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ABSTRACT -

r

Y

T y <
The chordless path with four vertices and three edges is denoted by
A .

‘

P A graph 1s called P,~sparse 1f it has no induced subgraph with five

4 4
vertices and more than one P4‘. We shall describe an O(n3) algorithm for

recognizing these graphs, and prove that they are perfect,

3

\/ A" . . ' __,} :

, RESUME
Lo

" Un chemin sans corde avec quatre sommets et trois arcs est dénoté
par PA' Un graphe est appelé Pa—creuxas'il n'a aucun sous-graph induit

avec cigq sommets et plus qu'un PA' Nous prouverons que les graphes

—

P, ~creux sont parfaits, et déerirons un O(ns) algorithme pour identdifier

4

ces graphes.
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1. INTRODUCTION, , B ‘ - ,

“The subject:. of this thesis belongs to the theory of ﬂgraphs. We shall

’
ugse the standard graph—qhepretic terminologivc throughout the text; for the
reader's conveniences, ail the terms (and/ their definitions) are listed
alphabetically in the App‘éndix. ‘ » X , *

In the ear1y9i960's, Berge (1962) introduced the concept of a perfect
graph. This is a graph in which every induced subgraph has its chromatic
number equal to its clique number. Since then, the topic of p%rfect glgéph
was developed into a rich field. Many classes of perfect graphs, along
with their polynomial-time recognition algorithms, have Be;n fidentified.
Yet, nobody has been able to prove the Strong Perfect éraph Conjecture.
This cor{jecture states that the only miniir@ﬁ;? imperfect graphs are the odd
cycles, exce;t for triangles, and the complements of these odd cycles.
Moreover, the problem of recognizing perfect graphs (in a p,olynomia—l time,

of course) remains unsolved. .

This thesis is concerned with a class of graphs which will be called
P4-sparse. Pa—spar“se graphs are graphs in which no two P4's share more
than twa vertices. Trivially, these graphs can l’)(g recognized in a poly-
nomial time; we shall present a recognition algor‘(%thm whose running tin:e
is ¢;nly O(n3). Our miin result shows that P(‘-—sparrse graphs are pérfect;
this strengthens a result of Lerch (1971,1972), and Seinche (1974),
asgserting that graphs containing ﬁo Pl"s are perfect.

In Sections 2, 3, a;d 4, we discuss bi\gkground results concerning

perfect graphs, perfectly orderable graphs, and P4—free graphs, respectively.

The main original results -of this thesis appear in Section 5.

[
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2. PERFECT GRAPHS

The colouring (of vertices) of a graph is an assignment of 'coloyrs'
. N .
to yeftices such that every two adjacent verticeg always have different

colours,; The chromatic nwnber of a graph is the llest number of

colours that suffice to colour it. A graph is call¥d aﬁclique if its

vertices are pairwise adjacent. The clique number df a graph is the size
of the largest clique in this graph. We denote the/chromatic ;mmber and
the clique number of a graph G by x{(G) and w(G), rgspectivély.

The chromatic number of a graph is at least its clique number, since

every two adjacent vertices must receive different colours. Bergé (1962)

defined a perfect graph as a graph in which every induced subgraph H has

x(H) = w(H). At present, no pelynom'ie;l-t:ime algorithm to recognize perfect

’

graphs is.known, although several large classes of perfect graphs, with

°

polynomial-time recognition algorithms, have been found (see Golumbic (1980)).

We define a cycle as a sequence of distinct vertices Vl’v2" ..,vk with

.

the following properties: ViVirl is’ an edge for.i=1,...,k-1, and. vlvk‘ is

an edge. 4 chord in a cycle M EA/TERREAN is an edge vivj other than

vivi+1 (1 si 5 k-1) or ViV A chordless cycle is said to have Zength k

if it consists of k‘,vertices (and k edges); We-denote such a cycle by Ck'

The complement G of a graph G=(V,E) is the graph (V,E*) such that uv € E#*

if and only if uv 4 E for all vertices u, v in V. We denot€™the largest

number of pairwise nonadjacent“vertices in G' by a(G). Note that a(G) = m(E)

and x{(G) = a,(\él) for any graph G = (V,E).
Consider a gra})h Q2k+1’ k 2 2, We have w(C2k+l) = 2, and it 1is easy

N

to see that X(C2k+l) = 3. Let S be "the largest set of pairwise noﬁadjacent

vertices 1in C,, ., 'so that [s] = a(C2k+l

). °*We note that IS] < k+1, because

.

<



each vertex x in S must be followed (in cyclic order).by a vertex x'

\

) = k.

not in S; t~hus, w(02k+l

- \

- ‘ Figure 2.1: the graphé C, and C..

. 7 7
: &
Q@ ‘\
L - vl " oxma ~—
But, x(C ) 2 = > k. ‘
2k+1 2 .
. i a(Cypqq? n .

LA,

) = k+1. Both C2k+l and C2k+l are

We have wo( 2k+l) = k, and x(E

2k+1
imperfect.

®

1. The Strong Perfect Graph Conjecture (Berge (1962))

The only minimal imperfect graphs are C2k+l and 02k+1’ k=2.

8
L4 [N

2. The Weak Perfect Graph Conjecture (Berge (1962))

1f a graph G 1s perfect, then its complement G is perfect.



