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Abstract (English) 
Cryo-EM has yielded important discoveries about fine cellular structures, viruses, and protein 

complexes at high resolution over recent years. This popular technique is progressing stronger than 

ever, owing to various experimental and computational methods advancements. Handling multiple 

conformations and providing finer structural interpretability of a dynamic macromolecular has 

strengthened the potential of this technique. However, analysis of heterogeneous data remains a 

major challenge for cryo-EM, even after using tailored image processing techniques. Here, 

heterogeneity is concerned with varying resolution distribution on a cryo-EM map or several 

existing conformations of a macromolecule resulting from its flexibility. These dynamic 

developments can arise due to various reasons such as when interacting with biomolecules and 

ligands or in spontaneous fluctuation due to biological functions. Failing to analyse these 

movements can interrupt the interpretation of a given macromolecule structure and function. Thus, 

sophisticated methods are required to record these biologically significant macromolecular 

movements. The focus of this thesis is to demonstrate improvements in interpreting and analysing 

the cryo-EM maps with computational methods to account for map changes locally for building 

efficient atomic models and to visualize the conformational dynamics for a flexible or dynamic 

macromolecule.  

Biologists may use atomic models, even without expert knowledge, to explore the function of a 

macromolecule depending on mechanistic hypotheses concluded from its structure. Building an 

accurate atomic model, therefore, is an important part of the structural analysis procedure and is 

based on the quality of the EM density map. However, various cryo-EM density maps from recent 

periods contain local regions whose resolution differs from the global map resolution reported. 

This heterogeneous distribution of resolution can arise due to flexibility as well as subunit 
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occupancy in diverse parts of the structure. Analysing such a map can cause poorer quality 

reconstruction. Recent image-processing algorithms have suffered limitations in describing these 

local resolution differences among distinct parts of the structure. 

Domain flexibility of many large macromolecules also contributes to generating various 

conformations.  In cryo-EM, these dynamic structures require sorting into their least variable forms 

by performing 3D classifications, which usually capture these conformations as snapshots in the 

form of 3D classes. The resultant 3D classes can prefer lower-energy states within the 

thermodynamic equilibrium, such that analysing the whole cryo-EM data can show the trajectory 

of movements corresponding to various conformations of a macromolecule. Yet, generating a 

suitable method for recording conformation mapping from representative 3D classes remains an 

ongoing process. The work done in this thesis discusses the details of single-particle image analysis 

methods designed for better utilizing the heterogeneous data. 
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Abstract (French) 
Cryo-EM a permis d'importantes découvertes sur les structures cellulaires fines, les virus et les 

complexes protéiques à haute résolution au cours des dernières années. Cette technique populaire 

progresse plus fort que jamais grâce aux diverses avancées des méthodes expérimentales et 

informatiques. La manipulation de multiples conformations et la fourniture d'une interprétabilité 

structurelle plus fine d'une macromoléculaire dynamique ont renforcé le potentiel de cette 

technique. Cependant, l'analyse de données hétérogènes reste toujours un défi majeur pour la cryo-

EM, même après avoir utilisé des techniques de traitement d'image sur mesure. Ici, l'hétérogénéité 

concerne la distribution de résolution variable sur une carte cryo-EM ou plusieurs conformations 

existantes d'une macromolécule résultant de sa flexibilité. Ces développements dynamiques 

peuvent survenir pour diverses raisons telles que lors de l'interaction avec des biomolécules et des 

ligands ou lors de fluctuations spontanées dues à des fonctions biologiques. Ne pas analyser ces 

mouvements peut interrompre l'interprétation de la structure et de la fonction d'une macromolécule 

donnée. Ainsi, des méthodes sophistiquées sont nécessaires pour enregistrer ces mouvements 

macromoléculaires biologiquement significatifs. L'objectif de cette thèse est de démontrer des 

améliorations dans l'interprétation et l'analyse des cartes cryo-EM avec des méthodes de calcul 

pour tenir compte des changements de carte localement pour construire des modèles atomiques 

efficaces et pour visualiser la dynamique conformationnelle d'une macromolécule flexible ou 

dynamique. 

Les biologistes peuvent utiliser des modèles atomiques, même sans connaissances spécialisées, 

pour explorer la fonction d'une macromolécule en fonction d'hypothèses mécanistes tirées de sa 

structure. La construction d'un modèle atomique précis est donc une partie importante de la 

procédure d'analyse structurelle et est basée sur la qualité de la carte de densité EM. Cependant, 
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diverses cartes de densité cryo-EM de périodes récentes contiennent des régions locales dont la 

résolution diffère de la résolution de la carte globale rapportée. Cette distribution hétérogène de la 

résolution peut survenir en raison de la flexibilité ainsi que de l'occupation des sous-unités dans 

diverses parties de la structure. L'analyse d'une telle carte peut entraîner une reconstruction de 

moins bonne qualité. Les algorithmes récents de traitement d'images ont souffert de limitations 

dans la description de ces différences de résolution locales entre les différentes parties de la 

structure. 

La flexibilité du domaine de nombreuses grandes macromolécules contribue également à générer 

diverses conformations. En cryo-EM, ces structures dynamiques nécessitent un tri dans leurs 

formes les moins variables en effectuant des classifications 3D, qui capturent généralement ces 

conformations sous forme d'instantanés sous la forme de classes 3D. Les classes 3D résultantes 

peuvent préférer des états à faible énergie dans l'équilibre thermodynamique, par conséquent, 

l'analyse de l'ensemble des données cryo-EM peut montrer la trajectoire des mouvements 

correspondant à diverses conformations d'une macromolécule. Cependant, la génération d'une 

méthode appropriée pour enregistrer la cartographie de conformation à partir de classes 3D 

représentatives est toujours un processus en cours. Le travail effectué dans cette thèse traite des 

détails des méthodes d'analyse d'images à une seule particule conçues pour mieux utiliser les 

données hétérogènes. 
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CHAPTER 1 

INTRODUCTION 
The structural analysis of macromolecules to achieve functional information inside the cell is the 

core of structural biology. Using morphological determining techniques, scientists can analyse the 

various aspects of a macromolecule such as its biological behaviour, drug development, action 

mechanisms, or design of new structural complexes, among others. Various structural analysis 

techniques include NMR, X-ray crystallography, and cryo-EM, among others. However, no single 

technique suffices to elucidate all aspects of any given macromolecule. Rather, these techniques 

should complement each other to describe the macromolecule's complete structural and functional 

analysis. Among these techniques, cryo-EM has gained popularity over the last few years, as 

shown in Figure 1(a), as the resolution of the structures solved by this technique has been highly 

increasing. Cryo-EM uses electrons to pass through the flash-frozen solutions of macromolecules 

for creating its 3D structure. This technique employs advanced image processing methods to 

reconstruct biological macromolecules, and represents the topic of this thesis. 

 

1.1 History of EM  

Transmission electron microscopy (TEM) typically uses electrons accelerated to 200-300 keV to 

magnify biological samples to elucidate their structure and composition. Ernst Ruska initiated the 

discipline of electron microscopy by developing a mini microscope in 19253–5. In 1926, Hans 

Busch invented the first electromagnetic lens which used electric and magnetic fields to shape the 

paths followed by electrons, similar to how glass lenses are used to bend and focus visible light3,5. 

Ernst Ruska and Max Knoll, from the University of Berlin, created the first transmission electron 
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microscope in 1931, for which Ruska was awarded the Nobel Prize for Physics in 19866 (Figure 

1(b)). It is considered one of the most influential scientific inventions for allowing us to visualize 

the nanoworld. In the first image of a eukaryotic cell7, TEM was able to show many of the 

organelles for the first time8,9. Other breakthroughs included the imaging of neurons 

communicating through neurotransmitters10,11, sliding Earnys-filament theory on muscle 

contraction10,12,13, and revealing viruses to be defined particles for the first time14,15. 

 

1.2 The rise of cryo-EM 

The ability to detect features in an image is determined by image contrast; in particular, imaging 

in a TEM is typically achieved by phase contrast, which increases with the difference in the atomic 

number of the atoms that make up the sample. But in biology, the phase contrast is usually low 

due to the similarly low atomic number of elements comprising the biological sample and the 

aqueous solution that carries the samples in their native state: carbon (Z=6) and oxygen (Z=8). The 

contrast of biological elements could be increased by extending the exposure time, yet the high 

energy electrons used for imaging will lead to the burning of the sample16. R.M. Glaeser proposed 

the solution to this issue by averaging multiple images16.  
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(b) 

 

 

(a) 
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Figure 1.1: Historical timeline. (a) Chart shows the EMPIAR entries released per year and 
cumulatively. (b) Timeline of cryo-EM with the selected key events that lead to the development 
of single-particle electron microscopy. Achievements of the techniques are shown on the upper 
part, while the lower part shows the structures solved. On the lower part, EMDB entries are shown 
as a single-particle method. (Reproduced with permission from Renaud JP et al, 2018 from17). 
 

Electron crystallography revealed that freezing crystals reduces the effects of radiation damage18. 

This discovery led to the usage of cryo-samples (-140°C) in EM19 and x-ray crystallography20. In 

the 1970s, Richard Henderson, a molecular biologist and biophysicist from MRC Laboratory of 

Molecular Biology in Cambridge, UK, along with his colleague Nigel Unwin, employed EM 

combining weaker rays and mathematical analysis to produce the first 3D model of helices 

arranged within the bacterial membrane of bacteriorhodopsin21. Along the same timescale, 

Joachim Frank, a biophysicist currently at Columbia University in NYC, developed with his 

colleagues image-processing software and produced a 3D structure from blurry 2D images. In the 

following years of the 1980s, the method of freezing samples in their native state, called vitreous 

ice samples, was invented by Jacques Dubochet22 from European Molecular Biology Laboratory 

in Heidelberg. And finally in 1990, building upon all these advancements, Henderson was able to 

create the first atomic-resolution images of a protein using cryo-EM23, thereby fathering the field 

of cryo-EM. Accordingly, in 2017, Dubochet, Frank and Henderson were jointly awarded the 

Nobel Prize in chemistry.  

 

1.3 TEM setup 

TEM allows the imaging of biological objects at atomic resolution. TEM generates an electron 

beam that transmits through the frozen specimen, gets scattered, and is later focused via the 

electromagnetic lenses onto an imaging device (e.g. a CCD camera, a fluorescent screen, a direct 

detector, or a photographic film). Figure 1.2 displays the schematic of TEM.  
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It uses a cathode to generate electrons and a series of anodes that serve to extract electrons from 

the source tip, focus them, and accelerate them to the desired voltage (typically between 200 and 

300 keV. Condenser lenses adjust the physical size of the beam to project it on the biological 

object. The objective lens focuses electrons passed through the sample and magnifies the initial 

image, which is later projected on the fluorescent screen using the projection lenses.  

In EM, the difference in electron densities of organic molecules in a cell represents a feature called 

“contrast”. Amplitude contrast and phase contrast are considered to be the two sources of contrast 

in TEM. Amplitude contrast occurs when the specimen absorbs the transmitted waves to a high 

degree, or scatters the electron to a large angle, and can result in changing the wave amplitude in 

the final image. Alternatively, electron interaction with the specimen can cause electron refraction 

at small angles, which changes the phase of the electron wave. Phase-contrast comes about when 

this scattered wave constructively and destructively interferes with the unscattered wave to 

produce an image.  

The above-mentioned parts of the microscope column are responsible for producing the electron 

beam, focusing it on the specimen and projecting an image on the camera. This whole process 

must take place in a vacuum to minimize the collision frequency between electrons and gas atoms. 

The vacuum system, though not outlined here in detail, plays a significant role in maintaining the 

frozen sample in a near-native environment, as discussed in section 1.4.2. 



22 

Figure 1.2: Principal components of TEM.  
(Reproduced with permission from “Transmission electron microscope (TEM),” by Online 
biological notes for students, 2021 (http://www.biosciencenotes.com/transmission-electron-
microscope-tem/). Copyright 2021 by https://wordpress.org from24). 

For cryo-EM, the biological samples usually contain light atoms that interact weakly with 

electrons, where we assume that phase-contrast is the main source of contrast for cryo-EM. 

A famous technique mitigating the effects of poor phase contrast, shown on imaged micrographs, 

is negative staining. The latter technique is well suited for collecting the initial observations about 

the sample such as shape or size. in the early stage. It involves applying heavy metal salts to the 

sample, resulting in the contrast between the stain (dark) and the specimen (light) where stain is 

excluded, for initial observations. However, usage of negative stain can cause loss of high-

resolution information of the biological sample as well as introduce artifacts such as sample 

flattening.  
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1.4 TEM workflow 

1.4.1 Sample preparation for molecular TEM 

Sample preparation for biological macromolecules is a very complex and crucial task, as the 

specimen has to survive damage from both electron radiation and vacuum evaporation inside the 

electron microscope. Accordingly, the sample must be thin (to permit electron transmission) and 

stabilized to be introduced into the evacuated microscope column. To preserve the sample, 

different sample preparation techniques are used according to sample and study type, thereby 

maintaining its native structure. This section describes such sample preparation techniques. 

First, sample treatment is performed to preserve intactness as well as obviate subsequent reduction 

of image contrast. In some cases, this includes sample stabilization by increasing the 

intramolecular interactions using crosslinking methods such as GraFix25, removing crowding 

agents such as glycerol or sugar that can cause strong image background, and stabilizing 

transmembrane domains using amphipols, weak detergents, or nanodiscs in the case of membrane 

proteins. 

Sample preparation must be carefully orchestrated in order to avoid multiple paths of potential 

failure (e.g. water evaporation in the high-vacuum conditions, radiation damage). Using negative 

staining or vitreous ice freezing can resolve these limitations. 

1. Negative stain: First, the sample is placed on a hydrophilic thin continuous carbon support

film. After water wash and blotting, the sample is enveloped with a solution of heavy metal

salt such as uranyl acetate26. This envelope of heavy metal atoms results in amplitude

contrast and high SNR. Next on the carbon grid, excess of the solution is removed. After

blotting, the stain dries to produce an electron-dense thin layer in which the particles are

embedded27. Finally, the contrast is achieved due to the high-density difference between

the macromolecule complex and the uranyl salt.
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To improve stain quality, various buffer components, such as glycerol, detergent or 

specimen can be diluted with a specific buffer before their application to the grid. It is 

important to note that, on the micrograph, the macromolecule complex appears white on a 

black background, as illustrated in figure 1.3. Negative staining only shows the overall 

shape of the macromolecule and does not recover high-resolution information, owing 

to various factors. The main limiting factors are the grain size of the stain, the presence 

of uneven staining artifacts, dehydration, preferred orientation presence due to usage 

of continuous carbon film that limits sample views, and flattening of the samples, which 

can cause considerable structural distortions28,29. Despite the aforementioned, this 

technique is favoured because of its ease of preparation, high-contrast property as well as 

its ability to furnish information about the sample size, shape and arrangement. 

2. Vitreous ice: This technique involves freezing samples quickly to reach a non-crystalline

ice stage30,31 as shown in figure 1.3. It helps to preserve the hydration of the sample without

meddling with its shape. This technique also helps to achieve high-resolution

reconstructions, enabled by the low contrast generated from the similar density between

the ice and macromolecular complex. On the micrograph, particles look black against a

white background. Combining this technique with DDDs has revolutionized the cryo-EM

field in the last few years.
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Figure 1.3: Vitreous ice technique. (i) (Top left) vitreous samples and Negative stain (top right), 
(ii) with EM images of HcRNAV109 particles (a) embedded in vitreous ice and (b) Negative stain.
(Reproduced with permission from Saibil HR et al, 2000 from32 and Miller JL et al, 2011 from33).

1.4.2 Maintaining a near-native state 

Generally, biological macromolecules in an organism exist in a partially hydrated (embedded in 

lipid membrane) or fully hydrated state and perform their functions in an aqueous environment as 

well. Therefore, it is very crucial to analyze these macromolecules in their native state to 

understand their true structure and biological function. Cryo-EM enables structural analysis of 

macromolecules in their near-native environment by performing their rapid freezing and then 

(i) 

(ii)



placing them into the electron microscope column, while kept under high-vacuum and in a low-

temperature state. Both these conditions minimise the effect of radiation damage on 

specimen34 and keep the ice in an amorphous state. 

Based on the temperature-dependent modifications, ice can exist in various forms, namely cubic 

(− 123 °C to − 148 °C, 115 to 150 K) and hexagonal crystal (above − 103 °C, 170 K)35. 

However, during the rapid freezing treatment, ice skips the crystalline phase to form an 

amorphous phase of ice, which is generally lower in temperature than the crystalline transition 

phase, called vitrification. Among various ultrarapid procedures formatted for general 

vitrification procedure, the most widely used is the plunge-freezing method, where after 

removing the excess solution, an EM grid is rapidly plunged into the liquid ethane (cooled using 

liquid nitrogen)36. Ethane is one of the commonly used cryogens for vitrification of sample 

because of its adequate boiling point (184 K), freezing point (90 K), high heat capacity (68.5 J/

mol K at 94 K) and high thermal conductivity. These all conditions are necessary to prevent the 

formation of a vapor layer between the sample and the cryogen. As a primary coolant, liquid 

nitrogen helps to keep ethane liquefied and cool during the procedure of vitrifying the 

sample. Liquid nitrogen is the commonly used condition for handling cryo-EM samples 

(-193 °C, 80 K)37, as the lower temperature protects from secondary chemical reactions 

and retards the displacement of molecular factors caused by ionizing radiation, generally 

known as the cage effect 38,39, thereby increasing 

the SNR. Cryo-EM has two main sub-disciplines to determine the structure of a 3D 

macromolecule, viz. ECT and SPA. 

1.4.3 Imaging with electrons 

1.4.3.1 ECT: Several images of a sample from the same region are acquired by tilting it by 
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various angles (tilt degrees range to 60°–70°) with respect to an incident electron beam. This series 
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of images, or tilt series, is later combined computationally to form a 3D map, called a 3D 

tomogram. The diagrammatical information can be seen in Figure 1.440.  

In recent years, this technique has allowed us to visualize 3D structural details for biological 

macromolecules in vivo at 2–6 nm resolution41,42. During sample preparation, chemical fixation 

and staining can alter the macromolecular organization of the cell. However, rapid freezing to 

vitrify the sample (as detailed in sections 1.4.1 (2) and 1.4.2) yields pristinely preserved samples. 

ECT has progressively gained importance to decipher a large range of specimens, from isolated 

protein complexes to large eukaryotic cells as well as the molecular architectures of viruses, 

bacteria and cellular components in situ43–45. Moreover, it provides the opportunity of 

understanding the spatial relationship of macromolecules within a cellular tomogram. For 

advanced analysis, similar sub-tomograms or sub-volumes can be selected for further alignment 

and averaging, revealing additional structural information46. This whole procedure is referred to 

as ECT STA.  
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Figure 1.4: Principle of electron tomography40. Electron tomography works by collecting a 
sample’s projection caused by an electron beam passing through the sample, within the defined 
degrees of rotation (between 60°–70°) around the centre of the specimen. (Reproduced with 
permission from Steven A et al, 2005 from40). 

Beyond analyzing secondary structure elements, STA has yielded high-resolution density maps 

for nuclear pore complexes47,48, chemotaxis signaling arrays49, coat protein complex I50, 

polysomes51, ribosomes52, retrovirus assembly53–57 and bacteria surface layers58. However, when 

compared to cryo-EM SPA, STA generates lower resolution due to several reasons59–61 such as 

sample thickness increase while acquiring tilting series, distortion of densities in tomogram, or 
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3D-image artifacts known as missing wedge, the latter which affects subtomogram alignment 

accuracy and classification procedure. Another challenge is the usage of the thick sample in cryo-

ET, which further increases during the tilt series procedure. Thus, the defocus gradient from 

sample thickness as well as the sample tilt has to be considered while going ahead62. Thicker 

samples also suffer from poorer image quality due to inelastic and plural scattering. To avoid 

damage from the cumulative irradiation, the electron dose is limited per tilted image, resulting in 

low SNR when compared to SPA. Nonetheless, STA has an advantage over SPA in the case of 3D 

classification, where each particle exists as a unique 3D reconstruction, allowing analysis of 

various conformations adopted by a biological object in the form of direct 3D variance. 

1.4.3.2 SPA (basic overview): The main goal of SPA is to determine the high-

resolution maps from a macromolecule of interest using EM. SPA is based on two assumptions 

to achieve this goal: 

1. All the particles in the sample are identical copies of macromolecules in the same

conformation but showing different orientations. Without the presence of such a condition,

the sample is said to be heterogeneous, which is a challenge for SPA. This hypothesis is

called the identity condition. It is considered a weak condition as the slight presence of

heterogeneity doesn’t affect the sample much. On the other hand, a highly heterogeneous

area can cause a blurring effect in the final reconstruction.

2. Micrographs are electron-density projections of the object and have the same

magnification. This is called the scale condition.

When a suspension of biological molecules or complexes is prepared for imaging, it adopts an 

arbitrary position on the grid, or in the ice in cryo-EM. Thus, multiple copies and different 
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orientations of the same macromolecule are imaged on a single micrograph. The orientation of the 

molecules in the images is unknown and represents the key set of parameters to be determined in 

SPA. Therefore, to be able to reconstruct a 3D map, Euler angles (planar rotation 

angles around x, y, and z axes, whose values depend on the choice and order of the rotation axes) 

and shifts are employed to describe these unknown orientations of the particle images in 3D 

Euclidean space, a space in which postulates of geometry can be applied with  linear and finite-

dimensions63. Using an initial volume, which can be estimated from previous knowledge of the 

sample or by image processing methods64, the orientation parameters are estimated by comparing 

the individual particle images with projections of the reference volume. After finding the Euler 

angles, particle images are projected back to form the final 3D reconstruction of the specimen 

using the reconstruction algorithm65. SPA’s particle images suffer from the low electron dose, 

which leads to a low SNR. This problem is resolved by aligning and averaging many similar 

particle images (typically around ~10k-100k particles). The standard reconstruction workflow 

follows particle selection, particle alignment, particle classification, 3D reconstruction, and model 

refinement66,67. Detailed information is given in section 1.4.4. 

However, TEM application to biological samples suffers from resolution limitations68 due to 

several reasons such as high voltage beam damage to specimen, small electron doses used for 

imaging, BIM, and heterogeneity of the sample. BIM is a phenomenon whereby the energy 

deposited on the sample by the beam causes the sample to move, often because of the relaxation 

of tension within the vitreous ice. This motion leads to the blurriness of images and thus limits the 

final reconstruction resolution69 

Some of these limitations have been overcome by advances in image acquisition and image 

processing enabling superior resolution, 0.6 Å70 for micro-ED and 1.15 Å71 for single particle 

https://www.sciencedirect.com/topics/mathematics/rotation-angle
https://www.sciencedirect.com/topics/mathematics/rotation-angle
https://www.sciencedirect.com/topics/engineering/rotation-axis
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analysis. Electron microscopes have undergone various improvements over the decades in case of 

electron sources, vacuum, sample holders, power supplies, optical lens systems, and detectors. In 

terms of electron sources, tungsten filaments and LaB6 sources have been upgraded to field 

emission electron sources to generate a more coherent electron beam for preserving the phase of 

the structural information of a macromolecule. A detailed overview of each image processing step 

in the SPA workflow with advances is presented below. 

1.4.4 SPA image processing workflow 

In the first step of this workflow, images in the form of movies or micrographs are acquired. With 

the high sensitivity and fast frame rate of modern recording devices, cryo-EM data can be recorded 

as movies. Individual frames of a movie are aligned in order to correct BIM and to acquire a single, 

de-blurred micrograph. In the next step, the CTF is estimated to correct possible aberrations caused 

by EM that would otherwise modify the image. Subsequently, the particle picking step includes 

selecting and extracting particles in the micrograph. After the CTF correction, particles of similar 

orientation are grouped and averaged into 2D classes by performing 2D classification. The 

classification step checks the quality of data by removing poor particle images, e.g., those 

containing a high amount of noise. Averaging the particles within 2D classes increases the SNR 

and helps to determine the initial volume for the next step. An initial volume provides the first and 

coarse estimation of the macromolecular structure. Following that, initial volume is used to 

reclassify the particles and to find the different conformations of the same volume. In the 

refinement step, maps are enhanced by the assignment of better angular orientations.  

Figure 1.5 describes the image processing workflow. A detailed overview of each step is given in 

section 1.4.4. 
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Figure 1.5: Main steps in SPA workflow. 

