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Abstract

This thesis presents an implementation of a controller for a redundantly- actu­

ated parallel mechanism.

Firstly, an introduction to the structure and kinematic properties of the piirallel

mechanism is presented. We begin by describing the A51 hydraulic actuator, the

main constituents of the mechanism, and move on to review the properties of the

whole system. The inverse and forward relationships are derived, and the Jacobian

matrix of the 3ystem is calculated using velocity analysis.

The controller of the shoulder employs the above properties and relationships

to balance for any externai forces, in particular the gravity, and to estimate its mag­

nitude. This is done in two steps: damping the motion to rest primarily, and subse­

quently, determining the bias and actuai force vectors in static equilibrium. Finally,

the results of the experiments are presented.

The formulation of the optimization of the force distribution problem is then

studied. Given an overdetermined system, we present two methods for finding the

optimal minimum-norm vector of forces, one in Hilbert space and the other in a

generalized complete normed space. The latter is indeed an algorithmic procedure

forobtaining a minimum oo-norm or a minimum effort solution, which is a solution

of a set of equations whose maximum component's magnitude is the smallest pos­

sible. In this method, the dual of problem is solved and then the optimal solution

is generated by using concepts from functional analysis.
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Résumé

Cette thèse présente la mise en oeuvre d'un système de commande pour un méca­

nisme parallèle avec motorisation redondante.

On présente d'abord la structure et les propriétés cinématiques du mécanisme.

Les actionneur hydrauliques ASI sont décrits, puis les parties constituantes sont

discutées ainsi que les propriétés du système complet. Les changements de coor­

données sont dérivés dans les deux sens et la matrice jacobienne est calculée à l'aide

de la géometrie vectorielle.

Le système de commande de "l'épaule" met ces propriétés à profit pour equili­

brer des forces extérieures arbitraires, en particulier la gravité, et pour en estimer

l'intensité. Ceci est fait en deux étapes: amortir les mouvements du système jusqu'à

l'arrêt puis estimer le décalage des capteur d'effort. Finalement, on présente des

résultats expérimentaux.

On s'occupe ensuite d'optimiser la distribution des efforts, puisqu'il s'agit d'un

système surcontraint. On présente deux méthodes pour trouver les vecteurs de

norme minimum des forces des actionneurs, une dans un espace de Hilbert, l'autre

dans un espace normé genéralisé. Il existe en effet une procédure algorithmique

pour calculer des solutions qui minimisent la norme 00. Cette solution minimize la

plus grande des componantes de la solution. On résoud un probléme dans l'espace

dual et la solution est trouvée à l'aide de concepts d'analyse fonctionnelle.
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Claims of Originality

The author of this thesis daims the originality oi the following:

1. The implementation of the kinematic properties of the shoulder mechanism

2. The design and implementation of the force coordinator of the mechanism

employing its kinematic properties

3. The design and implementation an estimator, to estimate the magnitude of a

force acting on the shoulder

4. The implementation of the algorithm to solve for the force optimization prob­

lem
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The past four decades has witnessed the birth and growth of robotics as a distinct

discipline in engineering. As a result, robots have come to play an increasing roll'

in industry, and their tasks have become more sophisticated as weil. As tasks pe\'­

formed by robots have become more complex and delicate, robotics research has

focused on sensor-based robotics, leading to robot controllers with a high degree

of complexity required to process vast amounts of data.

Various controllers weredeveloped notonly because of task complexity, but also

in anattempt to overcome problems that stemmed from current manufacturing robot

designs inadequate for many other applications. The precise and delicate control

of the end-effector torques and forces is made difficult by the high inertia and the

low natural frequency of most manipulators as weil as by the friction, backlash in

the gearing and transmission systems. Many interesting control algorithms which

compute joint torque or force commands, often taking the full nonlinear robut's dy­

namic model into account, were developed (see, for example [26], [20] and [33]), but

few of them have yet been tested and compared experimentally. This is because

many robotics research laboratories lack suitable robot manipulator systems with

good joint torque control and sensing capabilities [1]. In short, despite many ad­

vances, current manipulators are still inadequate for a variety of tasks, most notably

those having contact with the environment.

These problems can be remedied in two ways, either by compensation techniques

or by the design of manipulators better suited to their environment and tasks. Many

of the compensation schemes take the form of control algorithms with force feed­

back to correct for undesirable nonlinear effects, and lack of performance. In other

cases specialized passive mechanisms are introduced, such as compliant wrists, to

1
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1. Introduction

provide a tolerance for positioning errors, fast response to environment solicitation

and to avoid contact instability. Although this has generated a fair amount of suc­

cess, it is believed that improved mechanical design of the manipulators themselves

is needed to overcome sorne of the problems with conventional robots.

Most commercially available robots such as the PUMA manipultor consist of se­

riaI open loop chains that are well suited for the manipulation of small playloads

inside large working space volumes. As discussed by Hayward [11], this type of

architecture has a poor weight to load ratio due to the pyramidal effect: "proximal

joints must be designed to drive and support the sum of the distal links and joints".

The accumulation of errors and lack of rigidity is also unavoidable with this archi­

tecture.

This has motivated the development of parallel manipulators, where the end­

effector is connected to the base through several closed kinematic chains. Many

exmaples of parallel manipulators have been studied. (See [4], [18], [22] and [35], to

cite just a few). These manipulators have many advantages over their seriaI coun­

terparts.

Parallel manipulators possess properties complementary to those of their seriaI

counterparts [17). They can handle heavy loads and their dynamics are dominated

by the dynamics of the actuators and the load. From this standpoint, it seems eas­

ier to improve their dynamics by using feedback control since they suffer less from

dynamic coupling effects such as those produced by the limbs of seriaI robots, or

from friction, backlash, or joint compliance imputed to transmission devices such

as gears or harmonic drives. In the case of platform design, the forces applied by

the actuators act on the same rigid endplate and hence they must be coordinated to

prevent large internaI forces from damaging the manipulator. Moreover, the load's

inertial parameters must be estimated or identified, since they affect the overall ma­

nipulator dynamics directly. These considerations somewhat complicate controller

2
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1. Introduction

design. Unfortunately, this class of manipulators suffers from a small working vol­

ume.

To alleviate the above problems, a general purpose manipulator composed of

both these architectures would be quite desirable [17]. This idea is inspired from the

fact that the properties of parallel manipulators complement those of seriaI designs.

One such design, as described by Hayward [11], consists of a revolute elbow joint

interposed between two spherical joints for the shoulder and wrist. The spherical

joints are actuated in parallel to provide three degrees of freedom in orientation.