The secdnd conjecture was proved by Lovdsz (1972b). Nowadays, it is

" called the Pex.:fect Graph Theorem. To see that the Strojng Perfect Graph

Conjecture implies the Perfect Graph Theorem, consider a perfect graph G.

-

Trivially, G has no induced CZk+1 or C2k+l' Thus, G also has no C2k+l or,

I . Now, the Strong Perfect Graph Conjecture lmplies that G is perfect.

2k+1
’ - w I3
Let us define a Pl; as a graph with four vertices a, b, ¢, d and three
edges ab, be, cd (and no other edges). It is easy to see that the P
complement of a P4 is (isomorphic to) a P4. . i - .
é i
- &
A -
’ o
&
r— * *>— .
a ? b c d

Figure 2.2: a P4 and its complement.

)

A graph Gl = (Vl,El) is said to have the P4—Structur'e of a graph ,

G2 = (VZ’EZ) i1f there is a bijection f: V1 > V2 such that a subset S of

\?l induces a P, in G, if and only if £(S) induces a P, in G,.

Y




£

a . b
. O
o c :,
d
£ | e
. Figure 2.3: two graphs with the same Pa—structure.

(taken from Chvdtal (1982))

RN ,
. 3
X | \ -

Chvatal (1982) introduced the notiorn of P, -structure and noted that,

since a P& is self-complementary, :
4

(1) every graph has the Pa—structure of its complement. 2

!

In addition, he proved that

(ii) the only graphs having the Ph-structurga of a C with k=22 .

2k+1

are C2k+l itself and its complement. ' o

3. The Semi-Strong Perfect Graph Conjecture (Chvidtal (1982)) )

If a graph G has the P4-structure of a perfect graph, .then G is perfect.

Note that, by (i) the Semi-Strong Perfect Graph Conjecture implies
the Weak Perfect Graph Conjecture, and by (ii), theuSémi—Strong Perfect’

Graph Conjecture is implied by the Strong Perfect Graph Conjecture.
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3. PERFECTLY ORDERABLE GRAPHS .'
A n;tutal way o\f colouring the vertiz.:es in a graph is to’ order them in.
a sequence vl,Vz‘j,.. . ,Vn. Then, scan the sequence from Vl to Vn and assign
to each V-1 the smallest positive integer f(vj)' assigned to none of its‘
nei‘ghbours Vi with i<j. We shall refer .to the graph with the linear order

on the set of its vertices as an ordered graph, and to the procedure of

rassignin’g colours to the vertices of an ordered gre;ph as the 'gr'eedy

procedure.

The greedy procedure may not necessari/ly give the best colouring.
Consider the graph P4 with vertices a,b,c,d and edges ab, bc, and cd, and

the following four distinct orderings:

a b c d
Figure 3.1 & —— -5 ') a<b<c<d
1 2- 1 2 -

Figure 3.2 9____./_—,: a<b<d<ec

1 2 1 3
A
a d b c
Figure 3.3 a<d<b<ec
. |
P 1 2 3 .
a d c b

Figure 3.4 m a<d<c<b

| SO—
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The greedy procedure produces an optimal colouring of the prdered graph
in Figure 3.1, but it does not do so for the ordered graphs in Figures 3.2,

3.3, and 3.4. In particular, the graph in Figure 3.1 has £(3) = £f(c) = 1,
@

)

“and f(b) = £(d) = 2. The graphs in Figures 3.2 and 3.3 have f(c) = 3, and

the graph ir; Figure 3.4 has £(b) = 3.

. N o .

FACT 3.1. ®

. For every graph, there is, always  an ordering on which the greedy

procedure produces the optimal colouring. o

r
3

Proof:
Let G be an unordered graph. Find 'the optimal colouring of G by
'colours' 1,2,...,k for some k. For each vertex v in G, let g(v) be the

colour number éssigned to v. Order, the vertices of G in a sequence

- ’ kt

Y <Vy<e ety such that i<j whenever g(vi) < g(vj). We claim that the

1
colouring f produced by the greedy procedure has f(v) < g(v) for any vertex

= .

’

v, 0bviou§ly f(vl) = g(vl) = 1. Consider a vertex vJ., j>1, in the
sequence. By the induction hypothesis, each wvertex \A with 1<j has

ld
f(vi) < g(vi). Consider all neighbours v, of ,vj such that. i<j. We know

that g(vi) < g(vj), because if g(vi) = g(vj), then v, is not a neighbour

of vj. Thus, we have f(vi) < g(vi) < g(vj) for all neighbours vi of Vj'

Since f(vj) < 1 + max f(vi), it follows that f(vj) < g(vj). The proof 1is

completed. [

g
¢

An ordered P, vith vertices a,b,c,d, edges ab, bc, cd such that .

4
a<b, d<c 1is called an obstmction. To put it differently, an obstruction
s any one of the three ordered graphs in I‘;‘igures 3.2, 3.3 and 3.4. As in

Chvdtal (1981), let.the Grundy number be the largegt': integer f(vi) used by °

Ll
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the greedy procedure. A linear order on the set of yértices of a graph

’ @

will be called:
(1) admissible if it creates no obstruction.
(ii) perfect 1if, for each induced subgraph H, the Grundy number of
H equals x(H).
It is easy to see that every perfect.order is admigsible. A'proof of

the converse relies on the following fact. .

