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"to be of great importance since it may give rise to appreciable

!

L]
+

Flow-induced vibration in,fﬁbe banks is of g?eat concefn,
particularly in high ﬁerformance heat exchangers AQd nuqléar
reacgép fuel bundles. This thesishdeals with the dynamics of
a cluster of pafallel flex;ﬁié'pipes conveying fluid and
simultaneously immersed in bounded axial £low. THe’equations
of small motions ére derived taking into'account the contribut-
ion of the two flows and the hydrodynamic forces whicﬂ result
from the coupling between motions of the cylinders. Solutions

:

are obtained by means of Galerkin's technique and yield the
eigepfrequencies of the system. It is shown that for suffici-
enfly ﬁigh flow velocities, either internal or external, the
system is subject to divergence ané flutter and that the{domain
‘of s&éability is severely reduced by close séacing in the cluster.

The role of fluid coupling in the propagation of transient

perturbations or excitations is also investigated and reveals

nodes of vibrations, or even to resonances.

1

'




~ Les vibrations induites Jé% des fluides s'é&coulant dans

-

H o
des faisceaux de tubes .sont particuliérement pré&occupantes

dans les &changeurs thermiques de haute performance et le coeur

-t I

des réacteurs nucléaires. Cette thése traite . des vibrations i

LY

d'un faisceau de tubes contenu dans un conduit rigide, et

r

soumis simultanément & un écoulement interne et 3 un courant

externe axial. Dansg les &quations de mouvement sont pris en

= )

compte la confribution.des deux fluides ainsi que les forces

hydrodynamiques qui résultent du couplage entre les mouvements
J

@

~des tubes. Les soelutions sont obtenues 3 1'aide de la méthode

de Galerkin et fournissent les fréquences propres du systéme.
On moritre que pour des vitesses de fluide suffigamment élevées,

internes .ou externes, le'systéme se déstabilise par flqmbhge
N 2
puis flottement et que le domaine de stabilité est séverement

- 13

réduit par un resserrement &troit du faisceau.

~ L

a

°

Le rdle de couplage ténu par le fluide externe dans la

4

propagation de perturbations transitoires ou d'excitations est
ensuite examiné; il se ré&vVéle étre assez préoccupant car il

b
peut engendrer des noeuds appréciables de vibrations ou méme

<

des résonances.
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NOMENCLATURE

J

| ‘ / ks
internal and external cross-sectional areas
. ; L
channel flow area

coefficients defined in Eq. (3.13) .

friction drag coefficients defined in Eq. (2.9)
: ) ¢

friction goefficie&ts defined in Eq. (2.19)
constants of integration defined in Eq. (4.3)
parameters defined in Eq. (3.5)

complex constants defined in Eq. (4.1) .

matfices defined in Eq. (4.6)

.~ matrix of viscous coupling

external diameter of cylinders
hydraulic diameter equal to 4ACH/[2n(RO + kR) ]

drag force at the end of the beaﬁ

convective derivative for external flow equai
to 3/3t + ue 8/9x%

flexural rigidity of a cylinder

inviscid hydrodynamic forces on cylinder j
per unit length, in the z- and y-directions

external and internal forces normal_ and
tangential to the surface of cylinder j

forces due to steady-state pressure on
cglinder j, per unit length, acting on x~ and
h)J-directions

gravitational constant
(smallest inter—cylinder gap) / (cylinder radius)

& . .

~ f



G A (smallest cylinder-to-channel gap)/(cylinder

Yo, o ~ radius)
hj lateral displacement of cylinéer j
h equal to De/Dh )
1 unit vector on x-axis ‘
k \‘ \ number of cylingere in the cluster .
L . length of cylinders
&j . - ) ’ moment on cross-section of cylinder,j
yv . . matrix of added mass coefficients
M,C,K ) i_ \ m;trices defined in Eq. (3.16) . *
‘m , mass of the be§m per unit length o
N . number of comparlson functions used in solv1ng

the equation of motion

P; /P, \ internal and external steady-state pressures
Bi'ie mean internal and external pressures at x = L/2
pg(r) - éeng;elizedocoordinates defined in Eq. (3.9)
P " vector of-generalized coordinates defined in
i '
Eq. (3.12)
P _ vector defined in Eq.- (3.14)
oJ. shear force at a cross-section of cylinder j
qjl,qgn Y tangential and normal frictional force per
' 4 unit length due to external flow on cylinder j

r. N radial coordinates in the polar coordinate

J " ( systems defined in Appendix A
R _ cexternal radius of cylinder j ;
Ro radius of the éxternal channel
R " - external radius common to all cylinders
Rij ’ distance between the centres of cylinder i

. and 3
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2. Greek Alphabet
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tension at the middle of the beanm j

W

-— ix - \

. vegtors defined in 'Eq. (4.3) .
time

tension in the beam j

%
v}

‘matrix defined in Eq. (4.7)
external and internal fluid flow velocities

14
. diménsionless external and internal " fluid .
flow velocities , b
. Q g

lateral displacements of cylinder j in the
y— and z~directions, respectively .

absolute velocity of a particle of internal
fluid - s .

,cartesian coordinates defined in Figure 1

matrix .defined in Eq. (3.17H

state vecﬁorrdefineé ingEq. (3.17) } .
-dimensionless beam éamping cOefficient

dimensionless external and internal fluid !

densities ' ’

dimensionless parameters definea in Egq. (3.5)

dimensionless uniform tension ‘ 0

dimensionless parameter defined in Eq. (2.23)

Kronecke?'s delta
length/diameter of cyliﬁders
dimensionless added masggcoefficients
dimensionless viscéﬁs céuplingbco;fficients
"
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-x - .
n displacement vector defined in Eq. (3.7)
ej,_eo - . -ar'lgul/ar coordinates defined in Figure 2 |
e ) " dimensionless coefficient defined in Eg. (3.5)
. . ! i
?\i ‘ dimengioniess eigenvalues of the beam. équation
A ‘ eigenvector defined in Eqg. (3719)
u &\ﬁ _ internal damping coefficient of beams )
v " o Pois-son ratio of beam material
£ o dimensionless axial coordinate A
He,II:.L . dimensionless external "and internal fluid
pressures
Pa’Py external and interrlai £fluid densities ’
T ’ dimensionless ‘time -
y :
¢j (rj,ej) \ fluid potentigl due to presence of\cylinfier J
q;‘;.L - . equal to ¢j v{ritten in terms of the (ri,ei)‘
¢,¢i ) total potentia'l and total potential written
in terms of the (ri,ei) system
¢."'(g) ' bean ejigeniqfunctions used as comp;rison
1 " functions ' - ’
. o
o ' Eiimensionlé‘gs eige.nfrequency o
Q angle of incidence to the oncoming. flow \
Q. .0 * real -and imagiﬁqa;‘nlry part of the eigenfreéuency,
I respectively ‘ ‘
/ _ ~_ o
B '

Other symbols used are defined in the text.
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CHAPTER I

. '

INTRODUCTION

~ - . .|

Dynamics of pipes conveying fluid and, to a lesser extent
of structﬁres immersed in axial flow, haveoreceived notable
Attention in the past thirty years.’ The remarkable development

0 ,
of this subject was originally due to concerns experienced with
yibrations‘of the Trans-~Arabian piaeline, and more recently

S

with nhcléaf reactor fuel—elemg&t bundles zrnd some heat exchang-
ers where the flow is\ma;nly axial. !

The problem of selfiexcited ascillations of pipes convey-
ing fluid has been studied quite exteﬁsively since this pheno-
menon was first recognized by M. ‘Brillouin in 1885. One of his
students, Bourriéres, published in 1939 an outstanding paper [l]
on the oscillatory instabilities of cantile?ered gipgs, but
which remained unknown until it was rediscovered by Paidbugsis
in 1972.

o

In the early fifties several authors derived general

£
L

mathematical expressions of the equations of motion, and among
them Feodos'ev and Housner [2] who found that for ;ufficiently
high flow velocities tﬁbes simply supported at both ends buckled
like beams under axial loading. But it was not until 1966 that
G;egory and Paidoussis [3] revealgd the existence of oscillatof&

instabilities (flutter) of cantilevered pipes cenveying fluid.

In 1973 Paidoussis and Issid [4] found that conservative systems,




|

such as simply supported beams, could also be subject to flutter
if the flow velocity was increased béyond the poinf of diverg-
xence (buckling), at least according to linear theory. b

The dynamics of a flexible cylinder immersed in axially
flowing fluid remained uninvestigated until recent years when

s

Paidoussis [5] undertook both theoretical fand experimental study

1

of the free motions of a cylinder in axial flow. It was shown
that moderate flow\velOCLties conduéed to damp free oscillations
and to reduce the nqtugél frequ&ncies of vibration, but that
sufficiently high flow velocities give rise to fluiéelastic
instabilities, namely bucklingﬁand flutter. However, fthese
instabilities were shown to be of little practical cgncern since
the critical flaow velocities required for their ingeption are

~

far beyond those encountered in engineering applicakions.

(i
This work was extended

by Chen and Wambéganss [6] who

showed that the presence of motionless boundaries, such as an
enclosing channel, increased the inviscid hydrodynamic forces ~'?
acting on the cylinder. These forces result from the pressure
field generated whenever the fluid is displaced by the moving
cylinder and are proportional to the lateral accelerations of’

the cylinder and to so-called "added m;ss“ cocfficients. The
effect of confinement was later investigated by Paidoussis [7]

for a clustef of cylinders in bounded flow; it was found that
proximity to the chansgel or to other cylinders increased the

hydrodynamic virtual mags of a cylinder and that a cluster was
A

severely destabilized by close spacing.




More recently Chen [8] dealt with the inviscid hydro-

dynaméc coupling of a cluster of cylinders in unbounded still
fluid.;‘%he coupling was expressed mathematically in the form
of a non-diagonal mass matrix, thus expressing the force acting
on a cy}inéer as a linear combination of the accelerations of
all the cylinders in the bundle. Paidoussis and Suss [9]
extended the work by considering both the fluid coupling in the
motions of the cylinders and the confining presence of a surround-
ing channel. Two distinct methods have been developed by
Paidoussis, Sﬁés and Pustejovsky [10] for the calculation of the
virtual masses of such clusters of parallel cylinders in liquid-
filled channels. The first method is based on potential flow

theory and the second, less geometrically restrictive but com-

puter-time consuming, makes use of fluid finite elements. From

1

the results thus obtained, it tranggiffiﬁthat for tight configur-

ations the critical flow velocities are much lower than those
necessary for a solitary cylinder in unbounded flow,\and reach
values which might be of practical concern. -
Despite its practical interest in heat exchangers, the case
of a tube subjected to both internal and external axial flow“
received very little attention until l9781ﬁhen the cémplete ’
study of instabilities of tubular beams induced by internal .-d

external axial flow was f4irst published by Hannoyer and

i

Paidoussis [11}. It was shown that for sufficiently high flow

"
velocities, either internal or external, the pipe is subject

~

to buckling or flutter, and that the effect of the two flows

~




is generally additive for a tubular beam with both ends support-

ed, so that if either flow is just below the corrcsponding
critical value for instability, an increase in the, other flow
precipitates instability; on the other hand, for cantilevered
beams, the effects are not additive, and increase in one flow
may actually stabilize a nearly unstable systen.

The response of structures to force fields was studied
mainly b;<Chen and Wambsganss [12], Lakis and Paidoussis [13]
for random pressure fields, and Paido&ssis [ 7] who produced a |
general analytical method for théhresponse to an arbitrary
force field. In a recent publication, Chen [14] deals with the
steady-state response of a row of tubes where one of them is
subject to a steady excitation; and shows that the response of
the others ma§ be very large if the frequency of excitation is )
within a certain band of frequencies. In the same paper is also
examined the transient response of a tube bank in §$ationary

ﬂ""‘/

liguid where a tube ruptﬁre is modelled, and i1t appears that °
the tubes not directly excited may jhave a signiffcant amplitude.
‘ .

The presenf study is concerned with the dynamics of a
cluster of parallel flexible pipes/ln a cylindrical channel,
simu taneouély subjected to internal and Fo external axial flow.
The ¢rganization of the thesis is as follows:

’
In Chapter II are detailed and formulated all the forces

acting on the system and the general equation of motion is

derived. .



-~

In Chapter III thegequaﬁion of motion is rendered dimension-

less and solved by means of Galerkin's method, thus leading

!
[

to the eigenfrequencies of vibration. .

Chapter IV deals with the transient respénse of the struct-
ure after initial displacements, or when some\cylinders are
subjected to prescribed motions.

_ Finally, Chapter V presents the iheoreticgl results and
thgir interpretation. The respective and combined effects on
stability of the internal and external flows are discussed, and
stability maps are produced to lay stress on the influenée’of
several parameters. Finally, attention will also ge focused

on problems involved with the response of the tube bank under

certain excitations.

t

“

b -




CHAPTER II ‘ X ‘ /

g ) /
DERIVATION OF THE EQUATIONS OF MOTION _

N . \

The syétem under consideration consists of a Elusterlof
uniform and identical ¢ylinders contained in a rigid cylindrical
channel. The axes of the cylinders at rest are all parallel to
the axis of\the channel which is vertical. This direction will

be referred to as that of the x-axis, pointing downwards. The

”cylinders are slender and we assume that the lateral motions !

;are sufficiently small so that no separation of the flow occurs

across the cylinder. An example of such a system is illustrated

in Figure 1.

Two incompressible fluids flow in the direction of the
positive x~axis, one into the surrounding channel and the other
inside the cylinders. Both unperturbed flows are assumed\to be
perfectly Epiform and steady; The displacement of one of the
cylinders, say cylinder j, abéut its position of rest will bé
denoted by hﬁ(x,t). /
hi

.
>
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We assume there i's no torsion nor rotation around the x-
axis. The cylinders are supported at both of their extremities,
and it is supposed that the supports produce negligible disturb-

ances to the idecalized flow conditions.

™~

-2.1 Dynamic Eguation of a Cylinder ) \ .

The equations of motion for lateral displacement of a tube
submitted to both internal and external flow have been derived
by Paidoussis and Hannoyer and can be found in-detail in their
papers [4]sand [11]. We restrict ghé analysis to small displace-
.ments and smail slopes so that the fluid forces on\gach element
of the cylinder may be assumed to be the sqgé'as those acting

on a corresponding element of a long straight cylinder of the

same cross-sectional area and inclination.

v




, ‘

‘ . JThe first order balance.of forces in the 'x- and h7-directions

for cylinder j yields the two equations: ' =,

55y . - 5
- 9T J ‘pl L J J dh 9 (~J 3h ‘

0 5~ " Fic t Fot (Fin + Fen) 7% 7 ax_(Q ‘32—) + mg (2.1),

. “ i
a2 ax . ~in en it [ Tet’ 3¥x ax 3% .

The cylinder is considered as a Bernoulli-Euler beam, of
N
mass per unit length m and flexural rigidity EI. It is subjected
, v ) * 3
to gravity force, tension Tj, shear force QJ, and fluid forces

an, F) accounting for the normal and tangential

it’ an' F)

et
2

forces per unit length exerted on the beam by the internal and

external fluid, respectively.

A third equation is derived from ther moments; upon negléct-

ing moments induced by external and internal fluids, we obtain:

N

. ! t
: J
J . _ 3M ‘
/ Q I (2.3)
s \ Using a viscoelastic Kelvin-Voigt model to represent the

internal damping of the material, we set:

s s 2.3 3.3 .
MJ=EI-3—%—+UIah2 P (2.4)
ax atax 1
where p-is the internal damping coefficient. ‘ a

| | ‘
L \



Clearly, QJ may befeliminated by (2.3) and (2.4), and T:l
may be calculated’ by iqkeération of Eq. (2.1); hence, Eq. (2.2)
becomes the equation of motion. The derivation will be completed

pl

once we obtain expressions for the fluid forces Fit’ F3 at’

in’

an and boundary conditions.for TJ. /

2.2 Internal Fluid Forces

We assume that in any cross-section-the axial velocity pro-
]

I3

file is uniform and that there is no significant secondary cross-
flow. Such- approximations are valid for a turbulent and fully

deﬁeloped boundary layer and when the curvatures of the flow

£

. . ’ 4 ‘u
trajectories are small. Hence, the value of Ui 1s constant in

a cross-section.

N

&
iy
In-order to take into agccount the effect of rotation of a
cross-section around the z-axis, we define two axes OX, OH

attached to the cross-section of the beam and an angle of 'rotat-

ion @

\f’

RSN
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3

If we denote Q = g%, the flow velocity relative to the beam has
an additional velocity component due to rotation:
” b | ’

a
¢

l.\ ! .
A
'

. , \
The rate of change of the flow momentum, inside the control

volume Aw of an element of the tube of length dx, may be express-—

v
’

ed in terms of the convective derivative of the absolute velocity

-,

4

. . . 4
Vi, as follows: : ,

.
N . "
.

N B
v.d (A .
j[ i ( w? . .
T ‘Aw ,
Lo, :

DJ!Q-:
o

' . . . o .
where pi is th 1nternal:flu1d density,
+( ‘. ¥
> >’ o > dh .
LV, = , - 4+ =
; = Uy - OHI + Z4, _ \ \
1 is the unit vector on, X-axis, o
> : , v
%%— is the velocity of point 0 on the centerline.

- 3

As the size of the control volume remains constant, we may
wr;te
|
'] A}
a o -+  dh
pidX 3t (Ui - QHI + Eg) dAi ’

' A
W .

where A .,8s the internal cross-sectional area.

This iﬁtegral simply reduces to

dﬁ 2_" Ry
i d’h . " -
EESE G- vy (R

8




\

\ -
N

\
Hence, assuming that the internal velocity is uniform and con-

stant, the rate of change of fluid;@omentum may be written:
L .

d
Sx

. g . dUi U
(a) in the x-direction: PRy FE T AUy T 0 P -
. i . a°n3 ' d ,ahd ahJ
(b) in the h”-direction: piAi 5;7— ——piAi 3t (52— Ui + §€—)
‘ 2 2 3 2.3
3 2 !
-] OF v ou L 20,
. ot d

€

The external forces acting on the fluid element balance

<

this change of momentum leading to

1

s
. PiBy9 =0
N 4
\ -—;’-—(A —a—lﬁ)—iﬂ ahj-Fj— ?\(—a—-l—-i-U a—-)2°hj
9x ipi X it 9x in pi i at i 9x .

where pi(x) is the average pressure along the median line. To
give them the forﬁ required for Egs. (2.1) and (2.2) these two

equations may be written as follows:

2

! i .
| ]




-12 -

: FJ -Fja—lﬁ 9 ' D

&9 } it in 3x T 3% (Aipi) + piAig ! T
: S | (2.5
' 1 j j . G //
j 3h”’ _ _ 9 ah - 8 + 2 .3 3
Fin f’Fit IX 3x ( iPi 3% ) ,piAi (Bt Ui).-h . ' i
' . 2.3 Normal and Tangential External Forces

2.3.A. General Formulation

i

As the secondary (cross) flow cannot be neglected, since -
the axis of the beam no longer coidcides‘yith the axial Qelocity,
it is impracticabkle to deiive d&namic equations from a control
s . ~Vvolume. THerefore, the three types of force§ acting on the
external surface which will be t;ken into acéouét, will’be formu: 3
lated separately. , . : o ,
i ;,(i) Thefiateral force due to the motion of the cylinder
in the inviscid fluid: Fj . |

(ii)° The tangential and normal frictional forces due to

J
e

\ pl .
‘the fluid viscous flow: g & and qgn .
(iii) The steady-pressure forces in the x- and h'-difect~

s, @) Rl -
) 10ons: pr, Eph . N

. q,, ) - ,
X .

T
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-

A first order balance of forces in the normal and tangential

[+

directions yields:

ah’

u JR, IR, | SRS I "
Fen Fan " 9en th pr ax ' . o>
R . : 5 "

b = g3 ] J ] 2dh ~
Fet Fan * et * pr + th X oo

\
w

Wr'iting these equations in the form required for (2.1)- and (2.2),

“x

we 6btaiﬁ: . \

7

. s J . . j .
Joo_pd 3b? 3 g3 23hT gl
Fet Fen 3x ~ et en 3% ¥ pr oo
: (216)
v Fl 4§l __ahj ~rl 4+ gl o+ —-———3hj + FJ ’
AR en et ax Ah 9en et 3%, ph
: ' ' e . j oo 3 ?5~
We shall ?oy proceed with the formulation of FAh' qet and qen’
j 3 . .
‘pr and th. . )

2.3.B. Inviscid Hydrodynami¢ Forces

PR
According to Lighthill [15], the lateral flow generated by
. ' ¥ - N
a slendef'body could be represented by a two-dimensional potential
; °

flow. It was shown that the force per unit length due to the

inviscid flow around such a body of uniform cross—section could .

be related to the fluid potential by the contour integral:

)
v '

o LT u 2], fras = - S qagy
Fan = / pe{at * Ue ax];‘t’ h.ds _/ Pe ds . (2.7)
s s . ’

UFJ
e
=)



where h is the unit vector in the direction of the displacement

- ~ 14 - >

- -

1. 33
by *

~

h, and ¢ the fluid potential. ®

The integral is taken around the perimeter of the body at

‘position x. In order to allow for the possibilities of coupling
. (3 . . . . @\ .
between mut&ally perpendicular motions of neighbouring cylinders,
the arbitrary lateral/displacement hjjx,t) is resolved dn two

: .

orthogonal directions y-and =z.

. By def

v

v2

~

-~ This equation mus£ be solved ‘with the proper boundary conditions,

namely

(i)

(ii)

o4

\

y

inition, the fluid potential § must satisfy
. T, . .

~e

¢ = fluid velocity vector (in the y-z plane)

p =0 ‘

N

i

the fluid velocity normal to the inner surface of

the enclosing channel is zero,

the fluid velocity normal to the surface of each of

the k cylinders is equal to the velocity of the

cylinder in that direction.

1

~
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. 7~
. , .S. Suss [10] has solved this problem (vide Apﬁenéix Ay -and /

!

derived the two components on y- and z-axis of the inviscid -

?

i hydrodynamic force exerted on cylinder j, .

