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ABSTRACT 

 

This thesis presents analytical and computational analysis of boundary value 

problems and mixed boundary value problems for incompressible non-

homogeneous elastic geomaterials. The study of the mechanics of non-

homogeneous elastic media has always occupied a prominent position in the 

literature in mechanics. Quite apart from the intrinsic mathematical interest, the 

non-homogeneity problem in elasticity has applications to many problems of 

technological importance. In this thesis, two types of elastic non-homogeneity in 

the shear modulus are considered; one with exponential variation of shear 

modulus over the entire halfspace region and the other one with exponential 

variation of shear modulus over a finite depth, beyond which the shear modulus is 

assumed to be constant. The choice of exponential variation of shear modulus 

stems from the experimental evidences related to measurement of elastic 

properties of British Clays in which it is shown that elastic modulus of elasticity 

increases with depth. 

The general equation governing the axisymmetric elastic non-homogeneity is 

presented for both types of the non-homogeneity considered in this thesis. The 

thesis, in general, deals with two types of problems, (i) boundary value problems 

(ii) mixed boundary value problem or contact problems. In both cases, the 

influence of non-homogeneity on the response of the halfspace was clearly shown 

by numerical results presented. Furthermore, where applicable, the results have 

been used to verify the finite elements analysis results which can be used 

ultimately as a benchmark to solve more complex problem encounters in 

geomechanics.   

Boundary value problems includes, (i) the interior loading problem of an 

incompressible isotropic elastic halfspace where the shear modulus varies 

exponentially over the entire depth, or the shear modulus varies exponentially 

over the finite region, beyond which it is constant (ii) the surface loading problem 

of a non-homogeneous elastic medium where the medium is characterize as a 
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layer of finite depth d and of infinite lateral extends and the shear modulus has an 

exponential variation over the finite depth d. (iii) The axisymmetric distributed 

radial loading on the surface of an incompressible non-homogeneous elastic 

halfspace where the shear modulus varies exponentially with depth.  

Mixed boundary value problems includes, (i) the axisymmetric smooth and 

adhesive indentation problem for a rigid circular plate and an incompressible 

elastic halfspace with exponential variation of shear modulus. The method of 

solution is based on the discretization technique in which the contact normal and 

contact shear stress distributions are approximated by their discretized 

equivalents. (ii) The indentation problem of flexible circular plate with an 

incompressible non-homogenous elastic halfspace using the energy method where 

the shear modulus of elasticity varies exponentially with depth. The contact 

between the flexible plate and the elastic halfspace is solved using a variational 

approach in which the deflected shape of the plate is represented in the form of a 

power series expansion which satisfies the kinematic constraints of the plate 

deformation. 
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RÉSUMÉ 

 

Cette thèse présente l’analyse analytique et numérique de problèmes aux limites et 

problèmes aux limites mixtes de géomatériaux incompressibles, non 

homogènes et élastiques. L’étude de média non-homogène et élastique a toujours 

occupée une place importante dans les publications traitant de la mécanique. Mis 

à part l’intérêt qu’y accordent les mathématiques intrinsèques, le problème de 

non-homogénéité en élasticité s’applique à de nombreux problèmes d’importance 

technologique. Dans cette thèse, deux types de non-homogénéités élastiques sont 

considérés; la variation exponentielle du module de cisaillement sur toute la 

région du demi-espace et la variation exponentielle du module de cisaillement 

selon une profondeur déterminée, au-delà desquels le module de cisaillement est 

supposé demeurer constant. Le choix de la variation exponentielle est basé sur des 

analyses expérimentales de mesures d’élasticités menées sur des échantillons 

d’Argile Anglaise pour lequel il a été démontré que le module d’élasticité 

augmente avec la profondeur. 

L’équation générale qui gouverne la non-homogénéité élastique et axisymétrique 

est présentée pour les deux cas de non-homogénéité considérés dans cette thèse. 

D’un point de vue général, la thèse traite de deux types de problèmes : (i) les 

problèmes aux limites et (ii) les problèmes aux limites mixtes ou problèmes de 

contact. Dans les deux cas, l’influence de la non-homogénéité sur la réaction du 

demi-espace est clairement démontrée par les résultats numériques présentés. De 

plus, là où applicable, les résultats obtenus ont été utilisés pour vérifier les 

résultats de l’analyse par la méthode des éléments finis qui peut être 

utilisée comme point de référence pour résoudre des problèmes plus complexes en 

mécanique des sols. 

Les problèmes aux limites inclus, (i) le problème de charge interne d’un demi-

espace incompressible, isotropique et élastique où le module de cisaillement varie 

exponentiellement selon la profondeur  ou la région déterminée, au-delà desquels 

il est supposé demeurer constant. (ii)Le problème de charge en surface d’un média 
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non-homogène et élastique où le média est caractérisé par une couche d’une 

profondeur déterminée d et d’une étendue latérale infinie et où le module de 

cisaillement a une variation exponentielle sur toute la profondeur d. (iii) La charge 

radiale distribuée axisymétriquement sur la surface incompressible, non-

homogène et élastique où le module de cisaillement varie exponentiellement selon 

la profondeur. 

Les problèmes aux limites mixtes inclus, (i) le problème axisymétrique 

d’échancrure lisse et adhésive pour une plaque rigide et circulaire et un demi-

espace incompressible et élastique et selon une variation exponentielle du module 

d’élasticité. La méthode de résolution de ce problème est basée sur la technique 

de discrétisation dans laquelle la contrainte normale et en cisaillement sont 

estimés par leur équivalent discret. (ii) Le problème d’échancrure d’une plaque 

flexible et circulaire et d’un demi-espace incompressible, non-homogène et 

élastique, en utilisant la méthode énergétique, où le module élastique de 

cisaillement varie exponentiellement selon la profondeur. Le contact entre la 

plaque flexible et le demi-espace élastique est  résolue en utilisant une approche 

de calculs des variations dans lesquels la forme de la plaque en flexion est 

représentée par l’expansion d’une série de puissance qui satisfait les contraintes 

cinématiques de déformation de la plaque. 
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incompressible halfspace. It is observed that for the exponential variation in shear 

modulus in an incompressible elastic halfspace, the contact constraints, either 

adhesive contact or frictionless, also have very negligible influence on the 

indentational stiffness of the rigid circular indenter and for the exponent in the 

exponential variation (0,0.25)∈ɶλ .The discrepancy is of the order of 10% for 

2≈ɶλ . 

The contact problem was extended to examine, using a variational technique, the 

axisymmetric smooth contact between a flexible plate and an incompressible 

isotropic non-homogeneous elastic halfspace in which the shear modulus varies 

exponentially with depth. This problem has not investigated in the literature in the 

case where shear modulus of elasticity varies non-linearly with depth. The effect 

of relative rigidity of the plate as well as the non-homogeneity of the 

incompressible elastic halfspace on the flexural response is clearly demonstrated 

in the numerical results. 
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              INTRODUCTION AND LITERATURE REVIEW  

 

 

 

 

 

1.1 General 

This thesis presents analytical and computational solutions to traction and mixed 

boundary value problems for an inhomogeneous medium with applications to 

geomechanics. The term analytical solution, in the engineering context, refers to 

the use of advanced mathematical techniques to develop a solution to problems 

encountered in engineering. Geotechnical engineers have used analytical solutions 

to examine a variety problems in soil mechanics and geomechanics. One of the 

advantages of the analytical solutions is that they can provide/have provided 

reliable, convenient and speedy preliminary estimates to a large number of 

problems in geomechanics. Secondly, these solutions are not only usable for the 

problems encountered in geomechanics but also give insight into the behavior and 

mechanics of the problem; this helps the researchers reach a better understanding 

of the problem. These two aspects together, a quick and reliable estimation and 

insight into the behavior and mechanics of the problem, can provide engineers 

with the basis to make sound engineering judgments.  The other advantage of 
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analytical solutions is that they can be used as a check on more sophisticated 

computer-based solutions. Due to the increasing use of computational methods to 

solve a wide range of problems, it is very important and valuable for users, in 

view of uncertainties of input data, to see that the software is able to give accurate 

results to the problems under investigation, a check that can be provided by 

analytical solutions.  

Boussinesq’s fundamental solution (Boussinesq, 1885) dealing with the action of 

a concentrated normal force on the surface of an isotropic homogeneous elastic 

halfspace represents a solution that is widely applied in geomechanics (see also 

Selvaudrai, 2001a, 2007). The use of mathematical theories of elasticity in 

geomechanics dates back to the fundamental solution of Boussinesq (1885) in 

which he considered an isotropic homogeneous elastic halfspace subjected to a 

concentrated force acting normal to a traction free surface. This problem can be 

solved using several techniques and approaches and, for those interested in the 

mathematical procedures of these approaches and boundary conditions of the 

problem, it is well documented in the literature (Michell, 1900; Love, 1927; 

Westergaard, 1952; Sokolnikoff, 1956; Lur’e, 1964; Timoshenko and Goodier, 

1970; Podio-Guidugli, 2004). Following Boussinesq (1885), Flamant (1892) 

investigated the problem of a line load acting on an isotropic elastic halfspace 

using Boussinesq’s solution along with the principal of superposition. The 

problem of a horizontal point load acting at the surface of an elastic halfspace was 

first considered by Cerrutti (1882) in which the displacements and stresses are 

presented in Cartesian coordinates due to the absence of radial symmetry. Mindlin 

(1936) considered the point load problem (either vertical or horizontal) in which 

the load is acting in the interior of an elastic halfspace. The literature pertaining to 

this class of problems is quite extensive and no attempt will be made to provide a 

comprehensive bibliography. The reader is referred to the references (Sneddon, 

1951; Goodier, 1958; Koronev, 1960; Rakov and Rvachev, 1961; Gurtin, 1972; 

Gladwell, 1980; Selvadurai, 1979a, 1996, 2000b) for adequate coverage of the 

topic. There are also two extensive reviews of the topic “analytical methods in 

geomechanics” given by Booker (1991) and Selvadurai (2007). Selvadurai (2007) 
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presents an extensive review on the application of analytical methods in the 

theory of elasticity and poroelasticity to solve boundary value problems 

encountered in geomechanics. 

2.1 Elastic non-homogeneity 

The mechanics of non-homogeneous elastic media has been a topic of continuing 

interest to theoretical and applied solid mechanics. The non-homogeneity problem 

in elasticity has applications to many problems of technological importance. Non-

homogeneity is generally attributed to an alteration of the elastic properties of the 

body due to mechanical working and, on occasion, to chemical action (Selvadurai, 

2007). In the context of geomechanics, the inhomogeneous medium serves as a 

model for the study of soil and rock media that exhibit spatial variations in their 

elastic properties.   

Studies of specific interest to the elastomechanics of non-homogeneous media 

date back to the early studies by Klein (1956), Korenev (1960), Mossakovskii 

(1958), Popov (1959) and Rostovtsev (1961, 1964). Reviews of the subject are 

also given by Rakov and Rvachev (1961), Olszak (1959) and Popov (1973). The 

type of problems discussed in these developments mainly focused on elastic 

contact problems referred to halfspace regions, where the elastic modulus varied 

with the axial coordinate and Poisson’s ratio was assumed to be constant. Also, 

the specific forms of elastic non-homogeneity dealt with either a linear, an 

exponential or a power law variation in the elastic modulus with the axial 

coordinate. The resulting solutions have been applied quite extensively in contact 

and indentation problems with application to the engineering sciences. 

Korenev (1957) examined the problem of the axisymmetric indentation of a rigid 

smooth indenter and an isotropic elastic halfspace, whose modulus of elasticity 

varied exponentially with depth. This problem was also examined by 

Mossakovskii (1958) who gives a corrected result for the contact stress 

distribution. The interaction between an unbounded plate and a non-homogeneous 

medium whose elastic modulus varies with depth according to a power law was 
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considered by Popov (1959). Rostovtsev (1961) also examined the variation in the 

elastic modulus of the halfspace in the form of a power law and developed results 

applicable to elliptical indentation regions. Ter-Mkrtch’ian (1961) presents the 

development of the elastic non-homogeneity where the shear modulus varies with 

depth according to a power law. Lekhnitskii (1962) developed solutions to the 

half plane problem where the elastic modulus varies with the r  and θ  

coordinates. The study by Rostovtsev (1964) also examines both two-dimensional 

and axisymmetric problems related to the loading of a half plane. Zarestsky and 

Tsytovich (1965) investigated contact stresses beneath a rigid strip in which the 

elastic modulus varies according to a power law variation. Belik and Protsenko 

(1967) also examined the two-dimensional contact problem for a half plane where 

the elastic modulus varies as a power law for the depth variable. Kassir (1970) 

solved the Reisssner-Sagosi problem for a non-homogeneous halfspace with 

power law variation in the elastic modulus.  Boussinesq’s problem for a non-

homogeneous medium where the elastic modulus varies exponentially with the 

axial spatial variable was presented by Plevako (1971). A solution to 

Boussinesq’s problem for a halfspace with an exponetial variation in the elastic 

modulus was presented by Rostovtsev and Khranevskaia (1971). The 

axisymmetric loading of a non-homogeneous elastic layer with a hyperbolic 

depth-dependent variation in the elastic modulus and underlain by a homogeneous 

elastic halfspace was examined by Plevako (1972). Other studies by Plevako 

(1973a,b) considered the shear loading of a non-homogeneous elastic halfspace 

with a hyperbolic variation in the elastic modulus. The surface loading of the 

halfspace with a power law non-homogeneity was examined by Plevako (1973c), 

who also investigated the interior loading of a non-homogeneous elastic layer 

underlain by a homogeneous elastic halfspace (Plevako, 1974). Puro (1973) 

presents a Hankel transform development of three-dimensional problems where 

the modulus of elasticity varies as a power function of depth. The axisymmetric 

adhesive contact problem for a non-homogeneous elastic halfspace was presented 

by Popov (1973).  Kassir and Chuaprasert (1974) present the surface displacement 

and stresses for the torsional indentation of a non-homogeneous halfspace in 
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which the elastic modulus varies according to a power law. Kassir and 

Chuaprasert (1974) also examined the axisymmetric problem of a rigid punch in 

which the elastic modulus varies as a power law in depth. Dhaliwal and Singh 

(1978) investigated torsion of a circular die in a non-homogeneous elastic layer 

that is bonded to a non-homogeneous halfspace, where it is assumed that the shear 

modulus is different in the elastic layer and in the halfspace and it varies 

according to a power law. 

The renewal of interest in the application of the theory of elasticity for a non-

homogeneous elastic medium commenced with the seminal paper by Gibson 

(1967) who examined a model of an incompressible elastic halfspace where the 

shear modulus varies linearly with depth. Gibson (1967) showed that when the 

shear modulus of the incompressible medium varied linearly from zero at the 

surface of the halfspace, the surface displacement profile exhibited a 

discontinuous form with displacements restricted only to the loaded region. 

Furthermore, the magnitude of the deflection within the loaded region was 

directly proportional to the intensity of stress at the loading point and inversely 

proportional to the linear increase in the elastic shear modulus with depth. 

Gibson’s research provided a definitive explanation for a Winkler medium 

(Winkler, 1867; Hetényi, 1946; Selvadurai, 1979a), which is comprised of a series 

of closely spaced independent springs with identical stiffness. The elastic stiffness 

for the spring elements can be interpreted in terms of the linear variation of the 

shear modulus with depth for the specific case where the surface shear modulus is 

zero. The elastic halfspace with this particular variation in shear modulus is 

referred to as a ‘Gibson soil’, and has been extensively studied by a number of 

researchers. Gibson et al. (1971) examined the behaviour of an incompressible 

layer of finite depth of resting on a rough rigid base in which the elastic modulus 

in the finite layer varies linearly with depth. Brown and Gibson (1972) studied the 

surface displacement of an elastic halfspace whose Young's modulus increases 

linearly with depth, and is subject to a uniform strip or circle load. 
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Awojobi and Gibson (1973) investigated the influence of a linear variation in the 

shear modulus with depth on the stresses and displacements of a halfspace 

subjected to normal loading of a traction free surface. Alexander (1977) presented 

the stresses and displacements in an incompressible isotropic elastic halfspace in 

which the Young’s modulus varies linearly in depth and which is subject to a load 

normal to its plane boundary.  

Calladine and Greenwood (1978) examined line and point loads applied to the 

surface of an elastic non-homogeneous isotropic halfspace with a linear variation 

of the shear modulus. The torsional problem of a rigid foundation embedded in a 

non-homogeneous soil with a weathered crust, in which the shear modulus of the 

elastic soil increases linearly with depth while the shear modulus of the weathered 

crust decreases, was investigated by Rajapakse and Selvadurai (1989). The 

application of a concentrated load to the interior of an elastic halfspace where the 

linear elastic shear modulus varies linearly with depth was examined by 

Rajapakse (1990a) while Rajapakse and Selvadurai (1991) examined the mixed 

boundary value problem related to the interior loading of a non-homogeneous 

isotropic elastic halfspace by a flexible plate. 

As described above, the majority of the theoretical developments prior to 

Gibson’s studies have focused on power law or exponential variations in the 

linear elastic shear modulus, which lead to significant simplifications in the 

solution of the associated elasticity problem. The idealization of the elastic non-

homogeneity in either a linear or an exponential form restricts its applicability to 

the study of boundary value problems relevant to halfspace regions. In particular, 

both exponential and linear variations in the shear modulus with depth give rise to 

unbounded values of the shear modulus when the theoretical developments are 

applied to semi-infinite regions. This limitation was first addressed by Selvadurai 

et al. (1986), who examined the torsional indentation of an inhomogeneous elastic 

halfspace with an exponential but bounded variation in the shear modulus. The 

accurate representation of both the near surface non-homogeneity and far-field 

variation are important for estimating the undrained displacements of 
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inhomogeneous soils that are subjected to surface and interior loads. Selvadurai 

(1996) also examined the problem of the smooth indentation of an incompressible 

inhomogeneous elastic halfspace where the shear modulus exhibits a bounded 

exponential variation.  

The studies by Selvadurai and Lan (1997, 1998) consider contact and crack 

problems where the elastic shear modulus exhibits a harmonic variation. A more 

generalized approach to the formulation of spatial inhomogeneity is described by 

Spencer and Selvadurai (1998), who examine the problem of anti-plane shear in 

cracks and edge dislocations in a non-homogeneous elastic solid. An alternative 

approach to modeling the depth-dependent non-homogeneity in a halfspace is to 

use a layered system approach to represent the variation in the elastic moduli (Yue 

et al., 1999) or the more generalized approach that was presented by Spencer and 

Selvadurai (1998). Selvadurai (2000c) have also considered the exponential 

variation in the linear shear modulus to examine penny shaped inclusion problem. 

The analysis of elastic non-homogeneity is not limited to analytical solutions; 

numerical approaches are also considered by some researchers (such as Carrier 

and Christian, 1973a,b; Chow, 1987; Dempsey and Li, 1995; Aliabadi and 

Brebbia, 1993; Jeng and Lin, 1999). 

1.3 Incompressibility 

In this thesis, it is assumed that the material of the halfspace is incompressible, 

which simulates immediate (undrained) deformation of saturated elastic soils. In 

other words, at the start of the consolidation the behavior of the poroelastic 

medium at time zero corresponds to the incompressible behavior of an elastic 

medium.  

Geotechnical engineers, in particular foundation engineers, are often interested in 

determining the profile of the surface displacement and, in general, to estimate the 

magnitude of the settlement during construction. This immediate settlement (or 

elastic settlement) occurs based on the fact that the clay, which is usually 

saturated, does not have the opportunity to consolidate in the short term. 
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Compression of saturated soil elements is caused by deformation of the soil 

skeleton or expulsion of water from the void space. For saturated soil in practice, 

it is usually found that the water in the pores is almost incompressible in 

comparison with the grain skeleton of the solid and any compression must be 

accompanied by expulsion of water from the pore space; therefore, the immediate 

displacement takes place without any volume change.  

