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J . © On Suba.lgebras of Free Lie Algebras and - . T
' - on the Lie Algebra Associated to the Lower
bentral Series of a Group,

Abstract
The- main purpose of the first part of this thesis i3 to answer the question:

"When is a subalgebra of .a free Lie algebra free"? "In the second part we

determine the Lie algebra associated to the lower central series of a group in the

- third part, we give some criteria for elements of the Lie algebra to be strongly

free.
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| Sur certaines sous—algébres d'algébres de Lie libres, et 4 ‘ .
° . sur-1'Algébre de Lie assiciée 3 la série inférieure centrale '
C © . d'un groupe ’
/’ - v o e Pl
‘ y) T o : )
- , : Résumé \
) e ’ 1 . N -
’ >
; Le but principal de la premiére partie de cette thése. est de déterminer les ;
conditions suffisantes pour rendre libre une,sous—algébre d'une algébre de Lie .
. libre- ’ ¢ ’ \\ 'S .
® .« " Dans la "deuxiéme partie on determine l'algdbre de Lie associée i la série
inférieure centrale d'un groupe, dans le cas ol les relations definissantes satisfont
, certaines conditions d'indépendance. »
»
_ Dans la troisiéme partie on donre quelques critéres pour que les élements de .
1'algébre de Lie soient fortement libres. ‘
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- In the secoxx)d chapter of this thesis we are trying to answer the follawing
questlon 3When is a’subalgebra of a free Lie algebra free?" Witt [15] and
Slrhov (14] 'showed that every subalgebra H of a free Lie algebra. L over a field
\ k' is free. The main idea of Witt's proof pomes from Schreier's proof that every
| éubgroup of a free group is free. Sirsov used in his proof a k-basis of L
constructed by M. Hall [6]. Vi[hen k is not a field but any commutative ring
with unity, thé above mentioned theorem is np longer' valid as even very s'ifnple
Kexamples can show. Witt in {15} showed that ‘if~ k is the ring of integers and H
is a homogeneous subalgebra with respect to some N—grading of L, then if the
abelian grou'p L/H i freé, H is a free Lie a.slgebr‘a‘ This résqlt can be slightly
extended. To be able to apply the idea of his proof, ali we need to know is that
certa.m k-submodules of L' are free. To ensure it, we can assume that k is a
commutanve ring with a property that every projgctwe k—module is free.
However, we still need to assume that H isa homogeneous subalgebra with
respect to some N—grading of - L since the argument given by Sirsov does not
work if k is not a field. We use the resul‘;; of [15] in the third chapter of this

~ thesis where we study the algebras associated to the lower central series of

groups. Labute showed [10], that the Lie algebra associated to the descending
éentra.l series of a finitely presented group is a finitely pxesented Lie algebra if the ]

reiators satisfy certain independence conditions (the proof uses the results pf [7]\

and [8]): > -

3

Let F be a free group on {Xl,...,XN} and let rl,..‘.,rM be any elements of F.
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Let R be the normal subgroup generated by {rl,...,rM}. Let L be the free Lie
algebra asséciatedaej the lower central series of F, and let g be the Lie algebra
l;associated tc the lower central series of ' G = F/R. Let T be 'the ideal of L C

:i"generated by the imitial forms p,,...05p of rl, .fy in L. He proves that if:

"4 1) Lfr isafree abehan group and

- 2) /[r,7} is afree U(L/7)—module
then g= L/‘r, where U(L/7) denotes the universal enveloping algebra of L/7.
If conditions (1) and (2) are satisfied, following, terminology introduced by Anick

-'([1] and [2]), we call the elements p,,...p\; strongly free (or inert).
In the/ second part of Chapter III we show some criteria for the elements
Pyraby 1O be strongly free. . We show that if ppr-iP)f -aT€ homogexieous

elements of a free Lie algebra 4( {1,...,§N) over a P.LD. then: .

‘ d d
A XU(L/7)(P) =,XU(L)/1 + (¢ 1+..‘.+t' M)f‘U(L) for every maximal ideal (P) .

of k, then pl‘,...,pM are strongly free, where- ‘d. = degree of p; in L,
X 5 —Euler—Poircaré series of a locally finite connected graded algebra A ([2])

and U(L/7)(P) = U(L/7)8 X /(P).

This'reglucés the _problem' to the chse when k is-a field. Anick showed (2] that if

e - &1,'...aM are homogeneous elements of a free associative algebra Ass(fl,...,gN)

- . . then: ’

[

al, ’“M combiretorially free ([2] 1mp11es that al, 4y are strongly free

Tha TR

where o denotes the hlglrest term of o with respect to some lexicographic
,order of the free monoid M( fl,...,gN). Using these two results, we treat some

~interesting examples.
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=< In this éﬁapter we will_introduce the concepts which will be necessary to prove =
the results in Chapter IT and III. Most of the material contamed in this' chapter ‘
.'18 clasmcal and can be found in numerous places: in, the therature We wxll
always give the main references for each section, writing them in square brackeg
[..]. The kesr statements for the theory will be proved in more detail to“make
this work self contained, whereas the st%ements which are either basic or of less
importance for the theory will be given outlines rather than detailed proofs. This
chapter is divided into several sections to make later reference easier. In Section
1 we define basic concepts. In Section 2, we prove a very important theorem of
Birkho#f—Witt and we %show somé basic consequences of it. In Section 3, we
-define and construct a free Lie algebra and we prove some important tﬁeoren;s

labout free Lie algebras which we will refer to later. In Section 4, we associate.a

Lie algebra to a lower central series of a group.In this chapter, the letter k

denotes a mﬁunutative ring with pnity. .In §4, k will be assumed tG be the ring
of integers and we will &enoté it by the letter Z. Unless 6therwise mentioned, all
“  algebras, all modules and all tensor products are over k.
o | .
- + 81. Basic definitions
The main references for this section are (3], [4]; (5] [10] and [13]. By a k—algebra' |

or algebra over k we mean a k—module together with & k—bilinear map
o ' - ' AxA — A ) N .

-

(i.e., a k-homomorphism Ag A — A). o

1 LY )

1l . ' i .
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- if, [x,y] denotes the image of (x,y) under the map AxA — A then,

Y

A Lie algebra over k is an algebra with the following properties:

: g . I,
(L1) [xx]=0 forall x€A.’ “\""fﬁj : ,

(L2) [xlyal] + [fe]] + [nfxy]] = 0 for all x,2 gA.
The identity of (L2) xs called the ,lagg_m_megnu and we shall denote its left
hand side by Jat(x ,y,z). It is a long established custom to call the expresgxon

[x,y] the-bracket or commutator of x and_ y. It is useful to note that to t

establish tha.t“ an algebra A is a Lie @lgqbra.,_ it suffices to verify that the
conditions (L1) and (L2) hold for all X,¥,2+ in' some generating set of the
k~module A. It is customary to denote Lie algebras using the letters "'E;\H:, g, n
or r and we will adhere to this convention ‘except where common usage has

established otherwise.
Example L1l ‘ \’

. (i)  Let g be any k-module. Define [x,y]=0 forall x,y €¢

Such a g is called an abelian Lie algebra.

(ii) Let A be an associative aigebra over k and define [xy] = x-y—y-x for b
all xty € A (where x-y is the product of x and 'y in A). Then A,
taken as atk~module together with this new composition law becomes a
Lie algebra. We will denote “this algebra by Lie (A) and call it the Lie
algebra of the associative a.lgebra A

t

A subset h of a Lie algeha\é'is called ,a Lie gubalgebra of g ifitisa

‘ k—module and is closed under the bracket multiplication, ie., if [xy]€h

whenever x,y € h. o
A subset o of a Lie algebra g is called an jdeal of g-ifit i a k-module and if

4
#
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for all x e‘a‘ a.m} fgm al yeg, [y.x] € a -The fﬁrmhla (L1 tells us that then o §
[x;y] 6@ forall x€a and y.€g. ' - . ‘ )
» A mdpping f.g-h from one Lie algebra intq another is called a homomofphism

if it is k—linear and f([x,y]) ={f(x),f(y)] for all x,y € g.

Let A be an algebra and let X and 'Y be subsets.of A. We define X'Y (or .

[X,Y] if A is a Lie algebra) to be the set of all finite sums of products

S e

x-y[xy]) where xeX and yeY. I X or Y is empty then
X-Y([X,Y])) =g by definition. Notice that !'\.-A([A,A]) is al':v’a,ys an ideal of
A. When A is a Liealgebra [A,A]-is called thedgﬁxgﬂ_ﬂg:ma,of A

Let V be a k—module. The Mﬁb_{_@ of V denoted by T(V) is a

k—module
n n o - :
T(V)= ® T(V) where T%(V) = V8.8V =&V — \‘
© 120 I’ i
® . with a multiplication definied through the natural isomorphisms
‘P q  ptq -
(eV)®(eV)y ® V. ‘
For any associative algebra A with a unit, one has: ‘ -
- | \ Homy .(V,A) = Hom, (T(V),A).
Let V be a k~-module. The gymmetric algebra of the k-module V, denoted by
S(V) is defined to be the biggest commutative quotient of T(V) i.e,
. S(V)=T(V)/], where J jis anideal of T(V) generated by all elements of the !
form vew—\\:)vev foral v,wevV, * e
Let V be ak-module and .M an additive monoid. By a gradingof V by M
we will understand a family (V;x) oM of submodules of V such that
o : = ’“ v . B e
QGM a | :‘
Given such a grading we will say that V is graded by M or M—graded. For ;
b Ll
s R e . “ .- i




c . _each  @€M we call V . 'a homogeneous ‘submodule of degree a. If
I, v=3Xv,eV,v, €V, then v i called the homogeneous component of degree*

/

. @ AN element lying in.a homogeneous submodule V a is said to be

hoqxpggneous of degree a. Notice that in this sense, 0 is homog\eneous of every
. . 'déﬁree'. '
‘Let A be an algebra over k and let (A a) acM D€ a M-grading of A (asa
Y, k-module). We say that the grading is compatible with the algebra structure of
/ " A andthat A is M-—graded algebry if !
| ' Mg AgCAy g forall afeM.
v
Let W be a k—submodule of an M—graded k—module V. For each ae M e
define "W o= \Y% anW. We say that ;W is a graded submodule of V if

W= 6 W . It is useful to note that to sdy that W is a graded submodule of
- aeM

V is equivalent to \rsaying that whenever w = Lv o€ W then each homogeneous
] ‘ ,
component Vv € W. If W is a graded submodule of V then the quotient

module V/W has an inherited grading with (V/W) a=V a/W o ] -
/“J et A= o (A) @ be a gré.ded algebra. Anideal J of A is called a graded
acM

ideal if J is a graded submodule of A. If J is a graded ideal of A then the' - |

~

quotient module A/J = GM(A/J) o 18 graded compatibly with its algebra
ac ’ .

structure, that is
. (A1) (A1) (Af)y 4
for all a,f€eM. If Sc A js any subset of homogeneous elements of A then »
- : l both the subalgebra and the ideal of A generated by S are also homogeneous. *
Definision 112, . -
Let g be a Lie algebra and V a‘(—modu}e. By a representation of g on V wei /

s
€ ; .
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will mean a Lie algebra liomomorphism ﬁ:g — Lie(Endk(V). In other words, I
is a k-linear_map from g into End, (V) (the algebra 'of endomorphisms of a
k-module V) satisfying " '
{x,y]) - (v) = 0(x)-I(y) - (v) = Oy )-Htx)'(v) 'for all x,yeg and veV.
Definition 1.1.3. ' -~
By an m of a Lie algebra g on a k—module V we will unders!;ta.nd a
bilinear mapping .
gx V=V ((x,v) —x-v forall xeg, veV) satisfyin}
x,y]:v=xy-v—y-x-v forall x,yeg and veV.
Given an action, we say that g actson V and V is }hen cglled a g—module
(relative to this action).
These two concepts (modules and representations) are essenti;.ﬁy the same. If g
acts on W, then v — x-v is a k-linear mappiné of V into itself ar{\d we can
define a representation Il:;g — Endy (V) by II(x):(v) =x-v. On the other
hand, if II is a representation of ¢ on V then g actson V via
x-v=TII(x):(v) forall xég and veV.
Let A be an algebra over k. A derivation- D:A — A is a k—linear map with
the property: D(x-y) = D(x)-y + x:D(y) for all x,y € A.
Example [.1.2. -
. The set Der(A) of all derivations of an algebra A is a Lig a.lgebra‘ with the
product [D,D’])=D-D’+D’-D (easy compt}tation). Let g be a Lie algebra.
For any xe€g define a map adx:lg-—»g by adx(y) = [x.¥}: .Then as a
consequence of the Jacobi identity the map adx 'is a derivation of g and the

N s

-
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map ad defined by ad(x) = adx is a Lie homomorphism of g jnto Der(g).

, We see that ad is a representatxon of g on Endk(g) It is called the gd_&g_ ‘

representation of g. The corresponding g—moduleis g itself where the action is

given by left multiplication.

Lt g= © &, be an M—graded Lie algebra. If V is a g~module we say that
of s U

_.an M—grading (V) ¢\ ©of the module V is compatible with the module

structure if '

h ﬂ+a for all ﬂ,aGM
If this is the case we then say tltat V is a gmdgi_g—;rmjulg_\
Let V be a g-module and WCV ag-submodule of V. The quotient

gﬁV cV

k-module V/W can be given a natural g—module structure by defining

v

x-v=Xx-v for all xeg, veV
where : — V/W is the canonical map. This module is called the guotient
mgﬂmof V by W.

Let g be a Lie algebra over k. By W&mﬂm of g we
will understand a pair (U(g),i) composed of an associative algebra with unity
U(g) together with a map i:g — U(g) satisfying the following conditions:

(U1) The map i is a Lie algebra homomorphism from g into Lie (U(g)), that
Ais i is a k—linear and i([x,y]) = i(x)i(y) —i(y)-i(x) for all x,y€g.
(U1) ¥ A is any associative algebra with unity and f is any Lie algebra
t;omoxr_xorphism f:g — Lie(A), there exists unique algebra
homomorphism F:U(g) — A which extends f, that is f= I-i. In other

;vords, there is an isomorphism

Homy ; (g, Lie(A)) ¥ Hom Ass(U(g),Aj.

#
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It is trivial'th&% U(g), if it exists, is unique up to  unique isomorphism. To
show its existence we use the tensor algebra T(g) of g. Let I be the two-sided
ideal of T(g) generated by the elements of the form [x,y}-x®y + y®x, for all
x,y € g. We claim that the quotient algebra U(g) = T(g)/I together with the
map i:g— U(g) which is the composition g — Tl(g) — T(g)\—o U(g), satisfy
conditions (U1) and (U2). Indeed, let f be any Lie algebra homomorphism from
g into a Lie algebra Lie (A) of an assoc:atxve algebra A. It extendsto unique
homomorphism \IIT(g)—-»A Since ‘II(I) 0, ¥ defines T:U(g) — A.

Remark. Let g be a Lie algebra and II a representation of g into a k—module
V Thus II is a Lie algebra homomorphism from g into Lie(End)(V)). It
fo!low;gthat II extends to an algebra homomorphism T form U(g) into

Endy (V). In other words, V -becomes a left U(g)—module with the actxoq

uv = M(u)-(v) for all ueU(g) and veV. Conversely if V 18 a left

U(g)—module, we retrieve a representation II of g on V by defining I(x)-(v)
=i(x)-v (where i:g — U(g) is the canonical map). It is easy to verify that
these two pro;:Qedures are inverses of each other and hence one obtains an
isomorphism of the category of g—modules onto the category of left
U(g)~modules.

Some of the functorial properties of ‘universal enveloping algebras are the

following: ‘ _ ’
(LL.1) If g=g;*8, where él and 'g2 are Lie algebras which commute
then .
U(g) = U(g;)8, U(gy) 88 k—modules.
(11.2) Lét K- be an extension ring of k and let g(KI) = g8 K, thea
Ulek,)) = UK, % U(e) g (K,)
\
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(£.1.3) Let a be an ideal of g, { the canodical homomorphism of El onto

l g/a. Then the homomorphism f:U(g) — U(g/a) defined

canonically by { is surjective and its Kernel is the ideal I(@) of

~ U(gJ}\’generated by i(a) where i:g—U(g) is the canonical map. .

The map f:(xl,xz)—ail(xl)el + 18in(x,) ,,(ik is the canonical map

i g — Ulg) k=12, X) €8py Xg € g) from g into U(g;)8U(gy) is a Lie

algebra homomorphism since g, and g, commute. Hence f induces an

assc;ciative' algebra  homomorphism EU(g) — U(g; )&, U(gy)- The

homomorphisms g, —8— U(g) k=12, induce homomorphism

wk:U(gk) —U(g) f= 1,2, and since g, and g, commute we have that

gal(xl)-<p2(x2)k = go2(x2)-<p1(x1) for all x.€g, and x€ gy  Let

FU(8)9U(gy) — U(g) be given by ¥(x;8%,) = v (x))ip(xy), then we have
I.p=id and o I=id

q.e.d.

Proof of (1.1.2).
= "I V isak—module we define V(Kl) = V@, K,. The tensor algebra of

g(KI)«xs canonically identified with T(g)(Kl). Let I be the ideal-of T(g)

generated by the elements of tHe form [x,y] — x8y + y®x for all x,y € g, and let

l . L be the ideal of T(g)(K ) generated by the elements of the form [x’,y’] —
v ] ' 1
x’®y’ + y-®x’ for all x")y’ Eg(K ) Clearly the canonical image of I(Kl) in
. , 1
) s i i in I[,. Now, let x* = Ix® k, y’=Ly®L.Dbe
; T(g)(Kl) is contained in I ow, let x ixl o ¥ jy fier

in g(Kl)(xi,yj m g ki, Lj in K,). Then,

g - P
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x‘8y’ —y'ex’ —[xy’] = -Ej(’xigyj ‘Yjexi -[xi,yj])Qki-Lj .
I,

which shows that I, is in fact equal the image of I(KI) in T(g)(Kl).” Hence, ,

we see that U(g)(Kl) = (T(g)/I)(Klb) can be canonically identified with

Lie U . r . .
T(g)(Kl) /1jie, (g(K 19) can be caponically identified with U(g)(Kl), and the
canonical mapping 11:g(K1) — U(g(Kl)) can be identified with, i®id, where i

is the canonical map g — U(g).
1.

q.e.d.

Proof of (I11.3). |

Let ¢:a— g be the inclusion. It defines the homomorphism ¥:U(a) — U(g)
such that E-il =i.p where ig— U(g) and ij:a— U(a) are ca;lonical
. ppings. Since we have also I-i= ig'f (where iyg/a— U(g/a) is the

onical map), we see that I is zero on I(a). If '® _is the canonical
ho
£,:U(

morphism of U(g) onto U(g)/I(a) we get the induced homomorphism
/1(a) — U(g/a) such that f-&= I. The ma.;;ping ®-i is a Lie algebra
homomorphisin and is zero on @ Hence, it defines a Lie algebra hom;)morphism
# of gfa into U(g)/I(a) such that #-f= &.i. The mapping 8 induces the
unique homomorphism £, of U(g/a) into U(g)/I(a) such that &= fy1y.
Thus, f1-0-f= fj-@-i=1y-f and bence f,-0=1i, Since f,-f-0="1,iy=10
and f -yl = f-0=1i, we see that f2-f1 and f,-f, are the identity
mappings of U(g)/I(a) and U(g/a) respectively. ,

’
L}

g.e.d.

