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ABSTRACT

Random matrix theory comprises a broad range of topics and avenues of research,

one of them being to understand the probability of singularity for discrete random

matrices. This is a fundamental, basic question about discrete matrices. Although is

been proven that for random symmetric Bernoulli matrices the probability of singularity

decays at least polynomially in the size of the matrix, it is conjectured that the right

order of decay is exponential.

We are interested in the adjacency matrix Qn,p of the Erdős-Réyni random graph

Gn,p and we study the statistics of the rank of Qn,p as a means of understanding the

probability of singularity of Qn,p.

We take a stochastic process perspective, looking at the family {Qn,p}p∈(0,1) as an

increasing family of random matrices. We then investigate the structure of Qn,p at the

moment that it becomes non-singular and prove that, similar to some monotone prop-

erties of random graphs, the property of being non-singular obeys a so-called ‘hitting

time theorem’. Broadly speaking, this means that all-zero rows, which are a ‘local’

property of the matrix, are the only obstruction for non-singularity. This fact, which is

the main novel contribution to the thesis, extends previous work by Costello and Vu.

iv



ABRÉGÉ

La théorie des matrices aléatoires a un large éventail de sujets et de pistes de

recherche, l’un d’entre eux étant de comprendre la probabilité de la singularité des

matrices aléatoires discrètes. Ça a été prouvé que pour des matrices aléatoires de

Bernoulli symétriques la probabilité de singularité a des bornes polynomiales, mais la

conjecture est que le bon ordre de décroissance est exponentiel.

Nous sommes intéressés par la matrice d’adjacence Qn,p du graphe aléatoire d’Erdős

et Réyni Gn,p et nous étudions les statistiques du rang de Qn,p comme un moyen de

comprende la probabilité de singularité de Qn,p. Nous proposons maintenant une per-

spective de processus stochastique.

Dans ce mémoire, nous considérons la famille {Qn,p}p∈(0,1) comme une famille crois-

sante de matrices aléatoires et nous étudions la structure de Qn,p au moment où il

devient non singulière et nous prouvons de la même façon pour certaines propriétés

monotones des graphes aléatoires, la propriété d’être non singulière obéit à soi-disant

‘théorème de temps d’arrêt’. D’une manière globale, cela signifie que les lignes remplies

de zéros, qui sont une propriété locale de la matrice, sont la seule obstruction pour

la non-singularité. Ce fait, qui est la nouvelle contribution principale de ce mémoire,

élargie les résultats antérieurs de Costello et Vu.
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CHAPTER 1
Random Matrices: A brief overview

The study of random matrices has been developed widely over the last decades due

to practical and theoretical motivations. Since the work of Ginibre and Wigner [46],

and up to that of Erdős, Schlein, Yau [13, 14], Tao, Vu [38, 40] , Rudelson, Vershinyn

[34] and Tran, Vu, Wang [44] (to name a few), random matrix theory has been a source

of interesting questions and conjectures, many of which remain unsettled. One major

goal has been to understand the universal behaviour of high dimensional systems. This

universality was first noticed in works on mechanical statistics, where models involve a

great number of components so that statistical considerations can be applied to them.

Physicists introduced random matrices, where each of the entries is itself random and

independent. In spite of the simplicity of this assumption (compared with the actual

complexity of the object of study), random matrices seems to yield good approximations

for many physical phenomena involving a large number of elements. As a consequence

of this, and for their inherent mathematical interest, random matrices have been widely

studied in different areas such as mathematical physics, theoretical computer science

and combinatorics, to name a few.

Broadly speaking, the universality phenomenon for matrix ensembles is the obser-

vation that as the size of a random square matrix tends to infinity, the behaviour of

many natural matrix-theoretic and spectral properties is determined just by the first

moments of the distribution of its elements, regardless of the actual distribution. This

parallels the universality of sums of random variables given by the central limit theorem.

In general, we say that a matrix A = {ξij}1≤i,j≤n is random if its entries are

random variables. Random matrices are classified into different ensembles, depending

on the general structure of the matrix and the distribution of the ξij’s. The principal

1
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ensembles, and by far the most widely studied, are the Gaussian ensembles. These

possess a well established theory largely because they are endowed with an algebraic

structure (see, for example [1], [36]), while discrete ensembles have been more difficult

to analyse. Among the latter are the Bernoulli ensembles (where each ξij takes the

values ±1 with equal probability), and the adjacency matrices of random graphs.

Random matrices are divided also into substantially different types depending on

the structure of the matrix. One of the principal dichotomies is between symmetric

and non-symmetric matrices. In non-symmetric ensembles, the main characteristic is

that entries of the matrix are independent. The canonical examples are those where

ξij are iid On the other hand, a wide class of symmetric matrices is given by the

Wigner matrices, which includes self-/home/tpks/Documents/Latex/adjoint matrices

when the support of ξij is complex. Wigner matrices are conditioned to ξij = ξji for

each entry in the matrix, and to have independent upper diagonal entries with mean

zero and identical second moments. The canonical continuous Wigner ensembles are

the Gaussian orthogonal ensemble (GOE) and the Gaussian unitary ensemble (GUE),

where the ξij’s are real-valued and complex-valued Gaussians respectively.

In this thesis we focus on a particular type of symmetric sparse ensembles: the

adjacency matrix Qn,p of the Erdős-Rényi graph Gn,p defined in Chapter 3, below.

The off-diagonal elements in these matrices take value 1 with probability p and zero

otherwise. Thus, the ξij’s are sparse and have non-zero mean; these hypothesis do not

fit the Wigner ensemble and so the approach to these matrices is slightly different.

A more difficult constraint in a matrix is the correlation between entries (other

than symmetry). This is the case for the adjacency matrix Qn,d of a random d-regular

graph, where each row of the matrix contains exactly d non-zero entries. The latter

ensemble is quite interesting but quite poorly understood from a theoretic perspective;

we briefly return to this model at the end of the chapter.
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We are interested in the statistics of the rank and determinant as a means of

understanding the probability of singularity of Qn,p. We propose a stochastic process

perspective, looking at the family {Qn,p}p∈(0,1) as an increasing family of random matri-

ces. From this point of view, new questions naturally present themselves. In this thesis,

we investigate the structure of Qn,p at the moment that it becomes non-singular and

prove that, similar to some monotone properties of random graphs, the property of be-

ing non-singular obeys a so-called ‘hitting time theorem’. Broadly speaking, this means

that all-zero rows, which are a ‘local’ property of the matrix, in that they correspond to

isolated vertices in Gn,p, are the only obstruction for non-singularity. This fact, which

is the main novel contribution to the thesis, extends previous work by Costello and Vu

[11].

In the next section, we briefly pause to present some basic notation used throughout

the thesis. In the remainder of the introduction we give some heuristics concerning the

universality of the empirical distribution of Wigner and iid ensembles; then we see that

the ensembles coming from random graphs also present the same phenomenological

properties as the classical Gaussian orthogonal ensemble. We dedicate Chapter 2 to

present some history and current results on the probability of singularity for discrete

random matrices, along with Costello and Vu’s proof that the rank of Qn,p equals the

number of non-zero rows in the matrix, for p ≥ lnn
2n

, [11]. In Chapter 3 we introduce a

graph process approach for the family {Qn,p}p∈(0,1) and we prove that not only does the

property of non-singularity have a threshold function, but its hitting time also coincides

with that of connectivity with high probability. Chapter 4 contains the details regarding

the graph-theoretic part of our proofs; this builds upon work of Costello and Vu. We

conclude the thesis with some other related questions and further avenues of research.

1.1 Notation

We write Qn,p and Qn,d for the adjacency matrix of the Erdős-Rényi graph Gn,p,

and the d-regular random graph, respectively.
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Let {En}n∈N be a sequence of events. We say that {En}n∈N holds asymptotically

almost surely (or a.a.s.) if

lim inf
n→∞

P {En} = 1.

If {Xn}n∈N is a sequence of random variables, we say that {Xn}n∈N converges almost

surely towards X if

P
{

lim
n→∞

Xn = X
}

= 1.

We use ai, aij to denote fixed real numbers and xi to denote random variables.

For any positive integers l,m, we denote the set {1, . . . , l} by [l] and we denote the set

{l, l + 1, . . . ,m} by [l,m]; depending on the context, [m] will refer to a set of vertices

or a range of indices. We refer to the rows of an n×n matrix Q by r1, . . . , rn and to its

columns by c1, . . . , cn. For any vector v = (v1, . . . , vn), we define v0 = (v1, . . . , vn, 0).

For Qn,p we define i(Qn,p) = |{i ∈ [n]; ri = 0}|.

Given a graph G = (V,E) and v ∈ V , we denote the neighbourhood of v by

NG(v): this is the set of vertices adjacent to v in G. The number of isolated vertices

is i(G) = |{v ∈ V ; NG(v) = ∅}|, and for any sets A,B ⊂ V we denote by EG(A,B)

the set of edges connecting vertices of A and B. The minimum degree of a graph G is

δ(G) := mini∈V {|NG(i)|}. If the graph has vertex set V = [n], then for any l < m ≤ n

let us write G[m] to denote the subgraph of G induced by the set of vertices {1, . . . ,m}

and G[m \ l] to denote the subgraph of G induced by the set of vertices {l+ 1, . . . ,m}.

Finally, we occasionally omit floors and ceilings when these are not essential.

1.2 Universality of spectral statistics

Here we will present the global spectral statistics for both Wigner and iid ensem-

bles, along with some comments about the Lindeberg principle, which is an important

tool used to obtain universality results. The principal statistics in a matrix are the

eigenvalues and singular values (see [2] for definitions and basic notions), as other ma-

trix statistics can be derived from them, for example, the determinant, the norm of the

matrix and the condition number.
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Consider an n× n matrix An with entries ξij. The eigenvalues of An are complex-

valued in general; however, if An is self-adjoint, then its eigenvalues are real and so we

can denote them by λ1 ≤ . . . ≤ λn. On the other hand, singular values are always real,

as they are the square roots of the eigenvalues of the self-adjoint matrix A∗nAn, and the

latter matrix is always positive semidefinite. Let us denote the singular values of An

by 0 ≤ σn ≤ . . . ≤ σ1.

We define the empirical spectral distribution (ESD) of a self-adjoint matrix An as

the normalized cumulative number of its eigenvalues below a threshold x:

Wn(x) :=
1

n
|{i; λi ≤ x}| . (1.1)

When the eigenvalues are complex we instead get a measure on the complex plane. We

define the empirical spectral distribution of an iid matrix An as

µn(x, y) :=
1

n
|{i; Re(λi) ≤ x, Im(λi) ≤ y}| . (1.2)

Simulations of such distributions indicate that limiting distributions for these em-

pirical distributions exist, see Figures 1–1 and 1–2.

The first rigorous result, called Wigner’s semicircular law, was established by

Wigner in 1958 for symmetric ensembles where the ξij’s have common variance and

bounded higher moments, [47]. Its proof is based on the observation that the trace of

a matrix equals the sum of its eigenvalues, and so

trace(Akn) =
n∑
i=1

λi
k, (1.3)

for any k ∈ N; the expected value of the right-hand side is n times the k-moment of a

uniformly chosen eigenvalue λi. Thus, we transform the problem to understanding the

distribution of the trace of Akn.

The semicircular law is defined as

W (x) :=
2

π

√
4− x2,
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Figure 1–1: The semicircular law and the ESD of a symmetric random matrix 1√
n
An

where Aij ∼ N(0, 1) and n = 1024.

for |x| ≤ 2 and W (x) := 0 otherwise. The following version of Wigner’s semicircular

law is due to Pastur [33], and is presented in the monograph of Bai and Silverstein [3],

see Figure 1–1.

Theorem 1.2.1 (Semicircular law [3]). Let An be the an n × n Wigner matrix whose

upper diagonal entries are iid complex random variables with mean 0 and variance 1.

Then the ESD of 1√
n
An converges almost surely to the semicircular law.

Approaches to the study of the spectrum using observation (1.3) are collectively

called the trace method. The trace method cannot be applied when the eigenvalues are

complex, in which case other methods are used. The limiting distribution for Gaussian

ensembles was established by Mehta [31] in 1967, using Ginibre’s formula for the joint

density function of the eigenvalues of An, see Figure 1–2. It was later extended to

ensembles with different restrictions on the distribution of ξij; breakthroughs were due

to Girko and Bai and more recently Tao and Vu have established the circular law for

any ensemble with iid ξij with mean zero and variance one (see [39] and the references

therein).

Theorem 1.2.2 (Circular Law [39]). Let An be an n×n random matrix whose entries

are iid complex random variables with mean 0 and variance 1. Then the ESD of 1√
n
An

converges (both in probability and in the almost sure sense) to the uniform distribution

on the unit disk.
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Figure 1–2: The circular law and the ESD of a random matrix 1√
n
An where Aij ∼

N(0, 1) and n = 1024.

The Gaussian ensembles are the best understood random matrices because they are

endowed with a strong group structure: Gaussian random variables are closed under

linear combinations, and the GOE and the GUE are closed under orthonormal and

unitary transformations, respectively. Thus, the joint distribution of the eigenvalues can

be explicity written and so other important quantities can be derived. To the contrary,

other ensembles lack this algebraic structure and consequently other techniques were

developed to study non-Gaussian ensembles.

Relatively recently, Chatterjee introduced the Lindeberg swapping method to ran-

dom matrix theory to treat Wigner matrix with exchangeable entries [9]. This method

is based on Lindeberg’s idea for a proof of the central limit theorem. Lindeberg proved

that the limit X1+···+Xn√
n

is common for any sequence of independent random variables

X1, X2, . . . with mean zero and variance one [28]; in which case it is enough to compute

such a limit for normalized Gaussian random variables.

In the context of random matrices, the Lindeberg swapping method is applied

by showing that a certain function of the variables, not necessarily linear, does not

vary too much if we replace one or two variables with a Gaussian with the same mean

and variance. If it is proven that the error becomes negligible in the limit, then any

ensemble with normalized elements shares the same limit (of the function) with the

GOE or GUE. Then, we can use the algebraic properties in GOE and GUE to compute

the actual limit.
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This method has been used for some other spectral properties such as delocal-

ization of eigenvalues and eigenvectors and the condition is that the ensembles have

four matching moments. Recent developments concerning Wigner matrices cover the

spacing between eigenvalues and the theory of Wigner matrices is almost complete, see

[12] and [41], though some results get weaker convergence than almost sure convergence

and, for some results, exponential moments for the elements are still required.

The picture for the universality phenomenon in the case of Wigner ensembles is

clear now, and, so it is in a less extent for some generalizations of Wigner matrices.

However, for such universality results it is of great importance that the elements in the

upper triangle are independent and that they have mean zero. The case of adjacency

matrices of graphs therefore requires a different analysis. A particular problem for Qn,p

is that the elements can be heavily concentrated around zero. In the next section we

present the main spectral statistics of sparse matrices such as Qn,p and Qn,d, and some

recent breakthroughs.

1.3 Sparse Matrices and Graph ensembles

Among the symmetric models that do not fit the conditions of Wigner ensembles

there are, for example: self-adjoint matrices whose elements have different variance;

‘band’ matrices, such as tridiagonal matrices; symmetric matrices where randomly

chosen entries are set to zero; and adjacency matrices of different classes of random

graphs. We are interested particularly in Qn,p, the adjacency matrix of an Erdős-Réyni

graph. For fixed p ∈ (0, 1), the Erdős-Rényi graph Gn,p is the random graph on vertices

{1, . . . , n}, in which each possible edge is independently present with probability p.

Another interesting ensemble is Qn,d, with d fixed or varying with n, and corre-

sponding to the d-regular random graph Gn,d, which is uniformily chosen among the

d-regular graphs on n vertices. The latter is important because it is a simple model

where the elements in the upper triangle are not independent.
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In the case of adjacency matrices, the largest eigenvalue is not near the rest of

the eigenvalues. If λ1 ≤ . . . ,≤ λn are the eigenvalues of Qn,p (resp. Qn,d) and p is

not too small, then λn is of the order of np (resp. λn = d). However, after a proper

normalization, the rest of the eigenvalues follow the semicircular law if p is not so small

(resp. d→∞).

Theorem 1.3.1 ([20]). There is a constant c such that the following holds. If p =

p(n) ≥ lnc n
n

then the ESD of 1√
np(1−p)

Qn,p converges to the semicircular law with prob-

ability one.

Theorem 1.3.2 ([44]). Let d = d(n)→∞. Let Q̂n,d = Qn,d− d
n
1, where 1 denotes the

all-ones matrix. Then the ESD of 1√
nd(n−d)

Q̂n,d converges to the semicircular law with

probability one.

Theorem 1.3.1 is a result of Furedi and Kolmós from 1981 and Theorem 1.3.2 was

recently settled by Tran, Vu and Wang in 2010. The proof of the latter theorem uses

the fact that adding a matrix of rank 1 can not overly perturb the spectrum.

One of the problems in handling sparse matrices, is precisely the large number of

zeros in the matrix. This is essentially the reason why we have the condition p ≥ lnc n
n

for Theorem 1.3.1. It is remarkable that for the sparse d-regular graphs, when d fixed,

a limiting distribution also exists and this in turn approaches to the semicircular law

as d→∞. Let

Wd(x) :=
d2 − d

d2 − 4(d− 1)x2
W (x).

Theorem 1.3.3 (Kesten-McKay’s law [25] [30]). For any fixed positive integer d, the

ESD of 1√
d−1Qn,d converges to Wd with probability one.

The Kesten-McKay’s law was established over 30 years before Theorem 1.3.2.

Some other statistics of Qn,p and Qn,d are known to behave as predicted by the

classical matrix ensembles. In particular, in Qn,p both eigenvalues and eigenvectors are

delocalized [44].
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Now consider Qn,d and let

λ = sup
‖v‖=1,v·1=0

|Av| = max{|λn−1|, |λ1|}.

