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. " ABSTRACT
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This thesis is concerned with perfect graphs. Our™

main results'-}n be summarized as follows. ~ b

- We characterize (by minimal forbidden induced sub-
g*fapha) two familieg of graphs guch ti'xat for every graph
G in the fix;st {(or the second) family, the V;elsh-Powell
(or the Matula) colouring heuristic deiivers‘ a perfect
order on G. This result has been ob‘tained jointly with
V. Chvatal. N

- GVe prove that a graph G 1'3 brittle (in the. se{a?\oﬁ\
Chvatal) 1f G does not contain an induced subgrapﬂ‘ ‘iso- .
morphic to the graph é'k Vithnk > 5, or the‘graph Fg, or
the graph with vert:l.ces a,b,c d,e,f and edges ab,bc,cd, da,
de,ef fc. This result has been obtained jointly with N.
KHouzam. . P I

«~ We prove that’in a‘ Meyn}f'el graph, each vett;ex belongs
to a stable gset that meets all maximal cliquges. We also
design a polynomial-time algorithm which, given a Meyniel
graph G and a vertex x of G, fir{c‘if a stable set which con- -
tains x and meets all maximal cliciues of G.

- We find two new classes of perfect graphs: the class
of alternately orientable graphs and the class.,éf alter-
nately colourable graphs. They contain severaJ\ well-known

classeg of perfect graphs. . /f
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- We prove, jointly with V. \Chvétal, the following

theorem. If the vertices of a graph G are coloured by two

4

colours so0 that. each 94 has an even number of vertices of

each colour, -then G is perfect if and only if each of the

+two subgraphs of G induced by all the vertices of the same

colour isperfect. :

- We prove that, as con‘iectureq by Chva’tal. a graph is ¢
\

perfect whenever its vertices can be coloured by two colours
' ’

80 that each P4 has an odd number of vertices- of each colour.

We shall also present a generalization of this theorem.
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Cette these traite des graphes parfaits. Nos résultats
principeux  peuve

étre resumeés comme suit.
- Nous, caractérisons (par sousgraphes induits interdits)

o

deux familTes de graphes telles que, pour chaque graphe G
- - Y

dans la®premiere (ou deuxieme) famille, la cz?loratim )

heuristique de Welsh-Powell (ou de Matula) donne un ordre

-

parfait sur G. Ce résultat est obtenu conjointement avec

V. Chvital. \
~"Nous prowons qu'un graphe G est friable, dans le

sens de Chvatal, si G ne contient pas un sous graphe

-~

#rduit isomorphique au graphe Ck, avec k > 5, ou au graphe

FS' ou au graphe avec les sommets a,b,c,d,e,f, et les

©

aretes ab,bc,cd,da,de,ef, fc.

~ Nous prouvons que dang un graphe de Meyniel, chaque

sommet appartient a un ensemble stable qui rencontre toutes

~

les cliqugs maximales. Nous decrivons aussi un algorithme
polynomial lequel, €tant donne un graphe G de Meynie{\et‘
un sommet x de G, t:rouve~ un ensemble' stab{le qui contient
x, et rencontre toutes les—\cliques maximales. )
- QNBus trouvons deux no;n‘rai les classes de graphes
parfaits, qui contiennent quelques autres classes (de

graphes parfaits) bien connues. : \ .

.= Nous prduvons, 'conjoixitement avec V. Chvétal, le

TN
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theoreme suivant. Si les sommets d'urYraphe G peuvent e

/

étre colores, en deux couleurs, d'ume maniere telle que 'chaque
P4 a un nombre pair de sommets de chéque couleur, alors

G est parfa}’t 81 et seulement.q 'éi'chacun des deux sousgraphes,
’ » . * o

de G, induits par tous les sommets ?e chagque couleur est

L)

parfait. . )
] 3 ‘ . N
- Nous resolvons un conjecture de Chvatal: un graphe
est parfait ‘si ses sbmmets peuvent ette colores, par deux
AY . E 3
couleurs, d'une maniere telle que chaque P4 a un nombre

impair de sommets de chaque couleur. Nous pre'se‘nterons

»

4

.4, ~
aussi une generalisation de ce theoreme.
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, " 1. INTRODUCTION

The subject of this thesis belongs to the theory of "
graphs We shall use thetstandard graph-theoretic terminology
throughout the text; for the reader's cohv'enience, all the -

tei:ms (and their definitions) are listed alphabetically in

L
’

the A;;pendix.
Hajnal and Surdnyi (1958) proved that if G*is the com- s

plement of a triaugulateq graph fa graph which contains

no éhordless cycle with more than three vertices), then the

stability number of G equals its clique-cover number (the ‘

smallest number of cliques that cover all vertices=of G).

Berge (1960) proved that 1f G is a triangulated graph,- then

° °

its chromatic number equals its clique number. These two

results inspired Berge to the notion of a perfect grapl';:
this is a graph in which each induced subgraph has its
chrumatic number equal to its, cllique number. '

Berge (1965) made two conjecturés. First, the Stror;g
Perfect Graph Conjecture 'étates that a graph 1s perfect if
and only if it does not co'ntaén an induced subgraph isomorphic
to the odd chordless cycmle with at least five vertices or to
the_’ compiement of such a cycle. Second, the Weak Perfect
" Graph Conjecture states that a graph is perfect if and only

if its complement is,. Lovasz (1972a) proved the Weak Perfect

1 3 -
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Graph Conjecture. The Strong Perfect' Graph Conjecture re-
mains unsolved. Moreover, nobody bas been able to design a
polynomial-time algorithm to recognize perfect graphs.
Since Berge publicized his two conjectures, many classes
of perfect graphs, along with polynomial-time algorithms

for their recognitions, have been identified. It was pointed

out that every comparability graph is perfect. Konig (1916)

proved that in a bipartite graph, the number of edges in a

largest matching equals the number of vertices in a small-
est cover. This theorem implies that line-graphs of bi-
partite graphs are perfect. Trianfulated graphs, compar-
ability ;raphs and line-graphs of bipartite graphs are”
sometimes referred to as "classical” perfect graphs.
Chvatal (1981) introdaed the notion of a "perfect
order". If a graph G admits a perfect order, then a certain
colouring heuristic sh4ll always deliver an optimal colouring
of G; the graph G is called a "perfectly orderable" graph.
All trianqulated graphs, all complements of triangulated
graphs, and all comparability graphs are perfectly order-
able. Chvatal (1981) showed that every perfectly orderable
graph G is "strongly perfect," in the sense of Berge and
Duchet f each induced subgraph H of G contains a stable
set which meets all maximal cliques of H. (Throughout this

text, "maximal ®”, and "minimal",°are always meant with re-

spect to set-inclusion, not size.)




The Strong Perfect Graph Conjecture can be restated
by saying that the only minimal imperfect graphs are the N
odd (chordless) cycles, except for triangles, and the
compl ements of\ghese cycles. A theorem of Lovész k1972b)
states that a minimal imperfect graph G has precisely
a{G) .w(G) + 1 vertices (w(G) is the cliqué number of G,
and a(G) = w(G). In section 2, we shall reproduce a proof
of this result.

In section 3, we reproduce proofs of ;he following
two results. First, Chvétal (1984) proved that no minimal
graph G can contain a star-cutset (this is a cutset S con-
taining a vertex which is adjacent to all remaining ver-
tices of §). Secbnd, Henry Meyniel (1984) proved that in
every minimal imperfect graph, every two nonadjacant ver-
tices must be endpoints of a chordless path with an odd
number of edges. We shall also discuss a few problems
related to these results. A conjecture of Chvatal states
that no.minimal imperfect graph can contain a ;skew partition‘
We shall make a few observations on it. Meyniel defined
a graph G to be a "quasi-parity" graph if each induced

subéraph H of G 18 a clique, or contains two vertices which

are not endpoints of any chordless path with an odd number

of edgésw We shall show that the three well<known perfection- -

preserving operations clique identification, substitution,

and amalgam preserve also the property of " being a




quasi-parity graph".
In section 4, we present previously known results on

triahqulated graphs, comparability graphs, line-graphs of

bipartite graphs, P4-free graphs and P4-sparse graphs,

P4-sparse graphs-are graphs in which no two Pq's can share
three common vertices. We shall also obtain a new result
on P4-sparse graphs.

In section 5, we present Chvatal's results on per-
fectly orderable graphs.

The results in section 6 were obtained jointly with\\-
V. Chvatal. We characterize (by minimal forbidden induced
subgraphs) two families of graphs such that, for every
graph G in the first (or the second) family, the Welsh-
Powell (or the.yatula) colouring heuristic delivers a
perfect order on G. -

In section 7, we study "brittlé" graphs. A graph G~
i8 brittle if each induced subgraph H of G contains a
vertex which is neither\?n endpoint nor a midpoint of any
P4 in H. It is easy to see that every brittle graph is
perfectly orderable. We shall prove, jointly with ﬁ.
Khouz;m, that a graph is_;rittle if it does not contain an
induced subgraph isomorphic to the chordless cycle with
at least five vertices, or the complemient of the chord-

less path with five vertices, or the graph with vertices

a,b,c,d,e,f, and edges ab,bc,cd,da,de,ef, fc.
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In section 8, we study Meyniel %raphs. A graph G is
Meyniel of each of its odd cycles (with at least five |
vertices) contains two cz?rds; G is called a Meynie1~§raph
L because it was Meyniel .(1976) who established perfection

of G. Ra&indra (1982) proJ;d that Meyniel %faphs are

strongly perfect. We.shallshowmhat each Meyniel graph G

has a stronger property: each vertex of.G belongs to a

stable set that meets all maximal cliques of G. ?urthermore,

if a graph is not Meyniel, then it contains an ;Aduced

subgraph which fails to have this property.
| In section 9, we introduce "alternately orientable"
graphs andl'alternately colourable” graphs. ‘A graph is

_ ) alternately orientable if it admits an or;entaéion\of its

edges such that no chordless tycle with at least four Jer- :

. tices contains an induced subgraph with vertices a,b,c,

I

and directed edges ab,bc. A graph is-alternately colourable
if it admits a colouratibn of its edges by two colours
in such a way that no chordl ess cycle C with.at least four R

vertices contains a chordless path with three vertices, -

e et ity o,

whose two edges are of the samecéolour. We shall establigh
perfection for alternately orientable graphs.and for
alternately golourable graphs. In addition, we shall

. préVe that a graph G is alternately orientable if each -

odd cycle (with at least five vertices) contains two non- -

crossing chords, or if G.is a comparability graph, or a

4 r




P4—sparse graph, or a union of two threshold graphs, We
shall also prove th;t 4 graph G is alternately colourable
if G is triangulated or a line-graph of a bipartite graph.
Finalfy, we shall present a polynomial-time algorithm to
recognize altéxnately colourable graphs and alternately

orientable graphs. )

In section 10, we prove, jointly with Chvétgl; the
following theorem. If the vertices of a graph G are goloured
by two colourg-in such a way that each P4 has an even
number of vertices of each colour, then G is perfect if
and only if each of the subgraphs of G induced by all the
verticés of the same colour is perfect. Our theorem implies
that a graph is perfect whenever-its vgrtices can be ’
coloured by two colours §uch thaj.: each 1='4 has two vert}ces
of each¥olour. o '

In section 11, we prove the following theorem.\ Let
the vertices of a graph G be calourgd by two colours 1p’
such a way thgt (1) each P4 is monochromatic (the vertices
are of the same colour), or (ii) each P4 has an odd nﬁmber
of verticesoofaeach colour, and among.the three vertices
of the same colour of this P4, at least one vertex does not
belong to P monochromatic P4. Then § is perfect‘if and
only if each of the two subgraphs of G induced by arI;Ehe
vertices of the same colour is pe}fect. Our theorem implies,

as conjectured by Chvatal, that a graph is perfect whenever



its vertices can be coloured by two colours such that each

P, has an odd number of vertiqé@ of each colour.
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2. PERPECT GRAPHS

_ The colouring (of vertices) of a qrabﬁ is an assignment
{
of "colours" to its vertices such that every two adjacent

vertices always have different colours. The chromatic number

of a graph is the smallest number of colours that suffice to

/

colour it. A graph is called a clique if its vertices are

pairwise adjacent. The cligue number of a graph is the size

of the largest clique in this graph. We denote the chromatic

number and the clique number of a graph'c by x(G) and w(G),

. respectively.

The ciiromatic number of a graph is at least its clique

number, since every two adjacent vertices must receive differ-

‘ent colours. Eerge (1962) defined a perfect graph as a graph

in which every induced subgraph " has x(H) = w(n)'. At pre-
sent, nofpolynominal-time aigorithm to recognize perfect
graphs is' known, although several ~iarge classes of pe'rfect
graphs, with polynomial~-time recognition algorithms, have been
found (see Golumbic (1980) and Berge and Chvatal (1984))

‘Ve define a gyg_g as a sequence of distinct vertices
VyrVariessVy with the follawing properties: ViViel }s an
edge for i-l,...,k 1, and ViV is an edge. A chord .1n a
cycle vl,,vz,...vk is an edge v,v j other than v v, i+1(1<1<k 1)
or viv,. A chordless cycle is said to have ‘rength k { it

consists of k vertices {and k edgea‘_){ w\e,den‘ote such a tycle

. '
) ! \
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by ik' The complement G of a graph G=(V,E) is the graph
(V,E*)*such that uv € E* if and only if uve E for any
verticés u, v in V. We dehote the largesf numbe; of pair~
wise nonadjacent vertices in G by a(G). Note that a(G) =

lYé) for any graph G = (V,E).

Consider a graph 02k+1' k g,?. We have w(¢2k+1) = 2,

w(G) and x(G) >

and it is easy to see that X(C2k+i) = 3. Let S be the larg-
est set of pairwise nonadjacent vertices in C2k+1 so that

ISl = a(C We note that |S| < k+1, because each

- 2k+1)'
vertex x in S must be followed (in cyclic order) by a vertex
- ‘

-

x' not in S; thus, w(52k+1) = k.

A 5

But, X(Cppyy) 5 LVl - B,y
$ 4 (Coxe1)

2k+1 2k+1
and=62k+l are imperfect. A graph is minimal imperfect if

We have w (€ ) = k: and :(E ) = k+l. Boéﬂ C2k+i'

it 1s‘not'pe;gectﬂ but each of its induced subgraphs is
perfect. It is easy to see that both Coypyy and 52k+1‘are

minimal imperfect.

1. The Strong Perfect Graph Conjecture (Berge (1962))

"The only minimallimperfect graphslare c2k+1 and 52k+1,lk22.

7

* 2. [he -Weak Perfect Graph Conjecture (Berge (1962))°
_I2ya graph G is perfect, then its complement G is pérfect.
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The second conjecture was proved by Lovasz (1972a).
Nowadays, it is called the Perfect Grabh Theorem, To see
that the SErong Perfect Graph Conjecture ijglig;/@he Perfect
Graph Theorem, consider a perfect graph G{ Trivialf&, 6 haé
no induced C, ., or Cp . . Thus, G also has no C,,,, or
Ezk+1' Now, the Strong g&rfect G;aph Conjecture implies that
G is perfect. .

We define a path as a sequence 6f distinct vertices
VieVoresVy such that ViVi4 is an edge. A_ggggg_ﬁ? a path
1'v2""v£/t’ an edge vyv j other than ViViel® By Pk we f/

:;2239/the chordkegf\path with k vertices. Thus, P, 1s the

ordless path with four vertices. \it is easy to pee that~

the complement of a é4 is (isomorphic to) a Py

“a,

(

Figure 2.2: a P, and its complement.
&
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A graph G, = (Vl,El) is said to have the P,-structure

of a graph G, = (VZ'EZ) if there is a bijection f: V1 + Vv,

éuch that a subset S of v1 induced a P4 in G1 if and only

if £(S) induces a P4 in Gz.

a b i a b
o— o a
I“
hrf J c- h ocC
, d g & C
‘ﬂ
e f e

3
- e

Figure 2.3: two graphs with the same P4-
~ ~ structure (taken from Chvatal (1982)) .
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Chvatal (1982) introduced the notion of P4-s%ruc;ure
and noted that, siiice a P, is self-complementary,

°

(1) every graph has the P4-structure of its cbmplement.
'In addition, he proved that
(1i) the only graphs having the Pd-structﬁre of a
_/ C2k+1 with k>2 are C2k+1 itself and its
complement.

%

3. The Semi-Strong Perfect Graph Conjecture (Chvatal (1982))

' If a gr}ph G has the P4-structurg of a perfect g;aph,
iheh G is perfect. Note that, by (i) the Semi-Sfrong Perfect
Graph Conjecture implies the Perfect Graph Theorij, and by
(ii), the Semi-Strong Perfect Graph Conjecture ié implied

by the Strong Perféct q§aph Conjecture.

Chvatal (1984) pfoved that no minimal fmperfect graph

v

can coptain a star-cutset (that isfa set S of vertices of

G such that Gl- S 1s disconnected and somé vertéx x in S is
adjacent to all other vertice; of S).

'gyan Hanard (1984) proved that if a graph G does not
éontgin an induced subgraph isomorphic to a chordless cycle

S

with at least five vertices,. or'to its complement, then G

or ‘G contains a star-cutset.

Recently, Bruce Reed (1985) used Chv4tal's result,

e

Hayward's result and Lovasz's Perfect Graph Theorem to prove

v



‘14

. @
the Semi-Strong Perfect Graph Conjecture. Actually, he proved

the following. (A proper endomorphism of a graph G = (V,E)
-

is a mapping f of the set V into itself such that f(u) and

£(v) are adjacent whenever u and v are, and such that the

image of¢V 18 a proper subvset of V.) -

W

The Semi-Strong Perfect Graph Theorem (Reed (1985))

"' Let G and H be two graphs with the same P4-fttucture.
Then at least one of the following conditions holds:
y (1) dH is the complement of G;
(ii) H or .H contains a star-cutset; j_///
(111) H or E has a proper endomorphism;
(iv) H contains a proper induced subgraph }Bomorphic
« to Cs.ﬂ

Together with the Semi-Strong Perfect Graph Conjecture;

v

’ Chvétal made the‘following two conjectures.

Conjecture A. If the vertices of a graph G are coloured
by two colours so that each colour aépears af least once, *
and each P4‘has an’eveh number of vertices of each colour,
then G is perfect if and only if each of the two subgraphs
induced by all the vertices of each colour is perfect:

\

Conjecture B. If the vertices of a graph G are coloured

by two colours so that each P, contains an odd number of

. M F
vertices of each colour, then G is perfect.
. 1
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In section 10, we shall present a proof, obtained
jointly with Chvdtal, of Conjecture A. In section ll, we
shall present a érooﬁ of Conjecture B. Since both proofs
rely on the Perfect Graph Theorem, in the remainder of this
section we shall reproduce a proof of this fungamental and
important theorem. First, we need introduce a few
definitions. \

Let G = (V,E) be a graph. A set S of vertices of G is
a stable set if no two vertices of S are adjacent. The

stability number a(a) of G is the largest number of vertices

in a stable set of G. The clique-cover number 8(G) is the

5 [

smallest number of cliques needed to cover the vértices
of G. If A is a subset of V, then (A]G will denote the
subgraph of G induced by A. When there can be no confusion,

we shall write

. w(d) = w([A]G), w(A) = x([AJG), a(d) = a([A]G) and

>

B(A) = a([A]G) - ’ ~ .
. /
Let hy,h,,....h,  be a vesctor of non-negative integers.

By G o h, we denote the graph obtajned from G by substitut-
. ) h

ing for each x; a stable set of hi‘vertices xi,..[,xii and

joining xi with x§ if and only if X and xj are adjdcent

in 6. wé say that G o h is obtained from G by multiplica-

\3

tion of vertices.

Equivalence of (P,) and (P,) in the following theorem



was established by Lovasz (1972a); equivalence of (Pl) and

(P3) w'as established by Lovasz (1972b).

. , 1 N
Theorem 2.1 (Lovasz {(1972b),

For each graph G =)(V,E) . the following statements .are

equivalent:

vt w
(Pl) w(A) = x(a) ‘ (for all A cC V), -
(PZ) afd) = 6(A) (for all A ¢ V),
(Py)  w@a(a) > |al (for all A C V).
We shall use the following twa lemmas.
Lemma 2.1 (Lovasz (1972h) ,, \

& v ¢
Let H be obtained from a graph G by multiplicaéion of
‘'vertices and let G satisfy "(Pz). Then H satisfies (P,).
~/

H

Proof

By induction on the number of vertices, let G be-a.
graph and let H be the graph obtained from G by multiplica-
tion of vertices. By the induction hypothesis, we may
asg'ume that each vertex of G is -multi'pl\;.ed at’ least™Bnece,
and somev vertex of G is multiplied at least twice (for

otherwise we are done). Since H can be built up from a

~
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segquence of smaller multiplications, it suffices to prove
the statement for H = G 0 x. Let x' be the copy of x in

G.

~

Assume that G satisfies (P,). We want to show that
a(Gox) = 6(Gox). Let K be the clique ‘covermof G with ,;!_(_ ,=
8(G) = a(G), and let K, be the clique of K com:aininq X.

Case 1: «a(Gox) = a(G) + 1.

The collection of cliques gﬁu{x'} covers all vertices
of Cox; Thus 6 (Gox) < ,gU{x'} I = a(G) +1 = a(Gox). Bince

for any graph F, we have 8(F) > of(F), it follows that

8 (Gox) = a(Gox) .

Case 2: afGox) = a(G).

In this case, no largest stable set of G contains x.
T‘hus the ciique D= Kx - X intersects each maximum clique
exactly once, so “

«(G - D) = alG) - 1.

'

-

The  vertices of the graph G-D can be covered by a col-
lection K' of a(G) - 1 cliques. Now, K' together with the

" clique DU {x'} covers Gox, that is

e 8(Gox) 5 a(G) = a(Gox). 0

Lemma. 2.2 (Lovasz (1972b)

. Let %be a graph such that each proper induced subgraph
-4 - -

-

v
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of G satisfies (P,). Let H be obtained from G by multiplica-

tion of vertices. If G satisfies ‘(93) , then H satisfies
¢

. , )

.. Proof

By induction on the number of vertices:, we can assume
that H fails to satisfy (P3) but ea¢h proger induced sub-—
graphof H satisfies (P3) . Thus, with X denoting the set of

vertices of H, we have

-
-

w(E) al(B) < |x|. S (2.1)

We may assume that each vertex of G was multiplied at

least once,' and some vegtex u was multipled at least twice.

Let U = {ul,u?,...uh} be the vertices of H corresponding to

u. By the induction hypothesis the graph H - u! satisfies

(Pé), thus we have

Ixl- 1= | x-ull < wex-ul)a(x-ul)

£
© £ w(H) a(H)
< Ixl =1 [by (2.1]]
Thus, equality holds fhroughout, write 8
C b= wx-ul) = 0@
g = alx-ul) = o ch) A
pg = Ixl -1 . (2.2)
&

v
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] Since G-u sa&:isfiea (92),‘ H-U satisfies (PZ) by Lemma
2,1, Thus, H-U can be covered by a ser?t of g cliques of Hy:

say Rl,Kz,...,_Kq. We can choose the clique cover of H=-U

?o that the K, are pairwise disjo}nt and R, 2 K, _>_ e 2 Kq .

We have

=
L}
»e
1
[=]
it

X -:h=pq- (h-1). N

Sinece I Ki ' {p, at most h-1 qf the Ri fail to contri-

bute to the sum. Hence,

lxl_,,”"‘z"- --=qu-h+1 = p.
h‘- . .
I_.et H' ’be the subgraph of H induced by X' =

Ky U. . . UKq_h+quul}. Thus

=

Ix" = p(g~h+l) + 1 < pg + 1 =|x| R (2.3)

80, by the “induction ﬁypothesis, H* satisfies (P3.), thus

~
-

wlH ) alm) > |x]. k o (2.4)

Since p = w(H)2 w(H'), we have:

all') ?_l%:—'i
&

>‘q-h+lo

Let S' be a stable set of H' of cardinality q=h+2.

»
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1l

Since lS'ﬂ Kil =1 (fori =1, q - h+ 1); we have ule s'.
But then § = S*Uy is a stable set of H with q + 1 vertices,

contradicting our choice of q. O

Proof of Theotem 2.'1

We can assume that the statement is true for each

 proper induced subgraph of G.

(P,) =>(P;]. Suppose that we can colour each Alg .
by w(A) colours. Sin}ce at most a(A) vertices can receive

the same colour, it follows that w(A) o () > lAl. )

: (Py)=p (Py). ' Suppose that .G = (V,E) satisfies (Py) .
We .only need shoW that w(G) = x (G) .- ‘
Suppose‘ that there is a itable set S s_uch that w(G=-8) <

w(G). Thus we can colour G-S with w(G) - 1 colours, and

\

assign a new colour .to the vertices of.S. This gixfes w(G) =,

-

x (G) . ;
Now, we c;b"n assume that for each sta}ile sgt S, G~S
contains a cli[que K(8) with I K(S)' = w(G). Le(:"_s_‘. be the
" ’céllection of all stable éetg of G. Now, for each X, €V,

let hi denote lrthe number of cliques K(S) which containé

X Let H = (.X,F) be obtairie;g from G by multipiying each

il
5
x; by h). By Lemma 2.2, we have

» .
" .
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w(H) o) > x|

N

But by our choice of ﬁ, we have

x|.= @ || \ /

w(H) < w(G)

-

o(H) =max I hi
TeS xieT :

=max [ £ [T N&(S)|] o o
TeS SeS N

<lsl -1

which together imply that

w(b a(®@ < wie) (s < 1) <,VX‘

a contradiction.