; k ) p2t] “
N ) (FZ) = - p A Z Je. + e, ’

A2 €e gy | 3% pi? 3% pe? | —

o , - . (2.8)
, k 2 2 2 2] '
Dw D v
(FJy =- o0 A I |e. + k., , -
A v ee 4| 1% Dt2 jL Dt2
4 Q ‘

where Al and Pe are the external cross-section area and fluid

density, v2 and w2 the veloqity components of cylinder & in y-

and z-directions. The dimensionless constants EjZ; esz'ijz'
- . 5

ka are the coefficients of the added mass matrix M,
e, ] ley
gk 4 2kx2k matrix .

v . [Kjg‘] [}.532] -

) =

~

12.3.C. Viscous Frictional Forces

The nature of the force acting on a long inclined cylinder
in viscous flow has been studied by Taylor [16] and the relations

prgposed there have been utilized by Paidoussis [5, 7] for

slender, flexible éylinders. The linearized version of the normal
and longitudinal compopents”of the force, per unit length, for
‘ a displacement h, are given by , ' .




_ 2 _ ?2h
) 9en P eRULCeH PRCy 5
) (2.9)
= RU?'C /
~Yet Pe™e-g 7

where Q is the angle of incidence tb the oncoming flow and is

given by N

o 9

But, in our system, the fluid velocity approaching a parti-
cu}gr cylinder j is not purely axial, but has small lateral com-
ponents (Vj)y and (Vj)Z and makes an angle with the poéitive /
x-axis of tan—l[(vj)y/Ue] in the xy-plane, and an angle of

l[(Vj)z/Ue] in thé xz-plane. Hence, assuming that (Vj)y

and (Vj)Z are of the same order of magnitude as (l/U)(ahj/at),

the angles of incidence for the jth cylinder are

J
- -1 3v -1 ) jov’ _
(Qj)y tan (3§f0 + tan i {EE— (Vj)YJ/U '
_ eanml W 1§ [aw? _ .
(Qj)z = (33) + tan 3 [-—t-— (Vj)z /U,

Rgplacing in (2.9) this yields the lateral forces in both

directions - N



® . 5 i j
] - - av_ KA - V- w°
(qen)y\ peRUeﬁf[at * Vs 3% (Vj)y] peCD[at (Vj)y] !
: J ] J
J - aw oW~ _ Iw- o
(qen)z péRUéCf[at * Ue X (Vj)zJ peRCD[at (Vj)z] (2.10)
qfl = p RUC
} et e e f '
73 O ) . .-/. »
(Vj)oy and (V.) Dbeing the values of (V_) and (Vv 0. )

The velocities (Vj)y and (Vj)z may be obtained

potential, taking into account the coupling bgtween the cylinders,

viscows forces (vide Appendix A)

. 5 k le
— 5 (qen)y - peRUeCf zil[gjﬁ Dt Sjl Dt
k L A
ow oV
- RC ) — g ’
e D z=1[03£ 3 jg at} :
\
. k £ £
Jj - _ Dw Dv
. (9an) 2 PRUeCe Qzl[cjﬁ Dt j% Dt ] (2,11)
. ¥
k [ [
aw Y
N S I L Vi
. D 2 L3 Bt 950 3t '
3 2 -
‘ Dot peRUeCf !
where ng' gjk’ ojR and sjz are the coefflqlgnts of the viscbus

. coupling matrix C



J 2kx2k matrix .

2.3.D. Pressure Forces

-~

The easiest way to derive these forces is to consider an
eleq@nt dx of the beam supposed to be immersed in fluid on all

sides; the resultant of the hydrostatic forces is the buoyancy

’
]

force:

Now, if we subtract from the bdoyancy force FB the pressure

forces acting Jn the top and bottom flat faces, we shall obtain

the resultant of the pressure forces actingc-on the outer surface,

i.e.
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. Hénce, the two components of F_ for cylinder j are
' j 3 9Pg ' ’
o Fox ~ ax (AgPg) = 2o 5% » © o
“ (2.12) .
. " oy d
b~ 8 dh-
th ox (Aepe 3x )
2.4 Derivation of the Equations of Small Motions )
2.4.A. Equation of Spall Motions
Combining equations (2.1) with (2.5) and (2.6) yields ‘
J A .p. . . j . . j
. T iTi J _ J 2dh J- 9 J 3h
0 Ix ox ToejA9t et 9en 3% * pr * A% (Q 3K ) tmg
\ \ '
\ A
- 2.3 5 3 ° 5.3 J 2 .
3“h 3”°h 3°h ? ah 3 3 3
m = - EI - uI - == (A.p, ==—) - p.A, (=— + U. ==) h
at2 ax4 at3x4 3X i¥i 9x il ~alt i 9x
. : . 3 ]
j j i 3 2 (g3 3h7
+ FAh + qen + 9ot 3x + axz(T IX ) /' N (2.13)
As 2 (Qj 323) and qj 322 are of second order of magnitude
IX ax’ en 9x

with fespect to y, they may be neglected. Now, using (2.11),

¢
(2.12) and (2.8) in the x-, y- and z~-coordinate system, and recall-

;ng that vj and wj are the velocity components of cylinder j on

y- and z-directions, the following expressions are obtained:

~
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ap

;
In Eqs.(2.155 and (2.16), the only unknown

T + Aepe - Aipi which can be obtained by integ

0 o (T’ + peAe{ piAi) + (m + piAi)g Ae = peRUeCf ,'(2.14L

2 3 4 5 55 . .
m 2 g - — g1 2 Z - I 9 v 7~ PRy (%E + U %;) v3
at ax T atax »
, -
k Dzwl D2 2
. - p Lok + k.
ee 1| 3% pe? 3% b2 .
2 _ L k 2
Dw Dv IW
- p RUC, = [o. =7 + s, ———J - p RC. I {o B
e e f =1 qz Dt# ?2 Dt e D g—1 L 3% 3t
9
dv 2 v
532 dt_} T PeRUCE 3%
b2l +ap -a )ﬁl’-j— (2.15)
3IX p iP3 ox- ! ‘
2 3 4 5 5 5 2 .
m 2 S = - EI 3 M-I 9w Iy (%€ + U, %;) w)
3t ax O otox >
'k 2 3 2 1 K g
D w Dv Dw _
- p A I {e + e. - p RUC. 1 [g. ———
2=l{ jL Dt2 jL Dt2 } e e f g=1 L73% Dt
((
2 k» L L
Dv oW v . -
* 955 D J ) 2il[C]£ st * 942 5t ]
2 awj ) j an
*PQRUC, o=+ 5 |(T7 + AP - APy S| - (2.16)

N~

quantity is

ration of (2.14)
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o L
3 s a6 - A = (m] - ’
T’ -+ Aepe Aipi (T + Aepe Aipi)L + '/‘ [(m + piAi)g
- X
- A 339 + RU2C dx (2.17)
e X pg e’ f ! - )

! where L is the length of the cylinders. We now need to find

\

.y j _
th% boundary condition (T- + Aepe Aipi)L'

El

RSN
“2.4.@. Axial Boundary Conditions

(1) Sliding Support - . ;

' \ N
This case imglies that the internal and external fluids
come into contact at x = L (otherwise, there is an external

tension at x =L, due to the rest,of the cylinders).

-

) The only force acting at the end of the tube is a drag force
D, : : . ~
\ b , ’ ,
I‘
(T + Aepe - Aipi)L == Db . ] (2.18)
' I
Hannoyer [11] has established a quadfatic fit to represent
N ;
the base drag behind cylindrical tubes: ’ o
_ l\ 2 1 2 1 2.2 3
/ Dp =3 CrePePele * 3 CriPiPiUi T 3 Cfx(pepiAeAiugui) p (2.19)
. : : , .
/ where semi-empirical gxpress10ns were found for Cre’ Sgir Syt
Cea ™ 0.15 . )
Cei -~ 0.016 for a blunt end piece .

. , gy =+0-109 | .




‘ \ /

(2) Support Not Free ®0 Move Axially

<t

Let us set

i i
] 1 ' N /
where the asterisk characterizes the zero flow conditions. We
have
(rd + a p - A.p.), = (r3 + A p. - A.p y )+ (13 +a p. - A.p ).
et e, iYi'L e‘e iYi'L e‘e iYi'L
- ° i
and from Eq. (2.17)
\\ }
O (13 + A —Aap)S = (T + A - A.p.).
. ePe iPi L/2 ePe iPi’L
L ape
+ {m + piAi)g - Ae -é-x——' dx .
( L/2 .
#
\ g B = ppd _
Setting T (T° + Aepe A, ;P; )L/2 (effectlve tension in
the middle of the beam), these two equations give
J g 7 ; e - PP
(T° + Aepe - Aipi)L = T - . (m +'piAi)g ~ Ae % ax
! L/2
P _
. [
L4 J -
, + (T; + AP, - AP ) (2.20)

4




L9 .

We shall now approximate the tension distribution with an

{

axial stress distribution given by

= T'(x)
— ’ !
XX Ae Ai ) 1

and the pressure distribution with,

] - ]
PiBi = Pghg

A - A,
e 1

o + o =2 .

Superposing these two distfibutions, we obtain, the axial

&
T

strain distribution:

/
! - ’ - . j ! — 1 - t
% x v(orr + oee) B (T-) (%) 2v (piAi peAe)

g =
X E E(Ae \Ai)

From (2.17) we may write

1

L ] , .
(Tj)' + RUZC.dx -""2 (p!'A, - p'A)
L PeVe"f vip; i pe e

e — X
X . " E(A_ - A.)
e i

\ : .

-1

The condition of a non-sliding and support requires
W

L ) ¢ (
jﬂ sxdx = 0, hence we have: " N )
0 .




Now, suppose that p

op -
-t L e
1 == —— . ——
’ Pe Pe +ox = 2) )(3x Yoo
’ Ip- C
— L i -
1 = —_— ¢ \
pi pi + (X < 2) (——“ax ) ’ 0
where ﬁe and Ei,are the mean internal and external pressures at Y
3p- 9p.
Xx = L/2 and 3;9, Eii constants. |, We can assume that, in-the

— ! !

channel, the preséure drop is given by

5 N |
a A
Pe _ Fe
. 3% TR te9 ’
CH
o :
N . s . .
where F. 1is the total frictional force per unit length and ACH

is the cross-sectional area that is available to flog,_

_ 2 2 - . ]
Fe = 0 RUCe + ko RUC, \

1

= 2 2
ACH TT[RO kR } .

.Hence, replaéipg in Eqs.(ﬂx%})‘and (2.20) we obtain:
\ 1



J - -
(T7 + APy = A;Py)y

where D

¥

we can combine Egs. (2.22), (2.18) and

h
D

-

Now,

2

1
2 peRI'JeC;fL(l +

-

~ 2R .

if we use: $

'

T o+

a

4 AL, /27 (R, + kR) ,

0 if the downstreaﬁ end is free to

move axially Y

\

2

1 if the length is fixed

expression for the two cases:

3 P By e
T’ + Aepe‘ A.p. \6{ T + (1 2v)(peAe piAi)}

\\.

1~ 1

~

’

14

(2:17) to obtain oﬁly one

0

'

+ {(l - %) L - f } [Un - peAe + piAi) g

a

. .
.+ P RUC (1 + De/Dh)] +.(1-8) D .

—0

ES

/

3

a5

{2.23)




CHAPTER III

THE EQUATIONS OF MOTION AND THEIR SOLUTION -

a

AN

“

. 3.1 Formulation of the Equations:of Small Motions w

+.20385U5 Soax T ["“ T Pehe tpyBy) 9 F

‘Substituting the axial boundary conditions of Eq. (2.23)
in the equations (2.15) and (2.16) and re—grduping, one obtains

the two equations’ for small arbitrary motions of cylinder join

y—- and z-directions. R N

L

+
©

o
&
9]

3%y)




<& ‘/ | ' \ . Q
5 3 ~ 45 ok 2 2 I
f d Y +Er 23 4 o rU Ce I Iy, gz’ Iy %%— '
dx 3t 3x =1 J .
k ) ) x [ 2 1 23
oW IV D"w D7v
+ pRC Tz — + g —| +p A T e + e
D =1[ 2 3t it 3t J 2=1{ JL op2 J2 5e2 }
‘ a " ’ D 23 ’
. -2 e 3w
+ | m - peAe+.piAi) gt peRDeCf(% * B;) i 3X2 )

- y )

r ‘ @

- 6{':{' + (1 - 2v)C§eAe - b;;iAi)} + (1 - %) L i(ﬁn - peAe + piA\i) +g

~

s |

- . 2 7
2| 3w
+ (1 §) ?b - plAlUlJ

Fe) o

De
=)
Ph

+°péRU§Cf(l +

9x

~ - .

23 |- - ' D j
. 9w I " 2 oW
+ gp,A.U. + | (m peAe + piAi) g + peRUeCf h T

s

, o (3.2)

where ° . ) e

o0 : ¥
’ . [

N

"o A Uj + q AU + A &R U )%‘
Cfefe e e - cf'pi ii Ce (p eli :

& .

LY

This general equation of motion applies for different.

boundary conditions, depending on the case under conside;étion.
" %, N ~ ? &
Therefore, equations (3.1) and (3.2) are subjected to one of the

-~ following conditions:

3

B
v
. /
-~ )
- - v

-
>

b

o,




I o ) /
\\ | N ‘/
] i .
. i
] o ) \

. ) S 2.9 - \
\ I _3v at x =x%ﬂand x =1L

v.—
\ sz ‘ . e \

. e
éor a pinned-pinned cylinder, and-

‘ 3
o ) V=3 -0 at x = 0 and x = L (3.3

for a clamped—clampedejﬁlinder. The case of a free end will

not be considered here”since the proper forﬁu %tion“of the
\ iy :
equations of motion would depend on the shape of the free end.

Rearranging the terms of:@qs. (3.1) and (3.2) anfl expanding

the differential operators, welfinally get - ~
32y 54y ‘ 2 < Dy 32y
ul 7 + EI 7+ {m —\peAe + piAi) g + peRUeCf(l + 5;) b ax2

'

- 36['-1-‘ + (1 - 2v)‘(5eAe = f)iAi)} + (1 - -62-) _L[(m = peAe + piAi) g,

°

+ o _RUZC, (1 +?——e—) + (1 -8)D_~- p.AU 2y
Pe™e"f D ~ b~ Pi%ivi 2
h ax
/ - /
¥
k 2 2 22 k 2 4% 2.4
. 3w v Copg2 9w 3 v
+2p AU -+ I k. 4+ k., —— +p A U L k. + k.
eee Je atax jL Btax} e e e £=l[‘32 ax2 JL ax2 J
N k L
. _ - 2 D av? 2 aw
+ {(m\ PBe +, pidy) 9+ P RUCe b | ox + pRU_C zil[cj“ .

—— e — e J




32]
+m o+ piAL) === o Al
3t A

k., 2 Y Lk, BN o0 . v(3.4)

k 2 % 2 % »
)X

A similar expression in terms of w may be obtained in the

y~-direction. -

'S

3.2 Dimensionless Eqhations

To render the equation dimensionless before attempting a

S

solution to the probﬁFm, the following dimensionless quantities -

are defined:

3 J , ' j+k J

X w v . -
E.——___I_J_' n =_I:._. J =1,2,...k n ="I"—" 3 j:ll2l\°-ok
o _ OeAe ; ==\ plAl

e m + pe e + olAl 1+ m+ peAe + piAi
— [
- 2 = 2
n = Peltel n, = Pyt
e EI 1 EI
3 .., ‘
_ PPt S _ Pifyot =ngL3
Ye EI Yi ET Y ET
- . < |
112; % ~
p_A p.A.
- e’e B R i 1
Ye EI LUg Ui [ ET } LU;
' {
EI D, N
- g
| ©
\ -



I

. \ EI t . ~
= ( ) . (3.5)

¥ ¥ p.A. ;
m - peAe plAl L2 b

g

- With these quantities, the dimensionless equation of motion,

«

_written’in a compact matrix form, takes the form

-~

353 849 329 325 GZD B
A + I — + C +E—=+F [ —
~ 3&43'[ 354 3EDT 352 3&2
T //"
, &
H
on an 82n } <:
£ 9Tt - -~ av? \
. The various matrices are defined as ‘follows: ) Y
A = al I = unit matrix 2kx2k
, ) % % {Ej'@] [gjll
¢ = 2(B; u; I + 8.%u M) , where M = - [Ejz] [Ejz] '
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\tC)

1t
I

S
I

for

for

e

[ 2 e 2
+-§ cfue(l + h)} + (1 §)o ui}

17 2 1 2
'5 €Cfuegv + [2 chueh toy Ye + Yi} I

1l 2 ‘ -
[E E:Cfue(l + h) + vy Ye + Yi}‘ :~[ ’

BM, + (1 - 8) I , -

; T
i 2 2k
{,n r N 4ee.Tl }-

I3

QI ,

~

“~

uzgv - [5 {r'+ (1= 2v) (n, - ni)} + (1 - %o {Y - }e + v,

P

h

(3.7)

%

As to ‘the boundary conditions of equation (3.3), they now

be written,

> 2
B‘D
n = 9 and- —LE =0 « at g =
X3
einned ends, and
an . .
n=0 and 3 o at ¢ =

clamped ends. )

\
0 and ¢

0 and ¢

I




o

. 3.3 Solution of the Dimensionless Equation

An exact solution of equation (3.6) subject to one set of

boud@aiy ﬁonditions (3.8) is complicated by the presence of the

mixed terms. Therefore, Galerkin's approximéte methodlis‘used -

to fempve the spatial dependence and transform the problem to a

more tractable form. To\do so, consider the approximate solut-

¥on ‘ \ %

1 ~

nj(E,T) =

| o8

‘¢i(e)pz(r) . (3.9)

i=1

where p?(r) are the generalized co-ordinates and ¢, are the
i b ‘

eigenfunctions of the dimensionless beam equation,

°
'

—_—

¢i(E) = a;cosi g + bi51nkig +‘ciCOShAi€ + di51nhxi§ . (3.10)

’

]

The constants ar bi’ ey and di may be found by applying

the same' boundary conditions to (3.10) as those applying to the

problem and by n?rmalizing ¢i(J) such *that

. /L[¢i(£z]2d§'=1 : | (3.11) °
0

-

Prage =

If we replace the formulation (3.9) into the eguation of

it

motion (3.6) we get an error ¢ instead of 0 at the right-hand

. o
side. ' According to Galerkin's method (see Meirovitch [17]) this
error, weighted by any comparison function %r(i) and integrated

' over the domain, must be equal to zero. Hence we obtain:

S .
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_.33...
- . [lal, ‘ : L aty, ‘
B OIoB; L N A
1 1.2 ¢ 2
. d¢ a“ ¢,
v + C ? Pi dg r d ¢+ E E Pj 7 *r d g
i i dg
0 0 .
1 2 1
\d ¢l d¢l
+E§§>l £d€2i¢rd€+§§l31d ar ¢, d ¢
0 0
1 1
ez Py J[ o3 ¥y a¢+ 4 ? Py j[ o 9y deg=0 . (3.12)
i i
.70 Yo
. 1 2 3 2k, T
for r = l,2i3,...,IWhere p; ~ {pi, P{+ Pi+ ---s P} } ,“and the

dot denotes differentiation with respect to 1. The beam eguation,
with the boundary conditions of Eqg. (3.8) is' a self-adjoint
problem, which implies, in combination with equation” (3.11), ~

that the eigenfunctions ¢i(g) are orthonormal. Let us now define




1

_ 5 ~

d_, —f £ e b_d € . . (3.13)
0 .

which are given in Table 1 #or-various boundary copdiéions.

With these coefficients, eqguation (3.12) becomes
. ) \ ) -

\
N 4 4
EMG.p+[Ca + (H + A A.),é]p+[x‘.la.+Eb.
PR CR S ~ “ri i ri| %i i T ri ~ Tri
4 + ==
- + F drl G a .l p; o, 4 ' (3.14)
I
for r=1,2,3,...N, '
where the infinite series has been truncated at i = N, the number
of comparison functions used. If we define
. .
o ‘ - T \ '
P = (pys Pyr Py cees Byl o
\/)’
3 .

Equation (3.14) is now of the form

Mp+ Cp+Kp=0 , ¢ (3.15)

-~ % £
L W c
where
[ MO ... 0]
| QM0 \
LQQ"‘M-
v
— \ %

N



rhxy

~  where M, C

the state vector z

W o~

%
4 -
AV, O ... 0
t o4
o mi.o |,
S Ly
O 0 ... Mg |
[(HO.
o + O H
00
4 -
nio ..o
4
Q\‘%"‘Q +
Do Ly
Q Q".].:)‘NJ
Py Edyp--- Bdyy
Fdpy Fdppe-- Ty
Fdyy Fdyp--- Fdyy |

and ¥ are 2kNx2kN matrices.

T

{p,

[

-~

L

r

L

35 -

Ca)y---

L Capy G- Cany

9a11 Ca

- 1N

N1 S22 - SOy

tC) v o e

a

tO

e

H3« o B I

Eb,, Eb

§b21 ?bzz'“' ?bZN

Eb

1277 TTIN

Ebyy Bbyp--- By |

Gope -+ G2y

G227+ Sy

Soyp- - Cayy

to a first order differential equation, as follows:

INe

%
where

,”<

- Y

z =0

.

<

4

' (3.16)

Fimally, introducing

Q}T, equation (3.15) may be reduced

(3.17)

(3.18)
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P

I3

v

A solution of Eq. (3.17) may be written under the classical

form

~

which substituted in (3.17) yields the eigenvalue problem

N (iw I-Y)A=0 . ., - ' ‘ (3.20)

»

A computer prbgram has been written to carry out the com-

putLtions léading to the eigenvalues iw of this equation,

#

and is described in Appendix C.
” .

z = A etVT ‘ (3.19)



"of eacH‘cylinder is fixed, and then the system is aban

CHAPTER IV

THE TRANSIENT RESPONSE

{

1

1 In the previous chapter the general equftion of motion of

the system has been solved with the intent to obtain theidiffer-

\

ent modes of vibrations, and the limits of stability when the

flow velocities are increased. But it is also of st to ! "

know the effect of an instantaneous or steady excitation o

g

4.1 Response to an Tnstantaneous Excitation

,In this casé the initial displacement and velo

itself. Hence, the problem consists in finding the constants

-

£

of integration of the general differential equation of the system.
Once equation (3. 20)
{

(GuI-¥A=0 ,

has been solved for the eigenvalﬁés iwj, and the corresponding
eigenvectors A., the solution z of the differential equation

may be written as follows-

4kN ~ lw. T
. ~ z = ) c. A. e J ’ '(4'1)
j=1 J Lo
’
8 - ” N ,
where cj are arbitrary complex constapt§. As Y is a real matrix,
NS o

the complex values of iw occur as complex conjugate pairs, as .
-

\ ~

i



. N well as the corresponding eigenvectors. Hence, if we denote

~

! by a star the complex conjugate, and order w. and A. so ‘that -
, J ~3J

i . * %
foy = Gogey) 0 8 T b0y - "

equation (4.1) becomes - \

. *
2kN iwﬁr ’ * —imjr
) ST As Ay e tegon be 4] (4.2)

|

We note that the physical condition for z bein§ real implies

that

\
.