Al

The universal enveloping algebra U(g) is a supplemented k-algebra and

~
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e" S, the’refor'é, ﬁ)llowing k[5], Chapter XIII) we define the hgmglggy_xr_o_up_a of g as
those of the supplemental algebra U(g) i.e.: et
H_(g,V) = Tor V&)V k) ,
for any right g~module V. Lét I(g) be the augmentation ideal of U(g) i.e., the
) kernel of the augmentation epimorphism eU(g) —k induced by the Iﬁap £

from™ g into k defined by f(x)=0 for all x€ g The homology gro:‘m
Hy(g,V) is the k-module V®U(gjk' Since k ¥ U(g)/I(g) we see that 9

B Hole,V) = V/V-1(g) = X/V-g. . ‘

.. ‘ If g operates trivially on V (i.e, V-x =10 for all ve V, g€ g) then

| H (g,V) = Ve l(g)/1(e)" '

The canonical map i:g — U(g)‘ sends g into I(g) and v[g,g] into I(g)2 where

g.g] is the derived algebra of g. Henle, it induces a hqm(:morphism
- ig/[g,g] — I(g)/l(g)z. On the other hand, we havi(a‘;g"i}e Mmap ¢:T(g) —vg which
is defined by (p(Tl(g)) = identity map, and ga('l{f}fgﬁ # ? for n#1. The
 kernel of the confposition map ' II-¢ where I:g — g}cfg,g], contains tht’a ideal I
of T(g) generated by the elements of the form [x,yj‘ - x®y +-y®x fpr all
x,y € g. Hence, we obtain the induced homo;nor‘phism of U(g) into g/[g.e]
which deﬁhes a map @:I(g) — g/[g.g]. Clearly, the mappings » and T are
inverses of each other and hence we obtain an isomorphism
- (@)/1e) 2 8/ls8l-
' Hence, if g operates trivially on V we can interpret the group #H,(g,V) as-
Ve,g/ls.g)- ' | .
Let h be anideal of a Lie algebra g. If both h and g/h are free k—modules ’
we will £%rove in the next section that U(g) ‘regarded a3 a right U(h) module is

free. As a consequence of it we get the Hochschild—Serre spectral sequence ([5],

-

\
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Chapter XV, p. 350):
H, (g/h, H (h,V)) & Hy (g,V). .
We will use this sequence in Chapter II to give an alternative proof that certain

subalgebras of free Lie algebras are free.

¢ o

: j —Wi
The main references for this section are [3], (4] and [13].
The key point in the proof of this theorem is the following proposi;ion:
Proposition 1.2.]
Let g be a Lie algebra which is free as a k~module with a basis {xi}iel where
I is some well-ordered index set. Let T be-any set_ Then there exists a
g-module F which is generated over g by the set T and whose k—basis
consists of the elements of the form:
™ xil-..ux'in-t with ilz...Zin, n>0, teT.
Proof. N
Let F be a free k-module with a k-basis the elements of the form (*). We
q‘gnote“the sequence (xil,...,xin) witl\i;2..2i, by P and we will write P-t

for the element X; tetX; +€F forall teT. We will also write Xy >P if
1 n g

i 2i; and P’ =x. P will denote the sequence (xi,xil,...,x.

; ). The length of

n
the sequence P will be denoted by 1(P). We want to make F a g-module.

We will define the action of g on F by induction on 1(P) and for given
N = }(P) by reverse transfinite induction on theset I If 1(P)=0 then define
’ N

b

ol W
» b et
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x'Pﬁ =x-t. If x>P then define x-Pt = (xP)t. Suppose that we have already

defined g-action on F for all elements Pt€F with 1(P) <N. Suppose also

that we have already defined the action of the elements X with j>i onall

elements Pt € F with 1(P) = N. We want to define the action of the eiement

x, on P:teF with I(P)=N and in additi'on we want x-P-t to be

expressible as a fintie sum L P t with (P ) <P) + 1. If x,2 P then deﬁne
x; Pt = (x;- P}t (tET).

If not, then ﬁeﬁne

(**) Xi'P'téxil'(Xi'P"t) + [Xi,xill'P"t
where P = (xil,...,xiN), P = (xiz,...,xiN) and ilz...ZiN. This action is

well—defined by the induction hypothesis. Notice that x;+P/-t =P;-t + EP -t
a

~
where P1 is the ordered sequence of elements Xpp%; pererX and I(P ) <1(P).
1N @ .

In order to verify that this action defines a g—~module structure on F we have to
prove the following identity: | ,

(**+*) Y YRt =x(yPet) -y (x-Pet)

forall x,y €g,and t € T. We will doit by induction on the length 1(P) of P.

Note that two sides of (***) are skew—symmetric. Hence, we can assume that

x> y. If x> P, then the second term on the right hand side of (***) satisfies

the conditions of (**) and hence (***) follows since by (**) we have

- y(x:P-t) = x-(y-P-t) + [y,x]-P-t.-

-

‘Suppose that X; >x>y where P= (xi oeeoXy ). We use the Jacobi identity
o 1 '

n
and the induction hypothesis. We have:

[x.y]-P-t = [w] %, ‘Prot= %, [x.y]-P- t--[x1 [x,y]] Pt




]
T . =':(i .x.y.P’-t—xil-y-?(-P"t"'f'(lx,[y‘:xiln’Ptt | v
+ yilx ,x” ‘Pret
=X; 'X'y- P'-t-x. ‘yxPr-t—x [xl y]- Pt
SN

+ [xi ,y]-x-P’-’t-—y-[x,x- ]-P"t + [x,x. ]-y-P,'.-t
(xl xyP't—xx iy P’ t+[xx ]yP' t)
)|

+(-—x ny’t+yx xP’t+[x ,Y]xP' t)
| !

+(x-yPt—y-xP-t) ;

where P’ = (xi eoerXy ).
2 n

- Thus, to prove (***) we have to show that the expressions in the first two

brackets are zero. But y-P-t =Pyt + ZP o't Where P, is the ordered set of
' - a

elements y,X, ,....x; and I(P a) <1(P’). Since x; 2 Py, by (**), we get that .
- 2 n 1

?('Xil'P2't = x'(xil'Pz)‘t = Xil'X'Pz't + [X,Xill'Pz't.

Applying the induction hypothesis (1(P a) < I(P')‘W< 1(P)), we get that
x-xil'Pa-t = ‘xil -x-?a-t +.[x,xi1]-Pa-t.
Thus, the first bracket is zero. In the same way we show that the second bracket

is zero. Thus, the equality (***) is proved, which completes the proof of the

° .
propasition.

q.e.d. ' °
Remark. The module F constructed in this way is a free g~module.

Jemmal2.l,
Let g be a Lie algebra which is generated as a k—module by the elements x.
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(iel-some well-ordered incex set), and let V be a cyclic g-module with

generatdi , t. Then, any element of V of the form xj T X 4 is
: « 1 n

expressible as a linear combination of the elements of the form:

™ xil-..‘-xi *t where i;2.2i , x€g and- m<n.
m .

We carry out the proof by induction on n and for given—n by induction on the .

-

number of inversions in the sequence (xj X ). Suppose that we have already
1 n .

proved the lemma for 1 <n and if 1=n we have proved it for the sequences

(x; peenrXy ) with K <n;<n inversions. Then, if the sequence (xj ponsX; ) ,
1 - , 1 ‘n

n

has n; inversions, we write:
V4

.

(%) X Xy X X X e
b h b 41 8 h

+ X, [x X ]reexs ot .
3 L L+1 In

Applying the induction hypothesis we can express the right hand side of (**) as
a’linear combination of the elements of the form (*).

¥

-

We are nm;\in the position to prove the main theorem of this section.

i

Theorem I.2.1." (Birkhoff-Witt) ,
Let g be a Lie algebra which is free as a k-module with a k—basis {x;};
where 1 is some well-ordered index set. Then, if U(g) is the enveloping

algebra of g and i:;g — U(g) is the canonical map of g into U(g) (cf. Ch.

1.§1), the family of elements of the form: .

&
*® ! . v it 8 NN
™ 1(xi1) {(xin) with i)2.0.2i;, 020

4

-
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~ form a k—basisfor the k—module, U(g). . E

Proof. | 4 v
Since U(g) = T(g)/I,-where T(g) is a tensor algebra of g and T is the
ideal of T(g) generated by the elements [x,y] — x®y + y8x (for all x,yeg), we
. see that the family (* ) generates U(g) as a k-module (cf. .Lemma L.2.1). In
order to show that the family ("‘) is k-—linea.rly independent, we view the
g-:module F constructed in Proposition 12.1 (with T={t)}) as a left
U(g)—module. Suppose that we have a ﬁnite‘linear combination of the form
\ Bk i(x ) =

. \ S
where k_ €k, x_ = (xT . x0 )y i(x ) = AT Yen i and
m m 1 1 1 n(m) m 1 1 1 n(m))

ilz...ZIn( ) Then, by letting this element act on to we obtain ' / ‘

h 0=% kmx(xm)-t0 =X km(l(xm)to) ‘
' heénce all k, =0 since the elements i(xm)-t0 form a k—basis of F, q.e.d. /

* We will show now some important consequences of this theorem.

Corollary 1.2.1.
Let g be a Lie algeébra which is free as a k~module. Then, the canonical

map i:g— U(g) is injective. . , ‘ f\i

“ The images of the elements of the k—basis of g under the map i form a linearly

. independent set. -

{

.q.e.d. ,
2 Corollary 2.2,

Let h Dbe-a subalgebra of a Lie algebra g. Let the family ’{x;’?j}iel,je '8
(I,J-some well-ordered index sets) form a k-bagis of g, and let the family

N

o ;r ~
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{x¥¢p be ak-basisof. h. Then:
(1)  The injection h — g— U(g) can be lifted to an injection of U(k) into

U(g)- _ ,
(2) Thealgebra U(g) is a free U(h)-module admitting the family
* Y Y With §i2.2br, kO
(*) Y with j;2..24, k20
as a basis.
: / ,

We well—order the set IxJ by declaring that i>j forall i€l, jeJ. The

with 1,2.21 , j;2..2j , n,m >0} is then a
n jl Jm 1 n’ ‘15 m'’

k~basis of the module U(g). Moreover, the subfamily of the above that do not
involve y's, i.e., when m =0, form a k~basis of U(h). This clearly implies (1)

and‘ (2)_. ,

q.e.d.. g

Corollary 1.2.3. \

* Let g be a direct sum of subalgebras 8o and let g bea free k—module

for i= 12, 0. Then, the canomcal homomorphxsm of the k-module
U(gl)e .8U(g,) into the k—module U(g) defined by x;®..8x  — X, . Xy for

all X €8 is & k—module isomorphism.

Progf. - s
Follows clearly from the Corollary .2.2, . -
qed. i

4

Let g be a Lie algebra qver k, and }at. U(g) be the universal enveloping égebra
of g We define a natural filtration of U(g) as follows: Let U (g) be the




submodule of U(g) generated by the products i(xl)-.fni(xm), m<n where
" x; €8 Wesee that ;

~ UQ(g) k, U,(g) = kei(g) and Uo(g) CUl(g)c...cUn(g)c....
We define gr(U(g)) = 0 gr U(g) where gr, (U(g)) U (g)/Un_‘l(g).The map

b=

U, (8)xU,(8) — U, +n(g) given by (x,y) — X'y for all xeU_(g) and
y€ Un(g) defines, by passage to quotient, a bilinear map D

| 81, (U(g)) x gr (U(g)) — grp, . (U(g))-
Thus, we obtain a graded algebra structure on gr(U(g)). We call gr(U(g)) the
graded algebra associated to U(g). This algebra is associative, has.a unit and is
generated by the image of g in gr(U(g)) under the map induced By the
canonical map i:g — U(g) We will now show that in fact (U(g)) is
commutative. It is enoggh to prove /o'that T(X)' commutes with Ty} in grz(U(g)
for all x,y €g. Since the canonical map i is a Lie algebra homomorphlsm we
have i(x)i(y) —i(y)i(x) = i([x,y]). Smce if[xy)) eU (g) we.see that i(x)i(y) =
i(y)i(x) modulo U,(g). It follows that the map g — gr(U(g)) can be extended
to a homomorphism | ) ’ | \

v:S(g) — gx(U(g)):

where S(g) is the symmetric algebra of / g. Since gr(U(g)) is generated by the
image of 'g, the map :I’J i surjective. As an equivalent,form of the
‘Birkhoff—Witt theorem, we stat;a: ) ‘ ‘
. Corollary 1.2.4,
If g is a k—free module, then the map ¢ is injective.:
Let {xl}IEI be a k-basis of g As before, we wnte m = (iy,....i) with‘

.- 1
Y - 1

ij2.21, and i(x ) 1(xl) i(x; ) and we denote the length of m by
n X ,

\ . LR

-
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I(m) = n. Theimage of thgelement i(x ) with I(m)=n in gr,(U(g)) is the
<

i -
.

image under the map

4

©:S(g) — gr(U(g)) of the basic monomial in Sn(g). Hence, if we can show the

non—existence of a relation

* Y k x =0 modulo U °
;»), l(m)=n mm n._l(g)

the ifjectivity of ¢ will follow. But, the relation (*) is by Lemma I.2.i the

e

same as the existence of the relation

) kmxm—l T km)cm=0. g

¥

l(m)=n (m)<n
Such relation however contradicts that xm's are elements of the k—basis of
U(g). ) S
' )
5
.e.d.
4 /
lary 1.2,

‘ \
Let k be an integral domain and let g be a Lie algebra which is a free

k—module. Then, U(g) is an entire algebra.
Proof.

Let u and v be two non—zero elements of U(g). There exi%\two unique
natural numbers n and m suchthat ueU (g), u¢ U _,(g) and ve U_(g),
vE Um—-l(
non—zero homogeneous elements of. gr(U(g)). Since the algebra gr(U(g)) is

g). Thus, u=u+ U _,(g) and v=v+U__ (g) are well—defined

‘isomorphic to the polynomial algebra: S(g) (Corollary 1.2.4) and since the

polynomial algebra over an integral domain is entire, we see that gr(U(g)) is

_entire. It follows that u-v is non—zero and homogeneous of degrée n+m. But

wv=uv+U - ,(g) and therefore u-vgU, +m—1(8)- In particular,

v

-
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uv#0. 1t follows that U(g) is entire.
|
ge.d. v -
\ T .
{
The main references for this section are (3], [4], [6], [10] and [13].
" Free magmas
Aset M together with a map ;
S MxM— M ;

denoted by (x,y) — xy is called a magma.
Let X bea set. We define inductively a family of sets Xn(nzl) as follows:
e (1), X=X

(@) X;=0X xX

. where the disjoint union, U, is taken over all
Xp x Xq= n with p+q=n.
Put T(X) = U0 X, and define T(X)xI(X)—TI(X) by means of

X xX — X . The magma I'(X) is called the frée magma on X. The e

P " q pP+q
elements of I'(X) are called monomials. There are two natural gradings of
I'(X): h

i) Total grading: ' (X) consists of all monomials v of length I(v) = n.
ii) Multi—grading: let 72X be a monoid of functions from the set X into
integers. For every x € X we denote by a, the function in 7% defined

by ax(x) =1 and ax(y) =0for y¢x. Themap X-— zX defined by

X — @, extends to a magma homomorphism m:I'(X)-— 7X. For any

,
\ i
.
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ac€ 72X we denote by T’ a(X) the set of a.ll monomials v € ['(X) such
' that m(v)=a. Clearly, T (X)#¢ if and only if the set
8, = {x€XPa(x)#0} is finite and for all x €S, we have afx) > 0. The
set of all such functions we denote by the lettgr 2. We define:
‘ formiy aed |¢¥|= 2 ofx)
xeX

Thus e obtain
'X)= Ul (X), IX)=uT (X), L (X)= u T _(X)

| a|=n
Eree algebra on X
By the free algebra on X over k we will understand the free k—module A(X)

-

with a k-basis which consists of the elements of I'(X), and with the
multiplication induced by the multiplication in T'(X). Let A (X) and A X
be submodules of A(X) génerated by the elements of r(X) and T a(X)
respectively (ae@).; Since we have:
An(X)-Am(X) CAp m(X) and A a(X)'Aﬁ(X) CA a+ﬂ(x) (n,meN, o,fe®)
we see that A(X) has two natural gradings _ '
A(X)= 8 A (X) and A(X)= @ A (X).

21 acd ¢

If B is any k—é.lgebra and f is a map from the set X into the algebra B, there

exists unique k —algebra homomorphism I:A(X) — B which extends f.

Let 1 be the two—sided ideal of A(X) generated by the elernents of the form:
u-u and Jac(u,v,w) where u,v,w € A(X).

Defigition L3.1. |

The quotierit algebra A(X)/I is called the free Lie algebra on X overk. We

will often denote it by L(X,k) or simply by L(X).
[ 4
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Some of the functorial properties of free Lie algebras are the following:

(1) If f isany map from the set X into the Lie algebra g, thef there exists
unique Lie algebra homomorphism F:L(X)-— g which extends f.

(2) If f isany map from theset X into theset X, then there exists unique
Lie algebra homomorphism- LL(X)—L(X‘) such that f|X=f.
Consequently, if {X ﬂ,f‘ﬂ’} is a direct system and

X=LmX  then LimL(X )= L(X).

(3) Ifthering K; is an extensionof k then

LXK,) = (X k)8K,.

This follows from the fact that the pair (L(X,k)okKl, x — x®1) ig a solution of

the same universal mapping problem (1) as the pair (L(XK)» x— x).

We will show now that'the ideal I is a graded ideal of L(X) endowed with the

multigrading. Indeed, let 1, oe the set of xe€ A(X) such that every

homogeneous component of x belongs to I. Clearly I, isan idealand I, cI.

Let xe A(X), x= T x o X a—homogeneous. Then x-x = Ex> 4 I x X5

acd ¢ ap®
But, xiel, xaxﬂ+xﬁ’(a= (xa+xﬂ)2—x§— %EI so that x'erI. For
threeelements x= X x , y= X yanz= X z_ wehave
U aed @7 ped P qe0 7

Jac(x,y,z) = . ?ﬁ@Jac(x o p? 7) €l;.

