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On Subalgebras of Free Lie AIgebfas and . . . , 
on the Lie Aigebra. AS8OCia.ted to the Lower 

bentral Series of 8r Group, 

Abstract 

.. 

T~ main purpose of the first part of this thesis is to answer the q estion: . 
"When is. a subalgebra of".a. free Lie algebra free"? 

/ 
In the second part w~ 

determine the Lie algebra I&Ssociated to the Iower central series of a group in the 

case where the defining relators satisfy cert~n independence conditions. In the . 

third part, we give sorne criteria for elements of the Lie algebra to he strongly 

free. 
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Sur cert8Jnes sous-algèbres d'algèbres de Lie libres~ et 

sure l'Algèbre de ~ie aBaÇciée à la série inférieure centr&:le 

~ d~JIl groupe 

Résumé 

" '-

" -• 

• ~ _ 1 

. , 

Le but. principal de la première p~ie de cette thès~: est de déterminer les 
" J (' .. ~ 

conditions suffisantes ,pour rendre libre une, sous-algèbre d'un~ algèbre de Lie 

libre. + 

Dans la 'deuxième partie on detetmine l'algèbre de Lie ASsocié!L à la série 

inférieUre centrale d'un groupe, dans le cas où les relations definissantes satisfont 

cettaineS conditions ~'indépendance. 

Dans la troisième Partie on donne quelques critères pour que les élements de 
J 

l'algèbre de Lie soient fortement libres. , 
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Introduction 

. In t~e seco,pd chapter of this thesîs we ~é trying t~ an8~er the follQwing 

question: 1When is a 'subalgebra' o(a free Lie algebra ftee?". Witt [15] and 
,~ . 
SirSov [14] 'showed that every subalgebra H of a free Lie algebra L ovet a field .. 

'- k' i's ftee. The main idea of Witt's ptoof cornes from Schreier's- proof that every . 
subgroup ?f a free ~rolip is ~r~. . .8irsov used in bis proof a k-basis of L 

constructed· by ~. Hall [6]. When k is not a field but any cOIiunutative ring " 
, .. 

with unit y , the above me,ntiôned theorem is n9 longer vaUd as even very simple 

\ examples can show. Witt in [15] showed that ,if. k îs the rin~ ?f integel's ~ H ~ 

is a homogeneous subalgebta with respect to some N-grading Qf L, then if the 
, 

a belian group L/R is free, H is a {ree Lie algebra. This result can he slightly 
• 1 t 

extended. To be able to 'apply the idea of his proof, ali we need to know is that 
o 

certain k-submodules of l' are free. To ensure it, we ean assume that k is a 

. ',commutative ring with a property that every pro~ctive k-module is free. 

Hçwever, we ~til1 need to assume that H ~ a homogeneo~ subalgebra ~ith 

respect to sorne N-grading of· L sinee the argument given by Sirsov does not 
Il 

work if k is not a field: We use the result of [15] in the third ~apter of this 

..... thesis where we study the algebras associated to the lower central series of 
. " 

groups. Labute showed [101, that the Lie alge~ra a8sociated to the descending. 

~ 

, '. 
central series of a, finitely presented group is a: fmitely pt:esented Lie a,lgebra if the. 

, '-
relators satisfy certain independence conditions (the praof' uses' th-e results.,pf 17) 

and [8]): 

Let F he a free group on {Xl' .•. ,XN} and\ let rl, ... ,lM he any e~ements of F . 

. , 
), 
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Let R be ~he normal siIbgroup generated by {rI"",rM}. Let L be the free Lie 

algebra ass~iated~ the lower central series of F, and let g be the Lie algebra 
" . 
~sociated teP the Iower central series of" G == F IR. Let r be the ideal of L 

.)enerated. by the ini tial for,ms Pl'" ,PM. of rI'" .,r M in L. He proves tnat if: 
... 

, 'ft ,1). LI r is a free a belian group and 

... 2) r/[r,T] is a free U(L/r)-module 

then ~ = Llr, where U(LI r) denotes the universal enveloping algebra of LI r: 
1 

If conditions" (1) and (2) ~e satisfied, following. t~rminology introduced by'Anick 

. '([1] a.n~ [2]), we calI the elements Pl',,,PM strongly free (or inert). 

In the second part oLChapter III we show sorne criteria for the elements . ~ 

, 

Pl',,,,PM to he strongly free. - We show that if Pl'""PM oare homogeneous 
. 

clements of a free Lie algebra "L(el' ... ,eN) over a P.I.D. then:' 
, - - d d . 

lf XU(Llr)(P) =, XU(L/l + (t l+ ... +t. M)~U(L) for every maximal ideal (P) . 

of k, then Pi,,,,,PM, àre strongJy free, where ... 'di = degree of Pi in L, 

XA -Euler-Poi~é series of a Iocall~ finite connected graded a.lgebra A ([~l) 

~d U(L/r)(P):I: U(L/r)~k/(P). . - . 

This' r~ucés the problem' to' the c~e ~hen k is·a field. Ànick showed (2] that if 
... 

. àl~ ... aM are homogeneous elements of a free associativè algebra Ass({I, ... ,eN) 
. --
then: 
. " 
a1, ... ,6rM cxmb1iB1DriaIly fr~ ((2)) 'impl~es that "O'l'oo.,aM are strongly free 

<Il 1 (l. 

where ai deno,tes the hi~hest term of ai with respect to sorne lexicograpruc 
. . . \ . 

,order <;Jf the free monoid M(e1, ... ,eN). Using these two results, we treat sorne 
~ , , 

~nteresting exa.mplœ. 
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1. Pre1iminaries . . \ 

~ < In ,tJûs chapter we wilUntrOduce the concepts which will he necessary to pro~'e ' 

the resul,ts in Chapter. II and III. Most of the fnaterial contained in this' chapter , , 

is c1assical and can, be 'found in numerous places')n. ''the Literature. We will 

always give t~e main references for each ~ection, writing them in square bracke~ 

[ ... J. The key stateII!ents for the theoty will he prove4 in more detail to'make 
ft 

this work self contained, whereas the sttements which are either basic or of less 

importance for the theory will be given outlinefJ rather' thln detailed proofs. This 

chap~,er is divided' into sever al sections to make later reference easier. In Section 

1 we define hasic conœpts. In Section 2, we prove a very important theorem of 

Birkhoff-Witt and' we ~show som~ basic c~nsequences of it. In Section 3, we 

--define and construct a free Lie algebra and we prove sorne important theorems - , . 

labout fr~ Li~ algebras which we will refer ta later. In Sectio~ 4, we associate. a 

Lie algebra to a lower central series' of a group.In this chapter, the let ter k 

denotes a commutative .~ing with ,unit y., In §4, k will ~ assumed ta he the ring . 
of integers and we will denote it by the letter Z. Unless ôtherwise mentioned, all 

~ algebras, all modules and aU tensor products are over k. 

r 
§l. Basic defjnitions 

The main references for this section are [3], [4]: [51 [101 and [13], ~Y a k-algebra' -. 
or alge?ra over k we mean a k-module t~gether with a k-bilinear map 

AxA -.. A .. 

(Le., a k-homomoryhism A4\A --1 A). 

Definition r.1.l. 

, -
'" 't' ~.,..~}" ,J .... f ,]::t.~l;"':" d~~_M' _!:. 
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A Lie allebra. over k is an algebra with the following properties: , ~ 

, '. 
" if,.[x,yl denotes the image of (x,y) under the map AxA ~ A th~ 

(LI) [x,x) = 0 for ail x e A. . ~:~ '. . ' , . 
" 

(L2) [x,[y,z1J + [y,{z,x]] + [z,[x,y]] = 0 for ail x,y,z,E A . . 
The identity of (L2) is called the Jacobi identity and we shall denote its left , . 

J' hand side by Ja't(x,y;z). It is a long established custom to caU tbe expres~ion 

[x,yJ the 'bracket or commutator of x and ~ y. It is useful to note that to t 
# 

establish that an algebra A is a Lie i1g~bra, it suffices to verify 'that the 

conditions (LI) and (L2) hold for all x,y,z , in sorne generating set of the 

~ k-rnodWe A. It is customary to den~te Lie alge~l'as usÎng th~ letters "n~J(, g, n ; 

or r and we will adhere to this convention except where common usage has 

established otherwise. 

... 

. (i) Lét g De any k-module. Define [x,y] = 0 , 

\ 
"'- \-

Such agis called an ahelian Lie a.1gebra . 

~rall X,y" 
. 

(ii) Let' A he an associative algebra over k and define (x,y] = x· y-y' x for 
i , 

all x,y E A (where X'y is the product of x an~ 'y in A). Then A, 

t.aken as a' k-module togeth~ with this new composition law becomes a . 
Lie algebra. We will -denote this a.lgebta. by Lie (A) and calI it the Lie 

algebra of the associative algebra A. 

A subset h ~~ . a t.i'è' alge~ g -is ca.lled.a Lie aubalsebra oi g if it is a 

. k-module\ ~d is el~ed ~der ~è bracket multiplication, i.~., if [x,y} eh 

whenever x,y e h. 

A subset 41 of a Lie algebra g is called an klœl of g' if it if a k-module and if 
'. 

" 
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for all x €'O and fOI: all Y E g, (y,iJ E 4. -The formUla (br tells us that then 

~ , r' 
[x;y) 6 JI for aIl x E 0 ,and y. E g. 

A mapping f: g -+ h from one Lie algebra. into another is ~led a homomo.rphism 

if it is k-linear ~d f([x,y)) :- '{f(x},f(Y)} for JI x,y E g. 

L~ A he an a.1gebra and let X and'y he subsets.()f A. We define X· y (or , '":1 _ 

[X, Y] if A is a Lie algebra) to be the set of all finite surns of products 
, 

?[x,y]) where x E X and y E Y. I~ X or y is empty then 
~ 

X· Y([X, Y]) = fi by definition. Notice that A· A([A,A]) is ~ wa.ys an ideal of 
(;) , 

A. When A is a Lie algebra [A,A}...-is called the derived aigebra of A. 

Let V be a k-module. The tenspr algebra of V denoted by T(V) is a 

k-module 
n . 

T(V) = e Tn(V) where Tn(V) = VflJ ... 8V -, flJV 
n~O b 

- witb a multiplication definied thro\lgh the natura.! isomorphisms 
. p q p+q' 
(@V)®(@V) ~ @ V. 

For àny associative a.!gebra A with a unit, one has:, ' 

\ 
HomMod(V,A) = HomAss(T{V),A). 

Let V he a k-module. The syrnmetric al&ebra of 'the k-module V, denoted by 

S(V) is defined ta he the biggest commutative quotient of T(V) i.e., ' 
, 

S(V) = T(V)/J, where J ,is an ideal of T(V) generated by ~ elements of the 

form vew - wflJv for aIl v, w EV. • \J 
Let V he â. k-module and : M an additive m~noid. By a grading of V by M 

we will understand a. family (V ~ aeM of sU,hmodules of V such that 

V = ." VQ' O€M 
Given such a grading we will say that V is graded b) M or M~aded. For 

, " 
'~, '.'1 ~ t,.. ;:; è,àl~ " '"~....,.; ... ~. ; _ ... ", \ _, 

=-.:~;;~'_' '-,,' I .. ~' '--,",~\.'~~~~J-1"!i.\~,~~~:aHP''!1f.jt.:t~'i&!'taL{Î)t~ ~~, i ~~... ~.~ ~~ ~_ ~~ " i r ~r 
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--each. a e M we call 
, • . 4 

V a a homogeneous suèmQduIe of degree a. If 

. v = Ev e V, v eV .... , then v'" fil called the homogeneous component of degreEf 
1 a a wu;· . 

" a. An: element lying in. a homogeneous, submpdule ~ Vais said to be 

hOIp?gneous of degree œ. Notice that in this sen~e, 0 is homo~eneouB of every 

d~ireè. 

. Let A be an algebra over k and let (A () aeM he a M -grading of A (as a 

k-module). We say that the grading is compatible with the algebra structure of 

A and that A is M-graded algebra..if 

Ao: . AIJ C AO'+/3 for all 0',/3 E M. 
"-Let W be a k4!ubmo<1ule of an M-graded k-module V. For each a E M J' 

define 'W
o' 

= V 0: n W. We say that l W is a graded· submodule of V if 

W = e W . It is useful ta note that to say that W is a graded submodule of 
aeM a . 

V is equivalent ta .saying that whenever w = Ev œ e W then each homogeneous 
& . V , 

component v E W. If W is a graded submod,ùe of V then the quotient 
* 0: - . 

module V /W has an inherited g~ading with (V /W) œ = V C!W (i 
Let A = e (A) he a graded algebra. An ideaJ J of A is called a graded 

aeM 0: 

ideal if J is a graded submodule of A. If J is a graded ideal of A then the' 

quotient module AI J = e (AI J) a is graded compatibly with its algebra 
aeM . " 

struct~e, that is . , 

(~/J)a·(A/J){Jc (A/J)o:+{3 

for an a,/3 E M. If S c A !s any subset of homogeneous elements of A then 

bath the subalgèbra and the ideal of A generated by S are aIso homogeneous .... 

DefiJij&iQn 1.1,2. 

Let g he a Lie algebra and V a-(-IJlodule. By a representation of g on V we 

• 0 . , 

• 
.. 

.... 
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1 r f _{.~~: y .... :V 

" 

.... (, >< - ',1 ". "< ~ .. -

.~ 

• m 

will qlean a Lie algebra homomorphism fi:g -+ Lie(Endk(V). In other words, il ~ , 
, 1 

is a k-line~ap from g. into Endk(V) (the algebr~ of endomorphisms of a 

k-module V) satisfying 

n([x,y])· (v) = n(x)·n(y)· (v) - fi(y)' II(x)'(v) for all x,yEg and vEY. 

Definition 1.1.3. 

By an ~ of a Lie algebra g on a k-module V we will understand a 

bilinear mapping 

g)( V ~ V ((x,v) --+ x· v for aU xeg, veY) satisfyin~ 

[x,y]·v = x·y·v -y·x·v for all x,yeg and vEY. 

Given an action, we say that g acts on V and V is then Cl-lled ag-module 

(relative to this action). 
"'-

These two concepts (modules and representations) are essentially the same. If g 

aéts on v.., then v -+ x·v is a k-linear mapping of V into itself and we can 
\. 

define a representation II:g -+ End1C<V) by IT(x)· (v) = x· v. On the o\her 

hand, if II is a representation of g on V then g acta o~ V via 

x·v = IT(x)·(v) for all xEg and vEY. 

Definition 1.1.4. 

Let A be an algebra over k. A deriyation. D:A --+ A is h k-linear map with 

the property: D(x.y) = D(x), y + x· D(y) for all x,y E A. 

EX8.IDple 1.1.2. 

The set Der(A) of all derivations.of an aigebra A ia a Li~ algebra with the 

product [D,D'] = p. D'+D', D (ea.sy computation). Let g be ~ Lie algebra. 
J 

For any xE g define ~ map adx:g ....... g by adx(y) = [x,y]: Then as a. 

consequence of the Jacobi identity the map adx is a derivation of g and the 

.. 

, 

,. , 

.... , 
!.;..fi 

~ ", ~J~ 
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map ad defined by ad(x) = adx is a Lie homomorphism ,of g jnto Der(g)., 
~ ~ " 

, W~ see that ad is a representation of g on Endk(g). It 18 ca.lled the adjoint' 

representation of g. The corresponding g-module is g itself where the action is 

given by left multiplication. 
, 

Let g = $ gœ he an M-graded Lie algebra. 
aeM 

If V is ag-module we say that 

• an M-graàing (Va) aeM of th~ module V 

struct ure if 

is compatible with the module 

\ 

. 'g{J' V œ C V /3+œ for all ,B,aeM. 
, 

li this is the case we then say tltat V is a &l'aded g-module. 

Let V he a g-module and W c V a g-ilubmodule of V. The quotient 

k-module V /W can he given a naturaI g-module structure by defining 

X' v = x:v for aU xEg, vEY , 
where -: ...::.... V /W is the canonical map. This module is called the quotient 

module of V by W. 

Definition 1.1.5. 

Let g be a Lie algebra over k. By .uniyersaI envelope als:ebra of g we 

will understand a pair (U(g),i) composed of an associative algebra with unit Y 

U(g) together with a map i:g -+ U(g) satisfying the folfoWlng conditions: 

(UI) The map i is a Lie algebra homoqlorphism from g into Lie (Ù(g)), that 

) is i is a k-linear and i([x,y]) = i(x)i(y) - i(y) ·i(x) for all x,y E g .. 

(UI) If A is any associative algebra with unit y and f is any Lie alge~ra 
.. 
homo~orphi8m f:g --+' Lie(A) , there' exists unique aIgebra 

homomorphism t:~U(g) -+ A which extends f, that is f = F·i. In other 
, 
words, there iB an i80IDorphism \ 

HomLie(g,Lie(A)) ~ HOIDAss(U(g),Aj . 

• 
. . 

" 

:~1 .. ~'t~.Ji';;:,.'::i~"',"~7.tH":'_" ,:,:,"",~. __ , .. .,', , ., ~_ ".-,.",,,_, '., .:., 
". ,,." ----'-_________ .. ':1 
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It is trivial thatr U(g), if it exists, is unique up to unique isomorphism. To 

show its existence we use the tensor algebra T(g) of g. Let 1 he the two-sided 

ideal of T(g) generated by the elements of the form [x,y]-~ + )'®x, for 8011 

x,y E g. We daim that the quotient a.lgebra U(g) = T(g)/I together with the 

map i:g --+ U(g) which is the composition g --1 TI(g) --+ T(g)' --1 U(g), satisfy . . 
conditions (UI) and (U2). Indeed, let f be any Lie algebra homomorphism from 

g into a Lie a.lgebra Lie (A) of an associative algebra A. It extends to unique ... .. . 
hômomorphism W:T(g) -+ A. Since \{f(I) = 0, W defines f:U(g) --+ A. 

Remark. Let g be a Lie algebra and II a representation of g into a k-rnodule 

V. Thus Il is a Lie algebra homo~orphism from g into Lie(Endk(V)). It 

fo1.lo.~Â)hat Il extends to an algebra homomorphism TI form U(g) into 

Endk(V}. In other words, V . becomes a left U(g)-module with the actio~ 

u'~'= TI(u)·(v) for aIl u e U(g) and ve V. Conversely if V fs a left 

U(g)-module, we retrieve a representa~ion n of g on V by defini~g ll(x)· (v) 

= i(x)·v (where i:g --1 U(g) is the ,canonica.l map). It is easy to verify that 
..., 

these two procedures are inverses of ea.ch other and he,nce one ob tains an 

isomorphism of the category of g-modules onto the ca.tegory of left 

U (g)'-modules. 

Some of the functorial properties of 'universal enveloping a.lgebras are the 

following: 

(1.1.1) If g = gl xg2, where gl and g2 are Lie algebras which commute 

then 

U(g) = U(gl)\U(g2) as k-modules. 

(1.1.2) Ut K1- he an èxtension ring of k and let g(K
1
) = ~Kl' th~ 

U(g(K » = U(g)~Kl d:~l U(g)(K y 
01 1 

. , 

" 

.. 

. ' 
, 

\ ."; 
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(1.1.3) 
..1-

Let G he an ideal of g, f the canonical homomorphism of g onto 

g/ IL Then the homomorphism f: U(g) --+ U(g/a) defined 

canonically by f is surjective and its Kernel is the ideal I( a) of 

U(~enerated by i( a) where i:g -;U(g) is the canonical map. 
1 

,.. fi Proofof (1.1.1). 
; . 

The map f:(x1 ,~) -- il (x1)~H + 1~2(x2) ~ (ik is the canonical map 

ik:gk -- U(gk) k = 1,2, xl E gl' ~ E g2) .from g into U(gl)~U(g2) is a Lie 

algebra homomorphism sinee gl and g2 commute. Hence f induces an 
~ 

associative algebra homomorphism f:U(g) --+ U(gl)~U(g2)' The 

homomorphisms gk --+ g -t U(g) k = 1,2, induce homomorphism 
./ 

IPtc:U(gk) --+iJ(g) k = 1,2, and sinee gl and g2 commute we have that 

CPI (xl)' CP2(~)~ = CP2(~)' CPI (xl) for all xl' e gl and ~ e g2' Let . 
cp:U(gl)~U(g2) -- U(g) he given by ~l(xl~) = CPI (xl)CP2(~)' then we have 

f· cp = id and ~·r = id. 

q.e.d. 

Proof of (1.1.2). 

H V is a k-module we define V(K
1
) = V~KI' The tensor algebra of 

g(K
1
) - is canonical1y identified with T(g)(K

1
)' Let 1 he the ideal'of T(g) 

generated by the e1ements of tHe form [x,y1 - xey-+ yex for all x,y E g, and let 

r~ he the ideal of T(g)(K
1
) generated by the elements of -the form [x' ,y'] -

x'.,' + y'ex' for aIl x' ,y' E g(Kl
r Clearly the canonical image of I(Kl) in . 

T(g)(K
1
) is contained in Ir Now, let x' = rXie ki, y' = TYj~ Lj be 

in g(Kl)(~'Yj ~ g; ki, Lj in KI)' Then, 

\. ~ 



... 

o 

- li -

x'®Y' - y'ex' - [x' ,y,] = E 'x.*'Y. - y.@X. - [x.,y.))®k.· L. > 
iJ'lJ JI IJ IJ 

, ' 
which shows that Il is in fact equal the image of I(K

1
) in T(g)(K

I
)" Hence, . 

we see that U(g)(K) = (T(g)/I)(K ') can be canonically ideniified with 
1 1 . 

• T(g)(K
I
/ II i.e., Utg(Kr) can be C8.\lonically identified with U(g)(K

1
)' and th~ 

~ 

canonical mapping il :g(K
1
) -1 U(~(Kl» can he identified with .. i~d, where 

is the canonicat mai> g -1 U(g). ,. 

q.e.d, 

Proof of (1).3). 

Let <,O:a:..... g he- the inclusion. It defines the homomorphism v;:U(a) -1 U(g) 

snch that ~,il = i·<p where i:g --+ U(g) and i1:a-l U(G) are canonical 

ppings.. ,Since we have also f· i = i2· f (where i2:g/ a ---t U(g/ a) is the 

onical ~p), we see that r is zero on I( a). If· t . is the canonical 

ho morphism of U(g) onto U(g)/I(a) we get the induced homomorphism 

fl:U( /1(41) -1 U(g/G) such that fl·t = r. The mapping t·i is a ~ie algebra 

homomorphisin and is zero on CL Hence, it defines a Lie algeb~a homomorphism 
, 

D of g/a into U(g)/I(a) such that D·f = t·i. The mapping D induces the 

unique homomorphism f2 of U(g/ a) into U(g)/I( 41) Bnch that (J = f2' i2. 