*
Cj42kn G5 7

then z becomes the sum of two complex conjugate expressions
\ -~
xwhicH reduces to twice the real part of one of these. ‘Hence,

. ~
- the number of complex constants has been reduced to 2kN, and if

\

we denote

N | c., = q. + iEj 1

J J \
.= Q. + if. 4.3
; “J 3 5 ( )
L Ay = Ry 4+ EL, 3L 2kN, )
\ * »
\ equation (4.2) becomes \
\
\ —_
\
[ _ \
‘ \ AT 4
' . \

r
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2kN
=2 X [C.(R. cos f,t — I. sin Q,
272 F IG5 Ey com Byt~ Iy i 1
J 3
il 1
_ . -Q.1
- C,(I. cos Q.1 + R. sin Q.1)| e J ’
J -] J ~J J
. NS
\ ‘
- \
i p . -
where z = E) , a 4kN vector. ‘
3 / B ) \
Now, if we recall the definition of P
= {py, P p p )T
s P 7iPys Poreer Py oo Py .
where |
/
.1 2 3, 2k . ‘ .
}.32 - {pll plr pzr «ey pz } ¢ 0

9

and replace in the general approximate solution of Eqg. (3.9)

-
3

s N .
SR S T TR (00 ) I
=l 4

L :

we obtain

—

N :
n(g,1) = I po(n) ¢ (&) a

° =1 ~
. ’ ' N "P 7
n(g, ) = I .p, (1) ¢,(6) .
o =1 -2 2 )

(4.4)




‘ v In terms of the eigenvectors, this expression becomes

K

} L]
; T th 2kN . ' - r
L =2 =z I ¢ (6)[C.(R. cos Q.1 - I. sin Q.1)
3 <U) R'—._—'_l j=l 9’ J ~J'9‘ J ~3'9' . :)‘
_ } ’ . _5jT
- Cjoqjcl cos er -+ gj,z sin th)}e ;s @ {(4.5)
4 ‘ X ‘
whére ) J
. ~ c s,
. B . ) T
D = {T\lr n2, v ey ﬂkr nk+1l s iy nzk} v
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= 1] 3 J 3 J J .
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J r J 3

\ - 3
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. TN, 2k+20 ot Th,at o
.o ol j 3 i . j T
Ry, p = {%g,17 To,27 o0 Ty, ok’ Ti,2k+1’ °° "7 Tp,4x)

a

and similar expressions for Ij and Ij e
, T x5,

' ’ In order to solve for the initialization constants Cj and

Ej’ it is more convenient to put Eq. (4.5) into matrix form

]J, g I ’ . . .
O
n _\¢/

- ' -t ~

“. ‘where o . . ? |
L i
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= - (5 B = 3T .
e = {Cys Cyr -vnr Copyd™ 7
and z
N / ( . --S-Zl'r
T(E,T) = 2 %E t¢£(g)(Bl'£ cos er - 51’2 sin er) e , e :
.__l , ) .
N < - -Q 'r‘
, L . ) 2kN
ooy zil ¢2(£)(82kN,£ cos QZkNT .£2kN,£ sin QZkNT) e ’
-N . - -511
z ¢2(£)(_v;l,2 cos 2, - Ry , sin 2,7), e ;e
%=1 ,
N -0 T
! . . 2kN
e 2 b (81 (= Topn, g €085 Fapn™ = Ropy,p SI0 Sppy™) e .
;»\ . ’ L (4.7)

~ a

As the number of dégrees of freedom of the system is 4kN,
- o . - .

we may set, at time tv = 0, for N values of £, the displacement

and’velocity of each of the k cylinders in both y- and z-direct-

" ions.. This gives rise to N systems qf the form of Eq. (4.6),

thus allowing for the determination of the 4kN constants Cj and

1

Ej‘ Once these initialization constants are/determined, the
d -

State vector {ﬁ ' n}T is readily obtained, at any time t and

-~

1

abscissa t, by means of Eq. (4.6). -
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The computer program "TRANSIT" described in Appendix E

enables the determination of the initialization constants, and

plots the response of the system-over a certain period of time.
&

S

/
4.2 Response to a Steady Excitation

The steady excitation of a cylinder may be interpreted
either as the result of an applied force-‘field, or’'as a con-
strained movement. In the first approach, tﬁé force field )
f(f,t) is introduced in the equations of motion, and'aﬁ applied

force matrix

‘ el 2
Q(EIT) {fxl f g e e e’y f ’ f 7 f 1 e e sy fy

takes the place of the 0 matrix at the right-hand side of

equation (3.6). After pgrforming the different manipulations,

the equa;ion of motion (3.15) becomes .
- ’ &’:
Mpt+t¢pt+tKkp=4qg , (4.8)
where ~

1

u N |
Q(r) = / Q 45 (£). d g,/ Q0 4,(8) d &, / Q ¢y(E) d g} .
0 0 0

/ . EquatioT (4.8) may thén~pe decoupled and solved, using for
instance an analytical- method developed by Paidoussis [7] \
which only requires that the eigenvglhes’of the system for free

‘ Ed

vibrations be all“distincg.
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In the second approach, the movement oﬁ a cylinder,/say
cylinder j, is constrained, i.e. nj(g,r) and ﬁj(g,r) are fixed.
As the coupling between the cylinders was introduced for arbitrary
displacements of each of them, 'the equations of motions do not
have to be modified. The response of the system may then be
considered as a succession oflinfinitely close initial states'"
where t?é velocity and the displacément of cylinder j are con-

stantly reinitialized to .their assigned valuefat this time,

while the other cylinders are left in their actual state. &

>
T+37T. TIME

[y

It should be pointed out that the response sketched above
is theoret%cally exact, the only apbzoximation being the fitting
of the actual movement of cylinder j to the assigned one. As
for any numerical method, its validity is highly dependent on
the interval of time between two successive initializations,

but if the frequencies of free and forced vibrations are suf fi-

/

9

-ciently close, the modelization is quite satisfactory.

-




o
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It is by the use of this numerical method that the computer
program "TRANSIT" calculates and plots the response of the
sysfem where one (or several) cylinders are given an assigned

sinusoidal movement.




CHAPTER V

J

RﬁSULTS /

! B

- .

In the previious chapters, solutions of the general equation

..of motion gf’the form ) o

iwTt

n(g,t) = Y(g) e

have been considered, where o is ? complex dimensionless fre-
quency. The results produced by the computer programs "SOLINTER",

"BUCKLING" and "TRANSIT" allow now for the détermination of the

dynamical behaviour with increasing flow, the stability maps

and the response to applied excitations.

. .- . /
Computations have been carried out for systems ranging from
ht
/

one to five cylinders arranged in symmetrical patterns as repre-

sented in Figure 3. The confinement of the cylinders is char-

acterized by the two parameteré Gc and Gw where

_ smallest cylinder-to-cylinder gap

c radius of cylinders !

L \
G = smallest cylinder-to-channel gap
W radius of cylinders

As to the dimensionless parameters which appear in the
. i 9
solution equation, they will be generally given values correspond-

ing to a so-called "standard case" where
i

Be = 0.32 Bi = 0.26 , ece = 0.25 , Pr = 0.3




~
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5.1 The Eigenfrkquencies of the System ' :

5.1.A General Considerations

First of all some remarks should be made about -the order—
ing of the natural frequencies. It is observed that they occur
in "groups", or "frequency bands", each group corresponding to
the infinite number of natural frequencies of a solitary tube,
and are associated with the axial mode shapes. Of course, in
our appfoximate solution, this infinite number has been tr;ncated
fo N, the number of beam eigenfunctions ¢1(g) uéed. Within one
of these frequency bands there are 2k pairs of complex conjuggte
!eigenvalues, each of these pairs corresponding to a certain
cross-sectional (or "lateral") mode, which pattern recars in
each of -the N groups. This ordering arises because there
are k‘denges of fregdom in both y- and z—directions} and N

degrees in the axial direction. The frequency bands result

from the coupling between the c¢ylinders and, as it was emphas-

ized in a previous study [12], the spread of frequencies within

each band increases as the relative interstitial gaps Gc and

Gw diminish. .

2 1-B Behaviour with Increasing External Flow
* !

The dimensionless internal flow velocityfui(is kept at a
’ {
constant value while the external flow Gelocity‘ug increases

from zero. Two Argand diagrams have been plotted for u; = 0

L]

,
» » . .
* -




a ¢

’ and u, = 6 in the case of a three cylinder clampe‘a—clamped
system, and they may be found in Figures 4 and 5, respecti@ely.

> For u, = 0, and in the absence of internal dissipation,

3 ~

the eigenfrequencies w are wholly real which is a characteristic

of a gonservative system. Thus, the locus of each mode (axial/

[

lateral) starts on the real axis, Re(w). For small ug all

the eigenfrequencies become complex with a positive imaginary
component, Im(w), thus indicating that the flow damps the free
motions of the system. With increasing u, the frequencies of
oscillationé Rg(m).diminish, and eventually that of the first
mode vanishes, and at this point (A) its locus reaches the
imaginary axis. Céhtinui%g from this point the loctls bifurcates
because the eigenvalues iw being real, they are ﬂo anger con-

- jugate; thus one branch moves up and the other down the Im(uw)

axis. (At slightly higher flow (point B), the imaginary compon-

ent Im(w) vanishes as well for one bran&b, indicatinq\the onset
of divergence (buckling). At/a yet higher value of ug the two

branches coalesce and leave the imaginary axis at point C to
* ~

re-enter the stable region. [Finally, the locus crosses the real

axis at point D which is the threshold of flutter, and the
N
system loses stabiﬁity again. The lowest mode of the group of ’

second axial modes is also plotted and it is seen that it remains

in the stable half-plane for .the range of flow velocities investi-

gated. ,
/ Comparing the two diagrams for u; = 0 and u; T 6 very
. ‘ B . v )

”. + little difference appears, the behaviour being gquite similar. .




. However, in the case of u, = 6 the instabilities occur for much

lower velocities and the system is less damped for small values

fu_.
oL Ug

¢

5.1.C Behaviour with Increasing Internal Flow

Two Argand diagrams have been plotted versus uy for u, = 0
and u, = 2 in Figures 6 and 7, respectively. As the behaviour
is rather different, we shall discuss each of them separately.

, In the first case (u, = 0) it is observed That until the -
first buckling, the system is undamped and the loci remain on
the real axis. The first mode buckles at d; = 6.315 and then
the second m?de at‘ui =.9.036; at a‘slightly higher velocitx,

he loci of the modes coalesce on the Im(w)-axis

and leave fhis axis at symmetrical points, indicating the onset

of couplegd-mode flutter.
the second case (ue = 2) the loci no longer start on

al axiﬁ. The first mode buckles at u, = 4.85 and at

8.11 the two branches coalesce and leave .the Im(w)-axis
(

almost at its intersection with the Re(w)-axis. Finally, beyond
, 1 i

u, = 8.5 the loci of the two modes are almost symﬁetric, the J

|

first mode being unstable and the second stable.

{

5.2 The Stability Doma£¥

ty

As it may be seen in the Argand diagram of Figures 4 and 5,

for each internal flow velocity corresponds a-critical external
| -
. © flow velocity (uy) beydnd which the system loses stability
cr. :

I
{
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for the first time by buckling (point B). The computer program

~

"RBUCKLING" allows to plot the curve (ue) ' versus ug thus
delimiting a stablé domain betwesn the tsg.coordinate axes, u,
and u_. We shall now proceed to discuss the influence of the
various parameters and conditions on these stability maps.

i

5.2.A Influence of Confinement

The effect on stability of contiguity between cylinders
and proximity to the channel is illustrated in Figure 8. It is
seen that at low internal flow velocities, the confinement of
the cylinders substgntially reduces (ue) which is more than_
halved when Gc and Gw decrease from o« toci}4. \For high values
of-ui, which imply lower~%ue) ; , thé effect of confinement is
less important and even becomgs-i?significant at the upper limit
of ui"for stability (u; : 27m) . Th}s peculiarity is explained
by the static methoéxused to ;olve the equations;: the cylinde;s
are supposed to be still until buckling and hence no hydro-
dynamic couplinggis applied to them. * Mathematica}ly, tﬁe only
term that involves coupling in the absence of extefnal flow is
the inertial term, which is multiplied by the instantaneous
acceleration;-divergencg, however, is a phenomenon where time as
such does not enter, and this term has no influence on thé'
system. In practical cases, displacements of the cylinders
might reduce the stébility domain.

Furthermore, it is observed that the tighter the confiéur—

ation is spaced, thé less sma values of u. affect the stability
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of the system. For GC ==Gw = ©, ug and u, have a rather
symmetrical influence, but for Gc = Gw = 1/4 the threshold of
buckling seems independent of the internal velocity until

|
u; = 4, beyond which us becomes in its turn the predominant
agent. Therefore, for“ﬁhosely spaced configurations, the internal

< 3 approxi-_

flow will not be prejudicial to stabilit%‘for u,

mately.

i »
e 9 are shown the domains of stability correspond-

ped-clamped and a pinned-pinned three cylinder
Night be expected, the pinned-pinned system is con-
-~ siderably lesg stable, and the two curves are almost homothetic
in a ratio of |around 1/2. This similarity comes from the fact
" thlit the bo dary conditions exert no influence on the forces,
but contribuyte to staEility by altering the modes and frequenc-
ies of vibrations. This is why this Eehaviour is very similar
to that observ

for a single cylinder in unbounded flow (see

Ref. [11] for® instance).

5.2.C Influence of the Number of Cylinders '

Sy, . Stability maps have been plotted for systems of one to N

five cylinders and for various spacings between them. It appears

that ‘the number of cylinders does not change significantly the

‘ t
stability regions, éspecially for close-spaced clusters. More-

over, there is no obvious correlation between the number of




~

in turn and given extreme, but still phys&cally realistic, valtes.

cylinders and the destabilizing effect it could induce. For

instance, the critical external flow velocity for a typical

system (Gc = Gw = 1/4, standaxrd paraqbters, clamped ends) of

four cylinders is 3.12 compared to 3.07 for a two cylinder
system. This difference is presuﬁably connected to the relative

space available to external flow in the cross-section. Shown

in Figure 10 are the smallest and the largest stability domains

out of the five configurations tested, in clusters where

G =G _=1and G =G = 1/4. ) |
c W C \ ]

|

5.2.D Influence of the System Parameters

The effect of changing the various parameters in the equat-

, 1., ¢, Pr)

ion of motion (a, B _, B.» Y_.r Ysr Y » I, &, ECgys 1 i

1 e 1 e

e
were inve;tggated. Each of these parameters has been changed

\
For all of them, except the pressurization (ne, ni?} the b?am
tension (I') and the viscous frictiodgl“coefficient Cer the modi- N
fication they create on the critical velocities is quite neglig-
ible, alWays less than 5%. As to the fluid pressure and coﬁ—
pression on the beam, they produce similaf,effects since they
intervene in the samé term of the general equation of motion.

*

Increasing my - He or the compression I' with ends not free to

1

move (8 = 1) gives rise to a significant destabilization which

[ - -

may be viewed in Figure 11 for a three cylinderupinned-pinned'
system. Thus a compression of I' = -5. corresponds to a curve

which is homothetic to the "standard" one in a ratio of 2/3.

hY
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On the c@ntrary, the viscous frictional forces, which
depend on the group of parameters €Cgy have a tendency to
stabilize the system. Thus, increasing ecf'from 0.25 to i
slightly enlarges the stability domain, as may be observed in

”~

Figure 11.

§
5.3 The Transient Response

-

- In this section we shall be concerned with the transient
behaviour of pinned-pinned systems subjected to various e¥cit—

ations. For the sake of simplicity - and incidentally in

%
" accordance with observation - all cases looked upon in this \

study are initialized according to the firit axial mode shape,

i.e. the initial stége of any cylinder j satisfies |
nd(g) = nd(1/2) sin 7 £ . \ /)
\
. .

5.3.A Response After Initial Displacements

In Chapter IV ft is shown that once the initial state of
all the cylinders is given, the positibn and velocity of each
of them for all subsequent time are computable: We ;hall 4
discuss first some peculiar cases which lay emphasis on the

multiplicity of the eigenfrequencies for each axial mode.

For better understanding, a system of two symmgtrical'

cylinders (as depicted in Figure 3) will be examined in prefer-

—

ence, for in this case the motions in the y- and z-directions

are independent, thus leading to simpler interpretation. As

|



b

’ , menti\d;xed prewiously, there are in each directtion two trans-
verse modes of vibrations associated with two frequencies
within each "“group" of frequencies. In the first group of fre-
quencies, i.e. those frquencies with the same axial mode, the
cross-sectional mode shapes,and frequencies are as follows:

. \

i
1

! ( 1st mode vl(r)‘= vz(r) W= wy
in the y-direction }
K 2nd mode v, (1) = ~v_ (1) o = w .
1 2 2
- 1st mode wl(r) = WZ(T) w = ey

ii) in tqe z-direction
2nd mode wl(r) = -WZ(T)

€
l
€
[
.

f

] The numerical values obtained with G, = G, 1/4 and zero

flow velocities are the following:

»

Wy = 6.83 Wy =79.71 ’

= 8.33 w

e s X |

R

'If the system is given an initial state meeting one of
these conditions it will vibrate at the frequency corresponding
to the excited mode. 1In Figures 12 and 13 'these initiQ& st;tes
are assigned in turn, thus describing’reépect}vély the first
/ \ and ‘second mode in each direction; the cyllinders are seen to - .

vibrate with no phase shift, nor damping ince they are immgrsegr
in still fluid (supposed here to be invis
Now, if we give the system arbltraryTnnltlal condltlons,

the resultlng response will beée a’ linear c blnatlon of these°

. two modes. For instance, if the first cy nnder is dlsplaced




1

. in the z-direction while the second is left ‘at-rest, it may

‘\
-

be deduced from the constants of initialization that the move-—

i

ments of the two cylinders are governed by the relations

wl ) wl - w
wl(r) = wlfO) cos —5—5——3 T . COs —g—fa—l_r '
v (5.1)
- w! +mé w! -m]'_ . Y )
wz(r) = - wi(O) sin 3 T . 8in 3 T .

- :
% . )7 ) °

In Figure 14 is viewed the beat phenohenon which results

fgbm this combination of modes: the "fundamental" frequency

(o] + wy)/2 is modulated by the "beat" frequency (w3 = wy) /2.

The behaviour is’ similar in the y—directiop, but>the beat ;s
lesé evident because Wy and W, éie more remote from:each other.
/Another importan£ aspect which proceeds from this beating is
‘that the initial amplitude of thé first cylin@er is fully trans-
mitted' to the second, thus ekpressing a continuous egchange of
°bé\ ienergy between ‘them. r * ' .
The case of a three—cylinéer configuration‘has also been
plotted in Figure 15 (a and b) to illustrate thé coupling "
be%weeﬁ mutually'perpendicular displacements. Thus, although
the only initial displacement takes place in the z-direction
(for Lhe first cylinder),lthe maximﬁm amplitudes reached by
. the two others actually occur in the y-direction. Of course,
the displacenents ofrdylindersuz and 3 are symmetric, but their

s

equation‘of motion may no longer be expressed .in a simple form
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since more than two modes are now involved. Clearly orbital
motion of cylinders 2 and 3 taKes place. ) l
. The effect of a non-zero external flow velocity appears

in Figure ‘16, where u, = 1.4 for the two cylinder system. As
i 4 \

expected, the four transverse mode frequencies are lowered

and become

wl = 6.27

- > - . "a
In consequence, the "fuhdamental" frequency is lowered

while the "beat" frequency is increased, due to the larger
spr%ad sz— 0y of the freqéencies. Furthermpré, it must be
pointed og} that in this case equation (5.1) is oply an ypproxﬂ—
mation of the equatién of motion, for a more careful study of
the‘initialization constants indicates that the other axiaA

It means

modes (mainly the second mode) are slightly excited.

that the axial mode shape is no longer pure, but is ‘a mixture

o

of several modes which render the modal shapé&%ime—deéendent. o

Moreover, there is an exponential damping factor, the effect
of which appears clearly on the plot, whi¢h halves the ampli-

tude of oscillation by the time t = 20. .

~ 3

— . ©
5.3.B- Response Under Steady Excitation

In this paragraph we shall consider the response of the

éystem when one of the cylinders (cylinder 1) is constrained
J .
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.\ to have a sinusoidal.motion of constant amplitude and frequ- ’
ency, of the form /)7

14
2

nl(T) = nl(O) cos @ T .
., o o

g ’ Fér a tw‘b—cylind}er.system in still f\]}%\lid, the differential
‘equations of motions may be integrated by hand; the solutions
are derived in Appendix F. If we denote by mij the coefficients
~ of the mass matrix ¥, a "resonance" of the second cylinder is-

shown to occur in the following cases:

i) in the y—'direci:ion with/ vl(-r) = vl(O) caos Q T1: :

Valv) g My3 | -

=z =0 1 sin @ 1, if ¢ = @ = ; (5.2)
vlioi e 2m44/ ) res m44

ii) in the z-direction with w.(t) = w, (0) cos Q' 1% .
: / 1 1 g

w., (1) m i 4
2 1l 21 . . 1r

=5 — Q' 1 8in Q' 1, if Q' = Q' = . (5.3)
wl(O) 2 myy res m., o )

It seems worthwhile to enumerate some remarks these

resultvs arouse. First of all, the "resonance" frequency Qres

is not one of the eigenfrequencies w described in the préwious

L section, but is located at an-+intermediate value between them

—

W, < R < w Le ! << w .
1 res 2 Y res 2 ‘

s

Accordingly, this type of resonan¢e must not be confused

. ‘ with the resonances obtained when the system is excited with a




~

\

steady sinusoidal force, for in this latter case tLe reson-—

ances are likely to occur at @ = wy and Q = wo - In the case
+

at hand the displacement of one of the cylinders is\gogstrained

to rema'in constant, thus the system is neither free nor forced
! ~

in the normal way.