Numerous studies, which were mentioned in the previous section, have 

considered the material of the halfspace to be incompressible (see e.g. Zarestsky 

and Tsytovich, 1965; Gibson, 1967; Gibson et al., 1971; Carrier and Christian, 

1973a; Alexander, 1977; Calladine and Greenwood, 1978; Rajapakse, 1990a,b; 

Rajapakse and Selvadurai, 1991; Yue et al., 1999). 

1.4 Objectives and scope of the research  

This thesis presents the analytical and computational solutions to traction and 

mixed boundary value problems of inhomogeneous media with applications to 

problems encountered in geomechanics.  

The second chapter provides the justification for considering incompressible 

elastic non-homogeneity, which stems from the results of experimental 

investigations where it has been shown that the shear modulus of many soils 

increases with depth. Also, a number of commonly used testing methods to 

determine the elastic moduli as well as terrain formations are briefly discussed. 

In chapter 3, the development of the partial differential equations governing the 

incompressible elastic non-homogeneity problem is presented.  

The axisymmetric interior loading problem for an incompressible isotropic elastic 

halfspace where the linear elastic shear modulus varies with depth is investigated 

in chapter 4. In particular, the non-homogeneity has an exponential variation 

either over the entire depth of the halfspace, or over a finite depth beyond which it 

is constant. The mathematical formulation of the traction boundary value problem 

is developed through the application of integral transform techniques, and the 
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numerical results are presented to show the influence of the non-homogeneity on 

the responses of an incompressible elastic halfspace. The numerical results are 

also used to establish the accuracy of finite element results for the analogous 

problems. 

The axisymmetric smooth/adhesive contact problem for a rigid circular plate and 

an incompressible elastic halfspace where the linear elastic shear modulus varies 

exponentially with depth is examined in chapter 5. The analytical solution of the 

mixed boundary value problem entails a set of coupled integral equations that 

cannot be solved easily through conventional techniques proposed in the 

literature. A discretization scheme is adopted where the contact normal and 

contact shear stress distributions are approximated by their discretized 

equivalents. The consideration of compatibility of deformations due to indentation 

by a rigid indenter in adhesive contact gives a set of algebraic equations that yield 

the discretized equivalents of the contacts stresses and the axial stiffness of the 

rigid  indentor. 

In chapter 6 A departure from this model, a smooth contact problem for an 

isotropic elastic halfspace indented by a flexible circular plate, is examined using 

an energy method. The contact between the flexible plate and the elastic halfspace 

is solved using a variational approach. This method is an extension to the 

variational approach first adopted by Selvadurai (1979c) for examining the static 

contact between flexible plate and an isotropic homogeneous elastic halfspace. 

The Poisson-Kirchhoff thin plate theory is used to describe the flexural behaviour 

of the plate. The results for the maximum deflection, the relative deflection, and 

the maximum flexural moment in the circular plate are presented and the 

influence of non-homogeneity on the results investigated. In addition, the results 

obtained using this technique is compared with equivalent results derived from the 

finite element approach.  
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               DEPTH VARIATION OF ELASTIC MODULI  

 

 

 

 

 

2.1 Introduction 

Reliable estimates of the geotechnical properties and deformation parameters of 

the ground surface are a fundamental requirement of any foundation design. 

Deformation parameters of the ground surface are generally related to the small 

strain shear moduli, Poisson’s ratio and Young’s modulus.  

There is extensive literature related to the classification, deformability and other 

geotechnical properties of Clays and mudrocks found in UK. It should be 

mentioned that there is little information in the literature regarding deformation 

parameters of clay formations other than UK Clays. The main focus of the chapter 

is to collect the published values regarding depth variation of the shear modulus 

for different territory formations and briefly discuss the various test procedures. 

Determinations of elastic moduli in the literature were made using different 

testing methods, such as the triaxial compression test, in-situ pressuremeter test 

and plate loading test, on materials from various locations and territories. 
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Consequently, the values presented here are only used to show the ranges and 

averages of the parameters and cannot necessarily be considered as typical values 

for the formation as a whole.  

The properties of overconsolidated clays and mudrock in the UK generally 

depend on the lithology, geological loading history, degree of weathering, and 

testing methods. In most classifications, there is no geological distinction between 

mudrocks and overconsolidated clays since both contain more than 50% particles 

with a diameter of over 60µm (the effective size of clay particles in UK). The 

definition of modulus of elasticity in this review refers to the secant modulus for 

the initial stress-strain curve at 50% ultimate load in undrained triaxial 

compression tests. 

Because of the importance of the testing method on the determination of the 

elastic moduli, a number of commonly used methods will be discussed briefly in 

the following section. 

2.2 Testing methods 

The type and method of the test is one of the important factors that will affect the 

accuracy and reliability of the each experimental result. The most common 

laboratory and in-situ tests used in the literature to determine the elastic moduli of 

Clay and mudrocks from the UK are the triaxial compression test, plate loading 

test and in-situ pressuremeter test. 

The undrained triaxial test is one of the most commonly used laboratory tests to 

determine the elastic moduli of overconsolidated clays and mudrocks. The moduli 

determined from laboratory tests on highly fissured Clays from the UK are 

considerably lower than those obtained from large in-situ plate tests (Marsland, 

1973a). The elastic moduli determined from triaxial tests are very variable and 

difficult to interpret and they are dependent on factors such as the amount of 

disturbance of the clay during sampling, the time between the test and sampling, 

the size of the spicemen and the reduction of the overburden pressure.  A full 
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description of the sampling methods and triaxial test procedure on London Clay 

can be find in Marsland (1973 a,b).  

The most common in-situ tests for determining deformation moduli are the plate 

loading test and pressuremeter test. The plate loading test and pressuremeter test 

have been employed to measure deformation moduli in order to mitigate the effect 

of sample disturbance and sample size and consequently give more reliable 

results. Details of the test procedure are given in the paper by Marsland (1973b). 

Marsland (1973c) conducted an extensive series of in-situ plate loading test with 

different plate dimensions, up to 865 mm, to a depth 25 m in order to make a 

comparison and also validate the results determined from triaxial tests. Marsland 

(1973c) considered the different factors affecting triaxial and plate loading tests, 

such as the sample size, disturbance of the clay, interval time between the 

sampling and testing for triaxial tests and the interval time between excavation 

and loading for the plate loading tests. Although the disturbance of the clay has a 

significant effect on the results of the laboratory tests, the most important factor 

affecting the triaxial test was the interval time between the sampling and testing. 

On the other hand, the size of the plate and method of site preparation were more 

important in the plate loading tests. Figure 2.1 (Marsland, 1973c) shows the 

variation of the elastic moduli for London Clay from Hendon; the results are from 

triaxial tests on 38 and 98 mm diameter samples and a 865mm diameter plate 

loading tests.  

As can be seen from Figure 2.1, the results determined from the triaxial tests are 

variable and hard to interpret and are considerably lower than those determined 

from the plate loading tests. By comparing the triaxial tests conducted on 38 and 

98 mm diameter specimens, it can be seen that the elastic moduli of the 38mm 

diameter specimen gave average moduli up to 1.3 times higher than for the 98mm 

diameter specimen.  

Marsland concluded that the average elastic moduli determined from large plate 

loading tests were more compatible with the observations of ground movements 

and the analysis of settlement records, such as given in Hooper (1973), in 
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comparison with the results of laboratory tests and small plate loading tests. The 

comparison between the results from an analysis of settlement records (Hooper, 

1973) and those determined from laboratory and in-situ tests (Marsland, 1973c) is 

given in Figure 2.2. Furthermore, it can be noted from Figures 2.1 and 2.2 that the 

in-situ plate loading tests are also sensitive to experimental procedures and should 

only be used with complete information of the test conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Modulus of elasticity of London Clay from Hendon (after Marsland, 

1973c) 
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The other common in-situ test is the pressuremeter test. The general test 

procedures and equipment descriptions are presented by Marsland and Randolph 

(1978) for pressuremeter tests. Marsland and Randolph (1978) conducted a 

comparison between the results determined from plate loading tests using a 865 

mm diameter plate and a pressuremeter test using a 60 mm diameter probe, to a 

depth of 25 m in London Clay. The results for the variation of shear modulus with 

depth for the plate loading and pressuremeter tests on London Clay are presented 

by Marsland and Randolph (1978) for initial loading as well as re-loading cycles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Initial secant moduli of London Clay from Hendon; (triaxial and plate 

loading tests); (Marsland, 1973c) and the modulus of elasticity of London Clay 

from Hyde Park interpreted from settlement calculation (Hooper, 1973) 
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Marsland and Randolph (1978) concluded that the shear moduli obtained from 

pressuremeter tests are considerably lower than those obtained from plate loading 

tests, especially for initial loading. There is a large difference between the values 

obtained for the initial loading and re-loading cycles that can be attributed to 

softening of the clay at the sides of the borehole during drilling and during the 

unloading period. The shear modulus determined from the unloading cycles in the 

pressuremeter tests give more reasonable values, which are much closer to the 

values obtained from the plate loading tests. The results obtained from both tests 

showed that the shear modulus increases with depth and is considerably higher at 

greater depths. These tests were performed at depths of 6.1, 12.2, 18.3 and 24.4 m 

below ground level. Since these tests encompass a volume of soil that has enough 

fissures and other planes of weakness, they can be considered as  representative of 

the full scale. 

2.3 Variation of modulus of elasticity with depth 

In this thesis the half-space is considered to be elastic and non-homogeneous. The 

justification for considering elastic non-homogeneity stems from results of 

experimental investigations (see e.g. Skempton and Henkel, 1957; Ward et al., 

1965; Hooper and Butler, 1966;  Burland and Lord, 1969; Simons and Som, 1969; 

Cooke and Price, 1973; Marsland, 1973 a,b,c; Butler, 1974; Hobbs, 1974;  

Atkinson, 1975; Burland et al., 1977; Abbiss, 1979; Simpson et al., 1979; Costa 

Filho and Vaughan, 1980), in which it is shown that the shear modulus of many 

soils generally increases with depth, although not always systematically. The 

early work by Skempton and Henkel (1957) on London Clay suggested that the 

modulus of elasticity increases with depth. Ward et al. (1965) conducted a series 

of in-situ and laboratory test to obtain the geotechnical properties of London Clay 

at Ashford Common at different depths, varying from 30ft to 140ft; they reported 

that the modulus of elasticity increases with depth, but the rate of the increase is 

more rapid at larger depths. He observed from the test results that the secant 

moduli increase after 91 ft (27.7368 m).  
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Similar observations by Marsland (1973 a,b,c) on London Clay using both triaxial 

and plate loading tests show that the elastic modulus increases with depth; 

however, it can be observed from these and other studies that the triaxial test 

results are very variable. The results from large in-situ plate load tests are more 

consistent and are also typically higher than those obtained from laboratory 

triaxial tests. By comparing the laboratory values with the plate load test results, 

Marsland (1973c) noted that the modulus of elasticity values given by the plate 

tests are much closer to those derived from the analysis of settlement records 

(Hooper, 1973). Instrumented pile test results presented by Cooke and Price 

(1973) also support this view.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Undrained shear strength and modulus of elasticity of Oxford Clay 

from near Peterborough (Burland et al., 1977) 
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Cooke and Price (1973) reported on the variation of the modulus of elasticity with 

depth for distributed clay close to a concrete pile installed in London Clay at 

Hendon, North London, in which the clay extended from the ground surface to a 

depth of 30m and the pile was seated to a depth of 3.5 m. The shear modulus 

varied from 70 MPa at the ground surface to 150 MPa at a depth of 3.5 m, which 

is comparable with the results obtained from an analysis of settlement records 

(Hooper, 1973). 

Burland et al. (1977) studied the depth variation in the geotechnical properties of 

Oxford Clay and Kellaways Beds at Saxon pit; the results, obtained from 

excavation and laboratory tests, showed that the vertical Young’s modulus 

increases with depth, although the variation is not necessarily linear (See Figure 

2.3). As we can see from Figure 2.3, the rate of increase in the Young’s 

modulus, E , is higher at greater depths in Oxford Clay and it increases with depth 

from 10 MPa to 160 MPa.  

In order to provide an example of the application of the variation of the modulus 

of elasticity, a simple linear fit and an exponential fit have been completed for the 

data provided by Burland et al. (1977):  

secant secant

2(1 ) 3

E E
G

v
= =

+

                                                                                      (2.1)                                                                         

0.0879( ) 3.33 z
G z e

∗
=                                                                                        (2.2) 

( ) 3.33 1.062G z z= + ∗
 
                                                                                      (2.3) 

In the above equations, the SI unit of the modulus of elasticity (shear modulus G 

and secant Young’s modulus secantE ) is in MPa and the SI unit of z is meters (m). 

Figure 2.4 shows the variations in the vertical displacement along the z-axis for 

the fitted linear and exponential variation of shear modulus to the data provided 

by Burland et al. (1977). The numerical results for these two variations are 

presented in the following chapters.  
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Cripps and Taylor (1981) investigated the engineering properties of mudrocks, 

which have characteristics between soil and rock, with depth, including the shear 

modulus variation. They compiled the engineering properties and parameters of 

mudrock from various investigations and studied different factors influencing the 

results such as lithology, exhumation, type and method of testing and degree of 

weathering. They showed that the elastic moduli of mudrocks increase with depth; 

however, this increase is not necessarily linear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Variations of vertical displacement along the z-axis for the fitted linear 

and exponential variation of shear modulus to the data provided by Burland et al. 

(1977) 
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Cripps and Taylor (1986) collected published values of engineering properties of 

London over-consolidated clay and mudrock for different territories and 

formations in order to present their ranges and averages for use as references of 

their typical values. Table 2.1 shows the variation of shear modulus with depth for 

different territories with compact information about the type of test, type of clay, 

type of loading and their corresponding references.  

Table 2.1: Variation of modulus of elasticity in depth for different territories  

                 (Cripps and Taylor, 1986). 

 

 

 

 

 

 

 

 

 

 

 

 

It can be seen from Table 2.1 that the modulus of elasticity generally increases 

with depth.  The values from 38 mm triaxial tests have an average of between 20 

MPa close to the ground surface and to 70 MPa at a depth of 25 m.  A comparison 

to 38 mm triaxial test results with the 98 mm diameter sample results show that a 

lower stiffness for the clay is obtained from the triaxial test with 98mm diameter 

sample size. This range is higher for plate loading and pressuremeter tests, where 

the clay displays a higher stiffness.  

Gunn et al. (2003) investigated the variation of shear modulus with depth in 

Oxford clays and Kellaways formations in two different sites at Huntingdon, and 

South Peterborough, U.K. There is a sequence of overconsolidated clays and 



 

20 

 

mudstones at both sites. Figure 2.5 shows the sequence of the soil in South 

Petersborough, which consists of ballast, overconsolidated clay and mudstones 

from the Oxford Clay. There is about 4.3 m of overconsolidated clays overlying 

the mudstone beneath the ballast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Shear modulus variation profile of a sequence south of Peterborough 

(Gunn et al., 2003) 
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It can be seen from Figure 2.5 that the shear modulus increases with depth in the 

overconsolidated clay and mudstone, from 5 MPa for a depth lower than 1 m to 

70 MPa and 100 MPa at a depth of 10 m for low moisture soils, and high moisture 

soils respectively. The rate of increase in the shear modulus is higher at shallower 

depths. The same pattern was observed for the site south of Huntingdon. The 

shear modulus in overconsolidated clay at a depth of 4m was 30 MPa and reached 

80 MPa and 100 MPa at depth 10 m for low moisture soils and high moisture 

soils, respectively.  

Studies of the variation in the shear modulus with depth are not limited to clays in 

the UK and clay in general; Shibuya et al. (1992) conducted a series of tests to 

measure the elastic shear modulus of soft clays using shear wave velocity at 9 

different sites. They then introduced an empirical relationship to estimate the 

maximum shear modulus at depth based on the results of the shear wave velocity 

tests. The results show that the shear modulus of elasticity increased with depth 

and the rate of increase was higher at greater depths.  

The results of large plate tests at various depths conducted by Abbiss (1979) show 

that the stiffness of chalk and also its static Young’s modulus increases with 

depth. There have also been a few tests that have measured the modulus of 

elasticity under drained condition (Atkinson, 1975; Hooper and Wood, 1977). 

Hooper and Wood (1977) reported that the effective vertical modulus of elasticity 

increased from approximately 7.5 MN/m
2
 at the ground surface to 20 MN/m

2
 at a 

depth of 18m.  

2.4 Summary 

All the investigations mentioned above show that the modulus of elasticity in soils 

generally increases with depth, although the variation is not necessarily linear or 

exponential. However, it was observed that the rate of increase in the shear 

modulus is usually higher at shallower depths. Comparisons between the in-situ 

and laboratory tests indicate that the testing method significantly affects the 

results. By comparing the results with settlement records, it was concluded, in 
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numerous references, that the results determined from plate loading test give more 

reliable results compared to the laboratory tests. Laboratory tests, such as the 

triaxial test, give considerably lower elastic moduli than the plate loading test, and 

these results were variable and hard to interpret.  
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CHAPTER 3 

 

 

 

 

                               GOVERNING EQUATIONS 

 

 

 

 

 

3. 1 General 

There are several approaches to the formulation of the elastostatic problem related 

to a non-homogeneous medium. The development of the partial differential 

equations governing the elastic non-homogeneity problem is relatively 

straightforward and only the essential steps are presented here for completeness. 

Accounts of the developments are given in several references (e.g. Korenev, 1957, 

Gibson, 1967; Popov, 1973). The elastic material is assumed to be 

inhomogeneous such that the elastic constants ( , )G r z and ( , )r zν have variations 

of the forms 

( , ) ( ); (0, ),G r z G z z= ∈ ∞                                                                               (3.1)            

( , ) Constant; (0, )r z zν ν= = ∈ ∞                                                      (3.2)                                                  
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In this thesis two variations for shear modulus are considered; the non-

homogeneity either has an exponential variation over the entire depth of the half-

space or over a finite depth, beyond which it is constant.  

The exponential variation of the shear modulus is given by  

0( ) ,z
G z G e

λ=
                                                                                                 

(3.3)  

and the segmental variation would be  

1 0( ) ,z
G z G e z d

λ= ≤ ; 
2 0( ) ,d

G z G e z d
λ= ≥                                          (3.4)               

We now introduce the non-dimensional parameter λɶ  for characterizing the non-

homogeneity, such that / aλ λ= ɶ . 