Thus, (l' (J. { = ft' t . i = i2· f and hence fI' (J = i2, Since f2 · ff 9 = f2· i2 = e 
and fff2'i2 = fI' (J = i2 we see that f2 ·fl and f1,f2 are the identity 

mappings of U(g)/I(G) and U(g/G) respeotively, 

q.e.d. 

The universal enve10ping algebra U(g) is a supplenlented k-algebra and 

__ r , 

Ü~)$ -, ~~. ~H ,'~ i' rké .y' -~, ~{~ ~!""5 i'r b." f,~: ):ù:~ ~!,~-,,;~ ,,".r~~ ~;i::~l;':i,,;;i.~~ 

" 
. , 

'.J 1 ~', L ~ 
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therefor~, t~llowing ([5J, Chapter XIII) we definè the homoloKY &l'oups of g as 

those of the supplemental algebra U(g) Le.: ~ 

Hn(g,Y) = Tor~(g)(V,k) 

for any right g-module V. Lét I(g) he the augmentatiôn ideal of U(g) Le., the 

kernel of the augmentation epimorphism f:U(g) -1 k induced by the map f' , 
from- g into k defined by f(x) = 0 for all xe g. The homology group 

s:> 

HO(g,V) is the k-module V ~(g)k. Since k ~ U(g)/I(g) we sef! that 

" HO(g,V) = V/V·I(g) =X/V.g. 
, 

If g operates trivially on V (i.e, Y·x = 0 for all ve V, ~ e g) then 

. Hl (g,V) = V~I(~)/I(g)2.: 
The canonical map i:g --1 U{g) sends g into I(g) and "(g,g1 into l(g)2 wheré 

1 

~
g,gl is the derived algebra of g. Henœ, it induces a hqmomorphism 

f:g/[g,g] -+ I(g)/I(g)2. On the other hand, we hav~~:~~ap cp:T(g) -r g which 

is defined by rp(T1(g» = identity map, and cp(~~}# 0 for n f: 1. The 
, ~ \,~.. 'J 1 

kemel of the col!fposition map ,n'I{J where II:g --1 g/[g,g], contains the ideal 1 

~f T(g) generated by the elements of the form [x,yJ - x@y +.~ for all . 
x~y E g. Hence, we obtain the induced homomorphism of U(g) into g/[g,g} 

. . ~ 

which defines a map tp:I(g) -+ g/[g,g). ClelJ.l'ly, the mappings <p and r are 

inverses of each other and hence we obtain an isomorphism 

, l(g)/I(g)2 ~ g/[g,g1. 

( Hence, if g ~per&tes triviall~ on V we can i'nterpret the group 411 (g, V) as, 

V~/[g,gJ. 

Let li he an ideal of a Lie algebra g. If both h and g/h are free k-modules . 
we will Drove in the next section that U(g) regarded as a right U(h) module is 

Q . 
free. As a consequence of it we get the Hochschild-Serre spectral sequence ([5], 

o 

. . 



/ 

, , 

o 

1:3 '-' 

Chapter XV, p. 350): 

We will use this sequence in Chapter Il to give an alternative proof that certain 

suhalgebras of free ije algebras are free. 
, 1 

.~' , 

§2. Birkhoff-Will theorem 

The main references for this section are [3], [4] and"[l3}. 

The key point in the proof of this theorem is the following proposition: 

PrOJ>08itipn 1.2,1. 

Let g be a Lie algebra which is free as a k-module with a basis {xi}i€I where 

1 is some well-ordered index set. Let T be~ Then there exists a 

g-module F which is generated over g by the set T and whose k-hasis 

consists of the elements of the form: 

(*) 

Let F he a free k-module with a k-basis the elements of the form (*). w"è 
~:note --the sequen~ (XiI, ... ,x

in
) with\ il ~ ... ~in by P and we will write p. t 

for the element xi .... ,xi ·t E F for all t ET. We will also write xi ~ P if 
1 n ,. 

i ~ il and P' = xi' P will denote the 'sequence (xi'xi"" ,xi ). The length of 
'-' . 1 n " 

the sequence P will he denoted by l(P). We want to make F ag-module. 

We will define the action of g on F by induction on ,l(P) and for given 

N = l(P) by reverse transfinite induction on the set 1. If l(P) = 0 then define , 

, 
, .' 

, . .. ' 

1 
~\ 
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r 

x-Pt = x-t. If x ~ P then define x-Pt = (xP)t. SupPose that we have already 

defined g-action on F for all elements Pt E F with lep) < N. Suppose also 
) 

that we have already clefined the action of the" ele~ents xj with j > i on aU 

elements Pt E F with lep) = N. We want to den ne the action of t~e eÎement 

Xi on P -t E F with lep) = N and in addition we want X· P -t ta be 

~pressible as a fintie sum E ~Qt with lep Q) ~ lep) + 1.' If Xi ~ P then define 

xr P •t = (xeP)t (tÈT). 

If not, then .define 

(**) 

where P = (xi ''''!~ ), p, = (xi "",xi ) and il~· .. ~iN' This action is 
1 N 2 N 

well-defined by the induction hypothesis. Notice that x. -p' . t = Pl -t + EP . t . 1 Q 

"" Q 
where Plis the ordered sequence of elements xi,xi , ... ,X. and lep ) ~ lep). 

1 IN œ 

In arder ta verify that this action defines a g-module structure on F we have ta 

prove the following identity: 

(***) [x,y)·p·t = x·(y·p·t) -y·(x·p·t) 
-

for ail x,y E g, and tE T. We will do if by induction on the length lep) of P. 

Note that two sidœ of (***) are skew-symmetric_ Hence, we can assume that ' 
" • 1 , 

.x > y. If x ~ P, then the second term on the right hand side of (***) satisfies 

the conditions of (**) and hence (***) follows sincè by (**) we have 

y-(x-,P-t) = x·(y-p·t) + {y,xl·p·t.-

Suppose that Xi > x > y where P = (xi , ... ,X;j ). We use the Jacobi identity 
lIn . 

and the induction hypothesis. We have: 

[x, y] ·p-t = [x,y},x, ·p'·t == x. -[x,y]· pot - [x. [x,y]]· p'·t 
Il Il Il 

, . 

.. 

,-

r •• ,",.I "~,._~':.........:.' ..... " ___ • ;iii~ 
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• 

~, ", t'V" 

I,r;'J' 
II 

o 

, . 
" 

. = x. ·x·y-p,·t - x· ·y·x· p, -t' + ([X,[y,x. n· P't 
}1 Il' . Il ' . ~ 

+ [y,lx1· ,X]r·p' ·t) 
. 1 . 

= x. . X· y. p' . t - x. . y . x -p, . t - x . [X. ,y], p, -t 
Il Il 1} 

\ 1 

+ [Xl' ,y]'X·p'{t-Y·[X,X1·}·p,·t + {x,x}.}.y.P:.t 
1 1 l' . , 

= (x. . X· Y • P' • t - x . x. . y • p' . t + [x,x. ). y . p , . t) 
Il 1}. Il 

+ (-X. . y. X· p, . t + y' x. : X· p , . t + [X. ,y]. X· p, . t) 
Il ,11 Il' 

+'(X·y~p·t - Y·X·p·t) 

where 1>' = (Xi ,,,,,xi ). 
2 n 

., 

- , 

. Thus, to prove (***) we have to show ,that the expressions in the first two 

~rackets are zero. But y' P • t = P 2' t + EP Q' t wlîere P 2 is the ordered set of 
~ œ 

elements y,xi ,,,,,xi and lep a) ~ lep')· Since Xi ~ P2' by (**), we get that ... 
. 2 n 1 ,. 

x'''i .P2 ·t = x·(x. ·P2)·t = x .. x·P2·t + [x,x. j.P2·t. 
, 1 Il Il Il 

App~ying the induction hypothesis (I(P al ~ I(P'k< lep)), we get that 

X·X· .p ·t = x· ·x·p ·t + [x,x. l·p ·t. 
1} Q . Il , œ . Il a 

Thus, the first bracket is zero. In the same way we show that the second bracket 

is zero. Thus, the equality (***) is proved, , which completes the proof of the 
• • 

propdsition. 

q.e.d. 

Remark, The module F constructed in this way is a free g-module. 

,Lemma 1.2.1. . 

Let g he a. Lie a.lgebra which is generated as a k-module by the elements X. 
1 

' .... 

--1 

t 

-1; 

" 

\ .. ,-
~, 

., 

" r 
, 

J" 
" " l ,~ 
t-< 
' . 
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\, 
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. ' 
(iEI-some we1l-;-ordered inclex set), and let V he a cyclic g-module with • • 

generator ,t. Then, 'any element of V of the form xJ' • ••• ·X.·t is 
1 ~ 1 Jn. 

expressible as a linea.r combination of the elements of the form: 

Xi • ••• ·xi ·t where il~···~im' xiEg and, mSn . 
1 m 

Proof·· ... 
We carry out the proof by induction on n an~ for given-n by induotion on the 

J 

tlUmber of inversions in the sequence (xj , ... ,Xj ). Suppose that we have a1ready 
1 n . 

proved the lerpma for 1 < n and if 1 = n we have proved it for the sequences 

(x
J
, , .•• ,x.) with K < nI < n inversions. Then, if the sequence (xJ' , ... ,X. ) 
1 Jn • } Jn • 

has n} inversions, we write: 
/ 

x. · ... ·x. ·t = x. · ... ·x. ·x- · ... ·x. ·t 
J} Jn JI. JL+l JL Jn 

+ Xjl ' .. :.[XjL'XjL+I]·· .. 'Xjn ·t. 

Applying the induction hypothesis we can express the right hand side of (**) as 

a'linear combination of the elements of the form (*). 

q.e.d. 

We a.re no;\n the position to ,prove the main theorem of this section. 
, 

TheQrem 1.2.11 ' (Birkhoff-Witt) 

Let g he a Lie algebra which is free as a k-module with a k-basis {xi}iEI 

where. 1 is some well-ordered index set. Then, if U(g) is the enveloping 

algebra. of g and i:g --+ U(g) is the canonical map of g into U(g) (cf. Ch. 

I.§l), the family of elements of the f9r:tn: ~ 

(*) i(xi ).· .... i(xi ) with i1~.:.~in' n~O 
1 .\. n 

-~ 
" ... 

._~/I'-.,\. ~ ~l~~ \..,-

J, 

- " 

.. 
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forro a k-basisJfor the k-module, U(g). 

Praof. 

Sinc~ U(g) = T(g)/I,.:where T(g) is a tensor algebra of g 8cIld 1 is the 
. . 

ideal of T(g) generated by the elements [x,y}- xey + yex (for all x,yeg), we <, 
1 ... 

_ see that the family (*) generates U(g) as a k-module (cf. ,Lemma 1.2.1). In 

order to show that the family (*)' is 1 k-linearly independent, we .view the 

g-module F constructed in Proposition I.2.1 (with T={tO}) as a left 
, . 

U(g)-module. Suppose that we have a finite linear eombination of the form .. 
\ Ekmi(xm) = 0 

where km e k, xm'= (x~ , ... ,xrr ), i(xm) \= i{x~ ) ..... i(xrr ) and 
1 n(m) 1 n(m) 

il ~ ... ~in(m)· Then, b~ letting thi~ element aet on ,to we obtain . 

~...c 0 = E kmi{xm)· to = E km{i(xm}tO) 

. ~ hèneè aIl km ~ 0 sinee.the elements i(xm)·to form a k-baàis of F, q.e.d. 1 

. yve will show now so~e important consequences of this theorem. 

CorollaIY 1.2.1. 

Let g he a Lie aJgebra which is free as a k-module: . . Then, the canonicat 

map i:g --1 U(g) is injective. 

Pmf. 

The images of tfle elements of the k-basis of g under the map i form a linearly 

independent set. 
,r, 

oq.e.d. 

Corollary' 1,2.2. 

. lAt h he 'a subalgebra of a Lie algebra g. Let the family 1~'!j}iEI,jeJ
(I,J-some 'well-ordered iIl:dex Sets) form a k~ of g, and let the fanûly 

J l' 
. '# .. 

1 

, 
1 

", 

'" ,1" .. ~,. ~ 
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;.~; 

'f.' 
, , 
" , 
't-,' 
,', 

~~ , 
,~ , 

. . 

1 

'-, ' '" '" ! ~ • 

{% be' a k-basis of. h. Then: 

(1) The injection h --t g --t P'(g) can be lifted ta an injection of U(h) into 

U(g). 

(2) The algebra U(g) 18 a. free U(h)-mod.ule à.dmittlng the family 

(*) 

as a basis. 
1 

We well-<lrder the set I)(J by declaring that i > j for aU i E l, je J. The 

. family {xi .... 'xi 'YJ' •.•. 'YJ' with i1,~ .. ·~in' jl ~· .. ~jm' n,m ~ O} is then a 
·1 n 1 m . 

k-basis of the module U(g). Moreover, the subfamily'of the above that do not 

Q invalve y's, i.e., whe~ m = 0, form, a k-basis of U(h). This clearly implies (1) 

and, (2): ' 

q.e.d. 

Q,oroUarv 1.2.3. \ 

Let g he a direct sum of subalgebras gI, ... ,gn and let Sj be a free k-module 
, , 

for i = 1,2, ... ,n. Then, the cano~cal homomarphism of the k-module 
-
U(gl) .... 8U(Sn) into the k-module U(g) defined by xI ... ·~ --t xI; ... ·"n for 

) 

'all ~i e ~ i8 a k-ïnodule isomorphism. 

·pr., J 

Follows clearly from the Corollary 1.2.2. 

q.e.d .. 

~ g, he a l;ie algebra qver k, and tet U(g) be lm: uni~ enveloping ~bra 
of g. We define &' natur&l filtra.tion 'of U(g) as follows: Let Un(g) be the 

.. 

, \ 

.lIfii~~~~~~~(~1Ji§~~~~,-· . .;, ~ .. ~ "'':'<ls~:G1~;~~~~''~''>':~'~~ ~,{..- (~:~~~'~';\~"t 1'" ~ :. ~..,J.)~ , -, l , 

. , 
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submoduÛ~ of U(g) generated by the products i(xl )· ':"i(xm), m ~ 11 • where 

. xi E g. We see that 

l!Q(g) =:= k, Ul(g) =J<®i(g) ~d UO(g) é U1(g)c. .. CUn(g)c. ... 

We d'efine gr(l1(g» = e grn U(g) where grn1U(g)) = Un(g)/Un_1 (g).The ma? 
n~{}- ,,-- - ç 

Um(g)xUn(g) -+ Um+n(g) given by (x,y) --+ x·y . for all xE Um(g) and 

yEU n (g) defines, by passage to quotient, a bilinear map , 

grm(U(g)) )( grn(U(g)) --+ grm+n(U(g)). 

Thus, we obtain a graded algebra structure on gr(U(g)). We calI gr(U(g)) the 

graded algebra assoc~ated to U(g). This algebra is associative, has,a unit and is 

generated by the image of g in gr(U(g)) under the map i~duced by the 

canonical map i:g -1-d(g)'.· We will now show that in façt gr(U(g)) is 

commutàtive. It is ~~~h to pr~v~Jthat i[XJ' commutes with rm in 8r2(U(g}) 
\_'--

for all x,y E g. Since the canonical map i is a Lie algebra hoinomorphi~m we 
P '. r 

have Hx)i(y) - i(y)i(x) = i([x,y]). Since i([x,yJ) e U1 (g) we7see that i(x)i(y) = 
, 

i(y)i(x) modulo Ul(g). It follows that the map g -+ gr(U(g» can De extended 

to a homomorphism 

,?-S(g) -1 ~(U(g)). 

~ where S(g) is the s~etric algebra of! g. Since gr(JJ(g)) is generated by the 

image of 'g p the map <> U is sùrjective. As an equivalent ~ form of the 
~ ..... ... -... .. , 

Birkhoff-Witt theorem, we state: 

Coroll~ 1.2.4. 

If g ie a. k-free modul~~ then the ma'p cp is injective .. 

Proof, . 

a • 

Let {xiheI be a. k~i8 of g. As before, we ~ite m = (il" .. ,in> 

il ~ ... ~in and i(xm) -: 1(~ ) ', .... i(xi ), and we denote the Iength of 
. • 1" n ' , . . , 

" 

ni 

. \ 
J ' 

'-\: , 

, , 
~ ," i' 4 

wlth-

by 

r" f 

o 

" 

'l 



... ' 

l' 

- 20 -

l(m) = n. The image of th~element i(xm) with lem) = n in grn(U(g» is the 

image under the map 
"\' 

tp:S(g) ;;+ gr(U(g)) of the basic monomial in Sn(g). Renee, if we can show the 
~ 

non-existence of a relation 

tge iiÎjectivity of <p will follow. But, the relation (*) is by Lemma 1.2.1 the 
. - ' 

same as the existence of the relation 

~ E k x __ - E k __ x = O. 
l(m) =n m ID l(m) <n rrr m 

-

Such relation however contradicts that xm's are elements of the k-basis of 

U(g). 

q.e.d. 
1 

. QorollaQ' I. 2.5. 
\ 

Let k he an integral domain and let g be a Lie algebra which is a free 

k-module. Then, U(g) is an entire algebra. 

Proof. 

Let u and v he two non-zero elements of U(g). There exi~two unique 

natura! num~ n and m snch that u E Un(g), u ~ Un- 1(g) and v E Um(g), 

v ~ Um-l(g). -Thus, ü = u + Un-1(g) and v = v + Um-1(g) are well-defined 
, 

non~ero ho~geneous elements of. gr(U(g». Since the algebra gr(U(g)) is 

isomorphie to the polynomial algebra.' S(g) (Corollary 1.2.4) and siÎlee the 

polynomial a.lgebra over an integral domain is entire, we 8ee that gr(U(g) is 
~ 

: eatire. It follow8 that ü·y js non-zero and bomogeneous of degre'e n+m. But 

ü·y = u·v + Un+m- 1(g) and therefore u·v i Un+m- 1(g). In particular, 

. , 



o 
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,. 

u-v"; O. -It follows' that U(~) Is entire. 

q.e.d. 

( 

~ §3 Sorne Results op Free Lie Algebtàs ., 
The main references for this section are [3], (4], [6], (10] and (13]. 

Free ma&mas 

A set M together with a map 

/ MxM-+M 

denoted by (x,y) --+ xy is called a magma. 
, 

I;.et X be a set. r We define inductively a family of sets Xn(n~l) as follows: 

Jt'-~- (1) 1 Xl = X. 

(2) -x~ = û Xp x Xq where the disjoint union, LI, is taken over all 

X
p 

)( Xq = n with p+q = n. 

Put r(X) = LI Xn and define f(X)xf(X) ---+ f(X) by means of 

Xp )( Xq --+ Xp+q' The magma r(X) is called ,the free magma on X. The 

eleinents of r(X) are called monomials. There are two natural gradings of 

r(x): 

i) Total grading: r n(X) ~.onsists of ail monomials v of length l(v) = n. 

ii) Multi-grading: let ZX he a monoid of functions from the set X' into 

integers. For every ~ E X we denote by ltx the function in zX defined 

by Il (x) = -1 and ltx(Y) = 0 for y ~ x. The rnap X --t zX defined by x , 

x --+ œ extends ta a magma homomorphism m:r(X)·-t ZX. For any 
\ x 

,/ 

• 

; . 

, , 
,1 
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Q e ZX -we denqte by r œ{X) the set of ail monomials v E r{X) such 

that m(v) = Q. Clearly, r a(X) 'f f/J if and only if the set 

Sœ= {xèXt-a(x)'fO} is finite and for all x E Sa we have œ(x) > O. The 

set of aIl sucb functions we denote by tbe letter t. We define: 

Thus \.e obtain 

for any œ Et 101 = D œ(x). 
xEX 

r(X) = u r n(X), r(X) = u r a(X), r n(X) = u 'r ~(X). 
n~l oEt lœl=n 

Flee N'ebfa on X 

\ 

By the free algebra on X over k we w.ill understand the free k-module A(X) 

with a k-ba.clis wbich consists of the elements of r(X), and with the 

multiplication induce~ by the multiplication in rQC). Let An(X). and Aœ{X) 
, . 

he submodules of ,A(X) g~nerated by the elements of r n(X) and r œ(X) 

respectively (Q€ib ) .• Since we have: 

An(X)' A,m(X) C An+m(X) and Aœ(X)' Arf,X) C Aœ+rlX ) (n,meN, œ,{ie~) 

we see that A(X) has two natu;aÏ gradings 

A(X) = . e An{X) and A(X) = œ Aœ(X). 
"---- n> 1 aet - . 

li B is any k-a.lgebra and f is a map from the set X into the algebra B, there 

exists unique k -a.1gebra homoIDorphisIll f:A(X) --+ B which extends f. 

Free Lie al"bra on X ' 

Let 1 he the two-sided ide8!oI A(X) genera~ed by the elements of the form: 
, 

u'u â.nd Jac(u,v,~)-.where u,~.,w E A(X). 

Definition 1.3.1. 
. 

The quotient algebra A(X)jl is èalled the free Lie a.Igebra on X over k. We 
, . 

will often denote it by L(X,k) oc simply by ~(X). 

'. 
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Some of the functorial properties of free Lie a1gebras are the following: . 

1" ~ :r\,,":!, ,"p:rl t~1!! t, 
~<\~ ( " 

(1) If - f is any map from the set X into the Lie algebra. g, thefl there exists 

unique Lie a.lgebra homomorphism f:L(X) --+ g which extends f. 

(2) If f is any map from the set X into th~set X', then there exists unique 

Lie algebra homomorphism- f:L(X) -+ L(X') such that TIX = f., 
Consequently, if {X p'~} is a direc,t system and 

X = LiW Xa then LiW L(Xal = L(X). 

(3) If the ring KI is an extension of k then 

L(X,K1) = L(X,k),K1· 

This follows from the fact that the pair (L(X,k)\K1, x -+ xe1) is a. solution of 

the same universa.l wapping problem (1) as the pair (L(X,K1), x -+ x). 

We will show now that'the ideal 1 is a graded ideal of L(X) endowed with the 

multigrading. Indeed, let Il Oe the set of x e A(X) sucb that every 

homogeneous com~nent of x belongs to I. Clearly Il is an ideal and Il C 1. 

Let xE A{X), x = I: xa ' xo-homogeneous. Then X·X = Ex2 !f- E x xa-
aEt a af/3 a ,., 

2 2 2 2 But, xa e l, xclp + xfa = (xa +xp) - xa - xp E 1 so that x·x E Il' For 

threeelement\x= a~~xa' y= p~tYfJ'z= 'Y~~z'Y wehave 

Jac(x,y,z) = E. Ja.c(xa,y /3'z"'!) E Il' 
œ,{J, 'YEt 

It follows that 1 = Il and hence we have inherited gradings fo~ L(X): 

L(X) = $ Ln(X), L(X) = $ L'a(X), 
n~1 oE~ . 

