Optimized Waveform Relaxation Methods
for Circuit Simulations |

Mohammad D. Al-Khaleel

Department of Mathematics and Statistics,
McGill University, Montréal
Québec, Canada

January, 2007

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

Copyright © Mohammad D. Al-Khaleel, 2007



Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-32132-4
Our file  Notre référence
ISBN: 978-0-494-32132-4
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



Abstract

Waveform Relaxation methods are very efficient and reliable methods. They have
been widely used in several fields, including circuit theory, for solving large systems
of ordinary differential equations and solving partial differential equations. A new
approach called optimized waveform relaxation algorithms was recently introduced
which greatly improved convergence by using new transmission conditions. These
conditions are responsible for the exchange of information between subsystems. In
this thesis, we demonstrate that the transmission conditions have a tremendous influ-
ence on the convergence of the waveform relaxation algorithms for circuit simulations.
We first derive new waveform relaxation methods for a general circuit and its associ-
ated system of ordinary differential equations, and give transmission conditions with
optimal performance. These optimal transmission conditions are however not con-
venient to use and thus we introduce approximations for them. We then determine
numerically the approximate transmission conditions with the best performance of the
new waveform relaxation algorithms for two model problems, and we show how much
the convergence can be improved compared to the classical waveform relaxation algo-
rithm. We then start a detailed study of optimized waveform relaxation algorithms
for RC type circuits. We first analyze RC circuits of any finite size, and give optimal
transmission conditions. We again propose approximations for the optimal transmis-
sion conditions which are optimized based on numerical insight. Then we choose a

very small RC circuit which has only one cell and a small RC circuit which has three
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cells to further study the quality of the approximations. For the very small RC circuit
we show that the optimal transmission conditions are indeed local operators in time,
they are first degree time derivatives which are convenient to use. However, we also
propose a constant approximation of the optimal transmission conditions which is
simpler to use and we prove the optimality of this approximation. For the small RC
circuit we also prove the optimality of the proposed constant approximation, and find
asymptotically an optimized first order approximation. We then study an infinitely
large RC circuit to demonstrate that the size of the circuit does not have a major
impact on the convergence of the optimized waveform relaxation methods. We re-
call the optimality proof for the constant approximation given in [1], and we give an
asymptotic result for an optimized first order approximation. We show that results
found for the infinitely large RC circuit are indeed limits of those found for the finite
size RC circuit as the size of the circuit goes to infinity. We next start a detailed study
of optimized waveform relaxation algorithms for transmission line type circuits. We
give optimal transmission conditions which we approximate by constants. We ana-
lyze very small and small transmission line circuits, which have one cell and two cells
respectively, and we find asymptotically optimized constant transmission conditions
for both. We consider also an infinitely large transmission line circuit, and we give
an optimized constant approximation hased on an asymptotic analysis. We finally
show that the systems representing the circuits considered are semi-discretizations of
particular partial differential equations, and in addition, we show that the new trans-
mission conditions introduced for the circuit problems imply the ones associated with
the partial diffcrential equations at the continuous level. We also show that the con-
vergence factors and the solutions obtained by applying the new waveform relaxation
algorithms to the partial differential equations converge to those obtained by apply-
ing the algorithms to the circuit systems. In order to demonstrate the practicality

and the efliciency of the optimized waveform relaxation methods, we give numerical



iti

experiments that show the drastically improved convergence behavior.



Résumé

Les méthodes de relaxation d’ondes sont tres efficaces et fiables. Elles sont utilisées
avec succes dans plusieurs domaines (par exemple en théorie des circuits) pour résoudre
des systemes d’équations ordinaires ou aux dérivées partielles de grandes dimen-
sions. Une nouvelle approche, appelée méthode de relaxation d’ondes optimisée, a
été récemment introduite, elle améliore de facon remarquable la convergence en intro-
duisant des nouvelles conditions de transmission. Ces conditions sont responsables de
I’échange d’information entre les sous-systémes. Dans cette theése, nous démontrons
que les conditions de transmission ont une influence énorme sur la convergence des
algorithmes de relaxation d’ondes pour des circuit simulés. Nous développons d’abord
les nouvelles méthodes de relaxation d’ondes pour un circuit général et son systeme
d’équations différentielles ordinaires associé, et nous donnons les conditions de trans-
mission de performance optimale. Cependant, ces conditions de transmission opti-
males ne sont pas commodes a utiliser et c’est ainsi que nous introduisons des ap-
proximations. Nous approximons alors numériquement les conditions de transmission
a I'aide des nouveaux algorithmes de relaxation d’ondes ayant une meilleure perfor-
mance, et ce pour deux problémes types. Nous montrons de combien la convergence
peut étre améliorée en comparaison avec celle de 'algorithme classique de relaxation
d’ondes. Nous commencons alors une étude détaillée des algorithmes optimisés de
relaxation d’ondes pour des circuits RC. Nous analysons d’abord des circuits RC de

n’importe quelle taille finie, et nous donnons des conditions de transmission optimales.



Sur la base de perspicacité numérique, nous proposons aussi des approximations opti-
misées des conditions de transmission optimales. Nous choisissons ensuite un circuit
RC tres petit qui a seulement une cellule et un autre petit circuit RC qui a trois
cellules, et nous étudions d’avantage la qualité des approximations. Pour le circuit
RC tres petit, nous montrons que les conditions de transmission optimales sont en
fait des opérateurs locaux en temps. Elles sont les premieéres dérivées par rapport
au temps, qui sont tres commodes & utiliser. Cependant, nous proposons également
une approxifnation constante des conditions de transmission optimales qui est plus
simple a utiliser et nous prouvons 'optimalité de cette approximation. Pour le petit
circuit RC, nous prouvons également 1’optimalité de 'approximation constante pro-
posée, et trouvons asymptotiquement une approximation optimisée de premier ordre.
Nous étudions alors un circuit RC infiniment grand pour démontrer que la taille du
circuit n’a pas une influence importante sur la convergence des méthodes optimisées
de relaxation d’ondes. Nous rappelons la preuve d’optimalité pour ’approximation
constante donnée dans [1], et nous donnons un résultat asymptotique pour une ap-
proximation optimisée de premier ordre. Nous prouvons que les résultats trouvés
pour le circuit RC infiniment grand sont les résultats limites de ceux trouvés pour le
circuit RC fini lorsque la taille du circuit tend vers I'infini. Ensuite, nous commengons
une étude détaille des algorithmes de relaxation d’ondes optimisés pour des circuits
de lignes de transmission. Dans ce cas, nous donnons aussi les conditions de trans-
mission optimales que nous approximons par des constantes. Comme précédemment,
nous analysons deux circuits de lignes de transmission, un petit ayant deux cellules et
un tres petit n’en ayant qu'une. Pour chacun de ces circuits, nous trouvons asympto-
tiquement des constantes de conditions de transmissions optimisées. Nous considérons
également un circuit de lignes de transmission infiniment grandes, et par une approx-
imation basée sur une analyse asymptotique, nous donnons une constante optimisée.

Nous prouvons finalement que les systemes représentant les circuits considérés sont la



semi-discrétisation d’équations différentielles partielles particulieres. Nous prouvons
en outre que les nouvelles conditions de transmission présentées pour les probléemes de
circuit impliquent celles liées aux équations différentielles partielles continues. Nous
prouvons également que les facteurs de convergence et les solutions obtenues en ap-
pliquant les nouveaux algorithmes de relaxation d’ondes aux équations différentielles
partielles convergent vers ceux obtenus en appliquant les algorithmes aux systémes
de circuit. Afin de démontrer le caractére pratique et 'efficacité des méthodes opti-
misées de relaxation d’ondes, nous exhibons des expériences numériques qui mettent

en évidence ’amélioration de la convergence.



vii

Acknowledgments

I would like to thank my supervisor, Prof. Martin Gander, for his help, guidance,
and advice during the work on this thesis. Without his contribution and insight,
this humble work would not have been done. I am thankful to all professors, staff
and students in the department. Special thanks to my friends, Mohammad Sababheh,
Mohammad AlAkhras, Melanie Beck, Olivier Dubois, and Juan-Manuel Perez-Abarca,
for their valuable discussions. Many thanks to my parents, brothers, and sisters from

whom I have been away during my study, for their support and encouragement.



viii

Table of Contents

Abstract

Résumé
Acknowledgments
1 Introduction

2 Analysis for a General Circuit
2.1 The WR Algorithms with Overlap . . . . . . .. ... ... ... ...
2.2 The WR Algorithms without Overlap . . . . .. ... ... ... ...
2.3 Optimization Process of the New WR Algorithm . . . . . .. ... ..
2.4 Multiple Subsystems . . . .. ...

2.5 Numerical Experiments . . . . . . . .. ... ...

3 RC Type Circuits
3.1 Any finite size RC Type Circuit . . . . . . . ... ... ... .. ...
3.2 A Very Small RC Type Circuit Model . . . . .. . .. ... ... ...
3.2.1 The Classical WR Algorithm . . .. .. .. ... ... . ...
3.2.2  An Optimal WR Algorithm . . . . . ... ... ... ... ..
3.2.3  An Optimized WR Algorithm with Constant Transmission Con-

iv

vil

22
23
29
34
35
40

50
51



TABLE OF CONTENTS ix
3.2.4 Numerical Experiments . . . . . . . . ... .. ... ... ... 84
3.3 A Small RC Type Circuit . . . ... ... ... ... .. ....... 85
3.3.1 The Classical WR Algorithm . . . .. ... ... ... ... .. 86
3.3.2 An Optimal WR Algorithm . . . .. .. ... ... .. ... .. 87
3.3.3 An Optimized WR Algorithm with Constant Transmission Con-
ditions . . . . . . .. 88
3.3.4 An Optimized WR Algorithm with First Order Transmission
Conditions . . . . . . .. .. Lo 105
3.3.5 Numerical Experiments . . . . . . .. .. .. ... ... ..., 114
3.4 An Infinitely Large RC type Circuit . . . . . .. .. .. .. ... .. 116
3.4.1 The Classical WR Algorithm . . . ... ... .. ... ... .. 117
3.4.2  An Optimal WR Algorithm . . . . . ... ... ... .. ... 120
3.4.3 An Optimized WR Algorithm with Constant Transmission Con-
ditions . . . . . ... 121
3.44 An Optimized WR Algorithm with First Order Transmission
Conditions . . . . . . .. ... 124
3.4.5 Numerical Experiments . . . . . . . . .. ... ... ...... 135
4 'Transmission Line Type Circuits 137
4.1 A Very Small Transmission Line Type Circuit . . . . ... ... ... 138
4.1.1 Analysis of the Classical WR Algorithm Without Overlap 139
4.1.2  Analysis of the Classical WR Algorithm With Overlap 143
4.1.3 An Optimal WR Algorithm without Overlap . . . . . . .. .. 145
4.1.4 An Optimal WR algorithm with Overlap . . . . . ... .. .. 150
4.1.5 An Optimized WR algorithm with Overlap and Constant Ap-
Proximation . . . . . ... oe e 152
4.1.6 Numerical Experiments . . . . . ... .. .. ... ... .... 163



TABLE OF CONTENTS

X
4.2 A Small Transmission Line Circuit . . . .. ... .. ... ... ... 164
4.2.1 Analysis of the Classical WR, Algorithm without Overlap . . . 165
4.2.2 Analysis of the Classical WR Algorithm with Overlap . . . . . 170
4.2.3 An Optimal WR Algorithm without Overlap . . . . . . . . .. 171
4.2.4 An Optimal WR Algorithm with Overlap . . . . . ... . . .. 174

4.2.5 An Optimized WR Algorithm with Overlap and Constant ap-
proximation . . . . .. ... Lo 175
4.2.6 Numerical Experiments . . . . . . . . ... ... ... .. ... 186
4.3 An Infinitely Large Transmission Line Circuit . . . . ... . .. .. .. 187
4.3.1 Analysis of the Classical WR Algorithm without Overlap . . . 188
4.3.2 Analysis of the Classical WR Algorithm with Overlap . . . . . 200
4.3.3 An Optimal WR Algorithm without Overlap . . . . . . .. .. 201
4.3.4 An Optimal WR Algorithm with Overlap . . . . . . . . . . .. 204

4.3.5 An Optimized WR Algorithm with Overlap and Constant Ap-
proximation . . . . .. ... Lo e 207
4.3.6 Numerical Experiments . . . . . . . ... ... .. ....... 217

5 Relations Between Circuit Problems and Semi-Discretized Partial

Differential Equations 222
Conclusions 233
A Polynomials and Expansions 235



Chapter 1

Introduction

Traditional methods for solving systems of ordinary differential equations (ODEs)
can become inefficient for very large systems of equations where different state vari-
ables are varying at different time rates. This is due to the fact that in applying the
standard methods directly, the same method and timestep are used for every differ-
ential equation in the system. This identical discretization must be fine enough to
represent all components accurately, including both the rapidly and slowly changing
state variables in the system.

In the circuit domain, where we obtain large stiff systems of ODEs, many circuit
solver methods have been introduced [2, 3] but the circuit simulation using these meth-
ods takes too much CPU time and too much storage to analyze a circuit. In the quest
for improving the efficiency of the numerical techniques, by speeding up the solution
of these large systems, and overcoming those drawbacks mentioned above, various ap-
proaches have been proposed based on partitioning and multirate techniques which
are numerical methods that use different timesteps for different differential equations
in the system. Indeed, by choosing for each set of differential equations in the system
a maximum timestep that accurately reflects the behavior of their associated state

variables, and if possible, applying a parallel process, the efficiency and performance



of these methods will be greatly improved.

The idea here is to decompose the large system into smaller subsystems. Then one
tries to solve each subsystem independently, with its own largest timestep. Different
methods for each subsystem can be used and a full multirate integration then can
be achieved. One of the most challenging problems is to know how to partition
the system representing the circuit such that the natural coupling between blocks of
components of the circuit is preserved, since otherwise the convergence of the iterates
is likely to be very slow.

One approach for decomposing large systems is the waveform relazation (WR)
algorithms, which we are considering in this thesis. Waveform relaxation methods
are iterative methods but to call them waveform relaxation is natural when the ap-
plication area is electronics. The word relaxation arises because we use a relaxation
similar to the fixed point iterative relaxation methods used to solve algebraic equa-
tions, and waveform arises since the solution sought is a function over a time interval,
t € [to, T]. The basic idea in these methods is to apply a relaxation such as the Gauss-
Seidel and the Jacobi relaxations [4] directly to the system of nonlinear differential
equations describing the circuit. As a consequence, the system is decomposed into
decoupled subsystems of differential equations corresponding to decoupled dynamical
sub-circuits. Each decoupled sub-circuit is then analyzed independently, for the entire
simulation time interval by integration methods, like the backward Euler method, to
obtain subsystems of nonlinear algebraic equations and Newton-Raphson iterations
to linearize the subsystems of the nonlinear algebraic equations. The solutions to the
sub-circuits are used to update the solutions of neighbor sub-circuits in an iterative
fashion.

If we consider the initial value problem (IVP)

y(t) = F(t,y(t)), t € [to, T,
y(to) = Yo,



where f : R x R™ — R™ y : R — R™, y, € R™, then the simplest example of this

approach is the Picard method which takes the form

ylk_'-l(t) = fi(tv y{c(t)’ s 7yf_1(t)7 yf(t)a yz]c+l(t) te 7y7kp:1(t))7
yE (to) = o,
i=1,2,...,m te[ty,T], k=0,1,...

The continuous-time waveform relaxation iteration using the Jacobi relaxation, JWR,
is
g = filt, yi (), -y (0, 5 (0 (), -y (),
UfH(fo) = Yo.i
=1,2,...,m, L €[t;,T], k=0,1,... |

and the continuous-time waveform relaxation iteration using the Gauss-Seidel relax-

ation, GWR, is

gt O = LT O,y O 5 (@), 5 (1), -y (D),
k+1( ) = Yo,

i=1,2...,m telt,T], k=01,...

with an initial approximation y°(t), that must satisfy the initial condition y(t,).
Table 1.1 from [5] compares the simulation time for several circuits using the circuit

simulator Relax2 [6] with direct methods and Relax2 using the WR algorithm. One

Table 1.1: Simulation time for WR algorithm versus direct methods.
CPU Time for Direct Methods vs. WR for Scveral Industrial Circuits.

Circuit o Devices Direct \VR
uP Control 232 90s* 455"
CMOS Memory 621 995s* 308s*
4-bit Counter 259 540s* 29Ys*
Inverter Chain 250 98s** 38s**
Digital Filter 1082 1800s* 520s*
Encode-Decode 3295 5000s* 1500s*

"On VAX11/T80 running Unix wsing Shichman-Hodges Mosfet model.
**On VAXIU/780 running VMS using Yang-Chatterjoe Mosfet model.



can see that less simulation time required using the WR algorithm compared to direct
methods.

In fact, iterative methods for IVPs were given a firm theoretical basis in the works
of Picard and Lindel6f more than one century ago. To call them Picard-Lindelof, or
Block Picard-Lindelof iterations is therefore historically motivated. Picard {7] dis-
cussed iteration methods to study IVPs for systems of ordinary differential equations
in 1893. Lindel6f showed in a paper that was published in 1894, [8], the super-linear
convergence on all finite time intervals of the iteration methods that were discussed
by Picard.

The WR methods were first introduced for time-domain analysis of nonlinear dy-
namical systems, in particular, very large-scale integrated (VLSI) circuits by Lelaras-
mee [9] and Lelarasmee et al. [10]. In simulating VLSI circuits, very large stiff
systems are involved, but the equations fall into natural subsystems corresponding
to components of the circuit. In {11] Carlin and Vochoux noted that any strong
coupling between components of the circuit occurs over short time intervals. Hence,
the interactions between the subsystems or sub-circuits are usually fairly brief, and
in addition, they are often unidirectional. Therefore, the splitting is guided by the
physicality of the problem, which allows tightly coupled nodes to be placed together
in one subsystem.

As a consequence, the WR algorithms can be very efficient for problems aris-
ing from electrical network modelling. Indeed, WR techniques show the promise of
becoming one of the most useful approaches for the transient analysis for VLSI MOS-
FET circuits and other types of circuits, due to their favorable numerical properties
and their potential speed and accuracy. Due to this fact, many circuit solvers and
experimental solvers have been built based on the WR techniques, e.g. [6, 12].

There are two potential advantages of the WR algorithms: The first is that each

subsystem can be solved with its optimal timestep, or even with a different method



independently. The second is that a massive parallelism can be obtained with the
WR algorithms, since each decoupled subsystem can be solved in parallel. The JWR
algorithm given above is a parallel process, since each subsystem can be solved inde-
pendently in parallel. The GWR algorithm is not a parallel process, it is inherently

k+1 k+1

sequential, since y;5,'; can not be calculated until y;

" has been calculated. This can

however be remedied by using an appropriate coloring strategy for realistic problems
from VLSI design.
A good study and survey of these algorithms with emphasis on simulation of VLSI
circuits as written by White et al. [5], and by White and Sangiovanni-Vincentelli [13].
The convergence theory of the linear WR methods was put on a mathematical ba-
sis by Miekkala and Nevanlinna [14, 15], and Nevanlinna [16, 17, 18]. They considered

the linear problem

i(t) + Az(t) = f(t), z(0) = z, (1.1)

and thus for an (M, N) splitting of the m x m complex matrix A, A = M — N, a

general WR algorithm is given by the iteration scheme
*(t) + Mz (t) = Na*71(t) + f(t), 2F(0) = . : (1.2)

Miekkala and Nevanlinna wrote the sequence of iterates z!(t), z%(¢),..., of (1.2) in a

fixed-point iterative form as
(1) = Kz*1(t) + g(1),
where the convolution iteration operator K and the kernel function r are given by
t .
Ku(t) := / r(t — s)u(s) ds, r(t) == e ™MN,
0

and g is given by



If z(t) is the solution of (1.1) and z*(¢) is the solution of (1.2), and if

e"(t) = x(t) — 2" (1),

then
(1) = KFe0(1).

Miekkala and Nevanlinna showed that the convolution operator K and its resolvent

are bounded,
(CT)*
kKl

for all A # 0 and some constant C, and thus the spectral radius of K,

I} < HOC =AM < AT,

p(K) = lim [}KCH||%

satisfies p(K) = 0 in the space of uniform convergence on a bounded time interval
[0,T]. In order to cope with large values for T, and to see the dependence on the
splitting, since p(K) = 0 on [0, 7] and no information about the effect of the splitting
on the actual convergence rate would be obtained, they introduced an exponentially

weighted norm of the form
|2l == sup le "z (t)|], a > 0
(0.7]

in which K would become a contraction, where ||| is any fixed norm in C™. Assuming

lr()]] < Ce ™, and 0 <t < T < oo, Nevanlinna [16] showed that for o > 0

et < () T

where
Y
I',(s) :/ e " ldr
0
is the incomplete I'-function. If % < 1, then the iteration converges uniformly, since

I,(s) = T'(s) as v — oo.



Convergence of the nonlinear WR methods was first analyzed in [9, 10], and then
extended in [5, 13]. Studies in [9, 10] used the most general formulation of a system

of nonlinear differential equations. They considered the dynamical system

F(y,y,u) =0,
E(y(0) = yo) =0,

where y(t) € R™ is the vector of unknowns at time ¢t € [0,7], u : R — R" are the
input waveforms to the system, piecewise continuous functions, 3o € R™ is the initial
value of y, F' : R™ x R™ x R" — R™ is a continuous function, and £ € R"*™ n <m
is a matrix of rank n such that Ey(t) is the state of the system at time ¢. The less
general form that was considered in [5, 13], in which many practical problems, in

particular circuit simulation can be described, is

c(y(0), u(0))y(t) = fy(t), u(t)), y(0) = v, t € [0, T}, (1.3)

where y € R™ represents the circuit waveforms, and v € R" are again the input
waveforms, which are piecewise continuous. The inverse c(y, u)™! is assumed to exist
and uniformly bounded with respect to y and u. The function f is assumed to be
Lipschitz continuous with respect to y for all u € R", where Lipschitz continuous is

defined by

Definition 1.1. The function f(z,y), where f : R® x R™ — R™ is called Lipschitz
continuous or is said to satisfy a Lipschitz condition with respect to y if there exists

a constant L > 0 such that
1f@.y) = (o) < Ly — 2], VreR™, ¥y, zeR™

The smallest such I is called the Lipschitz constant.

These conditions guarantee a unique solution to (1.3).



It was proved in [9, 10] that the waveform iteration based on either Gauss-Seidel
or Jacobi splitting applied to (1.3) will converge in the continuous-time domain from
an arbitrary initial guess, if ¢(y, u) is diagonally dominant and independent of y. The

result was generalized by White et al. [5] in the following theorem.

Theorem 1.2. If in addition to the assumptions associated with (1.3), c(y,u) is
strictly diagonally dominant for all y(t) and for all u(t) and is Lipschitz continu-
ous with respect to y for all u, then the sequence of waveforms {y*} generated by
the Gauss-Seidel or Jacobi waveform relazation algorithm converges uniformly on all

bounded time intervals [0,T).
Proof. See [5]. O

The following theorem is a general convergence theorem for WR. algorithms, in the
sense that more general splitting functions, not only Gauss-Seidel or Jacobi splittings
as in Theorem 1.2, can be used. It also gives bounds on the growth of errors in terms

of the initial error.

Theorem 1.3. Consider the general differential equation
y(t) = f(y(d), f:R™ = R™, t €[0,T],
y(()) = Yo,

and assume there is a splitting characterized by the function F(y, z) where F satisfies
F(y,y)= f(y), F:R™" xR™ - R™,
where I' is Lipschitz continuous with respect to both arguments. Then the WR scheme

JE(t) = F(y*, 4" ), ¥*(0) = v,

converges uniformly on all finite intervals [0, T| with

Jefhe < P2 B0, 220 = 4 ) - win),



P

where Ly and Lo are the Lipschitz constants associated with the first and the second

argument of F', respectively.
Proof. See [19]. d

One of the classical approaches in solving partial differential equations (PDEs) in
parallel is to discretize the equations in space and then applying a WR algorithm to
the large system of ODEs obtained from the spatial discretization, see [20] for a for-
mulation using discretized subdomains. Abandoning the idea of subsystems, efficient
WR algorithms of multigrid type have been introduced, see [21, 22, 23, 24]. The WR
algorithms have been extended to time dependent PDEs in [25] and independently in
[26] directly at the continuous level without discretization. It was shown that the cou-
pling between subdomains in physical space using Dirichlet transmission conditions
at the artificial subdomain interfaces corresponds to using a classical WR. algorithm.
Recent work in PDEs shows that the classical transmission conditions are far from
optimal [27]. Much better performance can be obtained if additional information is
exchanged in the transmission conditions. Several attempts have been made before to
improve the subsystem transmission conditions for WR with different types of circuit
overlap schemes, e.g. [28, 29, 30] to improve the transmission of information across
the interface.

Gander and Ruehli [31] introduced a new class of methods which improves the
performance over the classical WR algorithms with little computational overhead.
These methods are called optimized WR. algorithms since they include an optimization
process. The optimization concerns the transmission conditions which are responsible
for the exchange of the information between the neighboring subsystems. The new
transmission conditions proposed in [31], which transmit a combination of voltages
and currents between the subsystems, greatly enhance the performance of the method

and lead to a faster and much more uniform overall convergence in few iterations, as
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Figure 1.1: A small RC circuit.

it has been demonstrated for diffusive circuits in [31], and for a small transmission
line circuit in [32].

In [31] Gander and Ruehli considered the small RC circuit given in Figure 1.1,
which we choose here to introduce general concepts and discuss the notation that we
will be using.

Circuit equations are usually specified in terms of the modified nodal analysis
equations (MNA) (3], in the form C&(t) + Gz(t) = Bu(t), where C contains the
reactive elements, G the other elements, while B is the input selector matrix, and
u(t) are the forcing functions. For the model problems we are analyzing we can

rewrite the MNA circuit equations in tridiagonal form

bl C
a; by o
T = as by c3 T+ f, (14)

as by

and the solution is sought for a given initial condition x(0) = x°. The values a;, b;,
and ¢; for i = 1,2,... are given by the circuit. Note that, in general, the system (1.4)
is not tridiagonal, but for the RC and transmission line type circuits we are studying
in what follows, we have tridiagonal systems.

To find the entries a;, b;, and ¢; we use Ohm’s law which says that the relation

v

between the current / and the voltage v through a resistance R is given by I = 3.
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dv
dt”

where 2 is the derivative

The current through a capacitor C is given by I = C p

of the voltage with respect to the time t. The voltage across an inductor L is given
by v = L%, where % is the derivative of the current with respect to the time ¢.
Kirchhoff’s current law is used as well, which says that at each node in the circuit
the algebraic sum of all currents equals zero, which is equivalent to saying that the
sum of all entering currents equals the sum of all leaving currents. The voltage is
measured in volts, the current in amperes, the capacitance in farads, the resistance
in ohms, the inductance in henrys, and the time in seconds [33].

Let us consider now the RC circuit in Figure 1.1. To derive the circuit equations,
we use the laws we have explained above. For instance, at the node z; we have

. x T — X2
I,=Cit1+ — + ,
s 141 Rs Rl

and after simplifying we get

. : 1 n 1 1 + 1 + I,
T =—{ = — | =T ——T —_.
! RS R1 Cl ! R101 2 Cl

At the second node 75 we have

T2 — I . Tg — T3
. + CoyZq +
R 2%2 Ry

=0,

which implies

) 1 N 1 1 + 1 N 1
ig=—|—+— ] ==z z 3.
: R Ry) G0 RiGy T RGy Y
The other equations at the other nodes can be found similarly. Thus, the circuit

equations are of the form

bl 5]
a; by ¢
=] @ 7 x + f, (1.5)
Q9 b3 C3
as b4
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where the entries in the tridiagonal matrix are given by

(E}‘ R oo =1
1 b } 1 1 - 2 3 1
a; = » i = 5 )& = ¢ =
RiCin “EstRE 1523 R:C,
1 P
T RiCy’ 1=4

Here the resistor values R; and R, and the capacitors C; are strictly positive constants.
The source term on the right hand side is given by f(t) = (I,(¢)/C1,0,0,0)T for
some source function I4(t), and we are also given the initial voltage values x(0) =
(v9,09,03,v9)T at the time ¢t = 0.

We are analyzing two types of partitioning: The first one is what we call par-
titioning without overlap and the second one we call partitioning with overlap. To
illustrate this concept, we consider the system of differential equations given in (1.5).
We partition the system into two subsystems, and we call the unknowns in the first
subsystem u and in the second subsystem w. The partitioning without overlap is

illustrated by

Ui bl 1 Uq fl
Uz ay by | co Uz Wy f 2
— —+— ,
Wy as | bs c3 Uus wy f3
Wo as by W fa

where the solid lines indicate the two subsystems we will obtain and the unknowns
for each subsystem. Note that, without overlap here is in the matrix sense not in the

real life. This will be however shown in Chapter 5. For the partitioning with overlap,

we have
by €1 U Wo fi
u a by C2 U2 wi Ja
— + ,
w az by c3 Uus ] f 3
az by w3 fa
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where the solid lines indicate again the two subsystems we will obtain and the un-
knowns for each subsystem. Note that one could also split differently. The splitting

without overlap leads to the two subsystems

Uy b a Uy S 0
. = + +
Uz | a1 by i Uz f2 CaU3 (1.6)
wy B by 3 we) 3 agWo
W | a3 by ] wa fa 0
and with overlap we obtain the two subsystems
U bh o Uy fi 0
‘ = + + ,
Us a by Us fa Colt3
wy by ¢ wy f2 \ a1Wo (1-7)
lbg - ag b3 C3 Wo + f3 + 0
1j}3 as b4 ws f4 0
Now using for (1.6) the classical transmission conditions
ubtt = wb Wit = b, (1.8)
we get from (1.6) the classical WR algorithm
by ¢ 0
afFtl = DRGNS PSS S h +
Wl = bs s whtl + /3 a2ty
| a3 by | fa 0
with corresponding initial conditions w**1(0) = (v9,v9)T and w**1(0) = (v9,v§)7,

which was analyzed in [31]. To start the WR iteration, we need to specify two initial
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waveforms u9(t) and w?(t) for t € [0, T]. For (1.7) we get

aFtl = br o uFt 4+ h + 0 ’
a; by /2 \ cowk
[ by ¢ fo \ ayub (1.10)
Wkl = 4 by o | W] f |+ 0
| as by Ja 0

The new transmission conditions that were introduced in [31] are given by

(™ — S bt = (W —wf) dowt, (W —wE) 4+ Bwk Tt = (uk —uk) 4 Bk
(1.11)
By comparing the new transmission conditions with (1.8), we also exchange the volt-
ages uz and wy. However, they are multiplied with a weighting factor o while the
difference between the voltages (uz — us) insures that the currents are also taken
into account, since the currents could be written as a™!(us — uy), where o can be
considered as a resistor.
The new WR algorithm using the new transmission conditions (1.11) and consid-

ering the case without overlap (1.6), is given in [31] as

by 51 f1 0
uk-}—l — uk+l + + . . ,
Co . Cc2
| @ by + & f2 cwf — Zrwf (1.12)
by — 2% 3 f3 aguk + 22 gk
: - ’ . 2t 1“3
wrt! = A-1 wk+l + + p-1 ’
as by Ja 0

where the values u% and w¥ are determined by the transmission conditions (1.11).
Our analysis of the above WR algorithms is based on the Fourier and Laplace

transforms [34]. Using the Laplace transform allows us to easily obtain explicit for-

mulas for the solutions, since we are studying linear IVPs, and the coefficients of the

equations are constants.
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Let h be a complex-valued function defined on the real line such that |h| is (at

least improperly) integrable on every finite interval, and

/Oo (1)) dt < oo.

(o9}

The integral

o0

h(w) == F(h(1)) = / h(E)e= " di

— 00

then exists for all real w. The function h is called the Fourier transform of h.

The Laplace transform for a function A is denoted by
h(s) = L(h(t)) = / h(t)e= dt, s € C.
0

If the function & is piccewise continuous on every finite interval in the range { > 0,
and satisfies |h(t)] < Me" for all t > 0 and for some constants v and M, then the
Laplace transform of h(t) exists for all R(s) > ~.
Now consider the function g which is defined for all real ¢ and identically zero for
t <0, where g € L}(R). Since g(t) = 0 for ¢t < 0, we have
i) = Flal0) = [ gt = [ g dt = LoO)mts = (6) i

>

and moreover, we have for all n > 0,

le™"g(t)] < lg(t),
and hence,

[ erawnas [lg1d <o

oC -0

Therefore, for G(t) := e ™g(t), n > 0, we have G € L'(R), and its Fourier transform
is given by

G(w):zf(G(t))z/—oo. e Mg(t)e ™t dt.

o

If s =n+1iw, n > 0, then the Laplace transform § = £(g) may be written as

9(?7+71W)=/ e Mg(t)e™ " dt=/ g(t)e™t dt,

—0o0 -0

[o 0]
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and thus as a function of w may be considered as the Fourier transform of the function
G(t) whose integral over (—oo,00) converges absolutely. Therefore, Laplace trans-
forms are also Fourier transforms and this connects the Fourier analysis to Laplace
transform theory.

Parseval’s formula [34],

[ de= 5o [ e

holds in the space L?(R) of functions h satisfying

/ B2 dt < oo,

where the integral is a Lebesgue integral. Therefore, assuming g € L*(R), we have
G € L*(R), and by Parseval’s formula, we have

1 1.
E 2 = EHQ(

In the analysis of the convergence, it also suffices to consider the homogeneous

le=g(O)]ls = =G (w) 1+ iw)ll2.

problem where the initial conditions and the source terms are zero, x(0) = 0 and
f(t) = 0. This is due to the fact that in the k%" iteration, the difference between the
exact solution z(t) and the iterates *(t), which we call the error €*(t) = x(t) —x*(t),
satisfies a homogeneous linear system of differential equations with homogeneous
initial conditions.

It was shown in {31] that applying the Laplace transform to the homogeneous case
of (1.9) implies 42F = (pge)* 4, and 2% = (puq)* @9, with the convergence factor peq
given by

ea(s —~ by) . a(s — ba)
s—b1)(s—by) —ajey (s—b3)(s—by) — azcs’

Moreover, it was shown that the convergence factor for the new WR algorithm (1.12)

Pea(s,a,b,c) = ( s =n+iw. (1.13)

is
. c2(s—=b1)(B—1)+(s—b1)(s—ba)—aic1
popt(S, a,b,ca, ﬁ) — T ({(s-b3)(s-ba)—azc3)(B—1)+az(s—bs) (1 14)
—az(s—ba)(a+1)+(s—b3)(s—bs)—azcs )
((s=b1)(s—b2)—arc1)(a+1)+ca(br1~s)?
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~ k ~ ~ k - . .
and as before 42F = (p,p)" 43, and W = (pype)" @Y. If we now consider the relation

a2k (s) = (p(s))* 43, where s = n+iw, n > 0 from above, and p(s) is some convergence

factor, then we have
S a3 +iw)Pdw = [0 108 (n + iw)@d(n + iw) | dw

2k
< . oo AO . 2 )
< (Lmax, oo+ i)l ) S, 10800 + i) P

Now, by Parseval’s formula we get

k
e Ol < (maxlo(o) ) 10

which implies with the weighted norm || - ||, := |le™™ - ||2

20l < (maxlo(o) ) (ol (115

Therefore, the convergence in the frequency domain w implies the convergence in the
time domain ¢, and by using Laplace transform we will be able to analyze convergence
in the exponentially weighted norm for n > 0, or in the L? norm if n = 0. Note that,
for convergence for all time, we need |p(s)| < 1.

The optimal values of ¢ and G in the new transmission conditions can be derived

from the convergence factor (1.14), and are given by

—asC s—b aic s—b
- 33 3*17 3 1C1 /)

(S — b4)CL2 [¢5)] - (S - bl)C2 B Co

+1, s€C, (1.16)

where the new WR algorithm converges in two iterations for this choice of parameters,
independently of the initial guess for the waveforms [31].

In [1] the optimal choice (1.16) which corresponds to a nonlocal operator in time
~ because of the s™! behavior, was used to get an optimal WR algorithm, where a
transformation was used to make the optimal symbols & and 3 local operators in
time. The transmission conditions were multiplied by (s—b4) and (s—b;) respectively.

This led to second degree polynomials in s € C, which correspond to second degree



18

derivatives in the transmission conditions. This required implementations of second
degree time derivatives which only require local information.

However, Gander and Ruehli proposed a constant approximation of the optimal
choice for o and 3 in [31], since in general the optimal symbols can not be transformed
to local operators in time as in [1]. In addition, the constant approximation leads to
a very practical algorithm.

Assuming a and § are constants, for fast convergence we want |pop| < 1, and
this leads to the min-max problem

min <ma’X |p0pt(37a7 b7 C,a,ﬁ)l) ? (117)

a8 \R(5)>0

which we need to solve.
The first step in the optimization is to ensure that the convergence factor pop is
an analytic function in the right half of the complex plane, s = n + iw, n > 0, which

was proved in [31] using the following theorem.

Theorem 1.4. If f,g : C — C are analytic on U C C, then the quotient f/g is
analytic on the open subset of z € U such that g(z) # 0.

Proof. See [35]. O

Next, since the convergence factor p,, is analytic in the right half of the complex
plane, the maximum of the modulus of p,, is attained on the boundary, by the
maximum principle for complex analytic functions which is stated in the following

theorem.

Theorem 1.5. Lel R be the region consisting of a simple closed curve C and its in-
terior, and let f(s) be analytic and not identically constant in R. Then the mazimum
value of | f(s)| in R occurs on the boundary C. If f(s) has no zero in R, then |f(s)|

also attains its minimum in R on the boundary C.
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Proof. See [36]. 0

Indeed, Theorems 1.4 and 1.5 will be used throughout the analysis in this thesis
in order to solve optimization problems of the form (1.17).

Gander and Ruehli {31} showed that the maximum of the modulus of the conver-
gence factor p,, is attained on the boundary at n = 0, and in addition, they showed
that |pp| for s = iw depends on w? only, and thus it suffices to optimize for nonneg-
ative frequencies, w > 0. They then chose § = —a to keep the optimization simpler,
and they showed numerically that the solution of the min-max problem occurs when
the convergence factor at w = 0 and at w = wy,,, are balanced, and they used the
equation

|popt(a*70)‘ = ’popt(a*7wmam)|

to determine the optimized parameter o*. In the numerical example they gave, where
they chose w4, = 00, they found o* = 1, and from the similarity assumption above
they obtained 3* = —1, which leads to the result given in Figure 1.2, where the error
is plotted as a function of the iterations.

In this thesis, we analyze and prove the optimality of the constant approximation
proposed by Gander and Ruehli in [31].

In [1] a time scaling was used to simplify the optimization process which we will

need in the analysis, and it is defined as follows: assume we have the system

dx a b a
dt

If we replace the pair « and [ with 2 and 7, where 7 := ot for a positive real number

d _ 14T hence if we take o := a, and substitute for % from above, we get

a, then dr — a dt?



20

10

-1 R
10k - - ) 4
107k e 1
107k

107

error

107k
10°F
107k .

10°F

10"

L L L L L : L L :
] 2 4 6 8 10 12 14 16 18 20
iteration

Figure 1.2: Convergence behavior of classical (solid line) versus optimized (dashed)

WR methods.

the system i i

dx a b a

p— _ m’

dr i b a
whereE:%,&zlandifa>0,b<0, and |b| > 2a, then b = —2¢% for ¢ > 1.

Furthermore, the Laplace transform of h(at) is given by éﬁ(i), so with this scaling
the Laplace transform parameter s = 7 + iw becomes § = 1 +i% = 7 + i@.

