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Abstract

Carbonaceous mesophases are naturally occurring discotic nematic liquid crystals
which are used as precursor materials for the manufacture of high performance
mesophase carbon fibers. The anisotiopic structure of discotic mesophases imparts
superior mechanical, thermal, and chemical properties to mesophase carbon fibers. To
control the microstructure of discouic mesophases during the spinning processes a basic
rheological understanding of these matenals in extensional flows is required. The
quantitative description and classification of the main morphological phenomena during
the extensional flows of discotic mesophases 1s the central theme of this work.

In the first part of the present study, a phenomenological theory describing the
microstructure of discotic mesophases under the influence of extensional flows is
developed. The theory 1s then used to develop the governing equations for the uniaxial
extensional flow of uniaxial discouic mesophases, which is the main type of flow
encountered 1n the spinnline of the fiber-spinning manufacturing process. The driving
forces for flow-induced morphological phenomena are identified. The unit sphere
description is used to discuss and classify the analytical and numerical results.
Parametric studies are performed using the alignment Deborah number, the nematic
potential, and different initial microstruciural conditions. The average orientation of the
mesophase fluid is found to lie anywhere in a plane perpendicular to the extension
direction, which agrees with existing experimental observations.

In the second part of this thesis, the theory is generalized to describe the
microstructure of discotic mesophases in various types of extensional flows. A
comprehensive flow classification based on the orienting strength and aligning strength of
various industrially relevant flows is given.

In the last part of the thesis, the theory is extended to model flow-induced
biaxiality in uniaxial discotic liquid crystals subjected to uniaxial extensional flows.
Analytical and numerical solutions of the characterizing microstructural fields are given.
The main flow-induced morphological phenomena is efficiently captured by projecting
the results into orientation and alignment phase diagrams.




Résumé

A l'érat naturel, les mésophases carboniques sorn des cristaux liquides nématiques
discotiques. Matériaux précurseurs, )5 sont utilisés d L préparanion de Fibres de carbone
mésophasique de haute performance. La structure ansotropique des mésophases
discotiques augmente les propnéteés mécanique, thermigue et chimique, des fibres de
carbone mésophasique. Pour comrdler Ia microstructure des mésonpnases discouques
pendant les processus de tilage, une comnprihension de base de la théologie de ces
ma‘eriaux sous des conditions d'écoulements extensionels est nécessaire  La descnption
quantitative et la classification du phéncinéne morpheologique principal, pendant les
écoulements extensionels des mésophases discotiques. constituent l'idée centrale de ca
travail.

La premiére parie de cette ¢tude cdéveloppe une .héone phénomenologujue
décrivant la microstructure des mésophases discotiques sous P'influence d'écoulements
extensioriels. La théorie es: par la suite utilisée A développer les équations gouvernant
I'écculement extensionel uniaxial des mésophases discotiques umaxiaux, type
d'écculement pnincipalement renconiré dans la ligne de filage du procédé de préparation
des fibres. l.es forces motrices des paénomeénes morphelogiques induir‘ent par
I'écoulement sont micennfiées. L.a descnptic n de sphire unite est utilisées afin de discuter
et classitier les résultats analytiques et num ériques. Les études paraméinques réalisées
utilisent le nombre d'alignerneat de Deborah, le potentiel nématique et les différentes
conditions initiales des microstructures. L'onentation moyenne du fluide mésophasigue
se trouve n'importe &u dans un plan perpendiculaire a la dircction d'extension; ce qu est
en accord avec les obuwervations expérimentales existantes.

La théorie est 3énéralisée dans la deucieme pante de cette thése afin de décrive la
microstructure des mésophases discotiques dans divers types d'écculements extensionels.
Une classification compréhensive de I'écou.ement, basée sur les tensions onentant et
alignant les divers ¢coulements utilisés industiellement, est prédentée.

Dans la derniére partie de cette thése, la théorie est approfondie pour modéliser la
biaxialit¢ induite par I'écoulement dans le cas de crnistaux hiquides discotiques umaxiaux
soumis aux écoulemernts extensionels uniaxiaux. Des solutions analytiques ¢t numériques
aux champs microstructuraux caractéristiques sont présentés. Le phénomena
morphologique principal induwt par I'écoulement est efficacement illustré en projectant les
résultats sous forme de diagrammes de phase pour I'onientation et I'alignement.




1V§)

Acknowledgements

I wish to express my deepest gratitude to my thesis supervisor, Professor
A. D. Rey, for his help in understanding the problem considered in this thesis and for his
encouragement, valuable guidance, suppcrt and especially for suggesting this interesting
problem. I will always be indebted regarding what I learned from him about dedication

and perseverance.

I would also like to thank all my colleagues in the Workman Wing, especially my
officemates Won Hee Han and Philip Chan, for their helpful discussion and advice.

Lastly, I wish to thank my family for their love, support, encouragement and
understanding.




Table of Contents

ADSITACT ...veiiieei ittt e s e s s s e s e ne et e s sabe b e e e s e e e bete s nnns
RESUME ..ottt e tre st s s e s eesb e st b ns e es smsnas seees
ACKNOWIEAZEMENLS......cocouiriieriit e ctiereiaeeanesnesscratesssas s saassssasessestassessssvesesmresessnsan
Table Of CONENLS....coieriiiiiee ettt e s e e ssrres et s staa s es s e resse s e
NOMENCIAMUIE.......coiiiiiiiitiieestes it crrinesssesssessrasee s sensessanssesesressasesasaniean sees
Chapter 1
Introduction
1.i. Historical Note and Introductory Comments.........cccevccinnienncninnnecncn,
1.2, Types of Liquid Crystals.........ccccevererinnienieeencrsvsionirsnsenneiessessnmienssasans
1.2.1. Thermotropic Liquid Crystals.........c.ccvvnrrcerensnimnnieeeninenseesscsniiee s
1.2.2. Lyotropic Liquid Crystals.........ccvvverinmniceunisseessiesinenessssroinseens
1.3. Structural ClassifiCation........cceevereerenniinsicsnuesseessisiereeessinseesaeessonseseens
1.3.1. NEMAUC OTAET.......ccceiiriiiiiineniisstnis s srsrsiss st sess s senesesaeeces
1.3.2. ChOleSteriC OTdET .......cceetiiiiiieecerieeserecrrerrre et e s satese e ee e s e vessseeeeeaas
1.3.3. SMECHC OTUET.......c.iviiiiiiinieeecesiesetiniteseeesanstbensss caas e en e bassisanes e
14. DiSCOtC PRaSES.......coovnumeriiriiininsiierentiiiniinne s ssresnesees s snisnessssens
1.5. Carbonaceous MeSOPhases.........c.occecviinennnerninices et sssenne
1.6. Carbon FIDeETs......ccci ittt sttt e et smee s beses s ans
1.7. Spinning of Mesophase PitCh.........cccoiiiniinniivniiencinccnnnnnee
1.8. Morphology of Mesophase Pitch-Based Carbon Fibers ...............c........
1.9. Nematic OTAETINg.........ccitimiiierinrcrniniiiecsreneessmersensins e sssesmessasses
1.10. EXtensional FIOWS.......cccceiiieiinniniiniiiineinsieieenessessnsne e

S N " I VS B VS I o B S

wn




1.11. Orientation DiSrbution FUNCUON ......ccocvveee it ee et e e 18

1.12. Thesis ObJECTIVES ...ooooriiiiiei ittt s 19

1.13. Thesis OTZANIZAUONL......coiiirerreriie sttt sr b e e en s 20

1.14. R OTEICES ... ceeeeeeee e e e teeettt e e e eeeeeeesseessmte s m s ssenesssstsenmnn smnensnens s sesens 21
Chapter 2

Extension Dynamics of Discotic Nematics of Variable Order :
Geodesic Flow and Viscoelastic Relaxation

2.1. ADSITACE .......iriiiiiiiiiie et st et e e s a bbb e saas 22
2.2 INTOAUCHON. ...ttt s e s s snones 23
2.3. Governing EQUAONS.......cciviiiiineninieneeeenestisaessasrennessesssssnesessaseseas 25
23.1. Definition of Coordinates, Orientation and Alignment..........cccccverveeene. 25
2.3.2. Governing Orientation and Alignment EQUations..........cccoecueeeivviveeccvennes 28
2.3.3. Governing Equations for Uniaxial Extensional Start-up Flow ................ 34
24. Results and DiSCUSSIONS ......ccoomiiniiiiiiccninitciecses e ssesaons 36
24.1. Director Dynamics : Geodesic Flow and Viscoelastic Relaxation........... 36
24.2. Alignment Viscoelastic Relaxation and Flow-Induced Melting.............. 38
2.4.3. Tensor Order Parameter Relaxation and Flow Birefringence.................. 42
2.5. CONCIUSIONS ...ttt ettt sae e s sasesese st sa e se s essassansaansons 46
2.6. APPENAIX ..ot et sa s st s as ssbene 46
27. REfEIENCES......ovciiiiiiiciiitet et e s rene e eaenes 48
Chapter 3

Computer Simulation of Dynamics and Morphelogy of
Discotic Mesophases in Extensional Flows

3.1 ADSITACE ..e.eeievireereeiteeeetasestesaeaeteeeeeesseseesseesnsanseesssessssastessansesesesaseesesssesenes 50
3.2. INOAUCHON ..ottt e ssesaraeseessssessesssss snsnsnsrsenanssssose 50




3.3. Governing EQUAtONS......cc.... viiees o et e e e e .

3.3.L Definition of Coordinates, Kinematcs, Orientanon and Alignment .

332 Governing Orientation and Alignment Equations........... ... ... voee e
34, Analytical ReSUIS ......cciiiimiiiiiiiinerecceccee e s aes
34.1. D1rector DY NAMICS .....vveeei vt certienaeerce s ceesree e seeaesaeens eeennrenee vees oas
3.4.2. Alignment Dynamics........ocooiviiiiiiineniiiiriies evievieii e vane covs s o .
3.5. Numerical ReSults ......cociinmiiinineninie et ceriiens caeennss
3.5.1. Orientation Relaxation .......c.cveeecennienninrieneceeetceeeeeiae e s e
3.5.2. Alignment Viscoelastic Relaxation.......ccceciiieiicccinviinneie e o
3.5.3. Tensor Order Parameter Reilaxation and Flow Birefringence............. .. .
3.6. CONCIUSIONS ..ottt ettt e st st eae e nr e
3.7. REfEIENCES.....coviiiniiiiii ittt i s a e s vae e

Chapter 4

Theory and Simulation of Extensional Flow-Induced
Biaxiality in Discotic Mesophases

4.1.
4.2,
4.3.
4.3.1.
4.3.2.
4.3.3.

433.1.
4.3.3.2.

434,
4.4,
4.4.1.

Theory and Governing EQUations ........c.ccceccveviiviennieneneeieeecenenneenne
Definition of Coordinates, Kinematics, Orientation and Alignmeat.......
Governing Equations for Uniaxial Extensional Start-up Flow ................
ANAYHCA) RESUIS ...oiiiiiei ittt e et e e e aeae cesereaneeas
Director Triad DynamiCs......cccccoviiennnicsnnssesssnenisisssesssessinsecseses
Uniaxial Alignment Dynamucs......co.ccoveciienenienneneeicenieeeceesereseeeens
Selection of Phenomenological Parameters..........ccocccviennrineerccniniennenen.
Numerical ReSUlts.........cciiiiiiniiniinec e s

Uniaxial and Biaxial Orientation Relaxaton.......cccoovivvnerocrveenveeennnes

vl

71
78
80
80
86
91




Vil

4472, Uniaxial and Biaxial Alignment Relaxation.......c.cccuvevviniiiininciinns e 101

4.5. CONCIUSIONS ..o cvvviriiicrs rereertectetieeeeseeratstesace e sassatstesasssesnesassissssreaeas 107

46. APPENGIX A i s e et 110

47, APPENAIX B ... e s s a e 113

4.8. ReEfEIBNCES ..ttt et et 114
Chapter §

Thesis Summary, Conclusions and Recommendations

5.1. Thesis SUMMATY.......c.cccoviiiiiiieeeee e iseae e s ecesteresnr naane e 116
5.2 THESiS CONCIUSIONS. .ievuvruiriieiiiiecereiieiesesetetersrissreessmnen sesessesssnenesasnsenesroennsns 117

5.3. RECOMIMENAATIONS. c1ivviveririeeeiiiteriiieierieeeetieirersses st anansseesseessases sesnesessensanses 120




NOMENCLATURE

UPPER CASE LETTERS

A,B,C

O(n)

O 0 v W =N

R- (R1), R* (R2)

Symmetric part of the velocity gradient tensor (rate of
deformation tensor)

Dimensionless rate of deformation tensor

Temperature dependent phenomenological coefficients

Alignment Deborah number (dimensionless extension rate)

External body force per unit volume

Excess free energy density

Step function

Unit tensor

Boltzmann's constant

Co-rotational tine derivative of the (uniaxial ) director n
Uniaxial discotic nematic phase

Trajectory of director on the surface of the sphere
Projection operator

Biaxial scalar order parameter

Time derivative of biaxial scalar order parameter
Tensor order parameter

Time derivative of tensor order parameter Q
Co-rotational time derivative of Q

Representative regions on the surface of a unit sphere

vill




S (Uniaxial) scalar order parameter
Sc Scalar order parameter corresponding to temperature T¢
S# Scalar order parameter corresponding to temperature ™
s* Scalar order parameter corresponding to temperature T
So Initial (uniaxial) scalar order parameter
Seq Equilibrium scalar order parameter
Sss Steady state scalar order parameter
$ Time derivative of (uniaxial) scalar order parameter S
T Absolute temperature
Te Nematic-isotropic transition temperature
T# Absolute Temperature at the boundary of biphasic region and
single isotropic region

* Absolute Temperature at which the isotropic phase is metastable

U nematic potential
Antisymmetric part of velocity gradient tensor
LOWER CASE LETTERS

a, b, di, dz Constants
e Dielectric tensor
€ Element of the dielectric tensor e normal to (uniaxial) director n
(N Element of the dielectric tensor e parallel to (uniaxial) director n
i.j.i; Unit vectors along x, y, z axes in the Cartesian coordinate system
| Biaxial director
lg Initial biaxial director 1 orientation

Steady state biaxial director | orientation




I Iy L2

1xo» lyos 120
Lxssr lysss lzss
m

my

m;s

My, My, M,

MixQ, My, Mz

Mysg, Myss, Mzsy

Ngs

Ny, Ny, N
Nx0» Ny0, Nz0
Nxss, Nyss, Nzss

p
t

u
v(x, Y, 2)
Vi’j

X,¥,2

Components of biaxial director |

Initial components of biaxial director |

Steady state components of biaxial director |
Biaxial director

Initial biaxial director m orientation

Steady state biaxial director m orientation
Components of biaxial director m

Initial components of biaxial director m
Steady state components of biaxial director m
(Uniaxial) director

Projection of (uniaxial) director n on y-z plane
Projection of (uniaxial) director n on x-axis
Time derivative of (uniaxial ) director

Initial (uniaxial) director n orientation

Steady state (uniaxial) director n orientation
Components of biaxial director

Initial components of (uniaxial ) director n
Steady state components of (uniaxial) director n
Pressure

Time

Displacement vector; unit normal to the disc-like molecule
Velocity field

Velocity gradient tensor

Cartesian coordinates




Xi

GREEK LETTERS

A
o, (i=1,7); % (i=1,6)

L L L] L ]
G4, Og» T2, Tg

X}; i=n, I; j=n, 1, mix
BL,' i=n, m; j=S, P

B2y j=S,P

Reactive parameter or tumbling function

Rotational viscosity

Irrotational viscosity or irrotational torque coefficient
(Uniaxial) director n polar angle

(Uniaxial) director n azimuthal angle

Biaxial director m polar angle

Biaxial director m azimuthal angle

Polar angle of the unit normal u of the disc-like molecule
Azimuthal angle of the unit normal u of the disc-like molecule
Constant extension rate

Strain (dimensionless time)

Entropy production density

Dimensional scalar phenomenological constants
Dimensionless phenomenological parameters

Free energy density

Entropic contribution to free energy density

Flow contribution to free energy density

Set of reactive parameters

Set of ordering functions

Set of elastic functions




Chapter 1

Introduction

1.1.  Historical Note and Introductory Comments

Many organic compounds do not undergo a single phase transition from the solid
to the liquid phase, but assume one or more intermediate states called mesophases |1, 2,
3, 4]. The mesomorphic materials possess both liquid-like fluidity and solid-like
molecular order. In solid crystals the centers of mass of the molecules are located on a
three-dimensional periodic lattice, hence they have both orientational as well as positional
order. In the case of isotropic Jiquids only short range order among the molecular centers
of mass is present. The ordering 1n mesophases (or mesomorphic or anisotropic liquids)
lies between that of a solid and that of an isotropic liquid. Based on the partial ordering
two basically different types of mesophases have been observed [1, 2}. First, there are
those in which the positional order is still present but the orientational order has
disappeared or is strongly reduced, and are called disordered crystal mesophases or
plastic crystals [1, 2]. Second, there are those in which the positional order is reduced or
has even completely disappeared but exhibit long range orientational order, and are called
ordered fluid mesophases or liquid crystals {1, 2]. A particular type of liquid crystal is
investigated in this thesis.

The shape of the molecule is an important criteria for mesomoiphism to occur.
Since early investigations of liquid crystalline behavior the accepted fact, unul recently,
was that for thermotropic mesomorphism to occur the molecules have to be rod-like in
shape. It was discovered in the last decade that compounds composed of disc-like
molecules also show stable thermotropic mesomorphism and are generally known as
discotic liquid crystals or discotic mesophases. The first discotic liquid crystal was
prepared and identified in 1977 {S]. A number of synthetic {6, 7, 8] and naturally
occurring [9, 10, 11, 12] discotic liquid crystals have been discovered.

Naturally occurring carbonacecous mesophases display discotic crystalline
behavior and are derived from the pyrolysis of the coal or petroleum pitches {9, 10, 13].
This low cost mesophase is used as a precursor material for the manufacture of high
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performance carbon fibers, which are currently competing with the more expensive
carbon ﬁb;,rs derived from polymer textile yarns, such as PAN (poly-acrylonitrile) [14].
The basic know!edge of how to control the physical properties of high performance
mesophase carbon fibers is lacking but is essential for their continuous commercial
development. in particular, the process of melt spinning, in which planar disc-like
molecules become oriented along the fiber axis [13, 14, 15, 16], is dependent on the
rheological and the viscoelastic behavior of the material. In addition, it is known that the
molecular arrangement in the cross section of fibers controls the mechanical properties
such as tensile strength and the Youngs modulus of fibers [9, 14, 15, 16]. To develop a
basic scientific understanding of the mesophase carbon fiber spinning process, an
understanding of the extensional rheology of discotic nematic liquid crystals is therefore
essential. The general objective of this thesis is to elucidate, using theory and simulation,
the fundamental couplings between processing and morphelogy, such as the effect of an
extensional processing flow on the development of molecular orientation. This thesis
considers, in addition to spinning flows, other frequently industrially used extensional
flows, such as biaxial extension and planar extensional flow [17]

The rest of this chapter gives a brief presentation of the main quantities and
phenomena required to quantitatively specify the flow-morpholoygy relations of potential
relevance to the mesophase carbon fiber spinning process. We start with a brief
description of mesophase behavior and molecular ordering in liquid crystalline phases,
and then focus our discussion on discotic mesophases, including the carbonaceous
mesophases which are precursors for mesophase pitch-based carbon fibers. We next
identify relevant issues concerning flow-microstructure-product properties, which
motivate the practical utility of the present study. Then we define the quaniitative
tensorial measures of microstructure and morphology, which form part of the model
equations presented and used in chapters 2, 3, and 4. Subsequently we present the
kinematic quantities that specify various extensional flows, used in chapters 2, 3 and 4,
and present the orientation distribution function. Finally we present the thesis objectives
and organization.

1.2.  Types of Liquid Crystals
1.2.1. Thermotropic Liquid Crystals

Single component systems that show mesomorphic behavior in a definite
temperature range are called thermotropic liquid crystals. Every molecule in the
thermotropic liquid crystalline phase participates in the long range ordering.



Thermotropics are of interest for applications in electro-optical display, temperature and
pressure sensors, organic fibers, special materials of construction such as bullet proof
jackets, etc. {1]. Most computer and watch displays use mixtures of low molecular
weight rod-like nematic liquid crystals, such as 8CB(p-octyl-p’-cyanobiphenyl).

1.2.2. Lyotropic Liquid Crystals

Lyotropics shcw mesomorphic behavior in solution and are usually the solutions
of rigid molecules in strong solvents [1, 2]. A well known example 1s Kevlar, which 1s a
solution of (Poly(p-phenylene terephthalamide)) in sulphunc actd. The temperature
range in which lyotropics exist is mainly determined by the concentration. The long
range ordering is controlled by mainly the rod-like molecules (solute). Lyotropic liquid
crystals are of great interest biologically and appear to play an imponrtant role in hiving
systems [1].

1.3. Structural Classification

Based on the nomenclature proposed originally by Friedel in 1922, liquid crystals
can be classified according to their molecular order into three major classes : nematic,
cholesteric, and smectic.

1.3.1. Nematic Order

Figure 1 shows schematic representation of the nematic phase. The molecules
tend to align parallel to each other and along some common axis called director n. The
director is a unit vector (n.n = 1), and gives the average preferred orientation. Long range
orientational order and cylindrical (or uniaxial ) symmetry are exhibited by this liquid
crystalline phase. The centers of gravity of the molecules are distributed at random.
Thus, they posses orientational order like crystals and positional disorder like viscous
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Fig. 1. Schematic representation of nematic order in liquid crystals.




1.3.2. Cholesteric Order

Figure 2 shows the schematic of the equilibnum structure of the cholesteric phase.
The lack of long range translational order imparts fluidity to the cholesteric phase. On a
local scale, the cholesteric order is similar to the nematic order, since the molecules tend
to align along the director n. On a larger scale, the cholesteric director follows a helical

path given in a Cartesian coordinate system as [3]:
n=(nx,ny,nl)z(cos(qoz+¢), sin(qoz+<b),0) (1)

where qq is the wave vector and @ is the arbitrary phase angle. The sign of qg correspond
to left or right helices, and determines the magnitude the spatial period P [3] of the
twisted planar cholesteric structure; the spatial period or pitch is given by :

P = )
| qol

Equation (2) shows that as qp — 0then P — o, and the cholesteric liquid crystals
becomes a nematic liquid crystals [3].

Fig. 2. Schematic representation of the cholesteric order.

1.3.3. Smectic Order

‘ A smectic phase has, in addition to the orientation order of nematics and
cholesterics, a single degree of translational order which results in a layered structure.



Smectic phases always occur at temperatures below the nematic range, since they are
more ordered. More than twelve smectic phases have been identified, however, the best
known are smectic A and Smectic C. Figure 3 shows the schematics of (a) smectic A
phase and (b) smectic C phase. In smectic A ordering, the molecules are aligned parallel
to the layer normal within each layer, whereas in smectic C ordering the molecules are
tilted away from the layer normal in each layer [1, 2, 3}. The layer spacing 1s of the order
of 20A [3].

