
Associative Memory Based on
Sparse-Clustered Network with Selective

Decoding for Internet Packet Classification

Scott Dickson Dagondon

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

August 2016

A thesis submitted to McGill University in partial fulfilment of the requirements for the
degree of Master of Engineering.

2016/08/05

c© 2016 Scott Dickson Dagondon

i

Abstract

To enforce Internet security protocols and define Quality of Service (QoS), Internet Service

Providers (ISPs) need to identify the applications that are consuming network bandwidth.

Distinguishing between safe and malicious traffic aids in network intrusion detection and

interception. Likewise, categorizing applications into classes aids in traffic management

for better service. ISPs use Internet Packet Classification (IPC) to categorize packets into

flows (traffic sharing IP addresses, ports, and protocol), and thereby the classes generating

them. Traditional IPC based on port numbers and payload pattern recognition are no

longer effective because current applications can dynamically change port numbers and

cipher their contents. Recent machine learning (ML) IPC have speed-bounded accuracy,

and complex implementation due to the need to track packet sizes and order of arrival.

This work proposes a new IPC approach that uses associative memory (AM) based on

sparse-clustered network with selective decoding (SD-SCN). Unlike ML approaches, this

solution takes bits extracted directly from the flow ID as input, which greatly reduces

system complexity. It achieves 99.3% accuracy, consumes only 44 Mbits of memory, and

runs 775 times faster than the state-of-the-art FPGA-implemented approach, which uses

Support Vector Machines.

ii

Abrégé

Afin de renforcer les protocoles de sécurité de linternet et de définir la qualité de service, les

fournisseurs du service dinternet (FSI) ont besoin d’identifier les applications qui consom-

ment la bande passante du réseau. La distinction entre les trafics sûrs et merveilleux, aide

à la détection ainsi quà linterception des intrusions du réseau. De même, la catégorisation

des applications dans des classes, aide à la gestion du trafic aux fins dun meilleur service.

FSI utilisent le paquet de classification dinternet (PDI) pour classer les paquets en flux

(traffic de partage des adresses IP, les ports et protocoles), ainsi les classes d’application les

génèrent. LPDI traditionnel basé sur les numéros de port et la reconnaissance des formes

de la charge utile, nest plus efficace. La capacité des applications actuelles à changer

dynamiquement les numéros de port et de chiffrer leur contenu a déjà contourné cette tech-

nologie. Les récents apprentissage machine (AM) PDI ont une précision de vitesse limitée

et une mise en uvre complexe en raison de la nécessité de suivre la taille et l’ordre d’arrivée

de paquets. Ce travail propose une nouvelle approche PDI qui utilise la mémoire associa-

tive basée sur un réseau clairsemé-regroupé avec un décodage sélectif. Contrairement aux

approches AM, cette solution prend les bits extraits directement à partir de l’ID du flux

comme entrée, ce qui réduit considérablement la complexité du système. Elle atteint 99,3%

de précision, ne consomme que 44 Mbits de mémoire, et fonctionne 775 fois plus rapide

que létat de l’approche de lart, mis en uvre sur le FPGA, qui utilise Machine à vecteurs de

support.

iii

Acknowledgments

This research is funded by the Natural Sciences and Engineering Research Council of

Canada. I would like to extend my sincerest gratitude to my thesis supervisor, Prof. Brett

H. Meyer, for cultivating the idea that research is more than just about grand ideas. Behind

every publishable work are iterations of hypotheses, simulations, and analyses. Prof. Meyer

helped me understand that surviving graduate studies warrants recognizing the implicitly

colossal amount of labour that is involved not only in developing ideas, but in proving why

they are valid, and why the world should care. I would also like to thank Prof. Warren

J. Gross for his expertise on associative memories, and valuable guidance he has given

throughout the course of my research. Prof. Gross has a natural ability to communicate

a complex topic such as sparse-clustered networks into a more easily comprehensible ma-

terial; this is evident in all his talks and published works. I would also like to thank Prof.

Vincent Gripon and Prof. Naoya Onizawa for taking the time to talk to me about their

works on associative memory, and sharing their knowledge about the topic. I would also

like to acknowledge The Telecommunication Networks Group at Universitá di Brescia in

Italy for providing the network traces that were used to train and test the designs that are

presented in this work.

My move from Manila to Montreal has been seamless; thanks to thoughtful family and

friends. My parents have been very supportive in ways I cannot begin to count. When I

was younger, they were just mom and dad. Today, to me, they are two human beings with

memories, visions, and politics, who have unfathomable affection for me and for each other.

I appreciate their presence and love greatly. I also want to thank my old friends back in

the Philippines who listened when I talked about my plans of leaving my job of over five

years to go back to school; these are friends that I intend to keep around for a long time.

I want to thank my new friends here in Montreal who are constantly teaching me new

things each day. I want to thank my roommate, Jacques Fortier, for the free event passes

at Parc Jean-Drapeau; these cultural events have helped me live and appreciate Montreal

regardless of the season. I also want to thank my other roommate, Marc Bourgeois, who

works as a sommelier and has, in his words, “never paid for a bottle of wine in over 20

years”; I appreciate the free lessons on food, wine, and classical music, which served as

welcome breaks and rewards for hitting research milestones. I want thank my friends

from different parts of the world, who have introduced me to different cultures, food, and

iv

languages. Like me, they (or their parents before them) have decided that they are strong

enough to conquer Montreal winter. And like me, they value and invest in our relationship

as much as they value hard work and success. Lastly, it took three brilliant friends from

three different French-speaking countries to translate my academic abstract en Français; I

want to acknowledge Thomas Lariviere (France), Mounir El Houssaini (Morocco), and my

roommate Jacques (Canada) for their patience and hard work.

v

Contents

1 Introduction 1

2 Background 5

2.1 Sparse-Clustered Network with Selective Decoding 5

2.1.1 Data Learning . 5

2.1.2 Data Retrieval . 7

2.2 SD-SCN Accuracy . 10

2.2.1 Input Distribution . 11

2.2.2 Neurons per cluster . 12

2.3 SD-SCN Memory Requirement . 13

2.4 SCN Access Delay . 15

2.5 Packet Classification . 16

3 Optimizing SD-SCN for IPC 18

3.1 Problem Statement . 18

3.2 Maximizing Cluster Utilization . 20

3.3 Bit Activity . 21

3.4 Bit Activity Thresholding . 24

3.5 Optimizing Accuracy with XOR . 26

4 Results 28

4.1 Accuracy . 28

4.2 Memory . 31

4.3 Optimization . 32

4.4 Classification Delay . 34

Contents vi

5 Pitfalls 36

5.1 Padding the Input . 36

5.1.1 Zero-padding . 36

5.1.2 Random bit-padding . 40

5.1.3 Limitation of input-padding . 43

5.2 Input Component Permutation . 43

5.3 Flow ID Component Selection . 46

6 Related Literature 47

7 Conclusion 50

References 51

vii

List of Figures

2.1 Input message mapping during SD-SCN learning. 6

2.2 Inter-cluster links storage into the LSM. 7

2.3 Block diagram of an SD-SCN cluster. 8

2.4 Message decoding during SD-SCN retrieval. 10

2.5 Effect of learning non-uniform input to SD-SCN accuracy. 11

2.6 Input message mapping in SD-SCN with lout < lin. 14

2.7 IPC process using SD-SCN. 16

3.1 Comparison of ML and SD-SCN solutions to IPC. 19

3.2 Clusters utilization comparison of uniform (randomly generated) and real

(actual network trace) inputs. 20

3.3 Bit activity factor, α(n) for n = 0, ..., K − 1, of a real network trace of 80k

K = 112-bit flows. 23

4.1 Accuracy ofK(Th)-controlled designs using actual (real network trace) input

sets produced by choosing bits (1) randomly, (2) above, and (3) below Th. 29

4.2 Clusters utilization comparison of uniform and real (actual network trace)

input sets produced by choosing K(0.17) = 80 bits: (1) randomly, (2) above,

and (3) below Th = 0.17. 31

4.3 Pareto-optimal plots in error rate and memory of designs produced by (1)

Th-and-lin adjustments only, and (2) with the added XOR-optimization

(dummy neurons). 33

5.1 Clusters utilization comparison of zero-padded (pzero = 8), uniform, and

baseline real (K = 112) inputs. 39

List of Figures viii

5.2 Accuracy and total memory requirement of SD-SCN designs processing zero-

padded input clustered into sub-messages of width kin = 12. 40

5.3 Accuracy and total memory requirement of SD-SCN designs processing random-

bit-padded input clustered into sub-messages of width kin = 12. 42

5.4 Sample permutation of baseline actual input (K = 112) over cin = 13 input

clusters. 43

ix

List of Tables

4.1 Memory requirement and classification delay of pareto optimial XOR-assisted

designs. 35

5.1 Performance and cost of SD-SCN designs processing zero-padded input. . . 37

5.2 Performance and cost of SD-SCN designs processing random-bit-padded input. 41

x

List of Acronyms

ISP Internet Service Provider

QoS Quality of Service

VoIP Voice-over-Internet Protocol

P2P Peer-to-Peer

SLA Service-Level Agreement

IPC Internet Packet Classification

ML Machine Learning

SVM Support Vector Machines

SCN Sparse-Clustered Network

SD Selective Decoding

AM Associative Memory

RAM Random Access Memory

LSM Link Storage Module

LD Local Decoder

GD Global Decoder

SPM Serial Pass Module

FPGA Field-Programmable Gate Array

1

Chapter 1

Introduction

Internet Service Providers (ISPs) and network administrators deal with Quality of Service

(QoS) and security concerns on a daily basis. QoS defines the assurance that a set of appli-

cations may only suffer a sufficiently low delay, or packet loss, which is usually accomplished

by reserving bandwidth or buffer space through some form of packet prioritization [1]. Dif-

ferent applications have different QoS requirements; for instance, Voice-over-IP (VoIP)

applications are more sensitive to packet losses and end-to-end delay, and therefore require

some level of priority over applications, which are more resilient to the same type of net-

work issues, such as peer-to-peer (P2P) file sharing [2][3]. In order to provide continuous

service, ISPs and network administrators must ensure that resources required by specific

applications — especially the ones deemed critical — are readily available. These types of

service guarantees and the corresponding consequences for not meeting service obligations

are included in the Service-Level Agreement (SLA), which is the contract between ISPs and

end users [4]. Defining a reasonable and competitive QoS, therefore, is decidedly important

because this is how ISPs can optimize bandwidth and maximize profit. Moreover, and

perhaps more importantly, a well-defined QoS translates to better network management

and service, which help retain customers. Likewise, network administrators strive to attain

a well-defined QoS in order to avoid network downtime, which, depending on the criticality

of the system that the network supports, may be exceptionally undesirable.

Detecting and intercepting malicious traffic is also a crucial part of the responsibility of

ISPs and network administrators. Malicious codes or “malware” refer to any application

that is specifically created to cause an unexpected and unwanted event on a user’s com-

2016/08/05

1 Introduction 2

puter, or a server [5]. Some forms of malware try to extort money from users of infected

computers by encrypting their files and demanding payment in exchange for the decryption

key [6]. It has been reported that between June 2014 and March 2015, losses due to this

type of malware, duly termed as “ransomware”, have totalled to more than $1.1 million [7].

Other forms of malware steal personal identifications such as names, phone numbers, and

addresses, which could be used to impersonate a person for fraudulent purposes [6]. In

order to enforce Internet security protocols, and similarly define QoS, ISPs and network

administrators must identify the types of applications that are consuming network band-

width. For security, the ability to distinguish between safe and malicious applications is

useful for network intrusion detection. For QoS, the ability to categorize applications into

classes is useful for better traffic management and fair service pricing. To address these

security and QoS concerns, ISP and network administrators use real-time Internet Packet

Classification (IPC) [8]. IPC is the process of categorizing packets into flows, and thereby

their generating applications. A flow refers to a group of packets that use the same source

and destination IP addresses, ports, and protocol. Flows with QoS constraints can be

subsequently prioritized, while malicious traffic can be dropped; as such, IPC functions are

often attached to packet forwarding engines such as routers [9].

Traditional methods of IPC include application detection based on port numbers, and

payload pattern recognition [10]. Methods based on port numbers rely on the fact that

conventionally, most applications use a specific set of well known ports for communication.