1.4.4.1  Movies and micrographs 

High contrast between the ice (background) and the complex (signal)72 is a necessary component 

for observation of structural details. The small difference in atomic number between the vitreous 

ice and the specimen can limit such contrast, thereby compromising structural information about 

the macromolecule. Increasing the electron dose73,74 is one solution but will lead to radiation 

damage of the specimen, since high-energy electrons break bonds when they interact with the 

specimen.  

Hence, in single-exposure images, electron dose is kept below ~20 e−/Å2  to achieve high 

resolution. Instead of taking a single image (called a micrograph), DDDs work in movie mode by 

taking multiple frames in the form of a motion picture at the same electron dose. For electron-

counting DDD cameras, the electron dose rate is typically kept below ~10 e−/pixel/sec, depending 
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on the camera. DDDs make use of a superior DQE, which measures the combined effect of signal 

and noise performance of the camera. They do this by detecting individual electron impact events 

on the sensor, which are then collected into dose-fractionated image stacks, called movies, with 

the help of high-speed CMOS technology. These movies can be aligned to computationally correct 

specimen movements. The aligned frames are averaged later to use for structure determination75. 

The result is an image with reduced blurriness, since the alignment routine can adjust for BIM and 

specimen drift. 

This movie mode of DDDs helps to optimize the SNR of images affected by radiation damage. 

Early frames have been subjected to a lower total electron dose, and thereby possess a higher 

resolution signal, but may be affected by fast specimen movement. In later frames, specimen 

movement decelerates, but a higher accumulated dose results in reduced high-resolution 

information. Finally, a relative weight is applied while averaging these frames to optimize the 

signal in the final average76. This allows for higher total dose exposures, since the weighting during 

dose compensation will take care of the high-resolution noise in later frames, but keep the low-

frequency signal. The next step includes the processing of movies. One technique is to average 

each movie and reduce it to micrograph images.  

The alignment can be executed at two levels, micrograph (global)72,77–79 or particle (local)80,81.  

1. Global: The goal is to align the frames of a movie and present a corrected average. The

first alignment approach called MotionCor82 uses this approach by estimating the relative

shift between two frames of a micrograph using correlation. In the next step, frame

alignment is performed with the known displacements.

2. Local: The BIM is local as different particles show different movements. Some methods

in this category impose prior knowledge assuming that particles which are close in the
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micrograph will move similarly. This approach is used by Optical 

Flow77, alignframes_lmbfgs, and alignparts_lmbfgs81, Unblur83(without local 

tracking), and Summovie72 or MotionCor284(performs local tracking). Another 

way to perform local alignment is to divide the frames and grids, and then track each grid 

independently without a priori knowledge. If the particle position is known, each particle 

can be tracked. Such a function can be accessed by using software packages, including 

Relion85. 

The descriptive information of all these approaches can be found in a publication of Ripstein JA et 

al, 201686. Figure 1.6 shows the advancement in technology to record data and generate 

unprecedented quality reconstructions.  

Figure 1.6: Images and movies. (a) Before, photographic films were used to record the noisy 
images with blurriness caused by BIM and a mixture of structurally different particles combined 
into a single reconstruction. (b) Due to recent advances, better reconstructions have been achieved. 
(i) a movie of significant-good quality is recorded as a set of frames using DDDs; (ii) movie frames
are aligned and averaged to compensate for sample movement; (iii) dynamic classification methods
generate different conformations from a sample containing a mixture of states. (Reproduced with
permission from Bai XC et al, 2015 from66).
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1.4.4.2  CTF correction 

The TEM imaging system produces a systematic artifact in the image contrast. The CTF is evident 

in the Fourier transform of a projection image as an oscillating function that depends mainly on 

defocus and the spherical aberration coefficient of the objective lens87. Regulation of the electron 

micrograph signal can be described by an oscillating non-linear CTF in the form of an equation 

given as:  

CTF (𝑓𝑓) = 𝐸𝐸(𝑓𝑓)sin (𝜋𝜋Cs 𝜆𝜆3𝑓𝑓4/2 − 𝜋𝜋𝜋𝜋𝜋𝜋𝑓𝑓2), 

where spherical aberration of the electromagnetic lens is represented by Cs; λ shows the electron 

wavelength; f shows the spatial frequency, d is the applied defocus (negative for underfocus), 

and E(f) is an envelope function showing degradation of high-resolution information. [Equation 

taken from Erickson HP et al, 197175, Wade RH, 199276.] 

By estimating the CTF parameters, the effect of the CTF can be reduced computationally during 

the reconstruction process.  CTF estimation measures the defocus of each image because the Cs 

term and electron wavelength are constant for each cryo-EM dataset. As the spatial frequency 

increases, the function begins to oscillate more rapidly; thus, estimating the CTF parameters is 

essential for retrieving high-resolution information. Different ways to correct CTF include 

application of CTF estimation to the image,  phase-flipping89 and Wiener Filtering90. The CTF for 

the standard TEM imaging system is shown with the starting point near zero (low spatial 

frequencies region), followed by oscillation between positive maxima (positive CT) and negative 

maxima (negative CT) with zero-crossings that represent the frequencies with zero information. 

Analysing the power spectrum of the cryo-EM image can show the oscillations in CTF, as depicted 

in Figure 1.7, where the pattern of the concentric ring reflects the changing of high and low CT as 

a function of spatial frequency (for high-quality images). The origin of power spectrum or image’s 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fourier-transform
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/electromagnetism
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centre represents the low spatial frequencies, while the edges show high-spatial frequencies, also 

known as the Shannon-Nyquist limit (2 x pixel size). 

If the micrograph is of good quality, it contains a CTF pattern of several concentric rings, as shown 

in Figure 1.7 (left). For poor quality micrographs, CTF pattern has specific asymmetric rings or 

elliptical rather than circular rings (astigmatism) as visualized in Figure 1.7 (middle); or rings 

fading in a particular direction, indicated by a directional fall-off in the pattern of Thon rings (drift) 

as seen in Figure 1.7 (right). These bad-quality micrographs can be excluded from the further 

processing steps after the CTF pattern analysis. Therefore, this step is helpful for the screening of 

the micrographs.  

Figure 1.7: CTFs. CTF of good (left), astigmatic (centre) and drifted (right) micrographs, 
respectively. (Reproduced with permission from Scheres, SHW et al, 2008 from91). 

1.4.4.3 Particle picking 

Particle picking involves identifying particles from the background noise in the micrograph. In 

this step, particles are selected and cropped from the micrograph to be further processed for 

structural analysis. The low SNR of cryo-EM micrographs, particularly for smaller molecules or 

complexes, renders this step difficult, but not impossible, to automate. There are many methods 

developed for this purpose and can be classified as: 
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1. Manual picking: As the name suggests, particle picking is performed via the user’s bare 

eyes. This type of selection can be time-consuming and can lead to bias based on the user’s 

subjectivity.  

2. Automatic picking: The automatic particle picking methods are based on deep learning 

solutions involving CNNs, such as DeepPicker92 or DeepEM93. In other methods, for 

example, APPLE Picker94, a template is automatically chosen by the algorithm. 

Approaches such as Gautomatch95 use GPUs to accelerate the process of particle picking. 

Other methods such as gEMpicker96 and  DoGPicker97 operate by subtracting two Gaussian 

blurred versions of the same image resulting in a Difference of Gaussian (DoG) map. In 

the following step, particles are sorted based on size and then extracted. By 

contradistinction, CrYOLO98 employs a deep-learning object detection framework 

colloquially styled as “you only look once”99, and can detect particles (after training with 

at least 200–2500 particles per dataset) with an impressive speed of five micrographs per 

second. Methods implementing automatic particle picking remove the limitation of bias 

based on manual picking or the user-selected template.  

 

1.4.4.4 2D classification 

The 2D classification step consists of the clustering of the particle images with similar projection 

directions so as to average them after proper alignment, which – in turn – allows calculating 2D 

class averages with improved SNR. These 2D class averages can help assess the quality of the 

particle set by the identification of secondary-structure elements, e.g., alpha-helices can be seen in 

the high-resolution class images. Additionally, the analysis of different 2D class averages can 

provide an early idea of heterogeneity in a dataset.  



38 
 

2D class averages can be determined by iterative approaches such as MRA100–102,85,103. These 

methods first generate a set of 2D classes by evenly and randomly assigning particle images to 

them. From these initial 2D classes, 'reference’ images or 2D averages are calculated by averaging 

corresponding particle images. In the next iteration, particle images at different 2D orientations 

and shifts are compared with the ‘reference’ images, calculating for each case a similarity metric 

that could be the correlation100,101 or an empirical likelihood of the matching85,102,104. Next, 

‘reference’ images of 2D classes are updated by weighted averaging particle images according to 

associated likelihoods in maximum-likelihood based approaches85,102,104 or by averaging particles 

at the orientation and class that maximized the correlation100,101. This process is typically iterated 

a few dozen times, generating a final set of 2D class averages. Note that ML2D based approaches 

as RELION85 2D classification assume that each particle image participates in every 2D class and 

at every 2D orientation but contributing with different weights. On the other hand, correlation-

based approaches demand that each particle contribute only in one 2D class with one 2D 

orientation. Thanks to GPU paralellization105, RELION has become a popular method for fast 

processing speed. However, the outcome of RELION (or any ML2D based approach) can suffer 

from the attractor problem106 wherein particle likelihoods are biased toward classes containing 

more particles. Thus, these methods may tend to classify particles according to the SNRs of the 

different classes rather than by the actual conformation of the particles.  

Currently, ISAC is one of the well-used 2D classification approaches, as well107. ISAC ensures the 

homogeneity of each class by performing repeated stability tests to validate each class’ member. 

It can be a favoured approach for analysing heterogeneous data because each class size is restricted 

by using modified K-means which reduces the attractor problem faced in RELION. ISAC may not 

require human intervention for selecting good classes, as it can automatically remove unstable or 
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non-reproducible classes. However, due to being highly time-consuming, ISAC’s utility is limited 

to difficult cases.  

The MSA approach, which flows from PCA, involves reference-free alignment108, and represents 

a powerful tool to sort out structural heterogeneities in cryo-EM samples. MSA converts the 

particle images into a linear combination of its main eigenvectors and performs the classification 

based on similar orientations of particle images109–113. As such, particle images in the dataset are 

compared using distances and correlations, each with its own metric system. One of the commonly 

used metrics is Euclidian, which is based on the assumption that the smaller the distance between 

the two particle images, the higher the correlation between them, and when their distance is zero, 

their correlation is at its maximum. This metric is associated with PCA108. 

Figure 1.8 shows class averages of 256 classes, where some poor-quality particles are eliminated 

to obtain a clean dataset suitable for the downstream pre-processing steps. 
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Figure 1.8: 256 class averages after classification of 90,503 β-galactosidase particles. 
(Reproduced with permission from Sorzano COS et al, 2010, Sorzano COS et al, 2015 
from101,114). 
 
1.4.4.5 3D reconstruction 

The Fourier slice theorem establishes a relationship between a 3D map and a 2D projection, as 

explained below. The first step in 3D reconstruction is to select the projection of the 

macromolecule, called particles, and combine them to form the final structure. Using high numbers 

of particles provides better coverage of the projection sphere as well as increases the SNR of the 

final reconstruction. This statement is based on the conventional resolution determination method 

known as Crowther criterion, presented in following equation: 

Nθ = πD/d,  

where Nθ is the minimum number of views required to obtain full Fourier domain sampling for 3D 

reconstruction of the object; D is the size of the object for imaging; and d is the isotropic spatial 

resolution (equation from Jacobson C et al, 2018)115. The final goal is to reconstruct the 3D 

structure of the macromolecule with all suitable particles.  

Among various approaches116, the central slice theorem117,118 establishes a remarkable relationship 

between the 2D projection images (particles) and the 3D reconstruction, and is the basis for the 

second assumption in section 1.4.3.2. The Fourier central slice theorem states that the Fourier 

transform of each 2D projection is equal to a central slice through the 3D Fourier transform of the 

3D object perpendicular to the direction of projection.  

Figure 1.9 shows a graphical view of the theorem, whereby a 3D object or molecule is defined as 

function f(x). The projection of this function along a certain direction d is shown as 𝑃𝑃𝛼𝛼,𝛽𝛽[𝑓𝑓], with 

𝑃𝑃𝛼𝛼,𝛽𝛽[𝑓𝑓](𝑟𝑟,𝜓𝜓) = ∫  ∞
−∞ 𝑓𝑓(𝑟𝑟,𝜓𝜓, 𝑠𝑠)𝑑𝑑𝑑𝑑, 

(Equation from Barnett A et al, 2017 from119). 
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where (𝑟𝑟,𝜓𝜓, 𝑠𝑠) represents a cylindrical coordinate system in ℝ3, and (𝑟𝑟,𝜓𝜓) donates the polar 

coordinates in the projection plane orthogonal to d, and 𝑠𝑠 is the component along with d. The 

orientation vector is represented by d = (1,𝛼𝛼,𝛽𝛽). 

 

Figure 1.9: Principle of Central slice theorem (Reproduced with permission from Barnett A 

et al, 2017 from119). 

 

Although the central slice theorem helps to reconstruct the 3D structure of the macromolecule from 

the projections (particles), the orientation of these projections remains unknown. To compute the 

orientation of the particles, an initial volume is required in SPA. 
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1.4.4.6 Initial volume 
The initial volume is a coarse and low-resolution first estimation of the 3D structure of the 

macromolecule, and is employed to obtain the orientation of the single particles. This initial and 

low-resolution structure is typically generated by harnessing a few classes with sufficient SNR. 

The determination of a “good enough” initial volume is critical in SPA because choosing a poor 

initial volume can lead to bias in the final map120 as would occur, for example, by manually 

selecting the best initial map from several obtained low resolution initial maps based solely on the 

user’s experience121–127. 

A proper initial model can be obtained in a variety of different ways. It can be an already-available 

similar macromolecular model, which should be low-pass filtered to typically 40-90 Å to avoid 

bias issues such as the whimsically termed the “Einstein-in-noise” problem. In this issue, recorded 

images of particles are in reality pure noise from which even a portrait of Einstein can be extracted. 

This was a result of using data with low or zero contrast, small or invisible particles as well as 

automatic particle picking128,129. 

 However, this initial model may not be available in all cases. So, another option includes using 

one untitled and one tilted orientation to obtain a set of tilt pairs. The tilt pairs undergo alignment 

and classification to provide Euler angles, which can be further harnessed for an angular 

assignment without the need for a reference volume. This approach is called RCT130–132. Another 

method performs ab initio reconstruction based on common line methods117,133–140. This 

framework usually considers the Fourier transform of different projections that will intersect in a 

common line. This common line can help in determining the angular assignment of the classes. 

Other methods for initial volume generation include RANSAC141 and Significant142. RANSAC 

works by assigning random orientations to different class averages and then computing scores for 

each volume by comparison between the class averages. Volumes with higher scores are selected 
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for further processing. As an example, Figure 1.10 shows an initial map generated from RANSAC 

of the β-galactosidase sample. By contradistinction, the Significant approach employs statistical 

methods to calculate weights based on the cumulative density function, thereby deciphering 

different image similarity measures. 

 

Figure 1.10: Initial volumes for β-galactosidase generated by RANSAC method. 
(Reproduced with permission from Sorzano COS et al, 2015, Vargas J et al, 2014 from114,141). 
 

1.4.4.7 3D classification 

3D classification deals with the major problem of heterogeneity in cryo-EM143. Heterogeneity can 

be present as compositional heterogeneity, in which the macromolecular complexes assume 

different biochemical states and adopt different structural arrangements. This may include the 

occupancy of binding partners in complexes. Another form is conformational heterogeneity, where 

some macromolecules are not rigid and have a certain degree of flexibility, leading to slight but 

non-negligible differences in their structure. Presence of either of the above-mentioned kinds of 

heterogeneity shatters the assumption of SPA workflow, viz. that all particles are identical copies 

of a macromolecule but in different orientations. Hence, to continue the further processing, a set 
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of particles belonging to one particular conformation of the macromolecule should be grouped 

together accordingly, i.e. 3D-classified. The most commonly used method for dealing with 

heterogeneity is ML3D, a maximum likelihood approach integrated into RELION85,144–146. 

Another type of method includes defining a phase space that contains all possible conformations, 

using vibrational modes and dynamics of the macromolecule147–149. PCA150,  Bayesian 

marginalization algorithms151, and analysis of covariance matrix152 are among the alternative 

approaches employed to this end. 

 

1.4.4.8 Refinement 

After obtaining a homogenous set of particles (or projections) of the same macromolecular 

complex, refinement is executed to obtain a high-resolution map. Usually, single-particle EM 

packages use a 3D-projection matching procedure for structure refinement, in a manner of a more 

or less elaborate version. It involves modifying the orientation parameters of projections for 

achieving a better match with reprojections computed from the current approximation of the 

structure153. 

This step is equivalent to solving a linear equation Ax = b, where A is the projector or can be 

called Pθ, x is the structure to be determined (also represented by V), and b are the particle images. 

This equation can be solved from a given homogenous set of N particle projections of the same 

structure V captured from different orientations. The goal is to minimize the distance between the 

image and the projection of the structure, PθV, along the direction θ, in order to determine Euler 

angles and shifts.  

Maximum likelihood103,144,154,155, Maximum a posteriori (RELION approach85) and the traditional 

projection matching156–158 are a few examples that integrate the above-mentioned equation to 

perform the refinement step. Maximum likelihood is based on the assumption that a given particle 
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image can present in all possible orientations but with different probability weights. The goal is to 

decrease the possible number of directions by collapsing the probability. It can be explained as:  

(θ*i, V*) = argminθi,v|| Ii - PθV||2w, 

where Ii are the particle images with i = 1, ...,N [such that N represents homogenous set of 

particles]; Pθ is the projector along the direction θ; V are the projections of the structure; and ‘w’ 

is the given weight. (Equation taken from Sigworth FJ et al, 2010104). 

On the other hand, a posteriori approaches work by penalizing some of the possible orientations 

discussed above by introducing prior information. This step of refinement is distinguished by 

splitting the maximum likelihood into two tasks, namely, a) assigning angles to the particles 

according to the initial map; and b) reconstructing a new map by using the assigned angles. The 

experimental images are then compared to measure compatibility. 

Progress of refinement is analysed by various indicators, especially the FSC, which reflects the 

level of SNR as a function of spatial frequency as well as the map’s resolution159. An FSC curve 

is obtained by comparing the Fourier transforms of two maps over shells of the same spatial 

frequency. The comparison between maps is orchestrated by computing respective correlation 

coefficients. This FSC curve should decrease with spatial frequency until a resolution limit is 

reached, as indicated by a cut-off threshold160. The ‘resolution’ value in single-particle EM is the 

spatial frequency at which the SNR or FSC curve crosses a certain threshold value. For example, 

resolution is the spatial frequency where FSC is equal to 0.5 or spatial frequency where SNR is 

1.0, generally a level where the power of signal is equal to the power of noise. Another typically 

used threshold is FSC = 0.143161, based on relating EM results to those in X-ray crystallography162. 

A common issue observed in structure refinement is the so-called ‘overfitting’ of data, which 

occurs in the EM map due to alignment of noise instead of signal. Caused by lack of careful 



46 
 

judgment, it leads to obfuscation and confusion between signal and noise163. Therefore, by chance 

artifacts are created which are further increased by alignment of the noise components in the data, 

resulting in inflated FSC values and an artificially high resolution. To avoid the issue of 

exaggerated resolution estimation using the FSC, one has to ensure independence of noise in the 

half-dataset maps used to calculate the FSC164. This approach is called the “gold standard” 

refinement procedure85,165. Another way to avoid overfitting during iterative structure refinement 

is the elimination of high-resolution data in the alignment step166. 

 

1.4.4.9 Validation and analysis 

With the completion of the reconstruction procedure, the next step involves validation and analysis 

of the final structure achieved. The validation step is performed due to:  

a) low SNR of particle images.  

b) user decisions in the SPA workflow that lead to bias in the final reconstruction. 

There are many quantitative methods for the validation of the final 3D structure obtained. A final 

3D reconstruction can be compared with results of other techniques such as NMR, X-ray 

crystallography, or already existing similar structures from PDB167 or EMDB168. 

Tilt-pair validation analysis169–172 can be used to quantify the accuracy in the orientation estimation 

of particle image in SPA, yet has not been broadly adopted by cryo-EM practitioners because it 

increases the amount of necessary data to collect and process. There are also proposed methods 

for gauging particle alignability, viz. the precision in the orientation estimation of single particles 

that do not require tilt-pair acquisition173,174. The latter approaches can provide metrics to detect 

incorrect reconstructions under the assumption that the distribution of likely orientations of a 

particle image with respect to the obtained 3D map should be clustered as opposed to random. 
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An issue called overfitting, introduced before in section 1.4.4.8, can be detected at this stage. To 

identify such overfitting, one possibility is to take the 3D map with a small subset of particles used 

in the reconstruction. These particles are realigned to the map without masking or resolution limits, 

thereby obtaining a new 3D reconstruction. Another solution is to computationally replace the 

random subset of particles with noisy images. Overfitting may be detected by the analysis of 

obtained resolution in either case. 175. 

After the 3D reconstruction is validated, its spatial reliability must be verified via map resolution 

estimation. Such resolution can be calculated by several approaches, including FSC176, DPR157,177, 

and SSNR178,179. FSC, considered as the standard measure, discovers the cross-correlation between 

two ‘half maps’ at different spatial frequencies, where each map contains a random half-subset of 

the data, explained in section 1.4.4.8. 

Locally varying resolution may result from sample heterogeneity and image processing errors that 

cannot be estimated by the standard FSC. Blocres180 rendered the first attempt to calculate the local 

resolution of a 3D map by measuring the FSC between two maps within a moving window. 

However, major problems arise concerning the adjustment of window size and the need for two 

half maps. Alternative local resolution-determining methods include ResMap181, MonoRes182 and 

DeepRes183. It must be noted that the highest nominal resolution of a cryo-EM map is not 

necessarily the best one, because lower frequency values often matter more for map connectivity 

and interpretability. Therefore, rather than treating a firm number, the reported EM map resolution 

should be considered as a broad guideline184. 

A decades-old method, cryo-EM has proven to be a significant source for structural analysis owing 

to advances in technology for detecting ricocheting electrons and image-analysis software. These 

improvements catalyzed the process of resolution-revolution, yielding the sharpest protein 
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structures ever. Some of the major advances in cryo-EM technology over the years are mentioned 

below. 

 

1.5 Major advances in cryo-EM: 

From the microscope point of view, the following are major improvements: 

• The cryo-EM field has grown progressively in the image-recording media, initially from 

photographic film to CCD cameras to currently direct electron detectors. DDDs have 

several advantages over indirect electron detectors185–188 as shown in Figure 1.11. First, 

DDDs do not use a scintillator which can introduce artifacts to limit the final resolution. 

Second, the thin layer sensors let the electrons pass through with lesser backscattering, 

resulting in a small PSF and hence higher resolution. Lastly, DDDs can capture images at 

high frame rates, which have multipurpose usage of motion correction, damage 

compensation, and various image processing techniques189,190. Note that scintillator-based 

CMOS detectors can also be used as well at high frames rates.   

 

 

Figure 1.11: Working principle of DDD. On the left half of the figure, the CCD (used in 
conventional digital cameras) has a scintillator that converts the electrons into photons for 
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detection by the imaging sensor, whereas the right half illustrates how DDDs directly harness the 
electrons. (Reproduced with permission from Bammes BE et al, 2013 from191). 
 
 

• Introducing multi specimen autoloaders in cryo-EM enabled high-throughput, giving the 

space to load up to 12 grids192.  

• Upgrading the optics by achieving parallel illumination over a wide range of conditions 

through the addition of a third condenser lens (ThermoFisher Scientific Titan). As the 

electron beam tilts, it can facilitate spatial coherency.  

• High coherence advancement in electron guns. 

o Schottky-type electron gun: Recognized for its high-stability of electron current. 

Using a lower temperature and stronger electric field conditions than a thermionic 

emitter causes a decrease in the potential barrier to emit electrons, resulting in 

superb coherence by the Schottky field emitter193.  

o Cold field-emission electron gun: Here, the tungsten tip is kept at room temperature 

and in a strong electric field, with electrons emitted by tunneling the potential 

barrier (～4.5 eV). The emitted electron beam has a high coherence193. 

• In the microscope column, specimen stage stability has been improved as now the column 

can completely contain the specimen cartridge in concert with removal of the side entry 

holder. 