This thesis is organized as follows. In Chapter 2, we analyze a general circuit and
its system of ODEs, where we use an algebraic approach to find optimal transmission
conditions which lead to optimal WR methods. We propose approximations for the
optimal transmission conditions, and we give numerical experiments to show the fea-
sibility of the optimized WR algorithms and the better convergence over the classical

WR algorithm. Chapter 3 contains the analysis and results for the convergence of
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the classical and the new WR methods for RC type circuits using the partitioning
without overlap to get subsystems of the same size. We start by analyzing the finite
size circuit given in Figure 3.1, where we give results for any RC circuit of finite
size n. We then consider the very small and small RC circuits given in Figures 3.7
and 1.1 respectively, and we find more general results for these two particular finite
size RC circuits, and we compare them with those found for the RC circuit of size
n. We also show that results found for the finite size RC circuit converge to those
found for the infinitely large RC circuit in Figure 3.19 as n goes to infinity. Ap-
proximations by local operators in time for the optimal parameters are introduced in
this chapter. We propose approximations of order zero, which means approximations
with constants independent of s, and approximations of order one, which means ap-
proximations that are linear in s which lead to better convergence than the constant
approximations. A simple choice is to use low frequency approximations based on
Taylor expansions about s = 0. To get better approximations, optimization problems
of the type (1.17) are formulated and analyzed. The optimality is formally proved
for some cases, whereas we use asymptotic analysis for other cases which leads to ap-
proximate solutions of the optimization problems. Each section ends with numerical
experiments. In Chapter 4, we study very small, small, and infinitely large transmis-
sion line circuits as given in Figures 4.1, 4.8 and 4.17 respectively. We also analyze
the convergence of the classical and the new WR methods, where we use first the
partitioning without overlap and then we introduce the partitioning with overlap to
get, subsystems of the same size, and we focus on the optimized transmission condi-
tions by solving min-max problems. We propose here approximations of order zero,
and we use asymptotic analysis to obtain approximate solutions for the optimization
problems. At the end of each section we give numerical experiments. In Chapter
5, we discuss the connections between circuit problems and semi-discretized PDEs.

Finally, we give the conclusions.
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Chapter 2

Analysis for a GGeneral Circuit

In this chapter we analyze the classical WR algorithm and we introduce an optimal

WR algorithm for a general circuit and its corresponding linear system of ODEs,
uw=Au+ f. (2.1)

The algebraic approach of Schur complements [37] is used to obtain the optimal trans-
mission conditions. Note that a realistic circuit does not have every node connected
to every other node; its graph is in general significantly less dense, and such circuits
can be partitioned into block tridiagonal subsystems by partitioning the circuit verti-
cally into subcircuits 57,53, ..., Sy as shown in Figure 2.1, where the information is
exchanged only between neighboring subsystems. We consider a Jacobi type iteration

here, but the Gauss-Seidel case is similar.

@____ N SNJ

Figure 2.1: Decomposition of the circuit into vertical strips.
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2.1 The WR Algorithms with Overlap

To determine the WR algorithms with overlap, we consider a partition of (2.1) into

two blocks with a common interface,

Uy Ay G Uy f 1i
ur = Bs A[‘ Bl Uur + fl" , (22)
Uo; Cy Ay Uz; f 2

where the matrices Ay; and As; correspond to the interior unknowns, and Ar to the
interface unknowns. We also need an initial condition «(0) = uy. Note that partitions
into multiple subsystems are also possible.

Splitting (2.2) into two separate subsystems with a common interface leads to

Uy; _ Ay Gy U4 i Ju

wp I By Ap 1L Uiy ] i fr+ Byuir g | ’ (2.3)

U \ | Ar B Ugr N Jr + Bauar

Uo; i Cy Ay ][ U2 | ] Jai |
Using the classical transmission conditions

ulf;rh = uj;, ulzclf—l1 = uf;, (2.4)

the classical WR algorithm is given by

af’! _—Au ¢ | -u’ffl-+- T -

gt - i By AF_ _ullc;rl_ _f["i'Blugi_ ’ (2.5)

aki! | Ar B ukt! N fr + Byuk,

it )| e Ag | ust Fo

The Laplace transform applied to (2.2) and (2.3) for s € C with the initial condition
u(0) = (w140, Uro, Uai)” implies after simplifying
sl — Ay -C} Uy; }u U140
~B, s[—Ar B ar | = fr |+ | uro | (2.6)

—CY sI — Ay Ug; fzi U240
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and
sl — Ay -Ch U . fli i U150
- By sl — Ap wip }r + Bittiry U1ro 27)
sl — Ar —-B, Uar B }r + Batigr v U2ro
| —C} sl — Ay 1L Uo; ] | }2,- i | U240 |

Therefore, the classical WR, algorithm (2.5) in the frequency domain is given by

—SI_Ali - ] —ﬁlfflu_- }u -+-uli0-

| =B sI=Ar || af || fr+Bidg | | waro ’ (2.8)
sl - Ar —-B; ﬁ’;f:l _ }'p + Bzﬁ,fi N Uaro .

I —~(y sl — Ay 11 a’;;” | i }'Qi | | U200 |

At convergence, eliminating the unknowns ,; in the first subsystem in (2.8) gives

SI - Ali —Cl Iali
— By sl — Ar — B (S[ — Agi)_ICQ Uqr
} i U4
| 1 ) n 1i0 |
Fr+ Bi(sl — Ag) ' (£ + u2io) UiTo

and fm' can be expressed in terms of the unknowns in the second subsystem,
Foi = (51 — Agi)la; — Colior — Ui

Similarly we eliminate the unknowns 4; in the second subsystem, and we obtain the
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iterations
k41
sl — Ah‘ — Cl Uq;

—B, sl —Ap— By(s] — Ay)"1Cy | | @it

.%u U140
— . A + ,
fF -+ 131’1142z Bl(Sl — AQZ) CQ’U,2F U1iro (2 9)
sl — AF — BQ(S] — Ali)‘lCl -B ﬁg;l
e sl — Ay ak
_ Fr+ Baitf; — Ba(sI — A) "' Cratfy 4 Uaro
}'21‘ U2i0

We show next that the new WR algorithm (2.9) converges in two iterations. By
linearity, it suffices to analyze the homogeneous problem where f(¢) = 0 and u(0) =

0.

Proposition 2.1. The new WR algorithm (2.9) converges in two iterations indepen-

dently of the initial waveforms.

Proof. From the first equation in the first subsystem and the second equation in the
second subsystem in (2.9) we obtain, respectively,

arf !t = (sI - Ay) T Gt

'&Izcjl (8T — Agi)1Cy AkH.
Now, in the first iteration we have

I - Ay~ 1C ,
;= (s 1)~ 1“11“ (2.10)
(s] — Agi)~ Cguzr

;=
Uy =
From the first and second subsystems in (2.9), in the second iteration we get after
some algebra
(sI—Ar—Bi(sI — Ay) 'Cy—By(sl — Ay)"'C)ajp =B
(sI—Ap—By(sI — Ay;) " 'Cy— By (sI — Ag) 7 1Cy) i = Byt
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Now substituting t,; and 4}, from (2.10) into the first and second equations in (2.11)

respectively, implies

(sI—Ar—Bi(sl — Ag;)1Cy— By(sI — Ay)"1Cy)isp = 0,
(sI—Ar—Bay(sl — A;)"1C1— By(sI — Ay) 1 Co)ityr = 0.

Therefore, 3 and @3 are identically zero, independently of the guess for the initial

waveforms. O

This convergence is optimal, since the resulting waveforms in each subsystem de-
pend in general also on the source term f; in the other subsystem. Therefore, the
minimum number of iterations needed for convergence for any WR. algorithm with
two subsystems is two: a first iteration where each subsystem incorporates the infor-
mation of its source term f; into its wéveforms and then transmits this information
to the neighboring subsystem, and a second iteration to incorporate this transmit-
ted information about f, from the neighboring subsystem into its own waveforms.

Therefore, the optimal transmission conditions with overlap are given by

ity — (8] — Ay) T 1Chalt = a5, — (sI — Ag) " Cotdy, (2.12)
o .
1

Akl = (sI = Ay) T Craltt = @k, — (s — Ay) " Craky.
To find the iteration matrix of the classical WR algorithm, we consider the two

subsystems in (2.8), and by linearity, we again consider the homogeneous problem

where f({) = 0 and u(0) = 0. From the equations at the interface we obtain

(sI = Ar)ayt" — Boay!' = Bray,

(SI — JAI‘)UI;ITI B1 ¥ k+l Bg’ah
We then substitute from (2.8) for 1; and uy; above to get after simplifying,

ﬁlchJ‘rl (sI — Ar — Ba(sI — Ay) 1Cy) 7By (sT — Ag)™ CquF,

(2.13)
Wbt = (sI — Ap — By(sI — Ag)'Ca) ' By(sl — Ay;) " 1Craky.
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Inserting the second equation into the first one in (2.13) at iteration k leads to a
relation over two steps of the classical WR algorithm,
! = Xy Xowlr
and inserting the first one into the second one at iteration k implies
dnt’ = XXt
where
Xy = (sl — Ar — Bo(sI — A)71C1) 1By (sI — Ag;) 7Oy,
Xy = (sI — Ap — By(s] — Ay)™1Cy) 1 By(s] — Ay;)'Cy.
By induction we obtain 42 = (X;X,)Fal. and @2F = (X,X,)*ad.. Therefore, the
iteration matrix is given by
X3 Xe O
Gea(s) = - (2.14)
0 XX,

The spectral radius p(G,) of the iteration matrix G, which is defined by
P(Geia) = m]aX |’\j(Gcla)|v

where \; are the eigenvalues of G, is a fixed function of the system or circuit
elements in the classical WR algorithm as is evident from (2.14). Thus the algorithm
does not have any adjustable parameters like the new WR algorithm below.

Using the new transmission conditions

k41 k41 ok k
uir,, + aCouil” = uy; + aChugy, (2.15)
k1 k+1 _ ok k ’
Uyr_y + BCIuyr = uy; + BCLupr,

where we introduced the weighting factors & and 8 which are square matrices or

possibly linear operators in time, the new WR algorithm is

iy | Au Cy uj! + Fu

aktl - i By Ap — BlaCQ. 'u’f;rll 'fr + Biuk;, + BiaCyuk; ’ (2.16)
Uy _ Ar — ByBCy By ugt! N fr + Bauk, + BoBCuly

U’I?c: : Co Az ’u”2€z+ ! Fai
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We will next look for the iteration matrix of the new WR algorithm (2.16). We

consider again the homogenous problem. Applying the Laplace transform to (2.16)

implies
[ oI — Ay —c, 1 Tat] ] 0
| B sl A+ BiaGy | | @it - | B, + BiaCyidy | _
sI — Ar + B,8C)  —B a5t | | By, + ByBCiay
G, sl — Ay | | @kt | 0

The equations at the interface are given by
—Boal ™ + (sI — Ar + BiaCo)uft! = Bias, + BiaCyuisy,
—Byih ™ + (sI — Ap + BoBC))ubt! = By, + B,BC k.

Substituting above from (2.17) for w@y; and ,; implies after simplifying,

(S]_AF+B1aCQ—B2(SI - Ali)_ICI)_l(BI (SI—AQi)_ICQ‘FBlaCQ)’&gP,

N e

Uir =

Wbt = (sI— Ap+ByBC1 — By (sI — Ay) " Co) Y (Ba(sI — Ay)1Cy+ BoBCH )ik,
(2.18)

Now, inserting the second equation into the first one in (2.18) at iteration k£ implies

a relation over two iteration steps,
Skl v ekl

Similarly, inserting the first equation into the second one at iteration k we get

ck+l v o o~k
Ugr = XoXqUgp~,

and by induction we find, as before, 425 = (X;Xp)*4’r and 42k = (X, X)) 4l

Therefore, the iteration matrix for the new WR algorithm is given by

XX, 0
Gopt(saa7ﬂ) - S ’ (219)
XX,
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where X ; and X, are

X1 = (s]— Ap+BiaCy— By(sI — Ay) 1Cy) Y By(s1 — Ag) " 1Co+ BraChy),

Xy i= (s]— Ap+ ByBC, — By (sI — Ag)~1Co) " (By(sI — Ay) 1C1+ BoBCY).
From the iteration matrix (2.19) one can derive the optimal values of the parameters

a and 3 as given in the following theorem.

Theorem 2.1 (Optimal Convergence). The new WR algorithm (2.16) converges

in two iterations if
Qopt i= — (81 — Ag) 71, Bopt = —(sI — AL (2.20)
independently of the initial waveforms 43 and 4yp.

Proof. The iteration matrix vanishes if we insert (2.20) into G, given by (2.19).

~ ~ . . . ~ ~0
Hence, @3 and @2 are identically zero, independently of @9 and @9y ]

This result shows that the optimal values of the parameters a and 3 in the
transmission conditions (2.15) lead to the optimal transmission conditions shown
earlier in (2.12). We observe that the optimal values in (2.20) are not just parameters,
but the Laplace transform of operators in time since they depend on s, and moreover,
they have a matrix inverse, and thus they are expensive to implement. Therefore, an
approximation of the best possible transmission conditions will be proposed, which
will lead to a very practical algorithm. We next introduce the WR algorithms without

overlap.

2.2 The WR Algorithms without Overlap

To determine the WR algorithms without overlap, we now consider a partition of

(2.1) into two blocks without a common interface

u A B u
oy 1 i1 + fu ’ (2.21)

’l.la22 C A2 U22 f22
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with an initial condition u(0) = (w119, Uaz)7.
A general partition into two blocks is given by
w11 = Ayuqr + Bug + £y, (2.22)
Uge = AxUgg + Cugy + Fon.
Using the classical transmission conditions
ullcéH = uIQCQ’ u1261+1 = 'u'llcl’
the classical WR algorithm is
bt = Ayl + Bub, + fhy, (2.23)
ulgl = A2u;2c§Ll + Cufy + fa
The Laplace transform applied to (2.21) and (2.22) implies after simplifying
81 — A1 -B ﬁ]] _ _?:11 n U110 (224)
-C sl — A2 ’&22 f22 U220
and
(sl — Al)’l:lu = 37:1/12 + {'11 + U110, (2.25)
(sI = Ag)tigy = Ctgy + Fop + uano.
The classical WR. algorithm in the frequency domain is now given by
sI — Ay alt = Bak, + £, + uio,
( 1) 8y 22 T f11 + U0 (2.26)

(sI — Ap)ss' = Cufy + Fop + usno.

Similar to the WR algorithms with overlap, at convergence, eliminating the unknowns

Uy in the first subsystem in (2.26) gives

(sl — Ay — B(sI — Az)‘lc)’&n = }'n + B(sI — Ag)'l(}'m + U00) + U1,

and }'22 can be expressed in terms of the unknowns in the second subsystem,

Faz = (sI = Ag)tizy — Ctg — uggo.
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Similarly also eliminating the unknowns #; in the second subsystem we obtain the
iterations
(sT — A; — B(sI — Ag) 1C)asH = fry + Bk, — B(sI — Ay)"1Cak, + uaso,

(sI — Ay — C(s] — A) IB)ubS! = fop + Ctf) — C(sI — Ay) ' Bk, + ugm.
(2.27)

We next show that the new WR algorithm (2.27) converges in two iterations. There-

fore, the optimal transmission conditions without overlap are

W — (sI — A)7'Cal = ak, — (sI — Ap)"'Cak,, (2.28)
. .

a5t — (sI — A1) ' Basy! = af), — (sI — Ar) "1 Bas,.
Note that the optimal transmission conditions without overlap are similar to those
with overlap, they have however different matrices. We again consider below the

homogeneous problem.

Proposition 2.2. The new WR algorithm (2.27) converges in two iterations inde-

pendently of the initial waveforms.

Proof. In the first iteration we have
(sI — Ay — B(sI — A))"'C)al, = BuY, — B(sI — Ag) 'Ca,,
(s — Ay — C(sI — A)) "' B)ay, = Cad, — C(sI — Ay) ' Bal,.
From the first equation above together with the first transmission condition in (2.28)
we get
Gyy = (sI — A)) "' Bl (2.29)
Similarly, from the second equation together with the second transmission condition
in (2.28) we obtain
Uy = (s — A3) 7' Clayy. (2.30)
Now substituting from (2.29) and (2.30) into the subsystems in (2.27) in the second

iteration implies
(sI — Ay — B(sl — Ay)~'C)al, = 0,
(sI — Ay — C(sI — A))"'B)az, = 0.
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Hence, 1y, and 5, are identically zero, independently of the guess for the initial
O

waveforms.
To find the iteration matrix of the classical WR. algorithm we consider the homo-

geneous problem of (2.26). From the first and second equations in (2.26) we obtain
it = (sI — Ay)” 1Ba’2°2,

Inserting the second equation into the first one above we get a relation over two

iteration steps of the classical WR algorithm,

af = (sI — A)7IB(sI — Ay)rCalt,

Uqpg

and inserting the first one into the second one implies

Wbt = (s — A))7IC(sT — A) "1 Bakt

By induction we obtain

“1C(sI = A))7' B)*4),.

Therefore, the iteration matrix is given by
-1C 0
. (2.31)

(sI — Ay)"IB(sI — A,)
(sI — Ay)"C(sI — A))™'B

Gcla(s) = 0

Using the new transmission conditions

utft + aCufi! = uk, + aCuky, (2.39)

k+1 k+1 _ .k k
Us, + BBu,y, = uj, + BBuj,,

the new WR algorithm is
u'ffq (A — BozC’)u'ffLl + Buf, + BaCuk, + £, (2.33)
S+ Cu’fl + CﬁB“]fz + foo.

u%l (A2 — CBB)uy,
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The Laplace transform applied to the homogeneous problem of (2.33) implies

(s — A+ BaC)alf" = Bak, + BaCa,, (2.34)
(sI — Ay + CBB)us' = Caf, + CBBAL,. |

From the first equation in (2.34) and the first transmission condition in (2.32) we get
Butit = (sI — Ay as

Now, substituting from above at iteration k into the second equation in (2.34), we

obtain after simplifying,
Wbt = (sI — Ay + CBB)IC(I + B(sI — Ay))ak,. (2.35)
Similarly, from the second equation in (2.34) and the second transmission condition
in (2.32) we get
Cig! = (sI — A)ti; ™,
and substituting at iteration k into the first equation in (2.34), we obtain after sim-

plifying,
af = (sI — Ay + BaC) ' B(I + a(s] — Ay))ik,. (2.36)

By inserting (2.35) into (2.36) at iteration k we obtain a relation over two iteration
steps,

’l,.\lllfi*_l - 71?21}/’;1—1.
Similarly, by inserting (2.36) into (2.35) at iteration k we get

asf' = XX 4k,
and by induction we find, as before, @3r = (X, Xo)F @), and w2 = (XoX1) a0,
Therefore, the iteration matrix for the new WR algorithm is given by

X1 X2 O

Gopt(s, o, 3) = o , (2.37)
0 Xo X,
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where X; and X, are

YI = (SI — Al -+ BGC)~1B([ + a(s[ — Ag)),
72 = (9[ - A2 + C,@B)_IC([ + ﬂ(?[ - Al))

The optimal values of the parameters o and 3 are given in the following theorem.

Theorem 2.2 (Optimal Convergence). The new WR algorithm (2.33) converges

n two iterations if

Qopt 1= —(sI — Ax)™1, Bopt = — (s = A7 (2.38)
independently of the initial waveforms '&(1)1 and '&32.
Proof. The proof is similar to the proof of Theorem 2.1. O

This result shows again that the optimal values of the parameters a and B in
the transmission conditions (2.32) lead to the optimal transmission conditions shown
earlier in (2.28). Note that the optimal choice found here is similar to the one found
for the case with overlap, where we see that it is not just a parameter, but the Laplace
transform of an operator in time since it depends on s, and in addition, it has a matrix

mverse.

2.3 Optimization Process of the New WR Algo-
rithm

We consider here the WR algorithm without overlap, the case with overlap can be
treated similarly. The optimal values in (2.38) can be approximated by constant
matrices & and 3 to get a practical optimized WR algorithm. The simplest constant
matrix approximation is obtained by using a Taylor expansion about s = 0, which
leads to

ar=A;', Bp= AL
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This low frequency approximation was motivated by the concrete case of RC circuits
we .analyze in detail in Chapter 3, where high frequencies converge fast, and low
frequencies converge slowly. In addition, choosing another expansion point would lead
to complex matrices, and hence the algorithm would then need to be implemented in
complex arithmetic, a significant drawback. There are however better choices than
the ones based on expansions, as we will show in the next paragraph. Note that
this low frequency approximation exists whenever the matrices A; and A, are non-
singular matrices. In case that one of the matrices A; and A, is singular one might
decompose the system at a different row to get different matrices, which might lead
to non-singular matrices A; and A,, and thus obtain a low frequency approximation.

Another possibility is to choose the approximation by just constants o € R and
B € R for the optimal choice in (2.38). An optimization process then allows us to
reduce the spectral radius of the iteration matrix in order to obtain faster convergence.

Mathematically, we want p(G,,) < 1, which leads to the min-max problem
min (03¢ Gon(s,0 80 ) =1+ i (2:39)
a, j

where A;(G,op) are the eigenvalues of the iteration matrix G,p. To find the solution
of the min-max problem (2.39) in its full generality, we need to resort to numerical
methods. We use a multidimensional unconstrained nonlinear routine (Nelder-Mead).

We will however analyze concrete cases in Chapters 3 and 4.

2.4 Multiple Subsystems

In the previous sections we analyzed WR algorithms by splitting the linear system
into two subsystems. However, in realistic applications the circuit needs to be par-
titioned into multiple subsystems. We partition here the circuit into N subsystems

without overlap, with corresponding solutions ,,, n = 1,2,..., N. We analyze the
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homogeneous problem because of the linearity as before, and we consider the system

of ODEs 3 }
A1 Bl
Cl Ag BQ
) Cy As Bs
U= u

Cn-2 An-1 Bn-1

Using the new transmission conditions

k+1 k1 _ ok k
ujy  + o Ciuy] = ug, + a1 Cius,

w48 Byaubtl=wkb 4B B,juf . n=23.. N-1,

1 —1ln-1
T e (2.40)
+1 k41— ok k —
Uy + o, Cruitt =uy 0+, Chuy ,, n=2,3,...,N —1,

k41 k+1 _ ook k
Un'y_1 T By By auyy = ux v + By Byau gy,

the new WR algorithm with N subsystems without overlap is given by

ullcf_l = (Al Blalcl)ull + Blu22 + BlalClum,

W = (An — Cr1B8,_1Bn-1 — Bra,Cp)uk it

nn
+C, k C B k BruF + Bpa,,Cruk

n-1Up_1p1 T n"lﬂn«l n-1Up_1p T Onlp1n4 nQnlnty i 1p;

n=23. N-1

uiy = (An — OnoaBy_ Byon)ully + Cno1ul iy oy + Cno1By o1 Byouly iy,
(2.41)

where n represents the subsystem number. Note that we are studying here the algo-

rithm without overlap, the one with overlap can be treated similarly.

Theorem 2.3 (Optimal Convergence for N Subsystems). The new WR algo-
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rithm with N subsystems (2.41) converges in N iterations if

Pr=—(s] = A)7,

(2.42)
/Bn = _(SI - An + Cn—l,Bn_an—l)_l, n = 2,3, ey N — l7
and
a, = —(sI — Apy1+ Bpy10pn1Crp) ™, n=12,...,N -2,
( +1 +10,41Cn 1) (2.43)

an_y = —(sl — An)71,

independently of the initial waveforms, assuming that the matrices are invertible.

Proof. We apply first the Laplace transform to each subsystem. Now in the first

iteration, we have
(s] — Ay + Bia,Ch)ity; = Bi(4d, + ay Crasgy),
and from the first transmission condition in (2.40), we obtain
(sI — Ay, = Biity,.
Assuming the matrix (s — A;) is invertible leads to
iy, = (sI — A1 By, (2.44)
In the second iteration from the second subsystem, we have
(sI = Az + C18, By + BocaCa) 3, = Criiy, + C18, Brisy + Ba(s + aaCotily).

Substituting above from (2.44) for 4},, and using the third transmission condition in

(2.40) for n = 2, together with 3, = —(sI — A;)™!, we find
(sI — Ay + C13, By)its, = Botid,,
and assuming the matrix (s/ — Ay + C13, B;) is invertible we get

ﬁgz = (s] — Ay + 015131)_132’&;3- (2.45)
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Now in the third iteration from the third subsystem we have
(sI — Az + CyByBa + BaazCs)itis; = Cotigy + Cof8, Battsy + Bs(th, + asCyitss).

We substitute above from (2.45) for 4i3,, then using the third transmission condition

in (2.40) for n = 3, together with (2.42) for n = 2, we get
(sI — Az + CoB3,Bs)03, = Bati},.
Assuming the matrix (sI — As + C»3,B5) is invertible implies
@y, = (s — As 4+ Cy8,B;) 7! Bstil,. (2.46)
By induction we obtain
an, = (sl — Ay + Cp1By_1Bnot) ' Batip, i, n=2,3,...,N — 1, (2.47)

where
By =—(sI — Ay,
B,=—(sI — Ay +Cp 1B, 1Bn1) ', n=23,... N—1

Thus in the iteration N — 1, form the subsystem N — 1 we have
UNZivo1 = (sI — An_1 + Cn_2Bn_oBn_2) ' Byr@ iy, (2.48)
Now in the N* iteration, from the N** subsystem we get
(s] = Ay + Cn 1By Byv-1)any = Cn 1ty iy -y + Cno1By_1 By 16y 1y
Substituting above from (2.48) for N "}y _,, and using (2.42) for n = N — 1, we get
(sI — Ay + Cn_1By_1By1)tyy = 0.

Assuming (s/ — Ay + Cn_18x_,Bn_1) is invertible we have
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Now we apply a similar argument in the other direction. In the first iteration, we

obtain from the N subsystem
(sI — Ay + CnaaBr-1Byo1)ny = Cy_i(By_iv_1 + By Byo1tiy_1n).
Using the last transmission condition in (2.40) implies
Gy = (I — AN)'Cn 1Ty (2.49)

Now in the second iteration, from the subsystem N — 1 we get

(sI — Av_1 + Cn_oBy_9Bn-2+ Byo1an 1 Cyo1) 85 v =
Cn-a(tty_an—2 + By-aBn-2ly_ay_1) + Bno1lyy + Byoran1Cn 1y _y-
Substituting above from (2.49) for 4y, y, together with ay_, = —(sI — Ax)~! implies
(sI — An_1+ Cn-2By_oBn_o+ By_1ay1Cno1)ly gy ) =

~1 ~1
Cn_2(ty_ oy o+ By_2Bnoatiy oy 1)

Now using the second transmission condition in (2.40) for n = N — 1, we obtain
(S] — AN_1 + BN_laN_lCN_l)ﬁi,_lN_l = CN_QQAJ,?V_IN_Q.

Assuming the matrix (s/ — Ay_1 + By_1an_1Cn_1) is invertible we get

"2 -1 )
Uy an-1— (31 - Ay + BN-IO‘N-ICN-1) CNooWy_ N2

By induction we have

ﬁN_n+1 = (S[ - An + Bnancn)_lcn '&lN—TH_l; n = N - 11 N - 27 c ’27 (250)

nn —~1%npn-1

where
o = _(81 - An-l-l + Bn+1an+1cn+1)_l, n= 1,2, cy N — 27

anN-1 — —(S[ - AN)_I.
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In the N iteration, from the first subsystem we get

(s] — Ay + Biog Cy)ad = Byaby, ' 4 By Crad ™t

Now substituting above from (2.50) for i,™*, together with a; from (2.43) we get

(SI — A] + BlalCl)'&ﬁ = O,
and assuming the matrix (sI — A; + Bya;C}) is invertible we obtain
u;; = 0.

Therefore, we have shown that '&,ﬁ and '&x ~ are identically zero independently of the
guess for the initial waveforms.

Now, from (2.47) and (2.50) we get

Uy, — (I — Ap+ Cno18,_1Bn-1) ' Batin, .1 = 0,

UM (5T — Ay 4 Bpon,Co) 10wl T = 0,

nn nn-—-1

forn =2,3,..., N —1, which means we are propagating zero transmission conditions

from both sides, and thus the unknowns in the middle are also zero. O

This convergence result is again optimal, since the solution of the last subsystem
depends on the source terms in the first subsystem and vice versa. If information is
exchanged only between neighboring subsystems, as in the classical JWR, then it can
propagate by one subsystem at most for each iteration. Hence, there are at least N

iterations required to transmit the information across N sequential subsystems.

2.5 Numerical Experiments

We now show three examples for which we find numerically the optimized parameters,

and we use them to illustrate the remarkable improvement in convergence of the
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optimized WR algorithm over the classical one. We choose here the WR. algorithms
without overlap and with two subsystems.

We start by a random example to show that the optimized WR, algorithm works
well with an arbitrary linear system of differential equations, whereas the classical
WR algorithm has difficulties to converge. The system of ODEs we consider is given

by

T = Ax + f,
where the matrix A4 is given by
—31.7460 —1.5873 0 -2 0
202.0202 -0.1010 —202.0202 0 0
A= 0 1.5873 0 —1.5873 1
1 0 202.0202 —-0.1010 -202.0202
0 -2 0 1.5873  —31.7460

The source term is given by f(t) = (I;(t)/C,0,0,0,0)7, where I,(t) = 10t for 0 <
t < 0.1 and I4(t) =1 for t > 0.1, and C = 0.63. We choose a zero initial condition
and random initial waveforms. The analysis time interval is [0, 7], with T = 1. We
use for the numerical computations the backward Euler method, with a time step of
Al = 1/100. We first give an example of p(Gy,) as a function of w and 7 on the top
of Figure 2.2. In Figure 2.2, we also give p(G,,) as a function of w and 7, at the
bottom using the numerically optimized parameters a* = —0.0389 and §* = —0.0445
on the left hand side, and on the right hand side, using the Taylor approximation
ar = A;' and By = A7'. One can observe that p(G,,) with the numerically
optimized parameters is more uniform than p(G,p) with the Taylor approximation,
and than p(G.,) which takes values bigger than one. To illustrate the difference in
convergence between the two WR algorithms, we show the error as a function of the

iterations in Figure 2.3. The better convergence of the optimized WR algorithm over
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Figure 2.2: Top: classical spectral radius p(Gua(w)). Bottom: optimized spectral
radius p(Gopt(w, @*, 3*)) on the left, and on the right p(Gopt(w, ar, Br)).
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Figure 2.3: Convergence behavior of the classical versus optimized WR algorithms.
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43

op [ o ]

Figure 2.4: A general realistic circuit.

the classical one is evident from this comparison where the classical WR algorithm

is not even converging. We also observe that the optimized WR algorithm with the

optimized constant approximation has a better convergence than the one with the

Taylor approximation.

We give as a second example the circuit given in Figure 2.4. The equations of the

circuit, where we choose M = 4, are given by

b1 (85}
aq bQ Co
T = as, by . xT + f,
C12
ayp bis

(2.51)

with the vector of unknown waveforms @ = (vy, va, 3, 11, Vs, 42, Us, i3, Us, 14, U7, 15, Ug) L ,

where v; corresponds to a nodal capacitive voltage and 4; corresponds to an inductance

current. The entries in the matrix are given by
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= Gy = A ag = a4y = 1oL
U= FaCs 2T RpCorp BT I UT i BT 1 8= 5

- — — — 1 -1 — 1
a7 = 15 8 = 5: @9 = 17, G100 = gy A1 = 17 G2 = g

= (L 4 1yl = (L 4+ 1y 1 =1
by = (Rs + RA)CA7 by = (RA + RB)C’B’ by = RpCecyp’
Riijoy- .
_Zw’ 1 =6,8,10,12,
by =0, b5 =0, b; = (/2)-2
0, i=17,9,11,13,
=1 = 1 = __1 = L = _—_1 = L
€1 = RaCa> @7 Rplp» B~ “Coyp 47 TIa BT TTprc BT TLD
— 1 _ 1 — 1 _ 1 _ 1 _ 1
7= "G 8= 710 0= Ty Clo= T T TEy G2 T oo

where Coyp = Co + Cp, and similarly for the other capacitors. The source on the
right hand side is the 13 x 1 vector f(t) = (I;(t)/Ca,0,0,...,0)T. For the input
current source we use an input step function with an amplitude of I,(t) = 33.33 mA

and a rise time of 0.05 ns. The circuit parameters that we use are

R = 0.03 kOhms, C4 = Cp = Ce = 0.08 pF, R4 = Rp = 0.012 kOhms,
Cp=Cp=0.25pF, Ly=0001 uH, C, =0.25pF, Cs = 0.25 pF.

The part from L; to Ly and C) to Cjs represent a transmission line which we choose
to be of 1 cm length and 4 sections. The total capacitance is ' = 2 pF/cm, the total
inductance is L = 0.0005 pH/cm, and the total resistance is R = 0.0001 kOhms/cm.
Since the total resistance for resistors connected in series is obtained by adding their
values, and the same holds for inductors connected in series, we have By = Ry = R3 =
R4 =0.0001/4 kOhms, and L) = L, = Ly = Ly = 0.0005/4 H. In addition, the total
capacitance of capacitors connected in parallel is obtained by adding their values,
and thus we have Cy = Cy = C3 = Cy = 2/4 pF. We choose a zero initial condition
and random initial waveforms. The analysis time interval is [0, T], with T'= 5. We
use again for the numerical computations the backward Euler method, with a time

step of At = 1/20. In Figure 2.5 on the top, we give p(G,) as a function of w and
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Figure 2.5: Top: classical spectral radius p(Gu.(w)). Bottom: optimized spectral
radius p(Gopt(w, a*, 3*)) on the left, and on the right p(Gopt(w, ar, B7))-
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Figure 2.6: Convergence behavior of the classical versus optimized WR algorithms.

n. At the bottom we give p(G,p) as a function of w and 7, using the numerically

—0.0141 and g~

optimized parameters o*

—0.0158 on the left hand side, and
on the right hand side, using the Taylor approximation ar = A;' and By = A7
We observe here as well that p(G,,) with the optimized constant approximation is
more uniform than p(G,p:) with the Taylor approximation, and than p(G,) which
takes values bigger than one. To illustrate the difference in convergence between the
two WR algorithms we again show the error as a function of the iterations in Figure
2.6. The optimized WR algorithm shows a better convergence than the classical one
which has difficulties to converge.

In order to show that the new algorithm works well for a full matrix we analyze

the circuit given in Figure 2.7. The equations of the circuit are given by

by ci2 a3 cu

. ajg by ce3 ca4

T = x+f, (2.52)
a13 a3 . by cC3a
14 G4 Q34 by
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/ RIB R24

B2 Menie

Figure 2.7: Circuit with full matrix.

where the entries in the matrix are

Qig = ﬁ@, a3 = ﬁ, Qg3 = ﬁslcg, a14 = m, Q24 = ﬁ, aszq = m’
bl :_(7{15_4_}2_12_,_%13_{_}_211_4)6%, bQI_(ﬁll;"'R—?s‘i‘ﬁlz)cLZ»
b= (s A = G R
Ci2 = #01’ C13 = m, Ci4 = Ejﬁ’ Co3 = m, Coq = @, C34 = ﬁi—gg-
The source on the right hand side is given by f(t) = (I,(¢)/C1,0,0,0)7, and for the
input current source we use here an input step function with an amplitude of I,(t) = 1

mA and a rise time of 1 ns. The circuit parameters that we use are

R; = Ris = Ry3 = R34 = Ri3 = Ryy = Ros = 0.5 Ohms,

C, =0y =C3=C4=0.6pF.
We choose a zero initial condition and random initial waveforms. The analysis time
interval is [0,10]. We use again for the numerical computations the backward Euler
method, with a time step of At = 1/10. In Figure 2.8 we again give p(Gu,) as a
function of w and 7 on the top. At the bottom we give p(G,;;) as a function of w
and 7, using the numerically optimized parameters o* = —0.0928 and 8* = —0.0945
on the left hand side, and on the right hand side, using the Taylor approximation
ar = A;! and B, = A7l. In Figure 2.9 we again plot the error as a function of
the iterations which shows that the new algorithm works well and better than the

classical one for full matrices as well.
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0.15

Figure 2.8: Top: classical spectral radius p(Gaq(w)). Bottom: optimized spectral
radius p(Gopt(w, a*, 3*)) on the left, and on the right p(Gopt(w, ar, Br)).
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Figure 2.9: Convergence behavior of the classical versus optimized WR. algorithms.



50

Chapter 3

RC Type Circuits

In this chapter, we analyze the classical WR algorithm, an optimal WR algorithm,
and optimized WR algorithms for RC type circuits. The circuit equations are derived
as in the introduction, see (1.4). The results we obtain for this type of RC circuits
will be of a great interest when we have a general circuit which consists of many
complicated parts that are connected to each other by such type of circuits. Indeed,
we can decompose this general circuit into smaller and simpler subcircuits by applying
a partitioning at the RC circuits. In other words, we look for RC type circuits in the
general circuit which might have nonlinear components, and we partition there since
we know how to do the partitioning for the RC circuit with an excellent performance
using the results from this chapter. We start with finite size RC type circuits, and
then we study an infinitely large circuit. In both cases, we investigate and analyze the
convergence of the WR algorithms. We are analyzing a Jacobi type iteration here,

but the Gauss-Seidel case could be analyzed similarly.
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3.1 Any finite size RC Type Circuit

In this section, we consider any finite size RC type circuit as shown in Figure 3.1.
- The system we obtain from this circuit is of size n x n, where n is the number of
nodal capacitive voltages in the circuit. We assume that n is an even number for the
analysis below, n = 2j, 7 = 1,2,.... This means that there is an even number of
capacitors in the circuit given in Figure 3.1, where at each one we have a nodal voltage
as an unknown. By decomposing the system representing the finite size circuit in the
middle at row j into two subsystems, we get two subsystems of the same size. The
odd case can be analyzed similarly. The equations for the RC circuit of size n are

given by

bi o

a; =

@

!

5

Q
z
?

G = 5=, 1=1,2,...n—-1,

and the resistor values R; and R, and the capacitors C; are strictly positive con-
stants. The source term on the right hand side is given by the n x 1 vector f =
(Is(t)/C1,0,0,0,...,0)7, for some source function I,(t), and we are also given the

initial voltage values x(0) = (v?,v9,v3,v3,...,v2)T at the time ¢ = 0.
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10" o

Figure 3.1: A finite size RC circuit.

xg Ry Tn

W

Cr I

We partition the system (3.1) at row j into two subsystems,

bi ¢
(O 0 h
ai by o
Uz 0 Jo
aji_2 b]'_l Ci-1
; u; CjUjr1 Ji
X AR A (3.2)
biy1 ¢
7+1 Cj+1
w1 a;Wo f]+1
aj41 bjpa Ciao . ;
(1)) j+2
W= + +1 777 1,
A25_2 b2j—1 C25-1
Wj 0 fgj
Q251 b2j

where we call the unknown voltages in subsystem one u(t), and in subsystem two

w(t). The classical WR algorithm applied to (3.1), using the classical transmission

conditions
k+1 _  k E+1 _ ok
uiy; = wy, wy = uj, (3.3)
is given by
b1 1 k+1
51 0 h
a; by
(%) 0 f2
- k41
= + 1.
aj-2 bj1 ¢ y .
b u; ¢jwy Ji
aj-1 05
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bit1 Cjy k+1 .
wy aju; fin
@j+1 bjr2 Cjio 0 /
) Woy JI+2
az;-2 b2j«1 C25-1
wj O fzj
a25—-1 sz
with initial voltage values u(0) = (v9,v9,...,v9)7, and w(0) = (v9,;,v9,,, ..., v9;)T.

