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AB S TRACT 
" 

\ , 

The C'hordle$s pa th with four vertices and "three edges,ls denoted by 

p 4' A graph 19 called P 4 -sparse if it has no induced subgraph with five 

vertices and more $an one P 4'. 
, 3 

We shall describe an 0 (n ) algorithm for 
, 

recognlzing these graphs, and prove that they are perfecto 

.-J ~ 
RÉsUMÉ 

.,.. 
~ 

Un chemin sans corde avec quatre sommets et trais arcs est dénoté 

,par P 4' Un graphe est appelé P 4 -creux ,s' il n'a aucun' sous,-graph induit 

avec c~q sommets et ~lus qu'un P 4' Nous prouverons que les graphes 

!l 
P

4
-creux sont parfaits, et: décrirçms un O(n ) algor'it:hme pour identifier 

ces graphes. 
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1. 

• 1. INTRODUCTION 

-. The subj ect of this thesis belcrngs to the theory of graphs. We shall 

use the standard graph-theoretic terminology throughout the text; for the . ' . 
, , 

reader' s conveniences, aIl the terms (and their definitions) are listed 

alphabetically in the Appendix. 
" 

In the early 1960' s, Berge (1962) introduced the concept of a perfect , . 
gl'aph. This i6 a graph in which every induced sub-graph has i ts chromatic 

number equal to its clique number. Since then, the tapie of perfect graph 
l) , 

was developed into a ri ch field. Many classes of perfect graphs. along 

with th!:!ir polynomia:}.-time recognition algorithms, have oeen l'fdentified. 

Yet, nobody has been able to prove the Strong' Perfect Graph Conjecture. 

l'his conjecture states that the only mini~'1;) imperfect graphs are the odd 
~".' ~ 

cycles, except fqr triangles, and the complements of these odd cycles. 

Moreover, the problem of recognizing perfect graphs (in a p.olynomial time, 

of course) remains unsol ved. 

This thesis is concerned with a c1ass of graphs which will be ca lIed 

P 4-spa.I'se. P 4 -sparse graphs are graphs in which no tW0 P 4' s share more 
Il 

than twa vertices. Trivially, these graphs can be recognized in a poly-
~, 

~ \ 

nomial time; we shall present a recognition algorithm whose running time 

. 3 r 
is only O(n ). Our main result shows that P4-sparse graphs are perfect; 

fi 

th.is s trengthens a result of Lerch (1971 ~ 1972), and Seinche (1974), 

asserting that graphs containing no P4's are perfecto 

" In Sections 2, 3, and 4, we discuss bukgrounp. results concerning 

perfect graphs, perfectly orderable graphs, and P4-free graphs, respectively. 

The main original results ·of this thesis appear in Section 5. 

.. 
\ 
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2. 

2. PERFECT GRAPHS 

The coLouring (of vertices) of a graph is an assignment of leoloq~s' 

to yertices 'such that every two adj aeent verti~~ always have differ~nt 
~ eolours! 'The c:hromatic nwnber of a graph is the ~l1est number of 

eolo~rs that suffice to eolour it. A graph Is calf d a clique if its 
11 

vertiees are pairwise adjacent. The clique nwnber a graph is the size 

of the largest clique in this graphe We denote the chromatic number and . 

t~e cliq ue number of a graph G by X CG) and w (G), r~specti vely. 

The ch.romatic number of a graph is at least its clique number, since 

every two adjacent vertic'es must receive different colours. Berge (1962) 

defined a perfect graph as a graph in which every indl\ced subgraph H has 

x (H) = w (H). At present, no pe-IynoIIÏial-time algor,ithm to recogni~e perfect 

graphs is. known ~ altho,ugh several, large classes of perfect graphs, with 

polynomial-time recognition algorithms, have been found (see Golumbic (1980». 

We define a cycle as a sequence of distiTIct vertices vI' vz' ••. ,vk with 

the following properties: vivi +1 is' an edge for',i=l, ... ,k-I, and. vIvk is 

an edge. A chord in a cycle vI' v
2

' ••• ,vk is an edge vi v. other than 
]" . 

vivi+1 Cl Si::; k-l) or vIv
k

• A chordÎess cycle is said to have length k 

if it consists of k ,vertices (and k edges). We· denote sueh a cycle by C
k

• 

The complemant G of a graph G=(V,E) is the graph (V,E*) such that uv E E* 

• if and only if uv J E for aIl vertices u, v in V. We denot<!'the larges t 

number of pairwise nonadjacent vertiees in G' by Cl (G) • Note that Cl (G) = w CG) 

and X (G) 2! ~I(~I) for any graph G =' (V, E) • 

Consider a graph GZk+l ' k ~ 2. We have w(C ) = ;2., and it is easy 
2k+l 

to see that X,(C 2k+l ) = 3. Let S be the largest set of pairwise nonadjacent 
o 

vertices in C
Zk

+
1 

'sa that 1 S 1 = a(C
2k

+
1

). ·We note that 1 S 1 < k+l, because 
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each vertex x in S must be followed (in cyclic order), by a vertex x.' 

not in S; thug', wcC2k+1
) = ~. 

. 
Figure 2.1: the graphs C

7 
and C

7
• 

~ 

- Ivl ,,, 2k+l 
But, X(C2~+1,) ~ ---- = -2- > k. 

0. (C2k+l) 

• "1 

, 

1 

3. 

k+1. Both C2k+l and C2k+l a~e 

imperfect. 

1. The Strong Perfect Graph Conjecture (Berge (1962) 

The on1y minimal imperfect graphs are CZk+1 and C2k+l , k~2. 

2. The Weak Perfect Graph Conjecture (Berge (1962)) 

If a &raph G is perfect, then its complement G is perfecto 

u 

" 
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The second conjecture was proved by Lov~sz (1972b). Nowadays, rit Is 

called the Perfeet Graph ~eorem. To 8ee that the Strong Perfect Graph 

Conjecture implies the Perfect Graph Theorem; eonsider a perfect graph G. 