• Data collection and automation: Automation enables high-throughput structure 

determination, with modern microscopes able to collect hundreds of high-resolution 

micrographs per hour. Various automated software examples include SerialEM 194, 

Leginon195, Gatan Latitude196, JEOL JADAS197, ThermoFisher Scientific 

EPU/Tomography4198, and UCSF-Image4199. Those produce larger datasets, up to 10 TB37 
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of movie data per sample. This large amount of data has traditionally been processed using 

large computer clusters of many CPU cores and stored on special high speed storage 

devices such as on SANs, NAS or local RAID. Increasingly, GPUs are being used to 

accelerate highly parallel numerically intensive computations, which eliminate the need 

for centrally maintained data centres, and also save energy. Modern gaming computers 

with consumer-grade graphics cards can yield an equivalent in performance to 100–1000 

CPUs, and fit in a single chassis37. GPUs are now generally used in motion correction for 

movie frames84,200 and often for large portions of the image processing workflow201 (e.g. 

Relion85). 

 

1.6 Thesis challenges 

Cryo-EM is a structure determination technique that is useful for a wide range of macromolecules. 

The main goal of this technique lies in achieving a high-resolution reconstruction while 

discovering the conformational changes of dynamic macromolecules202,203. These goals are 

currently possible due to the above-mentioned major improvements in section 1.5. However, the 

presence of heterogeneity can hinder these goals. Such heterogeneity results from relevant 

conformational and compositional changes of macromolecules during their functional cycles. This 

structural variability demands advanced methodologies. The aim of the research in this thesis 

explores two significant computational techniques for improving the interpretability and analysis 

of cryo-EM data. 
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1.6.1  B-factor and map occupancy 

The structure determination by cryo-EM depends on the quality of reconstructed EM density maps 

to generate an accurate atomic model. Hence, the reliability of resulting atomic models greatly 

depends on methodological advancements that can enhance the map quality. Sharpening methods 

in the post-processing step of the cryo-EM workflow helps to achieve such improvements, which 

are commonly used in X-ray crystallography204,205.  

In cryo-EM, B-factor correction is the favourable method that involves structure factor 

modification based on the Guinier plot162. This method overcomes the contrast loss in high-

resolution maps by boosting the amplitudes of structure factors in a resolution range, shown by 

‘B-factor,’ the slope of the amplitude falloff that will be boosted. 

Most of the modern computational methods used by single-particle cryo-EM for map sharpening 

and atomic modelling are based on Wilson statistics162,206, which describe the power spectrum of 

proteins at a high frequency. Wilson statistics are based on the assumption that all of the proteins 

show a similar power spectrum at high frequency regardless of their shape-specific atomic 

positions. This phenomenon helps to correct the Fourier coefficient magnitudes for the 

reconstructed map to match with the theoretical prediction. In this case, an exponentially growing 

filter, whose parameter is estimationally derived from a Guinier plot, is applied to the reconstructed 

map for increasing medium and high frequencies such that the sharpened map has a flat power 

spectrum which is also consistent with Wilson statistics207. Boosting the medium and high-

frequencies or called as B-factor sharpening  results in increasing the contrast of the reconstructed 

map and thus, helps to model the atomic structure. 

Historically, the B-factor, temperature value or Debye–Waller factor in X-ray crystallography 

quantifies the degree to which the electron density is spread out locally, thus, the uncertainty in 

the position for each atom and the positions where errors may exist in the model building208. 
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As introduced above and in analogy to X-ray crystallography209, the B-factor of a cryo-EM 3D 

reconstruction represents the signal fall-off inside a defined resolution range and is experimentally 

calculated from the slope of the Guinier plot (logarithm of the structure factor amplitudes of a 

reconstruction versus the square of the spatial frequency).  

Different sharpening algorithms have been introduced over the years, which can be categorized 

into two classes: global and local. All these algorithms apply the above-mentioned basic amplitude 

correction method. As such, global sharpening methods measure a single B-factor value for the 

whole cryo-EM map. RELION post-processing85 and AutoSharpen in the Phenix Package210 both 

fall into this category, working directly on the Guinier plot. Additionally, the AutoSharpen method 

endeavours to find the B-factor values that increase both the connectivity and the isosurface area 

of the cryo-EM map. However, by assuming single B-factor-values, these global sharpening 

algorithms neglect the important point that a cryo-EM map can also harbour different local 

resolutions. For such cases, local sharpening methods come to the rescue. LocScale is one of the 

examples that works by comparing the radial average of the structure factors inside a moving 

window in both the experimental map and the map calculated from the corresponding atomic 

model. Subsequently, it locally rescales the map amplitudes in Fourier space according to the 

atomic model. However, in this case, starting the atomic model is an important requirement that 

can reduce its usage. Another local sharpening, named LocalDeblur, requires a local resolution 

estimate as an input, which acts as a frequency cutoff to generate a lowpass filter cryo-EM map. 

LocalDeblur determines the map's local density values by convolution between the lowpass filter 

map and the actual cryo-EM map. An obvious shortcoming of this method is the requisite input 

estimation of a local resolution, which can only be obtained with expert experience and can easily 

go wrong. Therefore, a local sharpening algorithm that can overcome this shortcoming is necessary 
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in a cryo-EM workflow. Another essential map post-processing step is determining the local map 

occupancy values, which describe the presence of an atom at its mean position with a range of 0.0 

to 1.0, thereby enabling construction of an atomic model. Regrettably, though, cryo-EM lacks any 

method to calculate local map occupancies. 

Chapter 2 surveys the methods to solve the above-said issues by using 3D SPT1,211. Dr. Javier 

Vargas, who is one of the authors of the manuscript from chapter 2, has been working with SPT 

to extract the modulating phase from interferometry212–214, which we have used (in chapter 21) to 

obtain the modulation or amplitude maps in case of cryo-EM map with non-homogenous 

distribution of resolution. Broadly speaking, the SPT helps to factorize a band-pass signal (1D, 

2D, 3D or ND) into two components: the amplitude term and the phase term as:  𝑽𝑽𝝎𝝎(𝐫𝐫) = 𝒎𝒎𝝎𝝎(𝐫𝐫) ·

𝐜𝐜𝐜𝐜𝐜𝐜 (𝝋𝝋𝝎𝝎(𝐫𝐫)), where 𝑽𝑽𝝎𝝎(𝐫𝐫) is the input map,  𝒎𝒎𝝎𝝎(𝐫𝐫) is the amplitude map and 𝐜𝐜𝐜𝐜𝐜𝐜 (𝝋𝝋𝝎𝝎(𝐫𝐫)) 

corresponds to the cosine of the phase map. Note that the amplitude map refers to the amount of 

the signal or energy, while the phase map refers to its shape.  

SPT has been used before in cryo-EM, as well, such as for the particle picking step in image 

analysis215. In this case, SPT is employed to facilitate morphology descriptors, which in turn 

identify the correctly picked particles from the incorrect ones based on their shape. SPT is also 

used in the case of CTF estimation216, where CTF is considered as a fringe pattern, and its 2D 

phase has the details about the microscopic aberrations in the form of a sine function or so-called 

CTF signal. When applied to the CTF, SPT converts the CTF signal (or sine of the phase map) to 

the cosine, which represents the CTF quadrature signal. With these two maps (CTF and CTF 
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quadrature signal), it is possible to obtain the phase map. The ultimately recovered phase map, 

called the absolute phase, provides information about microscope aberrations. 

SPT is also used by several approaches182,217 for local resolution determination, which works by 

calculating the local amplitude map of the cryo-EM map at each spatial frequency. For example, 

in the MonoRes approach182, a Riesz transform is implemented218–220 which is similar to the SPT. 

Here, at a certain given spatial frequency, the amplitude map is extracted from the input map, to 

compare it with amplitude distribution of noise at that certain resolution. A test is performed to 

check if the observed amplitude signal is higher than the noise signal at that specific resolution 

and location. 

Essentially, the Riesz transform is a generalization of a Hilbert transform for a 1D signal220. In 

relation to the Fourier transform, a Hilbert transform can be explained as below. Mathematically, 

Fourier transform can be expressed as the 1D function f(t) which decomposes as a combination of 

waves with different frequencies, ω. Here, if a Hilbert transform is applied, it changes +π/2 to the 

negative frequencies and -π/2 to the positive frequencies, when applied to the Fourier transform. 

For example, for the sinusoidal function f(t) = cos(ω·t), if Hilbert transform is applied (represents 

shift of ±π/2 for negative and positive frequencies, respectively), the final output will be H[f(t)] = 

sin(ω·t). Therefore, in summary, here the Hilbert transform will convert the sines into negative 

cosines and the cosines into sines182. 

SPT is a generalization of the Hilbert transform for a 2D signal, and in chapter 2, methods 

representing 3D generalization of the 2D SPT will be discussed1. 
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1.6.2  Observations of molecular dynamics 

In cryo-EM, particle classification tools were the first studies to calculate free energies, which used 

Brownian machines, the ribosomes221. While in case of back-translocation tRNA studies222, free-

energy landscape is derived using the particles classified for each sub-state (ni, where n represents 

the particle population of state i) and the Boltzmann law has been used to calculate the free-energy 

difference with respect to a reference state (ΔG; with particle population no). The Boltzmann factor 

can be shown as: 

ni/no=exp(−βΔG), where β=1/( KBT), 

where KB is the Boltzmann constant and T is the temperature. The equation is taken from 

Giraldo-Barreto J et al, 2021223. 

In other words, the free-energy landscape in cryo-EM reflects the various conformations of the 

molecular system and their corresponding energy levels, called Gibbs-free energy. Nowadays, the 

free-energy landscape is commonly used to describe the aging of the protein folding 

mechanism224,225, such as protein unfolding (denaturation) and protein folding to its native state 

mechanism226. In a free-energy landscape, many thermodynamical configurations present a 

number of local minima separated by barriers. The progression of the system’s trajectory can be 

visualized in the form of local energy minima and saddle points (transition states), which are 

decided by the particle population per state227, as shown in figure 1.12. 
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Figure 1.12: Trajectory of the two-state folding is shown in the form of an energy profile. 
It contains two wells separated by a barrier, where the wells represent the unfolded and folded 
states of the system, while a transitional conformation is shown by the barrier (red). (Reproduced 
with permission from Neupane K et al. 2016 from227). 
 

1.6.3  Analysing a large conformational data for dynamic 
macromolecule 
When interacting with biomolecules and ligands or in spontaneous fluctuation due to biological 

functions, macromolecules usually display different conformational motions. The 3D 

classification step of SPA workflow (recognized in section 1.4.4.7) helps to discover these various 

conformations of macromolecules. However, existing 3D classification methods91,144,155,228 heavily 

depend on user expertise and experience, being susceptible to the so-called “attractor problem” 

that affects the output number of 3D classes. Additionally, the analysis of these conformations is 

essential to understand the molecular mechanism of macromolecule function, which can be 

explained in the form of energy landscape229,230. The challenge is to obtain a free-energy landscape 

that can provide quantitative information about the macromolecule internal energy at all possible 

conformations and can evaluate the likelihood of potential conformational changes as a function 
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of the available thermal energy. Therefore, the development of an automatic 3D classification 

method with least user expertise demand is required, which can produce a large set of 3D classes, 

which can be further analysed in the form of the trajectory on energy landscape. This method is 

integrated on Scipion231. 

 

1.6.4  Scipion  

Scipion231 is open-source software that provides a platform for various 3DEM data analysis tools 

such as SIMPLE232, EMAN233, SPIDER234, and RELION85, among others. It was developed at 

Biocomputing Unit at the CNB in Spain. Using this integrated software has eliminated various 

limitations, including lack of standardization in the format of the output/input files for a specific 

program, and the burden of keeping tabs of each package’s workflows to get an appropriate result. 

Scipion helps to simplify the interaction between different programs. Scipion also traces the 

workflow performed to reconstruct the 3D structure of a macromolecule and saves it in the form 

of a ‘log’ file. This function helps the user to find the possible error in a sorted way as well as 

examine the result properly. Figure 1.13 shows the various steps of cryo-EM 3D reconstruction 

workflow with their specific tasks in Scipion.  

Scipion contains two different kinds of programs, as follows: 

• Protocols: Written in python, protocols are used to manage and execute the algorithms of 

different packages as well as manage the format of various inputs and outputs. 

• Libraries: written in C++, algorithms of libraries perform major functions with protocols 

in reconstruction procedure. 
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Figure 1.13: Workflow executed to determine the 3D structure of a macromolecule in 

Scipion. (Reproduced with permission from JM,  de la R-T et al, 2016 from231). 

 

1.7  Thesis objectives 

To summarize, the objectives of this thesis are: 

• Presenting a novel method to measure the local B-factors and electron density occupancy 

maps while enhancing the high-resolution feature of cryo-EM maps. 

This method is the best fit for cryo-EM maps with non-homogeneous distribution of SNR. 

Application of global sharpening approaches on such maps can cause over-sharpening 
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(noise and broken densities) as well as under-sharpening (reduced contrast at high 

resolutions). 

• To identify the presence of various conformations, present in cryo-EM data.  

This method allows uncovering the various conformations of dynamic macromolecules 

through cryo-EM 2D and 3D classification algorithms, which is importantly made by 

considering the factor of automation (or no user’s input) in the form of number of final 

classes or iterations. 

• Presenting the large conformational data output in the form of a trajectory, from the 

aforementioned automatic 2D and 3D classification method. 

This technique uncovers the conformational trajectory for a dynamic macromolecule. It is 

shown in the form of free-energy landscape which employs machine learning tools and 

Boltzmann’s distribution law that connects the energy of the macromolecule’s dynamics 

with the temperature and population of particle images. 
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CHAPTER 2  

LOCAL COMPUTATIONAL METHODS TO IMPROVE THE 
INTERPRETABILITY AND ANALYSIS OF CRYO-EM MAPS 
 
2.1 Abstract 

Cryo-EM maps usually show heterogeneous distributions of B-factors and electron density 

occupancies and are typically B-factor sharpened to improve their contrast and interpretability at 

high-resolutions. However, ‘over-sharpening’ due to the application of a single global B-factor 

can distort processed maps causing connected densities to appear broken and disconnected. This 

issue limits the interpretability of cryo-EM maps, i.e. ab initio modelling. In this work, we propose 

1) approaches to enhance high-resolution features of cryo-EM maps, while preventing map 

distortions and 2) methods to obtain local Bfactors and electron density occupancy maps. These 

algorithms have as common link the use of the spiral phase transformation and are called 

LocSpiral, LocBSharpen, LocBFactor and LocOccupancy. Our results, which include improved 

maps of recent SARS-CoV-2 structures, show that our methods can improve the interpretability 

and analysis of obtained reconstructions. 

 

2.2 Introduction 

Cryo-EM has become a mainstream technique for structure determination of macromolecular 

complexes at close-to-atomic resolution and ultimately for building an atomic model1,2. With its 

unique ability to reconstruct multiple conformations and compositions of the macromolecular 

complexes, cryo-EM allows the understanding of the structural and assembly dynamics of 

macromolecular complexes in their native conditions3–5. However, the presence of heterogeneity 

in cryo-EM maps leads to high variability in resolution within different regions of the same map. 
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This directs to challenges and errors in the process of building an atomic model from a cryo-EM 

reconstruction. Additionally, current reconstructions from cryo-EM do not provide essential 

information to build accurate ab initio atomic models as atomic Debye–Waller factors (B-factors) 

or atomic occupancies, while their counterparts from X-ray crystallography do by analysing the 

attenuation of scattered intensity represented at Bragg peaks. Cryo-EM structures exhibit loss of 

contrast at high-resolution coming from many different sources, including molecular motions, 

heterogeneity and/or signal damping by the transfer function of the electron microscope (CTF). 

Interpretation of high-resolution features in cryo-EM maps is essential to understanding the 

biological functions of macromolecules. Thus, approaches to compensate for this contrast loss and 

improve map visibility at high-resolution are crucial. This process is usually referred to as 

‘sharpening’ and is typically performed by imposing a uniform B-factor to the cryo-EM map that 

boosts the map signal amplitudes within a defined resolution range. When the map is sharpened 

with increasing positive B-factors, the clarity and map details initially improve, but eventually, the 

map becomes worse as the connectivity is lost, and the map densities appear broken and noisy. In 

the global sharpening approach6–8, the B-factor is automatically computed by determining the line 

that best fits the decay of the spherically averaged noise-weighted amplitude structure factors, 

within a resolution range given by [15–10 Å, Rmax], with Rmax the maximum resolution in the 

map given by the Fourier Shell Correlation (FSC). More recently, the AutoSharpen method within 

Phenix9 calculates a single B-factor that maximises both map connectivity and details of the 

resulting sharpened map. AutoSharpen automatically chooses the B-factor that leads to the highest 

level of detail in the map, while maintaining connectivity. This combination is optimised by 

maximising the surface area of the contours in the sharpened map. The approaches presented above 

are global, so the same signal amplitude scaling is applied to map regions that may exhibit very 
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different signal to noise ratios (SNRs) at medium/high-resolutions. Thus, cryo-EM maps showing 

inhomogeneous SNRs (and resolutions) can result in sharpened maps that show both 

oversharpened and under-sharpened regions. The former may be strongly affected by noise and 

broken densities, while the latter may present reduced contrast at high-resolutions. Both cases 

make it difficult or even impossible to interpret the biological relevance of these regions or even 

the whole map10. Thus, local sharpening methods have been proposed to overcome these 

limitations11,12. LocScale approach11 compares radial averages of structure factor amplitudes 

inside moving windows between the experimental and the atomic density maps. After, the method 

modifies locally the map amplitudes of the experimental map in Fourier space to rescale them 

accordingly to those of the atomic map. This approach requires as input a complete atomic model 

(without major gaps) fitted to the cryo-EM map to be sharpened, which is not always available. In 

addition, the size of the moving window should be provided and depending on the quality of the 

map to be sharpened, this process may lead to overfitting. More recently, the LocalDeblur 

method12 proposed an approach for map local sharpening using as input an estimation of the local 

resolution. The method assumes that the map local density values have been obtained by the 

convolution between a local isotropic low-pass filter and the actual map. This local low-pass filter 

is assumed Gaussian-shaped so that the frequency cutoff is given by the local resolution estimation. 

In X-ray crystallography, the B-factor (also called temperature value or Debye–Waller factor) 

describes the degree to which the electron density is spread out, indicating the true static or 

dynamic mobility of an atom and/or the positions where errors may exist in the model building. 

The B-factor is given by 𝐵𝐵𝑖𝑖 = 8𝜋𝜋2𝑢𝑢𝑖𝑖2, where 𝑢𝑢𝑖𝑖2 is the mean square displacement for atom i. These 

atomic B-factors can be experimentally measured in X-ray crystallography, introduced as an 

amendment factor of the structure factor calculations since the scattering effect of X-ray is reduced 
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on the oscillating atoms compared to the atoms at rest13. B-factors can be further refined by model 

building packages, i.e. Phenix14 or Refmac15 to improve the quality and accuracy of atomics 

models. Although B-factors are essential to ‘sharpen’ cryo-EM maps at high-resolution, they also 

provide key information to analyse cryo-EM reconstructions. Effective B-factors are used to model 

the combined effects of issues such as molecular drifting due to charging effects, macromolecular 

flexibility or possible errors in the reconstruction workflow that lead to a signal fall-off6,16,17. 

However, cryo-EM maps are usually analysed with a single B-factor, even though maps may 

largely differ in different regions. Thus, methods to determine local B-factors are much needed to 

accurately analyse cryo-EM maps and improve the quality of fitted atomic models. Another local 

parameter usually provided by X-ray crystallography in contrast with cryoEM are atomic 

occupancies (or Q-values). The occupancy estimates the presence of an atom at its mean position 

and it ranges between 0.0 to 1.0. Note that these parameters can be also refined by model building 

packages if the electron density map is of sufficient resolution. To our knowledge, currently, there 

is not any available method to estimate local occupancies from cryo-EM maps, even though this 

information (in addition to local B-factors) is essential to building accurate atomic models. For 

example, in ref. 18 authors found that 31% of all models examined in this analysis possess 

unrealistic occupancies or/and B-factor values, such as all being set to zero or other unlikely 

values. They also reported that 40% of models analysed show cross-correlations between cryo-

EM maps and respective models below 0.5, and they indicated as a possible hypothesis an 

incomplete optimisation of the model parameters (coordinates, occupancies and Bfactors). In this 

work, we propose semi-automated methods to enhance high-resolution map features to improve 

their visibility and interpretability. More importantly, these approaches do not require input 

parameters as fitted atomic models or local resolution maps, which reduces the possibility of 
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overfitting. In particular, our proposed local map enhancement approach (LocSpiral) is robust to 

maps affected by inhomogeneous local resolutions/SNRs, thus the method strongly improves the 

interpretability of these maps. Secondly, we also propose approaches to determine local B-factors 

and density occupancy maps to improve the analysis of cryo-EM reconstructions. The link between 

the different proposed approaches is the use of the spiral phase transform to estimate a modulation 

or amplitude map of the cryo-EM reconstruction at different resolutions. 

 

2.3 Results 

In this section, we first provide a brief and comprehensive description of the approaches developed 

in this work. A deeper and more technical explanation of these methods is given in the ‘Methods’ 

section at the end of the manuscript. Then, we present results obtained by our approaches in a 

variety of situations. We tested our proposed methods with five different samples ranging from 

near-atomic single-particle reconstructions (∼1.54 Å) to maps with more modest resolutions (∼6.5 

Å). In all cases, we compared our results with the ones provided by the Relion postprocessing 

approach7,19. 

 

2.3.1 Overview of the proposed methods  

The input parameters of the different methods (LocSpiral, LocBSharpen, LocBFactor and 

LocOccupancy) is the unfiltered map to process, a resolution range given by [Rmin, Rmax] and, 

in some cases, a tight solvent mask. The different algorithms start by filtering the input map to a 

given resolution 1/ω within the resolution range. Then, the 3D spiral phase transform is calculated 

to factorise in real space the filtered map into amplitude and a phase map as  

𝑉𝑉𝜔𝜔(𝐫𝐫) = 𝑚𝑚𝜔𝜔(𝐫𝐫)cos (𝜑𝜑𝜔𝜔(𝐫𝐫))                                 (1) 
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The amplitude map mω(r) is related to the ‘strength’ of the local map signal at resolution 1/ω, 

while the phase map refers to its shape and it is limited to the [−1, +1] range. The different methods 

proposed here are based on the analysis of the amplitude maps. In some cases, the approaches 

compute new amplitude maps (𝑚𝑚�𝜔𝜔(𝐫𝐫)), which are used to determine a sharpened map (LocSpiral, 

LocBSharpen) as 

𝑽𝑽�(𝐫𝐫) = ∑  𝜔𝜔 𝑽𝑽�𝜔𝜔(𝐫𝐫) = ∑  𝝎𝝎 𝑪𝑪𝐫𝐫𝐫𝐫𝐫𝐫,𝝎𝝎(𝐫𝐫)𝒎𝒎�𝝎𝝎(𝐫𝐫)𝐜𝐜𝐜𝐜𝐜𝐜 (𝝋𝝋𝝎𝝎(𝐫𝐫))  (2) 

with Cref,ω(r) a SNR weighting parameter (please see ‘Methods’ section). In other cases, the 

amplitude maps are further analysed to provide local B-factor maps (LocBFactor) or a local 

occupancy map estimation (LocOccupancy). 

In LocSpiral at every resolution inside the resolution range, the amplitude map is compared locally 

with a noise threshold value computed from the 90–95% quantile of the empirical 

noise/background distribution at this resolution. This empirical distribution is generated collecting 

the amplitude values at resolution 1/ω for all voxels outside the tight solvent mask. The computed 

noise threshold is then used to obtain a new normalised and filtered amplitude map, 𝑚𝑚�𝜔𝜔(𝐫𝐫), which 

is used to reconstruct the sharpened map as shown in Eq. (2). 

In LocBSharpen the amplitude map at a resolution 1/𝜔𝜔0�𝑚𝑚𝜔𝜔0(𝐫𝐫)� is stored. The resolution 1/ω0 is 

provided by the user and is typically 15–10 Å. In the process of building the sharpened map, the 

new amplitude map 𝑚𝑚�𝜔𝜔(𝐫𝐫) at any resolution equal or higher than 1/ω0 is equal to 𝑚𝑚𝜔𝜔0(𝐫𝐫 ), while 

for the rest of resolutions inside the resolution range, 𝑚𝑚�𝜔𝜔(𝐫𝐫) is equal to 𝑚𝑚𝜔𝜔(𝐫𝐫) 

In LocBFactor the amplitude maps at different resolutions inside the defined resolution range are 

used to estimate map local B-factors. A typical resolution range is of [15, Rmax] Å, being Rmax the 

global map resolution. To compute the local B-factors, the method obtains at every voxel r the 

linear fitting between log�𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟,𝜔𝜔(𝐫𝐫)𝑚𝑚𝜔𝜔(𝐫𝐫)� and ω2 within the resolution rage. The method 
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provides as output the B-map (local B-factor map) and the A-map (local values of the logarithm of 

structure factor amplitudes at 15 Å). 