LEMMA 3.2 (Chvdtal (1982))

Let G be a graph and let Q be a clique in G such ¢
’h,.
that each* W € Q has a neighbour p(v(g) * Q; let the vertices p(w) be pair-

wise nonadjacent. If there is an admissible order < such that p(w) <w

for all w € Q, then some p(w) is adjacent to all the vertic:;% in Q.

Proof: .
. . \

’ <

By induction on the number of vertices in Q. For each w € §, the

induction hypothesis guarantees the existence of a vertex w* € Q such that

v o

dp(w*) is adjacent to all the vertices in Q except possibly w. In fact we

'

may assume that p(w*) is not adjacent to w, for otherwise we are done.
Now, it follows that t};e mapping which ‘assigns w* to w is one-to-one, and
therefore it is onto. In particular, with v standing for that vertex in d
which come first in the admissible order, there are v;ertices b,d € 9 such
that b*=v and c*=b, But then there is a contradiction: thewlrt_i‘ces

a,b,c,d with a=p(b) and d=p(v) constitute an obstruction. The proof is

“

completed. [

THEOREM 3.3 (ChvAtal (1981)) ,

A linear order of the set of vertices of a graph is perfect if and

only if it is admissible.

RV Ay €9 SN S



Proof: -

0

The 'only if' part is trivial; the 'if' part will be proved by
induction on the number of vertices. Let G be a graph with an admiss%ble

order < of the set of its vertices, and let k stand for the Gruidy number
r
of this ordered graph. By virtue of the induction hypothesis, it.will

suffice to show that the chromatic number of G is at least k. Thus, it
«

will suffice to find k pairwise adjacent vertices in G- For this purpose,
consider the smallest 1 such that there are pairwise adjacent vertices
LZTEPL FITRRRL N with f(wj) = § for a{l j. (Note that 1 is at most k=1,

for k22.) If 1=0, then we hgve found k pairwise adjacent vertices; otherwise

°

each wj has a nelghbous p(w&) such that p(w&) < Wj and f(p(wj)) =1, (Ta

see this, suppose there is a vertex w, with f(p(wj)) + i, then we have

3

" jsi, this is a contradiction). But Lemma 3.2 implies the existence of a

vertex v with f(v) = i, adjacent to all the vertices wj, which contradicts

the minimality of i. 0O . : .

A graph is called perfectly ordengble if it admits an admissible order.

5

Recogriizing perfect%? orderable graphs in a polynomial time is an open

problem. However, Theorem 3.3 tells us that we can recognize perfectly

[}

ordered graphs in a polynomial time. (It 1is sufficient to look for am
]

obstruction in the ordered graph; if this graph has n vertices then it has

~ .

n '
at most (4) P4 s.)
A property related to perfection has been studied by Berge and Duchet

(1982). A stable set is a set of pairwise nonadjacent vertices. A .graph

is called strongly perfect if each of its induced subgraphs H contains a
stable skt meeting all the maximal cliques in H. (Here, as usual, "maximal
is meant with respect to set-inclusion, not size. Inuparticularﬂ a maximal

o
clique is not necessarily largest.) - .



THEOREM 3.4 (Berge and Duchet (1982))

Strongly perfect graphs are perfect. . .
&

Propf:

Let G = (V,E) be a strongly gerfect graph. ‘ .
Using induction on the number of vertices, we only need prove
x(8' = w(G). Leé S be a stable set meeting all the maxiﬁal ciiques in G,
H be the subgraph of G induced by V-S. Clearly w(H) = w(G)-1. By the .
induction hy;othesis, H 1s perfect, and so y(H) = w(H). We can colour the

pairwise nonadjacent vertices in S by an extra colour and have

x(6) = w(G). The proof is completed. [

THEOREM 3.5 (Chvatal (1981)) . =,
Every perfectly orderable graph is strongly perfect. E
Proo}:

-«

It will suffice to find, in an arbitrary graph G with‘a perfect order

-

<, a stable set meeting all the maximal cliques in G. We claim that S can

be found by the following algorithm: scan the perfect ordering'vl,vz,...vn

from Vi to vy and place each Vj in S if and only if none of its neigﬁbours

vy (i<j) has been placed in S. Indeed, if thé resulting stable set is

disjoint from some clique Q, then each w € Q has a neighbour p(w) in S
‘with p(w)<w. But then thé lemma 3.2 implies the existence of a vertex
v € S adjacent to al??the vertices in Q. Thus, Q is not maxima]. xge

. ¢
proof is completed. [ .

* By Theerems 3.4 and 3.5, the relationships-between the‘classes of

perfect graphs, sérongiy perfect graphs, and.perfectly orderable graphs

&

can be described by fhe,following diagram.

‘-

e e neay .

oM 4

Lo
L R R

'
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. ‘PERFECT
® STRONGLY PERFECT
PERFECTLY
. | ORDERABLE
1 ¢
: e
Figure'3.5
&

We are going to show that both inclusions are strict.

s

d

)

. Figure 3.6: the graph

CG'

11.