It follows that I = I, and hence we have inherited gradings fop L(X):
LX)= oL (X), L(X)= o L (X)
(X) o (X L A oX)

Let X be a nonempty set and let I'(X) be a free magma on X. The subset

R=R(X) of the set [(X) is called a basic family if it is totally ordered and’
satisfies the following three conditions: T,
(R') XcR. c a ‘

it T




(R2) Theelement w =u-v isin R ifandonlyif - -

i) ‘the elements .u and v arein R and u<v.

if) if v =v, vy then uXv,. *
(R3) If u,v and u-v areelements of R then u-v> u.
The elements of R will be called basic monomials.
The subset H H(X) of the set T'(X) is called a P. Hall family if it is tota]ly
ordered and satisfies conditions (R1) and (R2) together with (H3): If uyweH
with 1(u) <1(v) then u <. Clearly any P. Hall family is a basic family. The
following example shows that we can always construct a P. Hall family in I'(X).
We define the sets Rn by induction as follows: we take R1 = X and we choose
a total order on R,. ‘Suppose that we have already defined the sets Rp,--Rpy 4
in such a way that the conditions {R1), (R2) and (R3) hold and the set,
R,U...UR _, is totally ordered. We define theset R to be the set of elements
of length n which satisfy condition (R2). We choose any total order on R,
andweput u<v if uce Rk, k =12,..n-1,and ve Rn' This completes the

induction process. The set R = U R is totally ordered and satisfies conditions
n21

(R1), (R2) and (H3).

If R is any basic family in I'(X) we &enote by R, and R the sets RnTn(X)
and RAC (X) respectively, where n€ N and « € §. To simplify the notation,
we will write 'w__instead of ¢(w) where eTI'(X)— L(X) is the canonical map
from a free magma on X into a free Lie algebra on X. The bracket [y,v] will
denote the image of the ‘ement u-ve(X) in L(X) under the map ¢. The
k—-submoc}ule of L(X) generated by the set S cL(X) wil be denoted by
k<S> . The length of an element ue€ I'(X) will be denoted by [u| or I(u).

¢
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We want to show that any basic family R is a k~basis of the module L(X) (if
we identify R with its image in L(X) under the map ¢). -

Let R be any basic family in T'(X). Then for any a€®, L oX) =k<R >.
We will proceed by inductionon |af. If |a| =1 then R c;: r a(X) and since
k<I a(X)> =L (X) the result follows.. If |a| > 1, any element of L ofX) can

be written as a linear combination of elements w € I'(X) of the form: [u,v] with

uel 7()(), veL ﬁ(X) and 7+ = a. Applying the induction hypothesis we get

that the elements u and v are expressible as linear combinations of basic

monomials. Using distributivity of th;l\jracket we may assume that the elemeats -

u and v are already basic. monomals. Using anticommutativity we may
assume that an a;l;trary element of (X) is expressible as a linear
combination of the elements w = [u,v] with ueR ¥
u<v. We want to show that each such w s expressible as a hnear
combination of basic monomials w‘ such that w’>u. We will do it l;y
induction on |B|. ,

If |f| =1,then weR and by condition (R3) w > u.

If |ﬂ| > 2, then writev=1v 1'V9 with vl,vzeR and Vi < Vy If u2v then

, veRﬂ, 0= a and

agam weR and hence w> u. Suppose that u < v < Vo Usmg the Jacobi .

ﬁé

identity we can write: ~

W= [“;[vag]] = [VI,[“:Vgll - [v2,[u,v1}]. \
If 5, and are defined by v, € R, and v €R respectively, we see that
Ay and f, 1€Rg 2€ Ry

|6;] < 18| and |85] < 48]. By the induction hypothesis both [o,v,] and

. [u,vy] are expressible as a linear combination of basic monomials w‘ such




U(L) of the Lie algebra L with a well-ordered generating set X = {x;}

that w’ >u. Hence w is expressible as a linear combination of elements of the

form [u‘,v’] wo'ith w,v €ER, u <v’, [u,v] € I‘a(X) and u- >u- Any of
these elements is- by repeating the same argurr{ent., either a linear combination of |
basic monomials w" such that w" >u’ or a linear combination of elements of
the form [u",v"] with u",v" e R, u" < v", [u",v"] €T O!(X) and u" >u’.

Since: £ a(X) is a finite set, tInis procedure must stop. It follows that w is

expressible as a linear combination of basic monomials. | Y

q.e.d.

-In Section 2 of this chapter, we showed that the universal enveloping algebra

i€l
(1-some index set) is generated over k by the family of elements of the form:

i(xi1)~...-i(xin) with xik €X, x; 2.2% , n0.

1 n
Let L(X) be a free Lie algebra over k with a free generating set X.

Let ¢ be the chionical map X — Lie(:%ss(X)) where Ass(X) is a free
agsociative algebra on \X.  The induced Lie algebra homomorphism
@ L(X) — I:ie(Ass(X)) induces the homomorphism of associative algebras
Z:U(L(X)) = Ass(X).

Lemma .32,

" The homomorphism ¥ i8 an isomorphism.

Proof. .
The map X — U(L(X)) defines a homomorphism ¥ from Ass(X) into

&

4

g.ed.
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‘As a product of this lemma and Lemma [.3.1 we get the following result:

Corollary 1.3.1. g

t

For any a€d® with a# 0, the k—submodule Ass a(X) is generated by the
following family of elements:

(I.3.1) w, -...w, wherew,
’ o In Ik

and uilz..fzui (R is any basic family in T'(X)).
n -

We also know that for any a € @, the k~submodule - Ass (X) is a free k-module

=pu, J,u. €ER, Za. =a
V’(xk iy i

with a basis consiting of elements of the form: ‘
(1.3.2) X +..cX; With m(x, -..x ) =a where m:I'(X) —~zX
| n 1 n
. AN
We will show that there is one-to—one gorrespondence between the elements of

the form (1.3.1) and (1.3.2) by proving the following lemma:
Lemmal.3.3. ) ' X

There exists one éd only one way to arrange Lie brackets on th; associative
monomial of theform (1.3.2) to obtain a Lie element of theT form (13.1).

Proof. .

We will proceed by induction on the length of an associative monomial of the
form (1.3.2). The result is obwiously true for menomials of length 1. Suppoe that
we have proved the lemma for monomials of lengt;h less than n. We take any

associative monomial v of length n. To simplify notation we will write v =

xl-...:xn instead of v = xil-....xin:
a)  eistence
By the induction hypothesis we can arrange Lie brackets on v’ = x; ...x;_,

to obtain an element w of Ass(X) of the form (I.3.1), i.e., w = wy ..ow,

where w, = Auy), vy 21, u; € Rai and Zq; =o' =m(v). If x <u then




put W, , = ¢(x ). Theelement w,-...

"Wey1 8

§+1
obtained by arranging Lie brackets on v.

is of thk\form (1.3.1) and is

Suppose that xn/ > ug and let p be the smallest integer such that

[up,[..‘.,[us,xn]...] is a basic monomial in R, i.e., p is the smallest integer such
\ -

* that u, < [up+1,[...,[us,xn]...] 1\101(18. Put v =¢p([up,[...[us,xn]...]). If p#ll

then the element Wyt Wo g \\wp is of the form (I.3.1) and is obtained by
, arranging Lie brackets on v. If p =1 then take w{ which is of the form (1.3.1)

too: Q.‘provw the existence of bracket arrangment for monomials of lengt}x n.

b)  uniqueness

o

Suppose that we can arrange Lie brackets pn v = x;-....x in two ways to

. obtain two elements wy-...-wy and wj-..-w of the formA13.1).

We can wfite: '

ug = [8),ag,[---[8,x ]...] where w = p(u), 3 € R and a;2a,2..28
and

0 = [by,[bg ..oy xp ]| where wy = Q(u]), b; iR and by 2 by 2.2b_

I w,_y=9(u, ;) and w; , =¢u_,) then & _,>u 23 and u;_, du;

g2
25y \ —

Hence the  elements 1 Wy Plag) o) and
,w;-.u-w;_l-a(bl)-...-abm) are of the form (Ij3.1) and they are obtained by
’ arranging Lie brackets on v’ = x;-..x__,. Applying;the induction hypothesis
we get that y

sti=r+m and o) =w = Winwg,; = 9(3)=p(by).

Since 8 i3 the smallest integer such that the element
(w0 4 1ol (W51 Xpl-] 18 & basic monomial and since r is the smallest
integer such that the element [w[w  ;,[--fw; ;% ]] 8 a basic monomial

r -

N oy



‘a =
v ¢

weseethat s=r and i=m. It follows that W = Wi for i=1,2, ..
This proves the uniqueness of bracket arrangement for monomials of length n.

=" The lemma follows now by induction. *

f

g.ed. ’ 4

We are now in position to prove the main theorem of this seétion.

Let L(X) be a free Lie algebra on X over k. Let w:L(X)— Lie(Ass(X)) and

@:U(L(X)) — Ass(X)  be the homomorphisms induced by the map

- X— Asg(X). Then:

(1)  The homomorphism ¥ is an isomorphism.

(2) The homomorphism ¢ is an isomorphism of L(X) onto the Lie
subalgebra of Lie(Ass(X)) generated by X. '

(3) I R is any basic fgmily in T(X) then R, =RNT (X) is a k—basis of
L,(X) forall a€®. In other words

L a(X), Ln(X) = a0=nL o X) and L(X) = nﬁ;an()()

* are free k~modules.
(4)  If X is a finite set of cardinality d then L (X) is a free k~module of
rank ld(n) and

S

(13.3) £ mly(m)>d™
‘ m|n

Proof. (1) has been already proved (Lemma 1.3.2). |
Since the homomorphism ¢ maps L(?() onto the 'Lie subalgebra of Ass(Xk
“generated by X, in order to prove (2) we only have to show that ® is injective.
If we prove (3) ;;hen by Birkhoff-Witt theorem the homomorphism
L(X) — U(L(X)) will be injective. Since we can identify U(L(X)) with Ass(X)
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by part (1) of this theorem, (2) will follow.

Proof of (3] N

In Ass (X) there @sts a k-basis which consists <;f elements of the form (1.3.2)
and a generating set which consists of elements of the form (1.3.1). By Lemma
1.3.3 tHe numbers of elements of this k—basis and this generating set are equal. -
Let us denote by A = (al,...,ap) the*vector of all elements of the form (I.3.2) in

Ass a(X) and let us denote by B = (bl,_...b the vector of all elements of the

)
p ‘
form (1.3.1) in Ass a(X). Since the set {al,...,ap} is @ k—basis of Ass a(X) and

,[ the set {bl""’bp} genérates Ass (X) over k, there exist two matrices T and
- ° S with coefficients in k such that:

L B'=T A" and A'=5.B

§L It follows that

(ST —1d)-A=0

K)here Id denotes the unit .,pxp matrix, Since AY is a k—basis we get that S-T

= Iq. Let adj(T) denote the adjoint matrix of T. We have
T-(S-T)-(adj(T)) = T-(1d)+(adj(T)) = det (T)-1d and
(T-8)-(T-(adj(T)) = T-S-det(T).
Since det(T)-det(S) =1, det(T) is an ux;it in k. It follows that T-S =Id.

v

St?xppose that we have the following relation:
kl 'b1+.-.+kp‘bp = 0.
)T =0 and hence )
0= (kl,...,kp)-T-S = (kl,...,k
Hence, {bl’""bp} i8 a k—basis of Ass (X).

So, (kl’.l-,kp

p)

.

It follows that all elements of Ass(X) of the form (u; 1-)-...-7>iui ) with
, n

ui.

and Y 252Uy, ATE k-linearly independent. In particular, all elements
A

1 n
%6
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?(u) where u € R, are k—linearly independent.
It follows that the eletnents of R are k—linearly independent in L(X). Lemma
L3.1 now completes the proof of (3). Note also that injectivity of ¢ follows

directly from this proof.without any reference to the Birkhoff-Witt theorem.

Proof of (4) | )

Let R be any basic family in L(X). Let d, denote the degree’of u; €R in
L(%) where L(X) is endowéd with the total grading (i€l where I-some index
~

gset).  The Brikhoff-Witt’ theorem tells us that the family of elements

e. e; ‘
1 1
i 1-...-ui 8 with U >...>u; i3 & k-basis of U(L(X)) = Ass(X). We
1 8 1 8
have do(ue) = Ze, +d; . If we denote by a(n) the rank of Ass (X), then a(n)
] :
is equal to the number of fintie sequences of natural numbers (e;) such that

lle=ll

f

n= Eeidi. N . .

This last statement is equivalent to say that the Eyler-Poitacaré series of Ass(X)
xp =A(t) = Za@)t"
may be expressed in the form

1
A(t)=n —-
i€l 1=t i —
4
To see this we write the formal idendity .nll = Y=
1€

d; 2d 2
n(14+t "+t "+..). The coefficient of t~ in the second product is precisely the s
i€l
5 number .f sequences (e,) such that Ze;-d, = n. Since for any positive integer

d.
m the number of factors in the product nll/(l-—t ') such that d,=m -is
- i€

éxacily ld(m), we }{z.w; m )
' o AG) = 0 1/(—™la(m), ‘ b

nl




,

On the other hand, the set of monomials X; -...x; is\a. k—basis of Ass (X).

4 n

' >
Hence the rank a(n) of Asgn(X) is equal to d". Therefore, we can also write
At) = 2d%" = 1/1-dt.

L]

\

Hence -
B 1:(m)
n 1/~ 4 = 1-ay).
m21
[04)
Using the formal equality Log(1/1-t) = £ (1/n)-t® we see that %
n:—_l - .
S (1/k)lym) ™K = 5 (1/n)d0 2, ‘
ko1 n>1 \

Comparing coefficients for each natural number n we get
(t/m)-d"= T (1/k)l4(m).
m- k=n
It follows that

"= T ml(m) . |
m|n -d

 which completes the proof of (4).
‘q.e.d.
We will now prove two results which we will refer to in Chapter II and II[. We
call a sub;et S 6f a free magma I'(X) a left idea]l of I'(X) if for any el(;ment
u€eI'(X) and any element v €S we have u-ve$S. In an analogous way we
define a right ideal in I'(X). Anjdeal in I'(X) is'a gubset S of I'(X) which is
simultaneously'a l;aft and a right ideal. We call an element u of S S—reducible

if it can be ;vritten as a product of two elements of S. Otherwise we call an

eleméﬁt of S, S—rreducible. ' )

Lemma 1.3.4. :

Let S bea subset of I'(X). Anyelementof S can be written as a product with .
‘ i

4
\
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some bracketing of S—irreducible elements of 8.
Proof. ’
We will proceed by induction on the length of an element u of S.

~
~

The Lemma is clear if (u) = 1.
Suppose that we have proved the lemma for all monomials u of lengtﬁ less than
n. Let u bé: monomial of length n. u is either S—irreducible or it can be
written as a product v-w of two elements v,w € S. In the later case, applying
the induction hypothesis we express elements v and w as products of
S—irreducible elements. The lemma, follows.

&

q.e.d.

Let S be aright idealin I'(X) and let R be a basic family in I'(X) which
satisfies the following condition: if u € R—S and v € RnS ihen u< v.

Let Y be the set of RNS—irreducible elemenfs in RNS. Then the submodule
k<RNS> of .a free Lie algebra L(X) generated by the set RNS is the free Lie
algebra with free generating set Y. v
proct _

Let. Y’ be a set together with a bijective map f:Y’ — Y. The map B extends
to the bijective map B from I‘(f’) onto I'(Y). We want to construct certain
basic family R’ in T(Y").

Put Ri = Y and carry over the orderingof Y to Y~ \;ia g 1

Suppose that we have already constructed the sets Ri ’Ré""’Rﬁx-l such that
BR{)CRNS for i =12,...m-1. Suppose also that the set R{U.UR: , is

totally ordered and that the restricted map 7| RiU"'URxﬁ—l is order preserving.

L R

S
& -
SRR L VORI A~ R
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We define R to be the set of all products u-v with ue R; and veR:
guch that: u<v andif v =v,-v, where. v;,v, € R{U.UR S ., Vv, <v,, then
u 2 v;. We want to show that -B(Rg,) CRNS.

Indeed, any element of R isof the foom u-v with ueR/,veR; = and
— n m-1

B(u), A(v) €RNS. Since S is a right ideal, we only need to show that
B(u)-B(v) € R. We know that B(u) < B(v).

f v= vl-vg, where v ,vy €R{U..WR: ,,
B(u) 2 B(v;) and B(v;) < B(vy). It follows that in this case B(u)-B(v) €R. If

v is Riu...UR'_n—-irgéducible then veY’ andhence B(v) €.Y. ~

vi<Vo then u2v, and hence

I B(v) cgh be written as a product %7, f?‘r some 71,7y E‘R with 7 < Yy
then at léast one of 7, and 7, isin R~S (since Y s the set of
RNS—irreducible elements). Since by assumption R-S < RNS we ses that

7, € R-S and hence B(u) > 7 It follows that also in }his case f(u)-B(v) isin .

RNS.
Hence, A(R7)CRNS. .
We totally order the set Riu...UR[;l by: =

u < v if and only if Bu) < Av) forall u,ve R{U..UR .
- '

The subset R’ = UR: of I'(Y’) is then totally ordeéed and satisfies .
' m>1

conditions (R1), (R2) and (RB) that is, wﬂmu_:m

By Theorem 1.3. 1, R’’is a k—basis of L(Y’). Let B: L(Y’) — L(X) be L1e
algebra homomorphxsm induced by ﬂ Y’— Y. Since RNS is a part of the
k—basis of L(X) and B(R’) = B(R) (/RS we see that B is injective. =

If weRnS then w can be writ{e(n as a product with some brgiceting of
elements of Y. Hence we Jm(ﬂ), i.e.,, k<RNS>cC B(L(Y )).” Since

“H(R-) ¢ RS, we see that B(L(Y)) C k<RAS>. " /
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\ It follows that k<RNS> is a subalgebra of L(X) which is isomorphic to free Lie
~~ algebra L(Y’). ’
) »
*
‘ q.e.d.

W (Elimination Theorem)' .

Let L(X) be a free Lie algebraon X over k. Let X=X-U X" with X'n
X"=¢ and X’ # ¢. Then: T
(1) The‘ ideal a of L(X) generated by the set X is a free Lie z;lgebra with

free generating set Y which consists of elements of the form:
\ -

*) | o Ly )

where u, belongs to some basic family R" in T(X"), x'€X’,n>0
k .

i’

1 n
(2)  The k—module L(X) is the direct sum of ¢ and H, where H is a

and ﬁ‘;‘.>...2 Ui . . >

subalgebra of L(X) which is isomorphic to free Lie algebra- L(X") on
X" '
P (3)  af[a,a] is afree U(L(X)/a)-module with basis the images of the elemenés ‘
~ of the set X-. R ‘ ) E
. Pt , | B
(IY We identify I'(X") with ité image in I(X) under the map induced by the
inclusif)n X"—X. Let S= F&X)—I‘(X"). Clearly, S is anideal in I'(X). In
order to use Proposition 1.3.1 we have to construct a basic family R in I'(X) é
" such that R — S < RAS. | ' , ‘” o fi
Put R, =X, and totally order R, such that R, —§ = X" <R;NS = X% 3
S:xppose that we have already constructed the sets Rl""'Rm-l such that the ~_";3

LY
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© get Rm"1 = RU.UR_ _, is totally ordered, Rf’l"l -S<R™lns  ang
elements of R™ . satisfy conditions (R1), (R2) and (R3). ‘

R™ L gueh

We define R’m to be the set of all products u-v of monomials in
that l(u-v)=m,u<v andif v= VitV where vl,vZ € an"'l, vy < Vo then
u2v,. Let R " be the subset of Rm which consists of all products u-v with
Ve Rm l_s we totally order RI'I‘l and Rm-Rr'r‘1 and then we totally
order Rl'n—iURm requiring that .
m—1 m-1
R —S<R.;;1<R nS<Rm-—-RI‘I'l. ‘
The elements of R™ = R,U..UR ~ satisfy conditions (R1) and (

construction.