This parameter corresponds to the spectral norm of the normalized matrix and is useful

in that whenever λ is significantly less than d, then Qn,d is in a certain sense ‘distributed’

as a random graph with edge density d/n (see [22] for more details). The difference

d− λ is known as the spectral gap of Qn,d.

We finish this section with a conjecture on the spectral gap. A d-regular graph

G is called a Ramanujan graph if λ(G) ≤ 2
√
d− 1. The only explicit constructions of

Ramanujan graphs are based on deep results in number theory; however, it is believed

that a positive proportion of regular graphs are in fact Ramanujan. The most famous

result in this direction is Friedman’s theorem (Alon’s conjecture), which we state below.

Theorem 1.3.4 (Alon’s conjecture [19]). For any ε > 0 and any fixed d ≥ 3, a.a.s

λ(Qn,d) = (2 + ε)
√
d− 1.

It is plausible that, in fact, Qn,d is Ramanujan with positive constant probability,

for d fixed and n tending to infinity. However, at this point, it is not even known that

for every d there are infinitely many d-regular Ramanujan graphs. Also, the analogue of

Alon’s conjecture in the case that d grows with n, has yet to be tackled. One reasonable

conjecture posed by Vu in [45] is the following.

Conjecture 1. Assume that d ≤ n
2

and both d and n tend to infinity. Then a.s.

λ(Qn,d) = (2 + o(1))

√
d

(
1− d

n

)
.



CHAPTER 2
Rank and Determinant of discrete matrices

In contrast to the global spectral statistics of random matrices where both con-

tinuous and discrete ensembles have the same behaviour, the question of whether a

matrix is singular becomes non-trivial only in the discrete setting. Breakthroughs in

this direction have been possible due to the use of additive combinatorics tools such

as Littlewood-Offord results, which studies the concentration of linear combinations of

random variables; and Freiman’s inverse theorem, which gives conditions for a set of

integers to have a strong additive structure.

In the case of Qn,p, Costello and Vu have gone beyond the study of the probability

of singularity to the study of the dynamics of the rank of Qn,p, showing that with

high probability rank(Qn,p) equals the number of non-zero rows of Qn,p when p ≥ lnn
2n

[CostelloVu10]. They also extended the study of the rank to smaller values of p, see

[11].

The Littlewood-Offord problem is part of the study of additive combinatorics and

has been one of the cornerstones in the study of the singularity probability and to

estimate the determinant and rank of both symmetric and non-symmetric random ma-

trices. As Littlewood-Offord results are of independent interest, and the basic results

have simple and elegant proofs, we start by presenting some of these results. Then we

return to survey the results and conjectures concerning the singularity probability of

iid Bernoulli ensembles, and of the Qn,p and Qn,d ensembles. Since we build upon the

work on [11], we present their work in full detail in the remainder of the chapter.

2.1 Littlewood-Offord results

The Littlewood-Offord problem is part of the additive combinatorics theory. It

studies the concentration of linear, quadratic and, more generally, polynomial forms of

11
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random variables. From its most simple form (Theorem 2.1.3) to the most recent and

sophisticated version of the inverse problem due to Tao and Vu [40], these concentration

inequalities have played a key role in the study of random matrices. Komlós used

Theorem 2.1.3 to bound the probability of singularity for Bernoulli random matrices

and more sophisticated version are used to bound the probability of singularity and to

estimate the determinant of discrete random matrices.

These inequalities are named after Littlewood and Offord, as they first posed the

question in a study of the roots of complex polynomials [29]. They were looking for an

upper bound on the number of different sums

n∑
i=1

aiηi

that lie in a circle of radius 1, where ηi are signs ±1 and ai are non-zero complex

numbers with norm at least 1. In 1945, Erdős showed [15] that the number of different

sums in any such circle is no more than
(

n
bn/2c

)
, which is best possible if we set all ai to

be equal. The argument is simple and elegant, and uses Sperner’s theorem on the size

of antichains.

Definition 2.1.1. Given a set X, an antichain A is a collection of subsets of X, in

which for any two subsets A,B ∈ A neither of them is properly contained in the other.

Clearly, for the set [n] = {1, 2, . . . , n}, the collection of all subsets of size k form an

antichain with
(
n
k

)
elements and so we maximize its size by letting k = bn/2c. Sperner’s

theorem asserts that the size of an antichain can not be larger than that. There are

several proofs to this theorem, here we present one with a probabilistic point of view.

Theorem 2.1.2 (Sperner’s theorem [42]). Let A be an antichain on [n]. Then

|A| ≤
(

n

bn/2c

)
.
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Proof. Consider a random permutation σ : [n] → [n] uniformly chosen among the n!

possible permutations. We now compute the probability of the auxiliary event

⋃
A∈A

{σ(A) = [|A|]},

that is, the probability that at least one of the sets A in the antichain is mapped exactly

into the first |A| elements in [n]. We claim the above union is a union of disjoint events.

To see this, fix distinct A,B ∈ A with |A| ≤ |B|. If σ(A) = [|A|] and σ(B) = [|B|] then

necessarily A ⊂ B, contradicting the fact that A is an antichain. On the other hand,

P {σ(A) = [|A|]} =

(
n

|A|

)−1
for any set A ∈ [n]. Thus,

P

{⋃
A∈A

σ(A) = [|A|]

}
=
∑
A∈A

(
n

|A|

)−1
≤ 1.

The result follows by replacing each of the binomial coefficients
(
n
|A|

)
by the largest

binomial coefficient
(

n
bn/2c

)
to obtain

|A| ·
(

n

bn/2c

)−1
≤
∑
A∈A

(
n

bn/2c

)−1
≤
∑
A∈A

(
n

|A|

)−1
≤ 1.

Erdős’s observation was that a set of signed sums all lying in a sufficiently small

disc in the complex plane can be used to define an antichain of subsets of [n], at which

point Sperner’s theorem can be applied. For our purposes it suffices to consider the case

where the a1, . . . , an are real rather than complex and work with intervals rather than

circles. However, as we will not restrict the norm of the ai, the length of the interval

for which Sperner’s theorem can be applied will depend on the smallest of |ai|, i ∈ [n].

In the next theorem we present the result in probability concentration terms as it will

be more convenient to look at the probability a random sum takes specific values.
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Theorem 2.1.3 ([15]). Let a1, . . . , an be real non-zero coefficients, and let x1, . . . xn be

independent random variables taking values -1 and 1 with equal probability. Then

sup
c∈R

P
{∑

aixi = c
}
≤ 1√

n
.

Proof. Write r = min{|ai|; 1 ≤ i ≤ n}. Fix c ∈ R and write I = (c − r, c + r), note

that I is not empty because r > 0. We then have

P
{∑

aixi = c
}
≤ P

{∑
aixi ∈ I

}
.

We can assume that the coefficients a1, . . . an are positive because the variables xi are

symmetric. Write A = {i ∈ [n]; xi = 1}, we have

n∑
i=1

aixi =
∑
i∈A

ai −
∑
i/∈A

ai.

We now claim that the collection

A = {S ∈ [n];
∑
i∈S

ai −
∑
i/∈S

ai ∈ I}

forms an antichain. To see this, consider two different subsets S ( T ⊂ [n], the

difference between their associated sums is at least(∑
i∈T

ai −
∑
i/∈T

ai

)
−

(∑
i∈S

ai −
∑
i/∈S

ai

)
≥ 2

∑
i∈T\S

ai ≥ 2r

and so the sums can not simultaneously lie in the interval I. By Sperner’s theorem it

follows that |A| ≤
(

n
bn/2c

)
. Therefore, for any c ∈ R we have

P
{∑

aixi = c
}
≤ P

{∑
aixi ∈ I

}
≤
(

n

bn/2c

)
2−n ≤ 1√

n
.

The last inequality follows from a nice manipulation of the closed form(
n

bn/2c

)
2−n =

dn/2e∏
m=1

2m− 1

2m
,

which is developed in the appendix.
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Remark 2.1.4. The bound of Theorem 2.1.3 also holds if we consider xi as independent

random varibles taking values 0 or 1 independently with equal probability. That is

sup
c∈R

P
{∑

aixi = c
}

=
1√
n
.

Proof. Indeed, we can define x′i = 2xi − 1 so x′i is 1 whenever xi = 1 and x′i is −1

whenever xi = 0. Then rescaling the coefficients to a′i = ai/2 and shifting the tarjet

value to c′ = c−
∑
ai gives

P
{∑

aixi = c
}

= P
{∑

a′ix
′
i = c′

}
≤ 1√

n
,

for any c ∈ R.

Costello and Vu extended the results above to apply them to sparse random matri-

ces such as Qn,p with p < 1
2
. The next two theorems give analogous bounds for random

variables taking values 1 with probability p and zero otherwise, and for random variables

taking values ±1 with probability p/2 and zero with probability 1− p.

Theorem 2.1.5 ([11]). Let a1, . . . , an be real non-zero coefficients and x1, . . . xn inde-

pendent random variables taking values 1 with probability p and 0 otherwise. Then

sup
c∈R

P
{∑

aixi = c
}
≤ 2
√
np
.

Proof. First note that the supremum is trivially bounded by 1, so we can assume

np > 1. We transform the random variables by letting xi = yizi, where the yi and

zi are independent 0-1 random variables, taking value 1 with probability 2p and 1/2

respectively. Then, for any c ∈ R, we can condition on the number of non-zero variables

yi to bound P {
∑
aixi = c} with

P
{∑

yi < np
}

+
∑
k≥np

P

{ ∑
i; yi=1

(aiyi)zi = c

∣∣∣∣∣ ∑ yi = k

}
P
{∑

yi = k
}
. (2.1)
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The first term can be bounded by Chebyshev’s inequality. Clearly,
∑
yi has a binomial

distribution and thus

P
{∑

yi < np
}
≤ P

{∣∣∣∑ yi − 2np
∣∣∣ > np

}
≤ 2np(1− 2p)

(np)2
.

As for the second term, Remark 2.1.4 gives that for each fixed k ≥ np,

P

{ ∑
i; yi=1

(aiyi)zi = c

∣∣∣∣∣ ∑ yi = k

}
≤ 1√

k
.

Finally, plugging the above bounds in (2.1) allows us to conclude that

sup
c∈R

P
{∑

aixi = c
}
≤ 1

np
+

1
√
np
≤ 2
√
np
.

Theorem 2.1.6. Let a1, . . . , an be real non-zero coefficients and x1, . . . xn independent

random variables taking values 1 or −1 each with probability p < 1/2 and 0 otherwise.

Then

sup
c∈R

P
{∑

aixi = c
}
≤ 2
√
np
.

Proof. Following the ideas in the proof above, let xi = yizi, where the yi and zi are

independent random variables, yi takes values 1 with probability 2p and 0 otherwise,

but now zi is 1 or -1 with equal probability. We get the same conclusion by conditioning

on the number of non-zero variables yi.

It is perhaps worth recalling here that in the linear combinations we encounter

during the study of random matrices we assume no detailed information about the

coefficients. Nevertheless, a lower bound on the number of non-zero coefficients is

sufficient to obtain a worse, still useful, bound for the concentration of such linear

combinations.

As we see in more detail in the next section, linear concentration bounds are useful

to study the probability of singularity of iid Bernoulli matrices. In contrast, the same
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probability for symmetric matrices involves a quadratic function of their entries. To this

end, Costello, Tao and Vu formulated the Litllewood-Offord problem for quadratic forms

[10] which is a key step in the proof that Qn,1/2 is a.s. non-singular (Theorem 2.2.4).

Here we present the quadratic Littlewood-Offord inequality developed in [11].

Theorem 2.1.7 ([11]). Let A = {aij} be a n × n real-valued symmetric matrix in

which there are at at least 2k rows having at least 2k non-zero entries each. Let x =

(x1, x2, . . . , xn) be a column vector in which each xi is 1 independently with probability

p < 1/2 and 0 otherwise. Then, letting D(x) =
∑n

i=1

∑n
j=1 aijxixj we have

sup
c∈R

P {D(x) = c} ≤ 3(kp)−1/4.

The proof of this theorem uses a decoupling lemma to separate some of the vari-

ables, say {xi; 1 ≤ i ≤ k}, and extract from D(x) linear functions of the rest of the

variables, {xi; k < i ≤ n}, for which we can apply Theorem 2.1.6, thus reducing the

complexity of the problem. The decoupling lemma, which is a particular case of a con-

jecture of Sidorenko, consists of a simple application of the Cauchy-Schwartz inequality.

Lemma 2.1.8. Let X and Y be random variables, and let E(X, Y ) be an event de-

pending on X and Y . Let Y ′ be an independent copy of Y , then

P {E(X, Y )}2 ≤ P {E(X, Y ), E(X, Y ′)} .

Proof. For clarity we assume that X takes a finite number of values x1, . . . xn. Note

that

P {E(X, Y )} =
n∑
i=1

P {E(X, Y ) | X = xi}P {X = xi} .

By the Cauchy-Schwartz inequality we obtain

P {E(X, Y )}2 ≤

(
n∑
i=1

P {E(X, Y ) | X = xi}2 P {X = xi}

)(
n∑
i=1

P {X = xi}

)

= P {E(X, Y ), E(X, Y ′)}
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where the last equality is due to the independence of Y and Y ′.

Proof of Theorem 2.1.7. Let x1, . . . , xk, yk+1, . . . , yn be independent random variables

taking value 1 with probability p and zero otherwise. We combine these variables to form

two independent random vectors X and Y ; let X = (x1, . . . , xk) and Y = (yk+1, . . . , yn).

Denote by

D(X, Y ) =
k∑
i=1

k∑
j=1

aijxixj +
k∑
i=1

n∑
j=k+1

(aij + aji)xiyj +
n∑

i=k+1

n∑
j=k+1

aijyiyj.

Then D(X, Y ) is distributed as D(x). Now, for a fixed c ∈ R we use Lemma 2.1.8 to es-

timate the probability of E(X, Y ), the event that D(X, Y ) = c. Let Y ′ = (y′k+1, . . . , y
′
n)

be an independent copy of Y , then

P {D(X, Y ) = c} ≤ P {D(X, Y ) = D(X, Y ′) = c}1/2 ;

thus, it suffices to bound the probability of the event

{D(X, Y )−D(X, Y ′) = 0} ⊃ {D(X, Y ) = D(X, Y ′) = c}.

We manipulate the quadratic form D(X, Y ) −D(X, Y ′) to obtain a linear function of

X.

D(X, Y )−D(X, Y ′) =
k∑
i=1

n∑
j=k+1

(aij + aji)(yj − y′j)xi

+
n∑

i=k+1

n∑
j=k+1

aij(yiyj − y′iy′j).

Recalling that A is symmetric, and thus aij = aji, we get

D(X, Y )−D(X, Y ′) = f(Y, Y ′) +
∑
i≤k

Wi(Y, Y
′)xi, (2.2)
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where

f(Y, Y ′) =
∑
i,j>k

aij(yiyj − y′iy′j),

Wi(Y, Y
′) =

∑
j>k

2aij(yj − y′j).

Note that Wi is a linear form in the variables (xj − x′j), each of which takes values ±1

with probability p(1− p) each.

We can assume, without loss of generality, that the first k rows of A contain at

least 2k non-zero entries each. Thus, for any index i ∈ [k] we can guarantee that at

least k of the coefficients aij with j ∈ [n] \ [k] are non-zero. As a consequence the

random sum Wi has at least k non-zero coefficients aij, so by Theorem 2.1.6

P {Wi = 0} ≤ 2√
kp(1− p)

. (2.3)

Furthermore, conditioning on the number of non-zeroWi, the probability thatD(X, Y )−

D(X, Y ′) = 0 is at most

P
{∑

Wixi = −f(Y, Y ′)
∣∣∣ ∑1Wi 6=0 ≥ k/2

}
+ P

{∑
1Wi=0 > k/2

}
,

where the sums are over i ∈ [k]. The second term in the expression above is bounded

by Markov’s inequality, using (2.3) we obtain

P

{∑
1Wi=0 >

k

2

}
≤ 2kP {Wi = 0}

k
≤ 4√

kp(1− p)
.

For the second term we use Theorem 2.1.5 to bound

P
{∑

Wixi = −f(Y, Y ′)
∣∣∣ ∑1Wi 6=0 ≥ k/2

}
≤ sup

c′∈R
P
{∑

Wixi = c′
∣∣∣ ∑1Wi 6=0 ≥ k/2

}
≤ 2

(
kp

2

)−1/2
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Putting these two bounds together and using that p < 1/2 we get

P {D(X, Y )−D(X, Y ′) = 0} ≤ 2
√

2√
kp

+
4
√

2√
kp
≤ 9√

kp
,

therefore, by Lemma 2.1.8

P {D(X, Y ) = c} ≤ P {D(X, Y )−D(X, Y ′) = 0}1/2 ≤ 3(kp)−1/4.

This holds for all c ∈ R, so the result follows.

An inverse question arises naturally: if supc∈R P {
∑
aixi} is large, what can be

said about the multiset {ai}i∈[n]? Tao and Vu proved the first inverse Littlewood-Offord

concentration bound in [43] and used it to study the condition number of a random

matrix. Essentially, they proved that if supc∈R P {
∑
aixi} is large, then {ai}i∈[n] has a

strong additive structure.

Previous results related to this phenomenon are in [35], where Sárközy and Sze-

merédi showed that if the coefficients ai are all different, then the bound can be improved

from n−1/2 to n−3/2. The latter bound is tight, for example, when the set of coefficients

are ak = k. More generally, if supc∈R P {
∑
aixi} is large then the coefficients are con-

tained in a generalized arithmetic progression (for explicit statements of this kind see

[32]).