/]

(a) (b)

Fig. 3. Schematic representation of two types of smectic ordering : (a) smectic A
order; (b) smectic C order.

1.4. Discotic Phases

The accepted principle before the discovery of discotic nematics in 1977 [5], was
that for thermotropic mesophorism to occur molecules have to be rod-like in shape.
However, relatively recent studies [6, 7, 11, 12] have established that many compounds
composed of disc-shaped molecules also exhibit stable thermotropic liquid crystalline
phases. Theoretically the possibility of existence of an assembly of plate-like particles in
the transition from isotropic to nematic phase was established [18] well before the
discovery of discotics. Some typical discotic nematics are shown in figure 4 [4]. A
typical discotic molecule has flat (or nearly flat) cores with six or eight long chain
substituents which are essential for the formation of discotic liquid crystals. Structually,
discotic crystals fall into two categories : the columnar phase (see figure 4a,c,d,f,g,h) and
nematic phase (see figure 4b,e) . The columnar phase is seen more often in the
compounds exhibiting discotic nematic behavior. In its simplest form the columnar
phase consists of discs stacked one on the top of each other aperiodically to form liquid-
like columns, the different columns constituting a two dimensional lattice. However, a
number of variants of this structure have been found [8]). Figures (5a,v,c,d,e) show the
different two dimensional lattice of columns found in columnar discotic crystals {4, §).




The various ellipses represent discs which are tlted with respect to the column axis. To
summarize, the columnar phase has long range translational periodicity in two
dimensions and liquid-like disorder 1n the third dimension. The columnar phase of
discouc liquid crystals 1s not considered in this thesis, and therefore will not be discussed
further.

Figure (5f) show a schematic of the nematic phase (Ng) This phase 1s found to be
exhibited by relatively a few compounds (see figure 4b,e). The nematic phase of
discotics has an onientatnonally ordered arrangement without ax; jong-range translational
order [4]. Discotic nematics, in contrast t~ the rod-like nematics, are optically negative
and the director n represents the preferred orientation of the short molecular axis (or the
normal to the disc-like molecule). Only discotic nematics of the type shown in figure (5f)
are invesugated in this thesis.

1.5. Carbonaceous Mesophases

The carbonaceous mesophase is a uniaxial discotic nematic liquid crystalline
thermodynamic phase, which forms during the liquid phase pyrolysis of coal or petroleum
pitches, and is used as precursor in the manafacture of high performance mesophase
carbon fibers [19]. Figure 6 shows the thermodynamic and structural changes brought
about by h=ating a non-volatile organic compound, such as coal or petroleum pitch, in the
absence of air [9]. The organic substance melts on heating and becomes an isotropic
pitch or liquid. As the temperature rises over about 3502 C, optically anisotropic spheres,
known as spherules, appear in the isotropic matrix [10, 19, 20]. As the hydrogenative
polymierization reactions continues the molecules get larger and the mesophase more
viscous. When the molecules reach an average molecular weight of approximately 2000
they are, apparently, sufficiently large and flat to favor the formation of a liquid
crystalline nematic phase called the carbonaceous mesophase.

The formation of the carbonaceous mesophase follows a nucleation and growth
process, typical of metastable thermodynamic systems. The droplets or spherules are
easily observed because of their optical anisotropy. Attractive forces among the
spherules give rise to droplet coalescence and overall growth of the mesophase. The
structure of the spherules and the molecular organization of the disc-like aromatic
molecules within the spherules has been described by Brooks and Taylor {1965) [12].
The characteristic mesophase mechanisms that are involved in establishing the
mesophase morphology are spherule precipitation, coalescence of spherules to form a
bulk mesophase, and distortion of mesophase by mechanical deformation.




Fig. 4.

(8) h)

Examples of disk-like molecules which display discotic mesophorism: (a)
hexa-n-alkanoates of benzene, (b) hexakis ((4-octylphenyl)ethynyl)benzene, (c)
hexa-n-alkanoates of scylloinositol, (d) hexa-n-alkanoates of triphenylene and
hexa-n-alkoxytriphenylene, (e) hexa-n-alkyl and alkoxybenoates of triphenylene,
(f) hexa-n-alkanoates of truxene, (g) bis(3,4-nonyloxybenzoyl)methanato
copper(Il), and (h) octasubstituted metallophthalocyanine. Reprinted from [4].
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Fig. 5.  (a)-(e) Top view of the columnar phases of disc-like molecules. The column
axis is pointing out of the plane of paper, and the ellipses represent the discs
which are tilted with respect to the column axis. (f) Side view of a typical discotic
nematic liquid crystal.

The carbonaceous mesophase consists of disc-like molecules that display long
range orientational order, such that the molecnles lie approximately parallel to each other
and there is no point-to-point registry between adjacent molecules. The orientation of
each molecule is defined by its unit normal. The symmetry elements of the carbonaceous
mesophase are [19]:

(a) any translation;
(b)  any rotation about the unit normal to the disc-shape molecule;
(c)  arotation of =t radians about any axis parallel to the plane of the molecule.




Although the degree of symmetry 1s the same for a discotic nematic and
conventional rod-like nematic crystal the fact that for the discotc nematc the axis of
symmetry is normal to the long dimensions of the molecule has an important
consequences for optical properties, the response to mechanical stress, and the ahgnment
1in external fields such as extensional flows, electnc {ields, and magneuc fields In this
thesis we focus on the distinguishing features of flow-induced onentation of discotc
mesophases. A schematic model of carbonaceous mesophase formation 1s shown 1n
figure 7 [19]. This model suggests that the stacking, size, and the possible shapes of disc-
like molecules which may be quite urregular and have vacant sites or holes

State of Compound Temperature
Organic Pitch room temperature
Isotropic Pitch 200°C -350°C

Condensation
Polymerization

Carbonaceous Mesophase .
(Liquid Crystals) 350°C -450°C
Cokes 500°C - up

Fig. 6. Changes in the non-volatile organic compounds like coal or petroleum pitches
brought about by heating in the absence of air [9)].
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The main microstructural features of the carbonaceous mescphases (uniaxial
discotic nematic hiquid crystals) are captured by the director n , and by the degree of
orientation order S. The director n 1s a unit vector that describes the direction of the
average molecular orientation of the unit rormal to the disc-like molecules, and S is a
measure of the average molecular alignment along n. In discotic nematics the unit
molecular normals are more or less aligned along n. The dispersion of molecular
orientation along n is captured by the magnitude of S : when S = 0 the phase is isotropic,
and when § = | all the molecules are perfectly aligned along n. For normal discotic
nematics the scalar order parameter S 1s restricted to the range 0 < S € 1, and for abnormal
discotic nematics to - 0.5<S 50 [10, 11, 12]. The basic morphelogical and rheological
phenomena have to at least include a description of temporal changes of (S, n). Below
we show that in certain insiances uniaxiality may be lost and a more complex description
that includes biaxial ordering 1s necessary (see section 1.9.).

Fig. 7. Schematic model of the carbonaceous mesophase. Reprinted from [19].




1.6. Carbon Fibers

Three different types of commercial carbon fibers, manufactured from three
differest  precursor matenals, are : rayon carbon fibers, acrylic carbon fibers, and
mesophase pitch based carbon fibers [21]. The rayon carbon fibers have relanvely low
tensile strength and low Young's modulus, and are used mainly as composites designed
for use in rocket and space snuttle apphications. The acrylic carbon fibers commonly
known as PAN-based carbon fibers (poly-acrylonttrile) are copolymers of more than 85%
of acrylonitrile and the rest ere other comonomers which are used to improve
processability. The PAN-based carbon fibers have high strength and high modulus and
arc used in a wide vanety of applications[13, 15, 16, 21] Putch-based carbon fibers can
be manufactured from two different states of the same precursor matenal (coal or
petroleum pitches) . the liquid crystalline (discotic) state called mesophase, and the
isotropic state. The 1sotropic pitch-based carbon fibers have low moduius and strength,
and find applicanons as thermal nsulations at high temperatures, gaskets and fillers n
various plastics eic. {13]. The mesophase pitch based carbon fibers have ultrahigh
strength and modulus and can be used for the same applications for which PAN-based
carbon fibers are used. Table | compares the PAN-based carbon fibers and mesophase
pitch-based carbon fibers on the basis of some selected properties of available
manufactured carbon fibers [21]. The reason that mesophase pitch-based carbon fibers
are preferred over PAN-based carbon fibers is the low-cost of the precursor matenal and
processability in case of the former [22]. Also 1n addiuon, the structure and properties ot
mesophase based carbon fibers are unique and the fibers can thus be used for diffeient
purposes. The more graphitic structure of mesophase pitch-based carbon fibers leas
naturally to the ultra-high moduli necessary for suffness-criucal purposes  The large
negative coefficient of thermal expansion 1s particular attractive for metal composites
which can be used for structures in outer space. The high thermal conductivity
(approximately of the order of Copper) has put mesophase pitch-based carbon fibers in
the fore front for the applications where rapid heat dissipation 1s important . PAN-based
carbon fibers, rayon-based carbon fibers, and 1sotropic pitch-based carbon fibers are not
considered in the present study.

L.7. Spinning of Mesophase Piich

The mesophase pitches or carbonaceous mesophases are derived from the
pyrolysis of the coal or petroleum pitches. Mesophase pitch consists of planar disc-

shaped arumatic molecules which show, as discussed before, long range onentational
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order. The highly ordered but deformable mesophase pitch is extruded in the
conventional melt spinning process to form a precursor fiber. The planar aromatic
molecules constituting the mesophase pitch become oriented along the fiber axis during
the melt spinning and the orientation is preserved during the subsequent heat treatment by
a chemical cross-linking or thermosetting process. Figure 8 shows the schematic of the
alignment of the disc-shape molecules in the spinning process.

The fluid mechanical aspects of the carbon fiber spinning process include
complex shear-elongational flows in the converging die (spinneret) and uniaxial
extensional flow in the spinnline. In this thesis the effect of extensional flows on
morphology is studied in detail.

(O pap—Discorc
N0y =

Spinneret

Fiber

Fig. 8. Schematic of orientation process during the spinning process of carbonaceous
mesophase (mesophase pitch). The various ellipses show the tilted discs
orienting during the spinning process.
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Tensile Youngs Strain Coefficient
strerigth modulus  at Thermal Electrical of thermal
Fibre Diameter, Density, (axial), {axial), fatlure, conductivity, resistivity, eXpansion
Manufacturer designation um gem 2 GNm ? GNm ? iy, % W m pom (axial), 10 *K !
PAN-type fibres
Akzo Fortafil 5{C) 7 18 276 345 08 975
Fortafil 3(C) 73 18 38 227 17 20 167 01
Amorco T-50 65 181 290 390 07 70 95 113
T-40R 65 178 345 290 12 43 109 03
T-40 51 181 565 290 18 15 145 075
T-650/42 51 178 503 290 17 15 14 2 075
T-650,/3% 68 177 455 241 175 14 149 06
T-300 7 176 365 231 14 g5 18 06
BASF Celion GY-70 84 190 186 517 036 65 11
Celion G40-700 5 177 4 96 300 165 13
Celion G30-500 7 178 379 234 162 86 056
Hercules Magnamite-HMS4 7 180 234 317 08
Magnamite-IM7 5 177 53 303 18
Magnamite-IM8 5 180 53 303 16
Magnanite-IM6 5 176 81 276 17 140
Magnamite-AS6 5 183 41 242 16 18 2
Magnamite-AS4 8 179 40 221 16 153
Toray Torayca-T300J 7 179 4-21 230 19 20
industries Torayca-T300;FT300 7 175 3-53 235 15 20
Torayca-T700S 7 182 48 230 21 .
Torayca-M40 6-5 181 274 392 06 85 8 -12
Torayca-M50 6 191 245 430 05 89 8
MP-type fibres
Amoco Thornel P-120 10 218 237 827 029 640 22 145
Thornel P-100 10 215 237 724 032 520 25 - 145
Thornel P-75 10 20 21 520 o4 185 7 14
Thornel P-55 10 20 180 380 05 120 5 -13
Thornel P-25 11 190 140 160 09 22 13

tl
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1.8. Morphology of Mesophase Pitch-Based Carbon Fibers

It turns out that carbon fibers spun from carbonaceous mesophases have a
spectrum of transverse textures, that are associated with various mechanical properties.
The morphological features of the textures are defined by the spatial arrangement of the
flat disk-like aromatic molecules in the cylindrical fibers. Som~ typical examples (see
figure 9) found in the literature (13, 14, 15, 16] display radial, onion-like. and mixed
radial and onion-like textures. In radial textures, the discotic molecules orient with their
unit normals describing circles concentric with the fiber axis, while in the onion-like
textures the discotic molecules themselves follow circular paths concentric with the fiber
axis. In addition, the fiber cores may be isotropic or anisotropic, with the latter case
giving rise to singular lines running along the fiber cores. For radial textures (or
morphology) the presence of a singular line along the fiber axis introduces a potential fast
failure mode by longitudinal crack propagation [16]; such failure modes are absent in the
mesophase carbon fibers which have onion-like outer layers. The morphology or

&

(a) (b)
(d (

Fig. 9.  Schematics of the various observed transverse textures of mesophase pitch-
bases carbon fibers : radial morpholog, (a), cnion skin and mid-radial
morphology (b), onion skin and mid-random morphology (c), onion morphology
(d), and folded layer morphology (e¢). The lines indicate the molecular

€)

{rajectories.
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cross section texture of mesophase pitch-based carbon fibers 1s controlled by the
pretreatment of the mesophase pitches, the consutution and spinnability of pitches, the
spinning conditions, the fiber diameters, the spinnline tension, the temperature, and other
factors [23]. In the present study the effect of constitution of mesophase prior to the
processing (nematic potential U), spinning conditions (the effect of extensional flows)
and the effect of different extension rate in the spinnline (the Deborah number) on the
morphology of a model discotic mesophase are investigated.

1.9. Nematic Ordering

The term tensor order parameter is used to distinguish between the phases of
different symmetry. It represents the extent by which the state of the molecules in a less
symmetric phase differs from that in the more symmetric phase. The nematic phase has
lower (higher) symmetry (order) than the isotropic phase. So the order parameter is
defined so that it is non-zero in nematics and zero in the isotropic phase [2].

A second order, traceless, symmetric tensor order parameter Q is defined
quantitatively by using a tensorial physical property such as the magnetic susceptibility,
the electric polanizability or the dielectric constant, and by subsequently extracting the
anisotropic part {24, 25]. The tensor order parameter Q is given as :

= 1l + 1 .
Q=S (nn 3 8) 3 P (mm - 1) (3)
where the following restrictions apply:

= T. = . .l . -3. l
Q=Q"; Tr(Q) =0; 25351, 25952,

4

nn=mm=1l=1;nn+mm+11=9§;

where n ., m, | (= nxm ) are unit vectors which form orthogonal director triad; n is
known as the (uniaxial) director and m, | are termed as the biaxial directors. On the
principal axes, the tensor order parameter is written as :
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T%(s-p) 0 0
Q = 0 -3l(3+p) 0 (5)
|0 0 %s |

where %S - %( S-P)and- %( S +P) are the eigenvalues corresponding the

eigenvectors n, m, and | respectively. If all the eigenvalues of the tensor order

parameter Q are zero (i.e., S = 0, P = 0) then the phase is defined as isotropic. If two
eigenvalues of Q are equal ( i.e., S # 0, P = 0), the phase is termed as uniax:al nematic,

and the uniaxial scalar order parameter S is sufficient to define the order of alignment of
the molecules in the phase. If all the eigenvalues of Q are different (i.e.,S =0, P = 0),

the phase is called biaxial nematic {11, 12].

In the case of perfect axially symmertric molecules (for example rigid rods or rigid
circular disks) no molecular interactions can result in a macroscopic ordering that is less
symmetric than the molecules themselves. Thus an external cause, such as an external
field perpendicular to n, is necessary to produce ordering in a plane normal to n. The
biaxiality induced, in a phase containing axially symmetric molecules, due to the
presence of an external field is referred to as field-induced biaxiality. In the absence of
the external field, the biaxial nematic phase is expected only for molecules which are
geometrically biaxial or those that do not possess axial symmetric. In chapter 4 of this
thesis we characterize the extensional flow-induced biaxiality of a discotic that is uniaxial
at rest.

S is known as the uniaxial scalar order parameter or uniaxial alignment, and is a
measure of the degree of alignment of the unit normals to the disc-like molecules in the
direction of director n. The uniaxial scalar order parameter S is given as {1, 3] :

S --<%— cos2e-%-> (6)

where 0 is the angle of the unit normal to the disks with the director n and < > represents
the average over all the molecules in a particular region of space. For normal nematics S
varies fromQ to 1; S = 1, for perfectly aligned molecules, S = 0 for isotropic liquid, and at
the isotropic-nematic transition most theories predict S = 0.5. The biaxial scalar order
parameter P is a measurc of the degree of alignment of the projection of the molecular
normals along the biaxial director m, in a plane orthogonal to the uniaxial directorn. In
other words, the biaxial scalar order parameter specifies the amount of transverse




ordering.

In the absence of biaxial ordering the uniaxial scalar order parameter S is simply
termed as the scalar order parameter. This standard nomenclature 15 adopted 1n chapter 2
and chapter 5 of this thesis, whereas in chapter 4 while discussing the flow-induced
biaxiality the two scalar order parameters, S and P, are referred as uniaxial scalar order
parameter (S) and biaxial scalar order parameter (P), respectively. In the absence of
biaxiality or where only the uniaxial behavior of the nemaucs 1s assumed, the biaxial
directors m, and | are undefined and the uniaxial director n 1s referred simply as the
director. Following this standard nomenclature, 1n chapter 2 and chapter 3 (on umaxial
nematics), n is called director and m and 1 do not appear; whereas chapter 4 of this thesis
(on flow-induced biaxiality of uniaxial nematics) n is called the uniaxiai director and m
and | are called the biaxial directors .

1.16. Extensional Flows

In this thesis the standard fluid flow terminology of [17] is adopted, and known
kinematics are assumed. In Cartesian coordinates, the velocity field corresponding to the
extensional start-up flow are as :

vx=aexH(@); vy=-a(l+b)eyH®; v,=-a(1-b)ezH();

0 t<0]

H(t) = [
1 t20

where € is the constant extension rate, a =+ 1 or - 1,0 < b < 1 are parameters whose
values captures the range of possible extensional flows. For uniaxial extensional flow
a=+1,b=0; for biaxial extensional flow a = - 1, b = O ; for planar extensional flow
a=+1,b=+ 1. Figure 1 in chapter 3 show the schematics of the deformations of a unit
cube of nematics subjected to three representative extensional flows. The corresponding
rate of deformation tensor ( A= (vi,+v, )2,i,j=x,y,z ), the symmetnc part of
velocity gradient tensor, is given as :

a 0 0

A = ¢ 0 -3(1+b) 0 (8)

i 0 0 -%(l-b)_
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Extensional flows are encountered in many polymer processing cperations such as
fiber spinning, film blowing, sheet streiching, polymer foaming, and vacuum

thermoforming etc. to name a few [17].

1.11. Orientation Distribution Function

The orientation distnbution function f(u) of a unit normal u to the disc-shape
molecule of a uniaxial discotic nematic liquid crystal represents the probability of finding
a molecular unit normal in an infinitesimal solid angle of the unit sphere. From the
definition of u we have

flu) = f(-u 9)
The Fourier representation of f(u) has the following form [27]:

fu) = zh (fo+ Q£ () + Quua Fga(u) ++-) (10)

where Qjj, Qijia are the Fourier coefficients and fo, fjj, fijx1 are the surface spherical
harmonics (or basis functions) which form an orthogonal basis such that

1. fijdu =] 1. fdu =] £ .fgdu=..=0 (11
sz 82 sz

and are given as [ 27]:
fo = 1 (12a)
f = uu g (12b)

f = uwuu +L(88+1+1T)
35 (120)
-%(Suu +udu+uud+T (udu)+(udu)T+Tusu)T)




where from [27] :

T (udu) = 1T:(udu); (udu)"={udu):IT (13a,b)

The surface spherical harmonics are created by the even symmetric products of the
components of the unit molecular normals u, and are traceless. The unknown Fourier
coefficients Qy), Q1 are calculated using the orthogonality of the surface sphencal
harmonics as given in equation (11). The resulung approximated onentaton distribution
function, neglecting the Fourier coefficients of order higherthan Q,;, is given by :

f(u)=z%(l+125Q:(uu-g)) (14)
Using equation (14) and the following parametrization of u :
U = cCos®; N + sin®; cos®W; M + sin W; coswy 1 (15)
the final truncated form of the orientation distribution function f(u) is as given below:

f(u) = ‘-‘-1&- +§ii ((2cos2a; - sinfw) S + (sin2w;cos2w) P)  (16)

where the three directors ( n, m, 1 ) forn a right handed orthogonal triad, and where
on , 6 are the polar and azimuthal angles of u respectively. The orientation distribution
function f(u) is used (see figure 11 of chapter 4) to represent the density of the unit
normals to the discs in the m-1 plane.

1.12. Thesis Objectives

The main objectives of the this thesis are : (a) to understand the flow-induced
molecular orientation of idealized uniaxial discotic nematic liquid crystals subjected to
extensional flows, which are the main flows encountered in fiber spinning and many
other industrial processes, and (b) to establish the relevant qualitative features that
describe the relations between extensional deformation inputs and onentation and
alignment responses. The particular objectives of this thesis are :

(1) To formulate an approximate phenomenological theory that describes the
orientation and alignment of a medel discotic nematic liquid crystal of variable
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alignment, during isothermal, incompressible, extensional flows;

(2) To apply the developed phenomenological theory to isothermal, incompressible,
irrotational, three dimensional extensional flows and to characterize the dynamic
and steady state microstructure of model discotic liquid crystals;

(3) To characterize the effect of operating conditions (flow rate, initial
thermodynamic state, temperature, intial onentation) and material properties
(viscoelastic parameters) on transient and steady morphological phenornena;

(4) To rank and classify the different extensional discotic nematic flows according to
their efficiency in producing typical patterns, and to provide a  flow-morphology
phase diagram for representative extensional flows;

(5) To identify the main extensional flow-induced phase transitions, such as uniaxial
nematic-isotropic and uniaxial-biaxial;

(6) To provide a fundamental understanding of morphology development phenomena
of discotic nematics in extensional flow, of direct use to the modeling of the
carbonaceous mesophase spinning process.

1.13. Thesis Organization

The organization of the thesis is as follows. In chapter 2 an approximate
phenomenological theory is developed and subsequently applied to describe the uniaxial
extensional flow of a model discotic nematic liquid crystal. The sensitivity of the director
paths , director steady states, and alignment relaxation along the director paths are
analyzed with respect to the initial director orientation and to the extension rate. The
minimizing principle that governs the director trajectories to the steady states are also
determined in chapter 2. In chapter 3 the theory is applied to a range of extensional
flows; the dynamics and microstructural response of uniaxial discotic nematics in these
flows is simulated. A practical classification of various extensional flows based on
orienting and alignment strength is given. In Chapter 4 the developed theory is used to
simulate and analyze the flow-induced biaxiality in a uniaxial discotic nematic liquid
crystal subjected to uniaxial extensional flow.