This thesis is concerned with the design of a controller and the force distribution in

the said spherical joints, to be referred to as shoulder (or wrist).

Shoulders are characterized by their ability to provide for the pointing orienta­

tion of manipulator. This characteristic simplifies the kinematics and control, and

improves the dynamic properties. Traditional shoulder designs are composed of a

seriaI chain of two or three revolute joints with intersecting axes. These shoulders

suffer from the above-explained problems inherent in ail seriaI designs. Theyalso

contain unavoidable singularities that seriously reduce the usable workspace [30].

Another method used to eliminate the singularities is based on a mixed serial­

parallel shoulder with more than one articulation point [28]. This leads to a corn­

plicated design involving chain drives and tension rods that must be fabricated to

exacting specifications.

Fully parallel shoulders have been suggested by several authors ( [2] and [10]),

however these display small wokspaces that generally limit the utility of the mech­

anisms.

In recent years the search for robots with improved chracteristics has promoted

the development of redundant mechanisms. In that context, redundancy refers to

3
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the addition of more actuators than are strictly necessary for a certain task. For ex­

ample, positioning and orientating a body in space requires six degrees of freedom,

thus a manipulator with scven or more actuated joints is called redundant. Cases

of redundancy can be separated into two major categories.

The first and is known as kinematic redundancy. Here the additional actuators in­

crease the degrees of freedom of the mechnism giving the capability of self motion.

This can be put to a number of uses such as:

• Singularity avoidance [25]

• Minimize joint torques [16]

• Obstacle avoidance [27]

For a detailed discussion of properties of redundancy, the reader is referred to [11] .

The second category is known as actuator redundancy. For this case the extra ac­

tuators do not give added mobility, but are used to control the internai forces in

the mechanism. A common example occurs when a multi-fingered hand grasps an

object. This may result in an overconstrained problem with more actuators than

needed by the force analysis. In the case of grasping, the actuator redundancy is

utilized to create friction forces between the load and the fingers, thereby, resulting

in a stable grasp [19].

It must be stressed that actuator redundancy can be used within a manipuila­

tor itself [29]. Although this is not often done in robots, examples of this abound

in nature. The human shoulder is a spherical bail and socket joint actuated by six

muscle groups to control three degrees of freedom. Strictly speaking, this is a case

of actuator redundancy in which the shoulder muscles are used to supply the in­

ternai forces needed to keep the humerai head (bail) firmly anchored to the glenoid

socket.

4
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1. Introduction

It is the goal of this thesis to introduce a controller for a shoulder mechanism

with redundancy. This controller is designed to compensate for and estimate the

magnitude of slowly varying external forces applied on the system, in particular

gravitywith noa prioriknowledge of the relevant parameters. To the author's knowl­

edge, this is one of the first attempts to design and implement such a controller.

The organization of the thesis is as follows: Chapter 2 presents a general intro­

duction on the hydraulic actuator [7] and kinematic modelling of the shoulder [14].

In chapter 3, a control algorithm and its implementation are described. In chapter

4, the force distribution problem is solved for, and formulated in 12 and l,,,, spaces.

Finally, chapter 5 presents the concluding remarks.

5
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Chapter 2 Introduction to the structure and
Kinematics of the Shoulder

This chapter introduces the most important features of the shoulder to provide the

reader with sufficient background necessary to follow the material of the next chap­

ters. We begin with describing the physical attributes of the existing prototype.

Subsequently, the synthesis of the parallel shoulder will be described. Then the

kinematic modelling of the shoulder will be carried out. We begin by introducing

the actuator subsystem.

2.1 ASI Hydraulic Actuator

This section provides a brief description of the shape and internai structure of a AS'

hydraulic actuator, which is a summary of a detailed discussion presented in [8]

The device discussed here is a linear piston-type actuator driven by an integrated

high-bandwidth jet pipe suspension valve, and fitted with a force sensor. It is very

Figure 2.1: The hydraulic actuator (adapted fram (2))

6
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•

Figure 2.2: The actuator model (adapted from [2])

compact, mechanically rob~)st, and its mass is about 0.5 kg. Il has an LVDT posi­

tion sensor as weil as a force sensor mounted directly on il. A view of the actuator

(without the LVDT position sensor) is shown in Figure 2.1. For a 73 mm stroke, the

overall dimensions are 25 x 55 x 139 mm. 5ince it is a force-controlled device, il

must include sorne elasticity which is almost entirely lumped in the force sensor.

The standard servo system available for the actuator includes a controller card­

which can be accessed by a host computer. The card features on-board analog con­

trollers whose valve currents can be specified as desired. The gains can be pro­

grammed from a host computer, allowing gain scheduling. The measured state

variables can be accessed digitally via an on-board analog to digital converter, al­

lowing for digital control.

These actuators may be essentially seen as force producers. A diagram of the

physical actuator model is shown in Figure 2.2. The dynamic and output equations

relating the hydraulic force F to the sensed force F, are:

• where:

F, = k,x,

(2.1)

(2.2)

7
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2. Introduction to the structure and Kinematics of the Shoulder

F( :1:,,) = the valve static force

Vi(:I:", v,,) = hydraulic damping force

fif ('/},,) = friction force

v" =piston velocity

:1:, =force sensor deflection

III. =actuator mass minus piston mass

b." k, =force sensor paramters

For a more detailed discussion of the above and a model of the servosystem ,

the reader is refered to [7] and [8].

2.2 The Parallel Shoulder

The general case of a fully parallel mechanism consists of a movable platform at­

tached to n legs with one actuator per leg. A point on the platform is then con­

strained by a spherical joint to prevent translations while permitting freedom of

orientation (see Figure 2.3). The spherical joints can be implemented several ways

such as gimbals, ball and sockets, or even flexible couplings. The legs are composed

of one linear actuator-one cylindricallower pair-interposed between two Hooke

joints, or any other kinematically equivalent arrangement.

Let us denote the center of rotation as C, the point of attachment of each leg to

the wrist platform as Pi, and the point of attachment of each leg to a fixed frame Ai,

1= 1, n. Here we chosen n = 4 to make the system redundant.

The use of an additional actuator was proposed in an attempt to reduce or elim­

inate the singular configurations. Singularities are not the only factor influencing

8
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the size and shape of the workspace. As more actuators are added, there is an in­

creasing chance that they will collide with one anothel~ or with one of the support­

ing trusses of the mechanism. This tends to decrease the volume of the workspacc.

For this reason the shoulder was designed with only four actuators which wililead

to enough redundancy to eliminate sorne of the singularities, without causing ex­

cessive interference between the legs and trusses.

