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Abstract

This thesis presents a new algorithm to compute the probability that a state in
a labeled Markov chain model satisfies an LTL specification. A solution to this
problem was given by Courcoubetis & Yannakakis in 1995, but unlike their solution
the algorithm presented here requires no transformations of the input model. This
advantage may be significant because of the large models which occur in most practical
verification problems. The new algorithm is proved correct and shown to be not worse
than doubly exponential in the size of the formula and cubic in the size of the model.
However limited experimental results suggest that these bounds are pessimistic and
that with further optimization the algorithm might approach the efficiency of current
model checkers, which compute only true or false rather than an exact probability.
I also include a working Java implementation. MCMC, and a proof that for anyv
plausible path P followed by a Markov chain and any LTL formula ¢. somne finite

prefix of P determines whether P satisfies ¢.



Résumé

Cette these présente un nouvel algorithme pour calculer la probabilité qu'un état
dans une chaine de Markov étiquetté (modele) satisfait une formule LTL (propriété).
Un tel algorithme a été donné par Courcoubetis et Yannakakis en 1995. mais a la
différence de leur solution, l'algorithme présenté ici n’exige aucune transformation
du modéle d’entrée. Cet avantage peut étre significatif en raison des grands modeles
qui se produisent dans la plupart des problemes pratiques de vérification. Le nouvel
algorithme est prouvé valide et il a été démontré qu’il n'est pas plus mauvais que dou-
blement exponentiel dans la taille de la formule et cubique dans la taille du modéle.
Cependant, des résultats expérimentaux partiels suggerent que ces limites sont pes-
simistes et qu’avec plus d'optimisation l'algorithme pourrait approcher lefficacité des
model-checkers courants, qui calculent seulement vrai ou faux plutot qu'une proba-
bilité exacte. Jinclus également une implémentation fonctionnant en Java. MCNIC,
et une preuve que pour n'importe quel chemin plausible P suivi par unc chalne de
Markov et n'importe quelle formule LTL ¢, un préfixe fini de P détermine si P satisfait

0.



Preface

The basic structure of this thesis is: introductory example, background, formal state-
ment of problem. description of solution, proofs, implémentation, conclusions. appen-
dices.

I've tried to write it in such a way that readers with no relevant background can at
least understand the problem and some of the ideas behind my solution. (Hi Mom!)
For these readers I suggest Chapters 1 and 3, and the advice that these things are

often better read twice fast than once carefully.
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Chapter 1
Introduction: A Simple Example

This thesis describes a new algorithm for the verification of probabilistic systems.
The problem considered is as follows: given a state in a labeled Markov chain. and
an LTL formula. compute the probability that the state satisfies the formula.

In this chapter I first give some context. then go through an example of what we

want to do.

1.1 Interest of the algorithm

A solution to this problem was presented by Courcoubetis & Yannakakis in [C'Y95].
but unlike the solution presented here, their algorithm requires repeated nontrivial
transformations of the input Markov chain. Since model size is the limiting factor
in most practical verification problems, a more popular technique in practice is to
encode the probability in the specification (e.g., “formula ¢ is satisfied with probabil-
ity > 0.9”). The specification can then be checked efficiently using non-probabilistic
model checking techniques, but the result is only true/false rather than an exact
probability ([ASBBS95], [BCHKR97]). This work seeks to combine these advantages,
using a BDD-based algorithm resembling model checking to compute exact proba-
bilities without transforming the model. This algorithm cannot beat the theoretical
complexity bounds proved and matched in [CY95], but it is hoped that it may be
found more efficient in practice.

A detailed discussion of related work appears in Chapter 7.
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1.2 First input: a state in a labeled Markov chain

Figure 1.1 shows a labeled Markov chain, M;.

‘ 0.5
(v

0.1
Q 1

Figure 1.1: First input: a labeled Markov chain. M;.

M has three states (s, s; and s3), six edges (arrows), and two atoms (a and b).
a is true in s; and s, false in s53. b is true in s; and 85 but false in s,.

(1

We say that M, is always “in” one of its three states. At each step. it may move
to a different state, or stay where it is. The weight of an edge from one state s to
another s shows the probability of going from s to s” at the next step. assuming M,
is in s right now. The outgoing edge weights from any state always add up to 1. So.
if M; is in ;. after the next step it has a 40% chance of being in s;. a 10% chance

of being in s3, and a 50% chance of staying in s;.

1.3 Second input: an LTL formula

LTL is a temporal logic: an LTL formula makes an assertion about the future (and/or
present). Figure 1.2 shows some LTL formulas, with English translations.
These formulas contain all LTL’s basic constructs: 7 /F (true/false), atoms, —

(not). A (and). X (next). and & (until). Short formulas are easy to understand, but

more elaborate combinations become hard to express in English.
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a a is true

b b is true

—a a is false

alb a and b are both true

Xa a will be t ue after one step

XF False will be true after one step (a contradiction)

X(a ND) a and b will both be true after one step

(Xa)nb b is true, and a will be true after one step

XXa a will be true after two steps

TU-D True until b is false (b will eventually be false)

~(TU—a) Not (true until a is false) (i.e., a will always be true)

X(ba) Starting from the next step, b will continually be true until a is true

bUX —a b will continually be true until it is true that a will be false after one step

TU-(TUa) | Eventually a will never again be true (i.e.. a occurs finitely often)

Figure 1.2: Second input: some LTL formulas.

1.4 Output: probability of the formula

Now. given these inputs, we want to calculate the probabilitv that the state satisfies
the formula. What does this mean? If you start M in state s; and let it run from
there, it will follow some sequence of states like (s1, s2. 81, 83.83....), called a path.
For any state s and formula ¢, we want the probability that a path starting from s
satisfies ¢. See the example output in Figure 1.3.

Some of these outputs are easy to calculate. The simple LTL formula « is certain
to be true in s; and s; and false in s3. To compute the probability that s; satisfies
the formula Xa, we observe that starting from s;, M; has a 0.9 probability of going
to either s; or s, (where a is true) and a 0.1 probability of moving to s3 (where a is
false).

However, to compute the probability of an input like formula (7U=b) (b is even-
tually false”) in s; is not so easy. Informally, we can get the answer by reasoning as
follows. If M; starts in sy, it may stay in s; for a while, but if we wait long enough
it’s bound to go to either sy or s3. If it goes to sy, the —b clause of the until is satisfied.

and the formula is true. If it goes to s3. it will loop around there forever, and —b will
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S1 S2  S3
a 1 1 0
b 1 0 1
—a 0 0 1
anb 1 0 0
Xa 0.9 07 O
XF 0 0 0
X{aNb) 0.5 07 0
(Xa)Ab 09 0 0
XXa 0.73 0.63 0
TU-b 08 1 0
-~(TU-a) |0 0 0
X(bUa) 09 07 O
U X —a 044 03 1
TU-(TUa) | 1 1 1

Figure 1.3: Output: the probability of each input formula being satisfied, from each
state of Mj.

never be satisfied. So the probability that a path from s; satisfies (T7U-0b) depends
entirelv on which of s, and s3 is visited first. The edge weights tell us that visiting
sy first is four times likelier. which gives us our answer probability of 0.8.

Ad hoc reasoning worked this time, but it won’t in general. No one could be
expected to perform such reasoning on a longer input formula full of nexts and untils.
To guarantee a solution for all possible input Markov chains and formulas. we need
a mechanical procedure which always computes the right answer (eventually) — an
algorithm.

This thesis describes such an algorithm.



Chapter 2
Background

This chapter contains background directly relevant to our algorithm. I first discuss
what model checking algorithms are used for. Then I give more detailed explanations
of the two inputs to the algorithm, labeled Markov chains and LTL formulas. Finally.
we look at why LTL is more useful for our purposes than a branching-time logic like
CTL.

More basic background material is in Appendix A, covering the original CTL
model checking algorithm of Emerson & Clarke, and BDDs (binary decision dia-

grams).

2.1 What is model checking?

Model checking is a popular technique for the formal verification of concurrent svs-
tems.

A concurrent system is a system in which the order of events is unpredictable.
Systems commonly checked by model checkers include circuit designs and commu-
nications protocols. In circuits it is the order of signals being transmitted through
gates which is unpredictable; in communications protocols, it is the order in which
messages are sent and received.

The unpredictability inherent in concurrent systems makes them difficult to design
correctly. Even if a design is correct, its correctness is often hard to establish with any
confidence. A traditional approach to this problem is testing: simulate the designed
system’s behavior on a bunch of test cases and, if no flaw is revealed, conclude that the

design is probably correct. This is a reasonable strategy for systems of a manageable

13
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size, but many modern systems are large and complex enough that the amount of
testing required to establish confidence of correctness is prohibitive.

An alternative approach to testing is formal verification, which aims to rigorously
prove the correctness or incorrectness of a concurrent system’s design. There are
various techniques which fall under this general category. Fecause formal verification
is of most interest for the large systems which cannot feasibly be tested, the most
popular techniques are those which have been found to work on these large systems.
Model checking is such a technique.

There are three components to the model checking strategy. First, one needs a
formal model of the system, typically a finite-state transition system of some sort like
the finite automata described below. The model must be designed so that its states
and transitions accurately correspond to the concurrent behavior of the system being
model checked.

Second. one must specify a specification to check, representing the propertyv one
wants to see if the system satisfies. For example. a protocol for managing print jobs
sent to a printer might be checked for safety: the property that no two jobs are ever
sent through the printer at the same time. Specifications are typically written in a
temporal logic like CTL or LTL, which can express properties like safety.

Finally, once one has a formal model and specification, one needs a model-checking
algorithm to actually check if the model satisfies the specification. The original model
checking algorithm, described below, operated on a model represented as a finite
automaton. and a specification expressed in CTL. Other model checking algorithms
expect the system or specification to be expressed in different formalisms.

This thesis presents an algorithm which takes a model represented as a Markov
chain and a specification expressed in LTL, and returns not true or false. but the

probability that the model satisifies the specification.

2.2 Markov chains

Markov chains, introduced in section 1.2, are a probabilistic extension of finite au-
tomata. (For more on finite automata, consult a standard reference such as [Sip97].))
Whereas a finite automaton only says which states a given state can and cannot move
to at the next step, a Markov chain specifies the precise probability of moving to each

other state.
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See Figure 1.1 from page 10 for a sample Markov chain, M.

2.2.1 History-independence

Like finite automata, Markov chains have the property that their behavior is history-
independent: the future behavior of the system depends only on tl. node it is cur-
rently in, not on the route it took to get there. For example, if M is in state s;, it
has a 40% probability of moving to state sp at the next step, irrespective of how it
got to s;.

This memoryless property characterizes Markov chains, so that systems with this

trait are called Markovian.

2.2.2 Internal vs external vs probabilistic choice

There is now an interesting decision we must make in specifying how our Markov
chains will behave: who will choose the input symbols?

To make sense of this decision requires first a discussion of choice. A transition
system may be thought of as a machine whose behavior arises as a result of ongoing
choices. These choices can be divided into three categories based on the zgeut making
the choice: internal, external, and probabilistic.

Somie choices are internal: made within the system. For example. a deterministic
finite automaton (DFA) which reads symbol « in state s; is forced to some other
state s;. The decision about which state to move to is determined by the design of
the system, and requires no outside consultation. Insofar as a system's choices are
internally made (i.e., determined by its definition), it is called a generative or closed
system.

Other choices are left to an ezternal agent, which may be a user or the environ-
ment. (To the system there is little distinction.) A DFA is often thought of as a
machine which knows exactly what to do on a given input symbol, but has no means
of itself choosing the symbol; this is left to the user, who feeds it a stream of input
symbols. A system which leaves choices to the external user/environment is called
reactive.

Finally, some choices are probabilistic. Who makes probabilistic choices is a subtle

issue deserving of much thought. For our purposes it suffices to think of probabilistic
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choices as being made neither by the system itself nor by the user. but by some prob-
abilistic oracle which obeys the statistical properties of the distribution in question.
For example, in saying that when M is in state s; it has a 40% probability of moving
to state s, at the next step, we mean something like the following: “If we ran M, for
long enough, and kept a tally of where it moved to each time it was in s;, we wculd
find that the proportion eventually approached 40%.” (In fact we mean more than
this. For example, suppose in keeping our tally we found that M repeatedly moved
to s; five times, then to s, four times, then to s; once. This behavior would meet
one but certainly not all of our expectations for a properly functioning probabilistic

oracle. But never mind this for now.)

2.2.3 Generative vs reactive Markov chains

Having set out these three categories of choice, we must now decide which will be
responsible for choosing the input symbols of our Markov chains.

We could leave the choice of symbols to the user, as in finite automata. Thus. a
transition in the Markov chain occurs as follows: the user chooses an input symbol.
and based on this symbol and the current state, a probabilistic choice is made as to
which state to move to. It follows that in such a model the outgoing probabilities
from each state must sum to 1 for each input symbol. See the example in Figure 2.1.

We will call this the reactive model of Markov chains.

Figure 2.1: The reactive Markov chain model: the user picks a symbol, and the
system probabilistically chooses the next state. Note that outgoing probabilities sum

to 1 over each symbol.

Alternatively. we could have the symbols chosen probabilistically within the sys-
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tem, like the state transitions. In this scenario, a transition happens like this: the
system itself consults the probabilistic oracle as to which symbol to read and which
state to move to. Thus the outgoing probabilities from each state sum to 1 over all
input symbols, as in Figure 2.2. This generative model is a fully closed system: once

started. its behavior is determined without external input.

Figure 2.2: The generative Markov chain model: the system probabilisticallv chooses
both the symbol read and the next state. Outgoing probabilities sum to 1 over all

symbols.

Each of these models is interesting. The generative model, lacking external input.
is simpler and therefore a sensible place to start in our exploration of probabilistic
model checking. As it turns out, in the probabilistic setting. even a closed system

like this is nontrivial to model check.

2.2.4 Symbols as atoms

In a finite automaton, the input consists of a sequence of input symbols. Our Markov
chains will use a more general notion of symbols, in which a symbol is thought of as a
boolean variable rather than an input token. To indicate this shift in interpretation,
we will call our symbols atoms. So rather than “What symbol is read next?”, we will
ask, “Which atoms are true at the next step?” In the case where only one atom is
true at once, this reduces to the interpretation of symbols as inputs. More generally,
any number of atoms may be true.

So, our Markov chains are strictly generative, with no external input, and allow
any assortment of atoms to be true at each step. The example Markov chain M,

above is of this sort.
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2.2.5 Matrix representation

Figure 2.3 shows how we can represent M; textually (without a diagram) as a matrix.

51 So S3
51105 04 0.1
s2107 0 03

S3 0 0 1
a i1 1 0
1 0 1

Figure 2.3: Matrix representation of M. with the edge weights and the atom prob-

abilities.

The matrix captures the information formally identifving the Markov chain. First
there is the set of states, S = s;...s,. Then we need a transition matrix 6 : S x S —
[0.1], where (7. 7) is the probability of moving from s; to s;. The outgoing edges
from any state must sum to 1: Vi, 37, §(i,j) = 1.

We will work with a state-labeled Markov chain model. specifving a set of symbols
(aka atoms) ¥ = ay ...a,, and defining v : S X ¥ — {7.F} where 7(s;.a) =T (ie..
1) iff atom a is true in state s;. We could further generalize to allow atom probabilities
between 0 and 1 (7 : S x £ — [0,1]}), and this requires only a small modification of
the main measure() algorithm described by this thesis. However the generalization
is of limited use, so for clarity we will restrict ourselves to the 7 /F case.

Finally, we may want to specify the probability of being in each state initially, as
a vector of initial probabilities a = a; ..., summing to 1: 3 I, a; = 1. In practice
we will normally be taking the initial state as an input to our model checker, and so

will not bother to specify the initial distribution. This is not important.

2.2.6 Probabilistic language

Our discussion of Markov chains has made no mention of acceptance. In finite au-
tomata, a string was either accepted or rejected. In a probabilistic model like Markov
chains, a boolean outcome like this will not do. Instead, a Markov chain M implicitly

associates a probability with each input string ¢ the probability that M follows a
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path along which the atoms which make up ¢ are true. We write this probability as
().

For example, suppose M, above starts in s; (with probability 1). What probabil-
ity is associated in M with the very short string a? In other words, what is 7, (@)7
To answer, we note that the first state visited by M is guaranteed to be s;. and a
is true in s; with probability 1. So the answer is 1. Similarly, 74, (b) = 1.

Now. what is maq, (ab)? The probability that the first state visited satisfies a is 1.
so we need only calculate the probability that the second state satisfies b. By M;'s
matrix, this second state is 50% likely to be s; (in which b is true), 40% likely to
be s, (false), and 10% likely to be s3 (true). Thus the total probability of moving
to a state where b is true is 0.6, and 7, (ab) = 0.6. You can similarly verifyv that
7, (aa) = 0.9 and 7, (aba) = 0.45.

We call 7y, the probabilistic language of M.

2.3 LTL

We now look at some of the logics used to write model checking specifications, begin-
ning with LTL.

A temporal logic is a language for expressing temporal propositions: assertions
about what is true and what will be true. Such assertions are made in English by
sentences such as “a is true”, “b will be false in one time unit”. “a and b will always be
true (from now onwards)”, and so on. However phrasing more complicated assertions
in English quickly becomes awkward. Temporal logics have been developed to let us

formulate temporal assertions precisely and compactly.

2.3.1 Continuous vs discrete time

A temporal logic may view time as continuous or discrete. Continuous-time logics let
us make assertions about what is true at any point in the future: 1 time unit (step)
from now, % step, m steps, and so on. Discrete-tiie logics restrict us to integer steps:
now, one step from now, two steps, etc. Continuous-time logics are more expressive,

but much harder to work with mathematically, and we will not use them.
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2.3.2 LTL syntax & semantics

LTL (Linear-time Temporal Logic)!, described in section 1.3, is a discrete-time logic
for making assertions about a sequence of points in time (to.%;,...), called a path.
(The path’s elements needn’t necessarily represent points in time, but they usually

do.) Refer back to Figure 1.2 on page 11 for some examples of LTL formulas.

0¥ T|F

Figure 2.4: LTL syntax: the six types of LTL formulas.

LTL syntax, summarized in Figure 2.4, is simple once one understands the different
constructs. There are six types of formulas: booleans. atomic propositions, nots, ands.
nexts. and untils. A given path P = (¢g,#1,...) is said to either satisfy a given formula
@ (P k= @) or fail to satisfy ¢ (P o).

The boolean formulas T (true) and F (false) have the same interpretations at any
time. An atomic proposition. or atom, is a variable which is either true or false at
each point in time. For instance, a might be true at t;. ¢, and t,. but then false at
t3, then true again and so on (see Figure 2.5). A path satisfies an atom iff the atom

is true in its first element; so P = a.

Time:{01234
al!T T T F T
WF F FFT

Figure 2.5: The truth value of an atom may vary over time.

If some formula 9 is satisfied by a path P, then ¢ {“not ¢”) is not satisfied by P,

and vice versa. Similarly, ¥ Aw (“¢ and ") is satisfied iff both ¥ and w are satisfied.

1Sometimes also called PTL (Propositional Temporal Logic), or LPTL (Linear-time Propositional

Temporal Logic).
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These are the traditional operators from propositional logic. However, interpreting
them can become subtle when ) or w contains temporal operators, as we will see.

X, “next ¥, holds now iff ¢ holds at the next step; that is, P = (p1,p2,...) E
Xy iff P, = (pa,ps,...) E ¢. For example, using the atom a described above, P
satisfies a, Xa, X Xa, XX X—a, and XX X Xa. (We will normally write X —-a rather
than —Xa.) Of course, for any P, P = X7 and P £ XF.

YUw, “¢ until w”, is the most powerful and subtle LTL operator. However its
meaning is essentially given by its English pronunciation: ¥Uw is true iff (1) w is
eventually true, and (2) ¢ is true in every step up until (not including) the first
step where w is true. That is, P = (p1,pe,...) E ¢¥Uw iff 35 such that (1) P; =
(PjsPj+1:--.) Fw,and (2) V1 < i< j, B = v¢. (It follows that (YUw) = (wV (¥ A
X{(¥Uw))). If w is true immediately, YU w is true irrespective of 1. See Figure 2.6 for
some examples.

Note that for ¥Uw to be satisfied. w really must eventually be satisfied: (TUF) =
F.not T,

2.3.3 Operator binding precedence

Generally the binding precedence of LTL operators (from tightest to loosest) goes:
- and X. A, U. In other words. Xa A bd—~Xc A s should be parsed as: ((Xa) A
LHIU((—(X <)) A's). We will often use parentheses to clarify the binding order. and

always when the left- /right-associativity of A or Y is in question.

2.3.4 Other operators

There are many other useful operators we might want to use in writing temporal
formulas: for example, ¥ V w (“¢ or w”), ¥ — w (“¢ implies w”), Fy¥ (“eventually
"), Gy (“always ¢”), and others. We don’t bother to include these in LTL syntax
because they can all be encoded using the operators described above. In particular:
(UVw) = ~(~vA-w), (¥ = w) = (YA~w), (FY) = (TUY), and (GY) = ~(TU-).
So, we can freely use such operators without fear of accidentally writing something
not expressible in LTL.

An especially important derived operator is bounded until from [HJ94], of the form
PUSF1p for some k > 0. As its name suggests, a bounded until is like an until except

that it is only satisfied if its right-hand operand is satisfied within & steps (inclusive).
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Formula | Satisfied Explanation
by path P?
Xb | No b is false at time 1.
bida | Yes a is true immediately.
aldb | No b is first true at time 4, but a is only true up to
time 2.
alAXb | Yes a is true up to time 2, and then at time 3 Xb is
true.
TUX(aNb) | Yes a A b is true at time 4, and 7 is true until then
(since T is always true).
(Xa)UX XD | Yes Xa is true up to time 1, and then at time 2 X X
is true.
(XNXO)UXa)Ub | Yes Careful now. b is first true at time 4, so we need
to check that v» = ((XXb)UXa) is true at times
0-3. ¢ is true immediately at times 0. 1. and 3.
because Xa is true at all these times. And v is
also true at time 2, because X Xb is true until time
3 when Xa is true. So ¢ is true at times 0--3. until
b is true at time 4. and therefore the entire until
formula is satisfied.

Figure 2.6: Explanations of some LTL until formulas, using the atoms from Figure

2.5.

Bounded untils are often useful in practical model-checking problems where one wants

to include time constraints in the spec, e.g., to verify that a property is satisfied within

a fixed number of steps.

Because of its finite horizon, a bounded until can be encoded without the pure

until operator:

Definition 2.1

U0

TUSE20)y,

d

= v

def <k-1

= vV (r AXFUSIv))
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The resulting formula may be large (though not worse than linear in k). but it
contains no pure untils. For example, al{<%b is equivalent to bV (a A X(bV (a A XD))).

So, as with the other derived operators, for the purposes of our proofs we will
normally ignore bounded until and work only with the primitive operators. An im-
portant exception is complexity proofs, where we can often achieve better bounds for
mput formulas containing no pure untils (see chapter 4). These results reflect the
fact that although bounded untils are less elegant than pure untils, and lead to more
complicated formulas, they can be more efficient to model check, especially when

nested.

2.4 Linear-time or branching-time?

Traditional model checking works on nondeterministic systems such as an nondeter-
ministic finite automata (NFAs). However, what interests us here is model checking
probabilistic systems. The labeled Markov chains described in section 2.2 give us
a natural probabilistic model, but the choice of specification language is less obvi-
ous. In particular, we must choose between linear-time and branching-time temporal
logics (compared in section A.1.1). Here we will argue that, for probabilistic model
checking, linear-time logics like LTL are more appropriate.

At first, branching-time logics like CTL (section A.1.2 of Appendix A) might seem
appropriate: like NFAs, Markov chains have many possible futures and therefore gen-
erate computation trees like those described in section A.1.1. The probabilistic infor-
mation given by the Markov chain’s transition probability matrix lets us additionally
associate a probability with each branch in the tree. More precisely, we can label
each node in a Markov chain’s computation tree with the probability of reaching that
node.?

Figure 2.7 shows the computation tree generated by M; from Figure 1.1. The
probability R(n;) of reaching a node n; is easy to compute: it’s the probability of
reaching n,’s parent node n,, R(n,), multiplied by é(n,, n;), the probability of moving
from n, to n; in the Markov chain. Note that the probabilities of reaching any node

n’s children sum to the probability of reaching n itself, since once n is reached, exactly

2The probability of reaching a node in the computation tree is not to be confused with the
probability of reaching the corresponding state in the Markov chain. The same state may appear

multiple times in the tree. In fact a state will generally appear infinitely often in the tree.
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0.5

Figure 2.7: The first few levels of the computation tree generated by Markov chain
M, from Figure 1.1. Each node n is labeled with R(n), the probability of reaching

n given that one starts at the top of the tree in s;.

one of its child nodes will be reached. Also note that the probabilities of the nodes
at any level in the tree sum to 1, since if you let the Markov chain run for ( steps.
vou will reach exactly one of the nodes at level £.