On the other hand, methods based on recognizing patterns on the packet’s payload rely

on the fact that most packets contain application-specific signatures. These approaches

however are no longer effective because current applications can dynamically change their

port numbers and/or cipher their contents [11]. More recent IPC approaches use machine

learning (ML) algorithms. These approaches generate a model based on features extracted

from packet headers [10][12]. The main problem with ML-based approaches, however, is

that the models are often large, complex, and therefore slow — many of the features of two

flows belonging to the same class may be uncorrelated (e.g., source IP), increasing classi-

fication complexity — and high packet throughput limits the time available for any single

classification decision. Moreover, recent studies on this area focus on improving algorithm

accuracy, ignoring the cost (e.g., classification speed, memory) associated with real-time

hardware implementation [13][14][15][16]. One of the more recent ML-based solutions de-

veloped for FPGA implementation, which uses Support Vector Machines (SVM), is able to

1 Introduction 3

attain a very high (∼ 100%) classification accuracy by using a minimum of 1000 support

vectors. This high number of support vectors imposes a high classification delay, and limits

the solution to networks with packet arrival speed of ≤ 350 Kpackets per second [11]. Be-

yond this rate, classification fails and accuracy drops to zero. Furthermore, like most ML

solutions in literature, SVM-based approaches are only able to attain high accuracy by tak-

ing multiple packet sizes per flow as features, which requires a flow builder. A flow builder

stores flow IDs, monitors flow expiries, and uses a hash function for accumulating the re-

quired number of packet sizes belonging to the same flow into specific addresses in a cache

prior to classification [11][17][18][19]. This packet size dependence prolongs classification,

and increases system complexity and cost.

The formidable task of selecting an IPC approach to address the issues on security and

QoS is aggravated by the fact that we live in a high-speed big data world where as much as

2.5 quintillion bytes of data are created everyday [20], and data transmissions run at speeds

as high as 10 Gb/s [21]. An effective IPC algorithm therefore is one that can classify a high

number of flows with maximum accuracy, and minimum memory requirement and classifi-

cation delay. This work proposes a new method of IPC using a Sparse Clustered Network

(SCN) with Selective Decoding (SD). SD-SCN is a highly scalable flavour of associative

memory (AM), capable of storing a large number of messages, and employing less complex

hardware for match retrieval compared to earlier SCN implementations [22][23][24][25]. An

SD-SCN is made up of clusters, each representing a component of the full binary message

to be stored. The SD-SCN-based IPC solution proposed in this work takes a class-labelled

flow ID, i.e., the concatenation of the binary values of the IP addresses, ports, and protocol

characterizing a flow, and the class of application generating it, as input. By using the flow

ID directly, this solution removes the need for a flow builder, thereby reducing system cost

and complexity. Naive IPC with SD-SCN, however, achieves poor accuracy and limited

design flexibility: each class-tagged flow ID is long (112 bits), confined to a single network

configuration that consumes 12 Mbits of on-chip memory; and, many subsections of the

flow ID are expected to take on a limited number of values (e.g., source IP), limiting the

ability of SD-SCN to differentiate flows, resulting to accuracy as low as 15%.

This work demonstrates that when the input message is modified by (a) ignoring flow

ID bits that tend not to change, and (b) artificially increasing the number of (application)

classes, the IPC performance of SD-SCN is substantially improved: the solution is able to

process one flow in 4.1 nanoseconds, and achieve 99.3% accuracy, while only using 44.3

1 Introduction 4

Mbits of memory. Compared to the state-of-the-art FPGA-implemneted SVM approach,

the solution proposed in this work is able to achieve about the same accuracy at 775 times

faster classification speed, making it suitable for networks with packet arrival speed up to

244 Mpackets per second. Moreover, SD-SCN-based IPC uses at least 5.8 times less RAM,

which is made possible by removing the 256-Mbit cache for packet size tracking that comes

with the flow builder [11][17][18][19].

5

Chapter 2

Background

2.1 Sparse-Clustered Network with Selective Decoding

An associative memory (AM) is a form of memory that generates a match to a given

input by searching in parallel components of previously learned data, instead of using

explicit addresses like in conventional memory. This makes AM ideal for applications such

as recommender systems [26], which provide recommendations for items like books and

music, and data mining [27], where search operations can be initiated given partial input.

SD-SCN is a highly scalable implementation of AM, which offers high storage capacity and

efficiency; it is able to use less complex hardware for data retrieval by removing the matrix

multiplication and max-functions of early SCN implementations [22][23][24][25].

2.1.1 Data Learning

During learning, an input message of width K is broken into c k-bit sub-messages, and

one sub-message is assigned to one cluster. Figure 2.1 shows how SD-SCN maps a K-bit

message (data to be stored) into c clusters of l binary neurons. In this case, K = 16, c = 4,

and k = K/c = 4. Note that K, c, and k are all integers. This means that an input of

width K can only be supported by a finite set of SD-SCN configurations, which is defined

by the different integer c-and-k combinations. The number of neurons in a cluster, l, is

calculated using:

l = 2k = 2K/c (2.1)

where k is the number of bits per sub-message.

2016/08/05

2 Background 6

Fig. 2.1 Input message mapping during SD-SCN learning.

In each cluster, ci, the neuron with index j that is equal to the integer equivalent of the

input sub-message is activated during learning. A cluster in the network can have index

i = 0, 1, ..., c− 1; a neuron in the ith cluster, l(i,j), can have an index j = 0, 1, ..., l− 1. The

c active neurons (one from each cluster) are then linked. All the unidirectional links from

one neuron in one cluster, to all the other active neurons in the other clusters, are stored

in memory. Since there are c clusters, there are a total of c× (c− 1) links for each learned

message. The complete set of links for one learned message is called a “clique”. SD-SCN

uses one RAM block to store all the possible unidirectional links between all neurons in

a cluster pair, which means that there are also a total of c × (c − 1) RAM blocks in the

SD-SCN network.

Figure 2.2 shows the pairing of cluster c0 to the rest of the clusters in the network. Each

time an input message is introduced into the network, the first sub-message is assigned to

cluster c0, the second, to cluster c1, and so on. The outgoing links from c0 to a pair

cluster are stored in one RAM block. During learning, when the complete message is

provided to the network, each cluster (and sub-message) will always be associated to the

rest. This means that for cluster c0 (first sub-message), associations to clusters c1 (second

sub-message), c2 (third sub-message), ..., and cc−1 (final sub-message) will always exist.

Maintaining these one-way associations, and using dedicated RAM blocks for links storage,

is the reason why, during retrieval, SD-SCN can generate a match even when the input is

2 Background 7

Fig. 2.2 Inter-cluster links storage into the LSM.

partially erased.

2.1.2 Data Retrieval

In hardware, an SD-SCN cluster is made up of the logic that is used to decode the neuron

that represents the input sub-message, and the memory blocks that contain the previously

learned associations between sub-messages, i.e., the unidirectional links from a cluster’s

local neurons to the neurons of the rest of the clusters in the network. Figure 2.3 shows

the block digram of an SD-SCN cluster. As discussed in the previous section, since each

sub-message is associated to c−1 other sub-messages, an SD-SCN cluster, which represents

one sub-message, uses c− 1 RAM blocks to store these associations. During data retrieval,

if the input sub-message to a cluster, input readi, is specified, SD-SCN uses the cluster’s

local decoder (LD) to activate neuron l(i,j), which represents the sub-message. The network

then proceeds to check if this neuron, and hence, sub-message, is part of a clique, i.e., full

message, that was learned in the past. To do this, the global decoder (GD) must ensure

that l(i,j) is linked to at least one neuron in each of other c−1 clusters in the network. First,

the LD forwards the k-bit index of neuron l(i,j) to the LSM. This k-bit signal represents

the address of the local “source” neuron, which is sent to the c − 1 RAM blocks, which

2 Background 8

Fig. 2.3 Block diagram of an SD-SCN cluster.

contain the previously learned associations. In turn, the c − 1 RAM blocks forward l-bit

signals to the GD. Each l-bit signal represents the associations of the source neuron to the

neurons of a cluster pair, and each bit in the signal represents an index of a “destination”

neuron in that cluster. For instance, the l-bit output of RAM block RAM0,1 contains the

associations of the input to cluster c0, i.e., neuron l(i,0), to all the neurons in cluster c1. The

RAM blocks, therefore, can be viewed as a matrix where the the rows, referenced by the k-

bit signal from the LD, represent the source neurons, and the columns, the destination [24].

The output of a RAM block is the entire row of data specified by the LD; each bit in the

output represents the association between the source neuron and a destination neuron.

The RAM row and RAM block counters generate the appropriate indexes representing

the source neuron and cluster pair for links checking.

The l-bit signal from a RAM block to the GD has a “1” at bit locations that represent

indexes of destination neurons that are linked to the source neuron. Specifically, a “1”

signifies that the local neuron and the corresponding destination neuron were activated at

the same time in the past because they represent two (of the c) components of a learned full

message. If at least one link exists between the local (source) neuron and an active neuron

in each of the (destination) cluster pair, i.e., there is a ’1’ at bit locations representing the

2 Background 9

active neurons in the other clusters, then neuron l(i,j) becomes the output of the ith cluster’s

GD, GD outi. To illustrate, if a network has four clusters, c = 4, each with 16 neurons,

l = 16, a 16-bit zero-trailing signal of “10100...” between the topmost RAM block of c0,

RAM0,1, and its GD means that a unidirectional link exists from the local neuron, i.e.,

the first sub-message, to the first (i = 0) and third (i = 2) neurons in c1. If the decimal

equivalent of the local neuron is 12, this means that during learning, (at least two) full

messages following these patterns were introduced to the network:

1. “12− 0− ..− ..”

2. “12− 2− ..− ..”

If the 16-bit output of the lower two RAM blocks, RAM0,2 and RAM0,3, are “01000...” and

“01001...”, respectively, then the following full messages were introduced to the network

during learning:

1. “12− 0− 1− 1”

2. “12− 0− 1− 4”

3. “12− 2− 1− 1”

4. “12− 2− 1− 4”

If the active neurons in c1, c2, and c3, are l(1,2), l(2,1), and l(3,4), respectively, then neuron

l(12,0) remains active because it is part of a learned full message that includes all the other

active neurons. Finally, l(12,0) becomes the output of c0, GD out0.

If the sub-message is not specified, i.e. “erased” – the input is incomplete – the erased

flag, input e, is raised, and the LD activates all the local neurons in the cluster (Figure 2.4).

In hardware, this is accomplished by sending an all 1s l-bit output, LDj, to the GD. This

l-bit output tells the GD that any one of the local neurons can be the match. The role of

the GD is then to track the number of “candidate” local neurons that has a complete set of

c− 1 unidirectional links to the neurons in the c− 1 other clusters, which may be specified,

or erased as well. During the first iteration, the GD forwards the information to the Serial

Pass Module (SPM), which sends the indexes of the candidate the neurons, one per cycle,

to the LSM. The LSM forwards the address of the candidate neuron being evaluated to the

GD. We call the candidate neurons “ambiguities”. Each ambiguity that does not have a

2 Background 10

Fig. 2.4 Message decoding during SD-SCN retrieval.

complete c−1 set of outgoing links to the active neurons in the other clusters are deactivated

by the GD. The goal of an SD-SCN cluster is then to eliminate the ambiguities one by one,

until only one is left, at which point a match is generated and sent out as the final output,

GD outi. If the network cannot narrow down the number of ambiguities in a cluster to

one, an error is declared. Because the GD of an erased cluster ultimately decides which

neuron remains active and becomes the final output, erased clusters are referred to as the

output clusters. Clusters that are specified, on the other hand, which activate exactly one

neuron per input, are called the input clusters.

2.2 SD-SCN Accuracy

SD-SCN accuracy refers to the ability of the network to generate a match given a full or

partially erased input. We say that a network exhibits high accuracy if has a low error

rate. Accuracy, therefore, can be seen as to the ability of the network to narrow down the

number of ambiguities in an erased cluster to exactly one, and is calculated using:

accuracy =
Mread − error

Mread

= 1− error

Mread

(2.2)

2 Background 11

where error is the number of times an error is raised out of Mread read executions performed

by the network. Mread is also the number of input messages, partial or complete, provided

to the network during data retrieval phase. Each time an error is raised because the

ambiguities cannot be resolved, the number successful match generation drops, and so does

accuracy. Given a constant message width, K, total number of learned messages, M , and

number of erased clusters, ce, SD-SCN accuracy is determined mainly by the number of

available links stored in memory, which is controlled by two factors: input distribution,

and number of neurons per cluster, l.

