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Abstract 

This thesis presents a new algorithm to compute the probability that a state in 

a labeled ~vlarkov chain model satisfies an LTL specification. A solution to this 

problem was given by Courcoubetis & Yannakakis in 1995, but unlike their solution 

the algorithm presented here requires no transformations of the input model. This 

adyantage may be significant because of the large models which occur in most practical 

verification problems. The new algorithm is proved correct and shown to be not \\'orse 

t hall doubly exponential in the size of the formula and cubic in the size of the model. 

However limited experimental results suggest that these bounds are pcssimistic and 

that with further optimization the algorithm might approach the efficienc~' of CUlTent 

model checkers, which compute only true or false rather than an exact J'robabilit~·. 

l also include a \vorking Java implementation. l\ICl\IC, and a proof that for an\' 

plausible path P followed by a l\Iarkm' chain and any LTL formula ÇJ. sOJnE' nuit (' 

prefix of P determines whether P satisfies 9. 
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Résumé 

Cette thèse présente un nouvel algorithme pour calculer la probabilité qu'un état 

dans une chaîne de :l\larkov étiquetté (modèle) satisfait une formule LTL (propriété). 

Un tel algorithme a été donné par Courcoubetis et Yannakakis en 1995. mais à la 

différence de leur solution, l'algorithme présenté ici n'exige aucune transformation 

du modèle d·entrée. Cet avantage peut être significatif en raison des grands modèles 

qui se produisent dans la plupart des problèmes pratiques de vérification. Le nouvel 

algorithme est prom'é valide et il a été démontré qu'il n'est pas plus mauvais que dou­

blement exponentiel dans la taille de la formule et cubique dans la taille du modèle. 

Cependant, des résultats expérimentaux partiels suggèrent que ces limites sont pes­

simistes et qu'avec plus d'optimisation l'algorithme pourrait approcher l'efficacité des 

model-checkers courants, qui calculent seulement vrai ou faux plutôt qu'une proba­

bilité exacte. J'inclus également une implémentation fonctionnant ell J3\'a . .\IC:\IC. 

et une preuve que pour n'importe quel chemin plausible P suivi par UlU' chaîlle de 

l\Jarkov et n'importe quelle formule LTL 9, un préfixe fini de P détermine si P satisfait 

9· 
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Preface 

The basic structure of this thesis is: introductory example, background, formaI state­

ment of problem, description of solution, proofs, implementation, conclusions. appen­

dices. 

l've tried to write it in such a way that readers \Vith no relevant background can at 

least understand the problem and sorne of the ideas behind my solution. (Hi .:\lom!) 

For these readers l suggest Chapters 1 and 3, and the advice that these things arc 

often better read twice fast than once carefully. 
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Chapter 1 

Introduction: A Simple Example 

This thesis describes a ne\\' algorithm for the verification of probabilistic systems. 

The problem considered is as fo11ows: given a state in a labeled ~larkov chain. alld 

au LTL formula. compute the probability that the state satisfies the formula. 

In this chapter l first give some context. then go through an example of what we 

want to do. 

1.1 Interest of the algorithm 

A solution to this problern \\'as prescnted by Courcoubetis &: Yannakakis il! [CY95]. 

but unlike the solution presented here. their algorithm requires repeated nOlltrivial 

transformations of the input l\1arkov chain. Since model size is tlw limiting factor 

in most practical verification problems, a more popular technique il! practicr is to 

encode the probability in the specification (e.g., "formula q; is satisfied with probabil­

ity 2:: 0.9"). The specification can then be checked efficientl!' using non-prohabilistic 

model checking techniques, but the result is only true/false rather than an exact 

probability ([ASBBS95]. [BCHKR97]). This work seeks to combine these advantages, 

using a BDD-based algorithm resembling model checking to compute exact proba­

bilities without transforming the model. This algorithm cannot beat the theoretical 

complexity bounds proved and matched in [CY95]) but it is hoped that it may be 

found more efficient in practice. 

A detailed discussion of related work appears in Chapter 7. 

9 



CHAPTER 1. INTRODUCTION: A SIMPLE EXA!l1PLE 10 

1.2 First input: a state in a labeled Markov chain 

Figure 1.1 shows a labeled Jvlarkov chain, Ml. 

Figure 1.1: First input: a labeled l\larkov chain. Ml. 

Ml has three states (Sl' S2 and S3), six edges (arrows), and two atoms (0 and b). 

o is true in Sl and S2, false in S3. bis true in Sl and S3 but false in 82· 

\\·e sa~· that Ml is always "in" one of its three states. At each step. it may moye 

to a differellt state, or stay \vhere it is. The weight of an edge from one statc 8 to 

another s' shü\\"s the probability of going from 5 to s' at the next step, assullling Ml 

is in 8 right now. The outgoing edge weights from an)' state always add up ta 1. So. 

if Ml is in 51. after the next step it has a 40% chance of being in 82. a lOVc chance 

of being in S3, and a 50% chance of staying in 51' 

1.3 Second input: an LTL formula 

LTL is a temporallogic: an LTL formula makes an assertion about the future (and/or 

present). Figure 1.2 shows sorne LTL formulas, with English translations. 

These formulas contain aIl LTL's basic constructs: T / F (true/false), atoms, -, 

(not), /\ (and), X (next), and U (until). Short formulas are easy to understand, but 

more elaborate combinations become hard to express in English. 
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o 

b 

-'0 

ol\b 

Xa 

X:F 

X(o 1\ b) 

(Xa)l\b 

XXo 

TU-,b 

-,(TU-,o) 

X(bUo) 

bUX-,a 

TU-,(TUo) 

a is true 

b is true 

a is false 

a and b are both true 

a will be t ue after one step 

False will be true after one step (a contradiction) 

a and b will both be true after one step 

b is true, and a will be true after one step 

o will be true after two steps 

True until b is false (b will eventually be false) 

Not (true until 0 is false) (i.e., a will always be true) 

Starting from the next step, b \vill continually be true until 0 is true 

b will continually be true until it is true that 0 will be false after Olle step 

Eventually a will never again be true (i.e., 0 occurs finitely oftcu) 

Figure 1.2: Second input: sorne LTL formulas. 

1.4 Output: probability of the formula 

l'\ow. given these inputs, we \';ant to calculate the probabilit~· that the state satisfies 

the formula. \\7hat does this mean? If you start Ml in state SI and let it rUll from 

there, it will follow some sequence of states like (Sl' 52, SI, 53' 83 .... ). callee! a path. 

For any state 5 and formula cp, we want the probability that a path starting from 5 

satisfies cp. See the example output in Figure l.3. 

Sorne of these outputs are easy to calculate. The simple LTL formula a is certain 

to be true in 51 and 52 and false in 53' To compute the probability that SI satisfies 

the formula Xa, we observe that starting from 51, Ml has a 0.9 probability of going 

to either 51 or 52 (where a is true) and a 0.1 probability of moving to 53 (where a is 

false) . 

However, to compute the probability of an input like formula (TU-,b) ("b is even­

tually false") in 51 is not so easy. Informally, we can get the answer by reasoning as 

follows. If MI starts in 51, it may stay in 51 for a while, but if we wait long enough 

it's bound to go to either 52 or 53. If it goes to 52. the -,b clause of the until is satisfied. 

and the formula is true. If it goes to 53. it willloop around there forever, and -,b will 
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51 52 53 

0 1 1 0 

b 1 0 1 

-,a 0 0 1 

al\b 1 0 0 

Xo 0.9 0.7 0 

XF 0 0 0 

X(o 1\ b) 0.5 0.7 0 

(Xo)l\b 0.9 0 0 

XXa 0.73 0.63 0 

TU-,b 0.8 1 0 

-,(TU-'a) 0 0 0 

X(bUa) 0.9 0.7 0 

bUX -'0 0.44 0.3 1 

TU-,(TUa) 1 1 1 

Figure l.3: Output: the probability of each input formula being satisfied, from eacb 

state of Ml. 

ne\'er be satisfied. So the probability that a path from SI satisfies (TU-,/;) depends 

entirely on which of 52 and 53 is visited first. The edge weights tell us that visiting 

52 first is four times likelier. which gives us our answer probability of 0.8. 