: 5
. First, let us prove that the graph Eé in figure 3.6 (taken from Berge
and Duchet (1982)) is perfect but not strongly perfect. We shall prove that:
1) Every proper induced subgraph is perfectly orderable

(2)  x@G) = w() =3
(3) G is not strongly perfect.
y By symmetry, we only need prove the graph H induced by vertices
) b,c,d,e, and f are perfectly orderable to establish (1). Consider two
\ adjacent vertices u and v, we shall represent the relation u<v by an edge

N directed from u to v. If an ordered graph has an obstrucpion: then it must

have a subgraph isomorphic to the graph in Figure 3.7.

O

¢ -~

Figure 3.7: an obstruction.
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v \
Figure ’3.8. \
To establish (2), w;a only need colour vertices a, e v;ith colour 1,
vertices ¢, f with COloul; 2, and yerticeg, b, d with colox;r 3. It follows
- from (1) and (2; that E6 is perfect.

) Let S be the largest stable set in G. It is easy to see that S has

,at most one vertex in {a,b,c} and at most one vertex in {d,e,f} . Thus |S|=2.
- But then the existence of maximal cliques‘ ad, ec, bf shows that S can not
meet all maximal cliques in G. (3) is established. ‘

Q Secondly, let us prove that the graph G = (.V,E) in Figure 3.9 (taken
from Chvidtal (1981)) is strongly perfect but-not perfectly orderable. We
shall establish: -

(4) Every induced subgraph of G is\perfectly orderable.

(5) There is a stable set meeting all maximal cliques in G.

(6) G 1is not perfectly orderable. )
_—

P
. N
W‘i‘“"’

Y
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o

Figure 3.9

To establish (Slg it is sufficient to show the stable set ‘

S = {8,6,4,2,16,18,20,10,12,14}: To establish (4), we only'need show the

‘five graphs induced by V-{15}, V-{14}, v-{13},' v-{10}, and V-{9} are
perfectly orderable. Figures 3.10-3.14 show that the above graphs are

perfectly orderable. .
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Figure 3.10:

the perfectly orderable graph induced by
‘v - {13}.

Figure 3.11:

Y

the ﬁerfectly orderable gtaph }nduced by
v - {14).

15.
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Figure 3.12:
[

14

15

the perfectly orderable graph induced by

v - {15} -
}
13
12
11
®0

Figure 3.13:

the perfectly orderable graph induced by
vV - %10}.
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©9
1 B 2 > °
1 3
17 21, 4 8
b
8 7
1 Ve
19" 20 6 :
- “
9
Figure 3.14: the perfectly orderable graph induced by °
v - {9}.

—~

Figure 3.15: ? i{s not perfectly orderable.
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Now, we only need establish (6). Without loss of génerality, we tan
set 1<2. This forces the relations: 3<4, 5<6, 7<8, 3<2, 9<10, 11<12, 13<i4,
15<10, 9<1, 16<17, 18<19, 20<21, 16<1. But the vertices 16,1,2,3 ‘\
constitute an obstruction. G is strongly perfect but not perfectly .

orderable.
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4. P,~FREE GRAPHS .

We éhall call a graph P4-f¥ee if it has no induced P4. Pa—f§ee graphs
have been studied by many people; terms synonymous with "P4—free graphs"
include cographs (Cormeil, Iétchs, Stewart Burlingham (1981)), D*-graphs
(Jung (1978)), and HD or Hereﬁitary Dacey. graph (Sumner (1974)). 1In the early
1970's, Lerchs (1971, 1972) studied the structional and algorithmic

properties of P4—free graphs. His work was extended by Stewart (1978), who

developed an 0(n2) recognition algorithm for P4—free graphs. Lerchs (1971,

» 1972) and Seinche (1974) independently proved that Pa-free'gfaphs\aye

perfect.

LEMMA 4.1: (Seinche (1974)) ’ ,

If a graph G is Pé—free, then either G or G is disconnected.

Proof:

Let G=(V,E) be ajP&—free graph.

Suppose both G and C are connected. Let A be the smallest induced sub- s
graph of G such that A has at least two vertices and such that A and A are
both conn;cted. Let x be a vertex such that its removal would disconnect A
(ye can.always intercﬁange G and'a, so that this is the case). Since A is
connected, there i; a vertex y in A-x such that xy % E. Let A' be the
connected component of’A—x that inc¢ludes y. Let ?s partition the set of
vertices ih A' into disjoint sets R and W such.that

(i) wue R 1f.ux ¢ E ,

(i1)  ue W %f ux € E

Since A is connected, there is a vertex v outside A'u{x} such that

vx € E; noté/that vu # E.for any vertex u in A'. Since A' is connected,

there is a path P from y to x; but the only edges leaving A' are edges from



W to x, this path must include vertices w in R, z in W such that zw ¢ E.

But the vertices v,x,z,w and edges vx, xz, zw form'a Ph' The proof is

completed. f{]

~

°

THEOREM 4.2: (Seinche (1974))

Evegy P4—free graph 1s perfect.

Proof:

By induction on the number of vertices. Let G = (V,E) be a

[y

Pa—free graph. Using the induction hypothesis , we only need prove

-

that x{(G) = w(G). 1If G is disconnected, then by the induction hypothesis,

a

each component Q of G has x(Q) = w(Q). Since x(G) = max x(Q) and

w(G) = max w(Q), it follows that x(G) = w(G). j
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If G is connected then (by Lemma 4.1) G is not. Let El ,62,...’,—0-]( be
the components of ¢, In G, we have xy ¢ E for any choice of vertices x in
C,» ¥y incC,, i#j. By 'induction, each subgraph C, of G has x(C,) = w(C,).