2.2.1 Input Distribution

A non-uniform input refers to a set of learned messages where the values at certain bit

locations change more frequently than others. The works in [28] and [29] showed that with

everything else constant, error rate increases significantly with a non-uniform input. The

correlation between input messages during learning results to a re-use of specific sets of links,

instead of maximizing the total available links in the network, which makes distinguishing

between stored messages difficult during retrieval.

Fig. 2.5 Effect of learning non-uniform input to SD-SCN accuracy.

Figure 2.5 shows an example of a non-uniform input and its effect on neural activation.

2 Background 12

Notice that the learned messages have a lot of non-switching bits. In fact, the fourth

sub-message is the same for all messages, which means that throughout learning, only a

single neuron was activated in cluster c3. To retrieve a match to the input “xxxx−1100−
0011 − 0101”, where the first sub-message is erased, the neurons in the specified clusters

are first activated. The specified sub-messages are represented by the numbered neurons

in clusters c1, c2, and c3. As discussed in the previous section, the LD activates all the

neurons in the erased cluster, and the GD deactivates ambiguities that are not linked to all

the active neurons from the other clusters. In this case, the numbered neurons in cluster c0,

l(0,0) and l(0,8), are the remaining active ambiguities because both represent sub-messages

that are associated to the active neurons in the specified clusters. Specifically, these active

ambiguities represent the first sub-message of the first and last items on the list of learned

messages, respectively. Notice that both full-messages share the same second, third, and

fourth sub-messages, and only differ on first sub-message. Since the number of ambiguities

in cluster c0 cannot be narrowed down to exactly one, an error is raised, and overall accuracy

drops. The inevitable reuse of neurons due to a non-uniform input results to the storage of

cliques that use repeated sets of outgoing links. If an input is uniform, the bits in the full

message change value at an almost equal degree throughout learning. This results to the

activation of more neurons per cluster, which means more varied sources of outgoing links

per clique. Increasing the unique sets of outgoing links stored in memory, by making sure

that input distribution is uniform, is essential in order to increase network accuracy.

2.2.2 Neurons per cluster

The neurons represent the source and destination of the links that are stored in memory

during the learning phase. Therefore increasing l increases the maximum theoretical num-

ber of links that the network can use to learn M messages. From Equation 2.1, we know

that we can increase l by setting a small value for c, i.e., using a network configuration

with fewer clusters. The works in [25] and [30] showed that, with everything else equal,

a network with a smaller l, and hence a bigger c, has a lower probability of successfully

eliminating ambiguities because a fewer number of neurons translates to a fewer number

of links that the network can use to differentiate previously stored messages.

2 Background 13

2.3 SD-SCN Memory Requirement

SD-SCN uses one RAM block for the unidirectional links between neurons of one cluster to

another. The total number of RAM blocks in the network is equal to the total number of

cluster pairs, which is c× (c−1). A RAM block acts like a matrix where the rows represent

indexes of the source neurons, and the columns, the destination. The size of each RAM

block therefore is just equal to the product of the total number of neurons in the source

and destination clusters:

µblock(lsrc, ldst) = lsrc × ldst (2.3)

where lsrc and ldst are the number of neurons in the source and destination clusters, re-

spectively. Assuming the clusters in the network have uniform sizes, Equation 2.3 can be

written as:

µblock(l) = l2 (2.4)

and the total memory requirement is just the size of a RAM block multiplied by the number

of cluster pairs:

µtotal(c, l) = c× (c− 1)× (l)2 (2.5)

Equation 2.5 suggests that total memory, µtotal, increases quadratically with l. Since l is

indirectly proportional to c, as shown in Equation 2.1, this also means that total memory,

µtotal, decreases with an SD-SCN configuration that uses a fewer number of clusters.

SD-SCN clusters do not necessarily have to be equal in size. It was introduced in

Section 2.1.2 that specified clusters are referred to as input clusters, and erased clusters

as the output. This reference has to do with the role of the clusters in specific SD-SCN

applications. For instance, if SD-SCN is applied to packet routing, the input can be the IP

address of the packet, which can broken down into cin clusters, and the output can be the

routing rule to be applied [31]. If there are 256 routing rules and only one output, then

cout must have lout = 256 neurons, and kout = log2(lout) = 8 bits, regardless of the number

of cin and lin. For SD-SCN configurations where the input and output clusters don’t share

a common l, and hence k, the full input width, K, can be expressed as:

K = cin × kin + cout × kout (2.6)

2 Background 14

Similarly, Equation 2.5 can be expressed as a function of lin and lout:

µtotal(cin, ccout, lin, lout) = cin × (cin − 1)× (lin)2

+2× cout × cin × (lin × lout)
(2.7)

where lin and lout are the neurons in the input and output clusters, respectively, The first

term in Equation 2.7 computes the sum of RAM block sizes involved in cin-to-cin pairings,

whereas the second term computes that of cin-to-cout pairings.

Fig. 2.6 Input message mapping in SD-SCN with lout < lin.

Figure 2.6 shows an example of how input message mapping occurs in an SD-SCN that

uses input and output clusters that do not share l. Notice that the output cluster uses

lout = 8, which means that it takes a sub-message that is made up of kout = log2(lout) = 3

bits. During retrieval, this system receives three specified sub-messages, which are assigned

to input clusters c0, c1, and c2; the erased flag is raised for output cluster c3. At the end

of the decoding process for each message query, the lone active ambiguity in cluster c3

becomes the SD-SCN output.

2 Background 15

2.4 SCN Access Delay

The work in [24] models access delay as a function of the maximum number of serial accesses

to the RAM block, i.e., the maximum number of ambiguities during the first iteration. The

first iteration refers to the complete execution of the LD and GD processes given specified

and/or erased sub-messages. Specifically, access delay is computed using:

access delay = 2 + (β + 1)× (it− 1) (2.8)

where β is the number of ambiguities during the first iteration, and it is the number of

iterations needed to generate a match. β is measured using simulation, whereas it is a

function of the number of erased clusters, ce. For ce = 1, it = 1. That is, given one erased

cluster, it only takes one iteration to generate a result; any ambiguities at the end of the

first iteration cannot be resolved by performing further iterations because the number of

active neurons from the other clusters hasn’t changed, and so there’s no new information,

i.e., links, that the GD can use to produce a new outcome.

On the other hand, if ce = 2, the first iteration, it = 1, covers the (1) activation of the

specified neurons in the input clusters and all the neurons in the (erased) output clusters

(LD process), and (2) the deactivation of the ambiguities in both erased clusters, serially

and simultaneously (GD process). As previously discussed, an ambiguity is deactivated if

it is not connected to c − 1 active neurons (specified or ambiguous) at the time that it is

being evaluated. Since an ambiguity in one erased cluster helps determine if an ambiguity

in the other should stay active or not, and since the same ambiguity can be active and

then deactivated within it = 1, a second iteration, it = 2, is needed to check if the active

ambiguities declared during the first iteration are still active, i.e., are still connected to at

least one active neuron from each of the other clusters in the network. If ce = 1, a second

iteration is not necessary because the status of the ambiguities in the lone erased cluster

only depends on the specified neurons from the input clusters, which are never going to

be deactivated, i.e., GD is not executed for the specified input sub-messages. it ≥ 2 only

involves the complete execution of the GD on the instantaneous number of ambiguities;

LD is only executed at the start of it = 1, when sub-messages that make up a query are

introduced into the network.

2 Background 16

2.5 Packet Classification

Fig. 2.7 IPC process using SD-SCN.

In general, IPC is the preprocessing necessary for discriminating and controlling packets

transmitted over the Internet based on a set of predefined rules. As such, IPC is a crucial

component in network operations such as routing, packet filtering, and traffic account-

ing [32]. For the purpose of defining QoS and security protocols, IPC is used to identify

the generating classes (applications) of captured packets based on the information they

carry. These useful information range from port numbers, packet sizes, and payload pat-

terns [10][12]. Packets that carry the set of information that is associated with a particular

class get routed based on the rule assigned to that class. For instance, packets classified

to be generated from a streaming application get the appropriate resources set by network

administrators. Likewise, packets classified to be generated by malicious applications can

be dropped, i.e., denial of service.

In order to use SD-SCN for IPC, it is first necessary to define the input source and struc-

ture, as well as viable network configurations, that will maximize classification accuracy,

and minimize memory requirement and classification delay. Since IPC processes flows, the

baseline input message to the SD-SCN-based IPC solution is the class-tagged flow ID (112

bits wide), which refers to the concatenated binary values of: source (32b) and destination

(32b) IP addresses, source (16b) and destination (16b) port numbers, protocol (8b), and the

generating class (8b) of captured packets. During learning, the input to the SD-SCN is the

2 Background 17

full class-tagged flow ID bits, which will be mapped into the available clusters. Similar to

the works in [11] and [12], this work will only consider packets transmitted in UDP and

TCP, and classify flows into eight classes: Web, Stream, RC, P2P, Mail, IM, Download,

andGame. During retrieval, the input is the flow ID bits, i.e., the class bits are erased

(see Figure 2.7). The network then searches through its stored links to find a clique that

includes the neurons representing the specified flow ID bits, and a neuron in the output

cluster representing a class . Like most implementations of SD-SCN, the output – in this

case the class bits – will have a dedicated cluster. The flow ID bits, on the other hand,

which will be specified during learning and retrieval, will be mapped into the input clusters.

The following chapter will discuss how to develop and test an SD-SCN that performs IPC

using a real network trace, which is made up of 80, 000 flows associated with the different

classes, obtained from a campus network in University of Brescia [33].

18

Chapter 3

Optimizing SD-SCN for IPC

3.1 Problem Statement

The fundamental challenge in using SD-SCN for IPC is defining the input message, in much

the same way that ML-based approaches need to identify the set of features that produce the

best classification accuracy. Chapter 2 details the effect of a non-uniform input distribution

to SD-SCN accuracy; the reuse of specific sets links during learning limits the ability of the

network to distinguish between stored messages during retrieval. Additionally, the width

of the input message, K, limits the possible values of c, and hence l, which in turn affects

the accuracy and size of SD-SCN. Input characterization, therefore, is a very crucial step

in optimizing SD-SCN for IPC since it singularly controls both the performance and cost

of resulting designs. In order to bound the design space, and similarly minimize cost, this

work proposes the use of the readily available information from the class-labelled flow ID,

i.e., source and destination IP addresses, ports, and protocol, as input to the IPC-optimized

SD-SCN. This choice makes it possible to design an IPC that does away with packet sizes

and order of arrival, thereby eliminating the flow builder.

Figure 3.1 highlights the part of the state-of-the-art ML-based IPC and this work pro-

poses to replace with SD-SCN. Eliminating the flow builder eliminates the logic and cache

used in tracking the status of flows, and sizes of packets and order of arrival. Given the

SD-SCNs sensitivity to the distribution and width of the input, this work’s first-order goal,

therefore, is to identify which of the K = 112 bits in the baseline input allows for an SD-

SCN design that maximizes accuracy. Similar to the work in [11][17], this work aims to

develop an IPC that consumes minimum memory to be implementable on an FPGA. Addi-

2016/08/05

3 Optimizing SD-SCN for IPC 19

Fig. 3.1 Comparison of ML and SD-SCN solutions to IPC.

tionally, since IPC systems are normally attached to network routers, it is imperative that

the IPC-optimized SD-SCN has a minimum classification delay, so as not to introduce a

bottleneck in packet routing. Considering that the core of SD-SCNs retrieval process relies

on accessing previously stored links, we will model classification delay using access delay

figures from CACTI [34], which takes RAM block sizes as input, among other parameters

(discussed in detail in Chapter 4). We know based on Equation 2.4 that l, and hence k,

defines RAM block sizes. The biggest SD-SCN RAM block size that can be implemented

on an FPGA (2 MB) corresponds to a design that uses k = 12 bits per cluster. On the other

hand, the smallest SD-SCN RAM block size that CACTI can model (128 B) corresponds

to a design that uses k = 5 bits per cluster. For these reasons, and in order to simplify

modelling, this work proposes to constrain the design space to k = [5, 12]. Coincidentally,

SD-SCN configurations that use k ≤ 5 employ smaller RAM blocks (≤ 128 B), which have

a higher overhead to useful memory ratio compared to the alternative, rendering them in-

efficient for high-speed operations such as IPC. The limit on k is the reason why the class,

which occupies a dedicated cluster as mentioned in Section 2.5, is formatted using one-hot

encoding. That is, even though the eight classes can be identified using only three bits

(i.e., 23 = 8), we use eight to satisfy: 5 ≤ kout ≤ 12. Given a network trace of M flows,

this work’s final goal is to identify which of the K = 112 class-tagged-flow-ID bit indexes

should make up the final input, in order to design an SD-SCN that satisfies the k limit,

achieves maximum accuracy, and consumes minimum memory and classification delay.

