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ABSTRACT 

This thesi8 ls eoncerned with perfect graphs. Our .... . , 

main œsults :j}n be summarized as follows. .. . 
,: '" .... 

- We cparacterize (by minimal forbidden induced sub-

g'faphs) two families of graphs $uch that for every graph 
, .' " 

G in the fi~t (or the second) family, the Welsh-Powell 
., . . 

(o'r the Matula) cOlouring heuristic deiivers a perfect 

order on G. This result has been obtained jointly with 

v. Chvei'tal. 
• 

- We prove that a graph G 1s brittle (in the, s~O< 

" Chvatal) if G does not contain an indueed subqrapn '.1so-

morphic to the graph Ok ~ith k.,?. S, or the' gr~ph p~, or 
, 

tl,:1e gra'ph with v.ertiees a,b,c,d,e;f l\nd edges ab,bc,cd,da, 

de, ef, fe. This result has been obtatned jointIy with N. 

" , j 
KHouzam. 

1, 

" 

- r 

~ - We prove that in ~ Meyn~l graph, each vettex belongs 

to .a stable set that meets a11 maximal eliquQ.s. We also 

des1gn a pOlynomial-t.ime' alqorithm which, given a Meyniel 
.., 

graph G and a vertex x of G, finds a stable set whieh con- ' 
"". 

tains x and meets aIl maximal cl iques of G. 

- We f1nd two new classes of perfee~ graphs z 1 the class 
, 

of alternately o~iel1'table qraphs and the class.,çf alter-

nately colourable graphs. They conta in severa,\ we~l-known' 

/ 
, 

classes of perfect graphs. 
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- We prove, jointly wi th V. 'Chvatal, the fOLlowinq 

theorelQ. If the vertices of a qraph Gare coloured by two 

colours so that, each P 4 has an even number of vertices of 

each col'Our, ,then G is perfect if and only if each of the 

,two 8ubqraphs of G induced by aIl the verUces of the same 

col~ur 18 perfecto 

- We ptove that, as con3ectured by Chv;tal, a graph ia ~ , 
\ 

perfect whenever its vertices can be coloured by two colours 

• so that each P 4 has an odd nllll!ber of vertices' of each col our . 

We ahall al'so present a qeneralization of this theorem. 

• 
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~ these trai ~e des graphes parfai ts . 

pr::incrl.paux .peu~être résumés comme suit. 

Nos résul tata 

- Nou~caractérls~ns (par sousgraphes induits interdits) 

deux familf'es de graphes telles" que, pour chaque graphe G 

- - ~ dans l'a remiere (ou deuxieme) f~mille, la CC?l.oratiœ 

heuristi e de Welsh-Powell (ou de Matula) donne' un ordre 

parfa t sur G. Ce résultat est obtenu conjointement avec 
/ v. Chvatal. 

-"Nous pro~ons qu'pn graphe G est friable, dan~ le . 
/ 

~ens' de Chvatal, si G ne contien.t pas un sous grapne 

..irldui t isomorphique au graphe Ck , avec k ~ S, ou au graphe 

PS' ou au graphe avec les sommets a,b,e,d,e,f, et les 

arêtes ab,bc,cd,da,~e,ef,fc. 

- Nous prouvons que. danll un graphe de Meynie l, c,naque 

SOmmet appartient à un ensemble stable qui t"encon tre toutes' 
, 

les cliques maximales. Nous decrivons aussi un algorithme , 
, " polynomial leque~, etant donne un gr~Phe G de Meynie~et 

un sommet x de G, tr~uve- un ensemble stable qui contient 

x, et rencontre t~utes les~iques maximales. 
~ . 

- Nous trouvons deux nouv<ri les classes de graphes 

parflli t.!5, qui contien1\,ent quelques autres class-es (de 

"'lraphes farfait., bien conflue.; . 

,- N'ous prouvons, 'conjointement avec V. Chv~tal, le 

vi '\ 
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theorème suivant. Si les sommèts d' \;l:%(\~~aphe 'G peuvent 

~ , v -- ~.f '.. , ,~ 

.1 
( j 

être colores, en deux couleurs, d'uae manière telle' clue cpaque 

~ 4 'a un nombre pair de sommets de chaque couleur r alors 
... ~ .... , 

seulement si chacun des deux sousqraphes, 
• • • • 0 

! 
G est parfa~t si et , 
de Gr induits par tous les sommets ~e chaque couleur est 

parfait. 
l ~ 

- Nous resolvons un conjecture de Chvâtal: un graphe 

~ " ~ est parfai t 'si ses sbmmets peuvent ette colores r par deux 

, . -couleurs, d'une maniere ~el1e que chaque P 4 a un nombre 

impair de sommets de chaque douleur. Nous présEinterons 
, 1, ~ , 

aussi une qenera~isat1on de ce theoreme. 
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L INTRODUCTIQN , , 

~he subject of this thesis belongs to the theory of 

graphs . We shall use t;hetstandard graph-theoretic terminology .. 
throughout the text; for the reader' s cohvenience, aIl the' 

tet=ms (and their defini tions) are l isted alphabetically in 
. 

the Appendix. 

Hajnal and Suranyi (1958) proved thàt if G"'is the com-

plement of a triangulate~ gra.ph (a graph which contains 
.. 

no chordless cycle with more than three vertices), then' the 

stab~llty number of G equals i ts cl igue-cover number (the 

smallest number of cl iques that coyer a11 verticesi"'Of G). 

Berge (960) proved that if G is a triangulated graph,· then 
1 

its chromatic number equals its clique number. These two 

'" resul ts inspired Berge to 0 the notion of a perfect graph: 
. 

thls is a graph in which each induced subqraph has i ta 

chromatic number egua.l to i ta" cli<JUe number. 
, . 

Berge (1962) made two conjectures. First, the Strong . 

Per~ect Graph Conjecture '~tates that a graph ls perfect if 

and only if it does not contain an indu~ed subgraph iaomorphic 
~ 

to the od1d chordless cycle wi th at least five vertices or to 
, 

the complement of such a cycle. Second, the Weak Perf.ect 

Graph Conjecture states that a graph i8 perfect if and only 

if its complement is. Lovasz (1972a) proved the Weak Perfect 

( 

, 
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Graph Conjecture. The Strong Perfect'Graph Conjecture re-

mains unsolved. Moreover, nobody has been able to design a 

polynomial-time algorithm to recognize perfect graphs. 

Since Berge,publicized his two conjectures, many classes 

of perfect graphs, along wi th pOlynomial-time algori thms 

for their recognitions, have been identified. It was pointed 

out that every comp~rability graph is perfecto Konig (1916) 

proved that in a biparti te graph, the number of edges in a 

largest matching equals the number of vertia:es in a smal!-

est coyer. This theorem implies that 1 ine-graphs of bi-

partite graphs are perfecto Triant}ulated graphs, compar­
or 

ability graphs and line-qraphs of bipartite graphs are 

sometimes referred to as "classic~l" perfect graphs. 

Chvatal (1981) introd~ed the notion of a "perfect 

order". If a graph G admi ts a perfect order, then a certa.in 

colouring heuristic shâll always deliver an optimal colouring 

of G; the graph G is called a "perfectly orderable" graph • . 
AlI ~riangulated graphs, aIl co~lements of triangulated 

graphs, and aIl comparabil"i ty graphs are perfectly order-
, 

able, Chvatal (198l) showed that every perfectly orderable 

graph G is "'strongly perfect," in the sense of Berge and 

Duchet :.- each indu'ced subgraph H of G con tains a stable 
.(' 

set whicn meets , al! maximal cliques of H. (Throughout this 

text, "maximal ft, and "minimal", "are always meant with re-

spect to set-inclusion, not size.} 

• 
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The Strong Perfect Graph Conjecture can be restated 

3 

by saying that the only minimal, imperfect graphs are the l 

odd (chordless) cycles, except for triangles" and the 

complements of ~hese cycles. 
, 

A theorem of Lovasz (1972b) 

states th~~ a m~nimal imperfect graph G has precisely 

~(G) .w(G) + 1 vertices (w(G) is the clique number of G, 

and ex CG) = w (G)). In section 2, we shall reproduce a proof 

of this result. 

In section 3, we reproduce proofs of the following 
, 

two results. First, Chvatal (1984) proved that no minimal 

graph G can contain a star-cutset (this ls a cutset S con-

taining a vertex which is adjacent to aIl remaining ver-

tices of S). Second, Henry Meyniel (984) proved that in 

every minimal imperfect graph, every two nonadjacant ver-

tices must be endpoints of a chordless path wi.th an odd 

number of edges. We shall also discuss 'a few problems 

related to these results. 1 
A conjecture of Chvatal states 

" 

. 
that no,minimal imperfect graph can contain a "skew partition". 

We shall make a few observations on i t. Meyni el defined 

a graph G to be a "quasi-parity" graph if each induced 

subqraph H of G is a clique, or contains two vertices which 

are not endpoints of any chordless pa th wi th an odd number 

of edges-. We shall show that the three well-known perfectton- 0 

preserving operations clique identification, substitution, 

and amalg~ preserve also the property of ft being a 

o 
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quasi-parity graph". 

In sect10n 4, we present prev10usly known results on 

triangulated graphs, comparability graphs, line-graphs of 

bipartite graphs, P4-free graphs ~nd P4-sparse graphs, 

P4-sparse graphsoare graphs in which no two P4's can share 
, 

three common vertices. We shall also obtain a new resuit 

on P4-sparse graphs. 
1 

In section 5, we present Chvatal's results on per-

fectly orderable graphs. 

The results in section 6 were obtained jointly with )0 
V. Chv~tai. We cha~acterize (by minimal forbidden indQced 

subgraphs) two families of graphs such that, for every 

graph G ln the first (or the second) family, the Welsh-

Powell (or the Matula) colouring heuristic delivers a 

perfect ,order on G. 

In sect10n 7, we study "brittle" graphs. A graph G ' 

1s brittle 1f each 1nduced subgraph H of G contains a 

vertex which 1s neitherin endpoint nor a midpoint of Any 

P4 in H. It is easy to see that every brittle grapq is 

perfectIy orderable. We shall prove, jointly with N. 
// 

.. 

Khouzam, that a graph is brittle if it does not contain an ~ 

induced subgraph isomorphic to the chordless cycle with • 
at least five vertices, or the compl~ent of ~he chord­

less path w1th five vertices, or the graph w~th verticès 

a,b,c,d,e,f, and edges ab,bc,cd,da,de,ef,fc. 

, 
1 
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In. section 8, we study Meyniel graphs. A graph G i8 

Meyniel of each of its odd aycles (with at least five 

vertices) contains two chords; G is called a Meyniel ·qraph 
~ . 

~ because it was Meyniel _(1976) who established perfection 
r-

of G. Ravindra (1982) proved that Meyniel graphs are 
1 

strongly perfecto We shall showithat. each Meyn~el graph G 

has a stronger property: each vertex of G belongs to a 

stable set that meéts aIl maximal cliques of G. Furthermore, 

if a graph is not Meyniel, then it contains an ~duced 
subgraph which fails to have this propert~. 

In section ~ we introduce "alternately orientable" 

graphs and "alternately colourable" graphs. ·A qraph ls 
, 

al .. ternately orientable if it admits an or~entation :of its-

edqes such that no chordless cycle with at least four ~er­

tices contains an !ndUced subqraph with vert1ces a,b, c, 

and direeted edqes ab,bc. A qraph iS'àlternately colourable 
/ 

if it admits a colouration of its edges by two colcu~. 

in such a way that no chordless cycle C with.at least-four 

vertices contains a chordless path with three vertices, 

whoae two edges are of the sameocolour. We ahall establiah 

perfection for alternately o~ientable graphs.and for 

alternately C?olourable graphs. In addition, we shal,l 

praye that a graph G ia alternately orientable if each . 

odd cycle (with at least five vertices) contains two non-

crossinq chords, pr if G·is a comparability 9rap~, or a 

• 
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P4-sparse graph, or a union of tvo threshold graphs, We 

shall also prove that ~ graph G ls alternately colourable 

if G is triangulated or a line-graph of a bipâ~tite graph. 

Finally, we shall present a polynomial-time alqorithm to 

recoqnize alte~nately colourable graphs and alternately 

orientable graphs. 
l " 

In section 10, ve prove, jointly vith Chvatal, the 

followinq theorem. If the vertices of a qraph Gare coloured 

by two COIour~ in such a vay that each P4 has an even 

number of vert~ces of each colour, then G is perfect if 
, 

and only if each of the subgraphs of G induced by aIl the 

vertices of the same colour ls perfecto OUr Ubeorem implies , 

that a graph is perfect vhenever,'tts v,rtices. can be 

coloured by tvo'oolours such that each P4 has tvo vertices 

of each")fèolour. "-

In section Il, ve prove ,t~e follovlng theorem. Let 

the vertices of a graph G be colour~d by tvo colours in 

such a vay that (i) each P4 is monochromatic (the vertices -
li 

are of the same colour), or (ii) each P4 has an odd number 
"l • 

of verticesoof each colour, and among the three vertices 

of the same col our of this P4' at least one vertex does no~ 

belong to ~ monochromatic P4• Then G is perféct if and 

only if each of the two subgraphs of G induced by arl~he 

vert4ces of the same colour ia p'erfect. Our theorem implies, 
1 -

as conjectured by Chvatal, that a qraph 18 perfect whenever 

, 

.1 
" 
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its vertices can be coloured by two colours such that each 

P4 has an odd number of verti~s of'each colour . 

• 
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2. PERP'EC'l' GRAPHS 

The colouring (of,verticea) of a graph ia an aa81gnment 
f 

of ·colours" to its vert1cea 8uch that,every two adjacent 

v~rtices always have differ&nt colours. The chramatic number 

of a graph 18 the amallest number of col ours that suffiee to 

cOlour it. A graph is ealled a clique if 1ts vertiees are J 
pairwise adja~ent. 'l'he clique nUmber of a graph 1a the eize 

~ of the largeat c11que in th!s graphe We denote the chrcmatlc 

) 

numbe,J;: and the clique nUlllber of ~ graph G by X CG) and w.(G) , 

resp,e.cti vely. 

'l'he cliromatic number pf a graph i. at least 1ta cli~e 

number, since every ~o adjacent vert1cea must receive differ-
" 

ent 'colours. lerge (1962)' definéd il perlect graph aa a graph 

in which every induced subgraph S has X (S) - (&J (S)·. At pfe­

sent, no~olynominal-ttme alqorithm to recognize pertect 

graphe i~ known, although aeveral ·iarge clasees of perfect 
, . 

graph., vith pOlynomial-t~~ ,recognitio~ algorithme, have'been 

found (see Golumbic (1980) and B.ig~ 'a~d Chv~~l (1984». 
J 

:~define, a ~YCl! aa, ~ sequence. of diatinct verticee 

v1,v2, ••• ,vk with the fOllow!nq properti •• : v i vi +1 is an 

edg. for i-l, •• :, k-l, and vI vk i. an edge. A chord in .a 

cycle vl ,v2, ••• vk, is an edge viv j other than Vivi+l(l~i~~-I) 

or ,v1Vk• A chordies. cycle i. 8aid t~ ~ave"l:.nqth~k~ it' 
cC?neiets .of k verticea rand k edgeip) .• : W., deJiote such a "yole 

" 

" 

\

r , .. 
. " '\< . 
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The complement G of a graph G-(V,E) 1s the qraph 

(V ,S') 'l.such that uv E: E* if and only 1f uv. E for Any 

vert1ces u, vV ,in V. We dehote the larqest number of pair­

wise nonadjacent v~rtices in G by a(G). Note that a(G) = 
w(G) ,and X(G) ~ !~~)' ~or Any ~raph G'" (v,El • 

. \ 

Consider a graph C2k+1 , k ~ 2. We have w(C2k+1 ) = 2, 

9 

and 1t is easy to see that X(C2k+i) ~ 3. Let S be the larg­

est set of pa1rwise nonadjacent vertices in C2k+1 so that 

ISI ~ a(C2k+
1
). We note that Isi < k+l, because each 

ve~tex x in S must be followed (1n cyc11c ord~r) by a vertex 
..... , 
'--

x' not in S; thus, w(C2k+1) ... k. 

Bu t, X (C2k-U ) > .1 V , 
~ ,a(ë2k+1 ) 

2k+l 
- ~ > k. 

. , 
We have lA) ('ë~k+l) := k, and : (ë2k+l) .... k+l. 

and, ë2k+1 arE! imperfect'. A "graph ls minimal impertect lf 

" ' .' ~t la not perS~ct" but each of its 1nduced subqraphs 18 

perfecto It 1s eaay to see that both C2k~1 and ë2k+1 are 

m1nimal imperfect. 

1. The Stronq Perfect Graph Conjecture (Berge (1962» 
,1 

(_" 

'The only minimal 1mperfect graphs are C2k+1 and C2k+1 ' k~2. 

, 2. ~e 'oweak perf';"t Graph Coojectu're (IIf/rqe (1962»' 

,~.a qtaph G ls perfect, then 1ts,compl~erit G 1s ~rfect. 

ft • 

--------------~---......_------.. - .. 

.. ,. 
l 
:: f 
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Figure 2.1: the graphs C, and C7 .' 
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The second conjecture was ~roved by LpV:SZ (1972a). 

Nowadays, it is called the Perfect Graph Theorem. To see 

that the Stronq Perfect Graph Conjecture implies the Perfect 
o 

Graph Theorem, cons!der a perfecto qraph G. Trivialfy, G has 

no induced C2k+1 or ë2k+1 • Thus, G also has no C2k+1 or 

ë2k+1• NOW, the Stronq ~rfect Graph Conjecture ~plies that 

G is perfecto 

We define a path as a sequence of distinct vertices 
) 

vl ,v2, .•. vk such that viv i +1 ls an edqe. A chord pf a path 

• 

vl,v2""~~ an edge viv j other than v1v1+1• By Pk we 
./ \. ' 1 

deno~ the chordl~path w~th k vertices. Thus, P4 18 the 

qrdless path wLtb four ve~tlces. ît is Qasy to ~ee that' 

the complement of a P4 1s (isomorphic 'to) a P4~ 

• 1 

• ! 

0 0 0 > 

} 

~ 
fi' 

Figure 2. i': a P4 and its complement. . 
~ 

.. 

"' 
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A graph GI = {Vl,EI ) is said to have the P4-~tructure 

of a qraph G2 a (V2,E2) if there is a bijection f: VI + V2 

such that a subset S of VI induced a P4.~n G1 if and only 

if f(S) induces a P4 in G2 . 

a b a b • 

f 

... 

c- h c 

ct gH--.),...---I----J---~d 

e - f e 

Figure 2.3~ two graphe with the same P4-
, 

structure (taken fram Chvatal (1982» 

" 
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1 
ChvatAl (1982) lntroduced the notlon of P4-struc~ure 

and not~d that, since a P4,is se1f-complementary, 

(i) every qraph has the P4-structure of lts complement. 

"In addition, he proved that 

(ii) the only qraphs havi~g the P4-structure of a 

) C2k+1 vith k~2 are C2k+l i tself and i ts 

complement. 

3. The Seml-Strong Perfect Graph Conjecture (Chv~tal (1982» .... 

If a graph G has the P4-structur~ of a perfect graph, 
-

then G ls p~rfect. Note that, by (i) the ,seml-S~ong Perfect 

Graph Conjecture implies the Perfect Graph Theor~~, and by 

" (11), th~ Seml-Strong Perfect Graph Conjecture ls lmp1ied 

, by the St~ong Perfèct ~~aPh Conj~cture. 

Chv~tal (1984) p~oved that nf.nima1 .~mperfedt graph 

cao ~ontarn a star-cutset (that is a set S of vertices of . -
ct such that G - S i8 disconnected and some vertex x ln S ls 

adjacent to ap other vertices of S) • 

~yan Hayward (1984) proved that if a graph G does not 

contain an induced subgraph isomorphic to a ch0rdless cycle 

wlth a~ least five vertlce8,- or to lt~ complement, then,~ 

or'G contains a star-cutset. 

Recently, Bruce Reed (1985) used Chv'tal"s resu1t, 
/ 

Hayward's result and Lovasz·s Perfect Graph Theorem t6 prove 

," 

1 -

" 
" 

( 
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the Se~i-Strong'Perfect Graph Conjecture. Aotua11y, he proved 

the following. (A proper endomorJ?blsm of a graph G = (V, Er 

la a mapplng f of the set V into itself such that feu) and 
. 

f (v) are adjacent when~ver u arid II;.v are, and such t-hat the 

image of/V i8 a proper sub>set of ·V.) 

The Sem1-Strong Perfect Graph Theorem (Read (1985» 

Let G and a be two graphs vith the same P4-structure. , 
Then at least one of ,the following conditions holds: 

, 

~(i) H 1~ the complement of G; 

'" (i1) H or,H contains a star-cutaet; 

(i11) 

(iv) 

H or H hàs a proper endomorphism; 

H conta1ns a prope"r induced subgraph homorPhiC 

to CS' 0 

Toqether w1th the Se~i-Strong Perfect Graph Conjecturei 

Chvatal made the fo11ow1ng two conjectures. 
J 

Conjecture A. If the vertices of a graph Gare coloured 

by two colours so that eaçh col our appears at least once, ~ 

and each P4 ?as an'~ven number of vertlces of each colour, 

then'G i8 perfect if and only if each qf ~he two subgraphs 

1nduc~d by aIl the vertices of each colour i8 perfectl 

Conjecture B. If the vertices of a graph Gare coloured 

by two colours so that each P4 contain8 an odd number of 
} 

vertices of each colour, then G ls perfecto 
1. 

'. 

., 

' . 
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In section 10, we shall present a proof. obtained, 

jointly with Chvatal, of Conjecture A. Irt section Il, we 

shall present a proof of Conjectu~e B. Since both proofs 

rely on the Perfect 'Graph Theorem, in the remainder of this 

section we shall reproduce a proof of this fundamental and 

important theore~. First, we need introduce a few 

deflnitions. \ 

Let G = eV,E) be a graph. A set S of vertices of G is 

a stable set if no two.vertices of S are adjacent. The 
(~ 

stability number a(G) of G is the largest number of vertices 

in a stable set of G. The clique-cover number geG) is the 

smallest number of cliques needed to cover the vertices 

of G. If A is ~ subset of V, then [A]G will denote the 
.. 

subgraph of G induced by A. khen there can be no confusion, 

we shall W'rite 

Q w (A) = w ( [A] G)' X .. (A) = X ( [A]G) , a (A) = a ( [A] G) and 

( 

Let ~"~' .• :'~ -.:. be a vector of non-negative integers. 

8y G 0 h, w~ denote the,graph obt~ned from G by substitut-
l~ ,hi 

ing for each Xi a stable set of hi 'vertices xi,.,.,xi and 

joining X~ W'ith X~ if and onl~ if Xi and x j are adjàoent 

in G. wè say that G 0 h 15 obtained fram G by multiplica-

tion of vertlces. 

Equivalence of (,Pl) and (P2 ) in the following theorem 

" 
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" was estab11shed by Lovasz (1972a); equivalence of (Pl) and 
, , 

(P
3

) was established by Lovasz (1972b). 

" Theorem 2.1 (tt'Vê!SZ r&J.972b), 

For each graph G =)(V, E), the following statements .are 

equivalent: , 

(Pl) w (A) = X (A) 

(P
2

) otA) = S(A) 

(P
3

) w(A) cx(A) > 1 A 1 

(for aIl ..A ç V) , l, 

(for a11 A ~ V) , 

(for a11 A S V) • 

We shall use the fb11ow1ng two lemmas. 

Lemma 2.1 
",.' 

(Lovasz (1972hl 

~ I) , 

Let H be obtained from a graph G by multiplication of 

" 
'vertices and let G satisfy (P2)' Then H satisfies (P 2 ). 

"V 

Proof 

By induction on the number of vertlees, let G be-a,. 
cl , . . 

graph and let H be the graph obtained from ~ by multiplica-
• 

tion of vertices. By'the induction hypothesis, we may 

" ' \; . \ 
assume that each v~rtex of G la ,multipl~éd at;least~nce, 

and some vertex oof G i8 mul tlpl1ed at least twlce (for 

otherwise ,we are done). Sinee H can be built up from a 

.. 

J 
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seguence of smaller mui tiplica tions, i t suff ices to prove 

the statement for H = G 0 x. Let x' be the copy of x in 

G. 

Assume that G satisfies (P2). We want to show that 

ex (Gox) := 9 (Gox). Let K be the -eli-que cover of G with 1 K 1= 
9 (G) = ex (G), and' let Kx be the clique of ! containing, x. 

Case I; a (Gox) = a CG) + l. 

17 

The collection of cl iques !S'V{x'} covers a11 vertices 

ofGox. Thus 9 (Gox) ~ /KU{X ' } /=a(G) +1::;: ex(Gox). Since 
1> 

for any graph F, we have 9 (F) ~ ex (F), i t follows that 

9 (Gex) = ex (Gox) • 

Case 2: ex (Gox) = a (G) . 

In this case, no largest stable set of G contains x. 

Thus the clique 0 = Kx x intersects eaoh maximum clique 

exactly once, so 

) 

ex(G - 0) = a(G) - 1. 

The- vertices of the graph G-D can be covered by a col­

léction !' of ex(G) - 1 cliques. Now, K' toqether with the 

clique D V {x'} covers Gox, that is 

, 
e (Gex) :or ex (G) = a (Gox). 0 

'" Lemma, 2.2 (Lovasz (1972b) 

Let _~ be li graph such that each proper induced subgraph 

• 
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of G satisfies (P2). Let H be obtained f!,Olll G by multipl ica­

tion of vert1ces. If G satisfies -CP3) 1 then H satisfies 

f ' 

'" Proof 

By induction on the number of vertices~ we can assume 
, 
that H faUs to satisfy (P3 ) but ea~h prop'er induced sub­

graphof H sat1sfies CP3). Thus , with X denoting the set of 

vertices of H, we have 

weB) aCR) < lx f. . C2.1) 

We May assume that each verte~ of G was mu1 tipl ied a t 
r 

1 east once,' and some vel'ltex u was mul t1pled a.t: 1east twice. 
I 2 h~ J 

Le t U = {u , u , , ... u } be the vertices 0 f H corresponding to 

u. By the' induction hypothesis the graph H - u i sat!sfies 

(P3)' thus we have 

- < wCH) a CH) 

.</X/-l 

Thus, equality holds throughout, write 

p ;;; wCX-u1 ) =, w CH) 
q = Qex-u1 ) = ad., 

pq = Ixl - 1 

--
,,' 

• 

, [by (2.1 t1 

(2.2) 
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Sinee G-u ,satisfies (P2)" H-U satisfies (P2) by Lenun'êl 

2,1.' Thua, H-U can be covered by a s~t of q cliques of HI' 

say Kl , K2, .•• '. Kq" We can choose the clique cover of H- U 

so that the Ki are pairwise disjoint and KI ~ K2 > 

We have 

q 
r Ki = X-U .". X -.h = pq - (h-I). 

1=1 

Sinee 1 Ki 1 ~ p, at most h-I of the Ki fai1 to contri­

bute to the sumo Hen.ce, 

1 K1 1 = 1 K2 r = • • " = 1 Kq-h+l 1 = p. 

Let H' be the subqraph of 8 induced by X' = - . 
KI U" .• UKq_h+l V {ulL Thus 

> 

1 x' 1 = p (q-h+ l ) + 1 < pq + 1 = ! X 1 (2.3) 

so, by the .iinduction hypothesis, If' satisfies (Pl)' thus 

(II (8 1 ) ex (H') ~ 1 X ,/ w 

Sinee P" w(H)e) oo(H'), we have· . -
ex (8') ) 1 X ,~ J 

- p 

> q - h + 1. 

, 

Let S' be a stable set qf H! of eardinality q-h+2 • 

.. 

(' 

(2.4) 

-' 

\ . 

.C 

\ 

4 
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Since 1 S 'n Ki 1 ... 1 (for i = ,l, q - h + lJ; we have u1t S'. 
. . 

But then S = S 'UU is a stable s~t of H with q + 1 vertices, 

contradicting our choice of q. 0 

Proof of Theok.eJI! 2.'1 

We can assume that the statement i8 tPle for each 

< pr.oper induced subgraph of G. 

(Pl)~(P3)' 

by III (A) colou rs. 

Suppose that we can colour each [A1
G 

Sin,ce at most ex (A) vertices can receive . 
the same-colour, it follows that IIl(A)a(A) > lAI.' 

(P3 )e::;:? (Pl) , Su;pose that ,G . = (,V, El satisfies (P3)' 

We 'only need shotr that Il) (G) = X CG) " 

Sup'pose that t,here is a ~table set S such that' III (G-S) < 

lA) CG) • Thus we can colour G-S with w (C) - 1 cOlours, and . 

~ssign a ne.w cM our ,to the \!'~rtices of.S. 

X (G) • 

This ~iVeg w(G) = 
'. 

" 

New, we cfn assume that for each stable set S, G-S 

conta.tns a cli~ue K (S) "with 1 K (s)1 = lA) (G)."G Lei- S: be the 

'cOllectiotl of aU stable sets of G. 

let hi denote !the number of cl iques 

xi' Let H = (,X, F) be obtai~~ from 

xi ,by hl. By Lemma 2.2, we ~ve 

Now, for' eabh xi e: V, 
. 

K (S) which contains 

G by mul tiplying each 

. , 
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w (H) o(H) '~ r xl " " 

But by our cho1ce of H, we have 

w (H) ~ w CG) -
a LH) = max E hi 

TE2 X
1

ET 

= max [ E Pl' n K(s)1 ) " 
TE§. SE§ ~ 

~ J§I - 1 • 

which together imply tha't 
'. 

w.(H~ ex (H} .$ ID (G) d si' 1) <1 xl 
a contrad1ction. 

'(P2) =:::} (P3 ) ~ Note that G satisf:Les (P3 >. if and only if 

G satisfies: (P3 ). Therefore; 

G satisfies (P2) <=> G satisf1es (Pl) 
, -; 

<=::} G satisfies '(P ) 
3 . 

