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Abstract (English)

Cryo-EM has yielded important discoveries about fine cellular structures, viruses, and protein
complexes at high resolution over recent years. This popular technique is progressing stronger than
ever, owing to various experimental and computational methods advancements. Handling multiple
conformations and providing finer structural interpretability of a dynamic macromolecular has
strengthened the potential of this technique. However, analysis of heterogeneous data remains a
major challenge for cryo-EM, even after using tailored image processing techniques. Here,
heterogeneity is concerned with varying resolution distribution on a cryo-EM map or several
existing conformations of a macromolecule resulting from its flexibility. These dynamic
developments can arise due to various reasons such as when interacting with biomolecules and
ligands or in spontaneous fluctuation due to biological functions. Failing to analyse these
movements can interrupt the interpretation of a given macromolecule structure and function. Thus,
sophisticated methods are required to record these biologically significant macromolecular
movements. The focus of this thesis is to demonstrate improvements in interpreting and analysing
the cryo-EM maps with computational methods to account for map changes locally for building
efficient atomic models and to visualize the conformational dynamics for a flexible or dynamic
macromolecule.

Biologists may use atomic models, even without expert knowledge, to explore the function of a
macromolecule depending on mechanistic hypotheses concluded from its structure. Building an
accurate atomic model, therefore, is an important part of the structural analysis procedure and is
based on the quality of the EM density map. However, various cryo-EM density maps from recent
periods contain local regions whose resolution differs from the global map resolution reported.

This heterogeneous distribution of resolution can arise due to flexibility as well as subunit



occupancy in diverse parts of the structure. Analysing such a map can cause poorer quality
reconstruction. Recent image-processing algorithms have suffered limitations in describing these
local resolution differences among distinct parts of the structure.

Domain flexibility of many large macromolecules also contributes to generating various
conformations. In cryo-EM, these dynamic structures require sorting into their least variable forms
by performing 3D classifications, which usually capture these conformations as snapshots in the
form of 3D classes. The resultant 3D classes can prefer lower-energy states within the
thermodynamic equilibrium, such that analysing the whole cryo-EM data can show the trajectory
of movements corresponding to various conformations of a macromolecule. Yet, generating a
suitable method for recording conformation mapping from representative 3D classes remains an
ongoing process. The work done in this thesis discusses the details of single-particle image analysis

methods designed for better utilizing the heterogeneous data.
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Abstract (French)

Cryo-EM a permis d'importantes découvertes sur les structures cellulaires fines, les virus et les
complexes protéiques a haute résolution au cours des dernieres années. Cette technique populaire
progresse plus fort que jamais grace aux diverses avancées des méthodes expérimentales et
informatiques. La manipulation de multiples conformations et la fourniture d'une interprétabilité
structurelle plus fine d'une macromoléculaire dynamique ont renforcé le potentiel de cette
technique. Cependant, I'analyse de données hétérogenes reste toujours un défi majeur pour la cryo-
EM, méme apres avoir utilisé des techniques de traitement d'image sur mesure. Ici, I'hétérogénéité
concerne la distribution de résolution variable sur une carte cryo-EM ou plusieurs conformations
existantes d'une macromolécule résultant de sa flexibilité. Ces développements dynamiques
peuvent survenir pour diverses raisons telles que lors de l'interaction avec des biomolécules et des
ligands ou lors de fluctuations spontanées dues a des fonctions biologiques. Ne pas analyser ces
mouvements peut interrompre 1'interprétation de la structure et de la fonction d'une macromolécule
donnée. Ainsi, des méthodes sophistiquées sont nécessaires pour enregistrer ces mouvements
macromoléculaires biologiquement significatifs. L'objectif de cette theése est de démontrer des
améliorations dans l'interprétation et 1'analyse des cartes cryo-EM avec des méthodes de calcul
pour tenir compte des changements de carte localement pour construire des modeles atomiques
efficaces et pour visualiser la dynamique conformationnelle d'une macromolécule flexible ou
dynamique.

Les biologistes peuvent utiliser des modeles atomiques, méme sans connaissances spécialisées,
pour explorer la fonction d'une macromolécule en fonction d'hypothéses mécanistes tirées de sa
structure. La construction d'un modéle atomique précis est donc une partie importante de la

procédure d'analyse structurelle et est basée sur la qualité de la carte de densité EM. Cependant,
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diverses cartes de densité cryo-EM de périodes récentes contiennent des régions locales dont la
résolution diffeére de la résolution de la carte globale rapportée. Cette distribution hétérogéne de la
résolution peut survenir en raison de la flexibilité ainsi que de l'occupation des sous-unités dans
diverses parties de la structure. L'analyse d'une telle carte peut entrainer une reconstruction de
moins bonne qualité. Les algorithmes récents de traitement d'images ont souffert de limitations
dans la description de ces différences de résolution locales entre les différentes parties de la
structure.

La flexibilité du domaine de nombreuses grandes macromolécules contribue également a générer
diverses conformations. En cryo-EM, ces structures dynamiques nécessitent un tri dans leurs
formes les moins variables en effectuant des classifications 3D, qui capturent généralement ces
conformations sous forme d'instantanés sous la forme de classes 3D. Les classes 3D résultantes
peuvent préférer des états a faible énergie dans I'équilibre thermodynamique, par conséquent,
I'analyse de l'ensemble des données cryo-EM peut montrer la trajectoire des mouvements
correspondant a diverses conformations d'une macromolécule. Cependant, la génération d'une
méthode appropriée pour enregistrer la cartographie de conformation a partir de classes 3D
représentatives est toujours un processus en cours. Le travail effectué¢ dans cette thése traite des
détails des méthodes d'analyse d'images a une seule particule congues pour mieux utiliser les

données hétérogenes.

12



Acknowledgments

I sincerely thank Dr. Javier Vargas (primary supervisor 2019 to 2020, present co-supervisor) for
giving me this wonderful opportunity to join such an esteemed university. I am and will be always
grateful for his guidance and enormous patience with me. I want to thank Dr. Mike Strauss
(current supervisor) for his unconditional support and virtuous counseling. I really appreciate his
amazing passion for research and for providing constant motivation to his students, which has
considerably influenced me in strenuous times.

I want to thank all the past and present members from Dr. Vargas' lab and Dr. Strauss’ lab for their
assistance and friendship. Also, I want to mention Dr. Joaquin Ortega’s help in offering his
suggestions to progress my research work. Special thanks to Dr. Chantal Autexier and Shalom
Chaim Spira for her help with the organization and careful review of the thesis format.

I am thankful for my mentor Dr. Susanne Bechstedt and two Doctoral Advisory Committee
members Dr. Khanh Huy Bui and Dr. Jean-Francois Trempe along with former member Dr.
Alba Guarné for their advice throughout my PhD degree. Finally, I want to thank McGill’s
Department of Anatomy and Cell Biology for its prompt support and guidance in my PhD.
This thesis is dedicated to my personal role model Dr. Veena Puri and my parents Jatinder Singh

and Manjit Kaur. Thank you for giving me this freedom of education.

13



Contributions to original knowledge

The work from this thesis was aimed to contribute to the improving of cryo-EM image analysis
methods with a special focus on highly heterogeneous samples. Chapter 2 presents a novel method
to improve cryo-EM maps locally, which are affected by a non-homogeneous distribution of SNRs.
This method calculates local B-factors and local map occupancies for cryo-EM maps, dampening
the Fourier amplitudes of less-well-ordered domains while boosting the high-resolution regions.
The approaches described in this publication help to improve the map connectivity as well as
produce a better coverage of atomic models.

Studies in chapter 3 discuss the proposed Bayesian inference-based method to discover various
conformations in cryo-EM data. It has a two-fold approach. The first part helps to deduce a large
number of conformations in extensive heterogenous datasets by performing hierarchical automatic
2D and 3D classifications that eliminate the need for human expertise as well as the so-called
“attractor problem,” a phenomenon whereby conformations with low population numbers cannot
be captured by typical Bayesian approaches. The second part of the method presents these resultant
conformations in the form of a trajectory on a free-energy landscape.

This manuscript-based thesis consists of two original research articles showcased in chapter 2 and
3, as follows:

1. Kaur, S., Gomez-Blanco, J., Khalifa, A.A., Adinarayanan, S., Sanchez-Garcia, R., Wrapp,

D., McLellan, J.S., Bui, K.H. and Vargas, J., 2021. Local computational methods to
improve  the  interpretability — and  analysis  of  cryo-EM  maps. Nature

communications, 12(1), pp.1-12"
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CHAPTER 1
INTRODUCTION

The structural analysis of macromolecules to achieve functional information inside the cell is the
core of structural biology. Using morphological determining techniques, scientists can analyse the
various aspects of a macromolecule such as its biological behaviour, drug development, action
mechanisms, or design of new structural complexes, among others. Various structural analysis
techniques include NMR, X-ray crystallography, and cryo-EM, among others. However, no single
technique suffices to elucidate all aspects of any given macromolecule. Rather, these techniques
should complement each other to describe the macromolecule's complete structural and functional
analysis. Among these techniques, cryo-EM has gained popularity over the last few years, as
shown in Figure 1(a), as the resolution of the structures solved by this technique has been highly
increasing. Cryo-EM uses electrons to pass through the flash-frozen solutions of macromolecules
for creating its 3D structure. This technique employs advanced image processing methods to

reconstruct biological macromolecules, and represents the topic of this thesis.

1.1 History of EM

Transmission electron microscopy (TEM) typically uses electrons accelerated to 200-300 keV to
magnify biological samples to elucidate their structure and composition. Ernst Ruska initiated the
discipline of electron microscopy by developing a mini microscope in 1925°°. In 1926, Hans
Busch invented the first electromagnetic lens which used electric and magnetic fields to shape the
£,

paths followed by electrons, similar to how glass lenses are used to bend and focus visible ligh

Ernst Ruska and Max Knoll, from the University of Berlin, created the first transmission electron
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microscope in 1931, for which Ruska was awarded the Nobel Prize for Physics in 1986° (Figure
1(b)). It is considered one of the most influential scientific inventions for allowing us to visualize
the nanoworld. In the first image of a eukaryotic cell’, TEM was able to show many of the
organelles for the first time®’. Other breakthroughs included the imaging of neurons

10,11

communicating through neurotransmitters ™', sliding Earnys-filament theory on muscle

10,12,13

contraction 14,15

, and revealing viruses to be defined particles for the first time

1.2 The rise of cryo-EM

The ability to detect features in an image is determined by image contrast; in particular, imaging
in a TEM is typically achieved by phase contrast, which increases with the difference in the atomic
number of the atoms that make up the sample. But in biology, the phase contrast is usually low
due to the similarly low atomic number of elements comprising the biological sample and the
aqueous solution that carries the samples in their native state: carbon (Z=6) and oxygen (Z=8). The
contrast of biological elements could be increased by extending the exposure time, yet the high
energy electrons used for imaging will lead to the burning of the sample'®. R.M. Glaeser proposed

the solution to this issue by averaging multiple images'¢.
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Figure 1.1: Historical timeline. (a) Chart shows the EMPIAR entries released per year and
cumulatively. (b) Timeline of cryo-EM with the selected key events that lead to the development
of single-particle electron microscopy. Achievements of the techniques are shown on the upper
part, while the lower part shows the structures solved. On the lower part, EMDB entries are shown
as a single-particle method. (Reproduced with permission from Renaud P et al, 2018 from'7).

Electron crystallography revealed that freezing crystals reduces the effects of radiation damage!'®.
This discovery led to the usage of cryo-samples (-140°C) in EM'? and x-ray crystallography?°. In
the 1970s, Richard Henderson, a molecular biologist and biophysicist from MRC Laboratory of
Molecular Biology in Cambridge, UK, along with his colleague Nigel Unwin, employed EM
combining weaker rays and mathematical analysis to produce the first 3D model of helices
arranged within the bacterial membrane of bacteriorhodopsin?!. Along the same timescale,
Joachim Frank, a biophysicist currently at Columbia University in NYC, developed with his
colleagues image-processing software and produced a 3D structure from blurry 2D images. In the
following years of the 1980s, the method of freezing samples in their native state, called vitreous

ice samples, was invented by Jacques Dubochet?

from European Molecular Biology Laboratory
in Heidelberg. And finally in 1990, building upon all these advancements, Henderson was able to
create the first atomic-resolution images of a protein using cryo-EM?3, thereby fathering the field

of cryo-EM. Accordingly, in 2017, Dubochet, Frank and Henderson were jointly awarded the

Nobel Prize in chemistry.

1.3 TEM setup

TEM allows the imaging of biological objects at atomic resolution. TEM generates an electron
beam that transmits through the frozen specimen, gets scattered, and is later focused via the
electromagnetic lenses onto an imaging device (e.g. a CCD camera, a fluorescent screen, a direct

detector, or a photographic film). Figure 1.2 displays the schematic of TEM.
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It uses a cathode to generate electrons and a series of anodes that serve to extract electrons from
the source tip, focus them, and accelerate them to the desired voltage (typically between 200 and
300 keV. Condenser lenses adjust the physical size of the beam to project it on the biological
object. The objective lens focuses electrons passed through the sample and magnifies the initial
image, which is later projected on the fluorescent screen using the projection lenses.

In EM, the difference in electron densities of organic molecules in a cell represents a feature called
“contrast”. Amplitude contrast and phase contrast are considered to be the two sources of contrast
in TEM. Amplitude contrast occurs when the specimen absorbs the transmitted waves to a high
degree, or scatters the electron to a large angle, and can result in changing the wave amplitude in
the final image. Alternatively, electron interaction with the specimen can cause electron refraction
at small angles, which changes the phase of the electron wave. Phase-contrast comes about when
this scattered wave constructively and destructively interferes with the unscattered wave to
produce an image.

The above-mentioned parts of the microscope column are responsible for producing the electron
beam, focusing it on the specimen and projecting an image on the camera. This whole process
must take place in a vacuum to minimize the collision frequency between electrons and gas atoms.
The vacuum system, though not outlined here in detail, plays a significant role in maintaining the

frozen sample in a near-native environment, as discussed in section 1.4.2.
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Figure 1.2: Principal components of TEM.

(Reproduced with permission from “Transmission electron microscope (TEM),” by Online
biological notes for students, 2021 (http.//www.biosciencenotes.com/transmission-electron-
microscope-temy/). Copyright 2021 by https://wordpress.org from??).

For cryo-EM, the biological samples usually contain light atoms that interact weakly with
electrons, where we assume that phase-contrast is the main source of contrast for cryo-EM.

A famous technique mitigating the effects of poor phase contrast, shown on imaged micrographs,
is negative staining. The latter technique is well suited for collecting the initial observations about
the sample such as shape or size. in the early stage. It involves applying heavy metal salts to the
sample, resulting in the contrast between the stain (dark) and the specimen (light) where stain is
excluded, for initial observations. However, usage of negative stain can cause loss of high-
resolution information of the biological sample as well as introduce artifacts such as sample

flattening.
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1.4 TEM workflow

1.4.1 Sample preparation for molecular TEM

Sample preparation for biological macromolecules is a very complex and crucial task, as the
specimen has to survive damage from both electron radiation and vacuum evaporation inside the
electron microscope. Accordingly, the sample must be thin (to permit electron transmission) and
stabilized to be introduced into the evacuated microscope column. To preserve the sample,
different sample preparation techniques are used according to sample and study type, thereby
maintaining its native structure. This section describes such sample preparation techniques.

First, sample treatment is performed to preserve intactness as well as obviate subsequent reduction
of image contrast. In some cases, this includes sample stabilization by increasing the
intramolecular interactions using crosslinking methods such as GraFix?’, removing crowding
agents such as glycerol or sugar that can cause strong image background, and stabilizing
transmembrane domains using amphipols, weak detergents, or nanodiscs in the case of membrane
proteins.

Sample preparation must be carefully orchestrated in order to avoid multiple paths of potential
failure (e.g. water evaporation in the high-vacuum conditions, radiation damage). Using negative
staining or vitreous ice freezing can resolve these limitations.

1. Negative stain: First, the sample is placed on a hydrophilic thin continuous carbon support
film. After water wash and blotting, the sample is enveloped with a solution of heavy metal
salt such as uranyl acetate®®. This envelope of heavy metal atoms results in amplitude
contrast and high SNR. Next on the carbon grid, excess of the solution is removed. After
blotting, the stain dries to produce an electron-dense thin layer in which the particles are
embedded”’. Finally, the contrast is achieved due to the high-density difference between

the macromolecule complex and the uranyl salt.

23



To improve stain quality, various buffer components, such as glycerol, detergent or
specimen can be diluted with a specific buffer before their application to the grid. It is
important to note that, on the micrograph, the macromolecule complex appears white on a
black background, as illustrated in figure 1.3. Negative staining only shows the overall
shape of the macromolecule and does not recover high-resolution information, owing
to various factors. The main limiting factors are the grain size of the stain, the presence
of uneven staining artifacts, dehydration, preferred orientation presence due to usage
of continuous carbon film that limits sample views, and flattening of the samples, which
can cause considerable structural distortions?®*?°. Despite the aforementioned, this
technique is favoured because of its ease of preparation, high-contrast property as well as

its ability to furnish information about the sample size, shape and arrangement.

Vitreous ice: This technique involves freezing samples quickly to reach a non-crystalline

3031 as shown in figure 1.3. It helps to preserve the hydration of the sample without

ice stage
meddling with its shape. This technique also helps to achieve high-resolution
reconstructions, enabled by the low contrast generated from the similar density between
the ice and macromolecular complex. On the micrograph, particles look black against a

white background. Combining this technique with DDDs has revolutionized the cryo-EM

field in the last few years.
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Figure 1.3: Vitreous ice technique. (i) (Top left) vitreous samples and Negative stain (top right),
(i1) with EM images of HCRNA V109 particles (a) embedded in vitreous ice and (b) Negative stain.
(Reproduced with permission from Saibil HR et al, 2000 from3? and Miller JL et al, 2011 from33).

1.4.2 Maintaining a near-native state

Generally, biological macromolecules in an organism exist in a partially hydrated (embedded in
lipid membrane) or fully hydrated state and perform their functions in an aqueous environment as
well. Therefore, it is very crucial to analyze these macromolecules in their native state to
understand their true structure and biological function. Cryo-EM enables structural analysis of

macromolecules in their near-native environment by performing their rapid freezing and then
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placing them into the electron microscope column, while kept under high-vacuum and in a low-
temperature state. Both these conditions minimise the effect of radiation damage on
specimen’* and keep the ice in an amorphous state.
Based on the temperature-dependent modifications, ice can exist in various forms, namely cubic
(— 123 °C to — 148 °C, 115 to 150 K) and hexagonal crystal (above — 103 °C, 170 K)*>.
However, during the rapid freezing treatment, ice skips the crystalline phase to form an
amorphous phase of ice, which is generally lower in temperature than the crystalline transition
phase, called vitrification. Among various ultrarapid procedures formatted for general
vitrification procedure, the most widely used is the plunge-freezing method, where after
removing the excess solution, an EM grid is rapidly plunged into the liquid ethane (cooled using
liquid nitrogen)*®. Ethane is one of the commonly used cryogens for vitrification of sample
because of its adequate boiling point (184 K), freezing point (90 K), high heat capacity (68.5 J/
mol K at 94 K) and high thermal conductivity. These all conditions are necessary to prevent the
formation of a vapor layer between the sample and the cryogen. As a primary coolant, liquid
nitrogen helps to keep ethane liquefied and cool during the procedure of vitrifying the
sample. Liquid nitrogen is the commonly used condition for handling cryo-EM samples
(-193 °C, 80 K)*’, as the lower temperature protects from secondary chemical reactions
and retards the displacement of molecular factors caused by ionizing radiation, generally
known as the cage -effect 38,39, thereby increasing

the SNR. Cryo-EM has two main sub-disciplines to determine the structure of a 3D

macromolecule, viz. ECT and SPA.

1.4.3 Imaging with electrons

71.4.3.1 ECT: Secveral images of a sample from the same region are acquired by tilting it by
26

various angles (tilt degrees range to 60°—70°) with respect to an incident electron beam. This series



of images, or tilt series, is later combined computationally to form a 3D map, called a 3D
tomogram. The diagrammatical information can be seen in Figure 1.4,

In recent years, this technique has allowed us to visualize 3D structural details for biological
macromolecules in vivo at 2—6 nm resolution*'*>. During sample preparation, chemical fixation
and staining can alter the macromolecular organization of the cell. However, rapid freezing to
vitrify the sample (as detailed in sections 1.4.1 (2) and 1.4.2) yields pristinely preserved samples.
ECT has progressively gained importance to decipher a large range of specimens, from isolated
protein complexes to large eukaryotic cells as well as the molecular architectures of viruses,

bacteria and cellular components in situ®.

Moreover, it provides the opportunity of
understanding the spatial relationship of macromolecules within a cellular tomogram. For
advanced analysis, similar sub-tomograms or sub-volumes can be selected for further alignment

and averaging, revealing additional structural information*®. This whole procedure is referred to

as ECT STA.
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A

electron beam

CCD camera

Figure 1.4: Principle of electron tomography*0. Electron tomography works by collecting a
sample’s projection caused by an electron beam passing through the sample, within the defined
degrees of rotation (between 60°-70°) around the centre of the specimen. (Reproduced with
permission from Steven A et al, 2005 from*9).