But w(G) = & w(Ci) and x(G) = L X(Ci)' Thus, w{G) = x(G). The proof is
completed. [ i ' “w

After Seinche submitted his proof for publication, he was informed

that P4—free graphs can be ob%éined from a single vertex by repeated

doubling of one vertex with or without joining the two doubles (Lovész

(1972a)). Trivially, Pé—freé graphs are perfectly orderable. (If any

linear order is imposed on the vertices of a P4-free graph, then no

obstruction is created, simply because Pa—free graphs have no induced P4.)

Let G1 and G?. be two disjoint graphs. The graph obtained from G

1
and G2 by adding all ‘edges‘ joining vertices of G1 to vertices of GZ is

gometimes called the join of G

| and G, and denoted by G, + G,. The &raph

obtained from Cl and G2 by not adding any extra edge 1s called the wnion

of Gl and G2 ‘and denoted by G, U G,.

1 2
A rooted tree is called a cotree if

1. -

Every intermal node, except possibly the root, has at least two

children.

(1) The rogt is always labeled 'one'.

‘“’M o
(111) The %}xildren of a node labeled 'one' are labeled 'zero' and the

children of a node labeled 'zerc' are labeled "one'.

A cotree T is said to.represent a graph G if there is a bijectdion

between nodes of T and certain induced subgraph of G such that:
(1)

<

i ~
The leaves of T ‘are one~to-one correspondence,with the one-point

subgraphs of G.

C e gt e e

O
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{ (i1) The root T corresponds to G itself. A \

& '

(111) 1If an internal node is labeled 'zero', then it “represents the

”

union of all subgraphs represented by its children.

]
(iv) If an internal node is labeled 'one', then it .represents the

join of all subgraphs represented by its children. .

Each Pa—free graph can be represented by a cotree because it is

either the union or the join of smaller P4—free graphs.

‘v

Lorna Stewart (-Burlingham) (1978) designed an O(nz) algorithm which,
given an arbitrary graph G, finds either a cotree representing G (thus
establishing that G is P4-free) or a P4 in G. (Her algorithm is based on

an O(n) procedure which, given any graph G together with a cotree represent-
]

[A

ing some G-v, finds either a cotree representing G or a P4 in G. Of course,

this P4 must include v.)

Figure 4.1 illustrates how a Pa—free graph can be represented by a i

}

‘

:

3
L3
%
A
3
&
a
4

cotree.,

Figure 4.1




er? o

’

Ed

Note that 1f a graph 1s disconnected then the root has only one

child. (See Figure 4.2.).

Figure 4.2
We shall assume that we can write a procedure called STEWART (G) to
implement Stewart's algorithm. Given a gral;h G = (V,E) with ]VI = n,
STEWART (G) either finds'a Pl‘ in G, or copstructs a cotree representing G
in 0(n2) steps; thus establishing that G 1is Pa—free. This procedure

STEWART (G) will be used in the next Section. ,
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5. Pa-SPARSE GRAPHS

Let C be the class of graphs” that have five vertices and at least two

. induced Pa's. P4-8parsé\graphs are graphs that have no induced subgraphs

that belong to C.

\
The class C has seven pairwise nonisomorphic graphs. Let H=(V,E) be a

graph in C with vertices a,b,c,d,e such that vertices é,b,c,d and edges

ab, be, cd form a PA' We can describe H as this P4 and:

(1) edge ea. (edges eb, ec, ed being not in E see Figure 5.1)
(11) edge eb. (edges ea, ec, ed-being not in E | gee Figure 5.3)
-(111) edges ea, eb. (edges ec, ed being not in E , see Figure 5.5)
L ]
(iv) edges ea, ec. (edges eb, ed being not in E -, see Figure 5.6)
(v) edges ea, ed. (edges eb, ec being not in E , gsee Figure 5.7)
. \ ) ,
(vi) edges ea, eb, ec. (edge ed being not in E , see Figure 5.4)
(vii) edges ea, ec, ed. (edge eb being not in E , gee Figure 5.2)
e
e
9 & © .-
a b c d a b c
Figure 5.1 Figure 5.2
. K
. /
3
o .- - o
a b c d a’ b c
Figure 5.3

Figure 5.4

G

[T
g et N

e, «

TSP

12 S P M



e r
p\
. -- —0 .
b [ d . d
v
Figure 5.5 ~ ' . _Figure 5.6
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Figure 5.7 ' -

‘&
The seven figures 5.1-5.7 show all graphs of C. It is easy to see that
the complemerit of the graph in Figung 5.1 is the graph in Figure 5.2.
Similarly, the graphs in Figure 5.3 and 5.4 are complements of the graphs

, and

in Figure 5.5 and 5.6 respectively. The graph in Figure 5.7 is a C5

C5 = C5.
/

Let G be a Pa-sparse graph. Consider a P4 in G and an arbitrary

vent;x x not in this P The vertex x has one of the following properties:

4.
(1) x is not adjacent to all vertices of the P&'
(1) x is adjacent to all vertices of the P, . .