~G satisf1~s (P
3
). D' 

To see that' Theorem 2.1. :Lmp11es the Weak Perfect Grapb . 
, \' 

Conjecture, consider a perfect graph G.' (That 1s G satisf1es 
~ 

U\)" By the Theorem 2.1, G satisfies (P3)'- so· G sa~isfie~ . ' 
", 

, . 

" 

;., 

1 
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(P3)' and so G s4tisf~es (~l)' that i8 G'is perfecto 

May:be a h1stor1eal riote shoyld be made here. 'Fulkerson' 
" , 

(1971) in'dependently from LOV'4SZ, provec:t that if the state- .. 1 

ment of Lemma 2.1 holds (as we know by now, 1 t does), then 

the ~eak Perfeet Graph Conjecture h~ld~. Fulker8on'~ ap-
~ 

proach, d~fiferent fr~m Lova~z's, relies on the te~hniques 

of l1near proqramminq. • 
The perfTt Graph' Theorem has e~abled Grotschel, 

/ ' , 
Lovasz and Schrijver (1982) to design a polynomial-time 

, ' 

alqori~ which determines the four parameters w(G), X(G)i 
../ ' 

'ex (G), .. CG) of 'a given perfeet graph G. (This algor1thm, 

uses the 'el1ipsoid method (see Khachlan (1979), Gacs and 
~ " 

Lovasz (.1981», and lt does not provlde lnslght to the com-

b.tnatorl'a1 structure of perfe'ct qraphs.) It 18 widEHy 

believed that no polynomlal-time algorit~s exist for deter­

mining these four'parameters of ~n arbitrary g~aph (see 
, 

Garey and Johnson (1979». In fact,' CoOk (1971) proved 
" , 

that the proble~ of deter.min~ng wheth~r a prescribed graph 

has a clique of a prescribed size ls NP-compl,ete. ,At\ 

present, no polynomial-time algorithm ta solve an NP~complete 

problem ls known. 
, l , 

The Sfronq Perfect Graph Theorem lmplies that 

there i8 a g~oq c4aracterization (in the 

sense of Edmonds) of ~perfect graphs. \ (2.5) 

,1 ' 

"" 

, . 
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-Theorem 2.1 implies that ' 

every minimal imperfect graph G has precisely 

cx(G) .W (C) + l 'vert1ces. (2.6) 

To,see that (2.6) implies (2.5), let us cal! a graph 'G 

part1tionable if there are in~egers r, s greater than one 

âuch that 

, 
o (i) G h,as pr~cisely rs' + 1 vertices, 

(il) for'each vertex v ot G, the vertices of G-v 

can be partit10ned into r disjoint cliqùes of 

size s, and into s disjoint stable sets of sîze 

r. 

Bland, Huan,g and Trotter (1979) observed that a graph is 
, 

imperfect if and only'i~ it containe an inducéd partitionable 

subgraph. (The "only if" part follows from (-2.6). To see . 
the "if" part, first note that a perfect graph H has at 

Most ex(H) .w(H) vertices1 now (1i) Along wlth r,s ~ 2 implies , 

that ex(G) = r, 1.1) (G) • s 1 and so G must be ·1mpelifect.) 

J. Edmonds and K. Cameron (see Cameron (1982» pointed out 

~ thls observation implies (2.5), since conditions (1), 

can be verified in polynomial ·t~e. 

Padberg (1,974) proved that if a graph. C, with ex • ex(G)-
, , 

\ . 
and w = 1.1) (G), is minimal imperfect, then 'G satisfies the 

following: two properties. 

'-

\. . 

, . 
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( iii) Each vertex of G is con ta ined in ~Cis.1Y ex 

stzsets of size a, and w cliques of s1z~ w • 

(iv) Ea stable set of s12e ex is disjoint from pre-
-

C~SelY one clique of s~ze w, and each clique 

of size w ls dlsjoint from precisely one stable 

se\t of size a. 0 
1 
1 

We ahall calI a graph (a,w) -graph if i t satisfies (i), 
"ft-.... 
l' 

(ii), Ci11), and (iv). An (a-w) -graph G is normalized if each 

edge of G has two endpoints in the same clique ~o~ size w (G) • 
J 

It ls easy to see that every· (a,w)-graph G contains a unique 

nomëUized (a-w)-subqraph H. Examples of normal1zed (a,w)­

...w-l graphs are the graphs ~aw+l-with verticea v l ,v2, ••• v aw+l 

such that vi' v j' are adjàcent if and ~nly if 'b-j 1 < tA) 

, 
(as usual, the subscripts are takeh modulo cxw+l). BI~nd, 

, 
Huang and Trotter (1979), and Chvatal, Graham, Perold and White"· 

sides U1979) indeperidenuly found a norm~lized (3.13) -graph 

d~ffe"e~~ from C~o, and a normalized (4,3)-grap~ different 

from C~3' Chvé'tal, Graham, Perold an4 Whitesides aiso pre-

sented t~o methods fe»: constructing inf in! te families of' , 

normalized (à',w)":graphs. Whitesides (1982) constructed a 

Iist of aU normalized (4,3)-graphs. 

Chv.;tal (i984) not,ed that every ~ imperfect qrap~ 

G must contain 

..... 

Cv) no sets of ex (G) + w (G) - 1 vertices whicl? meets 
-

aU Iargest stable- sets 'Of G and aIl larqest 

cl,lques of G. 
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(Otherwise, G would contain an induceq subgraph H with 

(cx(G)-l) .~w(G)-l) + l vertices and cx(H) = cx(G) - l, w(8) = 
., . w:'l 

w(G) - ~.) Ch'O'atal (1976) shOW~d that no Ccxw+1 
wtth a > 2, 

W 0> 2 satisfies (v). However 1 the following (a, w) -graph ,G, 
-" ' constructed' by ChvataJ, Graham, Perold, and Whi te s,ides, does 

satisfy (v): G la a (4,4)-graph w~th vertlces v 1 ,v
2

' ••• ,v
l

, 

s~ch that vi and v j are adjacent if "and only if i - j = 
2,6,7,8,9, 10 l' 11 or 1S mod 17. 

\ 

--;. 

, 

• 

" 

, , ( 
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3. MINIMAL IMPERFECT GRAPHS 

In the previous section, we 'stated that no minimal 

26 

'" 

imperfect graph can contain a star-cutset. In this sec~ 
\ 

. _ " _________ tionr-_.~.e_sha~Lp~es_~nt_ a _F_r_~~, ___ d~~ __ t_o __ ~~~~t~1, of. this 

'. 

, ~ ~ 

statement. A related conjectuEle, also due to Chvatal, 
" 

states that no minimal imperfect graph can contain a "skew , 
partition" (this definition will be given later). Pre­

sently, this conjecture is still unresolvèd. We shaH make 

a few observations on 'ft. Finally, we shall discuss a new 

result, established by Henry Meyniel, that in a minimal 

imperfect qraph, every two non-adjacent vertices are end­

polntls of a chcrdless path wi th an odd number of edges. 

3.1 Star"Cutsets 

" 
Recall that a star-cutset of a graph G 18 a set C 

of vertices such that G-C ia disconnected, and in C there 
. 

i8 a vertex adjacent to aU other vertices of C. 

Theorem 3.1.1 " (Chvatal (1984 t ) 

No minimal imperfect graph- can conta in a star-cutset-o ...... , 

Proof 

. Consid.- a graph G '.=: (V,E) with a star-cutset C and 

assume that a11 proper induced subgraphs of G -are perfect; 

ç 
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• 
we only need colour G by k colours with k standing for the 

clique number of G. Since C 1.s a cutsetr we can partition 

,the vertices of V into -nonempty disjoint subsets V1 'V2 

. sueh': that 

, 
no vertex in VI is adjacent to a vertex in V2 . 

, 
there- la a colouring fi of Gi by k col ours • 

'. ' 
star-cutset,_ sorne vertex w in C ls 

vertices 'of C 1 wri te v e: S 1 if v e: 

Trivially, no two vertices in 

adjacent t~ aIl other 

Gi and ~) ~ fi (w) . 

Si are adjacent, and 
, 

Si n ,é :: {w}, now (3.1) impl1es that no two vertices In 

oS = SlVS2 are adjacent. Since GI - SI and G2 - V2 are 

coloured bY,k - 1 colours, neither of these two graphs con­

tains k pairwise adjacent vertices1 now (3.1) irnplies that 

G - S -does not contain a clique of !ize k. Thus, G - S 

can be~coloured by k - 1 colours; an additional k-th 

colour may be assigned to all the vertices in S. 0 
'1 _ 

Cbvatal bas noted tbat Theorem 3_.1.1 implies severa! 

well known results on perfection-preserving 'operations. 

, First, let Gl :~and G2 be two disjoint graphs and let Ci 

be a clique of Gi with 1 cIl = 1 C2 ' ~ 1. The 'fa,Ph G, 

obtain~d from"Gl and G2 by choosing a ~ijection ~ Cl ~ C2 

,and id~nt1fyin9 each x in Cl witb f(X) in C2 ' is said to 

arise frOm Gl and G2 by clique identification. 
, 
, . 
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" t 
Second, let G

l 
and G2 be two disjoint graphs, and l-et 

. , 

v be a vertex of G
1

• The graph G obtained from Gl ,- v 

and G
2 

by joining each vertex in G2 by an edge to each 

neighbour of v in G1 - v fS said to arise from GI and G2 

by subs ii tu tion . 

Third, let G1 and G2 )re two disjoint graphe. Let 

vi be a vertex of each Gi , let Ni be set of aIl neighbours , 
of Vi' and let Ci be a subset of Ni such that each vertex ( 

i~ Ci is adjacent to aU vertices in Ni and such that 

, 1 Cl f ~ 1 C2 1 (note ,that we can chooe~ Ci to be empty). By 

an amalgam of Gl and G2 , we denote the graph G obt~ined 

from G1 - vI and G2 - v2 by choosing a bijection f: Cl + c2' 

identifying each x in Cl wi th f (x) ln C2 , and jOlning each 

vertex in NI - Cl by an edge to each vertex in N2 - C2. 

CorOllary 3.l:. l 

If a graph G ts obtained from- two perfect graphs GI 

and G2 by clique identification, then G 18 perfecto ~ 

" Carollary 3.1. 2 (Lovasz (l972L») 

I~ a graph G is obtained fr:,om two perfect graphs Gl 

and G2 by substitution, then G is perfecto 

, r, 
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Corollary 3.1.3 (Burlet and Fonlupt (1982» 

If a qraph G is the ~lqam of two perfect qraph~ 

G1 and G2, then G. is perfecto 

29 

" ' Chvatal (1984) showed that the three above corollaries 

are implied by Theorem 3.1.1 in the fO~lowin9 manner. In 
, < 

each of the three cases, assume that G contains a" minimal 

imperfect graph F. Now it is easy to see that F must con­

tain a star-cutset ,or F ls disconnected' or F has at most 

two vertices (no minimal lmperf'ect graph can be dlsconnected) • 

To elaborate on this, we need introduce a'few definitions . 
. 

Let G = (V,E) be a graph. A cutset of G ls a set C 

of vertices such that G - C ls disconnected. A clique 

cutset \of G is a cutset which induces a cl ique in G. If X 

is:a set of vertices of G, then ~G (X) denotes the set of 

aIl vertices y outside X, such that y i8 adjacent to sorne 
, . 

vertex of X. (X can cons,1.st of a single vertex x in which 

case we Shall w.ri~e NG"(x) to denote the set of ne1ghbours of x) • 

- ',,-----. 
NG (X) denotes t~e set of ,.a11 vertices in V - (X U NG{X». 

When there ca~ be no co~fusion, we shall drop the subscript 

G, and wri te N (X), N (X). A set H o,r ~,}ertices of G 18, a 

homogeneous set if· 2 ~ 1 H 1 <' Ivl, and for each x not 1n H 

we pave ei,t:h~J;' HSN ex) 'Or H n N (x) = ~. 
If a graph G contains a clique cutset, then G contains 

a star-cutsètJ !l'hus, ''l''heorem 3 .1.1 implies that 
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no minimal imperfect qraph can contain a 

cll~ue cutset. (3.2) 

If a graph a 16 the amalgam of, two graphs al ~nd G2 such 

that G has more vertices than both G
I 

and G2 , then we say; 
" -

that G has ft proper ama1qam decomposltion. It is easy to see 

that if a graph a has a homogeneous set 'or a proper amalqam 

decomposition, then either a containa a star-cutset, or e1se 

G 1s disconnected. Thua, Theorem 3:1.1 imp1ies that 

no minimal imperfect qr~h can contain a 

homogeneous set, (3.3) 

and that 
1 

no minimal imperfect graph can contSln a 

proper ama1gam decomposition. (3. 4) 

Now if a qraph G sa~isfiea the hypothesis of Corollary 

3.1.1, then either G is isomorphic to G~ or G2 , or e1se G 
~ 

contains a clique cutset. By (3.2), G must be perf·ect. 

If,a graph G ls obtained by substitutinq, for a vertex 

x of Gl , a grap~ G2 = (V2,E2), then V2 is a homogeneous set 

of a. Now, (3.3) implies Corollary' 3.1.2.,. 
~-

final1y, it ia easy to see that (3.4) implies Corollary 

3.1.3. 

Incidentally, note that 

no minimal i~perfect graph G can contain two 

vertlces x,y wlth N(x) 2 N(y} U {y}. _ (3.5) 

(It sufflces to show that elther G contains a star-cutset 

J 

'. 



or else G is disconnected.) 
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In latter sections, we shaH use Theorem 3.1.1 and proper-

ties (3.2), (3.3), (3.5) ta qenerate new classes of perfect qraph~. 

3.2 ,. Lemma 

Lemma 3.2.1 

Let G be a minimal imperfect qraph wi th two disjoint rfon-

empty sets WI , W2 of vertices such that pc> vertex in W1 18 
''\ 

adjacent to a vertex in W2 • Then W (G-WI >' = W (G-W2 ) = lAI (G). 

Proof 

Asswne the contrary: witho\1t 105s of generallty, 

w (G":W2) < w (G). Slnce G ls minimal imperfect, G-W2 ls w (G)­

cOlourabl~;' hence G-W2 contains a stable set S such !;.hat 

:. w(G-W2) - 5) < w' (G). 5ince each clique G is fully contained 

ln G-W1 or G-W2 , it follows that w (G-S) < W (G). Next, since 
• 

G 15 minimal imperfect, G-S is colourable by w(G)-l cOlours. 

But then G is w(G)-colourable, a.contr~diction. \J 

3.3 'lbe Skew Partition Cbnjecture 

A graph G - (V,E) is sa id to have a skew partition if 

V can be partitioned into fo~r disjoint and nonempty sets _ 

V1 'V2 'V3 'V4 suc~ that 

(i) xy E E whenever x E: VI' Y E V2 , and 

(ii) xy't E whenever x € V3 , y € V4 " 

If a qraph, wlth at least five vertlces and at least one 

" 



. 
\ edge, contains a star-cutset, then it contains a skew par-

.... 
tition. . (Consider the graph H with at least· ,three vertices 

• 
and no edge; and consider the graph F with four vertices ' 

a, b, c, d and two edges ab, cd. Both H and F 'con bain 1 s tar-
• 

cutset but not a skew partition.) Thus, the following 
, ' , 

conjecture of Chvatal implies Theorem 3.~.1. 

The Skew Partition Conjecture (Chv'tal1l984» 

n 

No min~al imperfect graph contains a skew partition. 

At prese~~, the Skew Partition Conjecture is unsolved. 

Furthermè~~, no one has been ab1e to-design a polynomial-

time algorithm to recoqnize- the presence of a skew partition 

in a qraph. Ln this section, we make a few observations 

concerning this conjecture. 

Let G - (V,E) be a qraph. Let C be a colourinq of G, 

and let S be a subset of'V. By C(S) w~ shall denote the 

'set ~ of col,ours of C that appear in S. 

Theorem 3.3.1 

, 
let Cl he an optimal colouring of G-V 4' and, Ilet.: C2 be an 

·optimal colouring of G-V3 • If ICI (V1)1 ~~I C2 (V1 ) 1 and 

1 Cl (V'2) l' ~ 1 C2 (V 2)-1 then G is ndt minimal imperfect. 

, 

... 

-
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'. 
Proof 

Let A consiat.of ~ll the vert~cea x in G-V3 auch that, • 

C2 (x) ; C2 (y) whenever y E VI V V2" Since both Cl and C2 
ua,e ,w (G) colours (by ~ Lemma 3.2.1), we have 1 C2 (A) 1 . ~ 

1 Cl (VI) 1 - '- C2 (v2 )1. Choose' a subset C* of C2 (A) that has 

cardinal! ty 1 Cl CV l) 1 -, t C2 CV l) 1 and \tri te x€A* if and only 

if xEA, C2(~) € C*. Let H be the aubgraph of G induced by 

aIl the vertices z of G-V4 such that CI(z) € C1(Vl ) and by 

aU the vertices y of G2 such that C2 (y) E C2 (VI) V C*. 

Let F be the subqraph of G induc~d by aIl the vertièes not 

be long ing to H. 1 

Now we have w Uf) ~ 1 Cl (VI) 1 
1 

and w (F) < w (G) - 1 Cl (VI) 1 . 

Since F and B are proper induced 6ubqraphs of G, we have 
, . 

X (F) + X(Hr =' w (F) + weB) ~ w(G) < X (G) , 

a contradieti~n. [J 
1 

Corollary 3.3.1 

,.::. 

Let G = (V,E) be a minimal imperfeet qraph wj.th a 

skew partitionv1 ,v2,v3 ,V4 • Then the set vlV V2 can not 

contafit a clique o,f ,size w (G) • 

Proof 

Note thae Ç;l and G2 are perfect sinee they are proper 

, . 

,,' 
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". 
induced 'sub9raph~ of G. Let Cl, and C2 he the optimal co1our-

ings of 'G1 and G2' respectively. If V1 V V2 con tains a cli~e 

of size w(G), then (by Lemma 3.2.1) we have wCG1) • X(G1) • 

~(G2) • ~(q2) • w(G). Furthermore, ve have w(Vl ) + wev2) -, 

, w (G). 'Tbis imp1ies that Cl (Vl ) • C2 (Vl ) and Cl (VZ) • C2 (V2), ., 
contradi~tin9 Theo~em 3.3.1. 0 

Prom Corol~ary 3.3.1, we obtain the f0110wing result 

vhich vas first ohtained by Olaru (see Berge and Chv~ta1 

(1984» •. (This œsult fo11oJ!ls fran Coro1lary 3.3.1 hy the 
~ 

Perfect Graph Theorem.) 

Corollary 3.3.2 

Let:G - (V,E) be a min~al imperfect graph with a skev 

part1.tion V l' V 2' V 3' V 4· Then the set V 3 U V 4 can not conta in 

a stahl~fset of size a(G).D 

. We Conclude thi~ section with the fOllowing" two 
• 

theoremsJ 

1 

TM,\,reDl t 3 • 2 
/ 

, 

LetrG - (V,E) he a minimal imperfect graph wit;h a skew 

pa~tit1o~ v1,V2,V3,V4• Then, there cannot he two verticea 

x in v)! ~ in V~ such that N(x) ~V1' and Ney) i:t V1 • " 

8y tfbe P:rf.ect Graph Th~orem, 'l'heorem 3.3.2 ap1 ies 

the fOll9winQ theorem. (J .. 

.. 

\' 

" 
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Theorem 3. 3 • 3 

Let G = (V,E) be a minimal imperfect grapp with a 

iii ' skew partition V1,V2 ,V3,V4 • If in Vl , ther~ i8 ~ vertex 

x with N(x)" V3 :II " then for each ~!!,tex y in V2, ·We 

have N(y)" V3 .. ~. 0 

Proof of Theorem 3.3.2 

35 

Let Cl and C2 ~e the optima! colourlngs of GI and G2 , 

respectively. Suppose that the vertices-x,y exista By 

Theorem 3.3.1, we on'ly need establiShlcl (Vlli :sICi(VI)I~ 

In fact, we shall show thatlcl (Ivl)1 -lc2 (vl)l- w (Vl ). 

By ~ymmetry~, we only need s~ow t~at IC2 (Vi)1 - W (Vi) . 

We nfay assume tha~ IC2 (V l)I ~ 1 C (V 1 ) 1 for Any optimal colouring 

C of G2 • We May also assume that IC2 (VI>1 > w (VI)' for other:" 

wise we are done. Let S be the set of aIl vertices z of 

G2 such t~at the colour of z appears in Vi •. Let G' be 

the subqraph of G lnduced by sU {x}. Slnce G' is a ~roper 

induced subgraph of:G, G' ls a perfecto Bence X(G') =-

w(G 1
) ~ ~axdc2CVI)I, w(Vl ) + 1) 5.lc2 (vl )f. Sincè each ver­

tex in VI must receive a coloûr dlfferent from the ~lour 

of x, the yer,lces of Scan be cOloured by (at Most) IC2 CVI )' 

colours .so that fewer thanIC2(Vl>1 colours appear in Vl. 

This defi?es a new cOlourln~ C o~ G2 such thatlcCvl)1 < 

le; Cvl,l, contradlctlng our choice of c2 .'Q 
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.-
-3.4 A Theorem of Meyniel 

, 
TWo vertices are said to be -friends if they. are not 

endpoints of 'a chordles" path with an odd riumber 0:( edqes. 

(In parUcular, friends are alwàys nonadjacent~) Henry 

" Meyn~el (1985) recentiy estabJished the fOll9wing property 

~f minimal imperfect qraphs. 

Theorem 3.4.1 (Meyniel '(1985» 

In & minimal tmpèrfect graph, no' fwo vertices can be 

friends. 

To' prove Theo,rem 3.4.1, we shaÜ need the fol1owinq 
" two lemmas. 

Lemma 3.4.1 (Meyniel (1985») 
j 

Let G be a graphe If two non~adjacent vertices x,y 

are not eOndpoints of ~h~ sa,me P 4' then the qraph G', 

, , 

'{ 

obtained from G'by identlfy1nq x and y, satlsfies w(G') = 
w (G) • , 

Proof 

Clearly w(~'~) '~ w(G). We can ass~ume tha~ we 'have 

,w(G i )' > w(G). Then, ln G there la a clique Î( of slze'..-

w (G) wi th N (~c) U N (y) ~ K. Stnee N (x) ;p, K and N (y) :P K, 1 t 

" 

') 

", 
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. 
follows that ther,e 18" a P4' in {x V yU K}, with x,y being 

two endpo1nts. 0 
• f 

,Lemma 3.4.2 (Meyniel (1985» 
~ 
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Let G be a perfect graphe If ·G contain. two friends x. and y, 

then the qraph G' , obtained fram G by identifyinq x and Y'I 

is perfecto 1 
. 'Proof 

, , 

By' induction on· the number of verticel. We shall prove 

that .XCG f
) • ,CU (G'). .Furthermore, by Lemma 3.4.1, we only 

,need· prove th_t X CG) • X (G' )'. 

COn.1der a cOlour1~q 9f G by w(G) cplour.. If x and· y 

rece1vè the samé colour,. then thi. cOlourinq d~fines ob­

vlou.ly the required'colour1nq of G'. We 'can aSI~e that 
• < 

x ,and y .rece1~ê d1fferent.colo~r., let us ,say 1 and 2. 

'ConI1~e~ the in.s~ced, lubgraph B -of, G jUCh that B conai8t~ 
, , 

, of ap verticel of, colollr 1 or 2. If a èomponent C ,of B 
1 

. containa X, then 1 t cannot ~ conta in . .11 for otherwi.e x and 
, ,l, 

y.' are not two f~iend.. New, interchang1ng colours 1 and 

2 on thi. com~onent C, we f1nd a cqlour1ng of G in w(G) 

coloura sucb. th~t x an( y have .the same cOlo~r. 0 
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.pÇoOf of Theorem 3.4.1 

Let G .. 'CV,E) be a minimal imperfeet graph., Assume 
, 

that the statement of' the theorem is false. 'Then 

G has two friendly vertices x, y. Let G' = (V' ~ ~') be 
, . 

the graph obtai~d 6:om G by identifying x and y. We hav'e. 

~XCG') ~X(G) > w(G), ~ndbyLemma3.4.1, w(G) =w(G') • 

• By ~ermna 3.4. t, each proper induced subgraph of G,' i's 

perfect~ 50, G' ls minimal imperfect. By Theorem 2.1, 

w(G) ',a(G) = 1 vi - 1, and w(G') .a(G ' )·; = 1 V" - l = 1 V 1- 2. 
, 

- Henee, by.Lemma 3.4.1, ~e have w(G).(a{G) - aCG'» = l~ 
Sinee w (G) ~ 2, this 1.s a c'ontra~ic:tic:>n '! [] 

A graph G is a quasL-parity graph if each indUeed 
• • 

subgr'aph H of G'either contains t"o friends, or else is 

a clique. ~t follaws frem Theorem 3.4.1 that quasi-parity 
.. 

~qraphs are perfec~. Meyniel (1985) has shown that th~s class 

'of perfeet qraph contains aIl Mperfe~tly orderable~ graphs 
r 

and all "Meyniel" graphs. (These perfect graphs will be 

investigated in. latter seettons.) 

In subseet1pn 3.2, ~e have seen that cliqué identi­

fication. substitution and amalgam preserve p~rfection. 

In the remainder of this subsection, we shall show that , 
these pperations a,180 preserv!l! the property of "being a 

quasi-pari ty graph ft • 

l , 

, \ 

• 

l , 
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Fact 3.4.1 

If a qraph G is obtained from two quasi-parity graphs 

G1 and G2 by'clique' identification, then G is a quasi­

parity graphe 

. Proof 

We only need show that G is a clique, or G contains 

two friends. 

We can assume that G ls not isomorp~c: to G1 or Gi. 
Thus G contains a clique cu~set C such that 'G :a G1 V G2 
~nd GI Il ~2 =- C. Now, i t ls easy to seè that if two ver-

l , 

tices x,y are friends in Gi , then x and y are friends in 
~ \ 

G: the point is that each chordless path that has x and y 

as two endpoints must be entirely in Gi • Thus, we can assume 

that each Gi la a clique. Now, x and y are two friends of 
. . 

G whenever x € GI - C, y E: G2 - c.D 

~ 
Fact 3.4.2 

If a qraph G is obtained frœ two quasi-parH:.y·qqraphs. 
~ 

G1 and G2 by substitution, then G 1s a quas1-par1ty graphe 

Proof 

We on~y need show that G 1s a clique, or G contains 

two friends •. 

.. 

, . 
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By an earlier_ observation, G con tains a homogeneous 

set Y. Assume that G is obtained py substituting a vertex 

,x of G1 for G2 • That ls [YJ G is isomorphic to G2 . If 

there is a .chordless path P with two endpoints in G -y and . , 

some interior vertex in Y, then containe exactly one 
. 

interior vertex in Y. Thu$ if t 0 vertlces aré friends in , 

G1 , then ~hey are friends ln G. 

G1 is a cliqUe. 

ow ve can as~ume that 

, 
If there ls a chor~less path P with twp endpoints in 

y and some interior vertex outside y, then P,contains 
• exactlyone interior vertex in N(Y). It follows that P. 

con~ains exactly ~hree vertices and tvo edges. Thus if 
. 

two vertices are friends in G2, then .t,hey are _ friends in 

.~. We can nov assume that G2 i8 a clique. 

Since G1 and G2 are cli~e8, G i8 a cliQue.D 

Fact 3.4.3 
3, 

\ 

If- a qraph G - (V,E) is an ama}gam of two quasi-pari,ty 

q g~aphs G1 and G2, th'en G is à quasi-parity graphe 

)-

Proof 

- 't. 

Ne only need prove'that G contains two friends, or 

else G is a clique. Ne may assume that G is ~ot isomor­

Rhic to G1 or to G2 • Thus we can partition the vertices 

.. ' 
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, , 

of,G into disjoint sets K, Al" Ai' BI' B2 such that (I< 

is the ident~fied clïque) 

- 1< V Al U A2 P ." 

-,(K]G is a clique 
~ 

- We have xy E E whenever x E Ai' Y E Aj , 

(i"p j) or x e:Ai , y'e: K, 

- We have xy t E whenever x e: Bi' 

y e: (~j V Bj) Li:; j, 

1 Ai V Bi 1 :> 2, 

Al = ,,«:::) Ai = ~, 

41 
i 

,~ If Ai ~ A2 ~ " then' in each Bi' the~e is a'vertex 

xi with N(xi ) ~ K 

and such that for each aie: ,Ai' the graph G (ai) = lI< U Aj V Bj 

V {ai} JG is isomorph1c, to Gj . (We may assume tha t Ai ,.. ", 

for otherwise K is a' clique cuts et of G, ,and 'the desired 
1 • 

conclusion follows trom Fact 3.4.1.') 

g If the qraph G(ai ) con~ains two frie~ds x,y then x 

and y are'also friends in G: the point is that there can 
.~ . . ... 

be no chordl~s. ~ath with two endpoints in G(ai ) and more 

than one int~rior vertex in (~i U· ~i)- - {aille Thus, we' 
. ' 

may assume that G1 and G2 are cliques. ~t follows that 

BI --B2 • ,. But then'G ia also a cliqu,e.,[J 
4 Presently"there i5 no polynomial-time algorithm to 

recoqnize quasi-parity graphs. However, the,above three 

• 

• 

o 

" 

.-
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faéts suggest a' natural approach to design such an algori thm. 

Let G be a graph. Suppose that G satisfies one of the fal-

~ lowing conditions. 

• ~ 
, . 

(i) . G contains a'clique cutset. 

(ii) ,G contaJ.ns a homogeneous set. 
\ 

(iii) G contains a proper amalgam decamposition. 