Let ~ be a. nonempty set and let r(X) ~ a free magma on X. The subset 
..(' - ";. 

R = R(X) of the set r(?() is called a basic famlly if it is totally ordered a.n~ 
-. 

satisfies the following three conditions: 

_(R~) Xc R. 



Ct t , 
'" 

~ 

tR2) The element W=U'v is in R if and only if ' - -, 

" i) 'the elements. ~u and v are in R and u < v. 

ii) if v = v!,vZ thEm u ~ vI' 

(R3) If u,v and u· v are elements of R then u·v> u. 

The elements of R will be ca.lled basic monomials. 

The subs_et H = H(X) of the set r(X) is called a P. Hall family if it is totally -
, . 

ordered, and satisfies conditions (RI) and (R2) together with (H3). If u,v E H 

wi)h l(u) < l(v) then u '< v. CI~rly any P. Hall family is a basic family. The 

following example shows that we can always construct a. P. Hall family in f(X). 
~ 

Example 1.3.!. 

We define the sets Rn by induction as follows: we take RI = X and we choose 

a. total order on RI' . Suppose that we have already defined the sets RI" .. Rn- l 
in snch a way that the conditions (RI), (R2) and (Ra) hold and the set 

l 

R1U .•• URn_1 is totally ordered. We define the set Rn to he the set of eleménts 

of length n which satisfy condition (R2). We choose any total order on R • n 
and we put u < v if U E Rk, k = 1,2, ... ,n-1, and v E Rn' This completes the . 

, 1 induction proœss. The,,~et R = U Rn is totally ordered and satisfies conditions 
cO n~l 

(Rl), (R2) and (H3), 

If R is any basic family in r(X) we denote by Rn and Ra the sets Rn~r n(X) 

and Mr a(X) respectively, where ne N and a E~, Ta simplify the notation, 

we will write 'w insteMl of ,(w) where f:r(X) -+ L(X) is the c&nonical map 
• 

from â free magma on.X Îlito a free Lie algebra on X. The bracket!uaYl will 
.. 

denote the image of tlie 16ement u·ve r(X) in L(X} under the map ~. The . ~ -
k-submodule of L(X) generated by the set S c L(X) will be denoted by 

k<S>. The Iength of ~ eIement u E r(X) will be denoted by 1 u 1 or l(u). 
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We-'want to show tbat any basic family R is a k-basis of the module L(X) (if 

we identify R with its image in L(X) under the ma'p e) •• 

Lemma 1.3.1. 

Let R be any basic family in r(X). Then for any a Et, L(J(X) = k<Ro>' 
\ " 

We will proceed br induction on 1 al. If 1 al = 1 then Ra = r a{X) and since 

k<r a(X» = La{X) the result follows .. If 1 al > 1, any element of La{X) can 
, 

be written as a linear combination of elements w E f(X) of the Corm· [u,v] with 

u E L, (X), v E LrfX) and 'Y + (J = a. Ap~lying the induction hYPothesis we ge( 
that thë elements u and v are expressible as linear combinations of basic 

monomials. Using distributivity of thlbracket ~e may assume that the elements . 
. ~ 

u and v are already basic mononuals. Using aD.ticonun~ta.tivity we may 
!\> ,,'j'" 

assume that an arbitrary element of L a(X) is expressible as a linea.r 

combination of the elements w = [u,v] with u e R'Y' v e~,8' 1+(1 = a and 
,\ 1 0 

U < v. We want to show that ea.ch sucb w is expressible as a linear 
~ 

combination of basic monomials w' such that w' > u. We will do it ~y 

induction on 1 PI· 
If IPI = 1, then W E R and by condition (R3) w > u. 

\ 

If IPI ~ 2, then write v = vl ,v2 with vl'v2 e R and VI < v2. H u ~ VI then 

again w E R and hence w> u. Suppc>se that u < VI < v2. Using the Jacobi .' 

identity we cao write: 

W = [u:[vl'v2]J = [vl'[u,v211 - [v2,[u,v1J]. 
, ~ 

If Pl and P2 ~e defined by VI e Rpl and v2 E RP2 respectively, we see that 

11311 < 1131 and 1 P21 < ~ PI· By the induction hypothesis both lu, VI] and 

[u,v21 are expressible as a !inear combination of basic monomials w' such 

T' t 

,. 
" 
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that w' > u. Hence w is expressible as alinea.r combination of elements of the 
o 

form lu' ,v') w~th u' ,v' ER, y' < v', [u' ,v~l E r ciX) and u' > u; Any of 
• 

these elements is by repeating the sa.me argument, either a. linear combination of 
1 

basic monomials w" sucb that w" > u' or a linear combination of elements of 

t1;le form [u",v"] with u",v" E R, u" < v", [u",v"] Er (l(X) and yI! > u'. 
~ 

Since'- ~(l(X) is a finite set, this procedure must stop. It follows that w is '\ 

expressible as a linear combtnation of basic monomials. " J 

q.e.d. 

_ -In Section 2 of this chapt~, we showed that the univers al enveloping algebra . 
U(L) or the Lie algebra L with a well-ordered generating set X = {xi}iEI 

(l-some index set) is generated over k by the family of elements of the form: 

i(x. ) ..... i(x. ) wi th x. E X, x· ~ ... ~x. , n~O. 
Il ln lk Il ln 

Let L(X) be a free Lie a.lgebra over k with a free generating set X. 
:;, .. 

Let !p be the cUhonica.l map rp:X-+ Lie(Ass(X» where Ass(X) is a fœ 

associative algebra on \ X . The induced Lie algebra homomorphism . 
f,O:L(X) ~ Lie(Ass(X») induces the homomorphism of associative algebràs 

o 

~:U(L(X}}~ Ass(X). 
, 

Lemm3 1.3.2. 

The homomorphism ~ is an isomorphisme -
Proot 

The map X --+ U(L(X» defines a homomorphism lP from - Ass(X) into ) 

U{L{X» ~d it i~ cl~ that ~. ~ = Id Ass(~) ~d li· V5 ",= IdU(L(X»' 

q. e. cf., 

.... 

, 
, 1 

-: .. l , ~ .... ~ _, ,_ •• '." J •• _ ..... ,.-"" ~ .11.'. _." >0) ., •• 
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'As a product of this lemma and Lemma 1.3.1 we get the following result: 

Corollary 1.3.1. 

For any Q E ~ with œ f:. 0, the k-submodule Ass a(X) is genera~ed ?y the 

foUowing family of elements: 

(1.3.1) w· .... ·w. where w· = ~u. ), u· E R, Ea. = œ 
1 Il ln lk lk lk lk 

and ui ~ .. :~ui (R is any basic Iamily in r(X». 
1 n '. , 

We also know that for any Ct E ~, the k-flubmodule . Ass œ(X) is a free k-:,module 

with a basis consiting of elements of the form: ' 
1 

(1.3.2) xi ..... xi wi\h m(xi ... ô·~ ) = a 'whe~e m:r(X)'-: ZX. 
1 n 1 n . ~ 

We will show that there is one-to-one correspondence between the elements of 

the form (1.3.1) and (1.3.2) by proving the following lemma: 

Lemm~ 1.3.3. \ 
~ There exists one ~d only one way to arrange L~e brackets on th: associa.tive 

monomial of the.fortll (1.3.2) to obtain a. Lie element of the form (1.3.1). 

Proof. 

We will proceed by induction on the length of an associative monomial of the 

Corm (1.3.2). The result is ob'\Ïously true for monomials of length L, Suppoe tha.t 

we have proved the lemma for monoIilials of length less than n. We take any 

associative monomial. v of length n. To simplify notation we will write v = 

Xl·· .. ,xn insteadpf v = Xi .... 'xi : 
,ln 

a) existence 

> By the induction hypothesis we can arr~ge Lie brackets ",?n v' = x1• ... ·xn_1 

to obtain an element w of Ass(X) of the form (1.3.1), i.e., w -. w1· ... ·ws 

whel'e wi = ~ui)' ul ~ ... ~us' u j E Ra. and Eai = a' = m(v'). If ln ~ u! then 
1 

D , 
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1 
./ 

put ws+1 = ~xn)' The element wl·····ws+ l is of tht.form (1.3.1) and is 

obtained by arranging Lie brackets on v. 
1 

Suppose ,that xn > Us and let p be the smallest integer such that 

[up,[.:.,[us'xn}",] is a basic mo~omia1 in R, i.e., p is the smallest integer such 

, that up < [up+1,[··.,[us,xnJ ... ) \fOldS. Put wp = ~[up,[ ... [us'X:nJ ... ]). If p *,1 

then the elèment w1' .... wp-l·\Wp is of the form (1.3.1) and is obtajned by 

, a.rranging Lie brackets on v. If p = 1 then take wi which is of the form (1.3.1) 

\00: '~ .. proves the existence of bracket arrangment for monomials of lengt,P n. 

\. 

b) unigueness 
"" 

Suppose that we can ,arrange Lie brackets pn v = -xl ..... xn in two ways to 

obtain two elements wI· ... ·ws and wi · ... ·w; ofthe form",.{I.3.1). 

We can wtite: 

Us = [al'[~,( ... [~,xnl···] where w s = ;p(us)' aj E R and &1 ~ ~o~ ... ~~ 

and 

u; = [bl ,[b2,{· .. [bm'X~]: .. ] where :; = ip(u;), bj7r R and bl ~ b2 ~ ... ~bm' 

H ws- 1 = ;p(uS- 1) and w;_1 = ~u;_l) then \S-1 ~ Us ~ al and u;_l ~ u~ 
~ bl · 

Hence the elements and 
~ 

.w; .... ·w;_l·;p(bl)· ... ·~bm) are of the form (1.3.1) an~ they are obtainrt by 

arr~ging Lie brackets on Vi = X( ... ·xn-l' Applying-the induction hypothesis 

weget that 

8 + i = r + m ~d "'1 = w1 ~ wi,~ws+i-l = ~~) = ~bm)' 
Since s ïs the smallest integer such that the element 

{w8'["s+I,1 ... lws+i-1'~1 ... ] is a basic monomial and since r is the smallest 

integer such that thê element [wr,[wr+l ,[ ... {ws+i-l ,xn) ... 1 ie a basic monomial 

1 



q , 

fi 
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we see that s = r and i = m. It follows that wi ~ wi for i = 1,2,.:.,8. 

This ptoves the uniqueness of bracket arrangement for monomials of lengtb: n. 

-- -The lemma. follows now by induction. 

1 

q.e.d . ! 

. 
We are now in position to prove the main theorem Ç>f this section . 

• Theorem I.3.l. 

Let L(X) he a free Lie algebra on X over k. Let ~L(X) -1 Lie(Ass(X)) and 

~:U(L(X)) ~ Ass(X) be the homomorphisms induced by, the map 

.. X ~ Ass(X). Illml: 

(1) The homomorphism ~ is an isomorphism. 

(2) The homomorphism cp is an isomorphism of L(X) onto the Lie 

subalgebra of Lie( Ass(X) ) generated by X. 

(3) If R is any basic f~ly in r(X) then Ra = Rflr o(X) is a k-basis of 

Lo(X) for all o'E t. In other words 

Lo{X), Ln{X) = E9 La{X) and L(X) = $ Ln(X) 
lal=n n~l 

, are free k-modules. 

(4)' if X is a finite set of cardinality d tl'1en Ln(X) is a free k-module of 7. 
tank Id(n) and \ . 

. (I.13) E ml~m) an, , min 
fm2L (1) has bean already proved (Lemma .3.2). 

Since the homomarphism ~ maps L(~) onto the ~ie subalgebta of Ass(X~ 

generated by X, in arder ta prave (2) we only have to show that cp is injective. 
j 

If we prove (3) then by Birkhoff-Witt theorem the homomorphism 

L(X) -t U(L(X)) will he injective. Since we C&Il identify' U(L(X» with A~s(X) 

/ 
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) by part (1) of this theorem, (2) will follow. 

Proof of (3) ~ 

In Ass a(X) there ex!sts a, k-basis which consists of elements of the fonn (1.3.2) 

and a generating set which consists of e1ements of the form (I.3.I). By Lemma 

1.3.3 t~ numbers of elements of this k-bMis and this generating set are equal. . 

Let us denote by A = (a,I, ... ,ap) the<vector of aIl elements of the form (1.3.2) in 

Ass(iX) and let us ?enote by ,B = (bp ... bp> the vector of all elements of the 

form (1.3'.1) in Ass(l(X), Sinee the set {al' ... ,ap} i~,a k-basis of Ass(l(X) and 

the set {bI , ... ,bJ?} generates Ass a(X) over k, there exist two ma.trices T a.nd 

S with coefficients in k such that: 

at = T·At and At = S·Bt . 

It follows that 

(ST - Id) . At = 0 

. Gre Id denotes the unit .pxp matrix, Slnce At is a k-basis we get tlJl<t S· T 

= Id. Let adj(T) denote the adjoint ~,!jK of T. We have 

T·(S·T)·(adj(T» = T.(Id)·(adj(T» = det (T)·Id and 

, (T·S)· (T· (adj(T)) = T·S·det(T). 
,/ 

Sinee det(T)· det(S) = l, det(T) is an unit in k. It follow8 that T· S = Id. 
J 

Suppos~ that we have the following relation: 

k1·b1+ ... +kp .bp = O. 

So, (kl , ... ,kp)' T = 0 and hence 

0= (k1, ... ,kp).T.S = (kl' ... ,kp)' 

Bence, {bl , ... ,bp} is a k-basis of Ass ciX). 

Jt follows that all elements of Ass(X) of the forin iP(ui .) ...... ~ui) with 
1 n 

u. 6-R and u. ~, ... ,~u. , are k-linearly independent. In particular, a.ll elements 
Ij , Il ln 

~ 

~ .~.,~. l ~ t • . -:- l r , 
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ëp(u) where ueR, are k-linearly independent. 

It follows that the elements of R are k-linearly independent in L(X). Lemma 

13.1 now completes the proof of (3). Note also that injectivity of cp follows 

directIy from this proof.without any reference to the Birkhoff-Witt theorem. 

Prpof of (4) 

Let R he any basic f~ly in L(X). Let di denote the degree4 of ui e R in - .......... 
L(~) where L(X) is endowéd with the °total grading (iel where I-5ome index " 

.... 
set). The Brikhoff-Witt' theorem tells us that the family of elements 

e· e· 
e Il 1S 

u = u· .... ·u· with u· > ... >u· is a k-basis of U(L(X)) = Ass(X). We r Il lS Il lS , 

have dO(ue) = I;ei. ·di :" If we denote by a(n) the rank of Assn(X), then a(n) 
J J .. 

is equal to the number of fintie sequences ~f natura! numbers (ei) such that 

n = te.d .. 
1 1 

This last statement is equivalent to say that th~er~Poiftcaré series of Ass(X) 

XA = A(t) = I;a(n)tn 

may he expressed in the form 

A(t) = n 4r. J 
ie! l":"t i 

d. 
To see this we write the formaI id~ndity n 1/(1-t 1) = 

ieI 
d. 2d. 

n (l+t l+t 1+ ... ). 'The coefficient of tIJ. in the second product is precisely the 
ieI 

Q 

number ,J sequences (~) such that I;ei ·di = n. Since for any positive lnteger 
d. 

m the number of factors in the product n 1/(1-t 1) such that di = m ois 
" ieI 

\ 

exactly Id(m), we ~ve 

A(t) = n l/(l-tm)ld(m), 
~1 

'. 

'/ 

.. 

, ~;t 
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On the other hand, the set of monomials x ..... ·x. is a k-basis of Assn(X). 
Il ln 

" . ~ 
Hence the,rank a(n) of Assn(X) is equal to dn: Therefore, we can ,&SO write 

A(t) = Edntn = l/l-dt. , 

\ Henee 

00 

Using the formaI equality Log(l/l-t) = ~ (l/n).tn we see that 
n=l 

E (l/k).ld(m) .tm·k = E (l/n)dn·t~. 
m,k~l n~l 

Comparing coefficients for each natura! number n we get . , 

It follows that 

(lIn) ·dn = E (l/k)ld(m). 
m·k=n 

dD = ~ m.ld(m) 
min' 

which completes the praof of (4). 

q.e.d. 

J 

We will now prove two resuIts which we'will refer to in Chapter II and Ill. We 
, 

calI a subset S of a free magma r(X) a left is1eM of r(X) if for any element 

U E r(X) and any element v E S we have U·V ES. In an analogous way we 

define a rimt ideal in r(X). An islW in' r(X) is a subset S of r(X) which is 

simuItaneously'a left and a right Ideal. We call an element u of S S=reducible 
" 

if it cau he written as a product of two elements of S. Otherwise we call an 

elemènt of S, Hrreducible. 

Lemma 1.3.4. 
, 

Let S be a subset of r(X). Any element of S cao be written 88 a product with 
.1 

- , 

__ ~,.!t:~~a~-\ti :,ti.~,&:;';;;'.'~ ... _,-":;:'_ • .;:,,l,\:::'~~~ ,~!.~~~.~~k~;#I';~&"_~L;rt .<,./.;r,;"it.S,~'IZ ~ "~b~ .~.~~ll,iv.,Ll',o>_~'2~~~,,~':::.K.!· L~dl~fi~'...J,,:il~~:p1h'J.;~: - ,1 ~,\\; .. """.o: ", :: é i'f 'r' ~ 

, , 

~ 
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sorne bracketing of S-irreducible elernents of S. 

Pri>of. 

We will proceed by induction on the length of an ~ement u of S. 

Tbe Lemma is clear if l(u) = 1: 
~ 

Suppose that we ha.ve proved the lemma for 8011 monomials u of lengtb less than 

n. Let u be a monomial of length n. u is either 5-irreducible or it can be 

written as a product v·w of two elements v,W E S. In the later case, applying 

the induction hypothesis we express elements v and w as products of 

5-irreducible elements. The lemma follows. 

q.e.d. 

Proposition 1.3.1. 

Let S he a right ideal in f(X) and let R he a basic family in f(X) which 

satisfies the following condition: if U E R-S and v E MS then u < v. 

Let Y be the set of RnS-irreduciblè elements in MS. Then the submodule 
\9 

k<RnS> of ,a free Lie algebra L(X) generated by the set MS is the free Lie 

algebra with free generating set Y. 

Proof. 

Let, y' he a set together with a bijective map fJ:Y' --+ Y. The map fJ extendS 

to the bijective map 7J from r(y ,) onto r(Y).· We want to construct certain 

basic family R' hl r(Y'). 

Put Ri = y, and carry over the ordering of Y to y' ;ia (J'l. 

Suppose that we have already constructed the sets Ri ,R2, ... ,Rtit-l such that 

7J(Ri) C ,RnS for i = l,2, ... ,m-1. Suppose also that the set Riu ... URm_l is 

totally ordered and 'that ~he restricted map ]lI Riu ... URm_l is order preserving. 

. ~I 
" 

'0, j 

- l' . " 

j 

l 
j 

" 
• -1 

~ 

0"1 
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w~ define _ Rm t~".be t'he set of all pro~ucts "u·v with u e R~ a.nd v E Rm_n' 
.... ,... "-

, ~uch that: 'u < v' ~d if v = v1,v2 ~here\ vp v2 e Riu ... URm_l' vl < v2' then 

u ~ VI' We want to show that ,;8(Rm) C MS. ( 

Indeed, anyelement of Rm is of the fo~ u·v with u E R~, v E Rm-n and 

71(u), 7J{v) EMS. Sinee S is a. right ideal, we only need to show that 

71( u) . ]J( v) E R. We know that ]J( u) < 11( v). 
v ~ 

il v = v1 'v2, where vl'v2 E Riu ... URffi_l' v1<v2, then u ~ VI and hence , 

7J(u) ~ 7J(v1) and 7J(v1) < 7J(v2)· It follows that in this case ll(u)·lJ(yJ E R. If 

v is Ri U ... UR~_n -irrèduci ble then v E Y 1 and hence 7J( v) E. Y. ~ 

il 7J(v) ~ bè written as a. product 1r12 f<: sorne 11,12 E. R with 11 < 12' 

then atÎèast one of 11 . and 12 is i~ R-S (sinee Y is the set of J 

RflS-irreducible elements). Sinee by assumption R-8 < Rhs we soo that 

1'1 e R-8 and hence 7J(u) ~ il' It follows th~f also in JhiS case 7J(u) 'll(~) is in · 

MS. 

Henee, 7J(Rffi) C MS. ( 
We totally order the set Riu ... URm by: 

u < v if and only if 7J(u) < 7J(v.) for all u,V E Riu ... URm. 
i ) 

The subset R' = U Rm' of r(Y') is t.hen total1,y orde;red and satisfim 
, m~1 ' f., 

condition~ (RI), (R2) and (R3); that is, it is a' basic family in .[(y/). 
.... l ,\ 

By Theorem 1.3.1, R' ')s a k-basis .of L(Y'). Let 7J:~(Y') -+ L(X) be Lie ., 
alge~ra honiomorphism induced by (J: y, -+ Y. Since MS is a. part of the 

k-basis of ~(X) and Jj(R') = ll(R)C(RnS we see th~t =,Bl-iS !njectiye. ~ 

If w'E MS then w cau be writ~n as a product with sorne bracketing of 
, ~ ~ 

elements of Y. Henee w E Jin(7J), i.e., k < RnS> C l1(L(Y'».· Since 
, ... , .... 

1J(R') C MS, we see that 7J(L(Y')) C k<RnS'>. '\ / 

.,.. 

.-

! 



~r.;'j.:' ~ 

~1 ' 
, 

o 

~o 

; ,'1 ,:"'{rlt."'(~t~\.:..,,; ...... ~ : 
, , 

.. ,- ~ ., ~ .-"'t","::"'<1~ ~'~ , .. , 1 ~' "."n:: 
, . 

/ 

It follows that k<RnS> is a subalgebra of L(X) which is isomorphic to fr~ Lie . . , 
"-.d algebra L(Y;). 

~ 

q.e.d . 

. Proposition 1:{2. (Elimination Theorem) 
• 

Let L(X) he a free Lie algebra on X over k. Let X = X'U X" with X'n 

X" = if> and X, '/: if>. Tben: 

(1) The idehl 0 of L(X) generated by the set X' is a free Lie algebra with 

free generatin~ sei y which consists of elements of the fonn: 
• l • \.",. -"\ 

(*) [ui ,[ui ,[",[ui ,x'] .... ] , 
f 1 2 n 

where u· belongs to sorne basic family R" in f(X"), X' EX', n ~ 0 
lk 

-... 
and u· > ... > u· . 

1 - - 1 
1 n 

(2) The k-module L(X) iS the direct sum of 0 and H, where H is a 
1 

subalgebra of L(X) which lS isoVlorphic to free Lie algebra· L(X") on 

X". 

(3) 0/(1J,0] is a free U(L(X)/o)-module with basis the images of the elernents 

of the set X'. 

