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ABSTRACT

ABSTRACT

This thesis focuses on Mean Field Game (MFG) theory with applications to consensus,

flocking, leader-follower and major-minor agent systems. The MFG methodology

addresses a class of dynamic games with a large number of minor agents in which

each agent interacts with the average or so-called mean field effect of other agents

via couplings in their individual dynamics and cost functions. A minor agent is an

agent which, asymptotically as the population size goes to infinity, has a negligible

influence on the overall system while the overall populations effect on it is significant.

The thesis is presented in three main parts.

The first part consists of applications of the MFG methodology to large popu-

lation consensus and flocking behaviour. In these formulations each agent seeks to

minimize its individual quadratic discounted or long time average (i.e., ergodic) cost

functions involving the mean of the states of all other agents. The resulting MFG

control strategies steer each agent’s state toward the initial state population mean,

and by applying these decentralized strategies, the system reaches mean-consensus

asymptotically as time and population size go to infinity.

The second part is concerned with the extension of the mean field linear-quadratic-

Gaussian (MF LQG) framework so as to model the collective system dynamics which

include large population of leaders and followers, and an unknown (to the followers)

reference trajectory for the leaders. The cost of each leader is based on a trade-off

between moving toward the reference trajectory and staying near leaders’ own cen-

troid. On the other hand, followers react by tracking a convex combination of their
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own centroid and the centroid of the leaders. The MF LQG equations characterizing

the Nash equilibrium for infinite population systems are derived, and under appro-

priate conditions, they have a unique solution leading to decentralized control laws.

The computation of the followers mean field control laws requires knowledge of the

complete reference trajectory which is in general not known to the followers but is

estimated by a likelihood ratio based adaptation scheme based on noisy observations

taken by the followers on a random sample of leaders.

The final part focuses on large population dynamic games with nonlinear stochas-

tic dynamical systems involving agents of the following mixed types: (i) a major agent,

and (ii) a large population of minor agents. The major and minor agents are coupled

via both: (i) their individual nonlinear stochastic dynamics of controlled McKean-

Vlasov type, and (ii) their individual finite time horizon nonlinear cost functions. A

distinct feature of MFG problems with mixed agents is that even asymptotically (as

the population size approaches infinity) the noise process of the major agent causes

random fluctuation of the mean field behaviour of the minor agents. To deal with

this, a stochastic mean field system is formulated in contrast to the deterministic

mean field system employed in standard MFG problems.

ii



RÉSUMÉ

RÉSUMÉ

Cette thèse se concentre sur la théorie des jeux à population importante (en Anglais,

Mean Field Games (MFG)) avec des applications aux systèms de consensus, flocage,

chef-suiveur et aux systèmes d’agents majeure-mineure. La méthodologie MFG aborde

une classe de jeux dynamiques avec un grand nombre d’agents mineures dans laquelle

chaque agent interagit avec l’effet du champ moyen des autres agents par l’intermédiaire

d’accouplements dans leurs dynamiques individuelles et des fonctions de coût. Un

agent mineur est un agent qui a une influence négligeable sur l’ensemble du système,

mais sur lequel la population globale a un effet significatif. Cette thèse est présentée

en trois parties principales.

La première partie developpe des applications de la méthodologie MFG au con-

sensus d’une population importante et le comportement de flocage. Dans ces for-

mulations, chaque agent cherche à minimiser ses coûts quadratiques individuels, soit

escomptés, soit moyennés en temps (c’est-à-dire ergodique), impliquant la moyenne

des états de tous les autres agents. Les stratégies résultant de contrôle MFG orientent

l’état de chaque agent vers la moyenne de la population initiale, et en appliquant ces

stratégies décentraliseés, le systéme atteint un consensus moyen asymptotiquement

en temps et en population.

La deuxième partie s’intéresse à l’extension du cadre des jeux à population im-

portante linaire-quadratique-Gaussienne (MF LQG) pour modéliser la dynamique du

système collective qui comprennent une grande population de chefs et de suiveurs,

et une trajectoire de référence pour les chefs qui est inconnue aux suiveurs. Le coût
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de chaque chef est basé sur un compromis entre le déplacement vers la trajectoire de

référence et de rester près du centre de gravité propre des chefs. D’autre part, les

suiveurs réagissent en faisant le suivi d’une combinaison convexe de leur centre de

gravité propre et celui des chefs. Les équations MF LQG qui caractérisent l’équilibre

de Nash pour les systèmes de population infinie sont dérivées, et, étant donné des

conditions appropriées, ils ont des solutions uniques qui menent aux lois de contrôle

décentralisées. Les calculs des lois de contrôle MFG des suiveurs nécessitent la con-

naissance complète de la trajectoire de référence qui n’est pas généralement connue

aux suiveurs, mais qui est estimée par un rapport de vraisemblance, basé sur des

observations bruitées d’un échantillon aléatoire des chefs.

La dernière partie se concentre sur les jeux dynamiques des populations im-

portantes avec des systèmes dynamiques stochastiques non-linéaires impliquant des

agents mixtes suivants: (i) un agent majeur, et (ii) une grande population d’agents

mineurs. Les agents majeurs et mineurs sont couplés par ces deux: (i) leurs pro-

pres dynamiques stochastiques non-linéaires et contrôlées de type McKean-Vlasov, et

(ii) leurs fonctions de coûts individuelles non-linéaires à horizon de temps fini. Une

caractéristique distincte des problèmes MFG avec des agents mixtes est que, même

asymptotiquement (lorsque la taille de la population tend vers l’infini), le processus

de bruit de l’agent majeur provoque une fluctuation aléatoire du comportement du

champ moyen des agents mineurs. Pour faire face à cela, un système stochastique

à champ moyen est introduite comme extension du système déterministe de champ

moyen des problèmes de MFG standard.
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CLAIMS OF ORIGINALITY

The main contributions of the thesis are as follows:

Chapter 2

• Formulation of consensus models as: (i) linear-quadratic-Gaussian (LQG)

dynamic games, (ii) decentralized LQG optimal control, and (iii) centralized

linear-quadratic-regulator (LQR) optimal control problems.

• Derivation of the corresponding Nash and social mean field (MF) (or Nash

and social certainty equivalence) systems, and proof of existence and unique-

ness of their solutions.

• Establishment of some equivalence relationships between the Nash and so-

cial MF best response control laws, and the centralized LQR control laws.

• Proof of consensus behaviour for systems with Nash and social MF best

response control laws, and centralized LQR control laws.

• Investigating the connectivity role of the localized mean field cost-coupling

weight matrix in reaching consensus for heterogeneous sub-populations sys-

tems in the LQG dynamic game formulation.

Chapter 3

• Formulation of a mean field game (MFG) consensus problem where the

initial states for all the agents are not necessarily distributed according to

a Gaussian distribution.
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• Derivation of the corresponding MF system which consists of two coupled

deterministic equations: (i) a backward in time Hamilton-Jacobi-Bellman

(HJB), and (ii) a forward in time Fokker-Planck-Kolmogorov (FPK), which

are also coupled to a (spatially averaged) cost coupling function.

• Explicit expression of the stationary solution for the MF system, and analy-

sis of the linear stability and the nonlinear stability of the stationary system.

• Formulation of evolution (i.e., forward in time) MF (EMF) equations for

systems with Long Time Average (LTA) or ergodic cost functions, and

analysis of the linear stability and the nonlinear stability of the stationary

system.

Chapter 4

• Formulation of a MFG flocking problem with nonlinear cost-couplings which

are inspired by the Cucker-Smale flocking algorithm.

• Derivation of the corresponding MF system which consists of two coupled

deterministic equations: (i) a nonlinear backward in time HJB, and (ii)

a nonlinear forward in time FPK, which are also coupled to a (spatially

averaged) cost coupling function.

• Explicit expression of the stationary solution for the MF system, and analy-

sis of the linear stability and the nonlinear stability of the stationary system.

Chapter 5

• Formulation of a LQG dynamic game based model of collective dynamics

which include leaders, followers and an unknown (to the followers) reference

trajectory for the leaders.

• Derivation of two coupled MF LQG systems for the leaders and the follow-

ers, and proof of existence and uniqueness of their solutions.
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• Development of a likelihood ratio based adaptation scheme for the adaptive

followers (to identify reference trajectory of the leaders), and the proof of

its convergence.

• Proof of the ε-Nash equilibrium property of the (estimation based) adaptive

MF control laws for the followers and the MF control laws for the leaders.

Chapter 6

• Formulation of a large population dynamic game with nonlinear stochastic

dynamical systems involving agents of the following mixed types: (i) a

major agent, and (ii) a large population of minor agents.

• Establishment of a mean field convergence theorem for the major and minor

MFG problem.

• Derivation of a major-minor stochastic mean field (MM SMF) system by

using the theory of backward stochastic differential equations (BSDE). The

MM SMF system consists of: (i) two stochastic Hamilton-Jacobi-Bellman

(SHJB) equations, and (ii) two stochastic McKean-Vlasov (SMV) equations

or stochastic Fokker-Planck-Kolmogorov (SFPK) equations.

• Proof of existence and uniqueness of solution to the MM SMF system by a

Banach fixed point argument with random coefficients in the Wasserstein

space of stochastic probability measures.

• Retrieval of the MM SMF LQG equations.

• Proof of the ε-Nash equilibrium (with respect the full information admissible

control sets) of the SMF best response control processes for the overall MM

SMF system.

N.B. Almost all of the work above appears in articles which have been published

or are currently under review and revision for publication; see pages ix-xii.
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Contribution of Co-authors

The work reported in this thesis has been conducted almost entirely by the doc-

toral candidate. To be more specific, the contribution of each co-author is as follows:

• The doctoral candidate conducted the research reported in Chapter 2 to

Chapter 6 and wrote the corresponding manuscripts.

• Professor Peter E. Caines provided advice and comments on the research

reported in Chapter 2 to Chapter 6, and helped in editing the corresponding

manuscripts. His contributions amounted to 10% in Chapters 2 and 5, 15%

in Chapters 3 and 4, and 25% in Chapter 6.

• Professor Roland P. Malhamé provided advice and comments on the re-

search reported in Chapter 2 to Chapter 5 and helped in editing the corre-

sponding manuscripts. His contributions amounted to 10% in Chapters 2

and 5, and 15% in Chapters 3 and 4.

• Professor Minyi Huang provided advice and comments on the research re-

ported in Chapters 2 and Chapter 5, and helped in editing the correspond-

ing manuscripts. His contributions amounted to 10% of those papers.
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tion of consensus algorithm dynamics from mean field stochastic control

NCE equations,” In the 1st IFAC Workshop on Distributed Estimation and

Control of Networked Systems (NecSys), Venice, Italy, Sep. 2009, pp. 13-18.

xi



CURRICULUM VITAE

Talks at Meetings with Abstract Volumes

• [127] M. Nourian and P. E. Caines, “ε-Nash mean field theory for nonlinear

stochastic dynamic games with major-minor agents,” Presented at the 20th

International Symposium on Mathematical Theory of Networks and Systems

(MTNS), Melbourne, Australia, Jul. 2012.

• M. Nourian, P. E. Caines and R. P. Malhamé, “A continuum mean field
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Başar (UIUC), Serdar Yüksel (Queen’s), Aditya Mahajan and Michael Rabbat, for

the very helpful comments and suggestions.

I thank my lovely friend Sajedeh Mahdavi for sharing with me the fun life of

Montreal and for always making me smile. My special thanks also go to her and

Peter for translating the abstract of the thesis into French. Many thanks go to

my colleagues Farzin Taringoo, Arman C. Kizilkale, Arthur Lazarte, Vahid Raissi

Dehkourdi, Rahi Modirnia, Huan Xu, Dmitry Gromov and Peng Jia.

I am grateful for the financial support throughout my Ph.D. studies provided by

NSERC discovery research grant and GERAD doctoral student’s aid complement. I

also thank the organizers and sponsors of the Mean Field Games Workshop (May

2011, Rome, Italy), SADCO Summer School on Optimal Control (September 2011,

London, UK) and From Mean Field Control to Weak KAM Dynamics Workshop

(May 2012, Coventry, UK) for their support.

On a special note, I am very grateful to Professors Mehdi Dehghan, Mohammad

Bagher Menhaj and Ali D. Mohammadi, and to Ms. Tahere Seyedena for their

invaluable support during my study at Amirkabir University of Technology.

Special thanks to my old friends Mohamadreza Hosseini, Sajjad Lakzian and

Amin Sakzad for their help and encouragement in starting my Ph.D. at McGill. I

also thank Mohammad Reza Navabi for introducing me to the interesting area of

Systems and Control Theory.

Last but not least, I would like to thank my parents for all their endless love,

support and patience. Thanks to them for always encouraging and inspiring me to

pursue my education. I also thank my amazing brothers, Morteza and Ali Akbar,

and my sweet sisters, Mojgan and Mahnaz, and their adorable children for all the

love. I am truly blessed to have such a wonderful family.

Mojtaba Nourian

McGill University, Montréal, Quebéc
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CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

This thesis investigates control and optimization of large-scale stochastic dynami-

cal systems involving multiple agents. Multi-agent control and coordination prob-

lems arise in a wide range of areas including telecommunications [9], wireless sensor

networks [41], power control in wireless communication systems [7], renewable en-

ergy systems [94], vehicle formations [58, 147, 156], competing or cooperating mo-

bile robots [35, 108], flocking and swarming [46, 110, 163], micro-economics and

finance [100,112]. The complexity in the form of uncertainty and complicated inter-

action and communication among agents of such large population stochastic dynam-

ical systems make centralized control infeasible. Therefore an important issue is the

development of decentralized solutions so that each individual agent may implement

a strategy based on its local information together with statistical information on the

population of agents.

An important class of large-scale stochastic dynamical systems is that of dynamic

games with a large number of minor agents in which each agent interacts with the

average or so-called mean field effect of other agents via couplings in their individual

dynamics and cost functions. A minor agent has a negligible influence on the overall

system while the overall population of minor agents has a significant effect on any

such agent.
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It is worth pointing out that the very early interest in games with a large num-

ber of agents is in the book of Von Neumann and Morgenstern [170]: “When the

number of participants becomes really great, some hope emerges that the influence

of every particular participant will become negligible, and that the above difficulties

may recede and a more conventional theory becomes possible.” Among the many

papers on such large population game theoretic models we first mention [13] which

presents a general equilibrium featuring a continuum of agents. Since then there has

accumulated a vast literature on such game models (see [38, 89] and the references

therein).

Large population models with game theory features arise in fields such as wireless

network resource allocation [7, 8, 74], renewable energy [118], biology [150, 167],

advertising competition [57], public health [16, 24], economics [100] and sociology

[26]. The reader is referred to [15] for the theory and applications of noncooperative

dynamic (differential) games with finite number of agents.

Since 2003, for large population stochastic dynamic games with mean field (MF)

couplings, the Mean Field Games (MFG) (or Nash certainty equivalence (NCE))

theory has been developed as a decentralized methodology in a series of papers by

Huang together with Caines and Malhamé, see [76, 79] for the mean field linear-

quadratic-Gaussian (MF LQG) framework, and [31,78,85] for a general formulation

of nonlinear McKean-Vlasov type MF stochastic control problems.

For dynamic games with mean field interactions in cost functions a closely related

approach has been independently developed by Lasry and Lions [101–103] (see also

[36,66]) where the term mean field games was initially used. For models of many firm

industry dynamics, Weintraub et. al. proposed the notion of oblivious equilibrium

(OE) to approximate a Markov perfect equilibrium (MPE) of a dynamic game with

a large number of agents [174,175]. In an OE, each individual agent is oblivious to

the state of the overall system and makes its decision based only on its own state

variable together with a consistently defined mean field. The OE for large population

stochastic games with unbounded cost functions are analyzed in [5].
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The central idea of the MFG methodology is to establish the existence of an

equilibrium relationship between the individual strategies and the mass effect (i.e.,

the overall effect of the population on a given agent) as the population size goes to

infinity [79]. Specifically, in the equilibrium: (i) the individual strategy of each agent

is a best response to the infinite population mass effect in the sense of a so-called ε-

Nash equilibrium, and (ii) the set of strategies collectively replicates the mass effect,

this being a dynamical game theoretic fixed point property. The defining property of

the MFG equilibrium with individual strategies {uoi : 1 ≤ i ≤ N} requires that for

any given ε > 0, there exists N(ε) such that for any population size N(ε) ≤ N , when

any agent j, 1 ≤ j ≤ N , distinct from i employs uoj , then agent i can benefit at most

ε by unilaterally deviating from his strategy uoi , and this holds for all 1 ≤ i ≤ N .

The MFG feedback strategies display the possibly counterintuitive nature of MFG

control which is that in the infinite population limit, except for some statistical infor-

mation on the parameter distribution and the initial mean state distribution of the

population of agents, no observations of other agents’ states are necessary to achieve

Nash equilibrium behaviour and this property persists with negligible incremental

cost for sufficiently large finite populations.

In [106], the MF LQG framework is extended to systems of agents with Long

Time Average (LTA) (i.e., ergodic) cost functions such that the set of control laws

possesses an almost sure (a.s.) asymptotic Nash equilibrium property, while in [82],

the interaction consistency based approach was applied to models where the agents

are cooperative and seek socially optimal decisions, and asymptotic decentralized

social optimum strategies are obtained. The stochastic adaptive control of MF LQG

models with LTA cost functions is studied in [90, 92] where the agents estimate

their own dynamical parameters, and the population’s dynamical and cost function

distribution parameters. The MF LQG framework is extended to the case of agents

with localized interactions in their cost functions [80,83] (see [104] for some numerical

simulations). Kolokoltsov et. al. [97] extended the MFG theory to general nonlinear

Markov systems as formulated in the monograph [95].
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In contrast to [76,79] with only minor agents, Huang [75] extended the idea of

mean field to LQG dynamic games with agents of the following mixed types: (i) a

major agent, and (ii) a large population of minor agents. The major agent has a

significant influence on minor agents while each minor agent has a negligible impact

on other agents in a large population system (see [75,124]).

Other research in this area include mean field Markov decision team problem with

discrete state and action spaces [165], discrete time and finite state space MFG [61],

numerical solutions of MFG systems [3, 4], linear-quadratic (LQ) MFG [14], risk-

sensitive MFG [166], long time average analysis of MFG [37], MF LQG control with

egoistic and altruistic agents [81, 91], MF LQG models with random parameters

[171, 172], and two player zero-sum games with binary MF interactions [96]. The

reader is referred to the survey paper [28] for some works on MFG theory up to 2011.

In a different framework, a stochastic maximum principle for control problems of

mean field type is studied in [10] where the state process is governed by a stochastic

differential equation (SDE) in which the coefficients depend on the law of the SDE.

In the model of [10], the control action of each agent has significant impact on the

mean field, in contrast, an individual agent in the system has little impact on the

mean field. The reader is referred to [29, 30] for the analysis of forward–backward

stochastic differential equations (FBSDEs) of mean field type and their related partial

differential equations (PDEs).

The MFG methodology has been applied to wireless power control [76, 164],

coupled nonlinear oscillators subject to random disturbances [177], particle filtering

[176], crowd dynamics [49], large population electric vehicles [116] and some models

in economics [6,65,175].

This thesis is presented in three main parts. The first part consists of applications

of the MFG methodology to large population consensus and flocking behaviour. The

second part is focused on the extension of the MF LQG framework so as to model the

collective system dynamics which include large population of leaders and followers,

and an unknown (to the followers) reference trajectory for the leaders. The final
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part extends the major and minor MF LQG theory to MFG models with nonlinear

stochastic dynamical systems of controlled McKean-Vlasov type.

1.1. Structure of The Thesis

The thesis is organized as follows:

Chapter 2. Nash, Social and Centralized Solutions to Mean Field Con-

sensus Problems. A consensus process is a process for dynamically achieving (by

continuous state feedback) an agreement between the members of a group of agents

on some common state property such as position, velocity or information. The formu-

lation of consensus systems is one of the important issues in the area of multi-agent

control and coordination.

Among many papers on the consensus problems in the systems and control area

we first mention here [88,120,142,152,168] and comprehensive surveys [60,141,154]

of works up to 2011. Consensus algorithms with noisy measurement or random net-

work connectivity have been addressed in [84, 86, 87, 107, 148] among others. The

key element of all of these consensus algorithms, which we shall refer to as stan-

dard consensus (SC) algorithms, is the use of local feedback by local communication

(subject to the network topology) between agents to reach an agreement.

In the standard consensus literature the overall population’s initial state con-

tributes to the steady-state (equilibrium) behaviour of the system. This is mainly

due to situations in many practical applications where the goal is reaching agreement

on some value based on the system’s initial state (see for example [60,154] and the

references therein).

However, the connectivity of the network structure needed for the above SC mod-

els (even for the less demanding “frequently connected” hypotheses) may not hold.

Moreover, the SC algorithms require communication with other agents in the system

and for large N this leads to high communication and computational complexity.
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In this chapter the initial mean consensus behaviour of a set of agents is synthe-

sized from the fundamental optimization principles of (i) stochastic dynamic games,

and (ii) optimal control rather than to analyze the behaviour resulting from ad-hoc

feedback laws.

In the stochastic dynamic game formulation each agent seeks to minimize its

individual quadratic discounted or LTA cost function involving the mean of the states

of all other agents [134, 136, 138]. The limiting infinite population MF system is

derived and its unique solution is explicitly computed [136,138]. The resulting MF

control strategies steer each agent’s state toward the initial state population mean,

and by applying these decentralized strategies, the system reaches mean-consensus

asymptotically as time and population size go to infinity. Furthermore, these control

laws possess an εN -Nash equilibrium property where εN goes to zero as the population

size N goes to infinity [136, 138]. The analysis is extended to the case of random

mean field couplings [138].

In the social cooperative formulation the basic objective is to minimize a social

cost as the sum of the individual cost functions containing mean field couplings [82].

In this formulation it is shown that for any individual agent the decentralized mean

field social (MF Social) control strategy is the same as the mean field Nash (MF

Nash) equilibrium strategy [138]. Hence,

MF-Nash Controls U∞Nash = MF-Social Controls U∞Soc.

On the other hand, the solution to the centralized linear-quadratic-regulator (LQR)

optimal control formulation yields the Standard Consensus (SC) algorithm when-

ever the graph representing the corresponding topology of the network is Completely

Connected (CC) [138]. Hence,

Cen. LQR Controls UNCen = SC-CC Controls UNSC.

Moreover, a system with centralized control laws reaches consensus on the initial

state distribution mean as time and population size N go to infinity [138]. Hence,
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asymptotically in time,

MF-Nash Controls U∞Nash = MF-Social Controls U∞Soc

= Cen. LQR Controls U∞Cen = SC-CC Controls U∞SC.

It is important to note that in the MF consensus models, similar to the SC

algorithms, the overall population’s initial state contributes to the steady-state (equi-

librium) behaviour of the system such that the (time) expectation of the system’s

steady-state solution is the overall population’s initial state distribution mean. This

is in contrast to situations for many MF solutions, such as the ones in [79,82], where

any initial data information is destroyed as the processes evolve since the overall

population’s initial state does not affect the steady-state behaviour of the system.

This is because of the nature of the cost-couplings between individual agents and the

external mass of agents.

In the MF consensus models: (i) each agent has a priori information on the initial

state distribution mean of the overall population, (ii) the system of agents achieves

mean-consensus without requiring communication with other agents. Whereas in the

SC algorithms: (i) agents need no a priori information on the initial state distribution

of the overall population but require local communication with other agents, (ii)

consensus can be achieved if the union of the interaction graphs for the system is

connected frequently enough as the system evolves.

The SC algorithms require communication with other agents in the system and

for large N this leads to high communication and computational complexity. On

the other hand, the decentralized MF control laws do not require even local com-

munication but need a priori information on the mean of the system’s initial state

distribution. In the context of centralized LQ models with finite populations, a trade-

off between the use of a priori statistical information on a system’s initial distribution

and communication among its agents has been formulated and analyzed in [157].

The extension of the uniform weight cost-coupling MF consensus model to the

case of agents with non-uniform mean field cost-couplings which corresponds to a

7
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heterogeneous system with homogeneous sub-populations. is also investigated (see

[80, 83] for the localized MF LQG models). In the localized model with connected

topology specified by the cost-coupling weight matrix, the unique stationary equilib-

rium yields consensus in the weighted average of initial states (which depends on the

left eigenvector of the weight matrix corresponding to the unique eigenvalue 1). Let

the system cost-coupling weight matrix correspond to an adjacency matrix of a graph

with more than one connected component, then each associated sub-population can

only converge to the initial distribution mean of its connected component. Corre-

spondingly, in the deterministic SC problem, one of the key hypotheses which is used

to establish the convergence to consensus is that the system graph is connected.

Chapter 3. A Continuum Approach to Mean Field Game Consen-

sus Problems: A Non-Gaussian Behaviour. This work presents a continuum

approach to a non-Gaussian initial mean consensus problem via MF nonlinear sto-

chastic control theory developed in [78, 85, 177]. In this problem formulation: (i)

each agent has simple stochastic dynamics with inputs directly controlling its state’s

rate of change, and (ii) each agent seeks to minimize by continuous state feedback its

individual discounted or LTA cost functions involving the mean of the states of all

other agents.

Unlike [136, 138], the initial states for all the agents of the model are not nec-

essarily assumed to be distributed according to a Gaussian distribution, and so the

MF LQG framework of [136,138] cannot be employed. Consequently, for the infinite

population limit a general continuum (i.e., PDE) formulation is required.

The resulting continuum based MF system of the consensus model consists of two

coupled deterministic equations: (i) a nonlinear (backward in time) Hamilton-Jacobi-

Bellman (HJB), and (ii) a nonlinear (forward in time) Fokker-Planck-Kolmogorov

(FPK), which are also coupled to a (spatially averaged) cost coupling function ap-

proximating the aggregate effect of the agents in the infinite population limit.

8
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The stationary solutions of the MF system is explicitly given and its linear sta-

bility (base on the approach of [64]) and nonlinear stability are analyzed [129]. In

a finite population system (analogous to the MF LQG framework): (i) the resulting

decentralized MF control strategies possess an εN -Nash equilibrium property where

εN goes to zero as the population size N approaches infinity, and (ii) these MF control

strategies steer each individual’s state toward the initial state population mean which

is reached asymptotically as time goes to infinity. Hence, the system with decentral-

ized MF control strategies reaches mean-consensus on the initial state population

mean asymptotically as time and population size go to infinity [129,133].

In the case of agents with LTA cost functions the solution of the HJB equation

is the relative value function which represents perturbations around the steady-state

optimal cost rate with respect to an asymptotically stationary process. It turns

out that this HJB equation in the MF system of equations has a larger class of

stable perturbed solutions in forward time than in backward time [64]. Therefore,

an Evolution (i.e., forward in time) Mean Field (EMF) system of consensus model is

studied where the initial states for all the agents are not necessarily assumed to be

distributed according to a Gaussian distribution [131].

The EMF system consists of two coupled (forward in time) deterministic PDEs

which are also coupled to the cost coupling function. The forward in time mean field

process has previously appeared in the study of MFG models in [4,64].

Chapter 4. Synthesis of Mean Field Controlled Cucker-Smale Type

Flocking: A Maxwellian Distribution. Collective motion such as the flocking

of birds, schooling of fish and swarming of bacteria is one of the most widespread

phenomenon in nature. The study of collective motion in nature is of interest not

only to model and analyze these widespread phenomena but also because ideas from

these behaviours can be used by engineers to develop efficient algorithms for a wide

range of applications.
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A group of agents has a flocking behaviour if: (i) agents’ velocities reach consensus

on a common value (e.g., mean of initial velocities), and (ii) the distance between

agents remains bounded.

There are two main classes of models for the flocking behaviour: (i) individual

based models in the form of coupled Ordinary (Stochastic) Differential Equations

(O(S)DEs) (see for instance [46,169]) where in these algorithms a key element is the

use of local feedback involving local communication (subject to the network topology)

between agents so as to reach an agreement, and (ii) continuum models in the form

of Partial (or integro-partial) Differential Equations (PDEs) to model the collective

motion in the case of systems with large (infinite) populations (see [40,68,167] among

many other papers). The continuum models can be derived from the individual

based models in the large population limit by use of the kinetic theory of gases,

hydrodynamic and mean field theory (see for instance [40]).

Cucker and Smale formulated an interesting individual based flocking model for

a group of agents [46]. This model is motivated by the collective motion of a group

of birds such that each bird updates its velocity as a weighted velocities of all the

other birds. The weights in this model are functions of the relative distance of the

birds such that as the mutual distance between two birds increases the influence of

their velocities on each other decreases.

This work is concerned with the synthesis of a controlled flocking model via MFG

theory [130,132]. In this problem formulation the state of each agent consists of both

its position and its controlled velocity such that: (i) all agents have similar stochastic

dynamics, and (ii) each agent seeks to minimize by continuous state feedback its

individual discounted cost functions involving a nonlinear (relative distance based)

weighted mean of the velocity states of all other agents. The cost functions are based

on the normalized Cucker-Smale (CS) flocking algorithm in its original uncontrolled

formulation.
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For this dynamic game problem, the MF system of equations which consists of

coupled deterministic HJB and FPK equations is derived approximating the stochas-

tic system of agents as the population size goes to infinity. Subject to the existence of

a unique solution to the MF system of equations: (i) the stationary solution of the MF

system of equations is a Maxwellian distribution function, (ii) the set of MF control

laws for the system possesses an εN -Nash equilibrium property where εN goes to zero

as the population size N approaches infinity. Hence, this model may be regarded as

a controlled game theoretic formulation of a flocking behaviour in which each agent,

instead of responding to an ad-hoc algorithm, obtains its control law from a game

theoretic Nash equilibrium [130,132].

Chapter 5. Mean Field LQG Control in Leader-Follower Stochastic

Multi-Agent Systems: Likelihood Ratio Based Adaptation. In this work a

LQG dynamic game based model of collective dynamics is developed which include

leaders, followers and a reference trajectory for the leaders [137]. There are many

applications of this model in flocking [63], formation control [109], economics and

finance [2], and social opinion models with a large number of leaders (e.g., important

members of a party) and followers [53] (see [137]).

The cost of each leader is based on a trade-off between moving toward a certain

reference trajectory which is unknown to the followers and staying near their own

centroid. On the other hand, followers react by tracking a convex combination of

their own centroid and the centroid of the leaders. The MF system characterizing the

Nash equilibrium for infinite population systems are derived, and under appropriate

conditions, they have a unique solution leading to decentralized control laws. Further-

more, for large but finite population systems, such controls are shown to correspond

to so-called ε-Nash equilibria.

The computation of the followers’ control laws requires knowledge of the complete

reference trajectory which is in general not known to the followers but is estimated by

a likelihood ratio based adaptation scheme based on noisy observations taken by the
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followers on a random sample of leaders. Under appropriate identifiability conditions,

it is established that this identification scheme is able to select the exact reference

trajectory model within a finite class of candidates in a finite deterministic time

almost surely as the number of samples goes to infinity. As a result, the (estimation

based) adaptive MF control laws of the followers together with the MF control laws of

the leaders give rise to a dynamic stochastic Nash equilibrium for the overall leader-

follower system [137].

It is worth pointing out that a non-adaptive but general model with weighted

couplings in the leaders and followers’ cost functions (which depended on the locality

parameters of the agents) is developed in [140] which also presents the main adapta-

tion result of the uniform cost coupling model in the case that the followers “only”

track the centroid of the leaders. Subsequently, in [139] the optimality property of

the (tracking like) adaptive followers’ MF control laws is studied. A complete analysis

of a more general (and realistic) scenario where the followers are tracking a convex

combination of their own centroid and the centroid of the leaders is presented in [137]

where an ε-Nash equilibrium is achieved for the adaptive followers’ MF control laws.

The leader-follower model of [137] is extended to the case of non-adaptive agents

with nonlinear Cucker-Smale type cost coupling functions in [135].

Chapter 6. Mean Field Game Theory for Nonlinear Stochastic Dy-

namical Systems with Major and Minor Agents. This work is concerned with

a large population stochastic dynamic game involving nonlinear stochastic dynamical

systems involving agents of the following mixed types: (i) a major agent, and (ii) a

large population of minor agents [126,128]. The major and minor agents are coupled

via both: (i) their individual nonlinear stochastic dynamics, and (ii) their individual

finite time horizon nonlinear cost functions. This model extends the MF LQG model

for major and minor agents [75, 124] to the case of nonlinear stochastic dynamic

games formulation of controlled McKean-Vlasov type [85].

12



1.1.1 STRUCTURE OF THE THESIS

Applications of the major and minor formulation may be found in charging control

of plug-in electric vehicles [117,178], social opinion models [53] with a finite number

of leaders, and power markets involving large consumers and large utilities together

with many domestic consumers represented by smart meter agents and possibly large

numbers of renewable energy based generators [93].

A distinctive feature of the mixed agent MFG problem is that even asymptotically

(as the population size N approaches infinity) the noise process of the major agent

causes random fluctuation of the mean field behaviour of the minor agents [75,124].

To deal with this, the overall asymptotic (N → ∞) mean field game problem is de-

composed into: (i) two non-standard Stochastic Optimal Control Problems (SOCPs)

with random coefficient processes which yield forward adapted stochastic best re-

sponse control processes determined from the solution of (backward in time) stochas-

tic Hamilton-Jacobi-Bellman (SHJB) equations, and (ii) two stochastic (coefficient)

McKean-Vlasov (SMV) equations which characterize the state of the major agent and

the measure determining the mean field behaviour of the minor agents. (i) and (ii)

are coupled in the following way: the forward adapted stochastic best response con-

trol processes in (i) involve the state of the major agent and the distribution measure

corresponding to the mean field behaviour of the minor agents in (ii) where these in

turn depend upon the best response control processes themselves.

Existence and uniqueness of the solution to the Stochastic Mean Field (SMF)

system (SHJB and SMV equations) is established by a fixed point argument in the

Wasserstein space of random probability measures [126]. In the case that minor

agents are coupled to the major agent only through their cost functions, the εN -Nash

equilibrium property of the SMF best response control possess is shown for a finite

N population system where εN = O(1/
√
N) [126].

As a particular but important case, the results of Nguyen and Huang [124] for

MM SMF LQG systems with homogeneous population are retrieved. In addition, the

results of this chapter are illustrated with a major and minor agent version of a game

model of the synchronization of coupled nonlinear oscillators [126].
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Chapter 7. Conclusion and Future Research. This chapter contains some

concluding remarks and some future research directions.
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CHAPTER 2. MEAN FIELD CONSENSUS PROBLEMS

CHAPTER 2

Nash, Social and Centralized Solutions to

Mean Field Consensus Problems

The purpose of this chapter is to synthesize initial mean consensus behaviour of a

set of agents from the fundamental optimization principles of (i) stochastic dynamic

games, and (ii) optimal control. In the stochastic dynamic game model each agent

seeks to minimize its individual quadratic discounted cost function involving the mean

of the states of all other agents. In this formulation we derive the limiting infinite

population mean field system and explicitly compute its unique solution. The re-

sulting Mean Field (MF) control strategies steer each individual’s state toward the

initial state population mean which is reached asymptotically as time goes to in-

finity, thus achieving mean consensus. Furthermore, these control laws possess an

εN -Nash equilibrium property where εN goes to zero as the population size N goes

to infinity. Furthermore, the analysis is extended to the cases of: (i) random mean

field cost-couplings, and (ii) agents with non-uniform mean field cost-couplings which

corresponds to a heterogeneous system with homogeneous sub-populations.

In the social cooperative formulation the basic objective is to minimize a social

cost as the sum of the individual cost functions containing mean field coupling. In

this formulation we show that for any individual agent the decentralized mean field

social (MF Social) control strategy is the same as the mean field Nash (MF Nash)
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equilibrium strategy. Hence,

MF-Nash Controls U∞Nash = MF-Social Controls U∞Soc.

On the other hand, the solution to the centralized LQR optimal control formulation

yields the Standard Consensus (SC) algorithm whenever the graph representing the

corresponding topology of the network is Completely Connected (CC). Hence,

Cent. LQR Controls UN
Cent = SC-CC Controls UN

SC.

Moreover, a system with centralized control laws reaches consensus on the initial state

distribution mean as time and population size N go to infinity. Hence, asymptotically

in time,

MF-Nash Controls UN
Nash = MF-Social Controls UN

Soc

= Cent. LQR Controls U∞Cent = SC-CC Controls U∞SC.

Finally, the analysis is extended to Long Time Average (LTA) (i.e., ergodic) cost

functions case.

2.1. Introduction

A consensus process is the process of dynamically reaching an agreement between

the agents of a group on some common state properties such as position or velocity.

The formulation of consensus systems is one of the important issues in the area of

multi-agent control and coordination, and has been an active area of research in the

systems and control community over the past decade.

Among the many papers on the consensus problems in the systems and control

area we first mention here [88, 142, 152, 168] and comprehensive surveys [60, 141,

154] of works up to 2011. Consensus algorithms with noisy measurement or random

network connectivity have been addressed in [84, 86, 87, 107, 148] among others.

For consensus algorithms with noisy measurements, Huang et. al. took a stochastic

approximation approach with a decreasing step size in [86, 87]. The key element
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2.2.1 INTRODUCTION

of all of these consensus algorithms, which we shall refer to as standard consensus

(SC) algorithms, is the use of local feedback by local communication (subject to the

network topology) between agents to reach an agreement.

In the standard consensus literature the “overall population’s initial state” con-

tributes to the steady-state (equilibrium) behaviour of the system. This is mainly

due to situations in many practical applications where the goal is reaching agreement

on some value based on the system’s initial state (see for example [60,141,154] and

the references therein).

Some optimality issues in consensus problems have been addressed in the liter-

ature. The authors in [34] studied the optimal Laplacian matrix by using a linear-

quadratic-regulator (LQR) optimization approach with respect to the weights of the

network topology in continuous and discrete time while in [158] the authors designed

a semi-decentralized optimal control strategy for the standard consensus algorithms

by minimizing the individual cost of each agent. On the other hand, a game theoretic

interpretation of locally optimal nonlinear consensus algorithms as mechanism design

problems is proposed in [17] by imposing individual objective functions.

However, the connectivity of the network structure needed for the above SC mod-

els (even for the less demanding “frequently connected” hypotheses) may not hold.

Moreover, the SC algorithms require communication with other agents in the system

and for large N this leads to high communication and computational complexity.

In this chapter we develop an optimization approach to the study of “initial mean”

consensus problems. Our aim is to synthesize from the theory of optimal control the

consensus behaviour of a set of agents rather than to analyze the behaviour resulting

from ad-hoc feedback laws. This chapter includes the following three approaches to

the synthesis of initial mean consensus behaviour: (i) dynamic games, (ii) decentral-

ized optimal control, and (iii) centralized LQR optimal control theory. In all of these

problem formulations each agent in the system has simple stochastic or deterministic

dynamics with inputs directly controlling the rate of change of the agents’ states. In
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the stochastic dynamic game formulation, each agent seeks to minimize its individ-

ual quadratic discounted or Long Time Average (LTA) cost functions involving the

mean of the states of all other agents, whereas in the social cooperative formulation

the basic objective is to minimize a social cost as the sum of these individual cost

functions.

The main contributions of this chapter are as follows:

(i) In the stochastic dynamic game formulation we derive the limiting infinite popu-

lation Mean Field (MF) system and explicitly compute its unique solution. The

resulting MF control strategies steer each individual’s state toward the initial

state population mean which is reached asymptotically as time goes to infinity,

thus achieving mean-consensus. Furthermore, these control laws possess an εN -

Nash equilibrium property where εN → 0 as the population size N goes to infin-

ity. Furthermore, the analysis is extended to the cases of: (i) random mean field

cost-couplings, and (ii) agents with non-uniform mean field cost-couplings which

corresponds to a heterogeneous system with homogeneous sub-populations.

(ii) In the social stochastic formulation we show that in the infinite population

case the resulting MF system is the same as the MF game system. Hence, the

resulting MF social control strategy is the same as the MF Nash strategy, and

so

MF-Nash Controls U∞Nash = MF-Social Controls U∞Soc.

(iii) We show that the solution to the centralized LQR optimal control formulation

yields the Standard Consensus (SC) algorithm whenever the graph represent-

ing the corresponding topology of the network is Completely Connected (CC).

Hence,

Cent. LQR Controls UN
Cent = SC-CC Controls UN

SC.

(iv) In the MF set-up each agent has a priori information on the initial state distri-

bution mean of the overall population; relaxing this a priori information in the
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deterministic case gives rise to the centralized feedback of other agent states.

We show that a system with this observation feedback algorithm reaches con-

sensus on the initial state distribution mean as time and population size N go

to infinity. Hence, asymptotically in time,

MF-Nash Controls U∞Nash = MF-Social Controls U∞Soc

= Cent. LQR Controls U∞Cent = SC-CC Controls U∞SC.

(v) Finally, the analysis is extended to Long Time Average (LTA) (i.e., ergodic)

cost functions case.

In SC algorithms the topology connectivity of the system dynamics is important

whereas in MF consensus models the “a priori” information (on the initial state

distribution of the overall population) plays a critical role. More precisely, in the MF

consensus model considered in this chapter: (i) each agent has a priori information

on the initial state distribution mean of the overall population, and (ii) the system of

agents achieves mean-consensus without requiring communication with other agents.

Whereas in SC Algorithms: (i) agents need no a priori information on the initial state

distribution of the overall population but require local communication with other

agents, (ii) consensus can be achieved if the union of the interaction graphs for the

system is connected frequently enough as the system evolves (see for example [149,

153]). Moreover, the MF consensus approach allows one to compute the transient

cost of moving towards consensus.

In the context of centralized LQ models with finite populations, a trade-off be-

tween the use of a priori statistical information on a system’s initial distribution and

communication among its agents has been formulated and analyzed in [157].

In the case of dynamic game consensus formulation of localized mean field cost-

coupling weight matrix with connected topology, the unique stationary equilibrium

yields consensus in the weighted average of initial conditions which depends on the

left eigenvector of the weight matrix corresponding to the unique eigenvalue one. Let

the system cost-coupling weight matrix correspond to an adjacency matrix of a graph
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with more than one connected component, then each associated sub-population can

only converge to the initial distribution mean of its connected component.

In the MF consensus model of this chapter the (time) expectation of the system’s

steady-state solution is the overall population’s initial state distribution mean (which

we define as initial mean consensus). This is in contrast to situations for many MF

solutions, such as the ones in [79,82], where any initial data information is destroyed

as the processes evolve since the overall population’s initial state does not affect the

steady-state behaviour of the system. This is because of the nature of the cost-

couplings between individual agents and the external mass of agents.

The organization of the chapter is as follows. Section 2.2 is dedicated to the

problem formulation and terminology. Some applications of the models are presented

in Section 2.3. Section 2.4 gives preliminary results on linear optimal tracking. The

stochastic MF dynamic game consensus models are synthesized and analyzed in Sec-

tion 2.5. Section 2.6 presents the stochastic MF social optimal consensus models.

The social optimal LQR consensus models are presented in Section 2.7. The sto-

chastic MF dynamic game consensus model with (i)a random cost-coupling weight

matrix, and (ii) nonuniform localized mean field cost-couplings are presented in Sec-

tions 2.8 and 2.9, respectively. 2.10 presents sample numerical simulations of the

models. Concluding remarks are stated in Section 2.11.

2.2. Problem Formulations and Terminology

The following notation will be used in this chapter. We use the integer valued

subscript as the label for an individual agent of the population. In addition, overbar

denotes the expected value of a random variable, i.e., z̄(t) := Ez(t). The integer

N is reserved to denote the population size of the system. We use the superscripts

N and ∞ for a process (such as state, control, etc.) to indicate the dependence on

the population size N or the case of a system with infinite population, respectively.

f(N) = O(g(N)) means that there are positive constants k and M such that 0 ≤

f(N) ≤ kg(N) for all N ≥M .
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2.2.1. Stochastic Decentralized Dynamic Game Consensus. Consider

a system of N agents. The dynamics of the ith agent is given by a controlled stochastic

differential equation

dzi(t) = ui(t)dt+ σdwi(t), t ≥ 0, (2.1)

where zi(·), ui(·) ∈ R are the state and control input of agent i, respectively; σ is

a non-negative scalar; and {wi : 1 ≤ i ≤ N} denotes a sequence of independent

standard scalar Wiener processes on some filtered probability space (Ω,F , {Ft}t≥0,P)

where Ft is defined as the σ-field σ(zi(0), wi(τ) : 1 ≤ i ≤ N, τ < t). We assume

that the initial states {zi(0) : 1 ≤ i ≤ N} are measurable on F0, independent, and

independent of {wi : 1 ≤ i ≤ N}. Denote the state and the control of the overall

system, respectively, as z ≡ (z1, · · · , zN)T and u ≡ (u1, · · · , uN)T . Let u−i be defined

as (u1, · · · , ui−1, ui+1, · · · , uN).

In this problem formulation the agents are individually incentive driven and non-

cooperative such that each agent seeks to minimize its individual quadratic cost func-

tion containing a mean field coupling to the states of all other agents. More precisely,

the objective of each individual agent i, 1 ≤ i ≤ N , is to minimize its discounted cost

function given by

JNi (ui, u−i) := E

∫ ∞
0

e−ρt
((
zi(t)−

1

N − 1

N∑
j=1,j 6=i

zj(t)
)2

+ ru2
i (t)
)
dt, (2.2)

where r > 0, ρ > 0 is the discount factor, and zN−i(·) := 1
N−1

∑N
j=1,j 6=i zj(·) is called the

mean field term. To indicate the dependence of Ji on ui(·), u−i(·) and the population

size N , we write it as JNi (ui, u−i). For minimization of JNi , the admissible control set

is taken as

Ui :=
{
ui(·) : ui(t) is adapted to sigma-field σ(zj(s) : s ≤ t, 1 ≤ j ≤ N)

}
.

It is important to note that span{1N} is an unobservable subspace for the system,

where 1N is the N -dimensional vector of all ones
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In this problem we are interested in a competitive solution (u1, · · · , uN) for the

system of N agents with decentralized information within the mean field modelling.

In this scenario, each agent i, 1 ≤ i ≤ N , with dynamics (2.1) is associated with the

cost JNi defined in (2.2), and the objective is to obtain a set of ε-Nash strategies such

that each control ui is only a function of time t and local information zi.

The extensions of this model to the cases of: (i) Long Time Average (LTA)

cost functions (see [136]), (ii) random mean field cost-couplings, and (iii) nonuni-

form localized mean field cost-couplings are presented in Sections 2.5.3, 2.8 and 2.9,

respectively.

Remark 2.1. The results of this chapter can be extended to the case of agents

with cost functions (see Section 2.3):

JNi (ui, u−i) := E

∫ ∞
0

e−ρt
( 1

N − 1

N∑
j=1,j 6=i

(
zi(t)− zj(t)

)2
+ ru2

i (t)
)
dt, 1 ≤ i ≤ N.

(2.3)

2.2.2. Stochastic Decentralized Social Optimal Consensus. In this

problem formulation, within the mean field modelling, we study the case that the

agents seek social optimal decisions and are cooperative. More precisely, the objective

of the agents in the system is to minimize a social cost defined as

JNsoc(u) :=
N∑
i=1

JNi (u), (2.4)

where JNi is the individual cost for agent i, 1 ≤ i ≤ N , defined in (2.2).

In this case, it is important to note that each individual agent should take into

account both reducing its own cost and the social impact of such reductions on the

sum of the costs of all other agents. The social admissible control is given by

Usoc :=
{
u(·) : ui(t, ω) is adapted to Ft, ∀i

}
,

where ω ∈ Ω explicitly indicates the dependence of ui on the sample. Each u =

(u1, · · · , uN) ∈ Usoc may be viewed as a function of the initial state of the system
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z(0) := (z1(0), · · · , zN(0)) and Brownian motions without being related to the sys-

tem’s state process z(t). The benefit of considering Usoc is that one may find the

impact of a generic agent’s control on the social cost of the system by fixing the

controls of all other agents and perturbing that agent’s strategy (see [82]).

In this problem we are interested in a cooperative solution u = (u1, · · · , uN) ∈ Usoc

for the system of N agents with dynamics (2.1) and decentralized information to

attain the minimum of the social cost JNsoc defined in (2.4). In this decentralized

information pattern, the control of the ith agent ui is only a function of time t and

local information zi.

We discuss the extension of this model to the case of LTA cost functions in Section

2.6.1.

2.2.3. Deterministic Centralized Social Optimal Consensus. In this

problem formulation for the system of N agents with deterministic dynamics:

dzi(t) = ui(t)dt, 1 ≤ i ≤ N, t ≥ 0, (2.5)

we are interested in a social solution u(·) = (u1(·), · · · , uN(·)) with centralized infor-

mation to attain the minimum of the social cost:

JNsoc,det(u) :=
N∑
i=1

∫ ∞
0

e−ρt
((
zi(t)−

1

N − 1

N∑
j=1,j 6=i

zj(t)
)2

+ ru2
i (t)
)
dt. (2.6)

In this centralized information pattern, the feedback control of the ith agent ui is a

function of time t and the global information of the system (z1, · · · , zN). See Remark

2.8 for the extension of this model to the case of agents with LTA cost functions [136].

The reason that we do not consider the stochastic case of the centralized social

cost formulation is that the noise causes a steady drift of the agents’ states during the

centralized feedback iterations which eliminates the possibility of convergent (agree-

ment) group behaviour (see Example 1 in [86]). However, note that this case remains

implicitly stochastic since the initial states are viewed as drawn from a common

probabilistic distribution.
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2.3. Applications

The mean field consensus formulations are motivated by many social, economic,

and engineering models. Here, we provide an example of a large population mean field

consensus model in the synchronization of nonlinear coupled oscillators; the reader is

referred to Section 5.2.4 of Chapter 5 for an economic (finance) example (see [137]).

In [177] Yin et. al. formulate a nonlinear dynamic games model of synchroniza-

tion of coupled oscillators. Consider a population of N oscillators with dynamics,

dθi(t) =
(
ωi + ui(t)

)
dt+ σdwi(t), 1 ≤ i ≤ N, t ≥ 0, (2.7)

where θi(t) ∈ [0, 2π] is the phase of the ith oscillator at time t, ui(·) is the control

input, σ is a non-negative scalar, and {wi : 1 ≤ i ≤ N} denotes a sequence of

independent standard scalar Wiener processes. It is assumed that the initial states

{θi(0)} are chosen independently according to the uniform distribution on [0, 2π]. It is

assumed that at time t = 0, the N scalars {ωi} are chosen independently according to

a fixed distribution with density g by Assumption (A1) in [177]. For a homogeneous

population g is a Dirac delta function (e.g., g(ω) = δ(ω)). The objective of the ith

oscillator is to minimize its own cost criterion (see [177]).

ηNi (ui, u−i) := lim sup
T→∞

1

T

∫ T

0

(
c
(
θi; θ−i) +

1

2
ru2

i (t)
)
dt, (2.8)

where θ−i = (θj)j 6=i, r is a positive scalar, and c is the cost function:

c
(
θi; θ−i) :=

1

2N

N∑
j 6=i

sin2
(θi − θj

2

)
.

The linearization of the cost function c around the aligned state θ1 = · · · = θN gives

the LTA version (i.e., the discount factor ρ is zero) of the cost functions (2.3). Hence,

the linearized cost version of a homogeneous population (e.g., zero natural frequency

or g(ω) = δ(ω)) gives us the stochastic dynamic game consensus model with LTA

cost functions (see Subsection 2.5.3).
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There are many other similar applications of the models considered in this chapter

in flocking [46], crowd flow dynamics [49], and social opinion models with a very

large number of agents [111]. It is important to note that in all of these examples

the “initial state” of the agents contributes to the stationary equilibrium behaviour

of the system.

2.4. Preliminary Optimal Control of a Single Agent

Consider a single agent called agent i with linear stochastic dynamics

dzi(t) = ui(t)dt+ σdwi(t), t ≥ 0, (2.9)

where zi(·) ∈ R is the state; ui(·) ∈ R is the control input; wi denotes a standard

scalar Wiener process; σ is a non-negative scalar; and zi(0) is given. The initial state

zi(0) is independent of the process wi. The objective of this agent is to minimize its

discounted cost function given by

J(ui) := E

∫ ∞
0

e−ρt
((
zi(t)− φ(t)

)2
+ ru2

i (t)
)
dt, (2.10)

where φ(·) is a known bounded and continuous function, and r and ρ are positive

scalars. For minimization of J(ui), the admissible control set is taken as

Ui :=
{
ui(·) : ui(t) is adapted to sigma-field σ(zi(0), wi(s) : s ≤ t),

E

∫ ∞
0

e−ρt(z2
i + u2

i )dt <∞
}
.

The set Ui is nonempty due to controllability of (2.9).

Theorem 2.1. (Special case of Propositions 3.1-3.3 in [79]) For the optimal

control problem (2.9)-(2.10):

(a) the algebraic Riccati equation p2 + rρp − r = 0 has a unique positive solution

p = (−rρ+
√

(rρ)2 + 4r)/2,
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(b) the differential equation

ds(t)

dt
=
(
ρ+

p

r

)
s(t) + φ(t), t ≥ 0,

has a unique bounded solution: s(t) = −
∫∞
t
e(ρ+p/r)(t−τ)φ(τ)dτ for t ≥ 0,

(c) the unique optimal control law uoi := arg inf
ui∈Ui

J(ui) is given by

uoi (·) = −(1/r)
(
pzi(·) + s(·)

)
,

(d) the optimal cost value is given by

J(uoi ) ≡ inf
ui∈Ui

J(ui) = pEz2
i (0) + 2s(0)Ezi(0) + q(0),

where q is the unique bounded solution of the equation:

dq(t)

dt
= ρq +

1

r
s2
i − (φ(t))2 − σ2p.