#Examining equations (5.2) and (5.3) it is noticed that
the amplitude of the second cylinder is linearly increasing ,
with time, and that the rate of increase per period is independ-
ent of @ . The slope is proportional to the off-diagonal

res
terms of the mass matrix, thus underlining the dramatic import-

~ance of confinement, on which thesé terms are highly dependent.

In the case where GC = Gw = 1/4, the matrix coefficients are

\

m, TRy, T 1.31 , m =W, = -0.0899 ,

[

Mygy =My, = 1.56 , My, = Myy = 0.526 .

which yield the dimensionless resonant frequencies

B
T4

= A _
Qes 7.90 , Qres  8.62

and a rate of increaseof the amplitude per period of 1.06 in
the y—dire&tion and of 0.215 in the z-direction. Hence, the
resonance is much more pronounced in the .y-direction, where in "

less than one period the amplitude of the second cylinder

‘ éxceeds the level of excitation of the first one. 1In Fig?re 17

is plotted the response of such a system excited in both direct-

ions at the corresponding resonant frequency, and the considerr

E’(
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!

able ampl;tude reached by the second cylinder appears clearly.

The response of systems cohprising more than two cylinders

#is much harder to derive by hand. - ‘However, in the case of 3

{
cylinders, at the middle of a row of rigid tubes centered on

the z-axis, an approximate formulation of the response of the
two non-excited cylinders is obtained in Appendix F; the equat-
ions of motion for displacements in the z~-direction are found

to be as follows:

wl(r)

wl(o = COSs f'le r ‘

w, (1)
2 1mn .

‘wl(O) ~ 35 ﬁ 1T 8s1n T ’

w, (1) L2

w3(0) - - % (g) (3 Tt sin Q@ 1t + @ 12 cos 2 1) ,
1 -

if e =a - l-;;l— , (5.4)

where M is the diagonal term of Ehe mass matrix in the z-
KT

direction, and m the off-diagonal ‘term corresponding to the =~ -
-~ )

coupling effect between two adjacent cylinders in the z-direct-
ion. The vglidity of equaéion (5:4) is, ‘however, not reliable
after a few périods, for terms of higher order with respect to
time have been neglected.

It is observed that the response of the second cylinder is

linearly increasing with time,‘éﬁd identical to that obtained

\

J
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in the previous cése of two gcylinders. As to the third
cylinder, its gquation of motion gontainS'a quadratic term
which exceeds the linear term as soon as Q@ ¥ > 3, i.e. in less
"than half a period. Hence, even with a relatively 'large. spac-
ing between the“cylin@ers, the displacements of the third
cylinder may become quickly impoftant, due to the parabolic

3

evaluation of its amplitude. With Gc~= 1, Gw = o the coeffici-

ol

ents of the mass matrix are M = 1.02 and m = -0.0712 which
yield the resonance fréﬁuency Qrgs = 9,77 and the following .
equaﬁions of motion: ~

wl(r) =wl(0) cos Q. T

/

WZ(T) ~ =-0.34 1 wl(O) sin Qres T

=

@ . 2
w3(r) ~ ~-0.018 ¢ wl\O)/51n Qres.T - 0.058 1 wl(O) cos Qres T .

In Figure 18 is given the digital plot corresponding :to

]

such a case and,indeqd, the parabolic evolution of the thiéd
cyli?der amplitude may be Yiewed, as well gs the limits of
valiai;y of the above formulae. lFinally, in Figure 19 (a and b)
is p}otted the response of a system of three cylinder§ in classi-
cal equilateral configuration, with Gc = %w 1/4: Cylinder 1

is excited in the z-direction and here agazin the resonance is
mMore dramatic in the y-direction where in 13 periods the ampli-

tude reaches five times the level of excitation.

»

\
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5.3.C Precision of the Computer Program "TRANSIT"

It should be reéalled that to constrain the movement of
the firgt cylinder the computer g;ogfam procégds by continudus
reinitializations of its position and velocity in order to fit
the prescribed motion. But, as the other cylinders are always
left in their actual state, there i§ no way of recovering the
systematic error which is generatéd whenever the prescribed
frequency is different from the ﬂrequency of free oscillations
of the system when abandongﬂ ffom the reinitialization state.
There is a slight, but generally/%umulétive, displacement of
phase of the non-excited cylinders from the one they should
actually have, and this sliding effect is particularly sensit-
ive in cases of resonances where the phase plays an important-
part. Moreover, little is gained by reducing the time interval
betwgen two reinit;alizations because the number of cumulating
errors is increased in the same pfoportion as the valug of each
of the errors is reduced. This difficulty‘was, however, over-
come, in ,the cases of responance, by giving to the "driving"
frequency a value slightfy above the actual'resonance frequency
in order to compensate for this phase shifting.

But besides the necessity of introducing this corréction,
the computed response proved to corroborate the predicted  behav-
Jdour, in all cases tested; this agreement is quite satisfacto;y

since the response is in fact more simulated than really com-

puted’' by the program.
S . Az'

St




CHAPTER VI

(I
CONCLUSION

The theory developed in this thesis enables a prediction
of the dynamical behaviour of a cluster of flexible pipes con-
veying flﬁid, immersed in axial flow bounded by a cylindrical
channel. 'Structures of this kind are commonly encountered in
practical engineering systems such as heat’exchangefs and
nuclear reactor fuel bundles.

Among the fluid forces acting on the external surface of
the tubes, the viscous and fnviscid hydrodynam}c coupling between
motions of the cylinders and the effect of pro;imity to the
channel have been taken into accouné, according to a method based
on potential flow theory presented in previous studies [9, 10].
Expressions derived for these forces, which depend on the pres-
ence and motions of all cylinders in the bundle, weré incorpor-
‘-ated in the general‘equation of motion’of a slender pipe sub-
jécted simultaneously to an external axial flow and indepepdent
internal flow. The equatioh of motion takes then a matrix form
and was solved by means of Galerkin's approximate technique to
‘field the eigenfrequencies of tée system; these frequencies
occur in bands centered around the eigenfrequencieg of a single
cylinder under the same conditions, .and are associated with
ﬁodes of the same or similar axial shape. It was shown that N

pipes with both ends supported are subject td divergence (buckl-

ing) and then to flutter when increasing either the internal h

\
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1
or external flow velocity, or both. This behaviour was expected
and may be interpreted as a combination of two previously
studied limit cases, namely a solitary pipe in presence of V
parallel internai and éxternal flows [4, 11], and a cluster of
cylinders surrounded by bounded axial fluid flow [10].

As the designer is mostly interested in the critical con-
ditions associated with the_firét instability encountered with
increasing ihternal or external flow velocities, a simplified
analysis referring‘exclusively to buckling was conducted. Itv
showed that, whereas the two flows play almost intercha%ge;ble
roles for widely spaced configurations, that of the external
flow becomes prominent for compact clusters. For a gap between
cylindeés or between the cylindefs and the channel of 174 of
the cyl%nder radius, the divergence due to external flow is
independent of the internal fluid velocities, as long as these
remain moderate, and occurs for half the velocity necessary in
the case of a s%ngle unbounded cylinder. However, unless theré
is appreciable campressive load on the beams, coupled with
highly confined geometry, the hydroelastic ingtabilities are hof

<

likely to occur for the velocities usuélly encountered in pract-
! !

ice. i ,

The most original results of this thesis relate to the
transient response of such a system undér instantaneous perturb-
ations or steady excitations. When the system is releasea after

some of the g£ylinders are given initial displacements, a beating

phenomenon takes place, hence ekpressing mutual transfer of

v




energy between the cylinders via the surrounding fluid. It

may be concluded that if many cylinders are slightly disturbed,
the energy fed into-the system may eventually concentrate on U,
one cyliqﬁer'for awhile® thus magnifying its displacements up

to gbnormal values. Moreover, it)was shown that to each ;

cyiinder is associated a resonant frequency which is distinct
from the eigenf}equencies of the solution equation, the latter
being relative to the whole system. Accordingly, in highly
symmetric patterns where the resonant frequency is identical

for all cylinders, the amplitudes of their oscillations may
become consﬁderable if the system is excited at this resonant
frequency; indeed computations carried out for rows of three

" cylinders, ikdicate that the excitafTBQ\SfSPagates to the neigh-
bouring cylinders with cumulative effect. T@is'behavioug con-
duces to many practical imﬁlications anq may explain tﬁe fret
marks noticed in some existing cases which resultrfrom repeated
9011isions’between adjacent cylinders. Indeed, in closely
\spaced bundles, even small amplitude vibration results in impact
within the structure which, in time, might caus® the rupture

of the elements with serious consequences.

! A large field of investigations is therefore open, pertain-
ing to the origins of:the pe;turbations or excitations that
could generate abnormal displacenents or resonancés. Probable
sources of disturbances are a simple shock on some of the
cylinders, an arbitrary gorce field due to external vipration

f , .
sources,¥an unsteady g}uld flow, or else a random pressure field




. which may arise from pressure fluctuations in the turbulent
boundary layer of a subsonic flow. These types of excitation
may feed energy into the system by means of a large spectrum of
frequenéies; among them one might coincide for awhile with one
6f.the resonant frequencies of some elements and yield worrisome
displacements. ' . -

! . B
Hence, a great deal of work remains to be done on,thé

theoretical side, with the aim to shed light on the transient
phenomena of interaction between elements of a structure, and <

the mechanisms from which resonances could originate.

Finally, it would be worthwhile and presumably workable to

conduct some experiments in order to view, at least qualitat-
j Evely, the beats and resonances which have been broﬁght to

. - light by this thesis. - s

™~
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\ Pinned-Pinned Cylinders
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Fiéure 4 Argand diagram of the éomplex frequencies w of the '

lowest .member in each of the groups of lst and 2nd °

axial modes, with the external flow ug as parameter

and ujy = 0.

case of a three cylinder clamped-clamped system with

standard parameters and Gz = G, = 1/4.

The loc¢i on the Im(w)—axis_havgaacﬁually b
slightly off the axis and ‘parallel to it,
sake of clarity. T
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Figure 5 Argand diagram of the complex frequencies ‘w of the,
lowest member in each of the groups of lst and' 2nd
axial modes, with the external flowy as parameter

and u. = 6.

Case_of a three cylinder clamped-clamped system with
standard parameters and G, = quE‘l/4'\.
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Flgure 6 Argand dlagram w1th the internal flow as parameter

and Ug = 0.

Case of a three cyllnder clamped-clamped system with

standard parameters and G, = G, = 1/4.

The loci that actually lie on the axes have been
drawn slightly off the axes, but parallel to them
for the sake of clarity.
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Case of a three cylinder clamped-clamped system with

standard parameters and Gc'a Gw = 1/4.
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Figure 17 Resonances of a two-cylinder system in still fluid.
The first-'cylinder is.excited at 2=8.3 in the y~ -
direction,, and Q@' = 8.62 in the z-direction with ¢
constant imposed amplitudes. The second cylinder
is free. J .
Standard case with Gcﬁ- Gw = 1/4, /
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APPENDIX A :  THE ADDED MASS AND YISCOUS COUPLING COEFFICIENTS

This appendix is a summary of the work done by S. Suss,

M. Pustejovsky and M.P. Paidoussis which can be found in detail in

[
references [9] and [10].
%

S 4

A.lesPhe added mass coefficients -

.As shown in chapter 2 the general expression of the inviscid
hydrodynamic Yorce~given by equation (2.7) may be written in the y-

and z- directiohs for cylinder j as fallows:

' -

a 3 : N
3 R _ . 6. do. ,
j[ at Ue ax} ¢j(Rj'aej) Sin By J (
; ]
| (A.1)
3, i~ ;3 2| 4.(R., 8.) 8. de., , .
(F2 f 5T Ue‘axJ ¢5(Ryr 84) cos 6,-d0y i
0

where ¢j(r., e.) is the fluid ve]ocit} potential at the point P(rj, ej) ’
due to the motion of cylinder j alone, and (r , 93) the po15r coordinates
of P centered on the axis of cy]lnder J. Let us also denote b® ﬁij
the length of the line joining the centre.of cylinders i and j and
Vi3 the angle this line makés with the positive z-axis, i being the
vertex (see figure 2). By convention a zero value of an index refers
to a coord}nate system at the centre of the enclosing channel, the

radius of which is Ro‘ S 0




. The total potential ¢ is the sum of all the potentials ¢J.; .

_ ’ _moreover by virtue of Tinearity, we ha&e

2 . §
Ve, = 0 . [
¢3 I |

The classical solution of this equation in polar-co-ordinates
q

has the form

n n v
(r., 8.) = T (A . r. cos nd. + B_. r. sin no.
ERSTREL ] I 5

n .
{ + € . r.n cos n6. + D . sin nod.

To apply the boundary conditions, it is necessary to express
each”¢j in terms of coordinates centered on each of the other cylinders.

This can be done by the use of the complex coordinate transformation

=]

o ie, ie, iy,
-xr.e J =r.e 1 - R- . e ] h i = 0,]:’0-- k ’
1 1J 3 =0,1,... k .
//,// After 1ehgthy hanipulation, the potential due to cylinder j

in terms ofccqoﬁdinates centered on cylinder { may be written as

(A.2)

(a.3)
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o n (-1) n-m Rn-m m

i, _ ij Fi
o5(rgr 85) A L T (n-m)

n!

1]
@ (-1)"(nbm-1) ¢ ry
+ I x {an cos [m 8 - (n+?) v,

x {Anj'c,os [m 6, + (n-m) Y.oo] + B3 sin[m 0, + (n-m) q;ij])

]

' _ ' n+m 13
m=Q m! (n-1)! Rij
/ . ) ] -
Dnj sin[m 6, = (ntm) wij] } ' (A:4)

which converges for Py < Rij; or alternatively

3
\

L n

¢%(i., 8.) = & £ (same as first internal sum in (A.4))
3ot 1 n=1 { m=0
¢ . /
o (m-1)! R?Sn : : '
+ L x {C . cos|m 8, - ( ) Y.
m=n (n-1)! (m-n)! r? nj 1 - 13
i - - - . s (Aos
+ Dnj 51n[m ei (m Q) wlj } s )

— .

B

which converges for ry > Rij'

The two boundary conditions\require that

(i) the velocity of the fluid normal to the enclosing channel be

zero on its surface,

365 © S
— =0 i=12,..., k . (A.6)
3 | » g / .
A N [e) , fe) .
- (i1) the velocity of the fluid normal he surface of each’

cylinder be equal to the velocity the cylinder iﬁ that

direction,
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i Dw, Dv, )
—g—%—'- "’-ﬁ—t—l—'COS ei +1—)—t—isin ei ' (A.7)- -
by
. r.=R.
1

j =qi'2‘...' k ,’ . .

” -

where =¢l is the total potential written in terms of -

Py

co-ordinates centered on cylinder 1i,

.'iﬂ k
$T =9y v I* 9L,
j=1 J
4 ~
' the starred summation excluding j=i. . ;

Now, applying the bouhdary conditions and‘isélating the

Y

coefficients of cos m 8, and sin m ei, it appears that the con-

N

stants Anj’ BnJ

Anj 1-n t
B 3 ] . J R.—:

nj

., an and Dnj'ﬁust be of the following form:,

N

injl\ Dw + anjk} sz
1' ang Dt bnjl Dt

’ ‘ “ ~ (A.8)

{an} « _1l+n A {Ynjz} Dw + ,anzl Dv,
D j §
-1F) )

njs Dt dnjﬂ, Dt _

-

I
s
)

P

s
1
=
i

i

Substituting these relations into the previous equations, the
-

-

following eight sets of linear equations with the constants

a_ .. to dn as unknowns are obtained, . .

njsL jL

1

’

%



. ’

A

L
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[ ( By
_ _ _ njz
kK o (-1)P™ pr g2IM RME b_.
I* L : => nfl _ nit sin(n-m)y, .
j=1 n=m (m-1)! (n-m)! Rj ®njs J _
' | \"%nje,
“njs
anjz
+ cos(n-m) y. . N
anz - Yy
bnjl v d ©
) - [ (s .
_ : njl
kK o (-7 (nem-1)t BV RDFL | 1G] ‘
+ I* I ‘ = n+mj njt sin(n+m)wi. ,
j=1 n=1 (n-1)! (m-1)! Ry "njs J
‘ - “njse -
. b,
Ynji %mig Ymig S1mlig v
| e a_. C_ .
e “Snjl cos(n+m)¢i. +m Bmlz m Gmll - 0 , (A.9)
njs ~ J mig mig ) v
~dhy2 ] Pnig i S1mlis
where m = 1,2,3,...; 2% f,1'2'3"' r k; 1 =1,2,..., k;
. ) X
[ o
- - - njg
» (=1)""" n! ROZTRD 1 a s,
> J ——) -8 J cos(n—m)wo.-
M (m-1)! (n-m)! R. nje . 9J
BN / J -b_ .
] njt
an£ .
b_.
+ njt sin(n—m)wo.
“nis ] \
“njs ] \
‘ \



s - -

m ROTR phtl
-z / o] ¥ ¢
n=1 (n-1)! (m-n)! R§+

m!

a o~ =

S h3g B
dnjz
sin(m-n)y .| = {0}
“nis ]
wherem = 1,2,3,...;

These sets of infinite equations can be truncated to

allow for the determination

anjz to dnjl and,,anjg to

l=l,2'3’..¢' k; j.= 1’2,3,-0-, k-

dnjl'

njs /

cnjz
_6 R
“njL
-d

»
.

cos(m—n)woj

njL
-

, ° (A.10)

of a finite number of thé constants

Then, performing the operations '

: l

reéuired by (A.1), the inviscid hydrodynamic forces may be written as

- 5 k | Dz%z 28
(F7) = - p =R L Je. + e, — .
A2 e p=1| 3% pt? I pt? | ,
) ) (A.11)
., © k 2 % 2. 2%
2 D™w D"v
(F) =< p 7R 1 |k. K 2Y_ 4+ k. ,
Ay e g=1| 3% pt? 3% pe? |
for j =1,2,..., k, where Ejz’ ejz, sz, ka are the non-

dimensional coefficients of

found to satisfy

N

i

€.

JjL 650 F 2YljJL

34

%51 2‘slj:z

sz being Kronecker's delta.

L

the added mass matrix which Qave been
g

(A.12)




- A.2 The viscous coupling coefficients’

This section deals with the resolution of equation (2.10).
The only unknowns are the velocitiés'(yj)y‘and (vj)z of the oncoming
| flow in the vicinity of cy]inde% j; they. can be derived from the fluid
velocity potential as in the previous section, but computed as if this
pafticu]ar cylinder, the jth, were missing. Hence, the procedure 1is
exactly }he same, siéce the derivation was for an arbitrary numbér of
cylinders; the fluid velocity at any point in,the yz-plane, with the

Jth cylinder left out, may be expressed as

N e)=39£sine +-]L————-cose
Vy 579 T, 3 7 r. 96, j !
7 J J J .
. (A.13)
: 3 j
_. 3¢ _I 3¢ . '
v, (rj,ej) o cos ej, = 36 sin ej ’
J J ]
where
. k .
$) = I o) (x.,00) - . (A.14)
=1 J 3 :
the starred summation excluding i=j.
° As the distribution of velocities found in this way is
not uniform around the cylinder, we shall take a mean value along its
circumference, setting .-
< . Dﬁ
) 1
( T—[ V (R 19 ) dal ’
. ‘ (A.15)
) vy); = -1 v, (Rj,05) dog -
. 2w z ' 3
’ 'Y
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with 2 = 1;2,»--1 % r

the previous

”Cémbin{nﬁ these three last equations in a similar way to

sl . P
_— i X [ Dw, - pv,].
* ] )

Vo), = IX¥Ivee B2 *.750 e
=1} i

. le . ”sz

it BE 38 BE |

] x

sin(n-l? sz

~

jth cylinder missing.

—

Ny

- 96 -

14

S

[
)

- \n=1
1 n (st)
R .

S

. . R n+l.
+ (-1)" nj{ o—

section, the velocities are found to be

v

o
nst

{ "
] 8nsy
B

bn32

\"3s

—aqslj /
Ynsl 6ns&
c . - 4.
2
X _anSE cos (n+l) V. + Yns
oo ns& |’ J nst
“dhss Chst

)

sin (n+1)

.j = 1,2,...;, k‘ 7
}

)
>

¥

-

ns-

—‘ ¢
?55

i
LA
.

the cpnstanﬁs %se? 2nsy? anz’ bnsg’ etci being evaluated-wgth the,

1

(r.16)

o~
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Finally, the normal viscous forces may be put in the form

k : %
pRUC, I [ Dw* + S, Eﬁli

(qen)y ef g=1 jL Dt , Jji Dt
N k 2 / !, = ’
' ow v ’
peRCD\li {°jz 5 T Sq2 9t ]} ’

Nt

. L
- _v Dw Dv
(qen)z PeRUC s 2_1[32 ot * 955 DE
\ Vo«
‘ k Bw‘q’w Bv'e N | _—
% ‘ - p RC lil cjl -B—‘E— + gjl W ’ (A.lS)

where L3y gjg,’ g g0 ave called the giscous coupling coefficients

FTA A s
and egua], respectively, Vg :njz’ Vg '"jz

cjz = 'sz =1, gd& = 9y = 0 for j=t. -7

, for j#& , ands

N

Ca .
) The added mass and viscous coupling coefficients are
produced and punched out by the computér program 'COUPLAGE' 1isted

in Appendix B. This program is a modified version of Suss' original

\

program 'COUPLING' where the‘*addg mass matrix has the opposite sign.

S

[}

%
Te—




APPENDIX B:

DATA CARDS

Card

THE COMPUTER PROGRAM  'COUPLAGE'

Fortran

PR

-

Number Symbol Narme Des1gnatlon Format
1 K,MN Number of cylinders, 213
‘number of cylinders at
centre of the channe]
2 MM, MP Number of terms taken in 213
the series solution ‘
¢ (see note 1)
- 3’ /J:DEA IPUNCH See note 2 | ‘ 213
T ¥11°R CHOLI)LR(LT) ) 2F10.5
~ ) Py4R CH(1’2),R(1,2) parameters of position "
’ \ 127712 ’ of each cylinder with
‘ respect to the others
K+4 ¥o1:R0 CH(2,1),R(2,1)  (see Figure 1) "
¥ - 3
K2+3 Ik R CH(k,k),R(k,k) "
K2+4 RystgisRgy  RI(1),CI(1), radius of each cylinder 3F10.5
. : RA(1) parameters of position
9 / with respect to the
K+Ke+3 Ry ¥k > Rok RI(k),c1(k), centre of the channel "
RA(k),
K#K2+4 Ro RO Radius of the outer channel F10.5

UNote 1: M » MP.