To start the WR algorithm, we need to specify two initial waveforms u2(t) and w{(t),
for t € [0, 7).
In [31] Gander and Ruehli proposed new transmission conditions, which are given

for any finite RC circuit by

(w571 —uy ™) + ouly = (wf — wg) + owf,

(3-5)
(Wi —wg ™) + Pug ™t = (ufy, —uf) + Buk.

The new transmission conditions (3.5), comparing with (3.3), also exchange the volt-
ages u;; and wy, but they are multiplied with weighting factors o and 3, respectively.
The voltage differences between the nodal voltages (u;41 — u;) and (w; — wp) insure
that the currents are also taken into account in the transmission conditions since we
could write the currents as a™*(u;41 — u;) and 71 (w; — wy) where a and 8 can be
viewed as resistors. Therefore, the new transmission conditions attempt to transmit
voltages as well as currents at the interfaces between the subsystems during the itera-
tion, instead of only voltage values like the classical transmission conditions. Gander
and Ruehli proved in [31] that the converged solution of the new WR algorithm with
transmission conditions (3.5) is identical to the converged solution of the classical

WR algorithm with transmission conditions (3.3), if (@ + 1)(8 — 1) +1 # 0. Using
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the new transmission conditions, the new WR algorithm is given by

- -

bl Cy k+1
Uy 0 S
ay by
Uy 0 fa
- kH . . .
wt= T .. + + ,
a;_o b'_l Ci_q
¥ J J )
) apk Gk )
b ¢ uj GWy ~ 531 %o fi
| aj-1 0j + a+1
ST g1 k. % .k
b wq ajuj + B_luj“ fj+1
j+1 j+2 Cjy2 0 s
Wo j+2
- kH . . . Jj+
w = e + + ,
Q252 b2j—1 Coj—-1
wj 0 foj
251 ij

(3.6)

where we start with initial waveforms w)(t), ul,,(t), w{(t), and wg(t), for ¢t € [0, 77,

which must satisfy the initial conditions, and for the next iterations, the values uf oy
and w§ are determined by the transmission conditions (3.5).

In order to keep the analysis and the optimization process we are solving simpler,

we consider here the simplifying assumptions
g=a;,=a;=aqa,fori=1,2,.... n—1,b=by=0b, fori=1,2,...,n. (3.7)

Indeed, this is a justified choice since we have circuits where the subsystems or sub-
circuits have very similar electrical properties on both sides of the partitioning bound-
ary as we can observe in Figure 3.1. For the infinitely large circuit in Section 3.4,
the circuit element values are given to be the same for all internal circuit elements to
simplify the computations as well.

As stated in the introduction, we analyze the homogeneous problem, and we use
the Laplace transform for the convergence study of the linear circuits considered here.

The Laplace transform for s € C of (3.2), with the simplifying assumptions (3.7), is
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given by ) )
b «a
iy - 0
a b a
. Ug 0
st = + ’
a b a A A
U alUj4q
a b
. . (3.8)
b a
’UA)l G,’UA)O
a b a
. Wy 0
sw = +
a b a
W, 0
a b !

The following lemmas are needed to find the convergence factors of the classical and

optimal WR algorithms in closed form.

Lemma 3.1. Let Sy, Sz, and S3 be given by

S1 = (s —b) (_1)T+1(k—r+1)(s — pyk2r2g2r-2

r—1

L&)
52 = g2 Z (_1)r+1 (I::;) (s _ b)k—2r+1a2r—2’
S3 = Z (_1)r+1(k—r+2) (8 o b)lc—2r+3a2r—27

r—1

where k is any integer greater than or equal to 1, and for any real number t, we have

denoted above |t] = I, where | is the unique integer such thatl <t <1+ 1. Then
Sl + 52 = S3.

Proof. If k is even, then k =2¢, /=1,2,..., and L%J ={(+1, |52 =¢+1, and

2
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|5 | = ¢, and we write Sy, Sy, and S; as

£+1
Sl = (S _ b)k+1 + Z:Q(_l)r+1(k:4l-l) (s . b)k—2r+3a2r—27
, -
52 P Z(_l)r+l(f:z) (3 - b)k—2r+1a2r7 (3_9)

=1

£+1
S3 = (S _ b)k+l 4 Z(_l)r-f—l (k—T+2) (S o b)k—2r+3a2r—2.
r=2

r—1
For any r = j, where 1 < j < £+ 1, the summands in S; and Sj are, respectively,

(_ 1)j+1 (k—_jvlLl) (s — b)k—2j+3a2j—2
j- Y

(1P (5777) (s — B,
and forany r =7 — 1, 1 < 7 < {+1, the summand in S, is
(—1)7+ (k - J+ 1> (s — b)k-2i+3g2i-2,
j—2
Therefore, we have the same powers, and we only need to show that the sum of the
coeflicients in the summands in S; forr=j — 1, andin S) forr =3, 1 < j < {41,
is equal to the coefficient in the summand in S3 for » = 7. This is true due to the

binomial coefficients property
n n n+1
+ = :
(e3)+ ()= G)
k—-j7+1 . k—3+1\ (k—j+2
j-1 i=2 ) \i-1)

for 1 <y < £4 1. The summand in S, for r = 1, or j = 2, is already considered

which implies

above, since for S5, we considered 7 = j — 1, and 1 < j < £+ 1,s0 for r = 1, we
only have the summand in S; and in S3. From (3.9), for r = 1, the summand in S;
is (s — b)**1, and it is the same expression we obtain from the summand in S3 for

r = 1, and this finishes the proof for k& even.
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Now, if kis odd, then k =2/ -1, £ =1,2,..., and [%sz—i— [ij = ¢, and

[%lj = {, and we write S;, Sy, and S3 as

[4
S = (5 _ b)k+1 + Z_:Q(_l)rJrl (k—T+1)(S _ b)k—2r+3a2r—2’

r—1
: -1
52 — Z(_l)r+1 (f:;)(s . b)k72r+1a2r + (_1)€+2a§2£7 (310)
r=1
4
53 = (s o b)k“ + 22(_1)r+1(k;:r2 (s _ b)k—2r+3a2r—2 + (—1)”2@2@.

Showing that S; + S, = S3 is similar to the case where k is even, but here, we have

1 <j<f€+1,instead of 1 < 7 < £+ 1, since the last value for r in Sy is r = ¢,

whereas it was £ + 1 for k£ even. Therefore, we only need to show equality between
the summands in S3 for r = j = /41, and in S; forr = j —1 = £. As is evident from

(3.10), the summand in S5 for » = £ +1 is equal to the summand in Sy for r =¢. O

Lemma 3.2. For the systems in (8.8), for any 1 <m < j, j=1,2,..., 4, is given
by
Z ’I‘+1( - )(S_b)m 2r+1a2r 2

U,m_;r_l, (311)

Uy, =

L
r—1

g ( )r+1(m r+1)(5 — b)m—2r+2a2r—2

and Wj_m41 1S given by

SIRC A G ICE
~ r=1 7
Wj—mi1 = 2 Wj—m, (3.12)
(=1 (") (s = bymran =2
r=1

where |.] is the integer defined in Lemma 8.1.

Proof. The proof is by induction. For m = 1, from the first subsystem in (3.8), we

have
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which is the same as we obtain by using (3:11) for m = 1, so relation (3.11) holds for

m = 1. We thus assume that (3.11) holds for m =k, i.e.

I+

L5

a (__1)r+l (k*T) (S _ b)k~2r+1a2r—2

r—1

]

U =

]
Il
—

U 41-

152

0

(_1)r+1 (kzw{l) (s _ b)k—2T+2a2r—2

r=1

Now we need to show that (3.11) also holds for m = k+1. The equation for m = k+1

from the first subsystem in (3.8) is
SUgy1 = Qi + blgy1 + aligyo,
which implies, after substituting frorﬁ (3.11) for m = k, and simplifying,
Xigyr = Yy,

where
I. k+2
2

X = (s _ b) ; (_1)r+1 (k—r+l) (S _ b)k—27‘+2a2r—2

r—1

4] .
—a? E (_1)r+1 (k—r)(s _ b)k—2r+1a2r—2’
r=1

r—1

1%52)
Yi=a ) (_1)r+1 (k—r+1)(8 _ b)k~2r+2a2r—2_
r=1

r—1
Hence, txy1 = %7}“2‘ The numerator of the expression in (3.11) for m = k + 1 is
equal to Y, so we only need to show that the denominator of (3.11) for m = k + 1
is equal to X, and this is proved in Lemma 3.1. Therefore, relation (3.11) holds for
m = k + 1, and the proof by induction is complete. The proof of relation (3.12) is

similar. O

We analyze now the convergence factor of the classical WR algorithm (3.4), with

the simplifying assumptions (3.7).
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Theorem 3.1. The convergence factor pea) of the classical WR algorithm (3.4),
withn =23, 7 =1,2,..., and the simplifying assumptions (3.7) is given by

12
i (_1)r+1(j—r+1>(5 _ b)j—2r+2a2r—2
. r=1

1 2 r—1
Peiai) (s, a,b) = (/\—) , A= Py i (3.13)
7 z .
a Z:l (_1)r+1(i:71”) (s — b)i=2r+lg2r=2

Proof. The proof is by induction. The last equation in the first subsystem in (3.4),
after taking Laplace transform and considering the homogeneous problem, for j =1,
is given by

sﬁ’f“ = bﬁ’f“ + a’uﬁf,
which implies

Wt = b, (3.14)

where

which is A; in (3.13) for j = 1. Similarly, we find for the second subsystem from the
first equation,

1

Wt = ok, (3.15)

A1
Inserting (3.15) at step k into (3.14) implies
k-1
1

Skl .
Uy = Peary(s, a, b)i

7

with convergence factor peaa) of the classical WR algorithm given by

1 2
pcla(l)('S; a, b) = (A_1> ’

where A; is given in (3.13) for 7 = 1. Now for j > 1, the last equation in the first

subsystem is given by

st = atft] + bai ! + adf.
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1

Using Lemma 3.2 to substitute for uk+ , and simplifying, we get

. 1
At = e wh, (3.16)
where \; = %, and NN, D; are given by
L , 14) ,
v:(s b) Z ( 1)r+1 (Z'j) (S_b)j—2r+1a2r—2 _ a2¥1(__1)r+1 (Cﬁ]l)(s~b)j‘”a2r‘2,

[L

Dj —a ; (_1)r+l (i:;) (S _ b)j_2r+la2r_2,

and using Lemma 3.1, we obtain

§ ( )r+1 (j—r+1) (S b)j—2'r+2a2r—2

r—1

3

[i_
EZ: ( )r+1( )( b)j—27'+1a2r——2

as given in (3.13). Note also that N; = (s — b)N;_; — aD;_;, and D; = aN;_;.

Similarly, we find for the second subsystem from the first equation,

. 1
Wi = )\—]uf (3.17)

Inserting (3.17) at step k into (3.16), we get

~k+1 ~k—1
u; = pcla(j)(57 a, b)U] )

with convergence factor pgq,(;) of the classical WR algorithm given by
1\2

Pcla(j) (3-/ a, b) = (/\_]> )

where ), is given in (3.13). The same result holds for 1w**! and by induction we find

ﬁ?k = (Peta(s))" aj7 and Wi = (peq()) il -

For convergence as is given in (1.15), we need that |peq)(s, a,b)] < 1 for R(s) >

0, and for fast convergence, the modulus of p.(;; should be much smaller than 1,
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Peiat)
tr =7 Py b
Py Us
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Figure 3.2: Convergence factor |pq(;)| for different values of j on the left, and on the

right, a zoom around the maximum of |pea(co0)|-

|peiagsy] < 1. However, the convergence factor |puq;)| is a fixed function of the circuit
parameters in the classical WR algorithm, and thus the algorithm does not have any
adjustable parameters like the new WR algorithm we discuss below. We can only
analyze for the classical WR algorithm if the convergence test |pq(;)| < 1 is satisfied.
It is shown in Sections 3.2 and 3.3 for the very small, j = 1, and small, j = 2, RC
circuits that this convergence test is satisfied. For the infinitely large RC circuit,
J = 00, in Section 3.4, it is shown that |peae;)| < 1 for all w and |b] > 2a, |paa)] < 1
for w # 0 and |b| = 2a, and for the case w = 0 and |b] = 2a, the maximum of |p,(;} is
one, and the convergence test |peq(;)] < 1 is not satisfied. An example of the classical
convergence factor as a function of w for different values of j, with |b| = 2a, is given
in Figure 3.2. We observe from Figure 3.2 that the modulus of the convergence factor
for finite j is less than one, and it becomes bigger and bigger around w = 0 as we
increase the size of the circuit, and as noted above, for the infinitely large circuit the
convergence factor is one at w = 0.

Let us now consider the new WR algorithm (3.6), and look for the convergence

factor with the simplifying assumptions (3.7).
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Theorem 3.2. The convergence factor of the new WR algorithm (8.6), with n =
27, 1 =1,2,..., and the simplifying assumptions (3.7) is given by

(@+1) =X (B=1)+\
a+ N1 (B=Dr+1

popt(j)(saaubaawg) = ( (318)

where \; is given in (8.13).

Proof. The proof is similar to the proof of Theorem 3.1. For j = 1, from the last
equation in the first subsystem in (3.6), after taking the Laplace transform as we did

in the classical case, and considering the homogeneous problem, after some algebra,

we obtain
k41 <k ~k a
=F 1) — = 3.19
Uy l(wl(a+ ) Wy ), 1 (S*b)(CY'F].)—a’ ( )
and similarly from the first equation of the second subsystem, we get
. . . a -
wptt = R(if(8 - 1) +45), F= ~ (3.20)

GoNE- D+

Next, we want to obtain the convergence factor for the optimal WR algorithm in closed

form. We need to find a relation between 4*! and %% from (3.19), and similarly a
~ k1

relation between w;*! and @Y from (3.20). Using the second transmission condition

in (3.5), for j = 1, we find, together with (3.20),

Akl 1 1 Skl
o ‘((ﬁ—l)Fz ﬂ—1>w1+’

and using this result at step k in (3.19), we find for the first subsystem

1 1
n=h (“ U EOR TE- 1) & 20

With a similar manipulation for the second subsystem, we find

1
"k—}-l:F
“ 2<(a+l)Fl+a+1

+3- 1) ak. (3.22)

Finally, by inserting (3.22) at iteration k into (3.21), we get a relation over two

iteration steps,

~k+1 ~k—1
U1+ :popt(l)(saaubaavﬁ)ul )
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with convergence factor of the optimal WR algorithm given by

(@+D) =M (B-1+\
@+t DM -1 (B-Da+1

popt(l)(sa a, b7 «, /6) =

where \; is given in (3.13) for j = 1. Now for 7 > 1, the last equation in the first
subsystem in (3.8) is given by

sl; = atj_y + bi; + atjq,

and using Lemmas 3.2 and 3.1, we get

14£2)
(_1)r+1 (J::Ll) (s _ b)j—2r+2a2r—2
r[:l ’llj = aﬂj+1. (323)

z (_1)r+1(z:;)(8 _ b)j—2r+la2r—2

itl ]
2

~
—

Now inserting the iterations, and substituting ﬁfill from the first transmission condi-
tion in (3.5) into (3.23), which is basically the last equation in the first subsystem in

(3.6) after taking Laplace transform and considering the homogeneous problem, we

get
a N a . . .
(X gy et = ok - b
where
1£2) )
Z (_1)r+1 (];_7:‘;1) (8 _ b)j—2'r+2a2r—2
. r=1
X = B ' ’
z_:l (__1)r+1 (ij)(s _ b)j—2r+la2r—2

and after simplifying, we get

(3.24)

X
nk+L F ~k _ .~k ~k F o= aAq
03 (W] — W + awy), 1 (@t )Xo —aXy’

where

,_
.
+

-

ta
i
[+

]

(__1)7'+1 (i:;) (S _ b)j—~2‘r+la2r—2,
J

(__1)r+1 (]:i‘;l) (S _ b)j—2r+2a2r—2.

ﬁ
Il
—_

e
|
NI

\,
If
—
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Similarly, from the second subsystem, we obtain

aXl

Ak 1 ~k ~k
* FQ( J+1 u]-i-ﬂu]), F2 (ﬂ—l)X2+aX1

(3.25)

where X, and X, are as given above. Again, we need to derive a relation between
a5*! and ¥ from (3.24), and similarly a relation between @} and 4% from (3.25)
to obtain the convergence factor for the optimal WR algorithm in closed form.

Using the second transmission condition in (3.5), together with (3.25), we find

1 1
NS _ ~k+1
o <(ﬁ—1)F2 ﬂ—l)wl !

and using this result at step k in (3.24) we find for the first subsystem

1 1
Gkt = +1-—- —I— k. .2
U P <a 1 (ﬁ 1)F2 1) (3 6)

With a similar manipulation for the second subsystem, we obtain

1 1
Wt = F —1]a*k 27
2((a+1)F1+a+1+5 )uf (3:27)

Finally, by inserting (3.27) at iteration k into (3.26), we get a relation over two

iteration steps of the optimal WR algorithm,

1 1 1 1
Ak:+l FF 1___ __1 A/;—l
! 2<a+ ([J—I)F2+,8—1) ((a+1)F1+a+1+ﬂ )“J ’

and after simplifying,

~k+1 ~k—1
U’j+ =popt(j)(sva’7bva7/6)uj y

where the convergence factor pop;) is given by

B (a+1)_/\A . (ﬂ—l)-l‘/\J
Popt(s) (8 a: b, @, ff) = (a+ 1)), —]1 (B-1)A+ 1’

and ); is given in (3.13). The same result also holds for the second subsystem and

by induction we find, as before, 43* = (popy(;)) 42, and Wi* = (pepe(j))*1. O



3.1 Any finite size RC Type Circuit 65

From the convergence factor (3.18) we can derive the optimal values of the pa-

rameters « and 3 as in the following theorem.

Theorem 3.3 (Optimal Convergence). The new WR algorithm (3.6) converges

in two iterations, independently of the initial waveforms 112 and 0?9, if
Q= ozopt(j) = /\] - 1, ,6 = /gopt(j) =1- /\j7 ] = ]., 2, Ceey (328)
and hence /Gopt(j) = —Olopt(j)-

Proof. The convergence factor vanishes if we insert (3.28) into pop(;) given by (3.18).

Hence, 4} and @} are identically zero, independently of 49 and . O

We observe that the optimal choice (3.28) is not just a parameter, but the Laplace
transform of a linear operator in time, since it depends on s. Since we have a rational
function in s, the optimal transmission conditions correspond to nonlocal operators
in time. They require intégral operators which can not be avoided in general and are
expensive to use, since they would require convolutions in the transmission conditions.
This is true for more general circuits as well, therefore, approximations of the best
transmission conditions are proposed. In Figure 3.3, we show the modulus of the
optimal choice of & and 8 (3.28) as a function of 7 and w for the cases j = 1 and
7 = 2, where we choose a = % and b = —2a from typical RC circuit parameters.

To further analyze the convergence factor (3.18), we assume for simplicity that
B = —a motivated by the optimal choice (3.28) with the simplifying assumptions
(3.7), where we have fou(j) = —op(j), and that the circuits considered here behave
identical on both sides of the cut. This leads to the convergence factor

(@+1) =2 \?
Popt(j) (s, a, b, o) = (m]——_—l) \ (3.29)

and JA; is given in (3.13).
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%opi(2)

Figure 3.3: |ovopy(jy| and |Bopy(jy| for j =1 and j = 2.

We now study A; in (3.13) in more detail. As we have seen in the proof of Theorem

3.1, N s—f, and for j > 1, N; = (s — b)N;_1 — aDj;_1, and D; = aN;_y, and
/\_&_(s—b)Nj_l—aDj,l:s—b_Dj_lzs—b_ 1 .
J D_] ClN]'_l a Nj—l a /\j—l
Hence, we get the recurrence relation
/\l = _ﬁ_;‘_b:
(3.30)

)\j+1:/\1—%j7j21-

In the following Theorem we prove convergence of the sequence (3.30).

Theorem 3.4. For s in the right half of the complex plane, s = n+iw, n > 0, and

|b| > 2a, the sequence
__ s—b
A=

)\j+1=)\1—,\lj73217
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converges to the limit

s—b+ /(s —b)2 — 4a2
Ay = (2a ) 7 (3.31)

as j goes to infinity.

_ vi(A)
Proof. Let A\; = —Z}l@—\I—) Then

_ 5 _ Ays(A) - 5(0)

Air1 = A =
T ) ;i (A1)

and hence, we have

zip1(A1) = y;i (A1),
Yir1(A1) = Ay (M) — 23( A1) = My (M) — yi-1(A)-

Now, we write the above equations in the system

Yir1 (M) A —1 y;i(A1) Ao—1 Y1
yi( A1) 1 0 yi—1(A1) 1 0 Yo

The eigenvalues of the matrix

D e : (3.32)

in the system above are given by

s—bx /(s —b)?— 4a?
Ar = 2a ’

where |Ay| > 1 and |A_| < 1 in the right half of the complex plane, s = n + iw,
n > 0, for |b] > 2a, see [31]. Therefore, we have two distinct eigenvalues, and hence

the matrix in (3.32) is diagonalizable, and can be written as
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where P is an invertible matrix, which has the corresponding eigenvectors as its
column vectors. By forming the matrix P, and using y; = s — b and yy = a, we can

find o, and o9 by direct calculations, such that

yj+1()‘1) _p /\'Z!_ 0 P_l 751 - 0'1)\i+1 + 0’2/\{+1
;i (A1) 0 X Yo o N, + oo X

Hence,
Jj+1 J+1
A= Y Vi g1 Ay + oAl
1= = = ' o
Ziy1 Y o1 X, + o9 X

and since |Ay| > 1 and |A_| < 1, we have, as j goes to infinity,

hm )\j+1 = )\+.
J—0
Note that the exact values for o; and o, are not really needed for the result above. O

In fact, we will see later in Section 3.4, that the limit A, which is found here is the
same A, which is found in the circuit of infinite size, and hence we have proved that
A; for any finite size circuit, n = 25, j = 1,2,..., converges to A, for the infinitely
large circuit as j goes to infinity.

For the case 7 = 1, we get the very small RC circuit case which will be discussed in
Section 3.2, and for j = 2, we get the small RC circuit case which will be discussed in
Section 3.3. Assuming that the optimal choice for « given in (3.28) is approximated
by a constant c;), the simplest way to obtain a constant approximation is to use a
Taylor expansion about s = 0, which corresponds to a low frequency approximation.
Note that for low frequencies the classical convergence factor behaves worst as one can
observe from Figure 3.2. The low frequency constant approximation for the optimal

choice given in (3.28) is

157 :
Z:l (_1)T+1(J;itl)(_b)]—2r+2a2r—2
XGT = " — 1 Bur = —agr (3.33)
2

a Y (1)1 (I7T)(—b)i-2r+ig2r-2

r=1
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As an example, for j =1, j =2, j =3, and 7 =4 we get

b 2 _ b(2a?—b?) _ a?(3b2—a?)—bt
apr =2 =1, agr =35 -1, apr = gmary — L awr = G !
To find a better constant approximation, assuming f(;y = —a;), we need to solve the
min-max problem
min [ max a(s,a, b, o , 3.34
ain (% (5.0 (3.34)

where ag;) is the only optimization parameter left. In Sections 3.2 and 3.3 for the
very small, j = 1, small, j = 2, RC circuits respectively, we prove that the solution
of the min-max problem (3.34), with constant approximation of the optimal choice of
« occurs when the convergence factor at w = 0 and at w = wy,e; — 00 are balanced.

Therefore, we use the equation

lpopt(j)(07 az;))l = Jl_{glo |p0pt(j)(w’ aE‘J))l

to determine the optimized parameter oy, Similar thing is shown for the infinitely

large RC circuit in Section 3.4, where we use the equation

',Oopt(j)(wmina azj))l = u}l—{]go |popt(j)(wa ab‘))'v (335)

and wpmy, is 2 minimal frequency relevant to the problem, to determine the optimized
parameter «, since the limit of the maximum of the convergence factor is one as
w — 0 if |b| = 2a which often holds for RC type circuits. For any finite j > 2, we
have to rely on numerical calculations only due to the complexity of the polynomials
and the min-max problems we obtain. On the left hand side of Figure 3.4 we show

the function |pom(j)(w, @)| for j = 3 on the top, and for j = 4 at the bottom, where

we choose a = % and b = —2a form typical RC circuit parameters. We observe that
the solution of the min-max problem occurs when the convergence factor at w = 0
and at w = wWpa, are balanced. In this example, for j = 3 we obtain o) = 1.215,

and for j = 4 we obtain a&) = 1, which leads to the convergence factors shown on



3.1 Any finite size RC Type Circuit 70

B3

&
BR
SRSERS 04
st

e pR e s,

St ganias
RS S IRES 03]
SRERES

P>

Figure 3.4: Top, left: convergence factor |poms){(w, )|, and right: optimized con-
vergence factor |pop(3)(w, az‘g))l. Bottom, left: convergence factor |pope(s)(w, )|, and

right: optimized convergence factor |popi(e)(w, afy)l-
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Figure 3.5: Optimized aa) VETSUS Q;yr-

the right hand side of Figure 3.4. In Figure 3.5 we compare the optimized a?j) with
the Taylor approximation a(;)r, where we plot them as functions of j.

We state the following result as a suggestion for applications for finite j > 2
based on the numerical experiments we have done. If we approximate the optimal
parameter o by a constant, and assume that the value of ;, 7 =1,2,... in (3.13),
with s = iw, w > 0, at w = 0, is denoted by Ajo, which is a real value since w = 0,
then as for the cases 7 = 1 and j = 2 in Sections 3.2 and 3.3 respectively, we have

2:( ag) +1 - Ko >2.: |
(agy+DAp—1) = 7

Oé(j) + 1- )\jO
a@) + 1A — 1

|Popt(5) (0, az))| = (

Now, since the numerator in A; is of a degree higher than the denominator by one,

we have

1 2
lim popei (i, )l = = R
I“HOOP pt(i) @) (a(j) T 1> j

By solving the equation R;y = R, we will get the solutions a(;y = 0, —2, A;o +

\/ )\JQ-O — 1 — 1. The solution which gives the right optimized constant approximation
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Figure 3.6: Optimized constant approximation g for different j on the left, and a

zoom on the right.

is

o)) :=)\j0+\//\?0——1—1,j=1,2,.... (3.36)
This result is formally proved for the cases 7 = 1 and j = 2 in Subsections 3.2.3,
3.3.3 respectively. For the infinitely large circuit with |b] > 2a and w = wyp;, a similar
result is found as we will see in Subsection 3.4.3. We show in Figure 3.6 the optimized

constant approximation o, given in (3.36) for different j as a function of the circuit

—b
2a

parameter ¢ = where —b > 2a for RC type circuits, and —b = 2a often holds.
We observe that the values become closer and closer as ¢ becomes bigger and bigger.
Note that o}, is equal to zero for j = 0o and ¢ = 1 i.e. —b = 2a, as one can see from
(3.36) since A\; = Ay =1 for j = 00, w =0, and ¢ = 1. However, as noted earlier, the
limit of the maximum of the convergence factor is one as w — 0 if |b| = 2a, and we
use equation (3.35) to find afj) for j = oo, where we take w = wp,. Note also that
Popt(oc) 15 the same as poyy, from Section 3.4. For wmin = 55 and wpe, = 207, we find

the value az‘oo) = 0.7346, which will be shown in Subsection 3.4.3 for the infinitely

large circuit case.
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Figure 3.7: A very small RC circuit.

3.2 A Very Small RC Type Circuit Model

A very simple RC type circuit, which we call the extra small RC circuit, is given in
Figure 3.7. We confirm here the results we found in Section 3.1 for 7 = 1, and we also
prove our practical suggestion given in (3.36) for this case. Indeed, this extra small
problem could easily be solved, but interest is in the large scale case, and by studying
the simple case we will gain insight for the larger ones. In addition, we are studying
this really simple circuit, because it will be of interest in a case where we have two
large circuits which are joined or connected with just a simple circuit like this one.

The circuit equations are specified in the form of (1.4) as

& = x+f, (3.37)

aq bz

where the entries in the tridiagonal matrix are given by

1 1 1 -
ay = ! . b, = —(E + R—I)C_17 ' 1’ Cy = ! .
RlCQ' —R11027 j = 2’ R16'1

The source term on the right hand side is given by f = (I,(t)/C1,0)T, for some source

function I,(t), and we are also given the initial voltage values z(0) = (v2,v9)7 at the

time ¢t = 0.



3.2 A Very Small RC Type Circuit Model 74

3.2.1 The Classical WR Algorithm

We analyze here the classical WR algorithm for the extra small circuit shown in Figure
3.7, which has only two nodes. We keep the entries in the system representing the
circuit without the simplifying assumptions given in (3.7), to get more general results
for the case j = 1. We partition the circuit into two sub-circuits, which contain only
one equation each for this case. We call the unknown voltage in equation one u;(t)

and in equation two w;(t). The classical WR algorithm applied to (3.37) is given by

L o S N F 5 | -
;= b+ ewt + f1,

o i (3.38)
- k+1 _ +1 k
Wi = bwi T + aquf + fo,
where we used the classical transmission conditions
uk T =k wf =k (3.39)

The corresponding initial conditions are u¥*1(0) = v and w{+!(0) = v3. To start the
WR iteration, we need to specify two initial waveforms u{(t) and w{(t) for t € [0, 7],
where 7' is the end of the transient analysis interval. The Laplace transform for s € C
of the homogeneous problem of (3.38) is given by

sayth = biayt! + ey, (3.40)

~k+1 _ ~k+1 ~k
sWiT = b 4 agy.

Solving the first equation in (3.40) for 4**!, and the second one for w**! we find
~k+1 _ e o~k
Uy = on W
~k+1 _ a1 ~k
wy = TRt

which implies, by inserting the second one at iteration k into the first one,

~k+1 ~k—1
W = paa(s, a1, ¢1,b)07,

with the convergence factor py, of the classical WR algorithm given by

a,Cy

pcla(s, ai, €1, b) = (S — bl)(s has bZ)

(3.41)
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Figure 3.8: Convergence factor for the classical WR algorithm, |pq.(w)].

The same result holds for @, and by induction we find 42* = (pg,)*4?, and @2 =

(peta)*w?. Note that, with the simplifying assumptions (3.7), the convergehce factor
Pela Elven by (3.41) is the same as the one given by (3.13) for the case j = 1. Equation
(3.41) has two poles, but they are both negative, since b, b, < 0. Therefore, by
Theorem 1.4, the convergence factor pg, is an analytic function in the right half of
the complex plane, s = n +iw, n > 0. Furthermore, the limit of py, for s := re®,
where —5 < 8 < §, as 7 — 00 is zero, so we have one limit in all directions. Therefore,
by the maximum principle for complex analytic functions, Theorem 1.5, the modulus
|pcia] takes its maximum on the boundary at 7 = 0. Direct computation shows that
|peta(w, a1, c1, b)| has its maximum at w = 0, and that the maximum is less than
one. Hence, the low frequency components in the signal, w close to zero, will cause

difficulties for the algorithm, and slow convergence. An example for the convergence

factor as a function of w is given in Figure 3.8.
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3.2.2 An Optimal WR Algorithm

The new transmission conditions that are proposed by Gander and Ruehli in {31}, the

equivalent to (3.5) with j = 1, are given by

(A — b ot = (WP —wh) +owf, (W —wE ) 4 BwE T = (ub — ub) + puk.

(3.42)
The new WR algorithm with the new transmission conditions for the extra small
circuit is given by

= (b + Cll)uk+1+(clw’f (,Hwo) + f1,

k+1

. (3.43)
= (b2 — B- wi + (a1uf + us) + fa,

where we start with initial waveforms 9, u), w?, and wg, which must satisfy the

initial conditions, and for the next iterations, the values u% and w§ are determined
by the transmission conditions (3.42). Using the Laplace transform as we did in the
classical case, we find from the first circuit equation, after some algebra,

C1

st = F(f(a + 1) — g), 1 = CECER S (3.44)
and similarly from the second circuit equation,
W = By(af(8 - 1) + if), Fp = = (3.45)

(s —b)(B—-1)+ar
Now, we want to obtain the convergence factor for the optimal WR algorithm in
closed form, similar to the result in (3.41) for the classical WR algorithm for the
extra small circuit. We need to find a relation between 4*! and ¥ from (3.44),

~k+

and similarly a relation between @™ and 4% from (3.45). Usmg the transmission

condition
(wf-%-l k+1) _+_/3wk+1 ( k U1) _+_ﬂu1,

we find, together with (3.45),

1 1
AR+l _ k41
o ((ﬁ—l)Fz ﬂ—l)wl |
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and using this result at step k in (3.44) we find for the first sub-circuit

N 1 1 .
Wl = Ry (a +1- G=1F + 7 1) T (3.46)

Similarly, for the second equation we find

1 1
(a+1)F +a-i—l

Wt = F, ( + 8- 1) ok (3.47)

Finally, by inserting (3.47) at iteration k into (3.46), we get a relation over two

iteration steps of the optimal WR algorithm,

~k+1 ~k-~1
u1+ :popt(57alaclab7a7ﬂ)u1 )

where the convergence factor of the new algorithm is given by

(a+1D)ai —(s—b) (B=1)c1+(s—by)
(a+1D(s=b)—c1 (B=1)(s—ba)+ar

popt(syalaclabaavﬁ) = (348)

The same result also holds for the second sub-circuit and by induction we find, as
before, 42F = (pop:)*t, and W = (p,p)*10?. Note that the convergence factor found
above is the same as the one given by (3.18) with the simplifying assumptions (3.7)
for the case j = 1. The optimal values of the parameters o and (3 are given in the

following theorem.

Theorem 3.5 (Optimal Convergence). The new WR algorithm (3.43) converges

in two iterations, independently of the initial waveforms 4 and 09, if

—b b
a=2"" 9 pg="2"7111 (3.49)

431 (&3]

Proof. The proof is similar to the proof of Theorem 3.3. O

Now if we consider the simplifying assumptions (3.7), then the optimal choice
(3.49) is the same as the one given by (3.28) for j = 1. We observe that the optimal

choice (3.49) is a first degree polynomial in s € C, which corresponds to first degree
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time derivatives in the transmission conditions, since a multiplication with s in the
frequency domain corresponds to a derivative in the time domain. Time derivatives
can be implemented at a similar cost as simple voltage values in the transmission

conditions, since derivatives require local information.

3.2.3 An Optimized WR Algorithm with Constant Trans-

mission Conditions

As we have seen in Subsection 3.2.2, one can use the optimal values of the parameters
a and (3 in (3.49) which are first degree polynomials in s to obtain optimal conver-
gence, but one needs to implement the first order time derivatives in the transmission
conditions. However, it is not the case for the larger RC circuits analyzed later, since
the optimal transmission conditions there correspond to nonlocal operators in time,
and we thus propose constant as well as first order approximations for the optimal
choices. In this subsection, we introduce a constant approximation for the best possi-
ble transmission conditions (3.49), which leads to a very practical algorithm. The low

frequency constant approximations for the optimal parameters in (3.49), are given by

From Figure 3.9, we observe that the convergence factor p,,; with the Taylor constant
approximation takes smaller values than the classical convergence factor pq, for low
frequencies, whereas py, is better for high frequencies. To find a better constant
approximation, we solve an optimization problem which allows us to reduce the large
paa({w) of the classical WR for w small in Figure 3.9 and make it more uniform, which
will then lead to faster overall convergence of the WR algorithm. Mathematically, we
want |peyt| < 1, which leads to the min-max problem

min <max |Popt (s, a1, b, cl,a,ﬁ)|) ) (3.50)

o8 \R(s5)>0
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Figure 3.9: Convergence factor |pqq(w)| (solid line) versus |pop(w, ar)| with Taylor

approximation (dashed line).

If popt is analytic, then the maximum of its modulus is attained on the boundary, by
the maximum principle, Theorem 1.5. Therefore, the first step in the optimization is
to ensure that the convergence factor p,,; does not have any poles in the right half of

the complex plane. The conditions for analyticity are given in the following lemma.

Lemma 3.3. Ifb; <0, a1, ¢; >0, |b1| > 1, |ba] > a1, and

a>_—cl—1::g, ﬁ<ﬂ+1:=ﬁ, (3.51)
bl b2

then the convergence factor poy in (3.48) is an analytic function in the right half of

the complez plane.

Proof. By Theorem 1.4, we have to show that the denominators have no zeros in the
right half of the complex plane. We only show the proof for the first quotient in pgp

given in (3.48) and «, since the proof for the second quotient and 3 is similar. The

only zero of the first denominator in poy is given by s = 25 + ;. This pole is in the
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left half plane, because the condition on « in (3.51) implies that
(@+ Db+ =—(a+ Db +a < —|b11(%cl) e =0.
1
(]

Since pope s analytic, we can apply again the maximum principle for complex
analytic functions, Theorem 1.5. The limit of p,, for s := re® where -3 <6<,
as r — oo is (ZoTIﬁ(lﬁ——l))v so we have one limit in all directions. Therefore, the
maximum of p,, for s = 1+ iw, n > 0, is attained on the boundary at n = 0. The
above analysis simplifies the optimization problem to

min <max |popt (2w, a1, b, c1, a,ﬁ)[) . (3.52)

a>a.B<B \|wl<oo

One can see from (3.48) that the modulus of p,y for s = iw depends on w? only, since
|((a + 1)a; + by) — iw| depends only on w?, and similarly for the other terms. Hence,
it suffices to optimize for nonncgative frequencies, w > 0. As we have seen in Section
3.1, we assume ¢; = a1, and b, = by, which leads to § = —« for the optimal « and
0 given in (3.49). In the analysis, we denote a; by a, and b; by b, and we choose
8 =—a.

Note that with the simplifying assumptions we made, we have ar > o, Or < B,
and O = —ar, for b < 0, a > 0, and |b| > a. In addition, a7 and fOr are the same as
the values in (3.33) with j = 1. Now we will investigate if there exists a better choice
for « such that the overall convergence factor is smaller than with the value from
the low frequency approximation. The convergence factor (3.48) with the simplifying
assumptions we made becomes

_ a+1-x\>
Popto(iw, @, b, o) = (—(a FE S 1) )

where A = &0 = =b L @; , > 0.
a a a
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We define a new parameter y by v = a+1 > a+1 = 3*. Wealso definew = £ > 0,
and b = :a—b > 1. Hence, A = b + iw. Taking the modulus of the convergence factor

Popto We obtain )
b2 — 29b + 4% + &2

Ro(@,0,7) = = 8 . 3.53
ol b:7) 6292 — 29 + 1 + 1202 (3:53)
Hence, the min-max problem (3.52) becomes
min (max Ro(©, (3,7)) : (3.54)
y>1 \(e20

To solve the min-max problem (3.54), the following two lemmas are needed.

Lemma 3.4. The function @ — Ro(@,b,~) defined in (3.53) has a unique local
mazimum at w =0 if v > b+ \/—Nb—zj Ifi<~vy< b+ \/ﬁ, then Ry has a unique
local minimum at @ = 0, and if v = b+ \/ﬁ, then Ry is a constant for all w, and
s gqiven by

Ro(@,b,b 4+ Vb2 1)

1
ol obV/B—1-1
Proof. A partial derivative of Ro(&,b,~) with respect to & gives
ORy _ 20(1 - 2vb+27°b — %)
Ow (5272 —2vb+ 1+ 72612)27

and therefore, Ro(&),é,v) has only one extremum, at @ = 0. This extremum is a
maximum if (1 —2vb+ 273 —4*) < 0, and is a minimum if (1 — 2vb + 2936 — %) > 0.
The equation 1 — 2vb+ 2736 — 44 = 0 has the four solutions y = —1, 1, b+ N
The values —1 and b — \/132——i are negative and can be neglected since v > % > 0,
and v = 1 can be also neglected since v = 1 implies « = 0. So we have only the value
b+ \/ﬁ Since the coefficient of the highest power, 7%, in (1 — 2'Yl~)+ 2’73?} —~%) is
less than zero, we have (1 — 2yb + 2v3b — +*) < 0, for v > b + \/ﬁ, and Ry has a
maximum at @ = 0, and for 1 < v < b+ VB2 — 1, we have (1—2vb+2v3b—~%) > 0,
and Ry has a minimum at @ = 0. Af b+ \/ﬁ, we have Qg—?} = 0, and the function
Ro(@,b,b+ VB2 —1) = m, is a constant for all w. O
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Lemma 3.5. For fixed ® > 0, and v > %, we have Q@g‘;’ﬂ(’y —v4) > 0, where

<\ Bt/ (B2 41-282) (B2 402 +14252)
’Y+(LU) - 2 .