Remark 2.2. The LTA cost version of Theorem 2.1 for LQG optimal tracking

problems may be found in [106].

2.5. Stochastic Mean Field Dynamic Game Consensus Model

In this section we consider the stochastic decentralized dynamic game consensus

model (2.1)-(2.2) (see Section 2.2.1).

Let the empirical distribution function associated with N agents be defined by

FN(x) :=
1

N

N∑
i=1

1{z̄i(0)<x},

where 1{z̄i(0)<x} = 1 if z̄i(0) < x, and 1{z̄i(0)<x} = 0 otherwise. We enunciate the

assumption:

(A2.1) We assume that (i) the initial states {zi(0) : 1 ≤ i ≤ N} are independent,

and there exists a constant k independent of N such that sup1≤i≤N E|zi(0)|2 ≤ k <∞,

and (ii) {FN : N ≥ 1} converges weakly to a probability distribution F , i.e., for any
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bounded and continuous function φ(x) on R,

lim
N→∞

∫
R
φ(x)dFN(x) =

∫
R
φ(x)dF (x).

Remark 2.3. It is important to note that if the sequence {zi(0) : 1 ≤ i ≤ N}

is generated by independent randomized observations on the Gaussian distribution F ,

then (A2.1)-(ii) holds with probability one by the Strong Law of Large Numbers or

the Glivenko-Cantelli theorem [42].

We take a representative agent and let the expected value of its initial state be

denoted by θ which takes a value from a fixed compact set Θ independent of N (this

follows from (A2.1)). The state process of this agent may be denoted by zθ and we

denote its mean trajectory by z̄θ = Ezθ.

For the design of decentralized control, our idea is to consider the population

limit and approximate zN−θ(·) := 1
N−1

∑N
j=1 zθj1{θj 6=θ} in the finite population model

by a deterministic function φ∞(·). Let p be given as in Theorem 2.1-(a). For the

infinite population with parameter distribution F (θ), we construct the following MF

game (or Nash Certainty Equivalence (NCE)) system of equations (see [79]):

ds(t)

dt
=
(
ρ+

p

r

)
s(t) + φ∞(t), (2.11)

dz̄θ(t)

dt
= −1

r

(
pz̄θ(t) + s(t)

)
, z̄θ(0) = θ given, (2.12)

φ∞(·) =

∫
Θ

z̄θ(·)dF (θ), (2.13)

where φ∞(t) denotes the average state of the agents in the population limit (i.e.,

N → ∞). In particular, φ∞(0) =
∫

Θ
z̄θ(0)dF (θ) which is the mean value of the

overall population’s initial state.

Equation system (2.11)-(2.13) prescribes a mass function φ∞(·) characterized by

the property that it is reproduced as in (2.13) as the average of all agents’ states

in the continuum of the agents whenever each individual agent optimally tracks the
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same mass φ∞(·) by application of the MF control law

u∞θ (·) = −1

r

(
pzθ(·) + s(·)

)
. (2.14)

More precisely, (2.11) is the mass offset optimal tracking equation; (2.12) is obtained

by taking expectation of the closed-loop dynamics of the generic agent θ using the

control law u∞θ (·).

By integrating (2.12) with respect to the measure dF , the system of equations

(2.11)-(2.13) yields the system

ds(t)

dt
=
(
ρ+

p

r

)
s(t) + φ∞(t), (2.15)

dφ∞(t)

dt
= −p

r
φ∞(t)− 1

r
s(t), φ∞(0) =

∫
Θ

z̄θ(0)dF (θ), (2.16)

for the couple (s(·), φ∞(·)) where φ∞ =
∫

Θ
z̄θdF (θ).

Theorem 2.2. The system (2.15)-(2.16) has a unique bounded solution:

(s(t), φ∞(t)) = (−pφ∞(0), φ∞(0)) , t ≥ 0. (2.17)

Proof. We may write the system (2.15)-(2.16) as

d

dt

 s(t)

φ∞(t)

 = A

 s(t)

φ∞(t)

 , (2.18)

where

A =

 ρ+ p/r 1

−1/r −p/r

 .

A is a singular matrix and may be brought to the diagonal form via J = P−1AP

where

J =

 0 0

0 ρ

 , P =

 −p 1

1 −p/r

 .
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Therefore, we may write the solution of (2.18) as s(t)

φ∞(t)

 = eAt

 s(0)

φ∞(0)

 = PeJtP−1

 s(0)

φ∞(0)


=

1

ρp

 −(p2/r)s(0)− pφ∞(0) + eρt (s(0) + pφ∞(0))

(p/r)s(0) + φ∞(0)− eρt(p/r) (s(0) + pφ∞(0))

 , t ≥ 0.

Hence, by using the solution of Riccati equation in Theorem 2.1-(a), the unique

bounded solution of the system (2.15)-(2.16) is given in (2.17).

Remark 2.4. (2.17) gives the unique solution of the MF system (2.15)-(2.16)

irrespective of how large the discount factor ρ is. This is not the case of the general MF

linear-quadratic-Gaussian (MF LQG) model with discounted cost functions considered

in [79] (see Proposition 4.2 in [79]). Moreover, the approach of Theorem 2.2 to the

existence and uniqueness analysis of the MF game model is in general different from

fixed point arguments developed in [79,82,106] because a related operator (e.g., (4.11)

in [79]) is no longer a contraction mapping.

Remark 2.5. The results of this section can be extended to the case of system of

agents with general uniform linear dynamics,

dzi(t) =
(
azi(t) + bui(t)

)
dt+ σdwi(t), 1 ≤ i ≤ N, t ≥ 0,

and discounted cost functions (2.10) where b 6= 0 and a is equal to the discount factor

ρ > 0. This is the only case that the solution method of Theorem 2.2 still holds, i.e.,

the mass function φ∞(t), t ≥ 0, remains constant and is equal to φ∞(0).

In a system with finite population N , the infinite population control laws in (2.14)

yield the following MF control laws:

uoi (·) :=
−1

r

(
pzi(·) + s(·)

)
=
−p
r

(
zi(·)− φ∞(0)

)
, 1 ≤ i ≤ N, (2.19)

where the infinite population mass effect φ∞(·) is equal to φ∞(0) by (2.17).
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It is important to note that the MF control law uoi (·) in (2.19) is the optimal

tracking control input for the ith agent with dynamics (2.1) and cost function (2.2)

where the mean field term zN−i(·) = 1
N−1

∑N
j=1,j 6=i zj(·) is approximated by the infinite

population mass function φ∞(·) ≡ φ∞(0); in other words, uoi (·) ∈ Ui is the unique

optimal control of the ith agent, 1 ≤ i ≤ N , with dynamics (2.1) and cost function:

J∞i (ui, φ
∞(0)) := E

∫ ∞
0

e−ρt
((
zi(t)− φ∞(0)

)2
+ ru2

i (t)
)
dt. (2.20)

Definition 2.1. Mean-consensus is said to be achieved asymptotically for a group

of N agents if limt→∞ |z̄i(t)− z̄j(t)| = 0 for any i and j, 1 ≤ i 6= j ≤ N .

By the MF control laws uoi (·), 1 ≤ i ≤ N , the state of any agent i, zi(·), follows

an Ornstein-Uhlenbeck process of negative feedback around φ∞(0):

dzi(t) = d
(
zi(t)− φ∞(0)

)
=
−p
r

(
zi(t)− φ∞(0)

)
dt+ σdwi(t),

which has the following solution:

zoi (t) = φ∞(0) + e−(p/r)t
(
zi(0)− φ∞(0)

)
+ σ

∫ t

0

e−(p/r)(t−τ)dwi(τ), t ≥ 0. (2.21)

We use this solution in the proof of the following theorem.

Theorem 2.3. By use of the MF control laws (2.19) in the dynamic game model,

(2.1)-(2.2), a mean-consensus is reached asymptotically as time goes to infinity with

individual asymptotic variance σ2r
2p

.

Proof. By (2.21) we get limt→∞ z̄
o
i (t) = φ∞(0), 1 ≤ i ≤ N , which shows that all

the agents reach mean-consensus asymptotically as time goes to infinity. The mean-

consensus value is φ∞(0). For the asymptotic individual variance, by the Itô isometry

we get

lim
t→∞

E
(
zoi (t)− φ∞(0)

)2
= σ2 lim

t→∞

∫ t

0

e−
2p(t−τ)

r dτ =
σ2r

2p
,

for any i, 1 ≤ i ≤ N .
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2.5.1. The Stability and Performance Analysis of Mean Field Control

Laws.

Theorem 2.4. (Stability of the MF control laws) Assume (A2.1) holds. Then

sup
N≥1

max
1≤i≤N

E

∫ ∞
0

e−ρt
((
zoi (s)

)2
+
(
uoi (s)

)2
)
ds <∞. (2.22)

Proof. See the appendix.

In the following theorems the infinite population mass effect, φ∞(·), approxima-

tion to the finite population closed-loop centroid of flock of agents is justified.

Theorem 2.5. (Convergence in mean-square) Under (A2.1) we have

lim
N→∞

E
( 1

N

N∑
i=1

zoi (t)− φ∞(0)
)2

= 0, ∀ t ≥ 0. (2.23)

Proof. By (2.21) for any fixed t ≥ 0 we have

1

N

N∑
i=1

zoi (t) = φ∞(0) + e−(p/r)t
( 1

N

N∑
i=1

zi(0)− φ∞(0)
)

+
σ

N

N∑
i=1

∫ t

0

e−(p/r)(t−τ)dwi(τ). (2.24)

By the independence of initial states and Wiener processes, and the Itô isometry we

get

E
( 1

N

N∑
i=1

zoi (t)− φ∞(0)
)2

= e−2(p/r)t
( 1

N

N∑
i=1

z̄i(0)− φ∞(0)
)2

+
σ2r

2pN

(
1− e−2(p/r)t

)
. (2.25)

Hence, (2.25) and (A2.1) yield (2.23).
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Theorem 2.6. Assume (A2.1) holds. Then

a) lim
N→∞

E

∫ T

0

( 1

N

N∑
i=1

zoi (t)− φ∞(0)
)2

dt = 0, 0 < T <∞, (2.26)

b) lim
N→∞

E

∫ ∞
0

e−ρt
( 1

N

N∑
i=1

zoi (t)− φ∞(0)
)2

dt = 0. (2.27)

Proof. See the appendix.

Theorem 2.7. Assume (A2.1) holds. Then

lim
N→∞

max
1≤i≤N

∣∣JNi (uoi , u
o
−i)− J∞i (uoi , φ

∞)
∣∣ = 0, (2.28)

where

J∞i (uoi , φ
∞) = p

(
z̄i(0)− φ∞(0)

)2
+
σ2p

ρ
, 1 ≤ i ≤ N.

Proof. By the Cauchy-Schwarz inequality and (2.27) we obtain (2.28). But, by

(2.17) and Theorem 2.1-(d) we get the value of J∞i (uoi , φ
∞).

2.5.2. ε-Nash Equilibrium Property of Mean Field Control Laws.

Definition 2.2. [79] Given ε > 0, the set of controls {uoi ∈ Ui : 1 ≤ i ≤ N} for

N agents generates an ε-Nash equilibrium with respect to the costs {JNi : 1 ≤ i ≤ N},

if

JNi (uoi , u
o
−i)− ε ≤ inf

ui∈Ui
JNi (ui, u

o
−i) ≤ JNi (uoi , u

o
−i), 1 ≤ i ≤ N.

For a generic agent 1 ≤ i ≤ N denote

(εNi )2 := E

∫ ∞
0

e−ρt
( 1

N − 1

N∑
j=1,j 6=i

zoj (t)− φ∞(0)
)2

dt, 1 ≤ i ≤ N, (2.29)

where zoi (·) is the closed-loop solution of the ith agent’s dynamics (2.21).

Lemma 2.1. Assume (A2.1) holds. Then limN→∞ ε
N
i = 0 for any 1 ≤ i ≤ N .
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Proof. See the appendix.

Theorem 2.8. Assume (A2.1) holds. Let εN := O(max1≤i≤N ε
N
i ), then the set

of MF control laws {uoi ∈ Ui : 1 ≤ i ≤ N} in (2.19) generates an εN -Nash equilibrium,

i.e., for any fixed i, 1 ≤ i ≤ N , we have

JNi (uoi , u
o
−i)− εN ≤ inf

ui∈Ui
JNi (ui, u

o
−i) ≤ JNi (uoi , u

o
−i) (2.30)

where limN→∞ εN = 0.

Proof. The right inequality is trivial. To establish the left inequality, we see that

for a fixed i, 1 ≤ i ≤ N , we have

JNi (uoi , u
o
−i)

= E

∫ ∞
0

e−ρt
((
zoi (t)−

1

N − 1

N∑
j 6=i

zoj (t)
)2

+ r
(
uoi (t)

)2
)
dt (2.31)

≤ E

∫ ∞
0

e−ρt
((
zoi (t)− φ∞(0)

)2
+ r
(
uoi (t)

)2
)
dt

+ E

∫ ∞
0

e−ρt
( 1

N − 1

N∑
j 6=i

zoj (t)− φ∞(0)
)2

dt

+ 2E

∫ ∞
0

e−ρt
(
zoi (t)− φ∞(0)

)(
φ∞(0)− 1

N − 1

N∑
j 6=i

zoj (t)
)
dt

=: J∞i
(
uoi , φ

∞(0)
)

+ IN1 + IN2 (2.32)

where J∞i is defined in (2.20). We have IN1 = (εNi )2 where εNi is defined in (2.29). By

the Cauchy-Schwarz inequality we have |IN2 | ≤ 2
√
kεNi where

k = max
1≤i≤N

E

∫ ∞
0

e−ρt
(
zoi (t)− φ∞(0)

)2

ds <∞

is independent of N by (2.22). Therefore,

IN1 + IN2 = O(εNi ). (2.33)
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But, uoi (·) is the optimal tracking control with respect to the cost J∞i (ui, φ
∞(0)) (i.e.,

uoi (·) = arg infui∈Ui J
∞
i

(
ui, φ

∞(0)
)
), by the construction of the MF system (2.11)-

(2.13). A similar argument yields (see Theorem 5.6 in [79])

J∞i
(
uoi , φ

∞(0)
)
≤ inf

ui∈Ui
J∞i (ui, φ

∞(0))

≤ inf
ui∈Ui

JNi (ui, u
o
−i) +O(εNi ). (2.34)

Hence, (2.32), (2.33) and (2.34) yield

JNi (uoi , u
o
−i) ≤ J∞i

(
uoi , φ

∞(0)
)

+O(εNi )

≤ inf
ui∈Ui

JNi (ui, u
o
−i) + εN

where εN := O(max1≤i≤N ε
N
i ). Lemma 2.1 implies that limN→∞ εN = 0.

2.5.3. Extension to the Case of Long Time Average (LTA) Cost Func-

tions. Assume that in a system with population size N and individual dynamics

(2.1), the objective of the ith individual agent is to minimize the Long Time Average

(LTA) cost function (see our work [136]):

JNlta,i(ui, u−i) := lim sup
T→∞

1

T

∫ T

0

((
zi(t)−

1

N − 1

N∑
j=1,j 6=i

zj(t)
)2

+ ru2
i (t)
)
dt. (2.35)

Then the MF system of the dynamic game problem (2.1)-(2.35) is given by [136]:

ds(t)

dt
=

1√
r
s(t) + φ∞(t), (2.36)

dφ∞(t)

dt
= − 1√

r
φ∞(t)− 1

r
s(t), φ∞(0) =

∫
Θ

z̄θ(0)dF (θ), (2.37)

and
√
r is the positive solution of the algebraic Riccati equation p2/r − 1 = 0.

Similarly to Theorem 2.2 one can show that the system (2.36)-(2.37) has a unique

bounded solution:

(s(t), φ∞(t)) =
(
−
√
rφ∞(0), φ∞(0)

)
, t ≥ 0.
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The set of MF control laws in the discounted model (2.1)-(2.35) is:

uoi (·) :=
−1√
r

(
zi(·)− φ∞(0)

)
, 1 ≤ i ≤ N, (2.38)

which yields the closed loop solution:

zoi (t) = φ∞(0) + e
−t√
r
(
zi(0)− φ∞(0)

)
+ σ

∫ t

0

e
− (t−τ)√

r dwi(τ), t ≥ 0, (2.39)

for the ith agent.

It is clear that the system reaches mean-consensus in φ∞(0) asymptotically as

time goes to infinity (similar to Theorem 2.3) and moreover these control strategies

possess an εN -Nash equilibrium property almost surely (a.s.) where εN goes to zero

a.s. as the population size N approaches infinity (similar to Theorem 2.8) [136].

Remark 2.6. Since the LTA cost criterion is popular in applications where tran-

sients are fast and negligible (one is choosing essentially from the attainable “steady

states” solutions), the resulting optimal control is not unique and the transient be-

haviour has no effect on this cost criterion. It is important to note that the optimal

control could be made unique by avoiding time averaging in the cost, and instead

resorting to the concept of overtaking optimality (see [27]).

2.6. Stochastic Mean Field Social Optimum Consensus Model

In this section we take the Social Certainty Equivalence (SCE) approach intro-

duced in [82] to design a set of decentralized strategies for minimizing the social cost

JNsoc defined in (2.4) as the population size N approaches infinity. In this case it is

necessary for each individual agent not only to reduce its own cost but also to consider

the impact of such reductions on the sum of the costs of all other agents.

To apply a mean field approximation to this problem we take the following steps:

First, we quantify the impact of a control perturbation of a generic agent into the

social cost change of the system; Second, in a system with finite population size N

we determine a mean field coupling structure in the cost function of a generic agent

as the effect of the mass of all other agents; Finally, in the infinite population limit
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we approximate the mean field coupling by a deterministic function called the infinite

population mass effect and derive the set of mean field equations to characterize that

mass effect.

Let the social optimal control minimizing JNsoc be denoted by û :=
(
û1, · · · , ûN) ∈

Usoc. Let ẑi(·) be the corresponding closed-loop solution of the dynamics of the ith

individual agent (2.1) by applying ûi(·). Denote ẑN−i(·) := 1
N−1

∑N
j=1,j 6=i ẑj(·) and

û−i :=
(
û1, · · · , ûi−1, ûi+1, · · · , ûN

)
. Let the individual based social admissible control

set for the ith agent be

Usoc,i := {ui(·) : ui(t, ω) is adapted to Ft},

where ω ∈ Ω explicitly indicates the dependence of ui on the sample.

Lemma 2.2. [82] Let z(0) be given and û ∈ Usoc attain the minimum of JNsoc in

the admissible control set Usoc. Then ûi ∈ Usoc,i is the unique optimal control of the

control problem:

dzi(t) = ui(t)dt+ σdwi(t), t ≥ 0,

inf
ui∈Usoc,i

JNsoc(ui, û−i) ≡ inf
ui∈Usoc,i

N∑
k=1

JNk (ui, û−i), (2.40)

i.e., ûi = arg infui∈Usoc,i J
N
soc(ui, û−i).

We note that in the lemma above since JNsoc is convex in (z, u) and r > 0, the

existence and uniqueness of an optimal control û holds (see [82]).

Lemma 2.3. The optimal control ûi ∈ Usoc,i in the preceding lemma is the solution

of the control problem:

arg inf
ui∈Usoc,i

JNsoc,i(ui) := arg inf
ui∈Usoc,i

E

∫ ∞
0

e−ρt
((

1 +
1

N − 1

)(
z2
i − 2ziẑ

N
−i
)

+ ru2
i

)
dt.

(2.41)

Proof. Here we take the approach of Lemma 5 in [82]. Since û ∈ Usoc, the

process û−i has been specified in advance. Hence, û−i and subsequently ẑN−i(·) =
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1
N−1

∑N
j=1,j 6=i ẑj(·) do not change with ûi ∈ Usoc,i. We may rewrite the cost JNsoc(ui, û−i)

in (2.40) as follows. First, we have

JNi (ui, û−i) = E

∫ ∞
0

e−ρt
(
dii(t) + eii(t)

)
dt, (2.42)

where

dii := z2
i − 2ziẑ

N
−i + ru2

i , eii := (ẑN−i)
2.

Second, for 1 ≤ j 6= i ≤ N , we have

JNj (ui, û−i) = E

∫ ∞
0

e−ρt
(
dij(t) + eij(t)

)
dt, (2.43)

where

dij :=
( 1

N − 1

)2

z2
i −

2zi
N − 1

(
ẑj −

1

N − 1

N∑
k=1,k 6=i,j

ẑk

)
,

eij :=
(
ẑj −

1

N − 1

N∑
k=1,k 6=i,j

ẑk

)2

+ rû2
j .

Then using (2.42) and (2.43), and noting that eik(·), 1 ≤ k ≤ N , do not change

with ui, the optimal control problem (2.40) may be shown to be equivalent to

arg inf
ui∈Usoc,i

JNsoc(ui, û−i) ≡ arg inf
ui∈Usoc,i

N∑
k=1

JNk (ui, û−i)

= arg inf
ui∈Usoc,i

E

∫ ∞
0

e−ρt
( N∑
k=1

dik(t)
)
dt,

which is (2.41), where we observe that all functions corresponding to the arg-inf

operations above exist.

The cost (2.41) identifies a mean field coupling structure in that all other agents’

effect on the ith generic agent appears in the form of ẑN−i(·) which does not change

with ui(·). Now we may approximate ẑN−i(·) = 1
N−1

∑N
j=1,j 6=i ẑj(·) in (2.41) by a deter-

ministic bounded and continuous function φ̂∞(·) as the population size N approaches

infinity.
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The following optimal control problem may be seen as an infinite population

approximation to the problem of Lemma 2.3:

arg inf
ui∈Usoc,i

J∞soc,i(ui) := arg inf
ui∈Usoc,i

E

∫ ∞
0

e−ρt
(
z2
i (t)− 2zi(t)φ̂

∞(t) + ru2
i (t)
)
dt,

(2.44)

where φ̂∞(·) is a bounded and continuous function.

Applying the SCE approach developed in [82], we formulate the following MF

social system:

ds(t)

dt
=
(
ρ+

p

r

)
s(t) + φ̂∞(t), (2.45)

dz̄θ(t)

dt
= −1

r

(
pz̄θ(t) + s(t)

)
, z̄θ(0) = θ given, (2.46)

φ̂∞(·) =

∫
Θ

z̄θ(·)dF (θ), (2.47)

in the continuum of the agents. Equation (2.45) is the mass offset optimal tracking

equation; (2.46) is the closed-loop dynamics of the generic agent θ with the mean

field optimal control law

û∞θ (·) = −1

r

(
pzθ(·) + s(·)

)
, (2.48)

and given zθ(0); and in (2.47) φ̂∞(·) ≡ limN→∞(1/N)
∑N

i=1 ẑi(·) acts as an approxi-

mation to ẑN−θ(·).

Remark 2.7. The equation system (33)-(35) in [82] with parameters A = 0,

B = 1, R = r, Q = 1, Π = p, Γ = 1 and η = 0 also gives the MF social system

(2.11)-(2.13).

But the MF social system, (2.45)-(2.47), is the same as the MF game system

of equation, (2.11)-(2.13). This shows that the impact of each individual agent on

the cost of other agents becomes negligible as the number of agents goes to infinity.

The unique solution of equation (2.45) is s(·) = −pφ̂∞(0) and φ̂∞(·) in (2.47) equals

φ̂∞(0) = φ∞(0) based on Theorem 2.2.
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In a system with finite population N the infinite population control laws in (2.48)

yield the following MF social control laws for each individual agent i:

ûi(·) :=
−p
r

(
zi(·)− φ∞(0)

)
, 1 ≤ i ≤ N, (2.49)

which is the same as the MF Nash control law (2.19). Hence,

MF-Nash Controls U∞Nash = MF-Social Controls U∞Soc.

Applying the MF social control laws (2.49) yields the following solution:

ẑi(t) = φ∞(0) + e−(p/r)t
(
zi(0)− φ∞(0)

)
+ σ

∫ t

0

e−(p/r)(t−τ)dwi(τ), t ≥ 0, 1 ≤ i ≤ N. (2.50)

But, these solutions are the same as (2.21). Hence, a system of agents with the social

control laws (2.49) reaches mean-consensus asymptotically as time goes to infinity by

Theorem 2.3.

The infinite population mass effect approximation, φ̂∞(·), to the finite population

closed-loop centroid of flock of agents is justified in Theorems 2.5 and 2.6 and the

Lemma below.

Lemma 2.4. Assume (A2.1) holds. Then∣∣JNsoc,i(ûi)− J∞soc,i(ûi)∣∣ = O(εNi ), 1 ≤ i ≤ N, (2.51)

where JNsoc,i and J∞soc,i are respectively given in (2.41) and (2.44), and εNi is defined in

(2.29).

Proof. By the Cauchy-Schwarz inequality, (2.22) and (2.27) we obtain the desired

estimate where limN→∞ ε
N
i = 0 for any 1 ≤ i ≤ N (see Lemma 2.1).

2.6.1. Extension to the Case of Long Time Average (LTA) Cost Func-

tions. In the case of LTA cost functions, the objective of the agents with dynamics
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(2.1) is to minimize

JNlta,soc(u) :=
N∑
i=1

JNlta,i(u), (2.52)

where JNlta,i is given in (2.35). Following arguments exactly parallel to those used in

the derivation of Lemma 2.3 and equation system (2.45)-(2.47), one can show that the

MF social system for the optimal control problem (2.1)-(2.52) is the equation system

(2.36)-(2.37) for the LTA game problem. Therefore, the set of corresponding MF

social control laws is the same as the set of MF Nash control laws {uoi (·), 1 ≤ i ≤ N}

given in (2.38).

2.7. Social Optimal LQR Consensus Model

In this section we consider the social optimal control problem (2.5)-(2.6) with

centralized information (see Section 2.2.3). In a system with N agents we may write

the social cost function (2.6) as

JNsoc,det(u) ≡
∫ ∞

0

e−ρt
N∑
i=1

((
zi −

1

N − 1

N∑
j 6=i

zj
)2

+ ru2
i

)
dt

=

∫ ∞
0

e−ρt
((
LNz

)T
LNz + uTRNu

)
dt, (2.53)

where z = (z1, · · · , zN), u = (u1, · · · , uN), RN = diag(r, · · · , r) and LN = (lij)N×N

where lii = 1 and lij = −1/(N − 1) for all j 6= i, 1 ≤ i, j ≤ N . LN is a time-invariant

Laplacian matrix corresponding to a Completely Connected (CC) (i.e., clique) graph

which is symmetric and positive semi-definite with a single zero eigenvalue (see [141]).

Since LN1N = 0, span{1N} is an unobservable subspace for the system (2.5)-(2.6).

The vector form of the system dynamics (2.5) is

dz(t) = u(t)dt, t ≥ 0. (2.54)
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Let ΠN be the positive semi-definite solution of the discounted (matrix) algebraic

Riccati equation:

−ρΠN − ΠNR
−1
N ΠN + LTNLN = 0. (2.55)

Then, the unique optimal control law for the system with dynamics (2.54) and cen-

tralized LQR cost function (2.53) is given by

u∗(t) = −R−1
N ΠNz(t), t ≥ 0, (2.56)

which gives the centralized dynamics:

dz∗(t) = −R−1
N ΠNz

∗(t)dt, t ≥ 0. (2.57)

Lemma 2.5. The solution of the Riccati equation (2.55) is a positive semi-definite

matrix with a single zero eigenvalue.

Proof. Since LN1N = 0, by multiplying the right hand side of (2.55) by 1N we

get 0 ≤ ρΠN1N = −ΠNR
−1
N ΠN1N ≤ 0. This results in ΠN1N = 0 which shows that

zero is an eigenvalue of ΠN . By using an orthogonal transformation Ψ such that

ΨTLTNLNΨ = Diag(λi) from (2.55) we obtain

−ρΨTΠNΨ−ΨTΠNΨR−1ΨT
NΠNΨ + ΨTLTNLNΨ = 0.

We require the entry of ΨTΠNΨ at the first row and the first column to be zero,

corresponding to the unobservable state in the new coordinate system. Then we may

find a unique ΨTΠNΨ ≥ 0 of rank N − 1, and subsequently find ΠN ≥ 0 to (2.55).

Therefore, the matrix Π̂N is a Laplacian matrix with a single zero eigenvalue.

Theorem 2.9. The system (2.57) reaches consensus in (1/N)
∑N

i=1 zi(0) asymp-

totically as time goes to infinity.

Proof. By Theorem 1 in [141] the system reaches consensus asymptotically as time

goes to infinity. Since the network is undirected the agents reach average consensus

(AC), i.e., consensus value is (1/N)
∑N

i=1 zi(0) (see [141]).
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The above theorem implies that

Cent. LQR Controls UN
Cent = SC-CC Controls UN

SC.

It is important to note that the non-zero minimal discounted social cost with MF

controls is in general different from the non-zero minimal discounted social cost with

centralized control laws since the feedback control laws are in general different.

Remark 2.8. The results of this section can be extended to the case of agents

with LTA cost functions (see [136]). Furthermore, in the deterministic formulation

for a finite population system it can be shown that (i) the LTA cost of each individual

at the MF Nash equilibrium, (ii) the minimal LTA social cost with decentralized MF

strategies and (iii) the minimal LTA social cost with centralized information are equal

to zero. Hence, this MF consensus problem formulation provides a class of dynamic

games where social efficiency is achieved for a finite population.

2.7.1. Deterministic Mean Field Algorithm with Feedback. In a de-

terministic system (i.e., σ = 0) with population N ≥ 2 let the state of the ith agent

be

zi(t) = φ∞(0) + e−(p/r)t
(
zi(0)− φ∞(0)

)
, t ≥ 0, 1 ≤ i ≤ N, (2.58)

by the game (2.19) or MF social control laws (2.49). This is the solution of the

dynamics

dzi(t) = −p
r

(
zi(t)− φ∞(0)

)
dt, t ≥ 0, 1 ≤ i ≤ N,

where zi(0) = z̄i(0) and φ∞(0) are given to any agent i, 1 ≤ i ≤ N .

Alternatively, we assume that the agents have no a priori information on φ∞(0)

and need to estimate it based on the centralized information dynamics (2.57) by

observing the states of other agents over time. More precisely, we assume that the
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ith agent has the following feedback dynamics:

dxNi (t) = −p
r

(
xNi (t)− 1

N − 1

N∑
j=1,j 6=i

xNj (t)
)
dt, t ≥ 0, 1 ≤ i ≤ N,

where xi(0) = zi(0) is given.

Theorem 2.10. Assume (A2.1) holds. Then

a) lim
N→∞

lim
t→∞
|zi(t)− xNi (t)| = 0, (2.59)

b) lim
N→∞

lim
t→∞

xNi (t) = φ∞(0). (2.60)

Proof. a) For the ith agent, 1 ≤ i ≤ N , let yNi (·) = zi(·)− xNi (·) where yNi (0) = 0.

Then

dyNi (t) = dzi(t)− dxNi (t)

= −p
r

((
zi(t)− φ∞(0)

)
−
(
xNi (t)− 1

N − 1

N∑
j=1,j 6=i

xNj (t)
))
dt

= −p
r

(
yNi (t)− φ∞(0) +

1

N − 1

N∑
j=1,j 6=i

(
zj(t)− yNj (t)

))
dt, t ≥ 0,

which by (2.58) results in

dyNi (t) = −p
r

(
yNi (t)− 1

N − 1

N∑
j=1,j 6=i

yNj (t) +
e−(p/r)t

N − 1

N∑
j=1,j 6=i

(
zj(0)− φ∞(0)

))
dt,

which we may write in vector form as

dyN(t) = −p
r
LNy

N(t)dt+
p

r
e−(p/r)tIN δNdt, t ≥ 0, (2.61)

where IN is the identity matrix, Laplacian matrix LN is defined in (2.53), yN :=

(yN1 , · · · , yNN ), δN =
(
δN1 , · · · , δNN

)
and δNi := 1

N−1

∑N
j=1,j 6=i

(
zj(0) − φ∞(0)

)
for every
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1 ≤ i ≤ N . The solution of (2.61) is

yN(t) = −p
r

∫ t

0

e−(p/r)LN (t−τ)e−(p/r)IN τδNdτ

=
(
e−(p/r)IN t − e−(p/r)LN t

)
A−1
N δN , t ≥ 0,

where AN := IN −LN = 1
N−1

(
1N×N − IN

)
is a doubly stochastic matrix with inverse

A−1
N = 1N×N − (N − 1)IN (note that 1N×N is the N × N matrix of ones). Since

limt→∞ exp
(
− (p/r)LN t

)
= 1

N
1N×N (see [141]) we have

lim
t→∞
‖yN(t)‖ ≤ sup

1≤i≤N
|δNi |,

where limN→∞ |δNi | = 0 for any fixed 1 ≤ i ≤ N by (A2.1) and hence we obtain

(2.59).

b) (2.60) follows directly from (2.58) and (2.59).

The preceding Theorem implies that in the deterministic problem formulation

MF-Nash Controls U∞Nash = MF-Social Controls U∞Soc

= Cent. LQR Controls U∞Cent = SC-CC Controls U∞SC,

in the limit as time goes to infinity.

Remark 2.9. In general it is essential that the a priori information incorpo-

rates the population initial mean φ∞(0). If the agents have no a priori information

on φ∞(0), then they could rely on an initial finite phase to reach a (necessarily ap-

proximate) consensus. Past that phase, they could revert to relying on the obtained

approximate φ∞(0).

2.8. Game Consensus Model with Random Cost-Couplings

Consider a system of N agents with stochastic dynamics (2.1). We introduce a

random undirected weight matrix ΩN = [ω
(N)
ij ] with all zeros on the main diagonal,
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and off diagonal elements

ω
(N)
ij =

 1
q(N−1)

with probability q,

0 with probability 1− q,
(2.62)

for 1 ≤ i 6= j ≤ N , where q ∈ (0, 1). The existence of an undirected link between

agent i and agent j 6= i is determined randomly, independently of other links and

all the random processes and initial states (see the centralized LQ consensus model

of [157] with randomly switching communication graphs).

Since the weights ω
(N)
ij are independent random variables, the expected value of

the weight matrix, EΩN = ΩN , may be defined entry wise as

ω
(N)
ij =

 1
N−1

i 6= j,

0 i = j,

for 1 ≤ i, j ≤ N (see [148]). Therefore, the expected weight matrix ΩN corresponds

to a Completely Connected (CC) topology.

Let [tk, tk+1), k = 1, 2, · · · , be an infinite sequence of time intervals where t1 = 0,

tk+1 = tk+τ , where 0 < τ <∞. We assume that the weight matrix Ω(t) is constrained

to change randomly (based on (2.62)) at the transition instants tk, k = 1, 2, · · · . The

weights of the random matrix Ω(·) at each interval are completely independent of their

values on all other previous and future intervals and hence Ω(·) is an independent and

identically distributed (i.i.d.) random matrix.

The objective of the ith individual agent is to minimize the discounted cost func-

tion:

JNrand,i(ui, u−i) := E

∫ ∞
0

e−ρt
((
zi(t)−

N∑
j=1

ω
(N)
ij (t)zj(t)

)2
+ ru2

i (t)
)
dt, (2.63)

where r and ρ are positive integers. In (2.63) the term
∑N

j=1 ω
(N)
ij (·)zj(·) is called the

random mean field coupling.

By using the expected weight matrix ΩN which gives the deterministic weights

1/(N − 1) of a completely connected topology, the MF game system for the dynamic
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game problem (2.1)-(2.63) is the same as equation system (2.11)-(2.13). Therefore,

the set of MF control laws is (2.19) which results in the solution (2.21):

zoi (t) = φ∞(0) + e−(p/r)t
(
zi(0)− φ∞(0)

)
+ σ

∫ t

0

e−(p/r)(t−τ)dwi(τ), t ≥ 0.

for the ith agent (1 ≤ i ≤ N) where φ∞(0) =
∫

Θ
z̄θ(0)dF (θ) is the mean value

of the initial states. Hence, by Theorem 2.3 the system reaches mean-consensus

asymptotically as time goes to infinity.

Denote

(ηNi )2 := E

∫ ∞
0

e−ρt
( N∑
j=1

(
ω

(N)
ij (t)− ω(N)

ij

)
zoj (t)

)2

dt, 1 ≤ i ≤ N. (2.64)

Theorem 2.11. Assume (A2.1) holds. Then the set of MF control laws {uoi ∈

Ui : 1 ≤ i ≤ N} in (2.19) for the dynamic game problem (2.1)-(2.63) satisfies

JNrand,i(u
o
i , u

o
−i)−O(εNi )−O(ηNi ) ≤ inf

ui∈Ui
JNi (ui, u

o
−i), 1 ≤ i ≤ N,

where limN→∞ ε
N
i = 0 and ηNi = O

(√
1− q/

√
Nq
))

.

Proof. For a fixed i, 1 ≤ i ≤ N , we have

JNrand,i(u
o
i , u

o
−i) = E

∫ ∞
0

e−ρt
((
zoi (t)−

N∑
j=1

ω
(N)
ij (t)zoj (t)

)2
+ r
(
uoi (t)

)2
)
dt

= E

∫ ∞
0

e−ρt

((
zoi (t)−

N∑
j=1

ω
(N)
ij zoj (t) +

N∑
j=1

(
ω

(N)
ij − ω

(N)
ij (t)

)
zoj (t)

))2

+ r
(
uoi (t)

)2

)
dt

≤ E

∫ ∞
0

e−ρt
((
zoi (t)−

1

N − 1

N∑
j 6=i

zoj (t)
)2

+ r
(
uoi (t)

)2
)
dt+O(ηNi ),

= JNi (uoi , u
o
−i) +O(ηNi ), (2.65)

by the Cauchy-Schwarz inequality and (2.22), where JNi (uoi , u
o
−i) is given in (2.31)

(and hence is bounded by (2.32)) and ηNi is defined in (2.64). The inequality (2.65)
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together with (2.30) in the statement of theorem 2.8 yields in

JNrand,i(u
o) ≤ JNi (uoi , u

o
−i) +O(ηNi ) ≤ inf

ui∈Ui
JNi (ui, u

o
−i) +O(εNi ) +O(ηNi ),

where εNi is defined in (2.29) and limN→∞ ε
N
i = 0 by Lemma 2.1.

Let [ΩN(·)]i be the ith row of the random matrix ΩN(·). Then we have

(ηNi )2 = E

∫ ∞
0

e−ρt
((

[ΩN(t)]i − [ΩN ]i
)
zo(t)

)2

dt.

By the mutual independency of random weights in the matrices ΩN(·) (see (2.62))

and the fact that for fixed 1 ≤ i 6= j ≤ N ,

E
(
ω

(N)
ij − ω

(N)
ij

)2
=

1− q
q(N − 1)2

,

we get

E
(

[ΩN(t)]i − [ΩN ]i

)(
[ΩN(t)]i − [ΩN ]i

)T
=

N(1− q)
q(N − 1)2

.

Hence, by the independence of the i.i.d. random matrix ΩN(·) and the process zo(·),

we get

(ηNi )2 ≤ kN(1− q)
q(N − 1)2

,

where

k := sup
N≥1

max
1≤i≤N

E

∫ ∞
0

e−ρt
(
zoi (s)

)2
ds <∞,

is independent of N by (2.22).

2.9. Game Consensus Model with Localized Cost-Couplings

In this model there is a finite number of groups (types) of homogeneous agents

within a heterogeneous system where agents in each group assign nonuniform weights

to agents in other groups in their cost functions. This is to take into account the

possibility of locally related interactions (with possible spatial interpretation) between

groups of agents within the population (see [80,83]).
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Consider a system of N agents with stochastic dynamics (2.1). The finite set

Θ := {θ1, · · · , θK} of distinct elements is used to model K groups (types) within the

population [80,83]. The ith agent, 1 ≤ i <∞, in the system is assigned with a type

parameter li taking values from the finite set Θ which indicates the group that this

agent belongs to. Let the intra-group coupling weight matrix be

Ω :=
(
ωθiθj

)
K×K (2.66)

where ωθiθj ≥ 0 for any θi, θj ∈ Θ and
∑K

j=1 ωθiθj 6= 0 for each θi ∈ Θ. Denote

N∑
i=1

1{li=θk} = Nk, 1 ≤ k ≤ K,

then we define the weight coefficients ωNlilj , 1 ≤ i, j ≤ N , between agents as

ω
(N)
lilj

=

 1/Nk for li, lj ∈ θk,

ωθiθj/Nk′ for li ∈ θk, lj ∈ θk′ .

Let πNk = Nk/N then πN := (πN1 , · · · , πNK) is a probability vector which gives the

empirical distribution of the system of agents with type parameters l1, · · · , lN . In

a large population system, a natural way to model the sequence of type parameters

l1, · · · , lN is to view it as being truncated from an infinite sequence {li, i ≥ 1} which

exhibits certain statistical properties introduced in the following assumption (see

[75]).

(A2.2) There exists a probability vector π such that

lim
N→∞

πN = π := (π1, · · · , πK)

where min1≤k≤K πk > 0 (the probability vector π shows the relative frequency of each

of the K groups).

For each 1 ≤ i ≤ N , let

φNi (t) :=
( N∑
j=1

ω
(N)
lilj
zj(t)

)
/
( N∑
j=1

ω
(N)
lilj

)
, t ≥ 0, (2.67)

48



2.2.9 GAME CONSENSUS MODEL WITH LOCALIZED COST-COUPLINGS

be the normalized weighted mean corresponding to the ith agent with type parameter

li. The objective of the ith agent (1 ≤ i ≤ N) is to minimize its locality dependent

discounted cost function given by

JNloc,i(ui, u−i) := E

∫ ∞
0

e−ρt
((
zi(t)− φNi (t)

)2
+ ru2

i (t)
)
dt, (2.68)

where r and ρ are positive integers.

It is important to note that the model (2.1)-(2.68) is the multi-class extension of

the dynamic game consensus model (2.1)-(2.2) with only one group (type) of agents.

Let the empirical distribution functions associated with N agents in K groups be

defined by

FN
k (x) :=

1

Nk

N∑
i=1

1{li=θk:z̄i(0)<x}, 1 ≤ k ≤ K

where 1{li=θk:z̄i(0)<x} = 1 if agent i is of type k (i.e., li = θk) and z̄i(0) < x, and

1{z̄i(0)<x} = 0 otherwise. We enunciate the following assumption which is the multi-

class version of (A2.1):

(A2.3) We assume that (i) the initial states {zi(0) : 1 ≤ i ≤ N} are independent,

and there exists a constant C independent of N such that sup1≤i≤N E|zi(0)|2 ≤ C <

∞, and (ii) for each 1 ≤ k ≤ K, {FN
k : N ≥ 1} converges weakly to a Gaussian

probability distribution Fk.

We now take a representative agent of type θ ∈ Θ ≡ {θ1, · · · , θK}. The state

process of this agent may be denoted by zθ.

Let p be given as in Theorem 2.1-(a). For the infinite population we construct

the following MF game (NCE) system (see [80,83]):

dsθ(t)

dt
=
(
ρ+

p

r

)
sθ(t) + φ∞θ (t), θ ∈ Θ (2.69)

dz̄θ(t)

dt
= −p

r
z̄θ(t)−

1

r
sθ(t), z̄θ(0) (2.70)

φ∞θ (·) =
(∑
θ′∈Θ

πθ′ωθθ′ z̄θ′(·)
)
/
(∑
θ′∈Θ

πθ′ωθθ′
)

(2.71)

49



CHAPTER 2. MEAN FIELD CONSENSUS PROBLEMS

where z̄θ(0) :=
∫
R z̄(0)dFk(z̄(0)) is the mean value of the agents’ initial states of

type θ ∈ θ. System (2.69)-(2.71) is constructed such that the representative agent of

type θ ∈ Θ carries out optimal tracking of the local mass function φ∞θ (·) which, in

turn, depends on normalized locality related coupling as expressed in (2.71) in the

continuum of agents.

We note that in the construction of individual strategies:

u∞θ (t) = −1

r

(
pzθ(t) + sθ(t)

)
, t ≥ 0, θ ∈ Θ. (2.72)

each agent needs to know the weight matrix Ω, the probability vector π, and the

distribution functions Fk, 1 ≤ k ≤ K. But the agent is not required to know specic

information on a particular neighbor, such as its type or its initial state.

Let z̄ := (z̄θ1 , · · · , z̄θK )T and s := (sθ1 , · · · , sθK )T , then the system (2.69)-(2.71)

may be written in vector form as:

ds(t)

dt
=

1

p
s(t) +Wz̄(t), (2.73)

dz̄(t)

dt
= −p

r
z̄(t)− 1

r
s(t), z̄(0) given, (2.74)

where 1/p = ρ + p/r by the Riccati equation (see Theorem 2.1-(a)), and (W )ij :=

(πjωθiθj)/(
∑K

k=1 πkωθiθk) for 1 ≤ i, j ≤ K. Matrix W is a row-stochastic matrix since

all its row sums are 1.

We write the steady-state equations of the system (2.73)-(2.74) as

(1/p)s∞ +Wz̄∞ = 0, (p/r)z̄∞ + (1/r)s∞ = 0, (2.75)

where the subscript ∞ indicated the steady-state solution.

Definition 2.3. A stochastic matrix A is irreducible if its corresponding digraph

is strongly connected [119].
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Theorem 2.12. If W is irreducible then the unique stationary solution of the

system (2.73)-(2.74) is

(s∞, z̄∞) =

(
−pγ

T z̄(0)

γT1K
1K ,

γT z̄(0)

γT1K
1K

)
, (2.76)

where γT is the unique left-hand Perron vector for W . Hence, agents reach mean-

consensus on γT z̄(0)
γT 1K

1K.

Proof : The algebraic equations in (2.75) give Wz̄∞ = z̄∞ which indicates that

z̄∞ is the right eigenvector of matrix W corresponding to eigenvalue 1. Hence, we

have z̄∞ = α1N for a nonzero constant α.

Since matrix W is irreducible there exists a unique Perron vector γT such that

γTW = γT (see [119]). Multiplying equations (2.73) and (2.74) by γT yields

d(γT s(t))

dt
=

1

p
γT s(t) + γT z̄(t), (2.77)

d(γT z̄(t))

dt
= −p

r
γT z̄(t)− 1

r
γT s(t), γT z̄(0). (2.78)

Now by Theorem 2.2 the unique bounded solution of system (2.77)-(2.78) is given by(
γT s(t), γT z̄(t)

)
=
(
−pγT z̄(0), γT z̄(0)

)
, t ≥ 0.

This together with z̄∞ = α1N gives

γT z̄∞ = αγT1N = γT z̄(0)

which determines α uniquely as (γT z̄(0))/(γT1N). Hence we have z̄∞ = γT z̄(0)
γT 1K

1K and

by (2.75) s∞ = −pγ
T z̄(0)
γT 1K

1K .

Remark 2.10. The existence and uniqueness of transient solution (0 ≤ t < ∞)

to the system (2.73)-(2.74) can be shown by a contraction mapping argument similar

to Theorem 2 in [80].

The proof of the following theorem is similar to the one of Theorem 7 in [83] with

some modifications.
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Theorem 2.13. Assume (A1.2) and (A1.3) hold. Then the set of MF control

laws for the finite population system {uoi ∈ Ui : 1 ≤ i ≤ N} given in (2.72) generates

an εN -Nash equilibrium such that

JNloc,i(u
o
i , u

o
−i)−O(εN) ≤ inf

ui∈Ui
JNloc,i(ui, u

o
−i) ≤ JNloc,i(u

o
i , u

o
−i), 1 ≤ i ≤ N,

where limN→∞ ε
N = 0.

2.10. Numerical Examples

Example 2.1. Consider a system of 500 agents with the MF game consensus

closed-loop dynamics (2.21) where r = 10, ρ = 0.2 and σ = 0.05. The initial states

of the agents are taken independently from a standard normal distribution, i.e., a

Gaussian distribution with mean zero and variance one. The state trajectories of the

agents are shown in Fig. 2.1A. Fig. 2.1B illustrates the histogram of the system at

the final time t = 20. As shown in Fig. 2.1B the agents reach mean-consensus in the

population’s initial mean φ∞(0) = 0. Fig. 2.2A illustrates

(A) (B)

Figure 2.1. Example 2.1: (A) Trajectories of agents’ states when N = 500,
(B) Histogram of the system at time t = 20.

E
( 1

N

N∑
i=1

zoi (t)− φ∞(0)
)2

, 0 ≤ t ≤ 20,
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(A) (B)

Figure 2.2. Example 2.1: (A) The convergence of the population mean;
(B) Curve of εN1 with respect to N .

for population sizes N = 20, 50, 100, 200 and 500. As shown in Fig. 2.2A and based

on Theorem 2.5, this value goes to zero as the population size N approaches infinity.

The curve of εN1 with respect to N defined in (2.29) is shown in Fig. 2.2B which

approaches zero as N goes to infinity.

Example 2.2. Consider a system of 500 agents where r = 10 and ρ = 0.2. In

Fig. 2.3 the state trajectories of the deterministic system (i.e., σ = 0) are shown.

The agents in Fig. 2.3A apply the deterministic MF social control laws (2.49) and

their closed-loop dynamics are given in (2.50). The agents in Fig. 2.3B apply the

centralized control law (2.56). As it is shown in Fig. 2.3 the agents reach consensus

asymptotically as time goes to infinity in both scenarios, even though the transient

solutions of these strategies will in general be different. The social LQR cost value

JNsoc is equal to 1.1084e+003, and the social cost of the MF control laws is equal to

1.1093e+003. For the first agent J∞1 defined in (2.20) is equal to 4.2676; the first

agent’s individual costs with MF control (2.19) and centralized control (2.56) are

4.2743 and 4.2742, respectively.
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(A) (B)

Figure 2.3. Example 2.2: Trajectories of agents’ states in (A) deterministic
MF social, and (B) centralized LQR cases.

Example 2.3. Consider a system of 500 agents with localized cost-coupling dy-

namic game model (2.1)-(2.68) where r = 10, ρ = 0.2 and σ = 0.1. We assume 5

group of 100 agents within the population. Let the intra-group coupling weight matrix

and its corresponding unique left-hand Perron vector be

Ω =



0 0.2 0.4 0.3 0.1

0.1 0 0.5 0.3 0.1

0.2 0.2 0 0.1 0.5

0.15 0.15 0.2 0 0.5

0.3 0.2 0.4 0.1 0


, γT =



0.363

0.347

0.597

0.326

0.532



T

.

Since the probability vector π is (0.2, 0.2, 0.2, 0.2, 0.2) we have W = Ω which is a

row-stochastic matrix. The initial states of the agents of each group are taking inde-

pendently from Gaussian distributions with variance 0.5 and means -9, -5, 1, 6 and 10

(i.e, z̄(0) = [−9, −5, 1, 6, 10]T ). By Theorem 2.12 the agents reach mean-consensus

in α = (γT z̄(0))/(γT1N) = 1.3281. The associated MF game (NCE) system is nu-

merically solved with a time step size of 0.01. The decentralized control law is applied,

and Fig. 2.4A shows the individual trajectories on the time interval [0, 20]. Fig. 2.4B
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illustrates the histogram of the system at the final time t = 20. As shown in Fig. 2.4B

the agents reach mean-consensus in α = 1.3281.

(A) (B)

Figure 2.4. Example 2.3: (A) Trajectories of agents’ states, (B) Histogram
of the system at time t = 20.

Example 2.4. We take the values of Example 2.3. But, the intra-group coupling

weight matrix and its corresponding unique left-hand Perron vector are

Ω =



0 0.5 0 0.5 0

0 0 0.5 0.5 0

0 1 0 0 0

0 0 0 0 1

0.5 0.5 0 0 0


, γT =



0.105

0.315

0.157

0.210

0.210



T

.

The non-negative stochastic matrix Ω is irreducible. Fig. 2.5A shows the individual

trajectories on the time interval [0, 20]. Fig. 2.5B illustrates the histogram of the

system at the final time t = 20. As shown in Fig. 2.5B the agents reach mean-

consensus in α = 0.999.
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(A) (B)

Figure 2.5. Example 2.4: (A) Trajectories of agents’ states, (B) Histogram
of the system at time t = 20.

Example 2.5. We take the values of Example 2.3. But, the intra-group coupling

weight matrix is

Ω =



0 0.6 0.4 0 0

0.7 0 0.3 0 0

0.6 0.4 0 0 0

0 0 0 0 1

0 0 0 1 0


.

Ω correspond to an adjacency matrix of a graph where γT1 and γT2 are left-hand eigen-

vectors of the eigenvalue one:

γT1 =



0.677

0.584

0.446

0

0



T

, γT2 =



0

0

0

1

1



T

.

As shown in Figs. 2.6A and 2.6B each associated sub-population converges to the

initial distribution mean of its connected component.
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(A) (B)

Figure 2.6. Example 2.5: (A) Trajectories of agents’ states, (B) Histogram
of the system at time t = 20.

2.11. Chapter Summary

In the Mean Field (MF) consensus model: (i) each agent has a priori information

on the initial state distribution mean of the overall population, (ii) the system of

agents achieves mean-consensus without requiring communication with other agents.

Whereas in the Standard Consensus (SC) algorithms: (i) agents need no a priori

information on the initial state distribution of the overall population but require

local communication with other agents, (ii) consensus can be achieved if the union of

the interaction graphs for the system is connected frequently enough as the system

evolves.