~ 
"""'-

(1) We identify f(X") with its image in r(X) under the map induced by the . . ' 

inclusion X" ~ X. Let S = rlX) - r(X"). Clearly, S is ~ ideal in r(X). In 

order to use Proposition 1.3.1 we have to con8tru~t a basic family· R in r(X) 

such that R - S < ROS. 
\ ' 

Put RI = X, and totally order RI such that RI - S = X"' < ~ nS = X ~ 

Suppose that we have already ~n8tructed the sets Rlt .•. ,Rm_l such .that the ., 

( 

J . 
", • 1 

" 

'1 

, 
" 
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'" set 'Rm- 1 = R1U ... URm_1 is totally ordered, R~-l - S < Rm-1nS and 

elements Gf Rm- 1 satisfy conditions (RI), (R2) and (R3). 

We define Rm to he the set of all products u·v of monomials in Rm- 1 such 

that l(u·v) = m, ~ < ~ and if v == YI'Y2 where vl'v~ e R~-l, vI < v2; then 

u ~ y l' Let R~ be the subset of Rm wJlich consists of all products u· v with 

u,V E Rm- 1 _ S. We totally order' R~ and Rm - R;b and then we totally 

order R~-~URm req,uiring that 

Rm-l_S < ~ < Rm-1nS < Rm - R~.t L 

The elements of Rm 
=' R1U ... URm satisfy conditions (RI) and (~y. 

construction. 

Let û,~,u.v E Rm. If u·ve Rmr1 then by induction hypothesis U·V > u. 

Hence the condition (R3) is satisfied in this case. 

If U· VER; then both u and v belong to R m-l - S and hence u ',v > u by 

construction. If U· v E Rm - R~ then u . v > u by construction. Hence, the 

condition (R3) is satisfied. 

Thus, the set R = U Rm is a basic family in f(X) which satisfies 
~l • 

R - S < MS. The ideal li is the direct sum of aIl submodules k <r a(X» 

such that· a{X') > Oj i.e., li = If<S> = $ L<r iX» with a' Et and 
a' . 

a'(X') > O. Since by Theorem 1.3.1 Ra is a k-ba.sis of k < r a(X» we see 

that k < RflS> = fi. By Proposition I.~} the ideal li is a free Lie algebra syer 

k with fr~ generating set Y which consists of S-irreducible elemen~s of MS . 

Let u be any S-irreducible element of MS. 

length of u that u bas the form (*). 

If l(~) = 1 thên u eX'. 

We will prove by induction on the 

If l(u) > 1 then let u = ul'~ he the unique ~ecomposition of u in R. The 

\) 

"'~",.,,\~(}·)~h' ~~t.', 'o.h .-.j •. _,~.~._. ' 



o ideal S has the property tbat if w·v E S then either w or v belongs to S. 
,. 

Since u is S-irreducible and ui < ~ we 8ee that ui E R - S and ~ EMS . 
. ' 

If u2 = u3 'u4 where ua 'U4 E MS then condition (R2) t'ells uS that ui ~ u3 
_ contradicting that R - S < MS. Henc~, tbe element ,~ is ~-irreducible of . 

4-

length less than l(u). We a.pply the induction hypothesis to deduce that u is 

indeed of the form (*). 

On the other hand, each of th{ elements of the form (*) is obviously C • 

S-irreducible. Since R - S = R" is a basic family in r(X") by construction, we 

have completed the proof of (1). 

(2) Let y" he a set with a qijective map tp:Y" -+ X". The map 'P extends to 

a bijection ~r(Y") -+ r(X"). Le~ i he the inclusion i:X" -+ X. Let L(yll) 

be a free Lie algebra on Y" over k. The injective map i· tp: Y" -+ X extends tq 
1 

the Lie algebras homomorphism l' ~:L(Y") -+ L(X) which maps L(Yll) ont~ 

the subalgebra H of L(X) generated by the set X". Like in the proof of 

Proposition 1.3.1 we construct a basic family RI in r(yll) such, that the 

restricted map cp 1 RI sends RI onto R \1 = 'R - S in an order preserving way. 

The restricted map T· tp 1 RI is a bijection from RI onto R" =:= R -- S. Sinée 

R - S is a part of the k-basis of L(X), we see that T· V; is an injection. sinee 

H = k <r(X"» = k<R-5> and L(X) = k<R-8>$k<RIlS> we see that 

L(X) = H$. as k-modùles. .. 
(3f By the,part (2) of this theorem LI. = H ~ L(,{"). 

Since R" = R - S is a k-basis of H, the theorem of Birkhoff-Witt tells US that 

the family of monomials of thé form 

(.! * ) u· ' .... ui with n~O, ui E R" and ui ~ ... ~ui 
Il n k 1 n 

iu k-4>a.sis Or U(L(X)/ a). / 

-
", 

.... . . 

, 
y 



0, 

Since 0/[0,tJ] is generated over k by the elements of thejeml (*) we see that 

0/[0,01 is generated as an U(L(X)/o)-module by the set X'. Since any relation 

of the form 

ulxl+",+unxn:d: 0 where ui E U(L(X)/o), xi the image of xi E X" in 0/(0,0] 

would imply k-lin~ dependence of the elements of a k-basis of 4/[0,0]; we see 

that the elmeents of the set X" are U(L(X)/ a)-free. 

q.e.d. 
" .. 

Bemark. There is another proof of this proposition given in ([4], Chapter II, §9, 

Proposition 10, p. 131). We will not present it here sinee it is quite analogicaI to 

the one given above. However, in the course of that proof, another free 

generating set of 0 was found. It consists of all elements of the form 

[xi ,[xi ,[ ... [xï ,X'). .. } 
1 2' n 

where ~k E X" and x' EX'. We will us~ this result to prove the following 

proposition. 

Proposition 1.3.3. 

Let L he a free Lie algebra on X over k whei-e, X = X, uX", X, nX" = ~ and 

Let a he the ideal of L generated by the set X'. Let {Yi}iEI {I-some Index 

set} he the set which is a part of the free generating set of 0 prescribed by the 

Elimination theorem (the version of it mentioned in the remark above). 

Lët T be the idea1 generated by {Yi}iEI' Then: 

(1) Llr is a free\k-module. ) 

(2) T/[r,r] is a free U(L//r)-module on the images of Yi(iEI) in Tffr,T]. 

Proof. 



o 

{ 

o 

J 

\ 

The ideal ;. is by Elimination Theorem a free Lie algebra over _ ~ with free 

generating set consisting of all elements of the form: 

(*) 

where 

(xi ,[xi ,[",[xi ,X'] ... ] 
1 2 n 

-

x~' E X", Xl E XI and n ~ o. Slnce the elements YI.(iel) 
I k 

generating set of CI, we see that the elements of the'form 

(**) [xi ,[",[xi 'Yi]"'] w.here xi e X" 
1 n k 

.belong to the family (*). 

lie in the free 

Since the family (**) generates r as an ideal of 4, we apply Proposition 1.3.2 to 

get that tbe family of elements of tbe form (**) is a U(alr)-basis of rllr,r]. 

The algebras LIGand air are free Lie algebras by Proposition I.3.2 and as 
, 

, , 
such they are free k-modules by Theorem 1.3.1. Since we have an exact 

sequence: 

o ~ ~/r!!.. L/r!. L/a.-. 0 

we see that L/r is a free k-module, which proves (1). 

Let H ~ he a subalgebra of L(X) isomorphic to L(X") and let Hl be a 

subalgebra of LI r generated by the images of X". The restriction of {J to Hl 

is an isomorphism and hence identifying Hl with LI a we see that 

Llr = alr$ Hl 

as k-modules. By Corollary 1.2.3 

U(alr)~U(Hl) ~ U(L/r) 

as k-modules. It follows that 

- U(L/r) , $U(a/T)x'.' ..... ~'.' 
Il ln 

" where n ~ 0 and xi EXil. Since r/[r,r] is free U(a/T)-module we see that 
k ' _ 

Tllr,r] is ~ U(L/r} module with basis {Yi}IEI where Yi is the"image of Yi 

/ 



G 

• 

o 

in r/[r,r}. 

q.e.d. 

. , " 
, " 

Remark. A set {Yi}ieI which satisfies condi\ions (1) and (2) of this proposition 

.J is called Stron&Jy free set or "mm set- ({1),[2]). We will study §uch sets' in 

Chapter III. 

Example 1.;1.2. 

Let L he the free Lie algebra on {XI, ... XN} and let 

1) A = {Pl'",PN- 1} where Pi = [Xi'Xi+1] i = 1, ... ,N-1 and 

2) B = {Pl , .. ,PN- 1} where Pi = r~,Xi+lJ i = 1,2, ... ,N-l 

he two sets. Then A and B are strongly free (cf. Loc. cit. Remask after '~r 

Proposition 1.3.3). To see this take CI' to he the idea1 of L generated by 

{X1X3, ... XM} (M is the largest odd integer less than or equal ta N) in the first 

case and take CI to be the ideal generated by Xl in the second case. Next, 

apply Proposition 1.3.3. 

§4. Filteted IfOUD8 

The main references for this s~tion are [13], [12], [7}, [8], [91, (6] and [4]. 

This paragraph is an inttoduction to Lie algebras associated to the Iower central 

~eries of the groups, which we will study in Chapter III. 
4 

Cwpmutator calcul us 

Let G he a group and let x,y,z e G. We will use the following notations: 

() 
ell -1 1 xv = y xy. ... 

\ ' ) 
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(1.4.2 

(1.4.3) 

(1.4.4) 

(1.4.5) 
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If' 

, [.,.] is called the conunutator ~f x and y. . 

mg identities (Witt-Hall): ' 

[x,x] = l, [y,x] = [x,y]-\ xY = x[x,y), xy = yxY = yx{x,y). 

[x,yz] = [x,z]' [x,yJ[[x,y],z] = [x,z][x,y]z. 

[xy,z] == [x,z][[x,z1,y][y,z] = [x,z]Y{y,z1. 

Y z \ X 
[x ,[y,z]][Y ,[z,x]][z t1[x,Yll = 1. 

[[x,y] ,z}[[y ,z] ,z][[z,x,Y] 

= [y ,x][z,x][z,y]x. [x,y][x,z]Y . [y,z]x. [x,zJ[z,x]Y. , 

Let A,B be subgroups of a group G, and let [A,B] denote the subgroup of G 

generated by the commutators [x,y] , for all x E A, Y E B. If A and B are 
" 

normal subgroups of a group G, then [A"B1 is again a normal subgroup of 0 . 
which is contained in the intersection of A and B. 

~et x e A, y E B, z ~ C where A,B,C are any three normal subgroups of G. 

Since lE B, xY E A, we have from (1.4.4) that 

[zx[x,y]] c [A,[B,C]]· [B,[C,A]J. 

Since zX runs through all elements 9f C if z does, we prov~ that 

... (1.4.6) [C,[A,B] ~ (A, [B,C]] • [B{C,An . 

"Filtration on a &l'0up 

Definition 1.4.1. 

By a filtration on a gr~up 'Ye will understand a map w:G -+ R+U{-ro,} 

satisfying the following conditions: 

(1) 

(2) 

w(1) = +00. 

w(xy -1) ~ inf{w(x),~y)}~ 

w([x;) ~ w(x) +, w(;). 

- For a.r. y real number a we define: 

'.' 



... ~-

Ga = (xeGIW(x) ~ cr} , 

G! = {xeGIW(x) > cr}. 

-

- 42 

« 

Condition (2) shows that Ga and G! are subgroups of G. If xe Gand 
. ' a 

y e G, then xY:: y (modG!) whfch follows from (3): w([x,y]) ~ a + w(y) > a. 

This proves that G Il is a normal subgroup of G. We see that G+ = U Gp ,a /1> a 
which shows that G! is also a normal su,bgroup of G. If a < P then clearly 

Gp~ Ga and Gp) G!. 

For all a ~ 0 we define gr a(G) IW- G JG!. Then 

Proposition 1.4.1. 

(1) gr a(G) is an abelian group (a ~ 0). 

(2) (xY) = x where x e Ga' y e G and x denotes the image of x in 

graCG). 

(3) The map GaxGp-+ Ga+/J defined by (x,y) --+ [x,y] induces a bilinear 

map gra(G)xgrrJG) -+ gratrJG). 

(4) the maps of (3) can he extended by lineari ty to the m?-p 

gr(G)xgr(G) -+ gr(G) where gr(G) = $ gr n,(G). This map defines a 
, ~O w 

Lie algebra structure in gr(G) (ove~ Z). 

Proof. 

~ (1) It follow8 from 1.4.1(3). 

(2) It Wa8 proven above. 

(3) We have to show that the map gra(G)xgrrJG),--+gtœ+tf..G) is 

well-defined; Le., that it does not depend on the chôiœ of the 

representatives for i e gr,}G), y E grlG) in Ga and Gp respectively. 

So let xE Ga' y E G {J and u,V E G!. We have to show that [xu,y]:: 

ù:' :,~~t ..... -. .!.~_~,"'...::L>- __ I":"'I', .. ~L~ .. L __ N-,_':' ... ,,~~! .. f, ; 

1 
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f l ,'~ "', .. -,'''" : $l' .... ,::",'~'"' ~ "",", , ... ttl~ r'rI~1r~;:~~--

~ l, ~. 'ft' :t: 

[x,y]mod(O!+tY and [x,yv]:: [x,y]mod{O!+p)' We use the formulae 

(I:-4.2)..and 004.3) to obtain 
i 

[xu,y] = [x,y]u + [üJ] = [x,y] 

~d [}Ç,yv} = [x,v} + [x,y}v = [x,y}. 

- We now have to prove that this map is bilinear. So let xl E G a' YI E G {J' 

Then, uSing the same formulae and (2) we get 
, , 

xl 
[xxI ,y] ::: [x,y] + [xl ,y] = '[x,~} + [xl ,y] 

and [x'YIY] = [x,y] + [x'Yl]y = [x,y] + [x'Yl] 

which pro-ves (3). 

( 4) Let U E gr a( G), v e gr {JG and choose elements X e G a' y E G fJ such 

that x = u,y = v. Then we have [x,y) = (u,v] where [u,v] denotes the 
Î -

image of (u,v) under the map gra{G)xgrrJG) --+ grl1+rJG). " 

If lU e gr(G) then u = EUa where ua e gra{G). Let xa E Ga such that 
a 

xa = ua for all a. Then, we have 

[ua,ual = [xa,xQl = l = 0 (by (1.4.1» 

and 1ua'u~ = [xa,xJ .:.. lX.8'xQl-~ = -[u,8'uJ (by (104.1». 

It follows that lU,u) = o. 
We want to prove the Jacobi identity. By trilinearity of Jac(·,·,.) it is enough 

f . 
to consider the case u e gra(o,), v e grrlG) and w e gr,.,(G). Choose x E Ga' 

y E G,8' Z E G,., such that x = u, y = v, i = w. Then using (1.4.4) we have 
, .v Z x + Jac(u,v,w) = [X" ,[y,z]][y ,lz,x111z ,{x,y]]·G a+{J+1 = r = o. 

\. 

q.e.d. 

When. the filtration w takes values in N (natural numbers) we call it an 

integraJ, or-central filtration. 'The central filtra.tions are in a. one-to-one 

f 

~~:.~ 
, \ 
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correspondence _with ~he sequences of subgroups of G with the following 

properties: 

(i) 01 = G. 

(ii) Gn+1 C Gn. 

(Ui) [Gn,Gml c Gn+m. 

If (Gn) is such a sequence, define a filtration w:G -+ NU{ +(O} by w(x) = 
sup{nlxeGnl. Such a family of subgroups of G is ca.lIed a centràl series. -The 

lower central series of a group G is the sequence of subgroups Gn (n~l) defined 

inductively by 

Gl = G, 0n+1 = [G,Gn]· • 

Clearly, the conditions (ii) and (i) are satisfied and we will prove (Hi) by 

ind~ction on n in the pair [Gn,Gm]. 

If n = 1, then [G,G~] C Gm+1 for al1 m by definition. Suppose that n> 1. 

Then 
" 

[Gn,Gm] = ([G,Gn_1],Gml C [G,[Gn_l,Gm]]·[Gn_I,[G,Gm11 

C [G,dn+m-l]'[Gn_l'Gm+1l c Gn+m·Gn+m C G~+m' , 

If' (Hn) is any sequence of subgroups of G which satisfied (i), (ii) and (iii) then 

Hn J Gn for all n, The proof of this is again by induction. If n = 1, then 

Hl = Gr If n ~ 1, we 1aW Hn+1 J [H,Hnl J [G,Gnl = 0n+l' 

Now let 

(*) 1 ---1 R ~ F .iL G ---1 1 

he an exact sequence of groups. Let (F n) (n~l) be a central series of F n' We 

define Gn = p,(F n) and Rn = a-1(F n)' Clea.rly (Gn) (n~l) and (Rn} (n~l) 

are central series of G and R respectively" 

LflPuD3, 1,4.1 . 

~ 
" 
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The induced sequence 
, 1 

(**) ~ 0 --+ ~R) i. gr(F) JJ gr(G) - 0_ 

is exact with a, ]J-Lie algebra. homomorphisID8. 

We identify, R with its image in F under the map a, and G with dIe quotient 
, . i 

group F IR. The map a induces an injective homomorhism in degree n 

ll'n:R n F n/~ n F n+l --+ F nIF n+l' 

The map {J induces a surjective homomorphism in degrQe... n 

(Jn:F nIF n+l ~ Gn/Gn+l' 
, 

The maps a and 7J are defined to be (al'~'''') and (,81',82'''') respectively, 

We will prove that the sequence (**) is exact. It is enough to look at the an 

and (ln' If fn~n+l E ker(,8n)' then fn = rfn+l for some r E' R and 

fn+ 1 E F n + l' It follows that r E R n F n i,e, Im( an) J ker({Jn)' On the other 

hand, if r E Rn F n l.hen ,8n(rF n+l) = rF n+ 1 R = l i.~. Im( on) C ker(,8n), . 

Clearly a' and 7J are Lie 'algebra homomorphis~s sinee they are 

group homomorphisms and as sueh they preserve braekets. 
Il 

q.e:;d: 

Thé (x.r)=filtration of the free CrouP F on X = {Xl awXNl 

Let A be the Magnus algebra of fonnal power Séries in thê noncommutative 
, . . 

i,ndetenninates {Xi}iEI with coefficients in Z (I-fiOme index set). 

Lemma 1.4.2. 
'~t 

The elements ~ ',= 1 + Xi (iel) are generators of a Cree group F(A). L 
, , 

fœlt. .. 

., 

.. 

, 1 

,,-
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We have to show that a freely reduced word in 
---./ 

the empty word. Consider the word 

E1. ek w = a· .... '80. 
Il Ik 

• 

ai , ... ,~ 
1 k 

is not 1 unless it is 

where ej , ij E N, 1~ ij ~ N for j = l, ... ,k, and ij f ij+l' It is easily s~own that 

ai = 1 + nXi + X~h(Xi) where h is a power series. Renee 

w = (l+e1X. +X?'l11 (Xi)·· .. · (l+ekX, +X~ hk(X. ) 
Il 1 f ~ 1 lk ! k lk 

which conta.ins the unique monomial 

, 
Since er ... ·ek f 0 we have w;l: 1. 

In view of this Iemma we will iderttify any free group on {xi}iEI with its image 

in A under the map defined ~ Xi -+ 1 + Xi(iEI). ,Hence, we cau identify Z[F] 

with its image in A under the map induced bf the bijection F --+ F(A) "(Z[F] 
~ . 

denotes the group ring of F over Z). If Ti (ieI) are positive integers we define 

a valuation w of A by setti~g 

w(Ea.. . X. · ... ·X. ) = Inf{T. +. "+T. :a. .;1: O}. 
11'''' ln Il ln Il ln 11':" ln 

For'any integer n~O let An = {uEA:w(u)~n}. Then AO=A, An+l,,"'An 

and An' Am C An+m· Hence 

\ gr(A) = 49 grn(A) where grn(A) = A~/An+l 
. n~O 

has a natura! structure of a graded ring. Let ~i denote the image of Xi in 

grn(A) where n = Ti' We calI ei the initial ;form of Xi with r~pect to (An)' 

We-see that gr(~) is the ,ring of noncommutative polynOmi~ in {{i}iEI over 

Zji.e., gr(A) ~ A8$z(~i}ieI' In view of the Theorem 1.3.1, the Lie suba.lgebra of 

gr( A) generated \r ei (je!) is the free Lie algebra over Z with the free 



o 

o 
" 

~<.. ,0 ~;t,::-"~ .~~ ",'" 'k 

- 47 -

generating set {ei }iEI' 0 We will denote it by L. For n > 0 we set 

F n = (l+An)nF. Clearly we obtain a filtration (F n) of F. We calI this 

filtration the (",d-filtration. Let gr(F) be the Lie algebra 85sociated to this 
( -

filtration. The mapping ;F -+ A definded by x.l.-t x-l induceS' a Lie algebra 

homomorphism from gr(F) intç gr(A) defined in the following way: 

Let x E ~ n+ 1 and choose x e F n such that its image in Ji' niF n+ 1 is x. 
We ean write x as 

x ' 1 + Gn +Gn+1 + ... +hig~er terms (Gn E An = {ueA:w(u) = n}. 

Define mi) = Gn. Clearly ~ is well-<lefined and injective. If 

y = 1 + Hm + Hm+1 + ... + higher terms 

then 

[x,y] = 1 + (GnRm - HmGn) + ... + higher terms.· 

It follows that " is Lie algebra homomorphism from gr(F) inta Lie (gr(A». 

We use this injection to identify gr(F) with its image in gr(A). Hence 

Le gr(F) sinee " sends I+Xï to xi=Çi for all ie!. 

If we set Z[Fln = Z[FlnAn then (Z[Fln) is a filtration of the group ring Z[F]. 

Let gr(Z[FJ) he the associated graded ring. Since the image of the element 

(l+Xi)-l in gr(A) is ei we see that gr(Z[F]) is a subring of gr(A) which 

contains aIl generators ei of gr(A) Le., 

gr(Z[F]) = gr(A). 