Ad hoc reasoning worked this time, but it won't in general. ~o OIle could be 

expected to perform such reasoning on a longer input formula full of nexts and untils. 

To guarantee a solution for aU possible input Markov chains and formulas. we need 

a mechanical procedure which always computes the right answer (eventuaU:v) -~ an 

algorithrn. 

This thesis describes such an algorithm. 



Chapter 2 

Background 

This chapter contains background directly relevant to our algorithm. l first discuss 

what model checking algorithms are used for. Then l give more detailed explallatiolls 

ofthe two inputs to the algorithm. labeled 11arkov chains and LTL formulas. Fillally. 

we look at why LTL is more useful for our purposes than a branching-time logic like 

CTL. 

~Iore basic background material is in Appendix A, covering the original CTL 

model checking algorithm of Emerson & Clarke, and BDDs (binary decisioll clia­

grams). 

2.1 What is model checking? 

Madel checking is a popular technique for the formaI verification of COllcurrellt sys­

tems. 

A concurrent system is a system in which the order of events is unpredictable. 

Systems commonly checked by model checkers include circuit designs and commu­

nications protocols. In circuits it is the order of signaIs being transmitted through 

gates which is unpredictable; in communications protocols, it is the order in which 

messages are sent and received. 

The unpredictability inherent in concurrent systems makes them difficult to design 

correctly. Even if a design is correct, its correctness is often hard to establish with any 

confidence. A traditional approach to this problem is testing: simulate the designecl 

system's behavior on a bunch oftest cases and, if no flaw is revealed, conclude that the 

design is probably correct. This is a reasonable strategy for systems of a manageable 

13 



CHAPTER 2. BACKGROUND 14 

slze. but many modern systems are large and complex enough that the amount of 

testing required to establish confidence of correctness is prohibitive. 

An alternative approach to testing is formal verification, which aims to rigorously 

prove the correctness or incorrectness of a concurrent system's design. There are 

various techniques which fall under this general category. F ecause formaI verification 

is of most interest for the large systems which cannot feasibly be tested, the most 

popular techniques are those which have been found to work on these large systems. 

l'vlodel checking is such a technique. 

There are three components to the model checking strategy. First, one needs a 

formaI model of the system, typically a finite-state transition system of some sort like 

the finite automata described below. The model must be designed so that its states 

and transitions accurately correspond to the concurrent behayior of the system being 

model checked. 

Second. one must specify a specification ta check, representing the propert~· one 

wants to see if the s)'stem satisfies. For example. a protocol for managing print jobs 

sent to a printer might be checked for safety: the property that no t",o jobs are ever 

sent through the printer at the same time. Specifications are typically written in a 

temporal logic like CTL or LTL, which can express propertiE 3 like safety. 

Finally, once one has a formaI model and specification, one needs a modcl-checkiny 

algorithm to actually check if the model satisfies the specification. The original model 

checking algorithm, described below, operated on a model represented as a nnite 

automaton. and a specification expressed in CTL. Other model checking algorithms 

expect the system or specification to be expressed in different formalisl1ls. 

This thesis presents an algorithm which takes a model represented as a l\'1arkov 

chain and a specification expressed in LTL.. and returns not true or false. but the 

probability that the model satisifies the specification. 

2.2 Mar kov chains 

Markov chains, introduced in section 1.2, are a probabilistic extension of finite au­

tomata. (For more on finite automata, consult a standard reference such as [Sip97].)) 

Whereas a finite automaton only says which states a given state can and cannot move 

to at the next step, a 1'1arkov chain specifies the precise probability of l1l0ving to each 

other state. 
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See Figure 1.1 from page 10 for a sample JVlarkov chain, Ml' 

2.2.1 History-independence 

Like finite automata, l'vIarkov chains have the property that their behavior is history­

independent: the future behavior of the system depends only on n node it is cur­

rently in, not on the route it took ta get there. For example, if Ml is in state SI, it 

has a 40% probability of moving ta state S2 at the next step, irrespective of how it 

got to SI. 

This memoryless property characterizes Markov chains, sa that systems \Vith this 

trait are called Markovian. 

2.2.2 InternaI vs external vs probabilistic choice 

There is now an interesting decision we must make in specif~'ing how our l\Ia1'km' 

chains will behave: who will choose the input symbols? 

Ta make sense of this decision requires first a discussion of choicc. A transition 

system may be thought of as a machine whose behavior arises as a result of ongoing 

choices. These choices can be divided into three categories based on the c.gellt making 

the choice: internaI, external, and probabilistic. 

Some choices are internaI: made within the system. For example. a deterministic 

finite automaton (DFA) which reads symbol a in state SI is forced ta some othe1' 

state Si. The decision about which state 1.0 move to is determiued b~' the design of 

the system, and requires no outside consultation. 1nsofar as a system's chai ces are 

internally made (i.e., determined by its definition), it is called a generative or closed 

system. 

Other choices are left ta an external agent, which may be a user or the environ­

ment. (Ta the system there is litt le distinction.) A DFA is often thought of as a 

machine which knows exactly what ta do on a given input symbol, but has no means 

of itself choosing the symbol; this is left to the user, who feeds it a stream of input 

symbols. A system which leaves choices ta the external user / environment is called 

reactive. 

Finally, sorne choices are probabilistic. Who makes probabilistic choices is a subtle 

issue deserving of much thought. For our purposes it suffices ta think of probabilistic 
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choices as being made neither by the system itself nor by the user, but by some prob­

abilistic oracle ",hi ch obeys the statistical properties of the distribution in question. 

For example, in saying that ",hen Ml is in state 51 it has a 40% probability of moving 

to state S2 at the next step, \ve mean something like the foUowing: "If we ran Ml for 

long enough, and kept a taUy of where it moved ta each time it was in 51, we w( uld 

find that the proportion eventually approached 40%." (In fact we mean more Lnan 

this. For example, suppose in keeping our tally we found that Ml repeatedly moved 

to 51 five times, then to 52 four times, then ta 53 once. This behavior would meet 

one but certainly not aU of our expectations for a properly functioning probabilistic 

oracle. But never mind this for now.) 

2.2.3 Generative vs reactive Markov chains 

Having set out these three categories of choice, we must now decide which will bc 

responsible for choosing the input symbols of our l'vlarkov chains. 

\\Te could leave the choice of symbols to the user, as in finite automata. Thus. a 

transition in the ~larkov chain occurs as follows: the user chooses an input symbol. 

and based on this symbol and the CUlTent state, a probabilistic choice is made as to 

which state to move ta. It follO\\"s that in such a model the outgoing prohabilities 

from each state must sum to 1 for each input symbol. See the example in Figure' 2.l. 

We \\"ill calI this the reactive model of ?\larkoy chains. 

b;l 

a;O.6 

Figure 2.1: The reactive Markov chain model: the user picks a symbol. and the 

system probabilistically chooses the next state. Note that outgoing probabilities sum 

to lover each symbol. 

Alternatively. we could have the symbols chosen probabilistically within the sys-
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tem. like the state transitions. In this scenario, a transition happens like this: the 

system itself consults the probabilistic oracle as to which symbol to read and which 

st.ate to move to. Thus the outgoing probabilit.ies from each st.ate sum to lover aU 

inpu.t symbols, as in Figure 2.2. This generative model is a fully closed system: once 

started. it.s behavior is det.ermined without ext.ernal input. 

a;O.6 

Figure 2.2: The generative I\Iarkov chain model: t.he system probabilist.ica11v chooses 

bot.h the symbol read and t.he next st.at.e. Outgoing probabilit.ies SUlU to lover a11 

symbols. 

Each of these models is interesting. The generat.ive modeL lacking exterual illput. 

is simpler and therefore a sensible place to st art in our exploration of probabilistic 

model checking. As it turns out, in the probabilistic setting. even [) c!os('d s~'stem 

like this is nontrivial to model check. 