The SC algorithms require communication with other agents in the system and

for large N this leads to high communication and computational complexity. On

the other hand, the decentralized MF control laws do not require even local com-

munication but need a priori information on the mean of the system’s initial state

distribution.
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The uniform weight cost-coupling MF game model is extended to the case of

agents with non-uniform mean field cost-couplings which corresponds to a heteroge-

neous system with homogeneous sub-populations. In the localized model with con-

nected topology specified by the cost-coupling weight matrix, the unique stationary

equilibrium yields consensus in the weighted average of initial states (which depends

on the left eigenvector of the weight matrix corresponding to the unique eigenvalue 1).

Let the system cost-coupling weight matrix correspond to an adjacency matrix of a

graph with more than one connected component, then each associated sub-population

can only converge to the initial distribution mean of its connected component. Cor-

respondingly, in the deterministic SC problem, one of the key hypotheses which is

used to establish the convergence to consensus is that the system graph is connected.

2.12. Appendix

Proof of Theorem 2.4: For a generic agent i, 1 ≤ i ≤ N , we have the closed-loop

solution (2.21). But,

E

∫ ∞
0

e−ρt
(
φ∞(0)

)2
dt =

(
φ∞(0)

)2
/ρ, (2.79)

E

∫ ∞
0

e−ρt
(
e−(p/r)t(zi(0)− φ∞(0))

)2
dt =

(
z̄i(0)− φ∞(0)

)2
/(2p/r + ρ), (2.80)

and by the Itô isometry

E

∫ ∞
0

e−ρt
(∫ t

0

e−(p/r)(t−τ)dwi(τ)
)2

dt =
r

2p

(
1/ρ− 1/(2p/r + ρ)

)
. (2.81)

Now by (2.21) and (2.79)-(2.81) we get

E

∫ ∞
0

e−ρt
(
zoi (t)

)2
dt := k <∞, (2.82)

since supz̄i(0)∈Θ |z̄i(0)| < ∞ by the compactness of the set Θ. This together with

(2.19) results in

E

∫ ∞
0

e−ρt
(
uoi (t)

)2
dt ≤ p

r

(
k + φ∞(0)

)2

<∞. (2.83)
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Since k is independent of i and N , by (2.82) and (2.83) we obtain (2.22).

Proof of Theorem 2.6: a) By (2.25) and since the set of expected values of initial

states Θ is a compact set, there exists a finite k independent of N and t such that

E
( 1

N

N∑
i=1

zoi (t)− φ∞(0)
)2

< k.

Hence, Theorem 2.5 and the Lebesgue Dominated Convergence theorem (see [42])

imply (2.26).

b) See the proof of Lemma 2.1 below.

Proof of Lemma 2.1: For a fixed 1 ≤ i ≤ N by (2.21) we get

(εNi )2 = E

∫ ∞
0

e−ρt
(
e−(p/r)t

( 1

N − 1

N∑
j=1,j 6=i

zj(0)− φ∞(0)
)

+
σ

N − 1

N∑
j=1,j 6=i

∫ t

0

e−(p/r)(t−τ)dwj(τ)
)2

dt.

Then by the independence of initial states and Wiener processes, and the Itô isometry

we have

(εNi )2 =
1

ρ+ 2(p/r)

( 1

N − 1

N∑
j=1,j 6=i

z̄j(0)− φ∞(0)
)2

+
σ2r

2p(N − 1)

(1

ρ
− 1

ρ+ 2(p/r)

)
.

Hence, limN→∞ ε
N
i = 0 by (A2.1).
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CHAPTER 3

A Mean Field Game Synthesis of Initial

Mean Consensus Problems: A Continuum

Approach for Non-Gaussian Behaviour

This chapter presents a continuum approach to a non-Gaussian initial mean consensus

problem studied in previous chapter. For this dynamic game problem, a set of cou-

pled deterministic (Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov

(FPK)) equations is derived approximating the stochastic system of agents as the

population size goes to infinity. In a finite population system (analogous to the mean

field linear-quadratic-Gaussian (MF LQG) framework in previous chapter): (i) the

resulting decentralized mean field (MF) control strategies possess an εN -Nash equilib-

rium property where εN goes to zero as the population size N approaches infinity, and

(ii) these MF control strategies steer each individual’s state toward the initial state

population mean which is reached asymptotically as time goes to infinity. Hence, the

system with decentralized MF control strategies reaches mean-consensus on the initial

state population mean asymptotically as time and population size go to infinity.

In the case of agents with Long Time Average (LTA) (i.e., ergodic) cost func-

tions the solution of the HJB equation is the relative value function which represents

perturbations around the steady-state optimal cost rate with respect to an asymp-

totically stationary process. It turns out that this HJB equation in the MF system
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has a larger class of stable perturbed solutions in forward time than in backward

time. Therefore, an Evolution (i.e., forward in time) Mean Field (EMF) system of

consensus model is studied. The EMF system consists of two coupled (forward in

time) deterministic PDEs which are also coupled to the cost coupling function.

3.1. Introduction

There are two main classes of models relevant to the study of consensus behaviour:

(i) Individual based (Lagrangian) models in the form of coupled Ordinary (Stochastic)

Differential Equations (O(S)DEs) (see for example [169]). A key element of many

individual based algorithms is the use of local feedback involving local communication

(subject to the network topology) between agents so as to reach an agreement. (ii)

Continuum based (Eulerian) models in the form of Partial Differential Equations

(PDEs) in large population systems (see [40], among many other papers).

In Chapter 2 we synthesized consensus behaviour as a dynamic game problem via

mean field linear-quadratic-Gaussian (MF LQG) control theory. In this chapter we

develop another approach to the study of consensus problems. Unlike the dynamic

game consensus formulation of previous chapter (see Section 2.2.1) with Gaussian

initial states (see (A2.1) in Chapter 2), the initial states for all the agents of the

model in this chapter are not necessarily assumed to be distributed according to

a Gaussian distribution, and so the MF LQG framework of Chapter 2 cannot be

employed. Consequently, for the infinite population limit a general continuum (i.e.,

PDE) formulation is required.

The resulting continuum based mean field (MF) system of the DGCM consists

of two coupled deterministic equations: (i) a nonlinear (backward in time) Hamilton-

Jacobi-Bellman (HJB), and (ii) a nonlinear (forward in time) Fokker-Planck-Kolmogorov

(FPK), which are also coupled to a (spatially averaged) cost coupling function ap-

proximating the aggregate effect of the agents in the infinite population limit. We

present the stationary solutions, linear stability and the nonlinear stability analy-

ses of the continuum MF system. Analogous to the MF LQG framework, we show
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(i) the εN -Nash equilibrium property of the resulting MF control laws, and (ii) the

mean-consensus behaviour of the system by applying these MF control laws. It is

also important to note that in the non-Gaussian consensus problem the stationary

solution of the system is itself Gaussian.

In the case of agents with Long Time Average (LTA) (i.e., ergodic) cost func-

tions the solution of the HJB equation is the relative value function which represents

perturbations around the steady-state optimal cost rate with respect to an asymptot-

ically stationary process. It turns out that this HJB equation in the MF system has a

larger class of stable perturbed solutions in forward time than in backward time [64].

Therefore, an Evolution (i.e., forward in time) Mean Field (EMF) system of consensus

model is studied where the initial states for all the agents are not necessarily assumed

to be distributed according to a Gaussian distribution. The EMF system consists of

two coupled (forward in time) deterministic PDEs which are also coupled to the cost

coupling function. The forward in time mean field process has previously appeared

in the study of MFG models in [4,64].

The following notation will be used in this chapter. We use the integer valued

subscript as the label for an individual agent of the population. The integer N is

reserved to denote the population size of the system. We use the superscripts N for

a process to indicate the dependence on the population size. The symbols ∂t and ∂z

respectively denote the partial derivative with respect to variables t and z, and ∂2
zz

denotes the second derivative with respect to z.

The chapter is organized as follows. Section 3.2 is dedicated to the problem

formulation and the applications of the model. The continuum based MF control

approach to the consensus model is presented in Section 3.3. In Section 3.4 we study

the stationary solution and the stability analysis of the MF system. The mean-

consensus and ε-Nash equilibrium properties of the MF control laws are respectively

established in Sections 3.5 and 3.6. Section 3.7 studies the MF and EMF systems

for agents with LTA cost functions. A sample numerical simulation of the model is
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presented illustrating the results in Section 3.8. Concluding remarks are stated in

Section 3.9.

3.2. Dynamic Game Consensus Model with Non-Gaussian Ini-

tial States

We recall the dynamic game consensus model (2.1)-(2.2) of previous chapter (see

Section 2.2.1). Consider a system of N agents. The dynamics of the ith agent is given

by a controlled SDE:

dzi(t) = ui(t)dt+ σdwi(t), t ≥ 0, 1 ≤ i ≤ N, (3.1)

where consistent with the standard consensus models zi(·) and ui(·) are the scalar

state and control input of agent i; σ is a non-negative scalar; and {wi : 1 ≤ i ≤ N}

denotes a sequence of independent standard scalar Wiener processes on some filtered

probability space (Ω,F , {Ft}t≥0,P) where Ft is defined as the σ-field σ(zi(0), wi(τ) :

1 ≤ i ≤ N, τ < t). We assume that the initial states {zi(0) : 1 ≤ i ≤ N} are

independent, and independent of {wi : 1 ≤ i ≤ N}.

It is important to note that unlike the model in Chapter 2 (see A2.1), the initial

states for all the agents are not necessarily assumed to be distributed according to a

Gaussian distribution.

In this problem formulation each agent seeks to minimize its individual cost func-

tion involving the mean of the states of all other agents. Let the cost-coupling func-

tion be defined homogeneously throughout the population by cN(zi; z−i) :=
(
zi −

1
N−1

∑N
j 6=i zj

)2
for a generic agent i. Then, the objective of each individual agent i is

to minimize its discounted cost function given by

JNi (ui, u−i) := E

∫ ∞
0

e−ρt
(
cN(zi; z−i) + ru2

i (t)
)
dt, 1 ≤ i ≤ N, (3.2)

where r > 0 is the control penalty and ρ > 0 is the discount factor. To indicate the

dependence of Ji on ui, u−i and the population size N , we write it as JNi (ui, u−i).
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For minimization of JNi , the admissible control set is taken as

Ui := {ui(·) : ui(t) is adapted to sigma-field σ(zj(s) : s ≤ t, 1 ≤ j ≤ N)}.

The reader is referred to Section 3.7 for the case of agents with Long Time Average

(LTA) (i.e., ergodic) cost functions (2.35) (see Chapter 2, Section 2.5.3).

Remark 3.1. The results of this chapter can easily be extended to the case of

agents with cost-coupling functions of the form cN(zi; z−i) := 1
N−1

∑N
j 6=i(zi− zj)2 (see

Remark 2.1 and Section 2.3).

The Dynamic Game Consensus Model (DGCM) (3.1)-(3.2) is motivated by many

social, economic, and engineering applications. The reader is referred to Chapter 2,

Section 2.3 for a synchronization of coupled oscillators example, and to Chapter 5,

Section 5.2.4 for an economic (finance) example.

3.3. A Continuum Mean Field Game Approach

We take the following steps to the DGCM (3.1)-(3.2) based on the nonlinear MF

control approach developed in [78,85,177]:

(i) The infinite population limit: In this step a Nash equilibrium is character-

ized by an “equilibrium relationship” between the individual strategies and

the mass effect (i.e., the overall effect of the population on a given agent).

This equilibrium relationship is described by the so-called MF system.

(ii) εN -Nash equilibrium for the finite N model: The distributed continuum

based MF control laws (derived from the MF system in Step 1) establish

an εN -Nash equilibrium for the finite N population DGCM where εN goes

to zero asymptotically as N approaches infinity.

3.3.1. Mean Field Approximation. In a large N population system, by

the Law of Large Numbers (LLN) we approximate the cost-coupling function for a

“generic” agent i in (3.2), cN(zi(·), z−i(·)), by a deterministic function c(z, ·) which

only depends on z = zi. Replacing the function cN(zi, z−i) with the deterministic
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function c(zi, ·) in the ith agent’s cost function (3.2) reduces the DGCM (3.1)-(3.2)

to a set of N independent optimal control problems.

3.3.1.1. Hamilton-Jacobi-Bellman (HJB) Equation. We now consider a “single

agent” Optimal Control Problem (OCP):

dz(t) = u(t)dt+ σdw(t), t ≥ 0, (3.3)

inf
u∈U

J(u) := inf
u∈U

E

∫ ∞
0

e−ρt
(
c(z, t) + ru2(t)

)
dt, (3.4)

where z(·), u(·) ∈ R are the state and control input, respectively; w(·) denotes a stan-

dard scalar Wiener process; c(z, ·) is a positive function; and U is the corresponding

admissible control set of the generic agent. An admissible control uo(·) ∈ U is called

optimal if J(uo) = infu∈U J(u).

For x ∈ R and 0 ≤ t < ∞ we define the value function v(·, ·) for the OCP

(3.3)-(3.4) by

v(x, t) := inf
(u(s))s≥t∈U

E
[ ∫ ∞

t

e−ρ(s−t)
(
c
(
z(s), s

)
+ r
(
u(s)

)2
)
ds
∣∣z(t) = x

]
.

By employing a standard dynamic programming argument and using Itô’s formula

we get the following result (see [59]).

Theorem 3.1. (HJB for the OCP) Assume that the function c(z, t) is Lipschitz

continuous with respect to z and uniformly continuous with respect to t, and assume

the value function v(z, t) for the OCP (3.3)-(3.4) is a C1 function of variable t and

C2 function of variable z, then v(z, t) solves the (backward in time) Hamilton-Jacobi-

Bellman (HJB) equation

∂tv(z, t) +H
(
∂zv(z, t)

)
+
σ2

2
∂2
zzv(z, t) + c(z, t) = ρv(z, t), z ∈ R, t ≥ 0, (3.5)

with boundary condition limt→∞ e
−ρtv(z(t), t) = 0, where the Hamiltonian H(·) is

defined as H(p) ≡ minu∈U H(p, u) := minu∈U{up+ ru2} for p in R.
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The solution of the OCP (3.3)-(3.4) is

uo(z, t) := arg min
u∈U

H(∂zv(z, t), u) = − 1

2r
∂zv(z, t).

Substituting uo(z, t) into (3.5) yields the (backward in time) HJB equation (z ∈

R, t ≥ 0):=

∂tv(z, t)− 1

4r

(
∂zv(z, t)

)2
+
σ2

2
∂2
zzv(z, t) + c(z, t) = ρv(z, t), (3.6)

with boundary condition limt→∞ e
−ρtv(z(t), t) = 0.

3.3.1.2. Fokker-Planck-Kolmogorov (FPK) Equation. Under the state feedback

optimal control law uo(z, t) = − 1
2r
∂zv(z, t) ∈ C1, the evolution of the density f(z, ·)

of the generic agent (3.3) satisfies the (forward in time) Fokker-Planck-Kolmogorov

(FPK) equation

∂tf(z, t)− 1

2r
∂z

((
∂zv(z, t)

)
f(z, t)

)
=
σ2

2
∂2
zzf(z, t), z ∈ R, t ≥ 0, (3.7)

with initial condition f(z, 0) ≥ 0. We note that v(z, ·) in (3.7) is the solution of the

HJB equation (3.6). Let us assume the boundary condition lim|z|→∞ f(z, t) = 0 for

all t ≥ 0.

3.3.1.3. Cost-Coupling (CC) Function. For a generic agent i, the Law of Large

Numbers (LLN) suggests the approximation of the Cost-Coupling (CC) function

cN(zi, z
o
−i) for a large N population system by

c̄(zi, t) =
(
zi −

∫
R
zf(z, t)dz

)2
=
( ∫

R
(zi − z)f(z, t)dz

)2
, zi ∈ R, t ≥ 0. (3.8)

where f(z, ·) is the solution of the FPK equation (3.7).

3.3.2. The Mean Field System. Let

fN(x, 0) :=
1

N

N∑
i=1

δ(x− zi(0)),

be the empirical probability density associated with N agents where δ is the Dirac

delta function. We enunciate the following assumption (see (A2.1)):

67



CHAPTER 3. A CONTINUUM APPROACH TO MEAN FIELD CONSENSUS PROBLEMS

(A3.1) We assume that (i) the initial states {zi(0) : 1 ≤ i ≤ N} are independent,

and there exists a constant k independent of N such that sup1≤i≤N E|zi(0)|2 ≤ k <∞,

and (ii) {fN(x, 0) : N ≥ 1} converges weakly to f0, i.e., for any bounded continuous

function φ(x) on R, we have limN→∞
∫
φ(x)fN(x, 0)dx =

∫
φ(x)f0(x)dx.

Remark 3.2. It is important to note that if the sequence {zi(0) : 1 ≤ i ≤ N}

is generated by independent random observations on the density function f0, then

(A3.1)-(ii) holds with probability one by the Strong Law of Large Numbers or the

Glivenko-Cantelli theorem [42].

We now aim to construct the equilibrium relationship (between the individual

strategies and the mass effect) in the stochastic MF control theory. For nonlinear MF

stochastic control problems, a general formulation using equations of the McKean-

Vlasov type is given in [85]. However, for the synchronization of coupled oscillators

formulated as a game problem a compact system of coupled MF equations is given

in [177] within a nonlinear SDE problem formulation.

The key idea of the MF control methodology is to prescribe a spatially averaged

mass function c̄(z, ·) characterized by the property that it is reproduced as the aver-

age of all agents’ states in the continuum of agents whenever each individual agent

optimally tracks the same mass function c̄(z, ·).

Applying the nonlinear MF stochastic control approach (developed in [78, 85,

177]) to our DGCM (3.1)-(3.2) in the infinite population limit (or (3.3)-(3.4) for a

generic agent) yields the nonlinear continuum based MF system (z ∈ R, t ≥ 0):

[MF-HJB] ∂tv(z, t) =
1

4r

(
∂zv(z, t)

)2 − c̄(z, t) + ρv(z, t)− σ2

2
∂2
zzv(z, t), (3.9)

[MF-FPK] ∂tf(z, t) =
1

2r
∂z

((
∂zv(z, t)

)
f(z, t)

)
+
σ2

2
∂2
zzf(z, t), (3.10)

[MF-CC] c̄(z, t) =
( ∫

R
(z − z′)f(z′, t)dz′

)2
, (3.11)
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where f(z, 0) = f0(z) is the given initial population density, necessarily
∫
R f(z, t)dz =

1 for any t ≥ 0, and it is assumed that

lim
|z|→∞

f(z, t) = 0, lim
t→∞

e−ρtv(z(t), t) = 0.

We refer the reader to the corresponding MF system (2.11)-(2.13) of Chapter 2

for the case of Gaussian initial states.

The system of equations (3.9)-(3.11) consists of: (i) the nonlinear (backward in

time) MF-HJB equation (3.6) which describes the HJB equation of a generic agent’s

discounted optimal problem (3.3)-(3.4) with cost coupling c̄(z, ·), (ii) the nonlinear

(forward in time) MF-FPK equation (3.7) which describes the evolution of the pop-

ulation density with the best response state feedback control law

uo(z, t) := − 1

2r
∂zv(z, t), z ∈ R, t ≥ 0, (3.12)

and (iii) the spatially averaged MF-CC function presented in (3.8).

3.4. Analysis of the Mean Field System

3.4.1. Gaussian Stationary Solution. The MF system (3.9)-(3.11) in sta-

tionary form is

1

4r

(
∂zv∞(z)

)2 − σ2

2
∂2
zzv∞(z) = c̄∞(z)− ρv∞(z), z ∈ R, (3.13)

1

2r
∂z

((
∂zv∞(z)

)
f∞(z)

)
= −σ

2

2
∂2
zzf∞(z), z ∈ R, (3.14)

c̄∞(z) =
( ∫

R
(z − z′)f∞(z′)dz′

)2
, z ∈ R, (3.15)

where the density f∞(z) satisfies
∫
R f∞(z)dz = 1, and limt→∞ e

−ρtv∞(z(t)) = 0.

The stationary equation system (3.13)-(3.15) is related to (3.9)-(3.11) by the fact

that the steady-state population density of the system, f∞(z) := limt→∞ f(z, t), gives

a time independent cost-coupling c̄∞(z) in (3.11) which yields a time independent

solution v∞(z) to the MF-HJB equation (3.9). Furthermore, f∞(z) and v∞(z) solve

the stationary MF-FPK equation (3.14).
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Theorem 3.2. For any arbitrary µ ∈ R, there exists the following solution to the

system (3.13)-(3.15):

v∞(z) = γ(z − µ)2 + η, where γ :=
−rρ+

√
(rρ)2 + 4r

2
> 0, η :=

σ2γ

ρ
, (3.16)

f∞(z) =
1√

2πs2
exp

(
− (z − µ)2

2s2

)
, c̄∞(z) = (z − µ)2, where s2 :=

σ2r

2γ
. (3.17)

Proof. The assertion of the theorem is straightforward to verify by substituting

(3.16)-(3.17) into the system (3.13)-(3.15).

Let us note that the steady-state solution of the system f∞(z) is a Gaussian

density function. We further note that in the class of stable solutions to the MF

system (3.9)-(3.11), µ in Theorem 3.2 is uniquely determined as the initial state

population mean
∫
R zf(z, 0)dz (see Section 3.5).

3.4.2. Stability Analysis of the Linearized Mean Field System. In

this subsection by taking the approach of [64] we study the stability of the Gauss-

ian steady-state density function f∞(z) based on small perturbations of the form

fε(z, 0) = f∞(z)
(
1 + εf̃(z, 0)

)
on f∞(z) such that fε(z, 0) is a probability density. We

let the subsequent additive and multiplicative perturbations of the solution to the

MF system (3.9)-(3.11) be of the forms

vε(z, t) = v∞(z) + εṽ(z, t), fε(z, t) = f∞(z)
(
1 + εf̃(z, t)

)
, (3.18)

c̄ε(z, t) = c̄∞(z) + εc̃(z, t), (3.19)

for z ∈ R and t ≥ 0, where v∞(z), f∞(z) and c̄∞(z) are given in (3.16)-(3.17). Since

fε(z, ·) satisfies the MF-FPK equation (3.10), fε(z, t) for any time t > 0 is necessarily

a probability density, i.e., fε(z, t) = f∞(z)
(
1 + εf̃(z, t)

)
≥ 0 and

∫
R fε(z, t)dz = 1.

Remark 3.3. The reason why we take the relative perturbation form of the density

function fε(z, ·) in (3.18) is that it permits us to employ the Hermite series expansion

for the resulting linearized equation system.
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Proposition 3.1. The linearization of the nonlinear MF system (3.9)-(3.11)

around the stationary solution (3.16)-(3.17) takes the form (z ∈ R, t ≥ 0):

∂tṽ(z, t) =
γ

r
(z − µ)∂zṽ(z, t)− σ2

2
∂2
zzṽ(z, t) + ρṽ(z, t)− c̃(z, t), (3.20)

∂tf̃(z, t) = −
(γ
r

(z − µ)∂zf̃(z, t)− σ2

2
∂2
zzf̃(z, t)

)
− 1

σ2r

(γ
r

(z − µ)∂zṽ(z, t)− σ2

2
∂2
zzṽ(z, t)

)
, (3.21)

c̃(z, t) = −2(z − µ)
( ∫

R
zf̃(z, t)f∞(z)dz

)
, (3.22)

with given f̃(z, 0), and boundary conditions

lim
|z|→∞

f̃(z, t) = 0, lim
t→∞

e−ρtṽ(z(t), t) = 0.

Proof. See the appendix.

For the analysis of the linearized equation system (3.20)-(3.22) we introduce the

Hermite polynomials associated to the Hilbert space L2(f∞(z)dz). In this space we

have the inner product < g, h >:=
∫
R g(z)h(z)f∞(z)dz and the norm is given by

‖g‖L2 :=< g, g >1/2.

Definition 3.1. For given µ and s2 = σ2r
2γ

in (3.16)-(3.17) we define the nor-

malized Hermite polynomials of the space L2(f∞(z)dz) as (see [64] or Chapter 22

in [1])

Hn(z) :=
(−1)nsn√

n!
exp

((z − µ)2

2s2

) dn
dzn

exp
(−(z − µ)2

2s2

)
, z ∈ R, n ∈ N0.

In particular, we have H0(z) = 1 and H1(z) = z−µ
s

, z ∈ R.

Proposition 3.2. We have the following:

(a) The countable family of Hermite polynomials {Hn(z) : n ∈ N0} forms an orthogo-

nal basis of the Hilbert space L2(f∞(z)dz) such that < Hm, Hn >= δ(n,m) where

δ is the Kronecker delta.
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(b) The Hermite polynomials {Hn(z) : n ∈ N0} are eigenfunctions of the operator

Lg(z) :=
γ

r
(z − µ)∂zg(z)− σ2

2
∂2
zzg(z), z ∈ R, (3.23)

such that LHn(z) = nγ
r
Hn(z) for any n ∈ N0.

Proof. See the appendix.

By using the operator L defined in (3.23) we can rewrite the equations (3.20)-

(3.21) as

∂tṽ(z, t) = Lṽ(z, t) + ρṽ(z, t)− c̃(z, t), z ∈ R, t ≥ 0, (3.24)

∂tf̃(z, t) = − 1

σ2r
Lṽ(z, t)− Lf̃(z, t), z ∈ R, t ≥ 0, (3.25)

where c̃(z, ·) is given in (3.22), and the boundary conditions on ṽ and f̃ are those in

Proposition 3.1.

Definition 3.2. A steady-state solution f∞(z) of the nonlinear MF system (3.9)-

(3.11) is linearly asymptotically stable with respect to a set of initial perturbations

S =
{
fε(z, 0) = f∞(z)

(
1 + εf̃(z, 0)

)
: fε(z, 0) ≥ 0,

∫
R
fε(z, 0)dz = 1,

f̃(z, 0) ∈ L2(f∞(z)dz)
}

if there exists a solution f̃(z, ·) ∈ L2(f∞(z)dz) to the linearized equation system

(3.20)-(3.22) such that limt→∞ ‖f̃(z, t)‖L2 = 0.

We define the set of ε perturbed initial density functions

SLin
per (ε) :=

{
fε(z, 0) = f∞(z)

(
1 + εf̃(z, 0)

)
: f̃(z, 0) =

∞∑
n=2

kn(0)Hn(z) ∈ L2(f∞(z)dz),

εf̃(z, 0) ≥ −1
}
.

Theorem 3.3. Let f∞(z) be the steady-state solution of the nonlinear MF system

(3.9)-(3.11). Then, f∞(z) is linearly asymptotically stable with respect to the set of

ε perturbed initial density functions SLin
per (ε), moreover, in this case the ε perturbed
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solutions (3.18)-(3.19) take the forms vε(z, t) = v∞(z), c̄ε(z, t) = c̄∞(z) and

fε(z, t) = f∞(z)
(
1 + ε

∞∑
n=2

exp
(
− nγ

r
t
)
kn(0)Hn(z)

)
, (3.26)

where z ∈ R, t ≥ 0.

Proof. See the appendix.

3.4.3. Stability Analysis of the Nonlinear Mean Field System. We

now present an infinite dimensional convex set of initial perturbations on the steady-

state density f∞(z) which yields time-varying solutions to the nonlinear MF system

(3.9)-(3.11).

Definition 3.3. A steady-state solution f∞(z) of the nonlinear equation system

(3.9)-(3.11) is asymptotically stable with respect to a set of initial perturbations

S =
{
f(z, 0) = f∞(z)

(
1 + f̃(z, 0)

)
: f(z, 0) ≥ 0,

∫
R
f(z, 0)dz = 1,

f̃(z, 0) ∈ L2(f∞(z)dz)
}

if there exists a solution f(z, ·) ∈ L2(f∞(z)dz) to the nonlinear MF system (3.9)-

(3.11) such that limt→∞ ‖f(z, t)− f∞(z)‖L2 = 0.

We define the set of initial density functions

SNL
per :=

{
f(z, 0) = f∞(z)

(
1 + f̃(z, 0)

)
: f̃(z, 0) =

∞∑
n=2

kn(0)Hn(z) ∈ L2(f∞(z)dz),

f̃(z, 0) ≥ −1
}
.

We observe that SNL
per = SLin

per (1).

Theorem 3.4. If the initial density function f(z, 0) is in the set SNL
per , then the

solution to the nonlinear MF system (3.9)-(3.11) takes the forms v(z, t) = v∞(z),
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c̄(z, t) = c̄∞(z) and

f(z, t) = f∞(z)
(
1 +

∞∑
n=2

exp
(
− nγ

r
t
)
kn(0)Hn(z)

)
, (3.27)

where z ∈ R, t ≥ 0. Moreover, the steady-state Gaussian solution f∞(z) is asymp-

totically stable.

Proof. See the appendix.

Remark 3.4. The set SNL
per is non-empty since f(z, 0) = f∞(z)

(
1 +H2(z)

)
∈ SNL

per

where H2(z) ≡ (1/
√

2)
( (z−µ)2

s2
− 1
)
. In general, for each function h(z) ≥ −1 in the

space L2(f∞(z)dz) which satisfies the mass and the mean preservation conditions (i.e.,∫
R h(z)f∞(z)dz =

∫
R zh(z)f∞(z)dz = 0) the density function g(z) = f∞(z)

(
1 + h(z)

)
is a member of the set SNL

per .

3.5. Mean-Consensus

We recall the following definition from Chapter 2 (see Definition 2.1).

Definition 3.4. Mean-consensus is said to be achieved asymptotically for a group

of N agents if limt→∞ |E
(
zi(t) − zj(t)

)
| = 0 for any i and j, 1 ≤ i 6= j ≤ N . If the

mean-consensus value is the initial state population mean of the system then the initial

mean-consensus is said to be achieved.

In the class of stable solutions to the MF-FPK equations given in (3.26) and

(3.27), µ ≡
∫
R zf∞(z)dz is uniquely determined as the initial state population mean∫

R zf(z, 0)dz. This is due the fact that
∫
R zHn(z)f∞(z)dz =< z,Hn(z) >=< µH0(z)+

sH1(z), Hn(z) >= 0 for n ≥ 2, by the orthogonality property of the Hermite poly-

nomials (see Proposition 3.2-(a)). Moreover, using the MF continuum based control

law (3.12) for a finite N population system (3.1)-(3.2) yields the individual control

uoi (t) = − 1

2r
∂zv(z, t)

∣∣
z=zi(t)

= −γ
r

(zi(t)− µ), t ≥ 0 1 ≤ i ≤ N, (3.28)
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where µ =
∫
R zf(z, 0)dz is the initial state population mean. Applying the control

laws (3.28) to the agents’ dynamics (3.1) yields the closed-loop solutions:

zoi (t) = µ+ e−
γ
r
t
(
zi(0)− µ

)
+ σ

∫ t

0

e−
γ
r

(t−τ)dwi(τ), t ≥ 0 1 ≤ i ≤ N. (3.29)

We now have the following theorem which is the same as Theorem 2.3.

Theorem 3.5. By applying the continuum based MF control laws (3.28) in a finite

population DGCM (3.1)-(3.2), an initial mean-consensus is reached asymptotically (as

time goes to infinity) with individual asymptotic variance s2 = σ2r
2γ

.

We note that mean-consensus can be called “weak mean-square consensus” where

the agents reach mean-consensus asymptotically (as time goes to infinity) with finite

asymptotic variance for each individual agent.

The reader is refereed to Section 2.5.1 for the stability and performance analyses

of the MF control laws. Moreover, the infinite population mass effect approximation

to the finite population closed-loop centroid of flock of agents is justified in Theorems

2.5 and 2.6 of Chapter 2.

3.6. ε-Nash Equilibrium Property of MF Control Laws

We recall the following definition from Chapter 2 (see Definition 2.2).

Definition 3.5. [79] Given ε > 0, the set of controls {uoi ∈ Ui : 1 ≤ i ≤ N} for

N agents generates an ε-Nash equilibrium with respect to the costs {JNi : 1 ≤ i ≤ N},

if JNi (uoi , u
o
−i)− ε ≤ infui∈Ui J

N
i (ui, u

o
−i) ≤ JNi (uoi , u

o
−i), for any 1 ≤ i ≤ N .

For a generic agent 1 ≤ i ≤ N denote (see 2.29)

ε2N := max
1≤i≤N

E

∫ ∞
0

e−ρt
( 1

N − 1

N∑
j=1,j 6=i

zoj (t)− µ
)2
dt,

where zoi (·) is the closed-loop solution of the ith agent’s dynamics given in (3.29).

Due to the fact that in the class of stable solutions (3.26) and (3.27) to the MF-FPK
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equation (3.10) we have
∫
R zf(z, t)dz =

∫
R zf0(z)dz = µ for all t > 0, the proof of the

following theorem is similar to Theorem 2.8 in Chapter 2.

Theorem 3.6. Assume (A3.1) holds. Then the set of MF control laws for the

finite population system {uoi ∈ Ui : 1 ≤ i ≤ N} given in (3.28) generates an εN -Nash

equilibrium such that

JNi (uoi , u
o
−i)− εN ≤ inf

ui∈Ui
JNi (ui, u

o
−i) ≤ JNi (uoi , u

o
−i), 1 ≤ i ≤ N,

where limN→∞ εN = 0.

3.7. Dynamic Game Consensus Model with LTA (Ergodic)

Costs

Assume that in a system with population size N and individual dynamics (3.1),

the objective of the ith individual agent is to almost surely (a.s.) minimize the Long

Time Average (LTA) (i.e., ergodic) cost function (see [133]):

JNlta,i(ui, u−i) := lim sup
T→∞

1

T

∫ T

0

((
zi(t)−

1

N − 1

N∑
j=1,j 6=i

zj(t)
)2

+ ru2
i (t)
)
dt, (3.30)

where r is a positive integer. The admissible control set of the ith agent is [106]

Ui :=
{
ui(·) : ui(t) is adapted to the sigma-field Ft, |zi(T )|2 = o(

√
T ),∫ T

0

(zi(t))
2dt = O(T ), a.s.

}
.

First, we consider a “single agent” LTA optimal control problem (OCP):

dz(t) = u(t)dt+ σdw(t), t ≥ 0, (3.31)

inf
u∈U

J(u) := inf
u∈U

lim sup
T→∞

1

T

∫ T

0

(
c(z, t) + ru2(t)

)
dt, (3.32)

where z(·), u(·) ∈ R are the state and control input, respectively; w(·) denotes a stan-

dard scalar Wiener process; c(z, ·) is a positive function; and U is the corresponding

admissible control set of the generic agent.

76



3.3.7 DYNAMIC GAME CONSENSUS MODEL WITH LTA (ERGODIC) COSTS

An admissible control uo(·) ∈ U is called a.s. optimal if there exists a constant

ρo such that

J(uo) = lim sup
T→∞

1

T

∫ T

0

(
c
(
zo(t), t

)
+ r
(
uo(t)

)2
)
dt = ρo, a.s.,

where zo(·) is the solution of (3.31) under uo(·), and for any other admissible control

u(·) ∈ U , we have a.s. J(u) ≥ ρo.

For x ∈ R and 0 ≤ t <∞ we define the relative value function v(·, ·) for the OCP

(3.31)-(3.32) by (see [22])

v(x, t) := inf
u∈U

E
[ ∫ ∞

t

(
c
(
z(s), s

)
+ r
(
u(s)

)2 − ρo
)
ds
∣∣z(t) = x

]
. (3.33)

We have the following result (see [11,22]):

Theorem 3.7. (HJB for the LTA OCP) Assume that the function c(z, t) is Lips-

chitz continuous with respect to z and uniformly continuous with respect to t, and as-

sume the value function v(z, t) for the OCP (3.31)-(3.32) is a C1 function of variable

t and C2 function of variable z, then v(z, t) solves the (backward in time) Hamilton-

Jacobi-Bellman (HJB) equation

∂tv(z, t) +H
(
∂zv(z, t)

)
+
σ2

2
∂2
zzv(z, t) + c(z, t) = ρo, (3.34)

with boundary condition limt→∞ v(z(t), t)/t = 0, where the Hamiltonian H(·) is de-

fined as H(p) ≡ minu∈U H(p, u) := minu∈U{up+ ru2} for p in R.

The solution of the LTA OCP (3.31)-(3.31) is

uo(t) := arg min
u∈U

H
(
∂zv(z, t), u

)
= − 1

2r
∂zv(z, t), t ≥ 0.

Substituting uo(·) into the HJB equation (3.34) yields the (backward in time) ergodic

HJB equation:

∂tv(z, t)− 1

4r

(
∂zv(z, t)

)2
+
σ2

2
∂2
zzv(z, t) + c(z, t) = ρo,

with boundary condition limt→∞ v(z(t), t)/t = 0.
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Following argument exactly parallel to those used in derivation system of (3.9)-

(3.11) in Section 3.3 (see [133]), we obtain the continuum based MF system of the

LTA dynamic game problem, (3.1) and (3.30):

[MF-HJB] ∂tv(z, t) =
1

4r

(
∂zv(z, t)

)2 − c̄(z, t) + ρo − σ2

2
∂2
zzv(z, t), (3.35)

[MF-FPK] ∂tf(z, t) =
1

2r
∂z

((
∂zv(z, t)

)
f(z, t)

)
+
σ2

2
∂2
zzf(z, t), (3.36)

[MF-CC] c̄(z, t) =
(∫

R
(z − z′)f(z′, t)dz′

)2

. (3.37)

where v(·, ·) is the relative value function, ρo is the best response optimal cost,

f(z, 0) = f0(z) is the given initial population density, necessarily
∫
R f(z, t)dz = 1

for any t ≥ 0, and it is assumed that lim|z|→∞ f(z, t) = 0 and limt→∞ v(z(t), t)/t = 0.

In the stationary setting, the MF system (3.35)-(3.37) takes the form:

1

4r

(
∂zv∞(z)

)2 − σ2

2
∂2
zzv∞(z) = c̄∞(z)− ρo, (3.38)

1

2r
∂z

((
∂zv∞(z)

)
f∞(z)

)
= −σ

2

2
∂2
zzf∞(z), (3.39)

c̄∞(z) =
(∫

R
(z − z′)f∞(z′)dz′

)2

, (3.40)

where the density f∞(z) satisfies
∫
R f∞(z)dz = 1, and limt→∞ v∞(z(t))/t = 0.

The assertion of the following theorem is straightforward to verify.

Theorem 3.8. For any arbitrary µ ∈ R, there exists the following solution of the

stationary system (3.38)-(3.40):

v∞(z) =
√
r(z − µ)2, ρo = σ2

√
r, (3.41)

f∞(z) =
1√

2πs2
exp

(
− (z − µ)2

2s2

)
, c̄∞(z) = (z − µ)2, (3.42)

where s2 := σ2√r
2

, and v∞(z) is defined up to a constant.

By following arguments exactly parallel to those used in Section 3.4.2, we can

show the linear stability and nonlinear stability of the MF system (3.35)-(3.37) with

respect to the sets SLin
per (ε) and SNL

per, respectively.
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The MF continuum based control law for a finite N population system, (3.1) and

(3.30), yields the individual control

uoi (t) = − 1

2r
∂zv(z, t)

∣∣
z=zi(t)

= − 1√
r

(zi(t)− µ), t ≥ 0 1 ≤ i ≤ N, (3.43)

where µ =
∫
R zf(z, 0)dz is the initial state population mean. The mean-consensus and

the ε-Nash property of the resulting MF control laws follow from similar arguments

in Sections 3.5 and 3.6, respectively (see [133]).

3.7.1. The Evolution Mean Field System. The relative value function

v(·, ·) defined in (3.33) represents perturbations around the steady-state optimal cost

rate. It turns out that the corresponding HJB equation (3.35) in the MF system has

a larger class of stable perturbed solutions in forward time than in backward time

(see [64]).

In this section we introduce an Evolution (i.e., forward in time) Mean Field (EMF)

system (based on [64]) to exhibit a forward in time process which asymptotically (as

time goes to infinity) converges to the stationary equilibrium solution (3.41)-(3.42)

(where µ =
∫
R zf(z, 0)dz is the initial state population mean) from any initial in a

infinitesimal neighbourhood of this equilibrium.

The EMF system is given by

∂tv(z, t) = − 1

4r

(
∂zv(z, t)

)2
+ c̄(z, t)− ρo +

σ2

2
∂2
zzv(z, t), (3.44)

∂tf(z, t) =
1

2r
∂z

((
∂zv(z, t)

)
f(z, t)

)
+
σ2

2
∂2
zzf(z, t), (3.45)

c̄(z, t) =
(∫

R
(z − z′)f(z′, t)dz′

)2

, (3.46)

for t ≥ 0, where f(z, 0) and v(z, 0) ≡ v∞(z), necessarily
∫
R f(z, t)dz = 1 for any

t ≥ 0, and it is assumed that lim|z|→∞ f(z, t) = 0 and limt→∞ v(z(t), t)/t = 0.

In the EMF system (3.44)-(3.46) the equations (3.45)-(3.46) are the same as

(3.36)-(3.37) but the backward in time MF-HJB equation (3.35) is replaced by a

forward in time equation (3.44). It is important to note that the stationary solution
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of the EMF system (3.44)-(3.46) is the same as that of the MF system (3.35)-(3.37)

(see Theorem 3.8).

3.7.2. Stability Analysis of the Evolution Mean Field System. First,

by taking a similar approach to the one of Section 3.4.2 (see [64]) we study the stability

of the Gaussian steady-state density function f∞(z) based on small perturbations of

the forms: (i) fε(z, 0) = f∞(z)
(
1+εf̃(z, 0)

)
on f∞(z) such that fε(z, 0) is a probability

density, and (ii) vε(z, 0) = v∞(z) + εṽ(z, 0). We let the additive and multiplicative

perturbations of the solution to the EMF system (3.35)-(3.37) be of the forms

vε(z, t) = v∞(z) + εṽ(z, t), fε(z, t) = f∞(z)
(
1 + εf̃(z, t)

)
, (3.47)

c̄ε(z, t) = c̄∞(z) + εc̃(z, t), (3.48)

for z ∈ R and t ≥ 0, where v∞(z), f∞(z) and c̄∞(z) are given in (3.41)-(3.42). Since

fε(z, ·) satisfies the MF-FPK equation (3.36), fε(z, t) for any time t > 0 is necessarily

a probability density, i.e., fε(z, t) = f∞(z)
(
1 + εf̃(z, t)

)
≥ 0 and

∫
R fε(z, t)dz = 1.

The proof of the following theorem is similar to the proof of Proposition 3.1.

Proposition 3.3. The linearization of the EMF system (3.44)-(3.46) around the

stationary equilibrium solution (3.41)-(3.42) takes the form (z ∈ R, t ≥ 0):

∂tṽ(z, t) = −(z − µ)√
r

∂zṽ(z, t) +
σ2

2
∂2
zzṽ(z, t) + c̃(z, t), (3.49)

∂tf̃(z, t) = −(z − µ)√
r

∂zf̃(z, t) +
σ2

2
∂2
zzf̃(z, t)

− 1

σ2r

((z − µ)√
r

∂zṽ(z, t)− σ2

2
∂2
zzṽ(z, t)

)
, (3.50)

c̃(z, t) = −2(z − µ)
(∫

R
zf̃(z, t)f∞(z)dz

)
, (3.51)

with given f̃(z, 0) and ṽ(z, 0), and boundary conditions lim|z|→∞ f̃(z, t) = 0 and

limt→∞ ṽ(z(t), t)/t = 0.
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In this section we let the Hermite polynomials {Hn(z) : n ∈ N0} be given in

Definition 3.1 with s2 ≡ σ2√r
2

. These polynomials are eigenfunctions of the operator

L1g(z) :=
1√
r

(z − µ)∂zg(z)− σ2

2
∂2
zzg(z), z ∈ R, (3.52)

such that L1Hn(z) = n√
r
Hn(z) for any n ∈ N+.

By using the operator L1 defined in (3.52) we can rewrite the equation system

(3.49)-(3.50) as

∂tṽ(z, t) = −L1ṽ(z, t) + c̃(z, t), (3.53)

∂tf̃(z, t) = − 1

σ2r
L1ṽ(z, t)− L1f̃(z, t), (3.54)

where c̄(z, ·) is given in (3.51), and the initial and boundary conditions are those in

Proposition 3.3.

We recall that

SLin
per (ε) =

{
fε(z, 0) = f∞(z)

(
1 + εf̃(z, 0)

)
: f̃(z, 0) =

∞∑
n=2

kn(0)Hn(z) ∈ L2(f∞(z)dz),

εf̃(z, 0) ≥ −1
}
,

and SNL
per = SLin

per (1). We also let

ŜLin
per (ε) :=

{
vε(z, 0) = v∞(z) + εṽ(z, 0) : ṽ(z, 0) =

∞∑
n=2

ln(0)Hn(z) ∈ L2(f∞(z)dz)
}
,

and ŜNL
per := ŜLin

per (1).

Theorem 3.9. Let f∞(z) be the steady-state solution of the nonlinear EMF sys-

tem (3.44)-(3.46). Then, f∞(z) is linearly asymptotically stable with respect to the

set of ε perturbed initial density functions SLin
per (ε) and the set of ε perturbed functions
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ŜLin
per (ε), moreover, in this case the ε perturbed solutions (3.47)-(3.48) take the forms:

vε(z, t) = v∞(z) + ε

∞∑
n=2

ln(0) exp
(
− nt√

r

)
Hn(z),

fε(z, t) = f∞(z)
(

1 + ε

∞∑
n=2

(
kn(0)− nt

σ2r
√
r
ln(0)

)
exp

(
− nt√

r

)
Hn(z)

)
,

c̄ε(z, t) = c̄∞(z),

where z ∈ R, t ≥ 0.

Proof. The proof is similar to Theorem 3.3 (see Theorem 10 in [131]).

Theorem 3.10. If the initial density function f(z, 0) is in the set SNL
per and v(z, 0)

is in the set ŜNL
per , then the solution to the EMF system (3.44)-(3.46) takes the forms

vε(z, t) = v∞(z) +
∞∑
n=2

ln(0) exp
(
− nt√

r

)
Hn(z),

fε(z, t) = f∞(z)
(

1 +
∞∑
n=2

(
kn(0)− nt

σ2r
√
r
ln(0)

)
exp

(
− nt√

r

)
Hn(z)

)
,

c̄ε(z, t) = c̄∞(z),

where z ∈ R, t ≥ 0. Moreover, the steady-state Gaussian solution f∞(z) is asymp-

totically stable.

Proof. The proof is similar to Theorem 3.4.

We note that v(z, ·) in Theorem 3.10 yields the control law:

ûi(t) := − 1

2r
∂zv(z, t)

∣∣
z=zi(t)

= − 1√
r

(zi(t)− µ) +
∞∑
n=2

nln(0) exp
(
− nt√

r

)
Hn−1

(
zi(t)

)
,

where we use the fact that ∂zHn(z) = nHn−1(z). Hence, the resulting control law

of the (forward in time) EMF system (3.44)-(3.46): (i) gives the same asymptotic

steady-state solution and performance as in the (backward/forward) MF system

(3.35)-(3.37), and (ii) has a larger class of stable perturbed solutions than the control

law (3.43) in the transient state.
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3.8. Numerical Example

Consider a system (3.1)-(3.2) of 500 agents with σ = 0.05, r = 3 and ρ = 0.2. The

initial states of the agents are taking independently from a uniform distribution with

support [−3, 3]. Fig. 3.1A shows the contour lines of the evolution of the population

density function f(z, t) as given in (3.27). The state trajectories (3.29) of all the

agents of the system are shown in Fig. 3.1B. As shown in Figs. 3.1A and 3.1B the

agents reach mean consensus in µ = 0 asymptotically (as time goes to infinity) with

individual asymptotic variance s2 = σ2r
2γ

.

(A) (B)

Figure 3.1. (A) The contour lines of population density functions, and (B)
trajectories of agents’ states when N = 500.

3.9. Chapter Summary

This chapter presents a synthesis of consensus behaviour as a stochastic dynamic

game problem. In this problem formulation each agent in the system: (i) has a simple

stochastic dynamics with inputs directly controlling its state’s rate of change, and (ii)

seeks to minimize its individual cost function containing a mean field coupling to the

states of all other agents. We take a continuum approach to this problem via mean

field stochastic control theory. Based on this methodology we synthesize a set of

mean field decentralized εN -Nash equilibrium strategies for a system with population
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size N . The resulting Mean Field (MF) control strategies steer each individual’s state

toward the initial state population mean which is reached asymptotically as time goes

to infinity, thus achieving mean consensus. As the population size of this finite N

population system goes to infinity εN goes to zero and the set of mean field control

strategies becomes an exact Nash equilibrium.

In the case of agents with Long Time Average (LTA) (i.e., ergodic) cost functions,

an Evolution (i.e., forward in time) Mean Field (EMF) system of consensus model

is studied. The EMF system consists of two coupled (forward in time) deterministic

PDEs which are also coupled to the cost coupling function.

3.10. Appendix

Proof of Proposition 3.1: Here, we follow similar arguments to the ones of Propo-

sition 8 in [64]. By substituting vε(z, ·) and c̄ε(z, ·) from (3.18) into the MF-HJB

equation (3.9) we get

ε∂tṽ(z, t) =
1

4r
(∂zv∞(z))2 − c̄∞(z) + ρv∞(z)− σ2

2
∂2
zzv∞(z)

+ ε
(γ
r

(z − µ)∂zṽ(z, t)− c̃(z, t) + ρṽ(z, t)− σ2

2
∂2
zzṽ(z, t)

)
+O(ε2).

where we use ∂zv∞(z) = 2γ(z − µ) by (3.16). By (3.13) we have

1

4r
(∂zv∞(z))2 − c̄∞(z) + ρv∞(z)− σ2

2
∂2
zzv∞(z) = 0,

and hence the first order terms in ε in the above equation yield (3.20).

By substituting fε(z, ·) and vε(z, ·) from (3.18) into the MF-FPK equation (3.21)

we get

ε ∂tf̃(z, t)f∞(z) =
1

2r
∂z
(
(∂zv∞(z))f∞(z)

)
+
σ2

2
∂2
zzf∞(z) + ε

σ2

2
∂2
zz

(
f̃(z, t)f∞(z)

)
+ ε

1

2r

(
∂z
(
2γ(z − µ)f̃(z, t)f∞(z)

)
+
(
∂zṽ(z, t)

)
f∞(z)

)
+O(ε2). (3.55)
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But we have 1
2r
∂z
(
(∂zv∞(z))f∞(z)

)
+ σ2

2
∂2
zzf∞(z) = 0, by (3.14). Since ∂zf∞(z) =

−
(
z−µ
s2

)
f∞(z) and ∂2

zzf∞(z) =
( (z−µ)2

s4
− 1

s2

)
f∞(z), the first order terms in ε of (3.55)

yield (3.21).

Finally, by substituting fε(z, ·) into (3.11) we get( ∫
R
(z − z′)fε(z′, t)dz′

)2
=
(
(z − µ) + ε

∫
R
(z − z′)f̃(z′, t)f∞(z′)dz′

)2

= (z − µ)2 + 2ε(z − µ)
( ∫

R
(z − z′)f̃(z′, t)f∞(z′)dz′

)
+O(ε2).

Since fε(z, ·) in (3.18) is a probability density we have
∫
R f̃(z, t)f∞(z)dz = 0 for all

t ≥ 0. Hence, the first order terms in ε in above equation yields (3.22) by using the

definition of c̄ε(z, ·) in (3.18).

Proof of Proposition 3.2: (a) See Chapter 22 in [1].

(b) The Hermite polynomials Hn(z), n ∈ N0, have the generating function

φ(z, h) =
∞∑
n=0

Hn(z)
hn

n!
= exp

(
(z − µ)h− s2h2

2

)
.

The generating function φ satisfies the PDE

γ

r
(z − µ)∂zφ(z, h)− σ2

2
∂2
zzφ(z, h) = h

γ

r
∂hφ(z, h),

and hence Hn(z), n ∈ N0, is the solution of the Hermite differential equation

γ

r
(z − µ)∂zg(z)− σ2

2
∂2
zzg(z) = n

γ

r
g(z),

or Hermite eigenvalue problem Lg(z) = nγ
r
g(z).

Proof of Theorem 3.3: Let

f̃(z, t) =
∞∑
n=0

kn(t)Hn(z), ṽ(z, t) =
∞∑
n=0

ln(t)Hn(z), z ∈ R, t ≥ 0.

Note that at any time t ≥ 0 the perturbed cost c̃(z, t) ∈ span
(
H1(z)

)
(see (3.56) be-

low). We now consider the equation system (3.24)-(3.25) in the Hermite coordinates.

For n = 0 we get ∂tl0(t) = ρl0(t) from (3.24). But, sine ρ > 0 the only function in
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L2(f∞(z)dz) that satisfies this equation is the zero function. Next, since fε(z, ·) in

(3.18) is a probability density we have k0(t) = 0, t ≥ 0, which also satisfies the equa-

tion (3.25) for the Hermite coordinate n = 0. For n ≥ 2 we can rewrite the equation

system (3.24)-(3.25) in the Hermite coordinates as the ODE (by Proposition 3.2-(b))

∂

∂t

 ln(t)

kn(t)

 =

 nγ
r

+ ρ 0

−n γ
σ2r2 −nγr

 ln(t)

kn(t)

 , t ≥ 0, n ≥ 2.

But, since nγ
r

+ ρ > 0 the only function in L2(f∞(z)dz) that satisfies ∂tln(t) =

(nγ
r

+ ρ)ln(t) is the zero function. Hence, the above equation gives us kn(t) = exp
(
−

nγ
r
t
)
kn(0), t ≥ 0, for n ≥ 2.