3 Optimizing SD-SCN for IPC 20

3.2 Maximizing Cluster Utilization

Fig. 3.2 Clusters utilization comparison of uniform (randomly generated)
and real (actual network trace) inputs.

Uniformly distributed input produces high SD-SCN accuracy because it maximizes the

available inter-cluster links during learning, which allows the network to more easily dif-

ferentiate between stored messages during retrieval (Chapter 2). In the context of IPC, a

uniform input refers to a network trace that is able to use all available neurons at virtually

equal frequency during learning. Since an active neuron is simply the integer equivalent of

a binary sub-message, this work argues that an input set is more likely able to maximize

a design’s available inter-cluster links if the values of its sub-messages vary, i.e., “switch”,

frequently throughout the learning process. Similarly, the probability that the value of a

sub-message switches increases as the value of its individual bits switch from learning one

input to the next. A constantly switching sub-message has a higher probability of utilizing

most of the available neurons in a cluster during learning simply because each time a new –

or more specifically, unique – sub-message is received, a new neuron is activated. A cluster

that receives a limited number of unique sub-messages will activate a limited number of

unique neurons, and therefore will result to a limited number of unique links, since the

neurons represent the link sources and destinations. In contrast, a cluster that receives a

significantly higher number of unique sub-messages utilizes more of its available neurons,

and will result to more unique links being stored in memory. This work refers to the ra-

3 Optimizing SD-SCN for IPC 21

tio of activated neurons to total neurons in a cluster as cluster utilization, which can be

calculated using:

ψi =
l∗i
li

(3.1)

where ψi is the ith cluster utilization; l∗i is the total neurons activated during learning, and

li is the total available neurons in cluster ci. A uniformly distributed input, which produces

higher accuracy by maximizing the available inter-cluster links of a specific SD-SCN design,

causes high values of ψ in all clusters.

Figure 3.2 compares the ψ values of the real network trace [33] made up of 80k 112-bit

class-tagged flow IDs used in the simulations presented in this work, and an equivalent

uniform input, which is generated by obtaining 80k unique random samples from range

[0, 2112 − 1]. The graph shows 14 clusters since, following the k-limit, a 112-bit input can

be broken down into 14 sub-messages, each with a width of k = 8 bits. A ψ = 1 means

that all available neurons in cluster ci have been activated at least once during learning;

this is the ideal scenario because a higher number of unique active neurons translate to

a higher number of unique links in memory, which maximizes accuracy as described in

Section 2.2. Notice that the actual network trace has some very poor ψ values, specifically

for clusters c0 , c1 , c2 , c3 , c12 and cout. On the other hand, the uniform input has ψ = 1

all throughout. This work proposes the use of clusters utilization, ψ, as a measure of SD-

SCN-configuration-aware input distribution uniformity. While there are several statistical

approaches in quantifying general input distribution [35][36], ψ is more SD-SCN-specific,

which correlates directly to the number of active neurons (links) acquired during learning,

and its effect to accuracy. It will be shown in the Results section that an input set and

SD-SCN configuration combination that results to high ψ values achieves high accuracy.

3.3 Bit Activity

Following the assumption that an input set with constantly switching sub-messages, and

hence constantly switching bits, produces high values of ψ, this work hypothesizes that, if

we only consider flow ID bit indexes that have an almost equal frequency of switching, i.e.,

eliminate those that barely switch, we are generating an input set that mimics a uniform

input’s high values of ψ, which results to high classification accuracy. This work proposes a

metric called bit activity factor, α, which measures the frequency of switching of each flow

3 Optimizing SD-SCN for IPC 22

ID bit in a given network trace and can be computed using:

α(n) = 1−

∣∣∣∣∣onesn − M
2

M
2

∣∣∣∣∣ (3.2)

where onesn is the number of times out of the total number of flows, M , that bit n is a 1.

Essentially, Equation 3.2 measures how close bit n is to maximum switching, which is 50%

of the total number of flows in the network trace. An α(n) close to 1.0 means that bit n is

1 (or 0) half of the time during learning. On the other hand, α(n) close to 0.0 means that

bit n is either 1 (or 0) most of the time.

Figure 3.3 shows the bit activity factors of 80k 112-bit class-tagged flows captured on a

campus network [33]. It can be seen that the bits from the IP source have a lower α than

the bits from fields such as IP destination, and the source and destination ports. The reason

for this is that the analyzed network trace is a collection of outgoing flows from a local

area network to the Internet, and therefore will naturally have a narrower list of (local)

IP addresses compared to the destination, which includes IP addresses for web, messaging,

mail servers, etc. It can also be seen that the activity factors for the port bits are higher

because a single device normally uses multiple ports for different applications. The protocol

field only represents two different values: UDP (represented by bit string “0001000′′), and

TCP (“00000110′′) with non-overlapping “1s′′, which explains the minimum switching. The

eight class bits represent the eight classes, and the bit with the highest alpha represents

the class with the highest occurrence in the trace, which in this case is Web, represented

by class bit index n = 7.

Measuring α is the first attempt at developing a metric that can be used as a basis for

SD-SCN input bit selection, to improve accuracy, and at the same time, minimize mem-

ory requirement by reducing K. In order to overcome the non-uniformity in the input to

SD-SCN, previous works have employed a combination of techniques that include adding

random clusters and/or bits [28], and using compression codes such Huffman coding [29].

The former increases the input width, K, further, which incurs the penalty of added mem-

ory. For a system that already takes 112 bits of baseline input, this approach can be limiting

(discussed further in Chapter 5). The latter converts input to variable length messages,

and uses random bits to fill in freed space in order to maximize input differentiability; the

obvious disadvantage of which is the added cost of coding and decoding. Since the goal of

3 Optimizing SD-SCN for IPC 23

Fig. 3.3 Bit activity factor, α(n) for n = 0, ...,K−1, of a real network trace
of 80k K = 112-bit flows.

3 Optimizing SD-SCN for IPC 24

this work is to develop an IPC with minimum delay and memory, selecting fewer useful bits

on the basis of α, instead of introducing additional data and processing is a more logical

approach.

3.4 Bit Activity Thresholding

To filter out bit locations n with low α, this work proposes using bit activity threshold,

Th, as the parameter that determines a final input message of width K for SD-SCN. For

instance, a Th = 0.42 means that we want to generate an input message that is made up

of flow ID bits with α ≥ 0.42. Lowering Th increases the width of the input message, K.

Conversely, increasing Th narrows K, which, as shown in Chapter 2, lowers total memory

requirement, µtotal, assuming constant c. An input with narrower K produced by increasing

Th encompasses higher switching bits. This work hypothesizes that increasing Th results

in an input set that is made up of shorter messages of highly switching bits, which produce

high clusters utilization, ψi for i = 0, ..., c − 1, similar to those of a true uniform input

set, which produces higher accuracy compared to the alternative. Higher ψ values, along

with a design that uses high l, translates to higher numbers of activated unique neurons

per cluster during learning. The higher number of unique active neurons translates to a

higher number of unique links in memory, which maximizes SD-SCN accuracy, as discussed

in Section 2.2.

It is worth noting that there are ranges of Th where the number of complying bit

indexes, and therefore the resulting K, do not change. This work proposes sweeping Th

from 0 to 1 in decimal increments, d, to generate unique values of K. The choice of d

depends on the desired sensitivity to the differences in α. Using the same real network

trace and setting d = 0.01, a total of 21 unique Th-defined K values are generated; the

first change in K is at Th = 0.17, where the message width is truncated from the baseline

112 bits to 80 bits. The dropped bit indexes include: IP source bit indexes below n = 24,

and all the protocol bits. It is also worth mentioning that the output bits will be excluded

from the Th check. That is, the class bits, regardless of their activity factors, will always

be included in the final SD-SCN input message because they represent the field that we

are interested in recovering later.

Another benefit of using Th to generate the final input width, K, is that it allows for

more design options, which are not possible using the baseline class-tagged flow ID bits

3 Optimizing SD-SCN for IPC 25

alone. These additional designs refer to the different c-based configurations for one value

of K. Specifically, for every K(Th), there exists at least one cluster-size-dependent SD-

SCN configuration as long as (K − kout) mod cin = 0. That is, a cluster-size-dependent

configuration exists as long as the input message bits, excluding the eight-bit wide class

bits (kout), can be divided equally into cin input clusters. Again, kout = 8 is factored

out from the cin calculation because, as mentioned in Section 2.5, the output will always

have its own cluster. As an example, K(0.17) = 80 bits can be implemented as a seven-

cluster SD-SCN with cin = 6 and cout = 1. Each input cluster will have kin = 12 bits:

kin× cin + kout× cout = 12b× 6 + 8b× 1 = 80 bits. Alternatively, it can be implemented as

a nine-cluster (kin = 9b), 10-cluster (kin = 8b), or 13-cluster (kin = 6b) design. In contrast,

the baseline class-tagged flow ID with K(0) = 112 bits, can only be implemented using

c = 14 (cin = 13, cout = 1) and kin = 8b : K = 8b× 13 + 8b× 1 = 112 bits. An alternative

solution to the lack of design flexibility in the baseline input width, K = 112 bits, is to the

pad the input with zeroes or random bits (introduced briefly in the previous section). This

approach is the opposite of bit activity thresholding since instead of reducing the number of

bits, it introduces new bits into the input, and hence new clusters into the design. Padding

with zeroes allows K to grow and cin and kin to take new values. Using the same real

network trace, the highest accuracy that can be achieved with this approach is 88.19%.

This is produced by padding four zeroes, pzero = 4, to the baseline input, producing a new

input width, K
′
, equal to K + pzero = 112 + 4 = 116 bits, which can be implemented as

a 10-cluster SD-SCN that uses kin = 12 bits, and consumes 1.2 Gbits of memory. Zero-

padding, however, does not change the contents of the input, which means that for all the

new c-and-k combinations produced by increasing pzero, the original clusters retain their

old ψ values, and the new cluster(s) that receive the zero-padding will always only activate

neuron zero out of all the available neurons, thereby resulting to a poor new cluster(s)

utilization, ψ. With no real improvement in the ψ values, only l, and hence k, controls

accuracy. Chapter 5 details the effect of zero-padding to accuracy and cluster utilization.

Padding with random bits addresses the lack of cluster utilization, ψ, control in the

zero-padding approach. However, in order to overcome the effect of the poor ψ values

of the original input set (Figure 3.3), the amount of random-bit padding, prand, must be

significantly high. Using the same new input width as that of the zero-padding approach,

K
′

= 116, but replacing the zeroes with four randomly generated padding bits, prand = 4,

simulation confirms that there is virtually no improvement in accuracy. Setting prand = 16

3 Optimizing SD-SCN for IPC 26

increases accuracy from 88.19% to 90.0%, prand = 28 to 91.2%, and prand = 40 to 92.1%.

The obvious major disadvantage of random bit-padding is the high penalty in memory

for a very minimal improvement in accuracy. In fact, sweeping prand from four to 64 bits,

and evaluating the performance of resulting SD-SCN designs that use linmax = 2kinmax = 212

shows an average improvement in accuracy of only 1% per 371 Mbits of memory. Chapter 5

provides more details on the effect of random-bit-padding to accuracy and the corresponding

cost in resulting SD-SCN designs.