With actuators, we may think of the mechanism a four sub-mechanism in a com­

binatorial fashion as in [8]. If one is in a singular configuration the others are not.

The attachment points Pi are placed symmetrically in a square with the center being

the fixed point C.

The geometrical design goal is to enhance cooperation [13]. It can be seen that

the workspace limit is reached when either an actuator touches one of the trusses,

or when two actuators intersect. By grouping the fixed attachment points in pairs

50 that AI = A2 and A3 = A4 we eliminate self collisions of the grouped actuators

and enlarge the workspace. This leads to the design of Figure 2.4, referred to as the

grouped model of a parallel-redundant shoulder. The actual mechanism is shown

in Figure 2.5.

The nomenclature for these shoulders, as weil as the coordinate frames and vari­

ables to be used as part of the kinematic analysis will be defined here. Referring to

Figure 2.4:

c: center of rotation of wrist.

Pi: Points of attachment of actuators to mobile wrist platform U= 1, ... ,4).

Ai: Points of attachment of actuators to fixed wrist platform (i = 1, ... ,4).

Ap : Point of attachment of the center post to the fixed wrist platform.

B: Base coordinates centered at C.

P: Coordinates attached to the platform, also centered at C.

9
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2. Introduction to the structure and Kinematics of the Shoulder

I: Intermediate coordinate frame centered at Cwith axes along the lines A;ê

-+ -+
iï.: unit vector normal to the mobile wrist platform: uni t (CP2 X CPI ) .

UQ: Wrist rotation matrix in base coordinates.

(l: wrist actuator lcngths, [PI, {J2, {J3, (l4f, (l; = liA.?: Il, for i = 1, ... ,4.

Id: wrist lever length, Id = Il cr;!1, for i = 1, ... ,4.

l,,: Distance from the plane or the line defined by the A; to the point c.

h: Base actuator offset length defined as IIAiApll, for i = 1, ... ,4.

a: The separation angle between ïGÇ, and the y-axis of the base frame.

w: Wrist angular velocity.

p: Wrist actuator velocities, [PI Pz P3 P4 f.

We adopt the following conventions: The coordinate frames Band 'P are defined

with coincidental centers at C, and with z-axes perpendicular to the planes defined

by Ai and P; respectively. The x-axis of the frame B is parallel to the bisector of an­

gle LA]ApA4' Similarly, the x-axis of the frame 'P is parallel to the bisector of angle

LPIC P4. With this convention, the frames Band 'P coincide when the manipula­

tor is at the center of the workspace. Upper case letters refer to points and lower

case to scalars. Vectors will be written as bold face lower case leuers or by leUers

with overdrawn arrows. Matrices and rotation tensors will be denoted in upper

case boldo

2.3 Position Analysis of the Parallel Shoulder

The Kinematic modelling of the shoulder was carried out by Hayward and Kurtz

[14]. The derivation starts by solving for the so-called forward and inverse kinemat­

ics problem. In the forwa.rd kinematic problem, the goal is to find the orientation

10
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of the platform in Cartesian coordinates, given the lengths of the actuators. ln con­

trary, the inverse kinematics problem is to find the vector of actuator lengths, given

the orientation of the end-effector X. This could be specified by the linear invari­

ants of the rotation tensor, quaternions, Euler angles or even by the rotation tensor

itself. The rotation tensor was selected because it leads to convenient algebraic ma­

nipulation as weil as good numerical stability.

For seriaI robots the forward kinematics problem is simple, but the inverse prob­

lem often results in a series ofnonlinear equations that are difficult or impossible to

solve. The opposite occurs for parallel manipula tors: the inverse kinematics is sim­

ple, as each kinematic loop contains only a single actuator, but the forward problem

can be quite difficult. A closed-form solution exists for the pm'allel shoulder.

2.3.1 Inverse Relationships

The inverse kinematic model is particularly simple ta construct by projective ge­

ometry. The rotation matrix going from base to end effector coordinates is given

by:

811 812 "13

TS = 821 822 823 (2.3)

831 832 833

Wehave:

and

• (2.5)

Il
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2. Introduction to the structure and 1<.inematics of the ShouIder

By coordinate transformation into frame B, we have:

thus

(II = IIB~II = V(ld,sn)2 + (ld,s21 + h)2 + (1,[,s31 + 11')2 (2.7)

(12 = IIB~II = V(ld,s12)2 + (ld,s22 - h)2 + (-1,[,s32 + 1,,)2 (2.8)

(13 = IIB%II = V(ld,sn)2 + (ld,s21 + h)2 + (-1,[,s31 + 11')2 (2.9)

(14 = IIBMII = V(l,/,s12)2 + (ld,s22 - h)2 + (ld,s32 + 11')2 (2.10)

2.3.2 Forward Relationships

The forward kinematics can be found by solving equations (2.7), (2.8), (2.9), and

(2.10) for the matrix S. Since S is orthogonal, ils nine elements are subject to six con­

straints, each row being of unit norm and mutuaIly orthogonal to the other rows.

From this we can infer that a rotation can be described by only three variables. Solv­

ing for these three variables from the four actuator lengths constilutes a non linear

overdetermined system of equations.

Only three of these equations are needed to solve the forward kinematics. If

there are errors in our measurement of (1 then we can obtain four different solutions

for the rotation variables. Averaging these solutions will help reduce the effects of

measurement error on the system. Alternatively, if we assume no measurement er­

rors in (1 then we can use aIl four values to describe a simple kinematic solution.

From equations (2.7), (2.8), (2.9), and (2.10), we obtain:

(2.11)

12
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• (2.12)

(2.13)

(2.14)

where 11; = 2) (PT - It - I~ -IJ),; = l, ... ,4. Using Cramer's mie:
"

where kl , k2, k3 , k4 are known values. They are:

(2.15)

(2.16)

(2.17)

(2.1 H)

•
k] = (111 +113)/2h,

k3 = (-112 - (34)/2h,

k2 = (fil - 113)/21,,,

1.'4 = (-112 + (;4)/21".

(2.19)

(2.20)

Now we substitute equations (2.15) and (2.16) into the identity "YI + "~1 +,'51 == 1:

(2.21 )

Solving yields two branches:

(2.22)

From this we can substitute Sil back into equation (2.15) to get "21' Similarly, using

equations (2.17), (2.18) and the identity sY2 +s~2 +"52 == 1, we have:

•
Sî2 + (1.'5 + k~ - 1) = 0 (2.23)

13



•
2. Introduction to the structure and Kinematics of the Shoulder

and

(2.24)

•

We then substitute "12 back into equation (2.17) to get ,s22' We now have the first

and second columns of the rotation matrix S, the third column is simply the cross

product of the first two.