In LocOccupancy, the local occupancy map is estimated comparing the amplitude map with a 

macromolecule density threshold for every resolution inside the defined resolution range. The 

macromolecule density threshold at a given resolution indicates the density value at which we are 

confident that the electron density occupancy is of 100% at this resolution. This threshold is 

obtained from the empirical macromolecule amplitude probability distribution (𝑚𝑚𝜔𝜔
𝑀𝑀) at 

frequency ω. This amplitude probability distribution is calculated from density values at voxels 

that are included inside the solvent mask. From this distribution, the macromolecule density 

threshold may be calculated from the macromolecule amplitude value corresponding to the 25% 

quantile, given by 𝑚𝑚𝜔𝜔
𝑀𝑀(𝑞𝑞 = 25%). Then, for every voxel and resolution within the resolution 

range, the amplitude map mω(r) is compared with 𝑚𝑚𝜔𝜔
𝑀𝑀(𝑞𝑞 = 25%), providing a value between 0 

and 1. Finally, the average value over all resolutions is computed and provided as an estimation of 

the map occupancy within the resolution range. 

 

2.3.2 Polycystin-2 (PC2) TRP channel 

First, we analysed a single-particle reconstruction of the polycystin-2 (PC2) TRP channel 

(EMDataBank: EMD-10418)20. In this case, we focussed on showing the capacity of LocSpiral 

approach, though, for the sake of consistency, we also show results of obtained B-factor and 

occupancy maps. The original publication reports a resolution of 2.96 Å with a final B-factor to be 

used for sharpening of −84.56 Å2 (slope of Guinier plot fitting equal to −21.14 Å2). 

In Figure 2.1A, we show maps with high threshold values obtained by LocSpiral and by the 

postprocessing method of Relion 37,19. The map densities are similar in the inner core of the protein 
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as can be seen from the solid red rectangle in the figure, where we show a zoomed view of 

LocSpiral and Relion maps of the region indicated in the red rectangles over the maps. However, 

the map densities are quite different in the outer regions, where the Relion map shows thin and 

broken densities. In addition, we show comparisons of fitted densities with the corresponding 

atomic model (PDB ID: 6t9n) of two α-helices and one loop. The asterisks label results obtained 

by LocSpiral. The residues marked with a red arrow were used to adjust the threshold values 

between maps. These comparisons show that the map obtained by LocSpiral shows fewer 

fragmented and broken densities and better coverage of the atomic model, helping in the 

interpretation of the maps and in the process of building accurate atomic models. In Supplementary 

Figure 2.1, we show additional figures comparing LocSpiral and Relion postprocessing maps. 
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Figure 2.1: Capacity of LocSpiral to improve the interpretability of cryo-EM maps. A Top: 
sharpened maps of the TRP channel obtained by LocSpiral (left) and Relion postprocessing (right) 
methods. The threshold values are adjusted to provide similar densities in the core inner part of 
the protein. The red square in the figure shows a zoomed view of the protein inner core where both 
maps (LocSpiral and Relion) are superimposed. Relion map appears in red colour, while 
LocSpiral is in grey. Bottom: Fitted map densities (LocSpiral and Relion) with the corresponding 
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atomic model (PDB ID: 6t9n) of two α-helices and one loop. The asterisks mark results obtained 
by LocSpiral approach. The residues marked with a red arrow were used to adjust the threshold 
values between maps. B Spliceosome maps at different orientations and similar threshold values 
obtained by LocSpiral and the postprocessing method of Relion. 
 

We also compared the performance of LocSpiral with other methods, including LocalDeblur, our 

proposed local B-factor correction method (LocBSharpen) and the global B-factor correction 

approach as implemented in Relion. The results are shown in Supplementary Note 1, 

Supplementary Table 2.1 and Supplementary Figure 2.2 where we also provide results obtained 

by LocBFactor and LocOccupancy methods. 

 

2.3.3 Pre-catalytic spliceosome 

Next, we processed the Saccharomyces cerevisiae pre-catalytic B complex spliceosomal single 

particles deposited in EMPIAR (EMPIAR 10180)4,21. This dataset exhibits a high degree of 

conformational heterogeneity, thus, it represents a perfect use case to test our proposed approaches. 

We used the approach described in ref.22 to obtain a reconstruction at 4.28 Å resolution after Relion 

postprocessing7,19. In the ‘Methods’ section, we provide a detailed description of the image 

processing workflow used to obtain this reconstruction. The unfiltered map provided by Relion 

autorefine was used as input to LocSpiral, LocBFactor and LocOccupancy. 

We first show results obtained by LocSpiral method for this highly heterogeneous case. In Figure 

2.1B, we show maps at different orientations and similar threshold values obtained by LocSpiral 

and by the postprocessing method of Relion 37,19. As before, the LocSpiral map shows fewer 

fragmented and broken densities, especially in the flexible part of the spliceosome reconstruction, 

and enhanced details in the central core portion improving the visibility of the reconstruction. 

We then concentrate on showing the capacity of LocBFactor method. In Figure 2.2A, we show a 

central slice along the Z axis of this map with several points marked with coloured squares. These 
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points show parts of the map that correspond to clear spliceosome densities (green and red), 

flexible and low-resolution spliceosomal regions (yellow and blue) and background (magenta). 

Figure 2.2B shows the corresponding Guinier plots at these locations. Solid lines represent 

measured values of the logarithm of SNR-weighted structure factor amplitudes, while dashed lines 

show fitted curves. This figure also provides the obtained B-factors for the different curves. The 

Guinier plots and B-factors are determined within a resolution range of 15 Å to the FSC resolution, 

given by 4.28 Å. As can be seen from Figure 2.2B, the red and green curves, which correspond to 

clear spliceosomal densities, present high amplitude values at 15 Å, while the yellow, blue and 

magenta curves show low amplitudes at 15 Å and a flat profile within the resolution range. In 

Figure 2.2B, we also show in the black curve, the Guinier plot of the noise/background amplitudes 

obtained from the 90–95% quantile of the empirical noise/background distribution for reference. 

The discontinuous black line indicates the linear fit of this noise Guinier plot. Comparing the 

yellow, blue, magenta, and black curves, it is clear that these plots are below our noise level and 

that the shape of these curves is similar to that of the noise curve. Thus, these B-factors describe 

mainly noise B-factors that show how the noise signal fall off inside the used resolution range and 

they should be filtered out from our B-factor map. Moreover, Figure 2.2C shows the spliceosome 

map coloured according to the occupancy map obtained by LocOccupancy using a resolution range 

of [30, 10] Å. From Figure 2.2C, we see that the flexible and moving parts of the spliceosome, like 

the ones indicated with the yellow and blue points in Figure 2.2A, show low occupancies (close to 

zero) within the used resolution range. Figure 2.2D renders the spliceosome map coloured with 

the obtained B-factor map to be used for sharpening (slope of the local Guinier plot multiplied by 

4). In Figure 2.2D the noise B-factors (B-factors obtained from amplitudes below the noise level 

for the used resolution range) are filtered out and appear with black colour. Note that Guinier plots 
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at regions with amplitudes below the noise level are dominated by the noise signal and describe 

the noise signal fall-off inside the used resolution range. The noise signal presents typically a flat 

spectrum, thus, artefactual close to zero B-factors, which are not in agreement with the concept 

of B-factor as a measure of position uncertainty or disorder. Figure 2.2E shows the corresponding 

local resolution map as obtained by Resmap23 of the spliceosome reconstruction. As can be seen 

from this figure, the local resolution values of the flexible parts (helicase and SF3b domains) are 

lower than the others and within a range of [10, 15] Å. Consequently, the obtained amplitudes for 

these flexible parts within the resolution range of [15, 4.28] Å are dominated by the 

noise/background signal. The average inside a solvent mask of the signal B-factors (B-factors 

obtained from amplitude values above the noise level for the used resolution range) is −567.62 Å2, 

while the value reported by Relion postprocessing is −158.08 Å2. Note that Relion postprocessing 

does not filter out regions dominated by noise/background when computing the global B-factor. 

As mentioned before, regions dominated by the noise signal within the used resolution range 

present artefactual low B-factors. Consequently, this global B-factor may be overestimated. A 

more detailed description of this point is given in Supplementary Note 3: B-factor analysis of low 

and high-resolution maps. In Figure 2.2F, we show the local values of the logarithm of the structure 

factor’s amplitudes at 15 Å (A map). As expected, this map shows low amplitudes at highly 

flexible and moving regions. We have recalculated B-factors using a new resolution range of [20, 

10] Å. The results are shown in Figure 2.2G-I. As can be seen from these figures, now the flexible 

parts show unfiltered low signal B-factors and low amplitudes at 20 Å. However, it is important to 

note that at this resolution range, the B-factors are dominated by the molecular shape and solvent 

contrast and not by resolution limiting factors such as errors in the reconstruction procedure (as 

the presence of heterogeneity), radiation damage or imaging imperfections, for example6. 
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Consequently, it is not recommended to use a resolution range of [20, 10] Å as obtained B-factors 

may not be used to evaluate map quality. 

 

 

Figure 2.2: Results obtained by LocBFactor and LocOccupancy for the Saccharomyces 
cerevisiae pre-catalytic B complex spliceosome sample. A Central slice along Z axis of the 
obtained unsharpened map using EMPIAR 10180 single particles. Coloured squares mark parts 
of the map corresponding to clear spliceosome densities (green and red), flexible and low-resolution 
spliceosomal regions (yellow and blue) and background (magenta). B Guinier plots at map points 
indicated in the coloured squares using a resolution range of [15–4.28] Å. Solid lines represent 
SNR-weighted values of the logarithm of structure factor amplitudes, while discontinued lines 
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show the fitted lines. C Spliceosome map coloured with the obtained occupancy map by 
LocOccupancy. The occupancy ranges from 0 (red colour) to 1 (blue colour), indicating no 
macromolecular density and full occupancy, respectively. D Spliceosome map coloured with the 
B-factor map to be used for sharpening (slope of the local Guinier plot multiplied by 4) obtained 
by LocBFactor using a resolution range of [15–4.28] Å. The local B-factor values in the figure 
range approximately between −800 and −200 Å2. In this figure, noise B-factors (B-factors obtained 
from amplitudes below the noise level for the used resolution range) are filtered out and appear 
with black colour. E Local resolution map obtained by Resmap approach. The local resolution 
ranges between 4 (blue colour) and 15 Å (red colour). F Spliceosome map coloured with the 
obtained A map (local values of the logarithm of structure factor amplitudes at 15 Å). The values 
range between −11.0 (magenta colour) and −9.0 (cyan colour) approximately. G Spliceosome map 
coloured with the B-factor map (B-map) obtained by LocBFactor using a resolution range of [20–
15] Å. The Bfactor values range between −1100 (magenta colour) and −300 (cyan colour) 
approximately. H Guinier plots at map points indicated in the coloured squares using a resolution 
range of [20–15] Å. Solid lines represent SNR-weighted values of the logarithm of structure factor 
amplitudes, while discontinued lines show the fitted lines. I Spliceosome map coloured with the 
obtained A map (local values of the logarithm of structure factor amplitudes at 20 Å). The values 
range between −10.5 (magenta colour) and −6.5 (cyan colour) approximately 
 

2.3.4 Apoferritin 

We have also applied these techniques to recently reported high-resolution cryo-EM 

reconstructions of mouse apoferritin: EMD-9865 and EMD-21024. The reported global resolution 

of these reconstructions is 1.54 and 1.75 Å for EMD-9865 and EMD-21024, respectively. 

In Figure 2.3A, B, we show the results obtained by LocBFactor (B and A maps) and 

LocOccupancy methods (occupancy maps). The resolution range used to estimate the B and A 

maps was between 15 Å to the reported global resolution for both cases. The occupancy maps were 

calculated for these high-resolution maps between 5 Å to the global resolution. As can be seen 

from Figure 2.3B, EMD-9865 shows lower B-factors and higher local amplitudes than EMD-

21024, indicating a better-quality reconstruction, however, the low values of both B maps indicate 

the high quality of these reconstructions. In both cases, the highest B-factors are in the outer 

regions of the protein. Moreover, local occupancies show similar maps for both cases, showing 

occupancies as low as approximately 0.5 at the outer part and indicating the presence of flexibility 
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in these outer residues. Note that the obtained average and standard deviation of B-factors inside 

a solvent mask is of −56 and 7.20 Å2 (EMD-9865) and −78 and 8.93 Å2 (EMD-21024), 

respectively, which reflects the high quality of these reconstructions. 

 

Figure 2.3: Results obtained by LocBFactor, LocOccupancy and LocSpiral for apoferritin 
sample. Obtained B-maps (local B-factor map corresponding to the slope of the local Guinier 
plots), A-maps (local values of the logarithm of structure factor amplitudes at 15 Å) and occupancy 
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maps by LocBFactor and LocOccupancy for EMD-21024 (A) and EMD-9865 (B). The B-factor 
ranges between [−22, −14] Å2 in A and [−18, −10] Å2 in B. The A-map ranges between [−9.5, 
−8.0] in A and B. The occupancy ranges between [0, 1] in A and B. In C, we show on the left side, 
superimposed sharpened maps obtained by LocSpiral (grey colour) and Relion (red colour) for 
EMD-9865. The black rectangle shows a zoomed view of the region indicated with the dashed 
rectangles. On the right, we show the respective occupancy map obtained by LocOccupancy at the 
same orientation that these sharpened maps. In this figure, 0 (red colour) indicates no density 
occupancy and 1 (blue colour) full occupancy. 
 

In Figure 2.3C, we show sharpened maps obtained from EMD-9865 by LocSpiral and by the 

postprocessing method of Relion 3. The LocSpiral map is shown in grey colour, while the Relion 

map is rendered in red. The solid black rectangle shows a zoomed view of the outer region of the 

protein, which is indicated with the dashed black rectangles in the figure. Supplementary Figure 

3 shows that the extra densities that appear in the LocSpiral map correspond to missing residues 

in EMD-9865. Additional, at the right of Figure 2.3C, we show the respective occupancy map 

obtained by LocOccupancy at the same orientation that these sharpened maps. As can be seen from 

Figure 2.3C, the LocSpiral map shows fewer fragmented and broken densities, especially in the 

parts of the map that shows low occupancies. We compute also EMRINGER and MolProbity 

scores26 between these maps (EMD-9865 and LocSpiral) and the atomic model (PDB 6v21) after 

refining the structure against corresponding maps by Phenix real_space_refine approach27 using 5 

refining iterations. The results obtained are shown in Supplementary Table S1. 

 

2.3.5 Immature prokaryote ribosomes 

We processed immature ribosomal maps of the bacterial large subunit3. These maps were obtained 

after depletion of bL17 ribosomal protein and are publicly available from the Electron Microscopy 

Data Bank (EMDB) (EMD-8440, EMD-8441, EMD-8445, EMD-8450, EMD-8434)28. In this 

case, we focussed on showing the capacity of LocOccupancy to interpret and analyse 

reconstructions showing a high degree of compositional heterogeneity. 
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Figure 2.4 shows the obtained results. The first row shows the different maps to be processed as 

deposited in the EMDB. Next, we show the obtained occupancy maps by LocOccupancy, where 

the mature 50S ribosome (EMD-8434) is coloured according to corresponding occupancy maps. 

The resolution range used was [30, 10] Å. These figures clearly show regions that are lacking in 

the different immature maps with respect to the mature map. Thus, occupancy maps were used to 

create binary masks to segment the mature 50S ribosome map, extracting after the densities that 

are missing in the respective immature maps. These densities are shown in the third column of 

Figure 2.4 with different colours (yellow, red, indigo and green). The obtained occupancy maps 

also allow us to define a ‘maturity level’ index. This index is calculated by comparing the number 

of voxels activated in the solvent mask of the mature 50S reconstruction with the ones in the 

occupancy masks (see methods section for a more detailed description). As can be seen from 

Figure 2.4, the larger the unfolded regions in the immature maps are, the smaller the maturity level 

is. This maturity level index allows us to quantitatively sort the different immature maps in a 

spectrum according to their maturity. 
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Figure 2.4: Results obtained by LocOccupancy for immature 50S ribosomes. First column: 
immature maps at different orientations as deposited in EMDB. Second column: obtained 
occupancy maps by LocOccupancy, where the mature 50S ribosome (EMDB-8434) is coloured 
with corresponding occupancy maps obtained from the immature ribosomes. The occupancy 
ranges between [0, 1]. Third column: Segmented maps showing the densities that are missing in 
the different immature maps when compared to the mature 50S reconstruction and obtained 
maturity levels. The different colours (yellow, red, purple, green) label the different corresponding 
segmented regions for each case 
 

In the Supplementary Note 2 and Supplementary Figure 2.4, we further show the advantages of 

LocSpiral and LocBFactor approaches in these highly heterogeneous datasets compared to the 

global sharpening approach. 

 

2.3.6 SARS-CoV-2 

We have processed recent cryo-EM maps of the SARS-CoV-2 spike (S) glycoprotein27,28. These 

maps include cryo-EM reconstructions of the SARS-CoV-2 spike in the prefusion conformation 

with a single receptor-binding domain (RBD) up (EMD-21375) and after imposing C3 symmetry 
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in the refinement to improve visualisation of the symmetric S2 subunit (EMD-21374). We also 

processed additional cryo-EM reconstructions from the Veesler lab of the SARS-CoV-2 spike 

glycoprotein with three RBDs down (EMD-21452) and the SARS-CoV-2 spike ectodomain 

structure (EMD-21457) with a single RBD up. The reported global resolution of these maps is 

3.46, 3.17, 2.8 and 3.2 Å, respectively. Interesting deposited atomic models (PDBs PDB 6vsb, 

PDB 6vxx and PDB 6vyb) incompletely cover the reconstructed cryo-EM maps, showing the 

existence of disordered or over-sharpened regions after B-factor correction that could not be 

modelled. Supplementary Figure 2.5 displays corresponding maps and fitted atomic models 

showing a large amount of protein that is not currently modelled. 

In Figure 2.5A, we show EMD-21375 map and the obtained LocSpiral reconstruction. In this 

figure, we use a relatively low threshold to visualise the outer parts of the protein. This figure 

shows that our obtained reconstruction presents less fragmented and broken densities and better 

map connectivity than the one deposited in EMD, suggesting that our approach improves the 

analysis and visualisation of the outer regions and potentially aides in the modelling of additional 

map motifs. In Supplementary Figure 2.6A, we show similar results for EMD-21374, EMD-21452 

and EMD-21457 maps. Interesting, the LocSpiral EMD-21374 map shows some additional 

fragmented densities at the top of the spike, however, we believe that these additional densities are 

in fact artefacts that come as a result of artificially imposing C3 symmetry on particles that are 

asymmetric. In Figure 2.5B, we show the local B-factor map to be used for sharpening (slope of 

the local Guinier plot multiplied by 4) obtained by LocBFactor for EMD-21375 and in 

Supplementary Figure 2.6B, we compare obtained local B-factor maps from EMD-21375, EMD-

21374, EMD-21452 and EMD-21454 maps using a similar colourmap. Supplementary Figure 
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2.6B shows that EMD-21452 and EMD-21454 present lower B-factors than EMD-21374 and 

EMD-21374, and then a better localizability of secondary structure and residues. 
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Figure 2.5: Results obtained by LocSpiral, LocBFactor and improved atomic model for 
EMD-21375 SARS-CoV-2 sample. A Map obtained by LocSpiral approach (left) compared with 
the map as deposited in EMDB for EMD-21375. B B-factor maps to be used for sharpening (slope 
of the local Guinier plot multiplied by 4) obtained by LocBFactor approach for EMD-21375. The 
B-factor ranges between [−325.0, −125.0] Å2. C Visual examples of map regions corresponding 
to EMD-21375 that could be further modelled after processing the corresponding unfiltered and 
unsharpened map with LocSpiral approach. On the left and marked with asterisks, we show the 
LocSpiral maps with the improved atomic models in green, and on the right the deposited EMD-
21375 map with the PDB 6vsb in magenta. D In white, PDB 6vsb with traced parts of the glycan 
proteins marked with purple spheres. In red, additional parts that could be traced using LocSpiral 
map. Inside the black squares, zoomed views of two glycan proteins that could be further modelled. 
 
Then, we used the LocSpiral EMD-21375 reconstruction to improve the deposited atomic model 

(PDB 6vsb). As result, we could model additional loops and motifs: K444.C-F490.C; E96.C-

S98.C; NAG1322.C; P812.C-K814.C, and some additional amino acids, which are now visible in 

the improved map: P621.C-G639.C; S673.C-V687.C; A829.B-A825.B. We were also able to 

visualise map densities corresponding to numerous additional N-linked glycans that could not be 
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resolved in the original reconstruction. Examples of some regions that could be further modelled 

are shown in Figure 2.5C, D. In Figure 2.5C, we show the obtained LocSpiral map with the 

improved atomic model in green at the left and marked with an asterisk. At the right, it is rendered 

the deposited EMD map with the PDB 6vsb in magenta. Figure 2.5D shows in white the PDB 6vsb 

with the traced parts of the glycan proteins marked with purple spheres and in red the additional 

parts that could be traced using LocSpiral map. In addition, in this figure, we provide also zoomed 

views of two glycan proteins that could be further modelled with our improved map. 

Corresponding EMRINGER and MolProbity scores, calculated between LocSpiral map and the 

improved atomic model, and between EMD-21375 and the deposited model (PDB 6vsb), are 

shown in Supplementary Table S1. In both cases, the atomic structures were refined against 

corresponding maps by Phenix real_space_refine approach25 using 5 refining iterations. 

2.4 Discussion 

In this paper, we have introduced methods to improve the analysis and interpretability of cryo-EM 

maps. These methods include map enhancement approaches (LocSpiral and LocBSharpen), and 

approaches to calculate local B-factors (LocBFactor) and density occupancy maps 

(LocOccupancy). We have shown in our experiments that LocSpiral approach improves map 

connectivity showing fewer fragmented and broken densities and better coverage of the atomic 

model. In fact, our LocSpiral approach has been applied on several published publications31-35, 

enabling molecular modelling on maps with flexibility and light anisotropic resolution. 

We envision that our proposed methods to estimate local B-factors and occupancy maps could be 

used to improve de novo model building. First, these maps can be employed to guide the manual 

tracing. These maps can be informative to estimate the range of structures that could be compatible 

with the given electron microscopy density. Second, for very high-resolution cryo-EM maps, these 
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values can be used as an approximation of the atomic B-factors and occupancies to be further 

refined as part of the automatic model refinement process by automatic model building packages 

as Phenix14 or Refmac15. B-factor maps provide complementary information to local resolution 

maps, though, these results are usually correlated. The latter usually determines the resolution at a 

given point by comparing the map to noise or background amplitudes36, while the former 

determines the rate of signal amplitude fall off within a resolution range. Then, we can find map 

regions with similar local resolution (map amplitude similar to noise/background amplitude at this 

resolution and coordinates), while different B-factor as the signal damping could be different 

within the used resolution range (highly or slowly sloped). 

We have seen that we must be careful when processing maps affected by high flexibility and 

heterogeneity or when analysing maps with moderate global resolution (close to 10–15 Å) as the 

obtained B-factors could be overestimated if the selected resolution range is above the local 

resolution at these regions. Note that obtained B-factors at these low-resolution regions describe 

mainly noise B-factors that show how the noise signal fall off inside the used resolution range and 

they should be filtered out from our B-factor map. However, these problematic cases can be easily 

detected as the amplitude values in corresponding Guinier plot will be below the noise level 

(obtained from the 90–95% quantile of the empirical noise/background distribution). Thus, these 

regions can be automatically filtered out and not taken into consideration. In our analysis of B-

factors for low and high-resolution maps shown in the Supplementary Material, we show that 

existing methods to determine the map global B-factor, as Relion postprocessing, do not filter 

problematic low-resolution regions so the estimated B-factor may be overestimated. 