Let Tn(n~l) he the set of elements of the form x~ with e = :il and- Ti = n, . 
and define subsets of F inductively as follows: SI = T l' and for n > 1 

, Sn = Tn U T~ where T~ is the set of elements of. the form [x,y]e 'with e = :t:1, 
- i 

xe Sp' y. E Sq and p+q == n. Let F Ii be tlfe subgroup of F generated by th~ 

sets Sk with k~. Then FI = F and Fn+l (Fn by definition. wè ~ant to 

- '_r 

() 

. ; 
''''; 
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show tha.t [F n,Fk] c F n+k' Using t~e formulae (1.4.2) and (1.4,3) we see that it 

is enough' to look at the commutators [x,y,1 ~re x E SpI y E S q and p ~ D, 

q_~ k. But then [x,y] E ~p+q; that is, [x,,y1 E. F n+k' ~ Ti = l f~r al1 i then 

(F n) is obviously the Iower central series of F. Let L denote the Lie algebra 
- - -

associated to the ~~~ration (F n)j i.e., L = gr(F),_ 

We claim that F n ( F n for aIl n. Indeed, Fil is ,generated by the sets Sk 

witb k ~ n. For those k, the elements ot Tk and ITk belong to (1+Ak) n F. 
-

. Hence F n C (1 + An)nF = F n' Thus, we obtain the induced map in degr~ n 
- - - \ 

.- F nIF n - F nIF n+1 (for ail n) and consequently the map tp:gr(F) -' gr(F) 
- -

(which is in gener-al not injective). Since the algebra L is generated by {$i}iEI 
- f _ 

where ~i is -the image of xi in grn (F) with n = Ti' we get the canonical -' 

surjective homomorphism s:L -+ L which maps el' to e·. The composed 
" l 

homomorphism 11' tp'S is a Lie algebra homomorphism from L into Lie (gr(A)) 

prescribOO by the theorem 1.3.1 (~i is mapped to ei). and hence by the t~ ___ ~or~m 

f of Birkhoff-Witt it is an injection, Hence, the map s is a bijection .. This . 

implies that the map cp is injective. We will prove by induction that F :: F n n -
for al1 n. Jf n = l, then F 1 = F = FI by definition. 

- - -
Suppose that F n = F n for n ~ k. The induced map F kIF k+ 1 - F kIF k+ 1 

has kemel Fk+lnFk/Fk+l' Apl>lying the induction hypothesis we g~t that: 
... - ... -

Fk+lnFk /Fk+l = Fk+lnFk/Fk+l = Fk+l/Fk+l' :1" 
But sinee t'he map cp is,injective we see t~t Fk+l = Fk+l and hence L = 1. 

T~ we hm proved the followinB prQPOsitiJn: 

Proposition 1.4.2. "" ) \ 

Let (F n) he the (x, r)-filtration of the free group F. Let gr(F) be?, 

associated Lie algebra and let ,{i Jte the image of Xi in grr. (F~ Then gr(F) is 
1 

/ 

... 



.. ", 
" , , 

" • a free Lie algebra over Z with a free generating set {ei}iEI' 

" 

.... ' 

Proposition" 1.4.3. 

Let (F n) ~ the (x, r)-filtratio~ of the free group F. Put [F ,Fln = [F ,F] n F n' 

8Âd let gr([F,FJ) be the Lie algebra '!ssociated to the filtration ~[F,Eln) of .. -
[F,F]. Then 

·[gr(F),gr(F)] = gr({F,F)). 

Since we have the following ex~ct sequence of groups 

1 -1 [F,F] -1 F --+ F/[F,F1- l 
, ~ 

by Lemma 1.4.1 we get the exact sequence of Lie algebras over Z: 

/., 0 -! gr([F,F)) - gr(F) -+ gr(F/[F,F]) --+ O. ~ 
Since F / [F ,F] is an abelian- group, the Lie algeQra gr(F I[F ,F1) is abelian which . , . 
implies that [gr(F),gr(F») c gr([F,F] ) , 

The subgroup [F,F]n is generated m~dulo [~,F]n+l by the set T~. The' ' 

Z-Submodule [gr(F),gr(F)]n = [gr(F),gr(F»)ngrn(F) is generated by the 

brackets [Fk/Fk+f,F m/F m+l] where k+m=n and k,m>O. 
~ 

T~e subgroup F k is generated modulo F k+ 1 by the set Sk' bd Fm is 

generated modulo F m+l by the set Sm' It follows that [gr(F),gr(F)]n is; . 

generated by the set-T~ and it implies that;:-grn([F,F]) c [gr(F),gr(F)]n' 

q.e.d. 

/ 
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Chapter Il 

Subal~ùras Q{ Erne Lie AI"bras 

In this chapter, we try to answer the following question: 

"When is a subalgebra of a free Lie algebra free?" 

It is well-known that any subalgebra of a free Lie algebra. over a field k is free , 

([14], [15]). This is not true when k is not a field but any commutative ring , 

with unity. In fact, if we want ta answer this quesiton. using the techniques 

known so far, we h", ta restrict ourselves to the graded case, i.e., the subalgebra 

in question is a homogeneo~ subalgebra of a free Lie algebra L with repect t.o 

some N-grading of L. We also need to know that certaip k-submOdules of L 

are ·k"':fr~. ,To ensure it we may assume that k is ~ commutative ring with 
_: .~ 

unit y which has tlle follawing praperty: any projective module over k is free. 

For example any principal ideal domain has this property. The ideas used in the 
- '~,,!:I . 
proofs are contained in [3], [7], [14] and [15]. The letter k qenotes a 

commutative ring with unity. 

te start with an example of the homogeneous 8ubalgebra of a free Lie alg:bra 

\ over fl whicli is not free. 

Example II.1. / 

Let L he a free algebra on X = {xl ,~} with natura! N-gradingj 

i.e., dO(x1) = dO(~) = 1.- Let H be the' s~bal~ebra of L generated by 2x1'~ 
. and' [xl '''2]. Sinœ the generators are homogeneous' efèments of L, the algebra 

1 

H is a homogeneous ~ubalg~bra of L. For any subset SeL, let Z<S> denote 

. the Z-Submodule of L generated by the elements of S. We see that 

... 



o 

( 

o. 

~ ,} l' 

Hl = Z<2x1> $ Z<"2>, H2 = Z<[Xl'~]>, [H,Hh = [H,R] n Hl = 0 

and [H,HJ2 = Z<2[Xl'~»' 
Henee H/[H,R] has torsion element, namely [xI~] + [R,H]. 

If H was free Lie algebra then H/[H,R] would he a free z-module. 
i 

It follows that His· not free. 

To prove the main theorem of this chapter we will need the following lemma: 

LemmaII.L 

Let L(X} he a free Lie ~gebra withfj generating set X = {xi}ieI (1 -sorne 

index set). Let y = {Yi}ieI be any f-basls of a free k-module k<X> where 

k<X> is a submodule of L(X) generated by X. Then Y is free generating set 

of L(X). 

Proof. . 
Let f he a k-linear automorphism of k<X> defined by Yi --+ Xi for all ie!. 

~ 

Let g he a)<-linear automorphism of k<X> defined by Xi --+ Yi' fo~ ieI. 

The restricted mappings gl X and fi X induce Lie algebra homomorphisms g 
and f frerm L(X) into itself. Sinee 

~, 

goflk<x> = glk<X>oflk<x> = glk<X>oflk<x> = goflk~>_::;ldfk;X> ' 
t 

~ 

and , ~ --- , 
o t. ______ ~-

Toglk<x> = flk<x> oglk<X> = f)k~X>og~k<X> = foglk<x> = Idlk<x> 

~ we see that _ 

rog == fog c: IdL(X) 

where IdL(X) is the identity map in L(X). I~ follows that Y is freë generating 

set of L(X). 

q.e.d. 

• 1 .. ,. -

( 
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.. 
We now prove the main theorem of this chapter. 

Theorem 11.1. 

Let k be a commutative ring with unit y which has a property that every 

project~;ve k-module is free. Let L be a free, N-graded Lie algebra over k wi.th 
, , 

free generating set X which is homogeneous with respect to the grading of L. 

Let H be a homogeneous subalgebra of L which is in addition a direct 

summand of L as a. k-module. Then H is a free Lie algebra. with some 
~ , 

homogeneous free generating set B. 

Proof· t' 

By assumption, there exists- a k-submodule F of L such that L = FeH 

as k-modules. Sinœ L is a free k-module by Theorem 1.3.1, both F and H 

are projective modules ~d hence free. We know that L = (9 L and 
n~l n 

H = $ Hn where H = HnLn· Hence, F = LJH = (9 Ln/Hn' Since F is,..a 
n~l n. n~l 

free k-module we see that each of the modules Ln/Hn is projective and hence 

free. Thus, there exist submodules F n of Ln snch that _ Ln = F n (9HJl for all 

n. Since ea.ch submodule Ln is free, both F n and Hn are projective, hence 

free. 

We can view H as an intersection of subalgebras Hk of L where 

~ H
k = Hl(9H2$ .. ·(9Hk$Lk+l(9Lk+2e ...... 

Suppose that we can construct fr~ generating sets· Bk of Hk in such a way 

\ 
; 

k k-l Bn = Bn for n=1,2, ... ,k-l 

We claim toM· B = U BD -is a free ceneratinc set of \ H. 
n>1 n 

1 -

~_ .• '1 
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lndeed, any element of 1:I is conta.ined in H1œH2$ ... œHn for large enough n. 

Hence, this element can he written as a Lie polynomial in the elements of the set 
l 

B~U ... UB~ = B~U, .. B~, It follows that B generatès H as a Lie algebra. 

Let L(B) be'a free Lie algebra on B over k. 

We c1aim that the canonical surjective homomorphism a:L(B) -+ H is in fact 

an isomorphism. 

To see this we totally order each of the sets B: and then we totally 

order the set B requiring that if v E Bn and u e Bm then: if n < m then , n m 

v<u. 

Using this total order of B we construct a basic family R in r(B) where 

r(B) denotes a free magma on B. Theorem 1.3.1 tells us that R is a k-basis of 

L(B). Suppose that we have a relation of the form 

(**) k . .nI 7,. )+ ... +k . .nI 7,. ) = 0 
IU\ Il n u: ln 

where kj E k, ?'ï. ER and n'~ 1. The elements li.' (j = 1,2, ... ,n)j are basic 
- J J 

monomials in r(B) which belong to r(Biu ... UB:) 1 for large enough m 

(r(Biu ... UB:) denotes a fr~ magma on Biu ... UB~). We totally order the set, 

Bm-(B~ ... UB:) and then, using already defined total order of B~ ... UB:, we 

totally or~ Bm requiring that if u e B~U ... UB: and v E Bm-(Brru ... UB:) 

then u < v. Using this total oIder of Bm we construct a basic family Rm in 

r(Bm) where r(Bm) denotes a free magma'on Bm. 

Since Hm is a free Lie a1gebra on Bm, the set Rm is a ~-basis of Hm . 

. The relation (**) shows that the elements a( "Yi ), ... ,a( "Yi ), viewed as the 
l ," 1 n 

elements of Rm are k-linearly dependent. This is a contradiction. It follQWs . 
t~t ~he homomorphism n is bijective and consequently that H is a free Lie 

t 

/ 

-' 

, If' 
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algebra on B. 

Now, we want to show that we can construct free generating sets Bk of Hk 

which satisfy condition (*). 

We can reduce this problem to the following one: 

Let L be a free N-graded Lie algebra over k with sorne homogeneous free 

generating set X. Let H he a homogeneous ~ubalgebra of L such that 
r 

Hm = Ln for m:f. n and Ln::: Fn G>Hn for sorne k-module F n' We want ta 

CÔns~ruct free generating set W of H such that W k = Xk for k < n where 

Wn = WnLn and Xn = XnLn' 

Let G be the homogeneous subalgebra of H generated by thé set, X1u ... UXn_1. 

We see that Ln =,k<Xn>eGn as k-modules, where k<Xn> is a k-Bubmodule 

of L generated by Xn' 

Sinee Gn C Hn' we see that Hn = (k<Xn>nHn)$Qn' Thus, 
. ~ 

k<Xn>/k<Xn>nHn ~ k<Xn>+Hn/Hn ~ k<Xn> + Gn/Hn ~ Ln/Hn ~ Fn' 

Sinee the module F n is projective, there exists a submodule Mn of Ln such 

that k<Xn> = (k<Xn>nHn)$Mn. Since k<Xn> is a free k-module, -both 

Mn and k<Xn>nHn are free k-modules. 

Hence, we can chQQ8e a k-basis Y n = V!UV! of k<Xn> V that V!- is a 

k-basis of k<Xn>nHn and V! is a k-basis of Mn' 

Put V m = Xm for ID f n. We see that Y = U y m is a k-basis of k<:X>. 
, m~l 

Hente, V is a free generatin~ set of L by Lemma II.1. 

Put S = r(Y) - Y~ where r(V) is a free magma on V. Clearly S is 

an idea.l in r(Y). We tota.lly oroer the set Y requiring that Y! <Y-Y~. Using 

this total order of Y we construct a b88ic family R in r(Y). Clearly, 

R-8 < MS. Since H = k<:S> = k<RnS>, Proposition 1.3.1 tells us that H is 
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a free Lie algebra over k with free generating set W consisting of S-irreducible 

elements of MS. Since Hn '= k<Y!>CDGn, we see that any S-ir~educible 
element of MS of degree less than or equal to n, necessarily belongs to the set 

1 
YI U ... uY n-l ~Y n' 

Thus H is a free Lie algebra with free geherafing set W such that 

t ,W m = y m = Xm for' m < n. It solves our problem and consequently proves 

the theorem. 

q.e.d. 

Using this theorem we will now prove two classical results ([14]~ [15]). 

Theorem 11.2. (Sirsov) 

Let k he any field and let L he the free Lie algebra. on X over k. Let H he 

any nonzero subalgebra of L. Th,en H is a free Lie algebra. 

Proof . 

. We endow L with a total grading; Le., the k-module' Ln is generated by the 
1 

images of elements of r(X) of length- n. '-'We define a filtration (Hn)n~l of H 

by setting Hn =,'Hn(LI 19 .. ,19Ln). Let gr(H) 
, ,-

he a graded algebra associated to this filtration; i.e., gr(H) = $ grn(H) where 
_ n~1 

grn (H) = Hn/H~_l' .rThe k-linear homomorphism an from Hn into Ln 

defined by 

Qn 
hn = 11+· .. +ln --+ ln 

induces·an injective homomorphism an from Hn/Hn_l into Ln' Hence, the 

map- Q = (al'~'''') is an injective Lie algebra homomorphisJe from gr(H) into 

l· Ln' We will identify gr(H) with its image in L under the map li, 

Sinœ k is a field and gr(H) is a homogeneous subalgebra of L, Theorem II.1 , 

. -' " 
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tells us that gr(H) is a free Lie subalgebra of L· with sorne homogeneous, free 

generating set W. 

For each element w E W let y(w) he an element of Hn such that Q(y(w)) = 
w, where n is the degree of w in gr(H). 

Put Y =r {y(w),WEW}. Obviously the map fj:W -Iy defined by W -+ y(w) is 

~jective. We total1.Y order the set W and then we totally order the set Y via 
'-/Ji Le, y(w1) < y(w2) if and only if w1 < w2. Using this total order of W we 

construct a basic family R in r(W) where r(W) denotes a free magma on 

W. The map /J induces a bijection of magmas lJ:r(W) -1 r(Y). The image of 

R under the map 7J is a basic family R in r(Y). Let Hl b~ the subalgebri of 

H generaied by Y. The map /3 induces the canonical surjective homomorphism 

jJ:gr(H) -1 Hi. We want to show that 71 is injective. 
r 

Suppose that we have the following rela.tion: 

(1Ic) 

where ki e k and 1i E f(Ir) (f is the canonical map r(Y) --+ Hl) for 

i = 1,2, ... ,n. Let w('Yi) = sup{nl1iEHn} and let N = SUP{w('Yi)' i = 1,2, ... ,n}. 

Let S he the set hi:W( 'Yi) = N}. 

The relation (*). indu ces k-linear relation of the highest components of the 
• l 

elements "1. E S. Since those highest comp<)nents are elements of R, they are 
~ . 

k-linearly independent by Theorem 1.3.1. It follows that all tJfe coefficients ki . k 
are zerO. We repeat this argument. with r~uced relation 

k. l' + ... +k. "(. = 0 
h Jr Jm Jgl 

. where k. E k and "(. E f(R) - S for i=1,2, ... ,m. 
Ji Ji .. 

It follows that aIl the coefficients ki r are. zero (i=1,2, ... ,n) and hence that the 

.' . 
~ 

" .-

~" '., 



.. u _~"'~, ", (~ .... 

" , 

o 

" 

o 

-' S7/~" 

map 7J is bijective. / 
1 We will now show that H = H. 

Let h he any element of H. There exista unique natura! number n such that 

he Hn but h ~ Hn-l' Let ln he the highest component of h. We can write 

ln as a linear combination of elements of the basic family R: 

ln ;p: ~xl + ... +kmxm 
where ki e k aJ)d xi e R~ There exirs an ~lement hn of Hl which has the 
f ' 
sarne highest comlXment as the element h, namely 

hn = kl11(x1)+",+km7J(xm)' 

To see this, note that the isomorphism 71-1 maps any element of Hl to its 

highest component. Thus, h-hÎl e Hn- l , If we repeat the above argument to 

the element h-hn instead of h, we will find ~ ~lement hn- 1 E Hl such that 

h-hn -hn- L e Hn-2' This procedure must stop. Bence, we can find the elem~nts 

h1, ... ,hn '~f Hl such that h = hl + ... +hn. 

It follows that -H = Hl ahd it proves our theorem. 

----
q.e.d. 

'heorem 11.3. (Witt) 

Let L be a free, N-graded Lie algebra. over a principal ideal domain k. Let. Il 

he a homogeneous subalgebra of L. If the quotient module LIB is Iree, then H 

is a free Lie algebra over k. 

Proof, 

It suflices to not~ H la a direct 8ummand of L. The theorem follows DOW 

from Theorem 2.1. 

q.e.d. 

", ", 



-. 
\ 
) 

~ 

.. 58 - " 

There is 8nQther way to obtain the similar result to Theorem 2.1 which we will 
;.; 

present now. The main references for this section are [5], [7) and the end of 

Section 1 in Chapter 1. The let ter k denotes a 

commutative ring with llnity with a property that any projective k-module is 

free. 

Let Land H he N-graded Lie algebras over k and let f:H --+ L' be a graded 

Lie algebra,homomorphism. Let f:H/[H,H)-+ L/[L,L] he a 'homomorphism 
, 

" induœd by f. We will need the following lemmas: 
o 

l&mmA II.2. 

The homomorphism f is surjective if and only if. the inauced homomorphism r 
js surj~tive. In particular, if f is injective and r is surjective, then -f is 

bijective .. 

Ptoot 
If f is is surjective, then obviously f is surjective. 

Suppose that f is surjective. We will show by induction on the degrees that f 

is surjective. In degree one f = f. Suppose that f is surjective in degrees less 
" 

than n. Let x he a homogenous element of Ln' By surjectivity of f, there 

exists an element y of Hn sucb that x:: !(y)mod([L,Lln = [L,L]nLn). But 

Binee [L.,L]n is generated by elements of the form [a,b] where a e Lp' b e Lq 

and p+« = n, we Bee that we c~ express x' as 

x = f(y) +" ~[f(wi),f(zi)] 
, 1 

'* for sorne elements Wj E Hp(i)' zi e Hq(i) with p(i) + q(i) = n. 

It folIows that f lB surjective in degree 1;1. '" 

, 
q. e. d. 

, - , 
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Lemm~ 11.3. 

If the algebra L is a free k-module, and if H2(L,k) = 0 (cf. Loc. ~it. Ch. I§.l) 

tben the homomorphism f is bijective if and only if the algebra H is a free .... 

k-module and the induced homomorphism f is bijective. 

Proof. 

If f is a hijective homomorphism, then obviously the iilduced homomorphism f 

is bijective and H, is a free k-module. 

If r is surjective then by Lemma. Il.2 f is surjective. Henee, 

0-- R -+ HL L --10 where R = ker(f) 

is an exact sequence of Lie algebras. Since L is a free k-module, this exact 

sequ,ence splits. It follows that R is a. free k-module. Hence, we can use the 

Hochschild-8erre sequence (cf. 'Loc. dt. Ch. I§.l ,and (S]) to ?bt~n an exact ,~ 

sequence. 

(*) . H2(L,k) --+ HO(L,H1 (R,k» -- Hl (H,k) -+ H1{L,k) --10. 

We ha.ve show~ i~ Chapter I§.l, that we ca.ti identify HO(g,V) with V IV· g 

where g is a Lie algebr~, V is any right. g-moddle. 

We have also shown ~}J.at if g operates trivially on V then Hl (g,\I) is 

isomorphic to V~g/[g,gl. Since?y assumption H2(L,k) = 0, we can rewrite the 

sequence (*) in the form 

~ (R/[R,R))/(R/[R,Rj)· L -> B/[H,H} L L/[L,L] ->"0. 

The action of L on R is induced by the action of H on R, i.e, by the adjoint 

representation. Thus 

(RjIR,R])j(R/[R,R])·L ~ (R/[R,RD/(R·H/[R,R] ~ R/R·H = R/[R,H]. 

Since J ie injective we aee that Rj[R,HJ = O. We will show that this implies 

..... 

i 
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that }zrO. ,Indeed, the ideal R is a,' gra4,ed Ideal with giading induced by that 

of H~ Let n be the srnallest integer such that Rn '1 0 (n is neœssarily gre~ter, 

than 1). Since Rn/[R,R1n = 0 we see that Rn ia genera.ted by elements of the 

form [a,bl where a e Rp' b E Rq and p+q-= n. Since Rm = 0 for m < n 

we see that Rn = O. It follows that f is bijective. 

• q.e.d. 

LemmaIVI. 

Let L he N-graded Lie algebra. Then L ia a free Lie algebra jf and only if: 

(1) L ia a free k-module. 

(2) L/[L,L] is a free k-module. 

(3)-. ~(L,k} = O. 

Pxoof. 

Suppose that L ia a free Lie algebra with fr~ generating aet X = {xi}ieI 

(1 - sorne index set). By Theorem 1.3.1 L is a free k-module. Let X. be the , 1 

imag~ of xi in L/[L,L]. Then obviously L/[L,L] is a free k-IIiodule with basis 

-} ~ 
{xi ieI' 

Let l he augmentation rnap from U(L) onto k and let 1 = ker(l) he 

the augmentation ideal of U(L). The aIgebxa. U(L) is by Theorem 1.3.1 the free 

associative algebra on X. 

Hence, the ideal 1 "is a direct SUIn of sublI10dules U(L) ,xi (iEI). It follows that 

the exact sequence 

(*) o -t ~ U{L) 1. k -+ 0 

is a k-resolution of free U(L)-modu1E~s. Hence, ~(L,V) = 0 for all tight 

L-modules v. Suppose"now that conditions (1), (2) and"'"(3) hold • 

.,) 
, (, 
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Since L/[L,L} = E9 (L/[L,L])n' we see that each submodule (L/[L,L})n is 
n2:l 

projectivç and hence free. It follows that we can Ichoose a homogeneous k-basis 

y ~ {Y.}.EJ of L/[L,L] (J - sorne index set). ,Let Yi be a homogeneous 
J J " , 

element of L whose image in L/[L"L] is Yï Let H be the subalgebra of L 
1 • 

generated by Y = {Yj}jeJ' The inclusion tp:H -+ L induces the surjective, 

homomorphism ~H/[H,H] -+ L/[L,L]. By Lemma. II.2 the ma.p cp is surjective. 