In general, three of the four branches to this problem will be spurious. Each can

be tested by examining the orthogona!ity constraint ,sn,s12 + ,s21,s22 + ,s31,s32 == O.

In certain configurations there will be more than one va!id branch. For example, if

k2 = 1.'3 = 0 and k4 = 1 there will be two solutions.

2.4 Velocity Analysis

The Jacobian matrix J of the inverse kinematic map relates Cartesian velocities to

joint rates. The defining equation is:

p= Jw. (2.25)

The Jacobian of the inverse map will be much easier to solve for than that of the

forward one. The actuator velocities can be obtained as linear combinations of the

angular velocity by vector geometry. The velocity of point Pi attached to the actu­

ators is:

_ B -1'

VPj = W X CPi. (2.26)

•
The rate of each actuator is the projection of the velocities of the points Pi onto the

corresponding !ine AiP;. Thus:

(2.27)

14
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• Pi = ai ·ÜP. = ai' (L'w X crj) = F~l. (CPi X C1i)

(CPI x aJ)T

(CP2 x azf
p = t'w = J Hw.

(CP3 x a3f

(CP4 x (4)T

(2.2R)

(2.29)

The 4 x 3 rnatrix J is naw explicitly knawn. After sorne algebra, the entries of Jare

calculated ta be as follows:

-5211;:- LI (.~11+1) S11 f., ~
Pl Pl 1'1

S22L2+Ll (S,12- 1) -sp/.." -lip /-'1

J = l~ X 1'2 pz. P2

1/211.,2- ["1 (.~:\l-1) -S11 J.... :!..ll..l!.J.
1'3 {!J (J,l

-522/"2+1. 1(:;12+ 1) spI.... -.~pLl

l', l', l',

(2.30)

•

•

where LI =!J>.( and Lz = 1 - "'II, •
d d

In addition, the values of the strokes of the actuators must satisfy the following

relation ([6], [5]):

[(pt +pi) - 21; (PI +pD + 21~ - 41~ t3J [(pj + l':) - 21~ (p~ + p~) + 21~ - 41; l~l

- [1; (PI + P~ + P~ + p~) - (PI p~ + P~ p~) - 4151~ cos Il - 21~lz = 0
(2.31 )

with 10 == Jl~ + l~, l, == Jl5 + lJ and cos l' = JI~ - ltllo.
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,b,

•
Figure 2.3: (al General case of a fully parallel wrist. The point C is fixed,
preventing translations but permitting arbitrary rotations; (hl Syrnmetric
arrangement of a non-redundant wrist consisting of two equilateral trian­
gles, the top one mobile and the bottom one fixed (adapted from [14]).

P, P,
~ "

c

'"i \ ,
P,

A,C'r----..l----o(; A,

A, A,

•
Figure 2.4: Schematic arrangement of a grouped actuator redundant ma­
nipulator (adapted from [14]).
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Figure 2.5: The paralIeI redundantly-actuated mechnism (shoulder)
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• Chapter3 Force Balancing in the Parallel Shoulder

•

•

The aim of this chapter is to describe the controIler of the shoulder. The aim of the

controIler is to balance any external force exerted on the system, and to estimate

its magnitude. The measurements are corrupted with noise, and a time varying

bias in the force readings increases the uncertainty of the measurement. Unmod­

eIled linearities are also other factors which perturb these parameters. Despite aIl

the perturbations, the controIler must remain stable at aIl times, and adapt itse1f to

sudden changes in the environment as weIl. These two properties are emphasized

in the shoulder because the inertial parameters may vary dramaticaIly when the

manipulator makes contact with the environment or is loaded.

The control system is based on a static mode!. There is no attempt to model the

noise or nonlinearities of the system or to identify their effects. Moreover, the sys­

tem is not linearized in the vicinity of an operating point. Instead, the motion of

the system is damped to rest, and once in a static equilibrium, the magnitude of

the force is estimated based on measurements of the torque.

This chapter contains two sections. In the first section, force balancing in a one

DOF system is described. Subsequently, it is shown how this simple one DOF sys­

tem is utilized to design the shoulder's controIler.

3.1 Control of a 1-DOF Mechanism Using a Hydraulic Actuator

In this section the design of a simple control system for a one DOF system is de­

scribed. This system is a crank with one hydraulic actuator, and its controIler at­

tempts to compensate and estimate the magnitude of any external force imposed
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upon it. Since the ultimate goal is to design such a control system for a t1uee DOF

system, using four of the same kind of actuators, we found il appropriate to study

the behaviour of this one DOF system. To do so, a simple controller was designed

in order to gain insight into the properties of the controller. Subsequently, as it will

be escribed in the next section, we generalize our findings and apply them to de­

signing a control system of a spherical joint (shoulder).

Presence of an inertia and damping indieate the exertion of an external force.

We propose in the following that frietion forces are negligible. In partieular, COI11­

pensators with high gain make the friction in the actuator very sl11all even at low

velocity. Any unballanced external force can result in an acceleration and velocity

in the system. Since calculating acceleration from position measurements is suscep­

tible to noise, acceleration was not considered as a measurable state of the system.

The controller is to balance any external forces, in partieular the gravity. This is

achieved when a state of statie equilibrium is reached. Velocity and force are two

state variables to be controlled, however, velocity is the only state variable needed

to be measured to achieve statie equilibrium. Consider an actuator in this state.

Shortly after a perturbation is applied to it, the measured force is not a reliable state

variable of this system. As the actutor is made to build up resistance against the per­

turbing force, the measured force, whieh is a function of many variables, in astate

close to statie equilibrium, can be considered as a measurement reflecting the exter­

nal forces. When the actuator is moving "fast", the force measurement no longer

can be used, only velocity can be used.