MM=15 and MP=11.

Note 2: IDEA=0 if only the added mass matrix is requlred

=1 otherwise )
IPUNCH=0 if the matrices should not be punched
=} otherwise [

‘Note 3: The angles are expressed in degrees and the lengths invqjllimeters.

A -good convergence is obtained in all cases with

———
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C L ISR EL 2 ] -
C * o
C % CCUPL AGE x
C - L
C L EEARRRARRE L
¢
C*i*'.‘*“‘#**““"*‘*‘*“‘..“""“““.“““*.“ﬂ".*ﬂ#**“‘*‘*'***
C*
Ce K IS THE NUMEER CF CYLTINCERS
Ckx MA=NUNBER OF (YL INDER AT CENTER QOF AFRFAY
Cx KRC=RAC!IUS OF ENCLCSING CYLINCEFR
Cx Cl1(I)=CH(Q,1I) » RA(I)=R(Q,I)e RI{I)=zRACIUS CF CYLINCEFR I
Cx CINMENSION A(WNMNNGK)B(NN MM K HL{NN NI W2{NM NMN) RZ(NMN MM) , na (NN ,NN)
Ch DINENSION S(2MN41),CCI(ZNMNHL )+ FLENM) 4 FI(2MM42) sR2(ZVM4Z)RI(2FN+ 1) %
Ck DINENSICN GUZMFEK ¢2MFK) s WE{2MPK 42K ) o BE(2MPK) s VL (2K 2K)
Ck DINERSICN CHUKsK ) R(KyK)sRI(K)sFA(K ) »CL(K)
Co DIMENSICN AL1(MM) qA2(NMVN) A (24 2NMF(K=1))sAQ(2+52(K~1))
Cx DIVENSION VC(ZK+2S)+sAM{ZH (K41 ) 4Z2%(K4+1})
C*
ot 2 223222 R AR eR R R 23R R RRRTEEERLRR-2 RRRIER SRR RS RN 22 B RRRRRER R
o
IMFLICIT REAL#*8(A-H,C-2)
DINMENSION A(1E,15,3).8(15, 15,3)
CINENSICN wW1(1E,15),w2(1551S)sw3(1541S)en8(15,15)
DINMENSICN GUEE JEE)  ME(EECLE ) JUWE(CE)
CINMENSION CH{3+43)sR(2,2)4FRI(2)4RA(2),C1(3)
CINENSION VC(E +6) . N
DINENSION AI(ZEYA2{ ZE) A3 (Z2+84) 4RA(2,4)
CIVENSION aAM(EB,8)
DINENSION S(SC)sCCIE0)+F(SC)IFI(ECIWR2(50),R3I(50)
INTEGER DIGITC1I0) /919,128 878,08 060 1E3, 070,080 ,0G2,01Q0y
INTEGER EC{4)/7%°(1F0*,* * 3 'Fl2e%+%S) %/
READ GGy Ko NN -~
REALC Q9G, MM, NF !
READ SS9, ICEA' IPUNCH
[ REAC CH(I+,J) AMD C1(I) IN CEGREES
READ20O0, ((CHEC T4Jd)sF{lsddeJ=13K) s 1=14K)
C READ R(COT4J)Y +RI(1I)4RA(I)RC IN THE SAME UNITS CF LENGTH
READ 221 +(RICIDSCI(ID)sRA(ID)oIqdaK)
READ 202.FR0O -
FF=24]1415GZ€S3EEGEDC/LIELU.DC
FRINT 10GeK MV o3 NMN MF
FRINT 101 .RC
FRINT 110
KKK=K
S IF{KeGTa10) KKK=10
EC(2)=DIGI T(KKK)
WRITE(6,EC)I((CHIT ) eJ=14KKK)eI=]1 sKKK) -
PRINT 111 )
hFITE(ﬁoEC)((R(IOJ’yJ T1eKKK ) oI=1 ¢ KKK)
PRINT 107
PREINT 108+ (I+FRI(I),FRAC(I)eCl1C1)sI=1,K)
C CEGREES TC RADIANS

301

*¥GCosWS s WOy IDEA) h

CC 391 I=1.K

C1{L)=C1(I)&FF .

CO 301 J=1,K ¥

Ch(T +J)=CH(I4J)*FF . -
CALL FACT(MN,NF,F) [ >

Ml=2&MPRK '

CALL FIXUF(NN-K.A.B.NIcﬂ?yh3oWQoFCowhgﬁltRZ'R3leOFAOCIOS|CC'F,
IF(IDEAJEC O IGOTC 477

CC 1 ICEA=1,K

KK=2%(K~1)

CALL FIXUF2(NN g NFsKs KK oMl ARALEN]L o M2sW3 WS CHoRIRI R 1 eR2sFK33S4,CCoF,

CALL VISCCU(WP.NN-K-JDEA.&I.S.CD-F-CF.RloRI.Al'AE.AJ-AQ.hE.A.E)
IX=IDEA+K

JX=0 !

Kk=2%xK

CC 2 J=1,KK

IF(JeEC.IDEA LR GIEQCLIXIGOTD 2
JX=JIX+1 |

VC(IDEA.J)=—A4(1'JX)
VC{IXeld)=~-AA (2, JX)

CCNT I NUE

—




Ry

' €00

477

82

81

., 85

€01

€26

- (N

Qo W

a0
['e]

103

b
o
(61
0000 O
MDD DM b»

BVEVIGVE Kl
QOO e

7%

100 -

VC(XDE\QICEA)=1.DO

VC(IX+IX)=1.CO

VC(IDEA, IX)=N.DN

VC(IX.IDEA)=0.D0 N .
CCANTINUE

KKK=KK

IF(KK «GT &« 10)KKK=KK/Z
EC(2)=DIGIT(KKK)

FRINT I1DE .
WRITE(ELECI((VCC I sd) o J=14KKK) oI=1,KkK)
IF{KKesLEeld0) GC TC €00

PRINT 108

KKK=KKK+1
RRITE(6,ECI((VC(TI,4J)ed= KKK.KK).I-!.KK)
CONTINLE
ICEA=0
KK=2% K
CALL FIXuU
kGaWS W6,y [
Ix=1
K2=K+2
CC 81 1I=1 VMl ,VMF
IX=1 X+1
CC 82 J=1 sKK
JX=J+1
IF(JeGTeK ) JIX=JIH+2
IF(IXeEQeK2)IX=TIX¢1
WELT +J)=2a0D0%kwS (1sJ)
J=(1-14MF ) /MF
WS(I4J)=160D02+wE(IsJ)
CCATINUE :
Ix=06
CC 85 1
IX=I X+1
CC 85 J=1.
ANM(IXed)
KKK=KK
IF(KK o GT o 1 0V KKK=KK/2

EC(2)=DIGI T(KKK)
FRINT 103 .
WEITE(E,EC) ((AMCI4J)3J

2(NN g NF oK KK gVl g A E oWl s MZ W3 e WA CHoRsRT14RTR2¢FR3¢S5+CCoF,
EA)

i

».

[=)

=1 s Nl MF

—wS(I.J)

=1sKKK) o=t 4KkK)

T

IF{(KKelLEs19) GC TC 0 2

PRINT 123

KKK=KK+1
RRITE(S6LVECI((AM( T 9J) o JTKKK KK ) oI=14KK)
CONTINUE

IFCIFUNCE «EQ4N) CGC TC
DC 5§29 I=1 KK

PUNCH 200 e (AN{1+J)sVC(IJ)eJd=14KK)
STCP

FCRMAT (21T 2) N .
FORMAT('0*//5X*RADILSE CF THE ENCLCSING CHANNEL RC=

€30

*eFl1CeS)

FCEMAT(*1
FCRMAT({*1

FCRVMAT (!
FCRMAT (¢
FORMAT (

¢

*//1(0Xe* THE ACDED NMASS NMATRIX:®)
)
1°//10X* TFE VISCOUS CCUPL ING NATRIX®)-

®* 45 .
F10 o7Xe"RET)I 210X 4*RC04TIV*4SXy*CHI0,1) IN CEG")
14.7)

t

Wy
- T

CYLINCER AY CENTRE OF ARRAY®.1

~

MV=? (2,

Nes e N
R 2% FETEY)

MNe X or
I>»

ING CHC(I,
CEFININCG

J)

EFIN
Ix R(I

IN DEGREES?)
oJ))

- AROTe XSOO
-
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SUBROUTINE FACT(NNM,VNE,F) ‘
o+
GENERATE FACTORIALS SUCH THAT F(J+1)=J FACTCRIAL

. . DOUBLE PRECISION F(1)
MTIT=2%xMP -

MT=MM+1
IF(MTToGT MT)INT=NMTT
F(1)=1.D) N
DC 37 1=2,MT .
IP=]-1
37 F{I)}=IP F(IP)
.~ - RETURN ]
ENDy
- SUPROUTINE GEN{CF+MeS,C) . .
c ° GENERATE C(I) AND S(1) SUCH THAT (I+1)=DCOS(I*CH)
IMPLICIT REAL*B(A~H,C-2Z )
ON C(1)sS(1)
3 Z /

=N

-2
>U>»ut

R Ko W Tl o T P
Aty o~

)
;).LT.]D‘I))C(I)z‘)oD’I
J) el T IN~1N)S(I)=,D0

o
|

Omit=NITNNO

1

END ,
SUBROUTINE CCNT(R14N,A)
- I C GENERATE A(I) SUCH THAT A(I+1)=Ri=yl
MELICIT REAL*8(A~-H,C-2)
MCNSION A(1) -
1)=21.D)
1=2M,

-1
=R1:A(IP)

SUBROUTINE’ TMULT (MsA«B4+C)
c MULTIPLIES TWC UFFER TRIANGULAFR MATRICESs A%B=C
- IMPLICIT REAL :8(A-H,0-2)
. DIVMENSION A(M 1) 4B(Ms1)4CUM,1) ,
DD 1 "M t

I

[
L2ttt (=

1
L]
2
2 “
4

v JIYFA(TLL)IBILLJ)

« . AN

MOt e e s

I0NHV0O0OND
ZMO~DN3~0
i u-uu

Stz

w,

BROUTINE TINV(NM.A+B) .
INVERTS AN UPPER DIAGONAL MATRIX

LICIT REAL*®B(A~-H,C-2Z) .
NSION A(M,1),B(M,y1) . : :
I=1,M

T o=t e
f
—
L J
rd

\
-\
e lolvirdviieNeRvie
ZZC LT

.
(]
o

T+

e

OA~NAINLOTV0OH~~a0 =z
rdalad N 3
4V VN=~ZIPI Wl
S e gl
1)~ o vg [
RN

WD

o~ e~

e G

oD

- e

i

o b

N

> >

-~ o~

ot

T

¢ o

—r

TV~

-

3
o
NOQO
Doee o

mx
zm
C4

C




RE TURN /

END

DO 1
bC 1

C(l,.,J

END

SUBRAUTINE CMULLT(My X,4A)
IX B8Y A CONSTANT

SULBROUTINE ADD(

ADDS Twuwd MAT
IMFLICIT REALTSB
DIMENSTION A(WM,]

(Y
1,J)48(1,J)

MULTIRLIES A NMAT

IMPLI

CIT REAL:8(A-A,0-2)

CIMENSION A(V,1)

ncC

IMPLICIT
DINMENSION X

‘4(_—1
Hwan
i
~*
pZT

Us=1-n.

CALL
cAaLL
CALL
catL
CALL
CALL
CALL

NMULT(Ms Xs A1)
DMULTIM, Y Esw2)
CMULTIM,LU.W2)
ADD (Che Wl o W24W1 )
DNULT(M.X.B.hZ)
DMULT(MyY 4 A,yX)
ADD (MsW2 ¢ X eW2)

RE TURN

END

SLRROUTINE REFL (W,
CCMPUTES (B AINV*~
COMPUTES ~-(2 -AINV
JNMFLICIT REAL=<R(A-

DINENSION A€Me1) ,R

L+

A
B
Hy
(M

U=-1,D)

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

TINV(V,A,Ww1)
TMULT(M-E.WI
TAULT (M,w2,
ADD(NM,Wl, A
TINV(M,A, W
DNULT(M,n2
DMULT (M,yw2
CHLL T (M, U

~— -
D v £¥
- = 1)

~

. -

*
[ ]
1

> o
N

~N~O~~O0ONn-~>T7

’
1
o
»
c
C
»
C
.
A

L ]
1
*

CMULT(

RE TURN

END

SUBROUTINE DIAG

IMPLI

DINENSION A(L.1

cc 1

(L,A,
CIT REALIB(A~H,
) JB(L

B Cy
A)IN
+A)I
r=-2)
.1).

A
C—
s 1) Wl (L o1y w2(L 1)

DFLOAT(M)

AKD X'E+Y A ANC STFQEG TFEM
1(Nol)o“c(Mtl)!A(Mol)cU(Ncl)

gf;1|W2)

V(B AINV «<C-C)
NVIC3ItATANVD+C) AND- STCKES

C(VDI)OD(~11)'W1(~11)'WZ(Nol)

l

ANDC STAaKES

AND Ww:
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N

_SUBRQUTINE VISCOU(M MM KL,ICEA,M] S,C R, Cl“o‘*loplv“IUWZ'WB'WQOWS'A'B
ey,
THIS SUBRCUTINF CALCULATES THE VvISCOUS COUPLINC CCEFFICIENTS
ON CYLINDFER ICEA
IMPLICIT REAL~A(A=-H,C-2)

DIMENSION W3(20’)0W4(2'1)QWS(Ml'l)oA(MM'MMoK)-8(~~9MMcK)
DINENSION R(Ks1)yCH(Ks1)
DIVMENSION S(U1)eCl1)sRI(I)sRICTID)oM1(1)ow2(1) = N

N2z2=xMT(K~=1)

IZ=M"(K~-1)
M3=M4+2
IF(MMGT, N3)N3 MN I

JX=9

DC 1 J=1,K

IF(JoEC.ItEA)GOTC 1

JX=JxX+1

RA=R(IDEAVJ)Y/RI(J) . ~

Ré=14D /R4 :

CALL CCONT(R& ,MM,R1) - .

CALL GEN{(CH(ICEAWJ) N3 ,5,+,C) )

DC 2 N=1 MM

Ni=N~1 . o e,
S=(~1eDJ)%* N1*F1(N)2CELCAT(N) R . .

wW1(N)=RS5%C(N)

W2 (N)=R5 YS(N) A

CALL CCNT{(R6M3,R1)

DO 3 L=1,4¥

II=(JX—-1) M+L

Niz=L+2 - .
1P=]1+12
RA=N4DD
RES=t gD
R6E=eD
R7=A4D 1 '
DC 4 N=1 MM B
R2=A(N.L+J) -
F2=B(N,L ¢ J) }
RAa=R4+ A1 (N) tR2
FE=RS+w1l (N) 'R2 e —
ReE=Rc+w2 (N) - R2
P7=R7+W2(N)"*3 °
RB=(=1,D)Y) "tL"RP1(N1)=CFLOATI(L)
RG=R8<C({N1) v
R1'=R]"SEN1)
W3(1.11)=RAa+K4~-R7?
"3(1.IP) =F1« +KS+Fk6 .
W2(24.11)=Kl 1=-RS=-RA
W3(2,1F)=Ra-R7-R9
CCNANTINUE ,
K1=2%(K-1) '
DC 5 1=x1,2
DO S J=1,K1’
WA (1sd)=DeD)
C S L=1.M2 -
WA (T4 J)=WA(T 4 ) +WI3CT JL)IYWS (L ,yJ)
F TURN ,
END
SU?ROUTINE FIXUP(MMeKsAiB oWl s W2eM 23 Wa,RkOaVNRL14FcsF3LRIJRALWCLyE4CC
x o F .
IMPLICIT REAL#B(A-H,C-2)
DIMENSION A{MM MM, K ) B{VMMs MM K )y W](M ‘ e N2( MM, wW3(MM, 1) R ( 1)
CIMENSION RA{I)«C1TU1),5¢ ) CC(1)sFIl1 ( Yo R ,( F2(1)ewd(MM,1)
U==1.0"
Ny =MM4 2 /
DC 31 L=1,K
DO 31 I=1.+MM »
DC 31 J=1,MM
Al JdelslL) =2HD" -
EGJdeIoeL)=3400
CALL CCNT(RO,VMV,R1) .
DN 1 J=1,K \ ,

IF(J.EQeMN)GLTO 5 \

DC 34 N=1,MM

DG 34 N=1,MM . ;
W3(MyN)=1,D "

WA (MiN)=T0D)
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CALL GEN(C1(J)MM,S5,CO)

CALL CCNT(RI(J)YsVMV,R2)

CALL CCONT(RA(UJ)+MM,K3)

DC 2 M=] MM - t

Ra=R1 (M) /F (M) °

N4=NM41 - °

NE=V+2

RE6=F (N4)/R1(NS) .

DC 3 N=M,MM ’

N1=N-=-M

NZ2=N-M+] : —
N3I=N+1} . =
RE=L "Nl tF(NI3). PI(N2) RA/R2(N)/F(NZ)

A(MIN, J)=RSrCC(N2)

B(My N J)=RE15(N2)

DC 4 N=1,M7

N1=M=N+1

N3=N+2 »
RE=RE6*KI(NL)~FR2(N3)Y/F(N)Y/F(N1)
W3(MN)=U=RS-CO(N1)

wWe(MyN)=RS "S(N1)
CCNTINUE

CALL REPL(MMA(1413J)sP(1s1sJd)eW2Ran4,,nlsWw2Y)
GCTM 1
FE=(RI{MN)/RC) -- 2
RE=RE.

NC 7 M=1,MM /
A(MyNM, VN )=RE
RE=RE " RS

CCANTINUE

RETUFN °

END | .
SUBRQOUTINE FIXUPZ(NN,NF.K.KK.NI.A.E.WI;W?.fB,WQ.CF.D.RI.RI.R?.RB.S

o

T eCOWF e Gy WELWE, IDEA)

IMPLICIT PFAL 1R{A-Hs(~2)

DIMENSINN A(NN;MM'K)oE(MM'~~|K)‘W1(MMvl)oWZ(Mle)'W3(MM|1,
DIMENSION W4 (MM 1) e Ch{Ks1) s F(Kel)eGIMIgl) swS(NMIy1)we(l)
DINMENSION RI(1)4S(1)sCC1)sF{1)eR1(1)4R2(1)4KI(I™)

U==14D" A

NE=2 MP+] -
IF(NSeLTeMNM)NS=MN

MW=MM 4+ 2

MC=ND™ K

IF(IDEASNES " )MQ=NF i (K=1)

IX=40 - - - {
DC 2@ I=1,K @ - '
IF(I>EG> IDEA)GOTC 9

IX=IX+1 )

CALL CCNT(RIC(I)yMM,R1)
JX=2 /

CC 1™ JU=1,K

IF(JsECLICFAIGOTN 1

JX=JX+1 o

"IF(IeEGeJ)COTC 11 - -
CALL CCNTU(RI(J)sMWeFK2)

CALL CCNT(R(I,J)sNMS,R3) '

CC 376 N=1,MM

DC 36 M=1,MM

W2A(NMeNI=TI D

WG (M N)Y=) DD ~ 7
CALL GEN(CH(I+J)sNS,5,C0O)

DC 12 M=1,MM

R4=RI(N)/F(M)

DO 13 N=M,MM )

(1=N=M A )

2=N=M+1 ‘ ~ . /
N3=N+1 (3
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i
RS=U N1 4F(N32)R3( NZ)‘RA/RZ(N)/F(RE)
W3(MGN)=RE~CC(N2) ~
WaA(M,N)=RERS(N2) ’
CCNT,INUE ?
CALL FIPLIMM w3 MAa W1 ew24A(1,314J)B(1s160))
DO 148 M=z=]1,MP .
1I=(IX=1)" MF+M
IP=11+MQ
RA4a=P1 (M) /F (M)
DO 18 N=1,MF ] ) N
JI=(JIX=1 ) tME+N
JE=JJ+MN
NlIz=AN+M+1 w ,
N2=N+2 , !
A3=N+M
RS =U* » N2

f

[l 777"‘1’1
— et T

by
J
+
n
by

5 &

nmnon
N
+
n
)

1]

M= n « -~
[t

TI=(JX=1) ME+V
IP=1T1+MQ

DQ 768 N=1,MP
JJI=(JIX=1) MF&N
JF=JJ4+MQ '

L4

)
2]
n

*
—
—
K9

LR

nunnzZ
mn
T

TCNH~~

M wr v o
[V

CCNTINUE . ' .
TC SOLVE THE ECUATICNS -

IF(IDEAINE ¢ " IMT=2 MF . (K-1) )
IC="

DC 65 J=1,4KK

DD 65-1=14+MT o - i
WS5(14J)=1.0D0 — jp—
I1=(J-1) "ME+1Y -

WE(ITsJy)=1.D1

CALL L=CT1F(G-KKoNTgNl'W5'ID;WG.IER)

PEFTURN

ENDr o,




:AEEENDIX C: COMPUTATION OF THE EIGENFREQUENCIES

9

The frequencies w of the system arelébtained by solving the

eigenvalue problem defined in equation (3.20):

/ (io IT-¥) A=0
The eigenvalues iw satisfy the equation

"det(in I - ¥) =0 -

A computer program 'SOLINTER' has/bee; written to generate
the matrix Y for-cases of piﬁned-pinnéd and E]aﬁped-c]amped cylinders.
A library subroutine (EISPACK) was used to obtain the eigenvalues iw

.of Y. The computer listings and input datﬁ cards are listed on the
following pages. The program requirgs as input”data the‘added méss and
viscous coupling matrices as punched out by the program 'COUPLAGE'.

The computer program prints out the input information, the
“dimensioniesg flow velocities and the corresponding 4*K*N eigenvalues
for each case. These are printed in columns of thirty, and if there
are more than ninety‘eigenvaiues to be printed, they will be printed

- on two pages.“ h

) As underlined a{evious]y, the printed eigenvalues are the
frequencies w of the system multiplied by i. The eigenvalues are
printed in groups of two columns side by side,the left column beiné

the negative of the imaginary part of w, and the column on the right

the real part of w.