In principle, it might be possible to differentiate between compositional and moderate 

conformational flexibility from the obtained occupancy maps for samples accurately 3D classified. 
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In the former case, the occupancy map is expected to show close to zero values at missing regions, 

as the density values of these parts should be low and close to the noise level. Oppositely, in the 

latter case, the occupancy is likely to show higher values as the density values of moving parts, 

while slightly blurred because of the movement, should be similar to the ones at other static regions 

of the macromolecule. However, we should be extremely careful about these analyses as 3D 

classification approaches are not perfect, thus, macromolecules showing different compositions 

could provide 3D maps with significant density values in regions that should be empty. 

Additionally, samples showing large conformational changes could present low-density values at 

moving regions when compared to density values at static parts, providing close-to zero occupancy 

values. 

The methods proposed here are semi-automated and essentially only require the unfiltered map to 

enhance or analyse, a resolution range and, in some cases, a binary solvent mask as inputs. They 

do not require additional information as atomic models or local resolution maps. The common link 

between all these approaches is the use of the spiral phase transform, which is used to factorise 

cryo-EM maps into amplitude and phase terms in real space for different resolutions. The spiral 

phase transform has been extensively used in optics for phase extraction in interferometry35-39 or 

by Shack-Hartmann sensors40,41. This transformation is not new in cryo-EM as it has been 

proposed previously to facilitate particle screening42, CTF estimation43 and local and directional 

resolution determination34,44. In refs. 34,44, the authors used the Riesz transform to obtain amplitude 

maps, which is similar to the spiral phase transform. 

Cryo-EM reconstructions of different types of macromolecules have been used to test the 

performance of these algorithms. Specifically, we have used a membrane protein (TRP channel), 

immature ribosomes affected by high compositional heterogeneity, the spliceosome that shows 
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high conformational heterogeneity, recent SARS-CoV-2 reconstructions exhibiting dynamic 

regions and high-resolution apoferritin reconstructions. In all cases, our proposed approaches show 

excellent results, improving the analysis and the interpretability of the processed maps. The 

proposed methods are also highly efficient. For example, the processing of EMD-21457 (map size 

400 px3) using our local enhancement approach took only 12 min on a standard laptop using 4 

cores. 

 

2.5 Methods 

The proposed methods are based on a 3D generalisation of the 2D spiral phase transform. In the 

following, we present the 3D spiral phase transform and its application to map enhancement, local 

B-factor determination, and estimation of local map occupancies. 3D spiral phase transform. The 

spiral phase transform is a Fourier operator that can factorise a 3D map into its amplitude and 

phase terms in real space at different resolutions. We assume without loss of generality that a given 

3D map can be modelled as a 3D phase modulated signal given by 

𝑉𝑉(𝐫𝐫) = ∑  𝜔𝜔 𝑉𝑉𝜔𝜔(𝐫𝐫) = ∑  𝜔𝜔 �𝑏𝑏𝜔𝜔(𝐫𝐫) + 𝑚𝑚𝜔𝜔(𝐫𝐫)cos (𝜑𝜑𝜔𝜔(𝐫𝐫))�    (3) 

where V(r) is the cryo-EM map, Vω(r) is a band-passed map filtered at frequency ω, bω(r) the 3D 

background or DC term, mω(r) the 3D amplitude map, φω the 3D modulating phase and r = (x, y, 

z). Assuming that we are interested in spatial frequencies higher than 1/50–1/30 1/Å and that the 

background is usually a low frequency signal, we can approximate the map by a high-passed 

filtered map VHP for resolutions higher than 50–30 Å by 

         𝑉𝑉HP(𝐫𝐫) = ∑  𝜔𝜔 𝑚𝑚𝜔𝜔(𝐫𝐫)cos (𝜑𝜑𝜔𝜔(𝐫𝐫))     (4) 

For convenience, Eq. (4) can be expanded into its corresponding analytic signal as 

 𝑉𝑉�HP(𝐫𝐫) = ∑  𝜔𝜔 𝑚𝑚𝜔𝜔(𝐫𝐫)𝑒𝑒𝑗𝑗𝜑𝜑𝜔𝜔(𝐫𝐫)      (5) 
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This analytic signal relates to our high-passed filtered map by 

𝑉𝑉HP(𝐫𝐫) = ∑  𝜔𝜔 Re {𝑉𝑉�HP(𝐫𝐫)} = ∑  𝜔𝜔 Re �𝑚𝑚𝜔𝜔(𝐫𝐫)𝑒𝑒𝑗𝑗𝜑𝜑𝜔𝜔(𝐫𝐫)� =
𝑉𝑉HP(𝐫𝐫) = ∑  𝜔𝜔 Re ��𝑚𝑚𝜔𝜔(𝐫𝐫)cos (𝜑𝜑𝜔𝜔(𝐫𝐫)) + 𝑗𝑗𝑚𝑚𝜔𝜔(𝐫𝐫)sin (𝜑𝜑𝜔𝜔(𝐫𝐫))��

   (6) 

with Re{·} an operator that takes the real part and j is the imaginary unit (j2 = −1). Note from the 

analytic signal defined in Eq. (5) that mω(r) and φω(r) clearly represent amplitude and phase terms. 

The quadrature transformation of Eq. (4) is given by 

Q{𝑉𝑉HP(𝐫𝐫)} = −∑  𝜔𝜔 𝑚𝑚𝜔𝜔(𝐫𝐫)sin (𝜑𝜑𝜔𝜔(𝐫𝐫))   (7) 

Then, Eq. (5) may be rewritten as 

𝑉𝑉�HP(𝐫𝐫) = ∑  𝜔𝜔 (𝑉𝑉HP(𝐫𝐫)− 𝑗𝑗Q{𝑉𝑉HP(𝐫𝐫)})   (8) 

Assuming that mω is a low varying map compared to φω, the gradient of VHP is approximated by  

∇𝑉𝑉HP(𝐫𝐫) ≅ −∑  𝜔𝜔 𝑚𝑚𝜔𝜔(𝐫𝐫) sin�𝜑𝜑𝜔𝜔(𝐫𝐫)�∇𝜑𝜑𝜔𝜔(𝐫𝐫)   (9) 

Rearranging terms, we obtain 

Q�𝑉𝑉HP,𝜔𝜔(𝐫𝐫)� = ∇𝜑𝜑𝜔𝜔(𝐫𝐫)
|∇𝜑𝜑𝜔𝜔(𝐫𝐫)| ⋅

∇𝑉𝑉HP,𝜔𝜔(𝐫𝐫)
|∇𝜑𝜑𝜔𝜔(𝐫𝐫)| = −𝐧𝐧𝜑𝜑(𝐫𝐫) ⋅ ∇𝑉𝑉HP,𝜔𝜔(𝐫𝐫)

|∇𝜑𝜑𝜔𝜔(𝐫𝐫)|      (10) 

Equation (10) shows that the quadrature term is composed of two terms. The first is an orientation 

map nφ and the second corresponds to a non-linear operator that can be interpreted as a 3D 

generalisation of the 1D Hilbert transform, which can be efficiently calculated using the Fourier 

transform. As shown in45, the operator ∇𝑉𝑉HP,𝜔𝜔(𝐫𝐫)/|∇𝜑𝜑𝜔𝜔(𝐫𝐫)| corresponds to the 3D Hilbert 

transform applied to our band-passed maps VHP,ω(r), then 

𝐇𝐇�𝑉𝑉HP,𝜔𝜔(𝐫𝐫)� = FT−1 �−𝑗𝑗𝐪𝐪
𝐪𝐪

FT�𝑉𝑉HP,𝜔𝜔(𝐫𝐫)�� ≅ ∇𝑉𝑉HP,𝜔𝜔(𝐫𝐫)
|∇𝜑𝜑𝜔𝜔(𝐫𝐫)|   (11) 

Thus, Eq. (10) can be rewritten as 

Q�𝑉𝑉HP,𝜔𝜔(𝐫𝐫)� = ∇𝜑𝜑𝜔𝜔(𝐫𝐫)
|∇𝜑𝜑𝜔𝜔(𝐫𝐫)| ⋅

∇𝑉𝑉HP,𝜔𝜔(𝐫𝐫)
|∇𝜑𝜑𝜔𝜔(𝐫𝐫)| ≅ −𝐧𝐧𝜑𝜑(𝐫𝐫) ⋅ FT−1 �−𝑖𝑖𝐪𝐪

𝐪𝐪
FT�𝑉𝑉HP,𝜔𝜔(𝐫𝐫)��  (12) 
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Note that 𝒏𝒏𝜑𝜑 is a unit vector pointing in the same direction that ∇𝑉𝑉HP,𝜔𝜔(𝐫𝐫) (remember that 𝑚𝑚𝜔𝜔 is 

a low varying map compared to 𝜑𝜑𝜔𝜔 ), but maybe with different orientation because a possible 

change of sign introduced by the cosine term in Eq. (4). We can rewrite Eq. (12) as 

Q�𝑉𝑉HP,𝜔𝜔(𝐫𝐫)�  ≅ −𝐧𝐧𝜑𝜑(𝐫𝐫) �FT−1 �−𝑖𝑖𝐪𝐪
|𝐪𝐪|

FT�𝑉𝑉HP,𝜔𝜔(𝐫𝐫)��� 𝐧𝐧𝑉𝑉HP,𝜔𝜔(𝐫𝐫)

 = −𝑠𝑠(𝐫𝐫) �FT−1 �−𝑖𝑖𝐪𝐪
|𝐪𝐪|

FT�𝑉𝑉HP,𝜔𝜔(𝐫𝐫)���
  (13) 

where 𝑠𝑠(𝐫𝐫) is a function with range +1 or −1 considering that 𝐧𝐧𝜑𝜑(𝐫𝐫) and 𝐧𝐧𝑉𝑉HP.  can be parallel or 

antiparallel only. From Eq. (13), we can obtain an estimation of 𝜑𝜑𝜔𝜔(𝐫𝐫 affected by an 

indetermination in its sign by 

𝜑𝜑𝜔𝜔(𝐫𝐫) ≅ arctan �Q�𝑉𝑉HP,𝜔𝜔(𝐫𝐫)�
𝑉𝑉HP,𝜔𝜔(𝐫𝐫)

� =

−𝑠𝑠(𝐫𝐫)arctan �
�FT−1�−𝑖𝑖𝐪𝐪|𝐪𝐪| FT�𝑉𝑉HP,𝜔𝜔(𝐫𝐫)���

𝑉𝑉HP,𝜔𝜔(𝐫𝐫)
�
        (14) 

However, we can use Eq. (14) to obtain the modulation and cosine terms in Eq. (4) separately 

without sign ambiguity as 

  

cos (𝜑𝜑𝜔𝜔(𝐫𝐫)) = cos �arctan �Im{𝑉𝑉�HP(𝐫𝐫)}
Re{𝑉𝑉�HP(𝐫𝐫)}��

≅ cos �arctan �
�FT−1�−𝑖𝑖𝐪𝐪|q| FT�𝑉𝑉HP,𝜔𝜔(𝐫𝐫)���

𝑉𝑉HP,𝜔𝜔(𝐫𝐫)
��

𝑚𝑚𝜔𝜔(𝐫𝐫) = �𝑉𝑉�HP(𝐫𝐫) ⋅ 𝑉𝑉�HP(𝐫𝐫)+�
1/2

= ��𝑉𝑉HP,𝜔𝜔(𝐫𝐫)�
2

+ �Q�𝑉𝑉HP,𝜔𝜔(𝐫𝐫)��
2
�
1/2

 (15) 

Using these expressions, we can obtain for each frequency 𝜔𝜔 the terms cos (𝜑𝜑𝜔𝜔(𝐫𝐫)) and 𝑚𝑚𝜔𝜔(𝐫𝐫). 

 

2.5.1 Local enhanced map (LocSpiral) 

We are proposing here a robust local map enhancement method that only requires as input a binary 

mask of the macromolecule and a resolution range. The approach works for both high and 
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moderate resolution maps. In the following, we provide details of the proposed method. As 

explained before, each band-pass filtered map can be factorised into an amplitude and phase term 

by the spiral phase transform. Then, given a user defined solvent mask, the method obtains the 

empirical noise amplitude probability distribution (𝑚𝑚𝜔𝜔
𝑁𝑁) at frequency ω, selecting the density 

values of voxels not included in the solvent mask. From this distribution, the approach determines 

the noise amplitude value corresponding to the 90–95% quantile, given by 𝑚𝑚𝜔𝜔
𝑁𝑁(𝑞𝑞 = 95%). This 

value is used to locally normalise map amplitudes in real space along with different frequencies 

and remove local signals that are below this amplitude threshold as they are likely noise at this 

given frequency and position. After this non-linear amplitude transformation, the enhanced map 

at a given frequency ω is given by 

𝑉̆𝑉𝜔𝜔(𝐫𝐫) = (𝑚𝑚𝜔𝜔(𝐫𝐫) > 𝑚𝑚𝜔𝜔
𝑁𝑁(𝑞𝑞 = 95%))cos (𝜑𝜑𝜔𝜔(𝐫𝐫))           (16) 

and the map 

𝑉̆𝑉(𝐫𝐫) = ∑  𝜔𝜔 𝑉̆𝑉𝜔𝜔(𝐫𝐫) = ∑  𝜔𝜔 (𝑚𝑚𝜔𝜔(𝐫𝐫) > 𝑚𝑚𝜔𝜔
𝑁𝑁(𝑞𝑞 = 95%))cos (𝜑𝜑𝜔𝜔(𝐫𝐫))  (17) 

The method allows as an option the use of an SNR weighting parameter to weight the contribution 

of the different amplitudes in the final map. In this case, Eq. (17) is rewritten as 

𝑉̆𝑉(𝐫𝐫) = ∑  𝜔𝜔 𝐶𝐶ref,𝜔𝜔(𝐫𝐫)(𝑚𝑚𝜔𝜔(𝐫𝐫) > 𝑚𝑚𝜔𝜔
𝑁𝑁(𝑞𝑞 = 95%))cos (𝜑𝜑𝜔𝜔(𝐫𝐫))  (18) 

with 𝐶𝐶ref ,𝜔𝜔(𝑟𝑟) the SNR weighting parameter given by 

𝐶𝐶ref ,𝜔𝜔(𝐫𝐫) = 𝑚𝑚𝜔𝜔(𝐫𝐫)
𝑚𝑚𝜔𝜔(𝐫𝐫)+𝑚𝑚𝜔𝜔

𝑁𝑁(𝑞𝑞=95%)
                        (19) 

 

2.5.2 Local B-factor determination (LocBFactor)  

The factorisation of a 3D map into its amplitude and phase terms in real space for different 

frequencies allows the efficient determination of local B-factor maps. To this end, LocBFactor 

method first obtains the local map amplitudes mω(r) for resolutions between 15–10 Å to the 
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estimated global map resolution. These amplitude maps are then used to obtain SNR-weighted 

log-amplitudes of structure factors locally as 

log (𝐹𝐹𝜔𝜔(𝐫𝐫)) = log �𝐶𝐶ref ,𝜔𝜔(𝐫𝐫)𝑚𝑚𝜔𝜔(𝐫𝐫)�                                      (20) 

with Cref,ω(r) a SNR weighting parameter defined in (19). This expression can be used to fit 

log(𝐹𝐹𝜔𝜔(𝐫𝐫)) versus ω2 within the resolution rage defined between 15 and 10 Å to the estimated 

global map resolution. Thus, finally we have 

log (𝐹𝐹𝜔𝜔(𝐫𝐫)) ≅ 𝐵𝐵(𝐫𝐫)(𝜔𝜔2 − 𝜔𝜔0
2) + 𝐴𝐴(𝐫𝐫)                          (21) 

with 𝐵𝐵(𝐫𝐫) the local 𝐵𝐵-factor map or B map, and A(𝐫𝐫) the log-amplitude map at 𝜔𝜔0 (A map). In 

Eq. (21) the approach typically does not take into consideration in the linear fit amplitude values 

(𝑚𝑚𝜔𝜔(𝐫𝐫)) that are below the noise level (𝑚𝑚𝜔𝜔
𝑁𝑁(𝑞𝑞 = 95%) ). Additionally, local Guinier plots without 

at least two points above the noise level are filtered out from the B map. Note that 𝜔𝜔0 corresponds 

to the lowest frequency within the used resolution range (typically 1/15 − 1/10Å−1 ). 

 

2.5.3 Local B-factor sharpened map (LocBSharpen) 

 The spiral phase transform can be used to obtain local B-factor sharpened maps. Note that 

Expression (4) can be modified for frequencies higher than ω0 as 

𝑉̆𝑉(𝐫𝐫) = ∑  𝜔𝜔 𝑉̆𝑉HP,𝜔𝜔(𝐫𝐫) = �
∑  𝜔𝜔  �𝐶𝐶ref ,𝜔𝜔(𝐫𝐫)𝑚𝑚𝜔𝜔(𝐫𝐫) cos�𝜑𝜑𝜔𝜔(𝐫𝐫)��,𝜔𝜔 < 𝜔𝜔0

∑  𝜔𝜔  �𝐶𝐶ref ,𝜔𝜔(𝐫𝐫)𝐴𝐴(𝐫𝐫) cos�𝜑𝜑𝜔𝜔(𝐫𝐫)��,𝜔𝜔 ≥ 𝜔𝜔0
    (22) 

With 𝐴𝐴(𝐫𝐫) the log-amplitude map at 𝜔𝜔0 (A map). 

 

2.5.4 Local occupancy map (LocOccupancy) 
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Low occupancy map regions correspond to parts of the macromolecule where map amplitudes of 

the reconstruction are significantly smaller when compared to other regions of the 

macromolecule. Keeping this in mind, we define the occupancy map as 

𝑂𝑂(𝐫𝐫) = ∑  𝜔𝜔  �𝑚𝑚𝜔𝜔(𝐫𝐫)>𝑚𝑚𝜔𝜔
𝑀𝑀(𝑞𝑞=25%)�

∑  𝜔𝜔  �𝑚𝑚𝜔𝜔(𝐫𝐫)≥𝑚𝑚𝜔𝜔
𝑀𝑀(𝑞𝑞=0%)�

                                 (23) 

where 𝑚𝑚𝜔𝜔
𝑀𝑀(𝑞𝑞 = 25%) and 𝑚𝑚𝜔𝜔

𝑀𝑀(𝑞𝑞 = 0%) are obtained from the empirical macromolecule 

amplitude probability distribution (𝑚𝑚𝜔𝜔
𝑀𝑀) at frequency 𝜔𝜔. This amplitude probability distribution is 

calculated from map density values corresponding to voxels that are included in the solvent mask. 

From this distribution, the approach determines the macromolecule amplitude values 

corresponding to the 25 and 0% quantiles, given by 𝑚𝑚𝜔𝜔
𝑀𝑀(𝑞𝑞 = 25%) and 𝑚𝑚𝜔𝜔

𝑀𝑀(𝑞𝑞 = 0%) that are 

used as thresholds. To calculate local occupancy maps, a typical resolution range between 30 and 

10 − 8Å is used to obtain density occupancies of complete secondary structure motifs, while 

ranges between 5 and 3-1.5 Å are used for high-resolution cryo-EM maps to obtain occupancies 

of residues. 

 

2.5.5 Maturity level index 

In the analysis of the immature 50S ribosomes, we have proposed a maturity level index. This 

index can be extended to the analysis of any maturing macromolecule and is useful to place 

immature macromolecules into a maturing timeline. The calculation of this index requires 

reconstructions of immature and mature macromolecules. The mature reconstruction is used to 

obtain a binary solvent mask, while the immature reconstructions are used to calculate occupancy 

maps. These occupancy maps allow us to determine highly occupied regions (occupancy >0.75) 

and calculate occupancy masks. Then, the index is obtained comparing the number of voxels 

activated in the solvent mask of the mature reconstruction with the ones in the occupancy masks. 
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As can be seen from Figure 2.4, the larger are the regions that are not folded in the immature maps, 

the smaller is the maturity level.  

 

2.5.6 Cryo-EM image processing of the spliceosome data 

The dataset is composed of 327,490 particle images of a spliceosomal B-complex from yeast 

(EMPIAR-10180)4. The particles were polished with Relion, downsampled to 1.699 Å/px and 

windowed to a size of 320 × 320 pixels. A set of 30 initial volumes were obtained by RANSAC 

(15 maps) and Eman2 (15 maps) and processed by volume selector approach22 producing two 

different initial volumes. Then, Relion 3D classification was used to compute two classes 

providing both volumes as reference initial maps (class 1 and class 2 composed by 201,407 and 

126,083 particles respectively). The resulting classes were refined by Relion autorefine using the 

maps obtained in the previous 3D classification. Finally, Relion postprocessing provided maps at 

4.28 and 4.58 Å for class 1 and class 2, respectively. Lastly, a local resolution was calculated using 

Relion for both classes.  

 

2.5.7 Data availability  

Previously published datasets used for testing are available from the Electron Microscopy Data 

Bank (https://www.ebi.ac.uk/pdbe/emdb/) under accession codes EMD-10418, EMD-8440, EMD-

8441, EMD-8445, EMD-8450, EMD-8434, EMD-21375, EMD-21374, EMD-21452 and EMD-

21457. Data that support the findings of this study have been deposited in http://t.ly/XKQa.  
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2.5.8 Code availability  

The source code for the presented methods is freely available under the terms of an opensource 

software license and can be downloaded from https://github.com/1aviervargas/ LocSpiral-

LocBSharpen-LocBFactor-LocOccupancy21. 
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2.6 Supplemental information 

2.6.1 Supplementary note 1: Polycystin-2 (PC2) TRP channel  

We compared the performance of LocSpiral with other methods, including LocalDeblur, our 

proposed local B-factor correction method (LocBSharpen) and the global B-factor correction 

approach as implemented in Relion. To compare the different results, we used metrics proposed 

in1. The results are shown in Supplementary Figure 2.2. In this case, we used a relatively high 

threshold value to visually compare the different maps. From Supplementary Figure 2.2, we can 

see that the map obtained by LocSpiral shows good connectivity and is less affected by broken or 

missed densities. EMRINGER2 and cross-correlation scores (obtained using PDB 6t9n as 

reference) show approximately similar results for all cases, though, the highest scores are provided 

by LocSpiral and LocBSharpen approaches. For the sake of comparison, we also provide FSC 

curves calculated by comparing the different maps with the reference atomic model (PDB 6t9n). 

In this case, the best results at high resolutions are provided by LocalDeblur and by LocSpiral 

approaches.  

 In addition, we provide results of LocBFactor and LocOccupancy methods. In Supplementary 

Figure 2.2B, we show the obtained local B-factor map (left map) to be used for sharpening (slope 

of the local Guinier plot multiplied by a factor 4) and the A-map (middle map) corresponding to 

the local values of the logarithm of structure factors amplitudes at 15 Å. The resolution range used 

to estimate these maps was between 15 Å to the FSC resolution (2.96 Å). The average value inside 

the solvent mask of local B-factors obtained from amplitude values above the noise level (signal 

B-factors) gives a value of -129.76 Å2, which is smaller than the value provided by Relion (-84.56 

Å2) computed from the unmasked reconstruction. The A-map provides the fitted local amplitudes 

at 15 Å, showing the local “amount” of signal at this resolution. As expected, local B-factor map 
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(B-map) shows that the inner parts of the protein show lower Bfactors than the outer regions. 

Supplementary Figure 2.2B shows additionally the obtained local occupancy map (right map). 

Interesting, both the occupancy and A maps show low values in the regions occupied by detergent 

densities, lipid densities and cholesterol densities (please see Figure 2 in3), indicating the presence 

of compositional variability in these regions and low signal at 15 Å.  

 
2.6.2 Supplementary note 2: Immature prokaryote ribosomes  

In Supplementary Figure 2.4 we show maps with improved contrast at high-resolution obtained 

after processing EMD-8441 by LocSpiral and Relion methods4,5. The same soft mask was applied 

to both maps. In the figure, we show the maps at low and high threshold values. When a low 

threshold value is used, it is not possible to see details in the Relion map, while at high threshold 

values many regions of this map are not visible. Conversely, LocSpiral approach shows high 

resolution features at both high and low thresholds without losing appreciable map densities.  

 Finally, we also show in Supplementary Figure 2.4 the local B-factor map (B map given by the 

slopes of the local Guinier plot) and the local values of the logarithm of structure factor’s 

amplitudes at 15 Å (A map in the figure) obtained by LocBFactor approach. The average value of 

the local signal B-factors to be used for sharpening (slope of the local Guinier plot multiplied by 

4) within a solvent mask is -394.28 Å2. We obtained the B-factor estimations within a resolution 

range between 15 Å to the FSC resolution given by 3.7 Å. The B-factor map shows higher B-

factors at the outer part of the macromolecule, corresponding to regions that are partially folded 

and show compositional and conformational heterogeneity and lower local resolutions, as can be 

seen from Supplementary Figure 2.4, Class 3 in6. As shown in the previous Spliceosome case, 

regions dominated by the noise signal within the used resolution range present artefactual low 

Bfactors (noise B-factors) which describe the noise fall off inside the resolution range. These noise 
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B-factors appear in Supplementary Figure 2.4 with black colour and correspond to the lowest 

amplitudes (below the noise level) in the A map at 15 Å resolution.  