Trivially, G has no Induced C2k.+l or C2k+l' Thus, G also has no C2k+l o~ 

C2k.+l" Now, the Strong Perfect Graph Conjecture Implies that G 18 perfecto 

• t:"f 
Let us define a P4 as a graph with four vertlces a, b, c, d and three 

edges ab, be, cd (and no other edges). It 'is easy to see that the 

complement of a P4 ls (isomorphie to) a P4 , 

~ 

• • • 
1) b c d 

a b. 

Figure 2.2: a:4 and its complement. 

) 

A graph G = 
1 (V pEi i8 said to have the p4-structure o~ 

G
2 

= (V
2

,E
2

) if there is a bijection f: VI + V2 such that a 

c 

a graph 

subset 

0 

in Cl if and.only if HS) indue es a P4 in G
2

• VI induce s a P4 

l ----------------

d 

S of 
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a , b a b 

c c 

d g '---'c~--+-------t-----:::. d 

f 

" 

e f 

Figure 2. 3: two gr ap ~s with the same P 4 -s t rue ture • 

(taken from Chvâtal (1982» 

~ 

~ l \ 

e ( 

, .Je ' • 
Chvatal (1982) introducear the notion of P 4-structure and noted that~ 

sinee a P 4 is self-eomplementary, 

(i) every graph has the P 4-structure of its complement. 

In addition, he proved that 

(ii) the only graphs having the P 4-structur~ of a C
Zk

+1 with k~2 

are C
2k

+
1 

itself and its complement. 

3. ThevSemi-Strong Perfeet Graph Conjecture (Chvatal (1982» 

'-

If a ~raph G has the P 4-6t!ructure of a peHect graph~. then G is perfecto 

Note that, by (i) the Semi-Strong Perfect Grap~ Conjecture implies 

the Weak Perfect Graph Conj'ecture, and by (ii), the" S~mi-Strong Perfect' 

Graph Conj ecture i6 implied by the Strong Perfect Graph Conj-ecture. 
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3. PERFECTty ORDERABLE ,GRAPHS 

~ 

A natutal way of col<luriI1g the vert1ces in a gràph 1s to oPder> them in. 

a sequence v1,vV." ,vn' Then, scan the sequence from vI to v n and assign 

to each v j the smallest positive integer f(v
j
)' assigned ta none of its 

neighbours vi with i<j. We shall r:ef~r to the grapb with the lineat order 

on the set of its. vertices as an opdel'edv gT'aph, and ta the procedure of 

.. ' , 
assigning colours to the vertices' of an ordered graph as t;he greedy 

~ 

The greedy procedure may not necessarily give the best colouring. 

Cona1der the ~raph P 4 with vertices a,b,c,d and edges ab, be, and cd, and 

the fol1qwing four dis,tine t orderings: 

a 

Figure 3.1 

1 

a 

Figure 3.2 9 
l 

a 

Figure 3.3 ~ 
--...,. 

1 . 

(' 

a 

Figure 3.4 ~ 
1 

b 

" 2-

b 

~ 
2 

d 

c 

1 

d 

d 

• 
2 

c 

.~ 
1. 3 

b c 

~::7 
'1 2 3 

d c b 

e • ~ 
1 -( 3 

a<b<c<d 

~ 
.' 

a<b<d< c 

a < d < b < c 

\ 
\ 
\ 

a < d <'c < b 

) , 

, 
1 

: 

i 
e; 

~t 
l1 ., 

~lit rH c~ " .... -
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7. 

~e greedy procedure produces an optimal c(üouring of' the çrdered graph 

:ln Figure 3.1, but it do es not do~ so for the ordered graphs 1n Figures 3.2,. 

3.3, and 3.4. In particular, the graph in Figure 3.1 has f(à) ... f"(c) ,. l, 
C!t'. 

and f(b) .. f(d) = 2. The graphs in Figures 3.2 and 3.3 have f(c) == 3, and 
, 

the graph in Figure 3.4 has f(b) = 3. 

FACT 3.L 

For every graph, there is~a1ways'an ordering on which the greedy 

procedure produces the optimal co1ouring. 

Proof: 

Let G be an unordered graph. Find 'the optimàl co1ouring of G by 

1 eolours , 1,2, ••• ,k for sorne k. For each vertex v in G, let g(v) be the 

colour number ~ssigned to v. Order, the vertices of G in a sequence 

V1<v~ ••• <vn such tha~ i<j whenever g(vi) < g(vj ). VIe daim thât the 
1 r 

colouring f produced by the greedy procedure has f(v) ~ g(v) for any vertex 

v. Obvio~ly f(v
1

) == g(v
l

) '" l. 
• 

Consider a vertex v., j > l, in the 
] 

sequence. By the induction hypothesis. each vertex vi with i<j has 
, 

Consider aIl neighbours vi of Vj sueh that. i<j. We know 

th~t SeVi) < g(v
j
), because if g(vi) = g(v

j
), then vi i8 not a neighbour 

of v
j

' Thus, we have f(v
i

) $ g(v
i

) < g(v
j

) for aIl g,eighbours 'O'i of v
j

' 

Sinee f(v
j

) ::> 1 + max f(v
i
), ft follows that f(vj) ~ g(v

j
). The p'i"oof is 

comp1et,ed. 0 

An oTdered P4 with vertices a,b,c,d, edges ab, be, cd such that 

a<b, d<c is ca11ed an obstruotion. Ta put it differently, an obstruction 

ts any one of the three ordered graphs in Figures 3.2, 3.3 and 3.4. As in 

Chvâta1 (1981), let·the Grunay number be the 1arge~t integer f(vi ) used by 

" , J 
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thJa greedy procedure. A 1inear arder on the set of yertices of a graph 

will be called: 

(i) admissibZe if it creates no obstruction. 

(H) perfeat if, for each ïnduced subgraph H, the Grundy number of 

H equals X(H). 