Cl > of this thesis | I icle in_J | de Physique il
(France) 4 (1994) 645-065 and is identical with the reference '1' of chapter 3 and
reference '14' of chapter 4. Chapter 3 of this thesis has been accepted as an article in
Liquid Crystals (1994) and is identical with the reference '15' of chapter 4,
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Chapter 2

Extension Dynamics of Discotic Nematics of Variable Order :
Geodesic Flow and Viscoelastic Relaxation !

2.1. Abstract

Variational methceds are used to develop the governing equations that describe the
flow of spatially invariant uniaxial discotic nematic liquid crystals of variable order; since
the equations are based on a phenomenological truncated expansion of the entropy
production , the equations are approximations. Restrictions in the phenomenological
parameters appearing in the governing equations are imposed taking into account the
ordering of the discotic phase. Numerical and analytical solutions of the director n and
alignment S are presented for a given uniaxial extensional start-up flow . The unit sphere
description of the director is used to discuss and analyze the sensitivity of the director
trajectories and the coupled alignment relaxation to the initial conditions ( ng, Sp) and
to the alignment Deborah number (De). The numerical results are used to characterize
the relaxation of the teasor order parameter Q and to compute the steady flow
birefringence. When the poles of the unit sphere are along the extension axis and the
equator lies in the compression plane of the flow, it is found that the director trajectories
belong to the meridians (great circles through the poles) and the dynamics follows a

geodesic flow; when subjected to flow the director follows the shortest path that
connects the initial orientation no and the equator (compression plane). As typical of

geodesic flows, there is a strong sensitivity to initial conditions: when ng lies on the poles
no predictions on the eventually steady director orientation are possible. If the prior to
flow orientation is close to the poles the coupled alignment reiaxation along the geodesics
is nonmonotonic and for large De the discotic may become temporarily isotropic . The
couplings between n and S are captured by the tensor order parameter relaxation. At
steady state, the director lies on the equator, and the alignment and birefringence increase
with increasing De.

1 This chapter has been published as an article in Journal de Physique II (France) 4 (1994) 645-665.
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2.2. Introduction

Discotic nematic liquid crystals are an important class of mesophases that occur
naturally in carbonaceous mesophases [l, 2, 3]. These mesophases are formed by
condensation of arecmatic rings and iend to adopt a umax:al discotic nematic phase Nd
[4, 5], with the unit normals to the disc-like molecules more or less aligned along a
common direction ( see Fig.1 (b)), represented by the director n, 1n what follows we
use n and onentation interchangeably. These materials find practical use 1n the spinning
of high performance carbon fibers {2, 3, 6], and understanding their flow onenting
behavior in the presence of uniaxial extensional deformations 1s of pracucal utlity  As
a first step in developing a basic qualitative understanding of such complex nonlinear
problem, in this work we consider the flow orienting properties of a model
incompressible discotic nematic liquid crystal of variable degree of order 1n isothermal
uniaxial extensional flow.

Previous work [ 7, 8, 9, 10, 11] on the rheology and flow-induced onentation of
uniaxial discotic nematics assumed that the scalar order parameter S remains unaffected
by the flow; in what foillows we use S and alignment interchangeably. The validity of
this assumption for low molar mass materials justfies then the use of the Leshe-Ericksen
(L-E) theory [12, 13] for uniaxial nematics with the proper values of the maternal
parameters. The important differences in sign and magnitude of the material parameters
corresponding to uniaxial rod-like and discotic nematics follow from the fact that rod-like
nemaitics orient their longest molecular dimension along the director whale disc-like
nematics orient their shortest molecular dimension along the director As 1s well known,
the orienting properties of uniaxial nematics during shear flow are governed by the sign
and magnitude of the tumbling (reactive) parameter A: for aligning (non-aligning) rods
A>1 (0<A<l), and for aligning (non-aligning) discs A< ~1 (-=1<A< 0); the tumbling
parameter A is given by the negative ratio of the irrotational torque coefficient (y 2) and
the rotational viscosities ( ¥ 1), and represents the coefficient of the rauc of strain to
vorticity torques acting on the director n. Previous work [ 8,9 | focused on the onenting
properties of aligning uniaxial discotic nematics 1n steady shear, ana it was found that
shear orients the director in the shear plane and at a steady angle 6, lying 1n the
90" <0 < 135" sector with respect to the flow direction. In steady shear-free uniaxial
extensional flows, the orienting behavior of uniaxial nematics 15 again determined by the
sign of A : when A >0 the director aligns along the stretching (extension) direction, and
when A < 0 the director aligns somewhere in the compression plane, orthogonal to the
stretching direction [11].




For matenals of larger molecular weights the coupling between the director and
the scalar order parameter should be retained [14] This coupling introduces additional
nonlinearties through the dependence of the generalized Leslie coefficients on the scalar
order parameter , as shown in various works [14, 15, 16, 17, 18]. The nonlinear shear
onenting behavior of rod- and disk-like nematics is now dependent on the shear rate, and
flow-induced transitions 1nvolving aligning and non-aligning modes are tmggered by
varying the sheer rate [18, 19, 20]. On the other hand, the behavior of rod-like nematics
In extension is less dramatc since the competinon between shear and vorticity 1s absent
in an irrotational flow , and the effect of flow is to onent the director along the
stretching direction with a concomitant increase in the scalar order parameter. A more
complex situation presents itself for the uniaxial extension of discotic nematics , since
they may orient anywhere in the compressional orthogonal plans, and may exhibit a
nonlinear relaxation of S . The former observation explains the various observed cross
section morphologies of mesophase carbon fibers, 1n which the normals to the molecular
planes lies in the plane normal to the fiber axis [6, 21].

Our main objectuive in this work 1s to establish the relevant qualitative features
that describe the relations between uniaxial extensional deformation inputs and
orientation and alignment responses in an idealized discotic nematic liquid crystal. In
the present paper the phenomenological properties of the particular model discotic
nematic liquid crystal chosen for study are not fitted to those of any existing real
matenal, and , as shown below , their choice is based on previous results. The
particular objectives of this paper are :

(I)  To formulate and solve an approximate phenomenological theory that describes
the orientation and alignment of a ruedel discotic nematic liquid crystal of variable
alignment, during isothermal, incompressible , uniaxial extensional flow ;

(2) To characterize the sensitivity of the director paths to the compressional plane, to
the initial conditions and to the extension rate by using numerical simulation;

(3)  To characterize the alignment relaxation along the director paths, to the initial
conditions and to the extension rate by using numerical simulation;

(4)  To determine the minimuzing principle that governs the director trajectories to the
compression plane.

In this paper we use the unit sphere description of nematics [ 22, 23, 24, 25] only to

facilitate the discussion and classitication of the numerical results that pertain to the

above mentioned objectives 2, 3, and 4.

The organization of this paper is as follows. In section 2.3 we define the
coordinate system and the state vanables, derive the governing equations, and briefly




present the elements of the unit sphere description used to discuss and classify the
numerical solutions . A brief descniprion of the numencal method used to integrate the
governing equations is presented. In section 2 4 we present , discuss, and classity the
solution vector , consisting of the time dependent director and ahgnment tields, obtained
from numenical integration of the governing equations  Typical computations of the
tensor order parameter relaxation and steady flow birefringence are presented.

2.3. Governing Equations
2.3.1. Definitions of Coordinates, Orientation and Alignment

In this paper we study the microstructural temporal and spatially invanant
response of a mcdel umaxial discotic nemanc subjected at tme t = 0 to a constant
uniaxial extension rate € In what follows we use cartesian tensor notation, repeated
indices are subjected to the summation convention {26], partial differenuation with
respect to the jth spatial coordinate is denoted by a comma (1e., v,; = dv,/0x; ) or by
the symbol 9j (i.e. vj;=d)vj), and a superposed dot denotes the matenal ime denvauve

(ie.S= %S[“ =d8/dt+ v,0,S ). The microstructure of the nematic 1s characterized by

the uniaxial tensor order parameter Qy; (t) [13]:
Q)= S (nin; - 3, /3) (1a)
where the following restrictions apply:
Qi=Qji; Qi=0; -12<Ssl; nn, =1 (1b)

and & is the unit tensor. The magnitude of the scalar order parameter S is a m:asure of
the molecular alignment along the director n, and is given by $=3(n,Q,n,)/2
Equation (1a) gives a proper description of the order in a discotic nematic phase if we
identify the director as the average orientation of the unit normals to the molecular discs;
see Fig.1(b ); as explained in [27], with this identficaton, S 1s positive for both rod-like
and disc-like uniaxial nematic liquid crystals, and no further distinction 1n required 1n
this paper since rods are not considered here. Since umaxial extensional flow will not
induce negauve values for the scalar order parameter S we further restrict 1ts vanation to
the positive unit interval, 0<S<1 [22].
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Fig. 1. Definition of (a) Coordinate systems, (b) Director orientation of a uniaxial
discotic nematic liquid crystal, and (c) Uniaxial extensional flow deformation. (a)
Director angles and unit sphere: 8 (0 < 8 < 2x) is the azimuthal angle and
¢ (0 < ¢ < n) is the polar angle. The north pole of the sphere is located at ¢=0, the
south pole at ¢ =7, and the equator at (0, ¢ ) = ( [0, 2r] , £w2), n denotes the
director. (b) The director in a discotic nematic phase is the average orientation of the
unit normals to the disc-like molecules. (¢) Deformation of a unit cube, submitted to a
uniaxial extension deformation along the x-direction.




To enforce the unit length constraint n.n =1 and to visualize the director orbits
on the unit sphere, we parametrize the director with:

n = (n,Ny,0;) = (cosd,sin ¢ cos B, sin P sin Q) (2)

as shown in Fig. 1(a); 0 (0<0 <2r) isthe azimuthal angle and ¢ (0 < ¢ S n) is the
polar angle. The north pole of the sphere is located at ¢ =0, the south pole at ¢ = &, and
the equator at (6, ¢)=( [0, 2n], + w2).

In the unit sphere description [22, 23, 24, 25 | the director tip, in the presence of
flow, defines a trajectory O(n o) on the surface of the sphere :

O(no)={n e ; N=n(tng), te R*} 3

where ng = n (t=0), Q2 denotes the surface of the unit sphere and R* the positive reals.
To characterize the director orbits O(ngy) we need to define geodesics and mendians. A

geodesic G is the shortest arc connecting two points on the sphere , and is given by [28]:

sin (N2) cos ¢ - (cos N3) sin¢ cos0 - sing Sm-(—’- =0 4)

IN? -1

where N| and N3 are constants that depend on the two points; the geodesic or great
circle, is the intersection of the sphere with the plane containing the given points and the
center of the sphere. When the two points are the poles (N=nt) the degenerate geodesics
are the meridians M, which in terms of (8, ¢) and the director components (nj), are given
by [28] :

tanB=1/; b2=1/(N;2-1); 0sps = (5a,b,c)
ny=bnz; -1 ny Sl; "lS n; SI (6a,b.C)

where a ( <o< b <o0) is a constant whose numerical value defines a particular meridian; a
family of meridians is shown in Fig. 1 (a).

Figure 1 (c) shows the applied force F and deformations of a cube of discotic
nematic subjected at t=0 to a uniaxial extensional flow; the applied extension and flow
direction are along the x-axis (polar axis) and the compression (y-z) plane, that contains
the equator of the unit sphere, represents the degenerate circle of stable steady director




orientation: Ngs = (0, nyss, Nzss) = (0, cos By, sinBy, ) , where the subscript ss denotes
steady state.

To characterize the relaxation of the alignment as the director traverses the surface
of the sphere, we divide the sphere into three characteristic regions: two equivalent
spherical caps on which |ng|>IA3, and the remaining spherical zone on which
|ng| <IA3. In an irrotational uniaxial extensional flow, the only flow effect on the

orientation and alignment is due to the symmetric part of the velocity gradient
tensor ( Vu) , usually known as the rate of strain tensor or rate of deformation tensor

and denoted by A , and whose ij and ji components are given by Ay=A ;= (vij+V;i}2.
An imponrtant observation , used below to classify the numerical results of alignment
relaxation , is that a director whose tip lies in the spherical caps samples extensional
strains (A:nn >0 ), while a director whose tip lies in the spherical zone samples
compressional strains ( A:nn < 0).

2.3.2. Governing Orientation and Alignment Equations

A sufficiently general entropy production density A, similar to that proposed by
[14], is given by [18]:

2D=A=(VKT) [61(Q, Aji)? +02(A; A +03(Q, Qi) A Au
+204 QA + 205 (Qjj Ax Al L+4°6(QiijkAﬁ) @
+207(Q; Qx Au Au) +11(Q;Qu)+212@Q; QxQw) |}

where the ij components of the corotational time derivative of the tensor order parameter
Q. and of the vorticity tensor W are given by :

6‘, = a—g} + Vi Qiyk - WiQy;j + Qic Wigs Wiy = (v - vi) 2 (8a,b)

and where v, is the kth component of the linear velocity vector, o;j (i=1,...,7) and 7;
(i=1,2) are scalar phenomenological constants with units of time that satisfy certain
thermodynamic restrictions such that A 20 [14], 1/v is a molecular volume, T is the
absolute temperature, and K is Boltzmann's constant. The most general expansion
representing A is not closed, but the truncation given by equation (7) is sufficiently
general and can be shown to reduce [18] to that of Leslie-Ericksen theory [12, 13] .

In the absence of spatial gradients (Q,), =0) the Lagrangian density A is the sum
of entropic AH(Q) [27] and flow AF (v, Vp, F) contributions:
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A=At A (92)
A" = (2 AQQu +2 B Qui QuQim + & C (QuQu)?) %)
AF =-y(pv,+op-pF) (9¢c)

where A, B, and C are temperature dependent phenomenological coefficients , u is the
displacement vector, p is the density, p is the pressure, F is external body force per unit
volume. The negative of the entropic contribution AH adopted here is known as the
excess Landau-de Gennes free energy density [27] , which is obtained from a truncated
phenomenological expansion in terms of the two independent invanants Q, Qy and
Qij Qji Qii . For uniaxial nematics equation (1a) holds and expression (9b) leads to the
following excess free energy density G (S,T) expansion :

= lagilpd +ieoqd
G 2AS +3BS +4CS (10)

Usually , close to the nematic-isotropic transition , B and C are assumed to be
independent of temperature , and it is further assumed that A= a (T-T* ), where a is a
constant . The cubic term ensures a first order transition at T¢ > T* , where T¢ is the
nematic-isotropic transition temperature and T* is the temperature at which the free
energy has zero curvature at S=0 ( @ S=0 , 3G/aS2= 0 ). For B < 0 and for the
appropriate temperature range , equation (10) predicts the existence of the normal
uniaxial discotic nematic phase , with the molecular unit normals oriented along the
director. The minima predicted by equation (10) are :

S=0 (isotropic); S==-:ZBC— +1/(-ZB(—:-)2€‘ ( nematic) (1ia,b)

Equation (10) predicts the existence of four temperature regions [27] : (i) T>T* : the
stable phase is isotropic; (ii) for Tc<T< ™. there are two munima , the global one at =0

(isotropic) and the other one for the superheated nematic phase ; (ii1) T*<T<T¢: there are
two minima , the global one corresponding to the nematic phase, and the locai one
corresponding to the supercooled isotropic phase; (iv) T<T*: there is one minimum

corresponding to the nematic phase. At the nematic-isotropic transition temperature
T=T¢ the free energies of the isotropic and nematic phases are equal and from equation




(10) it follows that : (a) Tc=T* +2 Bzi (9aC) , (b) the value of the order parameter at the
transition is S¢ = -2 B/ (3C). and (c) the latent heat per unit volume for the first order
nematic-isotropic transition 1sL=2 a B? Te/ (9C2). The temperature T# divides the
biphasic region from the singie isotropic region and the following holds:
(a) T*=T* + B2/(4aC), (b) S*=- B/(2C) . The temperature T* is the lowest
temperature for which the isotropic phase is metastable and at that temperature $*= -B/C.
Thus a characterization of G requires the specification of the four parameters a, B, C, and
T*. One common way to obtain values for the parameters is to use the Maier-Saupe
molecular field theory and express the results in the form of equation (10). Here we use
the following adapted results of Doi and Edwards {29] , for such parameter mapping
between the phenomenoclogical Landau-deGennes expansion and the molecular mean
field theory :

3 =.l -LT. M 3. =_u . _2.. =u
Ia 2(1 B}VKT, 3B=-0wr; 2Zc=UwT (122b0)

where the nematic potential U=3 T*/T , and where VKT refer to the same quantities asin
equation (7). The two parameters are now v and U. The resulting excess free energy
density now reads:

G=§vKT[% (1-1,})32-3053 +éus4] (13)

The minima predicted by this free energy are [29]:

S=0 (isotropic) ; S = % +% Y1-8/(3U) (nematic) (14a,b)

In what follows we use the symbol Seq (U), as given by the right hand side of equation
(14b), to denote the equilibrium order parameter in the absence of flow. Comparing
(11b) and (14b) it follows that if B/C=-1/2 , which is generally consistent with nematics
[ 27], both equations predict the same dimensionless temperature dependence of S, as
embodied in the term A/C . In addition, equation (13) predicts the existence of four
temperature regions with the same thermodynamic behavior as that predicted by equation
(10) [ 29] . In terms of the nematic potential U , the boundaries of these four regions
and the values of the alignment S in the nematic phase can be shown to be given by : (i)
U*¥=873., s*=1/4, (i) Uc = 27/10 , Sc=1/3, (iii) U* = 3, S* = 1/2. In this work we

use the two parameter equation (13) to construct the Lagrangian AH, since as shown
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above ( see also [29] ), it is able to capture with two parameters the same qualitative
thermodynamic behavior as the more general equation (10), and because it is consistent
with our objectives.

The presence of a given flow field in a spatially invariant uniaxial discotic liquid
crystal generates the following dynamical system :

V=Y (30 )y=(mS); ye @ x[0,1]: y: R* - Q*x[0,1] (15a.b.c.d)

Tofind Y (y (t)), we use the following set of Euler-Lagrange equations {26,27]:

iA-m=o;iA-5_p=o (16a,b)

3n; 8% 58S 88
éif.j = (8- ny) (gg; s gg-g) (16c)
%Jsh (g_’;-ak o %%%) (16d)
'g—r%=(81j‘"i nj)(g—g -aka(gi)ﬂj) (16e)

8D _9D , dD 16
88 oS aka(akS) (160

where hﬁ'A/Sy is the projected total Euler-Lagrange derivative, and 8D¥8y is the
projected space Euler Lagrange derivative [17]. The projection operator (&J - i N )that
appears in the director derivatives is required to eliminate the undetermined Lagrangian
multiplier that arises from the unit length constraint on the director n.n =1; for the
alignment no constraints are imposed and the projector operator 1s unity.

As shown in the Appendix, with the choices of A and A given in the equations
(7,9, 12), the dynamics of the director n and the alignment S are found to be :

dn.
;- ar || Wami+A (A, - (A ming) ;) (172
s B1 A mng + Bo/ty

dt




where A(S) is the tumbling function, B1(S) the ordering function, and B2(S,U) is
proportional to SAH/3S; these functions are given by :

x=-:—2=-(3c;+o;5)/(3S+r;s2) (18a)
1

B1=-090;+6055)/(6+41;9) (18b)
B=(-3S+US+US2-2US%)/(3+21;5) (18¢)

where the starred coefficients are scaled with the alignment relaxation time 7.

To select numerical values for the threc phenomenological parameters G;, G;, 1,; ,
we enforce the following constraints on the signs of A and ¥, [7, 8,9, 10 ] and on the
values of A when S=0and S=1[7]:

X=-Yﬁ<o; 11205 lim gh=-o; lim, A=-1 (19abc,d)
1

The adopted values that satisfy the constraints are: o = 1/10, og = 1.7, t«; =-1.0, and the
resulting A and P are shown in Fig.2. An indirect validation that the presently adopted
values of the phenomenological coefficients , that appear in the dimensionless
formulation of the governing equations for the idealized discotic nematic, may describe
qualitatively some im, .ortant features of the flow of real carbonaceous mesophases can be
found by comparing the shear flow predictions of [32] with the experiments of [33]. In
[32] the present model was solved for simple shear drag flow , using approximately
similar values of the phenomenological coefficients (o}, of , 7y} , and it was predicted
that shear flow instabilities may set in at critical values of the shear rate; these
instabilities are transitions between flow-tumbling and flow-aligning modes that
characterize nematics of variable degree of orientation and mathematically are
bifurcations between two types of periodic attractors and a steady state atractor . These
shear flow instabilities were previously observed experimentally in a pressure-driven
shear flow of a real carbonaceous mesophase by [33] , where the observed pattern
formation phenomena was explained using the tumbling-aligning transition, as
calculated by [32]. Lastly, other set of parameters obeying the constraints (15a, b, ¢, d)
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Fig. 2. Tumbling function A and the ordering function B} as a function of the scalar
order parameter S. The tumbling function is the ratio of the coefficient for strain
and vorticity viscous torques, while the ordering function is the coefficient for the
ambient strain rate A:nn that governs the relaxation of S. For discotics (rod-like)
nematics both are negative (positive).

were used in this work, but because the present flow is irrotational and all the attractors
are steady states, the only differences in the computed solution vectors will be in the time
scales , and hence , for brevity, these essentially similar results are omitted here .

If the alignment S is assumed to be constant , the present model is identical to the
Transversely Isotropic Fluid ( TIF) model of Ericksen [34] applicable to purely viscous
nematic fluids :

-‘%L =Wj n; + A (A, nj- (A mny) n; )
t (20a,b)
A =constant ;  A>0 (rods), A <0 (disks)

The constant alignment case was not studied in the present paper , but rigorous results
for uniaxial extensional and biaxial extensional flows for rod-like nematics using the TIF
model were obtained recently [ 35, 36]. A direct comparison of equations (17a) and
(20a) shows that for irrotational flows (W=0), the present model and the TIF model
predict exactly the samc director orbits O(ing) and the only difference between the




predicted director fields is the time parametrization along the orbuts; this difference is
important in applications since it affects the number of strain units required to achieve a
given orientation.

The following simplifying assumptions and approximations, have been made in
denving the mathematical model that describes the flow-induced alignment and
orientation of an ideal discotic nematic liquid crystal , as given by equations (17, 18 ):
(1) the fluid 1s incompressible and the flow is isothermal; (2) The orientation and
alignment are space invariant; all elastic effects due to spatial gradients are neglected; (3)
the entropy production has been arbitrarily truncated, such that it reduces to the Leslie-
Ericksen expression; (4) The three coefficients of the Landau-de Gennes excess free
energy have been fitted using two parameters; (5) Fluctuations that are important near
the nematic-isotropic phase transition are neglected; (6) The velocity field is considered
to be given, and therefore we dispense with solving the Cauchy equation of motion
which involves the use of the nine parameters appearing in equation (7).