Then G can be decampOsed into two smaller gr~phs G1 and 

G; such that G can be constructed ~rom G1 and G2 by one of 

the three.operatians, ~nd that G is-quasi-parity ~nd only 

if G1 and G2 are bath quas,i-parity graphs. (This approach 

is not new; Burlet and,' Fonlupt (1980) showed that each 
. ,,' 

Meyn~el graph G either admits a proper amalgam decomposl-

tion or else G is a "basic" Meyniel graph. We shal1 de­

scribe their work'in more detail in section B.l Our 

1enge is to find sorne' "basic" quasi-pa~ity grap~s 

that if a qua~i-parity graph i9 not basic, then it 
- . 

at .least one of the 'three conditions (i), (ii),and (iii)~ 

Sue Whitesides (1981) designed ,a polynomial-time 

algorithm to recognize the presence of clique cuts et 
\ . 

in an arbitrary graph. Polynomial-time algorithms to 

recognize the presence of a ~omo~eneous set in a graph 

have beèn obta1ned,r by Maurcir (197 6), Habib and Maurer 

(1979) and cunning)i~ cornué'jols and cunningh~ 
(1985) has obtained a al-time algorithm to deter-

) . 
mine whether proper amalgam decomposition. 
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Inc~dentally, note that if a connected graph G con~ins 

a homogeneous set, then G- admits a proper amalgam decomposi-

tion, unl~ss G has a vertex x which is a~cent to aIl 

remaining ver~ices of G (in tqis'case, G is a quasi­

parity grap,h if ·and only if G - x i8 a quasi-pari ty graph). 

• 



4. SOME CLASSES OF PERFECT GRAPHS 

4.1 Introduction 

In this section, we discuss trianguiated graphs, 

comparabi1ity graphs, 11ne-graphs of bipartite graphs, 

P4-free graphe, and P4-sparse graphs. The first three 

classes of perfeet graphs are sometimes referred to as 

"c1ass1ca1,· perfect graphs for the reason that they were 

first known classes of perfect graphs. 

Trianqulated Graphs 
1 

graph G 1s trianqplated if every cycle w1th at least 
- / four ertices con tains a chord. Bajnal and Suranyi (1958) 

proved that complements of triangulated graphs are pcr-fect. 

Berge (1960) proved that trianqulated graphs are perfecto 

Dirac (1961) showed that every trianqu~ated graph contains 
\. 

a simplicial vertex, that 1s a vertex wh~se neigbbours 

fom a' Cii:que. IJt._~~t1ons 5 and 6, ve shall see that this 

special atructure 8uggests a certa1n "greedy· algorithm 

to optimal1y eolour tr1anqul ate't graphs. 

/ Theorem 4.2.1 (Bajnal and Surany! (1958») 

If a tr1angulated graph G 1a not a cl1que, then G 

conta1ns a cl1C1ie cutaet. 
-f 

/ 
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Proof 

Let G ml (V, El be a triaJlgulated graphe We may assume 

that G is not a clique 1 for otherwise we are done. Let C 

bé a minimal cutset of .G. EnUinerate the connected- compon­

ents of G-C as ~1' C2 ' ..• ,'1t' k ~ 2. If C i8 a clique, 

" then we· are done. Otherwise, there are two nonadjacent 

vertices. a,b in C. Now, since C is a minimal cutset of G, 

each vertex of Chas some neighbour in each Ci. Thus, 

for each' connected component Ci' there is a path Pi with 
(' 

a,b being two endpotnts, with aIl interior vertices belong­

in9 to Ci'. Note that each Pi contains at least. three 

verUc'es. Consider two such pa ths Pi' P j. They fo'rm a 

chordless cycle with at 'least four vertice8, contradictiri.g 

ClJJi assumption that G i8 '\tangulated.D 

As triangu1ated ~~raphs become weIl known, many inter­

esting properti~s of them were discovered. In particular, 
, 

- ! 

Dirac (1961) stiowed' tbat every triangulate~ graph contains 

a simJ?1icial ver~x. (Recall' 11ha~ a vertex is "simplidal ft 

if its nelghbours fom a clique ~ ) 

Theorem 4.2.2 (Dira.c (1961) 

If a trîanqul4ted graph G is not a Cl1QUe(hen G 

contains two nonadjacent' -simplicial vertices . 

... 



J 

46 

Proof 

By induction on the number of vertices. Let G be a 

triangulated graphe If G-is a clique, then we are done. 

Otherwise, by Theorem 4.2.1, G contains a c,lique cutset C. 

Let Gl and .G2 be two induced subgraphs of G such that 
} 

G1 fi G2 = C, and G1 U G2,' = G. Conàider the graph G1 . We· 

claim that in Gl - C, there is a simplicial vertex x of 

G1 • 

If G1 is a cliqu~, then any v~rtE!X in G1 - C can play 

the rOle, of x. Otherwise, by the induction hypothesis, 

G1 contains two nonadjacent simplicial'vertices vl ,v2 • 

Slnce C ia a clique, at least one vi must lie in G1 - C. 

Wri te x .. vi and we have justified oUf claim. 

Similarly, we can find a simplicial vertex y in 

G2 - C. But t'ben, x and y are two nonadjacent simplicial 

vertices of G.D 

It 18_ easy to see that trianqulated qrapha can be 

reco9ni~ed ln polynomial time. Let us elaborate on this 
\ 

point. Suppose we are qiven a graph G" (V,E)'with 
Il< 

1 V 1-- n. (As uaual, we shalu assume that G is repreaented 
. -

by it~ adjacency lista.) New, G is a triangulated graph 
, . 

. if, and only if 
~ , 

(1) no P3 extends..)nto a chordies. cy~le. 

We can test~ follows. Let a,b,c be theyertices 
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of a P3' with b beinq the interior vertex. This P3 extends. 

into ,a chordless cycle if and only if ehere' 1s a connected 

component C of N(bl w~th N(a) (\ C ; , and N(c) tî C ; ,. 

Thua, (i) êan be tested Ln 0(n2 ) steps. Since there are , , 
l ' 

only 0 (n ) dist1nct 'P3 's 1n G, th1s alqorithm terminates 

in o(n$') 'steps,. Of 'course, our algorithm 1s very crude, 

and there are faster algorithms to recoqnize ttianqulated 

qraphs. Leuker 0.974), l!-ose and Tarjan (1975) desiqned 

a linear-time algor1thm to reoogn1ze tr1angulated qraphs. 

Rose, Tarjan and Le~ker (1976) showed that 'an algor1thm 

of Gavril (1912) can be implemented to find the four 
~ 

paramete1s II) (G), 'X CG), a (G) and e (G) of a qiven trianqulated 

qraph G 1n linear time. 

3 .3 Co.parab i 11 ty Graphs 

. 
Let X be a set, and let < be a binary cmd antiSymœtric 

~" ~ 

,rela1;iOl'1 on x-. • l The ~et (X, () 1s a pyt1ally ordered 

~ (or poset for shortj if ' for each ch01ee of -A,b,e 1n 

• X, we have a < c whenever a < b , b < c. If x < y, then 

ve say that'x 1s comparable 'to Y, and y 1s co~parable to x • 

. A qraph\G • (V,E) is' a compar.ab111ty qraph if Vadm1ts 

a par~ial order su~h that two ve:r~!ces of V are comparable 

.. 

. . 
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if·and only if they are adjacent. A .famou-s theorem of 
\ 

Di1worth (1950) can be restated by saying that in a com-

parability qraph G = (V,E), the number of vertices in the 
~ 

larqest $table set equals the smallest number of cliques 

that cover V; that 15 a(G) .. 9(G).' This equa11ty a1s0 

hold5 for ~very induce~ subgraph- 'H of G, sinee H 1s a 

comparability graph. N~, it follows ~rom the_Perfect 

Graph -Theo rem that the comparab111ty gr.ph G 15 perfecto 

(We. shall present an eas1er and more direct proof of this 

fact in a moment .. ) .. 
Let G ZII CV, E) be a graph. Br An orientation G of G, 

.we.denoto/ of the d~rected qraphs obtalned from G by . "'-~ 
assiqn1ng one, and on~y O~è, direction to each edge of G. 

We shal!, refer to a d1rected edge' as an~. We say that .. 
G 1s acyclic if 1t does no~ contain à d1rected cycle. By 

a bad P3 we m~,an the qraph with vertice5 a,b,c and arcs 
... . 

ab, hc (and no other arc). . An orien~ation G of a qraph G ~ 
,," , 

+, 
i5 transitive if G does not contain an in~uced bad P3 • 

By the above def1nitiona, a graph G i5 a comparabi11ty 

graph if G admits an orientation G such that G i8 both 
. f- -

aeyclic and. transi tive. (To obta1n G we only need direct 

a to b if ab 1a an edqe 'Of G, and a ( b l'n the péset.) 
. 

The following eleqant arquaent of Berge (1973) shows that 
" . 

compar~blli ty qraph~' are perlect, wj..thout rely1nq on 
1 

DU wo rth 's theorem. (Pu1Jœraa1 CI972) also 9rcIYed tha~ c::œparabilit:y 

are ~ect.) 

\ 

\ 
,- \ 

! --
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Theorem 3.3.1 (Berqe (1973)J 

Every comparablllty gFaph 18 perfecto 

Proof 

By induction on the number. of vertlces. Let G be a 

90mparability graphe We only need prove that w(G) • X(G). 

Dy a directed pat~ from vI to vk ' we Mean a sequence 

Vl'~2' ••. ,vk· s,uch that vivi +l is an arc. Let G he the 

transitive orientation of G. Let tex) denot~ tfte length 

of the' longest directed path from x plus one. Since G is 
; 

acyclic" t;(x) is finite. 

~y the transitivity of G, each directed path induces~ 

a clique. Let k he the largest number amonq a11 numbers 
1 

t(x). We'hav.e w(G) ·'k • 
.. 

Consider a co1ourinq of G ~y th~ col ours l,2, ••. ,k 
, . 

sùch that each vertex x receives the colour t (x). No two adja':" 

, ' cent vertices x,y èan receive the sarne. colour, because ~f 
1 , 

xy,is an arc, then tex) > t(y). Thus, we have XCG) ~ k. 

Since X CG) ~ CA) CG) - k, i t fo11oW8 that X CG) ,. w~(G) "k.D 
Now, we cao describe a theoum of G.houila-Houri (1962). 

Theorem 3.3.2 (Ghouila-Houri (1962») 

If a graph G admi~s a transitive orientation, then G 
" 

~dm~ts an Qrientation which is both acyc~lc a~d transitive. 
&' 
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Proof 

Dy induction on the number of vertcies. Let -G ".(V, E) 

be a qraph that admits a transitive orientition-G. 

First, note that if three vertices a,b,e, induee a 
, .. ~ , I,~ 

directed trianqle in G, then no' vert$!x:outside X - {a,b,et 

can be adjacent to exactly one vertex in ~. 

Now if G is acycl1c, then we are done. Otherwise, G 
contains a directedjcycle. By its transitivity, G ean not 

'. eontain a chordless directed 'cycle with more than three 

vertices. Thus, we can assume that there are vertiees 

a,b,c with arcs ab, bc:-,ca. We only need- consider two cases. 

Case 1. G contains a homoqeneous set Y. 

Let Gl be the subgraph of G induced by (V-y) V {x}, 

where x 1s an arbi traty vertex of Y. Let G
2 

be the 

subgraph of G induced by Y. By the induction hypothesis, 
, . 

we can direct the edqes of each Gi 80 that Gi is both 

acyclic a~ransitive. To·obtain a t~ansitiv~ and acyclic 

orientation of G, we only need.add th~ arcs yz if (i) 

Y E: Y, Z E: N(Y), XZ 'E: GIO~if {ii,),y e: N(Y), z. E: Y, 

xz e: al. 
. \ 

CMe 2. G does not con'tain a homogeneous set. 

We can assume that thera ia a vertex x outaide 
'-'<1 

x • {a,b,c} w1th r N (x) Il,' X l' • 2, fo~ otberw1se X 1a a 

"T, 

, ~ 

. , 
.. 

~ 
1 

1 • 

. , 



" 

51 

homo~ set. W1thout loss of gènerality, ~ssume that x 

ls adjacent to b, c, and nonadjacent to a. We must have 
..... ... 

cx,xb € G; for otherwlse G 1s not transitive. 

-< Let A be the set of a11 vert1ces y snch that cy, yb t G. 

We have lAI ~ 2, aince x t A, and Cl' € A.~ If A is a homo- . 
. \ 

geneous set, then wè are done. Thus, there la a vertex 

y ;. A with ya1 '€ E, ~a2 ;. E for sorne a1'~ € A. Conside.r 

the tr1an~~e {a1,b,c}, we s~e that y 18 adjacent to either 

b, or c, or both. Consider the trtahgle {a2,b,è}! we .ee 

that y must be adjacent to both band c. Since ya2 ;. E, 

it follows that cy,yb e: G. But then y must be in A, a 

. con trad1ctio~. 0 
By an odd walk,> we shal1 mean a sequence of (not 

necessariIy d1stinct) vert1ces vO,v1 , ••• ,v2k such that 

~ivi+l 1s an edge, and v i vi +2 1s a nonedge. (As usual, 

the subscripts are taken modulo, 2k+I.) The fol1ow1ng 
1" 

resuit (announced in 1962) of Gilmore and Hoffman provides 

another characterization of comparability graphs. 

Theorem 4.3.3 (Gilmore and Hoffman (1964» 

A graph 18 a comparablli ty grapli' if and only. if 1 t 

does not contain an odd walk.O 

It Is ea8y to see that, by Theorem 4.3.2 and Theorem 

4.3.3,. comparabl1ity qraphs'can be recogni%ed in polynom~al 
. 1 

, time. (This fact was mentioned in Gilmore and Hoffman (1964'.) • 

. , 
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4.4 Line-Graphs of Bipartite Graphs 

A graph fs bipartite if its vertices can be partitioned 

into two disjoint s~able sets. It is easy to see that 

every bipartite graph is perfecto A line-graph of a bi-
1 

partite graph G is a graph H whose vertices correspond to, 
'& 

. the edqes of G, iWp vertices 'of 'H beinq adjacent if and , 

only if their corresponding edqes shaie an endpoint in G. 
, 1 

To show that Une-graphs of biparti te graphs ar~ perfect, 

we shall use a well-known result on "matchlnqs· in graphs. 

We shall need introduce a few definl tions • 
. 

Let G - (V,E) be a graphe A subset M of E ls called 

a matchfnq of G if no two edges- of M share an endpoint • 

• By m (G), we shall denote the number of edges in a larqes~ 

matchlnq of G. A cover· .of G is a set C of vertices such 

that each.edge of G has at l~ast one endpolnt ln C. By 

4.4.2 191'6) . , 
bipar~ite graph G has m(G) • c(O). 

. " The followinq • e1..éqant proof la due ~o Lovasz (1975') '" 
J 

. , 
Proof of Theorem 4.4.2 

Let G' be a emallest., eubqraph of G· (V,E) wlth 

", , .. 
, . 
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, '. 
c (G') :2 e (G) • We. claim that the edqe-set of G' Is a match­

inq~ This will establish 'the theorem s.inee we will have 

m(G) ! m(G') :2 c(G') = c(G). • 
, 

Assume the contrary, and so G' ha~,~ vertex x adjacent 
, 

'to two vertices Yl a.nd Y2. Write cCG) - c. Dy the mlni-

, mality of G', we have o(G' - YI Y2) < c and so there is a 

set S1' with Si fV, Isil =- c - l, such that Si is a . ' 
eovèr of G - xYi. Sinee the edqe xYi -cannot have an endpoint 

in Si' we have x'Yl ; Si. 

Wri te S = 51 {\ 52' 151 :II t, R • (Sl - S) U (s~ - ~~}. 
We have' RI,. 2 (c":l-t) + 1 :II 2 (c - t) - 1. Note that the 1 
vertices of the subgraph H - [R)G' can be partitioned into 

two disjoint stable sets (H 1S bipartite) .' Let T be the 

, smaller of these bo stable sets. We ha.ve T < c - t - 1. 

Now, we cla1m,: that TUS is a cover of G': if an edqe is 

induced by R, then T covers it; if an edge 'ls not {nduced 
, , 
by R, t~en it can meet bôth 51 and .. s2 only if i t has an 

~ndpoint in Sl t1 s/ - S. But then we have 1 T U 5 1 :II c-t-l+t = 
: e - 1 < cCG') :II e, a contradiction.O •• 

. . 

Let L (G) be the, line-graph of a, bi'partite qraph 

G - (V,E). To see that L(G) la perfect ve only need no-
, , . 

tice thataCIi(G» -m(G),. c(G) - 9(L(G»; and soL(G) la 
" , 

perfect by the Perfect Graph Theorem. 

Edmonds (1965) desiqned a polynomial-ttme algor1thm 

to find a 1argest matc)ing in a qraph. The problem of 

" , 

. .. 

/ 

... ,--"~ 
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determining the pa~ameter c (G) , of a graph G ls NP-cpmplete 

(Cook (1971». 

A claw 1s the qraph ~ith vertices a,b,c,d and edges 

ab,ac,ad (and no other edqe). A diamond is the graph with 
.. 

vertices a,~,c,d and edges ab,bc,cd,bd,ad (and no other.edqe). 

We·shall call a graph Berge if lt does 'not contain an induced 

subgraph isamorphic to an odd chord1~ss cycle with at 

least five vert~ces, or to the complement of such a cycle. 

It is easy to see that i~ G is a line~qraph of bipar­

tite graph, then G i8 Berge, claw-free, and diamond-free. 

Parthasarathy and Ravindra proved that c1aw-tree Berge 

graphs (1976), and diamqnd-free Berge qraphs (1979) ~re 
- ' l,' _ • 

perfecto (Actually, there is a flaw in their proof of the 
~, . 

latter result; a correct proof, based in part on the 

,Parthasarathy-Ravindra technique, has been obtained by 
, " 

~.ucker ( 19 84' .) , 

4.5 P 4-Free Graphs 

~ , 
A ~raph 1a ~4-free if 11:: has 'no 1nduced P4- P4-free 

• 
graphs have been studied by Many people; terms synonymous, 

with ·P4-free graphs" ~nclude cographs (Corneil, Lerche, 
~ , 

Stewart-Burlingham (1981», O*-graphs (Jung (1978», and 
~ 

HO or Hereditary Oacey graphs (Summer (1979». Recently 

~orneil,. 'Perl and, S1lewàrt-Burlinqham (1984) des~qned a . , 
linear-t~e alqor~thm to recognize P4-fre~ graphe. 

\ 
" 

" ' , 

' .. 
1 _ 

". 
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Lerchs H971, 1972) and Seinche (974) 1ndependently proved 
1 

th~t p 4-free graphs are perfect. 1 In sections 10 and 11, 
" . 

~e ahall refer to the fOllowing theorem of Sglnche rnany 
~ 

Urnes. 
" 

Theorem 4.5.1 (Seinche. (1974» 

U a.'graph G is P 4:'free, then either G or G ls dis­

connected. 

Proof 

Let G" (V,E) be a P4-free 9X'aph. 

Suppose both G a~d Gare connected. Let A be the 

srnallest induced subgraph of G such that A has at least 

two vertices and such that A and A are both connected. 
-l( 

x be a ve,rtex whose removal would disconnect A (ve can 
'" . 

always interchange Gand G, so that this is the case). 

Let 

Slnce A is connected'J there ls a vertex y in A - < x such 

that xy t E. Let A' be the connected component of A - x 

that includes y. Let us parti tiO'n the set of vertices ln -
l' 

A' into disjoint ~ets Rand W such that .. 
.../ 

(1) , U 1: R if ux t E, 
, , - ., 

(H) u t W if ux € E. 
~~ 

Slnce A ls connected,' there ls a vertex v out8ide 
, , 
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A'V{X} such that vx f: E; note that UV tE for any vertex 

u in AI. Since AI is connected, there is a ~path P from x 

t:o y: but the only edges leaving AI are edges from W to x, 

this path must include vertices w ~n R, z in W sueh that 

ZW E: E. But the vertices V,X,Z,W and edges v~,xz,zw forro 

a P4' 0 

Corollary 4.50<\1 (Lerchs (1972), Seine he (1974)) 

P 4-free g~aphs are perfecto 

Corollary "lI.5.1 follows from Perfeet Graph Theorem 

and Theorem 4.5. l'. 

Corollary 4.5.2 

If G 18 a P 4-f.ree graph wlth at least three vertices 1 

then G centains a homegeneous set. 

. 
4.6. P 4 -Sparse Graphs 

A graph G - (V, E) is f4 -sparse if no subse't of V, 

with five vertices. contains two distinct P4's. ·By defini-
(!' 

tion, every P 4-ftee graph i8 P 4-sparse. 

A graph G ". (V,E) will be called a spider if its 

v'ert~ces c:an be labeled al' a 2 ,· .. , ak,bi, b 2 " .... ' bJc or 

t,al'a2' •••• Clk'bl'b2' .••• bk such tHat: 

,0 
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(i) aia j t E for aIl 1: and j 

( H) bib j 
e: E for all i and j 

(HU aibj ..e; E if and only -if i ::1 j 

(iv) If t 1s present, then we have tai t. E, 

tb j e: ~,for al! 1 and j. 

r 
1 

The complement of a spider w"ill be called a cospide!'. 

Theorem 4.6.1 (Hoanq (1983» 

If G is a P 4-sparse graph, then G contains a homo­

geneous set, or else G, or G, 19 a spider. 

Proof 

Let G "" (V, El be a graphe We can assume that G has 
~ 

more than two vêrtic~s, or eise G 1s a spider. Let H (be the 

subgraph of G such that H contains five vertices and at 

least two P 4 1 s. Our proof 19 presented in guise of an" 

algorithme Given, as input the qraph G, the algorithm 

returns..as output one of the following: 

(i) A subgraph H. 
. 

,(ii) ..... A homogeneous set Y • 

(111) A spiijer 

(1v) A cosp1der 
• 

c 

If G is a P 4-sparse qraph, then (1) can not be returned 
s 

. ..... 

---1 

c 
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by the algor1thm. Thus, the theorem holds. The àlgorithm 

is as folloW8: 
4-

1. If G i8 P4-free, then by Corollary 4.5.2, G contains 

2. 

a pomoqeneous set Y, return Y and stop. 

Set 

ual'U~2 ' u E P if E and ubl,ub2~ E 

u E 0 if ual , ua2 ri E and ub1 ,ub2 t. E 

~ 

U E R if ua l ,ua 2 t E and ub1 , ub 2 "E E 

If sorne vertex w* other than al' b l ,b2'~ lies outside 

P,O,R, then return the subqraph H induced by 

a 1 ,bl ,b2 ,a2 and w* and stop. 

3. As long as there are adjacent 'vert1ces a e: Q, and 

4. 

b E: R, repeat the followinq operations: 

3.1 If sorne w*e: P has w* a tE or w* b t e: (or both) 

then return the subqraph H 1nduced by al' bl'b, a 

and w*, and stop. 

3.2 If some w* e: 0 has "w*~ e: E or w*b ( E (or both) 

then return the subgraph H 1nduced by al' b l , b, a 

and w* and stop. 

3.3 If some w* € R has w*a e: E or w*b t E (or both) 

then return the subgraph H 1nduced by a1,b1,b,a , 

" 
l-

and w*, and stop. 

3.4 Delete a from Q, delete b 'fram R, set 4k+l .. 
, 

a, b k+1 
.. b, and replace k by k+l. 

If k ::a 2 and some u E P ls nonàdjacent to some v e: R 

__________________ ~d~~ ____________ ~ ______________________ ~ _____ ~ _______ ~ 

./ 

/ 
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then set 

x • al' y • bi' Z + b2 , t + A 2 , 

al'" y, b
l 

.. t, b 2 .. x, a 2 .. z, 

39 

Replace G by G, interchanqe P and Q, and retu~n ~o 

step 3. 
, 

(Note that a=u, ànd· b-v have just become available.) 
. . 

5. lf k > 3 and some u e: P is nonadjacent to some "v e: R, 

then return the subqraph B induced by a 1,u,b2 ,v, and 

b3 , and stop. 

6. If P V 0 ~ {l, ,then set Y ={ a 1,a2 ,···,'ak , bl,b2,···,b~} 

U R, return the homoqeneous set> Y and stop. 

7. If IRI 2 2, then set Y • R. Return the hom9qe~eous 

8ét y and stop. 

8. G o.r G ia a 'spider. Return this spider and stop.D 

Lemma' 4 1 6 • 1 

Let G be a qraph with à homogenecus s~t Y. If there 18 , 

a P4'~ith at least one vertex in Y and at least.one vertex 

not in. Y, then this P4 has preciselY,one vertèx 1n Y and 

three vertlces not-!n Y. Furthecnorè, if such a P4 18 

pœ_.nt, then G 18 not P 4 -eparse,_ . ' 

Proof 

Since y le homoqeneous, "the set of verticea outaide Y 

/ 
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can be partitioned ilto disjotnt sets A, S su ch that, for 

each vertex Ut we ,ha e' 

(i) u e A if ux t E whenever u t Y, ,lÇ E Y 

(!i) u e: B if ux E E whenever u t Y, x E Y 
. 

If there 1s one P4 with at least one vertex in Y and 

at least one vertex not in Y, then this P4 has at least· 

one vertex 1n B. Thus, sueh a P4 can bave only one vertex 

in Y. So, its 'vertices can be enum~rated as a,h,c,d suçh 
1 - ' 

that we have either a E A, b,d e B, c E Y, or a,b E A, . , 

C E B, d ~ y. Since fY) .? 2, the're i.s a vertex e 1n Y... . 

such that a,b,c,d,e induces two distinct P4·s.D 

Theorem 4.6.2 

If G is a P4-sparse ~, then G satisfie~ at least 

one of the fOllowing three cond1tions. 

(1) 
. , 

G i. a spider or co.plder. 

(11) G i. disconnected • 
..., 

(11i) G conta1ns a clique cutaet. 

Proot 

Let G • (V,E) be a P4-sparse graph. We can a •• ume that 

G 1s not a sp1der or cospiàer. Now, Th.or~ 4.6.1 impli •• 

that.G contains a hamogene~us set. Choo~e Y tO he ~be homo­

geneou. set that lIu1mize. 1 y V !UY) 1. (Reeall that N CY) 

.J 

1 

" -

, . 
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III 
stands for the set of aIl vertiees x sueh that x t y and 

xy € E 'for some y E Y.) 

If V • Y U N(Y), then we are done: G is disconnected. 

Thus, the set N(Y) • V - (y V N(Y» ls nonempty. Let 

Zl' Z2' .•. "he the conneeted eomponents of G - (y V N (y) ) • 

L~t N1 ,N2, ••• be the eonneeted e~ponents of the subgraph 

• of G i~dueed by NCY). Let N* be the union of all eomponents 

Ni sueh that Ni consists of a single ver~ex. 

Now, if there ia no edge zv vith z t NCY) and v t 

N(Y) - N*, then we are done: N* is a clique eutset in G. 

Thua, there i8 an edge zv such that z € N(Y) and v.is in 
1 

some Ni that has at leaat two vertlces. Now, Ni must be 
~ 

a homogeneous se~ of G. (If there 1a a vertex x vith 
1 

N (x) n Ni .; p, and N (x') '-1 Ni' ~hen ~e have x € N (y); sinee 

NiiS- eonnected in ,G, the,re are vertices nl'n2 in ~i vith 

xn1 e E, xn2 t E, n1n2 t Et thus each vertex in Y fo~s . 

a ~4 with x,n1,n2 • By Lemma 4.6.1, this is impossible.) 

But then we have 1 Ni,U N(Ni)1 > 1 y V N(Y)I, eontrad1cting 

our choiee of Y. 0 

) 
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5. PERFECTLY 

~\ . 

ORO ERABLE GRAPHS ~ 

A natural vay of cOlouring the vertioes in a qraph 1s 

to o.rder them in a sequence vI' v2 ' .... , v n. Then,· :'Jcan the 

sequence'fram vI ~o vn and assiqn to each v j the smallest 

'. positive i.nteqe,r f'(v j ) assigned to none of ita n~ighbours ' 

vi With,i < j. We shall reter to the qraph w1th,the Itnear 

order 9n the set of its vertices as an ordered graph, ~nd 

to the procedure of ~ssiqning colours to t~e vertices of 

an ordered qraph as the qreedy procedure. 

'_.~-I The greedy procedure may not neeessarily q1ve the 

b t colouring. Consider the graph P4. with vertices . 
a,b,e,d~and edqes ab, be, and cd, and the followinq four 

dlstinct orderings: 

a. b c d 

Figure 5.1 - ft 
0 0 0 a < b < C < d 

1 2 l' 2 

\], 
a b d c 

Figure 5.2 
~ 

a < b < d < C 
~ 0- 0, 

• 
1 2 1 3' 

, , 
• 

f 

", 

, ' 

\-
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, , 

" 

a d b c 

Figuref 5.3 

~::::;~ 
1 l ,\2 3 

. 1 a· d C b 

F1'~re 5.4 

1 1 2, 3 

. , 

a<'d<b<c' 

. " 

y-­
a<d,<ç<b 

The" greedr pro.c~dure produe.es 'an optimal cOlourinq 
, ~ 

of ~he ,ordere..d gra,ph .. in Figure S.l, .but 1 t d?es no~ do 

so for ~he orœered graphs in Fiqure~ 5.2, 5.3, and 5.4. 

In particular, the graph in Figure S.l'has f(à) .' f{c) ~ l, . .. \ 

, ~ 'f ... \' ' 

and f (b) • f Cd) • 2. ,T~e graphs in Figures 5'.2- and 5.3 
,-

have fec) • J"and the'grap~ in, Fiqure 5.4 has f(b) • 3 • 

. FAct 5.1 

, 
For ~very, qraph, there 18 .·lwaya an order1ng on whic:h 

the greedY.prqeedure produces the optimal colourihg. 

PrQof 

~ L~t G be an· unorderf,td graphe lind the optimal colour- ;'1 

Q , 

.. ' . ' ; ~ " 

, " 

\ ' 

., . 

.' 
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1ng of G by "colours" 1,2, •. :,k for~solJ\e k. For each· 

vertex v in G, let g(v) be the colour number assiqned to 

v. Order, t.hetvertic~s, of à in a 'sequ~ce vl<v2< ••• <v~ 

such tha~ i < j Wh~never q~ < q(~j)i. We claim that 

the colourinq f produced by th\ qreedy procedure has 

, lev) ~ q(v) for any vertex v: Obv1ously f(v1 ) ~ q(v1)'= 

1. Consid~r a vertéx v j ' j > l, in the sequence. By 

64 

the induction'hypbthesis, each ~ertex'vi with i' < j has 

f(v i ) ,~ q(vi ) o' Consider all ne1qhbours Vi of v j such ~hat 
\ 

1 < j. ,We know that q(v1) < g(V j ), because if q(vi) • g(V j ), 

then v 1 is no,t a ~e~qhbour of v j 0 Thus, ve hÂve f (v i) ~ 

q(vi ) < q(v j ) . for ail neiqhbours .vi of v j ' Since f(v j ) < 1 + ; 

max 'f(v i ), it follows that l(v~) i ~(Vj). The proof 1s compl,ted.O 

An ordered P 4 "ith vert1ceà a,b, c, d, edqes ab,.' bc, cd ' . 