Proof. A partial derivative of Ry with respect to v gives

OR, 2(—~213+13— )Y + (20202 — 1+ b* + %)y — @%b + b — b3

e (1+ (B2 + 322 — 29b)2

?

which has two roots in v, given by

B+ 0%+ 1 (b= 12+ 02)(b+ 1)2 +52)
2b '

vi(w) =
Since the coefficient of v? in %—}3’ is positive for @ > 0, and b > 1, the larger of the

1

two roots is a minimum. Note that v, > =, whereas y_ < %, so y_ can be neglected.

Za
For v > 4, ‘98—’3’ is positive and hence Rg(@, b, ) increases when - increases, whereas

for v < vy, 68_}3) is negative and hence Ry(w, 5, 7v) decreases when ~ increases. Hence,
BRg(@,b.
N (4 = 74) 2 0. 0

Theorem 3.6 (Optimized Constant Transmission Conditions). The best per-
formance of the optimized waveform relazation algorithm (3.43) with constant trans-
mission conditions is obtained for oo = a*, where a* = v* — 1, and v*, the solution of
the min-mazx problem (3.54), is given by

* 7 7 _b _bQ
Vo=b+ V1= — 44/ —) -1 (3.55)

a

Proof. By Lemma 3.5, the optimal v* must lie in the interval [5, 00), since with ~
outside this interval Ry can be uniformly decreased for all 0 < & < oo by moving
towards the interval [b, 00), which is obtained using the fact that v, (& = 0) = b, and
‘}LIIOIO ~v+(@) = oo. Furthermore, the partial derivative with respect to & shows that Ry
has no interior maxima, Lemma 3.4. Now, for v = B, we have Ry(0, l~)7 5) = 0, and so
increasing -y increases Ry(0, b, ) monotonically, by Lemma 3.5. On the other hand, for

1

v = b, we have Ro(Goo, b, b) = biz > 0, and increasing v decreases Ro(@eo, b, v) = 7
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Figure 3.10: |pea(w)| versus |pop(w, )| with optimized constant, and |pop(w, ar)|
with Taylor approximation.

to lim(é) = 0. Therefore, by increasing v we reach RO(O,B, v) = Ro(dzoo,é, v)-

Y—00

Solving the equation for v implies the solution in (3.55), and other three solutions,

v = -1, 1, b— /b2 — 1. Those three solutions can be discarded, since v > z, and

Sl

v =1 implies o = 0. U

Note that this value of v, i.e. ~*, is the same value that makes % = ( for all
w, and the function R, is equal to a constant. Figure 3.10 shows the modulus of the
classical convergence factor pgq,, and the optimized convergence factor p,, with the
Taylor and optimized constant approximations, with the values of a and b from the
numerical experiment in Subsection 3.2.4. One can see the better performance of the

optimized constant approximation over the Taylor transmission conditions, and the

classical one.
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3.2.4 Numerical Experiments

We give here a numerical example to illustrate the improvements in the convergence
of the optimized WR algorithm over the classical one. We use the typical values of

RC circuit parameters

1 63
RSZR1:§Oth, C]ZCQZWPF,

for the circuit in Figure 3.7. We choose for all the numerical computations the
backward Euler method, and our transient analysis time is ¢ € [0,10], with a time
step of At = 1/10. We start with random initial waveforms and use an input step
function with an amplitude of I, = 1 and a rise time of 1 time unit. In Figure
3.11 we show the error as a function of the iterations. One can see the remarkable
improvement of the optimized WR algorithm over the classical one. On the left hand
side of Figure 3.11 we choose b, = by, which is used to compute the optimized constant
a* = 2.732 and §* = —a*. We also use by = b; to find ap =1 and fr = —1. We can
see that the optimized WR algorithm with the optimized constant approximation is
better than the one with the Taylor approximation. On the right hand side of Figure
3.11 we use the circuit elements without simplifying assumptions. We use by = %1 to
compute ar = 0 and Oy = —1, and to compute the numerically optimized o™ = 1.618
and * = —1.618, which are used in the optimized WR algorithm, and we also use
here in the WR algorithm the optimized constant o* = 2.732 with 8* = —a*. Note
that for by = %1 in this circuit case, we numerically obtain optimized values for «
and 3 that satisfy o* = —f3*, which are in general need not to be the same. One
can see from the right hand side of Figure 3.11 that the best performance is obtained
by using the numerically optimized constant approximation, and that the optimized
approximation obtained analytically by assuming by = b; is better than the Taylor

approximation.
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Figure 3.11: Convergence behavior of classical versus optimized WR algorithms for

the extra small RC circuit.

3.3 A Small RC Type Circuit

A small RC circuit that has four nodes is given in Figure 1.1. It is twice as big as the
extra small circuit in Section 3.2, and was analyzed in [31, 1]. The equations for the

circuit are given in (1.5) in the introduction by the system of ODEs

b1 C1
a; by c
e=| 7 z+ f, (3.56)
a9 b3 C3
az by

and the entries in the tridiagonal matrix are

X] R Cl’
a; = 1 b, = -—(1 —|—ii 1=2,3 ¢ = .
, ; = .
RiCip Riox & Ri/Gy? Y R;C;
_ 1 i =
R;_1Cy? -

The source term on the right hand side is given by f = (I,(t)/C1,0,0,0)T, for
some source function /,(t), and we are also given the initial voltage values x(0) =

(09,09, v, v])T at the time t = 0.
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3.3.1 The Classical WR Algorithm

The analysis of the classical WR algorithm for the small circuit, with the classical
transmission conditions

k1 k k+1 _ ok
us = wy,  wpt = us, (3.57)

was discussed in [31]. The classical WR algorithm applied to (3.56), with a partition

into two sub-circuits, using the classical transmission conditions (3.57), is

W = b b+ L h i 0 E
a; b CowW
| &1 02 ] f2 2 1k (3.58)
Wkl = by c3 wrt 4 /3 + a2z 7
| az by i J4 0

with corresponding initial conditions u**1(0) = (v?,09)T and w**1(0) = (vd,v9)T.
To start the WR iteration, we need to specify two initial waveforms u)() and w(t)
for t € [0,T).

The Laplace transform was also used for the convergence study in [31, 1]. It was
shown that 42% = (pue)* 49, and ¥ = (py. )k @9, with the convergence factor pya,
which is given by

co(s —by) ' as(s — bg)
(s = b1)(s —b2) —aycr (s —bs)(s—by) — azes’

Peia(s,a, b, c) = s =n+iw. (3.59)

In [31], it is shown that the convergence factor pu, is an analytic function in the right
half of the complex plane, s = n+iw, n > 0. Furthermore, similar to the extra small
circuit, the limit of py, for s := re, where —% <8 < 7,as1 — oo is zero. Therefore,
Theorem 1.5 implies that the modulus |p.q| takes its maximum on the boundary at
n = 0. It is shown in [31] as well, that p., takes its maximum at w = 0. Hence, the
low frequency components in the signal, w close to zero, will cause difficulties for the
algorithm, and converge slowly. An example for the convergence factor as a function

of w is given in Figure 3.12 .
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Figure 3.12: Convergence factor for the classical WR algorithm, |pqq(w)].

3.3.2 An Optimal WR Algorithm

The new transmission conditions which are given for this case by

(7 =)l = (o), (T =)+ B = (o )+
(3.60)
were proposed in [31] by Gander and Ruehli. The new WR algorithm, using the new

transmission conditions (3.60), is given by

by C1 f1 0
aftl = . 4 ) e
[ — €2
| @ b+ f2 cowy — 27w (361)
by — 22 ¢y fa asuk 4+ 22k
) - 2 ~1U3
w = Al wkt! 4 + o :
as by f4 0

where the values u§ and w§ are determined by the transmission conditions (3.60). It

was shown in [31], that 425 = (pop)" 43, and W% = (pep)* 100, where the convergence
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factor p,, is given by

. ca(s-b1 }(B—1)+(s—b1)(s—b2)—aic
popt(S, abcofB) = — ((sz_bs)(ls_b4)_a3c3)(;3_1)4_22(311,:) (3 62)
 —az(s—bsa)(at+1)+(s—b3)(s~bs)—ages )
({s—b1)(s—b2)—aic1){a+1)+ca(bi—s) *

The best values of the parameters a and £ in the transmission conditions (3.60) are

—asgCs S — b3 ajcq S — b2
o= + ~1, B:= - +1, seC, (3.63
(s —byaz - as (s —b1)ea Cy ( )

where the optimal WR algorithm (3.61) converges in two iterations for this choice of
parameters, independently of the guess for the initial waveforms [31].

Gander and Ruehli [31] proposed an approximation of the best possible transmis-
sion conditions (3.63). An approximation by a constant was chosen in [31}, which
leads to a very practical algorithm with remarkable improvement over the classical
WR algorithm.

In the next subsection we will prove the optimality of the constant approximation

proposed by Gander and Ruehli [31].

3.3.3 An Optimized WR Algorithm with Constant Trans-

mission Conditions

The simplest constant approximations of the optimal parameters (3.63) in the trans-

mission conditions are again the low frequency approximations, which are given by

asc b 11C b
ap=2%_7% _ 4 .- N9, 72,
bsas a2 bycy Co

From Figure 3.13, we again observe that the convergence factor p,, with the Taylor
constant approximation is smaller than the classical convergence factor p., for low
frequencies, whereas p., is smaller for high frequencies.

As in subsection 3.2.3, the optimization process for the WR algorithm allows us to

reduce the large pyq(w) of the classical WR in Figure 3.13 and make it more uniform
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Figure 3.13: Convergence factor |pu.(w)| (solid line) versus |pop(w, ar)| with the

Taylor approximation (dashed line).

which will lead to faster convergence of the new WR algorithm. The analyticity of

Popt given in (3.62) is proved in the following lemma.

Lemma 3.6. Let b; <0, a;, ¢; > 0, biby > a;c¢1, bsby > azcs and

colbil 9 .
o > bibs—aic1 l=: &,
__az|bd} _. A
b < Fibi—ases T 1=:0.

Then the convergence factor py, in (3.62) is an analytic function in the right half of

the complex plane.
Proof. See [31]. O

Therefore, the maximum of p,, for s = n+iw, n > 0, is attained on the boundary.

Since, the limit of p,, for s := ret? where -2 <0< 3 asr—o00is (m)

one limit in all directions, we have that the maximum is attained at n = 0. The above
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analysis simplifies the optimization problem to

min <max |popt (iw, @, b, c,a,ﬁ)|> : (3.64)

a>a,B<f \Jwl<oo

One can see from (3.62) that the modulus of p,p for s = ww depends on w? only, since
lea(iw — b1)(B — 1) + (iw — b)) (3w — by) — ajc;| depends only on w?, and similarly for
the other terms. Hence, it suffices to optimize for nonnegative frequencies, w > 0.

Now we will investigate if there exists a better choice for a and 3 such that the
“overall convergence with this new choice is better than the one with the low frequency
approximation. We again use here the simplifying assumptions and the similarity of
the subsystems, as we did in Subsection 3.2.3 for the extra small circuit case. So we
choose § = —a, and hence, « is the only optimization parameter left, and we also
assume ¢; = a; = a1, for 1 =1,2,3, and b; = b, for i = 1,2,3,4. We denote a; by a,
and b; by b.

Note that, as in the extra small circuit case, with the simplifying assumptions we
made, we have ar > a, fr < 3, and fr = —ar, for b < 0, a > 0, and |b| > a. In
addition, ar and fr are the same as the values in (3.33) with j = 2.

The convergence factor (3.62), in terms of a, b, and a becomes after simplification,

1-X 1\’
ot ) , (3.65)

poptO(iwv a,b, Oé) = (m

where)\:(s;—é):)—azz“_b+lﬁ“_b):ﬂf

St eV, s=iw, w2 0.

To further analyze the convergence factor, we use the fact that |b} > 2a for RC

type circuits, where |b] = 2a often holds, as we will also see in Section 3.4 for the

bfﬂg — 1 is positive for |b} > 1+2‘/5a, and

infinitely large RC circuit. Now since o :=

1+v5
2

in our case we have |b| > 2a > a, we consider o > 0, and pypo 1s still analytic in
the right half of the complex plane. In order to show that this is true, we need the

following lemma.
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Lemma 3.7. Let b < 0, a >0, and —b > 2a. If A = (S;(bs):)az, s =1+ 1w, then the

modulus of X\ is bigger than one in the right half of the complex plane.

Proof. The modulus of X is given by

(s —8)* —a?| _ |(s +[b])* — o]
la(s - b)] la(s + [B))]

Al =

and using the scaling we defined in the introduction, i.e. taking a = 1, b = —2¢?, and

¢ > 1, we have

A= (M?+1 +w?+ 4nc?+ 2n + 42+ 4t n?+ 1 + w? + 4nc? — 2n — 4c?+ 4ct)

B %+ 4nc+ 4ct+ w? '
This shows that the modulus |A| is bigger than one, since the first factor in the
numerator of the argument under the square root is bigger than the denominator,
and the second factor is bigger than one for ¢ > 1 and 5 > 0. Hence, |A| > 1 in the

right half of the complex plane. O

Now to show that the convergence factor pgu is still analytic in the right half of
the complex plane for o > 0, we use the following contradiction. We take o > 0,
and we assume that p,o has a pole in the right half of the complex plane, then

(¢ + 1)\ — 1 = 0 implies
1
a+1’

and hence |A| = || < 1 for o > 0, but [A] > 1 for s =7 +iw, n > 0, and [b] > 2a,

o+

by Lemma 3.7, which is a contradiction. So, there is no such pole, and p,uo is analytic
in the right half of the complex plane for « > 0. In addition, the optimized value of

«, as we will see later, is bigger than a.

s(s—b)—a?

We also introduce a change of variables based on the real part of z := =—p—,

s = iw, w > 0, which appears in A. We write z as

z=r+iy=N (‘—S—(i;—i)b;(ﬁ> +$ (%_@) i, (3.66)
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and hence we have

-b 1
A=—+—(z+1y). (3.67)
a a
The real part x is given by
ba?
rEX)=pra
and the imaginary part y is given by
w(b? + w? + a?)
y=Yw) = b? + w?

The range in which z can vary can be found by taking the value of X (w) at w =0,

and the limit as w goes to infinity,

2
X(w=0)= % lim X (w) =0,
and hence r € [%, 0), (note that b < 0).
Solving x = X(w) for w gives
(b — o2
w(z) ==+ sbab —a )
T

Since w > 0, and we have x € [%, 0), we consider

w(z) = — uxb(‘jb — %) (3.68)

and the other root can be discarded since it implies the same result since |p,,:| depends

on w?. Inserting the value of w from (3.68) into Y (w) implies after simplification

—xb(zb — a?)(b+ x)
ab

y=— . (3.69)

By inserting y from equation (3.69) into (3.67), and the result into (3.65), the con-
vergence factor (3.65) is a function of the new variable x.

The optimal value of o in (3.63) can be written in terms of A as @ = A — 1, where
A is given in (3.67). Moreover, if p is a free parameter corresponding to a constant

approximation of x4y in (3.67), then a constant approximation of o is a = :aé —1+4E
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In the new variable x, and the new parameter p for the constant approximation,'

the convergence factor (3.65) in modulus becomes

lpoptO(x7 a, b7 p)l

_ —a?((26°+2bp—a?)x? +(~2ba® +b° - bp? )z —b%a?)
T ((—4b1 - 4b2p2 +-8b3p+3b2a2+a2p2 —4bpa?)z2 + (202 p2b+alb—2b2pa? )z +bta? — 2b3paZ 4 p2b2aZ)

Factorizing a® from the denominator and numerator, implies

|popto (T, @, b, p)| = %;—EEZ—Z—:Z—:-Z—;,
where
Q== (22 &) - 1) (@ + (-2 O+ (O’ - Q@) (- ()).
= (A 10 (8 (" () 43+ (2 - 1) () (2)
FREFO -2 @) @+ @) 2@ @)+ @) Q).

We set p = L, and in addition, we set g = —2c¢%, ¢ > 1, since |b] > 2a, to eliminate
one parameter, and assume Z = £, where Z € [ﬁ;, 0) = [-55,0).
Since we have a > 0, the new parameter p should satisfy p > 1—2¢%. Furthermore,

the modulus of the convergence factor (3.65) is now given by

(4¢2p—8c* 4+1)32 4 (8cP —4c? —2c2pH2) G +-4ct

Ro(T,c,p) = — (648 —8c25—12c3+64c5p+16¢7p2 —p2 )22+ (22 +4c2 P2 +-8¢2p) T — 16¢® — 16¢0 p—Acip? 7
(3.70)
where Z € [—55,0), and the min-max problem (3.64) becomes
min max Ro(Z,c¢,p) ), ¢> 1. (3.71)
p>(1-2¢) \ 73 <i#<0

To analyze the min-max problem (3.71), we need the following lemmas:

Lemma 3.8. For p > 1 —2¢%, and ¢ > 1, the polynomial L defined by

L(c,p) := (16¢* — 1)§* + 4c*p — 64c® — 1 + 28¢%, (3.72)
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has a unique real root at

~ —92¢? + \/48c4 + 102412 — 5128 — 1
P+ = 16c4 — 1 ‘

(3.73)
Moreover, p, > 0, and L(c,p) > 0 for p > Py, and L(c,p) <0 for 1 —2c% < p < py.

Proof. The polynomial L has two real roots py, which are given by

 —2¢% 4+ \/ABA § 1024c72 — 5128 — 1
Px = 16¢4 — 1 '

(3.74)

The first root p, satisfies p, > 0 > 1 — 2¢?, since

Py >0 <= —2¢% 4+ V48c¢t 4+ 1024¢12 — 51288 -1 > 0
— 48¢* +1024¢? — 51265 — 1 > 4¢

— 44¢* + 102412 - 5128 — 1> 0,

and the last inequality is true for ¢ > 1, since the coefficient of the term ¢!? is the

dominant one. For the second root p_, we have p_ < 1 — 2¢? since

po<1—-22 = —2c% — /48c¢* +1024c2 — 512¢8 — 1 < (1 — 2¢%)(16¢* — 1)
= 32¢8 — 16¢* — 4c? + 1 < v/48c* + 102412 — 5128 — 1

(both sides are positive, so square and simplify)
= —1024c0 + 192¢5 — 64ct — 8c? + 2 + 5128 < 0,
and the last inequality is true for ¢ > 1. Hence, p_ can be discarded.
Since L(c, ) is positive for large p, because of the sign of the coefficient of * which
is positive, wev have L(c,p) > 0 for p > p,, and for 1 — 2¢? < p < p, the polynomial
L(c,p) < 0. 0

Lemma 3.9. Forp > 1—2c%, and ¢ > 1, the polynomial d given by

d(c,p) = (1 —16cH)p* — 4c2p® + (128¢% — 32¢* + 2)p? (3.75)
£(80¢® — 4E?)j + 240¢8 — 32¢t — 256¢12 + 1, '
has only two real Toots, say Py and Pz, and p1 < P2, which are both bigger than zero,

and has no roots in the interval (1 — 2¢2,0]. Furthermore, d satisfies the following:
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Figure 3.14: The polynomial d for the case c = 1.

i) d(c,p) <0 for p e (1—2c¢%,p1) (P2, 00),
i) d(c,p) > 0 for p € [pr, pa]-

Proof. The polynomial d(c, p) is negative for large p, because of the sign of the co-
efficient of p* which is negative. Moreover, d takes positive values, e.g. at p = 2¢2,
d(c,2¢®) = (16¢* — 1)? > 0, hence, it must have by continuity and the Intermediate
Value Theorem at least one real root pa(c) > 2¢2 > 1 —2¢2, d(c, p2) = 0. An example
of d with ¢ = 1 and p > 1 — 2¢? is given in Figure 3.14. To show that d has exactly
two roots bigger than 1 — 2¢?, say p, and py, and ps > p, > 0, we use the derivative

of d(c, p) with respect to p. The derivative

d
ZB(d(c,p‘)) = 4(1 — 16c")p° — 12¢%p% + 2(~32¢* + 128¢° + 2)p — 4c* + 80c°

has two real roots, say 71,72 > 1 — 2¢2, and a third real root, say 73, less than 1 — 2¢2,
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since
d(c, p)) lp=-22 = 4c*(32¢* — 3) > 0,
(c

(
(d(c, ) lp=1-2c2 = —8(4c* — 2¢* — 1)(4c® — 1)* < 0,
(d(c. P)) lp=0 = 4c*(20c* — 1) > 0,

(d(c, P)) lp=2e2 = —4c*(16¢* — 1) < 0.

Sla Sl Sl= Sl=

Therefore, by the Intermediate Value Theorem, we have r3 € (—2¢%,1 — 2¢?), which
can be discarded, r5 € (1 ~ 2¢2,0) which is a minimum, and r; € (0,2¢?) which is a
maximum.

Now, we have d(c, 1—2c?) = —4(4c*—2c?—1)(4c¢?—1)? < 0, and then d decreases to
more negative values until d reaches its minimum at 79, after that d starts increasing to
its maximum at r; € (0,2¢?), which is a positive value since d(c, 2¢?) = (16¢*—1)% > 0,
and r;, where the maximum is attained, is less than 2¢?, so here d(c,p) has a real
root which is p; > 1 ~ 2¢?, and more than that, we have p; > 0 since at p = 0, d(c, p)
is negative. After d reaches its maximum at 7, it starts decreasing again to minus
infinity, so here d has its second root p, > p; > 0, and there are no more roots, since
d decreases to minus infinity.

Therefore, d(c, p) has only two roots, py > p; > 0, for p > 1—2¢*, and ¢ > 1, and
no roots in the interval (1 — 2¢2,0]. Moreover, d falls under one of the following two

cases:
i) d(c,p) < 0 for p € (1 —2¢% p1) U(p2, 00),
it) d(c, 7) > 0 for § € [py, o).
|

Lemma 3.10. For ¢ > 1, the root p, given in (8.73) lies in the interval [p1, pal,

where Py and Py are the two real roots of d which are characterized by Lemma 3.9.

Proof. By Lemma 3.8, we have p, > 0 for ¢ > 1. Now, since d(c,p;) > 0, p4 must

lie in the interval [p, p2}, by Lemma 3.9. O
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Lemma 3.11. For p € [p1, p2), and ¢ > 1, the polynomial P, defined by
Po(c,p) = (1 — 16¢M)p? — 4¢*(1 + 4c")p + 32° — 28¢* + 1,
15 always negative.

Proof. Using the Intermediate Value Theorem, one can show that the two roots of P,
arer_ € (—2c?,1—2¢%) and ry € (0,2¢?). By finding the precise ., and substituting
it into d in (3.75), we have d(c,r,) < 0, and since d(c, p) > 0 for p € [p1, Do), Lemma
3.9, and 7, < 2¢%, we have r_ < r, < p;, and the two zeros ry are not in [p1, 2. In
addition, the coeflicient of 5 is negative, which implies that the sign of P, is positive
only for p € (r_,r,), and is negative everywhere else. Hence, the polynomial P; is

always negative for p € [p1, pa. O
Lemma 3.12. For > 1 —2c%, and c > 1, the polynomial Py defined by
Py(c, p) = L(c, p)((—16¢® + 1 — 16¢*)p? + (—4c® — 32¢%)p + 64c™? — 16¢® + 1 — 28¢*),

where L 1s given in (3.72), has only two real roots, p, given in (3.73) and another real
root, say p, and 1 — 22 < Py < p < p,, where Py is the real Toot of d in Lemma 3.9.

Moreover, Py is negative for p € (1 — 2¢%,p) (P, 00), and positive for p € (p, Py ).

Proof. For p = p,, p_ given in (3.74), the roots of L, we have Py(p) = 0, which means
pr >0, p_ < 1 - 2¢2 are roots for P4(p). One can also find the other two roots from
(1-16c®—16c*)p? — (4c2+328)p+64c!? — 16841 —28¢* = 0, which implies two roots,
one is less than 1 — 2¢2, and hence, it can be discarded, and another root ﬁ >1-2c2,
where p < Py, since L(c, p) < 0, and L{c, p) is negative for all § € (1 — 2¢2,5,), by
Lemma 3.8.

Therefore, P4(p) has exactly two roots bigger than 1 — 2¢?, which are p; and
p. Furthermore, d(c,p) > 0, which means p; < p, since 1 — 2¢% < p, and d(c, p) is
positive in (p1, P2), by Lemma 3.9. Therefore, from the sign of Py, the polynomial Py
is negative for p € (1 — 2¢%, p) (P4, 00), and positive for p € (p, py ). O
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Lemma 3.13. For p > 1 - 2¢?, and ¢ > 1, let z,(c, p) be given by

o (16¢* + 8¢%p + 2V d) P
xl(cvp) = I 3

where L and d are given in (3.72) and (3.75) respectively. Then 1 is not defined for
b = py, and is complex for p € (1 — 2¢2, 1) (P2, 00). Furthermore, xy < 73 for

[f)lvﬁ+)7 and z, >0 fO’I" (ﬁ-l—vﬁ?]'

Proof. By Lemma 3.8, the denominator of z; is zero at p = p4, and by Lemma 3.9,
d(c,p) < 0 for p € (1~ 2¢% 1) U(p2, o0). Hence, 71 is not defined for p = p,, and is
complex for p € (1 — 2¢%,51) (P2, 00). For p € (py, p2], we have 1 > 0, since it is
a fraction of two positive quantities, Lemmas 3.8 and 3.9. Consider now the interval

[]51 ) ]54—); then

—1 (85c®+16c* +2vd)c?
2c? L

= (8pc® + 16¢* +2Vd)? > 5%

=1
2c2

Ty < <
(L is negative in the interval considered)
— 4c*Vd > —L — 16pc® — 32¢8
= 4c4Vd > (1 - 166))p? — 4% (1 + 4ch)p + 32¢° — 28¢* + 1.
Now, since in the interval considered, the left hand side is positive, Lemma 3.9, and
the right hand side is negative, Lemma 3.11, the last inequality is true and we have

xr < —1 O

@.
Lemma 3.14. For p > 1 — 2c2, and ¢ > 1, let z5(c, p) be given by

(16¢* + 8¢*p — 2v/d)c?
L b

-7"2(07 ﬁ) =

where L and d are given in (3.72) and (3.75) respectively. Then 3 is not defined for
P = Py, and is complex for p € (1 — 22, p1) (P2, 00). Furthermore, zo > 2'7% forp e
(b, 9+) U(Py, Do), and x5 < 53 for [p1,p). In addition, x5 < O for p € [p1,py) U(Bs, D),
and 25 > 0 for [p, Ba], where p = V&cF — 1, and p,. < p < pa.
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Proof. The proof is similar to the proof of Lemma 3.13. By Lemma 3.8, the denomina-
tor of 25 is zero at p = p,, and by Lemma 3.9, d(c,p) < Oforp € (1—2¢%, p1) U(p2, 00).
Hence, z4 is not defined for p = p,, and is complex for p € (1 — 2¢2, py) (P2, 0).
For p € [p1,P+), we have

8pc? +16¢* —2v/d)c? _
<:>(pc+CL \/_)c>ﬁ

= (8pc? + 16¢* — 2V/d)? < 5%

=1
2¢2

Ty >

(L is negative in the interval considered)
— 4cd > L + 16pc® + 328
= 4c*Vd > —((1 = 16¢4)p? — 4c2(1 4 4c*)p + 32¢® — 28¢% + 1)
(R.H.S is minus the polynomial P; studied in Lemma 3.11),
(both sides are positive, so square and simplify)
—
L(c, p)((—16c®+1—16¢1)p? + (—4c - 32¢%) p+64c'2 —16c®+1—28¢*) > 0.
The left hand side is the polynomial P, studied in Lemma 3.12. Therefore, by Lemma
3.12, we have 5 < % for p € [ﬁl,f)), and for € [p, p.), we have xy > gc—ﬁ Consider
now the interval (py, ps], in which we have
2 4+16¢% —2v/d)c? -1
2 2
= (85 + 16¢* — 2v/d)c? > 5%

=1
2c?

(8pc

Ty > >
(L is positive in the interval considered)
< 4ctVd < L+ 16pc® + 32¢8
= 4ctVd < —((1 - 16¢)j? — 43 (1 + 4¢*)p + 32¢° — 28¢* + 1)
(has been seen earlier),
(both sides are positive, so square and simplify)
—
L(c,p)((=1684+1—16¢")p? + (—4c? —32c8)p+64c1? — 165 +1—28¢*) < 0.
The left hand side is again the polynomial P, studied in Lemma 3.12, and thus,

To > % for p € (P4, p2). Therefore, zo > 236% for p € [ﬁ,;ﬁ+)U(ﬁ+,ﬁg], and 7o < 5‘2%
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for [y, p). For p € [p1, Py ), we also have

(8pc2 +16¢* —2v/d)c?

-1
T >

22

= 4pc? +8c¢* —Vd >0

To <0 <

(L is negative in the interval considered)
= G-PE+p)FE )P -5) >0,

where p = /4c* — 1, and p, p_ are given in (3.74). Therefore, the only two roots of
the left hand side in the last inequality above, which are bigger than 1 — 2¢2, are py
and . Moreover, since L(c, p) is positive for 5 = p > 1 — 2¢2 , we have p, < p, by
Lemma 3.8. Also, since d(c, p) at p = p is positive, and p > p,, we have p € (p1, Pa),
by Lemma 3.9. By studying the sign of the left hand side expression in the last
inequality, [(p — p)(B + p)(p — p)(p — p_)], we see that zo < O for p € [p1,Py)-

Consider now the interval (p,, p2], in which we have

(86> +16c* —2vd)c?
L

-1
> 2¢2

= 4pP + 8¢t —Vd < 0

Ty <0 —=

(L is positive in the interval considered)

= F-p)P+pP—p)F—F) <0,

which implies that, z, < 0 for p.€ (p4,p), and 2o > 0 for § € [p, o). Therefore,

zy < 0 for p € [p1,74) U(P+, p), and x4 > 0 for [p, pa]. O

Lemma 3.15. The function ¥ — Ry(Z,c,p) defined in (3.70) has a unique local
mingmum at

(16¢* + 8c?p — 2+/d(c, p))c?

16¢% — 1)j? + 4¢P — 64¢5 — 1 + 28¢4

z(c,p) = ( d(c,p) given in (3.75), (3.76)

n[53,0), if p € 0,54 U(B+,p) for ¢ > 1, where py, p and p are determined by
Lemmas 3.8, 3.12, and 3.14 respectively. For any other value of p > 1 — 2c?, Ry has

no extrema in Z € [53,0).
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Proof. A partial derivative of Ry(Z, ¢, p) with respect to Z shows that the roots of the
polynomial

Q@) = (p—14+2)(p+ 1 +2)P(),
where P(Z) is given by

P(%) = —2c2(16c*5? — p?+4c2p+28c* —64c® — 1) 32 +2c2(16¢* p+32c°%) (3.77)
—2c*(4cp? +4ct—16c8),
determine the extrema of Ry. Since (p — 1+ 2¢%)(p+ 1+ 2¢?) > 0 for ¢ > 1 and
p>1—2c2 we have Q(%) = 0 < P(z) = 0, with the same coeflicient signs. The
polynomial P(%) has two roots Z and Z given by
E(c, 5) = (16c* +8c2p+24/d(c,p))c?

T (16t —1)p2+4c2p—64c8 —1+428c1?

(16c24+-8c2p—2+/d(c,p))c?

Z(c,p) = (16cF _1)p2 4425648 _1128c0

and d(c, p) is given in (3.75). Note that, Z and Z are the same z; and x5 which are
given in Lemmas 3.13 and 3.14, respectively. By Lemmas 3.13 and 3.14, 7 and T are
not defined for § = P, and are complex for p € (1 — 2¢2, py) (P2, o0). Therefore, we
analyze for the intervals [py,py) and (py, p2]. Now, by Lemmas 3.13 and 3.14, Ry has
only one extremum in [E‘C—é Oatz=2zifpe (D, p+) U(B4, ). By studying the sign
of Q(2), it is a minimum. For any other value of § > 1 — 2¢?, Ry has no extrema in
7. because either the extrema are not defined or are not in [Z‘—C}z, 0), Lemmas 3.13 and

3.14. (I

Note that if $ = p,, which is the zero of the denominator of # and Z that makes
them not defined, then the polynomial P(%) given in (3.77) is reduced to a polynomial

of degree one, given by
P.(2) = 2¢2(16¢*p, + 32¢%)7 — 23 (4c*p% + 4c* — 16¢°), (3.78)

and has only one zero, given by

- ’_ﬁ++1—4c4_ —c?
T 4py 482 16ct -1
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and Z, € [53,0). Since the reduced polynomial P,(Z) in (3.78) is just a line, and the
coefficient of 7 is positive, Z, is a minimum. This case is not however of our interest,
since if we take p = p,, then we already have the value of the parameter p which we

want to optimize, and no more optimization process.

Lemma 3.16. For fited Z € [~55,0), and p > 1—2¢%, we have M(p p(%,c)) >
0, where p(T, c) is given by
33, ¢) = 62T — 4c* — 162c° — 7% + 8%t — /d(Z, ¢) (3.79)

2(4c'z + 2232) ’

and d(Z, ¢) is given by

d(F, ¢) = ((16¢* —4c® — 1) 72+ (6> — 8¢ 7 — 4c*)(16¢* +4¢” —1)3 + (8¢ +67) T —4c?) .
(3.80)

Proof. A partial derivative of Ry(Z, ¢, p) with respect to p shows that the roots of the

polynomial
Q(p) = — ((16¢* — 1)2* + 2°% — 4c*) P(p),

where P(p) is given by

P(P) = —(4c272 4 8c*%)p? — (327 — 1672c* — 12c%F + 8¢* + 22)p

(3.81)
—327¢® + 48728 — 168 + 16¢47 — 8222,

determine the extrema of Ry. ‘

For & € [—35,0) with ¢ > 1, we have —((16¢* — 1)#* +2c*% — 4c*) > 0. Therefore,
Q(p) = 0 < P(p) = 0, and they have the same coefficient signs. The polynomial
P(p) has two roots p and p given by

6c2%—dc? -165c8 ~F2+872%ct+4/d(F,c)

2(4ctz42c272) ’

6c2%—4ct —16%c8 —324-832ct - /d(&,c)

])(.i', C) - 2(4c%&+2c222) ’

(Z,¢) =

=




3.3 A Small RC Type Circuit 103

and d(Z, ¢) is given by (3.80). One can show, using the first derivative with respect

=1
2c2?

to Z, where Z € [53,0), ¢ > 1, and finding the minimum that the two factors of d

are negative for Z € [53,0), ¢ > 1, i.e.

(16c¢* — 4c2 — 1)7% + (6¢* — 8¢*)x — 4c* < 0,

(3.82)
(16c* + 4c? — 1)7% + (6¢? + 8c!)7 — 4c* < 0,

and hence, d > 0 for T € [%70).
Now, we want to show that p < 1 — 2¢2, and hence p can be discarded, and

p>1—2c For p, we have

p<1—22 <= (8c* = 1)32 4 (6¢ — 16¢%)% — 4c* + Vd > 423 (3 + 2¢2)(1 — 2¢7)
(since (% + 2¢%) < 0)
— Vd > —((16c* — 4¢2 — )2+ (6¢* — 8cH)7 — 4ct)
(both sides are positive by (3.82), square both sides and simplify)
<= 8c%i(% + 2¢?) ((16c¢* — 4c? — 1)7% + (6¢% — 8¢*)z — 4c?) > 0.

The last inequality holds since (16¢* — 4c? — 1)7? + (6¢* — 8¢*)Z — 4¢* < 0, and

8c%E(Z + 2¢?) < 0 for & € [53,0). Hence, p < 1 — 2¢%. For p, we have

p>1—2¢, (after simplifying like before)
<

Vd > (16¢* — 4¢% — 1)22 + (6¢* — 8¢ — 4ct.

The last inequality holds since the right hand side is negative, and the left hand side

—1

is positive for Z € [73,

0). Hence, p > 1 —2c%.

The coefficient of p? in the polynomial P(p) is positive for Z € [—~5%,0) with
¢ > 1, and hence, the larger of the two roots p and p is a minimum. Therefore, for
1-2¢¢ <p< P, increasing p decreases Ko, whereas for p > p, the opposite holds, i.e.

increasing p increases Rj. O
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Theorem 3.7 (Optimized Constant Transmission Conditions). The best per-
formance of the optimized waveform relaxation algorithm (3.61) with constant trans-

mission conditions is obtained for o = «*, where
a* =22 -1+, (3.83)

and p*, the solution of the min-mazx problem (3.71), is given by

—14+ /14168 — 124
2¢2 ’

~k

(3.84)

and ¢ = /32 > 1. Furthermore, o* > bl _1=¢

b2—qg2 =

Proof. By Lemma 3.16, the optimal p* must lie in the interval [2_—2, 00), since with p
outside this interval, Ry can be uniformly decreased for all 5z < # < 0 by moving
p towards this interval. The left endpoint of this interval is p(fE = 217), and the

right endpoint is (Z = 07) := hm (p(z)). Now, by Lemma 3.15, the maximum of

the min-max problem can only be attained on the boundaries, at £ = % and at

Z = 07, since Ry has no interior maxima. By the notation £ = 0~ we mean that

# approaches 0 from the left, since we have ¥ € [Z%,0), open from the right. Now,

2c2?

for p = p(& = 33) = 53, we have Ro(53,¢, 202) = 0, and so increasing p increases

RO(%, ¢, p) monotonically, by Lemma 3.16. On the other hand, for p = we have

2 27
Ro(07, ¢, 53) = m > 0, ¢ > 1, and increasing p decreases Ry(07,¢,p) = m

to hm( ) = 0. Therefore, by increasing p we reach Ro(5z,¢,p) = Ro(07, ¢, ).

m
Solvmg the equation for p gives the solution in (3.84), and three other solutions,

I‘)' =1— 202’ —1— 2627 —1-V/14+16c8-12c*

. Those three solutions can be discarded, since

2c2
# > 1 — 2¢%. Therefore, we have a* = 2¢2 — 1 + % =22 - 145, c=4/52 > 1,
where p* is given in (3.84), and a* > b;“b(LQ -1l:=qa. O

In Figure 3.15, we show the modulus of the convergence factor for the optimized

WR algorithm with the optimized constant approximation, peto(w, @*), and with the
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Figure 3.15: Classical convergence factor |peq(w)|, versus |pgpo(w,a*)| and

|Popto(w, ).

Taylor approximation, pp(w, cr), as well as the modulus of the classical convergence
factor pg,, for ¢ = 1 from the numerical experiment in Subsection 3.3.5. One can see
the remarkable improvement in magnitude and uniformity for the convergence factor
with the optimized constant approximation over the classical one and the one with

the Taylor approximation.

