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. P Ig order to achieve better accuracy and speed in the automatic analysis

. o

and °r'eéogni‘tiori of cervical cells,, sever'alﬂ'lar"'ge research efforts Z’\re being

made to im'prove each of, four main subprob"lems - image acquiéition and

s

enhancement, sScene segmentation, feature extraction, and classification. 'Thg“-i

A

goal " of this thesis is to investigate possible dimprovements in scené

‘ ’

segmentation agd feature extraction processes.
A threshold selection segmentation technique which seleets the density
v "

tp’reshold based on the stability of tHe cellular area vas used. Images of

4

'} cervical cells scanned at 530 rim wer'e used to segment the cells or clumpé of -

® b
;o

ells from the baekground and images scanned at 570 nm vere used to separate

[ 4 .
N Y

/— ‘ /tl;e nuclei from the cytoplasm. Experimental results showed that the
TN ’ 3
& ,/ segmentation technique worked better with two color images (530 nm and° 570 nm)

than with single color 1mages of cervical cells (SLIO no). To study the
problem of overlapping cells, an algor-:.thm for gener-atlng overlappmg cells
was devised, This algorithm which creates r'andom overlaps f‘rozn single cell
data, was (used to develop and evaluai;,le. procedures for detecting overlapping
cells, -

The feature extraction software system developed previously' at the
MacdonalZd Stewart Biomedical Image Processing Laboratory, Departmentl ‘of

Pathology, MeGill University, was expanded to include several two~dimensional

histogram features and additional Fourier and Granlund shape features. °
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Three feabure selection procedures were investigated. The selected

S

features were conmpared by means of the classificatidn °etirqr rates obtalned by

— -~

using the minimum Mahanalobis distance_ﬂcla{ssifier- to classify cervieal cells

into 16 subclasses. ‘ J
&y

The new two-dimensional histogran features devised in this research were

found to be the best amohg all feature categories studied. A reduction of.

Y B
* " 57.88%2 in the classification error rate (from 5.2% to 2.19% for the random

partitioning method) was achieved using the 13 features selected by the

4

N i
forward sequential search procedure (including the two-dimensional histogram

’ o

‘features) in comparison with the 6 features (with no color information) -
s N ){3 4 .
' previously used by Oliver et al[0li78a].
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Dans le but 'd'améliorer 1l'analyse et 1'identification de cellules

cérvicales par ordirfateur, les efforts de recherche se concentrent sur quatre

-

; sous—probémes- majeurs: 1l'acquisition et 1'enrichissement des

.
- ~

la

segmentation des images, 1'extraction des caractéres et la classification. Le

images,

but de la recherche ci-décrite a &té d'&valuer. differents procédés pour

'

effectuer la -segmentation de régions et l'extraction de caractéristiques *afin

E1
4

v

d'obtenir de mellleurs ‘résultats.'

¥

Une méthode de segmentation basée sur la sélection du seuil de densité
{ deéerminé par la stabilité de la surface cellulaire a &té& utilisée,

&

Des
images enregistrées 3 530nm ont &té utiligles pour segmenter les cellules ou

les amas de cellules de l'arridre-plan; des images enregistrées & 530nm et

570nm ont servi a 1la segmentation des noyaux et du_  cytoplasme. Les

expériences de segmentation utilisant des images de deux couleurs (530nm,

570nm) ont donné des résultats supérieurs a~ce11'es'utilisant des ’images d'une

* o seule couleur (530rm). Pour &Etudier le probléme de la superposition des

celiules, un algorithme a &té produit podr créer au hasard des cellules

v

superposées & partir d'images de cellules isolées. Cet algorithme a servi 2

- . déveloper et &valuer des méthodes pour d&couvrir les cellules superposées,
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Le logiciel dévelopé auparaw}ant au Laboratoire de Traitement d'Images

Macdonald Stewart, Département . de Pathologie, Université McGili," pour

1l'extraction de caractéres a &t& &tendu pour pouvoir utiliser des histogrames

. de caractéres bi-dimensionels en plus des caractéres morphologiques Fourler "et

{

« . ‘ v P

) Granlund. .

|
a \\ o » [ s
N

a

PR

Trois- méthodes de s&lection de caract@res ont &te &xaninées, n}:es'w' :

e

t S ~

caractares choilsis ont &té comparé d'aprés les taux d'erreur de cligsification

l

obtenus en utflisant le classificateur de distance minimum Mahanalobis sir un
oo e c , b /, .

\ 7
n \
L4

ensemble de cellules cervicales 3 classif’i"er\ en 16 ‘soué~;1asseé.°

< @

nt

5 i k’a(‘/7 ’ k o R T - ey
Les nouveaux histogrames bi—dimensio;aé\}.s‘dévelopés' dans cette recherche
3 - |
i,
ont donné des résultats supérieurs 3 tous les autres caractéres choisis. Le

taux d'erreur, de classification a &té reduit de 57.88% (de: 5.2% & 2.197) en
utilisant les 13 caractdres qui ont &té selectionés par'la méthode de
recherche sequentielle avancée(incluant les\i\ligtogrameso de caractdres

bi-dimensilonels) en comparaison des 6 caracté@res (sans information de

couleurs) utilisé par Oliver -et al (01178a).
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o INTRODUCTION
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»

Ever since’thg "Pap smear" was introduced as a reliable diagnostic tool
for cervical cancer, there has been a large and rapid increase in its use as a

. . 1 " \
screening method for cervical cancer. As a consequence, several research
I

groups have been hprking towérds an automated_system for analysing cervical
smears. At the Macdonald-Stewart Biomedical Image Processing laboratory
(BIPLAB), Poulsen et al[Pou77a,78a,§1a,Tou79a], Cghn et allCah77a,77b], Oliver

et all01i77a,782,78b] have undertakén research to.develop image processing ahd

pattern recognition algorithms for cervical cell recognition. However, to.
build a system for practical use, better classification accuracy wis still

neede%a A continuous effort is being made in the BIPLAB to-develop better

<z

image processing and pattern recognition techniques suitable for cervical cell

\

analysis and classification.

In the following subsections of this chapter, a typical image processing

.

and pattern recognition system, the system used in the BIPLAB and the data

base of cervical cell images are described. Also, the major contributions of

/

this thesis to the scene segmentation and feature extraction processes are

briefly mentioned. . . ) . ~ R
v . )
1.1 Image Processing and Pattern Recognition systems

~ , “

r

Four main subproblems involved in image proéessing and pattern
recognition are image acquisition and enhancement, scene segmentation, feature

extraction, and pattern classification as shown in figure 1.

-
-
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Y
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: Figure 1. Block diagram-of processes in a typical
‘ﬁ

+

1.1.1 Image Acquisition and Enhancement

- Image Acquisition

with each pixel density quantized into gray ‘level values,

possible gray level values assigned to each pixel.

n
‘¥

o

is required along with a pixel spacing of 1 micron or less.

LR SR Y X5

image ' processing

In order to use computer softwaré to amalyze an image in

Typically,

TN P S PrIpeee £ T M e e d T

I

and

the

— 2\ rEél world, that image must be converted ;into a form acceptable to the
S — . -

computer, ‘The form widely used now is an array of pictgre points, or pixels,
The level of detail

that a digital image can represent depends on the resolution of the image,

the magnification ‘and the totel ni:mber of pixels), and the number of

for cell

' recognition systems, a minimum of 64 gray-levels (or optical density levels)
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'follpwing defects:

- . , ) ¢
. - Image Enhancement

54 o}fi &
oy
:‘mﬁ . -

The image acquired by the scanning syspem séﬁetimes has the

, a) Shading problem: For example, an image of constant density

may appear to be 1lighter in the middle and darker around its edges. This

'problem is mainly caused by the uheven illumination across the specimen and/or

the éériqtion in the sensitivity across the field of the scanner. For a
sophisticated imag%fprocessing and patterr recognition system, a hardware
shading correction unit and/or, a software’ shading correction package are

usually included to overcome this shading problen.

v

b) High fluctuations of gray.values: In some systems, high
fluctuations of gray values of pixels occur either because of the noise in tﬁ?,
system or the nature of the specinmens themselves, Thus, fas£ and effective
d;gital smoothing sa{ﬁ&are is sometimes required to remove these undesired

fluctuations. ’ .

,

c¢) Low contrast images: The images acquired in some cases have

ver; low contrast and hence are very difficult to analyze visuallyzgaTo solve

1
i

this problem, software techniques such as gray scale modification rtechﬁiques

have been developed to improve the contrast of the images.

d) Blurring: Even in the absence of external noise, the

" -
acquired images are still degraded to a certain extent according to the
modulation. transfer function of the system. This kind of degrddation can be

compensated for by applying an inverse filter to the acquired images:

’

\
e o .
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Assuming that the degraded image of a point is independent of the position, of

" that poiﬁt and if H(u,v), the Fourier transforn of the point spread function

4

h}x,y), is known and different from zero, then one can restore the original
image.' This is done by first, multiplying the Fourier transform of the
acquired image by 1/H(u,v) and then applying the inverse Fourier transfpnﬁ to
the resultant as —described in [Ros76b]. In practice{ only a limited

correction is possible due to noise considerations.

1.1.2 Scene segmentation:

¢

. Scene segmentatiSn involves separation of interesting regions of
the scene by considering common properties of the pixels within each region.
For cervical cells, it involves the separation of «ells or clumps of cells
from the background, of nuclei from cytoplasm, and of one cell from others.
Features extracted from badly segmented regions usuail} deviate greatly from
those extracted from well segmented regions, Consequently, poorgsegmentation
generally adversely affects clas§ification results.'yﬁécause of the influence
of the segmentation results on subsequent processes, feedback from the feature
extraction and/or classification processes can be used for evaluating and
selecting good segmentation algorithms. ’For example, one can choose from
among several segmentation algorithms, the one which produces the least
deviation of the important éeatures from the corresponding ones obtained using
a reference segmentation (ie human segmentation). Alternately, one can choose

o .
the one vhich produces the least classification error rate. Research on

segmentation error measurement is being done currently at the BIPLAB, and

" results will be reported in the near future.
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ii " © 1.1.3 Feature Extraction:

©

Since the goal of the pattern rqcognit@gn system 1s to discriminate anong
! .images of different classes, it is unnecessary and prohibitive, in terms of

° ’

computation time and memory storage, to classify images based on differences
among individual images. Instead, one must classify images based on important
measurenents of properties which vary less among images of the same class than

among images of different classes. Moreover, to further optimize the cost, a

search procedure for effective subsets of important features should' be

developed. Because the classification error rates obtained depend on how much
A\

information the selected features contain, feedback of classification error:

° ~

rate to the feature search procedure can be used to select an éffective subset

of all features considered. .

1.1.4 Classification:

[

The classification process involves the decision to_ assign images to
;1 ) N
different classes based on the values of features selected in the feature

c

‘egtraetion process, The best classifier should be the one which gives the
least confusion among, classes® of images, when applying the same set of

selected features and the same data set for‘?esting. |

El

i

1.2 Introduction to the system in the Biomedical imagé Processing °

Laboratory (BIPLAB)

- . -]

4T§f?~image acquisition and enhancement ' “

L Y ) o °
. The system used for this thesis' research is the one at the

®
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: ) ~ PAGE 6

-

Macdonald StewartLBiomedical Inage Processing Laboratory (BIPLABj, Dgpartmen% .

4 >
.of Pathology, McGill University. The images were scanned using a Quantimet

720D Plumﬁicon~scanning éyspem to'produce a digital image of T44x14Y pixels of.

64 optical densitf levels. Even though image enhancement could be performéd
by the 'system, when applied to cervical cell recognition, no correction was
made for opéical,or electronic shading‘so that the quality of the scanned data
would be consistent witkiywhat would be expected in a practical laboratory
instrum;nt. However, as pointed out by Poulsen et al[Pou%?a], the optical ;nd
electronic shading of this system is minor compared to the variations in
background Qensity found in routine slides, Also, no image enhancements such
as smoothing or deblurring ﬁere made due to the fact that the digitized images
reéresent the original images vefy well.

Scene segmentation, feature. extraction, and g¢lassification processes

4

have &been. developed at the BIPLAB over several yearé. Following are brief

‘descriptions of these processes:

>

1.2:2 Scene segmentation

-

One scene segmentation algorifhm, devéloped by _Cahn
[CahTTa,TTb]l, seleects an appropriate density ‘threshold based on the stability
of the boundary of the segménted regions as the threshold is varied.

Presently, techniques for generating ané detecting overlapping cervical cells

are being developed,

~
‘v

1.2,3 Feature extraction

Presently, the feature extraction system can be used to extract

L4 -
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[

several important features such as color features, density features, geometric

[

features, and texture features. Moreover, feature search procedures for

¢ . '
effectived subsets of features and feature category evaluation are under

3
investigation,

. . ®

~

1.2.4 Classification ' ' /(

Y

The minimum Mahanalobis. distance classifier develdped by Oliver

et al [01i77a,78a,78b] is used under the assumpfioﬁ.that the density function

1

' -

of the multi~dimensional feature vectors has a Gaussian distribution.'
AN

-

’ b 3
\ H

S

The "scene segmentation and the‘ feature extraction processes will be g

-~

(S SNN

discussed in more detail in the next sections of this thesis.
. .

1.3 Introduction to the cell data base: ' ’

¢

fn this research, 3000 cells from routine Papadicolaod stained cervical

specimens were scanned at 0.7 nicron resolution, higher resolution than in
previous studies (1.0 miecron resolution),~ to improve the quality of the
acquired digital images. Also, the cells were scanned at three different

wavelengths (530 nm, 570 nm, 620 .nm), instead of at the one wavelength (using

e S it

a Zeiss VG-9 filter) used before to provide color information for scene

segmentation and feature extraction studies, The cells were divided into 16

ekt ey

classes: 11 classes of normal cells and 5 classes gf abnormal cells (listed

in Table 1 on the next page). .
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9

v
A Y
-
Ak I

{ NORMAL CELL CLASSES “ | : . K
: 'y
9 Y1, ssh Superficial Squamous 351 i
2. IsQ Intermediate Sguamous 7318 ’ f
B ' 3. HAY Névicular Squamous 179 ) ?
4, PAR Parabasal Squanous 263
5. Eili Endormetrial (Stromal) . 93
c 6. EINM%G Endometrial (Glandular) 66
T. BHCES Endocervical (Secretory) 152 -
8. ENCEC - Endocervical (Ciliated) 147
3
g9, HIS 8 Histiocytes 139 g
10.1iBT*R l'etaplastic (Acidophillic) 182 ;
' 11.HET*B letaplastic (Basophillic) 115
N ~
Sub total (Normal) 2005

ABHORMAL CELL CLASSES
| .
o 12.DYS-MLD Mild Dysplasia 204
13.DYS-MOD Moderate Dysplasia ’ 181 °

14.DYS-SEV Severe Dysplasia 187
15.CIS Carcinoma in Situ 148 "
* i
/ 16 . INV Invasive Carcinoma 275 ? %
' / i
Sub total (Abnormal). ' 995 ;

<

[

1
i AL BT

Table 1 : High resolution data base of cervical cells

®
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1.4 Scope of the thesis: ’ .

.
]

Chapter'two cogtains thé major conéribution of ihe thesis with respect to
the scene -segmentation process. .In this chapter, an‘%lgorithm which selects
the density threshold based on the séability of the area of the segmented
regions is described. Cell images scanned at 530 nm were useé'for separating
cells or clumps of cells from the background and the same cell images scanned

kY

at 570 mm we?e psed‘ for separating nuclgi from cytoplasm. To study the
problen of ovqéi;pping cells, two algorithms were developed: —-— 9a)‘ an
algorithm, for generating a data base o% o@%rlaépiné cells having a unifornly
distributed overlapping percentage, for use in evaluating 6verlapping—cell

detection and segmentation algorithms, -- b) an‘overlapping—cell detection

algorithm using Fourier shape descriptors and cell density information.