We consider the class of axisymmetric problems in the theory of elasticity, 

referred to the cylindrical polar coordinate system ( , , )r zθ , where the 

displacement vector is 

{ ( , ),0, ( , )}r zu r z u r z=u                                             (3.5) 

and the strain tensor ε  is defined by 
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For axial symmetry, the non-zero components of the Cauchy stress tensor σ are 
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and the constitutive relationship for a non-homogeneous elastic material in which 

the linear elastic shear modulus varies with the coordinate direction z , takes the 

form 

2 ( )[ ]G z eα= +σ I ε                                   (3.8) 

where ( )G z is the linear elastic shear modulus, I  is the unit matrix and 

tr( ) ;
(1 2 )

v
e α

ν
= =

−
ε                                 (3.9) 

andν  is Poisson’s ratio, which is assumed to be a constant. We specifically 

restrict attention to incompressible elastic materials for which isochoric 

deformations give 

tr( ) 0 ; 1/ 2v= =ε                           (3.10) 

The constraints (3.10) imply that the constitutive equations (3.8) are indeterminate 

to within an isotropic stress state ( , )f r z (e.g. Spencer, 1970, 1980; Selvadurai 

and Spencer, 1972); this needs to be determined from the solution of the equations 

of equilibrium, which, in the absence of body forces and for axial symmetry, 

reduce to 

.∇ 0σ ====                                                                                                    (3.11)  

 which gives   

0rr rz rr

r z r

θθσ σ σ σ∂ ∂ −
+ + =

∂ ∂
                         (3.12) 

0rz zz rz

r z r

σ σ σ∂ ∂
+ + =

∂ ∂
          (3.13) 

Using constitutive equations applicable to an incompressible elastic material with 

a spatial variation in the linear elastic shear modulus as defined by (3.8), the 

equations of equilibrium (3.12) and (3.13) can be expressed in terms of the 

displacements as follows:  
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∂ ∂
∇ + + + =

∂ ∂
                             (3.15) 

where 2∇  is the axisymmetric form of Laplace’s operator given by 

2

2

2

2
2 1

zrrr ∂

∂
+

∂

∂
+

∂

∂
=∇           (3.16) 

Eliminating the function ( , )f r z between (3.14) and (3.15) and based on the 

assumption that the differentiations commute, we obtain, 

2 2
2 2 2

2 2 2

2

1
( ) ( ) ( )( )

( )
[ ( ) ]( ) 0

r r r z r
r z

z r

u u u u u
g z u u g z

z r r z zz r r

dg z u u
g z

dz r z

∂ ∂ ∂ ∂ ∂
∇ + ∇ − ∇ + − − −

∂ ∂ ∂ ∂ ∂∂

∂ ∂
+ + + =

∂ ∂

               (3.17) 

where 

dz

dG

G
zg

1
)( =                          (3.18) 

3. 2 Exponential variation of shear modulus  

By restricting attention to the exponential variation of the elastic shear modulus of 

equation (3.3), the equation (3.17) can be reduced to 

2 2
2 2 2

2 2

2

2

( ) ( )

1
[ ]( ) 0

r r r z
r z

r z r

u u u u
u u

z r r zz r

u u u

z r zr

λ λ

λ

∂ ∂ ∂∂
∇ + ∇ − ∇ + − −

∂ ∂ ∂ ∂∂

∂ ∂ ∂
− + + =

∂ ∂ ∂

                                             
(3.19) 

The results (3.19) together with the incompressibility condition 

0r r zu u u

r r z

∂ ∂
+ + =

∂ ∂
                       (3.20) 
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constitute the set of coupled partial differential equations governing the 

displacement field. 

In order to solve equations (3.19) and (3.20) we introduce Hankel transform 

representations (Sneddon, 1951; Selvadurai, 2000a)  of the following form 

1
0

( , ) ( , ) ( )r ru r z U z J r dξ ξ ξ ξ
∞

= ∫                                                         (3.21) 

0
0

( , ) ( , ) ( )z zu r z U z J r dξ ξ ξ ξ
∞

= ∫         (3.22) 

whereξ  is the Hankel transform parameter and nJ is the n
th

-order Bessel function 

of the first kind. Substituting (3.21) and (3.22) into (3.19) and (3.20) gives rise to 

the following: 

0z
r

dU
U

dz
ξ+ =                      (3.23) 

3 2 2
2 2 2 2 2

3 2 2
2 ( ) ( ) 0r r z r z

r z

d U d U d U dU dU
U U

dz dzdz dz dz
λ ξ λ ξ ξλ λξ ξ ξ λ+ + + − + − − + =                                  

                                                                                                                       (3.24)                                

Substituting of (3.23) in (3.24) we obtain 

4 3 2
2 2 2 2 2 2

4 3 2
2 ( 2 ) 2 ( ) 0z z z z

z

d U d U d U dU
U

dzdz dz dz
λ λ ξ λξ ξ ξ λ+ + − − + + =                  (3.25) 

which is the partial differential equation governing the axial displacement field.  

Considering the expressions for the stress-strain relationships (3.8), the strain-

displacement relations (3.6) and the integral expressions (3.21) and (3.22) for the 

displacement components, the transformed expressions for the stress components 

( , )zz r zσ
 
and ( , )rz r zσ  can be written as 

0 ( , ) ( )[ 2 ]z
zz

dU
z G z F

dz
σ ξ = +ɶ                                    (3.26) 
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1 ( )[ ]r
rz z

dU
G z U

dz
σ ξ= − +ɶ                                           (3.27)  

where F  is the Hankel transform of f  defined by  

0
0

( , ) ( , ) ( )F z r f r z J r drξ ξ
∞

= ∫            (3.28) 

The inverse of these stress components are given by 

0
0

( , ) ( ) [ 2 ] ( )z
zz

dU
r z G z F J r d

dz
σ ξ ξ ξ

∞
= +∫                                                      (3.29) 

1
0

( , ) ( ) [ ] ( )r
rz z

dU
r z G z U J r d

dz
σ ξ ξ ξ ξ

∞
= − +∫                                                   (3.30) 

 

3. 3 Segmental variation of shear modulus  

The same procedure is adopted for the segmental variation of the shear modulus. 

By restricting attention to a segmental variation in the elastic shear modulus of 

equation (3.4), the equation (3.17) applicable to the separate domains, takes the 

form   

2 2
2 2 2

2 2

2

2

( ) ( )

1
[ ]( ) 0,

r r r z
r z

r z r

u u u u
u u

z r r zz r

u u u
z d

z r zr

λ λ

λ

∂ ∂ ∂∂
∇ + ∇ − ∇ + − −

∂ ∂ ∂ ∂∂

∂ ∂ ∂
− + + = ≤

∂ ∂ ∂

    
(3.31a) 

 

2 2

2

1
( ) 0,r r

z

u u
u z d

z r r z

∂ ∂∂
∇ − ∇ − = ≥

∂ ∂ ∂
                                                            (3.31b) 

The results (3.31) together with the incompressibility condition of equation (3.20) 

will form the set of coupled partial differential equations governing the 

displacement field. By using Hankel transform representations (3.21) and (3.22), 

the equations (3.31) can be written in the following form  

0z
r

dU
U

dz
ξ+ =                      (3.32) 
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3 2 2
2 2 2 2 2

3 2 2
2 ( ) ( ) 0r r z r z

r z

d U d U d U dU dU
U U

dz dzdz dz dz
λ ξ λ ξ ξλ λξ ξ ξ λ+ + + − + − − + =             

                                                                                                                        (3.33a)                                

4 2
2 4

4 2
2 0,z z

z

d U d U
U z d

dz dz
− + = ≥ξ ξ

                                                                  
(3.33b) 

 

By substituting the equation (3.32) into equations (3.33) we have  

4 3 2
2 2 2 2 2 2

4 3 2
2 ( 2 ) 2 ( ) 0,z z z z

z

d U d U d U dU
U z d

dzdz dz dz
λ λ ξ λξ ξ ξ λ+ + − − + + = ≤     (3.34a)

 

  
4 2

2 4

4 2
2 0,z z

z

d U d U
U z d

dz dz
− + = ≥ξ ξ                                                                 (3.34b)   
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CHAPTER 4 

 

 

 

 

               TRACTION BOUNDARY VALUE PROBLEMS 

 

 

 

 

 

4.1 Introduction  

This chapter deals with the traction boundary value problems of an 

inhomogeneous elastic halfspace. The axisymmetric problem of the interior 

loading of an inhomogeneous isotropic incompressible elastic halfspace by a 

uniform circular load of finite radius is considered. The problem is an 

approximation for the loading induced by an embedded foundation, such as an 

end bearing pile (Poulos and Davis, 1975), an anchor plate (Selvadurai, 1989, 

1993, 1994; Rajapakse and Selvadurai, 1991) or a test device such as a screw 

plate (Selvadurai et al., 1980). The interior loading of an isotropic homogeneous 

elastic halfspace was first examined by Mindlin (1936); here the study is extended 

to include the influence of elastic non-homogeneity. The problem of the interior 

loading of a non-homogeneous medium with a linear variation in the shear 

modulus was examined by Rajapakse (1990a) and Rajapakse and Selvadurai 

(1991) who extended the analysis to include circular footings and anchor plates in 

non-homogeneous elastic media. Two types of elastic non-homogeneity in the 
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shear modulus are considered in this thesis: (i) exponential variation with depth 

over the entire halfspace region and (ii) exponential variation with depth over a 

finite depth, beyond which the elastic shear modulus is assumed to be constant. 

The solution of these problems is accomplished using an integral transform 

formulation of the resulting equations of elasticity. The adaptive numerical 

quadrature technique is used to evaluate the integrals obtained from the integral 

transform technique. Numerical results are presented in order to show the 

influence of non-homogeneity on the responses of an incompressible elastic 

halfspace. The numerical results are then used to establish the accuracy of finite 

element results for the analogous problems. 

In the case of the discrete variation in the elastic non-homogeneity, the 

demarcation point between the variations is assumed to be the point of application 

of the interior circular loads. The procedure can, however, be extended to include 

the case where the demarcation point is located at an arbitrary position in relation 

to the plane of application of the axisymmetric interior loading. The numerical 

results for the surface displacement of the halfspace region are used to compare 

the influences of the bounded and unbounded values in the linear elastic shear 

modulus. The results derived from these two types of variation are also compared 

with equivalent results for the problem of the undrained interior loading of a 

halfspace with a linear variation in the elastic shear modulus (Rajapakse, 1990a).  

In section 4.3, the results are extended to the case where the medium is a layer of 

finite depth d and of infinite lateral extent and the layer is loaded on its surface by 

a vertical pressure 0p . The elastic layer is assumed to be incompressible and its 

shear modulus increases exponentially with depth. The same problem was 

considered by Gibson et al. (1971) where the Poisson’s ratio was 0.5 and the shear 

modulus varied linearly with depth. Gibson and Brown (1979) also examined the 

surface settlement at the corner of a rectangular area of uniform loading, when the 

material had a constant Poisson’s ratios of 1/2, 1/3, and 0 and the shear modulus 

varied linearly with depth.  
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In the last section of this chapter the results for the axisymmetric distributed radial 

loading of an incompressible elastic halfspace is considered, when the elastic 

shear modulus varies with depth in an exponential manner. The developments in 

this section will be used in the next chapter to calculate the bonded contact of a 

rigid disc with a halfspace. The same procedure has been used to formulate the 

traction boundary values and numerical results are presented to show how non-

homogeneity influences the results.  

4.2 The axisymmetric internal loading of an incompressible elastic halfspace  

      with an exponential variation in the linear elastic shear modulus 

In this section we examine the problem of the axisymmetric interior loading of 

incompressible elastic halfspace in which the elastic shear modulus varies 

exponentially over the entire depth. The governing equations as well as the 

boundary conditions of the problem are presented and the influence of non-

homogeneity on the response of halfspace is investigated. 

4.2.1 Governing equations 

The problem is that of an incompressible non-homogeneous elastic halfspace, 

which is loaded internally by an axially directed circular load of radius a  with 

stress intensity 0p  and situated at a depth z d=  from the traction free surface of 

the halfspace (Figure 4.1).  

The most convenient approach for formulating boundary value problems of this 

type (Selvadurai, 1993, 2000a,b; Rajapakse, 1990a) is to consider that the original 

halfspace regions are composed of (i) a layer region (superscript 
(1) 

) occupying 

the domain (0, )r ∈ ∞ and (0, )z d∈  and (ii) a halfspace region (superscript 
(2) 

)  

occupying the domain (0, )r ∈ ∞ and ( , )z d∈ ∞ .  

The elastic layer region and the elastic halfspace region are subjected to the 

following boundary, interface and regularity conditions:  

(1) (1)( ,0) 0; ( ,0) 0σ σ= =zz rzr r                                                          (4.1) 
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(1) (2) (1) (2)
( , ) ( , ); ( , ) ( , )= =r r z zu r d u r d u r d u r d          (4.2)  

(1) (2)
( ),

( , ) ( , )
0,

zz zz

p r r a
r d r d

r a
σ σ

≤
− = 

>
         (4.3) 

(1) (2)
( , ) ( , )rz rzr d r dσ σ=            (4.4) 

In equation (4.3), )(rp  represents the intensity of the internally applied pressure 

over the circular area. In addition to these boundary and continuity conditions, it 

is assumed that the displacements and stresses should satisfy the appropriate 

regularity conditions in the layer and halfspace regions as ∞→zr, .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Axisymmetric Mindlin loads acting at the interior of an 

incompressible non-homogeneous elastic halfspace 
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Consistent with the regularity condition at infinity, the general solutions of 

equation (3.25) can be written as 

 

31 2 4

1 2

1 1 1 1

2 2

;
( , )

;

k zk z k z k z

z k z k z

A e B e C e D e z d
U z

A e B e z d
ξ

− −

− −

 + + + <
= 

+ >                                       

(4.5) 

where 

2

1

1
[ 4 4 ]

2
k iλ λ λξ ξ= + + +  

2 2

2

1
[ 4 4 ]

2
k iλ λ λξ ξ= + − +  

2 2

3

1
[ 4 4 ]

2
k iλ λ λξ ξ= − + + +  

2 2

4

1
[ 4 4 ]

2
k iλ λ λξ ξ= − + − +                      (4.6) 

From equations (3.23) and (4.5), the general solution of ( , )rU zξ  can be 

expressed as 

 

31 2 4

1 2

1 1 1 2 1 3 1 4

2 1 2 2

,

( , )

,

k zk z k z k z

r
k z k z

A k B k C k D k
e e e e z d

U z
A k B k

e e z d

ξ ξ ξ ξ
ξ

ξ ξ

− −

− −


+ − − <

= 
 + >


      (4.7) 

where , ,A B C  and D  in equations (4.5) and (4.7) are arbitrary functions of ξ  to 

be determined from appropriate boundary and continuity conditions. The equation 

(3.14) can be reduced to 

 

2
2

2
( ) 0r r

r z

d U dU
U F U

dzdz
ξ ξ λ ξ− − + − =                     (4.8) 

The substitution of (4.5) and (4.7) into (4.8) results in 

 






>+

<+++
=

−−

−−

dzeqBeqA

dzeqDeqCeqBeqA
zF

zkzk

zkzkzkzk

,

,
)(

21

4321

2212

41312111                              (4.9) 
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where 

3 2

2 2
1,2i i

i i

k k
q k i

λ
λ

ξ ξ
= − − − =  

3 2

2 2
2 2 2

1, 2i i
i i

k k
q k i

λ
λ

ξ ξ
+ +

+ += − + − − =                    (4.10) 

Substituting equations (4.5), (4.7) and (4.9) into the boundary and continuity 

equations defined by (4.1) to (4.4) results in a system of linear simultaneous 

equations for the arbitrary functions 1 2 1 2( ), ( ), ( ), ( )A A B Bξ ξ ξ ξ , …, etc., as 

follows: 

041312111 =+++ θθθθ DCBA                                (4.11) 

041312111 =+++ ηηηη DCBA
    

                     (4.12) 

31 2 4

1 2 1 1 2 2 3 4[ ] [ ] 0
k dk d k d k d

A A e B B e C e D eβ β β β− −− + − − − =      (4.13) 

31 2 4

1 2 1 2 1 1[ ] [ ] 0
k dk d k d k d

A A e B B e C e D e
− −− + − + + =                     (4.14) 

31 2 4

1 2 1 1 2 2 1 3 1 4[ ] [ ] 0
k dk d k d k d

A A e B B e C e D eη η η η− −− + − + + =      (4.15) 

31 2 4

1 2 1 1 2 2 1 3 1 4

( )
[ ] [ ]

( )

k dk d k d k d p
A A e B B e C e D e

G d

ξ
θ θ θ θ− −− + − + + =

ɶ
                           (4.16) 

where 

2

2 2 2

; ; 1,2,3,4

2 ; 2 ; 1,2

i i
i i

i i i i i i

k k
i

q k q k i

β η ξ
ξ ξ

θ θ + + +

= = + =

= − = + =

           (4.17) 

0( ) d
G d G e

λ=                                                                                                      (4.18) 

0

0

( ) ( ) ( )p rp r J r drξ ξ
∞

= ∫ɶ                      (4.19) 
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The substitution of the explicit results for the arbitrary 

functions 1 1 1 1 2 2, , , , andA B C D A B in equations (4.5), (4.7), (3.29) and (3.30) results 

in explicit solutions for the displacements and stresses at an arbitrary point within 

the domain of the non-homogeneous elastic halfspace. The expressions for 

stresses and displacements involve infinite integrals with integrands decaying 

exponentially with increasing values of the Hankel transform parameterξ . This 

completes the formal analysis of the axisymmetric internal loading of an 

incompressible elastic halfspace region with an exponential variation of the linear 

elastic shear modulus with depth. 

4.2.2 Numerical results from analytical solutions and computational   

         estimates  

The procedure outlined in the previous section leads to explicit infinite integral 

expressions for the displacement and stress fields within the non-homogeneous 

but isotropic elastic halfspace region subjected to an axisymmetric circular load of 

constant stress intensity 0p . The integrands of these integrals cannot be expressed 

in explicit forms. Consequently, results of interest for practical applications can 

only be developed through a numerical integration of the infinite integrals. Eason 

et al. (1955) developed a special numerical procedure to evaluate such infinite 

integrals and further applications are investigated by Selvadurai and Rajapakse 

(1985) and Oliveira et al. (2012). Due to the singular nature of these integrands, 

an adaptive numerical procedure is used to enhance the accuracy of the numerical 

results; examples of such an application are given by Rahimian et al. (2007) and 

Katebi et al. (2010). For numerical evaluation of the integrals, the upper limit of 

integration is replaced by a finite value
0ξ ; this limit is increased until a 

convergent result is obtained.  

The approach outlined in this section was applied to evaluate the influence of the 

non-homogeneity on the displacements of a non-homogeneous elastic halfspace 

under uniform internal loading over a circular area. It should be pointed out that 

all numerical results are presented in non-dimensional forms.  
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Figure 4.2 shows the surface displacement of a non-homogeneous incompressible 

elastic halfspace for different λɶ , which is directly related to the shear modulus 

by
0

z
G G e

λ= and /aλ λ= ɶ . The value of 0λ =ɶ
  represents the case of a 

homogeneous halfspace in which
0G G=  for the entire depth.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Variation of the vertical displacement for different λɶ  

 

The variations in vertical displacement for different locations of the loading 

   
ɶd ( ɶd = d / a) are shown in Figure 4.3. It is evident that the presence of non-

homogeneous conditions has a significant effect on the maximum surface 

displacement of the halfspace.  

To provide a better estimate of the relative influence of the elastic non-

homogeneity on the displacements of the medium, the ratio of the displacement in 

a non-homogeneous medium to a homogeneous medium for different values of λɶ  

is illustrated in Figure 4.4. 
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Figure 4.3: Variation of the vertical displacement for different depths of  

loading (
  
ɶd ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Ratio of displacement in a non-homogeneous medium to a 

homogeneous medium for different λɶ  
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Figure 4.5 shows the variation of the vertical displacement of a non-homogeneous 

incompressible halfspace in the z-direction for different shear moduli at 

depths   ɶd = 0  and    ɶd = 1respectively. 

The computational results are also indicated by the symbols □, ○, ∆, etc. in 

Figures 4.5, 4.6 and 4.7. By comparing the computational results with analytical 

results, it can be seen that there is an excellent correlation between the analytical 

results derived for the exponential variations in the shear modulus, and the 

computational results (accurate to within 0.3 %). This almost negligible difference 

could have arisen because the halfspace region was idealized as a finite domain. 

