figure 3 shows four different choices including 2, 3, 5, and 7 UC along each
periodic direction. It is critical to understand how a particular choice of the
RVE might influence the predicted equilibrium configuration of the lattice.

RVE=3x3UC

a1a2

RVE=2x2UC

a1a2

RVE=7x7UC

a1a2

RVE=5x5UC

a1a2

(a) Hexagonal lattice

a1

a2

RVE=7x7UC

a1

a2

RVE=5x5UC

a1

a2

RVE=3x3UC

a1

a2

RVE=2x2UC

(b) Triangular lattice

Figure 3: Some selected RVE sizes considered in this study.

We start by showing that until a bifurcation is encountered on the load
path of the lattice, the predictions of the model are independent from the
RVE. To illustrate this, we refer to Figure 4; let RV Eij be four contiguous
identical RVEs as labelled in Figure 4 while lij, bij, rij tij refer to the left,
bottom, right and top boundaries, respectively of RV Eij. Consider first
RV E11 for a given macroscopic displacement gradient G acting on the lattice.
We can solve (14) to find the configuration of the independent DoFs of the
RVE, s11 ; then by means of equation (10), we determine all the DoF, s11, and
the nodal forces, F11, of RV E11, which in turn yields P. The compatibility
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conditions for the boundary nodes, equation (4), and the periodic equilibrium
conditions yield the following

s11r − s11l = ∆a1

s11b − s11t = ∆a2

F11
l + F11

r = 0
F11
t + F11

b = 0
(25)

where the superscripts refer to the RVE indexes, and the subscripts to the
relevant segment of the RVE. We note that the equations on the right in
(25) represent a weaker constraint than that in equation (14), since they do
not enforce the equilibrium of the internal nodes. Now consider an RVE
made of the union of the four RVEs (figure 4) under the same macroscopic
deformation gradient. Also assume that no bifurcation point exists on the
load path of the larger RVE from 0 to G. Since all RVEij are identical, we
can obtain a model of the assembly by static condensation starting from a
model of the single unit. The static condensation equations for the RVEs are

s11r = s12l
s12t = s22b
s22l = s21r
s21b = s11t

F11
l + F12

r = 0
F12
t + F22

b = 0
F22
l + F21

r = 0
F11
t + F11

b = 0

(26)

While the compatibility and the periodic equilibrium equations for the en-
larged RVE, are

s11r − s12l = 2∆a1

s22r − s21l = 2∆a1

s11b − s21t = 2∆a2

s22b − s12t = 2∆a2

F11
l + F12

r = 0
F21
t + F11

b = 0
F21
l + F22

r = 0
F22
t + F12

b = 0

(27)

As we can observe, since equations (25) hold for each RVEij, equations (26)
and (27) are always satisfied, and the nodal configuration s11 = s21 = s12 =
s22 is a solution for the larger RVE under the macroscopic gradient G. In
other words, the periodic boundary conditions over a single RVE always
satisfy static condensation equations and periodic boundary conditions if
more RVEs are joined to build a larger one. Since no bifurcation point
exists, this solution is unique. It follows that the predicted response of the
material is not influenced by the RVE size. Therefore, the lattice equilibrium
configuration before bifurcations is always periodic in the unit cell.

In the case that bifurcation points exist on the load path of the larger
RVE, the equilibrium configuration is not unique. In this case, since condi-
tions (27) are weaker than conditions (25), applied at each RVEij, it follows
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l11 r11

t11

b11

l12 r12

t12

b12

l22 r22

t22

b22

l21 r21

t21

b21

12RVE11RVE

22RVE21RVE

a1

a2

Figure 4: Notation used to define four identical RVEs, RVEij, and their
boundary segments lij, bij, rij, tij.

that solutions can exist that are compatible with the periodic equilibrium
of the enlarged RVE, but do not satisfy the equilibrium conditions of the
single RVEij. In particular, for these configurations equation (27) holds, but
s11 6= s21 6= s12 6= s22. Therefore after bifurcation, each of the solutions that
are periodic over a single RVEij are still solution of the enlarged RVE, and ad-
ditional equilibrium configurations that are periodic only over the enlarged
RVE exist. While each of these configurations is mathematically possible,
only the one that minimises the total potential is a realistic configuration.
If we consider RVEs with a larger number of unit cells, the set of possible
buckled configurations enlarges, and can include more stable configurations.
The choice of a larger RVE, however, would significantly increase the com-
putational cost. Therefore, the RVE should be as small as possible to reduce
the computational cost and be sufficiently large such that increasing its size
would not significantly affect the predictions of the model. For a given lattice
topology and values of the expected macroscopic deformations, an analysis
should be carried out prior to selecting the size of the RVE with the goal of
assessing the impact of the RVE size.