In traditional model checking. CTL is attractive as a specification language be-
cause of its path quantifiers E and A, which let us write specifications such as “at
least one path from state s satisfies a within two steps™ or “every path from s even-
tually satisfies b”. But note that these assertions are non-probabilistic in nature: to
check the truth of such an assertion in a state s of a Markov chain M, we needn’t
know the exact edge probabilities in M, only which edges have probability > 0 and
which don’t. In other words, any CTL specification beginning with £ or A can be
solved by the old non-probabilistic model checking algorithms.

Furthermore, the results obtained by model checking CTL specifications in proba-
bilistic systems can be misleading. For example, consider the spec A(TU—a) (“along
every path, a is eventually false”) evaluated in state s; of Markov chain M; from
page 10. A non-probabilistic model checker will conclude that this assertion is false
in s;, since there exist infinite paths like (s1, sy, s1,...) along which a is always true.

But it is easy to see that the probability of M, following such a path is 0. In fact.
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TU—a is almost surely satisfied (that is, with probability 1), because M; is bound
to end up in state s3 eventually, where a is false.

In examples like this, it is generally less useful to know that some path in M
contradicts the base formula (7U{=a), than to know that no plausible path in M
does. (This useful idea >f a plausible path must be defined; we do so in section 5.1.)

In short, the types ur all-or-nothing specifications expressed with CTL’s E and A
quantifiers can be checked in probabilistic systems like Markov chains without new
techniques, and in any case can be misleading because they fail to identify probability
0 events as impossible. But apart from these quantifiers, CTL is just a subset of LTL.
(The same holds for CTL*, the more powerful branching-time logic of which CTL is
a subset.) So for the type of probabilistic model checking we want to do, LTL is a

more useful specification language than a branching-time logic like CTL.

2.5 PCTL/pCTL*

Work such as [HJ94] and [ASSB96] has proposed logics (PCTL and pCTL*, respec-
tively) which extend LTL with state formulas of the form Pry.(¢). Such a formula
is true in a state s iff the probability that a path from s satisfies path formula ¢
is greater than k. For example. in Markov chain M; from Figure 1.1, the pCTL*
formula Pryos(Xa) is true in s; but false in s and s3, since the probabilities of X«
in these states are 0.9. 0.7, and 0 (Figure 1.3).

The attraction of these logics is that fast model checking algorithms can be used
to check them, making them practical for the sorts of large models arising in practical
verification problems. On the other hand, because such algorithms produce only true
or false, some expressiveness is sacrificed for this performance gain. The algorithm
described by this thesis produces a probability rather than just true or false, and is
therefore for most purposes more informative than the PCTL/pCTL* algorithms.?

How much speed is sacrificed in exchange for this stronger output, on practical ver-

3Logics like PCTL can distinguish non-bisimilar systems. whereas LTL cannot. For example.
the PCTL model-checking algorithm can check formulas such as Proo(XPrsos(TUa)): “With
probability greater than 0, after one step, it will be more likely than not that a will eventually be
true.” However, most formulas checked in practice have the form of a pure LTL path formula inside
a Pry operator. On such input formulas, the algorithm presented here is strictly more informative
than the PCTL/pCTL* algorithms.
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ification problems, is probably the most important open question of this work (see
Chapter 8).



Chapter 3

The Algorithm

This chapter presents the solution algorithm. I begin with a formal statement of the
problem and an outline of the solution. then lay out the algorithm in detail. The
chapter ends by tracing through the algorithm as it solves some sample problems

from Chapter 1.

3.1 Formal statement of the problem
Given:

e M. a labeled Markov chain with states S = s;...s,. transition matrix J :

S xS —[0,1], atoms & = a; ...a;, and atom truth values 5 : S x & — {7, F}
e 5. a state in M

e ¢, an LTL formula

We want an algorithm to compute prob(s = ¢), the probability that an infinite
path P = (p; = s,p2,ps,...) starting from s satisfies ¢. More precisely, there is a
measure L, on the set of paths starting from s, and we want to compute pu;({P | P |=
o).

(In pCTL* terms, we are trying to find the k such that prob_i(¢) is true. Note
that though ¢ is a path formula, prob_;(¢) is a state formula.)

27
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3.2 QOutline

This problem is more difficult than typical non-probabilistic model checking prob-
lems. mainly because there is no obvious way to solve it compositionally. In a non-
probabilistic setting you can usually determine the truth value of ¥ A w in state s
by. e.g., combining the recursively computed truth valu . for ¢ and w in s. But in a
probabilistic setting. simply knowing that the probabilities of 1 and w are 0.6 and 0.4
respectively is not enough to derive the probability of ¢ Aw. Certainly just multiplying
the probabilities to give 0.24 won't work, because this assumes they're independent.
Suppose for example that ¢ is Xa and w is X(a A b). Then prob(s F ¢ Aw) =
prob(s E (Xa) A X{(a A b)) = prob(s = X(a A (aAb))) = prob(s = X(a Ab)) =
prob(s  w) = 0.4. On the other hand, if ¥ = Xa and w = X-a then no path
satisfies both — so prob(s = ¢¥» Aw) is 0!

Nevertheless, the problem can be solved recursively. The algorithm. measure(o.

s). follows this basic outline:

1. Compute ¢’ = step(o. s): a formula such that P = (p; = s, pa, p3, .. .) satisfies
o iff its suffix Py, = (po, p3, .. .) satisfies ¢'. (For example, step(Xa, s) = a.)

2. For each possible successor state s’ recursively compute measure(¢’. s'), and

sum the results weighted by edge probability: >, d(s, s")-measure(d’. s).

However, because step(¢. s) is not necessarilv smaller than ¢. we need three

additional tricks to ensure the recursion terminates:

e Use BDDs (see appendix) to represent the input formula and all derived formu-
las. This ensures that only a finite number of different formulas will be created.,

resulting in a bound on the number of recursive calls.

e There will be cases where the recursion loops, i.e., step(step(...step(9¢, s))) =
¢. Handle these by remembering which recursive calls have already been made,
assigning a variable to each call, and returning the variable rather than contin-
uing to recurse if the same call is repeated. The result will be a system of n

equations in n variables, which can then be solved.

e The system of equations will be unsolvable if any of the equations reduce to

a redundancy like r = x. We can show that this can only happen for input



CHAPTER 3. THE ALGORITHM 29

formulas containing unrealizable untils (Definition 3.4), of the form ¢lw where
prob(s = w) = 0 in all reachable states s. Any such until is equivalent to F, so
we can avoid the z = x problem by making step() “detrivialize” ¢ by replacing

unrealizable until subformulas with F.

With these three tricks, we can show that measure() terminate. .

3.3 Representing LTL formulas as LTL-BDDs

The way we represent LTL formulas as BDDs (“LTL-BDDs") is quite simple. Essen-
tially we represent booleans and atoms as usual by their corresponding BDDs, and
each distinct next or until formula by a unique atom. The following bdd(¢) procedure
constructs the LTL-BDD for a given LTL formula ¢:

Definition 3.1

bdd(F) ¥ BDD F
bdd(7) ¥ BDD T
bdd(«) “/ BDD (a 7T : F), representing atom “a”
bdd(—) = not(bdd(y))
bdd(v Aw) < and(bdd(v), bdd(w))
bdd(¢v' V) 2 or(bdd(y). bdd(w))
bdd( X)) “/ BDD (X7 T . F), representing atom “X¢"
bdd (YvUw) “/ BDD (YUw 7 T : F), representing atom “vldw”

See the examples in Figure 3.1.

Using BDDs requires that we impose an order on all our BDD atoms: those match-
ing LTL atoms (e.g., “a”), those representing nexts (“Xa”), and those representing
untils (“aldb”). Any consistent ordering will do, so the choice of ordering can be left
up to the implementation (and, e.g., based on observed performance effects). For
example, one can order LTL atoms before nexts before untils, and lexicographically
within each type: eg., a < b < Xa < Xb < aldb < blda. ...

Unfortunately this is not a canonical LTL representation. For example. the LTL-
BDD for X—a will be different from the LTL-BDD for —Xa, although both LTL

formulas are equivalent. However, the representation does have the following useful
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Figure 3.1: Example LTL-BDD representations of LTL formulas: a A Xb. blA-Xc.
Apart from the basic boolean nodes for F and 7. each node contains a formula a
and has two child nodes indicated by the solid edges: a left child it's equivalent to
when a is false. and a right child it’s equivalent to when a is true. The X-node with
a dotted edge to b “contains”, and represents. the formula Xb. The X-node with a
dotted edge to ¢ contains Xc¢, but represents =Xc¢ (note that its right child is F. not
7). The U-node contains and represents lf—Xc.

property: starting from a finite set of LTL-BDDs, only a bounded number of new LTL-
BDDs can be generated by applications of basic BDD operators like not() and and()
to elements of the set, since none of these operations create new atoms (Proposition

5.15). This fact will help us prove that measure() terminates.’

I Adapting BDDs to give a truly canonical LTL representation, TBDDs (“temporal BDDs"), was
originally one of the aims of this thesis. In TBDDs, X ¢ was represented by a special non-atom node
with a link to the TBDD for ¢, and ylUw as a self-looping structure: or(w, and(¥. next{y¥lw))).
The TBDD for a formula ¢ was like a little Turing machine, inspecting the input path one state at a
time and eventually recognizing if ¢ was satisfied or contradicted. However my colleague Norm Ferns
pointed out that as I had designed them TBDDs could not express LTL’s infinitary properties. For
example, a formula like 7U—~(TUa) (“a occurs finitely often”) is not satisfied or contradicted by any
finite subpath of the input, and therefore its TBDD was the same as the TBDD for T7U~(7Ub) (and
many others). This flaw proved fatal and, since a truly canonical representation wasn't necessary
for the main algorithm, I eventually had to drop the idea. But it was cool and anyvone interested in

pursuing it is invited to get in touch.
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In this work we will represent LTL formulas exclusively as LTL-BDDs, so we will

often refer to LTL-BDDs informally as “formulas”.

3.4 Procedures

The algorithm makes use of two main procedures, measure() and step(), and an

auxiliary procedure, solve(). The following sections define and explain them.

3.4.1 measure()
Definition 3.2

measure(¢, s):

fo=Toro=2F
return 1 if 7, 0 if F

else if a solution for (¢, s) has been cached:
return fetch(o, s)

else:
generate new var eg
cache(o. s. Tgs)
¢ = step(¢. s)
e := sum over all s’ such that §(s,s’) > 0 of:

d(s,s') measure(¢’, s)

Tes 1= solve(zys =€)
substitute(zys := ry,)

return rgs

measure()’s fundamental property is Theorem 5.48: measure(¢, s) = prob(s =
#). The pseudocode shown closely corresponds to the Java code in MCMC, the
implementation described in Chapter 6. Several lines deserve explanation.

measure() begins by checking for 7 or F, or a cached solution. (cache(¢. s, ry,)
simply stores a solution ry, in a global cache where fetch(¢, s) can retrieve it.) If ¢
doesn’t fall into one of these simple cases, a new variable x4, representing prob(s = ¢)

is created and cached so that recursive calls to measure(o, s) will return it (rather
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than diverging). Then an expression (linear combination of numbers and variables)
for the value of x4, is recursively computed and substituted for it. The LTL-BDD
representation and the global cache make it easy to prove Proposition 5.18: measure()
terminates.

The key idea of the algorithm is the recursion to compute the value of z4s. The
input Markov chain M specifies §(s, s'), the probability that the next state will be s’
given that the current state is s. Now, suppose we know the next state s’. step(o.
s) will give us a formula ¢ which is satisfied by any path P, = (py = &, p3,p4, - - -)
iff ¢ is satisfied by the corresponding P = (p1 = s, s, p3,p4,...). And by induction.
a recursive call to measure(¢’. §') will compute prob(s’ | ¢') — which, again under
our assumption that the next state is s, is equal to prob(s = ¢).

In other words, if we know the next state s, we can recursively compute prob(s =
¢). So, we can compute the real prob(s = ¢) as the sum of measure(step(o. s), s’
for each &', weighting by the edge probabilities (s, s). This is what measure() does.

Having computed the weighted sum e, measure() uses it to substitute for z,.
Simply substituting e for z4, wouldn’t necessarily eliminate z 4. since e itself may
contain an zys-term. So measure() calls solve(z,, = e) to get another expression 7.
also equal to x4, but free of any rys-term (see section 3.4.3). substitute(rys = 74s)
then eliminates x4, by substituting 74, for it in any cached expressions containing it.

Note that measure()’s return type is not strictly a scalar (number). but an expres-
sion that may include cached variables, e.g.. 0.6x45+0.1x,,;+0.3. (See the examples in
section 3.5.) However, each call to measure() that creates a variable x., later replaces
it with an expression r,,. Therefore any top-level non-recursive call is guaranteed to

return a variable-free expression, i.e., a numerical probability (Corollary 5.33).
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3.4.2 step()

Definition 3.3

step(d, s):
ifog=T or ¢ =F:
return ¢
else, o = (a 7 ¢ : w):
if a = a (an LTL atom node):
a' =(s,a)
else if @ = X7 (a next node):
o =71
else if a = 78v (an until node):
if Vt reachable from s, measure(v, t) = 0:
o =F
else:
o' := or(step(v, s), and(step(r, s). TUV))
return cond(a’, step(¢. s), step(w, s))

step() is the procedure that does the work in the recursion. Its fundamental
property is that it returns a formula ¢’ such that any plausible path P = (p, =
S, p2.p3....) satisfies ¢ iff its suffix Py = (pa, ps,...) satisfies ¢’ (Theorem 5.47).

Plausible paths are defined in Definition 5.11. By Proposition 5.40, any Markov
chain almost surely (with probability 1) follows a plausible path.

step() starts by checking whether ¢ = 7 or F. If so, then of course P = ¢ iff
P, E ¢, and we can just return @.

If ¢ is not a boolean, it must be an atom LTL-BDD of the form (a 7 ¢ : w).
where o represents either an LTL atom, a next, or an until. In this case step()
first constructs a formula o’ such that P, = o’ iff P &= a, and then returns ¢' =
cond(a’. step(v, s), step(w. s)). (The useful cond() operator is explained in the
BDD appendix on page 108.) Why is this ¢’ guaranteed to be satisfied by P, iff ¢
is satisfied by P? Remember that ¢ is equivalent to ¥ when P satisfies . and to w

when it doesn’t. Consider these cases separately:

e P = a. Then P, = o'. So, by the definition of cond(), in this case P, = ¢ iff
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P, = step(¢, s), which holds iff P |= ¢, which in this case is true iff P = ¢.

Done.

e P} a. Therefore Py £ o'. So, (P, E ¢') & (P = step(w, §)) & (PEw) &
(P = ¢).

So the only missing piece is the construction of o’. Consider again the three cases:
a=a.a=X7, a=71Uv. Suppose @ = a. Because s is a parameter to step(). we
can just let o’ := ~(s,a) = the truth value of a in s. For instance, if we know a is
false in s, then it follows trivially that P = a iff P, = F.

The a = X7 case is even simpler: by the definition of X, P = X7 iff Py =7 = o’
So the only tricky case is until.

Suppose o = TUv. step() begins by checking whether the until is unrealizable:

Definition 3.4 An LTL unti formula (YUw ¢ 7T : F) is unrealizable from a state
s if. Vt reachable from s (including s itself), prob(t E w) = 0.

If 7Uv is unrealizable from s, we let o’ = F. This is a trick we use to avoid an
inconvenient case which could prevent measure() from terminating. Note that our
definition of unrealizable is distinctly probabilistic: there may still be (0-probability)
paths from s which satisfy the until! (See the example in section 3.5.3.) In fact. the
existence of such paths is why eliminating the until is useful. However. Corollary
5.44 asserts that no unrealizable until is satisfied by any plausible path. So. replacing
unrealizable untils with F is safe.

In order to check if an until is unrealizable, step() calls measure(). Since it
compares the result to 0, these calls to measure() had better return numbers, rather
than expressions containing variables. Lemma 5.37 asserts that they do.

The o’ computed for realizable untils is simpler than it looks. According to the
definition of the until operator U, P |= o = 7Uv iff either P = v, or both P = 7 and
P, = 7Uv. Now, P = v iff P, = step(v, s), and P = 7 iff P, = step(r, s). So,
P = 7Uv iff either P, |= step(v, s) or both P, = step(r, s) and P, |= a: that is,
o' = or(step(v, s), and(step(7, ), a)).

So in every case we can construct o', and therefore we can always return ¢'.

Because measure() calls step() and vice versa. showing that they terminate

(Proposition 5.18) constitutes a single proof.
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3.4.3 solve()
Definition 3.5

solve(r =e):
¢ := the coefficient of z in e
it k=1
abort with an error (division by 0)

else:

e—kr

return 5—

solve(zr = e) solves the given equation for z and returns the solution r.
For example. solve(zys = 0.6z, + 0.1z +0.3) returns rys = 0.25z,, +0.75. The
reasoning is as follows:
Tos = 0.6z45 + 0.1z + 0.3
Zgs — 0.624s = 0.1z +0.3
04zys = 0.1xy +0.3

012, +0.3
0.4

= 0.25331;4 +0.75
Or. more generally, suppose the coefficient of r in e is k. Then solve(s = ¢)

Tgs =T

. " e—hr,
returns 5—-:
r = e
r—kzx = e—-kz
1-Fk)x = e—kx
=y = e=kz
r=r = T%

(If e contains no z-term, then £ = 0 and r simply works out to e).
This computation of r will not work if £ = 1. This case is painful, but after a
long proof Lemma 5.46 asserts that, because step() eliminates unrealizable untils,

any time measure() calls solve(z =€), k < 1.

3.5 Example

Here I sketch measure()’s operation on Markov chain M (page 10) and three formulas
from Figure 1.2 (page 11): Xa, X(blda), and ~(TU=a).
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This sketch will not follow measure() line for line, but will accurately follow the
reasoning it uses. As these examples show, much of measure()’s behavior just consists
of repeatedly calling step(¢, s) to answer the question: “What must be true one step

later, in order for ¢ to be satisfied in state s7”

3.5.1 measure(Xa, $1)

First consider a call to measure(Xa, s1), to compute prob(s; = Xa): the probability

that a path from s; satisfies Xa. Execution proceeds as follows:

1. Create a new variable z; and cache it as the solution. This is so that any
recursive calls to measure(Xa, s;) return the cached variable; otherwise such a

recursive call would lead to infinite regress.

2. Next measure() will compute an expression e;. representing the probability that
¢’ = step(Xa, s1) is satisfied in the next state, and equate it to z;. The first
step is to compute ¢'. step(Xa, s;) is simply a, by the following reasoning:
for any path P = (p; = s1,p2,p3,...) to satisfy Xa, its suffix Py = (pa.ps,...)

must satisfy a.

3. Now we make recursive calls to compute prob(s’ = ¢') for every possible succes-
sor state s’ to s;: xy = measure(a, $;). r3 = measure(a, $»), r, = measure(a.
s3). €3 can then be computed as a weighted sum of their return values, weighted

by the edge weights from s; to §': x; = ¢; = 0.5z, + 0.423 + 0.1,

4. The first recursive call, z, = measure(a, s1), returns 1, since (bv M, ’s definition
in Figure 1.1) a is true in s;. (As shown in Definition 3.2, our real measure()
algorithm does not detect this immediately, instead making a further call to
step(). This is only to make some of our proofs simpler; the outcome is the

same.)

5. Similarly, r3 = measure(a. s3) also returns 1. and x4 = measure(a. s3) returns
0.

6. So we have: r; =e; = 0.520 + 0423+ 0.1z, = 0.5+ 0.4 = 0.9.

And we have correctly computed that prob(s; = Xa) = 0.9.
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3.5.2 measure(X(blda), s1)

Now, measure(X (bfa), s;). This example shows the purpose of the realizability check

in step().

1. Cache a variable x5 representing the solution.

2. Compute step(X(blda), s1): what must be true after one step for X (blda) to

be true now? As seen in the previous example, for any ¢ and s, step(X ¢, s) is
just . So step(X (blda), s;) = blda.

3. So, we make recursive calls g = measure(blfa, s1), r7 = measure(blfa, S2).
rg = measure(blla, s3), and equate x5 to a weighted sum as before: z; =

0.52¢ + 0.427 + 0.1z5.

4. r¢ = measure(blfa, s1) calls step(blda, s;). which begins by checking whether
the until is realizable from s;. To answer this requires calls to measure(u. t) for
every state t reachable from s;. measure(a, s;) returns 1 (> 0). so the until 1s

realizable.

5. Therefore, step(blda, s1) is computed to be just 7, by the following reasoning:
Bv the definition of U, ¢l is true iff either v is true, or ¢ is true and in the
next state pl{¢ is true. That is, P = ¢Uy iff P = v V (¢ A X(0U)). So since
a and b are both true in s;. we have: step(blla, s;) = step(a V (b A X(bUa))

s

s1) = step(a. s1) V (step(b, s1)A step(X(blUa), s1)) =T V(T A (Wda))=T.

6. So since step(blfa, s;) = T, ¢ = measure(Wda, s;) = 1. And similarly, since

a is also true in sy, step(blla, s;) = T and z; = measure(blda, s;) = 1.

7. The case of rs = measure(blfa, s3) is different, because the realizability check
fails. The only state reachable from s3 is s3 itself, and a is false in s3. That is.
blda is unrealizable from s;. Therefore, step(blfa, s3) is computed as just F.

and rg = 0.
8. So again we have: z5 = 0.5z + 0.4x7 + 0.1xzs = 0.5 + 0.4 = 0.9.

Note that the realizability check was essential here for the case of x5 = measure(blfa.
s3). Without it, step(blda, s3) would be computed as step(a V (b A X(blda)). s3).
and since b is true and a false in s3, this would reduce to FV (7 A (blda)) = blda. So

measure(blfa, s3) would end up trying to solve the degenerate equation rg = xs.
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3.5.3 measure(—~(7U—a), s2)

This last example shows how measure() effectively ignores implausible paths (Defini-
tion 5.11). The formula =(7U—a) asserts that —a never occurs, i.e., that a is always
true. There are paths in M, satisfying this formula, such as (si, s1, s1, . ..), but they

are all im~ ausible; eventually any plausible path will enter s3, where a is false.

1. Cache variable xg, representing measure(—(7U—a), s3).

2. Check whether 7U-a is realizable from sy. This requires recursive calls to check
whether —a is satisfied with non-zero probability from any state reachable from

S3. 83 is such a state, so the until is realizable.

3. Therefore, step(—(7U-a), s2) = step(—((—a) V(T A X(TU—a))), s2) = ~((—
step(a, s9))V (TU~a)) = ~((=T) VvV (TU—a)) = ~(TU-a). So, xe is computed
as a weighted sum zg = 0.7219 + 0.321;, where z1y = measure(—~(7U-a). s1)

and 17 = measure(~(7U-a), s3).

4. Since s3 is also reachable from s;., the until is realizable from s;. and therefore
step(—=(TU=a), s;) is also =(TU—a). So the call to 1 = measure(—~(7U-a).
s1) results in three recursive calls to measure(—(7U-a), s) for the threc states s.
All of these are calls that have already been assigned variables. so the solutions
are retrieved from the cache. The resulting equation is: z19 = 0.52,0 + 0.4xg +
0.1x1:1.

5. Finally, the call to x;; = measure(~(7TU-a), s3). Again the until is realizable.
So step(—(7TU-a), s3) = step(—((—a) V(T A X(TUa))). s3) = ~((— step(a,
s3)) V(TU—a)) = ~((=F) V (TU~a)) = ~(T) = F. Therefore, z;; = 0.

6. So we end up with the following system of equations: xg9 = 0.7z19 + 0.3711;
10 = 0.5719 + 0.4x9 + 0.1z11; z1; = 0. Solving these just yields ¢ = 219 =
z1; = 0, implying (correctly) that the probability that a is always true is 0 from
any state in M;. ‘



Chapter 1
Complexity

In this chapter I look for bounds on the running time of a top-level call to measure(¢,
s). Proofs are again delegated to Chapter 5.

The main aim of this work has been to find an algorithm and prove it correct.
The complexity results which follow, like the MCMC implementation described in
Chapter 6. are unrefined and more likely to be useful as a basis for future work (see

section 8.2) than as conclusive results in themselves.

4.1 Approach

A top-level call to measure(¢, s) results in a number of further recursive measure()
calls. measure() caches its results: a second call with the same parameters returns
immediately. Also, calls passing in 7 or F just return 1 or 0. So for the purpose
of running time, we can ignore these types of calls and consider only the nontrivial
calls, i.e., calls with distinct input pairs (¢,t) where ¢ is not a boolean. Then, by
computing a bound on the maximum possible number of distinct nontrivial input
pairs, and another on the amount of time spent in each nontrivial call (not counting
its recursive calls), we can multiply these to get a bound on the total amount of time
required by measure(d, s).

The number of distinct input pairs is the number of states in the input Markov
chain M (easy to count), times the number of distinct LTL-BDDs passed to measure()
by recursive calls (not so easy). So most of the analysis which follows will look for

bounds on:

39
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¢ the number of distinct LTL-BDDs passed to recursive measure() calls, and

e the amount of time spent in each call to measure().