2.3.3. Goverring Equations for Uniaxial Extensional Start-up Flow

The velocity field v(x, y, z) corresponding to the uniaxial extensional start-up
flow of the nematic sample, is given by [26] :

0 t<0

vx =ExHQ); v,=-§yH(t); vz=-§zH(t); H(t)=<
1120

} (21a,b,c,d)

where € is the constant extension rate. The non-zero components of the corresponding
rate of deformation tensor A are: Aqj =& A2 = A33 = - €/2; this flow is irrotational
and the vorticity tensor W =0. A useful decomposition of the director field n and the
rate of deformation tensor A is:

~
»

n=n,; +ny,; nl=ny3+n,ﬁ; ny=nyi; A=é6-3§=l’ (22a,b,c,d)

where 5=ii+)]) +kk and P = 73 +kk. Replacing equations (21, 22 ) into
equations (17a, 17b), we obtain the following dimensionless set of coupled nonlinear
ordinary differential equations :
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dn,
de 2
dS
de

= (23a, b)
%‘-(2 -3n }+ De'l By
Ny = sign (ny (t=0))V 1-n (23c)

where € = &t is the strain, De = €1} is the alignment Deborah number (dimensionless
strain rate). When De --> 0 the alignment (8) relaxation is elastic, when De --> oo it is
purely viscous, and for the intermediate values it is viscoelastic. At intermediate De the
director relaxation is also viscoelastic, since it is coupled to S through A(S).

The initial conditions used to solve equations (23)are: @ e=0:n=ngy; So= Seq.
No N o=1, where So = Seq(U) is given by equation ( 14b). In this paper we use two
representative nematic potentials U = 3 and U = 5, and the corresponding
initial conditions are: Seq (U=3) = 0.5 and S¢q (U=5) = 0.76. All angles are reported in
degrees.

Equations (23a, 23b) are integrated using an implicit corrector-predictor first
order Euler integration method with an adaptable time step [37]. Application of the
implicit corrector-predictor method transforms the set of coupled nonlinear ordinary
differential equations ( 23a,23b) into a set of coupled norlinear algebraic equations .
For each time step the algebraic equations are solved using the Newton-Raphson
iteration scheme [37] ; the predictor step generates a first guess for the iteration loop and
the corrector step is the iteration loop itself. The adopted convergence criteria 1s that
the length of the difference vector between the calculated solution vectors corresponding
to two successive iterations is less than 100, The transient solution vector obtained
from the numerical solutions ( n (€), S (¢) ), is used to calculate the tensor order
parameter Q(€), and the converged steady state solutions ( Ny, S ) are used to compute
the steady flow birefringence. To facilitate the discussion and perform an analysis of the
numerical solutions, some of the computed results are presented in reference to the unit
sphere description of the director field.




24. Results and Discussions
2.4.1. Director Dynamics : Geodesic Flow and Viscoeiastic Relaxation

Integration of equation (17) yields, for W=0 and for A as defined above, the
fullowing expression for the director relaxation n (¢) for the uniaxial extension start-up

flow ;

n(€) = {%&’._Eﬁ ; m(0) = nj; Eij(e) = €xp {xu j Ade); Ki} =A, /€ (24)

and in the component form:

E,x n Eyy nyo | E.n
ng =-22-% . . =2 _J.- pn,= 20 25a
*TEnol 0 YT ER ™ En, (232)

Exx = €xp U‘ A ds') ; Eyy=Ep= cxp( - -%-[ A de') ; Ey=0for i#j. (25b)

where njo is the jth component of the initial director orientation (n (0)) . From (235a,
25b) it follows that ny = a nz (a = nyo/nizo), and comparing with equations (5,6) it follows
that the director orbits belong to the meridians, and the director dynamics belong to the
class of geodesic flows. Therefore the present problem should exhibits the characteristic
sensitive dependence on initial conditions, that is typical of geodesic flows [30].
Equations (25a, 25b) shows that the stable director steady states are
Ny = (0, nyo /ny,, nm/nln )-

The director orbit follows a geodesic flow due to the inherent symmetry in the
uniaxial extensional flow. This results is also predicted by the TIF equation (20a), since
as mentioned above, for irrotational flows the geometry of the director orbits are
insensitive to variations in the magnitude of the alignment.

Figure 3(a) shows that the unit sphere with representative meridians , Fig.3 (b)
shows the computed polar angle ¢ as a functon of azimuthal angle  , and Fig. 3 (c)
shows the corresponding computed scientific visualization of the average disc's
relaxation, for U=5 and De=1, and the following director initial orientations (8, ¢o) :
A=( 88.72, 2.56), B=(63.4, 2.56), C=(45, 2.56), D=(26.56, 2.56), E=(1.28, 2.56). Figure
3(a) shows that when starting on the poles , the director steady states, depicted by the
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Fig. 3. Sensitivity of the director orbits to the initial conditions. (a) Schematic of the

unit sphere and several meridians (great circles through the poles); the x-direction 1s
along the extension direction and the equator represents the degenerate circle of
stable steady director orientations. (b) Polar angle ¢ as a function of the azimuthal
angle 0 for U=5 and De=1, and for the following director initial orientations
(80, 90) : A= ( 88.72, 2.56), B= (63.4, 2.56), C= (45, 2.56), D= (26.56, 2.56),
E= (1.28, 2.56). (c) Corresponding computed scientific visualization of the
director relaxation, represented by the normals to the shown discs. Predictability is

lost when the initial orientation is on the poles; close to the poles there is high
sensitivity to ng,.




equator, are unpredictable. The (6, ¢) plot shows that the final steady state, denowed by the
upper horizontal line, 1s highly sensitive to small vanauons of the initial onentation when
the tmit1al director tip 1s next to the poles. The computed director orbits follow the
mendians defined by equations (5, 6). The visualizations shows the director (normal to
the shown discs) relaxation, along the five different paths, exhibitng different
combinations of ulting and twistng along the time axis, but eventually leading to a stable
orientation on the plane (y-z), normal to the extensional direction.

Figure 4 shows the polar director angle ¢ as a function of strain €, for De=1 (a),
0.5 (b), and 0.1 (c); U=3 (dash-dot line), U=5 (solid line), and (B,, ®g) = (45, 2.56). The
figure shows that the director relaxation is viscoelastic, and that 1t is faster at higher De
and at lower U, since for these conditions A samples larger absolute values.

2.4.2. Alignment Viscoelastic Relaxation and Flow-Induced Melting

The ahgnment S(e) relaxation depends on ny through the ambient strain rate
A:nn. Fig. 5 (a) shows the three representative regions for A:nn in the two equivalent
spherical caps R) the rate is positive (A:nn >0), and in the spherical zone R the rate is
negative (A:nn <0). The inital ahgnment relaxation characteristics are given by:

n,inR, : (%ESLO‘«) © RnyinRz :(%Ei)w >0; (26 a,b,c)

moindR = Rz : (&) =0

Figure 5 (b) shows the three representaiive regions for A:nm, where the upper and lower
rectangles represent Ry, and the middle rectangle represents Rz, and three characteristic
initial orientations (0, ¢o): P1= (45, 2.56) in Ry, P2 =(0.9, 54. 7) in Ry U Ry, and
P3=(2.56, 89.9) 1n R3. Figure 5(c) shows the corresponding initial alignment S relaxation
for De=0.1 and U=5 . It follows that for any De, a sufficient condition for increasing S is
that n is in R>.

Figure 6 shows the alignment relaxation S(g), corresponding to the conditions of
the director relaxation of Fig. 4. The figure shows that at higher De (De=1), the viscous
mode dominates the viscoelastic relaxation at all the times , and the effect of the relative
magnitude of U is small. At lower De (De=0.1), the elastic mode dominates at all times
if U=5, and negligible changes occur since Se=Seq, while for U=3 the viscous mode

dominates the initial response, but the elastic mode dcminates the later stage. Since in
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Fig. 4. Polar director angle ¢ as a function of strain €, for De=1 (a), 0.5 (b), and
0.1 (c); U=3 (dash-dot line), U=5 (solid line), and the initial director orientation
(B0, do) = (45, 2.56). The director relaxation is viscoelastic, and it is faster at
higher De and at lower U.
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Fig. 5. Sensitivity of the initial alignment S relaxation to the initial director
orientation. (a) The three characteristic regions for the ambient strain rate A:nn.
(b) Planar (0, ¢) representation of the three representative regions for A:nn : where
A:nn >0 on the two equivalent upper and lower rectangles (R1) and A:nn <C on the
middle rectangle (R3?) to the two closed curves, and three characteristic initial
orientations (8o,90) : (69, do): P1= (45 ,2.56) in Ry, Py = (0.9, 54. 7) in gR;=0dR;
and P3-:(2.56, 89.9) in Rj. (¢ ) initial alignment S relaxation for De=0.1 and U=5.
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Fig. 6.  Alignment relaxation S(e), corresponding to the conditions of the director
relaxation of Fig. 4. The figure shows that at higher De the viscous mode dominates
and the effect of relative magnitude of U is small, while at lower De the elastic mode
dominates and the effect of relative magnitude of U is small.




this figure ng is in R, the alignment relaxation always shows an initial decrease in S.
Comparing the steady state alignment Sgg for all cases, it is seen that at larger De, the
viscous mode dominates and the effect of U is small, while at lower De, the elastic mode
dominates and the effect of U is large.

Figure 7 (a) shows the alignment S and x-component of the director nx as a
function of strain €, and Fig. 7 (b) shows the projection of Fig.7(a) on the (S, ny) plane,
with the initial orientation (0, ¢0)=(45, 2.56) close to the pole, for U=5, and De=0.1
(dash-triplc dot line), 0.5 (dash-dot line), and 1 (full line). Figure 7(a) shows the coupling
of the orientation and alignment relaxations, which indicates that by increasing De the
increasing follows a two step process: an initial decrease in S followed by monotonic
increase (decrease) in S (nx). The nature of the (ny, S) coupling is shown figure 7 (b) ,
where the dotted line corresponds to dS/dnx =0. For the given no, the higher De the lower
the value of ny at which S starts increasing; for large De, discotic nematics undergo
practically a temporary melting while the director is in R (n,>(3)'1f2), For this particular
case a more accurate model should include the fluctuations that are present near the
isotropic-nematic phase transition.

In contrast to the steady state director orientation which may exhibit a strong
sensitivity to the initial orientation, the steady state scalar order parameter is independent
of the initial orientation, and depends on the magnitudes of De and U, as shown by the
lower equaticn (23 b).

2.4.3. Tensor Order Parameter Relaxation and Flow Birefringence

Figure 8 shows the relaxation of the components of the tensor order parameter Q
with the initial orientation (80, $0)=(45, 2.56) close to the pole, for U=5, and
De=(). 1(tripie dot-dash line), ¢.5(dash-dot line), and 1(full line). For the chosen initial
orientation nyo=nzp, and from equation (6) it follows that Qxy=Qx; and Q; = Qyy. For
the shown parameters the relaxation is virtually complete after 5 strain units. At low De
the relaxation of tae trace components (Q;j) are dominated by the director relaxation
shown in Fig. 4, since for U=5 the alignment is nearly constant (see Fig. 6). At higher De
the relaxation of the trace components is dominated by the viscous mode, and reflect the
two step process described in Fig. 7. At low De the non-diagonal terms of Q are again
governed by the director relaxation, while at higher De, the viscous effect introduces an
initial large decrease in S while n is in R} and a subsequent increase in S while nis in Ry,
with the result that the only large component is Qy, which follows a lag plus exponential
growth relaxation.
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(b)

Fig. 7. (a) Alignment S and x-component of the director ny as a function of strain €,
and (b) projection of Fig.7(a) on the (S, nx) plane, with the initial orientation
(80, 9o) = (45, 2.56) close to the pole, for U = 5, and De = 0.1 (dash-triple dot line),
0.5 (dash-dot line), and 1 (full line). The dotted line corresponds to dS/dny = 0; at
high De discotic nematics undergo practically a temporary melting while the director
is in Ry (ng>(3)"172),
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Ax
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Fig. 8. F.elaxation of the components of the tensor order parameter Q with the initial
orientation (8¢, §g) = (45, 2.56) close to the pole, for U=$5, and De=0.1(triple dot-

dash line), 0.5(dash-dot line), and 1(full line). For the chosen initial orientation
Nyo = Nzo, and from equation (6) it follows that Qxy = Qxz and Qzz = Qyy.



According to [27], the birefringence An can be expressed by:

An=«e7-fqz’3—°§%—s- @7

where e// and e, are the elements of the dielectric tensor ejj parallel and normal to the
director, the tensor is given by e, =¢€3; + Aemay Q) where the first term is the average
trace of ;) and Aemax is the anisotropy for S=1; for discotics, An <0 since Aemax <0. In

deriving equation (27) we have assumed that €>>2 Aeqa S/3 for the values of S
corresponding to the nematic phase. Equation (27) shows that the stcady flow-induced
birefringence Angg is proportional to the magritude of the steady alignment Sg.

Figure 9 shows the steady state alignment Sgas a function of De, for U=3 (dash-
dot line) and U=5 (full line). The figure shows a monotonic increase in the flow
birefringence, at high De the viscous mode dominates and the effect of the magnitude of
U is small, while at low De the elastic mode dominates and the effect of the magnitude of
U on Sy is large.

1.00

0.75 -

SSS
\

0.50
0.0 0.5 1.0

De

Fig. 9.  Steady state alignment Sgq as a function of De, for U=3 (dash-dot line) and
U=5 (full line). The flow birefringence is proportional to Sgg and increases with De.
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2S8. Conclusions

-

In this initial investigation of the nematorheology of uniaxial discotics in uniaxial
extensional flows, we have performed a useful characterization of the sensitivity of the
director , scalar order parameter, and tensor order parameter relaxation with respect to the
nematic potential, the alignment Deborah number, and the initial director orientation. Use
of unit sphere description identified the director dynamics as a geodesic flow. This
observation 1s used to explain the loss of predictability when the director is initially
aligned along the extension direction, and allows for the use of the simple geometrical
principle to identify the director orbits. The identification of the governing De parameter
allows for the classification into the different elastic and viscous dominated relaxations.
For large De, temporarily flow induced melting of the nematic phase may occur. This
unified picture of relaxation under extension may be used (o explain the characteristic
patterns found in the cross-section of melt spun carbonaceous mesophases. In the
extension-dominated flow process the normals to the molecular planes always align
anywhere in the plane normal to the fiber axis, as shown in this paper for the stretching
of a model discotic. The present analysis provides for a basis for the more general
spatially inhomogeneous case, where Frank elasticity must be included.

2.6. Appendix

Substituting of equation (1) into (7) , and the negative of equation (13) yield ,
respectively, the following equations for the dissipation A and the Langrangian A"

2D (vKT)! = A (VKT) ! = &2y (mj Aumi P + 0q AyAy + (s + a6) (nAxAum)

+Y N +27% A N, + 1y $2+, S (n; Aj ) a-D
AH=-VKT{%(3-U)82-§27—US3+-;~US4 (A2)

where:
a; =0; §2 (A.3a)
04 =02-2055/3+203+07/3)5%/3 (A.3b)

Os + ae=2 658 + 2 375%/3 (A.3c)




Y1 =2(1 +71 8/3)S 2 (A.3d)
Yo=2(04+0¢S/3)S (A.3e)
Hi=2031+215)9 (A.3)
H2=2(904+604S)9 (A.3g)
N; = %‘-‘t—‘- +(v,0)) n - Wj; n; (A.3h)

Taking the space Euler-Lagrange derivative of D (equations (16e,16f)), yields:

—~

§P=vKT(8ij-ninj)(yiNj+72Aﬂn|+xn,) (A.4a)
iy

~

fglsl = VKT (W $ +p2A nm/2) (A.4b)

where % is a scalar Lagrange multiplier. Taking the total Euler-Lagrange derivative of
AH (equations ( 16¢,16d ) ) yields :

H
A .9 (A.5a)
on;
H
ﬁgis-=-vKT [ 2[6-vs-usz+2us?] /o] (A.5b)

Subtracting equation (A.4a) from equation (A.S5a), and equation (A.4b) from equation
(A.5b) yields:

(8 -ninj) MmN +1Axn+xn)=0 (A.6)

-2[(3-U)S-U82+2US3]/9-mS-%—uzAu‘nknFO (A.7)
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which yield equations (17a, 17b ), upon the following identification

. _ B 2[6-Uys-uUs+2US /9 Ad)
7' 2u1’ T Hi
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Chapter 3

Computer Simulation of Dynamics and Morphoiogy
of Discotic Mesophases in Extensional Flows !

3.1. Abstract

A previously presented model [1] is used to simulate the dynamics and
microstructure of spatially invariant uniaxial discotic nematic liquid crystals in
isothermal, incompressible, irrotational, extensional (shear-free or elongational ) flows.
Numerical and analytical solutions of the director n and alignment S are presented for
given uniaxial extensional, equi-biaxial extensional and planar extensional start-up flows.
The unit sphere description of the director is used to discuss and analyze the sensitivity of
the director trajectories and the alignment relaxation to the initial conditions (ng, Sp), to
the alignment Deborah number (De), and to the type of flow. The numerical results are
used to characterize the relaxation of the tensor order parameter Q and to compute the
steady flow birefringence. The various flows are classified according to their orienting
strength and alignment strength, and according to whether they generate geodesic
(shortest path) director orbits. Equi-biaxial extensional and planar extensional flows are
found to be strongly orienting and strongly aligning flows, while uniaxial extensional
flow is a weakly orienting and weakly aligning flow. The number of strain units required
to achieve steady state are shown to depend on whether the flow is geodesic (uniaxial
extensional and equi-biaxial extensional flows) or not (planar extensional flow).

3.2. Introduction

Carbonaceous mesophases are an important class of naturally occurring discotic
nematic liquid crystals [2, 3, 4]. These mesophases are formed by condensation of
aromatic rings and tend to adopt a uniaxial discotic nematic phase Nd [S5, 6], with the unit
normals to the disc-like molecules more or less aligned along a common direction
(see Fig. 2(b) ), represented by the director n ; in this paper we use n and orientation

! This chapter has been accepted as an article for publication 1n Liquid Crystals (1994).
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interchangeably. Carbonaceous mesophases can be spun into suff and strong (high
performance) fibers (3, 4, 7], and understanding their flow behavior is of practical
utility.

Many industrial materials processing methods, such as the molding of polymers,
are designed with the objectives that the alignment and onentation introduced duning the
deformation and forming stages are controlled [8] . The process choices are based on
these two independent qualities of the flow, its orienting and aligning strength, which
also form the basis for polymer flow classifications [9]. Although such classification
has not been develop for discotic mesophase fluids, it certainly can provide useful
guidelines on the dependence of orientation and alignment on flow type. In this respect
extensional flows, such as spinning flows, seem to be the most relevant to processing
discotic mesophase fluids.

Previous work [10, 11, 12, 13, 14] on the flow properties of uniaxial discotic
nematics assumed that the scalar order parameter S (alignment) remains unaffected by
the flow, and were based on the Leslie-Ericksen (L-E) theory [15, 16] for umaxial
nematics. The important differences in sign and magnitude of the matenial parameters
corresponding to uniaxial rod-like and discotic nematics follow from the fact that rod-like
nematics orient their longest molecular dimension aiong the director while disc-like
nematics orient their shortest molecular dimension along the director. As is well known,
the orienting properties of uniaxial nematics during shear flow are governed by the sign
and magnitude of the tumbling (reactive) parameter A: for aligning (non-aligning) rods
A>1 (0<A<1), and for aligning (non-aligning) discs A< —1 (~1<A<Q); the umbling
parameter A is given by the negative ratio of the irrotational torque coefficient (Y2) and
the rotational viscosities ( 1), and represents the coefficient of the ratio of strain to
vorticity torques acting on the director n. Previous work [11, 12] focused on the
orienting propertics of aligning uniaxial discotic nematics in steady shear, and it was
found that shear orients the director in the shear plane and at a steady angie 9, lying in
the 90° < 0 < 135 sector with respect to the flow direction In steady umaxial
extensional flows, the orienting behavior of uniaxial nematics is again determined by the
sign of A : when A >0 the director aligns along the stretching (extension) direction. and
when A < O the director aligns somewhere in the compression plane, orthogonal to the
stretching direction [14].

For materials of larger molecular weights the coupling between the director and
the scalar order parameter should be retained [17]. This coupling introduces additional
nonlinearities through the dependence of the generalized Leslie coefficients on the scalar
order parameter, as shown in various works [17, 18, 19, 20, 21, 22}. In a previous




work [1] , the authors developed from variational principles a mode! that takes into
account variable alignment in discouc nematics, and applied it to umaxial extensional
flow. It was found that the direcior trajectories on the umit sphere (n.n = 1) follow a
geodesic flow from the initial onentation to the compressional plane, and that the
alignment relaxation was sensitive to the initial oricntation, to the extension rate, and to
the nematic potential that controls the magnitude of S in the absence of flow. The
sensitiviiy to initial conditions, typical of geodesic flows, was shown to be the cause for
the loss of predictability that occurs when the imual orientation lies along the extension
axis of the flow.

Our main objecuve in this work is to establish the relevant qualitative features
that describe the reladons between exiensional deformation inputs and onentation and
alignment responses, in a model discotic nematic liquid crystal, and to use these results
to formulate a practical flow classification of various extensiona: flows. In the present
paper the phenomenological parameters of the particular model discotic nematic liquid
crystal chosen for study are not fitted to those of any existing real material, and their
choice is based on prcvious results [1] . The particular objectives of this paper are :

(1) To characterize the seusitivity of the director paths to the compressional axis or
compressional plane, to the initial conditions, to the extension rate, and to the flow
type, by using numerical simulation;

(2) To characterize the alignment relaxation along the director paths, to the initial
conditions, to the extension rate, and to the flow type by using numerical
simulation;

(3) To determine the geometry of the director trajectories to .ne compression axis or
compressional plane, and to classify various extensional flows as geodesic or nen-
geodesic flows;

(4) To provide a genenl classification for extensional flows according to the magnitude
of their alignment strength and orientation strength.

The organization of this paper is as follows. In section 3.3 we define the
coordinate system and the state variables, present the governing equations, and briefly
present the elements of the unit sphere description used to discuss and classify the
numerical solutions . A brief description of the numericai method used to integrate the
governing equations is presented. In section 3.4 we present . discuss, and classify the
solution vector , consisting of the time dependent director and alignment fields, obtained
from numerical integration and analytical solutions of the governing equations. Typical
computatons of the tensor order parameter relaxation and steady flow birefringence are
presented. Overall classifications according to trajectory geometry of the director on the




unit sphere, alignment strength, and orientation strength are given.

3.3. Governing Equations
3.3.1. Definitions of Coordinates , Kinematics, Orientation and Alignment

In this paper we study the temporal and spanally invariant microstructural
response of a model umaxial discotic nematic, subjected at time t=0, to a range of
extensional flows of constusnt extension rate £ In this paper the adopted tlud flow
terminology is that of Bird et. al. [ 23]. Due to their prevalence in applications here we
emphasize the three representative extensional flows : umaxial extensional flow , equi-
biaxial extensional flow , anc planar extensional flow , but whenever possible allow for
further generalizations by introducing representative parameters., as g:ven in {23] In the
rest of this paper equi-biaxial extensional flow 1s referred to as biaxial extensional flow
Figure 1 shows the deformation of a cube of discotic nematic liquid crystal subjected at
time t=0 to: (a) uniaxial extensional flow (UE), (b) biaxial extensional flow (BE), and
{c) pianar extensional flow (PE). We note that the word umaxial in umaxial
extensional flow and biaxial in biaxial extensional flow refer to the number of extension
(stretching or pulling) dircctions ; these irrotationa! flows are three dimensional. Equi-
biaxial extensional flow 1s kinematically the inverse of uniaxial extensional flow. On the
other hand, planar extensional flows, also known as pure shear [32, 33] or strp biaxial
flows, are irrotational two dimensional flows, where the deformation characterized by an
extension direction and an orthogonal contraction direction occurs on a plane. In planar
extensional flow the stream lines are a farmly of rectangular hyperbofa whose center 1s a
stagnation (saddle) point [33].