. such that a < b, d < c 1s called an obstruction. To put 

1t differently, an. obat~ct10n ia any one.of th,e three . 

ordered graphe in Figures 5.2, 5.3 and 5.4.' 
,. 

As ',in Chva ta 1 . 
(~981), ,let the Grundy number be t~e iarqest i~teger f(v;l'} 

used by the qreedy procedureo. A 1inear order on the set 

of vertlces of a qraph will be called: < 

" , 

(1) 

(11) 

admissible if it creates no obstrUct1on~ 

perfect if, for each 1nduced aubqraph , . ~ , 

Grundy number of H eq~als X(H). 

It 1s èa8Y to'see that every perlect order 

81ble. A proo~ of tne converae relie. on the fOllowlng . . 
facto 

( 

.~ '\ 

> .. ' 

" 
, , 

J 
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Lemma 5.1 (Chvatal (1981) ), , , 

Let G be a graph and let 0 be a set of pairwise adja­

cent vertices in G such that each w € Q has a nei9,hbour p (w) 

.' 0; let the verticea p(w) b~"pairwi8,e rionadjacent. If 
, ) 0 

, " 1 • 

there' is an admisai~le ordfr < s~ch that p(w) < w for ail 

w € 0, ~he~ some p(~) ia adjacent'to'all the'vertices in' J 

Q. 

Proof 
, ' 

By induction on,t~e'number of vertic~s in Q. For 

each w € a; the ~nduc~ion hypothesis quarantees the exis-
, 

tence of a vertex w* E Q such that p(v*) is adjacent to 

'ail the vertice~ in 0 except poisibly w. In fact we May 

assume that p(w*) i8 not adjacent to w~ for otherwise w~ 
1 

are done. Now, oit fOllOW~ t.hat the ~'3 which aSSi?nS 

w* to w is one-to-on~ and ~llerefore J: onto'. In parti,,:,: 

cular, with v standing fox: that vertex in 0 which canes Q 

" 

first in the admis.ible'order, there are vertices b,d E 0 

8uch tut b* • v and c* - b. But then 'there ia; ,a ,contra-: 
.. 

diction: the vertices a,b,c,d vith a .'p(b) and d • pCv) 

constitute o~n 'ob,truction. 0 

/ <:;\ . 
Theorem 5.1 . (Chvatal (198l)~ . . 

} "_J' '1:,1-

A 'Ù.near order oi'th~<',et of vertices of a 9raph, 
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" 

ia perfect if and only if it is admissible. 

Proof' 

_ The ·only if- par~,is 'trivial; the -if- part will be 

proved ~y induction ?n the numbef of ve~tices. Let G be 

" a graph yi th an, admissible order < of the set of i ts ver-
\ 

tice~, and let k stand for the Grundy number of this 

ordered graph, By vlrtue of' the induction hypothesis, it 
. , 

will suffice t.o show that the chromatic number o:f G 1s at 
, . ' 

least k. Thus', 'it w1l1 suffice to find k pair,wd.se adja-

1 cent,vertices in G. For this purpose, consider the amall-
" \ ' ' " .... If :" , 

~t i sqch that there are pai'rw!se adjacent vertices , , 

W,i+l"wi +2",.,Wk wit~ 't(wj') :1 j for ail j. (Note that 1. is 
, ' 

At· most; k,...l, f~r k .?, 2,.), If i,"oz -0,1 then we have found' k 

pairwise adj~cent ve,rtices~ otherw1se. each wj has a ne1.gh-

b,o~r p(w j ). such t~at .p~Wj) < .w j an(l f(p(w j » .. 1.. (T'o 

s'~e this., s~ppose ther~ 1s a vertèx wj wi'th f(p(w j » ~ 1, 
\ ~.. ~ 

'; then we .have,j i 1, this is a con·tra~1cti~n.) But Lemma 

S·~,l ~p'lies the existénce of a vertex v w1.t:h fCv)"_.i, 
, . 

aajacent to all the vert1ces wj ' which contradicts the 

m1niInality' of 1. D' , 

k graph 18 ,called perfec~1y ordérable if it admits an 
\ " 

admissible ordët. Recoqni~inq' p~rfectly orderab,le graphs 
, ," t .. 

ln -a ~ol~nomlal tim!! ,18 '. ~n open prqblem.. Bowever, Th~orem: 

'" 
{ 
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5.1 tells can recognize perfectly' ordered graphs 
, 

(It is sufficient to lOok for an 
( 

obstruction in the ordered graph; if this graph has n 

vertices.then it has at most (~) P4's.) 
1 

A property related to perfect~on has been studle~-by 

Berge and Duchet (1982). A graph is called stronqlY per-
, . 

fect if each of, its induced, subgraphs H contains a stable 

set meeting aIl the maximal cUques i.n H •. ,(Here" as usual, 

"maximal" is meant wi th respect to set.-inclusion, 'not ·size. 
, 

~ In particular, a maximal clique is not necessarily largest.) 

Theorem 5.2 (Berge and DUchet (1982)') 
.' 

Strongly perfect graphs ,are perfecto 

-Jo Praof 

, Let G • ,(V,E) J:;>e a IJtrongly perfect grap~. 

Usin'q, induction on the number of vertice~, we only need 

prove X(G) - w(G). Let S be a stable sei meeting aIl the 

maxtMal cliques in G, H be the subgraph of G induced by 

'v .j, S. ,Clearly w(H) - w(G) - 1., By the incS;uction hypo-
, / 

~heài., H i. pérfect, and so X(H)~. weB). We can colour 

the 
1 

pairwise nonadjacent vertlces in S by an extra colour 

and have X(G) • w(G). 0 
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Theorem 5.3 (Chvata1 (1981» 

Every perfectly orderab'le 9~h ,iS strongly perfecto 

Proof 

It wiil suffice to find, in an arbitrary.graph G wi~h 

a perfect order <, a stable sét meetlng aIl the maximal 

,cliques in G. We claim that Scan be found by the fo110w­

Ing algoritnm: scan the perfect' order\ng v l ,v2, ••• vn 
from v l to vn and place each v j in.~ if and on1y if none 

, 
of its neighbours vi (i < j) has been p1aced in S. Indeed, 

if the resulting stable set ls disjoint from some clique 

"0, then each w E: 0 has a nèighbour p(w) ln S with p(w) < 

But then tht! Lemma 5.1 1mplles the existen~e of a vertex, 

v E: S adjacent to a11 the'vert1ces in O. Thus, 0 is' not 

maximal. a 
'1 

It'may~e worth mentioninq thàt 

(1) there are stronqly,perfect qraph~ whlch are 

not perfectly ordera'bleJand 
, \ 

J (11t thère a're perfect"graphs wh1ch are not ' 

stronqly perfecto 

An example of (1), taken fram Chv:tal (1984), ls the 

qraph in Fiqure 5.5; an ex~ple of (il) ls an~,graph 

ë2k with k ~ 3. 

w. 

" 
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6. TWa CLASSES OF PERFECTLY ORDERABLE GRAPHS 

6.1 Introduction 

In this section, we shall characterize (by minimal 

forbidden induced subgraphs) two families of ~raphs such 

70 

'" that, for every graph G in the first (or the second) , 

family, the ,Welsh-Powell (or the Matula) colourlng ~euris­

tic delivers a perfect order on G. All results presenteq 

in this sectiorl a~e obtalned jointly with v. Chv:tai. 

6.2 COlourlng Heur!stlcs and Perfect Orders 

Recall that the greedy procedure (whicti is a graph-" 

cOlouring heuristic), given a graph G, proceeds in the 

fOllowing two sta~e8: 

(i) impose a linear order < on the set of vertices 

of, G, 

',(li) scanning the vertices in this order, assign 
~ 

l to each ve,rtex y the smallest positive integer 

assiqned to rio neiqhbour x of y (x < y). 

Welsh and Powell (1967) proppsed choosing < lq such 

a way that l with dG(x) standing for the degree of x'in G, 

(6.2.1) 



1 , .... , 

Matula (1968) propoged chooslng < ln such a way that 

dH(x) ~ dH(yl whenever x < y and H 19 

the s':1bgraph of, G Induced by all z with 

z S y. (6.2.2) 

We sha11 calI a graph G Welsh-Powell perfect if e~ery 

order < satisfying (6.2.1) ls perfecti we shall calI G 

M~tula perfect if every order < satlsfylng (6.2.2) ls 

perfecto 

Theorem 6.2.1 

~he fOllowlng two conditions are equivalent for every 

graph G: 

Proof 

fa) AlI induced su~ of G (lnc1uding G Itself) 

are Welsh-~owell. perfecto 

(b) G has no Induced subqraph lsomorphlc to one of 

the graphs F1 ,F2, ••• ,F17 in Fl~ 6.1 

Cbecklnq that (a) impliea (b) la a routine matter: 
( 

we only need verlfy that none of the seventeen forbldden 

induced subgraphs là 'W~1àh-Powell perfecto (The non-

.1 

perfect orders sstlsfyinq (6.2.1) are suggested by the labels~ 

at the vertlces in Figure 6.1.) 
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To prove ttlat (b) implies Ca), consider an arbi trary 

graph G satisfyinq ~~): we only need prove that G itself 
, 

, is Welàh-powell perfecto For this purpose, we assume the 

cpntrary: now G contalns a chord1ess path with vertices 

vO,Vl ,v2,V3 and edqes vOvl'vlv2,v2~3 such that dGCvO) ~. 

dG(vl ) and dG!v3 ) ~ dG Cv2). For each vertex w of G other 

than vO' v 1 ' v2 ' v 3 , write 

with ai (w) := 1 if Vi and w are ad~acent, 

otherwise. With nk standinq for the 

and a1 ew) ~. 

number of vertic s w 

such that k (w) = k, 'Wé have <; 

dG (va) = 1 + n .+ 1 n 3 + nS + n7 + ng + nU + n 13 + nlS' 
1 

dG Cv l ) :II 2 + n 2 + n 3 + n6 + n 7 + nia .+ n ll + n 14 + n1S ' 

dG(v2 ) = 2 + n4 + ns + nE; + n 7 + n12 + n13 + n14 + nlS ' 

dG(v3 ) =- 1 + na + ng + n 10 + n 11 + n12 + n13 " n14 + nlS· 

Rence the inequa 1 1 tiea dG (v 0 ) ~ dG (V 1) aad dG (v 3) > 

dG (v2") m~y_ be wr~t:ten as 

It. '1s a rout;ine tasJt to verify that every solution of 
\ 

(6 • 2 .3)' in nonneqa t1 ve inteqe rs nk r.nust have a t 1 eas t one • 
. ~ 

, " 

., 

1 t 
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r ' 

( 

of 'the followinq ~roperties: 

(i) n9 L 1 

(il) ni LI, nS > l, 

,(Hi) - Dl L l, nll L l, 

(1v) n13 >' l, no/L l, 

'Cv) ,n13 > l, nl.'v ~ l, 

(Vi) n10 ~-f/,'~l-~ 2, 
, ~-

(, (vii) n lO , L l, n13 ~ 2,' -

,(Viii) n10 > l, .nl LI'; n13 > l, 
, \ 

(ix) nS' L l, na L 2" 
, 't ~ 

(x) 'ns' ~: 1, nil ~ '2, 

, (xi}' '~s l 1,'_ nS_ ,~'l, n ll L 1 .. 

'Another ro'ut1ne' task '1s to v~r1fy that 

in CAle - (1), F contains Pl' 

, , 

," 

,in CAse (ii), F conta.1ns F 2 or F3 , ~ , 

in cases (i11) and (1VJ) 1 F contains P4 or Ps' 
(J' in ca.se (v), F contains P6 or P" 

r-' 

in cases '(vi) and (ix), P conta1.ns '2' Fa' '9' 11'10" 

FU or Fl~' .. "/. 

74 

in cases (vii) and ex), F contains FI' F13 , or FU' . 

in"cases (v111) and (xi), F conta1ns,F1 , '5' F1S ' 

\ ' 
Thus, G violates (b); this contradiction complete. the 

proof.O 

.. 

,\ 
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The al)alogue of Theorem 6.-2.1 that concerns Matula 

perfect-graphs involves a family of graph5 that we caU 

bicycles. Take disjoint graphs C, CI and P such ~hat C 

i5 a cycle of length three or four, C' ls a cycle of, 

~'-\ 
75 

length three or four, and P ls a path: the path may consist 

of a single edge or even just a singlé vertex, except when 

both C and Cf~e triangles, in which case"we ln!?ist on P 

h~Vin~ .at lea t tw~ edg~s, ~ bicycle 15 a graph obtained 

from C, CI ?tond by identifylng one endpoint of P with a" , , 

vertex of C and identifyin'C} the .other endpoint of P with 

a vertex'o{ 0'. Nine bicycles are shown in Figure 6.2. 

,3 

5, 
8 

1 

6 2 7 2 2 

5~ 6 

9 ,8 

,4 1 l. 1 

5 2, 5 
, , 
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~6, 8 7 ~3 
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Theorem 6.2.2 

The fol~owing four conditions are equivalent for ' 
, 

every graPh __ ~i" \ 
"-

\, '(a) AU induced subgraph~ of G (1;nc'luding; G i tself) 

are Matula perfecto 

(b) - No induced subgraph of G is 1somorphic to a 

chordless cycle of length, a~ least five, or one 

of the graphs F 18' F 19 in Figure 6.3, or a 'b1cycie.' , 
, . , 

(q) No 1nduced subgraph F of G contains a chordless 

path w1th yert1ces vo' v 1''' , v2 ' v 3 and edges 

oVov1 , v1v2 , v 2v3 su ch that, dp (VI} = 2 ~M, 
, . -

~tx). ~ 2 whénever x E: .F. 

(d.,>-. No 1nquced subgraph H of G con tains a chordless 
, , 

path _with ver.t1ces ,vo' "1' ~2' v 3 anq, edges 

"V1' v 1Y2' v 2v3 such ~hat dH(x) ~ da(v'l) for 
, , 

" 

. l 

". 

) 

(, 

. , . 

, , 
,\ 

" 
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Proof 

Again, checklng that (af implies (b) is a routine 

matter: we only neéd verify that none of the Iorbidden 

induced subgraphs is Matula perfecto ,~Non-p~rfeç:t o~ders ______ 

satisfying(, • .t.l)a~e suggested by the--"labels at the vértiées 
, , 

in Figures 6.2 and 6.3.) 

~o,prove that (b) tmplies (c), consider an arbitrary 
.. 

graph F with the properties specified in (c); we only , 

need show, that F contains on~ of the forbidden induced 
" ' 

) subgraphs specifled in (b). For this purpose, let N stand 

for the set of common neighbours of Vo and v2 in F, and 

let A1 (i = 0,2) b~ the compone~t of F-N that contains 
. ~ 

Vi' We shall distinguish'among three ca~es:~ 

. 
Case 1. AO_ = A2 

Case 2, AO f A2 , and ,som~ vertex i~ N .has a neighbour 

,in A2' ":" v2" 
Case 3, AO # 'A2 , and no vertex .. in' N has a neighbo,ur . .." 

in A2 - v2., 

" 
In Case' l, the shortest path from ,vO to v2 in F";'N, along 

, ", 
with v1 ' i~duces ,a chordless cycle of length at least five.~ 

". In Case 2,.consider the shortest path'P.,'in A2 such that 'P 
~ .. -~ . .. .'. ~ . ' , , ' 

. " 

bas at least one edge, one end,point of P 1s v 2 , and ,~he 

other endpoint has a neiqhbour w in N. ' sice Vo and V 2', 

are the only two neighbours of 'vi" we hav w f v 1; now 

J. 

\, 

- '. 

'-.---.. 

. " 

...... 
'1. 

t .... ~ 

l ' 

• 
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the four vertices v o' "l' "'2' w induce a chordless cycI,e 

of lenqth four. If P has precisely one edqe then P along 
J 

with vo' vi' w induces an FI~;, if P has, precisely two 

edges then P alonq with vo' vl' w induces an F19 ; if P 

has at least three edges then P alonq with w induces a 

chordless cycle of length at least·five.,In Case 3, each 

vertex in A 2 -V'2 bas degree at least; two in A2 • Since 

A2-v
2 

is nonempty, it follows that A2 con tains a cycle; 
. .. 

let us calI this cycle c2 " Now, we 8h~11 distinqu~e-

tween two subcases. 
~ 

S-ubcase 3.1 N -, { VI'} .; ,. 

Sulbbase 3.2 N = {v 1 } ," 

,In Subcase 3.1 1 F con tains a chOr41ess cycle of lenqth 

four, induced QY v o' v l ' v2', and a vertex in' N - {vl }.; 

let us ca,ll, ,t;his "cycle C'l' With B standing for the sub-
.. ~ , 

graph of F induced 'by Cl" C2! and' ~ shortest path joining 

~l and Ci in A2' it,is easy to y~rify th!t B either i$ a 
. . 

bicycle or eise it contains one. In Subcase 3.2, each, 

\' vertex o~ AO has deqree at least two in ~he subqraph, of F .... , ,. 
induced by AO U {vI}: it follows that AO contain~, a cycle; 

let Us calI this cycle CO' With ,8 standing for the'sub-, 

graph of F Induce'd by CO' C2, and a shorteat path joinin<j 

Co t~n.ce.~a~y paSSing, th~OU9h vl ). lt iS easy" tO\' 

verify that B either ia a bicycle or'eise it contains one • 

, ,1 

, 
, ' 

, . , .. , • 



1 
,j 

i 
! 
1 

, " 

" 

.' , " -

, \ 

, ... 

• 

79 

,1 

Thua, we have comp~eted the proof that Cb) ,implies Cc). 

Ta prove'that Cc) implies Cd), consider ah arbltrary 

qraph G violatlnq (d); we only need show that G vlo1ate~ 

(c). For this purpose, let F denote the graph obtained 

, " from H by deletlng aU the neighbou,rs of v 1 except YO 

and v2~ ,Trivially, 'we have vO/Vl" v 2' v3 E: F and 
)/> 

~ (v].) = 2; in addition, e'ach vertex x of F has dF (x) > 
, t 

~H(x) - ~da(vl) - 2) ~ 2. Thus, G yiolates Ccf • 
. , 

To prove tnat Cd),.. impl1es Ca)~, conslder an arbl trary 

qraph G satisfy1.ng (d): we only need prove that G is Matula 
'", 

p~rfect. For this purpose, consider an. arbitrary orde~ < 
r 

satisfyinq C~.2.2) and an arbitrary chordless pa~h with 
~ ~ 

\ 
without loss of qenerality, we May assume that V 1 < v2~ 

~ ", , . 
Now we cannot have Hot~ Vo < v1 and v3 < v 2 , for then (d) 

would be violated by the subqraph H of G induçed by al.5 .z 

wi th z .s. v 2. Hence < i8 a I?eifect order. 0 \ 
Condition (c) of Theorem 6.2.2 can be, tested in a 

polyn9mial time: each possible'choice of vo' v1 ," v2.' 
'. -

Vj n(ay be considered separately (there are only OCn4 ) such 

choices·, wi th n st4ndinq for the number of vertices in G) 
\. . '. , 

and, as ~oon as 'vê, Vl~ v~' v~ ar~ fixed, the search for 

F becomes straiqhtforward. (Lettinq F' stand i·nitially 
~ '. ' 

for the graph obtai'~e'~ from G 1;>y deleting. al,l the neigh-

bour~f v1 other than Vo an~ v 2' we ~eep replacing F by 

,. , .. 

. . 
. . ,. 

• 
" 



l, 

1 
, ' 

l 1 

i' \ ' 

F-x as l~nq as F contains, a vertex x with ~(x) < 2. 

If, the qraph F obta1ned in the end still includes vo' 
vl' ~2' v~ then\G v101ates (c); else G sat1sfies Cc) for 

this particular"cho1ce of Yo' VI' v2 ' v3 ·) 

6. 3 Al gori thms 
• ,i 
, . 

" 

80 

'As ,usual, we shall denote the number ,of ~dges and the' 
" 

number oI vertices of a graph by m and n, respective'ly; ~ 

as ,usual; we ahall assume that each graph 1a specified 

by its "adjacency lista" enum~ratinq, for each vertex v, 

aIl the,neiqhbours of v. In addition, we shall assume 

, that li linear Order <. on the vertices of G 1s 'specified . -
~y an o~dered Hst w1''!'2'''. ,wn of vert1ces such that 

v'~ < w2 < ••• < w • 
" . , n 

We beq1n by SpeU1l1g out the details of an alqori thm 

J,at, g1ven a qr;ph G v1th a linear order < on the set 
" of its vert1ces; comput~s the cOIOurinq f define~ by 

, , 
(ii).. (In the formaI pres,entation of this and the fOllow--

~nq algori~hms, we shall adopt the usef~l covelltion of + 
in1tia11z1nq automatically aIl the numbers as ze~s and 

" . 
" ...... 

aIl the sets as emptY.) Bere, the ,variable Wj stands for 

,the vertéx that is about to b~ coloured; the ~u~1l1ary 

yariables ai count the neiqhbor~ x of wj vi. th f (x~ • 11 

the va,rtables St and k are not needed now, but will be 

referred to later. 

, , 

" 

.. , 

.' , . ' , --

,/ 

r 
" 
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Algori thm A. .' 

~- aIl neiqhbours x of wj 2.2 i + f (x), al + ai + l 

endfor 

t + l 

while at > 0 do t + t + 1 endwhu'e 

f(w j ) ... t, S~ ... St U -{w j }, k ... max (k,t) 

for a11 nelqhbours x o, wj do i + f (x), ai + ai - 1 

endfar 
. 

endfor 

Note tha t the ai' s a;-e reset ta zero a t the end of e'aeh 

~ecution of the main loop, and .so the number of positive 

ai's never exceeds dG(w j ). Now it follows that each éxecu- .... 

tion of the main loap takes time at mOst proportlonal ;0 
" 1 + dG(W j ), and the total running time comes to O(m + nl. 

In particular, g1ven a graph G along with a perfect . ' 
• 

arder on G, Algorlthm A finds a minimum colouring of Gin· 

o (ln + n) steps. 6"i ve~ a graph G ~long wi th a perfect 

arder on. the complement 9 of G, one May use the same 
1 

~r1nciple to find a minimum col~urinq of G. Bere, however, 
. ' 

care must be taken to keep the runnlnq Ume confined to 

o (m + n): 
• èP 

if G 1s sparsé then even just enumeratinq all 

the edqes of G would require a tiJile far exceedil'!-9 0 (m + n). 

We qet around th1s d1fficulty by' lettlng variables b1 

count the vertices x wlth f (x) • 1. To determlne f (w j ) , 

.J 
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1 

we adjust the~i'S ta account only for those vertices x 

that are adjacent to w. in the complement of G (keepinq 
J . 

tra~k of thè smallest candidate for f(w.) found so far) 1 
. . , J , 

as soon as f(w j ) i~ S~tl :he bi~s are re~nstated at their 

. original 'y-alues, and . .,properly ëldjusted to r~flect the 

~ppearance of f(wj~~ The details can be spelled out as 

, follows. 

. , 

-\ " 
, 

For j =, l,'~' ••• ,n, do 

t-+ k + l 

f9r' aIr neig1;lbours x o,f _~j do, 

j, ~ f (x) 1 b i :- b i - 1 n 

if b i ::: 0 then t +-min (t,i) endif 

• endfor 

'.- f Jw j ) ~... t, St'" St V { w j }, k ... nlax (·k 1 t) . 

. ·for a~i neighbour,a x of wj ,.~o \i ... f (~), .bi ... b i · + 1 

'endfol? 

b~ ... ' b
t 

+ 1 

endfor 

Trivially, each execution of the main lo~p takes, time at 
1 

m.0s t proport1on~l ~o'; l ,-t: dG (w j)' and so the tota l running 

times comes to O(m + n) • 

. A fast way of findi.nq a largest ciique in' a graph 
, , 

with a perfect order < ,has ':been 9.~veloped·· in section 50; -if 
l , • 

• 

.' 

.1 

, . 
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f ls the minlmum colouring defined by (li), thenany clique 

consistinq of vertices u i +l ' u1+2 ' ... , uk 'with f(u j ) = j 

for a Il jean be enlarged by adjoining a sui tably chosen 

u i wi th f (u i ) = i (unless, of course, i = 0, in which case 

the clique clearly has the larqest possible number of 

verticea). A ~,traightforward procedure based on thls fact 

will no~ be presented as an appendix to our Algorithm 

A; i t relies on the colour c>lasses S l' S2' ••• , Sk pr'oduced 

by the alqorithm (and conve~iently represented by linked 

lists) ~ its output la the characteristlc function c of the 

desired clique • 

. 
Appendix to Algorithm A 

r 

For" i = k, k - l, ••• , 1 do -- -
for aIl v in Si do ' 

count .... 0 

/ 

.for aIl nei..qhbours w of v do count: + count + c (w) 

endfor 

if count = k - i then new .... v 

end!f 

endfor 

c (new) + 1 

endfor 

Obviously, the runnlng t!me of thls Appendix ls O(m + n). 

The same principle applies in the context, of a' graph G 

) 

" 

j 

., 
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wi th a perfect order 0!l i ts complement: an appendix to 

Algorithrn B will find a largest clique in G (a largest 

stable set in G). Again, in order tQ keep the running 

time to 0 (m + n), it is crucial to avoid explici t refer-

84 

ences to the edges of G~ This is now easy to accomplish: we 

only need replace the test ncount = k-i" by "count = 0". 

Our findings can be summarlzed as fo~lows. \ 

T'heorem 6.3.1 

Given any graph G a10ng with a perfect order on G, 

one can f ind rin -time 0 {m + n} a minimum cOlouring and a 

largest clique in G. Given any graph G along wi th a per­

fect order on i ts -compleniént G, one can f ind in time 

O(m + n) a minimum clique cover and a largest stable set 

1'n G.G 

M. Syslo,pointed out to .us tha!: O(m + n) steps suf­

d.ce to compute a lineà: order < satisfying (6.2.1) and 

a Iinear order < satisfying (6.2. 2) ~ "later on, we- discovered 

that the s.ame fact has been aiso pointed out by D. Matula 

apd L. L. Beek in 1983. To make our exposition self­

contained, we shall nqw e~plain the dè~ail~. 
\ 

Arranging "t:he. vertices into a seq,uence W'1'W2 '·'· ,wh 

such that 

... 
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1s straiqhtforward: having computed first the degrees 

d(v) of aIl the vertices v and then the number n j of ver­

t1ces of degree j for each j, we only need ensure that 

= i if Jand only if 
\, 

n-1 n-1 
r n. < k < 

j=i+1 J 
E nJ' • (6.3.1) 

j=l 

For this purpose, we may use pointer 

values, i~t!alized as the left-band 

variable Pi WhO" 

s ide of (6.3. 1), j 
are gradua11y incremented unt1l they reach the riqht-hand .. 
side of (6.3.1). The array r is not needed now but will 

be ,referred to later. It keeps track of the rank of each 
1/ 

vertex in the llnear order: we have r(v) = k if and on~y 

if wk = v. 

Aigorithm C 

~ aIl ve~~ices v do 

for aIl neiqhbours of v do d (v) + d (v) + 1) endfor 

endfor 
1 

for aIl vertices v do j ... d (v) , n j + n. 
J 

+ 1 endfor 

,'~ i = no!l2, n-3, ... , 0 do Pi + Pl+l +: ni+l endfor 

for aIl vertices v do.. 

i ... d (v), k + l + Pi 1 wJ( + v, r (v) + K, PL + k 

,endfor 

J\ 
1 : 

., 
1 

. J'ô 

• r . . 
---- " 

' .. 

_.' " 
1 
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An appendix to Algor! thm C will permute the sequence 

w1 ,W2 "",Wn to make it satisfy the condition that, with 

Gj standing for the subgraph of G induced by 1 w1 ,w2 , ••• ,wjl , 

each wj has the smallest degree ln G j . 

This can be done iterativély: "'hen wj ' wj + l ' . _., wn 

have been f ixed, the va 1 ues of d (w ) wl th r < j are ad­
r 

justed to the degrees of w , in G, l' and the sequence 
r J-

"'l'w2 "" ,w j _ 1 permuted to satisfy 

-, 

During this process, the pointer variables Pi keep gettlng 

adjusted in such a ",ay that the condition 

d(w r ) ~ i if and only if r < Pi 

ls maintained for al! r with r < j. , 
Append!x te Algor! thm C 

For j = n, n - l, _ •• , 4 do 

for al! nelghbours x of wj do 

r +- r (x) 

if r < j then do 

i .. d(x), k +-min (Pi' j-l) 

wr .... "'k' r (Wk) .... r, "'k +- x, r (x) .. k 

d (x) +- i - l, Pi .. k - l 
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endfor 

end for 

Finally, let w1 ,w2 ' ••. ,wn be once aqain the sequence 
. 

produc~d by Algor! thm C. (Note that the linear order < 

deAhed by w < w 1 < ... < wl satisfies (6.2.1) '~with G 
n ·n-

replaced by its complement.) lm alternative appendix to .. 

Alqorithm C will permute this sequence to make it,. 

satisfy the condition that, with Hj standing for the 

subqraph of G induced by {w j ' w j + 1 ' ••• , w }, 
n 

eàch wj has the largest degree in Hj' 

/ 
(Note that the linear order < defined by w < w 1 < n n- < 

. 
W

1 
satisfies_ (6.2.2) with G replaced by its complement.) This 

appendix is ~n easy variation on the appendix just de-

scribed: the outer loop now runs for j "" 1,2, ... , n-3, 

the test "r "'( j" is replaced by "T > j", and the assignment 

"k + min (~i' j-l)" is replaced by "k + Pi"' 
, 

Combining these observations wi th Theorem 6.3. l, we obtain 

the following result. 