4.2 Input measurements

First, we define some input measurements that will figure in our bounds. See also
the examples in Figure 4.1 below. (Of course these measurements are dependent on
the inputs ¢ and M. Normally the formula or machine in question will be obvious,

so for brevity we will simply write, e.g., u rather than u(¢).)

Definition 4.1

(o] f syntactic length of ¢: # operators, booleans and atoms (not parentheses)
12| i # distinct LTL atoms in ¢
|A] i) # distinct LTL-BDD atoms (= # distinct LTL atoms, nexts & untils) in ¢
o & # (not necessarily distinct) LTL atom occurrences in ¢
v # distinct (unbounded) untils in ¢
dy = udepth(e) (Defn 5.2): maximum nesting of (unbounded) untils in ¢
dy =4 xdepth(¢) (Defn 5.3): max nesting of nexts in ¢, counting atoms as nexts
d; “ maximum nesting of nexts (as for dx) inside any until in ¢
|S| «f # states in M
def

E = 4 edges (prob > 0) in M
Given an input ¢ and M. these values are all easy to measure. Using them, we

want to express big-O bounds on the following less easily measured values:

Definition 4.2

n = # nontrivial measure() calls
le| = avg # variables per cached expression, over entire execution of measure(®, s)
|B| = # distinct LTL-BDDs passed to measure() (apart from 7 and F)
m = running time of a single measure() call, not counting recursive calls
R = total running time of measure(¢, s), for any s in M
As argued above, R =n-m and n < |B|-|S|, so Ris O(|B|-|S|-m). So we want

bounds on |B| and m.
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¢ gl E[ Al o w dy dx
T 1 0 0 0 0 0 0 0
—a 2 1 1 1 0 0 1 0
TUc 3 1 2 1 1 1 1 1
TUS 5 1 11 11 0 0 11 0
(Xa) Aa 4 1 2 2 0 0 2 0
X(a Ab) 4 2 3 2 0 0 2 0
X (bUX—a) 6 2 5 2 1 1 3 2
(Xc)U(a N XDb) 7 3 6 3 1 1 2 2
(=e)U~(TUD) 7 2 4 2 2 2 1 1
(=) US3=(TU=?D) 9 2 7 15 0 0 6 0
(XXc)UbA Xc) 8 2 5 3 1 1 3 3
(ldc) vV X X =(blhc) 10 2 5 4 1 1 3 1
X((aldb) v X (U X)) 10 3 8 4 2 1 4 2
X({(adb)UX-(bUXc)) 11 3 9 4 3 2 4 3
(aUb)U—(cUX X (BUXa)) 13 3 10 5 4 3 4 4
(UXXXXXXXa)UXDb 13 3 13 32 2 8 8
(XXXXOUXXa)UXXXD 14 3 14 32 2 5 5

Figure 4.1: The variables we use to measure formula size. defined above. For example.

|X| counts the number of distinct LTL atoms in ¢.

4.3 Bounds on |B|

Here I describe three bounds on |B]: one fully general but unreassuring, one for the
special case of formulas containing no untils (or only bounded untils), and one for

formulas containing no nested untils.

4.3.1 Bound 1: a crude upper bound on |B]

The simplest upper bound on |B|, the number of nontrivial LTL-BDDs passed to
measure(), is obtained by counting the total possible number of LTL-BDDs that can
be created from the input formula ¢. By Corollary 5.17, no more than 22" LTL-
BDDs are created during a call to measure(), where |A] is the number of LTL-BDD
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atoms in ¢ as defined above. Therefore we have bound 1 on |B:

|B| < 22, (Corollary 5.50)

|A4] < |#l], so this bound says that the number of LTL-BDDs passed to measure()
is no more than doubly exponential in the size of the formula.

Bound 1 is of limited use, because 22 grows very fast. For example, if ¢ =
(Xc)U(a A Xb), then |A| = 6, and 227" = 22° = 264 about 18 trillion trillion. As
shown in Figure 4.2, the actual number of LTL-BDDs passed to measure() on this
input in MCMC is 7. In fact, variants like (Xb)U((Xa) V ¢) all pass between 5 and 7
distinct LTL-BDDs. This suggests that our 22* bound is not tight.

Formula # BDDs passed to measure()
Bound 1 Bound 2 Bound 3 MCMC

o 22Hi dy2° 9(dx +di=1)|E{gu

T 2 0 1 1
e 4 2 1 3
TUc 16 - 6 4
TUS ¢ 22048 22528 1024 13
(Xa)Na 16 8 2 4
X(aAnbd) 256 8 4 1
X(bUX—a) 232 - 768 7
(Xe)d(a N XD) 264 — 1536 7
(me)U=(TUD) 65536 — — 6
(me)US(TUSD) 212 196608 1024 23
(XXc)U(bAXc) 232 - 3072 8
(bhc) v X X~ (blUc) 232 — 192 7
X((aldb) v X (BUXC)) 2256 - 294912 11
X({(aUbU X ~(bU X c)) 2512 - — 17
(aUDU—(cdUX X (U X a)) 21024 - - 43
(UXXXXXXXa)UXD 28192 - - 135
(XXX XOUXXaUXX XD 916384 _ - 16

Figure 4.2: Our upper bounds on |B| are not tight.
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4.3.2 Bound 2: when dy =0, |B| < dx2°

In practice, MCMC can often handle large formulas (with 20+ LTL-BDD atoms). In
particular, formulas with no untils (u = dy; = 0 — recall that this includes formulas
with only bounded untils) and formulas without nested untils (dy < 1) are generally
solved quickly. Since these categories include most formulas use = 1s model checking
specifications, tighter bounds for these cases are worth having. We can obtain such

bounds by the following reasoning:

1. Proposition 5.31 asserts that, if a top-level call measure(¢, s) results in a re-
cursive call to measure(¥, t), then ¢ is reducible to ¢ (Definition 5.7), i.e.. ¥ is
the result of some number of applications of step() to ¢, or to the right-hand
argument of an until within ¢. For example, if ¢ = a A (BdX X ¢). then " must

be the result of applying step() (repeatedly) to ¢ or to X Xc.

2. The right-hand argument of any until within ¢ is no larger than ¢. bv any
of the measures in Definition 4.1. so a bound on the number of LTL-BDDs
resulting from applications of step() to ¢ will also lead to a big-O bound on |B)|.
Therefore it suffices to count the number of LTL-BDDs which can result from
applying step() to ¢, i.e., the number of different possible vaiues of step*(o.
P) for some path P and & > 0 (Definition 5.4).

First, suppose ¢ contains no unbounded untils (v = dyy = 0). Then each appli-
cation of step() to ¢ strips off at least one X (Proposition 5.25). Also. if step() is
repeatedly applied to ¢, each occurrence of an LTL atom in ¢ is checked only once
(or not at all) by step(). Using these observations we can derive bound 2:

When dy = 0, |B| < dx2°. (Proposition 5.51)

dx and o are < |¢|, so in loose terms this says that for until-free formulas. |B] is
singly exponential in [¢].

This is a fairly tight bound: we can construct formulas for which |[B| approaches
it. For example, for a ¢ of the form (a A X'a) V (b A X'b) V... (where X' stands for
i applications of X), |B| is about dx23.

4.3.3 Bound 3: when dy < 1, |B| is O(3u4/")

Now suppose ¢ is an until, and ¢’s subformulas contain no untils (u = dy = 1). Then

we can show that, for any path P and k > dy, step®(¢, P) = T, F, or step?* (0, Q)
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for some other path ¢ (Lemma 5.53). And in this case we can show that therefore
|B| is O(2(x=DIEN (Corollary 5.55).

Next, suppose dy = 1 but ¢ itself is not an until. Then it must contain u
(unnested) sub-untils. Using Lemma 5.53, we can derive bound 3:

|B| is O(2t¢x+4-1DIEI3v) (Theorem 5.56)

Since dy, d;, ¥ and u are all < |¢|, this bound says ﬁhat for formulas with no
nested untils, |B| is no more than singly exponential in the size of the formula. As
shown in Figure 4.2, this is a big improvement on bound 1 when it applies, but still

not a reliable indicator of complexity on many inputs. However:

Conjecture 4.3 When dy = 1, in the worst case, bound 3 (Theorem 5.56) is tight:

no significantly tighter bound on |B| exists in terms of dx, d;, |Z| and u.

4.3.4 Conjecture: |B|is O(219)

Any bound is only as useful as the measurements in terms of which it is expressed.
For example, even if worst-case examples exist for any given dy, d;, |£| and u such
that bound 3 is tight, it may be that any such worst cases involve very long formulas.
It is reasonable to want a general bound directly in terms of |¢|, the length f the

formula. This I have not been able to find.

Conjecture 4.4 There exists a general bound on | B| expressible in terms of || which

s significantly tighter than bounds 1 or 3.
And even (optimistically):
Conjecture 4.5 On typical, non-degenerate inputs, the expected value of |B| is O(2/°1).

A natural way to start looking for these improved bounds is to try to generalize
bound 2. For example, if the effects on |B| of each atom, boolean operator (-/A/V),
and temporal operator (X /U) could be quantified, they could be combined into a

bound on |B| in terms of |4|.

4.4 A crude upper bound on m

m, the time taken by a nontrivial call to measure(¢, s) (not counting time spent

within recursive calls), can be broken up into three parts:
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1. time to compute step(g, s)

2. time to make the recursive measure() calls, not counting the time spent within

each call

3. time taken by solve(z,, = e) and substitute(zy, := 74)

We will analyze these separately.

4.4.1 step()

step(¢, s) performs three types of tasks: recursive calls to step(), calls to BDD
operations (and(), or(), cond()), and determining whether an until 7l{v is realizable
from s (Definition 3.4). Consider the time required for each task separately.

The recursive calls to step() are all on subformulas of ¢. Therefore. these calls
will result in one step() call per node in ¢. By Proposition A.1, the number of nodes
in 6 is O(2!4). Therefore, the total time required by step(¢. s) is O(211 - m"), where
m' is the time required by each recursive step() call (not counting its own recursive
calls).

By Proposition A.3, and(), or(), and cond() are all O(2/4l). Aside from its re-
cursive calls, each call to step() makes at most four calls to these BDD operations.
Therefore the time taken by BDD operations in each step() call is O(2).

Determining whether 74{v is realizable from s is faster if we do some preprocessing.
We can begin the top-level call to measure(¢, s) by calling measure(v. t) for each
until 78/v in ¢ and each state ¢ in M. It is then a standard graph reachability problem
to determine, for each 78{v and ¢, whether 78/v is realizable from t; i.e.. whether there
is any state ¢’ reachable from ¢ such that measure(v, t') > 0. With this information
stored, realizability can be checked by future step() calls in constant time.

How long does this preprocessing take? The time for the measure(v, t) calls
can be ignored here, since m excludes the time for other measure() calls. For an
implementation (like MCMC) which simply represents M as an |S| x |S| matrix,
the time required for the reachability computation is at worst O(|S|? - u). This
is a reasonable cost, since the time just to read in such a matrix is O(|S]?). In
more efficient (e.g., graph-based or BDD-based) Markov chain representations, the

reachability computation can be brought down proportional to E, the number of
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edges in M. In either case, as we will see, this preprocessing cost is not a limiting
factor.

So apart from some preprocessing, the total time required for a call to step(¢, s)
is: (the number of recursive step() calls)-(the time required for each call)= O(24/) .
o2 = 0(4l4).

4.4.2 Recursive measure() calls

Recall again that we are not counting the time spent within these calls, only the time
required to make them: that is, one time unit per call.

measure(¢, s) makes a recursive call to measure(¢’, s') for each outgoing edge
with non-zero probability (§(s,s’) > 0). In MCMC'’s simple matrix representation,
measure() needs to go through the entire s row to find the valid s’ candidates. so
finding them takes time |S|. In more efficient representations, the outgoing edges
can be looked up directly, bringing the average time down to O(%) i.e.. the average

degree of M'’s graph.

4.4.3 solve()/substitute()

This is another part of the algorithm where we are still faced with a big gap between
our worst-case bounds and observed performance on sample inputs.

The worst case occurs when |e|, the average number of variables in each cached
solution expression, is proportional to the total number of variables created. The
number of variables created is just n, the number of nontrivial calls to measure().
Suppose |e| &~ n. Then, on average, solve() must solve an equation in 7 variables,
which is O(n). In fact this can be improved to O(1), but consider substitute().
The number of steps required to substitute an expression of n variables into each of
n cached solution expressions is O(n?).

Recall that n can certainly be expected to be > |S|, the number of states in M.
So, if the running time for each measure() call, m, is n?, then even for a simple formula
o. the total running time R is (# calls) - (time per call) = Q(|S|) - (|S]?) = Q(|S]3).
This is terrible.

One way to look at this is to observe that these substitute() calls are effectively
solving a system of n linear equations in n variables. Naive algorithms to do this are

indeed O(n?), and even fast special-case algorithms only approach O(n?). From this
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point of view a O(|S|®) running time, or at least O(|S|?), looks like a legitimate worst
case.

However, in practice |e| is usually much lower than n. In fact, we can show that
on many realistic inputs |e| < 1, so that solve() and substitute() run in constant
time and are not a significant factor in m.

Suppose ¢ and 9’ = step(?, t) are not mutually reducible. Then, by Corollary
5.35, measure (¢, t) returns a number. And Corollary 5.36 further asserts that the call
made by measure(, t) to substitute() only performs a single substitution. This
gives us Corollary 5.57: when ¢ and ¢’ are not mutually reducible, the running times
of solve() and substitute() are O(1).

A common case in which ¥ and ¢’ are not mutually reducible is when u = 0: ¢
contains no unbounded untils. When u = 0, Proposition 5.26 implies that ¢ and "'
are not mutually reducible, unless ¢’ = ¢. Either way solve() and substitute() are
O(1).

More generally, the mutually-reducible equivalence relation partitions the total
set of created LTL-BDDs B into j equivalence classes, each containing |B;| mutually
reducible LTL-BDDs. Lemma 5.32 implies that each call to substitute() or solve()
deals only with variables whose formulas belong to the same equivalence class (where.
e.g.. the variable of ., is ¢). So, rather than solving a single system of n < |B] - |S]|
equations in n variables, measure() solves j systems, each of 1; < |B;| - [S] equations
in n; variables.

The expected time to solve this type of sparse matrix varies widely (between O(n?®)
and O(n)) depending on the size of the B;’s. When u > 1, the worst case may indeed

approach O(n®). However. we will conjecture that |e| is usually O(%):

Conjecture 4.6 On typical, non-degenerate inputs, the ezpected running time of

each call to solve() and substitute() is O((%f)

4.4.4 Adding it up

Our worst-case bound for an efficient implementation of m, then, comes to:
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preprocessing time, averaged over n calls)
time for step())

(
(
(time to make recursive measure() calls)
(

+ o+ +

time for solve() & substitute())
O(Z) + 0(4) + O(g) + O(n?)
O(ipisy) + 04 + O(;5) + O((1BI - 1S)?)
O(4*) +0(5) + O((IB| - 1S)?)
In general, this expression is dominated by the O((|B|-|5|)?) time for substitute():

IAIAN

quadratic in the number of LTL-BDDs created, and in the number of states in M.
In the u = 0 case, it reduces to O(4/4 + 1%) exponential in the number of distinct
LTL-BDD atoms (LTL atoms, nexts and untils) in ¢, linear in the average degree of
M.
In the event that Conjecture 4.6 holds, the bound on m reduces to O(414 + (%)2)
exponential in the number of LTL-BDD atoms, quadratic in the average degree of

M.

4.5 Conclusions

The main objective of a complexity analysis, apart from theoretical interest, is to
estimate the practical limits on an algorithm’s input size. As Figure 4.2 makes clear.
our analysis contains far too many special cases, conjectures, loose bounds. and ex-
ponentials to be useful for this purpose.

A more sensible way to gauge the usefulness of the measure() algorithm is to try it
out on some realistic examples. To do this properly will require a more mature imple-
mentation than MCMC, but even running such examples in MCMC seems unlikely to
produce more pessimistic results than our theoretical worst-case bounds. Such tests
are an obvious area for future work (Chapter 8.2).

In the absence of realistic tests, we can only summarize the analysis with the
following bounds on R, the total running time of a call to measure(¢, s).

Recall that R =n-m, and n < |B| - |5]:

1. Worst case when u = 0: R is O(dx2°(|S|- 4! + E)): in rough terms, linear
in E, singly exponential in |¢|.

2. Conjectured expected case when u > 1 (assuming Conjectures 4.5 and

4.6 hold): O(|S] - 2l°l(414l 4 (I—gl)z)) roughly, linear in |S|, quadratic in J% singly
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exponential in |¢|.
3. Theoretical worst case: R is O(82" .|S|3).

49



Chapter 5
Proofs

This chapter contains the proofs relied on by Chapters 3 and 4.

The number and hairiness of these proofs is unfortunate. There may be a sim-
pler way to prove the correctness results (in particular, Lemma 5.46: in any call to
solve(z,s = e). the coefficient of x4 in e is < 1), but so far it has escaped me.

The main results are in the following sections:

e 5.7 (pages 68-71): a plausible path has a prefix determining ¢

e 5.8 (pages 71-80): the big combined induction. proving the correctness of measure()

and step()

5.1 Some definitions

The precise definition of the subformulas of an LTL-BDD ¢ is important, because it

will underpin our many structural inductions:

Definition 5.1 The subformulas of an LTL-BDD are as follows:
e T /F: no subformulas
e (a?vY:w) Y andw
o (X7 ?2¢ rw): 7, ¢ andw

o (TUV 77 tw): T, v, Y and w

50
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Note that X7 is not a subformula of (X7 ? ¢ : w), since then (X7 ? 7 : F) would
be a subformula of itself, killing our structural inductions. Similarly, 7¢/v is not a
subformula of (7Uv 7 ¢ : w).

We will sometimes refer to “the subformulas of an LTL formula ¢”, referring of

course to the subformulas of the LTL-BDD representing ¢.

Definition 5.2

udepth(7) = udepth(F) = 0
udepth(a 71/)' w) & max(udepth(¢), udepth(w))
udepth(X7 7 ¢ : w)
udepth(tUv 7 ¥ 1 w)

max(udepth(7), udepth(v), udepth(w))
max(udepth(7) + 1, udepth(v) + 1, udepth(v’), udepth(w))

udepth(¢) computes the maximum depth of nested untils in ¢. Examples: udepth(aV
¢) = 0, udepth(a A (bc) A (aldc)) = 1, udepth((blda)ldc) = 2.

As we saw in section 2.3.4, bounded untils are encoded without ptxre untils, so
they are not counted by udepth(): for any k, udepth(72/<Fv) = max(udepth(7).
ndepth(v)).

Definition 5.3

xdepth(7) = xdepth(F) = 0
xdepth(a ? ¥ : w) = max(1l, xdepth(v), xdepth(w))
xdepth(X7 ? ¢ : w
xdepth(tUuv 7 9 :

w) = max(xdepth(7) + 1, xdepth(¢), xdepth(w))
def
w)

= max(xdepth(7), xdepth(v), xdepth(¢), xdepth(w))
xdepth(¢) computes the maximum depth of nested nexts in ¢, counting atoms as
nexts: xdepth(7") = 0, xdepth(a) = 1, xdepth(X (aAXb)) = 3, xdepth(X ((Xa)U(bV
X Xa))) = 4.
Because a bounded until 72/<*v is encoded with k nexts (k — 1 around the 7),

xdepth(tU<*v) = max(xdepth(r) — 1, xdepth(v)) + k.

Definition 5.4 For a given LTL-BDD ¢ and path P = (p1,p2,p3,-..) in a labeled
Markov chain M:
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step’(0, P) ¥ ¢
def

Stepn>0(¢a P) = Step”_l(step(d), pl)a P2 = (anPB» . ))

So step'(¢, P) = step(¢, p1). step’(¢, ) = step(step(¢, p1). p2), etc. Intu-
itively. step™(¢, P) is the result of the n'" recursive call to step() made by measure(¢,

p1) as i, raverses P. The following alternative form can also be useful:
Proposition 5.5 step™%(¢, P = (p1,ps,...)) = step(step" (¢, P), pn).

Proof From the above definition, by an obvious induction on n. ]

Definition 5.6 For a path P in a labeled Markov chain M, and LTL-BDDs ¢ and
U, step() reduces ¢ to v along P if 3n > 0 such that step”(¢, P) = .

Intuitively, step() reduces ¢ to ¢’ along P if the sequence of recursive calls made
by measure(¢, s) as it traverses P eventually includes a call to measure(y, t) (for
some t).

Note that n > 0 allows n = 0, so by this definition, ¢ reduces to itself along any

pati.

Definition 5.7 For two LTL-BDDs ¢ and v, ¢ is reducible to ¢ (or equivalently.

U is reducible from ¢) if either:
1. 3 some path P such that step() reduces ¢ to ¢ along P, or

2. ¢ contains an until Tv, and 3 a path P such that step() reduces v to 1 along
P.

Note that, unlike Definition 5.6, Definition 5.7 is independent of any specific path
or Markov chain. This reducibility relation will be useful to us because of Corollary
5.16 and Proposition 5.31: any formula ¢ is reducible to finitely many other formulas

1. and for any recursive call measure(t, t) resulting from measure(¢, s), ¢ is reducible

to .

Definition 5.8 Two LTL-BDDs ¢ and ¢ are mutually reducible if ¢ is reducible
to ¢ and ¢ is reducible to ¢.
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Definition 5.9 A possible path P in a labeled Markov chain M is a (finite or infi-
nite) sequence of states (p1,pa....) describing a possible sequence of state transitions

in M: i.e., such that Vi > 1, 6(p;, pix1) > 0.

For two states s and ¢, then, ¢ is reachable from s iff there exists a possible path

(pl:S;PQ-,---,pnA t)

Definition 5.10 A state s occurs infinitely often in a path P = (py,pa,...) of
there are infinitely many i such that p; = s. Similarly, a finite path Q@ = (q1,G2, - - s qm)
occurs infinitely often in P if there are infinitely many ¢ such that, V1 < 7 < m,

Di-145 = Gj-

Definition 5.11 A plausible path in a labeled Markov chain M s an infinite pos-
sible path P = (p1,pa,...) such that for any state s occurring infinitely often in P,
fQ=1(q1 =8,¢2,¢3,--.,qm) 15 a finite possible path starting from s. then Q occurs
mfinitely often in P.

The idea of a plausible path is crucial to our algorithm. It formalizes the intuition
once expressed by my mother: How is it vou call so often and I'm not home. if you
never call when I'm home? In other words, given enough chances to happen. it is
implausible that a possible event should never happen.

An example of an implausible path in M, from page 10 is R = (s,.81.51,...).
which never visits s, or s3 despite infinitely many opportunities. Section 3.5.3 illus-

trates how measure() ignores these implausible paths.

Definition 5.12 A finite possible path Q@ = (q1,q2,...,9m) determines an LTL
formula ¢ in a labeled Markov chain M if either every plausible path P = (p; =
G1s -y Pm = Gm, Pms1, - - -) beginning with Q satisfies ¢, or no such P satisfies ¢.

In other words, the course M follows beyond p,, = ¢, doesn’t matter: the first
m states of P determine whether or not it satisfies ¢.
The following examples are worth tracing through for a full understanding of

plausible and determining paths:

1. Note that M is an essential parameter in Definition 5.12. For example, refer-

ring again to M; from Figure 1.1, it is obvious that the prefix Q' = (51, $1)
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determines a (as true) and X —b (as false); but not so obvious that it also de-
termines v = TU(-b A X—b) (“Eventually b is false in successive states”). as
false, since no possible path in M starting with @’ satisfies this formula. In

fact, the empty path () determines ¢ in M.

2. The stipulation that F »e plausible is also essential to the definition. For
example, ' also determines w = TU—a (“Eventually a is false”) in My, as
true, despite the existence of paths such as R = (s1,$1,51,...) which don’t
satisfy w. Such paths are possible, but not plausible; any plausible path in M;

eventually enters s3, where a is false, satisfying w.

3. Theorem 5.41 asserts that, for any plausible path P and formula ¢. P has a
finite prefix determining ¢. But note that this theorem does not hold in general
for possible paths: there exist possible paths P such that no finite prefix of
P determines certain formulas ¢, but every such P is implausible. No such P
exists in M, but the 6-state Markov chain M in the sample input to MCMC
(Chapter 6) contains examples, such as S = (ss, s5.85....). No finite prefix of
S determines w = TUb.

Definition 5.13 step() resolves ¢ along P if it reduces ¢ to w along P (Dcfinition
5.6). where w =T /F = whether P = ¢.

Definition 5.14 An expression e, made up of a scalar term kg and n variable terms
K1Zoty - - KnZont,, TEpresents a number k if replacing the variables with the proba-
bilities they stand for leads to a sum of k: ko + Y ;. ki-prob(t; |= ¢:) = k.

5.2 measure() and step() terminate

Proposition 5.15 For any LTL-BDD ¢ and state s in a Markov chain M, the return
values of measure(¢, s) and step(¢, s) contain no LTL-BDD atoms not already

]
2

present in. ¢.