Beyond analyzing secondary structure elements, STA has yielded high-resolution density maps

4748

for nuclear pore complexes*’**®, chemotaxis signaling arrays*’, coat protein complex I°°,

polysomes®!, ribosomes™, retrovirus assembly”>—>’

and bacteria surface layers>®. However, when
compared to cryo-EM SPA, STA generates lower resolution due to several reasons®>®! such as

sample thickness increase while acquiring tilting series, distortion of densities in tomogram, or
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3D-image artifacts known as missing wedge, the latter which affects subtomogram alignment
accuracy and classification procedure. Another challenge is the usage of the thick sample in cryo-
ET, which further increases during the tilt series procedure. Thus, the defocus gradient from
sample thickness as well as the sample tilt has to be considered while going ahead®. Thicker
samples also suffer from poorer image quality due to inelastic and plural scattering. To avoid
damage from the cumulative irradiation, the electron dose is limited per tilted image, resulting in
low SNR when compared to SPA. Nonetheless, STA has an advantage over SPA in the case of 3D
classification, where each particle exists as a unique 3D reconstruction, allowing analysis of

various conformations adopted by a biological object in the form of direct 3D variance.

1.4.3.2 SPA (basic overview): The main goal of SPA is to determine the high-

resolution maps from a macromolecule of interest using EM. SPA is based on two assumptions
to achieve this goal:

1. All the particles in the sample are identical copies of macromolecules in the same
conformation but showing different orientations. Without the presence of such a condition,
the sample is said to be heterogeneous, which is a challenge for SPA. This hypothesis is
called the identity condition. It is considered a weak condition as the slight presence of
heterogeneity doesn’t affect the sample much. On the other hand, a highly heterogeneous
area can cause a blurring effect in the final reconstruction.

2. Micrographs are electron-density projections of the object and have the same
magnification. This is called the scale condition.

When a suspension of biological molecules or complexes is prepared for imaging, it adopts an

arbitrary position on the grid, or in the ice in cryo-EM. Thus, multiple copies and different
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orientations of the same macromolecule are imaged on a single micrograph. The orientation of the
molecules in the images is unknown and represents the key set of parameters to be determined in
SPA. Therefore, to be able to reconstruct a 3D map, Euler angles (planar rotation
angles around x, y, and z axes, whose values depend on the choice and order of the rotation axes)
and shifts are employed to describe these unknown orientations of the particle images in 3D
Euclidean space, a space in which postulates of geometry can be applied with linear and finite-
dimensions®. Using an initial volume, which can be estimated from previous knowledge of the
sample or by image processing methods®, the orientation parameters are estimated by comparing
the individual particle images with projections of the reference volume. After finding the Euler
angles, particle images are projected back to form the final 3D reconstruction of the specimen
using the reconstruction algorithm®. SPA’s particle images suffer from the low electron dose,
which leads to a low SNR. This problem is resolved by aligning and averaging many similar
particle images (typically around ~10k-100k particles). The standard reconstruction workflow
follows particle selection, particle alignment, particle classification, 3D reconstruction, and model
refinement®®%’. Detailed information is given in section 1.4.4.

However, TEM application to biological samples suffers from resolution limitations®® due to
several reasons such as high voltage beam damage to specimen, small electron doses used for
imaging, BIM, and heterogeneity of the sample. BIM is a phenomenon whereby the energy
deposited on the sample by the beam causes the sample to move, often because of the relaxation
of tension within the vitreous ice. This motion leads to the blurriness of images and thus limits the
final reconstruction resolution®

Some of these limitations have been overcome by advances in image acquisition and image

processing enabling superior resolution, 0.6 A7 for micro-ED and 1.15 A”! for single particle
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analysis. Electron microscopes have undergone various improvements over the decades in case of
electron sources, vacuum, sample holders, power supplies, optical lens systems, and detectors. In
terms of electron sources, tungsten filaments and LaB6 sources have been upgraded to field
emission electron sources to generate a more coherent electron beam for preserving the phase of
the structural information of a macromolecule. A detailed overview of each image processing step

in the SPA workflow with advances is presented below.

1.4.4 SPA image processing workflow

In the first step of this workflow, images in the form of movies or micrographs are acquired. With
the high sensitivity and fast frame rate of modern recording devices, cryo-EM data can be recorded
as movies. Individual frames of a movie are aligned in order to correct BIM and to acquire a single,
de-blurred micrograph. In the next step, the CTF is estimated to correct possible aberrations caused
by EM that would otherwise modify the image. Subsequently, the particle picking step includes
selecting and extracting particles in the micrograph. After the CTF correction, particles of similar
orientation are grouped and averaged into 2D classes by performing 2D classification. The
classification step checks the quality of data by removing poor particle images, e.g., those
containing a high amount of noise. Averaging the particles within 2D classes increases the SNR
and helps to determine the initial volume for the next step. An initial volume provides the first and
coarse estimation of the macromolecular structure. Following that, initial volume is used to
reclassify the particles and to find the different conformations of the same volume. In the
refinement step, maps are enhanced by the assignment of better angular orientations.

Figure 1.5 describes the image processing workflow. A detailed overview of each step is given in

section 1.4.4.
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Figure 1.5: Main steps in SPA workflow.

1.4.4.1 Movies and micrographs

High contrast between the ice (background) and the complex (signal)’? is a necessary component
for observation of structural details. The small difference in atomic number between the vitreous
ice and the specimen can limit such contrast, thereby compromising structural information about

7374 is one solution but will lead to radiation

the macromolecule. Increasing the electron dose
damage of the specimen, since high-energy electrons break bonds when they interact with the
specimen.

Hence, in single-exposure images, electron dose is kept below ~20 e /A? to achieve high
resolution. Instead of taking a single image (called a micrograph), DDDs work in movie mode by

taking multiple frames in the form of a motion picture at the same electron dose. For electron-

counting DDD cameras, the electron dose rate is typically kept below ~10 e /pixel/sec, depending
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on the camera. DDDs make use of a superior DQE, which measures the combined effect of signal
and noise performance of the camera. They do this by detecting individual electron impact events
on the sensor, which are then collected into dose-fractionated image stacks, called movies, with
the help of high-speed CMOS technology. These movies can be aligned to computationally correct
specimen movements. The aligned frames are averaged later to use for structure determination’>.
The result is an image with reduced blurriness, since the alignment routine can adjust for BIM and
specimen drift.

This movie mode of DDDs helps to optimize the SNR of images affected by radiation damage.
Early frames have been subjected to a lower total electron dose, and thereby possess a higher
resolution signal, but may be affected by fast specimen movement. In later frames, specimen
movement decelerates, but a higher accumulated dose results in reduced high-resolution
information. Finally, a relative weight is applied while averaging these frames to optimize the
signal in the final average’®. This allows for higher total dose exposures, since the weighting during
dose compensation will take care of the high-resolution noise in later frames, but keep the low-
frequency signal. The next step includes the processing of movies. One technique is to average
each movie and reduce it to micrograph images.

The alignment can be executed at two levels, micrograph (global)’>’"~"° or particle (local)3*%!.

1. Global: The goal is to align the frames of a movie and present a corrected average. The
first alignment approach called MotionCor®? uses this approach by estimating the relative
shift between two frames of a micrograph using correlation. In the next step, frame
alignment is performed with the known displacements.

2. Local: The BIM is local as different particles show different movements. Some methods

in this category impose prior knowledge assuming that particles which are close in the
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micrograph  will move similarly. This approach is wused by Optical

77

Flow’’, alignframes_Imbfgs, and  alignparts_Imbfgs®!,  Unblur®*(without local

2 or MotionCor2*(performs local tracking). Another

tracking), and  Summovie
way to perform local alignment is to divide the frames and grids, and then track each grid
independently without a priori knowledge. If the particle position is known, each particle

can be tracked. Such a function can be accessed by using software packages, including

Relion®.

The descriptive information of all these approaches can be found in a publication of Ripstein JA et
al, 2016%. Figure 1.6 shows the advancement in technology to record data and generate

unprecedented quality reconstructions.
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Figure 1.6: Images and movies. (1) Before, photographic films were used to record the noisy
images with blurriness caused by BIM and a mixture of structurally different particles combined
into a single reconstruction. (b) Due to recent advances, better reconstructions have been achieved.
(i) a movie of significant-good quality is recorded as a set of frames using DDDs; (ii) movie frames
are aligned and averaged to compensate for sample movement; (iii) dynamic classification methods
generate different conformations from a sample containing a mixture of states. (Reproduced with
permission from Bai XC et al, 2015 from®).
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1.4.4.2 CTF correction

The TEM imaging system produces a systematic artifact in the image contrast. The CTF is evident
in the Fourier transform of a projection image as an oscillating function that depends mainly on
defocus and the spherical aberration coefficient of the objective lens®’. Regulation of the electron
micrograph signal can be described by an oscillating non-linear CTF in the form of an equation
given as:

CTF (f) = E(f)sin (nCs A3f*/2 — wAdf?),
where spherical aberration of the electromagnetic lens is represented by Cs; 4 shows the electron
wavelength; f shows the spatial frequency, d is the applied defocus (negative for underfocus),
and E(f) is an envelope function showing degradation of high-resolution information. [Equation
taken from Erickson HP et al, 19717, Wade RH, 19927°.]
By estimating the CTF parameters, the effect of the CTF can be reduced computationally during
the reconstruction process. CTF estimation measures the defocus of each image because the Cs
term and electron wavelength are constant for each cryo-EM dataset. As the spatial frequency
increases, the function begins to oscillate more rapidly; thus, estimating the CTF parameters is
essential for retrieving high-resolution information. Different ways to correct CTF include
application of CTF estimation to the image, phase-flipping® and Wiener Filtering’®. The CTF for
the standard TEM imaging system is shown with the starting point near zero (low spatial
frequencies region), followed by oscillation between positive maxima (positive CT) and negative
maxima (negative CT) with zero-crossings that represent the frequencies with zero information.
Analysing the power spectrum of the cryo-EM image can show the oscillations in CTF, as depicted
in Figure 1.7, where the pattern of the concentric ring reflects the changing of high and low CT as

a function of spatial frequency (for high-quality images). The origin of power spectrum or image’s
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centre represents the low spatial frequencies, while the edges show high-spatial frequencies, also
known as the Shannon-Nyquist limit (2 x pixel size).

If the micrograph is of good quality, it contains a CTF pattern of several concentric rings, as shown
in Figure 1.7 (left). For poor quality micrographs, CTF pattern has specific asymmetric rings or
elliptical rather than circular rings (astigmatism) as visualized in Figure 1.7 (middle); or rings
fading in a particular direction, indicated by a directional fall-off in the pattern of Thon rings (drift)
as seen in Figure 1.7 (right). These bad-quality micrographs can be excluded from the further
processing steps after the CTF pattern analysis. Therefore, this step is helpful for the screening of

the micrographs.

astigmatism drift

Figure 1.7: CTFs. CTF of good (left), astigmatic (centre) and drifted (right) micrographs,
respectively. (Reproduced with permission from Scheres, SHW et al, 2008 from1).

1.4.4.3 Particle picking

Particle picking involves identifying particles from the background noise in the micrograph. In
this step, particles are selected and cropped from the micrograph to be further processed for
structural analysis. The low SNR of cryo-EM micrographs, particularly for smaller molecules or
complexes, renders this step difficult, but not impossible, to automate. There are many methods

developed for this purpose and can be classified as:
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1. Manual picking: As the name suggests, particle picking is performed via the user’s bare
eyes. This type of selection can be time-consuming and can lead to bias based on the user’s
subjectivity.

2. Automatic picking: The automatic particle picking methods are based on deep learning
solutions involving CNNs, such as DeepPicker®? or DeepEM®. In other methods, for
example, APPLE Picker™, a template is automatically chosen by the algorithm.
Approaches such as Gautomatch®® use GPUs to accelerate the process of particle picking.
Other methods such as gEMpicker’® and DoGPicker’” operate by subtracting two Gaussian
blurred versions of the same image resulting in a Difference of Gaussian (DoG) map. In
the following step, particles are sorted based on size and then extracted. By
contradistinction, CrYOLO® employs a deep-learning object detection framework

7% and can detect particles (after training with

colloquially styled as “you only look once
at least 200-2500 particles per dataset) with an impressive speed of five micrographs per

second. Methods implementing automatic particle picking remove the limitation of bias

based on manual picking or the user-selected template.

1.4.4.4 2D classification

The 2D classification step consists of the clustering of the particle images with similar projection
directions so as to average them after proper alignment, which — in turn — allows calculating 2D
class averages with improved SNR. These 2D class averages can help assess the quality of the
particle set by the identification of secondary-structure elements, e.g., alpha-helices can be seen in
the high-resolution class images. Additionally, the analysis of different 2D class averages can

provide an early idea of heterogeneity in a dataset.
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2D class averages can be determined by iterative approaches such as MRA!00-10285103 " Thege
methods first generate a set of 2D classes by evenly and randomly assigning particle images to
them. From these initial 2D classes, 'reference’ images or 2D averages are calculated by averaging
corresponding particle images. In the next iteration, particle images at different 2D orientations
and shifts are compared with the ‘reference’ images, calculating for each case a similarity metric

100,101

that could be the correlation or an empirical likelihood of the matching®>!9%1% Next,

‘reference’ images of 2D classes are updated by weighted averaging particle images according to

associated likelihoods in maximum-likelihood based approaches®>102:104

or by averaging particles
at the orientation and class that maximized the correlation'?*!!. This process is typically iterated
a few dozen times, generating a final set of 2D class averages. Note that ML2D based approaches
as RELION® 2D classification assume that each particle image participates in every 2D class and
at every 2D orientation but contributing with different weights. On the other hand, correlation-
based approaches demand that each particle contribute only in one 2D class with one 2D
orientation. Thanks to GPU paralellization!®, RELION has become a popular method for fast
processing speed. However, the outcome of RELION (or any ML2D based approach) can suffer
from the attractor problem!®® wherein particle likelihoods are biased toward classes containing
more particles. Thus, these methods may tend to classify particles according to the SNRs of the
different classes rather than by the actual conformation of the particles.

Currently, ISAC is one of the well-used 2D classification approaches, as well'””. ISAC ensures the
homogeneity of each class by performing repeated stability tests to validate each class’ member.
It can be a favoured approach for analysing heterogeneous data because each class size is restricted

by using modified K-means which reduces the attractor problem faced in RELION. ISAC may not

require human intervention for selecting good classes, as it can automatically remove unstable or
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non-reproducible classes. However, due to being highly time-consuming, ISAC’s utility is limited
to difficult cases.

The MSA approach, which flows from PCA, involves reference-free alignment'®

, and represents
a powerful tool to sort out structural heterogeneities in cryo-EM samples. MSA converts the
particle images into a linear combination of its main eigenvectors and performs the classification
based on similar orientations of particle images'® 3. As such, particle images in the dataset are
compared using distances and correlations, each with its own metric system. One of the commonly
used metrics is Euclidian, which is based on the assumption that the smaller the distance between
the two particle images, the higher the correlation between them, and when their distance is zero,
their correlation is at its maximum. This metric is associated with PCA!%,

Figure 1.8 shows class averages of 256 classes, where some poor-quality particles are eliminated

to obtain a clean dataset suitable for the downstream pre-processing steps.

aleleld
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Figure 1.8: 256 class averages after classification of 90,503 p-galactosidase particles.
(Reproduced with permission from Sorzano COS et al, 2010, Sorzano COS et al, 2015
from101114),

1.4.4.5 3D reconstruction

The Fourier slice theorem establishes a relationship between a 3D map and a 2D projection, as
explained below. The first step in 3D reconstruction is to select the projection of the
macromolecule, called particles, and combine them to form the final structure. Using high numbers
of particles provides better coverage of the projection sphere as well as increases the SNR of the
final reconstruction. This statement is based on the conventional resolution determination method
known as Crowther criterion, presented in following equation:

No =znD/d,

where Ny is the minimum number of views required to obtain full Fourier domain sampling for 3D
reconstruction of the object; D is the size of the object for imaging; and d is the isotropic spatial
resolution (equation from Jacobson C et al, 2018)!'>. The final goal is to reconstruct the 3D

structure of the macromolecule with all suitable particles.

116 117,118

Among various approaches’ '°, the central slice theorem establishes a remarkable relationship
between the 2D projection images (particles) and the 3D reconstruction, and is the basis for the
second assumption in section 1.4.3.2. The Fourier central slice theorem states that the Fourier
transform of each 2D projection is equal to a central slice through the 3D Fourier transform of the
3D object perpendicular to the direction of projection.

Figure 1.9 shows a graphical view of the theorem, whereby a 3D object or molecule is defined as

function f(x). The projection of this function along a certain direction d is shown as P g[f], with

Puglfl(r) = [© f(r,,s)ds,

(Equation from Barnett A et al, 2017 from'").
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where (7,1, s) represents a cylindrical coordinate system in R3, and (r,1) donates the polar
coordinates in the projection plane orthogonal to d, and s is the component along with d. The

orientation vector is represented by d = (1, a, ).

Orientation ( ,5) G%,
of electron !
source

Orientation of
central slice

(2, 8)

Molecule

in laboratory gy

frame

Experimental image
{projection) P, plf(x)]

Figure 1.9: Principle of Central slice theorem (Reproduced with permission from Barnett A

et al, 2017 from11°).

Although the central slice theorem helps to reconstruct the 3D structure of the macromolecule from
the projections (particles), the orientation of these projections remains unknown. To compute the

orientation of the particles, an initial volume is required in SPA.
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1.4.4.6 Initial volume

The initial volume is a coarse and low-resolution first estimation of the 3D structure of the
macromolecule, and is employed to obtain the orientation of the single particles. This initial and
low-resolution structure is typically generated by harnessing a few classes with sufficient SNR.
The determination of a “good enough” initial volume is critical in SPA because choosing a poor
initial volume can lead to bias in the final map'?® as would occur, for example, by manually
selecting the best initial map from several obtained low resolution initial maps based solely on the
user’s experience'2!71%

A proper initial model can be obtained in a variety of different ways. It can be an already-available
similar macromolecular model, which should be low-pass filtered to typically 40-90 A to avoid
bias issues such as the whimsically termed the “Einstein-in-noise” problem. In this issue, recorded
images of particles are in reality pure noise from which even a portrait of Einstein can be extracted.
This was a result of using data with low or zero contrast, small or invisible particles as well as
automatic particle picking!?%!%’.

However, this initial model may not be available in all cases. So, another option includes using
one untitled and one tilted orientation to obtain a set of tilt pairs. The tilt pairs undergo alignment
and classification to provide Euler angles, which can be further harnessed for an angular
assignment without the need for a reference volume. This approach is called RCT'*%!32, Another
method performs ab initio reconstruction based on common line methods'!”-133-140  This
framework usually considers the Fourier transform of different projections that will intersect in a
common line. This common line can help in determining the angular assignment of the classes.
Other methods for initial volume generation include RANSAC!! and Significant'¥>. RANSAC

works by assigning random orientations to different class averages and then computing scores for

each volume by comparison between the class averages. Volumes with higher scores are selected
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for further processing. As an example, Figure 1.10 shows an initial map generated from RANSAC
of the B-galactosidase sample. By contradistinction, the Significant approach employs statistical
methods to calculate weights based on the cumulative density function, thereby deciphering

different image similarity measures.

Figure 1.10: Initial volumes for P-galactosidase generated by RANSAC method.
(Reproduced with permission from Sorzano COS et al, 2015, Vargas | et al, 2014 from114141),

1.4.4.7 3D classification

3D classification deals with the major problem of heterogeneity in cryo-EM!*. Heterogeneity can
be present as compositional heterogeneity, in which the macromolecular complexes assume
different biochemical states and adopt different structural arrangements. This may include the
occupancy of binding partners in complexes. Another form is conformational heterogeneity, where
some macromolecules are not rigid and have a certain degree of flexibility, leading to slight but
non-negligible differences in their structure. Presence of either of the above-mentioned kinds of
heterogeneity shatters the assumption of SPA workflow, viz. that all particles are identical copies

of a macromolecule but in different orientations. Hence, to continue the further processing, a set
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of particles belonging to one particular conformation of the macromolecule should be grouped
together accordingly, i.e. 3D-classified. The most commonly used method for dealing with
heterogeneity is ML3D, a maximum likelihood approach integrated into RELIONS3>!44-146,
Another type of method includes defining a phase space that contains all possible conformations,
using vibrational modes and dynamics of the macromolecule!*” 1%, PCA'®  Bayesian

52

marginalization algorithms'®!, and analysis of covariance matrix'*? are among the alternative

approaches employed to this end.

1.4.4.8 Refinement

After obtaining a homogenous set of particles (or projections) of the same macromolecular
complex, refinement is executed to obtain a high-resolution map. Usually, single-particle EM
packages use a 3D-projection matching procedure for structure refinement, in a manner of a more
or less elaborate version. It involves modifying the orientation parameters of projections for
achieving a better match with reprojections computed from the current approximation of the
structure'?.

This step is equivalent to solving a linear equation Ax = b, where A is the projector or can be
called Py, x is the structure to be determined (also represented by V), and b are the particle images.
This equation can be solved from a given homogenous set of N particle projections of the same
structure V captured from different orientations. The goal is to minimize the distance between the
image and the projection of the structure, PoV, along the direction 0, in order to determine Euler
angles and shifts.