This area of additive combinatorics has been a useful tool for the study of discrete

random matrices where not only the norm of the vectors is important but their direction

in the space (or structure). In the next section we cover some of the history of the

study of the probability of singularity, together with some estimates for the order of

the determinant.

2.2 Singularity probability and Determinant

Recall that an n× n matrix An with row vectors r1, . . . , rn is singular if and only

if det(An) = 0 and note that the determinant of a matrix can be express as the volume
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of the parallelepiped spanned by its row vectors. Thus,

det(An) =
n∏
k=1

d(rk, Vk), (2.4)

where Vk is the subspace of Rn spanned by the row vectors r1, . . . , rk−1. If An is random,

it follows that

P {An is singular} = P {rk ∈ Vk, for some k ∈ [n]} .

If An has iid entries and the distribution of the entries is continuous, then the probability

that a row rk is contained in the span of the previous rows is zero. However, if the entries

of An have a discrete distribution, then the distance d(rk, Vk) becomes less trivial: it

depends on the structure of the subspace Vk.

Singularity can also be expressed in terms of the rank. An n × n matrix An is

singular if and only if rank(Q) < n. Here the intuition is that

‘Singularity should come from small dependencies’ (2.5)

To explain this intuition, we consider the random matrix Mn, whose entries are iid

taking values 1 or −1 with equal probability. The smallest set of linearly dependent

vectors in {−1, 1}n has size 2. As a consequence,

P {det(Mn) = 0} ≥
(
n

2

)(
1

2

)n
.

This follows from a union bound of all distinct pairs of rows vectors and pairs of column

vectors in Qn,p; the probability that any such pair is equal (up to sign) is 2−(n−1). It

has been conjectured that having two equal rows is essentially the only way to have

singularity.

Conjecture 2. For the random matrix Mn, and for n sufficiently large

P {det(Mn) = 0} =

(
1

2
+ o(1)

)n
.
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The first breakthrough towards this conjecture was give by Komlós in [26].

Theorem 2.2.1 ([26]). For the random matrix Mn, we have that for n sufficiently large

P {det(Mn) = 0} ≤ 1√
n
.

The next step was due to Kahn, Komlós and Szemerédi in [24], where they estab-

lished an exponential bound: (0.999n + o(1))n. Later, Tao and Vu introduced results

of the type of Freiman’s inverse theorem to improve the constant to 3
4

in [38]. To date,

the strongest result on this conjecture is due to Bourgain, Vu and Wood.

Theorem 2.2.2 ([8]). For the random matrix Mn, we have that for n sufficiently large

P {det(Mn) = 0} ≤ (1/
√

2 + o(1))n

Once we have established that det(Mn) 6= 0 a.a.s., we can also think about the

expected value of det(Mn). A straightforward bound is given by Hadamard’s inequality

which states that the determinant of a matrix is upper-bounded by the product of the

length of its row vectors. So for Mn we have

det(Mn) ≤ (
√
n)n.

It is conjectured that the above inequality is tight a.a.s. (up to terms of smaller

order). A step towards this conjecture was made by Tao and Vu in [37].

Theorem 2.2.3 ([37]). The random matrix Mn satisfy a.a.s.

|det(An)| ≥
√
n! exp(−29

√
n lnn).

The proof of this theorem used the approximation of det(Mn) via the distance of

rk to Vk as in (2.4) and Littlewood-Offord bounds are used for the case where k is close

to n. As we have seen, results on det(Mn) use mainly Theorem 2.1.3, which estimates

the concentration of linear forms of a random vector.
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A new obstacle to estimate P {det(Qn,p) = 0} is that the entries of the matrix are

no longer independent. As a consequence, a) estimating P {d(rk, Vk)} is not trivial,

and b) the determinant of Qn,p is a quadratic function of its entries. The singular-

ity probability P {det(Qn,p) = 0} is conjectured to have the same exponential order as

P {det(Mn) = 0}. However, in contrast to the already exponential bounds for the prob-

ability of singularity for the iid ensemble, the best known bound for the singularity of

Qn,p are still polynomial. And the question of whether P {det(Qn,d) = 0} tends to zero

for either d fixed or varying with n remains unsettled.

From now on, we only focus on the Qn,p ensemble. The study of the probabil-

ity of singularity for symmetric matrices required the development of new techniques

and tools. The breakthrough in this direction is due to Costello, Tao and Vu which

established a.a.s. non-singularity for Qn,1/2.

Theorem 2.2.4 ([10]). The symmetric random matrix Qn,1/2 is a.a.s. non-singular.

More precisely

P
{
Qn,1/2 is singular

}
= O(n−1/8+α),

for any positive constant α (the implicit constant in the O(·) notation of course is

allowed to depend on α).

The current best upper bound for random symmetric matrices (with entries ±1)

is due to Nguyen.

Theorem 2.2.5 ([32]). The symmetric random matrix An, with entries taking values

1 or −1 with equal probability satisfy

P {An is singular} = O(n−C).

for any positive constant C.

To prove Theorem 2.2.4, Costello, Tao and Vu developed a quadratic version of

the Littlewood-Offord problem. Later, Costello and Vu introduced the vertex exposure
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method used in random graph theory to study Qn,p with p = c lnn
n

< 1
2
, with c > 1

2
, see

Theorem 2.3.2 below.

In the case of symmetric matrices Qn,p, the simplest cause of singularity is the

presence of all-zeros rows. This is, in fact, a general difficulty when studying sparse

matrices: their large amount of null entries.

For the case of Qn,p, the probability that Qn,p has an all-zero rows tends to 0 if

p ≥ lnn
n

. However, the intuition in (2.5) goes beyond the existence of all-zero rows in

Qn,p. More can be said about small dependencies of Qn,p for p < 1
2
.

To do so, we need to study a finer property than that of singularity. In the following

section we study in more detail the function rank(Qn,p) which, interestingly, equals the

number of non-zero rows in Qn,p for p fixed with high probability.

2.3 Rank of symmetric sparse matrices

Recall that each matrix Qn,p represents a random graph Gn,p and zero-row vectors

in Gn,p are in bijective correspondence with isolated vertices in the graph. Recall that

i(Qn,p) denotes the number of zero-rows in Qn,p. As we have seen in the previous

section, all-zeros rows in Qn,p leads to singularity of Qn,p.

In this section, we consider the rank of Qn,p, which is equal to the dimension of

the space spanned by its row vectors, r1, . . . , rn ∈ {0, 1}n. A set of linearly dependent

vectors spans a space of strictly lower dimension than the number of such vectors. Thus,

the rank is full precisely if {r1, . . . , rn} are linearly independent.

The zero vector 0 has dimension zero and so we always have

rank(Qn,p) ≤ n− i(Qn,p).

We are interested in understanding when equality holds above.

Definition 2.3.1. A set of vectors {ri}i∈S is a non-trivial dependency or equivalently,

a vanishing set if ri 6= 0 for all i ∈ S and there exist non-zero coefficients {ai}i∈S such
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that ∑
i∈S

airi = 0,

We say that {ri}i∈S has a trivial dependency if ri is the zero vector for some i ∈ S.

The simplest set of linearly dependent row vectors ri are pairs of equal rows.

These pairs correspond in the graph model to pairs of non-adjacent vertices with the

same neighbourhood. One case of this is the endpoints of a path of length two. The

probability of having a 2-path in Gn,p tends to zero if p ≥ lnn
2n

(see [23], Chapter 5).

Surprisingly, for p ≥ lnn
2n

the probability of having a non-trivial dependency in Qn,p

tends to zero as n tends to infinity.

Theorem 2.3.2 ([11]). For Qn,p with p = c lnn
n

< 1
2

and c > 1/2 fixed, with probability

1−O((ln lnn)−1/4)

rank(Qn,p) = n− i(Qn,p).

Consequently, for p in this range, the matrix is invertible if the graph Gn,p has no

isolated vertices, and the giant component has full rank.

As a warm up, we show that, with high probability the rank is close to n if p = lnn
n

.

Lemma 2.3.3. Consider the random matrix Qn,p, with p = lnn
n

. For any ε > 0,

P {rank(Qn,p) ≤ (1− ε)n} ≤ cn2e
−c1n lnn,

where c1 = ε2

4
and c2 =

(
e
ε

)ε
.

Proof. Let A0 be the event that the last εn rows of Qn,p are contained in the span of

the first (1− ε)n rows. By symmetry and a union bound

P {rank(Qn,p) ≤ (1− ε)n} ≤
(
n

εn

)
P {A0} .

We view the matrix Qn,p as the following block matrix

Qn,p =

 B CT

C D

 ,
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where B is the upper-leftmost (1 − ε)n × (1 − ε)n submatrix of Qn,p and D is the

remaining εn × εn symmetric matrix. If A0 holds, then necessarily exists a matrix F

(not necessarily unique) satisfying C = FB and

D = FCT . (2.6)

Note that the above equation holds for any such F . To estimate the probability of

A0 we condition on any fixed matrices B and C. In this case, if A0 holds, then D is

determined by (2.6). The probability that an element of D, coincides with FCT is at

most 1− p, (p < 1/2 < 1− p). The independence of the above diagonal entries yields

P {A0|B,C,C = FB} = P
{
D = FCT

∣∣ B,C,C = FB
}
≤ (1− p)(

εn
2 ).

This holds for any fixed B and C so we obtain P {A0} ≤ (1− p)(
εn
2 ) and therefore,

P {rank(Qn,p) ≤ (1− ε)n} ≤
(
n

εn

)
(1− p)(

εn
2 )

≤
(e
ε

)εn
e−

ε2n2p
4

≤ cn2e
−c1n lnn.

This holds even if we look at a graph with αn vertices for any fixed α ∈ (0, 1) and

we let p = p(n) ∈ ( lnn
2n
, 1
2
).

Corollary 2.3.4 ([11]). Fix α > 0 and n′ = bαnc. Let Q be the adjacency matrix of

Gn′,p with p = c lnn
n

< 1
2

and fixed c > 1
2
. For any ε > 0,

P {rank(Q) ≤ (1− ε)n′} ≤ cn2e
−c1n lnn,

where c1 = ε2α2

8
and c2 =

(
e
ε

)εα
.
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In the remainder of the chapter we present the proof of Theorem 2.3.2 due to

Costello and Vu. Later, in Chapter 3, we will generalize this proof to a new model of

random graphs for which certain edges are not random.

From now on, we consider only sets of rows containing only non-zero vectors. To

prove Theorem 2.3.2, we need to understand other forms of dependency.

Observe that if {ri}i∈S is a vanishing set of row vectors in {0, 1}n, then for every

coordinate k ∈ [n], necessarily either rik = 0 for all i ∈ S or else there are distinct

i, j ∈ S with rik = 1 and rjk = 1. Translated to graph terms, a set of vertices S

corresponding to a non-trivial dependency in Qn,p necessarily satisfies that every vertex

in V is either adjacent to at least two vertices in S or to none at all. This simple

observation is a key in the proof of Theorem 2.5.8, which roughly states that with high

probability, any non-trivial dependency in Qn,p has large size.

An important technique is the vertex exposure method, introduced for symmetric

matrices in [10]. The vertex exposure method has been used in random graph theory

before: it consists of adding vertices one by one and revealing just the edges connecting

to the vertices already exposed. This augmentation process is similar to that used in

the estimation of the determinant for non-symmetric matrices [26].

In the case of symmetric matrices, the dependence among the entry values modify

the way new information is added. The analysis starts with the symmetric submatrix

generated by the first αn rows and columns in Qn,p, where α ∈ (0, 1) is chosen carefully.

From then on, at each step an independent row and its transpose are added, preserving

the symmetry of the matrix.

We now define the matrices of the exposure method through their corresponding

graphs. Denote by Qn,p[m] the adjacency matrix of Gn,p[m], which we define as the

subgraph of Gn,p induced by [m]. Moreover, note that Qn,p[m] is the upper-leftmost

m ×m submatrix of Qn,p. Writing n′ = dαne for an appropriately chosen α > 0, we

will consider the sequence of matrices Qn,p[(n′, n)] = (Qn,p[n
′], Qn,p[n

′+ 1], . . . , Qn,p[n]).
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Costello and Vu used Corollary 2.3.4 together with the vertex exposure method to

prove Theorem 2.3.2. We close this section by briefly sketching our approach to the

proof of Theorem 2.3.2; the detailed proof can be found in Section 2.5.

We first apply Corollary 2.3.4 to show that with high probability Qn,p[n
′] has rank

close to n′. In Section 2.4 we explain how the addition of a new row x0 = (x1, . . . , xm, 0)

together with its transpose can ‘optimally’ increase the rank of Qn,p[m + 1] in terms

of the rank of Qn,p[m], and obtain functions of the new row that determine whether

the increase of the rank is optimal or not. Additive combinatorics plays an important

role here as such functions are linear or quadratic in xi, so Littlewood-Offord bounds

obtained in Section 2.1 can be applied. The technical part of the proof consists of

showing that Qn,p[(n′, n)] is endowed with a ‘robust’ structure that allows us to apply

the Littlewood-Offord bounds. The structure, as we will show in Section 2.5, is closely

related to blocking small dependencies. Fortunately, such robust structure occurs natu-

rally in Gn,p (with probability tending to one). As a consequence, matrices obtained in

the process will increase their rank optimally with probability large enough to guarantee

that, by the end of the process, all non-trivial dependencies will be removed.

2.4 Growing a symmetric matrix

In this section we study how the addition of a new row and column modifies the

rank of a symmetric matrix. Throughout this section, the randomness of the matrix

is irrelevant. We write simply Q for an m ×m matrix and define a growth operation

which takes a symmetric matrix Q and a vector x ∈ {0, 1}m and builds Q′ by adding

to Q the row vector x and the transpose of x0.

Definition 2.4.1. The growth operation Γ(Q,x) → Q′ maps an m × m symmetric

matrix Q with row vectors r1, . . . , rm and x = (x1, . . . , xm) ∈ {0, 1}m to Q′ with row
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vectors r′1, . . . r
′
m+1 defined as

r′i =


(ri1, . . . , rim, xi) if i ∈ [m],

(x1, . . . , xm, 0) if i = m+ 1.

The matrices here used are deterministic, and we assume throughout this section

that Q contains no zero row vectors. It follows then, that no set of rows in Q has a

trivial dependency.

The first observation we can make about the growth operation is that

rank(Q) ≤ rank(Q′) ≤ rank(Q) + 2. (2.7)

To see this, recall that the rank of a matrix equals the dimension of the span of its rows.

It is clear that the rows of Q′ span at least the same space in the first m coordinates as

the rows in Q, so the rank cannot decrease. To see the second inequality, we now take

a closer look at the resulting matrix Q′. We claim that the rows of Q′ are in the span

of

R = {r01, . . . , r0m,x0, em+1}, (2.8)

where em+1 = (0, 0, . . . , 0, 1) ∈ {0, 1}m+1 is the canonical vector of the m + 1-th coor-

dinate. This holds because the rows in r′i, i ∈ [m] are of the form

r′i = r0i + xiem+1.

The second inequality in (2.7) follows from the observation that R spans a space of

dimension at most rank(Q) + 2.

So, the rank of Q does not increase by more than 2 after the growth operation. It

is clear that if the matrix is already invertible, then the best increase we can obtain

by adding a new row/column is 1. The next lemma states the condition under which

rank(Q′) = rank(Q) + 2 is achieved.
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Lemma 2.4.2. Let Q be an m × m symmetric matrix and let x = (x1, . . . , xm). Let

Q′ = Γ(Q,x), then

rank(Q′) = rank(Q) + 2

if and only if x is independent of the rows of Q.

Proof. Recall that the rank of a matrix is also defined as the dimension spanned by its

columns. Suppose x is independent of the rows in Q. Then, in particular, rank(Q) < m.

Furthermore, adding x to Q will increase its rank by one. We claim that the transpose

of x0 is independent of the remaining columns of Q′ and so the rank increases further by

1. Otherwise, by the symmetry of Q′, x0 is in the span of r′1, . . . , r
′
m and, in particular

x is in the span of r1, . . . , rm. This is a contradiction; hence the rank of Q increases by

2 after the growth operation.

Now, suppose x is not independent of the rows in Q. Recall that the rank of Q′ is

at most the dimension of the span of R, defined in (2.8). Since x is in the span of the

rows in Q, it follows that

span({r01, . . . , r0m,x0, em+1}) = span({r01, . . . , r0m, em+1}).

Hence, the rank of Q increases at most 1.

Motivated by Lemma 2.4.2, we next define ‘optimal’ rank increase and state a

lemma describing linear and quadratic polynomials that determine whether optimal

rank increase occurs. When we move to considering random matrices, we will need the

coefficients of the polynomials to be independent of x to apply the Littlewood-Offord

concentration bounds.

Definition 2.4.3. Let Q be an m × m symmetric matrix and let x = (x1, . . . , xm).

We say that the rank of Q increases optimally after the growth operation, if writing
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Q′ = Γ(Q,x), we have

rank(Q′) =


rank(Q) + 1 if rank(Q) = m,

rank(Q) + 2 if rank(Q) < m.

Lemma 2.4.4. Fix an m×m matrix Q, a vector x = (x1, . . . , xm) and let Q′ = Γ(Q,x).

If Q is singular, then there exists a linear polynomial f such that if Q does not increase

optimally, then f(x) = 0. The polynomial is defined as

f(x) = xm −
∑
i∈S

aixi, (2.9)

where the coefficients ai 6= 0 for all i ∈ S and the choice of {ai}i∈S depend exclusively

on Q.

Proof. Write r = rank(Q) and assume without loss of generality that the columns

c1, . . . , cr of Q are a maximal set of independent column vectors. We consider cm, the

last column of Q; since r < m, it follows that there exist unique integers a1, . . . an such

that cm =
∑r

i=1 aici. Let S = {i ≤ r; ai 6= 0} so that in fact,

cm =
∑
i∈S

aici.

