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ABSTRACT

The intuition that the amount of classical correlations between two systems

be bounded by their size does not hold true in general for quantum states. In

the setting of information locking, measurements on a pair of quantum systems

that appear to be completely uncorrelated can become maximally correlated

with a small increment in the size of one of the systems. A new information

locking scheme based on generic unitary channels is presented and a strengthened

definition of locking based on a measure of indistinguishability is used. The

new definition demonstrates that classical information can be kept arbitrarily

low until it can be completely decoded. Unlike previous locking results, non-

uniform input messages are allowed and shared entanglement between the pair of

quantum systems is considered. Whereas past locking results relied on schemes

with an explicit “key” register, this requirement is eliminated in favour of an

arbitrary quantum subsystem. Furthermore, past results considered only projective

measurements at the receiver. Here locking effects can be shown even in the case

where the receiver is armed with the most general type of measurement. The

locking effect is found to be generic and finds applications in entropic security and

models for black hole evaporation.
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ABRÉGÉ

L’intuition que le montant des corrélations classiques entre deux systèmes

sont limités par leur taille est incorrect en général pour les états quantiques.

En cas de verrouillage, des mesures sur une paire de systèmes quantiques qui

semblent être totalement décorrélées peuvent devenir corrélées au maximum

avec une minuscule augmentation de la taille d’un des systèmes. Une nouvelle

forme de verrouillage utilisant des canaux unitaire génériques est introduite et la

définition de verrouillage est renforcée a base d’une mesure d’indiscernabilité. La

nouvelle définition montre que l’information classique peut être arbitrairement bas

jusqu’à ce qu’elle puisse être complètement décodée. Aux contraire des résultats

précédents, des messages non-uniforme et l’intrication entre la paire de systèmes

sont considérés. Auparavant, il était nécessaire d’avoir un registre explicite pour

une “clé”, cette nécessité est supprimée en faveure d’un sous-système quantique

arbitraire. De plus, les résultats précédent considéraient que les mesures projective

mais nous démontrons des effets de verrouillage même dans le cas où le récepteur

est armé avec les mesures les plus générales. Nous trouvons l’effet de verrouillage

générique et montrons des applications pour la sécurité entropique et pour un

modèl d’évaporation des trous noirs.
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CHAPTER 1
Introduction

Consider two parties, Alice and Bob, attempting to perform a communication

protocol. Alice is attempting to communicate a message m to Bob using at most

n bits. Assuming Alice will not waste any bits during their communication, m can

take one of 2n possible values at the beginning of the protocol and Bob can expect

Alice to send any of these. She begins by sending the registers of the bitstring, one

by one, to Bob. With every received bit, Bob cuts the set of possible messages in

half. Thus, when he has received n− 1 bits, he has only two possible bitstrings left

to guess from and could infer Alice’s message with probability 1
2
. Throughout this

protocol, the information Bob has about Alice’s message will increase uniformly

and smoothly until he receives all n bits, at which point he can completely infer

Alice’s message.

This simple example illustrates a proposition we should have no trouble

accepting: that the amount of information contained in a physical system is

proportional to the size of that system. It is surprising then, that this intuition

fails in the setting of quantum information theory. Whereas in the classical setting

above Bob has immediate access to the value of the registers he receives, in the

quantum setting Bob is required to make a measurement on the quantum registers.

Furthermore, via the quantum no-cloning Theorem, Bob cannot make perfect
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Figure 1–1: The most simple quantum communication protocol for communicating
data from a sender to a receiver.

copies of the quantum registers and is restricted to performing the measurement

only once.

Note that in most communication tasks, successful communication is defined

via a criterion about a classical result (or about the possible classical outcomes of

a quantum measurement). For this reason, measurement almost always plays a role

in communication tasks. In the study of quantum information theory, we seek to

predict the results of a measurement or to describe the best measurement possible

for a given communication protocol. A measurement on a quantum state returns a

set of possible outcomes with associated probabilities and therefore has a chance of

failing to read out the contents of the state. A simple illustration is given in Figure

1–1. First, Alice prepares a quantum state (perhaps imperfectly) after which the

state undergoes some process. The process can consist of a transformation due to a

channel or a decoding operation performed by Bob at the receiving end. The final

step is for Bob to perform a measurement yielding classical data.
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In the scenario described above, if Bob were to attempt to guess Alice’s

message with only n − 1 registers at his disposal, he would have to perform a

measurement on these n − 1 registers. For a large class of processes known as

information locking schemes, Bob’s measurement on n − 1 quantum registers fails

to read out almost any information about Alice’s message but his measurement

on n quantum registers succeeds. This large jump in Bob’s ability to success-

fully readout the message in exchange for a very small number of “key” bits of

communication is the topic of this work.

Notable improvements are made in this work over previous information

locking results and we describe these contributions in a non-technical setting here.

Strengthened definition – Previous results in locking defined Bob’s

inability to decode Alice’s message in terms of the accessible information, the total

correlations that Bob can establish with the message via measurements. Our new

definition is strictly stronger than this notion. We bound instead, the maximum

probability with which Bob can infer whether the result of his measurement

yielded a message from a cyphertext that Alice used or if the message came from

an independently generated cyphertext. Furthermore, we can make this probability

as small as we like. The best result as of the date of this work (see [21]) could

yield a value of 3 for the accessible information but our techniques can make this

value as low as any given ε for a logarithmic-size key up to corrective factors.

Non-uniform message – Whereas prior results pertained only to equi-

probable cyphertexts for Alice, our results allow her to prepare her message

according to a non-uniform distribution. By allowing for this larger class of
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locking scenarios we capture a more general setting than the cryptographic task

of quantum key distribution (QKD) for which locking has been studied [24]. For

QKD it is perfectly reasonable to assume that Alice would choose her message

uniformly at random but in general communication tasks Alice’s cyphertext is

not necessarily uniform. We find that the size of the key in the locking scheme

increases linearly in the degree to which Alice chooses a non-uniform cyphertext.

Shared entanglement – We generalize our setting even further by allowing

Alice and Bob to share an arbitrary pure state. The motivation is that such a

state could potentially contain a large amount of entanglement. This is the first

study of information locking in a setting with shared entanglement between the

sender and the receiver. Allowing for this entanglement resource makes our setup

particularly relevant to the Hayden-Preskill black hole evaporation model [22] and

gives new evidence that information locking could rescue the long-lived remnant

hypothesis for black holes [36].

Generic unitary – Previous locking schemes made use of a random unitary

channel which encodes with an explicit register which transformations from a set

of unitary evolutions is applied. Our construction, the generic unitary channel,

merits a more natural physical motivation. Whereas a random unitary channel

is designed with an explicit “key” register, a generic unitary channel applies only

one unitary evolution on a larger quantum system. The subsystem that is traced

out in the output can be chosen randomly and serves as the key. This is another

improvement over the random unitary channel. Eliminating the need for a classical

register to encode information about the particular unitary evolution applied
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allows us to consider systems such as the Hayden-Preskill model [22] for black hole

evaporation, and in general, any closed quantum system whose dynamics are well

modeled by Haar random unitaries.

Extension to general measurements – Finally, previous locking results

showed that Bob cannot extract information about Alice’s message using only

projective measurements. Although this is a satisfactory assumption for many

results in quantum information theory, we make use of a new technique to extend

our results for more general measurements on Bob’s system. A Chernoff bound

technique originated by [14] and similar to [40] allows us evaluate locking in the

case where Bob can perform any measurement, making our results strictly more

general than in the past.

The work is divided as follows: In Section 1.2 we introduce the notion of

states and define the basic ways in which we quantify the amount of information

they contain. Once we establish these notions in the classical setting, we proceed

to construct similar ideas in the quantum setting in Section 1.3. As we’ve hinted

above, we must also introduce the measurement formalism in this Section. We

review past results in information locking in Section 1.4. Finally, we introduce

two important methods of analysis in Sections 1.5.1 and 1.5.2. In Section 2 we

construct the communication protocol for which we will analyze the locking effect.

We dedicate Section 3 to proving that without all of the registers available

to him, Bob’s measurement will fail to reveal Alice’s message. We then also prove

that Bob can successfully decode Alice’s message in Section 4. The calculations

found in these Sections are due to the work in [15]. In Section 5 we discuss the
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implications of our findings for interesting examples in information theory and

physics and we summarize all of our work in Section 6.
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1.1 Notation

General

log Logarithm base 2.

EU [f(U)] Expectation value of f(U) over the random variable U .

AB Composite quantum system whose associated Hilbert

space is HA ⊗HB.

|A| Dimension of Hilbert space A. However, we will of-

ten drop the | · |. For example, the dimension of the

composite system MCK is denoted by MCK (a scalar

value).

A⊗2 Two identical copies of A the second of which is de-

noted by A.

|ψ〉A, |ϕ〉A, . . . Vectors in A.

ψA, ϕA, . . . The “unketted” versions denote their associated den-

sity matrices: ψA = |ψ〉〈ψ|. Furthermore, if we have

defined a state ψAB, then ψA = TrB[ψAB].

πA The maximally mixed state IA
|A| .

U(A) The unitary group on A.

Pos(A) The subset of Hermitian operators from A to A con-

sisting of positive semidefinite matrices.

L(s, η) The set of all (s, η)-quasi-measurements, see Definition

2.1.1

B(A) The set of all bounded positive operators on A.
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Operators

IA Identity operator on A.

MA→B Indicates that the operator M is a transformation

from states on A to states on B.

MA→B Indicates that the superoperator M is a transforma-

tion from operators on A to operators on B. M and

M will be freely identified with their extensions (via

tensor product with the identity) to larger systems.

M ·N MNM †

M 6 N If M,N ∈ Herm(A), this means that N −M ∈ Pos(A).
√
M If M ∈ Pos(A) has spectral decomposition M =∑

i λi|ψi〉〈ψi|, then
√
M =

∑
i

√
λi|ψi〉〈ψi|.

ΠA
± Projector onto the symmetric (+) or antisymmetric

(−) subspace of A⊗2.

opA→B(|ψ〉AB) Turns a vector into an operator. See Definition 3.1.2.
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Norms and Entropies

∥∥MA→B
∥∥
1

Tr
√
M †M

‖|ψ〉‖2
√
|〈ψ|ψ〉|∥∥MA→B

∥∥
2

√
Tr[M †M ]∥∥MA→B

∥∥
∞ Largest singular value of M , i.e. the operator norm of

M .

H2(A)ρ Renyi 2-entropy of A, defined as − log Tr[ρ2].

Hmin(A)ρ Quantum min-entropy of A, defined as

− log minλ∈R{λ : ρA 6 λIA}.

Hmax(A)ρ Quantum max-entropy of A, defined as 2 log Tr
√
ρA.

1.2 Classical information theory

In this Section we will introduce some of the key ideas in information theory.

We will later explain why we refer to the concepts in this Section as “classical”

and the concepts in future Sections as “quantum”. We will define a state as

the mathematical object which describes a preparation and the statistics of any

possible measurement of that preparation [20]. The most natural representation of

a state can be formulated as a probability space,

Definition 1.2.1 (Probability space). We call (X ,A,Pr) a probability space

associated with a particular state if X is the alphabet of possible instances of the

state, A is a set of subsets of X , and Pr is a measure on A normalized so that

Pr{X} = 1.
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Note also that if A is the set of all subsets of X then it is the σ-algebra of X

as defined in Definition A.0.2. We will consider finite alphabets X , i.e.: |X | = N .

To each element x ∈ X we will associate p(x) = Pr ({x}). By the definition of

a measure (A.0.3) we know that Pr is additive for disjoint sets and so we can

note that
∑

x p(x) = 1. We call the collection of outcomes and their probabilities

{(p(x), x)} a state, a distribution, or, equivalently, a random variable. We note that

the set of all states is a convex set.

Definition 1.2.2 (Pure and mixed states). A pure state is an extremal element of

the convex set of states, i.e.: Pr({x}) = 1 but Pr(A\{x}) = 0 for any A ∈ A. Any

state that is not pure is called a mixed state.

We denote by X the random variable constructed from the alphabet X and

the probability distribution Pr. At this point we have not chosen a particular

structure for the set X . A very natural construction would be {0, 1}×N (a string of

bits), but for the information theoretic quantities defined below, this is not a strict

necessity.

Definition 1.2.3 (Shannon entropy). For the random variable X formed from

the alphabet X := {x} and the probability measure p(x), we define the Shannon

entropy as

H(X) = −
∑
x∈X

p(x) log p(x)

where the logarithm is taken to be base 2.

The Shannon entropy can be interpreted as the expected value of an “infor-

mation function” I(A) for each of the events A ∈ A. We require that such an I

be smooth in Pr(A), dependent exclusively on the probability of A, and additive

10



under union of disjoint events (i.e.: I(A ∪ A′) = I(A) + I(A′)). The only eligible

candidates then are I(A) = −k log Pr(A) for some fixed k (Theorem 2 of [35]). We

choose k = 1 and see that if we take the expectation over individual outcomes {x}

only then

EPrI(x) = −
∑
x

p(x) log p(x) = H(X).

The appropriate interpretation of the Shannon entropy is the “amount of uncer-

tainty” in a state. Pure states have Shannon entropy 0, and these are states for

which we have no uncertainty. On the other extreme lies the maximally mixed

state {(1/|X |, x)} which gives the maximum value for the entropy, H(X) = log |X|.

Note the flip-side to this interpretation: if a state is very uncertain, then learning

its value constitutes gaining a large amount of information.

Where two different states are concerned, two different random variables

will share a product alphabet X × Y and one probability measure PrX×Y which

may or may not factorize into PrX × PrY . Note that we have implicitly defined

the marginal distribution over each of the alphabets X and Y . The marginal

distributions should be taken as

PrX (x) = PrX×Y ({x} × {Y}) .

We define also the uncertainty in two (or more) variables together.

Definition 1.2.4 (Joint entropy). For the random variables X and Y we define

their joint entropy

H(XY ) = −
∑

x∈X ,y∈Y

p(x, y) log p(x, y)

11



We also define the amount of uncertainty about one random variable under

the assumption that the other is known.

Definition 1.2.5 (Conditional entropy). For the random variables X and Y we

define their conditional entropy

H(Y |X) = −
∑
x∈X

p(x)H(Y |X = x)

where H(Y |X = x) is defined to be the Shannon entropy for the alphabet {x} × Y

with the probability measure Pr ({x} × Y) /Pr ({x}).

Finally we define one of the most significant quantities for our analysis.

Definition 1.2.6 (Mutual information). For the random variables X and Y we

define the mutual information as

I(X : Y ) = H(X) +H(Y )−H(XY )

which can equivalently be written as I(X : Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

via Bayes’ rule.