4
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THE COMPUTER PROGRAM 'SOLINTER'

LY

DATA CARDS

Card

Fortran

- 107 -

Designation , N

‘Number Symbol Name 3 Format
) 1 A ,k: K'J number of cylinders I2
) 2 N N number of comparison functions "
3 &QJ number of velocity §ets "
4- IBOUND 0 for pinned-pinned, 1 for "

| clamped-clamped ‘

5 o ALPHA cylinder damping cgefficient F15:6

6 Be ‘bgTA external fluid density "/
7 ) E“ﬂi BETAI internal fluid density "
8 Yo GAMMAE . ' \ “
9 \f) GAMMAI defined in equation (3.5) .
: 10 Y GAMMAM ' L
n r GAMMAT uniform tension "
g 12 3 DEL 0.‘if-en& free to move, ‘ "
1. otherwise

13 € EPS length/diameter of a cylinder "
) 14 Te fIE external pressuré "
15 L PIL- internal pressure "
16 c CL pressure-drag coefficient "
17 v PR Poisson ratio - /"
S 18 e CF friction coefficient L
19 Cee CFE / "
. 20 Cfi CFI defined in equation (2.19) w
-2 c ' CFX ’ o
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DATA CARDS (continued) , S o

Card | " Fortran . ; / -
Numbeyr Symbo1l Name Designation ) g Format
22 - R "R radius of a cylinder F15.6 .
23 Ro RO radius of the enclosing "
channel
24 ? HL AM(1,J) added mass and viscous coupling
matrices as punched out by
t Cy Ve(1,9) 'COUPLAGE' (one element of 2F10.5 ,
, each on each card, By columns). c
k2423 -
) .
ak2+24 U Uy UL,ULI 1st set of external and 2F10.5
- = internal flow velocities '
n . it e "
v _ )
2,5 n n last set of-external and " ~
HEr2IHNY ' internal flow velocities

~
o

/

A1l these quantities are dimensiontess, except the radii expressed in
‘\
millimetres.
s

)

H
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* *

®* SCLINTEFR ® . . =
. . ‘

TEITTITEEYY 2 N

ta A AL RIS R R IR SRS RIS R ERR R LA R R RIS SRR R
THIS PROGRAM *SCLINTER® COMPUTYES TFE EIGENFREQUENCIES FQOR SETS CF
INTERNAL ANC EXTERANAL FLCW VELCCITIES.

K IS THE NUMBER OF CYLIANCERS.

N IS THE NUVMBER CF COMFARISONMN FUNCTICNS USED.

LL AND ULTI ARE THE EXTERNMAL AND INTERNAL FLCW VELCCITIES.

AV IS THE NUMBER CF VELCCITY SETS, N

THE NATR[CEc MLST EBE CIMVMENSIONNED AS FCLLOWS:

DINENSION AM(KK.KK).VC(KK KK ). AMI(KK.KK)'C(KK.KK)-EI(kKoKK)oG(KKcKK)
DINENSTION HOKK sKK) s WKI{KK ) s WRZEKKAN ) JWI(2NKRAN )y YO ZHKK SN ¢ 2RKKAEN )
CIMENSICN SIS(KK yKK) +SIT(KKKK)

t"t*#**#*tt###*#*‘*ﬁttt$#¢1‘$4‘$$‘1##@##***‘&‘5‘#i¢¢$*¢#¢¢$¢‘119‘0%

INFLICIT REALXB(A-H,C~2)
DIMENSION AM{64€) +VC(6, 6) AM
IMENSION uK(é)-SIS(é 6) T
CVNMCN TBOUNC .
INTEGER DIGIT(IO) /%1° 420,820,149 ,050 ,0E0 970,080,053, 0100y
INTEGER EC(4)/7°(1+0",* 1, 'F12e%,%5S)/
FEAD IN NUMEBER CF CYLINCERS ANC NUVMEBER CF CCFPARISCHN FUNCTICNS LSEC
READ 100,K¢N . B
KK=2*K - - 2/
KS=2% KK%N . é o
REAC IN NUMBER CF VELCCITY SETS . _ ~
READ 10D .ANV
READ IN BOUNDARY ENE CCNCITICNS (0 FCR P-P,1 FCR C- <)
READ 100, IB80UND . .
REAC IN SYSTEM FARANETERS
READ 101, ALPHA, BETA,EETAI'GANNAE.CAMNAI.GANNAN:GIN&AT-CEL'EPS'
*PIE'pII'CLQPFOCFOCFE!CF[QCFx’RyRC
REAC ACDED MASS MATRIX ANC MATRIX CF VISCOUS COUFLING v
RE AD 1020((AN(IOJ)‘VC(ItJ)oJ 1eKK)oI=1sKK)
PRINT 200+sK N
PRINT 2014,R RO
PRINT 202 '
PRINT 203.BETA+GANMAE,FIE
PRINY 264
PRINT ZOS.BETAI.GANNAI.PII , -
PRINT 2N6,ALFFAs CAMNAT (PR
PRINT 207'CELcEPS.CL-CF;CFE.CFloCFX
HL=2 e DOI*XR/ ( (ROXX2-K*R¥%2)%2 ,CO/(RC+K%R))
FRINT 208,HL S o .
IF (IBCUND<EQef) FRINT 98
IF (IBCUNDLECel) FRINY 99
GAVNNA=GANNAM-~ GANNFE
PRINT 289
PRINT 224 o ..
EC(2)=DIGIT(KK) ’
tRITE(é-EC)((AM(I.J)oJ 1+4KK) o I=1,kK)
PRINT 225
WRITE (E4ECY((VC(I eJ)ed= 1 KK} l= l'KK’
D0 10 I=1,KK

€) s (EHEY

E1(6, )o
2) 2)

) s
2)YemR(7?

AO

DC 10 Jd=1,KK
SIS(I e J)=AM(TI,J) )
SIT(YIeJ4)=VC(1,J)



B

. DO 20 INR=1,NV
. € _ 'READ EXTERNAL AND INTERNAL VELCCITIES
. . READ 102,UL,ULT | , ,

FRINT 229,UL1,UL
CALL SCLN(KKqKSoAN.V(vﬂNlOCQEIQGOPQWKvVRoWIlePLFPA.BETArEET‘Io -

IGAMMA.GANNAI.GAMNAT.FXE.PXI-EPS-thCL.UL.ULI.CF CFE+CFI +CFXsDEL,
H#PR) N
CC 9 LIP=1,KK . -
CC 9 LID=1.KK ' -
AVM{LIPSL ID)=SIS(LIP.LIC) .
9 VC(LIP,L ID)=SIT(LIP,LIC) , .
Kl1=KS/2 N 3 .
KR 30 h i
IF(KSJ.LE «30)K1=KS§ P *
DO 17.J=1,KR v
- 17 PRINT 221 +(wRCI)sWI(1)sI=UdsK1,KR)
FF(KS,LE.90)GCTC 16 .
W FPRINT 299 -
' K1=KS/2+1 .
K2=K1+29 '
DO 18 JU=K1.K2
18 PRUNT 221 +(WR{I)sWI(I),sI=J+KS,30) ¢
16 C TINUE

20 CTANTI'NUE ,
SYCP \
98 ‘FCRMAT(////+% BPINNEC-PINNELC CYLINCERS®/2a(v%e)) °
89 FCRMAT(////s* CLAMPEC-CLAMFEC CYLINDERS*/26(%%*))
100 FCRMAT(I2) . -
101 FCRMAT(F1546) ‘
102 FORMAT(2F10.5) . ¢
% 200 FCRMAT(* ITHFERE ARE*, I3,% CYLINDERS, AND THE NUMBER CF CONPARISCN F
*UNCTIONS USEC WASY,13)
201 FGRMAT(70 THE RACIUS ‘CF EACH CYLINCER ISYyF6ales' MILLIMNETRESS®

17/7/7% THE RACIUS CF THE SURROUNGING CHANNEL IS*,F€el.,
i NILLIMETRESTY)
202 FORMAY(/ /%0t ,*DINENSICNLESS EXTERNAL FLOW CUANTITIES:'/4a1('&1))
2n 3 FCRMAT(/*0% ,*FLUIC CENSITY EFETAE* ,F]0eS/' GAMMAE=%,F10e5/
% EXTERNAL PRESSULRE=? ,F10.5) .
204 FCRMAT(//7%0* ,*DINMENS ICALESS - INTERNAL FLOW GUANTITIESI%,41(*%*}))
208 FORMAT (/%00 ' FLUIC CEASITY BETALI=9,F10.5/ ot
okt GAMMAI=',F10.5/ '
o k¢ JATERNAL FRESSURE=*,F1De%)
296 FECRMAT(////77' INTERNAL DAMFING ALFFA=*,F10,.,5/
%% DIMENSIONLESS LhIFCRN TENSICN="? ,F10.5/
%* FCISSON RATIC=',F1045) °
207 FORMAT(//\ov.'DELTA--.Flo €,
: *XFLINeSe/? CF='QF1005v8x tCFE=
*5)
208 FCRMAT(?0* 9D /DF=9,F10.5) ) o
221 FCRMAT('0? 4SX42F16e¢G+3S5X,2F 16 45+5X 312F1649)
224 FORMATY(*D T+E ALCDELC WMASS MATRIX®) -
225 FORMAT(///+40 THE MATRIX OF THE VISCCUS COUPLING®) ~
229 FORMAT(*1 " o/ 4sT10 U INT=0, F9050T301.U.EXT“’Fg.ﬁ{,Tlo'Es(l*t,/)
. , 299 FORMAT("1.¢) X . i}
‘ END

EXs 'L /C=*,F10,5
. 1

EX v CE GFCU
+F10 ¢S4EX s *CF 'o

»
=
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SUBROUTINE SCLN(KKQKSQ‘VOVCQAM[‘C'E!G!H.WK.NR.“I‘YQALPHAoEET‘|EE1
lAloG‘MNAoGAM”‘qu‘M"ﬁT'FIEQPIIOEPS HLUCLsULWULI o CFCFE»CFI+CFX,
*0EL,PR) \

IMPLICIT REAL¥8(A-H,C-2)

DINENSION AMI(KK,.1 )eVCI(KKS,

CIMENSION H{KKel)sWK(]1 )W

CCMVYON TBOUNC

UN==1D0

PIz=3,141692653589¢€DC .
° N=KS/2/KK <

wR(1)=4,730040C .

WR(2)=7.,85320D0
10S9SSECHD — -
4.1272z00 ,

Te278ED0
e9825322C0 . ° 4
«INNTT730Q0
9699 ELSLO

KKoel)sE(KKy1)eG(KKs 1)

1) ANI(KKs 1 )4CH{ »
R{1)+MI(1)aY(KSH1?

)
)
)
)
)
)
)
)

COXI+1.CO)%FI/2.D0

TRICES CoeEeColFoAND M
TETA=(CFEAUL AX24CF IGLL IR 24CFX®ULBLLTI)/2
X1= 2.00*%UL%XCSCGRT(BETA) ,
X2=UlL &*%n? -
X3=0, SDAREPSHCFRLL&H 2 '
Xd«O.SDO*EPS#DSORT(EETA)*(CF*UL+CL! \
XE=BETA '
X6= UN&(DELt(CAMNAT+(P!F PITIR(1.CC-2+D08PRII+TETES(]1.,CO-DEL)+(0,%

XDOXEPSRCFAUL # %2k (1o CO+HL ) #+ (AMMA+GAMMAL)B( 16 CO0-CEL/Z4DO)~LLI%%2)
X7=GANNA+GANNAT+0SCOVEFSUuCFRFLBLLYNS2
X8=2,DNRULICCSQRT(BETAI)

CC 1 I=1.,KK . .

et T3 ()t >t gt ot 4 00 D
TY o~ L Rt R W WP
Pram ONSLIN =~ a0
mﬂllﬁlluullﬂnllh

st mn f Y7 e 2D b ps
e Qe oo

78208 SEYSESsTYS

.
.
DO
A

)
m
A

€0 2 J=1,KK
C{IJI=X1%AM(T,0)} !
EllesJ)=X2%AM(1,J) -
C{I+J)=X32VC(I1.J)}
HOI,J)Y=X4%VC(1,J)
AMI(l 4 J)=XxSxAN(],4)
EC(I I)=E(1.1)+XE
G{I,+1)=G{(1,1)+x7
ClIZI)=C(I+1)+X8 \
AMI(I,I)=ANM1(1,1)41.CO0-BETA

INVERT M hd
CALL LINVIF(AM]I KKoKKoeAN 4 ¢nK(IER)

FORN PRCDUCTYS M INVERSE®Cy, M INVERSE#E» M INVERSE®*Fs M INVERSE®G
CALL DMULT(KK AN ,CyANL) \
CALL DNULT(KK s AMoE 4 VC(C) ' /
CALL DNULT(KK ¢ AN HLC)

CALL DNULT(KKeAN,GHE) '

FINC DIAGONAL ELEMENT QOF F
F=0.500%EFSACFRULRR23( 1 ,DO4HL ) $GANNMA+ GAMMAL

INITIALIZE Y -

L0 3 I=1,KS
DC 3 J=1,KS
Y{(I1.J)=0,000
KA=KKEN

e -~z
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C GENERATE Y o .
DC 4 I=14N -
CC S :3=1,.N o
IF{ TECUNCeEQe0) GC TC 26 ‘
C PARAMETERS FOR CLANPEC-CLAMFEC CYL INCERS B
X3=WR(1)#%4
XE=ALPHA® X3 _ )
IF (1+EQeJ) GC TC 24 ’
AB=4 ,D0% (WR(J)*NE(I) ) ®%2/(WR(JIX#A-WR(T)%%2) _
AC=WR(J)SWI(J)=wR(I)SWI(]) ' ~

AA= AB*((—I.DG)‘*(H'J,-I-DO)
BE=ABRX((—1o00)%k{[+J)+1,00 )®AC
DO=ABRACR (—1,00 )% 14 J)~(3DOSWR(II*XA+WR(IIBFL)IVPA/(WR{J)FINA-0R (]
¥ )kka4 ) .
GC YO 25 ‘
24 AA=0.00D0

EB=WR(I)*WI(IFe(24D0-wR(I)#WI(I)) .
DC=BB/2.D0
GC TO 28 R

26 CCATINUE .
C FARANETERS FOR FINNED=-FINNEC CYLINCERS .
x3=(PItl)**A ,

= ALPFAXX3

IF(I.EQ.J) GC YO 27 . o
AA=2 DOk [X gk (T—~1oCO)RA ([+J)=1eC0 )/ (JAh2—T1%%2) ®
BB=0.,00
CC=4 ONKI* JHB30( 14D0-(~14COIRN(I+J))/((ISK2~-TRS2)0892) )
GCTO 25 )

<27 AA=0.0DN
BE=UN¥(PI®I)442
CC=8B/2,C0

28 CONTINLE : .
X4=FXxDD+X3 \
DC 9 I11=14KK .
IF=(I-1)%AKK+]] ~, ~
1X= 1 P+KN L
D0 1N JJU=1,.KK
JF=(I1=-1)aKK+JJ

JX=JP+KN N h
Y{IP+JJP)=UNS (AAXAMI( I L » JU)4XERAM(TI I UJ)+C(!] JIN . ’
Y{IP s UX)I=UNR(XARAMTII, JI)+VC{IT, JUIXBBIEC(IIsJJ)%AA)

10 CCNTINUE
Y(IXeIP)=1 D¢
9 CONT INUE
GCTC 5 -
25  X4=FADD
DC 6 I1=1,KK
IP=(I-1)aKK+]]
IX=1P+KN
T DC 7 JJ=1 KK
JE={ J=-1) kKK +JJ !
JX=JP+KN /
Y(IP o JF)=UNKANIC T I,JJ) $AA
YOIP o JX)ZUNR(ERBRVC(ITos JUI+XQIAM{ I T s JUI+AARE(ILI o Jy))
CCNT INUE . «
CCANTINLE
CONT INLE
CONT INUE
c FIND EIGENVALUES CF ¥ ’ )
CALL EISPAC(KSsKS¢MATREIX('REAL'+Y),VALUES(WRsWwI))
RETURN ‘ ;
END
SUBROUTINE DNULT(M,A,B<C)
c MULTIPLIES MATRICES ¢ ARE=C
IMPLICIT REAL®8({A—-H,C—2)
DINENSION A(Ne1)eB(NM,1)+C(VM,y1)
DC 1 I=1,¥

SLNONN

o JIHACTI LL)ISELIL W J)

//GOEISPACLE LD OPSAN=CFLBWSUEL IB.DISP=StKR
//GCeSYSIN CD \




APPENDIX D:  THE STABILITY -DOMAIN

Once the eigenfrequencies iw of the system are available,

it 1{s theoretically possible to delimit the zones of stability, i.e.

where Re(iw) < 0, with respect to the internal and external flow velocities,

But, as it has been observed for pinned-pinned or clamped-clamped end
conditions that the first instability to occur is a]Q;ys buckling, it is
sufficient to determine the onset of this first buckling. It corresponds

to the critical set of internal and external flow.velocities (ui’ue)crit

at which the eigenfrequency iw is annulled for the first time,when
one of the two flow velocities is increased.
Then, replacing the condition iw = 0 in egn. (3.15) of

Chapter 3, '

MPp+Ccp+tkp=20 ,

- ~

it leads, for a non trivial solution p, to ‘

det X =0 , (D.1)

;
where x is defined in eqn. [3.16] and depends on the internal and

external flow veloc1t17 Then the problem simply reduces, for a
given internal velocity, to finding the lowest external velocity which
makes the determinant of ¥ to vanish. The computer program 'BUCKLING'
described in the following pages carries out these operations and

allows to delimit the domain of stability.

~

-
|
|
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l
THE COMPUTER PROGRAM 'BUCKLING' -

For an assigned initial internal velocity u%, the program

computes the critical external ve]ocity‘ué at which the first buckling
. occurs, i.e. when det[g(ue)] vanishes. This routine ‘is reiterated

with a higher internal velocity u§+]

s, T111 the ve]dEity u? where the
system buckles without external flow (u2=0). With the help of these

n plots, the curve of the buckling onset may then be drawn.

a

\

UNST ABLE

STABLE

The numerical method used to solve eqn. (D.1) is the
classical secant method applied to the value of the determinant or
. ) !

to its first derivative with respect to Ug- The reason of this

latter alternative is that’ the order of magnitude of the determinant

may be very high (>10]00)

even for values of u, extremely close to
the root,which may therefore be missed in the step-by-step method
used here. Hence, if such a difficulty is encountered, the program ‘

searches for the minimum of the determinant which almost coincides

.

4
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with its root. The program itself selects the appropriate method
and, in 6ur trials never failed in its computations.

" The program starts at-a given value of the internal
velocity u} and settles each time the correct increment u§+] - ot

in order to satisfy

- IR A2 TN B
e Ye| § "max
where Qnax is a given constant. In this way, the curve ue(ui) may:
be drawn with a selected accuracy. )
%




DATA CARDS FOR 'BUCKLING'

Card Fortran

Symbo1

out by 'COUPLAGE'.