The~~em 6.3.2 

Given any graph G that is Welsh-Powell perfect or 

Matula perfect, one can find in time O(m + n) a minimllm • 



, 
\ 
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colouring and a largest clique in G. Given any graph G 
, 

• whose complement is Welsh-Powell perfect or Matula perfect, 

1 

one c'an filld in Ume 0 (m + n) a minimum clique cover and 

a largest stable set in 'G. 0 

6. 4 Addi tiona 1 Remarks ... 

1. The two classes of perfectly orderable graphs 

presented here are mu~ually incomparable: the graph FJ9 

(see t;igure 6. 3) is Welsh-Powell perfect but' not Matula 

perfect, the graph F
2 

(see Figure 6.1) is Matula perfect 

but not Welsh-Powell perfecto 
( 

,2." Recall that a graph G is'll>o§tronglY' perfect if, for 
~~ 

each induced subgraph F of G, sorne stable set of F meets 
,. 

aIl maximal cliques in F. In section 5, we have seen that 

aIl perfectly orderable graphs are strongly perfect; i t 

follows that our Theorems 6.2.1 and 6.2.2 delineate two 
'ft 

classes of strongly perfect graphs. 

An important class of strongly perfect graphs consists 

of Meyniel graphs (which we shall encounter in section,8) 

defined as gràphs in wl\ich every odd cycle has at least 
1\ ' 

two chords: strong perf~ction of these graphs was estab-

l ished by Ravindra (1982). It is east to see that every , 

graph sati,sfyinq the hYP?thesis of our Theorem 6.2.2 is 

a Meyniel graph; however, gr,aph F 18 in Figure.6. 3 satisfies 

.. 

.. 
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- . the hypotheses of Theorem 6.2.1 and yet it 15 not a Meyni~l 

graphe 
r 

Inci~entally, it is easy to see that the following. 

two conaitions are equivalent for every graph G: 

J 
(1) 

(ii) 

both Gand its complement Gare Meyniel graphs, 
> " 

G con tains no induced subgraph isomorphic to 

By our.Theorem 6.2.1, conditiôn (ii) implies that both G 

and Gare Welsh-Powell perfect; in turn, Theorem 6.3.2 
• 1 

guarantees that O(m + n) steps suffice to find a minimum 

côlourlnq, a largest clique, a minimum clique cover, and 

a largest stable set of any of these graphs . 

. , 

, 
) 

) 

, 
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"-

• 7. BRITTLE GRAPHS • 
Consider a '4 w1th vertices â,b,c,d a'nd edges ab,bc, cd. 

" 
The v~rtices a,d are c:alled eildpoi~ts ofthis P4 : and the 

veft1c~s b,c are called m1dpoints of this P4. A vertex x 

of a graph G is said to be sensible if x 1s not an endT 
Î'r' 

point of Any P4 , or x is ~ot a midpoin,~ of Any PI in G. 
/ , 

Chvatal def1ned a graph G to be brittls if each induced 
- , 

subgraph H of G has a sensible vertex. In this section, 

we shall present a sufficient condition for a graph to be 

brittle. This result was obtained jointly with Nelly 

Khou~. 

Fact 7.1 

Let G be a graph and suppose that G con tains a sensible 

vertex x. Then G is perfectly orderable if and only if 

G - x is perfecti~ orderable. 

Proof 
J 

We only need prove the "if" part. 

< v n be a perfect order of·G - x. If x ia not an 

" endpoint of Any P4 pf G, then x < v~.< v2 < < vn 
18 a perfect order of G; if x ia not a midpoint of Any 

P4 of G, then vl < v2 < .'~. < v n < x 18 a perfect order of G.D 

,,1 

\ 

\ , 
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Cqrollarx 7.1 .. , . . 
Every br1 ttle graph 1s perfectly orderable. 0 -

1 .. 

) 
Note that a vertex x 1s sens1ble in a graph G 1f and 

on!y if i t is sensible in G.. Thus the complement of a 

brittle graph is a brittle graphe 
. 

If a vertex ~ of a graph G is s1mp11e1al, then x 1s 

not a mid~o1nt d~ any P 4 of G. Thus tr1anq'Ùated graphs, 

and the1r omplements, are br1ttle. 

Fact 

1s ob~a1ned from two perfe~tly orderablé graphs . 

by subs't1tut1on, then G 18 perfectlf' orderable. 

Proof 

Write'_:
i 

\ (V,E),"'Gi SI (V1 ,:Ei ). Assume that G 1s 

obta1ned by subst1tut1nq a vertex X1 of GI by G2 • That 

is V2 1s a homogeneous set of G. Let a perfect order of 
. 

GI be Xl < x2 < . . . < x1- l < x1 < x1+1 < . . . < xr· Let 

a perfect order of G2 be VI 
(' \" < v 2 < v 3 < ... < V' We s· 

cla1m that 1!be order P = ·xI < x 2 < . . . <,x
1

_
1 < VI < . . . . . .. 

< x1+1 < ~ •• < xr ls a perfect order of G: the polnt 18 

'that lf a P 4 has sane vertex 1n V2 and some vertex in 

V-V2, ther lt has prec1sely onè vertex ln V2 and ~hree 

,,'al • . ,.,. 

< 

• 

1 

Vs 



vertices in V - V2; in other words, we can enumerate 
... 

vertices' as u1 ' u2, u3 , u4 with u l ' u2 ' u) E V - v2 ' 

u4 EV2 Such that ul' u2 ' Uj, y ls a P4 whenever yE V2 . 
1) , 

Thus P conta~ns no obstruction.O 
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, 1 
Chvatal sU9gested the study of the class ~ of graphs 

deffned as follows: G € !p if and onl~ if each induced 

subgraph of G. is a çomparabl1ity graph or else it has a 
J. 

homogeneous set or a sensible vertex. By Facts 7.1 and 
/ 

7.2, ~ ls a class of perfectly ordera~le graphs. Chv~tal 

'has constructed the graph shown in Figure 7.1. This qraph 

does not belonq to ~ and yet 1 t ls perfectly orderab1e: 
- , 

J 

, . 

Figure 7.1 

" 
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We shall investigate 'a related class ~~ defined as 

follows: G E 
1 -

~* if and only 1f each 1nqueed subqraph 

of G h~s a homogereous set or a sertsible vert~x. Triv1-

Ally, ~* eontaini aIl br1ttle graphs; an example of a 

qrap~in ~* that 1s not br1ttle ean be obtained by sub­
It 

93 

stitutinq the qraph in Fiqure 7.2Ca) for vertices x and y 

o~ the qraph in Figure 7.2(b). • 

,j 
x 

1 y 

(0.) (br 

1 

Figy.r!t 7.2 

\ 

.. 

,. . 

( 

• 
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Fact 7.3 

Let G = (V,E) be a graph wh1ch does not contain a , . 
" homoqeneous set. If some vertex x ln G 18 not'a midpoint 

of any P4 , then x is a simplicial vertex of G. 

Proof 

Conslder ~he ~et N(~} of aIl neighbours of x. If 

N(x) is a clique; then we are home free. Else N(x) in­

duces a compon~nt Y with 1 y r ~ 2 such that Y ls connecteQ 

in G. .We may assume that Y is not a homogeneous set of 
r 

G. Thu& there Is a verte~ z t (N(x) V {xJ) wlth N(z)fl Y '" ~ 

and N(z) ~ Y. Slnce y Is connected in G, there are ver­

tices u,t € Y wlth ut t E, zu € E, zt t E. But then x 18 

a mldpotht of the P4 with vertices z, Ur x, t, a contra­

diction.O 

Note that a set Y i8 homogeneous in G if and only if 

y i9 homogeneous in G, and that a vertex x is not a mid-

,point of any P4 in G if and only if x 18 not an endpoint 

of any P4 in G. Thus the following fact follows fram 

• Fact 7.3. 

Fact 7.4 
\ 

-Let G be la graph which does not contain a hOJllogeneous 
u' 

set. If G contains a vertex x ~~ich ia not an eudpoint of 

( 



~\ 
\ 

any P4 in G, then x 1s a s1mpl~c1~1 vertex of G.L 

Facts 7.3 and 7.4 show that if a graph G in q>*. does 

not contain a homogeneoujtset, then G or G conta1ns a 

simplicial vertex. ---'. 

Before present1ng the main reault of this section, 

let us establish the following facts. 

Fact 7.5 

Let G e a graph such that each induced subgraph H 

of G satisf~es at least one of the following conditions. 

(1) , H con tains a homogeneous sec. 

(11) H contains a vertex which is not an endpoint 

Then each induced subgraph H of G satlsfies (ii), 

and so G is br-~tle. 

Proof 

95 

By induction the'number of vertices. Let G be a " 

~y the induc-graph 8atls~yin9 the hypothesis of Fact 7.5 • 
• 

• tion hypothes!s, each proper induced subgraph of G satisfies 

(il). If.G also satisfies (ii), then we are done. Thus 
,. / 

G cO,ntains a pomogeneous set Y. For each y in Y, the grap~ 

G~ = [{y} V N(Y) V NCY)]G containe~) vertex y' J:hat""ls not 

.' • 

.. 

1 

• ... 
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an endpolnt of any P4 ln Gy. 
• 

Siml1arly, ln [Y1 G there is 
.dt 

a vertex y" that is not an endpoint of any P4: If y' = y" 

then yI 19 not an endp01nt ~f any P4 in G: the point is 

/ that each P 4' wl th some ve~tex,~in Y and some vertex not 

in Y, must have one v~rtex in Y and three vertlces not in 

y (Lemma 4. 6 . 1) • 

Now we have yI ;. Y: agaln by Lemma 4.6.1, y' i9 not 

an endpoint of any P 4 lin G. 0 -
Fact 7.6 

, 
Let G be a 9raph such that each induced subgraph H 

of G sat19fies at least one of the followlng conditions: 

(1) H con tainS" a hom0geneoua set. 

(ii) H contains a vertex wh1ch is not a m1dpoint 

of any P 4 • - , 

Then each lnduced subgraph H of G sat1sfies (ii}, 

~nd so G 19 brittle.O 

In section 6, we have seen that every Matu~a perfect 

qraph ls br1 ttle. 
, 

The follo~ing theorem descrlbes a class 

of brittl@ graphs which contains aIl Matulà perfect graphs 

and aIl triangulated graphs. 

\ 

" 
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Theor'em 7. 1 

If a graph G doeMs not contaln an lnduced subgraph 

iso~orphic to a Ck with k ~ S, or a PS' or the graph H 

shown in Figure 7.2b, then G 18 brittle.O 

By Fact 7.6, Theorem 7.1 18 impl ied by the following 

theorem. 

Theorem 7.2 

If à. graph G does not contain 4n induced subgraph 

isomorphic to a Ck Vi th k ~ 5, or a Ps 1 or thé graph H 

L 

shown ln Figure 7.2b, then G satisfies one of the fol101i(ing. 

. 
(1 ) G ia a clique. 

LH) G centains a homogeneous 'set Y such that Y 

lnduces a connected subg_aph ln G. 

(lii) G contains two 'nonadjacent simplicial v'ertices. 
,/ 

, t •• 

Note that Theo1:'em 7~i is best possible ln this sense: 

each of the .graphs CS', C6 , C" ••• , Ps and H faUs to 

sat.rsfy aIl conditions (i), (ii), (lU) of the t'heorem. 

We shall ~eed the fo~lowlng two lemmas. 

Lemma 7.1 

rf a graph ,G:I (V,E) does not contain !1ln induced 

\ ' subgraph isomorphlc ta a chordless cycle' with at least 

) 
/' 

1 • 



, 

five vert;~ces, or a PS ' or the graph.H shown in FiÇJure 7. 2b, 
.' 
then one of the folluwing three conditions holds. 

-' 
(i) G is a clique. 

(ii) G contains a homogeneous set that induces a 

l 
/1 - -connected aubgràph in G. 

(iii) Every minimal cutset of G is a clique. 

Proof 

Assume that G is not a cliqu,e. Thus G contains a 

cutset. Consider a minimal cutaet C of G. If C is a clique, 
, -

thenwe are dene. New the subgraph of G induced by C con-

tains at least one connected cornponent Y with at least 

two verticea. Enurnetate th~ components -of G - C as 

Cl' C2 ' •.• , Ck · If Y ia hornogeneous, then we are done. 

-Else there is,a vertex x in sorne Ci with N(x) fi Y f." 

and N(x) ~ Y. . 
Sinoe y ia connected in G, thère,are vertices y, z € Y 

with yz tE,. xy E E, xz t E. Partition the ve rticea of 
c / 

" 
Ci into dlsjo~nt sets AO' ~l ' A2 , A3 such that 

- t E AO if ty, tz 4 E. \0 

~ 

- t e: Al if ty E E, tz t E. 

- t E A2 if ty t E, tz E E. 

- t e: !3 if ty, tz e: E. 

Since x E Al' Al i8 nonempty. Since N(z) " Ci f. r/J CC 

/ , . 
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is a minimal cutsetl, A2 'J A3 is nonempty. Now, note that 

y and z are t'lia ~dP~lnts of a chordless path Pj whose 

interior vertices lie entirely in Cj . It ls easy to see 

that 

uv ,. E whenever u ( Al' v e: A2 
(7 • l) 

for otherwise any Pj with j .; i and u,v form a Ck with 

k > 5. Next, we claim that 

uv ,. E whenever U E (Al V A 2 ), v E A3, (7.2) 

for otherwlse Pj and u,v forrn.a Ps (if Pj has three verticesl, 

or Pj and v form a Ck with k ~ 5 (if Pj has at least four 

verticesl. - . 
Since Ci la connect~ there is a path v l ,v2 ' .~.,Vt 

in Ci such that vl e: Al' v t E A2 U A3 , Taking t as small 

as possible, we ensure that this path i8 chordle8s and 

(by (7.1), {7.211 that v 2 E: AO' By the min~ality of t, 

we have v 3' : .. , v t-l E AO' If ;'t E A 2 , the~ y, v l' v 2' ... , v t' 
• 

z combined with any ,~j (j ", il is a chordless cycle of 

length at least five, a contradiction. ~QW, we may assume 

that v t e: A3' Slnce y,v l ,v2 ' •.•• v t is a chordless cycle, 

we must have t = 3.. Take any P j wich j ,,"1. If P j has 

preclsely three vertices, then these three vertices along 

with vI' v2 ' v) induce the graph !I; else Pj along with 

v t induces a chardiess cycle af length at least five.O 
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A cutset C of a graph G is simplicial if in each com-

ponent of G - C, there is a vertex x adjacent to aIl 

verti ces of C. 

Lemma 7.2 

Let G = (V,E) be a graph satisfying the hypothesis 

of Lemma 7.1. Assume that G fails to satisfy either of 

the conditions (il and (ii) of this lemma. Then each 

minimal cutset C of G i9 a simplicial cutset. 

Proof 1 
Enumerate the components of G - C as CI ,C2 , ... ,Ck • 

We only need show that in each Ci' there is a vertex adja­

cent to aIl vertices of C. 

Consider a component Ci and a vertex x of Ci sueh that 

1 N (x) n Ci 1 .? 1 N (yH) Ci 1 whenever y e: Ci' We may assume 

that C ct N(x), for otherwise we are done. Now, in C, there 

is a nonemtpy set A of vertiees such that ax t E whenever 

a e: A. 

Let B b~ the set of al! those vert~ces in Ci that have 

a neiqhbour in A. Sinee C i9 minimal, B ;~. Sinee Ci 

is eonneeted,ethere is a path v l ,v2, ••• ,vr in Ci sueh 

that vI e: Band vr = x. Takinq r as small as possible, 

we ensure that the path is ehordless and that vit B 
l 

J 
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whenever i > 1. Thus, there is a vertex a in A with 

. 
aV I E E, aV i t E for i > 1. (7.4) 

By the maxirnality of x, there ls a vertex y in 

N (x) () C with YVl. t E. By Lemma 7.1, C is a clique, and 

so ay E E. There is 'a chordless path Pj between a and y 

witn at least one interior vertex, and aIl interior ver-

tices in C j for sorne j :; i. Note that this path has at 

MOSt four vertices, for otherwise Its vertices induce a 

chordless cycle with at least five vertices. 

Now, we have xVl t E Celse Pj and x,~ indu ce a PS ' 
/ 

or the graph H). This impl ies that r > )/. We have 

YV2 t E (else Pj and v 1 ,v2 induce a PS' or the graph H). 

Let m be the smallest subscript such that YVm E E. We 

have rn > r ~ 3. By (7.4) the vertices y, a, v l ,v2 , ••• ,vm 

induce a chordless cycle with at least flve vertices.[l 

Proof of Theorem 7.2 
1 

By i~duction on the number of vertices. 

Let G = (V, E.> be a graph satisfying the hypothesis 

-~f Theor~/~~2. Assume that G fails to satisfy both (1) 

and (11). By Lemma 7.1, G contains a minimal cutset C 

whlch is a Clique. By Lemma 7.2, C ls'a simpliclal cutset. 
"" . 

We only need distingu1sh among two cases. (A cutset C of 

a graph G 1s special if C 1s simplicial and G - C consists 
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of precisely two components Cl and C2 wlt~Cl having one 

vertex and C2 havlng at least two vertices.) 

Case 1: C is not a special cutset. 

Enumerate th.e components of G,,- C as Cl ,C2 '··· ',Ck • 

If there are two components'c i such that each Ci co~s~sts 

of a single vertex, then condition (lii) ls satisfied. 

Thus we May assume that there are (at least) b«:l éomponents 

Cl' C2 such that both components have at1least two vertices. 
J 

Since C ls s~pllcial, ln CI (C2) there ls a vertex x l (x2 ) 

with,N(x l ) 2 C (N(x2 ) 2 C). Let Gl and G2 be the~two 8ub­

graphs of G lnduced by (V'- Cl) V {x1l and (V - C2 ) V {x2 }, 

respectively. We only need show that i~ each Gj , 

the~e 18 a simplicial vertex Yj ~n 

Gj - (C V {X j })" (7.5) 

(Since Yj i8 a simplicial verte~ of G, this establishes 

(lli). ) 
~ 

Consider the graph GI " By the induction hypothesis, 

G1 satlsfies at least one of the three properties' (i) ; 

(ii), (iii). Write D = C U {xl}. Since xl is nonadjacent 

to each vertex in GI - D, G1 ls not a clique. If G1 con­

tains two nonadjacent simplicial vertlces, then one of 

these must be in G1 : D, and so (7.5) is established. Now, 

we may assume that G1 con tains a homogeneous set Y that 

.' 
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induces a connectea subgraph of G1• We can take Y to be 

the smallest set of vertices of G1 with thls prope:tty. 

If y r, 0 .. • JI, th en Y is a homogeneous set of G, con-
0l! 

tradicting our assumptlon that (li) fails for G. Note 

that 

.. y ci:°o , (7.6) 

because Y induces a connected subgraph of G1 . Thûs,'we 

have 

y no; " and Y - 0 ; JI. (7.7) 

~ 
Now, (7.1) implies that 

(7.8) 

,(If xl. t Y, then Y (\ ct-". '. But then Y is not homo-

geneous because ux1 € E whenever u € C, and vX1 t E whenever 

v e: G1 '- ~) 

Consider an arbitrary component Cj of ~l - O. We 

claim that 

-ei ther Cj ,f\ y = JI or else Cj C Y. ' 

If (7.9) fails, then by-the connectivity of Cj there 

'are two vertices u,v with u e: Cj - Y, v e: Cj f\ ~, and 

uv e: E. Since xl e: Y (by (7.8», and ux1 t g (since u t Oh .... ~. 

Y i8 not a ~omogeneous set, a contradiction. Thus (7.9) 
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holds. 
) 

Note that (r.91 imp11es 

N
G 

(y) ç C (7.10-) 
1 . 

• 
Let Gy be the s~qraph of G 1nduced by Y. By the 

• 
1nduct1on hypothes1s, ~y must sat1sfy one of the three 

condit1ons (1), (11), (111). G 1s not a clique because 
y . J 

G is connected. G can not contain a homogeneous set S 
Y. y ~ 

that induces a connected subgraph of G: th1s 'set S would 

also be a homogeneous· set of ~ and 1 S 1 < 1 yi, contra-

d1cting our choice of Y. Thus, Gy contains two nonadjacent 
) \ 

simPliciallvertices YI', Y2· Sinee 0 is a clique, we May 

assume that Y2:' E: G1 - D. From. (7.8) 1 t follows that 

xy E E whenever x E C - y and y E Y. This faet and (7.10) 

imply that Y2 1S also a a1Jll)lfclal vertex of G1 " We have 

, estab11shed (7.5) and settled th1s case. 

Case 2: ~ve~y~~âl cutset C of G 1s sp~c1al. 
Now, G - C cQnta1ns precisely.two components CL' C2 , 

and Cl has precisely one single vertex x, and::C2 has 
. ~ 

àt least two vert1ces. "rite G' - G - x. Dy the 1nduc-

t~o~ hypothesis, G' satisfies at least one of the threej 

propert1es (i), (i1),. (1i1)., 

If ~ is a clique, then each yertex y 1n C2 is a 

s~plic1al ver~~x of G. Thua, x and y are two nonadjace~t ' 
l 

.. 

- • 
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s~pllclal vertices of G. 
, 

If G' contains two nonadjacént s~plicial vertlces 

,/ YI and Y2' then at least one Yi must lie in C2 (because 

lX V H(x) is a clique). Thus x and Yi are two nOnadjacent 

S~pl.lcial . vertices. 

It r~ins to show that'if'G' contains a hom~geneous 
set Y which induces a connected subgraph of G, then G 

satisfles at lea~t one of (i), (li), (ii1). In this case, 

we can take Y to be the smallest hompgeneous set in G' 

that induces a çonnected subgraph of G. Let Gy be the 

subgraph of G lnduced by Y. By the induction hypothesis 

Gy satisfies at least one of the three properties (i), 

~ (il), (iil). 

Since Gy is conn~cted, Gy.is not ~ clique. Gy can not 
" . 

con tain a homogeneous set Y' wtùeh induce.s a connected ' 

subqraph of.': y' would be a homogeneous set of' G' 

wi th 1 y' 1 <' 1 yi, contradictinq' our chaise of Y. 'l'hus,. 

Gy contains two nonadjacent sim~licial v~r~ices Yl~ Y2., 

Since C la a clique, at l,east one Yi lies in Y n C2 -, 

If ~,(y) 'duces \l c,lique in, ~', then w,e are done: x and 

Yi are two nonadjacent simplicial vert!ces of G. Thus ( 

we may assume that 

, ' , . 

G HG' (y) does not induce a clique in G.~ (7.11) 

WFlte A • HG' (y) (\ C, and B - HG' (y): ~ C.~ We 'clalm 

" 

.' 

• 

1 

. - - ~-_. 
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that 

~b ( E when~ver a E A, b E B. 
... 

(7.12) 

Flrst, n;>te that Y n C, ~ ~ (or else Y 18 a homoq'eneou8 

set of G contradlcting our assumption on G).and that 

y - C ~ ~ (or else Y ç C and so Gy is not connected, a 

contradiction) . 

Now, we ean justify (7.12) as-follows. Sinee Gy 

i8 connected, there are nonadjacent vertices bl' b 2 with 

b l € Y " C and b 2 
e: y(\ C2· If (7.12) fails, then x, a, 

b, ~l' b2 induce a Ps ' a con tradiction. 
... , 

Now, (7.11) and (7.12) imp1y that B contains a set 

B' such that 'B" ~ 2, and B' 1nduees a cpnneeted eomponent 

ôf the subgraph of G induced by B. We May assume that 

N
G

, cy) ~ ~, (7.13) 

for otherw1se (7.12) imp1ies that S' 1s a homoqeneous set 
' ... 

in G, inducin~ a conneeted subgraph in G, which eontra-
,Il 

di~ts our assuqption on G. 

By '(.7 .13), NG, (y) 1s _ eutset 1n G'. Bence, NG, (y) ia 

also a eutset in G (sinee y" C ~ ~, we have C ~ (y U NG, (y» , 

and so N,(X) n HG' CY) = ~). Now, G has a minimal cutset .. 

C' wi th C' ç; NG, (Y). By assumption of, ,case 2, C' ls 

spec1- 1. Thus G - C' has prec1sely two components ci, 
. Ci wi h Ci consistinq of a sing,le v:ertex c, B:nd Ci eontaininq 

• 
at two vert1ces. S1nee y (\ C ;. ,,, a/d y" Cf =- " 

. 
" 

~ . 



-
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x alonq with aIl the vertices in Y n C belonqs to Ci. 
x and c are two nonadjacent simplicial vertices of G.D 

" 
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8 • MEYNIEL GRAPHS 

8.1 Introduction 

This s'èction is the Aotion of a "good 

stable set": we shall say that a stable set S of a graph 
~ 

G is good if S meets aIl maximal cliques of G. We shall 

call a graph very strongly perfect if, for each induced' 

subgraph H of G, each vertex of H be~ongs to a good stable 
( 

set of H. By this definition, every very strongly perfect 

graph ls strongly perfecto 1 
t 
'\ 

Henry Meyniel (1976) proved that a graph G is Pè\-

fect if each odd cycle, wi th at least five vertiCf!$" ',c~n-
, .' 1 

tains' at least two chords. Nowad.ys, >s~4ch graphs ar~:'.~ ( 
" , ... ~ ~I 1 

ca~led Meynie1 graphs. ''l.:,~ter, Ravincifa (1982) provéd that" 
~1~ _~ 

, .~ . 
every Meyniel graph is str~ng~y perfecto Meynie1 th en 

., 
conjectured that every- Meyn'iEÙ:"graph ls very st~ong1y per-

, - ~ 

fect. In subsection 8.~2, ~e:-Shall prove that a graph' is 

v~ry strong1y perfec~'if ,'Ahd only if it ls a Meyniel graphe 
,1.,. , 

In#subsection 8.3, we d~sign a polynomial~time algorithm 
J 

~hich, given a Meyniel graph G and an arbitrary ~ertex x 

of G, finds a good stable set of G that containe X. In 

subsection 8.4, we establish anot~operty, related 
, 

'to perfecfon, of Meyniel gràphs." 

l 

) 

-, 

\ 

• 

. -
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8.2 Meynie1 Graphs are Very Stronq1y Perfect 

The purpoBe of th1B Bub~~ 1B to prove the f011ow-

1riq theorem. ~ 

Theorem 8.2.1 

A qraph iB very stronqly perfect if and only if it 

is a Meyniel qraph. 

Our proof relieB on the followin9 two lemmaB. 

Lemma'8.2.l (Meyniel (1976)) 

If a qraph G - (V,E) iB Meynie.l', then G contains no 

:/ odd cycle VOvl ••• V2k (k ~ 2) BUC~ that the path v1v2•• .v2k 
1s chordleBs, and ~O 1B nonadjacent to Bome vi. 

Proof of Lemma 8.2.1 

If vOv2 t Ê, then cons1der the largeBt subscript i 

such that Vo 1s adjacent to v1 ,v2, ••• ,vi , and the small-

.'\ est subscript j such that j > 1 + 1 an? VoY j t E. The cycle 

~ 'VO~i ••• Vj 1s chordless, the cycle VOVi_lvi ••• Vj has 

exactly one chord and one of these two cycles is odd. 

Nov, we can assume that VOv 2 t E. Cons~der the,small­

est even subscript j ~~ch that v~ E E and the larqest sub­

script i such that i < j - 2_and vov~ t E. The cycle 



. , 

VOVi",V j is odd (~ must be odd) and i~ has at Most one 

chord.O 

Lèmma 8.2.2 (Ravlndra (1982) 

If a graph G = (V,E) contains a "cycle wvOv1",vk 

such that 

t S 
(1) Vo is adjacent to none of the vertlces 

(il) 

.(111) 

V2 'V3 '···'Vk ' 

w 1s not adjacent to ~l' and 

there 1_ a good _table ~t. S, 

that conta1ns v 1 an~ vk~ 

then G ls not a Meyniel gr.aph • 

. 1. -

Proof of Lemma 8.2- 2 

of G - vo' 

, 

11Q 

the 

~y '-a starter, '::}'-./sha~ 1 mean a cycle that satisf1es ' 

conditions (11,/(11) and (11i) of Lemma 8.2.2. 

We may assume that 

(·1v) .v1v2 " .vkW 18 the shortest path from vl 1;:0 W 

wh1ch satlsfles conditions (i),' (ii), (iii} • 
. 

It follows fram (lv) that 

(v) bhe"path v1v 2 ••• v k is chordless. 

Next, we may assume that 

(vi) ,"~very v "adjacent to w has an even subscrlpb r, r . 



{ 
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'1> \, 

otherwise the ~dd cycle wvOv1, .. v r satisfi~s the hypothesis 

of Lemma 8.2.1, and so G is not ~eyniel. 

Writé y E S. if y E S and y 1s ~djacent to sorne two 

consecutive verti·ces ~j' v j +1 on the path vOv1 ••. vk . 

We May assume that 

(vi1) no V' J E S* 1s ~djaçent'to V O' 

otherwise either the cyc 1 e yv 0 •.• v j or the cycle YVo". 

,v j + l (w1th YVj' YVj+l E: E) sati-sfies the hypothes1s of 

Lemma 8.2.1, and so G 1s not Meyniel. Now, we èlaim that 

'(viii) no .,y E S* 1s adjacent to w. 

If (vi1~) wa~ faIse, then (1v) would be contrad1cted by 

VOVl ••• viyw such that 1 ls the smallest subscrlpt with 

YVl E E. Next, we May assume that 

(lx) each y E S* ls adjacent to at least three 

vertlces on the p~th vOv1 ••. vk , 

) 

otherwlse the deslred cycle 1s wvr ••• vjYVj+l •.• VSw with r 

stand1ng for the larqest subscrlpt with r 5' j, wvr E E7 

and s stand1nq fdr the smallest subscrlpt wlth s > j + l, 

WVs'-"E E. It follows th~t 

(x) éach y E: S* 1s adjacent to preclsely three 

vertlces Vj_l~ Vj ' Vj +l on ~he path 

Vl,V2,··"Vj~ 

otherwise (1v) ~ould be contradicted'by v1 ••• vrYVs."vk 

such ~hat r vis the smallest subscrlpt w1th YVr E E and 

s is the larqest subscript with YVs"E E. 



t .. 