The discrepancies are considered to be well within the range acceptable for 

engineering application of the results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5:  Variation of the vertical displacement along the z-axis for different 

λɶ at depths   ɶd = 0  and   ɶd = 1 



 

40 

 

Furthermore, the variations in the vertical displacement of a non-homogeneous 

incompressible halfspace along the r-axis for different λɶ  at depths    ɶd = 0  and    ɶd = 1 

are shown in Figure 4.6. This figure illustrate that the response of the medium is 

influenced by the degree of non-homogeneity. As would be expected, the vertical 

displacement decreases as the shear modulus increases, if all other parameters are 

kept constant. (i.e. as G increases, the stiffness of the halfspace also increases). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Variation of the vertical displacement along the r-axis for different λɶ  

at depths    ɶd = 0  and   ɶd = 1 

 

The numerical results for the linear and exponential fit mentioned in chapter 2 are 

shown in Figure 4.7a. For a better understanding of how the degree of non-

homogeneity influences the response, the variation of vertical displacements 

along the z-axis for the fitted data has been plotted in Figure 4.7b for different 

depths and diameter of the loading. 
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         (a)                                                                    (b)                                                          

 

Figure 4.7: Variations of vertical displacement along the z-axis for (a) the fitted 

linear and exponential variation of shear modulus to the data provided by Burland 

et al. (1977), (b) the fitted exponential variation of shear modulus to the data 

provided by Burland et al. (1977) 

 

4.3 The axisymmetric internal loading of an incompressible elastic halfspace                   

       with segmental variation in the linear elastic shear modulus 

This section examines the problem of the axisymmetric interior loading of an 

incompressible isotropic elastic halfspace where the linear elastic shear modulus 

has an exponential variation over a finite depth, beyond which it is constant. The 

equations of elasticity governing this type of non-homogeneity and the numerical 

results are presented. Numerical results are used to compare the influence of the 

bounded and unbounded values of the shear modulus and to verify the accuracy of 

the finite element results.  
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4.3.1 Governing equations 

Referring to Figure 4.1, the physical domain of interest is exactly the same as in 

the previous section and is taken to be an incompressible, non-homogeneous 

elastic halfspace subjected to an axially directed circular load of radius a  with 

stress intensity 0p  situated at a depth z d=  from the traction free surface of the 

halfspace. The shear modulus ( )G z has an exponential variation over a finite 

depth beyond which it is constant according to equation (3.4).  

The elastic layer region and the elastic halfspace region are subjected to the 

following boundary and interface conditions:  

(1) (1)( ,0) 0; ( ,0) 0σ σ= =
zz rz

r r          (4.20) 

(1) (2) (1) (2)( , ) ( , ); ( , ) ( , )= =r r z zu r d u r d u r d u r d                                         (4.21) 

(1) (2)
( ),

( , ) ( , )
0,

zz zz

p r r a
r d r d

r a
σ σ

≤
− = 

>
                  (4.22) 

(1) (2)( , ) ( , )rz rzr d r dσ σ=                                            (4.23) 

In equation (4.22), ( )p r  represents the intensity of the internally applied pressure 

over the circular area. In addition, the displacement and stress fields should satisfy 

the regularity conditions applicable to the layer and halfspace regions as ∞→zr, . 

Consistent with the regularity conditions at infinity, the transformed solution for 

the displacement components ( , )ru r z  and ( , )zu r z  can be written as  

 
31 2 4

1 1 1 1 0

0

( , ) [ ] ( ) ;k zk z k z k z

z
u r z A e B e C e D e J r d z dξ ξ ξ

∞
− −= + + + <∫               (4.24a) 

 2 2 0

0

( , ) [ ] ( ) , ;
z z

zu r z A e B ze J r d z d
ξ ξ ξ ξ ξ

∞
− −= + >∫              (4.24b) 

And 

31 2 41 31 1 1 2 1 4
1

0

( , ) [ ] ( ) ;
k zk z k z k z

r

C kA k B k D k
u r z e e e e J r d z dξ ξ ξ

ξ ξ ξ ξ

∞
− −= + − − <∫      (4.25a) 



 

43 

 

2 2 1

0

1
( , ) [ ( ) ] ( ) ;z z

r
u r z A e B z e J r d z d

ξ ξ ξ ξ ξ
ξ

∞
− −= + − >∫     (4.25b) 

where 1 2 3 4, , ,k k k k  are defined by equation (4.6) and , ,A B C  and D  are arbitrary 

functions of ξ  to be determined from appropriate boundary and continuity 

conditions.  

Using (4.24), (4.25) and (3.15), ( , )f r z  takes the following form  

31 2 4

1 1 1 2 1 3 1 4 0

0

( , ) [ ] ( ) ;k zk z k z k z
f r z A q e B q e C q e D q e J r d z dξ ξ ξ

∞
− −= + + + <∫           (4.26a) 

2 0

0

( , ) [ 2 ] ( ) ;zf r z B e J r d z dξ ξ ξ ξ
∞

−= − >∫           (4.26b) 

where 1 2 3 4, , ,q q q q  are defined by equation (4.10). Substituting equations (4.24), 

(4.25) and (4.26) into the boundary and continuity equations defined by (4.20) - 

(4.23) gives a system of linear simultaneous equations for the arbitrary 

functions 1 2 1 2( ), ( ), ( ), ( )A A B Bξ ξ ξ ξ , …, etc.,. The substitution of the explicit 

results for arbitrary functions 1 1 1 1 2 2, , , , andA B C D A B  in equations (3.29), (3.30), 

(4.24) and (4.25) results in explicit solutions for the displacements and stresses at 

an arbitrary point within the domain of the non-homogeneous elastic halfspace. 

The expressions for stresses and displacements involve infinite integrals with 

integrands decaying exponentially with increasing values of the Hankel transform 

parameter ξ . This completes the formal analysis of the axisymmetric internal 

loading of an incompressible elastic halfspace region with an exponential 

variation of the linear elastic shear modulus with depth. 

4.3.2 Numerical results: the influence of variations in the elastic shear   

         modulus with depth 

The same numerical procedure used in section 4.2.2 was applied to evaluate the 

explicit infinite integral expressions for the displacement and stress fields within 

the non-homogeneous elastic halfspace under a buried circular load. 
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In the following, numerical results are presented to illustrate the influence of 

segmental non-homogeneity on results of engineering interest. Furthermore, in 

order to have a better understanding of the influence of non-homogeneity on 

displacements and stresses, a comparison has been made between these results 

and those obtained from section 4.2 and Rajapakse (1990a). 

 

 

 

 

 

 

 

 

 

Figure 4.8. Variation of the vertical displacement for different λɶ  ( λɶ  is directly 

related to the shear modulus obtained from Eq. 3.4) 

 

In previous section the problem with an exponential variation of the shear 

modulus was considered, while Rajapakse (1990a) considered a linear variation in 

the shear modulus. Exponential, segmental and linear variations are given by 

equations (3.3), (3.4) and (4.27) respectively.  

0( ) , 0G z G mz m= + ≥                                                                          (4.27) 

Since we have different variations of the shear modulus, we need to be able to 

relate these variations to each other in order to make comparisons. These can be 

related thorough the following equation: 
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Exp Linear

00

( ) ( )

zz

dG z dG z

dz dz ==

   
=     

                                                                          (4.28) 

Equation (4.28) along with equations (3.3) and (4.27) yields  

0

m
λ

G
=           (4.29) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Vertical surface displacement for different depths and diameters of the 

loading 

 

Figure 4.8 shows the surface displacement of a non-homogeneous incompressible 

elastic halfspace for different λɶ , which is directly related to the shear modulus. A 

comparison between exponential and segmental variations can also be seen in 

Figure 4.8. The x-axis shows the variation of λɶ  in which 0λ =ɶ  represents the 

homogeneous case.  

The vertical surface displacement for different depths and diameters of the 

loading ( / )=ɶ ɶd d d a are shown in Figure 4.9 while the variations of vertical 
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displacement along the z-axis for different depths of the loading ( / )=ɶ ɶd d d a are 

shown in Figure 4.10. It is evident that the presence of non-homogeneity has a 

significant effect on the maximum displacement of the halfspace.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Variations of vertical displacement along the z-axis for different 

depths of the loading 

 

To provide a better estimate of the relative influence of the elastic non-

homogeneity on the displacements of the medium, the ratio of the displacement in 

a non-homogeneous medium to that in a homogeneous medium has been 

evaluated for different values of λɶ  and are presented in Figure 4.11 for both 

exponential and segmental variations. 
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Figure 4.11: Ratio of displacement in a non-homogeneous medium to a 

homogeneous medium for different λɶ     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 4.12:  Variation of the vertical displacement along the z-axis for different 

λɶ  at a depth  1d =ɶ   
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Figure 4.12 shows the variation of the vertical displacement of a non-

homogeneous incompressible halfspace with segmental variation of the shear 

modulus in the z-direction for different λɶ  at a depth 1d =ɶ . The comparison of the 

vertical displacement along the z-direction for different shear modulus is shown in 

Figure 4.13. As would be expected, the vertical displacement is much lower for 

the exponential variation compared to the linear or segmental variation of the 

shear modulus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13:  Comparison of vertical displacement along the z-axis for 0.5λ =ɶ  and 

1λ =ɶ  

 

Furthermore, the variation of vertical displacement of a non-homogeneous 

incompressible halfspace with segmental variation along the r-axis at depth 1d =ɶ  

is shown in Figure 4.14. Figure 4.15 compares of the vertical displacement along 

the r-axis for exponential, segmental, and linear variations of the shear modulus. 

As can be seen in the results presented in Figure 4.15, the slope of the curve 

should be zero on 0r = ; however, this is not correctly addressed by the results of 

Rajapakse (1990a). 
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Figures 4.14:  Variation of the vertical displacement along the r-axis for different 

λɶ  at a depth  1d =ɶ  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Comparison of vertical displacement along the r-axis for 0.5λ =ɶ  and 

1λ =ɶ
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The figures presented illustrate that the response of the medium is influenced by 

the degree of non-homogeneity. As would be expected, the vertical displacement 

decreases as the shear modulus increases, if all other parameters are kept constant 

(i.e. as G increases, the stiffness of the halfspace also increases). 

Figure 4.16 shows the variation of non-dimensionalized vertical stress along the z-

direction for segmental non-homogeneity at a depth 2d =ɶ . As is evident from this 

Figure, 
zz

σ  sustains a discontinuity at 2d =ɶ due to the effect of an externally 

applied load. It can be observed that 
zz

σ decreases with the increase in the shear 

modulus but, unlike the displacement, the influence of non-homogeneity is 

moderate and limited to the vicinity of the applied load.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Normal stress along the z-axis  
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4.4 Settlement of a uniform circular load on an incompressible elastic finite      

      layer whose shear modulus varies exponentially with depth 

In the previous chapter, the influence of non-homogeneities on the stresses and 

displacements of a loaded incompressible isotropic elastic halfspace was 

considered. The loading was a uniform circular load in the interior of a halfspace. 

In the section 4.2, the shear modulus was considered to vary exponentially with 

depth over the entire halfspace region while in section 4.3, it was assumed to vary 

exponentially with depth over a finite depth, beyond which the elastic shear 

modulus was constant.    

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Uniform circular load on the surface of an undrained non-

homogeneous elastic layer with a depth d 

 

The present section extends these results for the case where the medium is a layer 

of finite depth d and of infinite lateral extent. The layer is loaded on its surface 

0z =  by a vertical pressure 0p  uniformly distributed over a circular area of 

radius a while the base z d= is considered to be the underlying rigid medium 

(Figure 4.17). The elastic layer is assumed to be incompressible with a shear 

modulus that increases exponentially with depth. The analytical formulation of the 

problem is presented as Bessel integrals with the aid of Hankel transforms. 
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Numerical results are presented to show how non-homogeneity influences the 

displacements and stresses. 

4.4.1 Governing equations 

We consider the problem of an incompressible non-homogeneous elastic layer of  

depth d subjected to a circular surface load of radius a  with a stress intensity 0p  

(Fig. 4.17). The boundary and interface conditions of the problem are:  

(1) ( ,0) 0rz rσ =                                             (4.30) 

( ),
( ,0)

0,
zz

p r r a
r

r a
σ

≤
= 

>
                                   (4.31) 

( , ) 0; ( , ) 0= =r zu r d u r d                (4.32) 

In equation (4.31), )(rp  represents the intensity of the internally applied pressure 

over the circular area. With the aid of equations (3.21), (3.22) and (3.25) the 

transformed solution for the displacement components ( , )ru r z  and ( , )zu r z  can be 

written as  

31 2 4

1 1 1 1 0

0

( , ) [ ] ( ) ; 0k zk z k z k z

z
u r z A e B e C e D e J r d z dξ ξ ξ

∞
− −= + + + < <∫              (4.33) 

31 2 41 31 1 1 2 1 4
1

0

( , ) [ ] ( ) ; 0
k zk z k z k z

r

C kA k B k D k
u r z e e e e J r d z dξ ξ ξ

ξ ξ ξ ξ

∞
− −= + − − < <∫                                                                         

                                                                                                                          (4.34) 

where 1 2 3 4, , ,k k k k  are defined in equation (4.6) and , ,A B C  and D  are arbitrary 

functions of ξ  to be determined from the appropriate boundary conditions.  Using 

the above equation along with equations (3.15) and (3.28) we have 

31 2 4

1 1 1 2 1 3 1 4 0

0

( , ) [ ] ( ) ; 0k zk z k z k z
f r z A q e B q e C q e D q e J r d z dξ ξ ξ

∞
− −= + + + < <∫         (4.35) 

where 1 2 3 4, , ,q q q q  are defined by equation (4.10).
  

Substitution of the equations 

(4.33), (4.34) and (4.35) into the boundary and continuity equations defined by 
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(4.30) to (4.32) results in a system of linear simultaneous equations for the 

arbitrary functions 1 1 1 1( ), ( ), ( ), ( )A B C Dξ ξ ξ ξ , …., etc., as follows : 

041312111 =+++ ηηηη DCBA                                          (4.36) 

1 1 1 2 1 3 1 4

0

( )p
A B C D

G

ξ
θ θ θ θ+ + + =

ɶ
                                                     (4.37) 

31 2 4

1 1 1 2 3 4 0
k dk d k d k d

A e B e C e D eβ β β β− −+ − − =                                         (4.38) 

31 2 4

1 1 1 1 0
k dk d k d k d

A e B e C e D e
− −+ + + =                                          (4.39) 

where , , ( 1,2,3, 4)i i i iβ θ η = is defined by equation (4.17) and ( )p ξɶ  by equation 

(4.19). Substitution of the explicit solution for arbitrary functions 1 1,A B  1,C and 

1D  in equations (4.33) and (4.34) results in explicit solutions for the 

displacements and stresses at an arbitrary point within the domain of the elastic 

halfspace. The expressions for stresses and displacements involve infinite 

integrals with integrands decaying exponentially with increasing values of the 

Hankel transform parameterξ , which will be solved in the next section. 

4.4.2 Numerical results  

In the preceding sections, the solutions for displacements and stresses in a non-

homogeneous elastic layer region under uniform axial stress 
0p  applied at the 

surface within a circular area a, were have been developed in terms of infinite 

integrals. These integrals have particularly complicated integrands and cannot be 

evaluated in exact closed form. Consequently, it is necessary to evaluate them 

numerically.  The same numerical procedure as adopted in section 4.2 was applied 

to evaluate the explicit infinite integral expressions for the displacement and stress 

fields within the non-homogeneous elastic halfspace under a buried circular load. 

In the ensuing we present numerical results that illustrate how exponential 

inhomogeneity can influence the results of engineering interest. It should be 

pointed out that all numerical results are presented in a non-dimensional form.                                           
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Figure 4.18 shows the surface displacement of a non-homogeneous 

incompressible elastic layer region with a depth 300d =ɶ , which resembles the 

halfspace results, for different λɶ  which is directly related to the shear modulus by 

equation (3.3).  These results are compared to results presented in previous 

sections in order to check the accuracy of the results.  

 

 

 

 

 

  

 

 

 

 

 

 

Figure 4.18: Variation of the vertical displacement along the z-axis for different 

λɶ  ( λɶ  is directly related to the shear modulus obtained from by Eq. 3.3) for 

300d =ɶ  

 

Figures 4.19 and 4.20 show the variation of the vertical displacement along the z-

axis for different λɶ  for a depth of the layer region λ =ɶ 10 and 15, respectively. It is 

evident that the presence of non-homogeneous conditions has a significant effect 

on the maximum surface displacement of the halfspace. By comparing Figures 

4.18, 4.19 and 4.20, it can also be seen that the depth of the layer region has a 

significant effect on the results but this effect is not uniform for different λɶ ; this 

will be discussed further in following paragraphs.  

It should be mentioned that the computational results are indicated by the symbols 

□, ○, ∆, etc. in Figures 4.19 to 4.21.  
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Figure 4.19: Variation of the vertical displacement along the z-axis for different 

λɶ for 10d =ɶ  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20: Variation of the vertical displacement along the z-axis for different 

λɶ for 50d =ɶ  
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When comparing the computational results with the analytical results, there is an 

excellent correlation between the analytical results derived for the exponential 

variations in the shear modulus, and the computational results.  

Figure 4.21 shows the variation of the vertical displacement along the r-axis for 

different λɶ  for two depths of loading, 10d =ɶ  and 50d =ɶ . In order to provide a 

better estimate of the relative influence of the depth of the layer region on the 

displacements of the medium and also the influence of non-homogeneity for the 

different depths, the surface displacement has been evaluated for different dɶ .  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21: Variation of the vertical displacement along the r-axis for different 

λɶ for (a) 50d =ɶ  (b) 100d =ɶ  

 

Figure 4.22 shows the vertical surface displacement for different depths of the 

layer region for different values of λɶ  . It can be seen from these figures that the 

depth of loading has a significant effect on the displacement but this affect 

decreases as the non-homogeneity increases. This could have been anticipated 

since the stiffness of the medium increases as G increases. It can also be seen in 

Figure 4.22 that the depth when the finite region resembles the halfspace 
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decreases as the non-homogeneity increases and, at 1.5λ =ɶ , the finite layer 

resembles halfspace when the depth of the finite layer reaches almost 8 times the 

radius of loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: Vertical surface displacement for different depths of the layer region 

for 0.0, 0.1, 0.5, 1.0, 1.5λ =ɶ
 

 

4.5 Axisymmetric distributed radial loading on a surface of an   

      incompressible elastic halfspace with an exponential variation in the   

      linear elastic shear modulus 

In this section we develop the results for the axisymmetric distributed radial 

loading of an incompressible elastic halfspace where the elastic shear modulus 

varies with depth in an exponential manner. The development of this section will 
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be used in the following chapter in order to calculate the bonded contact of a rigid 

disc with a halfspace. The same procedure was used to formulate the traction 

boundary value and the numerical results are presented to show the influence of 

non-homogeneity on the results.  

4.5.1 Governing equations 

We consider the problem of an incompressible non-homogeneous halfspace 

subjected to a surface distributed radial load of radius a  with stress intensity 0τ  

(Figure 4.23). The boundary and interface conditions of the problem are as 

follows:  

0)0,()1( =rzzσ              (4.40) 

(1) ( ),
( ,0)

0,
rz

r r a
r

r a

τ
σ

≤
== 

>
                   (4.41) 

In equation (4.41), ( )rτ  represents the intensity of the lateral load over the 

circular area.  

 

 

 

 

 

 

 

 

 

 

Figure 4.23: Uniform lateral circular load on the surface of an undrained non-

homogeneous elastic halfspace 
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With the aid of equations (4.7), (4.9) and (4.11) along with regularity conditions 

at infinity, the transformed solution for the displacement components ( , )ru r z , 

( , )zu r z
 
, and ( , )f r z can be written as  

1 2

0

0

( , ) [ ] ( ) ; 0k z k z

z
u r z Ae Be J r d z dξ ξ ξ

∞
− −= + < <∫                                      (4.42) 

1 21 2
1

0

( , ) [ ] ( ) ; 0
k z k z

r

Ak Bk
u r z e e J r d z dξ ξ ξ

ξ ξ

∞
− −= + < <∫                                    (4.43) 

1 2

1 2 0

0

( , ) [ ] ( ) ; 0k z k z
f r z Aq e Bq e J r d z dξ ξ ξ

∞
− −= + < <∫                                        

(4.44) 

where 1 2,k k are defined by equation (4.6) and 1 2,q q  are defined by equation 

(4.10). A and B are arbitrary functions of ξ  to be determined from the appropriate 

boundary conditions.   