 

2.6.3 Supplementary note 3: B-factor analysis of low and high resolution 
maps  

We have performed additional B-factor analysis of approximately homogeneous low- and 

highresolution maps corresponding to EMD-20671 and EMD-21024. The Gold standard FSC  

resolution and the estimated B-factors to be used for sharpening (slope of the local Guinier plot 

multiplied by 4) as determined by Relion postprocessing are 16.01 Å and -97.70 Å2 for 

EMD20671, and 1.77 Å and -50.81 Å2 for EMD-21024, respectively. Note that the B-factors for 

sharpening obtained by Relion are very similar for maps showing very different resolutions. 

Additionally, we have computed local B-factor maps from LocBFactor approach. For both maps, 

we used a resolution range of [15, 4] Å. The obtained averages of signal B-factors used for 

sharpening inside solvent masks are -1172 Å2 and -78 Å2 for EMD-20671 and EMD-21024, 

respectively. Note that the values obtained by Relion and LocBFactor for EMD-21024 are similar. 

Oppositely, the average B-factor obtained by LocBFactor for EMD-20671 is much lower and 

consistent with a map at 16.01 Å resolution than the one reported by Relion. We believe that the 

reason of this discrepancy is because LocBFactor filters out noise B-factors (B-factors obtained 

from amplitudes below the noise level for the used resolution range) while Relion does not filter 

regions dominated by noise within the used resolution range. Supplementary Figure 2.7 shows 

obtained B-factor maps, FSC curves and respective Guinier plots at noise and signal regions for 

both cases.   
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2.6.4 Supplementary figures  
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Supplementary Figure S2.1 Comparison between LocSpiral and Relion postprocessing 
maps for the TRP channel. A) Complete and overlapping LocSpiral and Relion maps shown 
with the corresponding atomic structure (PDB 6t9n). B) Reconstructions of corresponding regions 
at the core and bottom outer region of the TRP channel obtained from LocSpiral (left) and Relion 
(right) approaches.  
  
  

  
Supplementary Figure S2.2 Results and comparisons between different methods over the 
TRP channel. A) Comparison between maps obtained by different sharpening approaches: Relion, 
LocalDeblur, LocSpiral and LocBSharpen. Red arrows show broken or missed densities that could 
be seen from LocSpiral and LocBSharpen maps. Below each map, EMRINGER and 
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crosscorrelation (CC) scores calculated between obtained maps and the atomic model (PDB 6t9n) 
are provided. We also show FSC curves comparing the different maps with the reference atomic 
model (PDB 6t9n). B) Results obtained by LocBFactor (B and A maps) and LocOccupancy for the 
TRP channel.  
  
   

 
Supplementary Figure S2.3 Complete and superimposed sharpened maps. LocSpiral (gray 
colour) and Relion (red colour) for EMD-9865 with the corresponding atomic structure (PDB 
6v21). In the black rectangles are shown zoomed views of the regions labelled with the same index.   
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Supplementary Figure S2.4 Results and comparisons between different methods for the 
EMD-8441 immature ribosome. (Left) Obtained sharpened maps for EMD-8441 by LocSpiral 
and Relion. These maps are shown at low and high thresholds. (Right) Obtained B-maps (local B-
factor maps corresponding to the slope of the local Guinier plots) and A-maps (local values of the 
logarithm of structure factor amplitudes at 15 Å) of EMD-8441 at different orientations. In these 
figures, noise B-factors (B-factors obtained from amplitudes below the noise level for the used 
resolution range) are filtered out and appear with black color.   
 

  

 
Supplementary Figure S2.5 Improved maps obtained by LocSpiral from EMD-21375, 
EMD21457, EMD-21452 and corresponding fitted atomic models.  
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Supplementary Figure S2.6 Results obtained by LocSpiral, LocBFactor for SARS-CoV-2 
samples. A) Maps obtained by LocSpiral approach (left) compared with maps as deposited in 
EMDB with accessing codes (EMD-21375, EMD-21374, EMD-21457, EMD-21452). B) 
Obtained B-factor maps to be used for sharpening (slope of the local Guinier plot multiplied by 4) 
by LocBFactor approach for EMD-21375, EMD-21374, EMD-21457, EMD-21452.  
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Supplementary Figure S2.7 Obtained B-factor maps (slope of the local Guinier plot) by 
LocBFactor approach. EMD-20671 and EMD-21024, corresponding FSC curves and Guinier 
plots of macromolecule and noise/background points indicated with coloured points shown in 
corresponding central slices.    
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2.6.5 Supplementary table  

    
TRP channel  
(EMD-10418)  

(PDB 6t9n)  

Apoferritin  
(EMD-9865)  
(PDB 6v21)  

SARS-CoV-2  
(EMD-21375)  

(PDB 6vsb)  

 

EMRINGER  
LocSpiral  

2.31  8.63  2.31  

EMRINGER Relion  2.36  2.51  2.27  
Rotamer-ratio 

LocSpiral  
0.70  0.97  0.70  

Rotamer-ratio Relion  0.72  0.67  0.73  
Max Z-score LocSpiral  7.93  48.83  9.47  

Max Z-score Relion  8.11  14.22  9.06  
Model Length 

LocSpiral  
1184  3200  1683  

Model Length Relion  1184  3200  1598  

 

All-atom  
Clashscore 
LocSpiral  

6.44  5.90  13.66  

All-atom Clashscore 
Relion  

6.12  5.27  14.34  

Ramachandran Plot 
LocSpiral  

Outliers:0.00%  
Allowed:4.38%  

Favored:95.62%  

Outliers:0.00%  
Allowed:1.90%  

Favored:98.10%  

Outliers:0.00%  
Allowed:8.36%  

Favored:91.46%  

Ramachandran Plot 
Relion  

Outliers:0.00%  
Allowed:3.12%  

Favored:96.88%  

Outliers:0.00%  
Allowed:2.33%  

Favored:97.67%  

Outliers:0.00%  
Allowed:8.54%  

Favored:91.64%  
Rotamer Outliers 

LocSpiral  7.24 %  1.39 %  13.63 %  

Rotamer Outliers 
Relion  

2.77 %  1.49 %  9.96 %  

Cbeta Deviations 
LocSpiral  0.00 %  0.00 %  0.00 %  

Cbeta Deviations 
Relion  

0.00 %  0.00 %  0.00 %  

Peptide Plane 
LocSpiral  

Cis-proline:0%  
Cis-general:0%  

Twisted Proline:0%  
Twisted-General: 0%  

Cis-proline:25%  
Cis-general:0%  

Twisted Proline:0%  
Twisted-General:0%  

Cis-proline:0.67%  
Cis-general:0%  

Twisted Proline:0.67%  
TwistedGeneral:0.03%  

Peptide Plane 
Relion  

Cis-proline:0%  
Cis-general:0%  

Twisted Proline:0%  
Twisted-General: 0%  

Cis-proline:25%  
Cis-general:0%  

Twisted Proline:0%  
Twisted- General:0%  

Cis-proline:0%  
Cis-general:0%  

Twisted Proline:0%  
Twisted-General: 0%  
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Supplementary Table S2.1 EMRINGER and Molprobity modeling scores. Obtained 
between sharpened maps by Relion postprocessing and LocSpiral, and corresponding atomic 
models after refining the structure against corresponding maps by Phenix real_space_refine 
approach using 5 refining iterations  
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Connecting text: Chapter 2 to 3 
In the previous chapter, we demonstrated that cryo-EM maps with heterogenous SNR can be 

processed using local improvement methods, which present better map connectivity while 

enhancing the resolution of the resultant maps. The goal is to improve the interpretability and 

visualization of the resultant cryo-EM maps. However, when macromolecules undergo large 

conformational changes, high resolution structures are dependent on 3D classification methods 

within the image processing workflow. These will determine the number of output conformations 

showing the heterogeneity of the input dataset, and reveal fine structural details without the 

artefactual blurring of multiple superimposed conformations. Therefore, the next chapter is 

dedicated to the approaches to process dynamic macromolecules while exposing their various 

conformation states.  
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CHAPTER 3  

HIERARCHICAL AUTOCLASSIFICATION OF CRYO-EM 
SAMPLES AND MACROMOLECULAR ENERGY 
LANDSCAPE DETERMINATION 

3.1 Abstract  

3.1.1 Background and objective 

Cryo-electron microscopy using single particle analysis is a powerful technique for obtaining 3D 

reconstructions of macromolecules in near native conditions. One of its major advances is its 

capacity to reveal conformations of dynamic molecular complexes. Most popular and successful 

current approaches to analyzing heterogeneous complexes are founded on Bayesian inference. 

However, these 3D classification methods require the tuning of specific parameters by the user 

and the use of complicated 3D re-classification procedures for samples affected by extensive 

heterogeneity. Thus, the success of these approaches highly depends on the user experience. We 

introduce a robust approach to identify many different conformations presented in a cryo-EM 

dataset based on Bayesian inference through Relion classification methods that does not require 

tuning of parameters and reclassification strategies. 

 

3.1.2 Methods 

The algorithm allows both 2D and 3D classification and is based on a hierarchical 

clustering approach that runs automatically without requiring typical inputs, such as the number 

of conformations present in the dataset or the required classification iterations. This approach is 

applied to robustly determine the energy landscapes of macromolecules. 
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3.1.3 Results 

We tested the performance of the methods proposed here using four different datasets, comprising 

structurally homogeneous and highly heterogeneous cases. In all cases, the approach provided 

excellent results. The routines are publicly available as part of the CryoMethods plugin included 

in the Scipion package. 

 

3.1.4 Conclusions 

Our results show that the proposed method can be used to align and classify homogeneous and 

heterogeneous datasets without requiring previous alignment information or any prior knowledge 

about the number of co-existing conformations. The approach can be used for both 2D and 3D 

autoclassification and only requires an initial volume. In addition, the approach is robust to the 

“attractor” problem providing many different conformations/views for samples affected by 

extensive heterogeneity. The obtained 3D classes can render high resolution 3D structures, while 

the obtained energy landscapes can be used to determine structural trajectories. 

 

3.2 Introduction 

Cryo-electron microscopy (cryo-EM) using single particle analysis is a powerful technique for 

obtaining high-resolution three-dimensional (3D) reconstructions of macromolecular structures in 

a close-to-native state1–3. This structural information is essential to infer the biological processes 

driven by macromolecular machines. Recently, this approach has broken the atomic resolution 

barrier for the apoferritin sample thanks to improved hardware and software tools4,5. Moreover, 

this technique holds the promise of revealing the complete conformational variability of dynamic 

macromolecular complexes at equilibrium. 
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The most popular and successful approaches to analyze heterogeneous complexes are currently 

founded on Maximum-likelihood or Bayesian inference6–9. These methods simultaneously refine 

multiple 3D reconstructions by marginalizing particle image likelihoods over missing information 

such as particle’s orientation and conformation, and their robustness has been demonstrated by 

numerous groups, such as10–12. Moreover, the major advances of Bayesian methods are highlighted 

by their capacity to infer the particle’s orientation and conformation simultaneously, and their 

proven robustness to challenging cases, including particle images  

showing low signal-to-noise-ratios (SNRs) and/or low contrast. Conversely, these approaches 

require information from users, i.e., the number of classification iterations and the number of 

conformations that are coexisting in the dataset (number of classes). Additionally, they are usually 

affected by the “attractor problem”13,14, the phenomenon where particles correlation is bias towards 

classes containing more particles. Thus, Maximum-likelihood/Bayesian based methods may tend 

to classify single particles according to the SNRs of the different classes rather than by the actual 

conformation of the particles. This issue limits the capacity of these approaches to 1) provide many 

different 3D classes showing different macromolecular conformations (they are usually limited to 

deliver between 3-5 different reconstructions); 2) capture minoritarian conformations; and 3) 

provide homogeneous classes that may produce high-resolution reconstructions. Several methods 

have been proposed to alleviate these issues. Examples of these approaches include particle 

“pruning” methods to filter incorrectly 3D classified single particles15–20 and robust methods for 

2D classification, as in CL2D21 or GTM clustering22. Unfortunately, extensions of these automatic 

2D classification approaches to 3D are still pending. Thus, users pursuing to find an unknown 

number of (many) different conformations from the particle set are required to perform difficult 
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and tedious reclassification procedures, which require deep expertise on the technique and 

sample23–26. 

More recently, approaches have been proposed to process macromolecular assemblies showing 

continuous flexibility. For example, Relion models these continuous changes in the 

macromolecular structure by means of a number of user-defined rigid bodies that can change their 

relative pose27. In HEMNMA, macromolecular conformational changes are modeled using a set 

of user-defined normal mode-based deformations28. Continuous heterogeneity may be also 

described using linear approaches as principal components analysis29–32, however, these methods  

may show artifacts when large conformational deformations are poorly approximated by linear 

approximations along a volume basis33. Deep learning approaches based on generative networks 

were also proposed to capture the continuous motions of flexible macromolecules34,35. These 

approaches have shown their capacity to resolve continuous and discrete heterogeneity for large 

complexes. However, the robustness of these methods to process smaller and lower contrast 

samples has not yet been demonstrated. Moreover, these approaches require as input the 

orientation of the single particles, a high-resolution consensus reconstruction, a large dataset to 

train the network, and input parameters including the dimension of the latent space or the number 

of epochs to train the network. 

Methods that can provide many different conformations of a macromolecule are being used to 

generate energy landscapes of the sample36–38. Energy landscapes allow to describe the 

macromolecular motion in a comprehensive and quantifiable manner, determining, for example, 

sorted conformational trajectories along different states. In39,40, the authors determine many 

different conformations by extensive manual 3D classifications with Relion to map the 

conformational landscape into an energy landscape. This mapping is done by use of principal 
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component analysis and the Boltzmann distribution that establishes a link between the energy of a 

system, its temperature, and its population. This method requires the user to determine the two 

PCA eigenvectors corresponding to the reaction coordinates to be analyzed. Note, however, that 

reaction coordinates (and structural variability) may not be directly factorizable by PCA 

decomposition using merely two principal components. Additionally, as explained above, PCA 

decomposition may show artifacts when large conformational deformations are poorly 

approximated by linear approximations along a volume basis. In41 authors empirically show that 

latent encoding of particles in their software, CryoDRGN, is done such that structurally related 

particles are in proximity. Thus, the particle’s latent space may be interpreted as a pseudo-

conformational landscape. However, as the authors pointed out, this interpretation is not 

mathematically guaranteed, as the objective function aims to reproduce the distribution of 

structures only.             

In this work, we present a robust approach to obtain many different conformations from a 

heterogeneous dataset without requiring previous alignment information or any prior knowledge 

about the number of co-existing conformations. The approach is based on Bayesian inference 

classification but works hierarchically. Thus, for each classification step, the data is classified into 

a small number of classes, typically two, using Relion as our classification engine42. The proposed 

method automatically determines the number of required classification iterations to be performed 

for each classification step. Moreover, the approach uses automated stop conditions to provide as 

many 3D classes as possible, while avoiding unnecessary classifications. Consequently, for each 

intermediate class, the approach automatically determines whether this data should be reclassified 

again or not, continuing this workflow iteratively. Once this tree-based processing is finished, the 

obtained structures can be used to build conformational and energy landscapes. To this end, we 
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employ Isomap43, which is a nonlinear dimensionality reduction method to compute a quasi-

isometric, low-dimensional embedding of a set of high-dimensional data points. Other non-linear 

dimensionality reduction methods such as LTSA44, Hessian LLE45 or t-SNE46 may be used as well. 

Finally, the obtained raw 3D classes can be clustered into final 3D classes where similar 

conformations are grouped together automatically by the use of the affinity propagation 

algorithm47. 

Our results show that the proposed method can be used to align and classify homogeneous and 

heterogeneous datasets. The approach can be used for both 2D and 3D autoclassification and only 

requires an initial volume. In addition, the approach is robust to the “attractor” problem providing 

many different conformations/views. The obtained 3D classes can render high resolution 3D 

structures, while the obtained energy landscapes can be used to determine structural trajectories.    

 

3.3 Methods 

In this work, we describe two main approaches. First, we present robust 2D and 3D 

autoclassification methods. Second, we determine energy landscapes from the output of the 

proposed hierarchical 3D autoclassification method. 

 

3.3.1 Hierarchical 3D autoclassification 

We present a robust and automated 3D classification approach that aims to determine many 

different conformations presented in the dataset without compromising particle alignment quality 

and resolution of the captured conformers. We term this approach as 3D autoclassification, and it 

consists of the following processes: particle alignability estimation; hierarchical 3D classification 

and 3D clustering. In Figure 3.1, we show a scheme of the proposed approach. 

 



116 
 

 

 

Figure 3.1 Scheme of the proposed 3D autoclassification approach. From top to bottom: 
first, the particle alignability is estimated for different subsets of particles by a ResLog plot (plot 
of inverse resolution vs. the logarithm of the number of particles). Then, 3D classifications and 
evaluation steps are performed in a hierarchical manner. When a 3D classification is finished, the 
resulting classes are evaluated to determine if further reclassifications are required. Once all 3D 
classifications are finished, the raw 3D classes obtained are aligned and clustered to produce final 
3D classes. 
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3.3.2 Particle alignability estimation 

The approach first computes a ResLog plot (plot of inverse resolution vs. the logarithm of the 

number of particles)48,49 by randomly taking ten sets of particles between 10,000 and 100,000 

images. The plot is obtained using the same initial model in all cases and performing 3D 

classifications in one class with Relion to align particle images only. The ResLog plot is a quality 

indicator of how well the particles are aligned and classified in a 3D reconstruction. The 

hierarchical 3D classification step uses this ResLog plot as a baseline in posterior classification 

actions to determine if it is convenient to continue reclassifying particle subsets or not. Note that 

as we perform particle alignment and classification in each classification step, the alignment 

accuracy may be compromized depending on the number of particles to be processed. Thus, 

alignment/classification quality tests after each classification are performed using the 

ResLog linear relation between the inverse of the obtained map resolution and the logarithm of 

number of particles, so further reclassification of particle images is carried out only if the 

resolution obtained is above the ResLog baseline. In cases where the number of particles is less 

than 100,000, the ResLog plot is estimated using 10 random sets between 10% and 90% of the 

images. 

 

3.3.3 Hierarchical 3D autoclassification 

The dataset is then 3D classified using a hierarchical approach. Our method uses Relion 3D 

classification50 as its classification engine. In each classification step, the particles are divided into 

a small number of classes, typically 2 or 3 at most, to avoid the “attractor problem”51. After each 

classification, the method does an evaluation step to assess if the class may be further classified or 

not. The evaluation uses a two-fold criterion: (1) the class number of particles should be higher 

than a threshold provided by the user (typically 5000–10,000 particles) and (2) the class resolution 
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provided by the classification method should be higher than the value provided by the ResLog plot 

with this number of particles. If both conditions are met, then the class is further classified. 

All classification steps run automatically without requiring any additional input from the user. The 

classification iterations are determined on-the-fly by the following approach. In each classification 

step, ten classification iterations are initially performed. Then, the average of the maximum 

Bayesian probabilities (Pmax) between particles and classes, as outputted by Relion 3D 

classification method with respect to possible particle´s orientation and conformation, are analyzed 

for the last six iterations. Note that Pmax refers to the average value over all particles of the maxima 

of their computed probability distributions. If Pmax values show a plateau curve along these last 

iterations, it means that the classification n step converged, and the process is automatically 

finished. If not, five more classification iterations are included and checked again for convergence. 

In case a classification step does not converge after 75 iterations, the process is automatically 

stopped. 

 

3.3.4 3D clustering (optional) 

The aim of this step is to merge obtained 3D classes that represent similar conformations. Note 

that the proposed Hierarchical 3D classification algorithm does not guarantee that the classes 

obtained will be structurally distinct, so they may represent similar conformations. Indeed, 

conformations that have a deep well in the energy landscape are likely to have multiple near-

identical class averages. 

Each obtained 3D class has a class representative, which is the volume or map mimicking the 

macromolecular conformation captured by this class. The first step of the 3D clustering process 

consists of aligning all obtained class representatives or maps. This alignment procedure is done 

effectively by spherical harmonics decomposition52. After all volumes are aligned, the approach 
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computes truncated principal component analysis (tPCA) capturing 90% of the observed variance 

of the maps. Each map is then projected into the resulting tPCA base, obtaining a feature vector. 

These vectors are used to determine structural differences between maps by calculating 

the Euclidean distance (Euclidean norm) between them. Then, the Affinity 

propagation algorithm53 is used to generate 3D clusters. Affinity propagation is based on the 

concept of “message passing” between data points, and its main advantage is that it clusters data 

points automatically, determining the number of clusters or classes presented in the dataset. 

 

3.3.5 Hierarchical 2D autoclassification 

This approach focusses on obtaining as many different 2D classes as possible and is based on the 

same hierarchical classification approach outlined before in Section 2.1.2. In this case, the method 

uses Relion 2D classification54 as its classification engine, and hierarchically and iteratively 

divides the dataset into a small number of 2D classes at each classification step, typically between 

2 and 4. After each classification, the method automatically evaluates if the resultant classes may 

be further classified according to the number of particles alone. Typically, further classifications 

are automatically stopped, when the number of particles belonging to a given class is below 200. 

 

3.3.6 Energy landscape determination 

Once the dataset is processed by the Hierarchical 3D autoclassification approach presented above, 

a large number of 3D classes are obtained. These 3D classes can be used to build an energy (or 

conformation) landscape of the sample. To this end, first, the different maps obtained representing 

different confirmations are realigned and encoded by means of feature vectors using the same 

approach outlined in Section 2.1.3. As a summary, this process consists of (1) fast alignment of 

maps by spherical harmonics decomposition52, and (2) map dimensionality reduction by truncated 
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principal component analysis (tPCA), where 90% of the observed variance is captured. The 

captured PCA basis represents orthogonal conformational coordinates controlling collective 

conformational changes. The projection of maps onto this base (feature vectors) constitutes tPCA 

coefficients determining the conformational state of each map. Note that these same feature vectors 

could be used to directly build energy (or conformation) landscapes as previously proposed by 

Haselbach et al.55,56. These works assume thermal equilibrium to connect energy, population, and 

conformation via the Boltzmann relation as 
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Where, Gk and nk represent the Gibbs free energy and population at conformation k, kB is the 

Boltzmann constant and T is the temperature. For a large ensemble of particles in equilibrium, Eq. 

(3.1) can be used to obtain differences in the Gibbs free energy (ΔG) between states with 

populations n1 and n2 as 
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Note that the structural information of each conformation can be approximated by the first two 

PCA coefficients, while variations in the Gibbs free energy (ΔG) between conformations may be 

computed from equation 3.2 using respective number of particles at each conformation (or 3D 

class). In Eq. (3.2), the conformation (3D class) attracting the highest number of particles is usually 

used as the reference (n2). Thus, a 2D energy landscape may be computed by respective 2D PCA 

coordinates and obtained variations in the Gibbs free energy. 

This approach assumes that conformational heterogeneity shown by particles in the dataset can be 

well-approximated by linear approximations along a volume PCA basis and using two PCA 

coefficients only. However, samples exhibiting large conformational deformations may be poorly 
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represented by this method, thus, showing artifacts in the resulting energy landscapes57. To 

overcome this limitation, we project the n-dimensional feature vectors (capturing 90% of the 

variance) into a 2D space using a non-linear dimensionality reduction approach. One possibility 

to realize this mapping is to maintain the geodesic distances between pairs of feature vectors in the 

reduced 2D space. This isometric mapping can be efficiently computed by the Isomap algorithm58. 

Other non-linear approaches that can be used by our method are Local Tangent Space Alignment 

(LTSA)59, Hessian Eigenmapping60 and t-distributed stochastic neighbor embedding (t-SNE)61. 

 

3.4 Results 

Four experimental datasets were used to test the proposed autoclassification methods. These 

datasets, which are publicly available from the EMPIAR database62, are composed of cryo-EM 

single particles of (1) L17-depleted 50S ribosomal assembly intermediates (EMPIAR-10,076); (2) 

spliceosomal B-complex from yeast63,(EMPIAR-10,180); (3) beta-galactosidase in complex with 

a cell-permeant inhibitor64, (EMPIAR-10,061); and (4) AP-1:Artf1:tetherin-HIV-Nef complex65 

(EMPIAR-10,178). This last dataset is used to analyze our hierarchical 2D autoclassification 

approach only. 