1 112 

Now, we can choose our starter 50 that S* 15 minimized. 
",,<*" ., 

We claim that 

(xi) S* = 'II; 

because for each y € S* adjacent to v. l' v, ' and ~'+l' 
• J- J ] 

the substitution of y for v j in the original starter yield5 

a new starter with a smaller S*, contradicting our choice 

of the original starter. 

Now, 'note that k 18 even (by (vi)). Since S* = Il 

(by (xi», each edge of the chordless path v1v 2 .•• vk must 

have precisely one endpolnt in S.. Slnce v1 € S, we must 

have v3 E S, Vs E S, •.• , vk- 1 € S. But then the edge 

vk_lvk has both endpoints in s, a contradictlon.O 

Proof of Theorem 8.2.! 

The ·only if" part,pf the theorem can be settled by' 

observing that if a graph is not Meyniel then it contains 

an odd cycle C with at least five vertices, and with at 

most one chord: furthermore, we can assume that the ~nly 

chord pf C (if it ls present in C) is a triangulated 
" 

chord. It suffices to prove that C Is not very strongly 
"-

perfecto We can enumerate the vertices of C as vl'~2;v3'.'" 

vt ' (with t being an odd subscript and t ~ 5) with edges . 
vivi +l ' and ~e edge v 2vt if Chas one chord (otherwise 

( 

V2Vt ls not pre~ent in Cl. Now, suppose thàt v1 belongs 

to a good stable set S of C. Then we must have v3 € S, 
L 

.. 
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Vs (S, ••. ,vt _ 2 E S: but then v t - l can not be in S, neither 

can vt : the maximal clique v t-l v t is not met by S, a con-

tradiction. 

The ft if" par~ i $.) proved by induction on the number of 

vertices. Let G =(V,E) be a Meyniel qraph. By the induc-

tion hypothesis, we only need prove that each vertex of 

G belongs to a qood stable set' of G. Consider an arbitrary 

vertex x of G. If x is adj acent to aIl te ver~~ces of ~ 
G - x, then ~x} meet aIl maximal cliques of G; otherwise 

cho08e a vertex y nonadjacent to x such that /N(y) n N(x) 1 > 

1 N(z) n N(x) 1 for each vertex z nonadjacent to x. 

8y the_induction hypothesis, G - x is very 8tronqly 

perfecto ~herefo~e, y belongs to a good stable set S y 
-

of G - x. Let Y be the connected component of the $ub-
\1 ' 

qraph of G induced by V - N(x) such that Y contains y. 

By the induction hypothesis," G - Y ls very stronqly per­

fect. Thus, x belongs ta a good ~able' set S of G - Y. x _ 

Wri te S = Sx U (Sy () Y). Note that there is no edge wl th 

one endpoint in Sx and the other endpoint in Y, and so S 

is a stable set. 
<2 

We only need prove that 

» ) 
\ S i8 a good stable set of G. 

\..... 
For ~hls purpose, assume the contrary: sorne maximal 

clique C in G is disjoint foInt S. Note that 

c (\ y' '" ~. (8.2.1) 



1 
! 
{ 
, For otherwise, 

dicting C (\ S = ". 
{;

~ 

C c - Y, and 

Ne-t, (8: 2.1) 

C c Y V N (x) . 

Finally, we must have 

C ('\ N(x) ".~, 
! 
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so C fi Sx :# ., contra­

implies tha t 

(8.2.2) 

(8.2.3) 

for otherwlse C ç Y, and so C n (s n y) ".~, contradicting 
y 

c n.S = ". 
Slnce S 15 a good stable set of G - x, C must inc1ude 

y 

a verte~ v l of Sye We must have vIe: N (x), for otherwise 

vI e: Y, and so vI e: C fi S, contradicting C f\ s =~. Write 

A = N(V
I

) (\ Y •. By (8.2.1), we have A:;' Il;'note that y;' 

A since both y and v 1 he10ng so Sy' Since y i5 connected, 

there i5 j!1 path in Y f rom a vertex in A _ to y. Consider 

a shortest such path P. We can enumerate the vertices of 

P as v 2 ,v3 , ••• ,vk with v 2 e: A, vi i A foc i ~ 3, and 

v = y. Note that k 

WV I e: E whenever w e: N (y)" N (x) • (8.2.4) 

If (8.2.4) was faIse then the cycle x,v1,v2 , •.. ,vk ,w 

(wi th lé '= v 0) would sa ti·sfy condi ti~ns (i), ,(ii), (iii) of 

the Lemma 8.2.2 and so G wouId not be a -Meyniel graph, a 

con tradiction. 
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Now, (8.2.4) holds. Since v l E N(V
2

) (\ N(Xr) but 

vI t N(y) n N(x), and sincell\.ly) n N(x) 1 > 1 N(V2 ) n N(x) 1 

by our choice of y, there must be a verte'fw in (N(y) -

N (v2» f\ N(x). Let i be the smallest subscript such that 

wv i E: E and i ; 1; note that i ~ 3. 'lf yis evef?F then 

wv i"v2 •.. vi is a chordless cycle wi th a t least five vertices; if 

i 18 odd then wv1v2 " •• vi is an odd cycle with ~'t least 

five ver~ices and only one chsrd. In both cases, we arrive 

a t a con tradiction. 0 

8.3 Findinq Good"Stable Sets of Meyniel Graphs 

Burlet and Fon1upt (1984) showed that ~ll connected 

Meynie1 graphs can be construcbed from certain "basic 
r 

Meyniel graphs" by repeate~appl ications of amalgame In 
1 

this section, we are going to rely on this result to de-

sign a pOlynomial-time algorithm which, given a Meyniel 

graph Gand any vertex x of G, f inds a good stable set 
~ 

of G that containe x. First, we need introduce a few 

defin! tions. 

A graph G = (V,E) is basic Meyniel if V can be parti-
.. 

tioned into disjoint sets K, B,'S* with the followinq pro-

perties. • ~ 
[B]G i8 a two-connected biparti te graph lpossib~y 

B == ~) " J 

'- [R)G is a clique. 

We have xy € E whenever x € B, Y € ~-

" 

• 

-. 
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- $* is a stable set of G, and, for each vertex x in 

S *, we have 1 N (x)" B 1 ~ l. 

Recall that a graph G = (V, E) has a pr~per amalgam 1 

decomposition if V can be partitioned into disjoint sets 

,K,AI ,B1 ,A2 ,B2 with the fOllowlng properties. 

- K V Al V A2 ",' ~ • 

.. [K] G is a olique,. 

- We have xy e: E whenever xe: Ai' y e: Aj (i '" j) or 

x E: Ai' Y e: K. 

- We have xy f. E whenever x e: Bi.' y e: (Aj V Bj)' 

i ,. j. 

- 1 Ai V Bi 1 ~ 2 • 

... Al = , if and only if A 2 =: ~. 

- If ~l = A2 = ri, then, in each Bi there ls a vertex 

,xi; with N(x i ) "2 K. 

Note that if a graph G has a proper amalg~ decomposi­

'tian. then Gis" an amalgall\ of its induced subgraphs Gl'G2 

def ined as follows: 

(i) 

where a j is a-· vertex of Aj' '. _ 

-(H) if A;l = If, th en Gi =: lK U Bi U {Xj} ]~~. 

L-
It ia easy to verify that G ls a Me.yniel graph if 

and only if G1 ,G2 are both Meyniel graphs. Budet and 

J 
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Fonlupt (1984) designed a polynornial-time algorithm to 
" 

recoqnize a Mey~iel graph. They proved that if G is a con­

nected M~ynlel qraph, then e'ith.er G ia basic Meyniel or 

eise G has a proper amalgam decomposition. Furthermore, 

they proved that this decamposition ia polynomial: G 

(and its subgraphs produced by the proper amalgam decom­

position) ,can only be decomposed into a polynomial number 

of smaller graphs which are basic Meyniel graphs {these 

graphs can be recognized in polynomial time}. He shaii 
, 

assume that we have the following procedure GRENOBLE(G) 

(a modified version, o! the algorithm given in Seceion 5 of 

Burl'et and F~nlupt (1984» which, qiven a Meyniel graph G, 

~inds a proper amalgam decomposition'of G, or else it shows 

that G ls a basic Meyniel graph., 
, . 

• " 

Procedure G~ENOBLE{G) 

Input. A Meyniel graph G = (V, E) • 

Output. 1., G is basic Meyniel: a partiti~n of G into 

sets R,B, S*., 

2. G has a proper amalgam decomposttion:. a 

~ partition of V into sets K,Al'B
V

A2 ,B2, 

" or (if Al = A2 = "~ sets ~,Al'A2'{~1~}' {x2 }. 

Tne' ~lloWinq procedure FIN~(G,x~S) performs the 

fOllOWlng/~peration: qiven an input a Meyniel gr~ph G 
f 

J 

/ 
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and a vertex x of ~,FIND, returns'as output a good stable 

gèt S of G such that S conta1ns x~ 

Procedure FINO(G,x,V) 1 
Input. A Meyniel graph G. CV,E) and a vertex x of G. 

"- -
Output. A good stable set 8 of G such that 8 con·tains x. 

\ 

Begin 

1. If G i8 disconnected, then find the connected compon­

ents Cl!C2' ••• '~k,of G. Find the subscript j such 

tha t x E: Cr 
For i - l to k do'call FINDCCi,xi,Si)' wh'er'e.x i 

is an arbitrary vertex of Ci for i ~ j, anp 

Xi - X for i • j. ~ 

Let" S + 8 1 U 8 2 V ••• U Sk' retum S and stop. 

2 •. Call GRENOBLE(G). If G is basic, Meynie 1 then gO"to 3,' 

else go to 4. ./ 

3., (Nolt/, the sets K, B, S* are returned.) If x E K, then 

. , 

. 
go to 3.1, else partition<-B into two stable sets 

BI' B2 such that B' - Bl V B2 •· If x E B the'n go' to 

3 • '2, el se go to 3.3 • 
. 

3.1 Let 5 to: {x} V S', where S' • 5* - N (x), return 
~ , 

8, and stop • 

" 

1 
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~ \ ." 
Find the subscript i such that x E: Bi' and let 

S + B1 U S', wltere S' ., {y 1 N (y) n IBl '= (IL 

,return S arid stop. 

(NOw, x e: S*.) Execute the fOfow~n9"s~eps. 

3.3.1 If there 18 a vertex x'. in 1 with xx' /:. E, 

th en let S 't {x'} u (S* - N(x'», return 

S and stop, 

3.3.2 Note tkat there i8 a,subscript 1 wlth 
~ 

N(x) ri Bi ~~. Let S + Bi V S' where 

S' = {y 1 y e: S*, and N(y) n Bi = Il . .}, 
./ 

return S and stop. 

{xl},{x21 are returned. For the remaining steps, a j 

,will .~e an arbitrary vertex of A.,'Rowever if AJ' = Il, , J 

then we Iét a j :: xr .) Execute the following steps. 

4.1 If x € 1 then 

4.2 

for i :: 1 tô 2 do calI FI~D(Gi;X,Si) 

where Gi = [1 V Al V ,Bi U {aJ}lG with i 

• let S + SI V S2' and retùrn S and stop. 

If x E Al then 

{a21l G' 

calI FIND(G2~X'~2)' where G2 :: 

, {x}] G' 

• let-S ~ SI V S2* retu~n S and stop. 

, , 

~ j . 
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. 4.3 l'f x e: A2, then in te~change Al and A2 , Bl and ~2' 

and go to step 4·~2. 

" 

4.4 (Now, x e: (B l U 82» If x e: 82 , then inter-

change BI and 8 2, inte~change Al and A2 " 

(Now, x e: BI.) Execute the following 

steps. 

calI FINO(G1 ,x,Sl)' where Gl = (R U Al U BI U 

{a2}lG' 

find a vertex y' in SI (\ .(R V Al \J { a 2}), 

calI FINO(G2,y' ,S2' with G2 = [R V A2 U B2 V 

{al} lG in case y' € (K V {a2 }" and G2 = 

[R V A2 V ,B2 U {yl}lG in case y' e: Al' 

let S + Sl U 82 , return S and stop. 

end (procedure). 

Proof of Correctness'of Procedure ,FIND 

First, we shall show that the procedure works'correctly , 

on aIl basic Meyniel graphe. / , 

~Vial: any maximal clique not meeting S' must 

meet,x. ~ 
Step 3.2 Suppose that there 1s a maxp.mal clique C not meéting' 

~.,~l 

s. (We ahall show that C can not exis~.) First~ we claim that 
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c (\ S* = ~. ' (8.3.1) 

each 

E. 

Assume that C8.3.~iS fa1se. By our choise of S, for 

vertex u € s* -~ there is a vertex u' € Bi with uu' € 

Since IN (u) n B\ 1 ~ l, we have N Cu) ~ N (u 1) • 
v:: , 

Thus, any maximal clique containing u must contain ut. 
l 

This shows that C is\ mét by S, a contradiction. Hence 

(8.3.1) holds. 

~ Since B ; g, K. can not be a maximal clique of G. So we 

have Cci.. K. This fact and (8.3.1) imply that there i's a 
) . 

vertex y in C n Bj with i ; j. Since [B]G is a two-connected 

bipartite graph,°there i8 some yi in Bi with yy. e: E. Now, 

note that Bj ls a stable sét, and uv' € E whenever u € K, 

v e: B. These facts a'nd (8.3. 1) lmply that any maxi'Inal 

clique containing y must conta ln y'. Hence C ls met by S. 

This ia the desired contradiction. 

Step 3.3.1 Similar to Step 3.1. 

Step 3.3.2 Si~11ar to Step 3.2~ 

. For steps 4.1, 4.2, 4.3, note that S 1s a stable set of 

G. 'We" may assume th~t S is ~ot a gooa sta~e~ of G, for 

otherwise we are done. So there is a maximaf"'-cliqJ1e C with 

C f\ S = " C (\ Gi ; " i = l,~. "For each of the steps"4.1, 

" 4.2, 4.4, we are qoinq to show that C can not exista If 
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Al = A2 = " , then each maximal clique of G lies entirely in 

GI or in G2 • Thus we can assume that Al ~ li and A2 ~ ". 

It follows that C S (K V Al U A2' . 1 

Step 4.1 Since C ~ (K U Al U A2' c: N (x} U {x}, C mus·t 

meet x, a contradiction. 

Step 4.2 Since C n 52 = ~ and S2 is a good stable set of 

G2,'we have C· = C n (K U Al) ~~. Note that x t C' sinee 

C fl 51 =~. But thel'l in GI , C· V {a2 } \s a maximal clique, 

and this maximal clique is not met by SI contradicting our 

assumption that 51 is a good stable set of GI . 

Step 4.4 Note that yi must exist because in G1 there must 

be a maximal clique containing a2,'- and this maximal clique 

must be met by 51' If y' = a 2 or y' E Al' then we can apply 

the analysis of Step 4.2; otherwise ve can apply the analysis 

of Step 4.1.0 

8.4 Another Characterization of Meyniel Graphs 

Recall that two vertiees of a graph Gare two friends 1 

if they'are not endpoints of a chordless. path with an odd 

number of edges. As we have seen in section 3, no two ver-· 

tices can be friends in a minimal imperfect graphe Meyniel 
" 

(1985) showed that if ~ i9 a Meyniel graph, then ,either G 

. , 
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is a clique or eIse G contains two friends. In ihis sub-

section, we are going to establish a stronger property of 

Meyniel graphs. (A vertex x of a graph G = (V,E) is universal 

if {x}U N(x) =V.) 

Theorem 8.4. I 

A graph G is a Meyniel graph if and only if, fo~ each 

induced subgraph H of G and for each vertex x of H, one of 

the follow1ng two cond1~ hoIds. 

(i) x 1s a un1versal vertex of H. 

(H) x is a fr1end of sorne vertex in H. 

Proof 

The "if" part is easy; to' prove the "only if" part, 
. , 

censider an arb1trary vertex x of a MeynieI graph H =, (V,E). 

We can assume that x is not a universal vertex of H. Let xl" 

be a vertex in A = V/{b- (N(x) U {x}) such that for each z in 

A, we have 

N(-x') () Nex)1 ~ 1 N(z) n N(x)l. (8.4.1) 

We claim that x and Xl are frJends. Suppose that our 

Then there 1s a chordless path v l v2 ..• v 2k fJ 
claim is faIse. 

w i th k ~ 2, }C = V X I - v l' - 2k· Note that there must be a 

• 

\ 



vertex V o in N(x) fi N(x') with v
O

v3 ;. E: for 9therwise 

JN,(V3) (l N(X)' > /N(X'>'(\ N(x)l, con-tradicting'(8 ... ~.1). 
, 

But then the cycle V OV1 .•• V2k satisfies the hypothesis of 
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Lemma 8.2:1, conttadicting our assumption that H is a Meyniel 

graph.O 

J 
h , 

<. ,-

\ 
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9. ALTERNATELY ORIENTABLE G~PHS AND 

ALTERNATELY COLOURABLE GRAPHS 

) 
9. 1 Introduction 

l' 
In this section, we establis~ a property of minimal 

imperfect graphs, and use this property to generate two 

classes of perfect graphs. The first class contains a11 
, 

/ 
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compàrability graphs, aIl triangulated graphs, and several 

othet: classes of perfect graphs. The second class contains 

aIl triangulated graphs, and aIl line-qraphs of bipartite 

graphs. 

9.2 Alternating Orientation of Perfect'Graphs 

By a hole ,T' ~e Mean a chordless cycle wi th at least four 

vertièes. RecaJl Cfrom section 3) t~at a bad P3 is a .graph 

with vertices a,b,c and arcs (d1rected edges) ab,bc, (and~o 

other arcs). An orientation G of a graph G is an a1ternating 

orientation if no hole of G- contains a bad P3 • Such a graph 

G is called -an alternatelY orientable graph. 

Theorem 9.2.1 

Every al ternately orientable graph 1s perf~ct. 

To prove Theorem 9.2.1, we shall re1yon the following 

results. 
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First, Ghouila-Houri (see section 4) proved that G i5 

a comparabil1ty qraph if and only if G admits an orienta-

.... + .... ' 
tion G such that G does not contain a bad~P3 (G could be 

cycl1c) . 

/ 
Second, Chvatal (see Section )) proved that no minimal ,. 

imperfect graph G can contain a s~r cutset. We are going' 

to use ChVoO\tal' s theorem to establ a certain property 

of minimal imperfect graphs. 

Theorem 9.2. 2 

Let G be a ~inimal imperfect graph. Then each P3 of 

G extends into a hole. 

Proof 

We are going to prove a stronger statement. We only 

need prove that for any graph G with at least two vert1ces, 

at least one of'the followirig two properties (i), (11) 

holds. 

(i)' G contains a star-cutset. 
r.' 

(1i) Eacn induced P3 in G extends into a hole. 

(If G is minimal imperfect, then by Chv~tal's' th,eorem, (i) 

h, .must faU for G.) 

If (ii) fails, then sorne P3 with vertices a,b,c and 

edges ab,bc does not extend into a hole. But then band 

• i ........ 
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'~aIl i ta neighbours exoept a and c form a cutset in G (separat-
>. 

ing a from c); hence (i) hOlds.D 

Proof of Theorem 9.2.1 

Let G.be an alternately orientable graph, and let G 
be its alternating orientation. If G ls not perfect, ~ 

G con tains a minimal imperfect graph. Thus without loss of .. 
generality, we may assume that.G is minimal imperfe~t. Now 

G must contain a bad P3 , for otherwise by Gouila-Houri's 

theorem G ia perfect, a contradiction. But by Theorem 9.2.2 . . 
this bad P3 extends lnto a hole. This 15 also a contradic­

tion. 0 

9.3 Subclasses of1Alternately Or~entable Graphs 
s; . 

1. By definltion, the class of alternately orientable 

graphs contains aIl comparabi'l 1 ty graphe and aU tri~ngulated 
% 

qraphs. 
" 

2. A graph ls i-trianqulated if each of its odd cycles 

with at least five vertices con tains at least two non-

cross1ng chords. Gallai (19~2) proved that every i-t~ngu. 

tated graph is perf~ct. Burlet and Fonlupt (1984) p~vedt • 

a decomposition thêor~ for i-~riangulated graphs. They 
, 

proved that every i-triangulated graph G is eitfter a "basic 
"; 

i-triangulated graph" or else G contains a simplicial clique 

.. i ., . . ...... -

" 

• 
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cutset (defined\in section 7). A graph G· (V,E) i, a 

basic i~trianqulated graph if V can be partitioned into dis­

joint sets A,K,S such that 

r 

(i) A can be partitioned~into stable sets 

, 
two vertices, and two vertices of A are ,adjacent 
, 
if and on1y if th~y be10ng to different stable 

sets, 
_'0 

(ii) R induces a clique in G, 

(iii) We have xy E E whenever x E A, Y E R, 

(iv) 's is a stable set and for each x E S we have 

1 N (x) ,fl A 1 ~ l-

(Note that each vertex in S is simplicial.) 

Theorem 9.3.1 

EVery i-triangualted graph is alternately orientable. 

Proof 

By 1nduct1op on the number of vertices. Let G - (V,E) 
. 

be an i-triangulated graphe If G is basic i-triansulated, 

then an alternating orientation G of G can be obtained as 

follows. We direct x to y ~henev~r x E Ai' Y E Aj,with 

i > j, or x tA, Y t A, or x C K, Y E: S. Now, we can as SUDle 

that G contains a simplicial clique cutset C. Let G1 ànd 
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G2 be two induced aubgraphs of G such that G = G1 V (;2' 
..... 

and G1 {\ G2 = ç. By the induction hypofhesis, G1 iilnd G2 
1-

are alternately orientable~ Let G
1 

and G2 be -the al ternat-

,ing orientations ofoG
I 

and G2 , respectively:1 Now" note that 

for each 
-+ 
G

i
, the direction of each edge uv of C is inunater-

laI: no such edge can belong to a hole (if uv belongs to 

a hole Ck of GI , then in G2 - C' there is a vertex x, adja­

cent to both u and v, such that the subgrap~ i~d~ced by ~ 

and this Ck contain~ an odd cycle-with at least five ver­

tices with ,at most one chord). The above remark shows that 

G = G
1 

V (G2 - C) ia an alternating orientation of G.D 

3. Let u and v be two vert~ces of a graph G. We say 

that u dominates v if N (u) U {u}::? N (v) • (It is easy ta 

see that domi'nation is transitive: if x dominates y and y 
,/ 

dominates z, then x dominates z.) Chvatat and Hammer (1973) 

pefined a graph to be a threshold graph if for any two 

verti~es u,v; either u dominates V, or v dominates u. 

Theorem 9.3.2 

Q 

If a graph G ls union of two thr~shold graphs then G 

ls alternately orientable. 

P.roof 

Let G be union of two threshold graphs G1 and G2 . Now, 
<. 

"" 



Î 

130 

the edges of each Gi can be directed so that 

(i) if a;b,c induce~ a P3 in Gi , with b being the 
o 

interior vertices of this path, then b is 

d1rected to both 8 and c. 
, , 

We can realize (i) by directinq x to y if xy i8 an edge 

of G
i 

and x dominates y in Gi , (If x and y "dominate each 

other then xy can'be directed either way,' 

Next, it i8 easy to see that each edge of a C4 of G 

can belong only to one Gl . That is, it can not belong to 

the intersection of GI and G2 , It follows that 
1 

(li) each C4 of G can be decomposed int~ two P3's, 

one of these belongs to GI and not G2 , the other 
• 

belongs ,to G2 and not GI • 

Since G can no~ contain a hole with more th an four 

vertices, (i) and (li) lmply that G admits an alternatlng 

orientation. 0 
.:. 

4. Golumbic, Monma and Trotter (1984) found yet 

another class of alt~rnately orientabl~ graphs. They proved 

that every "tolerance graph" admits an alternating orienta-

tion. It was this result that motivated our work. 

S. We are going to show t?at-êvery p4-s,parse graph 

ls alternately orientable. Note that there are P4-sparse 

, . 
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graphs whlch are n~t i-trianqUlated. 

shown in Fiqure 9.1 

Fiqure 9:1 

T-beorem 9.3.3 

". 
One such qraph is 

'. 

Ev~ry P4-sparae qraph la al.ternately orientable. 

" Proo! 

By induction on-the numbe~of Vert1ces. .. 

131 
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L~t G = (V,E) be a P4-sparse graphe By Theorem 4.6.2, 

we only distinquish amonq three cases. 

Case 1: G is a spid'r or a cospider. 

In this case, G is a trianqulated graph.and therefore 

an alternately orientable graphe 

Case 2: G or G is disconnected. 

Partition V into two disjoint_sets VI' V2 such that 

for every choice of x € V
L

, y € V2, 

if G is disconnected, then xy t, E, and 

if G is disconnécted, then xy € E. 

By the induction ~ypothesis, the qraph Gi = [Vi 1G 

adroits an âlternating orientation Gi • If G is disconnected, 

then G = GI V 02 is ah, alternatinq orientation of G. If 

G is disconnected, then G adroits an alternatinq orientation 
+ + + + + 
G = GI U G2 V X, where X is the set of aIl arcs xy wi th 

x E VI' Y € ~2' and xy € E . 
. . 

. Case 3: G contains a cl~que cutset C. 

Without 10ss of qenera1ity, we_may assume that C is ~ 

a min~a1 cutset of G." Let GI and G2 be two induced sub­

graphs of G su~ 'that G = G1 U G2 and Gl f1 G2 = C. By the 
, 

induction hypothesis,'each Gi is alternately orientable . 

So Gi admits an·alternating orientation Gi • Now we claim 

that 

.. 
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+ -+ + 
G = GI'~ (G2 - C) ia an alternating o~ientation 

of G. 

, 

To justify our claim, it suffièies to show that no 
;. 

vertices vl ,v2 of C exténd into a ~olè H in G2 : if H.exists, 

then we can enumerate the vertices of H as vI~v2,v3, ••• ,vk 

(with edges vivi +1 and edge V~VK) so that, for each' i > 2, 
, 1 

vi € G2 - C (note that vi t G1). We have k = 4 for otherwise 

G 'is not,P4-sparse. By the minimal,ity of C, there is a 

'vertex x E GI - C with xVI E E. But then the five vertices 
r ' 

x,vl,v2,v3'~4 contain two distinc~ P4 's, a contradiction •. O 
, ' 

9.A Perfect Graphs Which are Not Alternately Orientable 

1. A graph G is a 'weakly triangulated, graph if G does 

not contaln a·hole or the complement of a hole. Hayward 

(1984) proved- that every weakly t,riangulated graph ls 

perfect.> He also showed that weaJcly triangulated qraphs are 

not necessarily alternately orientable. Consider the 

complement ft of t~e graph H shawn in 'Figure 9.2a. 

First, note 'that if xy and uv are t~o edges of a graph 

G, with 'f.,y beinq nonadjacent to u,V,"in G, th en {x,y,u,vJ . , , 
induces a C4 in G. We shall write xy + uv to mean that x 

tt and y are directed to u and v in G. Now without loss of 

generaiity, we may assume'that in ft ~e have ab -+ fe. This 

forces the relations bc -+ fe, cg + fe, gh -+ fe, hi -+.fe~ 

) 

-

, 

• . 
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a 

.o, 

b 

'\' 

.. 

e d -~ h i 

(a) (b) 

,,' 

F1..qure 9.2 

..ab .... ed, ab .... dq, ab .... qh, ab .... hi, 'bc ..... hi, cd .... hi, ed ..... hi, 

fe .... , hi. But the relations hi .... f~ and fe .... hi·imply that 

ft càn not admit an alternating o~ientation. 

2. ';l'he qraph shown in Figure 9.2b 1s alternately orient­

ablé but not strongly perfecto 

,3. Since complements of triangulated graphs are per-
, • r ~ ~ 

,fectly grdtrable, the complement' of the graph shown in 

FiquJ:'e 9.2a is perfectly' orderable bût not a~ternately 

orientable. 
, 

4. We are qoinq to construct a Meyniel, graph which 

i8 'not alternately,orientable. Let G be ~ Meyniel g~aph 

and let x be a vertex of G. It i8 easy t~'see that the 

qrap~ G' obtained from G by.duplicatinq x (that is, addinq 

11 
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a vertex Xl no~adjacent to X and joininq Xl tQ z if and only 
\" 

ff xz i.8 an edge of G) remains a Meyni~l graph. 

Consider the Meyniel qraph G shown in Figure 9.3 • 

. .. 

b 

a d 

r 

Figure 9.3 

The qraph H obtàined ~rom G, by first ~uplicatin9 c, 

and then dùplicatinq bl and b4 , is a Meyniel \qr'aPh. But 

g'can not' admit an alte~natin9 orientation: without 109S 

of qenerality, we.may' a~sumé' that b l la directed to b2 • 

. , 

) 

.\ 

-, 
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This forces bl to be directed to a, and so bl is forced to 

be directed to c. Directinq b l to h 2,aIso forces b3 to be 

directed to b2 , and b3 to he directed to b4 : Directtnq 
w 

b3 to b4 forces d to be directed to b 4 , and so c 1s forced 
. 

, to he directed to b4 • But now, b1cb4 ie a bad P3. 

9.5 Alternatlnq Colouration of Perfect Graphs 

~e say th~t.a qraph G admits an aiternatinq colouration. 

if the edges of G can be coloured by two colours such that no 
~. 

hole of G contains a monochromatic P3 , that ls a P3 whose 

two edqes are of the sarne colour. ,Recaii that a line-graph 

of a graph H is a graph G whose vertices are edges of H, ~wo 

vertices of G being ad~acent ~f and only if they share an 

~ndpoint as edqes of H. We shaii say that a graph is 

aiternately colourable if it admits an alternating coloura­
, 

tion. It is easy to show that a qraph G ~s a line-graph 
~ 

of bipartite graph if and only if the edges of 

coloured by two~UCh ~hat the edges of 

cblour form vertex-disjoi~t cliques .. Thus ever~ 

,of bi~artite graphs is alternately colourable. 