The mutual information can be interpreted as the total amount of un-

certainty that two variables share in common. If two states have high mutual

information then they are also highly correlated. As an example, the state

for which mutual information is maximized is the maximally correlated state:

p(x, y) = δxy1/min(|X |, |Y|).

1.3 Quantum information theory

Our quantum model of information processing will require a new setting. We

will need to enhance our definition of state via some physical motivations. The

12



collection of all quantum states will live in the Hilbert space and inherit its proper-

ties. Whereas previously we considered bitstrings and distributions over bitstrings,

we will now concern ourselves with quantum states and their distributions. As

such, all of the constructions of Section 1 will be named “classical” with respect to

the formalism we introduce here.

1.3.1 Hilbert spaces, states, and density operators

In analogy to classical states that take values in an alphabet, quantum states

will take values in a Hilbert space H.

Definition 1.3.1 (Hilbert space). Let H be a complete inner product vector space

such that a quantum state |ψ〉 ∈ H (a “ket” state). We denote by 〈φ| ∈ H† (a

“bra” state) the quantum state belonging to the dual space of H. The dual is taken

to be the conjugate transpose and H and H† are related by the inner product,

〈φ|ψ〉 := 〈φ| (|ψ〉)

where φ has now assumed its role as a linear functional on H. The distance

function

d(ψ, φ) =
√

(〈φ| − 〈ψ|) (|φ〉 − |ψ〉)

grants the Hilbert space the properties of complete metric space as well.

We will restrict ourselves to finite-dimensional Hilbert spaces in subsequent

calculations. However, as we will see later, we will wish to examine a function’s

asymptotic limit in the dimension of the Hilbert space. Linearity of the Hilbert

space is important as it embodies a fundamental behaviour of quantum states, that

13



of superposition. Unlike variables in our classical construction, the linear combina-

tion of two pure quantum states remains a pure quantum state. Completeness of

the space is also important as it would be unreasonable to describe a quantum the-

ory where the limit of a Cauchy sequence of states was not itself a possible state

within the Hilbert space. Finally, we will only consider quantum states which are

unit-normalized, i.e.: |φ〉 is a quantum state if it is unit normalized, |〈φ|φ〉| = 1.

At this point we still have not assumed an underlying field for the Hilbert

space. The reader may have already guessed that this choice will be C. If we had

described our Hilbert space with the field R, we would encounter a contradiction.

Consider a two-dimensional Hilbert space on R. Two possible pure states in this

space are the vectors |(1, 0)〉 and |(0, 1)〉. The operator that flips |(1, 0)〉 and

|(0, 1)〉 is

S =

 0 1

1 0

 .
However, if this operator represents a physical process, it must be possible to

implement it continuously. That is, if S takes time ∆t to implement, then we

could interrupt the process at time 1
2
∆t and expect the resulting state to still be

pure. Unfortunately, S does not accept a square root in the space of 2 × 2 real

matrices. C is algebraically closed meaning that it will contain the eigenvalues

of any root of S. Any root of S is thus contained in the space of 2 × 2 complex

matrices. It is useful to remember that in a complex Hilbert space, all pure states

are connected and can be continuously rotated into one another. This is not
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the case in the space of classical pure states however where the only possible

operations between pure states are permutations of the basis.

We can associate any physical system to a Hilbert space. Physical systems

can be subdivided however, and we will now establish the notion of subsystems.

Recalling that linearity is necessary for superposition of quantum states, the same

theory that describes any one system should also describe a composite system.

The fashion in which we join two quantum systems will be the tensor product ⊗.

We denote the composition |φ〉 ⊗ |ψ〉 ∈ HA ⊗ HB for two systems A and B.

The tensor product is multilinear (linear in all its entries) meaning that quantum

theory is extensible.

In analogy to Section 1.2, we can take X to be the set of all outer products

(or projections) associated with each vector in the Hilbert space and A to be

their σ-algebra. As before, our definition of state (now quantum state) will be

constructed from the probability space although now with any probability space

we will also associate a density operator.

Definition 1.3.2 (Density operator).

ρX =

∫
x∈X
|x〉〈x|XdPr(x)

where |x〉〈x| is the outer product of the vector corresponding to x in HX and H†X .

For an n-dimensional Hilbert space, ρX ∈ Herm(X) and Tr
[
ρX
]

= 1.

Most often, the state is defined as a mixture of n pure states, that is, Pr(x) =

p(x) for n values of x and the density operator becomes ρ =
∑

x p(x)|x〉〈x|. We
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interpret the density operator ρ as the mathematical object which contains all of

the information that quantum operations can extract from a quantum state.

As with state vectors, the density operator must be multilinear in subsystems

and thus we can also write a composite system as the tensor product of the density

operator on two subsystems ρA ⊗ σB. If, in matrix entry notation,
[
ρA
]
(i,j)

= aij

and
[
σB
]
(k,l)

= bkl then
[
ρA ⊗ σB

]
(m,n)

= [aijbkl](m,n), where m = ik and n = jl.

If we are given a state on a composite system but wish only to consider one

subsystem, we can recover the marginal state via a partial trace operation.

TrB
[
ρAB

]
=
∑
i

(
IA ⊗ 〈i|B

)
ρAB

(
IA ⊗ |i〉B

)
= ρA

for {|i〉}i an orthonormal basis in B. We will denote an n-fold tensor product of ρ

as ρ⊗n.

Density operators have the uniquely quantum property of purification.

Consider that any given density operator ρA is positive semidefinite and therefore

has a square root factorization ρA = (
√
ρA)†

√
ρA (Exercise I.2.2 in [6]). If we take

the spectral decomposition ρA =
∑

k λk|k〉〈k| where the {|k〉} form an orthonormal

basis for A, we can construct the state |ρ〉AR =
∑

k

√
λk|k〉A ⊗ |k〉R on the

composite system A⊗R. It is easy to check that TrR[|ρ〉〈ρ|AR] = ρA. Note that the

vectors |k〉R can be chosen to be any set of orthonormal vectors in R. Thus, just

as all orthonormal bases are related by unitary transformations, all purifications of

equivalent dimension are related by unitary transformations.

Unlike pure classical states, some pure quantum states cannot be written

as the product of pure states on subsystems. This is another uniquely quantum
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property called entanglement. Consider the pure state |Φ〉AA′ := 1/n
∑

i |ii〉AA
′

where dimA = dimA′ = n. There is no ρA and σA
′

such that ΦAA′ = ρA ⊗

σA
′
. Furthermore, the complete state purifies the marginal state on either A or

A′. In this way we can always interpret a mixed state as the marginal of some

purification. We will later show the consequences of entanglement on various

quantum information measures.

Finally, we define formally the notion of “process” illustrated in Figure 1–

1. We require that any map EA from density operators to density operators

be completely positive, i.e.: IR ⊗ EA is positive for any ancillary system R of

any size. This is a strictly stronger requirement than positivity for E alone.

Furthermore, if E is to map density operators to density operators, it must

preserve the normalization (or trace) of the density operators. We call any

completely positive trace-preserving map (CPTP map) from A to B a quantum

channel,

NA→B (ρA) = σB.

Note that quantum channels need not be reversible. However, they can be made to

be so by the introduction of an environment system E via the Stinespring dilation

Theorem.

Theorem 1.3.1 (Stinespring dilation [37]). For any completely positive trace-

preserving map NA→E : B(A) → B(B), there exists a system E and a unitary

transformation UA→BE
N such that

NA→B(ρ) = TrE

[
UNρU

†
N

]
.
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We will often denote the conjugation of a state by a unitary as U · ρ := UρU †.

1.3.2 Measurements and distances

We now require a physically meaningful way to extract classical results from

a quantum state. In quantum mechanics, observable quantities are traditionally

modeled as Hermitian operators M . If M admits a spectral decomposition∑
mm|m〉〈m| then the results of the observable M for a state ρ are given by m

with probability 〈m|ρ|m〉. However, these do not capture all of the physically

realizable measurements and we make use of the following more general formalism.

Definition 1.3.3 (Positive Operator-Valued Measure (POVM)). A countable set

of operators {Em} is said to be a POVM if
∑

mEm = I and Em > 0 for all m. For

a quantum state ρ, we associate with p(m) = Tr[Emρ] the probability of outcome m

and note that
∑

m p(m) = 1. The post-measurement state for a particular outcome

m′ is given by

ρ −→
√
Em′ρ

√
Em′

Tr
[√

Em′ρ
√
Em′

] .
Note that in the above,

√
Em′ is not necessarily a projective operator and thus

repeated measurement does not necessarily leave the state unchanged. Further,
√
Em′ is in general not uniquely defined, meaning that different measurement

procedures can yield different post-measurement states. The most common species

of POVM encountered is the projective measurement.

Definition 1.3.4 (Projective measurement). Consider the POVM {Em} with the

additional restriction that E†iEj = δijEi for all i, j. Such a POVM is called a pro-

jective measurement as repeated application does not alter the post-measurement

quantum state.
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We will also find it useful to assign an operator on density operators (called a

superoperator) for any POVM.

Definition 1.3.5 (Measurement superoperator). We call a completely positive,

trace-preserving (CPTP) map M : B(A) → B(X) a measurement superoperator if

it is of the form M(ρ) =
∑N

i=1 |i〉〈i|X Tr[MA
i ρ], where {|i〉A : i ∈ {1, . . . , N}} is an

orthonormal basis for X, each MA
i is positive semidefinite, and

∑N
i=1M

A
i = IA.

Often, our task is to distinguish two different quantum states. We’ve already

implicitly equipped the Hilbert space with the Euclidean distance measure (i.e.:

the `2-norm). For the space of density operators, we will assign two distances

motivated by norms on the operator space.

1. The Hilbert-Schmidt distance, also known as the 2-norm, is defined as

‖ρ− σ‖2 =
√

Tr
[
(ρ− σ)2

]
Just as with the `2-norm, this one is induced by an inner product. The

Hilbert-Schmidt inner product for operators is (A,B) = Tr[A†B], which

one can note for quantum states (which are Hermitian) gives the statement

above.

2. The trace distance, also known as the 1-norm, is defined as

‖ρ− σ‖1 = Tr [|ρ− σ|]

The absolute value of any operator A is defined as
√
A†A which as we note

again for Hermitian density operators is simply
√
A2.
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For an operator A on a Hilbert space of dimension n, we have two useful inequali-

ties via [6]

‖A‖1 ≤
√
n ‖A‖2 ,

‖A‖2 ≤
√
‖A‖1 ‖A‖∞.

1.3.3 Information Theory and Entropic Quantities

Recall that in Section 1.2 we introduced the Shannon entropy as a measure of

uncertainty for a particular state. For a mixed state, the Shannon entropy was a

function of probabilities of the ensemble regardless of the actual pure states that

composed it. In order to develop a similar idea in quantum information we will

have to deal with the fact that the pure states of our Hilbert space are not by

default orthogonal (as they are for classical random variables). Fortunately, the

density operator language gives a very powerful formula for capturing the amount

of uncertainty in a particular quantum state.

Definition 1.3.6 (Von Neumann entropy). For any quantum state ρ, we define

the Von Neumann entropy as

H(X)ρ = −Tr [ρ log ρ]

where log ρ is taken base 2.

Note that for a diagonalization of ρ =
∑

k λk|k〉〈k| we have that H(ρ) =

H({λk}) the Shannon entropy. In fact, this equality is a special case when the
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mixture from which we construct ρ is a mixture of orthogonal pure states. Con-

sider the mixed state taken as the following mixture of probabilities and states:{(
1

2
, |ψ〉X

)
,

(
1

2
, (1− ε)|ψ〉+ ε|ψ⊥〉

)}
where we’ve assumed 〈ψ|ψ⊥〉 = 0 and a fixed ε. If we naively take the Shannon

entropy of this mixture, we calculate that the mixture is maximally uncertain with

H(X) = 1. However, we note that the density operator can be written as

ρX =

(
1− ε+

1

2
ε2
)
|ψ〉〈ψ|+

(
1

2
ε− 1

2
ε2
)(
|ψ〉〈ψ⊥|+ |ψ⊥〉〈ψ|

)
+

1

2
ε2|ψ⊥〉〈ψ⊥|.

From which, if we calculate the Von Neumann entropy ignoring ε2 terms we find

H(X)ρ ≈ ε. In the first expression for ρ, the Shannon entropy was near maximal,

while in the second it is near 0.

As with the mutual information of two random variables, we can now define

the quantum mutual information of a composite quantum state

Definition 1.3.7 (Quantum mutual information). For a bipartite state ρXY we

define the quantum mutual information as

I(X : Y )ρ = H(X)ρ +H(Y )ρ −H(XY )ρ.

We can now note one of the most surprising facts in quantum information

theory: the quantum mutual information can be much higher than the classical

mutual information. In fact, the maximum value of the I(X : Y )ρ is twice that of

the maximum value for I(X : Y ). The maximally correlated state that gave the

maximum classical value for mutual information can be written as the quantum

21



state
∑

i 1/|X||ii〉〈ii|XY (for |X| = |Y |). For this state H(X) = H(Y ) =

H(XY ) = log |X| and I(X : Y ) = log |X|. However, in the quantum setting we

can write the maximally entangled state |Φ〉 =
∑

i 1/
√
|X||ii〉XY and for this state

TrY [|Φ〉〈Φ|] = πX the maximally mixed state (similarily for the marginal state

on Y ). However, since the state on XY is pure, H(XY ) = 0 and we have that

I(X : Y ) = 2 log |X|.

We note the following Theorem which gives insight into the relationship

between POVMs and the Shannon entropy

Theorem 1.3.2 (Fine-grained POVMs [9]). For any mixture of states {p(x), ρAx }x,

there exists a POVM M consisting of elements {αy|y〉〈y|A}ny=1 such that I(X : Y )

is maximized and |A| ≤ n ≤ |A|2.

Finally, one of the most common quantum systems is the qubit. A qubit is a

state on a 2-dimensional Hilbert space with the implicit basis {|0〉, |1〉} (known as

the computational basis). Although our results do not require that the quantum

states in question be strings of qubits, we will often count the dimension of a

Hilbert space in “bits” as this illustrates our statements more intuitively.

1.4 Locking information

We will now introduce another correlation measure to contrast with mutual

information. Mutual information, although it does bound the trace distance

between two quantum states, does not provide any direct insight into their

operational distinguishability. First, consider the following species of quantum

state,
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Definition 1.4.1 (Classical-quantum state). A classical-quantum (or “cq”) state

is any bipartite state of the form

σXB =
∑
x

p(x)|x〉〈x|X ⊗ ρBx

such that {|x〉}x form an orthogonal basis for X and
∑

x p(x) = 1 with p(x) ≥ 0 for

all x.