4. Effective properties of lattice materials

We now proceed to illustrate the predictions of the model for the effective
properties of the lattices, made of a linear elastic solid material of Young’s
modulus Es, under a range of applied boundary conditions. We note that
in these examples, where we aim to investigate the effective properties, the
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stress and strain states of the lattices are macroscopically homogenous at
the RVE scale. Thus, even though in the examples presented in this sec-
tion we use the full solution procedure as described in Section 2 to illustrate
and verify the method, simpler methods will suffice for the effective property
calculation which only involves the analysis of a single RVE. Here we con-
sider the hexagonal and the triangulated lattice that are typical examples
of bending and stretching dominated topologies (Deshpande et al., 2001).
These topologies are initially elastically isotropic and expressions of the lat-
tice stiffness matrix, in terms of the Young’s modulus of the solid material
and the slenderness ratio are given as (Vigliotti and Pasini, 2012a)[

σ11
σ22
σ12

]
=

Esλ

2
√

3 (λ2 + 1)

[
3λ2+1 1−λ2 0
1−λ2 3λ2+1 0
0 0 2λ2

]
Hexa

=
[
ε11
ε22
ε12

]
(28)

[
σ11
σ22
σ12

]
=
Esλ
√

3

4

[
λ2+3 1−λ2 0
1−λ2 λ2+3 0
0 0 2λ2+1

]
Tria

=
[
ε11
ε22
ε12

]
(29)

where σij and εij are the components of the macroscopic engineering stress
and strain tensors, respectively, while the strut slenderness ratio λ = t

L0
,

where t is the strut thickness, and L0 the strut length. From (28) and (29),
expressions for the lattice bulk modulus, the Young’s modulus, the Poisson
ratio can be readily written as:

KHexa = λ√
3
Es EHexa = 4λ3√

3(3λ2+1)
Es νHexa = 1−λ2

3λ2+1 (30)

KTria = λ
√

3Es ETria =
2
√
3λ(λ2+1)
λ2+3

Es νTria = 1−λ2
3λ2+3

(31)

where K..., E... and ν... denote the bulk modulus, the Young’s modulus, and
Poisson ratio, respectively. The above equations include both bending and
axial stretching contributions for the struts. Expressions valid for pin-jointed
lattices, for which the there are no bending contributions from the struts, can
be obtained by neglecting the terms in λ2 and higher order terms in equations
(28-31). We observe that the stiffness matrix of the pin-jointed hexagonal
lattice is twice rank deficient and its Young’s modulus is zero; nevertheless
since the bulk modulus does not vanish, the pin-jointed lattice is still capable
of withstanding hydrostatic macroscopic stress. This is caused by the bending
dominated nature of the hexagonal lattice. On the other hand, the pin-
jointed triangulated lattice responds to any macroscopic stresses with axial
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forces in the struts. We proceed to present results for the hexagonal and
triangulated lattices that are characterised in terms of their relative density
ρ∗ (ratio of the density of the lattice to the density of the solid material
from which the lattice is made). In terms of their slenderness ratio λ, the
relative density of the hexagonal and triangulated lattices are ρ∗ = 2/

√
3λ

and ρ∗ = 2
√

3λ, respectively. Note that these formulae, are accurate in the
limit λ � 1, where we can neglect the volume of the nodes in comparison
to the volumes of the struts. In this and in the following sections, we will
keep fixed the slenderness ratio of the lattices struts to λ = 1/50. This
corresponds to a relative density of ρ∗ = 0.02 for the hexagonal lattice, and
ρ∗ = 0.07. Similar analyses can of course be conducted for arbitrary values
of ρ∗.