Proof In the LTL-BDD representation, there is a distinct LTL-BDD atom for each
distinct LTL atom, next, or until. Examining the definitions of measure() and step()
(pages 31 and 33), we find that they create no new LTL atoms, nexts or untils not

already present in ¢. =



CHAPTER 5. PROOFS 55

Corollary 5.16 For any LTL-BDD ¢, if |A| is the number of distinct LTL-BDD
atoms occurring in ¢, then there exist no more than 22 distinct Y such that ¢ s

reducible to 1.

Proof Follows from Propositions 5.15 and A.2. [ ]

Corollary 5.17 For any LTL-BDD ¢ and state s in a Markov chain M, if |A| is the
number of distinct LTL-BDD atoms occurring in ¢, then a top-level call to measure(¢.
s) generates no more than 22! L TL-BDDs.

Proof Again, follows from Propositions 5.15 and A.2. n

Proposition 5.18 measure(¢, s) and step(o, s) terminate.

Proof Structural induction. Assume that. for all subformulas ¥ of ¢. and for all ¢.
measure(y, t) and step(v, t) terminate. We need to show that therefore measure(o.
s) and step(¢, s) terminate.

That step(¢, s) terminates follows immediately by the induction hypothesis: its
recursive calls to measure() and step() all pass in subformulas as arguments.

Next, measure(¢. s). measure() has three cases, of which the first two (7 /F. or
a solution in the cache) terminate immediately. There remains the third. nontrivial
case. In this case, measure(¢, s) makes a recursive call to step(¢. s) and multiple
recursive calls to measure(¢’, s'). The call to step(¢, s) terminates by the reasoning
above. But we cannot infer termination of the recursive calls to measure(¢’, ') from
the induction hypothesis. since ¢’ is not necessarily a subformula of ¢.

However, note that the first thing a nontrivial call to measure() does is store a
new variable in the cache; new because the nontrivial case is only entered if nothing
was previously stored in the cache for (¢,s). The number of states is finite, and
by Corollary 5.17, so is the possible number of distinct LTL-BDDs. Therefore the
number of possible input pairs (1,%) is bounded. So, since each nontrivial call to
measure() adds a new input pair’s variable to the cache, and cached solutions are
global and never removed, it follows that only finitely many of the recursive calls to
measure() are nontrivial.

Consider the last of these nontrivial calls. Since it is the last, all its recursive calls

must be to the trivial cases, which terminate. Therefore it also terminates. And we
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can similarly reason that so must the 2"9-last nontrivial call, the 3"-last, and so on.
So all the nontrivial calls resulting from a call to measure(¢, s) terminate, as well as

the trivial calls. Therefore, measure(¢, s) terminates.

So by induction, every call to measure() or step() terminates. [

5.3 step() distributes over BDD operations

Lemma 5.19 step() commutes with not() and distributes over and(), or(), and
cond():

o step(not(¢). s) = not(step(s, s))

o step(and(éy. 6y), s) = and(step(¢y. s), step(ds, s))

o step(or(¢i. ¢o). s) = or(step(¢1. s). step(¢s, 5))

o step(cond(¢1. ¢n, @3). s) = cond(step(dy, s), step(ds, s), step(s. )

Proof We show these by structural induction, using some of the BDD operation
identities from Figure A.15 (page 116) and straightforward (if somewhat laborious)
case analysis.

1. not(). Assume the commutativity identity holds for all subformulas of o (as
defined in Definition 5.1). We show that therefore it also holds for ¢, whether ¢ is a
boolean or an atom LTL-BDD.

Suppose ¢ =7 (¢ = F is exactly parallel):

step(not(7), s)

= step(f, S) (defn of not())
= F (defn of step())
not(7T) (defn of not() again)

= not(step(7, s)) (defn of step() again)
Or suppose ¢ = (o ? ¥ : w) (covering the a = a, a = X7, and o = 7Uv cases all

together):
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step(not(a ? ¥ : w), s)
= step((a 7 not(¥) : not(w)), s) (defn of not())
= cond(a’, step(not(y), s), step(not(w), s)) (defn of step())
( ), (
(

/

cond(a’, not(step(¢, s)), not(step(w, s))) (ind hyp)
not(cond(c’, step(¢, s), step(w, s))) Figure A."5)

= not(step((a ? ¥ : w), s)) (defn of step())
In either case the induction holds. So step() commutes with not().

2. and(¢;, ¢2). Structural induction again. This time assume the claim holds
for any and() operation where both operands are subformulas (of ¢; or ¢;). or one
operand is a subformula and the other is ¢; or ¢.

Suppose one of the operands, say ¢;, is F:

step(and(F, ¢2). s)
= step(F.s) (defn of and())
= F (defn of step())
and(F, step(¢s, $)) (defn of and())
= and(step(F, s), step(¢o, s)) (defn of step())
Or suppose ¢; = 7
step(and(7, @), )
= step(dy, $) (defn of and())
= and(7, step(¢a. s)) (defn of and())

= and(step(7. s). step(dy. s)) (defn of step())
If neither ¢ nor ¢, is a boolean, then both are atom LTL-BDDs: ¢ = (a; 7 v 1 wy).

@9 = (g 7 1 : wy). Now there are four cases, based on whether a; = as. and whether
and() enters the (n,, = n-,,) case (see the definition on page 107):
Case 2a: a1 # a3 (say, a; < as), and(¢y, ¢2) # and(wy, ¢o):
step(and((a; ? ¢1 @ wy). (a2 7 ¥ : wo)), §)
= step((a; 7 and (¢, ¢2) : and(wy, ¢2)), ) (defn of and())
cond(ay, step(and(vy1, ¢2), s), step(and(w;. ¢2), s)) (defn of step())
= cond(a}, and(step(¢, s), step(¢a, 5)),

and(step(w;, s), step(¢a, s))) (ind hyp)
= and(cond(af, step(¢, s), step(w, s)), step(¢e, s)) (Figure A.15)
= and(step((a; 7 ¥ : w1), s), step(¢2, s)) (defn of step())

Case 2b: a; < ag, and(¢, ¢2) = and(wy, ¢o):
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step(and((a; 7 ¥ : wr), (a2 7 ¥g 1 wy)), S)

= step(and(¢1, ¢2). ) (defn of and())
(o}, step(and(vy, &), s), step(and(¥y, ¢2), s)) (defn of cond())

= cond(a}, step(and(¢n, ¢2), s), step(and(ws, ¢2), s)) (case 2b)

= cond

(...as in case 2a)
Case 2c: o) = a = a, and(¥y, ¥) # and(wy, ws):

step(and((a 7 ¥1 : wy), (@ 7 ¥ : we)), s)
= step((a ? and(¥1, ¥») : and(wy, wa)), ) (defn of and())
= cond(a’, step(and(¢1, ¥2), s), step(and(w;, wa), s)) (defn of step())
= cond(a’, and(step(¥1, ), step(ya, s)),
s), step(ws, ))) (ind hyp)
= and(cond(a’, step(¥y, s), step(wi, $)),

and(step(w;,

cond(a’, step(s, s), step(ws, $))) (Figure A.15)

= and(step((a 7 ¥; : wy), §), step((a 7 ¥y : ws), §)) (defn of step())
Case 2d: a; = ay = a, and(¢1, ) = and(wi, wy):

step(and({a 7 ¥ : wy), (@ 7 ¥y 1 wy)), s)
= step(and(vy, ¥3). s) (defn of and())
= cond(a’. step(and(vl Un), 8), step(and(tq, ¢¥2), s)) (defn of cond())
= cond(a’, step(and(¢;, ¥s). s). step(and(w;. wq), s)) (case 2d)

(...as in case 2¢c)
In every case the induction holds, so step() distributes over and().

And 3. or() and 4. cond() follow immediately, since or() is defined in terms
of and() and not() (Definition A.G), and cond() in terms of or(), and() and not()
(Definition A.7). =

Corollary 5.20 step™() commutes with not() and distributes over and(), or(), and
cond():

e step”(not(¢), P) = not(step™(¢, P))
e step”(and(¢, ¢2), P) = and(step™(¢1. P). step™(¢2, P))
e step™(or(¢y, ¢2), P) = or(step”(¢:1, P), step™(¢o, P))

e step”(cond(¢;, @9, ¢3), P) = cond(step™(¢1, P), step™(d2. P). step™(o;
P))
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Proof Follows from Lemma 5.19 by simple induction on n. Example (for the non-
trivial n > 0 case):
step”(and(¢>1 ¢2), P)
= step" '(step(and(¢;, ¢2), p1), Ps) (defn of step™())
= step” '(and(step(¢1, p1), step(d2, 1)), Fa) (Lemma 5.19)
= and(step" !(step(¢i, p1), P»), step” !(step(éa, p1), P»)) (ind hyp)
(

= and(step™(¢;. P), step™(¢a, P)) defn of step™())
And the others operators follow similarly. ]

5.4 Mutually reducible LTL-BDDs contain the same

atoms

Proposition 5.21

1. The reducible-to and reducible-from relations on formulas (Definition 5.7) are

preorders.

2. The mutually-reducible relation on formulas (Definition 5.8) is an equivalence

relation.

Proof In domain theory, a preorder is defined as a relation that is reflexive and
transitive. Consider the reducible-to relation first. Reflexivity follows froni Definition
5.6: ¢ reduces to itself along any path P, so ¢ is reducible to (and from) itself.
Transitivity is also clear, from Definition 5.7: if ¢ is reducible to ¥, and > is reducible
to w, then ¢ must be reducible to w. And the same holds for reducible-from.

An equivalence relation is a preorder which is also symmetric. The reflexivity and
transitivity of mutually-reducible follow straightforwardly from the fact that these
properties hold for reducible-to and reducible-from, and the symmetry of mutually-

reducible is obvious. ]

We can now identify some constraints on which pairs of LTL-BDDs satisfy these

relations:

Proposition 5.22 If one LTL-BDD, ¢, is reducible to another, v, then every LTL-
BDD atom « occurring in ¢ (of one of the three forms a, X7, or TUUv) also occurs

n ¢.
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Proof By Proposition 5.15, step(¢, s) introduces no new LTL-BDD atoms a not
already present in ¢. So any a occurring in a ¥ of the form step™(¢, P) also occurs
in ¢. Similarly, for any 74/v occurring in ¢, any a occurring in step”(v, P) occurs
in v, and therefore of course also in ¢. Therefore, by Definition 5.7, any a occurring

in 1 also occurs in ¢. [

Corollary 5.23 If one LTL-BDD, @, is reducible to another, v, then udepth(¢) >
udepth(v).

Proof Follows from Proposition 5.22: since ¢ contains every LTL-BDD atom in .

it must contain every until in ¢, including those of greatest depth. [ ]

Corollary 5.24 Any two mutually reducible LTL-BDDs ¢ and ¥ each contain ezxactly
the same set of LTL-BDD atoms, and udepth(¢) = udepth(¢").

Proof Follows immediately from Definition 5.8, Proposition 5.22. aud Corollary
5.23. -

We can also prove some stronger constraints on mutual reducibility:

Proposition 5.25 For any until-free LTL-BDD ¢, and any state s in @ Markov chain
M, xdepth(step(¢, s)) < max(xdepth(¢) — 1, 0).

Proof Straightforward structural induction on ¢. Assume the claim holds for ¢'s
subformulas. If ¢ is 7 or F, xdepth(step(®, s)) = xdepth(¢) = 0 and the claim is
obviously true. Otherwise, ¢ must be of the form (a 7 ¥ : w), where a is either an
LTL atom a or a next X.

Case 1: a = a. Then by the definition of step() (page 33), step(¢, s) is either
step(?, s) or step(w, s). Both cases are equivalent, so suppose step(¢, s) = step(¢,
s):

xdepth(step((a 7 ¢ : w), s))
= xdepth(step(?, s))
< max(xdepth(¢) — 1, 0) (ind hyp)
)

< max(xdepth(¢) — 1, 0) (defn of xdepth())

Case 2: a = X1
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xdepth(step((X7 7 ¢ : w), s))
xdepth(cond(7, step(¢, s), step(w, s))) (defn of step())

< max(xdepth(7), xdepth(step(¢, s)), xdepth(step(w, s))) (defn of xdepth())
< max(xdepth(7), max(xdepth(¢) — 1, 0),
max(xdepth(w) — 1, 0)) (ind hyp)
= max(max(xdepth(7), xdepth(¢)) — 1, xdepth(w) — 1), 0)
= max(max(xdepth(7) + 1, xdepth(%), xdepth(w)) — 1, 0)
= max(xdepth(¢) — 1, 0) (defn of xdepth())
So in either case the claim holds, completing the induction. =

Proposition 5.26 Any two distinct mutually reducible LTL-BDDs both contain at

least one until.

Proof It is easy to show that no two distinct until-free LTL-BDDs ¢ # ¢ are
mutually reducible; the claim then follows immediately.

Suppose without loss of generality that xdepth(y)) < xdepth(¢). If ¢ and ' are
7 and F they are obviously not mutually reducible. Otherwise, at least one of them
must contain an LTL atom or next, so xdepth(¢) > 1. We will show that ¢ is not
reducible to ¢. Since ¥' contains no untils, we only need to show that. for anv path
P=(p1,pa....)and n > 0, step™(¢. P) # ¢.

step?(v, P) = ' # ¢, so assume n > 1. step!(v. P) = step(¢. p1). By
Proposition 5.25, xdepth(step(¢, p;)) is either 0 or xdepth(v’) — 1. In cither case.
this depth is < xdepth(¢), so step!(w, P) # ¢. And, since the depth of nested nexts
can only decrease with further applications of step(), we have our result that ¥Yn > 0,
step”(@, P) # ¢. Therefore, ¥ is not reducible to ¢.

Therefore, if any distinct pair ¢ and ¥ are mutually reducible, at least one of them

contains an until, and therefore by Corollary 5.24 they both do. (]

Lemma 5.27 For any two distinct mutually reducible LTL-BDDs ¢ # ', every LTL

atom a or next X7 occurring in ¢ also occurs inside an until in ¥.

Proof Follows from an extension of the reasoning used to prove Proposition 5.26.
Let Agy be the set of LTL-BDD atoms occurring in ¢ but not inside any until in v,
or in ¥ but not inside any until in ¢. Suppose Ay, is nonempty. Then let a be the

element (or one of the elements) of this set with the greatest number of nested nexts.
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i.e.. the greatest xdepth(). Suppose without loss of generality that o occurs in ¢, but
not inside any until in ¢.

Using «, we will show that v is not reducible to ¢. It will follow that if ¢ and ¥
are mutually reducible, then A,y is empty, and the claim holds.

First we dispense with simple cases. If any until occurs in one of ¢ and ¥ but
not the other, then Corollary 5.24 is enough to show that ¢ and v are not mutually
reducible. So we need only consider the case where both contain the same untils.

Also, the second clause of the definition of reducibility (Definition 5.7) is satisfied
only if ¢ contains some until 7/v such that v is reducible to ¢. But by hvpothesis,
no until in ¢ contains a. So by Proposition 5.22, no such v is reducible to ¢.

So it remains only to prove that the first clause of the definition is not satisfied:
V paths P and n > 0, step™ (¥, P) # ¢. The n = 0 case is trivial: step®(v. P) = ¢,
and by hypothesis ¥ # ¢. So assume n > 1.

Suppose step”(y¥. P) = ¢. Since ¢ contains a, so does step™(v, P), and by
Proposition 5.22, therefore so does . Furthermore, since no until in v» contains a,
we can see from the definition of step() (page 33) that the « in step™(¢, P) can only
have been obtained by applying step() n times to an LTL-BDD a_, in ¢ in which a
was enclosed by n nexts. That is, xdepth(a_,) > xdepth(a) + n > xdepth(a).

Now, since no until in ¢ contains a, and we are assuming ¢ and ¢' contain the
same untils, it follows that no until in ¢ contains a. So. since a_, contains a. no
until in ¢ can contain a_,,. Therefore, a._,, belongs to A,,. That is, we have another
element of A, with more deeply nested untils than o — contradicting the definition
of .

Therefore our assumption, that for some P and n > 0 step™(¢, P) = ¢. was false.
So if ¢ # 1 and Ayy is nonempty, then ¢ and ¢ are not mutually reducible. The

claim follows immediately. [

Corollary 5.28 If an LTL-BDD ¢ is mutually reducible with any other LTL-BDD

Y (¢ # ), then every LTL atom a or next X7 occurring in ¢ also occurs inside an

until in ¢.

Proof Follows from Lemma 5.27 and Corollary 5.24: any a or X7 in ¢ must occur

in an until in %, and the same until must also occur in phi. ]
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Remark 5.29 The above constraints on reducibility and mutual reducibility are nec-
essary but not sufficient: there exist LTL-BDDs which satisfy these constraints and

yet are not (mutually) reducible.

For example, although they are made up of the same LTL-BDD atoms and satisfy
the constraint of Lemma 5.27, the two formulas 7Ua and a A (TUa) are not mutually
reducible: TUa is not reducible to a A (TUa). However, for many pairs (¢, 1) these
constraints are enough to show that ¢ is not reducible to ¢, or that ¢ and ' are not

mutually reducible.

5.5 For every variable z,; in return value 74, ¢ and

1 are mutually reducible

Proposition 5.30 Any call to measure() eliminates any variables it creates before

returning.

Proof measure() returns an expression consisting of some variable terms and a
scalar (numerical) part. Variables are only created in one place in the algorithm: the
first line of measure()’s nontrivial case (page 31). But this case then eliminates the
created variable from all cached expressions a few lines below. Since all recursive calls
measure() makes complete before it returns, eliminating any variables they created.
the set of variables in existence at the beginning of any call to measure() is the same

as the set in existence when that same call returns. u

Proposition 5.31 If a call to measure(¢, s) or step(¢, s) results in a (possibly

nested) recursive call to measure(y, t), then ¢ is reducible to .

Proof Follows from the definitions of measure() and step() (pages 31 and 33).
There are only two types of recursive measure() calls resulting from measure(¢, s):
those made by measure(), and those made by step(). The first type occurs when
some recursive call measure(%, t) calls measure(y’, t'), where ¥/ = step(¢. t). The
second type is of the form measure(v, t), where 78/v is an until occurring in ¢. So any
sequence of these can only lead to recursive calls of the form measure(v, t). where v’
is either step™(¢, P) for some path P and n > 0, or step™(v, P). In other words, by
Definition 5.7, ¢ is reducible to . n
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Lemma 5.32 If ry, is the expression returned by measure(¢, s), or the solution
cached for (¢, s). then for every variable xy: occurring (with coefficient > 0) in 14,

¢ and i are mutually reducible.

Proof Induction on call return order. Suppose the claim holds for all expressions
returned by calls to measure() terminating before measure(¢, s), including recursive
calls. We will show that it therefore holds for this call as well.

Consider the three cases in measure():

Case 1: ¢ =7 /F. Sorgs =1 or 0 and the claim is trivially true.

Case 2: 1y, retrieved from the cache. Then a previous call to measure(¢. s) must
have cached z,,. If this previous call hasn’t yet completed, then it also hasn't yet
substituted for z4.. so the cached expression is still just z.,. Therefore r,. = 7gs.
and again the claim is trivially satisfied (since mutual reducibility is reflexive).

If the previous call did complete, then the expression rj_ it left in the cache was

8

the same expression as it returned, and by the induction hypothesis 7, satisfied the

s
calls of the form substitute(ry; := ry). But again, any such substitution occurred

claim. Since then, 7/, may have been modified by variable substitutions, performed by
just before measure(s, t) returned 7y, so by the induction hypothesis, any variable
Leu N Ty was mutually reducible with 4. And since ¥ occurred in r; . and 7"05
satisfied the claim, ¥ and ¢ are mutually reducible. So by the transitivitv of mutual
reducibility (Proposition 5.21), for any variable z,, introduced by substitution into
... ¢ and w are mutually reducible. Therefore the claim still holds for 7.

Case 3: no cached solution. Then, apart from x4, 745 contains the same variables
as e, where e is the expression computed as a weighted sum of recursive calls to
measure(¢’, s’'). By the induction hypothesis, for any variable z,, in one of the
recursively computed expressions, ¢’ and psi are mutually reducible. And since ¢' =
step(@, s), ¢ is reducible to ¢, and by transitivity therefore also to ¢. So it remains
only to show that v is reducible to ¢.

By Proposition 5.30, all variables created during the call to measure(¢, ¢) are
eliminated before it returns. So zy; must have been created, but not eliminated,
before the call began. Therefore the measure(y, t) call which created z,: began
before and ended after the call to measure(¢, s). The only such calls are recursive

calls waiting for measure(¢, s) to terminate. That is, measure(o, s) is a recursive call
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resulting from measure(v, t). So by Proposition 5.31, ¥ is reducible to ¢. Therefore,

for any variable z,, occurring in r4,, ¢ and ¥ are mutually reducible. [ ]

5.6 measure() returns a number
Corollary 5.33 A top-level call to measure() returns a number.

Proof Of course, no variables exist at the beginning of the top-level call. So by
Proposition 5.30, none will exist when it returns, and therefore its return value must

be variable-free, i.e., a number. ]

Lemma 5.34 If ¢ and ¢ = step(¢, s) are not mutually reducible, then every call

from measure(¢, s) to measure(¢’, s') returns a number.

Proof Follows from Lemma 5.32, and the reasoning used to prove it. We will show
that if the expression r, returned by measure(¢’, s') contains any variable z,, then
¢ and ¢’ are mutually reducible. The claim follows immediately.

Suppose some such z,, exists. By Lemma 5.32, ¢/ and ¢ are mutually reducible.
And, following case 3 from our proof of Lemma 5.32, z,, must have been created.
but not eliminated, before the measure(¢’, s’) call began. So either ¢¥* = ¢. or the
measure(¢. s) call resulted from a prior call to measure(w, t). In either case, v is
reducible to ¢; in the first case trivially. in the second case by Proposition 5.31.

But by the definition of ¢’, ¢ is immediately reducible to ¢'. And by the mu-
tual reducibility of ¢’ and ¢, and transitivity of reducible-to (Proposition 5.21), ¢ is
reducible to .

So if ryy contains a variable, ¢ and ¢ are mutually reducible. Therefore, if they

are not mutually reducible then rys must be variable-free, i.e., a number. [ |

Corollary 5.35 If¢ and ¢’ = step(9, s) are not mutually reducible, then measure(o,

s) returns a number.

Proof ¢ cannot be 7 or F, since in these cases ¢’ = ¢ and therefore ¢ and ¢ are
mutually reducible. So the first call to measure(¢, s) returns the sum of some calls
to measure(¢’, s'). By Lemma 5.34, these calls all return numbers, and therefore so

does measure(¢, s). =
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Corollary 5.36 If ¢ and ¢' = step(¢, s) are not mutually reducible, then the call

from measure(¢, s) to substitute(xys := rys) performs ezactly one substitution.

Proof We can show that, at the time of the substitution, the only cached solu-
tion expression containing a term for x4, is the one-term z,, expression cached by
meast :(¢, s) itself.

First, consider expressions cached before the call to measure(¢, s). Any variable in
these expressions must have been created before the call. Therefore, no substitution
performed by measure(¢, s) or its recursive calls affects these expressions, because
all such substitutions are for variables created after the measure(¢. s) call began.

The only other cached expressions at the time of the substitute(x,, = rys) call
are those cached by recursive measure(v), t) calls resulting from measure(¢, s). Any
such call must have resulted either from one of the calls to measure(¢’. s'). or from
the call made by measure(¢, s) to step(¢, s). It is easy to show that, in either case.
v is not reducible to ¢. It will follow that ¢ and ¢ are not mutually reducible. and
therefore by Lemma 5.32 that z,, does not occur in ry;.

Case 1: measure(v, t) results from measure(¢’, s'). ¢ is immediately reducible
to ¢'. and by Proposition 5.31, ¢’ is reducible to ¥. So, by transitivity of reducible-to
(Proposition 5.21), if ¥ was reducible to ¢ then ¢ and ¢’ would be mutually reducible,
which is given to be false. Therefore ¥ is not reducible to ¢.

Case 2: measure(v, t) results from step(¢, s). Then it must have resulted from
one of step()’s calls to measure(v, u), for some 78U occurring in ¢. Therefore, by
Proposition 5.31. v is reducible to ¢. But by Proposition 5.22, v is not reducible to
o, since ¢ contains 7Uv whereas v (being finite) does not. Therefore ¢ cannot be
reducible to ¢.

So the only cached occurrence of z4¢ at the time of substitution, and therefore the

only substitution, is in the expression cached by measure(¢, s). [ |

Lemma 5.37 A recursive call to measure() from step() returns a number.

Proof Parallels the proof of Lemma 5.34. First, recall that the only such recursive
calls occur when an LTL-BDD ¢ contains an until 78/v, and a call to step(¢, s)
makes calls of the form measure(v, u).

Suppose the expression 7., returned by measure(v, u) contains a variable, z.,.