In order to avoid incurring additional memory in attempting to improve accuracy, the

bit activity tresholding metric, Th, is developed in order to widen the design space by

reducing K, instead of introducing new bits into the input. Th increases input message

differentiability by removing the bits that are common, i.e., least switching, from the entire

input set. Section 2.2 details that given K, accuracy depends on input distribution, and

the number of neurons per clusters, l. The goal of this work, therefore, is to identify

the SD-SCN designs with the best classification accuracy and speed and lowest memory

requirement by setting two parameters:

1. Th, to maximize ψi for i = 0, 1, ...cin − 1, and reduce K. The former maximizes

accuracy, while the latter establishes a trade-off between µblock and access delay

2. lin given K(Th), which establishes a trade-off between accuracy and µblock, and hence

access delay

3.5 Optimizing Accuracy with XOR

Since bit activity thresholding excludes the output (class) bits – we can only retrieve

information that we have learned – the final input set will always have a degree of correlation

that is defined by the low output cluster utilization, ψout. The output cluster always uses

kout = 8 bits (and neurons) to represent the eight application classes generating the 80k

flows in the real network trace. Therefore the maximum output cluster utilization is always

only ψout = 8/lout = 8/2kout = 8/28 = 8/256(3.125%). In order to increase ψout, this

work proposes activating dummy neurons in the output cluster during learning, instead of

constantly reusing the predefined eight neurons that represent the eight classes. Specifically,

an XOR operation is performed on the real kout- bit output sub-message (the class) and

3 Optimizing SD-SCN for IPC 27

the corresponding kin-bit sub-message of the input cluster with the highest utilization,

max
0≤i≤cin−1

(ψi). There are two reasons why this approach is taken to increase ψpit:

1. The XOR function is chosen because it outputs a “1′′ 50% of the input cases, which

is ideal in order to maximize the variability of the resulting dummy neurons; using

AND will have a 75% bias towards “0′′, and OR will have a 75% bias towards “1′′.

2. The kin-bit sub-message from the cin with the highest utilization as the second input

to the XOR operation because this reduces the possibility of producing the same set of

dummy neurons over and over, which is precisely the problem that this optimization

approach is trying to solve in the first place.

In order to recover the real class bit during retrieval, the XOR operation can be reversed

simply by performing XOR on the dummy output neuron, identified by the GD process, and

the specified sub-message from the highest utilization cluster. This makes sense because

XOR follows this property: A XOR B = C, A XOR C = B. The max-utilization cluster can

be identified by measuring the ψ values of a given network trace and SD-SCN configuration.

In hardware, the output cluster utilization optimization can be achieved by attaching XOR

gates to the output terminal of the output cluster, placed adjacent to the pre-identified

max-utilization cluster. The obvious cost of performing XOR optimization is that the size

of the output cluster must now be at least equal to the size of the input clusters. That

is, the condition lout ≤ lin must be satisfied so that the output cluster always contains the

neuron representing the result of the XOR operation. This cost however is only incurred

for designs that start with an output cluster that is smaller than the input clusters, i.e.,

the number of bits (and therefore neurons) in the class is lower than the number of bits in

the input cluster (kout ≤ kin).

28

Chapter 4

Results

4.1 Accuracy

The fundamental assumption in this work is that changing K by controlling Th facilitates

in finding an input set, and hence an SD-SCN design, that maximizes clusters utilization,

ψi for i = 0, ...cin − 1, which in turn maximize classification accuracy. As mentioned in

Section 2.2, two factors control accuracy: (a) input distribution, which this work measures

using ψ values (Figure 3.2), and (b) the number of neurons per input cluster, lin, and hence

the number of bits per input-cluster sub-message, kin, (Equation 2.1). Therefore, we expect

designs that use kinmax , i.e., kin = 12, and measure high ψ values for a given input set to

achieve maximum accuracy. As discussed in Section 3.4, bit activity thresholding generates

a new input set, which is made up of bit indexes, n = 0, ..., K − 1, from the original input

with α(n) ≥ Th; the kout bits in the output sub-message is excluded from thresholding since

they represent the class, which SD-SCN needs to learn for later retrieval. In order to prove

the hypothesis that bit activity thresholding maximizes ψ values, and hence accuracy, the

performance of the designs produced by increasing Th is simulated using three different

inputs sets:

1. input generated using this work’s proposed method, i.e., choosing K(Th) bits that

satisfy α ≥ Th

2. input generated using K(Th) randomly chosen bits

3. input generated using the opposite of this work’s method, i.e., choosing the K(Th)

2016/08/05

4 Results 29

bits with the lowest α.

Fig. 4.1 Accuracy of K(Th)-controlled designs using actual (real network
trace) input sets produced by choosing bits (1) randomly, (2) above, and (3)
below Th.

The results are shown in Figure 4.1, which presents data in decreasing kin and increasing

Th. Each point in the x-axis refers to a single design generated using thresholding. There

are two significant observations that can be made based on the results: (a) first, the

theoretical effect of kin, and hence lin, to accuracy is very apparent the higher the number

neurons per cluster, lin, and hence kin, the higher the number of learned links, and the

higher the accuracy (Section 2.2). Accuracy drops toward zero as kin approaches kinmin
,

4 Results 30

i.e., kin = 5. (b) Second, in virtually all combinations of Th and k, the input generated

using the proposed method, i.e., choosing bits with α ≥ Th, always produces the highest

accuracy, with two exceptions: (b.1) the input set used when Th = 0.0 (kin = 8), i.e., zero-

percent thresholding, is identical for all three input conditions, which explains why accuracy

is also identical. (b.2) The only other significant point where bit activity thresholding

approach did not produce maximum accuracy is at Th = 0.91 (kin = 10). Randomly

generated input produced 9% accuracy, whereas the proposed approach only produced 3%.

This point, however, refers to a design that takes an input of width K(0.91) = 36 bits,

which means a total of K(0.0)K(0.0.91) = 11236 = 76 bits have been dropped, and only

36 bits are used to differentiate 80k flows. While increasing Th removes the bits common

to most of the flows in the input set, setting it to a really high value also removes the bits

that differentiate them. This is evident in each kin section in Figure 4.1, where almost

always the first and lowest Th value produces the maximum accuracy; further increasing

Th only causes accuracy to drop since doing so eliminates the highly-switching bits which

maximizes flow differentiability. The data presented in Figure 4.1 proves that controlling

Th and l together fulfils the goal of finding an SD-SCN design with maximum accuracy.

Through simulation, this designed is identified to take an input of K(0.17) = 80 bits, with

kin = 12 bits, and cin = 6.

This work proposed in Section 3.2 that clusters utilization, ψi for i = 0, 1, ..., c−1, can be

used as a measure of SD-SCN-aware input uniformity to predict accuracy; that is, accuracy

can be maximized by controlling Th in order to produce an input set that mimics the high

ψ values of a true uniform input. To prove this, the clusters utilization of the input sets and

designs from the previous experiment are measured; and in fact, the most accurate input

set and design combination produces the highest clusters utilization. Figure 4.2 shows the

comparison of the clusters utilization of the most accurate thresholding-generated design

from Figure 4.1, using the three previously described input sets. Note that the ψ values

from the input generated using our proposed method, i.e. above Th, are the ones closest to

the all-ones ψ of a true uniform input. The input generated using random bits is second,

and the input generated using bits below Th, which has the lowest set of ψ values, is the

last. This trend is true for the rest of the designs; the higher the ψ values, the higher the

accuracy. The results prove that clusters utilization, ψi for i = 0, ..., c− 1, are a sufficient

measure of SD-SCN-aware input distribution uniformity, which consequently predicts SD-

SCN accuracy.

4 Results 31

Fig. 4.2 Clusters utilization comparison of uniform and real (actual network
trace) input sets produced by choosing K(0.17) = 80 bits: (1) randomly, (2)
above, and (3) below Th = 0.17.

The accuracy figures presented in this section are based on simulations performed the

real network trace of 80k unidirectional flows. Unidirectional flows make a sufficient input

dataset because fundamentally, the goal of IPC is to detect the presence of a class of

application in the network. As stated in Section 2.5, a flow is always associated with a

class during learning, and so a successful classification alone results in the detection of

an application that is running in the network. Moreover, since communication over the

Internet is almost always two-way, the presence of an outgoing flow guarantees a returning

flow, both of which are associated with the same class. While the direction of the flows

affects input distribution – as evident by the wide variations in the values of α presented in

Figure 3.3 – and therefore SD-SCN accuracy, their mere inclusion in the dataset is sufficient

to guarantee that the condition (i.e., frequency distribution of the application classes) of

the network is accurately represented in the IPC analysis.

4.2 Memory

Since Th controls K, and therefore the implementable number of neurons per input cluster,

lin, and the input clusters, cin, it can be said that total memory requirement, µtotal, is also

a function of Th. For this reason, and the fact that the SD-SCN IPC implementation

4 Results 32

proposed in this work only uses cout = 1, Equation 4.1 can be rewritten:

µtotal(cin, K(Th)) = cin × (cin − 1)×
(
K(th)− kout

cin

)2

+2× cin ×
(
K(th)− kout

cin
× 2kout

) (4.1)

where kout = 8, as before. Equation 4.1, and the effect of Th to accuracy as shown in the

previous section, indicates that it is possible to use Th to find an appropriate accuracy-

memory trade-off for the SD-SCN implementation of IPC. From Figure 4.1, the top three

designs with accuracy ≥ 80% use kinmax (or lin = 212 = 4, 096), and have the following

configurations:

1. K(0.17) = 80, with 85.1% accuracy at 73.4 MB;

2. K(0.42) = 68, with 84.9% accuracy at 50.4 MB;

3. K(0.66) = 56, with 80.0% accuracy at 31.5 MB.

This means that it is possible to save as much as 23 MB in memory by moving from design

(1) to (2), while losing only 0.2% of accuracy. The pareto-optimal solutions based on total

memory requirement and accuracy will be discussed in the following section.

4.3 Optimization

The low maximum possible output cluster utilization, ψout = 8/256, which is caused by

the class bits being having a dedicated (output) cluster, limits maximum possible accuracy

that can be achieved by adjusting parameters Th and lin. In order to improve ψout, this

work proposes replacing the limited output cluster neurons with dummy neurons produced

by an XOR operation on the original class bits and the sub-message from the cluster with

the highest ψ (Section 3.5). Figure 4.3 compares the pareto-optimal plots in total memory

requirement versus error rate of the baseline solution, which uses Th and l adjustments

only, and the optimized XOR-reinforced solution. Memory requirement for both solutions

are calculated using Equation 4.1, and error rate (1− accuracy) is measured through

simulation using the real network trace described previously. The most obvious difference

between the two types of results is that for the baseline solution, more memory, i.e., a

4 Results 33

10-1 100 101 102 103

Memory (Mbits)

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

o
r

ra
te

Th, l
Th, l + XOR

Fig. 4.3 Pareto-optimal plots in error rate and memory of designs produced
by (1) Th-and-lin adjustments only, and (2) with the added XOR-optimization
(dummy neurons).

bigger network design (higher lin), is required to get a smaller error rate (higher accuracy);

specifically, the smallest error rate, 0.149 (or 85.1% accuracy), is achieved with a design

that uses 516 Mbits of memory, with K(0.17) = 80 bits, cin = 6, lin = linmax = 4, 096, and

lout = 28 = 256. The XOR-optimized solution, on the other hand, is able to attain the

smallest error rate, 0.007 (99.3% accuracy), for a design that only uses 44 Mbits of memory,

with K(0.42) = 68 bits, cin = 6, and lout = lin = 1, 024 (since kin = 10b > kout = 8b). These

results are expected, since, in order to overcome the effect of the low ψout and maximize

accuracy, the baseline solution must use more links, and therefore neurons, in the input

clusters, which requires more memory; moreover, as shown in Figure 4.3, for each kin,

the lowest Th, and hence highest K, produces the highest accuracy (lowest error rate),

which translates to higher µtotal (Equation 4.1). In contrast, the XOR-optimized solution

is able to avoid a low ψout by activating dummy neurons in cout, which means that in order

to produce a design with low error rate, kin doesn’t have to be set at maximum value to

maximize the number of learned links from the input clusters, and make up for a low output

cluster utilization. The baseline solution has ψout = 0.0273, whereas the XOR-optimized

4 Results 34

solution has ψout = 1.0.

4.4 Classification Delay

This work defines classification delay, δ, as the amount of time the SD-SCN takes to

generate a match to a given input. Since the core of SD-SCN’s retrieval process relies

on accessing previously stored links in the RAM block through the LSM (Section 2.1.2),

this work models classification delay as a function of the access delay of the RAM blocks.