It is easy to see that every perfec~order ls admissible. A proof of 

the converse relies on the fo110wing facto 

LEMMA 3.2 (Chvatal (1982» 

Let G be a graph' and let Q be a clique in G such ~ 

.\o~' 

that each' W € Q has a neighbour p('(> i Q; let the vertices p(w) be pa{r-:, 

wise nonadjacent. If there is an admissible order < such that H(W) < W e. 

for aIl w € Q, th~n some p(w) is adjacent ta aIl the v~rtic~ in Q. 

Proof: 

By induction on the number of vertices in Q. For each w € Q, the 

induction hypothesis guarantees the existence of a vertex w* € Q such that 

p(w*) i8 adjacent to aIl the vertices in Q except pollsib1y W. In fact we , , 

may assume that p(w*) is not adj~cent to w, for otherwise we are done. 

Now, it follows that the mapping which assigns w* to w Is one-tq-one, and 

therefore i t Is onto. In particular, with v standing for that vertex in Q 

which come first in 

that b*=v and c*=b. 

the admissibl~ arder, there are vertices b,d € Q such 

But then there la a contradiction: the~rt~c~s 
a,b,c,d wlth a-p(b) and d-p(v) constitute an obstruction. The proof 15 

completed. 0 

TBEOREM 3.3 (Chvatal (1981» 

A linear order of the set of v~rtices of a graph Is perfect if and 

ooly if lt is admissible. 
/ 

1 
"1 

1 

.' 

\ 
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Proof: 

The 'only if' part i9 trivial; the ~if' part will be proved by 
, \ 

induction on the bumber of vertices. Let G be a graph with an admiSS\ble 

arder < of the set of its vertices, and let k stand for the Grurldy.number , 
of this ordered graph. By virtue of the induction hypothesis, it will 

~ 

suffice to show that the chromatic number of t is at least k. Thus, it 

will suffice to find k pairwise adjacent vertices in ~ For this purpoSe, 

consider the smallest 1 such that there are pairwise adjacent vertices 

R. wi +l ,wi+2' ••• ,wk with fCw.) = j for aIl j. (Note that i is at most t<;:.l, 
J , 

for k;:;:2.) If i=O, th,en we h~ve found k pairwlse adjacent vertices; otherwise 

() e.ach wj. has a neighbou:t\ p(w
j

) such that p(w
j

) < w
j 

and f(p(w
j
» = 1. (Tn. 

see this, suppose there is a vertex w
j 

with f(p(w
j

» + i, then we have 

c 

. jSi, this ls a contradiction). But Lemma 3.2 implies the existence of a 

vertex v with fCv) = i, adjacent to aIl the vertices W. , 
J 

which contradicts 

the minimality of i·. 0 

A graph is called perfectly orde~Ze if it admits an admissible order. 

Recagfiizing perfectÎy orderable graphs in a polynomial time 1s an open 

problem. However, The9rem3.3 tells us that we can recognize perfectly 

ordered graphs in a polynomial time. (It is sufficient ta look for an 1 

1 

obstruction in the ordered graphi if this graph has n vertices then it has 

at most (~) P4's.) 

A property related to perfection has been studled py Berge and Duchet 

(1982). A stable setOis a set of pairwise nanadjacent verti~es. A ,graph 

is called strongly perfect if each of its induced sub~raphs H contains a 

,stable s~t meeting aIl the maximal cliques in H. (Here, as usual, "maximal" 

is meant with respec~ to set-inclusion, not size. 
,*,. 

clique ls not necessarlly largest.) 

In particular, a maximal 
c 1 

'" 

f 
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THEoiEM 3.4 (Berge and Duchet (1982» 

Strong1y perfect graphs are perfecto 

Proof: . 
L~t G = (V,E) be a strongly perfect graphe 

Usiqg induction on the number of vertice8, we on1y need prove 

x(Gi'c w(G). Let S be a stable set meeting aIl the maximal cliques in G, 

H be the Bubgraph of G in4uced by·V-S. Clear1y w(H) - w(G)-l. By the 
> ., 

induction bypothesis, H 18 perfect, and so X(H)' - w(H). We can colour the 

pairwise nonadjacent vertices in S by an extra colour and have 

x(G) = w(G). The proof 18 comp1eted. 0 

THEOREM 3.S'(Chv§tal (1981» 
on 1 

Every perfect1y orderable graph is strong1y perfect~ 

Proof: 

• It will suffice to find, in an arbitrary grâph G with a perfect order 

<, a stable set meeting aIl the maximal c1iqûes in G. We claim that Scan 

be found by the following algorithm: scan the perfect ordering·vl ,v2 , ••. vn 

from vI to v and place each vj in S if and on1y if none of its neighbours 
. n . 

vi (i~j) has been p1aced in S. Indeed, if the re8ulting stable set is 
0, 

disjoint from some clique Q, then each w € Q has a neighbour p(w) ln S 

'with p(w)<w. But then the leunna 3.2 im-p.1ies the e-Kistence of a vertex 

V € S adjacent to al~the vertices in Q. 

proof 18 completed. 0 

Thus, Q is not maxima!. The .. 

.' By TheO'rems 3.4 and 3.5, the relation~hipR~between tJ;l,e" classeS of 
, . 

perfect graphs, strongly perfect graphs, and:perfectly orderable graphs 

can be described by th~following diagram • 

" 

"1 



, 

.... 

" 

-( 

STRONGLY PERFECT 

PERFECTLY 

ORDERABLE 

J' Figure 3.5 

We are going to show that bath inclusions are strict. 

a b 

o 

" 

Figure 3.6: the graph C6• 

11. 