,

Chapters three, four, and five contain the major contributions of the

thesis related to the feature extraction process:

Chapter three describes the pfﬁ?iously developed feature extraction
system and the computation of the set of 209 features (including new color
features and additional sthe features) of the expanded feature extraction

systen,

2

Chapter four describes the perfornmance of three feature selection

a s

procedures. Each procedure was evaluated by determining the classification
error rate obtained using a minimum Mahanalobis distance classifier together

with a random partitioning test method.
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Chapter five describes the performance of féatures of ’diffe ent types

such as two—diﬁensional histogram features, one-dimensional \histogran

In chapter six, the segmentation methods, the feature search procedures,

and the feature evéiuation are summarized and discussed. Also, suggestions

)

for future improvements om the scene segmentation and the .feature extraction

'

- ~ e
1 .

o

processes are proposed. .
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Chapter 2

SEGMENTATION METHODS APPLIED TO TERVICAL CELL RECOGNITION

2.1 Introduction:

In pattern recognition, whether<the ultimate goal is to derive fe;tures
or to)classify objects according to their conmmon patterns, a criéical step is
to segment images ihto meaningful regions with conmon properties. Vhen
applied to cervical cells, the problem involves separating single cells or
clumps of cells from the background (scene segmentation), nuclei from
eytoplasm (cell segmentation), ~and one cell from others (overlapping cell
ﬁegmentation). High segmentation error tends to produce fea£ure values that

| .
.vdeviate éreatly from those obtained using a reference segmentation (human

-t

segnentation) and generally significantly increases the c¢lassification error

rate. Several segnmentation algorithmg‘g;ve been developed for the cervieal
cell segmentation problem in particular. One of the segmentation techniques
which proved to work satifaetorily is the one‘ developeg by Cahn et
al[Cah77a,77b]. In our pregent research, a modified version of their
téchnique was used., Moreover, images of cervical cells scanned at 530 nm were

)

chosen for use in scene segmentation and images of cervical cells scanned at
570 nm were chosen for wuse in cell segmentation. Previously, images of
cervical cells scanned using a Zeiss VS-9 filter were used for both scene and

cell segmentation.

For the problen of overlapping cells, the threshold selection technique

-

based on the, stability of cellular area was used to separate clumps of
o é y\\
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overlapping cells or touchiné‘cells from the background. Fourier descriptors

of cellular boundaries, together with dengity information, were used for

1

detecting and segmenting overlappiﬁg-cells.
i

!
. '

‘ o (\,
In the following subsectionsﬂ a brief survey of sceng:dsegmentation

- T——

" techniques, a short description df the segmentation technique used for the

cervical cell segmentatioh problen, a method for generating overlapping
objects having a uniformly distribgted overlapping percentage, and a method

for detécting overlapping objects are described and evaluated.
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2+2. Survey of scene segmentation techniques:

2.2.1 Overview B : ‘

\ ~ - .
|

Scene segmetation involves locating regions -with pixels having the
Same Dproperties. Several scene segnetation techniques, applied io different
fields in pattern recognition, have been developed. They generally fall into

four main cateéories: threshold selection techniques, edge detection

techniques, region-growing techniques, and-relaxation techniques.

a) Threshold selection techniqu?s'

An inage can be segmented using its gray level histogram (global),
or its local properties. For the global approaches, the histogram of an image
is first computed, then smoothed if necessary ﬁo obtain distinet peaks and
valleys. Fin%lly, the thresholds are set at the valleys found. Reasenable
results were reported using this approach for segmenting white and red bloopd
cells [Gre79a;ﬁen79a]. Recently, the histogram-based thresholding technique
was generalized to select thresﬁolds based on multi-dimensional histograms
(histograms of images scanned at tuo or three different wavelengths):
Aggarwal et al [Agg77al used two-dimensional hi;tograms (528 nm, 569 nm) to
locate. the cytoplasm by a ce;li;g-lowering clustering teehnique.“ A 88.1%
success rate in isolating cytoplasm‘was obtainéa using a test set of 233
cervical cells. Aus et al [Aus77al used éhe trivariate histogram (héO nm, 580
nn, %20 nm) to segment bone marrow cell images. In the l;cal thresholding

approaches, the thresholds are selected based on local properties of the

segmented regions, Cahn et al [Cah77b] have developed a technique to select

A LY
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‘Z . ‘ the threshold Jbased on the geometric stability of the perimeter of segmented

regions as the threshold is varied., Cahn et al[Cah77b] and Lin et aI[Lin81a]
haﬁe applied this :.technique to cerv1cal cell segmentation and obtained

- excellent results (Cahn et -‘al reported 6.6% poor segmentation on 1500 cervical

-

' ". cervical cells).

J ’ . - ’ . ' -

b) Edge detection techniques A -

< e

Assumlng that there exists.an, abrupt change in‘ gray value' or

texture at the edge of an object, the boundary of the object is-found by

app;yihg gradient operators, or%"by applylng high pass spatial filtering.. A

. survey'of edge’ detection techniques is deseribed by David [Dav75al.

-
[ ° I3 < '
Y o

g c) Region growing techniques’

l Riseman et al [Rls77a] discussed three different techniques

“dependlng "on different charachgrlstieé of the scenest (1) Merging: . Small

| ) .

. o regions, (2) Spli@tihg:‘ Large pleces of an image are' broken into smaller

- ’ <

9 . . “
. areas until a high confidance that they are homogeneous under the features of
N R ’ ° [ 3 .
© interest is obtained, (3) Spatial and feature analysis: Histograms of various
. ‘feature pairs are employed to find clusters of feature. activity. These
i i »
clusters are used’ to label local areas of the scene, folloved by a spatial
/ “ %alysis of these labels to guide the formation of the desired reglons.
L8 / O'. N _,;\ ) ' . o IS ¢ 5 . !
o’ N - d) Relaxation techniques T ﬁ\\ o
\\f\ o o ‘ .
. ] L ."' ‘ . ~ -
‘ ( “ L * . ® -5 o .
. ’ “0 ) * ' N —

.cells and Lin et al reported less than 0.5% -really poor segmentation on 1153°

, Qieces,which have pommon prdpertfes are grouped together ¢to ° forn fiﬁhi’

o

L,

Y B ey
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’

ﬁ b In the r-glaxation techniques, each pixel is initially assigned. a
. ’“}\ set of membership indices relating that pixel to a region in the ipage. These

Q .
indices are then iteratively wupdated for each pixel by "examining the

! membership indices of neighboring pixels.

v
v

<

6 )
2.2.2. Advantages and disadvantages of the scene segmentation techniques

ment;ioned above:

a) Threshold selection techniques . ) '

v
~

: ' ~ Histogram-based threshold selection: This method is inexpens:f.ve
& , . \ . 5
and simple but it often cannot handle complicated seenes where distinet modes

~—

{ﬁgua'll'y do not stand out in the histograms.

. . , ' ' e
- Local property-based threshold selection: This method is

. _ inexpensive. and efficient. Moreover; it can be used to take into account any -

‘important local | rpr‘operty such -‘as, area, perimeter, gradient, etc or a

combination of thenm as the basis for selecting thresholds. However, the

v
e

/ o ) technique is stil¥ dependent on a parameter (stability per&entage for area,

. perimeter, gradient) which is heuristically chosen.

)]
b) Edge detection techniques

' = The edge detection techniques are ipexpensive and' simple but " they
“have two main disadvantages: (1) The segmented region sometimes does not have

‘a connected boundary, and (2) the threshold value of the change in gray value

L

has to be chosen. ’ . ' ‘ o

t

3

¢) Region growing techniques: ,

R
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-4

*  For both the merging and splitting techniques, connected boundary

o

analysis is not required to identify acceptable regions. }!owe_:ver, the

A

techniques have difficulties. when the textural variation within regions is

o

néarly the same as the variation between different regions. In other words,

-these techniques are very sensitive to the threshold set to'split or merge the

-

With the spatial and feature analysis method, good segmentation ean

]

result if feature pairs are chosen su:lh that clusters of interest stand out’

*

(not* always the casé for complicated scen\zs). Ongthe other hand, an &nalysis

of spatial areas which have been labeled is 'r-equired to f£ind tﬁe desired

4 9
{

connected regions, . ,
» * . - - é
N !

. d) ite]:aXation techniq—ues

The relaxatior; techniques usually improve segmentatjion. ageuracy of

1

regions segmented ‘first by rothér segmentation techniques. However, a

relaxation technigue has two main disadvantégeé:' (1) It is sensitive to ‘the. -

updating rule and the initialization of the class membership indices, and (2)
it is expénsive ‘in terns of, cobnputation time and in terms of memdr'y space

required to store the indices of every pixel. ' %

N 4

2.3 Segmentation t'eéhnique chosen for cérvical cell recognition:

[

For cervical cell recognition, a ‘modified version of the local

" property-based th}'eshold selection tech'nique devbeloped by Cahn et al[Cah77b]
R >

~was appXied. In:this technique, an appropriate density threshald is ' selected

based on the stability of the perineter of the segmented regions as the

1
3.
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r

thresiold is varied. Because we observed that cellular and nuclear areas are
two “of the most important features for cervical cell recognition, we modified

3

Cahn's technique by basing threshold selection on the stability of "area
instead of, perimeter. ., The imbortance of cellular and nucl_e_ar areas is
verified in chapter 4, which shows that these two features were selected, from

the total set of 299 informative features 'of all categories, by the forward

sequential search procedure.

For scene segmentation (separating cells from the background), the

following threshold selection procedure was applied: ‘

e
h

- First, the size of the segmented regions must be reasonable: the area

should be between 100 and 20000 pixel counts (50 and 10000 square microns-

respectively), and the perimeter should be between 50 and 550 pixel counts (35
and 355 mierons respectively). This excludes small unexpedted objects and
large clumps of cells (large clumps of cells, composed of two or three

dveﬁlapping cells, are discussed in the section of overlapping.cell propl.em).

-

’

- Secondly, a threshold is selected whenever the change in the area of
the segmented region at that threshold, with respect to the area of the

segmented region at previous threshold, is the smallest and less than 80% (the

stability parameter of H40% seemed to give the best results for scene

segmentation of cervical cells).

For cell segmentation (separating.nuclei from cytoplasm}, the area range
is 25 to 2000 pixels (12.5 and 1000 square microns respectively), and the

4
perimeter range is 15 to 200 pixels (10.5 and 140 mid(\:rons respectively). The

.

[

T st e 5T

Y

TR

g
R T R S

PR — 4 eI ek R sy wmepe A nel T e WAL gy ot § St ~r_—
4




e T
s

i -

PRGN

r '.

- : PAGE 18

!

size limitation is used in order not to select small dark regions i“nside the
cytoplasm and not to select large clumps of o{\'érlépping nuclei or large and
dark overlapping cytoplasm, The area zhange is restricf,ed to less than 20%
(this parameter seemeé! to give the bes(t rzell§ segmentation results for our

.

cervical cell data). .
" ' \-h;»

2.4 Segnmentation results on single cervical cells

To improve the segmentation accuracy, a 0.7 micron s‘canning resolution‘
in thre’e color imagés of cervical cells was used instead of a 1.0 micron
scanning resolution in a single color as was used in previous studies. Usiné
higher scanning resolution appeared to make scene and cell segmentation
easier, Particularly, using two color inmages instead of single color images

. . ) .
for segmentation improved scene segmentation very significantly. ’i‘o verify
this inxproverﬂent, a segmentation error measurement based on the percentage of
misclassified pixels ‘was appliéd. The detailed description of this method is
given by Yasnoff et al [Yas77al. In the present résearch, human threshol_td
selection was assumed to provide correctly segmented regions. Thus, whenever
segmented ;egioné obtained from awsegmentation method did not match the

reference segmented regions, the percentage of miseclassified pixels was used

as“the segmentation error neasurement.

[

The method was applied to both single-color and two-color image data: a)
For single -color data, images of cervical cells secanned using a Zeiss VG-9
filter were used for both scene and cell segmentation, b) For two-color data,
images of ‘cervic#l cells scanned at 530 nm vavelength vere used for scene
segmentation and images of cervical cells scanned at 570 nm wavelength were
b

‘
1 ~

e e e . e etk AR, and L

- e ey et AT e b o ARG (A b ARE % A e g L, P
1

R e b . -
OB U e i T e et WALED

R




C

used for cell segnentation, -

In the present research, 250 single cells out of the 3000-cell data base

‘ -

described in chapter 1 were used for testing the significance of color
N '1” "

information in scene segmentation. When single-color images were used, 11

cells were rejected because the area stability of 4079 for scene segmentation

was not achieved, and the remaining 239 cells were segmented with the average

percentage of misclassified pixels being T7.92% for scene segmentation and

v

12.8¢ for cell segmentation. When two color images were. used, only 2 cells
out of 250 were rejected and the remaining 248 cells were segmented with the
average percentage of misclassified pixels being 3.6% for scene segmentation

and 12.8 % for cell segmentation, N

°

.
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2.5 The problem of overlapping cells : - ,
2.5.1 Introduc%ioﬂ

)
One key problen in scene segmentatéion is distinguishing binucleated

.éells and clumps of overlap{aing cells from single cells. Shape information

!

has been used [Ece77a,dai80a,Tuc78a) for segmenting touching and overlapping

cells. Textural information has also been consiciered for segmenting

over-lappiing cells [Lin81al. Recen 1y, both shape information and density
4

information has been used for detecting-overlapping cell nucleilBen81al.

v

In the studies done[Ece77a,Jai80a,Tuc78a,Lin81a,Ben81a, Sye78a,Cah77b],
thé detection rate achieved for r‘ecognizing overlapping objects such as cells'

— .
is extremely dependent on the data base of overlapping objects used, On" one

hand, the degree of overlap and types of the cells studied would appear to

have a considerable bearing on the inherent difficulty of the overlapping-cell

detection problem.’ On the other, collecting a data base of overlapping cells

representative of the wide variations in degree of overlap and the many cell

types involved would be very difficult ir;deed. Thus, meaningful comparison of -
4

.

the large variety of algorithms in the literature is difficult. Iri an attempt
to minimize these problems we devised an algorithm for generating a data base
of overlapping cells having a uniformly distributed overlap - degre%% by

4

artificially combirfing images of single cells taken from a large single cell
€

data base. In this algorithm two single cells first are randonly selected

from the single cell da:ta base., These cell images are then made to overlap to

a percentage obtained from a uniform random number generator. The overlap

degree is computed as the ratio of the area of overlap to the area of the

-
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- information are used for detecting overlaps.
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smaller of the two selected cells.

[}

The 582 artificially generated overlapping cells, together with 1046

and 157 naturally overlapping cells wére used for evaluating an

2
single . cells

overlapping-cell detection algorithm. ) , ,

In the overlapping-cell detection algorithm, both shape

To obtain the shape information,

the boundary of the object is used for computing Fourier descriptors by

applying the procedure devised by Granlund[GraT2al. The first n Fourier

descriptors are then used to reconstruect a smoothed boundary of the object,

The locations and curvature values of points of local maxima in concavity

along the smoothed boundary can also be found analytically in terms of these n

Fourier descriptors., The relative positions and values of these points can be

When considering the dénsity

used for . detecting overlapping - cells.

and multi-nucleated cells were detected

information, overlapping cells

whenever more than one nucleus was found within the cell in question,

’

and density
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2.5.2 Data set’ ’

A datffbg,sje of 1203 cells (selected from the 3000-cell data base
described in chapter 1), comprising 1046 single cells and 157 naturally
overlapping cells, was used for generating 582 cells having a uniformly
distributed degree of overlap. This data base of 1203 cervical cells together

with the 582 artificially generated overlapping cells was used forr evaluating

the performance of an overlapping-cell detection algorithm. ' .
Ja .