An experimental set up to generate a uniaxial exiensional flow 1s to pull a
cylindrical sample from is two opposite ends at a rate that incre:ses exponentially with
time; in Figure 1 the sketch representing uniaxial extension (UE) , using rectangular
coordinates, shows the extension direction along the x- axis while the contraction
directions are along the y- and z- axes. A way tc genc..te a biaxial extensional flow is
to stretch a thin sheet of material in two orthogonal directions simultaneously at equal
rate, with a corresponding decrease in the sheet thickness. An approximaton to this flow
is found 1n lubrication squeeze-film flow and during the inflation of a balloon; in
figure 1 the sketch representing biaxial extension (BE) , using rectangular coordinates,
shows the two extension directions along the y- and z- axes while the contraction
direction is along the x- axis. Planar extensional flow is equivalent to stretching a flat
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Fig. 1. Deformation of (a) unit cube of material at time t > 0 submitted to (b) uniaxial
extensional flow (UE), (c) biaxial extensional flow (BE), and (d) planar extensional
flow (PE) . The veiocity components for these flows are given in equation (10). In
uniaxial extensional (UE) flow, the x- axis is the extension direction and the y- and
z- axes are the directions of compression; this flow is an irrotational 3D flow. In
biaxial extensional (BE) flow the y- and z- axes are the extension directions and
the x- axis is the compression direction; this three dinensional irrotational flow is
kinematically the inverse of uniaxial extension. In planar extension, the extension
direction is along the x- axis, the contraction direction is along the y- axis, while no
motion occurs along the z- axis; planar extensional flow is a two dimensional
(planar) irrotational flow.




thin sheet of fluid in one direction , with a corresponding contraction in an orthogonal
direction, but with no motion in the third direction ; in Figure 1 the sketch representing
planar extension (PE) , using rectangular coordinates, shows the extension direction
along the x- axis , the contraction direction along the y- axis, while along the z- axis
no motion occurs. An experimental generation of an approximate planar extensional
flow is the four-roll mill flow, where four long cylinders of equal radii, placed along the
four corners of a square are set to rotate with equal magnitude but with directions
opposite to the two nearest neighbors. The resulting essentially two dimensional
irrotational flow generates a family of rectangular hyperbolic stream lines , with a
stagnation point at the center of the square.

The microstructure of the model nematic considered here is characterized by the
uniaxial tensor order parameter Qjj (t) [16]:

Qy= S (nn,-98;/3) (la)
where the following restrictions apply:
Qy=Qjis Qi=0; -12sSs1; nnj=1 (1b)

and &;j is the unit tensor. The magnitude of the scalar order parameter S is a measure of
the molecular alignment along the director n, and its magnitude is given by
$=3(n; Qjn,)/ 2. Equation (1a) gives a proper description of the macroscopic order in
a discotic nematic phase if we identify the director as the average orientation of the unit
normals to the molecular discs; see Fig. 2(b ); as explained in [24], with this
identification, S is positive for both rod-like and disc-like uniaxial nematic liquid crystals,
and no further distinction is required in this paper since rods are noi considered here.
Since extensional flows will not induce negative values of the scalar order parameter S
we further restrict its variation to the positive unit interval, 0<S<1 [24].

To enforce the unit length constraint n.n =1 and to visualize the director orbits on
the unit sphere, we parametrize the director with:

n = (ny, Ny, nz) = (cos 9, sin ¢ ces 0, sin ¢ sin 6 ) (2)
where 6 (0<0 <2r) is the azimuthal angle and ¢ (0 S ¢ < nt) is the polar angle, see

Fig. 2(a). The north pole of the sphere is located at ¢ =0, the south pole at ¢ =&, and the
equator at (8, ¢) = ([0, 2xn], £ w2).




In the unit sphere description [25, 26, 27] the director tip, in the presence of
flow, defines a trajectory O(no) on the surface of the sphere :

O(no)={ne£22; n=n(t,no).teP+’ 3)

where ng = n (t=0), Q2 denotes the surface of the unit sphere and P+ the positive reals .
To characterize some of the director orbits O(ng) of interest we need to define some
unique trajectories such as geodesics and meridians. A geodesic G is the shortest arc
connecting two points on the sphere, and is given by [28]:

sin(N 2) cosd - (cos N ) sin¢ cos® - M =0 4)

INE-1

where N1 and N2 are constants that depend on two points belonging to G; the geodesic or
great circle, is the intersection of the sphere with the plane containing the given points
and the center of the sphere. When the two points are the poles (No=r) the degenerate
geodesics are the meridians M, which in terms of (0, ¢) and the director components
(nj, i = x,y, z), are given by [28] :

tan@=1/d;; d?=1/(Ny2-1); 0So<n (5a,b,c)
ny=d[nz; 'lsnySI; -ISHZSI (6a,b,C)

where d| (-ee< dy <) is a constant whose numerical value defines a particular meridian;
a family of meridians is shown, by the full lines, in Fig. 2 (a).

To characterize the initial relaxation of the alignment as the director traverses the
surface of the sphere, we divide the sphere into different characteristic regions, as shown
in Fig. S, by the R* and R- regions. In irrotational extensional flows, the only flow

effect on the orientation and aligr.ment is due to the symmetric part of the velocity
gradient tensor ( v; J ), known as the rate of strain tensor and here denoted by A, and

whos. ijth and jith components are given by Ay=A ;= (vij+v,)/2. An important
observation, used below to classify the numerical results of alignment relaxation, is that a
director whose tip lies in the R- regions, samples extensional strains (A:nn >0 ), while
a director whose tip lies in the R* regions, samples compressional strains ( A:nn < 0).
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3.3.2. Goverring Orientation and Alignment Equations

The macroscopic model used in this paper has been described in detail in [1].
Here we just presert the governing equations for the temporal evolution of the director
field n(t) and the alignment S(t), and refer the reader to the above mentioned paper for
details. The governing equations for our model uniaxial discotic nematics, subjected to a
given isothermal flow, are:

dn
@ | Wini+A(Ayn- (Agnn)n,) (Ta.b)
‘(1& BiAgmn+ B2/t

where the components of the vorticity tensor W are Wij = (vi j - vj,i)/2. A(S) is the
tumbling function, B1(S) the ordering function, and B(S, U) is proportional to the
thermodynamic driving force; these functions are given by :

k=-;—%=-(3o;+c‘68)/(38+€282) (8a)
Bi=-(90y+6055)/(6+41,5) (8b)
Br=(-38+US+US2-2US83) /(3+21,9) (8¢)

where the starred coefficients are scaled with the alignment relaxation time 1) that
appears in equation (7b).

To select numerical values for the three phenomenological parameters o}, G, t; .
we cnforce the following constraints on the signs of A and ¥; [10, 11, 12, 13} and on the
values of A when S=0 and S=1 [10] :

=-%2<o; 1 20; limg gA=-oo; limg_;A=-1  (9a,bcd)

The adopted values that satisfy the constraints are: o3 = 1/10, 05 = 1.7, 1, =-1.0, and
the resulting A and B are shown in Fig. 3; the relevant phenomena described in this paper
are captured by other arbitrary triplets that satisfy equations (9), and the values adopted
here were chosen only for convenience. It is worth noting that for extensional flows all
steady states are simple fixed points and thus adoption of the different A(S) and B1(S) will
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(b)

Fig. 2. Definition of (a) coordinate system, and (b) director orientation of a uniaxial
discotic nematic liquid crystal. (a) Director angles and unit sphere: 8 (0 <0 < 2x:)
is the azimuthal angle and ¢ ( 0 < ¢ < &) is the polar angle. The north pole of the
sphere is located at ¢ = 0, the south pole at ¢ = x, and the equator at (8, ¢ ) =
([0, 2rn] , tn/2) , m denotes the director. (b) The director in a discotic nematic phase
is the average orientation of the unit normals to the disc-like molecules.
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Fig. 3.  Tumbling function A and the ordering function B as a function of the scalar
order parameter S. The tumbling function is the rato of the coefficient for strain
and vorticity viscous torques, while the ordering function is the coefficient for the
ambient strain rate A:nn that governs the relaxation of S. For discotics (rod-like)
nematics both are negative (positive).
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only change the time scales but the significant phenomena wiil be essentially unchanged.
The simplifying assumptions and approximations made in deriving the
mathematical model that describes the flow-induced alignment and orientation of an ideal
discotic nematic liquid crystal , as given by equations (7, 8), can be found in {1].
The velocity field v(x, y, z) corresponding to the extensional start-up flow of the
nematic sample, is given by [23] :

ve=aéxH); vy=- a§(1+b) y HQt):, vg=- a-%(l-b) ZH(v);

0 t<0
1 t20

(10a,b,c.d)
H(t) =

where € is the given constant extension rate. The corresponding rate of deformation
tensor A, is givenas:

[ a 0 0 ]
A=el 0 -3(1+b) 0 (1)
-4(1-
|0 0 3(1-b) |

where a=+1 or -1, and 0<b<1 captures the range of possible extensional flows. Uniaxial
extensional flow (UE) is given by a=+1, b=0, biaxial extensional flow (BE) by a=-1, b=0,
and planar extensional flow (PE) by a=+1, b=+1. These flows are irrotational and the
vorticity tensor is zero (W =0). Replacing equations (10, 11) in equations (7), the
following set of coupled nonlinear ordinary differential equations for extensional
isothermal, incompressible flows of uniaxial discotic nematic crystals are obtained :

dn; 22[3(1-n2) +(n? - n? | ns (12a)
Ty --2A[302+b(1-n +12 ) n, (12b)
%=-%k[3n}-b(l+n}-n})]nz (12c)

S 2 8,3(n2-1)-b(nf -nf s + De 124)




where € = €t is the strain ( dimensionless time) , De = €1 is the alignment Deborah
number (dimensionless strain rate). We note that equations (12) are dimensionless, and
thus, for a given set of parameters , the solution vector ( S, n) is only a function of the
strain (dimensionless time) € =¢t. In the absence of Frank elasticity [16], strain scaling
is typical of liquid crystalline flow phenomena [34] . When De-->0 the alignment (S)
relaxation is elastic, when De-->oe it is purely viscous, and for the intermediate values it
is viscoelastic. At intermediate De the director relaxation is also viscoelastic, since it is
coupled to S through A(S).
The initial conditions used to solve equations (12) are :

@e=0:n=ny; S=8q; NoN, =1 (13)

where Seq (U) is the equilibrium scalar order parameter of the normal ( S> 0) uniaxial
nematic phase, found by setting the numerator of equation (8c) equal to zero [29]:

For U < 8/3 the stable phase is isotropic, for 8/3<U<3 there is biphasic equilibrium. In
this paper we use two representative nematic potentials U = 3 and U = 5, and the
corresponding initial conditions are: Seq (U=3) = 0.5 and Seq (U=5) =0.76. All angles
are reported in degrees.

Equations (12) are integrated using an implicit corrector-predictor first order
Euler integration method with an adaptable time step [30]. Application of the implicit
corrector-predictor method transforms the set of coupled nonlinear ordinary differential
equations (12) into a set of counled nonlinear algebraic equations . For each time step the
algebraic equations are solved using the Newton-Raphson iteration scheme [30] ; the
predictor step generates a first guess for the iteration loop and the corrector step is the
iteration loop itself. The adopted convergence criteria is that the length of the
difference vector between the calculated solution vectors corresponding to two
successive iterations is less than 10 -6. The transient solution vector obtained from the
numerical solutions (n (€), S (¢) ), isused to calculate the tensor order parameter Q(€),
and the converged stcady state solutions (ngs, Sgs) are used to compute the steady flow
birefringence. To facilitate the discussion and perform an analysis of the numerical
solutions, some of the computed results are presented in reference to the unit sphere
description of the director field.




3.4. Analytical Results

3.4.1. Director Dynamics

Integration of the set of equations (12) yields, with A given by equation (11), the
following expression for the director relaxation n (€) for any extensional stari-up flow :

n,(€)=£‘3—nﬁ; n, (0)=ny;
{ ol (15a,b.c.d)
E; () = exp \lej Ade |; Ay =Ay /€
and in the component form:
“Euiy, By, | _Epng
"=Enl ' YTER] ™ En| (16abe)
Eu-cxp(a kde') (16d)
0
Eyy = exp -%a(l+b)f xde') (16¢)
0
f .
Eyz=exp -%a(l-b) A de (166)
0
Ejj=0fori#j (16g)

where njo is the jth component of the initial director orientation (n (0)). Figure 4 shows

representative computed director trajectories for uniaxial extensional, biaxial extensional
and planar extensional flows projected onto the y-z plane, here the x-axis is normal to the
plane of the paper, and the direction of the director paths are indicated by the direction of
arrows. The figure shows that for uniaxial extensional and biaxial extensional flows the
director follows identical paths but in reverse directions. [n terms of the adopted polar (8)

and azimuthal (¢) angles, the director trajectories, given by equations (16), are as follows:




Uniaxial Extensional Flow: tan(@)=1/d}; 0S¢ <n; w0 <d) <o (17a)
Biaxial Extensional Flow: tan(8)=1/d;; 0S¢ <Sn; wo<dj<oo (17b)
Planar Extensional Flow: tan(6) sin(8) = 1/dy cot(9); 0 S ¢ Sn; -e0<dy <o (17¢)

where d; =ny/n,, and dy =n, ny/nZ. fortime t 20. Comparing equations (5, 6) and
(16) it follows that for uniaxial extensional and biaxial extensional flows, the director
trajectories belong to the meridians of the unit sphere, and the director dynamics belong
to the class of geodesic flows [1]. Equation(17c) and Fig 4 shows that planar extensional
flow is not a geodesic flow, except when d2 —> oo (N lying along the x-y plane or the y-z
plane); in practice due to the presence of the fluctuations this exceptional case will not
occur. The director trajectories should exhibit the characteristic sensitive dependence on
initial conditions which is typical of geodesic flows [31] or of arbitrary flows on a sphere
with multiple fixed points. The sensitive dependence on initial conditions for each
extensional flow type are:

Uniaxial Extensional Flow: ngo = %1 (18a)
Biaxial Extensional Flow: ngo=0 (18b)
Planar extensional Flow: Nyo = 0 (18¢c)

When the initial director orientation for each flow type is along those defined in
equations (18) predictability is lost; for example in planar extensional flow, if nyo = 0 the
director may evolve with equal likelihood towards the positive y-axis or towards the
negative y-axis. Table I summarizzs the relations between flow types (a=X1,0<b < 1),
the compression direction or compression plane, and the stable steady state director
orientations. The entries in Table I show that for all cases the director always aligns
along the compression direction or the compression plane of the flow. It is wearth noting
that when a= -1, the stable steady state director orientation is insensitive to the magnitude
of b, since for these flows the strongest compression direction always lies along the
x-axis. On the other hand when a= +1, the strongest compression plane changes from the
y-z plane when b= 0, to the y-axis when b # 0. These observations can be used to classify
the orienting strength of each extensional flow, since as shown above, the sensitive
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Fig. 4.  Schematics of the director trajectories on the y-z plane for (a) uniaxial

extensional flow (UE), (b) biaxial extensional flow (BE), and (c) planar extensional

flow (PE). For uniaxial (biaxial) extensional flow the sources are the poles

(equator) and the sink is the equator (poles).

For planar extensional flow the
sources are the poles and the sinks aren, =1 1.

Table |
Steady States and Sensitive Initial Conditions of the Director

Strongest Director Steady States Sensitive

Compression Dependence to
Direction Initial Conditions

y-z plane Nyo = 1

y-axis




dependence to initial conditions for biaxial extensional and planar extensional flows lead
to no uncertainty (since n = -n) while for uniaxial extensional flow the magnitude of
largest uncertainty 1s the whoie equator ( nx = 0). Thus, on a relative scale, biaxial
extensional and planar extensional flows are strongly orienting flows while umaxial
extensional flow is a weakly orienting flow.

Another important practical property of each flow 1s the presence or absence of
geodesic flow, because this will determine the number of strain units required to achieve
the steady director orientation; geodesic flows will, in general, require less strains
because a geodesic path is the shortest. For example Fig. 4(c) shows that for planar
extensional flows the paths are generally longer and thus the number of applied strains to
achieve steady state must be larger than for the uniaxial extensional and biaxial

extensional flows.

34.2. Alignment Dynamics

The alignment relaxation S(g) depends on ng through the ambient strain rate
A:nn. Figure S shows different representative regions for A:nn: in the R- regions the
ambient strain rate is positive ( A:nn > 0), and in the R* regions the ambient strain rate
is negative (A:nn <0 ). The initial alignment relaxation characteristics are given by:

%inR-:(%E-Lo’<0; noinR*:‘gg-) ,>0; (192.6.0)

indR =9R" : =0
o S .

It follows from equations (19) that for any De, a sufficient condition for increasing S is
that ng is in R*. For large De, discotic nematics, initially in R-, undergo a temporary
melting while the director is in region R~ [1].

In case of polymer flows [9] a flow type may be characterized as weakly aligning
or strongly aligning depending on the degree of alignment change in the flowing units. In
the present case, our model predicts that the alignment strengta is directly proportional 10
|( Axnn) ssl . Figure 6 shows the dimensionless steady state alignment strength
|( Amn) ss| for all the possible extensional flows (a= %1, 0 < b < 1). The figure clearly
shows that when a= -1 the alignment strength is insensitive to the magnitude of b, but for
a= +1, it is highly sensitive to the value b. The figure also shows the location of the three
representative extensional flows. Table II shows the relations between the flow aligning
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Fig. 5. Sensitivity of the initial alignment S relaxation to the initial director
orientation. The different characteristic regions for the ambient strain rate A:nn for
(a) uniaxial exiensional flow (UE), (b) biaxial extensional flow (BE), and (c) planar
extensional flow (PE). In the R~ regions the alignment rate is positive { A:nn > (),
and in the R* regions the alignment rate is negative (A:nn <0 ).

Table II
Alignment Strength of Extensional Flows

Alignment Strength
Flow Type -
[(A : g5
l a =+l b=0 1
a=+1 0<bs1 %(Hb)
a=-1 0sbsl 1
L




strength and the flow parameters a and b, for general extensional flows. Comparing the
various entnies in Table I1, it follows that the highest flow alignment strength scales with
the strongest compressioaal strains (a= -1, 0 € b £ 1; and a= 1, b= 1) as in biaxial
extensional and planar extensional flows, while the lowest flow alignment strength scales
with the weakest compressional strains (a= +1, b=0) as in uniaxial extensional flow.

1.1
1.0 a=-1

0.9 j\ BE /

08 + PE
a=+1
07 +

0.6
0.5

I(K:nn)ssl

{ | 1 H

00 02 04 06 08 1.0
b
Fig. 6.  Alignment strength (absolute value of sieady state dimensionless ambient

strain rate) |( K:nn)ssl as a function of the flow parameter b, for all types of
extensional flows. The biaxial extensional and planar extensional flows are more

strongly aligning than uniaxial extensional flow.

3.5. Numerical Results
3.5.1. Orientation Relaxation

Figure 7(a) shows the director orientation relaxauon, in terms of the azimuthal
director angle 8 and the polar director angle ¢ as a function of strain  (dimensionless
time ) €= € i, for uniaxial extensional flow (solid line), biaxial extensional flow (dot-dash
line), and planar extensional flow (triple dot-dash line), for De=0.5, U=5, and with the
imtial director orientation (69, ¢o)=(45, 45).  Figure 7(b) shows the corresponding
computed scientific visualization of the director relaxation, represented by the normals to
the shown discs. Figure 7(a) shows that for uniaxial extensional flow the steady director
ortentation is (Bg;, ¢ss) = (45, 90), for biaxial extensional flow it is (Bgs. dss) = (45, 0), and
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for planar extensional flow it is (Bgg, 0s5) = (0, ), in agreement with the predictions
summarized in Table I. The visualization in Fig. 7(b) shows that the director exhibits
different combinations of twisting and tilting as the strain increases but that the final
steady state orientation is always along the strongest compression  direcuon(s) for each
flow. It can be shown that for all extensional flows, the director relaxation 1s faster at
higher De and at lower U, since for these conditions the adapted A(S) samples larger
absolute values.
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Fig. 7. (a) Azimuthal director angle 8 and polar director angie ¢ as a function of

strain (dimensionless time) € = £t , for uniaxial extensional flow (solid line), biaxial

extensional flow (dot-dash line), and planar extensional flow (triple dot-dash line)
for De=0.5 , U=5, and initial director orientation (g, ¢o) = (45, 45) The figure

shows the orientation relaxation of the director for three different types of
extensional flows. (b) Corresponding computed scienufic visualization of the
director relaxation, represented by the normals to the shown discs. For the same
initial orientation, the steady state director orentation 1s different and the final
steady state depends on the type of extensional flow.




Figure 8 shows the x and z components of the director as a function of strain
(dimensionless time) €=¢€t, for uniaxial extensional flow (solid line) and planar
extensional flow (dot-dash line), for De=(.5, U=5. and with the initial director orientation
(ngo= 0.9990, nyo=0.0004, nyo=0.0447) or (8o, §o) = (89.4, 2.56). The figure shows
that the number of strain (dimensionless time) units required to achieve steady state
director orientation for planar extensional flow is considerably larger than those for
uniaxial extensional flow. For the selected ng, the director follows, in both cases, a
trajectory close to the x-z plane till the equator is reached; this is the reason for the
comparable nx dynamics in both the cases. The main difference in required strains arises
from the fact that for planar extensional flow only the y-axis is the compression direction,
and thus n; must now decay to zero.
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Fig. 8.  Director components as a function of strain (dimensionless time) € =€t, for
uniaxial extensional flow (solid line) and planar extensional flow (dot-dash line) for
De=0.5, U=5, and 1nitial director orientation (ngo= 0.9990, nyo= 0.0004,
no=0.0447) or (0o, 0o)=(59.4, 2.56). The number of strains (dimensionless time)
units required to achieve steady state orientation for planar extensional flow is
considerably larger than for uniaxial extensional flow
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3.5.2. Alignment Viscoelastic Relaxation

Figure 9 shows the alignment relaxation S(g) for uniaxial extensional flow (solid
line), biaxial extensional flow (dash-dot line), anu planar extensional flow (triple dot-dash
line) corresponding to the initial director orientation of Fig. (7), and for (a) U=3, De=().5;
(b) U=5, De=0.1; (¢) U=3, De=0.5; and (d) U=3, De=0.1. The relaxation coordinate
£ =£t is the strain (dimensionless time) . The figure shows that biaxial extensional and
planar extensional flows have similar relaxations and both lead to higher steady state
values of the alignment S than in case of uniaxial extensional flow, as predicted in
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Fig. 9. The alignment relaxation S (= et) for uniaxial extensional flow (solid line),
biaxial extensional fiow (dash-dot line), and planar extensional flow (triple dot-
dash line) corresponding to the initial director orientation of Fig (6), for (a) U=5,
De=0.5; (b) U=5, De=0.1, (c) U=3, De=(.5; and (d) U=3, De=0.1 Here e=¢t
denotes strain or dimensionless time. The figure shows that the relaxation 15 more
sensitive to the alignment strength of the flow at higher De (viscous mode) and at
lower U (elastic mode).
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Table II. The figure shows that at higher De, the dynamics of S are slower than at lower
De, for both low and high values of U, and that this wrend is independent of the flow type.
In addition at higher De, the viscous mode dominates the viscoelastic relaxation at all the
times, and the effect of the relative magnitude of U 1s smaller, while at lower De, the
elastic mode domunates and the effect of U is larger. It alsc follows from the figure that
at higher De, the dynamics and steady state value of S is more sensitive to the value of U
in the case of umiaxial extensional flow than in case of biaxial extensional and planar
extensional flows, because at a given De, the flow alignment strength d( A:nn )ss‘ ) in
the former 1~ lower thar in the last two cases. At lower De, the flow-type sensitivity is
weaker since in this regime the elastic mode dominates.