., 

, \ 

, 
r 

\ J 
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F1rst, let us prove that the graph C6 in figure 3.6 (taken from Berge 

and Duchet (1982» 1s perfect but not strongly perfecto We shall prove that: 

(1) Every proper induced 8ubgraph 18 perfectly orderab1e 

(2) X(G) = w(G) = 3 

(3) G ls nat strongly perfecto 

By symmetry, we only need prove the graph li induced by vertices 

• 1 
b,c,d,e, and f are perf~ctly orderable to establish (1). Cansider two 

adjacent vertices u and v, we ahall represent the relation u<v by an edge 

directed from u ta V. If an ardered graph has an obstruc~lon: then it must 

have a subgraph isomorphic to the graph in Figure 3.7 . 

... 

Figure ,3.7: an obstruction. 

Now,.Flgure 3.8 shows that the graph H ia perfectly orderable. 
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( 

..... , 

,J 

, , 

1 

b 

c 

, d ... ---:-......... ~----- f 

Figure 3.8. 
1 

To estab1i~h (2}, we on1y need co1our verti~es a, e with co1our 1, 

) 
13. 

vertices c, f with colour 2, and vertice~ b; d with colour 3. It follows 

from (1) and (2) that C6 is perfecto 

Let S be the largest stable set in G. It is easy to see that S has 

',at most one vertex in {a,h,c} and at most one vertex in {d,e,f} . Thus !SI-2: 

But then the existence of maximal cliques ad, ec, bf shows that Seau not 

meet aIl maximal cliques in G. (3) is established. 

Secondly, let us prove that the graph G = (V,E) in Figure 3.9 (taken 

from Chv~ta1 (1981» is strongly perfect but-not perfectly orderab1e. We 
, . 

shall e9tablish: ., 

(4) Every induced subgraph of G i8 perfectly orderable. 

(5) There i5 a stable set meeting aIl maximal cliques in G. 

(6) G i9 not perfectly orderable. 

... 

" 1 
1 
~ 



14. 
13 

\ 

.. 

\ 

8 

18 1 

Figure 3.9 

Ta establish (5~ it is sufficient ta sho~ the stable set 

S = {8,6,4,2,16,lB,20,lO,12,14}/ To establish (4), we an1y'need show the 

'five graphs induced by V-{lS}, V-{14}, V-{13},'V-{lO}, and V-{9} are 

perfectly orderab1e. Figures 3.10-3.14 show that the above graphs are 

perfect1y orderable. 

, 

; 
" 

l 
Î 

~ 
-{ .. 
J 

( , 

1 
~ 
~ 
? ..-. 
<. 

" r j 
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19 6 

Figure 3.10: the perfect1y orderab1e graph induced by 
• V - {l3}. 

13 

14 0 

15 

17 -..,:::,-""-
21 

--8 

18 

19 

7 
6 

Figure 3.11: the perfect1y orderab1e gtaph ~duced by 
V - {l4}. 
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19 

14 

, 150 

1 

21 

20 

/ 

Figure 3.12: 
• i 

14 ---

15 

1 

21 

20 

Figure 3.13: 

13 

12 

11 
10 

8 

7 
6 

the perfectly orderable graph induced by 
V - US}. 

13 

12 

11 

8 

-"" __ Aé"'- 7 

the Eerfectly orderable graph induced by 
V - UO}. 

16. 
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~ 

13 17. 

'12 

/ 

(~ 
15 11 

10 

1 2 

21, 8 

7 
18 20 

, 
19' 6 

Q 

Figure 3.14: the perfect1y orderable graph induced by 
, 

V - {9}. 

13 . 
1 

12 

v 

11 
10 

8 

7 
18 

6 
19 

Figure 3.15: ~ iB not perfectly orderable. 
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Now, we on1y need establish (6). Without loss of génerality, we èan 

set 1<2. This forces the relations: 3<4, 5<6, 7<8, 3<2, 9<10, 11<12, 13<14, 

15<10, 9<1, 16<17. 18<19, 20<21, 16<1. But the vertices 16,1,2,3 "\ 

constitute an obstruction. G iB Btrongly perfect but not perfect1y . 

orderable. 

.~ . 
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4. P 4 - FREE GRAPHS 

We shall calI a graph P4-free if it has no induced P4' 

19. 

P 4 -fJ;ee graphs 
~ 

have been studied by many people; terms' synonymous with "p 4-free graphs" 

inc1ude cographs (Cornei1, Lerchs, Stewart Bur1ingham (1981», D*-graphs 

î (Jung (19~8», and RD or Rere~itary Dacey.graph (Sumner (1974». In the ear1y 

1970's, Lerchs (1971, 1972) studied the structiona1 and a1gorithmic 

properties of P4-free graphs. His work was extended by Stewart (1978), who 

2 
deve10ped an O(n ) recognition a1gorithm for P4-free graphs. Lerchs (1971, 

1972) and Seinche (1974) independent1y proved that P4-free graphs are 

perfecto 

LE~ 4.1: (Seinche (1974» 

If a graph G ls P4-free, then either G or G is discannected. 

Proof: 

"' Let G= (V , P be a, P4 -free graph. 

Suppose both Gand Gare connected. Let A be the sma11est induced SUb~b 

graph of G such that A has at least two v~~tices and s~ch that A and A are 

bath connected. Let x be a vertex such that its removal would disconnect A 

(~e can always interchange G ~nd G, sa that this 15 the case). Since A ls 

connected, there is a vertex y in A-x such that xy f E. Let A' be the 

connected component of A-x that in~ludes y. Let us partition the set of 

vertices in A' into disjoint sets Rand W suchothat 

(ii) U t W if ux t" E 

Since A is connected, there ls a vertex v outside A'U{x} such that 

vx € E; not~that vu ~ E,for any verteX u in A'. Since At is connected, 

there is a pa th P from y ,to x; but the on1y edges 1eaving A' are edges from 

\ 



( 

20. 

W to x, this path must inc1ude vertices w in R, z in W such that ~ ~ E. 