Thus L is generated by Y. 

Let L(Y) be a free Lie algebra on Y over k. L(Y) has natural N-grading 

structure induced by degrees of the, elements y/jEJ). Let P:L(Y) -+ L he the 

canonical surjection. Since the set Y is a k-basis of Lj[L,L] we see that the 

induced homomorphism jJ:L(Y)j[L(Y),L(Y)] -+ L/[L,L] is bijective. Since 

L(Y) is a free 

k-module, Lemma II.3 tells VS that f3 Î8~ bijectivé: Thua, L is.a, free Lie a.lgebra. 

q.e.d. 

We are now in the position to prove the following proposition. 

Proposition II.1. 

_Let L be a free, N-graded Lie algebra and let H be a homogeneous 8uba.l~ebra 

of L. li LIH and H/ [H,H] are free k-modules then H is a free Lie algebra. 
1> 

~ " 
'Since L/H is a free k-modÙle' we see that L ~ HœL/H as k-modules. Since L 

is a free k-module by Theorem 1.3.1 we see that H is projective, hence free. Let 

U(L) and U(H) be the universal e~veloping algebras of L a.nd H 

respectively. By Corollary 1.2.2 the algebl'a. U(L) is a free U(H)-module. Let 

1 be the augmentation ideal of U(L). Since 1 = e U(L)~ where ~ ='{x'}'EI 
~I 1 1 

. , 

, , 
, , , . 

.,. 

" , " - , 
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is a !tee generating set of L, we'see that 1 la a free U(H)-mf?dule. Renee, the 

exac~ sequence 

o --t 1-+ U(L)!... k--t 0 

is a k-resolution of {ree U(H)-modules. It follows that H2(H,V) = 0 for all 

right H-modules V. Thus, we can apply Lemma II.4 to the alge&ra H to get 

that H is a free Lie algebra . 

q.e.d. r 

Remark. This result is weaker than Theorem II.1 sinee we need to assume that 
of' 

H/[H,HI is a free k-module. The following example shows that, we eannot 

conclu de that H/[H,HJ is a free k-modul~ assuming only that H is a free ... 

k-module. 

Example Il.2 .. 

Let L he a Lie algebra over the integers-; generated by x = {xl,~,x3} with the 

single defining relation 2x1 = [~,x3] and the degrees of Xl '''2 and x3 are 

equal to 2, 1 and 1 respectivelp'. We 'need sorne results from Chaptet III to show 

that L is in fact a free abelian group. Assuming this for the moment we see 
~ 

that L/[L,L] cannot bè free z-module sinee it has torsion element Xl' 

We will return to this example in Example III.3 in Chapter III. 
\ 

Chapter III. 

Lie al"brM assOCÎated ta the Iower centrai seriés of a &rOUD 

~ p 

The main purpose of this ehapter is to determine the Lie algebra. asSfCiated to 

'tie lower central':«ries of a' finitely presented group in the case where the 

'. '1 
· ..... 1 
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defining relators ,satisfy certain independence conditions. The methods apply to 

other central series such as the lower p-central series of a group. However, the . . 
proofs are entirely a.nalogou~ to the ones given below, so we will only refer the 

interested reader to the literature. ,The main referenceS for this chapter are (11, 

[2], [7], [8], [9], [10], [11] [12] and (13J. For the reader interested in p-eentr~ 

series, the main references are [22], (10] and [9]. The reader interest~d in the .,.. 
applications of this theory to link groups is refered to [1], [23], [24], [25], [26] J.md . ""' 

[27]. Some results presented -here may be also obtained by using other methods. 
? 

The interested reader is refered to [18] and [19]. 

The introductory material for this chapter is contained in Chapter 1. 
1 ~ 

Let F> be a free group on. N-Ietters xl'""xN and let (F n) he the (X,T) 

filtration of F. Let ei he the images of xi in grn(F) ~bere. n = Ti' 

i= 1,~, ... ,N. and grn(F) = F niF n+l (n~l). The Lie \ 

algebra L = gr(F) associated to the filtra~ion '(F n) is by Proposition 1.4.2 a 

free Lie algebra with_free generating set {e1, ... ,eN}. If xE F, x +'1, there is a. 

largest integer n = w(x~Ch that xe F n' This integer is called the height 

of x with respect to (F n)' The image of x in grw(x)(F) iS:. called the initial 

form of x with respect to (F n) (Wc will write inn(x) for initial form of x.).> If 

x = 1, its initial form is defined to he zero. Let Il' ... rt be any elements of F, 
( 

, anilet R = (Il'".,rt) be the nonnaI subgrou~ of F generat~the elements 

Ii' i = 1,,,\.,t. Let Pi = inn(ri) he the initial form of l'i fOI i = 1,2, ... ,tj and let 

T = (pp ... ,Pt) be the ideal of L gfnerated by Pi i = 1,2,.",t. Let U(L/T) he 

the universal enveloping algebra of LI T. Then 

,'.,,) .... 

T/[Tyom~ a 

~ 

1 

• 

.. 
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U(L/r)-module via the adjoint representation (cf. Lot. cit. Ch.!), where [r,r] 

- denotes, as usual, the derived algebra of T. œt (Gn) and (Rn) he induc~ 

fil~ations of G = F/R and R respectively Le., Gn = F n' R/R and 

Rn = RnF n' If g denotes the Lie algebra gr(G) associated to the filtration 

(Gn) of G we haV~bY Proposition 104.1) the exact sequence of Lie algebrlUl: 

O-<gr(R) -0 L~O. 
If we identify gr(R) with its image in L, then clearly r c gr(R). The natura! 

question which arises here is: "when is T equal to 

gr(R)?" The example below shows that this is not a "trivial" question, ' 

Example 111.1. 

Let F = F(xl~) he a free group with two, generators ~l and ~ of degree l 

i.e, rI = T2 = 1. Let rI = xi he a relator and let" R = (rI) he the normal 

subgroup of F generated by rI' Using the formula (1.4.2) we get 

[~Ixi] = ["2,x11
2
. U~,xI ],xI] and 

(*) [["2,xl1,[~,xin 
= [("2,xIJ,{[~xl],xlJ1·,[[~,xi], 

, 2 2 
["2'x1] ]. [[["2,x1)'["2,x1J J'[["2'Bt J,xl]J· 

Denote the images of three factors on the right hand side of (*) by a,b,c 

respectively. ,It follows that w(a) = 5, w(b) = 4 and tù(c) = l Hence, the 

e1ement 

1 

't; 'js a nonzero homogeneous element of gr5(R). We will show that this element 
, 

does not belong to T where r is the ideal.of L = gr(F) generated by 2el . 

Since gr(F) is a free z-tnodule, T is free (as ~bmodule of gr(F». Let 

{1i}iEI be its z-basis (I-some index set). We can write 'Yi = 21{ for sorne-

" .; ~_ 'T + l t • 
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"~r>.~ ~'/~~'~-yu'1~r~ ~,,:,,_, l~l?~1~~:t'C~~'"~ 
, - { ", \ ~ 

'Y~E L(ieI). We choose an order e2 < el and \\te construct the Hall basis 

induced by this order (cf. Loc. citl Ch. I§.3, Example 1.3.1). It follows that 

eleinent a satisfles conditions RI, R2 and R3, Le., it belongs to some Z-basis of 

<c L. Let {11a,} aEJ he elenients of this basis (a€J; J - sorne index set). If a eT, 

then we could write 

a = nI '\ + ... +nk 'Yi
k 
= 2n1 'Yi 1 + ... +2nk 'Ylk (niEZ, i=1,2, ... ,k). 

Since ~e can write '.1 

'Y~ = m. 11 + ... +m. Tf (ml' eZ, i = 1,2, ... ,k; P = 1,2, ... ,M). 
1 j Il ~l lM ~M p 

We see that 

a = (2n1mL + ... +2nkffik )11~ + ... +(2n1m1 + ... +2nkmk )110: • 
J. .1 1 M M M 

It follows that there e~ natura! number g E {1,2, ... ,M} sucb that a = 11 . 
~q 

Therefore, we cao write 
\ 

which is impossible. 

1 = 2n1ml + ... +2nkmk 
q q 

Thua, a does not belong to T. 

We will partially answer the question stated abovJ by proving the following 

thoorem: 

Theorem I1Ll. 

If (1) LIT is a free Z-module, and 

(2)" ,1 [T, T] is a free U(L/T)-module on the images of Pl', .. ,Pt then 
,)' 

g = LIT. 

Using Lemma II.2 we see that T = gr(R) if and only if the homomorphis11l 
...J 

O:r/[T,,1--t gi(R)/[gr(R),gr(R)} 

\ 

'\ 

1 .~. 

,1 

, ' 
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induced by inclusion r'-' gr(R) is surjective (and hence bijective). 

Using formula 1.1.3 we get the canonical surjective homomorphism 
. . 

t,U(LI r) -+ U(L/gr(R)) 

induced by surjection L/r- L/gr(R). 

We claim that t/J is compatible with 0 in the sense that O(u;x) = 1P(u)·U(x) 

for ail xE rl[r,T], u E U(L/r). It is enough to show this for generators. So if 
, 

y ELand x E T, then yT acts on X[T,T1 via the a4joint represehtation i.e., 

YT'x[r,T} = [y,X}[T,T]. Now t/J(yT) = ygr(R), 9(X[T,T]) = x[gr(R),gr{R)] and 

8([y,X][T, TD = [y,xJ[gr(R),gr(R)}, and since ygr(IJ,)· x[gr(R),gr(R)] = 
[y,x][gr(R),gr(R)] we see that indeed 9(YT' x[ T, r)) = 1P(yr)· O(x[r,r]) . 

• 
Let M = R/[R,R] and let Mn be the image of R~ in M. In view of Lemma 

1.4.,1 we have an isomorphism gr(M) = gr(R)/gr([R,RJ) where gr([R,R]) is the 

Lie algebra associated to the filtration ([R,R1n)" of [R,R] with [R,R1nF n = 

[R,R]n' 

Since the commutator in M is trivial, gr(M) is an abelian Lie algebra. Tus, 

we obtain the canonical surjective homomorphism 

O':gr(R)/[gr(R),gr(R)] -+ gr(M). 
, . 

We need the following result: 

Let k he a commutative ring with unit y . If we have the exact sequence of 

group~ f, 

1 - R ~ F fL F IR -+ 1 "' 

then we obtain the following ~act sequence of rings ' 

n --+ I(R) ~ k[F] !. k[F IR} --+ 0 

where k[F] and k[F IR] denote the group rings of F and F IR resIJE;ctively, 

.,.. and I(R) Is the ideal of k[F] g~nerated by r - 1 for all r E R. 

\ 

) 

r 



o 

o 

, . " -

. 
, In order to prove thi8'" suppose that we have a relation • 

n 
E k.r. = 0 where k. E k, f. E F, r. = f.R, i = 1,2, ... ,n. . 1 11 1 1 1 1 

1= 

Let f. ,f. , ... ,f. be a.U of f
1
.'s such that fi R = f. R = ... =fi • R. It follows 't 12 lm 1 12 m 

, 
that k. + ... +k

1
• = 0 and f. = f.· r2, ... ,f. = f.· r for some r2,.",rm E R. 

Il m 12 Il lm Il m 

, Thus, we can write 
~ ID m m 

E k.·f. = E k.-f.· r. + k.· f. = f .. E k.·(r.-l). , 
. 1 1.). • 2 1. Il J 11 11 Il' 2)' J J= J J J= J J= J 

q.e.d. 

In view of this result, let (Z[G]n) and (I(R)n) denote the filtrations of Z[G} 
, 1 

and I(R) respectively induced by the filtration (Z[~Jn) of Z[F] (cf. Loc. cit. 

Ch.l§.4). Let gr(Z[G]) and gr(I(R» he gt"c3!ÈCÎ rings associated to the 
, 

filtrations (Z[Gln) and (I(R)n) respectiyely. The mapping from F into the ! 
Magnus algebra A (cf. Loc. cit. Ch. I§.4) defined by x -+ x-l maps R into 

~(R), hence the induced injection 1f.gr(F) -+ gr(A) (cf. Loc. cit. Ch.I§.4) 1 

maps gr(R) into gr(I(R». Since the kernel K of the canonical map 

U(L) -+ U(L/gr(R» is generated,by the image of gr(R) in U(L) under the 

map TI (by 1.1.3), we get the inclusion K C gr(I(R)). Thus, we obtain the 

induced surjective homomorphism (, 

7/J': U(L/gr(R)) -+ gr(Z[G]) (xCl ' K -+ Yi 1 where Yi = XtR). 

We want to show tha.t gr(M) ifiâ gr(Z[GJ) module. _ 

The group G acts on M. The actio~ induced by the action of F on R via 

the inner automorphisms Le, for x E F a.nd veR xR,v[R,Rf = xvx -l[R,RJ. 
'" 

Since M is an abelian group, M becomes a ZiG] module and (xR-l}'v[R,R] 

= xvx-1v-1[R,RJ. ,Let f:A -+ Z be aug~ented homomorphism defin~ by 

-_ .... 

\ 
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, The restriction of f to Z[F] maps fn/i to rni (niEZ, fiEF i = 1,2, ... ,n), ~o 

it is the~p induced by ~he homomorphism F'-+ 1. Hence, the kem~l of this 

map is (he ideal I(F) generated by x-l for all x E F. Let J n he the image of 

I(F)n under the canonicat map Z[F] -+ Z[G]. It follows that Jn· Mk C Mn+k 

and hence Z[Gln ' Mk C Mn+k' Thus gr(M) becomes a graded gr(Z[GJ) 

module. 

We want to show that 9' is compatible with ?/J'in the se~~at O'{u·x) = 
~,p'(u), 9' (x) for a11 u E U(L/gr(R» .. and xE gr(R)!lgrl),gr(R)]. It is 

sufficient to show it for generators. So, let rn E grn(R) he a homogeneous 

element of gr(R) and let rn he its representative in Rn' Then, 

9' (ei . K· rn[gr(R),gr(R)J) = 
4 ' 

p DI(xi lK.rn[gr(R),gr(R)]) = O'([xi'fnJ[gr(R),gr(R)]) = [xi'rn]gr([R,R]) where 

~ 1 = ei is the image of xj-l in 'gr(Z[FJ) and [xi'rnJ is the image of [Xi'fn] 

in' gr(R). But, [Xi ,rn] grnR,R]) = 'Yi-l . fngr([R,R]) -

1/1'( eiK). 0' (rn[gr(R),gr(R)J). 

q.e.d. 

We want to show that the homomorphl~ms (J and (J'are bijective. The proof 

is by induction on the degrees. For dO = l, this is obviously true. Suppose that 
- . 

. D and D', are bijective in degrees n < k. (We may assume that k ~ e = 

min{w{vl),···w(~t)} since rn = grn(R), for n < el. 

1. The homomolllhis", JO is injective in decree k. 

Applying the induction hypothesis we have rn = grn(R) for n < k. It implies 

'that [r, Tlk = [gr(R),gr(R)}f sinee, both Bides of this equality are generated by 

( 

-
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\ , 
the brackets of elements of lower degree. Sincethe kernel of the homomorphism 

Tk --. gr(R)k/[gr(R),gr(~)]k is exactly [T,r]k we see that_ (J is injective in 

degree k. 

II. The hornomorphisrn Q' is bijective in deeree k. 

Since gr(M) = gr(R)/gr([R,RJ), we only have to show that 
1 . 

{gr(R),gr(R)]k = grk([R,R]). 
" 

hold~. 

In order to do that we will construêt a subgroup H of R satisfying the 

following three conditions: 
f 

(Hl) H is a free group on Yl'''''Ym' 4 

(H2) If Ti is the weight of Yi with respect to the filtration (F n) of F and if 

. Hn = HnF n then (Hn) is the (Y,T)-filtration 9f H. 

(H3) If gr(H) ~s the graded Lie algebra associated to the filtration (Hn) then 

. grn(H) = gln(R) for n < k. 
. 

N.otice that in view of the Proposition 1.4.2, those conditions imply that gr{H) is 

free Lie algebra on n. = inn(y.) 
1 1 

with respect to 

i = 1,2, ... ,rn. 

Construction of the &Ioup H. 

Sinee T is a homogeneous ideal of L and by assumption L/r is z-free, by 

Witt's theorem (cf. Lee. cita Ch.II.3) T is free Lie algebra with sorne 

/ )ornogeneous free generating set "Y ... _~Sin~~ the ~ ~gebr!lo L is generated _ by , 
! .-

el, .. ~,eN' the free z-module ~l$ ... $Lk-l has~ite rank. Henee, the submodule 

t~l$ ... eTk-l has finite ~basiS~ It foUows that the .set ynT1fD ... eTk-: is fini~e. 

Denote its elements,by Yl'''''Ym (meN). If Ti lS the d'!gree of Yi for each 

i = 1,2, ... ,m, choose an element Yi E'T r. whose image in gr T. (Ji) is Yi' Let H 

.. 
f, 

" 

t 
,~.:-' . 

YIn" y~ttèiF l' 

1 1 

. '. 

• 

• ' J 
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be a subgroup of R generated by YI""'Ym' Let gr(H) he a graded Lie algebra 

associated to the filtration (Hn) of H where Hn = H n JÇ. Since, by t~e 

induction hypoth~is, Tn = grn(R) for n < k, and by our construction, 

Tn = grn(R) for n < k we get grn(H) = grn(R) for n < k. In order 

to verify"conditions (Hl) and (H2) we let E be a free group on Yl' ... ,ym' 

Let (En) he the (y, r}1Iiltration of' E, and let gr(E) be Lie algebra associated 
, , 

to this filtration. Let zi be the ima~ of Yi in gr
T

• (E). Then gr(E) is ftee Lie 
1 • 

algebra with free generating s~t zl'""zm (cf, Loc. cit: Ch.I§.4, Proposition 

104.1.). The canonical surjection oeE -t H mapping Yi to Yi induces . 
surjective homomorphism 

, 

œgr(E) -t gr(H) (zi -t Yi i = 1,2, ... ,m). 

Sincé gr(H) C T and Yi is part of free generating set of T, we see that œ is 
" injective. But, this implie8 that œ is injective. Indeed, let e be BA element of 

E sucb that o(e) = l, Since then, Q{inn(e» = 0 'and ~ is bijective, we see 

that e E En -for all n, Since E is free group, we can represen~ it as a subgroup 

of the units of the 1ffagnus algebra A on {Yl' ... ,ym}' Thus n En = 1, and it 
. n~l 

implies that e = 1. 

We want to show that a(EI) = Hn' We have o(Ei) = H = Hl' Suppose that 

a(En) = Hn for n ~ k. The inclusions a(En) --+ Hn indu~e the maps 

œ(En) 1 a(En+ l) --+ Hn/Hn+ 1 which are injective by the injectivity of œ. Since 

a(Ek) = Hk we see that a{Ek+1) = Hk~l' Thus, o(En) = Hn for all n. This 

completes verification of (Hl), (H2)"and (H3). 

We retum now to the proof of Il. \ 

In view of the condition (H3), we have 
'. 

[gr(H)"gr(H)lk = [gr(R),gr(R)]k' 
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Applying Proposition- 1.4.2 we get <\ 

[gr(H),gr(H)Jn = grn([H,H)) for aU n. 

So, in order to prove II, we only need to show that 

grn([H,Hj) = grn([R,RJ) 

holds for n ~ k. Since ~n = HnRn, the inclusions Hn -+ Rn induce the 

injective homomorphism f:gr([H,HJ) -+ g~({R,R]). We want to show that f is 

surjective in degrees n ~ k. The subgroup [R,R)n is generated modulo 

[R,R]n+l by the brackets of degree n. Let v E Ri'~w E Rj with i +j ~ k be 

two elements of R. Since the map Hn/Hn+l -+ Rn/Rn+l is bijective for 

n < k, we can find two elements hE Hi' g E Hi such that h ::'v mod Ri+l 

g :: w modRj+ l' Using the forrnulae (I.4.2) and (104.3), we see that 

[h,g] :: [v,w) mod [R,R]nRn+1, 

and 

which impltes the surjectivity of f in degrees n ~ k ami consequently proves II. 

m. The honmomorphism 8 is surjective in d'Tee k. . . \ 

By 1 and II, to shoW" that 0 is surjective in degree k it suff~es to show that the 

coII.1posed map 0" = 0' . 0 is surjective in degree k. The conjugate of ri E R is 

the sap1e as the action of ye G on ri E M, Le, xR.ri[R,RJ = xrix-1[R,R] where 

~_E F, and ri is a generator of R, i = 1,2, ... ,t. Hence, M as a Z(GJ-module is 

gen~rated by ri = ri[R,RJ, i = 1,2, ... ,t. Now, if mk is nonzero element of 

~rk(~)' let rnk he an element of Mk whose ima~e in grk(M) is mk. We can 

vtrite ' 

(*) 

where vi E Z[G) i ~,2, ... ,t. Since Z[GJmMn C Mm+n for an m,n EN, we 

can choose mk so that the abbve expression for ~k· involves o~y those terms 

viti with w(vi) + 'w(ri) S k. Since mk does not belong to Mk+l this 

'- '; 

(~; ~'I~ ,G t't (tn \~~h1ftr;.iJlÜï~~ 
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expression is not empty. Let q he the smallest integer of the form 

w(vi) + w(ri), and let S be the ~~t of integers i with w(vi ) + w(ri) = q. Since 

the composed map t/J" = t/J'o1/J is surjective, we can chose homogeneous element 
• 

Ui of U(Lj r) such"'that t/J"(Ui) = vi where ii is the image of vi in grn(Z[G)) 

with n = q - w(ri ) i = 1,2, ... ,t. Put e = EUiPi (ieS) .'-"here Pi is the image 

of Pi in rj[r,T]. Since Tj[r,r] is by assumption free U(L/r) module on 

Pi(i=1,2, ... ,t), we see that {f O. Since deg(e) = q and the map (J' is injective 

in degree q 
EVi (J1(pi){iES). 

(sinee q S k) we see that 0# 6"({) = EtI.'''(u.)8''(p.) = 
• . l 1" 

Since tP"(uj )8'I(iii) is the image of vi 'fi in grq(M) and mk is homogeneous of 

degree k we get tha.t q = k and mk = (J'I( el. Hence (11 is surjective in degree 
~ 

k. 

: It follows by induction that 9 and 9' are bijective and consequently that T = 

gr(R). 

RemarIe Since r/[r,T} is free U{L/r) module, tP is compatible with 9 and 
e 

,p' is compatible with ,0', we see that both t/J and '!/J'are bijective. Hence, 

gr(Z[G]) = U(Lfgr(R» = U(L/r). 

Corollary III.1. l 
Under the hypothesis of Theorem IIL1 the descending central series 0' G is. 

induced by the J-adic filtration of Z[G) where J (aJgmerrta:tlon ideal of 

Z[ GD is the image of I(F) under th~on'cal map Z[F] --t Z[G]. 