But, from (3.22) we have

c̃(z, t) = −2sH1(z) < µH0(z) + sH1(z),
∞∑
n=1

kn(·)Hn(z) >

= −2s2k1(t)H1(z), t ≥ 0, (3.56)

by the orthogonality property of the Hermite polynomials (see Proposition 3.2-(a))

and the fact that z = µH0(z)+sH1(z). Then the Hermite coordinates of the equation

system (3.24)-(3.25) for n = 1 satisfy the ODE (by Proposition 3.2-(b))

∂

∂t

 l1(t)

k1(t)

 =

 γ
r

+ ρ 2s2

− γ
σ2r2 −γ

r

 l1(t)

k1(t)

 =: A

 l1(t)

k1(t)

 , t ≥ 0, (3.57)

where γ and s2 are respectively given in (3.16) and (3.17). A is a singular matrix and

may be brought to the diagonal form via J = P−1AP where

J =

 0 0

0 ρ

 , P =

 −σ2r 1

1 − γ2

σ2r2

 .
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We may write the solution of (3.57): l1(t)

k1(t)

 = eAt

 l1(0)

k1(0)

 = PeJtP−1

 l1(0)

k1(0)


=

 1
ρ

(
− γ

r
l1(0)− σ2r

γ
k1(0)

)
+ 1

ργ
eρt
(
l1(0) + σ2rk1(0)

)
1
ρ

(
γ

σ2r2 l1(0) + 1
γ
k1(0)

)
− 1

ρr
eρt
(
γ
σ2r
l1(0) + γk1(0)

)
 ,

for t ≥ 0. Hence, its unique bounded solution in L2 is given by (l1(t), k1(t)) =

(l1(0), k1(0)) for all t ≥ 0, where l1(0) = −σ2rk1(0) (note that γ is the positive

solution of the algebraic equation γ2 + rργ − r = 0, as given in (3.16)).

Therefore, we have the following bounded and C∞ solution to the equation system

(3.20)-(3.22):

ṽ(z, t) = −σ2rk1(0)H1(z), c̃(z, t) = −2s2k1(0)H1(z),

f̃(z, t) = k1(0)H1(z) +
∞∑
n=2

kn(t)Hn(z)

≡ k1(0)H1(z) +
∞∑
n=2

exp
(
− nγ

r
t
)
kn(0)Hn(z),

in R×[0,∞). By the Cauchy-Schwarz inequality and the integral test for convergence,

it can be shown that for any fixed t, (kn(t))n is in the space l1 (i.e., the space of

sequences whose series is absolutely convergent).

Now for a fixed time t, by Parseval’s theorem we get

‖f̃(z, t)‖L2 =
(
k2

1(0) +
∞∑
n=2

k2
n(t)

)1/2

≡
(
k2

1(0) +
∞∑
n=2

exp
(
− 2n

γ

r
t
)
k2
n(0)

)1/2
, z ∈ R, t ≥ 0.

Since limt→∞ kn(t) = 0 for n ≥ 2, the Lebesgue Dominated Convergence theorem im-

plies that limt→∞ ‖f̃(z, t)‖L2 = k1(0) which is zero if k1(0) = 0 (let us note that

the assumption k1(0) = 0 is satisfied if f̃(z, 0) is an even function in the space

L2(f∞(z)dz)). Hence, the steady-state solution f∞(z) is linearly asymptotically stable
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with respect to the set of initial perturbations SLin
per (ε) based on Definition 3.2. Note

that the restriction k1(0) = 0 is enforced in SLin
per (ε) by assuming the representation

f̃(z, 0) =
∑∞

n=2 kn(0)Hn(z).

Proof of Theorem 3.4: We apply a fixed-point argument. For any fixed time

t ≥ 0, let f(z, t) be of the form

f(z, t) = f∞(z)
(
1 +

∞∑
n=2

kn(t)Hn(z)
)
∈ SNL

per, z ∈ R. (3.58)

Then from the MF-CC equation (3.11) we get c̄(z, t) = (z − µ)2 ≡ c∞(z), t ≥ 0,

since
∫
R zf(z, ·)dz = µ by the orthogonality property of the Hermite polynomials

(see Proposition 3.2-(a)). This c̄(z, ·) gives a well-defined solution to the MF-HJB

equation (3.9) as v(z, t) = γ(z − µ)2 + η ≡ v∞(z), t ≥ 0, where γ and η are given in

(3.16). Applying this v(z, ·) into the MF-FPK equation (3.10) gives us

∂tf(z, t) =
γ

r
∂z
(
(z − µ)f(z, t)

)
+
σ2

2
∂2
zzf(z, t),

where f(z, 0) = f∞(z)
(
1+
∑∞

n=2 kn(0)Hn(z)
)
∈ SNL

per is given. By using the operator L

defined in Proposition 3.2-(b), it can be shown that the solution to the above equation

is (3.27) which is indeed in the form of (3.58). We can also show, similar to the proof of

Theorem 3.3-(b), that limt→∞ ‖f(z,t)−f∞(z)
f∞(z)

‖L2 = 0. Hence, the steady-state solution

f∞(z) is asymptotically stable with respect to the set of initial perturbations SNL
per

based on Definition 3.3.
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CHAPTER 4

Synthesis of Mean Field Controlled

Cucker-Smale Type Flocking: A

Maxwellian Distribution

This chapter is concerned with the synthesis of a Mean Field (MF) flocking model.

In this problem formulation the state of each agent consists of both its position and

its controlled velocity such that: (i) all agents have similar stochastic dynamics, and

(ii) each agent seeks to minimize by continuous state feedback its individual dis-

counted cost function involving a nonlinear (relative distance based) weighted mean

of the velocity states of all other agents. The cost functions are based on the normal-

ized Cucker-Smale (CS) flocking algorithm in its original uncontrolled formulation.

For this dynamic game problem, the MF system consisting of coupled determinis-

tic Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations

and an infinite population cost-coupling is derived approximating the stochastic sys-

tem of agents as the population size goes to infinity. Subject to the existence of a

unique solution to the MF system: (i) the stationary solution of the MF system is

a Maxwellian distribution function, (ii) the set of MF control laws for the system

possesses an εN -Nash equilibrium property where εN goes to zero as the population

size N approaches infinity.
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4.1. Introduction

Collective motion such as the flocking of birds, schooling of fish and swarming

of bacteria is one of the most widespread phenomenon in nature. Scientists from

different disciplines have studied such emergent behaviour for the past fifty years to

understand the general mechanisms of cooperative phenomena and their potential

applications (see [25,47,105,155] and the references therein).

The study of collective motion in nature is of interest not only to model and

analyze these widespread phenomena but also because ideas from these behaviours can

be used by engineers to develop efficient algorithms for a wide range of applications

(see [108,147] among many other papers).

A group of agents has a flocking behaviour if: (i) agents’ velocities converge to a

common value (e.g., mean of initial velocities), i.e., consensus in velocity, and (ii) the

distance between agents remains bounded.

There are two main classes of models for the flocking behaviour: (i) individual

based models in the form of coupled Ordinary (Stochastic) Differential Equations

(O(S)DEs) (see for instance [46,169]) where in these algorithms a key element is the

use of local feedback involving local communication (subject to the network topology)

between agents so as to reach an agreement, and (ii) continuum models in the form

of Partial (or integro-partial) Differential Equations (PDEs) to model the collective

motion in the case of systems with large populations (see [40,50,68,69,167] among

many others). The continuum models can be derived from the individual based models

in the large population limit by use of the kinetic theory of gases, hydrodynamic and

mean field theory (see for instance [39,40,68]).

Two fundamental individual based models, (i) Cucker-Smale flocking model, (ii)

self-propelling, friction and attraction-repulsion model, and their corresponding con-

tinuum formulations can be found in the comprehensive survey paper [40].

In [46] Cucker and Smale (CS) formulated an interesting individual based flocking

model for a group of agents. This model is motivated by the collective motion of a

group of birds such that each bird updates its velocity as a weighted velocities of all
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the other birds. The weights in this model are functions of the relative distance of

the birds such that as the mutual distance between two birds increases the influence

of their velocities on each other decreases. Recently, the CS model with normalized

(relative distance based) communication rates is studied in [121].

Several extensions of the CS model are addressed to such problems as hierarchical

leadership [160], stochastic and noisy environment [45, 67], collision avoidance [44,

144] and space vehicle control [147], among others.

This chapter studies the synthesis of a Mean Field (MF) flocking model. In this

problem formulation the state of each agent consists of both its position and its con-

trolled velocity such that: (i) all agents have similar stochastic dynamics, and (ii) each

agent seeks to minimize by continuous state feedback its individual discounted cost

function involving a nonlinear (relative distance based) weighted mean of the velocity

states of all other agents. The cost functions are based on the normalized CS flocking

algorithm in its original uncontrolled formulation. For this dynamic game problem,

the MF system consisting of coupled deterministic Hamilton-Jacobi-Bellman (HJB)

and Fokker-Planck-Kolmogorov (FPK) equations and an infinite population cost-

coupling is derived approximating the stochastic system of agents as the population

size goes to infinity. Subject to the existence of a unique solution to the MF system:

(i) the stationary solution of the MF system is a Maxwellian distribution function, (ii)

the set of MF control laws for the system possesses an εN -Nash equilibrium property

where εN goes to zero as the population size N approaches infinity.

Hence, the model of this chapter may be regarded as a controlled game theoretic

formulation of a flocking model in which each agent, instead of responding to an

ad-hoc algorithm, obtains its control law from a game theoretic Nash equilibrium.

The following notation will be used throughout the chapter. We use the integer

valued subscript as the label for an individual agent of the population. The integer

N is reserved to denote the population size of the system. We use the superscripts

N for a process to indicate the dependence on the population size. Let Rn denote

the n-dimensional real Euclidean space with the standard Euclidean norm | · |. The
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transpose of a vector (or matrix) x is denoted by xT . tr(A) denotes the trace of a

square matrix A. The gradient vector and matrix of second order partial derivatives

of f with respect to variable x are denoted by Dxf and D2
xxf , respectively. The

symbol ∂t denotes the partial derivative with respect to variables t.

The chapter is organized as follows. Some background of fundamental uncon-

trolled CS flocking algorithm and its corresponding continuum formulation is pre-

sented in Section 4.2. Section 4.3 is dedicated to the problem formulation. The MF

control approach to the flocking problem is presented in Section 4.4. Section 4.5

presents the Maxwellian stationary solution of the MF system. The ε-Nash equi-

librium properties of the MF control laws is established in Section 4.6. Concluding

remarks are stated in Section 4.7.

4.2. The Uncontrolled Cucker-Smale Model

The fundamental uncontrolled CS model [46] for a system of population N is

given by the nonlinear system of ODEs:
dxi(t) = vi(t)dt,

1 ≤ i ≤ N, t > 0,

dvi(t) = 1
N

∑N
j=1 a(‖xi(t)− xj(t)‖)

(
vj(t)− vi(t)

)
dt,

where xi ∈ Rn and vi ∈ Rn are, respectively, position and velocity vectors of the ith

agent, 1 ≤ i ≤ N , with initial states xi(0), vi(0), and the communication rates are

given by

a(‖xi(t)− xj(t)‖) :=
1

(1 + ‖xi(t)− xj(t)‖2)β
, (4.1)

for some fixed β ≥ 0 (see [121] for a CS model with normalized communication rates).

It is shown in [46] that the agents’ velocities converge to a common value (the

average of initial velocities) regardless of the initial configurations when β < 1/2 and

also the distance between agents remain fixed and bounded but not necessarily the

same. This result was improved in [68] in the case of β = 1/2.
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The corresponding continuum model of the individual uncontrolled CS algorithm

is the advection equation [39]

∂f

∂t
(x, v, t) + vTDxf(x, v, t) = DT

v

(
ξ(f)(x, v, t)f(x, v, t)

)
, f(x, v, 0),

where f(x, v, t) is the density function of particles positioned at (x, t) ∈ Rn×R+ with

velocity v ∈ Rn, and the velocity field ξ(f)(x, v, t) is defined as

ξ(f)(x, v, t) =

∫
R2n

a(‖x− x′‖)(v − v′)f(x′, v′, t)dx′dv′.

See the comprehensive survey paper [40] (and the references therein) for the

derivation of the continuum CS flocking model from the individual based CS algorithm

in large populations via kinetic theory.

4.3. The Controlled Flocking Model

Consider a system ofN agents. The dynamics of the agents are given by controlled

Stochastic Differential Equations (SDEs):
dxi(t) = vi(t)dt,

1 ≤ i ≤ N

dvi(t) = ui(t)dt+ Cdwi(t),

(4.2)

where xi(·) ∈ Rn is the position, vi(·) ∈ Rn is the velocity, ui(·) ∈ Rn is the control

input, and {wi : 1 ≤ i ≤ N} denotes a set of N independent p-dimensional standard

Wiener processes. The set of initial data {
(
xi(0), vi(0)

)
: 1 ≤ i ≤ N} are assumed to

be independent and also independent of {wi : 1 ≤ i ≤ N} with finite second moments.

The noise intensity matrix C is in Rn×p.

The admissible control set of the ith agent is taken as

Ui := {ui(·) : ui(t) is adapted to sigma-field σ
(
(xj(s), vj(s)) : s ≤ t, 1 ≤ j ≤ N)}.
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Let the nonlinear cost-coupling function be defined homogeneously throughout

the population by

φN
(
(xi, vi); (x, v)−i

)
:=
∥∥∥ 1∑N

j=1 a(‖xi − xj‖)

N∑
j=1

a(‖xi − xj‖)(vj − vi)
∥∥∥2

, (4.3)

for a generic agent i, where (x, v)−i :=
(
(x, v)1, · · · , (x, v)i−1, (x, v)i+1, · · · , (x, v)N

)
,

and the weight function

a(‖xi − xj‖) :=
1

(1 + ‖xi − xj‖2)β
, (4.4)

with β > 0, is based on (4.1). We note that the cost-coupling function of each agent

involves normalized (relative distance based) weighted mean of the velocity states of

all other agents.

The objective of the ith individual agent, 1 ≤ i ≤ N , is to minimize (over the

admissible control set Ui) its discounted cost function

JNi (ui, u−i) := E

∫ ∞
0

e−ρt
(
φN
(
(xi, vi); (x, v)−i

)
+ uTi Rui

)
dt, (4.5)

where the constant ρ > 0 is the discounted factor, and R is a symmetric pos-

itive definite matrix in Rn×n. To indicate the dependence of Ji on ui, u−i :=

(u1, · · · , ui−1, ui+1, · · · , uN) and the population size N , we write it as JNi (ui, u−i).

It is important to note that the generic agent i is coupled to all other agents via the

nonlinear cost-coupling function φN
(
(xi, vi); (x, v)−i

)
.

The model (4.2)-(4.5) may be regarded as a controlled game theoretic formulation

of a normalized CS flocking model (see (2.2) in [121] for a normalized uncontrolled

CS model). We note that the mean field game consensus model (3.1)-(3.2) studied in

previous chapter is the scalar version of the flocking model (4.2)-(4.5) with β = 0.

Remark 4.1. The results of this chapter can easily be extended to the case of

agents with cost-coupling functions of the form

φN
(
(xi, vi); (x, v)−i

)
:=

1∑N
j=1 a(‖xi − xj‖)

N∑
j=1

a(‖xi − xj‖)‖vj − vi‖2, (4.6)
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or agents with Long Time Average (LTA) (i.e., ergodic) cost functions (see [130,

132]).

For each i, let zi := [xi, vi]
T and rewrite (4.2) as

dzi(t) =
(
Fzi(t) +Gui(t)

)
dt+Ddwi(t), 1 ≤ i ≤ N, (4.7)

where

F =

 0 I

0 0

 , G =

 0

I

 , D =

 0

C

 .

The discounted cost function (4.5) may be rewritten as

JNi (ui, u−i) := E

∫ ∞
0

e−ρt
(
φN(zi; z−i) + uTi Rui

)
dt, (4.8)

where

φN
(
zi; z−i

)
:=
∥∥∥ 1∑N

j=1 a(‖xi − xj‖)

N∑
j=1

a(‖xi − xj‖)(vj − vi)
∥∥∥2

, (4.9)

where z−i := (z1, · · · , zi−1, zi+1, · · · , zN).

4.4. A Mean Field Game Approach

Similar to Chapter 3 we take the following steps to the dynamic game flocking

model (4.2)-(4.5) based on the nonlinear MF control approach developed in [78,85,

177]:

(i) The infinite population limit: In this step a Nash equilibrium is character-

ized by an “equilibrium relationship” between the individual strategies and

the mass effect (i.e., the overall effect of the population on a given agent).

This equilibrium relationship is described by the so-called MF system.

(ii) εN -Nash equilibrium for the finite N model: The distributed continuum

based MF control laws (derived from the MF system in Step 1) establish

an εN -Nash equilibrium for the finite N population dynamic game flocking
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model (4.2)-(4.5) where εN goes to zero asymptotically as N approaches

infinity.

4.4.1. Mean Field Approximation. In a large N population system, the

mean field approach suggests that the cost-coupling function for a “generic” agent i

in (4.9), φN
(
zi; z−i

)
, be approximated by a deterministic function φ(z, ·) which only

depends on z = zi.

Replacing the function φN(zi; z−i) with the deterministic function φ(z, ·) in the

ith agent’s cost function (4.8) reduces the dynamic game flocking model (4.7)-(4.8) to

a set of N independent optimal control problems.

4.4.2. Preliminary Optimal Control of a Single Agent. We now con-

sider a “single agent” Optimal Control Problem (OCP):

dz(t) =
(
Fz(t) +Gu(t)

)
dt+Ddw(t), t ≥ 0, (4.10)

inf
u∈U

J(u) := inf
u∈U

E

∫ ∞
0

e−ρt
(
φ
(
z(t), t

)
+ uTi (t)Rui(t)

)
dt, (4.11)

where z(·) ∈ R2n, u(·) ∈ Rn are the state and control input, respectively; z(0) is given;

w(·) denotes a p-dimensional standard Wiener processes; φ(z, ·) is a positive function,

and U is the corresponding admissible control set of the generic agent. An admissible

control uo(·) ∈ U is called optimal if J(uo) = infu∈U J(u).

For x ∈ R2n and 0 ≤ t < ∞ we define the value function h(·, ·) for the OCP

(4.10)-(4.11) by

h(x, t) := inf
(u(s))s≥t∈U

E
[ ∫ ∞

t

e−ρ(s−t)
(
φ
(
z(s), s

)
+ uTi (s)Rui(s)

)
ds
∣∣z(t) = x

]
.

By employing a standard dynamic programming argument and using Itô’s formula

we get the following result (see [59]).

Theorem 4.1. (HJB for the OCP) Assume that the function φ(z, t) is Lipschitz

continuous with respect to z and uniformly continuous with respect to t, and assume

the value function h(z, t) for the OCP (4.10)-(4.11) is a C1 function of variable t and
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C2 function of variable z, then h(z, t) solves the (backward in time) Hamilton-Jacobi-

Bellman (HJB) equation

∂th(z, t) +H
(
z,Dzh

)
+

1

2
tr
(
DDTD2

zzh(z, t)
)

+ φ(z, t) = ρh(z, t), z ∈ R2n, t ≥ 0,

(4.12)

with boundary condition limt→∞ e
−ρth(z(t), t) = 0, where the Hamiltonian H(·) is

defined as

H(z, p) ≡ min
u∈U

H(z, p, u) := min
u∈U

{
(Fz +Gu)Tp+ uTRu

}
,

for p in R2n.

The solution of the OCP (4.10)-(4.11) is

uo(z, t) := arg min
u∈U

H(z,Dzh(z, t), u) = −1

2
R−1GTDzh(z, t). (4.13)

Substituting uo(z, t) into (4.12) yields the (backward in time) HJB equation (z ∈

R2n, t ≥ 0)

∂th(z, t) +
(
Fz − 1

4
GR−1GTDzh(z, t)

)T
Dzh(z, t)

+
1

2
tr
(
DDTD2

zzh(z, t)
)

+ φ(z, t) = ρh(z, t), (4.14)

with boundary condition limt→∞ e
−ρth(z(t), t) = 0.

4.4.2.1. Fokker-Planck-Kolmogorov (FPK) Equation. Under the state feedback

optimal control law uo(z, t) given in (4.13), the evolution of the density f(z, ·) of the

generic agent (4.10) satisfies the (forward in time) Fokker-Planck-Kolmogorov (FPK)

equation (z ∈ R2n, t ≥ 0)

∂tf(z, t) +DT
z

((
Fz − 1

2
GR−1GTDzh(z, t)

)
f(z, t)

)
=

1

2
tr
(
DDTD2

zzf(z, t)
)
, (4.15)

with initial condition f(z, 0) ≥ 0. We note that h(z, ·) in (4.15) is the solution of the

HJB equation (4.14). Let us assume the boundary condition lim‖z‖→∞ f(z, t) = 0 for

all t ≥ 0.
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4.4.2.2. Nonlinear Cost-Coupling (CC) Function. For a generic agent i, the

Law of Large Numbers (LLN) suggests the approximation of the Cost-Coupling (CC)

function φN(zi, z
o
−i) in (4.9)

(
where zo−i is the state of all agents {j : 1 ≤ j ≤ N}

distinct from agent i which evolve according to the SDEs (4.7) with optimal control

laws uoi (·) := uo(z, ·)|z=zi
)

for a large N population system by

φ̄(zi, t) ≡ φ̄(xi, vi, t) =

∥∥∥∥
∫
R2n a(‖xi − x′‖)(v′ − vi)f(x′, v′, t)dx′dv′∫

R2n a(‖xi − x′‖)f(x′, v′, t)dx′dv′

∥∥∥∥2

, (4.16)

where f(x, v, ·) ≡ f(z, ·) is the solution of the equation (4.15), and the function

a(‖x− x′‖) is defined in (4.4).

4.4.3. The Mean Field System. Let

fN(x, v, 0) :=
1

N

N∑
i=1

δ
(
x− xi(0)

)
δ
(
v − vi(0)

)
,

be the initial empirical density function associated with N agents where δ is the Dirac

delta. We enunciate the following assumption:

(A4.1) We assume that: (i) the sequence of initial conditions {
(
xi(0), vi(0)

)
:

1 ≤ i ≤ N} has a compactly supported probability density f(x, v, 0) ≡ f0(x, v) such

that
∫
A f0(x, v)dxdv = 1 where A is a compact interval containing all

(
xi(0), vi(0)

)
,

1 ≤ i ≤ N , and (ii) {fN(x, v, 0) : N ≥ 1} converges weakly to f0(x, v) almost surely,

i.e., for any ψ(x, v) ∈ C2n
b (the space of bounded continuous functions on R2n),

lim
N→∞

∫
ψ(x, v)fN(x, v, 0)dxdv =

∫
ψ(x, v)f0(x, v)dxdv, (a.s.).

Remark 4.2. If the sequence {zi(0) ≡ [xi(0), vi(0)]T : 1 ≤ i ≤ N} is generated

by independent random observations on the density function f0(x, v), then (A4.1)-

(ii) holds with probability one by the Strong Law of Large Numbers or the Glivenko-

Cantelli theorem [42].
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We now aim to construct the equilibrium relationship (between the individual

strategies and the mass effect) in the stochastic MF control theory. For nonlinear MF

stochastic control problems, a general formulation using equations of the McKean-

Vlasov type is given in [85]. However, for the synchronization of coupled oscillators

formulated as a game problem a compact system of coupled MF equations is given

in [177] within a nonlinear SDE problem formulation.

The key idea of the MF control methodology is to prescribe a spatially averaged

mass function φ̄(z, ·) characterized by the property that it is reproduced as the aver-

age of all agents’ states in the continuum of agents whenever each individual agent

optimally tracks the same mass function φ̄(z, ·).

Applying the nonlinear MF stochastic control approach (developed in [78, 85,

177]) to our dynamic game flocking model (4.7)-(4.8) in the infinite population limit

(or (4.10)-(4.11) for a generic agent) yields the nonlinear continuum based MF system

(z ∈ R2n, t ≥ 0):

[MF-HJB] ∂th(z, t) +
(
Fz − 1

4
GR−1GTDzh(z, t)

)T
Dzh(z, t)

+
1

2
tr
(
DDTD2

zzh(z, t)
)

+ φ̄(z, t) = ρh(z, t), (4.17)

[MF-FPK] ∂tf(z, t) +DT
z

((
Fz − 1

2
GR−1GTDzh(z, t)

)
f(z, t)

)
=

1

2
tr
(
DDTD2

zzf(z, t)
)
, (4.18)

[MF-CC] φ̄(z, t) ≡ φ̄(x, v, t) =

∥∥∥∥
∫
R2n a(‖x− x′‖)(v′ − v)f(x′, v′, t)dx′dv′∫

R2n a(‖x− x′‖)f(x′, v′, t)dx′dv′

∥∥∥∥2

,

(4.19)

where f(z, 0) ≡ f0(x, v) is the given initial population density, necessarily we have∫
R2n f(z, t)dz = 1 for any t ≥ 0, and it is assumed that lim‖z‖→∞ f(z, t) = 0 and

limt→∞ e
−ρth(z(t), t) = 0.

The system of equations (4.17)-(4.19) consists of: (i) the nonlinear (backward

in time) MF-HJB equation (4.14) which describes the HJB equation of a generic

agent’s discounted optimal problem (4.10)-(4.11) with cost coupling φ̄(z, ·), (ii) the
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nonlinear (forward in time) MF-FPK equation (4.15) which describes the evolution

of the population density with the best response state feedback control law

uo(z, t) := −1

2
R−1GTDzh(z, t), z ∈ R2n, t ≥ 0, (4.20)

and (iii) the spatially averaged MF-CC function presented in (4.16).

The MF system (4.17)-(4.19) with respect to the position and velocity variables

takes the following form (x, v ∈ Rn, t ≥ 0)

[MF-HJB] ∂th(x, v, t) + vTDxh(x, v, t)− 1

4
R−1‖Dvh(x, v, t)‖2

+
1

2
tr
(
CCTD2

vvh(x, v, t)
)

+ φ̄(x, v, t) = ρh(x, v, t), (4.21)

[MF-FPK] ∂tf(x, v, t) + vDT
x f(x, v, t)− 1

2
R−1DT

v

((
Dvh(x, v, t)

)
f(x, v, t)

)
=

1

2
tr
(
CCTD2

vvf(x, v, t)
)
, (4.22)

[MF-CC] φ̄(x, v, t) =

∥∥∥∥
∫
R2n a(‖x− x′‖)(v′ − v)f(x′, v′, t)dx′dv′∫

R2n a(‖x− x′‖)f(x′, v′, t)dx′dv′

∥∥∥∥2

, (4.23)

where f(x, v, 0) ≡ f0(x, v) is the given initial population density, necessarily we have∫
R2n f(x, v, t)dxdv = 1 for any t ≥ 0, and it is assumed that

lim
‖x‖ or ‖v‖→∞

f(x, v, t) = 0, lim
t→∞

e−ρth(x(t), v(t), t) = 0.
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4.5. Maxwellian Stationary Solution

The MF system (4.21)-(4.23) in stationary form is

vTDxh∞(x, v)− 1

4
R−1‖Dvh∞(x, v)‖2

+
1

2
tr
(
CCTD2

vvh∞(x, v)
)

+ φ̄∞(x, v) = ρh∞(x, v), (4.24)

vDT
x f∞(x, v)− 1

2
R−1DT

v

((
Dvh∞(x, v)

)
f∞(x, v)

)
=

1

2
tr
(
CCTD2

vvf∞(x, v)
)
, (4.25)

φ̄∞(x, v) =

∥∥∥∥
∫
R2n a(‖x− x′‖)(v′ − v)f∞(x′, v′)dx′dv′∫

R2n a(‖x− x′‖)f∞(x′, v′)dx′dv′

∥∥∥∥2

, (4.26)

where the density f∞(x, v) satisfies
∫
R2n f∞(x, v)dxdv = 1, and

lim
t→∞

e−ρtv∞(x(t), v(t)) = 0.

The stationary equation system (4.24)-(4.26) is related to (4.21)-(4.23) by the fact

that the steady-state population density of the system, f∞(x, v) := limt→∞ f(x, v, t),

gives a time independent cost-coupling φ̄∞(x, v) in (4.19) which yields a time inde-

pendent solution h∞(x, v) to the MF-HJB equation (4.21). Furthermore, f∞(x, v)

and h∞(x, v) solve the stationary MF-FPK equation (4.25).

Let Π > 0 be the unique solution of the deterministic algebraic Riccati equation

− ΠR−1Π + I = ρΠ.

Theorem 4.2. Assume that the weight function a(‖x‖) is integrable, i.e.,∫
Rn
a(‖x‖)dx <∞,
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and Σ = CCT > 0. Then for any arbitrary µ ∈ Rn, there exists the following solution

to the system (4.24)-(4.26):

h∞(v) = (v − µ)TΠ(v − µ) + η, η = tr(Σ)/ρ,

f∞(v) =
1

(2π)n/2|Σ|1/2
exp

(
− 1

2
(v − µ)TΣ−1(v − µ)

)
,

φ̄∞(v) = ‖v − µ‖2.

Proof. The assertion of the theorem is straightforward to verify by substituting

h∞(v), f∞(v) and φ̄∞(v) into the system (4.24)-(4.26).

We note that the stationary solution f∞(v) is a Maxwellian distribution function

with arbitrary µ bulk velocity. The vector µ may be chosen as the initial velocity

population mean, i.e., µ =
∫
R2n vf0(x, v)dxdv . The Maxwellian distribution function

is a desirable steady-state solution of flocking models (see e.g. (1.5) in [50]).

Remark 4.3. We note that the following weights satisfy the integrability condi-

tion: (i) the CS weights a(‖x‖) = 1
(1+‖x‖2)β

in (4.4) for β > 1, and (ii) the Gaussian

weights a(‖x‖) = exp(−α‖x‖2) for α > 0.

4.6. ε-Nash Equilibrium Property

We shall assume that the MF system (4.17)-(4.19) has a unique solution(
h(·, ·), f(·, ·), φ̄(·, ·)

)
.

In a finite N population system we assume that the ith agent applies the contin-

uum (i.e., infinite population) based MF control input:

uoi (t) := uo(z, t)
∣∣
z=zi(t)

= −1

2
R−1GTDzh(z, t)

∣∣
z=zi(t)

, t ≥ 0, (4.27)

where h(z, t) is the solution of the MF-HJB equation (4.17). Hence, the closed-loop

MF dynamics of the ith agent in the finite N population system is

dzoi (t) =
(
Fzoi (t)−

1

2
GR−1GTDzh(z, t)

∣∣
z=zi(t)

)
dt+Ddwi(t), (4.28)
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or dx
o
i (t) = voi (t)dt,

dvoi (t) = −1
2
R−1∇vh(v, t)

∣∣
v=vi(t)

dt+ Cdwi(t),

with initial conditions xoi (0) = xi(0) and voi (0) = vi(0).

We recall the following definition from Chapter 2 (see Definition 2.2).

Definition 4.1. [79] Given ε > 0, the set of controls {uoi ∈ Ui : 1 ≤ i ≤ N} for

N agents generates an ε-Nash equilibrium with respect to the costs {JNi : 1 ≤ i ≤ N},

if JNi (uoi , u
o
−i)− ε ≤ infui∈Ui J

N
i (ui, u

o
−i) ≤ JNi (uoi , u

o
−i), for any 1 ≤ i ≤ N .

Let

fN(x, v, t) :=
1

N

N∑
i=1

δ
(
x− xoi (t)

)
δ
(
v − voi (t)

)
,

be the empirical density function associated with N agents with MF control inputs.

We denote(
εN(xi)

)2
:= E

∫ ∞
0

e−ρt
(∫

R2n a(‖xi − x‖)vfN(x, v, t)dxdv∫
R2n a(‖xi − x‖)fN(x, v, t)dxdv

−
∫
R2n a(‖xi − x‖)vf(x, v, t)dxdv∫
R2n a(‖xi − x‖)f(x, v, t)dxdv

)
dt,

where xi is the solution of the dynamics (4.2) under the admissible control ui ∈ Ui
such that JNi (ui, u

o
−i) ≤ JNi (uoi , u

o
−i). This restriction causes no loss of generality in

the Theorem below since, other wise the control ui, will generate a cost higher than

JNi (u0
i , u

o
−i). Under Assumption (A4.1) one can show that limN→∞ εN(xi) = 0 (i.e.,

a subsequence of fN converges weakly to f) using the Prohorov’s theorem [19]. This

yields the following result:

Theorem 4.3. Assume (A4.1) holds. Then the set of MF control laws for the

finite population system {uoi ∈ Ui : 1 ≤ i ≤ N} given in (4.27) generates an εN -Nash

equilibrium such that

JNi (uoi , u
o
−i)− εN ≤ inf

ui∈Ui
JNi (ui, u

o
−i) ≤ JNi (uoi , u

o
−i), 1 ≤ i ≤ N,
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where limN→∞ εN = 0.

4.7. Chapter Summary

This work is concerned with the synthesis of a controlled flocking model via

Mean Field (MF) control theory. In this problem formulation the state of each agent

consists of both its position and its controlled velocity such that: (i) all agents have

similar stochastic dynamics, and (ii) each agent seeks to minimize by continuous

state feedback its individual discounted cost functions involving a nonlinear (relative

distance based) weighted mean of the velocity states of all other agents. The cost

functions are based on the normalized Cucker-Smale (CS) flocking algorithm in its

original uncontrolled formulation. For this dynamic game problem, the MF system of

equations which consists of coupled deterministic HJB and FPK equations is derived

approximating the stochastic system of agents as the population size goes to infinity.

Subject to the existence of a unique solution to the MF system of equations: (i)

the stationary solution of the MF system of equations is a Maxwellian distribution

function, (ii) the set of MF control laws for the system possesses an εN -Nash equilib-

rium property where εN goes to zero as the population size N approaches infinity.

This model may be regarded as a controlled game theoretic formulation of a

flocking behaviour in which each agent, instead of responding to an ad-hoc algorithm,

obtains its control law from a game theoretic Nash equilibrium.

A topic of future research is the stability analysis of the MF system near the

Maxwellian distribution function based on the approach of Chapter 3 (see [132]).
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CHAPTER 5

Mean Field LQG Control in

Leader-Follower Stochastic Multi-Agent

Systems: Likelihood Ratio Based

Adaptation

This chapter studies large population leader-follower stochastic multi-agent systems

where the agents have linear stochastic dynamics and are coupled via their quadratic

cost functions. The cost of each leader is based on a trade-off between moving toward

a certain reference trajectory which is unknown to the followers and staying near their

own centroid. On the other hand, followers react by tracking a convex combination of

their own centroid and the centroid of the leaders. We approach this large population

dynamic game problem by mean field linear-quadratic-Gaussian (MF LQG) stochas-

tic control theory. In this model, followers are adaptive in the sense that they use

a likelihood ratio estimator (on a sample population of the leaders’ trajectories) to

identify the member of a given finite class of models which is generating the reference

trajectory of the leaders. Under appropriate conditions, it is shown that the true

reference trajectory model is identified by each follower in finite time with probabil-

ity one as the leaders’ population goes to infinity. Furthermore, we show that the

resulting sets of mean field (MF) control laws for both leaders and adaptive followers
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possess an almost sure εN -Nash equilibrium property for a system with population

N where εN goes to zero as N goes to infinity. Numerical experiments are presented

illustrating the results.

5.1. Introduction

Decision making and collective behaviour often involve some form of leader-

follower behaviour. This behaviour is observed in humans [54] and many other

species in nature [43, 122], and is studied in a variety of disciplines such as game

theory [161], distributed networks [173], crowd flow dynamics [12] and biology [43],

among others. Such behaviour in nature is often attributed to the fact that there

exist some individuals in the group which have more information than others, for

instance the location of resources or migratory routes [43].

In this chapter we study large population Leader-Follower (L-F) stochastic multi-

agent systems where the agents have linear stochastic dynamics and are coupled via

their quadratic cost functions. The cost of each leader is based on a trade-off between

moving toward a certain reference trajectory which is unknown to the followers and

staying near their own centroid. On the other hand, followers react by tracking a

convex combination of their own centroid and the centroid of the leaders. Here, as

in most practical leader-follower modelling of multi-agent systems, the leaders ignore

the followers, but the followers’ behaviours are influenced by the leaders. The model

in this chapter is a generalization of that in [106] to the case of collective dynamics

which include leaders, followers and an unknown (to the followers) reference trajectory

for the leaders.

We approach the large population L-F model by mean field linear-quadratic-

Gaussian (MF LQG) stochastic control theory. In this framework the computation

of the followers’ control laws requires knowledge of the complete reference trajectory

of the leaders which is in general not known to the followers, hence a likelihood ratio

based adaptation scheme is proposed. The main contributions of this chapter are as

follows: (i) A likelihood ratio based adaptation algorithm (on a sample population of
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the leaders’ trajectories) is employed by the adaptive followers to identify the member

of a given finite class of models which is generating the reference trajectory of the

leaders. Under appropriate conditions, it is shown that the true reference trajectory

model is identified in finite time with probability one by each follower as the leaders’

population goes to infinity. (ii) A demonstration that the use of the resulting mean

field (MF) control laws yields a set of leaders and adaptive followers’ control laws

possessing an almost sure (a.s.) εN -Nash equilibrium property, where εN goes to zero

as the population size N goes to infinity.

The implementation of the overall MF control laws for the leaders and followers

has the following form: (i) Each leader enacts an MF control law which consists of the

feedback of its own local stochastic state and the precomputed leaders’ deterministic

mass effect. (ii) Each follower enacts an adaptive MF control law which consists of

the feedback of its own local stochastic state and the estimation based mass effects

of the leaders and followers.

In [140] we first developed a non-adaptive but general model with weighted cou-

plings in the leaders and followers’ cost functions (which depended on the locality

parameters of the agents). [140] also presents the main adaptation result of the uni-

form cost coupling model in the case that the followers “only” track the centroid of the

leaders. Subsequently, in [139] the optimality property of the (tracking like) adaptive

followers’ MF control laws is studied. In this chapter we present a complete analysis

of a more general (and realistic) scenario where the followers are tracking a convex

combination of their own centroid and the centroid of the leaders [137]. Hence, we

have an ε-Nash equilibrium property for the adaptive followers’ MF control laws.

In the standard consensus literature the agents have little a priori information but

communicate over possibly time varying graphs, then under connectivity assumptions

(e.g., the union of the interaction graphs for the system is connected frequently enough

as the system evolves) the agents reach consensus (see [154], among many other

papers). By contrast, the leader-follower agents in this chapter possess a priori data

on the overall system; the leaders observe no one and the followers have limited
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observations on the leaders and a priori data on the possible trajectory scenarios

of the leaders. This permits the computation by each follower agent of different

tracking scenarios amongst which it chooses one at each instant, depending upon the

observations received. Therefore, the agents in the model considered in this chapter

do not require communication except the limited observations on the leaders by the

followers.

It is to be noted that the formulation in this chapter does not include any colli-

sion avoidance or formation control between the agents beyond the optimal tracking

property since the states do not necessarily correspond to positions in space. We fur-

ther note that if the states are given a spatial interpretation the inherently stochastic

volatility of the dynamics prevents any state from converging onto another state.

The organization of this chapter is as follows. Section 5.2 is dedicated to the

problem formulation, terminology and some applications of the model in multi-vehicle

coordination control and economics (finance). The MF LQG systems of the L-F prob-

lem are derived and analyzed in Section 5.3. In Section 5.4 we present the estimation

procedure for the followers. The stability analysis of the MF control laws and the

adaptive MF algorithm for the followers are presented in Section 5.5. The optimality

properties of the MF control laws for both the leaders and the adaptive followers are

given in Section 5.6, and Section 5.7 presents sample numerical simulations of the

model. Concluding remarks are stated in Section 5.8.

5.2. Problem Formulation, Terminology and some Applica-

tions

The following notation will be used in this chapter. We use the integer valued

subscript as the label for a certain agent of the population and superscripts L and

F for a leader and follower agent, respectively. In addition, an overline denotes the

expected value of a random variable, i.e., z̄(t) := Ez(t). ‖ · ‖ denotes the 2-norm

of vectors and ‖ · ‖∞ denotes the infinity or sup norm. ‖z‖Q := (zTQz)1/2 for any

appropriate dimension vector z and matrix Q ≥ 0. AT denotes the transpose of a
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vector or matrix A and tr(A) denotes the trace of a square matrix A. Let Cn be the

family of all n-dimensional continuous functions on R+ and Cb
n := {f ∈ Cn : ‖f‖∞ :=

supt≥0 ‖f(t)‖ <∞}. Note that Cb
n is a Banach space under the norm ‖ · ‖∞.

Let L denote the countably infinite set of leaders,

LNL := {L1, · · · , LNL} ⊂ L,

of cardinality NL, and similarly for the set of countably infinite followers F and the

subset FNF := {F1, · · · , FNF } ⊂ F of cardinality NF . We assume that L ∩ F = ∅.

5.2.1. Leaders Stochastic LQG Dynamic Game Model. The dynamics

for the NL leaders are given by

dzLi =
(
Aiz

L
i +Biu

L
i

)
dt+ Cidw

L
i , t ≥ 0, 1 ≤ i ≤ NL (5.1)

where zLi ∈ Rn is the state, uLi ∈ Rm is the control input, and {wLi : 1 ≤ i ≤

NL} denotes a set of independent (i.e., independent) p-dimensional standard Wiener

processes. The matrices Ai, Bi and Ci have compatible dimensions.

Let θi := [Ai, Bi, Ci] be defined as the dynamical parameter associated with

leader i, 1 ≤ i ≤ NL, where we assume that θi, for all 1 ≤ i ≤ NL, are in the

compact set ΘL. The initial states {zLi (0) : 1 ≤ i ≤ NL} are assumed to be inde-

pendent and also independent of {wLi : 1 ≤ i ≤ NL}. In addition we assume that

sup1≤i≤NL E‖z
L
i (0)‖2 <∞.

The admissible control set for leader i, 1 ≤ i ≤ NL, is given by

ULi :=
{
uLi : uLi (t) is adapted to sigma-field σ

(
zLj (s), s ≤ t, 1 ≤ j ≤ NL

)
,

‖zLi (T )‖ = o(
√
T ),

∫ T

0

‖zLi (t)‖2dt = O(T ) a.s.
}
.

Intuitively, the admissible controls are the controls that do not use any information

about future increments of the driving noise processes, which is essentially a causality

requirement in stochastic systems.
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The cost function of the leaders is based on a trade-off between moving towards

a common reference trajectory and keeping cohesion of the flock of leaders by also

tracking their centroid. We let

φL(zL,NL)(·) := λh(·) + (1− λ)zL,NL(·) (5.2)

where λ is a scalar in (0, 1), h ∈ Cb
n is a reference trajectory known to all the leaders,

and zL,NL(·) := 1/NL

∑NL
i=1 z

L
i (·) is the centroid of the leaders. The objective of each

individual leader i (1 ≤ i ≤ NL) is to minimize its Long Time Average (LTA) (i.e.,

ergodic) cost function given by

JL,NLi (uLi ;uL−i) := lim sup
T→∞

1

T

∫ T

0

(
‖zLi − φL(zL,NL)‖2

Q + ‖uLi ‖2
R

)
dt (5.3)

where the matrices Q and R are symmetric positive semi-definite and symmetric

positive definite, respectively, with compatible dimensions, and

uL−i := (uL1 , · · · , uLi−1, u
L
i+1, · · · , uLNL).

To indicate the dependence of JLi on uLi (·), uL−i(·) and the leaders’ population size

NL, we write it as JL,NLi (uLi ;uL−i). Note that the leaders’ mean field cost coupling

(5.2) is the same as mean field couplings in the basic models considered in [79], but

with time-varying offset term h(·). If λ = 1 then the leaders become independent

such that each leader is interested in optimally tracking h(·).

5.2.2. Followers Stochastic LQG Dynamic Game Model. Similarly, the

dynamics for the NF followers are given by

dzFi =
(
Aiz

F
i +Biu

F
i

)
dt+ Cidw

F
i , t ≥ 0, 1 ≤ i ≤ NF (5.4)

where zFi ∈ Rn is the state, uFi ∈ Rm is the control input, and {wFi : 1 ≤ i ≤ NF}

denotes a set of independent p-dimensional standard Wiener processes independent

of both {wLi : 1 ≤ i ≤ NL} and {zLi (0) : 1 ≤ i ≤ NL}. The matrices Ai, Bi and Ci

have compatible dimensions.
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Let θi := [Ai, Bi, Ci] be defined as the dynamical parameter associated with

follower i, 1 ≤ i ≤ NF , where we assume that θi, 1 ≤ i ≤ NF , are in the compact

set ΘF . The initial states {zFi (0) : 1 ≤ i ≤ NF} are assumed to be independent and

also independent of the independent {wFi : 1 ≤ i ≤ NF}, {wLi : 1 ≤ i ≤ NL}, and

{zLi (0) : 1 ≤ i ≤ NL}. In addition we assume that sup1≤i≤NF E‖z
F
i (0)‖2 <∞.

The admissible control set for follower i, 1 ≤ i ≤ NF , is given by

UFi :=
{
uFi : uFi (t) is adapted to σ

(
zFj (s), zLk (s), s ≤ t, 1 ≤ j ≤ NF , 1 ≤ k ≤ NL

)
,

‖zFi (T )‖ = o(
√
T ),

∫ T

0

‖zFi (t)‖2dt = O(T ) a.s.
}
.

The followers react by tracking a convex combination of their own centroid and

the centroid of the leaders. We let

φF (zL,NL , zF,NF )(·) := ηzL,NL(·) + (1− η)zF,NF (·) (5.5)

where η is a scalar in (0, 1), zF,NF (·) := 1/NF

∑NF
i=1 z

F
i (·) is the centroid of the follow-

ers, and zL,NL is the centroid of the leaders defined in (5.2). The LTA cost function

for an individual follower i (≤ i ≤ NF ) is given by

JF,Ni (uFi ;uF−i, u
L) := lim sup

T→∞

1

T

∫ T

0

(
‖zFi − φF (zL,NL , zF,NF )‖2

Q + ‖uFi ‖2
R

)
dt (5.6)

where uF−i := (uF1 , · · · , uFi−1, u
F
i+1, · · · , uFNF ), uL := (uL1 , · · · , uLNL), N = NL + NF is

the population size of the system, and Q and R are defined in (5.3). To indicate the

dependence of JFi on uFi (·), uF−i(·), uL(·) and the population size of the system N , we

write it as JF,Ni (uFi ;uF−i, u
L).

We note that in this model: (i) the leaders are coupled to each other through

their cost functions and respond to each other and their reference trajectory, and (ii)

the followers attempt to track the convex combination of both their own centroid

and the centroid of the leaders. These are captured in the two types of MF equation

systems in Section 5.3.
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5.2.3. Followers Observation Processes. We assume that all adaptive fol-

lowers observe a random fraction of the leaders’ trajectories with some added noise

through their individual observation processes. More precisely, we assume each adap-

tive follower i, 1 ≤ i ≤ NF <∞, observes a non-empty random subset Oi ⊂ L of size

|Oi| := Mi ≤ NL <∞ of the leaders’ trajectories through the process yMi
i (·) which is

described in terms of the stochastic differential equations

dyMi
i =

( 1

Mi

∑
j∈Oi

zLj

)
dt+

1

Mi

Mi∑
j=1

Di
jdv

i
j, t ≥ 0 (5.7)

where yMi
i ∈ Rn and {vij : 1 ≤ i ≤ NF , 1 ≤ j ≤ M} is a set of independent

standard Wiener processes independent of {wLi : 1 ≤ i ≤ NL}, {wFi : 1 ≤ i ≤ NF},

{zLi (0) : 1 ≤ i ≤ NL} and {zFi (0) : 1 ≤ i ≤ NF}. The set of constant matrices

{Di
j : 1 ≤ i ≤ NF , 1 ≤ j ≤M} has compatible dimensions.

The sets Oi ⊂ L, 1 ≤ i ≤ NF < ∞, of cardinality Mi are chosen a priori with

Mi = M(NL) = b
√
NLc < NL < ∞ (where brc denotes greatest integer less than or

equal to r) for 1 ≤ i ≤ NF < ∞, where NF → ∞ and NL → ∞ as the number of

followers and leaders respectively goes to infinity. The sets Oi ⊂ L, 1 ≤ i < ∞, are

chosen independently, and independent of all initial states and Wiener processes by

uniformly distributed selections on the set of the leaders, L. We underline that the

magnitude b
√
NLc is chosen simply for definition of modelling and exposition; any

other integer value function M(NL) satisfying M(NL)→∞ and M(NL)/NL → 0, as

NL →∞, may be used for the theory in this chapter.

We also assume that, as the prior information of the followers, the reference

trajectory of the leaders h(·) is parameterized by δ ∈ ∆ where ∆ is a finite set and

hδ ∈ Cb
n for any δ ∈ ∆. This is only for the followers, and h(·) is fully known by the

leaders.

5.2.4. Applications. The leader-follower modelling of this chapter is mo-

tivated by many practical problems in which some agents in a group have more

information than the others.
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A typical application is in multi-vehicle coordination control or in vehicle pla-

tooning (see [151]) where the aim is that the states (e.g., the velocities) of all vehicles

approach a reference signal (which could be an exogenous signal or which could evolve

according to a dynamic model). In many realistic situations some vehicles (the lead-

ers) have complete access to the reference trajectory, and the other vehicles (followers)

do not have access to this trajectory and need to estimate it. We can formulate this

multi-agent model as a leader-follower MF LQG problem considered in this chapter

where the followers need to identify the member of a given finite class of models which

is generating the reference trajectory.

Another application of the model is leader-follower dynamic version of Keynes’

beauty contest games in economics (finance). Keynes proposed beauty contest games

where a newspaper would print some photographs and people would vote for the

prettiest faces. Everyone who picked the most popular face automatically entered a

lottery to win a prize. Keynes remarked that the stock market is similar to beauty

contest games where each investor would like to guess the other investors’ guesses

(see Example 1 in [2]). A similar approach to MF stochastic control is considered

in [2] to study large population static aggregative games such as Keynes’ beauty

contest games. Now we formulate a leader-follower LQG dynamic version of Keynes’

beauty contest games. Here we consider a large population of players divided into

two groups: (i) the leaders as large well-informed players (e.g., institutional investors

in the stock market), and (ii) the followers (e.g., retail investors in the stock market).

The state of each player is its publicly announced prediction of the prettiest face where

zLi (·) denotes the state of the i-th leader (1 ≤ i ≤ NL) and zFi (·) denotes the state

of the i-th follower (1 ≤ i ≤ NF ). The leaders and followers have linear stochastic

dynamics given in (5.1) and (5.4) with different classes of parameters ΘL and ΘF . The

average prediction of the leaders and followers are given by their centroids zL,NL(·) :=

(1/NL)
∑NL

i=1 z
L
i (·) and zF,NF (·) := (1/NF )

∑NF
i=1 z

F
i (·), respectively. Based on the

quadratic payoff functions considered in [2], we formulate cost functions of the agents

as follows. The leaders would like to minimize their cost functions (5.3) based on a
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trade-off between making guesses close to the exogenous private informative signal h

(which is unknown to the followers) and guessing close to their own average prediction

zL,NL(·). On other hand, the followers would like to guess close to some convex

combination of their own average prediction zF,NF (·) and the average prediction of

the leaders zL,NL(·) (see (5.6)).

There are many other similar applications of the model considered in this chapter

in flocking [63], formation control [109], dynamic industry models [174], and social

opinion models with a very large number of leaders (e.g., important members of a

party) and followers [53].

5.3. Mean Field LQG Stochastic Control Theory

5.3.1. Preliminary LQG Optimal Control of a Single Agent. In this

section first we consider a single agent with linear stochastic dynamics

dz =
(
Az +Bu

)
dt+ Cdw, t ≥ 0 (5.8)

where z ∈ Rn is the state, u ∈ Rm is the control input, w denotes a p-dimensional

standard Wiener process, and z(0) is given. The matrices A, B and C have compatible

dimensions. The initial condition z(0) is independent of the process w.

Denote the admissible control set (see [106])

U :=
{
u : u(·) is adapted to σ(z(0), w(s), s ≤ t),

‖z(T )‖ = o(
√
T ),

∫ T

0

‖z(t)‖2dt = O(T ) a.s.
}
.

For u(·) ∈ U , let the LTA cost function be given by

J(u(·)) := lim sup
T→∞

1

T

∫ T

0

(
‖z − φ‖2

Q + ‖u‖2
R

)
dt (5.9)

where φ(·) ∈ Cb
n is a known function, Q and R are, respectively, symmetric positive

semi-definite and symmetric positive definite matrices with compatible dimensions.
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Theorem 5.1. (Special case of [106]) For the LQG optimal control problem

(5.8)-(5.9), assume (i) [A,B] is stabilizable, (ii) [A,Q1/2] is detectable, and (iii) φ(·) ∈

Cb
n. Then we have:

(a) The algebraic Riccati equation ΠA + ATΠ − ΠBR−1BTΠ + Q = 0 has a unique

positive semi-definite solution Π.

(b) Γ := A−BR−1BTΠ is asymptotically stable.

(c) The differential equation ds/dt = −(A−BR−1BTΠ)T s+Q φ has a unique solution

in Cb
n:

s(t) = −
∫ ∞
t

e−Γ(t−τ)Qφ(τ)dτ, t ≥ 0.

(d) The optimal control law: uo(·) := arg inf
u(·)∈U

J(u(·)) = −R−1BT (Πz(·) + s(·)) .

Proof. See Theorem 3.1 in [106].