But the vertices v,x,z,w and edges vx, xz, zw form'a P4' The proof is 

comp1eted. 0 

'" 
,f 

THEOREM 4.2: (Seinche (1974» 

Eve,y P 4 -free graph 'is perfect, 

Proof: 

o 

By induction on the number of vertices. Let G = (V,E) be a 

P -free graphe Using the induction hypothesis , we only need prove 
4 

that X(G) = w(G). If G i8 disconnected, then by the induction hypothesis, 

each component Q of G ~as X(Q) = w(Q). Since X(G) = max X(Q) and 

w,(G) = max 'w(Q) , it follows that X(G) = w(G), 

l ' 
l ' 



• 

. ( 

, e' 
. . 

21. 

If G is connected then (by Lemma 4.1) G ls not • 

the components of C. In G~ we have xy E E for any. clioice of vertices x in 

Cl' Y in Cj , i~j, 

But w(G) ~ E w(C
i

) 

completed. 0 

By:induction, each subgraph Ci of G has x(C
i

) - w(C
t
). 

and X(G) = E X(Ci ). Thus, w(G) ~ X(G). The proof ts 

~~ 

After Seinche submiited his proof for publication, he was, informed 

that P4-free graphs can be o~ained from a single vertex by repeated 

doubling of one vertex with or without joining the two doubles (Lov'sz 

(1972a». Trivially, P4-free graphs are perfec~ly orderable. (If'any 
. 
linear order is imposed on the vertices of a P4-free &raph, then no 

obstruction is created, simply because P4-free graphs have no induced P4.) 

Let G
I 

and G2 be two disjoint graphs. The graph obtained from G
I 

and G2 by adding aIl edges. joining vertices of G1 ta vertices o~ G2 ls 
, ( 

sometimes called the join of G
I 

and G2 and denoted by G
I 

+ G
2

, The graph 

obtained from GI and G2 by not adding any extra edge 15 cailed the union 

of G
l 

and G
2 

'and denoted by G
I 

U G
2

• 

A rooted tree i8 called a cotree if 

(i) .. Every internaI node, except po'ssibly the root, has at leaet two 

chl1dren. 

(H) The roqt is always labeled 'one'. 
,....,~ D" 

(iii) The ~~11dren of anode labeled 'one' are Iabeled 'zero' and the 
ot 

children ~f anode labeled 'zero' are,labeled 'one'. 

A ootree T i8 said to.represent a graph G if there i9 a bijection 

between nodes of T and certain induced subgraph of G BUen th~t: 

(i) The leaves of T'are one-to-one correspondence.with the one-point 

subgraphs of G. 

.. 

1 

.) 
1 
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(11) 

(Hi) 

(iv) 

, . 
The root T corresponds ta G itse1f. 

----
If an internaI node is labeled t zero' , then it 'represents 

union of aIl subgraphs represented by i ts children. 

If an internaI node is labeled 'one 1 , then it.represents 

join of aIl subgraphs represented by its·children. 

Each P4-free graph can be represented by a cotree because It ls 

ejther the union or the join of smaller P4-free graphs. 

22. 

the 

the 

". 
Lorna Stewart (-Burlingham) (1978) designed an 0(n2) algorithm which,' 

given an arbitrary graph G, finds either a catree representing G (thus 

establishing that G is P4-free) or a P4 in G. (Her algorithm is based on - " 

a 

an O(n) procedure which, given any graph G tagether with a cotree represent-

ing some G-v, finds either a cotree representing G or a P 4 in G. Of course, 

this P4 must include v.) 

Figure 4.1 illustrates how a P4-free graph can be represented by a 

cotree., 

Roat 

d 
=> 

Figure 4.1 

, "' 
" 



( 

( 

23. 

Note that if a graph ia disconnected then the root h~B only one 

~hild. (See Figure 4.2. >. 

.. 

Figure 4.2 

We shall assume that we can write a procedure called STEWART (G) to 
~ 

j 

implemen~ Stewart's algorithm. Given a graph G = (V,E) with Ivl = n, 

STEWART (G) either Hnda' a P 4 in G, or constructs a cotJree representing G 

2 
in O(n ) step~; thus establishing that G is P 4-free. This procedure 

STEWART (G) will be used in the next Section. 
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Let C be the class of graphs'" that have five vertices and at least two 

induced P 4 1 s. P 4-8par8~graphs are graphs that have no Jnduced subgraphs 
. 

that belong to C. 
\ 

The class Chas seven ~airwise nonisomorphic graphs. Let H:(V,E) be a 

graph in C with vertices a,b,c,d,e such that vertices a,b,c,d and edges 

ab, De, cd form a P 4' We can descr~be H as this P 4, and: 

(i) edge ea. (edges eb, ec, ed being not in E ,see Figure 5.1) 

(11) edge eb. 
, 

(edges ea, ec, -ed.being not in E, see Figure 5.3) 

-(iii) edges ea, eb. (edges ec, ed being not in E , see Figure 5.5) 

" (iv) edges ea, ec. (edges eb, ed being not in E , Bee Figure 5.6) 

(v) edges ea, ed. (edges eb, ec being not in E '1 see Fig\.lre 5.7) 

(vi) edges ea,. eb. ec. (edge ed being not in E see Figure 5.4) 

(vii) edges ea, ec, ed. (edge eb being not in E , see Figure 5.2) 

e 

-

a b c d 

Figure 5.1 Figure 5.2 

/ 

e 

, 

C' l! d 
, 

a b c d a • c , 
\ 
i li 

Fi~ure 5.3 Figure 5,.4 ~ 
j 
JI 

t : ;~ 
~ i~ 
.<)1 



25. 0 

e e , 
a b c d a b c d 

Figure 5.5 .. Figure 5.6 

, 
~ 
1 
t 
'J 

1 

) 

a b c d ... 

Figure 5.7 .. 

The seven figures 5.1-5.7 show a11 graphs of 'Co It 1s easy to see t.hat 

the complement of the graph in Flgu~ 5.1 ls the graph in Figure 5.2. 

Similarly, the graphs 1n Figure 5.3 and 5~4 are complements of the graphs 

in Figure 5.5 and 5.6 respectively. The graph in Figuré 5.7 is a CS' and 

1 

Let G be a P4-sparse graphe Consider a P4 in G and an arbitrary 

.~ ve~t~~ x nct in this P4" The vertex x has one of the follcwing properties: 

(i) x ls net adjacent to a11 vertlces of the P 4. 