Maximum likelihood!*!#4134155 'Maximum a posteriori (RELION approach®®) and the traditional

156-158

projection matching are a few examples that integrate the above-mentioned equation to

perform the refinement step. Maximum likelihood is based on the assumption that a given particle
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image can present in all possible orientations but with different probability weights. The goal is to
decrease the possible number of directions by collapsing the probability. It can be explained as:
(0*i, V*) = argmino;,v|| I; - PoV||*w,
where [; are the particle images with i = 1, ...,N [such that N represents homogenous set of
particles]; Py is the projector along the direction 0; V are the projections of the structure; and ‘w’
is the given weight. (Equation taken from Sigworth FJ et al, 2010'*%).
On the other hand, a posteriori approaches work by penalizing some of the possible orientations
discussed above by introducing prior information. This step of refinement is distinguished by
splitting the maximum likelihood into two tasks, namely, a) assigning angles to the particles
according to the initial map; and b) reconstructing a new map by using the assigned angles. The
experimental images are then compared to measure compatibility.
Progress of refinement is analysed by various indicators, especially the FSC, which reflects the
level of SNR as a function of spatial frequency as well as the map’s resolution'>. An FSC curve
is obtained by comparing the Fourier transforms of two maps over shells of the same spatial
frequency. The comparison between maps is orchestrated by computing respective correlation
coefficients. This FSC curve should decrease with spatial frequency until a resolution limit is
reached, as indicated by a cut-off threshold'®°. The ‘resolution’ value in single-particle EM is the
spatial frequency at which the SNR or FSC curve crosses a certain threshold value. For example,
resolution is the spatial frequency where FSC is equal to 0.5 or spatial frequency where SNR is
1.0, generally a level where the power of signal is equal to the power of noise. Another typically
used threshold is FSC =0.143'%!, based on relating EM results to those in X-ray crystallography!®2.
A common issue observed in structure refinement is the so-called ‘overfitting’ of data, which

occurs in the EM map due to alignment of noise instead of signal. Caused by lack of careful
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judgment, it leads to obfuscation and confusion between signal and noise'®. Therefore, by chance
artifacts are created which are further increased by alignment of the noise components in the data,
resulting in inflated FSC values and an artificially high resolution. To avoid the issue of
exaggerated resolution estimation using the FSC, one has to ensure independence of noise in the
half-dataset maps used to calculate the FSC'®*. This approach is called the “gold standard”
refinement procedure®>'®. Another way to avoid overfitting during iterative structure refinement

is the elimination of high-resolution data in the alignment step'%¢.

1.4.4.9 Validation and analysis

With the completion of the reconstruction procedure, the next step involves validation and analysis
of the final structure achieved. The validation step is performed due to:

a) low SNR of particle images.

b) user decisions in the SPA workflow that lead to bias in the final reconstruction.

There are many quantitative methods for the validation of the final 3D structure obtained. A final
3D reconstruction can be compared with results of other techniques such as NMR, X-ray
crystallography, or already existing similar structures from PDB'®” or EMDB!¢¢,

Tilt-pair validation analysis'®-'7?

can be used to quantify the accuracy in the orientation estimation
of particle image in SPA, yet has not been broadly adopted by cryo-EM practitioners because it
increases the amount of necessary data to collect and process. There are also proposed methods
for gauging particle alignability, viz. the precision in the orientation estimation of single particles
that do not require tilt-pair acquisition!’>!”*, The latter approaches can provide metrics to detect

incorrect reconstructions under the assumption that the distribution of likely orientations of a

particle image with respect to the obtained 3D map should be clustered as opposed to random.
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An issue called overfitting, introduced before in section 1.4.4.8, can be detected at this stage. To
identify such overfitting, one possibility is to take the 3D map with a small subset of particles used
in the reconstruction. These particles are realigned to the map without masking or resolution limits,
thereby obtaining a new 3D reconstruction. Another solution is to computationally replace the
random subset of particles with noisy images. Overfitting may be detected by the analysis of
obtained resolution in either case. '”°.

After the 3D reconstruction is validated, its spatial reliability must be verified via map resolution
estimation. Such resolution can be calculated by several approaches, including FSC'7®, DPR!37177,
and SSNR!7%17 FSC, considered as the standard measure, discovers the cross-correlation between
two ‘half maps’ at different spatial frequencies, where each map contains a random half-subset of
the data, explained in section 1.4.4.8.

Locally varying resolution may result from sample heterogeneity and image processing errors that
cannot be estimated by the standard FSC. Blocres'®’ rendered the first attempt to calculate the local
resolution of a 3D map by measuring the FSC between two maps within a moving window.
However, major problems arise concerning the adjustment of window size and the need for two
half maps. Alternative local resolution-determining methods include ResMap'®!, MonoRes!®? and
DeepRes!®. It must be noted that the highest nominal resolution of a cryo-EM map is not
necessarily the best one, because lower frequency values often matter more for map connectivity
and interpretability. Therefore, rather than treating a firm number, the reported EM map resolution
should be considered as a broad guideline!.

A decades-old method, cryo-EM has proven to be a significant source for structural analysis owing
to advances in technology for detecting ricocheting electrons and image-analysis software. These

improvements catalyzed the process of resolution-revolution, yielding the sharpest protein
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structures ever. Some of the major advances in cryo-EM technology over the years are mentioned

below.

1.5 Major advances in cryo-EM:

From the microscope point of view, the following are major improvements:
e The cryo-EM field has grown progressively in the image-recording media, initially from
photographic film to CCD cameras to currently direct electron detectors. DDDs have

several advantages over indirect electron detectors'®>!58

as shown in Figure 1.11. First,
DDDs do not use a scintillator which can introduce artifacts to limit the final resolution.
Second, the thin layer sensors let the electrons pass through with lesser backscattering,
resulting in a small PSF and hence higher resolution. Lastly, DDDs can capture images at
high frame rates, which have multipurpose usage of motion correction, damage

compensation, and various image processing techniques'®>'*°. Note that scintillator-based

CMOS detectors can also be used as well at high frames rates.

Mo signal degradation of

Scintillator
'”r :,|..,--||| |..|.|.| 14
Scintillator
Fiber Optic Coupling v
Y Y
CCD Sensor IMAGE DDD Sensor IMAGE
Cooling Device Cooling Device
CCD Camera Direct Detection Camera

Figure 1.11: Working principle of DDD. On the left half of the figure, the CCD (used in
conventional digital cameras) has a scintillator that converts the electrons into photons for
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detection by the imaging sensor, whereas the right half illustrates how DDDs directly harness the
electrons. (Reproduced with permission from Bammes BE et al, 2013 from™1).

Introducing multi specimen autoloaders in cryo-EM enabled high-throughput, giving the
space to load up to 12 grids'®?.

Upgrading the optics by achieving parallel illumination over a wide range of conditions
through the addition of a third condenser lens (ThermoFisher Scientific Titan). As the
electron beam tilts, it can facilitate spatial coherency.

High coherence advancement in electron guns.

o Schottky-type electron gun: Recognized for its high-stability of electron current.
Using a lower temperature and stronger electric field conditions than a thermionic
emitter causes a decrease in the potential barrier to emit electrons, resulting in
superb coherence by the Schottky field emitter!'®>.

o Cold field-emission electron gun: Here, the tungsten tip is kept at room temperature

and in a strong electric field, with electrons emitted by tunneling the potential

barrier (~4.5 eV). The emitted electron beam has a high coherence!**.

In the microscope column, specimen stage stability has been improved as now the column
can completely contain the specimen cartridge in concert with removal of the side entry
holder.

Data collection and automation: Automation enables high-throughput structure
determination, with modern microscopes able to collect hundreds of high-resolution
micrographs per hour. Various automated software examples include SerialEM !4
Leginon'®>, Gatan Latitude!®®, JEOL JADAS'’  ThermoFisher Scientific

EPU/Tomography4!®®, and UCSF-Image4!®’. Those produce larger datasets, up to 10 TB?’
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of movie data per sample. This large amount of data has traditionally been processed using
large computer clusters of many CPU cores and stored on special high speed storage
devices such as on SANs, NAS or local RAID. Increasingly, GPUs are being used to
accelerate highly parallel numerically intensive computations, which eliminate the need
for centrally maintained data centres, and also save energy. Modern gaming computers
with consumer-grade graphics cards can yield an equivalent in performance to 100—1000
CPUs, and fit in a single chassis®’. GPUs are now generally used in motion correction for

84,200

movie frames and often for large portions of the image processing workflow?°! (e.g.

Relion®).

1.6 Thesis challenges

Cryo-EM is a structure determination technique that is useful for a wide range of macromolecules.
The main goal of this technique lies in achieving a high-resolution reconstruction while

discovering the conformational changes of dynamic macromolecules®*>%

. These goals are
currently possible due to the above-mentioned major improvements in section 1.5. However, the
presence of heterogeneity can hinder these goals. Such heterogeneity results from relevant
conformational and compositional changes of macromolecules during their functional cycles. This
structural variability demands advanced methodologies. The aim of the research in this thesis

explores two significant computational techniques for improving the interpretability and analysis

of cryo-EM data.
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1.6.1 B-factor and map occupancy

The structure determination by cryo-EM depends on the quality of reconstructed EM density maps
to generate an accurate atomic model. Hence, the reliability of resulting atomic models greatly
depends on methodological advancements that can enhance the map quality. Sharpening methods
in the post-processing step of the cryo-EM workflow helps to achieve such improvements, which
are commonly used in X-ray crystallography?*+2%.

In cryo-EM, B-factor correction is the favourable method that involves structure factor
modification based on the Guinier plot'®2. This method overcomes the contrast loss in high-
resolution maps by boosting the amplitudes of structure factors in a resolution range, shown by
‘B-factor,’ the slope of the amplitude falloff that will be boosted.

Most of the modern computational methods used by single-particle cryo-EM for map sharpening

and atomic modelling are based on Wilson statistics'¢%206

, which describe the power spectrum of
proteins at a high frequency. Wilson statistics are based on the assumption that all of the proteins
show a similar power spectrum at high frequency regardless of their shape-specific atomic
positions. This phenomenon helps to correct the Fourier coefficient magnitudes for the
reconstructed map to match with the theoretical prediction. In this case, an exponentially growing
filter, whose parameter is estimationally derived from a Guinier plot, is applied to the reconstructed
map for increasing medium and high frequencies such that the sharpened map has a flat power
spectrum which is also consistent with Wilson statistics?®’. Boosting the medium and high-
frequencies or called as B-factor sharpening results in increasing the contrast of the reconstructed
map and thus, helps to model the atomic structure.

Historically, the B-factor, temperature value or Debye—Waller factor in X-ray crystallography

quantifies the degree to which the electron density is spread out locally, thus, the uncertainty in

the position for each atom and the positions where errors may exist in the model building®®.
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As introduced above and in analogy to X-ray crystallography®®, the B-factor of a cryo-EM 3D
reconstruction represents the signal fall-off inside a defined resolution range and is experimentally
calculated from the slope of the Guinier plot (logarithm of the structure factor amplitudes of a
reconstruction versus the square of the spatial frequency).

Different sharpening algorithms have been introduced over the years, which can be categorized
into two classes: global and local. All these algorithms apply the above-mentioned basic amplitude
correction method. As such, global sharpening methods measure a single B-factor value for the
whole cryo-EM map. RELION post-processing®> and AutoSharpen in the Phenix Package®!? both
fall into this category, working directly on the Guinier plot. Additionally, the AutoSharpen method
endeavours to find the B-factor values that increase both the connectivity and the isosurface area
of the cryo-EM map. However, by assuming single B-factor-values, these global sharpening
algorithms neglect the important point that a cryo-EM map can also harbour different local
resolutions. For such cases, local sharpening methods come to the rescue. LocScale is one of the
examples that works by comparing the radial average of the structure factors inside a moving
window in both the experimental map and the map calculated from the corresponding atomic
model. Subsequently, it locally rescales the map amplitudes in Fourier space according to the
atomic model. However, in this case, starting the atomic model is an important requirement that
can reduce its usage. Another local sharpening, named LocalDeblur, requires a local resolution
estimate as an input, which acts as a frequency cutoff to generate a lowpass filter cryo-EM map.
LocalDeblur determines the map's local density values by convolution between the lowpass filter
map and the actual cryo-EM map. An obvious shortcoming of this method is the requisite input
estimation of a local resolution, which can only be obtained with expert experience and can easily

go wrong. Therefore, a local sharpening algorithm that can overcome this shortcoming is necessary
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in a cryo-EM workflow. Another essential map post-processing step is determining the local map
occupancy values, which describe the presence of an atom at its mean position with a range of 0.0
to 1.0, thereby enabling construction of an atomic model. Regrettably, though, cryo-EM lacks any
method to calculate local map occupancies.

Chapter 2 surveys the methods to solve the above-said issues by using 3D SPT"!!. Dr. Javier
Vargas, who is one of the authors of the manuscript from chapter 2, has been working with SPT

2122214 \which we have used (in chapter 2') to

to extract the modulating phase from interferometry
obtain the modulation or amplitude maps in case of cryo-EM map with non-homogenous
distribution of resolution. Broadly speaking, the SPT helps to factorize a band-pass signal (1D,
2D, 3D or ND) into two components: the amplitude term and the phase term as: V,,(r) = m(r) -
cos (¢, (r)), where V(1) is the input map, m,(r) is the amplitude map and cos (¢, (1))
corresponds to the cosine of the phase map. Note that the amplitude map refers to the amount of
the signal or energy, while the phase map refers to its shape.

SPT has been used before in cryo-EM, as well, such as for the particle picking step in image
analysis?!®. In this case, SPT is employed to facilitate morphology descriptors, which in turn
identify the correctly picked particles from the incorrect ones based on their shape. SPT is also
used in the case of CTF estimation®!®, where CTF is considered as a fringe pattern, and its 2D
phase has the details about the microscopic aberrations in the form of a sine function or so-called

CTF signal. When applied to the CTF, SPT converts the CTF signal (or sine of the phase map) to

the cosine, which represents the CTF quadrature signal. With these two maps (CTF and CTF
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quadrature signal), it is possible to obtain the phase map. The ultimately recovered phase map,
called the absolute phase, provides information about microscope aberrations.

SPT is also used by several approaches!®?2!7 for local resolution determination, which works by
calculating the local amplitude map of the cryo-EM map at each spatial frequency. For example,
in the MonoRes approach!®?, a Riesz transform is implemented?'® 22 which is similar to the SPT.
Here, at a certain given spatial frequency, the amplitude map is extracted from the input map, to
compare it with amplitude distribution of noise at that certain resolution. A test is performed to
check if the observed amplitude signal is higher than the noise signal at that specific resolution
and location.

Essentially, the Riesz transform is a generalization of a Hilbert transform for a 1D signal®?. In
relation to the Fourier transform, a Hilbert transform can be explained as below. Mathematically,
Fourier transform can be expressed as the 1D function f(t) which decomposes as a combination of
waves with different frequencies, . Here, if a Hilbert transform is applied, it changes +n/2 to the
negative frequencies and -m/2 to the positive frequencies, when applied to the Fourier transform.
For example, for the sinusoidal function f(t) = cos(w-t), if Hilbert transform is applied (represents
shift of +n/2 for negative and positive frequencies, respectively), the final output will be H[f(t)] =
sin(w-t). Therefore, in summary, here the Hilbert transform will convert the sines into negative
cosines and the cosines into sines!®?.

SPT is a generalization of the Hilbert transform for a 2D signal, and in chapter 2, methods

representing 3D generalization of the 2D SPT will be discussed’.
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1.6.2 Observations of molecular dynamics

In cryo-EM, particle classification tools were the first studies to calculate free energies, which used
Brownian machines, the ribosomes??'. While in case of back-translocation tRNA studies??, free-
energy landscape is derived using the particles classified for each sub-state (ni, where n represents
the particle population of state ) and the Boltzmann law has been used to calculate the free-energy
difference with respect to a reference state (AG; with particle population n,). The Boltzmann factor
can be shown as:

ni/ne=exp(—pAG), where p=1/( KgT),
where Kz is the Boltzmann constant and T is the temperature. The equation is taken from
Giraldo-Barreto J et al, 2021°%.
In other words, the free-energy landscape in cryo-EM reflects the various conformations of the
molecular system and their corresponding energy levels, called Gibbs-free energy. Nowadays, the
free-energy landscape is commonly used to describe the aging of the protein folding

mechanism??+2%3

, such as protein unfolding (denaturation) and protein folding to its native state
mechanism®?. In a free-energy landscape, many thermodynamical configurations present a
number of local minima separated by barriers. The progression of the system’s trajectory can be
visualized in the form of local energy minima and saddle points (transition states), which are

227

decided by the particle population per state™’, as shown in figure 1.12.
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Figure 1.12: Trajectory of the two-state folding is shown in the form of an energy profile.
It contains two wells separated by a barrier, where the wells represent the unfolded and folded
states of the system, while a transitional conformation is shown by the barrier (red). (Reproduced
with permission from Neupane K et al. 2016 from??7).

1.6.3 Analysing a Ilarge conformational data for dynamic
macromolecule
When interacting with biomolecules and ligands or in spontaneous fluctuation due to biological

functions, macromolecules usually display different conformational motions. The 3D
classification step of SPA workflow (recognized in section 1.4.4.7) helps to discover these various
conformations of macromolecules. However, existing 3D classification methods®!»!#4153228 heavily
depend on user expertise and experience, being susceptible to the so-called “attractor problem”
that affects the output number of 3D classes. Additionally, the analysis of these conformations is
essential to understand the molecular mechanism of macromolecule function, which can be
explained in the form of energy landscape®**>*°. The challenge is to obtain a free-energy landscape
that can provide quantitative information about the macromolecule internal energy at all possible

conformations and can evaluate the likelihood of potential conformational changes as a function
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of the available thermal energy. Therefore, the development of an automatic 3D classification
method with least user expertise demand is required, which can produce a large set of 3D classes,
which can be further analysed in the form of the trajectory on energy landscape. This method is

integrated on Scipion?!.

1.6.4 Scipion

Scipion®! is open-source software that provides a platform for various 3DEM data analysis tools
such as SIMPLE?**?, EMAN?**, SPIDER?*, and RELION®>, among others. It was developed at
Biocomputing Unit at the CNB in Spain. Using this integrated software has eliminated various
limitations, including lack of standardization in the format of the output/input files for a specific
program, and the burden of keeping tabs of each package’s workflows to get an appropriate result.
Scipion helps to simplify the interaction between different programs. Scipion also traces the
workflow performed to reconstruct the 3D structure of a macromolecule and saves it in the form
of a ‘log’ file. This function helps the user to find the possible error in a sorted way as well as
examine the result properly. Figure 1.13 shows the various steps of cryo-EM 3D reconstruction

workflow with their specific tasks in Scipion.
Scipion contains two different kinds of programs, as follows:

e Protocols: Written in python, protocols are used to manage and execute the algorithms of
different packages as well as manage the format of various inputs and outputs.
e Libraries: written in C++, algorithms of libraries perform major functions with protocols

in reconstruction procedure.
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Figure 1.13: Workflow executed to determine the 3D structure of a macromolecule in

Scipion. (Reproduced with permission from M, dela R-T et al, 2016 from?31).

1.7 Thesis objectives

To summarize, the objectives of this thesis are:
e Presenting a novel method to measure the local B-factors and electron density occupancy
maps while enhancing the high-resolution feature of cryo-EM maps.
This method is the best fit for cryo-EM maps with non-homogeneous distribution of SNR.
Application of global sharpening approaches on such maps can cause over-sharpening

58



(noise and broken densities) as well as under-sharpening (reduced contrast at high
resolutions).

To identify the presence of various conformations, present in cryo-EM data.

This method allows uncovering the various conformations of dynamic macromolecules
through cryo-EM 2D and 3D classification algorithms, which is importantly made by
considering the factor of automation (or no user’s input) in the form of number of final
classes or iterations.

Presenting the large conformational data output in the form of a trajectory, from the
aforementioned automatic 2D and 3D classification method.

This technique uncovers the conformational trajectory for a dynamic macromolecule. It is
shown in the form of free-energy landscape which employs machine learning tools and
Boltzmann’s distribution law that connects the energy of the macromolecule’s dynamics

with the temperature and population of particle images.
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CHAPTER 2

LOCAL COMPUTATIONAL METHODS TO IMPROVE THE
INTERPRETABILITY AND ANALYSIS OF CRYO-EM MAPS

2.1 Abstract

Cryo-EM maps usually show heterogeneous distributions of B-factors and electron density
occupancies and are typically B-factor sharpened to improve their contrast and interpretability at
high-resolutions. However, ‘over-sharpening’ due to the application of a single global B-factor
can distort processed maps causing connected densities to appear broken and disconnected. This
issue limits the interpretability of cryo-EM maps, i.e. ab initio modelling. In this work, we propose
1) approaches to enhance high-resolution features of cryo-EM maps, while preventing map
distortions and 2) methods to obtain local Bfactors and electron density occupancy maps. These
algorithms have as common link the use of the spiral phase transformation and are called
LocSpiral, LocBSharpen, LocBFactor and LocOccupancy. Our results, which include improved
maps of recent SARS-CoV-2 structures, show that our methods can improve the interpretability

and analysis of obtained reconstructions.