'(Pz) =>(P3).' Note that G satisfies (P‘3)A if and only if

G satisfies. (P3) . Therefore; )
- . - ”

-3

G satisfies (P,) <G satis‘fie} (Py)

| &G satisfies (By)

<G satisfies (P,). O

Ve
§

To see that Theorem 2.1. implies the Weak Perfect Graph -

L

Conject\;re, conside;: a perfect graph G.'\(That is G sa}:isfies
. ¥

(151) . By the Theorem 2.1, G satisfies (P3),- so G satisfie

- PO
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“ ‘ Lo

(P;), and so G satisf{.es (Pl), that is"é is perfeot. ‘

Maybe a historical rlot;e‘shogld be made here. Fulkerson:
(1971) independently from Lov"a'sz, proved that if the state-
ment of Lemma 2.1 holds (as we know by now, it does), then
the Weak Perfect Graph Conjecture holds. Fulkerson 8 ap-
proach, different from Lovagz's, relies on the techniques
of linear progremming. ‘ R '

The Pe'rfxct Graplf Theorem has enabled Grotschel,

Lovasz and'Schrijver (1982) to design a polynomial-time
algorithm which determines the ‘four parameters w(G) , X {G)
«(G), @(G) of ‘a given ;erfect graph G. {This algofithm,
use-s the ‘ellipeoid method (see Khachian (1979), Gacs and
Lova"sz (1981)), and it does not provide insight to the com-
binatoryal structure of perfect graphs.) It is widely
believed that no polynomial-time ‘aléoritt}ms exist for deter-
mining these four "para!;eters of an arbitrary graph (see
Garey and Johnson (19-‘79)). In fact, Cook (1971) proved
that'the problem of detez:mining whether a prescribed graph

' has a clique of a prescribed size is NP-complete. At\’
present, no polynomial- time algorithm to solve an NP-complete
. problem is known. - - .

The Strong Perfect Graph Theorem :I.mplies that

there is a gooc} c};aracterization (in the

sense of Edmonds) of imperfect graphs. ! (2.5)

-3
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Theorem 2.1 implies that

every minimal imperfect graph G has preciseiy

a(G) .w(G) + 1 vertices. _ ) (2.6)

v To-see that (2.6) implies (2.5), let us call a graph'G

partitionable if there are integers r, s greater than one

\

such that

(1) G has precisely rs + l.vertices,

(i1) for ‘each vertex v of G, the vertices of G-v

. | ‘can bé partitioned into r disjoint cliques of
siz"e 8, and into s disjoint stable sets of size

r.

Bland, Huan.g' and ':I—:‘rotteﬁr \(1979) observed that a graph is

imperfect if and only if it contains an i:nduced partitionable

subgraph. {The "oniy if" p:art follows from (2.6). To see

the "if" part, first note that a perfect graph H has at£

most o(H).w(H) vertices; now (ii) along with r,s > 2 implies\

that a(G) = r, w(G) = 8; and so G must be -impenfgct.) '

J.‘ Edmonds and K. Cameron (see Cameron (1982)) pointed out

\/\?& this observation implies (2.5), since conditions (i),

Mx\ag_b_e.ﬁerified in polynomial “time. ' ‘ ‘
Padberg (1974) proved that if a grapl;_G, with a.= a(G) -

and w = w(G), is minimal imperfect, then G satisfies the

following two properties. ) .
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'(iii) Each vertex of G is contained in ecisely o
stable sets of size o, and y cliques of size w.

(iv) Eadﬂ{table set of size a is disjoint from pre-
cisely one clique of size 1», and each clique
of size w is disjoint from precisely one stable

set of size «. 0

\
|

We shall call a graph (a,w)=-graph if it satisfies (i),

‘ﬂ,,.

(ii), (iii), and (iv). An (o-w)-graph G is normalized if each
edge of G has two endpoints in the same clique of size w (G). .
It is easy to see that every (a,w)-graph G contains a unique
normal-ized (o-w)-subgraph H. Examples of normalized (,0) =

-1 B
graphs are the graphs C““’%_‘_1 with vertices v,,V,, ...V, .y

such that v,,v "are adjacent if and only if 'ri-j ‘ < ) -

3
(as usual, the subscripts are takeh modulo ow+l) . Blgnd,
Huang and Trotter (1979), and Chva'tal, Graham, Perold and White-

sides (11979) indeperidently found a normalj.zed (3,3)-graph

2
107

from C§3. Chvaftal, Graham, ‘Perold and Whitesides also pre-

diffecexit from C and a normalized (4,3)-graph different
sented two methods for constructing infinite families of
normalized (&',m);graphs. Whitesides (1982) constructed a
l1ist of all normalized (4,3)-graphs.

Chvatal (1984) noted that everyhg(ﬁ)l imperfect grapl'L'i‘

G must contain

®

~ . -
(v) no sets of a(G) + w(G) - 1 vertices whiclr meets

all largest stable sets of G and all largest

cliques of‘ G.

ale
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{Otherwise, G would contain an induced shbgraph H with
(x(G)~1) . (w(G)~1) + 1 vertices and a(H) = a(G) - 1, w(H) =

w=1

awtl with a > 2,

w(G) - 1.) Chvatal (1976) showed tl;at no C
w.> 2 satisfies (v). However, the following («,w)=-graph G,
constructed’ by Chvétal, Graham, Perold, a;ld Whitesides, does
satisfy (‘v): G is a (4,4)‘-graph with vertices ViVareeaVyg
su_ch' that vy and v:,‘l are adjacent if and only 1if i - j =

2,6,7,8,9,10,11 or 15 mod 17.



" 3. MINIMAL IMPERFECT GRAPHS
In the previous section, we stated that no minimal
: imperfect graph can contain a star-cutset. In this sec-

)
.tion, we shall present a_ proof, due to Chir_g"t_a‘;, of this

Statement. A related conjecture, also due to Chva’tal,
states that no minimal imperfect graph can contain a "skew
‘partj.tion" (this definition will be given later). Pre-f
sently, this conjecture is still unresolved. We shall make
a few observations on it. Finally, we shall discuss a new
result, established by Henry Meyniel, that in a minimal

1

imperfect grai:h, every two non-adjacent vertices are end-

( poinbs of a chordless path with an odd number of edges.

3.1 Star-Cutsets

B ) ~
Recall that a star~cutset of a graph G is a set C
of vertices such that G-C is disconnected, and in C there

is a vertex adjacent to all other vertices' of C.

.

Theorem 3.1.1 (Chvatal (1984))

[}

No minimal imperfect graph can contain a star-cutset:™.

Proof ¢

. Considex a éraph G .= (V,E) with a star-cutset C and
assume that all proper induced subgraphs of G are perfect:;

4
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. the vertices of V into -nonempty disjoint subsets Vl'v?. .

&

we only need colour G by k colours with k standing for the

clique number of G. Since C is a cutset, we can partition

\

such* that

no vertex in V, is aﬁjacen't to a vertex in v,. (3.1)

1

Let G, (1 =.1,2) be the subgraph of G induced hy AL
there is a colonring £, of Gi by k colours. \Since Cis a
star-cut;et,, some vertex w in C is adjacenr:j all other
vertices of C; write v e S; if v e G; and f£y-0) = £, (w).
Trivially, no two vertices in Si ere adjacent, anc}

S;iﬂ .C = {w}, now (3.1) implies that no two vertices in

5 = slUS2 are adjacent. Since Gy - 51 and G, -V, are

" coloured by k - 1 colours, neither of these two graphs con-

tains k pairwise adjacent vertices; now (3.1) implies that
G ‘- S -does not contain a clique of size k. Thus, G - S
can be’ coloured by k -1 colours, an additional k-.th
colour may be assigned to all the vertices in s. [l

Chvatal has noted that Theorem 3. 1 1 implies several
well known results on perfection-preserving ‘operations.

First, let G, . and G2 be two disjoint graphs and let C1

12
be a clique of Gi with ’Cll = lczl > 1. The ‘¢graph G, .

obtained from“Gl and G2 by choosing a Bijection : ¢, + Gy

.and identifying each x in C, with f{x) in Cyo is said to

arise from Gl and Gz by cligue 1dentification.

[
‘.

[—
b o,
-
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. N .
Second, let Gl and G, be two disjoint graphs, and let
v be a vertex of Gl' The graph G obtained from G, -V

‘" and G2 by joining each vertex in G2 by an edge to each

neighbour of v in G, - vj.s said to arise from Gl and G,

by substitution.

Third, let G, and G, ke two disjoint graphs. Let

3

vy be .'; vertex of each Gi’ let Ni be set of all neighbours
| 4

of v

i and let Ci be a subset of Ni such that each vertex /

in C, is adjacent to all vertices in Ni and such that

i
I Cli = l c, l (note -that we can choose Cy to be empty). By
an amalgam of Gl and G,, we denote the graph G obtained

) )
€rm G, ~ vy and G, - v, by choosing a bijection f: C1 + C2'
identifying each x in c1 with £(x) in C2, and joining each

vertex in Nl - C1 by an edge to each vertex in N2 - C2.

Coréllary 3.1.1

If a graph G is obtained from- two perfect graphs G,

9

and G, by clique identification, then G is perfect.

Corollaxy 3.1.2 (Lovasz (1972p)

¥ -

If a graph G is obtained from two perfect graphs G1 ]

and G2 by substitution, then G is perfect.

ro

Te—

T
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~

Corollary 3.1.3 (Burlet and Fonlupt (1982))

If a graph G is the amalgam of two perfect graphg
G, and G,, then G is perfect.

Chvatal (1984) showed that the three above corollaries
are implied by Theorem 3.1.1 in the following mz‘arnner. In
éach ‘of the three cases, ass;Jme that G cont_:ains a minimal
imperfect graph F. Now it is easy to see that F must con-
tain a star-cutset oor F is disconnected or F has at most
two vertices (no min‘imal imperfect graph can be disconnected).
To elaborate on this, we need introduce a’few definitions. i

Let G = (V,E) be a g"raph. A cutset of 6 is a set C
of vertices such that G ~ C i{s disconnected. A clique
cutset™f G is a cutset which induces a clique in G. If X
is:a gset of vertices of G, then lflG(x) denotes the set of
all vertices y outside xl,,‘ such lthat y is adjacent to some
vertex of X. (X can consist of a single vertex x in which

case we éhall write NG°(x) to denote the get of neighbours of X).

- \\s—/’/
NG(X) denotes the set of.all vertices in V - (X U NG(X)).

. When there can be no confusion, we shall drop the subscript

G, and write N(X), N(X). A set H of vertices of G is a

homogeneous set if 2 < |H| < |vl, and for each x not in H

we have either HEN(x) or HNN N(x) = {.
If a graph G contains a clique cutset, then G contains

a star-cutsét: Thus, Theorem 3.1.1 implies that

L]

N

-



no minimal imperfect graph can contain a .

cligue cutset. . (3.2)

1f a graph G is the amalgam of two graphs G, and G, such

that G has more vertices than both Gl and GZ' then we say -

2

that G has a proper amalgam decomposition. It is easy to see
that if a graph G has a homogeneous set 'or a proper amalgam

decomposition, then either G contains a star-cutset, or else

G is disconnected. Thus, Theorem 3.1.1 implies that \
~ no minimal imperfect graph can contain a

homogeneous set, L (3.3)
and that

no minimal imperfect' graph can contadn a

proper amalgam decomposition. (3.4)

Now if a graph G satisfies the hypothesis of Corollary
3.1.1, then either G is isomorphic to G..l or GZ' or else G
contains a clique cutset. B; (3.2), G must be perfect.

If .a graph G is obtained by substituting, for a vertex
x of Gy, @ grapQ G, = (Vz,Ez), then vV, is a homogeneous set
of G. Now, (3.3) implies Corollary 3.1.2.,

Finally, it 1s easy to see that (3.4) implies Corollary

3.1.3. SO
,

»,

Incidentally, note that * e

§

vertices x,y with N(x) D N(y) U {y}. « (3.5)

"

no minimal ig:perfect graph G can contain two

(It suffices to show that e"it;her G contains a star-cutset

-5



or else G is disconnected.)
\
In latter sections, we shall use Theorem 3.1.1 and proper-

<

ties (3.2), (3.3), (3.5) to generate new classes of perfect graphs.

3.2 Lemma

Lemma 3.2.1

Let G be a minimal imperfect graph with two disjoint rdon-
empty sets W,,W, of vertices such that po vertex in W, is
4’\ .
adjacent to a vertex in W,. Thenw (G—wl) =0 (G-W,) = u(G).

Proof -

Assume the contrary: without loss of generarit§,
w(G-—‘Wz) < w(G). Since G is minimal imperfect, G-W, is wiG)-
\colourable‘;’ hence G-W, contains a stable set § such that
w((G-WZ) - 8) <w(G). Since éach clique G is fully contained
in G—wl or G-Wz,
G is minimal imperfect, G-S is colourable by w(G)-1 colours.

it follows that w(G-S) < w(G). Next, since

But then G is w(G)-colourable, a‘contr_adiction.n

3.3 The Skew Partition Conjecture

A graph G = (V,E) is said to have a gkew partition if
V can be partitioned into four disjoint and nonempty sets .
vl,vz.v3,v4 such™ that

(1) Xy ¢ E whenever x ¢ Vl, yev,, and

(11) xy ¢ E whenever x ¢ Vi, Y €V,

If a graph, with at least five vertices and at least one

-
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edge, contains a star-cutset, then it contains a skew par-

tition. .(Consider the graph H with at least three vertices .
13

»
and no edge; and consider the graph F with four vertices °

a,b,c,d and two edges ab,cd. Botﬁ H and F contain d’star-
cutset but not a skew partition.) Thus, the following

conjecture of Chvétal implies Theorem 3.1.1.

The Skew Partition Conjecture (Chvétal <(1984))

-

No minimal imperfect graph contains a skew partition.
At breseqé, the Skew Partition Conjecture is unsolved.
Furthermoré, no one has been able to -design a polynom1§1-
time algorithm to recbgnize»the/presence of a skew phrtition
in a graph. In this section, we make a few observations

concerning this conjecture.

Y

37

’

Let G = (V,E) be a graph. Let C be a colouring of G,

and let S be a subset of V. By C(S) we shall denote the

~._.

"set. of colours of C that appear in S.

Theorem 3.3.1

Let q be a graph ﬁith a skew partigion ViV VaiVy
let C1 be an optimal colouring of G-V4, anddlet=czﬂbe an
optimal colouring of G-V,. If lCl(Vl)I 32|c2(v1)| and
I Cl(VZ)I'Z |C2(V2)4 then G is not minimal imperfect.

v
i

Y 3
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1

Proof

Let A consist .of all the vertices x in G-V, such that .
C,(x) # C,(y) whenever y € Vl\J V,. Since both C; and C,
use w(G) colours (by\Lemma 3.2.1), we h?ve ‘CZ(A)| 2
lcl(vl)l - chfvzﬂ. Choose a sﬁbset C* of C,(A) that has
cardinality ICl(Vl)I -,LCZ(Vl)I and write xeA* if and only
if xed, C,(x) € C*. Let H be the subgraph of G induced by
all the vertices z of G-V4 such that Cl(z) £ Cl(Vl) and by
all the vertiées y of G, such that C,(y) € C,(V,) V c*.

Let F bé the subgraph of G induced by all the vertices not“
belonging to H. A \ ™

Now we have w(H) < lCl(Vl)I and w(F) £ w(G) -)lCl(Vl)l.

Since F and H are proper induced subgraphs of G, we havg

Xx(F) + x(H) = w(F) + w(H) < w(G) < %x(G),

-

a contradictign.u

r

Corollary 3.3.1

Let G = (V,E) be a minimal imperfect graph with a

3

skew partition V,,V,,V;,V,. Then the set le Vv, can not

contain a clique of size w(G).

-

Note that“‘G1 and G2 are perfect since they are proper .
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induced subgraphs of G. Let CI’ and C, be the optimal colour-

ings of G, and Gy respectively. If vlu V, contains a clique

of size im(s), then (by Lema'3.2.1.) we have w(G,) = X(Gl) =

w(G,y) = x(G,) = w(Gl.)'. Furthermore, we have w(V,) + w(V,) =

w(G). This implies that C,(V,) = C,(V,) and C, (V,) = C,(V,),

-y

contradicting Theorem 3.3.1. [I

'Froi'u Corollary 3.3.‘-1, we obtain the following result
whichq.wag first obtained by Olaru (see Berge and Chvatal
(1984)).. (This result follows from Corollary 3.3.1 by the

Perfect éra‘ph Theoren.)

Corollary 3.3.2

Let G = (V,E) be a minimal imperfect graph with a skew
partition V,,V,,V3,V,. Then the set V;V V, can not contain

a stablle‘{\set of size a(G).[J |
We éonclude this section with the follo'wing-u two

b
theorems. o

| h B
. v

Th’eo\;;em J.3.2

.
3 [ )

Let [G = (V,E) be a minimal imperfect graph with a skew

par‘titior{ vl,vz,v3,v4. Then, there cannot be two vertices
] .
x in V3, }l in V.4 such that N(x) > Vl, and N(y) > Ve o
By the Perfect Graph Theorem, Theorem 3.3.2 implies

the follc#wing theorem. _ -



ot e e

‘ . Theorem 3.3.3

35

\

S

Let G = (V,E) be a minimal imperfect graph with a

skew partition vl,v;,v3,'v4. If in VI' there is a vertex

/ »

x with N(x) N vy = g, then for each vertex Y in v,, w

have N(y)N vy # g.0 . . .

.

Proof of Theorem 3.3.2

-

Let Cl and C2 }:ie the optima? colourings of G1 and GZ'
@2 ' vrespectively. Suppose thet the‘ vertices"x,y exist. By .
Theorem 3.3.1, we only need. es'tablishlcl (Vl)l ='C2 (vl)l.’
In fact, we shall show that|c, (v ) =|c, (V)| = w(v)).
By ’symmetry,, we only need show that 'Cz (V'l)l = iy (VI) .

L We may assume that ,Cz ‘Vl)' glC(Vl)l for any optimal éolouring
C of G, - We may elso assume t.hatlcz (Vl)l > w(vl), for other-
wise we are done. Let S be the set of all vertices z of
G2 such that the colour of z appears in V1 .Let G' be
the subgraph of G induced by sVU {x]. since ¢' is a Qroper

"* induced subgraph of G, G' is a perfect. Hence x(G') =

’ w(6*) < n;axdcz(vl)l, w(Vy) + 1) glcz(vl)l. Since each ver-

- ) tex in v1 must receive a colour different from the ﬁlour

of x, the ver‘ices of S can be coloured by (at most) 'Cz (v )l

colours .80 that fewer than ICZ (Vl)l colours appear in vl

This defines a new colouring C of G, such thatlc(vl)l

|C2 Wl"' contradicting our choice of Cz.lﬂ

@

( I
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3.4 A Theorem of Meyniel

- .

Two vertices are gaid to be-friends if they are no't
endpoints of a chordless path with an odd number of edges.
(In particular, friends are always nonadjacent:) Henry.
Meyniel (19'85) recently established the following pr.?operty

of minimal imperfect graphs.’

Theorem 3.4.1 (Meyniel -(1985))

In a minimal impérfect graph, no two vertices can be

friends.

To- prove Theorem 3.4.1, we shall need the following

two lemmas., '

Lemma 3.4.1 (Meyniel 1(1985)) " -

Let G be a graph. If two non-adjacent vertices x,y k
are not eundpoints of the same P e then the graph G°,

. s . ¥
obtained from G by identifying x and y, satisfies w(G') =

’
Ll o~

w(G)‘..' . -

I

Proof

Clearly w(G") > w(G). We can assume that we have

w(G')Y > w(G). Then, in G' there is a clique K of size _

w(G) with N(x)U N(y) D K. Since N(x) P K and N(y) D K, it

N ¢ v

-

s



-

-

¢ : o ‘ .
N . follows that there is'a P, in {xuyvy K},lwith X,y being

two endpoints.

!

. Lemma 3.4.2 (Meyniet (1985){(

Let G be a perfect graph. If -G contains two friends x and vy,

4

then the graph G', obtained from G by identifying x and y,

, ) is perfect. : '

g ~ ‘ 7 -

; - Proof ‘ ‘ , ' .

- By’iri'duction on the number of vertices. Weshall préve

. that x(G*) = w(G'). Furthermore, by Lemma 3.4.1, we only

\ . need. prove tﬁgt X(G) = x(G'). ‘ _
L " o Consider a colouring of G by w(G) cplour;. If x and- y
A receiv,e" the samé colour, then this colouring agfines ob-
f S viously the 're‘"‘quired'coloiaring bf G'. We 'caf: assume that R
x and y receive different colours, let us say 1 and 2.
'Consige: the indu‘ced,uubgraph H-of G {uch that H consistg |
‘of all vertices of colour 1 or 2. 1If aéompone‘nt Cof H
) cont;aina X, th‘en hit cannot;cohtiih y: for othervise x and 5
y are not two friends. N«:;\;, interchanging colours 1 and

2 on this component C, we find a colouring of G in w(G)

colours such that x and y have the same co}éﬁr. D‘




. Proof of Theorem 3.4.1

Q@

Let G = {V,E) be a minimal imperfect graph. Assume

¥

. that the statement of the theorem is false. Then

(v',2") be

G has two friendly vertices x,y. Let G'
- ~ the graph obtained from G by identifying x and y. We have,
- x(G') > x(G) > w(G), and by Lemma 3.4.1, w(GS = w(G').
. "By Lemma 3.4.2, each proper induced subgraph of G' is
perfect. So, G' is minimal imperfect. By Theorem 2.1,
w(@.a@ = [v|-1, andwien.aten’=[v] - 1=]v][- 2.
* Hence, by Lemma 3.4.1, we have w(G).(a(G) - a(G'f) = 1.
Since w(G) > 2, this is a contradiction. 0
A grapq_G is a ggasirgarin graph if each induced
(~ ‘ \ subgraph H of G:g}ther contains two friends, or else is
‘a cliqpe; 4t follows from Theorém 3.4.1 that quasi—pariéy
,éraphs are perfect. Meyniel (1985) has shown that thisﬁclass L
iof peffect graph contains all “perfeétly orderable® graphs

and all "Meyniel" gfaphs. (These perfect graphs will he

investigated in. latter sections.) .

! N . .
In subsection 3.2, we have seen that clique identi-

fication, substitution and amalgam preserve perfection.

In the remainder of this subsection, we shall show that
i \ . - ; -

these operations also preserve the property of "being a

quasi-parity graph",




> \ .
{ : Fact 3.4.1

If a graph G is obtained from two quasi-parity graphs
G, and éz by clique identification, then G is a quasi-

paritf graph.

o o Proof

We only need show that G is a cligue, or G contains

t&o friends.

We can assume that G is not 1somorphf% to G, or éé.

P

Thus G contains a clique cutset C such that G = Gl\J G2
and G; 1 G, = C. Now, it is easy to see that if two ver-
: ) ) ticés X,y are q;iends in Gi' then x ;nd y are frieﬂds iq ’
L. ? . G: the éoint is that each chordless path that has x and y
‘ as two endpoints must be entirely in Gi' Thus, we can assume
that each Gi is a clique. Now, x and y are two friends oﬁ.
G whenever x ¢ Gl -C, ye G2 - C.B .

] : . ©
{ ) ' -

/ Fact 3.4.2

QL9 ) ' If a graph G is obt;%ned from two quasi-paritylgraphs
G1 and G2 by substitution, then G is a quasi-parity graph.

~

Proof ‘ .

We only need show that G is a clique, or G contains

two friends.f
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( - By an earlier observation, G contains a homogeneous
set Y. Assume that q is obtained by substituting a vertex
, X o'f'G1 for G,. That is [Y]G ié ;sbmorphic to G,. If
there is a chordless path:P with two endpoints in G -Y and
some interior vertex in Y, then containg exactly one
interior vertex in Y. Thug if t o.vertices are friends in |
Gl’ then they are friendg in G. ow we can asaﬁme that
G, is a clique.
If there is a chordless path P with twp endpoinis in
- Y and some interior vertex outside Y, then P, contains
‘ exactly one interior veréex 19 N(Y). It follows‘that P.
contains exactly three vertices and two edges. Thus if
two vertic?s are friends in GZ' then they are friends in
,g. We can now assume that G2 is a clique.

Since G, and G, are c{iques, G is a clique.D

Fact 3.4.3 , _ o

If a graph G = (V,E) is an amalgam of two quasi-parity
:Kgraphs Gl and G2, tHQn G is § quasi-parity graph.
>
Proof ' -,

- v

We only need prove that G contains two friends, or
else G is a clique. We may assume that G is not isomor-

ghic to G, or to G,. Thus we can partition the vertices

( ' S

o




of.G into disjoint sets K, A, Ay, By, B, such that (K

is the identified clique)

- - .

P

-KUA].UAZ#-" : f

- [K]G is a clique " .

We haJve Xy € E whenever x ¢ Ai’ Y ¢ Aj,
(L #3) or x €A, y ¢ K,
L4

We have xy ¢ E whenever x e Bi'

ye (A;UBJ. L #3,
[a, v 32, x

$ -

a, =.¢<Z'—">Aé =4,

- If A| =A, = §, then in each B,, there is a- vertex

X; with N(xi) 2K ' )
and such that for each a e Ay, the graph G(ai) = (K Y Aj U Bj
v {ai}lG is isomorphic: to Gj. (We may assume that A; = §,
for otherwise K is a clique cutset of G, and the desired
conclusion follows from Fact 3.4.1.) I
If i:he graph G(ai) contains two friex‘lds X, Y tr;en X

ané y ar‘e ‘also friends in G: the point is that there can
be no chordlessg pat;h with two endpoints in G(ai) and more
than one interior vertex in (B U“l}i)_ - {ai}). Thus, we -
may assume that Gi and G, are cliq'ue‘s. ;t follows that.
B, =-B, = g. But then'G is also a cl.tqu,e.f[j
4 Present’ly,,ther‘e is no polynomial-:time algori‘thm to

recognize quasi-parity graphs. However, the above three
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facts squeot a natural approach tordesign such an algorithm.
Let G be a graph. Suppose that G satisfies one of the fol-
lowing conditions.

(1) G contains a'cliqﬁe‘ouoset.

(11) . G contains a homoqoneous set.

(1ii) G contains a proper amalgam decomposition.
Then G can be decompodsed into two smalier oraphs G1 and
Gé such that G can be constructed from G, and G, by one of
the three.operaiions, and th;t G 1s~quasitparity and only ‘
if Gy and G, are both quasi-parity graphs. (This approach
is not new; Burlet and Fonlupt (1980) showed that each )
Meyniel graph G either admits Q"prooer amaltgam decomposi-
tion or else G ;s a "basic"” Meyniol graph. We shall de-
scribe their work ‘in more detail in section 8.) Our £hal-=
lenge is to find some ' "basic" quasi-parity grapos suth _
that if a quagi-périty graph is not basic, then it sat\isfies
at least one of the ‘three conditions (1), (1i),and (iii).