The following measure, introduced by Fuchs, was defined with the task of

distinguishing two quantum states in mind,

Definition 1.4.2 (Accessible information [18]). Let σXB be a cq-state then, the

accessible information Iacc(X;B) is defined as

Iacc(A;B)σ := sup
B
I(X;Y )(I⊗B)(σ),

where BB→Y is a measurement superoperator, and the supremum is taken over all

possible measurement superoperators.

In other words, the accessible information is the largest possible mutual

information between the “classical” part X of the cq-state and a measurement

on the “quantum” part B. The accessible information is bounded above by the

Holevo quantity for a mixture of states {p(x), ρx}

χ(ρ) = H(X)ρ −
∑
x

p(x)H(X)ρx .

Applying a measurement superoperator to a quantum state ρAB yields a cq-state

σXB between the classical measurement results X and the quantum part B. In
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this way we can develop a notion similar to accessible information for general

quantum states.

Definition 1.4.3 (Classical mutual information for quantum states ([12])). For

any quantum state ρAB, we define the accessible information as

Ic(A;B)ρ := sup
A⊗B

I(X;Y )(A⊗B)(ρ),

where the supremum is taken over all possible measurement superators AA→X and

BB→Y .

Thus the classical mutual information represents a measure of the bipartite

correlations available in a quantum state via local measurement operations. Note

that the maximum value that this second definition of accessible information can

take is 2 log min(|A|, |B|) (by Theorem 1.3.2).

The accessible information is the correlation measure at the centre of the

information locking effect - it is a quantity that can exhibit a drastic jump. We

now review three papers which have analyzed schemes for information locking.

All of these will have the following general idea in common; Alice will prepare a

cq-state state and send the quantum part to Bob through a judiciously chosen

channel. Bob will then attempt to infer Alice’s classical part of their shared state.

If the channel transmits Alice’s input to Bob in full, then Bob will be successful

with high probability. However, if the channel is built to erase some part of the

state, known as the key, Bob will be unsuccessful due to low correlation (and low

accessible information) with Alice’s state.
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We will define locking to be the instances where a small key costs Bob greatly

in success probability (or equivalently, in correlation with Alice). It is precisely this

sharp transition that defies our intuition that the amount of information contained

in a state (here the key) should be bounded by the size of the state. It was proved

in [11] that Ic(A;B)ρ⊗n = nIc(A;B)ρ, implying that the information locking effect

is unaffected by multiple copies of the state and thus not an artefact of “one-shot”

communication between Alice and Bob. The works reviewed below give results

quantitatively relating the key size to the amount of correlation between Alice and

Bob.

1.4.1 Past locking results

Locking with one qubit [12] Consider that the channel between Alice

(A1A2) and Bob (B) establishes the state

ρA1A2B =
1

2d

d−1∑
t=0

1∑
k=0

|t〉〈t|A1 ⊗ |k〉〈k|A2 ⊗
(
Uk|t〉〈t|U †k

)
B

(1.4.1)

where {|t〉} and {|k〉} are respectively d and 2 dimensional states in the compu-

tational basis. Also, define U0 = IB and U1 = H⊗ log d, where H is the Fourier

transform (or Hadamard gate) and has the property that ∀i,t |〈i|U1|t〉| = 1/
√
d.

Note that we’ve assumed d is a power of 2 in this scenario. Together, t and k form

the bitstring that Alice splits into a “cyphertext” t and a “key” k. It is clear that

if Alice measures the register k and then sends it to Bob, Bob can simply undo

the appropriate unitary transformation to recover a perfectly correlated register

t. In this scenario Alice and Bob establish log d + 1 bits of correlation (log d from

register t and 1 from a shared knowledge of register k).
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However, if Bob is left to infer t without the aid of k, he can establish at most

1
2

log d bits of correlation. Note that in this particular case Ic(A;B)ρ = Iacc(A;B)ρ

since the optimal measurement for Alice is the measurement in the computational

basis {|t〉 ⊗ |k〉}. If we equip Bob with the fine-grained POVM B = {αj|φj〉〈φj|}

then Ic(A;B)ρ becomes exactly

Ic(A;B)ρ = max
B

[
log d+

∑
j

αj
d

(
1

2

∑
tk

|〈φj|Uk|t〉|2 log |〈φj|Uk|t〉|2
)]

and by an entropic uncertainty relation ([28]) the second of these terms is bounded

above by −1
2

log d implying that Ic(A;B)ρ ≤ 1
2

log d. The locking regime that [12]

calculates is illustrated in Figure 1–2. That paper establishes two corners for the

accessible information (meaning that the accessible is not necessarily a straight line

as illustrated). The corner labeled [DHL+04] indicates that with one qubit register

missing, Bob can only establish 1
2

log d bits of correlation with Alice.

Locking with random bases [21] The first improvement to the [12] result

was made by [21] via the use of random unitary operations. Consider precisely the

state ρ described in the first example by [12] but where the register k is allowed

to have a larger dimension. The index k then enumerates a set of unitaries acting

uniformly on Bob’s register. If the unitary matrices are chosen randomly according

to the Haar measure (Definition 2.0.3) then Bob fails to infer Alice’s register

with overwhelmingly high probability. The number of unitary matrices needed

to achieve this gives the key-size necessary for locking. In this case the authors

achieve Ic(A;B)ρ ≤ 3 with a key-size of k = O(polylogd) although they also
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Figure 1–2: The accessible information between Alice and Bob (the dotted red
line) is compared to the mutual information (the solid blue line) as a function of
the bitstring available to Bob.

show a simple manipulation of their proof that reveals they can also achieve, for a

reasonably chosen ε > 0, that Ic(A;B)ρ ≤ (log d) ε with k = O(polylogd− log ε).

Locking with norm-embeddings [17] Although published almost simulta-

neously, [17] is actually preceded by the work in this thesis, published as [15]. In

this work the authors demonstrate locking as a consequence of metric uncertainty

relations. A metric uncertainty relation is a statement about the trace distance

between a given probability distribution and the uniform distribution. In partic-

ular, the authors consider the probability distribution induced by the following

coefficients

pAUk|ψ〉(a) =

dB−1∑
b=0

∣∣〈a|A〈b|BUk|ψ〉∣∣2 .
The intuition is that systems A and B form the cyphertext and key respectively.

The collection of t unitaries {U0, ..., Ut−1} is said to be a metric uncertainty
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Figure 1–3: The results of [21] gave a new corner specifying the locking region.
Although the accessible information is illustrated as a straight line, this is not
necessarily the case.

relation if

1

t

t−1∑
k=0

∆
(
pAUk|ψ〉, unif([dA])

)
where unif is the uniform distribution and ∆(p, q) = 1

2

∑
x |p(x)− q(x)|, the

trace distance between the probability distributions. It is clear that if a metric

uncertainty relation holds true for a sufficiently small system B but not for a

slightly smaller system, then the trace distance exhibits a locking-type effect. In

relation to previous results, a statement about a probability distributions’ distance

to the uniform distribution directly implies the desired statement about accessible

information (see Lemma 2.1.1). In the key/cyphertext language, the authors prove

that a locking scheme exists for a key of size O(log(1/ε)) for a cyphertext of size

log d − 2 log(18/ε). Note here that the trade-off previously observed between the

key size and the size of the cyphertext is eliminated.
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1.5 Concentration of measure

The concentration of measure phenomenon is a useful tool for calculating

the likelihood of an event vis-a-vis the parameters of a function describing the

event. It is precisely the tool used in [21] that permits the authors to claim that

the “overwhelming majority of random choices” of a parameter satisfy a desired

criterion (in their case, the criterion that a message is locked). The most basic

statement of the phenomenon is easily understood graphically and is presented

below.

The concentration of measure technique is also often coupled with the

use of ε-nets in order to optimize the value of the function in question over a

second parameter. The ε-net argument is also easily understood graphically and

constitutes the second part of this Section.

1.5.1 Concentration

Consider the 2-dimensional unit-sphere S2 embedded in 3-dimensional space

normalized to have area 1. Any subset of the sphere with area 1
2

must have a

perimeter greater than or equal to the circumference of a greater circle on the

sphere. This is because the greater circles form geodesics on the sphere and any

subset with a greater circle as its perimeter is a hemisphere cap of the sphere.

We define the r-open-neighbourhood of a set A as

Ar = {x ∈ S2 : d(x,A) < r}

where d(x,A) is the minimum Euclidean distance from a point x to any point in

the set A. Visually it is clear that extending an r neighbourhood of a set A with
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perimeter greater than the hemisphere cap B increase the total area more than for

Br. This fact is made precise via isoperimetric inequalities in equation (2.5) of [26]

µ(Ar) ≥ µ(Br), r > 0

where µ is interpreted as the measure of surface area.

Definition 1.5.1 (Concentration function). For a metric space (X, d) and the

probability measure µ we define the concentration function as

α(X,d,µ)(r) = sup

{
1− µ(Ar) : A ⊂ X,µ(A) ≥ 1

2

}
where the supremum is taken over all subsets A.

Thus the concentration function gives the worst-case complementary volume

to the r-neighbourhood of a hemisphere cap. If we calculate the complementary

volume to Br on S2 we will find an upper bound on α(S2,d,µ)(r). The calculation

is a fairly simple geometric integral and for more general n-dimensional spheres

yields the bound in Theorem 2.3 in [26]:

α(Sn,d,µ)(r) ≤ e−(n−1)r
2/2, r > 0.

Note that, although for S2 the decrease with respect to r is not surprisingly fast, as

the dimension of the sphere grows, the concentration increases rapidly in rate (or

“strength”). The concentration of (Sn, d) indeed fits a more general form known as

normal concentration:

α(X,d,µ)(r) ≤ Ce−cr
2

, r > 0
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where the constants c and C are properties of the metric space and measure. We

will later see that another important metric space (namely the unitary group

equipped with the Hilbert-Schmidt norm) also has normal concentration.

Figure 1–4: A visual representation
of the concentration of measure phe-
nomenon for S2. Any extension to the
Southern hemisphere quickly covers the
Northern hemisphere.

Figure 1–5: A visual representation of
concentration over a function on S2. For
a well-behaved function, extensions to
any cap still follow a similar behaviour.

Finally, we wish to be able to make, as hinted above, statements about real-

valued functions on (X, d, µ). We may, for example, be interested in the space of

quantum states and the value of an information theoretic quantity over this space.

The result we state below is also sometimes refered to as a statement about the

“large deviations” of a function for reasons that will become clear.

Proposition 1.5.1 (Deviation inequality (Proposition 1.3 in [26])). Let (X, d) be a

metric space with probability measure µ and F be a real-valued continuous function

on (X, d) with Lipschitz constant θ (see Definition A.0.4) then

µ

({∣∣∣∣F − ∫ Fdµ

∣∣∣∣ ≥ ε

})
≤ α(X,d,µ)(ε/θ)

for any ε such that 2α(ε) < 1
2
.
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We thus have a bound on the likelihood that a function will deviate from its

average value by more than ε.

1.5.2 ε-nets and union bounds

A natural consideration one may have after the results of the previous Section

would be the following: given that a function of two parameters is close to uniform

with overwhelmingly high probability in one parameter (probability approaching

1 asymptotically in the dimension), what is the probability that the worst case

value for the second parameter yields a large deviation? As it turns out, we are

already well-equipped to answer this question via our use of the Lipschitz constant

θ above.

We have considered so far metric spaces X. Consider however a bounded met-

ric space X (such as, for example, the subspace of normalized quantum states in

Hilbert space) then for any fixed ε there exists N(ε) > 0 and
{
z0, z1, ..., zN(ε)−1

}
⊂

X such that

X ⊂
N(ε)−1⋃
k=0

{y : d(y, zk) < ε} .

In other words, a bounded metric space can always be covered by a finite number

of open ε-balls. The centers of these (i.e.: zk) are known as the elements of an

ε-net. Formally, an ε-net can be defined as

Definition 1.5.2 (ε-net [25]). For any bounded metric space (X, d) there exists an

ε-net J of finite size N(ε),

J =
{
z0, z1, ..., zN(ε)−1

}
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Figure 1–6: An ε-net on the space (X, d) maps to a collection of values of the
function F .

such that every element of X is at most ε away from an element of J in the

distance d.

We now examine the behaviour of a function F on the net J . Assign the set

{wk = F (zk)} then, since F is θ-Lipschitz continuous on a bounded metric space,

the image of F lies in the interval

{F (x) : x ∈ X} ⊆
[
min
k
{wk − θε} ,max

k
{wk + θε}

]
.

A continuous function on a bounded set will achieve its supremum and infimum on

the same set. In particular, consider that F achieves its extrema on xmin and xmax,

then each of these lies in the open ball of an element of J and we choose those

net elements zmin and zmax. Finally, since the distance between xmin and zmin is at

most ε, |F (zmin)− F (xmin)| < θε, and similarly for the maximum. This property is

illustrated further in Figure 1–7.
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Figure 1–7: One can think of the Lipschitz constant for a 1-dimensional function
as the minimum slope for two cones such that for any point on the function, all
other points lie within the cones. Thus if a function F is θ-Lipschitz continuous,
the maximum value of F is no more than θε greater than the value at an existing
net element.

Recall that at the beginning of this Section we referred to a function of two

parameters. As an example, consider a function describing the likelihood of success

of some communication protocol between Alice and Bob. The first parameter

X may control the first part of the process (e.g.: Alice encoding a message) and

due to concentration of measure is successful with exponentially good probability.

The second parameter Y may control the second part of the process (e.g.: Bob

decoding a message) and is only successful if Bob optimizes over his parameter to

reveal some large deviation. We would then like a bound for

µ

({∣∣∣∣sup
Y
F (X, Y )−

∫
F (X, Y )dµX

∣∣∣∣ ≥ ε

})
.

Consider the ε′-net J =
{
y1, ..., yN(ε′)

}
over inputs Y , then the statement for a

fixed yk is the same as in Proposition 1.5.1

µ

({∣∣∣∣F (X, yk)−
∫
F (X, yk)dµX

∣∣∣∣ ≥ ε

})
≤ α(X,d,µ)(ε/θX)
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where θX is the Lipschitz constant for F with respect to the parameter X. We

note now the following fact,

µ

({∣∣∣∣max
k
F (X, yk)−

∫
F (X, yk)dµX

∣∣∣∣ ≥ ε

})
≤ µ

(⋃
k

{∣∣∣∣F (X, yk)−
∫
F (X, yk)dµX

∣∣∣∣ ≥ ε

})

≤
∑
k

µ

({∣∣∣∣F (X, yk)−
∫
F (X, yk)dµX

∣∣∣∣ ≥ ε

})
which amounts to stating that “the maximum value of F as yielded by net

elements is either achieved by the first element, or the second, or the third, or ...”

and so on. We can then make the statement about the joint concentration and

optimization

µ

({∣∣∣∣max
k
F (X, yk)−

∫
F (X, yk)dµX

∣∣∣∣ ≥ ε

})
≤ N(ε′)α(X,d,µ)(ε/θX).