2.2 Introduction

Cryo-EM has become a mainstream technique for structure determination of macromolecular
complexes at close-to-atomic resolution and ultimately for building an atomic model-2. With its
unique ability to reconstruct multiple conformations and compositions of the macromolecular
complexes, cryo-EM allows the understanding of the structural and assembly dynamics of
macromolecular complexes in their native conditions®. However, the presence of heterogeneity

in cryo-EM maps leads to high variability in resolution within different regions of the same map.
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This directs to challenges and errors in the process of building an atomic model from a cryo-EM
reconstruction. Additionally, current reconstructions from cryo-EM do not provide essential
information to build accurate ab initio atomic models as atomic Debye—Waller factors (B-factors)
or atomic occupancies, while their counterparts from X-ray crystallography do by analysing the
attenuation of scattered intensity represented at Bragg peaks. Cryo-EM structures exhibit loss of
contrast at high-resolution coming from many different sources, including molecular motions,
heterogeneity and/or signal damping by the transfer function of the electron microscope (CTF).
Interpretation of high-resolution features in cryo-EM maps is essential to understanding the
biological functions of macromolecules. Thus, approaches to compensate for this contrast loss and
improve map visibility at high-resolution are crucial. This process is usually referred to as
‘sharpening’ and is typically performed by imposing a uniform B-factor to the cryo-EM map that
boosts the map signal amplitudes within a defined resolution range. When the map is sharpened
with increasing positive B-factors, the clarity and map details initially improve, but eventually, the
map becomes worse as the connectivity is lost, and the map densities appear broken and noisy. In
the global sharpening approach®®, the B-factor is automatically computed by determining the line
that best fits the decay of the spherically averaged noise-weighted amplitude structure factors,
within a resolution range given by [15-10 A, Rmax], with Rmax the maximum resolution in the
map given by the Fourier Shell Correlation (FSC). More recently, the AutoSharpen method within

Phenix’

calculates a single B-factor that maximises both map connectivity and details of the
resulting sharpened map. AutoSharpen automatically chooses the B-factor that leads to the highest
level of detail in the map, while maintaining connectivity. This combination is optimised by

maximising the surface area of the contours in the sharpened map. The approaches presented above

are global, so the same signal amplitude scaling is applied to map regions that may exhibit very
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different signal to noise ratios (SNRs) at medium/high-resolutions. Thus, cryo-EM maps showing
inhomogeneous SNRs (and resolutions) can result in sharpened maps that show both
oversharpened and under-sharpened regions. The former may be strongly affected by noise and
broken densities, while the latter may present reduced contrast at high-resolutions. Both cases
make it difficult or even impossible to interpret the biological relevance of these regions or even
the whole map'®. Thus, local sharpening methods have been proposed to overcome these
limitations'""!2. LocScale approachll compares radial averages of structure factor amplitudes
inside moving windows between the experimental and the atomic density maps. After, the method
modifies locally the map amplitudes of the experimental map in Fourier space to rescale them
accordingly to those of the atomic map. This approach requires as input a complete atomic model
(without major gaps) fitted to the cryo-EM map to be sharpened, which is not always available. In
addition, the size of the moving window should be provided and depending on the quality of the
map to be sharpened, this process may lead to overfitting. More recently, the LocalDeblur
method!? proposed an approach for map local sharpening using as input an estimation of the local
resolution. The method assumes that the map local density values have been obtained by the
convolution between a local isotropic low-pass filter and the actual map. This local low-pass filter
is assumed Gaussian-shaped so that the frequency cutoff is given by the local resolution estimation.
In X-ray crystallography, the B-factor (also called temperature value or Debye—Waller factor)
describes the degree to which the electron density is spread out, indicating the true static or
dynamic mobility of an atom and/or the positions where errors may exist in the model building.
The B-factor is given by B; = 8m?u?, where u? is the mean square displacement for atom i. These
atomic B-factors can be experimentally measured in X-ray crystallography, introduced as an

amendment factor of the structure factor calculations since the scattering effect of X-ray is reduced
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t!3. B-factors can be further refined by model

on the oscillating atoms compared to the atoms at res
building packages, i.e. Phenix'* or Refmac'® to improve the quality and accuracy of atomics
models. Although B-factors are essential to ‘sharpen’ cryo-EM maps at high-resolution, they also
provide key information to analyse cryo-EM reconstructions. Effective B-factors are used to model
the combined effects of issues such as molecular drifting due to charging effects, macromolecular
flexibility or possible errors in the reconstruction workflow that lead to a signal fall-off®!®!7,
However, cryo-EM maps are usually analysed with a single B-factor, even though maps may
largely differ in different regions. Thus, methods to determine local B-factors are much needed to
accurately analyse cryo-EM maps and improve the quality of fitted atomic models. Another local
parameter usually provided by X-ray crystallography in contrast with cryoEM are atomic
occupancies (or Q-values). The occupancy estimates the presence of an atom at its mean position
and it ranges between 0.0 to 1.0. Note that these parameters can be also refined by model building
packages if the electron density map is of sufficient resolution. To our knowledge, currently, there
is not any available method to estimate local occupancies from cryo-EM maps, even though this
information (in addition to local B-factors) is essential to building accurate atomic models. For
example, in ref. '8 authors found that 31% of all models examined in this analysis possess
unrealistic occupancies or/and B-factor values, such as all being set to zero or other unlikely
values. They also reported that 40% of models analysed show cross-correlations between cryo-
EM maps and respective models below 0.5, and they indicated as a possible hypothesis an
incomplete optimisation of the model parameters (coordinates, occupancies and Bfactors). In this
work, we propose semi-automated methods to enhance high-resolution map features to improve

their visibility and interpretability. More importantly, these approaches do not require input

parameters as fitted atomic models or local resolution maps, which reduces the possibility of
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overfitting. In particular, our proposed local map enhancement approach (LocSpiral) is robust to
maps affected by inhomogeneous local resolutions/SNRs, thus the method strongly improves the
interpretability of these maps. Secondly, we also propose approaches to determine local B-factors
and density occupancy maps to improve the analysis of cryo-EM reconstructions. The link between
the different proposed approaches is the use of the spiral phase transform to estimate a modulation

or amplitude map of the cryo-EM reconstruction at different resolutions.

2.3 Results

In this section, we first provide a brief and comprehensive description of the approaches developed
in this work. A deeper and more technical explanation of these methods is given in the ‘Methods’
section at the end of the manuscript. Then, we present results obtained by our approaches in a
variety of situations. We tested our proposed methods with five different samples ranging from
near-atomic single-particle reconstructions (~1.54 A) to maps with more modest resolutions (~6.5
A). In all cases, we compared our results with the ones provided by the Relion postprocessing

approach”'°,

2.3.1 Overview of the proposed methods

The input parameters of the different methods (LocSpiral, LocBSharpen, LocBFactor and
LocOccupancy) is the unfiltered map to process, a resolution range given by [Rmin, Rmax] and,
in some cases, a tight solvent mask. The different algorithms start by filtering the input map to a
given resolution 1/® within the resolution range. Then, the 3D spiral phase transform is calculated

to factorise in real space the filtered map into amplitude and a phase map as

V, (r) = m,(r)cos ((pw (l‘)) (1)
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The amplitude map m«(r) is related to the ‘strength’ of the local map signal at resolution 1/w,
while the phase map refers to its shape and it is limited to the [—1, +1] range. The different methods
proposed here are based on the analysis of the amplitude maps. In some cases, the approaches
compute new amplitude maps (1M, (r)), which are used to determine a sharpened map (LocSpiral,
LocBSharpen) as

V() =20 Vo (1) = Zo Crerw(®), (r)cos (¢, (1)) )
with Crefo(r) a SNR weighting parameter (please see ‘Methods’ section). In other cases, the
amplitude maps are further analysed to provide local B-factor maps (LocBFactor) or a local
occupancy map estimation (LocOccupancy).
In LocSpiral at every resolution inside the resolution range, the amplitude map is compared locally
with a noise threshold value computed from the 90-95% quantile of the empirical
noise/background distribution at this resolution. This empirical distribution is generated collecting
the amplitude values at resolution 1/w for all voxels outside the tight solvent mask. The computed
noise threshold is then used to obtain a new normalised and filtered amplitude map, m,, (1), which
is used to reconstruct the sharpened map as shown in Eq. (2).

In LocBSharpen the amplitude map at a resolution 1/ wo(mw o (r)) is stored. The resolution 1/wo is

provided by the user and is typically 15-10 A. In the process of building the sharpened map, the
new amplitude map M, (r) at any resolution equal or higher than 1/w is equal to m,, (r ), while
for the rest of resolutions inside the resolution range, 1, (1) is equal to m,, (r)

In LocBFactor the amplitude maps at different resolutions inside the defined resolution range are
used to estimate map local B-factors. A typical resolution range is of [15, Rmax] A, being Rmax the
global map resolution. To compute the local B-factors, the method obtains at every voxel r the

linear fitting between log(Cref,w(r)mw(r)) and o® within the resolution rage. The method
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provides as output the B-map (local B-factor map) and the A-map (local values of the logarithm of
structure factor amplitudes at 15 A).

In LocOccupancy, the local occupancy map is estimated comparing the amplitude map with a
macromolecule density threshold for every resolution inside the defined resolution range. The
macromolecule density threshold at a given resolution indicates the density value at which we are
confident that the electron density occupancy is of 100% at this resolution. This threshold is
obtained from the empirical macromolecule amplitude probability distribution (m¥) at
frequency w. This amplitude probability distribution is calculated from density values at voxels
that are included inside the solvent mask. From this distribution, the macromolecule density
threshold may be calculated from the macromolecule amplitude value corresponding to the 25%
quantile, given by m¥ (g = 25%). Then, for every voxel and resolution within the resolution
range, the amplitude map m,(r) is compared with m¥ (g = 25%), providing a value between 0
and 1. Finally, the average value over all resolutions is computed and provided as an estimation of

the map occupancy within the resolution range.

2.3.2 Polycystin-2 (PC2) TRP channel

First, we analysed a single-particle reconstruction of the polycystin-2 (PC2) TRP channel
(EMDataBank: EMD-10418)*. In this case, we focussed on showing the capacity of LocSpiral
approach, though, for the sake of consistency, we also show results of obtained B-factor and
occupancy maps. The original publication reports a resolution of 2.96 A with a final B-factor to be
used for sharpening of —84.56 AZ (slope of Guinier plot fitting equal to —21.14 A?).

In Figure 2.1A, we show maps with high threshold values obtained by LocSpiral and by the

postprocessing method of Relion 37-'°. The map densities are similar in the inner core of the protein
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as can be seen from the solid red rectangle in the figure, where we show a zoomed view of
LocSpiral and Relion maps of the region indicated in the red rectangles over the maps. However,
the map densities are quite different in the outer regions, where the Relion map shows thin and
broken densities. In addition, we show comparisons of fitted densities with the corresponding
atomic model (PDB ID: 6t9n) of two a-helices and one loop. The asterisks label results obtained
by LocSpiral. The residues marked with a red arrow were used to adjust the threshold values
between maps. These comparisons show that the map obtained by LocSpiral shows fewer
fragmented and broken densities and better coverage of the atomic model, helping in the
interpretation of the maps and in the process of building accurate atomic models. In Supplementary

Figure 2.1, we show additional figures comparing LocSpiral and Relion postprocessing maps.
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Figure 2.1: Capacity of LocSpiral to improve the interpretability of cryo-EM maps. A Top:
sharpened maps of the TRP channel obtained by LocSpiral (left) and Relion postprocessing (right)
methods. The threshold values are adjusted to provide similar densities in the core inner part of
the protein. The red square in the figure shows a zoomed view of the protein inner core where both
maps (LocSpiral and Relion) are superimposed. Relion map appears in red colour, while
LocSpiral is in grey. Bottom: Fitted map densities (LocSpiral and Relion) with the corresponding
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atomic model (PDB ID: 6t9n) of two a-helices and one loop. The asterisks mark results obtained
by LocSpiral approach. The residues marked with a red arrow were used to adjust the threshold
values between maps. B Spliceosome maps at different orientations and similar threshold values
obtained by LocSpiral and the postprocessing method of Relion.

We also compared the performance of LocSpiral with other methods, including LocalDeblur, our
proposed local B-factor correction method (LocBSharpen) and the global B-factor correction
approach as implemented in Relion. The results are shown in Supplementary Note I,

Supplementary Table 2.1 and Supplementary Figure 2.2 where we also provide results obtained

by LocBFactor and LocOccupancy methods.

2.3.3 Pre-catalytic spliceosome

Next, we processed the Saccharomyces cerevisiae pre-catalytic B complex spliceosomal single
particles deposited in EMPIAR (EMPIAR 10180)*?!. This dataset exhibits a high degree of
conformational heterogeneity, thus, it represents a perfect use case to test our proposed approaches.
We used the approach described in ref.?? to obtain a reconstruction at 4.28 A resolution after Relion
postprocessing”!?. In the ‘Methods’ section, we provide a detailed description of the image
processing workflow used to obtain this reconstruction. The unfiltered map provided by Relion
autorefine was used as input to LocSpiral, LocBFactor and LocOccupancy.

We first show results obtained by LocSpiral method for this highly heterogeneous case. In Figure
2.1B, we show maps at different orientations and similar threshold values obtained by LocSpiral
and by the postprocessing method of Relion 3”!°. As before, the LocSpiral map shows fewer
fragmented and broken densities, especially in the flexible part of the spliceosome reconstruction,
and enhanced details in the central core portion improving the visibility of the reconstruction.

We then concentrate on showing the capacity of LocBFactor method. In Figure 2.2A, we show a

central slice along the Z axis of this map with several points marked with coloured squares. These
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points show parts of the map that correspond to clear spliceosome densities (green and red),
flexible and low-resolution spliceosomal regions (yellow and blue) and background (magenta).
Figure 2.2B shows the corresponding Guinier plots at these locations. Solid lines represent
measured values of the logarithm of SNR-weighted structure factor amplitudes, while dashed lines
show fitted curves. This figure also provides the obtained B-factors for the different curves. The
Guinier plots and B-factors are determined within a resolution range of 15 A to the FSC resolution,
given by 4.28 A. As can be seen from Figure 2.2B, the red and green curves, which correspond to
clear spliceosomal densities, present high amplitude values at 15 A, while the yellow, blue and
magenta curves show low amplitudes at 15 A and a flat profile within the resolution range. In
Figure 2.2B, we also show in the black curve, the Guinier plot of the noise/background amplitudes
obtained from the 90-95% quantile of the empirical noise/background distribution for reference.
The discontinuous black line indicates the linear fit of this noise Guinier plot. Comparing the
yellow, blue, magenta, and black curves, it is clear that these plots are below our noise level and
that the shape of these curves is similar to that of the noise curve. Thus, these B-factors describe
mainly noise B-factors that show how the noise signal fall off inside the used resolution range and
they should be filtered out from our B-factor map. Moreover, Figure 2.2C shows the spliceosome
map coloured according to the occupancy map obtained by LocOccupancy using a resolution range
of [30, 10] A. From Figure 2.2C, we see that the flexible and moving parts of the spliceosome, like
the ones indicated with the yellow and blue points in Figure 2.2A, show low occupancies (close to
zero) within the used resolution range. Figure 2.2D renders the spliceosome map coloured with
the obtained B-factor map to be used for sharpening (slope of the local Guinier plot multiplied by
4). In Figure 2.2D the noise B-factors (B-factors obtained from amplitudes below the noise level

for the used resolution range) are filtered out and appear with black colour. Note that Guinier plots
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at regions with amplitudes below the noise level are dominated by the noise signal and describe
the noise signal fall-off inside the used resolution range. The noise signal presents typically a flat
spectrum, thus, artefactual close to zero B-factors, which are not in agreement with the concept
of B-factor as a measure of position uncertainty or disorder. Figure 2.2E shows the corresponding
local resolution map as obtained by Resmap?® of the spliceosome reconstruction. As can be seen
from this figure, the local resolution values of the flexible parts (helicase and SF3b domains) are
lower than the others and within a range of [10, 15] A. Consequently, the obtained amplitudes for
these flexible parts within the resolution range of [15, 4.28] A are dominated by the
noise/background signal. The average inside a solvent mask of the signal B-factors (B-factors
obtained from amplitude values above the noise level for the used resolution range) is —567.62 A2,
while the value reported by Relion postprocessing is —158.08 A2. Note that Relion postprocessing
does not filter out regions dominated by noise/background when computing the global B-factor.
As mentioned before, regions dominated by the noise signal within the used resolution range
present artefactual low B-factors. Consequently, this global B-factor may be overestimated. A
more detailed description of this point is given in Supplementary Note 3: B-factor analysis of low
and high-resolution maps. In Figure 2.2F, we show the local values of the logarithm of the structure
factor’s amplitudes at 15 A (A map). As expected, this map shows low amplitudes at highly
flexible and moving regions. We have recalculated B-factors using a new resolution range of [20,
10] A. The results are shown in Figure 2.2G-1. As can be seen from these figures, now the flexible
parts show unfiltered low signal B-factors and low amplitudes at 20 A. However, it is important to
note that at this resolution range, the B-factors are dominated by the molecular shape and solvent
contrast and not by resolution limiting factors such as errors in the reconstruction procedure (as

the presence of heterogeneity), radiation damage or imaging imperfections, for example®.

72



Consequently, it is not recommended to use a resolution range of [20, 10] A as obtained B-factors

may not be used to evaluate map quality.
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Figure 2.2: Results obtained by LocBFactor and LocOccupancy for the Saccharomyces
cerevisiae pre-catalytic B complex spliceosome sample. A Central slice along Z axis of the
obtained unsharpened map using EMPIAR 10180 single particles. Coloured squares mark parts
of the map corresponding to clear spliceosome densities (green and red), flexible and low-resolution
spliceosomal regions (yellow and blue) and background (magenta). B Guinier plots at map points
indicated in the coloured squares using a resolution range of [15-4.28] A. Solid lines represent
SNR-weighted values of the logarithm of structure factor amplitudes, while discontinued lines

73



show the fitted lines. C Spliceosome map coloured with the obtained occupancy map by
LocOccupancy. The occupancy ranges from 0 (red colour) to 1 (blue colour), indicating no
macromolecular density and full occupancy, respectively. D Spliceosome map coloured with the
B-factor map to be used for sharpening (slope of the local Guinier plot multiplied by 4) obtained
by LocBFactor using a resolution range of [15-4.28] A. The local B-factor values in the figure
range approximately between —800 and —200 A2. In this figure, noise B-factors (B-factors obtained
from amplitudes below the noise level for the used resolution range) are filtered out and appear
with black colour. E Local resolution map obtained by Resmap approach. The local resolution
ranges between 4 (blue colour) and 15 A (red colour). F Spliceosome map coloured with the
obtained A map (local values of the logarithm of structure factor amplitudes at 15 A). The values
range between —11.0 (magenta colour) and —9.0 (cyan colour) approximately. G Spliceosome map
coloured with the B-factor map (B-map) obtained by LocBFactor using a resolution range of [20-
15] A. The Bfactor values range between —1100 (magenta colour) and —300 (cyan colour)
approximately. H Guinier plots at map points indicated in the coloured squares using a resolution
range of [20-15] A. Solid lines represent SNR-weighted values of the logarithm of structure factor
amplitudes, while discontinued lines show the fitted lines. I Spliceosome map coloured with the
obtained A map (local values of the logarithm of structure factor amplitudes at 20 A). The values
range between —10.5 (magenta colour) and —6.5 (cyan colour) approximately

2.3.4 Apoferritin

We have also applied these techniques to recently reported high-resolution cryo-EM
reconstructions of mouse apoferritin: EMD-9865 and EMD-21024. The reported global resolution
of these reconstructions is 1.54 and 1.75 A for EMD-9865 and EMD-21024, respectively.

In Figure 2.3A, B, we show the results obtained by LocBFactor (B and A maps) and
LocOccupancy methods (occupancy maps). The resolution range used to estimate the B and A
maps was between 15 A to the reported global resolution for both cases. The occupancy maps were
calculated for these high-resolution maps between 5 A to the global resolution. As can be seen
from Figure 2.3B, EMD-9865 shows lower B-factors and higher local amplitudes than EMD-
21024, indicating a better-quality reconstruction, however, the low values of both B maps indicate
the high quality of these reconstructions. In both cases, the highest B-factors are in the outer
regions of the protein. Moreover, local occupancies show similar maps for both cases, showing

occupancies as low as approximately 0.5 at the outer part and indicating the presence of flexibility
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in these outer residues. Note that the obtained average and standard deviation of B-factors inside
a solvent mask is of —56 and 7.20 A? (EMD-9865) and —78 and 8.93 A% (EMD-21024),

respectively, which reflects the high quality of these reconstructions.
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Figure 2.3: Results obtained by LocBFactor, LocOccupancy and LocSpiral for apoferritin
sample. Obtained B-maps (local B-factor map corresponding to the slope of the local Guinier
plots), A-maps (local values of the logarithm of structure factor amplitudes at 15 A) and occupancy
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maps by LocBFactor and LocOccupancy for EMD-21024 (A) and EMD-9865 (B). The B-factor
ranges between [—-22, —14] A2 in A and [-18, —=10] A2 in B. The A-map ranges between [-9.5,
—8.0] in A and B. The occupancy ranges between [0, 1] in A and B. In C, we show on the left side,
superimposed sharpened maps obtained by LocSpiral (grey colour) and Relion (red colour) for
EMD-9865. The black rectangle shows a zoomed view of the region indicated with the dashed
rectangles. On the right, we show the respective occupancy map obtained by LocOccupancy at the
same orientation that these sharpened maps. In this figure, 0 (red colour) indicates no density
occupancy and 1 (blue colour) full occupancy.

In Figure 2.3C, we show sharpened maps obtained from EMD-9865 by LocSpiral and by the
postprocessing method of Relion 3. The LocSpiral map is shown in grey colour, while the Relion
map is rendered in red. The solid black rectangle shows a zoomed view of the outer region of the
protein, which is indicated with the dashed black rectangles in the figure. Supplementary Figure
3 shows that the extra densities that appear in the LocSpiral map correspond to missing residues
in EMD-9865. Additional, at the right of Figure 2.3C, we show the respective occupancy map
obtained by LocOccupancy at the same orientation that these sharpened maps. As can be seen from
Figure 2.3C, the LocSpiral map shows fewer fragmented and broken densities, especially in the
parts of the map that shows low occupancies. We compute also EMRINGER and MolProbity
scores?® between these maps (EMD-9865 and LocSpiral) and the atomic model (PDB 6v21) after

refining the structure against corresponding maps by Phenix real space refine approach?’ using 5

refining iterations. The results obtained are shown in Supplementary Table S1.