3.3.4 An Optimized WR Algorithm with First Order Trans-

mission Conditions

We now approximate the symbols @ and 8 = —a from (3.63) corresponding to the

optimal transmission conditions by a first order polynomial in s,
a = oy + 18, (3.85)

where we have two free parameters g and o that we can choose to obtain a new

optimized waveform relaxation algorithm. We assume that o # 0, since otherwise we
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will get the constant approximation case. The Laplace transform of the transmission

conditions in (3.60), with 3 = —a, using the first order expansion (3.85) for o, implies

Skl sk N Skl (ak  ok Ak ~k
(Agt' — a5t + apts ' + apsts T = (WF — wE) + aly + aysdy,

(W — WE) — aiitt — aqswfTt = (ak

(3.86)

~k Sk Sk
U5 — U5) — oglly — oy SUs.

A multiplication by s in the frequency domain corresponds to a time derivative. Now,
by substituting

ik — Dok a0k ko f

wy = b3LU1 + c3wy + agwy + /3,

UIQC = alu’f + bg’ug + Cg’ug + f2,

from (3.2) for j = 2, into (3.86), assuming o # 0, we obtain

skl 1 k+1 _ (I4oo) k+1 | (A4aotoabs)  k  (ona2—1) & k

Us = 2 Uy o U3 + @ wy + o Wo + csws + f3, (3.87)
ck+1 1 k+1 _ (daoe) k+1 (A4+op+a1ba), k (crca—1) &k k ’
A e wo o+ o uy + U + aquf + fo

These ordinary differential equations found from the transmission conditions imply

the following two decoupled subsystems,

- k+1 k+1
Uy by o Uy fi
- k-+1 — k+1
Uy - aj b2 Co Uy + f2
Gkt 1 —(ao+l) it fs
3 3
a @ (3.88)
0
+ 0 ;
(c102-1) k| (+oo+anbs), k& k
o Wo + e W + c3wy
and
s k+1 —(ao+1) 1 k+1
Wo o ar Wy fa
- k+1 _ k41
wl - ag b3 C3 wl =+ f3
- k41 k+1
Wy az by Wy fa
(14+ap+aibz) ( 1) (3'89)
k ap+o102) k a1c2— k
a uy + o Up + = U
+ 0 )
0
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with the initial conditions w**1(0) = (v?,19,v9)" and w**1(0) = (v3,v3, v§)¥, where
now the transmission conditions are already implemented in the algorithm. To start
the WR iteration, some initial waveforms u°(t) and w°(t) are used. The subsystems
are now bigger than those we obtained using the constant approximation in Subsection
3.3.3. However, the first order approximation leads to better convergence as we will

see.

The Laplace transform of (3.88) and (3.89) yields in the s € C domain

bl (&} 0
safH — a by Wt 4 0
—(agHl ajaz—1) - 1 b
| a% (af:%) ( laf ) 0+(+awa1 3)w1+c Wk
— (g Hl ~ Ha b ay1co-1) ~
(a‘?) ail (1,111,’f+( (2?1 2)u’2“+( o )11,3
S’li)k+1 — as b3 ¢3 ,ﬁ)k—f-l + 0
ag b4 0
(3.90)
A straightforward computation for the first subsystem in (3.90) implies
Ak+l 62(8 - bl) ~ k41
Uy ' = U . 3.91
2 (S - bl)(S - bg) — a3y 3 ( )
From the first equation in (3.86) we obtain
1
k41 kel | o~k _ ook ~k
Uy = ————————— (U + W] — Wy + (ap + a18)wy). 3.92
'3 (a0+a13+1)(2 1 o + (@ + ons)iy) (3.92)
Substituting (3.92) into (3.91), we get after some algebra,
Ak+1 = Fl( e wo + (CY() + 0618)11){6) (393)

where F) is given by

c2(s — by)
(ag + ars+ 1)((s — by)(s — by) — arc1) — ca(s — by)’

F1 =
Similarly, from the second subsystem, we obtain

Wt = Fy(af — aF — (ap + ap8)iik), (3.94)
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where F, is given by

CLQ(S — b4)

Fo= —(ag + s+ 1)((s — b3)(s — by) — agcs) + aa(s — by)

As before, we need to find a relation between @5 and ¥, and similarly a relation

k+1
1

between w5*! and 4%. Using the second transmission condition in (3.86), we find,

together with (3.94),

BEH! = ( 1 _ ! e
0 opt+os+1 (apt+os+ 1)) 17
and using this result at step k in (3.93), we find for the first sub-circuit

1 1
Gkt = | +as+1— + k. 3.95
Uy 1 ((10 18 a + s +1 (oo + as + 1) wy ( )

With a similar manipulation for the second subsystem, we find

1 1
= - s+1) ) 5. 3.96
N ’ ((ao+a18—l—1)F1 +040+O¢13+1 (g + ars + )> thy (3.96)

Finally, by inserting (3.96) at iteration & into (3.95), we get a relation over two

iteration steps of the optimized WR, algorithm,

~k+l - ~k=1
U‘2 - poptl(bva7cub7a07al)u2 )

where the convergence factor of the new algorithm is given by

cz(svbl)(ao+a1s+1)—((s—b1)(5—b2)—a101)

((s—b3)(s—b4)—a3cg)(ao+a1s+1)—a2(s—b4)

. az(s~b4)(ao+als+1)—((s—b3)(3—b4)—a3C3)
((s=b1)(s—ba)—a1c1){ap+a1+1)—ca(s—by) ~

Popt1 (s, a, b, c,ap, ) =

Using the simplifying assumptions as in Subsection 3.3.3, i.e. ¢; = a; = a; = a, for

1=1,2,3, and b; =b; = b, fori =1,2,3,4, we obtain

a(s — b)(ag + ons + 1) — ((s — b)? — a?) )2 . (3.97)

Popt1 (8, a,b, g, 1) = (((5 —b)2—a®)(ag+ ays+1)—a(s —b)
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Figure 3.16: Left: optimized convergence factor with the Taylor approximation
|Popt1 (w, aor, aar)| (dashed line) versus classical convergence factor |peq(w)| (solid

line). Right: zoom of |pepn (w, aor, car)l-

The same result also holds for the second sub-circuit and by induction we find, as
before, 125 = (pop1 )¥113 and 3% = (pope1)¥w). The convergence factor pyp in (3.97)

can be expressed in terms of A,

(ap+ogs) +1— A \?
° b, o, - 3.98
Popt1 (8, a, b, g, o) (((ao+als)+1))\—1 ( )
whereA:%:%&ki%.

The simplest first order approximation of the optimal « is the low frequency

approximation by using a Taylor expansion about s = 0, which is given by

—b b2 2
aOT:———1+E>0,a1T:————j—i>O.
a b ab?

In Figure 3.16 on the left, we compare the classical convergence factor with the
optimized convergence factor with the Taylor approximation, and we observe the
better convergence of the optimized convergence factor with the Taylor approximation
o{/er the classical one.

Similar to the optimized WR, algorithm with constant transmission conditions in
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Subsection 3.3.3, we use an optimization process to get the best performance of the

new WR algorithm. We again want |p,p| < 1.

Lemma 3.17. If the circuit parameters satisfy the inequalities

a>0,b<0, |b > 2a,
(3.99)

aOZOa (){1>0,

then the convergence factor poy in (3.98) is an analytic function in the right half of

the complex plane, s =n+1ww, n > 0.

Proof. By Theorem 1.4, we need to show that the denominator does not have zeros

in the right half of the complex plane. We show this bﬁ/ contradiction: Assume

1

there is a zero, A(1 + a9 + 18) — 1 = 0, then we have A = which implies

1+oag+azs’?
I\ = (1+a0+a11n)2+w2a2 < 1, with the condition (3.99) on oy and «;. On the other
1
hand, we have, |\| = %ﬂ, and by Lemma 3.7 the modulus |A| is bigger than

one in the right half of the complex plane, and thus we have a contradiction. Hence,
poles are excluded and the denominator has no zeros in the right half of the complex

plane. O

Since pep1 is analytic, we can apply the maximum principle, Theorem 1.5, and
therefore, the maximum of |pept1] is attained on the boundary. Now, since for s = ret
—5 <0 <3, the limit of pype1 is zero as r goes to infinity, i.e. the same limit in all
directions, the maximum of |pyu| is attained at n = 0. As in Subsection 3.3.3,

the modulus of py, for s = iw depends on w? only, and it suffices to optimize for

nonnegative frequencies, w > 0. Therefore, we need to solve the min-max problem

min (max | popt1 (iw, a, b, ag, a1)|> : (3.100)

ap>0,01 >0 w>0

The optimal value of « is given by &« = A — 1, and a first order approximation is

azao—#als:——l-i—?-—kgs,
a a a
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where p, q are new parameters. Considering this first order approximation, and using
in addition the change of variables (3.66) for the convergence factor, the modulus of
the convergence factor p.p; in (3.98), after factorizing a” from the denominator and

numerator to eliminate one parameter, is given by

Ql ('T7 a, b7 p7 CI)
0 $7 a’ b7 3 :: —_——7
popir (@, 6,2 0) = B b pr)

where

Q= (22220 () 2" -1) (&)
(2@ 20 () + 20+ (B) + (0~ 22) ()’
+(20(8)° - (&) - (%)) 2,

Qo= (1) @ +42+4(2)" (2 +20 ()"~ 4 (D) ¢ - 8(4)"2
— (@ -3 (1) 4 (1)) ()
+(-t -2t 2(0) -t —2(0) 20 (D) +6(2) ) ()]
(- 2@ G -2 (Y e - (B) (D) +2() )
- (&)

Letting p = 2, 2 = —2¢% where ¢ > 1, and Z = £, as for the constant approx-

imation in Subsection 3.3.3, the modulus of the convergence factor p,p; in (3.98)

becomes
Pl('%’c7ﬁ7 q) (3101)

Rl(£707ﬁ)q) = PQ(.% c ﬁ q):

where

P = —(((8gc* — 8¢* + 1 + 4c*p)i? + (—16qc5 — 2¢p* — 4c® + 4gc® + 8° + 8°¢P)z
+4ct — 8qct + 4ctq?)),

Py = (4c*q® — 8¢%p + 16c4p? + 8qct — 64c8¢* + 64c5p — p? — 12¢* + 64¢%)23
+(2c%q% + 4qc® + 8c*P + 2¢ + 4% — 16qc® — 48c%¢?)E?
+(—16¢% — 8qct + 16c3¢% — 8ctq? — 4c*p? — 16¢°p)T + 8cP¢2.



3.3 A Small RC Type Circuit 112

The optimized parameters are given by ap = _Tb —1+E2=2"-1+p, and oy = £

and since for analyticity in the right half of the complex plane we need o > 0, and

a; > 0, we require p > 1 — 2¢%, and ¢ > 0. The min-max problem (3.100) then

becomes
min max Ry (Z,¢,p,q) | = max Ry(Z,c,p".q%), ¢ > 1. (3.102)
p>1-2¢2,9>0 igi<0 ﬁ§i<0

Since it is hard to solve the optimization problem (3.102) we use asymptotics, and
since for RC type circuits or diffusion type equations |b| = 2a, which corresponds to
¢ going to 1, often holds, we take ¢ = /1 + ¢, and for € small we have the following

result.

Theorem 3.8 (Optimized First Order Transmission Conditions). If in the
optimized WR algorithm with first order transmission conditions (3.88), (3.89) the
free parameters are chosen to be ag = oy = 2¢2 — 1+ p*, and oy = o = %, where
c= \/%’ =+/14+¢>1 and a,b are the entries of the matrices in (3.88), (3.89), and
7* and q* are defined by the system of equations

~ ~x * = ~% * 8 = ~% *
Rl(x07c7p ;4 ) = R](.T,C,p 1 q )7 ‘BERI(‘T’C;]) + q ) = 07 (3103)

where To = 226%, Ry(%,¢,p,q) is given in (3.101), and T is given by the root of the
polynomial P(Z) given in (A.1) in Appendiz A, giving the mazimum of Ry, then for e
small, Ry(Z,¢,p",q") < Ri(Fo, ¢, P, q") :== Roy for all & € [Z0,0). Moreover, we have

the asymptotic result
P~ —0.4655, ¢* ~ 1.1378, Ro; ~ 0.0007.

Proof. A partial derivative of R; with respect to & shows that the roots of the poly-
nomial P(Z) given in (A.1) determine the extrema of R;. First, to see that there is
indeed a solution as stated in (3.103) for € small, we substitute ¢ = /1 + ¢, and we use

the ansatz p = Cpe™, g = Cye™, and Z = C1€%, and determine the leading asymptotic
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terms as € goes to zero of the root of the polynomial P(Z), and the equations (3.103).
Note that the second equation in (3.103) holds if and only if Q(Z, ¢, p", ¢*) = 0 holds,
where the polynomial Q(Z,c,p,q) is given in (A.2) in Appendix A. The leading

asymptotic terms as € goes to zero are

P(—-'E) = PE:::pan:
Q(E) = QExpana
RI(IZ'O) = leQEzparn

Ry (E) = RliEzpan’

(3.104)

which are given in Appendix A. Equating the exponents in these three equations
leads to vy = ¥2 = § = 0, which implies the same equations as for the case ¢ = 1.
Since the constants need to match as well, we obtain C, = —0.4655, C; = 1.1378,

and C; = —0.2617, by solving the resulting equations. Since ¢ = \/5_; =+v1+e we

have € = ;—; — 1, and using these results we get

I

(3.105)

p* = Oyl M = C, = —0.4655,
qt = Cy Cy

b
2a
(52— 1)” = C, = 1.1378.

Now, to see that there is indeed only one interior maximum, which we denote by z,
we take ¢ = /1 + ¢, and we substitute p*, ¢* from (3.105) into P(Z). The leading

terms of the polynomial P(Z) as ¢ goes to zero are
P() = 7.175676274 —2.05778823° — 10.887607282—5.58470978% —0.78638698+0(c),

which is a polynomial of degree 4 in Z plus higher order terms. As ¢ goes to 0, finding
the roots of this 4** degree polynomial implies the four roots —0.5737, —0.4610,
—0.2617, and 1.5832. Only two roots lie in the interval [—%,0)7 which are one
maximum given by ¥ = —0.2617 and one minimum. Therefore, as ¢ goes to zero,
Ry(%,p*, ¢*) has only one interior maximum at Z, where p* and ¢* are given in (3.105).

Since R; has only one interior maximum for Z € [55,0), ¢ = /1 + ¢, and € small, and
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no other interior maximum as we have shown above, and since in addition, R — 0
as I — 0, the maximum of R; can be attained either on the boundary at z = z,
or at the maximum Z. Balancing the value of R; at the two locations as stated in
(3.103) guarantees then that R; is uniformly bounded by R; at %, for ¢ small. Now,

expanding Ro for ¢ small, we get
_ 1+4C, +4C
RO] ~ ) )
24C, +9C2 + 16
and substituting from (3.105) we obtain the asymptotic result

Ro1 = 0.0007.

Finally, o and «f are given by

* * —b
a8=202—1+£:202~—1+f)*,ai‘zq—,c: — 2>1,
a a 2a
and p*, ¢* are given in (3.105). O

In Figure 3.17 on the left, we observe the better convergence we get by using the
first order approximation over the classical convergence and the convergence using
the optimized constant approximation. We show in Figure 3.17 on the right the
result of the optimization with respect to ag and «; using the circuit elements from
the numerical experiment in Subsection 3.3.5. The solution of the min-max problem
occurs when the convergence factor at w = 0 and at w = w are balanced, where w > 0
is the interior maximum of the modulus of the convergence factor. We also show in
Figure 3.17 on the right the better convergence we obtain using the optimized values
o and «f over the one using the low frequency first order approximation ogr and

T

3.3.5 Numerical Experiments

We give now a numerical example to illustrate the improvements in the convergence

of the optimized WR. algorithm over the classical one as we did for the extra small
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Figure 3.17: On the left: classical convergence factor |puq(w)| versus |popo(w, @®)],
|Popt1 (W, ator, ar)|, and |pop1 (w, af, )] On the right: convergence factor with the

optimized first order approximation |papn(w, o, af)| versus |pop1 (w, cor, aar)|.

circuit case. We use again typical values of the RC circuit parameters,

1 63
RS:R12R22R3=§Oth, C1=02203=C4:mpF,

for the circuit in Figure 1.1. We choose also the backward Euler method to integrate in
time, and the transient analysis time is ¢ € [0, 10], with a time step of At = 1/10. We
start with random initial waveforms and use an input step function with an amplitude
of I, = 1 and a rise time of 1 time unit. In Figure 3.18 we show the error as a
function of the iterations. One can see the remarkable improvement of the optimized
WR algorithm over the classical one. Furthermore, the optimized WR algorithm
with first order transmission conditions converges faster than the one with constant
transmission conditions. We use by = by, which is a simplifying assumption we used
to compute the optimized constant and first order approximations with 8 = —«, and
show the result on the left hand side of Figure 3.18. We use the optimized value
o = 1.618 as well as the Taylor‘ approximation ar = 0.5 in the optimized WR

algorithm with constant transmission conditions. The optimized values ag = 0.5345,
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Figure 3.18: Convergence behavior of classical versus optimized WR. algorithms for

the small circuit.

af = 0.3585, and the Taylor approximations agr = 0.5, oy = 0.3937 are also used in
the optimized WR algorithm with first order transmission conditions. On the right

hand side of Figure 3.18, we use by = %1, and we find the Taylor approximation ay = 0

and # = —0.5, and the numerically optimized constant approximation o* = 2.3002
and B* = —0.6953, which we use in the constant optimized WR algorithm. The
optimized constant approximation o* = 1.618 with 3* = —a* computed using the

simplifying assumptions is also used in the constant optimized WR algorithm. We
also use by = %1 to compute the first order Taylor approximation agr = 0, iy = 0.63,
and the numerically optimized first order approximation aj = 0.5031, o = 0.390,
and we choose 3* = —a*. The optimized first order approximation used here for this

case is again o = 0.5345, o] = 0.3585 with 3" = —a*.

3.4 An Infinitely Large RC type Circuit

We analyze in this section an infinitely large RC circuit and its infinite size system of

equations, as is indicated in Figure 3.19. The equations for the infinitely large circuit
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Figure 3.19: An infinitely large RC circuit chain.

are

& = ’ z+f. (3.106)

The entries in the tridiagonal matrix are given by

a:—l——' b=—<z> L. c:iza

RC’ R) C’ RC ’
where the circuit elements R and C are assumed to be strictly positive and con-
stant. The source term on the right hand side is given by the vector of func-
tions F(t) = (..., f-1(t), fo(t), fi(t),...)T, and we need an initial condition z(0) =
(..,v%,09,0%, .. )T, Since the circuit is infinitely large, we have to assume that all

voltage values stay bounded as we move toward the infinite ends of the circuit to have

a well posed problem.

3.4.1 The Classical WR Algorithm

The Classical WR algorithm was discussed in [31, 1]. Therefore, I will briefly sum-

marize the results. The algorithm is given by

'il; = a b a uk+1 + f—l + 0 ’

a b fo aw®
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b a fi auf

w = |4 b a w+ L L+ o |, (3.107)

with the initial conditions u*+(0) = (..., v%,,9)T and w**+1(0) = (v9,29,...)T. To
start the classical WR iteration, we use some initial waveforms uo(‘t) and wO(t) for
t€[o0,7T].

Similar to the analysis for the finite size RC circuits, the Laplace transform is used

for the convergence study, and the homogeneous problem is sufficient. It was shown
in [31] that

ﬁgk = (;OclaL)lC ﬁg; w%k = (pclaL)k ’(D(l),

where the convergence factor pg,r is given by

a? 1)\2
claL (S, @, 0) = —— ={—), 3.108
petar(3:0:b) = (T T S 1 b= ) </\+> (3-108)

and A, is given by

s—b++/(s—b)? —4a?
/\+: 2a .

(3.109)

Furthermore, |A| > 1, for s ;== n+iw, n > 0, and |b] > 2a, see [31]. Note that this
A is the same as the limit for A; given in (3.13) for the finite size RC circuit of size
n = 27, and thus peq(;) converges to pear as j goes to infinity.

The convergence factor, as before, depends on s € C, the parameter in the Laplace
transform. The classical WR, as is evident from (3.108), always converges for a large
number of iterations since |Ay] > 1, but convergence might be very slow. Also, the
convergence factor is analytic for s = n+iw, n > 0, under the condition |b| > 2a, and

in addition, if we let s = re®

, —% < 0 < 7, then the limit as r goes to infinity is zero,
and therefore, using the maximum principle for analytic functions, Theorem 1.5, the

maximum of pge, is attained on the boundary of the right half of the complex plane,
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Figure 3.20: Convergence factor for the classical WR algorithm, |paqr(w)| on the left,

and zoom on the right showing |p.ar(w)| for w around zero.

at 7 = 0. Taking the limit on the boundary as w goes to zero implies

. F _ |p|—=vb2-4a2 . _
ili%|/)claL(lw7a, b)| = VT 1, if |b] = 2a,

<1, if |b| > 2a,

where |b] = 2a is often the case for RC type circuits, or diffusion type problems.
Therefore, the convergence will be very slow for low frequencies w and the mode w = 0
will not converge. Usually in a realistic transient analysis, estimates for the maximum
and minimum frequencies are considered [31]. The estimate for the lowest frequency
occurring in the transient analysis depends on the length of the time interval {0, T].
As in [31], we expand the signal in a sine series sin(¥2), for k = 1,2,.... This leads
to the estimate wp,; = 7 for the lowest relevant frequency. The maximum frequency

wWmaz depends on the time discretization and we use wpe; = which is the highest

AL
possible oscillation on a grid with spacing At. An example for the convergence factor
as a function of w is given in Figure 3.20, which shows a similar convergence to the one
for the extra small, and small systems, i.e. low frequencies converge slowly, whereas

high frequencies converge vary fast, but now w = 0 does not converge.
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3.4.2 An Optimal WR Algorithm

The analysis of the optimal WR algorithm was discussed in [31, 1] as well, but in the
following subsections we will extend the analysis and prove new results. In [31], new

transmission conditions were introduced, which are given by

(! — k™) + ol = (wf — wh) + o,

(3.110)
(wi*! —wg™) + Bugt = (uf — uf) + Bug,
and the new WR algorithm is

= a b a AR A I 0 ;

: a b+ fo aw} — Z4wh

b—35 a f auk + %u’f

= a b g w4+ | g, |+ 0 ’

) ) (3.111)

together with the transmission conditions (3.110), which define the values uf and w.

It was shown in [31] that

~ k o~ ~ k A
U%k - (poptL) Ug, wfk = (poptL) ’LU?,

where the convergence factor p,py, is given by

(@+1) =Xy (B-D+)
a+DA -1 (B-DA+1

The new WR algorithm (3.111) converges in two iterations for the choice of parameters

Poptr(s,a,b,a, B) = ( (3.112)

a:=M -1, B:=1-), (3.113)

independently of the guess for the initial waveforms, which is proved in [31]. In the
next subsections, the optimal parameters in (3.113) will be approximated by constant
and first order approximations in a similar way to the small RC circuits in Subsections

3.2.3,3.3.3, and 3.3.4.
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3.4.3 An Optimized WR Algorithm with Constant Trans-

mission Conditions

In this subsection, we assume that the parameters are just constants. By using a
Taylor expansion about s = 0, we get a simple constant approximation of the optimal
parameters « and [ given in (3.113). The low frequency constant approximation is

given by
b+ Vb —4a?
= o _

_b+ ,/b? _ 4(12

1 =1-
3 IBT %2

ar

Therefore, for the case —b = 2a, there is no low frequency constant approximation
since with —b = 2a, we have ar = By = 0, but for the case —b > 2a, we have ar > 0
and (7 < 0 as a low frequency constant approximation, and 8r = —ar.

A better approximation is obtained, as before, by solving a min-max problem.
The analyticity of pop, in the right half of the complex plane was shown in [31] for
a>0,b<0,|b > 2a, and @ > 0, 3 < 0. By Theorem 1.5, the maximum of pypr,
for s =n 41w, n > 0, is attained on the boundary. As for the extra small and small
circuits, the limit of poyy, for s = ret?, —5 < 0 < 3, as r goes to infinity is one limit
in all directions, which is equal to ((3471:)(17?'-_17)’ and therefore, the maximum of popy,
is attained at n = 0.

We again use the similarity of the subsystems, which are behaving identically on

both sides of the partition, so we take § = —«, and hence the convergence factor

Poptr, in (3.112) with constant approximation is

. a+1-x; )\’
pmm@%mha%=<( R ) (3.114)

a+ 1A -1
Let us now consider Ay in (3.109) with s = iw, w # 0, and assume that A\, := z+iy =
R(Ay) +13(Ay). Then the real part z is given by

x :=‘X(w) = % + ¢ (w),
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where

V2Vt 120207 + 8w2a? + bT — 8h2a? + 16a% — 2w + 2% — 8a?

e N ,

and the imaginary part y is given by

w 2wb
y =Y (w)= % W<P(w)7

where

B ﬁx/w‘i + 2w2b? + 8w?a? + b — 8b%a? + 16a* + 2w? — 2b? + 8a?

p(w) Ta

For any w > 0, we have Y (w) = £ + ¢(w), and for w < 0, we have Y(w) =
—%”5' —¢(w) = ——(’5“:1—' + ¢(w)) since b < 0, and hence, (Y (Jw|))? = (Y (—|w|))?, since
¢(w) depends only on w?.

To summarize, the modulus |popro(w)| satisfies | popero(|w])| = |poptro(—|w])], since

2 and the imaginary part y := Y (w),

the real part z := X(w) depends only on w
using the fact that b < 0, satisfies (Y (Jw|))? = (Y(—|w]|))?. Therefore, it suffices to
optimize for positive frequencies, w > 0. Furthermore, for any w # 0, we have x > 1,

since [b| > 2a, and 52 is added to a positive quantity, and hence |[Ay| > 1. Now if

Vb2 -4a2

w=0,thenweget/\+:x:—;;b+ 5

, 50 |A4| > 1 for the case when —b > 2a,
and Ay = 1 if and only if —b = 2a.

Note also that the modulus of pypro in (3.114) satisfies

|poptzo] <1 <= la+1- A <|la+ 1A - 1] =
lo+1-z—dy| <[(a+ Dz -1+ila+ Dyl <
(@+1-22+y” < ((a+ Dz - 17+ (a+ 1)) <
(@+1)2+22+9? < (a+ 122 + 1+ (a+1)%* =
(@+ 1) =1 < ((@+1)? = 1)z + ((a + 1)° — 1)y* <=

1<+ <= 1< |\
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The above analysis simplifies the optimization process to

min ( max  |poptro(iw, a, b,a)}) , —b > 2a, (3.115)

a>0 \ 0<wmin<w<
where we truncated the frequency range by a minimal frequency relevant for our
problem.
For finding a better constant approximation «, a change of variables based on
the real part of A\, was introduced in [1], and a time scaling (introduced in the

introduction) was used as well, where a and b were scaled to a = 1 and b=1%= —2c2,

1~}

where ¢ = ,/;—f > 1, and then everywhere in the analysis, a was replaced by 1, and
b by —2c%. As shown in [1], the real part = of A, is now given by

1
r:=X(w, )=+ Z\/Q\/W4 + 8w?ct 4 8w? + 16¢8 — 32¢* + 16 — 2w? + 8¢t — 8§,
(3.116)

and z € [Zmin, o), Where

xmm=02+?\/ﬂ—d),2nm+4c4—4>xoziin(l)X(w,c):c2+\/c4—1,
x =0, + 82, + 802, +16¢% — 32¢* + 16,

min min

Teo = lim X(w,c) = 2¢2,

W—r0o0

(3.117)

and Wi, = 22 where w,;, is the truncation threshold of the low frequencies. The

a

modulus of pepro is given by

2o+ 122 — (a+ 1%z —4(a+ D)zc® +2(a+ 1)z* + 2
—4(a+ Dz +2(a+ )22+ 22—+ (. + 1)2x
(3.118)

Ro(x, c, a) = lpoptLOI =

7

where a > 0 and ¢ > 1. Again, the limit of Ry as x goes to z, is equal to (ﬁi)Q

Theorem 3.9 (Optimized Constant Transmission Conditions). The best per-
formance of the optimized WR algorithm (3.111) with constant transmission condi-

tions is obtained for a = o, where o™ is the solution of the equation

RO(:L'minv c, a*) = RO(xmaI7 c, a*)v



3.4 An Infinitely Large RC type Circuit 124

0.8

Poa .
opt”

0.7H

06

| SO ——

05}

\
04}
03f 4 e

o2 P X

[ X13 .

Figure 3.21: Convergence factor for the optimized WR algorithm |pgpero(w, @*)| versus

the classical convergence factor |paar(w)|-

and 1s given, for Tiee — Too, bY

o _ )
O = T + A/ Ty — 1 — 1,

where T and To, are given in (8.117), Ry is given in (3.118), and ¢ = ,/;—;’ > 1.

Proof. See [1]. O

In Figure 3.21 we show the convergence factor of the optimized WR algorithm

with the constant approximation «* and compare it to the classical one.

3.4.4 An Optimized WR Algorithm with First Order Trans-

mission Conditions

In this subsection, we introduce a first order approximation for the optimal parameter

« given in (3.113), as for the small circuits, where we take again = —«. Therefore,
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« will be approximated by
o=yt a8, s:=n+iwe C,

for some constants g and oy # 0, since otherwise we get the constant approximation.

The optimized WR algorithm with the first order transmission conditions as given in

[1], is

E+1 k1
TH a b a u”y -1
Rl | k+1 +
g a b a Ug fo
s 1 —(ao+1) kit f
! . er e AT ' (3.119)
0
+ )
0
(a-1) k| (taotosbd) k k
o Wo + o wy + aws
and
[~ =
k+1 —(o0+1) 1 k+1
Wy a1 P Wo fo
Wt a b a wht h
k1 | k+1 +
wst a b a ws T f2
(1-+ag+aib) ( 1) (3.120)
k gty k aja— k
auly + Uy + Uy
0
+
0

with the initial conditions w**1(0) = (..., v%,,v9,v9)T and w**1(0) = (vg, v, v3,.. )7,
respectively, where now the transmission conditions are already implemented in the
algorithm. To start the WR iteration, some initial waveforms u°(t) and w®(¢) are

used.



Fn

3.4 An Infinitely Large RC type Circuit 126

The analysis of the optimized WR algorithm with first order transmission condi-

tions is discussed in [1]. The convergence factor p,,1 is given by

2
popesa(5,,b, a0, ) = ( feoterstn 7 (3.121)

where A\ is given in (3.109).
As shown in [1], the convergence factor p,,r1 is an analytic function in the right
half of the complex plane, s = n +iw, n > 0, under the conditions b < 0, a > 0,

|| > 2a, a9 > 0, and a; > 0. Therefore, using the maximum principle, Theorem

1.5, the maximum of |popez1| is attained on the boundary. Now, since for s = re,

K ™

—5 < f < 3, the limit of pypz1 equals zero as r goes to infinity, the maximum of
|poptza| is attained at n = 0.
The simplest first order approximation is again the low frequency approximation

which is given by

—b+ V1?2 — 4a? 1+ 72
or = 2a “hoar=s——

Therefore, for the case —b = 2a, there is no low frequency first order approximation,
since with —b = 2a, we have agr = 0, but a7 is not defined, because of the V2 = 2a
term in the denominator. For the case —b > 2a, we have agr > 0, and a3 > 0 as a
low frequency first order approximation.

We will again look for a better choice of the first order approximation of . As in
Subsection 3.4.3, it suffices to optimize for positive frequencies, w > 0, since |poptr1]
depends only on w?, because we have the same A, as in (3.109). This yields the

optimization problem

ap>0,a1>0 \ wpin<w<oo

min ( max |popr1(iw, a, b, ao,a1)|), |b] > 2a. (3.122)

We solve here a min-max problem similar to the one in Subsection 3.4.3 but now with

two parameters, ag > 0 and a; > 0.
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To further analyze the convergence factor, we introduce a new change of variables,
different from the one that is used in Subsection 3.4.3 and was first introduced in [1].
This new change of variables simplifies the computations for finding the solution of

the min-max problem (3.122), and it is based on the real part of
z:=8s+ (=02 —4a? =z +iy, s = 1w, W > Wnin > 0,

which appears in A, , where we have now

~b
+ 2 (3.123)

AL = —
+ 2a 2a

The real part x of z is given by

1
= X(w)= 5\/2\/cu4 + 2022 + 8a%w? + bt — 8b%a? + 16a* — 2w? 4 20% — 8a?,

and the imaginary part y is given by

1
y=YWw) =w+ 5\/2\/w4 + 2b%2w? + 8a2w? + b* — 8b%a? + 16a* + 2w? — 2b2 + 8a?.

The range in which z can vary can again be found by taking the value of X (w) at

W = Wmin > 0, and the limit as w goes to infinity,

Lonin = g\/ﬁ — w2+ 0 —4da? >z = lin}) X(w) = Vb? — 4a?,|b| > 2a,
X = wh, +26%W2 . + 8a%w?, + b* — 8b%a? + 16a*,
Teo = lim X (w) = Vb2 = |b),
(3.124)

and hence, z € [Tmin, |b]). Solving x = X {(w) for w leads to

V(0?2 — 22)(x2 — b2 + 4a?)z
b2 — 12 ’

w(z)==+

and inserting this into Y (w) implies after simplifications,

[x2 — b? + 4a?
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By inserting y from equation (3.125) into (3.123), and then inserting the result into
(3.121), the convergence factor (3.121) is a function of the new variable .
The optimal parameter « in (3.113) is given by « := Ay — 1, and hence a first

order approximation is

CY—O!()-*“OllS S, (3 6)

where p and ¢q are new parameters.

In the new variable z, and using the first order approximation (3.126), the con-
vergence factor popez1 in modulus becomes, after factorizing a® from the denominator
and numerator to eliminate one parameter,

Ql(:l;) a7 b) p7 q)

0] I>a7b7 D, = ’
|p ptLl( L q)l QQ(gy,a,b,P:Q)

where

Qu(x,a,b,p,q) = ((=2¢ + %) (2)" + (22 — 28 + 28g) (2)°
(= () @ +20(8) = 8g+ 42+ (2) - (8)" +4) (2)°
+(-8t+2(8)’ —2(4) g +8tg-2()"2) 2
(&P (® - (&) ) (D),

Qa(x,a,b,p,q) = (29 — ¢%) (%)5 + ((12% + 2E — 9) (5)4

—48g+ (24 (47 -4 —4a (H)"+ (2)

Tea(d) - () e+’ 4b+4 )(z)

q +

(3) =8a() - ()" (&)

By setting p = 2, and as before, g =-2c2 ¢>1,and Z = Z, the modulus of the

convergence factor poper1 is

Pl(j‘7crﬁ7q)

Rl(i‘7caﬁ7Q) = PQ(i c [} q))

(3.127)
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where
Pi(&, ¢, p,q) = (=29 + ¢*)2* + (2p + 4c® — 4c%q)7°
+(—4qg%ct + 8qc* — 8q + 4¢° + 4c* — p* + 4)7?
+(16¢2 — 165 + 16c5q — 16c%q — 8pct)F + 4c*p? — 16¢° + 16¢*)(z — 2¢2),
Py(%,¢,p,9) = ((2q — ¢*)3° + (4¢ — 2¢°¢* + 2p)*
+(4c?p — 4 + 8q + 4c* + 4¢°c* — 4¢° — 16qc* + p*) T3
+(8¢% — 8pct + 2¢2p? + 8¢2c? — 24c8 — 8qPc?)z?
+(—16c% — 16c%p + 32qc® — 32qc* — 4c*p? + 16¢*)z
—8p2cb + 32¢10 — 32¢P),
and & € [Zymin, 2¢%), Where Iy, = 22 in (3.124) is given in terms of Wy, = #min

and ¢, and goes to Iy = %2 = 2v/ ct — 1, as Wpin goes to zero.

The optimized parameters are given by ag = ;—: —1+2 = -1+ g, and o) = oL,
where p and g will be determined using R; in (3.127). Since for analyticity in the
right half of the complex plane, we need oy > 0, and a; > 0, we require p > 2(1—c?),
and g > 0.

The new min-max problem which we need to solve is in the new variables given

by

min < max 2Rl(:fc,c,[),q)): max Ry(%,¢,p%,¢"), c>1. (3.128)

522(1-c2),g>0 \ Emin <E<2c Emin<E<2c?
Theorem 3.10 (Optimized First Order Transmission Conditions). If in the
optimized WR algorithm with first order transmission condilions (3.119), (3.120) the

free parameters are chosen to be
agzaf‘):c:Q—lJr% and(xlza’{:g—,
a
where ¢ = ,/'2“—: > 1, and a, b are the entries of the matrices in (3.119), (3.120), and

p* and q* are defined by the systems of nonlinear equations

Ri(Fmin, ¢, B, ") = Ri(Z1,¢, 9%, q") = Ri(Z2,¢, 9", ¢%), if c=1 and &min > 0,
(3.129)
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and
Ri(Zg, ¢, ", q") = Ri(Z1,¢,9",q") = Ri(Z2,¢, 07, q%), if ¢ > 1 and &min =0, (3.130)

where Ry(%,c,p,q) is given in (3.127), and T, Ty are given by the positive roots
of the polynomial P(Z) given in (A.3) in Appendiz A, giving the mazima of Ry,
then for the case ¢ = 1 and @min > 0, Ri(E, ¢, 7%, q*) < Ri(Fmin, ¢, 9 ¢*) = Ro1,
for all & € [Zmin,2¢%), and for the case ¢ > 1 and Omin = 0, Ri(%,¢,p*,¢*) <
Ry(Zg,c,p*, q*) =: Em, for all & € [%g,2¢?). Forc=1, @min = €, > 0, €, small, we

have the asymptotic result

7" =28 (Gmin) 0, " =28 (i) T, Ror ~ 1 — 4(210)(@min) 0, (3.131)
and for Omim = 0, ¢ = /1 + €., €, small, we have the asymptotic result

=225 - 1T, ¢" =282 -1,  Roi~1-4(210)(2 - 1)w.
(3.132)

Proof. A partial derivative of R; with respect to Z shows that the roots of P(%)
given in (A.3) determine the extrema of R;. Since P(Z) is a bi-quartic in  with real
coefficients, it has at most four real positive roots, and hence, for T, < T < 2c?
with ¢ = 1, @pmin > 0, and for 7o < & < 2¢® with ¢ > 1, Wi = 0, Ry can have at
most two interior maxima. Since R, goes to zero as Z goes to 2¢2, which is the limit
as w — 00, the maximum in the min-max problem (3.128) can be attained either
on the boundary, for the case ¢ = 1 and Wyin > 0 at £ = T, and for the case ¢ > 1
and Omin = 0 at & = Zg, or at either of the two maxima, which we denote by 7,
and Z,. Balancing the value of R; at all these three locations as stated in (3.129) for
the first case and in (3.130) for the second one, guarantees then that R; is uniformly

bounded by Ry at I, for the case ¢ =1 and @y, > 0, and at 2y for the case ¢ > 1

and Wmin = 0. To see that there is indeed such a solution for (3.129) where we have
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¢ =1, for @y, = €, small, we use the ansatz p = Cpe}, g = Cye?, = Clef}, and
= (,¢%2, and determine the leading asymptotic terms as €, goes to zero of the two

roots of the polynomial P(Z), which leads to

P(31) = 512C2C,en+21 — 256C4C,2 4 + ..

P(Z3) = 32C5C3e3r+6%2 — 4C3Chelrt8% 4
qw
Similarly, expanding the equations (3.129) for €, small, we find the leading terms
1
1-— %6‘3 .

=120 _ C1Cert .

C; w
=1- ———CSC o210 _ Cpedz 4
Equating the exponents in these four equations leads to vy, = 1%, Y2 = —%, 0 = %,

and d; = and since the constants need to match as well, we obtain

107

Bl

C,=28, C,=25, Cy=2m, C,=2(2m).