Equation 2.8 models access delay as a function of β, the maximum number of ambiguities

in the erased cluster during the first iteration, which consequently represents the number

of serial accesses to a RAM block, measured through simulation. Accordingly, this work’s

model for classification delay is:

δ(θ, β) = θ × β (4.2)

where θ is the access delay to a RAM block, which is a function of RAM block size

calculated using Equation 2.3. For configurations where the input and output clusters

don’t have the same size, i.e. lin 6= lout, the size of bigger ram block is used, i.e.,

max [µblock(lin, lin), µblock(lin, lout)], to obtain θ, which is estimated using [34] using the fol-

lowing assumptions: µblock uses 32-bit addressing, single bank, single read/out port, and 45

nm CMOS technology. Equations 2.3 and 2.4 indicate that that the size of a RAM block

depends on the size of the cluster, which is defined by its number of neurons, l. Since l is

inversely proportional to the number of clusters, c, (Equation 2.1), Equation 4.2, therefore,

suggests that SD-SCN designs with fewer input clusters, i.e., lower cin, will have a higher

classification delay by virtue of the use of more lin, which translates to bigger RAM blocks

that have higher access delays.

The number of ambiguities after the first iteration, β, which is captured during sim-

ulations, can be viewed as a measure of the network’s ability to easily narrow down the

number of candidate neurons in the erased cluster, given the links obtained during learning.

In this sense, it can be said that β is also a function of input distribution, and l. The more

uniform the input data (high ψ values), and the more neurons per cluster the network uses

(high lin and lout), the more links there are in memory that can be used for eliminating

ambiguities. Since this work has proven that (a) controlling Th and using maximum lin (by

using maximum kin) and lout (by activating dummy neurons in cout), maximizes accuracy –

4 Results 35

Table 4.1 Memory requirement and classification delay of pareto optimial
XOR-assisted designs.

Memory Classification

Th - kin Accuracy µtotal β delay, δ

(Mbits) (ns)

0.42 - 10 99.3% 44.0 2 4.102

0.37 - 9 98.7% 14.7 3 4.608

0.49 - 6 97.8% 1.5 3 3.960

0.86 - 7 53.2% 0.98 5 6.6

Clustering [13] ∼ 95.0% – –

I-SVM [14] ∼ 97.0% – –

I-RF [15] ∼ 97.0% – –

I-EM [16] ∼ 96.0% – –

SVM-FPGA [17] ∼ 100.0% ∼10.0 3178

both parameters maximize the number of stored links – it is expected that β will be lower

for a design with high accuracy; similarly, δ is expected to be higher for a design that uses

high kin and/or kout, and have a high β. Table 4.1 shows the performance and cost of the

top most accurate XOR-optimized designs from Figure 4.3. compared with the state-of-

the-art-solutions. As predicted, β is lower for designs with high accuracy. Increasing the

differentiability of the flows through thresholding, and maximizing clusters utilization ψ

by using high lin and/or lout, increases accuracy by minimizing β or the number of flows

that ”look alike”. Following Equation 4.2, the results also show that δ is higher for bigger

designs (higher lin, and hence kin) that have a higher β. In comparison, using the same real

network trace, the SVM-FPGA [17] solution consumes 3178 ns to classify a flow. The high

classification delay is due to the use of 8000 support vectors to achieve ∼ 100% accuracy;

at data rates ≥ 320 Kpackets/second, accuracy drops from 100% to 0%. The rest of the

existing ML-based solutions only measured accuracy.

36

Chapter 5

Pitfalls

Using bit-activity thresholding, together with XOR optimization, facilitates in finding an

SD-SCN configuration that is capable of achieving 99.3% classification accuracy with a

classification delay of 4.10 nanoseconds per flow, and 44.040 Mbits of memory requirement

(Chapter 4). Before arriving at these remarkable results, this work considered a few other

approaches, which are based on hypotheses that did not test as exceptionally. This chapter

details these approaches and explains why they are unable to measure as notably in one (or

more) of the IPC metrics, which are accuracy, total memory requirement, and classification

delay.

5.1 Padding the Input

5.1.1 Zero-padding

One of the most seemingly obvious work around solutions to the hard limit in the number

of different SD-SCN configurations that can support the baseline input with width K = 112

bits is to increase K via zero-padding. As mentioned in Chapter 2, there is a finite set of

SD-SCN configurations that can support an input of width K; this set is defined by the

integer-valued combinations of c-and-k. Following the k = [5, 12] constraint introduced in

Chapter 3, K = 112 bits (108-bit wide flow + 8-bit wide class) can only be supported by

an SD-SCN with configuration: c = 14, where cin = 13 and cout = 1, and kin = 8. As

before, the number of bits in the single dedicated output cluster is constant, i.e., kout = 8

(eight classes). Using Equation 2.6, the values of parameters cin, kin, cout, and kout check

2016/08/05

5 Pitfalls 37

out: K = cin × kin + cout × kout = 13× 8b+ 1× 8b = 112 bits. Since the values of cin and

kin depend on K, padding zeroes to the MSB end of the input will widen the design space

by allowing K to grow in order to evaluate new configurations other than the one defined

by cin = 13 and kin = 8, without modifying the contents of the input.

Table 5.1 Performance and cost of SD-SCN designs processing zero-padded
input.

new K total input bits input accuracy total classification

(K
′
) padding per cluster clusters (1− error rate) memory delay (δ)

(pzero) (kin) (cin) % Mbits ns

112 0 8 13 15.07 11.9 6.60

113 1 7 15 7.79 4.4 5.85

116 4 12 9 88.19 1,226.8 8.20

118 6 11 10 67.87 388.0 8.97

120 8 8 14 15.07 13.8 6.60

122 10 6 19 6.27 2.0 6.57

Table 5.1 shows the accuracy, total memory requirement, mutotal, and classification

delay, δ, of the different SD-SCN configurations produced by incrementing the zero-padding

parameter, pzero, from 0 to 10. For this round of simulations, the same set of real network

trace [33] is used as that in the preceding simulations presented in the previous chapters.

The new input message width, K
′
, follows the form: K

′
= pzero +K, where K = 112 bits,

the baseline input width. Zero-padding is done on the MSB end of the class-tagged flow

ID bits in order to maintain the original contents of the input. Note that some values of

pzero, specifically pzero = 2, 3, 5, 7, 9, are not present in the table because they produce

values of K
′ − kout that cannot be evenly distributed among their respective number of

input clusters, cin. Additionally, only the highest possible value of kin for each K
′

is shown

in the table. As discussed in Section 2.2, for a given input set of width K, a configuration

that uses maximum k produces maximum l, which, when all the other parameters are equal

(i.e., number learned messages, M , and erased clusters, ce), produces maximum accuracy.

Table 5.1, therefore, aims to show the maximum accuracy, and the corresponding penalty

in memory and classification speed, that can be achieved through zero-padding, which this

work hypothesizes as a way of bypassing the cin-and-kin limit to the baseline input width,

K = 112 bits,

It can be seen that maximum accuracy of 88.2% is achieved using pzero = 4 for a

5 Pitfalls 38

configuration with kin = 12 and cin = 9, with over 1.2 Gbits of memory usage. Through

simulation, the classification speed of this configuration is estimated to be 8.20 nanoseconds

per flow (Equation 4.2). In contrast to the the optimized solution presented in Chapter 4,

zero-padding results to 12% more classification error, uses 27× more memory, and takes

twice the time in generating a result. It makes sense that the configuration with the highest

kin value has the highest accuracy since, as discussed in detail in the previous chapters,

accuracy is controlled by input distribution and l, where l = 2k (Equation 2.1). Zero-

padding increases K in order to widen the design space and find configurations that use a

high lin value, which are expected to achieve higher accuracy. This hypothesis proves to

be accurate as simulation results presented in Table 5.1 show that accuracy goes up as the

value of kin increases.

While zero-padding manages to increase accuracy by increasing lin, it lacks control

over the production of an input set that closely mimics a uniform input distribution, i.e.,

measured ψ values do not approach the ideal value, which is 1.0. This is due to the simple

fact that zero-padding does not change the original content of the input data. That is,

given a configuration defined by K
′
, cin, and kin, sub-message ‘00001’, for instance, is still

just ‘1’– both of which point to the same neuron in the newly created cluster that results

from the increase in the width of K due to zero-padding. If pzero is high enough such that

the number of zero-padding bits fits in a single cluster, i.e., the first sub-message becomes

a string of zeroes, learning will always only activate neuron zero in cluster c0 for all flows.

This means that zero-padding does not introduce any real new associations (links) during

learning, nor does it improve cluster utilization. It’s sole benefit is that it allows the network

to be configured to use maximum lin. Any correlation that exists in the input prior to the

introduction of zero-padding still exists.

Figure 5.1 shows the measured clusters utilization of the zero-padded actual input using

pzero = 8 (K
′

= 112 + 8 = 120), and those of the baseline input (K = 112), and a uniform

input, generated in the manner similar to that in Section 3.2. Note that the (baseline)

actual input does not have a ψ value for cluster c
′
0; the design that supports the baseline

input only has 14 clusters, and c
′
0 represents the newly created cluster due to zero-padding.

The ψ values of the original clusters of the baseline input completely overlap those of

the zero-padded input, and the ψ value for the newly added cluster is very minimal, i.e.,

ψc
′
0

= 1/2kin = 1/256 = 0.004. In fact, continuously adding zeroes to the baseline input

in pzero = 8 increments will not improve the ψ values of the original 14 clusters, but will

5 Pitfalls 39

Fig. 5.1 Clusters utilization comparison of zero-padded (pzero = 8), uniform,
and baseline real (K = 112) inputs.

only create new clusters with utilization equal to ψc
′
0

= 0.004. This is true for any value

of pzero. That is, any and all new clusters created in K
′

= pzero +K(0) will have a cluster

utilization of ψc
′
0

= 0.004, and the original clusters from the baseline input will retain their

old ψ values.

Since zero-padding can only control accuracy via lin, and since the maximum value of

lin is predetermined by by the kin = [5, 12] limit, maximizing accuracy by incrementing

pzero is expected to hit a ceiling. Since the generated inputs using zero-padding do not

show any clusters utilization improvements, configurations with the same lin (and therefore

kin), which are produced by continued increment of pzero, are bound to have exactly the

same accuracy. Notice in Table 5.1 that configurations produced by pzero = 0 and pzero = 8

both use kin = 8, and have the same accuracy (15.07%). This means that adding 8 bits of

zero-padding to the baseline input in order to arrive at a network configuration that uses

the same kin but more clusters – specifically, one cluster more than the baseline – results

in an increase of memory requirement, from 11.9 to 13.8 Mbits, with no improvement in

the original clusters utilization, ψ, and therefore results to no improvement in accuracy

whatsoever. Continuously incrementing pzero, therefore, after hitting the desired value

of kin and lin is moot. To verify this hypothesis, we can keep incrementing pzero and

simulating the performance of configurations that use the same kin. Since the goal is to

maximize accuracy, the simulations can use kin = 12, the maximum value for kin that

5 Pitfalls 40

produces maximum lin. The results are shown in Figure 5.2. As pzero is increased, memory

requirement increases to accommodate the added bits. However, since new input sets failed

to mimic the high ψ values of the uniform input, and lin is constant – the two parameters

that control accuracy – accuracy is stuck at 88.2%.

Fig. 5.2 Accuracy and total memory requirement of SD-SCN designs pro-
cessing zero-padded input clustered into sub-messages of width kin = 12.

5.1.2 Random bit-padding

In order to address the lack of control in producing an input set that mimics the high ψ

values of a uniform input in the zero-padding approach, an alternative would be to use ran-

domly generated bits for the MSB padding to the baseline class-tagged flow ID bits. Using

the same configurations presented in the previous subsection, Table 5.2 shows the accuracy,

memory requirement, and classification speed of SD-SCN when the random bit padding

parameter, prand, is incremented, in place of pzero. Notice that the accuracy numbers in Ta-

ble 5.1 barely changed from those in the zero-padding approach. In fact, the very minimal

improvement in accuracy starts to appear at higher values of prand. Specifically, only the

last two configurations, prand = 8 and prand = 10, have an accuracy improvement of 0.10%

and 0.01%, respectively. In theory, random bit-padding introduces ones and zeroes into the

5 Pitfalls 41

Table 5.2 Performance and cost of SD-SCN designs processing random-bit-
padded input.

new K total input bits input accuracy total classification

(K
′
) padding per cluster clusters (1− error rate) memory delay (δ)

(prand) (kin) (cin) % Mbits ns

112 0 8 13 15.07 11.9 6.60

113 1 7 15 7.79 4.4 5.85

116 4 12 9 88.19 1,226.8 8.20

118 6 11 10 67.87 388.0 8.97

120 8 8 14 15.17 13.8 6.60

122 10 6 19 6.28 2.0 6.57

input, which helps activate new neurons and improve cluster utilization, ψ. However, in

order to maximize its effect, i.e., change the input distribution of the original 80k 112-bit

input set, prand must be set to a significantly high value. Based on the results of simulation

presented in Table 5.1, introducing prand = 10 bits to an input set made up of 80k 112−bit

correlated messages has little effect in improving accuracy, or the number of ambiguities

during the first iteration, β, which is why classification delay also did not improve. Of

course, total memory figures are similar for both zero-padding and random-bit-padding

approaches since the same set of network configurations are used in both simulations.