2.3.5 Immature prokaryote ribosomes

We processed immature ribosomal maps of the bacterial large subunit’. These maps were obtained
after depletion of bL.17 ribosomal protein and are publicly available from the Electron Microscopy
Data Bank (EMDB) (EMD-8440, EMD-8441, EMD-8445, EMD-8450, EMD-8434)%%. In this
case, we focussed on showing the capacity of LocOccupancy to interpret and analyse

reconstructions showing a high degree of compositional heterogeneity.
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Figure 2.4 shows the obtained results. The first row shows the different maps to be processed as
deposited in the EMDB. Next, we show the obtained occupancy maps by LocOccupancy, where
the mature 50S ribosome (EMD-8434) is coloured according to corresponding occupancy maps.
The resolution range used was [30, 10] A. These figures clearly show regions that are lacking in
the different immature maps with respect to the mature map. Thus, occupancy maps were used to
create binary masks to segment the mature 50S ribosome map, extracting after the densities that
are missing in the respective immature maps. These densities are shown in the third column of
Figure 2.4 with different colours (yellow, red, indigo and green). The obtained occupancy maps
also allow us to define a ‘maturity level’ index. This index is calculated by comparing the number
of voxels activated in the solvent mask of the mature 50S reconstruction with the ones in the
occupancy masks (see methods section for a more detailed description). As can be seen from
Figure 2.4, the larger the unfolded regions in the immature maps are, the smaller the maturity level
is. This maturity level index allows us to quantitatively sort the different immature maps in a

spectrum according to their maturity.
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Figure 2.4: Results obtained by LocOccupancy for immature 50S ribosomes. First column:
immature maps at different orientations as deposited in EMDB. Second column: obtained
occupancy maps by LocOccupancy, where the mature 50S ribosome (EMDB-8434) is coloured
with corresponding occupancy maps obtained from the immature ribosomes. The occupancy
ranges between [0, 1]. Third column: Segmented maps showing the densities that are missing in
the different immature maps when compared to the mature 50S reconstruction and obtained
maturity levels. The different colours (yellow, red, purple, green) label the different corresponding
segmented regions for each case

In the Supplementary Note 2 and Supplementary Figure 2.4, we further show the advantages of

LocSpiral and LocBFactor approaches in these highly heterogeneous datasets compared to the

global sharpening approach.

2.3.6 SARS-CoV-2
We have processed recent cryo-EM maps of the SARS-CoV-2 spike (S) glycoprotein®’-?. These

maps include cryo-EM reconstructions of the SARS-CoV-2 spike in the prefusion conformation

with a single receptor-binding domain (RBD) up (EMD-21375) and after imposing C3 symmetry
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in the refinement to improve visualisation of the symmetric S2 subunit (EMD-21374). We also
processed additional cryo-EM reconstructions from the Veesler lab of the SARS-CoV-2 spike
glycoprotein with three RBDs down (EMD-21452) and the SARS-CoV-2 spike ectodomain
structure (EMD-21457) with a single RBD up. The reported global resolution of these maps is
3.46,3.17, 2.8 and 3.2 A, respectively. Interesting deposited atomic models (PDBs PDB 6vsb,
PDB 6vxx and PDB 6vyb) incompletely cover the reconstructed cryo-EM maps, showing the
existence of disordered or over-sharpened regions after B-factor correction that could not be
modelled. Supplementary Figure 2.5 displays corresponding maps and fitted atomic models
showing a large amount of protein that is not currently modelled.

In Figure 2.5A, we show EMD-21375 map and the obtained LocSpiral reconstruction. In this
figure, we use a relatively low threshold to visualise the outer parts of the protein. This figure
shows that our obtained reconstruction presents less fragmented and broken densities and better
map connectivity than the one deposited in EMD, suggesting that our approach improves the
analysis and visualisation of the outer regions and potentially aides in the modelling of additional
map motifs. In Supplementary Figure 2.6 A, we show similar results for EMD-21374, EMD-21452
and EMD-21457 maps. Interesting, the LocSpiral EMD-21374 map shows some additional
fragmented densities at the top of the spike, however, we believe that these additional densities are
in fact artefacts that come as a result of artificially imposing C3 symmetry on particles that are
asymmetric. In Figure 2.5B, we show the local B-factor map to be used for sharpening (slope of
the local Guinier plot multiplied by 4) obtained by LocBFactor for EMD-21375 and in
Supplementary Figure 2.6B, we compare obtained local B-factor maps from EMD-21375, EMD-

21374, EMD-21452 and EMD-21454 maps using a similar colourmap. Supplementary Figure
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2.6B shows that EMD-21452 and EMD-21454 present lower B-factors than EMD-21374 and

EMD-21374, and then a better localizability of secondary structure and residues.

A LocSpiral EMD-21375 . LocBFactor
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Figure 2.5: Results obtained by LocSpiral, LocBFactor and improved atomic model for
EMD-21375 SARS-CoV-2 sample. A Map obtained by LocSpiral approach (left) compared with
the map as deposited in EMIDB for EMD-21375. B B-factor maps to be used for sharpening (slope
of the local Guinier plot multiplied by 4) obtained by LocBFactor approach for EMD-21375. The
B-factor ranges between [-325.0, —125.0] A2. C Visual examples of map regions corresponding
to EMD-21375 that could be further modelled after processing the corresponding unfiltered and
unsharpened map with LocSpiral approach. On the left and marked with asterisks, we show the
LocSpiral maps with the improved atomic models in green, and on the right the deposited EMD-
21375 map with the PDB 6vsb in magenta. D In white, PDB 6vsb with traced parts of the glycan
proteins marked with purple spheres. In red, additional parts that could be traced using LocSpiral
map. Inside the black squares, zoomed views of two glycan proteins that could be further modelled.

Then, we used the LocSpiral EMD-21375 reconstruction to improve the deposited atomic model
(PDB 6vsb). As result, we could model additional loops and motifs: K444.C-F490.C; E96.C-
S98.C; NAG1322.C; P812.C-K814.C, and some additional amino acids, which are now visible in
the improved map: P621.C-G639.C; S673.C-V687.C; A829.B-A825.B. We were also able to

visualise map densities corresponding to numerous additional N-linked glycans that could not be
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resolved in the original reconstruction. Examples of some regions that could be further modelled
are shown in Figure 2.5C, D. In Figure 2.5C, we show the obtained LocSpiral map with the
improved atomic model in green at the left and marked with an asterisk. At the right, it is rendered
the deposited EMD map with the PDB 6vsb in magenta. Figure 2.5D shows in white the PDB 6vsb
with the traced parts of the glycan proteins marked with purple spheres and in red the additional
parts that could be traced using LocSpiral map. In addition, in this figure, we provide also zoomed
views of two glycan proteins that could be further modelled with our improved map.
Corresponding EMRINGER and MolProbity scores, calculated between LocSpiral map and the
improved atomic model, and between EMD-21375 and the deposited model (PDB 6vsb), are
shown in Supplementary Table S1. In both cases, the atomic structures were refined against

corresponding maps by Phenix real space refine approach?® using 5 refining iterations.

2.4 Discussion

In this paper, we have introduced methods to improve the analysis and interpretability of cryo-EM
maps. These methods include map enhancement approaches (LocSpiral and LocBSharpen), and
approaches to calculate local B-factors (LocBFactor) and density occupancy maps
(LocOccupancy). We have shown in our experiments that LocSpiral approach improves map
connectivity showing fewer fragmented and broken densities and better coverage of the atomic
model. In fact, our LocSpiral approach has been applied on several published publications®!=°,
enabling molecular modelling on maps with flexibility and light anisotropic resolution.

We envision that our proposed methods to estimate local B-factors and occupancy maps could be
used to improve de novo model building. First, these maps can be employed to guide the manual

tracing. These maps can be informative to estimate the range of structures that could be compatible

with the given electron microscopy density. Second, for very high-resolution cryo-EM maps, these
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values can be used as an approximation of the atomic B-factors and occupancies to be further
refined as part of the automatic model refinement process by automatic model building packages
as Phenix'* or Refmac!®. B-factor maps provide complementary information to local resolution
maps, though, these results are usually correlated. The latter usually determines the resolution at a
given point by comparing the map to noise or background amplitudes®®, while the former
determines the rate of signal amplitude fall off within a resolution range. Then, we can find map
regions with similar local resolution (map amplitude similar to noise/background amplitude at this
resolution and coordinates), while different B-factor as the signal damping could be different
within the used resolution range (highly or slowly sloped).

We have seen that we must be careful when processing maps affected by high flexibility and
heterogeneity or when analysing maps with moderate global resolution (close to 10~15 A) as the
obtained B-factors could be overestimated if the selected resolution range is above the local
resolution at these regions. Note that obtained B-factors at these low-resolution regions describe
mainly noise B-factors that show how the noise signal fall off inside the used resolution range and
they should be filtered out from our B-factor map. However, these problematic cases can be easily
detected as the amplitude values in corresponding Guinier plot will be below the noise level
(obtained from the 90-95% quantile of the empirical noise/background distribution). Thus, these
regions can be automatically filtered out and not taken into consideration. In our analysis of B-
factors for low and high-resolution maps shown in the Supplementary Material, we show that
existing methods to determine the map global B-factor, as Relion postprocessing, do not filter
problematic low-resolution regions so the estimated B-factor may be overestimated.

In principle, it might be possible to differentiate between compositional and moderate

conformational flexibility from the obtained occupancy maps for samples accurately 3D classified.
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In the former case, the occupancy map is expected to show close to zero values at missing regions,
as the density values of these parts should be low and close to the noise level. Oppositely, in the
latter case, the occupancy is likely to show higher values as the density values of moving parts,
while slightly blurred because of the movement, should be similar to the ones at other static regions
of the macromolecule. However, we should be extremely careful about these analyses as 3D
classification approaches are not perfect, thus, macromolecules showing different compositions
could provide 3D maps with significant density values in regions that should be empty.
Additionally, samples showing large conformational changes could present low-density values at
moving regions when compared to density values at static parts, providing close-to zero occupancy
values.

The methods proposed here are semi-automated and essentially only require the unfiltered map to
enhance or analyse, a resolution range and, in some cases, a binary solvent mask as inputs. They
do not require additional information as atomic models or local resolution maps. The common link
between all these approaches is the use of the spiral phase transform, which is used to factorise
cryo-EM maps into amplitude and phase terms in real space for different resolutions. The spiral

35-39 o

phase transform has been extensively used in optics for phase extraction in interferometry T

40,41

by Shack-Hartmann sensors™"'. This transformation is not new in cryo-EM as it has been

proposed previously to facilitate particle screening*?, CTF estimation** and local and directional

resolution determination®***, In refs. 3444

, the authors used the Riesz transform to obtain amplitude
maps, which is similar to the spiral phase transform.
Cryo-EM reconstructions of different types of macromolecules have been used to test the

performance of these algorithms. Specifically, we have used a membrane protein (TRP channel),

immature ribosomes affected by high compositional heterogeneity, the spliceosome that shows
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high conformational heterogeneity, recent SARS-CoV-2 reconstructions exhibiting dynamic
regions and high-resolution apoferritin reconstructions. In all cases, our proposed approaches show
excellent results, improving the analysis and the interpretability of the processed maps. The
proposed methods are also highly efficient. For example, the processing of EMD-21457 (map size
400 px*) using our local enhancement approach took only 12 min on a standard laptop using 4

COres.

2.5 Methods

The proposed methods are based on a 3D generalisation of the 2D spiral phase transform. In the
following, we present the 3D spiral phase transform and its application to map enhancement, local
B-factor determination, and estimation of local map occupancies. 3D spiral phase transform. The
spiral phase transform is a Fourier operator that can factorise a 3D map into its amplitude and
phase terms in real space at different resolutions. We assume without loss of generality that a given
3D map can be modelled as a 3D phase modulated signal given by
V() =Xy Vo (@) = Zo (bo () + mg,(X)cos (¢, (1)) 3)
where V(r) is the cryo-EM map, V(r) is a band-passed map filtered at frequency w, bo(r) the 3D
background or DC term, mq(r) the 3D amplitude map, ¢, the 3D modulating phase and r = (X, y,
7). Assuming that we are interested in spatial frequencies higher than 1/50—1/30 1/A and that the
background is usually a low frequency signal, we can approximate the map by a high-passed
filtered map VHP for resolutions higher than 50-30 A by
Vip(r) = X My (r)cos (¢, (1)) “4)

For convenience, Eq. (4) can be expanded into its corresponding analytic signal as

Vup(r) = X, m, (r)e#e® (5)
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This analytic signal relates to our high-passed filtered map by

Vip(r) = X, Re (Figp()} = X, Re {m, (r)e/?«®} =
Vip(r) = X Re{(m, (r)cos (¢, (1)) + jm, (r)sin (¢, ()}

(6)
with Re{-} an operator that takes the real part and j is the imaginary unit (j> = —1). Note from the
analytic signal defined in Eq. (5) that m.(r) and ¢.(r) clearly represent amplitude and phase terms.
The quadrature transformation of Eq. (4) is given by

QVup(1)} = — X0 Mg (r)sin (¢4 (r)) (7
Then, Eq. (5) may be rewritten as

Vip(1) = X0, Vup () — jQ{Vip(0)}) (8)
Assuming that m,, is a low varying map compared to ¢, the gradient of Vup is approximated by

VVHP(r) = — Za) my (l') Sin((pw (r))V(pa) (l') (9)

Rearranging terms, we obtain

_ Vo, . VVup,w(™) _ _ . VVHP,w(T)
QVipw (0} = Tooml Wooml — e T, o (10)

Equation (10) shows that the quadrature term is composed of two terms. The first is an orientation
map n, and the second corresponds to a non-linear operator that can be interpreted as a 3D
generalisation of the 1D Hilbert transform, which can be efficiently calculated using the Fourier
transform. As shown in*’, the operator VVyp ., (r)/|Ve,(r)| corresponds to the 3D Hilbert

transform applied to our band-passed maps Vup,«(r), then

. _ -jq ~ VVHP(r)
H{Vip,»(r)} = FT 1{TFT{VHP,w(r)}} = wZ};(rn (11)
Thus, Eq. (10) can be rewritten as
Voo Whpw(r) —1 )=
QVip (1)} = goe D THReD = —n, (r) - T {f FT{VHp,w(r)}} (12)
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Note that n, is a unit vector pointing in the same direction that VVyp ,, (r) (remember that m,, is

a low varying map compared to ¢, ), but maybe with different orientation because a possible

change of sign introduced by the cosine term in Eq. (4). We can rewrite Eq. (12) as

Q{VHP,w (l‘)} = _n(p (l‘)

nVHp,w (r)

FT-1 {%‘l‘ FT{Vitp,co (r)}}

FT-1 {%‘f FT{Vitp 0y (r)}}|

(13)
= —s(1)

where s(r) is a function with range +1 or —1 considering that n, (r) and ny,, can be parallel or

antiparallel only. From Eq. (13), we can obtain an estimation of ¢, (r affected by an

indetermination in its sign by

~ QVHpP,w(r)
¢, (r) = arctan [ﬁ(r)}] =
‘FT‘l{TTi?FT{VHp_w(r)}}‘ (14)
—s(r)arctan R

However, we can use Eq. (14) to obtain the modulation and cosine terms in Eq. (4) separately
without sign ambiguity as

Im{Vyp(r)} )
Re{Vyp (1)}
‘FT‘l{%?FT{VHp_w (r)}}‘

VHP,w(r)

cos (¢, (r)) = cos (arctan[

= cos | arctan

(15)

Mo ®) = (Tap® - T ()7 = (Viapo )’ + QViap®))?)”

Using these expressions, we can obtain for each frequency w the terms cos (¢, (r)) and m,, (r).

2.5.1 Local enhanced map (LocSpiral)

We are proposing here a robust local map enhancement method that only requires as input a binary

mask of the macromolecule and a resolution range. The approach works for both high and

87



moderate resolution maps. In the following, we provide details of the proposed method. As
explained before, each band-pass filtered map can be factorised into an amplitude and phase term
by the spiral phase transform. Then, given a user defined solvent mask, the method obtains the
empirical noise amplitude probability distribution (ml) at frequency w, selecting the density
values of voxels not included in the solvent mask. From this distribution, the approach determines
the noise amplitude value corresponding to the 90-95% quantile, given by m¥(q = 95%). This
value is used to locally normalise map amplitudes in real space along with different frequencies
and remove local signals that are below this amplitude threshold as they are likely noise at this
given frequency and position. After this non-linear amplitude transformation, the enhanced map

at a given frequency o is given by

Vo (1) = (m,, (r) > m{(q = 95%))cos (¢, (1)) (16)
and the map
V(l‘) =2w Vw(r) = Yo (My(r) > mg(q = 95%))cos (¢ (1)) (17)

The method allows as an option the use of an SNR weighting parameter to weight the contribution

of the different amplitudes in the final map. In this case, Eq. (17) is rewritten as

V(l‘) =Y Cref,w(r)(mw(r) > mg(q = 95%))C05 ((pw(r)) (18)

with C. ,,(7) the SNR weighting parameter given by

_ m,(r)
2.5.2 Local B-factor determination (LocBFactor)

The factorisation of a 3D map into its amplitude and phase terms in real space for different
frequencies allows the efficient determination of local B-factor maps. To this end, LocBFactor

method first obtains the local map amplitudes m(r) for resolutions between 15-10 A to the

88



estimated global map resolution. These amplitude maps are then used to obtain SNR-weighted
log-amplitudes of structure factors locally as

log (F, (1)) =108 (Crer 0 ()M (1)) (20)

with Crefo(r) a SNR weighting parameter defined in (19). This expression can be used to fit

log(F,, (1)) versus o’ within the resolution rage defined between 15 and 10 A to the estimated
global map resolution. Thus, finally we have

log (F,(r)) = B(r)(w? — w3) + A(r) (21)

with B(r) the local B-factor map or B map, and A(r) the log-amplitude map at w, (A map). In

Eq. (21) the approach typically does not take into consideration in the linear fit amplitude values

(m,, (1)) that are below the noise level (m% (g = 95%) ). Additionally, local Guinier plots without

at least two points above the noise level are filtered out from the B map. Note that w, corresponds

to the lowest frequency within the used resolution range (typically 1/15 — 1/ 10A7" ).

2.5.3 Local B-factor sharpened map (LocBSharpen)

The spiral phase transform can be used to obtain local B-factor sharpened maps. Note that

Expression (4) can be modified for frequencies higher than wo as

Zw (Cref,w(r)m(u(r) COS((pw(r)))'w < Wy

2o (Cref,w(r)A(r) COS(QO(H(I‘))),Q) > W (22)

V() = B Vi () = {

With A(r) the log-amplitude map at wy (A map).

2.5.4 Local occupancy map (LocOccupancy)
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Low occupancy map regions correspond to parts of the macromolecule where map amplitudes of
the reconstruction are significantly smaller when compared to other regions of the

macromolecule. Keeping this in mind, we define the occupancy map as

_ Y (my@>m (q=25%))
0(r) = Yo (Mme@=zml (g=0%)) 23)

where m¥(q = 25%) and m}(q = 0%) are obtained from the empirical macromolecule
amplitude probability distribution (m) at frequency w. This amplitude probability distribution is
calculated from map density values corresponding to voxels that are included in the solvent mask.
From this distribution, the approach determines the macromolecule amplitude values
corresponding to the 25 and 0% quantiles, given by m¥ (g = 25%) and mX(q = 0%) that are
used as thresholds. To calculate local occupancy maps, a typical resolution range between 30 and
10 — 8A is used to obtain density occupancies of complete secondary structure motifs, while
ranges between 5 and 3-1.5 A are used for high-resolution cryo-EM maps to obtain occupancies

of residues.

2.5.5 Maturity level index

In the analysis of the immature 50S ribosomes, we have proposed a maturity level index. This
index can be extended to the analysis of any maturing macromolecule and is useful to place
immature macromolecules into a maturing timeline. The calculation of this index requires
reconstructions of immature and mature macromolecules. The mature reconstruction is used to
obtain a binary solvent mask, while the immature reconstructions are used to calculate occupancy
maps. These occupancy maps allow us to determine highly occupied regions (occupancy >0.75)
and calculate occupancy masks. Then, the index is obtained comparing the number of voxels
activated in the solvent mask of the mature reconstruction with the ones in the occupancy masks.
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As can be seen from Figure 2.4, the larger are the regions that are not folded in the immature maps,

the smaller is the maturity level.

2.5.6 Cryo-EM image processing of the spliceosome data

The dataset is composed of 327,490 particle images of a spliceosomal B-complex from yeast
(EMPIAR-10180)* The particles were polished with Relion, downsampled to 1.699 A/px and
windowed to a size of 320 x 320 pixels. A set of 30 initial volumes were obtained by RANSAC
(15 maps) and Eman2 (15 maps) and processed by volume selector approach?? producing two
different initial volumes. Then, Relion 3D classification was used to compute two classes
providing both volumes as reference initial maps (class 1 and class 2 composed by 201,407 and
126,083 particles respectively). The resulting classes were refined by Relion autorefine using the
maps obtained in the previous 3D classification. Finally, Relion postprocessing provided maps at
4.28 and 4.58 A for class 1 and class 2, respectively. Lastly, a local resolution was calculated using

Relion for both classes.

2.5.7 Data availability

Previously published datasets used for testing are available from the Electron Microscopy Data
Bank (https://www.ebi.ac.uk/pdbe/emdb/) under accession codes EMD-10418, EMD-8440, EMD-
8441, EMD-8445, EMD-8450, EMD-8434, EMD-21375, EMD-21374, EMD-21452 and EMD-

21457. Data that support the findings of this study have been deposited in http://t.ly/XKQa.
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2.5.8 Code availability

The source code for the presented methods is freely available under the terms of an opensource

software license and can be downloaded from https://github.com/laviervargas/ LocSpiral-

LocBSharpen-LocBFactor-LocOccupancy?!.
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2.6 Supplemental information

2.6.1 Supplementary note 1: Polycystin-2 (PC2) TRP channel

We compared the performance of LocSpiral with other methods, including LocalDeblur, our
proposed local B-factor correction method (LocBSharpen) and the global B-factor correction
approach as implemented in Relion. To compare the different results, we used metrics proposed
in'. The results are shown in Supplementary Figure 2.2. In this case, we used a relatively high
threshold value to visually compare the different maps. From Supplementary Figure 2.2, we can
see that the map obtained by LocSpiral shows good connectivity and is less affected by broken or
missed densities. EMRINGER? and cross-correlation scores (obtained using PDB 6t9n as
reference) show approximately similar results for all cases, though, the highest scores are provided
by LocSpiral and LocBSharpen approaches. For the sake of comparison, we also provide FSC
curves calculated by comparing the different maps with the reference atomic model (PDB 6t9n).
In this case, the best results at high resolutions are provided by LocalDeblur and by LocSpiral
approaches.