-

2,5.3 Algorithm for generating cells having a uniformly distributed

overlap degrée: T
)

In order to evaloate  the performance of the ,overlappir{g-cell

detection algorithm objectively, a. data base of cells having a uniformly

distributed overlap degree is very uséful. From the existing data base of

single cells, the 'following” algorithm was devised to generate such an

overlapping cell data base:

Step 0: Let N=the number of overlapping cells to be generated, Re=5%, and’
o
De=1.5 times the pixel spacing (1.5%0.7 microns) vhere Re is the
maximun overlapping percentage error allowed f’o'r\ any generated overlapl

and De is the minimum travellinhg distance required for continuing

the binary search.’
Step 1: Select two cellé randomly from the sijngle cell data base
Step 2: Compute the coordinates of the centers C1,C2 and the effective

radii R1=SQR(A1/7C),R2=SQR(A2/T) of the first and second cell

y
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respectively (where A1 and A2 are the areas of ‘the first and second

—-—  cell respectively). — .

»

Step 3: Apply the binary search technique to find the appropriate positions
of the tuo ceJ:l images in the field of view such that the
overlapping percentage matches’ the targ?t percentage (called U)
obtained from a uniform random number generator (maxingyum overlappixhxg_; ~

percentage error allowed is Re):

4 ~

3.1 Let Dmin=0, Dmax=1.5%(R1+R2), Dtarget=0.75%#(R1+R2), OVedegx;eeﬂI ‘

Dmin and Dmax are the minimum and maximum distances allowed .

-
*+

b;etween two center_s of two cells, Dtarget is the present B
distfance set between two centefs of two cells,'0vedegree is‘the
target overlapping percentage.

3.2 Keep the first cell fixed, nove the second cell along the line’

Jjoining C1 and C2 such that the distance between C1 and C2 is

“ equal to Dtarget. Then measure the percentage of overlapping area

R with‘ respect to the area of the smaller of the two belis.

3.3.a) If IH-Ovedegreel <Ré or le.nax-Dmin <De G.OTO Stepll’
(Exit if measured and desired over‘lappir.rg percentage 'aif‘fer' by
less than Re or if travelling distance is less than De) i
b) - If R<Ovedegree,Let Dmax:Di:arget and Dtarget:(Dtarget+Dmin)/2\
(If measured overlapping percentage is less than the desired
overlapping pereentage,' set the next position of the two cells

closer).

- If R>Ovedegree,Let Dmin=Dtarget and Dtarget=(Dtarget+Dmax)/2

® - -
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’ g
{" (Othervise, set them farther from each other). ;;
' 3

GOTO Step 3.2 i }
' go

Step 4: Decrease N, if N=0 STOP, else GOTO Step 1 ‘ ;

. ' 3

4

i

(Stop when N overlapping cells have been generated).

R e

& >

In this research, the algorithm was used to create-a data base of 582

TR LT
“

overlapping cervical cells from the data base of 1203 cervical cells mentioned
in part 2.5.2. These 582 overlapping cells together with . the 1203 cerviecal

cells were used for evaluating the overlapping-cell detection method.

2.5.4 Overlapping-cell detection method

oy ,

p First, the threshold selection technique based on the area stability !
was used to segment regions (single cells or clumps of overlapping cells) from
the background, then the regions were tested for clumps of overlapping cells

by megans of shape and density information,

-
a) Detection based on the shape information:

The first criterion used for detecting overlapping cells was based

“ - +
on' the shape of the eel; boundary. In this study, the Fourier transform was

apblied to derive Fourier descriptors of the boundary of the cell. The basic

s b b Ak

approach was devised by Granlund[Gra72a]. Also, the mathematical formula of
the curvature in terms of the Fourier descriptors can be determined .

analytically.

Consider a contour such as C represented in the complex plane (See figure

pr

2). A point moving around the contour at a constant Speed generates a conmplex

-

5 i
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e s T

S,
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value function:

u(t)=x(t)+jy(t)

e T I

I3
where t is the path length with a period T equal to the perimeter. .
* < \
im A ,
v i
g ) ’ :
3
. u(t) X i
z %

(C)

{
. i > .
. Re \
Figure 2 A representation of a shape as a contour in the complex plane. The

point u(t) moving,a,rourid the contour at a constant velocity defines a‘'periodic

complex value function of path length t and with a period-T equal to the

e T R NP VS WV SRR R S

perimeter.

=

Since u(t) is periodic, it can be expressed as a conplex Fourier series:

P e

+ oo N
H

u (t) = sum a exp(j2rnt/T)
Mmz--0o0 » .
i ) F] %
7 / 3

o
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. o . -
where a, = 1/T*Ju (t)exp(~-j2Tint/T)dt ’ .
-po ’
be

A truncated Fouriér\'series oy -

tp
uT(t) = sum a _exp( j2rnt/T)

ff\:-‘r

\ ¢

- represents the smoothed boundary of the object. A more general smoothing

/
of the boundary can be obtained’ by using an appropriate weighting of the

Fourier descriptors.

The tangent C(t) and curvature R(t) of a point u(t) on the smoothed

boundary of the object can be conputed as: .
Qu ) TP ' '
T (L) = —= sum a,(J2Ttn/T)exp(j2Tnt/T)
’at ’n.:.l-'F * |
Fue) P ’ A
--——u—T-——' sup -a (Zﬁn/T)zexp(jQ’TCnt/T) "
92 B m /
(%) m=tp ) /
1
From T(t) and R (§), the points of local maxima in concavity along the

==
~
o
A~
i
1]

smoothed boundary of the objects can be locateﬁd. Those are thé points where
the cux;vature nagnitudes R (t) are at local maxima | and the phase of -
R (t) lea;dq that of T(t) as shown:in Figure 3. (MNote that when the phase of
R(t) leads that of T(t), the phase difference (T(t),R(t)), where T(t) is. z
the initial ray and R(t) is tﬁe terminal ray, is equal to'+'7r/2. O‘n the other

)

‘hand, when the phase of T(t) leads that of R(t), the phase ¢ifference is

equal to “T72),
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R
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Figure 3 Examples of the phase relationship of convex and concavity points

on a contour: a) at convex point C, T t) leads R(t), b) at concavity pointS\h

and B, R(t) leads T(t).

’

All péiqs‘:: the maximal concavity points were tested to see if ahy of
ormed by overlapping cells in the szme manner as described by

them was a pal
Eceles et allEcc77al. In this description, to be considered as a pair formed

by overlapping cells, the two maximal concavity points A,B should satisfy the
. o
following two conditions: .

(1) (min® path length between A and B)/(Euclidean distance dA&’ > 3
{')

(2) a+ b<60

' —>
where a and b are acute apgles formed by (Rﬂ(t),AB) and- (R&(t),A_g) (RA(t)

&
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‘b) Detection based on the density informa§ion

[N

« * _ In our study, density informati%n was also used for
¢ells. If wé assume that each cervical cell consists of

“overlapping cedls tan be'detected'whenever more than one

within * the cytoplasm. For cell segmentation, - the

on a stability of the segmentéd,area was
'1 -

’ \rggions. To teét fog the number of existing nuclei, the

technique based

PAGE 28

are curvature yectors of the pointé\A,éhd B respectiVely).

detecting overlapping

only one nucleus, the

~
o

nucleus is detected

threshold selectian

used to segment dark

.

-, s
three darkest §$ﬁions

wi;hin_the cygoplabf are segnented.” If the average optical density values ’df

"

the two darkest regions are bofh greater than twice the average epticzal

o

* density of the cell excluding the three darkest regions,

regions §ée'both considered as nuclei.

Y

A -—
-, -
- A 'y

r ] ° . »
b 2.5.5 Overlapping-cell detection results
i\ 33 -

darkest

\

then the two

a) Besults obtained using artificially generated overlapping cells

-~ Results based on cytoplasmic shape

When we considered cytoplasﬁic shape alone,

2

the\\overlapping_cell

detection raQe‘decreaéed exponentially as the degree of overlap|increased (See

® . \ W
' Figure A4). Ov;:§$1, an overlapping~cell detection
obtained. Hoyever,’

V)

rate

when the degree of overlap was restricted to less than

20%; a 689 detection rate was obtained. Moreover, if the degree of overlap

-

was restricted to less than 103 (touching or slightly overlapping cells), a

P

- b

1
3

f 33.55¢ was’

‘.

»
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90,29 detection rate was obtained, . .
o/0 A A .
100+

504
40+
30-

Detection Rate

20+

104 ' .

I ] ] -0 0, '
- 10 20 30 40 50 60 70 80 90 100 %

Overlap Degree . -

°

¢ —_— e -
a

Figure 4 Figure shoﬁipg the overlapping~cell detection rate as a funcﬁionhqf

the degree of overlap . ' . . ‘}

- I
-
s .

a) based on the eytoplasmic shape with respect to .the degree of overlap

(=) .

¢

b) based on“the number of nuclei detected with respect to the degree éf

overlap ( A" ) e

t

¢) based on the cytoplasmic and nuclear shape and the number of detected

nuclei (using density information) ( o Yo o L .

. . i 3 N
‘ v %t I R
h . » .
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_ density criteria alone.
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--,Results based on nuclear shape N L

Nuclear shape was used to detecst the cells_ havi‘.ng overlapping nuclei. As

" the degree: of cell oveylap. increased to over 60%, there was a greater chance

of nucleus overlap. Of the 582 artificially generated overlapping cﬁlls, . 166
have overlapping nuclei and 58 of‘these'166' cells were detected as having
overlapping nuclei using the Fourier 'shapé‘de‘s‘cripﬁors of the nuclei (34.94%).

The remaining cells exhit;itegi sucb a high degree of nuclear overlapping that

they were very difficult to detect even visqail;}.

-
- Results based on the density inf‘orinatj:on ) )

When the overlap detection was based on the ‘number of detected nuclei

‘ alohe, the overlapping-cgll detection rate decreased slightly as the degree of

overlap increased, Overall, a 65% detection ‘rate was obtained using the

However, if the degree of overlap was restricted to
- b - .

less than 20%, a 7é.22% detection rate Cyas obtained (See Figure 1),
-.Results based on both shape ‘and denéity information

[} o1

¢

, for- dehecting overlapping cells, the detection rate decreased .slightl} as the

s

overlap degree increased (See Figure/JI\ Overall, a‘detectionlira!;'e of T78.52%

was obtained. However, when. the deg of overlap was restricted to less than

20%, a 92.59% detection #natﬁ._uas;,obtaine'd.

m . »
When both ‘shape and density ’ infbr'mat_;ion were used as criteria for

0

When bpth -the shape and density information were used as the. criteria '’

b) Results obtained using nai:ur-ally oceuring singie and overlapping cells
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L X : . \
detecting overlapping célis in the data base of 1203 cervical cells, 146 cells,

out of 157 naturally overlapping cells were detected as overlapping cplls

(92.99%), while 146 cells out of 1046 single celggxwebe falsely detected as

t,
S

\ )
overlapping cells (14.03%). N

.degree (less 'than .20%), the 92.99% ‘detection rate is consistent with the

result obtained from the artificially generated overlapping cells (92.59%)

when the overlap degree was restricted to less than 20¥%. This close

similarity assures the .validity of wusing the overlapping—éell generation

algorithm to create appropriate test situations for overlapping-ceil deteection

., studies,

a

A 1
&

oo . LT
< LR ¥ ~ .

’ -

Since most of the 157 naturally overlapping cells have minimal overlap '
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2.6 Conclusions: S e ] ‘ 1

-
" The following ggnclusions are dravn from the experimental résults
obtained for scene and cell segmentztion, and for the overlapping cell

~ .

detection problem: &)

(1) Using two color images of cervical cells (530 nm, 570 nm) instead of

single color images produced significant improvements in the scene

segnentation results. Thus, the multi color image data should be wused for

<

future research,

(2) The segmentation method which selects the density threshold based on
the stability of areas of segmented regions produced very good results. Thus,
it is.worthwhile to investigate a more generalized version of the method which
conéiders the stability of the combination of a variety of important features

such as area, perimeter, gradient across the boypdary etec.

'

(3) The segmentétion error measurement method using the percentage of

nisclassified ixels is inexpensive; easy to conpute, and quite effective
because areag(Zi\éegmented regions are very important features for cervical

cell recognition.i However, since several other features (descrgping geonetry,

or density, or color, or texture information) also play important roles in’
|

cervical cell recognition, it is necessary to consider a scene segmentation

" error measurement method which can tzke into account several - important

]

feztures at the same time. One such method which evaluates the segmentation

error in the pattern space is being devéloped at the BIPLAB.

(4) Because the overlapping-cell generation algorithm can produce a

<
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%

cervicgl cell data base having a, unifornly distributed degree of overlap and

comprising different cell types, this technique can be used for objective

evaluation of alternate overlapping-cell detection algorithms.

1
!
i

— (5) The highi detection rates of overlapping cells, with reasonable
nisclassification of single cells, validated the overlapping-cell detection
method. However, some modifications should be made in the future for more

effective handling of the following difficult cases:

a) High degree of cell overlap: As shown in the experimental results, it
is very difficult ‘to detect cells having a high degree of overlap and it is

extremely diffiEult to detect overlapping cells when the nuclei highly

overlap. )

b) A small cell overlapping a much larger cell: When the large cell is
more than 10 times as large as the small cell, it is very difficult to detect

the overlapping cells based on their sﬁape information.

She

¢) Two overlapping cells with very high density contrast: When the

4

average cytoplasmic density value of one cell is about the same or even higher

than the average nuclear density value of the other cell, poor segmentation of
both the nuclei and cytoplasm results. This ecreates a difficulty in detecting

overlapping cells based on their shape and/or density information,
e

d) 0ddly-shaped cells: Some single cell types such as moderate
dysplasia, =severe dysplasia, and particularly invasive sguamous carcinoma , :

cells have odd shapes which are sometimes mnisclassified as the shapes of

Lot

overlapping cells. Some of these oddly-shapedcells may have a nucleus and a
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regioﬂ”of the cytoplasm, nearly as dense as the nucleus, - vhich sometimes is-

falsely detected as a second nucleus.

L4

1

e) 'Bone' or 'bell' shaped cells: Some single cells have.K a ‘'bone' or
'beil' shape which sometimes causes them to be félsely detected as overlapping

cells, . ‘
& r
<

v ”

f) Pale cells: Some single cells have pale nuclear andl cytoplasmic
’ !

-~

optical density with respect to the background. This often leads to poorly
segmented boundaries whieh, if irregular, are detected as overlapping cellular

or nuclear boundaries. N . /

. ]
g) Single cells with folded cytoplasm: The optical density ‘of folded

cytoplasm is almost as dark as the nucleus and sometimes appears as another'

nucleus within the cell,

A

{6) The anal&tic derivation of the tangent and curvature of the boundary
points, in terms of'gourierldescriptors, gives u; a very effective means of
deterﬁining the maximal cohcavity boiﬁts on the smoothed boupda?y. Using all
the information of the maximal concavity points, instead of following themad
hoc procedure described by Eccles et al[Ece77al, one can statistieally analyze
the relative positions and curvature values of th§‘maximal concavity points
(as iﬁ [Ben81al) in order to derive a decision rule for finding overlapping
cells.

(7) The Fourier shape descriptors can also be used 'to detect folded
N

cytoplasm of cervical cells by detectiﬁg paiﬁs of maximal convéx points joined

A e ¥
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I3

c ) - by a region having aver-acge densii?y value of approximately twice that of the

« ‘eytoplasm of the cell under investigation.
) ) ‘
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Q- .
T Chapter 3
FEATURE COMPUTATION
¥ R -
3.1 Introduction ‘ .