Denote by {c′i}i∈[m] the set of columns of the matrix obtained after adding x. Note,

that c′i is obtained by appending xi to the vector ci. Now, suppose Q does not increase

optimally. By Lemma 2.4.2, the vector x is dependent of the set of rows of Q and so

the addition of x does not increase the rank of the matrix. Thus,

c′m =
∑
i∈S

aic
′
i.

In particular, the last coordinates satisfy

xm =
∑
i∈S

aixi,



32

where all ai with i ∈ S are non zero and {ci}i∈S is a linearly independent set. The

result follows.

For the case rank(Q) = m, Q spans the space {0, 1}m and so there exist coefficients

such that x =
∑m

i=1 airi and, consequently, the last coordinates of r′1 . . . , r
′
m have to

satisfy as well

0 = xm+1 =
m∑
i=1

aixi.

However, we require another function as the coefficients ai depend on the vector x and

not exclusively on Q.

Lemma 2.4.5. Fix an m×m matrix Q, a vector x = (x1, . . . , xm) and let Q′ = Γ(Q,x).

If Q is invertible, then there exists a quadratic polynomial g such that Q increases

optimally if and only if g(x) 6= 0. The polynomial is defined as

g(x) =
m∑
i=1

m∑
j=1

aijxixj, (2.10)

g(x) is the determinant of Q′ and the coefficients aij depend exclusively on Q.

Proof. By Definition 2.4.3, the rank of Q increases optimally if and only if the deter-

minant of Q′ is non-zero. There is a clever way to compute the determinant of Q′ as a

quadratic function of x. The determinant of Q′ is expressed as

det(Q′) =
m∑
i=1

m∑
j=1

aijxixj,

where aij = (−1)i+j+1det(Q(i,j)) and Q(i,j) is the matrix obtained by deletion of the i-th

row and j-th column of Q.

To see this, we make a double application of the cofactor expansion of the deter-

minant. The cofactor Cij of an m×m matrix M is defined as

Cij = (−1)i+jdet(M (i,j)),



33

where M (i,j) is the matrix obtained by deletion of the i-th row and j-th column of M .

Then the determinant of M is defined either by its j-th column cofactor expansion,

det(M) =
m∑
i=1

CijMij;

or by its i-th row cofactor expansion,

det(M) =
m∑
j=1

CijMij.

To get the desired expression we write the determinant of Q′ with its m+ 1-th column

cofactor expansion; let xm+1 = 0, then

det(Q′) =
m+1∑
i=1

(−1)i+m+1det(Q′(i,m+1))xi. (2.11)

In the same way, for each i ∈ [m] we can express det(Q′(i,m+1)), with its m-th row

cofactor expansion. Note that after deleting the j-th column and m-th row of Q′(i,m+1)

we get exactly Q(i,j), thus

det(Q′(i,m+1)) =
m∑
j=1

(−1)m+jdet(Q(i,j))xj.

The result follows by plugging these equalities into (2.11).

In the next section we define conditions on the structure of Qn,p which guarantee

that, with high probability, the functions in Lemmas 2.4.4 and 2.4.5 have a minimum

number of non-zero coefficients and so we can apply efficiently the Littlewood-Offord

concentration bounds of Section 2.1 to prove Theorem 2.3.2.

2.5 Robust sequences and the proof of: rank(Qn,p) = n− i(Qn,p)

In this section we describe the structure that Gn,p must possess in order for the

vertex exposure method to establish that rank(Qn,p) = n − i(Qn,p) (Theorem 2.3.2).

This structure guarantees, with high probability, that the difference between the rank

and the number of non-isolated vertices decreases optimally through the augmentation
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process; we formalize this intuition in Theorem 2.5.7. We close the section with the

proof of Theorem 2.3.2.

The following definitions are equivalent to those in [11].

Definition 2.5.1. Fix a set of vectors {ri}i∈S, where ri = (ri1, . . . , rin) for all i ∈ S.

We say that the j-th coordinate is a blocking column in S if and only if there exist

exactly 1 non-zero value among rij, i ∈ S.

Definition 2.5.2. A set of non-zero vectors {ri}i∈S, S ⊂ [n], is blocked if it has at

least two blocking columns.

We will say that a matrix Q is k-blocked if every set {ri; i ∈ S} of non-zero rows

in Q with 2 ≤ |S| ≤ k is blocked.

Remark 2.5.3. If Q is k-blocked then any non-trivial dependency in Q has cardinality

greater than k. Moreover, this property still holds in Q after deleting any given column.

The remark follows from the observation that a non-trivial dependency cannot have

blocked columns. The condition that a blocked set has two blocked columns ensures

that even after deleting a column in Q, blocked sets still have at least one blocked

column.

Recall that we denote by Qn,p[m] the adjacency matrix of Gm, which we take to

be the subgraph of Gn,p induced by [m]. Note that the vertex exposure method is

equivalent to the growth operation defined in Section 2.4. This is so because, given the

matrix Qn,p[m], we can write Qn,p[m+ 1] = Γ(Qn,p[m],x), where x is a random vector.

Lemmas 2.4.4 and 2.4.5 provide functions which determine when the growth operation

increases the rank optimally. Moreover, these functions are closely related to sets of

independent rows in Qn,p[m] and sets of non-trivial dependencies.

The exclusion of small non-trivial dependencies allows us to obtain bounds, via

the Littlewood-Offord inequalities, on the probability that the rank increases optimally

under assumption that we explain below. In the following definition we insist that
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the necessary conditions to apply the Littlewood-Offord bounds are fulfilled in all the

matrices of Qn,p[n′,m] := (Qn,p[n
′], . . . , Qn,p[m]).

Definition 2.5.4. Let k = ln lnn
2p

. We say that the sequence Qn,p[n′,m] is robust if for

all n′ ≤ j ≤ m, Qn,p[j] is k-blocked, and additionally Qn,p[j] has at most (p lnn)−1 rows

which have at most 2 non-zero entries.

Let Qn,p = Qn,p[n′, n] and set n′ = dαne; the value of α ∈ (0, 1) is carefully chosen

so that Lemma 2.5.8 below holds. However, apart from its role in Lemma 2.5.8, the

actual value of α is not relevant throughout the rest of the section.

Let Zm be the number of all-zero rows in Qn,p[m] which contain a non-zero coordi-

nate in Qn,p[m+ 1]. The following two lemmas bound from above the probability that

the rank does not increase optimally, under the assumption that the sequence is robust

and Zm = 0. We remark that the bounds achieved are directly related to the value of

k in the definition of robust sequence.

Lemma 2.5.5. Fix n′ ≤ m ≤ n and consider Qn,p[m] and Qn,p[m+ 1] = Γ(Qn,p[m],x),

with x a random vector whose entries are distributed independently as Bernouilli with

parameter p. Conditioning on the event that Qn,p[n′,m] is robust and Zm = 0; if

rank(Qn,p[m]) + i(Qn,p[m]) < m, then with probability at most 23/2(ln lnn)−1/2

rank(Qn,p[m+ 1])− rank(Qn,p[m]) < 2.

Proof. If Zm = 0, then the rows that contain only zero in Qn,p[m] do so in Qn,p[m+ 1]

as well. In this case, removing those rows and their corresponding columns will not

change the rank of Qn,p[m] and Qn,p[m + 1]. As a consequence, by conditioning on

Zm = 0 and given the independence of the coordinates of x we can assume that Qn,p[m]

has no all-zero rows.
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By Lemma 2.4.4, if rank(Qn,p[m]) < m, there exist S ⊂ [m] and non-zero coeffi-

cients ai, i ∈ S such that if the rank does not increase optimally, then

xm −
∑
i∈S

aixi = 0. (2.12)

Furthermore, by construction, the set {ri}i∈S is linearly independent; and {rm}∪{ri}i∈S

is a non-trivial dependency of size |S| + 1. Since Qn,p[m] is blocked, it is the case

that |S| ≥ k. Thus, the linear function in (2.12) has at least k non-zero coefficients.

Therefore, by the Littlewood-Offord concentration bound (Lemma 2.1.5)

P

{
xk −

∑
i∈S

aixi = 0

}
≤ 2√

kp
≤ 23/2

(ln lnn)1/2
.

Lemma 2.5.6. Fix n′ ≤ m ≤ n and consider Qn,p[m] and Qn,p[m+ 1] = Γ(Qn,p[m],x),

with x a random vector whose entries are distributed independently as Bernouilli with

parameter p. Conditioning on the event that Qn,p[n′,m] is robust and Zm = 0; if

rank(Qn,p[m]) + i(Qn,p[m]) = m, then with probability at most 5(ln lnn)−1/4

rank(Qn,p[m+ 1])− rank(Qn,p[m]) < 1.

Proof. As explained in the previous proof, conditioning on Zm = 0 we can to assume

that Qn,p[m] has no all-zero rows and rank(Qn,p[m]) = m.

By Lemma 2.4.5, if the rank fails to increase then

det(Qn,p[m+ 1]) =
m∑
i=1

m∑
j=1

aijxixj = 0, (2.13)

where aij = 0 if and only if the minor Qn,p[m](ij) is singular. To apply the quadratic

Littlewood-Offord concentration we need to bound the number of non-zero coefficients

aij.

Fix j ∈ [m]. We claim that the number of non-zero coefficients aij is greater than

k if the deletion of the j-th column does not create all-zero rows in the matrix. To
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see this, note that if the deletion of the j-th column does not create a zero row, the

resulting m×m− 1 matrix has rank m− 1 and so there exists (up to scaling factors)

a unique vanishing linear combination

m∑
i=1

air
j
i = 0,

where rji is obtained from ri by deleting the j-th coordinate. Now, the matrix becomes

invertible again if and only if we delete a row rji with ai 6= 0. The set of rows with

ai 6= 0 is, by definition, a non-trivial dependency, so it holds that its size is greater than

k.

Finally, since Qn,p[n′,m] is robust, no more than (p lnn)−1 rows in Qn,p[m] have

less than 2 non-zero entries. Consequently, at most (p lnn)−1 columns leave zero rows

after their removal. It is clear then that at least k indices j have at least k indices i such

that aij 6= 0. Therefore, by Lemma 2.1.7, equation (2.13) then holds with probability

at most 3
(
kp
2

)−1/4
. The result follows.

We now define an auxiliary variable which allows us to use a martingale-like ap-

proach. Let Ym = m− rank(Qn,p[m])− i(Qn,p[m]) be the decrease in rank due to non

trivial dependencies in Qn,p[m]. Let

Xm =


4Ym if Ym > 0 and Qn,p[n′,m] is robust,

0 otherwise.

The following theorem formalizes the intuition that the variable Ym tends to decrease

during the augmentation process.

Theorem 2.5.7 ([11]). Given a graph Gn,p with p = c lnn
n

< 1
2

and c > 1
2
. For any

sequence Qn,p[n′,m] = {Qn,p[n
′], . . . , Qn,p[m]} as defined above,

E [Xm+1 | Qn,p[n′,m]] ≤ 3

5
Xm + 20(ln lnn)−1/4. (2.14)
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Furthermore,

E [Xn | Qn,p[n′]] ≤
(

3

5

)n−n′
Xn′ + 50(ln lnn)−1/4. (2.15)

Proof. Assume Qn,p[m] is robust, otherwise Xm+1 = 0 and the inequality holds trivially.

We analyse Xm+1 by conditioning according to the events {Zm = i}, 0 ≤ i ≤ m.

E [Xm+1 | Qn,p[m]] =
m∑
i=0

E [Xm+1 | Qn,p[m], Zm = i] P {Zm = i | Qn,p[m]} .

If Zm = i > 0 then, regardless of the increase in the rank,

Ym+1 ≤ Ym + Zm + 1.

Since Qn,p[n′,m] is robust, there are at most b(p lnn)−1c all-zero rows in Qn,p[m]. The

distribution of Zm is binomial, thus P {Zm = i | Qn,p[n′,m]} is bounded by

P {Zm ≥ i | Qn,p[n′,m]} ≤
(
b(p lnn)−1c

i

)
pi

≤ b(p lnn)−1cipi

= (lnn)−i.

Summing over i, it follows that for n large enough (we need that lnn ≥ 5, say),

E
[
Xm+11[Zm>0] | Qn,p[n′,m]

]
≤

m∑
i=1

4Ym+i+1(lnn)−i

≤ 4Xm

∞∑
i=1

4i

(lnn)i

≤ 20Xm

lnn
.

If Zm = 0, then we consider separately the cases Ym = 0 and Ym > 0. If Ym = 0,

then Xm = 0. In this case, Xm+1 = 0 if the rank increases optimally, and otherwise

Xm+1 = 4. Lemma 2.5.6 then yields

E
[
Xm+11[Ym=0] | Qn,p[n′,m], Zm = 0

]
≤ 4 · 5

(ln lnn)1/4
.
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Likewise; if Ym > 0, then Xm+1 = Xm
4

if the rank increases optimally, and otherwise

Xm+1 ≤ 4Xm. By Lemma 2.5.6 we then have

E
[
Xm+11[Ym>0] | Qn,p[n′,m], Zm = 0

]
≤ Xm

4
+

23/2 · 4Xm

(ln lnn)1/2
.

Using that P {Zm = 0 | Qn,p[n′,m]} ≤ 1; all the cases together yield, for n large enough,

E [Xm+1 | Qn,p[n′,m]] ≤ Xm

(
20 lnn+

1

4
+

16

(ln lnn)1/2

)
+

20

(ln lnn)1/4

≤ 3

5
Xm + 20(ln lnn)−1/4.

Next, we prove by induction that for all integer 0 < k ≤ n− n′

E [Xn′+k | Qn,p[n′]] ≤
(

3

5

)k
Xn′ +

k∑
i=1

(
3

5

)i−1
20

(ln lnn)1/4
. (2.16)

The base of the induction follows from the previous inequality. We assume now

that (2.16) holds for a fixed k < n− n′ and prove that it holds for k + 1 as well. Using

the Tower Law for conditional expectations, we have

E [Xn′+k+1 | Qn,p[n′]] = E [E [Xn′+k+1 | Qn,p[n′, n′ + k]] | Qn,p[n′]]

≤ E

[
3

5
Xm+k +

20

(ln lnn)1/4
| Qn,p[n′]

]
≤ 3

5

((
3

5

)k
Xn′ +

k∑
i=1

(
3

5

)i−1
20

(ln lnn)1/4

)
+

20

ln lnn)1/4

=

(
3

5

)k+1

Xn′ +
k+1∑
i=1

(
3

5

)i−1
20

(ln lnn)1/4
.

The first inequality follows from (2.14), whereas the second inequality follows by the

induction hypothesis. Let k = n− n′, this yields

E [Xn | Qn,p[n′]] ≤
(

3

5

)n−n′
Xn′ +

n−n′∑
i=1

(
3

5

)i−1
20

(ln lnn)1/4

≤
(

3

5

)n−n′
Xn′ +

50

(ln lnn)1/4
.
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We now present the proof of Theorem 2.3.2 assuming that the robust structure of

Qn,p[n′, n] occurs with probability tending to 1, for p = c lnn
n

and c > 1
2

fixed.

Lemma 2.5.8 ([11]). Given a random matrix Qn,p with p = c lnn
n

< 1
2
, c > 1

2
. For

α ∈ (0, 1) with 1
2
< αc < 3

5
, consider the matrix sequence Qn,p[n′, n] with n′ = αn.

Then for any fixed ε′ > 0, the probability that Qn,p[n′, n] is not robust is O(n1−2cα+ε′).

Its somewhat technical proof is omitted as we prove a more general version in

Chapter 4.

Proof of Theorem 2.3.2. Write Qn,p for Qn,p[n′, n]. We show that rank(Qn,p) = n −

i(Qn,p) with probability 1 − O((ln lnn)−1/4). By definition, Xn < 1 if and only if

rank(Qn,p) = n− i(Qn,p) or the sequence Qn,p is not robust. Hence,

P {rank(Qn,p) + i(Qn,p) < n} ≤ P {Xn ≥ 1}+ P {Qn,p is not robust} .

Let B1 be the event that rank(Qn,p[n
′]) ≥

(
1− 1−α

4α

)
n′. Then the probability that

rank(Qn,p) < n− i(Qn,p) is at most

P {Xn ≥ 1, B1}+ P
{
B1

}
+ P {Qn,p is not robust} . (2.17)

So it suffices to show that each term above is at most, say 60(ln lnn)−1/4. The last

two terms in (2.17) decay faster than 60(ln lnn)−1/4 for n large enough. To see this,

first, Lemma 2.5.8 yields P {Qn,p is not robust} ≤ n1−2cα+ε′ , where we choose ε′ small

enough that 1− 2cα + ε′ < 0.

Next, setting ε = 1−α
4α

in Lemma 2.3.4 yields that there exists constants c1, c2 > 0

such that with probability at most cn2e
−c1n lnn the event B1 does not hold.

We use the Tower Law for conditional expectation to bound the first term in (2.17),

P
{
Xn1[B1] ≥ 1

}
≤ E

[
Xn1[B1]

]
= E

[
E
[
Xn1[B1] | Qn,p[n′]

]]
.
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Now, B1 is measurable with respect to Qn,p[n
′], thus

E
[
E
[
Xn1[B1] | Qn,p[n′]

]]
= E

[
E [Xn | Qn,p[n′]] 1[B1]

]
.