2.2.4 Symbols as atoms 

In a finite automat.on, t.he input. consist.s of a sequence of input symbols. Our l'darkov 

chains will use a more general notion of symbols, in which a symbol is thought of as a 

boolean variable rather t.han an input. t.oken. To indicate this shift in interpret.ation, 

we will eall our symbols atoms. 80 rat.her than "What. symbol is read next.?", we will 

ask, "Which at.oms are t.rue at. t.he next. st.ep?" In the case where only one atom is 

true at once, this reduces to the interpretation of symbols as inputs. IVIore generally, 

any number of atoms may be true. 

80, our Markov chains are strict.ly generative, with no external input, and allO\\' 

any assortment of atoms to be t.rue at each step. The example Markov chain Ml 

ab ove is of this sort. 
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2.2.5 Matrix representation 

Figure 2.3 shows how we can represent Ml textually (without a diagram) as a matrix. 

SI S2 S3 

SI 0.5 0.4 0.1 

S2 0.7 0 0.3 

S3 0 0 1 

a 1 1 0 

b 1 0 1 

Figure 2.3: l\latrix representation of Ml. \\"ith the edge weights and the atom prob­

abilities. 

The matrix captures the information formally identifying the :\larkm' chaiu. First 

there is tbe set of states, S = SI . .. Sn. Then we need a transition matrix <5 : 5 x S ----> 

[0.1], where <5(i,j) is the probability of moving from Si to Sj. The outgoing edges 

from any state must sum to 1: Vi, L~'=l <5(i,j) = 1. 

\Ve will \\"ork with a state-labeled l'darkm' chain model. specif~'ing a set of :-;~'mb01s 

(aka ato111s) L = al ... am, and defining Î : S x L.: ----> {T. F} where ,(s,. a) = T (i.e .. 

1) iff atOIl1 Cl is true in state Si. \Ve cou Id further generalize to allow atom probabilities 

between 0 and 1 h : S x L.: ----> [0, 1l}), and this requires only a small modification of 

the main measureO algorithm described by this thesis. However the generalization 

is of limited use, so for clarity we will restrict ourselves to the T / F casp. 

Fina11y. we may want to specify the probability of being in each state initially, as 

a vector of initial probabilities Q = QI ... an summing to 1: L;~l Qi = 1. In practice 

we will normally be taking the initial state as an input to our model checker, and so 

will not bother to specify the initial distribution. This is not important. 

2.2.6 Probabilistic language 

Our discussion of Markov chains has made no mention of acceptance. In finite au­

tomata, a string was either accepted or rejected. In a probabilistic modellike l\Iarkov 

chains, a boolean out come like this will not do. Instead, a Markov chain M implicit 1y 

associates a probability with each input string t: the probability that M fo11o\\'s a 
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path along which the atoms which make up tare true. \\Te write this probability as 

TI.'vt (t). 

For example, suppose Ml above st arts in Sl (with probability 1). What probabil­

ity is associated in Ml with the very short string a? In other words, what is TlM I (a)? 

Ta ans\Ver, we note that the first state visited by Ml is guaranteed ta be SI. and a 

is true in SI \Vith probability 1. Sa the answer is 1. Similarly, TI MI (b) = 1. 

Now, what is TlMI (ab)? The probability that the first state visited satisfies a is 1. 

sa we need only calculate the probability that the second state satisfies b. By Ml 's 

matrix, this second state is 50% likely to be SI (in which b is true), 40% likely to 

be S2 (false), and 10% likely ta be S3 (true). Thus the total probability of moving 

ta astate where b is true is 0.6, and TlMI (ab) = 0.6. You can similarly verify that 

TI.'vh (aa) = 0.9 and TI.'vt1 (aba) = 0.45. 

We call TI Ml the probabilistie language of l\I1 . 

2.3 LTL 

,,'e now look at some of the logics used to write model checking specifications. begin­

ning with LTL. 

A temporal logie is a language for expressing temporal propositions: ass(;rtions 

about what is true and what will be true. Such assertions are made in English b,' 

sentences such as "a is true", "b will be false in one time unit". "a and b \Yill always be 

true (from now onwards)", and sa on. However phrasing more complicated assertions 

in English quickly becomes awkward. Temporal logies have been developcd to let us 

formulate temporal assertions precisely and compactly. 

2.3.1 Continuous vs discrete time 

A temporallogic may view time as continuous or discrete. Continuous-time logics let 

us make assertions about what is true at any point in the future: 1 time unit (step) 

From nO\v, ~ step, 7r stcps, and so on. Discrete-tiIlle logicti retitrict Uti to int.eger steps: 

now, one step from now, two steps, ete. Continuous-time logies are more expressive, 

but mueh harder ta work with mathematically, and we will not use them. 
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2.3.2 LTL syntax & semantics 

LTL (Linear-time Temporal Logic)l, described in section 1.3, is a discrete-time logic 

for making assertions about a sequence of points in time (ta, t l, ... ), called a path. 

(The path's elements needn't necessarily represent points in time, but they usually 

do.) Refer back to Figure 1.2 on page 11 for sorne examples of LTL formulas. 

cp de! TIF 

1 a 

1 -,?jJ 

1 1j)l\w 

1 X1f1 

1 wUw 

Figure 2.4: LTL syntax: the six types of LTL formulas. 

LTL syntax. summarized in Figure 2.4. is simple once one understands the dif!:'erent 

constructs. There are six types of formulas: booleans, atomic propositions. nots, ands. 

nexts. and untils. A given path P = (ta, t l , ... ) is said to either satisfy a given formula 

cjJ (P f= rp) or fait to satisfy cjJ (P li 6). 

The boolean formulas T (true) and F (false) haye the same interpretatiolls al éllly 

time. An atomic proposition. or atom, is a variable which is either truc or fabc at 

each point in time. For instance, a might be true at to. fI and t2 • but then false at 

t3 , then true again and so on (see Figure 2.5). A path satisfies an atOI11 if!:' the atOl11 

is true in its first element: so P f= a. 

1 234 

T T F T 

F F F T 

Figure 2.5: The truth value of an atom may vary over tin1P. 

If some formula?jJ is satisfied by a path P, then -,?jJ ("not ?jJ") is not satisfied b:v P, 

and vice versa. Similarly, ?jJ 1\ w ("?jJ and w") is satisfied if!:' both 1jJ and w are satisfied. 

lSometimes also called PTL (Propositional Temporal Logic), or LPTL (Linear-tinlf' Propositional 

Temporal Logic). 
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These are the traditional operators from proposition al logic. However, interpreting 

them can become subtle when ?j} or w contains temporal operators, as we will see. 

X l/J. "next 1l'''. holds no\\" iff 1jJ holds at the next step; that is, P = (Pl, P2, ... ) F= 
X V' iff P2 = (P2, P3, ... ) F 1jJ. For example, using the atom a described above, P 

satisfies a, X a, X X a, X X X ,a, and X X X X a. (We will normally write X ,a rather 

than ,Xa.) Of course, for any P, P F XT and P ~ X:F. 

1jJUw, '(7)' until w", is the most powerful and subtle LTL operator. However its 

meaning is essentially given by its English pronunciation: 1jJUw is true iff (1) w is 

eventually true, and (2) '0 is true in every step up until (not including) the first 

step where CL' is true. That is, P = (P1,P2,"') F 1jJUCL' iff ~j such that (1) Pj = 

(Pj, P1+1,"') F w. and (2) VI :::; i < j. Pi F 1jJ. (It follows that ('0U.iJ) == (u..,. V (7J,' 1\ 

X(1/U,-,-'))). If w is true immediately, 7)Uw is true irrespective of?j;. See Figure 2.6 for 

some examples. 

l'Jote that for ~Uw to be satisfied. w reaUy must eventuaUy be satisfied: (TUF) = 

F. not T. 

2.3.3 Operator binding precedence 

Generally the binding precedence of LTL operators (from tightest to ]oo::;c:-;t) goes: 

, and X. 1\. U. In other words, Xa 1\ bU,Xc 1\ s should be parsed as: ((Xo) 1\ 

b)U ((, (X c)) 1\ s). \Ye will often use parent heses to clarify the binding order. and 

always when the left- jright-associativity of 1\ or U is in question. 