We will derive a contradiction, proving that r,, contains no such variable.
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By Lemma 5.32, v and 3 must be mutually reducible. LTL-BDDs are finite
structures, so v cannot contain itself and therefore cannot contain the until 78v.
Therefore, by Corollary 5.24, ¢ cannot contain 78 v.

Now, following case 3 from our proof of Lemma 5.32, x,; must have been created.
but not eliminatec, before the measure(v, u) call began. measure(v, u) was called
by step(¢, s), so 1t follows that step(¢, s) resulted from an earlier, unfinished call to
measure(v, t). Since ¢ contains THv, and neither measure() nor step() introduces
any new LTL-BDD atoms (Proposition 5.15), ¢ must also have contained 78{v —
contradicting our previous inference that v does not contain THwv.

Therefore, our hypothesis that r,, contained a variable z,, was false. So no x,,

occurs in 7, and therefore r,, is variable-free, i.e., a number. |

Lemma 5.38 If measure(¢, s) returns an expression res = ko + Y iy kix;. then:
o The coefficients are all between 0 and 1: VO <i<n. 0 <k, <1.
e So is their sum: 0 < -7 ki < 1.

Proof Induction on return order. Assume both claim holds for all calls to measure()
terminating before tlLis one does. We want to deduce that they hold for r...

Consider again the three cases in measure(¢, s):

Case 1: ¢ = T/F. Returns 1 or 0, trivially satisfying both claims.

Case 2: 7y, retrieved from the cache. The only place cache() is called caches an
expression consisting of a single variable, x4, (coef sum: 1), satisfving both claims.
This cached expression may have been modified by calls of the form substitute(z,, :=
ryt) before being retrieved as ry4s. But any such substitute() call was just prior to
measure() returning 7y, so by the induction hypothesis, ry, satisfied both claims.
And it is easy to verify that therefore the substitution of ry; (coef sum: < 1) for zy,
(coef sum: 1) couldn’t have violated either claim. Therefore, any rg, retrieved from
the cache still satisfies both claims.

Case 3: no cached solution. Makes a number of recursive calls to measure().
computing an expression e as a weighted sum of the returned expressions, and then
returning r4s = solve(z,, = e). We can show that e satisfies both claims, and that
therefore so does 7.

By the induction hypothesis, both claims hold for each of the rys expressions

making up e. So, since every ry ¢ has positive coefficients, so does e. And even in the
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maximal case, where each ryy has a coefficient sum of 1, e’s coefficients only sum to
> o 6(s,s'), which by the definition of a Markov chain (Chapter 2.2.5) is simply 1.
e e—kTys
Then, by the definition of solve() (page 35), T¢s = T
of z4¢ in e. By hypothesis above, measure() does return successfully, so we can ignore

, where £ is the coefficient

the error case k = 1. Therefo e, since e’s coefficients are between 0 and 1,0 < k < 1.
So the coefficients of r,, are just the coefficients of e divided by 1 — &, a positive
number, and therefore are positive as well. Furthermore, since the elimination of
the kxys-term reduces e’s coeflicient sum by £, the sum of the coefficients in 74 is
< %:—’,: = 1. Therefore any 7., computed from e satisfies both claims.

So by induction, both claims always hold for r,. [ |

5.7 A plausible path has a prefix determining ¢

The proofs in this section refer to Definitions 5.11 (plausible path P) and 5.12 (P

determines ¢).

Proposition 5.39 If a path P = (py, po,...) is plausible, then so is any sufficr P~ =
(pi-pis1s )

Proof Easily verified from the definition above. .

Proposition 5.40 A labeled Markov chain M follows a plausible path with probabil-
ity 1: Vs, us({P | P is plausible}) = 1.

Proof If Q = (q1 = s,42,¢3,...,qm) is a finite possible path in M, then M has a
positive probability & (= II7""'0(g;, giz1)) of following @ each time it visits s. So if s
occurs infinitely often in a path P followed by M, then clearly with probability 1 @

occurs infinitely often in P. [ ]

Note that the above proof depends on the Markovian (memoryless) property: M
has the same fixed probability k of following @ each time it enters state s, independent

of other visits.

Theorem 5.41 For any plausible path P = (p1,p2,...) in a labeled Markov chain
M, and LTL formula ¢, P has a finite prefic P* = (p1,pa, - .., Dn) which determines
o.
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Note that, for a given P, the n may be different for different ¢.

Proof Structural induction. Suppose, for any subformula 1 of ¢ and plausible path
Q = (q1,qo, . . .), there exists an integer m such that Q™ = (qy, qo, . . ., g ) determines
y. Using this hypothesis, we will produce a corresponding n such that P" determines
b

(Note that here we are only proving the existence of such an n, not that we can
compute it or that no smaller n exists. Later, in Lemma 5.45, we will in effect prove
the stronger claim that repeated applications of step() compute such an n.)

If ¢ = T or F, then any path determines ¢, even the empty path; so we have
n = 0. Otherwise, ¢ must be an LTL-BDD of the form (« ? ¢ : w), where a is one of
a. X7, or T{v. Now, by the induction hypothesis, 3k and ¢ such that P* determines
v and P! determines w. Suppose we also had a j such that P’ determined a. Then.
letting n = max(j, k, £), it would follow that P™ determined «, ¢ and w, and therefore
also ¢. So we just need to find such a j.

Consider the three cases for a:

Case 1: a = a. We only need to examine p; to determine whether P = a. So
7 =1

Case 2: a = X7. Note that by Proposition 5.39, suffix P, = (pg.p;....) is
plausible. So by the induction hypothesis, 3¢ such that PJ = (p......p,) determines
7. But by the definition of X, P |= X7 iff P, | 7; so if Pj determines 7. then
P9 = (p;....,p,) determines X7. So j = g.

Case 3: a = 7Uv. We can show that, if any sufix P,>1 = (pz, pry1....) of P
has a prefix determining 78{v, then so does P. We do this by showing that if P,+,
has a prefix determining 7U/v, then so does P,_;. Then we can show by case analysis
that some such z always exists. It will follow by induction on z — 7 that some P’
determines T v.

Suppose, for some x > 1 and 2, P? determines 7Uv. if x = 1, then P? deter-
mines 7Uv and we're done. Otherwise, consider P,_; = (py—1, Pz, Prs1,--.)- By the
definition of X, P._; = X(7Uv) iff P, = 7Uv. So, since P} determines tUv, P},
determines X (7U/v). Also, by our original induction hypothesis, there exist g and h
such that P?_, determines 7 and P" | determines v. It follows that, for y = max(g.
h, z), PY_; determines 7, v and X (7Uv), and therefore also v V (7 A X (7U4v)). But

r—1

by the definition of U, v V (1 A X(7Uv)) = TUv. Therefore, if P? determines iv,
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then so does P._,, completing the induction.

So all we need to complete our proof are an x and z such that P? determines tifv.

Since there are finitely many states in M, there must be at least one state s
occurring infinitely often in P. So we proceed by asking: does there exist a plausible
path Q = (q; = t,¢qa,...) in M, such that ¢ is reach: ble from s, and Q = v7

Case 3a: No. That is, no plausible path from any state reachable from s satisfies
v. Therefore no plausible path starting from s satisfies 78{v. So, let p; = s be the
first occurrence of s in P. Then the one-state path Pff = (ps) determines TUv (as
false). Sor =z = f.

Case 3b: Yes. By the induction hypothesis, some prefix Q™ = (g1 = t.....qm)
of @@ determines v; as true, since Q = v. Therefore, since any path satisfying v also
satisfies Ty, Q™ also determines TU/v as true.

Now, P visits s infinitely often, and ¢ is reachable from s, i.e., there is a finite
possible path from s to t. So by the plausible path property, P also visits t infinitely
often. And then again, by the same property, Q™ occurs infinitely often in P. So let
Pff_1+m = (pf,Pr+1.- -, Pf—1+m) be the first occurrence of Q™ in P: V1 <7 < m,
Pf-1+i = ¢;. That is, P;‘Hm = @™, and therefore Pff_Hm determines TUv as true.
Sowehaver = f, 2= f —1+m.

So in both subcases we have a finite path P? which determines 7U{v. As we saw,
it follows that there exists a prefix P/ which does too. Therefore, any plausible path

P in M has a prefix P" which determines ¢. =

Corollary 5.42 For any state s in a labeled Markov chain M, and any LTL formula
¢, prob(s = ¢) = 0 iff no plausible path P = (py = s,ps,...) starting from s satisfies
¢.

Proof Suppose no plausible P starting in s satisfies ¢. By Proposition 5.40, from
any state M follows a plausible path with probability 1. So with probability 1, the
path M follows starting from s is plausible and therefore doesn’t satisfy ¢. Therefore,
prob(s E ¢) = 0.

Conversely, suppose some plausible P from s satisfies ¢. By Theorem 5.41, P has
a determining prefix P* = (p; = s,po,...,ps) such that any plausible path in M
starting with P" satisfies ¢. Consider a path P’ = (p} = s,p),...) followed by M
from s. Since P" is possible and finite, the probability k that P’ starts with P" is
> 0. And by Proposition 5.40, the probability that M continues along a plausible
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path from p, is 1. So, the probability that P’ both starts with P" and is plausible.
and therefore satisfies ¢, is also k. Therefore, prob(s = ¢) > k > 0. =

Corollary 5.43 For any state s in a labeled Markov chain M. and any LTL formula
¥, prob(s &= ¢) = 1 iff every plausible path P = (p1 = s,ps,...) starting from s
satisfies 1.

Proof Follows directly from Corollary 5.42, letting ¢ = —), since prob(s = ¢) =1
iff prob(s = —¢) =0, and P = ¢ iff P = =, [

Corollary 5.44 For any plausible path P = (p; = s,pa,...) in a labeled Markov
chain M, and for any LTL until formula ¢ = (tUdv ¢ T : F) unrealizable from s.

P 9.

Proof By the definition of an unrealizable until (page 34). V¢ reachable from s
(including s), prob(t = v) = 0. So by Corollary 5.42, no plausible path from such a
t satisfies v. But every suffix P,>1 = (pi, pi41,...) of P is such a path. Therefore no
suffix of P (including P itself) satisfies v, and therefore P p& ¢. (]

5.8 measure() and step() are correct

We are now ready for our main results, in Lemmas 5.45 and 5.46 and Theorems 5.47
and 5.48. For ease of exposition the four proofs are presented separately. but in fact
they are all parts of a single induction proof on d = udepth(¢). That is, we assume
all four claims hold Vi such that udepth(¢’) < d, and infer that each must hold for
any ¢ of depth d.

This combined approach is necessary because all four results are interdependent:
each needs at least one of the others as an induction hypothesis.

We will refer to this combined induction as “Ind1”, and its hypothesis as “IH1”
(or, e.g., “IH1 (5.45)”, when invoking the Lemma 5.45 part of the hypothesis), to
distinguish it from other induction hypotheses we will make.

This section uses most of the definitions from section 5.1, especially: udepth(¢),
a plausible path P, P determines ¢, step() resolves ¢ along P, expression e
represents constant k. You may want to review these definitions before proceeding.

The overall structure of the Ind1l proof is as follows:
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1. step() resolves any ¢ along any plausible P (Lemma 5.45): Using IH1
(5.47), we show that if this claim holds for all subformulas of ¢, it must also
hold for ¢. So by a second induction Ind2, this one structural rather than on
d, the claim holds V¢ of depth d. (The proof also uses a third induction, Ind3,
to show that if an until 78v is resol red along some suffix P, of P, then it is

resolved along P.)

2. Whenever measure(¢, s) calls solve(zy, = €), the coefficient of z4, in
e is < 1 (Lemma 5.46): By the previous proof, Lemma 5.45 holds for ¢ and
any plausible path. And by Proposition 5.40, there exists at least one plausible
path P which M can follow from s. We show by another induction Ind4 on the
structure of P that Lemma 5.46 holds for the call to solve(z4s = e).

3. P ¢ iff P, = step(¢, s) (Theorem 5.47): Another nested structural induc-
tion. Ind5. Using IH1 (5.48), we show that if the claim holds for ¢’s subformulas.
then it holds for ¢.

4. measure(g, s) represents prob(s = ¢) (Theorem 5.48): In the previous two
proofs we proved that Lemma 5.46 and Theorem 5.47 hold for all formulas of
depth < d. Using these results, we can complete a final nested induction Ind6.
this time on return order: assuming the claim holds for all calls measure('. t)
returning before the call to measure(o, s). where udepth(v') < udepth(o). we

infer that it holds for measure(¢, s).

Lemma 5.45 step() resolves any LTL formula ¢ along any plausible path P =
(1, D2 ).

Intuitively, this lemma says that step() computes the determining prefix asserted

to exist by Theorem 5.41. Consequently the proof mirrors the proof to Theorem 5.41.

Proof IH1 (5.48) hypothesis lets us assume that Theorem 5.48 holds for any formula
¥ such that udepth(v)) < d = udepth(¢). If we additionally assume that the claim
holds for subformulas of ¢, we can show that it holds for ¢ as well. It will follow by
a second, nested induction Ind2 that the claim holds for all ¢ of depth d.

So, we want to find an n such that step™(¢, P) = (P E ¢) = 7/F. assuming

that such an n exists for any subformula of ¢.
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If = T/F, then n = 0 and we are done. So consider the remaining case:
6 = (a ? ¢ : w), where a is one of a, X7, or 7Uv. By IH2, 3k such that step(¢"
P) = (P = v). And since for any state t, step(7, t) = 7 and step(F, ¢) = F, it
follows that Vi > k, step'(¢, P) = step*(, P) = (P = v). Similarly, 3¢ such that
Vi > {, step'(w, P) = (P E w).

Note that we cannot likewise apply IH2 to a, since a is not a subformula (Defini-
tion 5.1). Still, suppose somehow we also find a j such that step’(a, P) = (P [ a).
Then, letting n = max(j, k, ¢):

step” (¢, P)
= step™({a 7 ¢ : w), P)
step”(cond(a, ¥, w), P) (
= cond(step”™(a, P), step™(¢), P), step™(w, P)) (
= cond((P Ea), (PEV), (PEw) (defn of n)
= (Pk9¢) (defn of cond())

In other words, if a is resolved along P, then so is ¢, completing Ind2. So to
show that step() resolves ¢ along P, we only need to find a j such that step’(a,
P)=(PE a).

Consider the three cases for a:

Case 1: a = a. So we have j = 1:

step’(a. P)

= step!(a. P)

= step’(step(a, p1). P») (defn of step!())

= 7(s,a) = (P k= a) (defns of step’(), step())

Case 2: o = X7. By IH2, 3g such that step?(r, P») = (P =7). Let j =g+ 1
step’(a, P)

= step’™ (X7, P)
step?(step(X7, p1), P») (defn of step?T1())

step?(7, P») (defn of step())
= (P =7) (defn of g¢)
= (PE=X7) (defn of X)

Case 3: o = 7U/v. This is a more subtle case. We can show that, if 7l{v is
resolved along some suffix P,»1 = (pz, pra1,...) of P, then it is also resolved along
P. We do this by showing that if 7U{v is resolved along P,, then it is resolved along

P,_;. Then we can show by case analysis that such an x always exists. It will follow
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by a simple (third!) induction Ind3, on z — i, that step() resolves 78{v along P.
Suppose there exist z and z such that step*(vUv, P,) = (P, |= 7Uv). Consider
Pr_y = (Pe-1, Pz, Pr+1, - ). By IH2, g, h such that Vi > g, step'(7, Pro1) = (Pro1
7), and Vi > h, step'(v, Pr_y) = (P,_; = v). So let y = max(g, h, z+ 1). Then
step() resolves TUv along P,_; within y steps, completing Ind3:
step¥(TUv, Pr_1)
= stepY (step(TUv, pz_1), Pr) (defn of step¥())
step’"!(or(step(v, p,_1), and(step(r, pz_1), TUV)), P;) (defn of step())
= or(step’ !(step(v, pz_1), P:),

and(step¥~!(step(7. p;—1), Pr). step?" H{7lUv, P.))) (Cor 5.20)
= or(step¥(v, P,_1), and(step¥(r, P,_1), step? (U v, P,))) (defn of step¥())
= or((P,_; Ev), and((P,_; E 7), (P, = TUV))) (defn of y)
= (P, = 1UY) (defn of U)
So all we need to complete our proof are an z and z such that step®(7Uv. P,) =
(P, E TUY).

Since there are finitely many states in M, there must be at least one state s
occurring infinitely often in P. So we proceed by asking: does there exist a plausible
path Q = (¢1 = t.¢o....) in M, such that t is reachable from s, and Q = v?

Case 3a: No. That is, no plausible path from any state reachable from ¢ satisfies
v. Therefore. letting Py = (p; = 8,ps+1,...) be the first occurrence of s in P.
Py U

Also, by Corollary 5.42, for every t reachable from s, prob(t = v) = 0. That is,
TUv is unrealizable from s (Definition 3.4).

So by the special clause in step() handling unrealizable untils, step!(7Uv, P;) =
step(tUv, py) = F. The clause relies on calls to measure(v, t), and therefore on
Theorem 5.48, but since udepth(v) < udepth(¢) (Definition 5.2), IH1 lets us assume
Theorem 5.48 holds for v. (This is in fact our only use of IH1 in proving Lemma
5.45.) So x = f, 2 =1 and we are done.

Case 3b: Yes. By Theorem 5.41, some prefix Q7 = (¢ = ,...,gm) of Q
determines v; as true, since Q = v. .

Since P visits s infinitely often, and t is reachable from s, it follows by the plausi-
bility of P that P also visits ¢ infinitely often. And then again, by the same property,
Q™ occurs infinitely often in P. So let Py = (ps,ps+1..-.) be the first occurrence of
Q™ in P: V1 <i<m, pj_14;, = ¢;. Since Py begins with @™, and )" determines v
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as true, Py = v, and therefore Py = 7Uwv.
Meanwhile, by IH2, 34’ such that step” (v, P) = (P; = v) = 7. So:
step” (TUv, P})
= step” ~!(step(TUv, ps), Prs1) (defn of step”'())
step” ~!(or(step(v, ps), and(step(7, ps), TUV)), Pr41)  (defn of step())
= or(step " (step(v, py), Pror).

step” ~!(and(step(T, py), TUV), Pri1)) (Cor 5.20)
= or(step" (v, P;), step" ~!(and(step(r, ps), TUV), Pyy1)) (defn of step”'())
= or(7, step” !(and(step(r, p;), TUV), Pf41)) (defn of R')
=T (defn of or())
= (P = 1Uv) (defn of f)

And we have 2 = f, z = h’. So in both subcases, step() resolves 7U/v along some
P.. and therefore along P. Therefore for every case of a, a is resolved along P. and

it follows as we saw above that therefore, so is ¢. ]

Lemma 5.46 Whenever measure(¢, s) calls solve(zy, = €), any Tys-term in e has

coefficient < 1.

Proof (Part of the combined Ind1 proof outlined on page 71.)

We can show that for any given ¢ and s, there exists at least one finite possible
path P = (p1 = s,p2,....pn) from s such that step™(¢, P) = T /F. Letting P be the
shortest such path, and letting ¢; be shorthand for step‘(¢. P). we will show that
every (p;, ¢;) pair is unique; Le., V1 <1i < j < n, either p; # p; or ¢; # &; (or both).
Then, using P and this property, we can prove the claim by an induction Ind4 on
6/577—1"

1. P exists. By Proposition 5.40, from any state (including s), prob(M follows
a plausible path) = 1. So there exists at least one plausible path Q = (¢; = s,¢2....)
from s, and by the previous proof (Lemma 5.45), 3m such that step™(¢, Q) = (Q &
¢)=T/F. Thatis, Q™ = (qi,...,qn) meets the definition of P.

2. P contains no loops. We will show that, if P contains an identical pair
(ps, ;) and (p;, ¢;), i.e., a loop between 7 and 7, we can cut out the loop to get a
shorter possible path P’ along which step() still resolves ¢. Since P was defined to
be the shortest such path, it will follow that P contains no such loops.

Suppose for some 1 <i < j<nin P, p, =p; and ¢; = ¢;. Let P' = (p} =
PLPy = P2, P = Di = PjiPiy1 = Pjtls - - Ponen_jqi = Pn)- Now, the definition of
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step”(¢, P) (page 51) only depends on the first n states of P, so ¢, = ¢; = ¢;. Then,
using Proposition 5.5: ¢;., = step(¢], p.,,) = step(¢;, pj+1) = ¢;+1. Similarly.
G50 = step(@iy, Piyo) = step(djr1, Pjv2) = Pjs2, -y &, = ¢ = T /F. So we have
constructed a shorter possible path P’ along which step() resolves ¢, contradicting
the definition of P.

Therefore, V1 <i < j <n, p; # pj or ¢; # ¢;.

3. Ind4. Let r; = ry,, be an expression returned by a call to measure(¢;, p;).
and let k; ; be the coefficient of a variable z; = z4,,, in r;. We show by induction
Ind4 on n — j that: V1 <4 < j < n, k;; <1, and this inequality continues to hold
through all subsequent variable substitutions in r;. Lemma 5.46 will then follow by
a short argument.

First, suppose j = n. Then ¢; = 7 /F, and measure(¢;, p;) returns 1 or 0; so Vi,
k; ; = 0 and the Ind4 claim holds trivially.

So suppose 1 < j < n, and assume [H4 holds for j + 1. We will show that it
therefore holds for j. Consider the three cases for r; = measure(¢;. p;):

Case 1: ¢, = T /F. As for ¢,, returns 1 or 0, trivially satistying Indd4.

Case 2: r; retrieved from the cache. So it must have originally been cached as
the one-variable expression 7; = x; by an earlier call to measure(¢;, p;). Since then,
or in the future, r; may be modified by variable substitutions, but we will show that
it satisfies the Ind4 claim through all such substitutions.

At first, 7; = z;. And because we eliminated all loops in P, Vi < j. x; # x;, and
therefore k; ; = 0.

So suppose variable substitutions take place in r;. The first such substitution

occurs when measure(¢;, p;) calls substitute(z;, ), right before returning the

J
expression 7. In case 3 we will show that the Ind4 claim holds for any such /. and
continues to hold throughout all variable substitutions. So, this case reduces to case
3.

Case 3: no cached solution. Then r; = solve(z; = e), where e is computed as a
weighted sum: e = 3, d(p;, s') - 7, where rl, = measure(¢;,1, §').

Now, by Lemma 5.38, the coefficients in each r/, sum to < 1. And by the definition
of a Markov chain (Chapter 2.2.5), ", d(s,s’) = 1. So for the coefficient of any
variable in e to be 1, its coefficient would have to be exactly 1 in every 77,.

But because P is a possible path, one of the recursive calls is to measure(¢;,;.

pj+1). That is, r, . = 741, And by TH4, V1 < i < j+ 1 (le, VI < i < j), the
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coefficient %; ;41 of z; in rj;; is < 1. Therefore, V1 <¢ < j, the coefficient of z; in e
is < 1.

el—f? , where k is the coefficient
of z; in e. We just saw that £ < 1, so the error case k = 1 does not occur. And

By the definition of solve(), r; = solve(z; = e) =

since V1 < 7 < j the coefficient of z; in e is < 1, it follows that the coefficient of x; in
e —kxz; is < 1—k. Therefore, the coeflicient k; ; of z; in r; is < t—: = 1. And since by
IH4 the k; ;41 < 1 inequality continues to hold throughout all variable substitutions,
so does k; ; < 1.

So in all three cases, the Ind4 claim holds, completing the induction.

4. Lemma 5.46. Finally, using the Ind4 result and the same reasoning as in case
3 above, we can prove Lemma 5.46. If measure(¢, s) calls solve(zys = €), then e was
computed as a weighted sum of recursive calls, one of which was to ry = measure(g,.
p2). So by Indd4, the coefficient of 1 = x4 in 7o is < 1, and therefore so is its

coefficient in e. n

Theorem 5.47 For any plausible path P = (p1,pa, ps, .. .) in a labeled Markov chain
M, and LTL-BDD ¢, P k= ¢ iff suffix Py = (p2.p3,...) = step(d, s).

Proof (Third part of the combined Indl proof outlined on page 71.)

This proof was sketched in section 3.4.2.

Suppose the claim holds for all subformulas of ¢. Using IH1 (5.48). we can show
that it holds for ¢ as well. It follows by structural induction Ind5 that the claim holds
for all ¢ of depth d.