Random bit-padding can be viewed as introducing redundant clusters into the network.

That is, new data is deliberately introduced into the network – which forces the creation of

new clusters – and associated with each original input message in order to help diversify and

increase the number of links associated with each learned clique. This is true for the zero-

padding approach as well, except the new clusters that are created are empty, which explains

why increasing pzero further while keeping kin constant only consumes more memory as

more clusters are crated, but does not improve accuracy since there’s no improvement in

clusters utilization (Figure 5.1). Since random-bit padding creates non-empty clusters and

introduces new links and neurons during learning, an improvement in accuracy is expected

as prand is increased continuously at the expense of more memory.

Figure 5.3 shows the accuracy and memory requirement of SD-SCN configurations that

use kin = 12 and produced by continuously increasing prand. Note that unlike Figure 5.3,

accuracy does improve as the amount of padding increases. This is because the random

bits that are padded into the input increase and/or change the number of activated neurons

5 Pitfalls 42

Fig. 5.3 Accuracy and total memory requirement of SD-SCN designs pro-
cessing random-bit-padded input clustered into sub-messages of width kin =
12.

for each learned message during learning. It is also worth noting that adjacent SD-SCN

configurations using the same kin, K
′
(kin)m−1 and K

′
(kin)m, are (prandm−1)

2 apart. That

is, the amount of random bit-padding needed to find the nearest configuration with the

same amount of input bits per cluster, kin, is equal to the square of the current prand.

As such, the obvious cost of random bit-padding is increased memory consumption. The

main problem however, is that the improvement in accuracy is too low compared to the

penalty in memory. In fact, the average improvement in accuracy for configurations shown

in Figure 5.3 is only 1% per 371 Mbits of memory. This accuracy improvement is too low,

especially when compared against the optimized solution presented in Chapters 2 and 3

where a virtually perfect accuracy is achieved using only 44 Mbits of memory.

Aside from the increased memory requirement and poor accuracy improvement, another

disadvantage of using random-bit padding is the added system complexity and cost associ-

ated with the implementation of an algorithm that generates and remembers the random

bits assigned for each input message. Assigning the same randomly generated bits to all

the input messages has the same affect as adding zeroes; that is, the correlation between

messages remain and the added bits do not help distinguish the messages apart. In order

5 Pitfalls 43

to produce a new input set with differentiable entries, an efficient algorithm for generating

random bits and associating them to the original input must be developed. In order to

retrieve the output, the same set random bits must be recalled during search. Assign-

ing the wrong random bits to search input during retrieval increases the risk of an error,

which pulls down accuracy. Since the goal of this work is to develop an IPC that does

not introduce a bottleneck in packet routing, using an approach that introduces additional

coding/decoding functions with associated delay is counter-productive.

5.1.3 Limitation of input-padding

The biggest disadvantage of padding the input in order to widen the design space is that

it ignores the basic principle of input selection for maximum accuracy. As discussed in the

previous chapters, even machine learning-based approaches have to hand-pick the features

that will help develop a model that maximizes the separability of the classes in order to

maximize accuracy [10][12]. Taking the full 112 bits as the input requires a large SD-SCN

network, which translates to higher memory requirement. Moreover, doing so also accepts

the existing correlation between input messages, which causes lower classification accuracy

and speed. By not taking advantage of the fact that not all bits in the input are going to

be useful for classification, resulting SD-SCN designs in an input-padding approach (zero

or random bits) are almost always bigger, slower, and more error-prone, especially when

dealing with real (correlated) data.

5.2 Input Component Permutation

Fig. 5.4 Sample permutation of baseline actual input (K = 112) over cin =
13 input clusters.

The main goal of the design space exploration performed in this work is to find an

5 Pitfalls 44

SD-SCN configuration that performs IPC with maximum accuracy at minimum cost. As

mentioned in the previous chapters, the sizes of the RAM blocks in the LSM, together with

their corresponding access delays, put a constraint on the size of the SD-SCN that can be

used for real-time IPC. The ideal configuration consumes a small enough total memory to

be implementable on an FPGA, thus the k-limit (Section 3.1). Additionally, accuracy, as

discussed previously, is maximized when the input distribution is normal, i.e., the messages

have little to no correlation, and the network uses a high number of neurons per cluster,

l. Controlling the value of l is straight forward; given an input set of K-bit messages,

targeting maximum accuracy can begin simply with setting a maximum possible value for

l by setting the smallest possible value for c (Equation 2.6). Changing the distribution

of the input, on the other hand, is more challenging. Chapter 3 proposes a method of

selecting only the bits in the input with high activity factor, α, in order to maximize

clusters utilization, ψ for i = 0, 1, ..., cin − 1. The idea is that if each bit in the input

switches a lot, a new neuron will be activated each time a new message is learned. This

forces the input to mimic a uniformly distributed input set, which activates all available

neurons at near-equal frequencies throughout learning instead of only a select few, and

causes high ψ values in all the input clusters. Correlated input activates a fewer number

of unique neurons during learning, which makes distinguishing between learned messages

more difficult during retrieval. Before the XOR-assisted bit-activity thresholding approach

presented in Chapter 3 was developed, this work attempted to control cluster utilization, ψ,

and therefore input distribution, through the permutation of the order of the components

of the input message.

The input to SD-SCN for IPC is the class-tagged flow ID. As discussed in the previous

chapters, this input is 112 bits long and is made up of six components: source (32b) and

destination (32b) IP addresses, source (16b) and destination (16b) ports, protocol (8b), and

the class (8b). In the real network trace [33] used as the input set for the simulations

in this work, some of the components change values more than others. For instance,

since the input set is made up of outgoing flows, there are fewer source IP addresses than

there are destination; a single application, e.g. Mail, Web, etc., can take on multiple IP

addresses. Similarly, a single application can generally use multiple ports, and so there even

much fewer source IP addresses compared to source and destination port numbers. These

characteristics of the input set are described in Chapter 3 and illustrated by the activity

factors presented in Figure 3.3. The input component permutation approach hypothesizes

5 Pitfalls 45

that, given a network configuration, there is a specific order of the input components that

results to a new input set that mimics a uniform input’s high ψ values and maximizes

accuracy. Reordering the input components redistributes the component bits among the

available clusters, and the order that maximizes clusters utilization produces the highest

accuracy.

Since the class bits are assigned to the dedicated output cluster, the different ways of

rearranging the order of the n = p = 5 remaining input components is nPk = n!
(n−k)! = 120.

The resulting clusters utilization, ψi for i = 0, 1, ..., cin − 1, for each way of ordering the

input components can be calculated using Equation 3.1. Since the baseline input of width

K = 112 bits can only be supported by a network using cin = 13 and kin = 8 (Section 3.4),

the best ordering of the input components therefore is the one that produces clusters

utilization, ψ values, that are closest to the maximum possible value, similar to those of

a uniform input (Figure 3.2), over the cin = 13 input clusters. The goal of this approach,

then, is to find out if it’s possible to attain the high clusters utilization values of a uniform

input, by moving the components of real (correlated) input around in order to maximize

accuracy.

Figure 5.4 shows four possible arrangements of the baseline input components across

the the cin = 13 input clusters. The input components are shown as gradient blocks where

the white areas represent poor bit activity levels, and the red areas represent the opposite.

For each permutation (row), the clusters that coincide with the red areas have ψ values

close to 1.0 (high activity), whereas the ones with white areas have ψ close to 0.0 (low

activity). The hypothesis of this approach is that there is a single permutation of the input

components that will maximize clusters utilization. However, as illustrated by the sample

permutations in Figure 5.4, maximizing clusters utilization in this manner is theoretically

impossible. Moving the input components with wider red areas to fill low-activity clusters

only does the opposite to the high-activity clusters. That is, the void left by moving all

high-activity input components into new cluster indexes can only filled by the remaining

low-activity ones, which means improving the ψ values of some clusters reduces those of the

rest. Since no bits and/or components are added or removed, the activity levels, and hence

the clusters utilization, remain constant, which means that this approach is not capable of

producing a new input set that mimics the high ψ values of a uniformly distributed input

(Figure 4.2), which has been proven to produce high classification accuracy [28][29].

5 Pitfalls 46

5.3 Flow ID Component Selection

In order to address the fact that ψ values are not improved by simply rearranging the input

components around the available input clusters, a work-around solution can be to include

only the high-activity input components into the final input set. Based on Figure 5.4,

this approach entails including only the input components with wider red areas, thereby

dropping some less active components such as the IP source and reducing the final input

width, K. This solution is the basis of the bit activity thresholding proposed in Chapter 3.4.

In fact, this is a coarse-grained version of the α-based bit selection approach presented in

this work; only the input components with the most highly switching bits, i.e., components

with wider red areas in Figure 5.4, are included into the input.

Examining Figure 5.4, however, shows that the only input component that is signif-

icantly less “active” than the rest is the IP source. This is also confirmed by α levels

presented in Figure 3.3 The rest of the components have varying and/or almost equal lev-

els of activity, which doesn’t really put a clear criteria as to what should and should not

be included into the final input. Moreover, generating an input set based on a coarse-grain

measure of activity level doesn’t optimize the selection process. That is, low-flipping bits,

which does nothing to improve ψ values and therefore accuracy, are going to be carried

over to the final input by selecting the whole flow ID component e.g., the low-flipping bits

in the IP source or port source. In order to truly maximize ψ values, a finer granularity

of input selection must be put in place. For this reason, this work has developed the bit

activity thresholding approach presented in Chapters 3 and 4, which when coupled with the

XOR-optimization solution that increases output cluster utilization by activating dummy

neurons, achieves maximum accuracy at minimum cost.

47

Chapter 6

Related Literature

There are several ML-based approaches to IPC in literature. The state-of-the-art IPC so-

lutions presented in [13], [14], [15] and [16] build upon existing ML algorithms in order to

achieve high classification accuracy (> 90%). The work in [13] introduced a partially su-

pervised K-means clustering-based solution to IPC, coupled with a data preprocessing that

involves packet attribute grouping and selection. This work, like most ML-based solutions,

has established that using packet sizes as attributes produces the highest classification ac-

curacy. During testing, the solution uses multiple parallel models, each with its own set of

clusters that represent a predesignated set of n probabilities associating an input flow to

n classes based on certain packet attributes. The selection of packet attributes vary per

model. One model, and hence its corresponding clusters, may be assigned to process aver-

age and standard deviation of packet sizes, while another may process flow size and packet

inter-arrival times. The resulting cluster from each model then becomes the basis for the

selection of the specific ML algorithm to use for classification. Finally, the outputs from

all the models (and ML algorithms) are then statistically consolidated to produce a single

classification result. While this work is able to achieve a relatively high accuracy (low 90s

%), it uses various complex ML models and clustering strategies to perform classification

on just a single flow, which is not very efficient. The effect of clustering and increasing the

number of models to classification time was not reported. Similarly, the work also failed to

present the amount of memory necessary to build deploy the design to hardware.

The work in [14] used an improved SVM, where feature weights are used during learn-

ing in order to differentiate attributes importance and maximize classification accuracy.

2016/08/05

6 Related Literature 48

In contrast, the work in [14] simply drops attributes that have little effect to accuracy.

Fundamentally, SVM performs classification by determining a hyper-plane with the widest

margins between classes of the training data. The feature weights, which scales the actual

attributes used as features in training and testing the SVM model, are generated using

kernel polarization. The kernel polarization function is maximized in order to maximize

the separability of training flows. The main problem with this approach, however, lies in

the fact that it uses an SVM variant that only performs binary classification. This means

that in order to decide, for instance, which of the 10 applications a flow belongs to, a total

of 10×(10−1)
2

= 45 models and classifications have to be made. Each classification also its

own set of calculated feature weights. This makes the entire classification process huge and

inefficient. Similar to the work in [13], this work also only measured accuracy, and not the

costs associated with creating and/or testing the model. The reported accuracy for this

approach is ∼ 97%.