We are in condition to use (2.15) in Theorem 2.5.7, the conditional expectation

above is at most

E
[(

(3/5)n−n
′
Xn′ + 50(ln lnn)−1/4

)
1[B1]

]
≤

(
3
√

2

5

)n−n′

+ 50(ln lnn)−1/4

The last inequality is obtained since the variable is zero except on the event B1, where

we have that Xn′ ≤ 2(1−α)n
2 . Thus we concluded that

P {Xn > 1, B1} ≤

(
3
√

2

5

)(1−α)n

+ 50(ln lnn)−1/4 ≤ 60(ln lnn)−1/4.

The last inequality holds for n large enough as 3
√
2

5
< 1. Combining the three bounds

we obtain the desired result.

Theorem 2.3.2 currently yields a bound that is not strong enough to give useful

bounds for P {rank(Qn,p) = 0} with p being a random function. In the next chapter

we extend Theorem 2.3.2 to matrices which possess a bounded number of deterministic

rather than random entries. The latter extension allows us to handle the particular

case of Qn,p∗ where p∗ is the hitting time corresponding to not having all-zero rows in

Qn,p.



CHAPTER 3
A Graph Process approach for the rank of Qn,p

We want to bring the techniques used in random graph theory to analyse the be-

haviour of sparse random matrices. In particular, in this thesis we study the invertibility

of Qn,p via a careful investigation of suitable structural properties of the corresponding

graph Gn,p.

Random graphs were introduced by Erdős and Rényi back in 1959 [16] and have

been widely studied ever since (see, for example, the books by Bollobás [5] and Janson,

Luczak and Rucinski [23]).

One useful perspective on Erdős-Rényi random graphs is given by coupling the fam-

ily {Gn,p}p∈(0,1) to form a stochastic process. Formally, the graph process {Gn,p}p∈(0,1)

is built from a set of variables {Uij; i < j ∈ [n]} which are independent and uniform

on (0, 1). Then for p ∈ (0, 1), we define Gn,p as the graph with vertex set [n] and edge

set {e = ij; Ue ≤ p}. Hence, the process {Gn,p}p∈(0,1) starts with an empty graph and

adds edges e one by one according to its time of arrival Ue. We see that the process

{Gn,p}p∈(0,1) is increasing, in the sense that for p < p′, with probability one Gn,p is a

subgraph of Gn,p′ .

A graph property P is a class of graphs closed under isomorphism. We say that

a graph property is increasing (or respectively decreasing) if it closed under addition

(respectively, deletion) of edges. The graph process is widely used to study how a given

property of the graph Gn,p evolves as p goes from zero to one.

In the following sections we define ‘hitting times’ and comment on some classic

results of random graph theory that show a relation between the hitting times of mono-

tone graph properties and the minimum degree of Gn,p. We then present the novel

42



43

contribution of the thesis (Theorem 3.2.1), which states that in {Qn,p}p∈(0,1), the hit-

ting time for rank(Qn,p) = 0 equals the hitting time for δ(Gn,p) ≥ 1 a.a.s. The last two

sections of this chapter are dedicated to proving Theorem 3.2.1 assuming Theorem 3.3.5

below, which itself is proven in Chapter 4.

3.1 The minimum degree condition for hitting times

One of the most important and well known monotone properties is that of being

connected. In fact, in their first paper on random graphs, Erdős and Rényi investigated

the probability that a graph on n vertices and about n lnn edges uniformly chosen at

random is connected. They proved the following theorems (although not directly for

graphs Gn,p).

Theorem 3.1.1. Let Gn,p be a random graph with p = logn+x
n

and x ∈ R. Then,

lim
n→∞

P {Gn,p is connected} = e−e
−x
.

Theorem 3.1.2. Let Gn,p be a random graph with p = logn+x
n

and x ∈ R. Let i(Gn,p)

denote the number of isolated vertices in Gn,p. Then for any k ∈ N ,

lim
n→∞

P {i(Gn,p) = k} =
e−xke−e

−x

k!
.

That is, i(Gn,p) converges in distribution to a Poisson variable with mean λ = e−x.

We can observe that the probability that Gn,p is connected is (asymptotically)

equal to the probability that Gn,p has no isolated vertices. It is clear that the latter

property is necessary for connectivity. In [17], Erdős and Rényi made the link between

connectedness and minimum degree, showing that for p near the connectivity threshold,

the number of vertices one must delete in order to disconnect the graph is with high

probability given by δ(Gn,p). In particular, if i(Gn,p) = 0 then the graph is connected

a.a.s. Such a result holds for any fix p, however, a stronger version of this fact holds

for {Gn,p}p∈(0,1). To state this we need the notion of a hitting time.
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Definition 3.1.3. In the graph process {Gn,p}p∈(0,1), let P be a graph property, then

the hitting time of P is defined as the random variable

τP = τP(n) := inf{p ∈ (0, 1); P holds in Gn,p}.

We will set the infimum of an empty set as ∞.

We define p∗ to be the hitting time for δ(Gn,p) ≥ 1 and τC to be the hitting time

for connectivity. Then p∗ ≤ τC and moreover, equality holds a.a.s.

Theorem 3.1.4 ([7]). In the graph process {Gn,p}p∈(0,1),

P {τC(n) = p∗(n)} → 1, as n→∞.

Results such as Theorem 3.1.4 are often called hitting time theorems. For many

monotone graph properties P , a minimum degree requirement is an obvious necessary

condition. Interestingly, for the random graph process, it is also often the case that

τP(n) is a.a.s. equal to the first time the minimum degree condition is satisfied.

Bollobás and Frieze established one of the famous early hitting time theorems, on

perfect matchings and Hamiltonian cycles [6]. The former events require δ(G) to be

at least 1 and 2k, respectively. Bollobás and Frieze showed that if n is even then, the

hitting time for a perfect matching is equal a.a.s. to p∗ and the hitting time of δ = 2k

coincides with the hitting time of having k disjoint Hamiltonian cycles. These results

extended previous work of Komlós and Szemerédi [27], which discussed the case of a

single Hamiltonian cycle.

One of the key steps of the proof in [6] is a general lemma about ‘minimum-

degree’-type hitting time theorems. The lemma essentially states that for monotone

graph properties, suitably precise estimates such as those in Theorems 3.1.1 and 3.1.2

can be transformed into hitting time theorems. It is proved by use of the so-called

‘edge-exposure martingale’, and an ‘edge rejection procedure’.
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Although the property of having full rank is not monotone itself, the monotonicity

of Gn,p is crucial. We will use, for example, the FKG inequality [18] which establishes

positive correlation between increasing functions in certain probability spaces. The

FKG inequality is an extension of Harris’s lemma [21], which already implies that any

two increasing graph properties in Gn,p are positively correlated.

Lemma 3.1.5. Let A(n) and B(n) be increasing graph properties of Gn,p, then

P {A(n),B(n)} ≥ P {A}P {B} .

If A(n) is an increasing graph property and B(n) is a decreasing graph property, then

P {A(n),B(n)} ≤ P {A}P {B} .

See the appendix for a proof of the lemma above.

In the following section we make some remarks about rank(Qn,p) and present the

novel result of the thesis, which is a hitting time theorem for full rank in the random

graph process.

3.2 The hitting time for full rank

We study the rank of Qn,p as a graph property as a means of understanding the

structure of the dependencies that exist between the rows of Qn,p (see also, [11]). A

main observation is that the rank of a graph is not monotone under addition of edges

(e.g., the path on 4 vertices has full rank, but the cycle on 4 vertices has rank 2).

Therefore, the machinery for monotone properties can not be directly applied to the

event of non-singularity, that is rank(Qn,p) = n.

In this thesis we focus on the rank of Qn,p with p in a small interval around lnn
n

,

which is the threshold for p∗. In particular, we are interested in the event Qn,p has full

rank, rank(Qn,p) = n, and its hitting time τF .

In spite of the lack of monotonicity, the rank of Qn,p has a direct relation with the

number of isolated vertices, as has been proven by Costello and Vu [11]. Theorem 2.3.2
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implies that the giant component of Gn,p has full rank if p is fixed and lies in a small

interval of around lnn
n

. This suggests that the hitting times τF and p∗ coincide, and

this is indeed the case

Theorem 3.2.1. For the matrix process {Qn,p}p∈(0,1),

P {τF (n) = p∗(n)} → 1, as n→∞.

Clearly, a matrix with full rank contains no all-zeros row so p∗(n) ≤ τF (n). There-

fore, the following proposition is equivalent to Theorem 3.2.1.

Proposition 3.2.2. In the matrix process {Qn,p}p∈(0,1) we have

P {rank(Qn,p∗) = n} → 1, as n→∞.

This proposition is similar to Theorem 2.3.2, however, note that Theorem 2.3.2

is valid for fixed p, so it can not be extended directly to a random point such as p∗.

Instead, we condition on the ‘last stage of the evolution’ before connectivity. In the

following paragraph, we sketch the proof of Proposition 3.2.2.

To prove Proposition 3.2.2, we fix p1 small enough that P {p∗ > p1} is high, and

partition the probability space according to the set M of isolated vertices in Gn,p1

and on the neighbourhoods of these vertices in Gn,p∗ . By symmetry, we may assume

that M = {1, . . . , |M |}, and write S1, . . . , S|M | for the neighbourhoods of these vertices

in Gn,p∗ . For fixed l ≥ 1, consider working on the event that M = [l] and that

NGn,p∗ (i) = Si for each i ∈ [l]. In this case we may replace Gn,p∗ by another graph,

later denoted GTn,p∗ , in which the neighbourhoods of vertices {1, . . . , l} are deterministic

rather than random, without changing the event under consideration. Theorem 3.3.5,

below, generalizes Costello and Vu’s Theorem (2.3.2) to the case where a subset of the

vertices have deterministic rather than random neighbourhoods. Applying this theorem

will then allow us to prove Proposition 3.2.2. We now proceed with the details.
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3.3 The graph GTn,p and its relation with Gn,p∗

In this section we derive an expression for the probability that the adjacency matrix

of Gn,p∗ has full rank. To do so we establish suitable conditional independence between

events depending on different edges of the graph process. This follows from the basic

observation that, given two independent σ-algebras F1 and F2, for every A1, B1 ∈ F1

and A2, B2 ∈ F2, we have

P {A1, A2 | B1, B2} = P {A1 | B1}P {A2 | B2} .

To see this, it suffices to express the term on the left-hand side of the equation using

the definition of conditional probability and then use the independence of F1 and F2

to separate the terms accordingly.

For any positive integer l < n, let

Fl := σ({Uij; i ∈ [l], j ∈ [n]}), F>l := σ({Uij; i, j ∈ [n] \ [l]}).

For any positive integer l < n and for any real p ∈ (0, 1), we define the following

two events; let Al = Al(p) be the event that Gn,p[n \ l] has minimum degree at least 1

and let Bl = Bl(p) be the event that each vertex i ∈ [l] is isolated in Gn,p.

Additionally, let τl be the hitting time of the event that all vertices in [l] are not

isolated,

τl := min{p ∈ (0, 1); ∀i ∈ [l], Uij ≤ p for some j ∈ [n]};

and for any sequence T = (Si)i∈[l], let CT be the event that NGn,τl
(i) = Si for each

vertex i ∈ [l].

Definition 3.3.1. For any positive integers n, l, L with 1 ≤ l ≤ n, let Mn(l, L) be the

collection of ordered sequences of subsets of [n], T = (Si)i∈[l] of pairwise disjoint sets

such that for each i ∈ [l]: Si ⊂ [n] \ [l] and 1 ≤ |Si| ≤ L.
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Definition 3.3.2. For any p ∈ (0, 1), positive integers n, l, L with 1 ≤ l ≤ n, and

T ∈ Mn(l, L), we write GTn,p for the graph with vertex set [n] obtained from Gn,p by

replacing the neighbourhood of each vertex i ∈ [l] by the set Si, so that NGTn,p
(i) = Si.

We write Al, Bl instead of Al(p), Bl(p) when the dependence on p and l is clear

from the context. We observe that Bl, CT and τl are measurable with respect to Fl,

whereas Al is measurable with respect to F>l. Furthermore, the edges that are random

in GTn,p are precisely those corresponding to the random variables generated by F>l.

The next lemma uses this fact to split the conditional probability of Y (Gn,p∗) = 0 given

Al(p), Bl(p) and CT in such a way that the random value p∗ is replaced with an integral.

Later this allows us to use uniform bounds of the type of Theorem 2.3.2. To shorten

some coming formulas, for a n× n symmetric matrix Q, let

Y (Q) := n− rank(Q)− i(Q).

Lemma 3.3.3. For positive integers l, L,K and fixed p ∈ (0, 1), let Al = Al(p) and

Bl = Bl(p). If T ∈ Mn(l, L), then the difference∣∣∣∣∣P {Y (Gn,p∗) = 0 | Al, Bl, CT } −
K−1∑
i=0

P
{
Y (GT

n, i+1
K

) = 0 | Al
}

P
{
τl ∈ [ i

K
, i+1
K

) | Bl, CT
}∣∣∣∣∣

is at most

n4

KP {Al, Bl, CT }
.

Proof. If Al, Bl and CT all occur, then necessarily rank(Gn,p∗) = rank(GTn,p∗) and

τl = p∗. For any K ∈ N, P {Y (Gn,p∗) = 0 | Al, Bl, CT } is equal to

K−1∑
i=0

P
{
Y (GTn,τl) = 0, τl ∈ [ i

K
, i+1
K

) | Al, Bl, CT
}
. (3.1)

We can replace GTn,τl with GT
n, i+1

K

if i
K
≤ τl ≤ i+1

K
and no edges come in the interval

(τl,
i+1
K

) for each i ∈ [0, K − 1]. Let D be the event that a pair of distinct edges arrive

within an interval of length 1
K

. Thus, if GTn,τl 6= GT
n,τl+

1
K

then at least two edges arrived
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in the interval [τl, τl + 1
K

] and D holds. Thus, it follows that∣∣∣∣∣P {Y (Gn,p∗) = 0 | Al, Bl, CT } −
K−1∑
i=0

P
{
Y (GT

n, i+1
K

), τl ∈ [ i
K
, i+1
K

) | Al, Bl, CT

}∣∣∣∣∣
is at most

P
{
GTn,τl 6= GT

n,τl+
1
K
| Al, Bl, CT

}
≤ P {D}

P {Al, Bl, CT }
.

We apply a union bound over all possible pairs of distinct edges e and e′, and use that

P
{
|Ue − Ue′| ≤ 1

K

}
≤ 2

K
. Then P {D} ≤

(
n
2

)2 2
K

, and so

P
{
GTn,τl 6= GT

n,τl+
1
K
| Al, Bl, CT

}
≤ n4

KP {Al, Bl, CT }
.

Finally, we claim that each term in (3.1) is equal to

P
{
Y (GT

n, i+1
K

) | Al
}

P
{
τl ∈ [ i

K
, i+1
K

) | Bl, CT
}
. (3.2)

This follows from the previous observation about conditional independence as Fl and

F>l are independent.

Taking K →∞, the following corollary is immediate

Corollary 3.3.4. For positive integers l, L and fixed p ∈ (0, 1), let Al = Al(p) and

Bl = Bl(p). If T ∈ Mn(l, L), then

P {Y (Gn,p∗) = 0 | Al, Bl, CT } =

∫ 1

0

P
{
Y (GTn,t) = 0

∣∣ Al} f(t | Bl, CT ),

where f(· | Bl, CT ) is the conditional density of τl given Bl and CT .

The following theorem is a generalization of Theorem 2.3.2 to QTn,p, the adjacency

matrix of GTn,p. It is one of the novel results of the thesis; its proof appears in Chapter

4.

Theorem 3.3.5. Fix positive integers l, L. Then there exists n0 = n0(l, L) such that

for any n ≥ n0, T = (Si)i∈[l] ∈Mn(l, L) and any p ∈ (8 lnn
9n

, 12 lnn
11n

), we have

P
{
Y (GTn,p) = 0

}
≥ 1− 100

(ln lnn)
1
4 .
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We are now ready to present the proof of Proposition 3.2.2.

3.4 The graph Gn,p∗ has full rank

Theorem 3.3.5 is the key to the proof of Proposition 3.2.2. It can be applied to the

expression of Corollary 3.3.4 in which certain events are assumed to hold. For suitable

choices of p and range of l, the events Al(p), Bl(p) and CT occur with high probability

up to relabelling of the vertices.

Definition 3.4.1. Fix positive integers k,K. Let Dk,K(p) be the event that there exists

a set M ⊂ [n] with 1 ≤ |M | ≤ k such that M is the set of isolated vertices in Gn,p, M

is a stable set in Gn,p∗ and the sets {NGn,p∗ (i)}i∈M are pairwise disjoint and of size at

most K.

Lemma 3.4.2. For any real a > 0. Let p1 = p1(a) = lnn−a
n

, p2 = p2(a) = lnn+a
n

,

l0 = l0(a) = b2eac and L = L(a) = b8ac. Fix ε > 0, then there exists a = a(ε) and

n0 = n0(ε) such that if n ≥ n0 we have

l0∑
l=1

∑
T ∈Mn(l,L)

(
n

l

)
P {Al(p1), Bl(p1), CT , p

∗ ≤ p2} = P {Dl0,L(p1), p
∗ ≤ p2} ≥ 1− ε.

Proof. Throughout this proof, we write M for the set of isolated vertices in Gn,p1 . First,

P {Dl0,L(p1), p
∗ ≤ p2} =

l0∑
l=1

P {Dl0,L(p1), p
∗ ≤ p2, |M | = l}

=

l0∑
l=1

(
n

l

)
P {Dl0,L(p1), p

∗ ≤ p2, |M | = [l]} ,

the last inequality holding by symmetry. But we also have

Dl0,L(p1) ∩ {M = [l]} =
⋃

T ∈Mn(l,L)

Al(p1) ∩Bl(p1) ∩ CT ,

and this union is disjoint. The equality in Lemma 3.4.2 follows. We next derive a lower

bound on the probability that both Dl0,L(p1) and p∗ ≤ p2 hold. Let DL(p1, p2) be the

event that

i) NGn,p2
(i) ⊂ [n] \M for every i ∈M ,
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ii) |NGn,p2
(i)| ≤ L for every i ∈M and

iii) NGn,p2
(i) ∩NGn,p2

(j) = ∅, for every i 6= j ∈M .