If ¢ = T/F, then step(¢, s) = ¢, and trivially P | ¢ iff P, = ¢. So assume ¢
is not a boolean but an LTL-BDD of the form (o 7 ¢ : w), where o is one of a, X.
or TUv. step() begins by computing an o', and then returns ¢’ = cond(a’, ¢/, u’).
where ¥/ = step(v, s) and w’ = step(w, s). Suppose we can prove that for any o’

computed by step(), P | « iff P, = o’. Then we can show that, whether or not
PEa Poiff P ¢

e Suppose P | a. Then by supposition, P, = a’. And by the definition of ¢,
PE¢iff Py Now, by IH5 P E v iff P, E ¢/. But since P, | o/, it
follows from the definition of ¢/ that P, =/ if P, E¢'. So PE ¢ iff P, = ¢'.

e Suppose P [~ a. Then similarly, P, o', and: (PE¢) & (PEw) < (P
w') e (P E¢).
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So to complete the Ind5 induction, and therefore this third part of Indl, it only
remains to show that P = a iff P, =o'

Consider the cases in step() (page 33):

Case 1: a = a. So o = 7y(s,a) = the truth value of a in s. If v(s,a) = 7, then
P a, and trivially P, =o'’ = 7. Orif y(s,a) = F, then Pt a and Py = o' = F.
So in each case, P = o iff P, E o'

Case 2: a = X7. o' = 7. So by the definition of X, P |z a iff P, E o’

Case 3: a = 7Uv. In this case step() begins by calling measure(v, t) on every
state ¢ reachable from s. (Computing the states in M reachable from s is easy.) Then
there are two subcases:

Case 3a: V¢, measure(v, t) = 0. In this subcase, o’ = F. Now, udepth(v) <
udepth(¢), so by IH1 (5.48), V¢, prob(t = v) = 0. Therefore 7l v is unrealizable
from s (Definition 3.4). And by Corollary 5.44. P [~ 7lv. So it follows that P | o
(false) iff P, = o’ (also false).

Case 3b: 3t such that measure(v, t) > 0. So o’ = or(v'. and(7’. 7Uv)), where
v = step(v, s) and 7" = step(r, s). By IH5, P=7if P, = 7. and P |= v iff
P, = v'. And now, by the definition of 4, (P | 7Uv) < (P Ev)V((P ET)AN (P E
U)) & (Py =)V (P ) A (Py b= 7))  (Py = )

So in every case, P = a iff P, = o', and as we saw it follows that P = ¢ iff
Py ): o' u

Theorem 5.48 The expression r4s returned by measure(o, s) represents prob(s =
9).

Proof (Final part of the combined Indl proof outlined on page 71.)

The main idea here was sketched in section 3.4.1.

By the previous two proofs, we know that Lemma 5.46 and Theorem 5.47 hold for
all ¢ such that udepth(y) < d = udepth(¢), including ¢ itself. Using these results,
we can show that if the claim holds for all calls measure(w, u) returning before a call
measure(v, t), where udepth(w) < udepth(v), then it holds for measure(:, t). Sincc
measure(¢, s) terminates (Proposition 5.18), i.e., results in finitely many recursive
calls, it follow by induction Ind6 on return order that the claim holds for measure(¢,
s).

For brevity let z = prob(s = ¢). Consider the three cases in measure() (page 31):
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Case 1: ¢ = T/F. So rys = 1 or 0, respectively. Since any path from s satisfies
7T, and none satisfies F, these return values trivially represent z.

Case 2: solution retrieved from the cache. The cached solution must have origi-
nally been stored as x4, and then possibly modified by subsequent calls to substitute().
It is obvious from definition 5.14 that x4, represents z. So we only need to show that
this equality wasn’t broken by the substitutions.

Suppose a call substitute(zy; := ry) performed a substitution in the cached
solution, r;.. Then, because z,, occurred in 7y, it follows by Lemma 5.32 that ¢ and
¥ were mutually reducible, and by Corollary 5.24 that udepth(¢) = udepth(¢'). Also.
the substitution must have occurred right before measure(v, ) returned r.,. So by
IH6. 4 represents prob(t = ). But by Definition 5.14, z,, also represents prob(t =
¢'). That is, the variable being substituted and the expression being substituted for
it represent the same value, and therefore the substitution does not affect the value
represented by 7).

So since the cached solution originally represented z, and any subsequent substi-
tutions didn’t change the value it represents, it still represents z when retrieved as
Tos-

Case 3: no cached solution. From state s, the Markov chain M must proceed
to some state §'. following a path P = (s,s’,ps,p4,...). By Proposition 5.40. with
probability 1 P is plausible. So by the previous proof (Theorem 5.47). P E ¢ iff
Py, = (s',p3.ps,...) = ¢ = step(¢,s). Now, by the Markovian property. M’s be-

/

havior once it enters s’ is independent of which s it came from. Therefore. z =

3 0(s, ') -prob(s’ = &),

By Corollary 5.23, udepth(¢’) < udepth(¢). Soby IH6, z = >, §(s, s')-measure(¢’,
s'). This is what the third case of measure(¢, s) computes as e. Therefore e represents
z.

Finally, by the proof of Lemma 5.46, the coefficient k of 24, in e is < 1. Therefore

—kzps . : .
rgs = solve(zry, = e) = 5= is computed without error. And since, by Definition
5.14 above, kzy4s represents k - z, ry, represents 21“_’“: = z. [

Corollary 5.49 A top-level call to measure(¢, s) returns prob(s = ¢).

Proof By Corollary 5.33, a top-level call to measure() returns a number k. And by
Theorem 5.48, k represents prob(s |= ¢). Therefore, by Definition 5.14 (page 54),
k = prob(s = ¢). [
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5.9 Complexity

Corollary 5.50 If|A| is the number of distinct LTL-BDD atoms in an LTL-BDD ¢,
and | B| is the number of distinct non-T /F LTL-BDDs passed to measure() during a

call to measure(¢, s) for some s, then:
’B' S 22\/41 )

Proof Straight from Corollary 5.17. ]

Proposition 5.51 If ¢ is an LTL formula containing no untils, dx and o are the
depth of nested nexts and the number of LTL atom occurrences in ¢ as defined in
Definition 4.1. and |B| is the number of LTL-BDDs passed to measure() as defined
in Definition 4.2. then:

|Bl < dx2°.

Proof Induction on dy. Assume the claim holds for all formulas ¢ such that
xdepth(v)) < dx = xdepth(¢). We will show that therefore it holds for ¢.

If is T or F, |B] is 0 (since it only counts non-7 /F LTL-BDDs) and the claim
holds trivially. Otherwise. since ¢ contains no untils, it must be a boolean combination
of LTL atom nodes of the form (a 7 ¥ : w) and next nodes of the form (a 7 v : w).
Sody > 1.

For any state s. consider ¢/ = step(¢. s). Let |B|(¢’) be the number of distinct
LTL-BDDs passed to measure() as a result of a call to measure(¢'. t). and o(¢’) be
the number of LTL atom occurrences in ¢’. By Proposition 5.25, xdepth(¢’) < dx.
So by the induction hypothesis, |B|(¢') < (dx — 1)2°¢7.

But note that, since ¢ contains no untils, the value of ¢’ depends entirely on the
boolean values of the LTL top-level atoms in ¢ (i.e., not counting those nested within
nexts). Let k be the number of these top-level atoms. Then there are at most 2*

possible values of ¢'. Furthermore, since every occurrence of an atom in ¢ occurs

either at the top level or within a next, for any ¢, o(¢') < o~ k.

Now, |B| just counts ¢ itself, plus the number of ¢’ and the formulas reducible

from them:
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|B]
= 1+ T,1BI(¢)
< 14 2F(dy — 1)2009)
< 14 28(dy —1)2°7F
< dx?°
Completing the induction. =

Proposition 5.52 If:
e ¢ is any LTL-BDD

o D, is the set of LTL-BDDs reducible from ¢ within k steps, i.e., the set of ¥
such that for some path P and 0 <i <k, step'(¢, P) = ¢

o |D,| is the size of Dy

o |Z| is the number of distinct LTL atoms in ¢ as defined in Definition 4.1
then [Dy| < 2%+,

Proof By the definition of step'(), ¢; = step'(¢, P) depends only on the truth
values of atoms in the first ¢ states of P. There are |X| atoms in P. giving a total
of i[X| boolean variables determining &;. Therefore, there are no more than 2!
different values of @;.

If |£] = 0. ¢ reduces only to 7 or F and the claim holds trivially. So assume
|| > 1. Now, adding up the numbers of ¢; for all 0 <7 < k:

| Dyl
< Y2
[ ]
< 2.2k
— 9kIE|+1

Lemma 5.53 If ¢ is an LTL until whose subformulas contain no untils, and dx is
the depth of nested nexts in ¢ as defined in Definition 4.1, then:
For any path P = (p1,p2,ps,...) and k > dx — 1, step*(¢, P) = either T, F, or

dy—1
step™* "1 (d, Pr_ay+2), where Pi_gyi2 = (Dk—dy+2, Dk—dx+3; - - -)-
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Proof Induction on k: assuming the claim holds Vi such that dy — 1 <i < &, we
will show that it must hold for k.

Let ¢ = 7l{v. First, note that Proposition 5.25 implies that, ¥j > dy, step’(,
P) and step’(v, P) are both booleans (7 /F).

Now, if dy = 0, 7 and v must both be booleans and the claim holds trivially.
Similarly, if k = dy —1, then step*(¢, P) = step® (¢, P,) = step?™ (@, Pr_dy+2)-
So assume k > dxy > 1. Then:

step®(¢, P)
= step*(tUv, P)
step*I(step(tlv, p), P,) (defn of step*())
step”~!(or(step(v, p1), and(step(7, p1), TUV)), P»)  (defn of step())
(

= or(step®(v, P). and(step®(r, P), step* ! (tUUv, P,))) (Cor 5.20)

= or(T/F, and(7T /F, step™ 1 (tUv, Py_4y+2))) (Prop 5.25. ind hyp)

Which must work out to either 7, F or step® ~!(7Uv, Py_4y42). So the induction
holds. |

Corollary 5.54 If:
o ¢ is an LTL until whose subformulas contain no untils
o dy is the depth of nested nexts in ¢. as defined in Definition 4.1
o ¢ is step®(¢. P) for some path P and k > dx — 1
o o #7T or F

then ¢r is determined by P,f_dx+2 = (Pk—dx+2, Pk—dx+3: - - -y Dk ), the last dy — 1 states
of P¥: &y = step™ (8, P 4 ).

Proof Follows from (essentially a restatement of) Lemma 5.53. |

Corollary 5.55 If ¢ is an LTL until whose subformulas contain no untils, and dy,
|Z| and |B| are as defined in Definitions 4.1 and 4.2, then:
|B] is O(20dx-DIZIY,

Proof Proposition 5.31 asserts that every recursive measure() call resulting from

measure(¢, s) is reducible from ¢. Therefore, a bound on the number of formulas

reducible from ¢ is a bound on |B|.
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Let ¢ = 7U{v. By Proposition 5.25 and Lemma 5.53, every formula reducible
from ¢ (apart from 7 and F) is reducible within dy — 1 steps, i.e., of the form ¢, =
step®(¢, P) or v, = step®(v, P), for some path P and kleqdy — 1. So we only need
to count these formulas.

By Proposition 5.52, the number of LTL-BDDs reducible from ¢ within dy — 1
steps is < 2(4x=DIE+1 And similarly so is the number reducible from v. Therefore,

|B| < 2-20@x=DIE+1 = 4. 2dx-DIEI " and therefore | B| is O(2(4x~DIZh), ]

Theorem 5.56 If ¢ is an LTL formula such that udepth(¢) < 1, and dy, d;, |Z|, u
and |B| are as defined in Definitions 4.1 and 4.2, then |B| is O(2ldx+d=DIZI3u),

Proof As explained in the proof of Corollary 5.55, we can count |B| by counting
the number of distinct LTL-BDDs % reducible from ¢. Every such 1 is of one of two
forms: ¢ = step®(¢, P), or vy = step*(v, P) for some until 78 in ¢.

We can further break down the ¢,’s to get three types: vk, @rcay. and dpsq,. By
getting bounds on the number of each type, we can get a bound on |B].

Type 1: vi. Since dy = xdepth(¢) < 1, ¢ contains no nested untils, and therefore
no v in ¢ contains an until. So by Proposition 5.25, v reduces to 7 or F within dy
steps. and therefore by Proposition 5.52 the number of distinct non-7 /F formulas
each v can reduce to is O(2(4x~DIEl) So the total number of LTL-BDDs reducible
from an v in ¢ is O(u2(x~DIZ]),

Type 2: ¢r<q,. Again, by Proposition 5.52, the number of such ¢ is G(2(4x—DIE]),

Type 3: ¢i>a,. The interesting case.

For any until 7Uv in phi, let d.(7Uv) be the number of nested nexts enclosing
TUv. For example, if ¢ = X(a A XX (blc)), then d (blUc) = 3.

Now, since k > dy, every LTL atom or next not contained within an until in ¢
is reduced to 7 or F in ¢;. Specifically, these non-until terms are all determined (as
T /F) by the first dy states in P, 1.e., by Pldx.

It follows that ¢y is a boolean combination of until terms, one for each until in ¢,
where the term (; for a given until &; = 7Uv is: step* % (U, P1k+de) (writing d. as
shorthand for d.(tUv)).

Recall that d; is the greatest depth of nested nexts in any until in ¢. So by
Corollary 5.54, any such until term ¢; which is not 7 or F is determined by the last
d; — 1 states in P, i.e., by PF , ).
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So for any path P}, the first dy states P{X determine the boolean combination
of until terms ;. and the last d; — 1 states P{_, ,,) determine the possible non-7/F
value of each (;. All these dy + d; — 1 states don’t determine in ¢ is which (; reduce
to 7 /F and which don’t. So knowing these states, we are left with up to 3* possible
values of ¢y, based on choosing whether to reduce each (; to 7, F, or its only possible
non-7 /F value.

Therefore, counting the (dx + d; — 1) - |[Z| possible atom assignments as in the
proof of Proposition 5.52, we have the following bound on the total number of possible
values of Gp>q,: 2U@x T4 DIEIZY,

Adding up:
| Bl
= (# step®(uv, P))+(# step"<dx (¢, P))+(# step?2ix (¢, P))
= O(u2x-DIZl) 4 O(20xDIT) 4 oldx-+di~1)IS(gu
O(2dx+di=1IZI gu)

Corollary 5.57 If ¢ is an LTL-BDD containing no untils, then the total running

time of any calls made by measure(¢, s) to solve() and substitute() is O(1).

Proof If o =7 or J°, measure(¢, s) returns 0 or 1 immediately and the claim holds
trivially. Otherwise, xdepth(¢) > 1. Consider phi’ = step(¢, s). By Proposition
5.25, xdepth(¢’') < xdepth(¢), so ¢’ # ¢. Therefore, Proposition 5.26 implies that ¢
and ¢’ are not mutually reducible. Then, by Corollaries 5.35 and 5.36. measure(o.
s) returns a number and performs only a single substitution. It follows that solve()

and substitute() are O(1). =



Chapter 6

An Implementation: MCMC

MCMC is a straightforward command-line Java implementation of the measure()
algorithm described by this thesis. You enter a Markov chain M and some LTL
formulas, and it computes the probability of each formula in each state of M.

This chapter goes through a simple example run and outlines the design. Addi-

tional material is in Appendix B:
e the README file from th= distribution
e a commented sample input file
e a full transcript from a longer run

e a code excerpt: Checker.java

The latest version of MCMC (as of this writing, memc-0.9.5), along with API

documentation, is kept at: www.cs.mcgill.ca/"jacob/mcmc.

6.1 A sample run

The following transcript shows MCMC being used to solve the example problems
traced through in section 3.5.

Note the satisfying/contradicting traces produced for each formula and state. A
“satisfying trace” is just shorthand for a path determining the formula as true. and

a “contradicting trace” is a path determining it as false (see Definition 5.12).

85
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% java MCMC
Please enter a Markov chain, as n lines of n outgoing probabilities, followed

by some lines of atom probabilities (0/1), followed by a blank line:

0.4 0.1
0 0 1
1 1 0

Parsed the Markov chain:

-1- -2- -3-
Edge weights:
1: 0.5 0.4 0.1
2: 0.7 0 0.3
3: 0 0 1
Atoms:
1 1 0
1 0 1

Now enter formulas to model check, one per line. Examples:

"akc" (a and ¢) a and ¢ are both true.

"X(ta)" (next not a) a is false in the next state.
"TU(blc)" (true until (b or c)) Eventually b is true, or c¢ (or both).
"aU[5]c" (a until ¢ within 5) a is true until, within 5 steps, ¢ is.

"trace" toggles traces, "debug" toggles debug output, "quit"/"exit" quits.

> Xa

Parsed the formula: Xa = Xa

Calculating. ..
Prob in state 1: 0.9
Satisfying trace: (1,1)
Contradicting trace: (1,3)

Prob in state 2: 0.7
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Satisfying trace:
Contradicting trace:
Prob in state 3:
Satisfying trace:
Contradicting trace:
Took 0.013 seconds.

So far:

(2,1
(2,3

none

(3

5 BDDs created, 4 passed to measure().
35 measure() calls (6 nontriv), 19 step() (6).

6 var subs, avg 0.17 subs (0.0 var terms) per substitute() call.

> X(bUa)

Parsed the formula: X(bUa) = XU(b,a)

Calculating...
Prob in state 1:

Satisfying trace:

Contradicting trace:

Prob in state 2:

Satisfying trace:

Contradicting trace:

Prob in state 3:

Satisfying trace:

Contradicting trace:

Took 0.0070 seconds.

So far:

0.9

0.7

(1,2)
(1,3)

(2,1)
(2,3)

none

3

9 BDDs created, 6 passed to measure().

73 measure() calls (12 nontriv), 44 step() (14).
12 var subs, avg 0.16 subs (0.0 var terms) per substitute() call.

> 1 (TU'a)

Parsed the formula: !(TU!a) = tU(T,ta)

Calculating. ..
Prob in state 1:

Satisfying trace:

Contradicting trace:

Prob in state 2:

Satisfying trace:

Contradicting trace:

none

&)

none

(2)

87
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Prob in state 3: 0
Satisfying trace: none
Contradicting trace: (3)

Took 0.0050 seconds.
So far:

11 BDDs created, 8 passed to measure().

101 measure() calls (18 nontriv), 72 step() (23).
21 var subs, avg 0.21 subs (0.0099 var terms) per substitute() call.

6.2 Design

88

MCMC consists of 4300 lines of Java code, divided into 31 classes in 6 packages,

but most of these are libraries of no special interest.

The main algorithm is in

mcme . checker . Checker (Appendix B.4), which contains the implementations of measure()

and step().

The six packages and their main contents are:

e mcmc.checker: Checker, containing measure(),

. and the top-level

computeProbability() method; and Shell, a simple command-line passing

user inputs to Checker

e mcmc.equation: Variable and Expression, used to represent the variables

(x4s) and expressions (e, rys) manipulated by measure(), solve() and substitute()

e mcmc.1ltl: LTLBDDFactory, containing the next(), until() and boundedUntil()

operations on LTL-BDDs; and LTLParser()

e mcmc.bdd: a generic BDD (ROBDD) implementation

e mcmc.markov: MarkovChain, a basic matrix-based implementation, and MarkovChainParser

e mcmc.util: some simple utility classes not specific to MCMC (e.g., TwoKeyHashMap)

Four simple test programs are also included, ExpressionTest, LTLTest. BDDTest

and MarkovTest, and a short MCMC wrapper class for ease of compilation and startup.
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6.3 Features & limitations

The main priorities in writing MCMC were to make it easy to understand and extend.
For ease of comparison, Checker’s measure() and step() methods correspond quite
closely to the pseudocode in Definitions 3.2 and 3.3.

(As a glance will indicate, LTLParser is one class where the aim of clea.. readability
was not achieved.)

The modularity of the packages is aimed at making improvements as painless as
possible. One natural improvement would be a more sophisticated Markov chain
implementation (see section 8.2).

Little effort has been devoted to optimization.

The design is loosely object-oriented.

There are fairly extensive comments in the code, though of course not to the level
of detail of this thesis.

The bounded until operator (e.g., ald<°b) from section 2.3.4 is supported. with
the syntax “aU[5]b”.

MCMC uses floating-point arithmetic (Java doubles), with values very close to
0 treated as 0. Potentially this can result in drastic roundoff errors. particularly in
the divisions performed by solve() when solving systems of equations. The simplest
solution would be to switch to (presumably much slower) exact rational arithmetic.
More testing will be needed to determine whether such a switch is worthwhile. i.e..
how often and in what situations these errors are serious in practice.

As shown in the sample run above, for each formula ¢ and state s NMCMC out-
puts satisfying and contradicting traces. The algorithm used to find these traces is
particularly susceptible to roundoff error, since it must detect 0 and 1 probabilities.
Consequently the trace generation feature may not be reliable, or may only produce
traces with very low or very high probabilities of satisfying ¢. Like the roundoff error
itself, this is an implementation issue rather than a profound problem.

See also the README file in Appendix B.1.



Chapter 7

Related Work

7.1 Courcoubetis & Yannakakis

The problem addressed by this thesis is one of several related problems solved by
Costas Courcoubetis and Mihalis Yannakakis in [CY95]. So their algorithm is the
most natural point of comparison. A condensed overview of the algorithm is in
[CT97].

Their solution shares with this work the approach of iteratively transforming the
input formula until it is reduced to a trivial (until-free) formula. However the ap-
proaches are otherwise quite different. The most conspicuous difference is that each
of their transformations results not only in a new formula. but also a new Markov
chain.

They give two transformations, one for U/ and one for X. The U transformation
replaces one “innermost” until in the input formula (an until containing no other
untils, i.e., of udepth() 1) with a new atom ¢, then modifies the Markov chain so
that probabilities of satisfying the formula are preserved. The transformation for X
is similar.

Each transformation eliminates one occurrence of the indicated temporal operator
in the input formula. so the total number of transformations necessary is linear in the
size of the formula. Using this fact and standard graph algorithm results, they are
able to prove that their algorithm runs in time singly exponential in the formula size
and polynomial in the size (number of nodes and edges) of the Markov chain.

So, their complexity results are stronger than those achieved here in Chapter 4.
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where for the general case we have no better bound than doubly exponential in the
size of the formula. Furthermore, [CY95] goes on to solve several generalizations, in-
cluding more expressive specification languages (Biichi automata and ETL, extended
temporal logic) and models (concurrent Markov chains, introducing nondeterministic
choice). The main advantage of the present work would seem to be that it requires
no transformation of the Markov chain. This is significant because in practice model
size is the most common limiting factor. Their algorithm may also be difficult to
implement, explaining why I have not been able to find an implementation (see also

section 8.1).

7.2 Other related work

Formal verification, and even the specific study of probabilistic model checking. is an
active field and a full review of contributions is beyond the scope of this work. The
following is a selection of results directly related to the problem of LTL verification
on probabilistic models.

The most common approach in practice is that of [ASBBS95] and [BCHKR97] (see
section 2.5). in which the probability is not computed but encoded in the specification
with a language such as PCTL or pCTL*. The output is then simply true or false.
and can be computed efficiently using non-probabilistic model checking techniques.
The obvious disadvantage is that the probability is not computed, though it can be
approximated by binary search. So these techniques are most useful when the exact
probability is not needed.

The first algorithm for verifying LTL specifications in probabilistic automata is
Vardi’s 1985 paper [Var85], which showed how to check whether a formula was satis-
fied with probability 1. Vardi has also given a more recent overview in [Var99.

Baier’s 1998 habilitation [Bai98] includes a detailed survey of verification algo-
rithms for probabilistic systems, including those mentioned above. Kwiatkowska's
[Kwi02] tutorial gives a briefer but more recent overview of probabilistic model
checking techniques, including references to several current implementations, such
as PRISM [KNP02].

The result that every plausible path has a determining prefix (Definitions 5.11 and

5.12, Theorem 5.41) almost surely exists in the literature but I have not yet found it.



Chapter 8

Conclusions

8.1 Summary of results

The main contribution of this work is the measure() algorithm for computing the
probability that a state s in a labeled Markov chain M satisfies an LTL formnula ¢.
and the accompanying proof of correctness. The complexity bounds. though loose.
do establish that the algorithm is no worse than doubly exponential in the size of ¢
and cubic in the size of M.

Three possible advantages of this algorithm over the earlier and more general

solution of [CY95] are:

1. Only the (normally small) formula is transformed, rather than the (big) model.

2. Results from MCMC suggest that the bounds in Chapter 4 are pessimistic, and
that advantage 1 may make measure() more useful for practical verification

problems.

3. An implementation exists: MCMC. I have not been able to find an implemen-

tation of the [CY95] algorithm.

Additional contributions are the proof that every plausible path has a determining

prefix (Theorem 5.41), and the MCMC implementation from Chapter 6.
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8.2 Future Work

This work has concentrated on simply proving the algorithm correct and building a
trial implementation. Many possible improvements and extensions were left for future

investigation. The three most pressing questions seem to be:

1. How does this algorithm compare with the original algorithm of [CY95], in

practice?

2. How does this algorithm compare with the PCTL/pCTL* model checking al-
gorithms of work such as [ASBBS95] and [BCHKR97], in practice?

3. What demand is there for a practical algorithm which can compute an ex-
act probability, rather than approximate it with true/false queries via binary

search?

These questions immediately suggest some avenues for future work. In rough order

of descending urgency:

1. More efficient implementation. This is urgent because it is a prerequisite

for realistic testing

The Markov chain representation in MCMC is primitive. Tools such as PRISM
[IKNP02] use BDD representations and are therefore much more efficient on the
large models common in practice. Such a representation could be incorporated
into MCMC, or (more likely) the measure() algorithm could be incorporated

into these more mature tools.