Number Name Designation Format

1 k k number of cylinders . 12
2 N, N number of comparison functions "
' 3, IBOUND 0 for pinned-pinned, "

1 for clamped-clamped

4 ul ULI initial internal flow velocity F15.6
5 uL1 lower estimated bound for u; "
6 uL2 upper estimated bound for ug "
/ 7 XINI upper bound of ‘the internal "
r, - velocity step size
8 D DMAX maximum allowed value for .
- max . o+l
[ug-ug" |
9 INDY maximum number of computed I2
\ " roots (INDY > n)
10 o ALPHA ( -
M ‘ system parameters (same as in  F10.5
B ‘SOLINTER')/
28 R RO ‘

/° \

29 Mv AMEI, ) .

added mass and viscous J
+ T C ve(1,d) coupling matrices as punched 2F10.5 "
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C
C
C -
C
C

tt:tttt#tt.t
t BUCKL ING t
¢t*¢ttt¢*¢¢:
EREEAAE VLRSS IRAR LA EBEEIEARERIBRE KRN ERAIEI RIS SR AR LR AS DRSSV INRH S

THIS PROGRAN CCNFUTES THE EXTERNAL VELCCITIES AT WHIICH ThE FIRST
BUCKL ING OCCURS +FOR INCREASING INTERMNAL VELOCITIES
K IS THE NUNMBER CF CYL INCERS
N IS THE NUMBER CF CCMFARISON FUNCTICNS USED
« ULY IS THE FIRST INTERNAL VELCCITY
UL1 AND UL2 ARE THE 2 EXTERNAL VELOCITIES BETHEEN WITCH TFHE FIRST
RCOT IS SEARCHEL (ULl < uUL2)
XINI IS THE FIRST INTEGRNAL VELCCITY STEP SIZE .
DMAX IS THE MAXIMUM INTERVAL EETWEEN £ FOLLOWING ROCTS
INDYL IS THE MAXINUM NUNEER OF CCWMPLTED RCOTS
THE SYSTEM PARAMETERS ARE THE SANME AS IN *SOLINTER®

DINMERSION AM(2K 3s2K) ¢ VC (2K ¢ 2K ) sE(EK+ ZK) s CL2K 42K ) s MRIN ) sW ]I (N)
DINENSION SK(ZKhOth)DSKl‘thith)‘SKZ(2Kh'2Kﬁ,[wK(ZKN)

*‘*"****t***‘*‘3‘****"‘*“‘*‘*"“‘*.'.‘****‘*‘*“‘*"**ﬂ***‘********
IMFPLICIT REAL*8{(A~H.0-2)
DINMENSION ANM{(C2E) s VC(ESE)SE(GCYE) s C(ELE)WR(10)aWI(10)
DINMENSION SK(36,36) ¢SKI(36+36)sSK2(36+36)euK(36)
COMMON ALFHRALEBETALEETAI GAMNAGAMNAL , GAMMAT sDEL +EFSoHL,
tPIE'PXI.RD-CL.PR.CF.CFE‘CFI'CFX.R.lEBUND -
INTEGER DIGIT(10) /79 1% 432°% 4830 ,330,050 060,071,080 ,8gs 8108/
INTEGER EC(4)/*(1F0%,? B atFl12e%4%E) 2y
READ 100Q.KN
C READ IN BCUNLCARY END CCANDITIONS (0 FCF P-P,1 FOR C-C)
READ 100, IBCUND
READ 101,ULTI.LLLUL2
READ 101+ XINIDMAX
'READ 100, INDYI
C READ IN SYSTEM PARAMETERS . .
READ IOIﬂALPHA.EETA.EET‘IQGAMF‘E.GANMAItGAMMﬂNQGA”PAToDﬁL'EPSo

-

OOONONOOAONNANNAONOON

BPIE +PIL s CL+PRWCFWCFEVWCFIZCFX4Re RO
HL=2 e DO R/((RCAR2-KAR¥4Z )%24CO0/(RCEIKEK) )
PRINT 200+KsN i
PRINT 201 +KeRC
PRINT 202
PRINT 203+BETA.GAVMNAEFIE
PRINT 204 N
PRINT 205-BETﬁlyGAPNAloFII .
PRINT 206+ ALPFA GAMMAT ,FR- °
“PRINT 207tDEL:EPScCLvCFQCFE'CFIQCFX
PRINT 208,HL
PRINT 209 ,ULJI LLL1,UL2
PRINT 210 +.XINI.DMAX, INCYI
IF (IBCGUNDEQ.QO) PRINT g8 ”
IF(IBCUND sECeal) PRINT 9§
GANNA=GAMMAM=~-GAMMAE
KK=2%K
KKA=KK®N
PRINT 289 ’
C REALC ADDED MASS MATRIX ANLC MATRIX OF VISCOUS COUPLING _
READ 102, ((AM{I4J)eVC I sJ)eJd=1eKK)sl=1,KK}
EC(2)=DIGIT(KK) \e
PRINT 224
WRITE(GWECII(AM(IcJ) s J=1,KK)oI=1,KK)
PRINT 225
WRITE(G+EC) ((VC(T9J) s J=1sKK)eI=1sKK)
PRINTY .300 ‘
DC 8 l[ L+ INDYI - . ~ |
Lo} ACJUSY STEP SIZE FCR ULEXT J
STEP=140D0/75/K . |
11 STEP=STEP/2 R
GLI=(UL2-UL1)/STEP {
IF(GLIeLTe106CL0)GC TO 11 |
- IF(GLI&GT&100) GO YO 7 ° |
14 uL=utL1 |
INDEX=0 : 1
|
|
|
|
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16

17
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CCMPUTE DETERMINANT OF STIFFNESS MATRIX
A=14D0 -
CALL BUCK(ULsULIoSKe AN VCeEsGoKKeKKNsNoWR W)
CALL LINV3F(SKeWReAsKKN KKNsAsBoWKo, IER) ”
IF(AeGTe0eDO) GC TC 1

(I1.GTel) GC 10 16

L1I-1.00
1eLTe0eDO) GC TC & - — '
14
XINI/Z2 ~ )
INI oL EeDeOSEO) GC TC 33
ULI=ULI-XINI
GC TC 14
ULL=UL+STEF
AA=1¢D0 ’
CCMFUTE DETERMNINANT AT NEXT STEP ~ﬂ T
INDEX=INDE X+1 L/
CALL BUCK(LLL'UL!.SK’A“'VC‘E.G'KK.KﬂN sWRewl)
! CALL ULINVIF(SKsWR 4 KKAKKNsAABB,WK, IER)
i IF(AALLTeQeDO) GC TO .2
R IC=A/AAR2,.,00%%(B-EE)
I
N
\

norcc
r
-

2
1
(
)
(

XAl

T

( INDEXeGTel )JGC TC 17
(RATICeLTelaCO) GO TC 15
INT SO1elLI ULLI UL2
(RATIC.L.TeleCQ) GO TC 3
ANT 400 +ULL s AA,EB

I H BTN TN

e
1
P
A
B=88

Ut=uLL

IF(UL.GE.UL2), GC TC 5

GO TO0 1 B
SECANT METHCD TO FIND RCCT QF DETERN[BANT(CASE WHERE 1T BECCMESKO0)

GLU=AAR2,D0%s (BR2-R) - 0 ®

UL3=(ULRXGLU-ULL*A)/Z7(GLL=-A)

IF(INDEXeEQel) PRINT SOl.ULILL1,ULZ

PRINT 400 LLL+AA,ER

GOC YO0 32
SECANT METHOC ON DERIVATIVE F DETERNINANT TQ FINC ITS NIN‘“UM
CASE WHERE THE DETERMINANT R AINS ALWAYS NEGATIVE) .

Ut 1=UL

uL2=ULL =

PRINT 298 . !

Al=1.00

AAl=1e90 '

J=Q

STEP=(LL2~UL1)/7100 ’ -

CALL BUCKIULLY sULI ¢SK1 AN VC4EsGoKK ¢KKNeN WReWI)

CALL LIRV3F(SK1o.RlQoKKthKhQAl.BlclK‘IER’

ULLI=ULL1+STYEP N
“CALL BUCK(ULLL +sULT sSK13AMVCsEsGeKKsKKNeNenWRoeW])

CALL LIAV3F{(SK]l sWR 4 KKNyKKNJAALl,EEl , WK+ IER)
DERlz(AAl‘Al+Al#DLCG(Q.CO)*(EEé-
.

E
B81))I/STEP
CALL BUCKIUL2+ULLI+SK2+AN,VCE s KK oKKNs NsWReWI )
A2=1.D0
AA2=140D0

CALL LINV3F({SK2+WR, 4ﬁKKh|KKhv‘2!B¢.|KQIER)

ULL2=UL2+STEP

CALL BUCK(ULLZ.ULIOSKZQﬁMQVCcEQGvKKtKKN.N.UR'NI’

CALL LINV3F(SK2+WR 4 +KKNeKKNe AA2, BE2,WK s IER)
DER2=(AA2—-A2+A2%CLCG(2+CO)* (BEZ-BZ))/STEP
GLC=DER2%2,00%8(B2-B1)

UL3=(ULI*GLC~UL2%DER1 )/ (GLC~DER1)

J=Jd+l

JJ=8 o

PRINT 500.J4eLL1 ,UL2,UL3 . .
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ABS(UL3-UL2)elTe1le0-02) GO-TO 22
«EQeJdJ) GC TA 32
C=DER2/DER1#2.CO**{(E2-B1)
CABS(RATIO) «GTe1e00) GO TO 21

ULi=uL?2
‘DER1=DER2.
Al=A2
B1=82 -
31 uL2=UL3
STEP=STEP/10
GC TO 12 . )
32 CONTINUE ) B
PRINT 401 ,UL3
IF(UL1¢ECedeD0Q) PRINT s03.uLl R
IF(UL3eLTe0e2) GO TO 23 )
~ ULI=UL3I-DMAX
yL2=uL3
y IF(UL1eGTe0eD0) GO TO 12
UL1 =000
XINI=XINI/2
13 ULI=ULI&#XINI

8 CCNT INUE !
GO TO 33
4 PRINT 502 ¢ - }
GC TO 33 - ’
5 PRINT 403
GC TO 33
k4 PRINT 404
33 CONTINUE
STCP
98 FORMAY(//77+* PINNED=-PINNED CYLINCERS*/24(%'%*))
99 FORMAT (///7+" CLAMFED~CLAMPEL CYL INCERS?*/26(*%*))
100 FCEMAT(12) o
101 FORMAT (F15.6)
192 FCRMAT(EFXOOS)
20C FORMAT(PLTHERE ARE",I3,* CYLINDERSs AND THE NUMEEFR CF CCMNPARISCN F
2UNCTIONS USED wWAS*t,13)
201 FORMAT('0 THE RADIUS CF EACH CYLINCER IS ,F6ele® MILL INETRES®
17/ THE RADIUS OF THE SURRCUNDING CHANNEL IS*eFCalo .
- % NIt LIMETRES?")
202 FORMAT(//7°0°+"DINENSICNLESS EXTERNAL FLCW CUANTITIES:?/41(*'%°*))
203 FURMAT(/‘O'.'FLUID DENS ITY EETAE®*+F 1057 % GAMMAE='"4F10.5/
¢ EXTERNAL PRESSURE=!,F10.,5) '
204 . FORMAT(//*O°*»*DINENSICNLESS INTERNAL FLOW QUANTITIES:*/41 (%% ))
205 FCRMAT (/%02 4*FLUID DENSITY EETAI=*eF10.57 ™
¢ GAMMAILI=?® ,Fl1QeE/
%°® INTERNAL PRESSURE=*,F10.5)
206 FORMAT(//7/777" INTERNAL CAVPING ALFFA=t,F10.5/
®¢ DIMENSIONLESS UNIFCRM TENSION=* 4F10e5/
¥® POISSON RATIC=*,F10.5)
207 FORMAT(//7'0% 'DELTA=' 4F10¢5¢5Xe?'L/D=?4F10e5+45X+2CC GRCUPING="*,
:F=°05¢/' CF=?4F1005:8Xs *CFES® oF10e¢ £ 96X s'CF Iz 3F 10,895 Xe’CFX=?3F1C00
S
208 FORMAT (%04 *D/DH="* ,F10e %)
209 FORMAT(//7°0°% o' UL I yFR a4,y T30 s 'ULI=aFB8a4eTEQ,*ULZ='3,F844)
210 ~,FQRMAT('O'O'x[f‘4l"’0'380“01'300'|:NA)( 'oFeothﬁoo'lhDYl ¢, 1I5)
224 FORMAT(*Q THE ADDED NASS MATRIX®)
225 FORMAT (//7/7¢°0 - THE MATRIX OF TrHE VISCCUS éUUPLIhG‘)
298 @ FQORMAT('9)
299 FCRMAT(*1*)
300 FORMAT(?*1° o///7+sT10+*INTERNAL AND EXTERNAL FLOw VELCCITIES FGR BLCK
1LING?® o/ sT10:50(*%°®)///)
400 FORMAT (0" e T10s%UL=? 4FSa54T30e"A="',014,7,T55,°8=°,C14¢7)
40! FCRNAT(*0* 3T10,*LONEST ROQT FCR BUCKLING UeEXT="9FGeS59/¢
. IT10.81( %)/ /7 /7) ’
403 FORMAT(*°0*,T10,*RO0CT FCK BUCKL ING AFTER ULZ") I RN
404 FORMAT(®0*,T10+% WARNINGI!TrERE ARE MCRE THAN 100 STEPS
1 BETWEEN UL1 AND UL2eRECUCE TFHE INTERVALe®)
S00 ligRg;T('0'oTlOQ'J='012012°9'ULl='9F9.50745v'UL2='0F9053770¢'UL3='0
.
501 FORMAT (%0 e TB %% UINT=® F 9,5 eTI04°UL IS 4FQaSsTEELWL2=?4FG45s/)
$02 FOF"AT"O'I//'T]O'.NC RCOT IAS FOUND EETNEEN UeEXT=0e ANLC UJEXT=LL

~g0

»29)
S03 ZORMAT('O'-TIOo'UR BUCKLING BEFORE UolNT ® sF9e5)
ND ]
o | . |
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SULBROUTINE BUCK(ULOULIoSKe AMGVCIE sCoKKoKKNoNeWReW )
C THIS SUBROUTINE COMPUTES THE STIFFNESS MATRIX SK

IMPLICIT REAL®B(A-h,0-2)

DINMENSICN AN(KK.])oVC(KKol)-E(KKol)cG(KK.l)-NR(l’o‘l‘l)oSK(KKh.l)
COMMON ALPHA;EETA.EETA!cGAMﬂA'CANP‘chAMNAToDELnEFSoHLt
‘pIEoPII'ROQCLoPR CFe CFESCFI+CFXeR s IEQUNC

UN==~1,00"

PI=364141592€653589800

TETA= (CFC*UL¢‘2+CFX‘ULI‘*Z#CFX‘UL‘LL‘)/2

X2=UL*%x2

X3=0eSDOKEFSHCFRUL #% 2

X6=UNK(DEL®¥ (GAMMATH+(F IE~-PII )" (1.D0-Z2.00%PR)I+TETAS(1.CO0-DEL)+(0eE
ROOREPSHCF A4ULR X2 (1 OO0 tHL )+ GAMMA+GANNAL ) ({14 CO~0EL/26D0)~ULI%22)
 XT=GAMMA+GAMMAL+0+SODOSEFSECFSHLUUL®S2

D0 1 I=1eKK

DC 2 J=1,.KK o
E(ILoJ)=X2%AN(14J)
2 G(IsJ)=X3RVC(I,4)
EC(ILLI)=E(I,I)+X6
GUIeI)=G(1I,1)4+X7 -
F=0+5D0%EFSHCFRUL*%2% (1,00 +hL J+GANNA+GAMMAL -
DC 4 I=1,N N
DC S J=1lsNh y
IF(IBOUND+EQs0O) GC TC 26
C PARAVMETERS FCR CLAMPED-CLAMPEL CASE
' wWRk(l)=4,73004C0 ’ - \
WR(2)=7.8532000 . .
WR(3)=10,9656C0 . A\ E
WR(A4)=14,1372D0
R(S)=17278800 N
wWI(1)=0,982502200
: wi(2)=1.,000777300 '
WI(3)=0,96896€6500
WI(4)=1.,00000150D0 - \
WI(S5)=0,9659995D0 n .
DO 8 I=6+N - .
WR{I)=(2.00%1+1.00)%P1/2.D0 -
8 Wi(I)=1.D0 '
;o XI=UR(I)**4 \
© XE=ALPHA% X3 )
IF (I+EQeJ) GC TO 24 n ]
AB=4 .,DOR{ WR(JIRUR(I) )22/ (WR(J)%X4~uR(I)8x%4)
AC=WNR(JIIXWI(I)I-WR(I)*WI(])
AA=ABX((—100)%%([4+J)~1.D0)
BE=ABR((~1,00)%%(14J)+41.,00)8AC
.?2::?*AC*(-ICDO)Q‘([*J'°(3.CO*NR(J)’*Qt'n(l)**Q)“‘/(‘R(J)‘*Q“ﬁ(l
X4=FRDD ~ - a !
GO T0O 25 - . -

24 AA=0,000 ‘
BB= NR(I!*UI(I)'(Z:DO wWR(I)®wI(1)) N
00=BB/2.D0
GO TC 28 ' - ¥

26 CONTINUE . )

C PARAMETERS FOR PINNEC~PINNED CYLINDERS
X3=(PI%])*%4
XS=ALPHAR X3 v .
IF(I.EQey)} GO TO 27

gs g ggtht((—J.DO)wt(HJ) 1eDO)/7 (B4 2~-T%%2) ~3/

=0. -
DC=4¢DO* ¥ *%x3%(1eCO0—(~-1eD ¥ + -
oo F;DD ° eDO) (I4J)I/C(IR42-I %2 )082)
GCTYC 25 ’ ~ -

27 AA=00DO

U BE=UNK(FI®])®s2
0D=8B8/2.,D0 -

28 CCNT INUE
X4=F&DD+X 3 .
25 0C 6 Il=1,KK ‘ '

IF=(1-1)8KK+I1
DC 10 JJ=1,KK .
JP=(J-1)RKK+JJ
, VSK(IP, JP)=BBRE(IT+JJ)+AASG(ITeJJ)
IF(I14EQeJJ) SK(IP4JP)=SKCIFeJF)eX4 {6
- 10 CONTINUE
9  CCNTINUE
CCNTINUE .
CONY INUE
RETURN L
END - . oo .

&N




APPENDIX E - THE COMPUTER PROGRAM "TRANSIT"

-

This prograﬁ'allows for the determination of the transient
responée of a pinned-pinned system in two cases:
i) some cylinders are given iniﬁial displacements and
then the system is abandoned to itself,

ii) some cylinders are constrained to have a sinusoidal
displacement of constant amplitude and frequency, and
the r?sponse of the others is computed.

In both cases the program computes the y- and z—displacemeﬁts

of three (or less) selected cylindé%s at equal intervals of

time and, if desired, plots the response over a certain period

3

of time.

INPUT
Like the other programs it requires as input the system

parameters, the added mass and viscous coupling coefficients.

At non-dimensional time t = 0 all the cylinders are supposed

to be at their position of rest except KI cylindgrs which are

either simply displaced or submitted Si‘a steady excitation of

frequency OMEGA. As the system po?sesses N degrees of freedom /

in the x-direction (see Chapter V for further details), the ’

displacements of the KI cylinders must be given at N abscissae

gi (1 = 1,004, N). The selected cylinders for which the

. response is computed and the time integvals are also to be -

defined. ~ / .




o

/

. OUTPUT ?

The program calculates and prints the mass matrix M, the

eigenvalues .iw, the initial state vector {é(O), g(O)}T, the

o

constants of initialization {c, ¢} and the displacements of the/

e [

selected cylinders in the y- and z~directions at the first
abscissa where the initial displacements were given, i.e.

‘l! s
£ = gl. Note that in order to spare paper, every other combuted

point only is printed.- If the digital plot is not desired some

cards have to be removed as indicated on the listing.

PR

A
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DATA CARDS FOR “"TRANSIT"

Fortran ;
Card Number |.Symbol | Name Designation Format
1K K mmber of cylinders 12
2N N number of camparison functions I2
Jjia ALPHA ) .
¥ } system parameters as-in "SOLINTER" F10.5
- 21 R@ RO ;
2‘3‘ Mt}‘* AM (I"J) } added mass ard viscous coupling 2F10.5
. 4K2+21 cy Ve (1,d) matrices. as punched out by "COUPLAGE :
4K%+22 |ug,uj | UL,ULI |external and internal flow velocities | 2F10.5
4K2+23 KI .| number of displaced cylinders at time 12
t=0
aKx%+24 Ei XI(1) ith abscissa where an initial state is | F10.5°
L9 givenh (i=1,..., N) ’ , ‘
4K+25 . ICYL initially displaced cylinder number I2,8%
4K2+25 ZDISPL | amplitude of displacement in z-direct- |F10.5
- ion
4K2+25 YDISPL | amplitude <;éf displadement in y-direct- | F10.5
IS ion - .
4K2425 OMEGA -| frequency of excitatiom if any (blank )‘ F10.5
'2 othvexwise) - .
4K"+25 This card is repeated KI times.
If i < N return to £; for-ardther
5 | abscissa 547 :
4K ”HN*KT+25 NCYL(I) | plotted cylindepmumbers (maximum 3) 312
4KZHN*KI+26 TIME period of time over which the response |F10.5
TN is computed - - s
AKTHN*KT+27 MNCP maximum npfber of computed points I3
AR 2HN*KT+28 NPPP -number of computed points per period 13

of the first excited cylinder (nothing
for frée vii}ﬁrations)
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REAC .EXTERNAL AND INTERMNAL VELCCITIES

C

C - 124, :

AEB BB RRER R
* *
% TRANSIT #
* P
T LI L
I L L R R L LI I I I m

THIS FROGRAM CCMPLTES ANC FLCTS THE RESFCNSE CF FIMNEC-FINNED
CYLINDERS SUBJECTED TO AN IANSTANTANECUS OR STEADY EXCITATION,

K IS THE NUMNBER OF CYLINCERS.

N IS THE NUMBER CF COMARISOM FUNCTICNS USED.

LL AND ULI ARE THE EXTERNAL AND INTERNAL FLCwW VELOCITIES.
THE\NATRICES ARE DINENSICNNEC AS FCLLCWS:

ZK'ZK)IF(ZKodk'

<TC(901.6)

AM (2K 2K ) 3y VC(2K 42K ) s ANT{ZK e 2K) s C(2K 2K ) sEL1 (2K,
WK(2K) , SIS({2Ks2K),SITI 2K 2K ) yW{AKN,AKN ) 3 WR{AKN
CT(4KN).AS(AK.&K)'EAS(dkh.aKhL'hAK(QKh)-ZP(QKA
RCYL{K) 2 IPLIZ2K ) +Z0(2K )+ YO (2K} CM{2K)XTI(K)

2K) s C(
Yol (4K
1AKN ) o

BEBAIERRSETRRR AEAN R AR A BB AN TP RR AR B SRR RGN YARNK SR RE SR INRI NNV S 2

VELICIT REAL®28(A-H,(~-2)
MENSTON AM(4,4
CIFERSICN wk (4
ENSION CT(

D 1M )sr(a,4)
Iv )

Iv e

IMENSION NCYL

NT (

N /

A e~
-le @
[mE XA
— g P~
M~p
SN e
DD

+4)

TN
ZTe amaa 42

0

M e Mwdes
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-
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fa'Ge,%10/
N FUNCTICNS USEL

EGER OIGIT
TEGER EC(4)
C IN NUMBER O
READ 192 ,K,N

KK=2%K

KS=2xKK®N :

KKA=KK®& A

KKK=43K
REALC IN SYSTEM FARAMETERS

READ 101, ﬁLpHAQBETA.EETAIoCANNAEoCﬂ"NAI:GANNAN.C‘NNﬁT.DEL EDC.
*pIEopIIcCvapocFvCFElcFIOCFXtR.RC -

HLU=2eDIAR/((FCEX2~KERE¥N2 )R ZoLO/(FCHKER))

PRINT 2004K4N

PRINT 2014ReKRC

PRINT 2202

FRINT 203’BETA'CA~~AE FIE

FRINTY 294 -

FRINT 20S+BETAIl.GAMNALT,PITX

PRINT 20€,ALFFALCAMNMATY,FR

PRINT 207,DEL 4EFS, CL!CFOCFEQCFX.CFX\

PRINT 208,HL .