-

&
’ -

. A cogtipuous effort is being made to determine the most effective
features Tfor use in cervi;al cell‘c}assification. Previously, at the B;PLAB,

+ Poulsen et al [Pou77a) and Cahn et al [Can77al] developed a Eeatﬁre extraction
system based on' several impértant measurements - 6f size, shape, optieai . s ﬁ

density, and texture,

Color features have been shown to play an rigportant role in cancer L
cell - detection. BacusfBac76a), Aggarwal et alfAgg77al, Bengtsson et -
al(Ben79a], énd Hoimquist et all[Hol76al have used it for segmentatidﬁ
phrposes. ‘In our laboratory, Louis [Lou77al has also indicated that color

information is very important for cell segmentation. Kulkarni[Kul79a], and

Taylor et allTay78al have usedicolor features for cell classification. This

motivated our research on color features and led us to extend .the IPS inage

CEUHLWE T nean

processing software[Pou78a,Tou79a] to include the resulting new color features

" derived from multi-dimensional histograns of multi-color image data.

R

Additional shape features based on the Fourier and Granlund descriptors of the

IS

boundary of cells have also been added.

.

In the following subsections, the feature extraction system previously

developed’ is briefly described and the computation of all features of the

expanded feature extraction system is described.

' . ~
% . . A I3
f . . . %
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3¢2 The IPS feature extraction system:

[N

« The purpose of feature extraction research is to derive nev features
which vary less among images of tle same class than among images of different

classes, Once important features have been derived, feature selection and

e e e———————A NI R TR PR L o

-

feature evaluation in terms of cost and performance should then be

investigated.

I3

——

The feature extraction system which we previously ‘used[Pou77a,Cah77al -

included the following categories of features:
. . i

1) Geometric: x

§

-a) Separation: distance between the center of the nucleus and the

y

center of the cell.

b) Size: area of the cell nucleus and eytoplasm.

=3

c) Shépe: boundary pixel count, moment of area, moment of mass,

moment of perimeter, bending energy., -

2) Optical Density: mean, variance, mode, skewness, kurtosis,«enéropy,atc

of the nuclear and cytoplasmic optical density histograms.

3) Texture: cytoplasmic and nuclear texture éomputed as described by 7 -

Haralick [Har73al.

e

The IPS feature extraction system has been expanded in the present
research to include several new two-dimensional histogram features (consisting

of density and color features) and additional shape features. Features

* - a
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computed by the upgraded system are described in the following section.

3.3 Features computed by the expanded system

3.3.1'Color and density features:

3.3.1.1 Color and density féatures derived from multidimensional

l 1.

histograms: !

Our present research has led to the development of new two-dimensional

) . histogram features vhich are based on rulti-d¢inensional histograms of

milti-color image data.

A two-dimensional histogram P is forped 2s an nxn matrix vhere n is the
maxinun numper of gray levels (or optical density levels) alloved and each

element p(i,j) répresents the number of pifg;swwith gray value 1 in ¢ne color

530 nﬁ) and grey value j at the corresponding position in a

inage (i.e.

If the gray value of every pixel is the sane for

, second image (i.e. 570 nnm).

both colors, there is no color information and all non-zero elenents of the

two-&imensional histogram P lie on the diagonal. On the other hand, if there

is color information, non-zero elements exist off the diagonal. Intense color

information is represented by non-zero elenents lying far from ‘'the diagonal,

Several density and color measures vhich can be computed from the

two-dimensional histogrem are described below:

N

Considering the two-dimensional histogram P(i,J), iz=t1e..n,j=1...n, if we

iy n . . -
’ let N = sum sum P(i,j) be the total pixel count, then R(i,Jj)=P(i,3)/N,
' ach i=

i=1.senyJ=1...n i8 the normalized two-dimensional histogram matrix.

o
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. i
Now, if we let Q=R+RT, where RTis the transpose matrix of R, then Q is

symnetric,

Similar to the textural features derived from the co-occcurrence matrix
described by Haralick et al[Har73al, the following 1% color and densiﬁy

®

features can be derived from matrix Q(i, j),i=zl...n,j=1...n.
1) Logarithm of the angular second moment

n m 2
LOG( sum sum Q (i,3) )
iy J:\

2) Logarithm of the contrast

¢

no, o n ™~ .

LOG( sum k*Q_ (k) ) where Q (k)= sum sum Q(i, j)

kK=o g xg iz 5:1 .
ST

3) Logariyhm of the inverse difference moment

“©

m (8% . 2‘
LOG( sum sum Q(i,J)/(1+(i=3) ) )
/ A=) d:!
&> . #
4) Logarithm of the expected value of first diagonal distribution

n 4 . 1 !
LOG( sum k*Q (k) )
kzo *g %

5) Logarithm of the variance of first diagonal distribution:

v

" 2
LOG( sum (k-Ch) Q@ (k) )
k=o ’.l-\a:

C4 is the expected value of first diagonal distribution

o

6) Entropy og the first diagonal distﬁibutioﬁ

]
N - P T .o
- -
i < s L a w P - B b Attt v e i s .
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5
k.
o osum Q) ®LoglQ_ _ (k)) 4 v
=0 QL‘\# QL’%— é
. ¥
7) Logarithm of the expected value of second diagonal distribution é
7
. an noo~ f
LOG( sum 1%, (1) ) where Q (1) = sum sum Q(i,j) ;
L=o Kty oty i g , {
. i+;: L ¥ 3

8) Logarithm of the variance of second diagonal distribution

an 2
LOG( sum (1-C7T) Q (1))
L-o0 2ty
C7 is the expected value of second diagonal distribution - ,w

.
R RS

9) Entropy of the second diagonal distribution

an
sum Q.
L:=-0 x
10) Logarithm of the expected value of row di§§ribution

+(Dﬂmdguélﬂ

m a
LOG( sum m*Q (m) ) where Q (j) = sum Q(i,j)
m=4 * * (= ‘

.

“11) Logarithm of the variance of row distribution

m 2
Lm(smnthW)*%fm )

mz4

[

C10 is the expected value of row distribution

12) Entropy of row distribution

mn
sum qum);Log(Qqu))
;=4

13) Entropy of entire distribution

P P A ) e -
.
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n om “
sun sum Q(i, 3j)*Log(Q(i,J)) .
Azt A:\ Y % ‘
14) Correlation _ A .

( ftx;n i2j2Q(4, j) ../,‘W*/,L?’)/(GL*G%) where/ui,/ti,a, G:"'G"& are’ means and
variances of Q(i,j).

N e d
Also, the following two important features are included:

Nj ar

15) Logarithm of the chi-square value

m.  av

2 . . »
LOG(N#(sum sum Q (i,3)/(Q_ (i)#*Q, (j))-1)
13 5:1 * k4
o

where Q,(Jj) = sum Q(i,j) and N=n%*n .

. Kz azi
16) Logarithm of the ratio of expegted value of first to_ second diagonal
distribution

LOG(CE/CT))

where CU and C7 are expected values of first and second diagonal

distributions respectively. . o

v

J

The features 10, 11, 12 (Logarithm of the expected .value, logarithm of
the variance, and entropy of row distribution respectively) are density

features. The rest contain eitﬁér color information alone or both color and

3

density information, For three’color images of cervical cells, composed of

_three color images of the cytoplasm and three color images of the nuclei,

there are six possible'sets of 16 two-dimensional histogram features:

B} N
»
B )

[

g e v K e e v

e o shieebe 3. S




S

ST

[
¥

§ I

SEES

3 LAEER. T
v TR IR &'5‘; T

Kt

B
SR

iy

T

>,

S HRE

PR

o

! 4
, | . , . .
. -

& .
- o - ¢ t et m s e Rl

o . ] PAGE 42

v ~
3 v B
a) 16 features {F1 to F16) extracted from two-dimensional’”ﬁistograms__pf
. cell eytoglasm.scanned at 530 nm and 570 nm wavelengths 3

“

P . A
y Cor . -
b) 16 features (F17 to F32) extracted from two-dimensional histograms of

eell cytoplasm secanned at 570 nm and 620 nm wavelengths.

EX . N
5 T ‘
4

"e) 16 features (F33 to FUE) extracted from two-dimensional hiétograms of

1

cell cytoplasm’ scanned at 530'pm and 620 nm wavelengths.

b
»

- d) 1é:Teatures (F49 to F64) extrifted from two-dimensional histograms of

cell nuclei scanned at 530 nm and 570 nn vavelengths.

e) 16 features (F65 to F80) extracted from two-dimensional histograms of

-

A\
fel; nuclei scanned at 570 nm and 620 nm vavelengths.

1 4
o
0

£) 16 features (F81 to F96) extracted from two-dimensional histograms of

%
ce;l nuclei scanned at 530 nm and 620 nm wavelengths. ﬁ
\ "13 .
3.3.1.2 Gplor and density features derived fromA one-dimenéioﬁal
ﬁ‘, hiétqgramsE - | ' ’ . ' .

{

- '
©

-~
i When considering one-dimensional histograms obtained from cell> images

scanned at one wavelength (using a Zeiss VG~9 filter), only density features .

can be ektrac;ed. But when considering all three one-dimensional histograms,

color aé well aé density features can be extracted.

.

Theﬂfollowing g9 featurés can be computed from each one-dimensional 

histograﬁ'ﬁ(l), I=1 to n density level:

vo

b s
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‘:§‘ 1) Hode value = most frequently occurring density level among all- bin

values of the histogram (value of I at which H(I) is maximum). —

2) Modal frequency =‘number of times the mode occurs divided by the area

-

¢

. n ‘
3) Mean density = [ sum I®H(I)]/area
- . . Iz } .

.

- mo
4) Variance of density = [ sum (I—m)t*H(I) 17area

Iz 4
r 3
5) Skewness of density = [ sum (I-m) #H(I) ]/area
- Iz

e 4%
6) Kurtosis of density = [ sunm (I-M)4§H(I) }/area
‘ I=

- . m
7) “Entropy of density = - sum [H(I)/areal#LOG[H(I)/area] -
. Iz )

I}
o 8) Range of densify = density at rightmost non-zero bin -~ density at

leftmost non-zero bin

9) Hedian value of density = 0.5%[sum of density at rightmost and

-

leftmost non-zero bin)

From three one-dimensional histograms, the first set of 9 features can be
extracted from any one of the three histograns. Two other sets of features
H can be extracted from two pairs of one-dimensional histogram features and from

all three one-dipénsional histogrem features. The features extracted from the

|
|
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pairs are the Jcombinations ot“ the two corresponding one-dimensional histogram

features:

[ ' ’ 4 ;
1) Difference/sun of two mode values : |

2) Difference/sum of" two modal frequencies - . ) é\

~
ey

3) Difference of two optical density means. .

s
9
< N 1

. 3 Logarithm of sum of two variances - _ _ a

s, . ‘ i R . ' ’ ‘ . /
. '5) Logarithm of absolute value of skewhqsé . 31

6) Logarithm of kurtosis value.

ot

7) Entropy..

?

8) Difference/sum of two medians.
The feature extracted from three one-=dimensional histograms is:

. 1) Logarithm of sum of three optical density variances.

Y

. In this research, the f:)lléxqing 8 sets of one-dimensional histogram

. !
. 'features are computed:

a) Eight features (F97 to- F104) from the pair of two cytoplasmic

one~dimensional histograms (530nm,570nnm),




e

pneggzgensional histogram (530: nm).
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#

'b) Eight features(F105 to F112) from the pair of two oytoplasmic

one-dimensional histograms (530nm,620mm).

e,

¢) One cytoplasmic feature (F113) from three cytoplasmic one-dimensibnal“

histograms (530nm,570nm,620nm). " ‘ : o

d) Eight features (F114 to Fi121) fram the "pair of two nuclear. }}tﬂ‘

® . “ry

one-dimensional histograms (530nm,57Onm). ' ¥

.e) Eight features (F122 to F129) from the pair of two " nuélear

s

one-dimensional histograms (570nm, 620n0m).

f) Ope nuclear feature (F130) from three nuclear one-dimensional

‘histograms (530nm,570nm,620nm) . -

. g) HNine. cytoplasmic featur'es (F131 to F139) from +a single cytoplasmic

-
- P LR )

[y

h) Nine nuclear features (F140 to Fyué)ﬁ,'from a single] nuclear

one-dimensional histogram (570nm).

3.3.2 Geometric features:

-

Several important geometric features are computed from the seguented R

b
regions;: . < ' :

3.3.2.1 Features indicating the position of nuclei in the cells:

F149 = LOG(eccentricity) = LOG[V(XQ-—Xn)ﬂ‘-i- (Ye-Yn)*)

A

-t
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')‘
where (Xc,Yc) and (Xn,Yn) are coordinates of the centers of a cell and

¢

of a nucleus

F150 = LOG[ V( Xcure-Xeurn)®+ (Ycurc-Yeurn)?] -

where (Xcure,Yeure) and (Xeurn,Yeurn) are coordinates of the ceiters of

the frames enclosing a cell and a nucleus respectively.

Mar

3.3.2.2 Size features:

F151 = LOG(cytoplasnic area)
' ' g
F152 = LOG(nuclear area/cytoplasmic area) .
\. A
F153 = L0OG(cell perimeter)

3.3.2.3 Shape features:

\

The requirements for shape features are the invariance of
magnification, translation, and rotation. In addition to moment features
developed before by Cahn et allCah77al, Fourier and Granlund shape descriptors

were developed for use in cervical cell recognition.

L]

. a) Moment features:

The following moment features were defined by Cahn [Cah7Tal. Given a

-function f£(x,y), the two-dimensional moments are:

Y oo

‘(‘

' ﬁj W-slgp]' 3um x‘yﬂf(x,y) i,J = 0’1,2.-00
g

[1 <
" . e o b S U TA ST e SO

7
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Where the sumnations are over all pixels in the cell image in the

v

horizontal (x)\and vertical (y) directions. . )
~ -
If we let x = H»o M and y = Mm /Moo

W . : .
Then Mij = sum sum (x-%)* (y-§0¥ £(x,¥) i,J = 0,1,24¢0s are
Eadi | .
independent of translation. Moreover; invariance of magnification cgn be

obtained if we let:

>

Nij = Hij/lifo, where 1=(i+j+2)/2, i+j=2,3,4...

Furﬁhermore, if we let: \
¢ “« . \T; . ) b
Ly= N+ No, Lyz Npo= Nop L,= Noo- 3Nt2,, . 3

r

3
L4= 31‘12‘ - NO?, L5= Nao-o- NIZ L6= N2'+ Hos

Then the f‘pllro_w\i;ng seven moment features are invariant to translation, I

o

magnification, and xzotation:

MF1 = L, .
‘ 2,2 . .
MF2 = L +UN) .
- 1% Lz ‘ )

MF3 = L7+ L | ‘ ‘ )
MFL = LY+ L2

5T Mo ;
MF5 = ‘

]
2., 2 2 ,
LaLs(Ls' 3L) + L L (3L~ LZ) '

2 2z
MF6 = L (L-L.) + M, LoL,
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v

e 2 .2 2 2 *
MFT = <L L (L= 3L7) + L L (3L~ L) .

In this research, three kinds of moments are considered, namely, moment

of perimeter, moment of cell area, and moment of nuclear area:

1

* Moment of perimeter:

If in the above moment formula, the function f£(x,y) is set to include

,oniy points on the perimeter p(x,y), then the seven moments of perimeter (F154

/

to F160) can be extracted.

{ .