Then, P {Dl0,L(p1), p
∗ ≤ p2} is at least

1−P
{
DL(p1, p2) | 1 ≤ |M | ≤ l0

}
−P {|M | = 0 or |M | > l0} −P {p∗ > p2} . (3.3)

We analyse first the event DL(p1, p2) given that 1 ≤ |M | ≤ l0. The probability that an

edge e with an endpoint in M is present in Gn,p2 is

q := P {Ue ≤ p2 | Ue > p1} =
2a

n(1− p1)
≤ 4a

n

for n large enough. Let q′ = 4a
n

and assume 1 ≤ |M | ≤ l0. Under this conditioning, the

probability that there is at least one edge in Gn,p2 with both endpoints in M is at most(
l0
2

)
q′ ≤ (l0)

22a

n
.

On the other hand if i ∈M , then |NGn,p2
(i)| has a binomial distribution with parameters

n− 1 and q. Since L = 2nq′,

P
{
|NGn,p2

(i)| > L | i ∈M
}
≤ P {Bin(n, q′) ≥ 2nq′} ≤ e−

(2nq′)2
4 = e−16a

2

.

Consequently, the probability that there exists i ∈ M with |NGn,p2
(i)| > L is at most

l0e
−16a2 = 2ea−16a

2
. Finally, the probability that distinct i, j ∈ M share a common

neighbour in Gn,p2 is at most nq2, so given that 1 ≤ |M | ≤ l0, the probability that the

sets {NGn,p2
(i)}i∈M are not pairwise disjoint is at most(

l0
2

)
nq2 ≤ (l0)

28a2

n
.

Let a = a(ε) satisfy max{2ea−16a2 , 1−e−e−a ,
(
e
4

)ea
, e−e

a} < ε
8
. Then, for n large enough

we have

P
{
DL(p1, p2) | 1 ≤ |M | ≤ l0

}
≤ (l0)

2(2a+ 8a2)

n
+ 2ea−16a

2 ≤ ε

4
.
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We proceed to bound the remaining two terms in (3.3) using Theorem 3.1.2. The

number of isolated vertices in Gn,p with p = lnn+x
n

is asymptotically distributed as a

Poisson variable with mean e−x. Therefore,

P {p∗ > p2} = P {i(Gn,p2) 6= 0}+ o(1) = 1− e−e−a + o(1) ≤ ε

4
,

where the inequality holds for n sufficiently large. To estimate the probability that

M = ∅ or |M | > l0, let λ = ea, by a Chernoff-like bound (see Lemma 5.0.9 in appendix)

we have

P {i(Gn,p1) ≥ 2λ}+ o(1) ≤
(e

4

)λ
+ o(1).

Thus,

P {p∗ ≤ p1 or |M | > l0} ≤ e−e
a

+
(e

4

)λ
+ o(1) ≤ ε

2
,

where the last inequality holds for n sufficiently large. The result follows.

Proof of Theorem 3.2.2. Fix ε > 0, let l0, L, p1, p2 and a = a(ε) be as in the proof of

Lemma 3.4.2. For any positive integer l ≤ l0 let us write Al = Al(p1) and Bl = Bl(p1).

Let T ∈ Mn(l, L), we will show that for n large enough

P {Y (Gn,p∗) = 0, Al, Bl, CT } ≥
(

1− 200ee
a

(ln lnn)1/4

)
P {Al, Bl, CT , p

∗ ≤ p2} . (3.4)

If (3.4) holds, then we consider the space where there are 1 ≤ l ≤ l0 isolated vertices

in Gn,p1 to get a lower bound on P {Y (Gn,p∗) = 0}.

P {Y (Gn,p∗) = 0} ≥
l0∑
l=1

(
n

l

)
P {Y (Gn,p∗) = 0, Al(p1), Bl(p1)}

≥
l0∑
l=1

∑
T ∈Mn(l,L)

(
n

l

)
P {Y (Gn,p∗) = 0, Al, Bl, CT }

≥
l0∑
l=1

∑
T ∈Mn(l,L)

(
n

l

)(
1− 100κ

(ln lnn)1/4

)
P {Al, Bl, CT , p

∗ ≤ p2}

≥
(

1− 200ee
a

(ln lnn)1/4

)
(1− ε),
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where the second last inequality follows if (3.4) holds and the last inequality follows

from Lemma 3.4.2. We now proceed to prove (3.4).

Let N = n− l, so that Gn,p1 [n \ l] is distributed as GN,p1 . Write p′1 = lnN−a
N
≥ p1,

it follows that P {Al(p1)} is equal to

P {i(GN,p1) = 0} ≥ P
{
i(GN,p′1

) = 0
}

= e−e
a

+ o(1) ≥ 1

2eea
,

where the last inequality follows from Theorem 3.1.2. Additionally, if p ∈ (p1, p2) and

n is large enough, Theorem 3.3.5 can be applied to get

P
{
Y (GTn,p) > 0 | Al

}
≤

P
{
Y (GTn,p) > 0

}
P {Al}

≤ 200ee
a

(ln lnn)1/4
. (3.5)

On the other hand using Corollary 3.3.4 and (3.5) we get

P {Y (Gn,p∗) = 0 | Al, Bl, CT } ≥
∫ p2

p1

P
{
Y (GTn,t) = 0

∣∣ Al} f(t | Bl, CT ),

≥
(

1− 200ee
a

(ln lnn)1/4

)∫ p2

p1

f(t | Bl, CT )

=
(

1− 200ee
a

(ln lnn)1/4

)
P {τl ∈ [p1, p2] | Bl, CT } .

Finally, we multiply by P {Al, Bl, CT } on both sides of the inequality above to get (3.4).

On the right-hand side of the inequality we use that

P {τl ∈ [p1, p2] | Bl, CT }P {Al, Bl, CT } = P {Al, Bl, CT , τl ∈ [p1, p2]}

= P {Al, Bl, CT , p
∗ ≤ p2} ;

this follows as τl, Bl and CT are independent of Al, and τl = p∗ ≥ p1 if all Al, Bl and

CT hold. Therefore,

lim
n→∞

P {rank(Gn,p∗) = n} = 1.



CHAPTER 4
The rank of GTn,p

In this chapter we consider the graph GTn,p, defined in Section 3.3, with fixed

T = (Si)i∈[l] ∈ Mn(l, L) for positive l and L. This means that the sequence (Si)i∈[l]

satisfies the following properties: the sets are non-empty, pairwise disjoint and, for all

i ∈ [l] we have Si ⊂ [n] \ [l] and |Si| ≤ L. The graph GTn,p is obtained from Gn,p by

replacing the neighbourhood NGn,p(i) by Si for each i ∈ [l]. The aim of this chapter is

to complete the proof of Theorem 3.3.5.

Theorem 3.3.5 states that for p in a sufficiently small interval around lnn
n

, we have

that rank(GTn,p) = n− i(GTn,p) with high probability; that is, rank(GTn,p) = n− i(GTn,p).

This theorem is an extension of Theorem 2.3.2. In Section 2.5 we present a proof for

Theorem 2.3.2 in which the required structural property of Gn,p is to be robust. In the

model of GTn,p, which concerns us now, the structure is random except around the set of

vertices [l] where edges are determined by T . By hypothesis, the number of such edges

is bounded by a constant, and it is possible to prove that the property of robustness is

achieved in this new setting with high probability. Moreover, the bound we obtain is

uniform in a small interval around lnn
n

.

Once the result concerning the property of robustness is settled (analogous to

Theorem 2.5.8), Theorem 3.3.5 is proven with the same line of argumentation as Theo-

rem 2.3.2 with minor changes. (As the changes are almost purely notational we decline

to rewrite the proof of Theorem 3.3.5 in its entirety.) We now explain what those

changes are.

The vertex exposure method relies on adding at each step, a new vertex which is

connected to each of the previous vertices independently with probability p; from the

matrix point of view, at each step we add a vector x = (x1, . . . , xm) and its transpose. At

54
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this point we use Littlewood-Offord concentration inequalities on polynomial functions

of x. Throughout the proof of Theorem 2.3.2, we assume that all coordinates of x

are i.i.d. Bernoullis with parameter p. The rows of the adjacency matrix of GTn,p

are not completely random as they are determined in their first l coordinates. We

overcome this problem by relabelling the vertices {l+ 1, . . . , n} so that for each i ∈ [l],

Si ⊂ [d3n
4
e]. In this way, if the vertex exposure method starts with the adjacency

matrix of the first n′ := dαne vertices, with α ∈ (3
4
, 1), then the remaining vectors to be

added are of the form x = (0, . . . , 0, xl+1, . . . , xm), where xl+1, . . . , xm are i.i.d. random

variables. Consequently, the first l coordinates have no bearing in the application of

the Littlewood-Offord inequalities. After this consideration, the proof follows without

other major changes.

In this chapter we present a complete proof that GTn,p is robust if p ∈ (8 lnn
9n

, 12 lnn
11n

).

4.1 Robustness in GTn,p

Recall that, for a graph G = (V,E) and a set S ⊂ V , we say that v ∈ V is a blocker

for S if |NG(v) ∩ S| = 1. (Earlier we stated this definition in terms of the adjacency

matrix of G.) The main property of a robust sequence (Section 2.5), is that if S ⊂ V

satisfies certain conditions, then we can find at least 2 vertices that are blockers for S.

For fixed T = (Si)i∈[l] ∈ Mn(l, L), we relabel the vertices {l + 1, . . . , n} so that

we can assume Si ⊂ [d3n
4
e] for each i ∈ [l]. Let M := [l] and T :=

⋃
i∈[l] Si. Note that

T ⊂ [n] \ [l] and that GTn,p[n \ l] is distributed as Gn−l,p. The only deterministic entries

in the adjacency matrix of GTn,p appear in rows and columns corresponding to the set

M ∪ T . Therefore, it is natural to expect that for S ∈ [n] \ (M ∪ T ), the required

blocking columns can be found within [n] \ (M ∪ T ). We now extend the definition of

a blocked set by insisting that some of the blocking vertices do not lie within a given

set of vertices.

Definition 4.1.1. Fix a graph G = (V,E) and J ⊂ V . We say that S ⊂ V is J-

blocked if there exist distinct v, w ∈ J that are blockers for S.
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Definition 4.1.2. Fix a graph G = (V,E), a set J ⊂ V and s ∈ [2, |V |]. We say

that G is (J, s)-blocked if for all S ⊂ V of size |S| ∈ [2, s] and containing no isolated

vertices, we have that S is J-blocked.

This essentially generalizes Defintion 2.5.2 as a graph is (V, k)-blocked if and only

if it is k-blocked. We next define robustness, in graph theoretic language.

Definition 4.1.3. Fix α ∈ (3
4
, 1). Set k = k(n, p) = ln lnn

2p
and n′ = dαne. We say

that the sequence GTn,p = (GTn,p[n
′], . . . , GTn,p[n]) is robust if for all integer m ∈ [n′, n],

GTn,p[m] is k-blocked, and additionally GTn,p[m] has at most (p lnn)−1 vertices of degree

at most one.

Theorem 4.1.4. Fix positive integers l, L. Then there exists n0 = n0(l, L) such that

for all n ≥ n0 and all T ∈ Mn(l, L), for any p ∈ (8 lnn
9n

, 12 lnn
11n

), we have

P
{
GTn,p is robust

}
≥ 1− 8

n1/10
.

We now prove Theorem 4.1.4 assuming the following lemma, which itself is proved

in Section 4.2.

Lemma 4.1.5. Fix positive integers l, L and let s = s(n) = 2n ln lnn
3 lnn

. Then there

exists n0 = n0(l, L) such that for all n ≥ n0 and all T = (Si)i∈[l] ∈ Mn(l, L), writing

T = ∪i∈[l]Si, for any p ∈ (8 lnn
9n

, 12 lnn
11n

) we have

P
{
GTn,p[m \ l] is (T , s)-blocked for all m ∈ [n′, n]

}
≥ 1− 6

n1/10
.

Proof of Theorem 4.1.4. Recall we are assuming that T ⊂ [d3n
4
e]. We define the follow-

ing events: Let A1 be the event that for every m ∈ [n′, n], the graph GTn,p[m] contains

at most (p lnn)−1 vertices with at most one neighbour in GTn,p[m]. Let A2 be the event

that |NGTn,p
(v)∩ [n′]\(M∪T )| ≥ 2 for every vertex v ∈ T ∪U , where U := NGTn,p

(T )\M .

Finally, let A3 be the event that GTn,p[m \ l] is (T , s)-blocked for all m ∈ [d3n
4
e, n].

We first prove that GTn,p is robust if events A1, A2 and A3 hold. The event A1 is

one of the conditions of being robust. So, it remains to show that for any m ∈ [n′, n]
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M T

W1 W2

Figure 4–1: The graph GTn,p[m]. The sets M = [l], its neighbourhood T = ∪i∈[l]Si, and
S = W1 ∪W2 with W1 ⊂M and W2 ⊂ T ∪R[m], where R[m] = [m] \ (M ∪ T ).

and any set S ⊂ [m] of vertices in GTn,p[m] with no isolated vertices and |S| ∈ [2, k] has

two blocking vertices in [m].

We now focus on GTn,p[m] for fixed m ∈ [n′, n]. Let us write for any v ∈ [m],

N[m](v) = NGTn,p[m](v). Let R[m] = [m] \ (M ∪ T ). Consider a set S ⊂ [m] with no

isolated vertices and |S| ∈ [2, k]. Write S = W1∪W2 where W1 ⊂M and W2 ⊂ T∪R[m],

see Figure 4.1. We then have 4 cases.

Case 1. If W2 = ∅, then every vertex in N[m](S) is a blocker for S. This follows

since NGTn,p
(S) = ∪i∈SSi and the sets Si are non-empty and pairwise disjoint. Further-

more, d3n
4
e ≤ m and so NGTn,p

(S) = N[m](S). Hence, the number of blocking vertices of

S is at least |S| ≥ 2.

Case 2a. IfW2 = {v} and v /∈ T∪U , thenNGTn,p
(W1)∩NGTn,p

(v) = ∅. Consequently,

every vertex in N[m](S) is a blocker for S. Again, the number of blocking vertices of S

is at least |S| ≥ 2.

Case 2b. If W2 = {v} and v ∈ T ∪ U , we claim that for w ∈ N[m](v) ∩ R[m] we

have N[m](w) ∩ S = {v}. This follows since NGTn,p
(w) ∩M = ∅ by definition of R[m].

Hence, the number of blocking vertices of S is at least 2 is |N[m](v) ∩ R[m]| ≥ 2 by the

assumption of A2 (N[m](v) = NGTn,p
(v) ∩ [m] and n′ ≤ m).

Case 3. If |W2| ≥ 2, then W2 is T -blocked in GTn,p[m \ l] by the assumption of A3

(and k ≤ s). It follows that there exist v1, v2 ∈ R[m] = ([m] \ [l]) \ T which are blockers
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for W2. Furthermore, vertices in R[m] are not adjacent to any vertex in M . It follows

then that v1 and v2 are blockers for S and so S is T -blocked as well.

We now proceed to bound the probability that events A1, A2 and A3 fail to occur.

For fixed v ∈ [n] \ [l], |NGTn,p
(v) ∩ [n′]| is Binomial(n′, p), thus

P
{
|NGTn,p

(v) ∩ [n′]| ≤ 1
}
≤ (1− p)n′ + n′p(1− p)(n′−1)

≤ e−p(n
′−1)(1− p+ n′p)

≤ e−
n′p
2 (2n′p).

Since n′ ≥ 3n
4

and p ∈ (8 lnn
9n

, 12 lnn
11n

), the above inequality yields

P
{
|NGTn,p

(v) ∩ [n′]| ≤ 1
}
≤ n−

2
3

(
24 lnn

11

)
≤ 1

n1/5
. (4.1)

For the event A1, let X be the number of vertices v ∈ [n]\[l] with |NGTn,p
(v)∩[n′]| ≤

1. We have no information about the degree of vertices in [l], then

P
{
A1

}
≤ P

{
X ≥ (p lnn)−1 − l

}
,

an application of Markov’s inequality yields

≤
(n− l)P

{
|NGTn,p

(v) ∩ [n′]| ≤ 1
}

(p lnn)−1 − l
≤ 3 ln2 n

n1/5
<

1

n1/10
,

the second to last inequality uses (4.1) and the last inequality holds for n sufficiently

large.

Let t := |T |. If the event A2 does not hold, then there exist at least one vertex

in T ∪ U which has at most one neighbour in [n′] \ (M ∪ T ). Let Y be the number of

vertices v ∈ T ∪ U for which |N[n′](v) \ (M ∪ T )| ≤ 1. Then

P
{
A2

}
≤

4t lnn∑
k=0

P {Y ≥ 1, |U | = k}+ P {|U | > 4t lnn} .
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We analyse the two terms separately. For k < 4t lnn the conditional Markov’s inequality

yields

P {Y ≥ 1, |U | = k} ≤ (t+ k)P
{
|N[n′](v) \ (M ∪ T )| ≤ 1

}
P {|U | = k} .

In this case, |N[n′](v)\(M ∪T )| is Binomial(n′−k, p) with k ≤ l+t. Thus, we similarly

get

P
{
|N[n′](v) \ (M ∪ T )| ≤ 1

}
≤ 1

n1/5
. (4.2)

By (4.2), we get
4t lnn∑
k=0

P {Y ≥ 1, |U | = k} ≤ t(1 + 4 lnn)

n1/5
.