3.5.3. Tensor Order Faraineter Relaxation and Flow Birefringence

Figure 10 shows the relaxation of the components of the tensor order parameter Q
as a function of strain (dimensionless time) € =gt with initial director orientation
(80, 90)=(45, 45), for U=3 and De=().5, and for (a) uniaxial extensional flow {solid line),
(b) biaxial extensional flow (dash-dot line), and (c) planar extensional flow (triple dash-
dot line). For the shown parameters the relaxation is virtually complete after 5 strain
(dimensionless time) umts. The trace elements of Q scale with the alignment strength of
the flow and the relative onentation between ngg and compression directions of A. A
summary of the main features of the steady state values of trace of QQ is as follows :

Qyy:  The biaxial extensional flow exhibits the lowest value since ny is normal to the
compression axis (x-axis) while planar extensionai flow attains the highest
magnitude since ny is along the compression axis (y-axis) and the alignment
strength is high.

Qxx:  Since ny is normal to the extension direction for uniaxial extensional and planar
extensional flows, thus Qxx is smaii, while for biaxial extensional flow, the net
combination due to the fact that ny is along the compressional axis and that the high
alignment strength gives a relative large Qxx.

Qz:  Here the compression directions for biaxial extensional and planar extensional
flows are orthogonal to n, and thus for these flows Q,; 1s small. For umaxial
extensional flow, although n, lies 1n the compressional plane the weakly aligning
character of the flow yieids a relauvely low Q.

The steady state values of the off-diagonal components (Qy; , 1 # j) are equally explained

by taking into account the alignment strength of the flow and the compression directions

of the flow. For example Qy, vamshes for biaxial extensional and planar extensional
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flows since ny is parallel to the compression direction of these flows, while for uniaxial
extensional flow Qy; is relatively large since ny and n, are both in the compression plane
of the flow.
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0.6 | R X
g L .';‘ »
o 02 SR L
06 ] (e)
. / -
a) ] / | O
oozt 2
02 \‘\ § n
06 (© )

Q.
>
2&0

1 --. ~
.../ [ T~ L. L Tl e
N
02+ -
1-‘-\:\“"[——__1_‘— 1 i I W -
0 1 2 3 4 1 2 3 4 5
Strain, €

Fig. 10. The relaxation of the components of the tensor order parameter Q (E=€t )
with initial director orientation (8¢, ¢¢) = (45, 45), for U=3 and De=().5, and for
(a) uniaxial extensional flow (solid line), (b) biaxial extensional flow (dasih-dot
line), and (c) Planar extenstonal fiow (triple dash-dot line) The magnitude of the
different components scale with the alignment strength of each flow, and with the
relative orientations between the different elements of Q and the compression
directions of each flow.




According to [24], the birefringence An can be expressed by:

An=re7-4q=%ﬂ%§ (20)

where €/ and ¢, are the elements of the dielectric tensor e;; parallel and normal to the
director respectively, the tensor ey is given by e;; =€&; + AenaxQy), where the first term is
the average trace of ej; and Aemax is the anisotropy for S=1; for discotics, An <0 since
Aemax <0. In deriving equation (20) we have assumed that € >> 2 Aepg S/3 for the
values of S corresponding to the nematic phase. Equation (20) shows that the steady
flow-induced birefringence Amgs is proportional to the magnitude of the steady alignment
Sss-

Figure 11 shows the steady state alignment Sgg as a function of De for uniaxial
extensional flow (solid line), for biaxial extensional and planar extensional flows (dash-
dot line) for (a) U=5, and (b) U=3. As shown in Table II, the alignment
strength of biaxial extensional and planar extensional flows is identical and thus the
shown curve for these two flows superpose. The figure shows a monotonic increase in
the flow bire{ringence. At high De the viscous mode dominates and the effect of the
magnitude of U is smaller, while at low De the elastic mode dominates and the effect of
the magnitude of U on Sgg is larger irrespective of the flow type. The figure shows, in
agreement with Table II, that the birefringence for uniaxial extensional flow is smaller
than for other flow types since it is a weakly aligning flow. The alignment strength of
each flow type explains the relative sensitivity of the birefringence to De for the various
flows. At higher U the effect due to the different alignment strengths is smaller than at
lower U. At lower U, the viscous mode dominates and the effect due to the different
degrees of alignment strengths increases rapidly with increasing De.

3.6. Conclusions

In this initial investigation of the nematorheology of uniaxial discotics in
extensional flows, we have performed a useful characterization ot the sensitivity of the
director , scalar order parameter, and tensor order parameter relaxation with respect to the
flow type, the alignment Deborah number, and the imual director orientation. Use of the
unit sphere description 1dentified the director dynamics of uniaxial extensional and
biaxial extensional flows as geodesic flows, and as non-geodesic (except for one special

case) for planar extensional flow. The three flows exhibit sensitive dependence to initial
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conditions, but due to the double arrow nature of the director vector (n = -n,) biaxial
extensional and planar extensional flows are strongly orienting flows since they have one
stable fixed point. On the other hand, uniaxial extensional flow is a weakly orienting
flow, since the stable steady states are a degenerate circle, and when ny is on the poles of
the unit sphere, predictability is lost. Significant differences between flow types anse
the number of strain units required to achieve steady state orientations, according to
whether the flow is geodesic (uniaxial extensional or biaxial extensional flows) or non-
geodesic (planar extensional flow). The alighment strength (I( A:nn) ssl ) of the flows
scale with the magnitude of the ambient strain rate ( A : nn ). It is found that uniaxial
extensional flow is a weakly aligning flow but biaxial extensional and planar extensional
flows are strongly aligning flows. A summary of the aligning and orienting properties,

and of the geometry of the director orbits of the main extensional flows, is given in Table
II1.

Table I
Classification of Extensional Flows

Orientation Alignment
Flow Type Strength Strength Geodesic Flow
(Director) (Scalar Order Parameter)
Uniaxial Weaker Weaker Yes
Biaxial Stronger Stronger Yes
Pure Shear Stronger Stronger No
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Fig. 11.
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The steady state alignment Sgg as a function of De for uniaxial extensional

flow (solid line), and for both biaxial extensional and planar extensional flows
(dash-dot line), for (a) U=5, and (b) U=3. The flow birefringence is proportional
to Sgs and increases with De. The birefringence for biaxial extensional and planar

extensional flows is identical and is greater than for uniaxial extensional flow for

all U and De.
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Chapter 4

Theory and Simulation of
Extensional Flow-Induced Biaxiality in Discotic Mesophases 1

4.1. Abstract

Flow-induced biaxiality is simulated for a uniaxial discotic nematic liquid crystal
subjected to a constant uniaxial, isothermal, incompressible, irrotational, extensional,
three dimensional flow. Numerical and analytical solutions of the director triad (n, m, 1),
and uniaxial (S) and biaxial (P) alignments are given. The unit sphere description of the
director triad is used to discuss and analyze the sensitivity of the director triad trajectories
and the coupled alignment (uniaxial and biaxial) relaxations to the initial orientation,
nematic potential {U), and to the alignment Deborah number (dimensionless extension
rate). The evolution of the director triad is given by the rotation of a moving diad (m, 1)
around a fixed director (m). When the poles of the orientation unit sphere are aiong the
extension axis, and the equator lies in the compression plane of the flow, it 1s found that
the director diad (n, 1) dynamics follow geodesic flow and the trajectories belong to the
same meridians (great circles through the poles). The space of stable steady state
orientation of the uniaxial director n and the biaxial director m is the whole compression
plane (the equator of the unit sphere), while that of the biaxial director I is the extension
direction (poles). A high degree extension flow-induced biaxiality is found when the
uniaxial director is away from the extension axis and when S is relatively low. The scalar

rder parameter couplings are captured by analyzing the trajectories in the alignment
triangle. Computed scientific visualizations of biaxial molecular orientation distributions
are used to correlate the director triad dynamics and the alignment's dynamics. The

tensor order parameter is used to calculate the main flow-birefringences.

1 This chapter has been submitted as an arucle for publication in Journal de Physique II (France),

(August 17, 1994).
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4.2. Introduction

Carbonaceous mesophases are an important class of low cost precursors in the
manufacture of high performance carbon fibers [1, 2, 3]. This mesophase precursor is a
uniaxial discotic nematic liquid crystalline material. These mesophases are formed by the
condensation of the aromatic molecules present in the coal or petroleum pitches [1, 2, 4]
and tend to adopt a umaxial discotic nematic phase Nd [5, 6], with unit normals 10 the
disc-like molecules more or less aligned along a common direction (see upper Fig. 1),
represented by the uniaxial director n; in what follows we use n and uniaxial orientation
interchangeably. The degree of alignment of the unit normals along n is given by the
scalar order parameter S [7]; in what follows we use S and uniaxial alignment
interchangeably. Since spinning of discotic carbonaceous mesophases involves strefching
and extension, a fundamental understanding of extensional flow-induced orientation and
alignment is highly desirable. In this paper we use the extensional flow classification
terminology of [8].

For flow of mesophase materials of relatively large molecular weights, the
coupling between the director and the scalar order parameter should be retained [9]. This
dynamic coupling introduces additional nonlinearities through the dependence of the
generalized Leslie coefficients on the scalar order paraineter, as shown in various works
19,10, 11, 12, 13]. In previous works (14, 157, the authors used variational principles to
develop an approximate macroscopic model that allows for variable uniaxial orientation
and alignment in discotic nematics, and applied it to various extensional flows. For
uniaxial extensional flow, it was found that the umaxial director trajectories on the unit
sphere (n.n = 1) follow, from the initial orientation to the compressicnal planie (normal
plane to the extension direction), a geodesic menidian flow and that the uniaxial
alignment relaxation was sensitive to the initial orientation, to the extension rate, and to
the nematic potential that controls the magmitude of S in the absence of flow. The
sensitivity to inital conditions, typical of geodesic flows, was shown to be the cause for
the loss of predictability that occurs when the initial nniaxial director orientation lies
along the extension axis of the flow. In addition, shung extension was found to produce
large decreases in the umaxial scalar order parameter when the umaxial director was
aligned near the extension axis. The previous works |14, 15] precluded flow-induced
braxiality because they are based on a umaxial macroscopic model.

Field-induced hiaxinlity in nematic liquid crystals has been shown to occur under
various conditions. Uniaxial nematic liquid crystals of negative dielectric anisotropy
display biaxial ordering when subjected to an electric field normal to the uniaxial director




19

axis [16]. Uniaxial nematics of negative magnetic susceptibility also dispiay biaxial
ordering when subjecting the material {0 a magnetic field oriented parallel to the initial
director orientation [17]. Extensional flows are known {14, 15} to have orienting qualities
similar to those of ¢lectomagnetic fieids, and this forms the basis for the industnai
manufacturing of organic fibers. The basic flow orienting phenomena of nemaucs in
uniaxial extensional flows depends cn the molecuiar geometry. In extensional tflows the
reactive parameter A (7] plays the analogous role as the diamagnetic susceptihility in the
magnetic field-induced reorientations. For rod-like nematics A > 0 and extension aligns
the director along the stretching direction, while for discotic nematics A < () and
extension aligns the director anywhere in the compression plane.  Given the stated field-
orienting properties of the umaxial discetic nematics and the analogy with magnetc
reorientation phenomena, we expect that a uniaxial extensional flow will also induce
biaxial ordering. The biaxial state is described by orthogonal director tnad (n. m, 1) and
two scalar order parameters (S, P) | 18, 19].  Although no experimental measurements of
the state of alignment of uniaxial discotic during extensionul flows exist, sigmficant
flow-induced changes of the wniaxial scalar order parameter of rod-like mainchain
nematic polymers are believed to dominate their rheology 120]. Thus we expect that
flow-induced biaxiality may be accessible and significant for discotic mesophases
subjected 1o uniaxial extensional flows.

The main objective of this work is to establish the relevant qualitatve teatures that
describe the relations between uniaxial extensional deformations inputs and onentation
(uniaxial and biaxial) and alignment (uniaxial and biaxial) responses in n «deahized,
uniaxial discotic nematic liquid crystalline phase. The particular objectives of tins paper
are:

1) To characterize the sensitivity of director tnad (n, m, 1) trajectones and their
stable steady states to the mitial conditions, and to the extension rate, using analysis
and numerncal simulation;

2) To characterize the sensitivity of uniaxial (S) and braxial (P) alignment
relaxations, along the corresponding director paths, to the initial conditions and to
the extension rate, using numerical simulation.

In this paper we use the unit sphere description [14, 15] of nematics only to
facilitate the discussion and classificauon of the numencal results thar pertain to the
above mentioned objectives.

The organization of this paper 1s as foilows. In section 43 we define the
coordinate system and the state vanables , define the unaxial extensional flow, briefly
present the elements of the unit sphere description used to discuss and classify the
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analytical and numerical sclutions, and present the governing equations. In this section
we also present analytical orientation (uniaxial and biaxial) and alignment (uniaxial and
biaxial) results, and the principles used io select the phenomenological parameters of the
model. A brief description of the numierical method used to integrate the governing
equations is also presenied. In section 4.4 we present , discuss, and classify the solution
vector, conssting of the ume wependent director and alignment fields, obtained from
numerical 1ntegranon and analytical solutions of the goverming equations. Typical
computations of the tensor order parameter relaxation and flow birefringence are

presenied.

4.3. Theory and Governing Equatioris
4.3.1. Definition of Coordinaies, Kinematics, Orientation and Alignment

In this paper we study the iemporal, spatially uniform microstructural response of
a model uniaxial discotic nematic subjected at time 1 = () to a constant uniaxial extension
rate €. The microstructure of the nematic is characterized by the tensor order parameter

Qy(v [19k:

QiJ=S(ninJ"31'8U)+'31'P(mimj‘ Li1y); (1a)

where the following restrictions apply:

Qi =Q; Qii=0; -%—SSSl; -%SPS%;
(lb’c,d’e,ﬂ
mn=mym; = Ll;=1;

where i, j = X, y, z. The uniaxial director n corresponds to the maximum eigenvalue %—S,
the biaxial director m corresponds to the second largest eigenvalue - —3L (§-P), and the
biaxial director 1 =nxm corresponds to the smallest eigenvalue -31—(5 +P). The

orientation is defined by the orthugenal director iriad (n, m.1). The magnitude of the
uniaxial scalar order parameter S is a measure of the molecular alignment along the
uniax:al director n, and 1s given by § = 3 (n, Q ) ny )/2. The magnitude of the biaxial
scalar order parameter P 1s a measure of the moleculax alignment along the biaxial

director m 1n a plane perpendicular to uniaxial director n, and is given as
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P=3(mj Qjm;-1ijQjjlj) /2. On the principal axes, the tensor order parameter Q y(t)
is given by :

e ]
Ls-P) 0 0
Qiy = 0 -%(s +P) 0 (2)
2
| 0 35 |

We next adopt this well known description to discotic nematic liquid crystals
Figure 1 shows an schematic side view (top) and top view (bottom) of a typical flow-
induced biaxial ordering in a discotic nematic liquid crystal. The top figure shows that
the uniaxial director n describes the average orientation of the normals to the circular
discs. The bottom f{igure shows a projection on a plane perpendicular to the umaxial
director, here given by the m-! plane. The bottom {igure shows that m s the average
orientation of the projection of the normals to the circular discs onto the m-i plane  As
explained in [17, 19], with the above given idenufication, botk § and P are positive for
both rod-like and disc-like untaxial nematic liquid crystals, and no further distinction 1s
required in this paper since 10ds are not considered here. Here S and P are the scalar
order parameters in the direction of the directors n and m respeciively.

Having established the ordering and orientation measures, we briefly discuss therr
restrictions and magnitudes in typical states. The correspondence between phase and
alignment is : 1sotropic (S =0, P = 0), rniaxial nematic (S = 0, P = 0)), and biaxial nematic
(S§#0,P=0). Since the eigenvalues p, (i = 1, 2, 3) of the tensor order parameter Q are
restricted by :

-1 2.
3Sp,,s3, (3)

hence it follows that biaxial order parameter P obeys the following restrictions :
S-1<sP<1-8 4)

Equations (1d, le, 4) define the alignment triangle containing all (he possible ordenng
states of discotic nematic liguid crystals. Figure 2 shows a schematic of the alignment
triangle, whose sides are givenby P=1-5(P20), P=S-1(P<0),and S =-0.5.

The seven limiting alignment states are shown by an arrow originating from each




A NN .

Fig. 1. Definition of director orientations of a discotic nematic liquid crystal
undergoing flow induced biaxiality. The uniaxial director n in a discotic nematic
phase is the average orientation of the unit normals to the disc-like molecules. The
biaxial directors m, I lie in a plane perpendicular to uniaxial director n, and form a
right hand triad. The biaxial director m is the average orientation of the projection
of the unit normals to the disc-like molecules in a plane orthogonal to uniaxial
director n. The biaxial director 1 is given as nxm. The lower 2-D figure is the
projection, of the upper 3-D schematic, in m-1 plane. In this paper we consider the
extension dynamics of a discotic nematic that is uniaxial prior to the imposition of
flow.
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' 1.5
$=-0.5, P=1.5 \
1.0

S=1, P=0

$=-0.5, P=-1.5

S=0, P=-1

Fig. 2. The alignment (uniaxial and biaxial) P-S triangle. The unit sphere description
of the director triad (m, m, 1 ) is used to explain the alignment characteristics at
different limiting points on the alignment phase plane. The dark rings or dots
represent the direction in which the unit normals to the disc-like molecules point.
Seven limiting alignment states are shown by an arrow originating from each
corresponding unit sphere. Wherever S = 0, the uniaxial director n is undefined,

and wherever P = (), the biaxial directors m, I are undefined. The figure shows that
when P — - P, thenm — 1.
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corresponding unit sphere description [ 14] of the molecular orientation state. Wherever
S = 0, the uniaxial director n is undefined, and wherever P = 0, the biaxial directors m, |
are undefined. The dark dot or the dark ring on the unit sphere indicates the orientation
of the normals to the discs. For example, for ( S =0, P = 1), the uniaxial director n is
undefined, and the unit normals to the disc-like molecules lie along the meridian passing
through the biaxial director m. The figure also shows that when P — - P, then m — L.
The rings in the figure corresponding to (S =0, P =1), (§=-0.5, P=0), and
(S =0, P =-1) correspond to planar orientation. The dark dots in the figures of
(8=-05P=15), S=1,P=0),and (S=-0.5,P=-1.5)correspond to various perfect
alignments. Since uniaxial extensional flow will not induced negative values of S and P,
in the present study the state of alignment lies within the triangle defined by S =0, P =0,
and P =1 - S, whose vertices are the isotropic plane, the perfect uniaxial nematic phase,
and the planar oriented phase. In what follows we refer to this restricted alignment space
as the alignment triangle.

To enforce the unit length constraint on the orthogonal director triad
(m.m=m.m=1.1=1) and to visualize and analyze the director triad orbits on the unit
sphere, we parametrize director triad as follows :

n = (nyny, ng) = (cos 0, sin ¢ cos 9, sin ¢ sin 9)

[m,m,1] : | m = (my my, m;) = (cos y, sin y cos &, sin ¥ sin o ) (5a)
Il =nxm
where
v = m-l(—-———-"“('q’) ) . (Sb)
cos(9~¢)

The parametrization is shown in figure 3(a), where 8 (0 <0 <2r) is the uniaxial
azimuthal angle and ¢ (0 € ¢ <m) is the uniaxial polar angle defining the uniaxial director
n. The biaxial director m is completcly defined by the biaxial polar angle w(0 <y <n)
and biaxial azimuthal angle x (0<a<2x) . In terms of the uniaxial angles, the north
pole of the sphere is located at ¢ = Q, the south pole at ¢ = r, and the equator at
©, ¢) = ([0, 2r], £ r/2) . In this paper x is along the extension direction of the imposed
flow.
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The unit sphere description of the director triad is used just to facilitate the
analysis and discussion of the analytical and numerical results of director triad relaxation
and alignment relaxation. In the unit sphere description [14, 15, 21, 22, 23, 24] each
director tip, in the presence of flow, defines a trajectory. As shown below, in uniaxial
extensional flow, m(t) = m(0) and the trajectory of m is just a point on the equator of the
unit sphere. To characterize the moving director diad (n(t), K(t)) orbits we define
geodesics and meridians. A geodesic is the shortest arc connecting two points on the
surface of the sphere, and is given, in terms of the uniaxial director angles, by [25]:

sinNzcos(p-cosstin¢cos9-—s&:m-9= ; 6)
N;{“-1

where N1 and N7 are constants that depend on the two points; the geodesic or great
circle, is the intersection of the sphere with the plane containing the given points and the
center of the sphere. When the two points are the poles (N2 = nt) the degenerate geodesics
are the meridians M, which in terms of (0, ¢) and the director components
(@,i=x,y,2), a=n,l) ,are given by [25] :

tan6=1; b2=—L . 0<o<n; (7a,b,c)
b (N;2-1)

where b ( - oo <b < o) is a constant whose numerical value defines a particular meridian.
A family of meridians is shown by the solid lines passing through the poles in
figure 3 (a).

Figure 3(b) shows the deformations of a unit cube of discotic nematic subjected at
time t = O to a uniaxial extensional flow; as shown below, the applied extension direction
along the x-axis (polar axis), is parallel to the steady state biaxial director
Iss = (lass» 0, 0) = (£1, 0, 0). The uniform compression along the (y-z) plane contains the
equator of the unit sphere, and as shown below represents the degenerate circle of stable
steady uniaxial and biaxial director orientations : ngs = (0, nygg, Nzss ) =
(0, cos Oss, 5in O55 ); and mgg = (0, myss, Mzss ) = (0, COS Oig, SiN Ggs )  TESPECtively;
where the subscript 'ss' denotes steady state.