1]

s/

% Moment of cell area:

S t . Y

s

3z
If in the above poment formula, f(x,y) is set to 1 when the pixel is

inside the cell and zero otherwise, the seven moments of cell area (F:161 to

lF167) are obtained. 2

_* Moment of nuclear area:

If in the above moment formula, £(x,y) is set to 1 when the pixel is
inside the nucleus and zero oi;her*wise, the seven moments of nuclear area (F168

to F174) are obtained.

b) Fourier shape features: ’

The additional shape descriptors evaluated in this study are based

’

on the Fourier transform &F the boundary of an object. The basic approach was

" devised by Granlund[Gra72a] and has been used by.Holmquist et al[Hol78a] and
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Chen et allChe80al] for cervical cell classification. From the above Fourier

descriptors, a n=- pto +p (described previously in section 2.5.4.a),

m?
translational invariance is obtained by setting aoequal to zero and size
invariance is obtained by setting a,'n: an/( ja,f + 1a_l ). Finally, the

following rotationally invariant shape features can be derived:

PO

1) Logarithm of nornalized minor axis of ellipse reconstructed from the

first descriptors

'
[

FI75 = LOG( faj| - |a/,[.)

_ . &
2) Logarithm of sum of power spectruth ° .

F176 =/,§f(s£x§1 (a )4 (a %)
mzam

3) Logarithm of sum-of Magnitude

———

JFITT = LOu(stm o |+ [a’ | )
nzam

4) Shepe factor

P : 3
F178 = PYATA = P4 T sum n>( Ia:n'lz- ESM D)
mzi
5) Concavity
r 2
F179 = sum n° #( a:“ - aif’\—)——

m=\
¢) Granlund's shape featyres:

T

In [GraT2al Granlund  suggested that the descriptors

. Ly -
- ¥ -
b -(a‘* a_ )/a\l s n-1,2,37... can be used as the shape descriptors
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. because they are invariant to translation, magnification, and rotation. In

ﬁhis re;search; real and imaginary values of the first six iranlténd's
descriptors were used: . : Coor
= F180 = Re(b1)  F181 = In(b1)
F182 = Re(b2)  Fi183 = Im(b2) . ~ o :,
F184 = Re(b3)  F185 = Iu(b3) = - - = o {
F186 = Re(bd)  F187 = In(bh) S “
Fi88 = Re(b5)  F189 = In(b5) ) ¥
F190 = Re(b6) = F191 = Im(Db6) . Co ﬂ
N o
3.3.3 Texture features:

N ' ¢

The technique to extract texture features from co-oceurrence matrices was

proposed by Haralick et al[Har73a)l. 1In this method, first, thela co-—-occurrence

matrices PAG are computed, .The element value pd&(i’ J) represents the number of

times two pixels at a distance d, angle ¢, wl:zose gray levels are i and J were

found. For each co-occurrence me;trix (c‘ox‘responding to specific values of d
and 4 ), the following 13 statistical measurements can be. obtained:

" M

£(1) = sum sum pg'(i,,j) l = "Angular second moment" -
Az )t
[\ % 2 ’ , s
£(2) =sum kKp (o ~ "Contrast"® -
€= s
kco
e m R
where p (k) = sum sum p(i,J)
X g A4 -
r ' A —al = k ¥ ) i —_—
i i~ m 9 , . r/
3 £(3) = sum sum p(i,3)/(1+(i-3)") « "Inverse difference moment" ~
( I . : ;

Ghiay

E
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£(4)

£(5)

£(6)

£(7)

where

£(8)

F£(9)

@

£(10)

whére
£(11)

f£(12)

p

-

u

o

sum kp (k)
kzo ™
(4%

sum (k-f'(u))zpm (x)
k-o ik
"~ {

sum p__ (k) Log(p g (k))
kz0 '9 ‘\6’
v R
sum 1p (1)
{=2 g
AT
(1) = sum sum p(i,J)
My 121 3=
i+j:£

o~ 2
sum (1-£(7))Yp (1)
,Q;z ‘x_+‘\4,

om p (1)1og(p (1))
sum p 1) 1log 1
,Q:,ll‘ %*\d 8 p’l'\’\é,

‘Tl, Al
sun mp,x/(r:)
m=—4{

px(i) = sum p(i,3)

4=

™ 2
sum (m-£{10))p (w)
m= e

("\, -
sum px(m)log(px(m))'
m=i

-]
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- "Expected value of 1st diagonal

\-
distribution” -

- "Wariance of 1st diagonal
distribution" -

~"Entropy of 1st diaggnal
distribution™” -

~"Expected value of 2nd diagonal

distribution"-

"

Q

;"Var-iance qf'».?nd diagonal
distribution® -

~"Entropy of 2nd diagonal

distribution® - .

~"Expected value of row

distribution® -

.

~"ariance of row distribution®-

’

~"Entropy of row distribution"-

TN
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. m e .o '
i : . £(13) = sun sum p(i,3)log(p(i,j)) =-"Entropy of entire distribution®-
£24 li:)

.Cahn [(Cah77a] investigated and . determined that the following texture .

features seemed to work best:

3
t1 = sum sum f'cw(7)/12 :
dz1 B:o45 L
‘ 90, 135 ) ’ '
) 3 . . - . )
. t2 = sum sum £, (8)/12 ‘ =
=1 f:0,9x ’
90,13¢
3
t3 = sum sum fd.O(m)”Z .
‘ d=1 6:0,¢s : . * y ,
90,135 X
3 . »
W4 = sum sum £,0(11)/12
‘ d=y B:0,45
90,138
3

t5 = sun sum £,0(12)/12 L .‘

dz) B:oq4S : . . e _—
. 90,135 ‘
3 :
t6 = sum sum r613)/12 o
. dz) B:zops ’
90,138 ' 4

t7 = sum £ _(1)/4 !
X4
»  bzops
! 90,13¢

-

t8 = sum f‘,w(S)/ll
6:-0,45
90,135

t9 = sun fw(g)/lll
0:-0,4%
90,13¢

The 9 texture features extracted from cytoplasm (F192 to F200) and the 9

texture features extracted from nuclei (F201 to F209) uere used.

Qaineid
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P

1 .
3.4 Summary:

The feature extraction system previouly developed [Cah77al was upgraded

to include several two-dimensional histogram features and several Fourier and

Granlund shape features to provide a more_ informative set of features

representative of all cell categories. These new features include color,

density, geometric, and texture features. The 209 features computed fr'om the

new feature extraction system are composed of:

'

Feature category Number of features “
Color and density features:
- From tuo-dimensional histograns 26 ‘
- From one~dimensional histograns 52
Geometric features:
- Eccentricity - 2 o .
-~ Size '3
- Shape: r l .
# Noment features 21
® Fourier descriptors 5
# Grzrlund descriptors 12
Texture fFeatures 18 l
Total . 209 < .
;,/ s b
! ©
- T
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v Chapter 4 . , .

FEATURE SELECTION - ° |

4.1 Introduction

~

ilsing the ngraded feature extraction systém described in chapter 3, a
total of 209 meaningful featiwes vere computed from a data base of 3000
manually—segmepted cervical cells. If all of the; 209 features were used for
classifying cervical «cells, the cost, in computer time and memory storage,
" would be prohibitive. Also, a large number of traiﬁing sanples woula.', 'be
needed ® to train the minimum Mahanalobis distance classifier. As pointed out
by Cahn [Cah77al, the ratio 2d/(f+3) (where d is the number of samples and f£-°
is the number of features) should be at least 3 and preferably great}er than 10
to provide aciequate training ‘of the classifier., This implies that for the 209
features, we vould necd at least fronm 318 to 1000 cér‘vical cells per class, or
from about 5000 to 16060 cervical cells, for the 16 classes u;eq. Thus, it is
necessary to select an ef‘f‘ect‘ivé subset of features from the total set. To
. make such a selection, one needs both a criterion to evaluate the subse;;“ of
features and a procedure to search for effective su<bsets using that criterion.
* In the present research, the criterion used was the probability of
misclassification, and 2 number of feature search prc;c;édures were applied. In
order to conpute ‘the probability of misclassification, the minimum Mahanallobi,s
distance classifier developed by Oliver [01iT7a,78a,78b] ana the random

v

partitioning method vere used, Because an exhbaustive search of

n _ .
(L> combinations (to choose a size-k optimal subset from n features) would |

be far too time-consuming, three heuristic feature search procedures were

S ey
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e

Y '

* iAvestigated. The first procedure is’ the forward sequential search procedure,

or without-replacement search procedure. In nthis nethod, the best individual
feature is chosen onithe first round, then the bes}t pair including the best
individual feature is chosen for the second round,etc. The second procedure
is the parallel search procéduré which selects k individually best‘

discrininating features. The third prooeﬁure is the feature clustering

.

procedure in pattern space,- In this pethod, first the minimal spanning tree
joilliing N points (representing N features) in the ll-~dinmensional pattern spaee

is formed, then k subtrees (clusters) of features are obtained by breaking the

[

first k-1 longest path lengths. Finally, k.features are selected where each

'

" feature is the best individual one of its corresponding subtree and vhere its

cancer cell detection.rate is higher than a preset minimum threshold. . (This
minimum threshold is used to protect the procedure from selecting independent

but bad features).

“
1y
.

In the "folloving subs'ection;‘h a brief survey of feature selection’

' v
methods, the methods applied to ' the cervical celld recognition problem and

[

their performances are given,

v

Pe v 2
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4.2 Survey of feature selection approaches:

4.2.1 Feature evaluation criteria:
! ¢

s

-

In order to select z subset of the total set of features, one needs
’ o

an efféctive means (criterion) of evaluating the power of any given subset of -

features. The feature evaluation criteria which have been applied previouély,

of nmisclassification [Ste76a,Lin80a], the

include: the ' probability

Mahanalobis distance [Dud73a,You7l4a], the .Bhatacharyya distance [Dud73al, the

[ChaT3al,

divergence the entropy function [YouT7lial, and the Karhunen-Loeve

expansion [MueTia,Kan7lal. .

4.2.1a Probability of misclassification \

‘(g In this criterion, the probability of misclassifying a samplelfo

[

a qlass different from its oun is used to evaluate featyre subsets (the lower
the probability of misclassification the better the feature subset). In order

to Iobtain _the probabiligzgéf misclassification, a certain kind of classifier

L4

This criterion has two It evaluates the

advantages:  ~- 1)

is required,

subsets of features ih terms of the probability of misclassification which

other criteria are only indirectly related to and -- 2) It takes into account

i

the - particular classifier structure for -which the features are intended
whereas other criteria such as distance measures vwould provide the sane

feature subsets for different classifiers.

4.2.1b Mahanalobis distance: ?

S

If we assume that the conditional density funection p(x/i) of the

<

PPN
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feature “ vector x of dimension d.given a elass i (i=1,...,H) has a d-variate
- -t
Gaussian distribution, then. the Ii'ahanalobis distance, (x-n 5&’:Ei (x~n1 ),
(vhere m and 2Z; are the mcan and covariance matrixz for class i, t indicates

transpose, -1 indicates inverse) can be used to evaluate the feature subsets

(the larger the llahanalobis distance, the better the feature subset). If-

PO

p(x/1i) actually has a nultivariate Gaussian distributi9n then this criterion

¢
is a nonotonic function of the probability of nisclassification criterion., On

the other hand, the llahanalobis distancé‘criterion can provide poor Tfeatures

for a classiffer using distance measures other than the llahanalobis distance.

v

y,2,1¢ Bhataohary?a distance:

‘Since b:JVb(x/c1)*p(x/c2)*...*p(x/cm)'dx , the Bhatacharyya

coefficient, is a measure of @ow rnuch overlap there is among class conditional

™

density functions, the Bhatachéryya distance ~Log(b) can be used as a measure
of goodness of the feature subsets-(the larger the Bhatacharyya distance tye
better the feature subset). fhe Bhatacharyya distance criterion haé two
disadvantages: -~ 1) It is not a direct measure of the pverall probability of

misclassification and -~ 2) Some density estimation techniqﬁes are required to
- . ﬂ -
estimate the class conditional density. ' . ¢

%

@t

4¥.2.1d Divergence:

o

: \
For two classes, the divergence is defimed as J(x)=J1(x)+J2(x)

vhere - A J1(x)=‘Jp(x/c1)Log(p(x/c1)/p(x/c2))dx ‘ and

e

J2(g)=‘yp(x/cz)Loa(p(x/c2)/p(x/c1))dx. It can be used for discriminating

pairs of c;agﬁﬂifobability densities in the feature space and thus can be used
T '

2
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iii ) to evaluate feature subsets {(the higher the diveigence value the better the

feature subset). Like the Bhatacharyya distance, the divergence'is not a
direct measure of the overall probability of mnisclassification and some
. density estimation téchniques are required to estimate the class conditional

density.

o ‘ 4,2.1¢ Entropy function; .

. The Antropy is defined as —h]p(x/Ci)Log(p(x/Ci))dx for class Ci.

' It 1s a measure | of the spread of the samples of each eclass in the patterh
| . ’ b

S i

space (entropy is equal to zero if all pembers of a class have the same vector

&

representation). Therefore, it can be used to evaludte the effectiveness of

) PR
the features in representing each class., . The entropy has the same two

disadvantages as the Bhatacharyya distance and the divergence: it is not a

’ [ VR R

direct measure of the overall probability of mnisclassification and sone

density estimation techniques are requireé to estimate the class conditional

. ' - density. )

-~

4.2.1f Karhunen-Loeve expansion (principal component analysis):

' [N
In this method,_a principal conponent analysis is performed to

form new features corresponding to the eigenvectors of the sample covariance
matrix from the initial features. Like the entropy function, the
Karhuneh—Loeve expansion can be used to select the most effective features in
representing each class. This criterion 1is the most reliable feature
extractor among linear transformations. However, the re&uction in the number

_—' of dimensions is sometimes offset by the increase in computation necessary to

»

i
P
» N N
( ) ‘ 1
H o
i 3
\ , 3
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S,

er vectors into the selected subspace., It also requiresla very large amount

of training data.
j
In sumnary, as pointed out by Stearns [SteTba], any criterion pther than
the probability of misclassification imposes a division between feature
extraction and classification because it evaluates the subsets of features
without reference to a classifier.

§4,2.2 Feature search procedures

Several investigations [Tou71a,71b,Cov7hal showed that the

exhaustive search |over- all (ft)» subgets of size k was necessary to find the

optimal k features from a set of n features. Because the examination of .-all

possible subsets 1s inpractical, several heuristic feature search procedures
have been developed for use. These include the sequential search, the
parallel search, dynamic programning, and the feature clustering (minimal
spaﬁning tree) in pattern space.

7

{ ; .
4.2,2a Sequential search proceﬁuré/(i.J) [SteT6al:

In this procedure, the best 1 features are added one-by-one

according to a feature evaluation criterion, then the worst j features are

removed one~-by-one according to a possibly different feature evaluation
LT'J‘

eriterion. The process is then repeated until the desired subset is obtained. -

The procedure is called bottom-up if i>j and top-down if i<j. In the speciél
J

case where 4=1,j=0, it is equivalent to the foriwrard sequential procedure

[Muc71a) and where i=0,j=1, it is equivalent to the backward sequential

< il

et pine

1
]
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.
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|

procedure. If botHQi and J are different from zero then the selected features

'
]
- ...;.«‘.;J‘WW

have no without-replacement property (i.e. for the forward sequential

procedure, the subset of the k selected features has to contain the k-t
features previously selected, and for the backward sequential probedure, any

features which have been removed are not reconsidered).