The structure of this controller is shown as a block diagram in Figure 3.1. In this

figure,

fd(n): the input force

!m(n): the measured (sensed) force by the actuator
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• + + V(n)

+
actuator

Figure 3.1: The coordinator of the crank

Q

Q

A

o E

~:::::--::::-:::-:::--::-~--~-~--~-:-=.:--:-.::.--~-~--~-~-~-~-~--~13-~-~--~-~--~<\Ji~-~--:•
H

Figure 3.2: Abstraction of the geometry of the system

u(n): the linear velocity of the actuator

f{ and D: constant gains

•

This figure shows a discrete contra11er with two feedback loops. The externalloop

feeds back the measured force, lm (11,), into the system, magnifies the difference be­

tween the input and output signais, and determines the next input commando In

addition, the correction factor D u(11,) causes damping and forces the system ta con­

verge ta statie equilibrium.
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3. Force Balancing in the Parallel 5houlder

Refering back to Figure 3.1, the closed loop equation of the system is as follows:• h(n) + [([h(n) - /",(11)] + IJv(n) = /<I(n +1)

Let the error term be

e(n) = h(n) - /",(n)

then the difference equation describing the error is

(3.1 )

(3.2)

•

e(n +1) - (1 + [()e(n) = /",(n +1) - f,.,(n) + Dv(n) (3.3)

As the state of static equilibrium is reached, the terms v(n) and f,.,(n+ 1) - /",(n) ap­

proach zero, rendering e(n) close to O. Once e(n) ~ 0, '/;" represents the actual force

exerted on the actuator. However, il must be noted that the force measurement is

contaminated by a measurement bias. In section 3 a method to calculate the bias

will be described.

Having found f,." the rnass of the load, m, is calculated from

fm = mg(~)COSOsinrl> (3.4)

•

The two constant lengths, L.495rn and 1= 0.061Om, and the two variables, () and 1/,

are shown in Figure 3.2. In this figure, 0 is the angle nf rotation and OC: reprcsents

the the actuator with a length of p. The load is pl", ,', ~ Q and the arm fJQ rota tes

around P. We introduce two new constants <Po =- :';,;.J degrees and (Ill = .287m,

which are the rneasured values of ri> and (l, respectively, when 0 = o.

Using the geornetric properties of the figure, 0 and ri> can be calculated:

o= 2 arctan( 12~Q ,in!1'0)±M )
2/\ +PoC05tPO 1

(3.5)

ri> = 180 - arcsin( l,in 0-1'0 ,in 1" )
p
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where

The results of three experiments are described. In ail the experiments, the actua­

tor is initially at the state of static equilibrium. A weight is placed on the crank, and

is left to move freely for 500 milliseconds (id = 0) so it can pick up velocity. In the

first experiment the mass is 2.265 kg, whose Jm = -168 machine units (MU). The

mass in the second experiment is 4.530 kg, with Jm = -320 MU. Finally, the third

load has a mass of 6.795 kg, with Jm = -479 MU. Notice that because of the kine­

matics of the system, the force exerted on the endeffector is magnified by a factor

of 6 to 8.

There are 3 plots for each experiment. The first one shows the values of Jm and

,f,L. Notice that id = afor the first 0.500 seconds, and then Jd is set to Jm. The second

plot shows the error e(n) = fd(n) - Jm(n). Finally, the velocity is plot.

In the first experiment, the crank starts its motion vith no initial velocity. The

velocity reaches 5.0 mm/s after 150 milliseconds (ms), 8.5 mm/s after 250 ms, and

remains stable. This velocity is brought to zero in less than 130 ms. It is also ob­

served that as the velocity is reduced, Jd and Jm converge toward each other.

A similar pattern is observed in ail the experiments. It is seen that the velocity

decay rate does not change significantly with different loads. This time decay pe­

riod can be divided into two parts. The first 200 ms is a period of "coarse tuning",

during which the velocity is damped to zero. In the second period "fine tuning" is

carried out, and Jd - Jm dominates the input command since the velocity is close

to zero.

The above experiments display the main characteristics of the one-actuator con­

troller. These can summarised as following:
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• The damper brings the motion of the actuator to zero in a fixed period of time,

regardless of the magnitude of the force exerted on it

• There are two processes in damping the motion, whieh we cali, coarse tuning

and fine tuning

• "Coarse tuning" brings the velocity close to zero, i..e., compensates for the ex­

ternal forces, but Im is signifieantly different from Il.

• "Fine tuning" is the process during whieh .rl and I", converge toward each

other. After convergence, estimation can be carried out.

The above characteristies will be retained in the design of the controller of the 3

DOF system. As we will see in the next section, this damper is used as one of the

main components of the shoulder's control system.

3.2 Case of a parallel Mechanism with Actuator Redundancy

In this section, we describe an analogous controller for the spherieal joint. As be­

fore, the objective is to balance any external force, and estimate its magnitude. As

in the case of one DOF system, it is done in Iwo steps. First the statie equilibrium

is restored to avoid the complexities of analyzing dynamics of the system. Sub­

sequently, the bias vector is calculated and the bias-free force vector is estimated.

Thus, the controller is made up of Iwo parts: a damper and an estimator.

The damper is identieal to the one introduced in the previous section, with the

difference that a coordinator is added to it, to ensure proper distribution of actuator

forces. The interaction between the damper and coordinator is shown in Figure 3.6.

The coordinator serves to monitor and modify the output of the damper.

The particular functions of the controller are:
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• Force balancing: compensates for the external force imposed on the system

by damping the velocity

• Force optimization: optimizes the forces of the actuators at the state of static

equilibrium

• Load estimation: estimates the magnitude of the external force

The controller also avoids certain configurations in which the structure or the

actuators may be physically damaged. For this reason, the safety of the system is

checked at every stage and at each iteration.

The block diagram of the controller is shown in Figure 3.7. The final output is

1·~I(n) which is produced by only one of the three possibilities shown in the figure.

Refering to this figure, the above functions will be explained in more details, in the

coming subsections.

3.3 Force Compensation

The task of the coordinator is to scale the input force command of each actuator,

which has been calculated by the damper. Itcompares the outputs of actuators with

each other, and calculates a weight for each input commando In addition, the coor­

dinator is to identify the actuator(s) which are not operating in harmony with the

rest and reduces the input force to that (those) actuator(s). This scaling operation of

the controller is based on monitoring the velocity history of an actuator, and com­

paring the velocities of ail the actuators. As a result, a smooth damping is carried

out.
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3.3.1 Force Optimization

Because the mechanism is actuator redundant, there exists an infinite number of

actuator force combinations which ail produce a given force output. A systematic

method to select one particular solution consists of minimizing the norm of the force

vector. Depending upon the mathematical technique employed, this will be carried

out either in 12 or 100 , The optimization techniques will be dealt with in more detail

in the next chapter.

3.3.2 Force Estimation

Force or load estimation is the last stage. The output of this stage is the value of the

magnitude of the external force applied at the endeffector. This value is calculated

from the torque and the Jacobian of the system.

The external force is assumed to be a load, quasi-statically supported by the

shoulder mechanism. Therefore, the direction of the force is always taken paral­

lei to a vertical axis. It is also assumed that the force is exerted on the endeffector

only. The reason is that one can easily define a position vector from the joint to the

endeffector whose norm is constant.