Let a,vu-ve R™ If u-ve rol

then by induction hypothesis u-v > u.
Hence the condition (R3) is satisfied in this case.

If u-ve RI'I'1 then both u and v belong to rm-1

—S and hence u-v>u by
construction. If u-ve Rm— RI'I‘l then u-v>u by construction. Hence, the
condition (R3) is satisfied.

Thus, the st R= U R™ is a basic family in I'(X) which satisfies
m>1 @

R-S< RnS The ideal o is the direct sum of all submodules k <I o X)>
such that - ofX’)>0; i.e, a=K<5> = 0 L<I‘ .(X)> with o’ €® and

a’(X’) > 0. Since by Theorem 1.3.1 R , is a k—basis of k<T (X)> we see
that k < RS> = a. By Proposition 1.3.1 theideal a is a free Lie algebra qver
k wit;h free generating set Y which consists of S—irreducible elements of RNS.
Let u beany S-—irred.ucible element of RNS. We will prove i)y induction on the
length of u that u has the form (*).

If (u)=1 thénueX". g

If 1(u) > 1 then let u=u,-u, be the unique decomposxtxon of u in R. The

~

A




ideal S has the property that if w-v €S then either w or v belongs to .
| Since u is S—irreducible and u, <u, weseethat uj €R—S and u, e’RnS.
I v, =uyu, where ug-u, € RNS then.'condition (R2) tells us that Uy 2 ug
_contradicting that R—S < RnS. Hence, the element Uy is S—-xrreducxble of -
length less than 1(u). We apply the induction hypethesis to deduce that u is
indeed of the form (*).

-

On the other hand, each of thé elements of the form (*) is obviously
S—irreducil;le. Since R —S =R" is a basic family in ['(X") by construction, we
have completed the proof of (1).

(2) Let Y" be a set with a hijectivemap ¢:Y" — X". The map ¢ extends to
a bijection @:I'(Y") — ['(X"). Let i be the inclusion i:X" — X. Let L(Y")
be a free Lie algebraon Y" over k. The injective map i-¢:Y" — X extends t¢
the Lie algebras homomorphism T - %:L(Y") — L(X) which maps L(Y") onté
the subalgebra H of L(X) generated by the set X". Like in the proof of .
Proposition 1.3.1 we construct a basic family R, in I'(Y") such that tl;e
restricted map 'zZIRl sends R onto R" =R~ S in an order preserving way.
The restricted map 1 - <p|R1 is a bijection from R, onto R"= R —8§. Since
R—S is a part of the k—basis of L(X), we see that -9 is an injection. since
H=k <I(X")> =k<R-S> and L(X) = k<R—S>8k<RNS> we see that
L(X) = H®s as k—modules. L

(3) By the part (2) of this theorem L/a= H ¥ L(X").

Since R"=R-S isa k—basi\s of H, the theorem of Birkhoff-—Witt tells us that

the family of monomials of the form

¥k U, ‘...-u, with n20,u, €R" and u 2.0
(*%) iy i © iy 22y ,
is & k-basis of U(L(X)/e). : /
) &
) ¥
ol ,
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Since af[a,a] is generated over k by the elements of the form (*) we see that
a/[a,a] is generated as an U(L(X)/a)—module by the set X‘. Since any rélation
of the form . )

u X, +...+u X = 0 where v, € U(L(X)/a), X; the image of x, € X* in a/[a,q]
would imply k-linear dependence of the elements of a k—basis of a/[a,a]; we see

that the elmeents of the set X/ are U(L(X)/a)—free.

q.ed.

Remark. “There is another proof of this propo;ition given in ([4], Chapter II, §9,

Proposition 10, p. 131). We will not present it here since it is quite analogical to

the one given above. However, in the course of that proof, another free

generating set of ¢ was found. It consists of all elements of the form
[x'i'1,[x'i'2,[.:.[x‘i‘n,x']...]

where xik € X" and x‘€X’. We will use this result to prove the following

proposition.

Let L be a free Lie algebraon X over k where X = XUX", X'nX" = ¢ and
X’ #¢. -

Let a be the ideal of L generated by the set X‘. Let {yi}iel (I-some index

\

set) be the set which is a part of the free generating set of a prescribed by the
Elimination theorem (the version of it mentioned in the remark above).

Let 7 be the ideal generated by {y}..;. Then:

(1) L/r is a free k—module. )

(2) 7/[r,7] is afree U(L//r)—module on.the images of y;(i€l) in 7/[r,7].
Proof.
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The ideal @ is by Elimination Theorem a free Lie algebra over .k with free

generating set consisting of all elements of the forr:

* . x! xS x)e

* RO RS

where x! € X", x’ € X’ and n0. Since the elements y(icI) lie in the free
k

generating set of @, we see that the elements of the'form

(**) [x'i'l,[...[x'i'n,yi]...] where x'i'k e X"

.belong to the family (*).
Since the family (**) generates 7 as an ideal of @, we apply Proposition 1.3.2 to
get that the family of elements of the form (**) is a U(a/7)~basis of 7/[r,7].

The algebras L/a and afr are free Lie algebras by Proposition 1.3.2 and as

such they are free k—modules by Theorem I.3.1. Since we have an exact
sequence: i

0— ;/TQ-. L/rg-aL/a——»O
we see that L/7 is a free k—module, which proves (1).
Let H ybe a subalgebra of L(X) isomorphic to L(X") and let H, be;a.
subalgebra of L/t generated by the images of X". The restriction of § to H,

is an isomorphism and hence identifying H, with L/a we see that

. -
\ L/r=a/ToH,
as k-modules. By Corollary 1.2.3
U(af ey U(E,) 2 U(L/7) .
{ &8 k—modules. It follows that )
v - UL seU(a/r)xgl-....x'i'n |
. , Where n20 and x'i'k € X". Since r/[r,7] is free U(a/-r)-module we see that

7/[r,7] is % U(L/7) module with basis {y;};.; where ¥; is the"image of y,

(4 ) | | &
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in r/[r,7]).

g.e.d.
Remark. A set {yi}iel which satisfies conditions (1) and (2) of this proposition

" is called Strongly free set or imert set ([i],[2]). We will study such sets in

Chapter II1.
Example1.3.2.
Let L be the free Lie algebra on {X,..Xy} and let

1) A= {P,,,Py_;} where P;=[X,X; ,Ji= 1,.N-1 and
2) B={P,,.,Py_;} where P,=[X. X ]

be two sets. Then A and B are strongly free (cf. Loc. cit. Remark after

i=12,..N-1

Proposition 1.3.3). To see this take a *to be the ideal of L generated by
{X;X3,..Xpg} (M is the largest odd integer less than or equal to N) in the first
case and take a to be the ideal generated by X, in the second case. Next,

apply Proposition 1.3.3. ¢ -

§4. Filtered groups -
The main references for this section are {13}, [12], 7], (8], [9], [6] and [4].
This paragraph is an introduction to Lie algebras associated to the lower central
-series of the groups, which we will study in Chapter III.
Commutator calculug
Let G be agroup and let x,y,z € G. We will use the following notations:
m =y | .
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(2)  [xyl=x "y #,][-,] is called the commutator of x and y. .

ing identities (Witt—Hall): -

a1y k=1 [y =yl = xyl oy = = eyl

(L4.2 [x.y2] = [x,2]- [xy]llx.y),2] = [x.2]{x.y]”

(1.4.3) [xy.2] = [zl ([x2lylly.2] = (2l [y a). o
(L44) Wyl el el = 1.

(145 (xy)dlyalz)lzxy]

= [y ezl [kl - [y, [x2]lz.x"

Let A,B be subgroups of a group G, and let [A,B] denote the subgroup of G
generated by the commutators [x,y] .for all x€ A, yeB. If A and B are
normal subgroups of a group G, then [A,B] is again a normal subgroup of &
which is contained in the intersection of A ax;ci B.
Let x€A,y€eB, z € C where A,B,C are any three normal subgroups of G.
éince y* € B, xJ € A, we have from (I.4.4) that h
[2{x]] ¢ [A,[B,C]]- [B,[C,AJ].

. Since z¥ runs through all elements of C if z does, we proved th;),t .

~ (1.4.6) [C,[A,B] & [A,[B,C]]- [B[C,A]].

\Filtration o a group
Definition L4.] ’
By a filtration on a group we will understand a map w:G— R U{+x} ,
satisfying the following conditions: o
1) u1) = +e.
@ wxy) 2 inf{utx)un).
3), wqxﬂ) 2 u(x) + uly). -

- For ary real number a we define:




G, = (x€G|u(x) 2 a} -

G} = {xeGlu(x) > a}.
Conditio;l (2) shows that G and GZ are subgroups of G. If x€G o 3nd
y€G, then x¥ =y (modGZ) which follows from (3): w{([x,y]) 2 a + «(y) > a

This ‘proves that G o is a normal subgroup of G. We see that G’; = UG 8
Pa

which shows that G'; is also a normal subgroup of G. If a< thén clearly
+¥ A+
Forall 20 we define gr (G) = Ga/G';. Then
itiop 1.4.1.
(1) gra(G) is an abelian group (a2 0).

(2) (-x—y_) =x where x€G,, yeG and X dem‘)tes the image of x in
gr,(G).

(3) Themap G axGﬂ—-oG ot defined by (x,y) — [x,y] induces a bilinear
map g1 (G)xgrg(G) — gr oy 4(G).

(4) the maps of (3) can be extended by linearity to the map
gr(G)xgr(G) ——»glr(/G) where gr(G) = afogr o(G)- This map defines a

Lie algebra structure in gr(G) (over 3).

Proof.

(1) It follows from 1.4.1(3).

(2) It was proven above.

(3) We have to show that the map gra(G)xgrﬂ(G)l-—agta_,_ﬁ(G) is
well—defined; i.e, that it does not depend on the choice of the
representatives for x € gr a(G)’ ye grﬂ(G) in G, and G 8 respectively.
Solet xeG - G 3 and u,ve G'c';. We have to show that [xuy] =

»




—'\43 -

[x,y]mod(G ot ﬂ) and [xyv] = [x,y]mod(G at B) We use the formulae

(F4.2).and (.4.3) to obtain
¢
. kuy] = [Ky]" + [0y] = K]
_and Kyl = v + [y = [%y).

- We now have to prove that this map is bilinear. So let X, € G a1 G g

Then, using the same formulae and (2) we get
X
o] = ] + Ryl =15y + o]

and Ky ¥ = ] + [yl = &) + [y
which proves (3).

(4) Let uegr,(G), ve grﬁG and choose elements x€ G, y€G g such
that x = u,; =v. Then we have [x,y] = [u,v] where [u,v] denotes the
image of (u,v) under the map gr a(G)xgrﬂ(G) — g, ﬂ(G)-
If uegr(G)then u= Eua where u_ € gra(G). Let x € Ga such that
X o=, for all a. Then, we have
[eyu) =K x]=T=0 ’ (by (1.4.1))

and "[ua,uﬁ] = [xa,xﬂ] = [xﬁ,x;] 1 = '[“B'“al (by (1.4.1)).
It follows that [u,u] =0 —

¢

to consider the case u € gra(G), VE grﬂ(G) and WEgr (G) Choose x€G ),
yE Gﬂv Z€ G7 such that X =u, ¥y =v, Z =w. Then using (1.4.4) we have

Jac(u,v,w) = [, [y.2]lly" 2.l z" [x.y]]- Ga+5+,,- I=0.

q.e.d.
Wher the filtration w takes values in N (natural numbers) we call it an

integra’ or®ceptral filtration. The central filtrations are in a one-to-one

R ,}.(nwf,img;
R S

We want to prove the Jacobi 1dentxty By tnhnea.nty of Jac(-,.,-) itis enough’

. A
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" (i) [Gn, m]

v .
. o N R 5
;

correspondence with the sequences of subgroups of G with the following
properties:
() G,=G.
(i)) Gyyq C Gy
If (G,) is such a sequence, define a filtration w:G — NU{+w} by wx) =
sup{nlxeGn}. Such a family of subgroups of G is called a central series. -The
lower central series of a group G is the sequence of subgroups Gn (n21) defined
inductively by
Gy =G, Gy, = GGyl .

Clearly, the conditions (ii) and (i) are satisfied and we will prove (iii) by
indtfction on n in the pair [G ,G]. ’ =
If n=1, then [G’Gﬁl] CGp,q forall m by definition. Suppose that n > 1.
Then

[Gn,G | = [[G,G 1],G J€[G,[G, 1,(?.m]]-[Gn 1,[GG 1l

c(G, Gn+m—1] [Gn 1’ m+1] ¢ Gn+m'Gn+m c Gan+m |
If* (H,) is any sequence of subgroups of G which satisfied (i), (ii) and (iii) then
Hn 3G, for all n. The proof of this is again by induction. If n =1, then
H =G,. Hn>l,welee H , .0 [H,Hn] J [G,Gn] =G
Now let
(* 1—R 4P _ﬁ. G—1

n+1

be an exact sequence of groups. Let (F ) (n21) be a central series of F‘ We
define G, = AF,) and R = o '(F,). Clearly (G) (m1) and (R} (n21)
are central series of G and R respectively,

? ’
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The induced sequence ;

4 4 L

(%) > 0—gfR) L gr(®) B (@) — 0

is exact with ‘@, F-Lie algebra homomorphisms. \

Proof.

We identify R with its image in F under the map a, a.nd‘G with the quotient

group F/R. The map ¢ induces an injective homomorhism in degree n

“"n:R n Fn/ Rn Fn+1 - Fn/ Fn+1'
The map § induces a surjective homomorphism in degree. n
ﬂn:Fn/ Fn+1 - Gn/ Gn+1'

The maps a and J are defined to be (al,a2,...) and (ﬁl,ﬂz,...) respectively.
We will prove that the sequence (**) is exact. It is enough to look at the a
and G, I ann 1€ ker(B,), then f =r1f +1 for some reR and
f

ntl € Fpppe I8 follows that r€ RNF, ie Im(a )>ker(f). On the other

hand, if re RNF_ then ﬂn(an+1) =1F R = Tie Im(a)c ker(8,).

Clearly @ and B are Lie algebra homomorphisms since they are

group homomorphisms and as such they preserve brackets.

&

qed. )

The (x.r)-filtration of the freegroup F on X = {x;..x}

Let A be the Magnus algebra of fomal power series in the noncommutative
indeterminates {X;}; with coefficients in Z (I-some indéx set).
Lemma [.4.2. g

The elements & =1+ X, (i€l) are generators of a free group F(A). \.~
Pl

1

R .
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We have to show that a freely reduced word in a, ,...,a.ik is not 1 unless it is

—
the empty word. Consider the word

where e, i, €N, 1<i, <N for j= 1, .k, and 1 #1 . It is easily shown that

a.i =1 -: n;(i + X?h(;(i) where h is a power series. Hence
W= (1+e1xi1+x??§‘1(xil) et (1+ekxik+x?khk(xik)

which contains the unique monomial

' el-...-ekxi1 -...-Xik
Since e;-...-¢ #0 wehave w#1.
In view of this lemma we will ideritify any free group on {xi}iel with its image
in A under the map defined Q, x;— 1+ Xi(ieI). Hence, we can identify Z[F]
with its imagein A under the map induced by thé bijection F— F(A) (Z[F]
denotes the group ring of F over Z). It ] (iel) are positive integers we define
a valuation w of A by setting ‘

Wy X Xy ) = Inf{ry 4ok . #0).
e 1 h p Yrialy

Fo£ ‘any integer n20 let A = {ueA:w(u)zn}. Then Ag=A4A, A ., CA)
and A ‘A C A . Hence
N gr(A)—- © B1y(A) where gr,(A) = Ay/A,

has a natural structure of a graded ring. Let § denote the image of X, in
gr,(A) where n= 7. Wecall § the initial form of X, with respect to (A)).
We see that gr %) is the nng of noncommutative polynommls in {¢& }lEI over
Ziie., gr(A) & n Asé ,(&}iepr In view of the Theorem 1.3.1, the Lie subalgebra of
gr(A) generated ﬁy §(iel) is the free Lie algebra over Z with the free




..1;7 n

generating set (£}, We will denote it by L. For n>0 we set
F, =(14+A_)0F. Clearly we obtain a filtration (F,) of F. We call this
filtration the (x,r)-filtration. Let gr(F) be the I(Jie algebra associated to this
filtration. The mapping F -— A definded by x — x—1 induces a Lie algebra
homomorphism from gr(F) into gr(A) defined in the following way:

is X.

Let x€ By /F and choose x € F | such that its image in F_/F

n+1
We can write x as

n+1

x=1+ Gn+Gn+1+...+hng1er terms (G, € A" = {ueA:w(u) = n}.
Define #(x) = G,. Clearly 7 is well—defined and injective. If

y=1+H +H - -+ higher terms

m+1 *
then

[xyl =1+ (G H —H_ G ) +..+ higher terms..
It follows that 5 is Lie algebra homomorphism from gr(F) into Lie (gr(A)).
We use this injection to identify gr(F) with its image in gr(A). Hence
L c gr(F) since n sends I+X. to x;=¢ for all iel.
If weset Z[F] = Z[FJnA  then (Z[F))) is a filtration of the group ring Z[F].
Let gr(Z[F]) be the associated graded ring. Since the image of the element
(1+Xi)—-1 in gr(A) is § we see that gr(Z[F]) is a subring of gr(A) which
contains all generators § of gr(A) ie,

gr(Z[F]) = gr(A).

Let Tn(n?_l) be the set of elements of the form x? with e = ] and. r; =n,
and define subsets of F inductively as follows: 5, = Tl’ and for n>1 g
’ S, =T, UT, where T, is the set of elements of.the form [ i€ with e = #1,
X€ Sp, Y€ Sq and p+q=n. Let 1.5‘ be thie subgroup of F generated by the

sets S, with k>n. Then F,=F and F, CF_ by definition. We want to
2




(which is in general not injective). Since the algebra L is generated by { -%i}

- ~

showﬁ that [l:‘n,fi‘k] C l}n 4} Using tpe formulae (1.4.2) and '(1.4.3) we see that it

is enoughto look at the commutators [x,y|vhere xe S,y vy€S, and p2u,

i
(F )} is obviously the lower central series of F. Let L denote the Lie algebra

q2 k. But then [x,y] € Sp +¢ that is, [x,y] € F s B =1 f‘?f all i then

associated to the ﬁltra.tlon (F ); ie, L= gr(F) ‘

t

We claim that Fn C F for all n. Indeed, F is generated by the sets Sk
with k2n. For those k, the elements of T, a.nd T}, belong to (1+A)NF.