4.1. Hexagonal lattice

Equations (28) and (30) define the stiffness of the undeformed lattice.
As the lattice deformation increases, the response deviates from the linear
approximation, and different behaviours are possible depending on the ap-
plied boundary conditions. Let’s first consider the response of the lattice
subjected to a equi-biaxial straining. Figure 5a shows the normalised stress
P22/(Esρ

∗3) versus strain G22 curves obtained for equibiaxial strain for three
choices of RVE size. Numerical results for RVE size ranging between 2x2UC
and 7x7UC are very similar to each other, and are not shown for conciseness.
The boundary conditions applied to the material model are

G11 = G22

G12 = G21 = 0
(32)

where the components of G are with reference to the Cartesian co-ordinate
system defined in Figure 2. We recall from Gibson and Ashby (1999) that
the buckling stress of the honeycomb is expected to scale as Esρ

∗3 - hence
we normalize the results in Figure 5a, and the following Figures, by using
this factor. As expected, the curves in Figure 5a overlap until they reach
a bifurcation point on the load path. Because of the symmetry of the lat-
tice, positive values of G11 = G22 produce only axial tension forces on the
struts; hence no bifurcation exists for tensile or positive strains. In contrast,
a negative strain produces axial compression that induces buckling with a
tangent stiffness that is nearly zero. We observe that the predicted critical
load varies with the size of the RVE; in particular, the critical load, which
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corresponds to an RVE with a single UC, is substantially higher than the
load predicted for larger RVEs. In addition, while the values of the buckling
load for RVEs with more than one UC are quite close, no real trend exists as
the RVE size increases2. We note that the main characteristic of the defor-
mation mode under equi-biaixal compression is the lattice ”folding” around
a less-deformed hexagon. This deformation mechanism is in agreement with
the results found by Papka and Kyriakides (1999) for equi-biaxial crushing
of honeycombs. For these boundary conditions, the similarity of the buckling
modes among RVEs with 2 or more UCs, suggests that the buckling of the
hexagonal lattice has an effective wavelength of 2 unit cells. It is worth men-
tioning here that, prior to bifurcation, P22=P11; however, in post-bifurcation
the two stresses are no longer equal as the equi-biaxial straining and stressing
solutions diverge.
The buckling modes of the hexagonal lattice subjected to uniaxial compres-
sive straining in the 1 and 2 -directions are illustrated in Figure 5b. It is clear
that similar to the equi-biaxial compression case, the deformation modes do
not change significantly as the RVE size is increased beyond 2x2UCs. From
these observations, we conclude that the microscopic buckling of the hexago-
nal lattice is effectively governed by the modes with a wavelength of two UCs
for a wide range of loading states and a 2x2UC RVE should suffice to model
the hexagonal lattice as a homogenised continuum. We note in passing that
the buckling modes predicted here for uniaxial compressive straining (i.e.
G22 = 0 or G11 = 0) are in agreement with the observations and predictions
of Gibson and Ashby (1999).

We now proceed to examine the uniaxial stressing responses of the hexag-
onal lattice. First consider the case of uniaxial stressing in the 1-direction
shown in Figure 6a (P22 = P12 = P21 = 0 with the applied loading applied
by imposing a G11). As for the case of biaxial straining (figure 5b), the
predicted responses are independent of the RVE size prior to bifurcation.
In fact, the applied boundary conditions prevent buckling to occur for the
single UC RVE, which remains in the pre-buckling configuration with the
anti-symmetric bending of the horizontal elements, as described by Zhang
and Ashby (1992). The buckling of larger RVEs occurs at slightly different

2The wavelength of buckling in our analysis is restricted to the RVE size. As finite
deformations proceed, the natural buckling wavelengths may or may not exceed the preset
RVE size and hence no definite trend in the collapse load with respect to the RVE size
can be expected.
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thresholds; nevertheless the buckling modes are all very similar (for the sake
of brevity, the buckling modes only for 1x1UC RVE and 3x3UC RVE are
shown in Figure 5a). Next consider the case of uniaxial stressing in the 2-
direction included in Figure 6a (P11 = P12 = P21 = 0 with the applied loading
applied by imposing a G22). Over the range of deformation considered here
no buckling is predicted under both compressive and tensile loading, hence
the responses are RVE-size independent.