Now using these results in R; and expanding Ro; = Ry (Zmin, ¢, 9", q") 0T Omin = €,
small, we find the asymptotic results (3.131).

Similarly for the second case, to see that there is a solution for (3.130) where we
now have Wi, = 0, for ¢ = /1 + ¢, €. small, we use the ansatz p = Cpe)*, ¢ = Cue?,
T1 = C1e), and 7o = Coe?, and determine the leading asymptotic terms as €. goes

to zero of the two roots of the polynomial P(Z), which leads to
P(Z,) = 51202C,en+21 — 256CHC 2+
P(Zy) = 32C5C3e3 402 — 4C3C et ™2 4+
The leading terms we find by expanding the equations (3.130) for ¢, small are
1—Mec%ﬂl+...
=1- 20” enT — C1Cer ™

8 —(r2+3
zl—mﬁc(z 2)—02622+....
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Figure 3.22: Convergence factor of the optimized WR. algorithm with the optimized
first order approximation |puper1(w, ag, of)f versus the one with the asymptotically

optimized values.

Equating the exponents in these four equations leads to y; = %, Y2 = —%, 0 = %,

1

and 52 = 107

and since the constants need to match as well, we obtain

SN

Sle
S
Il
[\
—
o
=
~—

Cp,=2(25), C,=25, Cy=2

Now using these results in R; and expanding ﬁm = Ry(Zg,c, p*, q") for e small, we
find the asymptotic results (3.132). Note that the expansions we obtain for the two
cases have the same cxponents, they are only different by a constant.

Since ag = ¢ — 1+ L, and a; = L, we have

Sk *

x 2 p «_ 4

ag=c"—14=—7, .

0=¢ 2
U

We show in Figure 3.22 the result of the optimization with respect to oy and o

with values of a and b from the numerical experiment in Subsection 3.4.5, and we use
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Wmin = 0.00001. The solution of the min-max problem occurs when the convergence
factor at w = wWpmin, w = Wy, and w = @, are balanced, where @;, @y > 0 are
the interior maxima of the modulus of the convergence factor. We observe that the
convergence factor with the optimized values af and «f is close to the one with the
asymptotically optimized values.

We use now wpin = 55 to compute the numerically and the asymptotically opti-
mized af and o} as well as the optimized constant a*, using the circuit parameters
in Subsection 3.4.5, and we show the convergence factors as a function of w in Figure

3.23. On the left of Figure 3.23, we observe the better convergence factor we get by

using the first order approximation over the constant approximation, and compared

to the classical convergence factor. On the right, we show the convergence factor of
the optimized WR algorithm with the first order approximation using the numerically

optimized af and of, and using the asymptotically optimized values. Note that the

s

minimal frequency we choose, wmin = 35,

is not small enough to be smaller than the
two maxima which we assure their existence for small w,,;,, and thus we have only
one maximum for pypr1 using the numerically optimized values, which is bigger than
Wmin and the other one is smaller, and for the one with the asymptotically optimized

values there are no interior maxima in this case. Note also that poper1 with the asymp-

totically optimized values is better than p,,r1 with the numerically optimized values

for high frequencies.

Table 3.1 gives a comparison of the optimized «f and o from (3.129) with the
asymptotic approximation (3.131) using the circuit parameters in Subsection 3.4.5,
and a comparison of the optimized «f and of from (3.130) with the asymptotic
approximation (3.132). One can see from the first part that the asymptotic result for
oy and of is close to the optimized af, and af for small wy,,, and from the second, one
can see that the values are close for ¢ close to one. Furthermore, for larger values of

wWmin and c, the asymptotic approximation can be used as a good initial guess for the
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Figure 3.23: On the left: classical convergence factor |pyqr(w)| versus convergence
factor of the optimized WR. algorithm with the optimized constant approximation
|poptro(w, a*)|, and the one with the first order approximation |popr1(w, o, of)| using
the numerically and asymptotically optimized values. On the right: |poper1(w, o, )|
using the numerically optimized values versus the one using the asymptotically opti-

mized values.
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Table 3.1: Comparison of the optimized ¢, @} from Theorem 3.10 and their asymp-

totic approximation.
Winin 0.01 0.001 0.0001 0.00001 0.000001

opt.ag, o’ | 0.049,1.095 | 0.021,1.558 | 0.009,2.338 | 0.0038,3.600 | 0.0016,5.6134
asy.al, o | 0.066,0.868 | 0.026,1.375 | 0.010,2.180 | 0.0042,3.455 | 0.0017,5.4757

c? 1.01 1.001 1.0001 1.00001 1.000001
opt.ag, o | 0.209,0.549 | 0.076,0.841 | 0.0294,1.319 | 0.0116,2.083 | 0.0046,3.297
asy.of, ot | 0.192,0.522 | 0.074,0.827 | 0.0290,1.311 | 0.0115,2.078 | 0.0046,3.294

nonlinear equation solver to find the optimized o and «f from (3.129) and (3.130)

respectively.

3.4.5 Numerical Experiments

We solve here a model RC circuit with 100 nodes with the same typical parameters
we used for the extra small and small circuits,

1 63
Rs:Ri:§Oth, 7::].,...,997 Cl:.]f(.)—opF‘ ’L:].,,].OO

We again use the backward Euler method, and our transient analysis time now is
t € [0,20], with a time step of At = 1/20. We start with random initial waveforms and

use an input step function with an amplitude of I, = 1 and a rise time of 1 time unit.

™

We consider wmin = 35,

and we use the optimized value o® = 0.7346 in the optimized
WR algorithm with constant transmission conditions, and the numerically optimized
values o = 0.1756, o] = 0.6556, as well as the asymptotic values ag = 0.1982,
o} = 0.5003 in the optimized WR algorithm with first order transmission conditions.
In Figure 3.24 we show the error as a function of the WR iterations. One can see

the remarkable improvement of the optimized WR algorithm over the classical one.

Furthermore, the optimized WR algorithm with first order transmission conditions
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Figure 3.24: Convergence behavior of classical versus optimized WR algorithms for

large RC circuit.

converges faster than the one with constant transmission conditions. Note that the

optimized WR algorithm with the asymptotic values o} and o} from Theorem 3.10

converges even a bit faster than the one with the numerically optimized values g and

aj for wpin = 55. In fact, we have already seen on the right hand side of Figure 3.23

that the convergence factor with the asymptotic values is better than the one with

the numerically optimized values for high frequencies which is the case here. On the

left hand side of Figure 3.24, we use bjgo = by, and on the right hand side, we choose

bigo = %1, and show the results.
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Chapter 4

Transmission Line Type Circuits

In this chapter we analyze the classical, an optimal, and optimized WR algorithms
for transmission line type circuits. As for the RC type circuits in Chapter 3, the
results we obtain for the transmission line circuits we are analyzing here will be of
great interest in decomposing a general circuit which has transmission line circuits
connecting its parts which might include nonlinear components. So we also look here
for transmission line circuits in the general circuit and we partition there since we
know how to do the partitioning for the transmission line circuit with an excellent
performance using the results from this chapter. Note that we consider here a single
transmission line and we analyze a longitudinal decoupling of this transmission line, a
problem which does not converge for a reasonable number of iterations using classical
WR algorithms. See [38] for solving multiple coupled transmission lines using WR
methods. We start with finite size transmission line type circuits, and then we study
an infinitely large transmission line circuit for which we investigate and analyze the
convergence of the WR algorithms. We are analyzing a Jacobi type iteration here,

but the Gauss-Seidel case is similar.
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Figure 4.1: A very small transmission line circuit.

4.1 A Very Small Transmission Line Type Circuit

We start with the simple transmission line circuit given in Figure 4.1. The circuit

equations are of the form

b] C1
T = ay by o | TH f, (41)
az bz
with vector of unknown waveforms & = (vy,i1,v2)7, which consists of two nodal

capacitive voltages alternating with an inductance current in the transmission line

circuit. The entries in the tridiagonal matrix are given by

1 .
1 . 1 . e T 1
Liv1y2’ 1=1 ~ Chusnyye’ =1 R/ . :
a; = 1 ) ) ¢ = 1 R ’ bl: —Lr:/z’ 7/22’
o , 1=2 — , 1=2 '
G/n+1 Lis2 -1 ;=3
R Co? -
(4.2)

where the resistor values R, R;, and Ry, the inductor L, and the capacitors C; and
C, are strictly positive constants. The source term on the right hand side is given
by f(t) = (I,(t)/C1,0,0)T, for some source function I5(¢), and we are also given the
initial values (0) = (19,49, v9)T at the time ¢ = 0. We use three different ways here to

decompose the system into two subsystems. In the first one, we partition the system

at an even row without overlap, which corresponds to a cut at the inductance current
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in the system, and in the second one, we partition at an odd row without overlap
as well, which corresponds to a cut at a nodal capacitive voltage, and we obtain two
subsystems of different size. In the third way, we partition the system in the middle,

where we use an overlap to get two subsystems of the same size.

4.1.1 Analysis of the Classical WR Algorithm Without Over-

lap

We partition the system first at an even row into two subsystems or sub-circuits, and
we call the values in subsystem one w(t) and in subsystem two w;(t). The classical

WR algorithm applied to (4.1) with two sub-circuits is given by

b1 C1 f1 0
wtt = w4+ + e

ar by fa Cowy

(4.3)
kbl k+1 k
Wy = bywy " + f3 + asus,
where we used the classical transmission conditions
k+1 _ . k k+1 _ _k
us o =wy, wy o = Us. (4.4)

The corresponding initial conditions are u**'(0) = (v9,49)7 and wF™(0) = v§. To

start the WR iteration, we need to specify initial waveforms u°(t) = (ud(¢), u3(¢))”
and w?(t) for ¢ € [0, T].

Similar to the analysis in the previous chapter, we use the Laplace transform
and we consider the homogeneous problem. The Laplace transform with Laplace
parameter s € C of (4.3) is given by

by
suktl = TARES st = byft 4 apik . (4.5)
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Solving the first equation in (4.5) for 45+!, we find

Akl (JQ(S - bl) wk
Uy = w 4.6
C TG ) - e 40
and similarly solving the second equation in (4.5) for w1, we get
B = gk (4.7)

! S — b3 te-
Inserting (4.7) at iteration k into (4.6), we find a relation over two iteration steps of

the WR algorithm,

A+ ~k—1
Uy ™ = pcla(sa a, b) c)u2 ’

where the convergence factor p., of the classical WR algorithm is given by

azca(s — by)
s —b3)((s — b1)(s ~ b2) — arcn)’

The same result holds for %!, and by induction we obtain 42* = (

pcla(sy a, b, C) = ( (48)

Peta) 49 and
w%k = (pcla)k w(l)

We consider now the classical WR algorithm applied to (4.1) with a partition at

an odd row,
ullf-f-l — blullc+1+fl+clwlf7
(4.9)
k1 by 2| i F2 aruf
w = w + + + )
az b3 /3 0

with corresponding initial conditions u**(0) = v? and w**'(0) = (i9,v9)7. The
Laplace transform of (4.9) is given by

by ¢ ay ik
~ N N ~ 1 2 -2 R 1 th
su’lCH = bl’u’fH + cwt, swht! = w4+

ag b3 0

(4.10)

In a way similar to the one used for the cut at an even row, we obtain the convergence
factor py, of the classical WR algorithm with a cut at an odd row,

ajcy(s — b3)
S — bl)((s - b3)(5 - bz) - CLQCQ).

/)cla(é‘,a’by C) = ( (411)
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The same result holds for @*!, and by induction we obtain 4% = (/)cla)k %9 and

Wk = (pcla)k ). Onme can see that the convergence factor py, with a partition at
an even row is the same as the convergence factor pg, with a partition at an odd
row whenever the elements of the vectors a, b, and c satisfy the relations ¢; = —ay,
¢y = —ag, and bz = by, which is the case we consider for the infinitely large circuit
system, as we will see later. Therefore, we will only study the convergence factor in
(4.11). The two convergence factors are also the same when a; = aq, ¢; = ¢, and
by = bs. However, this is not the case for the transmission line circuits as one can see
from the circuit parameters given in (4.2).

Note that we can only analyze for the classical WR algorithm if the convergence
test |paa| < 1 is satisfied, since pg, is a fixed function of the circuit parameters in the
classical WR algorithm, as is evident from (4.11).

Now, for R(s) > 0 the denominator in (4.11) does not vanish, because a; > 0,
¢ < 0, and b; < 0 for the circuit we consider. Hence, by Theorem 1.4, the convergence
factor is an analytic function in the right half of the complex plane. The limit of p,
fors =re’, —w/2 < § < m/2, as r — oo is zero, therefore, by the maximum principle
for complex analytic functions, Theorem 1.5, the modulus |pg.| takes its maximum

on the boundary at 7 = 0. The modulus of p., for s = iw, with the simplifying

assumptions ¢; = —ag, ¢ = —ay, and b = by is given by
. aszay
Peia(tw, ay, ag, by, bo)| = .
pea{icr a1, @z, br, o)l VA + (—2az01 + B + B2)w? + aZaZ + b2b2 + 2b1hyapay
(4.12)

The modulus of the classical convergence factor depends on w? only as one can see
from (4.12). Furthermore, |p.,| might take values bigger than one as we show in the

following lemma.

Lemma 4.1. Let ay, a3 > 0, by, by < 0. If A:== %32 >0, and b := g—; > 0 are in the
2
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region Q¢ := {(A,b) : A > Apy, b >0}, where

1+b+2vb

5 (1+b),

Ah+ =
then there exists w > 0 such that |pga(w)| > 1.

Proof. The modulus of the classical convergence factor squared is

|peta(iwsar,a20102) 1 = A a3aj ;
Py w4 (—2a0a; + b5 + b2)w? + aai + bib; + 2b1braga,

where P, P, > 0. The polynomial p(w, ay, ag, by, ba) = P, — Py is
plw, ay, ag, by, by) = —w* + (=03 — b3 + 2apa1)w? — b3b3 — 2bybaasay.
Factorizing out b3 and letting A = %, b= %;—, and r = %, the polynomial p becomes
p(x, A, b,by) = b3 (—22 + (24 — (b* + 1))z — (b* + 2bA)),
and we consider the function f which is given by

f(z, A b) = (=2 + (24 — (b® + 1))z — (> +2bA)) , (4.13)

where A >0, b >0, and r > 0. For x > 0, the sign of f will indicate where P, > P,

and where P, < Ps.

2A—(b2+1)
2

The maximum value of f is attained at z* = . We treat two cases:

1. ifz*>0,ie. A> I’QT“, then we consider the function

flz =2 Ab) =A%~ (b+1)2A+ %(zﬂ —1)%

2. If #* < 0, then the maximum is attained at x = 0, and we consider the function

[z =0,A,b) = —(b* + 2bA).
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For the first case, if we let (A, b) == A — (b+1)2A + 1(b* — 1)?, then the equation
h(A,b) = 0 has two roots in terms of b,

14+ b+2vh
Ahi=—2_—”(1+b)'

1+ and using the sign of h, we get h(A,b) < 0

Now, since Apy > #, and Ap_ < 5~
for % < A < Ay, and h(A,b) > 0 for A > A,,. For the second case, we have
—(2bA + b?) < 0 on the entire region, where 0 < A < l—zlﬁ, b>0.

Hence, the function f given in (4.13) is less than zero for 0 < A < Ap4, b > 0,
and thus |pga| < 1, whereas f(z, A, b) takes values greater than or equal zero in the
region Q = {(A,b) : A > Ay, b> 0}, and since Apy > %92—, and z = ‘;—%2, there exists

w > 0 at which |pgq,| takes values greater than or equal one. O

4.1.2 Analysis of the Classical WR Algorithm With Overlap

In this subsection we study the classical WR algorithm with overlap, which leads to

two subsystems of the same size. A partition of the system in (4.1) with overlap is

given by ) )
. by fi 0
u = u+ + :
a; b Colt:

BRI f2 2U3 (4.14)
) by 2 f2 a, Wy
w = w + +

i az b3 i f3 0

Now, using the classical transmission conditions
Uz~ =Wy, Wy = U, (4.15)

the classical WR algorithm is

aFtl = b uk+l 4+ h + 0 7
a; b cowk
i 1 2 J f2 2 2k (416)
Wl = by 2 wh+! 4 f2 a1t ,
| ap b3 | f3 0
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with corresponding initial conditions u*+1(0) = (v9,49)T and w**1(0) = (19, 19)7. To
start the WR iteration, we need to specify initial waveforms u®(¢) = (ud(t), ud(t))”
and w°(t) = (wi(t), w(t))T for t € [0, T].

The Laplace transform applied to the homogeneous problem of (4.16) implies

b1 C1 0
s Wkt 4 a
aiy b2 0212}
s - 2k (4.17)
bg Co ayi
S'lj]k+1 = fﬁ]k+1 + ™
a9 bg 0
Solving the first system of equations in (4.17) for 457, and using W% = P W from
the second subsystem of equations, we find
Ak+l ca(s—b1) ~ko_ c2(s—t1) ~k
Uz = Gt (s—b2)—arer V2 T 5-01)(s—ba)—aier si—zbs-wl' (4.18)
Similarly, solving the second equation in (4.17) for @**!, and using 4% = p— @k from
the first subsystem of equations, we get
~k+1 a1(s—b3) ~k ai(s—b3) ~k
wy - (s~b3)1(s—b2)—a202 uyp = (s—b3)(s—bz)—azca s—c-lbl Us- (419)

Inserting (4.19) at iteration k into (4.18), we find a relation over two iteration

steps of the classical WR algorithm,

1

A[c_'_] _ ~k—
Ugy - pcla(sa a, b: C)'LL2 )

where the convergence factor pg, of the classical WR algorithm with overlap is given

by
aiCq A9Co
s—b)(s —by) —ajcr (s—b3)(s—bg) —asco

Peta(s, @, b, ) = ( (4.20)

The same result holds for w*!, and by induction we obtain 7

ﬁ}%k = (pcla)k UA)(l)

By Theorem 1.4, the convergence factor p., in (4.20) is an analytic function of

%k = (pcla)k ’&(2) and

s = 1 + iw in the right half of the complex plane, n > 0, since the denominator
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in (4.20) does not vanish, because a; > 0, ¢; < 0, and b; < 0 for the circuit we
consider. In addition, the limit of py, for s = re, —7/2 < 60 < 7/2, as r — o0 is
zero. Therefore, by Theorem 1.5, the maximum of |p.,| is attained on the boundary
at n = 0. With the simplifying assumptions ¢; = —ag, c2 = —aq, and by = b;, the

classical convergence factor py, in (4.20) with overlap is given by

2
_ 109
pcla(37 a, b) - ((5 — bl)(s - bg) + 0,1(12) 7

and it is equal to pg. in (4.11) without overlap squared. Note that (s — b3) in
the numerator is cancelled with (s — b;) in the denominator in pg, in (4.11) after
the simplifying assumptions. Therefore, Lemma 4.1 holds for p., with overlap, and
hence, the classical WR algorithm with overlap still might not converge. An example
of the convergence factor as a function of w for a typical set of transmission line circuit
parameters is given in Figure 4.2 on the left hand side, where E; = 0.05. On the
right hand side of Figure 4.2 we give another example, where we now take R, = 0.5,
and we keep the other circuit elements the same as before. From the graph on the
left, we see that the low frequency components in the signal, w close to zero, will
cause difficulties for the algorithm, and slow convergence. On the right, there are

even values greater than one, and the classical WR algorithm is not convergent.

4.1.3 An Optimal WR Algorithm without Overlap

Recall that the classical transmission conditions with a cut at an even row were

k+1 _  k k+1 _ K
Uz = = wy, Wy = Up-

From this we see that in the first sub-circuit the voltage ugz is directly replaced in
(4.3) by a voltage source, whereas in the second sub-circuit the current wy is directly
replaced by a current source. Hence, sub-circuit one passes only current information

to sub-circuit two, while sub-circuit two passes only voltage information to sub-circuit
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Figure 4.2: Convergence factor for the classical WR algorithm, |p..(w)|-

one. At convergence we obtain with the classical transmission conditions
co __ ,,00 co __ ,,00
ug’ =w®, wg® =uy. (4.21)

Under these conditions, the nodes at the subsystem boundaries assume the converged
voltage and current respectively, as expected. For the optimal WR algorithm, with
a partition at an even row, we propose transmission conditions which exchange both

current and voltage information in both directions,

k+1

k
+ oy

ubt =wh 4+ awf, Wit + witt = ub + Buk. (4.22)

By comparing (4.4) with the new transmission conditions (4.22), we now exchange a
combination of voltage and current in both directions, and we introduced weighting
factors « and ( which can be used to optimize the performance of the new WR
algorithm. Note that the new transmission conditions lead to the correct solution
of the underlying TEM circuit equations if the new WR algorithm converges and if

a # 3, because then at convergence we have from (4.22)

(ug® —wi®) + a (uf —wf®) = 0,

(ug” —wi®) + B (u® —wg®) = 0,



4.1 A Very Small Transmission Line Type Circuit

147

and the determinant of this system is different from zero if o # f, and hence the old

transmission conditions (4.4) are implied by the new ones. The new WR algorithm

is
b c 0
afl = 1 1 w4 h +
a; by — oo f2 cy(wh + owf)
W = (b — B+ fy + (0 + o),

(4.23)

where the values uf and w} are determined by the transmission conditions (4.22).

Taking the Laplace transform as we did before, we find from the circuit equation for

the first subsystem after some algebra,

ca(s — by)

~k+1 k k
Uyt = Fi(wy +awg), Fi=

and similarly from the circuit equation for the second subsystem

s

Wit = Fy(uf + fup), Fz=m-

Using the transmission condition
Ak-f-l +ﬁwk+1 {Lg“}“ﬂr&g,
together with (4.25), we find

. 1 1\ .
P EREEA P

and using this result at step k in (4.24), we find for the first subsystem

Ak+1 =F (1 +a (-ﬁ—lFT — %)) uAlic
2

Similarly we find for the second subsystem

1
W = F (F -« +B) k.
1

(s — b)(s — by + c20) — azer’

(4.24)

(4.25)

(4.26)

(4.27)
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Finally, by inserting (4.27) at iteration k into (4.26), we get a relation over two

iteration steps of the new WR algorithm,

~k+1 ~k—1
u2+ :popt(s,a,b,c,a,ﬁ)uQ )

where the convergence factor of the new WR algorithm is given by

popt(s, @, b, ¢, 0, 0) = F1Fy (;1; —a+ B) (1 + - %) = Liott1 . LaBrGr - (4.28)

and we introduced the functions

Ly = s—10s,

Cy = ay,

Ly = co(s—by),

Cy = 5% —(by+by)s —ajc; + bibo,

in order to better show the structure of the convergence factor. The same result

k ~0

also holds for subsystem two, and by induction we obtain as before 3% = (pop)" 43
and 2 = (pop)" w9 From the convergence factor (4.28), the optimal values of the

parameters « and 3 can be derived.

Theorem 4.1 (Optimal Convergence). The new WR algorithm (4.23) converges

in two iterations, independently of the initial waveforms w° and w°, if

Qeven = OZ(S) = _sgzby

3 2 —(b1+b2)s+b1ba—
Beven = B(s) = —==pemne,

(4.29)

Proof. The convergence factor vanishes if we insert (4.29) into p, given by (4.28).

Hence, 4% and %? are identically zero, independently of @5 and @?. O

For the case with a partition at an odd row, similar results hold. However in this
case, sub-circuit one passes only voltage information to sub-circuit two, while sub-

circuit two passes only current information to sub-circuit one. The new transmission
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conditions which exchange both current and voltage information in both directions

are

k+1
Uy

+ oz'u’f+1 = wf + awg, wf“ + ﬁwé““ = ug + ﬁu'f, (4.30)

and the new WR algorithm is

af Tt = (b — ca)u¥ T 4 1+ e (wF + awk),
e (4.31)
Wl = by =% c wh+! + f2 7 (Bui + u3) ’
a3 bs /3 0

where the values uf and w§ are determined by the transmission conditions (4.30).
Using similar computations as those used with the cut at an even row, the convergence

factor of the new WR algorithm is given by

pont(5, @, b, ¢, 0, ) = FiFy (F% —a+8) (1455 - 2) = Lo LG (43)

where

Ll = C,
C] = 8§ — bl,
L2 = 82 - (b3 + bQ)S + b2b3 — C2Q9,

Cz = al(s — bg)
The optimal values of « and 3 are given in the following theorem.

Theorem 4.2 (Optimal Convergence). The new WR algorithm (4.31) converges

in two iterations, independently of the initial waveforms @° and w°, if
N . _ ai(s—bs)
Qodd = a(S) = T 52 (b3+bo)s+bab3—caaz’ (433)

ﬁodd=ﬁ(5) = —h,

€1

Proof. The proof is similar to the proof of Theorem 4.1. O
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Remark 4.1. Theorems 4.1 and 4.2 imply a relation between the optimal param-
eters obtained with a cut at an even row and those obtained with a cut at an odd

row. Assuming that the elements in the vectors a, b, and c satisfy the simplifying

assumptions c; = —ay, ¢ = —ag, and bz = by, the optimal parameters satisfy
. -1 . -1
Qepyen = = ﬁeven = = .
odd Uodd

4.1.4 An Optimal WR algorithm with Overlap

We now analyze an optimal WR algorithm with overlap at the second row. Using the

new transmission conditions
k+1 k+1 _ k k k+1 k+1 _  k k
us Tt Faus T =ws +awy, wy + Bwy = uy + Puy, (4.34)

the new WR algorithm with overlap is

b c 0
kbt = 1 1 wF 4 h 4
S RO pethrem [
—a a1
Wl = by~ G c wh+ 4 f2 + 5 (uz + Puy)
| G2 b3 E 0

where the values u% and wf are determined by the transmission conditions (4.34).

The Laplace transform applied to the homogeneous problem of (4.35) implies

b c 0
S,&k+1 1 1 ,&k-f—l + ) .
a1 by — oo co(ws + aw
RN 2 2( k2 k]) (4.36)
by — & ¢ 4A(ge + Bu
skt = 27 B 2 WFt 4 ﬁ( 2 1)
(5] b3 0

From the circuit equation for the first subsystem, after some algebra, we find

ca(s — by)

~k+1 ~k ~k
U = F + , =
2 1(w2 awl) ! (S — bl)(S - b2 + CQOZ) — a1

, (4.37)
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and similarly from the circuit equation for the second subsystem, we have

ai(s — bs)
B((s — b2)(s — b3) — agez) + ar(s — bs)

Using the second transmission condition in (4.34), together with (4.38), we find

. 1 1y .
w§+l = (ﬁFQ - B) w}f+l.

Furthermore, using the equation at the interface in the second subsystem in (4.14) at

W = Fy(ak + paY), = (4.38)

step k, we get ¥ in terms of wF and @, which is given by
. 1 . .
wE = —((s — b)¥ — ayf).
&
Now substituting at step k& from above into (4.37), we find for the first subsystem

—b 1 1
- (-2 () o) ot )

Similarly we find for the second subsystem

Wt = F (1 + aﬁ (5 —by) — Pez (i - a)> k. (4.40)

Finally, by inserting (4.40) at iteration k into (4.39), we get a relation over two
iteration steps of the new WR algorithm,
0”5—'—1 = prt(‘Sa a, bv C./ x, ﬂ)ag—lv

where the convergence factor is given by

IOOPi(Sv a, b7 C,t, ﬁ)
=R (- (- 1) ra) (14 £ (s - b)) - 92 (£-a)) (@4

. ajag+aar(s—bz) B Beica+ea(s—b1)
T (s=b1)(s—batacz)—arc1  (3—b3)(B(s—b2)+a1)—Pazeca”

Alternatively, one can just substitute w4 = sf:’bsvj)’f from the second equation in the

second subsystem in (4.36) into (4.37), and 4§ = ;%-45 from the first equation in the

first subsystem in (4.36) into (4.38), to obtain

Qo . . 015
+ C!)wfv wiﬂ—l = FZ(

Ak+l:F
t2 1(3—b3 5 — by

+ 1)as,
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and then by substituting the second equation into the first one above at step k, we

get

~k ~k—1
u’2+1 = popt(57a)b1 c:awB)U’Q ]

where the convergence factor is given by

popt(s-/a,b, c,a,ﬂ) = F, ( az + a) ( ci 3 n 1) ’

S — b3
and after simplifying we get the same convergence factor as in (4.41).
Theorem 4.3 (Optimal Convergence). The new WR algorithm (4.35) converges
in two iterations, independently of the initial waveforms @’ and w°, if

az

a=os) =

) _3'23’ (4.42)
B=0(s) = —=5h
Proof. The proof is similar to the proof of Theorem 4.1. O

In the next subsection, we will choose the approximation by a constant for the
optimal transmission conditions from Theorem 4.3 in order to obtain a practical WR

algorithm.

4.1.5 An Optimized WR algorithm with Overlap and Con-

stant Approximation

We approximate the optimal parameters (4.42) in the transmission conditions by
constants. The low frequency constant approximation using a Taylor expansion about

s = 0 is given by

a2
bs’
Next, we show that p,y in (4.41) is analytic in the right half of the complex plane,

b
Br ==

ar = .
51

and thus the maximum of its modulus is attained on the boundary, by the maximum

principle, Theorem 1.5. We will need
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Theorem 4.4 (Vieta’s formulas). Let the n'* degree polynomial P(z) be given by
Pz)=z"+az" '+ .. +az” F+ .. +a,.

Assuming P(z) has n roots ¢y, ca,..., ¢,, where we allow the possibility of multiple
roots, we obtain the following expressions for the coefficients a; in terms of the roots
¢

ag=—(c1+c+...+cn),

a=(-1)F 3 e, .G,

i1<in<...<ik

an, = (=1)"cica ... Cp.
If the leading coefficient is ag # 1, then the same formulas give expressions for the
ratios Z—O
Proof. See [39). O

Now we give the conditions for analyticity of p,p, in the following lemma.

Lemma 4.2. Ifa; >0, ¢; <0, and b; <0, and
a<0, B3>0, (4.43)

then the convergence factor py, in (4.41) is an analytic function in the right half of

the complex plane, s =n+ 1w, n > 0.

Proof. By Theorem 1.4, we need to show that the denominators have no zeros in
the right half of the complex plane. We show the proof only for one quotient, the
proof for the other one is similar. We consider the quotient with 3 in (4.41), whose

denominator is

Bs® + ((—bs — ba)B + a1)s + (babs — c202)0 — azbs.

By Vieta’s formulas, Theorem 4.4, the product of the zeros satisfies s152 = babs —

coaz —aybsz/B > 0, and the sum satisfies s; + 52 = bg+bs—a, /6 < 0, if 3 > 0. Hence,
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Figure 4.3: Convergence factor |pqq(w)| (solid line) versus optimized convergence

factor |popt(w, cr)| (dashed line).

if both zeros are real, then they must be negative. If they are complex conjugate,

then their real part is identical and hence must be negative as well by the inequality

on their sum. Thus there is no pole in the right half of the complex plane. 0
Note that with the simplifying assumptions ¢; = —ay, ¢co = —a;, and by = by, we
obtain Ay =,—;1T—, and for b;. ¢; <0, and a; > 0, we get ar <0, and G > 0.

In Figure 4.3 we show the modulus of the convergence factor of the classical WR
algorithm and the modulus of the optimized convergence factor using the Taylor
approximation. We observe the better convergence we obtain from the optimized
convergence factor with the Taylor approximation over the classical one.

Taking s = re¥®, —7/2 < 6 < /2, the limit of p,, in all directions, as r — oo is
zero. Since poy is analytic in the right half of the complex plane, we can apply the
maximum principle for analytic functions, Theorem 1.5, and since we have the same

limit at infinity in all dircctions, the maximum of |peu(s)| for s = n +iw, n > 0, is
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attained on the boundary at n = 0. Furthermore, the modulus of the convergence
factor (4.41) for s = iw depends on w? only, since from the first quotient we have that
la1as+aa; (s —b3)| and |(s—b1)((s—ba) +acs) —aici| both depend on w? only, and the
same holds for the second quotient. Therefore, it suffices to optimize for nonnegative
frequencies, w > 0.

From the optimal choice (4.42) with overlap, and the simplifying assumptions
€y = —ag, ¢3 = —ay, and bg = by, we have Bop = —&:—pt, which motivates us to assume
b= ——é in order to simplify the optimization process. Note that the optimal choices
(4.29) and (4.33) which are obtained using the partitioning without overlap do not

imply such a simple relation, even with the same simplifying assumptions. They

imply relations which are operators in s.

Remark 4.2. With the simplifying assumptions ¢; = —ag, ¢ = —a1, and b3 = by,
the optimal convergence factor without overlap with a cut at an even row (4.28) and
with the choice of parameters 8 = —a + %Ibl, which is motivated by the fact that
the optimal values (4.29) satisfy this relation, is equal to the optimal convergence

factor with overlap (4.41), where the overlap is at an even row, and with the choice

of parameters 3 = —é.

We now introduce an optimization process for the new WR algorithm with overlap
(4.35) to gét a better constant approximation, which will lead to much faster overall
convergence. Moreover, it allows us to convert a divergent WR algorithm into a
convergent one. For the rest of this subsection, we will look for a solution to the

min-max problem

i i beaB)). 4.44

i, (gl a.0.c.001) (144

To further analyze the convergence factor (4.41), we assume ¢; = —aq, ¢ = —ay, and
bs = by, and we choose § = —%. This will simplify the optimization process.

Now, we investigate the best choice for a. With the simplifying assumptions, the
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Figure 4.4: Left: convergence factor |py(w, @)|. Right: optimized convergence factor

|Popt (w, 7).

convergence factor (4.41) becomes

ai(az + a(s — by)) )2. (4.45)

opt (S, a1, Qg, by, by, ) =
ppt(s ay,az, 01 QO‘) ((S_bl)(s—-bZ—aal)'i’alaQ

We show on the left hand side of Figure 4.4 the function |pep(w, )| for the numer-
ical example in Subsection 4.1.6. One can observe the solution of the optimization
problem, which is the minimum with respect to a of the maximum with respect to w
of |popt]- In this example, the numerically optimized « is equal to o* = —0.0381, and
this leads to the convergence factor shown on the right hand side of Figure 4.4.

To obtain an explicit formula for the constant approximation of the optimal pa-
rameter we use asymptotics: we notice that a; is much bigger than b;, which is in
turn much bigger than ay and b, in a typical transmission line circuit. The typi-
cal transmission line circuit parameters per unit length are: L = 4.95e — 3 pH/cm,
C = 0.63 pF/cm, and R = 0.5e — 3 kOhms/cm. In addition, we have R, = Ry, = 0.05

kOhms. The total resistance for resistors connected in series is obtained by adding
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their values, and the same holds for inductors connected in series. For capacitors
it is different, where now the total capacitance of capacitors connected in parallel is
obtained by adding their values. Therefore, assuming we have n sections in a 1 cm

transmission line circuit, each section has %—"—3 p#H of inductance, %‘—3 kOhms of

resistance, and Q% pF of capacitance, and thus we have
1 1 1 0.5¢ — 3
H=N—-——' b= —n—-—, ag=n—=, bg = ——«x—. 4.46
MMy gse—3 1T T"00315 2T "0.63 7 4.95¢-3 (4.46)

Note that n is a small number for the finite size circuit case we are analyzing and can

not be very large. We therefore use a two scale expansion, for ¢ small

a4 =0 (%) by =0 (%) L ag = O(1), by = O(1). (4.47)

The modulus of the convergence factor p,p: in (4.45) is given by

Pl(waal'/a?a b11b27a)

RO(w7a’l:a’27bl7b27a) = PQ((U ay, as b] b2 Oé)./

where
Py = a2(a2 — 2apab; + o?b? + oPw?),
Py = w* — 2wla as + a20®b? + 2a2asab; + 2aa,b3bs + atal
+2a1asbaby 4 b33 4+ W2 + a2a’w? + 2wlaaibs + biw?.
Now, we assume a; = ndj, as = ndg, by = nBl, by = n527 and w = n@, where from the
typical values in (4.46) we have the typical values

1 1 - 1 05e—3 1
G m—— Bim e Bym ——f TP 2 44
T0e—3 2 063 "= 03 2?7 1053 n (4.48)

)
Note that n which appears in by is again the number of sections which is assumed
to be a fixed number and doces not depend on e. Moreover, @ > 0 is a new variable.

Then, after factorizing n* from the numerator and denominator of Ry, the modulus

of the convergence factor Ry becomes

N . P&, a1, dg, by, bs,
Ro(, 1,0, by, By, ) = i B t) (4.49)
PQ(w)al:a’27b17b27a)
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where
Py = a2(a2 — 2ap0b) + o?b? + o20?),
Py := 0* — 20%a1dy + a2020% + 2alamah; + 20d,b2by + adal
+28182bsby + b202 + 0?02 + a2020% + 20l by + B3O
Numerical experiments show that the solution of the min-max problem (4.44) with

the choice 3 = —%, is characterized by the system of equations

Ofo (= 5~ i 7 _
=2 (w7a17a27b17b21 O(*) - 07
ow

VaoRo(@,a1,82,b1,b0,0) =0 & She = .
T o~ o~ *
a—;(w7al:a27bl7b27a ) = 05

(4.50)

where Ry is given in (4.49), and @ is the interior maximum of Ry. Note that by
assuming @ to be an interior maximum of Ry, where %"—(5, a1, @z, by, b, a) = 0, the

min-max problem becomes

min (RO(Z;(Q), ah a’?a I;lu 527 a)) ;

a<0
and thus ) ]
8R7~~~~ HRT~~~~ ()L—D-
——cjo(w’al’GQ’bl’bg’a)ﬂLa—;(u’?al,ambl,bma)%=0
implies i
OR,

o (&7d17&27b17b27a) = 07

which gives the extrema of Ry(©, 4, ds, by, o, «) in a.

A partial derivative of Ry with respect to & shows that the roots of the polynomial

P(@,0) = &(—2a2020* + 233 (4agab, — 20202 — 2a3)0?
+2a2(2ap0b + 40%a2asby — 2adadyby — a2b3 — 4adabyay + 2agadb, b3
+20202a1d — a2bt + 2a3ay — a2b? 4 602a;dgbyby)
(4.51)
give the extrema of Ry in @. Since P(&,a) is a product of & and a bi-quadratic
polynomial in @ with real coefficients, it has at most two positive roots, in addition

to the root @ = 0. Hence, for © > 0, Ry can have at most one interior maximum
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which is denoted by ©. A partial derivative of Ry with respect to a shows that the

roots of the polynomial

Qla, &) = —2a2(—2axb3a% — 2aybya20% — brarhy — &Ya by — 2020281 by )0
—2a2(— b2 — bA? — DR — @S — 2a,b3G, by — 20303D? — 2a9bi DA by
—2020% 4 20202418y + 204018
—282 (b @* — 2a2b10%) + Gabib2? + 3a3b3a1by + 2a3by a3
+aab3b2 + asb307 + Gya20%0,) ,
(4.52)
give the extrema of Ry in «. To see that there is indeed a solution for the system in
(4.50) for € small, we use the ansatz o = C,c™, and @ = Cz€"*. Then, we substitute

a; by % and by by —% in ffo, and determine the leading asymptotic terms as € goes to

zero of the equations in (4.50). This leads to

p@’ o) = _ZTC/L%(C(ngﬁhwmﬁs/? + gcgage?wﬁsn - 4ng&20&@€372+2+71
—2&%672+3/2 + 4d§CaC~'e“+72+l — 28,0, C3cntmtl
+a2C2en 32 4 2 Clert2n+l/2 _ 90202, +2n+1/2
—4C3a,Cer 3 L 2C2CR 0233/ 24my

Q(a*,dj) _ —61%(2&%05 N 2&26’36'02,62” _ C’gCa€672+’Yl+7/2 + d2é3036272+2
+2C,ayC?C2 22 tn+3/2 CouCAC2Pmm+3/2 o ayCChetmt3
—262CC22MH2 4 2CLC g2 452 03, CC2CE M +2m ]

—20,CPCEM A2y

Equating the exponents in these two equations leads to y; = % and y2 = —%. The

1
2 2"

constants need to mach as well, and thus we obtain C, and C; by solving the resulting

equations, and they will both depend on C, which is given by C = ;—1— The resulting

ax

leading terms in Q(a*,&) form a polynomial of degree two in C,, so by solving
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Q(a*, @) = 0 for C,, we have C, in terms of as, C, and C;,

Cf .= X+VY
T 2(2a2CC2+2a2C3)°

X = 2C%, — C*C2 - C8 + 2C2C2a, — 2CC2,

Y := 16a3C* — 12C4C8ay — 4C8CLa, — 1208C% 5 + C12 4 C2C4 + 6CACE
+4CC? 4+ 40852 + 16C8a2C% + 20C4CEa2 + 16a5C2C2 — 16a3C*CE
+8a2C5C2 — 16a3CHC2 + 4C5CE — 4CNa,,

(4.53)

Now substituting C;% into the leading terms in P(&, ") and solving the resulting
equation for Cy, the desired solution for Cj is given by the square root of the zero of

a polynomial of degree four which depends on a, and C , and is given by
Py(Z) = 324 + (4C? — 4a9) 23 + (—26,C? + C*) 22 — 662C?Z + 2a3C? — 2C4a2.