GAMNA=CANMAN—CAMMAE
REALU AQDED MASS VMATRIX AND MATRWX CF VISCOUS CCUFL ING

READ 1020((AN(I‘J)'VC(IOJ)OJ loKK)oI-anK)

EC{(2)=DIGIT(KK)

FRINT 299

PRINT 224

WRITE(E6+ECYI(AM(T4J) 0d=lsKK)I=1 4KK)

FRINT 22€¢

MRITE(CELECI((VC(Led) ou= loKK)cl 1 sKK) _

DC 1 I=1 KK

DC 2 J=1 +KK ‘
. ﬂMl(ItJ)=EETN‘AM(IQJ, 8

AM1(I,1)=AN1(Lls]1)+1eCO-BETA

PRINT 22€

MRITE(G6.ECI((AMI(T1,3),4= I'KK)OI-lnkk,

00 10 I=1,KK

DO 10 J=1.+KK

SIS‘I'J’:AN(!'J)

SIT(I.d)=VC(1aJ)

&L N0 ™
Meoews ba
Zrae o e D
CN ewpe
(Nife mpom
Ow spHd
MNMae Twe o
N e~e &
O ooNS~-

I
D
C
D
C
I
I
A

Ze ™0 b om
e opmMhe D
LT Do wd
M a oo w
Me o« M <e
D e XmR

}
)
(
1
'
[

p]
T
T

RE

o

REALC 112 .,UL.ULTI -
PRINT 229 ,ULI .UV
CALL SCLN(KK'KSQAV‘VC.AUl’CoEl'GotoUK.‘RoﬂI.YoALFFAoBETAoEETAIp
égg“;S)GAWNA[oGAMNAToFlEoPKIoEpScvaCLoULoULIoCFoCFE'CF[oCFXoCEL‘
» R ¥




5]

El

CC 9 LIF=1,
0C 9 LID=1,
AM(LIPILID)
9  VvC(LIP,L ID)
K1=KS/2 '
=20 . ¢
IF(KS.LEaG0)K1I=KS . ’
DC 17 J=1.KR
17 PRINT 221 +(wR( 1) WICI)sI=deK1,KR) . 8
IF(KS.LE «90)CGCTC 16 ,
FRINT 296
o K1=KS/2+1 s
K2=K1+29 \

DC 1B J=K1,
18 PRINT 2214 (I).hl(l)-l JchoJO)
16 CONTINUE

C
C jTHE TRANSIENT RESPCNSE A : ,
c :

/ PRINT 296G )

PI=3.1415G26535€69ED0 i
PC SO I=1 +KS \ ~ .

o
m
>
o]
i ]

[«]
"o
¢ pag pag
o B . AVl

LeZDISPL s YCISPL s CMEGA
' IP=(1-1)%kKKK+ICYL -
CT(IP+KK)=ZDISPL | . \
CT(IP+3%K)=YCISFL
IF(CMEGA+ EQ.0) GG TO S1 !
KCF=KCF+1 ¢
IFL(KCF)=1P _
T20(KCF)=ZDISFL -
YO(KCF)=YDISFL -
CV{KCF)=CNEGA ' »
IF(Y ECel1) PRINT 700;JVGME(A
51 CONT INUE
TC=0e . I o
XE=X1(1)
CALL ASSEMB(TOs XP sAS s K sNsKK s KSsKK RN KKK ZPoWRy W I+F1)
£C S3 11=1 KKK
CC S3 JJ=1,.KS
€3 EASC(KKKX( I-1)+411,JJ)= AS(I!.JJ)
€2 CONTINLE
PRINT 500
PRINT 501 (CT(1 1¢KS)
CALL LEQT1F(EAS Ks.x +CT+s0 vWAK ¢ IER) ‘
FRINT S§N3
FRINT 504, (CT(I) +I=1+KS) |
KP=3
IF{Ket.Te3) KF=K
KFP=2%KP
C FEAC THE NUMBERS OF THE THREE CYLINCERS TO BE COMPLTEC
READ 103, C(ACYL(T ) 1=1,KF)
READ_101,T INE
REAC 10S,MNCF
IF(KCFeGT o0O) GC TC €S

FREE VIBRATIONS ( ' ,

YCSTEP=TINME/400. ‘

IF(TOSTERP & GT 0.05) TCSTEF'«-OQOg

NCP=TINE/TCSTEP#+1 ~

IF(NCP.GT o MNCF) NCP=NNCP - .

XF=XI (1)

DC 55 IND=1,ANCP

CALL ASSEME(TC+XP eAS s K gNoKK ¢ KSsKK N KKK ¢ ZP sWRen I+ F 1)
L0 56 [1=],KKK /‘
WAK( I )=0. . '

DC S7 J=1,KS

HAd

‘57 WAKC T )SWAK CL)+AS(I¢J)8CT(J)

56- CONY INUE
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DC S8 1U=1,.,KP
STOCIND, I J)=wAK{(KK+NCYLI(IU))
STOCINC, IJ4K)=WAK{KK+KENCYL(T1J)) .
CCNT INUE &
IC=TC+TCSTEP
CONYINLUE
GC TO N

FORCED VIERATICAS

CCATINLE

READ 10S +NPPF
TCSTEF=2XPI/NPPF/CM(1)
NCP=TINE/TCSTEP 41 N
IFC(NCPGTe¥NCF) NCP=NMACP
CO 70 INC=14+ACP
DO 72 I=1,N
XP=XI(I)

CALL ASSENB{TCeXPsAS o KaN KK s KSyKKP KKK ZFeWR,WILFI)
,DC 72 11=1,KKK

DC 72 JJ='1,.,KE (

BAS(KKK¥(I-1)41144J)=AS(1144J) N
CC 73 [=1,KS ( \

e

ETOC INC,
bo 76 I=1
TCTCI ) =wAK (
CO 75 I=1.K
DC 75 J=1.K
IF(IPLL{J) o N
CT(I1)=-20(J
CT(I4+K)==VY)
CT(I+KK)=20(
CT(I+3%K)=Y0O(J)*D
CCRT INUE

CALL LEQT1F(EASe1,
TC=TC+TOSTEP
CCATINUE

FRINT OUT

(J)*70) ,

CMm (J)*TC) ) o
TC)
»

NTLO

PRINY S0S.X1(1)

DC 62 I=14NCF,2 '

TC=TOSTEPX([-1) :
PRINT SO6+TOW(STCA{I+d) o Jd=1,KFF)
COyTINLE '

e

FLCT . .
IF A DIGITAL PLOT IS NCT DESIRELC REVMCVE THE CARDSE FRCM *CALL PLCTCA:®
TO *CALL ENDPLT' PLUS THE 2 CCNTROL CARDS OF THE CALCCOCMP PLCTYTER -

- CALL PLOTCN Py ™
CALL SYMECL (1641063044 3,11HZ-DIRECTIONO«D»11)
CALL SYVNBCL (14, +10¢90e8+11+Y~CIRECTION D eOsl1)
TIT=TIME/10, ' _
CALL FLOT(De+8ee~3Y
DC 59 J=1,2
XCR=(J~1)213,C0
YOR=(KP-1)%(J-1)%3,

DC €0 1I=1,.,KP

CALL PLOT(XOFRsYOR o-2) - -

CALL AXIS (D@ 1N 18 F+TINE -3 ¢4100000es060,TTT)

CALL AXIS(O 0 +0eeSHFDICPLeS 1109500 s0e0+1,)
GR=DFLCAT(NCYL(IY) \ ’ /
CALL SYNBCLU(CeS41e¢2¢0:12,9FCYLINDCER ¢04+G)

CALL NUMBER(1¢584¢142+0e123GR¢C00es~1)

OC 61 [1=]4.NCP \
XX={II-1)RTOSTEPXR10./TINME

YY=STO(ILl, I +(J-1)%KP) \
IFIYYeGTeleS) NCF=1] Y
IPEN=-2

IF(I1 <EQ.1)YIFEN=0

IF(1I.EQNCF) IFEN=~24

CALL SMGQT(XEvYYv!th)
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61 CONTINLE
XCR=0, .
YCR=-1, R
60 CCNTINUE o
59 CCNTINLE
‘ ) _ CALL ENDPLT
SYCP
98 FORMAT(//777+% PINNED-PINNED CYLINCERS®*/24(°®9)) . .
100 FCRMAT(12)
101 FCRMAT(F1Se6)
10z FCRMAT(2F10.5) - ‘
103 FCRMAT(3IZ)
108 FCRMAT(I2+8X,4F10e5)
105  FORMAT(213) - .
200 FCRMAT(®1THERE ARE?*,I3.' CYLINDERS. AND THE NUMBEE CF CONPARISCN F
XUNCTICNS USEC WAS',.132)
201 FCEMAT('0 THE RACIUS CF EACH. CYLINCER JS* F€els*' MILLINETRES?®
. 1//% THE RACIUS CF THE SURROUNDING CHAKNNEL IS®.F€els
27 *¢ MILLIMETRES®)
20 FCRMAT(//%0f% . *DINENSICNLESS EXTERNAL FLCW GUANTITIES:*/41(*%%))
203 FCRMAT(/*0° LUIC DENSITY EETAE® yF10eS5/' GAMMAE="' ,F10¢5/
L EXTERNAL SLRE=*® 4 FiND.5)
" INENSICALESS INTERNAL FLOW CUANTITIES:I'/&41(*%x¢))

204 FORMAT(//
. 20€& FCRMAT(/" Q
k' CAMMAI=
%k IhTERNAL FFESSURE=';F1005)
206 FCRMAT(//7/7/7" INTERNAL DAVMFING ALFFA=*4F10.5/
%¢* DIMENSICALESS UNIFCRN TEMNSICN=4,Fl0.E/
v ®* PCISSCN RATIC='+«w10e5S)}
207 FORMAT(/7/7%Q" 4 "DELTAS Y g F1DeCsEXW'L/C="4F 1065, 5 +*(C GRCUFING=",
*2%0.5-/' CF= ,F10sS548X+"'"CFE=® ,F10 eS+6Xs*CFI=?® ,F10e5,EX,?CFX=1,F10,
_ * g )

(R

[}
L]
P
?
v UIC DENSITY BETAI='4F10e5/
F

‘F
RE
’l
'E
1€

IFOM

208 FORMAT("0* 4*D/DF="3F1Q0+5) -
T 221 FORMAT('0? SXs2F16eS+5X32F1€e9+5X+2F16.9)
2248°FCFMAT(') TFHE ACOEC MASS NATHRIX®*)
225 FORMAT(///7+'D ThE MATRIX CF THE VISCOUS CCUPLING®)
226 FCRMAT(///+°0 THE MASS NATRIX?®)
229 FCRNAT('l'1110.'U.IhT=WhF9.5'T301'L-EXT='cF9.5¢T7ﬁ-

¥YEJIGENVALUES I%ONEGA CF THE SYSTEN'/,T104+3€(* %% ),T7C,34("%")/)
29SS FLCRMAT('1*)

€00 FORMAT('0® ,19X.? INITIAL STATE VECT(R'/)

501 ECRMAT(*0* 410X, F12.,5)

S03 FORMAT(* 1*/7/10Xs *COASTANTS CF INITIAL!ZATICN'.//)

€94 FORMAT('0* 41 0XsD1E54€)

g0S FCRMAT(* 1*/T 10, * CISFLACEMENTS CF THE PLOTTED CYLINCERS IN THE 2 AN
AD Y DIRECTIONS AT X=1,FB.5/T10.78(*u*)//)

€06 FCRMAT('0* 4 TIME=9,F742+T720.,€6(F7.248X))

700 FCRMAT(' Q¢+ 10X, *CYLINDEFR®,I2+* IS EXCITED AT THE FRECGUENCY CMEGA=

®',FEeE//)

END
A . \
z -

SUBRDUTINE SCULNIKK KSsANsVCs AN 1 4CoEpGoeHys WKsWRoWI s Y, ALPHALBETA,,EET
lAI.GAMNA|GAN~A!'GAM~AT'FIE‘PIl'EF vFL'CL’UL‘ULIo(FQCFE-CFA-CFXI
XDEL,FRZF) ‘

IMFLICIT REAL®B(A-H,C~2)

DIMENS ION AM(KK3s1 ) ¢VC(IKKo1)sANTI({KKo1)»C Koel)+sEC(KKel ) +G(KKs1)

CIMENSION H(KK.1) oWK{1)oWR{1)aWI(1)eY(KS, 1) ) .

DIVENSION ZP(KS41) /

UR==1,C0 \

PI=3,1415926535E58D0
N=KS/2/KK ’ .

C GENERATE MATRICES CoEsGetoANC M

TYETA=({ CFERUL*®2+CFIMULIX®24CFXRULSUL I ) /2 ' -

X1= 2.002LL&®CSCRY(BETA) .

X2=UL®%2 ’

) X3=0e 50IPEFSSCFEULRR2 ¢ - 3

X4=0.5DND#EPSIOSORTIEETA) S ( CFRUL4CL) : T

. XS=BETA
. XG=UN® (DEL* ( GAMNAT (FIE=PIT)8(1eC0-2+DOPR))$TET 291 aCO-DEL)4(Q. ¢
| #DOREPSHCFRUL $ K28 (14 CO+FL ) $GAMMA+GANMAL )% (1 oDO~CEL /200 )—LLIA%2)

X7=GANNA+GAMNAT40eSLCO*EPSHCFIELEULMR2
XE8=2.D0CULIZCSQRT(BETAI) v

o

' . #_________;_::------.-...-.....l.llll.lllllll




f _

DC/1 I=1,KK
DC 2 Jd=1,KK .
Cl(led)=X1%AM(1,J)
E(IsJ)=X23AM(1:J4)
G(l,4J)=X38VC(Ll,J)}
F(1sJ)=X88VC(]1.J)
ANI( 19 J)=XSRAN(T ¢+ J) - ;
E(L+I)=E(LeI)+XE ! .
C(I41)=G{I,1)¢X7
C{l+I)=C(Is1)4X8B =
AMI( T oI1)=ANI(I,]1)+1.D0-BETA
INVERT M -
CALL LINVIF(AM] KK¢KKoANM 4 ,WwK, IEFR)

FORNM PROCUCTS N INVERSE®C, M INVERSE®E, M INVERSE*F, M/INVERSEtG
CALL ONULTC(KK AN, CoANL)
CALL DNULT(KKsANLEVC) .
CALL DNULT{KK¢ANM,HC) = 9~
CALL _ DMULTCKKeAN3 CoE)

" FINC O AGONAL ELENENT CF F

F=0, SDO*EPS*CF*UL**c*(l.DOGFL)*GAhNA#CAMMAI‘

CINITIALTZE VY . v ,

27

28

C

10

25

dUm~

. o
z 7

FARAMETERS FCR PlthD FINNED CYL!NCERS
X3=(PI3] Inx4s
XS=ALPKLA%X3
IF(leECe J) GC TO 27
AA=2 4 D0ONIFIR((~1e001¥%(14J)-1.00)/ (Jbh2-1%42)

EE=0+4D9 e -
DL=44 DIV IR UBAIN(1,D0-(~1D0) A (T30 I/((JRH2=-1In22 )422)

GCT0 2¢& ‘ “

AA=(Ce OLCH - . =
EB=UN®(PI%RT )%

CC=BB/24CC . . - .

CCNTINUE

X4=FRDC+ X2 . . -

BC § II=14KK

IP=(l-1)nKK+II

IX=IP+KN

CC 10_JJ=1,KK
JFE=(1-1)%KK+ JJ

JX=JP+KN

YCIPWJP)I=SUNR (AAXAMYI (11,J
Y(IP,UX)=UNX (XakAV(( I 1,JJ
CONTINLE
YUIXe1P)Y=1,D00
CCNTINUE ' f
GCTO0 .S \ o
X& =F%DD . ‘ ‘
DC € I1I=1,4KK :
IF=(l=-1)1%KK+1II

IX=IP+KN - o

~ DC 7 JJ=1.KK N

JF=(J=1) KK+ JJ ’ -
P+KN > ' :
Y%ip vIP)SUNR ANMLI(TTe JJ)®
Y JX)—UN*(EB* c(11 f » -
CChTINLE od J) XARAM(TIIoJJIY+AAXE(LL,UJ 1))
CONTINUE ;
CCNTINUE /
CCATINUE
Flhg EIGENVALUES CF Y
CALL EISPACIKSKS{MATRIX{(*R L
eVECTOR(2P) S { EAL®s Y )y VALUES( MR W) o
RETURN .
END s
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SUBROUTINE CNLLT(VM,AL8,C) / )
C NULTIPLIES MNATRICES s AXE=(C

INFLICIT REALXB(A-H,C~2)
N B(N,1)B(Fe1)sCiN,G])

s JIHACTIL)®B (L J)

Lol s V)

E ASSENBPUITC XTI gAS s K oA KK KSoKKNJKKK s ZFoWRoaWILPL)
EAL®B( A~H,(C~2)
(1)

ZP(KS s 1)sWF sMT1 1) AS{KKK,s1)

~

¥FRI*(ZP (N Z%2J-1 ) #DC~-ZP { Me 2%y ) %(
KeJ)+2¢PHIN(ZP(N+KKN 2% J-1)20C—2

*DE

‘ <)
P(M+KKN, 24 J)#CS )

)
I+

N

o JEKKN)=2FFFI® (2E (N, CAJ)BOCHZF (M 2% J~1)9DS )#DE
AS(I+KK'J7§KN)‘2*PFL*(ZP(M+KKN'2*J)*DC+ZP(N+KKN'2#J

O]
7n

Q AS(I+KKs J¥K
— *~1)%DS)XCE
3 LCCANTINUE
Zé CONTINUE
FETURN
END
/7/GOePLCTITAPE CLC UNIT=TAPEB+VCL=SER=FLCTTPLAEEL=(1,SL }+sCISP=NEW
7/GLEISPACLE (D DEN=CFLBL.SLEL IBDISP=SkF
/7/7GC «SYSIN CD =
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. APPENDIX F - RESONANCES OF ROWS OF TWO AND THREE CYLINDERS

F.1l Resonances of Two Cylinders f

' Consider the case of two pinned-pinned cyli?ders arfangedx
as in Figure 3 and not subjected to any external or internal

flows (ue = u, = 0). As the tubes are immersed in still fluid,

~

it is reasonable to consider that they vibrate in their first

axial mode only, and under these conditions the geneial equation

of motion (3.15) /
3 . ,
Mp+ Cp+ kp =0 , -
becomes
\ My + Kn=90 , 0 (F.1)
where ¥ is the mags matrix and X the stiffness matrix
M=8M + (L-8) I k=11
- e~v e’ =~ ! = ~ ° o
J
) Because of the symmetry of the system, ¥ may be writtén as
N m, W, 0 0 .
« v — m,, m,, 0 0
14
~ 0 0 nll n12
i 0 0 N,y Ny, ]
and then the equations of motion (F.l) become decoupled in the
two directions; we may solve for instance for motions in the z-
. direction, the following two equations:



fixed, Eg. (F.3) allows for. the determination of the response

of cylinder 2.

Now,

W +1r4Q =0 ,

Myy Wy t My Wy 2

tée Adiréctions are easily obtained as follows:

i)

ii)

1st mode %_____* %;___;; Wy

Equation (F.3) becomes
(M. + m..) w, + 4w, =0
22 21 2 2 ’

the solution of which is

W, = wg cos wy Ty where vy =

-
<

2nd mode ¢

Equation (F.3) becomes

-

. ' 4
(m22 - le) W, + 17w o ,

2

which has as solution

1

. 0 )
w2 =uw2 cos Wy T where m2==

L

if we suppose that the-movement of cylinder 1 is

The two cross-sectional modes of vibration in
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9

Here wy and w, are the two resonant frequencies for the

system in the z-direction-and they are the eigenvalues in the
z-direction given by the computer program "SOLINTER".
1 alternatively cylinder 1 is given a sinusoidal movement

- I B

of constant amplitude -

cos Q4 v , ) (F.4)

_ 2 ‘
. m,, W, % oW, myy Wy Q" cos Q1 , (F.5)
with the initial conditions w,(0) = G2<0) =0 .

This differential equation may be very easily solved usigg

the Laplace transform \

LY

Ly (1)) =W, (p)

which reduces Eq. (F.5), with the given initial conditions, to

N . /

2, 4 o 0.2 p
(my, P~ +77) W, My Wy & ——5 ,
' P ta -
or -
_ }
. Wolp) = - 21 40 g2 P .
2 my, 1 2 2., 2 =4
(p” + %) (p™ + ﬁ—~)
22
/

\

The inverse Laplace transform of this expression may be

found in any table of Laplace transforms (reference [19] for

/ | .
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Id

S

instance) and takes a very simple form in the case of resonance,

i.e.: when 92 = %——
22 )
m.. 4
w, (1) 121 w0 Q t sin @ v , where @ = r_ . (F.6) .
2 2 22 1 . ) m22

Thus, the amplitude of vibrations of the second cylinder

is linearly increasing. o

"F.2 Resonances of Three Cylinders in a Row

A

S~

Consider a row of cylinders where, except f£dr the middle

three cylinders, all others are assumed to be rigid.

. @

Under the same assumptiong as in the case of a system of

-

two‘cylipdené) the equations of motion for cylinders 2 and 3

in the z-directio e

. o - 4 '
m21 wl + m22 w2 + m23 w3 + w w2 o ,

, ké : . “  (F.7)
- - . - 4 -
m31 wl m 2 W, + m33 w3 + L w3 0 .

Because of the symmetry of the configuration, we have

m,, = Mmaq = M and Myy = Myq = m32 = m; furthermore, the a
hydrodynamic coupling between cylinders 1 and 3 can be neglected,

~

) ;_______;::---Illlll-.l-lllll.l.l.ll
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' ‘ - yielding may = 0. Equation (F.7) may ‘then be written as
-~ followsas
an | as v -
M w2 + 7 w2 + m w3 = - m wl v
" . (F.8)
/ m w, + M w3 + 7 w3 =0 . i

As in the previous section we consider a steady constrained

“motion for cylinder 1 of the form N

<5

WH(0) = wy(0) = w,(0) = wy(0) =0 .

-

Using again the/Laplace transforms W2(p) and W3(p) the
} .

system (F.8) reduces to ) .

7

2. 4 2 _ 2 _p 0
M p +7 ) W2 + m p W3 m Q 5 3 Wy v

(F.9)
:) m p2 W2 + (M p2 + n4) w3 =0 .

The Laplace transforms are readily obtained \ ) ,

3

mﬂz(l)2+ﬂ4/M)p 0 . .
W, = w r
2 & 4 2 2 l
2 ! m 2 2 2
‘ M[(p +3) - @ e [+ ed)

-
F




0
1

- P
W3 p 5 2r W
Mz[(Pz r I - & }(p2 + 2%

If we make the assumption that % << 1 and set

first approximations for w, and W, may be obtained as follows:

: 3
2
Wy - M(229+ iz)z wg '
(F.10)
: 2 2 3 '
Wy - b Wg ’
M (p + Q%)

the inverse transform of which may be found in Ref. [19], i.e.

/

W
;% ~ %’% Q T singrt ,

l —

(F.11)

w ks . ¥

3 1 m?2 . 2
;5 ~ 3 (M) Q (? T 51n‘Q T #/Q % cos Q1) .

1

-~

B ,
Thus, the amplitude of the second cylinder is linéarly
increésing, with time while thdt of the third cylinder eventually

becomes almost parabolic.

o