4.2. Triangulated lattice

The results for the triangulated lattice are qualitatively similar to the
hexagonal lattice; hence we only briefly discuss these, and focus on high-
lighting the differences between the hexagonal and triangulated lattices. The
equi-biaxial straining response of the ρ∗ = 0.07 triangulated lattice is plotted
in Figure 7a for a selection of RVE sizes. Again, bifurcation occurs only
in compression and the results are reasonably RVE-size independent for an
RVEs with 2x2UCs or more. The buckling modes for three loading conditions
(uniaxial compressive straining in the 1 and 2 -directions and equi-biaxial
compression) shown in Figure 7b also confirm that an RVE with 2x2 UCs
suffices to capture the buckling modes.
The response of the triangulated lattice subjected to uniaxial stressing in
the 1 and 2 -directions is shown in figures 8a and 8b, respectively. We note
that similar to the honeycomb, the triangulated lattice does not display a
bifurcation under tensile loading in the 1-direction, but under compression
the struts aligned with the loading direction buckle as shown in Figure 8a.
However, the stretching triangulated lattice induces compressive forces in the
struts aligned in the 1-direction when subjected to uniaxial tensile loading in
the 2direction. Thus, under uniaxial stressing in the 2-direction, the response
displays bifurcations under both compressive and tensile loadings although
the bifurcation modes under compressive and tensile loadings differ, as shown
in Figure 8b.

5. Analysis of the uniaxial response of a lattice plate with a circular
hole

The results in Section 4 describe the effective properties of the lattice
materials subjected to large deformations. We now proceed to demonstrate
the capabilities of the model by performing simulations of the uniaxial loading
of a plate comprising either the hexagonal or triangulated lattice with a
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central circular hole. This problem generates a non-homogenous stress state
within the plate, and the predictions of the homogenised model are compared
with the predictions of a model wherein all the struts of the lattice within
the domain are explicitly modelled.

The plate, with overall dimensions LX and LY in the in the 1 and 2
-directions respectively, and a central circular hole of diameter d, was sub-
jected to remote tensile loading as shown in Figure 9a. The orientations of
the 2 lattices are sketched in figures 9b and 9c. The loading was applied to
the top and bottom surfaces of the plate by applying a vertical displacement
v as shown in Figure 9, with the horizontal movements of all nodes on those
surfaces completely constrained. For numerical convenience we only model
its top half, i.e. a plate of dimensions LX and LY /2, and impose symmetry
boundary conditions along the Y = 0 axis. We note that from symme-
try, prior to bifurcations, this half-model is sufficient. However, bifurcations
could break this symmetry and the analysis presented here is restrictive in
that sense. However, the aim here is to compare the predictions of the ho-
mogenised model with the predictions of a model wherein all the struts of
the lattice within the domain are explicitly modelled and so long as the same
boundary conditions are imposed in both models, the analysis is meaning-
ful. In all the simulations presented here we kept LX/LY = 0.5 , d/LX = 0.3
fixed. As in the previous section, we consider lattices with a strut aspect ratio
λ = 1/50. In the homogenised model, the domain was discretized with plane,
constant stress, triangular elements and the constitutive response assumed
to be described by a 2x2 UC RVE. Each strut of the RVE was discretized by
three Euler Bernoulli beams elements with cubic interpolation. The FE im-
plementation of the homogenised model was carried out within an in-house
code.

The discrete model, wherein each strut of the lattice is explicitly modelled,
requires the specification of an additional length scale, viz. LX/L0 where L0 is
the length of the strut. Recall that the homogenised model implicitly assumes
that LX/L0 tends to infinity as the constitutive model has no inherent length
scale. In the discrete model LX/L0 varied from 10 to 50 in increments of 5
in order to probe for gauge the sensitivity of the response of the inherent
length scale, thereby defining the regime of applicability of the homogenised
model. These discrete simulations were conducted using the commercial FE
package ABAQUS standard (version 6.10), where each strut is modelled as
a Euler-Bernoulli beam (B23 in the ABAQUS notation).