(ii) x is adjacent to aIl vertices ôf the P 4 • 

(iii) x is adjacent to two 'middle' vertices of the P 4' and "non-adj acen t 

to the two 'end' vertices. 
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(a) • 

• 
7 . l 

• ~ • • 

(c) 

Figure 5.8: a P4 and a vertex. 

/ 
/ 

/ 

The graph shown in Figure 5.8a has the graph in Figure S.Bb as its 

complement. The graph in Figure 5.Bc is isomorphic to its complement. 

Let G = (V,E) be'a graph. A set Y of vertices will he called 

homogenous if 2 s IYI < Ivi. and if there are no vertices u,v,w such that 

u ~ Y, v,w € Y, and uv € E, uw ~ E. (Note that Y is homogenous in G if 

and only if it ia homogenous in G.) '. 
A graph G = (V,E) .will he called a turtZe if its vertices can he 

that: 

(1) 

(ii) 

.. 
aiaj f E for aIl i and j 

bibj € E for a~l i and j 

(i1-1) aib
j 

€ E if and only if i~j 

(iv) If t is present, then we have tai i E, tb
j 

€ E for aIl i and j. 

" 

, ~ 

" 

. ~ 

" , , , 

i 

~ , . 
" 
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t 

Figure 5.9: a turtle with k = 5 (and t). 

We now describe a procedure RECOGNIZE which shall be used to determine 

whether a &raph ia P 4 -sparse. Giveri a' graph G, the procedure RECOGNIZE 

attempts to find the offending subgraph H that belongs to C; in case of 

failure, it shows that e~ther G has a homogenous set Y, or G (or G) ia a 

turtle. 

RECOGNIZE terminates in step 1 if G ia P 4-free (in which case it 

returns a cotree representing G). It terminates in one of- the steps 

2,3,5 if G has the subgraph H in C. For the remaining cases, RECOGNIZE 

terminates in steps 6, or 7, if G has a homogenous set, else it term!nates 

in step 8, showing that a ia a turtle, or the complement of a turtle. 

Assume that G has a P 4' Let vertices and edges of this P 4 be 

a
l

,b
l

,b2 ,a2 and,edges albl'~lb2,b2a2~ RECOGNIZE partitions the remaining 

verticeà into disj oint sets P, Q ,R, T as followed: for each vertex u 
\,. 

.. 

, 

~, 
J 

" 

.' , , 
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( 

(i) 

(H) . 

u e P if u 1.s adjacent to aIl four vertiees- al'b l , b
2
:a

2
• 

\ 
u e Q if u ls nonadj aeent ta a11 four vertlces al' b

l
, b

2
, a

2
• 

(iU( . U E: R if ~ la a'ctj aeent to b
l 

t b
2

, and nonadj aeent to al' a
2

• 

O(iv) u e T if ~ f PUQUR. 

28. 

If T is nonempty, then there is a graph H with vertices al ,b
l

, b
2 

,a2 
, 

and u. € 'r.. We may assume T is empty . 

.. 
, Figure 5.10: ldentHying a maximal turtle. 

If there sre vertiees b € R, a e: Q such that ab E: E (see Figure 5.10), 

then RECOGNIZE extends a1 ,b
l

,b2,a2 into a maximal turtle (~tep 3); during 
.-

this process, it may find an induced subgraph H in G or G (in which case, 

i~ stops. For example, if there 18 a ve~tex u in P sueh that ua, ub ~ E, 

then the graph H has vei:'tlees s, b, bl'b
2

, u.). If we have ab f E for aoy choiee ' 
. ~ 

of vertices b 1n R, a 1n Q, then we have one of the two following- . 

cases: 

*ease 1: if aIl vertlces in P are adjacent to aIl vertlees in R, then 

\p 
the set Y • Ru{al , bl'b2 ,a2} ls homogeneous 

'1 
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• 

*case 2: there are nonadj aeent vertices u i .. p. v in R. 

" 
In this case, we get a bigger turtle by comp1ementing 

the graph G. 

u 

Figure 5.11: getting a bigger turtle by complementing. 

From Figure 5.11. it 15 clear that the .lfubgraph of G induced by vertices 

: u,v,a
1

,b
l

,b
2

,a
2 

is a turtIe'with k ... 3 (Step 4). 
\ 

\ 
RECOGNIZE (G) : 

Input: a graph G.:: (V,E) with /V/=n. 

Output: one of the following: a 5ubgraph H, a homogeneous set Y, a 

turtIe, a complement of a turtle, a cotree representing the 

graph G. 

1. CalI STEWART(G). If.a eotree is returned, then stop; eise ehoose 

vertices a
1

,bl ,'b2 ,a2 sueh that albl,blb2,b2a2 € E, 

aIb2,alR2,bla2 f E, and set k-2 • 

l 



\ 
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2. Set 

u ~ P if us
1

,us
2 

e E and ub
l
,ub

2 
e E 

U E: Q if -ua
l

, ua
2 • E and ub

l
,ub

2 • E 
1 

U € R if ua
1

,ua
2 i E and ub

l
, ub2 € E 

If some vertex w* other than a
l
,b

1
,b

2
,a

2 
lies outside P,Q,R, 

" th~n return the subgraph H induced by sl,bl ,b2 ,a2 and w* and 
o 

stop: 

3. As long as there are adjacent vertices a € Q, and~b € R, repest 

the following operations: 

3.1 If some w* € P has w* a f E or w* b f € (or both) then 

return the subgraph H induced by a1,b1,b,a and w*, and 
) 

stop. 

3.2 If sOIne w* € Q has w*a € E or w*b € E (or bath) then return 

the subgraph H inèuced by a
1

,bl'b,a, and w* and stop • 

• 
3.3 If some w* € R has w*s € E or w*b t E (or both) then return 

the subgraph H induced by a1,bl,b,a and w*, and stop. 