Sue Whitesides (1981) designed a polynomial-time
?aigorithm to recogﬂize the presence of clique outsot
in an arbitrary graph. Polynomial-time algorithms to
recognize the presenoe of a homoqeneous set in a graph
have been obtained, by Maurér; (1976), Habib and'Mourer

D> .
(1979) and Cunninéﬁam (1982) . Cornuéﬁols and Cunningham

(1985) has obtained a polynomftal~time algo}ithm to deter-

mine whether a graph admits/a proper amalgam decomposition.



\

Y
Incidentally, note that if a connected graph G contains

a homogeneous set, then G- admits a proper amalgam decomposi-

tion, unless G has a vertex x which is égjacent to all

rémaining vertices of G (in this case, G is a quasi-

parity graph if and only if G - x is a quasi-parity graph).

N

. ‘ )




4. SOME CLASSES OF PERFECT GRAPHS

rs
¥

4.1 Introduction

In this section, we discuss trianguiated graphs,
comparability graphs, 11nefgraphs of bipartite graphs,
P4-free graphs, and Pd-sparse graphs. The first three
classes of perfect graphs are sometimes referred to as
"classical” perfect graphs for the reason that they were

among the first known clasées of perfect graphs.

4.2 ; 'Ij‘;tianqulated Graphs

A graph G is trianqulated if every cycle with at least
four Vertices contains a chord. Hajnal and Suraflyi (1958)
proved that complements of trianguiated graphs are perfect.
Berge (1960) proved that triangulated graphs are perfect.
Dirac (1961) showed that every triangulated graph con«tains
a simplicial vertex, that is a vc;rtex whose neighbourQ

form a ciigue. In sections 5 and 6, we shall see that this
special structure s&ggesta a certain ':greedy' algorithm

to optimally colour tiriangulate? graphs.

.

4

Theorem 4.2.1 (Hajnal and Suraﬁxi (1958))

-
IS

If a triangulated graph G is not a clique, then G

contains a cliqge cutset.
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Proof

Let G = (V,E) be a triangulated graph. We may assume
that G is not a cliéue; for otherwise we are done. Let C
beé a minimal cutset bf G. Enumerate the connected compon-
ents of G-C as _Cl'c2"""ck' k> 2. If Cis a clique,
then we. are cfone. Otherwise, there are two nonadjacent
vertices a,b in C Now, since C is a minimal cutset of G,
each veftgx of C has sc?me neighbour in each Ci' Thus,
folr each’ connected component Ci’ there is a path Pi with
a,b being two endpoints, wit; all interior vertices belong-
ing to Ci'. Note t'hat each Pi containsg at least. three
~vert1c'es. Cohsider two such paths Pi’ Pj' They form a

chordless cycle with at 'least four vertices, contradicting

cur‘assumption that G is Q*angulated.u a
As triangulated '§raphs become well krgowr;, many inter-

esting\ properties of them were discovered. In particular,

llbiréc (1961) showed’ tbajz every triangulatec:l graph cogtains

a simplicial vert@x. (Recall that a vertex is "simplicial”

if its neighbours form a clique.)

Theorem 4.2.2 (Dirac (1961))

If a triangulated graph G is not a clique, sthen G

contains two nonadjaéent -simplicial vertices.
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Proof

By induction on the number of vertices. Let G be a
triangulated graph. If G'is a clique, then we are done.
Otherwise, by Theorem 4.2.1, G contains a clique cutset C.
Let Gl and\G2 be two }induced subgraphs of G such that

G,N @, = C, and Gy Y G2‘= G. Consider the graph G, - We-

1 2
claiin that in G1 - C, there is a simplicial vertex x of

Gl' .
If Gl is a clique, then any vertek in Gl - C can play
the role of x. Otherwise, by the induction hypothesis,

G, contains two nonadjacent simplicial vertices V1"'2'

1
Since C is a clique, at least one vi must lie in G1 - C.
Write x = vy and we have justified our claim.

Similarly, we can find a simplicial vertex y in
G2 - C. But then, x and y are two nonadjacent simplicial
vertices of G.D

—It is_ easy to see that triangulated graphs can be
recognized in polynomial t;ime. Let us elaborate on this
point. Suppose we are given a g\rgph G = (V,E) with
lv|ﬂn. (As usuai, we ‘shahl assume that G is represented .
by' :l.té adjacency\ lists.) Now, G is a triangulated graph
if and only if ‘ - " \
(1) ﬁo P, extends {Into a chordless cycle. -

We can test A1) as follows. Let a,b,c be the}ertices
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¢

of a P3, with b being the inter;or vertex.‘ This P3 extends,
into.a chordless cyclé if anc} only if £tiere ‘is a connected
component C of N(b) !_rl,ith- N(a) N C# ¢ and N(c) N\ C # ¢.
Thus, (i) {:an bg tested in O(nz) steps. Since there are
only O(n3) dist}.hct 'P3's in G, this algorithm terminates
in O(ng)’stepsu Of 'coutse, our algorithm is very crude,
ana there are faster algdritl'ms to recognize tfiangulated
graphs. Leuker (1974), Rose and Tarjan (1975) desig;led

a linear-time algorithm to recognize trian;;ulated graphs.
Rosgse, Tarjan and Leuker (1976) showed that an algorithm
of’\gavril (L972) can be implemented to fiﬁd the four

para.metelgs w(6), x(G), a(G) a;1d 8(G) of a g:l,vén trianqulated

graph G in linear time. )

A)

3.3 Comparability Graphs

\
~

Let X be a set, and let < be a binary and"antisymetric

_relation on X- The set (X,<) is a partially ordered

set (or poset for short) if . for each choice of a,b,c in

X, we have a < ¢ whenever ; <b, b<e. 1If x < f, then

we séy that x is comparable ‘to :y, and y is comparable to Xx.
. A graph!'G = (V,E) is- a comparability graph if V admits

a partial order su&:h that two vertices of V are comparable
N ° - AN

3
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if.and only if they are adjacent. A famous theorem of
Dilworth (1950) can be _restated by sayi;xg that\ ix-u a com-
parability graph G = (V,E), the number of vertices in the
largest stable set equ;ls the smallest number of cliques
that cover V; that is ao(G) = @(G). This equality'alsb
holds for dvery induced subgraph H of G, since H is a
comparabnity graph. Now, it follows from the Perfect
Graph ‘Theorem that the comparability graph G is perfect.
(Wedshall present an easier and more direct proof of this
fact in a moment.) ’

Let G = (V,E) be a graph. By an orientat:.ibn ¢ of G,
.we.denotei of the directed graphs obtained from G by . “‘“M
assigning one, and only one, direction to each edge of G.
We shall refer to a directed edge as an arc. We say that
G is acyclic if it does not contain & directed cycle. By
a pgd_g:,‘ we'mg’an the graph with v;rtices a,b{’c and arcs
ab, bc (and no otHer arc). ’An‘ori'en;:ation G of a graph G-
is transitive if G does Dnot contain an induced i:ad P,.

By the above definitions, a graph G is a comparability
graph if G admits an orientation & such that & is both
acyclic and,transi:tive. (To obtain G ve only need direct
a to b if ab is an edge of G, and a < b {n the poset.)

The following elegant argument of Berge (1973)‘ shows that
comparabil :Lty graphs are perfect, without relying on
Dilworth's theorem. (Fulkerson (I972) aLso oroved that cawarabllxt_v

graphs are perfect.)

.
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Theorem 3.3.1 (Berge (1973))

Every comparability graph is perfect.

Proof _ : "

By induction on the number of vertices. Let G be a
comparability graph. We only need prove that w(G) = x(G).

By a directed path from Vi to Vi We mean a sequence

V1'Y2""'v£ sﬁch that v_:Lv1+1 is an arc. Let G be the
transitive orientatibn of G. Let t(x) denote tHe length
of the’;quest directed path from x plgs one. Since § is
acyclic, t(x) is finite.
By the transitivity of 3, each directed path induces,

a clique, Let k be the largest number among all numbers .
t(x). We have w(G) ='k. :

. Consiéer a colouring of G by the colours 1,2,...,k°

AJ ‘

such that each vertex x receives the colour t(x). No two adja-

" cent vertices x,y can receive the éame_col.oug, because if

Xy is an arc, 1':hen t(x) > t(y). 'rhus,‘ we have x\(G) £ k.

Since X(G) > w(G) = k, it follows that x(G) = w(G) = k.D
Now, we can describe a theorem of Ghouila-Houri (1962).

s

Theorem 3.3.2 (Ghouila-Houri (1962)) -

If a graph G admits a transitive orientation, then G

admits an orientation which is both acyclic and transitive.
. ¥ . ‘ "L

¢ »

3
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Proof

*

By induction on the number of vertcies. Let G ‘= (V,E)
be a graph that admits a transitive orientition G.

Firsf:, note that i:‘:' three vertices a,b,c, induce a
directed triangle in G, then ﬁo'vert,e;_«outside X ={a,b,d
can be adjacent to exlactly one vertex in X. |

Now if '& is acyclic, then we are done, Otherwise, G

contains a directed ,cycle. By its transitivity, & can not

" contain a chordless directed cycle with more than three

vertices. Thus, we can assume that there are vertices

a,b,c with arcs ab, bc;ca. We only need consider two cases.

Cagse 1. G containé & homogeneocus set Y.
Let G, be the subgraph of G induced by (\;-Y) Vv {x},
where x is an .arbitra'fy vertex of Y. Let Gz be the
subgraph of G induced by Y. By the induction hypothesis,
we can direct the edges of each ,Gi so that Ei is both
acyclic an&:ransitiv.e. To -obtain a transitive and acyclic
orientation of G, we only need add the arcs yz if (i)
Y € Y, z € N(Y), xz ¢ Elogif (“fi‘)'y’e N(Y), z ¢ Y,

Xz ¢ ('51.

' ’ .
Al 4

Case 2. G does not contain a homogeneous set.
We can agsume !;_dhat there is a vertex x outside

X = {a,b,c} with | N(x) nf X |'= 2, for otherwise X is a

v
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&

- homogeneous set. Without loss of generality, assume that x

is adjacent to b, c, and nonadjacent to a. We must have
ci,xb g G; for otherwise G is not transitivé. . - v .
" Let A be ghe set of all vertices y'such that cy,yb ¢ é.
We have |A| > 2, since x ¢ A, and a ¢ A.” If A‘isha homo-
geneous set, then we are done. Thﬁé, there is a vertex
y £ A with ya, ‘€ E, yaz ¢ E for sou;e a,a, € A Cpnside_r
the triangle {al,b,c}, we see that y is adjacent to either
b, or c, or both. Consider £hé triangle {az,b,c}! we see
that y must be adjacent to both b and c. Since ya, { E,
it follows that cy,yb ¢ &. But then y must be in A, a %
.contradictioh.u '
By an odd walk, we shall mean a sequence of (not K
necessarily distinct) vertices vo,vl,...,vZk such that

"\1"14-1 is an edge, and ViVis2 is a nonedge. (As usual,

. the subscripté are taken modulo 2k+l.) The following

4

result (announced in 1962) of Gilmore and Hoffman provides

another characterization of comparability graphs.

y

Theorem 4.3.3 (Gilmore and Hoffman (1964))

A graph is a comparability graph if and only if it
does not contain an odd walk.[] )
It is e&sy to see that, by Theorem 4.3.2 and Theorem

L)

4.3.3, comparability graphs can be recognized in polynom:ltaal

, time. (This fact was mentioned in Gilmore and Hoffman (1964).)

-

/—\J
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4.4 Line-Graphs of Bipartite Graphs ;

!

)

A graph is bipartite if its vertices can be partitioned
into two disjoint stable sets. It is easy to see that .
every bipartite graph is p;erfect. A line-graph of’ a bi-
partige graph G 18 a graph B whose vei:t;i:ces correspond to,
the edges of G, two vertices ‘of ‘H being adjacent if and
only if their cor'responding edges share an endpoint in G.
To show that line-graphs of bipa{rtite graphs are per’fect,
we shall use a well-imown result on "matchings” in graphs.
We shall need introduce a few definitions. |

Let G = (VH,E)_’ be a graph. A subset M of E is called
a matching of G if no two edges of M share an endpoint.

By m (G), we shall denote the number of edges in ; largest_'

matching of G. A cover .of G is a set C of vertices such

.

that e&ch’, edge of G has at least one endpoint in C. By
c(G) we denote the number of vertic’éé in a smallest cover

I . .y
of G. Clearly, for any graph G, wé have c(6) > m(G).

Theorem 4.4.2

~

ery bipartite graph G hag m(G) = c(G).

The following  elegant proof is due to Lovasz (1975)
_/ ‘

1]

I’ ‘

Al ] q

Proof of Theorem 4.4.2

LS

'

i.et G' be a smallest subgraph of G = (V,E) with
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v,

¢(G') = ¢(G). We claim that the edge-set of G' is a match-

ing. This will establish the theorem since we will have
* -

m(G) 3> m(G') = c(6') = c(G). \
Assume the contrary, and so G' has a vertex x adjacent

to two vertices Yy and Yoy Write c(G) = c. l_sy the mini-

"mality of G', we have c(G' - Y;¥,) < c and so there is a

set §,, with §; ¢V, lsil = ¢ - 1, such that §; is a ,

il
cover of G - Xy,. Since the edge Xy, *cannot have an endpoint

’

in Si' we have Xy, d Si’

{ =} .

Write S = S, 0 S,, [s| =¢, R = (S; =8I VU (s, = §)

We have | R|= 2(c<1-t) + 1 = 2(c - t) - 1. Note that the
vertices of the subgraph H = [R]G, can be partitioned into
two disjoint stable sets‘ (H is bipartite). Let T be the

smaller of these two stable sets. We have ﬂ'r £c=-t -1
Now, we claim: that TUS is a cover of G': if an edge ‘is
~induced by R, then T covers it; if an edge is not {nduced
;Jy R, tlper; it can meet béth S, and.s, onqu' if it has an

/

éndpoint in §; N s, = S. But then we have ,TU s l = c~t-l+t =
e =1¢< ¢c(G') = ¢, a contradiction.[] ®,
. Let L(G) be the line-graph of a bipartite graph
G = (V,E) To see that L(G) is perfect we only need no-
tice that a(L(G)) = m(G) = c(G) = 8(L(G)); and so L(G) is
peffect by the Perfect Graph Theoren.
, Edmonds (1965) designed a polynomial-time algorithm
.t':o find,a largest matching in a graph. The problem of
B ) : o .



determining the parameter c¢(G).of a graph G is NP-complete
/ N N

(Cook (1971)).

‘ A g_l_g_v:g is the graph with -vertices a,b,c,d and edgee
ab,ac,ad (and no other edge). A diamond is the graph with
vertices a,b,c,d and edges ab,bc,cd,bd,ad (and no other edge) .
We 'shall call a graph._gggg if it does not contain an induced
subgraph isamorphic to an odd chordless cycle with at

least five vertices, or to the complement of su’ch ahcycle.

It is easy to see that if G is a line-graph of bipar-
tite graph, then G is Berge, claw~free, and diamond-free.
Par@:has&rathy and Ravindra proved that claw-free Berge
gi’ephs (1976),‘ and diamond-free Berge gfaphs (1979) are
perfect. (Actuan‘y, there i:s a flaw) in their proof of the
latter result; a correct proof based in part on the

\Parthasarathy-Ravindra technique, has been obtained by

Tucker (1984) )

4.5 P,-Free Graphs
. h .
A graph is _24-free if it has no induced P,. P4-—free

graphs have l;een studied by many" people; terms synonymous
with "P -free grapt{s include cographs (Corneil, Lerchs,
Stewart-Burlingham (1981)), D*-graphs (Jung (1978)), and
HD or Hereditary Dacey graphs (Summer (1979)). Recently
coi:neil,. Perl and, S'Rew&ft-nurlingham (1984) designed a -
linear-time,algorithm to rec\ognize P4-free graphs.

o "

i
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Lerchs (1971, 1972) and Seinche (1974) independently proved
3 ]
that P,~free graphs are perfect. In sections 10 and 11,

\we shall refer to the following theorem of Sé&inche many
k *
times.

" Theorem 4.5.1 (Seinche (1974))

If a'graph G is P{-free, then either G or G is dis-
"connected.

Proof -

Let G = (V,E) be a P4-free graph.

Suppose both G and G are connected. Let A be the
s;mallest induced subgraph of G suc}x that A has at least
two ;rertices and ;?uch that A and A are both connected. Let
x.be a vertex whose removal would disconnect A (we ca:x
always interchange G and _E, so that this is ’the case) .

Since A is connected,, there is a vertex y in A - x such

that xy ¢ E. Let A' be the connected component of A ~ x

that includes y. Let us partition the set of vertices in °

A' into disjoint sets R and W such that
oy
(1) - u c\R if ux ¢ E,
{11) u e W if ux € E. ‘ ‘
) 3 ' ~ .4

Since A is connected, there is a vertex v outside
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- A'V {x} such that vx ¢ E; note that uv ¢ E for any vertex

u in A'. Since A' is connected, there is a path P from x
to y; but the only edges leaving A' are edges from W to x,
this path must include vertices w in R, z in W such that

zw € E. But the vertices v,x,2,w and edges VX, X2, ZW form

. 0

Corollary 4.5..1 (Lerchs (1972), Seinche (1974))

P4—free graphs are perfect.
Corollary 4.5.1 follows from Perfect Graph Theorem

and Theorem 4.5.1.

Corollary 4.5.2

If G is a P,-free graph with at least three vertices,
then G contains a homogeneous set. .

A \

4.6. P,,—Spirse Graphs

A graph G = (V,E) is P -sparse if no subset of V,
with five verticesa, contains two distinct P4's. By defini-
tion, e\aiery P4—free graph is PQ-sparse.

A graph G = (V,E) will be called a gpider 1if its

'v'ert_ices can be labeled a;,aj,...sap/b;,bysen.sby oF

t,al,az, .o "ak'bl'bz'- .o 'bk such tﬂat:

N

0
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(i) aiaj ¢ E for all i and j
(ii) bibj € E for all i and j

(1i1) aibj € E if and only if i = j

(iv) If t is present, then we have ta, £ E,

tb, € E for all i and j.

3
F

The complement of a spider will be called a cospides.

Theorem 4.6.1 (Hoang (1983))

If G is a P4-sparse grapH, then G contains a homo-
geneous set, or else G, or G, is a spider.

}

Proof

Let é = (V,E) be a graph.} We can assume that G has
more than two vertices, or else G is a spider. Let H (be the
subgraph of G such that B contains five veftices and at
least two P4's. Our proof is presented in guise of an
algorithm. Given, as input the graph G, the algorithm

returns .as output one of the following:

(1) A subgraph H.

(11) &A homogeneous set Y.

.

(11i) A spider
(iv) A cospider

»

If ? is a P4-sparse graph, thenc(i) can not be returned
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Q
by the algorithm. Thus, the theorem holds. The algorithm
is as fol@lovvs:
1. If G is P4-free, then by Corollary 4.5.2, G contains

a homogeneous set Y, return Y and stop.

2. Set

ue Pif ual,uLZe E and ubl,ubzt E
ue Qif ua,,ua, ¢§ E and ubl,ub2 L E
u € \;! if ua,,ua, ¢ E and ub, ,ub,-c E

If some vertex w* other than al,bl,bz,a2 lies outside

P,Q,R, then return the subgraph H induced by

al,bl,bz,a2 and w* and stop.

3. As long as there are adjaceﬁt'vertices a € Q, and

b € R, repeat the following operations:

3.1 If some w*e P hasw* a £ E or w* b £ ¢ (or both)
then return the subgraph H induced by hl,bl,b,a
and w*, and stop.

3.2 If some w* ¢ Q l}as w*a ¢ E or w*b ¢ E (or both)
then return the subgraph H induced by al,bl,b,a
and w* and stop. "

3.3 If some w* ¢ R has w*a ¢ E or v'v*b £ E (or both)
then return the subgraph H induced by al,bl,b,a
ané w*, and stop. ‘ ”

3.4 Delete a from Q, delete b*from R, set a, ., =
a, ka = b, and replace k bir k+l.

4. If k = 2 and some u ¢ P is nonadjacent to some v ¢ R




then set
X+ a,y + bi’ z + bz' t v a,,

al‘b y, b, + ¢, bé - x, a, - 2z,

1
Replace G by G, interchange P and Q, and retugn to
step 3. ‘
(Note that a=u, and b=v have just become available.)

5. 1fk i 3 and some u € P is nonadjacent to someve R,
then return the subgraph H induced by a,,u,b,y,v, and
bs, and stoé. .

6. IfPU Q# g, Fhen set Y ={ aj iy, .00, bl'bZ""'bk}
V R, return the homogeneous gset- Y and Btop- |

7. If |R| 2 2; then set Y = R. Return the homogeneous
set Y and stop. '

8. Gor G is a spider. Return this spider and stop. []

Lemma 4.6.1

Let G be a graph with & homogeneous set Y. If there is
a P4 with at least one vertex in Y and at least. one vertex
not in Y, then this P4 has preciaely one vertex in Y and
three vertices not -in Y. Furthermore, if such a P, is
édesent, then G is ﬁot P,-sparse.

\

Proof

Since Y is homogeneous, -the set of vertices oqtside Y

A

G@
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v

can be partitioned into disjoint sets A, B such that, for
each vertex u, we,haze°
(1) ueA if ux ¢ E whenever u ¢ ¥, x ¢ Y
(1) wu e é if ux € E whenever u ¢ ¥, x € Y i
If Fhére is one P4 with at least one vertex in Y and
at ;east one vertex not in Y, then this P4 has at least.
one vertex in B. 'I‘hu;, such a'P4 can have only one vertex
in Y. So, its wvertices can be enumerated as a,b,c,d such
that we have either a € A, b,d ¢ B, c e Y, or a,b € A,
ce B, de Y. Since |Y| > 2, there is a vertex e in Y.

such that a,b,c,d,e induces two distinct Pq'a.D

Ed

. Theorem 4.6.2 ) N

-

If G is a P,-sparse graph, then G satisfies at least

one of the following three conditions.

(1) G is a spider or cospider.

~

(1i) G is disconnected.

(111) G contains a clique cutset.

Proof

——

]

Let G = (V,E) be a P‘-:parse graph. We can assume that

¢ is not a spider or cospider. Now, Theorem 4.6.1 implies

that G contains a homogeneous set. Choose Y to be the homo-

geneous set that maximizes !Y’U N(Y)|. (Recall that N(Y)

N




6l

'hr}
] ' ‘
stands for the set of all vertices x such that x ¢ y and

xy € E for some y € Y.)

If V=Y UN(Y), then we are done: G is disconnected.
Thus, the set N(Y) =V - (YU N(Y)) is nonempty. Let
zl,zz,...‘be the connected components of G - (Y U N(Y)).
Let Nl'NZ"" be th; connected components of the subgraph
of G induced by N(Y). Let N* be the union of all components
N1 such that N1 congists of a single vertex. |

Now, if there is no edge zv with z ¢ N(Y) and v ¢
N(Y) - N*, then we are done: N* is a clique cutset in G.
Thus, there is an edge zv such that z ¢ N(Y) and v.is in
some N; that has at least two vertices. Now, N, must be
a ho:ogeneous set of G. (If there is a vertex x with
N(x)N N # ¢, and N(x'; Z N, t\heh we have x ¢ N(Y); since

N, ‘is connected in G, there are vertices n,,n, in N, with

i
xn, e E, xn, { B, nn, ¢ E; thus each vertex in Y forms .

a P, with X,ny,N0y. By Lemma 4.6.1, this is impossible.}

4
But then we have | N, U N(N)| > [YV N(Y)|, contradicting

our choice of Y. [
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5. PERFECTLY ORDERABLE GRAPHS

A natural way of colouring the vertises in a graph is

to order them in a sequence VieVgreer V- Then, scan the

sequence from v, to v and assign to each vy the smallest
_ positive integer flvj) assigned to none of its neighbours.

v, with 1 < j. We shall refer to the graph with the linear

i
order on the set of its vertices as an ordered graph, and
to the procedure of assigning colours to the vertices of

an ordered graph as the greedy procedure.

7

- The greedy procedure may not necessarily give the

beast colouring. Consider the graph P4‘with vertdces‘
a,b,c,d and edges ab, bc, and cd, and the following four

distinct brderings: '

' R a b c d .
’ B 2 1 2 '
N
. a b a c i :
Figure 5.2 - __—::::: a<b<d<ec
. . ! \ ' v
1 2 1 3




- .
- s

Figure' 5.3 Q\\~\-é:j:::::::::=° a<d<b<c"
. 1 1 2 3 -
- VRS . da c ' b ’ .
Figure 5.4
o I

-

The- greedy procedure produces ‘an optimal colouring
of the ordered graph- in Figure 5.1, but it does not do
so for the ordered graphs in Figuree 5.2, 5.3, and 5.4.
In particular, the graph in Figure 5.1 has f(a) = £{c) = 1,
and £(b) = £(d) = 2. The graphs in Figures 5.2 and 5.3
ﬁeve £(c) = 3, and the graph in Pigure 5.4 has £(b) = 3.

1

.Fact 5.1

\ . . .
For every graph, there is always an ordering on which

the greedy. procedure produces the optimol colourihg.

Proof ' : \ Y,

B

't

Let G be an unordered graph. Find the optimal colour- .

¢

e
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ing of G by "colours®” 1,2,...,k for'same k. For edach
vértex v in G, let g(v) be the colour number assigned to ‘

v. oOrder, the‘’vertices of G in a ‘sequence Vl<vé<"'<vh

such that 1 < j whenever g(v,) < q(vj)fy‘We claim that' .

the coloﬁring £ prbduced ﬁ;/ihb greéé; procgdure has .

' ?(v) < g(v) for any vertex v, OBviousiy £(v,) = g(vl)‘=. .
1. Consider a vertex‘vj, j > 1, in the sequence. By C
the induction hypothesis, éach \(ertex‘v1 with ic< j has

f(v;).g glvy) .- Céﬂéider all neighbours v, of V5 such that

i < j. : We know that g(vi) < g(vj), because 1if g(vi) =‘g(vj).

then vy is not a ﬁe;ghbour of vy. Thus, we have f(v,) ¢

q(vi) < g(vj)‘for all neighbours‘v1 of vj. Since f(vj) <1+ ;
max £(v,), it follows that £(vy) < g(vy). The proof is ccmp;gted.ﬂ.