We proceed to present results in terms of the net section nominal stress,
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which is the average of the stress on the symmetry line of the domain, σn =
FY /(LY − d) normalised by Esρ

∗3 for uniformity with the data presented in
Section 4, i.e. σn = σn/(Esρ

∗3). Here FY is force conjugate to the applied
displacements v versus the nominal strain εn = 2v/LY .

5.1. Hexagonal lattice

Predictions of σn versus εn for the discrete and homogenised models are
included in Figure 10 for compressive and tensile loading. For brevity we
only show curves for three selected values of LX/L0. Similar to the effec-
tive properties discussed in Section 4, no bifurcations under both uniaxial
compressive and tensile loading is observed even for a plate with a central
circular hole. The homogenised model is in excellent agreement with the
predictions of the discrete model for plates with more than 10 cells across
the plate width. In fact, the predictions of the discrete model are reasonably
insensitive to LX/L0 for LX/L0 > 10.

The homogenised model captures the features of the response of the plate
under compressive and tensile loading with a high level of accuracy. Under
compressive loading the lattice deforms by bending of the cells walls at low
nominal compressive stresses. However, under tensile loading the cells walls
tend to align with the loading, which results in the stiffening of the curve,
as seen in Figure 10. To further investigate this, we proceed to compare
the deformation modes as predicted by the discrete and homogenised mod-
els. The discrete results are presented for the choice LX/L0 = 30, but it is
worth recalling that the predictions are reasonably insensitive to this choice
of length scale. The deformed configurations of the plate at an applied strain
εn = 0.12 are shown in figures 11a and 11b for the homogenised and discrete
models. The mesh used on the homogenised analysis is depicted in Fig-
ure 11a and shaded with contours of the norm of the deformation gradient
|G| =

√
GijGij. The overall deformed shapes of the plate and hole are in ex-

cellent agreement between the homogenised and discrete models. To further
investigate the fidelity of the homogenised model, we proceed to compare
the deformed lattices at three representative locations in the plate marked
in Figure 11a and 11b. Locations A and C are located away from the hole
and excellent agreement is seen in Figure 11c between the deformed shapes
of the cells as predicted by the discrete and homogenised models (approxi-
mately 8x5 cells are shown for the discrete model at each of these locations,
while the 2x2 UC RVE is shown for the homogenised model). Both the mod-
els predict that the cells of the hexagonal lattice deform such that some cells
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walls align with the loading direction. At location B, which is at the edge of
the hole, the discrete model predicts a large gradient in the pattern of the
cells deformation. While 2 layers of cells at the edge of the hole undergo large
shearing deformations, the lattice deformation at location B is similar to that
at location A for cells that are more than 2 strut lengths away from the hole.
The homogenised model of course is unable to predict these variations that
typically occur on the length scale of a single cell, but captures the general
pattern of deformation a few cells away from the hole edge. The equivalent
comparisons for compressive loading at an applied strain εn = −0.048 are
shown in Figure 12 with similar conclusions.

5.2. Triangulated lattice

Predictions of σn versus εn for the discrete and homogenised models are
illustrated in Figure 13 for compressive and tensile loading. There are some
key differences with the hexagonal lattice case:

(i) In line with the effective properties discussed in Section 4, bifurcations
are observed under both tensile and compressive loadings of the plate
with a circular hole. The bifurcations under compressive loading are
seen to result in a slightly negative tangent stiffness suggesting a loss of
ellipticity of the overall governing equations of the homogenised model
(Needleman, 1988). While a strongly softening material response gives
rise to a large mesh sensitivity in the results, this mild softening ob-
served here is found to not result in significant mesh dependence in the
results reported in this work.

(ii) While the discrete and homogenised models are in excellent agreement
prior to bifurcation, the homogenised model differs from the discrete re-
sults for values of LX/L0 < 30. The differences are larger under tensile
loading where the homogenised model over predicts the discrete results.
However, as anticipated, the discrete and homogenised predictions tend
to converge as LX/L0 →∞.