Accurate estimation of the load requires prior calculation of the force sensor bias.

The bias may be seen as a persistent disturbance on the system. In general, how­

ever, it will vary slowly with time. The bias is represented as a constant vector since

the estimation occurs within a few seconds, a short time as compared to the time of

sensor drift.

We refer back to

(3.6)

where Tm is the torque balancing the actuator measured forces f",. The vector fm can
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• be decomposed into two vectors:

fm = f +b (3.7)

•

f and b are 4 x 1 real vectors and represent the actual force and the bias, respectively.

The goal is to estimate b, given fm •

Referring to the previos chapter, we define two frames of reference. The first one

is has an origin which coincides with the center of the rectangle AI A2A3A4• This

is the inertial frame denoted by OoXoYoZo. Another frame of reference, denoted

by OlX] Yi ZI with Zl overiaping Zoo XI and YI are obtained by rotating Xo and Yo

around the Zoaxis respectively, by 45 degrees. The rotation matrix going from base

to the endeffector coordinates is given by

(3.8)

Tg is calculated as shown in the previous chapter and

1 1 0.;'2 -.;'2

R= 1 ] 0.;'2 7z
0 0 1

(3.9)

A vector v fixed in the moving frame, for example, is expressed in the inertial frame

as:

(3.10)

Let Pp be the position vector connecting 0 1 and the endeffector, E. It is a vector

with coordinates

•
P p = 1

h

(3.11)
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• A mass m, placed at E, exerts the force f

o
f = mg = 111 0

-g

where gis the acceleration vector due to gravity, and g = 9.81111./,,2.

(3.12)

•

In statie eqllilibri1l11l, a force f results in a torque T around a line passing through

0 -P=o PYll

T=fx l p=f1' P 0 -P.l:o (3.13)=0

-p PXll 0Yn

5ince the above matrix is skew-symmetric, it is singular. Furthermore, it can be

shown that its rank is 2. Therefore, one of its rows is linear combination of the other

two rows, and because its skew-symmetry property, one of its columns can also be

written as a linear conbination of the other two. Let's denote the three columns of

this matix as PI, P 2 and P 3 • Then

for kl = -~ and k2 = -~. Equation (3.13) is rewritten as

fT PI

T = f1'P2
l'f (kIP] + k2P2)

(3.14)

•
where f is the acttlal force of the load and T is its resulting torque. Therefore, for

any f, there is a T (expressed in the inertial frame) whose components have the fol-

27



•
"

3. Force Balancing in the Parallel Shoulder

lowing relationship:

(3.15)

On the other hand, considering the particular f form (3.12),

•

mPYo

T = f x T P = -m Pxo

o

From (3.16), (3.15) is readily verified. Moreover, since T,o = 0:

In the presence of the measuremant bias, using (3.7):

T T
T",=T+Tb=J f+J b

(3.16)

(3.17)

(3.18)

T represents the static torque ( as obtained above), and Tb the torque due to the bias.

5ince b is a 4 x 1 vector, and is assumed to be constant, we need four equations to

exactly identify it. Expressing J by its columns as [Jl J 2 J 3], from(3.17), the follow­

ing two relations can be derived for the static torque,T, with every measurement of

(3.19)

and From (3.16),

(3.20)

•

Measuring T", in two different positions at equilibrium provides the four equations

needed to calculate b. The goal, at this stage, is to find m. Once b is determined,

equation (3.16) may be used to calculate m.

Table 3.1 shows the mass of severalloads and their estimated values calculated

using the above method. It is noticed that as the mass increases, the estimation be-

28



3. Force Balancing in the l'aralle! 5houlder

• Actual Mass Average estimated mass
(Kg) (Kg)

1.000 1.129

2.265 2.541

4.000 4.419

4.530 5.014

6.265 6.907

8.530 9.377

q(' crrOf

12.9

12.2

10.5

10.7

10.0

9.9

•

•

Table 3.1: The actual masses and their average estimated values

comes more accurate. This is due to an increase in the signal to noise ratio (8 Nil).

However, we notice that the decrease in error is not inversely proportional to the

increase in the load. This indicates that the magnitude of the noise is significantly

low, and the measurements, although contaminated by tne noise, are reliably ac­

curate. The error of 10% in ail the estimations is a scaling error. This error can be

significantly reduced if the system is recaliberated more carefully.
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Figure 3.3: The plots of responses of the system versus lime. The mass of
the load is 2.265 kg, equal to -168 machine units.
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Figure 3.4: The plots of responses of the system ta a load of mass 4.530 k!l,
equal to -320 machine units.
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Figure 3.5: The plots of responses of the system to a load of mass 6.795 lbs,
equal to -480 machine units.
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Figure 3.6: The damper and coordinator, and their interaction in the shoul­
der's controller
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Figure 3.7: The controller and its contituents
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Forces

Optimization of the Shoulder's Actuator

4.1 Introduction

The joint output torques are related to the actuator forces by the transpose of the

Jacobian:

(4.1)

•
where T E ~3 and f = [Il Jz h f4f E ~4. Given T and J, one can find an in­

finite number of solutions for the above equation. As in [7], here we shaH present

two methods for finding the minimum norm optimal solution according to two dif­

ferent definitions of the norm, one in Hilbert space and the other in Banach space.

The first optimization problem may be stated as foHows: given the relationship

between T and f, find the optimal minimum-norm vector f that satisfies it when the

norm is chosen to be the usual Hilbert space norm:

4

llfll = C2:,.f1l1 /2.
i=l

(4.2)

The minimum 2-norm optimal vector of actuators corresponds to the solution of

(4.1), obtained by using pseudo-inverse of the transposed Jacobian JT. The optimal

vector is calculated as

(4.3)

•
where fis the minimum vector satisfying (4.1) when the norm is defined as in (4.2).

The second minimum norm optimiz,"tion problem is formulated in a Banach space

as it will be explained in the next section.
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4.2 Minimum oo-norm Optimal Vector of Forces

Many optimization problems in engineering can be put in the form:

min [max(lhl,lhl"",lf"I)] '!!il min Il fil". (4.4)

subject to: g = J7'f (4.5)

o< n < ,.n, f E ~R" and g E ~'"

The solution to the aboveproblem solves a "minimum-effort" underconstmined

problem in the sense that il will select the solution which achieves the smallest pos­

sible inputs taken individually. In other terms, given bounds on the inputs, it will

maximize the output.

To solve the problem, we formulate il in a dual space, and use sorne basic con­

cepts from functional analysis, as described by Luenberger in [24], which will be

presented in the next subsection.