An ordered P4 Qith vertices a,b,c,d, edges ab, 'bc, cd ‘°

such that a < b, d < c is called an obstruction. T6 put

it differently, an obstruction is any one of the three
ordered‘grapps in Figures 5.2, 5.3 and 5.4; As'in Chvatal r
(;981),;1et the Grundy number be the largest iptéger f(Qi)

" used by the greedy procedgfe._ A linear Arder on the set

of vertices of a graph will be called: -

-

(1) admissible if it creates no obstruction. .

(11) ggrfeqt if, for each induced subgraph H;

Grundy number of H equals x (H).
It is easy to see that every perfect order is admis-
sible. A proof, of the converse relies on the following

fact.
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" such that b* = v and c* = b, But thenvthere’ibﬁa contra-'

65

. C

Let G be a graph and let Q be a set of pairwise adja-~

Lemma 5.1 (Chvatal (1981))
q‘ »

—

" cent vertices in G such that eacﬁ'w € Q has a neighbour p(w)

¢ Q1 let the vertices p(w) be pairwise nonadjacent. If
there?is an admissible ordgr < such that pi(w) < w for all

w € Q, then some p(w) is adfacent'tovall the vertices in '’

Q.

Proof

[ <*

By induction on. the 'number of vertices in Q. For
each w ¢ Q, the induction hypothesis guarantees the exis-

tence of a vertex w* € Q such that p(w*) is adjacent to

:all the vérticeq in Q except possibly w. In fact we may

assume that p(w*) is not adjacent to w, fdr othervwise we l

are done. Now, it follows that the Eapping,whichuassigné
w* to w is one-to-o;y(’and therefore 1 onto. In partis-
cular, with v standing for ﬁhaﬁ vertex in Q which comes -

first in the admissible'order,‘thgre are vertices b,d ¢ Q

diction: the vertices a,b,c,d with a = p(b) and 4 = p(v)

constitdﬁe‘gn‘obptruction.E]

s
Theorem 5.1 .(cgvatal‘g1981z;ﬂ

P "y

Azlinear order of“tﬁ@f;eéoof vertices of a graph

A
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is perfect if and only if it is admissible.

The “only if" part is 'trivial; the "if" part will be
proved by induction on the number of vertices. Let G be
T oa éraph vith an admissible ordet'< of the set of its ver-
ti%eé, and let k stand for the Grundy number of this
ordered graph. By virtue of'the induction hypothesis, it

will suffice to show that thc chromatic number df G is at

- least k. Thus,:it will suffice to £ind k pairwise'adja-

, cent. vertices in G. PFor this purpose, consider the small-'

\”

° \‘ﬁt i such that there are pairwise adjacent vertices
LSS FFOTRRI witn f(wjé = j for all Je (Note that i is

at' most k-1, for k > 2.) If i'=0, then we have found k
pairwise adjacent vcréices; otherwise each wj has a neign-
bour p(wj) such that p(wj) < wy and f(p(w )) = i. (To
sce this, suppose there is a vertex wj with f(p(wj)) #1,

‘thon we have: j < i, this is a contradiction¢) But Lemma

i 5 .1 impiies the existénce of a vertex v with £lv) = i,
adjacent to all the vertices wj, which contradicts the

iminimality of i. r
k-qraph is called perfectly orderable i1f it admits an

admissible order. Recognizing perfectly orderable graphs

-

5

in a polynomial time ts an open problem.\ However, Theorem;
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5.1 tells us that we can recoénize perfectly ordered graphs
in a polynomial tim (It is sufficient to look for an

obstruction in the ordered graph; if this graph has n

" vertices. then it has at most ( n, Pq's )

A property related to perfection has been studied by

Berge and Duchet (1982). A graph is called stronqly per-
fect if each of its induced subgraphs H contains a stable
set meeting all the maximal c¢liques in H, (Here, as usual,

"maximal® is meant with regpect to set=-inclusion, not size.

In particular, a maximal clique is not necessarily largest.)

Theorem 5.2 (Berge and Duchet (1982)) i
’ €

Strongly perfect grabhs.are perfect.

Proof |

Let G = (V,E) be a strongly perfect graph.

Using induction on the number of vertices we only need‘
prove‘x(G) = w(Gj. Let S be a stable aeé'meeting all the
maximal cliquea in G, H be the suhgraph of G induced by

< S. Clearly w(H) = w(G) - 1. By the induction hypo-

Jthesis, H fd/pérfect, and so x(H):* w(H). We can colour

the pairwi%e nonadjacent vertices in S by an extra colour
, A . (

v

and have x(G) = w(G).[] . s

-
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Theorem 5.3 (Chvatal (1981))

v

Every perfectly orderable graph is strongly perfect.

Proof

i Itvwifl suffice t6 find, in an arbitrary.graph G w}th
a perfect order <, a stable set meeting all the maximal
cliques in G. We claim that S can be found by the follow-
ing algorithﬁ; scan the perfect ordering VyeVareeoVy
from v, to Vo and place each Gj in.S if and only if none
of its neighbours vy (i < j) has beén placed in S. Indeed,
1f the resulting stable set is aisjoint from some clique
‘0, then each w € Q has a neighbour p(w) in S with p(w) < w.
But then the Lemma 5.1 implies the existence of a vertex -
Vv ES adjacent tb all the vertices 19 Q. Thus, Q is‘hot

-

maximal.d - .

o

It may be worth mentioning that

(1) there are strongly perfect graphs which are

. :
not perfectly orderab1e9/and

(1) there are perfect.graphs which are not |

o

atrohgly perfect. N
An example of (i), taken from Chvatal (1984), is the
grabh in Figure 5.5; an example of (ii) is any .graph
c

2k with k > 3.
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6. TWO CLASSES OF PERFECTLY ORDERABLE GRAPHS

6.1 Introduction

In this gection, we shall characterize (By minimal
forbidden induced subgraphs) two families of graphs such
w - that, for every graph G in the first (or the second)
family, the Welsh-Powell (or the Matula) colouring peuris-
tic delivers a perfect order on G. All results presented

in this section are obtained jointly with V. Chvatal.

6.2 Colouring Heuristics and Perfect Orders

A »

Recall that the greedy procedure (which is a graph-
b colouring heuristic), given a graph G, proceeds in the

following two stages:

-

(1) impose a linear order < on the set of vertices
of G, | ‘ |
‘ ‘ ‘(11) scanning the vertices in this order, assign
» to each vertex y the smallest positive integer

assigned to no neighbour x of y (x < y).

Welsh and Powell (1967) proposed choosing < in such

a way that, with d;(x) standing for the degree of x in G,

dG(x) > dG(y)-whenever x < y: (6.2.1)

I

“
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Matula (1968) proposed choosing < in such a way that

dy (x) 2 dH(y) whenever x < y and H is
the subgraph of G induced by all z with *

z<y. | , (6.2.2)

We shall call a graph G Welsh-Powell perfect if every

order < satisfying (6.2.1) is perfect; we shall call G

Matula perfect 1f every order < satisfying (6.2.2) is

perfect.

Theorem 6.2.1

The following two conditions are equivalent for every

graph G:

fa) All induced subgraphs of G (including G itse%f)
are Welsh-Powell perfect.
(b) G has no induced subgraph isomorphic to one of

the graphs Fl'FZ""'F17 in Figugg 6.1

R

o

™M
<

Checking that (a) implies (b) is a routine matter:
we only need verify that none of the seventéen forbidden -
induced subgraphs i8 Wélsh-Powell perfect. (The non-
perfect orders satisfying (6.2.1) are suggested by the labels-

at the vertices in Figure 6.1.)



Figure 6.1
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To prove that (b) implies (a), consider an arbitrary

graph G satisfying b):; we only need prove that G itself

'is Welsh-Powell perfect. For this purpése, we assume the

L3

contrary: now G contains a chordless path with vertices
VorVyrVy V4 and edges vov),v,v,,v,¥y such that dg(vy) 2 -

d;(vy) and d,(v3) 2 dG(vz). For each vertex w of G other

than Vor ¥ys V2' vy, write
kiw) = ao(w) + 2a1 (w) + 4a2(w) + 8a3 (w)

with ai(w) =] if v, and w are adjacent, and a, (w) =0
otherwigse. With n, standing for the number of vert?é\es W
such that k(w) = k, we have -

dglvg) =1 + np+ ny+ngtn,y +ng+ Ny +0y 40

dG(vl) 2 + n, + n, +ng+ n, + n10,+ N1 + Nyg +0ygo

dglvy) =2 + ny + ng + ng +ngy+n, +n5 40, tng,

dgfv3) =1 + g+ ng + myg+ nyy + My, + Ny, ! Rig ¥ M5t

Hence the’ inequalities d.(v,) 2 éG(vl) and dG(v3) > -,
dg(v;) may be written as '

?

n1+n5+n9+n1321+n2.+n6/+n10+n14'

ng + ng + n;,+ nuL 21 + n, + ng + ng .+ ng (6.2.3)

It 'is a routine task to verify that every solution of

. , \
(6.2.3) in nonnegative 1ntegers’r;k must have at least one .,

.
o
. . . %+
L4 -
7
, .
w ot
.
.
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1

1%

1' na _>_1'

2 1,

1, nyy

N [
routine task -is to verify that

case (1), F contains Fi»

c;se (11), F contains F, or Fj, -
cases (114) and (iw), F contains F, or F‘s,
case (v), F contains Fé or F.,,

cases 'gvi) and (ix), F contains F,, -FB' Fgr Fio/
cases (vii) and (x), F contains Fl' F13, or F“,

-

Pll or FIZ'

»

cases ('V‘Ii‘ii) and (xi), F contains. Fi, Fgo Fyo

Flﬁ' or F17o ‘ -

13

violates (b); this cohtradiction completé's the

proof. ﬂ
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/

The analogue of Theorem 6.2.1 that concerns Matula

'

perfect -graphs involves a family of graphs that we call
bicycles. Take disjoint graphs C, C' and P such that C

is a cycle of length three or four, E:' is a cycle of
llength three or four, and P is a path; the path may consist
of a single edge or even just a s\inglé vertex, except when
both C and C‘ are triangles, in which case.we ingist on P
h.‘a\ving* at lea t twc; edgés; a bicycle is a graph obtained
from C,b C' and P by ‘identifying one endpoint of P with a-
vertex of C and identifying the .other endpoint of P with

* ©

a vertex of G'. Nine bicycles are shown in Figure 6.2.

7. 3
4
2
1
6 2
3
4 1
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( .
Theorem 6.2.2
The following four conditions are equivalent for
every graph. gi\\ . %
K1a) All induced subgraphs of G (1nc1uding G itself)
are Matula perfect. ‘
(b) - No induced subgraph of G is isomorphic to a ~
‘ ' chordless cycle of length at least five, or one %
’ 1 .
of the graphs F,g, F,, in Figure 6.3, or a ‘bicycle.’. '
[ Y , - y
(c) No induced subgraph F of G contains a chordless
path with vertices vo; V¥ V,, V5 and edges
VoVys v%vz, yzv3 such that d,(v;) = 2 399'
' . dp(x) 2> 2 whénever x €.F. '
4’ . - -~
T (d8)-  No induced subgraph H of G contains a chordless
path‘witﬁ vertices vy, Vi, ¥y, vs and edges
e “%$V1' V ¥, V,Vy such that d,(x) > d,(v,) for
B " all x. in H. ° '
14 ,\Q
4 1 )
- .
2
T ,
5 3 . .
F )
\ 18 ,‘/\ A ir

‘ . B Figure 6.3

‘5

g

.
«
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Proof -

rd

Again, checking that (af‘implies (b) is a routine

_matter: we only neéd verify that none of the forbidden
induced subgraphs is Matula perfect. .(Non-pgrfegt orders

, , N .
satisfying(&&ﬂ)are suggested by the-labels at the vertides |

ot

in figurés 6.2 and 6.3.)

. To_prove that (b) implies (6), consider an arbitrary

-

graph F with the properties specified in (c); we only

. need show. that F contains one of the forbidden induced

subgraphs specified in (b). For this purpose, let N stand
for the set of common neighbours of Vo and v, in'F, and

let A, (i = 0,2) be ‘the component of F-N that contains

[

i
V- We shall distinguish among three cases:

5

-

Case }. AOA= A, | . ’
Case 2. A # A,, and some vertex in N has a neighbour

- —~

- -‘ - s !
[ ,1n Az .7 V2 -F )
A . . Case 3. A, #A,, and no vertex in' N has a neighbour

i? Az - VZ"

In Case 1, the shortest path from‘v0 to v, in F-N, along

with Vie induces a chordféss cycle of length at least five.

'~ In Case 2, consider the shortest path'P in A, such that P

has at least one edge, one endpoint of P is Vo and the
other endpoint has a neighbour w in N. ' Since vy and v,

are the only two neighbours of bi, we havel w # v, now W

. R .
. - ' i .
f . . . H
R :

:

o,

.

e S
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" the four vertices Vor Vl' Var W induce a chordless cycle
of lengﬁh fourz If P has precisgly one edge theﬁ P aléng
with Vor Vir W induces an Fla‘,if P haslpreciseiy two
edges then,P along with vo, ;1, w indﬁces an F19; if P
has at least three edges then P along with w induces a
chordless cycle of length at least  five.-In Case 3, each

_'vertek in A,-v, has degree at least two in A,. Since
Az-v2 is nonempty, it follows that A, coﬂFains augycle;
let us call this cycle C,. Now, we shall distingu;shﬂge-

tween two subcases.
Y

Subcase 3.1 N - {v11 #d.
Subtase 3.2 N = {vl},

P ‘ . s o
1

+In Subcase 3.1, F contains a chordless cycle of length

—

four, induced hy Vor Yy vz} and a vertex in N - {VIP;
let us call this cycle C;. With B standing for the sub-

_graph of F induced by Cye Cyy and a shortest path joining

C, and C, in.Az, it is'easy to verify that B either is a

v R v ° , )' - .\
g
L

bicycle or else it cbntainﬁ one. In Subcase 3.2, each,‘ )

vertex of A, has degree at least two in the subgraph, of F

. : »

induced by AjV {vl}; it follows that A, contains a cycle;

let ug call this cycle CO' With B standing for the 'sub-

graph of ¥ induced by CO' C2' and a shortest path joinindg \
Cy t (necespari%y passing through v,), it is easg_toa; .
,_berify that B either is a bicycle or elgse it contains one.

- '

/“ . *
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_from H by deleting all'the neighbours of vV, except jo

Wl
-

§

t
e £

Thus, we have compieted the proof that (b).ihplies (c).

' To prove that (c) implies (d), consider an arbihrary
graph G violating (d) ; we only need show that G violates
(c). FO€ this purpose, let F denote the graph obtained
g

b - ’
and vy Trivially, we have Vor Vye 2, vy € F and

2

dF(vi) = 2; in addition, each vertex x of F has d (x) >

4, (x) - (dg(vl) - 2) > 2. Thus, G violates (cf.

To prove that (d) implies (a), éonhider an arbitrary
graph G satisfying (d); we only neéd prove that G is Matula
pqrfect. For this puonse, cons%dér an arbitrary order <
33tisfyihg }6.2.2) and an agbitrhry chordless path with
vertices v, 61' vV, V5 and egges VoVyr vlvz; VoVai
without loss of generality, we may assume that vy < V-
Now we cannot have both Vo <‘v1 and vy < vz; for then (4d)
would be violhtgd by the subgraph H of G induced by a‘1 2
with z < v,. Hence < is a perfect order. [l Li

Condition (c) of Theorem 6.2.2 can be, tested in a )
polyngmial time: each possible choice of Vor vi, v2

v' mMay be considered separately (there are only O(n ) such

’ choices, with n sthnding for the number of vertices in G)

and, as goon as vo, Vi Vor v3 are fixed, the search for
F becomes stfaightforward; (Letting Fzstand initially

for the graph obtafﬁé% from G by delehing,al; the neigh-
boursgof v, other than Yo and.vz, we keep replacing F by

N



F-x as long as F contains. a vertex x with dF(k) < 2.
If the graph F obtained in the end still includes Vo
vy V2" vy then G violates ic); else G satisfies (c) for\

this particulgr’ choice of v,, v, Vo, Vy.)

.the vertéx that is about to be coloured; the guxiliary

6.3 Algorithms

'As usual, we shall denote the number of edges and the
number of vertices of a graph by m and n, respectively; y
as usual, we shall assume tﬁat each graph is specified
by‘its "adjacency 1ists" enumerating, for éach vertex v,

all the neighbours of v. 1In addition, we shall assume

. that a linear order <'on the vertices of G is specified

by an ordered list ’wl,wz, e Wy of vertices such that
!

at, given a graph G with a linear order < on the set

v

<'w2'< LY <Wn. > ' , 1

We bégin by spelling out the details of an algorithm

of its vertices, computés the colouring f defined by
(ii)~ (In the formal presentation of this and the follow-

ing algorithms, we shall adopt the useful coveation of ¥

initializing auton{ai:ically all the numbers as zerQs and

_all the sets as empty.) Here, the variable wj stan\d/é for

*

variables a, count the neighbors x of wj with f(x) = i;

the variables S and k are not needed now, but will'be

referred to later.
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Algorithm A. ‘ 4 »

For j - 1' 2' L n _d_o_

I4

, for~ all neighbours x of wydo i+ £(x), a; «ay +1
endfor
t+1

while a >0do t+ t + 1 endwhile

t
f(wj) +t, S

N L
t
for all neighbours x of vy do i« £(x), a; « ay -1

Sy U ‘{wj}, k +« max (k,t)
endfor '

endfér

Note that the ai's are reset to zero at the end lof each
execution of the main loop, and so the number of positive
a,'s never exceeds dG(wj) . Now it follows that each éxecu-
tion of the main loop takes time at most éroportional /to
1+ dG (wj), and the total running time comes to O(n? + n).

In particular, given a graph G along with a perfe.cp
order on G, Algorithm A f:fnds a minimum colouring of G in
Oo(m + h,) steps. éivep a graf:h G along with a perfect .
order on the complemént § of G, one may use the same‘,
principle to firlxd a minimum colouring of G. Here, however,
care must be taken to 'keep the "running time c':onfinéd to
Om + n): if G is "sparsé then even just enumerating all
the edges of G would_ require a time far exceeding O(m + n). ‘
We get around this difficulty by letting variables bi

count the vertices x with f(x) = i. To determine f(wj),

» '
. - ’
P
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we adjust theipi's to accéunt only for those vertices x

that are adjacent to wj in the complement of G (keeping

track of the smallest candidate for f(w.) found so far):;

as soon as f(wj) is set, the b 's are reinstated at their

original ‘values, and properly adjusted to reflect the
appearance of f(ﬁj?. The details can be spelled out as
" follows.

’
-

Algorithm B . . ‘ v

_For j = 1,?;...,n\§g

CpeF k41

fgr”alr neighbours‘x of vy do \

1 +«£(x), b, *+b, -1 e

. if b, =0 them t < min (t,1) endif S

endfor

- 7
|V ———— ’

/ f,(wj)“+ t, S« S.u{ wj}, k +«+max (k,t)

for all neighbours x of wy do i+ f(:ﬁ),.bi byt 1’

" endfo L
bt + bt + 1 _ '
endfor . ‘ -

' Trivially, each execution of the main loop takes time at
most proportional to.'l + d (wy ), and so the total running
times comes to O(m + n).

i

"A fast way of finding a largest clique in a graph

withaaperfect order < has ‘been developed‘in section 5:  if

»

i<~ "1 -
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f is the minimum colouring defined by (ii), then any clique
consisting of vertices CIRY u‘1+2, , uy with f(uj) = j
for all j can be enlarged by adjoining a suitably éhc’:sen .
uy with f(ui) = i (unless, of course, i = 0, in which case
the clique ‘clearly has the largest éossible number' of
vertices). A straightforward procedure based on this fact
will now be presented as an appendix to our Algorithm

A; it relies on the colour classes Sl'SZ' . ..,Sk produced

by the algorithm (and conveniently represented by linked

listsg); its output is the charac;teri-stic‘ function c of the

desired clique.

r

F;ppendix to Algorithm A
!

For i =k,lk -1, ..., 1 do
for all v in S, do - : ‘
count + 0 ’ ’
‘_f_o; all neighbours w of v do count « count + c(w)
endfor
if count = k - i then new « v
endif
endfor -

c(new) « 1
%

endfor :

i
i

Obviously, the rurining time of this Ai)pendix is O(m + n).

. 'Thé same principle applies in the cor}t"ext- of a' graph G

)
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with a perfect order on its complement: an appendix to
Aigorithm B will find a largest clique in G (a largest
stable gset in G). Again, in order tq keep the running

time to O(x;\ + n), it is crucial to avoid explicit refer-
ences to the edges of G:. This is now easy to accomplish: we
only need replace the test "count = k-i" by "count = 0".

Our findings can be summarized as follows. N

Theorem 6.3.1

Given any graph G along with a perfect order on G,
one can find‘in time O{(m + n) a minimum colouring and a
largest clique in G. Given any graph G along with a per-

fect order on its complement G, one can find in time

_O0(m + n) a minimum clique cover and a largest stable set

in ¢.U : . .
M. Syslo,pointed out to ,us that O(m + n) steps suf- '
/ 9 "
fice to compute a linear order < satisfying (6.2.1) and

a linear order < satisfying (6.2.2); later on, we discovered

that the same fact has been also pointed out by D. Matula

and L. L. Beck in 1983. To make our exposition self-

contained, we shall now explain the details.

. ’ \
Arranging the vertices into a sequence WirWoseen ,wln
such that
d(w,) > d(w,) 2 .- 2 dwp) ‘ ) -
) \* -
i ) ‘ -
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is straightforward: having computed first the degrees
d(v) of all the vertices v and then the numbernj of ver-
tices of degree j for each j, we only need ensure that

d(wk) = i ifrand only if

Y

n-1 n
D) . <k £
n, <

I n. . {(6.3.1)
j=i+1 =

For this purpose, we may use pointer variable Py whose
values, imitialized as the left-hand side of (6.3.1)?i3

are gradually incremented until they reach the right-hand

side of (6.3.1). The array r is not needed now but will

,
be referred to later. It keeps track of the rank of each
vertex in the linear order: we have r(v) =.k if and only
if W, = V.

. ‘ & .
Algorithm C
(
¢ For ail ;egtices v do .
i for all neighbours of v do d(v) * d{v) + 1 endfor
endfor
, for all vertices v do jJ* a(v), ny + ng + 1 endfor‘J

i = n22, n-3, ..., 0 do Py * Pyyp * Mgy endfor

Hh
(o]
3]

|

"
0
la]

all vertices v'gg : -

|

1 «d(v), k «1 + Py. Wy +v, r(v) « k( pi_+‘k
endfor RN <
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An appendix to Algorithm C will permute the sequence
WyoWoy oo s Wy to make it satisfy the condition that, with

G; standing for the subgraph of G induced by {wl,wz,.. .,wj} ,

each vy has the Smallest degree in Gj'

This can be done iteratively: when wj, wj+1’ RV N

have been fixed, the values of d(wr) with r < j are ad-

justed to the degrees of W in Gj_ and the sequence

ll

wiew

2""'wj-—l permuted to satisfy

a(w,) 2 d(wy) 2 ... 2 d,(wj_ ).

1

During this process, the pointer variables p, keep getting
i

adjusted in such a way that the condition
d(wr) > 1 if and only if r < P,

is maintained for all r with r < j.

Appendix to Algorithm C -

For j =n, n=-1, ..., 4 do
for all neighbours x of wj do
r +« r(x)
if r < j then do s
i« dx), k + min (pi, j-1)

wr - wk, r(wk) v L, W tX, ri(x) « k

dix) «1 -1, p; «k=-1
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\

endig
endfor

endfor

Finally, let WyeWou o W be once again the sequence
produced by Algorithm C. (Note that the linear 'otder <
de&hed by w <w _, <... <w, satisfies (6.2.1) 'with G
replaced by its complement.) An alternative appendix to
Algorithm C will permute this sequence to make itg,
satisfy the condition that, with Hj standing for thJe

subgraph of G i-nduced by {wj, wj+1, ..y wn} .

.eéch Wy has the largest degree in H_.

]
/ ,
(Note that the linear order < defined by w <w _, < ... <
w, satisfies (6.2.2) with G replaced by its complement.) This

appendix is "an easy variation on the appendix just de-
scribed: the outer 1loop now runs for j =1,2,...,n-3,
the test "r X j" is replaced by "r > j", and the assignment
"k + min (gi, j-1)" is replaced by "k « pi".
Combining these observations with Theorem 6.3.1, we obtain

the following result.

el

N

Theo}em 6.3.2

Given any graph G that is Welsh-Powell perfect ar

Matula perfect, one can find in time O(m + n) a minimum
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-

colouring and a largest clique in G. Given any graph G
whose complement is Welsh-Powell perfect or Matula perfect,
one can find in time O(m + n) a minimum clique cover and

-

a largest stable set in G.D

6.4 Additional Remarks

1. The two classes of perfectly orderable graphs
presented here are mutually incomparable: the graph F‘19
(see l"ligure 6. 3) is Welsh-Powell perfe;:t but not Matula
perfect, the graph Fz (se_e_Figure 6.1) is Matula perfect
but not Welsh-Powell perfect. )

2., Recall that a graph G 13"“§trong€1y‘ perfect if, for
each ;nduced subgraph F of G, some stable set of F meets
all maximal cliques in F. In section 5, we ha‘;e seen that

all perfectly orderable graphs are strongly perfect; it

follows that our Theorems 6.2.1 and 6.2.2 delineate f:wo

3

- classes of strongly perfect graphs.

An important class of strongly perfect graphs consists
of Meyniel graphs (which we shall encounter in section.8)
defined as graphs in which every odd cycle has at least
two chords: strong perfection of these graphs was estab-
lished by Ravindra (1982). It is eas{ to see that every
graph satisfying the hypothesis of our Theorem 6.2.2 is

a Meyniel graph; however, graph F18 in Figure .6.3 satisfies

R 1

i

9
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the hypotheses of Theorem 6.2.1 and yet it is not a Meyniel _

graph.
r
Incidentally, it is easy to see that the following.

two conditions are equivalent for every graph G:

-
AN
o

f

' i

(1) both 6 and its complement G are Meyniel graphs,
{ii) G contains no induced subgraph isomorphic to

CS' P5, or PS'

By our Theorem 6.2.1, conditidn (ii) implies that both G
and G are Welsh-PowelH.perfect; in turn, Theorem 6.3.2 )
guarantees that O(m + n) steps suffice to find a minimum
colouring, a largest clique, a minimum clique cover, and

a largest stable set of any of these graphs.