In addition, we provide results of LocBFactor and LocOccupancy methods. In Supplementary
Figure 2.2B, we show the obtained local B-factor map (left map) to be used for sharpening (slope
of the local Guinier plot multiplied by a factor 4) and the A-map (middle map) corresponding to
the local values of the logarithm of structure factors amplitudes at 15 A. The resolution range used
to estimate these maps was between 15 A to the FSC resolution (2.96 A). The average value inside
the solvent mask of local B-factors obtained from amplitude values above the noise level (signal
B-factors) gives a value of -129.76 A2, which is smaller than the value provided by Relion (-84.56
A?) computed from the unmasked reconstruction. The A-map provides the fitted local amplitudes

at 15 A, showing the local “amount” of signal at this resolution. As expected, local B-factor map
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(B-map) shows that the inner parts of the protein show lower Bfactors than the outer regions.
Supplementary Figure 2.2B shows additionally the obtained local occupancy map (right map).
Interesting, both the occupancy and A maps show low values in the regions occupied by detergent
densities, lipid densities and cholesterol densities (please see Figure 2 in?), indicating the presence

of compositional variability in these regions and low signal at 15 A.

2.6.2 Supplementary note 2: Immature prokaryote ribosomes

In Supplementary Figure 2.4 we show maps with improved contrast at high-resolution obtained
after processing EMD-8441 by LocSpiral and Relion methods*°. The same soft mask was applied
to both maps. In the figure, we show the maps at low and high threshold values. When a low
threshold value is used, it is not possible to see details in the Relion map, while at high threshold
values many regions of this map are not visible. Conversely, LocSpiral approach shows high
resolution features at both high and low thresholds without losing appreciable map densities.

Finally, we also show in Supplementary Figure 2.4 the local B-factor map (B map given by the
slopes of the local Guinier plot) and the local values of the logarithm of structure factor’s
amplitudes at 15 A (A map in the figure) obtained by LocBFactor approach. The average value of
the local signal B-factors to be used for sharpening (slope of the local Guinier plot multiplied by
4) within a solvent mask is -394.28 A2, We obtained the B-factor estimations within a resolution
range between 15 A to the FSC resolution given by 3.7 A. The B-factor map shows higher B-
factors at the outer part of the macromolecule, corresponding to regions that are partially folded
and show compositional and conformational heterogeneity and lower local resolutions, as can be
seen from Supplementary Figure 2.4, Class 3 in®. As shown in the previous Spliceosome case,
regions dominated by the noise signal within the used resolution range present artefactual low

Bfactors (noise B-factors) which describe the noise fall off inside the resolution range. These noise
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B-factors appear in Supplementary Figure 2.4 with black colour and correspond to the lowest

amplitudes (below the noise level) in the A map at 15 A resolution.

2.6.3 Supplementary note 3: B-factor analysis of low and high resolution
maps

We have performed additional B-factor analysis of approximately homogeneous low- and

highresolution maps corresponding to EMD-20671 and EMD-21024. The Gold standard FSC

resolution and the estimated B-factors to be used for sharpening (slope of the local Guinier plot
multiplied by 4) as determined by Relion postprocessing are 16.01 A and -97.70 A? for
EMD20671, and 1.77 A and -50.81 A? for EMD-21024, respectively. Note that the B-factors for
sharpening obtained by Relion are very similar for maps showing very different resolutions.
Additionally, we have computed local B-factor maps from LocBFactor approach. For both maps,
we used a resolution range of [15, 4] A. The obtained averages of signal B-factors used for
sharpening inside solvent masks are -1172 A% and -78 A? for EMD-20671 and EMD-21024,
respectively. Note that the values obtained by Relion and LocBFactor for EMD-21024 are similar.
Oppositely, the average B-factor obtained by LocBFactor for EMD-20671 is much lower and
consistent with a map at 16.01 A resolution than the one reported by Relion. We believe that the
reason of this discrepancy is because LocBFactor filters out noise B-factors (B-factors obtained
from amplitudes below the noise level for the used resolution range) while Relion does not filter
regions dominated by noise within the used resolution range. Supplementary Figure 2.7 shows
obtained B-factor maps, FSC curves and respective Guinier plots at noise and signal regions for

both cases.
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2.6.4 Supplementary figures

LocSpiral
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Supplementary Figure S2.1 Comparison between LocSpiral and Relion postprocessing
maps for the TRP channel. A) Complete and overlapping LocSpiral and Relion maps shown
with the corresponding atomic structure (PDB 6t9n). B) Reconstructions of corresponding regions
at the core and bottom outer region of the TRP channel obtained from LocSpiral (left) and Relion
(right) approaches.
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Supplementary Figure S2.2 Results and comparisons between different methods over the
TRP channel. A) Comparison between maps obtained by different sharpening approaches: Relion,
LocalDeblur, LocSpiral and LocBSharpen. Red arrows show broken or missed densities that could
be seen from LocSpiral and LocBSharpen maps. Below each map, EMRINGER and
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crosscorrelation (CC) scores calculated between obtained maps and the atomic model (PDB 6t9n)
are provided. We also show FSC curves comparing the different maps with the reference atomic
model (PDB 6t9n). B) Results obtained by LocBFactor (B and A maps) and LocOccupancy for the
TRP channel.
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Supplementary Figure S2.3 Complete and superimposed sharpened maps. LocSpiral (gray

colour) and Relion (red colour) for EMD-9865 with the corresponding atomic structure (PDB
6v21). In the black rectangles are shown zoomed views of the regions labelled with the same index.
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Supplementary Figure S2.4 Results and comparisons between different methods for the
EMD-8441 immature ribosome. (Left) Obtained sharpened maps for EMD-8441 by LocSpiral
and Relion. These maps are shown at low and high thresholds. (Right) Obtained B-maps (local B-
factor maps corresponding to the slope of the local Guinier plots) and A-maps (local values of the
logarithm of structure factor amplitudes at 15 A) of EMD-8441 at different orientations. In these
figures, noise B-factors (B-factors obtained from amplitudes below the noise level for the used
resolution range) are filtered out and appear with black color.

EMD-21375 EMD-21457 EMD-21452

Supplementary Figure S2.5 Improved maps obtained by LocSpiral from EMD-21375,
EMD21457, EMD-21452 and corresponding fitted atomic models.
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Supplementary Figure S2.6 Results obtained by LocSpiral, LocBFactor for SARS-CoV-2
samples. A) Maps obtained by LocSpiral approach (left) compared with maps as deposited in
EMDB with accessing codes (EMD-21375, EMD-21374, EMD-21457, EMD-21452). B)
Obtained B-factor maps to be used for sharpening (slope of the local Guinier plot multiplied by 4)
by LocBFactor approach for EMD-21375, EMD-21374, EMD-21457, EMD-21452.
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Supplementary Figure S2.7 Obtained B-factor maps (slope of the local Guinier plot) by
LocBFactor approach. EMD-20671 and EMD-21024, corresponding FSC curves and Guinier
plots of macromolecule and noise/background points indicated with coloured points shown in
corresponding central slices.
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2.6.5 Supplementary table

Ramachandran Plot
LocSpiral

Outliers:0.00%
Allowed:4.38%
Favored:95.62%

Outliers:0.00%
Allowed:1.90%
Favored:98.10%

TRP channel Apoferritin SARS-CoV-2
(EMD-10418) (EMD-9865) (EMD-21375)
(PDB 6t9n) (PDB 6v21) (PDB 6vsh)
EMRINGER
o« G 2.31 8.63 2.31
u LocSpiral
2 | EMRINGER Relion 2.36 2.51 2.27
o
Rot -rati
& ramerTatio 0.70 0.97 0.70
LocSpiral
Rotamer-ratio Relion 0.72 0.67 0.73
Max Z-score LocSpiral 793 48.83 947
Max Z-score Relion 8.11 14.22 9.06
Model Length
el 1184 3200 1683
LocSpiral
Model Length Relion 1184 3200 1598
All-atom
- Clashscore 6.44 5.90 13.66
:5; LocSpiral
o | All-atom C_Iashscore 6.12 597 14.34
g Relion

Outliers:0.00%
Allowed:8.36%
Favored:91.46%

Ramachandran Plot
Relion

Outliers:0.00%
Allowed:3.12%
Favored:96.88%

Outliers:0.00%
Allowed:2.33%
Favored:97.67%

Outliers:0.00%
Allowed:8.54%
Favored:91.64%

Rotamer Outliers

_ 7.24% 1.39% 13.63 %
LocSpiral

Rotanézr"g)nutllers 277 % 1.49 % 9.96 %

Cbeta De\{latlons 0.00 % 0.00 % 0.00 %
LocSpiral

CbetaRE;ﬁg/:]atlons 0.00 % 0.00 % 0.00 %

Peptide Plane
LocSpiral

Cis-proline:0%
Cis-general:0%
Twisted Proline:0%
Twisted-General: 0%

Cis-proline:25%
Cis-general:0%
Twisted Proline:0%
Twisted-General:0%

Cis-proline:0.67%
Cis-general:0%
Twisted Proline:0.67%
TwistedGeneral:0.03%

Peptide Plane
Relion

Cis-proline:0%
Cis-general:0%
Twisted Proline:0%
Twisted-General: 0%

Cis-proline:25%
Cis-general:0%
Twisted Proline:0%
Twisted- General:0%

Cis-proline:0%
Cis-general:0%
Twisted Proline:0%
Twisted-General: 0%
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Supplementary Table S2.1 EMRINGER and Molprobity modeling scores. Obtained
between sharpened maps by Relion postprocessing and LocSpiral, and corresponding atomic
models after refining the structure against corresponding maps by Phenix real_space_refine
approach using 5 refining iterations
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Connecting text: Chapter 2 to 3

In the previous chapter, we demonstrated that cryo-EM maps with heterogenous SNR can be
processed using local improvement methods, which present better map connectivity while
enhancing the resolution of the resultant maps. The goal is to improve the interpretability and
visualization of the resultant cryo-EM maps. However, when macromolecules undergo large
conformational changes, high resolution structures are dependent on 3D classification methods
within the image processing workflow. These will determine the number of output conformations
showing the heterogeneity of the input dataset, and reveal fine structural details without the
artefactual blurring of multiple superimposed conformations. Therefore, the next chapter is
dedicated to the approaches to process dynamic macromolecules while exposing their various

conformation states.

109



CHAPTER 3

HIERARCHICAL AUTOCLASSIFICATION OF CRYO-EM
SAMPLES AND MACROMOLECULAR ENERGY
LANDSCAPE DETERMINATION

3.1 Abstract

3.1.1 Background and objective

Cryo-electron microscopy using single particle analysis is a powerful technique for obtaining 3D
reconstructions of macromolecules in near native conditions. One of its major advances is its
capacity to reveal conformations of dynamic molecular complexes. Most popular and successful
current approaches to analyzing heterogeneous complexes are founded on Bayesian inference.
However, these 3D classification methods require the tuning of specific parameters by the user
and the use of complicated 3D re-classification procedures for samples affected by extensive
heterogeneity. Thus, the success of these approaches highly depends on the user experience. We
introduce a robust approach to identify many different conformations presented in a cryo-EM
dataset based on Bayesian inference through Relion classification methods that does not require

tuning of parameters and reclassification strategies.

3.1.2 Methods

The algorithm allows both 2D and 3D classification and is based on a hierarchical
clustering approach that runs automatically without requiring typical inputs, such as the number
of conformations present in the dataset or the required classification iterations. This approach is

applied to robustly determine the energy landscapes of macromolecules.
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3.1.3 Results

We tested the performance of the methods proposed here using four different datasets, comprising
structurally homogeneous and highly heterogeneous cases. In all cases, the approach provided
excellent results. The routines are publicly available as part of the CryoMethods plugin included

in the Scipion package.

3.1.4 Conclusions

Our results show that the proposed method can be used to align and classify homogeneous and
heterogeneous datasets without requiring previous alignment information or any prior knowledge
about the number of co-existing conformations. The approach can be used for both 2D and 3D
autoclassification and only requires an initial volume. In addition, the approach is robust to the
“attractor” problem providing many different conformations/views for samples affected by
extensive heterogeneity. The obtained 3D classes can render high resolution 3D structures, while

the obtained energy landscapes can be used to determine structural trajectories.

3.2 Introduction

Cryo-electron microscopy (cryo-EM) using single particle analysis is a powerful technique for
obtaining high-resolution three-dimensional (3D) reconstructions of macromolecular structures in
a close-to-native state' . This structural information is essential to infer the biological processes
driven by macromolecular machines. Recently, this approach has broken the atomic resolution
barrier for the apoferritin sample thanks to improved hardware and software tools*°. Moreover,
this technique holds the promise of revealing the complete conformational variability of dynamic

macromolecular complexes at equilibrium.
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The most popular and successful approaches to analyze heterogeneous complexes are currently
founded on Maximum-likelihood or Bayesian inference®®. These methods simultaneously refine
multiple 3D reconstructions by marginalizing particle image likelihoods over missing information
such as particle’s orientation and conformation, and their robustness has been demonstrated by
numerous groups, such as'®'2. Moreover, the major advances of Bayesian methods are highlighted
by their capacity to infer the particle’s orientation and conformation simultaneously, and their
proven robustness to challenging cases, including particle images

showing low signal-to-noise-ratios (SNRs) and/or low contrast. Conversely, these approaches
require information from users, i.e., the number of classification iterations and the number of
conformations that are coexisting in the dataset (number of classes). Additionally, they are usually

affected by the “attractor problem”'-!

, the phenomenon where particles correlation is bias towards
classes containing more particles. Thus, Maximum-likelihood/Bayesian based methods may tend
to classify single particles according to the SNRs of the different classes rather than by the actual
conformation of the particles. This issue limits the capacity of these approaches to 1) provide many
different 3D classes showing different macromolecular conformations (they are usually limited to
deliver between 3-5 different reconstructions); 2) capture minoritarian conformations; and 3)
provide homogeneous classes that may produce high-resolution reconstructions. Several methods
have been proposed to alleviate these issues. Examples of these approaches include particle

1520 and robust methods for

“pruning” methods to filter incorrectly 3D classified single particles
2D classification, as in CL2D?! or GTM clustering®?. Unfortunately, extensions of these automatic

2D classification approaches to 3D are still pending. Thus, users pursuing to find an unknown

number of (many) different conformations from the particle set are required to perform difficult
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and tedious reclassification procedures, which require deep expertise on the technique and
sample?>~%6,

More recently, approaches have been proposed to process macromolecular assemblies showing
continuous flexibility. For example, Relion models these continuous changes in the
macromolecular structure by means of a number of user-defined rigid bodies that can change their
relative pose?’. In HEMNMA, macromolecular conformational changes are modeled using a set
of user-defined normal mode-based deformations®®. Continuous heterogeneity may be also
described using linear approaches as principal components analysis**>2, however, these methods
may show artifacts when large conformational deformations are poorly approximated by linear
approximations along a volume basis*. Deep learning approaches based on generative networks
were also proposed to capture the continuous motions of flexible macromolecules***°. These
approaches have shown their capacity to resolve continuous and discrete heterogeneity for large
complexes. However, the robustness of these methods to process smaller and lower contrast
samples has not yet been demonstrated. Moreover, these approaches require as input the
orientation of the single particles, a high-resolution consensus reconstruction, a large dataset to
train the network, and input parameters including the dimension of the latent space or the number
of epochs to train the network.

Methods that can provide many different conformations of a macromolecule are being used to

generate energy landscapes of the sample®68

. Energy landscapes allow to describe the
macromolecular motion in a comprehensive and quantifiable manner, determining, for example,
sorted conformational trajectories along different states. In*>*’, the authors determine many

different conformations by extensive manual 3D classifications with Relion to map the

conformational landscape into an energy landscape. This mapping is done by use of principal
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component analysis and the Boltzmann distribution that establishes a link between the energy of a
system, its temperature, and its population. This method requires the user to determine the two
PCA eigenvectors corresponding to the reaction coordinates to be analyzed. Note, however, that
reaction coordinates (and structural variability) may not be directly factorizable by PCA
decomposition using merely two principal components. Additionally, as explained above, PCA
decomposition may show artifacts when large conformational deformations are poorly
approximated by linear approximations along a volume basis. In*! authors empirically show that
latent encoding of particles in their software, CryoDRGN, is done such that structurally related
particles are in proximity. Thus, the particle’s latent space may be interpreted as a pseudo-
conformational landscape. However, as the authors pointed out, this interpretation is not
mathematically guaranteed, as the objective function aims to reproduce the distribution of
structures only.

In this work, we present a robust approach to obtain many different conformations from a
heterogeneous dataset without requiring previous alignment information or any prior knowledge
about the number of co-existing conformations. The approach is based on Bayesian inference
classification but works hierarchically. Thus, for each classification step, the data is classified into
a small number of classes, typically two, using Relion as our classification engine*?. The proposed
method automatically determines the number of required classification iterations to be performed
for each classification step. Moreover, the approach uses automated stop conditions to provide as
many 3D classes as possible, while avoiding unnecessary classifications. Consequently, for each
intermediate class, the approach automatically determines whether this data should be reclassified
again or not, continuing this workflow iteratively. Once this tree-based processing is finished, the

obtained structures can be used to build conformational and energy landscapes. To this end, we
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employ Isomap*, which is a nonlinear dimensionality reduction method to compute a quasi-
isometric, low-dimensional embedding of a set of high-dimensional data points. Other non-linear
dimensionality reduction methods such as LTSA*, Hessian LLE* or t-SNE*® may be used as well.
Finally, the obtained raw 3D classes can be clustered into final 3D classes where similar
conformations are grouped together automatically by the use of the affinity propagation
algorithm®’.

Our results show that the proposed method can be used to align and classify homogeneous and
heterogeneous datasets. The approach can be used for both 2D and 3D autoclassification and only
requires an initial volume. In addition, the approach is robust to the “attractor” problem providing
many different conformations/views. The obtained 3D classes can render high resolution 3D

structures, while the obtained energy landscapes can be used to determine structural trajectories.

3.3 Methods

In this work, we describe two main approaches. First, we present robust 2D and 3D
autoclassification methods. Second, we determine energy landscapes from the output of the

proposed hierarchical 3D autoclassification method.

3.3.1 Hierarchical 3D autoclassification

We present a robust and automated 3D classification approach that aims to determine many
different conformations presented in the dataset without compromising particle alignment quality
and resolution of the captured conformers. We term this approach as 3D autoclassification, and it
consists of the following processes: particle alignability estimation; hierarchical 3D classification

and 3D clustering. In Figure 3.1, we show a scheme of the proposed approach.
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Figure 3.1 Scheme of the proposed 3D autoclassification approach. From top to bottom:
first, the particle alignability is estimated for different subsets of particles by a ResLog plot (plot
of inverse resolution vs. the logarithm of the number of particles). Then, 3D classifications and
evaluation steps are performed in a hierarchical manner. When a 3D classification is finished, the
resulting classes are evaluated to determine if further reclassifications are required. Once all 3D

classifications are finished, the raw 3D classes obtained are aligned and clustered to produce final
3D classes.
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3.3.2 Particle alignability estimation

The approach first computes a ResLog plot (plot of inverse resolution vs. the logarithm of the
number of particles)*®* by randomly taking ten sets of particles between 10,000 and 100,000
images. The plot is obtained using the same initial model in all cases and performing 3D
classifications in one class with Relion to align particle images only. The ResLog plot is a quality
indicator of how well the particles are aligned and classified in a 3D reconstruction. The
hierarchical 3D classification step uses this ResLog plot as a baseline in posterior classification
actions to determine if it is convenient to continue reclassifying particle subsets or not. Note that
as we perform particle alignment and classification in each classification step, the alignment
accuracy may be compromized depending on the number of particles to be processed. Thus,
alignment/classification quality tests after each classification are performed using the
ResLog linear relation between the inverse of the obtained map resolution and the logarithm of
number of particles, so further reclassification of particle images is carried out only if the
resolution obtained is above the ResLog baseline. In cases where the number of particles is less
than 100,000, the ResLog plot is estimated using 10 random sets between 10% and 90% of the

images.

3.3.3 Hierarchical 3D autoclassification

The dataset is then 3D classified using a hierarchical approach. Our method uses Relion 3D
classification as its classification engine. In each classification step, the particles are divided into
a small number of classes, typically 2 or 3 at most, to avoid the “attractor problem™!. After each
classification, the method does an evaluation step to assess if the class may be further classified or
not. The evaluation uses a two-fold criterion: (1) the class number of particles should be higher

than a threshold provided by the user (typically 5000—10,000 particles) and (2) the class resolution
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provided by the classification method should be higher than the value provided by the ResLog plot
with this number of particles. If both conditions are met, then the class is further classified.

All classification steps run automatically without requiring any additional input from the user. The
classification iterations are determined on-the-fly by the following approach. In each classification
step, ten classification iterations are initially performed. Then, the average of the maximum
Bayesian probabilities (Pmax) between particles and classes, as outputted by Relion 3D
classification method with respect to possible particle’s orientation and conformation, are analyzed
for the last six iterations. Note that Pmax refers to the average value over all particles of the maxima
of their computed probability distributions. If Pmax values show a plateau curve along these last
iterations, it means that the classification = n step converged, and the process is automatically
finished. If not, five more classification iterations are included and checked again for convergence.
In case a classification step does not converge after 75 iterations, the process is automatically

stopped.

3.3.4 3D clustering (optional)

The aim of this step is to merge obtained 3D classes that represent similar conformations. Note
that the proposed Hierarchical 3D classification algorithm does not guarantee that the classes
obtained will be structurally distinct, so they may represent similar conformations. Indeed,
conformations that have a deep well in the energy landscape are likely to have multiple near-
identical class averages.