2.3.4 Other operators 

There are many other useful operators we might want to use in writing temporal 

formulas: for example, V' V w ("1/; or u..",,), 7J,' -- w ("7)1 implies w"), FV' ("eventually 

1jJ"), G1jJ ("always 1jJ"), and others. We don't bother to include these in LTL syntax 

because they can all be encoded using the operators described above. In particular: 

(~bVw) = ,(,wl\,w), (7)' -- w) = ,(1jJI\,w), (F1jJ) = (TUVJ), and (OU}) = ,(TU,?}}). 

So, we can freely use such operators without fear of accidentally writing something 

not expressible in LTL. 

An especially important derived operator is bounded until from [HJ94], of the form 

rpuSk l/J for some k ~ O. As its name suggests, a bounded until is like an until except 

that it is only satisfied if its right-hand operand is satisfied within k steps (inclusive). 
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Formula Satisfied 

by path P? 

Xb No 

bUa Yes 

aUb No 

aUXb Yes 

TUX(a 1\ b) Yes 

(X a)UX Xb Yes 

( (X X b )U X a )U b Yes 
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Explanation 

b is false at time 1. 

a is true immediately. 

b is first true at time 4, but a is only true up to 

time 2. 

a is true up to time 2, and then at time 3 Xb is 

true. 

a 1\ b is true at time 4, and T is true until then 

(since T is always true). 

X a is true up to time 1, and then at time 2 X X b 

is true. 

Careful no\\'. b is first true at time 4. sa \ve need 

to check that 1/' = ((XXb)UXa) is true at times 

0-3. 'li' is true immediately at times O. l. and 3, 

because X a is true at aU these times. And 7/J is 

also true at time 2. because X Xb is true until time 

3 \\'he11 X a is true. So?i' is true at times 03. until 

b is true at time 4. and therefore the entire until 

formula is satisfied. 

Figure 2.6: Explanations of sorne LTL until formulas, using the atollls from Figure 

2.5. 

Bounded untils are often useful in practical model-checking problems where one wants 

to include time constraints in the spec, e.g., to verify that a property is satisfied within 

a fixed number of steps. 

Because of its finite horizon, a bounded until can be encoded without the pure 

until operator: 

Definition 2.1 

TU<;;0V d;:j v 

TU<;;(k?O)V de! V V (T 1\ X(TU<;;k-LV )) 
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The resulting formula may be large (though not worse than linear in k). but it 

contains no pure untils. For example, aU5.2b is equivalent to bv (a I\X(bv (aI\Xb))). 

So, as with the other derived operators, for the purposes of our proofs we will 

normally ignore bounded until and work only \Vith the primitive operators. An im­

p.xtant exception is complexity proofs, where we can often achieve better bounds for 

mput formulas containing no pure untils (see chapter 4). These results reftect the 

fact that although bounded untils are less elegant than pure untils, and lead to more 

complicated formulas, they can be more efficient to model check, especially when 

nested. 

2.4 Linear-time or branching-time? 

Traditional model checking works on nondeterministic systems such as an nondeter­

ministic finite automata (NFAs). However, ",hat interests us here is model checking 

probabilistic systems. The labeled 1'v1arkov chains described in section 2.2 give us 

a natural probabilistic model, but the choice of specification language is less obvi­

ous. In particular, we must choose between linear-time and branching-time temporal 

logi~s (compared in section A.1.1). Here we will argue that, for probabilistic model 

checking. linear-tirne logics like LTL are more appropriate. 

At first, branching-time logics like CTL (section A.1.2 of Appendix A) might seem 

appropriate: like NFAs, l\Iarkov chains have many possible futures and therefore gen­

erate computation trees like those described in section A.1.1. The probabilistic infor­

mation given by the :Markov chain's transition probability matrix lets us additionally 

associate a probability \Vith each bran ch in the tree. l\/lore precisely, we can label 

each node in a Markov chain's computation tree with the probability of reaching that 

node. 2 

Figure 2.7 shows the computation tree generated by Ml from Figure 1.1. The 

probability R(ni) of reaching a no de ni is easy to compute: it's the probability of 

reaching n;'s parent node np, R(np), multiplied by o(np, ni), the probability of moving 

from np to ni in the Markov chain. Note that the probabilities of reaching any node 

n's children sum to the probability ofreaching n itself, since once n is reached. exactly 

2The probability of reaching a node in the computation tree is not to be confused with the 

probability of reaching the corresponding state in the Markov chain. The same state ma)" appear 

multiple times in the tree. In fact a state will generally appear infinitely often in the tree. 
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0.5 0.1 

0.3 

Figure 2.7: The first few levels of the computation tree generated b~' i\larkm' chain 

Ai 1 from Figure 1.1. Each node n is labeled with R( nJ the probabilit~, of reaching 

n given that one st arts at the top of the tree in SI. 

one of its child nodes will be reached. Also note that the probabilities of the nodes 

at any level in the tree sum to 1, since if you let the I\Iarkov chain run for ( steps. 

you will reach exactly one of the nodes at level (, 

In traditional model checking. CTL is attractive as a specification language be­

cause of its pat h quantifiers E and A, which let us \\Tite specifications snch as "at 

least one path from state 5 satisfies a within two steps" or "every pat h from s evel!­

tually satisfies b". But note that these assertions are non-probabilistic in nature: to 

check the truth of such an assertion in astate S of a Markov chail! M. we needn't 

know the exact edge probabilities in M, only which edges have probability > 0 and 

which don't. In other words, any CTL specification beginning with E or A can be 

solved by the old non-probabilistic model checking algorithms. 

Furthermore, the results obtained by model checking CTL specifications in proba­

bilistic systems can be misleading. For example, consider the spec A (TU--,o ) ("along 

every path, a is eventually false") evaluated in state SI of Markov chain Ml from 

page 10. A non-probabilistic model checker will conclude that this assertion is false 

in 51, since there exist infinite paths like (SI, SI, SI, ... ) along which a is al ways true. 

But it is easy to see that the probability of MI following such a path is O. In facto 
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TU ---'0 is alrnost surely satisfied (that is, with probability 1), because Ml is bouIld 

to end up in state 53 eventually, where a is false. 

In examples like this, it is generally less useful to know that sorne path in M 

contradicts the base formula (TU-,o) , than to know that no plausible path in M 

does. (This useful idea )f a plausible path must be defined; we do so in section 5.1.) 

In short, the types vr' all-or-nothing specifications expressed with CTL's E and A 

quantifiers can be checked in probabilistic systems like Markov chains without new 

techniques, and in any case can be misleading because they fail to identify probability 

o events as impossible. But apart from these quantifiers, CTL is just a subset of LTL. 

(The same holds for CTL *, the more powerful branching-time logic of which CTL is 

a subset.) So for the type of probabilistic model checking we want to do, LTL is a 

more useful specification language than a branching-time logic like CTL. 

2.5 PCTL/pCTL* 

Work such as [HJ94] and [ASSB96] has proposed logics (PCTL and pCTL *, respec­

tively) which extend LTL with state formulas of the form Pr>k(cp). Such a formula 

is true in astate s iff th,' probability that a path from 8 satisfies path formula (; 

is greater than k. For example. in IvIarkov chain Ml from Figure 1.1. the pCTL* 

formula Pr>os(Xo) is true in 51 but false in 82 and 53, sin ce the probabilities of Xu 

in these states are 0.9. 0.7, and 0 (Figure 1.3). 

The attraction of these logics is that fast model checking algorithms CRIl be used 

to check them, making them practical for the sorts of large models arising in practical 

verification problems. On the other hand, because such algorithms pro duce only truc 

or false, sorne expressiveness is sacrificed for this performance gain. The aigorithm 

described by this thesis pro duces a probability rather than just true or false, and is 

therefore for most purposes more informative than the PCTL/pCTL * algorithms. 3 

How much speed is sacrificed in exchange for this st ronger output, on practical ver-

3Logics like PCTL can distinguish non-bisimilar systems. whereas LTL cannot. For exitmple. 

the PCTL model-checking algorithm can check formulas such as Pr>o(XPr>o.5(TUa)): "With 

probability greater than 0, after one step, it will be more likely than not that a will eventually be 

true." However, most formulas checked in practice have the form of a pure LTL path formula imide 

a Pr>k operator. On such input formulas, the algorithm presented here is strictly more informative 

than the PCTL/pCTL * algorithms. 
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ification problems, is probably the most important open question of this work (see 

Chapter 8). 