Assuming that Z(a,, C) is a zero of the polynomial P; above, we approximate the
— zero by a Taylor expansion about the point (zg, o), where zp and y, are the typical

values of o and C from (4.48) respectively, and thus we obtain

. = 07z oz
Z(aa,C) = Z(x0,y0) + 7 (%0, Yo) (@2 — To) + —= (0, Y0)(C — o) + -
0ay oC

Now, Py(Z(ay, C), @y, C) = 0 implies

ory 0z | 0Py _
oz 8a2+8a2_0
oby 07 | 0Py _

0z 8C’+6C 0.

P,
Hence, 22 = ( and dZ = —(—E—). Using the values of zy and yy from the

o = () Gy

typical transmission line circuit, and in addition using Z, := Z(xg, yo), which is the

numerical solution of Py(Z) = 0 after substituting z, and y, into P, and is given by
Zy = 2.1736, we find 82 (a:o yo) and 2 (xo Yo). Thus the Taylor approximation of
the zero is

Z(dy, C) = —0.0343 + 1.3478a, — 0.0307C,
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and hence, we find

Cy = \/ —0.0343 + 1.3478a, — 0.0307C.

Substituting the approximated Cj into CJ in (4.53), we obtain C in terms of a,
and C only. Finally, we find a Taylor approximation of C; about the point (a,, C) =

(z9, yo) from the typical transmission line circuit, to get the simple result
Co = CF = —0.4503 — 0.28374, — 0.1604C,

which is used together with o = C,e™ to obtain o*,

_ N
* = (-0.4503 — 0.2837a, — 0.1604—= )
v M U

Note that b, does not appear in the asymptotic result for o*, b only appears in higher

(4.54)

order terms in the asymptotic expansion.

We choose R, = 0.05 kOhms and R = 0.5e — 3 kOhms from the typical trans-
mission line circuit elements, and we vary the circuit elements L, and C} to plot the
optimized a* from (4.50) and the asymptotic result (4.54) on the left hand side of
Figure 4.5. In addition, on the right hand side of Figure 4.5, we plot the maximum
of the convergence factor as a function of the circuit elements L, and C; using the
optimized o* from (4.50) and the asymptotic result (4.54). One can see that the two
surfaces of the convergence factors are close.

An example of the convergence factor as a function of the frequency w is given in
Figure 4.6 using the typical transmission line circuit elements from Subsection 4.1.6.
On the left hand side of Figure 4.6, we compare the optimized convergence factor with
the classical one. On the right hand side, we plot the optimized convergence factor
with the numerically optimized value o* = —0.0381, the asymptotic value o, =
—0.0382 from the result in (4.54), and the low frequency approximation ar = —0.05.

All are much better than the classical convergence factor, and one can see that the

numerically optimized and asymptotic results are very close.
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Figure 4.5: Left: optimized a* from (4.50) versus asymptotic result (4.54). Right:
maximum of |pop (@, @*)| versus maximum of |pe: (@, o, )| as functions of the circuit

elements L; and Cy.
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Figure 4.6: Optimized convergence factor versus the classical one on the left. On the

right, convergence factor for the optimized WR algorithm applied to the extra small

circuit.
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Figure 4.7: Convergence behavior of the classical versus the optimized WR algorithms

for extra small transmission line circuit.

4.1.6 Numerical Experiments

We give now a numerical experiment for the extra small transmission line circuit given
in Figure 4.1. We use the typical transmission line circuit elements R, = R; = 0.05
kOhms, R; = 0.5e — 3 kOhms, C; = Cy = 0.63 pF, and L; = 4.95¢ — 3 puH, with
source I, = 10t for 0 <t < 0.1 and I, = 1 mA for ¢t > 0.1, and the analysis time
interval is [0, 7], with 7" =1 ns. The solution is computed using the backward Euler
method, with At = %, and zero initial waveforms. The parameters we use are the
numerically optimized value o* = —0.0381, the asymptotic value oj,, = —0.0382
from the result in (4.54), and the Taylor approximation ar = —0.05. We also choose
8* = —a%. In Figure 4.7, we show the error as a function of the iterations. One can
see the remarkable improvement of the optimized WR algorithm over the classical

one.
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Figure 4.8: A small transmission line with transport behavior.
4.2 A Small Transmission Line Circuit

In this section we analyze the classical, an optimal, and optimized WR algorithms for
the small TEM mode lumped circuit in Figure 4.8. The circuit equations are given

by

_ - -
a; by
& = ay by c3 z + f, (4.55)
a3 by ¢4
aq by

with the vector of unknown waveforms & = (uvy, i1, vy, i2, v3)7, which consists of nodal
capacitive voltages alternating with inductance currents in the transmission line cir-

cuit. The entries of the matrix are given by

1 C_
—men V= 1
) R; )
——, iodd —5——, iodd —72, ieven
4 = (i+1)/2 C: = (i+1)/2 b = i/2
T 1 B b T 1 X b) 1 i )
1 even —— 1 even 0 1> 1 odd
Casaye1’ Liy2’ ’
1 .
\ R Cs' = 5

and the source on the right hand side is given by f(t) = (/,(t)/C},0,0,0,0)T. We

also need the initial values (0)

o 0 ,0
(Ul’zlavzv

0 .0

i, v3)T to start the transient simulation.
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4.2.1 Analysis of the Classical WR Algorithm without Over-

lap

We partition the circuit at an even and at an odd row into two sub-circuits or sub-
" systems as we have done for the extra small transmission line circuit case, and obtain

the classical WR algorithms

by ¢ 0
aftl = SR IS h 4 7
ar by fo \ cow?
by c3 fs aguk (4.56)
W = gy by ooy (WM A | 0 ;
i as s | [s 0
and -~ .
by o fi 0
o = o by o | U | o [+ 0 ’
az b3 fa caw? (4.57)
by c [ aguk
wht! = R IS B fa 4 3%3
| ay b5 f5 0

Similar computations to those for the extra small transmission line circuit show that
the convergence factor of the classical WR algorithm with a cut at an even row is
given by

— a2(s—bs)(s—bs)—azaacs . ca(s—b1)
Peta($,@,0,€) = o S b —ares(s—b) - ases(s B) | (5 B)(s ba)arer? (4.58)

and the convergence factor with a cut at an odd row is given by

. c3(s—b1)(s~ba)—aicic3 . az(s—bs)
pCl”(S’ a, b’ C) T (s=b1)(s=b2){s—b3)—aici1(s—b3)—azca(s—b1) (s—bs)(s—b5)—ascq’ (459)

Note also that the convergence factor p., with a partition at an even row is the same as

the convergence factor p., with a partition at an odd row, assuming that the elements
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of the vectors a, b, and ¢ satisfy the simplifying assumptions a3 = —cp, = —c4 = ay,
g = —C¢p = —C3 = ag, by = by, b3 = 0, and by = by. Now for R(s) > 0 the denominator
in (4.59) does not vanish, because a; > 0, ¢; < 0 and b; < 0 for the TEM circuit we
consider. Hence the convergence factor is an analytic function of s = n+iw whenever
n > 0. The limit of py, for s = re?®, —w/2 < 6 < 7/2, as r — oo is zero, therefore,
by the maximum principle for complex analytic functions, Theorem 1.5, the modulus
|peta| takes its maximum on the boundary at n = 0. The modulus of p, for s = iw

is given by

v/aZa2(b?+w?)

\/wG +(—4ay az+b3 +b2)wr +(4aa+b? b2+2a1a2b1b2—2a102 b2)w?+aZaZb? !

(4.60)

|pcla(iwa ai, ds. bla b2)| =

where we assume the elements of the vectors a, b, and ¢ to satisfy the simplifying
assumptions az=—cy=—c4=ay, a4 =—C1=—C3=ag, b3 =0, bs=by, and by = by. The
modulus of the classical convergence factor |pqa| depends on w? only, as one can see
from (4.60). Furthermore, |p.,| might take values bigger than one as is evident from
the following Lemma. Note first that, for w = 0, we have |pu.(0, a1, az, by, b2)| = 1,

and hence the classical WR algorithm is not convergent for w = 0.

Lemma 4.3. Let ay, as >0, by, by < 0. If A:= “;TZZ >0, and b := Z—; > 0 are in the
region 0y defined by
Qo= {(AbD):Any <A0<b<3U{(A0): B < A< Ap,c<b< 3}
2
U{(A,b) : B < A,3 < b},

where ¢ is the only real Toot of the polynomial I(b) = 5b* — 8b> — 14b* — 8b — 3 in the

interval (0, 3] as is given in Figure 4.9, and

Apy = BV Ly

2

then there exists w > 0 such that |paa| given in (4.60) takes values greater than or

equal one.
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Figure 4.9: The zero of the polynomial () in the interval (0, 3].

Proof. The modulus of the classical convergence factor squared is

Py (iw, a1, as, by, ba)

cla ) ’ ) 7b ’b 2= ) ’
|Peta(iw, a1, as, by, by)| Py(iw, a1, ag, by, ba)

where

Pl = a%ag(b% + w2>»
Py = w8 + (—4dajag + b? + b3)w* + (4a2a2 + b3b3 + 2a1a2b1by — 2a1a2b7)w?

+alab?,

and Py, P, > 0. The polynomial p(w, a;, as,b1,by) = Py — Py is

plw, ay, ag, by, by) = —w®+ (dasay — b3 —b3)w' + (2asa2b% — 3a%al —b2b2 —2a1a,b1bo)w?.

Factorizing out b§ and letting A = a3t b = Z—;, and x = ‘;—22 > 0, the polynomial p
2 2

becomes
plz, A, b, by) = bs (—x3 + (4A — (V¥ + 1))302 + (2Ab? — 3A% — b2 — 2Ab)zx)
= ng (—JU2 + (4A — (b2 + 1))z + (2Ab2 — 3A? — b2 — 24b)),
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where A >0, b > 0, and x > 0. We now define the function f by
flx, A D) = —a% + (4A — (b* + 1))z + (246> — 3A% — b* — 24b), (4.61)

with £ > 0. Since z > 0, the sign of f indicates where the polynomial p is negative
and where it is positive, which will show where P; > P, and where P, < P,. The

. We treat two cases:

. . . 4A-(b2+1
maximum value of f is attained at z* = ——%—+—)

1. Ifz*>0,ie A> 9%, then we consider the function

1
flz =2 Ab)=A*-20b+1)A+ Z(b2 -1

2. If z* < 0, then the maximum is attained at x = 0, which implies w = 0, and

hence, |puaq| is equal to one as noted earlier.

Therefore, we will study the first case only. Now, if h(A, b) = A2—2(b+1)A+3(b°—1)?,

then the equation h(A,b) = 0 has two roots in terms of b,

24 \/4— (b= 1)
2

Apy = (b+1), (4.62)

where we assume 4 — (b — 1)? > 0, which implies —1 < b < 3, but we know b > 0, so
we get 0 < b < 3. Note that, for b > 3, the polynomial h(A,b) is positive everywhere
and there are no roots. Since h(A,b) is a quadratic polynomial in A, and the sign
of the coeflicient of A? is positive, h(A,b) < 0 for A € (Ap—, Any), and h(A,b) > 0

otherwise. The root Ap4(b) > ézfl, since

PO 1) > B 224 A (b DD(b+1) > 0 +1
G40+ +20+1)y/A-(B-172> 8 +1
S 4b—b+3>-2(b+1)/4— (- 12

The last inequality is true, because for 0 < b < 3, we have 4b—b2+3 > 2b—b*+3 > 0 >

—2(b+1)y/4 — (b — 1)%2. Now we will look for solutions of the equation A;_ = ’—’zf-l
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for0<b<3:

PV ) =B s 22— A- (- 1B+ 1) =0 +1
edb+1)—2b+1)/E-(b—12 =0 +1
©4ab— b +3=2(0b+1)/4— (b- 1)%

Since both sides are positive for 0 < b < 3, we square both sides, and obtain after

simplifications the equation
I(b) := 5b* — 8% — 146 — 8b— 3 =0, (4.63)

where [(b) is shown in Figure 4.9. Since [ is a polynomial of b, it is continuous, and

differentiable everywhere. As is evident in Figure 4.9, equation (4.63) has only one

b2+1

root, say ¢, in the interval (0,3]. Therefore, Ay < >3

in the interval (0,c), and
Ap_ > .b%TH in the interval [c, 3], where c is the solution of equation (4.63), ¢ ~ 2.821.

To summarize, we have h(A,b) < 0 in the region Q_ = {(A,b) : l’%l < A<
Ape,0 < b < GU{(AD) : A < A < Apg,e < b < 3}, and h(A,b) > 0 in the
region 0, = {(A,0) : Apy < A0 < b <3FU{(AD) B < A< Ay e < b <
3} U{(A,b) : baT*l < A,3 < b}. The regions are shown in Figure 4.10. Therefore, the
function f given in (4.61) satisfies f(x, A,b) < 01in Q_, and f(z, A,b) takes values
greater than or equal zero in Q. The function f equals zero on the boundary of {1,
where the maximum value of f is zero. Hence, for a;, as, by, and by in the region (2,

there exists w > 0 such that the modulus of the classical convergence factor satisfies

lpela' Z 1. O
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Figure 4.10: Regions where |pua| < 1 and |paa| > 1.

4.2.2 Analysis of the Classical WR Algorithm with Overlap

We now analyze the classical WR algorithm with overlap at the odd row in the middle,

which leads to two subsystems of the same size,

by f 0
= gy by oo (U K] 0
i az b3 l 3 Ca“’é ( 46 4)
by 3 I3 (1,2u§
S as by o WL g |+ 0
i ay bs i fs 0

Using a similar analysis to the one introduced in Subsection 4.1.2, we find the con-

vergence factor of the classical WR algorithm with overlap,

_ azc2(s—by) . azc3(s—bs)
pcla(& a,b, c) T (s-b3)((s—b1)(s—bz)—aic1)—azca(s—b1)  (s—b3)((s—ba)(s—b5)—asca)—azca(s—bs)"

(4.65)
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By Theorem 1.4, the convergence factor p, in (4.65) is an analytic function of s in
the right half of the complex plane, since the denominator in (4.65) does not vanish,
because a; > 0, ¢; < 0, and b; < 0 for the circuit we consider. Furthermore, the limit
of pea for s = re”, —m/2 < 6 < w/2, as r — oo is zero, therefore, by Theorem 1.5,
the maximum of |p,| is attained on the boundary at n = 0. Note also that, with the
simplifying assumptions ¢; = c3 = —ay = —ag, €3 = ¢4 = —a3 = —aq, b3 =0, by = by,
and bs = by, the classical convergence factor py, in (4.65) with overlap is given by

alag(s - bl) >2
clal(S, @, b) = )
et ) (s((s—bl)(s——bz) + ayaz) + ajaz(s — by)
and it is equal to pg, in (4.59) without overlap squared. Therefore, Lemma 4.3 holds

for pg, with overlap, and hence, the classical WR algorithm with overlap still might
not converge. An example for the convergence factor as a function of w is given in
Figure 4.11 for a typical set of TEM circuit parameters. One can see why TEM type
circuits are hard to solve with classical waveform relaxation: only high frequency
components in the signal converge, a large band of frequencies around w = 0, in the
example w € [—27, 27}, has a convergence factor bigger than one and hence will cause

difficulties for the algorithm.

4.2.3 An Optimal WR Algorithm without Overlap

The new WR algorithm without overlap and with a cut at an even row is given by

Akl — by € Wkl 4 h 4 0
| @ by — o Ja ca(wk + awf)
by — % ¢ fs % (Bub + uf) (4.66)
whtt = as by oy |WTH] A [+ 0 ,
i as bs fs 0

where we used the new transmission conditions

k+1 k1 _ ok k k+1 k+1 _  k k
ubt 4+ aub T = wi + owf, witt + BwgTt = ui + Bus. (4.67)
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Figure 4.11: Convergence factor as a function of the frequency parameter w for the

classical WR algorithm applied to the small TEM circuit.

Similar to the very small circuit, Subsection 4.1.3, the key improvement in the new

WR algorithms is better transmission conditions than the ones used for the classical

WR algorithm. Similar calculations to those in Subsection 4.1.3 with a cut at an even

row lead to the convergence factor

_ 1 o al __ Lif+C1  Lyo+C:
oo 0.8 s (o) (14 - 1) = HE2E BSE
where

L1 := cys — coby,

Cr:= 82— (by + by)s + biby — a1y,

Ly := 5% — (by + by + bs5)s* + (bsbs + bzby + bybs — agcy — azcs)s
—bsbsbs + ascsbs + agcybs,

Co = as5” — (a2bs + azba)s + babsag — azascy.

We also obtain 62 = (pp)* @3 and w2 = (pop)” 1w0.

(4.68)
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Theorem 4.5 (Optimal Convergence). The new WR algorithm (4.66) converges

R . . . L. ~ ~0 -
in two iterations, independently of the initial waveforms @ and @W°, if
. a25%—(asbs+azbs)s+babsaz—azascy

53— (b3+ba+bs5)s2+(babs+b3bs+babs —asca—-a3c3)s—bsbabs+aszcabs+ascabs?’
82— (b1+b2)s+biba—a1ca

de'uen = a(s)

Beven = /6(3)

Proof. The proof is similar to the proof of Theorem 4.1.

cas—caby

(4.69)

O

Now for the cut at an odd row, the new WR algorithm using the new transmission

conditions
uf“ + au§+l = wk + aw’oc, w’f“ + ﬁng = ug + 571];, (4.70)
is given by
b] C1 fl 0
aftt = ap by C2 Wty [+ 0 ’
ay bz — c3a f3 c3(wy + awg) (471)
_a . j B (Buk + uk
wk+1 _ b4 3 Cq wk'H 4 j4 3 (/}LL;:, -+ Uy
i ay b5 f5 0

The convergence factor of the new WR algorithm with a cut at an odd row is

popt(57a7 b7 C, a7ﬁ) = F1F2 (fl; -+ ﬁ) (1 =+ % - %) = ﬁ;gig; ’ i?gig?7 (472)
where
Ly == ¢38* — (bacs + bics)s + bibacs — arcics,
Cl = 53 - (bd + b2 + 61)82 + (bgbg + b1b3 + b]bz — a;¢; — G,QCQ)S
—b1bgbs + ayc1b3 + azcoby,
L2 = 82 - (b5 + b4)S -+ b4b5 — C4Q4,
Cy := a3s — asbs.

We also obtain as before 428 = (pgpe)* 49 and 2 = (pop)

k ~0
wy.
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Theorem 4.6 (Optimal Convergence). The new WR algorithm (4.71) converges

in two iterations, independently of the initial waveforms @° and w°, if

~ — _ azs—asbs
Aodd = a(S) - 52~ (bs+bg)s+babs —caas’
/HA _ ﬂ(S) 85— (b3+ba+b1)s?+(bobs+biba+b1by—aic1—aner)s—bibabstascibztascaby
odd — - 352 —(bzca+bic3)s+bibacz—aicics )
(4.73)
Proof. The proof is similar to the proof of Theorem 4.1. O

Remark 4.3. Theorems 4.5 and 4.6 imply a relation between the optimal parameters
obtained with a cut at an even row and those obtained with a cut at an odd row.
Assuming that the elements in the vectors a, b, and c satisfy the simplifying assump-
tions a3 = —Cyp = —C4 = Q1, A4 = —C; = —C3 = dg, bs = by, and by = by, the optimal
parameters satisfy

-1 —1

Reven — = 3 ﬁeven = = -
odd odd

4.2.4 An Optimal WR Algorithm with Overlap

We now analyze an optimal WR, algorithm with overlap at the third row. Using the

new transmission conditions

1 k41 Kk k k+1 k1 _ o k k
ubt + oust = wy 4+ awf, w4+ fwit = ug + Sus, (4.74)

the new WR algorithm is

I by fi 0
Wt = g by o TR A 0 :
I as by —cza f3 c3(wh + awk) (4.75)
by —% 3 f3 %2(11,’; + fuk)
Wl = s by o |w | g |+ 0
L ag bs Js 0
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The analysis is similar to the one used before, where we use the Laplace transform,
and we consider the homogeneous system. The convergence factor of the new WR

algorithm with overlap, obtained after some computations, is

popt(8,a,b, ¢, «, )

= A (52 -2 (g —p) +o) (1 2 -t - 52 (£ - o))

— agas(s—bs)+aas((s—ba)(s—bs)—asca) . Beaca(s—b1 )+ea((s—b1)(s—b2)—aic1)

T (s—batcza)((s—b1)(s~b2)—aici)—azcz2(s—b1) (B(s—b3)+az)((s—bs)(s—bs)—asca)—Paszcs(s—bs)’
(4.76)

o X k - . k-
In addition, we have as before 43* = (py)" 43 and W = (pyp )" @Y.

Theorem 4.7 (Optimal Convergence). The new WR algorithm (4.75) converges

in two iterations, independently of the initial waveforms @® and w°, if

A _ a3(s—bs)
e i )
— _ §—01)(8—-02)—ajcy
p=p0s) = - c2(5—b1) :
Proof. The proof is similar to the proof of Theorem 4.1. 1l

Similar to the extra small transmission line circuit case, we choose an approxima-

tion by a constant of the optimal parameters in the next subsection.

4.2.5 An Optimized WR Algorithm with Overlap and Con-

stant approximation

The low frequency approximation of the optimal parameters (4.77) in the transmission

conditions is

o asbs biba — a1y
T — 373 T g
b4b5 - C4Cl4’ Cgbl

The conditions for analyticity with the corresponding parameters range are given

in the following lemma.
Lemma 4.4. If b, <0, a; > 0, and ¢; <0, and

a<0, B>0, (4.78)
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then the convergence factor poy in (4.76) is an analytic function in the right half of

the complex plane, s = n+iw, n > 0.

Proof. By Theorem 1.4, we have to show that the denominators have no zeros in the
right half of the complex plane. We will show the proof for one quotient, and the proof
for the other one is similar. The denominator of the first factor of the convergence

factor (4.76) is

53 -+ (Cga - bl — l)3 — bg)Sz + (b1b2 + b2b3 + b1b3 — 1€ — a9Cy —+- (—l)2(33 — b1(33)(1)8
+(—CL10103 + b1b2c3)a + CLQCgbl - b1b2b3 -+ alclbg.

Now, by Vieta’s formulas, Theorem 4.4, the product of the roots satisfies s;5953 =
—((—aycre3 + bibacg)a + agcaby — bibebs + arcibs) < 0, and the sum sy + so + 53 =
by + b3 + by — cza < 0 with @ < 0. Furthermore, the pairwise products summed
satisfy 818y + 8153 + S283 = —aycy + b1ba + babz + bibs — asca + (—bacs — bicz)a > 0,
with o < 0. Hence, if one zero is real and the other two are complex conjugate, say
s1 € R, sy = 2+ iy and s3 = z — iy, then we have 5159 + 8153 + 5953 = 2517 + 22 + 1/,
51+ 59+ 53 = 8 + 2z, and s18283 = s1(z* + y?). So, if 57 > 0 and z > 0, then we
get a contradiction with the inequality on their product and their sum. If s; > 0 and
x < 0, then we get a contradiction with the inequality on their product. If s; < 0
and = > 0, then we have, using the equality on the sum, s; = b; + b3 + by — c3a — 21,
and using the equality on the pairwise products summed, 251z + z? + y? = —a;¢; +
b1by + bybs + b1bs — agey + (—bycs — byez)a. Multiplying the second equality by s;, we
get

25?3: = (b1+b3+b2—03a—2x)(—a1cl+b1b2+b2b3+b1b3——a2c2+(—b2c3—b103)a)—51(x2+y2).

Using the equality on the product, we have s,(2% + y?) = —((—ajcic3 + bibyes)a +
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asCaby — bybybs + ajcib3). After some simplifications, this implies

28%.’1? = (2b103a+2b203a+2a101——2b3b2—21)1b3+2a2c2 - 2b1b2)$+b1b§+b%b2+b%b3
+b1b2 + bzb2 + bab2 + czagcocr — 2bybaczar — 2bsbacsa — 2bzbyczar + c2bya?

+c§b1a2 - b%c;z,a - bgc;:,a — b2a101 — b2a2c2 - blalcl + 2b1b2b3 — b3a202,

and hence, 252z < 0 for by, by, b3, 1, ca, c3 and « negative, and a; and ay positive,
which contradicts the fact that 2s2x > 0 for x > 0, which means s; and » must be
negative. Now if the three zeros are real, they must be negative, since if the three are
positive, then we have a contradiction with the inequality on the sum, if any two are
negative and the third is positive, then we have a contradiction with the inequality on
the product. The last possible case is the case when one zero is negative and the other
two are positive, say s; > 0,82 > 0 and s3 < 0. Then we have, using the inequality
s152

on the pairwise products summed, s1se — |s3](s1 + s2) > 0, which implies |s3| < P

s2+s152+82 . .
However, s; + so — |s3] > s1 + $2 — Sz = A 811+322 *2 > 0, which contradicts the

inequality on the sum. Thus there is no pole in the right half of the complex plane

from the second factor. O
As in the extra small case, if we take a3 = - =—-c=a1, a4 = —c; = —c3 =ao,
by = 0, b5 =5y, and by = by, we obtain fr = —é. For b, <0, ¢; <0, and a; > 0, we

have a7 < 0 and g1 > 0.

We show in Figure 4.12 the classical convergence factor and the optimized one with
the Taylor approximation. We observe the remarkable improvement of the optimized
convergence over the classical one.

Taking s = re®, —m/2 < 8 < m/2, the limit of p,,: as r goes to infinity is zero.
Since p,p is analytic in the right half of the complex plane, we can apply the maximum
principle for analytic functions, Theorem 1.5, and since we have the same limit at
infinity in all directions, the maximum of |p,.(s)| for s = +iw, n > 0, is attained

on the boundary at n = 0. For s = iw, from the first quotient of the convergence
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Figure 4.12: Classical convergence factor (solid line) versus the optimized convergence

factor with the Taylor approximation (dashed line).

factor po in (4.76), we have

azaz(s — bs) + aaz((s — by)(s — bs) — ascq) =
az(c(bgbs — agcy) — azbs — aw?® +i(az — a(bs + bs))w),

and
(s — b3+ c3a)((s — b1)(s — ba) —arc1) — agea(s — by) =
QC3(b1b2 — alcl) — b1b2b3 -+ alclbg + a202b1 + (bl + b2 -+ b3 - 0463)(.02
—Z((b1 + bz)OéCg — blbg — blb3 - b2b3 +aicy + ageq + wQ)w,

-which implies that |azas(s—bs) 4+ aax((s —bs)(s —bs) —ascq)|, and |(s —bs+cza)((s —
bi)(s — by) — aic1) — asca(s — by)| both depend on w? only. The same holds for the
second quotient. Therefore, the modulus of p,: for s = iw depends on w? only, and
hence, it suffices to optimize for nonnegative frequencies, w > 0. We consider here
again the WR algorithm with one overlap at an odd row, for the same reasons as in

Subsection 4.1.5 for the extra small circuit case. From the optimal choice (4.77) with
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overlap, and the simplifying assumptions ¢; = c3 = —aq4 = —ag, ¢3 = ¢4 = ~ag = —ay,
by = 0, bs = by, and by = by, we have B, = —fpf. The other optimal choices without -

overlap lead to relations which are operators in s.

Remark 4.4. With the simplifying assumptions ¢; = ¢3 = —a4 = —ag, €3 = C4 =
—a3 = —ay, by = 0, by = by, and by = by, the optimal convergence factor without
overlap, with a cut at an odd row (4.72), and with the choice of parameters f = —a+
S

=, motiwated by the optimal choice, is equal to the optimal convergence factor with

overlap (4.76), where the overlap is at an odd row, and with the choice of parameters

g=-1.

To further analyze the convergence factor (4.76), we assume ¢, = ¢4 = —a3 = —ay,
¢ =c3 = —ay = —ay, by =0, by = by, and by = by, and we choose § = —1. This will
simplify the optimization process.

Now we look for a better choice for « such that the overall convergence is faster.
With the simplifying assumptions, the convergence factor becomes

as(ay(s — by) + (s — by)(s — by) + ayag) )2
(s — aga){{s — b1)(s — be) + a1a2) + ayas(s — b1) ) ’

Popt(S; ay, az, blv b27 Oé) = (

(4.79)
and we look for solutions of the min-max problem
1;1<151 (rgg(;)( | popt (iw, a1, as, by, be, a)|> . (4.80)

On the left hand side of Figure 4.13, we show the function |pop(w, )| for the numer-
ical example in Subsection 4.2.6. In this example, we find the numerically optimized
«, which is o* = —12.9733, and leads to the convergence factor shown on the right
hand side of Figure 4.13. To solve the min-max problem (4.80) approximately we

again use the two scale expansion introduced in Subsection 4.1.5, where we have

b= =01, bh=—Es=0(%),
ay = 5= = O(1), by = — k=% = O(1),

063 T395-3

(4.81)
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Figure 4.13: Left: convergence factor |pept(w,)|. Right: optimized convergence

factor |popt(w, a™)}.

and n is again the number of sections in 1 cm of circuit length. The modulus of the

convergence factor po in (4.79) is given by

_ Pl(waalaa’QablabQ:a)
- Pg(w, ay, as, bl, bQ./ a)’

Ro(w, ay, as, bl, b27 Oé)

where

Py := a2(a?b? — 2b%byca; — 2a2azaby + bib2a? + 2b1byataras + alaja? + ajw?
—2w?byaay + wWhia? + whia? — 2w?ala)ay + wia?),

Py= a§w4a2 + 4a§a?w2 + a%a?bf + 2a%bfb2aa1 + 2ag’b1b2a2a1 + 2a§w2b2aa1
+ajala® + aZw?h2a? — dwiayay + b2b2w? + adw?bia® + azb2b3a? + 2a3adab,

—2adw?a?a; — 2wibiaga; + wibi + Wb + 2wibyazaby + Wb

Again, assuming a; = nai, az = nas, by = nby, by = nby, and w = nw, where from

the typical values in (4.81) we have the typical values

o NS R N 05¢—3 1
T 495 -3 T 063 1T

; S S R 4.82
« 063 0.0315" 2 405e—3 n’ (4.82)



4.2 A Small Transmission Line Circuit 181

and & > 0 is a new variable, and factorizing n® from the numerator and denominator

of Ry, the modulus of the convergence factor Ry becomes

3 - Pi(@, ay, @z, by, b,
RO("‘N}) al)a'21 b17b27a) = ~1(Cij7ill/ ?2’ “'1’ ~2l a)7 (483)
P2(w7a17a27b17b27a)

where

Py = a3(a2b? — 26%hyaiy — 2a2a0ad; + B2b3a + 2b,byaPd Gy + a2a202 + a0
—20%byvy 4+ W20202 + ?2a? — 20%0%a1ay + @),

Py = alito? + 4a2a20? + a2ath? + 2a2b3byady + 2a3bbyaa, + 23?0,
+adada? + aoPhia? — 40taa, + V20202 + a20%b2a? + abibia® + 2adalab,
—2@30202a; — 20%03axdy 4+ O*bE + 08 + 20%bydnd by + OHH2.

Numerical experiments show again that the solution of the min-max problem (4.80)
with the choice 8 = —é is characterized by the system of equations
N Lo O (5, @y, g, by, by, %) = 0,

va,(ZIRO(‘Da a’l7d27b11b27a) - 0 - aRo -

v (4.84)
T(a) a17d27b17b27a*) - 07

where Ry is given in (4.83), and & is the interior maximum of Ry.

To see that there is indeed a solution for the system in (4.84) for ¢ small, we use
the ansatz o = C,e"t, and @ = Cze"?. Then, we substitute d, by %, and ?)1 by % in
Ry, and determine the leading asymptotic terms as ¢ goes to zero of the equations
n (4.84). The analysis and the ideas are the same here. However, the polynomials
are more complicated, because we have a more complicated convergence factor. The
polynomial P(®, ), the equivalent to P(@,a) in (4.51), will now be a product of
@ and a bi-quartic polynomial of @ with real coefficients. The polynomial Q(a,®),

the equivalent to Q(«, @) in (4.52), is still a quadratic polynomial in «, but is more
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complicated. The leading asymptotic terms as e goes to zero are given by

P(E, a*) _ 2:‘112,1/02- (—6‘304026572”/2”“ +20§&g@2672+271+3/2 _ Cgcg€2y1+972+11/2
+6CLa,C,CeSP34m 4 8C2C3a3C 33+ 4 10a3C, Centret!
+8Cg)c§dg€372+5/2+271 _ 20262(}267724-9/2—}-271 . 80&1}&%c26572+7/2+271
FACECRaye O/ 2n _ 3522412 _ JCACREMHH2 4 904Gy
*203&%02026372+5/2+271 + 4036202&26572+7/2+271 _ 160%@%06!063724—2-{—01
—202C4312 2 4 4C2ayCoCoe31e+24m — 8C3G4CETIMA2 4 8O (R ape»2 /2
+4C~'3C§d§6”+371+2 _ 2026772”/2 _ 4&%00,6'3672”1“
+4CEape5725/2 — 3asC2m A2y

Q((Y* : E) — %(6/2(73036472+2 _ Ca(:v4cg€6v2+'yl +7/2 +2&gé3 . 3(7,3()&0‘%671 +2v2+3/2
—1262C,CEErtnHT/2 _ 4a2CCaed 2 _ 2520322 —255CCR M+
+1083C,ChenT4mt5/2 L 553C 0221+ — 90, C2CE3?MH2 4 5,080 +3
20, CAC a5/ L 4GAC CRC2 21 +2 _ 93 CBCR Rt n +2
—2G3CCAC2 A+ INtS | 8 (28 gt NHT/2 _ 8320, CAC2en+n+5/2

+60§Cud258”+71+9/2 _ CaCdl)OE'y1+10"yz+11/2 + ngCan,C?e“”””/?) 4o

Equating the exponents in these two equations leads to v, = v = —%. The con-
stants need to mach as well, and thus, we obtain C, and C by solving the resulting
equations, and they will both depend on C, which again is given by C:= \/b—;—l The
resulting leading terms in Q(a*,) form a polynomial of degree two in C,, so by

solving Q(a*, @) = 0 for C,, we have C, in terms of a,, C, and Cs,

Ci= — XEVY
a " 2(2a3C3CE+2a3CCE+2a3C —-4a3CC2y’

X = —2C?C8—12a2C8 + 8C2*C8a,— CCS —8a2CAC? — C0+2a3C2C? +6CEa,
+2C4Chay — 3a5C2 +10a3C32,

Y = 160C2CHMa2 — 48C*C14a, + 144C*CL2a% — 204C*C a3 — 40C?Cloa,
+396C2C10q4 — 332C2C1253 — 304a3C8C? + 158C*CEal + 48CPCL0a32
—4C8C0G, — 108a3CECH + 200a8CEC? — 124a]CAC? + 4C3CE a3
+16a5C8C2 — 48a5CHAC2 + 40a3C2C2 + 9a5CE — 60alC8 + 16a5C* 4 C2°
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+4C?CE + 270a3C12 + 60a3CLE — 164a3CL* + 172a5CE — 276a5C10
—12C8a, + 6C*CL 4+ 100a8CAC* + 16a4CSCP — 36C°CEa3 (4.85)
—24C8C 24, — 16a3COCE + 4COCH + C8C12.
Now substituting again C into the leading terms in P(&, o*) and solving the resulting
equation for Cj, the desired solution for Cj is given by the square root of the zero of

a polynomial of degree eight which depends on a, and C, and is given by

Pe(Z) =528 4 (18C2 — 34a,) Z7 + (24C* - 103C%ay + 89a3) Z° + (216a3C? 4 14C°
—116a3 — 106C%a,) Z° + (7934 — 206a3C? + 3C® — 41a,C% + 151a2C*) 24
+(=76a3C* + 28a2C° — 263 + 56a5C? — 4a,C®)Z% + (3a5 + 53a5C?
—2a3C% — 19a3C4) 2% + (30a3C* — 6a3C% — 30a5C?)Z
—6a8C* + 2a5C® + 4a5C>.

A Taylor expansion about the point (dg, C) = (2o, %o) from the typical transmission

line circuit elements in (4.82) is also used here in a similar way to the one in Subsection

4.1.5 to approximate the zero of the polynomial Pg, and we find

Co = \/ 0.6638 + 2.33214, + 0.5944C"

Then substituting the approximated C; into C} in (4.85), we obtain C} in terms of a,
and C. Again, we find a Taylor approximation of C:+ about the point (g, C) = (%0, 40)
to get the simple result

Cy = CF = —1.2500 + 0.3769a, + 0.1220C,

which is used together with « = Cue™ to obtain o,

b
o = (—1.2500 + 0.3769a5 + 0.1220—=)+/a;. (4.86)
Vvay

Note that here also b, does not appear in the asymptotic result for o*, b only appears

in higher order terms in the asymptotic expansion. However, o* given in (4.86) for the
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06

Figure 4.14: Left: optimized o* from (4.84) versus asymptotic result (4.86). Right:

maximum of |pep (@, a*)| versus maximum of |p,p (@, o, )| as functions of the circuit

asy

elements L, and C}.

small circuit case, where we have the overlap at an odd row, is completely different
from o* given in (4.54) for the extra small circuit case, where we have the overlap at
an even row.

In Figure 4.14, we choose Ry = R;, = 0.05 kOhms and R; = Ry = 0.5e — 3
kOhms from Subsection 4.2.6, and we vary the circuit elements L, and C; to plot
the optimized o* from (4.84) and the asymptotic result (4.86) on the left hand side.
In addition, on the right hand side of Figure 4.14, we plot the maximum of the
convergence factor as a function of the circuit elements L; and C} using the optimized
o* from (4.84) and the asymptotic result (4.86). One can see that the two surfaces
of the convergence factors are close.

An example for the optimized convergence factor as a function of the frequency
w is given in Figure 4.15, using the typical transmission line circuit elements from
Subsection 4.2.6. On the left hand side of Figure 4.15, we compare the classical con-
vergence factor with the optimized one, where we observe the better behavior of the

optimized convergence factor over the classical one. On the right hand side of Figure
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Figure 4.15: Left: convergence factor |peq(w)| versus |popt(w, ar)| and |pop(w, o*)|.

Right: optimized convergence factors |pyp:(w, ar)| with the Taylor approximation,

*
asy

| popt(w, @*)| with the numerically optimized value, and |pop(w, o, )| with the asymp-

totically optimized value.