Proot 

Since gr(G) = gr(F)/gr(R) ~ gr.<F)/T is a free z-modul~, Birkhoff-Witt . 
theorem tells us that the canonlcal homomorphism i:gr(G} -+ U(gr(G-}} ~ 

, 
gr(Z[F})/K is injective. We have 'the canonicat homomorphism 

, , 

,1 

) , 

'\ 
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fJ:gr.(G) -+ gr{Z[G]) defirled as foÙows: 

Let in be the homogeneous element of gr n (G) and let ~ he an elemen~ of 

- Gn whose ima.ge in grn(G) is gn' Define P(gn) = ~ -1 where gn-1 is the 

image of gn-1 in gr(Z[G]). 

We will show that (J = tP'oi. If gn' ~ are as above. Let Cn he an element of 

F n whose ima.ge in G is gn' Then the image of fn under the canonical 

injection gr(F).-. gr(Z[F]) is fn 1 where fn -1 is the image of fn -1 in 

gr(Z[F]). But i(~) = fn-1 . K 50 tP'oi(~) = ~-1. 
Hence the map {J is injective which proves the corollary. 

q.e.d. 
4 

The theorem just proved suggests the following problem: 

Let k be a commutative ring with unity. Let L be a free N-:-8raded Lie algebra 

over 1ç with free generating set {el'".eN} and let Pl''''Prv! bè homogeneous 

nonzero clements Gf L. Let l' = (Pl''''PM) he the idea.l of t generated by Pi' 
- --- -------

i = 1,2,,,.,M. The ques~ is when the following conditions are satisfied . . 
(1) L/r is a free k-module. 

(II) rl[r,T] 18 a free U(L/1') module on the images of Pl',,,,PM' 

Thé partial answer to this question was given in Propositions 1.3.2 and I.~.3. In 

order ta answer this question we will need a few lemmas. 

I&rnma. III. 1". 

Let k he a p.l.n. If E is finitely generated k-module and the dimension of 

E(p) = ~k/(P) as a vector space over the field k/(P) is independent of (P), 

wher~ (P) is a maximal ideal of k, then E is free k-module with rank equal to 
. 

the dimension of E(p) over k!(P). 



, 
ri 
~l 

t 
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We will use the Structure Tbeorem for modules ov&: a PID. 

We an write 

E = TF(E)$T(E) 

where T(E) is torsion 8ubmodule of E-' and TF(E) is torsion free k-modu~. 

We ean write 

T(E) = k/n1 kœ .•• ek/nkk 

where Di E k, i=I,2, ... k, nI> 1 and nilni+l for i = ,1,2, ... ,k-1. (The sequence 

(n1,···,nk) is unique up to the Units: k). Let PI and P 2 be two irreducible 

elements sueh that Pl/ Dl and, P 2 does not belong to (nl' ... ,nk) - the ideal of 

k generated by nl' ... ,nk. (The element P2 exists sinee (nl' ... ,nk) -j: 1). 

!(E)~k/(P 1) ,= k/(P 1)e .. J9k/(P 1) (k-times) and 

T(E)~k/ (P 2) ~o. 

This implies that T(E) = 0 and consequently that E is free k-module. 

q.e.d. 
. 

Then 

Let 1 he the augmentation ideal of U(L) and let I( T) he the ideal of U(L) 

generated by the image of T under the canonical injection i:L -+ U(L). The 

ideal I(T) is also the kemel of the canonical surjection s:U(L) -+ U(L/T) (cf. 

Loc. cit. (1.1.3». 

The injection T--+ 1 induces the map <p=T/[r,r) -+ Ijl(r)·I which is 

U(Ljr)-linear ainee x·v -:- [x,v] = x'v-vx = xv for all x E L, v E T. The ima&e 
1 

of cp is I( r)/I( T)' 1 which is the kernel of the map tJ:I/I( T)I --+ U(L)/I( T) 

induced by the inclusion 1 --+ U(L). The image of 0 is Ijl( r) which is the 

kemel of the map Ë:U(L)/I( T) -+ k 



o 

o 

- , 

induced by the augmented map <:U(L) ..... k. Renee, we have an ~ ,:uence 

of U(L/ r) modules 

r/[r,r] ft.. 1/I(r).1 t Ù(L)/I(;) ~ U(L/r) L k- O. 

The ideal 1 is a direct sum of U(L)-modules !U(L)ei«U(L) ~ Ass{el, ... ,eN»' 
, 1 . 

Renee I( T) ·1 = ~I( r)er Renee if we assume that k is an integral, dom~n then 
l ' 

1/1( r)1 = ~U(L/r)~i (~i is the image of ei in I/I( T)I). 
1 

Since by Corollary 1.2.5 U(L) is an entire algebra so we get the isomorphism . . 
U(L)e/I( T)ei -1 U(L)/l( r)· ~i = U(LI r)~i . 

defined by u{i + I(r)ei ~ (u+I(r»)~i for al! u E U(L) ~ = 1,2, ... ,N. 

Lemma ItI.2. y -
Let k be an integral domain and let M = 1 Le., r = (PlI. If LJr is a free ' 

k-module, then T/[r,T] is free U(L/r) module with basis Pl" 
Praof. 

By Corollary 1.2.5 U(LI T) is an entire algebra so if w E Il:! ( T)' l, w '/: 0 then 
\ 

U(L/r)·w is free U(L/r) submodule of I/I(r)'I w~th basis w. If we had 

CP(Pl) = 0 then I( r) C I( T)' 1 which would imply that 1,( r) c ID for aU n. Since 

n In = 0 we ~ould get I(r) = 0 
n51 
which is not true sinee Pl '/: O" Ren~e, if uPl = 0 then utp(f) = 0 so u = O. It 

follows that rl[r,r] is free U(L/r) rpodule with ,basis Pl and that th~ PJ;ap cp 

is injective. ') 
, 

q.e.d. 

Leroma III.~. 

Let k he a PID and let p! •••.• PM he homogen~~ .~emenÎB of L su~ ~at 

.' 
" 

! 0 , " " 
:.. Il! Jf '·: r~' .. -l ...'-~-

. " , 



(.. 

~ 

-~ 
, 

~ . 
, 

r,.. 

, . 
~ 
'. 

• .. 

. . 
" . 

'. 

. . " 

'. 

- , 

. .. 

. 

~ 1 

1 

• 1 

1 • 

1 

;. , " 

- 16 -

conditions (1) and (I~) are satsified. If XE or E(t) denotes thè Euler-Poincaré 
- . co ' 

series of a N-graded free k-module E 'i.e., E(t) == XE:::: E rank(En)tn, then 
l - n=l .'" 1) 1/l-XN == XU(r) where N = rj[r,r}, rI: (Pl"",PM)' 

dl dM . 
'"'\ 2} XU(Ljr) = xU(L)/l + (t + ... +t )XU(L) where di = degree of Pi 

i = 1,2, ... ,M. 

3) The rank of (L/r)n depends only of the degrees of e· and p. 1 ~ i ~ N, , 1 1 

1) In view of Witt's theorem r is a free Lie algebra with sorne homogeneous 

. free genez:ating set X = !xl'~, ... }. Sinee rn C Ln for all' n and 

rank(Ln) is finite we see that rank(Nri) def an and rank(U( r)n) .. are 

finite for all n sinee rank(Nn)' = {Xj 1 dO(xi) = n} = an and sinee U( r) 

is free associ~tive algebra on X by Theorem 1.3.1, we see that 

, whlch is exactly 1/1- E antn. 
. n~1 

2) Since the exact sequen<;e of k-modules 0 -+ T ---t L -+ LI T -+ 0 splits we 

.' 

1 

can !!-8~orollary 1.2.3 to get 
, 

U(L) = U( T)®U(Ljr) 

as k-modules. Using the isomorophism ( $ Uer) )®( $'U(Ljr) ) ~ 
n~O. n n~O n . , • f ? .,. 

ID (U(rÎn8U(L1T)m) we get 
n,m~O , 

XU(L) = XU( T)' XU(L/ T)' 

Hence, by (1) we ca.n write ." 

, 

" 

\ , 
, \ ... 

" 

.. 
'- ' 

Il._Mi---~~'''''''''~~~'''''' _~ii..\, ~,~~, ,_Cl-,,!~~jl.rlt~'t~·~ /~'!<. '''_~:llli( 
~ '", .. ,~.r_\ ..... 1 -. "',~ ~/ 
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~ condi~on (U) implies \hat we bve 

. N;" . U(L/r)p1e",.eU(L/r)PM' 

Thus, we get 

r 
Consequently 

dl dM 
XU(Ljr) = XU(L)/l+(t + ... +t )XU(L) 

~ch proves (2). v. 

~ We can qoose a homogeneous k-basis .{ "Yi}ieI of LI r and we totally 

order the i!dex set J. The Birkhoff~Witt theorem implies that the family 
/ { e. e. 

vil 

of elements i e = 71 1, .... 7iss with il > ... >is and e
ik 

E N is a k-basis 

of L/r, ~et ~ he the rank of (L/r)n' then ~ is equal to the number 1 

Ji of famili~ (ei ) such that n = :Bei' bi• where bi = degree( Îi) (iE!). This 

is equivalent to thtract that' XU(L/r} May be expressed in the form 

~ X -n-4 
U(L/r) - iell-t-i, 

. ~ -
because n..l.-h = n (l+t 1+, .. ) and the coefficient of j. in' this 

(ieII-t-i iE! , ~ 

propuct is p~ecisely the number of families (ei) such that Eeibi ;: n. 

The num~ of factors in this product su~jhat 

of (L/ r)m for aIl m > 0 i.e., 

_ 00 1 

XU(L/r) = r4n
'l (l_tm)Sm' 

Combining thls-expression with {2) we get 
ç 

_ .. , ' , 

bi = m is the l'ank gm 

, 
'. r 

\ 
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dl dM (l) l ' 
XU(L)/l+(t + ... +t )XU(L) = n m ~. 

m=l (l-t ) 
Thus,., !m'S depend on the degrees of el',.·,eNt Pl',,,,PM' 

q.e.d. 

PrQllOSition 111.1. 

Let k he a PID and let p he a homogerleous element of L such that p ~ (P)L 

for any maximal ideal (P) of k. Then lf T is the ideal of L generated by p 

wehave: 
~ . 
') ~ 1 J -L/r is a k-free module. 

2)~ T/[T,T] is a Cree U(L/T) module on the image of p. 
( , 

Proof· .. 
'rhe exact sequence 0 ---+ T-;+ L ---+ Llr ---+ 0 tensored with k/(P) gives 
r ' 

o -t r(P) -t L(P) -+ LI r(P) -+ 0 

where 

r(P)=.,ek/(P)~rl(P)T, L(P)=~k/(P)~Lj(P)L and L/r(P)=L~(P). 

The exact sequence 0 --+ (T, T] -t T -l, TI[ T, T] -1 O' tensored with k/(P) gives 

o --+ [~P), 1>)] ---+ r(P) --+ r(P)/[r(P),r(P)] -10 

for aIl maximal ideals~ of k. The algebra L(P) is free Lie algebra over 

k/(P) on eiel,.~.;eNel. 

Since L(P)/r(P) is free k/(P) module, and p 1- 0 where p is the image of p -

in rl(P}r,. we cau apply Lemma III,2 to get that r(P)/[r(P),T{P)] is free 

Ù'(Ljr(P»-module with hasls p + [r(P),r(P)] (for aU (P)). Bence, by Lemma 

rIT.3 the ranI< of (L/r(P»n Idoes Dot depend on a choire of maximal ideal (P) 

of k . 

• ,Bence, by Lemma III.1, LIT is frèe k-mooule. 

.' .. ,~~-'~ ~,_ .... ~ '''.- . ~ ~ .- ' .~. ~ ' .. 
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Now we use Lemma III.2 again ta conclude that r/[T,rJ is free U(L/T)-module 

with basis p + [r, T]. 

q.e.d. 

Naw, we return to the example given in Chapter II. 

Example 111.3. (11.2) 

Let L be Lie algebra over the integers with the presentation <xl '''2'Xai 2xI = 
["2,x3]>· Let 2,1 and 1 !:>e the degrees of "1'''2 an~ x3 respect ively , We 

want to show that L i~ Z-free module. By Proposition 111.1 it suffi ces to show 
, 

tbat 2x1 - [Xz,x3] ~ (p )L(X) for any prime number p where L(X) is a free 

Lie aIgebra. on X = {xl'Xz'x3}. We choose a total order on X such that 

"2 < x3, Using this-tota.l arder of X we construct a basic family R in r(X) 

where r(X) is a free magma on X. 
, . 

Hence" xl and [~-,Xa] &ré elements of R. . 

If 2~ - ["2,Xj] E (p )L(x) f~r sorne prime numher p then vie could write 

2x1 - [~,x3] = P~'Yi + ... +p.nk '11 
1 k 

~~... '( 

whe!e ni e Z, 1'ï, E R, j == 1,2, ... ,k. This would irnply that (2-p.nni) = 0 and 
J' , 

(l+p.nq) = 0 for some 15 m,q ~ k, ml q. But th;)econd equâlity i~ 
impossible. 

q.e.d. 

Now, let k he a commutative ring and let L be a free N-graded Lie algebra on 

{el""'~N} over k. Let .",. ... 'PM 'be nonzero.homogeneous elements 'of L and 

let r he the ideal o{ L generated by "''''PM' 
Deijnition III.1. 

, ~~ 
\.ili 
::~~ 

., 
'1 
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o We caU the elements Pl'""PM stron&ly ftee if and only if: 

) 

o 

" , )-

(I) LI r i8 a free k-module. 

(II) r/[r,r] i8 ~ free U(LI r)-module on. the images of }l' ... ,PM' 

r-''O ~et A(t), B(t) and C(t) denote formai power series in Z[[t]]. 

Definition 111.2. 

1) We write A(t) ~ TB(t) if and only if an - bn ~ 0 fQr all n Viere A(t) , 

00 <XI 

= 1:; antn and B(t) = E bnt~. 
n=O n-O 

2) We write A(t) ~ B(t) if and only if: 

either an - bn ~ 0 for all n, or an > 1)n and an = bn for n <:: nO 
. 0 0 

(some no)' 

Lemma. IlIA. 

1) If A(t) ~ TB(t).' and /(t)' ~ _TO" then, A(t)· C(t) ~ iB(t). C(t) with 

equa.1ity only if A(t) ~(t) or C(t) = O. 

2) If A(t) ~ B(t) and C(t) ~ 0 then A(t) ·C(t) ~ B(t)·C(t) with equality 

only if A(t') = B(t) or C(t) = o. , ? . 
,~3) If A(t) and B(t) are invertible in Z[[t]] and B(t) > 0 then 

• 1 

A(t) ~ B(t) if and only if A(t)-l S B(t)-l and equality occurs only if .-

A(t) = B(t). 

4)- '!1 A(t} ~ TB(t) then A(t)+C(t) ~ TB(t)+C(t). 

If 'A(t) ~ 'B(t) then A(t)+C(t) ~ fl(t)+C(t). 
. 

If C> 0 then A(t) ~ (T)B(t) implies C·A{t) ~ (T)C.B(t). 

ptoof· 
-

1)' For all na~ural numbet~ we have 

aOCm +"'+&mCO - (bOCm + ... +bmCO) = CO(am -bm)+ ... +Cm(aO-bO) ~ O. 
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2) ~ 
Let nO he the smallest natural ilumber such that ano > b

no 
and let ~O 

œ,the smallest natura! number such that Cm > O. Then 
. 0 . 

" Cm ~ > Cm bn and hence o 0 0 0 .. 

°oan +m +C1&n +m ]+",+Cm +n aO> -o 0 0 0- 0 0 

CObn +m.. +C1bn +m -l+",+Cn +m bo 0--11 00 00 

'.VhiGh proves (2). 

3) -If A(t) ~ B(t), then A(t)-l > 0 80 by (2): l ~ A(t)-lS(t). Applying 
-

(olt) 
\ ') 

B(t)"":l ~ A(t)-l. 

(2) again we ge~ 

ln the same way we prov~ that (*) implies A(t)~. B(t). 

4) Trivial. 

q.e.d. Î 
Lemma III.5. 

Let k be a field. Then 

- / - ~ dM 
XU(L/r) ~ XU(L)/l + (t + ... +t )XU(L) . 

'th equality if and only if the elements Pl ""PM' are strongly free. 

C dition (I~ is obviously true sinee k is a field. Proceeding as in the, PI~f of / 

L 111.3 we get . ) 

XU{L) = XU(L/r}il.-XN 

N = r/[ r, rJ. Since N as a U(Lj r)-module is generated by the images of 

Pl'"'' t we get the k-lin~ar graded surjectiv~ 

itI <p:(U(L/r)le .. ,e{U(L/r}}M ~ 

... • " ~"i 

Ih.!·.';.·f.'·~t~rf.œ.·1.#~~~r~.1M~.tW.~~.\.~~.Jfi~~.:·'~b~·:~~··~·,.~·J~%~.J __ ·~'(~" __ ,~,,w-~~ 

, 
" 



o 

where (U(LI r)i ~ U(LI r) i = 1,2, ... ,M; defined by 

(Ul""'UM) -1 ulPl +",+uMPM (where ui E U(~/r))~ If we want ta make the 

IIl;ap <p graded of degree zero we on1y need to define new gradings on (U(L/r))i 

by (U(L/r»! = U(Ljr)n-d: where di is the degree of Pi' i = 1,2, ... ,M. 
. 1 

~ ,y-

By surjectivity of cp we get 

XU(L/r)l+ ... +XU(L/r)M ~TXN 
with equality if and only if tp is an isomorphisme Hence, 

d} dM 
(t + ... +t )XU(L/r) ~TXN' 

It follows that 

and hence 
, ' 'dl dM 

, XU{L) .(l-~N) ~TXU(L) - (t + ... +t )XU{L)' XU(L/r) 

Since ,XU(L){I-XN) = XU{L/r) (cf. Loc, cit. th~ prbof of Le~ In.3) we see 

that 

dl • ~ 
XU(Ljr){1 :+- (t + ... +t )XU(L» ~TXU(L)' 

Applying Lemma IlIA we get . 
• 

"/ dl . dM 
XU{L/r) ~ XU(L)!l + (t + ... +t )XU(L) 

/ 

with equality only if cp is an isomorphism, Le., if and only if Pl'""PM are 

~tron&1y free· / 

q.e.d . 

. PrQPQ8ition III,2. 

Let k he a principal ideal domain. Let L be the free, N-graded Lie algebra on , 

{{l"" {N}' Let ~ Pl'""PM be nonzero homogeneous elernents of L of degrees 



" 

o 

o 

.r , 

8) -

dl, ... dM respectively. \ 

If for all maximal ideals (P) of k we have 
, "d d . 

I
l. M 

XU(L/T)(P) = XU(L) 1 + (t + ... +t )XU(L) 

then the elements Pl,,,,,PM are strongly free. 

Proof. 
, 

The ideal r(P) = ~k/(P) is rree Lie subalgebra of L(P). ,Si'nce the rmk of 

Ln is equaI to the rank of Ln®k/(P) we apply Lemma III.5 to 
~ 

c;onclude that the elements P1"".,PM are strongly free where Pi is the image of 

Pi in T/(P)r for i = l,2, ... ,M. Hence, by Lemma 111.3, the rank of (t/T(P»n 
1 

does not depend on a choice of the maximal ide8J (P) of k. Applying Lemma 

Il!.! we conclude that L/r is a free k-module. 

The elements Pi + [P,p] generate r/[r,r1 as -a U(L/r) module, i = .1,2, ... ,M. 
Q • 

Hence, in order to show that condition (II) hold, we only need to prove that they 

,are U(LI r)-linearly independent. The relation 

, ' "1 (Pl + [" rI l+'H + uM("M+[ r,.D ~~; . .di E U (LIe.] i -: 1,2, ... ,M .' 

tensored with k/(P) would imply that ,~': . 

u1®1(Pl®1 + [r(P),r(P)])+ ... +uM®l(PM®! +- [r{P),r(P)]) = O. 

But, the elements Pj®l + [r(P),r(P)], i = 1.,2, ... ,M, are U(L/r)(P)-linearly 

.o' .. ' i~dependent 80 uiGl>I = 0, i = 1,2,,,.,M. Since LIT is k-free module, the algebra 

U(L/ T) is k-free by Birkhoff-Witt Theorem. Thus, ui®l = 0 implies ui = O. 

q.e.d. 

In view of this proposition and Lemma HI.5 we consider the following problem: 

Let Ass( el ,o.o,eN) = V be free associat~ve algebra over a Jeld k. The algebra 

V is. given sorne N-grading by associating positive degrees to the elements 

. , 
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{1, ... ,ÇN' Let ll'l'···,ll'M be no~zero homogenoous 
d 

elements of V of degrees dI, .... ,dM respectively with di ~ 1, i = 1,2, ... ,M. Let 

R be two-sided ideal of V generated by {al' ... ,ltM}. We call the elèments 

strongly free ir"and only if '. - ... '. ,~ 

1 dl dM 
VfR(t) = V(t)/l + (t + ... +t )V(t). 

1 

where V(t) and ~VfR(t) are Eufer-Poincaré series of V and V/R, 

respectively. ) , .. 
~Wue,-w~an-.x.t ....x;tQ~~=~=~~~~~1 ~M a:e strongly free. 

We will need sorne preli 'naries on locally· finite, connected, N-grade'd, 

k-a.lgebras. The main referenc for this paragraph are [1] and [2]. 

Definition III.4. o 

lt. . 
Let k be a field and let n be N-graded associative .algebra over k. 

Then 

1) . A is called connec~ed if AO = k 

2) A is called locatly fiuite if dimension of An is finite for all n. 

, As in [2] we will denote the category -of alilocally finite, connected k-algebras by 

C.G.A. 

Let A, B be'in C.G.A. We Can write 
1 

/ 

A = ,kœA and B = keB' where 
i 

A = œ A , B = CD B . By the coproduct 
n>1 n n~l n :> 

AuB in C.G.A. of A and B w~ 

will mean AUB = keAeB'œ(A® eCS®j\)e(X®B'@A)œ... where all tensors are 

taken over k. 

Lemma 111.6. 

n A, BE C.G.A. then 

(*) [(AUB)(t)J-1 [A(t)r1 + [B(t)]-l -1. 

, , . 

( 
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, 1 

" 

, . 

0, 

P~oof. ~ 

The formula (*) is equivalent to 

(**) A(t).B(t)(l+AUB(t)) = AUB(t)(A(t)+B(t)). 
~l . \ ' 

. In order to prove (**) it suffices to prove that there is an isomorphism 

-. 

, 
(***) A®(k$AuB)®B ~ AUB~A$B} = .(AUB®A)e(AUB®B) 

" 

of vector spaces over k. If we write AUB = keAiJlJ then left band side of (***) 

S 
( becomes 

/ 

j) 

;;: kek$AiJB"E9B'eB'E9(AOB@B)E9AE9AE9(A*iWJJ)$(A@B)IB(A*B)E9(A®AüB'@B). 