Chapter 3 

The Algorithm 

This chapter presents the solution algorithm. l begin with a formaI statement of the 

problem and an outline of the solution. then lay out the algorithm in detail. The 

chapter ends by tracing through the algorithm as it salves sorne sample problerns 

from Chapter 1. 

3.1 FormaI statement of the probIem 

Gin~n: 

• M. a labeled ?'Ilarkov chain with states 5 = Sl ... Sn. transitioll lIlatrix <5 

5 X 5 -+ [0,1], atoms 2: = al ... am, and atom truth values Î : 5 x L:: -+ {T, F} 

• s, a state in M 

• cP, an LTL formula 

We want an algorithm to compute prob(s F cp), the probability that an infinite 

path P = (Pl = s, P2, P3, ... ) starting from s satisfies cp. IvIore precisely, there is a 

measure !ls on the set of paths starting from s, and we want ta compute !ls ( {P 1 P 1= 
cP} ). 

(In pCTL * terms, we are trying ta find the k such that pro b=k (cP) is truc. Note 

that though cP is a path formula, prob=k(cP) is a state formula.) 

27 
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3.2 Outline 

This problem is more difficult than typical non-probabilistic model checking prob­

lems. mainly because there is no obvious way to solve it compositionally. In a non­

probabilistic setting you can usually determine the truth value of 1/) /\ w in state s 

by. e.g., combining the recursively computed truth valt.. _ for 1/J and Lv' in s. But in a 

probabilistic setting. simply knowing that the probabilities of 1/J and w are 0.6 and 0.4 

respectively is not enough to derive the probability of 1/J/\Lv'. Certainly just multiplying 

the probabilities to give 0.24 won't work, because this assumes they're independent. 

Suppose for example that 'Ii! is Xa and w is X(a /\ b). Then prob(s F ~, /\ Lv,) 

prob(s F (Xa) /\ X(a /\ b)) = prob(s F X(a /\ (a /\ b))) = prob(s F X(a /\ b)) 

prob(s F w) = 0.4. On the other hand, if t! = Xa and w = X.a then no path 

satisfies both - so prob(s F 1/, /\ w) is O! 

.:\evertheless, the problem can be solved recursively. The algorithm. measure( o. 

s). follo\\"s this basic outline: 

1. Compute 9' = step(0. s): a formula such that P = (Pl = S,P2,P3,"') satisfies 

o iff its suffix P2 = (P2,P3"") satisfies !fi. (For example, step(Xa, s) = Cl.) 

2. For each possible successor state s', recursively compute measure(o'. 8'). and 

sum the results weighted by edge probability: I:s' 6 (s, s') ·measure (6'. s'). 

Ho\\'ever. because step(9. s) is not necessarily smaller than o. \\"e lleed tluee 

addition.al tricks to ensure the recursion terminates: 

• Use BDDs (see appendix) to represent the input formula and aIl derived formu­

las. This ensures that only a finite number of different formulas will be created, 

resulting in a bound on the number of recursive calls. 

• There will be cases where the recursion loops, i.e., step(step( ... step(<;t>, s))) = 

9· Handle these by remembering which recursive calls have already been made, 

assigning a variable t.o eaeh eall, and returning the variable rathcr tban contill­

uing to recurse if the same calI is repeated. The result will be a system of n 

equations in n variables, which can then be solved. 

• The system of equations will be unsolvable if any of the equations reduce to 

a redundancy like x = x. \Ve can show that this can only happen for input 
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formulas containing unrealizable untils (Definition 3.4), of the form 1jJU(;) where 

prob(s F w) = 0 in aIl reachable states s. Any such until is equivalent to F, so 

we can avoid the x = x problem by making step() "det.rivialize" 9 by replacing 

unrealizable until subformulas with F. 

'With these three t.ricks, we can show t.hat measure() terminatt.. . 

3.3 Representing LTL formulas as LTL-BDDs 

The way \ve represent LTL formulas as BDDs ("LTL-BDDs") is quite simple. Essen­

tially we represent booleans and atoms as usual by their corresponding BDDs, and 

each distinct next or until formula by a unique atom. The following bdd( cp) procedure 

constructs the LTL-BDD for a given LTL formula 9: 

Definition 3.1 

bdd(F) d!l BDDF 

bdd(T) d.::J BDD T 

bdd(a) 
de! 

BDD (a ? T : F), representing at.om "a" 

bdd ( ,'L') 
dei 

not (bdd ( 7j!) ) 

bdd( 7,'! 1\ w) dei 
and(bdd(ll'), bdd(w)) 

bdd(l!' V w) d!l or(bdd(1jJ), bdd(u-')) 

bdd(X 1/,) dei 
BDD (XV' ? T : F), representing atom ':X~:' 

bdd(7jJUw) 
dei 

BDD (1jJU,-,-' ? T : F), representing at.om "uUu':" 

See the examples in Figure 3.1. 

Using BDDs requires t.hat we impose an order on aIl our BDD atoms: those match­

ing LTL at.oms (e.g., "a"), those representing nexts ("X a"), and those representing 

untils ("aUb"). Any consistent ordering will do, so the choice of ordering can be left 

up to the implementation (and, e.g., based on observed performance effects). For 

example, one can order LTL atoms before nexts before untils, and lexicographically 

within each type: e.g., a < b < Xa < Xb < aUb < hUa .... 

Unfortunately this is not a canonical LTL representation. For example. the LTL­

BDD for X ,a will be different from the LTL-BDD for ,X a, although both LTL 

formulas are equivalent. However, the representation does have t.he following useful 
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Figure 3.1: Example LTL-BDD representations of LTL formulas: (I 1\ Xb. bU-,X c. 

Apart from the basic boolean nodes for F and T, each no de contains a formula (\ 

and has two child nodes indicated by the solid edges: a left child ifs equivalent to 

wh en (\ is false. and a right child it 's equivalent to when (\ is true. The X -node wit h 

a dotted edge to b "contains", and represents, the formula Xb. The X-node \\'ith a 

dotted edge to c contains Xc, but represents -,X c (note that its right child is F. !lot 

T). The U-node contains and represents bU-,X c. 

property: starting from a finite set of LTL-BDDs, only a bounded numuer of new LTL­

BDDs can be generated by applications of basic BDD operators like notO and andO 

to elements of the set, since none of these operations create ne\\' atoms (Proposition 

5.15). This fact will help us prove that measure() terminates. 1 

1 Adapting BDDs to give a truly canonical LTL representation, TBDDs ("temporal BDD~"), was 

originally one of the aims of this thesis. In TBDDs, X 1/' was represented by a special non-atom node 

with a link to the TBDD for 1jJ, and 1jJUw as a self-looping structure: or(w, and(t:', next(1jJUw))). 

The TBDD for a formula 1; was like a litt le Turing machine, inspecting the input path one state at a 

time and eventually recognizing if 1; was satisfied or contradicted. However my colleague l\'orm Ferns 

pointed out that as l had designed them TBDDs could not express LTL's infinitary properties For 

example, a formula like TU-.(TUo) ("0 occurs finitely often") is not satisfied or contradicted by any 

finite subpath of the input, and therefore its TBDD was the same as the TBDD for TU-.(TUb) (and 

many others). This flaw proved fatal and, since a truly canonical representation wasn 't necessary 

for the main algorithm, l eventually had to drop the idea. But it was cool and anyone interested in 

pursuing it is invited to get in touch. 
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In this work we will represent LTL formulas exclusively as LTL-BDDs, so we will 

often refer to LTL-BDDs informally as "formulas". 

3.4 Procedures 

The algorithm makes use of hvo main procedures, measureO and stepO, and an 

auxiliary procedure, solveO. The following sections define and explain them. 