We also observe that the predicted buckling stress is in good agreement with
the results of Figure 8b for RVEs of the triangulated lattice under uniaxial
stressing in direction 2, both in tension and in compression. We remark that
the data shown in Figure 13, refer to the symmetry line of the domain at
Y = 0. Here the local stress is higher because of section reduction due to the
presence of the hole; it follows that the buckling of the lattice struts initiate
in this region as shown in detail in figures 14 and 15.
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We proceed to compare the deformation modes in the discrete and ho-
mogenised models to understand the source of the discrepancy observed in
the tensile branch of the plot in Figure 13. Similarly to Figure 11, Figure
14 shows a comparison between the homogenised and discrete models for the
triangulated lattice plate subjected to a nominal tensile strain of εn = 0.01.
At locations A and C, the deformation modes as predicted by the discrete
and homogeneous models are in good agreement but at the edge of the hole,
i.e. location B, the homogeneous model predicts buckling of the horizontal
struts in the higher order mode compared to the discrete model. We expect
that it is this discrepancy between the homogenised and discrete models that
results in the homogenised model overpredicting the discrete results in the
tensile regime.

Similar comparisons between the deformation mode predictions of the dis-
crete and homogenised models for an applied compressive strain εn = −0.01
are included in Figure 15. In line with the excellent agreement between
the compressive stress versus strain predictions seen in Figure 13, the defor-
mation modes of the homogenised and discrete (LX/L0 = 30) are in good
agreement at the locations A, B and C in Figure 15.

We emphasise here that unlike the hexagonal lattice, the triangulated
lattice displays bifurcations under both compressive and tensile loadings.
Thus, the predictions of the homogenised model are expected to be sensitive
to the choice of the RVE: the 2x2 UC RVE selected here is shown to give
predictions of sufficient fidelity.

6. Conclusions

The paper has presented a methodology for the numerical evaluation of
the constitutive law of lattice materials. The approach is based on numerical
homogenization and can account for the non linear behaviours of lattices with
arbitrary topology. The hexagonal and the triangulated lattices have been
selected as case studies and have been analysed in detail. The influence of
the size of the representative volume element (RVE) on the predicted lattice
behaviour has been discussed.

We have shown that if no bifurcation point is reached on the load path
of the lattice, the predictions of the homogenised model are independent
of the size of the RVE. On the other hand in the presence of bifurcations,
the choice of the RVE influences the behaviour of the material model and
a detailed analysis should be performed to select the appropriate RVE size
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of the continuous model. In particular, for the lattices under investigation,
a single Unit Cell (UC) RVE provides a higher estimate of the strength,
whereas RVEs including two or more UC yield similar values.

The method has then been applied to analyze a rectangular domain with
a central hole made of a lattice material, under in plane compressive and
tensile loads. The results from the discrete models have been compared to
the prediction of the continuous models. We have found a good qualitative
and quantitative agreement among the models. The homogenised model
of the hexagonal lattice could capture its typical compliant behaviour in
compression, and the stiffening effect due to the reorientation of the struts
along the load direction in tension. With reference to the triangulated lattice,
the homogenised model could also describe the buckling of the struts for
both macroscopic compression and tension. Since a bifurcation occurs in
the response of the triangulated lattice it follows that the predictions of the
homogenised model are sensitive to the choice of the RVE. For the 2x2 UC
chosen in the calculations presented here, the results of the homogenised and
discrete models are in reasonable agreement.
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Figure 5: (a) The predicted equi-biaixal normalised stress versus strain curve
for the hexagonal lattice for selected choices of the RVE size. (b) The effect of
RVE size on the predicted buckling modes three selected boundary conditions
(uniaxial compressive straining in the 1 and 2 -directions, and equi-biaxial
compressive straining). The undeformed lattice is shown in cyan as a dotted
line, while the deformed lattice is in blue solid line.
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Figure 6: The predicted uniaxial stressing responses of the hexagonal lattice
in the (a) 1-direction and (b) 2-direction. Results are included for a range
of RVE sizes while the deformed RVE shapes are shown for the 1×1 UC and
3×3 UC cases at selected values of the applied strains.
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Figure 7: (a) The predicted equi-biaixal normalised stress versus strain curve
for the triangulated lattice for selected choices of the RVE size. (b) The
effect of RVE size on the predicted buckling modes three selected boundary
conditions (uniaxial compressive straining in the 1 and 2 -directions and equi-
biaxial compressive straining). The undeformed lattice is shown in cyan as
a dotted line, while the deformed lattice is in blue solid line.