G can be 

line-graph 

Furthermore, 

by definition, eve~y triangulated graph is alternately 

colourabie. 
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, 

Theorem 9.5.1 

Every alternate1y cOlourab1e graph iB p~rfect. 

It is easy to see that if G is a 1ine-qraph of bipartite 

graphs then G must bë c1aw-free and· Ber,ge. / Chvatal and 

Sbihi (1985) designed a pOlynomial-tim~-a1gorithm to recog-
. 

nize claw-free Berge graphs. In the process of doing sa, 

they found many graphs which are claw-free Berge, and wh1ch 

do no,t admit an al ternating colouration. One sucp graph 

is shawn in Figure 9.4. 
" . 

Figure 9.4 

.. ' 
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The qraph shown in Fiqu~e 9·.5 i5 al ternately orientable 
. 

but i8 not a1ternate1y c01ourao1e. The qraph C6 is a1ter-

nately colourable but is not alternately orien~able (also, 

i t is not a quasi-pari ty graph). , 

.. 

1 g 

Proof of Theorem 9.5.1 
4 

Figure 9.5 

... 

Let G be a graph with an alternating colouration., If 
..... 

G i~ not perfect then G contains a minimal impe~fect graph. 

Thus w~thout, loss of generality, we May assume that G ls 

• 

o 
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minimal imperfect. Now, G must contain a monochromatic 

P3; or else G is a claw-free Berge graph and by Parthasarathy 

a~d Ravindra's theorem, G is.p~rfect, a contradiction. But 

by Theorem.9.2.2, this m~nochromatic P3 extends into a 

hole. This is a 'contradi'ctic~>n. 0 ' 

9.6 A Recognition Algorithm 

In this section, we show that the problem of determining 

whether a graph admits an altern~ting/orientation (or coloura­
/ 

,tion) can be.solved in pOlynomial t~e. Let G = (v,El be 
1" -

a graph. First, we want to par.tltlon the edges of G into 
1 

"equlvalence classes" ~1,E2"" by the f.ollowlng reêursive 

rule: two edges el and e2 belong to the same Ei if and only 

if 

(i) 

(ii) 

el and e 2 'belong:to the same hOl&, or 

there are edges,e3,e4 in Ei such that el and 
1 

e
3
' belong to th'e same hole, and e 2 and e 4 belong 

to the same hole. 

To find the equfvalent clas~es, .we only need construct 
: 

certain classes·Ei,E~, ..• by this ru e: two edges e 1 ,e2 , 
,'w> -

belong to the same Ei if and only if they form a ~3' and 

(iii~' this P3 extends into a h 

We can test (t'li) as follows. a,b,c be the yertices 

.. 
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.. 
of a P3' with b being tne interior vertex. This P3 extends 

into a hole if and only if there is a connected component C 
, 

of N (b) w i th N (a) ne". JI, and N ( ~) fi. c # JI. 

The desired equivalence classes El,E2'" can be found . ' 

by recursivel\ merging two classes E*i,E' if and only if 
) < 

they intersect. Now, once. the direction' -(colour) of an 

edge" in e~ch Ei fs fixed, the directions (colours) of aIl 

other edges in this Ei are determined. We can assume that 

each edge i5 forced to accept only one direction (colour), 

for otherwi5e G i5 not alternately orientable .(colourable) . 

Now, the re5ulting orientation (colouration) is alternating 
( : 
'. if and only if no bad P3 (monochromatic P3r extend5 into a 

hole. ( 

" 
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10. EVEN DECOMPOSITIONS 

10.1 The Main Results 

In this section, we give a praof, obtained jointly with 
1 

Chvatal, of the fOllowing theorem. 

Theorem 10.1.1 

graph G be coloured'red and white 

in such a y,that each induced P4 in G has an even number 

each colour. Then G i5 perfect if and only of vertice 

if each of two subgraphs induced by aIl the vertices 

of the sarne colour is perfect.D 

This theorem reduces the t.ask of tèsting perfection of 

G into the task of testing perfection of two nonempty vertex-

disjoint induced subgraphs of G as soon as the vertices of 

G can be co1oured red and white in such a way that 

• (i) each induced P4 in G has an even number of 
. ~ 

vertices of each colour, 

~\ (ii) each of the two colours appears on at 1east one 

vertex of G. 

Not every pe~fect graph can be coloured in this way: for 

examp1e, see anyof the+hree graphs in Figure 10.1. 
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Graphs that do ~dm1 t two-colour1ngs wi th properties (1) and 

(H) are recognizable in a polynomial time: when "v is red" 

and "v is w~ite" are represented by "x = 1 ft and "x = 0", v v 

respectivefy, condi tion (1) assumes the form of a (small ) 
, 

system of linear congruences modulo two. Now we only need 

find out if thi,s system, with Xw set at zero for an. arbi­

trary but fixed vertex w, has a nonzero solution: this 

can be done routinely by Gaussian elimination . 
.-. 

10.2 Auxillary Resulta 

Our proof of Theorem 10.1.1 relies on the fOllowing 

resul ts concerning perfect graphs. First, (the Perfect Graph 

Theorem states that a graph ia perfect if and only if its 

complement is. Second, as mentioned previous ly, Parthasarathy 

and Ravindra proved that ëvery claw-free Berge graph ls 

perfect. Third,_ as mentioned in section 3, the following 

three s ta temen tare true. 
\ 

No minimal imperfect graph can contain a homogeneous 

set. 

No minimal imperfect graph can contain a clique 

set. 

No minimal lmperfec-t graph can contain vertices/, 

~h N(v) ç; {w} U N(w) • 

.., 
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By v1rtue of the above faets, the validi"ty of' Theorem 

10.1.1 iB guaranteed by thé,fo11owing result: 

Theorem 10.2.1 
t ' 

Let the vertices of a gra~h G .be coloured by two 

" col.ours red and whi te in such a way that eaeh P 4 has an 

. even number of vertices of each col our" and tha~ eaeh colour 
. 

appears at least once. Then 

(i) 'G or G 1a a claw-free Berge graph, or 

(H) G or G contains a homog~neous set, or 

(Hi)- e; or G contains a eliq~e cutset, or 

(iv) G or G contains vertices v and w, w1th 

.., N(v) ç {w} VN(w). 0 

rf G has at least three ver.Hees, then any of proper- .' 
ties (H), (Hi), (1v) of TQeorem 10.2.1 1mplies"'that G or 

"" 
r' 

G has a star-cutset; hence Theorem 10.'2.1 1mplies the fOl-

low1ng fact. 

Cor~11ary 10.2.1 

If G~atiSf1eB the hypothesis of Theorem 10.2.1, 

G or G iB a claw-freé Berge graph" or else G or G haB 

" 



One graph that satisfies the hypothesis of Theorem 

10.2.1 is the graph G obtained trom four disjoint complete 

graphs on vertices ai' bi' ci' di' ei' fi (i = 1,2,3,4) by 

ad~ing edqes 

neither G nor G has a star-cutset. , 
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,We sha11 prove Theorem 10.2.1 by proving the fOl10~:;i' 

- ,two,yas. 

Lemma 10.2.1 

, 
Let the vertices of a graph ~ be coloured red and whlte 

" 
in such a way that each induced P4' in G ~as two vertices 

of each colour. Then G has at leaBt one of propertles 

(1), (iil, (il1); (lv) in Theorem 10.2.1. 

Let the've~tices of a graph G be coloured red and w~lte 

\ 
in Buch a way that the hypothesis of Theorem 10.2.1 lB satisfied 

and that aIl four vertices of some induced P4 in G have the 

\ 



" 

\ 

( 

1. 

same co1our. Then G has at least one of properties (ii), 

(11i), Uv) in Theorein 10.2.1.0 
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bne graph that satisfies the hypothesis of ~emma 10.2.1 

·is the graph obt:ained from disjoi~t copies Gl'G2,Gj,G4 of 
, . -

the graph Gi shown in Figure 10.2 by joining, for each 

i = 1,2,3, eàch of the vertices ai,bi,ci,d i to each of the 

vertlces ai+1,bi+1,ci+l~di+1. This graph G has none of the 

properties (i), (ii),' (1;1.1) in Theorem 10.2.1 

Figure 10.2 

. .,. 
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,One qraph that satisfies the hYPQthesis of Lemma 10.2.2 

ls the graph obtained fram the graph shown in Fiqure 10.3 
- . 

'by jolnlnq ea~h vertex labelled Rl or Wl ta both y~~tices 

labelled Rc' and jalninq each vertex labelled W2 ta aIl 

the vertices labelled Rc'or Rs. This graph G.has none af the, 

propertles (1), .(il), (il1) in Theorem 10.2.1. 

... 

RS 

Rc 

Re Rl 

Rs 

-,' 
",' 

F 1 qure 10. (J' 

, . 
,-

.. 
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\ 

We sha1l derive Lemma 10.2.2 from a statement involving 

the follow1ng.notion, suggested to us by Minoru ls.hii:, an . 
alignment in a graph 1s a ~ee 01,02, ••• ,Ok of sets of 

vertiees such that each 0i induees a P4' and each 0i with 
J ~ 

1 > 2 has precisely one vertex outside 01 V 02 U ••• V °1- 1, 
" . 

~he a11gnment 1s ea11eâ full if each vertex of the grap~ 

belongs to at least one 0i' 

-' 
Lemma 10.2.3 

If some alignment in a graph G does not extend to a 

full alignment then G has at least one of properties (ii). 

(ii1), Uv) in Theorem 10.2.1. 

To derive Lemma 10.2.2 from Lemma 10.2.3, denote the 

set of vertiees of the monochromatic P 4 by 01 and eonsider, 

an arbitrary a11gnment 0l,02, •.. ,Ok that extends the align-.. , 
ment 01. An easy induction on i shows that aIl four ver-

. ti.ces in °1 must have the eolour of °1; s1nee each of the 
. 

two co1ours appears on at least one vertèx of G, the align-

ment °1'°2"", Ok ean not be full. 

Now, we only need prove Lemma. 10.2.1 and 10.2.3. 
~ 

10.3 'The Proofs 

Throughout this section, we let E stand for the set of 

edges of G. , 

" 



(" '" 

,-

( 

.. 

" 

\ 

Ptoof of Lemma 10.2.1 

1 
We,shall~often rely on the following theorem of . 

5einsche {see section 4): 

if G contains no induced P4,'then G or G i, 
'& 

d1sconnected. 

149 

Let G satisfy the hypothesis. of the lemma; let Rand W 

stand for the subgraphs·of G induced by AlI the red ve~tices 

and aIl the white vertices, respect1vely. Given Any two 

disjoint sets Sand T of vertices in G, 'we shall partition 

S into three subséts as follows: 

U t 50 (T) if u e: 5 and uv t E whenever v e: T, 
• 

u e: S2(T) if u e: 5 and uv. E: E whenever v e: '1', 

u E: 51 (T) if u e: 'S and u t So (T) V 52 ('1'). 

We shall often rely on the~follow1ng observation, applyinq , ' 
. . " 

to Any component A or Rand Any camponent 8 of Wt 

N(O). C:jU B w~enever Z E Ai (B: ~ .Bl (A). (iO.~.l~ 

8y symmetry,' we only need praye (10.3.-1) with ~. t.AI (8) ~. 

Note that B 1ncludes adjacent vert1ces x,y such that xz t'~ 
j 

yz t E. If ~ had a neiqhbour w out~ide AU 8 th~n trivially 

. w e: W-S: but then wZlCy would be a badly coloured P 4 • 
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'l'he- remainder of our proof amounts to a case analysis ... 
'" , in the guise of an algorithm. During the e~~cution of this 

algorithm, ,G'\may be replaced by its complement; note that . , 
both the hypothesis and the conclusion of the lemma are 

invariant under this transformation. 

,o. If W is connected then replace G by its complement. 

(By Seinsche 1 s theorem, the complement of W is disconnected.) 

1 .• Now W is disconnected. If no two vertices of W 

are adjacent and no two vertices of R are adjacent then stop:' 

G ls bipartite, and so G is claw-free. If no two vertices~ 

of W are adjacent and R, is connected, ~h~n stop. W 1. a ~ 
clique cutset in the complement of G (by Seinsche's theorem, 

the complement of R is disconne.cted). If no twq vertices 

of W are adjacent, sorne two vertices of R are adjacent, and 

R is disconnected, then switch colours. 

2. Now W is diaconnected and it has a component B 

" if B is a.homogeneous set, then stop; else 

there ~re vert1ces' r, s, t)such that, r e: R, s, t € Band rs e: E, 

rt t,E. Let A be the component of R that contains r. If -. 
" 1 ?\ 1 = 1" then stop: in this case, G is disconnected or else 

N (r) ç; N (w) for sorne w in R. .. 
(To see this, let R* sta~d for 

the set of'all the vertices in,R that have at least ~ne 

neighbour in B. If sorne w in R ia adjacent to aIl the ver-

t1ces in B then (10.3.1) guarantees that N(r) ~ N(w); else -
" 

00.3.1) guarantees that there ls noedqe xy wlth xe: R* V B, 
1JI 

; 

,. 

, . 
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y V. R* U B.) If I~ 1 ~ 2 then 

\ 
go to 3 ln case A = Al (B) , 

go to 4· ln case AO (B) "1 ~, A.t (B) ~ 9, A2 {B} = ~, 
go to ~ ln case AI(B),"I Il, A2 (B) ~ 9. 

(Since r € Al(B), aIl the eventualitles are cove~ed.) 

3. Now there are a component A of R and a component 

B of W such that lA 1 L. 2 and A = Al (B); furthermore, W 15 

,dlsconnectèd. 

If BI (A) = Il then stop: (10.3.1) implies that N 15 a 

homogeneous set. If Bl ~A), ;. Il. and ~2 (A) :F ", then swi tch 

colours and go to 8. 
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Now we have'Bl(A) :F Il and B2(~) =!J. If BO(Al :F ~ and 

R is disconnected then switqh co10urs and go to 4; else stop: 

(10.3.1)' 'implies that there are nc;> edges xy wi th x € A U B, 

y_t A U B, and so G is disconnected. 

4. Now there are a component A of R and a cornponent B 
_ 1 

of W sUch that AOeBl f p, Al (B) + P,A~(B) = !J; furthermore, 

W is disconnected. 

If A is not a clique then,go to 7; if A is a clique 

then proceed as follows. 

If R 15 connected or B = BlCA) then stop: by (10-:3.1), 

~ is a clique cutset. If R i9 dlsconnected and B ;. BI(A) , 
then note that B2 (A) = Il, BlCA) ;. Il and BOCA) ~ Il; if B ls 

not a clique then switch co~ours and go to 7. 

" . 
l 

l , 

, 
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5. Now there are a component A /Df R and a çomponent B 
1 

~-. 

of W such that A ls a cligue, Al (B) '1 @, A 2 (B) = 9",and B 

is a clique, Bl (A) '1 @, ï~2 (lA) = @; furthermore, W is 

disconnec'ted. 

Extend tha subgraph of G induced'by A V B 1nto a maximal 

connected induced subgraph H of G such that every comp.onent 

A* of H f\ Rand' every component B* of H n W have the follow-

ing prop~rties: 

, 
(a) A* is a clique and a component of R, 

(b) B* is a clique and a component of W, 
f-

(c) A*(B*) = ~ and B* (A*) = IJ. 2 2 • -• 

If H = G then go to 6; if G is disconnected then stop; else 

f1nd an' edge xy such that x t. H, Y e: H. We may assume (by 

switching colours if necessary) that x E R-H and y E W () H. 

Let iL be the component of R that con tains x and let ft 

he the component of W that contaln~ y. By (a), we have 

A (1 H = lf; by (b), we have iJ C H. We claim that 

A2 (B*) = lf for every eomponent B* of H n W: (10.3.2) 

sinee H 1s connected, there 1s a eomponent A* of H n R SUCR 

that B~(A*) .; B* •. JBy (e), we have B!(A*) :I~; now (10.3.'1) 

" 
implies that N (z) n 'A = ~ whenever Z E Bi (A*~; it f-ollows 

that A2 (B*) = lf. 
If A = Al (B*) for sorne c~mp6nent B* of H" n W t:.hen stop: 



, ' 

(' 
'-

(10.3.1) implies N(z) ~ À \J B* whenever z E A, and 50 B* 

1s a clique cutset. If À = Al (B'*) for no component B* of 

." H n W then go - to 7. C In this case, we hav~ Bi (A) = " , 
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for each component B'* of H IÎ W: else we \lould have AO (B*) = 

", and so Al (B*) = A by virtue Of' 00.3.2), contradic~ing 
the assumption. But then maximality of H 1mplies that A ls 

nQt a clique; in additiQn, we have A2 (S) == ", Al (S) #; p, 

and ~l (S, #; À.) 

6. Now every component Qf R 15 a clique and every 

component of W is a clique; furthermore, A2 CB) == e and B2~= 
, 

@ for every component A of Rand every component B of W. 

'Stop: G is .cIaw-free Berge. CG .ts c1aw-free since 

(lO.3.l) guarantees that each N(z) 1s covered by two cliques; 

G is Berge simply because lt satisfies the hypothes1s of 

thy- 1 enuna. ) 

1 7. Nbw there are 
J 

a component A of Rang a component B 

of W such that AO (B) r @, Al (B) " fi, and A2 (B) =;: @i ftrrthet:,­

more, W 15 disconnected and A 18 not a clique. 
j 

We shall distinquish among three cases. 

Case 7.1: Sorne u in AOCB) is nonadjacent to sorne v 

in Al (8) • 

Replace G by i ts complement and go to 8: we claim that 

u has no neighbours in W. To _justify this ;Claim, note ffrst 

'that the shortest path from u to v in A has precise1y three 
,0 

vertices, for otherwise A would contain a (badly c01oured) 

---~--

( 

/ 
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P4' Next, note that the midpoint 'x of this path must be in 

Al (B) : if i t wer.e in AO (B) then there would be a badly 
< 

coloured P4 consisting of u,x,v, and a vertex in N (v) n R. 

Finally, if u had a neighbour z in W-B then zuxv would be a 

badly coloured P4 by vi.tue of (10.3.1). 

Case 7.2: Every vertèx in AO(B) is adjacènt to every 

vertex' in Al (B), but AO (B) is not a cI ique. 

In this case, consider the subgraph of G induced by 

AO(B); the complement of this graph has a component H with 

at least two vertices. Stop: we claim that H is a homo-

geneous set. To justify this claim, assume the contrary. 

NOW there,are vertices x,y,z wit~ x,y E H, z t H, xz C E! 

yz t E and xy t E. Trlvially, z c W-Bi but then (10.3.1) 

implies that yvxz is a badly coloured P4 whenever v c Al (8). 
~ 

Case 7.3: Every vertex ln AO(B) 15 adjacent to every 

vertex in Al (8), but,AI (B) i8 not a clique. 

In this case, consider the subgraph of G induced by , 

AI(B)i the complement of this graph has a component H with 

at least two vertices. Stop: we claim that H is a homogen-

eous set. To justify this claim, assume the contrary. Now 

there l'are vertices x,y,z with x,y E H, z t ~_ E E, yz t E 

and xy t E. / By (~.3.l), we have z E Bi but t yuxz is 

a b~~ly coloured P4 whenêver u E AO(B). y 

8. Now tpere are a component.A of R and a component B 

of W Auch that Al (8) t- Il, A2 (B) t- II. 

):;;' Again, we shall distinguish among thr~e cases. 

) 
• 
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, 
Case 8.1: Sorne, vertex w in A 2 (B) 15 not adjacent to aIl 

~ 
the vertices in Al (B) . 

In this case, let us firet show that 

no vertex in Al~B) -N (w) has a neighbour in AO (B) • 00.3.3) 

Assuminq the .--contrary, we flnd vertices u,v such that v E 

Al (B)-N(w) and u E AO(B) n N(v). Next, we find adjacent 

vertices x,y in B such that x c N(Y) and y t N(Y) .. Finally, 

if uw t E then uvxw ia a badly co1oured P 4: if uw e: E then 

~ 
vuwy 15 a badly coloured P 4' 

Next, let us show that 

N (v) n A
2 

(B) C N (w) whenever y E Al (B) - N (w) 00.3.4) 

Assumlng the contrary, we find a vertex z in N (v) () A
2 

(B) 

such that z t N (v); but then vzyw 18 a badly coloured P 4 

whenever y E B - N (v) • 

If no two vertices in Al CB) - N (v) are adjacent then 

stop: (l0.3.U, (10.3.3), (10.3.4) imply that N(v) S N(w) 

whenever v €: Al (B) " - N (w). Otherwlse 1 the subgraph of G 

1nduced by Al (B) - N(w) has a component H with at least two 

vertices; stop: we claim that H 18 a homogeneous set. 

To justify th1s cla1m, assume the contrary. Now there are 

vertices x,y,z such that x,y e: H, z t H, xz e: E,·yz t E 
p l-

and xy E E. , Trivially, z t R-A; by (10.3.1), we have z t 

W - B; by (10.3.3) we have z t AO(B): Furthermore, z t 
Al (B), for otherwise Z E Al (B) n N (w), and so wzxy 18 a badly 

coloured P 4' Thuà, we may assume z e: B V A 2 (B); now (10. 3.4) 

\ 
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with v = x implies Z E: N(w) i but then again wzxy i5 a badly 

coloured P 4' "'-

Case- 8,. 2: Every vertex in A2 (S) is adjacent to every 

vertex in AI(B), and A2 (B) is not a clique. 

In this case, consider the subgraph'~f G induced by 

A2 (B): the complement of this graph has a component H wi th 

at least two vertices. Stop: we claim that H is a homo-

geneous set. To justify this claim, assume th~ contrary. New 

there are vertices x,y,z such that x,y € H, z t H, x~ E: E, 

yz t E and xy t E. Trivial1y, z € AO (B) or z e: W - Bi if 

z E AO (B) then zxty 15 a badly coloured P 4 whenever t E: 'B; 

if Z E: W - B then (10.3.1) guarantees that zxty ls a badly 

celoured P 4 whenever t e: Al (B) . 

Case 8.3: Every vertex in A2 (B) is adjacent to every 

vertex in AI(a), and '2(B) is a clique. 

Stop: we claim that N Cv) S N,(w) U {w} whènever v e: 

Al (B) and ,w· E .A2 CB). To justify this claim, assume-the con­

trary. New there ls a ve.I'tex U in _ N Cv) such tha,t u t N (w) U 
/ 

{w}. By (lO.3.U, we must have U. e: AO(B) i but then uvwz 

is a badly coloured P 4 whenever z 'e; B - N (v) .0 

Proof of Lemma 10.2.3 

" Let G be a graph wlth an allgnment 01'02'n ••. ,Ok that 

does not ex tend into a full alignment. Without 10S8 of 

general1ty. we may assume that the al1qnment Ol.Q2"~k 

-, 
1 
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ia m~xlmal. j 
We ahall de Ine certain sets C1 'C2 '·.·;Ck and SI,52 , ... ,5k 

such that 

for all i. Ta begi~, enumerate the vertices of 01 as 

xl ,x2 ,x3,x4 ln such a way that xlx2,x2x3,x3x4 ( E (and 

xlx3,xlx4,x2x4 t E); then set Cl = {x2 ,x3 } ,and 51 = {xl'x4 1. 
Next, when Cl and Si have been defined for sorne i smaller 

than k, let x be the vertex in °i+1 that does not belong ta 

Ci V Si· If 1 Ci " 01+1 , is odd then set CiH = Ci V {xJ, 

S1+1 = Si· If Ci f'l 
° 1+1' 

15 even then set Ci + 1 = C~, 
S1+1 = SlU{x). 

Next, writ~ C = Ck , S = Sk' A = C V 5 and set 

U E BO if u t A and uv t E, uv t E whenever v E Cl' 

W E: Si • 

U E -BI if U t A and uv e: E, uv t E whenever v E Cl' 

w E: 51 

U E 8 2 Hu t A and uv E: E, uw E: E whenever v E Cl' 

w € 51' 

It ls easy ta see that each vertex u outside A belongs 

to one of the sets BO,81 ,82 : otherwise u Along with sorne 

three vertices in 01 would induce a P4' contrad~cting jP.Xl-

mali ty of the àllgnment. \ 

" 
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We claim that 

uv ( E and uw ;. E whenever u e BO' v ( C, W €: S 

uv e: E and uw ;. E whenever u e: BI' v e: C, W E: S 

~ 
uv e: E and uw e: E whenever u e: B2' v e: C, W e: S. 

This claim ls easy to justify: if i t falled, then some ve r-
) 

tex u outside A would have an odd number of neiqhbours in 

some 01' But then u alon9 with some three vertices in °i 
would induce a P 4' contradlctlng maximal ity of the aUgnment. 

Finally, let us dlstlnquish among four cases. 

Case 1: Bl ='. In thls case, A ls a homogeneous 

~ set. 

Case 2: Bl ;' and aome two vertices in S are adjacent. 

In this case, the subgraph of G induced by S has a componen~ 

H w i th a t 1 eas t two ve rti'ces; we cl aim tha t His a homogE!neous 

set. Assuming the contrary, we flnd vertices x,y,z such 

that x,y 'e: H, z ;. H and xz E: E, yz ;. E; since H is con­

nected, we may asswme that yx e: E. Trivlally, z e: C. But 

• then x, y, z and any vertex in BI induce a P 4' contradictlnq 

maximality of the alignment. 

Case 3: Bl ;, and som~ two vertices ln C are nonad­

Jacent. This case reduces te Case 2 ~h~n G 'ls -Eeplaced by 

its complement and C intérchanged with S. 

( 
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Case 4: Every t~o vèrtices in 5 are nonadjacent and 

every two vert1ces in C are adjacent.. In this ca"se, N (w) S {v} 
" U N (v) whenever w E S and v E ,Co 0 

, 

• 
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11. ODD DECOMPOS 1'1'1 ONS 

11,.1 .The Results 

. , 
'Va~ek Chvatal conjectured that a graph ia p,erfect 

whenèver i ts vertices Can be coloured by two colours in suah 

a wal that each chordleSs path with four verticea and three 

edg~ has an odd number of vertices of each colour. The 
• , 

main purpose of this section ls to prove Chvatal'S conjec-.-
ture. 

. ' 

theorem Il. 1.1 

If the verticés of a~ graph G can be . coloulled by two 

col9urS in ~uch a way that each induoed 'P4 has an odd number 

of vertiçes of ...e-ach ,?olour, then Gis, perfect.O 

Note that the hypothesis'of Theorem 11.'1.1 'can bé tested 

by sOlv,ing, a small system of linear congruences modulo two: 

each variable in the system corresponds to a vertex, and each 

congruence, corresponding to an induced P4 , requ:res' that 

the sum of the four variables be odd.-

Our proof relies on the following results concerning 

, 

.. , 

perfect graphs. First, by the Perfect Grap~ Theo rem, a graph 

is perfect if and only if its complement ,is. Second, Seinche 

(section 4) proved that if G 1s a P 4-free graph, .then G or 

G is disconnec~ed. Finally, as mentioned in section' 3, 



the fOllo~ing three statements hold. 

No min~al.imperf,ct graph can'contain a 

homoqeneous set. ~ 

~ 
No minimal imperfect graph can contain a , 

clique cutset. 

No minimal impertect graph càn contain ~wo 

vertices u,v ~ith N(u~ te. {v}.U N,{v). . - , 
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(l1.1.U 

(11.1.2) 

(11.1.3) 

~i virtue'ot:the abcive facts, the validity of Theore~ 

Il.1.1 ia guaranteed'by the following reault: 

Theorem 11.1.2 

I~ the vertices of a graph Gare coloured by two colours 

in such a way, that each chordless path with fou,r vertices 

ànd three edges have an odd number of vertlc~ of \each ',. 

colour, then 

tr,---: G or G is blparti te, . or 

(11) . G or G~contalns a hom~geneous set, or 

( t'li) 

(lv). 

\ 

,G ~r G contalns a clique cutset, or 

G or G contalns two.yertlces u,v with 

N(u) C;; {v} V Nev). 

One graph that satisfies the hypothesls of Theorem Il.r.2 
'\ -

ls shown in Figure 11.1. 'This gra.ph has none of the propertles 

. ,. 

" 

'. 
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(1), (11) and (lllL of Theorem 11:1.2. (To show that the . --
qraph satlsf1es the hypothesis of Theorem 11.1.2, we assiqn 

colours to, 1ts vertlces. R denotes "red" and W denotes 

"whlte". ) 
". 

w 

W w 

R 

w 

W 

FlqU~ 

Fi.nally, we Shal,l present a qeneralizatÛm of Theprem 

ll.1.l. First, let us consider a qraph whose y'ertices are 

coloured by twQ'coî~ur~. A P4 ia said to be monoehro~~~iç if 

aIl of lts four vertlcé~,reCelye the same colour. A P4 ls 
" 

we-ll odd-coloured lf it bas an Qdd number of vertices of "each 
1 .. ~ ~ JI... \ • 

colour and if: among th" t~,re~ ,ve~tlces of the same col our 

\" 

, 
... 

, 

~. 

. , 
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of thls P4' at 1east one vertex does not belong to a mono­

chromatic P 4' 

Theorem 11. 1. 3 

If the vertices of a graph Gare coloured by two colours 

in such a way that each colour appears ~t 1east once and 

that each\induce~ P4 ls' either monochromatic or weIl odd-
1 

co1our~d, then G ls perfect if and only if each of the two 
, 

subgraphs of G induced by aIl the vertices of the sarne colour 

is perfecto 

One graph that ,atlsfies the hypothesis of Theorem 
• 

Il. 1.3' (bu t ':lot the hypothes is of Theorem Il.1. 1) 1 s shown 

in Figure 11.2.· (As in Figure 11 •. 1, R 'denotes, "red"'and W 

,denotes "white".) , ' Neither tb~s graph nor its complement 
, ' 

contaips a homQgeneous,$et or ,a clique cutset. 

W .D-.....-----a .. 

w 

R 

w , W 
Figure Il.2, 

, ~_l 

'" 

l' 
, 1 

, i 
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Unlike the case Theorem ll.l.l, we do not know how 

difficult it is to test the hypothesis of Theorem 11.1.3. 