3.4.1 measure() 

Definition 3.2 

measure(q?, s): 

if q? = T or cjJ = F: 

return 1 if T, 0 if F 

else if a solution for (cp, s) has been cached: 

return fetch(q?, s) 

else: 

generate new var X 08 

cache(o, s, xç\s) 

cjJ' := step(dJ. s) 

e := sum over aH s' such that 6(s, s') > 0 of: 

6(s, s')·measure(cp', s') 

1'98 := solve(xcjJ8 = e) 

substitute(x<t>s := 1'9s ) 

return 1'cjJ8 

measureO's fundamental property is Theorem 5.48: measure(q?, s) = prob(s F 
cP). The pseudo code shown closely corresponds to the Java code in M Crv! C, the 

implementation described in Chapter 6. Several lines deserve explanatioll. 

measureO begins by checking for T or F, or a cached solution. (cache(q), s, 1'.;,s) 

simply stores a solution 1'cjJ8 in a global cache where fetch(q?, s) can retrieve it.) If 6 

doesn't fall into one of these simple cases, a new variable xcjJs representing prob(s F cp) 

is created and cached so that recursive calls to measure( q?, s) will ret.urn it (rather 
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than diverging). Then an expression (linear combination of numbers and variables) 

for the value of xeps is recursively computed and substituted for it. The LTL-BDD 

representation and the global cache make it easy to prove Proposition 5.18: measureO 

terminates. 

The key idea of the algorithm is the recursion to compute the value of x<ps ' The 

input Ivlarkov chain M specifies 6"(s, s'), the probability t.hat the next state wiU be s' 

given that t.he current stat.e is s. Now, suppose we know t.he next state s'. step(6, 

s) will give us a formula q/ which is satisfied by any pat.h P2 = (P2 = s', P3, P4, ... ) 

iff cf; is satisfied by the corresponding P = (Pl = s, S',P3,P4," .). And by induction. 

a recursive caU t.o measure(ç6', s') will comput.e prob(s' F q/) - which, again under 

our assumption that the next state is s', is equal to prob(s F ç6). 

In other words, if we know the next state s', we can recursively compute prob( s F 
ç6). So, we can compute the real prob(s F cjJ) as the sum of measure(step(o. s), s') 

for each s', weighting by the edge probabilities 6"(s, s'). This is what measureO does. 

Having computed the weighted sum e, measureO uses it to substitute for Xç,s. 

Simply substituting e for xq,s wouldn't necessarily eliminate Xq;Sl since e itself may 

contain an xçI>s-term. So measureO caUs solve(x.;>s = e) to get another expression 7'"s' 

also equal to Xq,s but free of any xçI>çterm (see section 3.4.3). substi tute(x Os := l'os) 

then eliminates XO S by substituting 7' <p S for it in any cached expressions contailling it. 

Kote that measureO's return type is not strictly a scalar (number). but an expres­

sion that may include cached variables, e.g., O.6xç,s+O.lx?;.t+O.3. (See the examples il! 

section 3.5.) HoweveL each caU to measureO that creates a variable X6.< later replaces 

it with an expression T<j>s' Therefore any top-level non-recursive caU is guaranteed to 

return a variable-free expression, i.e., a numerical probability (CoroUary 5.33). 
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3.4.2 step() 

Definition 3.3 

step(9, s): 

if cP = T or cp = F: 

return 1; 

else. 1; = (0: ? 7/) : w): 

if Q = a (an LTL atom node): 

Q' := Î(s, a) 

el se if 0: = X T (a next node): 

0:' := T 

else if Q = TU V (an until node): 

if \;It reachable from s, measure(v, t) = 0: 

0:' := F 

else: 

0:' := or(step(1.\ s). and(step(T, s). TUV)) 

return cond(o:', step(W. s). step(w, s)) 

33 

stepO is the procedure that does the work in the recursion. Its fundcllllental 

propert~' is that it returns a formula 6' such that any plausible patlt P = (Pl = 

S,P2,P3,"') satisfies 9 iff its suffix P2 = (P2,]J3, ... ) satisfies ç'/ (Theorclll 5.47). 

Plausible paths are defined in Definition 5.11. By Proposition 5.40, any l\Iarkov 

chain almost surely (with probability 1) follows a plausible path. 

stepO starts by checking whether 1; = T or F. If so, then of course P F cp if!' 

P2 F cp, and we can just return cP. 

If cf; is not a boolean, it must be an atom LTL-BDD of the form (Q ? ~' : u}). 

where 0: represents either an LTL atom, a next, or an until. In this case stepO 

first constructs a formula 0:' such that P2 F 0:' iff P F 0:, and then returns dJ' = 

cond(Q'. step(~', s), step(w, s)). (The useful condO operator is explained in the 

BDD appendix on page 108.) Why is this 9' guaranteed to be satisfied by P2 iff 9 
is satisfied by P? Remember that cP is equivalent to 7jJ when P satisfies 0:. and to !.I) 

wh en it doesn't. Consider these cases separately: 

• P F 0:. Then P2 F 0:'. So, by the definition of condO, in this case P2 F 9' iff 
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P2 F step( vJ, 5), which holds iff P F vJ, which in this case is true iff P F 9· 
Done. 

• Plia. Therefore P2 li a'. So, (P2 F cp') {::? (P2 F step(w, 5)) {::? (P F w) {::? 

(P F cp). 

Sa the only missing piece is the construction of a'. Consider again the three cases: 

a = a. a = X T, a = TUV. Suppose Cl' = a. Because 5 is a parameter ta stepO. we 

can just let a' := Î(5, a) = the truth value of a in 5. For instance, if we know a is 

false in 5, then it follows trivially that P F a iff P2 F F. 

The a = XT case is even simpler: by the definition of X, P F XT iff P2 FT = Q'. 

SA the only tricky case is until. 

Suppose a = TUV. stepO begins by checking whether the until is 'U.nrealizable: 

Definition 3.4 An LTL until formula (ztUw ? T : F) is unrealizable from Cl state 

5 1], Vt reachable from 5 (including 5 itself), prob(t F w) = O. 

If TUC is unrealizable from s. we let a' = F. This is a trick we use to avoid an 

inCOllvenient case which could prevent measure() from terminatillg. Note that our 

definition of unrealizable is distinctl~' probabilistic: there ma)' still be (O-probabilit~·) 

paths from 5 which satisfy the ulltil! (See the example in section 3.5.3.) In fact. the 

existence of such paths is why eliminating the until is useful. HOWCYET. Corollary 

5.44 asserts that no unrealizable until is satisfied by any plausible path. So. replacing 

unrealizable untils with F is safe. 

In arder ta check if an until is unrealizable, stepO calls measure(). Since it 

compares the result ta 0, these calls ta measure() had better return numbers, rather 

than expressions containing variables. Lemma 5.37 asserts that they do. 

The Q' computed for realizable untils is simpler than it looks. According ta the 

definition of the until operator U, P Fa = TUV iff either P F v, or bath P FT and 

P2 F TUV. Now, P F v iff P2 F step(v, 5), and P F T iff P2 F step(T. 5). So, 

P F TUV iff either P2 F step(t l , s) or both Pz F step(T, s) and P 2 F a: that ü;, 

ex' = or(step(v, 5), and(step(T, 5), a)). 

Sa in every case we can construct a', and therefore we can always return (1/. 

Because measure() calls stepO and vice versa. showing that they terminate 

(Proposition 5.18) constitutes a single pro of. 
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3.4.3 solveO 

Definition 3.5 

solve(x = e): 

k := the coefficient of x in e 

if k = 1: 

abort with an error (division by 0) 

else: 

return e1 __ k: 

solve(x = e) solves the given equation for x and returns the solution 1". 

35 

For example. solve(xc;>s = 0.6xÇ>s+0.lx1bt+0.3) returns rc;>s = 0.25x1:,t+0.75. The 

reasoning is as fo11o\\'s: 

x"s 0.6xç,s + O.lx,,:.! + 0.3 

l:"s - 0.6xç,s O.lx,;,t + 0.3 

O.lx>pt + 0.3 
0.1:".,+0.3 

0.4 

0.25x,,:,t + 0.75 
Or. more genera11y, suppose the coefficient of x in e is k. Then solve(:r e) 

returns e1 __ k:: 
X 

x - kx 

(1 - k)x 

e 

e - kx 

e - kx 

x = r e-kI 
l-k 

(If e contains no x-term, then k = 0 and r simply works out to e). 