31



−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
−3

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

G11

P
1
1

E
s

3
Uniaxial stress, = 0.07

RVE: 1x1 UC

RVE: 2x2 UC

RVE: 7x7 UC

G11=-0.05 G11=0.05

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
−3

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

G22

P
2
2

E
s

3

Uniaxial stress, = 0.07

RVE: 1x1 UC

RVE: 2x2 UC

RVE: 7x7 UC

G22=-0.05 G22=0.05

(b)

Figure 8: The predicted uniaxial stressing responses of the triangulated lat-
tice in the (a) 1-direction and (b) 2-direction. Results are included for a
range of RVE sizes while the deformed RVE shapes are shown for the 1×1
UC and 3×3 UC cases at selected values of the applied strains.
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Figure 9: (a) Sketch of the boundary value problem of the plate with a central
circular hole. The global co-ordinate system is also indicated. Sketches
of the (b) hexagonal and (c) triangulated lattices showing the orientation
of the lattice with respect to the global co-ordinate system marked in (a)
(LX/L0 = 10).
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Figure 10: Comparison between the predictions of the nominal stress ver-
sus strain response of the discrete and homogenised models for the uniaxial
response of a plate made of the hexagonal lattice with a central circular
hole. Predictions of the discrete model are shown for three choices of the
normalised strut length LX/L0.
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Figure 11: The deformed configurations of the hexagonal lattice plate at an
applied tensile strain εn = 0.12 using the (a) homogenised and (b) discrete
(LX/L0 = 30) models. Contours of |G| are included in (a). (c) A comparison
between the predicted deformed cell shapes at 3 locations marked A, B and C.
The undeformed lattice is shown in cyan as a dotted line, while the deformed
lattice is in blue solid line. In each case the image on the left shows the
deformed cells shapes as predicted by the discrete model while the image on
the right is the RVE in the homogenised model.
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Figure 12: The deformed configurations of the hexagonal lattice plate at an
applied compressive strain εn = −0.048 using the (a) homogenised and (b)
discrete (LX/L0 = 30) models. Contours of |G| are included in (a). (c) A
comparison between the predicted deformed cell shapes at 3 locations marked
A, B and C. The undeformed lattice is shown in cyan as a dotted line, while
the deformed lattice is in blue solid line. In each case the image on the left
shows the deformed cells shapes as predicted by the discrete model while the
image on the right is the RVE in the homogenised model.
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Figure 13: Comparison between the predictions of the nominal stress ver-
sus strain response of the discrete and homogenised models for the uniaxial
response of a plate made of the triangulated lattice with a central circular
hole. Predictions of the discrete model are shown for three choices of the
normalised strut length LX/L0 .
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Figure 14: The deformed configurations of the triangulated lattice plate at
an applied tensile strain εn = 0.01 using the (a) homogenised and (b) discrete
(LX/L0 = 30) models. Contours of |G| are included in (a). (c) A comparison
between the predicted deformed cell shapes at 3 locations marked A, B and C.
The undeformed lattice is shown in cyan as a dotted line, while the deformed
lattice is in blue solid line. In each case the image on the left shows the
deformed cells shapes as predicted by the discrete model while the image on
the right is the RVE in the homogenised model.
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Figure 15: The deformed configurations of the hexagonal lattice plate at an
applied compressive strain εn = −0.01 using the (a) homogenised and (b)
discrete (LX/L0 = 30) models. Contours of |G| are included in (a). (c) A
comparison between the predicted deformed cell shapes at 3 locations marked
A, B and C. The undeformed lattice is shown in cyan as a dotted line, while
the deformed lattice is in blue solid line. In each case the image on the left
shows the deformed cells shapes as predicted by the discrete model while the
image on the right is the RVE in the homogenised model.
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