The sequential search procedure considers the correlations among'selected
features, therefore, the selected features can be very effective. In ternms of *
computer time, for any specified subset size k, when k is much smaller than n,

the bottom-up procedures (i>j) require much less computer time than the

top-doun procedures., Conversely, when k 1is close to n, the top-down
9

procedures need much less computer time. In practice, k/n is almost alvays
less than a half, making bottom-up search prefé;éble to top-dovn. Uhen §
computer time is very limited, the foruard sequential search procedure (which

requires the least computer time) can be used.

4.2.2b Parallel selection:

In this procedure, all n features are ewaluated individually and
then the k featurés which have the highest individual diseriminating power are
selected., An exanmple of this procedure can be found in [MueT1al. The
procedure 1is computationally sinmple but it has a critical disadvantage in not
taking interactions between features into account. Therefore the selected

feature subsets may contain redundant members.

. o
4.2.2¢ Dynamie programming [ChaT73al:

y

The dynanic programmning procedure overcones the drawback of the
|
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exhaustive search procedure in terms of computer time and, at the same time,

is not subject to the uvithout~-replacement property of the foruard or 'backward

sequential procedures:

The dynamic programming method has the property that whatever
the initial state and initial decision are, the resulting decisions must

constitute an optimal policy with regard to the state resulting from the first

decision.

An application of the foregoing principle of optimality
together with an appropriately formulated recursive functional equation ensure

that the final subset chosen may not necessarily include all of the besp

<

single features selected in the previous stages.

The procedure requires nore comnputer time than the forwgrd sequential

prcedure. Chang [ChaT3al] has applied a dynamic programming procedure which -

required nearly tuice the amount of computation as the forwvard sequential

procedure.

4,2.2d Feature clustering in pattern space [Cah77al:

In this procedure, each feature is represented by a point iﬁ the

pattern space and k clusters of more or less redundant features are found‘by

first forming the minimal spanning tree of the points and then breaking the

first k-1 longest path lengths. One representative feature can be chosen fron

each cluster to form a subset of k features. This procedure is also very
5

time-saving and it takes feature correlation into account. Hoyever, a

critepion for selecting a representatiée feature from each-'cluster has to be
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derived and as shown recently in [Rob82a], the clustering in pattern space

does not necessarily yield an effective subset of features.

In summary, as a general rule, if time permits, the sequential search
procedure or dynanic programning is preferable. If conputation time is very
limited, the parallel search procedure and the feature clustering procedure

should be applied.
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h,3 Feature seiection procedures applied to cervical cell recognition:
"14.3.1 Feature evaluation criterion

The probabilit& of misclassification eriterion was chosen to evaluate
To conpute the probability of misclassification, the
minimum Mahanalobis distance classifiér developed by O0liver[01i77a,78a,78b])
In this method, 80% of the

was used with the “randomvpartitiéning" method.

data set (2400 cervical cells) was randonly selected for training and the
remaining independeht samples (600 cells) were used for testing, * The detailed

description of this nethod is given by Toussaint [TouT4al. Because of

computer time constraints, the 16-class classification performance estimates

were obtained by averaging the results for only 5 different partitionings of

~

4

data.

[ ]
€35 . :
4.3.2 Feature subset search procedures: '

v

Three feature subset search procedures were investigated in this

research: The forward sequential search, the parallel search, and the feature

7

clustering in pattern space.
o
4,3.2a Forward sequential search
The description of this procédure canabe found ig subsection 4.2.2a .
Instead of tréing to select features directly from the total set of 209
T groups of about 30

features, we initially divided these features into

features 'which belong to the same category. The forward sequential search

procedure vas applied to each group to select features. The selected features

o
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) ' ’ ‘ ‘ 5

from the 7 groups were thén mnerged and vere divided‘a secona time into grohps
of about 30 features regardless Af their‘ feature categories. The search
procedure vas then applied to the neﬁ groups. The process of merging,
dividing, and selecting features was continued until finally only k features

v

(k<20) were selected.
4.3.2b Parallel search

The description of this piocedure can be found in subsection 4.2.2b.

# A

K was chosen to be less than or equal to 20 in our present research.

»

4,3.2¢ Feature ciustering in pattern space
. <

The description of ihis procedure can be founq in subsectioﬁ y,2.2d. K
was chosen. to be 1less:-than or equal to 20 in our present research, and the
best disc;iminating feature from each cluster was selected provided its
16~class claésification detection rate was higher than a preset minimum
threshold of 6%. Also, for ease gf conputation, the 209 computed features

described. .in chapter 3 were initially broken into three subsets of around 70

features,
6? 4.} Experimental results for the three feabure search procedures
4,4,1 Feature subsets selected by the three procedures

Table 2 shows the results obtained when the above three procedures

were used to select features from the total set of 209 features.

o




Order of

selecpion

st
2nd
3rd
lth
5th
6th
Tth
8th
9th
?Oth
11th
12th
13th -~
14th
15th
16th
17th
18th
19th

20th

Individually best

feature selection

F152
F15
Fi7
Fildg
F31
F151
F154
F153
F
F115
F8Y4
' F50
F132
F107
F128
F19
F52
F59
F66
F19

TABLE 2. Features selected by the three search procedures

Fn is as described in chapter 3.

e ey e

Forward sequential

seleection

F152
F151
F55
F39
F36
F166
F67
F7
F50
F87
F75
F136
F88
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Feature clustering

in pattern space

v v - ; .
S s gt yi‘;%%?:‘;, ik
< £

F152
F15
F91
F178
F62
Fi49
F132
F175
F81

F150
Fi41
F46
F63

. F195

F115
F123

F50

e o

Fi172

F19

e b

F20%
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LY
‘ For the forward sequential- search procedure, the 1§-class classification "
error rate reached a minimum and thus terminated the.search process whendthe
number of features was 13. This was not so for the other tuo procedures; the
16-class classification error rates decreased and saturated as the number qf

features approached 20.

“

In order to compare nmore accurately the performances of the three feature

seléetidn methods, the same minimum lMahanalobis distance classifier and the

randon partitioning method vere applied as k, the total number of selected
features, varied fronm 1 éo 13 for foruard sequential search procedure and from
1 to 20 for the other two procedures. The classification perfornance
estimates were obtained by averaging the results over 30 different ‘

partitionings of the data instead of the 5 partitionings used when searching

@ et e

for feature subsets. The error rates for nisclassifying cells of one class
into the other fifteen classes (16~class classification error rate) and the

error rates for misclassifyingv normal to abnormal cells and vice versa
g

.

‘(2-c1asé classification error ragai,werq'both investigated.

- 4.4,2 Classification performance estinates:
. - . -
4.4.2a Forward sequential search procedure:

sl p 27 B gt eTomsSe

u

This method gave significantly better results on the classification

. .
error rates, conpared to the other two procedures (the parallel search and the
feature clustering in pattern space). As the number of features increased and

reached 13, the classification error ratés decreased gradually and reached

24,944 for the 16 classes and 2.2% for the two classes as shoun in Figures 5
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and 6. This procedure, however, is mnore time—consuming, than the other

procedures.
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Figure 5. 16-class classification error rate for : a) the forward sequential
{

search procedure ( O ), b) The parallel search procedure ( ®m ), and ¢) The

'

feature clustering procedure in pattern space ( A ). o
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Figure 6. 2-class classification error rates for : a) The forward sequential
search procedure ( O ), b) The parallel search procedure ( m ), and c) The
-feature clustering'procedure in pattern space ( A ).

) T

L,4,2b Parallel search procedure: . )

This procedure gave worse results than the forward sequential search
procedure. . As k varied from 1 to 20, the classifieation error rates based on

16 subclasses and based on 2 classes (normal and abnormal) decreased and
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- B 1

a

saturated at about 35% and 4.9% respectively (at 1=20) &s shown in Figures 5

KN
and 6. -

S
4.4,2c Feature qlustering procedure in pattern space?

o »
This procedure gave better results than the parallel search procedure as

k varied from 1 to 7 and“slightly worse results when k was greater than 7.
This is °probab%y due to “the fact that the procedure did not choose
non-redundant features (as shoun recently by Roberts et allRob82a]) or because
of the initial breaking of @he 209 features into threé subsets of features for
ease of computation. As k &aried from 1 to 20, the élassification error rates

decreased and saturated at 37.56% and 7.4% for 16 subclasses and 2 classes
< 1N

respectively as shown in Figures 5 and 6. o
o .
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3.5 Discussion and Conclusions
<

The forward sequential search procedure selected much more -effective

[

features than the other two procedures. When the foruvard sequential search

procedure was applied, the classification error rates decreased signif;éantly

for the first few selected features (k<5) and then decreased gradually and

monotonically to a minimur value as the number of features increased. In

!

contrast, for the parallel search and the feature clustering, that behaviour

search procedure, significant drops of

was not observed. In the parallel

classification error rates vere obtained when k was incrcased from 1 to 2, 8

to 9, and 11 to 12, The occurrences of signif‘icaﬁt drops vere probably due to

‘the fact that .the 2nd,9th, and 12th features added uvere partlcularly effectlve

feature for * k<6, the

In clustering procedure,

l
classificgtion error rates decreased significantly in the same manner as the

ahd non-redundant . the

forvvard sequential search procedure, but when k was greater than 6 the error

~

rates decreased only slightly. This is probably because of the

ineffectiveness of the procedure as pointed out /recently by Roberts et

of the initial manyal breaking of the 209 computed

al[Rob82a] or because

feagures into three subsets of features.

R
time-consunming than the

i} -

parallel search and featurec clustering procedures and it still contains the

The foruard sequential procedure is more

without~replacement property. If .more\u conputer ti<me is _allowed, the

without-replacement pr-operty can be avoided by applying the sequentlal sear'ch
procedpre (i, j) with 4i,j different from zero or by applying the (4»’@)

procedure to the k features selected by- the forward sequential search
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&

- ‘-===..\ procedure as“in [LinB80al. 'The IPS image processing software is being modified

' 36 that the manual division of features into categories can be avoided. Hheﬁ ;

this research was conducted, the IPS 'system could only support feature -

.

selection with feature sets of up to 40 features. )
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Chapter 5

FEATURE EVALUATION »

\ »
- - -
N = . ’ 2

. 5.1 Introduction " ’ _ . o

~

The significance of each feature category can probably be determined by

the proportion of the features of that category in the final subsets obtained
¢ . . ‘ & o
from feature search procedures. Another method to evaluate features of ' the

. same category (i.e twcydimensional hf’stogram features, on?-dimensional
& i

to evaluate

L

_histogram features, geofietric features, . and texture features) is

the selected subset of features from each category. In this research, the
i

'

forwvard sequential search procedure was chosen becau§,e of the reasons

described in chapter 4. In additioﬁ, to verify Ehe significance \of' the

newly-developed tuo-dimensional histogram features, the performance of the 13

features selected from the w‘hole set of 209 features and the performance of

the set of 6 features previously used by Oliver[01i78b] were included for.

comparison.
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t 5.2 Evaluation of each feature category:
y In_order to evaluate each fkature caiegory, first, "a search procedure

was applied to all features from each category to select an effective subset
representative of each feature category, and. then its . classification

perforzmance was estimated and compared to the classification performances of

other subsets representing different feature categories.

<
I

. 5.2.1 Fecature search procedure used for each f‘eatime category

&

The forrard sequential search procedure with. the probabilitsi of

misclassification criterion vas applied to each featurec category {method”

deseribed in chapter 14\). S

i

5.2.2 Classification perfornance' estimation of feature subsets
selected from each featurc caterory

. The same minimum Mahanalobis distancc classilier used in selecting

] . -
q featurces, and two clasgification perfornance neasurenent nethods,
' "resubstitution" and "y andom partitionin=¥, were azpplieds . In the

resubstitution nethod, the same seb of cells is used for trzining and testing.

This nethod is regarded as optimistic. In the random partitioning method,

similar to the feature selqétion procedure, 80% of the data set (2400 cells)

4

was randomly selected for training and the remaining independent samples (600

cells) vere used for testing. However, the classification performance

estimates were obtained by averaging the results for 30 different

-’

. partitionings of the data (instead of only 5 partitionings used in selecting

features). This method is regarded as somewhat pessimistie. The results are
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shown in the form of classification performance curves and/or confusion o8

-

matrices, The classification performance curves are produced by altering the

o

a priori probability ratio settings for normal to abnormal cell types from

10:1 to 1:30 and recording the corresponding points in the false positive,
false—mgative— classification performance plot. The confusion matrix |

g" »

corresponds to the point on the classification curve where this ratio isx 1:1.

For the purpose of comparisgp, the performance of the features selected

from one category was compared to ﬁ'iat of the features selected from another,

u, and to the performance of the 13 features selected from the whole set (which

o « * includes all feature categories)., Also, to verify the significance of the

tvo~-dimensional histog?'am features in particular, the performance of the 6

0

features previously used by Oliver [01i78b] wuas investigated, These.b

[

features vere obtained from the same cells but scanned in a single color and

W Py 0

a

at 1.0 micron resolution. C I
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° Class{;‘.fication error rates obtained when using the 13 features selected by the’
forward sec.;uential procedure and by applying --a) the resubstitution met_tbd () and --b)
the random partitioning method (a4 ) as the functions of number of cells, Hote that |
constant values are reached for both curves-uhen the number of cells used®approaches 3000. ‘
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RESUBSTITUTION
o METHOD
~ 3
) |
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o
2
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Figure 8 \ ) t
, - i

| . .

Clanification performance curves obtained by applying the resubstitution method whe;n !
using -ra) 13  features selected from the total data set of 209 features ( ), ~~b) 18
txqo-dimeﬁgional histogran features ( @), ;-c) the 6 features reviously chosen by Oliver
( +), --d) 18 one-dimensional histogram features ( 4 ), =--e) 10 geometric features ( W),
--f) 6 texture features ( A ). MNote that the performance curve of the 18 two-dimensional.'

features is nearly on top of that of the best 13 features.
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Figur"e'g
. ) ‘ ’ i .
Classification performance curves obtained by applying the random partitioning method
(205 holdout over 30 partitions) when using --a) 13 features selected from the total data,
set of 209 features ( s ), --b) 18 two-dimensional histogram features ( e ), --c) the 6
features previously chosen by Oliver ( + ), -~d) 18 one-dimensional histogram features

( o), --e) 10 geonetric features ( B ), ~-f) 6 texture'features (A). Note that thej

performance curve of the 18 two-dimensional histogram features is nearly on top of that of ]

the best 13 features. )
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PERFORMANCE OF THE BEST SET OF 13 FEATURES

f,

s

SSQ ISQ AV PAR ENN ENMG ENCS ENCC' HIS I!ET MNETB | MLD MOD SEV CIS INV
8sQ & 12 0 0 0 0 0 0 0 o0 o0 o o o 0 o
1sQ & & % ‘'3 0 0 o o0 o0 0 0] 1 @ o 0 o
NAV 3 4 8 3 0 O ©0 0 "0 2 2 o 0o o o 1
PAR 0 1 3 & 0 0 0 0 2 6 -2 1 0 0 0 o0
-EMM o o0 o0 2 73 7 1 1 11 0 0 0o o 2 4 o
EIG o..o o0 1t 12 7 o0 2. 3 3 0 2 0 1. 0 0
ENCS 0 o :0 0 1 "0 T 10 9 1 1 0 1 1 0 0 J
ENCC o 0o ©o0 .2 0 0 10 & 3 3 "0 0o o0 o 0 ©
His 6o 0 o 4 8 3 4 4 69 3 0 o 1 3 1t 0]
MET ° o o 2 & o o0 1 2 2 7 1|1 0o o o o
METB 1 1 5 1 o, 0 0 1 113 T2 2 1 0 0 o0
MLD ) 0 0 0 0 0o 0 0 1 3 0 W .17 0 0 3
HOD o o o0 o o0 o0 o0 1 o0 -0 o] 16 5 13 1 13
SEV- 6 o 0. 0 0 o0 0 .0 2 0 1 15 5 12 13
cIS ©o o o0 o 2 0 4 0 1 o0 0| 0o 2 122 T2 9
mv o o o0 0 0 0 0 0 -0 0 O 2 7T 6 10 75
: FALSE POSITIVE RATE 1.74% FALSE NEGATIVE RATE é.'ens -
Table 3 . -
llormalized confusion matri;c showing classification results obtained by applying the,
random partitioning method (20% holdout over 30 partitions) and by using the 13 features,i

selected from the 209 conputed features, to classify 3000 cells of 16 cell types scanned
. ¢ :
at 0.7 wmicron resolution. Tach rou indicates the classifier's deecisions coneerning cells

o{' a particular type (given at left), expréssed as a percent of the number of cells of!

that type. The matrix is partitioned to emphasize the two-class (normal-abnormal)

decision, vith the false positive errors
' !
errors in the lower left.