This computation of r will not work if k = l. This case is painful, but after a 

long proof Lemma 5.46 asserts that, because stepO eliminates unrealizable untils, 

any time measureO caUs solve(x = e), k < l. 

3.5 Example 

Here l sketch measureO's operation on Markov chain Ml (page 10) and tlu·ee formulas 

from Figure l.2 (page 11): Xa, X(bUa), and -,(TU-,a). 
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This sketch will uot follow rneasure() liue for liue, but will accurately follow the 

reasoning it uses. As these examples show, much of rneasureO 's behavior just consists 

of repeatedly calling step( cP, s) to answer the question: "What must be true one step 

later, in order for cP to be satisfied in state s?" 

3.5.1 measure(X a, SI) 

First consider a call to rneasure(X a, sd, to compute prob(sl F X a): the probability 

that a path from SI satisfies X a. Execution proceeds as follows: 

1. Create a new variable Xl and cache it as the solution. This is so that any 

recursive calls to rneasure(X a, sd return the cached variable; otherwise such a 

recursive call would lead to infinite regress. 

2. Next rneasure() will compute an expression el. representing the prohability that 

9' = step(X a, SI) is satisfied in the next state, and equate it to Xl. The first 

step is to compute (/J'. step(X a, sd is simply a, by the follO\ving reasoning: 

for any path P = (Pl = Sl,P2,P3, ... ) to satisfy Xa, its suffix P2 = (P2,P3,"') 

must satisf.y a. 

3. Now we make recursive caUs to compute prob( s' F 6') for every possible Sllcces­

sor state s' to S( X2 = rneasure(a, sd. X3 = rneasure(a, S2). Til = rneasure(a. 

S3). el can then be computed as a weighted sum of their return values. weighted 

by the edge weights from SI to s': Xl = el = 0.5X2 + 0.4X3 + O.h l · 

4. The first recursive call, X2 = rneasure (a, SI). returns 1. since (b~· Ml 's definition 

in Figure 1.1) a is true in SI. (As shown in Definition 3.2, our real rneasure() 

algorithm do es not detect this immediately, instead making a further call to 

step(). This is only 1,0 make sorne of our proofs simpler; the outcome is the 

same.) 

5. Similarly, X3 = rneasure( a. S2) also returns 1. and X4 = rneasure( a. S3) returns 

O. 

6. So we have: Xl = el = 0.5X2 + 0.4X3 + 0.lx4 = 0.5 + 0.4 = 0.9. 

And we have correctly computed that prob(sl F X a) = 0.9. 
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3.5.2 measure(X(bUa), 51) 

Now, measure(X(bUa), sd. This example shows the purpose of the realizability check 

in step(). 

l. Cache a variable X5 representing the solution. 

2. Compute step(X(bUa), sd: what must be true after one step for X(bUa) ta 

be true now? As seen in the previous example, for any cP and s, step(X dl, s) is 

just dl. SA step(X(bUa), sd = bUa. 

3. Sa, we make recursive caUs X6 = measure(bUa, sd, X7 = measure(bUo, 82)' 

Xs = measure(bUa, 53), and equate X5 ta a weighted sum as before: X5 = 

0.5X6 + 0.4X7 + O.lxs. 

4. :rG = measure(bUa, 51) caUs step(bUa, sd, which begins by checking whether 

the until is realizable from 51. Ta answer this requires caUs ta measure(u. t) for 

every state t reachable from SI' measure(a, 5d returns 1 (> 0). sa the until is 

realizable. 

5. Therefore, step(bUa, 51) is computed to be just T, by the foUO\ving reasoning: 

By the definition of U, dlUI/) is true iff either w is true, or cp is true ànd in the 

next state cpUt.!' is true. That is, P F cpU'Ij' iff P F w V (dl!\ X(dJU'l')). So siller 

a and b are both true in SI. we have: step(bUa, SI) = step(a V (li!\ X(lUu)). 

5d = step(a. sd V (step(b. sd!\ step(X(bUo), sd) = Tv (T li (IJUo)) = T. 

6. So since step(bUa, 51) = T, X6 = measure(bUa, 51) = l. And similarl~') sinee 

a is also true in S2, step(bUa, S2) = T and X7 = measure(bUa, 52) = 1. 

7. The case of Xs = measure(bUa, S3) is different, because the realizability check 

fails. The only state reachable from 53 is 53 itself, and a is false in 53. That is. 

bUa is unrealizable from S3. Therefore, step(bUa, 53) is computed as just :F. 

and Xs = O. 

8. So again we have: X5 = 0.5X6 + 0.4x7 + 0.lx8 = 0.5 + 0.4 = 0.9. 

Note that the realizability check was essential here for the case of Xs = measure(bUa. 

53)' \Vithout it, step(bUa, 53) would be computed as step(a V (b li X(bUo)). S3). 

and since b is true and a false in S3, this would reduce to :F V (T li (bUa)) = bUa. So 

measure(bUa, 53) would end up trying ta solve the degenerate equation X8 = XS. 
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This last example shows how measureO effectively ignores implau8ible paths (Defini­

tion 5.11). The formula -,(TU-'a) asserts that -,a never occurs, i.e., that a is always 

true. There are paths in Ml satisfying this formula, such as (81, 81, 81, ... ), but they 

are all in"- ausible; eventuall~' any plausible path will enter 83, where a is false. 

1. Cache variable Xg, representing measure( -,(TU-,a), 82)' 

2. Check whether TU-,a is realizable from 82. This requires recursive calls ta check 

whether -,a is satisfied with non-zero probability from any state reachable from 

82. 83 is such a state, sa the until is realizable. 

3. Therefore, step(-,(TU-,a), 82) = step(-,((-,a) V (T !\ X(TU-'a))), 82) = -,((-, 
step(a, 82)) V (TU-'a)) = -,((-,T) V (TU-'a)) = -,(TU-,a). Sa, Xg is computecl 

as a weighted sum Xg = 0.7XlO + 0.3X11, where XlO = measure(-,(TU-,u). sIl 
and X11 = measure(-,(TU-,a), 83)' 

4. Since 83 is aIs a reachable from 81, the until is realizable from 81. and therefore 

step(-,(TU-,o), 82) is also -,(TU-,u). Sa the calI ta XlO = measure(-,(TU-,a). 

81) results in three recursive calls ta measure( -,(TU-,a) , 8) for the thre\' states 8. 

AlI of these are calls that have alreacly been assigned variables. sa the solutions 

are retrieved from the cache. The resulting equation is: XlO = O.5}'w + 0.4:r9 + 
O. lX11. 

5. Finally, the calI ta X11 = measure( -,(TU-,a). 83)' Again the until is realizable. 

Sa step(-,(TU-'a), 83) = step(-'((-'a) V (T!\ X(TU-'a))), 83) = -,((-, step(a, 

83)) V (TU-'a)) = -,((-,F) V (TU-'a)) = -,(T) = F. Therefore, Xll = O. 

6. Sa we end up with the following system of equations: Xg = 0.7XlO + 0.3X11; 

XlO = 0.5XlO + O.4Xg + O.lX11; X11 = O. Solving these just yields Xg = XlO = 
Xn = 0, implying (correctly) that the probability that a is always true is 0 from 

any st.ate in Ml. 
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Complexity 

In this chapter l look for bounds on the running time of a top-level call to measure( 9, 
s). Proofs are again delegated to Chapter 5. 

The main aim of this work has been to find an algorithm and prove it correct. 

The complexity results which follo\\', like the .MCI\lC implementation described in 

Chapter 6, are unrefined and more likely to be useful as a basis for future work (see 

section 8.2) than as conclusive results in themselves. 

4.1 Approach 

A top-level caH to measure(ç, s) results in a number of further recursive measure() 

calls. measureO caches its results: a second call with the same parameters returns 

immediately. Also, calls passing in T or F just return 1 or O. So for the purpose 

of running time, we can ignore these types of calls and consider only the nontrivial 

calls, i.e .. calls with distinct input pairs ('IjJ, t) where 'IjJ is not a boolean. Then, by 

computing a bound on the maximum possible number of distinct nontrivial input 

pairs, and another on the amount of time spent in each nontrivial call (not counting 

its recursive ca11s), we can multiply these to get a bound on the total amount of time 

required by measure(4), s). 