Substituting equations (4.42), (4.43) and (4.44) into the boundary and continuity 

equations defined by (4.40) and (4.41) results in: 

2 2

2 2 2 2
0 2 2 1 1 1 2

(2 )( )

( 2 )( ) (2 )( )

k q
A

G q k k k q k

ξτ ξ

ξ ξ

−
=

− + + − +

ɶ
                            (4.45) 

1 1

2 2 2 2
0 2 2 1 1 1 2

( 2 )( )

( 2 )( ) (2 )( )

q k
B

G q k k k q k

ξτ ξ

ξ ξ

−
=

− + + − +

ɶ
                            (4.46) 

where ( )τ ξɶ  is defined as 

1
0

( ) ( ) ( )r r J r drτ ξ τ ξ
∞

= ∫ɶ

                                                                                    
(4.47) 

4.5.2 Numerical results  

The same numerical procedure presented in the previous sections is used to 

evaluate the integral equations (4.42), (4.43) and (4.44). All the results presented 

here are dimensionless.  
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Figure 4.24 shows the radial surface displacement of a non-homogeneous 

incompressible elastic halfspace for different λ along the r-axis subjected to a 

radial distributed load. The value of 0λ =ɶ
  represents the case of the homogeneous 

halfspace in which
0G G=  for the entire depth. The computational results are also 

indicated by the symbols □, ○.  

As it can be seen from Figure 4.24, the radial displacement decreases as the non-

homogeneity increases.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24 Radial surface displacement of a non-homogeneous incompressible 

elastic halfspace for different λɶ along the r-axis 

 

4.6 Finite element model, calibrating with the known analytical results  

To provide a comparison with the analytical solutions, a finite element analysis of 

the incompressible non-homogeneous elastic halfspace problem was performed 

using the COMSOL Multiphysics
TM 

software. The domain of interest in the 

problems developed in this thesis is an incompressible halfspace, which extends 
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to infinity in both the r- and z-directions. In the finite element model in this thesis, 

the axisymmetric halfspace region is represented as a finite domain where the 

outer boundaries extend to 1000 times the radius of the loaded area in both the r- 

and z-directions. In order to obtain this ratio   ( / 1000l a = ), a calibration was 

performed between computational results with different ( /l a ) ratios and known 

analytical solutions for the classical contact problem (Selvadurai, 1979a; 

Gladwell, 1980). A mixed U P−  formulation was employed in the COMSOL 

Multiphysics
TM

 software in order to model an incompressible material.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25 The contact problem for an elastic halfspace and a rigid circular 

indentor modeled by a finite domain 

Figure 4.25 shows the finite element representation of the classical problem of the 

indentation of the surface of a homogeneous halfspace by a rigid circular disc of 

radius ,a  subjected to an axial load P . As can be seen from Figure 4.26, the 

analytical and computational results are virtually identical beyond / 1000l a = . 

The same ( /l a ) ratio was used to develop computational results for the non-

homogeneous case.  
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Figure 4.26 Vertical displacement for different /l a  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27 Finite element representation of the classic problem of the indentation 

of the surface of an incompressible halfspace by rigid circular disc. 
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The analytical results developed in this thesis are compared with the FE results for 

a non-homogeneous incompressible halfspace with either exponential or 

segmental variation of the shear modulus (the computational results are indicated 

by the symbols □, ○, ∆, etc. in the associated Figures).  

Figure 4.27 shows, as an example, the FE model of the indentation problem 

between an incompressible non-homogeneous elastic halfspace and a rigid 

circular disc subjected to uniform pressure 
0p  . As it can be seen the mesh size is 

finer around the rigid indenter. The model shown in Figure 4.27 consists of 9498 

elements and 43299 degree of freedom.  
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CHAPTER 5 

 

 

 

 

CONTACT PROBLEMS – MIXED BOUNDARY VALUE 

PROBLEMS 

 

 

 

 

 

5.1 Introduction 

The topic of contact mechanics occupies an important position in the mechanics 

of solids where the results derived for the interaction of a rigid indenter and a 

halfspace form the basic problem. The classical elasticity solutions to the 

mechanics of contact commences with the solutions by Hertz (1882) and 

Boussinesq (1885) and developments in this area are documented in several texts 

and review articles by Korenev (1960),  Galin (1961), Sneddon (1951, 1965), 

Ufliand (1956), Goodman (1974), de Pater and Kalker (1975), Selvadurai (1979a, 

2000b, 2007), Gladwell (1980), Johnson (1985), Aleynikov (2011) and Barber 

(2010). The great majority of the classical studies in this area focus on the contact 

problem where the halfspace region is homogeneous and the indenter is both rigid 

and axisymmetric. Departures to this model are documented by Gorbunov-

Posadov (1940), Selvadurai (1979 b,c; 1980, 1981, 1984a), Gladwell (1980), 

Rajapakse and Selvadurai (1986), Selvadurai and Dumont (2011), and Aleynikov 
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(2011) who examine the cases where the contacting element possesses flexural 

stiffness.  

In this chapter we examine the problem of adhesive contact between a rigid 

circular punch and an incompressible elastic halfspace region where the shear 

modulus of the elastic material varies exponentially with depth. Also, unless 

otherwise stated, the rigid circular indenter is assumed to have a flat base, which 

makes the class of problems examined in the paper purely axisymmetric. In 

particular, attention is focused on estimating the influence of the elastic 

inhomogeneity on the adhesive elastic stiffness of the rigid circular indenter. The 

solution of the adhesive contact problem is achieved using a numerical scheme 

where the fundamental solutions for the axisymmetric loading of the non-

homogeneous halfspace region due to normal and shear loads applied over 

discrete regions of the surface of the halfspace are combined to determine the 

axial and radial displacements over the region of the indenter. The distribution of 

the discrete values of the contact stresses are determined by considering the 

displacement constraints imposed on the contact region and the overall 

equilibrium of the indenter. This approach to the analysis of the adhesive contact 

problem related to the indentation of the inhomogeneous halfspace region is an 

extension to similar procedures that have been successfully used in discretized 

approaches for solving soil-structure interaction problems (Selvadurai, 1979a). 

We also examine the contact problem between a flexible circular plate and an 

incompressible non-homogeneous isotropic elastic halfspace is examined using 

the energy method. The shear modulus is assumed to vary exponentially with 

depth.  The variational approach proposed by Selvadurai (1979c, 1980) was used 

to analyse the flexural behaviour of a finite plate resting on an elastic halfspace. In 

this approach, the deflected shape of the plate in represented by a power series in 

terms of the radial coordinate r, which satisfies the kinematic constraints of the 

plate formation. The total potential energy functional is then developed for the 

plastic-elastic halfspace region which is defined in terms of four undetermined 

constants characterizing the deflected shape of the plate. Invoking the Kirchhoff 
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boundary conditions applicable to the free edge of the plate can eliminate two 

constants in the series and two remaining constants are evaluated by the 

minimization of the total potential energy functional of the system.  

5.2 Adhesive contact problem for a non-homogenous incompressible elastic  

      halfspace 

In this section we examine the axisymmetric adhesive contact problem for a rigid 

circular plate and an incompressible elastic halfspace, where the linear elastic 

shear modulus varies exponentially with depth. The analytical solution of the 

mixed boundary value problem entails a set of coupled integral equations that 

cannot be solved easily through the use of techniques proposed in the literature. In 

this thesis a computational scheme is adopted where the contact normal and 

contact shear stress distributions are approximated by their discretized 

equivalents. The consideration of compatibility of deformations due to indentation 

by a rigid disc in adhesive contact yields a set of algebraic equations that give the 

discretized equivalents of the contacts stresses and the axial stiffness of the elastic 

halfspace. 

5.2.1 Theoretical developments 

Prior to developing a numerical approach to the solution of the adhesive contact 

problem, it is instructive to record salient results applicable to the indentation of 

the homogeneous elastic halfspace region. To provide some generality, we 

consider the indentation of the homogeneous elastic halfspace problem with no 

restriction on Poisson’s ratio. We consider an axisymmetric formulation of the 

contact problem where the displacement and stress fields referred to the 

cylindrical polar coordinate system are given by      

( , ) { ( , ), ( , )}
r z

r z u r z u r z=u                   (5.1) 

and  
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0

( , ) 0 0

0

rr rz

rz zz

r z θθ

σ σ

σ

σ σ

 
 

=  
 
 

σ               (5.2) 

The mixed boundary value problem governing the adhesive indentation of the 

homogeneous elastic halfspace is given by 

( ,0) ; 0= ∆ ≤ ≤zu r r a  

( ,0) 0 ; 0= ≤ ≤ru r r a  

( ,0) 0 ;σ = < < ∞zz r a r  

( ,0) 0 ;σ = < < ∞rz r a r                                                                                  (5.3) 

In addition, the displacement and stress fields should reduce to zero as ,r z → ∞ . 

The solution to the indentation problem was presented in a general fashion by 

Mossakovskii (1954) and Ufliand (1956) where the axial displacement 

distribution was defined by ( )w r and the radial displacement was defined by 

( )u r . ( )u r . The contact normal stress ( )zz rσ normalized with respect to the shear 

modulus and ( / )a∆  is expressed as { }( ) / (1 ) ( )zz r G aσ ν σ ξ= − ∆ − ɶɶ  and the contact 

shear stress ( )rz rσ in the adhesive zone, normalized with respect to the shear 

modulus and ( / )a∆ is expressed as { }( ) / (1 ) ( )rz r G aσ ν τ ξ= − ∆ − ɶɶ . The normalized 

stresses ( )σ ξɶ  and ( )τ ξɶ  are   governed by a pair of coupled integral equations of 

the form 
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dt t t
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∫ ∫ ∫ ∫
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ɶ ɶ ɶ
                   (5.5) 

where /r aξ =ɶ , ( ) ( )zu r w ξ= ∆ ɶɶ , ( ) ( )ru r u ξ= ∆ ɶɶ  and ∆  is the axial indentation. 

Also, *( )w ξɶɶ  and *( )u ξɶɶ  are non-dimensional displacements that are prescribed in 
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the contact zone and =(1-2 )/(2-2 )γ ν ν . For example, in the case of a rigid circular 

indenter in adhesive contact with an elastic halfspace region, ( ) 1w ξ∗ =ɶɶ  and 

( ) 0u ξ∗ =ɶɶ . Using a Wiener-Hopf/Hilbert transform technique (Gladwell, 1980) for 

the solution of the mixed boundary value problem, these authors (Mossakovskii, 

1954; Ufliand, 1956) were able to develop explicit expressions for the distribution 

of contact stresses at the base of the indenter and use the results to obtain a 

relationship between the force P  necessary to induce the induced displacement 

∆ ; i.e. 

log (3 4 )

8 2(1 2 )

eP

a

ν

µ ν

−
=

∆ −
                  (5.6) 

An alternative to the development of an exact solution was first proposed by 

Selvadurai (1984b, 2000c, 2003, and 2009) and was applied by Selvadurai and Au 

(1986) to investigate the mechanics of anchors embedded at bimaterial interface 

regions. Selvadurai’s bounding procedure involves the introduction of either 

inextensibility constraints or frictionless conditions at the interface between the 

bimaterial regions. The same approach can be adopted to “bound” the axial 

stiffness of the bonded rigid indenter. The mixed boundary value problem defined 

by (5.3) is replaced by reduced boundary value problems that impose either an 

inextensibility constraint over the entire surface of the halfspace or a frictionless 

constraint over the entire surface of the halfspace. The relevant sets of boundary 

conditions are, respectively, 

( ,0) ; 0= ∆ ≤ ≤zu r r a  

( ,0) 0 ; 0= ≤ < ∞ru r r  

( ,0) 0 ;σ = < < ∞zz r a r            (5.7) 

and  

( ,0) ; 0= ∆ ≤ ≤zu r r a  
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( ,0) 0 ; 0σ = ≤ < ∞rz r r  

( ,0) 0 ;σ = < < ∞zz r a r            (5.8) 

The solution of the mixed boundary value problems defined by Eqs. (5.7) and 

(5.8) is elementary (Sneddon, 1951, 1965; Selvadurai, 1979a, 2000b; Gladwell, 

1980) and, using these results, the bounds for the elastic stiffness of the bonded 

rigid disc can be expressed in the form 

1 2(1 )

2(1 ) 8 (3 4 )

P

a

ν

ν µ ν

−
≤ ≤

− ∆ −
                      (5.9) 

In the limit when 0ν = , the exact solution Eq. (5.6) gives  

log 3
0.55

8 2

eP

aµ
= ≈

∆
                     (5.10) 

and the bounds (5.9) give 

0.50 0.67
8

P

aµ
≤ ≤

∆
                                   (5.11) 

In the limit when 1/ 2ν = , the bounds Eq. (5.9) converge and yield the same 

result as the exact solution (Eq. (5.6)). The influence of material incompressibility 

on the behaviour of the contact problem is clearly evident and, in the case of the 

isotropic homogeneous elasticity problem applicable to an incompressible elastic 

material, the absence of radial displacement on the surface of the halfspace due to 

Boussinesq’s fundamental result for the normal loading of the halfspace region 

(Bousssinesq, 1885; Michell, 1900; Love, 1927; Westergaard, 1952; Timoshenko 

and Goodier, 1970; Selvadurai, 2000d, 2001a,b; Barber, 2010) pre-empts the need 

to consider the constraints imposed by bonding in the solution of the contact 

problem. This observation is strictly applicable to the case of a homogeneous 

elastic halfspace problem and does not generally apply in situations where the 

incompressible elastic halfspace region is non-homogeneous.  
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5.2.3 The adhesive indentation of a non-homogeneous isotropic elastic                      

----      halfspace 

We now consider the problem of the indentation of an incompressible non-

homogeneous isotropic elastic halfspace region by a rigid circular indenter of 

radius a  with a flat base, which is bonded to the surface of the halfspace (Figure, 

5.1). The non-homogeneity considered in this section assumes that the shear 

modulus of the elastic medium varies exponentially according to Eq. (3.3). 

The objective of the study is to establish the influence of both the adhesive 

contact and the exponential variation in the shear modulus on the elastic stiffness 

of the rigid indenter. To the authors’ knowledge, this problem has not been 

investigated in the literature on contact problems. In particular, the method of 

solution is based on the discretization of the contact normal stresses and contact 

shear stresses in the bonded region, which yields a set of algebraic equations that 

can be solved to develop results of engineering interest.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Indentation of an incompressible non-homogeneous elastic halfspace  

 

Prior to the application of the computational approach it is instructive to illustrate 

the basic concepts of the adhesive contact problem related to the non-
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homogeneous elastic halfspace. Consider the problem where the surface of the 

non-homogeneous elastic halfspace region is subjected, separately, to (i) a normal 

ring load of intensity N (units of force/unit length) applied at the location r ρ=  

and (ii) a radially directed ring load of intensity T  (units of force/unit length) 

applied at the location r ρ=  (Figure, 5.2). 

 

 

 

 

 

 

(a)                                                                                (b) 

Figure 5.2: (a) Normal ring load of intensity N (units of force/unit length) applied 

at the location r ρ= ;  (b) A radially directed ring load of intensity T  (units of 

force/unit length) applied at the location r ρ=   

 

The choice of these special forms of the fundamental results for N  and T  pre-

supposes that the application of the discretization technique is restricted to 

axisymmetric contact problems related to an incompressible non-homogeneous 

elastic halfspace. The method of solution of the traction boundary value problems 

relevant to these basic loading configurations was outlined in previous chapter. It 

can be shown that the axial and radial displacements at the surface of the 

halfspace region due to the normal ring loading N can be expressed in the general 

forms 

0

( ,0) ( , ); 0ρ= ≤ < ∞N N
z zz

N
u r I r r

G
 

0

( ,0) ( , ); 0ρ= ≤ < ∞N N
r rz

N
u r I r r

G
                                                                (5.12) 

where the integrals ( , )N
zzI r ρ and ( , )N

rzI r ρ are given by  
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2 2
1 2

0 02 2 2 20
1 1 2 2 2 1

2 2 2 2
2 1 1 2

1 02 2 2 20
1 1 2 2 2 1

( )
( , ) ( ) ( )

(2 )( ) ( 2 )( )

( ) ( )
( , ) ( ) ( )

(2 )( ) ( 2 )( )

N
zz

N
rz

k k
I r J r J d

k q k q k k

k k k k
I r J r J d

k q k q k k

ρ ρξ ξ ξρ ξ
ξ ξ

ξ ξ
ρ ρ ξ ξρ ξ

ξ ξ

∞

∞

 −
=   − + + − + 

 + − +
=   − + + − + 

∫

∫

   

                                        (5.13)                                        

with 

2 2 2 2
1 2

1 1
[ 4 4 ] ; [ 4 4 ]

2 2
k i k iλ λ λξ ξ λ λ λξ ξ= + + + = + − +               (5.14) 

and 

3 2

2 2
; 1,2i i

i i

k k
q k i

λ
λ

ξ ξ
= − − − =         (5.15) 

Similarly, the axial and radial displacements on the surface of the halfspace region 

due to the radial ring loading T can be expressed in the general forms 

0

( ,0) ( , ); 0T T
z zr

T
u r I r r

G
ρ= ≤ < ∞  

0

( ,0) ( , ); 0T T
r rr

T
u r I r r

G
ρ= ≤ < ∞          (5.16) 

where the integrals ( , )T
rrI r ρ and ( , )T

zrI r ρ are given by  

21 1 2 2
0 12 2 2 20

1 1 2 2 2 1

2 1 1 2
1 12 2 2 20

1 1 2 2 2 1

( 2 ) (2 )
( , ) ( ) ( )

(2 )( ) ( 2 )( )

( , ) ( ) ( )
(2 )( ) ( 2 )( )

T
zr

T
rr

q k k q
I r J r J d

k q k q k k

k q k q
I r J r J d

k q k q k k

ρ ρξ ξ ξρ ξ
ξ ξ

ρ ρξ ξ ξρ ξ
ξ ξ

∞

∞

 − + −
=   − + + − + 

 −
=   − + + − + 

∫

∫

    

                                (5.17) 

The displacement fields given by Eqs. (5.12) and (5.16) will satisfy the regularity 

conditions required for the displacement field to vanish as r → ∞ and the traction 

boundary conditions applicable to the ring loads. For the normal ring load 
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( ,0) ( ) ; 0zz r N r rσ δ ρ= − ≤ < ∞  

( ,0) 0; 0rz r rσ = ≤ < ∞                   (5.18) 

where ( )rδ ρ− is the Dirac delta function. Similarly, for the radial ring load 

( ,0) 0; 0zz r rσ = ≤ < ∞  

( ,0) ( ) ; 0rz r T r rσ δ ρ= − ≤ < ∞             (5.19) 

The formal expressions for the axial and radial displacement fields generated by 

the contact normal stress ( )rσ  and the contact shear stress ( )rτ in the adhesive 

contact region of the rigid indenter can be written as 

0 0
0 0

( ) ( )
( ,0) ( , ) ( , ) ; 0

a aN T
z zz zru r I r d I r d r

G G

σ ρ τ ρ
ρ ρ ρ ρ= + ≤ < ∞∫ ∫             (5.20) 

0 0
0 0

( ) ( )
( ,0) ( , ) ( , ) ; 0

a aT N
r rr rzu r I r d I r d r

G G

τ ρ σ ρ
ρ ρ ρ ρ= + ≤ < ∞∫ ∫             (5.21) 

The boundary conditions applicable to the adhesive contact problem are  

( ,0) ; 0zu r r a= ∆ ≤ ≤  

( ,0) 0 ; 0ru r r a= ≤ ≤          (5.22) 

An inspection of the integral expressions for the influence 

functions ( , ), ( , )N N
zz rzI r I rρ ρ , etc., and the governing integral expressions indicates 

that the integral equations (5.20) and (5.21) are unlikely to be solved in a direct 

fashion to generate compact results of the type (5.6) for the elastic stiffness of the 

rigid circular indenter in adhesive contact with a non-homogeneous elastic 

halfspace. Therefore recourse must be made to a computational approach that 

essentially discretizes the contact stress distributions. 
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5.2.4 The computational approach for the solution of the adhesive contact           

- --- problem 

We now focus on the development of a computational approach for the solution of 

the axisymmetric problem of the loading of a rigid circular indenter of radius a  

subjected to an axisymmetric load P and in adhesive contact with a non-

homogeneous elastic halfspace where the elastic modulus varies exponentially 

with depth. The basic objective is to represent the contact stress distributions 

( )rσ  and ( )rτ  as discrete regions of uniform stress acting over annular regions. 