‘Hence F_C(1+AJWF =F . Thus, we obtain the induced map in degree n

- - =)
Fn/Fn — Fn/Fn +1 (for all n) and consequently the map ¢:gr(F) — gr(F)

iel

in gr, (F) with n =7, we get the canonical

where £ s the image of x, 0

1

surjective homomorphism s:L — L which maps § to { The composed
A

homomorphism #-¢-s is a Lie algebra homomorphism from L into Lie (gr(A))

prescribed by the theorem 1.3.1 (§; is mapped to ;). and hence by the tficorem

. of Birkhoff-Witt it is an injection. Hence, the map s is a bijection. ~This

implies that the map ¢ is injective. We will prove by induction that ﬁ‘n = Fn
forall n. Jf n=1,then F,=F =F, by definition.

Suppose that F = F for n < k. The induced map f“k/i‘k 1 Fk/Fk +1
has kernel Fk + lan/Fk +1 Apblying the induction hypothesis we get that:

Pyt 1y /Fieq1 = Fig  Fae/Fieg = Fierr/ Fipp- .
But since the map ¢ isinjective we see thag Fk +1= Fk +1 and hence L = L.
v lowi iti
e, \
Proposition 14.2.

\

Let (F_) be the (x,r)~filtration of the free group F. Let gr(F) be t
associated Lie algebra and let ¢ ke theimageof x; in grr (F)/ Then gr(F) is




Y
~

- by -

a free Lie algebra over Z with a free generating set {§},.
Let (F ) bethe (k,r)—filtra.tion of the free group F. Put [F\F| = [FF]nF ,
é'hd let gr([F F]) be the Lie algebra!ssoclated to the filtration «[F,F] ) of

[F,F]. Then

‘[gr(F),gx(F)] = gr({F.F]).
Proof,
Since we have the following exact sequence of groups
| 1 — [F,F] = F — F/[F,f] — 1

r 3

by Lemfna 1.4.1 we get the exact sequence of Lie algebras over Z:

e : .
+ 0 g{{F.F) — gr(F) — g(F/[FF) — 0. )
" Since F/ (F.F] is an abelian-group, the Lle algebra gr(F/[F,F]) is abelian which

implies that ler(F),gr(F)] C gr([F.F]).

The subgroup (F,F] is generated modulo [E.F], 41 Dby theset T-. The -

Z—submodule  [gr(F)gr(F)], = [gr(F),gr(F)]ngrn(F) is generated by the
brackets [F) /Fy +T’Fm4/tFm +1] where k+m=n and k,m>0.
The subgroup F) is generated modulo F, , by the set S, %nd F, i

generated modulo F +1 by the set Sn;. It follows that [gr(F),gr(F)]n is "

generated by the set-T; and it implies that -gr ((F,F])  [gr(F),ge(F)]. .

q.ed.
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Chapter I
Subalgebras of Free Lie Algebrag

In this chapter, we try to answer the following question:

"When is a subalgebfa of a free Lie algebra free?"

It is well-known that any subalgebra of a free Lie algebra over a field k is free .

([14], [15]). This is not true when k is not a field but any commutative ring

with unity. In fact, if we want to answer this quesiton using the techniques

known so far, we hw to restrict ourselyes to the graded case, i.e., the subalgebra
in question is a homogeneous subalgebra of a free Lie algebra L with repect to
some N—grading of L. We also need to know that certain k—submodules of L
are'k-'fre‘e. To ensure it we may assume that k is)a commutative ring with
unity which*l‘xas t?ﬁe following property: any projective module over k is free.

For example agy principal ideal domain has this property. The ideas used in the

‘proofs are contained in 3], [7), [14] and [15] The letter k denotes a

commutative ring with unity.

4

ﬂe start with an example of the homogeneous subalgebra of a free Lie algebra

—

over Z which is not free.

ExampleILL, /
Let L be a freealgebraon X = {x;,x,} with natural N-grading;

ie., do(xl) = do(xz) -1 Let H be the suﬁalgebra of L generated by 2%y, %,

}

vand [x;%5]. Since the generators are homogeneous "eléments of L, the algebra
H is a homogeneous qubalgebra‘ of L. For any subset SCL, let Z<S> denote

. the Z-submodule of L génerated by the elements of S. We see that _

L4 ]
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Hy = Z<2x;> 8 I<xy>,Hy = Z<[x, Xq]>, [H,H‘]1 =[HHNH, =0
and [HH], = Z<2[x)%p]>. '
Hence H/[H,H]| has torsion element, namely [x,x,] + [H,H].

If H was free Lie algebra then H/ [H, H] would be a free Z-module. ¥

It follows that H is ot free. | _

Tz A

b

To prove the maintheorem of this chapter we will need the following lemma:
Lemmalll. P ‘
Let L(X) be afree Lie algebra with free generating set X = {x }lGI (I —-some
index set) Let Y= {yi}i;I be any g;sis of a free k—-module k<X> where
k<X> is a submodule of L(X) generated by X. Then Y is free generating set
of L(X). “
Proof.
Let { bea k—linear autorﬁorphism of k<X> defined by ¥ X for all iel. )
( Let g be a k—linear automorphism of k<X> defined by X —-’Q)z'i'for/a.q iel. 1

The restricted mappings g|X and f|X induce Lie algebra homomorphisms g

and T frém L(X) into itself. Since ‘ ) ‘ o
- Bofl x> = Blkax>Miex> = lk<x>licxs = 8flkax> = Mdlkcxs
and - ‘
(. —

fogl ke x> = Tlgex>8liex> = kx> k<xs = P8lexs = Mlygexs
% we see that i
Tof = Tog =ldy(y) . :

where IdL(X) ig the identity mapin L(X). It follows that Y is freé generating
set of L(X). '




w

We now prove the main theorem of this chapter.

Theor 1.

Let k be a commutative ring with unity which has a property that every

projective k—module is free. Let L be a free, N—graded Lie algebra over k thh
free generating set X which is homogeneous with respect to the grading of L

Le¢ H be a l;omogeneous subalgebra of L which is in addition a direct
summand of L as a k-module. Then H is a “free Lie algebra with some
homogeneous free genera.tiﬁg set B.

Proof. ¢

By assumption, there exists a k—submodule F of L such that L = FeH

as k—-modules Smce L is a free k-module by Theorem 1.3.1, both F and H

are prOJectxve modules 3and hence free. We know that = 6L and
n21
H— ® H where H =HL . Hence, F=L/H= & L /H Since F ina
n21 n2l

free k—module we see that each of the modules L /H is projective and hence

free. Thus, there exist submodules Fn of Ln such that Ln =F neHn for all

n. Since each submodule Ln is free, both Fl1 and Hn are projective, hence

free. |

We can view H as an intersection of subalgebras HE of L where
. HX=HeH,0. 6L, oL, 9. .

Suppose that we can construct free generating sets- BX of HX in sucha way

‘that: i

™) Bll; = Bg-l for n=12,....k—1 -

where BY = B We claim that B = U B} is a free generating set of H.
‘ n1

n
A
B

!
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Indeed, any element of H is contained in H ®Ho®..8H  ~for large enough n.
Hence, this element can be written as a Lie polynomlal in the elements of the set
Blu..UB] = Bl 1U-.BD. It follows that B generates H as a Lie algebra.

Let L(B) bea free Lie algebra on B over k.

We claim that the canonical surjective homomorphism a:L(B) — H is in fact
an jsomorphism.

To see this we totally order each of the sets Bg and then we totally

order the set B “requiring that if ve Bg and ue Bﬁ then: if n<m then
v<u

Using this total order of B we construct a basic family R in T'(B) where
T'(B) denotes a free magma on B. Theorem I.3.1 tells us that R is a k—basis of
L(B). Suppose that we have a relation of the form

** kia(7i1)+"'+kn.a(‘7in) =0

where kj €k, % €R and n> 1. The elements %5 ( = 1,2,...,n); are basic
-
monomials in I'(B) which belong to I‘(BIU .UBgll) " for large enough m

R
e
]
Rk

(F(Biu...UBg) denotes a free magma on BIU...UBﬁ). We totally order the set_

Bm—(BmU UBm) and then, using already defined total order of Bmu UBm, we
totally order B™ requiring that if u e B} U-UBD and v e Bm—(B“b UBD)
then u < v. Using this total ox{der of Bm we construct a basic family R™ in
I'(B™) where T'(B™) denotes a free magma'on B™.

Since H™ is a free Lie afgebra on B™, the set R™ is a k~basis of H™.

" The relation (**) shows that the elements 01(71 )yer ,O’(’)‘l ), viewed as the

elements of R are k-lmearly dependent This is a contradiction. It follows

that the homomorphism o« is bijective and consequently that H is a free Lie




algebraon B.

Now, we want to show that we can construct free generating sets Bk of HF

which satisfy condition (*).

We can reduce this problem to the following one:

Let L be a free N—graded Lie algebra over k with some homogeneous free

generating set X. Let H be a homogeneous subalgebra of L such that

Hmz Ln for m#n and Ln = Fn@Hn for some k—module Fn' We want to

construct free generating set W of H such that Wy = X, for k< n where

W =WnL and X = XnL, .

Let G be the homogeneous subalgebra of H generated by the set XU UX .

We see that Ln = k<Xn>&?Gn as k—modules, where k<Xn> is a k—submodule

of L generatedby X .

Since Gn C Hn, we see that Hn = (k<Xn>an)®Gn. Thus,
k<Xn>/k<Xn>an v k<Xn>+Hn/ Hn N k<Xn> + Gn/Hn v Ln/Hn v Fn'

Since the module Fn i3 projective, there exists a submodule Mn of Ln such

that k<X > = (k<X_>NH_)eM_. Since k<X > is & free k-module, both

M, and k<X >NH = are free k—modules. :

. 1,y2 ) 1.
Hence, we can chooge a k~basis Y, = YUY of k<X > M that Y isa
k-basis of k<X _>NH_ and Y2 isa k—basis of M.

Put Ym = Xm, for m#n Weseethat Y= U Ym is a k—basis of k<X>.

m21
Hence, Y is a free generating set of L by Lemma IL1.

Put S =TI(Y) -—Yg where I'(Y) is a free magmaon Y. Clearly S is
an ideal in T(Y). We totally order the set Y requiring that Y121<Y—Y121. Using
this total order of Y we construct a basic family R in I'(Y). Clearly,

R-S < RNS. Since H = k<S> = k<RNS>, Proposition I.3.1 tells us that H is

.
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a free Lie algebra over k with free generating set W consisting of S—irreducible
elements of RNS. Since = k<Y111>0Gn, we see that any S—irreducible
element of RNS of degree less than or equal to n, necessarily belongs to the set
‘ Y U..UY__ UV},
Thus H is a free Lie algebra with free generating set W such that
o Wm =Y, = Xﬂ; for' m < n. It solves our problem and consequently proves

the theorem.

g.e.d.
Using this theorem we will now prove two classical results ([14]; [15]).
Theorem II.2. (Sirsov) '
Let k be any field and let L be the free Lie algebra on X over k. Let H be
any nonzero Subalgebra of L. Then H is a free Lie algebra. ‘
*  Proof.
 We endow L with a total grading; i.e., the k—module’ Ln is generated by the
images of elements of T'(X) of length-n. *We define a filtration (Hn)n'21 of H

by setting H ='HN(L,8..8L ). Let gr(H)

be a graded algebra associated to this filtration; i.., gr(H) = (H) where

®gr
. n_>_1g n
gry(H) = H /H ;. “The k—linear homomorphism a from H_  into L

defined by

an
bn = 11+---+ln —t ln

induces an injective homomorphism o from H /H _, into L . Hence, the

map- @ = (a;,a,,..) i3 aninjective Lie algebra homomorphisg from gr(H) into
k\ L. Wewill identify gr(H) with its imagein L under themap .

Since k is a field and gr(H) is a homogeneous subalgebra of L{ Theorem II.1




‘where kj. €k and %, € ¢(R)-S for i=1,2,..,m.
1

- 56 -

tells us that gr(H) is a free Lie subalgebra of L with some homogeneous, free
generating set W.

For each element w € W let y(w) be an element of H_ such that a(y(w)) =
w, where n is the degree of W in gr(H).

&Put Y 5 {y(w),weW}. Obviously the map B:W —Y defined by w— y(w) is
bijective. We totally order the set W and then we totally order the set Y via
g, i.e, y(x;rl) < y(w2) if and only if Wy < Wo. Using this total order of\W we
construct a basic family R in I'(W) where I'(W) denotes a frée magma on
W. The map f induces a bijection of magmas F:I'W) — I(Y). The image of
R under the map B is a basic family R in I'(Y). Let a! be the subalgebra: of
H generated by Y. Themap /4 induces the canonical surjective homomorphism
B:gr(H) — HL. We want to show that 7 is injective.

Suppose that we have the following relation:

* kynt.+ky, =0

where k.ek and 7, €€R) (¢ is the canonical map I(Y)— Hl) for
i=1,2,..,n. Let “’(7i) = sup{n|7ieHn} and let N= Sup{w('yi), i= 1-,2,...,n}.

" Let S bethe set {y:w(7y)=N}.

The relation (*)- induces k-linear relation of the highest components of the

elements 7il; € S. Since those highest components are elements of R, they are
k-linearly independent by Theorem 1.3.1. It follows that all thie coefficients kik

are zero. We repeat this argumeny with r9duced relation

ki 7. +.+k; =0

hh Jm'yjm

L

1
It follows that all the coefficients k- are zero (i=1,2,...,n) and hence that the

S
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map B is bijective. /

RS

We will now show that Bl - n. . .
Let h beany element of H. There exists unique natural number n such that
he Hn but hg Hn—-l‘ Let ln be the highest component of h. We can write
1n as a linear combination of elements of the basic family R:

I, = k|x1+'“+kmxm
where ki €k and X; € R. There exi?ts an element hn of H' which has the
same highest component as the element h, namely

h = k173(x1)+ +k 'B(x ).

To see this, note that the isomorphism 73 maps any element of H1 to its
highest component. Thus, h-h €H_ ;. If we repeat the above argument to
the element h—h_ instead of h, we will find an element h__, € H' such that
h—-h —h 1€ H o This procedure must stop. Hence, we ¢an find the elements
h, éof Hl such that h=h +.+h.

1) *9
It follows that - H = H! and it proves our theorem.

q.ed.
Mrheorem IL3. (Witt)

Let L be a free, N—graded Lie algebra over a principal ideal domain k. Let H

be a homogeneous subalgebra of L. If the quotient module L/H is free, then H

is a free Lie algebra over k.

Proof.
It suffices to notia&itf' H is a direct summand of L. The theorem follows now

from Theorem 2.1.

q.e.d. N
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There is an%:her way to obtain the similar result to Theorem 2.1 which we will

present now. The main references for this section are [5], [7] and the end of

Section 1 in Chapter I. The letter k denotes a

commutative ring with ynity with a property that any projective k~module is
free. o d

 Let L and H be N—graded Lie algebras over k andlet £H— L bea graded
Lie algebra homomorphism. Let TH/[HH]— L/[L,L] be a "homomorphism

« induced by f. We will need the following lemmas:

\  Lemmall2.

The homomorphism f{ is surjective if and only if the induced homomorphism f
is surjective. In particular, if f is injective and I is surjective, then f is
bijective.

M" .

If f is is surjective, then obviously I is surjective.

Suppose that I is surjective. We will show by induction on the; degrees that f
is surJectlve In degree one f=1 Suppose that fis surJectxve in degre@ less
than n. Let x be a homogenous element of L By surjectivity of I, there

exists an element y of H_ such that x./f(y)mod([L,L]n = [L,LJL ). But

since [L,L] is generated by elements of the form [a,b] where a € Lp, be Lq

and p+q = n, we see that we can express x - as

x={(y) + 2w (z)]
for some elements w; € H“Ex) z.eH afi) with p(i) + q(i) = n.

7

It follows that f is surjective in degree n.

q.e.d(. /
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Lemms J1.3. ‘ | !
If the algebra L is a free k—module, and if Hy(L,k) =0 (cf. Loc. cit. Ch. I§.1)
then the homomorphism f is bijective if and only if the algebra | H is g free
k~module and the induced homomorphism I is bijective.
If fisa biject'ive homomorphism, then obviously the induced homomorphism
is bijective and H 1is a free k—module.
If T issurjective then by Lemma II.2 f is surjective. Hence,
0—~R—HL L —0 where R = ker(f)
is an exact se<’1uence of Lie algebras. Since L is a free k—module, this exact
sequence splits. It follows that R is a free k—-module. Hence, we can use the
Hochschild—Serre sequence (cf. Loc. cit. Ch. I§.1 and [5]) to obtain an exact -
sequence. (
*) _ Hy(L k) — Hy(L,H, (R,k)) — H; (Hk) — H,(L,k) — 0.
We have shown in Chapter 1§.1, that we cari identify Hy(g,V) with V/V-g
where g is a Lie algebra, V is any right; g-modiile. ,
We have also shown that if g operates trivially on V then H,(gV) is
isomorphic to V@kg/ (g,g]. Since by assumption H2(L,k) = 0, we can rewrite the
sequence (*) in the form )
0 - (R/IR.R)/(R/R.R)-L— B/(EH b L/ — 0.
The action of L on R isinduced by the actionof H on R, i.e, by the adjoint
representation. Thus =
(R/[R,R])/(R/[R,R))-L & (R/[R.R])/(R-H/[R.R] 2 R/R-H = R/[R,H]

Since T is injective we see that R/[R,H] = 0. We will show that this implies
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that %WO Indeed, the ideal R is a graded ideal with grading induced by that
of H( Let n be the smallest integer such that R # 0 (o is necessarily greater,
than 1). Since Rn/[R,R]n =0 we seethat R is generated by elements of the
form [a,b] where a E‘Rp, be Rq and p+q=n. Since R =0 for m<n
we see that R = 0. It follows that f is bijective.

g.ed.

Lemma I1.4. i

Let L be N—graded Lie algebra. Then L is a free Lie algebra if and only if:
(1) L is afree k-~module. v

(2) L/[L,L] is a free k-module.

(3)-- Hy(L.k)}=0.

Proof.

Suppose that L is a free Lie algebra with free generating set X = {Xhier
(I— some index set). By Theorem .3.1 L is a free k—module. Let X; be the
image of x; in L/[L,L]. Then obviously L/[L,L] is a free k~module with basis
®lier )

Let ¢ be augmentation map from U(L) onto k andlet I=ker(e) be

the augmentation ideal of U(L). The algebra U(L) is by Theorem 1.3.1 the free
agsociative algebraon X.

Hence, the ideal I is a direct sum of submodules U(L)-x; (i€I). It follows that
the exact sequence

(*) - o-—,}@U(L)Lk—oo

is & k—resolution of free U(L)-modules. Hence, Ho(L\V)= 0 for all right
L-modules V. Supposebnow that conditions (1), (2] an'é*(3) hold.
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Since L/[L,L} = GI(L/[L,L])D, we see that each submodule (L/[L,L]) is
n2

projective and hence free. It follows that we can choose a homogeneous k-basis
Y= {yJ}JEJ of L/[L,L] (J—some index set). . Let Y be a homogeneous
element of L whose image in L/[L,L] is yl Let H be the subalgebra of L

generated by Y = {yj}je ¥ The inclusion ¢:H— L induces the surjective

homomorphism ¢:H/[HH] — L/[L,L]. By Lemma II.2 the map ¢ is surjective.
Thus L is generated by Y. , .
Let L(Y) be a free Lie algebra on Y over k. L(Y) has natural N—grading
structure induced by degrees of the elements yj( jeJ). Let BL(Y)— L bethe
canonical surjection. Since the set Y is a k—basis of L/[L,L] we see that the
induced homomorphism F:L(Y)/[L(Y),L(Y)] — L/[L,L] is bijective.  Since
L(Y) isafree

k-module, Lemma IL.3 tells ys that fis bijective. Thus, L is a free Lie algebra.
q.ed.