The rigbt-band side of (***) becomes 

( kE9AiJB)@(kœk$A$B) 

. = J{$k$AeT:JœAüB'eADB'IB(AüB®A)IB(AüBeB). 

S· "-Ince 
to~ "'l.. > 

- XœB'ED(AeB)$(A@JJ)etA0AüBeB) ~ AuB' 
/ 

.as/vector spaces over k we proved (*~*) 

q.e.d. 

Let DOW A = As~ a;, ... aM) be a free as~iative algebra on 

,\1 
, J . 

41, ... ,aM and let di he the degree of ai' i = 1,2, ... ,M. We can .write 

dl dM dl dM 2 
A(t) = 1 + t + ... +t + (t + ... +t .) ,+'" 

and hence 

C>. dl dM 
A(t) = 1/1!::.{t + ... +t ). 

-
r 

If B is any asso~iative algebra over k generated by ~1' ... ,~ with dO(Pi ) = 
di' i = 1,2, ... ,M then 

f 

, 1 
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d d· 
B(t) ~ 1/1-(t l+ ... +t M) 

with equality if and only if B is isomorphic to 1\ via tlie canonical map defined 

by (t. --+ p., i = 1,2, ... M. 
1 1 

Let us introduce the following notation: 

1) -V = Ass(el' ... eN)' 

2) Ass(a) = Ass(al' .. aM) - free associative k~aIgebra On {al' ... ,aM }. 

3) R = VaV is the two-sided ideal o( V generated by {a1, ... ,aM), 

4) U =" V/V aV. . 

We have the can~ tnap cp: Ass( a) -- V sending ai to ni {or i = i ,2, ... ,M. 
, 

We hve the canonical projection 7r.V -+ U which is graded of degree zero. Let s 
, 

_ / --------he any section s:U --+ V of degree zero (su~h a. map exists since we are working 

over a field). 
• 

~t J = <PJ8 _, the canonical map fro~ Ass(a)UU into V. We see that " 

fC1t'1'2 u2· .. ) ~ CP(7~)s(u1)!P(72)s(u2)':" where ui E U and ''Yi E Ass(~) 

(ieJ-Bomè finite set). 

Lemma III. 7. 

.. 

The map f = t,Gtls is surjective. 

Proof· .. 
We will pt~ by induction on degrees. " 

The map f is obviously surjective in degree 1. 

) 

Suppose that { i8 1 surjective in degrees l ~ n, and let ,v E V n+ l' Let 6) 

h = s~v). 
1 ' 

Since 1r{-v-h) = ",v)-~h) = 1I"(v) -1["'8 ,1l'(v) = 0 we 8ee that v - ~ E VaV, 

Henee, we can write 

-~ 

~ 

. ,~l'." . ~ "'" ~. 
'~ .. ' 
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(ieI-finite set) 

where ui,wi E V are homogeneous (iEI). Since di ~ 1 for i = 1,2, ... ,M, we see 

that dO(ui), dO(wi) ~ n (ieI). Applying the induction hypothesis we ca.n find 

~lements ui' wi e Ass( a)uU sucb that f(ut) = ui and f(w{> = wi (iet). It 

follows that 

which proves our lemma. 

q.e.d. 

v-h = f(Eu~ (l'. W~) (iel) 
1 Ji 1 

Above, we defined the map f using any section associated to the projection ",11'. 

There is no canç~cal choice of s but the next lèmma will show _ tbat the 

particular choice of s is not very important, at least for our purposes. 

Lemma III.S. 

The fonowing are equivalent: 

1) Ass(a)UU ~ V as graded vector"spaces. 

2) f is injective for sorne choice of s. 

3) f is injective for any choice of s. 

fmQL. -

That (3) implies (2) and (2) implies (1) is obvious. To see that (1) irnplies (3) 
, 

notiCe that f is a surjection between vector spaces of equal rank in every 

homogeneous component, hence an isomorphism. 

1 

q.e.d. 
, 

Lemm& III.9. 

1) (Ass(a)~U)(t) ~ V(!) with equality if and only if the elernents ap ... ,aM 

/ 

, ' 

-; , , 
'~ 

, 
~: 
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are strGndy free. 
- , 

2) As a coproduct of the prO?f of (1) we hve 
d d 

V(t)/l +' (t l+ ... +t M)V(t) S U(t) 

with equality if and only if a1, ... ,ilM are strondy ftee. 

fIggb 

Since f is a surjective rnap of degree zero we have 

(Ass( a)uU)(t) ~ TV(t) 

with equality if and only if f is an isomorphisrn. 

Hence, by Lernma. IlIA we have 

[(Ass(œ)UU)(t)j-l ~ [V(t)]-l. 

By Lemma III.6 we get 
'" 

[Ass(à)(t)r1 + [U(t)]-l -1 ~ [V(t)r1 

and hence 

,d dM " 
1 - (t l+ ... +t _) + [U(t)]-l -1 ~ [V(t)J-1. 

It follows that 
d d 

V(t) ~ U(t)(! + (t l+ ... +t M)V(t)) 

ând consequently ~ 

d d 
V(t)/l + (t l+ ... +f M)V(t) 5 U(t) 

with ~uality if and only if al,.~~œM are attoully free. 

q.e.d. 

Definition 111.5. 

-; 

• 0 

\ 
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<,' , , , . 

then al, .•. ,aM are said to be ~mbinatorially free if ~d only'if 
, 

1) ,'no ai is a. submonomial of aj for i:f. j, and .. 
2) when~ver' ai = xfYl and aj = ~Y2 where x1,y1'''2'Y2 are monômia.l~ 

of degree ~ 1, we have xl :f. Yt' 

Proposition Ilr.2. \ 

,If ~l' ... ,aM, are nonempty monomials ID el,: .. ,eN' then al'· .. ,i are 

coIhbinatorially free if and only if al'''''O'M are strongly free. 

Let 7r.V,--+ V jVa\l.., be the projection map. A k-basis for U = V IVaY is the 

?r-image of the set M = {aU monomials in, ,el,.·.,eN, whifh do not have any ai 

as a submonpmial}. Let s:U --! V he the section defined by s{7I'(x)) = x for all 

xE M. If G, is the subalgebra of V generated by 0= {al""'O'M} we th~n 

have the canonical surjection .. 

; rp:Ass( a) --! G (Qi -+ ai' i -: 1,2, ... ,M). .. 

The m~p .f = !?Us:Ass(a)UU -i V~" iS"lsurj~ctive by Lemma IU:7, ~d it is 

injective if and only if O'l, ... ,aM are strongly free (Lemma III.9). 
, 

A k-basis for Ass ra) uU consists of all sequenceB ("f,g) -
, 

. 10·gI'''ft" ... ·1m-l·~ such that: m ~ 1,' 10 E M(a), ''Yi E M(a) - {l} for 

i > 0, s(~) E M and s(gj) e ~ - {l} for j < M where M(~) is a ~ee 
-

monoid on a = {a1,,, .. ,aM}' Let M( e) he a free monoid on the set ,\ 
. .' " 

e = {el,· .. ,eN}· 
. 

To show that f is an isomorphisIn is equivalent to showing that t~ 

/' representati!n of any element xE M(ç) as a. product 

(*) cp( 10) '8(gl)' .~.' cp( 1m-;-1) 'B(~) 

" 
.~ 

~ .. . . . ., 
, . .. 

~ : 
,1 

. . ., 00, 

" 
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• 

ls unique. 
{~ l, ,1\ 1 \, '\ 

'f Suppose that (ll' ... ,ltM. are combinatorially free. To soo 'that the r~~resentation 

of any xE M(e) as a product of the form (*) is unique, suppos~the contrary. 
" . '" 

Choo~ . x 'E M( e) so that the length of x is minimal amo~g the elements of -
M( e) with multiple representations, and let 

x:= <P('O)·s(gl)·· .. ·cp('Ym-l)·s(gm) = .rp('6)·s(gi)· ... ·cp('Y~_1)·s(g~) \ 

he two distinct representations of x. We may assume that the length l(x) of x 
, 

i& greater than zero since clearly 1 = 1·1 is unique. 

Case 1. 70 = 76 = 1. 

In this case, we must have m,n > 0, hence one of s(gl) and s(gO, say s(gl) is 

a submonomial of the ?ther. Hence, we can write s(gO = s(gl).s(h1) where 

s(h1) ~)f. 'Thus, the element 

y = <P('i'1)·s(g2)·· .. ·cp('Ym ..... 1)·s(~) = s(h1)·cp('Yi)·· .. ·cp('Y~_1)·s(g~) 

aIso has. two distinct representations, contradicting the minimality of x. 
t 

Case 2. 70 -; l and 'O:f. 1. 

In this case, we can write 10 = QI' ' ... al' and 10' = a. . .... Q. • 
.' 1 s JI Jt 

If Cl • .' = Cl
J
. then x is not minimal. If ai :f. Cl

J
• , then one. of them is a 

Il 1 • 1 1 

submonornial of 'the other contradicting the fact that (ll, ... ,aM are 

combinatorially free. 

Case 3. 10 -; 1, 10 = 1. 
'\ 

"-
&. 

Le us write 10 = (l. . .... Q. and li = Q. • •••• QJ' • 
Il IS h t 

We cannot have l(s(gi)) ~ 

l( (l. ) forif we did, then a~ would he submonomial of s(gO contradicting the 
Il 1. . \ 

fact that s(gOeM. Hence, ai =s(gO.x1 fo'rsome xl eM(e)-{l}. 
. 1 .' 

H l( l\) ~ l(s(gf}' lt
j1

), yhen (\ is a submonomiàl of Qi
1 

contradicting the 

\ . 

'-
.. '1"', • '." ' 
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. ' 

fact th~t Ql', •• ,aM are combinatorialJlf free. Hence, 8(gO' O'jl = ail . "2 for 

some ~E M(e) - {l}. 'It follows that aj ~xi~' and -ai = s(gO'xl' But 
• ~ f 1 

! this contramcts the fact that ai , ... ,aM are combinatorially free. ~ 

Case 4. 10 = 1, 10; 1. . 
As above. 

~onversely, suppose that al"'" aM are not cpl,llbinatorially free. 

If ai is a Submonomial of &j' then &j = X· ai . ~ for som~ x,y E M (e) and we see , 

that Q. has two representations as a product of the fOTm (*~. 
J . • 

If ai =~'y and aj = Z·X for sorne x,y,z E M({) with y,z, E ~(e) - {1}, then 

zxy = arY = Z· Qi has two distinct,rep~eséhtations of the fo~m (*). 

, , 
q.e.d. 

~II.1Q. 

,Let f:V ~ H he a surjective homomorphism of elements of C.G.A. where 
, , 

V is a free associative algebrt on a tot~y ordered set S.~ Let M(S) he the free 

monoi( on S ordered lexicograpHically. Then: 

1) There exis'ta a. hereditary subset M of M(S) such that f(M) is a 
1II 

k-basis of H. 

2) fi x E M(~~, then f(x) e'k<f(y):y E M. and y < x>, where k<Sl> 

denotes the vector subspace of II generated by the se~ Sl' 
1 

We define M iIi'ductively. -~et Xl = 1 and suppose that x1, ... ,xn have already 
...-' 

been chosen; Let xn+1 he the ·smallest' elèlnent. .... of M(S) such that 

f(xn+l),~,k<f(xl), ... ,f("n»' Cleatly, conditions (1) and'(2) ar~ JJatisfied. To 
• seè that M is hereditary, suppose the contrary. Choose xE M such th~t-

,t \Qi'" 

\ 

. . 
l' 

-, 

• 
~t , 

\ 

l' , 

~;>:' l~"t",~·~~\,~:.,~~_:.~\; ;.0.' . "," 

',' 
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J -. . 
. X'= v-y'W where v,y,w E M(S) anq y t M. We can write- f(y) = ·E kif(uif 

r----.. ..... u·<v 

for some ui e M, ki E k'. 

Hence 

Jv 

- - - 1 • 

f(x) = E k. ·f(v-u. ·w). 
u. <y 1 1 

1 
/ , 

Since ui !< y implies v,ui ·w<v·Y·w = x, we see that f(x) is a linear 

.combinatiôn of f-i,tnages of smaller monomials .. This contradicts our chorce of 

M .. q.e .d. 

Let al ... , aM be homogeneous elements of the. free algebra 

Ass({l',,·eN) over a field k. Let us totally order the set e = {{l'''''{N} and - . 
thén order the free monoid M({) lexicographically. Let al dénote the highest 

term .of ai' i = 1,2.,,,.,M. 

Proposition III.3~ 

H ~1'''''~M ----are combinatorially free then al'".aM are strongly free. 

Proof. 

Let M he the hereditary sub~t of M({) as const~cted in Lemma 111.10. L~t 
M =. {x E M(e): no ~i i~ a submonomial of x}. Then the images of the elements 

A A ~ A A 

of M under the canonical projection ToV --+ V IV aV = U form a k-basis for U 

where ~ = {~l""'~M}' The image of M under the cjonical prDjection' 

11': V -+ V IV aV, = U form, a k-basis for U. Since ... . 
o = '" ai) = ki · "'( ai) + '" (a linear combination of ·sma.lIer monomials) 

• , A 

for some nonzero ki E k, we see that 1I'(ai) E k<{P(x):x e M and x<ai}~' Thus, 
A 1 A 

Qi ~ M for i = 1,2, ... ,M. It ff)llows that Mc M and consequently that rank 
• 

(Un) ~ rank (Un) for all n. Let di he the degree of ai' i = 1,2, ... ,M. By 
• A 

Propositio~ llI.2 the ele~ents al, ... !aM are strongly free. Renee ~ 

o .' .. 

~..... '... '.,. .~. <--C • 
" . 

.,. tL - ~ _'''- • 

.; 
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f 

.. ~ . dl (lM 
U(t) ~ TU(t) = V(t)/l + (t + ... +t )V(t)'. 

By Lemma.'UI.9 this tan only, happinlf U(t) =-V(t)/l4-

dl dM <; 

(t + ... ;H )V(t), i.e, if Qp ... ,aM âre strongly fr~. 

q.e.d. 

Enrnp1e IlIA. 

Let L be,the!ree Lie algebra on e1, ... ,eN over a field ~ and let lt1, ... ,G'N-1 

he eleIhents of the following form: 
'<; , • ~ 

(*) 
N 

• Q. = E a .. re·,e,) 
1 . 1 1· 1 J , J= J 

where ai. E k, i = 1,2, ... ,N-l; j = 1,2, ... ,N ànd ~. = a
J
, •. 

J ' J 1 

Let q he a graph wi:fh vertices {1,2, ... ,N} and let us join the verticés i and 

j if i; j and ai. f O. We say that G is connected if and only if for each pair 
. J 

of edges, there exists a wa.y between them. , 

We will show that: 

if G it\ .. connected then g1"'~~N-l are stronaly free. 

1 

We ch~ a maximal subtrée T of G Fd we relabeI the vertices 50 that for 

\every m the vertex v m is T-connected to one of y m+l , ... ,'y N (i.e., the direct 

way in T between vm and'one of vm+l'''''v~ exists). Next, ~e label each 

vertex "high" or "low" inductively aB follows: y N is "high". If v. is la.be~d 
• J 

"high\l or "low" for j > m, then we label v m "high" if it is not G-connected to 
".. 

any "high" vertex vj with j > m (Lè., the~e is nO direct way in G 

between vm and any "high" label~ vertex vj with' j >,m or in other words 

am. = 0 if j > m and vj is "high"). - Otherwise, we label vm '~Iow". It 
J _ 

\ -- , , 

. ' 
~ ... { t (~ , 

",,>.,.. r~ ~f ... ~ ~ y' ;t(~~:;'>.)~ ~~ J .. ~ ;O\t~,,,- 1 1 \0. • '" ..... :..~~~~J __ ,& ~!,.",: .. r;;;~.r""Ji:Hi;.t;t~~'J ~ ~:~:i1'1n·'1,:)'''''J:~'' _.t!""~~;~t·'~ ~ 
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follows that no two high vertices are G-éonnected. 
. 1 • 

Next we la.bel ei ."highll or-t'lOw ll depending on whether vi is "high" or "low".' 

"e o~d?r the set {el':",eN} aS fallows: ei < ej if ei is low ~d ej is high, 
• 

and we endow low and high elements with the natural index order (far example 

e3 < eS)' Suppose that vm is "high" with m < N. Th~n am = Eam,rem,ej] 
J .... 

with e "high" and ç. "low" and ~ f 0 for sorne j > m. 
~ J j' 

Hence a = ç {. with ç. "low" { "high" and j > m. 
fi mJ J '.m 

Suppose ~hat v m, is "low'~: Then am = çr Çm with ej "high", '(fi "low" and 

. 
We daim that al, ... ,aN_ l are cOfib~natoria.lly Cree. . , 

\, 

• 

lIideed, if ai = aj for sorne 1 ~ i, j ~ N-I with i < j, then we cannat have bath '. 
... .... \.... ... "'" 

'ç. and e· high or low: if a. is "high" then a. = ç .. e· and if a. == a. then 
1 J ,,1 11J' 1 J . .. 

aj = eiej contradicting that i < j. If ai is "lovi'~ then ai = çj' Çi and if 

... ~i ="~j then ~t;= {r. ei contradiéting that i < j. \t \ 

It follows that al"",aN_l are all distinct, and sinee they are ~l of degrée two ~ 

we see that none of them is a submanomial of the other. , 

If ~. = e . e then e is~~ays "high" and en is always "low". Henèe, the 
l 'fi n m 

second part of Definition III.S is also satisfied. .{.}, 

By Proposition III.3 the elements 'll'l'".,aN_l are..strongly free. ( 

Let L he the free Lie algebra on . {el'".,eN} o"er the integers; and let 
- -, 

al' ... ,aN-l he elements of t,he f?rfi (*) with ~. e Z. L~t .Q.Uù denote the 
• • 0 J -

reduced graph whose edges are {1,2.",.N} and whose vertices i and j are 

joined ij' and'only if 8:i. :: 0 mod(p). 
J 

H G(p) is coppected (<n;' all prime numbers il 

\ 

. -) 
then by PrQl)()~itiQn III.2 the . 

\ . .. 
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" elements al, ... ,ll'N_I are strongy-free. 

We will estabüsh now a necessary and suffic~ent condition for. G(p) to be 

connected for all primes p. 
à ..J • 

Let B be the matrix with N rows labeled by the natural numbers 1,2, ... ,N, and 
"N - \ . d 

~ "(2) columns labeled by pairs of natu~ numbers (i,j) such that i < j and 

. 1 5 i, j 5 N. 'The position (i,(i,j)) and (j,(i,j) are equal ta ai. and -ai. 
"1 j J 

respectively (i < j). Otherwise they are~ual to zero. Since the sùm of the rows 

is zero, the rank of B is at most N-l. The relation "the vertex- v m is-

connected (not necessarily 'directly) with v." 
1 . 

, " J lis an equiva.lence relation. 

Suppose that G(p) is disconnected for sorne p. Let B(p) be the matrix B 
+ " 

reduœd modulo p. Thèn, there exist at least two equivalence classes in the set 

of vertices: one can be represented as 
a .k)(~) submatrix' Bk of B(p) and the second ca.1! be' rel'resented a.g a IX(~)1 

D , 

submatrix BI of B(p) with k + .J, ~ N r - The submatrices Bk and BI are 

disjoint. Sinèe the surns of the rows in Bk and BI are both zero, vVe see that 

rk(Bk) + rk,(,BI}~S k-l+,f-l 5 N-2. Bence,!f we prove that rk(Bk) = k -1, we 
, , ' 

will provè the'following statement: 0(1))' lB connected for eyery prime humber p 
.. 1 _ 9 <1 r 1 

" 

ff' and oruy if rk(B(p)) = N -1 where B(p) .is the matrix B reduced modulo 

p. 
t • 

( 

We relabel the rows 1,2, ... ,N sucb that 1,2, ... ,k are-the rowa of Bk(k 5 N). 
" 

Suppose that we have the relation 

(**) biR. + ... +b R. = 0 
11 n ln 

, 

where 0 '" hJ e Z. R;j isa .0" of ~k' j = 1.2 •.•.• n. and n < k' __ 

1 
Since each ~l~ of Bk cont~ns at most two nonzero el7~t8 _ a 

, ) 

.. ê, 

{ ," . ~, 

/ 
1 

\ 
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(aeZJ we see that for every bj , there exists bl such that hi = br' Hence, ~we 
'" can rewrite the relation (**) in the form . . ,. 

, - , 

hl RJ' '+b} RJ' + ... +bmRJ' +bmRJ' = 0 with j2k-l <j2k' k = 1,2, ... ,m. 
1 2 2m-1 1 2m 

, I~ 

At least one of the rows ~h or Rj~ c;.ontains a nonzero position other/than 

(j1 ~jl ,j2» or (j2,W1 ,j2»' Let it he (jl ,(j1 ,j». If Rj ~ {Rjl, .. ·,Rj2m} then 
, , 

bl = 0 contradicting our assumpt~on. Hence, Rj E {Rjl" .. ,Rj2~} and tt 
. 

follows that bl = bi for sorne i 1= 1. Repeating this argument we can finally 

conclude that all 
~>') , 

coefficients in the relation (*) are equal to b~. Since n < k "ind"'Bk represents 

an equivalence class in the set of vertices', there exists a vertex v
J
• ~ {v. " .. v. } 

Il ln 

which is'connected to ~least one of the vertices v. , ..... vi . Suppose that v. ois :' 
~ Il n ~ J 

connected to \" This implies that i~ the coiumn (i1'i> when i! < i or in the 

~lumn (j,il) when j < il the only' nonzero positions are (i ,(il'j») and 

(j, (ll'j)) in the lirst case or (j,(j,!!)) and '\: i i ,(j,i!)) in the ~eoo"n~calle" Thus, 

b1 = 0 contradiciting our ass1:1Illption. 

Renee. any k-l rowS of Bk are linearly independent. in partiéular 

" 

Let BI be the. normal form of B, 'i.e., BI = diag.{d1, ... ,dr,O,O .•. O} with 
1 \ • 

dildi~l' Rank (B(p» = N-l, for every p if and only ifrank(B1(p» = N-l for 
. -

every Pi .i.e., if.r = N-1 and dr == :t:1. Thus: 

, G(p) is connected for every' prime number p if aild only if the greatest common 

divisor of the N-1-rowed minors·of B is equal to 1. 

~xa.n;ple 111.5. 
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Then, in U(L)8ZZlPZ. the highest terms al = el e2 and ~ = el' e3'(2 are ' 
• r 

combinatorially free for all ~. Renee, Ql'~ -are strongly!tee i~ L. 
'L 1 

Note -that we could conc1ude this directly from Pr~position 1.3.3 taldng Il tô be 

the ideal of : L generated by el' 
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