To characterize the relaxation of the uniaxial and biaxial alignments as the
directors traverse the surface of the sphere, we divide the sphere into three characteristic
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regions, denoted by R- and R*, and shown in the schematic of figure 4. The two
equivalent R- regions are given by |3,|> 143, and the R* region is given by | a,| < INT,
where a is a unit vector. In an irrotational uniaxial extensional flow, the only flow effect

on the orientation and alignment is due to the symmetric part of the velocity gradient
tensor (v, ), usually known as the rate of strain tensor or rate of deformation tensor and

denoted by A, and whose ij and ji components are given by A, =A ;= (v,;+v;,)/2. An
important observation, used below to classify the numerical results of alignment
relaxations, is that a director whose tip lies in the R region samples extensional strains
(A:aa>0, a=n,1 ), while a director whose tip lies in the R* region samples
compressional sirains (A :23<0, a=n,1).

4.3.2. Governing Equations for Uniaxial Extensional Start-up Flow

The macroscopic model used in this paper is described in detail in [14, 15]. Here
we just present the governing equations for the temporal evolution of the tensor order
parameter and refer the reader to the above mentioned references for further details. The
dimensional governing equations for the microstructure response of the mode! discotic
nematics, subjected to isothermal, incompressible, irrotational extensional flow are
approximated by :

(1- YQi, - U( Q- 2@} + U(QQa)Q;
+ G4Aij + 1.'4Qij + G(,(QikAk] + Aika] - %QlkAkla"J) )

+ Te(Qika, + Qi Q; - %Qlekl&,) =0,

where (i, j = X, y, 2); U is the nematic potential, A, is the rate of deformation tensor, Q )
is the time rate of change of the ij component of the symmetric traceless tensor order
parameter Q; j, and G, Oy, T6, T4 are the dimensional phenomenological parameters. The
simplifying assumptions and approximations made in denving the model that describe
the flow-induced tensor order parameter of an ideal discotic nematic liquid crystal, as
given by equation (9) can be found in [14, 26]. The numerically integrated set of
dimensionless governirng equations in component form and the dimensionless vanables
are given in Appendix A. The corresponding eigenvector-eigenvalue versions,
governing the evolution of the director triad and alignment's extension dynamics, are
given by :
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Fig. 3. Definition of (a) coordinate system, (b) uniaxial extensional flow deformation.

(a) Director angle and unit sphere : 6 (0 <0S2r) is the azimuthal angle and ¢
(0S¢ <) is the polar angle which define completely the orientation of the uniaxial
director n. The biaxial director m is completely defined by the polar angle
Y (0 <y <n)and azimuthal angle « (0 <2r) . The north pole of the sphere is
located at ¢ = 0, the south pole at ¢ = &, and the equator at (0, ¢) = ([0, 2x}], £ 7/2).
(b) Deformation of a unit cube, subjected at time t = 0 to a uniaxial extensional
flow. The x-axis is along the extension direction, and the y-z plane contains the
uniform compression; the flow is an irrotational 3-D flow.
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Extension
Direction

R7;A:@a >0

—P 7

i o R+,A:§§<O

R;A@a>0

Fig. 4.  Sensitivity of initial uniaxial alignment S and initial biaxial alignmeat P

relaxation to the initial director orientation. The three characteristic regions for the
ambient strain rate A:aa (wherea=n,1). In the region R- the ambient strain is
positive (A:aa>0); in the region Rt the ambient strain rate is negative

(A :22<0); and on the boundary of the two regions dR* = dR" the ambient rate is
zero(A:aa=0).
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%léd.';(x.n-(iznn)nhlfm(xzmn)m (10)

am g an
%:ﬁ.(x.l-(xzu)l)+A'mi,(7s:nu)m (12)
%:-:S:Bf.sK:nn+BTsK:mm+De"Bz.s 13
%E:B}"pxznn+[3'l'fpx:mm+De"[32,p (14)

where A =A/€ is the dimensionless rate of strain tensor, De = € 1, is the alignment
Deborah number (dimensionless strain rate), and e =€t is the strain (dimensionless
time). Equations (10 - 14) are only used to obtain analytical results and to develop a
selection procedure for the parameters of the model; all numerical results of this paper
were obtained by numerical integration of equations (A.1 - A.5). Equation (11) shows
that m = constant for uniaxial extensional flow, as we prove below (see Fig. 5); this
analytical result is not used in the numerical integration of equations (A.1 - A.5). The
director diad (n, 1) evolution equations (10, 12) contain uncoupled and mixed flow terms.
The parametric functions introducing these terms are the four reactive parameters
(k} ;i=m, L j=n,1, mix) , where the subscript mix denotes the cross coupling reactive
parameters. In this paper the following terminology is used for the set of reactive
parameters : uniaxial reactive parameter An, mixed-uniaxial reactive parameter k:'n;x,
biaxial reactive parameter 7ql, and mixed-biaxial reactive parameter k:m The alignments
relaxation equations (13, 14) contain only uncoupled flow terms and the parametric
functions introducing these terms are the four ordering functions
( Bil_, ;yi=n,m;j=§,P) , and the two elastic functions ( Bg_j ;J=S,P) . The following
terminology is used for the set of ordering functions : n-S ordering function B'f S, m-S
ordering function B7's, n-P ordering function Pp, and m-P ordering function Bip. The
elastic functions are called uniaxial elastic function B, 5 and biaxial rlastic function fp
and contain the thermodynamic contribution. The expressions for the set of reactive
parameters ( Ag, Amix, k.l , A:n,, ), the ordering function set ( B?.s , B'f_'s , Bll"p , B'ln_p ), and the
elastic functions ( By s, f2,s) are given in Appendix B. When De — 0 the alignments
dynamics are purely elastic, when De — o purely viscous, and for the intermediate De
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values viscoelastic. At intermediate De the moving director diad (m, 1) is also
viscoelastic, as it is coupled to alignments (S, P) through the set of reactive parameters
(Ags Ao Mo Aeruz )

The velocity field v (x, y, z) corresponding to the uniform uniaxial, irrotational,
3-D extensional start-up flow of the discotic nematic crystals, is given by [8] :

vi = ExHQE); vy = -%yﬂ(t); vy = -%zH(t);
(15a,b,c,d)

where € is the constant uniaxial extension rate. The non-zero components of the
corresponding rate of deformation tensor A are : Ay =€; A2z = A33 = - € /2; this flow
is irrotational and the vorticity tensor is zero, W = 0.

The initial conditions used to solve equations (A.1 - A.S), in eigenvalue-
eigenvector form, are :

@t=0: n=mng: my =(0,my,myg; lo=ngxmg;
np.mg=mg.Mmyg = lp.lp = 1; (16)
So = Sq3 Po =0;

where Seq(U) is the equilibrium scalar order parameter of the normal (S > 0) uniaxial
nematic phase , given by [27]):

s.,q=4l+% - 5% (17)

For U < 8/3 the stable phase is isotropic, for 8/3 < U < 3 there is biphasic equilibrium, and
for higher values of uniaxial nematic potential U the phase is uniaxial nematic. High
values of U correspond to stronger uniaxial aligament. In this paper we use two
representative nematic potentiai U = 3 and U = 5, and the corresponding initial condition
values for uniaxial scalar order parameter are : Seq (U=3) = 0.5 and S¢q (U=5) =0.76. In
this paper, all angles are reported in degrees.

Equations (A.1 - A.5) are integrated using an implicit corrector-predictor first
order Euler integration method with an adaptable time step {28]. Application of the
implicit corrector-predictor method transforms the set of coupled nonlinear ordinary
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differential equations (A.l - A.5) into a set of coupled nonlinear algebraic equations .
For each time step the algebraic equations are solved using the Newton-Raphson
iteration scheme [28]; the predictor step generates a first guess for the iteration loop and
the corrector step is the iteration loop itself. The adopted convergence criteria is that
the length of the difference vector between the calculated solution vectors corresponding
to two successive iterations is less than 10 6 . The transient solution vector obtained
from the numerical solutions consists of the five independent components of the tensor
order parameter (Q(£)) as a function of the strain (dimensionless time) €=¢t. In

addition to the uniaxial nematic potential U, the other dimensionless parameter
investigated in this paper is alignment Deborah number De. The numerically obtained
tensor order parameter Q(€) is subsequently transformed into principal form to find its
eigenvectors or director triad (n, m, 1 ) and its eigenvalaes, given by equation (2).

4.3.3. Analytical Results
4.3.3.1. Director Triad Dynamics

Assuming that the biaxial director m always lies on the equator, or the plane of
uniform compression, then it can be written as m = ( 0, my, m, ). Using this restriction

(myx = 0) and the symmetry of the flow type ( Ayy = Azz ) the mixed terms ,
A:mn and A:ml, in the director diad (n, I ) relaxation equations (10, 12) take the
following form :

A:mn = Ay, (myny+m;n,) ; (18)
and
A:ml = Ay, (myly+m,l;) . (19)

The orthogonality of the directors (m L n and m 1 1) now gives :
myny+m,n,=0; myly+ml,=0 (20a,b)
Use of equations (20) in equations (18, 19) shows that the mixed terms

A:mn and A:ml appearing in the director diad relaxation equations (10, 12) are zero.
Hence the uniaxial director relaxation n(€) and biaxial director relaxation I(¢) are affected

only by the uniaxial reactive parameter A, and the biaxial reactive parameter l},
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‘ respectively. Integration of equations (10) and (12) yields the following expressions for
the moving director diad (n, 1) relaxation 1n the uniaxial start-up extensional flow:

Ej; 4
(8) ~ ; al (0) = 3,0,
|E . 3|

(21a,b,c,d)

Eu(e)=cxp{ Jl;de ; '=—"}.ﬂ;

[
and in the component form:

ax = Exxfxo : ﬁy = EYYAYO . al = Ezzi‘z(); (22a,b,c)

| Ea| | E.2] | Ea|

e ~ s ~
Exx = €Xp j?\;ds'; Eyy = E; = exp -%j l%de';

()} 0

(23a,b,c)

Ej =0 for i#j;

where @ =n, I; and ajo is the jth component of the initial director orientation

(2 (0) = n(0), 1(0)). The direction of the director trajectory and steady state is governed

by the sign of the corresponding director reactive parameter. The uniaxial reactive
parameter 7\: is negative for discotic nematics [14] (see figure 7). For the present case
(my = 0), it can be shown that the biaxial reactive parameter N' is related to the uniaxial
reactive parameter by the following relation :

A= - A (24)

which, since 7\: <0 [14], implies that )ql > 0 for discotic nematics (this relation follows
from equations (B.1, B.3)). The equations (22, 23, 24) show that the y and z
components of the uniaxial director n will increase, whereas the corresponding
components of the biaxial director 1 will decrease; hence n rotates towards the equator,
and 1 towards the closest pole. From equations (22, 23) it also follows that y and z
components of the moving director diad (n, 1) are related by : ny =bn, (b = nyo/n,0),
. and ly =bl; (b=1y/lz0). Using the last result and equations (7, 8), we conclude that
the uniaxial director n and biaxial direcior | orbits belong to the meridians, and the
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director diad (n, 1 ) dynamics belong to the class of geodesic flows. Comparison of
equations (22, 23, 24) with equations (7, 8) also shows that the director diad (n, 1) belong
to the same meridian of the unit sphere. From the meridian flow of the director diad
(n, 1) 1t follows that the biaxial director m should lie somewhere on the equator of the
unit sphere The computed numerical simulations for the director triad relaxation, shown
below, confirm the above analysis.

The selection cniteria for the biaxial director m can be explained by the following
argument. Biaxiality will be present in & plane normal to the extension direction, that is,
in the (y-z) plane. Since m is normal to n and must lic on the equator, hence m(0) is
normal to P . n(0), where P=(3 - nn) is the projection operator. In addition, since n
follows a geodesic meridian flow ( ny =b nz, b =nyp/ny ), thus it follows that :

~ _P. n(O)

(J+bk) 25)

and fromm Ln, we finally get the following components for m :

m, =0 ; = :t———l—— m, = -bm, (26a,b,c)
V1+p?

Equations (26) show that for a given b = ny(/n,0, there is indeterminacy in the selection
of the biaxial director m, since there are two equivalent directions perpendicular to ng and
farthest away from the extension direction for each initial uniaxial orientation ng, As
I =nxm, there are also two possible equivalent biaxial director 1 trajectories for each
uniaxial director n trajectory.

Equations (22,23,24, 26) show that the stable state director triad is given by :

Ngs =( 0, Nygs, Nygs) = (O 1 ) i
Vi+b2 Yi+b2

[Mgs, Mg, 1] 0 | Mss =(0, myss, Myss) =( 0, + M -1’_ x , t i t:_ 2 ) (27a,b,c)

Is = ( l’lyss,lz.ss) = (il, 0, 0)

where b = nyo/nz0 .
Figure 5(a) shows the computed director triad (n, m, 1) trajectories on the surface
of the unit sphere, and figure 5(b) shows the corresponding computed director triad
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trajectories on the ¢-0 plane, for an initial uniaxial director orientation of
(00, ¢o) = (45, 2.56). The figure shows that for the given umaxial director v trajectory
there are two different biaxtal director m, | trajectonies, where the arrows indicate the
direction of the director paths. The uniaxial dircctor trajectory and the two corresponding
equivalent biaxial director trajectories lie on the same meridian  The computed director
triad steady states agree with equation (27) ' kg lLies along the poles, ng lies on the
equator, and mgg lies on the equator and 1s normal to ng

The uniaxial director n and buxial duector L orbits tollow geodesic flow due to
the inherent symmetry 1n the uniaxial extensional flow. This 1esult 15 also predicted by
the TIF equations of [29], which are applicable to umaxial nematics of constant order
parameter, since as mentioned above, for irrotational flows the geometry of the director
orbits are insensitive to vanations in the magnitude of the ahignment The director
trajectories shouid exhibit the characteristic sensitive dependence on mitial conditions
which is typical of geodesic flows [30]. When the imtial uniaxial onentation is ny = %1,
along the poles, predictability 1s lost. Close to the poles there 15 high sensitivity to initial
uniaxial orientation ngy. Figure 6 shows the director triad trajectories on the surface of the
unit sphere when the 1nitial uniaxial orientation 1s close to the north pole,
for (B, dg) = (45, 2.56) (solid line, corresponding director tnad trajectornies are denoted
with subscript "A') and (0g, $g) = (315, 2.56) (dot-dash line, corresponding director triad
trajectones are denoted with subscript 'B'). The arrows indicate the direction of the
director paths. The figure illustrates that the there is a high sensitivity of the director triad
trajectories and steady states, when the initial uriaxial orientation 1s close to the poles.
The whole compression plane or equator contains the space Jf stable uniaxial ng and

biaxial mgy orientations, while the poles or the extension directions are the stable states
for the biaxial director 1.

4.3.3.2. Uniaxial Alignment Dynamics

The uniaxial alignment relaxation S(¢) and biaxial alignment relaxation P(g)
depend onag (@ =n,1) through the ambient strain rate A : aa . Figure 4 shows differcnt
representative regions for A:aa . Inthe R regions the ambient strain rate 15 positive
(A:2a >0), and inthe R* regions the ambient strain rate 1s negative (A:aa < (). The
uniaxial alignment relaxation equation (13) can be wnitten, using the nght handed
orthogonality of the director triad (d=nn +mm +11),as :

%%:(ﬂ,‘fs “BYs)A nn-Prs A+ DelPys (28)
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Fig. 5. (a) Computed director triad (n, m, I) trajectories on the surface of the unit

sphere with representative meridians and equator. (b) Corresponding computed
director trajectories on the ¢-0 plane for initial uniaxial director orientation

(89, $0)=(45, 2.56). There is indeterminacy in the m, 1 trajectories; for each uniaxial
director n trajectory there are two different biaxial director m, 1 trajectories. The
arrows indicate the direction of the director paths. The steady states for the uniaxial
director n and the biaxial director m lic on the equator, the plane of uniform
compression, whereas for the biaxial director | the poles (extension direction) of the
unit sphere are the stable states. The uniaxial director n and biaxial director I follow
geodesic meridian flow, whereas the constant biaxial director m remains at all the
times on the equator.
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Fig. 6.  Sensitivity of the director orbits to the initial director orientation. For the
uniaxial director n and the biaxial director m, the whole equator represents stable
director orientations. Predictability is lost when the initial uniaxial director
orientation lies along either of the poles; close to the poles there is a high sensitivity
of the final steady state orientation to the initial uniaxial director orientation no.
The two stable orientations for the biaxial director I are the poles of the unit sphere.
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where (Bln, g - B{':g) and B:' s both are negative (see figure 7); hence the initial uniaxial
alignment relaxation characteristics are given by:

noinR':(%g-) ,<0; ngin R+:(%§e=o’>0; ot

n, in R = oR" :(g%)e =0;

It follows from the equations (29) that for any De, a sufficient condition for
increasing uniaxial alignment S is that ng is in R*. For large De, discotic nematics,
initially in R~ undergo a temporary melting the uniaxial director is in the region R~ [14].

4.3.4. Selection of Phenomenological Parameters

In this section we show and use the concepts used to construct a selection
procedure for the three dimensionless phenomenological parameters (0;, C¢» 1;) of the
present model. The non-dimensionalization of the three parameters is given in equation
(A.41). To select the numerical values of the three dimensionless parameters 0,:, 0;, ‘t;
we enforce the following constraints on the signs of A, 2 oMo [14, 15 31, 32, 33, 34)

and on the values of Ay when S =0, S = 1 [31}:

x:=-lf'T°<o; ¥a20; ¥20; (302,b.0)
1
n_ n_ .
hms-»o“"‘ = ; hms_’ll.. 1; (30d,e)
P=0 P=0
n . n -
hmP_’ol,, = - oo, lxmp_”l,, =-1 (30f,g)
S=0 S=0

where 4] is the rotational viscosity for n, and 3 , is the irrotational viscosity for n, whose
meaning is identical to that of uniaxial nematics [7].

In addition to the above mentioned well known constraints, additional restrictions
imposed on the phenomenological parameters, appear for the physically meaningful
alignment of the director triad at steady state ( ngs and mgg lie perpendicular to the
extension direction). This physically meaningful steady state director triad orientation is
automatically selected by using equation (24).
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The adopted values that satisfy the above mentioned constraints are :
oy =0.55, 6 = 0.30, 7; = - 1.05. The resulting uniaxial reactive parameter Ag ( NI =-)g)
and the set of ordering functions B'l', S BT S» [3'1‘, P ﬂTP , given by equations (B.1, B.§, B.6,

B.7, B.8) respectively, are shown in figure 7. The values of the phenomenological
parameters used in this paper are not fitted to any of the original existing discotic
mesophases, but capture the essential phenomena of the problem. Other parameter
values will only change the time scales for the various relaxations.

The appropriateness of the signs of the various ordering functions shown in figure
7, for discotic nematics, can be justified by expected physical phenomena [14, 15]. When
extension is applied normal to the uniaxial director n of a discotic nematic, there is an
increase in the alignment of the molecular normals along n. Hence when the uniaxial
director n lies on the equator (region R*), the start-up uniaxial extensional flow should
tend to increase the alignment along n. Moreover when n lies in region R*, the flow
contributions in equation (13) are both negative (A : nn <0, and A : mm <0 ). Hence,
for S(e) to increase, equation (13) shows that the two ordering functions must be
negative : B3 5<0,and Pls<O.

When n lies on the pole the effect of biaxiality is zero, since both biaxial directors
(m, 1) lie on the compression (y-z) plane. As n moves towards the equator the biaxiality
increases because of the preference of the projections of the molecular normals to align
themselves along m in a plane perpendicular to n. Thus when n lies on the equator (1 lies
on the pole, and m lies on the equator) the application of the flow should increase
biaxiality, and when n lies along the poles flow will not induce any biaxiality.
Consideration of equation (14) with n on the equator indicates that the expected increase
of P is captured only if the two ordering functions are negative : B'f_p< 0,and B?,p< 0.

4.4. Numerical Results
4.4.1. Uniaxial and Biaxial Orientation Relaxation

Figure 8 shows the polar uniaxial angle ¢ as a function of strain (dimensionless
time) € = &t , for De=0.6 (a), 0.4 (b), 0.1 (c); U=3 (dash-dot line), U=5 (full line), and for
the initial uniaxial director orientation (8g, ¢0)=(45, 2.56). The figure shows that the
uniaxial director n reiaxation is viscoelastic , and that it is faster at higher De and lower
U, since for these conditions the uniaxial reactive parameter Ag samples higher absolute
values. The biaxial director m is fixed at the equator (see figure 5), and the biaxial
director 1 follows the viscoelastic relaxation of the uniaxial director n, since 1 L n.




Fig. 7. Parametric functions of the model. The uniaxial reactive parameter An and the
set of ordering functions Py, Bts, B p, and BLp as a function of the uniaxial scalar
order parameter S and biaxial scalar order parameter P for the chosen set of
dimensionless phenomenological parameters (3, G5, and 7g). For discotic nematic
liquid crystals these all are negative (see text).
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Fig. 8.  Polar uniaxial angle ¢ as a function of strain (dimensionless time) € =&t , for
De=0.6 (a), 0.4 (b), 0.1 (c); U=3 (dash-dot line), U=5 (full line), and initial uniaxial
director orientation (8¢, $0)=(45, 2.56). The uniaxial director relaxation is
viscoelastic, and it is faster at higher De and at lower U. The biaxial director m is
fixed on the equator, and the biaxial director | follows the viscoelastic relaxation of
the uniaxial director n.
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4.4.2. Uniaxial and Biaxial Alignment Relaxation

Figure 9 shows the uniaxial alignment relaxation S(€), and the biaxial alignment
relaxation P(e), for De=0.6 (full line), De=0.4 (dash-dot line), and De=0.1 (triple dot dash
line) corresponding to the initial uniaxial director orientation of figure 8, for (a, ¢) U=5,
(b, d) U=3. The figure shows that the uniaxial and biaxial alignment relaxations are
viscoelastic. For a high nematic potential (U=5) the viscous mode dominates for higher
De (De=0.6), while the elastic mode dominates the viscoelastic relaxation for lower De
(De=0.1). For a low nematic potential (U=3) the viscous mode dominates at higher De
(De=0.6); at lower De (De=0.1) the viscous mode dominates the initial response but the
elastic mode dominates the viscoelastic relaxation at the later stage. Since in this figure

1.00

0.75

1 0.50

0.25

0.75

A« 0.50

0.25

0.00

Strain, €

Fig. 9. Uniaxial alignment relaxation S(€) and biaxial alignment relaxation P(€), for
De=0.6 (full line), De=0.4 (dash-dot line), and De=0.1 (triple dot dash line)
corresponding to initial uniaxial director orientation of figure 8, for (a, ¢) U=5,
(b, d) U=3. The figure shows that at higher De the viscous mode dominates and the
effect of relative magnitude of U is small, while at lower De the elastic mode
dominates and the effect of relative magnitude of U is large. The Deborah number
De is the dimensionless strain rate ( De = € 14).
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the initial orientation of the uniaxial director ng is in R-, there is an initial decrease in the
uniaxial alignment relaxation (figure 9 a, b), and there is an initial lag in the biaxial
alignment relaxation (figure 9 ¢, d). A comparison of the computed steady state
alignment shows that at higher De, the viscous mode dominates and the effect of the
relative magnitude of the nematic potential U is small, while a: lower De, the elastic
mode dominates and the effect of U is large.