We are now in the position to prove the following proposition.

Let L bea free, N—graded Lie algebra and let H be a homogeneous subalgebra
of L. If L/H and H/[HH] are free k—modules then H is a free Lie algebra.
m . ? .

Since L/H is a free k—module we see that L~ HoL/H as k-modules. Since L
is a free k-module by Theorem 1.3.1 we see that H is projective, hence free. Let
U(L) and U(H) be the universal enveloping algebras of L and H
, respectively. By Corollary 1.2.2 the algebra. U(L) is a free U(H)—module. Let

I be the augmentation ideal of U(L). Since I = wIU(L)x1 where x = {%;kier




e

is a free generating set of L, wersee that I is a free U(H)-module. Hence, the

-exac,t sequence

S 0= I UL)Sk—0
is a k—resolution of free U(H)—modules. It follows that Hy(H,V) =0 for all
right H-modules V. Thus, we can apply Lemma II.4 to the algei&ra H to get
that H is a free Lie algebra.

qed.

Remark. This result ig' weaker than Theorem II.1 since we need to assume that
H/[HH] is a free k-module. The following example shows that we cannot
conclude that H/[H,Hl is a free k-module assuming only that H is a free
k—module. , - .

xample IL.2. - ‘ |

Let L be a Lie algebra over the integers; generated by x = {Xl’x2’x3} with the
single defining relation 2x, = [x2,x3] and the degrees of x,x, and Xq are
equal to 2, 1 and 1 respectively. We need some results from Chapter III to show
that L is in fact a free abelian group. Assuming this for the moment we see

that L/[L,L] cannot be free Z—module since it has torsion element X

" We will return to this example in Example II1.3 in Chapter III.

The main purpose of this chapter is to determine the Lie algebra asseciated to

\ﬂ{e lower central geries of a 'ﬁnitely presented group in the case where the
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defining relators satisfy certain independence conditions. The methods apply to
other central series such as the lower p—central series of a group. However, the
proofs are entirely analogous to the ones given below, so we will only refer the
interested reader to the literature. The main references for this chapter are [1],
2], [7), (8], [9}, [10], [11] [12] and [i3]. For the reader interested in p—central
series, the main references are 22], [10] and (9]. The reader interested in the
applications of this theory to link groups is refered to [1], [23], [24], [25], [26] And
(27]. Some results presented -here may be also obtained by using other methods.
The interested reader is refered to [18] and [19].

4

’I;‘he introductory material for this chapter is contained in Chapter I.

Let F be a free group on. N-letters x,,..xy and let (F,) be the (x,7)
filtration of F. Let ¢ be the images of x, in gr (F) where n= T
i=1,2,..,N and gr (F) = Fn/Fn+1 (n21). The Lie \

algebra L = gr(F) associated to the filtration (F,) is by Proposition 1.4.2 a
free Lie algebra with free generating set {fi,...,{N}. If xeF, x#1, thereis a
largest integer n = w(xmch that x€F . This integer is called the height
of x with respect to (Fn). The image of x in gr w(x)(F). is'called the initial
form of x with respect to (F ) (We will write inn(x) for initial form of x.). If

x = 1, its initial form is defined to be zero. Let PpeTy be any elements of F,

\ anﬁl‘let R = (r},f;) be the normal subgroup of F generated’by’the elements

Ty 1= 1t Let p; =inn(ri) be the initial form of r; for i = 1,2,...,t; and let

L= (py»-opy) bethe ideal of L ggnerated by p; i=1,2,..,t. Let U(L/7) be

the universal enveloping algebra of L/7. Then r/[rVéomes a

k

x

A

~\

s




U(L/7)~module via the adjoint representation (c¢f. Loc. cit. Ch.I), where [r,7]
L= - denotes, as usual, the derived algebra of . Let (G, and (R) be induced
filtrations of G=F/R and R respectively ie, Gn = Fn-R/R and
R =RnF . If g denotes the Lie algebra gr(G) associaled to the filtration
(G,) of G wehave i)y Proposition 1.4.1) the exact sequence of Lie algebras:

0—gr(R)—L—bg—0.

If we identify gr(R) with its image in L, then clearly rcC gr(R). The natural
question which arises here is: "when is 7 equal to
gr(R)?" The example below shows that this is not a "trivial" question. '

Example IIL1.
. Let F=F(x;x,) be afree group with two generators %, and X, of degree 1

ie, m=1y=1 Let ;= xf be a relator and let’ R = (rl) be the normal
subgroup of F generated by r;. Using the formula (1.4.2) we get
brypx3] = g 1% g )y and

() [y hlxgl]]

= [y Ilbegpq Ly - xgx s

by T gy ey Mgy
Denote the images of three factors on the right hand side of (*) by ab,c
respectively. It follows that «fa) = 5, w(b) = 4 and w(c) = ¥. Hence, the

element

- ( i a= [[62’{1]’[[52)51],61]]
¥ is a nonzero homogeneous element of gr5(R). We will show that this element

does not belong to 7 where 7 is the ideal of L = g}(F) generated by 2¢,.

Since gr(F) is a free Z-module, 7 is free (as Dsubmodule of gr(F)). Let

{"]i}iel be its Z-basis (I-some index set). We can write Y% = 2% for some
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7€ L(iel). We choose an order &, < § and we consiruct the Hall basis
induced by this order (cf. Loc. cit: Ch. I§.3, Example 1.3.1). It follows that
element a satisfies coﬁditions R1, R2 ;md R3, i.e., it belongs to some‘ Z-basis of
L. Let {n,},; be elements of this basis (aéJ; J ~ some index set). If a€r,
then we could write

a= nl'yil+...+nk1rik = 2n17;1+...+2nk7ik (nieZ, i=1,2,...,k).

Since we can write -

. v =m g +.4m 7 (m €Z,i=12..k p=12..M).
i i) ey i oy

j 1
We see that !
a=(2n,m, +..4+2n, my_)n_ +..+(20,m, +..+2n,m, J)n_ .
1 ll k 151 o 1 IM k kM) Y
It follows that there efMwtsa natural number g€ {1,2,...,M} such that a = p o

- q
L3
Therefore, we can write \

1= 2n1m1 +...+2nkmk

which is impossible. Thus, a does not belong to .

We will partially answer the question stated above( by proving the following
theorem: > v '
Theorem I
(1) L/r isa free Z-module, and

(2)° 7/lr7] is afree U(L/r)—module on the images of py,..,p, then
g=L/T. >
Using Lemma II.2 we see that 7 = gr(R) if and only if the hoxhomorphisr_n

| “ter/lr ] — gr(R) [s(R).e(R)]

T R SeEe CIFLICIE B
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induced by inclusion 7— gr(R) is surjectiye (and hence bijective).
Using formula 1.1.3 we get the canonical surjective homomorphism

' ¥:U(L/7) — U(L/gi(R))
induced by surjection L/7— L/gr(R). | . _
We claim that 1 is compatible with 6§ in the sense that d(uﬂi;’c) = P(u)- f(x)
for all x € r/[r,7}, ue U(L/r). It is enough to show this for generators. So if
yelL and x€ 7, then y7 acts on x[r,7] via the adjoint representation i.e.,
yrxln] = lxlnd. Now #(yr) = yer(R), Kx(r7]) = x[gr(R),gr{R)] and
Kiylrr]) = [ylerRg(R)], and since  ygr(R)-xlgr(R).gr(R)] =
[y,x][gr(R),gr(R)] we see that i?deed Kyr-x[r,7]) = Wyr)- 8(x[n.7]).
Let M = R/[R,R] and let M, be the imageof R in M. In view of Lemma
1.4.1 we have an isomorphism gr(M) = gr(R)/gr([R,R]) where gr([R,R]) is the
Lie algebra associated to the filtration ([R,R]n)g of [R,R] with [R.RJOF, =
[R.R] .
Since the commutator in M is trivial, gr(M) is an abelian Lie algebra. Thus,

we obtain the canonical surjective homomorphism
6-:gr(R)/[gr(R) gr(R)] — gr(M).

We need the following result: -

~

Let k be a commutative ring with unity. If we have the exact sequence of

-

groups 2, ‘
1-R&FLF/R—1_ .

then w;e obtain the following exact sequence of rings

» 0— I(R) % k[F| & 1[F/R) — 0 )
where k[F] and k[F/R] denote the group rings of F and F/R respectively,
and I(R) is theideal of k[F] generatedby r—1 for all r¢ R.



\_/i(R hence the induced injection n:gr(F) — gr(A) (cf. Loc. cit. Ch.I§.4)

» In order to prove this, suppose that we have a relation *
E kf = 0 Whel'e ki € k, fi € F, .fi = fiR, i = 1,2,...,11.
Let f. fl, ,f be all of f's such that f R -f R --...—-f R. It follows
iy"g N ) 'm
that k. +...+k. =0 and { =f'r,,.,f. =1{-r_ for some r,,. wfm € R.
iy ~ in iy 112 i 11 2
" Thus, we can write
g
Zkf Ekflr-{-kf:f Ek(r-l)
=t hY j=2hhd hh 1_|~21‘
q.ed.

In view of this result, let (Z[G]n) and (I(R)n) denote the filtrations of Z[G]
and I(R) rwpec'tively induced by the filtration (Z[F] ) of Z[F] (cf. Loc. cit.
Ch.I§.4). Let gr(Z[G]) and gr(I(R)) be gradedrings associated to the
filtrations (Z[G],) and (I(R),) respectively. The mapping from F into the /

Magnus algebra A (cf. Loc. cit. Ch. 1§.4) deﬁned by x-— x—1 maps R into
]

_ maps gr(R) into gr(I(R)). Since the kernel K of the canonical map
U(L) — U(L/gr(R)) is generated .by the image of gr(R) in U(L) under the
map 7 (by LL3), we get the inclusion K Cgr(I(R)). Thus, we obtain the
induced surjective homomorphism /
v :U(L/gr(R)) — gr(Z(G)) (5~T-K — y;—T where y; = xiR).

We want to show that gr(M) igd gr(Z[G]) module.

The group G acts on M. The actior{induced by the action of F on R via !
the inner automorphisms i.e, for x € F and veR xR-v[R,R} = xvx 1[R,R].
Since M is an abelian group, M becomes a Z[G] module and (xR-1)-v[R,R]
= x»x W IRR]. Let eA—Z be augmented homomorphism defined by

#




t?fii‘ l

“pr(u)-#(x) for all ueU(L/g(R)) and xe gr(R)/[g

Xi — 0,

- The restriction of ¢ to Z[F] maps Inf, to In, (nieZ, f.eF i=1.2,..n), s0
i i ‘

it is the i/map induced by t_he homomorphism F'— 1. Hence, the kerne’l of this
map is g::deal I(F) generated by x-1 for all x€ F. Let J, be the image of
I(F), under the canonical map Z[F] — Z[G]. It follows that Jp My M Tk
and hence Z[G]n-Mchn 4k Thus gr(M) becomes a graded gr(Z[G])
module.
We want to show that §/ is compamble with ¢ in the sem?at 0 (ux) =
)gr(R)]. It is
sufficient to show it for generators. So, let rn € grn(R) be a homogeneous

element of gr(R) and let r_ be its representative in R . Then,

n
0 (&K Ty [gr(R)egr(R))) =

. 0’(T—TK t [er(R),gr(R))) = ¢ (Gﬂ[gr R),gr(R)]) = (% ler([R.R]) where

X—1 = ¢ is the image of x,—1 in gr(Z[F]) and [x;;r ] is the image of [x;,r)
in gr(R). But, |xi,rn|grnR,R]) = yT-re(RR) =
¥ (EK)-0([erR).gr(R).

g.ed.

We want to show that the homomorph'iéms | § and - are bijective. The proof
is by induction on the degrees. For d® =1, this is obviously true. Suppose that
# and ' are bijective in degrees n<k (We may assume that ke =
min{w(vl),...w(w{t)} since 7, = gr (R) for n<e}. |

I. Il l I. 'jZi ) I. . i l

Applying the induction hypothesis we have 7, =gr (R) for n <k. It implies

“that [r,7], = [gr(R).gr(R)]y since both sides of this equality are generated by
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the brackets of elements of lower degree. Since the kernel of the homomorphigm
T — gr(R), /ler(R),gr(R)], is exactly [r.,7}, we see that @ is injective in
degree k. ’
IL i + _ig bijective i
S}nce gr(M) = gr(R)/gr([R,R]), we only have to show that

(e (R) &R}, = g1, ((RR)).
holds. ) ’
In order to do that we will construct a subgroup H of R satisfying the
follc;wing three conditions:
(H1) H is a free group on yy,....¥y,- ' ( f
(H2) If r; is the weight of y; with respect to the filtration (F ) of F andif

H, = HnF then (H,) is the (Y,r)-filtration of H.

(H3) If gr(H) is the graded Lie algebra associated to the filtration (H ) then

gry(H) =gr (R) for n <k
Notice that in view of the Proposition I.4.2, those conditions imply that gr(H) is
free Lie algebra on Mooty where n = inn(yi) with respect to (Hn)

i=1.2,..,m.
Construction of the group H.

Since 7 i3 a homogeneous ideal of L aid by assumption L/r is Z—-ffee, by
Witt's theorem (cf. Lec. cit. Ch.IL.3) r is free Lie algebra with some

+~ hiomogeneous free generating set Y. Sinte the algebra L is generated by

\?

£+ €y the free Z-module L;@..6L, , has jjite rank. Hence, the submodule
rle.:.erk__l has finite Z—basis. It follows that the set YNr®..®r , is finite.

%Denote its elements by Sv'l,...,im (meN). ¥ 7, is the degree of ii for each

1

i =1,2,...,m, choose an element y; €T whose image in gr_(R) is y; Let H
1 1
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e be a.lsubgroup of R generated by Yyre ¥y Let gr(H) be a graded Lie algebra
associated to the filtration (Hn) of H where H =Hn f{;. Since, by tpe
induction hypothesis, = grn(R) for n<k and by our construction,
T, = grn(R) for n <k weget gr (H) = gr,(R) for n <k. In order
to verify conditions (H1) and (H2) welet E be a free group on YpYy

Let ’(En) be the (y,”"fltration of E, and let gr(E) be Lie algebra associated |

to this filtration. Let z bé the image of y; in grri(E). Thgn gr(E) is free Lie ‘

algebra with free generating set Zyyeensl (cf. Loc. cit. Ch.I§.4, Proposition

m

L4.1.). The canonical surjection «:E — H mapping y; to y; induces
surjective homomorpflism |
wgi(E) — gr(H) (5 —F; i=12...m)

Since gr(H)C r and Sr'i is part of free generating set of 7, we see that a is

injective. But, this implies that a is injective. Indeed, let e be an. element of
E such that ofe) =J. Since then, a{inn(e)) = 0 ‘and Zf is bijective, we see
that e € En for all n. Since E is free group, we can represent it as a subgroup

of the units of the I(agnus algebra A on {yl,...,ym}. Thus 0 E =1, and it
o n2l

| \ implies that e = 1.
We want to show that a(El) = H . We have a(El‘) =H=H,. Sux;pose that
(a(En) = H, for n<k The inclusions ofE )— H induce the maps
oE )/ o(E ) —H [H ,, which are injective by the injectivityuof a. Since |
oE,) = H) we see that ofE, + P =H +‘1. Thus, a(En) =H forall n. This
completes verification of (H1), (H2) and (H3).
' We return now to the proof of II.J \

In view of the condition (H3), we have
[gr(H),gr (H)]k = [gr(R).gr (R)]k- ’




Applying Proposition-1.4.2 we get ) “ a
(gr(H),gr(H)], = gr ([H,H]) forall n.
So, in order to prove II, we only need to show that
gt ([H,H]) = gr ([R,R])
holds for n <k. Since Hn = Han, the inclusions Hn_’ Rn induce the
injective homomorphism f:gr([H,H]) — gr([R,R]). We want to show that f is
surjective in degrees n<k. The subgroup [R,R]Il is generated modulo

[R,R] by the brackets of degree n. Let v e Ri,"‘w €R. with i +j<k be

J
nt+1 — Ry/Ry.q 8 bijective for

n+1
two elements of R. Since the map H_ /H
n < k, we can find two elements h € H;, g € H, such that h z'v mod R;,; and
g=wW mode 41 Using the formulae (I.4.2) and (1.4.3), we see that

[bg] = [v,%] mod [RRINR, ., :
which implies the surjectivity of f in degrees n < k amd consequently proves II.

111 The honmomorphism 8 is surjective in degree k.

By I and II, to show, that ¢ is surjective in degree k it suffices to show that the
composed map " = §’-0 is surjective in degree k. The conjugate of r,€R is
the same as the action of R €G on r;€ M, ie xR-;[R,R] = xrix_l[R,R] where
x € F, and r; is a generator of R,i=1,2,..,t Hence,M asa Z[G]-module is

generated by T, =r[R,R], i=12..t. Now, if m _ is nonzero element of

§:k(M), let my be an element of M; whose image in gr (M) is iﬁk. We can
rite
*) my = viT VT

where v, € Z[G] i=3.2,..t. Since Z[G] M cM_ 4p forall mneN, we

n
can choose my S0 that the abbve expression for m -involves only those terms

vit; with «(v) +ur;) Sk Since my does not belong to M, this
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expression is not empty. Let q be the smallest integer of the form

wv;) + ofr;), and let S be the set of integers i with «(v;) + «(r;) = q. Since
the composed map " = 9’0oy is surjective, we can chose homog%neous element
u, of U(L/7) such’that ¢"(u) =V, where ¥, is the image of v; in gr (Z[G])
with n=q—o(r) i=12,.t. Put §{=2ZTup (i€S) where Bi is the image
of p, in r/[r,7]. Since r/[r,7] is by assumption free U(L/7) module on
Ei(i=1,2,...,t), we see that £ #0. Since deg(¢) =q and the map & is injective
in degree q (since q<k) we see that O0#8'(¢) = ?Jq{;'f(ui)v"(ﬁi) =
v, 8"(p, )(i€S).

Since ¢"(ui)0"(7)i) is the image of vi-fi in gtq(M) and my is homogeneous of
degree k we get that q =k and ?ﬁk = 0"(£). Hence #" is surjective in degree
k. '

It follows by induction that # and §- are bijective and consequently that 7 =
gr(R).

Remark. Since r/[r,7] is free U(L/7) module, ¢ is compatible with # and
Y’ is compatible with ,8-, we see that both ¥ and ¥’ are bijective. Hence,
gr(Z[G]) = U(L/gr(R)) = U(L/7).

Corollary IIL.1.