=3
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| N
7. BRIT%%E GRAPHS

Consider a B, with vertices 4,b,c,d and edges ab,bc, cd.
The verticeé a,d are called endpoints of this P4: and the
vefticgs b,c are called midpoints of this Pé. A vertex x
‘of~abgraph G is said to be sensible iflx is not an endr
point of any P4, or x is not a midpoin& of any P4 in G.
Chvatal defined a graph G'to be brittle if each induced
' subgraph H of G has a sensible vertex. in this gection,

we shall present é sufficient condition for a graph to be

brittle. This result was obtained jointly with Nelly N
Khouzem. o
Fact 7.1

Let G be a graph and suppose that G contains a sensible
vertex x. Then G 1s perfectly orderable if and oﬁly if

G - x is perfectly orderable.

Proof ) -
4

We only need prove the "i{f" part. Let A8 <‘v2 <

el < v be a perfect order of G - x. If x is not an

endpoint of any P4 of G, then x < v1_< vy < ... < Vn

is a perfect order of G; if x is not a midpoint of any‘

P4 of G, then vy < v, <LK <x is a perfect order of G.D

ot



Corollary 7.1 .

Every brittle 'graph is perf'ectly orderabf'e‘.D’

.

Note that a vertex x is sensible in a'graph G Lf and
only if it is sensible in G.. Thus the complement of a
brittle graph is a brittle graph.

" If a vertex x 6f a graph G is simplicial, then x is
not a midgoint df any P4 of G. T§us triangu&gted ggaphs,’ '

and‘their omplements, are brittle.

.

Write G ¢ (V,E), G, = (V,,E,). Assume that G is
o

obtained by substituting a vertex Xy of G1 by Gz. That .
is Vz is a homogeneous set of G. Let a perfect order of

G, be x; < x5 < ... < Xy Cxy <Xy y <ol <Ox. Let

®

a perfect order of G, be v, < v, < vy < ... <v_. We

claim that ¢he order P = x, i Xy € aee < xg ), <V <Ll K

°

< X441 < 2.. ¢ X, is a peifect.order of G: the point is

‘that if a P, has some vertex in V, and some vertex in

[}

v-v,, thg? it has precisely one vertex in V, and three

gy

-
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vertices in V -~ VZ; in other words, we can enumerate ;¥§P

»,

vertices’ as U, u,, uj, u, with u), u,, u3 EV - V2,

u, evz 8uc§°thaf ul, U,, Uy, Y is a P4 whenever ys:vz.m
Thus P contains no obstruction.D . .

Chvatal suggested the study of the class ¢ éf graphs

' deffned as follows: G € P if and only if each induced
subgraph of G is a qémparabilgty graph or else it has a |
homogeneous set or a sensible vertex. By éacts 7.1 and
7.2, ¢ is a class of perfectly orderalle graphs. Chvital
‘has constructed the graph shown in Fiqure 7.1. This graph

does not belong to ¢ and yet it is perfectly orderable.

\
?

S
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We shall investigate '‘a related class mﬁidefined as

. \~ follows: G € ¢* if and only if each in@uced subgraph

¥

""of G has a homé:jfeous get or a sensible veréex. Trivi-
ally, ¢* contaifis all brittle graphs; an example of a

graph-in 9* that is not brittle can be obtained by sub-
? »
stituting the graph in Pigure 7.2(a) for vertices x and y

el

of the graph in Figure 7.2(b). '

Figure 7.2 @

S—
LS
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Fact 7.3

AN

Let G = (V,E) be a graph which does not contain a
homogeneous set. If some vertex x in G is not'a midpoint

of any P4, then x is a simplicial vertex of G. -

1

-

Proof |

”~

i

Consider the set N(x) of all neighbours of x. If
N(x) is a clique, then we are home free. Else N(x) in-
duces a componént Y with IYI'Z 2 such that Y is connected

in G. We may assume that Y is not a homogeneous set of

B e ot o

G. Thus there is a vertex z ¢ (N(x) U {x}) with N(z)n ; # 0
ahd N(z) 1 Y. Since Y is connected in G, there are ver-
tices u,t ¢ Y with ut ¢ E, z2u € E, 2zt ¢ E. But then x is

a midpoiht of the P4ﬂwith vertices z, u, x, t, a contra-

diction.[

’
r

Note that a set Y is homogeneous in G if and only if
Y is homogeneous in G, and that a vertex x is not a mid-
’ \point of any P4 in G if and only if x is not an endpoint
. of any P, in G. Thus the following fact follows from
* Fact 7.3. - g
Fact 7.4
. N

Let G be a graph which does not contain a homogeneous
"

&4

set. If G contains a vertex x which is not an endpoint of
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)

any P, in G, then x is a simplicial vertex of G.L

. Facts 7.3 and 7.4 show that if a graph G in ¢* does
& not contain a homogeijij7/set, then G or G contains a

simplicial vertex.

>

Before presenting the main result of this section,

let us establish the following factsl

Fact 7.5

Let G be a graph such that each induced subgraph H

of G satisfies at least one of the following conditions.

~
L]

(1) 'H contains a homogeneous set.

2

{ii) H contains a vertex which is not an endpoint

of any P4.

Then each induced subgraph H of G satisfies (ii),

v

and s6 G is bristle.

; ”, -

Proof

.

By induction the number of vertices. Let G be a
graph satisfying Fhe hypothesis of Fact 7.5. gy the induc-
.tion hypotheéis, each proper inducéd subgraph of G sat}sfies
(11). If G also satisfies (ii), then we are done. Thus
P

I
G contains a homogeneous set Y. For each y in Y, the graph

G = H{y} v N(Y) U ﬁ(Y)]G contains 3 vertex y' ;haﬁ*is not

—— y

\\ ) ) g 1 ‘ ' & '
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e ) ° ' .
. Ve .
an endpoint of any P4 in Gy. Similarly, in [Y]G there is

a vertex y" that is not an endpoint of any P4I If y'= y"

%

then ¥' is not an endpoint of any P, in G: the point is

4
that each 94; with some vertex:ld Y and some vertex not

in Y, must have one veértex in Y and three vertices not in

L]
S

Y (Lemma 4.6.1). » N

) f
Now we have y' ¢ Y; again by Lemma 4.6.1, y' is not

an endpoint of any P4 in G.[] s

Fact 7.6 ’ ‘

Let G be a grabh such that each induced subgraph H

of G satisfies at least one of the following conditions:

» »

(i) H contains® a homogeneous set.
(11) H contains a vertex which is not a midpoint
of any Pdf

Then each induced subgraph H of G satisfies (ii),
\ ,

2

and so G is brittle.D .
In section 6, wenhave seen that every Matula perfect

graph is brittle. The following‘theorem deséribes a class

of brittl®& graphs which'contains all Matula perfect graphs

and all triangulated graphs. .

o

pEg

R )

PEN
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Theorem 7.1 .

.

If a graph G dOe's not contain an induced suh'graph

isomorphic to a C, with k > 5, or a FS' or the graph H -
shown in Figure 7.2b, then G is britth.ﬂ
By Fact 7.6, Theorem 7,1 is implied by the following -
theorem.
[
Theorem 7.2 . ) ' . N

If A graph G does not contain an induced subgraph
isomorphic to a C, with k > 5, or a 55, or the graph H

shown in Figure 7.2b, then G satisfies one of the following.

(i) G 1s a clique. -
L3

(1) G contains a homogeneous set Y such that Y
induces a connected subggaph in G.

{(iii) G contains two 'nonadjaéent simplicial vertices.

Ve
A1

Note that Theotrem "I‘f;’? is best possible in this sense:
each of the grapthés,l Cer Cqr nvv s FS a‘md H fails to
satisfy all -conditions- (1}, (i1), (iii) of the theorem,
We shall peed. thé foLlowing two 1lemmas.

Lemma 7.1 ' .
i .

If a graph G = (V,E) does not contain an induced

subgraph isomorphic to a chordless cycle"\with at least

~ )
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five vertices, or a 55, or the graph H shown fn Fithe 7.2b,

4

o

then one of the fdllbwing three conditions holds.

(1) G is a clique.
(ii) G contains a homogeneous set that induces a
‘ connected subgraph in G.

(1iii) Every minimal cutset vf G is a clique.’

Id

LY

Proof

Assume that G is not a clique. Thus G contains a
cutset. Consider a minimal cutgset C of G. If C is a clique,

then we are done. Now the subgraph of G induced by C con-

3

tains at least one connected component Y with at least
two vertices. Enumerate the components .of G - C as

C If Y is homogeneous, then we are done.

C C

1' 2’ ¢ ey k-
Else there is.a vertex x in some C, with N(x)N Y # @

and N(x) i Y.
Since Y is conneéted in G, thére are vertices y, z ¢ Y

with yz ¢ E, Xy ¢ E, xz ¢ E. Partition the vertices of

o >

. C, into disjoint sets Ao, Al' Az, A3 such that

i

- t gA, if ty, tz £ E.

o »
- tehA if ty € E, tz ¢ E.

- teA, if ty ¢ E, tz ¢ E.

2
-t e A3 if ty, tz ¢ E.

Since x € A, A, is nonempty. Since N(z)Nn C; #d (C

o
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is a minimai cutset), A2 J A3 is nonempty. Now, note that
y and z are two é;ndpoints of a chordless path Pj whose
interior vertices lie entirely in CJ It is easy to see

that
uv ¢ E whenever ueAl, v € A2 (7.1)

for otherwise any Pj with j # i and u,v form a Ck with

k > 5. Next, we claim that
uv ¢ E whenever u ¢ (Al\) Az), v € A5, {7.2)

for otherwige Pj and u,v form, a 55 (Lf Pj has three vertices),

or Pj and v fom a C, with k > 5 (if Pj has at least four

vertices).
Y £
Since C, is connectal@§ there is a path V9rVorenesVy
in Ci such that Vl £ Al, Ve € A2 v A3. Taking t as small

as possible, we ensure that this path is chordless and
(by (7.1}, (7.2)) that v, € Ay. By the miniiality of t,

we have v3, . ey Vt—l € AO' If v{: € Az, the\ y,vl,vz,...,vt,
z combined with any Rj {J #(i) is a chordless cycle of
length at least five, a contradiction. Naw, we may assume

»

f_hat Ve € A3. Since YiVisVoreeesVy is a chordless cycle,ﬂ
we must have t = 3, Take any Pj with j #1. 1If Pj has
precisely three vertices, then these three vertices along
with Vie Voo Vg induce the graph H; else Pj along with

V4 induces a chordless cycle of length at least five.l
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A cutset C of a graph G is simplicial if in each com-
ponent of G - C, there is a vertex x adjacent to all

vertices of C.

Lemma 7.2

Let G = (V,E) be a graph satisfying the hypothesis
of Lemma 7.1. Assume that G fails to satisfy either of

the conditions (i) and (ii) of this lemma. Then each

-

minimal cutset C of G is a simplicial cutset.

Proof /

Enumerate the components of G - C as Cl’CZ""’Ck'
We only need show that in each Ci' there is a vertex adja-
cent to all vertices of C.*

Consider a component Ci and a vertex x of Ci such that

'N(x)n C > lN(y)%\ Cy | whenever y ¢ Ci' We may assume

il
that C Q'N(x), for otherwise we are done. Now, in C, there

is a nonemtpy set A of vertices such that ax ¢ E whenever
a € A.

Let B be the set of all those vertices in C, that have

4

a neighbour in A. Since C is minimal, B # @. Since Cy

is connected, sthere is a path VirVare sV, in Ci such

that v, ¢ B and v, = X Taking r as small as possible,

1
we ensure that the path is chordless and that vy ¢ B
]

S
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whenever i > 1. Thus, there is a vertex a in A with

av, € E, av, g E for i > 1. (i.4)

1

By the maximality of x, there is a vertex y in
N(x) N C with yv1.¢ E. By Lemma 7.1, C is a clique, and
so ay € E. There is a chordless path Pj between a and y
with at leﬁst one interior vertex, and all interior ver-
tices in Cj for some j # 1. Note that this path has at
most four vertices, for otherwise its vertices induce a
chordless cycle with at least five vertices.

Now, we have XV, ¢ E (else Pj and x,v,) induce a 35,

or the graph H). This implies that r 3;341 We have

YVq ¢ E (else Pj and ViV, induce a 55, or the graph H).
Let m be the smallest subscript such that YV € E. We

have m > r > 3. By (7.4) the vertices y, a, VieVore-eoVp

‘induce a chordless cycle with at least five vertices.[]

Proof of Theorem 7.2

a

By induction on the number of vertices.

Let G = (V,E) be a graph satisfying the hypothesis

Sf Theorem 7.2. Assume that G fails to satisfy both (i)

and (ii). By Lemma 7.1, G contains a minimal cutset C

which is a clique. By Lemma 7.2, C is‘'a simplicial cutset.

o L

We only need distinguish among two cases. (A cutset C of

a graph G is special if C is simplicial and G- C consists

’

_
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of precisely two components C1 and 02 with&C1 having one ‘

vertex and C2 having at least two vertices.)

Case l: C is not a special cutdet.

Enumerate the components of G.- C as Cl'c2""'ck'
If there are two componentsaci such that each C; coﬁs{§ts‘
of a single vertex, then condition (iii) is satisfied.
Thus we may assume that there are (at least) two components
Cl, C2 such that both components have at least two vertices.
Since C is simplicial, in Cl(Cz) there ié a vertex xl(xz)
with.N(x;) = C (N(xz) 2C). Let G, and G, be the” two sub-
graphs of G induced by (V - c) v {xl} and (V - C,) V) {xz},

respectively. We only need show that in each Gj'

there is a simplicial vertex yj‘in A

Gy - (C {xj}). | .9

(Since Y is a simplicial vertex of G, this establisheg
(114).) '
. . R

Consider the graph Gl‘ By the induction hypothesis,
G, satisfies at least one of the three properties (i),
(1), (4i1). Write D =C V {x,}. Since x, is nonadjacent
to each vertex in G, - D, G, is not & clique. If G, éonf
tains two nonadjacent simplicial vertices, then one of
these muét be in G, - D, and so (7.5) is established. Now,

we may assume that Gy contains a homogeneous set Y that
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*

induces a connected subgraph af 51. We can take Y to be
the smallest set of vertices of G, with this property.

If YN D=, then Y is a homogeneous set of G, ESn-
tradicting our assumptié; that (ii) fails for G. Note

that ) ;

@

Y gé"’u, (7.6)

because Y induces a connected subgraph of 61. This, we

have

YN D# @ and Y ~D # §. (7.7)

Now, (7.7) implies that

e Y. s (7.8)

Xy N
Y S— !
] . ~
(If X, £ Y, then Yn C ¥ @§. But then Y is not homo-
geneous because ux; € E whenever 1 ¢ C, and VX, ¢ E whenever
veEG - R)
Consider an arbitrary component Cj of G1 - D. We
claim that '
. L
# . \
either C._j .l\ Y = § or else Cj C Y. (7.9\)\\ .
2 \-—-/’
If (7.9) fails, then by the connectivity of Cj there
rare two vertices u,v with u ¢ Cj -Y, ve le\ Y, and
uv ¢ E. Since X, € Y (by (7.8)), and ux, {f E (since u ¢ D), ey

Y is not a homogeneous set, a contradiction. Thus (7.9)

I
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e
holds.
Note that (77;) implies

N, (Y) CC (7.10)
1 .

G

[

Let GY be the spbgrapﬁ of G induced by Y. By the

induction hypothesis, Gy must satisfy one of the three

conditions (1), (ii),‘(iii). GY is not a clique because
‘ . 4 -
Gy is connected. Gy can not contain a homogeneous set S
. ‘* t
that induces a connected subgraph of G: this set S would

also be a homogeneous- set of G and |s| < Y|, contra-

_dicting our choice of Y. Thus, Gy contains two nonadjacent

gimplicial vertices yl, yz. Since D is a clique, we may
assume that yzfe G, - D. From (7.8) it follows that

xy € E whenever x ¢ C - Y and y € Y. This fact and (7.10)

~ imply that Y, is also a sﬁug}cial vertex of Gl‘ We have

established (7.5) and settled this case.

Case 2: Every/ﬁ{n;mél cutset C of G is special.

A4

Now, G - C contains precisely two components cl, Cz,

and C1 has precisely 6ne single vertex x, and?fc2 has
- ', '
at least two vertices. Write G' = G - x. By the induc~

'

tion hypothesis, G' satisfies at least one of the three
< ;
properties (i), (ii), (ii4).

If G is a clique, then each vertex y in C2 is a

simplicial] vertex of G. Thus, x and y are two nonadjacent

)3 i
»
)

4
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. T
simplicial vertices of G.

Ir G contains two nonadjacent simplicial vertices
Yy and y,, then at least one y; must lie in C, (because

'x VU N(x) is a clique). Thus x and y, are two nonadjacent

simplicial vertices. A
It remains to show that 'if-G' contains a hom&geneous

set Y which induces a connected subgraph of E, then G
satisfies at least one of (i), (ii), (iii). 1In this case,
we can take Y to be the smallest homogeneogs set in G' .
that induces a connected subgraph of G. Let Gy be the
subgraph of 6 induced by Y. By the induction hypothesis
Gy satisfies ;t least one of the three properties (i),
J(14), (144). | '

Since E& is connected, G, is not a clique. G, can not

Y
contain a homogeneous set Y' ﬁhhﬂxinducqs a connected

subgraph of ": Y' would be a homogeneous éet of G'

with [¥'] < l¥l, contradicting our choise of Y. Thus{t

GY contains two nonﬁdjgcent simpliciallvgrgices Yy y2{
Since C is a clique, at least one Yy lies in Y N czi

If N
(5

y; are two ‘nonadjacent simplicial vertices of G. Thus -

. (Y} induces 2 clique in G', then we are done: x and

we may assume that

&

Ngi (Y) does not induce a clique in G:.,) ' (7.11)

Write & = N;,(Y) \ C, and B = N, (¥)'= C. We claim

¥ AY

. . |

105
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4

that

ab ¢ E whenever a € A, b € B. - (7.12)
Q

First, note that YN C # @ (or else Y is a hbmodeneous
set of G contradicting our assumption on G), K and that

Y-C#¥ ¢ (or elgse YL C and so Ey is not connected, a

contradiction).
Now, we can justify (7.12) aétfollows. Since EY

is connected, there are nonadjacent vertices Bl, b2 with

b1 e YN C and b2 e YN CZ' If (7.12) fails, then x, a,

b, b,, b, induce a P, a contradiction.

Now, (7.11) and (7.12) imply that B contains a set
B' such that 131 > 2, and B' induces a ctonnected component

6f the subgraph of G induced by B. We may assume that

v

g (¥) # 0, C(7.13)

for otherwise 37;12) implies that B' is a homogeneous set
12 G, inducing a connected subgraph in G, which contra-
éfbts our assupption on G. | '

By (7.13), Noi (Y) is @ cutset in G'. ' Hence, No. (Y) is
_also a cutset in G (since YN C #’G, we have C ¢ (YtJNG.(Y)),
and so x(x)(I —é.(Y) = @). Now, G has a minimal cutset .

C' with C' ¢ NG.(Y) . By assumption of case2, C' is
speci-l. Thus G - C' has precisely two components (!,
éi with C; consisting of a single vertex c and C, coﬁtaining

! .
at lea two vertices. Since YN C # ﬂuaﬂh Yn ¢t =4,

+
s
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. - %
X along with all the vertices in Y N C belongs to C).
x and ¢ are two nonadjacent simplicial vertices of G.[]

24
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8. MEYNIEL GRAPHS

8.1 Introduction

This section is concefrned with the notion of a "gooa
stable set": we shall say that a stable set S of a graph
G is gggg.d% S meets all maximal éliques of G. We Bhall
call a graph very strongly perfect if, for each induced-

1

subgraph H of G, each vertex of H belongs to a good stable

set of H. By this definition, every very strongly perfect

graph is strongly perfect. : f/

N

: N
Henry Meyniel (1976) proved that a graph G is pé{- o

fect if each odd cycle, with at least five veréices,'ébn-
- ’:(

' tains’at least two chords. Nowadays,'such graphs atre, . (

called Meiniel grapﬁs. *%ater, Ravindwa (1982) proved that -
every Meyniel graph is strpngly perfect. Meyniel then

conjectured that every Meyniel.graph is very strongly per-

~-fect In subsection 8.2, Qeféhall prove that a graphris

very strongly perfect’if ahd only if it is a Meyniel graph.
In subsection 8.3, we design a polynomial -time algorithm
which, given a Meyniel graph ‘G and an arbittary vertex x
of G, finds a>§ood stable set of G that cbntéinh x. In

subsection 8.4, we establish anothd?ggi;perty, related

‘to perfec%}on, of Meyniel gréphs,

>
-
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8.2 Meyniel Graphs are Very Strongly Perfect

The purpose of this substqsifn is to prove the followf

inig theorem. N

Theorem 8.2.1

A graph is very strongly perfect if and only if it

is a Meyniel graph.

Our proof relies on the following two lemmas.

Lemma 8.2.1 (Meyniel (1976))

If a graph G = (V,E) is Meyniel, then G contains no
odd cycle vgv,...v,, (k 2 2) such that the path v,v,...v,

is chordless, and vy 1s nonadjacent to some Ve

v

Proof of Lemma 8.2.1

If vov, € E, then consider the largest subscript i
such that Vo is adjaéent to VieVoreeesVy, and the small-

est subscript j such that j > 1 + 1 and vovj € E. The cycle

L VoVie-eVy is chordless, the cycle VoVi-1Vic-Vy has

exactly one chord and one of these two cycles is odd.
Now, we can assume that VoV ¢ E. Cbnsider the small-
est even‘sﬁbscript J such that vavx\e E and the largest sub-

script i such that i < j - 2 and vovi € E. The cycle
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vovi.'..vj is odd (i must be odd) and it has at most one

chord.D

Lemma 8.2.2 (Ravindra (1982))

If a graph G = (V,E) contains a‘'cycle WVQVyee eV
such that

P
(1) vy is adjacent to none of the vertices

V2,V3,...,Vk,

(ii) w is not adjacent to vy and

ﬁl’
(iii) there is a good stable Eft's, of G - v, "

that contains vy and Vi

then G is not a Meyniel graph.
‘;-‘ - ~lw , .

Proof of Lemma 8.2.2
1 éy-; starter, w~”§hai1 mean a cycle that satisfies °

the conditions (1i),4(ii) and (iii) of Lemma 8.2.2.

We may assume that

(iv) .v;v,..wv,w is the shortest path from v; to w

. which satisfies conditions (i), (ii), (iii).

It follows from (iv) that .

(v) the ‘path v,v,...v, is chordless.

Next, we hay assume that

(vi) _.every vr-adjacent to w has an even subscript r,

’
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. ZI
otherwise the odd cycle wv,v,...v, satisfies the hypothesis
of Lemma 8.2.1, and so G is not Meyniel.

Writé y € S* if y € S and y is adjacent to some two
)

consecutive vertices Yj' vj+1 on the path vovl...vk.
We may assume that o -

(vii) no v; € S* is adjacent to Vor

otherwise either the cycle yvo...vj or the cycle YVg- -

.vj+1 (with yvj, yvj+1 ¢ E) satisfies the hypothesis of

Lemma 8.2.1, and so G is not Méyniel. Now, we c¢laim that
- (viii) no-y € S* is adjacent to w.
If (viid) wap false, then (iv) would be contradicted by A////
Vovy...v,yw such that i is the smallest subscript with
yv; € E. Next, we may assume that \\

(ix) each y ¢ S* is adjacent to at least three
vertices on the pgth VoVyc e Vir

otherwise thé desired cycle is wvr...vjyvj+1...vsw with r
standing for the largest subscrip@ with r <€ j, wv,. € E;
and s standing for the smallest subscript with s > j + 1,
wv e E. It foliostthat .

(x) eacﬁty € S* is adjacent to precisely three
vertices vj-l{ vj, vj+l on tﬁé path
VieVareesiVyi

otherwise (iv) would be contradicted by Viee sV YV ooV,

such that r .is the smallest subscript with yv,. € E and

s is the largest subscript with yvg € E.
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~;\ " Now, we can choose our starter so that S* is minimifed.
We claim that ‘ N
(xi) S* ='¢;
" .
because for each y € S* adjacent to vj-l' Vj' and Vj+1'
the substitution of y for éj in the original starter yields

a new starter with a smaller S*, contradicting our choice
of the original starter.

Now, 'note that k is even (by (vi)). Since S* = ¢ X
{(by (xi)), each edge of the chordless path ViVy...V, must

have precisely one endpoint in S.. Since vy € S5, we must

have v3 € S, VS € S, “"Jvk—l € S. But then the edge

vk-lvk has both endpoints in 8, a contradiction.D

Proof of Theorem 8.2.1

' The "only {if" part,pfjthe theorem can be gsettled by’
observing that if a graph is not Meyniel then it contains
an odd cyzle C with at leas; five vertices, and with at
most one chord; furthermore, we éan assume that the only
chord of C (if it is present in C)Qis a triangulated
chord. 1It suffices tb prove that C is not Qéry stréngly

h\
perfect. We can enumerate the vertices of C as vl,vz;v3,...,

(with t being an odd subscript and t > 5) with edges

"
ViVisl’ and the edge O\ if C ?as one chord (otherwise
VoV is not present in C). Now, suppose thadt vy belongs

to a good stable set S of C. Then we must have vy € S, L

Y
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[N

Vg € 8,00,V _5 €S; but then v can not be in §, neither

t-1

can v, : the maximal clique Vi1Vt is not met by S, a con-

tradiction.

The "if" pa:&~£§sproved by induction on the number of
vertices. Let G =(V,E) be a Meyniel graph. By the induc-
tion hypothesis, we only need pfove that each vertex of
G belongs to a good stable set of G. Conéider an arbitrary
vertex x of G. If x is adjacent to all %ﬁe vertices of
G - x, then {x]} meet all maximaldcliques of G; otherwise
choose a §ertex y nonadjacent to x such that lN(y)r\ N(x)l >

| N(z) A N(x)| for each vertex z nonadjacent to x.