3.4 Delete a from Q, delete b from R, sete ~+1 ... a, b.k+l = b, 

ana replace k by k+l. 

4. If k-2 and some u € P la nonadjacent to some veR then set 

Replace G by G, interehange P and Q, and return to step 3. 

(Note tltat a=u, and b=v have jus t b~come available.) 

5. If k ~ 3 and some u € P is nonadj aeent to some vER, then 

6. 

return the subgraph H induced by a
1

,u,b2 ,v, and b3, and stop. 

If P u Q + ~, then set y,.. {sl'a2 , .... a
k

, b
1

,b2 , ... ,b
k

} uR, 

return the homogenous set Y and stop. 
~ 

" 
\ 
" . 
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7. If IRI ~ 2 then set Y - R. Return t~e homogenous set Y, and stop. 

8. G or G ié a turtle. Return this turtle, and stop. 
~ 

We shal1 assume~ as usual, nhat G i8 repreaented by its adjacency 

1 
l~sts (see, for instance, Abo, Hopcroft, Ullman (1974». 

. 2 
As noted in Section 4, the 'running time ôf STEWART(G) ia D(n ), and 

2 sO,Step 1 can be executed in O(n ) steps. Execution of Step 2 involves 

scanning the adjacency lists of a l ,bl ,b2,a2 , taking only O(n) steps. 

Having executed Step 2, we may form a 1ist of aIl edges ab such that 

2 
a € Q, b € R in O(n ) steps; each execution of the loop in Step 3 begins by 

removing an arbitrary item ab/from this 1ist. (Since Q and R shrink 

throughout the run of the a1gorithm, we may find that the item ab Just 

removed from the list no longer has a E Q, b € R. In that case, we simply 

move on to the next item on the list.) With each execution of the loop in 

Setp 3, the algorithm either terminates or else Q and R shrink by one 

vertex each. Renee the loop is executed only O(n) times; each of its 

executions takes only O(n) steps (in particÛlar, the cQnditions on w* can 

be te,sted by scanning the adjacency list ~f w*). 
1/ 

, 
If the loop in Step 3 is executed at least once th en k ~ 3 after the 

execution of Step 3, and so .Step 4 ia not executed at aIl. On the other 

hand, if Step 4 is executed then ita executlon is followed by an execution 

of the loop in Step 3, where k-2 is replaced by k ... 3. llence Step 3 and 

Step 4 are executed at mo~t once. Even a crude implementation of Step 4 

2 
takes only O(n ) ateps. Each of Steps 5 - 8 la executed at most once. A 

2 
straightforward Implementation of.Step 5 takes O(n.) steps; straightforward 

i~lementations of Steps 6 - 8 take O(n) steps. Therefore, the time 

2 
complexity of procedure RECOGNIZE is 0 (n ). 
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3 We now descrihe a procedure DETERMINE which, in O(n ) steps, determines 
ÇI 

whether a graph G is P4-spar~e. The procedure DETERMINE may calI procedure 

RECOGNIZE n times. 

DETERMINE (G) : 

2.1 

Input: a grap~ G = (V,E) with IVI~n. 

Output: a message saying whether G is P4-sparse. 

1. CalI RECOGNIZE(G ). 
o 

2. If a homogeneous sèt Y is'retu~ed, then: 

2.1 If there is a P4 with one vertex in Y and thfee vert~ces 

not in Y, then go ta step 5. 

2.2 Let Gand G be the subgraphs induced by Y and V-y 
Y W 

respectively. CalI DETERMlNE(G ) and DETERMINE(G ). If bath 
Y W 

Gand G are Ii -sparse, _ then go' to step 6, else go ta step 5. 
Y W 4 

l. Ifa t!Jrtl e or-a- cotree1S returned, then gooto step 6. 

4. Ifa subgraph H is returned, then go to step 5. 

,5. Return the message 'G is not P -sparse' , and stop. 
4 

6. Return the message 'G is P -sparse' , and stop. 

'" 4 
It is ta see that Step 2 is 

n Substep easy executed at most 2 times. 

2 
can he tested in O(n ) steps. We partition the vertices of G into sets 

A,B,Y as follows. The set Y is the homogeneous set returned by RECOGNIZE(~ )~ 

For each vertex u in V -Y, we set u € B if u has a neighbour in Y, else we 

set u E A. Let GA be the subgraph of G induced by A, and GB be the subgraph 

of G induced by ~. ,. If there is a component F of GA (or F of GB) such that 

IFI ~ 2, and F is not homogenèous in G, then return the message 'G is not 

P4-sparse' (this means that' there is a P4 with vertices a,b,c,d and edges 

\ ab,bc,cd € E, edges ac,ad,bd f E such that we have either (1) 

a E A,h,d € B, c € Y if F ~ GB, or .(ii) a,b € A, c € B, dEY if F .:: GA)' 

J 

[} 
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/ 
/ 

RECOGNIZE shows that if a graph G fs P 4 -sparse, then either 

1 (i) G has a hOJlllogenous set, or 

(ii) G or G i9 a turtle. 

LEMMA 5.1 

Let G be a graph with a homogenou9 set Y. If there i9 a P
4 

with a,t 

least one vertex in Y and at least one vertêx not in Y, then this P 4 has 

prec~se1y one vertex in Y and three vertice5 not in Y. Furthermore. if 

such a P 4 i8 present, then G i8 not P 4 -sparse. 

Proof: 

Since y i5 homogenous, the set, of' vertices outside Y can be partitioned 

into disj oint set~ A, B suc;h that, for each vertex u, we have 

(i) U E A if ux f E wheneve r u f Y, X E Y 

(ii) U E B if ux €: E whenever u f Y, X E: Y 

If there is one P 4 with at least one vertex in Y and 'at least one 

1 
vertex Qat in Y, then this P 4 has at least one vertex in B. Thus, such a 

P 4 can have on1y one vertex in ,Y. Sa! its vertices can be enumerated as 

a,b,c,d such that w~ have either a € A, b,d € B, c € Y, or a,b € A, c ( B, 

d € Y. Since Iyl ~ 2, there is a vertex e in Y such that a,b,c,d,e are 

vertices of a 'graph H in C. The proof i9, comp1eted. 