4.2.1 Basic Concepts and Definitions

The dual space of linear functionals of a normed space is the generalized form of the

inner product in Hilbert space. Moreover, the projection theorem, which gives the

solution to minimum-norm problems in Hilbert space, can be extended to arbitrary

Banach spaces.

Pirst, recall that Ip spaces are spaces of infinite sequences of real numbers with

norm defined as

•
where

(4.6)
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For T' = +00, the 1"", space is the space of bounded sequences of real numbers, and

the norm is defined as

Ilœll"", = sup I:r;j. (4.7)

Our purpose will be to use a subspace of 11 in which not ail the vectors identi­

cally zero, and also a subspace of 1"", defined similarly. Also needed is the following

definition of a normed dual space.

Definition 4.1 Let cl' be anormed linear vector space. The space ofall bounded linearfunc­

tionals on cl' is called the normed dual ofX and is denoted as X". The norm ofan element

œ* E cl'" is defined as

Ilœ"11 = sup lœ"(œ)l,
lIœll9

(4.8)

•
lOhere œ"(œ) dellotes t/le value of the linear fimctional œ* at œ EX .

The value of œ" at œ E cl' will also be denoted by (œ" ,œ) or by (œ, œ") to suggest

the analogy with the inner product in Hilbert space.

We are now ready to show that the normed dual space x" of the space X of real

numbers œ = CIII, '12,"') with norm defined as Ilœlh = L:~1 l'Id is the space of real

numbers y = (/31, /32, ... ) with norm defined in 4.4.

Proposition 1 The normed dual space cl'" of the space X ofail ofreal numbers lOith n01'l11

defined as

•

00

Ilœlh = L l'Id,
i=l

lOhere œ=('/J"12,.,,)Ecl',

is the space of real numbers y = (/31, /32, ... ) lOith norm defined as

(4.9)

(4.10)
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• Moreover, the vaIlle ofx' at x call be expressed as

OC)

(x', x) = L !J;lli.
i;; 1

Proof of the above is presented in Chapter 5 of [24].

(4.11 )

The transposed jacobian JT in (4.5) will be regarded as an element of .r while

1 will be considered as belonging to .1". Equation 4.5 can be rewritten as

(f, fr) = g. (4.12)

•

•

Now the problem is: find an 1 E .1" such that (4.12) is satisfied and 11/11,'0' is

minimum. The existence of this minimum-norm vector is guaranteed by virtuc of

theorem 2, Section 5.8 of [24]. We continue our discussion by stating the following

definitions of alignment and orthogonality properties in dual spaces.

Definition 4.2 A vector x' E .y' is said to be aligned with a vector x E .r if
(x',x) = Ilx·lIllxll.

Definition 4.3 The vectors x' E .r· and x E .1' are said to be orthogonal if (x', x) = o.

The solution to (4.5) can be obtained using the following theorem from [24]:

Theorem 1

d= min 11/11= max (J,a1"JT)= max a.g (413)
(f,jT)=g lIa'Flh =,1 1Ia'I'f'ïh=,1' .

where J satisfies (J, fJ') = g.

Fllrthermore, the optimal vector j is aligned with the optimal aTfJ', i.e.

(4.14)
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a, in the above equation, is a vector whose dimension is equal to that of g, i.e., a E

!R". (4.14) can be rewritten as

(4.15)

•

subject to < f, JT >= g and IIaTJ7îh :::; 1.

4.2.2 Minimum oo·norm Optimal Vector of Forces

In this section an algorithm is presented to find f by solving (4.14). This algorithm is

based on the following theorem, which has been proposed and proven by Cadzow

[9]. We have adapted the original notation to our notation.

Theorem 2 Given the 11/. x n matrix JT with rank m. and the m x 1 vector g, there exists

ail m x 1 vector aD sI/ch that

gT aD = max(gTa) sllbjecl iD IIJall1 = 1

at least 1J1 - 1 compollellts ofJaD are zero. That is,

TJ; aD = 0, .r01' i E Q = {il, i2, ... ,i"'_I} with 1:::; ik :::; n (4.16)

•

J; is the ith colI/mil of llze matrix J. Furthermore, the set of vectors {Ji!' Ji" ... ,k.-t} are

Iilzearly illdepelldellt.

Based on the results of (4.15) and Theorem 2, a method for determining a solu­

tion to the oo-norm problem is available. Specifically, one sets to zero m -1 compo­

nents of J a which correspond to linearly independent rows of J. This generates a

set of 11/.- 1linear relationships between the coefficients al, a2,"', am' From these
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relationships one determines the optimal values of the li; so that the g"l"a is maxi­

mized. After performing this iteration on al! possible combinations of III - 1 lin­

early independent rows of J1", the optimal value of Ilil". is given by the maximum

value of the gTa generated this way. Then the alignment property is used to obtain

fo.

Now we will elaborate on the details of the procedure for carrying out the above

algorithm. To illustrate the first cycle of the iteration it will be assumed that the first

ln - 1 rows of J are linearly independent.

We now partition the n x ln J matrix into two blocks as fol!ows:

(4.17)

where JI is an (In -1) xmmatrix ofrank m-l while J2 is an (1/.-111+ 1) x11/ matrix.

Setting the first ln - 1 components of Ja to zero requires that them -1 vector a be

orthogonal to each of JI rows. Since the rank of JI is 'm - 1, the vector amust lie in

a vector subspace of dimension one. Let h be a basis vector for this space, that is,

i=I,2,···,rn-1. (4.18 )

Since the maximization of Ja requires that IIJalh = 1, one has, for a= ch, cE !R,

•

IIJalh = IIJahlh = 1clllJhlh = 1

or
1

ici = IIJhlh
The criterion to be maximized becomes

(4.19)

(4.20)

(4.21 )
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Expression (4.20) gives the magnitude of the optimal choice of c while (4.21)

gives the proper sign of c, that is

8gn(gTh)
c=

IIJhlh .

Therefore,

(4.22)

and the criterion to be maximized is

l' 1T [g h
g au = IIJhlh (4.23)

•

This is the maximum value which gTa may take on if the first m -1 components of

Ja are constrained to be zero and IIJalh = 1.