Each obtained 3D class has a class representative, which is the volume or map mimicking the
macromolecular conformation captured by this class. The first step of the 3D clustering process
consists of aligning all obtained class representatives or maps. This alignment procedure is done

effectively by spherical harmonics decomposition®?. After all volumes are aligned, the approach
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computes truncated principal component analysis (fPCA) capturing 90% of the observed variance
of the maps. Each map is then projected into the resulting fPCA base, obtaining a feature vector.
These vectors are used to determine structural differences between maps by calculating
the Euclidean distance (Euclidean =~ norm) between them. Then, the Affinity
propagation algorithm™ is used to generate 3D clusters. Affinity propagation is based on the
concept of “message passing” between data points, and its main advantage is that it clusters data

points automatically, determining the number of clusters or classes presented in the dataset.

3.3.5 Hierarchical 2D autoclassification

This approach focusses on obtaining as many different 2D classes as possible and is based on the
same hierarchical classification approach outlined before in Section 2.1.2. In this case, the method
uses Relion 2D classification™ as its classification engine, and hierarchically and iteratively
divides the dataset into a small number of 2D classes at each classification step, typically between
2 and 4. After each classification, the method automatically evaluates if the resultant classes may
be further classified according to the number of particles alone. Typically, further classifications

are automatically stopped, when the number of particles belonging to a given class is below 200.

3.3.6 Energy landscape determination

Once the dataset is processed by the Hierarchical 3D autoclassification approach presented above,
a large number of 3D classes are obtained. These 3D classes can be used to build an energy (or
conformation) landscape of the sample. To this end, first, the different maps obtained representing
different confirmations are realigned and encoded by means of feature vectors using the same
approach outlined in Section 2.1.3. As a summary, this process consists of (1) fast alignment of

maps by spherical harmonics decomposition®, and (2) map dimensionality reduction by truncated
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principal component analysis (fPCA), where 90% of the observed variance is captured. The
captured PCA basis represents orthogonal conformational coordinates controlling collective
conformational changes. The projection of maps onto this base (feature vectors) constitutes fPCA
coefficients determining the conformational state of each map. Note that these same feature vectors
could be used to directly build energy (or conformation) landscapes as previously proposed by
Haselbach et al.’>*%. These works assume thermal equilibrium to connect energy, population, and

conformation via the Boltzmann relation as

G,
n, oce "5’ 3.1)

Where, Gi and n; represent the Gibbs free energy and population at conformation k, ks is the
Boltzmann constant and 7 is the temperature. For a large ensemble of particles in equilibrium, Eq.
(3.1) can be used to obtain differences in the Gibbs free energy (AG) between states with

populations #; and 72 as

AG = —k,T log (ﬂj (3.2)

n,

Note that the structural information of each conformation can be approximated by the first two
PCA coefficients, while variations in the Gibbs free energy (AG) between conformations may be
computed from equation 3.2 using respective number of particles at each conformation (or 3D
class). In Eq. (3.2), the conformation (3D class) attracting the highest number of particles is usually
used as the reference (n2). Thus, a 2D energy landscape may be computed by respective 2D PCA
coordinates and obtained variations in the Gibbs free energy.

This approach assumes that conformational heterogeneity shown by particles in the dataset can be
well-approximated by linear approximations along a volume PCA basis and using two PCA

coefficients only. However, samples exhibiting large conformational deformations may be poorly
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represented by this method, thus, showing artifacts in the resulting energy landscapes®’. To
overcome this limitation, we project the n-dimensional feature vectors (capturing 90% of the
variance) into a 2D space using a non-linear dimensionality reduction approach. One possibility
to realize this mapping is to maintain the geodesic distances between pairs of feature vectors in the
reduced 2D space. This isometric mapping can be efficiently computed by the Isomap algorithm?®.
Other non-linear approaches that can be used by our method are Local Tangent Space Alignment

(LTSA)>, Hessian Eigenmapping®® and t-distributed stochastic neighbor embedding (t-SNE)®'.

3.4 Results

Four experimental datasets were used to test the proposed autoclassification methods. These
datasets, which are publicly available from the EMPIAR database®, are composed of cryo-EM
single particles of (1) L17-depleted 50S ribosomal assembly intermediates (EMPIAR-10,076); (2)
spliceosomal B-complex from yeast®®,(EMPIAR-10,180); (3) beta-galactosidase in complex with
a cell-permeant inhibitor®, (EMPIAR-10,061); and (4) AP-1:Artf1:tetherin-HIV-Nef complex®®
(EMPIAR-10,178). This last dataset is used to analyze our hierarchical 2D autoclassification
approach only.

The selected datasets comprise two different kinds of samples. On the one hand, the beta-
galactosidase shows low structural heterogeneity, while immature ribosomes and
the spliceosome show extensive heterogeneity. The goal of our methods is to obtain many different
conformations (or views for the 2D classifications) allowing us to capture underlying low
populated classes. This information may be used to build energy landscapes, trace potential
structural trajectories of the samples, and to detect and remove false positive particles (particle

screening).
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3.4.1 L17-depleted 50S ribosomal intermediates

This dataset consists of 131,899 particle images of immature E. coli large ribosomal subunits®® and
is publicly available from EMPIAR database (EMPIAR-10,076). The particles have a pixel size
of 1.31 A/px and a window size of 320 px. The dataset was collected on a Titan Krios using a K2
direct electron detector (Gatan). This dataset shows massive heterogeneity, and the authors of the
original publication® were able to identify 15 different conformations by extensive
3D classifications and reclassifications with Relion and deep expertise with the sample.

We processed this dataset with our proposed 3D autoclassification approach producing 65 raw 3D
classes by hierarchical 3D autoclassification, which were automatically clustered into 18 final 3D
classes. In each classification step, the particles were divided into 2 classes. The ‘number of
particles’ threshold, used to stop the automatic reclassifications, was set to 5000 particles to
produce a large number of 3D classes. Figure 3.2A and D show the obtained final (18) and raw
(65) 3D classes, respectively. Note that in Figure 3.2, we have labeled each 3D class with a letter
(‘A’,’B’,’C’,’D’,’E’) by visual identification with the original labelling done in the original work
of Davis et al.®. Additionally, although our automatic method can provide more different
conformations (18) than the manual approach followed in®®, the 3D autoclassification method
could not provide the 30S ribosomal subunit as a separate class (Class F in®). We believe that the
30S subunit was not distinguished as a separate class because the used initial volume. Note that
each 3D classification step uses as initial volume the previously obtained 3D reconstruction (or
the input one in the first iteration). Thus, if the employed initial volume is very different from the
target 3D class, the particles could not be aligned and classified properly. For the sake of
comparison, we include here the resolution reported in the original work®® for the different 3D
classes: Class A 6.5 A; Class B 4.5 A; Class C1 4.5 A; Class C2 4.6 A; Class C3 4.0 A; Class D1

4.7 A; Class D2 4.9 A; Class D3 4.6 A; Class D4 4.7 A; Class E1 4.2 A; Class E2 4.5 A; Class E3
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5.0 A; Class E4 4.5 A; Class F 7.9 A. Note that authors in®® employed a different reconstruction
workflow, using Frealign instead of Relion for refinement of particle alignments and map
postprocessing. Additionally, note that to accurately compare our results with the ones reported
in%, we would have to use the same solvent masks when postprocessing the maps. Thus, these
comparisons should be used only qualitatively to show that most of the obtained 3D classes are
similar in terms of resolution. Moreover, in Figure 3.2B, we show the obtained Gold-standard
FSCs computed after refining the different final 3D classes with Relion autorefine. As it can be
seen from this figure, the resolution of 3D reconstructions ranges between 4.2 and 6.9 A. Finally,
in Figure 3.2C, we show the energy landscape in kgTunits, computed from the raw 3D classes.
Note that this energy landscape is similar to previous landscapes obtained for this sample by other
approaches’’. Figure 3.2C also shows a structural trajectory using the computed energy landscape

and the corresponding sorted structures along this trajectory.
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Figure 3.2 3D autoclassification and energy landscape results for L17-depleted 50S
ribosomal intermediates. A) final 3D classes obtained after 3D clustering of raw 3D classes
(shown in Figure 3.2D) with the obtained resolution after refining final 3D classes with Relion.
The classes are labelled and colored according to their similarity by visual inspection with classes
presented in the original publication. B) Gold-standard FSCs determined after refining final 3D

classes with Relion autorefine. C) Energy landscape in kpT units computed from raw 3D classes.
D) Raw 3D classes obtained in the Hierarchical 3D autoclassification step.
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3.4.2 Spliceosomal B-complex dataset

t%3 and

This dataset is composed of 327,490 particle images of a spliceosomal B-complex from yeas
is deposited and publicly available from EMPIAR database (EMPIAR-10,180). The deposited
particle images correspond to “shiny” particles after Relion particle polishing that were
downsampled to 1.699 A/px and windowed to 320 px. The dataset was collected on a Titan Krios
using a K2 direct electron detector (Gatan).

This particle set was processed using the proposed 3D autoclassification approach producing 102
raw 3D classes that were automatically clustered into 14 final classes. In each classification step,
the particles were divided into 2 classes and the ‘number of particles’ threshold to stop the
automatic reclassifications was set to 5000 particles to produce a large number of 3D
classes. Figure 3.3A shows the obtained final classes, while in Figure 3.3B we show the raw 3D
classes for classes 1, 2, 3, 7,9, 13 and 14, which are labeled with different colors. In Figure 3.3C,
we show the obtained energy landscape for the spliceosomal B-complex, computed using the 102
raw 3D classes previously obtained by the 3D autoclassification approach. Finally, Figure 3.3D

shows obtained sorted conformations along the structural trajectory displayed with a blue line in

the energy landscape in Figure 3.3C.
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Figure 3.3 3D autoclassification and energy landscape results for the spliceosomal B-
complex. A) Final 3D classes labelled with class numbers after clustering of obtained raw 3D
classes. B) Subset of raw 3D classes obtained, labelled by colours for class numbers C) Calculated

energy landscape in kyT units from computed raw 3D classes with a defined structural trajectory

marked with blue lines. D) Corresponding conformations for the structural trajectory shown in
O).

3.4.3 Beta-galactosidase in complex with a cell-permeant inhibitor
dataset

We use beta-galactosidase single particles to show the capacity of the method to process
structurally homogeneous datasets. The dataset consists of 1539 micrographs with a pixel size of
0.32 A/px collected on a Titan Krios microscope using a K2 direct electron detector (Gatan). This
dataset is publicly available from EMPIAR database (EMPIAR-10,061). The CTF parameters
were estimated using CTFFIND4%7 and we use the same 2D coordinates employed in the original

work® for particle extraction, which are available from EMPIAR. The extracted particles were
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downsampled four times and classified with Relion to obtain 2D class averages with
improved SNRs. These 2D class averages were used then to obtain 8 de novo initial maps by the
RANSAC approach®®. The volume selector method®® processed these maps, using subsets of 5000
particles randomly selected, providing a single initial volume suitable to be used by our 3D
autoclassification approach as reference map.

The particle set was then processed using the proposed 3D autoclassification approach producing
four raw 3D classes after the hierarchical 3D classification step, which were clustered into two
final 3D classes by the 3D clustering step. In each classification step, the particles were divided
into 2 classes and the ‘number of particles’ threshold was set to 10,000 particles. In Figure 3.4, we
show the obtained intermediate results by the 3D autoclassification approach and the final 3D
classes. As can be seen from Figure 3.4A, the output final classes consist of one major 3D class
(Class 7), which accumulates 37,154 particles (90% of the dataset) and a minor one (Class 8)
containing 3958 particles. This minor class may be composed by a large percentage of low-quality
particles, as the refinement of the complete dataset with Relion (41,122 particles) produces slightly
lower quality results than the reconstruction obtained with Class 7 particles only (37,154 particles)
(see corresponding FSC curves in Figure 3.4C). In Figure 3.4B, we show the refined 3D map
produced by Class A after sharpening with Relion. Finally, we show in Figure 3.4D and E obtained
2D class averages by the 2D autoclassification approach and by Relion 2D classification method
respectively. As can be seen from these figures, our approach is able to produce a larger number
of meaningful 2D class averages as it is less affected by the attractor problem. Finally, we have
removed particles belonging to 2D classes capturing a low number of particles after 2D
autoclassification to show the capacity of the autoclassification method to improve the

homogeneity of cryo-EM datasets. This results into a dataset composed of 36,879 particles, thus,
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we removed 4243 particles (~10% of the dataset). This dataset produces a reconstruction at 2.81 A
resolution that was automatically sharpened by Relion with an apply B-factor of —=72.5 A2 Note
that the original dataset composed of 41,122 particles produced a postprocessed reconstruction at
2.81 A, automatically sharpened by Relion with a B-factor of —72.9 A% Moreover, the major 3D
class (Class 7) obtained by the 3D autoclassification method and composed by 37,154 particles
produced a postprocessed reconstruction at 2.78 A? automatically sharpened by Relion with a B-
factor of —71.8 A2 These results show that the proposed autoclassification methods can produce

improved 3D reconstructions as measured by resolution and B-factors.
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Figure 3.4 3D and 2D autoclassification results for beta-galactosidase in complex with
a cell-permeant inhibitor. A) Intermediate 3D classes obtained in the hierarchical 3D
classification and clustering steps with corresponding populations and resolutions. B) 3D map
computed by refinement of Class A particles only with Relion autorefine. C) Resulting Gold-
standard FSCs after refining Class A particles (blue curve) and Class A + Class B particles (orange
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curve) with Relion autorefine. D) 2D class averages obtained by the 2D autoclassification
approach. E) 2D class averages obtained by 2D classification method of Relion.

3.4.4 Complex AP-1:Artf1:tetherin-HIV-Nef

This dataset comprises 53,841 particles collected on a Titan Krios using a K2 direct electron
detector (Gatan) in super-resolution counting mode. The nominal magnification is 22,500X
providing a calibrated pixel size of 1.07 A/pixel and is available from EMPIAR-10,178. Each
particle image is 224 x 224 pixels in size and the CTF parameters are available from EMPIAR.
We used this dataset to test our proposed 2D autoclassification approach. Thus, we performed 2D
classification using both the proposed approach and Relion 2D classification. The ‘number of
particles’ threshold to stop the automatic reclassifications in our approach was set to 200 particles
and we asked for 220 classes in Relion 2D classification. The 2D autoclassification approach
yielded 198 2D classes (Figure 3.5A). As can be seen from Figure 3.5A, among these 198 2D
classes, only 23 show low SNRs and should be removed for further processing steps.
In Figure 3.5A, we mark these low SNR classes with red squares. On the other hand, Relion 2D
classification generates many blurred and low quality 2D classes, with only 70 classes out of 220
showing appropriate SNRs. Figure 3.5B renders the 2D class averages computed by Relion, where

good classes with high SNRs are marked with green squares.
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Figure 3.5 2D autoclassification for the complex AP-1:Artfl:tetherin-HIV-Nef. A) 2D class
averages obtained using the proposed 2D autoclassification approach. Class averages enclosed in
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red squares represent “junk” classes and should be removed from the workflow. B) 2D class
averages obtained by Relion 2D classification. Class averages enclosed in the green box represent
good 2D classes with acceptable signal-to-noise ratio.

3.5 Discussion

Cryo-EM using single particle analysis is a mature and powerful technique to obtain 3D
reconstructions of macromolecules in near native conditions at atomic resolution. One of its major
advances is its capacity to reveal conformations of dynamic molecular complexes. Most popular
and successful current approaches to analyze heterogeneous complexes are founded on Bayesian
inference*”!1’2, These methods can classify cryo-EM particles according to their conformation,
obtain their 3D orientation simultaneously, and have shown their robustness and capacity to
process challenging datasets. These challenging cases include small and large samples, datasets
affected by large numbers of false positive particles and/or particle images showing low signal-to-
noise-ratios (SNRs) or low contrast. According to the Electron Microscopy Databank, the Relion
3D classification approach accumulates 2594 records for final 3D classification out of 3362
released entries (77%). However, these 3D classification methods require the tuning of specific
parameters by the user, as the number of classes or the refinement iterations. Moreover, these 3D
classification approaches are affected by the ‘attractor problem’ that limits the number of different
classes that these methods can discern within the data, irrespective of the number of classes
selected by the user. This limitation imposes the use of complicated 3D re-classification
procedures, whose success highly depends on the user's experience. Recently, deep-learning
approaches to 3D classification of single particles have been implemented, for example®”-°. These
approaches have shown their capacity to resolve continuous and discrete heterogeneity for large

complexes. However, the robustness of these methods to process more challenging cases as smaller
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and lower contrast samples has not yet been demonstrated. Moreover, these approaches require as
input the orientation of the single particles, a consensus high resolution reconstruction, a large set
of single particles to train the network (note that for cryoDRGN typically both the decoder and the
encoder requires 3938,306 parameters to be trained), the dimension of the latent space and the
number of epochs to train the network.

In this work, we propose automatic 3D and 2D classification approaches based on Bayesian
inference through the Relion classification methods but working in a hierarchical fashion. These
methods, which use Relion as the classification engine, allow unsupervised and automatic
classification of single particles and do not require users to provide information such as the number
of coexisting conformations in the dataset, or the number of classification iterations to be
performed. The approaches described here prevent the attraction of different particles into classes
with high SNRs and the use of complicated manual reclassification approaches. Thus, these
methods will reduce the level of expertise required to process cryo-EM data, especially for difficult
projects with samples showing massive heterogeneity. Therefore, users with reduced expertise in
single particle image processing will be able to generate large sets of classes (either 2D or 3D)
using a single and simple protocol without difficult-to-tune input parameters or reclassification
approaches. In addition, our method will be useful in high-throughput streaming approaches,
reducing the necessity of user intervention. Also, it can identify conformations of low population
in the dataset. The proposed method is more computationally expensive than a normal 3D
classification process in Relion. However, users processing datasets affected by extensive
heterogeneity that have no clue about the number of coexisting conformations, are required to run
multiple rounds of 3D classification using typically different inputs (number of 3D classes and

initial volume), and intense further reclassification procedures. This workflow is based on trial and
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error, and it is driven by the user’s experience, thus, it could be very time consuming, subjective,
and difficult to reproduce. As reference, we provide our processing times for the 3D
autoclassification of 131,899 immature ribosomal particles (~ 18 h), 41,122 beta-galactosidase
particles (~ 7 h) and 327,490 spliceosomal particles (~ 40 h). In all cases, we used a processing
server equipped with 6 Nvidia Titan X GPUs.

The proposed approach has been tested with four different datasets comprising both homogeneous
and heterogeneous samples. The first case is the L17-depleted 50S ribosomal intermediates that
represent immature ribosomal 50S subunits showing extensive compositional heterogeneity. The
proposed 3D autoclassification approach provides 65 raw 3D classes that were automatically
clustered into 18 final 3D classes. These final classes could be refined to 3D reconstructions
ranging between 4.3 and 6.9 A. Moreover, the 65 raw 3D classes were used to compute an energy
landscape of macromolecules. Secondly, we processed single particles of the spliceosomal B-
complex from yeast, which also shows massive conformational heterogeneity. As in the previous
case, we could compute many different raw 3D classes (102 3D classes) that were automatically
clustered into 14 final 3D classes. The raw 3D classes were used to build an energy landscape and
to trace sorted structural trajectories. Then, we processed the beta-galactosidase in complex with
a cell-permeant inhibitor, which represents a homogeneous set. We obtained 4 raw 3D classes, that
were automatically clustered in two final 3D classes, one major (90% of the dataset) and one minor
(10% of the dataset). The minor class seems to be composed of a large percentage of low-quality
particles, as the refinement of the complete dataset with Relion (41,122 particles) produces slightly
lower quality results than the reconstruction obtained by the major class only (90% of the dataset).
This shows that the proposed approach can be used for particle screening as well. Finally, we

processed the Complex AP-1:Artf]:tetherin-HIV-Nef to test the 2D autoclassification method. In
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the case of the 2D autoclassification, we have shown that the proposed 2D autoclassification
approach can provide more meaningful 2D class averages than the Relion 2D classification
method, including low-populated views and reducing the number of empty classes as it is less
affected by the attractor problem. Thus, the 2D autoclassification approach can provide large
numbers of 2D classes, which can be used, for example, as input for ab initio initial map algorithms
to improve the accuracy of these methods and to obtain initial maps of low populated

conformations.

3.5.1 Software and data availability

The presented methods are included in our software package CryoMethods under the names 3D
autoclassifier, 2D autoclassifier and ML _landscape. The source code is freely available under the
terms of an open-source software license and can be downloaded from https://github.com/mcgill-
femr/cryomethods and https://github.com/mcgill-femr/scipion-em-cryomethods. These methods
can be used through Scipion platform https://github.com/I2PC/scipion. All data used in this work
is publicly available from EMPIAR database under the following codes EMPIAR-10,076,

EMPIAR-10,180, EMPIAR-10,061 and EMPIAR-10,178.
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CHAPTER 4
OVERALL DISCUSSION AND SUMMARY

The discussion chapter is structured in two sections. In the first one, I present a discussion of each
of the included papers in this thesis, in the same order in which they appear in chapters 2 and 3.
The second section addresses the challenges overcome by the described methods as well as the
contribution of this thesis work in the field of cryo-EM using SPA, reflecting upon the biological

significance and future expectations.

4.1 New methods to improve cryo-EM map locally at high-resolution for
building an accurate atomic model

In cryo-EM, attaining a high resolution is very important to build an atomic model*??, thereby
allowing us to achieve the structural understanding of a macromolecule of interest, and proferring
clues as to its function in vivo. However, cryo-EM maps with different local SNR or heterogeneity
can hinder our understanding. A significant impact of such heterogeneity is the contrast loss at
high-resolution in cryo-EM maps due to the delocalization of density features as domains move or
manifest a different occupancy of binding partners.