To achieve the desired statement it remains to apply our earlier statement and

choose ε′ = ε/θY ,

µ

({∣∣∣∣sup
Y
F (X, Y )−

∫
F (X, Y )dµX

∣∣∣∣ ≥ ε

})
≤ µ

({∣∣∣∣max
k
F (X, yk)−

∫
F (X, yk)dµX

∣∣∣∣ ≥ 2ε

})
≤ N

(
ε

2θY

)
α(X,d,µ)

(
ε

2θX

)
.

We see now that the probability of a large deviation in F as optimized against the

parameter Y is an asymptotic competition between N(·) which increases as the

dimension of Y increases and α which decreases as the dimension of X increases.
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In some cases it is interesting to study the question “does there exist a value for

X such that a value for Y will yield a large deviation?” In this case, the question

reduces to calculating whether the upper bound above is less than 1, i.e.: the set of

parameters that yield large deviations has measure strictly greater than 0. We can

relax this condition however and require that the set of parameters that yield large

deviations has measure at most c, for fixed constant c < 1. In this relaxed case, the

appropriate interpretation is that we study the question “does there exist a value

for X such that none of the possible values for Y yield a large deviation?”

Note that to apply the above ideas we would need to calculate the expec-

tation value of F , the Lipschitz constant θ, the size of the net N(ε), and the

concentration function α.
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CHAPTER 2
Generic unitary channels

We will study, as a model of communication between Alice and Bob, the

generic unitary channel. This channel takes the form

NA→B (ρA) = TrE

[(
UA→BE) ρ (UA→BE)†]

where |A| = |B||E| and the unitary matrix U is chosen according to the Haar

measure on U(n), the group of unitary matrices. The study of random unitary

matrices is well-motivated in physics. Wigner [39] and Dyson [16] developed

random matrix theory as a powerful tool for the analysis for nuclear energy levels

and the energy levels of complex systems such as one-dimensional Coulomb gas.

The study of various random matrix ensembles for analysis of physical systems has

been a field of its own since [29]. Amongst these ensembles, the one that models

the physics of closed quantum systems is the “circular unitary ensemble” which

give rise to the Haar-random unitary matrices defined below,

Definition 2.0.3 (Haar measure). The Haar measure νU(n) is the unique measure

on U(n) that is left-invariant. That is, for any Borel set A ⊂ U(n) and any

X ∈ U(n), we have that νU(n) (A) = νU(n) (XA). The Haar measure on U(n) is also

right-invariant. We also assume that νU(n) (U(n)) = 1 and we denote by PrU the

probability measure induced by the Haar measure.
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If we recall the previous Section, we can note that our observations apply

directly to the probability space (U(n), ‖·‖2 , νU(n)) and functions f : U(n)→ R. In

fact, the unitary group U(n) exhibits normal concentration ([5]) which yields the

following result,

Theorem 2.0.2 (Corollary 4.4.28 in [5]). Let f : U(n) → R be a function with

Lipschitz constant θ (see Definition A.0.4; the Lipschitz constant is taken with

respect to the Hilbert-Schmidt distance on unitaries). Then,

PrU {|f(U)− EUf | > ε} 6 exp

(
−nε

2

4θ2

)
.

In the original work [5], the expectation value is defined to be

E
U
f(·) =

∫
f(Y ·)dνSU(n)(Y ).

The use of the measure dνSU(n)(Y ) (that is, the Haar measure over the special

unitary group) is artefact from the proof technique in [5]. We can, however, define

the expectation as an integral over dνU(n) in the special case of class functions

allowing the use of other known results for integrals over the Haar measure. We

prove the following Lemma.

Lemma 2.0.3. Given a class function such that f(X) = f(eiθX) for any

X ∈ U(n) and any θ ∈ [0, 2π), we have that∫
f(Y X)dνSU(n)(Y ) =

∫
f(Y )dνU(n)(Y ).

Proof. Consider first that

U(n) = {ST : T ∈ SU(n), S ∈ H(n)} = {eiθT : T ∈ SU(n), θ ∈ [0, 2π)}
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where H(n) is the the subset of U(n) consisting of scalar multiples of the identity.

We have by Lemma 4.4.29 in [5] that∫
f(XY )dνU(n)(Y ) =

∫ ∫
f(XST ) dνSU(n)(T ) dH(n)(S).

Since S and T commute and f is a class function, we have that∫
f(XY )dνU(n)(Y ) =

∫
f(XT )dνSU(n)(T ).

Finally, we note that dνU(n)(Y ) = dνU(n)(X
−1Y ) and we recover the desired

statement.

We are now free to use the intuitive definition of the expectation value

E
U
f :=

∫
f(X)dνU(n)(X) =

∫
f(U)dU

where we’ve introduced our simplified notation in this special case.

2.1 Circuit

To end the introduction, we introduce the physical scenario that will occupy

us throughout this work. The quantum circuit depicted in Figure 2–1 is our model

for any closed quantum system modeled by generic unitary dynamics. The lines

running from left to right indicate the subsystems of the various quantum states

as labeled. Where two such lines join, the state is described by the composite

system. The boxes indicate superoperators, maps of states, or channels. A double

line indicates a classical message encoded in a quantum state. The dotted line is

used to denote the intermediate state ρ. The classical message M is encoded in N ,

and the unitary UCKE then mixes it with the E part of the shared entanglement
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|ω〉. If the information is locked, any joint measurement M on C and E ′ will yield

a result X that is almost independent of the message. On the other hand, if C

is large enough, there will be a joint measurement M reliably decoding M . The

brace represents the classical distributions for which the accessible information is

calculated.

E

E’

N

M M

X
D

C
U

ω

σ

ρ

Figure 2–1: A quantum circuit depicting the physical scenario.

Now, let {|ψm〉 : 1 6 m 6 |M |} be any orthonormal basis for N . The analysis

will focus on the properties of the states

σMN :=

|M |∑
m=1

pm|m〉〈m|M ⊗ |ψm〉〈ψm|N and (2.1.1)

ρMCDE′ :=
(
IME′ ⊗ UNE→CD

)(
σMN ⊗ ωEE′

)(
IME′ ⊗ UNE→CD

)†
. (2.1.2)

Our objective is to demonstrate that until C is large enough that there exists

a measurement on CE ′ capable of revealing all the information about the message

M , no measurement will reveal any information about the message. This cannot

quite be true, of course, so what we will demonstrate is that the jump from no
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information to complete information involves enlarging C by a number of qubits

logarithmic in the size of the message M and the amount of entanglement E.

In the following example, assume that M is uniformly distributed and that the

state ωEE
′

is maximally entangled. As a first step, it is necessary to determine how

large C needs to be in order for there to exist a measurement on CE ′ that will

reveal the message M . Begin by purifying the state σ to

|σ〉RMN =
1√
|M |

|M |∑
m=1

|m〉R ⊗ |m〉M ⊗ |ψm〉N . (2.1.3)

Even more demanding than performing a measurement to reveal m is the task

of transmitting the quantum information about RM through U , allowing the

decoder, who has access only to CE ′, to recover a high fidelity copy of the state

|σ〉RMN . If U is selected according to the Haar measure, then Theorem IV.1 of [1]

implies that there is a quantum operation DCE′→N acting only on CE ′ such that∥∥∥D (TrD

[
UNE→CD(σRMN ⊗ ωEE′)(UNE→CD)†

])
− σRMN

∥∥∥
1
≤ 2

√
M

C
. (2.1.4)

Because the trace distance is monotonic under quantum operations, it will not

increase by taking the partial trace over R and measuring in the basis {|ψm〉} [30].

If we let p(m′|m) be the probability of getting an outcome |ψm′〉 when the message

was in fact m, Equation (2.1.4) therefore implies that

1

M

∑
m

∑
m′ 6=m

p(m′|m) ≤
√
M

C
. (2.1.5)

In words, the probability of the measurement yielding the incorrect outcome,

averaged over all messages, is at most
√
M/C, so as soon as C is significantly
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larger than M , a measurement on CE ′ can be found that will reveal the message.

Our goal in this thesis will be to demonstrate that until this condition is met, no

measurement will reveal any significant information about the message.

We need to introduce the concept of quasi-measurements for our analysis.

They are, as their name indicates, almost measurements, but differ in three ways:

they only contain rank-one elements of equal weight, they have exactly s outcomes,

and the sum of all the elements does not necessarily equal the identity, but is

instead bounded by ηI:

Definition 2.1.1 (Quasi-measurement). We call a superoperator MA→B an (s, η)-

quasi-measurement if it is of the form M(ρ) = |A|
s

∑s
i=1 |i〉〈χi|ρ|χi〉〈i| where the |i〉

index an orthonormal basis for B, and |A|
s

∑s
i=1 |χi〉〈χi| 6 ηIA. We call the set of

all (s, η)-quasi-measurements on a given system, L(s, η).

The reason for introducing these, as will soon become apparent, is that they

are almost equivalent to POVMs for our purposes while being much easier to

handle mathematically. It can easily be seen that projective measurements are

simply (A, 1)-quasi-measurements. Note that we have begun to omit the absolute

value | · | to indicate system size.

Definition 2.1.2 (Projective measurement (equivalent to Definition 1.3.4)). We

call a superoperator MCE′→X a projective measurement if it is a (CE, 1)-quasi

measurement.

Note that although in our definition of a quasi-measurement we do not require

the |χi〉 to be orthogonal, in the case of a projective measurement they are indeed.

42



Alternatively, we can write any M as

MCE′→X(ρ) =
CE

n

n∑
i=1

|i〉〈i|XTrCE′ [|χi〉〈χi|ρ]

We now give the formal, strengthened definition of locking. Because the

cyphertext will always be smaller than or equal to the message when locking

occurs, certain identifications become possible. In particular, we can assume

without loss of generality that N ∼= C ⊗K and D ∼= E ⊗K. Since the analysis will

be performed using only C, K and E, we reproduce the illustration of the physical

scenario with the identifications made in Figure 2–2.

E

E’

CK

M M

X
EK

C
U

ω

σ

ρ

Figure 2–2: A quantum circuit depicting the physical scenario with the locking-
specific identifications N ∼= C ⊗K and D ∼= E ⊗K made.

Definition 2.1.3 (ε-locking scheme). Let M,C,K,E and E ′ be quantum systems.

Let ρMCKEE′ be a quantum state of the form

ρMCKEE′ =
∑
m

pmU
CKE

(
|m〉〈m|M ⊗ |ψm〉〈ψm|CK ⊗ |ω〉〈ω|EE

′
)
UCKE†, (2.1.6)
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where the |ψm〉 are orthogonal and UCKE is unitary. Then we call ρ an ε-locking

scheme if for any measurement superoperator MCE′→X , we have that∥∥∥M(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1
6 ε.

Note that this definition of locking is rather different from that used in

previous work in the area (see Section 1.4.1). Their definition involved the

accessible information between the cyphertext and the message. However, this

trace-distance definition has a very natural interpretation. It bounds the largest

probability for which we can guess, given a message m and the result x of a

measurement done on a cyphertext, whether x comes from a valid cyphertext

for m or from a cyphertext generated independently of m. In other words, one

could almost perfectly reproduce any measurement results made on a valid

cyphertext without having access to the cyphertext at all. We can also show that

our definition implies the older one:

Lemma 2.1.1. Let ξMB be a cq-state such that
∥∥M(ξMB)− ξM ⊗M(ξB)

∥∥
1
6 ε

for all measurement superoperators MB→X . Then,

Iacc(M ;B)ξ 6 4ε logM + 2η(1− ε) + 2η(ε),

where η(x) := −x log x and η(0) = 0.

Proof. This is a direct application of the Alicki-Fannes inequality [4].
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To show that locking has indeed occurred, our calculations will concern the

function

f : U(CKE)× L(s, η) −→ R

f(U,M) =
∥∥∥M(ρMCE′)−M(ρM ⊗ ρCE′)

∥∥∥
1
. (2.1.7)

where we recall that L(s, η) denotes the space of all (s, η)-quasi-measurements. On

occasion, when it does not cause confusion, we will denote by gM(U) the function

f(U,M) with fixed M, and by hU(M) the function f(U,M) with fixed U . We

note that equation (2.1.7) is a measure of independence of the message M from the

results of the measurement X.

Four quantities will be particularly useful for quantifying variations from

uniform messages and maximal entanglement,

∆M,∞ := 2logM−Hmin(M)σ , (2.1.8)

∆M,2 := 2logM−H2(M)σ , (2.1.9)

∆E,∞ := 2logE−Hmin(E)ω , (2.1.10)

∆E,2 := 2logE−H2(E)ω . (2.1.11)

For a pure classical distribution pm, ∆M,∞ = ∆M,2 = |M | and for the uniform

distribution ∆M,∞ = ∆M,2 = 1. To give an interpretation of the ∆E quantities, we

can note that for a bipartite state |ω〉EE′ with no entanglement, ∆E,∞ = ∆E,2 =

|E|. However, if |ω〉EE′ is the maximally entangled state, then ∆E,∞ = ∆E,2 = 1,

which we call maximal entanglement. The case of a uniformly distributed message

and maximal entanglement will give the simplest expressions for minimum key
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size. The ∆ terms are used in the calculations to provide more general statements

relating the entropy of the message and entanglement to the key size.

46



CHAPTER 3
Locking Results

3.1 Concentration

To be able to use the general concentration of measure Theorem (Theorem

2.0.2) on gM(U), we must first be able to upper-bound the expectation of gM(U)

with respect to U . The following Lemma does this:

Lemma 3.1.1 (Distinguishability for a fixed measurement). If MCE′→X is an

(s, η)-quasi-measurement, then

E
U

∥∥∥M(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1
6

2∆E,∞√
KE

.

Proof. We begin by expanding and simplifying the original expression

E
U

∥∥∥M(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1

(3.1.1)

= E
U

∥∥∥M(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1

(3.1.2)

6 E
U

√
sTr

[
((σM)−1/4M (ρMCE′ − ρM ⊗ ρCE′) (σM)−1/4)

2
]

6

√
sE
U

Tr
[
((σM)−1/4M (ρMCE′ − ρM ⊗ ρCE′) (σM)−1/4)

2
]
. (3.1.3)

In the manipulations above, we have used the linearity of the superoperator M in

the first line. In the second line we have used Lemma A.0.10 with γ = IX ⊗ σM ,

recalling the definition of σM in 2.1.1 and noting that |X| = s. The third line

follows from the concavity of the square root. We will now use a helpful identity
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for the trace of an operator squared: TrZ2 = Tr(Z ⊗ Z)F , where F is defined as

follows.