This approach to the solution of contact problems was employed by a number of 

investigators and a comprehensive review of the approach is presented in 

Selvadurai (1979a). Representation of the contact stress distributions as discrete 

values of finite magnitude does not allow the accommodation of the singularities 

that will be present at the boundary of the rigid indenter. In the case of bonded 

contact with a homogeneous elastic medium, the normal and shear stresses can 

exhibit oscillatory forms of the stress singularity that arise in the solution of 

Wiener-Hopf/Hilbert type problems. The oscillatory stress singularities are, 

however, integrable and contribute to the finite strain energy in the halfspace 

region and regular results for the axial stiffness of the bonded indenter. While 

consideration of the exact stress state is important to the assessment of fracture 

generation at the boundary of the bonded region, its influence on the estimation of 

the elastic stiffness is relatively small. Selvadurai (1989) has shown that, in the 

case of a homogeneous elastic halfspace problem related to a bonded circular 

indenter, the incorporation of the oscillatory form of the stress singularity does not 

significantly influence the axial stiffness of the bonded rigid indenter. When the 

stress singularity at the boundary of the bonded rigid indenter of radius a  is 

represented by a regular singularity of the form 2 2 1/ 21/( )a r−  the problem can be 

reduced to the solution of a Fredholm integral equation of the second-kind and a 

comparison of the results obtained from the exact solution and the above 

approximation indicates that the difference is less than 0.5% when 0ν =  and the 

solutions coincide when 1/ 2ν = . We further note that in the case of an 

incompressible non-homogeneous elastic halfspace, the local stress field at the 
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boundary of the contact region will not be oscillatory in order to provide a 

continuous transition to the analogous problem for the adhesive contact problem 

associated with a homogeneous incompressible elastic halfspace. In keeping with 

this observation, we proceed to represent the contact stress distributions by their 

discrete equivalent distributions and the geometry of the discrete regions is altered 

to account for sharp stress gradients that could be present at the boundary regions 

of the contact zone. 

5.2.5 Smooth contact problem for a rigid circular indenter 

First we consider the indentation of a non-homogeneous incompressible elastic 

halfspace by a rigid circular indenter of radius a  with smooth contact subjected to 

an axial load P . The method of solution assumes that the plan area of the indenter 

is discretized into equal annular areas and the contact stress within each annular 

area is uniform. It is considered that the annular normal load of stress intensity 

1 2, ,...,
n

σ σ σ  acting within the annular region of internal radius 1 2 10, , ,...,
n

r r r −  and 

external radius 1 2, ,...,
n

r r r  respectively. Figure 5.3 shows this distribution for 

15=n . The surface displacement 1 2 3, , ,...,
n

w w w w  at the mid section of the 

annular region due to normal surface tractions can be obtained by superposition of 

the Eqs. (5.23) and (5.24), which are a simplified version of the results developed 

in the previous chapter, 

2 2

0 1 2
0 12 2 2 2

0 1 1 2 2 2 10

( )
( ,0) ( ) ( )

(2 )( ) ( 2 )( )
z

p a k k
u r J r J a d

G k q k q k k
ξ ξ ξ

ξ ξ

∞  −
=  

− + + − + 
∫    

(5.23) 

2 2 2 2

0 2 1 1 2

2 2 2 2

0 1 1 2 2 2 10

1 1

( ) ( )
( ,0)

(2 )( ) ( 2 )( )

( ) ( )

r

p a k k k k
u r

G k q k q k k

J r J a d

ξ ξ

ξ ξ ξ ξ

ξ ξ ξ

∞  + − +
=  

− + + − + 
∫

    
(5.24) 

where 1 2 1 2, , andk k q q are defined by Eqs. (5.14) and (5.15). 

The compatibility between the settlement of the non-homogenous incompressible 

halfspace and settlement of the indenter, ∆ , is then established at the mid location 

of each annular region. The physical domain of interest is taken to be a non-
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homogeneous incompressible ( 1/ 2v = ) elastic halfspace in which the shear 

modulus has an exponential variation over the entire depth of the halfspace. In 

order to assign equal annular areas, the dimensions of 
i

r  take the following form  

1

2( ) ; 1,2,3,.....,
i

i
r a i n

n
= =          (5.25) 

Similarly for the mid points,  

  
r

m1
= 0, r

mi
= (

r
i−1

+ r
i

2
); i = 2,3,....,n         (5.26) 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Elastic incompressible non-homogeneous halfspace subjected to 

concentric distributions of annular loads 

We further assume that the uniform normal stress elements 
i

σ  can be presented as 

multiples of the average pressure 0p  that is applied externally to the rigid indenter  

0 where 1, 2,3,....,
i i

p i nσ σ= =ɶ           (5.27) 
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where 

0 2

P
p

aπ
=                           (5.28) 

Using the above reductions, it is possible to express the surface displacements 
i

w  

due to normal contact stresses 
i

σɶ   in the form of the matrix relation  

0

0

{ } [ ]{ }
p a

G
=w C σɶ           (5.29) 

where { }w and { }σɶ are column vectors and the coefficients of the square matrix 

[ ]C are as follows. 

11 12 13 1

21 22 23 2

31 32 33 3

1 2 2

[ ]

j

j

j

i i i ij

w w w w

w w w w

w w w w

w w w w

 
 
 
 =
 
 
 
 

C

…

…

…

⋮ ⋮ ⋮ ⋱ ⋮

…

        (5.30) 

where
ij

w  is the surface displacement at the annuli mid point location i  due to the 

normal contact stress ( )
j

i jσ = . 

The results in the form presented here are applicable to the calculation of surface 

displacements involving any arbitrary distributed loading with an axisymmetric 

profile, which can be useful for geotechnical engineering studies in general.  

We shall now focus attention on the rigid indenter problem. For compatibility at 

the soil-indenter interface, 
i

w will have the same value as the rigid displacement 

of the indenter ∆ ; this constitutes an additional unknown of the problem. The 

remaining equation required for the solution of Eq. (5.29) is furnished by the 

equilibrium equation for the entire indenter, i.e.  
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1

n

i

i

nσ
=

=∑ ɶ                   (5.31) 

The matrix formed by combining Eqs. (5.29) and (5.31) can be inverted to 

determine the non-dimensional contact stresses 
i

σɶ  and the non-dimensional 

indenter displacement  

* 0

0

G

p a

∆
∆ =            (5.32) 

The accuracy of this discretized solution can be verified by comparing the 

computational estimates with the exact closed form results given by the classical 

result of Boussinesq (1885). 

Here, the rigid indenter is discretized into 5, 10, 15 and 20 equal annular areas 

(i.e. 5,10,15, 20=n ). Table 5.1 presents the comparison between the Boussinesq 

(1885) and the discretized solution for 5,10,15, 20=n  respectively.  The accuracy 

of solution depends on the number of annular regions.  However, the number of 

annular regions cannot be increased indefinitely; such a procedure usually results 

in an ill-conditioned set of equations due to the singular nature of the contact 

stress at r a= . It can be seen from Table 5.1 that the accuracy of the results 

increases by increasing the discretized areas from 5 to 15 but the accuracy is 

reduced by increasing the number of discretized areas from 15 to 20 due to the 

singularity effect at the indenter boundary.  

Table 5.1: Comparison of analytical and numerical solutions 

n 5 10 15 20 Boussinesq (1885) 

*∆  0.400676 0.395437 0.394525 0.378847 0.392699 

 

Ideally, both the contact stresses and the indentation should be predicted with 

equal accuracy in a discretization approach. Due to the simplification of 

representing a singular stress field as a finite value over an annular region, the 
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discretized contact stresses will exhibit a departure from the theoretical 

Boussinesq (1885) profile as n is increased. Furthermore, a direct comparison of 

the stress values obtained at the mid-points of the annular regions from the 

discretization scheme with the stress values computed at the corresponding points 

applicable to the analytical solution for the compressive contact stress will not 

capture the overall effect of the stress gradients associated with Boussinesq’s 

result for the contact stress at the base of a smooth rigid indenter, given by  

2 2
( ,0)

2
zz

P
r

a a r
σ

π
=

−
           (5.33)  

where P  is the total load applied to the indenter and a  is the radius of the 

indenter. For this reason, it is necessary to calculate the average stress within 

either the central element or an intermediate element, which is calculated using 

Boussinesq’s distribution. Consider the case where the contact region is 

discretized into n equi-areal regions with a circular central region and ( 1)n −  

annular exterior regions. Consider an annular region bounded by ( , )
i e

r a aρ ρ∈ ɶ ɶ , 

where 
i
aρɶ  is the interior radius of the annulus and 

e
aρɶ  is the external radius. The 

relationship between the radii 
i

ρɶ  and 
e

ρɶ  is given by 

1/ 2

2 1
e i

n
ρ ρ

 
= + 
 

ɶ ɶ            (5.34) 

The total force acting over the interval ( , )
i e

r a aρ ρ∈ ɶ ɶ  due to the Boussinesq 

distribution is given by 

2
*

2 2 2 20 2

e e

i i

a a

a a

P r dr d P r dr
P

aa a r a r

ρ π ρ

ρ ρ

θ

π
= =

− −
∫ ∫ ∫
ɶ ɶ

ɶ ɶ
       (5.35) 

The average stress in the annular region ( , )
i e

r a aρ ρ∈ ɶ ɶ  due to the Boussinesq 

distribution is  

( )2 2

2
1 1

i i e

nP

a
σ ρ ρ

π
= − − −ɶ ɶ          (5.36) 
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The average stress within the annulus normalized with respect to the average 

stress over the entire contact region, 2/P aπ , is given by  

2 21 1
i i e

nσ ρ ρ = − − −
 

ɶ ɶɶ          (5.37) 

Table 5.2 compares the contact stress between the techniques proposed in this 

paper and those determined using Eq. (5.37) from Boussinesq’s results.  

Table 5.2: Comparison of contact stress between Boussinesq`s results and the 

current study 

 center outermost annular 

boundary region 

n 10  15 10 15 

i
σɶ (Boussinesq (1885) 0.5132 0.5086 3.1622 3.8729 

i
σɶ (current study 0λ =ɶ  ) 0.5157 0.5098 2.9832 3.8463 

 

In these computations, (i) when 10n = , the discrepancy in the displacement is - 

0.7%, the discrepancy in the contact stresses at the center of the indenter is - 

0.48% and the discrepancy in the contact stress at the annular boundary region is - 

5.66%., and (ii) when 15n = , the discrepancy in the displacement is - 0.465%, the 

discrepancy in the contact stresses at the center of the indenter is - 0.24%  and the 

discrepancy in the contact stress at the annular boundary region is - 0.68% . In the 

discretized analysis of the adhesive contact problem for the inhomogeneous 

incompressible elastic halfspace, the discretizations are selected as 10n =  and 

15n = . It should also be noted that any computational estimates for the contact 

problem, based on either finite element or boundary element approaches, will 

display similar manifestations, unless special provisions are made to include 

singularity elements at the boundary point of the indenting region and infinite 

elements are used to capture the semi-infinite domain. 

Figure 5.4 shows the ratio of the displacement of the rigid indenter on a non-

homogeneous medium using the numerical discretized solution to the 
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homogeneous medium based on analytical results given by Boussinesq (1885) for 

different shear modulus. Figure 5.4 shows that the response is influenced by the 

degree of non-homogeneity. As would be expected, the vertical displacement 

decreases as the shear modulus increases. It is evident that the non-homogeneous 

condition has a significant effect on the response of the indenter.  

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Ratio of displacement of the rigid indenter on a non-homogeneous 

medium (numerical discretized solution) to homogeneous medium (Boussinesq, 

1885) for different λɶ , for 5,10,20n =  

 

Figure 5.5 shows the contact stress distribution beneath a rigid indenter resting on 

a non-homogeneous elastic halfspace, for different shear modulus, with 10n = . A 

comparison has also been made between the current results for the contact stress 

distribution σɶ
i
 at mid point locations 

mi
r  and those determined from the exact 

result given by Boussinesq (1885). Similar results are presented in Figure 5.6 for 

the contact pressure distributions obtained for a numerical procedure 

where 15n = .  
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Figure 5.5: Comparison of contact stress distribution (σɶ
i
) of the rigid indenter 

between the current results and these given by Boussinesq (1885) (n =10) 

 

As evident from Figures 5.5 and 5.6, there is good correlation between the results 

obtained from the discretization method and the analytical results given by 

Boussinesq (1885), when 0λ =ɶ . It should also be noted that for the 

incompressible homogeneous elastic halfspace, the normal contact stresses within 

the indented area are independent of the elasticity parameters of the halfspace and 

invariant of the adhesion constraint; i.e. when 1/ 2ν = , 0γ →  and (5.4) gives rise 

to the conventional Abel integral equation for the normal contact stress ( )rσ , 

which yields Boussinesq’s result for the indentation problem (Sneddon, 

1951,1965). It can be inferred that the discrepancies between the results for the 
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indentation of the incompressible non-homogeneous elastic halfspace and 

Boussinesq’s result are likely to be due to the elastic non-homogeneity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Comparison of contact stress distribution (σɶ
i
) of the rigid indenter 

between the current results and results given and Boussinesq (1885) (n =15) 

 

5.2.6 Adhesive contact problem for a rigid circular indenter 

Attention is now focused on the adhesive contact problem. Here we consider the 

adhesive contact of a rigid circular indenter of radius a , subjected to an axial 

load P , with a non-homogeneous incompressible elastic halfspace in which the 

shear modulus varies exponentially with depth. The boundary conditions 

applicable to the adhesive contact are given in Eq. (5.7).  

In order to solve this problem using a numerical approach similar to that described 

in section 5.2.5, we first assume that a non-homogenous incompressible elastic 
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halfspace is subjected to uniform normal surface tractions b

i
σ  and uniform shear 

surface tractions b

i
τ  at equal annular locations

i
r . Then the compatibility between 

the settlement of the non-homogenous incompressible halfspace due to the 

combined actions of normal and shear surface tractions and the settlement of the 

indenter, ∆ , is established at the mid location of each annular region.  

We further assume that the uniform normal stress elements b

i
σ  and uniform shear 

stress elements b

i
τ  can be presented as multiples of the externally applied average 

pressure 0p  (see Eq.(5.28)) and an average shear traction 0τ (to be determined), 

respectively, in the forms 

0 where 1, 2,3,....,b b

i i
p i nσ σ= =ɶ         (5.38) 

0 where 1, 2,3,....,b b

i i
i nτ τ τ= =ɶ             (5.39) 

Using the above reductions, it is possible to express the surface vertical and lateral 

displacements 
i

w  and 
i

u  due to the contact stresses b

i
σɶ   and b

i
τɶ  in the form of the 

matrix relation  

0 0
1 2

0 0

{ } [ ]{ } [ ]{ }b bp a a

G G

τ
= +w C σ C τɶ ɶ         (5.40) 

0 0
3 4

0 0

{ } [ ]{ } [ ]{ }b bp a a

G G

τ
= +u C σ C τɶ ɶ         (5.41) 

where { }w , {u} ,  b{ }ɶσσσσ  and { }b
τɶ are column vectors and the coefficients of the 

square matrix [ ]
i

C are as follows 

11 12 13 1

21 22 23 2

31 32 33 31

1 2 2
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j

j

j

i i i ij

w w w w

w w w w

w w w w

w w w w

 
 
 
 =
 
 
 
 

C

…

…

…

⋮ ⋮ ⋮ ⋱ ⋮

…

11 12 13 1

21 22 23 2

31 32 33 32

1 2 2

[ ]

j

j

j

i i i ij

w w w w

w w w w

w w w w

w w w w

′ ′ ′ ′ 
 ′ ′ ′ ′
 

′ ′ ′ ′ =
 
 
 ′ ′ ′ ′ 

C

…

…

…

⋮ ⋮ ⋮ ⋱ ⋮

…

     (5.42) 
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11 12 13 1

21 22 23 2

31 32 33 33

1 2 2
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j

j

j

i i i ij

u u u u

u u u u

u u u u

u u u u

 
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 
 =
 
 
 
 

C

…

…

…

⋮ ⋮ ⋮ ⋱ ⋮
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u u u u
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 
 
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…

…
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⋮ ⋮ ⋮ ⋱ ⋮

…

     (5.43) 

where
ij

u  and 
ij

u′  are radial surface displacements and 
ij

w  and 
ij

w′  are the axial 

surface displacements at the annuli mid point locations due to the normal and 

radial stress traction b

jσ and b

jτ  respectively.  

The displacement of a non-homogeneous incompressible elastic halfspace 

subjected to a surface distributed radial load of radius a  with stress intensity 0τ  

can be found by  

0 1 1 2 2

2 2 2 2

0 1 1 2 2 2 10

2

0 1

0

( 2 ) (2 )
( ,0)

(2 )( ) ( 2 )( )

( )[ ( ) ]

z

a

q k k q
u r

G k q k q k k

J r rJ r dr d

τ

ξ ξ

ξ ξ ξ ξ

∞  − + −
=  

− + + − + 
∫

∫
                  

(5.44) 

0 2 1 1 2

2 2 2 2

0 1 1 2 2 2 10

1 1

0

( ,0)
(2 )( ) ( 2 )( )

( )[ ( ) ]

r

a

k q k q
u r

G k q k q k k

J r rJ r dr d

τ

ξ ξ

ξ ξ ξ ξ

∞  −
=  

− + + − + 
∫

∫
 
     (5.45) 

where 1 2 1 2, , andk k q q are defined by Eqs. (5.14) and (5.15).  

These equations can be solved numerically using the technique explained in the 

previous chapter. The axial and radial surface displacement due to the normal 

tractions b

jσ  at the central location can be obtained by a superposition of the 

results for the axial and radial displacements given in Equations (5.23), (5.24), 

(5.44) and (5.45). 
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The axial and radial surface displacement due to the shear stress traction b

jτ  can 

be generated from Eq. (4.44) and Eq. (4.45) by superposition. The normal and 

shear surface tractions are related to each other through the constraint given in Eq. 

(5.7). Using (5.7) along with Eq. (5.41) results in: 

0 0
3 4

0 0

[ ]{ } [ ]{ } { }b bp a a

G G

τ
+ =C σ C τ 0ɶ ɶ           (5.46) 

and Eq. (5.46) along with the Eqs. (5.38) and (5.39) can be used to determine the 

shear tractions based on the normal tractions 

{ } [ ]{ }=b b
τ B σ                      (5.47) 

By using Eq. (5.47) we can rewrite the Eq. (5.40) as follows: 

0

0

{ } [ ]{ }bp a

G
=w H σɶ           (5.48) 

in which [ ]H  was obtained by adding the two matrices 1[ ]C  and  2[ ]C , which 

also incorporates the result Eq. (5.47). The results, in the form presented here, are 

applicable to settlement calculations involving any distributed loading with an 

axisymmetric profile. 