By the induction hypothesis, G.- x 1s very strongly
perfect. Therefore, y belongs to a good stable éet Sy
of G~ x. Let Y be the connected component of’the $ub:
graph of G induced by V - N(x) such that Y contains ;.
By the induction hypothesis/'G - Y is very strongly per-
fect. Thus, x belongs to a good\gfableﬁset Sx ?f G - Y.
Write § = S U (Sy/\ Y). Note that there is no édge with
one endpoint in Sx and the other endpoint in Y, and so S

hY

is a stable set. We onlydneed prove that
s )

S is a good stable set of G.
AR '
For this purpose, assume the contrary: some maximal

clique C in G is disjoint form S. Note that

CNY # 0. (8.2.1)

L
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For otherwise, C C /G - g‘, and so C N Sx # @, contra-
dicting C N § = @, Nekt, (8.2.1) implies that
Cc YU N(x). (8.2.2)
Finally, we must have
CanNx #4, (8.2.3)

4

for otherwise C<£ Y, and so C N (Sy N Y) # @, contradicting

~

cn.s=¢g.
Since Sy is a good stable set of G — x, C must include

a vertex v, of sy. We must have v, € N(x), for otherwise

1
€ Y, and so v

1

\J € CN S, contradicting CN S = §. Write

1 1
A= N(vl) N Y. -By (8.2.1), we have A # @#; note that y ¢

A since both y and vy

there is a path in Y from a vertex in A_to y. Consider

belong so Sy' Since Y is connected,

a shortest such path P. We can enumerate the vertices of

P as VorVaseeo sV with‘ vy € A, vy ¢ A for i > 3, and

V, = Y. Note that ’ ‘

s

wv., ¢ E whenever w € N(y)Nn N(x). (8.2.4)

1

If (8.2.4) was false then the cycle XeVisVorees s VoW
(witil % ‘= vo) would satisfy conditions (i), (ii), (iii) of
the Lemma 8.2.2 and so G would not be a ‘Meyniel graph, a

contradiction.
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Now, (8.2.4) holds. Since Vi€ N(vz)n N(x) but
v, ¢ N(y) 0 N(x), and since|\y) N ¥(x)| > [Nw,) 0 N0l
by our choice of y, there must be a verte)%w in (N(y) -
N(vz)) N N(x). Let i be the smallest‘suﬁscript such that

wv, ¢ E and 1 # 1; note that i > 3. 'If/,t,/is evel™ then

i
wvi‘vz...vi is a chordless cycle with at least five vertices; if

N

i is odd then WV Ve eV, is dn odd cycle with at least

.y

five vertices and only one chgrd. In both cases, we arrive

at a contradiction. [___1

8.3 Finding Good Stable Sets of Meyniel Graphs

Burlet and Fonlupt (1984) showed that all connected
Meyniel grap‘hs can be gonstrucbed from certain "basic
Meyniel graphs" by repeatedmapplications of amalgam. In
this section), we are goi;mg to rely on this result to de-
sign a polynomial-time algorithm which, given a Meyniel
graph G and any vertex;of G, finds a good stable set
of G that contains x. First;, we need intfoduce a few
definitions. )

A graph G = (V,E) is basic Meyniel if V can be parti-

tioned into disjoint sets K,B,S* with the following éro-

perties. - 8
- [B]G is a two-connected bipartbite graph (‘po‘ssibl,y
B =0). Jd a
- [KIG is a clique.

- We have xy ¢ E whenever x € B, y ¢ K‘

- ¢
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~ 8% is a stable set of G, and, for each vertex x in
- S*, we have [N (x)n Bl < 1.
Recall that a graph G = (V,E) has a proper amalgam
decomposition if V can be partitioned into disjoint sets
® ,K'Al'Bl'Az’Bz with the following properties.

-KUAlU Az#ﬂ.

¢

{K} G is a oligue.

We have xy ¢ E whenever xe A, y ¢ Aj(i # j) or

X eAi, y € K.

N
]

We have xy ¢ E whenever x ¢ B, y € (Aj U Bj)'

i# 3,
-|A1U Bil > 2.
- A = ¢ if and only if A, = @.

If 51 = A2 = @, then in each Bi there is a vertex

X, with N(x,) D K.

i

-

Note that if a éra’ph G has a proper amalgam decomposi~

+tion, then G is, an amalgam of its induced subqraphs‘G]_.G2

*

defined as follows:
-4 .,

: (1)  1f A, # ¢, then G = [K yu a,u B v {al}

-~

i

G
. where aj is a vertex of Aj' )

13
*ea

‘(i1) 4f A, =6, thenG, = [KU B,y {xj}lé‘.

It is easy to verify that G is a Meyniel graph if

and only if G,,6, are both Meyniel graphs. Burlet and

¥
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" Fonlupt (1984) designed a polynomial-time algorithm to
recognize a Meyniel graph, They prc’vecl~ that if G is a con-
nected Méyniei graph, then either G is basic Méyniel or |
else G has a proper amalgam decomposition. Furthermore, '
they proved that this decomposition is polynomial: G
(and it; subgraphs produced by the proper amalgam decom-
position) can only be decomposed into a polynomial number
_of smaller graphs whif:h are basic Meyniel graphs (these
graphs can be recognized in polynomial time). We shall
assux;\e that we have the following procedure GRENOBLE (G)
(a modified version o_;r' the algorithm given in Section 5 of -
‘Burlet and Fonlupt (1984)) which,‘ givgn a Meyniel graph G,
finds a proper amalgam decomposition of G, or else it shows

2

that G is a basic Meyniel graph.r‘

L ]

Procedure GRENOBLE (G) -

Input. A Meyniel graph G = (V,E). -

A D

’ Ouéput. l., G is basic Méyniel: a partition of G into
: ' sets K,B,S*. N ‘
l 2. G has a px:'oper amalgam decomposition: a
’ * partition of V into sets K,Al,B;,Az,Bz,
v oor (Af A} = A, = ¢; sets .K'AJL’AZ'{X-I"}’{XZ}'
The' sillowing procedure FIND(G,x,S) performs the

following operation: given an input a Meyniei graph G




: ) © 1218
ot _ and a vertex x of p,FIND.returns‘as output a good stabile

set S of G such that § contains x.

A
Procedure FIND(G,x,V) / N\

Input. A'Méyniel graph G = (V,E) and a vertex x of G.

~ -

-

Output. A good stable set S of G such that S contains x.

A

Begin

.

1. If G is disconnected, then find the connected compon-

= 3 % eR— & oy o —— e oot en

ents Cl,Cz,...,qk,of G. Find the subscript j such
LJ that x ¢ éj'
. For i = I to k do call FIND(C,,x,,5,), wh’er’eixi
is aﬁ arbitrary vertex of C; for i # 5, and
x, = x for i = j. ’ . ;
. Let's « 5,V SZ\f cee U S, return S and stop.
< 2., Call GRENOBLE(G). If G is basic Meyniel then go "to 3,
- else go to 4. o < ‘ " R
3.. (ﬁow, the sets K,B,S* are returned.) If x ¢ K, then
go to 3.1, else partition-B into two stable sets
-~ B,,B, such that B = B,U B,.  If x ¢ B then go to
3.2, elsé go to 3.3. ‘ \ | ) "
3.1 Let S «{x} V ¢, where S§' -ka - N(x), return

S-and stop.

.
L .
L‘ k
d :
L]
' - . v
‘ . N

.
A
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<A ‘
3.2 Find the subscript i such that x ¢ Bi' and let
S +B UV s', where ' 5 {y | N(y) 1 B, = #},
.return S arid stop.
3.3 (Now, x € S*,) _?:xecute the fo;fow;ngl.steps.
3.3.1 If there is a vertex x' in K witl{ xx' £ E,
then let § + {x'} U (s* - N(x")), re‘turn
§ and shtop,
3.3.2 Note that there is a\sub‘scrig‘)t i with

N(x) N Bi =@. Let S *Bi \V §' where

! -
s* = {y|yes* ana N(y)n B, = d.},
-
. return S and stop.

4., (Now, the sets K,Al,Bl,Az,Bz or the sets K'B]_'Bkz'

gt~ g

{xl} ,{xz} are returned. For the remaining steps, ay

U C e :
will Jbe an arbitrary vertex of Aj,~however if Aj =@,

then we let aj = xj.) Execute the following steps.

4.1 If x ¢ K then
. fori=1 téi 2 do c;all FINﬁ(éi,'x,Si)
where G, = [Kvy ‘AiU‘BiU‘ {aj«}]G with i # j. \
. let § + 5, US,, and return S§ and stop. \'
{.ZAIfxeAlthen , - o —
| (KU AU B U

[

. call FIND(Gl,x,Sl), where (;‘1

{a, ] ¢
. call FIND(GZ'{x,‘Sz), where G, = (K U A, U BZ\U
‘ {x}} & ' ' /

. let's + 8, U 8,, return S and stop.

\
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(’v .

) . 4.3 If x € A,, then interchange A, and A,,B, and B,,
and go to step 4:2.

, 4.4 (Now, x ¢ (Bj U B,)) If x ¢ B,, then inter-

change B, and B,, inter_change Ay and Az.

(Now, x € B;.) Execute the following

steps. .
. .. call FIND(Gl,x,Sl), where G, = [k v AU B U .
layHgs

- ~ . find a vertex y' in S; N (KU AW { az}),
. gau FIND(G,,y',S,) with G, = [K VA, U Bzu.
. ‘ {al}]G in case y' € (R V {az}), and G, =
(kv A,V B,V {y'}]G in case y' € A;,
f | . . let S + Sl U Sz, return S and stop.

-

end (procedure). ) \

Proof of Correctness ' of Procedure FIND

First, we shall show that the procedure works correctly
on all basic Meyniel graphs. =

&

Ste .1 . vial: any maximal clique not meeting S' must

meet x. \*f_)_

Step 3.2 Suppose that there is a maxfimal clique C not meetinq

¢

Fi S. (We shall show that C can not exiét ) PFirst, we claim that

+

K
L
gt .
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CN s =¢. - ' (8.3.1)

Assume that (8.3.1) is false. By our choise of S, for

N

each vertex u ¢ S*-—4§r/;here is a vertex u' ¢ B, with uu'e
E. Since IN(u)f\ B\I < 1, we have N(u) & N(u').
Thus, any maximal c{ique containing u must contain 51;
This shows that C 1§\met by S,‘a contradiction. Heﬁce
(8.3.1) holds.
o Since B # §, K can not be a maximal clique of G. So we
| . have C & K. This fact and (8:3.1) imply that there is a
vertéx yincn hj with 1 # j. Since [BlG is a two-connected
bipartite graph,there is some y' in Bi.with yy'e E. Now,
note that Bj is a stable sét, and uv' ¢ E whenever uc K,
L v € B. These facts and (8.3.1) imply that any maximal

clique containing y must contain y'. "Hence C is met by S.

* : This is.thé desired contradiction.
Step 3.3.1 _ Similar to Step 3.1.

Step 3.3.2 Similar to Step 3.2.

. . . Por s£eps 4.1,'4.2, 4.3, note that S is a stable set of
"~ G. ‘We may assume that S is not a good stable set of G, fo¥
otherwise we are done. So there is a maxim;}VQII;%e C with
/ cn s = ¢,'C N Gy # @, 1 =1,2. For each of the steps’4.1,

\
4.2, 4.4, we are going to show that C can not exist. If

Y
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As

Al = A2 = ¢, then each maximal clique of G lies entirely in

G1 or in G2’ Thus we can assume that Al # @ and A2 # 0.

It follows that C < (K U AV A,). s

Step 4.1 Since Cc (KU A U A)) & N(x) U {x}, ¢ must

meet x, a contradiction.

Step 4.2 Since C N S2 = ¢ and 82 is a good stable set of
Gz,‘we have C' = C N (K U A) # §. Note that x ¢ C' since
¢n s, =¢. But then in G, C'V {az} \s a maximal clique,
and this maximal clique is not met by Sl contradicting our
assumption that S1 is a good stable set of Gl' ‘
Step 4.4 Noée that y' must exiét.because in Gl there must
be a maximal clique containing az,fand this maximal clique
must be met by Sl' If y' = a, or y' € Al, then we canuapply
the aqalysis of Step 4.2; otherwise we can apply the anélysis
of Step 4.1.00

L

8,4 Another Characterization of Meyniel Graphs

Recall that two vertices of a grabh G are two friends -
if they are not endpoints of a chordless path with an odd
number of edges. As we have seen in section 3, no two ver--
tices can be friends in a‘minimalvimperfect‘graph. Meyniel

(1985) showed that if € is a Meyniel graph, then either G

s

i o
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is a clique or else G contains two friends. In this sub-
section, we are'going to establish a stronger property of

Meyniel graphs. (A vertex x of a graph G = (V,E) is universal

if {x} VU N(x) = V.)

»
.

Theorem 8.4.1

A graph G is a Meyniel graph if and only if, for each
induced subgrapﬁ H of G and for each vertex x of H, 6ne of

the following two conditions holds.

(i) x is a universal vertex of H.

(i1) x is a friend of some vertex in H.

Proof

The "if" part is easy; to’ prove the "only if" part,
consider an éibitrary vertex x of a_Méyﬁiel graph H = (V,E).
We can assume that x is not a universal vertex of H. Let x"
be a vertex in A = Vo~ (N(x) U {x}) such that for each z in

A, we have

.

¢ N(x*) 0 N(x)| > IN(z) n N |. (8.4.1)

We claim that x and x' are friends. Suppose that our
claim is false. Then there is a éhordless path ViV oV

with k 2 2, x = v;, x' = Vok* Note that there must be a

-
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vertex £ in N(x) N N(x') with VoVs ¢ E; for otherwise

N{v3) N N(x), > IN(x'Y(\ N(x)|, contradicting'(8.4.1).
But then the cycle vovl...vz'k satisfies the hypothesis of
Lemma 8.2.1, contradicting our assumption that H is a Meyniel

graph.[]

.
I .
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9. ALTERNATELY ORIENTABLE GRAPHS AND
ALTERNATELY COLOURABLE GRAPHS

4

9.1 Introduction

»

. 4 ’
In this section, we establish a property of minimal

" imperfect graphs, and use this property to generate two

classeé of perfect graphs. The first class contains all
c;:ampa‘rability graphs, all triangulated grapfhs_., and several
other classes of perfgct dgraphs. The second class contains
all triarigulated graphs, and all line-graphs of bipartite

graphs.

9.2 Alternating Orientation of Perfect’ Graphs

By a hole, we mean a chordless cycle with at least four
vertices. Recall (f;oril section 3) tl‘mat a bad P3 is a graph
with vertices a,b,c and arcs (directed edges) ab,bc . (andtho
other arcs). An orientation G of a graph G is an alternating

orientation if no hole of G contains a bad P3. Such a graph

G is called -an alternately orientable graph.

Theorem 9.2.1 ‘

P

Every alternately orientable graph is perfect.

To prove Theorem 9.2.1, we shall rely on the following

results.
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First, Ghouila-Houri (see section 4) proved that G is
a‘comparability graph if and only if G admits an orienta-
tion G such that & does not contain a bad P, (& could be
cyclic). _

Second, Chvatal (see section 3) proved that no minimal®
imperfect graph G can contain a star cutset. We are going’
to use Chvatal's theorem to establ a certain property

of minimal imperfect graphs.

Theorem 9.2.2

Let G be a m}nimal imperfect graph. Then each P3 of

G extends into a hole.

Proof

We are going to prove a stronger statement. We only
need prove that for any graph G with at least two vertices,

at least one of ‘the followirng two properties (i), (ii)

A

@

(1) G contains a star-cﬁtset.
oM '
(i1) Bach induced P3 in G extends into a hole.

(If 6 is minimal imperfect, then by Chvétal‘s’theorem, (1)

must fail for G.) 2

If (i1) fa;ls, then some P3 with vertices a,b,c and

edges ab,bc does not extend into a hole. But then b and
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«<all its neighbours except a and ¢ form a cutset in G (separat-

ing a from c); hence (i) holds.l ’ ‘ b

/

Proof of Theorem 9.2.1

Let G be an alternately orientable graph, and let é
be its alternating orientation. If G 1is not perfect, n
& contains a minimal imperfeqt graph. Thus without loés of
generality, we may assume that(G is minimal imperfect. Now
& must contain a bad P3, for otherwise by Gouila-Houri's
theorem G is perfect, a contradiction. But by Theorem 9.2.2

v

this bad P, extends into a hole. This is also a contradie-

3
tion. D .

9.3§ Subclasses of.:Alternately Orientable Graphs

1. By definition, the class of alternately orientable
graphs contains all %?mparabrlity graphs and all tri&ngulated
graphs.

2. A graph is i-trianqulated if each of its odd cycles

with at leaét five vertices(contains at least two non-
crossing chords. Gallai (1962) proved that every i-tr ngus,
lated graph is perfect. Burlet and Fonlupt (1984) p‘gf:;(

a decomposition théoreﬁ for i-triangulated graphs. They
proved that every i-tri;ngulated gragp G is eitﬁ;r a "basic

i-triangulated graph" or else G contains a simplicial clique
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cutset (defined\in section 7). A graph G = (V,E) is a

basic i-triangulated graph if V can be partitioned into dis-

joint sets A,K,S such that

(i) A can be partitioned®into stable sets
Al'AZ""'Ak' k > 3, each Ai contains at least
two verticés, and two vertices of A are adjacent
£ and only if they belong to different stable
sets,

N
(11) K induces a clique in G,
(11i) We have xy € E whenever x € A, y € K, .
(iv) 'S is a stable set and for each x € S we have
[Nx) A al < 1.

(Note that each vertex in S is simplicial.)

-

Theorem 9.3.1

Every i-triangualted graph is alternately orientable.

o
g
o]
h

By induction on the number of vertices. Let G = (V,E)
be an i?triangulated graph. If G is basic i-triangulated,
then an alternatinq orientation G of G can be obtained as
follows. We direct x to f whenever x € Ai, Yy € Aj~with
i >j, orxe A, y¢ A or xe K, vye S. Now, we can assume

that G contains a simplicial clique cutset C. Let Gl and
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G., be two induced subgraphs of G such that G = Gl\J Gz,

2
and G, N G, = C. By the induction hypothesis, G, and éz

are afﬁernately orientable. Let El and 62 be ‘the alternat-~

.ing orientations of"G1 and G2' respectiﬁely:l Now, note that
for each Ei' the direction of each edge uv of C is immater-
ial: no such edge can belong to a hole (if uvubelongs to

of G

a hole C then in'G2 - C there is a vertex x, adja-

k 1’
cent to both u and v, such that the subgraph induced by x

and this C, contains an odd cycle-with at least five ver-

k
tices with‘at most one chord). The above remark shows that

G = él U (52 - C) is an alternating orientation of G.D

o
}

3. Let u and v be two vertices of a graph G. We say
that u dominates v if N(u)U {u} D N(v). (It is easy ta
gsee that domination is tFansitive: if x dominates y and y
dominates z, then x dominates z.) Chvatal and Hammér (1973)
defined a graph to be a threshold graph if for any two

vertices u:Gi either u dominates v, or v dominates u.

Theorem 9.3.2

Q
If a graph G is union of two threshold graphé then G

~

is alternately orientable.

Proof . ) .

Let G be union of two threshold graphs G; and G,. Now,
. . . \ ,

}
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the edges of each Gi can be directed so that

!
(i) if a,b,c¢ induces a P3 in Gi’ with b being the

Q
interior vertices of this path, then b is

directed to both a and c.

7

We can realize (i) by directing x to y if xy is an edge

of G, and x dominates y in Gi' (If x and y dominate each

i
other then Xy can'be directed either way.)

Next, it is8 easy to see that each edge of a C, of G

4
can belong only to one Gi' That is, it can not belong to

the intersection of G, and GZ‘ It follows that

1 ’

(ii) each €, of G can be decomposed into two P3's, !

4
one of these belongs to Gl and not GZ’ the other

’
belongs to G, and not G,.
Since G can not contain a hole with more than four
vertices, (i) and (ii) imply that G admits an alternating

oy

orientation. [1 he

2

4. Golumbic, Monma and Trotter (1984) found yet
another class of alternately orientable graphs. They proved
that every "tolerance graph"™ admits an alternating orienta-

tion. It was this result that motivated our work. .

* 5. We are going to show tPatfévery Pq-sparse graph

is alternalely orientable. Note that there are P4-sparse
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graphs which,are not i- triangulated One such graph isg

shown in Figure 9.1

Figure 9.1

Theorem 9.3.3 .
=aTiem 3.3.3

3

Every P4-sparse grabh is aLternately orientable,

>

Proof

By induction on- the numbeJ?of vertices.
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.

Let G = (V,E) be a P4-sparse graph. By Theorem 4.6.2,

\

we,only distinguish among three cases.

Case 1: G is a spidé& or a cospider.
In this case, G i1s a trianqulated graph .and therefore

an alternately orientable graph. ) .

-

Case 2: G or G is disconnected.
Partition V into two disjoint sets Vl, V2 such that

1

for every choice of x ¢ VL, y € v2,

- -

if G is disconnected, then xf ¢ E, and

if G is disconnected, then xy € E.

By the inéuction hypothesis, thé graph Gi = [Vi]G
admits an alternating orientation Ei. If G is disconnected,
then 5 = él\; 32 is ah, alternating orientation of G. If
G is disconnected, then G admits an alternating érientation
G = EllJ EZ\J X, where X is the set of all arcs xy with
i € Vl' Yy E QZ; and xy € E. ‘

-Case 3: G contains a clique cutset C.

Without loss of generality, we_may assume that C is
\ a minipal cutset.of G.  Let G1 and G2 be two induced sub-
graphs of G sudh'that G = G, U G, and G; N G, = C. By the
inéuction hypothesis, each Gi is alternately orientable.
So Gi admits an alternating orientation éi. Now we claim

that

El
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G = 61~U (52 - C) is an alternating orientation

of G.

b

To justify our claim, ig suffiéies to show that no
veftices VieVs of C extend into a holé H in Gy if H.exists,
then we can enumerate the vertices of H as vllbz,v3,...,vk
(with edges ViViel and edge vlvk) so thgt, for each- i > ?,
vire G, -~ C (note that V, ¢ G,). We have k = i for otherwise
G is not.P,-sparse. By the minimality of C, there is a-
‘vertex x € G, - Cwith xv) € E. But then the five vertices

x,vl,\}z,vyv4 contain tWO.distinct P4's, a contradiction.ﬁ]

R

-

9.4 Perfect Graphs Which are Not Alternately Orientable

1. A graph é is a 'weakly triangulated graph if G does
n&t Eontain a- hole or the complement of.a hole. Hayward
(1984) proved that every weakly triangulated graph ;s‘
perfect.. He also showed that weakly triangulated graphs are
not necessarily alternatelyﬂorientable. Consider the
complement H of the graph H shown in Figure 9.2a.

girst, note that if'xy and uv are tYo edges of a graph
G, with x,y being nonadjacent to u,v,”in G, then {x,y,u,v}
ingﬁces aC, in G. We shall write xy ~ uv to mean that x
and y are directed fo u and v in G. Now without loss of

-

generality, we may assume- that in H we have ab + fe. This,
{

forces the relations bc + fe, ¢g + fe, gh » fe: hi ».fe,

v

3
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Figure 9.2

i

.
[

ab + ed, ab + dg, ab * gh, ab > hi, bc + hi, cd » hi, ed ~ hi,
fe » hi. But the relations hi + fe and fe »+ hi.imply that
H can not admit an alternating orientation.

2. The graph shown in Figure 9.25 is alternatély orient-
.able’but not strongly perfect.

. 3. :Since complements of’triangulated_graphs are per-
fectly grdérab}e, the complement of the graph shown in .
Figure 9.2ai§\perfect1j orderable but not alternately
orientaﬁlé. .

4. We are going po'construct a Meyhie; graph which
is not alternately:oriéntable. Le£ G be a Meyniel g;@bh

and let x be a vertex of G. It is easy to‘'see that the

‘graph G' obtained from G by duplicating x (that is, adding

k
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a vertex x' nonadjacent to x and joining x' to z if and only
N .

1T3xz is an edge of G) remains a Meyniel graph.

_Consider the Meyniel graph G shown in Figure 9.3.

Figure 9.3

) The graph H obtdined from G, by first duplicating é,
and then duplicating b, and b,, 15 a Me}niel gréph. But
H can hot'admit an alte;natinq orientation: without loss
of generglity, we.may'agsumé'that b, is dirécted to b,.

~ U -

~
,
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. to be directed to b4. But now, bicb4 is a bad P3.

1

136
N .
This forces bl to be directed to a, and so b1 is forced to
be directed to c. Direct{ng b1 to bz,also forces b3 to be
directed to b2, and b3 to be directedlto b;L Directing

b3 to b4 forces d to be directed to b4, and so ¢ is forced

9.5 Alternating Colouration of Perfect Graphs

We say that.a graph G admits an alternating colouration.

if the edges of G can be coloured by two colours such that no
.

hole of G contains a monochromatic P3, that is a P3 whose

two édges are of the same colour. .Recall that a lfne-graph

of a graph H is a graph G whose vertices are edges o? H, two
vertices of G being adjacent {f and only if they share an |
endpoint as edges of Hf We shall say that a graph is

élternate;y,colourable if it admits an alternating coloura-

tion. It is easy to show tﬁat a graph G is a line-graph

of bipartite graph if and only if ghe edges of q can be
coloured by two\ggigﬂsz;hch that the edges of eachi
cblour form vertex-disjpiqt cliques. .Thus every line-graph
,of bipartite graphs is alternately colourable. Furthermore:
by definition, eveTty triangulated graph is alternately

colourable. -

b
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Theorem 9.5.1

~ Every altgrnately colourable graph is perfect.
It i; e;sy to see that if G is a line-graph of bipartite
graphs then G must bé claw-free and Berge. Chvdtal and
Sbihi (1985) designed a ?olynomial-timq'algorithm to recog-
nize claw-free Berge graphs. In the process of doing sé,
they found many graphs which are claw-free Berge, and which
do not admit an alternating colouration. One sqch graph

ié shown in Figure 9.4.

~ .

Figure 9.4

ot



138

v

The graph shown in Figure 9.5 is alternately orientable
but is not alternately colourable. The graph Ce is alter-

nately colourable but is not alternately orientdible (also,

it is not a quasi-parity graph). . .

4

r

hFigure 9.5 p

-

Proof of Theorem 9.5.1
4 -

Let G be a graph with an alternating colouratioh. If

!