Under the hypothesis of Theorem III.1 the descending central series of G is.
induced by the J-adic filtration of A Z[G] where J (augmertation ideal of
Z[ G]) is the image of I(F) under thécdnonfcal map Z[F]d—-» Z|G].
Proof. |

Since gr(G) = ngF)/gr(R) = gr(F)/r is a free Z—module, Birkhof{—Witt

i

theorem tells us that the canonical homomorphism  i:gr(G) — U(gr(G)) =
gr(Z[F])/K is injective. We have ‘the canonical homomorphism

1 ¢ ‘
' s
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B:gr(G) -~ gr{Z[G]) defiried as follows:

Let 'g'n be the homogeneous element of gr (G) and let g, be an element of
G, whose image in gr, (G) is . Define () =g ~T where g —T is the
image of g ~1 in gr(Z[G]).

We will show that 8= y’oi. If gn, g, are as above. Let fn be an element of
Fn whose image in G is 8y Then the image of fn under the canonical
injection gr(F) — gr(Z[F])) is l"n‘—_f where T —T is the image of f -1 in
gr(Z(F)). But i(g ) =F-T - K so ¢roi(g ) =g -T. :

Hence the map £ is injective which proves the corollary.

g.e.d. o

The theorem just proved suggests the following problem:

Let k be a commutative ring with unity. Let L be a free N—graded Lie algebra
over k with free generating set {{1,...§N} and let p,,..py be homogeneous .
nonzero elements of L. Let 7= (pl,...pM) be the ideal of I. generated by Pi»
i=1,2,.,M. The questiqn is when the following conditions are satisfied.

(I)  L/r is afree k—module.

(1)  7/(r,7] is afree U(L/r) module on the images of p,,...,oy.

The partial answer to this question was given in Propositions 1.3.2 and 1.3.3. In
order to answer thfs question ‘we will need a few lemmas.

Let k bea P.ILD. If E is finitely generated k~module and the dimension of
E(P) = Eﬁkk/(P) as a vector space over the field k/(P) is independent of (P),
where (P) is a maximal ideal of k, then E is free k—module with rank equal to

the dimension of E(P) over k/(P).




Poot.

We will u:‘:e the Structyre Theorem for modules ov’exj a PID.

We can write

E = TF(E)eT(E)
where T(E) is torsion submodule of E and TF(E) is torsion free k—module.
We can write
T(E) = k/n;ke...0k/n k
where o € k, i=1,2,..k, n,> 1 and nilni +1 for i = 1,2,....k—1. (The sequence
(nl,...,nk) is unique up to the units of k). Let P, and P, be two irreducible
elements such that P, |n, and P, does not belong to (ny,...,0) ) — the ideal of
k generated by n,,...,n,. (The element P, exists since (nl,...,nk) #1). Then
T(E)e k/(P,) = k/(P,)e..6k/(P,) (k—times)and
i T(E)oyk/(Py) < 0. ‘
This implies that T(E) = 0 and consequently that E is free k—module.

q.ed. ’

Let 1 be the augmentation ideal of U(L) and let I(r) be the ideal of U(L)
generated by the image of 7 under the canonical injection i:L — U(L). The
ideal I(r) is also the kernel of the canonical surjection s:U(L) — U(L/7) (cf.
Loc. cit. (1.1.3)).

The injection 7—1 induces the map ¢:7/[r,7] — 1/I(7)-]1 which is

U(L/7)-linear since x-v = [x,v] = xv—vx =xv forall x€L,v € r. The image
of ¢ is I(r)/I(r)-1 which is the kernel |of the map @:I/I(7)I — U(L)/1(7)
induced by the inclusion I — U(L). The image of # is I/I(r) which is the
kernel of the map e¢U(L)/I(7) — k

Y
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o  induced by the augmented map &U(L) — k. Hence, we have aanuence . 3%
of U(L/7) modules . , .
, of[rr] € Y1) 1L Ui 2 UL/ Sk — o0, U
The ideal I is a direct sum of U(L)-modules @U(L)((U(L) & Ass(£y,....6x)-
. | .

Hence I(7)-I= @I(r){i. Hence if we assume that k is an integral domain then
i :

I/{r)l =&U(L/7)¢ (F; istheimageof & in I/I(7)I).
i

Since by Corollary 1.2.5 U(L) is an entire algebra so we get the isomorphism

U(L)E/I(r)§ — U(L)/I(7)F, = U(L/E,
defined by u§; + I(7)§, — (u+I(r))%; foral! ue U(L) and\: = 1,2,...,N. i
Lemma IL.2. | . B
Let k be an integral domain and let M =1 ie., r= (plﬁ)lf L)7 is a free '
k—module, then 7/[7,7] isfree U(L/7) module with basis El. o ]
Proof.
By Corollary 1.2.5 U(L/r) is an entire algebra so if weI/I(7)-I, w#0 then
U(L/7)-w is free U(L/ ;') submodule of I/I(7)-1 with basis w. If we had
cp(b'l) =0 then I{r) CI(r)-I which would imply that I(r)c I® forall n. Since

n 1" =0 we would get I(7) =0
n<l .

which is not true since p; # 0. Hence, if up; =0 then up(r) =0 s0 u=0. It

follows that 7/[r,7] is free U(L/7) module with basis 51 and that the map ¢

is injective. -

q.e.d. . o

Let k bea PID andlet pj,..,py be homogeneous elements of L such that '
S .
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conditions (1) and (II) are satsified. If x or E(t) denotes thé Euler-Poincars

w ° 3
series ofa N-graded free k-module E ie., E(t)=xg= Elrank(En)t“, then \3
. n=
9
1) I/I—XN = XU(T) where N = T/[T’TL T= (pl’"”pM)'
‘ d d
1 M .
~ 2) Xu(L/r) = XU(L)/I + (t T4t )XU(L) where d; = degree of p;
i =12,.,M. o
3) © The rank of (L/r), depends only of the degrees of £ and py 1S1<N,
1<j<M. }
d Proof.
A . 1) In view of Witt's theorem 7 is a free Lie algebra with some homogeneous
. e 'free generating set X = {x;X..}. Since 7 cL; for all n and
L rank(L ) is finite we see that rank(N ) def a, and rank(U(r) ) are
.E!. . v finite for all n since rank(N ) = {xildo(xi) =n}=a_ and since U(r)
b ) is free asgociative algebraon X by Theorem I.3.1, we see that
X = 3L X B ety
4 ' . Uln) ™ n3o Pet=nl ok
e ! , wmch isexactly 1/1— X 8, t2.
* - ’ n>1 "
2) Since the exact sequence of k—modules 0 — r— L — L/7— 0 splits we
. ’ ) porollary L 2 Jtoget %
. - . UL) = U(eU(L/)
v .Y ' as k——modnles. Using the isomorophism ( @ U(r)n)®( ® U(L/ r)n) v
. - n20 n>0 -
2 © e m#wwr)mm T
"o - n,m>0 . )
T \ O Xu) =X Ky o

Hence, by (1) we can write -

- Xu(L) = Xu(/n/
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. The conditjon (II) implies that we have oo
-../‘\‘
:

N = U(I;/r)ple..’.eU(L/r)pM. . -

Thus, we get
d dy
INTE Xyw/nytett Xy
/‘- - Hence, we get

4 dy B
Consequently ‘ p)
d) dpg '
XU(L/T) = XU(L)/I""(t 4.+t )XU(L) e
Mch proves (2). . R ¢

\9 We can cl;\oose a homogeneous k—basis {'7i}iel of L/7 and we totally

order the ifdex set I. The Birkhoft-Witt theorem implies that the family

‘f ei ei o ‘
\' . of elements 7e =M 1""'7i 8 with i1>...>is and eik € N is a k—basis
s .

of L/r. Jet g be the rank of (L/7), éhen g, 19 equal to the number

|

of falﬁili%s (e;) suchthat n= T, b,, where b, = degree(?,) (i€I). This .
¢
is equivalent to th&/fact that XU(L /7) may be expressed in the form

#£ _ 1
U Xy ‘i';l,r‘b-t i,
b, “ ’ ‘
because N 1, = N (1+t +..) and the coefficient of Jﬁ in this
AT el

3
product is precisely the number of families (ei) such that Zeb. =n.

+,  The number of factors in this product su/(_:l} that b, =m istherank g
of (L/7), forall m>0 ie,

- ‘ : ¥
O/ ™ g gy |

Combining this-expression with §2) we get , °

o
p: !
‘ »

‘o

» > N - |
e . i I . . , . -
1 ? \
? ‘ , L
- e . v - b2
- ‘' . - ' i 1 \ e . . Toraw -
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n
m=]
Thns,,. 8m' depend on the degrees of El""’EN’ PprsP)-

ged. ' -J\
Let k- bea PID and let p be a homogeneous element of L such that p ¢ (P)L

. ‘ d d o :
G | X/ gy = e

for an;; maximal ideal (P) of k. Then if 7 is theideal of L generated by
we have: '

llﬁ —L/r is a k—free module.
2
Proof. ' .

The exact sequence 0 — r— L — L/7 — 0 tensored with k/(P) gives
' 0 — H(P) — L(P) — L/7(P)+0

[

)¢ 7/[r7] is afree U(L/r) module on the image of p. .

where X #
r{P)=rok/(P)er/(P)r, L(P)=Lok/(P)2L/ (P)L aad L/ r(P)=L/8)/(P).

The exact sequence 0 — [r,r] — T — T/[T,T] — 0- tensored with k/(P) gives

' 0— (@:rjm — 1(P) — 1(P)/[7(P),r(P)] — 0
for all maximal ideals (P) of k. The algebra L(P) is free Lie algebra over

k/(P) on fiel,.,.,' NoL _
) — Since L(P)/r(P) isfree k/(P) module, and p# 0 where p is the image of p -
. in r/(P)-r,_wg can apply Lemma III2 to get that r(P)/[r(I;),%(P)] is free
‘ U(L/7(P))—module with basis 5 + [r(P),7(P)] (for all (P)). Hence, by Lemma
o IT1.3 the rank of (L/ r(P)),, ‘does not depend on a choice of maximal ideal (P)
of k. .
*  Hence, by Lemma IIL1, L/7 is free k—module.




- PRRRWRF=o TSN W oy el T 7S Sk o e
U e vt SEEYR S ST AR T R
N [ H T

-79 - .

%
-
7.

Ty

Now we use Lemma II.2 again to conclude that 7/[r,7] is free U(L/r)~module

* with basis p + [7,7].

q.e.d.

Now, we return to the example given in Chapter II.

Example [IL3. (11.2)

Let L be Lie algebra over the integers with the presentation <X} ,XoXgi X, =
[x2,x3]>. Let 2,1 and 1 be the degrees of X1 %o and x’3 ~mpectively. We
want to show that L is Z—free module. By Proposition I1L.1 it suffices to show
that 2x; — [x2,x3] ¢ (p)L(X) for any prime number p where L(X) is a free
Lie algebra on X = {xl,xz,x3}. We choose & total order on X such that
Xg < Xg. U.sing this-total order of X we construct a basic family R in I'(X)
where P(X) is a free magma on X.

|Henoe,' x, and {x2’,x3] are elements of R. -

If 2% — [xoxyl € (p)L(x) for some prime number p then we could write

\

2% — [XgXq] = p111'yi1-}-...+ponk-'yik |

where o € Z, %, € R, j=12,..,k. This would imply that (2—-1;’-'nm') =0 and
J ’ ‘

(1+p-nq) =0 for some 1<¢m,q<k m#q But the;\second equality is

‘impossible.

g.e.d.

Now, let k beacommutative ring and let L be a free N—graded Lie algebra on
{€)>-6N} over k. Let &...,pM "be nonzero homogeneous elements of L and
. let 7 be theideal of L generated by PP\

Ky - Fo ¥ * - N
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We call the elements P PM strongly free if and only if:
(I)  L/r is afree k—module. '

(I1y  7/[r,7] is a free U(L/7)-module on the images of PpreaPppe
Let A(t), B(t) and C(t) denote formal power series in Z[[t]].
1) We write A(t) > Tl?.(t) if and only if a - b, 20 for all n were A(t)

= )Sat and B(t) = Ebt
n=0 % n=0 1

2) We write A(t) > B(t) if and only if:

either 3 T-bn 29 for all n, or ?no > bno and a, = bn for n< Ny

(some n).
lemma II1.4.
) I A(t)2pB(t) md C() 250 then A(t)-C()2B(t)C(t) with
equality only if A(t) @t) or C(t)=
9)  If A(t)2B(t) and C(t)20 then A(t)-C(t) > B(t)-C(t) with equality
only if :&(t\) =B(t) or C(t)=0 ‘
3) If A(t) and B(t) are iiwert’ible in Z[t]] and B(t)>0 then
, A(t) > B(t) if and only if A(t)"1 < B(t)"1 and equality occurs only if
A(t) = B(r). |
4): - If A(t) 2 pB(t) then A(t)+C(t) 2 pB(£)+C(t).
. I A(t) 2 B(t) then A(t)+C(t) > B(t)+C(t). '
If C>0 then A(t)2p)B() implis C-A(t)> (,IL)C-B(c).
1) ©  For all natural number*_r_n we have

8gCpy+--+a, Gy — (bgCpt- 4 Cg) = Cplap,—b )+ +C  (a5-bp) 2 0.




2) Let n, be the smallest natural number such that a_ > b and let m
be the smallest natural number such that Cm > 0. Then
0 .
C >C__ b and hence
o moa‘no m,°n, °,

C Oano +m0+cl _1+.+C

9

a an >’
n0+m0 m0+n0 0

b +C;b +..+C b
"vhich proves (2).

3) T A®)2B(t). then At >0 so by (2): 12 A(t)B(t). Applying

oy (2) again we get
| * Bty » AL
In the same way we prove that (*) implies A(t) ;B(t).
4) Trivial.
q.t;.d. l) /
Lemma JIL.5.

Let k beafield Then

s " dl dM
ith equality if and only if the elements P1r-Ppg Are strongly free.

Condition (T) is obviously true since k is a field. Proceeding as in the proof of
o L 1113 we get |

XO(L) = Xu(L/)/ XN
wherq N = r/[,7]. Since N as a U(L/7)—module is generated by the images of




L o L L - )
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where (O(L/ r)i ¥ U(L/T) i=12..M; defined by

(ul""’“M) — u1751+...+uMﬁM (where u; € U(L/r)).\ If we want to make the

map ¢ graded of degree zero we only need to define new gradings on (U(L/7))!
by (U(L/7))) = U(L/7),_q" where d; is the degree of p,, i =12,...,M.
: i

K e

By surjectivity of ¢ we get ’ /T

Xy/mlt-tyw M2y -
with equality if and only if ¢ is an isomorphism. Hence,
d d,
(t 1+t M)XU(L 1) 2T

.

It follows that

T k ! dl dM
1 - XN ZTI - (t +...+t )‘ XU(L/T)

and hence -

\ “d d
1 M
xy(ry o) 2pvgqey =0+ Oxgey X
Since \XU(L)(I"XN) = Xy(L/7) (cf. Loc, cit. tht? proof of Lentina. I11.3) we see

that

4

Applying Lemnma II1.4 we get .
PP T Y ’

with equality only if ¢ is an isomorphism, i.e., if and only if pl,...,pNi are
strongly free. L

e

q.e.d.

" Propogiti

Let k be a principal ideal domain. Let L be the free, N—graded Lie algebra on .
{§---€n}- Let - py,...,pp e nonzero homogeneous elements of L of degrees




e
o
"
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dl""dM respectively. ‘ . \

If for all maximal ideals (P) of k we have
‘ od

Xu/n)e) = e/t + ¢

then the elements PyrePyy are gtrongly free.

Proof.

d .
1. - UM
+...+t )XU(L)

The ideal 7(P) = 78,k/(P) is free Lie subalgebra of L(P). .Since the rdnk of

n
conclude that the elements b'l.,...,'p'M are gtrongly free where Ei is the image of

g in 7/(P)r for i=12,..,M. Hence, by Lemma IIL3, the rank of (L/r(P))

L, isequal to the rank of Lnek/ (P) we apply Lemma IIL5 to

does not depend on a choice of the maximal ideal (P) of k. Applying Lemma.
III.1 we conclude that L/r is a free k—module.

The elements p; + [0,0] generate 7/[r7] as a U(L/r) module, i = 1,2,...,.M.
Hence, in order to show that condition (II) hold, we only need to pio:re -that they
are U(L/r)-linearly independent. The relation

” 4y (py + [+ tuggloyHrr) = e U(L/p) i =12,..M

tensored with k/(P) would imply that { ’ i L

u,®1(p;81 + [r(P),r(P)])+...+uMe1(joM01 + [7(P),r(P)]) = 0.
. But, the elements p@1 + [r(P),7(P)], i= 12,..M, are U(L/7)(P)-linearly

.., independent so u®l =0,i= 12,..,M. Since L/r is k—free module, the algebra

U(L/7) is k—free by Birkhoff—~Wit: Theorem. Thus, ;@1 =0 implies u; =0.

~

.
.
N

q.e.d.
In view of this proposition and Lemma HI.5 we congider the following problem:
Let Ass(¢;,---,€y) = V be free associative algebra over a field k. The algebra

V is.given some N-grading by associating positive degrees to the elements

!
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£1€N- Let ag,..,0p be nonzero homogeneous

elements of V of degrees dl’ ,dM respectively with d >1, i=12,.,M. Let
R be two—snded ideal of V generated by {al, . ,aM} We call the elements

b

wglxigglfandonlyxf R Ce o F _—

/

, d; dy
V/R(t) = V(t)/1 + (t “+..4+t T)V(t).
where V(t) and \‘:V/R(t) are Euler—Poincaré series of V and V/R ,‘

h ~ . . . §

respectively. )

12 ,gM are are strongly free.
We will need some preli inaries on locally finite, connected, N—graded,
k—algebras. The main references for this paragraph are (1] and [2].

finition II

" .
Let k be a field and let A = 00 o be N—graded associative algebra over k.
3 IIZ -
Then ‘
1) . A is called connected if Aj= k. ) W

2) A is called locally finite if dimension of A is finite for all n.

As in [2] we will denote the category -of all locally finite, connected k—algebras by
C.G.A. | ;
Let A, B bein C.GA. Wecan write A=keA and B=keB where

A= 0A, B= ® B. By thecoproduct AuB in C.G.A. of A and Bwe
nl n n>1 1}

will mean AUB = keAeBo(AsD)o(BeA)o(AeBoA)e... where all tensors are
taken over k.
Lemma II1.6.
If A, BeC.G.A. then
* (A = (AW + (B -
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Proof. é
) The formula (*) is equivalent to
. (**)h X A(t)-B(t)(1+AUB(t)) = AUB(t)(A(t)+B(t))-
“In order to prove ("‘*) it suffices to prove that there is an isomorphism
(***) A®(koAUB)®B » AUB®(AeB) = (AUB®A)8(AUB®B)
of vector spaces over k. If we write AUB = keAUB th;n left hand side of (***)
becomes } %
(kex)s(kekems(kem o
= kekGK_B'eaB'eBe(ﬂ@)QKQKG(KOTB’)Q(KOB%(I@B')@(KOTHOB')
The right—hand side of (***) becomes A
(koAU e(kekeAeE) ‘ T
‘= kekeAeBeAUBOAUBe(AUBEA )o( AUBSB). ’ :
Since

AoHe(AeB)e(AeB)o(AeAUBeB) & ATB

/
a8 vector spaces over k we proved (***)

q.e.d.