5.3.2. The MF LQG Systems. Considering the L-F model (5.1)-(5.6) we

need to solve a set of tracking optimal control problems where the tracking trajectories

are φL(zL,NL)(·) and φF (zL,NL , zF,NF )(·) for leaders and followers, respectively. How-

ever, these tracking trajectories cannot be known a priori and so cannot be used for

constructing the control laws. Therefore, we take an MF stochastic control approach

to approximate the coupling trajectory terms by purely deterministic processes called

mass behaviours of leaders and followers.

In the MF methodology, each agent assumes that, in the large population limit,

its individual action has no impact on the mass behaviour. In turn, the impact of the

mass on the agent is captured in the limit via a posited deterministic but unknown

trajectory which through consistency requirements is then shown to satisfy a fixed

point equation system. Hence, each individual agent’s control law may be viewed

as a result of that agent having solved an optimal tracking problem for which the

resulting control law is a combination of a local state feedback and a pre-computable

mass dependent open loop deterministic component.
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For any leader or follower representative agent with dynamical parameter θ =

[A,B,C] (where θ ∈ ΘL for leaders and θ ∈ ΘF for followers) let Πθ be the solution

to the algebraic Riccati equation

ΠθA+ ATΠθ − ΠθBR
−1BTΠθ +Q = 0 (5.10)

and let Γθ := A−BR−1BTΠθ.

We have the following assumptions for the model under consideration:

(A5.1) For each θ = [A,B,C] from the compact sets ΘL or ΘF , we assume that

the pair [A,B] is stabilizable and the pair [A,Q1/2] is detectable.

Remark 5.1. Let Assumption (A5.1) hold. Then for any θ = [A,B,C] ∈ ΘL ∪

ΘF , the algebraic Riccati equation (5.10) has a unique positive semi-definite solution,

Γθ is asymptotically stable and there exist positive γ, ρ such that ‖eΓθt‖ ≤ γe−ρt for

all t ≥ 0 [48].

For the sequence of the leaders and followers’ dynamical parameters, {θi ∈ ΘL :

1 ≤ i ≤ NL} and {θi ∈ ΘF : 1 ≤ i ≤ NF}, respectively, define the empirical

distributions

FL
N(θ) :=

1

N

N∑
i=1

1{θi∈ΘL:θi≤θ}, F
F
N (θ) :=

1

N

N∑
i=1

1{θi∈ΘF :θi≤θ}

where θi ≤ θ means the component-wise inequality for the two vectors θi and θ, and

1{θi∈ΘL:θi≤θ} = 1 if ΘL 3 θi ≤ θ holds, and 1{θi∈ΘL:θi≤θ} = 0 otherwise. Similarly,

1{θi∈ΘF :θi≤θ} = 1 if ΘF 3 θi ≤ θ holds, and 1{θi∈ΘF :θi≤θ} = 0 otherwise.

(A5.2) There exist two probability distributions FL(·) and F F (·) such that FL
N

converges to FL and F F
N converges to F F weakly, i.e., for any bounded and continuous

function φ(θ),

lim
N→∞

∫
φ(θ)dFL

N(θ) =

∫
φ(θ)dFL(θ),

lim
N→∞

∫
φ(θ)dF F

N (θ) =

∫
φ(θ)dF F (θ)
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where dF denotes the measure induced by the distribution functions F .

Remark 5.2. It is important to note that if the sequences {θi ∈ ΘL : 1 ≤ i ≤ NL}

and {θi ∈ ΘF : 1 ≤ i ≤ NF} are generated by independent randomized observations

on the distributions FL and F F , respectively, then (A5.2) holds with probability one

by the Strong Law of Large Numbers or the Glivenko-Cantelli theorem [42].

By the probability distributions FL(·) and F F (·) we define

ψL,∞(·) :=

∫
ΘL

z̄Lθ (·)dFL(θ), ψF,∞(·) :=

∫
ΘF

z̄Fθ (·)dF F (θ)

as the centroid of the leaders and followers, respectively, in the infinite population

limit. The functions ψL,∞(·) and ψF,∞(·) are intended to respectively approximate

zL,NL(·) and zF,NF (·), defined in (5.2) and (5.5), in the infinite population limit.

Denote Γθi by Γi. Applying the MF LQG approach [79, 106] to the leaders’

dynamic game model (5.1)-(5.3), we obtain the leaders’ MF system of equations in

the infinite leaders’ population limit

dsLi
dt

= −
(
Ai −BiR

−1BT
i Πθi

)T
sLi +Q φL,∞ (5.11)

dz̄Li
dt

=
(
Ai −BiR

−1BT
i Πθi

)
z̄Li −BiR

−1BT
i s

L
i (5.12)

ψL,∞(·) =

∫
ΘL

z̄Lθi(·)dF
L(θi) (5.13)

φL,∞(·) = λh(·) + (1− λ)ψL,∞(·) (5.14)

where z̄Li (·) := z̄Lθi(·), s
L
i (·) := sLθi(·), s

L
i (0) = −

∫∞
0
eΓiτQφL,∞(τ)dτ and z̄Li (0) is given

for θi ∈ ΘL.

The equation system (5.11)-(5.14) is similar to the MF LQG system in [106] but

with a time-varying reference trajectory h(·), and is constructed such that each leader

carries out optimal tracking of the leaders’ mass behavior φL,∞(·). More precisely, (i)

(5.11) is the mass offset tracking equation, (ii) (5.12) is obtained by taking expecta-

tions of the closed-loop dynamics of a leader with dynamical parameter θi ∈ ΘL while

the best response is uL,∞i (·) := −R−1BT
i (Πθiz

L
i (·) + sLi (·)), (iii) ψL,∞(·) in (5.13) is
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the centroid of the leaders in the infinite population limit, and (iv) φL,∞(·) in (5.14)

is approximating φL(zL,NL)(·), defined in (5.2), in the infinite population limit.

Next we obtain the followers’ MF system of equations associated with the follow-

ers’ dynamic game model (5.4)-(5.6) in the infinite population limit

dsFi
dt

= −
(
Ai −BiR

−1BT
i Πθi

)T
sFi +Q φF,∞ (5.15)

dz̄Fi
dt

=
(
Ai −BiR

−1BT
i Πθi

)
z̄Fi −BiR

−1BT
i s

F
i (5.16)

ψL,∞(·) =

∫
ΘL

z̄Lθi(·)dF
L(θi) (5.17)

ψF,∞(·) =

∫
ΘF

z̄Fθi(·)dF
F (θi) (5.18)

φF,∞(·) = ηψL,∞(·) + (1− η)ψF,∞(·) (5.19)

where z̄Fi (·) := z̄Fθi(·), s
F
i (·) := sFθi(·), s

F
i (0) = −

∫∞
0
eΓiτQφF,∞(τ)dτ and z̄Fi (0) is given

for θi ∈ ΘF .

The equation system (5.15)-(5.19) is constructed such that each follower carries

out optimal tracking of the followers’ mass behavior φF,∞(·). More precisely, (i) (5.15)

is the mass offset tracking equation, (ii) (5.16) is obtained by taking expectations of

the closed-loop dynamics of a follower with dynamical parameter θi while the best

response is uF,∞i (·) := −R−1BT
i (Πθiz

F
i (·)+sFi (·)), (iii) ψL,∞(·) in (5.17) is the centroid

of the leaders, in the infinite population limit, computed by the followers from the

leaders’ MF equation system (5.11)-(5.14), (iv) ψF,∞(·) in (5.18) is the centroid of the

followers in the infinite population limit, and (v) φF,∞(·) in (5.19) is approximating

φF (zL,NL , zF,NF )(·), defined in (5.5), in the infinite population limit.

It is important to note that the followers’ MF system of equations is coupled to

the leaders’ MF system of equations due to appearance of leaders’ centroid ψL,∞(·)

in the mass behavior of the followers φF,∞(·). We make the following assumption:

(A5.3) We assume that for all possible reference trajectories hδ(·) parameterized

by δ ∈ ∆:
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(a) The leaders’ MF system of equations (5.11)-(5.14) has a unique solution such that

ψL,∞(·) ∈ Cb
n.

(b) The followers’ MF system of equations (5.15)-(5.19) (implicitly depending upon

the solution of (5.11)-(5.14)) has a unique solution such that ψF,∞(·) ∈ Cb
n.

Generally, it seems difficult to verify this assumption. However, in the next sub-

section we provide sufficient conditions for the existence and uniqueness of solutions to

these MF equation systems by using a contractive mapping argument (see [79,106]).

5.3.3. Analysis of MF Systems for Leaders and Followers. First, we

consider the leaders’ MF system of equations (5.11)-(5.14). For given h(·), ψL,∞(·)

and hence φL,∞(·), the unique solution of the tracking offset equation (5.11) for a

“generic” leader agent with dynamical parameter θi = [Ai, Bi, Ci] ∈ ΘL is

sLi (t) = −
∫ ∞
t

e−ΓTi (t−τ)Q φL,∞(τ)dτ

= −
∫ ∞
t

e−ΓTi (t−τ)Q
(
λh(τ) + (1− λ)ψL,∞(τ)

)
dτ, t ≥ 0. (5.20)

Next, by solving (5.12) we have

z̄Li (t) = eΓitz̄Li (0)−
∫ t

0

eΓi(t−s)BiR
−1BT

i s
L
i (s)ds, t ≥ 0 (5.21)

which by substituting sLi (·) from (5.20) we get

z̄Li (t) = eΓitz̄Li (0) +

∫ t

0

eΓi(t−s)BiR
−1BT

i

×
(∫ ∞

s

e−ΓTi (s−τ)Q
(
λh(τ) + (1− λ)ψL,∞(τ)

)
dτ
)
ds (5.22)

:=
(
ΥL
i (ψL,∞, h)

)
(t), t ≥ 0
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where ΥL
i is an operator acting on bounded continuous functions. This and (5.13)

result in

ψL,∞(t) ≡
∫

ΘL

z̄Li (t)dFL(θi) =

∫
ΘL

ΥL
i (ψL,∞, h)(t)dFL(θi)

=: ΥL
(
ψL,∞, h

)
(t), t ≥ 0

where we note ψL,∞(·) is independent of θi ∈ ΘL. Now for a given h(·) if the equation

ψL,∞ = ΥL
(
ψL,∞, h

)
(5.23)

has a unique solution ψL,∞(·), then it can be used in (5.20) and (5.22) to compute

the unique solution of the leaders’ MF system of equations. In the following theorem

we employ a contractive mapping argument to provide sufficient conditions under

which equation (5.23) has a unique solution. We omit the proofs of the two following

theorems which closely resemble that of Theorem 3.2 in [106].

Theorem 5.2. Assume (A5.1) and (A5.2) hold. For a given h(·) ∈ Cb
n,

(a) ΥL defined in (5.23) is an operator from Cb
n to Cb

n.

(b) If

(1− λ)‖R−1‖‖Q‖
∫

ΘL

‖Bθi‖2
(∫ ∞

0

‖eΓθi t‖2dt
)
dFL(θi) < 1 (5.24)

then (5.23) has the unique solution ψL,∞ ∈ Cb
n, and so the leaders’ MF system of

equations, (5.11)-(5.14), has a unique solution which for a continuum of agents

consists of the θi parameterized quadruple
(
sLi (·), z̄Li (·), ψL,∞(·), φL,∞(·)

)
, θi ∈ ΘL.

Second, we consider the followers’ MF system of equations, (5.15)-(5.19). For

given ψL,∞(·), ψF,∞(·) and hence φF,∞(·), we define the operator ΥF
i for a “generic”
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follower agent with dynamical parameter θi = [Ai, Bi, Ci] ∈ ΘF as

z̄Fθi(t) = eΓitz̄Fi (0) +

∫ t

0

eΓi(t−s)BiR
−1BT

i

×
(∫ ∞

s

e−ΓTi (s−τ)Q
(
ηψL,∞(τ) + (1− η)ψF,∞(τ)

)
dτ
)
ds

=: ΥF
i (ψF,∞, ψL,∞)(t), t ≥ 0

by using the solutions of (5.15) and (5.16) (similar to (5.22) for the i-th leader). This

and (5.18) result in

ψF,∞(t) ≡
∫

ΘF

z̄Fi (t)dF F (θi) =

∫
ΘF

ΥF
i (ψF,∞, ψL,∞)(t)dF F (θi)

=: ΥF
(
ψF,∞, ψL,∞

)
(t), t ≥ 0

where we note ψF,∞(·) is independent of θi ∈ ΘF . Now for a given ψL,∞(·) (the

solution of equation (5.23)) if the equation

ψF,∞ = ΥF
(
ψF,∞, ψL,∞

)
(5.25)

has a unique solution ψF,∞(·), then it can be used in (5.15) and (5.16) to compute the

unique solution of the followers’ MF system of equations. In the following theorem

we employ the contractive mapping argument to provide sufficient conditions under

which equation (5.25) has a unique solution.

Theorem 5.3. Assume (A5.1) and (A5.2) hold. For a given ψL,∞(·) ∈ Cb
n,

(a) ΥF defined in (5.25) is an operator from Cb
n to Cb

n.

(b) If

(1− η)‖R−1‖‖Q‖
∫

ΘF

‖Bθi‖2
(∫ ∞

0

‖eΓθi t‖2dt
)
dF F (θi) < 1 (5.26)

then (5.25) has the unique solution ψF,∞ ∈ Cb
n, and so the followers’ MF system

of equations, (5.15)-(5.19), has a unique solution which for a continuum of agents

consists of the θi parameterized quadruple
(
sFi (·), z̄Fi (·), ψF,∞(·), φF,∞(·)

)
, θi ∈ ΘF .
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Intuitively, (5.24) and (5.26) mean that λ and η should be reasonably close to 1,

which means that the leaders should give sufficient attention to the reference trajec-

tory, and on the other hand the followers should give sufficient attention to the group

of leaders, so that at the end a desirable mean field behaviour (fixed point) can set

in.

Remark 5.3. It is important to note that the conditions (5.24) and (5.26) do not

depend on the reference trajectory of the leaders h(·).

5.4. Estimation Procedure for the Adaptive Followers

The computation of the followers’ MF system of equations (and hence followers’

control laws) requires knowledge of the complete reference trajectory of the leaders

h(·) which is in general not known to the followers. In this section we construct an

adaptation procedure for a generic follower using a likelihood ratio based estimator

(on a sample population of the leaders’ trajectories) to identify the member generat-

ing the reference trajectory h(·) from a given finite set of possible parameters each

identifying a single trajectory. Hence, followers are adaptive in the sense that they

use an estimator to identify h(·). As stated earlier, we assume that the reference

trajectory h(·) is parameterized with δ from a finite set ∆ such that hδ ∈ Cb
n for every

δ ∈ ∆.

Likelihood ratio based estimation is a well-known method for generating estimates

of an unknown stochastic model parameter (see e.g. [33,62]). In this chapter we use

the general result on the convergence of likelihood ratio estimators for stochastic

processes parameterized by a finite set of alternative values which was established

in [32] (see [33]).

5.4.1. The Likelihood Function. For a generic adaptive follower, we define

the likelihood function (see [51, 52]) on (a subset of) the leaders’ trajectories by

(0 < t <∞)

LMt (δ) := exp

(∫ t

0

(
zL,Mδ,s

)T
dyMs −

1

2

∫ t

0

∥∥zL,Mδ,s

∥∥2
ds

)
(5.27)

122



5.5.4 ESTIMATION PROCEDURE FOR THE ADAPTIVE FOLLOWERS

where zL,Mδ,t := 1/M
∑M

i=1 z
L
i,δ(t) is the centroid of the leaders’ states when the defining

parameter of h(·) is assumed to be δ ∈ ∆, and yM(·) is the observation process of the

generic follower (which observes a non-empty random subset O ⊂ L of cardinality

M ≡M(NL) = b
√
NLc of the leaders’ trajectories) as defined in (5.7).

Without loss of generality assume δ1 ∈ ∆ is the true parameter of the reference

trajectory h(·) in the rest of the chapter, that is to say, the parameter of the leaders

generating the data. Therefore, the observation process of the generic follower is of

the form

dyM =
( 1

M

∑
i∈O

zLi,δ1

)
dt+

1

M

M∑
i=1

Didvi, t ≥ 0 (5.28)

where {vi : 1 ≤ i ≤ NL} is a set of independent standard Wiener processes.

We define the asymptotic (in population) likelihood function of the generic adap-

tive follower to be the deterministic function (0 < t <∞)

L∞t (δ) := exp

(∫ t

0

(
ψL,∞δ,s

)T
ψL,∞δ1,s ds−

1

2

∫ t

0

∥∥ψL,∞δ,s ∥∥2
ds

)
(5.29)

where ψL,∞δ,t := ψL,∞δ (t) such that ψL,∞δ (·) is the deterministic infinite population

leaders’ centroid computed from the leaders’ MF system of equations (5.11)-(5.14)

when the defining parameter of h(·) is assumed to be δ ∈ ∆.

Since (i) the processes zL,Mδ (·), δ ∈ ∆, in (5.27) are not computable or observable

for the adaptive followers, and (ii) the true infinite population centroid of the leaders

ψL,∞δ1 (·) in (5.29) is not known to the followers, we introduce the following hybrid

likelihood function for a generic adaptive follower with observation process yM(·) (0 <

t <∞)

HM
t (δ) := exp

(∫ t

0

(
ψL,∞δ,s

)T
dyMs −

1

2

∫ t

0

∥∥ψL,∞δ,s ∥∥2
ds

)
. (5.30)

It is important to note that the hybrid likelihood function (5.30) is computable for

adaptive followers and includes: (i) the infinite population centroid of the leaders

ψL,∞δ (·) which can be computed by each adaptive follower from the leaders’ MF system

of equations (5.11)-(5.14) when the defining parameter of the reference trajectory h(·)
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is assumed to be δ ∈ ∆, and (ii) the observation process yM(·) which is given in (5.28)

for a generic adaptive follower.

Proposition 5.1. Assume (A5.1)-(A5.3-(a)) hold. Then

(a) For each δ ∈ ∆ and t > 0

lim
M→∞

|LMt (δ)− L∞t (δ)| = 0 a.s.

i.e., for each δ ∈ ∆, t > 0 and ε > 0 there exists a random Mδ,ε,t, 0 < Mδ,ε,t(ω) <

∞, such that |Lmt (δ)− L∞t (δ)| < ε a.s. for all m > Mδ,ε,t.

(b) For each δ ∈ ∆ and t > 0,

lim
M→∞

|HM
t (δ)− L∞t (δ)| = 0 (a.s.).

Proof. See the Appendix.

5.4.2. The Likelihood Ratio. The likelihood ratio test provides the means

for comparing the likelihood of the observations under one hypothesis about the

unknown parameters of the model against the likelihood of the observations under

alternative hypotheses.

At each instant 0 < t <∞ the set of the likelihood ratios is

LRM(t) :=
{LMt (δi)

LMt (δj)
: δi, δj ∈ ∆, δi 6= δj

}
in which each ratio LMt (δi)/L

M
t (δj) depends explicitly upon the hypotheses δi and δj.

It is important to note that for any fixed δi in ∆ the process(LMt (δi)

LMt (δ1)

)
t≥0

is a positive martingale (with respect to the filtration {F z
L,yM

t }t≥0 where F z
L,yM

t is

defined as the σ-field σ(zLi (τ), yM(τ) : 1 ≤ i ≤ M, τ < t)) [32, 51]. Therefore, for

any fixed δi ∈ ∆, the L1-bounded martingale
(
LMt (δi)/L

M
t (δ1)

)
t≥0

a.s. converges to

a limiting random variable by the Martingale Convergence Theorem [42]. Hence, for
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any fixed δi, δj ∈ ∆, δi 6= δj, the process
(
LMt (δi)/L

M
t (δj)

)
t≥0

converges a.s. to a

positive limiting random variable.

5.4.3. Main Estimation Theorem. We define the Likelihood Ratio Esti-

mator (LRE) for a generic adaptive follower i, 1 ≤ i ≤ NF , with observation size m

as

δ̂mi (t) :=
{
δ ∈ ∆ :

Hm
tk

(δ)

Hm
tk

(δ′)
≥ 1, ∀δ′ ∈ ∆, δ′ 6= δ

}
(5.31)

where t ∈ [tk, tk + τi), τi is a pre-specific positive number and t0, t1, · · · is an infinite

switching time sequence such that tk+1− tk = τi, k ≥ 0. δ̂mi (·) is a parameter selector

between finite alternatives which is made at each instant.

At each time t if δ̂mi (t) has more than one member, a tie-breaking rule measurable

with respect to the σ-field σ(ymi (τ) : τ < t) is employed.

We now enunciate the following verifiable identifiability condition.

(A5.4) (Identifiability Condition) there exist a deterministic real number α > 0,

and deterministic time Tα, 0 < Tα <∞, such that∫ t

0

∥∥ψL,∞δi,s − ψL,∞δj ,s ∥∥2
ds > α, ∀ δi, δj ∈ ∆, δi 6= δj, t > Tα

where for any fixed δ ∈ ∆, ψL,∞δ (·) is the deterministic infinite population leaders’

centroid computed from (5.11)-(5.14), when the defining parameter of h(·) is assumed

to be δ.

Remark 5.4. This identifiability assumption implies that the corresponding cen-

troid of the leaders for any two distinct parameters of the set ∆ (which characterizes

the reference trajectory h(·)) is distinguishable, after some finite deterministic time.

Lemma 5.1. Assume (A5.1)-(A5.3-(a)) and (A5.4) hold. Then there exist a

deterministic ε, 0 < ε < 1, and a deterministic time Tε, 0 < Tε <∞, such that

L∞t (δ)

L∞t (δ1)
< 1− ε, ∀ δ ∈ ∆, δ 6= δ1, t > Tε.
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Proof. For any fixed δ ∈ ∆, δ 6= δ1, and t, 0 < t <∞, by (5.29) we have

L∞t (δ)

L∞t (δ1)
= exp

[ ∫ t

0

(
ψL,∞δ,s − ψ

L,∞
δ1,s

)T
ψL,∞δ1,s ds

− 1

2

∫ t

0

(
‖ψL,∞δ,s ‖

2 − ‖ψL,∞δ1,s ‖
2
)
ds
]

= exp

[
−1

2

(∫ t

0

‖ψL,∞δ,s − ψ
L,∞
δ1,s
‖2ds

)]
.

But, by the Identifiability Condition (A5.4), there exist a deterministic real number

α > 0, and deterministic time Tα, 0 < Tα <∞, such that for all t > Tα

exp

[
−1

2

(∫ t

0

‖ψL,∞δ,s − ψ
L,∞
δ1,s
‖2ds

)]
< exp(−1

2
α), δ ∈ ∆, δ 6= δ1

and setting 1− ε = exp(−1
2
α) yields the result with 0 < ε < 1.

Lemma 5.2. Assume (A5.1)-(A5.3-(a)) and (A5.4) hold. Then there exist a

deterministic η, 0 < η < 1, a deterministic time Tη, 0 < Tη <∞, and, with probability

one, a random Mη, 0 < Mη(ω) <∞, such that for all t > Tη and m > Mη(ω)

Hm
t (δ)

Hm
t (δ1)

< 1− η, δ ∈ ∆, δ 6= δ1 (a.s.).

Proof. By Lemma 5.1 there exist a deterministic ε, 0 < ε < 1, and a deterministic

time Tε, 0 < Tε <∞, such that for any δ ∈ ∆, δ 6= δ1, and t > Tε

L∞t (δ)

L∞t (δ1)
< 1− ε. (5.32)

Now choose η := ηε such that 0 < η < ε < 1. Then at each instant t, t > Tη := Tηε ,

by Proposition 5.1 with ζ :=
(ε−η)L∞t (δ1)

2−η > 0, there exists, with probability one,

Mη(ω) := Mζ,Tε(ω)(ω), 0 < Mη(ω) <∞, where

Mη(ω) = max
{
Mδ1,η(ω),Mδ2,η(ω), . . . ,Mδ|∆|,η(ω)

}
such that for all m > Mη and δ ∈ ∆

|Hm
t (δ)− L∞t (δ)| < ζ (a.s.). (5.33)

126



5.5.5 THE STABILITY ANALYSIS OF THE MEAN FIELD CONTROL LAWS

Hence, by (5.32) and (5.33), for all t > Tη and m > Mη(ω) we have

Hm
t (δ)

Hm
t (δ1)

<
L∞t (δ) + ζ

L∞t (δ1)− ζ
=

L∞t (δ)

L∞t (δ1)
+ ε−η

2−η

1− ε−η
2−η

<
1− ε+ ε−η

2−η

1− ε−η
2−η

= 1− η, δ ∈ ∆, δ 6= δ1 (a.s.).

Theorem 5.4. Assume (A5.1)-(A5.3-(a)) and (A5.4) hold. Then for each

generic adaptive follower i, 1 ≤ i ≤ NF , there exist a deterministic Ti, 0 < Ti < ∞,

and, with probability one, a random Mi, 0 < Ti, Mi(ω) < ∞, such that δ̂mi (t) = δ1

for all t > Ti and m > Mi(ω).

Proof. By Lemma 5.2 for any adaptive follower i, 1 ≤ i ≤ NF , there exist a

deterministic ηi, 0 < ηi < 1, a deterministic time Ti := Tηi , 0 < Ti < ∞, and a

random Mi := Mηi , 0 < Mi(ω) <∞, such that for all t > Ti, m > Mi(ω) and δ ∈ ∆

where δ 6= δ1

Hm
t (δ1)

Hm
t (δ)

=
( Hm

t (δ)

Hm
t (δ1)

)−1

≥ (1− ηi)−1 > 1 a.s.

which implies that δ̂mi (t) = δ1 for all t > Ti and m > Mi(ω), based on the definition

of the LRE in (5.31).

5.5. The Stability Analysis of the Mean Field Control Laws

Definition 5.1. In a large but finite population, the decentralized MF control

laws for the leaders and followers, respectively, are as follows.

• Leaders’ MF Control Laws: The control strategy of each generic leader i,

1 ≤ i ≤ NL, with dynamical parameter θi = [Ai, Bi, Ci] ∈ ΘL is defined as

uL,∞i (·) := −R−1BT
i

(
Πθiz

L
i (·) + sLi (·)

)
(5.34)

where sLi (·) is the solution of equation (5.11) presented in (5.20).

• Followers’ MF Control Laws: The control strategy of each generic adaptive

follower i, 1 ≤ i ≤ NF , with dynamical parameter θi = [Ai, Bi, Ci] ∈ ΘF ,
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and observation size m is defined as

ûF,∞i (·) := −R−1BT
i

(
Πθiz

F
i (·) + sF

δ̂mi
(·)
)

(5.35)

where sF
δ̂mi

(·) is the solution of equation (5.15), when the defining parameter

of the reference trajectory h(·) is assumed to be δ̂mi (·) defined in (5.31).

In the construction of individual strategies, (i) each leader needs to know λ, h(·),

the leader’s population initial mean and the distribution of the leaders’ dynamical

parameters (FL(·)), where the term know denotes that the control law of the agent

in question may be an explicit function of the indicated information; and (ii) each

follower needs to know λ, η, the population initial means and the distributions of both

leaders and followers’ dynamical parameters (FL(·) and F F (·)), but each adaptive

follower does not know the reference trajectory of the leaders h(·) and estimates it by

likelihood estimation from a finite set of predefined signals based upon its observation

process. Note that it is not required for any leader or follower agent to know specific

information (such as the dynamical parameter) of any other particular agent.

5.5.1. The Follower’s Adaptive Mean Field Algorithm. The algorithm

has the following two phases:

(i) Estimation Phase: By observing a sample population of the leaders each

follower computes the set of likelihood ratios (based on the hybrid likelihood

functions defined in (5.30)) at each instant for alternative values of its

hypothesis parameter δ ∈ ∆. Each follower also computes control laws by

using the parameters in the finite set ∆. Therefore, each follower has a set

of control strategies with respect to alternative defining parameters of the

reference trajectory h(·), and at any instant uses the maximum likelihood

ratio estimate (MLRE) without a guarantee that the MLRE has taken the

true parameter value.

(ii) Lock-on Phase: As the observation size of each adaptive follower i, 1 ≤ i ≤

NF , goes to infinity, its estimate converges to the true parameter of the
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unknown reference trajectory at a deterministic time Ti (Theorem 5.4). In

this phase, the control law of each adaptive follower i, 1 ≤ i ≤ NF , will

necessarily be computed with the true parameter of the reference trajectory

for all time t > Ti and any sufficiently large random observation size.

Needless to say, an adaptive follower cannot deduce at which population size the

lock-on phase has commenced since this occurs at some random size M(ω).

5.5.2. Stability Analysis. For the i-th leader, 1 ≤ i ≤ NL, with dynamical

parameter θi = [Ai, Bi, Ci] ∈ ΘL, denote zL,∞i (·) as the closed-loop solution of its

dynamics (5.1) while using the MF control law uL,∞i (·) as defined in (5.34). In an

analogous way let ẑF,∞i (·) be the closed-loop solution of the i-th adaptive follower’s

dynamics, 1 ≤ i ≤ NF , (5.4) where its dynamical parameter is θi = [Ai, Bi, Ci] ∈ ΘF

and its adaptive control law is the MF control law ûF,∞i (·) defined in (5.35).

Theorem 5.5. (Stability of the MF control laws in the sense of time average)

(a) Assume (A5.1)-(A5.3-(a)) hold. Then (a.s.)

sup
NL≥1

max
1≤i≤NL

lim sup
T→∞

1

T

∫ T

0

(
‖zL,∞i (s)‖2 + ‖uL,∞i (s)‖2

)
ds <∞. (5.36)

(b) Assume (A5.1)-(A5.4) hold. Then (a.s.)

sup
NF≥1

max
1≤i≤NF

lim sup
T→∞

1

T

∫ T

0

(
‖ẑF,∞i (s)‖2 + ‖ûF,∞i (s)‖2

)
ds <∞. (5.37)

Proof. See the Appendix.

It is important to note that these stability results depend on the boundedness of

the infinite population centroids ψL,∞(·) and ψF,∞(·) computed from the leaders and

followers’ MF system of equations, respectively.

5.6. ε-Nash Equilibrium Property of the Mean Field Based

Control Laws

In a system of population size N , let the admissible control set of agent i, 1 ≤

i ≤ N , be Ui := {ui(·) : ui(t) is adapted to σ(zj(s), s ≤ t, 1 ≤ j ≤ N), ‖zi(T )‖ =
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o(
√
T ),

∫ T
0
‖zi(t)‖2dt = O(T ) a.s.}. Note that the strategies in Ui may use full state

information (i.e. ui(t) is a function of both time t and the system state at this

time, (z1(t), · · · , zN(t))). Denote u−i = (u1, · · · , ui−1, ui+1, · · · , uN). To indicate the

dependence of the i-th agent’s cost function Ji on ui, u−i and population size N , we

write it as JNi (ui, u−i).

Definition 5.2. Given ε > 0, a set of controls uok ∈ Uk, 1 ≤ k ≤ N , for N

agents generates an a.s. ε-Nash equilibrium with respect to the costs Jk, 1 ≤ k ≤ N ,

if for any i, 1 ≤ i ≤ N ,

JNi (uoi , u
o
−i)− ε ≤ inf

ui∈Ui
JNi (ui, u

o
−i) ≤ JNi (uoi , u

o
−i) (a.s.).

Let zL,∞i be the closed-loop solution of the i-th leader’s dynamics (5.1) with the

MF control input defined in (5.34), and ψL,∞(·) be the infinite population centroid of

the leaders (5.13), we denote

(εNL)2 := lim sup
T→∞

1

T

∫ T

0

∥∥ψL,∞(t)− 1

NL

NL∑
i=1

zL,∞i (t)
∥∥2
dt. (5.38)

The proof of the following theorem is similar to the one of Theorem 6.1 in [106].

Theorem 5.6. Assume (A5.1)-(A5.3-(a)) hold. Then the set of the leaders’

MF control laws is an a.s. O(εNL)-Nash equilibrium, i.e., for any i, 1 ≤ i ≤ NL, we

have

JL,NLi

(
uL,∞i , uL,∞−i

)
−O(εNL) ≤ inf

ui∈ULi
JL,NLi

(
ui, u

L,∞
−i
)
≤ JL,NLi

(
uL,∞i , uL,∞−i

)
a.s.

where limNL→∞ εNL = 0 a.s., (εNL ≈ O(1/
√
NL)).

For any adaptive follower i, 1 ≤ i ≤ NF , let uF,∞i,δ1 (·) be the MF control law when

the defining parameter of the reference trajectory is assumed to be the true parameter

δ1 ∈ ∆ and let ẑF,∞i (·) and zF,∞i,δ1 (·) be the closed-loop solutions of dynamics (5.4)

with control input ûF,∞i (·) and uF,∞i,δ1 (·), respectively (the explicit form of ẑF,∞i (·) is
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presented in (5.77)). Let uL,∞ := (uL,∞1 , · · · , uL,∞NL ), ûF,∞ := (ûF,∞1 , · · · , ûF,∞NF ) and

uF,∞δ1 := (uF,∞1,δ1
, · · · , uF,∞NF ,δ1).

Lemma 5.3. Assume (A5.1)-(A5.4) hold. Then there exists a random M , 0 <

M(ω) <∞, such that for NL ≥M(ω) and observation sizes mi ≥M(ω), 1 ≤ i ≤ NF ,

we have

JF,Ni

(
ûF,∞i ; ûF,∞−i , u

L,∞) ≤ JF,Ni

(
uF,∞i,δ1 ;uF,∞−i,δ1 , u

L,∞) a.s.

for 1 ≤ i ≤ NF .

Proof. By Theorem 5.4 for each adaptive follower i, 1 ≤ i ≤ NF , there exist a

deterministic time Ti and a random Mi, 0 < Ti, Mi(ω) < ∞, such that δ̂mi (t) = δ1

for all t > Ti and m > Mi(ω). Let TF := max{T1, · · · , TNF } < ∞ and M :=

max{M1, · · · ,MNF } < ∞, then for NL ≥ M(ω) and observation sizes mi ≥ M(ω),

1 ≤ i ≤ NF , we have

JF,Ni

(
ûF,∞i ; ûF,∞−i , u

L,∞)
≡ lim sup

T→∞

1

T

∫ T

0

(∥∥∥ẑF,∞i −
( η

NL

NL∑
j=1

zL,∞j +
(1− η)

NF

NF∑
j=1

ẑF,∞j

)∥∥∥2

Q
+
∥∥ûF,∞i ∥∥2

R

)
dt

≤ lim sup
T→∞

1

T

∫ TF

0

(∥∥∥ẑF,∞i −
( η

NL

NL∑
j=1

zL,∞j +
(1− η)

NF

NF∑
j=1

ẑF,∞j

)∥∥∥2

Q
+
∥∥ûF,∞i ∥∥2

R

)
dt

+ lim sup
T→∞

1

T

∫ T

TF

(∥∥∥zF,∞i,δ1 − ( η

NL

NL∑
j=1

zL,∞j
(1− η)

NF

NF∑
j=1

zF,∞j,δ1

)∥∥∥2

Q
+
∥∥uF,∞i,δ1 ∥∥2

R

)
dt

:= I1 + I2. (5.39)

But, by the long time average stability of the MF control laws (5.37) there exists,

with probability one, a real number k, 0 < k <∞, and independent of T such that

|I1| ≤ lim sup
T→∞

kTF
T

= 0 (a.s.). (5.40)
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Next consider T ′ := T − TF , then

JF,Ni

(
ûF,∞i ; ûF,∞−i , u

L,∞)
≤ lim sup

T→∞

1

T

∫ T

TF

(∥∥∥zF,∞i,δ1 − ( η

NL

NL∑
j=1

zL,∞j +
(1− η)

NF

NF∑
j=1

zF,∞j,δ1

)∥∥∥2

Q
+
∥∥uF,∞i,δ1 ∥∥2

R

)
dt

= lim sup
T ′→∞

1

T ′

∫ T ′

0

(∥∥∥zF,∞i,δ1 − ( η

NL

NL∑
j=1

zL,∞j +
(1− η)

NF

NF∑
j=1

zF,∞j,δ1

)∥∥∥2

Q
+
∥∥uF,∞i,δ1 ∥∥2

R

)
dt

≡ JF,Ni

(
uF,∞i,δ1 ;uF,∞−i,δ1 , u

L,∞).
by (5.39) and (5.40), which gives the result.

Denote

(εNF )2 := lim sup
T→∞

1

T

∫ T

0

∥∥ψF,∞δ1 − 1

NF

NF∑
i=1

zF,∞i,δ1
∥∥2
dt (5.41)

where zF,∞i,δ1 is the closed-loop solution of the i-th follower’s dynamics (5.4) with the

MF control law (5.35), and ψF,∞δ1 (·) is the infinite population centroid of the followers

(5.18) when the defining parameter of the leaders reference trajectory h(·) is assumed

to be the true one, δ1 ∈ ∆.

Lemma 5.4. Assume (A5.1)-(A5.4) hold. Then we have limNF→∞ εNF = 0

(a.s.).

Proof. We have

(εNF )2 ≤ 2 lim sup
T→∞

1

T

∫ T

0

∥∥ 1

NF

NF∑
i=1

z̄F,∞i,δ1 −
1

NF

NF∑
i=1

zF,∞i,δ1
∥∥2
dt

+ 2 sup
t≥0

∥∥ψF,∞δ1 (t)− 1

NF

NF∑
i=1

z̄F,∞i,δ1 (t)
∥∥2
. (5.42)

But, by Lemma 5.3 in [106] we have (a.s.)

lim
NF→∞

lim sup
T→∞

1

T

∫ T

0

∥∥ 1

NF

NF∑
i=1

(
z̄F,∞i,δ1 − z

F,∞
i,δ1

)∥∥2
dt = 0. (5.43)
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In addition,

ψF,∞δ1 (·)− 1

NF

NF∑
i=1

z̄F,∞i,δ1 (·) =

∫
ΘF

z̄F,∞θ,δ1 (·)dF F (θ)−
∫

ΘF

z̄F,∞θ,δ1 (·)dF F
NF

(θ).

So by the weak convergence of F F
N to F F (Assumption (A5.2)) we have a.s. dF F (see

(33) in [106])

lim
NF→∞

sup
t≥0

∥∥ψF,∞δ1 (t)− 1

NF

NF∑
i=1

z̄F,∞i,δ1 (t)
∥∥ = 0. (5.44)

Hence, by (5.42)-(5.44) we get limNF→∞ εNF = 0 (a.s.).

Theorem 5.7. Assume (A5.1)-(A5.4) hold. Then there exists a random M ,

0 < M(ω) < ∞, such that for NL ≥ M(ω) and observation sizes mi ≥ M(ω),

1 ≤ i ≤ NF , the set of the followers’ MF control laws is an a.s. εN -Nash equilibrium,

i.e., for any i, 1 ≤ i ≤ NF , we have (a.s.)

JF,Ni

(
ûF,∞i ; ûF,∞−i , u

L,∞)− εN ≤ inf
ui∈UFi

JF,Ni

(
ui; û

F,∞
−i , u

L,∞)
≤ JF,Ni

(
ûF,∞i ; ûF,∞−i , u

L,∞) (5.45)

where εN = O(εNL + εNF ) a.s., (εN ≈ O(1/
√
N)).

Proof. The second inequality in (5.45) is trivial. Here, we shall prove the first

inequality.

For any adaptive follower i, 1 ≤ i ≤ N , by Lemma 5.3 there exists a random M ,

0 < M(ω) <∞, such that for NL ≥M(ω) and observation sizes mi ≥M(ω) we have

JF,Ni

(
ûF,∞i ; ûF,∞−i , u

L,∞) ≤ JF,Ni (uF,∞i,δ1 ;uF,∞−i,δ1 , u
L,∞) a.s. (5.46)
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But,

JF,Ni

(
uF,∞i,δ1 ;uF,∞−i,δ1 , u

L,∞)
≡ lim sup

T→∞

1

T

∫ T

0

(∥∥∥zF,∞i,δ1 − ( η

NL

NL∑
j=1

zL,∞j +
(1− η)

NF

NF∑
j=1

zF,∞j,δ1

)∥∥∥2

Q
+
∥∥uF,∞i,δ1 ∥∥2

R

)
dt

≤ lim sup
T→∞

1

T

∫ T

0

(∥∥∥zF,∞i,δ1 − (ηψL,∞ + (1− η)ψL,∞δ1

)∥∥∥2

Q
+
∥∥uF,∞i,δ1 ∥∥2

R

)
dt+ IN (5.47)

where IN denotes the rest of the terms.

We now show that IN = O(εNL + εNF ).

We have

IN := lim sup
T→∞

η2

T

∫ T

0

(∥∥ψL,∞ − 1

NL

NL∑
i=1

zL,∞i
∥∥2

Q

)
dt

+ lim sup
T→∞

(1− η)2

T

∫ T

0

(∥∥ψF,∞δ1 − 1

NF

NF∑
i=1

zF,∞i,δ1
∥∥2

Q

)
dt

+ 2η(1− η) lim sup
T→∞

1

T

∫ T

0

(
ψL,∞ − 1

NL

NL∑
i=1

zL,∞i

)T
Q
(
ψF,∞δ1 − 1

NF

NF∑
i=1

zF,∞i,δ1

)
dt

+ 2η lim sup
T→∞

1

T

∫ T

0

(
zF,∞i,δ1 −

(
ηψL,∞ + (1− η)ψL,∞δ1

))T
Q
(
ψL,∞ − 1

NL

NL∑
i=1

zL,∞i

)
dt

+ 2(1− η) lim sup
T→∞

1

T

∫ T

0

(
zF,∞i,δ1 −

(
ηψL,∞ + (1− η)ψL,∞δ1

))T
×Q

(
ψF,∞δ1 − 1

NF

NF∑
i=1

zF,∞i,δ1

)
dt

:= I1
NL

+ I2
NF

+ I3
NL,NF

+ I4
NL

+ I5
NF
. (5.48)

But,

I1
NL
≤ η2‖Q‖ε2NL , I2

NF
≤ (1− η)2‖Q‖ε2NF (5.49)
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where εNL and εNF are defined in (5.38) and (5.41), respectively. By the Cauchy-

Schwarz inequality we have

I3
NL,NF

≤ 2η(1− η)‖Q‖εNLεNF . (5.50)

By the stability property of the MF control laws (5.36) there exists a real number

k, 0 < k <∞, independent of both NL and NF such that (a.s.)

lim sup
T→∞

1

T

∫ T

0

∥∥zF,∞i,δ1 − (ηψL,∞ + (1− η)ψL,∞δ1

)∥∥2
dt ≤ k.

This and the Cauchy-Schwarz inequality result in (a.s.)

I4
NL
≤ 2η‖Q‖

√
kεNL , I

5
NF
≤ 2(1− η)‖Q‖

√
kεNF . (5.51)

Hence, (5.49)-(5.51) imply that IN = I1
NL

+ I2
NF

+ I3
NL,NF

+ I4
NL

+ I5
NF

= O(εNL + εNF )

(a.s.).

But, by the construction of the MF system of equations for the followers (5.15)-

(5.19), uF,∞i,δ1 (·) is the optimal tracking control with respect to uL,∞(·) and uF,∞−i,δ1(·)

which collectively generate ψL,∞(·) and ψF,∞(·). Therefore,

lim sup
T→∞

1

T

∫ T

0

(∥∥∥zF,∞i,δ1 − (ηψL,∞ + (1− η)ψL,∞δ1

)∥∥∥2

Q
+
∥∥uF,∞i,δ1 ∥∥2

R

)
dt

≡ JF,Ni

(
uF,∞i,δ1 ;ψF,∞, ψL,∞

)
≤ inf

ui∈UFi
JF,Ni

(
ui; û

F,∞
−i , u

L,∞)+O(εNL + εNF ) a.s. (5.52)

where the last inequality follows from a similar argument as in (5.47)-(5.51). Hence,

(5.46) and (5.52) imply the first inequality in (5.45).

5.7. Numerical Example

Consider a system of 50 agents with 20 leaders and 30 followers. For simplicity

and clarity of the simulation, we assume that one follower, called the adaptive fol-

lower, needs to estimate the true reference trajectory but this reference trajectory is
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Figure 5.1. Four possible reference trajectories of the leaders (reference one
is the true reference trajectory) corresponding to parameters δ1, δ2, δ3, δ4 in
the set ∆, respectively, and the initial states of leaders and followers.

fully known to all other followers and all leaders. It is important to note that the fol-

lowers are estimating the true reference trajectory independently. If all followers are

adaptive the overall computational load increases linearly with the population size of

the followers which is a manageable complexity. For the adaptive follower, the possi-

ble set of reference trajectories have the general form [a1 + b1 cos(wt) a2 + b2 sin(wt)],

t ∈ [0, 10), where δ = (a1, b1, a2, b2, w) ∈ ∆. We assume this set ∆ has four parame-

ters including the true parameter of the reference trajectory which is reference one in

Fig. 5.1. All the four possible reference trajectories generated by each parameter of

the set ∆ and the initial states of all the leaders and followers are shown in Fig. 5.1.

The dynamics of leaders and followers are given in (5.1) and (5.4), respectively,

where the leaders and followers’ MF control laws are given in (5.34) and (5.35). In

this simulation we have the following parameters: (i) In (5.1) and (5.4) matrices Ai of

the leaders and followers are chosen randomly from a normal probability distribution

around matrix
(
(0.2,−0.3)T , (−0.4, 0.2)T

)
with identity covariance, while matrices Bi

of both leaders and followers are identity matrices, and the noise intensity matrices of

both leaders and followers is C = 4I; (ii) In (5.3) and (5.6) let Q = I and R = 0.01I;
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(iii) In (5.2) and (5.5) let λ = 0.7, η = 0.6 and the reference trajectory h(·) be reference

one in Fig. 5.1; (iv) In (5.28) let the observation size of the adaptive follower be 15,

and D = 5I; (v) In (5.31) let t0 = 0, step-size τ = 1 and the adaptive follower

observes a non-empty subset of the leaders’ trajectories of size 4.
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Figure 5.2. (1/t) log of likelihood ratios ((1/t) log(Hm
t (δi)/H

m
t (δj)),

δi, δj ∈ ∆) such that in each figure there is a fixed parameter of set ∆
in the numerator of the ratio and the parameter in the denominator changes
in the set ∆.

It can be shown that this system satisfies the identifiability condition (A5.4).

Figs. 5.2A, 5.2B, 5.2C and 5.2D correspond to (1/t) log (Hm
t (δi)/H

m
t (δj)) for δi, δj ∈
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Figure 5.3. State trajectories of leaders (red), non-adaptive followers
(blue), and the adaptive follower (black).

∆ such that, for instance, in Fig. 5.2A the parameter δ1 ∈ ∆ corresponding to

reference trajectory one is in the numerator and the plots in this figure display (1/t)

log (Hm
t (δ1)/Hm

t (δi)) for δi ∈ ∆. Based on the LRE defined in (5.31), Figs. 5.2A,

5.2B, 5.2C and 5.2D show that for the adaptive follower δ̂m(t) = δ1 for all t ≥ 1 since

Hm
t (δ1)/Hm

t (δ) > 1 (i.e. log(Hm
t (δ1)/Hm

t (δ) > 0) for all δ ∈ ∆, δ 6= δ1.

In Figs. 5.3A, 5.3B the state trajectories of leaders, followers and the adaptive

follower are shown. Based on δ̂m(·) in (5.31) the adaptive follower initially considers

the wrong reference trajectory signals until t = 1, reference 3 (generated by δ3)

from time zero to one, and then locks on the true reference trajectory (reference one

generated by δ1) as shown in Figs. 5.3A, 5.3B.

5.8. Chapter Summary

In this chapter we have developed a linear-quadratic-Gaussian (LQG) dynamic

game based model of collective dynamics which include leaders, followers and an un-

known (to the followers) reference trajectory for the leaders. The mean field LQG

(MF LQG) equations characterizing the Nash equilibrium for infinite population sys-

tems were derived, and under appropriate conditions, they have a unique solution

138



5.5.8 CHAPTER SUMMARY

leading to decentralized control laws. Furthermore, for large but finite population

systems, such controls were shown to correspond to so-called ε-Nash equilibria.

The computation of the followers’ control laws requires knowledge of the complete

reference trajectory which is in general not known to the followers but is estimated by

a likelihood ratio based adaptation scheme based on noisy observations taken by the

followers on a random sample of leaders. Under appropriate identifiability conditions,

it is established that this identification scheme is able to select the exact reference

trajectory model within a finite class of candidates in a finite deterministic time

almost surely as the number of samples goes to infinity. As a result, the estimation

based adaptive mean field (MF) control laws of the followers together with the MF

control laws of the leaders give rise to a dynamic stochastic Nash equilibrium for the

overall leader-follower system.

The Leader-Follower (LF) model of this chapter is extended to the nonlinear

Cucker-Smale (C-S) type cost coupling functions in the non-adaptive case [135]. In

this model, the agents have similar dynamics and are coupled via their nonlinear

individual cost functions which are based on the uncontrolled C-S flocking algorithm.

The cost of each leader is based on a trade-off between moving its velocity toward a

certain reference velocity and a C-S type weighted average of all the leaders’ velocities.

Followers react by tracking a C-S type weighted average of the velocities of all agents

(leaders and followers).

For this controlled flocking dynamic game problem, similar to the analysis in

Chapter 4 (see [?,132]), we derive two sets of coupled deterministic equations approx-

imating the stochastic model in the large population limit. These sets of equations

consist of coupled Hamilton-Jacobi-Bellmann (HJB) and Fokker-Planck-Kolmogrov

(FPK) equations in the control optimized form, and an infinite population cost cou-

pling function.

Subject to the existence of unique solutions to these systems of equations we show

that: (i) the set of MF control laws for the leaders possesses an εN -Nash equilibrium

property with respect to all other leaders, (ii) the set of MF control laws for the
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followers is almost surely εN -optimal with respect to all the other agents, and (iii)

εN → 0 as the system’s population population size, N , goes to infinity. Furthermore,

the MF system for the leaders and followers with linear coupling cost functions is

analyzed similar to the analysis in Chapter 3.

5.9. Appendix

Proof of Proposition 5.1: Here, we shall prove part (a). Part (b) follows directly

from part (a).

The terms dyM and zL,Mδ :

The observation process (5.28) of a generic adaptive follower with the observation

subset O := {L1, · · · , LM} ⊂ L of cardinality M is given by

dyM =
( 1

M

M∑
i=1

zLi,δ1

)
dt+

1

M

M∑
i=1

Didvi

≡

(
1

M

M∑
i=1

z̄Li,δ1 +
1

M

M∑
i=1

z̃Li,δ1

)
dt+

1

M

M∑
i=1

Didvi (5.53)

where z̃Li,δ1(·) := zLi,δ1(·)− z̄Li,δ1(·) in which zLi,δ1(·) and z̄Li,δ1(·) are respectively the state

trajectory and its expected value of the Li-th leader, 1 ≤ i ≤ M , where the defining

parameter of h(·) is assumed to be δ1 ∈ ∆. For each parameter δ ∈ ∆, the closed-

loop solution of the Li-th leader’s dynamics, 1 ≤ i ≤ M , in (5.1) with dynamical

parameter θi = [Ai, Bi, Ci] is

zLi,δ(t) = eΓitzLi (0)−
∫ t

0

eΓi(t−τ)BiR
−1BT

i s
L
i,δ(τ)dτ +

∫ t

0

eΓi(t−τ)Cidw
L
i

where sLi,δ(·) is the solution of the leaders’ offset tracking equation (5.11) given in

(5.20) in which the defining parameter of h(·) is assumed to be δ ∈ ∆. Furthermore,

the expected value of the corresponding closed-loop solution of the Li-th leader, 1 ≤

i ≤M , as given in (5.21) is

z̄Li,δ(t) = eΓitz̄L(0)−
∫ t

0

eΓi(t−τ)BiR
−1BT

i s
L
i,δ(τ)dτ.
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Therefore, we have z̃Li,δ1 = zLi,δ1 − z̄
L
i,δ1

= eΓit(zLi (0)− z̄L(0)) +
∫ t

0
eΓi(t−τ)Cidw

L
i . Hence,

for any δ ∈ ∆ we may write

zL,Mδ (t) :=
1

M

M∑
i=1

zLi,δ(t) = ψL,∞δ (t) +
(
z̄L,Mδ (t)− ψL,∞δ (t)

)
+

1

M

M∑
i=1

eΓit
(
zLi (0)− z̄L(0)

)
+

1

M

M∑
i=1

∫ t

0

eΓi(t−τ)Cidw
L
i (5.54)

where ψL,∞δ (·) is the deterministic infinite population leaders’ centroid computed from

the leaders’ MF system of equations, (5.11)-(5.14), when the defining parameter of

h(·) is assumed to be δ ∈ ∆. In a similar way, we may write (5.53) as

dyM = ψL,∞δ1 dt+
(
z̄L,Mδ1

− ψL,∞δ1
)
dt+

( 1

M

M∑
i=1

eΓit
(
zLi (0)− z̄L(0)

)
+

1

M

M∑
i=1

∫ t

0

eΓi(t−τ)Cidw
L
i

)
dt+

1

M

M∑
i=1

Didvi (5.55)

where z̄L,Mδ1
(·) := 1/M

∑M
i=1 z̄

L
i,δ1

(·).