G is not perfect then G contains a minimal imperfect graph.

Thus without. loss of generality, we may assume that G is
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minimal imperfect. Now, G must contain a monochromatic

P3; or else G is a claw-free Berge graph andby Parthasarathy
and Ravindra's theorem, G is perfect, a tontradiction. But
by Theorem.9.2.2, this monochromatic P3 extends into a

AN

hole. This is a’éontradictiém.[]

9.6 A Recognition Algorithm

In this section,‘we show that the problem of determining
Qhether a graph admits an alternqting/orientation (or coloura-
~tion) can be.solved in polynomial t%ﬁ;. Le; G = (V,E) be
a graph. First, we want to pa#titlonﬂfhe edges of G into

"equivalence classes" El’Ez"" by the following recursive

- rule: two edges ei and é2 belong to the same Ei if and only

o . - v

if ' .
(1) ey and ez'belong:to the same hole, or
(ii) there are edges-e3,e4 in E{ such that e and
) . . ,
)
/ . ej belong to the same hole, and e, and e, belong
to the same hole.
To find the equ}valent classes, .we only need construct
’ 4
certain classes'E*,Eg,... by this rujle: two edges e,.e,:
~* -
belong to the same EI if and only if \they form a P3, and
' (iii)* this Py extends into a hole.

We can test (iii) as follows./ Let a,b,c be the yertices
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of a P,, with b being the interior vertex. This P, extends
into a“hqle if and only if there is a connected component C
of N(b) with N(a)n C # ¢, and N(c) N-C # 4.

The desired equivalencg classes El’EZ"' can be found
by recursiveﬂ§ merging two classes EI,E; if and only if
they intersect. Now, once_ the direction <(colour) of an
edge’ in each Ei\is fixed, the directions (coloufé) of all
other edges in this Ei are determined. We can assume that
each gdge is forced to accept only one ;irection (colour),
for otherwise G is not alternately orientable .(colourable).
Now, the resulting o;ientat}on (colouration) is alternating

{

if and only if no bad P3 (monochromatic P3) extends into a
)

hole. ( :
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10. EVEN DECOMPOSITIONS

10.1 The Main Results

In this section, we give a proof, obtained jointly with

ChvéEal, of the following theorem.

Theorem 10.1.1

Let the| vertices of a Qraph G be coloured’  red and white
in such a y -that each induced P4 in G has an even number
of vertice of each colour. Then G is perfect if and only
if each of ity two subgraphs induced by 411 the vertices
of the same colour is perfect.[]

This theorem reduces the tafk of testing perfection of
G into the task of testing perfection of two nonemgtz‘vertex-

disjoint induced subgraphs of G as soon aé the vertices of

G can be coloured red and white in such a way that

"y (1) each induced P4 in G has an even number of
vertices of each colour,
\\ (11) each of the two colours appears on at least one

vertex of G.

Not every perfect graph can be coloured in this way: for
example, see any of the .ghree graphs in Figure 10.1. '

s



s
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i
Figure 10.1
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Graphs that do admit two-colourings with properties (i) and
{ii) are recognizable in a polynomial time: when "v is red"
énd "v is white" are represent'ed by "xv = 1" and "xv = 0",
respectivelﬁﬂy, condition (i) assumes the form of a (small)
system of 1lineaf congrt}ences modulo two: Now we only need
find out ‘ifa this system, with X, set at zero for an_arbi-
trary but fixed vertex w, has a nonzero solution; this

¢

can be done routinely by Gaussian elimination.

10.2 Auxillary Results ®

Our proof of Theorem 10.1.1 relies on the following
results concerning perfect graphs. First, the Perfect Graph
Theorem states that a graph is perfect if and only if its
complement is. Second, as mentioned previously, Parthasarathy
and Ravindra proved that évery claw-free Berge graph is

perfect. Third, as mentioned in section 3, the following

three statement are true.

| .
No minimal imperfect graph can contain a homogeneous

set. )

-, ~

n

No minimal imperfect graph can contain a clique

€3

set.

No minimal imperfect graph can contain vertices -

Nh N(vic {wlyu Nw.
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By virtue of the above facts, the validity of' Theorenm

Theorem 10.2.1

o

Let the vertices of a graph G.be coloured by two

s

colours red and white in such a way that each P4 has an

“

-even number of vertices of each colour, and that each colour

appéars at least

(1)

(i1)

(1ii)

(iv)

-
4 -

“~

‘G or

G or
G or
G or

N(v)

once.

G is a claw-free Berge graph, or

@l

(2]

G
c

contains a homogeneous set, or
contains a clique cutset, or
contains vertices v and w, with

w} Unw . O

Then

\

If G has at least three vertices, then any of proper-

ties (ii), (iii), (iv) of Theorem 10.2.1 implies“that G or .:‘

G has a star-cutset; hence.'rheorem 10.2.1 implies the

lowing fact.

Corollary 10,2.1
—\ T

[

If Gkéatisfies the hypothesis of‘Theorem 10.2.1,

G or G is a claw-freé Berge graph, or else G or G has

ar/-;cutset. il A

st

¢

-

’

fol-

th

/”'b
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N

One graph that satisfies the hypothesis of Theorem
10.2.1 is the graph G obtained from four disjoint complete

graphs on vertices a ., bi’ Cy» di' e f1 (i =1,2,3,4) by '

. . . - \}
| /
1rPiee17€Csr 4y

Ve
i
e

di410944,0

2

for all i = 1,2,3,4 (with subscript 5 iﬁ(terp}:eted as 1l);

neither G nor G has a star-cut;éet.

-

.We shall prove Theorem 10.2.1 by proving the following%’

- ~two (e?mas.

Lemma 10.2.1

Let the vertices‘oi a gFapﬂ G be coloured red and white
in such a way that each induced P4‘in’G has two vertices
of each colour. Then G has aé least one of properties
(1), (11), (111), (iv) in Theorem 10.2.1.

N - . | f

Lemma 10:2.2

@

Let the wertices of a graph G be coloured red and white

Y 4

\
in such a way that the hypothesis of Theorem 10.2.1 is satisfied

and that all four vertices of some induced P4 in G have the

4
~ . 7
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same colour. Then G has at least one of properties (ii),
(111), (1v) in Theorem 10.2.1.[]

One gr;ph that satisfies the hypothesis of Lemma 10.2.1
s the graph obtained from disjoint‘cpPies,Gl,Gz,Gs,G4 of
the graph Gi shown in Figure 10.2 by joining, for each \
i =1,2,3, each of the vertices Ai,bi,ci,di to each of the

“

vertices ai+1'bi+1'°i+1}di+1' This gFaph G has none of the

properties (i), (ii), (iii) in Theorem 10.2.1

7/
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i

-One graph that satisfies the hypeothesis of Lemma 10.2.;
is the graph obtained from the gragh shown in Figure 10.3
"by joining each vertex labelled Rlvor wl to both yg:t;ces
labelled Rc, and joining each vertex labelled w2 to all
the vertices labelled Rc’or Rg. This graph'G'has none of the

properties (i), (ii), (iii) in Theorem 10.2.1.
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We shall derive Lemma 10.2.2 from a statement involving
the following notion, suggested to us by Minoru‘Iahiia an
alignment in a graph is a sequence Ql'QZ""'Qk of sets of
vertices such that each Qi induces a P4, and each Qi with
i 2 2 has precisely one vértex outside Ql‘U QU ... VQ_,.
The alignment is c;ilea full if each vertex of the graph

belongs to at least one Qi‘

Lemma 10.2.3

1f some aligmment in a graph G does not extend to a
fuil alignment then G has at least on€ of properties (ii),
(iii), (iv) in Theorem 10.2.1.

To derive Lemma 10.2.2 from Lemma'10.2.3, denote the
set of vertices of the monochromatic P4 by Ql and consider.
an arpifrary alignment Ql'QZ""'Qk that extends the align-
ment Ql‘ an e;sy induction on i shows that all four ver-

- tices in Q; must have the colour of Q,; since each of the
two colours appears on at least one vertdéx of G; the align-
ment Q,,Q,,...,Q, can not be full.

.Now, we only need prove Lemma 10.2.1 and 10.2.3.
*

10.3 "The Proofs

Throughout this section, we let E stand for the set of

edges 9f G.
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Ptoof of Lemma 10.2.1

We .shall  often reiy on the following theorem of

Sefnsche {see section 4):

if G contains no induced P ‘then G or G is

disconnected.

Let G satisfy the hypothesis of the lemma; let R and W
stand for the subgraphs-of G_induced by'all the red ve;tice;
and all the white vertices, respectively. Given any two
disjoint sets S and T oﬁ verticee in G,‘Qe shall partition

S into three subsets as follows:

ue SO(T) if ue S and uv ¢ E whenever v € T, .
[ 4

ueS,(T) if ue S and uv ¢ E whenever v € T,

~ u € Sl(T)'iﬁ uesS and u ¢ So(T) V S,(T).

We shall often rely on the\ following observation, applying

to any componeht A or R and any component B of W:

N(z) € A U B whenever z € A[(B) U B, (a). © (10.3.1)

By symmetry,” we only need prove (10.3.1) with z e A, (B).
Note that B includes adjacent vertices x,y such that xz ¢ Bﬂﬁ
- Yz ¢ E. If 2 had a neighbour W outside AU B then trivially

W € W=B; but then wzxy would be a badly coloured P4.

’ . -
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The: remainder of our proof amounts.to a case analysis 4
in the guise of an algérithm. During tﬂ; execution of this
algorithm,yG‘may be replaced by its complement; note that
botﬁ the hypothesis and the conclusion of the lémma are
invariant under this transformation. h

.0. If W is comnected then replace G by its cdmplemeﬁt.
(By Seinsche's theorem, the complement of W is disconnected.)

)

1. .Now W is disconnected. If no two vertices of W

are adjacent and no two vertices of R are adjacent then stop:’

r7 G is bipartite, and so G is claw—free.. ;f no two vertices‘\\\\\vh
~of W are adjacent and R is connected, then stop: W is a ’\7
clique chtset in the co&plement of G (by Seinsche's theoren,

the complement of R is disconnected). If no two vertices

of W are adjacent, some two vertices of R are adjacent, and

R is disconnected, then switch colours.

2. Now W is disconnected and it has a component B

: \
with WB‘ 2 2. 1If B is a  homogeneous set, then stop; else

o

there are verticeS'r,s,t/such that r € R, s,t ¢ B and rs ¢ E,

r£ ¢ E. Let A be the component of R that contains r. If .

‘llAl = 1 then stop: in this case, G is disconnected or els;
N(r)q;‘N(w) fof.some w in R. (To see thisg, let R* staﬁd for
the set of-all the vertices in R that have at least one
neighbour in B. If some w in R is adjacent to all the ver-

tices in B then (10.3.1) guarantees that N(r) € N(w); else .

(10.3.1) guarantees that there is o edge xy with x € R* U B,
¥
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y ¢ R*U B.) If [A|> 2 then

. A - .
go to 3 in case A = A, (B), g

g,

go to 4rin case Ay(B) # @, &,(B) # ¢, A,(B)

go to 8 in casqul(B)|# g, AZ(B) # 9.

»

(Since r ¢ Al(B), all the eventualities are covered.)

3. Now there are a component A of R and a component

B of W such that ,A LZ 2 and A = AI(B)LfoEthermore, W is

disconnected.

If B, (A) = ¢ then stop: (10.3.1) implies thaﬁ X is a
homogeneoys set. If Bl‘A),# @ .and gz(d) # ¢lthen switch
colours and go to 8.

Now we have‘Bl(A) # 0 and B, (A) = g. 1If By (A) # ¢ and
R is disconnected then switch colours and go to 4; else stop:
(10.3.1)-implies that there are no edges xy with x ¢ AU B,
¥v¢ AU B, and so G is disconnegted.

4, Now there are a component A of R and a component B

of W such that A,(B) # g, A (B) + §,A (B) = g; furthermore,

W is disconnected. *

If A is not a clique then.go to 7; if A is a clique
then proceed as follows. - b

If R is connected or B = B, (A) then stop: by (10793.1),
A'is a clique cutset. If F is disconnected and B # él(A)
then note that BZ(A; = ¢, B;(A) # # and By(A) # §; if B is

not a clique then switch colours and go to 7.
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5. Now there are a component A of R and a component B

.
of W such that A is a clique, A, (B) £ 8, A,(B) = ¥ and B

is a clique, Bl (A) # ﬂLﬂBz {d) = @; furthermore, W is

disconnected.

Extend the subgraph of G induced'by A U B into a maximal
connected induced subgraph H of G such that évery component
A* of HN R and‘every component B* of H N\ W have the follow-

ing propbrtiés:

L

(a) A* is a cliqué and a component of R,
(b) B* is a clique and a component of W,

(c) AE(B*) = ¢§ and Bi(A*) =@.

-~

" If H =G then go to 6; if G is disconnected then stop; else

find“an* edge xy such that x ¢ H, ye H. We may assume (by
switéhing colours if necessary) that x ¢ R-H and y ¢ W N H.

Let A be the compénent of R that contains x and let B
be the component of W that contains y. By (a), we have
Kn H=¢; by (b), we have B < H. We cla;im that

52 (B*) = ¢ for every component B* of HN W: (10.3.2)

\since His connected, there is a component A* of HN R suck
that B} (A*) # B*. By (c), ;re have B¥(A*) # §; now (10.3.1)

implies that N(z)N A = § whenever z ¢ BY (A%); it follows

7

that &,(B*) = . : \
If & = ﬁl(B*) for some component B* of HN W then stop:
5 R
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~

(10.3.1) implies N(z) ¢ A U B* whenever z ¢ A, and so B*

is a clique cutset. If A = KI(B*) for no component B* of

H n'w then go-to 7. (In this case, we have 85 (A) = @

for each component B* of HN W: else we would have K, (B*) =

g, and so T&l (B*) = R by virtue of%(10.3.2), contradicting

the assumption. But then maximality of H implies that A is

not a clique; in additien, we have iz(ﬁ) = g, Kl(ﬁ) # 0,

and Sl(ﬁd 4 .)

6. Now every component of R is a clique and every

component of W is a clique; furthermore, AZ(B) = ¢ and B2 (A) =

§ for every component A of R andl every component B of W.

-

: Stop: G is claw-free Berge. (G {s claw-free since

(10.3.1) guarantees that each N(z) is covered by two cliques;

G is Berge simply because it satisfies the hypothesis of

tﬁy\iemma.)
7. Now there are a component A of R_and a_component B

of W such that A ,(B) # @, A, (B) # @, and A, (B) = §; further-

more, W is disconnected and A is not a‘cligue.

We shall distinguish among three cases.

‘Ca‘se 7.1: Some u in Ao (B) is nonadjacent to some v
in A, (B).

Repla’ce/ G by its complement and go to 8: we claim that
u has no neighbo‘urs in W. To _justify this )claim, note first
‘that the shortest path from u to v in A has precisely three

vertices, for otherwise A would contain a (badly coloured)
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P Next, note that the midpoint x of this path must be in

4
A, (B): if it were in A, (B) then there woyld be a badly
coloured P, consisting of u,x,v, and a vertex in N(v) N B.
Finally, if u had a neighbour z in W-B then zuxv would be a
badly coloured P4 by virtue of (10.3.1).

Case 7.2: Every vertex in AO(B) is adjacent to every
vertex' in Al(B), but AO(B) is not a ciique. 4

In this case, consider the subgraph of G induced by
AO(B); the complement of this graph has a component H with
at least two vertiées. Stop: we c&aim that H is a homo-
geneous set. To justify this claim, assume the contrary.
Now there. are vertices x,&,z with x,y € H, z ¢ H, xz ¢ E,
yz ¢ E and xy ¢ E. Trivially, z ¢ W-B; but then (10.3.1)
implies that yvxz is a badly coloured P, whenever v ¢ AI(B)'

3
Case 7.3: Every vVertex in AO(B) is adjacent to every

vertex in Al(B), but,Al(B) is not a clique. ‘
In this case,‘consider the subgraph of G induced by

Al(B); the complement of this graph has a component H with

at least two vertices. Stop: we claim that H is a homogen-

~

eous set. To justify this claim, assume the contrary. Now
there ‘are vertices x,y,z with x,y ¢ H, z ¢ H z e E, yz ¢ E
and xy ¢ E. : By (’Q.3.1), we have z ¢ B; but\then yuxz is

a badly coloured P4 when@&ver u ¢ AO(B).

8. Now there are a component,A of R and a component B

S

of w,;uch that Al(B) £ 8, Aﬁ(B) # .

J Again, we shall distinguish among three cases.

o
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Case 8.1: Some vertex w in A, (B) is not adjacent to all

Q
the vertices in Al (B).
In this case, let us first show that
no vertex in AlélB)-N(w) has a neighbour in AO(B) . (10.3.3)

Assuming the -contrary, we find vertices u,v such that ve
AI(B)-N(W) and u € AO(B) N N(v). Next, we find adjacent
vertices x,y in B such that x € N(v) and y ¢ N(v)., Finally,
if uw ¢ E then uvxw is a badly coloured P,; if uw € E then

vuwy is a badly colou‘f'ed P4.

Next, let us show that
N(vl(\ A,(B) & N(w) whenever v € A,(B) - N(w) (10.3.4)

Assuming the contrary, we find a vertex z in N(v) N A, (B)
such that z ¢ N(v); but then vzyw is a badly coloured P4 ¢
whenever vy € B -~ N(v).

If no two vertices in Al (B) - N(v) are adjacent then .
stop: (10.3.1), (10.3.3), (10.3.4) imply that N(v) € N(w)
whenever v ¢ Al (B)'- N(w). Otherwise, the subgraph of G
induced by Al (B) - N(w) has a component H with at least two
vertices; stop: we claim that H is a homogeneous set. .

To justify this claim, assume the contrary. Now there are
vertices x,y,z such that x,y ¢ H, z ¢ H, Xz ¢ E,‘yz f E

and xy € E. | Triviaily, z ¢ R~A; by (10.3.1), we hiamve z ¢

W -B; by (10.3.3) we have z ¢ AO(B): Furthemmore, z ¢

A (B), for otherwise z ¢ A;(B) N N(w), and SO wzxy is a badly

coloured P4. Thus, we may assume z € B U AZ(B); now (10.3.4)
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with v = x implies z ¢ N(w); but then again wzxy is a badly
coloured P,. AN o

Case 8.2: Every vertex in Az(B) is adjacent to every
vertex in Ai(B), and Az(Bf is not a clique.

In'this case, consider the subgraph”of G induced by
AZ(B); the complement of this graph has a component H with
at least two vertices. Stop: we claim that H is a homo-
geneous set. To justify this claim, assume the contraryﬁ Now
there are vertices x,y;z such that x,y € H, z‘t H, xz ¢ E,
yz f E and %y ¢ E. Trivially, z € AO(B) or z ¢ W= B; if
Z € AO(B) then zkty is a badly coloured P4 whenever t ¢ B;
if z ¢ W - B then (10.3.1) guarantees that zxty is a badly

coloured P, whenever t ¢ Al(B).

4

Case 8.3: Every vertex in AZ(B) is adjaceﬁt to every
vertex in Al(ﬁ), and Az(é) is a cliéue.

Stop: we claim that N(v) < N.(w) (J {w} whenever v ¢
Al(B) and.w\é-Az(B). To justify this claim, assuﬁe'the con-
trary. Now there is a‘veitex u in_N(v) such that u ¢ N(w) U
{w}. By (10.3.1), we must have u € Ao(Bf; but then uvwz
is a badly.goloured P, wﬂenever z € B~ N(v).[J

~

Proof of Lemma 10.2.3
¥ .
Let G be a graph with an alignment 01'02""'Qk that

does not extend into a full alignment. Without loss of

generality, we may assume that the alignment Ql,Qz,..(Zjk

(’@
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is maximal.

We shall de!ine certain sets Cl'CZ"°"Ck and sl'SZ""’Sk

such that

)

Ci N Si = @ and Ci U Si = Qlu QU ... V) Qi

for all i. To begiq, enumerate the vertices of Ql as
xl,xz,x3,x4 in such a way that X Xn, XXy, XaX, € E (and
X)X30 X Ky KoK, ¢ E); then set c, = {xz,x3}(and S1 = {xrx4].

Next, when C, and Si have heen defined for some i smaller

i
than k, let x be the vertex in Q

{41 that does not belong to

c,V s;. If ICi n Qi+1, is 0dd then set C  , = C, V {x},

§ S

i+1 1°
i+1 si U {xl. .
Next, writd C = Ck' § = Sk’ A =C US and set

If I Cif\ Qi+l| is evep then set Ci+1 = Ci,

5

uec B0 ifué¢g Aand uv ¢ E, uw ¢ E whenever v € Cl’

weS.,

1 Y
u eaBl if u ¢ A and uv ¢ E, uw ¢ E whenever v ¢ 61,
W E Sl

u e 82 if u ¢ A and uv ¢ E, uw ¢ E whenever v ¢ Cl'

w € Sl.

It 18 easy to see that each vertex u outside A belongs
to one of the sets B),B,,B,: otherwise u along with some
three vertices in Ql would induce a P4, contradicting Xi~

t

hi

mality of the alignment.
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s

We claim that

uv ¢ E and uw { E whenever u ¢ BO’ vecC wesS
uv € E and uw ¢ E whenever u ¢ Bl' velC, wesS

uv € E and uw ¢ E whenever u ¢ BZ' vecl, wesS.

This clé}m is easy to justify: if it failed, then some ver-
tex u outsidg A would have an odd number of neighbours in
some Qi' But then u along with some three vertices in Qi
would induce a Pd' contradicting maximality of the alignment.

Finally, let us distinguish among fou; cases.

Cagse 1: B1 = §. In this case, A is a homogeneous
set.

Case 2: B, #§ and some two vertices in S are adjacent.
Iﬂ this case, the subgraph of G induced by S has a component’
H with at least two veréibes: we claim that H is a homogdneous
set. Assumlng the contrary, we find vertices x,y,z such
that x,y ¢ H, 2 ¢ H and x2 ¢ E, yz ¢ E; since H is con-
nected, we may assume that yx ¢ E. Trivially, z ¢ C. But
then x,y,2 and any vertex in Bl induce a P4, contradicting
maximality of the alignment.

Case 3: B, # § and some two vertices in C are nonad-

.Jacent. This case reduces to Case 2 when G is replaced by

its complement and C interchanged with S.

—_—
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Case _4: Every two vertices in S are nonadjacent and

every two vertices in C are adjacent. In this Ease, N(w) < {v}

o .

U N¢(v) whenever w'e S and v € C. D
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‘congruence, corresponding to an induced P4, requires that

) ‘ N . 160

: - 11. ODD DECOMPOSITIONS

11..1 .The Results

Vasek Chvatal conjectured that a graph is perfect
whenever 1ts vertices tan be coloured by two colours in such
a wa¥ that each chordless path with four vertices’and three
edg®s has an odd number of vertices of each colour. The ‘
main purpose of this section is to prove Chvatal's conjec-

ture.

Theorem 11.1.1

P

.
\

If the vertices of Jggraphjb can be coloured by two

" colours in such a way that each 1nduoed'P4 has an odd number

~

of vertices of -each colour, then G is perfect.n

Note that the hypothesis-of Theorem 11./1.1 can bé tested

by solving a small systemof linear congruences modulo two:

+ each variable in the system corresponds to avertex, and each

¥

the sum of the four variables be odd.-

‘ Our proof ielies on the following results concerning
perfect graphs. First, by the Perfect Graph Theorem, a graph
is perfect 1f and only if its complement is. Second, Seinche
(section 4) proved that if G is a P,~free greph,‘theﬁ G or

G is disconnected. Finally, as mentioned in section 3,

4
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the following three statements hold.

No minimal imperfqct graph can contain a

homogeneous set. > ) (11.1.1)

No minimal impeérfect graph can contain a

clique cutset. ' . (11.1.2)

No minimal imperfect graph can contain two

vertices u,v with N(u) ¢ {v}&] N(v). (11.1.3)

'By‘virtue'of:the above facts, the validity of Theorem

11.1.1 1is guaraﬁteed'by the following result:

\

Theorem 11.1.2

If the vertices of a érabh G are coloured by two coléurs‘
in such a yay that each chordless path with fout_yertices
and ;hree edges have an odd number of verticgg\of‘eacﬁ‘
coloq;, then |

(Y .G or G is bipartite,.ér

(11) . G or G.contains a homqéeneous set, or

(i11) G or G contains a clique cutset, or

(iv). G or

contains two vertices u,v with

G
N(u) ¢ {v] U N(v).

One graph that satisfies the hypothesis of Theorem 11.1.2

a is shown in Filgure 11.1. This graph has none of the properties
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(1), (1) and (11i). of Theorem 1111.2. (To show that the -

graph satisfies the hypothesis of Theorem 11.1.2, we assign

colours to its vertices. R denotes "red" and W denotes

"white".)

Finally, we shall present a generalization of Theorem
11.1.1. First, let‘us consider a graph whose vertices are

o o
coloured by two colours. A P, is said to be monochromatic 1if

K
all of its four verticés receive the same colour. A P, is

e

!gll odd-coloured ifiizgas an odd number of vertices of each

i :

colour and if among thé'tgregﬁvertices of the same colour
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of this P4, at least one vertex does not belong to a .amono-

chromatic P4.

Theorem 11.1.3

) f : * If the vertices of a graﬁh G Qre coloured by two colours
in such a way tﬁat each colour appears at least once and
that ehch\induceﬂ P4 is either monochromatiq or well odd-
coloured, then G is perfect if and ?nlj if each of the two
subgraphs of G induced by all the vertices of the same colour
is perfect. /

. One graph that gatisfies the hgpothesis of Theorem

) 11.1.% (but not the hypothesis of Theorem 11i.1.1) is shown .

in Figure 11.2..- (As in Figure lltl,'h'denotes~“red":and W

~\' vdenotes "white".) Neither this graph nor 1ts‘qomplgmeﬁt

contaips a homogeneous,set ar a cliqué cutset.

¥

Vi
7
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Unlike the case Theorem l1.1.1, we do not know how
difficult it is to test\the hypothesis of Theorem i1.1.3.
Héwever, Chvatal (1985) found a common generalization of
Theorem 11.1.3 and Theorem 10.1, whose hypothesis can be
Jtested in a péiynomial time. This common generalization
involves- the following notion: vertices x and y in the

same graph are called siblings if there is a set S of three

vertices such that both'S U {x} and § U {y} induce a P,

Theorem 11.1.4 (Chvélal (1985))

Let the vertices of a graph G be coloured red and white
in such a way that every two siblings have the fame'colour
~ and that each colour appears af least once. Theft' G is per-
‘fect if and only if each of its two subgraphs induced by all
theévertices of the same colour is percht.[} .