(1ii) x 1s adjacent to two 'middle' vertices of the P&’ and _non-adjacent

to the two 'end' vertices.
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(a) °

(c)

Figure 5.8: a Pl; and a vertex.

& o i /

The graph shown in Figure 5.8a has the graph in Figure 5.8b as its
complement. The graph in Figure 5.8c¢c is isomorphic to its compl\ement.
Let G = (V,E) be-a graph. A set Y of vertices will be called
homogenous if 2 < Y] < |v| and if there are no vertices u,v,w such that
u ¢ Y; v,we Y, and uv € E, uw ¢ E. (Note that Y is homogenous in G if

and only if it is homogenous in G.) .

A graph G = (V,E) will be called a turtle if its vertices can be
labeled 81585500058, bl’b2""’bk or t,al,a‘z,...,ak, bl’b2"" ,bk such
that: )

(1) aiajt E for all i and ;

(ii) bibje E for all 1 and j

a

(i1i1) aib_1 € E if and only 1if 4i=j

(iv) If t is present, then we have tai¢ E, tbj

-

¢ E for all 1 and j.
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Figure 5.9: a turtle with k = 5 (and t). ‘

%

We now describe a procedure RECOGNIZE ‘which shall be used to determine
whether a graph is P4-—sparse. Given a’'graph G, the procedure RECOGNIZE
attempts to find the offending subgraph H that belongs to C; in case of
fzvailure, it shows that either G has a homogenous set Y, or G (or E) is a
turtle.

RECOGNIZE terminates in step 1 if G is P4~free (in which case it
returns a co}:ree representing G). It terminates in one of- the steps

2,3,5 1f G has the subgraph H in C. For the remaining cases, RECOGNIZE

terminates in steps 6, or 7, 1f G has a homogenous set, else it terminates

» a

"in step 8, showing that G is a turtle, or the complement of a turtle.

Assume that G hz;s a Pl.' Let vertices and edges of this Pl; be

a;sby,b,,a, and, edges albl,plbzabzazi RECOGNIZE partitions the remaining

1’7y

verticed into disjoint sets P,Q,R,T as followed: for each vertex u
t

SRS
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cases.:

xcase 1:

and u ¢ T. We may assume T 1is empty.

-
S
~

(11)' u € Q 1f u is nonadjacent to all four vertices\a

Av) ue T if u § PUQUR.

 Figure 5.10: identifying a maximal turtle.

g

1f all vertices in P are adjacent to all vertices in R, then

Y
the set Y = Ru{al,bl,bz,az} is homogeneous

—~ ‘ (1) ue P 1f u is adjacent to all four vertices'al,bl,bz,a
q

l’

’ A Y ‘
(iii('u € R 1f u is adjacent to bl’bZ’ and nonadjacent to a,,a

If there are vertices b € R, a € Q such that ab € E (see

20

bl,bz,a

If T is »nonempty, then there is a graph H with vertices a,,b.,b

1y

Figure 5.10),

of vertices b in R,‘a in Q, then we have one of the two following -

28.

2.

2-

2°8;

then RECOGNIZE extends al’bl’bZ’aZ into a maximal turtle (atep 3); during
this process, it may find an induced subgraph H in G or G (in which case,
it stops. For example, if there is a vertex u in P such that ua, ub * E,

then the graph B has vertices a,b,b;,b,,u.). If we have ab ¢ E for any choice -

v wmie b

B Bl B et K Il -

P,
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xcase 2: there are nonadjacent vertices u iw P, v in\R.

In this case, we get a bigger turtle by complementing

the graph G.

1

Figure 5.F1: getting a bigger turtle by complementing.

From Figure 5.11, it is clear that the gubgraph of G induced by vertices

(u,v,al,bl,bz,a2 is a turtle with k=3 (Step 4).

kY

RECOGNIZE(G) :

Input: a graph G = (V,E) with [V|=n, .

QOutput: one of the following: a subgraph H, a homogeneous set Y, a
turtle, a complement of a turtle, a cotree representing the
graph G.

1. Call STEWART(G). If.a cotree is returmed, then stop; else choose

b.,b,,a, such that a_b_,b_b_,b.a

1°°1°%2°% 1°1°P1P2°P2%; € B
ale’alaZ’blaZ * E, and set k=2,

N\

— vertices a

wl

-
s
Bhwpepeeeez s, Capl, b
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=4

Set (
_u € P1if ua,,ua, € E and ubl,ub2 € E
u € Q :Lfvual,ua2 # E and ub

/
u € R if ua,,ua, ¢ E and ub

l,ub2 ¢ E

1,ub2 € E 4

If some vertex w* other than al,bl,bz,a2 lies outside P,Q,R,

. .
then return the subgraph H induced by al’bl’bZ’aZ and w* and
0

stop.