For compatibility of displacements at the incompressible non-homogeneous 

elastic halfspace-indenter interface, 
i

w  will have the same value as the rigid 

displacement of the indenter ∆ ; this constitutes an additional unknown of the 

problem. The remaining equation required for the solution of Eq. (5.48) is the 

equilibrium equation for the entire indenter given in Eq. (5.31). The matrix 

formed by combining Eqs. (5.31) and (5.48) can be inverted to determine the non-

dimensional contact stresses b

i
σɶ  and b

i
τɶ  and the non-dimensional axial 

displacement of the indenter in bonded contact with the incompressible non-

homogeneous elastic halfspace. The contact normal stresses for the indenter, 

which is adhesively bonded to the incompressible elastic halfspace, are shown in 



 

87 

 

Figures 5.5 and 5.6, developed ,respectively, by considering discretizations 

10n =  and 15n = . 

The Figure 5.7 presents a comparison of the surface displacement of the rigid 

indenter for smooth contact, adhesive contact, and for the case where the surface 

is inextensible (in which 0
r

u = throughout the surface of the halfspace). Results 

are provided for different values of the non-homogeneity parameter λɶ . These 

displacements are normalized with the surface displacement given by Boussinesq 

(1885).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Ratio of displacement of the rigid disc on a non-homogeneous 

medium (numerical discretized solution) to homogeneous medium (Boussinesq, 

1885) for different λɶ ; comparison between smooth, bonded contact and surface 

with inextensibility 

The results show that the stiffness of the indenter in  adhesive contact is bounded 

by the corresponding values for indentation with frictionless contact and the result 

for the indentational stiffness that incorporated a surface inextensibility constraint 

(see also Selvadurai, 2009). Figure 5.8 shows the influence of adhesion and the 

non-homogeneity parameter on the indentational stiffness of the rigid circular 

indenter. The effect of adhesive contact increases from zero for an incompressible 
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homogenous halfspace with 0λ =ɶ  to an almost a 10% difference between the 

settlement of smooth contact and adhesive contact, for a non-homogeneous 

incompressible halfspace with 2λ =ɶ . However, the change in displacement 

for 0.25λ <ɶ , which is applicable to a range of variations in the shear modulus 

with depth observed in saturated clays found in regions of the British Isles, is less 

than 2%.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Ratio of displacement of the bonded contact rigid indenter to the 

smooth contact rigid indenter for different values of λɶ  

5.3 Elastic contact between a flexible circular plate and an incompressible  

      isotropic halfspace with exponential non-homogeneity 

The flexural behavior of finite plates resting on the surface of deformable elastic 

media is of interest to several branches of engineering. The problem has gained 

significant attention due to its importance in the analysis and design of structural 

foundations resting on soils and rock media.  An extensive review of the topic is 

given by Selvadurai (1979c). The study of the flexural behavior of a loaded 

circular plate was investigated by Habel (1937), Zemochkin (1939), and 

Holmberg (1946) in which the plate was divided into concentric annular regions 

subjected to uniform annular contact stresses. The classical study by Borowicka 
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(1936) examined the influence of rigidity of a circular plate, subjected to uniform 

pressure over the contact surface, resting on an isotropic elastic halfspace by using 

a power series expansion technique. Ishkova (1951) and Brown (1969) presented 

a modified solution to the problem in which they considered the effect of near 

edge singular terms in the approximation of the contact stress distribution. An 

extensive review on various investigations in this area is given by Selvadurai 

(1979c), who was the first to employ energy the method to study this problem. In 

his analysis, the deflected shape of the circular plate is presented in the form of a 

power series in terms of the radial coordinate r. Selvadurai (1979b) investigated 

the flexural behavior of a circular flexible plate embedded in an elastic medium 

using the energy method. Following Selvadurai (1979c), Zaman et al. (1988) 

predicted the flexural behavior of a uniformly loaded flexible circular plate using 

the energy method approach in which the shape of the plate is approximated by an 

even power series expansion in terms of the radial coordinates. Selvadurai and 

Dumont (2011) investigated a contact problem between an isotropic elastic 

halfpace and a flexible circular plate subjected, simultaneously, to a Mindlin-type 

axial force. The contact problem was solved using the energy approach.  

In this section we examine using an energy method the axisymmetric smooth 

contact problem for a flexible circular plate and an incompressible non-

homogenous elastic halfspace, where the linear elastic shear modulus varies 

exponentially with depth, using the energy method. The approach adopted 

approximates the deflected shape of the plate by an even power series expansion, 

which satisfies the kinematic constraints of the plate deformation and the 

Kirchhoff boundary condition applicable to a free edge. The remaining 

coefficients in the power series are evaluated by making use of the principle of 

minimum potential energy. Using the energy method, the maximum deflection, 

the relative deflection, and the maximum flexural moment in the circular plate are 

presented. The results derived from the proposed procedure are compared with 

equivalent results derived from numerical techniques.  
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5.3.1 Proposed analytical procedure 

With reference to Figure 5.9, we consider the problem of the axisymmetric 

indentation of an incompressible non-homogeneous elastic halfspace by a flexible 

circular plate of thickness h and radius a. The plate is subjected to a uniform load 

of intensity 0p  over its entire surface. The non-homogeneity considered in the 

paper assumes that the shear modulus of the elastic medium varies exponentially 

with depth (Eq. 3.3).  

  

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Uniformly loaded flexible circular plate on the surface of an 

incompressible elastic halfspace 

 

It is assumed that there is no loss of contact at the interface. Therefore, the 

interface displacement can be represented as either the deflected shape of the plate 

or surface displacement of the halfspace in the z-direction over the contact region 

0 ≤ r ≤ a. For the analysis of the problem we make use of the variational approach 

proposed by Selvadurai (1979c). The analysis assumes a prescribed plate 

deflection ( )w r , specified to within a set of undetermined constants, in which the 

deflected shape of the circular plate can be presented in the form of a power seires 

in terms of the radial coordinate r. The assumed form of ( )w r also satisfies the 

kinematic constraints of the axisymmetric deformation. The energy method of 
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analysis requires the development of the total potential energy functional for the 

plastic-elastic halfspace region that consists of (i) the flexural energy of the plate, 

(ii) the strain energy of the halfspace region, and (iii) the potential energy of the 

applied loads. The total energy functional developed is defined in terms of the 

undetermined constants characterizing the deflected shape of the plate. Invoking 

the Kirchhoff boundary conditions applicable to the free edge of the plate can 

eliminate two constants in the series and the two remaining constants are 

evaluated by the minimization of the total potential energy functional of the 

system.  

5.3.2 Variational approach 

The proposed formulation is discussed briefly in this section. It is assumed that 

the deflected shape of the plate can be approximated by the power series 

expansion: 

3
2

2

0

( ) ( ) i

i

i

r
w r a C

a=

= ∑                                                                                           (5.49) 

in which 2i
C are arbitrary constants. The assumed form of the plate deflection 

gives a kinematically admissible plate deflection, rotation and curvature in the 

plate region. Of the four arbitrary constants, two can be eliminated by invoking 

the Kirchhoff boundary conditions applicable to the free edge of the circular plate, 

i.e, 

2

2

( ) ( )
( ) 0

p

r

r a

vd w r dw r
M a D

dr r dr
=

 
= − + = 

 
                                                         (5.50) 

{ }2( ) ( ) 0
r

r a

d
Q a D w r

dr =

 
= − ∇ =  

                                                                    (5.51) 

where 
p

v  is the Poisson’s ratio of the plate material. The assumed expression for 

the plate deflection can be reduced to the form  

2 4 6

0 2 1 22 4 6
( )

r r r
w r a C C l l

a a a

  
= + + +  

  
                                                            (5.52) 
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where  

1

3(1 )

4(2 )

p

p

l
ν

ν

− +
=

+
 ;      2

(1 )

6(2 )

p

p

l
ν

ν

+
=

+
                                                                  (5.53) 

In following sections, the total potential energy functional for the plastic-elastic 

halfspace region is developed.  

(i) Flexural energy of the plate 

First component of the total energy functional corresponds to strain energy of the 

plate. The flexural behavior of the elastic plate is described by Poisson-Kirchhoff 

thin plate theory. So the flexural energy of the plate subjected to the axisymmetric 

deflection ( )w r can be given by  

2
2 2

2

2(1 ) ( ) ( )
{ ( )}

2

p

F
s

D dw r d w r
U w r rdrd

r dr dr

ν
θ

− 
= ∇ − 

 
∫∫                                 (5.54) 

where  

32
2

2

1
;

6(1 )

p

p

G hd d
D

dr r dr ν
∇ = + =

−
                                                                (5.55) 

and  
p

G  and 
p

ν are the constant shear modulus and Poisson’s ratio of the plate 

material, respectively, and S  represents the plate region.  

(ii) Strain energy of the halfspace region 

The second component of the total energy functional corresponds to the strain 

energy of the incompressible non-homogeneous elastic halfspace which is 

subjected to the displacement field ( )w r in the contact region 0 ≤ r ≤ a.  The 

elastic strain energy can be developed by computing the work component of the 

surface tractions that compose the interface contact stresses. Since the interface is 

assumed to be smooth, only the normal tractions contribute to the strain energy. 

These normal tractions can be determined by making use of the discretizion 

method described in section 5.2.5. In order to determine the contact stresses, we 
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first consider the indentation of a non-homogeneous incompressible elastic 

halfspace by a circular flexible plate subjected to a load 0p  over its entire surface. 

The boundary condition of the problem is as follow: 

( ,0) ( ) ; 0zu r w r r a= ≤ ≤  

( ,0) 0 ; 0rz r rσ = ≤ < ∞  

( ,0) 0 ;zz r a rσ = < < ∞          (5.56) 

The method of solution assumes that the plan area of the indenter is discretized 

into fifteen equal annular areas and the contact stress within each annular area is 

uniform. Considering the annular normal load of stress intensity 
i

σ  (i=1 to 15) 

acting within the annular region of internal radius 
i

r  and external radius 1i
r+ , the 

surface displacement 
i

w  at the mid-section of the annular region due to normal 

surface tractions can be obtained by superposition of the Eqs. (5.23) and (5.24). 

The compatibility between the settlement of the non-homogenous incompressible 

halfspace and the settlement of the indenter, ( )w r , is then established at the mid 

location of each annular region. For compatibility at the soil-indenter interface, 

i
w will have the same value as the displacement field ( )w r . Using Eq. (5.29), the 

non-dimensional contact stresses 
i

σɶ  and therefore
i

σ can be determined in terms 

of the arbitrary parameter of ( )w r , i.e, 0C  and 2C .  

The strain energy of the halfspace region can be calculated by 

1
; 1, 2,3,.....,15

2
E i i

U f w i= =                                                     (5.57) 

where
i

f  is the force in each equal annular area, calculated by multiplying the 

contact stress 
i

σ  with the area of the annular region (which is equal to
15

π
a

2
).  

(iii) Potential energy of the applied loads 

The total potential energy of the uniform external load applied to the plate is 

given by 
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0 ( )
p

S
U p w r rdrdθ= − ∫∫                            (5.58) 

5.3.3 Total potential energy functional 

The total potential energy functional for the plate-elastic medium system is given 

by 

F E p
U U U U= + +            (5.59) 

By making use of ( )w r as defined by (5.49), and using Eqs. (5.54), (5.55) and 

(5.56), the total potential energy functional (5.57) reduces to the form 

[ ]
2

3 2 2 2 3

0 0 1 0 2 2 2 3 4 0 0 2 5U G a C C C C DC p a C Cπ χ χ χ π χ π χ = + + + − +                (5.60) 

where the constants 1χ , 2χ , 3χ , 4χ  and 5χ are given by 
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2 4 62 4 615 15

3 1 2 1 22 4 6 2 4 6
1 1

1
( )( )

30

mj mj mjmi mi mi
ij

i j

r r rr r r
l l l l

a a a a a a
mχ

= =

= + + + +∑∑                           (5.63) 
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1 2
5

1

2 3 4

l l
χ = + +                      (5.65)  

The constants 0C  and 2C  can be evaluated from the equations that are generated 

from the minimization of the total energy functional, 

 
0 2

0; 0
U U

C C

∂ ∂
= =

∂ ∂
          (5.66) 
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The deflected shape of the uniformly loaded circular foundation corresponding to 

(5.49) is given by 

2 4 6

0
2 5 3 4 2 1 5 1 22 4 6

0

( ) 2 ( 2 )
4

ap r r r
w r R l l

G a a a

π
χ χ χ χ χ χ χ
  

= − − + − + +  
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             (5.67) 

where 

2

2

1 3 1 44 2Rχ χ χ χ χΩ = − −                                           (5.68)  

and R is the relative rigidity parameter defined by 

3 3
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(1 )
;

12(1 ) 6(1 ) 2

p p pr
r

p p

G GKh h
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= = =      

− −      
              (5.69) 

and 
r

K is a similar parameter defined by Brown (1969). The accuracy of the 

solution for the deflection of the plate approximated by variational approach can 

be investigated by assigning various limits to the relative rigidity parameter (
r

K or 

R ). 

5.3.4 Limiting cases 

In order to check the accuracy of the results with known analytical problems, two 

limiting case are considered in this section. In both cases, it is assumed that the 

non-homogeneous parameter 0λ →ɶ , which resembles the isotropic homogeneous 

elastic halfspace.  

(i) Rigid circular plate, R → ∞ : as the relative rigidity reaches infinity, the 

indentation problem reduces to Boussinesq’s classical result (1885) for the 

smooth indentation of a rigid circular plate on an isotropic homogeneous 

halfspace. The corresponding value of the indented displacement for the 

incompressible material is 

0

0

lim ( )
8R

p a
w r

G

π
→∞

=                      (5.70) 
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(ii) Flexible circular loading, 0R → : as the relative rigidity reduces to zero, the 

problem changes to that of the axisymmetric loading of an incompressible elastic 

halfspace by a uniform circular load of radius a  and stress intensity 0p . The two 

important results of specific interest for geotechnical engineering are the 

maximum surface deflection and the differential deflection within the loaded area. 

The equation (5.67) reduces to  

0

0
0

lim ( 0) {2.087}
4R

p a
w r

G→
= =                                (5.71) 

The exact result corresponding to the central surface displacement of the 

uniformly loaded area ( 1/ 2
s

ν = ) is given by (see, e.g., Timoshenko and Goodier, 

1970 ) 

0

0

( 0) {2.00}
4

p a
w r

G
= =                                  (5.72) 

By comparing the two results (5.71) and (5.72), it can be seen that the energy 

method estimates the central deflection by 4.35% difference.  

The result for the differential deflection obtained from the energy method is  

0

0
0

lim[ ( 0) ( )] {0.7327}
4R

p a
w r w r a

G→
= − = =                   (5.73) 

and corresponding exact solution is  

0

0

2 4
[ ( 0) ( )] { }

4

p a
w r w r a

G

π

π

−
= − = =         (5.74) 

This it shows that the estimate given by energy method overpredicts that from the 

exact solution by 0.8%. 

5.3.5 Maximum flexural moments 

The flexural moment in the plate can, in principle, be computed from the 

expressions 

 
2

2

( ) ( )
r

d w r dw r
M D

dr r dr

ν 
= − + 

 
        (5.75) 
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dw r d w r
M D

r dr dr
θ ν

 
= − + 

 
        (5.76) 

However, due to the presence of derivatives up to the second order, the flexural 

moment calculated by Eqs. (5.75) and (5.76) are considerably less accurate 

compared to the estimation of the plate deflection. A more accurate estimate of 

the flexural moment in the plate can be obtained by considering the combined 

action of the external load 0p and the contact stress distribution (
i

σ ).  A solution 

for the maximum flexural moment can be computed by superposing the two 

solutions: (i) a circular plate simply supported along its boundary subjected to a 

uniform external load 0p , and (ii) a circular plate simply supported along its 

boundary subjected to the contact stress distribution (
i

σ ). 

(i) From the results given by Timoshenko and Woinowsky-Krienger (1959), (see 

also Selvadurai (1979a), the maximum flexural moment at the center of an edge-

supported plate due to the external load 0p  is given by 

2

0
max

(3 )

16

p b
p a

M
ν+

=              (5.77) 

(ii) The maximum flexural moment due to the contact stress (
i

σ ) acting on an 

edge-supported plate is given by 

2 2

max 2

0

(1 )( )
(1 ) ln

2 2

a

pc

p

a
M d

a a

νξσ ξ ξ ξ
ν ξ

−  −  
= − −    

   
∫                                 (5.78) 

where ( )σ ξ is defined in Eq. (5.27). 

5.3.6 Numerical results and discussion 

The energy method proposed in the previous section has been used to analyse the 

indentation problem of a uniformly loaded circular plate resting in smooth contact 

with an incompressible non-homogeneous halfspace. The main object is to 

investigate the influence of the elastic non-homogeneity of the incompressible 
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halfspace and the relative stiffness of the plate-elastic halfspace system on the 

deflection and flexural moments in the plate. The results are presented for the 

various relative rigidities from 10log 0 to3
r

K = , in which 10log 0
r

K =  represents 

a plate with relative  flexibility and 10log 3
r

K =  represents a nearly rigid plate. 

The Poisson’s ratio for the plate is chosen to be 0.3
b

ν = . To demonstrate the 

effect of non-homogeneity on the results, the parameter λɶ , which is directly 

related to the shear modulus by Eq. (3.3), has been used for the range 0 to1.5λ =ɶ , 

where 0λ =ɶ  represents an incompressible homogeneous elastic halfspace. In the 

case of 0λ =ɶ  (homogeneous), the results are compared with the existing 

numerical results presented by Brown (1969). It should be pointed out that all 

numerical results are presented in a non-dimensional form. 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Variation of central displacement of the circular plate for different 

relative rigidities; 0λ =ɶ (homogeneous) 
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Figure 5.11: Variation of central displacement of the circular plate for different λɶ  

and for different relative rigidity
r

K  

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Variation of the differential deflection of the circular plate for 

different λɶ  and different relative rigidity 
r

K  
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Figure 5.10 shows the variation of the central displacement of a uniformly loaded 

circular plate for various relative rigidities for the incompressible homogeneous 

elastic halfspace ( 0λ =ɶ ). The current result is compared with existing solutions 

given in Brown (1969) and Selvadurai (1979c). The results are also compared 

with a finite-element analysis of the indentation problem of smooth indentation of 

a rigid circular plate on an isotropic homogeneous halfspace using COMSOL 

Multiphysics
TM

 software. It can be seen from Figure 5.10 that there is good 

correlation between the results presented by Brown (1969), Selvadurai (1979c), 

COMSOL and the variational method presented here.  

 

 

 

 

 

 

 

 

 

Figure 5.13: Variation of the central flexural moment for different λɶ  and different 

relative rigidity 
r

K  

 

Figure 5.11 shows the variation in the central displacement of a uniformly loaded 

circular plate for different λɶ  and for different relative rigidity
r

K . It is evident 

that the presence of non-homogeneous conditions has a significant effect on the 

central displacement of the plate. The results are compared with the smooth 
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indentation problem of a rigid circular plate and an incompressible non-

homogeneous elastic halfspace presented in section 5.2. In this comparison, the 

flexible plate with 10log 3
r

K =  is considered to be a nearly rigid plate. As can be 

seen, there is good correlation between the two results. 

The variation in the differential deflection of a uniformly loaded circular plate for 

different λɶ  and different relative rigidity is shown in Figure 5.12. The current 

results for homogenous case ( 0λ =ɶ ) are compared with numerical results 

presented by Brown (1969). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Variation of vertical surface displacement along the r-axis for 

different relative rigidities of the plate; 0.5λ =ɶ  
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The central flexural moment for different λɶ  and different relative rigidity of the 

plate 
r

K  is shown in Figure 5.13 and it is compared with Brown’s results (1969) 

for homogeneous case. There is good correlation between the two results.  