This method is next carried out for ail other sets of m - 1 components of J a cor­

responding to linearly independent rows of J. The systematic procedure to be fol­

lowed is now outlined. The algorithm, adapted from [9], consists of six steps as

following:

Step 1): Determine ail possible combinations of m-1 rows from the matrix J which

form a set of linearly independent vectors. Let there be a total of N such com-

binations. The maximum value that N can take on is ( n ) . Thus there
m-1

corresponds a set of N different m x 1 h vectors, that is hl, h2,"', hN . These

are computed a priori and stored in memory. If there are Iwo vectors which

are linearly dependent in this set, then one may be discarded as each leads to

the same set of components of Ja being zero. Therefore, one needs only retain

the largest subset of that set whose elements are pairwise independent.

•
Step 2): Given the m x 1 vector y, one computes

1
T 1T g hi

{g au}, = IIJhdh i = 1,2,'" ,N (4.24)
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where the scalars IIJhdh are computed a priori and ston~d. lt is possible to

normalize hi's so that IIJhilh = 1.

Step 3): Determine the maximum of the {g'l'ao};, that is,

l' T '1' '1'Iifolloo={g ao}q=max[{g ao}dg aoh,· .. ,{g aoL,,]. (4.25)

Step 4): An optimal selection of a is then given by

(4.26)

(4.27)

•

•

Step 5): Use the fact that foand Jao are aligned to compute fo, Hence, we can wrile

fo/' [Jh"Ji of 0 (4.28)

while those components of fio' for [Jh"li = 0, are obtained in the following

manner.

Step 6): Substitution of the optimal values of fi", for those i for which [.lh.,li of 0,

into the equation .lTf = g leads to a setof m equations in '/' unknowns j'l'f = g,
where l' is equal to the number of zero components of J ao. The following Iwo

possibilities arise:

Case 1 (1' = m -1): In this case only m -1 components of Jao are zero. Since

the vector equation .Ff' = gis consistent and the rank of the n, x ('ItI, -1)

matrix j is m - 1, it follows that there exists a unique solution given by

(4.29)

where f' is an (m - 1) x 1 vector whose components correspond to those

components off with [.lao]o = O.
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Case 2 (1' > m - 1): This case arises when hq is orthogonal to more than m - 1

rows of J. 5ince l' > m - 1 and the rank of jT is m - 1, the set of rn

consistent equations in l' unknowns jTt' = gwill have an infinity of so­

lutions. By utilizing Theorem 2, the optimal rn constraints problem may

be reduced to an 111 - 1 costraint problem.

In summary, for a system of 111 linear equations in n unknowns, finding the op­

timal solution requires the computation(Of : inn)er products of the form gTh i . The

number N is bounded from above by . For moderate values of the pa-
111-1

rameters 'In and n, the upper bound will be small enough to obtain a solution in an

efficient manner. In fact, in our system, m = 3 and n = 4, an optimal solution can

be obtained in at most six iterations.

As an example, when estimating a load of 10 kg, at static equilibrium, the force

was measured, in Newtons, to be

fT = [203.45 194.23 105.42 126.47], (4.30)

and the Jacobian matrix, expressed in units of 111, was calculated, as explained in

Chapter 2:

-4.8666 -2.9880 2.3246

4.9055 -3.0118 -2.2969
J= (4.31)

4.8876 3.0009 2.2584

-4.2288 7.0999 -2.0452

From the above, the torque vector is found to be

Having f, the optimal ooJ\orm force vector can be calculated using the above tech­

nique:•
-1'
7' = [24.49 21.21

t'~ = [-3.50 - 3.89

13.23] Nrn

3.89 - 1.78J

(4.32)

(4.33)
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Moreover, the optimal 2.norm force vector (in Hilbert space) can be found from

(4.2):

- 0.54 4.21 0.26 ] (4.34)

•

•

Il must be noted that that the kernel of J,

n = [0.63 0.60 0.31 0.39],

may be added to the both solutions without changing the output torque.

Comparing the two solutions, one will notice that the 2.norm solution has the

least sum of the squares of the components, although, any individual component

of the solutionmayhave a very high magnitude. While in the oo.norm solution, the

magnitudes og the components are as close as possible, therefore, the external force

is compensated by the actuators as evenly as possible.
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•

Starting from its constituents, the parallel shoulder was introduced in chapter 2. In

particular, we began by describing the internaI structure of

small ASI hydraulic actuators. These actuators have been used because of their

high torque to mass ratios and extended force bandwidth. Moreover, their force

to torque characteristics can be linearized [8]. Then the architecture of the shoul­

der was synthesized. Due to its parallel nature and actuator redundancy, it is free

of singularities, free from backlash, and has good dynamic properties. At the end,

the derivation of the kinematic relationships was reviewed [14].

Chapter 3 focused on the design and implementation ofa controller for the shoul­

der using the relationships derived in chapter 2. This controller performs two func­

tions: balances a slowly varying external force exerted on the endeffector, and esti­

mates its magnitude. The structure of the controller consists of two parts, a damper

and a coordinator. The former balances the force in the four actuators which result

in restoring the static equilibrium. The latter ensures that this process takes place

smoothly by coordinating the operation of the actuators.

The control functions are carried out in two steps. To avoid dealing with the

nonlinearities introduced by the dynamics of the system, in the first step, the mo­

tion is damped to rest. Once in static equilibrium, the estimation function is per­

formed. Because of the presence of the bias in measurements of the force, the bias

vector must be estimated first. Having determined the bias, the external force, or

the mass of the load in our case, can be easily calculated. Results of the experiments

indicate an error of 10% in estimating the mass of a load using this method.

Chapter 4 was concerned with the optimization of the force vector. Since the

mapping from actuator forces to the joint torque produces an overdetermined lin-
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ear system of equations, there are infinite solutions for the vector of actuator forces

for a given output torque. We have considered two of these solutions which yield

two different optimal solutions in the form of minimum-norm vectors of forces.

The first solution is a least square solution obtained by applying the generalized

inverse of the transpose of the Jacobian matrix. The second minimum-norm vector

was found in 1", using the theory of the dual Banach Spaces.

The minimum oo-norm solution was found using an algorithmic procedure. ln

this method, firstly the dual associated to the problem at hand is solved as speci­

fied by the duality theorems from functional analysis. Then the optimal solution

is generated by using the alignment property. The speed of convergence depends

on the size of the Jacobian matrix. For our system of 4 equations in 3 unknowns,

this method requires 6 computations of inner products. Therefore, calculating the

oo-norm solution is even faster than finding the 2-norm solution.

These two methods were implemented and the results were presented. Com­

paring the two solutions, it becomes evident that the 2.norm solution minimizes

the sum of the squares of the components, although, any individual component of

the solution may have a very high magnitude. While in the oo.norm solution, the

largest magnitude is minimized and the magnitudes of the components are as close

as possible, therefore, the external force is compensated by the actuators as evenly

as possible.
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