'" However, Chvatal (1985) nd a common generalization of 

Theorem,11.1.3 and Theorem 10.1, whose hypothes1s can be 

tested in a polynomial time. This commen generalization .... . 
involves·the following notion: vertices x and y in the 

same grflph are called siblings if there i·s a set S of three 

vertices such that both~S V Ix} and S U )y} induce a P4' 

'" Theorem 11. 1. 4 (Chva tal (1985» . 

Let the vertices of a qraph G be co1oured red and white 

in such a way that every two siblings have the sarne colour 

and that each colour appears at least once. The~'G is pèr­

fect if and only if each O;_its two subgraphs induced by aIL 

the~vertices of the same colour ls perfect.O • JII , 

/', :J:t ls easy to see that Theorem 1"1.1.4- implies Theorem 

11.1.3.and Theorem 10.1. (The proof of Theorem 11.1.4 

~rél'ies on Theorems Il.1.3 and 1 O~ 1.) 
,-

Chvatal has noted 

that, given a qraph G with n vertices, one can test whether , 
. 5 

G satisf,ies the hypothesis of Theorem 11.1.4 in 0 (n ) steps. 

To see this, we ,construct the sibling graph of G ·that has 

the sarne vertice.~ as G, w.i.{h any two vertices adjacent if 

and only if théy are siblings in 'G. Clearly, G sati,sfies 

the hypothesis of Theorem 11.1.4 if and only if the sibling 

graph of G is disconnected. 

( 
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11.2 'lhe Proofs 

. Praof ~f Theorem Il.2.1 

Let G be a graph satisfying the hypothesis of Theorem 

11.1.2. 
.' . 

Ne shall write G = (V,El and refer to the -two colours 

as red and white; the two subgraphs of G induced by aIl the ~ 

red yertices and by aIl the white vertices will be denoted 

by R and N, respectively. Gi~en any two nonempty'disjoint 

subsets 5 and T of V, we shall partition 5 into ·three sub-

sets as folloW5 : 

u. E: 50 (T) . if u E: 5 and uv t E whenever v € T, 

u E: 52 (T) if u e: 5 and uv e: E whenever v e:. T, 

u E: 51 (T) if u € 5 and u ri 50 (T) U 52 (T). 

Let us make note of a' simple f~ct. " 

Fact Il.2.1 • 

Le~ Y be a subset of R such that the complement of the 
~ / 

gc~ph 1~duced by Y i5 codnected; 'let W be partitioned into 

disjoint sets P and Q such that,p =-Po(Q) and Q2CY) ~ ~. 

Then P1(Y) = ~. 

Proof of Fact Il.2.1 

Assume the contrary, so that some vertex z in P i8 
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adjacent to orne but not aIl v~rtices in Y. Since the com-
. , 

plement of the g~aph induced by Y is connected, there must 

be vertices x and y in Y with xy t E, xz E E, yz t E. Bu~ 

then zxwy is a badly ooloured P4 whenever w E 02CY), a con­

tradiction. 

The following corollary of Fact '11.2.1 will he used 

over and o~er again. 

Fact 11.2.2 

1 
Let R he partitio~ed into disjoint sets Y and Z such 

that the complement of the graph induoed by y ls connected, 
,"""'- 1 

1 y 1 ~ 2, and Zl CY) = ~: let W he partitione:l iiito d1sjo~t sets P am 

o suc:h that P = Po (0) and q2 (y) " ~. If P ~ P OIY) or 01 (~ = JI, then 

y is a hc:mogeneous set. 

Procf of Fact 11.2. 2. 

Since Zl(Y) = JI, we on1y need prove thab W1(Y) = ~. 
In fact, we on1y need prove that 0l(Y) = (l, as P1CY) = ~ 
is guaranteed by Fact 11.2.1. Thus, we rnaY assume that 

P" poey); now Pl(Y) = (I irnplies P2(Y) " (l, and 0l(Y) = JI 
r 

fo11ows frorn Fact 11.2.1 with P and 0 interchanged. 

A cornponent of a graph will be called big if it has at 

least two vertlce. The rernainder of. the proof is presente? 

in the guise of an a1gorithrn. 
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( 

o. If W 15 connected then replace G by 1 ts complement. 

(By Selnsche's theorem, W or its çomplement 15 dlsconnected.) 

1. Now, W 18 disconnected. 
, 

If W has no big component then go to 9: if R has no 

big component then switch colours and go to 9. Now both R 

and W have big components; we shall distlnguish between 

tw6-' cases. 

Case 1.1: There are no big components A of R, B of 

o! W wlth A1(B) 1~. 

, 

If the:re ls no edge xy with x in a big component A of 

R and y in a big component B of W then go to 8; else con5ider 

this edge. If B is homogeneous then stop; else th~re 15 a 

component C of R with el(B) 1~. Since we are in Case 1.1, 

this component C consists of a single vertex c. Stop: we 

claim that N(c) s;; N(x) .. (To justify this cla1m, aS5wne the 

contrary: cd e: E and xd t E for'some vertex d. Trivially" 

d e: W; furthermore, d , B, for otherwise x ~ Al (B), contra­

.dicting the assumption that A1(B) ~~. But now d e: W - B, 
'-

and 50 xbcd 15 a badly coloured P4 whenever b is a neighbour 
~ 

of c in B.) 

'Case 1.2: There are big components A of R, B of W 

w i th Al (B) f.' . 

If AO(B) 1 ~, go to 7; if AO(B) = ~ and A2 (B) 1 ~, go 

to 6; if AO(B) = ~ and A2(~) = " go ta 2. 

2. Npw, W is disconnected and there are big components 
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A of R, B of W wlth A = Al~ 
Note that Bl(A) U B2 {A) ~~. If B = Bl (A) then go to 

3; if BO (A) ~ ~ and Bi (A) :f. ~ then swltch colours and go to 

7. Now only two cases remain to be consldered. 

Case 2.1: Bl (A) = ~ and B
2 

(A) # e. 
If A ls not a cllque then stop: the complement of the 

subgraph lnduced by A has a blg cornp6nent Y and Fact 11.2.2 

(wlth Q = B) quarantees that Y ls hornogeneous. Now A ls a 

clique. If R ls connected then stop: A ls a clique·cutset. 

Now R is disconnected. If A ls ~omogeneous then stop; else 

there ls a component C of W wlth Cl(A) :f.~. If C = C1(A) 

then stop: A is a clique cutset. (Otherwlse, sorne vertex c 

in C ls adjacent to sorne vertex d in R - A. Consider an 

arbitrary vertex b ln B2 (A). If bd Ë E then cdba is a badly 

coloured P 4 whenever a e: A - N (c); if bd t E then dcab 15 a 

badly ~oloured P4 whenever a € A ~ N(c).) Now C :f. el(A) but 

Cl (A) :f. Il, and 50 C ls big. If Co (A) :f. e then sw 1 tch colours 

and go to 7; if COCA) = ~ then switch colours and go to 

~ 6. 

Case 2.2: BO(A) = Il, Bl(A) :f. ~, B2 (A) :f. Il. .. 
If R'is disconnected then switch colours and go to 6. 

Now, R ls connected, and so R = A. Let C conslst of aIl the 

vertices in R th~t have neiqhbours in W-B; note that C 

ls a cutset (every path from B to W-B must pass through C) . 

If C ls a clique then stop (C ls a clique cutset); else there 
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are nonadjacent vertices u and v in C. Now the complement 

of R has a (big) component Y contalnlng u and v. Stop: 

Fact II.2.2 (with Q = B) guarantees that Y ia homogeneous. 

3. Now, W is disconnected and there are big components 

A of R, B of W wi th A = Al (b) l' B = Bl (A) • 

If G is disconnected then stop; else there ls an edge 

xy with x e: A V'B, y t A V B. If x e: B and y e: R-A then 

switch colours; now there isC;n edge vw with v e: A and w E: , 
~\ 

W-B. If N (w) ::;=lA then go td 4; else go to 5. 

4. Now, there are big components A of RI B of W such. 

t~t A = Al (B), B = BICA) and such that sorne vertex w in 

W-B has N{w) ~ A. L 
If A is not a clique then stop: the complement of 

A has a big component Y and Fact 11.2.2 (wlth 0 z W-B) ar-
, 

antees that Y' is homogeneous. Now A is a clique. If A ls a 
. 

clique cutset then stop; else sorne vertex ln B has a nelgh-

bour r in R-A. We claim that 
• 

0 

N (r) iè B. 

" To, jUsrlfy 
:~ 

thls claim, find vertices a in A and b,c in B 

with ab E E, ac t E. If wr e: E then we must have rc t E 
4l 

r· 
(else awrc would be a badly coleured P 4); if wr t E then we 

must have rb t E Celse wabr would be a badly cql.oured P 4) . 

New awitch colours, replace w by ri and go to 5. 

5., Now, there 
4 

are big' com~ggnlts A of Rf B of W 
, e 

, 

, 
1 , ' 

'-/, 

'4iI 

'" 01<., . ~ • t .-
" ,.,~ .. . >r p • • <, 
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/ 
such that A E Al (B), B = Bl (A) and &bch that ié'm~· vertex w 1n 

W-B hAs N (w) nA" pc N(w) ;t; A. 

We c laim tha t 

there are no vertices al'&2,a3 1n A with 

wAl,alA2,a2a3 E: E and wa2 ,wa3 ,a1a 3 "t E. (l1."2.1) 

To just1fy this claim, assume the contrary and let ~1 

(1 lE 2,3) be an arbitrary ne1ghbour of a 1 in B. We must 
~ 

have b2a1 E E (else wa1 A2b 2 18 a badly coloured P 4)' b2a3 t­

E (else a 3b 2A1 w 1s a badly coloured P 4)' ~~~,l t E (el~e 

wa1 b3~ 1s a badly coloured P 4)' b 3a 2 ~ E (el$e wal a 2 b 3 1s 

A badly coloured P 4) f and .b2 b 3 t E (else a 1b2b 3.a3 1s.a badly 

coloured P 4). But then b 2a 2a 3b3, 1s a badly coloured P 4. 

Next,. writ1ng C II: .N(w} (\ A, we claim that 

sorne vertex x 1n Chas N (x) :? A-C. (11.2.2) 

Ta justify this claim, 
. 

... 
cons1der Any vertex x in C that 

maxim1zes 'the s1ze of N (x) n (A-C). If N (x) ::2 A-C then we 
, 

are dane; else tl:tere 1s A vertex % in A~C with xz t- E. .S1nce 

A contains no P (' the shortest p.ath fram x to z in 1i. has 

prec1sely three vertices 1 let y be the inter1ar ve;rtex of' 

this path. By (11.2.1) w1th a lL - x , a2 - y, a 3 -. z, we must 

have y € C.' By the cholce of x, there must be a vertex t 

1n A~C wlth xt E EL, ,yt f/ E •. By (11.2.1) wlth al=x/~2 - t, 

A3 - z, we must have zt i E. But the~ txyz 1a a badly 
.,; 

.. . . 

--~-
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\ 
coloured P 4. 

Now we shall distinquish between two cases. 

Case 5.1: C ia a clique. 

Let 0 stand for the set of vertiees in a that have 

We claim 'that, with x as in 01.2.2), neiqhbours i~A-~. 

o~ N(x). (11.2.3) 

TO jusUfy this clalm, ,consider an arbitrary vertex d -in 0; , 
there 18 a" vertex- a ln' A ... C w1th ad e: E. We must 1'\ave xd e: E, 

fOf otherwlse wxad ~ould be a badly coloured P 4'. 

Next, sinee A ~ A1' (13), there- Is a vertex b ln B with 

x-b t Ei by (11.2.3), we have b t 0... Slnce a=- Bl(A), 

there J.s a vertex a in À with ba e: E; sincè b t D, wè have 

a ,€ C. We claim that '-

r 
N(a) :? A-C. (11.2.4) 

" 
To justify this clalm, assume the cont~ary: some 'vertex y 

in A-C h.as ya t E. Since A = Al (a) , there is a vertex c ln 
1 

a wi th ye & E. Note that c e: D, and so xc e: E by (11.2.3). . 
We must have ac t"E (el se wacy i8 a badly cOlour7 P 4) , 

be e: E (else baxc Is a badly coloured P 4)' aud by- t· E (as 

~ (. 0). But then yeba :ls a badly coloured P 4' 

~ 

Now stop: N (y) S {a} U. N (a) whenever y e: A-C. (Other-. D 

wise there would be a vertEl,ic z with 
o 

(ll • 2 • 4), we mus t have z e: W. If z 

... 

• 

• 

____ '- ____ _ 0 

yz e: E, az t E. JY 
€ a then (11.2.4~ 

.' 
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" 

guarantee8 that wayz 18 a bad1y coloured P4; if Z E W-B 

then (11.2.4) and b t O'guarantee that zyab 18 a badly 

coloured 'p 4 • ) 
./1 

Case 5.2: C is not a clique. 
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Now the complement of the subgraph induced by Chas a 

big component Y. Stop: We claim that Y ls homogeneo~s. 

(TO justify thls c1alm, write Z = R-Y. We only need show 

that Zl (y) = If for the rest will f?ïlOW from Fact 1l.2.~ 

W1t~Q = W-B. To sho~ th~t Zl (y) = ~, assume the contrary: 

som~ertex z ln R-Y ls- adjacent to sorne but not al! 'the 

vertices ln Y. _Trlvlally, z e A-C; since th~ complement of 

the' subgraph Induce8 by Y 18 connected, there are vertices 

u,v in Y with uv t. E, uz € E, vz t E. Consider any neigh­

bour b of z' in B. We must have ub e: E, for otherwlse wuzb 

woUld be a badly coloured P4. 4ut Ub e E implles vb e: E, a~ 
Fact 11.2.1with Q = W-B guaranteès B1CY) = ~.' "NOW WVb~1iS 
a bad1y co1oured P 4)' ' 

6. NOw 1 W is dlsconnected and there' are big components 

\ A of R, Bof W such that'AO(B) '7' 1'" Ai(B) ;'1 A2 (S) i @.; 
, r. 

We shall (Us~inguish between two cases. ~ 
" 0 

, , 

. ('~'Fase 6.1: ,There i,S no edge 'wi th one endpoint ~A 

a'nd the ,other endpolnt in W~/J~' ' , " .~~ 

, . 'f,~t- C stand for the s~:y 'Vertjc~s ln B t at have' 

n(i~OUr~ in R-A; note that C is a cutset (every path fram '1jP 

"A to W-B must pass through C). lf C ls a clique then st:op 

l' 

/ 
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(C i8 a clique cutset); eise there are nonadjacent vertices" 
, 

u and v in C. Now the- complement "of the graph in~ij.ced by B 

has a (biq) compnoent Y containinq u and v. Stop: Fact 

~~.2.2 (with colours switched and Q = A) guarantees that Y 

--Is\bmOgeneous. 
, 

Case' 6.2: There i8 an edqe wi th one e~dpoint 1n A and 

the other endpoint in W-S. 
, 

Write u e: Ai (B)' if U "f. Al,Ca> and N(u) ;a A2 (B) '1 write 
, 

N € A~(B) if v f. A2 (B) and N(v} 2 AltB). We claim that 

no vertex in W-B has a neiqhbour 

(11.2.,5) 

.,-11/' 
To juatify this claim, , ,assume the contrary'. Now there are 

nonadjacent ~ertices u,v auch that u E AI(B), v e: A2 (B), ~nd 

such that·uw e: E or vw ~ E (~r bo~h) for some vertex w in 
, ' 

, W-B., Next, t~ere are ,vertices b,c in B Buch that ub € E , "," .. 

'\ ' 

and uc t E; of course vb E E and vc e: 'E. If uw € E and vw 

e E then uwvc lB a badl~ coloured P4~ if uw E E and vw t E . 
then wub'Y' ts, a badly coloured l» 4; if uw tE ... and vw e: E then • ~' 

wvbu ia a badly colour~d P 4 • 

Next, we claim that 
.' 

ao~e vertex w in W-B has~a neiqhbour in A~!8!., (11.2.6) , " 

, 
,~o, jUsti~thi~..-.claim, recall that ,th~re ls an edqe xw wi th' 

x e: A and w e: W-!3: by (11.2.5), we must have x e: ArCS) v 

" 

.' 
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.. , 
A~(B)'. If x E A~(B) th en (11.2.6) holds, thus, \Ole may assume 

X E AI(B). Now there 1s a vertex b in B with xb t E. Con-. 
,aider an arbitra~y vertex v in A2°{B): we mua,t have first 

wv e: E (else wxvb would be a badly coloured P 4) and' the~ 

-l, V E A~(B) by (11.2.5)'. Hence. (11.'2.6) holds'/'again. , , , 

, \ 

Wlth w as in (11.2.6), write,S = N(w) " A2 (B). We 
", 

claim that 
\,., 

va e E whenever v E S and a E A-S. (l1.2.7) 

To justify th1s claill4 assume the contrary: va t E for sorne 

v in S and for some a in A-S. By '(U-.2.S), we have S c:: A~ (B), 

and-so a E A2 (B)-S. Sut then abvw la a badly coloured P4 
whenever b' e: B. 

The remalnder of the argument rêl1~s only on (11.2.7). 

If S is a, cliqUé .then stop: N (u) ~ {v'} V N (v) whenever ' 

u e: Al (B)\, and v ~ S. ·COtherw1se, there would bê a ver'tex z 
, ' 

,o'with uz E E, vz t, E.. Neces9arily, z e: .W-B; but then zuvh 

ispa badly coloured P4 whene~er b E B~N(u).) If S i9 not 

a clique then' the ~oniPleI1le~t of t,he subgraph induced bYr S 

haa a big component Y. stop: Fact 11.2.2 (with Q = S 
, ' 0 

or 0 = if-S) guarantees that Y,' +s homoqen~ous. 

7. Now, there ~re big components A of ~, B of • 

sy~~ that AoeB) r @, AleB) ; @. 
. --Note that 

.. 

there ia no edge uv with u ~ V E AI(S): (ll.Z.aI ' . 

, « 

,1 ' 

• 
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else, finding verticesOx,y in E E and vx E E"; 

. vy ;. E, we would obtain a badly (uvxy) • 

Since A contains no P4' Seinsche's theorem guarantees 

that A splits into nonempty parts 5 and T such that xy E E 

whenever x E S, Y E T. Wi·thout 10ss of qenerality, we may 

assume thatAO(B){\ T~ Il: now 01.2.8) impliesAO(B)\J 

A1(B) G T, and sa 5 ç A2 (S). If S is.a clique then stop: 

N(u) S {w} U N(w) whenever u E AO(B) and w E S.' (Other-; 

wise, there would be a vertex z WMh~ '. E anq wz t E. 

Necessarily, Z E W-S; but then zuwb is a'bad1y coloured 
, 

P4 ~henever b E B.) If S 1s not a cliqu$ then the co~plement 

of the subqraph induced by S conta1ns a big component Y • 
.... 

Stop: Fact 11.2.2 (w1th ~ • B) quarantees that Y is homo-. 

geneous. 

8. Now, both.R and W have big components, but no edg~ . . 
in a big cOmponent of R and the other' , has one'endpoint 

endpoint 1n a big cOltponent of W. 
1 

Stop: we claim th~t G isJfd·1sconnec~ed •. (To justify_ 

. this clai:m,. assume the contrary: now th~re is!.;.a path 

" ,vi ,v2' ••• ,vk .uch that v1 "is in a biq componenb of Rand 
. ~ 

v~ is in a biq component of W. Choosinq k as smalI as 

.possib1e, observe that {v2} ie li component of N, {v3h'-l18 a 

c:omponent of R, and V~"E W. 8u~ t~en v1v2v3v4 hs ,a badly"" 
~' ~ \ 

coloured P 4 • ) 

.9 •. Now, no two vert1ces 1n W are adjacent. .. 

o .. 
- .' 

, . 
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The.followlnq elegant argument, proposed by'Bruce Reed, 

'shows that G is perfectly orderable. Trivially, there is a 

linear order < on the set of vertices of G such that 

.. 
x < -y whenever x e: R, y e: W 

and such tha t" 

c < d whenèver Cr dER and 1 N (c) n if 1 > 

"" it is easy to verify that no P4 with vertices a,b,c,d and 

edges ab, bc,~.d has ~ < band d < c. 

_ ' We sha11 present a lenqthier but' self-contained arqu-
e ' 

ment, providing more insight into. the' structure of G:' First, 

if R ls~connected then stop: bl' Selnsche l s theorem, tpe 

complement{ of R Is disconnected, and so W is a clique 

cutset in the complement of G. Now 

R ls disconne.cted~ 

we shall dlstinguish among three cases. 

Case,9.l: Some vertex in a big compnoent of R has 

a·t.leàst two ~eighbours in W. 
;' , 

\ 

Amonq 'aIl the vettices in big componen~s of R,. ~ho()se , \".... 
'Q 

a vert~x:a that has the largest number, of neighbours in W. 

Let A be tbe big component of R tha~ cont'ains a;. write . ~ / .... 

Y .. N(a)'f) ~ and no~e that 1 Y,! ~ 2. If some ,vertex in R-A 

, . 

" . 

r , 

. ' 

" 
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has a ne1qhbour 1n Y then stop: Fact 11.2.2 (w1th colours . . 
sw1tched and Q = A) guarantees that Y ls homoqeneous. Now 

there ls no edqe with ohe endpo~nt in R-A 
. 

and the other endpoint i~ Y. (11.2.9) 

Write 
-; 

x E AO if x e: A and. N (x) " W:z'", 

X E Al lf ,x e: A-AO a~d N~X) f\ W S Y, 

x E ~2 lf x E'A and N(x) n w~ Y. (11.2.9) , 

Note that (~-A2) U Y is a component of G-A2 by virtué, of 

(11.2.9): s1nce A ~ R, 1 t follows that .A2 ls a cutset of, 

G. If A2 = ~ then stop: G 1s disconneèted. Now 

(11.2.10) 

We claim that 
, 

'no vertex z ln A2 has a' neighbour y ln Y. (11.2.·11) 
Il 

To just1fy this 
t j 

cla1m, assume the contrary. Since z has a "'. 
nelqhbour w ln W-Y, we must have az, e: E (else ayzw Wt>Wf . 
he a badly coloured P4)' But- the ch01ce of a quarantees the 

existence of a vertex x in W w1th aX,E E, zx t E; now xazw 

, 1s a ba~ly coloU~ed P4' 

F~om (11.2.11), 1t follows that 

'1. 

(11. 2.12) 

, 
~~1~_.· . __ _ 

.' 

, 
"'r 



e1se yxzw would be a bad1y co1oured P4 whenever y E N(x)n 

y an,d W E N (z) () W. 
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By Selnsche's theorem, A sp1its into nonempty parts 

Sand T such that xy E E whenever xf E S, Y E T. Without 

108S of genera11ty, we may assume that a € T; now (11~2.10) 

and 01.,2.12) lmp1y that Al V A2 ç T, and so S ç AO' If 

1 s" ~ 2 then stop .cS ls homogeneous); else let s be the 

unique vertex in S. If AO ='{s} then stop: By (11.2.9) 

and (11.2.12), Al V Y ls a c~mponent of G-AO' and so {si 

is a clique cutset of G. If AO :; {s} then stop: N (t) c: 

:UN(s) whenever t E AO- {s} • -

{s} 

Case 9.2: No vertex in a big component of R 'has two 
r 

or more neighbours in W, but· sorne vertex w in W has at 

least two neighbours ln sorne big eomponent A of R. ... . 

Wrlte (. 
-. 

X E' AO if x E: A N (x) 1\ W = ~, 
, 

and 

x € Al if x E: A 1) N (w) , 

x E: A2 if x E: A- (AO U Al)' 

Note ~ha t AO U ~l is a compone nt of'G- (A2 U {w}) ; sinee 
& 

A ~ R, it follows that A2 U Jw} iS a cutset of G. If 

A = 2, ~ then stop: {w} ia a clique cutaet. Now 

(11.2.13) 

J 
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In addition, 

there is no edqe xy with x e: Al' Y S A 2 : 01.2.14) 

else wxyz with z e: N(y) {\ W would be a badly coloured P4' 

By Seinsche's theorem, A splits into nonempty parts , 
,1 

Sand T such that xy e: g, w.heneve", x E: S, Y e: T. Without 
,'t 

loss Ott general1ty, we May as~ume that Al () T:f. 0; now 

(1l'.2.13) a~d ,(11.,2.1,4) ,imply that Al'U A2 ç, 'r, and 50 

S ç AD. r,f I,~ l ~ 2 rhen stoP. (S la homoqeneoua).; .,else let 

9 be the unique vertex in S. I,f AO = ls} then stop: by 

(11.2.14), Al i9' homogeneous. ~f AO ':f. {a} th en stop: 

N(t) ç {si u' N,(s) whenever t E: AO-{S}. 

Case 9.3: No vertex'in a big component of R has two 

or more neiqhbours in W, and no vertex in W has two or 

m?re "neighbours in the sarne big comporient of R. 

Consider an arbitrary big component A of R and,~rite 

• 1 

x ~AO ,'i~ x E: Ai ~nd ,N(~' n W = ~, 
x e: Al 15 x € A and N (x) n w:f.. ~. 

Note 'that 

• 1 

there is nC?, edge yz wi th y e Al' z € Al; '(11.2.15) 

else xyzw, w1th x E N(y) (\ W, w e: N(z),(\ W would be a badly 

coloured P4' 
, , 

By Seinsche' s theorem, li' spl,1 ts t,nto nonempty parts 
,1 

• 
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Sand T such that xy E: E whenever x e: S, y e: T. By (11.2.15) 1 

we must have Al ç S or Al ç T. Without 1088 of generality, 

we may assume that Al ç T, a'hd so S S AO' If 1 si> 2 then 

stop (S i"s homogeneous);" else let s be _the unique vertex . 
in S. If AO :ft {a} then.stop: N(t) ç {s} V N"(S) whenever 

t E: AO - { s } . Now we have 

1 1 AO 1 = 1. 01. 2. 16') 

Final1y, let Q stand for the union of aIl the sets 

AO (one for each big compcm~~ A of R)·. By (11.2.16), no 

two ~ertices in W U Q are adjacent; by (11.2.15), no two 

vertices in R-Q are ,a.djacent. Stop: G is bipartite. 

Tl1-e proof ls completed.D t 

To prove Theorem Il.1.3, we shall need a result estab­

lished by Chvàtal. and the author in the previous section~" 
.' 

This result can be restated as_follows. 

Theorem- 11. 2. l 

Let G be a minimal imperfect graph and let S be ,a set 

of vertices such that S induçes a P4 in G. Then the vertices 

of G can be enumerated as vI,v2'V3,v4,vS, ••• ,vn in such a 

way that S = { v l' v 2 ' v 3' , v 4 } and that each v, wi th j > 4 
J ' 

forms a P 4. wi th some three vertices Vi such that i < j.,O, 

) 

\ 

""~ 
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Proof of Theorem Il.1.3 

If the statement was false, then the smallest counter-

example would be minimal imperfect. Thus, we only neeQ 

show that no graph G satisfying the hypothesis of Theorem· Il.1.3 

i9 minimal imperfect. Assume such a graph to exist. (We > 

want to arrive at a contradiction.) There must be a set S 

of four vertices such that S induces a monochroma tic P 4' 

in G; for otherwise G would satisfy the hypothesis of Theorem 

Il.1.1, and so G 19 perfect, a contradictipn. Since G is 

minimal imperfect, its vertices can be enumerated as 

v1,v2 , ..• ,vn as in Theorem Il.2.1. In particular,.v1 ,v2 ,v3 

and v 4 have 'the sarne colour (because they belong to S') .' 

Now, let j be the smallest sub9cript such that v j has the 
< 

colour different from that of v 4' Not.e that we have j ~ 5. 

By Theorertl Il.2. l, v j forms a P 4 wi th some three vertices 

. vi with i < j. Obsérving that each vi with i < j belongs to 

a mbnochromatic P4' we conclude that the P4 containing v j 

and the three vertices vi (i < j) is n~ither monochromatic 

nor weIl odd-coloured. This i9 tp'e des1red contradiction. 0 

\ 

... 

\ 

''''. 



Adjacent 

Bijection 
; 

Chord 

Chroma tic number 

Cl iq\ile 

Clique number 

COlouring 

Complement 

0' 

"Connected ~ 

Cutset 

'------'-------~~~-~~- ---~~~---

APPENDIX 

two vertices are ad1àcent if and 

only if they are joined by an edge. 

a mapping one-to-one and onto. 

a chord in a cycle v 1,v2"",vk is 

an edge viV j other than viv i +1 
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(l .5. i .5. kl or v~vk' 

the smallest number of colours th.~ 
suffice to co19ur a graphe 

a set of pairwise adjacent vertices. 

the number of vertices of the largest 

clique in a graphe 

an assignment of "colours" to ver-

tices such that adjacent vertices 

always have different colours. 

the comple.JTIent of a graph G = (V, El 

ls ~enoted by G = (V,Elr with the 

same sét of vertices, and the s~ 

Elof edges such'that for any two 

vertices x,y in V, we have xy € El 

if and only if xy tE'. 

a g~aph is connected if there is at 

least a path between any two vertices. 

a set of vertices such that its . 



• 

1 -

Cutset (con't) 

Cycle 

Edge 

Graph 

Induced subgraph 

Neighbour 

Path 

Stable set 

Vertex 

, , 

removal would disconnect a connected 

graph. 

a cycle is a path from a vertex x 

to a vertex y wi th. the edge xy. 

see Graph. 

an ordered pair ,(V, E) such that V 

i8 a set and E is a set of two-point 

subset of V. The elements of V 

are called vertices and the elements 

of E are called edges. 

a graph H = (V
H

, EH) ia an induced 

subgraph of a graph G = (V,E) if 

v -H 
V and for each edge xy in E, 

have xy e: EH if and only if both x 

and y are, in VH• 

we 

a vertex x ia a neighbour of vertex 

y if x and y are adjacent. 

a sequence of distinct verticea 

vl'v2 , ... ,vn such that vivi + l e: E 

(i.i 15. n-l). 

a set of pairwiae nonadjacent verticex. 

see Graph. 
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