\

!
in the upper right corner and the false negative{
i

-
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' PERFORMANCE OF THE 18 TWO-DIMENSIONAL HISTO‘GRAM FEATURES

—— S ¥
i e

SSQ " ISQ NAV PAR ENM ENMG ENCS ENCC HIS MET METB MLD MO]S SEV CIS 1INV

K

S50 8 12 1 o0 o0 o0 o o o o0 o] 1 o o 0o o0
150 6 &# 3 6 ©0 o0 0 O 0 O O| 1 0 0 0 0.
NAV 2 6 8 2 o0 o o o 2 3| 1 o 0o o0 1
_ PAR o 1 2 8 0 o o 2 5 2| 2 o o 0o o 1
* ENM o o o o0 6 9 1 1t 1 1 o| 0 o 2 5 o0
ENNG "0 o o o0 10 8 0 2 5 2 0| 1 o 1 0 0 |
ENCS o o o o o0 o 79 7 9 1. 0] 1 1 0o o0 1
ENCC o o o 3 0 o 8 8 3 2 0f o0 0 1 0 0
t uIs o o o 3 8 2 & 7 70 3 0] 0 o 3 0 0
P MET .0 o W7 0 0o o 2 ‘2 7 8{ 1 0o 0o 0o o0
METB 0o 1 ¥y 5 o o ©0 O 'o0o 1% 70| 3 .1 1 o 1 !
MLD ‘o 2 © 2 0 o0 o0 o0 1 2 o071t 16 1 0 5
MOD o o o0 f o0 0o 0 0 1 0 1|17 5 17 1 M
SEV o o o o o0 o0 0 =2 1 0o o 1 16 53 18 10
{ o ©o o o 0o 1 o 2 o 2 0 0| 0 1 13 66 13 |
INV 0 to o o o ‘0 0 0 ‘0 0 "O°| 4 5 6 9 76 j
FALSE POSITIVE RATE 2.27%  FALSE NEGATIVE RATE 3.58% .
Table 4 i

Normalized confusion matrix showing classification results obtained by applying t‘h’e
random partitioning method (20% holdout over 30 partitions) and by using the 18
two-dimensional, histogram features selected by the forward sequential search procedure to
classify 3000 cells of 16 cell types scanned at 0.7 micron resolution. Each row indicates
the classifier's decisions conaerning‘ cells of a particular type (given at 1left),
expressed as é percent of the number of cells of that type. The matrix is partitioned to _
emphasize the two-class (normal-abnormal) decision, with the false positive errors in the -

upper right -corner and the false negative errors in the lower left. -
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PERFORUANCE OF THE 18 ONE-DIMENSIONAL HISTOGRAM FEATURES
w2

S8Q ISQ MNAV PAR ENM ENMG ENCS ENCC HIS MET METB MLD MOD SEV CIS 1INV

PAGE 80 -

8sQ - 86 1 1 0o 0 0 O0 O 0 0 0 3 1 1 o 1
1Q 7 67 3 12 1 0o 1 1 1 2 ol 3 0o o 1 o
NAV 3 5 60 5 0 0 4 1 2 & 4| 1 1 3 1 o
PAR 0 8 5 61 2 0 3 2 2 1 4 1 0 o 1 0
ENM 6 o 3 3 8 9 3 6 15 1 2 0o 2 2 1.
ENG 0 1 0o o 7 5 3 5 18 3 s 1 2 & ?\}
ENCS 1 3 2 2 5 3 6 5 10 1 o & 1 1 1 o/
ENCC "6 2 1 3 5 2 6 65 6 & 20| 2 1 0 1 o

" HIS c 4 o 4 1 4 T 7T 5 0 0| 3 0 0 1 o0
MET o 2 6 8 4 o0 1 =2 3 58 14| 0 o0 vV 1 0
METB 1 o 11 6 2 3 1 1 1 15 8| o 1t 1 6 1
o | 8 8 & 3 2 o0 § 3 8 1 2|20 16 3 1 3
MOD 3 1 2 2 3 0 5 0 37 2 3|1 23 15 15 7
SEV 11 2 1 2 1 2 0o 3 =2 21| 6 12 22 31 12
CIS 0 1 2 1 8 1 3 1 y 1 y 2 7T 14 38 14
INv - o ©0o 0 0 -0 © o0 0 1 1 5 9 & 17 57

FALSE POSITIVE RATE 5.57% FALSE NEGATIVE RATE 22.03%

Table 5 ' 1
%

" Normalized confusion matrix showing classification results obtained by applying the

random partitioning method (20% holdout over 30 partitions) and by wusing the 18

one-~dimensional histogran f:?fﬁ;;; selected by the forward sequential search prodedure to
classify 3000 cells of 16 c¢€ll types scanned at 0.7 micron resolution. Each rou indicates
the classifier's decisions concerning cells of a particuler type (given at lef%),
expressed as a percent of the number of cells of that type. The matrix is partitioned to
emphasize the tuo-class (normal-abnormal) decision, with the false positive errors in the

upper right corner and the false negative errors in the louer left.
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PERFORMANCE OF THE 10 GEOMETRIC FLATURES

SSQ ISQ NAV PAR ERNI! ENMG EI'CS ENCC HIS IET METB MLD MOD SEV CIS INV

$5Q 88 8 3 ¢ o0 o0 O O ©0 O © 1 0 o0 o0 o
1SQ 1M 17 6 1 0 0 0 0 0 o 1 Y ) o o 0
nAY 5 3 73 15 ©- 0 © O 0 0 2 2 0 © 0 0
PAR o 1 14 58 o 0 3 0o 2 8 8|1 2 2 1 9o
ERM o o0 o0 ©0 5 2 2 1 4 0 0 o 0 3 6 1
EMNG 0o o o 0 38 4 o0 0o T 0 0 6 0 0 13 o0
ENCS 6 0 o 0o o 0 '39 1 2 2 log 5 3 o 3
ENCC - o o o ! 1t 0 9 79 3 -0 0 o 1 » 0 3
" HIS o 0o o ‘2 7 4 10 15 36 6 1 0 28 6 1
MET o 0 2 7 o0 0 6 1 5 30 1% 6 7 10 2 -0
(METB 0 0 22 12 0 0 5 0 15 28 9 & 1 0 1
MLD 6 6 7 7 0 0 1 0 1 9 6 |#3 11 -0 o0 3
MOD 0 0 1 6 0 1 7T 4 Yy 10 7 |10 31 12 1 5
SEV- o o o & 3 1.1 T 5 5 2 32 16 6
IS 0o 0 o 1 10 16 1 3 0 0 0 6 61 2
IV o o o 3 5 3 T 5 3 3 2 5 11 12 25 18
FALSE POSITIVE RATE  8.403°  FALSE NDGATIVE RATE  36.21%
Tablé 6 /

= f | °

'vaormalized confusion matrix showing classificatiOp results obtained by applying the
randon pa?ﬁitioning nethod (209 holdout over 30 partitions) and by using the 10 geometric
features selected by the forvard sequential seérch procedure to classify 3000 cells of 16
cell types scanned at 0.7 nicron resolution. Each rou indicates the classifier's
decisions concerning cells of aaparticular type (given at left), expressed as a percent of
the number of cells of that type. The ma.}trix is partitioned to emphasize the two-classz
(normal—ébnopmal) decision, vith the false positive errors in the vpper right corner and

the false negative érrors in the lover lel't.
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. ' N PLRFORINNCT OF THE 6 TEXTURE FEATURES Coe

S5Q  ISQ IYM/ PAR B! EIHIC ENICS ®ICC IX

S DT NET® LD 0D SEY CIS IV
S0 24 33 4 8 "0 o0 2 2 1 o =212 ® T 1
IS0 2 72 1 15 0 0 & 1 1 0 1 1 0 0 o
1AV 7 15 5 17 2 1 6 35 1 7 92 3 2 2 oy
PAR o =20 o0 5 1 1 16 1 2 0 2 2 0 1 0 o0
ENM o 7 0 2 371 25 5 1 7T 4 3 t o0 & 3 2
EIG © 0 0 0 19 5h 1 9 10 1 3 Lo 0o 3 1 o0
ENCS 1t 4 o0 3 2 5 33 1 12 1 5 o 0 1 o0 o0
ENCC 0 2 2 ‘7 1 20 29 20 T 1 1 1 1 3 2 2
HIS o 18 o0 27 6 8 25 1 9 0o & 6o o0 1 0 1
MET 1 8 1 21 2 8 2 8 2 6 ‘5 o o0 3 1 2
HETB 3 5 3 16 0 1 26 4 1 8 23 i 1 3 2 3
HLD M 167 3 13§ 1 T2 7 1 § 12 3 3 5 -2 6
MOD 11 7T 1 15 0 3 15 3 1 2 7 0.7 13 1 1%
SEV ] 0 1 5 3 7 | 12 1 24 2 10 0 2 2l 3 21
cIS 1 0o ©0 o0 1 15 5 1 8 0 1 0o 1 2 7 22
INV v 1 2 0o ¥ ®» 3 3 1 0 3 1 & 18 3 32

FALSE POSITIVE RATE 8.54% "FALSE NEGATIVE RATE 53.48%

Table 7

HormalizeFéonfusion matrix shouing classification r-esul}:s obtained by applying thef:
random partitioning method (20% holdout over 30 partitions)l and by using the 6 texture
features selected by the forward sequential search procedure to classify 3000 cells of 16;’
cell types scanned at 0.7 micron resolution. " Fach rou indicates the classifier's
decisions concerning cells of a particular pype (given at left), expressed as a percent of?
the number of cells of that type. The matrix is partitioned to emphasize the two-class,f
(normal~abnornal) cision, with the false positive errors in the upper right corner and§

the false negatife errors in the lower left. - e
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v

PERFORMANCE OF THE 6 FEATURES PREVIOUSLY USED BY OLIVER [01i78a]

SSQ ISQ WNAV PAR ENM ENIG ENCS ENCC HIS MET IETB JﬁLDI M0D SEV €IS 1INV

58Q 8y 12, 3 0 0 0 0 o0- 0 0 0 1 0 0 0 o0
180 12 82 2 =2 0o 0 0 ©0 0 0 1 0 0 o0 o
NAV 7 6 79 2 o o0 0 o o 2 4 |lo o o o o
PAR | o 1 3 82 0o 0o ¥ 0 3 4 2|0 0:0 1 0
ENH o o o o0 6% 19 0o 1 1M o 0] o0o.0 % 5 1
EIMIG o 0 0 "0 22 62-0 3 5 ‘0 o0 lo0o ‘0 1- 8 o
ENCS o o o0 2 1 0 52 210 1 3 1|0 1 1 1 o0
ENCC © o o o'o o 15 68 ¢ 1 =210 o 3 1 1
HIS o o o o0 11 5 & 8 6 3 1]0o 0o 0 2 o
MET 00 & 1M 0 0 1 3 2 M 2i 3 ‘2 2" o0 1
METB ©o o 1 7 o0 o 0 1 0 15 53 |5 2 0 1 0
“MLD o 1 1 1 0o o0 0 o0 2 6 |71 1 1 o 3
MoD c o 1 o0 o o0 1 o 0 2 2 |13 s 19 1 .10
SEV © o- 0 o0 0o .1 1 o 2 1 1| o/ 10 55 15 13
cI8 oo 0o o o 2 1w 1 1 o 0,0/l o o 12 68 6
I o 0o o o0 o 2 0 o o 1 o0 |2 9 16 19/5
- . . t
FALSE POSITIVE RATE 2.86¢ FALSE NEGATIVE RATE 7.61%
Table 8 .

Normalized confusw.on matrix showing classificatiqn results obtained by applying the
random part:.tlom.ng nethod (204 holdout over 30 partitions) and by using the 6 f‘eaturos,
previously used by Oliver [01i78b], to classify 3000 cells of 16 cell types scanned at 0.7
micron resolution. Fach rop indicates the classifier's decisions concerning cells of a
particular type (given at left), expressed as a percent of the number of cells of " that
type. The matrix dis partitioned to emphasize the two-class (normal—abhomal)’deeision,
with the falgg positive errors in the upper right corner ancf the false’negative‘errors' in

the lower left.
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5.3 Experimental resultsl

a ("

As mentioned in chapter f, 3000 cells of 16 classes were ﬁsed/ for
testing. This ;elatively large number was required to obtain meaningful
classification error estimat;s. To verify this requirement, the best 13
features selected by the forward sgéuegtial selection, the random partition%ng
method, and the resubstitution method uere applied to obtain two
classification error rate curves as the number of cells varied from 1000 to
3000 (See Figure 7). It is apparent thét, as the size of the cell data sei
approaches 3000, the rhndon partitioning test reéazts ﬁnd the resubstitutién
tést results become relatively stable : .b;th curves approach constant. error

rates ‘(about 2.2% for the random partitioning method and 1.7% for the

resubstitutiog nethod).

From the classification performancé curves in _Figures 8 and 9

~kfor"d the resubstitution nethod and the reandom partitioniﬁg method

respectively) and from confusion matrices resulting from applying the random

* partitioning ' method (207 'holdout over 30 partitions) to different ‘selected

subsets of featurcs, the following results were observed:. /

et
W

5.3.1 Tup-dinensional histogram’features

The newly developed two—dimensionai histogram features
described in chaptzr 3 which contain both density and color informations

proved to be very useful features for cervical cell classification. By
applying the forward sequential search procedure to the two-dimensional

>

histogram features, the following 18 features were selected:

J
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: F7 F9 F13  F15  F28  F36. _F38 F39  FA0
. F50 ~ Fs5  F60  F6T% F75  F79  F81  FS7T  FB8 ¢

Vhere Fn is the featuré numbered n and can be found in the definition and

Yisting of the 209 featurcs in chapéer 3 (Feature computation).
I3 . 5 ‘

' &
The performance of thgktwo-dimensional histogran features is slightly

worse than the hest set of 13 features selected from the 209 features: With

<

the a priori probability ratio setting of 121 -- a) The classification error
rate of 1.98% was obtained for the 18 two-dimensional histogram features

versus 1.69% for the 13 features vhen the resubstitution method vas applied..

-= b} a classification error rate of 2.92% versus 2.19% was obtained when the

-~ ¢) As can be seen in Tables 3 and

randon partitioning method was applied.
4, the individualisubclass error riates obtained using the 13 features selected
from the 209 features were either the same or only slightly better than the

error rates obtained by using the 18 gelected tuo-dimensional histogream

features., l!oreover, for endometrial (glandular) cells and histiocytes, the

tvo-dimensional histogram features were even

error rates obtained by the

better than the ones obtained by the 13 features (2% versus 3% for glandular

0

_endometrial cells and 3% versus 5% for histiocytes).