Definition 3.1.1. The swap operator on A⊗2, which is written as A ⊗ A, is the

unique linear operator FA satisfying

FA
(
|ψ〉A|φ〉A

)
= |φ〉A|ψ〉A ∀|ψ〉, |φ〉.

Expressing Equation (3.1.3) using the swap operator gives

E
U

∥∥∥M(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1

(3.1.4)

6

√
sTr

[
E
U

((σM)−1/4M (ρMCE′ − ρM ⊗ ρCE′) (σM)−1/4)
⊗2
FXM

]
=

(
(CE ′)2

s

s∑
i=1

Tr

[(
FM ⊗

(
χCE

′

i

)⊗2)

E
U

[
(σM)−1/4(ρMCE′ − ρM ⊗ ρCE′)(σM)−1/4

]⊗2])1/2

(3.1.5)

Equation (3.1.5) follows from the fact that results of the measurement M are

stored in an orthonormal basis of system X. We will proceed by evaluating

E
U

((σM)−1/4 (ρMCE′ − ρM ⊗ ρCE′) (σM)−1/4)⊗2, but before continuing we absorb the

two σ−1/4 operators into the operator ρ. That is we define,

σ̃MCK :=

|M |∑
m=1

√
pm|m〉〈m|M ⊗ |ψm〉〈ψm|CK and (3.1.6)

ρ̃MCKEE′ := (σM)−1/4 ρMCKEE′ (σM)−1/4

=
(
IME ⊗ UCKE

)
·
(
σ̃MCK ⊗ ωEE′

)
. (3.1.7)
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With these two definitions in hand we can expand E
U

(
ρ̃MCE′ − ρ̃M ⊗ ρCE′

)⊗2
as

E
U

(
ρ̃MCE′ − ρ̃M ⊗ ρCE′

)⊗2
(3.1.8)

= E
U

(
TrKE

[
UCKE ·

((
σ̃MCK − σ̃M ⊗ σCK

)
⊗ ωEE′

)])⊗2
= TrKEKE

[
E
U

(
UCKE ·

((
σ̃MCK − σ̃M ⊗ σCK

)
⊗ ωEE′

))⊗2]
= TrKEKE

[∫ (
UCKE ⊗ UCKE ⊗ IME′ME′

)
·((

σ̃MCK − σ̃M ⊗ σCK
)
⊗ ωEE′

)⊗2
dU

]
. (3.1.9)

To evaluate the integral with Lemma A.0.7, we will need to calculate the

projections of our operator onto the symmetric and antisymmetric subspaces of

(CKE)⊗2. Since the projectors onto the symmetric and antisymmetric subspaces

can be written as Π± = 1
2
(I ± F ), we can arrive at same results by working with I

and F . We begin with I:

TrCKECKE

[(
σ̃MCK − σ̃M ⊗ σCK

)⊗2 ⊗ (ωEE′)⊗2 ICKECKE] (3.1.10)

=
∑
m

√
pm|m〉〈m|M ⊗

∑
m′

√
pm′ |m′〉〈m′|MTrCK

[
ψm −

∑
m′′

pm′′ψm′′

]2
⊗
(
ωE
′
)⊗2

= (1− 1)2 · (σ̃M ⊗ ωE′)⊗2 = 0.
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The projection onto F requires a more subtle calculation,

TrCKECKE

[(
σ̃MCK − σ̃M ⊗ σCK

)⊗2 ⊗ (ωEE′)⊗2 FCKE

]
(3.1.11)

=
∑
m

√
pm|m〉〈m|M ⊗

∑
m′

√
pm′ |m′〉〈m′|M

·TrCK

[(
ψm −

∑
m′′

pm′′ψm′′

)(
ψm′ −

∑
m′′′

pm′′′ψm′′′

)]
⊗ TrEE

[(
ωEE

′
)⊗2

FE

]
.

By taking a closer look at Equation (3.1.11) we can make the simplification

TrCK

[(
ψm −

∑
m′′

pm′′ψm′′

)(
ψm′ −

∑
m′′′

pm′′′ψm′′′

)]

= TrCK

[
ψmψm′ −

∑
m′′

pm′′ψm′′ψm′ −
∑
m′′′

pm′′′ψmψm′′′ +
∑

m′′,m′′′

pm′′pm′′′ψm′′ψm′′′

]
= δmm′ − pm′ − pm +

∑
m′′

p2m′′ . (3.1.12)

Now we define σ̃MM
◦ as the quantity evaluated in Equation (3.1.11). Substitut-

ing the result of Equation (3.1.12) gives

σ̃MM
◦ := TrCKCK

[(
σ̃MCK − σ̃M ⊗ σCK

)⊗2
FCK

]
=

(∑
m

pm (|m〉〈m|)⊗2 − σ̃M ⊗ (σ̃M)3 − (σ̃M)3 ⊗ σ̃M +

(∑
m

p2m

)
σ̃M ⊗ σ̃M

)
.

We also define ΩE′E′ as the operator acting on system E ′E ′ in Equation

(3.1.11), or ΩE′E′ = TrEE[(ωEE
′
)⊗2FE]. At this point, Lemma A.0.7 can be used to

evaluate the integral in Equation (3.1.9). We can make significant simplifications

by first expanding the α± and then using our result from Equation (3.1.10) to
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show that

α± =
1

rank(ΠCKE
± )

TrCKECKE

[(
σ̃MCK − σ̃M ⊗ σCK

)⊗2 ⊗ (ωEE′)⊗2 (ΠCKE
± ⊗ IME′

)]

=
±
(
σ̃MM
◦ ⊗ ΩE′E′

)
CKE(CKE ± 1)

,

where the terms ΠCKE
± are the projectors onto the symmetric and antisymmetric

subspaces of (CKE)⊗2, that is 1
2
(ICKECKE ± FCKE). In particular, because α+ is

proportional to α−, the integral will have the product form

σ̃MM
◦ ⊗ ΩE′E′ ⊗

(
ΠCKE

+

CKE(CKE + 1)
−

ΠCKE
−

CKE(CKE − 1)

)
,

so the calculation of the trace in Equation (3.1.5) will factor into a product over

the systems (M)⊗2 and (CKEE ′)⊗2. Thus,

Tr(MKE)⊗2

[(
Tr(CE′)⊗2

[(
χCE

′

i

)⊗2
E
U

(
ρ̃MCE′ − ρ̃M ⊗ ρCE′

)⊗2])
FM

]
(3.1.13)

= Tr
[
σ̃MM
◦ FM

]
· Tr

[(
χCE

′

i ⊗ IKE
)⊗2( ΠCKE

+ ⊗ ΩE′E′

CKE(CKE + 1)
−

ΠCKE
− ⊗ ΩE′E′

CKE(CKE − 1)

)]
.

The first first factor in Equation (3.1.13) can easily be bounded:

TrMM

[
σ̃MM
◦ FM

]
=

∑
m

pm −
∑
m

p3/2m −
∑
m

p3/2m +
∑
m

p2m

6 2
∑
m

pm = 2.

To estimate the second factor in Equation (3.1.13) we will need to observe two

facts. First, that

Tr
[
(χCE

′

i ⊗ IKE)⊗2 ICKECKE ⊗ ΩE′E′
]
6 (KE)2

∥∥∥ΩE′E′
∥∥∥
∞
, (3.1.14)
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which follows from the fact that χCE
′

i is a rank 1 projector. Second, that

Tr
[
(χCE

′

i ⊗ IKE)⊗2 FCKE ⊗ ΩE′E′
]

= KE TrE′E′
[(

TrCC

[
(χCE

′

i )⊗2FC
])

ΩE′E′
]

6 KE
∥∥∥ΩE′E′

∥∥∥
∞
. (3.1.15)

If we use Equations (3.1.14) and (3.1.15) to estimate the second factor of Equation

(3.1.13) we get the bound

Tr

[(
χCE

′

i ⊗ IKE
)⊗2( ΠCKE

+ ⊗ ΩE′E′

CKE(CKE + 1)
−

ΠCKE
− ⊗ ΩE′E′

CKE(CKE − 1)

)]

6

(
(KE)2 +KE

2CKE(CKE + 1)
− (KE)2 −KE

2CKE(CKE − 1)

)
·
∥∥∥ΩE′E′

∥∥∥
∞

6
2

C2KE
·
∥∥∥ΩE′E′

∥∥∥
∞
. (3.1.16)

This can be rewritten in a more familiar form using∥∥∥ΩE′E′
∥∥∥
∞

=

∥∥∥∥TrE′E′

[(
ωEE

′
)⊗2

FE

]∥∥∥∥
∞

=
∥∥∥(ωE)⊗2 FE

∥∥∥
∞

=
∥∥ωE∥∥2∞ = 2−2Hmin(E)ω .

In the above, the third equality follows from the fact that the operator norm

is right-invariant under unitary transformations and F is a unitary matrix.

Combining the results in Equations (3.1.14) and (3.1.16), as well as the above

identity, we obtain an upper bound for the trace distance through Equation
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(3.1.5),

E
U

∥∥∥M(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1

6

√√√√s

(
CE ′

s

)2 s∑
i=1

2
2 · 2−2Hmin(E)ω

(C)2KE

6
2∆E,∞√
KE

.

Lemma 3.1.2. gM(U), the trace distance to independence for a fixed (s, η)-quasi-

measurement, is Lipschitz continuous on the space (U(CKE), ‖·‖2) with constant

4η
√

∆M,∞ ∆E,∞/ME.

Proof. We wish to analyze the behaviour of the trace distance with respect to the

unitary matrix defining the channel. Recall the definition of function gM(U),

gM(U) =
∥∥∥M(

ρMCE′
)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1
.

If we denote by ρU and ρV the states TrK [U · σ] and TrK [V · σ] respectively, we

can bound the deviation of gM using the triangle inequality by

|gM(U)− gM(V )| 6
∥∥∥M(

ρMCE′

U

)
−M

(
ρMCE′

V

)∥∥∥
1

+
∥∥∥M(

ρMU ⊗ ρCE
′

U

)
−M

(
ρMV ⊗ ρCE

′

V

)∥∥∥
1

(3.1.17)

=
∥∥∥M(

ρMCE′

U − ρMCE′

V

)∥∥∥
1

+
∥∥∥M(

σM ⊗
(
ρCE

′

U − ρCE′V

))∥∥∥
1
,
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where the second line follows from the linearity of the superoperator. We note that

for any hermitian operator ζ,

‖M (ζ)‖1 =

∥∥∥∥∥CE ′s
s∑
i=1

|i〉〈χi|ζ|χi〉〈i|

∥∥∥∥∥
1

=
CE ′

s

s∑
i=1

|〈χi|ζ|χi〉| 6
CE ′

s

s∑
i=1

〈χi||ζ||χi〉

=
CE ′

s

s∑
i=1

Tr [χi|ζ|] 6 η ‖ζ‖1 ,

where the last inequality follows from the definition of (s, η)-quasi-measurements.

Applying this new fact, our bound in Equation (3.1.17) becomes,

|gM(U)− gM(V )| 6 η
∥∥∥ρMCE′

U − ρMCE′

V

∥∥∥
1

+η
∥∥∥σM ⊗ (ρCE′U − ρCE′V

)∥∥∥
1

(3.1.18)

6 2η
∥∥∥ρMCKEE′

U − ρMCKEE′

V

∥∥∥
1

= 2η ‖U · (σ ⊗ ω)− V · (σ ⊗ ω)‖1 ,

where the second line follows from monotonicity. We introduce a purification

of σMCK in a new but temporary system N such that dim(N) = dim(M). We

also recall that ω is pure. This permits us to use Lemma A.0.9 and arrive at the

following consequence of Equation (3.1.18),

|gM(U)− gM(V )| 6 4η
∥∥∥(UCKE − V CKE

)
⊗ IMNE′ |σ〉MNCK |ω〉EE′

∥∥∥
2
. (3.1.19)

We now introduce a helpful operation.
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Definition 3.1.2 (Vector-operator correspondence). Endow systems A and B with

fixed orthonormal bases {|ai〉A}i and {|bi〉B}i respectively, and let opA→B : A⊗B →

L(A,B), the space of linear transformations from A to B, be defined as

opA→B (|ai〉|bj〉) = |bj〉〈ai| ∀i, j

This operation depends on the choice of basis; therefore, whenever it is used, a

particular choice of basis is implied. Since this choice will never matter in our

calculations, we shall not explicitly define these bases.

Useful properties of the correspondence can be found in [14].

We can think of the operator (UCKE − V CKE) ⊗ IMNE′ as bipartite over

composite systems MNE ′ and CKE. Since the 2-norm depends only on the

Schmidt coefficients of the states, it will be invariant under the op operation

defined in Definition 3.1.2. Our bound from Equation (3.1.19) then becomes,

|gM(U)− gM(V )| 6 4η
∥∥∥opMNE′→CKE

((
UCKE − V CKE

)
⊗ IMNE′ |σ〉MNCK |ω〉EE′

)∥∥∥
2

= 4η ‖(U − V ) opMNE′→CKE (|σ〉|ω〉)‖2 ,

where the second line follows from the fact that opMNE′→CKE is linear and

commutes with unitary transformations on CKE. We are left with a few easy
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steps to bound the Lipschitz constant.

|gM(U)− gM(V )| 6 4η ‖U − V ‖2 ‖opMNE′→CKE (|σ〉|ω〉)‖∞

= 4η ‖U − V ‖2
√
‖σCK ⊗ ωE‖∞

= 4η ‖U − V ‖2

√√√√∥∥∥∥∥∑
m

pm|ψm〉〈ψm|CK
∥∥∥∥∥
∞

‖ωE‖∞

= 4η ‖U − V ‖2
√

max pm · 2−Hmin(E)ω

= 4η ‖U − V ‖2 2−
1
2
Hmin(M)σ2−

1
2
Hmin(E)ω

=
4η
√

∆M,∞ ∆E,∞√
ME

‖U − V ‖2 .

A proof of the inequality can be found, for example, in [14]. The second line

follows from the fact the Schmidt coefficients of |σ〉MNCK are the square roots

of the eigenvalues of σCK . The last line follows from the definition of ∆M,∞ and

∆E,∞.

3.2 Measurement net

In order to discretize the set of all (s, η)-quasi-measurements, we require a

distance measure for the set.

Definition 3.2.1 (Metric on the set of (s, η)-quasi-measurements, L(s, η)).

Consider M, N ∈ L(s, η) defined as

M (σ) =
|CE ′|
s

s∑
i=1

|i〉〈χi|σ|χi〉〈i|, N (σ) =
|CE ′|
s

s∑
i=1

|i〉〈νi|σ|νi〉〈i|.