The selected datasets comprise two different kinds of samples. On the one hand, the beta-

galactosidase shows low structural heterogeneity, while immature ribosomes and 

the spliceosome show extensive heterogeneity. The goal of our methods is to obtain many different 

conformations (or views for the 2D classifications) allowing us to capture underlying low 

populated classes. This information may be used to build energy landscapes, trace potential 

structural trajectories of the samples, and to detect and remove false positive particles (particle 

screening). 
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3.4.1 L17-depleted 50S ribosomal intermediates 

This dataset consists of 131,899 particle images of immature E. coli large ribosomal subunits66 and 

is publicly available from EMPIAR database (EMPIAR-10,076). The particles have a pixel size 

of 1.31 Å/px and a window size of 320 px. The dataset was collected on a Titan Krios using a K2 

direct electron detector (Gatan). This dataset shows massive heterogeneity, and the authors of the 

original publication66 were able to identify 15 different conformations by extensive 

3D classifications and reclassifications with Relion and deep expertise with the sample. 

We processed this dataset with our proposed 3D autoclassification approach producing 65 raw 3D 

classes by hierarchical 3D autoclassification, which were automatically clustered into 18 final 3D 

classes. In each classification step, the particles were divided into 2 classes. The ‘number of 

particles’ threshold, used to stop the automatic reclassifications, was set to 5000 particles to 

produce a large number of 3D classes. Figure 3.2A and D show the obtained final (18) and raw 

(65) 3D classes, respectively. Note that in Figure 3.2, we have labeled each 3D class with a letter 

(‘A’,’B’,’C’,’D’,’E’) by visual identification with the original labelling done in the original work 

of Davis et al.66. Additionally, although our automatic method can provide more different 

conformations (18) than the manual approach followed in66, the 3D autoclassification method 

could not provide the 30S ribosomal subunit as a separate class (Class F in66). We believe that the 

30S subunit was not distinguished as a separate class because the used initial volume. Note that 

each 3D classification step uses as initial volume the previously obtained 3D reconstruction (or 

the input one in the first iteration). Thus, if the employed initial volume is very different from the 

target 3D class, the particles could not be aligned and classified properly. For the sake of 

comparison, we include here the resolution reported in the original work66 for the different 3D 

classes: Class A 6.5 Å; Class B 4.5 Å; Class C1 4.5 Å; Class C2 4.6 Å; Class C3 4.0 Å; Class D1 

4.7 Å; Class D2 4.9 Å; Class D3 4.6 Å; Class D4 4.7 Å; Class E1 4.2 Å; Class E2 4.5 Å; Class E3 
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5.0 Å; Class E4 4.5 Å; Class F 7.9 Å. Note that authors in66 employed a different reconstruction 

workflow, using Frealign instead of Relion for refinement of particle alignments and map 

postprocessing. Additionally, note that to accurately compare our results with the ones reported 

in66, we would have to use the same solvent masks when postprocessing the maps. Thus, these 

comparisons should be used only qualitatively to show that most of the obtained 3D classes are 

similar in terms of resolution. Moreover, in Figure 3.2B, we show the obtained Gold-standard 

FSCs computed after refining the different final 3D classes with Relion autorefine. As it can be 

seen from this figure, the resolution of 3D reconstructions ranges between 4.2 and 6.9 Å. Finally, 

in Figure 3.2C, we show the energy landscape in kBTunits, computed from the raw 3D classes. 

Note that this energy landscape is similar to previous landscapes obtained for this sample by other 

approaches57. Figure 3.2C also shows a structural trajectory using the computed energy landscape 

and the corresponding sorted structures along this trajectory. 
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Figure 3.2 3D autoclassification and energy landscape results for L17-depleted 50S 
ribosomal intermediates. A) final 3D classes obtained after 3D clustering of raw 3D classes 
(shown in Figure 3.2D) with the obtained resolution after refining final 3D classes with Relion. 
The classes are labelled and colored according to their similarity by visual inspection with classes 
presented in the original publication. B) Gold-standard FSCs determined after refining final 3D 
classes with Relion autorefine. C) Energy landscape in Bk T  units computed from raw 3D classes. 
D) Raw 3D classes obtained in the Hierarchical 3D autoclassification step.   
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3.4.2 Spliceosomal B-complex dataset 

This dataset is composed of 327,490 particle images of a spliceosomal B-complex from yeast63 and 

is deposited and publicly available from EMPIAR database (EMPIAR-10,180). The deposited 

particle images correspond to “shiny” particles after Relion particle polishing that were 

downsampled to 1.699 Å/px and windowed to 320 px. The dataset was collected on a Titan Krios 

using a K2 direct electron detector (Gatan). 

This particle set was processed using the proposed 3D autoclassification approach producing 102 

raw 3D classes that were automatically clustered into 14 final classes. In each classification step, 

the particles were divided into 2 classes and the ‘number of particles’ threshold to stop the 

automatic reclassifications was set to 5000 particles to produce a large number of 3D 

classes. Figure 3.3A shows the obtained final classes, while in Figure 3.3B we show the raw 3D 

classes for classes 1, 2, 3, 7, 9, 13 and 14, which are labeled with different colors. In Figure 3.3C, 

we show the obtained energy landscape for the spliceosomal B-complex, computed using the 102 

raw 3D classes previously obtained by the 3D autoclassification approach. Finally, Figure 3.3D 

shows obtained sorted conformations along the structural trajectory displayed with a blue line in 

the energy landscape in Figure 3.3C. 
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Figure 3.3 3D autoclassification and energy landscape results for the spliceosomal B-
complex. A) Final 3D classes labelled with class numbers after clustering of obtained raw 3D 
classes. B) Subset of raw 3D classes obtained, labelled by colours for class numbers C) Calculated 
energy landscape in Bk T  units from computed raw 3D classes with a defined structural trajectory 
marked with blue lines. D) Corresponding conformations for the structural trajectory shown in 
C).     
 
3.4.3  Beta-galactosidase in complex with a cell-permeant inhibitor 
dataset 

We use beta-galactosidase single particles to show the capacity of the method to process 

structurally homogeneous datasets. The dataset consists of 1539 micrographs with a pixel size of 

0.32 Å/px collected on a Titan Krios microscope using a K2 direct electron detector (Gatan). This 

dataset is publicly available from EMPIAR database (EMPIAR-10,061). The CTF parameters 

were estimated using CTFFIND467 and we use the same 2D coordinates employed in the original 

work64 for particle extraction, which are available from EMPIAR. The extracted particles were 
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downsampled four times and classified with Relion to obtain 2D class averages with 

improved SNRs. These 2D class averages were used then to obtain 8 de novo initial maps by the 

RANSAC approach68. The volume selector method69 processed these maps, using subsets of 5000 

particles randomly selected, providing a single initial volume suitable to be used by our 3D 

autoclassification approach as reference map. 

The particle set was then processed using the proposed 3D autoclassification approach producing 

four raw 3D classes after the hierarchical 3D classification step, which were clustered into two 

final 3D classes by the 3D clustering step. In each classification step, the particles were divided 

into 2 classes and the ‘number of particles’ threshold was set to 10,000 particles. In Figure 3.4, we 

show the obtained intermediate results by the 3D autoclassification approach and the final 3D 

classes. As can be seen from Figure 3.4A, the output final classes consist of one major 3D class 

(Class 7), which accumulates 37,154 particles (90% of the dataset) and a minor one (Class 8) 

containing 3958 particles. This minor class may be composed by a large percentage of low-quality 

particles, as the refinement of the complete dataset with Relion (41,122 particles) produces slightly 

lower quality results than the reconstruction obtained with Class 7 particles only (37,154 particles) 

(see corresponding FSC curves in Figure 3.4C). In Figure 3.4B, we show the refined 3D map 

produced by Class A after sharpening with Relion. Finally, we show in Figure 3.4D and E obtained 

2D class averages by the 2D autoclassification approach and by Relion 2D classification method 

respectively. As can be seen from these figures, our approach is able to produce a larger number 

of meaningful 2D class averages as it is less affected by the attractor problem. Finally, we have 

removed particles belonging to 2D classes capturing a low number of particles after 2D 

autoclassification to show the capacity of the autoclassification method to improve the 

homogeneity of cryo-EM datasets. This results into a dataset composed of 36,879 particles, thus, 
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we removed 4243 particles (∼10% of the dataset). This dataset produces a reconstruction at 2.81 Å 

resolution that was automatically sharpened by Relion with an apply B-factor of −72.5 Å2. Note 

that the original dataset composed of 41,122 particles produced a postprocessed reconstruction at 

2.81 Å, automatically sharpened by Relion with a B-factor of −72.9 Å2. Moreover, the major 3D 

class (Class 7) obtained by the 3D autoclassification method and composed by 37,154 particles 

produced a postprocessed reconstruction at 2.78 Å2 automatically sharpened by Relion with a B-

factor of −71.8 Å2. These results show that the proposed autoclassification methods can produce 

improved 3D reconstructions as measured by resolution and B-factors. 

 

 

Figure 3.4 3D and 2D autoclassification results for beta-galactosidase in complex with 
a cell-permeant inhibitor. A) Intermediate 3D classes obtained in the hierarchical 3D 
classification and clustering steps with corresponding populations and resolutions. B) 3D map 
computed by refinement of Class A particles only with Relion autorefine. C) Resulting Gold-
standard FSCs after refining Class A particles (blue curve) and Class A + Class B particles (orange 
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curve) with Relion autorefine. D) 2D class averages obtained by the 2D autoclassification 
approach. E) 2D class averages obtained by 2D classification method of Relion.    
 

3.4.4  Complex AP-1:Artf1:tetherin-HIV-Nef 

This dataset comprises 53,841 particles collected on a Titan Krios using a K2 direct electron 

detector (Gatan) in super-resolution counting mode. The nominal magnification is 22,500X 

providing a calibrated pixel size of 1.07 Å/pixel and is available from EMPIAR-10,178. Each 

particle image is 224 × 224 pixels in size and the CTF parameters are available from EMPIAR. 

We used this dataset to test our proposed 2D autoclassification approach. Thus, we performed 2D 

classification using both the proposed approach and Relion 2D classification. The ‘number of 

particles’ threshold to stop the automatic reclassifications in our approach was set to 200 particles 

and we asked for 220 classes in Relion 2D classification. The 2D autoclassification approach 

yielded 198 2D classes (Figure 3.5A). As can be seen from Figure 3.5A, among these 198 2D 

classes, only 23 show low SNRs and should be removed for further processing steps. 

In Figure 3.5A, we mark these low SNR classes with red squares. On the other hand, Relion 2D 

classification generates many blurred and low quality 2D classes, with only 70 classes out of 220 

showing appropriate SNRs. Figure 3.5B renders the 2D class averages computed by Relion, where 

good classes with high SNRs are marked with green squares. 
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Figure 3.5 2D autoclassification for the complex AP-1:Artf1:tetherin-HIV-Nef. A) 2D class 
averages obtained using the proposed 2D autoclassification approach. Class averages enclosed in 
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red squares represent “junk” classes and should be removed from the workflow. B) 2D class 
averages obtained by Relion 2D classification. Class averages enclosed in the green box represent 
good 2D classes with acceptable signal-to-noise ratio.  
 

3.5 Discussion 

Cryo-EM using single particle analysis is a mature and powerful technique to obtain 3D 

reconstructions of macromolecules in near native conditions at atomic resolution. One of its major 

advances is its capacity to reveal conformations of dynamic molecular complexes. Most popular 

and successful current approaches to analyze heterogeneous complexes are founded on Bayesian 

inference47,7,17,2. These methods can classify cryo-EM particles according to their conformation, 

obtain their 3D orientation simultaneously, and have shown their robustness and capacity to 

process challenging datasets. These challenging cases include small and large samples, datasets 

affected by large numbers of false positive particles and/or particle images showing low signal-to-

noise-ratios (SNRs) or low contrast. According to the Electron Microscopy Databank, the Relion 

3D classification approach accumulates 2594 records for final 3D classification out of 3362 

released entries (77%). However, these 3D classification methods require the tuning of specific 

parameters by the user, as the number of classes or the refinement iterations. Moreover, these 3D 

classification approaches are affected by the ‘attractor problem’ that limits the number of different 

classes that these methods can discern within the data, irrespective of the number of classes 

selected by the user. This limitation imposes the use of complicated 3D re-classification 

procedures, whose success highly depends on the user's experience. Recently, deep-learning 

approaches to 3D classification of single particles have been implemented, for example57,70. These 

approaches have shown their capacity to resolve continuous and discrete heterogeneity for large 

complexes. However, the robustness of these methods to process more challenging cases as smaller 
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and lower contrast samples has not yet been demonstrated. Moreover, these approaches require as 

input the orientation of the single particles, a consensus high resolution reconstruction, a large set 

of single particles to train the network (note that for cryoDRGN typically both the decoder and the 

encoder requires 3938,306 parameters to be trained), the dimension of the latent space and the 

number of epochs to train the network. 

In this work, we propose automatic 3D and 2D classification approaches based on Bayesian 

inference through the Relion classification methods but working in a hierarchical fashion. These 

methods, which use Relion as the classification engine, allow unsupervised and automatic 

classification of single particles and do not require users to provide information such as the number 

of coexisting conformations in the dataset, or the number of classification iterations to be 

performed. The approaches described here prevent the attraction of different particles into classes 

with high SNRs and the use of complicated manual reclassification approaches. Thus, these 

methods will reduce the level of expertise required to process cryo-EM data, especially for difficult 

projects with samples showing massive heterogeneity. Therefore, users with reduced expertise in 

single particle image processing will be able to generate large sets of classes (either 2D or 3D) 

using a single and simple protocol without difficult-to-tune input parameters or reclassification 

approaches. In addition, our method will be useful in high-throughput streaming approaches, 

reducing the necessity of user intervention. Also, it can identify conformations of low population 

in the dataset. The proposed method is more computationally expensive than a normal 3D 

classification process in Relion. However, users processing datasets affected by extensive 

heterogeneity that have no clue about the number of coexisting conformations, are required to run 

multiple rounds of 3D classification using typically different inputs (number of 3D classes and 

initial volume), and intense further reclassification procedures. This workflow is based on trial and 
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error, and it is driven by the user´s experience, thus, it could be very time consuming, subjective, 

and difficult to reproduce. As reference, we provide our processing times for the 3D 

autoclassification of 131,899 immature ribosomal particles (∼ 18 h), 41,122 beta-galactosidase 

particles (∼ 7 h) and 327,490 spliceosomal particles (∼ 40 h). In all cases, we used a processing 

server equipped with 6 Nvidia Titan X GPUs. 

The proposed approach has been tested with four different datasets comprising both homogeneous 

and heterogeneous samples. The first case is the L17-depleted 50S ribosomal intermediates that 

represent immature ribosomal 50S subunits showing extensive compositional heterogeneity. The 

proposed 3D autoclassification approach provides 65 raw 3D classes that were automatically 

clustered into 18 final 3D classes. These final classes could be refined to 3D reconstructions 

ranging between 4.3 and 6.9 Å. Moreover, the 65 raw 3D classes were used to compute an energy 

landscape of macromolecules. Secondly, we processed single particles of the spliceosomal B-

complex from yeast, which also shows massive conformational heterogeneity. As in the previous 

case, we could compute many different raw 3D classes (102 3D classes) that were automatically 

clustered into 14 final 3D classes. The raw 3D classes were used to build an energy landscape and 

to trace sorted structural trajectories. Then, we processed the beta-galactosidase in complex with 

a cell-permeant inhibitor, which represents a homogeneous set. We obtained 4 raw 3D classes, that 

were automatically clustered in two final 3D classes, one major (90% of the dataset) and one minor 

(10% of the dataset). The minor class seems to be composed of a large percentage of low-quality 

particles, as the refinement of the complete dataset with Relion (41,122 particles) produces slightly 

lower quality results than the reconstruction obtained by the major class only (90% of the dataset). 

This shows that the proposed approach can be used for particle screening as well. Finally, we 

processed the Complex AP-1:Artf1:tetherin-HIV-Nef to test the 2D autoclassification method. In 
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the case of the 2D autoclassification, we have shown that the proposed 2D autoclassification 

approach can provide more meaningful 2D class averages than the Relion 2D classification 

method, including low-populated views and reducing the number of empty classes as it is less 

affected by the attractor problem. Thus, the 2D autoclassification approach can provide large 

numbers of 2D classes, which can be used, for example, as input for ab initio initial map algorithms 

to improve the accuracy of these methods and to obtain initial maps of low populated 

conformations. 

 

3.5.1 Software and data availability 

The presented methods are included in our software package CryoMethods under the names 3D 

autoclassifier, 2D autoclassifier and ML_landscape. The source code is freely available under the 

terms of an open-source software license and can be downloaded from https://github.com/mcgill-

femr/cryomethods and https://github.com/mcgill-femr/scipion-em-cryomethods. These methods 

can be used through Scipion platform https://github.com/I2PC/scipion. All data used in this work 

is publicly available from EMPIAR database under the following codes EMPIAR-10,076, 

EMPIAR-10,180, EMPIAR-10,061 and EMPIAR-10,178. 

 

3.5.2 Acknowledgments 

Authors want to acknowledge economical support from the Spanish Ministry of Science and 

Innovation through the call 2019 Proyectos de I+D+i - RTI Tipo A (PID2019-108850RA-I00). 

3.6 References 

1. Merk, A. et al. Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery. Cell 

165, 1698–1707 (2016). 

2. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination 



135 
 

in RELION-3. Elife 7, (2018). 

3. Danev, R., Yanagisawa, H. & Kikkawa, M. Cryo-Electron Microscopy Methodology: 

Current Aspects and Future Directions. Trends Biochem. Sci. 44, 837–848 (2019). 

4. Yip, K. M., Fischer, N., Paknia, E., Chari, A. & Stark, H. Atomic-resolution protein 

structure determination by cryo-EM. Nature 587, 157–161 (2020). 

5. Nakane, T. et al. Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020). 

6. Scheres, S. H. W., Núñez-Ramírez, R., Sorzano, C. O. S., Carazo, J. M. & Marabini, R. 

Image processing for electron microscopy single-particle analysis using XMIPP. Nat. 

Protoc. 3, 977 (2008). 

7. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure 

determination. J. Struct. Biol. 180, 519–530 (2012). 

8. Lyumkis, D., Brilot, A. F., Theobald, D. L. & Grigorieff, N. Likelihood-based classification 

of cryo-EM images using FREALIGN. J. Struct. Biol. 183, 377–388 (2013). 

9. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: Algorithms for 

rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). 

10. Khoshouei, M., Radjainia, M., Baumeister, W. & Danev, R. Cryo-EM structure of 

haemoglobin at 3.2 Å determined with the Volta phase plate. Nat. Commun. 8, 1–6 (2017). 

11. Lyumkis, D. et al. Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 

envelope trimer. Science  342, 1484–1490 (2013). 

12. Zhang, K. et al. Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation 

element from the SARS-CoV-2 RNA genome. Nat. Struct. Mol. Biol. 28, 747–754 (2021). 

13. Sorzano, C. O. S. et al. A clustering approach to multireference alignment of single-particle 

projections in electron microscopy. J. Struct. Biol. 171, 197–206 (2010). 



136 
 

14. Wu, J. et al. Massively parallel unsupervised single-particle cryo-EM data clustering via 

statistical manifold learning. PLoS One 12, e0182130 (2017). 

15. Vargas, J. et al. Particle quality assessment and sorting for automatic and semiautomatic 

particle-picking techniques. J. Struct. Biol. 183, 342–353 (2013). 

16. Vargas, J., Otón, J., Marabini, R., Carazo, J. M. & Sorzano, C. O. S. Particle alignment 

reliability in single particle electron cryomicroscopy: a general approach. Sci. Reports 6, 1–

11 (2016). 

17. Vargas, J., Melero, R., Gómez-Blanco, J., Carazo, J. M. & Sorzano, C. O. S. Quantitative 

analysis of 3D alignment quality: its impact on soft-validation, particle pruning and 

homogeneity analysis. Sci. Reports 7, 1–14 (2017). 

18. Sanchez-Garcia, R., Segura, J., Maluenda, D., Carazo, J. M. & Sorzano, C. O. S. Deep 

Consensus, a deep learning-based approach for particle pruning in cryo-electron 

microscopy. IUCrJ  5, 854–865 (2018). 

19. Fernandez-Leiro, R. & Scheres, S. H. W. A pipeline approach to single-particle processing 

in RELION. Acta Crystallogr. Sect. D Struct. Biol. 73, 496–502 (2017). 

20. Zhou, Y., Moscovich, A., Bendory, T. & Bartesaghi, A. Unsupervised particle sorting for 

high-resolution single-particle cryo-EM. Inverse Probl. 36, 044002 (2020). 

21. Davis, J. H. et al. Modular Assembly of the Bacterial Large Ribosomal Subunit. Cell 167, 

1610–1622 (2016). 

22. Razi, A. et al. Role of Era in assembly and homeostasis of the ribosomal small subunit. 

Nucleic Acids Res. 47, 8301–8317 (2019). 

23. Haselbach, D. et al. Long-range allosteric regulation of the human 26S proteasome by 20S 

proteasome-targeting cancer drugs. Nat. Commun. 8, 1–8 (2017). 



137 
 

24. Haselbach, D. et al. Structure and Conformational Dynamics of the Human Spliceosomal 

Bact Complex. Cell 172, 454–464 (2018). 

25. Nakane, T., Kimanius, D., Lindahl, E. & Scheres, S. H. W. Characterisation of molecular 

motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife 7, 

(2018). 

26. Harastani, M., Sorzano, C. O. S. & Jonić, S. Hybrid Electron Microscopy Normal Mode 

Analysis with Scipion. Protein Sci. 29, 223–236 (2020). 

27. Frank, J. & Liu, W. Estimation of variance distribution in three-dimensional reconstruction. 

I. Theory. JOSA A 12, 2615–2627 (1995). 

28. Penczek, P. A., Kimmel, M. & Spahn, C. M. T. Identifying Conformational States of 

Macromolecules by Eigen-Analysis of Resampled Cryo-EM Images. Structure 19, 1582–

1590 (2011). 

29. Tagare, H. D., Kucukelbir, A., Sigworth, F. J., Wang, H. & Rao, M. Directly reconstructing 

principal components of heterogeneous particles from cryo-EM images. J. Struct. Biol. 191, 

245–262 (2015). 

30. Punjani, A. & Fleet, D. J. 3D variability analysis: Resolving continuous flexibility and 

discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021). 

31. Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of 

heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 

(2021). 

32. Tenenbaum, J. B., De Silva, V. & Langford, J. C. A global geometric framework for 

nonlinear dimensionality reduction. Science  290, 2319–2323 (2000). 

33. Zhang, Z. & Zha, H. Principal Manifolds and Nonlinear Dimensionality Reduction via 



138 
 

Tangent Space Alignment. J. of Shanghai Univ. 26, 313–338 (2006). 

34. Donoho, D. L. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for 

high-dimensional data. Proc. Natl. Acad. Sci. U. S. A. 100, 5591–5596 (2003). 

35. L. Van der Maaten & G. Hinton. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 

2579–2605 (2008). 

36. Frey, B. J. & Dueck, D. Clustering by passing messages between data points. Science 315, 

972–976 (2007). 

37. Rosenthal, P. B. & Henderson, R. Optimal Determination of Particle Orientation, Absolute 

Hand, and Contrast Loss in Single-particle Electron Cryomicroscopy. J. Mol. Biol. 333, 

721–745 (2003). 

38. Stagg, S. M., Noble, A. J., Spilman, M. & Chapman, M. S. ResLog plots as an empirical 

metric of the quality of cryo-EM reconstructions. J. Struct. Biol. 185, 418–426 (2014). 

39. Chen, Y., Pfeffer, S., Hrabe, T., Schuller, J. M. & Förster, F. Fast and accurate reference-

free alignment of subtomograms. J. Struct. Biol. 182, 235–245 (2013). 

40. Iudin, A., Korir, P. K., Salavert-Torres, J., Kleywegt, G. J. & Patwardhan, A. EMPIAR: a 

public archive for raw electron microscopy image data. Nat. Methods 13, 387–388 (2016). 

41. Plaschka, C., Lin, P. C. & Nagai, K. Structure of a pre-catalytic spliceosome. Nat. 546, 617–

621 (2017). 