Let now A = Asé( all,...aM) be a free associative algebra on
@1,...,aM andlet d, be the degree of @, i = 12,.,M. We can write
d, dM d; dM)2

CA() =14t 4.4t +(t Lot M2y

and hence ' ' -
d d
A(t) = 1/1%(t Lio 4t M).

If Bis anyrassogiative algebra over k generated by .ﬂl""’ﬂl\:l with do(ﬂi) =
) di’ i=1.2,..,M then

4




d d
“ B(t) < 1/1—(t 4.+t M)
with equality if and only if B is isomorphic to A via the canonical map defined

by a; — 4, i=12,..M. - @
Let us introduce the following notation:

1) V= Ass(§,.&y) _
2) Ass(a) = Asé(al,..aM) — free associative k-algebra on { LIRS 5
3) R = VaV is the two—sided ideal of V generated by {ay,...0y,}-

4) U=V/VaV.

1

~ We have the cand%al map ¢:Ass(a) — V sending a. to o, for i=1,2,.. M.

We hve the canonical projection mV — U which is graded of degree zero. Let s

- —-—be any section s:U— V of degree zero (such & map exists since we are working

over a field). ,
Let £ = s ﬁﬁthe canonical map from Ass(a)uU into V. We see that

‘f("ztui'auz...) o go(yl)s(ul)tp('yz)s(ué).’.,, where u, €U and ‘7ieAss(q)

(ieJ-some finite set).

Lemma IIL.7. . /

The map f=-‘- (s is surjective.

Proof. ,

We will pxgceed by induction on deérees. i
Tl;e map f is obviously surjective in degree 1.

Suppose that f islsurjective in degrees k<mn, and lef wve Vn 1 Let

h = sx(v). ' .

Since m(v-h) = x(v)-x(h) = x(v) —x-83-x(v) =0 we see that v — heVaV.
M
Hence, we can write

%



a, w. (iel-finite set)
it

where u;,W; € V are homogeneous (i€I). Since di >1 for i=1,2,..,.M, we see

i

that do(ui), do(wi) <n (iel). Applying the induction hypothesis we can find

elements uf, w{ € Ass(a)UU such that f(uf) =y, and f(w) =w, (ieD. It
follows that ’
v—h=f(Eu§ajiw§) (iel)
* which proves our lemma.
B AN

.
q.e.d.

Above, we defined the map f using any section associated to the projection ...
There is no canonical choice of s but the next lémma will show that the
particular choice of s i‘s not very important, at least for our purposes.

The following are equivalent: .

1)  Ass(a)uU?2V as graded vector'spaces.

2) f is injective for some choice of s.

3) fis injective for any choice of s.

Broot | |

That (3) implies (2) and (2) implies (1) is obvious. To see that (1) implies (3)

notice that f is a surjection between vector spaces of equal rank in every

homogeneous component, hence an isomorphism. : .
‘ /
q.e.d.

1)  (Ass(a)uU)(t) 2 Vi) with equality if and only if the eleménts al,.'..,aM

-/

v Bt s RETIR S0E T YRTS FRE ’I",W"

¥ RS U ﬁ&%’ i ._w} J .S f;%“'l),‘,;f‘ &?‘3;“: i’&a‘ K
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are girongly free.

2)  Asa coproduct of the propf'of (1) we hve
| A1 O

, V(£)/1+ (¢ 4.4t THV(E) SUt) -

with equality if and only if a;,...,aq are strongly free B

Proof.

Since f is a surjective map of degree zero we have C
(Ass(a)uu)(t) 2 V(t) '

with equality if and only if f i3 an isomorphism.

Hence, by Lemma IIL.4 we have .
| L [(Asauuer < v
By Lemma I11.6 we get g

-

Ass(@) ()] + o™ -1 ¢ vy

and hence
o § o dM -1 4
. ; 1=(t “ott T +[UR)]T -1 V)]
It follows that ‘ ’
’ d iy
e V(t) S U1 + (t “+...4+t T)V())
}*' E and consequently " .
d  dy

V(t)/1 + (t “+...4+t V(L) € U(t)

. " - with equality if and ouly if ay,7,0y; srestronglyfree
ged.
1, — i @y aTe monomials in el,...,gN, of degrees greater than or equal to 1,

S .
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then () 1--e, Oy BTE said to be gombinatorially free if and only if g )
’ 1) 'no ¢ is a submonomial of o for i#j, and

2) whene,ver' o = XY and aj = )f2y2 where XY XYy are monomials

\ of degree > 1, we have x, # yg. o v
P .I. 1112 i 4 .

CIf ql,...,aM _ are nonempty monomizls in §,,...,¢y, then 0’1"""44 are’
corbinatorially free if and only if ay,.,0)p are strongly free.
N .,
Let mV.— V/Va\. be the projection map. A k-basis for U'=V/VaV is the
r—image of the set M = {all monomials in 51,...,§N, which do not have any o

as a submonomial}. Let s:U — V be the section defined by s(vr(x)) = x for all
xe€M. If G isthe suba.lgebra of V generated by o= {al, wapg} we then
have the canomcal surjection -

g ¢:Ass(a) — G (a.-—o o, i—--1,2,...,M). S
The map £ = pus:Ass(a )UU——oV i ]surjectlve by Lemma IIL7, and it is

mjectwe if and only if 0,...,a) are strongly free (Lemma II1.9).

N A k-basis for Ass(a)UU consigts of all sequences (rg) =
70'31'71""°7m—£'gm :cmch that: m»> 1, 706M(a) 7 EM (o) = {1} fér
i>0, s(g,)€EM and s(gj)eM—{l} 'fo£ j<M where M(a) i a free
monoid on a= {al, ,aM} Let M(€) be a free monoid on the set ®
£ = (&bl ’ A |
To show that f i3 an isomorphism is equivalent to showing that the .
- representa.t.io/x; of any element x € M(¢) a5 a product L

™ v s(gl) W _y) (8 )

) . -
¥ - ..
&%@h‘ [ [ N ..\{ oo et e T kR o
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i3 unique. .
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3

Suppose that @y e, O BI€ combinatorially free. To see that the \fe“p‘résentation

of any x € M(¢) as a product of the form (*) is unique, supposé' tile contrary.
N e

Choose "x € M(£) so that the length of x is minimal among the elements of

M(€) with multiple representations, and let

x= @l7g) 3(8y) o ey ) 8(8y) = o) ()l 7 5(eg)
be two distinct representations of x. We may assume that the length 1(x) of x

ig greater than zero since clearly 1 = 1-1 is unique.

" Case 1. Nn="%=1

In this case, we must have m,n >0, hence one of s(g;) and s(g;), say s(gl) is
a submonomial of the other. Hence, we can write s(gi) = s(gl)-s(hl) where

s(h) € M. ‘Thus, the element

v

¥ =0(1) 8(8g) - AWy )8(8ry) = 8(hy)-0l7) - 7 _y)-8(8p)

also has two distinct representations, contradicting the minimality of x.

e -
Case2. 7y #1 and p#1L. ’
In this y an write = . Q d =a, +..;a. .
n case, we can wr ..70 011 als an 70 O'Jl O'Jt

If a, =a then x is not minimal. If a # a. , then one of them is a
T . h'h
submonomial of the other contradicting the fact that a0y are

\

combinatorially free.
: 1, 7%= 1.
Cased. 1 #1 15 9

Le us write Y= ail-...-ai and 77 = ajl.m.ajt
8

) for-if we did, then apl would be submonomial of s(g{) contradicting the

&
. We cannot have 1(s(g})) 3
(2
1 ‘ ‘
fact that s(g{) € M. Hence, ai1=8(gi)'x1 for some x; € M(§) - {1}.

¥ Ua )2 l(s(gi)w:rj ), then o is a submonomial of ¢  contradicting the
1 1 - 1 . 1

T

. .
] \
[ ! v N
Torem, L P [ ‘ i !

. .
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fact that a ey are combinatorislly free. Hence, s(g")-a‘ =0 *Xq for
« 1M ) 1 i M

s?me )@G M(¢) - {1} It follows that aji =XjX," and -ail = 8(g{)-x; But

this contradicts the fact that @j,.,0)g are combinatorially free.

+ Cased (=11t
As above. ‘ ¢

Conversely, suppose that ay,...,a) are not combinatorially free.

}

' If o is a submonomial of aj, then aj = X0y for some x,y € M(£) and we see
that a'j has two representations as a product of the form (*),
If @ =x-y and o= 2-x for some x,y,2 € M(€) with y,z, € M(€) - {1}, then

oy = 0y =200 has two distinct representations of the form (*).

q.e.d.

& )
.Let f:V > H be asurjective homomorphism of elements of C.G.A. where

V is a free assoc,iative algebrg on a totally ordered set 5. Let M(S) be the free

monoié on S ordered lexicograpHically. Then:

1) There exists a hereditary subset M of M(S) such that f(M) isa
k-basis of H. '

4,

2) I xeM(3p-M, then f(x)ek<f(y):yeM. and y <x>, where k<S>

denotes the vector subspace of H generated by the set .
Wedefine M irductively. Let x; =1 and suppose that X,..x, have already
—
been chosen. Let Xp41 be the -smallest' element. of M(S) such that
¢

’

f(xll +1)C¢(k<f(x1),...,f(xﬁ)>. Cleatly, conditions (1) and (2) are gatisfied. To

see that M is hereditary, suppose the contrary. Choose x € M such that.

’
~

‘ {
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B,
| yEM

CX=VYW where v,y,W € M(S) and y¢ M. We can write- fly)= -Z k;f(ui)
. o = - <y
for some u; ¢ M, k; €k. \ '
— Hence 5 ‘» |
L ‘ ‘v fx)= & k-f(vuy-w). ;
' u; <y ,
- . Since u <y implies v-u w<v-yws= X, we see that f(x) is a linear'
g combination of f-images of smaller monomials. " This contradicts our choice of - .
M. g.e.d.
Let @ ...,0p be homogeneous elements of the free algebra
. Ass(fl,....fN) over a field k. Let us totally (;rder the set & = {{1,...,§N} and
thén order the free monoid M(¢) lexicographically. Let (.115 dénote the highest ‘
", termof o, i=1,2...M. ’
¢ If &1,...,&M\are combinatorially free then a,...ap¢ are strongly free.
Proof.

i

Let M be the hereditary sub}et of M(¢) as constructed in Lemma II1.10. Let

~

M = {x € M(¢): no ‘;’i is a submonomial of x}. Then the images of the elements
of M under the canonical projection £V — V/V&V =U forma k—basis for U
where a = {&1,...,&M}. The image of M under the caﬁonica.l projection”
mV —V/VaV =T form a k-basis for U. Since N

0= r(ai) =k x(zvi) + 7 (a linear combination of smaller monomials)

ba for some nonzero k; € k, we see that 7{a;) € k<{P(x):x € M and x<q;}>. Thus,
(“xi/j! M for i=1,2,..M. It follows that M M and consequently that rank .
(Uy) ¢rank (U ) forall n. Let d; be the degree of a;, i=1,2,..M. By

-

Proposition II1.2 the elements a,...,a, are strongly free. Hence <

i .
R R - - . '3
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. . 4 dpge -
U(t) € pU) = V(E)/1 + (¢ .4t TIV(E). - -

By Lemma TI1.9 this can only, happen if U(t) = V(t}/1&

dl dM < v
(t "+t T)V(t), ie, if ap...,app bre strohgly free.

[}

q.ed. .
Example IIL.4.

Let L be the free Lie algebra on 61""’6N over a field k, and let @yens ON_y -

be elements of the following form:

! N
* . = e *1C. .
where a, € k,i=12,...,N-1;j=12,..,N and & =4a. o+
j - |

Let G beagraph with vertices {1,2,...,N} and let us join the vertices i and

jifi#j and a; #0. Wesay that G is connected if and only if for each pair

. J
of edges, there exists a way between them.

A

We will show that: __

if G isconnected then ..oy ) _are strongly free,

We chopse a maximal subtree T of G ?nd we relabel the vertices so that for

every m the vertex v is T—connected to one of v +1,...,'v N (i-e., the direct

m \
way in T between Vi and one of V1 VNe exists). Next, we label each
vertex "“high" or "low" inductively as follows: vy is "high". If v; is labeled

"high' or "low" for j> m, then we label v, "high" if it is not G—connected to

>~

any "high" vertex v, with j>m (i.é., there is no direct way in G

J
between v and any "high" labeled vertex Vi with"j > m or in other words
a =0 if j>m and v, is "high"). Otherwise, we label v__ "low". It
m, j m
: !
. N

ety R R T T A L A N ENRTIR)
Il s tw. v B e d st g bacbeted | o b Dl W aiea v e ey




7 R P e SR
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o o follows that no two high vertices are G—Connected. : 0 b
Next we label 5 "thh" or"low" depending on whether v1 is "high" or "low". -
, ) We order the set {gl, +by} a8 follows: & < ¢ if & islow and & is high, :
and we endow low and high elements with the natural index order (for example -
{5 < &5). Suppose that v is "high" with m <N. Then o = Eamjlfm»fj]
? with £ "high" and fj "low" and amj;o'for some j > m. - .
Hence o = fmfj with €j "low", ?m "high" and j > m.
Suppose ’;ha.t m is "Iow"“. Then a, = fj'fm with fj "h'igh",{m "low" and .
g j > m. ‘ - '
«  Weclaim that al, ’O'N | are combinatorially free. C i
Indeed, if a; = o for some 1 <i,j< N—1 with i < j, then we cannot have both - ‘
'§ and f high or low: if a is "high" then a -f 5 a.nd if a = a then
o J 5 £ contradicting that i<j If a is "low" then al 61 § a.nd if
. o= aJ then ajrﬁ 3 contradicting that i < j. v |
It follows that ay,:. "’N—l are all distinct, and since they are all of degrée two
i . we see that none of them is a submonomial of the other.
| If Ev. ={n & then § is‘i’l:avays "high" and £, i8 always "low". Hence, the
3 e second part of Definition I11.5 is also satisfied. -4 -
S By Proposition II1.3 the elements ey Oy a.restrongly free

Let L be the free Lie algebra on ,{51""'€N} over the integers; and let
e QN be elements of the form (*) with a €7Z. Let G(p) denoté the

. . ° J —_ ¢
reduced graph whose edges are {1,2.,,,.N} and whose vertices i and j are

joined if and ‘only if a; =0 mod(p). S
J .

. .
s_connected for al

— pr
\ .
A w!
. . ¥
Tk s o e
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¢ . eclements °’1"""°‘N—1 are strongy-free. -
We will establish now a necessary and sufficient condition for G(p) to be

connected for all primes p. - o \

v

Let B b the matex with, N rows labeled by the natural aumbers 1.2,...N, and

d

N
. ~(2) columns labeled by pairs of natugal numbers (i,j) such that i< j and

-1¢i, j<N. The position (i,(i,j)) and (j,(i,j)) are equal to a;, and -
. j j
respectively (i < j). Otherwise they are equal to zero. Since the sum of the rows

is zero, the rank of B is at most N—1. The relation "the vertex- Vm is -

~ - [] ’ . -
cgnnected (not necessarily directly) with vj" ris an equivalence relation.
Suppose that G(p) is diiconnected for some p. Let B(p) be the matrix B _
reducéd modulo p. Then, there exist at least two equivalence classes in the set

of vertices: one can be represented as L

a ,kx(lzc) submatrixl B, of B(p) and the second caq be represented as a lx(lz) /

submatrix B of B(p) with k+1¢N. The submatrices B, and B; are

disjoint. Since the sums of the rows in B, and B, are both zero, we see that

rk(Bk) + rk(Bl) .$ k=1+:{—1 ¢ N—2. Hence, if we prove that rk(Bk) =k-1, we \

.. will prove the’ followms statement: Gip). fs connected for every ptime tumber p )

=N-—1 where B(p) is the matrix B reduced modulo

p' . .
. .
B
We relabel the rows 1,2,...,N such that 1,2,....k are-the rows of Bk(k <N).
- AN

Suppose that we have the relation , -

(**) bR++bR =0 / %
: h
where O#bjEZ R is a row of Bk,3-12, .1 and n< k
J
Since each column of Bk contains at most two nonzero elemgnts a and /La

]

. - ] \
.
. -
' *
?'{ . ¢ A
; .
A ' *
)
- .

» + )
-
'

T~
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(aEZ) we see that for every b there exists b such that b; = b Hence, we ’

can rewnte the relation (**) in the form | ’ “ ' oL
. . R. = = -
blRJ1+b RJ2+ +meJ2m—l+?m J2m 0 with Jzk 1<J2k’k 1,2,.. ,m , )
, ’ At least one of the rows Rj or R 2 gontams a nonzero position other-than
-~ 1

(Jlf(Jl’Jg)) or (ng(‘ilvlz)) Let it be (le(Jl,J)) If R ¢{R i) 2R } then
b, =0 contradicting our assumption. Hence, R.€{R. ,..R. *} and it
1 ' ) 7 dom

follows that b1 = b, for some i# 1. Repeating this argument we can finally

conclude that all N

coefficients in the relation (*) are equal to bi. Since n<k /alndek represents

. an equivalence class in the set of vertices, there exists a vertex Yi 4 {vi ¥y }
1 'n

which i connected to aleast one of the vertices R
1

i Suppose that Vi is

‘ . _ n !
=" connected to v; . This implies that in the column (i;,j) when i, < j orin the
1 [}
) column (j,il) when j< iy the only'nonzero positions are (i ,(il,j)) and
(j,(il,j)) in the first case or (j,(j,il)) and \(il’,(j,il)) in the seoonc;case. Thus,
. b1 = (0 contradiciting our assumption.

I.Q&L(.Bk)-—k—ﬂ o’ X
Let B, be the, normal form of B,ie, B; = diag{d,,...,d,0,0...0} with
d. ldl 21 Rank (B(p)) = N—-l for every p if and only if rank(Bl(p)) = N-1 for
every p,xe,lfr = N-1 and d = 1. Thus:

.G(p) is connected for every prime number p if and only if the greatest common .

divisor of the N-1-rowed minors.of B is equal to 1.
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@ L . .'Let L be a free Lie algebra over Z on- {{‘1,52,53} with £1 > & > 'Eé :
L T e et o= [egleptll and ey =[6 061,650 !‘\ o
then in U(L) ZZ/pZ 'the highest terms @ = {2-053 'and a2 =£&y ‘§3 xa
. . are combinatorially free for gu prime numbers p. Hence, \x \ )
S -they are strongly free for all i). Thus o apd 02 are strongy free as elements of *
. . L ‘ /., % @3\‘\' ':‘3’ | '
b)) et g =[g.8) and o= [[51,531 &) e
. Then, in U(L) ZZsz the highest terms @, = €€, and ap=¢;-Ey¢, are .
combinatorially free for all P- Hence, 00 “are strongly free in L.
. " Note that we could conclude this directly from Proposition 1.3.3 ta.kmg @ to be (
{ the ideal of 'L generated by 3T ‘ L
. : ) I T - . ' )
| | - R ) }
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