4.15, we plot the optimized convergence factor with the numerically optimized value

o = —12.9733, the asymptotic value o, = —13.1346, and the Taylor approximation
ar = —19.8020, and one can see again that the numerically optimized and asymptotic

results are very close. In addition, one can observe that the Taylor approximation
works well. Note that for the case when the overlap is at an even row which was
the case for the very small circuit, we have a small value for a*, and it is given by
a* = —0.0381, whereas for the overlap at an odd row which is the case here for the
small circuit, o* is a bigger value, and is given by o* = —12.9733. Moreover, from
Figures 4.6 and 4.15 we observe that the modulus of the convergence factor for the
small transmission line circuit case takes bigger values than those for the extra small
circuit case, and thus as we increase the size of the circuit the convergence factor

becomes bigger and bigger.
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Figure 4.16: Convergence behavior of the classical versus the optimized WR algo-

rithms for a small transmission line circuit.

4.2.6 Numerical Experiments

We give here a numerical experiment for the small transmission line given in Figure
4.8. We use the typical transmission line circuit elements B; = R; = 0.05 kOhms,
Ry = Ry = 0.5¢ — 3 kOhms, C; = C5 = C3 = 0.63 pF, and L; = L, = 4.95e — 3 uH,
with source I, = 10t for 0 < ¢ < 0.1 and I, = 1 mA for £ > 0.1, and the analysis time
interval is [0, T, with T'= 1 ns. The solution is computed using the backward Euler
method, with At = %, and zero initial waveforms. The parameters we use are the
numerically optimized value o* = —12.9733, the asymptotic value o, = —13.1346
from the result in (4.86), and the Taylor approximation ar = —19.8020. We also
choose 3* = —ﬁ. In Figure 4.16 we show the error as a function of the iterations.
One can see how much the convergence has improved by using the optimized WR
algorithm over the classical one. One can also compare the error decay for the small

circuit case with the one for the extra small circuit case in Figure 4.7, which shows

the similar behavior of convergence for the WR algorithms.
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Figure 4.17: An infinitely long transmission line circuit.

4.3 An Infinitely Large Transmission Line Circuit

In the previous sections we analyzed relatively small circuits. In this section we
present an analysis for the infinitely large circuit shown in Figure 4.17, to investigate
the impact of the circuit size on the performance of the optimized WR algorithm.

The equations of the large circuit are

a b —a
—c 0 c
T = x + f, (4.87)
a b —a

where the vector of unknown waveforms is
x=(..,T_2,T_1,%0,T1,T2,T3,.. ) = ( -y 01, V21,00, Vo, b1, V1, - )

The odd indices represent the nodal voltages, and the even indices represent the
inductance currents in the transmission line circuit. The entries of the matrix are
given by

a=—, c=——, b=——. (4.88)

The source term on the right hand side, and an initial condition are given by

il

FO) = (s foa(D), fot), A1), T, &(0)=(..., %, 0%, 40, 00,040, .. 7.
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Since the circuit is infinitely large, we assume that all voltages and currents values
stay bounded as we approach the infinite ends of the circuit to have a well posed

problem.

4.3.1 Analysis of the Classical WR Algorithm without Over-
lap
We partition the circuit at an even row into two sub-circuits or subsystems, and we

call the unknown values in the first subsystem u(¢) and in the second subsystem w(t).

The classical WR. algorithm applied to (4.87) with two semi-infinite sub-circuits is

given by
Wt = e 0 c|utt | oy |+ 0 ,
a b —aw?t
L fo ! (4.89)
0 ¢ fi —cuf
whtt = a b -—a w4+ 0
with corresponding initial conditions u**1(0) = (...,i%,,v%,,33)T and w*"(0) =
(©9,i9,19,...)T, and some initial waveforms u°(¢) and w°(¢). The Laplace transform
of the homogeneous problem yields in the s € C domain
suftt = — 0 |+ 0 |,
a b —awk
- ¥ (4.90)
0 ¢ —cif
st = a b —a W+ 0
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Solving the first system of equations for 11;““ corresponds to solving the recurrence
relations
alft + (b—s)ast —adkf] =0, j=0,-2,-4..,
—ctft + (0 - s)af* 4 il =0, j=-1,-3,-5,...,
or
A’;jll + (b - 9)71’”’1 — aﬁgjil =0, (4.91)
—011'2“;'12 — sug;ql + cu2j =0, 7=0,-1,-2,....

Solving the second equation in (4.91) for the odd indices, with s = n+iw, > 0, we

get a5t = (a5’ — a5f)), and substituting this result into the other equation, we

find the recurrence relation

ac . 2ac ac . )
—_(;—ug;_12+( s (b—S)) ’2‘7;'1 s IZC_;——:2—'O ]:07—17_2a'~-7

and using the fact that a > 0, b < 0, and ¢ < 0 from (4.88), we get
alel 1 2ald alel |
gy — (o (bl )i+ Sl =0, §=0,-1,-2,.... (4.92)
The general solution of (4.92) is

Akt = AR 4 BETINY (4.93)

where A3 are the roots of the characteristic polynomial of the recurrence relation,

2alc| + s(|b] + s) £ /(2alc] + s(|b] + 5))2 — 4a2|c|27

2 =
+ 2alc|

(4.94)
and A1 B+l are some constants. We now study A3 in (4.94) in more detail.

Lemma 4.5. The roots A% given in equation (4.94) satisfy for s =n+iw, n >0,

e [M2] > 1 for {(n,w) : =\ 2a|c]+[bln+1? < w < \/2alc|+ [bln+ 02, n >

03\ {(0,0)},
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o X2 > 1 for {(nw) : w < —\/2a|CI+|b|n+n2, or w > \/2a|c|+]bln+n2,

n >0},

e M= l=1= N ==l w==0.

Proof. Let & = alc| to eliminate one parameter, and z = 2 + Cis + Cos?, where

s=n+iw, Cy = ‘—?, and Cy = % Then )2 is given by
z+22 -4
2 ?

A2 =

where z = r + iy with

r=2+Cin+Cy(n* —?), y=w(C)+2Cm).

The real parts of A2 and A\? are given by

(4.95)

(4.96)

RN =

T+ i\/Z\/x“ + 222y2 — 822 + y* + 8y? + 16 + 2x% — 2y% — 8,

1
2
RO2) = Lo — 11/20/aT + 2022 — 8a? 1 y* + 8y% + 16 + 227 — 22 — 8.

Now, we will treat several cases separately.

1. We start by assuming that y # 0 and x # 0. In this case, the imaginary parts

of A2 and A\’ are given by

SO\ =3y + i \/2\/x4 + 222y? — 8x2 4+ y* + 8y + 16 — 222 4+ 242 4 8,
S(A2) = Ly — 2 o ot £ 0a%y? — B 4yt 4 82 + 16 — 22 + 247 + 8.

By the definition (4.96) of =, and with the assumption x > 0, we obtain

=2+ Cin+ Cy(n* —w?) >0,

which implies

\/2+Cm+02772 \/2+Cm+02772
— <w < .

Cy
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For z > 0 and any y # 0, we have
2

).
).

(S(A2)? = (%ly( + i\/Q\/x‘* + 22292 — 822 + y* + 8y2 + 16 — 222 + 292 + 8
2

(S(A\2))? = (%|y| - i\/Q\/}‘ + 222%y? — 8z2 4+ y* + 8y? + 16 — 222 + 2y2 + 8
Since (R(A2))2 > (R(A2))? and (I(A1))? > (S(A%))?, we have
DL = (ROD) + (SOL)) > (ROZ)? +(S(L)* = AZF,

and by Vieta’s formulas, Theorem 4.4, we have [A\2||A\% | = 1, and hence, we get

[A2] > 1 and |A\2| < 1. Now = < 0 implies

2 2 2
W< — +C]?’]+027] of w> 2+CIT]+CQ'I’]’
CQ C’2

and for any y # 0, we have

(R(A2))? = <%|x] — %\/Z\/E‘* + 222y? — 8a2 4y + 8y? 4+ 16 + 222 — 2y2 — 8

(R(A2))? = <%[1| + i\/é\/x‘* + 222%y% — 822 4+ y4 + 8y? + 16 + 202 — 22 - 8

and

Since now (R(A2))? < (R(A2))? and (S(N2))? < (S(A2))?, we have
ML= (ROD)? + (SOD)? < (RO + (S(AL))? = A2

Therefore, |A\2] <1 and |A%| > 1.

2. lf x =0, then w = £/ 2+C12§:CQ” , Y= 2+Cl"+02" (C1+2Cym), and z = 1y,

where y can not be zero, since C and C, are positive, and 1 > 0. In this case,

A% can be simplified to

1
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Hence, |A%|? :y +5Vy?+4+1 and |)\2|2—y——%\/y +4+ 1. So if

y < 0, then |A2| < |A\%|, which implies |[X2]| < 1 and [A%] > 1. If y > 0, then
|A2| > |A2|, which gives [M3| > 1 and [A%| < 1.

3. In this case we consider y = 0. We have y = 0 if and only if w = 0 since C}
and C, are positive, and n > 0, which also implies that z # 0. The roots A2

are now given by

24 017} + Cz?]z + \/(2 + C]TI + 627’2)2 -

22 =
* 2
For n = 0, we get A2 = A? = 1. The only other solution for A3 = A =11is
when 7 = —%, which is excluded since n > 0. For n > 0, we have A\2 > A2,

which implies |A2| > |A2|, and hence |A%| > 1 and |A\?| < 1.

4. For the last part of the proof, we consider A2 in (4.95), and for A2 we have

pU SR i AN B S

-7 T2
S (z-2)2=22-14
&z =12,

and therefore, z = 24+ Cis + Cys? = 2 if and only if s = 0, or s = —g—;‘ The

two roots are real, which means w = 0, and they both satisfy the equation

EvE =2 V22_4 = 1, so we did not add roots by squaring both sides of the equation.
The root n = —%* is less than zero, so it can be discarded.

A similar argument follows for A2. Hence we have only one root that satisfies

Zi\/

the equation =1, which is s = 0, or equivalently n = 0 and w = 0.

We have shown that for > 0 and _”gw_lg_cz_n? <w < ,/M—IZ‘L%, except

at the point (n,w) = (0,0), we have [A2| > 1 and |A2| < 1, and for » > 0 and

w< ,/2+C”’+CQT’ orw > ,/2+C”7+02” we have |A2| > 1 and |A\2| < 1. Substituting

back C; and C, into the original parameters a, b, and ¢ we get the required results.

Finally, for n =0 and w = 0, A2 = A2 =1 and thus [\2| = [X\2]| = 1. O
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To determine the constants A¥*! and B**! for the general solution (4.93), we need
to use the transmission conditions at the subsystems interface and the boundedness
condition at infinity. Let us consider first the case when |A%| > 1, and since | A% || A% | =
1, we have |A\2| < 1, and by the boundedness assumption on the solution, we obtain
B*1 = 0. Hence, 44" = AF!AY and 451}, = CARINYT2(X2 — 1). To determine

ARl we use the last equation of the first subsystem at the interface
ac
atFtt 4+ (b — s)ukt = Ak“(?(l — A% + b= s) = awf,

which leads to

asu?f

ac(1=A7%) +s(b—s)’

Ak+1 —

and by Vieta’s formulas, Theorem 4.4, A2 +\? = sb=s) 2, and thus we can simplify
+ ac

Ak+1 to
~k
AR+ = SWy

c(/\2 - 1)
Hence the general solutions for u2 ! and uzj !, are given by
Ak_;,l sk 23
Us; T (A% 1—1) )‘

~k+1 2j-2 -
Ty 1—“’1)‘ , 1=0,-1,-2,....

(4.97)

Similarly, solving the second subsystem for w§ and wQJ 1, we obtain
u?kH Bk+1/\2.7
WhH = ¢BFFIAYTHAZ — 1), j=1,2,3,....

To Determine B**!, we now use the first equation of the second subsystem at the
interface

—sF ! 4 bt = —s= Bk‘H()\ — 1)+ B2 = cak,

and we find



4.3 An Infinitely Large Transmission Line Circuit 194

and hence the general solutions for 1?)5;“ !and 12)’2“;“_11 are given by
skl _ k2
Wy = oA,

c(A2 —1)gk . (4.98)
ng}lz&_‘s_l_)_o_/\z_]*2’ ]: 1’273,”..

Inserting this result at iteration k into (4.97), we find over two iteration steps of the
WR algorithm the mapping

5™ = petals, a,b,0)a5
where the convergence factor p., is given by
A2 -1
paa(s,a,b,¢) = F—= = =A%, (4.99)
N 1
where we used A2 A2 =1 to obtain the last equality on the right. The second case is

when |A\?| > 1, and for this case, we obtain with a similar calculations
A2 —1
pcla(saafa bv C) = )\; 1 = _—/\3— (4100)

The case where A1 = 1, implies that s = 0, i.e. 7 = w = 0. Note that the limit of

Pete @8 8 — 0 is one and the algorithm is not convergent. To summarize, we have for

n>0
—A2 I\ > 1,
peta(5,0,b,¢) = o (4.101)
X2, <L
The same convergence factor p, is also found if we partition the circuit at an odd
row. To see this, we consider the classical WR algorithm applied to (4.87), partitioned

at an odd row with two sub-circuits,

uk-l—l — a b —a uk+1 + f_2 + 0 ;
-c 0 _ cwk
L ] \ f 0 (4.102)
b —a fo auk |

wk+1 — —c 0 c wk—l—l + fl + 0 \
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with corresponding initial conditions wf+1(0) = (...,4%,,v%,,4%;)T and w**(0) =
g 2: V2,3

(v°,,4,v9,...)T. The Laplace transform of the homogeneous problem yields in the

s € C domain

saftl = a b —a W+ 0 |,
—c 0 ik
B - 0 (4.103)
b —a aﬂ’f_l
S,&)k-l-l — s 0 ¢ ﬁ)k+l + 0

The same type solution is found since we have the same recurrence relations and the
boundedness condition. Again, we consider the case when |A%| > 1, and from the last

equation of the first subsystem at the interface

cilFH 4 sttt = cAFTIN (1 4+ A2 — 1) = e,

we get
AFFY — g
Hence, the general solutions are
Lkl k29
o Hor (4.104)
~ c.~ 27 . .
agtl = SafAY (M - 1), j=-1,-2,....

Similarly for the second subsystem, the first equation at the interface is
(s — b)wE + awht! = Bk“(%f(x{ — 1) +s—b) = aik,,

which leads to

as k s ok

Bk+1 — ~ -2 )
ac(A2 — 1)+ s(s — b)u_1 c(l— )\i)u_l
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- Skl k1 :
Hence the general solutions for 1wy~ and wy,,, are given by
2
~k+1 sAZ g
Wy~ = =75l
2 1-x2) 7D
? 0(2 ;) (4.105)
Skl \25+24k -
Wajt1 =", 7=0,1,2,....

Inserting this result at iteration k into (4.104) we find

k-1

k1 -
-1

W = paa(s, a, b, c)i
where the convergence factor py, is given by
peials,a,b,c) = =A%,
For the case when |A2| > 1, we similarly find
Paa(s,a,b, c) = -—)\2+.

Therefore, we get the same convergence factor p., whether we cut at an even row
or at an odd row. This will be different for the new WR algorithm as we will see
later. Since the same result holds for @™, we find by induction @2*¥ = (py,)*a and
W = (peta) 105

Next, we will show that the convergence factor (4.101) is an analytic function for

n > 0, which allows us then to apply the maximum principle for complex analytic

functions. We will need

Theorem 4.8. Let Dy and D, be two disjoint connected open regions, whose bound-
aries share a common contour U'. Let f(z) be analytic in Dy and continuous in DT’
and g(z) be analytic in Dy and continuous in Do |JT', and let f(z) = g(z) onT. Then

the function

f(Z), z € D17
HE) = { f(2)=g(2), zel,
g(z), z € Do,

is analytic in D = DT |J D2. We say that g(z) is the analytic continuation of
f(2).
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()]
50 n 100 150
Figure 4.18: Regions in (4.106).
Proof. See [40]. O
Lemma 4.6. If f1(2) = £+/z, then for z = —z + iy, x > 0, we have
li =lim f_(2).
im f+(2) im (2)
Proof. Since fy = £/—x +1y = :!:(———V_H\/— '212+y2 + zﬁ———”“\/- ”;2+y2), we obtain
lim f.(2) = +(0 + W) =iz,
y
and
lim [ (2) = ~(0 = ivz) = iV&.
y
U

Therefore, lim f, (z) = lim f_(z).
yl0 y10

We now define the following subregions of the complex plane, as shown in Figure

4.18,
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0 ={seC:w>w*n>0}
Q={seC:—w"<w<w",n>0}

QB={seC:w< —w"n>0} (4.106)
I ={seC:w=w*"n>0}

Iy ={seC:w=—-w*n>0},

where w* = 1/2ac| + |b|n + n2. Further, we define the functions g1, g2, and gs by

—Ai, s € Ql,
g1(s,a,b,¢c) = _

(}Jllrjl*(—)\a_), S € Fl,

-2, se QL UT,
92(37 a, ba C) =

1llm*(—)\2_)/ S € FQ,

93(57a7b7 C) = _)\3,, ERS Q3UF2.

The convergence factor for the classical WR algorithm p., in (4.101) is now given by

4

ai(s,a,b,¢), s€Qy,
g2(s,a,b,¢), se€Ty,
peials;a,b,c) = go(s,a,b,¢), s€Qy, (4.107)
gs(s,a,b,¢), s€Ty,
g3(s,a,b,c), s€ Qs

\
Theorem 4.9. Ifa > 0, b < 0, and ¢ < 0, then the convergence factor pe, of the
classical WR in (4.107) is an analytic function of s in the right half of the complex

plane.

Proof. The A% given in (4.95) are analytic functions in €y, 25, and €13 separately,
since the argument under the square root avoids the negative real axis under the
condition w # +w*, since only for w = +w*, we have $(2% —4) = 0 and R(2* —4) < 0,
which is the branch cut that we may take, and the values w = *w* are excluded in

21, Qy, and Q3. By Lemma 4.6, hTm* A2 = lim A2, and similarly lim A2 = lim )\j.

wlw* wl—w* wl—w*
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Figure 4.19: Convergence factor |p.,(w)| as a function of the frequency parameter w

on the left, and zoom on the right showing |p.,| for w around zero.

Hence, for s € Iy, we have g1(s,a,b,c) = ga(s,a,b,¢c), and for s € 'y, we have
ga(s,a,b,¢) = g3(s,a,b,c). Now, g; is analytic in €, and continuous in €, |JT'1, g2 is
analytic in €2y and continuous in I'y [ Q2 |2, and g5 is analytic in {23 and continuous
in Q3 |JI'y. Therefore by Theorem 4.8, py, is analyticin D = O T U U T2 U Qs,
which is the right half of the complex plane, s =n + 1w, n > 0. O

We again use the maximum principle for analytic functions, Theorem 1.5, to find
the maximum of |p.,| to be on the boundary of the right half of the complex plane,
and since for s = re, —7w/2 < 0§ < 7/2, we have Tli_>r£<> peia = 0, for both cases [A3| > 1
and |[A3| < 1, the maximum will be at n = 0. However, taking the limit on the
boundary as w goes to zero, we find as noted earlier that |p4,| = 1. This implies
that convergence will be very slow for low frequencies, w close to zero and the mode
w = 0 will not converge. An example for the convergence factor as a function of w
is given in Figure 4.19. We observe that the low frequencies converge slowly and the

high frequencies converge very fast.
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4.3.2 Analysis of the Classical WR Algorithm with Overlap

In this subsection we analyze the classical WR algorithm with overlap at an odd row.

The classical WR algorithm is now given by

aktt = a b —a |UuT+| fL |+ 0 |,
-c 0 _ cwk
I o 0 (4.108)
0 ¢ 1 —cuk,
whtt = a b —a w4 [ + 0

with corresponding initial conditions u**1(0) = (...,v%,,i%,,v%;)7 and w**(0) =
(v°,,49,09,...)F. The same type solution as for the classical WR algorithm without
overlap is found, since we have the same recurrence relations and the boundedness
condition. With similar computations to those with the classical WR algorithm with-
out overlap, we obtain the convergence factor p., for the WR algorithm with overlap,
which is given by

Pea(s,a,b,c) = O2)% 1> 1, (4.109)

2P, <1

For an overlap at an even row the same convergence factor as in (4.109) is found.
Note also that the classical convergence factor found here with overlap is the same as
the classical one without overlap squared, which was also the case for the extra small
and small circuits as shown before. Therefore, p., in (4.109) is analytic in the right

half of the complex plane by Theorem 4.9, and satisfies the other results in Subsection

4.3.1.
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4.3.3 An Optimal WR Algorithm without Overlap

To obtain an optimal WR algorithm, we replace the classical transmission conditions

with a partition at an even row,

E+1 _ k+1 _ k
uy =Wy, Wy = Uy,

by the new transmission conditions
k+1 k1 k k k+1 k+1 k k
w4 oudt = wh +awf,  with + Bwgt = uf + Bug. (4.110)

Analogous to the extra small and small circuit cases, these new transmission con-
ditions exchange a combination of voltage and current in both directions, and they
imply the old ones at convergence if & # 3. The partitioned infinite system with the

parameters « and [ for the new WR algorithm is given by

= — 0 ¢ U)o 4 0 :
a b+aa fo —a(w¥ + oawf)
5 c S — £ (uf + Bug)
W = 14 b —a w | g |+ 0 ,

(4.111)
together with the transmission conditions (4.110), which define the values uf and w§.
Taking the Laplace transform for s € C as before and assuming that the solutions
stay bounded, we find the same type of solution for the recurrence relation as in the
classical WR algorithm. Again for s = n+iw, n > 0, and considering the case where

N2} > 1, we get

Ak, = AFHINYTR bt = CARFDT TR — 1), 5 =1,0,-1,-2,...,

B = BMINYL bt = eBROY(O2 — 1), j=0,1,2,3,....
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where the constants A*t! and B**! are now different due to the new transmission

conditions. Using (4.110), we find

ARH (A2 — 1)+ as

_ Br+1 — C(’\i - 1) + s k
c(M —-1)+as

k
B (N —-1)+p8s

Applying the second relation at step k to the first one, we obtain

~k4+1 ~k—-1
u0+ :popt(87a’ab7cvaa/6)u0 )

where the convergence factor p,, is given by

c(A2 = 1) 4+as oM —1)+0s

(o ’ 7b7 ) Ly = . . 112
Similarly for the case where |A\?| > 1, we find
A2 -1 z A1 s
popt(sya)bac;aa/g)—: C( + )+O/g C( — )+/B‘; (4113)

cOZ - +as (M2 —1)+fs

The same relation also holds for the other subsystem, and by induction we find

02F = (popt) ") and W = (pope)*10). To summarize, we have for 7 > 0

c(A2 ~1)+as ) e(A3 —1)+Ps

220> 1,

c(A2 —1)+as c()\z_l +8s?
pOPt(S; a/; b7 C) a? ﬂ) = CEA£—1;+(18 C(,\g _1;+[’6 9 (4_114)
C()\zkl)+a5 ’ c()\ﬁ__l)+ﬁsa |/\+| < 1

The optimal values of the parameters o and § can be found from the convergence

factor (4.114).

Theorem 4.10 (Optimal Convergence). The new WR algorithm (4.111) con-

verges in two iterations for the choice of parameters

—¢(N% - 1) —c(X2 - 1)

Qleyen i= ——5_7 Beven = ——8——7 fOT |’\?I—| >1, (4115)

~ —c(Ai-1) —c(A\2 —1) )

Deyen = —— /Beven =, f07" !/\+| < ].7 (4116)
S S

independently of the guess for the initial waveforms @’ and w°.
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Proof. The convergence factor vanishes if we insert (4.115) and (4.116) into pp given
by (4.114) for |A2] > 1 and |X%| < 1 respectively. Hence, 4§ and ] are identically

zero, independently of the initial waveforms 43 and 9. O

Note that, similar to the classical WR algorithm, the limit of p,, as s goes to zero
is one, which is the value that implies A2 = A2 = 1, and thus the parameters « and
3 can not be used to optimize the performance of the new WR algorithm at w = 0.

The new transmission conditions with a partition at an odd row are given by

k

ugt! M= wf 4 owt, wit 4+ fwt =g+ fuly (4.117)

+ au’y

The partitioned infinite system with the parameters a and /3 for the new WR algo-

rithm is now given by

k-l = o b o—a |uwE| g, |+ 0 ’
I —c —ac fa c(wg—l-aw’jl))
b—2 —a fo 5 (uf + ut ) )
wht! = —-c 0 c wH+ Lo+ 0

(4.118)
With similar computations to those for the partition at an even row, we obtain the

convergence factor pop for |)\i| > 1, which is now given by

ac(l1—X)+s PBe(l—M)+s
o bc,a,B)= + : . 4.1
P Pt(saa7 , G, & /6) ()’C(]. _ AQ_) + s [))C(]. _ /\_2‘_) + s ( ]‘9)

For the case when |A?| > 1, we get

Cac(1-X2)+s Pe(l—=A7)+s
pope(3,0, 0,00, 0) = oy B T s (4.120)
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Thus,
ac(1-22)+s  Pe(1-A2 )+s 32 )
) e sampee ML
Popt (S, a,b,¢,0,8) = ac(1-22 )+s ﬁc(l—/\_{)—}—s 32l <1 (4.121)
a(:(lf/\i)—f-s : ,6(:(1;,\2_)4,87 | +‘ < 1.

The optimal values of o and (3 are given in the following theorem.

Theorem 4.11 (Optimal Convergence). The new WR algorithm (4.118) con-

verges in two iterations for the choice of parameters

—S

- -5

S . N W — — 22| > 1, 4.122

Goar =y P = Cgyy Jor N> (4.122)

Gott 1= o foaa = = for X2 <1 (4.123)
odd - C(l . )\%)7 odd - C(l o A%_)’ -+ b .

independently of the guess for the initial waveforms a° and w°.
Proof. The proof is analogous to the proof of Theorem 4.10. O

Remark 4.5. Theorems 4.10 and 4.11 imply a relation between the best parameters
obtained with a cut at an even row and a cut at an odd row. They imply that the best

parameters satisfy
-1

Kepyen — % ; ﬁeven = = .
odd Qodd

4.3.4 An Optimal WR Algorithm with Overlap

The new WR algorithm with overlap at an even row, using the new transmission

conditions

k+1 k+1 k k k+1 k+1 k k
uit + cugtt = wi + o, wt! + pwt = uf + Puty, (4.124)




,/A\
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is given by
akl = ¢ 0 c S N 0 ’
a b+ac fo —a(wf + awf)
b—4 —a fo %(u’g + Bu* )
wtl = —c 0 ¢ w4 ho |+ 0

(4.125)
The same type solution as for the new WR algorithm without overlap is found. With
similar manipulations to those we used before, we obtain the convergence factor of

the new WR algorithm: for the case |)\i| > 1 it is given by

c(A2 ~ 1D +as Be(l—X)+s
(A2 —1) +as Pe(l=M)+s

popt($7 a, b7 C, O, ﬂ) =

and for the case |A%] > 1, we obtain
(A —=1)+as Be(l—M)+s
c(A2 —1D)+as Bc(l-—A)+s

Therefore, the convergence factor for the new WR algorithm with overlap at an even

popt(sﬂ a, bv C, &, ﬁ) -

row is given by

cA2 =D+as  Be(1-A2)+s I/\QI o1
(A2 “1)+as . Be(i—A2)+s’ T ,

Popt(s,a,b,c, 0, 8) = c(/\%‘l)+as ﬁi(l~)\§)+5 ) (4.126)
cOZ ~1)Fas  Be(l1-AZ)+s’ |)\+| < 1.

From the convergence factor (4.126), the optimal values of the parameters o and 3

can be derived.

Theorem 4.12 (Optimal Convergence). The new WR algorithm (4.125) con-

verges in two iterations, independently of the initial waveforms a® and @°, if

C()\a — 1) - s 9
Aeven . evenn — 7+ Ao )\ 17 4127
“ s A c(l — %) Al > ( )
R C()\i — 1) N s 9
XYeven — — T even — T T 71 1o )\ < ]. 4.128
a Y o= W (1.128)
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Proof. The proof is analogous to the proof of Theorem 4.10. |

We will study now an optimal WR algorithm with overlap at an odd row. The new

WR algorithm with an overlap at an odd row, using the new transmission conditions

ubt + o = wh + owky, w4 Bult = b 4 pul, (4.129)
is given by
k= a b —a |UuT+] f, |+ 0 ;
—c —co f—l C(U}éC + aw’il)
% c f—l —%(U’il + ﬁulig)
wkt! = a b -—a wht! fo + 0

(4.130)

The same type solution is found here as well, and similar computations as before
show that the convergence factor p,,; of the new WR algorithm with overlap at an
odd row is given by

sAZ 4ac(A2 —1)  c(1-A2)+BsA2

st+ac(1-A%) ’ C(/\?,—l)+,83 ’ l/\?{*' > 17
pOPt(S; a, b, C, &, /6) = s)\2++(x(;(/\ifl) C(1~,\2+)+[js/\3_ 9 (4131)
s+ac(l1-A%) ) (X2 -1)+fs * I)\+| < 1.

The optimal values of the parameters o and [ are given in the following theorem.

Theorem 4.13 (Optimal Convergence). The new WR algorithm (4.130) con-

verges in two iterations, independently of the initial waveforms @° and w°, if

s . c(1—A%)

Nodd = — ——— 5~ = ———2 X2 > 1, 4.132
Qodd 1=y dd p AL > 1, ( )

A c(l — M2
Bodd = —(—S—), ML) < L. (4.133)

. S
Xodd = _E(l————/\Q_—)’

Proof. The proof is analogous to the proof of Theorem 4.10. O
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Remark 4.6. Theorems 4.13 and 4.12 imply a relation between the optimal choices
obtained with overlap at an even row and at an odd Tow. They imply that the best

parameters satisfy

- . s ) - b s
ﬁeven = —Opdd — —, Aepen — —ﬁodd - =+ —. (4134)
C a a

As we have seen before for the extra small and small circuits, the optimal choices
without overlap in Theorems 4.10 and 4.11, and the optimal choices with overlap
in Theorems 4.12 and 4.13 are not just parameters but the Laplace transform of
linear operators in time, since they depend on s. Therefore, we again propose an

approximation by a constant of the best possible transmission conditions.

4.3.5 An Optimized WR Algorithm with Overlap and Con-

stant Approximation

The fundamental optimization process is the same for the large circuit as it is for
the smaller ones. We consider here the WR algorithm with overlap and not the one
without overlap, since from the optimal choices in Theorems 4.10 and 4.11 with a
cut at an even row and a cut at an odd row and without overlap, we have §,, =
—Copt + @ and Bopr = —aop — 2 respectively, which are again operators in s.
From the optimal choices with overlap in Theorems 4.12 and 4.13, we have as before

Bopt = —fpt, which will simplify the optimization process.

Remark 4.7. The optimal convergence factor with a cut at an odd row without over-
lap (4.121), and with the choice of parameters 8 = —a — £ is equal to the optimal
convergence factor with overlap at an odd row (4.131), and with the choice of param-
eters 3 = —é. Furthermore, the optimal convergence factor with a cut at an even row
without overlap (4.114), and with the choice of parameters = —a + @ is equal
to the optimal convergence factor with overlap at an even row (4.126), and with the

choice of parameters 3 = —+.

(47
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We now look for a constant approximation of the optimal choice in (4.132) for the
new WR algorithm with overlap at an odd row. From this constant approximation we
can find a first order approximation of the optimal choice of the new WR algorithm
with overlap at an even row using the relation in (4.134). This includes however
implementations of first order derivatives in the transmission conditions to have the
optimized WR algorithm with overlap at an even row.

The simplest way to obtain a constant approximation is again the low frequency
approximation using a Taylor expansion about s = 0. However, for this infinitely
large transmission line circuit there is no zeroth order low frequency approximation
for s = 0, since we get a division by zero when we try to find a Taylor expansion of
the optimal choice in (4.132) about s = 0.

The analyticity of the convergence factor p,, in the right half of the complex
plane, which allows us to apply the maximum principle, is shown in the following

lemma.

Lemma 4.7. Assume

a>0, b<0, ¢<0. (4.135)

Then the convergence factor pop in (4.131) is an analytic function in the right half
of the complez plane, s =n+1iw, n > 0, if

a<0, (>0 (4.136)

Proof. The proof is similar to the proof of Theorem 4.9. We consider the subregions

of the complex plane defined in (4.106), and we define

;

sA2 +ac(A2 —1)  c(1-22)+BsA%
‘ stac(1-AD) (A2 -1)4Bs s € §y,
als,a,bc,0, ) =4 A2 fac(A2 1)  c(1-A2)+BsA%
$ “ljllw,,( s+ac(1—/\i) ) c(/\ﬁ_—l)+ﬂs )’ s € Fl’
SAZ +ac(A2 —1)  c(1-A2)+B8sA2
s+ac(l—/\2‘) ) c(z\12_—1)+[1’s ’ SEQQUFI’
92(S,a,b,c,&aﬁ): I A2 +ac(A2 —1)  c(1=A2)+8sAZ I
wl_w*( Fac(1-A2) (M 1)1 8s ), sely,
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s\ +ac(A-1)  c(1-M])+8sM
stoc(1-2%) c(A2 ~1)+pPs 7

§ € QgUFQ.

g3(s,a,b,¢c,a,3) =
The convergence factor py, in (4.131) for the optimized WR algorithm is now given
by
a(s,a,b,c,a, ), s €8y,
ga(s,a,b,ca, B), s €Ty,
Popt(s,a,b,c,,8) = { go(s,a,b,c,a,0), s €y, (4.137)
g3(s,a,b,c,a,B), s €Ty,

\ gs(s,a,b,c,a, ), s € Q.
We showed in the proof of Theorem 4.9 that A1 are analytic in §2;, O, and Q5. Hence,
by Theorem 1.4, it suffices to show that the denominator does not have zeros in order
to prove the analyticity of g1, g2, and g3 in ©4, €, and Qg respectively. We first
consider poy in €24, and assume that ac(l— )\i) + s =0 to find a contradiction. This
implies A2 = 1+ =, but with the conditions (4.135) and (4.136), we have A2l > 1,
which is in contradiction to the fact that |[A2] < 1 in ;. A similar proof holds for
the other quotient. Thus, there is no pole in the right half of the complex plane in
;. We now consider p,,; in 2. We again assume that ac(l — AM)+s=0tofind a
contradiction. This implies A2 = 1+ =, but with the conditions (4.135) and (4.136),
we have |A?| > 1, which is in contradiction to the fact that |A\?| < 1 in €, and a
similar proof holds for the second quotient. Therefore, there is no pole in the right
half of the complex plane in Qy. A similar argument as the one for p,p in {1; holds
for pop: in 3. The functions g;, go, and g3 are continuous in {4 Ur, IUQ UL,
and Q3| JT's respectively. By Lemma 4.6, we have

lim s)\i+ac(z\i—1) . c(l—)\?,_)ﬁLﬁs/\z+ — 1 sA2 +ac(A? -1) . c(1-X2)4Bs22
stac(1-A2) c(A2 —1)}+Bs - s+ac(1-A2) c(DZ -1)+8s ’

wlw* wlw*

which means g1(s, a,b,c, a, 3) = ¢2(s,a,b,¢, o, §) on T'y, and by the same lemma we

also have
li sAZ +ac(A2 1) c(1-X3)+8sA3\ _ i SAZ fac(AZ 1) c(1-X2)+BsA2
i\ ey TR Bs ) T e Tstaci—A2) | eI -D)+Bs )
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which means g3(s, a. b, c, o, 8) = ¢2(s,a,b,c,a, 3) on I';. Therefore, by Theorem 4.8,

Popt 18 an analytic function in the right half of the complex plane, s = n+iw, 7 > 0. O

We now take s = re??, —n/2 < 6 < /2, to find the limit of p., as r goes to
infinity in all directions in the right half of the complex plane. Considering pop in
(4.131), we find that when [A%] > 1, the limit as r — oo is zero, and the same limit
also for the case when {A\?| > 1. We again use the maximum principle, Theorem 1.5
to find the maximum in |pgp| for s = 7+ iw, n > 0 on the boundary. Therefore,
the maximum is attained at n = 0. However, similar to the classical WR algorithm,
as noted earlier, taking the limit on the boundary as w goes to zero, we find that
|popt| = 1. Therefore, as for the infinitely large RC type circuit, we will truncate the
frequency range by a minimal frequency relevant for our problem.

The modulus of the convergence factor p,,; in (4.131) satisfies the following prop-

erty.

Lemma 4.8. The modulus of the convergence factor po in (4.131), for s = iw,
satisfies

|p017t(7;’w|7 a, bv G &, ﬂ)' = |p019t(—7;|w|7 a, ba ¢ a, ﬂ)‘

Proof. We consider A2 given in (4.95), where we have z = 2 + Cys + Cas?, C) = 18

Cy = %, and ¢ = al¢|. Now for = 0, we have
z=xz+i1y=(2- Cow?) + iCyw,

and

We will treat several cases.

1. If y = 0, then from y = Cjw, we have w = 0, and hence there is nothing to

show.
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2. If z = 0, then from = = 2 — Cyw?, we have w = :t\/cz2 = ++/2alc|, and Ay is
given by
A = o VT D
As we have shown in Lemma 4.5, for w = /2alc[, n = 0, we have [\%] > 1, a;ld
for w = —\/m , n = 0, we have l/\ii < 1. Therefore, we have to show that
|pope| in the region where |[A2] > 1, at w = /2a]c|, equals |p,p| in the region
where [A2] < 1, at w = —/2a[c|. For [A2] > 1, poy in (4.131) can be simplified

to

_BA% s24ac?(2- 02 =23 )+e(1-A2 )(1-afc)s 9
poﬁt(s’ a, b, ¢, a, ﬁ) - ﬂ/\isQ—!—acz(Q—)\i—/\2_)+c(1—/\1)(1—aﬁc)s’ l}\+| > 1.

Using A2 + A\ = S(l;—j’) + 2 from Vieta’s formulas, Theorem 4.4, and with some

simplification we obtain

. afBA? s2+acs(s—b)+ac(1—22 )(1-afc)s
pOPt(S’ a,b ¢, a, ﬂ) - (Lﬁ/\_%_32+a(:s(s~b)+ac(17/\3_)(lvaﬁc)s

A2 >10 0 (4.139)

For the case |A%| < 1, we have

aBA2 s2+acs(s—b)+ac(1-22 )} (1-aBc)s
Popt(5,8,0,¢, 0, B) = 50 o racsc W raci—3 Ji—adas” N3] <1 (4.139)

For s = iw, where @ = ,/C% > 0, popt is given by

Popt(i‘:): CL, b7 C: CY, 5)
—Bao§+Ba/ G2 +4+2ac—2ac? af—2ach+i(acy/ J2+4a—acj+actafi—actaf/ 92 +4+2000)
~Bawg—Bair/ 5P +4+2ac-2ac? aff— 2ach-+i(—acy/ g2 +4—acg+actaBf+actaf/ 5P +4+2acw)’

and § = Cyw. Now, for s = —iw, and y = —§ = —C1@, pop is given by

popt(—iu—}v a, bu C. &, /8)
_ —Pawy+Baiy/ §2+4+2ac—2actaB—2ach—i(acy/ G2 +4—acg+actaBy—actafr/ 42 +4+2000)
—[iwjy‘—[ﬁaw\/y? +4+2a042ac20z[j—2acb~i(—aC\/y2+4—acy+aczuﬂg+ac2aﬁ\/g27+4+2cycw) '

Therefore,

lpopt(ia}7 a, b7 C, &, /8)' = Ipopt(—i&-}7 a