We define the distance between these two elements as

d(M,N ) :=
s∑
i=1

‖χi − νi‖2 .
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Now letting M vary instead of U , we define a new function hU(M) by

hU(M) =
∥∥∥M(

ρMCE′
)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1
.

Lemma 3.2.1. hU(M) is Lipschitz continuous on the space (L(s, η), d) with

constant 2
√
CE′

s

√
∆M,2∆E,2.

Proof. As for Lemma 3.1.2, we can use the triangle inequality to rewrite the

variation of the trace distance as follows,

|hU(M)− hU(N )|

6
∥∥∥M(

ρMCE′
)
−N

(
ρMCE′

)∥∥∥
1

+
∥∥∥M(

ρM ⊗ ρCE′
)
−N

(
ρM ⊗ ρCE′

)∥∥∥
1

=
CE ′

s

n∑
i=1

(∥∥∥TrCE′
[(
χCE

′

i − νCE′i

)
ρMCE′

]∥∥∥
1

+
∥∥∥TrCE′

[(
χCE

′

i − νCE′i

)
ρM ⊗ ρCE′

]∥∥∥
1

)
6

CE ′

s

s∑
i=1

∥∥∥(χCE′i − νCE′i

)
ρMCE′

∥∥∥
1

+
CE ′

s

s∑
i=1

∥∥∥(χCE′i − νCE′i

)
ρM ⊗ ρCE′

∥∥∥
1

6
CE ′

s

s∑
i=1

∥∥∥χCE′i − νCE′i

∥∥∥
2

∥∥∥ρMCE′
∥∥∥
2

+
CE ′

s

s∑
i=1

∥∥∥χCE′i − νCE′i

∥∥∥
2

∥∥∥ρM ⊗ ρCE′∥∥∥
2
, (3.2.1)

where the last line follows from the operator version of the Cauchy-Schwarz

inequality (see Equation (IX.32) in [6]). Consider momentarily the second factor in
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the first term in Equation (3.2.1),∥∥∥ρMCE′
∥∥∥
2

=
∥∥∥TrKE

[
UCKE ·

(
σMCK ⊗ ωEE′

)]∥∥∥
2

=

√
Tr
[(
U⊗2CKE · (σMCK ⊗ ωEE′)⊗2

)
FMCE′

]
=

√√√√Tr

[(
U⊗2CKE F

C U †⊗2CKE

)(∑
m

p2m(|ψm〉〈ψm|CK)⊗2 ⊗ (ωEE′)⊗2

)
FE′

]

6

√√√√Tr

[∑
m

p2m(|ψm〉〈ψm|CK)⊗2 ⊗ (ωEE′)⊗2FE′

]

=

√
Tr [(ωEE′)⊗2FE′ ]

∑
m

p2m = 2−
1
2
H2(M)σ− 1

2
H2(E)ω . (3.2.2)

The third line is true by the cyclic property of the trace. The inequality, however,

is true by the following observation: since F 2 = I we know that F has eigenvalues

±1 and so F ≤ I. We can make a similar evaluation for the last factor in Equation

(3.2.1), ∥∥∥ρM ⊗ ρCE′∥∥∥
2
6 2−

1
2
H2(M)σ− 1

2
H2(E)ω , (3.2.3)

since this inequality is a just a special case of the calculations leading to Equation

(3.2.2). If we apply Equations (3.2.2) and (3.2.3) to Equation (3.2.1), we can

extract a very simple bound on the variation of the trace distance

|hU(M)− hU(N )| 6
2CE ′

s
2−

1
2
H2(M)σ− 1

2
H2(E)ω

s∑
i=1

∥∥χCi − νCi ∥∥2
6

2
√
CE ′

s

√
∆M,2∆E,2 d(M,N ),

where the last line follows from the definition of our metric on L(s, η). We have

also ignored a factor of 1/
√
K above when expressing the bound in terms of ∆M,2.
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We do this to simplify future calculations and it only gives a slightly less tight

bound here.

Lemma 3.2.2. Given system A, there exists an ε-net J over the set L(s, η) of

all (s, η)-quasi-measurements on A, such that each element L ∈ L(s, η) is at most

ε-distant from an element of J ∈ J with respect to the metric d(·, ·). The size of

this net can be taken to be

|J | 6
(

10s

ε

)2s|A|

.

Proof. We begin by consider an ε-net K over S×s2|A| (s-tuples of 2|A|-dimensional

Euclidean unit spheres). First, there exists a ε-net over S2|A| of size no more than

(5/ε)2|A|. (See, for example, Lemma II.4 in [21].) K can then be constructed by

assembling the direct product of all the nets on the individual unit spheres. This

produces a new net on the set of s-tuples of 2|A|-dimensional unit spheres. Recall

the distance measure d(·, ·) over L(s, η), the set of all (s, η)-quasi-measurements.

This metric can be extended to s-tuples. If it is then evaluated for any s-tuple x

and its representative in the net y,

d(x, y) =
s∑
i=1

‖χi − νi‖2 ≤ sε.

Thus the spacing of the net K over s-tuples is at most sε with respect to the

desired metric. Consider the following set:

K′ := {y ∈ K : ∃ x ∈ L(s, η), ‖x− y‖2 6 sε} .

This is the set of all elements of the net K which are close to (s, η)-quasi-

measurements. In other words, all (s, η)-quasi-measurements use an element of
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K′ as their “representative” in the net. Now, divide L(s, η) into subsets of elements

which share the same representation in K′ and construct J by choosing one L ∈ L

from each subset. We then have by the triangle inequality that all L ∈ L are 2sε

close to their new representative in J . Clearly |J | 6 |K| since it was constructed

from a subset and if we wish to make an ε-net over L(s, η) we need only rescale

the ε from above, giving the result.

3.3 General statement

The Lipschitz constants, expectation value and net size give us all the pieces

we need to make the concentration argument. We show that with very high

probability, the distinguishability from independence of the joint (potentially

unnormalized) distribution of messages and quasi-measurement outcomes is small.

Theorem 3.3.1 (Concentration of probability for distinguishability from indepen-

dence). Given the quantum state ρMCKEE′ = UCKE · (σMCK ⊗ ωEE′) where U is a

random unitary operator chosen according to the Haar measure, σ is as defined in

Equation (2.1.1), E ′ ∼= E, and ωEE
′

is a bipartite pure state, the following bound

holds

Pr
U

{
sup

M∈L(s,η)

∥∥∥M(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1
> ε

}

6 exp

(
2sCE ln

(
40
√
CE

ε

√
∆M,2∆E,2

)
− (CKE)2

28η2∆M,∞∆E,∞

(
ε− 4∆E,∞√

KE

)2
)
.

In the above, ∆M,∞, ∆M,2, ∆E,2 and ∆E,∞ are as defined in Equations (2.1.8),

(2.1.9), (2.1.11) and (2.1.10).
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Proof. We apply Theorem 2.0.2 to gM and consider only one direction of the

divergence from the expected value. The exact statement can be written as

Pr
U
{gM(U) > ε} 6 exp

(
− MCKE2

64η2∆M,∞∆E,∞

(
ε− E

U
gM

)2)
. (3.3.1)

It is convenient to define

f(M, U) =
∥∥∥M(

ρMCE′
)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1
.

Clearly, gM and hU are Sections of f and we are interested in bounding

Pr
U
{sup
M

f(M, U) > ε}.

Let

ε′ =
sε

2
√
CE∆M,2∆E,2

,

and consider J an ε′-net over all (s, η)-quasi-measurements M. We found in

Lemma 3.2.1 that if two (s, η)-quasi-measurements were ε′ apart with respect

to the distance measure d(·, ·), then for a fixed unitary U , the values of f for

each measurement would not differ by more than ε. Thus we can state that the

supremum deviation of f is not more than twice the maximum deviation found on

measurements in the net,

Pr
U

{
sup
M
f(M, U) > 2ε

}
6 Pr

U

{
max
M∈J

f(M, U) > ε

}
.
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A union bound argument now bounds the probability of deviation for the maxi-

mum measurement by the probability of deviation for a generic measurement,

Pr
U

{
max
M∈J

f(M, U) > ε

}
6
∑
M∈J

Pr
U
{gM(U) > ε} .

Thankfully, we have an explicit bound for the probability of deviation for an

arbitrary measurement and we can make a simplification,

Pr
U

{
sup
M
f(U,M) > 2ε

}
6
∑
M∈J

exp

(
− MCKE2

64η2∆M,∞∆E,∞

(
ε− E

U
f
)2)

6

(
20
√
CE∆M,2∆E,2

ε

)2sCE

exp

(
− MCKE2

64η2∆M,∞∆E,∞

(
ε− E

U
f
)2)

6 exp

(
2sCE ln

(
20
√
CE∆M,2∆E,2

ε

)
− MCKE2

64η2∆M,∞∆E,∞

(
ε− E

U
f
)2)

.

Substituting in the fact that CK = M yields the desired inequality.

3.4 Projective measurement

In this Section we will only consider projective measurements, in other words

(s, η) = (CE ′, 1). We will also state all of the subsequent Theorems in terms of

qubits. For this reason we will identify C = 2c, K = 2k and E = E ′ = 2e. This

last assumption, namely that E and E ′ have the same dimension, is crucial for this

Section because it restricts the size of the set of measurements sufficiently to allow

for a straightforward discretization. The restriction will be lifted when we move on

to generalized measurements in the next Section, however.

Our calculations, we will make repeated use of the fact that

log(x+ y) 6 x+ log(y) ∀x, y > 1. (3.4.1)
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Corollary 3.4.1 (Locking for uniform messages with maximal entanglement).

Consider the locking scheme described in Definition 2.1.3 for a uniform message

with maximal entanglement available at the measurement. Choose p and ε such

that ε > 8
√

1/KE and p > 2−2(CE)2. Then the scheme will be an ε-locking locking

scheme except with probability p so long as the measurement superoperators are

restricted to projective measurements and

k > 9 + 2 log
1

ε
+

1

2
log(c+ e).

Proof. Using Theorem 3.3.1, we ensure that, except with probability p, our state is

an ε-locking scheme provided that

2(CE)2 ln

(
40
√
CE

ε

)
− (CE)2

28
K2(ε′)2 < ln p,

where we’ve defined for the time being ε′ as ε− 4/
√
KE. A quick rearrangement of

the terms reveals that the inequality will be satisfied if

29

(ε′)2
ln

(
40
√
CE

ε

(
1

p

)1/2(CE)2
)
< K2. (3.4.2)

From our choice of p we can easily see (1/p)1/2(CE)2 < 2 and from our choice of ε

we see that 29/(ε′)2 < 213/ε2. Thus inequality (3.4.2) is satisfied when

log

(
213

ε2

)
+ log

(
ln 2 log

(
80
√
CE

ε

))
< 2k.

Finally, two applications of Equation (3.4.1) reveal that the above is satisfied

provided,

17 + 2 log
1

ε
+ log log

1

ε
+ log(c+ e) < 2k.
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Rearranging the terms we see that the above condition is satisfied provided

inequality (3.4.1) is satisfied, and we have completed the proof.

Corollary 3.4.1, and its extension to arbitrary POVM measurements in

Corollary 3.5.4 is a mathematical expression that “generically, information is

locked until it can be completely decoded.” To arrive at this interpretation, recall

from Equation (2.1.4) that to achieve a decoding error of ε, the measurement

must be supplied with the entanglement through system E ′ as well as a system

C satisfying c − n > 2 log(1/ε). Of course, this condition could never be met

if the constraint n = c + k is assumed, but the constraint was only made for

convenience to prove the locking results. Using it to re-express Corollary 3.4.1,

though, we find that the information about the message is ε-locked provided

c = n− k < n− 9− 2 log(1/ε)− 1/2 · log(c+ e). Therefore, regardless of the size of

the message or the amount of entanglement, the message goes from being ε-locked

to being decodable with average probability of error at most ε with the transfer of

9 + 4 log(1/ε) + 1/2 · log(c+ e) qubits.

At this point, we wish to study the dependence of the minimum key size k on

the various entropies of the message M and the entanglement E.

Corollary 3.4.2 (Locking for messages of bounded entropy with imperfect

entanglement). Consider the locking scheme described in Definition 2.1.3 for a

message of bounded entropy with entanglement of a bounded fidelity available at the

measurement. Choose ε and p satisfying

ε >
8∆E,∞√
KE

, p > 2−2(CE)2 .
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Then the scheme will be an ε-locking locking scheme except with probability p so

long as the measurement superoperators are restricted to projective measurements

and

k′ +
1

2

(
n−Hmin(M)σ

)
+

1

2

(
e−Hmin(E)ω

)
< k, (3.4.3)

where we’ve defined k′ as the lower bound given in Corollary 3.4.1, i.e.: k′ =

9 + 2 log(1/ε) + 1/2 · log(c+ e).

Proof. From Theorem 3.3.1, we can ensure ε-locking except with probability p by

satisfying

2(CE)2 ln

(
40
√
CE

ε

√
∆M,2∆E,2

)
− (CE)2

28∆M,∞∆E,∞
K2(ε′)2 < ln p,

where we’ve defined for the time being ε′ as ε − 4∆E,∞/
√
KE. A quick rearrange-

ment of the terms reveals that the inequality can be satisfied if

29∆M,∞∆E,∞

(ε′)2
ln

(
40
√
CE

ε

√
∆E,2∆M,2

(
1

p

)1/2(CE)2
)
< K2, (3.4.4)

From our choice of p we can easily see (1/p)1/2(CE)2 < 2 and from our choice of ε

we see that 29/(ε′)2 < 213/ε2. Thus the inequality in Equation (3.4.4) is satisfied

when

13+2 log
1

ε
+log(∆M,∞∆E,∞)+log

(
7 + log

1

ε
+

1

2
(c+ e) +

1

2
log(∆M,2∆E,2)

)
< 2k.

However, we know that the maximum values of ∆M,2 and ∆E,2 are M and E

respectively. Combined with our assumption that k < c, we can quickly reduce the
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above to,

18 + 3 log
1

ε
+ log(c+ e) +

(
n−Hmin(M)σ

)
+
(
e−Hmin(E)ω

)
< 2k.

Finally, we can identify k′ and give the result as desired.

3.5 General POVM

We will now show that the results of the previous Section hold not only

for projective measurements, but also for general POVMs, up to very minor

changes in the various constants. The main difficulty at this point is that we

cannot use Theorem 3.3.1 directly, since it only gives bounds for (s, η)-quasi-

measurements. We must therefore show that a general POVM behaves essentially

like an (s, η)-quasi-measurement for the purposes of the Theorem. Our strategy

will be probabilistic in nature: we will show that doing a general POVM M is

mathematically equivalent to randomly selecting a measurement constructed from

possible sequences of s measurement results obtained from M. With overwhelming

probability, the sequence chosen will be an (s, η)-quasi-measurement, and Theorem

3.3.1 will then apply in this case.