As long as there are adjacent vertices a € Q, and’i) € R, repeat

the following ;)perations:

3.1 If some w* ¢ P has w* a ¢ E or w* b ¢ € (or both) then
return the subgraph H induced by al,bl,b,a and w*, and
sto\p. |

3.2 If some w* € Q has w*a ¢ E or w*b € E (or both) then return
the subgraph H induced by al,bl,b;a, and w* and stop.

3.3 1f some v;* € R has w*a ¢ E or wtb ¢ E (or both) then return

b,a and w*, and stop.

the subgraph H induced by a,,b

1’
3.4 Delete a from Q, delete b from R, set a1 = bk+1 b,

and replace k by k+l.
If k=2 and some u € P is nonadjacent to some v € R then set

x<—a{1,y+ » 2% by, t < a,,

«y, b, A, b, - x, 8, 1z,

1 1 2 2
Replace G by G, interchange P and Q, and return to step 3.

a

s

(Note that a=u, and b=v have just become available.)

If k 2 3 and some u € P is nonadjacent to some v € R, then

return the subgraph H induced by a ,u,bz,v, and b3, and stop.'

1

I PuQt ¢, thenset Y = {a;,a,,...,8,5 bybyseee,b I UR,

k’
return the homogenous set Y and stop.

o
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-

7. If |[R] 2 2 then set Y = R, Return the homogenous set Y, and stop.

8. G or G 18 a turtle. Return this turtle, and stop. A

We shall assume, as usual,»nhat G is represented by its adjacency

1ists (see, for instance, Aho, Hopcroft, Ullman (1974))K

l As noted in Section 4, the running time of STEWART (G) 1is 0(n2), and
so_S;ep 1 can be executed in O(nz) steps. Execution of Step 2 involves
scanning the adjacency lists of al’bl’bZ’aZ’ taking only O(n) steps.

Having executed Step 2, we.may form a 1ist of all edges ab such that
deQ,be Rin O(nz) steps; each execution of the loop in Step 3 begins by
removing an arbitrary item ab/from this list. (Since Q and R shrink
throughout the run of the algorithm, we may find that the item ab just
removed from the list no longer has a € Q, b ¢ Rt In that case, we simply
move on to the next item on the list.) With each execution of the loop in
Setp 3, the algorithm either terminates or else Q and R shrink by one
vertex each. Hence the loop is executed only O(n) times; each of its
executions takes only O(n) steps (in particular, the conditions on w* can
be tested by scanning the adjacency list of wk).

If the loop in Step 3 1is executed at least once then k 2 3 after the
execution of Step 3, and so Step 4 1s not executed at all. On tﬁe o}her
hand, if Step 4 is executed then its execution is followed by an execution
of the loop In Step 3, where k=2 is replaced by k=3. Hence Step 3 and
Step 4 are executed at most once. Even a crude implementation of Step &
takes only 0(n2) steps. Each of Steps 5‘— 8 is executed at most once. A
stralghtforward implementation of.Step 5 takes O(n?) steps; straiéhtforward

implementations of Steps 6 — 8 take O(n) steps. Therefore, the time

complexity of procedure RECOGNIZE is O(nz).
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We now descr%?e a procedure DETERMINE which, in 0(n3) steps, determines

‘

whether a graph G is Ph-spatge. The procedure DETERMINE may call procedure
RECOGNIZE n times. .
DETERMINE (G) ¢
Input: a graph G = (Y,E) with |V]=n.
Output: a message saying whether G is Pa—sparse.
1. Call RECOGNIZE(G ).
0

2. If a homogeneous set Y is‘retusned, then:

2.1 If there 1s a ?4 with one vertex in Y and thfee vertices

not in Y, then go to step 5. !

2.2 Let GY and GW be the subgraphs induced by Y and V-Y
respectively. Call DETERMINE (GY) and DETERMINE(GW). If both

GYand Gware pa—sparse,_then go to step 6, else go to step 5.

@

—3——F£ a turtle or a cotrée 1s returned, then go-to step 6.

4, If a subgraph H is returned, then go to step 5.
:—'v -
.5, Return the message 'G is not P4—sparse' , and stop.
6. Return the message 'G is P4—sparse' , and stop.
~

It is easy to see that Step 2‘15 executed at most-% times. Substep
2.1 caﬁ be tested in O(nz) steps. We partition the vertices of G 1into sets
A,B,Y as follows. The set Y is the homogeneous set returned by RECOGNIZE(Q )-
For each vertex u in V -Y, we set u € B if u has a neighbour in Y, else we
set u € A. Let GA be the subgraph of G induced by A, and Eﬁ be the subgraph
of G induced by‘%.’ If there is a component F of éA (or F ofléé) such that
IF[ > 2, and F is not homogentous in G, then return the message 'G is not
Pa—sparse' (this means that’ there is a P4 with vertices a,b,c,d and edges

‘ ab,bc,cd € E, edges ac,ad,bd ¢ E such that we have either (1)

achAbdecB,ce¥if FcGy, OF (11) a,b € A, c ¢ B, d e Y 1f F cG,).

4
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/
RECOGNIZE shows that 1f a graph G is Pé—sparse, then either
¢ (i) ‘G has a hongogenous set, or

(i1) G or G is a turtle.

LEMMA 5.1 v

Let G be a graph with a homogenous set Y. If there is a P, with at
least one vertex in Y and at least one vertex not in Y, then this PA has
precisely one vertex in Y and three vertices not in Y. Furthermore, if

such a P4 is present, then G is not P4—sparse.