Figure 5.14 shows the variation in the vertical surface displacement along the r-

axis for different relative rigidities of the plate. The effect of the relative rigidity 

on the shape of the plate deflection is investigated; when R → ∞  (or 
r

K → ∞ ), 

the problem reduces to the indentation of the circular rigid plate on an 

incompressible elastic halfspace and the results are compared with the known 

solutions presented by Boussinesq (1885) and the results given in Section 5.2 for 

smooth contact of a rigid circular plate for 0.5λ =ɶ .  
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CHAPTER 6 

 

 

 

 

CONCLUSIONS AND SCOPE FOR FUTURE RESEARCH 

 

 

 

 

 

6.1 Summary and concluding remarks  

The research presented in this thesis deals with the analytical and numerical solutions to 

traction and mixed boundary value problems for an incompressible non-homogeneous 

medium with applications to geomechanics. The geomechanics types of non-

homogeneities that can be examined are many and varied and largely governed by 

experimentally derived observation. Experimental investigations of geological media 

such as London Clay deposits show that the modulus of elasticity of soils generally 

increases with depth, although the variation is neither linear nor exponential. The 

exponential variation in the shear modulus has an advantage in that the governing partial 

differential equations of elasticity for a non-homogeneous medium are considerably 

simplified through the use of this approximation. In this thesis, the non-homogeneity has 

an exponential variation either over the entire halfspace, or over a finite depth beyond 

which it considered to be constant. The numerical results have been presented to show 

the influence of the non-homogeneity on the response of an incompressible elastic 
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halfspcae. The following is a summary of the basic finding and conclusions of the 

research: 

 

• A mathematical treatment was presented for the displacements corresponding to 

axisymmetric interior loading of a non-homogeneous incompressible isotropic 

elastic half-space where the linear elastic modulus varies exponentially over the 

entire depth. The interior loading of an elastic half-space can serve as a useful model 

for examining the interior loading of geologic media with predominantly isochoric 

or volume preserving deformations. The influence of non-homogeneity on the 

response of the half-space was clearly illustrated by the numerical results presented 

in the thesis. The analysis of the traction boundary value problem related to the 

interior loading of a non-homogeneous elastic halfspace was obtained in a form 

where results of practical interest can be derived through the evaluation of infinite 

integrals. The study can also be used as a benchmarking solution for examining the 

accuracy of computational approaches that can ultimately be used to examine more 

complicated variations of the shear modulus with depth.  

• The problem of the interior loading of a non-homogeneous incompressible elastic 

halfspace was also considered where the linear elastic modulus varies exponentially 

over a finite depth, beyond which it is constant. The influence of this type of non-

homogeneity on displacements and stresses of the halfspace was discussed by the 

numerical results presented. These results have been compared with two existing 

solutions for both linear and exponential variations of the shear modulus.   

• The problem of the surface loading of a non-homogeneous incompressible halfspace 

was extended for the case where the medium is a layer of finite depth d and of 

infinite lateral extent. The elastic layer is assumed to be incompressible and that its 

shear modulus increases exponentially with depth. The influence of the non-

homogeneity as well as the depth of the finite layer on the response of the halfspace 

was shown by the numerical results presented.  
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• Axisymmetric distributed radial loading on a surface of an incompressible elastic 

halfspace with an exponential variation in the linear elastic shear modulus was 

considered in last section of chapter 4. The results developed in this section have 

been used to model the adhesive contact problem presented in chapter 5.  

• The mechanics of indentation is visualized as a technique for the estimation of 

deformability characteristics of materials as well as for the estimation of settlements 

of geotechnical structures. The interface conditions between the deformable region 

and the rigid indenter can influence the indentational stiffness. In the classical 

problem for the adhesive indentation of an isotropic homogeneous elastic halfspace, 

the indentational stiffness is controlled by Poisson’s ratio for the deformable 

medium and, in the case of an incompressible homogeneous elastic halfspace region, 

the interface conditions (either frictionless or fully bonded) have no influence on the 

elastic stiffness. This is due to the zero radial displacement at the surface of the 

halfspace associated with Boussinesq’s solution for the loading of the halfspace by a 

concentrated normal force. This thesis examines the problem of the axisymmetric 

adhesive indentation by an indenter with a flat base, of an incompressible non-

homogeneous elastic halfspace, with an exponential variation of the shear modulus 

with depth. The formulation of the integral equations for the normal and shear 

stresses at the adhesive zone indicates that the solution cannot be readily 

accomplished using integral equation techniques commonly employed in the study 

of adhesive contact problems. A numerical scheme has been developed where the 

contact normal stresses and shear stresses are represented by discretized equivalents 

and the unknown values are evaluated by considering the kinematic and mechanical 

constraints on the adhesive zone. These results are used to estimate the axial stiffness 

of the adhesive indentation of a rigid circular indenter with an inhomogeneous 

elastic halfspace that has an exponential variation in the shear modulus. The results 

were also compared with estimates for the indentational stiffness when the contact is 

frictionless and when the entire surface of the non-homogeneous halfspace is 

considered to be radially inextensible. It is observed that for the exponential 

variation in shear modulus in an incompressible elastic halfspace, the contact 
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constraints, either adhesive contact or frictionless contact, have very little influence 

on the indentational stiffness of the rigid circular indenter and for the exponent in the 

exponential variation . The discrepancy is of the order of 10% for 

2λ ≈ɶ . The discretization technique offers a convenient solution scheme for the 

adhesive contact problem for the non-homogeneous incompressible elastic halfspace 

problem. 

• The contact problem was extended to examine axisymmetric smooth contact 

between a flexible plate and an incompressible isotropic non-homogeneous elastic 

halfspace in which the shear modulus varies exponentially with depth. The analysis 

uses a variational approach in which the deflected shape of the plate is approximated 

by a power series in the radial coordinates. The coefficients in the series are 

evaluated by making use of the principle of minimum potential energy. Using energy 

method, the maximum deflection, the relative deflection, and the maximum flexural 

moment in the circular plate were presented. The effect of relative rigidity of the 

plate as well as the non-homogeneity of the incompressible elastic halfspace on the 

response was clearly shown by numerical results presented. The results have been 

compared with existing solutions to validate the accuracy of the solution. 

6.2 Scope for future research 

In the current research, the influence of non-homogeneity were investigated on traction 

boundary value problems and mixed boundary value problems for an incompressible 

non-homogeneous medium. The following investigation can be suggested as future work: 

• In this research, it was assumed that the material of the halfspace is incompressible, 

which simulates immediate (undrained) deformation of saturated elastic soils. Any 

future research can be extended to examine the general problem involving the 

compressible non-homogeneous elastic halfspace. 

• The representation of the contact stress distribution in terms of a discretized 

distribution is a convenient mathematical approximation for the solution of a contact 

problem where the analytical solution would otherwise be intractable. The 
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discretization techniques which were discussed in chapter 5, can be extended to 

examine indenters with arbitrary-shaped plan forms that will not be amenable to 

exact solution. In situations where processes such as indentational fracture needs to 

be examined (e.g. Selvadurai, 2000e), the singularity at the boundary of the indenter 

needs to be incorporated in the discretization scheme, so that the stress state can be 

more precisely defined to generate stress intensity factors and energy release rates 

important to crack extension analysis can be accurately determined.  

 

• The contact problems, both rigid indenter and flexible plate, can be extended to 

examine the influence of elastic non-homogeneity on the undrained elastic 

displacement of the test plate under the combined action of the external load and the 

internal anchor loads. 
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APPENDIX A 

 

The explicit solutions for the arbitrary functions 1 1 1 1 2 2, , , , andA B C D A B from Eqs. 

(4.11-4.16) can be expressed as follows: 

1 1

1 1

1 1 1 4 1 1 3 2 1

2
1 2 2 1 1 1 3 1

1

( ) /( ) ( ) /( )

[( ) /( ) ( ) /( )]

dk dk

dk dk

A e f e f

e f e f

δ η η ϑ η δ η ϑ

η
δ γ γ ϑ δ γ γ ϑ

η

− −

− −

= −

+ −
                                                    (A1) 

1 1

1 1 2 2 1 1 1 3 1( ) /( ) ( ) /( )dk dk
B e f e fδ γ γ ϑ δ γ γ ϑ− −= − +                                                     (A2) 

1

1 1 2( ) /dk
C e f δ ϑ−=                                            (A3)                                                                      

1

1 1 1( ) /dk
D e f δ ϑ−= −                                                                              (A4)                                                                                                                             

1 1 1 1

2 3 1 2 2 1 2 2 1 1 1 3 1( ) / ( ) / ( ) /( ) ( ) /( )dk dk dk dk
B e f e f e f e fδ ϑ δ ϑ δ γ γ ϑ δ γ γ ϑ− − − −= − − +      (A5) 

34 1 1

1 2 1 1 1

1 1 2 1 1

2 1 1 1 1 4 1 1 2 1 3 2 1

2
1 2 2 1 1 1 3 1 1 2 2 1

1

1 1 3 1 3 1 2

( ) / ( ) /( ) ( ) / ( ) /( )

[( ) /( ) ( ) /( )] [( ) /( )

( ) /( )] [ ( ) / (

dkdk dk dk

dk dk dk dk dk

dk dk dk dk dk

A e f e f e f e f

e e f e f e f

e f e e f e f

δ ϑ δ η η ϑ δ ϑ η δ η ϑ

η
δ γ γ ϑ δ γ γ ϑ δ γ γ ϑ

η

δ γ γ ϑ δ ϑ δ

+− −

− − − −

− − − −

= − + + −

− − +

− + − + 1

1

2 1 2 2 1

1 1 3 1

) / ( ) /( )

( ) /( )]

dk

dk

e f

e f

ϑ δ γ γ ϑ

δ γ γ ϑ

−

−

+

−

                      

                                                                                                                            (A6) 

where  

1 2 1 2

1 1 2( )dk dk dk dk
f e eβ β− − − −= − + ;           1 3 1 3

2 1 3( )
dk dk dk dk

f e eβ β− + − += + ; 

1 4 1 4

3 1 4( )dk dk dk dk
f e eβ β− + − += + ;             1 2 1 2

4 1 2( )dk dk dk dk
f e eη η− − − −= − +  

1 3 1 3

5 1 3( )
dk dk dk dk

f e eη η− + − += − ;              1 4 1 4

6 1 4( )dk dk dk dk
f e eη η− + − += −                                                                  

1 2 1 2

7 1 2( )dk dk dk dk
f e eθ θ− − − −= − + ;           1 3 1 3

8 1 3( )
dk dk dk dk

f e eθ θ− + − += −                                                                                                     

1 4 1 4

9 1 4( )dk dk dk dk
f e eθ θ− + − += −            

                                                                                                                            (A7)      



 

 

117 

                                                                                                                             

and 

1 2 4 1 5( )f f f fδ = − + ;       2 3 4 1 6( )f f f fδ = − +                                                                                                             

1 2 1 1 2( )γ η θ η θ= − + ;        2 3 1 1 3( )γ η θ η θ= − + ;          3 4 1 1 4( )γ η θ η θ= − +  

( ) 2 2 7 1 8 1 3 7 1 9( ) / ( ) ( ( ) ( ))G d p f f f f f f f fϑ ξ δ δ= − − + + − +ɶ                

    (A8)                                                                      
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APPENDIX B 

 

The system of linear simultaneous equations for the arbitrary functions 

1 1 1 1 2 2, , , , andA B C D A B , …, etc., resulted by substituting Eqs. (4.24-4.26) into 

boundary and continuity conditions (4.20-4.23), can be expressed as follow:   

041312111 =+++ θθθθ DCBA               (B1)    

041312111 =+++ ηηηη DCBA           (B2)              

31 2 4

1 1 1 2 1 3 1 4 2 2[ ( 1)]
k dk d k d k d d

A k e B k e C k e D k e A B d e
− − −+ − − = + − ξξ ξ                   (B3)              

31 2 4

1 1 1 1 2 2[ ]
k dk d k d k d d

A e B e C e D e A B d e
− − −+ + + = + ξ                               (B4)   

31 2 4

1 1 1 2 1 3 1 4 2 2 2[2 2 2 ]
k dk d k d k d d

A e B e C e D e A B d B e
− − −+ + + = + − ξη η η η ξ ξ       (B5)             

31 2 4

1 1 1 2 1 3 1 4 2 2

( )
2[ ]

( )

k dk d k d k d d p
A e B e C e D e A B d e

G d

ξ ξ
θ θ θ θ ξ ξ− − −+ + + + + =

ɶ
      (B6)                         

where 

2

2 2 2

; 1,2,3,4

2 ; 2 ; 1,2

i
i

i i i i i i

k
i

q k q k i+ + +

= + =

= − = + =

η ξ
ξ

θ θ

            

0( )
d

G d G e
λ=
ɶ

                                                                                                               

0
0

( ) ( ) ( )p rp r J r drξ ξ
∞

= ∫ɶ                      

                (B7) 

The explicit solutions for the arbitrary functions 1 1 1 1 2 2, , , , andA B C D A B  can be 

expressed as follows: 

3 4
1

3

A =
ℓγ χ

ϑ
                         (B8)                                                                                                            
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3 3 4 1
1

2 2 3

B = − −
ℓ ℓγ γ χ ϑ

ϑ ϑ ϑ
                        (B9)                                                                                            

3 4 1 3 2 1 3 22
1

2 3

( / / )
C

−
= −

ℓ ℓ ℓ ℓ ℓℓ γ χ ϑ ϑγ

ϑ ϑ
                          (B10)                                                                     

5 3 4 4 3 5 1 3 2
1

2 3

( / / )
D

−
= −
ℓ ℓ ℓ ℓ ℓ ℓγ γ χ ϑ ϑ

ϑ ϑ
                  (B11)                                                                     

3 2 3 4 1 2 1 2
2

2 3

( / )
A

−
= −
ℓ ℓγ δ γ χ δ δ ϑ ϑ

ϑ ϑ
                    (B12)                                                                        

3 1 3 4 1 2 1 2
2

2 3

( / )R R R
B

−
= −
ℓ ℓγ γ χ ϑ ϑ

ϑ ϑ
               (B13)                                                                             

Where 

4 4
; 1, 2,3

i i i
iη θ η θ= − =ℓ ; 

3 3 4
; 1, 2

i i i
iη θ η θ+ = − + =ℓ  

2( ) ( )

2 2
( ); ( ); 1, 2i id k d k

i i i i
I e k I e k i

ξ ξξ ξ+− + − −

+ += − = + =  

2 ( ) 2 ( )

2 2
(2 ); (2 ); 1, 2i id d k d d k

i i i i
J e J e i

ξ ξ ξ ξξ η ξ η− − + − − −

+ += − = − =  

2( ) ( )

2 2
(2 ); (2 ); 1,2i id k d k

i i i i
h e h e i

ξ ξξ θ ξ θ+− + − −

+ += − + = − + =  

2( ) ( )

2 2
( 1 ); ( 1 ); 1,2i id k d k

i i i i
e d dk e d dk i

ξ ξω ξ ω ξ+− +

+ += − + − = − + + =  

4 4( ) ( ) ( )

1 2 4 2 4 1 4
( );i i id k d k k d k k

f e e e k k
ξ ξη η ξη η− + += + − −  

3 34 4

2 3 4 3 4 3 4
( )

dk dkdk dkd
f e e e k e e k

ξ ξη η ξη η= − − + +  

2 2

4 4 4
(( 2 ) ( 2 )); 1, 2,3d d

i i i i
e I J e I J i

ξ ξχ η η− −= − − + − − = ; 
4 2 2 1 3

( )χ χ χ= − +ℓ ℓ  

3 4 4 4 3 3 4
( ( ) ( )); 1, 2

i i i i
h h h h iϑ η η η η= − − − =ℓ ℓ ; 

3 4 1 1 3 3 1 2
( ( ) )ϑ χ ϑ χ χ ϑ= − + −ℓ ℓ  

4 4 3 4 3 4 2 3
( / ) (( ( / ) ) / ); 1, 2

i i i
iδ ω ω η η ω ω η η= − − − =ℓ ℓ  

1 4 2 4 3
/ / ; 1,2

i i
R f f iη η= + =ℓ ℓ ; 

4
( ( ) / ( ))d

e p G d
ξγ η ξ−= ɶ  

                                                                                                                          (B14)    
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APPENDIX C 

 

The 
ij

w , 
ij

w′ , 
ij

u  and 
ij

u′  in Eqs. (5.30), (5.42) and (5.43) can be calculated by 

using superposition technique, we have:  

ij
w : by using Eq. (5.23) we have:  

for j=1 and i=1, 2, …, n:  

2 2

1 2

2 2 2 2

1 1 2 2 2 10

1
0 1 1

( )
( ,0)

(2 )( ) ( 2 )( )

( ) ( )

ij mi

mi

k k
w r

k q k q k k

r
J r J r d

a

ξ ξ

ξ ξ ξ

∞  −
=  

− + + − + 
∫

            (C1) 

and for j=2,3,…,n and i=1,2,…,n: 

2 2

1 2

2 2 2 2

1 1 2 2 2 10

1

0 1 1 1

( )
( ,0)

(2 )( ) ( 2 )( )

( )[ ( ) ( )]

ij mi

j j

mi j j

k k
w r

k q k q k k

r r
J r J r J r d

a a

ξ ξ

ξ ξ ξ ξ

∞

−

−

 −
=  

− + + − + 

−

∫
(C2) 

ij
w′ : by using Eq. (5.44) we have:  

for j=1 and i=1, 2, …, n: 

1

1 1 2 2
1 2 2 2 2

1 1 2 2 2 10

2

0 1

0

( 2 ) (2 )
( ,0)

(2 )( ) ( 2 )( )

( ) ( )

i mi

r

mi

q k k q
w r

k q k q k k

r
J r J r dr d

a

ξ ξ

ξ ξ ξ ξ

∞  − + −
′ =  

− + + − + 

 
 
  

∫

∫

(C3) 
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and for j=2,3,…,n and i=1,2,…,n: 

1

1 1 2 2

2 2 2 2

1 1 2 2 2 10

2

0 1

( 2 ) (2 )
( ,0)

(2 )( ) ( 2 )( )

( ) ( )

j

j

ij mi

r

mi

r

q k k q
w r

k q k q k k

r
J r J r dr d

a

ξ ξ

ξ ξ ξ ξ
−

∞  − + −
′ =  

− + + − + 

 
 
  

∫

∫

             (C4) 

ij
u : by using Eq. (5.24) we have:  

for j=1 and i=1, 2, …, n: 

2 2 2 2

2 1 1 2
1 2 2 2 2

1 1 2 2 2 10

1
1 1 1

( ) ( )
( ,0)

(2 )( ) ( 2 )( )

( ) ( )

i mi

mi

k k k k
u r

k q k q k k

r
J r J r d

a

ξ ξ

ξ ξ ξ ξ

ξ ξ ξ

∞  + − +
=  

− + + − + 
∫

   (C5) 

and for j=2,3,…,n and i=1,2,…,n: 

2 2 2 2

2 1 1 2

2 2 2 2

1 1 2 2 2 10

1

1 1 1 1

( ) ( )
( ,0)

(2 )( ) ( 2 )( )

( )[ ( ) ( )]

ij mi

j j

mi j j

k k k k
u r

k q k q k k

r r
J r J r J r d

a a

ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

∞

−

−

 + − +
=  

− + + − + 

−

∫
         (C6) 

ij
u′ : by using Eq. (5.45) we have:

 
 

for j=1 and i=1, 2, …, n: 

1

2 1 1 2
1 2 2 2 2

1 1 2 2 2 10

1 1

0

( ,0)
(2 )( ) ( 2 )( )

( ) ( )

i mi

r

mi

k q k q
u r

k q k q k k

r
J r J r dr d

a

ξ ξ

ξ ξ ξ ξ

∞  −
′ =  

− + + − + 

 
 
  

∫

∫

  (C7) 
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and for j=2,3,…,n and i=1,2,…,n: 

1

2 1 1 2

2 2 2 2

1 1 2 2 2 10

1 1

( ,0)
(2 )( ) ( 2 )( )

( ) ( )

j

j

ij mi

r

mi

r

k q k q
u r

k q k q k k

r
J r J r dr d

a

ξ ξ

ξ ξ ξ ξ
−

∞  −
′ =  

− + + − + 

 
 
  

∫

∫
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