We start by proving this last fact, namely that with very high probability,

a sequence of s measurement results will be an (s, η)-quasi-measurement, for an

appropriately chosen η.

Lemma 3.5.1. Let MCE′→X be any complete measurement superoperator, with

M(π) =
∑

i αi|i〉〈χi|π|χi〉〈i|, and consider the operator-valued random variable Y

which takes the value |χi〉〈χi| with probability αi〈χi|π|χi〉 = αi/CE
′. Then, s i.i.d.
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copies of Y will fail to be an (s, η)-quasi-measurement with probability at most

2CE ′e−s(η−1)
2/CE′2 ln 2.

Proof. Y fulfills all the conditions for the operator Chernoff bound (Lemma A.0.8)

to apply, with EY = πCE
′
. This yields

Pr

{
1

s

s∑
j=1

Yj 
 ηπ

}
6 2CE ′e−s(η−1)

2/CE′2 ln 2,

and the probability on the left is an upper bound on the probability that the

s-tuple Y1, . . . , Ys is not an (s, η)-quasi-measurement.

We now use this to show that the best general POVM cannot do much better

than the best (s, η)-quasi-measurement:

Lemma 3.5.2. It is true that

sup
M

∥∥∥M(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1

6 max
M′∈L(s,η)

∥∥∥M′
(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1

+ 4(CE ′)2e−s(η−1)
2/(CE′(2 ln 2)), (3.5.1)

where the supremum on the left-hand side is taken over all measurement superoper-

ators.

Proof. Let MCE′→X be any complete measurement superoperator of the form

M(σ) =
∑

i αi|i〉〈χi|σ|χi〉〈i|, and define Y to be the operator-valued random

variable which takes value χi with probability αi/CE
′. Let Q be the event that

Y1, . . . , Yn is an (s, η)-quasi-measurement, where the Yi are i.i.d. with the same

67



distribution as Y .∥∥∥M(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1

=
∑
i

αi

∥∥∥TrCE′
[
χi

(
ρMCE′ − ρM ⊗ ρCE′

)]∥∥∥
1

= CE ′EY
∥∥∥TrCE′

[
Y
(
ρMCE′ − ρM ⊗ ρCE′

)]∥∥∥
1

=
CE ′

s
EY1,...,Ys

s∑
i

∥∥∥TrCE′
[
Yi

(
ρMCE′ − ρM ⊗ ρCE′

)]∥∥∥
1
.

At this point we separate the expression into two terms, one for the event Q and

another for its complement.∥∥∥M(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1

=
CE ′

s
Pr{Q}E

[
s∑
i=1

∥∥∥TrCE′
[
Yi

(
ρMCE′ − ρM ⊗ ρCE′

)]∥∥∥
1

∣∣∣∣∣Q
]

+
CE ′

s
Pr{Q̄}E

[
s∑
i=1

∥∥∥TrCE′
[
Yi

(
ρMCE′ − ρM ⊗ ρCE′

)]∥∥∥
1

∣∣∣∣∣ Q̄
]

6 max
M′∈L(s,η)

∥∥∥M′
(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1

Pr{Q}+ 2CE ′Pr{Q̄}

6 max
M′∈L(s,η)

∥∥∥M′
(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1

+ 4(CE ′)2e−s(η−1)
2/CE′2 ln 2.

In the above, the sum of trace distances given Q was interpreted as executing an

(s, η)-quasi-measurement described by Y1, . . . , Ys, and the same sum given Q̄ was

simply bounded by 2η (there are s terms in the sum, each of which cannot exceed

2). In the last step, we have bounded Pr{Q̄} using Lemma 3.5.1 and made use of

the fact that we can assume without loss of generality that |E| = |E ′|.
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Finally, a non-complete measurement superoperator can always be decom-

posed into a complete one by splitting the POVM elements of rank greater than 1;

this process always increases the trace distance.

What we have achieved with the above statement is to show that the de-

coupling distance for a general measurement superoperator is very close to the

decoupling distance of an (s, η)-quasi-measurement. All that is now left to do is to

use Theorem 3.3.1 to bound the supremum over (s, η)-quasi-measurements, and we

get the main Theorem of this Section:

Theorem 3.5.3 (Locking Theorem for general measurements). Given the quantum

state ρMCKEE′ = UCKE · (σMCK ⊗ ωEE′) where U is a random unitary operator

chosen according to the Haar measure, σ is as defined in Equation (2.1.1) and

ωEE
′

a bipartite pure state, then

Pr
U

{
sup
M

∥∥∥M(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1
> ε

}
6 exp

(
9(CE)2 ln(CE) ln

(
40
√
CE

ε

√
∆M,2∆E,2

)
− (CKE)2

210∆M,∞∆E,∞

(
ε− 8∆E,∞√

KE

)2
)
.

In the above, ∆M,∞, ∆M,2, ∆E,2 and ∆E,∞ are as defined in Equations (2.1.8),

(2.1.9), (2.1.11) and (2.1.10).

Proof. We may assume without loss of generality that |E ′| ≤ |E|. If not, let E ′′ be

the range of ρE
′

= ωE
′
. Because ω is pure, |E ′′| = rankωE

′ ≤ |E|. Let V be the

isometric embedding E ′′ ↪→ E ′ and ρMCE′′ the projection of ρ to MCE ′′. Then for

any POVM measurement superoperator MCE′→X ,

M(ρMCE′) =M(V ρMCE′′V †)
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so measuring M or M◦ (V ·V †) will yield exactly the same measurement statistics.

But the latter is a POVM on CE ′′ and E ′′ satisfies the desired dimension bound.

Substituting the results of Lemma 3.5.2 into those of Theorem 3.3.1, we get

the following:

Pr
U

{
sup
M

∥∥∥M(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1
> ε

}
6 exp

(
2sCE ln

(
40
√
CE

ε

√
∆M,2∆E,2

)

− (CKE)2

28η2∆M,∞∆E,∞

(
ε− 4(CE)2e−s(η−1)

2/(CE(2 ln 2)) − 4∆E,∞√
KE

)2
)
. (3.5.2)

We now choose η = 2 and s = (6 ln 2)CE lnCE and note that this immediately

implies

2(CE)2e−s(η−1)
2/CE2 ln 2 =

2

CE
.

We absorb this factor into our “offset” for the ε factor,(
ε− 4(CE)2e−s(η−1)

2/CE2 ln 2 − 4∆E,∞√
KE

)2

>

(
ε− 8∆E,∞√

KE

)2

.

Substituting the choices for s and η into Equation 3.5.2 reveals the desired

result.

We now wish to express, in qubits, a lower bound for the key size for a

given probability p and a given ε. The relevant variables are M = 2n, C = 2c,

K = 2k, and E = 2e. Unlike in the previous Section, it is unnecessary to make any

assumptions about the dimension of E ′.

Corollary 3.5.4 (Locking against POVMs for a uniform message with maximal

entanglement). Consider the locking scheme described in Definition 2.1.3 for a

uniform message and maximal entanglement available at the measurement. Choose
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p and ε such that ε > 16
√

1/KE and p > 2−9(CE)2. Then the scheme will be an

ε-locking locking scheme except with probability p so long as

11 + 2 log
1

ε
+ log(c+ e) < k.

Proof. From Theorem 3.5.3 we can ensure ε-locking except with probability p

given

9 ln(CE) ln

(
40
√
CE

ε

)
+

1

9(CE ′)2
ln

1

p
<
K2(ε′)2

210
,

where we’ve defined for the time being ε′ as ε− 8/
√
KE. We now make use of our

lower bound for p as well as the assumption that ln(CE) > 1 to show that the

above can satisfied provided

9 ln(CE) ln

(
80
√
CE

ε

)
<
K2(ε′)2

210
.

Solving the above equation for k and applying the condition on ε reveals that the

bound can be satisfied by the statement in the Lemma.

Corollary 3.5.5 (Locking against POVMs for messages of bounded entropy with

imperfect entanglement). Consider the locking scheme described in Definition 2.1.3

for a uniform message and maximal entanglement available at the measurement.

Choose p and ε such that

ε >
16∆E,∞√
KE

, p > 2−9(CE)2 .
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Then the scheme will be an ε-locking locking scheme except with probability p so

long as

k′ +
1

2

(
n−Hmin(M)σ

)
+

1

2

(
e−Hmin(E)ω

)
< k, (3.5.3)

where we’ve defined k′ as the lower bound given in Corollary 3.5.4, i.e.: k′ =

11 + 2 log(1/ε) + log(c+ e).

Proof. From Theorem 3.3.1, we can ensure ε-locking with probability p by satisfy-

ing, From Theorem 3.5.3 we can ensure ε-locking with probability p given

9 ln(CE) ln

(
40
√
CE
√

∆M,2∆E,2

ε

)
+

1

9(CE ′)2
ln

1

p
<

K2(ε′)2

210∆M,∞∆E,∞
,

where we’ve defined for the time being ε′ as ε− 8/
√
KE. We now make use of our

lower bound for p as well as the assumption that ln(CE) > 1 to show that the

above can satisfied provided

9 ln(CE) ln

(
80
√
CE
√

∆M,2∆E,2

ε

)
<

K2(ε′)2

210∆M,∞∆E,∞
.

Next, we use our definition for ε′ and our bound for ε and we solve for k to find

that the bound is satisfied provided

21 + 3 log
1

ε
+ 2 log(c+ e) + log(∆M,∞∆E,∞) < 2k.

Finally, we can identify k′ and give the result as desired.

The lower bound requirement on ε in Corollary 3.5.5 limits the corollary’s

range of applicability to situations in which Hmin(E)ω is not too small. Specifically,
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the requirement can be rewritten in light of (3.5.3) as

2 log(c+ e) + (n−Hmin(M)σ) + 3Hmin(E)ω > e+ const.

So, at least when the message is uniform, the requirement is roughly that

Hmin(E)σ > e/3. We suspect that this requirement can be eliminated but

leave it as an open problem to find a way to do so.
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CHAPTER 4
Decoding Results

The previous Sections have shown that, under certain conditions, no classical

information is recoverable by the receiver. Here we aim to show that, in many

regimes, these results are essentially optimal. We do this by showing that if we

make the key only very slightly smaller, then with overwhelming probability, the

classical message will be decodable with a negligible error probability. In fact we

prove even more: in this regime where the information is decodable, the decoder

can even decode a purification of the classical message. In other words, in this

generic scenario where U is chosen with no preferred basis, either all classical

information is locked away, or we can decode quantum information. This is

formalized in the next Theorem.

In order to study decodability, we must discard the identifications made in

Figure 2–2 to study locking and return to the original scenario described by Figure

2–1. Whereas k was previously the number of qubits in system K, there is no

system K in Figure 2–2. Instead, we define k = n − c, which is consistent with

its earlier definition. Now, however, it might be the case that k is negative since

decoding could require the cyphertext to be longer than the message.

The following Theorem generalizes the discussion of Section 2.1 to nonuniform

messages and imperfect entanglement.
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Theorem 4.0.6. If U is chosen according to the Haar measure, then the infor-

mation in the scheme described in Figure 2–1 is such that there exists a decoding

CPTP map DCE′→N such that∥∥∥D (TrD

[
UNE→CD

(
σRMN ⊗ ωE′E

)
(UNE→CD)†

])
− σRMN

∥∥∥
1
6 ε

asymptotically almost surely, where σRMN is a purification of σMN , as long as

k 6
1

2

(
n−Hmax(M)σ

)
− 1

2

(
e−H2(E)ω

)
− 2 log(1/ε)− 4

Proof. Using Theorem 3.7 from [14], we get that

EU
∥∥TrC

[
UNE→CD (σRMN ⊗ ωE

)
(UNE→CD)†

]
− σRM ⊗ ρD

∥∥
1

6 2
1
2
Hmax(M)σ− 1

2
H2(E)ω

√
D

C
.

It can also be shown that the value of this trace distance will asymptotically

almost surely not exceed twice this bound. Under this condition, we have that:

∥∥TrC
[
UNE→CD (σRMN ⊗ ωE

)
(UNE→CD)†

]
− σRM ⊗ ρD

∥∥
1

6 2× 2
1
2
Hmax(M)σ− 1

2
H2(E)ω

√
D

C
.

Uhlmann’s Theorem then implies the existence of a partial isometry V CE′→NG and

of a purification of ρD on system G that we call θDG such that∥∥∥V U (σRMN ⊗ ωE′E
)
U †V † − σRMN ⊗ θDG

∥∥∥
1
6 4

(
2Hmax(M)σ−H2(E)ω

D

C

)1/4

.
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Defining DCE′→N as D(ξ) = TrG
[
V ξV †

]
and tracing out system D, we get that

∥∥∥D (TrD

[
UNE→CD

(
σRMN ⊗ ωE′E

)
(UNE→CD)†

])
− σRMN

∥∥∥
1

6 4

(
2Hmax(M)σ−H2(E)ω

D

C

)1/4

.

Now, to satisfy the Theorem statement, we need to ensure that

4

(
2Hmax(M)σ−H2(E)ω

D

C

)1/4

6 ε.

Taking logarithms on both sides and using the fact that logD = k + e, we get that

2 +
1

4
[Hmax(M)σ −H2(E)ω + e+ k − c] 6 log ε.

Substituting in the fact that c = n − k, we arrive at the statement of the

Theorem.
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CHAPTER 5
Discussion

The results of this work establish that the information locking effect is a

generic effect and a stronger effect than was previously known. We describe the

width of the regime between locking and decoding (in number of qubits) as a

function of various setup parameters. We call this quantity the “frontier width”.

Outside of this frontier, the receiver has either asymptotically low probability of

decoding the message or asymptotically low probability of failing to do so. Unlike

previous results, we consider arbitrarily small values for the accessible information

thanks to our strictly stronger Definition 2.1.3. We also do away with schemes

based on an explicit key register. Whereas those schemes relied on the availability

of unbiased bases to hide the information from the receiver, we achieve the same

result by tracing out any arbitrary small “key” quantum subsystem. Our results

are strengthened further by extending our analysis to generalized POVMs at

the receiver, non-uniform input messages, and the availability of a pure state

containing potentially large amounts of entanglement between the sender and the

receiver.

Information locking in a generic unitary channel may appear reminiscent of

a strong converse to a channel capacity problem. Any quantum channel has a

classical capacity defined as the supremum over all achievable rates of the channel

in the limit of many simultaneous channel uses. The rate of a channel, in turn, is
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the ratio of successfully communicated classical bits in n uses of the channel. The

strong converse Theorem states that any attempt to transmit above the channel

capacity will result in the decoding error probability approaching one as n → ∞.