The technique MCMC uses to solve systems of equations is also crude and might

be fruitfully replaced with a more sophisticated linear algebra package.

As discussed in section 6.3, floating-point handling in MCMC is sloppy and
prone to roundoft error, especially in trace generation. Either more careful
floating-point usage or substitution of exact rational arithmetic would improve

numerical stability.

There are also more basic potential optimizations, for example, porting the code

to C.
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2. Realistic testing. As discussed in section 4.5, the most productive way of eval-
uating the algorithm’s usefulness would seem to be testing on realistic inputs.
The simplest comparison would be to take problems currently being passed to
PCTL/pCTL* model checkers, of the form “Does state s satisfy ¢ with proba-
bility > k7?7, and compare the running time required by a tool like MCMC to

answer the corresponding question, “With what probability does s satisfy ¢?”

Particularly desirable would be to perform such tests with anyone currently us-
ing existing model checkers to do “binary search” probability checking (repeated

calls to approximate the exact probability).

3. Better complexity bounds. Aside from actual performance improvements,
it might be possible to improve many of the bounds in Chapter 4 purely by
better analysis. In particular, the conjectures (4.3, 4.4, 4.5, 4.6) need to be

resolved.

4. Extension to more powerful formalisms. This thesis has dealt only with a
single type of model (labeled Markov chains) and specification (LTL). Several
variants and generalizations are considered in work such as [CY95], [CT97]. and
[ASSB96], including models such as concurrent Markov chains and continuous-
time Markov processes, and specifications in ETL or as Biichi automata. Which
of these the measure() algorithm would be easily adaptable to is an open ques-
tion. One clear restriction is that the caching measure() uses to ensure termi-

nation would not work for infinite-state systems.



Appendix A

Additional Background

This appendix reviews some background topics more basic than those covered in
Chapter 2: the original non-probabilistic model checking algorithm, and BDDs (bi-

nary decision diagrams).

A.1 Traditional CTL model checking

We saw in section 2.1 what the purpose of a model checking algorithm is: to take a
system description (e.g.. some kind of automaton) and a specification (e.g., a formula
in a temporal logic), and determine whether the system satisfies the specification.
Here I go through the original model checking algorithm developed around 1981 by
E Allan Emerson and Ed Clarke. Many of the ideas used by this algorithm will also
be useful to us in the probabilistic setting, though not as many as we might hope.
Emerson & Clarke’s algorithm takes a specification in CTL, a branching-time
temporal logic. as contrasted with the linear-time LTL logic used by this thesis. So
I begin with a discussion of branching-time vs linear-time logics, and define CTL
syntax. Then I describe Emerson & Clarke’s algorithm and go through an example

involving an automatic door.

A.1.1 Linear-time vs branching-time logics

Both LTL and CTL are used to phrase assertions about the future states of atoms.
The essential difference between them comes down to the distinction between linear-

time and branching-time logics. A formula in a linear-time logic like LTL makes an
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assertion about a single sequence of future states. A single formula in a branching-
time logic like CTL, however. asserts something about a number of possible futures.
That is, whereas an LTL formula describes a single sequential path in time, a CTL
formula has as its subject a tree of possible future paths (or branches).

For example, the LTL formula Xa asserts that one step into the future, the atom
a will be true. In CTL, some future paths may satisfy a and others may not, so we
need to clarify our claim. We might assert for example that a is true in the next
step along all possible paths: AXa. Or we might assert that at least one future path
satisfies Xa: EXa. See Figures A.1 and A.2.

tO tl t2 13 t 4

(o (e (e (e~

Figure A.1: The linear computation path from Figure 2.5. This path satisfies the
LTL formula Xa (but not XX Xa).

Figure A.2: A computation tree, 7. T satisfies the CTL formula FXa, but also
EX-a. It does not satisfy AXa. Meanwhile, EXb and AXb are both satisfied:
EX~b is not.
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The multiplicity of different trees mean there are other meaningful claims we could
want to make in a branching-time logic, such as “exactly one path satisfies Xa”, or
“at least two paths satisfy Xa.” A simple logic like CTL gives us no way to express
these assertions: we have only A and £ — all, or at least one. However, adding
negation lets us derive =FE (“along no paths”) and —-A (“not along all paths”) as

well, and these four alone allow us to express many useful claims.

A.1.2 CTL syntax & semantics

CTL syntax (Figure A.3) is close to LTL’s. The only new idea is the use of the E/A
quantifiers. Otherwise the basic operators are the familiar operators X and U from
LTL, and the usual - and A boolean combinators. (The useful temporal operators
F (“eventually”) and G (“always”) can be derived from CTL’s i/, just as we saw for
LTL in section 2.3.4.)

o Y TIF
| a
| v
| Y Aw
| EXv
| AXv
| E(ude)
| AlWlUw)

Figure A.3: CTL syntax: the eight types of basic LTL formulas, not counting the
derived operators F' and G.

Each CTL temporal operator is made up of a path quantifier (£/A) followed by
a modality (X /U/F/G). The modality says what’s being asserted about the future
paths; the quantifier says which paths the assertion is being made about. For example,
the CTL operator EGv asserts that there exists at least one path along which ¥ is
always satisfied. Conversely, AF asserts that ¢ is eventually satisfied along every
path. Figure A.4 shows the values of some CTL formulas on the computation tree
from Figure A.2.

It can be helpful to think of the path quantifier and the modality of a CTL
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temporal operator as describing the two dimensions of the assertion. In a computation
tree drawn like the one in Figure A.2, the modality specifies the vertical extent of the
claim, and the path quantifier specifies its horizontal extent: you look down the tree
to check if a property like Xa is satisfied, but you look across the tree to see which

computation pa*hs satisfy it.

A.1.3 Computation trees and nondeterministic choice

One may wonder when it’s useful to make assertions about computation trees, as
branching-time logics allow us to do. In particular, constructs such as “always” and
“eventually” seem best suited to describing infinite computation trees, and one might
well wonder how often these come up. The answer is that they come up often. if one
happens to be analvzing the behavior of nondeterministic systems, in which several
different next steps may be possible from any given state.

Consider for example the nondeterministic finite automata (NFA) A’ from Figure
A5 Started in state s1, A’ may move to sy at the next step, or stay in s;. As we
unwind further into the future, the (finite) NFA generates an infinite computation
tree, part of which is shown in Figure A.6.

So, branching-time logic makes sense in the context of nondeterministic systems.

Later we will examine whether it makes sense in probabilistic svstems as well.

A.1.4 Example: an automatic door

The original model checking algorithm took a state s in an NFA as the model and
a CTL formula ¢ as the specification, and produced a boolean (true/false) value:
whether s = ¢ (i.e., whether the tree of possible paths from s satisfies ¢). Let’s look
at an example problem, and see how the model checker solves it.

Consider an automatic door, like the door that opens for you when you leave the
supermarket. The door has a sensor plate a built into the ground in front of it, and
another sensor b in the ground behind it. The door swings open when someone steps
on a, and swings shut after they step off b. See Figure A.7.

We, the designers of the door, must make it follow some protocol which tells it when
to open or close, depending on which sensors currently register someone standing on

them. There are certain properties we want our protocol to guarantee: for example,
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that the door never swings open, or shut, while b is on. We will model this system as

an NFA, and model check it to verify that it satisfies the properties we want.

A.1.5 The NFA model

We can see three state var. >les, on or off: a/—a (sensor a does/doesn’t have someone
standing on it), similarly b/=b, and d/—d (the door is/isn’t open). These three atoms
combine to form eight (23) possible states for the entire system, as shown in Figure
A.8. Our design effort goes into choosing the edges — which transitions our protocol

will permit.!

A.1.6 The CTL specifications

Now, let’s model check for two properties: safety and liveness. By safety here we
mean that the door never bangs into someone standing on sensor b. Liveness is
preserved if anyone who steps up to the door eventually gets through.

We need to encode these properties in CTL. Safety consists of two requirements:
the door never swings open when b is on, and the door never swings shut when b
i1s on. The first can be expressed as AG((b A =~d) — —=EX(b A d)): “It is always
true that, it b is on and the door is closed, it cannot not be true at the next step
that b is on and the door has opened.” Similarly, the second safety requirement
can be written as AG((b A d) — —~EX(bA ~d)). We can combine these to form:
AG(((bAN~d) - =EX(Ad))N((bAd) = ~EX(bA~d))).

Liveness can be expressed as: any time a is on and b is on, b will eventually be
off (when the person on b leaves), and any time a is on and b is off, b will eventually
be on (when the person on a steps through). In CTL this again has two parts,
AG((aAb) — AF(=b)) and AG{(a A —b) — AF(b)). Again, we can combine these to
form AG(({(a Ab) = AF(=b)) A ((a A =b) — AF(b))).

INote that states s3 and sy, in which b is true but d is false, are unreachable from the initial
state. This makes sense: the only way we allow b to be on is if someone has stepped through the
door, in which case the door must be open, since it can’t close again until the person has stepped
off b. There would be no harm in removing these unreachable states from our system, except that

later they might become reachable if we changed our protocol.
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A.1.7 Converting to primitive operators

Before proceeding, we will want to get rid of the non-primitive operators in these
formulas. Recall that —, AG, and AF are not part of our technical definition of
CTL; we need to replace them with operators defined in Figure A.3, using the helpful
equivalences described in section 2.3.°

Doing this conversion, we obtain ~E(TU—-(—=((b A =d) A EX(b A d)) A —((b A
d) NEX(bA~d)))) for safety, and =E(TU-(=((a A b) A =A(TU-b)) A =((a A =b) A
—A(TUD)))) for liveness. These formulas are unreadable. However, they mean the
same thing as the old ones, and this conversion can be easily automated, so in general

only the computer will need to work with the uglier form.

A.1.8 Checking the properties

Now that we have the model and the specifications, how do we check them? The
essential idea is to take advantage of the compositional structure of the specifications:
a CTL formula is either basic and therefore easy to check directly (booleans and
atoms), or made up of a combination of smaller formulas. We will see how to compute
whether a formula is satisfied, if we know whether its subformulas are satisfied. This
gives us a recursive algorithm for computing the truth of any specification in the
model. Figures A.10 and A.11 below show the algorithm being used to check safety
in D.

As a simple example. if we can check whether (the tree of possible paths from)
a state s satisfies two formulas ¥ and w, we can certainly check whether s satisfies
¥ Aw: just check if it satisfies both subformulas. = is even easier: any given state
s satisfies =) iff it doesn’t satisfy .

More precisely, to model check a (state, formula) pair (¢, s), we first compute the
truth of all ¢’s subformulas at every state in the system. That is, we check all pairs
(v, t), where ¢ is a subformula of ¢ and ¢ is any state in the system. Since there are
finitely many subformulas (which keep getting smaller as you recurse), and finitely
marny states, this algorithm terminates.

When run with a large input formula ¢, this model checking algorithm will begin
by checking small formulas nested deep within ¢ (at every state in the system), and
use them to build up bigger and bigger combinations within ¢, until finally ¢ itself is

computed.
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A worthwhile exercise is to use this algorithm to check the liveness property, as
defined above, in D. You'll find that the model does not satisfy liveness, because
as defined in Figure A.8, our protocol doesn’t force people to move: the self-looping
edges of states s4, s¢ and sg allow paths such as s1528656S6 . . . along which someone
never gets through the door. To fix this, we coulc' remove the self-loops. The model

checking algorithm would then show that liveness was satisfied.

A.1.9 Checking nexts

Checking formulas constructed with the next operators EX/AX is almost as easy as
checking — and A. Suppose we want to check whether the following proposition is
true in D above: from state s;, it is possible in two steps to reach a state where d is
false. In CTL we would write this EX(EX—d). This formula has one subformula:
EX~d. Now. suppose we already knew whether each state satisfied this subformula.
Then it would be easy to compute the truth of EX(EX—d): we would just see if
any of the nodes s; can reach in one step (ss, s7 and sg) satisfied EX—d. (In fact,
ss = EX—d, since s can go to s;; therefore s; = EX(EX—d).)

A.1.10 Checking untils

Computing untils takes a bit more cleverness. To check a formula of the form E (v Uw).
we start as usual by checking the truth values of subformulas ¢ and w at every state.
Then we perform a labeling loop to determine which states satisfy the until. E(¥Uw).
Figure A.9 shows an example.

The labeling loop proceeds as follows. First of all, any state where w is true
immediately satisfies the until, so we start with these states labeled true and all other
states labeled false. Next, notice that any state t labeled false which satisfies 1 and
has a next state s which has been labeled true, itself satisfies the until; this follows
from the definition of the until operator. So we can change the label of ¢ from false to
true. Having done so, there may now be another state u where 1 is true and which
has an edge to t; so u needs to be labeled true as well.

Repeating this relabeling process, we will eventually reach a point where no further
states can be labeled true. (This is guaranteed to happen, since there are finitely many

states, and at each step we are only increasing the number of states labeled true.) At
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this point, the states labeled true are exactly those which satisfy the original until

formula, E{y)Uw). Computing the truth of AU formulas is very similar.

A.1.11 Producing a counterexample

Model checking algorithms like this have the benefit tha if they determine that
the model doesn’t satisfy the specification, they generally produce a counterexample
computation path. For example, in the course of verifying that liveness does not hold,
the algorithm would produce a trace such as the s1spsgsess... above. This benefit
will not concern us much in our work here. However, in practice it does present a
serious advantage to the system verifier, who needs to know not just that his system
is broken, but how.

For a fuller explanation of the original CTL model-checking algorithm. consult
a standard reference such as [CGP00]. The essential idea is that a formula can be
decomposed into subformulas, whose model-checked truth values in each state can be

used to compute the truth values for the original formula.

A.2 BDDs

BDDs (binary decision diagrams) are an eflicient way to represent boolean combina-
tions of variables, such as those represented in traditional propositional logic as a A b
or ¢V —(a — —b). In this work, we use BDDs to represent LTL formulas.

This appendix reviews the basic ROBDD structure introduced in [Bry86].

Figure A.12 shows the BDD for a A b. There are two types of nodes: those
containing atoms (a/b), and the leaf nodes at the bottom containing 7 or F. Each
atom node has two branches: the (right) one followed if the atom is true, and the
(left) one followed if it’s false. All paths from the root node at the top eventually
reach one of the terminal leaf nodes. So this BDD could be read as follows: “Check
a. If it’s false, return false. If a is true, check b, and return whether it’s true.” We
can express this in C-like syntax as: (e ? 7 : (b ? T : F)), or, using a as shorthand
for (e ? 7T : F) and —a for (a ? F : T), more compactly as (a 7 7 : b). Similarly, the
BDD for ¢V (a A b) (Figure A.13) would be transcribed as (a 7 (b? 7 : ¢) : ¢).
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A.2.1 ROBDDs

The proper full name of the BDD model we will work with is ROBDDs: reduced,
ordered BDDs. This is the most common variant, and we will just call them BDDs.
They are reduced in that identical subtrees are merged, to save space; see Figure A.14
for the unreduced form of the a A b BDD from Figure A.12. They are - lered in that
any path from the root at the top to one of the leaf nodes passes through the atoms
in a fixed order. Typically the ordering is lexicographic: all nodes containing a occur
above all nodes containing b, a before aa before b, and so on. Enforcing an order on

the atom nodes is important for keeping the representation canonical.

A.2.2 Beneﬁts of BDDs

BDDs have a number of nice properties which lead them to be used extensively in
model checking, as well as other fields. First of all, they are compact: stored on
a computer, the BDD representation of a large formula tends to take up much less
space than most other forms (including written forms like “a Ab”). In the worst case.

a BDD can be exponential in the number of atoms:

Proposition A.1 Ifn; is a BDD, A is the set of BDD atoms occurring in ny. |ny}
is the number of nodes in ny. and |A| is the size of A, then in the worst casc. |1y is

o241,

Proof Follows from the observation that n; has the structure of a binary tree of

height at most |A|. |

But in practice BDD size is often far smaller than this, closer to polynomial than
exponential in |A|. This efficiency is probably the most widely appreciated virtue
of BDDs. For our purposes, however, a more important benefit is that BDDs are
canonical: there is only one BDD which represents any given boolean combination
of variables. In other words, two formulas with the same meaning (for example. a A b
and —(—a V —b)) always produce the same BDD (Figure A.12).

The fact that BDDs are canonical is handy in various ways. It keeps down the total
number of BDDs constructed, since only one BDD will be constructed per boolean

combination:
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Proposition A.2 From |A| BDD atoms, ezactly 22 Al distinct BDDs can be con-

structed.

Proof Each BDD represents a function from the set of atom truth assignments to
T /F. There are 21! different atom assignments, and therefore 22 different functions

from these assignments to 7 /F. ]

Canonicity also makes it easy to check equality: given two logical formulas like
the above, you can just create the BDD for each and check if they’re (syntactically)
the same. This ease of checking equality can be helpful when writing algorithms, not

only to make them run faster, but to ensure that they terminate at all.

A.2.3 Operations on BDDs

Another useful property of BDDs is that standard boolean operators like not(). and().
and or() can be efficiently computed on them. Here we go through how vou could
recursively compute and(n;, ny) for two BDDs n; and ny. Then we give the formal
algorithms for all the above operators, and for another useful operator, cond().

The full algorithm for and(ny, ny) is shown in Definition A.5. Recall that there
are only two kinds of BDDs: those containing an atom, of the form n, = (a 7 13 : ngy),
and the primitive booleans 7 and F. So, the idea is that there are really only three

cases for and(ny, na):

1. One of the inputs may be a boolean, 7 or F. In either case. the answer is then

trivial to compute. For example, if n; = 7, then and(n;, ny) is simply ns.

2. If neither node contains a boolean, than each must contain an atom. Suppose
each contains the same atom, a: n; = (a 7 n3 : n4), n2 = (a 7 ns : ng). Then,
in the case where a is true, the answer will be n, = and(ns, ns), which we can
compute recursively. Similarly, in the case where a is false, the answer is n_, =

and(ng, ng). So, if n, # n-,, the final answer is the a-node with each of these
possible answers as its children: (a ? n, : no,). If n, = n_,, then a’s value

doesn’t matter and we just return n,.

3. There remains only the case where n;, and n, contain different atoms. Without

loss of generality suppose that n;’s atom comes before ny’s alphabetically. and
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thus (by the ordered property of ROBDDs) belongs above it in the BDD: n; =
(a?nz:ng), ny = (b7 ns: ng). Then we can recurse as above by considering
two cases: either a is true, or it is false. If a is true, the answer is n, = and(na,
ny). If a is false, the answer is n-, = and(ng, ny). So the final answer is:

(a7 n,:n-,) (again, unless n, = n_,).

The formal definitions of not(n;), and(ni, ny), or{n;, ny) and cond(n, ny, ns)
are below.

The complexity of these algorithms is easy to analyze:

Proposition A.3 If A is a set of BDD atoms, ny, ny and ny are BDDs made up of
these atoms. and |A| is the size of A, then in the worst case, the following operations
are all O(2!41):

e not(ny)
e not(ny, na)
e or(n;. no)

e cond(ni, ng, ng)

Proof A call to not(n;) just makes two recursive calls on n;’s child nodes. So. one
recursive call is made per node in n;, and therefore not() is O(|ny|). where |n,| is
the number of nodes in n;. By Proposition A.1, |n;] is O(2'4) in the worst case. So,
worst case, not(n;) is O(21).

Similarly, each nontrivial call to and(ny, no) makes recursive calls on either n;’s or
ny’s children, and therefore every node in n; and n, is passed to at most one recursive
call. So and() is O(|n1|+|na|), and therefore again O(2/4!). And since or() and cond()

simply make a fixed number of calls to not() and and(), so are they. [

Finally. some useful identities relating these operations are listed in Figure A.15.
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All are straightforward to prove from the definitions.

Definition A.4

not(n;):
ifn, =7:
return F
else if n; = F:
return 7
else, ny = (a 7 ny : n3):

return (a ? not(ny) : not(ns))
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Definition A.5

and(n;, no):
if ny =F orng = F:
return F
elseif ny =7
return 7,
else if ny =7
return nj
else, ny = (a1 7 n3 : ny), ng = (ay 7 n5 @ ng):
if a; > ao:
return and(ng, ny)
else:
if a1 < aq:
Ng, = and(ns, na)
N_o, = and(ny, no)
else, a; = ay:
Ne, = and(ng, ns)
Noq, = and(ng. ng)
if (ng, = n-g,):
return ng,

else:

return (a1 ? ng, : Mg, )

or(ny. ny) can then be defined in terms of the primitive operators not() and and():

Definition A.6

or(ny, ng):

return not(and(not(n;), not(ny)))
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Finally we have cond(ni. ng, ng), which returns the BDD which is equivalent to

ny when n; is true, and to n3 when ny is false:

Definition A.7

cond(ny, ng, ng):

return or(and(n;, ny). and(not(ny), ns))

The following proposition can also be useful:

Proposition A.8 For any node ny = (a ¢ ny : ng), ny = cond(a. ny. n3) (shorthand

forcond((a 27T : F), ng, n3)).

Proof Follows trivially from the definition of (a 7 ny : n3). Note however that it does
not follow that an arbitrary cond(ng. ns. ng) call necessarily returns (ny ? ns : ng).
since in general we have no guarantee that ny is an atom, or that it belongs above
ns and ng. For example, cond((a 7 7 : b). b. F) returns b. not the invalid node

(a?T:b)2b: F). .
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Formula | Satisfied Explanation

by tree T'7
EX-a | Yes Any path through s3 satisfies X —a.
AXa | No Not all paths satisfy Xa, since paths through sj
don’t. (Equivalent to ~EFX—a.)
AXb | Yes All paths satisfy Xb, since all pass through ss. s3
Or 84.
EX(EX(aAb)) | Yes There is at least one path along which (@ Ab) holds

two steps from now: (si, s3, S7).

AX(EXa) | No It is not true that, from every possible next state,
there exists a next state in which a is true: there
is no such next state from s;. (Equivalent to
SEX(AX-a).)

AG(aVvb) | No It is not true that (a V b) is everywhere true: it is
false in sg. (Equivalent to =EF(—a A —b).)

AF(a AD) | Yes Along every branch, (a A b) is eventually true: in
89, S4. Or S7.
EX(AGa) | No There is no next state from which a is always true

along all paths, because every next state can reach
a state in which « is false: s, can reach sg, s4 can
reach sg/sq/s10. and s3 itself does not satisfv a.
(Equivalent to ~AX(EF—a).)

A((a Vv b)U(anbd)) | Yes Along every path, (aVb) holds until (a A b) holds.
The s1s, path succeeds at s,, s184 succeeds at
s4, and s;s3s87 survives down to s;, where it is
satisfied. (Equivalent to the disgusting ~E((—a v
=b)U(=a A =b)).)

Figure A.4: Some CTL formulas evaluated on the computation tree 7' from Figure
A2,
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@D

Figure A.5: A state-labeled NFA, A’

Figure A.6: The first few levels of the infinite computation tree generated by the NFA
A’ from Figure A.5.

open

—_—— = —— - ——_— - — -~ -

shopper | shopper
enters = -~ ---~- T B exits

closed

Figure A.7: An automatic door. The door opens automatically when someone steps

on sensor a, but must never swing open (or shut) while someone is standing on b.
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door shuts

shopper

shopper
leaves

shopper
leaves waiting

shopper
waiting

shopper
enters door

shopper
leaves

shopper
leaves

new shopper
waiting

new shopper
waiting

door opens

Figure A.8: An NFA D modeling the automatic door systeni.
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Formula Satisfied in states | Explanation

a $2, S4, Sg, Sg First we need the truth values for the ¥ (a) and
w (d Ab) in the E(yYUw until formula.

dNb 87, Sg These are easily obtained from Figure A.8.

E(ad(dNDb)) | s7, S8 To compute the truth values of the until, we begin
by labeling 7 only those states which immediately
satisfy w (d A D).

E(aU(d N\ D)) | sg, s7, S5 Next, we label true any as-yet unlabeled states
which: (1) satisfy ¢ (a), and (2) have an outgo-
ing edge to a state already labeled true. Of the
unlabeled states here, only s¢ satisfies « and has
an edge to one of the labeled states (s7).

E(ad(d ND)) | sq, sg, s7, S8 Repeating the last step. s, satisfies a and has an
edge to the newly labeled state, sg. (s5 has an
edge to sg, but doesn’t satisfy a.)

E(ald(d Ab)) | s, s4. Sg. S7. S s4 satisfies a and has an edge to s,.

E(ald(d AD)) | s2, S4. S6, S7, Ss None of the remaining states both satisfy a and

have an edge to a labeled state. so the algorithm
has terminated. All remaining unlabeled states
are labeled false. Only those states now labeled
true (sa, S4, Se, S7, and sg) satisfy FE(ald(d A b)).