The work in [15] also uses weights to assign features with variable importance in per-

forming classification, but replaces SVM with Random Forest algorithm. Random Forest

classification involves the use of multiple unpruned decision trees, where each three is gen-

erated using randomly selected samples from the training data set. The branches of one

tree ultimately ends to a leaf which represents one class. The final classification output of

the model is the highly occurring class (mode) of the combined outputs from the individual

trees. Changing the weights assigned to packet attributes changes the tree structure. This

solution reported an accuracy of ∼ 97 and a training time of ∼ 1025 seconds. Like the rest

of the recent ML-based solutions however, the costs associated with testing and real-time

hardware implementation, e.g., memory requirement, actual classification delay (testing),

are not measured.

The work in [11] [17] targets an FPGA implementation of an SVM-based IPC that takes

multiple packet sizes per flow as features (input). Since no information from the flow ID is

included in the features, this solution has to dedicate a hardware called a flow builder, which

tracks and stores flow IDs, accumulates five packet sizes per flow into an off-chip memory,

records the sizes of the last three packets of a flow, and triggers the SVM classifier. In fact,

the need for a flow builder applies to most, if not all, ML-based solutions, including the

works in [13], [14], [15] and [16]. ML-based solutions are able to achieve high accuracy by

using packet sizes solely, or in combination with other packet attributes, as features, which

warrants the use of a flow builder. This dependence on flow packet sizes increases system

6 Related Literature 49

complexity and cost. This SVM-FPGA solution is able to achieve a very high accuracy

(∼ 100%) by using 8000 support vectors. This high number of support vectors imposes a

penalty in classification speed; if the data rate exceeds ≥ 320 Kpackets/second, accuracy

drops from 100% to 0%.

Unlike ML solutions, designing and training SD-SCN for IPC does not produce a classi-

fier that “guesses” the class of a new input data. Instead, the process produces a memory

system that decodes a match to a query that comes in the form of an unlabelled flow ID,

with the assumption that its complete (labelled) version has been learned in the past. When

an SD-SCN is unable to classify a partial input, it means that either: a) multiple possible

matches have been decoded, or b) no match has been decoded at all. The occurrence of

a) is minimized through the techniques detailed in Chapter 3. Specifically, accuracy can

be maximized through bit activity thresholding, which maximizes the differentiability of

stored flows by maximizing input clusters utilization, and XOR-optimization, which acti-

vates dummy neurons in the output cluster, which maximizes flow differentiability further

by maximizing the output cluster utilization. Since SD-SCN-based IPC can only classify

flows that have been learned in the past, it is important, therefore, to design and train a

new SD-SCN IPC if the original training data, i.e., input set used to design the existing

SD-SCN IPC, is believed to be already obsolete. An input set can be considered obso-

lete if it no longer represents the unique flows running through the network. This can be

true during instances where an existing class of application has started using new ranges

of port numbers, an existing class is split into (new) separate classes, or new computers

(with new IP addresses) are added into the network. In short, a new SD-SCN design must

be generated if there are changes to the network that can affect flow IDs. This is true

for ML-based solutions as well;since changes in the flow ID affects packet attributes new

models are generated when changes are introduced into the network. Using an updated

training set, a new SD-SCN IPC design can be generated using the approach presented in

this work in order to maintain system reliability and accuracy. The main advantage of the

SD-SCN-based IPC over the previously discussed ML-based solutions is that the design

and training processes are more straightforward; the solution presented in this work is able

to achieve high accuracy without using a flow builder, which minimizes system cost. The

SD-SCN implementation of IPC is able to achieve 99.3% accuracy using only 44 Mbits of

memory. Since SD-SCN is highly parallel, this solution is also able to classify a flow within

4.1 nanoseconds, which is almost 800× faster than the SVM-FPGA solution.

50

Chapter 7

Conclusion

This work has presented a new method of IPC using associative memory (AM) based on

sparse-clustered network (SCN) with selective decoding (SD). This classification approach

filters out low-switching bits from a network trace, and maximizes output cluster utilization

by activating dummy neurons in order maximize accuracy and minimize total memory

requirement, and classification delay. By taking flow ID bits as input, the solution removes

the need for a flow builder. It classifies a flow within 4.1 nanoseconds, and achieves 99.3%

accuracy while using only 44.0 Mbits of memory. This solution is able to achieve about

the same accuracy as the FPGA-implemented state-of-the-art, but performs classification

almost 800× faster, thereby providing a novel IPC solution suitable for high-speed networks.

2016/08/05

51

References

[1] W. Zhao, D. Olshefski, and H. Schulzrinne, “Internet quality of service: an overview,”
Columbia University Computer Science Technical Reports, 2000.

[2] C. Hoene, S. Wiethölter, and A. Wolisz, Quality of Service in the Emerging Net-
working Panorama: Fifth International Workshop on Quality of Future Internet Ser-
vices, QofIS 2004 and First Workshop on Quality of Service Routing WQoSR 2004
and Fourth International Workshop on Internet Charging and QoS Technology, ICQT
2004, Barcelona, Catalonia, Spain, September 29 - October 1, 2004. Proceedings,
ch. Predicting the Perceptual Service Quality Using a Trace of VoIP Packets, pp. 21–
30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

[3] Cisco, “Quality of service for voice over ip,” Cisco Technology White Paper.

[4] P. A. Networks, “What is a service level agreement?,” Palo Alto Networks Learning
Center.

[5] J. Ding, J. Jin, P. Bouvry, Y. Hu, and H. Guan, “Behavior-based proactive detection
of unknown malicious codes,” International Conference on International Monitoring
and Protection (ICIMP ’09), pp. 72–77, May 2009.

[6] T. Micro, “Worst viruses in history: A look back at malware through the ages,” Trend
Micro Industry News, July 2014.

[7] R. Simon, “’ransomware’ a growing threat to small businesses,” The Wall Street Jour-
nal, April 2015.

[8] C. Rottondi and G. Verticale, “Using packet interarrival times for internet traffic classi-
fication,” in Communications (LATINCOM), 2011 IEEE Latin-American Conference
on, pp. 1–6, Oct 2011.

[9] T. V. Lakshman and D. Stiliadis, “High-speed policy-based packet forwarding using
efficient multi-dimensional range matching,” in Proceedings of the ACM SIGCOMM
’98 Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication, SIGCOMM ’98, (New York, NY, USA), pp. 203–214, ACM,
1998.

References 52

[10] T. Nguyen and G. Armitage, “A survey of techniques for internet traffic classification
using machine learning,” Communications Surveys Tutorials, IEEE, vol. 10, pp. 56–76,
Fourth 2008.

[11] T. Groleat, M. Arzel, and S. Vaton, “Hardware acceleration of svm-based traffic clas-
sification on fpga,” in Wireless Communications and Mobile Computing Conference
(IWCMC), 2012 8th International, pp. 443–449, Aug 2012.

[12] K. Singh and S. Agrawal, “Comparative analysis of five machine learning algorithms
for ip traffic classification,” in Emerging Trends in Networks and Computer Commu-
nications (ETNCC), 2011 International Conference on, pp. 33–38, April 2011.

[13] A. Kumar et al., “Incorporating multiple cluster models for network traffic classifica-
tion,” in 2015 IEEE 40th Conference on LCN, pp. 185–188, Oct 2015.

[14] S. Hao et al., “Improved SVM method for internet traffic classification based on feature
weight learning,” in 2015 International Conference on ICCAIS, pp. 102–106, Oct 2015.

[15] C. Wang, T. Xu, and X. Qin, “Network traffic classification with improved random
forest,” in 2015 11th International Conference on CIS, pp. 78–81, Dec 2015.

[16] S. Liu et al., “Improved EM method for internet traffic classification,” in 2016 8th
International Conference on KST, pp. 13–17, Feb 2015.

[17] T. Grolat, M. Arzel, and S. Vaton, “Stretching the edges of svm traffic classification
with fpga acceleration,” IEEE Transactions on Network and Service Management,
vol. 11, pp. 278–291, Sept 2014.

[18] D. Rossi and S. Valenti, “Fine-grained traffic classification with netflow data,” in
Proceedings of the 6th International Wireless Communications and Mobile Computing
Conference, IWCMC ’10, (New York, NY, USA), pp. 479–483, ACM, 2010.

[19] NetFPGA, “Netfpga: a line-rate, flexible, and open platform for research, and class-
room experimentation,”

[20] IBM, “Bringing big data to the enterprise,” IBM InfoSphere Platform.

[21] S. young Yu, N. Brownlee, and A. Mahanti, “Comparative performance analysis of
high-speed transfer protocols for big data,” in Local Computer Networks (LCN), 2013
IEEE 38th Conference on, pp. 292–295, Oct 2013.

[22] H. Jarollahi, V. Gripon, N. Onizawa, and W. Gross, “Algorithm and architecture for
a low-power content-addressable memory based on sparse clustered networks,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 23, pp. 642–653,
April 2015.

References 53

[23] H. Jarollahi, N. Onizawa, V. Gripon, and W. Gross, “Architecture and implementation
of an associative memory using sparse clustered networks,” in Circuits and Systems
(ISCAS), 2012 IEEE International Symposium on, pp. 2901–2904, May 2012.

[24] H. Jarollahi, N. Onizawa, and W. Gross, “Selective decoding in associative memories
based on sparse-clustered networks,” in Global Conference on Signal and Information
Processing (GlobalSIP), 2013 IEEE, pp. 1270–1273, Dec 2013.

[25] V. Gripon and C. Berrou, “Sparse neural networks with large learning diversity,”
Neural Networks, IEEE Transactions on, vol. 22, pp. 1087–1096, July 2011.

[26] M. F. Rutledge-Taylor, A. Vellino, and R. L. West, “A holographic associative memory
recommender system,” in Digital Information Management, 2008. ICDIM 2008. Third
International Conference on, pp. 87–92, Nov 2008.

[27] V. O. Baez-Monroy and S. O’Keefe, “An associative memory for association rule
mining,” in Neural Networks, 2007. IJCNN 2007. International Joint Conference on,
pp. 2227–2232, Aug 2007.

[28] B. Boguslawski, V. Gripon, F. Seguin, and F. Heitzmann, “Huffman coding for storing
non-uniformly distributed messages in networks of neural cliques,” in AAAI Confer-
ence on Artificial Intelligence, 2014.

[29] R. Danilo, P. Coussy, L. Conde-Canencia, V. Gripon, and W. J. Gross, “Restricted
clustered neural network for storing real data,” in Proceedings of the 25th Edition on
Great Lakes Symposium on VLSI, GLSVLSI ’15, (New York, NY, USA), pp. 205–210,
ACM, 2015.

[30] H. Jarollahi, N. Onizawa, V. Gripon, and W. J. Gross, “Algorithm and architecture
of fully-parallel associative memories based on sparse clustered networks,” J. Signal
Process. Syst., vol. 76, pp. 235–247, Sept. 2014.

[31] N. Onizawa and W. Gross, “Low-power area-efficient large-scale ip lookup engine based
on binary-weighted clustered networks,” in Design Automation Conference (DAC),
2013 50th ACM/EDAC/IEEE, pp. 1–6, May 2013.

[32] C. R. Meiners, A. X. Liu, and E. Torng, Hardware based packet classification for high
speed internet routers. New York : Springer, 2010.

[33] F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, and k. c. claffy, “Gt: Picking
up the truth from the ground for internet traffic,” SIGCOMM Comput. Commun. Rev.,
vol. 39, pp. 12–18, Oct. 2009.

References 54

[34] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “Cacti-p: Architecture-
level modeling for sram-based structures with advanced leakage reduction techniques,”
in Proceedings of the International Conference on Computer-Aided Design, ICCAD ’11,
pp. 694–701, IEEE Press, 2011.

[35] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White, “Testing that dis-
tributions are close,” in Foundations of Computer Science, 2000. Proceedings. 41st
Annual Symposium on, pp. 259–269, 2000.

[36] A. Glazer, M. Lindenbaum, and S. Markovitch, “Learning high-density regions for a
generalized kolmogorov-smirnov test in high-dimensional data,” in Advances in Neural
Information Processing Systems 25 (P. Bartlett, F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, eds.), pp. 737–745, 2012.