The distribution of |U | is binomial and

P {|U | ≥ 4t lnn} ≤ P {Bin(n, q) ≥ 4t lnn} ,

where q := 1 − (1 − p)t is the probability that a vertex v ∈ [n] \ [l] is connected to T .

It follows that q ≤ tp and so 2nq ≤ 4t lnn. Hence, the Chernoff bound yields

P {|U | ≥ 4t lnn} ≤ P {Bin(n, q) ≥ 2nq} ≤ e−
nq
4 ≤ n−

2t
45 ;

in the last inequality we use that q ≥ tp
2

. Therefore,

P
{
A2

}
≤ t(1 + 4 lnn)

n1/5
+

1

n2t/45
≤ 1

n1/10
,

the last inequality holding for n sufficiently large, as 1 ≤ t ≤ lL is bounded. Finally, by

Lemma 4.1.5, P
{
A3

}
≤ 6n−1/10. Combining the three bounds we get the result.

At this point, we have proved, assuming Lemma 4.1.5, that the graph GTn,p has a

robust sequence GTn,p = (GTn,p[n
′], . . . , GTn,p[n]) with high probability. The next section

is therefore dedicated to proving Lemma 4.1.5.
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4.2 (J, s)-blocked graphs in Gn,p

In Lemma 4.1.5 we consider GTn,p[m \ l] for m ∈ [dαne, n] and p ∈ (8 lnn
9n

, 12 lnn
11n

).

These graphs are subgraphs of GTn,p[n \ l] which is distributed as Gn−l,p. To simplify

the notation we therefore work with the graph Gn,p and its subgraphs Gn,p[m] for

m ∈ [d3n
4
e, n] and p ∈ (4 lnn

5n
, 6 lnn

5n
); see the comment just before 4.2.6, below. We start

by defining two useful properties of Gn,p in the range of study.

Definition 4.2.1. Let G be a graph with vertex set V = [n]. We say that a vertex

v ∈ V is a low degree vertex if its degree in G is at most d := bln lnnc; otherwise, we

say that v is a high degree vertex.

We say that G is well-separated if every pair of low degree vertices are at distance

at least 3.

Lemma 4.2.2. If p ∈ (4 lnn
5n

, 6 lnn
5n

) and n is sufficiently large, then the probability that

Gn,p[m] is well separated for all m ∈ [d3n
4
e, n] is at least 1− n− 1

10 .

Proof. Let n1 = d3n
4
e. For each m ∈ [n1, n], we obtain upper bounds on the probability

that Gn,p[m] is not well separated graph and Gn,p[l] is well separated for all l ∈ [n1,m−

1].

First, consider the graph Gn,p[n1]. The event that fixed vertices v1 and v2 are at

distance at most 2 is a monotone increasing property; while the event that both vertices

have low degree is monotone decreasing. By Lemma 3.1.5, these events are negatively

correlated and so the probability that both events hold is bounded from above by the

product of their probabilities.

The random variable |NGn,p[n1](v1)| in Gn,p[n1] is Binomial(n1 − 1, p) distributed.

It follows that for n sufficiently large and for d = bln lnnc,the probability that v1 has
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degree at most d is

d∑
i=0

(
n1 − 1

i

)
pi(1− p)n1−i−1 ≤ (1− p)n1

d∑
i=0

2(2n1p)
i

≤ e−n1p(2n1p)
d+1

≤ n−3/5(3 lnn)d+1.

Where in the first inequality we use that 1 − p ≥ 1
2
, and in the third we use that

p ∈ (4 lnn
5n

, 6 lnn
5n

). The same inequality holds for the probability that v2 has at most d

neighbours excluding v1. The event that v1 and v2 are low degree vertices implies that

|NGn,p[n1](v1)| ≤ d and v2 has at most d neighbours in Gn,p[n1] excluding v1. Moreover,

the latter conditions are independent. Hence, the probability that two fixed vertices v1

and v2 have low degree is

P
{
|NGn,p[n1](v1)|, |NGn,p[n1](v2)| ≤ d

}
≤ (3 lnn)2d+2

n6/5
≤ ln3d n

n6/5
;

this bound also holds for the probability that |NGn,p[m](v1)|, |NGn,p[m](v2)| ≤ d for any

m ∈ [n1, n].

On the other hand, the probability that v1 and v2 are adjacent or have a common

neighbour is at most p + np2. By a union bound, the probability that Gn,p[n1] is not

well separated is therefore at most(
n1

2

)
ln3d n(p+ np2)

n6/5
≤ 2 ln3d+2 n

n1/5
.

We next consider Gn,p[m] with m > n1. Let z = m be the unique vertex of Gn,p[m]

not in Gn,p[m − 1]. If Gn,p[m] is the first graph which is not well separated, then it is

the case that either (a) z connects two low degree vertices v1, v2 which were at distance

at least 3 in Gn,p[m − 1] or (b) z is itself a low degree vertex at distance 1 or 2 of a

second vertex v0 of low degree. By a union bound over the pairs of low degree vertices



62

in Gn,p[m− 1] we obtain that (a) occurs with probability at most(
m

2

)
p2 ln3d n

n6/5
≤ ln3d+2 n

n6/5
.

Similarly, a union bound over all vertices of Gn,p[m − 1] implies that (b) occurs with

probability at most

m ln3d n(p+ np2)

n6/5
≤ 3 ln3d+2 n

n6/5
,

this follows since z and any fixed vertex v0 ∈ [m − 1] are at distance 1 or 2 with

probability at most p+ np2.

Combining these bounds, we obtain that the probability that there exists m0 ∈

[n1, n] for which Gn,p[m0] is the first not well separated graph in (Gn,p[n1], . . . , Gn,p[n])

is at most

2 ln3d+2 n

n1/5
+
n

4

(
7 ln3d+2 n

n6/5

)
≤ 4 ln3d+2 n

n1/5
≤ 1

n1/10
,

where the last inequality holds for n large enough.

We now generalize the definition of small set expander from [11].

Definition 4.2.3. A graph G = (V,E) is a small set expander if every set of vertices

S with |S| ≤ n

ln3/2 n
and which contains no isolated vertices, we have

|EG(S, V \ S)| ≥ |S|.

As we are interested in J-blocked sets, we generalize the concept of small set

expansion. Here, NG(J) will play the role of the set of non-isolated vertices in the

definition of small set expander.

Definition 4.2.4. Let G = (V,E) be a graph with vertex set V = [n] and a set J ⊂ V .

We say that G is a J-expander if for all S ⊂ NG(J) with |S| ≤ n

ln3/2 n
, we have

|EG(S, J \ S)| ≥ |S|.
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For J * V we will simply write J-expander instead of (J ∩ V )-expander. The

importance of well separatedness and small set expansion is that they allow us to easily

bound the probability of linear dependencies among sets of small size, where S ∈ V is

considered small if |S| ≤ n

ln3/2 n
. In the following lemma we give conditions under which

the graphs Gn,p[m] are well separated and are J-expanders with high probability.

Lemma 4.2.5. Fix a positive integer k. Then there exists n0 = n0(k) such that for all

n ≥ n0 and all J ⊂ [n] with |J | ≥ n− k, for any p ∈ (4 lnn
5n

, 6 lnn
5n

) we have that

P
{
Gn,p[m] is well separated and J-expander for all m ∈ [d3n

4
e, n]

}
≥ 1− 2

n1/10
.

Proof. Let n1 = d3n
4
e. Let B be the event that Gn,p[m] is well separated and is a

J-expander for all m ∈ [n1, n]. If B doesn’t hold either one of Gn,p[m] is not well

separated, or there exists Gn,p[m] which is well separated and not a J-expander . The

former condition holds with probability at most n−1/10 by Lemma 4.2.2. We claim that

for any fixed m ∈ [n1, n],

P {Gn,p[m] is well separated and is not a J-expander } ≤ 3

n20
. (4.3)

Assuming (4.3), by a union bound over m ∈ [n1, n], we obtain

P
{
B
}
≤ 1

n1/10
+

3

n19
≤ 2

n1/10
,

proving the lemma, so we now turn to proving (4.3).

Suppose that Gn,p[m] is well separated but is not a J-expander and consider a

minimal set S0 ⊂ NGn,p[m](J) of size at most n

ln3/2 n
for which

|E(S0, (J ∩ [m]) \ S0)| < |S0|.

Write S0 = L ∪ H, where L is the set of low degree vertices in S0 and H = S \ L. If

Gn,p[m] is well separated then L is a stable set. We claim that every vertex in L has at

least one neighbour in H. Suppose to the contrary that for some v ∈ L it is the case
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that NGn,p[m](v) ∩H = ∅. Since L is a stable set and S0 ⊂ NGn,p[m](J), it follows that

|NGn,p[m](v) ∩ J \ S0| ≥ 1. Hence, the set S1 = S0 \ {v} satisfies

|E(S1, (J ∩ [m]) \ S1)| < |S0| − 1 = |S1|.

This contradicts the minimality of S0.

On the other hand, if Gn,p[m] is well separated, then no two vertices in L have a

common neighbour in H and it follows that |L| ≤ |H|.

Now, the average degree of Gn,p[S0] is at least

1

|S0|

(∑
v∈H

|NGn,p(v)| − |E(S0, [m] \ S0)|

)
≥ bln lnnc

2
− (1 + |[m] \ J |).

We have that |[m] \ J | ≤ k. Hence, for n large enough, the average degree of

Gn,p[S0] is greater than 8. We claim that the probability such a set S0 exists in Gn,p is

at most 3n−20.

Let C be the event that Gn,p contains a subgraph of size at most n

ln3/2 n
and induced

average degree greater than 8 and let pj be the probability that there exists S ⊂ [n]

with |S| = j and such that Gn,p[S] has average degree at least 8. By a union bound

over all sets of size j, we have

pj ≤
(
n

j

)((j
2

)
4j

)
p4j ≤

(
ne

j

)j (
ej

8

)4j (
6 lnn

5n

)4j

≤
(
j3 ln4 n

n3

)j
It follows that

P {C} ≤
bn ln−3/2 nc∑

j=10

(
j3 ln4 n

n3

)j
. (4.4)

We analyse the sum in two parts. If j ≤ n1/4, then we have that for n large enough,

j3 ln4 n

n3
≤ ln4 n

n9/4
≤ 1

n2
;
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whereas for j ≥ n1/4, the upper bound on j yields

j3 ln4 n

n3
≤ ln4 n

ln9/2 n
= (lnn)−1/2.

Furthermore, if j ≥ n1/4, then (lnn)−j/2 ≤ n−21 for n large enough.

Therefore P {C} is at most

bn1/4c∑
j=10

n−2j +

bn ln−3/2 nc∑
dn1/4e

(lnn)−j/2 ≤
∞∑
j=10

n−2j +

bn ln−3/2 nc∑
j=dn1/4e

1

n21

≤ 2

n20
+

1

n20
.

The result follows.

In Lemma 4.1.5 we consider GTn,p[n \ l] with p ∈ (8 lnn
9n

, 12 lnn
11n

) and its subgraphs

GTn,p[m \ l] for m ∈ [dαne, n]. and . These graphs are distributed as Gn,p with

p ∈ (4 lnn
5n

, 6 lnn
5n

) and the subgraphs Gn,p[m] for m ∈ [d3n
4
e, n] respectively. Hence,

the following theorem implies Lemma 4.1.5.

Theorem 4.2.6. Fix a positive integer t and let s = s(n) = 2n ln lnn
3 lnn

. Then there exists

n0 = n0(t) such that for all n ≥ n0 and T ⊂ [n] with |T | ≤ t, for any p ∈ (4 lnn
5n

, 6 lnn
5n

),

we have

P
{
Gn,p[m] is (T , s)-blocked for all m ∈ [d3n

4
e, n]

}
≥ 1− 6

n1/10
.

Proof. Let n1 = d3n
4
e. By relabelling the vertices we may assume T ⊂ [n1]. Let D be

the event that Gn,p[m] is (T , s)-blocked for all m ∈ [n1, n] and let D1 be the event that

|NGn,p(v) ∩ [n1] \ T | ≥ 2 for every v ∈ T ∪ NGn,p(T ). We define further two auxiliary

events; let D2 be the event that Gn,p has maximum degree at most b10npc, and let D3

be the event that Gn,p[m] is well separated and is a T -expander for all m ∈ [n1, n].

We bound the probability that there exists m ∈ [n1, n] such that Gn,p[m] is not

(T , s)-blocked by

P
{
D
}
≤ P

{
D,D1, D2, D3

}
+ P

{
D1

}
+ P

{
D2

}
+ P

{
D3

}
. (4.5)
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We bound the terms in the right-hand side of the inequality in reverse order.

First, by Lemma 4.2.5, we have that P
{
D3

}
≤ 2n−1/10. Second, by Markov’s

inequality, the probability that Gn,p has one vertex with degree at least d10npe is at

most the expected number of such vertices, so

P
{
D2

}
≤ n

(
n

d10npe

)
pd10npe

≤ n

(
nep

10np

)d10npe
≤ ne−d10npe

≤ n−7.

where in the last inequality we used that p ≥ 4 lnn
5n

.

Now, if D1 does not hold, then there exists at least one vertex in T ∪ NGn,p(T )

which has at most one neighbour in [n1] \ T . For fixed v ∈ [n],

P
{
|NGn,p(v) ∩ [n1] \ T | ≤ 1

}
≤ (1− p)n1−t−1 + n′p(1− p)n1−t−2

≤ e−p(n1−t−2)(1− p+ n1p)

≤ e−
n1p
2 (2n1p).

Since n1 ≥ 3n
4

and p ∈ (8 lnn
9n

, 12 lnn
11n

), the above inequality yields

P
{
|NGn,p(v) ∩ [n1] \ T | ≤ 1

}
≤ n−

3
10

(
12 lnn

5

)
≤ 1

n1/5
. (4.6)

Let X be the number of vertices v ∈ T ∪NGn,p(T ) for which |NGn,p(v) ∩ [n1]| ≤ 1.

Then,

P
{
D1

}
≤

4t lnn∑
k=0

P
{
X ≥ 1, |NGn,p(T )| = k

}
+ P

{
|NGn,p(T )| > 4t lnn

}
,
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we will analyse the two terms separately. First note that for fixed v ∈ [n] the events

v ∈ T ∪NGn,p(v) and {|NGn,p(v) ∩ [n1] \ T | ≤ 1} so by (4.6) we have

P
{
|NGn,p(v) ∩ [n1] \ T | ≤ 1

∣∣ v ∈ T ∪NGn,p(v)
}
≤ 1

n1/5
.

Now, for k < 4t lnn the conditional Markov’s inequality yields

P
{
X ≥ 1, |NGn,p(T )| = k

}
≤
|T ∪NGn,p(v)|P

{
|NGn,p(T )| = k

}
n1/5

≤
(t+ k)P

{
|NGn,p(T )| = k

}
n1/5

.

Summing over k we obtain

4t lnn∑
k=0

P
{
X ≥ 1, |NGn,p(T )| = k

}
≤ t(1 + 4 lnn)

n1/5
.

The distribution of |NGn,p(T )| is binomial and

P
{
|NGn,p(T )| ≥ 4t lnn

}
≤ P {Bin(n, q) ≥ 4t lnn} ,

where q = 1− (1− p)t is the probability that a vertex is connected to T . we have that

q ≤ tp and so 2nq ≤ 4t lnn. Hence,

P
{
|NGn,p(T )| ≥ 4t lnn

}
≤ P

{
|NGn,p(T )| ≥ 2nq

}
≤ P {Bin(n, q) ≥ 2nq} .

Moreover, the Chernoff bound yields

P {Bin(n, q) ≥ 2nq} ≤ e−
nq
4 ≤ n−

t
10 ,

where in the last inequality we use that q ≥ tp
2

. Therefore,

P
{
D1

}
≤ t(1 + 4 lnn)

n1/5
+

1

nt/10
≤ 2

n1/10
,

the last inequality hold as 1 ≤ t and t is a constant. This completes our bounds on

P
{
D1

}
,P
{
D2

}
and P

{
D3

}
, and we now turn to the first term on the right-hand side

of (4.5).
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Given positive integers m ∈ [n1, n] and j ∈ [2, s], let Dm,j be the event that for all

S ⊂ [m] with |S| = j containing no isolated vertices in Gn,p[m], the set S is T -blocked in

Gn,p[m] so that

D =
n⋂

m=n1

s⋂
j=2

Dm,j.

We claim that for all m ∈ [n1, n] and j ∈ [2, s]

P
{
Dm,j, D1, D2, D3

}
≤ n−21/10, (4.7)

from which a union bound yields

P
{
D,D1, D2, D3

}
≤

n∑
m=n1

bn ln lnn
lnn

c∑
j=2

P
{
Dm,j, D1, D2, D3

}
≤ 1

n1/10
,

completing the proof of Theorem 4.2.6. The remainder of the proof is devoted to proving

the bound (4.7).

To warm up, we treat the (simplest) case that d n

ln3/2 n
e ≤ j ≤ bn ln lnn

lnn
c. Fix such a

j, and m ∈ [n1, n], fix S ⊂ [m] with |S| = j. Let Rm = Rm(S) = [m] \ (S ∪ T ), and let

qm(S) = P
{
S is not T -blocked in Gn,p[m]

}
,

we have that

qm(S) = P
{

At most one vertex v ∈ Rm has |NGn,p[m](v) ∩ S| = 1
}
.

If v ∈ Rm, then

P
{
|NGn,p[m](v) ∩ S| = 1

}
= jp(1− p)j−1.