Figure 10 shows the alignment's evolution in the alignment triangle (P-S triangle)
for De=0.6 (full line), De=0.4 (dash-dot line), and De=0.1 (triple dot dash line)
corresponding to initial the uniaxial director orientation of figure 8, for (a) U=S5 and (b)
U=3 . The empty circles show the initial alignments condition (§=S¢q, P=0), and the
direction of arrows represents the relaxation with increasing strain € (e =€t). The figure
shows an initial decrease in the magnitude of the uniaxial scalar order parameter §, from
the equilibrium value Seq, because the uniaxial orientation prior to flow was in region R~

1.0
(@)
U=
A 05 +
<t "5"‘._—_
(b)
=3
(a W)
0.0 0.5 1.0

Fig. 10.  Alignment trajectories in the alignment triangle (P-S triangle) for De=0.6 (full
line), De=0.4 (dash-dot line), and De=0.1 (triple dot dash line), corresponding to
initial uniaxial director orientation of figure 8, for (a) U=5 and (b) U=3 . The

circles show the initial alignment condition (§=S¢q, P=0), and the direction of
arrows represent the relaxation with increasing strain €(€ = &t).
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Figure 10 shows that the alignment trajectory is well approximated by a three stage
process. In the initial stage, S decreases and P remains close to zero, since the uniaxial
orientation n is close to the poles, and the flow will not induce biaxiality. In the
intermediate stage, S is relatively low, n is oriented away from the pole and both of these
effects contribute to the increase of P. In the third stage, n is close to the equator and the
potential for flow-induced biaxiality is maximum but, the high uniaxiz{ ’ignment S
dominates and causes a decrease in P.

Figure 11 shows a trajectory in the alignment triangle and the corresponding
computed scientific visualizations representing the density (f(a, w;)) of the unit normals
to the discs in m-! plane (n is out of the plane of paper), for U=3, De=0.6, and for the
initial uniaxial director orientation of figure 8. The density f(w,, ;) is approximated

by:

f( o, wy) = ZIE + §5_1E ((2cos2w; - sin?wy)S +(sin2w; cos2wy)P ) ; (31)

where (w;, ;) are the polar and azimuthal angles respectively of the unit normal to a

disc-like molecule. Equation (31) was obtained by using the standard single molecule
distribution function f(u)=2-11?+ uu:Q, where u is the unit normal to the disc-like

molecule. In the figure we mapped the magnitude of f(ay, wp) onto a gray scale; darker
(lighter) regions correspond to higher (lower) value of f(w, ;). The four insets
correspond to the following alignment states: bottom right (S = 0.5, P = 0), bottom left
($ =0.03,P =0.03), top left (S =0.25,P =0.65), and top right (§=0.74,P=0.2). A
darker area represents the higher density of unit normals to the disc-like molecules. The
bottom right visualization, representing the initial uniaxial state, shows that the m-I plane
is isotropic as P = 0; since S # 0 the density of the unit normals is high near the center
(n is pointing out of the plane of paper at the center) but it decreases as we move away
from the center. The bottom right visualization, representing a nearly isotropic state,
shows a higher distribution of unit normals along m than I; as S is nearly zero there is
almost a constant density of the unit normals. The top left visualization, representing a
stronger biaxial state, shows a stronger anisotropy of the distribution than in the previous
bottom left case, as P is now higher. The top right visualization, representing the stable
state, shows a weaker anisotropy of the distribution of the unit normals along m than
previous visualizations, since an increase in S has lowered P; also as the magnitude of S
is now significant there is a higher density of unit normals near the center than away from
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Fig. 11 Computed scientific visualizations representing the density of the unit normals
to the molecular discs 1n m-1 plane (n 15 out of the plane of paper,) for U=13, De=0 6
corresponding to the imitial untaxial director onientatton of figure 8 The four insets
correspond to the following alignment states bottom right ($=0 5, P=0)), bottom left
(S=0.03, P=007), top left (S=0 25, P=0 65), top nght (5=074, P=02) A darker
area represents the higher density of umit normals to the disc-hke molecules  For
cases where P#), the figure shows a considerable higher distribution of unit normals

along m than along 1. See text.
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the center. Comparison of the top right and the bottom right visualizations shows that the
intensity of the gray level decreases more rapidly in the former than in the latter, as S has
a higher value in the former.

Figure 12 shows the biaxial alignment relaxation P(e =€t ) for Dc=0.6, U=3, and
for ng near the pole, (8¢, ¢g9) = (45, 2.56), (full line), and ngon the equator,
(89, $0) = (45, 90), (dot dash line). The figure shows an initial lag in the biaxial
relaxation when the initial uniaxial director orientation is near the poles (region R~). The
source of this is the competition between two effects : (i) when the initial uniaxial
director orientation is near the poles (region R~) there is always a decrease in the initial
uniaxial alignment response, which does not impede an increase in biaxiality; (ii) when
the uniaxial director is near the poles, the biaxial director I (m) lies near (on) the equator
and there is no significant competition of the unit normals to align along any one of the
two biaxial directors, and hence there is no significant inducement for biaxiality. When
the initial uniaxial director orientation is near the poles (region R-) the combination of the
two effects results in a lag in the initial biaxial alignment relaxation. When the initial
uniaxial director orientation is in the region R*, the biaxial director 1 is in the region R~
and there is preference of the molecular normals to lie along the director which lies in the
compressional plane (biaxial director m), and hence the biaxial alignment relaxation
shows a monotonic increase. The steady state biaxiality P isthe same for both initial

0.70
A« 035 L

[ 7
/

000 LL . .
0 2 4 6

Strain, €
Fig. 12. Biaxial relaxation P(e =€t ) for De=0.6, U=3, and for ng near the pole,

(80, $0)=(45, 2.56), (full line), and ng on the equator, (B, dpo)=(45, 90), (dot dash line).
The figure shows an initial lag in the biaxial relaxation when initial uniaxial director
orientation is along poles.
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orientations. However, ihe relaxation time is considerably longer when the initial
uniaxial director orientation is along the poles (region R~) than when the initial uniaxial
orientation is along the equator (region R*).

Figure 13 shows the relaxation of the components of the tensor order parameter Q
(€ = €t ), with the initial orientation (g, ¢g) = (45, 2.56) close to the north pole, for U =35,
and De = 0.6 (full line), 0.4 (dash-dot line), and 0.1(triple dot-dash line). For the chosen
initial orientation nyo = nzo, and from equation (la) it follows that Qxy = Qx, and
Qzz = Qyy. For the shown parameters the relaxation is virtually complete after 4 strains
units. At lower De the relaxation of the components of the tensor order parameter is
controlled by the orientation relaxation , as for U = 5 and lower De the uniaxial alignment
is nearly constant and there is not much increase in the biaxial alignment (see figure 9).
At higher De the relaxation of the trace components of the tensor order parameters is
governed by the alignment because there is larger changes in the uniaxial and biaxial
alignments as viscous mode dominates the viscoelastic relaxation. At lower De the
non-diagonal components of the tensor order parameter  are governed by the orieniation
relaxation, while at higher De, the viscous effects introduces an initial large decrease in
uniaxial alignment and a lag in biaxial alignment. The latter case foilows since the initial
uniaxial orientation ng is in region R-, and a subsequent increase in both uniaxial and
biaxial alignment (see figure 9), with the result that the only large componernt is Qy,,
which follows a lag plus exponential growth relaxation.

At steady state, the magnitude of the differences of diagonal components of tensor
order parameter are proportional to the steady flow birefringences [35]. Using equations
(A.1 - A.S5) these differences are given by :

b2 S,,+%(2 + b3 Py, "
|(Qxx'ny),,| = |+ b2 (32a)
] ={1-b%(s .1
1(Qy - Q)| |1+b2(s,. 39,.)‘ (32b)
Sy +4(2 02+ 1) P,
|(Qzz-Qu)y,| = 31 — (32c)
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where Sgg and Pg are the steady state alignments. Figure 14 shows the absolute of the

difference of the steady state diagonal components | (Qxx - Qyy) ssl (), 1(Qyy - Qu)ssl (b),
and 1(Q.-Q ’“)ssl (), of the tensor order parameter as a function of De, for U=3. The

initial uniaxial director orientations are : (89, ¢g) = (45, 2.56) or b = 1 (full line),
(@9, dg) = (90, 2.56) or b = 0 (dash-dot line), and (8¢, dp) = (0, 2.56) or b = oo (iriple dot-

dash line). In all cases there is a monotonic increase with increasing De. The value of
the y-z birefringence is identical for b = 0 and b = oo, hence the shown curves for these
cases superpose. Comparison of figures 14(a) and 14(c) show that : the x-y and the z-x
birefringences are the same for b = 1; the x-y birefringence for b = 0 is equal to the z-x
birefringence for b = e and vice versa. The figure that y-z birefringence is a weaker
function of De, whereas the x-y and the z-x birefringences are stronger functions of De.

4.5. Conclusions

In this initial investigation of the nematorheology of discotic nematics subjected
to uniaxial extensional flows, we have performed a useful characterization of the
sensitivity of the director triad { m, m, 1 ) trajectories, uniaxial and biaxial alignments
(S, P), and tensor order parameier relaxations with respect to the strength of the uniaxial
nematic potential, the alignment Deborah number (dimensionless strain rate), and the
initial director orientation. The use of unit sphere description identified the dynamics of
the uniaxial director n and biaxial director I as geodesic meridian flows, whereas the
constant orientation of the biaxial director m always lies on the equator. The stable
steady state director triad is collinear with the axes of the strain rate ellipsoid. The
uniaxial alignment undergoes an initial decrease whereas the biaxial alignment shows an
initial lag when the initial uniaxial orientation is close to the extension axis. Relatively
large transient decreases of the uniaxial alignment and relatively large transient increases
of the biaxial alignment are predicted to occur whenever the initial uniaxial director is
along the extension direction. This comprehensive and unified view of microstructure
relaxation under extension may be used in the future to explain the characteristic patterns
found in the cross-section of melt spun fibers froim carbonaceous mesophases [3, 36, 37].
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initial orientation (09, ¢g) = (45, 2.56) close to the pole, for U=5, and De = ().6 (full
line), 0.4 (dash-dot line), and 0.1(triple dot-dash line). The relaxation coordinate
e=¢t is the strain or dimensionless time. For the chosen initial orientation Nyo=N,0,
and from equation (1a) it then follows that Qxy=Qxz and Q,z = Qyy. See text for

discussion.
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Fig. 13. Magnitude of the difference of the steady state diagonal components
I(Qn-ny)sgl (a), I(Q,,-Qn)$l (b), and I(Qn-Q“)SqI (c) of the tensor order
parameter as a function of the dimensionless strain rate De, for U=3. The initial
uniaxial director orientations are : (8¢9, ¢¢) = (45, 2.56) or b = 1 (full line),
(80, $0)=(90, 2.56) or b=0 (dash-dot line), and (69, $0)=(0, 2.56) b = oo (triple dot-
dash line). These differences are proportional to the steady flow birefringences
[34]. Except for one case (figure 14 (b), b = 1), the birefringences increase with the
increasing De.
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‘ 4.6. Appendix A

The dimensionless coupled, nonlinear ordinary first order differential equations
governing the microstructure of a discotic nematic, subjected to uniaxial extensional flow,
are:

d d
ufl Sé‘m: ngy+n3d3:+“ Sgyy“\s Oy ¢ Det +8y = (A.D)

d d
Ne %"H\ %"-m 35"1“719 %Hho ‘?EE"'KzDC'I +0=0 (A2

d
n %"m 2 i‘”nndge’“mu%’lws

9—%5+K3De" +0=0 (A3

d d
Ni6 Sé‘"w‘ﬂn i’l+ﬂlsd§£”+ﬂ19%x+ﬂ 20— ?ey +x4Del +54=0 (A4)

dQxx dQxy dQ,.

Q”+n25dd£’+x5De' +{s=0 (A5)

where De = €14, is the alignment Deborah number (dimensionless strain rate) and € =€t
is the strain. The coefficients 1; (i = 1, 2,...25) and kj (i = 1, 2,...11) are given by :

M=1+217(Qu-Qy) A6
2= g‘ Ts Quy (AD

1= 25 Q0 “9
Ne=-£15(Qu+2Qy) A9)
ns=-26Qp (A-10)
6=, Qs (A1)

' M7 = 1+76(Qu + Qy) (A.12)



Mg = T Qyz
N9 =TsQxy
Mo =76 Qu
=0
N2 =76Qy,
Ni3=1-T6Qyy
Nia =- T Qx;
N5 =T Quy
Mg =-27(2 Qu + Qy)
ﬂn=%T;Qn
ﬂw=-§T;Qu
Mo = 1-2 7% (Qux - Qy)
No= %TE Qy:
M1 =- T Qy
N2z = %6 Quz
N23 =75 Qyy

Nu=0
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(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)



N2s=1 ‘T‘6Qxx
Kl"'(l'%)Qxx‘zU(ng'*'Q)zry+Qxeyy+@y+Q)2\z+Q§z)Qxx
L 2@y 2 Qua Qpy + By + -2

K2=‘1 '%)Qxy' ZU(ng"’%+Qxeyy+(gy+Q;z+Q§z)Qxy
'U(Qxexy"‘Qlyny"’QanI)

K3=(l '%)sz‘2U(Q§1+Q§y+Qxeyy+@y+(gz+Q§z)sz
'U(QyzQxy‘QInyz)

K4=(l -%)ny'ZU(Q%x“‘Q;y+Qxeyy+dy"'QJ2lz+®l)Qw
"l3l('ngx"'ng‘zQxeyy"'@y‘zQ?iZ"'(gZ)

K5=(1 '%)Qyz'ZU(ng*‘Q;'zy '*'Qxeyy‘*‘@y"’Q%z"‘ng)Qyz
- U(sz Qxy - Q(x Qyz)

{1= O+ 05 Qux
L= '210; Quy
L= 205 Qu
G=-1 0} - 0h(Qu+Qy)
{s = - dgQy2
The non-dimensional parameters o3, G5, and T are given by :

» L ]
o =%, oy =9, =T
T4 14 T4
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(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)
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47. AppendixB

The reactive parameter set ( kﬁ, X:rﬁ,, J\.:, A:m, ), the ordering function set
(B',',s s B'fs s B';‘,p, B'fp ), and the elastic functions set (P25, P2.p ) are given by :

n_ Vin_ 9 g4 + 3 6(S -P)
Il—-_i—-‘- - L) * (B.l)
W 3s(3+8)+3P(3-15P)-215SP
A:nix=‘ 2mix _ 60’;? B.2)
W 3s(3+1,S)+3P(3-t;P)-21;SP
A= Yoa_Yai_ 9 o + 3 05(S -P) ®3)
¥y 3s(3+1S)+3P(3-75P)-215SP
ﬁm}ﬁm:v&m: 36} (3P-5) ®.4
v W 3s(3+¢S)+3P(3-7P)-21SP
g - 8% (3S+PP-(90i+20(35-P)9-2%53S-P) g
’ ati(3+27(S+P)P-(6+47S)(9-215(35-P) '
gn _4%(90s-204(3S -P)P- 46(9-25(35-P)P 3.6
ati(3+27(S+P)P-[6+4S)9-275(35-P) '
BI;P=_60:,(3S+P)(6+41:;S)-3(902+20‘6(3S-P))(3+21:;(S+P)) B
' ati(3+2%(S+P)P-(6+41S)(9-215(35-P) '
ge,_3000i-2053s-P)(6+455s)- 12653 +2T5(s+R)P  p o
' ats(3+27(S+P)P-(6+41S)(9-27(35-P) '
X1 +x
B2s = (B.9)
0+ X4
= B.10
Ba.p = (B.10)
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(1]
(2]
B3l
(4]
(5]
(6l
(7]

(8]

9]
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x1=(-9(s-P)+U(-3P-P2+2P3+(3+6P-2P2)S+(3+6P)s2-6s3))(

) B.11)
(3 )

=3 -?5:;(3 s-P) (185+U(2P2+(4P2-g5-652+128%)  (B.12)

x3=(-9(S-P)+U(-3P-P2+2P3 +(3+6P - 2P} S +(3 + 6P) $2 - 65))

(B.13)
(6 +4 T‘e S)

w=(3+27(s+P)(18s+ U2 P2+(4P2-95-652+128%)  (B.14)

xs=4T3+27,(S+P)P-(6+47;8)(9-27(35-P) (B.15)
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Chapter 5

Thesis Summary, Conclusions and Recommendations

This chapter is divided into three sections. The first section contains an overall
summary of this thesis, the second section gives the conclusions of this thesis, and the last
section presents recommendations on further work.

5.1. Thesis Summary

Naturally occurring carbonaceous mesophases are derived from the pyrolysis of
coal or petroleum pitches, and display discotic nematic behavior. These low cost
discotic mesophases are used as precursor materials for the manufacture of high
performance mesophase pitch-based carbon fibers. The fiber morphology, that is the
molecular arrangement in the cross-section of fiber, governs the mechanical properties of
the fiber. Thus the understanding of the behavior of these materials under the effect of
spinning flows is essential. This was the goal of this thesis.

Chapter 1 contains the introduction to the basic concepts of discotic
nematodynamics which are used in the later part of the thesis. A description of
carbonaceous mesophases, mesophase carbon fiber morphology, and elongational flows
is also presented.

In chapter 2 an approximate phenomenological theory governing the orientation
and alignment of a model uniaxial discotic nematic liquid crystal of variable order was
formulated. The theory was used to derive the governing equations that describe the
behavior of uniaxial discotics under isothermal, incompressible, irrotational, three-
dimensional, uniaxial extensional flow. The unit sphere description of the director is
used to analyze the analytical and numerical orientation and alignment relaxations.
Computations of tensor order parameter relaxations and flow-induced birefringence are
also given. Flow-induced melting of the nematic phase is also discussed in this chapter.

In chapter 3 the application of the theory developed in chapter 2 was generalized
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to describe all types of isothermal, incompressible, irrotational, three dimensional,
' extensional flows. Computatio;s corresponding to uniaxial extensional flow, biaxial
extensional flow, and planar extensional flow are presented. A flow classification based
on the orienting strength and aligning strength of the three flows is given. The unit
sphere description of the director is used to discuss and analyze the sensitivity of the
director paths and the alignment relaxations to the initial orientation and alignment
conditions, to the Deborah number, and to the flow type. The tensor order parameter
relaxations and flow-induced birefringence for the three extensional flows are given.
Chapter 4 models the uniaxial extensional flow-induced biaxiality in a uniaxial
discotic nematic crystal. Numerical and analytical solutions of the director triad and
uniaxial and biaxial alignments are presented. The dependency of the uniaxial and
biaxial alignments on the initial uniaxial orientation is identified using unit sphere
description of the director. The analytical and numerical results of the director triad, and
of the uniaxial and biaxial alignments relaxations are given. An alignment triangle is
identified and is used to capture the couplings between uniaxial and biaxial orderings.
The tensor order parameter relaxations, and computed scientific visualizations of biaxial
molecular orientation distributions are presented in this chapter.

5.2. Thesis Conclusions
Chapter 2

(1) The behavior of uniaxial discotic nematics was studied under the influence of a
constant uniaxial, isothermal, incompressible, irrotational, extensional, three
dimensional flow.

(2) The sensitivity of the director trajectories, director steady states, scalar order
parameter, tensor order parameter and flow-induced birefringence was analyzed
with respect to the nematic potential, the alignment Deborah number, and the
initial director orientation.

(3) The director trajectories belong to geodesic meridian flow.

(49) The dircctor aligns, at steady state, anywhere in a plane normal to the extension
direction and predictability is lost when initial director orientation is along the
extension direction.
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The governing parameter (alignment Deborah number) was used to classify the
different elastic and viscous dominated relaxations of the director and the scalar
order parameter.

For large Deborah number, the temporary flow-induced melting of the nematic
phase may occur when the initial orientation of the director is near the extension
direction.

The stable steady state value of the scalar order parameter is independent of the
initial director orientation and is only a function of the alignment Deborah number
and the nematic potential.

The presented unified view of the relaxation of discotic nematic under extension
may be used to explain the characteristic pattern found in the cross-section of melt
spun mesophase carbon fibers.

Chapter 3

The investigation of the nematorheology of uniaxial discotic nematics subjected to
various extensional flows was performed.

The characterization of the sensitivity of the director paths, director steady states,
scalar order parameter, tensor order parameter, and flow-induced birefringence
was performed with respect to the flow types, alignment Deborah number, the
nematic potential, and initial director orientation.

Using the unit sphere description, the director dynamics of uniaxial extensional
and biaxial extensional flows were identified as geodesic meridian and non-
geodesic (except for one special case) for planar extension.

The number of strains required to achieve steady state is governed by whether the
flow is geodesic or non-geodesic. The number of strain units needed to reach
steady state director orientation is larger in the case of planar extensional flow
than for uniaxial extensional or biaxial extensional flows.

Some microstructural features of discotic nematic liquid crystals subjected to

uniaxial, biaxial, and planar extensional flows exhibit sensitive dependence to the
initial director orientation.
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Biaxial extensional and planar extensional flows are strongly orienting flows as
they have one stable director orientation (since n = - n); whereas uniaxial
extensional flow is a weakly orienting flow since the stable states represent a
degererate circle.

The alignment strength (| ( A:nn )ss | ) of the flow scales with the magnitude of
the ambient strain rate ( A:nn).

Uniaxial extensional flow is a weakly aligning flow, whereas biaxial extensional
and planar extensional flows are strongly aligning flows.

Chapter 4

Flow-induced biaxiality is simulated for a uniaxial discotic nematic liquid crystal
subjected to a constant uniaxial, isothermal, irrotational, extensional, three
dimensional flow.

A useful characterization of the sensitivity of the director triad (n, m, 1)
trajectories, director triad steady states, uniaxial and biaxial scalar order
parameters, and tensor order relaxations was performed with respect to the
strength of the uniaxial nematic potential, the alignment Deborah number, and the
initial director orientation.

The uniaxial director n and the biaxial direcior 1 trajectories exhibit geodesic
meridian flow and belong to the same meridian, whereas the constant orientation
of the biaxial director m always lie on the equator.

The steady state orientations of the uniaxial director n and the biaxial director m
lie on the compression plane (the equator); whereas the stable orientation of the
biaxial director 1 is the extension axis (along the poles).

The uniaxial alignment undergoes an initial decrease whereas the biaxial
alignment shows an initial lag when the initial uniaxial director orientation is
close to the extension axis.

Computed scientific visualizations of biaxial molecular orientation distributions
are used to correlate the director triad dynamics and alignments dynamics.




5.3. Recommendations

The following medifications to the model presented in chapter 2 are
recommended :

(1) The description of the microstructure of the discotic nematic liquid crystal should

be refined by constraining the (uniaxial) scalar order parameter S to a realistic
range(-%ss <.

(2) Frank elasticity should be included in the model to capture spatial variations of the
microstructure.

After these modifications the model should be first applied to transient conical
flows encountered in the converging spinneret of the fiber spinning process.