[
The performance of the 18 tvo-dimensional ﬁistogram features 1is much

better than the performance of the best set of features selected from each of

the other caécgories: -- a) The features from the one-dimensional histogran

error ratés of 411.49% and 13.8% for the

category (classification

Lo

resubstitution and the random partitioning methods respectively), tHe features

from the geometric. category (19.67% and 22.32% respectively)i the features

3

‘

i
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«
LR J

from the text}lr‘e categopy (30.82% and 310’.91% respectively). =-- b) As cai be

< ¢

‘seen in T'ables 4,5,6, and 7, the individual-class error rates obtained using
the two~dimensional histogram features were signific;antly lower th::m -those

obtained using one~dimensional histogram, geometric, or texture-features. The

v

only exceptions were the texture feature error rates obtained for endocerviecal

r > N

cells (secretory) and histiocytes (3% versus 1§ for secretory endoceryicai

cells and 3% versus 2% for histiocytes).

k4

The performance -8f the 18 tuo:-dimensiona]: histogram‘f‘eatur‘es is also

better than that of the 6 features previously used by Oliver [01178b), which
W ] N
include geometric, density,,and texture features anéd yielded classification

error rates of 4,699 and %5.29 for the resubstitution and the random

4 ‘

partitioning methods respectively. As can be secn in Tables 4 and ‘8, tl;e

+

error rates obtained by using the tuo-dimensional histogram features were rwuch

- <

better than the 6 features (The error rates for the tuo-dinensional histozran

z

~ v, ’
features vere slightly worse than For the 6 features only for 6 cell

subclasses : interm@diate squanous, navicular squzanous, parabesal squanous,
¢ J
&

A
endonmetrial (strom%), endometrial (glandulard, and histiocytes. For the

other 10 subeclasses, the error rates for the tuo-dirensional histogram were

i

+ much lower than those for the 6 features).

The fact that the 18 two-dimensional histogram features pgrformed the
best among all feature categories is consistent ulth the large proportion of

the two-dimensional histogram feztures (9 features) contained in the set of 13
L ‘ RN ,
features selected from the total set of 209 features from all categories.
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| 5,3.2 One-dimensional histogram features - .
¢ ' The one-dimensional histogram features described in chapter 3

t . . ‘
include density features (when only one of the one-dimensional histograms is -
-eonsidered) and colo‘r- features (when the other tvyo of the one-dimensional
- ‘" histograms for the two other color images are’ also considered). When applying

- ]

thé forward sequential. feature seleection method @;0 the one-dirensional

-

v

histogram features, t:hé following 18 features were selected:
U . .
¢

bd

-

2

" Fl00 , Fi02z, F103 Fio4 F110 F}12 F115 F117  F119 "
.F120 Fi2 F128 F129 F130 Fi33 Fi136- F142 F1i3

s N — B v

= - i .
v wher-e-Q,Fn is as given in chapter 3. - * s

‘Even though these fedtures ihclude both density and color dinformation,

they are nuch less powerful than the 18 two-dinensional histogran fe'atures:"?‘

A - s 0y
Classif‘icaéion error rates of 11.49% versus 1.98%, and 13.8% versus 2.92%,

A L}

werce obtained for the rr'esubstj.tution and the randonm partitioning methods

-
»

respecfivgly. Hguever, the Jone-—dimen'si‘onall his‘tog'r'am features E;ave much

)

- better results than geometric features (19.67% for the resubstitution method ~

and 22.329 for the,-random par-tiotioni;xg method) and ‘texture féatures (30.829

f‘or{ the resubstitution m,éthod and 31.01% for the randon pér-titioning method),

1] £

. .
' 5.3.3 Geomet:ric features:

. ‘\,

\ . T—he gegmet_ric features, include size and shape features, When

7 -

"

‘
'

Qapplyinglr the forvard sequen{:ial “ feature selection method to the‘geoqeéric
. ) .
featuresf’ the following 10 were selected:

¥
*
3 5 .
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F151 F152 F162 Fi648  F169-

F171 F175°  F176 F177 F178 S

T i e BT,

% .

Where Fn is as described in chapter 3. N

3

.

The {)crfor'mance of the 10 geometric features (classification error rates

of 19.,67% and 22.32% for the resubstitution’ and the random partitioning

st At i

3

methods r'es;;ectivelyf is rmuch vworse than the- performance. of the 18

'

tuo-dinehsional . histogran f‘eaéuﬁes (1.98‘,} and 2.929 vrespectively) or the ot

performance of the 18 one-dimensional histogram features (11.49% and 13.807
. .

réspectively). Houever, it is better .than the 'performance obtained for

mt/‘extur-f; features (30.82% and 31.01% respectively). . o
- - - ?
?‘ A u e

5.3.4 Teftture features: :
! 3 . 4 ) [y

« ‘ .o & ) .,

. e

T e 1Yt R it Ear BT B

v VWhen applying the forward sequential feature selection.method ta

the texture features, the following 6 features were selected:

2

F192  F195 F198  F204  F207  F208 .

A -

Y

Where Fn is as described in chapter 3. b

1
*

e b e e e At < e

" .
The performance of .the 6 texture features turned out to be the worst of !

all categories (classification error rates’ of 30.82% and 31.01% for 'the i

resubstitution and the random partition nethods respectively). This is
; .

consistent with the fact that no texture features were contained in the set of X

7

13 features selected from the total set of 209 features Lrom all categories.

o

4

-
-

7
[
s s v, bt

. - . e e e . PO e e seey - ety N g et e e v 2 eae apm ae s
- 3 T I N iy P e gl ,.,,




“ L ; PAGE 89

“

L

, ’, a

LY

3 o 5.4 Conclusions: ' ° o L g Y

' ¢ ' 9
\ihen each individual ~ feature category was  considered, the

- bl )
" two-dimensional histogram features significantly outperformed any other

‘

feature categories (one-dimensional histogramn, geonetric, and texture

features). Also, the performance of the two-dimensional histogram features

was only slightly worse than the performance of -the 13 features selected fronm

all feature categories (2.92% versus 2.193) and signi*ficantly better than the
6 features pr'eviously used by Oliver [01i78b] (2.92% versus 5.2%). This

)

- inqicates that the density and color features in general and the, .
two-dimensional histogram features in particular are of prime inlportancé in
‘i;he cervical cell recognition ;():;*oblem. Ttle “r-esults are also consistent with
the fact that a large proportion of thﬂe tvo-dimensional histogram features vas
select:ed when abplying the forward sequential search procedure to the total

set 209 features (out of 13 features selected, 9 were two-dimensional
. M)

a

histogram features). 1

«
1 a

Q
o

. The ‘features extracted from the one-dimensional histograns of :tlmagegs
scanngd at thr é? dif‘f‘ere{xt vavelengths, although they contain density and
color information, performed significantly worde than the two—dimensionai
e hiétogr‘am features gin’ terms of claséification error rates. This is also
consistent with the fact 'that out of the 10 density and color features
selected to form the final set of 13 features, only 1 of the one—dimen“sionalt

. histoéram features was selected./ . The remaining 9 feaztures were

<1

two-dimensional histograp features.

The geometric .features, even though recognized as very importani;

.
e

ol ©

-

.
s e et e s T

\
b i
(LR NI R eI L

e

PPN




P

PAGE GO

~

R4

v

features, performed nuch yorse than the two-dimensional and even the
mch . .

-

one-dimensional histogram features (22.32% in comparison with 2.92% and 13.8%

for two- and- one~dimensiocnal ~histogr-aﬁx features rqspectively).
consistent ‘with the fact tpat only 3 out,of the , final .»set of 13 features

selected by the forward sequential search procedure uwere geometric features,

The texture features performed the worst in comparison with other
- N , : \
categories, This is probably why not a single texture fedture was selected in

the final set of 13 features. This is a fortunate sign for cervical cell

el
recognition because texture features are usually nmore expensive §o conpute

- ‘

than other feature categories including tuo-dimensional histogram

Iy
1Y

features.

'

v

Ue roted in particular that the power of the tuo~-dimensional histogranm

1

features was nost evident when features from all three combinations of 2 color
images were used. The observed necessity to include features from all three
combinations is probably due to the fact' that the individual two-dimensional

matr'iqes were made symnetric to facilitate feature computation.
{

1

\
t

The classification performance estimates made in this study assume that
all c¢ell types occur in equal fractions -- noftal and abnormal cells alike.

the normal sguanous

In actual fact, this is far from reality and in general
cell types.» (superficial, intermediaté, navicular, and parabasal) are present

Because most of .the errors

in larger numbers than the remaining cell types,
do not involve the normal squamous cell types, the performance values clted

normal squamous cell

here are quite pessimistiec, If it is assugledithat the

types are ten times more abundant than the remaining cell types, the

@ )y
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i ’ classification performance cgl‘xrve_f‘or‘ the 13 selecﬁed features 13/ altered as
shown in Figure 10, This curve is nore realistic for cemparison ‘purposes. .o ’ .
o, {\
L
;... ) 'a - A} "

4

False Negative Rate
n

V-

False Positive Rate

i
; ~

Figure 10 , ’ .

Classificatimerformanee curves obtained by applying the random partitioning !
method when all.cell fypes oceur in equal fractions ( A ) and when the normal
squamous cell types (superficial, intermediate, navicular, and parabasal) are ;

ten times more abundant than the rcmaining cell types ( A ).
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L Chapter 6 A
- ‘ . . 7+ . SUMMARY AND" CONCLUSIONS : R
2 , . . 1' ' [ .
6.1 Sunnmary . . ' ) — , . ~

1 o PR -
4 - X -
"
>

A significant reduction in classification error rate was obtained in

.
+ i

comparison with previous results[Cah77a,01i78b] due to both the improvement in

- [

tahe scene segmentationn and the feature exjraction, .\“For sgene segmentatign,
the thgeshold 'seiect;ion technique based on the stability of area was applied
te ;he‘color' }mages of cells (to segment tells fron the background, the images
c?f oe'llé,c scarmed at 530 nn vavelength were used, and to separate nuclei from
cytoplasrn, the images of celis scanned at 570 nn ﬁavelength were ’lfsed). In
. . ' : =
addi:cion, for othe pr-obilem of overlapping cells, al'gor*ithms for artificially
generating a set of overlgpping cells vith a wuniformly distributed ovérlap

deg&f‘ee, and for overlabping-—cell detection vere deVised and evaluated. These

techxriques can be applied to select single cells for f‘ur;,ther' analysis. -

For“ the f;eature extraction process, the systen ‘developed previously z;t
the BIPLAB by '(,;ahn et allCah78b)] was expanded to include new tvo-dimensional
histogram features and Fourier and .Granlund / shape features. For feature
selection, the probability of misclassification critcrion and three feature
search pro’cedur'es vere applied fto the ?OQ features computed by the nev system.

The best subset of features obtained so far is the set of 13 features obtained

¥

by applying the foruard sequential search procedure to the total set.of 209

t
|
4

% |
features. Finally, the feature categories were evaluated by comparing their

-

corresponding performances vhen ecach category was considered alone.. The
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1

performance of the 13 features selected f£firom the 209 features of all
- ¢ . . ! o

‘ categories and the 6 features previously used by .Oliver [01i78b] were ‘alsc

incluaed for conparison purposes. -
6.2 Conclusions and suggestions for future studies .
B »
; 6.2:) On scene 'segmentation o
W s .

({q :
- The use of tuo-color images of cells (530nm,570nm) instead of

» i . -

singye<-color images produced, significant improvements in scene segmentation.
! ’ ~p “

Thus, research should be continued to make full use of multi-color images to

improve the’ scene segmentation even further,

t

The'segmentati?nJmethod which selects ‘the ‘density threshold
based on  the stability of areas of segmented regions produced very good
results. Therefore, it is vorthwhile to investigate a generalized version of

the method whicH considers the stability of combinations of a variety of

important features such as area, perimeter, gradient, etec.

1

The segmentation 'eﬁroé" measurenent method based * on the
percentage of misclassificd‘pixels is inexpensive, easy to compute, and fajrly
effective because of the fact that areas of segnented regions are very

. o f . . s !
important featurés for cervical cell recognition. However, a generalized .

¢ s s .

segmentation error measurement method should be developed to take into account -

several important features at the same time. , *
The overlapping-cell generation algorithm is very useful in

prdﬁucing a cervical cell data base with cells of uniformly distributed
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6ver-1ap degree and different cell types. This® kind of data base can be used

to evaluate any overlapping-ccll detection algorithm objectively.
I

]
- []

The overlapping-cell detection algorithm ‘using the Fourier

t
@

shape descriptors, and the density - information, produced very encouraging

results especially for cells with relatively small overiap. Also, the

- analytic derivation of tangent and curvatute of the boundary points in terms _

~off Fourier descriptors can be applied to determine the maximal concavity

points on the smoothed boundary. , The relative positions of these maxinal
ecneavity .points and their curvaturc values should be statistically analyzed
in future research to derive a dedision rule for finding overlapping cells
mvore effectively. ' .

A

6.2.2 On feature extraction and feature selection

G

- 0}

. 1
llhen considering cach featurc category separately, the neu

two-dimensional histogrgn features sig\nif‘iéantly. outperformed any other
- . e [y - ! R ’ .
feature categories and even the 6 fegturcs previously used [01i78b) (which

vere selected from all feature categories except the tuo-~dimensional histogren
feature category). Also, the tuo-dimensional histogram features . perforned

only slightly vuorse, than the 13 fecatures selected from the 209 features
. ° R @ o )
composed of 211 feature categories. The one-dinensional histogrem features

erforncd vorse thah the tvo-dimensionzl histogranm feztures. The geonetric
o - <

featurces porformed even vorse than the one-dimensional histogram features and

L}

the texture features perforried the vorst of all.

Due to the high discrininating potvrer off features from all threc

3
7
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as
cenbinations of tv.:o-d:"_mensioaal historrans, it vould be productive to further
investigate methodé to conpute these types of density and color (features
directly fron the multi-dimensional histograms instead of wusing all
combi.nations of tuo-—‘dimensio@l histogrars. lNoreover, other density and color
features such as density texture and color texture features should also be
considered for future use. An example of one ® such density/coclor feature
follous: First, apply a whitening trensformation t.o the original ima\ges
scanned at two different wvavelengths to obtain separate "color™ and® %density"
images. One metﬁqd for doing this- hgs beer; dc-:scribcd by Bacus [BacT6al.

Then, apply the procedure described by Haraliclk et al [Har73al to the

"density" and "color" images to conpute their corresponding co-ocgecurrence

matrices and density and color texture féaturm‘tively from the
co-occurrence matrices.

The forward sequential search Qpr'ocedur-e proved to perforn
better than the'parallel search procedure and’ the f‘eature'clust,er-ing
procedure. However, whenever computer tine restriction is not so severe, a
more generalized] sequential search procedure (i‘,j:f:O) should be applied to

| 5
avoid the without~replacement property of the forvard seguential search

4

procedure. ’ -

¢

The resear:ch on nev features, particularly color features
described herein, has led to a considerable ;’merovement in eclassification of
cells from cervical smears than previously reported by our group. It would be
particularly beneficial test of these new features if other groups, doing

research on cervical cell recognition and other problen areas, would evaluate
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them using their data and O'taher' types Of classifier's'

4
~

-

The classification error r*atés obtained in this study are in
., reasonably close 'agr-eement with the recent result reported by Lin et
al[Lin80a)83a] (0.8% false positive and 2.6% false negative on 1153 cells)

using a binary tree classifier and the resubstitution testing. In our

research, when 1100 or 1200 cells were used, 1.4% false positive and 0.75%

false negative error rates were obtained using the resubstitution method.

When 3000 cells were used, 1.15% false positive and 2.279 false negative error
’

rates ;ler'e obtained using the resubstitution methpd, and 1.7% false positive

and 2.6% false negative error rates were obtained using the randon

partitioning method.
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