Figure A.9: An example of model checking an until formula: checking E{ald(d A b))

(“There exists a path along which a is true until a state is reached where d and b are

both true™) in D from Figure A.8.
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Recursive
# | structure | Formula
1| T T
2 |b b
3 |d d
4 -3 —d
3 1214 bA~-d
6 [2A3 bnd
7 | EX6 EX(bAd)
8 |5AT (bA-d)NEX(bANd)
9 |8 ~((bA=d)NEX(bAd))
10| EX5 EX(bA —d)
1116 A 10 (bAd)AEX(bA-d)
12 | -11 =((bAd)ANEX(bA—d))
1319A12 ~(bA=d)ANEX(bAD)A-((bAD)AEX(bA))
14 | —13 =(=((bA=d) NEX(bAA))A-((bAd)ANEX(bA-)))
15 | EQQU14) | E(TU=(~((bA=d)ANEX(bAd)A=((bAd)AEX(bA—))))
16 | =15 ~E(TU(~((bA=d) ANEX(bAd)A=((bAd)ANEX(DA~d))))

Figure A.10: The order in which the subformulas are model checked, while model
checking D (from Figure A.8) for safety. Aside from booleans and atoms, each row is
assembled from previous rows; for example, the final row 16, representing the safety

property, is the negation of row 15, which is built from rows 1 and 14.
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Recursive Truth value in
# | structure | s; S; S3 S4 S5 Sg S7 Ss
1 {7 T 7T 7T T T T T T
2 |b F FTTF FTT
3 |d F FF FT TTT
4 | =3 T T T T F F F F
5 204 F F T T F F F F
6 |2A3 F F F FFFTT
7 | EX6 F F FF FTTT
8 |OAT FFF FF FFF
9 |8 7T 7T T 7T T T T T
10 EX5 F F T T F F F F
1116A10 rF F F FF FFF
12| =11 T T T T 7T 7T T T
1319112 T 7T 7T T T T T T
141 =13 F F F F FFFF
15| E(1U14) |\ F F ¥ F F F F F
16 | —15 T T T T T T T T

Figure A.11: Model checking the safety property in D. The truth values of subfor-
mulas are computed first, leading to the eventual answer in the last row: the system

satisfies safety (no matter which state you start in).
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Figure A.12: The BDD representation of the formula a A b (and of all equivalent

formulas, such as =(—a V —b)).

(e
(2
(<
()

Figure A.13: The BDD representation of the formula ¢V —(a — —b).
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Figure A.14: The unreduced form of the a A b BDD from Figure A.12.

not(not(ni))

and(nq, ny)

or(ng, na)

not(and(n;. ng))

not(or(n;. na))

and(or(ni, na). ng)

or(and(ni, n2). na)

cond(not(ny), ny, ng)

not{cond(ny, no. n3))

and(cond(n, na, n3), ny)

and(cond(ny, ng, n3), cond(ny, ng, ns))
or(cond(ny, ng, n3), ng)
)

or(cond(ny, nz, n3), cond(ny, ng, ng)

n
and(”?v n )
or(ny, n)

or(not(n;), not(ns))
and(not(ny), not(nsy))
or(and(ni, n3). and(n,. ny))
and(or(ni, n3), or(ny. ng))
cond(ny, nz, na)

cond(ni, not(ns), not(ns))
cond(ni, and(ng, ng), and(ns, ng))

( (
( (
cond(n;, and(ny, ny), and(ns, ns))
cond(ny, or(ny, n4), or(ng, ny))

(

cond(n;, or{ngy, ng). or(ns. ns))

Figure A.15: Some useful distributivity and commutativity identities relating BDD

operations.
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MCMC excerpts

This chapter collects some excerpts from MCMC, the Java implementation described

in Chapter 6. Included are:

e the README file describing how to get started with MCMC (pages 118-120)
e a commented sample input file (pages 121-123)
e a transcript showing MCMC’s output on the sample input file (pages 124-128)

e a code excerpt from Checker.java: the core methods computeProbability().

measure(), step(). and findSatisfyingTraceFrom() (pages 129-135)
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B.1 README

This is the readme file for MCMC, a Markov chain model checker.
Last updated March 30th, 2003.

WHAT IT IS:

MCMC is a Java program for analyzing the properties of labeled Markov
chains. You enter a description of a Markov chain and an LTL formula, and it
computes the probability that the formula is true in each node of the Markov
chain.

The algorithm used is described in my thesis:

www.cs.mcgill.ca/" jacob/thesis.

INSTALLING:

These instructions are for running MCMC on a Unix/Linux machine, but it
will also run on Windows or pretty much any platform supporting Java.
Copy the file mecmc-0.9.5.tar.gz, available at

www.cs.mcgill.ca/"jacob/memc, into a directory and untar it:

gunzip mcmc-0.9.5.tar.gz

tar xvi mcmc-0.9.5.tar

COMPILING:

You’ll need Java version 1.2 or higher to compile MCMC:

cd memc-0.9.5
make
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This will also generate the javadoc APIs in a docs subdirectory.

RUNNING:

From the mcmc-0.9.5 dir:

java MCMC

Or, for example, to pass in the included sample input file:

java MCMC < sample-input

The output should be self-explanatory. It includes:

- the probability of each input formula being satisfied from each state
in the Markov chain

- for each formula and state, a satisfying trace and a contradicting
trace (when they exist)

- diagnostic information: execution time, # LTL-BDDs created, # calls to
measure()/step(), average # variable substitutions/# variable terms

substituted per substitute() call

A "satisfying trace" for a formula phi is a path determining phi as true:
a finite path, every plausible infinite continuation of which (in the given
Markov chain) satisfies phi. A "contradicting trace" is a path determining
phi as false.

That should be enough to get you started. Use sample-input as a template
and read the examples provided on the command line. Questions or ambiguities
may be resolved by the comments in classes like mcmc.checker.Checker or

mcmc . checker.Shell.

This is a proof-of-concept implementation and will break down quickly con
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large input. The simple Markov chain representation is an obvious target for
improvement.

Arithmetic is floating-point, so probabilities close to O or 1 are
rounded. Do not use MCMC for your air traffic controlling needs. In
particular, the satisfying/contradicting traces computed for each formula may
only satisfy it with very high/low probabilities, rather than true 1 or O.

Atom probabilities must be 1 or 0. Intermediate probabilities were
handled in a previous version, but seemed useless and slowed the program down.

The code is lightly tested, but on the whole Knuth applies: "Beware of
bugs in the above code; I have only proved it correct, not tried it." All bug

reports welcome large or small.

LICENSE:

The code is Copyright 2002-2003, Jacob Eliosoff (jacobQcs.mcgill.ca).
However if you’re interested in modifying it or putting it to some use my crack

legal team will probably be amenable. Drop me a line.

CHANGE HISTORY:

0.9.56:

- bounded untils

- satisfying/contradicting traces

- more informative output: # BDDs, # substitutions

- minor changes
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B.2 Sample input

(Comment lines starting with "#" are ignored by the program.)
This is a sample input to the MCMC Markov chain model checking program.

You can pass it in to the program with a command like this:
java MCMC < sample-input

And it will parse the labeled Markov chain M below (the matrix, not the
diagram), parse the LTL formulas which follow it at the end of the file, and
output their probabilities of being true in each state of M. For example, it
will say that the formula "akc" has probability 1 in state 5 and 0 in all
others, because as shown in the diagram, state 5 is the only state where both
a and c are true.

See the README file in this directory for more usage information.

The Markov chain is read in the standard matrix syntax, with a row of
outgoing edge probabilities for each state. For example, the 0.7 arrow from
state sb to state sl in the diagram is represented by the 0.7 in the first
column of the fifth row. It indicates that when the Markov chain is in state
5, it has probability 0.7 (70%) of moving to state 1 at the next step.

Atom probabilities are in a similar format. For example, the fact that
atom ¢ is true (present) only in states 5 and 6 is indicated by the fact that
the line starting "c:" contains 1’s only in the 5th and 6th columns.

LTL syntax:

- "T" stands for LTL true and is true in all states, "F" for false.

- "!a" asserts "not a" {(a is false in the current state).

- "b&c" asserts "b and c¢" (b and c are both true), "blc" means "b or c¢".

-~ "Xb" asserts "mext b": b will be true in the next state.

- "aUb" asserts "a until b": b will eventually be true, and in every
state until it’s true, a will be true.

- "aU[5]b" asserts "a until b within 5 steps": b will be true within 5
steps, and in every state until it’s true, a will be true. (The bound is

inclusive, so, for example, "aU[0]b" is equivalent to "b".)

So, "Xc" is 20% likely to be true in state 3, because from state 3 the
machine is 80% likely to stay in state 3 (where c¢ is false), and only 207
likely to switch to state 6 where ¢ is true.

Another example: "TUa" is true with probability 1 in all states, since

¥ H#H O # H H#H H H ¥ OH OH O H H ¥ O O B O B OH OB H OH OH OB B O B OH O H OH OB OH OB OH OH H

no matter where you start you’ll eventually end up in state 3 or state 4, and
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# in both a is true.

"TUc" is harder.

# you’ll see why I wrote the program.

# Markov chain M, as a diagram:

#* O # O H O H H O H B O OH O B OH O H OH OH O OH O O O H ¥ W B

# The same Markov chain M in matrix form:

o O O O O O

o O O O O O

ER . +
0.8 | s2 |
<mmmm e > | -----
| 0.5 [ b |
+o——= +
f
0.7 I
10.3
N\ I ——
AN B
N/
0.1 11
vuv
m——— +
| s5 |
I I
| ac |
tom——— +
~
0.2 | I
\_/

= O O O O O

@ N

—

o O »r O O O

O O O O O O

Try to work out "TU!(TU(a&XXc))" and
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a 1 0 1 1 0
b 1 1 0 1
C 0 0 1 1

# Input formulas:

a
akc

X(ta)

Tu(vlc)

Xc

TUa

Tu[2]c
TU[10]c

TUc

TU! (TU (a&XXc))

# Copyright 2002-2003, Jacob Eliosoff (jacob@cs.mcgill.ca).
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B.3 Sample transcript

This chapter shows the output when MCMC is run on the sample input file, with the
command java MCMC < sample-input. For brevity, trace output was suppressed.
The machine used for the test was a dual-processor 870-MHz Pentium 3, running
Debian Linux 3.0 and Java 1.3.1. Total execution time was under a second, due to
the small (6-state) input Markov chain. (For this small M, execution time for the

more complicated formulas in Figure 4.2 is also under a second.)

Please enter a Markov chain, as n lines of n outgoing probabilities, followed

by some lines of atom probabilities (0/1), followed by a blank line:

Parsed the Markov chain:

-1- -2- -3- -4~ -5- -6-
Edge weights:
1: 0 0.8 0 0.1 0.1 0
2: 0.5 0 0.2 0 0.3 0
3: 0 0 0.8 0 0 0.2
4: 0 0 0 1 0 0
5: 0.7 0 0.1 0 0.2 0
6: 0 0 1 0 0 0
Atoms:
1 0 1 1 0
1 1 0 1
c 0 0 0 1 1

Now enter formulas to model check, one per line. Examples:

"akc" (a and ¢) a and ¢ are both true.

"X(ta)" (next not a) a is false in the next state.
"TU(ble)" (true until (b or c)) Eventually b is true, or ¢ (or both).
"au[s]c" (a until ¢ within 5) a is true until, within 5 steps, c is.

"trace” toggles traces, "debug" toggles debug output, "quit"/"exit" quits.
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Trace output off.

>

Parsed the formula: a = a

Calculating...
Prob in state
Prob in state
Prob in state

Prob in state

[ I S ¢ I S N

Prob in state

O o = O s

Prob in state 6:
Took 0.012 seconds.
So far:

3 BDDs created, 3 passed to measure().

19 measure() calls (6 montriv), 12 step() (6).

6 var subs, avg 0.32 subs (0.0 var terms) per substitute() call.

>

Parsed the formula: a&c = (a?c:F)

Calculating...
Prob in state
Prob in state
Prob in state
Prob in state

Prob in state

D O W N e
S »r O O O O

Prob in state
Took 0.01 seconds.
So far:

5 BDDs created, 4 passed to measure().

38 measure() calls (12 nontriv), 28 step() (16).

12 var subs, avg 0.32 subs (0.0 var terms) per substitute() call.

>
Parsed the formula: X(!'a) = X'a
Calculating...
Prob in state 0.8
Prob in state
Prob in state

Prob in state

g o W N
o
N

Prob in state
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Prob in state 6: 0
Took 0.0040 seconds.
So far:
7 BDDs created, 6 passed to measure().
70 measure() calls (24 nontriv), 58 step() (28).

24 var suts;, avg 0.34 subs (0.0 var terms) per substitute() call.

>

Parsed the formula: TU(bic) = U(T, (b?T:c))

Calculating...
Prob in state
Prob in state
Prob in state

Prob in state

G W =

Prob in state

o= O B P O

Prob in state 6:
Took 0.0070 seconds.
So far:

11 BDDs created, 8 passed to measure().

107 measure() calls (34 nontriv), 91 step() (40).

34 var subs, avg 0.32 subs (0.0 var terms) per substitute() call.

>

Parsed the formula: Xc = Xc

Calculating...
Prob in state
Prob in state
Prob in state

Prob in state

o o W N e

Prob in state

o O O O O ©

Prob in state 6:
Took 0.0040 seconds.
So far:

13 BDDs created, 10 passed to measure().

139 measure() calls (46 nontriv), 117 step() (48).

46 var subs, avg 0.33 subs (0.0 var terms) per substitute() call.

>
Parsed the formula: TUa = U(T,a)
Calculating...
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Prob
Prob
Prob
Prob
Prob
Prob

Took 0.
So far:
15 BDDs created, 11 passed to measure().
164 measure() calls (52 nontriv), 143 step() (54).
52 var subs, avg 0.32 subs (0.0 var terms) per substitute() call.

>

Parsed the formula: TU[2]c

in
in
in
in
in

in

state
state
state
state
state

state

Calculating...

Prob
Prob
Prob
Prob
Prob
Prob

Took 0.
So far:
20 BDDs created, 13 passed to measure().
196 measure() calls (64 nontriv), 175 step() (70).

64 var subs, avg 0.33 subs (0.0 var terms) per substitute() call.

>

in
in
in
in
in

in

state
state
state
state
state

state

6:
0020 seconds.

6:
0040 seconds.

O bW NN

O W N

S N O e

= (c?T:X(c?T:Xc))

0.34
0.39
0.36
0
1
1

127

Parsed the formula: TU[10]c = (c?T:X(c?T:X{(c?T:X(c?T:X(c?T: X (c?T: X (c?T:X(c?T:X(c

?T:X(c?T:Xc))))I)))))

Calculating...

Prob
Prob
Prob
Prob
Prob
Prob

Took 0.
So far:

652 BDDs created, 21 passed to measure().

in
in
in
in
in

in

state
state
state
state
state

state

6:
023 seconds.

QbW

0.760044
0.842524
0.892626
0
1
1
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306 measure() calls (112 nontriv), 335 step() (150).

112 var subs, avg 0.37 subs (0.0 var terms) per substitute() call.

>

Parsed the formula: TUc = U(T,c)
Calculating...

Prob
Prob
Prob
Prob
Prob
Prob

Took 0.

So far:

in
in
in
in
in

in

state
state
state
state
state

state

6:
0080 seconds.

g b W N

0.833333
0.916667
1

0
1
1

54 BDDs created, 22 passed to measure().
345 measure() calls (118 nontriv), 360 step() (156).
122 var subs, avg 0.35 subs (0.0029 var terms) per substitute() call.

>

Parsed the formula: TU!(TU(a&XXc)) = U(T,'U(T, (a?XXc:F)))

Calculating...

Prob
Prob
Prob
Prob
Prob
Prob

Took O.

So far:

in
in
in
in
in

in

state
state
state
state
state

state

6:
053 seconds.

[ 4 B = SV I S R

0.330579
0.252066
0
1
0.289256
0

74 BDDs created, 31 passed to measure().
443 measure() calls (154 nontriv), 511 step() (210).
192 var subs, avg 0.43 subs (0.0474 var terms) per substitute() call.
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B.4

Code excerpt: Checker.java

This excerpt contains the core methods from Checker. java: computeProbability(),

measur

/%%

*

*
*
*/

pub

{

/**

e(), step(), and findSatisfyingTraceFrom().

Computes the probability that node s 1n the MarkovChain satisfies LTL
formula phi, ie, the probability that an infinite path starting from s
satisfies phi.

<p>

The essential idea is to "step" P: for P to be true in s, what must be
true in the node following s? (See step().) Based on this unwinding,
the algorithm builds equations relating the probabilities of different
formulas in different nodes, then solves the resulting system of
equations.

<p>

The checker caches data about the MarkovChain, so it will screw up if

the MarkovChain is modified between calls to this method.

@param phi an LTL-BDD.

Qparam s index of a node in the MarkovChain (1 to n, not 0 to n-1).
Q@return the probability of phi being satisfied by a path starting at
the given node. Results are cached - the second call with the same
arguments will be fast.

Qsee #step(BDD, int)

lic double computeProbability(BDD phi, int s)

Expression solution = measure(phi, s);
if (solution.getVariableCoefficients().isEmpty()) {
/* Solution expression is a scalar, as desired: */
return solution.getScalarTerm();
} else {
/* Solution expression has Variables - wasn’t fully solved. This
should never happen: */
throw new RuntimeException("Solution to computeExpression(" + phi +

", " + s+ ") isn’t scalar: " + solution);
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* Qparam phi an LTL-BDD.

* Qparam s index of a node in the MarkovChain (1 to n, not O to n-1).
* Qreturn a trace starting from the given state which determines phi as

* true, ie, a finite path P in the Markov chain such that every plausible
* infinite continuation of P satisfies phi.

* <p>

* The trace is represented as an array of state ints (1 to n, not 0O to

* n-1). Eg, the array [1,3,1] represents the trace (sl1,s3,sl).

* <p>

* If no such trace exists in the Markov chain for the given phi and s,

* returns null. (This implies that the no plausible path from s satisfies
* phi, which implies that the probability that a path from s satisfies phi
* is 0.)

* <p>

* This method looks for a short trace, but no guarantees are made about

* the length (ie, it may not be the shortest).

*/

public int[] findSatisfyingTraceFrom(BDD phi, int s)

{

ArraylList trace = new ArrayList();
double prob, highestProb;
ArrayList choices = new ArraylList();

int choicelndex;

while (true) {
trace.add(nev Integer(s));
prob = computeProbability(phi, s);
Log.debug("Added s" + s + " to trace (prob " + prob + ")...");

/* Approximate - values very close to O or 1 (within
Precision.PRECISION) are counted as 0/1: */
if (prob < Precision.PRECISION) {
return null;
} else if (prob > (1 - Precision.PRECISION)) {
int length = trace.size();
int[] result = new int[length];
for (int i = 0; i < length; ++i) {
result[i] = ((Integer)trace.get(i)).intValue();
¥

return result;
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} else {
/* Find the successor state in which step(phi, s) is most
likely to be satisfied: */
phi = step(phi, s);
highestProb = 0;
choices.clear();
for (int i = 1, z = iMarkovChain.getNumberOfNodes(); i <= z;
++1) {
if (iMarkovChain.getEdgeWeight(s, i) > 0) {
prob = computeProbability(phi, i);
if (prob > highestProb + Precision.PRECISION) {
choices.clear();
choices.add(new Integer(i));
highestProb = prob;
} else if (prob == highestProb) {

choices.add(new Integer(i));

choiceIndex = (int) (Math.random() * choices.size());

s = ((Integer)choices.get(choicelndex)).intValue();

* Computes an Expression representing the probability that the specified

* node in the MarkovChain satisfies the given LTL formula.

* Qparam phi an LTL-BDD.
* Qparam s index of a node in the MarkovChain (1 to n, not 0 to n-1).

* Qreturn an Expression representing the probability of phi being true in

* node s.
* Q@see #computeProbability(BDD, int)
*/
protected Expression measure(BDD phi, int s)
{
++iMeasureCount;

MEASURE_BDDS . add (phi) ;
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Expression solution;
if (phi instanceof BDDBoolean) {

/* Trivial case: */

solution = ((phi == BDDBoolean.TRUE) ? ONE_EXPRESSION :

ZERO_EXPRESSION) ;

} else {

/* Check the cache: x/

Integer sInteger = new Integer(s);

solution = (Expression)MEASURE_CACHE.get(phi, slnteger);

if (solution == null) {

++iNontrivialMeasureCount;

/* Create and cache a Variable representing the solution: */
solution = new Expression();

Variable x = new Variable();

solution.add(1l, x);

MEASURE_CACHE.put(phi, sInteger, solution);

/* Solve recursively by stepping: */

Expression expr = new Expression();

int nNodes = iMarkovChain.getNumberOfNodes();

BDD phiPrime;

double edgeWeight;

phiPrime = step(phi, s);

for (int sPrime = 1; sPrime <= nNodes; ++sPrime) {
edgeWeight = iMarkovChain.getEdgeWeight(s, sPrime);
if (edgeWeight > 0) {

expr.add (edgeWeight,

measure (phiPrime, sPrime));

/* Equate the recursive solution with the Variable. This step
should (eventually) reduce every solution Expression to a
scalar, so that computeProbability() works: =/

try {

solution = expr.solveFor(x);

} catch (UnsolvableEquationException e) {
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%*

*

*/

e.printStackTrace();
throw new RuntimeException(
"Unexpected exception while solving " +
"computeExpression(" + phi + ", " 4+ s + "): " + e);
}

x.substitute(solution);

}

return solution;

Computes what must be true at the next step for the given formula phi to
be true at this step, based on the atom truth values in the current
node s. Examples:
<ul>
<li>step(T, s) = T
<li>step(Xb, s) = b
<li>step(c, s) = T if s(c) (that is, if ¢ is true in s), F if ts(c)
<li>step((Xc)&amp; (aUb), s) is ¢ if s(b); F if !s(b) and !s(a); and
c&amp; (aUb) if !'s(b) and s(a)
<li>step(('a)UF, s) is F
</ul>
Note that, as in the last of these examples, step(phi, s) always returns
F if phi is an unrealizable until (an until of the form PUQ, where the
probability of Q being satisfied is O in every node reachable from node

s).

Qparam phi an LTL-BDD.
@param s index of a node in the MarkovChain (1 to n, not 0 to n-1).
@return the LTL-BDD which must be true at the next node for phi to be

true at the current node.

protected BDD step(BDD phi, int s)

{

++iStepCount;

BDD phiPrime;
if (phi instanceof BDDBoolean) {

/* Trivial case: */
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phiPrime = phi;
} else {
/* Check the cache: */
Integer sInteger = new Integer(s);
phiPrime = (BDD)STEP_CACHE.get(phi, sInteger);

if (phiPrime == null) A

++iNontrivialStepCount;

BDDCond phiCond = (BDDCond)phi;

LTLBDDAtom alpha = (LTLBDDAtom)phiCond.getVariable();
BDD psi = phiCond.getTrueCase();

BDD omega = phiCond.getFalseCase();

BDD alphaPrime = null;
if (alpha instanceof LTLAtom) {
LTLAtom alphaAtom = (LTLAtom)alpha;
String atom = alphaAtom.getAtom();
alphaPrime = (iMarkovChain.isAtomTrue(atom, s) 7
BDDBoolean.TRUE :
BDDBoolean.FALSE) ;
} else if (alpha instanceof LTLNext) {
LTLNext alphaNext = (LTLNext)alpha;
BDD tau = alphaNext.getSubformula();
alphaPrime = tau;
} else if (alpha instanceof LTLUntil) {
LTLUntil alphaUntil = (LTLUntil)alpha;
BDD tau = alphaUntil.getSubformulal();
BDD upsilon = alphaUntil.getSubformula2();
BDD tauUntilUpsilon = LTLBDDFactory.until(tau, upsilon);

/* Check if the until is realizable: */
if ((psi != BDDBoolean.TRUE) ||
(omega != BDDBoolean.FALSE)) {
/* Delegate (so each until is only checked once): */
alphaPrime = step(tauUntilUpsilon, s);
} else {
/* Check directly: */
TreeSet reachableNodes = getReachableNodesFrom(s);

Iterator tIter = reachableNodes.iterator();
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boolean allProbsZero = true;

for (int t; allProbsZero &% tIter.hasNext();) {
t = ((Integer)tIter.next()).intValue();
allProbsZero &=

(computeProbability(upsilon, t) == 0);

ks

if (allProbsZero) {
/* The until is unrealizable, so substitute F: */
alphaPrime = BDDBoolean.FALSE;

} else {
BDD tauPrime = step(tau, s);
BDD upsilonPrime = step(upsilon, s);
alphaPrime =

upsilonPrime.or (tauPrime.and (tauUntilUpsilon));

if (alphaPrime == BDDBoolean.TRUE) {
/* So, needn’t bother computing omegaPrime: */
BDD psiPrime = step(psi, s);
phiPrime = psiPrime;
} else if (alphaPrime == BDDBoolean.FALSE) {
/* Similarly, needn’t bother computing psiPrime: x/
BDD omegaPrime = step(omega, s);
phiPrime = omegaPrime;
} else {
BDD psiPrime = step(psi, s);
BDD omegaPrime = step(omega, s);
phiPrime = alphaPrime.cond(psiPrime, omegaPrime);
}
STEP_CACHE.put(phi, sInteger, phiPrime);

b

return phiPrime;
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