In our setting, the analog of the strong converse would be a matching lower bound

to Equation (2.1.5) of the form

1− ε < 1

M

∑
m

∑
m′ 6=m

p(m′|m) (5.0.1)

whenever C < M , indicating the the probability of incorrectly decoding the

message is at least 1 − ε. What we prove here is much stronger. Equation (5.0.1)

doesn’t rule out the possibility of being able to pin the message down to some

relatively small set. More generally, it doesn’t imply a small mutual information

between the message and the measurement outcome. Information locking does

imply these stronger statements.

Our results are general enough to easily recover the setting of [21] and

reproduce the state in equation (1.4.1) by the following steps: first, we remove

the entanglement state ω. It is not hard to see that all of our calculations hold for

|E| = |E ′| = 1 and with support on the one-dimensional system EE ′, ω would

manifest as nothing more than a global phase in the quantum circuit which we

can ignore. Next, we can rewrite the states |m〉〈m|M = |c〉〈c|M1 ⊗ |k〉〈k|M2 and

|ψm〉〈ψm|CK = |c〉〈c|C⊗|k〉〈k|K and the unitary operator UCK =
∑

i,j U
C
(i,j)⊗|i〉〈j|K ,

where UC
(i,j) is defined to be the matrix UCK restricted to the (i, j) block in the
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basis of K.

ρMCK =
∑
m

|m〉〈m|M ⊗
((
U †
)CK |ψCKm 〉〈ψCKm |UCK

)
=

∑
c,k

|ck〉〈ck|M1M2 ⊗

(∑
i,j

|j〉〈i|K ⊗
(
U †(i,j)

)C)
|ck〉〈ck|CK(∑

i,j

|s〉〈t|K ⊗
(
U(s,t)

)C)

=
∑
c,k

|c〉〈c|M1 ⊗ |k〉〈k|M2 ⊗
∑
j,t

|j〉〈t|K ⊗
(
U †(k,j)

)C
|c〉〈c|C

(
U(k,t)

)C
If we now make the identifications M1

∼= A1, M2 ⊗ K ∼= A2 and C ∼= B we can

recover almost exactly the state ρA1A2B in equation (1.4.1). The only step required

is that Alice either dephase the state on A2 completely, or that she send that state

to Bob through a completely dephasing channel,

N (ρ) =
∑
i

|i〉〈i|ρ|i〉〈i|,

where the {|i〉}i form an orthonormal basis. By using a completely dephasing

channel, we recover the classical key that was used in [21].

It is natural in physics to measure the “correlation” between two quantum

physical systems using the correlation between the outcomes of measurements on

those two systems. Information locking suggests, however, that measurements can

be distressingly bad ways to detect correlation, grossly underestimating the total

correlation between the system. It is important to distinguish however, between

open and closed quantum systems. Although closed quantum systems (those that
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do not interact with their environment) are modelled by unitary evolution, open

quantum systems are not and the generic unitary channel model does not apply.

If trying to build a locking scheme, one runs up against a seemingly insur-

mountable obstacle: Haar-random unitaries are not easily simulated by quantum

computers. The unitary UCKE, if implemented using random two-qubit gates,

would require exponentially many such gates before its distribution reached the

required uniform Haar measure. There is hope however: the follow-up article [17]

demonstrates a locking scheme achievable in a quantum circuit of depth only

slightly superlinear in the number of qubits.

Black hole evaporation is inconsistent with the reversibility of quantum

mechanics in that a black hole radiates quantum states that are close to maximally

mixed (i.e.: “thermal”) even when it is formed from a pure state. In an effort to

reconcile these opposing statements, one could claim that the inside of the black

hole contains a purification to the otherwise mixed emitted radiation. However,

near the end of the black hole’s evaporation, one would require that the black hole

remnant hold the purification of a rather large radiated quantum system. The

large number of remnant species required to describe purifications of this size is

unfortunately inconsistent with low energy physics [2, 8]. Oppenheim and Smolin

suggested that the problem could be rescued were the black hole to lock the

information about its contents [36]. In this way, the number of possible remnants

is kept small (i.e.: the size of a key) yet the emitted radiation reveals nothing

about the state inside the black hole.
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The Smolin-Oppenheim locking result used a state similar to equation (1.4.1).

In both [36] and [21] the state which locks information has an explicit key register.

Our method, however, avoids this ad hoc distinction and any small subsystem

can be used as a key. This is particularly useful in the black hole setting as one

could not expect reasonable black hole dynamics from which an explicit key would

emerge.

Our results for generic unitary channels and ε-locking schemes are perfectly

compatible with (and in fact, inspired by) the unitary evaporation process for

black holes described in [22]. Here, Hayden and Preskill, show that for a black hole

that is highly entangled with prior emitted radiation, a message sent into the black

hole would be decodable in subsequent emitted radiation after only a short time.

The time scales obtained were such that the message was decodable immediately

after the black hole had sufficiently “scrambled” the message with internal degrees

of freedom. Our extension to this and other papers concerning generic unitary

dynamics in black holes [34, 27, 7] is that the information is not decodable until

moments before it can all be obtained. The conclusion depends, of course, on

whether the generic unitary transformation is a good model of the evaporation

process.

The quantum discord is a measure of correlations defined by Ollivier and

Zurek as follows in [31]

D(A;B)ρ,M⊗N = I(A;B)ρ − I(X;Y )M⊗N
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where M and N are POVMs on systems A and B with results X and Y respec-

tively. The discord is then the measure between the mutual information, the

“total correlations”, and the accessible information, the “classical correlations”.

In [38], the authors claim that quantum discord is a robust measure of quantum

correlations as it decays exponentially for a two-qubit decoherence model whereas

measures of entanglement decay in finite time. We show, however, that for large

quantum systems, quantum discord can decay to an arbitrarily low value at the

cost of a relatively low key size. This puts into doubt the previous claims of

robustness for quantum discord as a good measure of quantum correlations.

Comparing Corollary 3.5.5 and Theorem 4.0.6 reveals that the difference

between being ε-locked and being able to decode quantum information to within ε

is determined by a frontier width of at most

1

2
[Hmax(M)σ −Hmin(M)σ] + [e−Hmin(E)ω] + log(c+ e) + 4 log(1/ε) + 15

qubits, where the inequality H2 ≥ Hmin has been used to simplify the expression.

In other words, if we consider the case of maximal entanglement, then the

frontier width between locking and decodability can only be as wide as the

difference between the min- and max-entropy of the message modulo logarithmic

terms. One should note that this gap is real, and not only an artifact of our

proof technique. To see this, consider an n-bit message distributed such that with

probability 1
2
, the first bit is uniform and the rest of the string is always zero, and

with probability 1
2

the whole string is uniform. The max-entropy of such a message

is n, but the min-entropy is tiny. Now, to be able to decode, one must be able
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to decode the entire string in the “worst-case” scenario where the whole string is

uniform, so the max-entropy is relevant in this case. But in the locking case, we

must be able to lock in the worst-case scenario of only one bit being random, so

the min-entropy is the relevant quantity here.

The effect of non-maximal entanglement on the frontier width is not entirely

clear however. There is a fairly large gap between our locking and decodability

results here, but the locking side is almost certainly not tight in general. For

instance, we can easily set up the system in such a way that there is a part of

E ′ that is clearly useless, but our proof technique forces us to take this part into

account, which artificially hurts our bound. This extreme case can be ruled out by

restricting E ′ to the support of ωE
′
, but we are confident that similar gains could

be found in the general case. A max-min gap in the entanglement would lend

itself to a nicer interpretation of its contribution to the frontier width. In [23], the

authors prove that the max-min entropy gap is the minimum amount of classical

communication required to transform an arbitrary bipartite pure state into a

maximally entangled state. If the optimal decoding procedure for Bob makes

use of a maximally entangled state then this extra cost in the frontier width is

associated with Bob transforming ωEE
′

to (Φ+)
EE′

. Note that the factor of 1
2

can

then be interpreted as superdense coding for this communication.

In general, although imperfect entanglement widens the frontier, the presence

of perfect entanglement (i.e.: the maximally entangled state) helps to reduce the

parameters p and ε greatly. Remember that these two govern the likelihood with

which a locking scheme fails and the likelihood with which Bob might guess the
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cyphertext, respectively. Thus our claim that the accessible information can be

made arbitrarily small relies heavily on the presence of entanglement. This is

because to achieve a given low value for ε at a fixed cyphertext size, one needs to

include a large amount of perfect entanglement in the scheme.

In [13], Dodis and Smith generalized the definition of entropic security from

an earlier result [33]. By assuming a lower bound on the min-entropy of Alice’s

message, entropic security was shown to imply the, much stronger, semantic

security defined in [19]. Using the notion of quantum conditional min-entropy

introduced by Renner [32], Desrosiers and Dupuis were able to show that entropic

security was equivalent to a definition of entropic indistinguishability,

Definition 5.0.1 (Entropic Indistinguishability [10]). An encryption system E is

(t, ε)-indistinguishable if there exists a state ΩA′ such that for all states ρAE such

that Hmin(A|E)ρ ≥ t we have that:∥∥∥E(ρAE)− ΩA′ ⊗ ρE
∥∥∥
1
< ε

This definition, roughly equivalent to the definition of an ε-secure key

in [24], is the proper characterization of entropic security. In [24], the authors

considered a quantum key distribution setting and showed that n bits of key

secured via an accessible information criterion could be learned by an adversary

with access to n− 1 bits of the key. In this work we’ve shown a much more drastic

violation. We’ve demonstrated that a key of size n that is ε-secure with respect

to classical correlations (i.e.: accessible information), can be learned in as little as
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log(n/ε) bits, reinforcing the need for entropic security over the use of accessible

information.
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CHAPTER 6
Conclusion

This work has defined information locking with a stronger definition than

previously used and in a more generic setting. The effect of equipping the sender

and receiver with shared entanglement is studied. Messages in non-uniform

distributions are studied as well. The previous necessity for a distinct key register

is eliminated in place of any arbitrary subsystem of sufficient size. All of these

parameters contribute to a calculation of the frontier width; the middle ground

between locking and decoding. Our results show that this middle ground is indeed

very small, logarithmic in the size of the cyphertext and linear in the max-min

entropy gap of the message. The results find potential application in black hole

physics, as well as the study of the quantum discord.

The entanglement gap in the frontier width is likely to be improved to a

max-min gap. Although the method for this would be via arguments about mea-

surements on the support of the entanglement state, even further improvements

might be possible via the application of measurement compression results such

as [40].
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APPENDIX A
Appendix

Definition A.0.2 (σ-algebra). Consider the set X . We call A the σ-algebra of

X if it is the collection of subsets of X such that: A is non-empty, closed under

countable union, and closed under countable intersection.

Definition A.0.3 (Measure). Consider the set X with the σ-algebra A. We call a

function µ : A → R a measure if it is positive, takes the value 0 on the empty set

and is countably additive as follows:

µ

(⋃
i

Ai

)
=
∑
i

µ (Ai)

for countably many disjoint sets Ai.

Definition A.0.4 (Lipschitz constant). Let f : X → Y be a function from the

metric space (X, dX) to the metric space (Y, dY). Then, the Lipschitz constant of f

is defined as

sup
x1,x2∈X

dY(f(x1), f(x2))

dX(x1, x2)
.

If the above quantity is not bounded, the constant is not defined.

Lemma A.0.7 (Lemma IV.3 in [1]). For any matrix XAAR and for dU the Haar

measure over unitaries, we have the following property:∫
U

(
UA ⊗ UA ⊗ IR

)
XAAR

(
U †A ⊗ U

†
A
⊗ IR

)
dU = α+ (X)⊗ ΠA

+ + α− (X)⊗ ΠA
−
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where

α± (X) =
TrAA

[
X(ΠA

± ⊗ IR)
]

rank (ΠA
±)

ΠA
± =

1

2

(
IAA ± FA

A

)
rank

(
ΠA
±
)

=
|A|(|A| ± 1)

2
.

Lemma A.0.8 (Operator Chernoff bound [3]). Let X1, . . . , XM be i.i.d. random

variables taking values in the operators Pos(A), with 0 6 Xj 6 I, with A = EXj >

αI, and let 0 < η 6 1/2. Then

Pr

{
1

M

M∑
j=1

Xj 
 (1 + η)A

}
6 2|A| exp

(
−M αη2

2 ln 2

)
. (A.0.1)

Lemma A.0.9 (Trace distance versus Euclidean norm for pure states (See, e.g.

[30].)). Consider any two quantum states |ϕ〉, |ϕ̃〉 with associated density operators

ϕ, ϕ̃ respectively. We can relate the 1-norm distance between the operators to the

2-norm distance of the states as follows,

‖ϕ− ϕ̃‖1 ≤ 2 ‖|ϕ〉 − |ϕ̃〉‖2 .

Lemma A.0.10 (A bound for the 1-norm in terms of conditional entropy [32,

14]). Let ρ ∈ L(A) be any Hermitian operator and let γ ∈ Pos(A) be a positive

definite operator. Then,

‖ρ‖1 6
√

Tr [γ] Tr
[
(γ−1/4ργ−1/4)

2
]
.
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Proof.

‖ρ‖1 = max
U∈U(A)

|Tr [Uρ]|

= max
U∈U(A)

∣∣Tr
[(
γ1/4Uγ1/4

) (
γ−1/4 ρ γ−1/4

)]∣∣
6 max

U∈U(A)

√
Tr [(γ1/4Uγ1/4) (γ1/4U †γ1/4)] Tr [γ−1/4 ρ γ−1/2 ρ† γ−1/4]

=
√

max
U∈U(A)

Tr [γ1/2Uγ1/2U †] Tr [γ−1/4 ρ γ−1/2 ρ† γ−1/4]

=
√

Tr [γ] Tr [γ−1/4 ρ γ−1/2 ρ† γ−1/4],

where the first equality is an application of Lemma I.6 in [14] and the inequality

results from an application of Cauchy-Schwarz, and the maximizations are over all

unitaries on A. The last equality follows from

max
U∈U(A)

Tr
[
γ1/2Uγ1/2U †

]
6 max

U∈U(A)

√
Tr [γ] Tr [Uγ1/2U †Uγ1/2U †]

= Tr [γ]

6 max
U∈U(A)

Tr
[
γ1/2Uγ1/2U †

]
.

Lemma A.0.11 (Transpose trick). Given any positive operator M and the

maximally entangled bipartite state |Φ+〉,

(MA ⊗ IB)|Φ+〉
(
IA ⊗ (MT )B

)
|Φ+〉.
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