THEOREM 5. 2 : 

Every P -sparse graph is perfect1y orderab1e. 
4 

Proof: 

o 

By induction on the number of vertices. Let Gz(V,E) be a P h 4 -sparse grap . 

Case 1: G is a turt1e. 

/ 
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If G is a turt1e, then we have the perfect order 

t<b1<b2< ... <bk<al<a2< ••. <ak' This orde~as no obstructions, sinee any P4 
'\. 

.must: have vertices ai,bi,bm,am and edges aibi,bibm,bmB.m (and we have 

,bi<ai, bm<~)' This case i5 sett1ed. 

Case 2: G is the complement of a turtle. 

t __ ----.-...;;...v" 

F1gure 5. 12 : the eorlement of a turtle with k - 3 (and t). 

\ , 
If G 1s the complement of a turt1J, then the vert1ces of G can be 

/ 
enumerated as t,a

1
, ••. ak ,b

1
, ... ,b,-k such that 

(1) aiaj 
€ E for 

/ 
aIl 1 and j 

(1i) bib:j f E for aIl 1 and j '" 
(111) ta

1 
€ E and tb

j 
f E for aIl i and j (if t i8 present) . 

(1v) a
1

b
j 

€ E 1f and on1y if i + j. 

... 
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The sequence t < al < a 2 <.,'.< ~ < bl~ b2 < ... < bk has no obstruction, 

since any P4 must have vertices bi ,aj ,8m,bn • edges blaj,ajam,ambn (and we 

have a
j 

< bi for aIl 1 and j). This case 1s settled. 

Case 3: G has a homogenous set. 

Let Gy and Gw,be the subgraphs of G induced by Y and V-y respectively. 

By the 1nduction hypothesis, Gy and ~ are bath perfectly orderable. Let 

the perfect orders of Gy and GW be YI < Y2 < ... < Yr and w1 < w2 < ... < Ws 

respectively. We order the vertiees in G in a sequence 

YI < Y2 < ... < Yr < w
1 

< w2 < ... < ws' This order ls perf~ct, since L.emma 

5.1 guarantees that G has no 1\ with a vertex in Y, and a vertex not in Y. 

The proof 1s eompleted. o 
"'il 

COROLLARY 5.3: P4-sparse graphs are strongly perfecto 

By Theorem 5.2, the relationships b~tween the classes of perfeet graphs, 

strongly per{ect graphs, perfectly orderab!e graphs, P4-free graphs, and 

f4~par~e graphe can be described by the follQwing diagram. 

PERFECT 

S'TRON»L y PERFECT 

PERFECTL y ORDERABLE 

o 

.1 

, ., 
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Ta show that a11 inclusions are strict, we on1y nee~ show that sorne 

perfectly orderable graphs are not P4-sparse. (The other inclusions had been 

proved strict in previous Sections.) 

Consider the graph C6 shown in Figure 5.13 

v 6 
v 2 

Figure 5.13 

1 

\ 
\ 

~ 

Figure 5.14 shows that C6 i8 perfect1y orderab1e. 

v
6 

v 2 

Vs v
3 

V4 

Figure 5.14 

\ 

i 
,( 
" 
1 
,~ , 
" 

, 
: 

, 
~ 
~ 

" 
~ 

\ 
1 

'P j 
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However, the subgraph induced by vertices vl,v2,v3,v4'vS belongs to 

the class C. So, C6 18 not P 4 -sparse. 

) 
". 

.. 

, 

,-" .,- . ~ . . ~, -,/ 

~ ., 
.' 
i 
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Adjacent 

Bijection 

Chard 

Chromatic number 

Clique 

Clique number 

Colouring 

Complement 

Connected 

Cutset 

'­
Cycle 

Edge 

Graph 

• 

J 
APPENDIX 

two vertices are adjacent if and only if they are 

joined by an edge. 

a mapping one-to-one and onto. \. 

a chard" in a cycle vI' v 2' •.• ,vk is an edge 
c, 

.. 1 

38.' 

the smallest number of colours that suffice 0 colour 

a graph. ~ .. 

a set of pairwise adjacent vertices. 

the number of vertices of the largest clique in a 

graphe 

:., an assignment of 1 calours 1 ta vertices such that ,. 
adjacent vertices always have different colours ... , 

.0: the comple]Jent of a graph G = (V, E) is denot~d by 

G = (V,E I
) with the same set of vertices, and ~he set 

Elof edges such that for any two vertices x,y in V,. 

we have xy € El if and anly if xy f E. 

a graph ls connected if there la at least a path 

between any two vertices. 

a set of vertices such that lts removal wauld disconnect 

a connected graphe 

a cycle ls a path fram a vertex x to a vertex y with 

the edge xy. • 

se~ Graph. 

An ordered pair (V,E) such that V ls a set and E i8 a set 

of t-wo-paint subset of V. The elements of V are called 

" , 
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1 Graph (ccnt.) 

lnduced subgraph 

.. 

Neighbour 

Path 

Stable set 

Vertex 

t 
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vertices and the elements of E are called edges. 
~' . 

a graph H = (VH,EH) 18 an inducèd subgraph of a graph 

G = (V,E) if VH ~ V and for each edge ~ in E, we have 

xy € EH if and only if both x and y are in VH. 

a vertex x is a neighbour of vertex y if x aad y are 

adjacent. 

a sequence of distinct vertices vl ,v2 , ..• ,vn such that / 

vivi +l € E (i ~ 1 ~ n-l). 

:~ a set of pairwise'nonadjacent vertices. 

see Graph. 

( 

'" 

\ 
~' 

'1 
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