The term
∫ t

0
(zL,Mδ,s )TdyMs :

By (5.54) and (5.55) we have∫ t

0

(zL,Mδ,s )TdyMs ≡
∫ t

0

(
ψL,∞δ,s +

(
z̄L,Mδ,s − ψ

L,∞
δ,s

)
+

1

M

M∑
i=1

eΓis
(
zLi (0)− z̄L(0)

)
+

1

M

M∑
i=1

∫ s

0

eΓi(s−τ)Cidw
L
i

)T
×
(
ψL,∞δ1,s ds+

(
z̄L,Mδ1,s

− ψL,∞δ1,s
)
ds+

( 1

M

M∑
i=1

eΓis
(
zLi (0)− z̄L(0)

)
+

1

M

M∑
i=1

∫ s

0

eΓi(s−τ)Cidw
L
i

)
ds+

1

M

M∑
i=1

Didvi

)
(5.56)

where zL,Mδ,t := zL,Mδ (t), z̄L,Mδ,t := z̄L,Mδ (t), yMt := yM(t) and ψL,∞δ,t := ψL,∞δ (t).
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In the rest of the proof take fixed δ ∈ ∆ and 0 < T <∞. Let

εM,δ := sup
t≥0

∥∥z̄L,Mδ (t)− ψL,∞δ (t)
∥∥

= sup
t≥0

∥∥∫
ΘL

z̄Lδ,θ(t)dF
L
M(θ)−

∫
ΘL

z̄Lδ,θ(t)dF
L(θ)

∥∥
where FL

M(x) is the empirical distribution associated with the leaders. By (A5.2)

and similar to (33) in [106] we have limM→∞ εM,δ = 0 (a.s. dFL). Therefore,∫ T

0

∥∥z̄L,Mδ,s − ψ
L,∞
δ,s

∥∥2
ds ≤ Tε2M,δ → 0 a.s. dFL (5.57)

as M goes to infinity. Hence, (5.57) and the Cauchy-Schwarz inequality imply that

lim
M→∞

∣∣∣ ∫ T

0

(
z̄L,Mδ,s − ψ

L,∞
δ,s

)T (
z̄L,Mδ1,s

− ψL,∞δ1,s
)
ds
∣∣∣

≤ lim
M→∞

(∫ T

0

∥∥z̄L,Mδ,s − ψ
L,∞
δ,s

∥∥2
ds

)1/2(∫ T

0

∥∥z̄L,Mδ1,s
− ψL,∞δ1,s

∥∥2
ds

)1/2

= lim
M→∞

TεM,δεM,δ1 = 0 (a.s.). (5.58)

Since for any δ ∈ ∆, ψL,∞δ (·) ∈ Cb
n, there exists a real number k, 0 < k < ∞

independent of M such that ∫ T

0

∥∥ψL,∞δ,s ∥∥2 ≤ kT. (5.59)

By (5.57), (5.59) and the Cauchy-Schwarz inequality we have (a.s.)

lim
M→∞

∣∣∣ ∫ T

0

(
ψL,∞δ,s

)T (
z̄L,Mδ1,s

− ψL,∞δ1,s
)
ds
∣∣∣ ≤ lim

M→∞
T
√
kεM,δ1 = 0 (5.60)

and

lim
M→∞

∣∣∣ ∫ T

0

(
z̄L,Mδ,s − ψ

L,∞
δ,s

)T
ψL,∞δ1,s ds

∣∣∣ ≤ lim
M→∞

T
√
kεM,δ = 0 (5.61)

where k is a fixed real number independent of M given in (5.59).

Analysis of disturbance terms via SLLN:
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By the Strong Law of Large Numbers (SLLN) [42] we have

lim
M→∞

1

M

M∑
i=1

∫ T

0

eΓi(T−τ)Cidw
L
i = 0 a.s.

lim
M→∞

1

M

M∑
i=1

∫ T

0

Didvi = 0 a.s.

lim
M→∞

1

M

M∑
i=1

eΓiT (zLi (0)− z̄L(0)) = 0 a.s. (5.62)

and

lim
M→∞

∫ T

0

(
ψL,∞δ,s

)T ( 1

M

M∑
i=1

Didvi
)

= 0 a.s. (5.63)

since for any δ ∈ ∆, ψL,∞δ (·) ∈ Cb
n. Similarly, we have (a.s.)

lim
M→∞

∫ T

0

(
z̄L,Mδ,s − ψ

L,∞
δ,s

)T ( 1

M

M∑
i=1

Didvi
)

= 0 (5.64)

lim
M→∞

∫ T

0

( 1

M

M∑
i=1

eΓis
(
zLi (0)− z̄L(0)

))T( 1

M

M∑
i=1

Didvi

)
= 0 (5.65)

lim
M→∞

∫ T

0

( 1

M

M∑
i=1

∫ s

0

eΓi(s−τ)Cidw
L
i

)T ( 1

M

M∑
i=1

Didvi
)

= 0. (5.66)

Analysis of influence of initial conditions:

Since for t ≥ 0

∥∥ 1

M

M∑
i=1

eΓit(zLi (0)− z̄L(0))
∥∥ ≤ γe−ρt sup

θi∈ΘL

∥∥zLi (0)− z̄L(0)
∥∥ <∞, (5.67)

with the right hand side independent of M , and where positive γ and ρ are given in

Remark 5.1, Lebesgue dominated convergence theorem [42] implies that

lim
M→∞

(∫ T

0

∥∥ 1

M

M∑
i=1

eΓis
(
zLi (0)− z̄L(0)

)∥∥2
ds

)

=

∫ T

0

lim
M→∞

∥∥ 1

M

M∑
i=1

eΓis
(
zLi (0)− z̄L(0)

)∥∥2
ds = 0 a.s. (5.68)
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where the last equality is obtained by (5.62). Again, by the Cauchy-Schwarz inequal-

ity we have (a.s.)

lim
M→∞

∫ T

0

( 1

M

M∑
i=1

eΓis
(
zLi (0)− z̄L(0)

))T
ψL,∞δ,s ds = 0 (5.69)

by (5.59) and (5.68); and (a.s.)

lim
M→∞

∫ T

0

( 1

M

M∑
i=1

eΓis
(
zLi (0)− z̄L(0)

))T(
z̄L,Mδ,s − ψ

L,∞
δ,s

)
ds = 0 (5.70)

by (5.57) and (5.68). By the same argument as in proving Theorem 5.1 in [106] (see

(31) in [106]) we get

lim
M→∞

∫ T

0

∥∥ 1

M

M∑
i=1

∫ s

0

eΓi(s−τ)Cidw
L
i

∥∥2
ds = 0 (a.s.). (5.71)

Again by the Cauchy-Schwarz inequality we have (a.s.)

lim
M→∞

∫ T

0

(
ψL,∞δ,s

)T ( 1

M

M∑
i=1

∫ s

0

eΓi(s−τ)Cidw
L
i

)
ds = 0 (5.72)

by (5.59) and (5.71),

lim
M→∞

∫ T

0

(
z̄L,Mδ,s − ψ

L,∞
δ,s

)T ( 1

M

M∑
i=1

∫ s

0

eΓi(s−τ)Cidw
L
i

)
ds = 0 (5.73)

by (5.57) and (5.71), and

lim
M→∞

∫ T

0

( 1

M

M∑
i=1

eΓis
(
zLi (0)− z̄L(0)

))T
×
( 1

M

M∑
i=1

∫ s

0

eΓi(s−τ)Cidw
L
i

)
ds = 0 (5.74)

by (5.68) and (5.71).

Conclusion of the asymptotic analysis:
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By (5.58), (5.60)-(5.61), (5.63)-(5.66), (5.68)-(5.70) and (5.71)-(5.74) we obtain

(a.s.)

lim
M→∞

exp

(∫ T

0

(
zL,Mδ,s

)T
dyMs

)
= exp

(∫ T

0

(
ψL,∞δ,s

)T
ψL,∞δ1,s ds

)
(5.75)

from (5.56) for any fixed δ ∈ ∆ and T , 0 < T <∞, and in an analogous way one can

show that (a.s.)

lim
M→∞

exp

(∫ T

0

∥∥zL,Mδ,s

∥∥2
ds

)
= exp

(∫ T

0

∥∥ψL,∞δ,s ∥∥2
ds

)
. (5.76)

Finally, (5.75) and (5.76) imply that for any fixed δ ∈ ∆, and t, 0 < t < ∞, we

have (a.s.)

lim
M→∞

LMt (δ) ≡ lim
M→∞

exp

(∫ t

0

(
zL,Mδ,s

)T
dyMs −

1

2

∫ t

0

∥∥zL,Mδ,s

∥∥2
ds

)
= L∞t (δ) ≡ exp

(∫ t

0

(
ψL,∞δ,s

)T
ψL,∞δ1,s ds−

1

2

∫ t

0

∥∥ψL,∞δ,s ∥∥2
ds

)
.

Proof of Theorem 5.5: Part (a) is a special case of Theorem 4.1 in [106]. Here,

we broadly follow the same approach to prove Part (b). For an adaptive follower i,

1 ≤ i ≤ NF , with dynamical parameter θi = [Ai, Bi, Ci] ∈ ΘL by application of the

adaptive MF control law (5.35) we have the closed-loop solution

ẑF,∞i (t) = eΓitzFi (0)−
∫ t

0

eΓi(t−τ)BiR
−1BT

i ŝ
F,∞
i (τ)dτ

+

∫ t

0

eΓi(t−τ)Cidw
F
i (τ), t ≥ 0 (5.77)

where ŝF,∞i (·) is the solution of the tracking offset equation (5.15) given by

ŝF,∞i (t) = −
∫ ∞
t

e−ΓTi (t−τ)Q
(
ηψL,∞

δ̂
(τ) + (1− η)ψF,∞

δ̂
(τ)
)
dτ. (5.78)

Denote kL := supδ∈∆ ‖ψ
L,∞
δ ‖∞, kF := supδ∈∆ ‖ψ

F,∞
δ ‖∞, and k′ = max(kL, kF ) then by

Assumption (A5.3) we have k′ < ∞. Subsequently, from (5.78), we get ‖ŝF,∞i ‖∞ ≤
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γ‖Q‖k′/ρ =: ks <∞, where positive γ and ρ are given in Remark 5.1, and hence,

‖
∫ t

0

eΓi(t−τ)BiR
−1BT

i ŝ
F,∞
i (τ)dτ‖ ≤ γks‖R−1‖M2

B/ρ =: k1 <∞,

where MB := supθi∈ΘF
‖Bi‖ <∞ since ΘF is compact. Therefore, we have (a.s.)

lim sup
T→∞

1

T

∫ T

0

∥∥∫ t

0

eΓi(t−τ)BiR
−1BT

i ŝ
F,∞
i (τ)dτ

∥∥dt ≤ k1 (5.79)

and

lim sup
T→∞

1

T

∫ T

0

∥∥∫ t

0

eΓi(t−τ)BiR
−1BT

i ŝ
F,∞
i (τ)dτ

∥∥2
dt ≤ k2

1. (5.80)

Since Γi is asymptotically stable (Remark 5.1) we have

lim sup
T→∞

1

T

∫ T

0

∥∥eΓitzFi (0)
∥∥dt = lim sup

T→∞

1

T

∫ T

0

∥∥eΓitzFi (0)
∥∥2
dt = 0 (a.s.). (5.81)

By the same argument as in proving Theorem 4.1 in [106] we get (a.s.)

lim sup
T→∞

1

T

∫ T

0

∥∥∫ t

0

eΓi(t−τ)Cidw
F
i

∥∥2
dt

=

∫ ∞
0

tr(eΓitCiC
T
i e

ΓTi t)dt ≤ γ2

2ρ
sup
θi∈ΘF

‖Ci‖2 =: k2. (5.82)

Thus, it follows from (5.79)-(5.82) that (a.s.)

lim sup
T→∞

1

T

∫ T

0

∥∥ẑF,∞i (t)
∥∥2
dt ≤ k2

1 + k2 =: k <∞. (5.83)

Since ûF,∞i (·) = −R−1BT
i

(
Πiẑ

F,∞
i (·) + ŝF,∞i (·)

)
we have

lim sup
T→∞

1

T

∫ T

0

∥∥ûF,∞i (t)
∥∥2
dt ≤ ‖R−1‖2M2

B(M2
Pk + k2

s + 2MPkks) <∞ a.s. (5.84)

where MP := supθi∈ΘF
‖Πi‖ <∞ since ΘF is compact. Since k, ks, MB and MP are

independent of i and NF , by (5.83) and (5.84) we obtain (5.37).
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CHAPTER 6

Mean Field Game Theory for Nonlinear

Stochastic Dynamical Systems with Major

and Minor Agents

This chapter studies a large population dynamic game involving nonlinear stochastic

dynamical systems with agents of the following mixed types: (i) a major agent, and

(ii) a population of N minor agents where N is very large. The major and minor

(MM) agents are coupled via both: (i) their individual nonlinear stochastic dynamics,

and (ii) their individual finite time horizon nonlinear cost functions. This problem is

approached by the so-called ε-Nash Mean Field Game (ε-NMFG) theory.

A distinct feature of the mixed agent MFG problem is that even asymptotically

(as the population size N approaches infinity) the noise process of the major agent

causes random fluctuation of the mean field behaviour of the minor agents. To deal

with this, the overall asymptotic (N → ∞) mean field game problem is decom-

posed into: (i) two non-standard stochastic optimal control problems with random

coefficient processes which yield forward adapted stochastic best response control pro-

cesses determined from the solution of (backward in time) stochastic Hamilton-Jacobi-

Bellman (SHJB) equations, and (ii) two stochastic (coefficient) McKean-Vlasov (SMV)

equations which characterize the state of the major agent and the measure determin-

ing the mean field behaviour of the minor agents. (i) and (ii) are coupled in the
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following way: the forward adapted stochastic best response control processes in (i)

involve the state of the major agent and the distribution measure corresponding to

the mean field behaviour of the minor agents in (ii) where these in turn depend upon

the best response control processes themselves. By introducing density functions

corresponding to the state distribution measures of the agents the SMV equations

may be expressed in the form of stochastic (coefficient) Fokker-Planck-Kolmogorov

(SFPK) equations.

Existence and uniqueness of the solution to the Stochastic Mean Field (SMF)

system (SHJB and SMV equations) is established by a fixed point argument in the

Wasserstein space of random probability measures. In the case that minor agents are

coupled to the major agent only through their cost functions, the εN -Nash equilibrium

property of the SMF best response control possess is shown for a finite N population

system where εN = O(1/
√
N).

As a particular but important case, the results of Nguyen and Huang [124] for

MM-SMF linear-quadratic-Gaussian (LQG) systems with homogeneous population

are retrieved, and, in addition, the results of this chapter are illustrated with a major

and minor agent version of a game model of the synchronization of coupled nonlinear

oscillators.

6.1. Introduction

Recently, Huang [75] introduced a large population LQG dynamic game model

with mean field couplings which involves not only a large number of multi-class minor

agents but also a major agent with a significant influence on minor agents (see [70,

71, 123] for static cooperative games of agents with different influences or so-called

“mixed agents”). Since all minor agents respond to the same major agent, the mean

field behaviour of minor agents in each class is directly impacted by the major agent

and hence is a random process [75]. This is in contrast to the situation in the standard

MFG models with only minor agents. A state-space augmentation approach for the

approximation of the mean field behaviour of the minor agents is taken in order
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to Markovianize the problem and hence to obtain ε-NMFG equilibrium strategies

[75]. An extension of the model in [75] to the systems of agents with Markov jump

parameters in their dynamics and random parameters in their cost functions is studied

in [171] in a discrete-time setting. See also [91] for the extension of the model in [75]

to the case of systems with egoistic and altruistic agents.

The model of [75] with finite classes of minor agents is extended in [124] to the

case of minor agents parameterized by an infinite set of dynamical parameters where

the state augmentation trick cannot be applied to obtain a finite dimensional Markov

model. Due to the LQ structure of the problem an appropriate representation for

the mean field behaviour of the minor agents as a random process is assumed which

depends linearly on the random initial state and Brownian motion of the major agent.

Appropriate approximation of the model by LQG control problems with random

parameters in the dynamics and costs yields non-Markovian forward adapted ε-NMFG

strategies resulting from backward stochastic differential equations (BSDEs) obtained

by a stochastic maximum principle [124].

In this chapter we extend the LQG model for major and minor (MM) agents [75]

to the case of a nonlinear stochastic dynamic games formulation of controlled McKean-

Vlasov (MV) type [85]. Specifically, we consider a large population dynamic game

involving nonlinear stochastic dynamical systems with agents of the following mixed

types: (i) a major agent, and (ii) a population of N minor agents where N is very

large. The MM agents are coupled via both: (i) their individual nonlinear stochastic

dynamics, and (ii) their individual finite time horizon nonlinear cost functions. Ap-

plications of the major and minor formulation may be found in charging control of

plug-in electric vehicles [117, 178], social opinion models [53] with a finite number

of leaders, and power markets involving large consumers and large utilities together

with many domestic consumers represented by smart meter agents and possibly large

numbers of renewable energy based generators [93].

A distinctive feature of the mixed agent MFG problem is that even asymptotically

(as the population size N approaches infinity) the noise process of the major agent
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causes random fluctuation of the mean field behaviour of the minor agents [75,124].

To deal with this, the overall asymptotic (N → ∞) mean field game problem is de-

composed into: (i) two non-standard Stochastic Optimal Control Problems (SOCPs)

with random coefficient processes which yield forward adapted stochastic best re-

sponse control processes determined from the solution of (backward in time) stochas-

tic Hamilton-Jacobi-Bellman (SHJB) equations, and (ii) two stochastic (coefficient)

McKean-Vlasov (SMV) equations which characterize the state of the major agent and

the measure determining the mean field behaviour of the minor agents. (i) and (ii)

are coupled in the following way: the forward adapted stochastic best response con-

trol processes in (i) involve the state of the major agent and the distribution measure

corresponding to the mean field behaviour of the minor agents in (ii) where these in

turn depend upon the best response control processes themselves.

Existence and uniqueness of the solution to the Stochastic Mean Field (SMF)

system (SHJB and SMV equations) is established by a fixed point argument in the

Wasserstein space of random probability measures. In the case that minor agents are

coupled to the major agent only through their cost functions, the εN -Nash equilibrium

property of the SMF best response control possess is shown for a finite N population

system where εN = O(1/
√
N). As a particular but important case, the results of

Nguyen and Huang [124] for MM-SMF LQG systems with homogeneous population

are retrieved. In addition, the results of this chapter are illustrated with a major

and minor agent version of a game model of the synchronization of coupled nonlinear

oscillators [177].

It is to be emphasized that the non-standard nature of the SOCPs in (i), which

consists of the coupling through the SMV equations in (ii), arises from a distinct

feature of the problem formulation. The source of this non-standard nature is the

game structure whereby the minor agents are (through the Principle of Optimality)

optimizing with respect to the future stochastic evolution of the major agent’s state

which is partly a result of that agent’s future best response control actions. Not

only this feature vanishes in the non-game theoretic setting of one controller with
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one cost function with respect to the trajectories of all the system components (in

the game situation called agents), but also in the infinite population limit of the

standard ε-NMFG models with no major agents. This is true for completely and

partially observed SOCPs. The nonstandard feature of the SOCPs here give rise to

the analysis of systems with (non necessarily Markovian) stochastic parameters. Here,

as in [124,179], the theory of BSDEs (see in particular [20,143,145,146]) is used in

the resulting stochastic dynamic game theory. More specifically, we utilize techniques

from [145] which applies the Principle of Optimality to a stochastic nonlinear control

problem with random coefficients; this leads to a formulation of a SHJB equation

by use of (i) a semi-martingale representation for the corresponding stochastic value

function, and (ii) the Itô-Kunita formula. An application of Peng results to portfolio-

consumption optimization under habit formation in complete markets is studied in

[55].

The organization of the chapter is as follows. Section 6.2 is dedicated to the

problem formulation. A major-minor (MM) agents mean field (MF) convergence

theorem is presented in Section 6.3. A preliminary nonlinear Stochastic Optimal

Control Problem (SOCP) with random parameters is studied in Section 6.4. The

stochastic mean field (SMF) system of the MM agents is given in Section 6.5, and

the existence and uniqueness of its solution is established in Section 6.6. Section 6.7

presents two applications of the MM MFG theory in the MM LQG formulation of

Nguyen and Huang [124], and major and minor agent version of the synchronization

of coupled nonlinear oscillators game model. The ε-Nash equilibrium property of the

resulting SMF control laws is studied in Section 6.8. Finally, Section 6.9 concludes

the chapter.

6.1.1. Notation and Terminology. The following notation will be used

throughout the chapter. Let Rn denote the n-dimensional real Euclidean space with

the standard Euclidean norm | · | and the standard Euclidean inner product
〈
·, ·
〉
.

The transpose of a vector (or matrix) x is denoted by xT . tr(A) denotes the trace of

a square matrix A. Let Rn×m be the Hilbert space consisting of all (n×m)-matrices
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with the inner product < A,B >:= tr(ABT) and the norm |A| :=< A,A >1/2. The

set of non-negative real numbers is denoted by R+. T ∈ [0,∞) is reserved to denote

the terminal time. The integer N is reserved to designate the population size of the

minor agents. The superscript N for a process (such as state, control or cost function)

is used to indicate the dependence on the population size N . We use the subscript 0

for the major agent A0 and an integer valued subscript for an individual minor agent

{Ai : 1 ≤ i ≤ N}. At time t ≥ 0, (i) the states of agents A0 and Ai are respectively

denoted by zN0 (t) and zNi (t), 1 ≤ i ≤ N , and (ii) for the system configuration of minor

agents (zN1 (t), · · · , zNN (t)) the empirical distribution δNt is defined as the normalized

sum of Dirac’s masses, i.e., δNt := (1/N)
∑N

i=1 δzNi (t) where δ(·) is the Dirac measure.

C(S) is the set of continuous functions and Ck(S) the set of k-times continuously

differentiable functions on S. The symbol ∂t denotes the partial derivative with

respect to variables t. We denote Dx and D2
xx as the gradient and Hessian operators

with respect to the variable x. These are respectively denoted by ∂x and ∂2
xx when

applied to a function defined on a one-dimensional domain. Let (Ω,F , {Ft}t≥0, P )

be a complete filtered probability space. E denotes the expectation. The conditional

expectation with respect to the σ-field V is denoted by EV . We note that we may

not display the dependence of random variables or stochastic processes on the sample

point ω ∈ Ω. For an Euclidean space H we denote by L2
G([0, T ];H) the space of all

{Gt}t≥0-adapted H-valued processes f(t, ω) such that E
∫ T

0
|f(t, ω)|2dt <∞.

6.2. Problem Formulation

We consider a dynamic game involving: (i) a major agentA0, and (ii) a population

of N minor agents {Ai : 1 ≤ i ≤ N} where N is very large. We assume homogenous

minor agents although the modelling may be generalized to the case of multi-class

heterogeneous minor agents [75,85] (see [127]).
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The dynamics of the agents are given by the following controlled Itô stochastic

differential equations (SDEs) on (Ω,F , {Ft}t≥0, P ):

dzN0 (t) =
1

N

N∑
j=1

f0[t, zN0 (t), uN0 (t), zNj (t)]dt

+
1

N

N∑
j=1

σ0[t, zN0 (t), zNj (t)]dw0(t), zN0 (0) = z0(0), 0 ≤ t ≤ T, (6.1)

dzNi (t) =
1

N

N∑
j=1

f [t, zNi (t), uNi (t), zN0 (t), zNj (t)]dt

+
1

N

N∑
j=1

σ[t, zNi (t), zN0 (t), zNj (t)]dwi(t), zNi (0) = zi(0), 1 ≤ i ≤ N, (6.2)

with terminal time T ∈ (0,∞) where (i) zN0 : [0, T ] → Rn is the state of the major

agent A0 and zNi : [0, T ]→ Rn is the state of the minor agent Ai; (ii) uN0 : [0, T ]→ U0

and uNi : [0, T ]→ U are respectively the control inputs of A0 and Ai; (iii) f0 : [0, T ]×

Rn×U0×Rn → Rn, σ0 : [0, T ]×Rn×Rn → Rn×m, f : [0, T ]×Rn×U×Rn×Rn → Rn

and σ : [0, T ] × Rn × Rn × Rn → Rn×m; (iv) the set of initial states is given by

{zNj (0) = zj(0) : 0 ≤ j ≤ N}, and (v) the sequence {(wj(t))t≥0 : 0 ≤ j ≤ N} denotes

N + 1 mutually independent standard Brownian motions in Rm. We denote the

filtration Ft as the σ-field generated by the initial states and the Brownian motions

up to time t, i.e., Ft := σ{zj(0), wj(s) : 0 ≤ j ≤ N, 0 ≤ s ≤ t}. We also set

Fw0
t = σ{z0(0), w0(s) : 0 ≤ s ≤ t}. These filtrations are augmented by all the P -null

sets in F .

For 0 ≤ j ≤ N , uN−j := {uN0 , · · · , uNj−1, u
N
j+1, · · · , uNN}. The objective of each agent

is to minimize its finite time horizon nonlinear cost function given by

JN0 (uN0 ;uN−0) := E

∫ T

0

(
(1/N)

N∑
j=1

L0[t, zN0 (t), uN0 (t), zNj (t)]
)
dt, (6.3)

JNi (uNi ;uN−i) := E

∫ T

0

(
(1/N)

N∑
j=1

L[t, zNi (t), uNi (t), zN0 (t), zNj (t)]
)
dt, (6.4)
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for 1 ≤ i ≤ N , where L0 : [0, T ] × Rn × U0 × Rn → R+ and L(zi, ui, z0, x) : [0, T ] ×

Rn × U ×Rn ×Rn → R+ are the nonlinear cost-coupling functions of the major and

minor agents. For 0 ≤ j ≤ N , we indicate the dependence of Jj on uNj , uN−j and the

population size N by JNj (uNj ;uN−j).

Remark 6.1. Under suitable conditions, the results of this chapter may be adapted

to deal with cost-couplings of the form:

L0[t, zN0 (t), uN0 (t), zNj (t),
1

N

N∑
j=1

zNj (t)], L[t, zNi (t), uNi (t), zN0 (t), zNj (t),
1

N

N∑
j=1

zNj (t)],

in (6.3)-(6.4) (see Section 6.7.1).

We note that in the modelling (6.1)-(6.4) the major agent A0 has a significant

influence on minor agents while each minor agent has an asymptotically negligible

impact on other agents in a large N population system. The major and minor (MM)

agents are coupled via both: (i) their individual nonlinear stochastic dynamics (6.1)-

(6.2), and (ii) their individual finite time horizon nonlinear cost functions (6.3)-(6.4).

We note that the coupling terms may be written as functionals of the empirical

distribution δN(·) by the formula
∫
Rn φ(x)δNt (dx) = (1/N)

∑N
i=1 φ(xi(t)) for a bounded

continuous function φ in Rn.

6.2.1. Assumptions. Let the empirical distribution ofN minor agents’ initial

states be defined by FN(x) = (1/N)
∑N

i=1 1{Ezi(0)<x}, where 1{Ezi(0)<x} = 1 if Ezi(0) <

x, and 1{Ezi(0)<x} = 0 otherwise. We enunciate the following assumptions:

(A6.1) The initial states {zj(0) : 0 ≤ j ≤ N} are F0-adapted random variables

mutually independent and independent of all Brownian motions {(wj(t))t≥0 : 0 ≤ j ≤

N}, and there exists a constant k independent of N such that sup0≤j≤N E|zj(0)|2 ≤

k <∞.

(A6.2) {FN : N ≥ 1} converges to a probability distribution F weakly, i.e., for

any bounded and continuous function φ on Rn we have limN→∞
∫
Rn φ(x)dFN(x) =∫

Rn φ(x)dF (x).

(A6.3) U0 and U are compact metric spaces.
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(A6.4) The functions f0[t, x, u, y], σ0[t, x, y], f [t, x, u, y, z] and σ[t, x, y, z] are con-

tinuous and bounded with respect to all their parameters, and Lipschitz continuous

in (x, y, z). In addition, their first order derivatives (w.r.t. x) are all uniformly con-

tinuous and bounded with respect to all their parameters, and Lipschitz continuous

in (y, z).

(A6.5) f0[t, x, u, y] and f [t, x, u, y, z] are Lipschitz continuous in u.

(A6.6) L0[t, x, u, y] and L[t, x, u, y, z] are continuous and bounded with respect

to all their parameters, and Lipschitz continuous in (x, y, z). In addition, their first

order derivatives (w.r.t. x) are all uniformly continuous and bounded with respect to

all their parameters, and Lipschitz continuous in (y, z).

(A6.7) (Non-degeneracy Assumption) There exists a positive constant α such

that

σ0[t, x, y]σT0 [t, x, y] ≥ αI, σ[t, x, y, z]σT (t, x, y, z) ≥ αI, ∀(t, x, y, z).

We note that if we relax the non-degeneracy assumption (A6.7) then a notion of

“viscosity” like solutions seems necessary [180].

6.3. Major and Minor Agents Mean Field Convergence The-

orem

We take a probabilistic approach to show a “decoupling effect” result such that

a generic minor agent’s statistical properties can effectively approximate the dis-

tribution produced by all minor agents as the number of minor agents N goes to

infinity (this is motivated by the analysis in Section I.1 of [162] and in Section 8.1

of [85]). Therefore, each minor agent’s state will be an independent copy of a non-

linear McKean-Vlasov (MV) process as N approaches infinity.

Let ϕ0(ω, t, x) : Ω × [0, T ] × R → U0 and ϕ(ω, t, x) : Ω × [0, T ] × R → U be two

arbitrary Fw0
t -measurable stochastic processes for which we introduce the following

assumption:
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(H6.4) ϕ0(ω, t, x) and ϕ(ω, t, x) are Lipschitz continuous in x, and ϕ0(ω, t, 0) ∈

L2
Fw0
t

([0, T ];U0) and ϕ(ω, t, 0) ∈ L2
Fw0
t

([0, T ];U).

We assume that ϕ0(t, x) := ϕ0(ω, t, x) and ϕ(t, x) := ϕ(ω, t, x) are respectively

used by the major and minor agents as their control laws in (6.1) and (6.2) (i.e.,

u0 = ϕ0 and ui = ϕ for 1 ≤ i ≤ N). Then we have the following closed-loop

equations with random coefficients:

dẑN0 (t) =
1

N

N∑
j=1

f0[t, ẑN0 (t), ϕ0(t, ẑN0 (t)), ẑNj (t)]dt

+
1

N

N∑
j=1

σ0[t, ẑN0 (t), ẑNj (t)]dw0(t), ẑN0 (0) = z0(0), 0 ≤ t ≤ T,

dẑNi (t) =
1

N

N∑
j=1

f [t, ẑNi (t), ϕ(t, ẑNi (t)), ẑN0 (t), ẑNj (t)]dt

+
1

N

N∑
j=1

σ[t, ẑNi (t), ẑN0 (t), ẑNj (t)]dwi(t), ẑNi (0) = zi(0), 1 ≤ i ≤ N.

Under (A6.4)-(A6.5) and (H6.4) there exists a unique solution
(
zN0 (·), · · · , zNN (·)

)
to the above system (see Theorem 6.16, Chapter 1 of [180], page 49).

We now introduce the McKean-Vlasov (MV) SDE system

dz̄0(t) = f0[t, z̄0(t), ϕ0(t, z̄0(t)), µt]dt+ σ0[t, z̄0(t), µt]dw0(t), 0 ≤ t ≤ T,

dz̄(t) = f [t, z̄(t), ϕ(t, z̄(t)), µ0
t , µt]dt+ σ[t, z̄(t), µ0

t , µt]dw(t),

with initial condition (z̄0(0), z̄(0)), where for an arbitrary function g ∈ C(Rs) for

appropriate s, and probability distributions µt and µ0
t in Rn, we set

g[t, z, µt] =

∫
Rn
g[t, z, x]µt(dx), g[t, z, µ0

t , µt] =

∫
Rn×Rn

g[t, z, x, y]µ0
t (dx)µt(dy),

when the indicated integrals converge. In the above MV system
(
z̄0(·), z̄(·), µ0

(·), µ(·)
)

is a “consistent solution” if
(
z̄0(·), z̄(·)

)
is a solution to the above SDE system, µt,

0 ≤ t ≤ T , is the conditional law of z̄(t) given Fw0
t (i.e., µt := L

(
z̄(t)|Fw0

t

)
), and µ0

t ,

0 ≤ t ≤ T , is the unit mass measure concentrated at z̄0(t) (i.e., µ0
t = δz̄0(t)).
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Under (A6.4)-(A6.5) and (H6.4) it can be shown by a fixed point argument that

there exists a unique solution
(
z̄0(·), z̄(·), µ0

(·), µ(·)
)

to the above system (see Theorem

1.1 in [162] or Theorem 6.8 below).

We also introduce the equations

dz̄0(t) = f0[t, z̄0(t), ϕ0(t, z̄0(t)), µt]dt+ σ0[t, z̄0(t), µt]dw0(t), 0 ≤ t ≤ T,

dz̄i(t) = f [t, z̄i(t), ϕ(t, z̄i(t)), µ
0
t , µt]dt+ σ[t, z̄i(t), µ

0
t , µt]dwi(t), 1 ≤ i ≤ N,

with initial conditions z̄j(0) = zj(0), 0 ≤ j ≤ N , which can be viewed as N indepen-

dent samples of the MV SDE system above. We develop a decoupling result below

such that each ẑNi , 1 ≤ i ≤ N , has the natural limit z̄i in the infinite population limit

(see Theorem 12 in [85]).

Theorem 6.1. Assume (A6.1), (A6.3)-(A6.5) and (H6.4) hold. Then we have

sup
0≤j≤N

sup
0≤t≤T

E|ẑNj (t)− z̄j(t)| = O(1/
√
N), (6.5)

where the right hand side may depend upon the terminal time T .

Proof: We will show

sup
0≤j≤N

sup
0≤t≤T

E|ẑNj (t)− z̄j(t)|2 = O(1/N),

which implies the result of the theorem by the Cauchy-Schwarz inequality. First by

the inequality (x+ y)2 ≤ 2x2 + 2y2, we have

E|ẑN0 (t)− z̄0(t)|2

≤ 2E
∣∣∣ ∫ t

0

( 1

N

N∑
j=1

f0[s, ẑN0 , ϕ0(s, ẑN0 ), ẑNj ]− f0[s, z̄0, ϕ0(s, z̄0), µs]
)
ds
∣∣∣2

+ 2E
∣∣∣ ∫ t

0

( 1

N

N∑
j=1

σ0[s, ẑN0 , ẑ
N
j ]− σ0[s, z̄0, µs]

)
dw0(s)

∣∣∣2.
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By the Cauchy-Schwarz inequality and the properties of Itô integrals we then obtain

E|ẑN0 (t)− z̄0(t)|2

≤ 2tE
(∫ t

0

∣∣∣ 1

N

N∑
j=1

f0[s, ẑN0 , ϕ0(s, ẑN0 ), ẑNj ]− f0[s, z̄0, ϕ0(s, z̄0), µs]
∣∣∣2ds)

+ 2E
(∫ t

0

∣∣∣ 1

N

N∑
j=1

σ0[s, ẑN0 , ẑ
N
j ]− σ0[s, z̄0, µs]

∣∣∣2ds). (6.6)

Clearly,

1

N

N∑
j=1

f0[s, ẑN0 , ϕ0(s, ẑN0 ), ẑNj ]− f0[s, z̄0, ϕ0(s, z̄0), µs]

=
( 1

N

N∑
j=1

f0[s, ẑN0 , ϕ0(s, ẑN0 ), ẑNj ]− 1

N

N∑
j=1

f0[s, z̄0, ϕ0(s, z̄0), ẑNj ]
)

+
( 1

N

N∑
j=1

f0[s, z̄0, ϕ0(s, z̄0), ẑNj ]− 1

N

N∑
j=1

f0[s, z̄0, ϕ0(s, z̄0), z̄j]
)

+
( 1

N

N∑
j=1

f0[s, z̄0, ϕ0(s, z̄0), z̄j]− f0[s, z̄0, ϕ0(s, z̄0), µs]
)
, (6.7)

and

1

N

N∑
j=1

σ0[s, ẑN0 , ẑ
N
j ]− σ0[s, z̄0, µs] =

( 1

N

N∑
j=1

σ0[s, ẑN0 , ẑ
N
j ]− 1

N

N∑
j=1

σ0[s, z̄0, ẑ
N
j ]
)

+
( 1

N

N∑
j=1

σ0[s, z̄0, ẑ
N
j ]− 1

N

N∑
j=1

σ0[s, z̄0, z̄j]
)

+
( 1

N

N∑
j=1

σ0[s, z̄0, z̄j]− σ0[s, z̄0, µs]
)
.
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Applying the inequality (x+y+z)2 ≤ 3(x2 +y2 +z2), and the Lipschitz continuity

conditions of f0 and ϕ0 to (6.7) we obtain

E
(∫ t

0

∣∣∣ 1

N

N∑
j=1

f0[s, ẑN0 , ϕ0(s, ẑN0 ), ẑNj ]− f0[s, z̄0, ϕ0(s, z̄0), µs]
∣∣∣2ds

≤ 3C

∫ t

0

E
∣∣ẑN0 (s)− z̄0(s)

∣∣2ds+ 3C

∫ t

0

E
∣∣ 1

N

N∑
j=1

ẑNj (s)− z̄j(s)
∣∣2ds

+ 3C

∫ t

0

E
∣∣∣ 1

N

N∑
j=1

f0[s, z̄0, ϕ0(s, z̄0), z̄j]− f0[s, z̄0, ϕ0(s, z̄0), µs]
∣∣∣2ds, (6.8)

where C > 0 is a constant independent of N . Due to the centring of gs[s, z̄0, x] :=

f0[s, z̄0, ϕ0(s, z̄0), x]− f0[s, z̄0, ϕ0(s, z̄0), µs] with respect to x and the independence of

z̄j and z̄j′ when j 6= j′, there are no cross terms in the expansion of the last term in

(6.8), i.e., E
(
gs[s, z̄0, z̄j]gs[s, z̄0, z̄j′ ]

)
= EEFw0

t

(
gs[s, z̄0, z̄j]gs[s, z̄0, z̄j′ ]

)
= 0 for j 6= j′

(see [162], Page 175). This property together with (6.8), the boundedness of f0 and

the inequality (
∑N

i=1 xi)
2 ≤ N

∑N
i=1 x

2
i yields

E
(∫ t

0

∣∣∣ 1

N

N∑
j=1

f0[s, ẑN0 , ϕ0(s, ẑN0 ), ẑNj ]− f0[s, z̄0, ϕ0(s, z̄0), µs]
∣∣∣2ds

≤ 3C

∫ t

0

E
∣∣ẑN0 (s)− z̄0(s)

∣∣2ds+
3C

N

∫ t

0

N∑
j=1

E
∣∣ẑNj (s)− z̄j(s)|2ds+

k1(t)

N
, (6.9)

where k1(t) ≥ 0 is an increasing function independent of N . Similarly, for the second

term on the right hand side of (6.6) we have

E
(∫ t

0

∣∣∣ 1

N

N∑
j=1

σ0[s, ẑN0 , ẑ
N
j ]− σ0[s, z̄0, µs]

∣∣∣2ds)

≤ 3C

∫ t

0

E|ẑN0 (s)− z̄0(s)|2ds+
3C

N

∫ t

0

N∑
j=1

E|ẑNj (s)− z̄j(s)|2ds+
k1(t)

N
. (6.10)
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The inequalities (6.6), (6.9) and (6.10) imply that

sup
0≤t≤T

E|ẑN0 (t)− z̄0(t)|2 ≤ 6C(T + 1)

∫ T

0

E|ẑN0 (s)− z̄0(s)|2ds

+
6C(T + 1)

N

∫ T

0

N∑
j=1

E|ẑNj (s)− z̄j(s)|2ds+
2(T + 1)k1(T )

N
. (6.11)

Second, by taking a similar approach for the ith minor agent (1 ≤ i ≤ N) we get

sup
0≤t≤T

E|ẑNi (t)− z̄i(t)|2 ≤ 8C(T + 1)

∫ T

0

E|ẑNi (s)− z̄i(s)|2ds+
k(T )

N

+ 8C(T + 1)
(∫ T

0

E|ẑN0 (s)− z̄0(s)|2ds+
1

N

∫ T

0

N∑
j=1

E|ẑNj (s)− z̄j(s)|2ds
)
, (6.12)

where k(T ) > 0 is independent of N .

The inequalities (6.11) and (6.12) yield

gN(T ) := sup
0≤t≤T

E|ẑN0 (t)− z̄0(t)|2 +
1

N

N∑
j=1

sup
0≤t≤T

E|ẑNj (t)− z̄j(t)|2

≤ 22C(T + 1)

∫ T

0

(
E|ẑN0 (s)− z̄0(s)|2 +

1

N

N∑
j=1

E|ẑNj (s)− z̄j(s)|2
)
ds

+
k0(T ) + k(T )

N
≤ 22C(T + 1)

∫ T

0

g(s)ds+
k0(T ) + k(T )

N
. (6.13)

It follows from Gronwall’s Lemma that

gN(T ) ≤ k0(T ) + k(T )

N

(
exp

(
22C(T + 1)T

))
= O(1/N), (6.14)

where the right hand side may only depend upon the terminal time T . This yields

sup
0≤t≤T

E|ẑN0 (t)− z̄0(t)|2 = O(1/N).

The inequalities (6.12) and (6.14) combined with Gronwall’s Lemma imply that

sup
1≤i≤N

sup
0≤t≤T

E|ẑNi (t)− z̄i(t)|2 = O(1/N).

This completes the proof.
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6.4. A Preliminary Nonlinear Stochastic Optimal Control Prob-

lem

Let (W (t))t≥0 and (B(t))t≥0 be mutually independent standard Brownian motions

in Rm, with FW,Bt := σ{W (s), B(s) : s ≤ t} and FWt := σ{W (s) : s ≤ t} where both

are augmented by all the P -null sets in F .

We now consider the following “single agent” nonlinear stochastic optimal control

problem (SOCP) on (Ω,F , {Ft}t≥0, P ):

dz(t, ω) = f [t, ω, z, u]dt+ σ[t, ω, z]dW (t) + ς[t, ω, z]dB(t), 0 ≤ t ≤ T, (6.15)

inf
u∈U

J(u) := inf
u∈U

E
[ ∫ T

0

L[t, ω, z(t), u(t)]dt
]
, (6.16)

where the coefficients f, σ, ς and L are random depending on ω ∈ Ω explicitly. In

(6.15)-(6.16): (i) z : [0, T ] × Ω → Rn is the state of the agent with FW,B0 -adapted

random initial state z(0) such that E|z(0)|2 <∞; (ii) u : [0, T ]×Ω→ U is the control

input where U is a compact metric space; (iii) the functions f : [0, T ]×Ω×Rn×U →

Rn, σ, ς : [0, T ] × Ω × Rn → Rn×m are FWt -adapted stochastic processes; (iv) the

admissible control set U is taken as U :=
{
u(·) ∈ U : u(t) is adapted to σ-field FW,Bt

and E
∫ T

0
|u(t)|2dt <∞

}
. We introduce the following assumptions (see [145]).

(H6.1) f [t, x, u] and L[t, x, u] are a.s. continuous in (x, u) for each t, a.s. con-

tinuous in t for each (x, u), f [t, 0, 0] ∈ L2
Ft([0, T ];Rn) and L[t, 0, 0] ∈ L2

Ft([0, T ];R+).

In addition, they and all their first derivatives (w.r.t. x) are a.s. continuous and

bounded.

(H6.2) σ[t, x] and ς[t, x] are a.s. continuous in x for each t, a.s. continuous in t

for each x and σ[t, 0], ς[t, 0] ∈ L2
Ft([0, T ];Rn×m). In addition, they and all their first

derivatives (w.r.t. x) are a.s. continuous and bounded.

(H6.3) (Non-degeneracy Assumption) There exist non-negative constants α1 and

α2 such that

σ[t, ω, x]σT [t, ω, x] ≥ α1I, ς[t, ω, x]ςT (t, ω, x) ≥ α2I, a.s., ∀(t, ω, x),
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where α1 or α2 (but not both) can be zero.

The value function for the SOCP (6.15)-(6.16) is defined by (see [145])

φ
(
t, x(t)

)
= inf

u∈U
EFWt

∫ T

t

L[s, ω, z(s), u(s)]ds, (6.17)

where x(t) is the initial condition for the process x(s) := z(s), t ≤ s. We note that

φ
(
t, x(t)

)
is an FWt -adapted process which is sample path continuous a.s. under the

assumptions (H6.1)-(H6.2). We assume that there exists an optimal control law

uo ∈ U such that

φ
(
t, x(t)

)
= EFWt

∫ T

t

L[s, ω, x(s), uo(s, ω, x(s))]ds,

where x(·) is the closed-loop solution when the control law uo is applied. By the

Principle of Optimality, it can be shown that the process

ζ(t) := φ
(
t, x(t)

)
+

∫ t

0

L[s, ω, x(s), uo(s, x(s))]ds, (6.18)

is an {FWt }0≤t≤T -martingale (see [21]). Next, by the martingale representation theo-

rem (see Theorem 5.7, Chapter 1, [180]) there exists an FWt -adapted process ψ
(
·, x(·)

)
such that

ζ(t) = φ
(
0, x(0)

)
+

∫ t

0

ψT (s, x(s))dW (s), t ∈ [0, T ]. (6.19)

From (6.18)-(6.19) and the fact that φ(T, x(T )) = 0, it follows that

ζ(T ) =

∫ T

0

L[s, ω, x(s), uo(s, x(s))]ds = φ
(
0, x(0)

)
+

∫ T

0

ψT (s, x(s))dW (s),

which gives

φ(0, x(0)) =

∫ T

0

L[s, ω, x(s), uo(s, x(s))]ds−
∫ T

0

ψT (s, x(s))dW (s). (6.20)
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Hence, combining (6.18)-(6.20) yields

φ
(
t, x(t)

)
=

∫ T

t

L[s, ω, x(s), uo(s, x(s))]ds−
∫ T

t

ψT
(
s, x(s)

)
dW (s) (6.21)

=:

∫ T

t

Γ
(
s, x(s)

)
ds−

∫ T

t

ψT
(
s, x(s)

)
dW (s), t ∈ [0, T ],

where φ
(
s, x(s)

)
, Γ
(
s, x(s)

)
and ψ

(
s, x(s)

)
are FWs -adapted stochastic processes (see

the assumed “semi-martingale representation” form (3.5) in [145]).

We recall an extended version of the Itô-Kunita formula [99] for the composition

of stochastic processes (see Theorem 2.3 in [145]).

Theorem 6.2. Let φ(t, x) be a stochastic process a.s. continuous in (t, x) such

that (i) for each t, φ(t, ·) is a C2(Rn) map a.s., (ii) for each x, φ(·, x) is a continuous

semi-martingale represented by

dφ(t, x) = −Γ(t, x)dt+
m∑
k=1

ψk(t, x)dWk(t), (t, x) ∈ [0, T ]× Rn,

where Γ(t, x) and ψk(t, x), 1 ≤ k ≤ m, are FWt -adapted stochastic processes which

are continuous in (t, x) a.s., such that for each t, Γ(t, ·) is a C1(Rn) map a.s., and

ψk(t, ·), 1 ≤ k ≤ m, are C2(Rn) maps (a.s.).

Let x(·) =
(
x1(·), · · · , xn(·)

)
be a continuous semi-martingale of the form

dxi(t) = fi(t)dt+
m∑
k=1

σik(t)dWk(t) +
m∑
k=1

ςik(t)dBk(t), 1 ≤ i ≤ n,

where fi, σi = (σi1, · · · , σim) and ςi = (ςi1, · · · , ςim), 1 ≤ i ≤ n, are FWt -adapted

stochastic processes such that (i) fi is an integrable process a.s., and (ii) σi and ςi are

square integrable processes (a.s.).
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Then the composition map φ(·, x(·)) is also a continuous semi-martingale which

has the form

dφ
(
t, x(t)

)
= −Γ

(
t, x(t)

)
dt+

m∑
k=1

ψk
(
t, x(t)

)
dWk(t) +

n∑
i=1

∂xiφ
(
t, x(t)

)
fi(t)dt

+
n∑
i=1

m∑
k=1

∂xiφ
(
t, x(t)

)
σik(t)dWk(t) +

n∑
i=1

m∑
k=1

∂xiφ
(
t, x(t)

)
ςik(t)dBk(t)

+
n∑
i=1

m∑
k=1

∂xiψk
(
t, x(t)

)
σik(t)dt+

1

2

n∑
i,j=1

m∑
k=1

∂2
xixj

φ
(
t, x(t)

)
σik(t)σjk(t)dt

+
1

2

n∑
i,j=1

m∑
k=1

∂2
xixj

φ
(
t, x(t)

)
ςik(t)ςjk(t)dt. (6.22)

Using the extended Itô-Kunita formula (6.22) and the Principle of Optimality,

Peng [145] showed that since φ(t, x) can be expressed in the semi-martingale form

(6.21), and if φ(t, x), ψ(t, x), Dxφ(t, x), D2
xxφ(t, x) and Dxψ(x, t) are a.s. continu-

ous in (x, t), then the pair
(
φ(s, x), ψ(s, x)

)
satisfies the following backward in time

stochastic Hamilton-Jacobi-Bellman (SHJB) equation:

− dφ(t, ω, x) =
[
H[t, ω, x,Dxφ(t, ω, x)] +

〈
σ[t, ω, x], Dxψ(t, ω, x)

〉
+

1

2
tr
(
a[t, ω, x]D2

xxφ(t, ω, x)
)]
dt− ψT (t, ω, x)dW (t, ω), φ(T, x) = 0, (6.23)

where (t, x) ∈ [0, T ] × Rn, a[t, ω, x] := σ[t, ω, x]σT [t, ω, x] + ς[t, ω, x]ςT [t, ω, x] , and

the stochastic Hamiltonian H : [0, T ]× Ω× Rn × Rn → R is given by

H[t, ω, x, p] := inf
u∈U

{〈
f [t, ω, x, u], p

〉
+ L[t, ω, x, u]

}
.

We note that the appearance of the term
〈
σ[t, ω, x], Dxψ(t, ω, x)

〉
in equation (6.23)

corresponds to the Brownian motion W (·) in the extended Itô-Kunita formula (6.22)

for the composition of FWt -adapted stochastic processes φ(t, ω, x) and z(t, ω) given

in (6.21) and (6.15), respectively.
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The solution to the backward in time SHJB equation (6.23) is a unique forward

in time FWt -adapted pair (φ, ψ)(t, x) ≡
(
φ(t, ω, x), ψ(t, ω, x)

)
(see [145, 180]). We

omit the proof of the following theorem which closely resembles that of Theorem 4.1

in [145].

Theorem 6.3. Assume (H6.1)-(H6.3) hold. Then the SHJB equation (6.23)

has a unique solution (φ(t, x), ψ(t, x)) in
(
L2
Ft([0, T ];R), L2

Ft([0, T ];Rm)
)
.

The forward in time FWt -adapted optimal control process of the SOCP (6.15)-

(6.16) is given by (see [145])

uo(t, ω, x) := arg inf
u∈U

Hu[t, ω, x,Dxφ(t, ω, x), u]

= arg inf
u∈U

{〈
f [t, ω, x, u], Dxφ(t, ω, x)

〉
+ L[t, ω, x, u]

}
. (6.24)

By a verification theorem approach, Peng [145] showed that if the unique solution

(φ, ψ)(t, x) of the SHJB equation (6.23) satisfies:

(i) for each t, (φ, ψ)(t, ·) is a C2(Rn) map from Rn into R× Rm,

(ii) for each x, (φ, ψ)(t, x) and (Dxφ,D
2
xxφ,Dxψ)(t, x) are continuous FW

t -adapted

stochastic processes, then φ(x, t) coincides with the value function (6.17) of the SOCP

(6.15)-(6.16).

6.5. The Major and Minor Agents’ Stochastic Mean Field Sys-

tem

In the formulation (6.1)-(6.4) all minor agents are reacting to the same major

agent and hence the major agent has non-negligible influence on the mean field be-

haviour of the minor agents. In other words, the noise process of the major agent w0

causes random fluctuation of the mean-field behaviour of the minor agents and makes

it stochastic (see the discussion in Section 2 of [75] for the major and minor (MM)

linear-quadratic-Gaussian (LQG) model).

In this section, we first construct two auxiliary stochastic optimal control prob-

lems (SOCP) with random coefficients for the major and a generic minor agent in

165



CHAPTER 6. MEAN FIELD GAME THEORY INVOLVING MAJOR AND MINOR AGENTS

Sections 6.5.1 and 6.5.2, respectively. Then, we present the stochastic mean field

system for the major and minor agents game formulation (6.1)-(6.4) via the mean

field game consistency condition in Section 6.5.3.

6.5.1. Stochastic Optimal Control Problem of the Major Agent. By

the decoupling result in Theorem 6.1 which indicates that a single minor agent’s

statistical properties can effectively approximate the empirical distribution produced

by all minor agents, we may approximate the empirical distribution of minor agents

δN(·) with a stochastic probability measure µ(·) which depends on the noise process of

the major agent w0.

In this section, let µt(ω), 0 ≤ t ≤ T , be an exogenous nominal minor agent

stochastic measure process such that µ0(dx) := dF (x) where F is defined in (A6.2).

Note that in Section 6.5.3 µt(ω) will be characterized via the mean field game consis-

tency condition as the random measure of minor agents’ mean field behaviour.

We define the following SOCP (6.15)-(6.16) with Fw0
t -adapted random coefficients

from the major agent’s model (6.1) and (6.3) in the infinite population limit:

dz0(t) = f0[t, z0(t), u0(t), µt(ω)]dt+ σ0[t, z0(t), µt(ω)]dw0(t, ω), z0(0), (6.25)

inf
u0∈U0

J0(u0) := inf
u0∈U0

E
[ ∫ T

0

L0[t, z0(t), u0(t), µt(ω)]dt
]
, (6.26)

where we explicitly indicate the dependence of the random measure µ(·) on the sample

point ω ∈ Ω.