Proof: . ) ) .
Since Y is homogenous, the set of ve'rtices outside Y can be partitioned
into disjoint sets’ A, B such that, for each vertex u, we have
(i) u € A if ux ¢ E whenever u¢ Y, xe Y

(idi) wu € B if uerwheneveru#Y,xeY

If there is one P4 with at least one vertex in Y and 'at least one

1
vertex not in Y, then this P4 has at least one vertex in B. Thus, such a_

PA can have only one vertex in Y. 5o, its vertices can be enumerated as

a,b,c,d such that we have either a ¢ A, b,de B, c ¢ Y, or a,b e A, c € B,

d € Y. Since IYI 2 2, there is a vertex e in Y such that a,b,c,d,e are .
vertices of a graph H in C. The proof is, completed. . B}
THEOREM 5.2: . a . . .

Every P -gparse graph is perfectly orderable.
A i’
Proof:

>

By induction on the number of vertices. Let G=(V,E) be a P -sparse graph
_ _ 4 .-

-~ Case 1l: G is a turtle. _
, o o

1
g
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I1f G is a turtle, then we have the perfect order

e

t<b,<b,<...<b, <a.<a

1<b, ALH 2<...<ak. This ordeg‘%\as no obstructions, since any Pl;
N
must have vertices ai,bi,bm,am and edges aibi’bibm’bma&’n (and we have

/bi<ai, bm<am). This case is settled.

Case 2: G 1is the complement of a turtle,

" Figure 5.12: the cognplement of a turtle with k = 3 (and t).

~
el

\

1f G is the complement of a turtly: then the vertices of G can be

/
enumerated as t,al,. "ak’b]_""’b/k such that

/
1) aiaj € E for all i and j

(ii) bibj ¢ E for all i and j v --

i
by €E if and only if 1 % j.

(1ii) ta, € E and t:bj & E for all { and j (1f t is present),

o (1v) ay
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The sequence t < a < a, <','°< a < bl; b2 <..e€ bk has no obstruction,

gince any P4 must have vertices bi,aj,a

have aJ < bi for all 1 and }). This case 1s settled.

m’bn’ edges biaj ;ajam,ambn (and we

Case 3¢ G has a homogenous set. |

Let GY and Gw'be the subgraphs of G induced by Y and V~-Y respectively.
By the induction hypothesis, GY and Gw are both perfectly orderable. Let
the perfect orders of GY and Gw be ¥y < Yo o< ¥ and W S Wy << W
respectively. We order the vertices in G in a sequence
Yy € Vg Seer< ¥y < Wy Q Wy Seen<w . Thigs order is perfect, since Lemma

5.1 guarantees that G has no I;t, with a vertex in Y, and a vertex not in Y.

The proof is completed. 0
P
COROLLARY 5.3: Pa—sparse graphs are strongly perfect. 0

o

By Theorem 5.2, the relationships between the classes of perfect graphs,
strongly perfect graphs, perfectly orderable graphs, Pa-»free graphs, and

Pa—,spars,e graphs can be described by the following diagram.

A

PERFECT

STRONGLY PERFECT
o

N A

PERFECTLY ORDERABLE .

PA-SPARSE

P ~-FREE T

<
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L 4
‘ To show that all inclusions are strict, we only need show that some

perfectly orderable graphs are not Pl’—sparse. (The other inclusions had been
proved strict in previous Sectionms.)

Consider tl}e graph C6 shown in Figure 5.13

Figure 5.13

RS

Figure 5.14
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However, the subgraph induced by vertices V19V9sVqsV, Vs belongs to

the class C. So, Cg 1s not Pa—sparse.
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Adjacent

Bijection

Chord

Chromatic number

Clique

Clique number

Colouring

Complement

Connected

Cutset

Cycle

Edge

Graph o

N

38

)

/Ei .

APPENDIX

two vertices are adjacent if and only if they are

joined by an edge. ~

a mapping one-to-one and onto.

a chord in a cycle VisVgsesesVy is an edge v

v,
a ]

(1 €1i <k or vV

than v,v N

ii+1

the smallest number of colours that suffice

-

LS

a graph.

a set of pairwise adjacent vertices. “
the number of vertices of the largest clique in a
graph. u

an assignment of 'colours' to vertices such that
o

adjacent vertices always have different colougiJQ

the complement of a graph G = (V,E) is denoted by

G = (V,E') with the same set of wvertices, and the set

PN

E' of edges such that for any two vertices x,y in V,,

we have xy € E' if and only if xy ¢ E.

a graph is connected if there is at least a path

between any two vertices.

a set of vertices such thaq its removal would disconnect

a connected graph.

a cycle is a path from a vertex x to a vertex y with
the edge xy. *
-

see Graph.

An ordered pair (V,E) such that V is a set and E is a set

qf two-point subset of V. The elements of V are called

ezl m e e
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Graph (cont.) ! vertices and the elements of E are called edges.

‘ Q° . o
Induced subgraph : a graph H = (VH,EH) is an induced subgraph of a graph

-

G = (V,E) if VH £ V and for each edge xy in E, we have

Xy € EH if and only if both x and y are in VH'

Neighbour : a vertex x 1s a neighbour of vertex y if x and y are
adjacent.

Path : a sequence of distinct vertices VisVgseeesVy such that /
ViViel € E (<1< n-1).

Stable set :‘ a set of pairwise nonadjacent vertices.

Vertex : see Graph.
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