Note that the events {|NGn,p[m](v) ∩ S| = 1}v∈Rm are independent. For the following

computations we recall that |T | ≤ t and that writing r = |Rm| we have that for n large,
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2n
3
≤ r′ ≤ n, as t is constant and |S| = j ≤ s = o(n). Thus,

qm(S) =
(
1− jp(1− p)j−1

)r
+ rjp(1− p)j−1

(
1− jp(1− p)j−1

)r−1
≤
(
1− jp(1− p)j−1

)r−1
(1 + rjp(1− p)j−1)

≤
(
1− jp(1− p)j

)r−1
(1 + 2rjpe−jp).

By assumption, n

ln3/2 n
≤ j ≤ 2n ln lnn

3 lnn
, and it follows that 2rjpe−jp ≥ n ln−1 n ≥ 1; also,

for n large enough, (1− p)j ≥ e−6jp/5. Hence

qm(S) ≤
(
1− jpe−6jp/5

)r−1
(3rjpe−jp)

≤ e−
1
2
njpe−6jp/5

(3njpe−jp).

We use now a union bound over all sets of size j in [m] to get

P
{
Dm,j

}
≤
(
m

j

)
e−

1
2
njpe−6jp/5

(3njpe−jp).

Using that
(
m
j

)
≤
(
n
j

)
≤
(
ne
j

)j
, we obtain that

ln(P
{
Dm,j

}
) ≤ j ln

(
ne

j

)
− 1

2
njpe−6jp/5 + ln

(
3njpe−jp

)
. (4.8)

To prove (4.7), it suffices to show that ln(P
{
Dm,j

}
) ≤ −3 lnn. To accomplish this, we

show that the term −1
2
njpe−6jp/5 decreases with a higher rate than the rate at which

the remaining terms increases. First,

j ln

(
ne

j

)
+ ln

(
3njpe−jp

)
≤ j

(
ln

(
3n

j

)
+

ln(3njp)

j

)
≤ j

(
ln
(

3 ln3/2 n
)

+
ln(.8n ln lnn) ln3/2 n

n

)

≤ j (2 ln lnn) .
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T
S

NGn,p[m](S) ∩Rm(S)

. . .

a vertices

b edges

Figure 4–2: The graph Gn,p[m]. The sets T , S and NGn,p[m](S) ∩ Rm where Rm(S) =
[m] \ (S ∪ T ). We let a = |NGn,p[m](S) ∩Rm| and b = |E(S,Rm)|.

Second, using the upper bound on j we get

j(1
2
npe−6jp/5) ≥ 2

5
j lnne−

24
25

ln lnn

≥ 2
5
j ln1/25 n.

Thus, the right-hand side of (4.8) is at most

j

(
2 ln lnn− 2

5
j ln1/25 n

)
≤ −j

5
ln1/25 n ≤ −n ln1/25 n

5 ln3/2 n
.

Hence,

P
{
Dm,j, D1, D2, D3

}
≤ P

{
Dm,j

}
≤ 1

n3
.

This proves (4.7) in the case j ≥ d n

ln3/2 n
e.

For smaller j we use the auxiliary events D1, D2, D3 to control the number of edges

going from S to Rm. Fix S ⊂ [m] with |S| = j ≤ n

ln3/2 n
and let

q′m(S) = P
{
S is T -blocked in Gn,p[m], D1, D2, D3

}
.

And let

a = am(S) :=|NGn,p[m](S) ∩Rm|,

b = bm(S) :=|EGn,p[m](S,Rm)|.
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If D2 and D3 hold, then

j ≤ b ≤ 10npj.

Moreover, if S is not T -blocked , then there exists at most one vertex v ∈ [m] \ T

with |NGn,p[m](v) ∩ S| = 1. Since every vertex of NGn,p[m](S) ∩ Rm has at least one

neighbour in S, it follows that b ≥ 2a− 1. Let Fa,b be the event that a ≤ b+1
2

. By the

preceding remark, if S is not T -blocked, then Fa,b occurs. Conditioning on the value of

b, yields

q′m(S) ≤
b10npjc∑
w=j

P {Fa,b, D1, D2, D3 | b = w}P {b = w} .

The following definitions are to shorten coming formulas. Let

pm(S,w) := P {Fa,b, D1, D2, D3 | b = w} ,

f (1)
m (S) :=

∑
S⊂[m]

|S|=j

8j−1∑
w=j

P {b = w} pm(S,w),

f (2)
m (S) :=

∑
S⊂[m]

|S|=j

b10npjc∑
w=8j

P {b = w} pm(S,w).

With the notation above we have

P
{
Dm,j, D1, D2, D3

}
≤
∑
S⊂[m]:

|S|=j

b10npjc∑
w=j

q′m(S) ≤ f (1)
m (S) + f (2)

m (S).

To bound f
(1)
m and f

(2)
m we first bound P {b ≤ 8j} and pm(S,w). We claim that

P {b ≤ 8j} ≤ n−
13j
25 . (4.9)
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Note that b is the sum of jr independent Bernoulli(p) variables. Thus, the exact value

of P {b ≤ 8j} is

8j∑
i=0

(
jr

i

)
pi(1− p)jr−i ≤ (1− p)jr

8j∑
i=0

(
ejrp

i(1− p)

)i
≤ e−jrp

8j∑
i=0

(
12ej lnn

5i

)i
≤ n−

8j
15

8j∑
i=0

(
12ej lnn

5i

)i
.

The second inequality holds since p
1−p ≤

12 lnn
5n
≤ 12 lnn

5r
for n sufficiently large, and the

last inequality holds since r ≥ 2n
3

and p ≥ 4 lnn
5n

. It remains to show that the sum in the

last term is at most n
j
75 . To do so, let K = 12e

5
, divide the sum in two parts and use

that j ≤ n

ln3/2 n
; then

b j
75
c−1∑

i=0

(
Kj lnn

i

)i
≤
b j
75
c−1∑

i=0

(Kj lnn)i ≤ (Kn ln−1/2 n)b
j
75
c

and

8j∑
i=b j

75
c

(
Kj lnn

i

)i
≤

8j∑
i=b j

75
c

(75K lnn)i ≤ (75K lnn)8j+1,

where the last inequality follows from the fact that i ≥ b j
75
c. Thus, (4.9) holds for n

large enough as lnx n = o(ny) for any x, y > 0.

We next bound the probability that |NGn,p[m](S)∩Rm| is small (and that D1, D2, D3

hold) given |EGn,p[m](S,Rm)|. Let

g(j, w) :=

√
6n

j

(
18w

n

)w
2

.

We claim that for S ⊂ [m] with |S| = j,

pm(S) = P

{
a ≤ w + 1

2
, D1, D2, D3

∣∣∣∣ b = w

}
≤ g(j, w). (4.10)
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To do so, we estimate the number of different vertices that are reached by the edges in

EGn,p[m](S,Rm) as follows. We imagine that each edge in EGn,p[m](S,Rm) chooses its end-

point inRm uniformly at random and independently of all other edges in EGn,p[m](S,Rm).

This underestimates the size of NGn,p[m](S)∩Rm, since if edges have a common endpoint

in S, they can not have a second common endpoint. However, this assumption only

increases our estimate for the probability that NGn,p[m](S) ∩Rm contains few vertices.

Applying a union bound over all sets W ⊂ Rm of size bw+1
2
c, we bound the prob-

ability that each edge in EGn,p[m](S,Rm) has an endpoint in W . This yields the bound

pm(S,w) ≤
(

r

bw+1
2
c

)(
w + 1

2r

)w
.

We claim that for n large(
r

bw+1
2
c

)
≤
(

er

bw+1
2
c

)bw+1
2
c

≤
(

2er

w

)w+1
2

.

To see this, note that on one hand, bw+1
2
c ≥ w

2
. On the other hand, we have w ≤ 2er

because w ≤ 10npj, j ≤ n

ln3/2 n
and r ≥ 2n

3
. This yields

pm(S,w) ≤
(

2er

w

)w+1
2
(
w + 1

2r

)w
≤
(

2er

w

) 1
2
(

2er(w + 1)

w(2r)

)w
2
(
w + 1

2r

)w
2

now we use, in the first term, that j ≤ w and r ≤ n; for the remaining terms we use

that r ≥ 2n
3

and w + 1 ≤ 2w to get

pm(S,w) ≤
√

6n

j

(
18w

n

)w
2

= g(j, w).
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Furthermore, the function g(j, w) is decreasing in the range of w. To see this, we

verify that the derivative is negative. The derivative is

dg(j, w)

dw
=

√
6n

j

(
18w

n

)w
2

·
{

1

2
ln

(
18w

n

)
+

1

2

}
,

which is negative if w < n
18e

, and the latter holds for 2 ≤ w ≤ 10jnp and n large

enough, by the assumption that j = |S| ≤ n

ln3/2 n
. Now we are ready to obtain further

bounds for f
(1)
m and f

(2)
m . We divide the analysis in two cases.

Case 1. Suppose 150 ≤ j ≤ b n

ln3/2 n
c. Then

f (1)
m (S) ≤

(
m

j

)
P {b ≤ 8j}max

S⊂[m]:

|S|=j

max
j≤w≤8j−1

pm(S,w).

Using (4.9) and (4.10) and that g(j, w) is decreasing, we get

f (1)
m (S) ≤

(
m

j

)
P {b ≤ 8j} g(j, w)

≤
√

6n

j

(
me

jn
13
25

)j (
18j

n

) j
2

≤
√

6n

j

(
18e2

jn
1
25

) j
2

.

In this case, j ≥ 150. Hence f
(1)
m (S) ≤ K1n

− 5
2 , where K1 is a constant. We proceed

similarly for f
(2)
m (S), but now we neglect the probability P {b ≥ 8j}; so

f (2)
m (S) ≤

(
m

j

)
max
S⊂[m]:

|S|=j

max
8j≤w≤b10npjc

g(j, w)

≤
(
ne

j

)j
g(j, 8j)

≤
√

6n

j

(
1444ej3

n3

)j
,

the last inequality by the definition of g. Let K2 = 1444e and denote by h(j) the term

in the right-most term in the inequality above. We note that for n sufficiently large



75

h(j) is decreasing for j ∈ [2, n

ln3/2 n
], since its derivative,

dh(j)

dj
= h(j)

{
ln

(
K2j

3

n3

)
+ 3− 1

2j

}
,

is negative in that range. Therefore, f
(2)
m (S) ≤ h(2) = K3n

− 11
2 , where K3 is a constant.

Combining the bounds on f
(2)
m (S) and f

(2)
m (S) we have that

P
{
Dm,j, D1, D2, D3

}
≤ K1n

− 5
2 +K3n

− 11
2 ≤ n−

21
10 .

Case 2. Suppose 2 ≤ j ≤ 149.

First, note that if S has no isolated vertices in Gn,p[m], then any vertex of S \

(T ∪ NGn,p(T )) has at least a neighbour in T ∩ [m]. If, additionally D1 holds, then

every element of S ∩ (T ∪ NGn,p(T )) has a neighbour in T ∩ [m], and it follows that

S ⊂ NGn,p(T )∩ [m]. On the other hand, if S ⊂ NGn,p(T )∩ [m] with |S| = j and w ≤ 8j,

then

P {Fa,b, D1, D2, D3 | b = w} = 0.

To see this, note that if D3 holds, then Gn,p[m] is is well separated and is a T -expander.

So b ≤ 8j implies

|EGn,p[m](S, [m] \ S)| ≤ |S|(|T |+ 8) ≤ 16(t+ 8).

Thus, vertices in S have bounded degree. It follows that S contains only low degree

vertices, which are not adjacent by the well separatedness assumption. Therefore, all

vertices in NGn,p[m](S) have exactly one neighbour in S. On the other hand, there exist

at least |S| ≥ 2 edges going from S to Rm since Gn,p[m] is a T -expander. Therefore S

is T -blocked and consequently, condition Fa,b does not hold.

Hence, f
(1)
m = 0. The bound obtained previously for f

(2)
m is valid in this case, so for

n large

P
{
Dm,j, D1, D2, D3

}
≤ f (2)

m ≤ K3n
− 11

2 ≤ n−
21
10 .



76

The proof is complete.



CHAPTER 5
Conclusion

In this thesis we extended the study of sparse symmetric matrices to the study

of the stochastic process for the family {Qn,p}p∈(0,1). This allowed us to show that the

property of singularity, though not being monotone, still follows a so-called hitting time

theorem.

The latter settles one of the questions that naturally arises from this novel stochas-

tic point of view. It would also be of interest to know whether

• a similar phenomenon occurs for the event rank(Qn,p) + i(Qn,p) = n, which by

Theorem 2.3.2 has a threshold at p = Θ( lnn
2n

);

• there exist an interval I ⊂ (0, 1) of length Θ(n−1) in which {rank(Qn,p)}p∈I is

monotone increasing.

In the direction of Theorem 3.3.5, we are also interested in finding a threshold for

the number of vertices whose neighbourhoods can be fixed and whether the result holds

if the corresponding fixed neighbourhoods have more edges.
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Appendix A

To state Harris’s lemma we need the following notation. We write ({0, 1}n,P),

for the product space of n iid Bernoulli (p) and fixed p ∈ (0, 1). We endow {0, 1}n

with the following order: for any two elements x,y ∈ {0, 1}n with x = (x1, . . . , xn) and

y = (y1, . . . , yn) we say that x ≤ y if xi ≤ yi for all i ∈ [n].

We say that an event E ⊂ {0, 1}n is an increasing event if for all x ≤ y and x ∈ E

then y ∈ E. We say that E ⊂ {0, 1}n is a decreasing event if {0, 1}n \E is an increasing

event. Let

E0 := {(x1, . . . , xn−1) ∈ {0, 1}n−1; (x1, . . . , xn−1, 0) ∈ E},

E1 := {(x1, . . . , xn−1) ∈ {0, 1}n−1; (x1, . . . , xn−1, 1) ∈ E}.

Note that, by the independence of each coordinate, we have that

P {E} = (1− p)P {E0}+ pP {E1} .

Lemma 5.0.7 (Harris’s Lemma [4]). For fixed p ∈ (0, 1) and ({0, 1}n,P), let A,B ⊂

{0, 1}n. If both A and B are increasing events, then

P {A ∩B} ≥ P {A}P {B} . (5.1)

If A is an increasing event and B is a decreasing event, then

P {A ∩B} ≤ P {A}P {B} . (5.2)

Proof. We prove (5.1) by induction on n. For n = 1 the inequality is trivial. Now,

suppose n ≥ 2 and consider two events A,B ∈ {0, 1}n. If A and B are increasing then

A0 ⊂ A1, B0 ⊂ B1; so (P {A1}−pA0)(P {B1}−P {B0}) ≥ 0 holds. This in turn, yields

P {A0}P {B1}+ P {A1}P {B0} ≤ P {A0}P {B0}+ P {A1}P {B1} . (5.3)
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Now, using that (A ∩B)i = Ai ∩Bi for i = 0, 1; and the induction hypothesis we get

P {A ∩B} = (1− p)P {A0 ∩B0}+ pP {A1 ∩B1}

≥ (1− p)P {A0}P {B0}+ pP {A1}P {B1}

≥ [(1− p)P {A0}+ pP {A1}] [(1− p)P {B0}+ pP {B1}]

= P {A}P {B} ,

where the last inequality is obtained using (5.3). To prove (5.2) we apply (5.1) to the

increasing events A and B. This yields,

P {A ∩B} = P {A} −P
{
A ∩B

}
≤ P {A} −P {A}P

{
B
}

= P {A} (1−P
{
B
}

)

= P {A}P {B} .
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Appendix B

Lemma 5.0.8. For all n,
(

n
bn/2c

)
2−n ≤ n−1/2.

Proof. Let m = bn/2c. We will expand the terms and group them conveniently to get

a product.

If n = 2m+ 1,(
n

bn/2c

)
2−n =

1(2 · 1)3(2 · 2)5 · · · (2 ·m)(2m+ 1)

m+ 1!m!2n

=
1 · 3 · · · (2m+ 1)

m+ 1!2m+1

=
m+1∏
i=1

2i− 1

2i

If n = 2m, (
n

bn/2c

)
2−n =

1(2 · 1)3(2 · 2)5 · · · (2m− 1)(2 ·m)

m!m!2n

=
1 · 3 · · · (2m− 1)

m!2m

=
m∏
i=1

2i− 1

2i

In both cases the product goes from i = 1 to dn/2e. Let’s deduce now the following

equality
k∏
i=1

2i− 1

2i
=

1√
2k + 1

√√√√ k∏
i=1

(
1− 1

4i2

)
. (5.4)

Denote by K the product in the left-hand side and multiply by (2k + 1)K, which is a

similar product but the factors are (2i+ 1)/2i. We obtain that

(2k + 1)K2 =
k∏
i=1

(2i− 1)(2i+ 1)

4i2
=

k∏
i=1

4i2 − 1

4i2
.
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It is clear that the second term in the right-hand side of (5.4) is less than 1 and so

K ≤ 1√
2k + 1

.

Letting k = dn/2e in (5.4) we get(
n

bn/2c

)
2−n ≤ 1√

2k + 1
≤ 1√

n
.

Lemma 5.0.9. For any λ ≥ 0. If X is a Poisson(λ) random variable, then for any

positive integer k

P {X ≥ kλ} ≤
(
ek−1

kk

)λ
.

Proof. To obtain this, we use a Chernoff type of argument. Let t, x ≥ 0, then

P {X ≥ x} = P
{
etX ≥ etx

}
≤

E
[
etX
]

etx
. (5.5)

Now, we calculate the expected value above,

E
[
etX
]

=
∞∑
m=1

etmλme−λ

m!
=
eλe

t

eλ

∞∑
m=1

(λet)
m
e−λe

t

m!
= e(e

t−1)λ.

Let t = ln k and x = kλ, then by (5.5)

P {X ≥ x} ≤
(
ek−1

)λ
(kk)λ

.
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