Step I (Major Agent’s Stochastic Hamilton-Jacobi-Bellman (SHJB) Equation):

The value function of the major agent’s SOCP (6.25)-(6.26) is defined by

φ0

(
t, x(t)

)
= inf

u0∈U0

EFw0
t

∫ T

t

L0[s, z0(s), u0(s), µs(ω)]ds, (6.27)

where x(t) is the initial condition for the process x(s) := z0(s), t ≤ s (see (6.17)). As

in Section 6.4, φ0

(
t, x(t)

)
has the form (see (6.21))

φ0

(
t, x(t)

)
=

∫ T

t

Γ0

(
s, x(s)

)
ds−

∫ T

t

ψT0
(
s, x(s)

)
dw0(s), t ∈ [0, T ],
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where φ0

(
s, x(s)

)
, Γ0

(
s, x(s)

)
and ψ0

(
s, x(s)

)
are Fw0

s -adapted stochastic processes.

If φ0(t, x), ψ0(t, x), Dxφ0(t, x), D2
xxφ0(t, x) and Dxψ0(x, t) are a.s. continuous in

(x, t), then (see [145]) the pair
(
φ0(s, x), ψ0(s, x)

)
satisfies the following stochastic

Hamilton-Jacobi-Bellman (SHJB) equation:

− dφ0(t, ω, x) =
[
H0[t, ω, x,Dxφ0(t, ω, x)] +

〈
σ0[t, x, µt(ω)], Dxψ0(t, ω, x)

〉
+

1

2
tr
(
a0[t, ω, x]D2

xxφ0(t, ω, x)
)]
dt− ψT0 (t, ω, x)dw0(t, ω), φ0(T, x) = 0, (6.28)

where (t, x) ∈ [0, T ]×Rn, a0[t, ω, x] := σ0[t, x, µt(ω)]σT0 [t, x, µt(ω)], and the stochastic

Hamiltonian H0 : [0, T ]× Ω× Rn × Rn → R is given by

H0[t, ω, x, p] := inf
u∈U0

{〈
f0[t, x, u, µt(ω)], p

〉
+ L0[t, x, u, µt(ω)]

}
.

The solution to the backward in time SHJB equation (6.28) is a forward in time

Fw0
t -adapted pair

(
φ0(t, x), ψ0(t, x)

)
≡
(
φ0(t, ω, x), ψ0(t, ω, x)

)
(see [145]).

We note that the appearance of the term
〈
σ0[t, x, µt(ω)], Dxψ0(t, ω, x)

〉
in equa-

tion (6.28) corresponds to the major agent’s Brownian motion w0(·) in the extended

Itô-Kunita formula (6.22) for the composition of Fw0
t -adapted processes φ0(t, ω, x)

and z0(t, ω) in (6.25).

The best response control process of the major agent’s SOCP (6.25)-(6.26) is

given by

uo0(t, ω, x) ≡ uo0(t, x|{µs(ω)}0≤s≤T ) := arg inf
u0∈U0

Hu0
0 [t, ω, x, u0, Dxφ0(t, ω, x)]

≡ arg inf
u0∈U0

{〈
f0[t, x, u0, µt(ω)], Dxφ0(t, ω, x)

〉
+ L0[t, x, u0, µt(ω)]

}
, (6.29)

where the infimum exists a.s. here and in all analogous infimizations in the chapter

due to the continuity of all functions appearing in Hu0
0 and the compactness of U0. It

should be noted that the stochastic best response (SBR) control uo0 is a forward in time

Fw0
t -adapted process which depends on the Brownian motion w0 via the stochastic

measure µt(ω), 0 ≤ t ≤ T . The notation in (6.29) indicates that uo0 at time t depends

upon the stochastic measure µs(ω) on the whole interval 0 ≤ s ≤ T .
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Step II (Major Agent’s Stochastic Coefficient McKean-Vlasov (SMV) and Sto-

chastic Fokker-Planck-Kolmogorov (SFPK) Equations): By substituting the best re-

sponse control process uo0 (6.29) into the major agent’s dynamics (6.25) we get the

following stochastic McKean-Vlasov (SMV) dynamics with random coefficients:

dzo0(t, ω) = f0[t, zo0, u
o
0(t, ω, zo0), µt(ω)]dt+ σ0[t, zo0, µt(ω)]dw0(t, ω), (6.30)

with zo0(0) = z0(0), where f0 and σ0 are random processes via the stochastic measure

µ and uo0. The random measure of the major agent µ0
t (ω), 0 ≤ t ≤ T , is denoted as

the unit mass measure concentrated at zo0(t, ω) (i.e., µ0
t (ω) = δzo0(t,ω)).

An equivalent method to characterize the SMV of the major agent is to express

(6.30) in the form of stochastic Fokker-Planck-Kolmogorov (SFPK) equation with

random coefficients:

dp0
s(t, ω, x) =

(
−
〈
Dx, f0[t, x, uo0(t, ω, x), µt(ω)]p0

s(t, ω, x)
〉

+
1

2
tr
〈
D2
xx, a0[t, ω, x]p0

s(t, ω, x)
〉)
dt

−
〈
Dx, σ0[t, x, µt(ω)]p0

s(t, ω, x)dw0(t, ω)
〉
, p0

s(s, ω, x) = δzo0(s,ω)(dx), (6.31)

where 0 ≤ s ≤ t ≤ T . p0
s(t, ω, x) is the conditional probability density of zo0(t, ω)

given Fw0
t and has the initial condition p0

s(s, ω, x) = δzo0(s,ω)(dx).

6.5.2. Stochastic Optimal Control Problem of the Generic Minor Agent.

As in Section 6.5.1 let µt, 0 ≤ t ≤ T , be the exogenous nominal minor agent sto-

chastic measure process approximating the empirical distribution produced by all

minor agents in the infinite population limit such that µ0(dx) = dF (x) where F is

defined in (A6.2). We let µ0
t (ω), 0 ≤ t ≤ T , be the unit mass measure concentrated

at the major agent’s state zo0(t, ω) obtained from the major agent’s SMV equation

(6.30).
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We define the following SOCP (6.15)-(6.16) with Fw0
t -adapted random coefficients

from the ith generic minor agent’s model (6.2), (6.4) in the infinite population limit:

dzi(t) = f [t, zi(t), ui(t), µ
0
t (ω), µt(ω)]dt+ σ[t, zi(t), µ

0
t (ω), µt(ω)]dwi(t, ω

′), (6.32)

inf
ui∈U

Ji(ui) := inf
ui∈U

E
[ ∫ T

0

L[t, zi(t), ui(t), µ
0
t (ω), µt(ω)]dt

]
, zi(0), (6.33)

where we explicitly indicate the dependence of the random measures µ0
(·) and µ(·) on

the sample point ω ∈ Ω.

Step I (Generic Minor Agent’s Stochastic Hamilton-Jacobi-Bellman (SHJB) Equa-

tion):

The value function of the generic minor agent’s SOCP (6.32)-(6.33) is defined by

φi
(
t, x(t)

)
= inf

ui∈U0

EFw0
t

∫ T

t

L[s, zi(s), ui(s), µ
0
s(ω), µs(ω)]ds, (6.34)

where x(t) is the initial condition for the process x(s) := zi(s), t ≤ s (see (6.17)). As

in Section 6.4, φi
(
t, x(t)

)
has the form (see (6.21))

φi
(
t, x(t)

)
=

∫ T

t

Γi
(
s, x(s)

)
ds−

∫ T

t

ψTi
(
s, x(s)

)
dw0(s), t ∈ [0, T ],

where φi
(
s, x(s)

)
, Γi
(
s, x(s)

)
and ψi

(
s, x(s)

)
are Fw0

s -adapted stochastic processes.

If φi(t, x), ψi(t, x), Dxφi(t, x) and D2
xxφi(t, x) are a.s. continuous in (x, t), then the

pair
(
φi(s, x), ψi(s, x)

)
satisfies the following backward in time stochastic Hamilton-

Jacobi-Bellman (SHJB) equation (see (6.23)):

− dφi(t, ω, x) =
[
H[t, ω, x,Dxφi(t, ω, x)] +

1

2
tr
(
a[t, ω, x]D2

xxφi(t, ω, x)
)]
dt

− ψTi (t, ω, x)dw0(t, ω), φi(T, x) = 0, (6.35)

where (t, x) ∈ [0, T ] × Rn, a[t, ω, x] := σ[t, x, µ0
t (ω), µt(ω)]σT [t, x, µ0

t (ω), µt(ω)], and

the stochastic Hamiltonian H : [0, T ]× Ω× Rn × Rn → R is given by

H[t, ω, x, p] := inf
u∈U

{〈
f [t, x, u, µ0

t (ω), µt(ω)], p
〉

+ L[t, x, u, µ0
t (ω), µt(ω)]

}
.
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The solution to the backward in time SHJB equation (6.35) is a forward in time Fw0
t -

adapted pair
(
φi(t, x), ψi(t, x)

)
≡
(
φi(t, ω, x), ψi(t, ω, x)

)
(see [145]). We note that

since the coefficients of the SOCP (6.32)-(6.33) are Fw0
t -adapted random processes

we have the major agent’s Brownian motion w0 in (6.35) which allows us to seek for

a forward in time adapted solution to the backward in time SHJB equation (6.35).

It is important to note that in (6.35) unlike the major agent’s SHJB equation

(6.28) we do not have the term
〈
σ[t, x, µ0

t (ω), µt(ω)]Dxψi(t, ω, x)
〉

since the coefficients

in the minor agent’s model (6.32)-(6.33) are Fw0
t -adapted random processes depending

upon the major agent’s Brownian motion (w0) which is independent of the minor

agent’s Brownian motion (wi) (see the extended Itô-Kunita formula (6.22)).

As in Section 6.5.1, the best response control process of the minor agent’s SOCP

(6.32)-(6.33) is

uoi (t, ω, x) ≡ uoi (t, x|{µ0
s(ω), µs(ω)}0≤s≤T ) := arg inf

u∈U
Hu[t, ω, x, u,Dxφi(t, ω, x)]

≡ arg inf
u∈U

{〈
f [t, x, u, µ0

t (ω), µt(ω)], Dxφi(t, ω, x)
〉

+ L[t, x, u, µ0
t (ω), µt(ω)]

}
, (6.36)

where the infimum exists a.s. here and in all analogous infimizations in the chapter

due to the continuity of all functions appearing in Hu and the compactness of U . It

should be noted that the stochastic best response (SBR) control of the generic minor

agent uoi is a forward in time Fw0
t -adapted random process which depends on the

Brownian motion w0 via the stochastic measures µ0
t (ω) and µt(ω), 0 ≤ t ≤ T . The

notation in (6.36) indicates that uoi at time t depends upon the stochastic measures

µ0
s(ω) and µs(ω) on the whole interval 0 ≤ s ≤ T .

Step II (Minor Agent’s Stochastic Coefficient McKean-Vlasov (SMV) and Sto-

chastic Fokker-Planck-Kolmogorov (SFPK) Equations): By substituting the best re-

sponse control process uoi (6.36) into the minor agent’s dynamics (6.32) we get the

following stochastic McKean-Vlasov (SMV) dynamics with random coefficients:

dzoi (t, ω, ω
′) = f [t, zoi , u

o
i (t, ω, zi), µ

0
t (ω), µt(ω)]dt

+ σ[t, zoi , µ
0
t (ω), µt(ω)]dwi(t, ω

′), zoi (0) = zi(0), (6.37)
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where f and σ are random processes via the stochastic measures µ0 and µ, and the

best response control process uoi which all depend on the Brownian motion of the

major agent (w0).

Based on the decoupling effect (see Section 6.3 or the theory of propagation of

chaos in [162]) the generic agent’s statistical properties can effectively approximate

the empirical distribution produced by all minor agents in a large population system.

Hence, we obtain a new stochastic measure µ̂t(ω) for the mean field behaviour of minor

agents as the conditional law of the generic minor agent’s process zoi (t, ω) given Fw0
t .

We characterize µ̂t(ω), 0 ≤ t ≤ T , by P (zoi (t, ω) ≤ α|Fw0
t ) =

∫ α
−∞ µ̂(t, ω, dx) a.s. for

all α ∈ Rn and 0 ≤ t ≤ T , with µ̂0(dx) = µ0(dx) = dF (x) where F is defined in

(A6.2).

An equivalent method to characterize the SMV of the generic minor agent is to

express (6.37) in the form of stochastic Fokker-Planck-Kolmogorov (SFPK) equation

with random coefficients:

dp̂(t, ω, x) =
(
−
〈
Dx, f [t, x, uoi (t, ω, x), µ0

t (ω), µt(ω)]p̂(t, ω, x)
〉

+
1

2
tr
〈
D2
xx, a[t, ω, x]p̂(t, ω, x)

〉)
dt, p̂(0, x) = p0(x), (6.38)

in [0, T ] × Rn where p(t, ω, x) is the conditional probability density of zoi (t, ω) given

Fw0
t . By the decoupling effect (see Section 6.3) it is possible to characterize the mean

field behaviour of minor agents in terms of generic agent’s density function p̂(t, ω, x).

The reason that the generic minor agent’s FPK equation (6.38) does not include the

Itô integral term with respect to wi is due to the fact that p(t, ω, x) is the conditional

probability density given Fw0
t , and the independence of the Brownian motions w0 and

wi, 1 ≤ i ≤ N .

The density function p̂(t, ω, x) generates the random measure of the minor agent’s

mean field behaviour µ̂t(ω) such that µ̂(t, ω, dx) = p̂(t, ω, x)dx (a.s.), 0 ≤ t ≤ T .

We note that the major agent’s SOCP (6.25)-(6.26) and minor agent’s SOCP

(6.32)-(6.33) may be written with respect to the random density p(t, ω, x) of the

stochastic measure µ(t, ω, dx) by µ(t, ω, dx) = p(t, ω, x)dx (a.s.), 0 ≤ t ≤ T .
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6.5.3. The Mean Field Game Consistency Condition. Based on the

mean field game (MFG) or Nash certainty equivalence (NCE) consistency (see [85]

and [103]), we close the “measure and control” mapping loop by setting µ̂t(ω) = µt(ω)

a.s., 0 ≤ t ≤ T , or p̂(t, ω, x) = p(t, ω, x) a.s. for (t, x) ∈ [0, T ] × Rn. The MFG

consistency is demonstrated in: (i) the major agent’s stochastic mean field (SMF)

system

[MF-SHJB] − dφ0(t, ω, x) =
[
H0[t, ω, x,Dxφ0(t, ω, x)]

+
〈
σ0[t, x, µt(ω)], Dxψ0(t, ω, x)

〉
+

1

2
tr
(
a0[t, ω, x]D2

xxφ0(t, ω, x)
)]
dt

− ψT0 (t, ω, x)dw0(t, ω), φ0(T, x) = 0, (6.39)

[MF-SBR] uo0(t, ω, x) ≡ uo0(t, x|{µs(ω)}0≤s≤T )

:= arg inf
u0∈U0

{〈
f0[t, x, u0, µt(ω)], Dxφ0(t, ω, x)

〉
+ L0[t, x, u0, µt(ω)]

}
, (6.40)

[MF-SMV] dzo0(t, ω) = f0[t, zo0, u
o
0(t, ω, zo0), µt(ω)]dt

+ σ0[t, zo0, µt(ω)]dw0(t, ω), zo0(0) = z0(0), (6.41)

together with (ii) the minor agents’ SMF system

[MF-SHJB] − dφ(t, ω, x) =
[
H[t, ω, x,Dxφ(t, ω, x)]

+
1

2
tr
(
a[t, ω, x]D2

xxφ(t, ω, x)
)]
dt− ψT (t, ω, x)dw0(t, ω), φ(T, x) = 0, (6.42)

[MF-SBR] uo(t, ω, x) ≡ uo(t, x|{µ0
s(ω), µs(ω)}0≤s≤T )

≡ arg inf
u∈U

{〈
f [t, x, u, µ0

t (ω), µt(ω)], Dxφ(t, ω, x)
〉

+ L[t, x, u, µ0
t (ω), µt(ω)]

}
, (6.43)

[MF-SMV] dzo(t, ω, ω′) = f [t, zo, uo(t, ω, zo), µ0
t (ω), µt(ω)]dt

+ σ[t, zo, µ0
t (ω), µt(ω)]dw(t, ω′), (6.44)

where (t, x) ∈ [0, T ] × Rn, and zo(0) has the measure µ0(dx) = dF (x) where F is

defined in (A6.2). We note that in the minor agents’ SMF system (6.42)-(6.44) we

dropped index i from the generic minor agent’s equations (6.32)-(6.37). The MM
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SMF system is given by the MM agents’ coupled SMF systems (6.39)-(6.41) and

(6.42)-(6.44).

The solution of the MM SMF system consists of 8-tuple Fw0
t -adapted random

processes(
φ0(t, ω, x), ψ0(t, ω, x), uo0(t, ω, x), zo0(t, ω), φ(t, ω, x), ψ(t, ω, x), uo(t, ω, x), zo(t, ω)

)
,

where the random measure µ0
t (ω) is the unit mass measure concentrated at the major

agent’s state zo0(t, ω), i.e., µ0
t (ω) = δzo0(t,ω), and zo(t, ω) generates the conditional

random law µt(ω), i.e., P (zo(t, ω) ≤ α|Fw0
t ) =

∫ α
−∞ µt(ω, dx) for all α ∈ Rn and

0 ≤ t ≤ T . Note that the major and minor (MM) agents’ SMF systems (6.39)-(6.41)

and (6.42)-(6.44) are coupled together through the stochastic measures µ0
t (ω) and

µt(ω).

We note that the solution to the MM SMF system is a “stochastic mean field”

in contrast to the deterministic mean field of the standard mean field game problems

in [78,85,101–103]. If the noise process of the major agent vanishes then the MM

SMF system reduces to a deterministic MF system (see (6)-(9) in [78]).

6.6. Existence and Uniqueness of Solutions to the MM SMF

System

In this section we establish existence and uniqueness for the solution of the joint

major and minor (MM) agents’ SMF system (6.39)-(6.41) and (6.42)-(6.44). The anal-

ysis is based on providing sufficient conditions for a map that goes from the random

measure of minor agents µ(·)(ω) back to itself, through the equations (6.39)-(6.41)

and (6.42)-(6.44), to be a contraction operator on the space of random probability

measures (see the diagram below).

µ(·)(ω)
(6.39)−→

(
φ0(·, ω, x), ψ0(·, ω, x)

) (6.40)−→ uo0(·, ω, x)

↑(6.44) ↓(6.41)

uo(·, ω, x)
(6.43)←−

(
φ(·, ω, x), ψ(·, ω, x)

) (6.42)←− µ0
(·)(ω)
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In this section we first introduce some preliminary material about the Wasserstein

space of probability measures. Second, we analyze the SHJB and SMV equations of

the major agent and minor agents in Sections 6.6.1 and 6.6.2, respectively. Third, the

analysis of the joint major and minor agents’ SMF system is carried out in Section

6.6.3 which consists of two parts: (i) a sensitivity analysis of the SHJB equations

for obtaining the feedback regularity conditions (Section 6.6.3.1), and (ii) the main

theorem which provides sufficient conditions for a contraction operator map that goes

from the random measure of minor agents µ(·)(ω) back to itself (Section 6.6.3.2).

On the Banach space C([0, T ];Rn) we define the metric ρT (x, y) = sup0≤t≤T |x(t)−

y(t)|2 ∧ 1, where ∧ denotes minimum. It can be shown that Cρ :=
(
C([0, T ];Rn), ρT

)
forms a separable complete metric space (i.e., a Polish space). Let M(Cρ) be the

space of all Borel probability measures µ on C([0, T ];Rn) such that
∫
|x|2dµ(x) <∞.

We also denoteM(Cρ×Cρ) as the space of probability measures on the product space

C([0, T ];Rn)×C([0, T ];Rn). As in [85] the process x is defined to be a generic random

process with the sample space C([0, T ];Rn), i.e., x(t, ω) = ω(t) for ω ∈ C([0, T ];Rn).

Based on the metric ρT , we introduce the Wasserstein metric on M(Cρ):

Dρ
T (µ, ν) = inf

γ∈Π(µ,ν)

[ ∫
Cρ×Cρ

ρT (x(ω1), x(ω2))dγ(ω1, ω2)
]1/2

,

where Π(µ, ν) ⊂ M(Cρ × Cρ) is the set of Borel probability measures γ such that

γ(A × C([0, T ];Rn)) = µ(A) and γ(C([0, T ];Rn) × A) = ν(A) for any Borel set

A ∈ C([0, T ];Rn). The metric space Mρ :=
(
M(Cρ), D

ρ
T

)
is a Polish space since

Cρ ≡
(
C([0, T ];Rn), ρT

)
is a Polish space.

We also introduce the class Mβ
ρ of stochastic measures in the space Mρ with

a.s. Hölder continuity of exponent β, 0 < β < 1 (see Definition 3 in [85] for the

non-stochastic case).

Definition 6.1. A stochastic probability measure µt(ω), 0 ≤ t ≤ T , in the space

Mρ is in Mβ
ρ if µ is a.s. uniformly Hölder continuous with exponent 0 < β < 1,

i.e., there exists β ∈ (0, 1) and constant c such that for any bounded and Lipschitz
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continuos function φ on Rn,∣∣ ∫
Rn
φ(x)µt(ω, dx)−

∫
Rn
φ(x)µs(ω, dx)

∣∣ ≤ c(ω)|t− s|β, a.s.,

for all 0 ≤ s < t ≤ T , where c may depend upon the Lipschitz constant of φ and the

sample point ω ∈ Ω.

As in [85], we may take µt, 0 ≤ t ≤ T , to be a Dirac measure at any constant

x ∈ Rn to show that the setMβ
ρ is nonempty. We introduce the following assumption.

(A6.8) For any p ∈ Rn and µ, µ0 ∈Mβ
ρ , the sets

S0(t, ω, x, p) := arg inf
u0∈U0

Hu0
0 [t, ω, x, u0, p],

S(t, ω, x, p) := arg inf
u∈U

Hu[t, ω, x, u, p],

where Hu0
0 and Hu are respectively defined in (6.29) and (6.36), are singletons and the

resulting u and u0 as functions of [t, ω, x, p] are a.s. continuous in t, Lipschitz contin-

uous in (x, p), uniformly with respect to t and µ, µ0 ∈ Mβ
ρ . In addition, u0[t, ω, 0, 0]

and u[t, ω, 0, 0] are in the space L2
Ft([0, T ];Rn).

The first part of (A6.8) may be satisfied under suitable convexity conditions with

respect to u0 and u (see [85]).

6.6.1. Analysis of the Major Agent’s SMF System. Let µt(ω), 0 ≤

t ≤ T , be a fixed stochastic measure in the set Mβ
ρ with 0 < β < 1 such that

µ0(dx) := dF (x) where F is defined in (A6.2). Then, the functionals of µ(·)(ω) in

(6.25)-(6.26) become random functions which we write as

f ∗0 [t, ω, z0, u0] := f0[t, z0, u0, µt(ω)], σ∗0[t, ω, z0] := σ0[t, z0, µt(ω)],

L∗0[t, ω, z0, u0] := L0[t, z0, u0, µt(ω)]. (6.45)

We have the following result which broadly follows Proposition 4 in [85].
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Proposition 6.1. Assume (A6.3) holds for U0. Let µt(ω), 0 ≤ t ≤ T , be a

fixed stochastic measure in the set Mβ
ρ with 0 < β < 1. For f ∗0 , σ∗0 and L∗0 defined in

(6.45) it is the case that:

(i) Under (A6.4) for f0 and σ0, the functions f ∗0 [t, ω, z0, u0] and σ∗0[t, ω, z0] and their

first order derivatives (w.r.t z0) are a.s. continuous and bounded on [0, T ]×Rn×

U0 and [0, T ] × Rn. f ∗0 [t, ω, z0, u0] and σ∗0[t, ω, z0] are a.s. Lipschitz continuous

in z0. In addition, f ∗0 [t, ω, 0, 0] is in the space L2
Ft([0, T ];Rn) and σ∗0[t, ω, 0] is in

the space L2
Ft([0, T ];Rn×m).

(ii) Under (A6.5) for f0, the function f ∗0 [t, ω, z0, u0] is a.s. Lipschitz continuous in

u0 ∈ U0, i.e., there exist a constant c > 0 such that

sup
t∈[0,T ],z0∈Rn

∣∣f ∗0 [t, ω, z0, u0]− f ∗0 [t, ω, z0, u
′
0]
∣∣ ≤ c(ω)|u0 − u′0|, (a.s.).

(iii) Under (A6.6) for L0, the function L∗0[t, ω, z0, u0] and its first order derivative

(w.r.t z0) is a.s. continuous and bounded on [0, T ] × Rn × U0. L∗0[t, ω, z0, u0]

is a.s. Lipschitz continuous in z0. In addition, L∗0[t, ω, 0, 0] is in the space

L2
Ft([0, T ];R+).

(iv) Under (A6.8) for Hu0
0 , the set of minimizers

arg inf
u0∈U0

{〈
f ∗0 [t, ω, z0, u0], p

〉
+ L∗0[t, ω, z0, u0]

}
,

is a singleton for any p ∈ Rn, and the resulting u0 as a function of [t, ω, z0, p] is

a.s. continuous in t, a.s. Lipschitz continuous in (z0, p), uniformly with respect

to t. In addition, u0[t, ω, 0, 0] is in the space L2
Ft([0, T ];Rn).
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Proof: (i) We only show the results for f ∗0 , the analysis for σ∗0 is similar. For

ω ∈ Ω, we take (t, z, u) and (s, z′, u′) both from [0, T ]× Rn × U0. We have∣∣f ∗0 [t, ω, z, u]− f ∗0 [s, ω, z′, u′]
∣∣ ≡ ∣∣f0[t, z, u, µt(ω)]− f0[s, z′, u′, µs(ω)]

∣∣
≤
∣∣f0[t, z, u, µt(ω)]− f0[s, z′, u′, µt(ω)]

∣∣+
∣∣f0[s, z′, u′, µt(ω)]− f0[s, z′, u′, µs(ω)]

∣∣
≤
∣∣f0[t, z, u, µt(ω)]− f0[s, z, u, µt(ω)]

∣∣+
∣∣f0[s, z, u, µt(ω)]− f0[s, z′, u′, µt(ω)]

∣∣
+
∣∣f0[s, z′, u′, µt(ω)]− f0[s, z′, u′, µs(ω)].

By (A6.4), f0[t, ω, z, u] is continuous with respect to (t, z, u) and therefore∣∣f0[t, z, u, µt(ω)]− f0[s, z, u, µt(ω)]
∣∣+
∣∣f0[s, z, u, µt(ω)]− f0[s, z′, u′, µt(ω)]

∣∣→ 0,

as |t− s|+ |z − z′|+ |u− u′| → 0. Since µ(·)(ω) is in the set Mβ
ρ , 0 < β < 1, and by

(A6.4) there exists a constant k > 0 independent of (s, z, u) such that∣∣f0[s, z, u, y]− f0[s, z, u, y′]
∣∣ ≤ k|y − y′|,

we get
∣∣f0[s, z′, u′, µt(ω)] − f0[s, z′, u′, µs(ω)] → 0 as |t − s| → 0. This concludes the

a.s. continuity of f ∗0 [t, ω, z0, u0] on [0, T ]× Rn × U0.

Using the Leibniz rule we have

Dz0f
∗
0 [t, ω, z0, u0] =

∫
Dz0f0[t, z0, u0, x]µt(ω)(dx), a.s.,

where the partial derivative exists due to the boundedness of the first order derivative

(w.r.t z0) of f0 by (A6.4) . The a.s. continuity of Dz0f
∗
0 on [0, T ]× Rn × U0 may be

proved by a similar argument above for f ∗0 . Other results of the Proposition follow

directly from (A6.4).

(ii) This is a direct result of (A6.5).

(iii) The proofs are similar to the proofs for f ∗0 in part (i).

(iv) This is a direct result of (A6.8) for S0 using the measure µ(·)(ω) ∈ Mβ
ρ ,

0 < β < 1.
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Employing the results of Section 6.4, we analyze the SHJB equation (6.39) where

the probability measure µ(·)(ω) is in the set Mβ
ρ , 0 < β < 1.

Theorem 6.4. Assume (A6.3)-(A6.7) for U0, f0, σ0 and L0 hold, and the

probability measure µ(·)(ω) is in the set Mβ
ρ , 0 < β < 1. Then the SHJB equa-

tion for the major agent (6.39) has a unique solution (φ0(t, x), ψ0(t, x)) in the set(
L2
Ft([0, T ];R), L2

Ft([0, T ];Rm)
)
.

Proof: Proposition 6.1 indicates that the SOCP of the major agent (6.25)-(6.26)

satisfies the Assumptions (H6.1)-(H6.3) of Section 6.4 with ς[t, x] = 0. The result

follows directly from Theorem 6.3.

Let µ(·)(ω) ∈ Mβ
ρ , 0 < β < 1, be given. We assume that the unique solution

(φ0, ψ0)(t, x) to the SHJB equation (6.39) satisfies the regularity properties: (i) for

each t, (φ0, ψ0)(t, x) is a C2(Rn) map from Rn into R×Rm, (ii) for each x, (φ0, ψ0) and

(Dxφ0, D
2
xxφ0, Dxψ0) are continuous FW

t -adapted stochastic processes. Then, φ0(x, t)

coincides with the value function (6.27) [145], and under (A6.8) for Hu0
0 we get the

best response control process (6.29):

uo0(t, ω, x) ≡ uo0(t, x|{µs(ω)}0≤s≤T ) := arg inf
u0∈U0

Hu0
0 [t, ω, x, u0, Dxφ0(t, ω, x)], (6.46)

where (t, x) ∈ [0, T ]× Rn.

We introduce the following assumption (see (H6) in [85]).

(A6.9) For any µ(·)(ω) ∈ Mβ
ρ , 0 < β < 1, the best response control uo0(t, ω, x) is

a.s. continuous in (t, x) and a.s. Lipschitz continuous in x.

We denote CLip(x)([0, T ] × Ω × Rn;H) be the class of a.s. continuous functions

from [0, T ]×Ω×Rn to H, which are a.s. Lipschitz continuous in x [85]. We introduce

the following well-defined map:

Υ0
SHJB : Mβ

ρ −→ CLip(x)([0, T ]× Ω× Rn;U0), 0 < β < 1,

Υ0
SHJB

(
µ(·)(ω)

)
= uo0(t, ω, x) ≡ uo0(t, x|{µs(ω)}0≤s≤T ). (6.47)
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We now analyze the major agent’s SMV equation (6.41) with µ(·)(ω) ∈Mβ
ρ where

0 < β < 1, and uo0(t, ω, x) ∈ CLip(x)([0, T ]× Ω× Rn;U0) be given in (6.46).

Theorem 6.5. Assume (A6.3)-(A6.7) for U0, f0 and σ0, and (A6.9) hold. Let

µ(·)(ω) ∈ Mβ
ρ where 0 < β < 1, and uo0(t, ω, x) be given in (6.46). Then, there exists

a unique solution zo0 on [0, T ]× Ω to the major agent’s SMV equation (6.41).

Proof: Proposition 6.1 indicates that the major agent’s SMV equation (6.41)

satisfies the Assumption (RC) in [180], page 49. The result follows directly from

Theorem 6.16, Chapter 1 of [180], page 49.

Theorem 6.6. Assume (A6.3)-(A6.7) for U0, f0 and σ0, and (A6.9) hold.

Let µ(·)(ω) ∈ Mβ
ρ where 0 < β < 1, and uo0(t, ω, x) be given in (6.46). Then, the

probability measure µ0
(·)(ω) obtained from the major agent’s SMV equation (6.41) is

in the class Mγ
ρ where 0 < γ < 1/2.

Proof: We take 0 ≤ s < t ≤ T . Since µ0
t (ω) = δzo0(t,ω), for any bounded and

Lipschitz continuos function φ on Rn with a Lipschitz constant K > 0, we have

E
∣∣ ∫

Rn
φ(x)µ0

t (ω, dx)−
∫
Rn
φ(x)µ0

s(ω, dx)
∣∣ = E

∣∣φ(zo0(t, ω))− φ(zo0(s, ω))
∣∣

≤ K E
∣∣zo0(t, ω)− zo0(s, ω)

∣∣.
On the other hand, Theorem 6.5 indicates that there exists a unique solution to the

SMV equation (6.41) such that

zo0(t, ω)− zo0(s, ω) =

∫ t

s

f0[τ, zo0, u
o
0, µτ (ω)]dτ +

∫ t

s

σ0[τ, zo0, µτ (ω)]dw0(τ).

Boundedness of f0 and σ0 (see (A6.4)), the Cauchy-Schwarz inequality and the prop-

erty of Itô integral yield

E
∣∣zo0(t, ω)− zo0(s, ω)

∣∣2 ≤ 2C2
1 |t− s|2 + 2C2

2 |t− s|,
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where C1 and C2 are upper bounds for f0 and σ0, respectively. Hence,

E
∣∣ ∫

Rn
φ(x)µ0

t (ω, dx)−
∫
Rn
φ(x)µ0

s(ω, dx)
∣∣ ≤ √2K

(
C1|t− s|+ C2|t− s|1/2

)
≤
√

2K(C1

√
T + C2)|t− s|1/2.

By Kolmogorov’s Theorem (Theorem 18.19, Page 266, [98]), for each 0 < γ < 1/2,

T > 0, and almost every ω ∈ Ω, there exists a constant c(ω, γ,K, T ) such that∣∣ ∫
Rn
φ(x)µ0

t (ω, dx)−
∫
Rn
φ(x)µ0

s(ω, dx)
∣∣ ≤ c(ω, γ,K, T )|t− s|γ,

for all 0 ≤ s < t ≤ T . Hence, µ0
(·)(ω) is in the class Mγ

ρ where 0 < γ < 1/2.

By Theorems 6.5 and 6.6 we may now introduce the following well-defined map:

Υ0
SMV : Mβ

ρ × CLip(x)([0, T ]× Ω× Rn;U0) −→Mγ
ρ , 0 < β < 1, 0 < γ < 1/2,

Υ0
SMV

(
µ(·)(ω), uo0(t, ω, x)

)
= µ0

(·)(ω). (6.48)

6.6.2. Analysis of the Minor Agents’ SMF System. Let µ(·)(ω) ∈ Mβ
ρ ,

0 < β < 1, be the fixed stochastic measure assumed in Section 6.6.1. In this section

we assume that µ0
(·)(ω) ∈Mγ

ρ , 0 < γ < 1/2, is the obtained stochastic measure of the

major agent from the composite map:

Υ0 : Mβ
ρ −→Mγ

ρ , 0 < β < 1, 0 < γ < 1/2,

Υ0

(
µ(·)(ω)

)
:= Υ0

SMV
(
µ(·)(ω),Υ0

SHJB
(
µ(·)(ω)

))
= µ0

(·)(ω), (6.49)

where Υ0
SHJB and Υ0

SMV are given in (6.47) and (6.48), respectively.

We may write the functionals of µ0
(·)(ω) and µ(·)(ω) in (6.32)-(6.33) as random

functions:

f ∗[t, ω, zi, ui] := f [t, zi, ui, µ
0
t (ω), µt(ω)], σ∗[t, ω, zi] := σ[t, zi, µ

0
t (ω), µt(ω)],

L∗[t, ω, zi, ui] := L[t, zi, ui, µ
0
t (ω), µt(ω)]. (6.50)

We have the following proposition where its proof closely resembles that of Propo-

sition 6.1 (see Proposition 4 in [85]).
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Proposition 6.2. Assume (A6.3) holds for U . Let µt(ω), 0 ≤ t ≤ T , be a fixed

stochastic measure in the set Mβ
ρ with 0 < β < 1, and µ0

(·)(ω) = Υ0

(
µ(·)(ω)

)
∈ Mγ

ρ,

0 < γ < 1/2, be the obtained probability measure of the major agent in Section 6.6.1.

For f ∗, σ∗ and L∗ defined in (6.50) we have:

(i) Under (A6.4) for f and σ, the functions f ∗[t, ω, zi, ui] and σ∗[t, ω, zi] and their

first order derivatives (w.r.t zi) are a.s. continuous and bounded on [0, T ]×Rn×

U and [0, T ]×Rn. f ∗[t, ω, zi, ui] and σ∗[t, ω, zi] are a.s. Lipschitz continuous in

zi. In addition, f ∗[t, ω, 0, 0] is in the space L2
Ft([0, T ];Rn) and σ∗[t, ω, 0] is in

the space L2
Ft([0, T ];Rn×m).

(ii) Under (A6.5) for f , the function f ∗[t, ω, zi, ui] is a.s. Lipschitz continuous in

ui ∈ U , i.e., there exist a constant c > 0 such that

sup
t∈[0,T ],zi∈Rn

∣∣f ∗[t, ω, zi, ui]− f ∗[t, ω, zi, u′i]∣∣ ≤ c(ω)|ui − u′i|, (a.s.).

(iii) Under (A6.6) for L, the function L∗[t, ω, zi, ui] and its first order derivative

(w.r.t zi) is a.s. continuous and bounded on [0, T ]×Rn×U . It is a.s. Lipschitz

continuous in zi. In addition, L∗[t, ω, 0, 0] ∈ L2
Ft([0, T ];R+).

(iv) Under (A6.8) for Hu, the set of minimizers

arg inf
ui∈U

{〈
f ∗[t, ω, zi, ui], p

〉
+ L∗[t, ω, zi, ui]

}
,

is a singleton for any p ∈ Rn, and the resulting ui as a function of [t, ω, zi, p] is

a.s. continuous in t, a.s. Lipschitz continuous in (zi, p), uniformly with respect

to t. In addition, ui[t, ω, 0, 0] is in the space L2
Ft([0, T ];Rn).

Following arguments exactly parallel to those used in Section 6.6.1, we analyze

the SHJB equation (6.42) where the probability measures µ(·)(ω) ∈ Mβ
ρ , 0 < β < 1

and µ0
(·)(ω) ∈Mγ

ρ , 0 < γ < 1/2.

Theorem 6.7. Assume (A6.3)-(A6.7) for U , f , σ and L hold, and µ(·)(ω) ∈

Mβ
ρ , 0 < β < 1 and µ0

(·)(ω) is in the set Mγ
ρ, 0 < γ < 1/2. Then the SHJB
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equation for the generic minor agent (6.35) has a unique solution (φi(t, x), ψi(t, x))

in
(
L2
Ft([0, T ];R), L2

Ft([0, T ];Rm)
)
.

Proof: Proposition 6.2 indicates that the SOCP of the generic minor agent (6.32)-

(6.33) satisfies the Assumptions (H6.1)-(H6.3) of Section 6.4 with σ[t, x] = 0. The

result follows directly from Theorem 6.3.

For the probability measure µ(·)(ω) ∈ Mβ
ρ , 0 < β < 1, and µ0

(·)(ω) ∈ Mγ
ρ ,

0 < γ < 1/2, we assume that the unique solution (φi, ψi)(t, x) to the SHJB equation

(6.35) satisfies the regularity properties: (i) for each t, (φi, ψi)(t, x) is a C2(Rn) map

from Rn into R×Rm, (ii) for each x, (φi, ψi) and (Dxφi, D
2
xxφi, Dxψi) are continuous

FW
t -adapted stochastic processes. Then, φi(x, t) coincides with the value function

(6.34) [145], and under (A6.8) for Hu we get the best response control process

(6.36):

uoi (t, ω, x) ≡ uoi (t, x|{µ0
s(ω), µs(ω)}0≤s≤T )

:= arg inf
ui∈U

Hu[t, ω, x, ui, Dxφi(t, ω, x)], (6.51)

where (t, x) ∈ [0, T ]× Rn.

We introduce the following assumption (see (A6.9) or (H6) in [85]).

(A6.10) For any µ(·)(ω) ∈ Mβ
ρ , 0 < β < 1, and µ0

(·)(ω) ∈ Mγ
ρ , 0 < γ < 1/2, the

best response control process uoi (t, ω, x) is a.s. continuous in (t, x) and a.s. Lipschitz

continuous in x.

We introduce the following well-defined map for the generic minor agent i:

Υi
SHJB : Mβ

ρ ×Mγ
ρ −→ CLip(x)([0, T ]× Ω× Rn;U), 0 < β < 1, 0 < γ < 1/2,

Υi
SHJB

(
µ(·)(ω), µ0

(·)(ω)
)

= uoi (t, ω, x) ≡ uoi (t, x|{µ0
s(ω), µs(ω)}0≤s≤T ). (6.52)
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For given probability measure µ0
(·)(ω) ∈Mγ

ρ , 0 < γ < 1/2, we analyze the generic

minor agent’s SMV equation (6.37):

dzoi (t, ω, ω
′) = f [t, zoi , u

o
i (t, ω, z

o
i ), µ

0
t (ω), µt(ω)]dt

+ σ[t, zoi , µ
0
t (ω), µt(ω)]dwi(t, ω

′), zoi (0) = zi(0), (6.53)

where uoi (t, ω, x) ∈ CLip(x)([0, T ] × Ω × Rn;U) is given in (6.51). We call the pair(
zoi (·, ω, ω′), µ(·)(ω)

)
a consistent solution of the generic minor agent’s SMV equation

(6.53) if
(
zoi (·, ω, ω′), µ(·)(ω)

)
solves (6.53) and µ(·)(ω) be the the law of the process

zoi (·, ω, ω′), i.e., µ(·) = L
(
zoi (·, ω, ω′)

)
. We define Λ as the map which associates to

µ(·)(ω) ∈Mβ
ρ , 0 < β < 1/2, the law of the process zoi (·, ω, ω′) in (6.53):

zoi (t, ω, ω
′) = zoi (0) +

∫ t

0

(∫
Rn

∫
Rn
f [s, zoi , u

o
i , y, z]dµ0

s(ω)(y)dµs(ω)(z)
)
ds

+

∫ t

0

(∫
Rn

∫
Rn
σ[s, zoi , y, z]dµ0

s(ω)(y)dµs(ω)(z)
)
dwi(s, ω

′), (6.54)

where we observe that the law Λ depends on the sample point ω ∈ Ω.

We now show that there exists a unique µ(·)(ω) ∈ Mβ
ρ , 0 < β < 1, such that

µ(ω) = Λ
(
µ(ω)

)
. The proof of the following theorem is based upon a fixed point

argument with random parameters (see Theorem 6 in [85] and Theorem 1.1 in [162]).

Theorem 6.8. Assume (A6.3)-(A6.7) for U , f and σ, and (A6.10) hold. Let

µ0
(·)(ω) be in the set Mγ

ρ where 0 < γ < 1/2, and uoi (t, ω, x) be given in (6.51). Then,

there exists a unique consistent solution pair
(
zoi (·, ω, ω′), µ(·)(ω)

)
to the generic minor

agent’s SMV equation (6.53) where µ(·)(ω) = L
(
zoi (·, ω, ω′)

)
.

Proof: Let ω ∈ Ω be fixed. For given probability measure µ(·)(ω) ∈Mβ
ρ , 0 < β <

1, one can show that the law of the process zoi (·, ω, ω′) given in (6.54), Λ
(
zoi (·, ω, ω′)

)
,

belongs to Mβ
ρ , 0 < β < 1 (see Theorem 6.9).

We take µ(·)(ω), ν(·)(ω) ∈ Mβ
ρ , 0 < β < 1. Let zoi (·, ω, ω′) be defined by (6.54),

and similarly xoi (·, ω, ω′) be defined by (6.54) after replacing µ(·)(ω) by ν(·)(ω). We
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have

EFw0
t

sup
0≤s≤t

∣∣zoi (s, ω)− xoi (s, ω)
∣∣2

≤ 2t

∫ t

0

∣∣∣ ∫
Rn×Rn

f [s, zoi , u
o
i , y, z]dµ0

s(ω)(y)dµs(ω)(z)

−
∫
Rn×Rn

f [s, xoi , u
o
i , y, z]dµ0

s(ω)(y)dνs(ω)(z)
∣∣∣2ds

+ 2

∫ t

0

∣∣∣ ∫
Rn×Rn

σ[s, zoi , y, z]dµ0
s(ω)(y)dµs(ω)(z)

−
∫
Rn×Rn

σ[s, xoi , y, z]dµ0
s(ω)(y)dνs(ω)(z)

∣∣∣2ds. (6.55)

But,∣∣∣ ∫ f [s, zoi , u
o
i , y, z]dµ0

s(ω)(y)dµs(ω)(z)−
∫
f [s, xoi , u

o
i , y, z]dµ0

s(ω)(y)dνs(ω)(z)
∣∣∣2

≤ 2C
(
|zoi (s)− xoi (s)|2 +

∫
Cρ×Cρ

|zs(ω1)− zs(ω2)|2dγ(ω1, ω2)
)
,

where C is obtained from the boundedness and Lipschitz continuity of both f and uo,

and γ ∈ M(Cρ × Cρ) is any coupling of µ and ν where γ(A× C([0, T ];Rn)) = µ(A)

and γ(C([0, T ];Rn) × A) = ν(A) for any Borel set A ∈ C([0, T ];Rn). Taking the

infimum over all such γ couplings and then using the definition of metrics ρ(·) and

Dρ
(·) yields∣∣∣ ∫ f [s, zoi , u

o
i , y, z]dµ0

s(ω)(y)dµs(ω)(z)−
∫
f [s, xoi , u

o
i , y, z]dµ0

s(ω)(y)dνs(ω)(z)
∣∣∣2

≤ 2C
(
ρs
(
zoi (s), x

o
i (s)

)
+
(
Dρ
s(µ, ν)

)2
)
. (6.56)

Similarly we have∣∣∣ ∫ σ[s, zoi , y, z]dµ0
s(ω)(y)dµs(ω)(z)−

∫
σ[s, xoi , y, z]dµ0

s(ω)(y)dνs(ω)(z)
∣∣∣2

≤ 2C1

(
ρs
(
zoi (s), x

o
i (s)

)
+
(
Dρ
s(µ, ν)

)2
)
, (6.57)

where C1 is obtained from the boundedness and Lipschitz continuity of both σ.
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It follows from (6.55)-(6.57) that

EFw0
t
ρt
(
zoi (ω), xoi (ω)

)
≡ EFw0

t
sup

0≤s≤t

∣∣zoi (s, ω)− xoi (s, ω)
∣∣2 ∧ 1

≤ 2(Ct+ C1)

∫ t

0

(
ρs
(
zoi (ω), xoi (ω)

)
+
(
Dρ
s

(
µ(ω), ν(ω)

))2
)
ds, (6.58)

which by Gronwall’s lemma yields

EFw0
t
ρt
(
zoi (ω), xoi (ω)

)
≤ 2(CT + C1) exp

(
2(CT + C1)

) ∫ t

0

(
Dρ
s

(
µ(ω), ν(ω)

))2

ds.

This together with the definition of the Wasserstein metric Dρ
(·) leads to the contrac-

tion inequality:(
Dρ
t

(
µ(ω), ν(ω)

))2

≤ 2(CT + C1) exp
(
2(CT + C1)

) ∫ t

0

(
Dρ
s

(
µ(ω), ν(ω)

))2

ds.

By following a similar argument as in [162] (Theorem 1.1), one can show that

{Λk(µ(ω)) : k ≥ 1} forms a Cauchy sequence a.s. in the complete metric space

Mβ
ρ , 0 < β < 1, and converges a.s. to a unique (a.s.) fixed point of Λ.

Theorem 6.9. Assume (A6.3)-(A6.7) for U , f and σ, and (A6.10) hold. Let

µ0
(·)(ω) be in the set Mγ

ρ where 0 < γ < 1/2. For given uoi (t, ω, x) in (6.51), let(
zoi (·, ω, ω′), µ(·)(ω)

)
be the consistent solution pair of the SMV equation (6.53). Then,

the probability measure µ(·)(ω) is in the class Mβ
ρ where 0 < β < 1.

Proof: We take 0 ≤ s < t ≤ T . For any bounded and Lipschitz continuos function

φ on Rn with a Lipschitz constant K > 0, we have

E
∣∣ ∫

Rn
φ(x)µt(ω, dx)−

∫
Rn
φ(x)µs(ω, dx)

∣∣ = E
∣∣Eω(φ(zoi (t, ω, ω

′))− φ(zoi (s, ω, ω
′))
)∣∣

≤ K E
∣∣Eω(zoi (t, ω, ω′)− zoi (s, ω, ω′))∣∣.

On the other hand, Theorem 6.8 indicates that there exists a unique solution to the

SMV equation (6.53) such that

Eω
(
zoi (t, ω, ω

′)− zoi (s, ω, ω′)
)

=

∫ t

s

f [τ, zoi , u
i
0, µ

0
τ (ω), µτ (ω)]dτ,
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where we note that Eω
∫ t

0
σ[τ, zoi , µ

0
τ (ω), µτ (ω)]dwi(τ, ω

′) = 0 for 0 ≤ t ≤ T . Bound-

edness of f (see (A6.4)) yields

E
∣∣Eω(zoi (t, ω, ω′)− zoi (s, ω, ω′))∣∣ ≤ C1|t− s|,

where C1 is the upper bound for f .

By Kolmogorov’s Theorem (Theorem 18.19, Page 266, [98], Page 266), for each

0 < γ < 1, T > 0, and almost every ω ∈ Ω, there exists a constant c(ω, γ,K, T ) such

that ∣∣ ∫
Rn
φ(x)µt(ω, dx)−

∫
Rn
φ(x)µs(ω, dx)

∣∣ ≤ c(ω, γ,K, T )|t− s|γ,

for all 0 ≤ s < t ≤ T . Hence, µ(·)(ω) is in the class Mβ
ρ where 0 < β < 1.

By Theorems 6.8 and 6.9 we may now introduce the following well-defined map:

Υi
SMV : Mγ

ρ × CLip(x)([0, T ]× Ω× Rn;U0) −→Mβ
ρ , 0 < β < 1, 0 < γ < 1/2,

Υi
SMV

(
µ0

(·)(ω), uoi (t, ω, x)
)

= µ(·)(ω). (6.59)

6.6.3. Analysis of the Joint Major and Minor Agents’ SMF System.

Based on the analysis of Sections 6.6.1 and 6.6.2 we obtain the following well-defined

map:

Υ : Mβ
ρ −→Mβ

ρ , 0 < β < 1,

Υ
(
µ(·)(ω)

)
= Υi

SMV
(

Υ0

(
µ(·)(ω)

)
,Υi

SHJB
(
µ(·)(ω)),Υ0

(
µ(·)(ω)

)))
, (6.60)

which is the composition of the maps Υ0, ΥSHJB
i and ΥSMV

i introduced in (6.49), (6.52)

and (6.59), respectively. Subsequently, the problem of existence and uniqueness of

solution to the MM SMV system (6.39)-(6.41) and (6.42)-(6.44) is translated into a

fixed point problem with random parameters for the map Υ on the Polish spaceMβ
ρ ,

0 < β < 1.

We introduce the following assumption without which one needs to work with

the “expectation” of the Wasserstein metric Dρ
(·) of stochastic measure.
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(A6.11) We assume that the diffusion coefficient of the major agent σ0 in (6.1)

does not depend on its own state zN0 and the states of the minor agents zNi , 1 ≤ i ≤ N .

Lemma 6.1. (i) Assume (A6.3)-(A6.7) for U0, f0 and σ0, and (A6.11) hold.

Let µ(·)(ω) be in the setMβ
ρ where 0 < β < 1. Then, for given u0, u

′
0 ∈ CLip(x)([0, T ]×

Ω× Rn;U0) there exists a constant c0 such that(
Dρ
T

(
µ0(ω), ν0(ω)

))2

≤ c0 sup
(t,x)∈[0,T ]×Rn

∣∣u0(t, ω, x)− u′0(t, ω, x)
∣∣2, a.s., (6.61)

where µ0(ω), ν0(ω) ∈Mγ
ρ, 0 < γ < 1/2, are induced by the map ΥSMV

0 in (6.48) using

the two control processes u0 and u′0, respectively.

(ii) Assume (A6.3)-(A6.7) for U0, f0 and σ0, and (A6.11) hold. Let uo0 be in the

space CLip(x)([0, T ]×Ω×Rn;U0). Then, for given µ(ω), ν(ω) ∈Mβ
ρ , 0 < β < 1, there

exists a constant c1 such that(
Dρ
T

(
µ0(ω), ν0(ω)

))2

≤ c1

(
Dρ
T

(
µ(ω), ν(ω)

))2

, a.s., (6.62)

where µ0(ω), ν0(ω) ∈Mγ
ρ, 0 < γ < 1/2, are induced by the map ΥSMV

0 in (6.48) using

the stochastic measures µ(ω) and ν(ω), respectively.

(iii) Assume (A6.3)-(A6.7) for U , f and σ hold. Let µ0
(·)(ω) be in the set Mγ

ρ where

0 < γ < 1/2. Then, for given u, u′ ∈ CLip(x)([0, T ]×Ω×Rn;U) there exists a constant

c2 such that(
Dρ
T

(
µ(ω), ν(ω)

))2

≤ c2 sup
(t,x)∈[0,T ]×Rn

∣∣u(t, ω, x)− u′(t, ω, x)
∣∣2, a.s., (6.63)

where µ(ω), ν(ω) ∈Mβ
ρ , 0 < β < 1, are induced by the map ΥSMV

i in (6.59) using the

two control processes u and u′, respectively.