The publication included in this thesis' of chapter 2 shows a new way to use the 3D spiral phase
transform (having been heretofore employed in particle screening”®, CTF estimation**® and
local/directional resolution determination?”->*) to recover continuity in broken map densities and
provide better map connectivity for heterogenous cryo-EM maps for effective atomic modeling.
These methods are incorporated in the cryo-EM workflow as part of sharpening techniques (used
as a post-processing step), which is a well-established practice used at the end of reconstruction to
enhance interpretability of the map (i.e. improve map contrast), and therefore to trace the atomic
model.
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Several published methods have already used our robust techniques to achieve their respective
goals as discussed in section 4.3.2. All these results from our publication of chapter 2 and

citations?** 24!

indicate that the proposed sharpening methods increase the interpretability of
reconstructed maps. It has been observed that most of the EMDB deposited cryo-EM maps are
sharpened maps?*>. This allows sharpening methods to be a currently active area of methods
development?*°24!,

However, sometimes when the main focus is sharpening the cryo-EM maps, experimental map
signals can be easily lost due to oversharpening, which leads to losing the true structural
information of the macromolecule. Therefore, one of our goals here was to maintain the original
experimental signal properties when performing map enhancement, which has been achieved by
boosting the local map amplitude values, while not using inputs such as atomic models as a
reference or local resolution estimation. As methods improvement is an ongoing task in cryo-EM,
our approach (LocSpriral and LocOccupancy) depends on reliable solvent masks, to differentiate
the macromolecule from the noise.

A surge in cryo-EM-generated atomic models has occurred due to the increased deposited number
of cryo-EM maps with high resolution. For building an atomic model, cryo-EM maps are generally
post-processed to increase the contrast of their high-resolution features, instead of starting from
the raw maps, but there is no standardized approach for how this is done. Since our proposed
method directly contributes to high-quality post-processing operations by local sharpening, it is

our hope that this work will augment the suite of tools that can be used for a community consensus

approach for map sharpening and validation.
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4.2 Analysing heterogeneous data in the form of automatic 3D
classification and trajectory

Cryo-EM has the potential to analyse heterogeneous data of a biomolecule for uncovering its
various conformations. The publication presented in chapter 3 introduces a new automatic method
to perform 2D or 3D classification for heterogenous cryo-EM data and to generate a free-energy
landscape, without requiring knowledge of the number of conformations present in the dataset or
the number of iterations over which to classify. Using controlled parameters, we have discovered
that the type of 2D and 3D classification method and choice of linear or non-linear manifold
embedding are very important factors to analyze the conformations of a given macromolecule.
The aim of our proposed 2D autoclassification approach (in chapter 3) is to provide many different
2D views, including low populated ones. According to this main objective, it is clear from our
results that our approach performs better than Relion 2D classification. However, it is also true
that Relion yields superior screening particle images that originate from artifacts, pure background
or very low SNR. We cannot assure that particle picking will not generate false positives. Even so,
our method shows meaningful improvement as compared to Relion, e.g., our 2D autoclassification
approach yielded 198 2D classes (as can be seen from Fig. 3.5A), of which only 23 harbour low
SNRs (marked with red squares and should be removed for further processing steps). On the other
hand, Relion 2D classification generates many blurred and low-quality 2D classes, with only 70
classes out of 220 showing appropriate SNRs. From this perspective, our approach emerges as a
refreshing triumph, even if it scores less successfully vis-a-vis particle screening.

To be sure, our approach is based on Bayesian inference through Relion classification, albeit
working in a hierarchical fashion. This means that some obtained raw 3D classes could represent
the same conformation or very similar conformations. To help the interpretation of the results and

avoid cases where the 3D classes are very similar or just the same, our approach can run a final
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clustering test, which is optional. Thus, both the raw 3D classes and the obtained classes after
clustering are important and complementary information that should be analysed.
The output of our approach is not biased towards major classes as per standard Bayesian

methods91,155,228,243

,1.e. 1s not affected by the “attractor problem”, as our propped method classifies
particles based on their actual conformations instead of their SNRs. Therefore, the resultant classes
are high- as well as low-populated (in terms of particle population).

The free energy landscape provides a system where the potential energy is defined as a function
of all coordinates®**. Ergo, the “story of the sample” can be discovered by analyzing the trajectory
of conformation changes for a dynamic macromolecule. The purpose of using different machine
learning techniques in our method (PCA, non-linear manifold embedding) is described in section
4.3.1.

On a free-energy landscape, it is important to recognize the meta-stable states, activation barriers
as well as transition states for a macromolecule, which are key to biomolecule function. Generally,
the lower energy path of the free-energy landscape decides the trajectory of changing
conformations for a macromolecule, which includes lower energy meta-stable states separated by
high energy transition states and activation barriers. If the experimental sample information is
previously known, such as number of transitioning, active or inactive states present, it can be
compared with obtained energy landscape to confirm the trajectory. However, a method to
determine the optimal trajectory path remains to be developed.

Although not discussed explicitly in this thesis, it is important to note that free-energy landscapes
obtained directly from experimental cryo-EM datasets are reflections of the sample preparation

methods used before freezing the sample on a grid. These preparative methods can have a dramatic

influence on the output of the free-energy landscapes. For example, temperature plays a key role
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in determining the free-energy landscape as per Egs. 3.1, 3.2. These equations are based on the
assumption that cryo-EM samples undergo instant vitrification and therefore various states of a
macromolecule are trapped in the ensemble just before freezing. It matters whether the sample was
at 4 °C or 22 °C prior to vitrification. However, in the real world, vitrification is a slow process
and hence can generate artificial energy barrier conditions. As such, this freezing process itself can
affect the outcome, and our equations require further evaluation in the cryo-EM field to generate
effective free-energy landscapes.

The landscape that we obtain in chapter 3 represents the energy landscape of the reaction catalysed
by the removed ribosomal protein rather than showing a molecular free-energy landscape (Fig.3.2).
These landscapes are very interesting to trace trajectories in ribosome biogenesis for determining
the sequence of conformations towards ribosome maturation.

Our approach’s robustness has been proven over various samples and has shown noteworthy
results, as conclusively demonstrated in chapter 3. Shortcomings in the form of future goals of this

method, along with others proposed in this thesis, are discussed in section 4.5.

4.3 General discussion and contribution

3D-EM has advanced progressively since its first application to the T4 bacteriophage tail>*.
Interest in the cryo-EM for structural analysis has spiked over the last years by virtue of its ability
to achieve atomic details, which were previously observed only in X-ray crystallography. Around
the world, institutions and drug companies are setting up cryo-EM facilities and providing
employment at a significant rate. This all happened because of new instrumentation, robust image
analysis methods, and automation in data collection and analysis. To achieve atomic details in a

macromolecule, cryo-EM had to overcome numerous obstacles. Some of these are outlined below:
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Automation of image processing methods is essential and a major challenge to increase their
throughput. Using an automatic algorithm can (i) reduce the errors in structural determination
workflow introduced by the user’s lack of right judgment or less expertise on the given technique;
(i1) reduce the time and effort required to achieve the desired goal; and (iii) provide high-
throughput results. Our approach (described in chapter 3) serves this goal of automation but does
not require input information from the user, such as number of conformations present in cryo-EM
data and the number of iterations per classification step.

Cryo-EM faces major challenges when dealing with heterogeneous samples. Heterogeneity can be
caused by a macromolecule’s domain flexibility, which can hinder achievement of high-resolution
3D reconstructions. When the resolution is globally measured, small changes in the map generally
go unnoticed as they do not affect the resolution value. Therefore, a close inspection of the cryo-
EM density map is required which can show the blurred regions which do not possess the same
resolution as the global value and can be caused by unaccounted sample heterogeneity. Ergo, this
local heterogeneous distribution of resolution is vital to recognize superior 3D reconstruction
quality and ultimately evaluate the atomic model. I have already discussed several methods in
chapter 2, section 2.2, which describes the need for a sophisticated method to analyse these local
resolutions in a map, and also introduces methods to improve the interpretability of a heterogenous
cryo-EM map. Chapter 3 furnishes details about analysing various functionally relevant
conformations of a structure, which generally requires classification of the particle images into
structurally homogeneous subsets to achieve most of the conformations present in cryo-EM.
Some conformational heterogeneity of a macromolecule can go unnoticed, due to lack of advanced
2D or 3D classification approaches, which requires user input to provide number of final output

conformation and iteration, thus might lead to a misinterpretation of the resultant structural
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heterogeneity. Such a limitation can hinder the comprehensive interpretation of biological function
concerning the conformational changes. Both the proposed approaches, described in chapters 2
and 3 explain in the description, the heterogeneous samples and the methods to deal with such
data.

In case of a model-building challenge, it can be difficult to find an algorithm designed to fit an
atomic model to density maps of various structures. Software tools are available to generate high-
quality models, however, these methods require further analysis and generate new approaches to
better assess model correctness, because, for example, 50% of the EMD database deposited maps
were generated using a single software tool, missing chances to perform a broader assessment of
algorithms®*. Occupancy values (defined in chapter 2, section 2.2, along with B-factor values) are
the additional important parameters to refine an atomic model for adequately representing the
experimental map. Additionally, there is no package currently available among cryo-EM
techniques that can measure occupancy maps locally. Presence of unrealistic occupancy values,
which has been reported in 31% of all models deposited in PDB and EMDB, resulted in very low
correlation coefficient values between the model and the corresponding experimental maps. This
issue can be addressed using an automated or semi-automated technique. Our method introduced
in chapter 2 describes a semi-automated technique that generates better quality atomic models
along with local occupancy maps calculations for heterogeneous data without the need of input
parameters such as atomic models or local resolution maps.

Our proposed methods (chapter 2 and 3) not only deal with these limitations of single-particle
cryo-EM but also provide excellent results. The motives of introduced approaches are to:
improve de novo model building

process cryo-EM map with different SNRs
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design automated or semi-automated cryo-EM image processing methods

process heterogeneous data by the automatic Bayesian-based classification approach

analyse the trajectory for a dynamic macromolecule

Moreover, by combining algorithms from both of our publications, high resolution conformations
can be achieved. For example, if the input is maps affected by inhomogeneous local
resolutions/SNRs and broken densities, our local map enhancement approach (LocSpiral)!
(mentioned in chapter 2, section 2.3.1) can be used to obtain maps with better connectivity. These
high-quality maps can be harnessed as initial volumes to reclassify the cryo-EM particles
according to our automatic hierarchical clustering approach for performing 2D/3D classification
(described in chapter 3)%, which will then be able to process massive heterogeneous data. This
higher or N dimension output can be further reduced using a non-linear dimensionality reduction
algorithm as explained in chapter 3, thereby obtaining the free-energy landscape representing the
conformational changing trajectory of a macromolecule at a comparatively better resolution.
These approaches employ various easy-to-use tools and reliable algorithms, which have already

been tested in various publications, as mentioned below.

4.3.1 Machine learning algorithm

The proposed methods in the thesis make excellent use of machine learning tools, such as the
specific machine learning implemented in chapter 3 to generate a free-energy landscape. By
reducing high-dimension data to lower dimensions, these tools facilitate the quest for meaningful
visual perceptions. Such reduction works analogously to how the human brain converts input

sensory information from 3*10* auditory nerve fibres or 10° optic nerve fibres into the minimum
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required number of relevant features. The same holds true in other fields such as global climate
patterns or human gene distributions.

There are several classical linear approaches employed for this purpose, such as PCA**’ and
MDS?®, which can accurately reduce the datasets on or near a linear subspace of the high-
dimensional input space. However, complex datasets contain non-linear structures, which both
PCA and MDS fail to detect. A non-linear manifold can be described as heterogenous cryo-EM
data.

In a simplified form, it can be shown as in Figure 4.1. Classical methods (Figure 4.1(a)), determine
the Euclidean structure; thus, they fail to detect the intrinsic geometry of the data. By
contradistinction, non-linear methods (Figure 4.1 (b)) use the geodesic distance, or short path, by
calculating manifold distances between all pairs of data points, as it captures the non-linearity of
the manifold. There are several tools for nonlinear dimensionality reduction such as LTSA**,
Hessian LLE*? or t-SNE?!, and isomap?*?. Our method in chapter 3 used isomap for generating a
free energy landscape, while the other mentioned nonlinear manifold approaches can be
implemented as well. Isomap reduces the dimension by preserving the geodesic distance in lower
dimension. Here, isomap is not taking the Euclidean distance between data points into account,
because the Euclidean distance neglects the shape of the manifold while reducing the dimension,
whereas geodesic distances are measured according to the manifold shape, as explained in Figures
4.1A and 1B. The output of non-linear manifold embedding, used in our method, is in the form of
vectors yi in the lower dimensional space that preserves the intrinsic geometry of the input high-

dimension data®>2.
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Figure 4.1: Non-linear dimensionality reduction for isomap. Various forms of distance
measurements methods in high dimension data are shown for non-linear data or in this case
‘swiss-roll’ form: a) Euclidean distance (dotted line) and geodesic distance (solid curved line). b)
2D data recovered preserving the shortest distance. c) True geodesic distance (red line) is now
shown in a simple and clean approximation (blue line). (Reproduced with permission from
Tenenbaum J.B. et al. 2000 from*>?).

4.3.2 Map enhancement approaches (LocSpiral)

Our LocSpiral approach (Chapter 2) has been used in several publications and proven to be

successful with efficient results as follows:
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e This method helped to recover the broken density for segment M89-K 101 due to flexibility
or 16 nm averaging of the cryo-EM data, in the case of the model of C. reinhardtii PACRG
(B1B601)>3.

e For high-resolution cryo-EM map of Tetrahymena doublet microtubule, LocSpiral method
helped to achieve de novo model building®*.

e Tetrameric ArnA cryo-EM map had broken densities due to carboxylase domain
movement. Better map connectivity was observed after using our algorithm of
LocSpiral®®.

e Enhanced the structure analysis and interpretability for ligand-bound IR-ECD?3,

e Fragmented densities of 30S subunit due to flexible conformation were improved to

achieve an informative molecular model®’.

4.4 Biological significance

The methods identified in this thesis have the purpose of dealing with heterogeneity as well as
producing better-quality atomic models by using automated or semi-automated methods to process
cryo-EM data. The final goal is to understand the molecular structural and structural dynamics of
a biomolecule. To that end, the higher the structure quality, the better is the interpretation of its
functioning.

In structural analysis techniques, cryo-EM has gained an exemplary reputation over the years to
provide near-atomic resolution maps for a diverse range of macromolecules between tens to
thousands of kilodaltons. An atomic model of cryo-EM maps elucidates the molecular interaction
of macromolecules in chemical and physical terms, in addition to revealing other information such

as 3D structure analysis, comparison between different macromolecule structures, details on
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complex formation between different biomolecules and prediction of structures of new related
macromolecules. Being a strong graphic tool, the atomic model also helps to uncover side-chain
interactions, binding pockets, and catalytic regions, which generally lays the foundation for drug
discoveries. Along with improving atomic model quality, our proposed method (in chapter 2) has
enhanced the analysis of the cryo-EM map. For example, in the case of the SARS-CoV-2 structure
(chapter 2, section 2.3.6), our technique was not only able to improve the visualization of deposited
EMD maps but also helped to include additional motifs.

Among various structural biology techniques, cryo-EM is the one to hold potential for processing
both sample heterogeneity and inherent flexibility. Macromolecules as dynamic machines undergo
conformational rearrangement during the cellular process to perform several biological
functions?>®. These movements can be classified as discrete or as occurring along a continuum of
several conformations, where either one subunit or several subunits of a macromolecule complex
moves independently of each other. Tracing these conformations is of key importance to
understanding a high-resolution structure and hence the function of the protein complex of interest.
Many of these protein complexes are in therapeutics development studies. Researchers can even
visualize the effect of drug binding on macromolecular complex structures in the form of energy
landscapes. In Haselbach et al, 20172, cancer drugs are shown to impact the structure of the 26S
proteasome on a free-energy landscape. Methods (proposed in chapter 3) to gain information like
this have the potential to unravel the mystery of various unanswered questions regarding the
trajectories for a germ’s key macromolecules, e.g., how drug binding (like the above-mentioned
example) can modify the energy landscape of conformational motion in a germ’s macromolecule

and will play a key role in therapeutics production.
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4.5 Future Goals

4.5.1 Normal Mode Analysis

As discussed in the publication of chapter 3, the free-energy landscape consists of high energy
regions, where few to no cryo-EM maps are present, as well as lower energy regions that represent
most of the maps. It is possible that during all image processing algorithms, some of the
information of a macromolecule can be lost because the image processing pipeline is not ideally
perfect. In the case of heterogeneous data, after the 3D classification step of the cryo-EM image
processing pipeline (chapter 1 section 1.4.4.7), the resolution obtained may be limited by the
particle count belonging to the 3D homogenous classes. Therefore, some minor classes do not have
enough observations to show the secondary structures, which leads to untraced conformations.
While generating the free-energy landscape in chapter 3, these untraced conformations leave
visible gaps in the conformational space, thereby hampering the trajectory analysis of a flexible
macromolecule.

The future optimistic goal is to fill these gaps or lower energy spaces on the free-energy landscape
as much as possible. To that effect, NMA?%6! can be a major contribution to the free-energy
landscape algorithm. It is a powerful computational tool that helps to analyse the large-amplitude
motions as a collection of simple harmonic oscillations vibrating around an energy minimum as
shown in Figure 4.2. This method can have an algorithm as followS:

1. 3D classes obtained from the automated 3D classification method (explained in chapter 3,
section 3.3.1) can be used as an input, which will represent the various states of
conformations present in a given cryo-EM data.

2. This obtained set of 3D classes is considered as a sampling point in a corresponding free-

energy landscape. To fill the gap in the conformational space of the obtained free-energy
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landscape, information around each sampling point is extended by considering each class
as pseudo-atoms, which will be synthetically perturbed using NMA?260:261,

. NMA works by taking each input class as a reference class to predict its movements and
then aligning (with elastic 3D-to-2D alignment procedure) with the EM images to verify
whether the predicted movements actually transpired in the sample. Finally, the reference
structure is deformed into a set of conformations using possible directions of the
conformational change predicted by NMA.

. A common resolution will be achieved using a low pass filter for both originally obtained
3D classes and those obtained by NMA perturbation. These resultant classes are used by
the same automated 3D classification method, used initially in point 1, as initial maps.

. This resultant large conformational space can be used to generate free-energy landscape as

per our method described in chapter 3.
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Figure 4.2: Description of NMA. a) Simple harmonic oscillator: m represents the particle, k is

force constant of a spring attached to m and x is the displacement. b) Rugged surface (dotted) is
the real energy of biological sytems and harmonic surface (plain line) represents the NMA.
¢) Equipotential points of a parabolic force field in a 2D space are described by contour lines
here. Blue axis represents the cartesian coordinates while red axes are for NM coordinates.

Particle’s motion is explained according to which coordinates are pertinent (one axis if on one of
the NM axes, both axes if on any of the Cartesian axes). d) Three types of motion for water molecule
as predicted by NMA (symmetric stretching mode, asymmetric stretching mode, bending mode),
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with arrows showing the direction of motion of an atom measured by normal-mode theory. This
figure is reproduced with permission from Lopez-Blanco JR et al, 2014 from*$%,

Some of the macromolecules such as ribosomes exist in various intermediate conformations before
the mature state. Such a large-scale conformational pathway cannot be achieved by current
computational algorithms. In the typical cryo-EM 3D reconstruction process, most of the structures
are not further analysed because of the low particle abundance. This limitation hinders the correct
structural analysis of macromolecular complexes. However, with the aid of NMA, various
conformational states, representing major as well as minor classes, can be accessed. This
information can then be mapped to our multidimensional free energy landscape algorithm (chapter

3, section 3.3.3) for visualization and interpretation.

4.5.2 To deal with macromolecules with large conformational changes

While using the algorithms in chapter 2, to perform sharpening and evaluating atomic model, it
should be noted that:

e In case of measuring the map signal and occupancy maps', it is possible that when a sample
is showing large conformational changes, proposed methods can observe lower density
values and give a close-to-zero occupancy value.

e These proposed sharpening methods work well if 3D classification has been carefully
executed. Otherwise, macromolecules with compositional heterogeneity can show density
values of a significant amount on output 3D maps, which should be empty in actuality.

These concerns point out that dealing with high amount of heterogeneity and 3D-classification
step of the cryo-EM workflow are the crucial aspects to consider to refine our proposed algorithms'

in the future. Therefore, if there will be a 3D classification method in the future, that can analyse
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the heterogeneity to generate high-resolution cryo-EM maps, finer than the existing standard
methods®!-243-263264 (which cannot trace 3D classes with lower-particle count), then our technique
will prove invaluable to analysing map signals and density values. In this case, one of the solutions
to consider for processing massive heterogeneous data can be our automatic hierarchical
clustering-based 2D/3D classification approach introduced in chapter 3, which can render a
significant number of conformations, even including the ones with low particle population because
this method is not affected by the attractor problem???*, the latter being commonly present in

standard Bayesian classification methods (as discussed in chapter 3).

4.6 Concluding Remark

In toto, all the algorithms introduced in this thesis have shown promising results and space for
progression in the future, to further improve the structure details in cryo-EM. Our findings indicate
that 1) cryo-EM maps with different SNRs can be enhanced with better connectivity and without
broken densities, ii) de novo model building can be improved using local B-factors and local
occupancy maps, iii) a significant number of conformations can be extracted from input sample
data for homogenous as well as heterogeneous macromolecules, without the “attractor” problem,
iv) the free-energy landscape can elaborately explain the conformational changing trajectory for
flexible macromolecules. Such methods represent the finest advancements in the cryo-EM image

processing workflow.
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