42. Bartesaghi, A. et al. 2.2 å resolution cryo-EM structure of β-galactosidase in complex with 

a cell-permeant inhibitor. Science 348, 1147–1151 (2015). 

43. Morris, K. L. et al. HIV-1 Nefs Are Cargo-Sensitive AP-1 Trimerization Switches in 

Tetherin Downregulation. Cell 174, 659–671 (2018). 

44. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron 



139 
 

micrographs. J. Struct. Biol. 192, 216–221 (2015). 

45. Vargas, J., Álvarez-Cabrera, A. L., Marabini, R., Carazo, J. M. & Sorzano, C. O. S. Efficient 

initial volume determination from electron microscopy images of single particles. 

Bioinformatics 30, 2891–2898 (2014). 

46. Gomez-Blanco, J., Kaur, S., Ortega, J. & Vargas, J. A robust approach to ab initio cryo-

electron microscopy initial volume determination. J. Struct. Biol. 208, 107397 (2019). 

47. Scheres, S. H. W. Processing of Structurally Heterogeneous Cryo-EM Data in RELION. 

Methods Enzymol. 579, 125–157 (2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 



140 
 

CHAPTER 4  

OVERALL DISCUSSION AND SUMMARY 
The discussion chapter is structured in two sections. In the first one, I present a discussion of each 

of the included papers in this thesis, in the same order in which they appear in chapters 2 and 3. 

The second section addresses the challenges overcome by the described methods as well as the 

contribution of this thesis work in the field of cryo-EM using SPA, reflecting upon the biological 

significance and future expectations. 

 

4.1 New methods to improve cryo-EM map locally at high-resolution for 
building an accurate atomic model 

In cryo-EM, attaining a high resolution is very important to build an atomic model202, thereby 

allowing us to achieve the structural understanding of a macromolecule of interest, and proferring 

clues as to its function in vivo. However, cryo-EM maps with different local SNR or heterogeneity 

can hinder our understanding. A significant impact of such heterogeneity is the contrast loss at 

high-resolution in cryo-EM maps due to the delocalization of density features as domains move or 

manifest a different occupancy of binding partners.   

The publication included in this thesis1 of chapter 2 shows a new way to use the 3D spiral phase 

transform (having been heretofore employed in particle screening235, CTF estimation236 and 

local/directional resolution determination237,238) to recover continuity in broken map densities and 

provide better map connectivity for heterogenous cryo-EM maps for effective atomic modeling. 

These methods are incorporated in the cryo-EM workflow as part of sharpening techniques (used 

as a post-processing step), which is a well-established practice used at the end of reconstruction to 

enhance interpretability of the map (i.e. improve map contrast), and therefore to trace the atomic 

model. 
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 Several published methods have already used our robust techniques to achieve their respective 

goals as discussed in section 4.3.2. All these results from our publication of chapter 2 and 

citations239–241 indicate that the proposed sharpening methods increase the interpretability of 

reconstructed maps. It has been observed that most of the EMDB deposited cryo-EM maps are 

sharpened maps242. This allows sharpening methods to be a currently active area of methods 

development239–241.  

However, sometimes when the main focus is sharpening the cryo-EM maps, experimental map 

signals can be easily lost due to oversharpening, which leads to losing the true structural 

information of the macromolecule. Therefore, one of our goals here was to maintain the original 

experimental signal properties when performing map enhancement, which has been achieved by 

boosting the local map amplitude values, while not using inputs such as atomic models as a 

reference or local resolution estimation. As methods improvement is an ongoing task in cryo-EM, 

our approach (LocSpriral and LocOccupancy) depends on reliable solvent masks, to differentiate 

the macromolecule from the noise.  

A surge in cryo-EM-generated atomic models has occurred due to the increased deposited number 

of cryo-EM maps with high resolution. For building an atomic model, cryo-EM maps are generally 

post-processed to increase the contrast of their high-resolution features, instead of starting from 

the raw maps, but there is no standardized approach for how this is done. Since our proposed 

method directly contributes to high-quality post-processing operations by local sharpening, it is 

our hope that this work will augment the suite of tools that can be used for a community consensus 

approach for map sharpening and validation.  
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4.2 Analysing heterogeneous data in the form of automatic 3D 
classification and trajectory 

Cryo-EM has the potential to analyse heterogeneous data of a biomolecule for uncovering its 

various conformations. The publication presented in chapter 3 introduces a new automatic method 

to perform 2D or 3D classification for heterogenous cryo-EM data and to generate a free-energy 

landscape, without requiring knowledge of the number of conformations present in the dataset or 

the number of iterations over which to classify. Using controlled parameters, we have discovered 

that the type of 2D and 3D classification method and choice of linear or non-linear manifold 

embedding are very important factors to analyze the conformations of a given macromolecule.  

The aim of our proposed 2D autoclassification approach (in chapter 3) is to provide many different 

2D views, including low populated ones. According to this main objective, it is clear from our 

results that our approach performs better than Relion 2D classification. However, it is also true 

that Relion yields superior screening particle images that originate from artifacts, pure background 

or very low SNR. We cannot assure that particle picking will not generate false positives. Even so, 

our method shows meaningful improvement as compared to Relion, e.g., our 2D autoclassification 

approach yielded 198 2D classes (as can be seen from Fig. 3.5A), of which only 23 harbour low 

SNRs (marked with red squares and should be removed for further processing steps). On the other 

hand, Relion 2D classification generates many blurred and low-quality 2D classes, with only 70 

classes out of 220 showing appropriate SNRs. From this perspective, our approach emerges as a 

refreshing triumph, even if it scores less successfully vis-à-vis particle screening.   

To be sure, our approach is based on Bayesian inference through Relion classification, albeit 

working in a hierarchical fashion. This means that some obtained raw 3D classes could represent 

the same conformation or very similar conformations. To help the interpretation of the results and 

avoid cases where the 3D classes are very similar or just the same, our approach can run a final 
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clustering test, which is optional. Thus, both the raw 3D classes and the obtained classes after 

clustering are important and complementary information that should be analysed. 

The output of our approach is not biased towards major classes as per standard Bayesian 

methods91,155,228,243, i.e. is not affected by the “attractor problem”, as our propped method classifies 

particles based on their actual conformations instead of their SNRs. Therefore, the resultant classes 

are high- as well as low-populated (in terms of particle population).  

The free energy landscape provides a system where the potential energy is defined as a function 

of all coordinates244. Ergo, the “story of the sample” can be discovered by analyzing the trajectory 

of conformation changes for a dynamic macromolecule. The purpose of using different machine 

learning techniques in our method (PCA, non-linear manifold embedding) is described in section 

4.3.1. 

On a free-energy landscape, it is important to recognize the meta-stable states, activation barriers 

as well as transition states for a macromolecule, which are key to biomolecule function. Generally, 

the lower energy path of the free-energy landscape decides the trajectory of changing 

conformations for a macromolecule, which includes lower energy meta-stable states separated by 

high energy transition states and activation barriers. If the experimental sample information is 

previously known, such as number of transitioning, active or inactive states present, it can be 

compared with obtained energy landscape to confirm the trajectory.  However, a method to 

determine the optimal trajectory path remains to be developed.  

Although not discussed explicitly in this thesis, it is important to note that free-energy landscapes 

obtained directly from experimental cryo-EM datasets are reflections of the sample preparation 

methods used before freezing the sample on a grid. These preparative methods can have a dramatic 

influence on the output of the free-energy landscapes. For example, temperature plays a key role 
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in determining the free-energy landscape as per Eqs. 3.1, 3.2. These equations are based on the 

assumption that cryo-EM samples undergo instant vitrification and therefore various states of a 

macromolecule are trapped in the ensemble just before freezing. It matters whether the sample was 

at 4 ºC or 22 ºC prior to vitrification. However, in the real world, vitrification is a slow process 

and hence can generate artificial energy barrier conditions. As such, this freezing process itself can 

affect the outcome, and our equations require further evaluation in the cryo-EM field to generate 

effective free-energy landscapes.  

The landscape that we obtain in chapter 3 represents the energy landscape of the reaction catalysed 

by the removed ribosomal protein rather than showing a molecular free-energy landscape (Fig.3.2). 

These landscapes are very interesting to trace trajectories in ribosome biogenesis for determining 

the sequence of conformations towards ribosome maturation.  

Our approach’s robustness has been proven over various samples and has shown noteworthy 

results, as conclusively demonstrated in chapter 3. Shortcomings in the form of future goals of this 

method, along with others proposed in this thesis, are discussed in section 4.5. 

 

4.3 General discussion and contribution 

3D-EM has advanced progressively since its first application to the T4 bacteriophage tail245. 

Interest in the cryo-EM for structural analysis has spiked over the last years by virtue of its ability 

to achieve atomic details, which were previously observed only in X-ray crystallography. Around 

the world, institutions and drug companies are setting up cryo-EM facilities and providing 

employment at a significant rate. This all happened because of new instrumentation, robust image 

analysis methods, and automation in data collection and analysis. To achieve atomic details in a 

macromolecule, cryo-EM had to overcome numerous obstacles. Some of these are outlined below: 
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Automation of image processing methods is essential and a major challenge to increase their 

throughput. Using an automatic algorithm can (i) reduce the errors in structural determination 

workflow introduced by the user’s lack of right judgment or less expertise on the given technique; 

(ii) reduce the time and effort required to achieve the desired goal; and (iii) provide high-

throughput results. Our approach (described in chapter 3) serves this goal of automation but does 

not require input information from the user, such as number of conformations present in cryo-EM 

data and the number of iterations per classification step. 

Cryo-EM faces major challenges when dealing with heterogeneous samples. Heterogeneity can be 

caused by a macromolecule’s domain flexibility, which can hinder achievement of high-resolution 

3D reconstructions. When the resolution is globally measured, small changes in the map generally 

go unnoticed as they do not affect the resolution value. Therefore, a close inspection of the cryo-

EM density map is required which can show the blurred regions which do not possess the same 

resolution as the global value and can be caused by unaccounted sample heterogeneity. Ergo, this 

local heterogeneous distribution of resolution is vital to recognize superior 3D reconstruction 

quality and ultimately evaluate the atomic model. I have already discussed several methods in 

chapter 2, section 2.2, which describes the need for a sophisticated method to analyse these local 

resolutions in a map, and also introduces methods to improve the interpretability of a heterogenous 

cryo-EM map. Chapter 3 furnishes details about analysing various functionally relevant 

conformations of a structure, which generally requires classification of the particle images into 

structurally homogeneous subsets to achieve most of the conformations present in cryo-EM.  

Some conformational heterogeneity of a macromolecule can go unnoticed, due to lack of advanced 

2D or 3D classification approaches, which requires user input to provide number of final output 

conformation and iteration, thus might lead to a misinterpretation of the resultant structural 
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heterogeneity. Such a limitation can hinder the comprehensive interpretation of biological function 

concerning the conformational changes. Both the proposed approaches, described in chapters 2 

and 3 explain in the description, the heterogeneous samples and the methods to deal with such 

data.   

In case of a model-building challenge, it can be difficult to find an algorithm designed to fit an 

atomic model to density maps of various structures. Software tools are available to generate high-

quality models, however, these methods require further analysis and generate new approaches to 

better assess model correctness, because, for example, 50% of the EMD database deposited maps 

were generated using a single software tool, missing chances to perform a broader assessment of 

algorithms246. Occupancy values (defined in chapter 2, section 2.2, along with B-factor values) are 

the additional important parameters to refine an atomic model for adequately representing the 

experimental map. Additionally, there is no package currently available among cryo-EM 

techniques that can measure occupancy maps locally. Presence of unrealistic occupancy values, 

which has been reported in 31% of all models deposited in PDB and EMDB, resulted in very low 

correlation coefficient values between the model and the corresponding experimental maps. This 

issue can be addressed using an automated or semi-automated technique. Our method introduced 

in chapter 2 describes a semi-automated technique that generates better quality atomic models 

along with local occupancy maps calculations for heterogeneous data without the need of input 

parameters such as atomic models or local resolution maps. 

Our proposed methods (chapter 2 and 3) not only deal with these limitations of single-particle 

cryo-EM but also provide excellent results. The motives of introduced approaches are to: 

• improve de novo model building 

• process cryo-EM map with different SNRs  
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• design automated or semi-automated cryo-EM image processing methods 

• process heterogeneous data by the automatic Bayesian-based classification approach 

• analyse the trajectory for a dynamic macromolecule 

Moreover, by combining algorithms from both of our publications, high resolution conformations 

can be achieved. For example, if the input is maps affected by inhomogeneous local 

resolutions/SNRs and broken densities, our local map enhancement approach (LocSpiral)1 

(mentioned in chapter 2, section 2.3.1) can be used to obtain maps with better connectivity. These 

high-quality maps can be harnessed as initial volumes to reclassify the cryo-EM particles 

according to our automatic hierarchical clustering approach for performing 2D/3D classification 

(described in chapter 3)2, which will then be able to process massive heterogeneous data. This 

higher or N dimension output can be further reduced using a non-linear dimensionality reduction 

algorithm as explained in chapter 3, thereby obtaining the free-energy landscape representing the 

conformational changing trajectory of a macromolecule at a comparatively better resolution.  

These approaches employ various easy-to-use tools and reliable algorithms, which have already 

been tested in various publications, as mentioned below. 

 

4.3.1 Machine learning algorithm 

The proposed methods in the thesis make excellent use of machine learning tools, such as the 

specific machine learning implemented in chapter 3 to generate a free-energy landscape. By 

reducing high-dimension data to lower dimensions, these tools facilitate the quest for meaningful 

visual perceptions. Such reduction works analogously to how the human brain converts input 

sensory information from 3*104 auditory nerve fibres or 106 optic nerve fibres into the minimum 
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required number of relevant features. The same holds true in other fields such as global climate 

patterns or human gene distributions. 

There are several classical linear approaches employed for this purpose, such as PCA247 and 

MDS248, which can accurately reduce the datasets on or near a linear subspace of the high-

dimensional input space. However, complex datasets contain non-linear structures, which both 

PCA and MDS fail to detect. A non-linear manifold can be described as heterogenous cryo-EM 

data. 

In a simplified form, it can be shown as in Figure 4.1. Classical methods (Figure 4.1(a)), determine 

the Euclidean structure; thus, they fail to detect the intrinsic geometry of the data. By 

contradistinction, non-linear methods (Figure 4.1 (b)) use the geodesic distance, or short path, by 

calculating manifold distances between all pairs of data points, as it captures the non-linearity of 

the manifold. There are several tools for nonlinear dimensionality reduction such as LTSA249, 

Hessian LLE250 or t-SNE251, and isomap252. Our method in chapter 3 used isomap for generating a 

free energy landscape, while the other mentioned nonlinear manifold approaches can be 

implemented as well. Isomap reduces the dimension by preserving the geodesic distance in lower 

dimension. Here, isomap is not taking the Euclidean distance between data points into account, 

because the Euclidean distance neglects the shape of the manifold while reducing the dimension, 

whereas geodesic distances are measured according to the manifold shape, as explained in Figures 

4.1A and 1B. The output of non-linear manifold embedding, used in our method, is in the form of 

vectors yi in the lower dimensional space that preserves the intrinsic geometry of the input high-

dimension data252. 
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Figure 4.1: Non-linear dimensionality reduction for isomap. Various forms of distance 
measurements methods in high dimension data are shown for non-linear data or in this case 
‘swiss-roll’ form: a) Euclidean distance (dotted line) and geodesic distance (solid curved line). b) 
2D data recovered preserving the shortest distance. c) True geodesic distance (red line) is now 
shown in a simple and clean approximation (blue line). (Reproduced with permission from 
Tenenbaum J.B. et al. 2000 from252). 
 

4.3.2 Map enhancement approaches (LocSpiral) 

Our LocSpiral approach (Chapter 2) has been used in several publications and proven to be 

successful with efficient results as follows: 
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• This method helped to recover the broken density for segment M89-K101 due to flexibility 

or 16 nm averaging of the cryo-EM data, in the case of the model of C. reinhardtii PACRG 

(B1B601)253. 

• For high-resolution cryo-EM map of Tetrahymena doublet microtubule, LocSpiral method 

helped to achieve de novo model building254. 

• Tetrameric ArnA cryo-EM map had broken densities due to carboxylase domain 

movement. Better map connectivity was observed after using our algorithm of 

LocSpiral255. 

• Enhanced the structure analysis and interpretability for ligand-bound IR-ECD256. 

• Fragmented densities of 30S subunit due to flexible conformation were improved to 

achieve an informative molecular model257. 

 

4.4 Biological significance 

The methods identified in this thesis have the purpose of dealing with heterogeneity as well as 

producing better-quality atomic models by using automated or semi-automated methods to process 

cryo-EM data. The final goal is to understand the molecular structural and structural dynamics of 

a biomolecule. To that end, the higher the structure quality, the better is the interpretation of its 

functioning. 

In structural analysis techniques, cryo-EM has gained an exemplary reputation over the years to 

provide near-atomic resolution maps for a diverse range of macromolecules between tens to 

thousands of kilodaltons. An atomic model of cryo-EM maps elucidates the molecular interaction 

of macromolecules in chemical and physical terms, in addition to revealing other information such 

as 3D structure analysis, comparison between different macromolecule structures, details on 
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complex formation between different biomolecules and prediction of structures of new related 

macromolecules. Being a strong graphic tool, the atomic model also helps to uncover side-chain 

interactions, binding pockets, and catalytic regions, which generally lays the foundation for drug 

discoveries. Along with improving atomic model quality, our proposed method (in chapter 2) has 

enhanced the analysis of the cryo-EM map. For example, in the case of the SARS-CoV-2 structure 

(chapter 2, section 2.3.6), our technique was not only able to improve the visualization of deposited 

EMD maps but also helped to include additional motifs.  

Among various structural biology techniques, cryo-EM is the one to hold potential for processing 

both sample heterogeneity and inherent flexibility. Macromolecules as dynamic machines undergo 

conformational rearrangement during the cellular process to perform several biological 

functions258. These movements can be classified as discrete or as occurring along a continuum of 

several conformations, where either one subunit or several subunits of a macromolecule complex 

moves independently of each other. Tracing these conformations is of key importance to 

understanding a high-resolution structure and hence the function of the protein complex of interest. 

Many of these protein complexes are in therapeutics development studies. Researchers can even 

visualize the effect of drug binding on macromolecular complex structures in the form of energy 

landscapes. In Haselbach et al, 2017259, cancer drugs are shown to impact the structure of the 26S 

proteasome on a free-energy landscape. Methods (proposed in chapter 3) to gain information like 

this have the potential to unravel the mystery of various unanswered questions regarding the 

trajectories for a germ’s key macromolecules, e.g., how drug binding (like the above-mentioned 

example) can modify the energy landscape of conformational motion in a germ’s macromolecule 

and will play a key role in therapeutics production. 
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4.5 Future Goals  

4.5.1 Normal Mode Analysis 

As discussed in the publication of chapter 3, the free-energy landscape consists of high energy 

regions, where few to no cryo-EM maps  are present, as well as lower energy regions that represent 

most of the maps. It is possible that during all image processing algorithms, some of the 

information of a macromolecule can be lost because the image processing pipeline is not ideally 

perfect. In the case of heterogeneous data, after the 3D classification step of the cryo-EM image 

processing pipeline (chapter 1 section 1.4.4.7), the resolution obtained may be limited by the 

particle count belonging to the 3D homogenous classes. Therefore, some minor classes do not have 

enough observations to show the secondary structures, which leads to untraced conformations. 

While generating the free-energy landscape in chapter 3, these untraced conformations leave 

visible gaps in the conformational space, thereby hampering the trajectory analysis of a flexible 

macromolecule. 

The future optimistic goal is to fill these gaps or lower energy spaces on the free-energy landscape 

as much as possible. To that effect, NMA260,261 can be a major contribution to the free-energy 

landscape algorithm. It is a powerful computational tool that helps to analyse the large-amplitude 

motions as a collection of simple harmonic oscillations vibrating around an energy minimum as 

shown in Figure 4.2. This method can have an algorithm as followS: 

1. 3D classes obtained from the automated 3D classification method (explained in chapter 3, 

section 3.3.1) can be used as an input, which will represent the various states of 

conformations present in a given cryo-EM data. 

2. This obtained set of 3D classes is considered as a sampling point in a corresponding free-

energy landscape. To fill the gap in the conformational space of the obtained free-energy 
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landscape, information around each sampling point is extended by considering each class 

as pseudo-atoms, which will be synthetically perturbed using NMA260,261. 

3. NMA works by taking each input class as a reference class to predict its movements and 

then aligning (with elastic 3D-to-2D alignment procedure) with the EM images to verify 

whether the predicted movements actually transpired in the sample. Finally, the reference 

structure is deformed into a set of conformations using possible directions of the 

conformational change predicted by NMA. 

4. A common resolution will be achieved using a low pass filter for both originally obtained 

3D classes and those obtained by NMA perturbation. These resultant classes are used by 

the same automated 3D classification method, used initially in point 1, as initial maps.  

5. This resultant large conformational space can be used to generate free-energy landscape as 

per our method described in chapter 3. 
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Figure 4.2: Description of NMA. a) Simple harmonic oscillator: m represents the particle, k is 
force constant of a spring attached to m and x is the displacement. b) Rugged surface (dotted) is 
the real energy of biological sytems and harmonic surface (plain line) represents the NMA. 
c) Equipotential points of a parabolic force field in a 2D space are described by contour lines 
here. Blue axis represents the cartesian coordinates while red axes are for NM coordinates. 
Particle’s motion is explained according to which coordinates are pertinent (one axis if on one of 
the NM axes, both axes if on any of the Cartesian axes). d) Three types of motion for water molecule 
as predicted by NMA (symmetric stretching mode, asymmetric stretching mode, bending mode), 



155 
 

with arrows showing the direction of motion of an atom measured by normal-mode theory. This 
figure is reproduced with permission from López-Blanco JR et al, 2014 from262. 
 

Some of the macromolecules such as ribosomes exist in various intermediate conformations before 

the mature state. Such a large-scale conformational pathway cannot be achieved by current 

computational algorithms. In the typical cryo-EM 3D reconstruction process, most of the structures 

are not further analysed because of the low particle abundance. This limitation hinders the correct 

structural analysis of macromolecular complexes. However, with the aid of NMA, various 

conformational states, representing major as well as minor classes, can be accessed. This 

information can then be mapped to our multidimensional free energy landscape algorithm (chapter 

3, section 3.3.3) for visualization and interpretation.  

 

4.5.2 To deal with macromolecules with large conformational changes 

While using the algorithms in chapter 2, to perform sharpening and evaluating atomic model, it 

should be noted that: 

• In case of measuring the map signal and occupancy maps1, it is possible that when a sample 

is showing large conformational changes, proposed methods can observe lower density 

values and give a close-to-zero occupancy value.  

• These proposed sharpening methods work well if 3D classification has been carefully 

executed. Otherwise, macromolecules with compositional heterogeneity can show density 

values of a significant amount on output 3D maps, which should be empty in actuality.  

These concerns point out that dealing with high amount of heterogeneity and 3D-classification 

step of the cryo-EM workflow are the crucial aspects to consider to refine our proposed algorithms1 

in the future. Therefore, if there will be a 3D classification method in the future, that can analyse 
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the heterogeneity to generate high-resolution cryo-EM maps, finer than the existing standard 

methods91,243,263,264 (which cannot trace 3D classes with lower-particle count), then our technique 

will prove invaluable to analysing map signals and density values. In this case, one of the solutions 

to consider for processing massive heterogeneous data can be our automatic hierarchical 

clustering-based 2D/3D classification approach introduced in chapter 3, which can render a 

significant number of conformations, even including the ones with low particle population because 

this method is not affected by the attractor problem22,23, the latter being commonly present in 

standard Bayesian classification methods (as discussed in chapter 3).  

 

4.6 Concluding Remark 

In toto, all the algorithms introduced in this thesis have shown promising results and space for 

progression in the future, to further improve the structure details in cryo-EM. Our findings indicate 

that i) cryo-EM maps with different SNRs can be enhanced with better connectivity and without 

broken densities, ii) de novo model building can be improved using local B-factors and local 

occupancy maps, iii) a significant number of conformations can be extracted from input sample 

data for homogenous as well as heterogeneous macromolecules, without the “attractor” problem, 

iv) the free-energy landscape can elaborately explain the conformational changing trajectory for 

flexible macromolecules. Such methods represent the finest advancements in the cryo-EM image 

processing workflow.  
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