(iv) Assume (A6.3)-(A6.7) for U , f and σ hold. Let uoi be in the space CLip(x)([0, T ]×

Ω×Rn;U). Then, for given µ0(ω), ν0(ω) ∈Mγ
ρ, 0 < γ < 1/2, there exists a constant

c3 such that (
Dρ
T

(
µ(ω), ν(ω)

))2

≤ c3

(
Dρ
T

(
µ0(ω), ν0(ω)

))2

, a.s., (6.64)
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where µ(ω), ν(ω) ∈Mβ
ρ , 0 < β < 1, are induced by the map ΥSMV

i in (6.59) using the

stochastic measures µ0(ω) and ν0(ω), respectively.

Proof: (i) (6.41) gives

z0(s, ω) = z0(0) +

∫ s

0

(∫
Rn
f0[τ, z0, u0, y]dµτ (ω)(y)

)
dτ +

∫ s

0

σ0[τ ]dw0(τ, ω),

z′0(s, ω) = z0(0) +

∫ s

0

(∫
Rn
f0[τ, z′0, u

′
0, y]dµτ (ω)(y)

)
dτ +

∫ s

0

σ0[τ ]dw0(τ, ω),

corresponding to the control processes u0 and u′0 in CLip(x)([0, T ] × Ω × Rn;U0). By

the Lipschitz continuity of f0 (see (A6.4) and (A6.5)) there are positive constants

C0 and C1 such that

|z0(s, ω)− z′0(s, ω)|2 ≤ 2C0s

∫ s

0

|z0(τ, ω)− z′0(τ, ω)|2dτ

+ 2C1s
2 sup

(t,x)∈[0,T ]×Rn

∣∣u0(t, ω, x)− u′0(t, ω, x)
∣∣2.

The Gronwall’s lemma yields

ρt
(
z0(ω), z′0(ω)

)
≤ 2C1t

2 exp(2C0t) sup
t,x

∣∣u0(t, ω, x)− u′0(t, ω, x)
∣∣2.

This together with the fact that µ0
t (ω) = δz0(t,ω) and ν0

t (ω) = δz′0(t,ω), and the definition

of the Wasserstein metric Dρ
(·) leads to (6.61) where c0 := 2C1T

2 exp(2C0T ).

(ii) We have

z0(s, ω) = z0(0) +

∫ s

0

(∫
Rn
f0[τ, z0, u

o
0, y]dµτ (ω)(y)

)
dτ +

∫ s

0

σ0[τ ]dw0(τ, ω),

z′0(s, ω) = z0(0) +

∫ s

0

(∫
Rn
f0[τ, z′0, u

o
0, y]dντ (ω)(y)

)
dτ +

∫ s

0

σ0[τ ]dw0(τ, ω),

corresponding to the stochastic measures µ(ω), ν(ω) ∈ Mβ
ρ , 0 < β < 1. By the

Lipschitz continuity of f0 (see (A6.4) and (A6.5)) and uo0 there are positive constants
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C0 and C1 such that

|z0(s, ω)− z′0(s, ω)|2 ≤ 2C0s

∫ s

0

|z0(τ, ω)− z′0(τ, ω)|2dτ

+ 2C1s
2
(
Dρ
T

(
µ(ω), ν(ω)

))2

.

The Gronwall’s lemma yields

ρt
(
z0(ω), z′0(ω)

)
≤ 2C1t

2 exp(2C0t)
(
Dρ
T

(
µ(ω), ν(ω)

))2

.

This together with the fact that µ0
t (ω) = δz0(t,ω) and ν0

t (ω) = δz′0(t,ω), and the definition

of the Wasserstein metric Dρ
(·) leads to (6.62) where c1 := 2C1T

2 exp(2C0T ).

(iii) (6.44) gives

zi(s, ω, ω
′) = zi(0) +

∫ t

0

(∫
Rn

∫
Rn
f [s, zi, u, y, z]dµ0

s(ω)(y)dµs(ω)(z)
)
ds

+

∫ t

0

(∫
Rn

∫
Rn
σ[s, zi, y, z]dµ0

s(ω)(y)dµs(ω)(z)
)
dwi(s, ω

′),

z′i(s, ω, ω
′) = zi(0) +

∫ t

0

(∫
Rn

∫
Rn
f [s, z′i, u

′, y, z]dµ0
s(ω)(y)dνs(ω)(z)

)
ds

+

∫ t

0

(∫
Rn

∫
Rn
σ[s, z′i, y, z]dµ0

s(ω)(y)dνs(ω)(z)
)
dwi(s, ω

′),

corresponding to the control processes u and u′ in CLip(x)([0, T ]×Ω×Rn;U). By the

Lipschitz continuity of f and σ (see (A6.4) and (A6.5)) there are positive constants

C0, C1 and C2 such that

Eω|zi(s, ω, ω′)− z′i(s, ω, ω′)|2 ≤ 2(3C0s+ 2C1)Eω

∫ s

0

|z0(τ, ω)− z′0(τ, ω)|2dτ

+ 2(3C0s+ 2C1)Eω

∫ s

0

(
Dρ
τ

(
µ(ω), ν(ω)

))2

dτ

+ 6C2s
2 sup
t,x

Eω
∣∣u(t, ω, x)− u′(t, ω, x)

∣∣2.

189



CHAPTER 6. MEAN FIELD GAME THEORY INVOLVING MAJOR AND MINOR AGENTS

The Gronwall’s lemma yields

ρt
(
zi(s, ω), z′i(s, ω)

)
≤ 2(3C0t+ 2C1) exp

(
2(3C0t+ 2C1)

) ∫ t

0

(
Dρ
τ

(
µ(ω), ν(ω)

))2

dτ

+ 6C2t
2 exp

(
2(3C0t+ 2C1)

)
sup
t,x

∣∣u(t, ω, x)− u′(t, ω, x)
∣∣2.

This together with the definition of the Wasserstein metric Dρ
(·) leads to

(
Dρ
T

(
µ(ω), ν(ω)

))2

≤ K(T )

∫ T

0

(
Dρ
τ

(
µ(ω), ν(ω)

))2

dτ

+K ′(T ) sup
t,x

∣∣u(t, ω, x)− u′(t, ω, x)
∣∣2,

whereK(T ) := 2(3C0T+2C1) exp
(
2(3C0T+2C1)

)
andK ′(T ) := 6C2T

2 exp
(
2(3C0T+

2C1)
)
. Applying the Gronwall’s lemma gives (6.63) with c2 := K ′(T ) exp(K(T )).

(iv) The proof of this part closely resembles that of Part (iii).

6.6.3.1. The Sensitivity Analysis of the SHJB Equations. In this section we

study the sensitivity of the major and minor agents’ SHJB equations (6.39) and (6.42)

to the stochastic measures µ(·)(ω) and µ0
(·)(ω) in order to show the feedback regularity

conditions. The analysis of this section is based on the framework of Section 6 of [97].

First we consider a family of stochastic optimal control problems (SOCP) (6.15)-

(6.16) parameterized by α ∈ R. In this α-parameterized formulation called (SOCP)α:

(i) the dynamics of the states zα(t, ω), denoted by (6.15)α, are of the form (6.15)

with f [t, ω, z, u], σ[t, ω, z] and ς[t, ω, z] replaced by fα[t, ω, zα, uα], σα[t, ω, zα] and

ςα[t, ω, zα], respectively, and (ii) the cost functions Jα(uα), denoted by (6.16)α, are of

the form (6.16) with L[t, ω, z, u] replaced by Lα[t, ω, zα, uα].

The value functions φα(·, x(·)) correspond to the (SOCP)α are defined similar to

(6.17) with L[t, ω, z, u] replaced by Lα[t, ω, zα, uα]. Based on [145] we shall restrict

to the case where φα(·, x(·)) are semi-martingales of the form (6.21) with Γ(·, x(·))

and ψ(·, x(·)) are replaced by Γα(·, x(·)) and ψα(·, x(·)), respectively.

If the α-parameterized family of processes φα(t, x), Γα(t, x) and ψα(t, x) are a.s.

continuous in (x, t) and are smooth enough with respect to x, then by using the
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analysis in [145] one can show that the pairs
(
φα(s, x), ψα(s, x)

)
satisfy the follow-

ing backward in time α-parameterized stochastic Hamilton-Jacobi-Bellman (SHJB)α

equations:

− dφα(t, ω, x) =
[
Hα[t, ω, x,Dxφ

α(t, ω, x)] +
〈
σα[t, ω, x], Dxψ

α(t, ω, x)
〉

+
1

2
tr
(
aα[t, ω, x]D2

xxφ
α(t, ω, x)

)]
dt− (ψα)T (t, ω, x)dW (t, ω), φα(T, x) = 0, (6.65)

where aα[t, ω, x] := σα[t, ω, x]
(
σα[t, ω, x]

)T
+ ςα[t, ω, x]

(
ςα[t, ω, x]

)T
, and the stochas-

tic Hamiltonians Hα : [0, T ]× Ω× Rn × Rn → R are given by

Hα[t, ω, x, p] := inf
uα∈U

{〈
fα[t, ω, x, u], p

〉
+ Lα[t, ω, x, u]

}
.

Suppose the assumptions (H6.1)-(H6.3) hold for (fα, Lα, σα, ςα). Then the

(SHJB)α equations (6.65) have unique solutions (see Theorem 6.3 or Theorem 4.1

in [145]):

(φα(t, x), ψα(t, x)) ∈
(
L2
Ft([0, T ];R), L2

Ft([0, T ];Rm)
)
, ∀α ∈ R.

The forward in time FWt -adapted optimal control processes of the (SOCP)α

(6.15)α-(6.16)α are given by (see [145])

uα,o(t, ω, x) := arg inf
uα∈U

Hα,u[t, ω, x,Dxφ
α(t, ω, x), uα]

= arg inf
uα∈U

{〈
fα[t, ω, x, uα], Dxφ

α(t, ω, x)
〉

+ Lα[t, ω, x, uα]
}
. (6.66)

We set

gα[t, ω, x, φα(t, ω, x), ψα(t, ω, x)] := Hα[t, ω, x,Dxφ
α(t, ω, x)]

+
〈
σα[t, ω, x], Dxψ

α(t, ω, x)
〉
,

Aα(t, ω, x)(·) :=
1

2
tr
(
aα[t, ω, x]D2

xx(·)
)
,
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where Aα in [0, T ] × Ω × Rn is an operator on C2(Rn). We may now rewrite the

backward in time α-parameterized (SHJB)α equations (6.65) as

dφα(t, ω, x) + Aα(t, ω, x)
(
φα(t, ω, x)

)
dt

= −gα[t, ω, x, φα(t, ω, x), ψα(t, ω, x)]dt+ (ψα)T (t, ω, x)dW (t, ω), (6.67)

with φα(T, x) = 0.

At this point we introduce the mild form of (6.67) because this form is more

suitable for the sensitivity analysis of this section. We note that it is sufficient to

consider the mild solution in the analysis of existence and uniqueness of solutions to

the SMF system.

If the pair (φα(t, x), ψα(t, x)) is a smooth solution to (6.67) that satisfies the

following mild form by a Duhamel Principle [97]:

φα(t, ω, x) =

∫ T

t

exp
(∫ s

t

Aα(τ, ω, x)dτ
)(
gα[s, ω, x, φα(s, ω, x), ψα(s, ω, x)]

)
ds

−
∫ T

t

exp
(∫ s

t

Aα(τ, ω, x)dτ
)(

(ψα)T (s, ω, x)
)
dW (s, ω). (6.68)

We define the operators:

Φα(t, s, ω, x)(·) = exp
(∫ s

t

Aα(τ, ω, x)(·)dτ
)
≡ exp

(∫ s

t

1

2
tr
(
aα[τ, ω, x]D2

xx(·)
)
dτ,

Ψα(t, s, ω, x)(·) =

∫ s

t

∂αA
α(τ, ω, x)(·)dτ ≡

∫ s

t

1

2
tr
(
∂αa

α[τ, ω, x]D2
xx(·)

)
dτ,

in [0, T ]× Ω× Rn which are maps on C∞(Rn) and C2(Rn), respectively.
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Differentiating (6.68) with respect to α gives

∂αφ
α(t, ω, x) =

∫ T

t

(
Φα(t, s, ω, x)

)(
Ψα(t, s, ω, x)

)
(
gα[s, ω, x, φα(s, ω, x), ψα(s, ω, x)]

)
ds

+

∫ T

t

(
Φα(t, s, ω, x)

)(
∂αg

α[s, ω, x, φα(s, ω, x), ψα(s, ω, x)]
)
ds

−
∫ T

t

(
Φα(t, s, ω, x)

)(
Ψα(t, s, ω, x)

)(
(ψα)T (s, ω, x)

)
dW (s, ω)

−
∫ T

t

(
Φα(t, s, ω, x)

)(
(∂αψ

α)T (s, ω, x)
)
dW (s, ω), (6.69)

where

∂αg
α[t, ω, x, φα(t, ω, x), ψα(t, ω, x)] ≡ ∂αH

α[t, ω, x,Dxφ
α(t, ω, x)]

+ ∂pH
α[t, ω, x,Dxφ

α(t, ω, x)]Dx

(
∂αφ

α(t, ω, x)
)

+
〈
∂ασ

α[t, ω, x], Dxψ
α(t, ω, x)

〉
+
〈
σα[t, ω, x], Dx

(
∂αψ

α(t, ω, x)
)〉
.

We may rewrite (6.69) as

∂αφ
α(t, ω, x) =

∫ T

t

(
Φα(t, s, ω, x)

)
Aα1 (s, ω, x)

(
∂αφ

α(t, ω, x)
)
ds

+

∫ T

t

(
Φα(t, s, ω, x)

)(
hα1 [t, s, ω, x, ∂αψ

α]
)
ds

−
∫ T

t

(
Φα(t, s, ω, x)

)(
(∂αψ

α)T (s, ω, x)
)
dW (s, ω),

−
∫ T

t

(
Φα(t, s, ω, x)

)(
hα2 [t, s, ω, x]

)
dW (s, ω), (6.70)
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where

Aα1 (s, ω, x)(·) := ∂pH
α[s, ω, x,Dxφ

α(s, ω, x)]Dx(·),

hα1 [t, s, ω, x, ∂αψ
α] :=

(
Ψα(t, s, ω, x)

)(
gα[s, ω, x, φα(s, ω, x), ψα(s, ω, x)]

)
+ ∂αH

α[s, ω, x,Dxφ
α(s, ω, x)] +

〈
∂ασ

α[s, ω, x], Dxψ
α(s, ω, x)

〉
+
〈
σα[s, ω, x], Dx

(
∂αψ

α
)〉
,

hα2 [t, s, ω, x] :=
(
Ψα(t, s, ω, x)

)(
(ψα)T (s, ω, x)

)
.

We introduce the following assumption:

(H6.5) ∂αf
α[t, x, u], ∂αL

α[t, x, u], ∂ασ
α[t, x] and ∂ας

α[t, x] exist and are C∞(Rn).

Assume (H6.1)-(H6.3) hold where (f, L, σ, ς) are replaced by (∂αf
α, ∂αL

α, ∂ασ
α, ∂ας

α),

and all the boundedness assumptions are uniform.

Proposition 6.3. Assume (H11)-(H6.3) hold for (fα, Lα, σα, ςα). Let the pair

(φα(t, x), ψα(t, x)) be the unique solution to (6.65) which are C∞(Rn) and a.s. uni-

formly bounded. In addition, we assume (H6.5) holds. Then, the equation (6.69) has

a unique solution

(∂αφ(t, x), ∂αψ(t, x)) ∈
(
L2
Ft([0, T ];R), L2

Ft([0, T ];Rm)
)

such that sup0≤t≤T |Dx∂αφ(t, ·)| <∞ (a.s.).

Proof: The proof of existence and uniqueness of solution to (6.70) follows from

Theorem 4.1 in [73] (see the proof of Theorem 4.1 in [145], see also [72, 113, 115]

or Chapter 5 of [114]). By taking the conditional expectation EFw0
t

of the square of

both sides of (6.70) and the boundedness assumptions in the theorem, one can show

sup0≤t≤T |∂αφ(t, ·)| <∞ (a.s.) (see the proof of Theorem 2.1 in [145]). Using this in

equation (6.70) implies the boundedness of Dx∂αφ(t, ·).
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We define the Gâteaux derivative of the function F (t, x, µ) with respect to the

measure µ(y) as [97]

∂µ(y)F (t, x, µ) = lim
ε→0

F (t, x, µ+ εδ(y))− F (t, x, µ)

ε
,

where δ is the Dirac delta function. We introduce the following assumptions:

(A6.12) (i) In (6.25)-(6.26) the Gâteaux derivative of f0, σ0 and L0 with respect

to µ exist, are C∞(Rn) and a.s. uniformly bounded. (ii) In (6.32)-(6.33) the partial

derivatives of f , σ and L with respect to µ0 and µ exist, are C∞(Rn) and a.s. uniformly

bounded.

The proof of the following lemma is based on the sensitivity analysis of the SHJB

equations (6.39) and (6.42) to the stochastic measures µ(·)(ω) and µ0
(·)(ω).

Lemma 6.2. (i) Assume (A6.3)-(A6.7) for U0, f0, σ0, L0, and (A6.12)-(i) hold.

Let (φ0(t, x), ψ0(t, x)) be the unique solution pair to (6.39) which is C∞(Rn) and is

a.s. uniformly bounded. In addition, we assume (A6.8) holds for S0 and the resulting

u0 is also a.s. Lipschitz continuous in µ. Then, for µ(·)(ω) and ν(·)(ω) in the setMβ
ρ ,

0 < β < 1, there exists a constant c4 such that

sup
(t,x)∈[0,T ]×Rn

∣∣u0(t, ω, x)− u′0(t, ω, x)
∣∣2 ≤ c4

(
Dρ
T

(
µ(ω), ν(ω)

))2

, a.s., (6.71)

where u0, u
′
0 ∈ CLip(x)([0, T ] × Ω × Rn;U0) are induced by the map ΥSHJB

0 in (6.47)

using two stochastic measures µ(·)(ω) and ν(·)(ω), respectively.

(ii) Assume (A6.3)-(A6.7) for U , f , σ, L, and (A6.12)-(ii) hold. Let (φ(t, x), ψ(t, x))

be the unique solution pair to (6.42) which is C∞(Rn) and is a.s. uniformly bounded.

In addition, we assume (A6.8) holds for S and the resulting u is also a.s. Lipschitz

continuous in µ. Then, for µ0
(·)(ω) ∈Mγ

ρ, 0 < γ < 1/2, and µ(·)(ω) and ν(·)(ω) in the

set Mβ
ρ , 0 < β < 1, there exists a constant c5 such that

sup
(t,x)∈[0,T ]×Rn

∣∣u(t, ω, x)− u′(t, ω, x)
∣∣2 ≤ c5

(
Dρ
T

(
µ(ω), ν(ω)

))2

, a.s., (6.72)
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where u, u′ ∈ CLip(x)([0, T ]×Ω×Rn;U) are induced by the map ΥSHJB
i in (6.52) using

two stochastic measures µ(·)(ω) and ν(·)(ω), respectively.

(iii) Assume (A6.3)-(A6.7) for U , f , σ, L, and (A6.12)-(ii) hold. Let (φ(t, x), ψ(t, x))

be the unique solution pair to (6.42) which is C∞(Rn) and is a.s. uniformly bounded.

In addition, we assume (A6.8) holds for S and the resulting u is also a.s. Lipschitz

continuous in µ0. Then, for µ(·)(ω) ∈ Mβ
ρ , 0 < β < 1, and µ0

(·)(ω) and ν0
(·)(ω) in the

set Mγ
ρ, 0 < γ < 1/2, there exists a constant c6 such that

sup
(t,x)∈[0,T ]×Rn

∣∣u(t, ω, x)− u′(t, ω, x)
∣∣2 ≤ c6

(
Dρ
T

(
µ0(ω), ν0(ω)

))2

, a.s., (6.73)

where u, u′ ∈ CLip(x)([0, T ]×Ω×Rn;U) are induced by the map ΥSHJB
i in (6.52) using

the two stochastic measures µ0
(·)(ω) and ν0

(·)(ω), respectively.

Proof: (i) Assumption (A6.8) for S0 together with the fact that the resulting u0

in (A6.8) is also a.s. Lipschitz continuous in µ yields

|u0(t, ω, x)− u′0(t, ω, x)| ≤ k1D
ρ
t

(
µ(ω), ν(ω)

)
+ k2|Dxφ

µ
0(t, ω, x)−Dxφ

ν
0(t, ω, x)|, (6.74)

with positive constants k1, k2, where we indicate the dependence of φ0 on measures µ

and ν by φµ0 and φν0, respectively.

We consider the Gâteaux derivative of φ0 with respect to the measure µ. The

assumptions of the theorem imply that the conditions for Proposition 6.3 hold. There-

fore, Proposition 6.3 yields that the Gâteaux derivative of Dxφ0 with respect to mea-

sure µ is a.s. uniformly bounded. This together with the mean value theorem yields

|Dxφ
µ
0(t, ω, x)−Dxφ

ν
0(t, ω, x)| ≤ k3D

ρ
t

(
µ(ω), ν(ω)

)
, (6.75)

with positive constant k3. (6.74) and (6.75) give

|u0(t, ω, x)− u′0(t, ω, x)| ≤ kDρ
t

(
µ(ω), ν(ω)

)
,

with k := k1 + k2k3, which yields the result.
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6.6.7 APPLICATIONS

Remark 6.2. In the standard mean field game model of [85] a similar condition

to (6.71)-(6.73) is taken as an assumption (see the feedback regularity condition (37)

in [85]). Following the argument in Section 7.1 of [85], one can show that the inequal-

ities (6.71)-(6.73) hold in the linear-quadratic-Gaussian (LQG) model with Lipschitz

continuous nonlinear couplings.

6.6.3.2. Main Result. We recall the map Υ given in (6.60) which is the compo-

sition of the maps ΥSHJB
0 , ΥSMV

0 , ΥSHJB
i and ΥSMV

i introduced in (6.47), (6.48), (6.52),

and (6.59), respectively (see the diagram below).

µ(·)(ω)
ΥSHJB

0−→ uo0(·, ω, x)

↑ΥSMV
i ↓ΥSMV

0

uo(·, ω, x)
ΥSHJB
i←− µ0

(·)(ω)

Theorem 6.10. Let the assumptions of both Lemma 6.1 and Lemma 6.2 hold.

If the constants {ci : 0 ≤ i ≤ 6} for (6.61)-(6.64) and (6.71)-(6.73) satisfy the gain

condition

max {c2c5, c2c6c0, c2c6c1, c3c1, c3c0c4} < 1,

then there exists a unique solution for the map Υ, and hence a unique solution to the

MM SMF system (6.39)-(6.41) and (6.42)-(6.44).

Proof: The result follows from the Banach fixed point theorem for the map Υ

given in (6.60) on the Polish space Mβ
ρ , 0 < β < 1. We note that the gain condition

ensures that Υ is a contraction.

6.7. Applications

6.7.1. The MM SMF LQG System. We consider the Major and Minor

(MM) Linear-Qudratic-Gaussian (LQG) dynamic game problem of [75]. In this case
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all functions in (6.1)-(6.4) are given by (see Remark 6.1)

f0[t, zN0 (t), uN0 (t), zNj (t)] = A0z
N
0 (t) +B0u

N
0 (t) + F0z

N
j (t),

f [t, zNi (t), uNi (t), zN0 (t), zNj (t)] = AzNi (t) +BuNi (t) + FzNj (t) +GzN0 (t),

σ0[t, zN0 (t), zNj (t)] = S0, σ[t, zNi (t), zN0 (t), zNj (t)] = S,

L0[t, zN0 (t), uN0 (t), zNj (t)] =
[
zN0 (t)−

(
H0

( 1

N

N∑
j=1

zNj (t)
)

+ η0

)]T
Q0

×
[
zN0 (t)−

(
H0

( 1

N

N∑
j=1

zNj (t)
)

+ η0

)]T
+ (uN0 (t))TR0u

N
0 (t),

L[t, zNi (t), uNi (t), zN0 (t), zNj (t)] =
[
zNi (t)−

(
HzN0 (t) + Ĥ

( 1

N

N∑
j=1

zNj (t)
)

+ η
)]T

Q

×
[
zNi (t)−

(
HzN0 (t) + Ĥ

( 1

N

N∑
j=1

zNj (t)
)

+ η
)]

+ (uNi (t))TRuNi (t),

with the deterministic constant matrices: (i) A0, F0, A, F,G,H0, H and Ĥ in Rn×n,

(ii) B0 and B in Rn×k, (iii) S0 and S in Rn×m, (iv) the symmetric nonnegative definite

matrices Q0 and Q in Rn×n, (v) the symmetric positive definite matrices R0 and R

in Rk×k, and the deterministic constant vectors η and η0 are in Rn.

In this formulation the major agent’s SMF system (6.39)-(6.41) is of the form

− dφ0(t, ω, x) =
[〈
A0x−

1

4
B0R

−1
0 BT

0 Dxφ0(t, ω, x) + F0z
o(t, ω), Dxφ0(t, ω, x)

〉
+
〈
x− (H0z

o(t, ω) + η0), Q0

(
x− (H0z

o(t, ω) + η0)
)〉

+
〈
S0, Dxψ0(t, ω, x)

〉
+

1

2
tr
(
(ST0 S0)D2

xxφ0(t, ω, x)
)]
dt

− ψT0 (t, ω, x)dw0(t, ω), φ0(T, x) = 0, (6.76)

uo0(t, ω, x) = −1

2
R−1

0 BT
0 Dxφ0(t, ω, x), (6.77)

dzo0(t, ω) =
[
A0z

o
0(t, ω) +B0u

o
0(t, ω, zo0) + F0z

o(t, ω)
]
dt

+ S0dw0(t, ω), zo0(0) = z0(0), (6.78)
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and the minor agents’ SMF system (6.42)-(6.44) is given by

− dφ(t, ω, x) =
[〈
Ax− 1

4
BR−1BTDxφ(t, ω, x) + Fx+Gzo0(t, ω), Dxφ(t, ω, x)

〉
+
〈
x− (Hzo0(t, ω) + Ĥx+ η), Q

(
x− (Hzo0(t, ω) + Ĥx+ η)

)〉
+

1

2
tr
(
(STS)D2

xxφ(t, ω, x)
)]
dt− ψT (t, ω, x)dw(t, ω), φ0(T, x) = 0, (6.79)

uo(t, ω, x) = −1

2
R−1BTDxφ(t, ω, x), (6.80)

dzo(t, ω) =
[
Azo(t, ω) +Buo(t, ω, zo) + F0z

o(t, ω) +Gzo0(t, ω)
]
dt

+ Sdw(t, ω), zo0(0) = z0(0). (6.81)

Let Π0(·) ≥ 0 be the unique solution of the deterministic Riccati equation

∂tΠ0(t) + Π0(t)A0 + AT0 Π0(t)− Π0(t)B0R
−1
0 BT

0 Π0(t) +Q0 = 0, Π0(T ) = 0.

We denote A0(·) = A0−B0R
−1
0 BT

0 Π0(·). It can be verified that the pair (φ0, ψ0)(t, ω, x)

in (6.39) is given by

φ0(t, ω, x) = xTΠ0(t)x+ 2xT s0(t, ω) + g0(t, ω),

ψT0 (t, ω, x) = 2xT q0(t, ω) + h0(t, ω),

where (s0, q0)(t, ω) and (g0, h0)(t, ω) are unique solutions of the following Backward

Stochastic Differential Equations (BSDEs):

− ds0(t, ω) =
[
AT

0 (t)s0(t, ω) +
(
Π0(t)F0 −Q0H0

)
zo(t, ω)−Q0η0

]
dt

− q0(t, ω)dw0(t, ω), s0(T ) = 0,

− dg0(t, ω) =
[
− sT0 (t, ω)B0R

−1
0 BT

0 s0(t, ω) + 2F0z
o(t, ω) + 2 tr

(
ST0 q0(t, ω)

)
+
(
H0z

o(t, ω) + η0

)T
Q0

(
H0z

o(t, ω) + η0

)
+ tr

(
ST0 S0Π0(t)

)]
dt

− h0(t, ω)dw0(t, ω), g0(T ) = 0.
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We may now express the major agent’s SMF-LQG system (6.76)-(6.78) in the

following form:

− ds0(t, ω) =
[
AT

0 (t)s0(t, ω) +
(
Π0(t)F0 −Q0H0

)
zo(t, ω)−Q0η0

]
dt

− q0(t, ω)dw0(t, ω), s0(T ) = 0,

uo0(t, ω) = −R−1
0 BT

0

(
Π0(t)zo0(t, ω) + s0(t, ω)

)
,

dzo0(t, ω) =
[
A0(t)zo0(t, ω)−B0R

−1
0 BT

0 Π0(t)s0(t, ω) + F0z
o(t, ω)

]
dt

+ S0dw0(t, ω), zo0(0) = z0(0),

where zo(t, ω) is the mean field behaviour of the minor agents (see the minor agents’

SMF-LQG system below).

In a similar way, let Π(·) ≥ 0 be the unique solution of the deterministic Riccati

equation

∂tΠ(t) + Π(t)A+ ATΠ(t)− Π(t)BR−1BTΠ(t) +Q = 0, Π(T ) = 0.

We denote A(·) = A−BR−1BTΠ(·). It can be verified that the pair (φ, ψ)(t, ω, x) in

(6.42) is given by

φ(t, ω, x) = xTΠ(t)x+ 2xT s(t, ω) + g(t, ω),

ψT (t, ω, x) = 2xT q(t, ω) + h(t, ω),

where (s, q)(t, ω) and (g, h)(t, ω) are unique solutions of the following BSDEs:

− ds(t, ω) =
[
AT (t)s(t, ω) +

(
Π(t)F −QĤ

)
zo(t, ω) +

(
Π(t)G−QH

)
zo0(t, ω)

−Qη
]
dt− q(t, ω)dw0(t, ω), s(T ) = 0,

− dg(t, ω) =
[
− sT (t, ω)BR−1BT s(t, ω) + 2Fzo(t, ω) + 2Gzo0(t, ω)

+
(
Ĥz0(t, ω) +Hzo0(t, ω) + η

)T
Q0

(
Ĥz0(t, ω) +Hzo0(t, ω) + η

)
+ tr

(
STSΠ(t)

)]
dt− h(t, ω)dw0(t, ω), g(T ) = 0.
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We may now express the minor agents’ SMF-LQG system (6.79)-(6.81) in the

following form:

− ds(t, ω) =
[
AT (t)s(t, ω) +

(
Π(t)F −QĤ

)
zo(t, ω) +

(
Π(t)G−QH

)
zo0(t, ω)

−Qη
]
dt− q(t, ω)dw0(t, ω), s(T ) = 0,

uo(t, ω) = −R−1BT
(
Π(t)zo(t, ω) + s(t, ω)

)
,

dzo(t, ω) =
[(
A(t) + F

)
zo(t, ω)−BR−1BTΠ(t)s(t, ω) +Gzo0(t, ω)

]
dt

+ Sdw(t, ω), zo(0) = z(0).

So we retrieve the SMF system for the MM LQG dynamic games model of [124]

for minor agents with uniform parameters (see equations (2.10) and (2.22) in [124],

see also [75]). The reader is referred to [124] for an explicit representation of a

solution to the SMF-LQG system under some appropriate conditions.

6.7.2. Synchronization of Coupled Nonlinear Oscillators Game. In

this section we present a major and minor version of the synchronization of coupled

nonlinear oscillators game model [177]. Consider a population of N + 1 oscillators

with dynamics

dθNj (t) = uNj (t)dt+ σdwj(t) (mod 2π) 0 ≤ j ≤ N, t ≥ 0,

where θj(t) ∈ [0, 2π] is the phase of the jth oscillator at time t, uj(·) is the control

input, σ is a non-negative scalar, and {wj : 0 ≤ j ≤ N} denotes a sequence of

independent standard scalar Wiener processes. It is assumed that the initial states

{θj(0)} are chosen independently on [0, 2π]. The objective of the jth oscillator is to
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minimize its own cost function

JN0 (uN0 , u
N
−0) := E

∫ T

0

( 1

N

N∑
k=1

sin2
[
θN0 (t)− θNk (t)

]
+ r
(
uN0 (t)

)2
)
dt,

JNi (uNi , u
N
−i) := E

∫ T

0

( 1

N

N∑
k=1

sin2
[
θNi (t)−

(
λθN0 (t) + (1− λ)θNk (t)

)]
+ r
(
uNi (t)

)2
)
dt, 1 ≤ i ≤ N,

where r is a positive scalar and λ ∈ (0, 1).

Similar arguments in previous section yield the following major agent’s SMF

system (6.31) and (6.39)-(6.40):

− dφ0(t, ω, x) =
[
− 1

4r

(
∂xφ0(t, ω, x))2 +m0(t, ω, x) + σ∂xψ0(t, ω, x)

+
σ2

2
∂2
xxφ0(t, ω, x)

]
dt− ψ0(t, ω, x)dw0(t, ω), φ0(T, x) = 0,

uo0(t, ω, x) = − 1

2r
∂xφ0(t, ω, x),

dp0
s(t, ω, x) =

[ 1

2r
∂x

((
∂xφ0(t, ω, x)

)
p0
s(t, ω, x)

)
+
σ2

2
∂2
xxp

0
s(t, ω, x)

]
dt

− σ∂xp0
s(t, ω, x)dw0(t, ω), p0

s(s, x) = δθo0(s)(dx),

m0(t, ω, x) =

∫ 2π

0

sin2(x− θ)p(t, ω, θ)dθ,

where m0(t, ω, x) is called the infinite population cost-coupling of the major agent,

and θo0(·) is the solution of the closed-loop equation

dθo0(t) = uo0(t, θo0(t))dt+ σdw0(t) (mod 2π) t ≥ 0.
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In a similar way, the minor agents’ SMF system (6.38) and (6.42)-(6.43) is given

by

− dφ(t, ω, x) =
[
− 1

4r

(
∂xφ(t, ω, x))2 +m(t, ω, x) +

σ2

2
∂2
xxφ(t, ω, x)

]
dt

− ψ(t, ω, x)dw(t, ω), φ(T, x) = 0,

uo(t, ω, x) = − 1

2r
∂xφ(t, ω, x),

dp(t, ω, x) =
[ 1

2r
∂x

((
∂xφ(t, ω, x)

)
p(t, ω, x)

)
+
σ2

2
∂2
xxp(t, ω, x)

]
dt, p(0, x)

m(t, ω, x) =

∫ 2π

0

∫ 2π

0

sin2
(
x− (λθ0 + (1− λ)θ)

)
p0

0(t, ω, θ0)p(t, ω, θ)dθ0dθ,

where m(t, ω, x) is called the infinite population cost-coupling of the major agent.

The reader is referred to the deterministic mean field system (14a)-(14c) in [177]

for the synchronization of coupled nonlinear oscillators game model with only minor

agents.

6.8. ε-Nash Equilibrium Property of the SMF Control Laws

We let(
φ0(t, ω, x), ψ0(t, ω, x), uo0(t, ω, x), zo0(t, ω), φ(t, ω, x), ψ(t, ω, x), uo(t, ω, x), zo(t, ω)

)
,

be the unique solution of the MM SMF system (6.39)-(6.41) and (6.42)-(6.44) such

that the best response SMF control processes uo0(t, ω, x) and uo(t, ω, x) are a.s. con-

tinuous in (t, x) and a.s. Lipschitz continuous in x.

We now apply the SMF control processes uo0(t, ω, x) and uo(t, ω, x) into a finite

N + 1 major and minor population (6.1)-(6.2). This yields the following closed loop
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individual dynamics:

dzo,N0 (t) =
1

N

N∑
j=1

f0[t, zo,N0 (t), uo0(t, zo,N0 (t)), zo,Nj (t)]dt

+
1

N

N∑
j=1

σ0[t, zo,N0 (t), zo,Nj (t)]dw0(t), zo,N0 (0) = z0(0), 0 ≤ t ≤ T, (6.82)

dzo,Ni (t) =
1

N

N∑
j=1

f [t, zo,Ni (t), uo(t, zo,Ni (t)), zo,N0 (t), zo,Nj (t)]dt

+
1

N

N∑
j=1

σ[t, zo,Ni (t), zo,N0 (t), zo,Nj (t)]dwi(t), zo,Ni (0) = zi(0), 1 ≤ i ≤ N, (6.83)

We set the admissible control set of agent Aj, 0 ≤ j ≤ N , as

Uj =
{
uj(·, ω) := uj

(
·, ω, z0(·, ω), · · · , zN(·, ω)

)
∈ CLip(z0,··· ,zN ) : uj(t, ω) is a

Fw0
t -measurable process adapted to sigma-field σ

{
zi(τ, ω) : 0 ≤ i ≤ N, 0 ≤ τ ≤ t

}
such that E

∫ T

0

|uj(t, ω)|2dt <∞
}
.

We note that Uj, 0 ≤ j ≤ N , are the full information admissible control which are

not restricted to be decentralized.

Definition 6.2. Given ε > 0, the admissible control laws (uo0, · · · , uoN) for N + 1

agents generates an ε-Nash equilibrium with respect to the costs JNj , 0 ≤ j ≤ N , if

JNj (uoj ;u
o
−j)− ε ≤ infuj∈Uj J

N
j (uj;u

o
−j) ≤ JNj (uoj ;u

o
−j), for any 0 ≤ j ≤ N .

We now show that the SMF control processes for a finite N + 1 major and minor

population system (6.82)-(6.83) is an ε-Nash equilibrium with respect to the cost

functions (6.3)-(6.4) in the case that minor agents are coupled to the major agent

only through their cost functions (see the MM LQG model in [124]).

(A6.13) Assume the functions f and σ in (6.2) (and hence in (6.83)) do not

contain the state of major agent zN0 .

Note that in the case of assumption (A6.13) the major agent A0 has a significant

influence on the minor agents through their cost functions (6.4). We note that an
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analysis based on the anticipative variational calculations used in the MM LQG case

[125] is required for establishing the ε-Nash equilibrium property of the SMF in the

general case.

Theorem 6.11. Assume (A6.1)-(A6.6) and (A6.13) hold, and there exists a

unique solution to the MM SMF system (6.39)-(6.41) and (6.42)-(6.44) such that

the SMF best response control processes uo0(t, ω, x) and uo(t, ω, x) are a.s. continuous

in (t, x) and a.s. Lipschitz continuous in x. Then (uo0, u
o
1, · · · , uoN) where uoi ≡ uo,

1 ≤ i ≤ N , generates an O(εN + 1/
√
N)-Nash equilibrium with respect to the cost

functions (6.3)-(6.4) such that limN→∞ εN = 0.

Proof: Under (A6.13) we have the the following closed loop individual dynamics

under the SMF best response control processes:

dzo,N0 (t) =
1

N

N∑
j=1

f0[t, zo,N0 (t), uo0(t, zo,N0 (t)), zo,Nj (t)]dt

+
1

N

N∑
j=1

σ0[t, zo,N0 (t), zo,Nj (t)]dw0(t), zo,N0 (0) = z0(0), 0 ≤ t ≤ T,

dzo,Ni (t) =
1

N

N∑
j=1

f [t, zo,Ni (t), uo(t, zo,Ni (t)), zo,Nj (t)]dt

+
1

N

N∑
j=1

σ[t, zo,Ni (t), zo,Nj (t)]dwi(t), zo,Ni (0) = zi(0), 1 ≤ i ≤ N.

We also introduce the associated Mckean-Vlasov (MV) SDE system

dzo0(t) = f0[t, zo0(t), uo0(t, zo0), µt]dt+ σ0[t, zo0(t), µt]dw0(t),

dzoi (t) = f [t, zoi (t), u
o(t, zoi ), µt]dt+ σ[t, zoi , µt]dwi(t), (6.84)

with the initial condition zoj (0) = zj(0), 0 ≤ j ≤ N . In the above MV equation

µt, 0 ≤ t ≤ T , is the conditional law of zoi (t), 1 ≤ i ≤ N , given Fw0
t (i.e., µt :=
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L
(
zoi (t)|F

w0
t

)
, 1 ≤ i ≤ N). Theorem 6.1 implies that

sup
0≤j≤N

sup
0≤t≤T

E|zo,Nj (t)− zoj (t)| = O(1/
√
N), (6.85)

where the right hand side may depend upon the terminal time T .

Let z(0) =
∫
Rn xdF (x) be the mean value of the minor agents’ initial states (see

(A6.2)). We denote

(εN)2 =
∣∣∣ ∫

RN
xTxdFN(x)− 2zT (0)

∫
RN
xdFN(x) + zT (0)z(0)

∣∣∣.
It is evident from (A6.2) that limN→∞ εN = 0. To prove the ε-Nash equilibrium

property we consider two cases as follows.

Case I (strategy change for the major agentA0): While the minor agents are using

the SMF best response control law u0(t, ω, x), a strategy change from u0
0(t, ω, x) to

the Fw0
t -adapted process u0

(
t, ω, x, zo,N−0 (t, ω)

)
∈ U0 for the major agent yields

dzN0 (t) =
1

N

N∑
j=1

f0[t, zN0 (t), u0

(
t, zN0 (t), zo,N−0 (t)

)
, zo,Nj (t)]dt

+
1

N

N∑
j=1

σ0[t, zN0 (t), zo,Nj (t)]dw0(t), zN0 (0) = z0(0), 0 ≤ t ≤ T,

where zo,N−0 ≡ (zo,N1 , · · · , zo,NN ). Since minor agents are coupled to the major agent

only through their cost functions (see (A6.13)) the strategy change of the major

agent does not affect the the minor agents’ states zo,Ni and zoi , 1 ≤ i ≤ N , above.

Let ẑN0 (·) be the solution of the SDE:

dẑN0 (t) =
1

N

N∑
j=1

f0[t, ẑN0 (t), u0

(
t, ẑN0 (t), zo−0(t)

)
, zoj (t)]dt

+
1

N

N∑
j=1

σ0[t, ẑN0 (t), zoj (t)]dw0(t), ẑN0 (0) = z0(0), 0 ≤ t ≤ T,
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where zo−0 ≡ (zo1, · · · , zoN) is given by the MV SDE system above. Theorem 6.1 and

the Gronwall’s lemma imply that

sup
0≤t≤T

E|zN0 (t)− ẑN0 (t)| = O(1/
√
N). (6.86)

We also introduce the SDE

dẑ0(t) = f0[t, ẑ0(t), u0(t, ẑ0(t), zo−0(t)), µt]dt+ σ0[t, ẑ0(t), µt]dw0(t),

with initial condition ẑ0(0) = z0(0), where µ(·) is the minor agents’ measure given by

the MV SDE system above. Again, by Theorem 6.1 and the Gronwall’s lemma It can

be shown that

sup
0≤t≤T

E|ẑN0 (t)− ẑ0(t)| = O(1/
√
N). (6.87)

(A6.3), (A6.6), (6.85)-(6.87) and Theorem 6.1 yield

JN0 (u0;uo−0) ≡ E

∫ T

0

(
(1/N)

N∑
j=1

L0

[
t, zN0 (t), u0(t, zN0 , z

o,N
−0 ), zo,Nj (t)

])
dt

(6.85)

≥ E

∫ T

0

(
(1/N)

N∑
j=1

L0

[
t, zN0 (t), u0(t, zN0 , z

o
−0), zoj (t)

])
dt−O(εN + 1/

√
N)

(6.86)

≥ E

∫ T

0

(
(1/N)

N∑
j=1

L0

[
t, ẑN0 (t), u0(t, ẑN0 , z

o
−0), zoj (t)

])
dt−O(εN + 1/

√
N)

(6.87)

≥ E

∫ T

0

(
(1/N)

N∑
j=1

L0

[
t, ẑ0(t), u0(t, ẑ0, z

o
−0), zoj (t)

])
dt−O(εN + 1/

√
N)

(6.5)

≥ E

∫ T

0

L0

[
t, ẑ0(t), u0(t, ẑ0, z

o
−0), µt

]
dt−O(εN + 1/

√
N), (6.88)

where the appearance of the εN term in the first inequality of (6.88) is due to the

fact that here the sequence of minor agents’ initials {zoj (0) : 1 ≤ j ≤ N} in the

SMV system (6.84) is generated by independent randomized observations on the

distribution F given in (A6.2).
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Furthermore, by the construction of the major agent’s SMF system (6.39)-(6.41)

(see the major agent’s SOCP (6.25)-(6.26)) we have

E

∫ T

0

L0

[
t, ẑ0(t), u0(t, ẑ0, z

o
−0), µt

]
dt ≥ E

∫ T

0

L0

[
t, zo0(t), uo0(t, zo0), µt

]
dt. (6.89)

But, Theorem 6.1 and (6.85) imply

E

∫ T

0

L0

[
t, zo0(t), uo0(t, zo0), µt

]
dt

(6.5)

≥ E

∫ T

0

(
(1/N)

N∑
j=1

L0

[
t, zo0(t), u0(t, zo0), zoj (t)

])
dt−O(εN + 1/

√
N)

(6.85)

≥ E

∫ T

0

(
(1/N)

N∑
j=1

L0

[
t, zo,N0 (t), u0(t, zo,N0 ), zo,Nj (t)

])
dt−O(εN + 1/

√
N)

≡ JN0 (uo0;uo−0)−O(εN + 1/
√
N). (6.90)

It follows from (6.88)-(6.90) that JN0 (uo0;uo−0)−O(εN +1/
√
N) ≤ infu0∈U0 J

N
0 (u0;uo−0).

Case II (strategy change for the minor agents): Without loss of generality, we

assume that the first minor agent changes its MF best response control strategy

uo(t, ω, x) to u1

(
t, ω, x, z−1(t, ω)

)
∈ U1. This leads to

dzN0 (t) =
1

N

N∑
j=1

f0[t, zN0 , u
o
0(t, zN0 ), zNj ]dt+

1

N

N∑
j=1

σ0[t, zN0 , z
N
j ]dw0(t),

dzN1 (t) =
1

N

N∑
j=1

f [t, zN1 , u1(t, zN1 , z
N
−1), zNj ]dt+

1

N

N∑
j=1

σ[t, zN1 , z
N
j ]dw1(t),

dzN2 (t) =
1

N

N∑
j=1

f [t, zN2 , u
o(t, zN2 ), zNj ]dt+

1

N

N∑
j=1

σ[t, zN2 , z
N
j ]dw2(t),

...

dzNN (t) =
1

N

N∑
j=1

f [t, zNN , u
o(t, zNN ), zNj ]dt+

1

N

N∑
j=1

σ[t, zNN , z
N
j ]dwN(t).
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6.6.8 ε-NASH EQUILIBRIUM PROPERTY OF THE SMF CONTROL LAWS

By the same argument as in proving Theorem 6.1, it can be shown that

sup
j=0,2,··· ,N

sup
0≤t≤T

E|zo,Nj (t)− zNj (t)| = O(1/
√
N),

sup
j=0,2,··· ,N

sup
0≤t≤T

E|zoj (t)− zNj (t)| = O(1/
√
N).

Let ẑN1 (·) be the solution of the SDE:

dẑN1 (t) =
1

N

N∑
j=1

f [t, ẑN1 (t), u1

(
t, ẑN1 (t), zo−1(t)

)
, zoj (t)]dt

+
1

N

N∑
j=1

σ[t, ẑN1 (t), zoj (t)]dw1(t), ẑN1 (0) = z1(0), 0 ≤ t ≤ T,

where zo−1 ≡ (zo1, · · · , zoN) is given by the MV SDE system above. Theorem 6.1 and

the Gronwall’s lemma implies that

sup
0≤t≤T

E|zN1 (t)− ẑN1 (t)| = O(1/
√
N). (6.91)

We also introduce the SDE

dẑ1(t) = f [t, ẑ1(t), u1(t, ẑ1(t), zo−1(t)), µt]dt+ σ[t, ẑ1(t), µt]dw1(t),

with initial condition ẑ1(0) = z1(0), where µ(·) is the minor agents’ measure given by

the MV SDE system above. Again, Theorem 6.1 and the Gronwall’s lemma yield

sup
0≤t≤T

E|ẑN1 (t)− ẑ1(t)| = O(1/
√
N). (6.92)

Using (6.85) and (6.91)-(6.92), and by the same argument as in (6.88)-(6.90) one

can show that JN1 (uo1;uo−1)−O(εN + 1/
√
N) ≤ infu∈U1 J

N
1 (u1;uo−1).
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6.9. Chapter Summary

This chapter studies a stochastic mean field (SMF) system for a class of dynamic

games involving nonlinear stochastic dynamical systems with major and minor (MM)

agents. The SMF system consists of coupled (i) backward in time stochastic Hamilton-

Jacobi-Bellman (SHJB) equations, and (ii) forward in time stochastic McKean-Vlasov

(SMV) or stochastic Fokker-Planck-Kolmogorov (SFPK) equations. Existence and

uniqueness of the solution to the MM SMF system is established by a fixed point

argument in the Wasserstein space of random probability measures. In the case that

minor agents are coupled to the major agent only through their cost functions, the

εN -Nash equilibrium property of the SMF best response control possess is shown for

a finite N population system where εN = O(1/
√
N). As a particular but important

case, the results of Nguyen and Huang [124] for MM-SMF linear-quadratic-Gaussian

(LQG) systems with homogeneous population are retrieved, and, in addition, the

results of this chapter are illustrated with a major and minor agent version of a game

model of the synchronization of coupled nonlinear oscillators.
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CHAPTER 7

Conclusion and Future Research

This thesis studied Mean Field Game (MFG) theory with applications to consensus,

flocking, leader-follower and major-minor agent systems. The MFG methodology

addresses a class of dynamic games with a large number of minor agents in which

each agent interacts with the average or so-called mean field effect of other agents

via couplings in their individual dynamics and cost functions. A minor agent is an

agent which, asymptotically as the population size goes to infinity, has a negligible

influence on the overall system while the overall populations effect on it is significant.

The thesis is presented in three main parts. The first part is concerned with

applications of the MFG methodology to large population consensus and flocking

behaviour. The second part is focused on the extension of the mean field linear-

quadratic-Gaussian (MF LQG) framework so as to model the collective system dy-

namics which include large population of leaders and followers, and an unknown (to

the followers) reference trajectory for the leaders. The final part investigates dynamic

games with nonlinear stochastic dynamical systems of controlled McKean-Vlasov type

involving agents of the following mixed types: (i) a major agent, and (ii) a large pop-

ulation of minor agents, where the major agent has a significant influence on minor

agents while each minor agent has a negligible impact on other agents.
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We now conclude by outlining some possible future research directions.

Applications of the Major and Minor MFG Theory in Finance. One

of the fascinating features of backward stochastic differential equations (BSDEs) is

their applications in finance with deep interpretations (see [56]). Therefore, it is of

significant interest to apply the Major and Minor MFG theory to so-called “option

pricing problems” with dynamic games formulations (see Section 6 in [180]).

A Major and Minor MF Nonlinear Markov Systems Theory. In Chapter

6 the MF LQG model for major and minor agents is extended to nonlinear stochastic

dynamical systems of controlled McKean-Vlasov type. A more general case of major

and minor MFG theory for nonlinear Markov systems (in the sense of [97]) surely

merits study.

A MFG Theory for Partially Observed Stochastic Systems. In all the

MFG models so far it is assumed that the controller of each individual agent is able

to completely observe its own state. However, in many situations, the state of each

agent can only partially observed to itself via other variables plus some noise (see

e.g., [18, 180]). Therefore, a MFG theory for partially observed stochastic systems

based on Duncan-Mortensen-Zakai filter [22] is an open and challenging area (see [77]

for the LQG case).

A Hybrid MFG Theory. The hybrid systems (see e.g., [23,159]) are systems

with both continuous and discrete states and corresponding continuous and discrete

dynamics. These systems arise in a wide range of areas including communication

networks, traffic control and queueing models whose fluid model limits involve dif-

ferential equations of differential inclusion type. Since such systems may often have

large populations of agents or messages it is of interest to generalize the MFG idea

to systems of agents with hybrid differential inclusion dynamics.
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sensus algorithm dynamics from mean-field stochastic control NCE equations.

In 1st IFAC NecSys Workshop, pages 13–18, Venice, Italy, Sep. 2009.

[135] M. Nourian, P. E. Caines, R. P. Malhamé, and M. Huang. Leader-follower
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de Saint-Flour XIXó1989, pages 165–251, 1991.

228



REFERENCES

[163] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Flocking in fixed and switching

networks. IEEE Trans. Autom. Control, 52(5):863–868, May 2007.

[164] H. Tembine, S. Lasaulce, and M. Jungers. Joint power control-allocation for

green cognitive wireless networks using mean field theory. In Proc. 5th IEEE

Intl. Conf. CROWNCOM, pages 1–5, Fornebu, Norway, Jun. 2010.

[165] H. Tembine, J. Y. Le Boudec, R. El-Azouzi, and E. Altman. Mean field

asymptotics of markov decision evolutionary games and teams. In Int. Con-

ference on Game Theory for Networks (GameNets’ 09), pages 140–150, Is-

tanbul, Turkey, May 2009.

[166] H. Tembine, Q. Zhu, and T. Basar. Risk-sensitive mean-field stochastic differ-

ential games. In Proc. 18th IFAC World Congress, number 3222-3227, Milano,

Italy, Aug. 2011.

[167] C. M. Topaz and A. L. Bertozzi. Swarming patterns in a two-dimensional

kinematic model for biological groups. SIAM J. Appl. Math., 65(1):152–174,

2004.

[168] J. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed asynchronous deter-

ministic and stochastic gradient optimization algorithms. IEEE Trans. Au-

tom. Control, 31(9):803–812, Sep. 1986.
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