-~ It is easy to see that Theorem 11.1.4 implies Theorem
i1.1.3,and Theorem 10.1. (The proof of Theorem 11.1.4
relies on Theorems 11.1.3 and 10{1.) Chvatal has noted
that, given a graph G with n vertices, one can test whether

G Satisﬁieé the hypothesis of Theorem 11.1.4 in O(ns) steps.

To see this, we construct the sibling graph of G ‘that has

the same vertices as G, with any two vertices adjacent if
and only if they are siblings in 'G. Clearly, G satisfies
the hypothesis of Theorem 11.1.4 if and only if the sibling

graph of G is disconnected.

f -
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11.2 The Proofs

Proof of Theorem 11.2.1

Let G be a graph satisfying the hypothesis of Theorem
11.1.2. ‘

' We shali write G = (V,E) and refer to the two colours
as red and white; the two subgraphs of G induced by all the =z
red vertices and by all the white vertices will be denoted
by R and W, respectively. Given any two nonempty disjoint
subsets S and T of‘V, we shall partition S into -three sub-
sets as follows: '

u_€ SO(T)'if uesS and uv ¢ E whenever v € T,

u € SZ(T) if u e S and uv € E whenever v ¢ T,

we S (M if ue's andu ¢ Sy(T) U S, (T).

Let us make note of a' simple fact.
/ . ) ‘ .

Fact 11.2.1 .

Let. Y be a subset of R such that the complement of the
grvaph induced by Y is coﬂaected. let W be partitioned into
disjoint sets P and Q such that‘P é,Po(Q) and QZ(Y) £ 4.
Then él(Y{ =f. .

¥

Proof of Fact 11.2.1

Assume the contrary, so that some vertex z in P is
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adjacent to Asome but not all vertices in Y. Since the com-
plement of the graph induced by Y ié éonnected, there must
be vertices x and y in Y with xy ¥ E, xz € E, yz ¢ E. But
then zxwy is a badly coloured P4 whenever w € QZ(Y)’ a con-

tradiction.

The following corollary of Fact 11.2.1 will be used

over and over again.

Fact 11.2.2 .

Let R be partitiongd into disjoint sets Y and Z such/
that the complement oﬁﬁthe graph induced by Y is connected,
|¥|>2, and Z,(Y) =¢; let‘: W be partitioned ifito disjoint sets P and
Q such that P = PO(Q) and QZ(Y) #F@. IfP# POIY) or Ql(Y3 = G; theﬂ
Y is a hamogeneous set.

Proof of Fact 11,2.2.

Since Z,(Y) = g, we only need prove that W, (Y) = 4.
In fact, we only need prove that Q, ) = d, a; P, (Y) = g - -
is guaranteed by Fact 11.2.1. Thus, we may assume that .
P # Py(¥); now Py (Y) = ¢ implies P,(Y) # #, and Q,(Y) =¢
follows from Fact 11.2.1 with P and Q interchanged.

A component of a graph will be called big if it has at
least two vertice. The remainder of. the proof is presenteq

in the gﬁise of an algorithm.
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< .

0. If W is connected then replace G by its complement.

-

(By Seinsche's theorem, W or its complement is disconnected.)
¢

1. Now, W is disconnected.

If W has no big component then go to 9; if R has no
big component then switch colours and go to 9. Now both R
and W have big components; we shall distinguish between '
twd cases. .

Cagse 1.1: There are no big components A of R, B of
o} W with Al(B) # 0. ‘

If there is no edgé Xy with x in a big component A of
R and y in a big component B of W then go to 8; else consider
this edge. If B is homogeneous then stop; else there is a
component C of R with Cl(B) # §. Since we are in Case 1.1,
this component C gonsists of a single ver;ex c.l Stop: we
claim that N(c) < N(x). . (To jusﬁify this claim, assume the
contrary: cd € E and xd ¢ E for‘some vertex d. Trivially,
d € W; furthermore, d ¢ B, for otherwise x ¢ Al(é)' contra-
dicting the assumption that Al(B) = @. But now d ¢ W - B,

1

and so xbcd is a badly coloured P

whenever b is a neighbour
a .

4
of ¢ in B.)
>Case 1.2: There are big‘ components A of R, B of W
with Al(B) # 0.
If Ag(B) # #, go to 7; if A (B) = ¢ and A, (B) # ¢, go
to 6; if Ay(B) = @ and A,(B) = g, go to 2.

2. Now, W is disconnected and there are big components

-y
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Aof R, Bof Wwith A =A (B).

Note that B, (A) U B,(A) # 4. If B = B, (A) then go to
3; if BO(A) # @ and By (A) # § then switch colours and go to
7. Now qnly two cases remain to be considered. .

Case 2.1: B, (A) = @ and B, (A) # §.

If A is not a clique then stop: the complement of the
subgraph induced by A has a big compdénent Y and Fact 11.2.2
(with Q = B) guarantees that Y is homogeneous. Now A is a
clique. If R is connected then stop: A is a clique cutset.
Now R is disconnected. If A is ﬂomogeneous then stop; else
there is a component C ?f W with Cl(A) £ @#. IfC = Cl(A)
éhen stop: A is a clique cutset. (Otherwise, some vertex c¢
in C is adjacent go some vertex d in R - A. Consider an
arbitrary vertex b in BZ(A). If bd ¢ E then cdba is a badly
colbured P4 whenever acA - N(c); if bd ¢ E then dcab is a
badly coloured P, whenever a ¢ AN N(c).) Now C # Cl(A) but

C,(A) # ¢, andsoC is big. If C,(A) # § then switch colours

@ then switch colours and go to

g

and go to 7; if CO(A)

6.

Case 2.2: B,(A) =@, Bj(A) # ¢, B,(n) # 4.
If R-is disconnected then switch colours and go to 6.
Now, R i8 connected, and sO0 R = A. Let C consist of all the
vertices in R that have neighbours in W-B; note that C ’ .

is a cutset (every path from B to W-B must pass through C).

If C is a clique then stop (C is a clique cutset); else there

R
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are nonadjacent vertices u and v in C. Now the complement
of R has a (big) component Y containing u and v. Stop:
Fact 11.2.2 (with Q = B) gquarantees that Y is homogeneous.

3. Now, W is disconnected and there are big components

Aof R, BOf Wwith A=A (b), B =B (A.

If G is disconnected then stop; else there is an edge
xy,with xe AyB, yZfAUB. IfxeB gnd y € R-A then
switch colours; now there is(:én edge vw with v € A and w ¢
W-B. If N(w) =A tl';en go tc(:: else go to 5.

4. Now, there are big components A of R, B of W such,

that A = Al (B), B = B1 (A) and such that some vertex w in
7 .

W-B has N{w) = A.

If Ais not a clique then stop: the complement of
A has a big component Y and Fact 11.2.2 (with Q = ;J-B) ar-
antees that Y is homogeneous. Now A ts a clique. If A is a
clique cutset then stop; else soriae vertex in B has a neigh-

bour r in R-A. We claim that

o

N(r) % B.
. B

J :,:,) B
To, justify this claim, find vertices a in A and b,c in B

wit}‘: ab ¢ E, ac ¢ E. I1f wr ¢ E then we must have rc ¢ E
1

. .
(else awrc would be a badly coloured P4); if wr ¢ E then we

must have rb ¢ E (else wabr would be a badly cqloured P,).

.\

Now switch colours, rei:lace w by r, and go to 5.

5. Now, there are biq compenents A of R, B of W

LI 1

e
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such that A = Al(B), B = B1 (A) and shch that Same vertex w in
W-B hag N(w)n A ¥ @, N(w) 3 A,

We claim that

v

there are no vertices ajr2,,8q in A with

va, ,a,a,,2,2a, € E and wa, wa,,aa, ¢ E. (11..2.1)
To justify this claim, assume the contrary and let b,
(1 =2,3) be an ;arbitrary neighbour of a, in B, We must

271
E (else ajb,a,w is a badly coloured P,), h-'é:]- ¢ E (else

have b,a. € E (else walazbz is a badly coloured P4), b2a3 ¢

walb3a3 is gbadly coloured P4), b3a2¢E (elie walazb3 is
a badly coloured P4). and b,by ¢ E (else a;b,bja; is a badly

c'oloured P4) . But then b2a2a3b3, is a badly colaured P4.

Next, writing C = N(w) N A, we claim that -

some vertex x in C has N(x) o A-C. (11.2.2)

To justify this claim, consider any vertex x in C that
maximizes the éizé of N(x) N (A=C). If N(x) > A-C then we
are done; else there is a vertex z in A-C with ;:z ¢ E. Since
A contains no P,, the shortest gath from x to z in A has
precisefy three vertices; let y be the interior vertex of:
this path. By (11.2.1) with a, =x, 52 =Y, a, =z, we must
have ye¢ C. By the choic,:e of x, there must be a vertex t

in A-C with xte E, yt ¢ E. By (11.2.1) with aj=xa, =t

a; = z, we must have zt ¢ E. But then txyz is a badly
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Now we shall distinguish between two cases.

coloured P4 .

Case 5.1: C is a clique.
Let D stand for the set of vertices in B that have

-

neighbours 12/‘1\-& We claim ‘that, with x as in (11.2.2),
D= N(x). (11.2.3)

To justify this claim, consider an arbitrary vertex d-in D;

. L) , :
there is a vertex a in A-C with ad €¢ E. We must have xd ¢ E,

for otherwise wxad ymuild be a badly coloured Py-
Next;, since A = Ay (B), there is a vertex b in B with
xp ¢ E; by (11.2.3), we have b ¢ D. Since B = B, (A),

there is a vertex a in A with bae E; since b ¢ D, wé have

ae C. We claim that . -

, . p
N(a) = A-C. . (11.2.4)

N

'To justify this 1c1a1m, assume the contrary: some vertex y
in pf-C has ya1¢ E'. Since A = Al(B) ’ there is a vertgx c in
B with yc ¢ E. Note thaf c € D, and 80 xc ¢ E by (11.2.3).‘
We must have ac ¢ 'E (else wacy is a iaadly colour?‘g P4) .
,‘bc €¢ E (else baxc is a badly coloured P4), and by - ¢ E (as
b £ D): But then ycha is a badly coloured P,.
Now stop: N(y) < {a} U N(a) whenever y ¢ A-C. {(Othe:r-"
wise there would be a vertex z with yz ¢ E, az ¢ E. Yy .

(11.2.4), we must have z ¢ W. If z ¢ B then (11.2.4

v,



guarantees that wayz is a badly coloured P4; if z ¢ W-B
then (11.2.4) and b ¢ D guarantee that zyab is a badly
coloure% 'P4 .)

Case 5.2: C 1s not a clique.

Now the complement of the subgraph induced by C has a
big component Y. Stop: We claim that Y is homogeneou;.
(To justify this claim, write Z = R-Y. We only need show
that 2z, (Y) = ¢ for the rest will follow from Fact 11.2.2
with Q = W=-B. To show that 2, (Y) = ¢, assume the contrary:
some\vertex z in R-Y is. adjacent to some but not all tke
vert:ices in ¥. _Trivially, z € A;C; since the complement of
the subgraph induced by Y is connected,' £hete are vértices
u,v in Y with uv ¢f E, uz ¢ E, vz ¢ E. Consider any neigh-
bour b of z- in B. We must have ub € E, for’othemise wuzb'
wéuid be a badly coloured P4— Jut ub ¢ E img%ies vb € l::, as
Fact 11.2.1 with Q@ = W=-B guarantees B, (Y) = @. Now wﬁéﬁis

a badly coloured P4) .

/

6. Now, W is disconnected and there are big components

Aof R B of W such that a,(B) =§, A;(B) # 4, K,(B) # 4.,

"s

We shall distinguish between two cases. .

o

' C\Case 6.1: .There i8 no edge with one endpoint in/A

a2nd the other endpoint in w-B.

e

Let C stand for the set of\ th Vertlcgs in B that have

ngigMeours in R-A; note that C is a cutset (every path from

"A\ to W~B must pass through C). If C is a clique then stop

’ ’ R ' )
: : . ¥y
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(C is a clique cutset); else there are nonadjacent vertices
uwand v in C. Now the c'omplement ’.‘of the graph indyced by B
has a (big) compnoent Y containing u and v. Stop: Fact
d}.2.2 (with colours swj;tched and Q = A) guarantees that Y
/(}s\ﬁbmogeneoua. ‘ ] '

Case 6.2: There is an eéqe with\one endpoint in A and
the other endpoint in W-B. ,

Write u € Ay (B) if u ¢ A, (B) and N(u) 2 A,(B)}; write

. i o
v e Ag (B) if v ¢ A,(B) and N(v) 2 A, (B). We claim that

.~

no vertex in W-B has a neighbour Lo

in (A, (B)-a3(B)) v (A, (Bj-A3(B)). - (11.2.5)

To justify this claim, .assume the c6‘n"'4;‘.rary’. Now there are
nonadjacent vertices u,v such that u € A,(B), v ¢ A,(B}, and
such that.uw € E or vw € E (or both) for some vertex w in

W'B-’. Next, there are.vertices b,c in B such that ub ¢ E

and uc ¢ E; of course vb € E and ve ¢ E. If uw ¢ E and vw -
€ E then uwvc is a badly coloured P,; if ww € E and w ¢ E
then wub¥v is a badly coloured P,: if uw ¢ E*and vw ¢ E then - ..
) wvbu is a badly colourgd P4.‘ ¢
N Next, we claim that'
A some vertex w in W-? l}as’a heiéhboux} in A5 (B) . (i1.2.6)

° “

_To,justi‘;x\'this_‘claim, recall that there is an edge xw with -

x e Aand w e {v-p; by (11.2.5), we must have x ¢ A{ (B} V

i
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A5(B)-. 1f x € 35(8) then vl(11.2.6) holds; thus, we may assume
X € A{(B). Now there is a vertex b in B with xb ¢ E. Eon-
sider an arbitrary vertex v in A,(B): we must have first

wv ¢ E (else wxvb wo‘uld be a badly coloured P4) and then

v E .Ai(B) by (11.2.5). Hence, (11.2.6) holds‘again. .

With w as in (11.2.6), write § = N(w) N AZ(B)' We

claim that - -
“; N "{1\“5.’ N P
va € E whenever v ¢ § and a ¢ A-S. * (11.2.7)

3

To justify this claim, assume the contrary: va ¢ E for some
vV in S and for some a in A-S. By (11.2.5), we have S A%(B),
and.so a € A, (B)-S. But then abvw is a badly coloured P4

whenever b’ € B, ‘
The remainder of the argum;nt relies only on (11.2.7).
I:f S is a clique £hen stop: N(u) < {v} U N(v) whenever 2
uea (B’)\' and v € S. .(Otherwise, there would bé a ver’t;ei: z
"yvithluz € E,"vz ¢'4i3« Necessarily, z ¢ W-B; but;ethen zuvh-
is,a badly coloured P, whenevér b ¢ B=N{(u).) 1If S is not
a cligue then the pom‘plemeﬁt of the subgraph induce’d by, S
has a big compgneﬁt Y. Stop: Fact 11.2.2 (with Q = B
or Q = W-B) guarantees that Y i{s homogeneous.

7. Now, there are biq components A of R, B of W

such that A,(B) # g, A, (B) # 0.

- ~Note that | ' T .
\ ' .

$

there is no edge uv with u ¢ Ay(B), v ¢ A, (B): (11.2.3)/ i

LT R
R . ﬁ\\_\
- ' v ' &

A
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else, finding vertices x,y in'B with € E and vx ¢ E}
. vy ¢ E, we would obtain a badly c red PA {uvxy) .
Since A cont;ins no Pd' Seinsche's theorem guarantees
that A splits into nonempty parts S and T such that xy € E
whenever x ¢ S, y ¢ T. Without loss of generality, we may
assume that A, (B) N T ¥ ¢; now (11.2.8) implies Ay (B) Y
Al(B)ng T, and s80 S C AZ(B). If S is a clique then stop:
N(u) < {w} U N(w) whenever u ¢ A,(B) and w € S.- (Other-
’ wise, there would be a vertex z wﬁln“ggytiE and wz ¢ E.
Necessarily, z € W-B; but then zuwb is a badly coloured
. P43Whenever be B.) If S is not a clique then the complement
of the subgraph induced by S contains a big component Y.
Stop:‘ Fact 11.2.2 (with Q = B) gﬂarantéos that Y is homo-.

_geneous. ' ,
8. Now, both R and W_have big components, but no edge

has oge\endgéint in a big component of R and the other:
endggint in a big comggnent of W.

Stop: we claim that G is”&isconnected. (To justify.

this claim, assume the contrary: now there ig .a path
M . 1,vz,...,vk such that vy s 1n a big component of R and

Vi is in a big component of W. Choosing k as small as

o -

possible, observe that {vz} is & component of W, {v3}\ﬁs a

component of R, and v4“e W. Bué‘then Vi1VaViVy ko a badly.
\—_—

‘ Ny
c¢oloured Pd‘)

9. . Now, no two vertices in W are adjacent.

4
Y
‘

S

- ‘«4
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The. following elegant argument, proposed by Bruce Reed,
"shows that G is perfectly orderable. Trivially, there is a

linear order < on the set of vertices of G such that

x 2-y whenever x ¢ R, y € W

i N

and such that, : ‘

c < d whenever c¢,d € R and |N(c) n wl >

IN(d} 'n M| " : -
it is easy to verify that no P4 with ver£i¢es a,b,c,d and N
" edges ab,bc,cd has a < b and d < c. \

- . We shall present a lengthier but self-contained argu-
ment, tproviding more insight into the ‘structure of G- First,

- if R is“connected then stop: by Seinsche's theofem, the

) B
complemem;& of R is disconnetted, and so W is a clique
cutset in the complement of G. Now

R is disconnected; K

-

we shall distingﬁish among three cases.

.

Cage.%9.1: Some vertex in a big compnoent of R has
at.least two neighbours in W.

7 .
Among ‘all the vertices in big components of R, choose

I ’ a vertex: a that has the largest numbe'rl of neighbours in W.
J ,Let A be the big component of R that contains a;. write

' : Y = N(a) N W and note that |¥[ > 2. If some vertex in R-A

: 2

ol
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has a neighbour in ¥ then stop: Fact 11.2.2 (with colours

switched and Q = A) guarantees that Y 1s¢hor'riogeneous. Now

,

there is no edge with one endpoint in R-A
. ,

and the other endi:oint in Y. {(11.2.9) -

Write
x € Ay if x € A and. N(x) N w=g,
X € A} if x € A-A) and N(x)N W ¥,

x € A, if x € A and N(x)n W& Y. ) (11.2.9)

Note that A(A-Az) v Y is a component of G-A2 by virtue of
(11.2.9); since A # R, it follows that-iz is a cutset of

G. If A, = ¢ then stop: G is disconnected. Now

*
€

A # ¢ and A, #4d. (11.2.10)

We claim that .

AN

' .no vertex z in A, has a' neighbour y in Y.w (11.2.11)

To justify this claim, assume the contrary. Since z has a

neighbour w in W-Y, we must have az.¢ E (else ayzw wonﬂg

be a badly coloured P'4)ﬂ. But the ch‘oice of a guarantees the

existence of a vertex x in Wwith ax € E, zx ¢ E; now xazw

4

Y is a badly coloured P4i . .

From (11.2.1F), it follows that

: v
there is no edge xz with x € A}, z ¢ pazz' (11.2.12)
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else yxzw would be a badly coloured P, whenever y € N(x)N

Y and w € N(z) N W.

By Seinsche's theorem, A splits into nonempty parts

S and T such that xy € E whenever ¥ ¢ S, y € T.

Without

loss of generality, we may assume that a € T; now (11,2.10)

and (11.2.12) imply that AU A,c T, and so S¢C A

0"

If

[s| > 2 then stop (S is homageneous); else let s be the

" unique vertex in S.

If AO =\{s} then stop:

By (11.2.9)

and (11.2.12), A; VU Y is a component of G-A,, and so {s}

is a clique cutset of G. If A, # {s} then stop: N(t) < {s}

‘U N(s) whenever t ¢ AO-{s}.‘

[ 4

Case 9.2: No vertex in a big component of R ‘has two

or more neighbours in W, but some vertex w in W has at

least two neighbours in some big component A of R.

Write

X € A
X €A

X € A

0
1
2

A

if.x ¢ Aand N(x) N WwW=¢,
if x ¢ An N(W)l
if x € A-(AOU Al).

. Note t-;hat Ao U A, is a cox;lponent of G- (1\2 v {w}): since

]
A #R, it follows that A, U [w] is a cutset of G. If

A, = # then stop:

{w} is a clique cutset. Now

'Al # ¢ and A, 4 4.

1 (11.2.13)

W
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In addition,

&~

there is no edge xy with x ¢ Ay, Y& By (11.2.14)

else wxyz with z € N(y) N\ W woule be a badly coloured P,.
By Seinsche's theorem, A splits into nonempty ‘parts

S and T such that x§ € E*whene’\}le\r Xx €8,y e T. Without

loss of geoerality, we may assume that AN T!; 0; now

(L1,2.13) and (11.2. 14) -imply that A, Y Az = T, and so

s C A,. If ISI > 2 then stop (S is homogeneous), else let
s be the unique vertex in §. If Ao = {s} then stop. by
‘ (11.2.14}, A, is' homogeneous. “If A, '# {s}] then stop: .

N(t) C {s} U\N\(s) whenever t € A -{s}.

Case 9.3: No vertex: in a big component of R has two
or more neighbours in w, and no vertex in W has two or
more ,qeighbours in the same big comporiept of R.

Consider an arbitrary‘big component A of R and write

A

x f‘A ifx £ A*and N(x)ﬂ W= ¢,
xeAl isxeAandN(x)f\ W#d.

Note ‘that

Y

there is no edge yz with y ¢ Al, zZ € Al{ (11.2.15)

else xyzw with x € N(y) nw we N(z) N W would be a badly

coloured 1='4 .

By Seinsche's theorem, A’ splits into non»empty pa'rts

i
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S and f Such that xy ¢ E whenever x ¢ S, y ¢ T. By (11.2.15),
we must have Al € S or A < T. Without loss of generality,
we may assume that AT, ahd so S ¢ A,. If |Sl > 2 then
stop (S8 is homogeneous); else let s be ;Pe unique vertex

in S. If Ay # {s} thehkstop: N(t) c {s} U N{(s) whenever

t e AO-{s}. Now we have

= 1. (11.2.16)

Finally, let Q stand for the unién of all the sets
AO (one for each big component A ;f R{t By (11.2.16), no
two vertices in W Y Q are adjacent; by (11.2.15), no two
verticgs in R=-Q are adjacent. Stop: G'is bipartite.

fhe proof is completed.[] ' '

To prove Theorem 11.1.3, we shall need a result estab-
lished by Chvatal and the authpr in the previous section.
Thig result can be restated as. follows.

.t

Theorem 11.2.1

»

Let G be a minimal imperfect graph and let § be .a set

L

of vertices such that S induces a P4 in G. Then the vertices

of G can be enumerated as vl,vz,v3,v4,v5,...,vn in such a

way that § = {vl,vz,v;,v4} and that each vj with j > 4 -~
forms a P4.with some three vertices vy such that i < jﬂ[I

/
3
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Proof of Theorem 11.1.3

+ If the statement was false, then the smallest counter-
example would be minimal imperfect. Thus, we only need
show that no graph G satisfying the hypothesié of Theorem.11.1.3
is minimal imperfect. Assume suéh a graph to exist. (We .
want to arrive at a contradiction.) There must be a set 5
of four vertices such that S induces a monochromatic P;
‘in G; for otherwise G would satisfy the hypothesis of Theorem
11.1.1, and so G is perfect, a contradiction. Since G is
minimal imperfetct, its vertices can be enumerated as
VisVorees, vV, as in Theorem 11.2.1. In particular,_vl,vz,v3
and Va haveathe same colour (because they belong to §).
Now, let j be the smallest subscript such that vj has the
colour different from that of v,- Note that we have j 2 5.
By Theorem 11.2.1, v:i forms a P4 with some three vertices
vy with i < j. Obsérving that each vy with i < j belongs to

a mdbnochromatic P4, we conclude that the P4 containing vj

and the three vertices vy (1 < j) is nqither monochromatic

nor well odd-coloured. This is the desired contradiction.[]

IS
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APPENDIX

Adjacent : two vertices are ad%hcent if and
only if they are joined by an edge.
/Bijection : a mapping one-to-one and onto.
‘Chord : a chord in a cycle vl,vz,...,vg is
an edge vivj other than ViVia
(1 < i <k or v,v )

1°k”
Chromatic number : the smallest number of colours tha?j

suffice to colour a graph.

Clique : a set of pairwise adjacent vertices.

Clique number H the number of vertices of the largest
clique in a graph.

Colouring : an assignment of "colours" to ver-
tices such that adjacent vertices

always have different colours.

Complement the complement of a graph G = (V,E)
is denoted by G = (V,E'y with the
same set of vertices, and the sek
" E' of edges such that for any two !
1 ) vertices x,y in V, we have xy ¢ E;
if and only if xy ¢ E.
Connected - - | gxaéh is connected if there is at
least a path between any t%o vertices.

a

Cutset : a set of vertices such that its’




Cutset (con't)

Cycle

Edge

Graph '

Induced subgraph

Neighbour

Path

Stablé set

Vertex

.
H

[T}

. a sequence of distinct vertices

x83

removal would disconnect a connected
graph.” ‘ J

a cycle is a path from a vertex x

to a vertex y witg.the edge xy.

see Graph.

an ordered pair (V,E) such that Vv

is a set and E is a set of two-point
subset of V. The elements of V

are called vertices and the elements
of E are called edges.

a graph H = (VH’EH) is an induced
subgraph of a graph G = (V,E) if

VH - V and for each edge xy in E, we
have xy € EH if and only if both x
and y are. in VH'
a vertex x is a neighbour of vertex

y if x and y are adjacent.

VieVareeesVy such that Yivi+1 € E
(1 <1< n-1).
a set of pairwise nonadjacent verticex.

see Graph.
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