The number of distinct input pairs is the number of states in the input Markov 

chain M (easy to count), times the number of distinct LTL-BDDs passed to measureO 

by recursive calls (not so easy). So most of the analysis which follows will look for 

bounds on: 

39 
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• the number of distinct LTL-BDDs passed ta recursive measureO caUs, and 

• the amount. of time spent in each caU ta measureO. 

4.2 Input measurements 

First, we define sorne input measurements that will figure in our bounds. See also 

the examples in Figure 4.1 below. (Of course these measurements are dependent on 

the inputs 9 and M. N ormaUy the formula or machine in question will be obvious, 

sa for brevity we will simply write, e.g .. u rather than u( 9).) 

Definition 4.1 

191 
IL:l 

de! syntactic length of cp: # operators, booleans and atoms (not parentheses) 
de! # distinct LTL atoms in 9 

lAI de] # distinct LTL-BDD atoms (= # distinct LTL atoms, nexts &: untils) in 0 
de! 

o # (not necessarily distinct) LTL atom occurrences in 9 
de] 

U # distinct (unbounded) untils in 9 
de! 

du udepth(cp) (Defn 5.2): maximum nesting of (unbounded) untils in 0 

d 
de! 

X xdepth( 9) (Defn 5.3): max nesting of nexts in 9, counting atoms as nexts 
de! 

di maximum nesting of nexts (as for dx ) inside any until in 6 

151 d::J # states in M 

Ede! # edges (prob > 0) in M 

Given an input cp and M. these values are aU easy ta measure. Using them. we 

want ta express big-O bounds on the foUowing less easily measured values: 

Definition 4.2 

de! 
n # nontrivial measureO caUs 

1 1 
d::J e avg # variables per cached expression, over entire execution of measure (cp, s) 

IBI d~ # distinct LTL-BDDs passed ta measure() (apart from T and F) 
de! 

m running time of a single measureO call, not counting recursive caUs 
deI 

R total running time of measure (cp, s), for any s in M 

As argued above, R = n· m and n :s: IBI·ISI, so Ris O(IBI·ISI· m). So \\"e waut 

bounds on IBI and m. 
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cP IcPl 12:1 lAI 0 u du dx di 

T 1 0 0 0 0 0 0 0 

--,a 2 1 1 1 0 0 1 0 

TUc 3 1 2 1 1 1 1 1 

TUSlOc 5 11 11 0 0 11 0 

(Xa)l\a 4 1 2 2 0 0 2 0 

X(al\b) 4 2 3 2 0 0 2 0 

X(bUX--'a) 6 2 5 2 1 1 3 2 

(X c)U (a 1\ X b ) 7 3 6 3 1 1 2 2 

(--'e)U--,(TUb) 7 2 4 2 2 2 1 1 

(--'e)US 3 --,(TUS2 b) 9 2 7 15 0 0 6 0 

(X X e)U(b 1\ Xc) 8 2 5 3 1 1 3 3 

(bUe) V X X --,(bUc) 10 2 5 4 1 1 3 1 

X((aUb) V X(bUXe)) 10 3 8 4 2 1 4 2 

X((aUb)UX --,(bUX c)) 11 3 9 4 3 2 4 3 

(aU b )U --, (cU X X (bU X a) ) 13 3 10 5 4 3 4 4 

(cUXXXXXXXa)UXb 13 3 13 3 2 2 8 8 

(( X X X X c)U X X a)U X X Xb 14 3 14 3 2 2 5 5 

Figure 4.1: The variables we use ta measure formula size. defined ahove. For nxmnple. 

ILl counts the number of distinct LTL atoms in o. 

4.3 Bounds on IBI 
Here l describe three bounds on IBI: one fully general but unreassuring, one for the 

special case of formulas containing no untils (or only bounded untils), and one for 

formulas containing no nested untils. 

4.3.1 Bound 1: a crude upper bound on IBI 
The simplest upper bound on IBI, the number of nontrivial LTL-BDDs passed to 

measure(), is obtained by counting the total possible number of LTL-BDDs that can 

be created from the input formula cP. 21A : By Corollary 5.17, no more than 2 LTL-

BDDs are created during a calI ta measureO, where lAI is the number of LTL-BDD 
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atoms in di as defined above. Therefore we have bound 1 on IBI: 
21A1 IBI :::; 2. (Corollary 5.50) 

42 

lAI:::; 191, so this bound says that the number of LTL-BDDs passed to measureO 

is no more than doubly exponential in the size of the formula. 

Bound 1 is of limited use, because 221A
: grows very fast. For example, if cf; = 

(Xe)U(a 1\ Xb), then lAI = 6, and 22'
..1.

1 
= 226 

= 264
, about 18 trillion trillion. As 

shown in Figure 4.2, the actual number of LTL-BDDs passed to measureO on this 

input in IvlCI\IC is 7. In fact, variants like (Xb)U((Xa) V e) all pass between 5 and 7 

distinct LTL-BDDs. This suggests that our 221A
: bound is not tight. 

Formula # BDDs passed to measureO 

Bound 1 Bound 2 Bound 3 I\ICI\IC 

0 2
21Ai dx 2° 2(dx+di-1)i~13u 

T 2 0 1 1 

-'0 4 2 1 3 

TUc 16 6 4 

TU~lOe 22048 22528 1024 13 

(Xa) 1\ a 16 8 2 4 

X(o 1\ b) 256 8 4 -1 

X(bUX -'0) 232 768 7 

( Xc )U (a /\ X b ) 26.j 153Li 7 

(-,c )U-,(TUb) 65536 6 

(-,e )U~3-,(TU~2b) 2128 196608 1024 23 

(X X c)U(b 1\ Xe) 232 30ï2 8 

(bUe) V X X -,(bUe) 232 192 7 

X((aUb) V X(bUXe)) 2256 294912 11 

X((aUb)UX -,(bUX e)) 2512 17 

(aUb )U-,( eUx X(bUX a)) 21024 43 

(eU X X X X X X X a )UXb 28192 135 

((X X X X c)U X X n)U X X X b 216384 16 

Figure 4.2: Our upper bounds on IBI are not tight. 
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4.3.2 Bound 2: when du = 0, IBI < dx 2° 

In practice, MCl'vIC can often handle large formulas (with 20+ LTL-BDD atoms). In 

particular, formulas with no untils (u = du = 0 - recall that this includes formulas 

with only bounded untils) and formulas without nested untils (du ~ 1) are generally 

solved quickly. Since these categories include most formulas USE' :ts model checking 

specifications, tighter bounds for these cases are worth having. We can obtain such 

bounds by the following reasoning: 

1. Proposition 5.31 asserts that, if a top-level calI measure(cP, s) results in a re­

cursive calI to measure(v', t), then cP is reducible to 'l/J (Definition 5.7), i.e" 'li' is 

the result of sorne number of applications of stepO to cP, or to the right-hand 

argument of an until within cP. For example, if cP = a /\ (bU X Xc). thell 1.;1, must 

be the l'esult of appl:ying step() (repeatedly) to cP or to X X c. 

2. The right-hand argument of any until within cp is no larger than 9, h~' any 

of the measures in Definition 4.1. so a bound on the number of LTL-BDDs 

resulting from applications of stepO to 1; will also lead to a big-O bound on IBI. 

Therefore it suffices to count the number of LTL-BDDs which can result from 

applying step() to dJ, i.e., the number of different possible valUes of step" (o. 

P) for sorne path P and k 2: 0 (Definition 5.4). 

First, suppose 9 contains no unbounded unt.ils (Il = du = 0). Then cReIl appli­

cation of stepO to 9 strips off at least one X (Proposition 5.25). Also. if stepO is 

repeatedly applied to cP, each occurrence of an LTL atom in 9 is checked only once 

(or not at aIl) by stepO. Using these observations we can der ive bound 2: 

Wh en du = 0, IBI :S: dx 2°. (Proposition 5.51) 

dx and a are ~ 191, so in loose terms this says that for until-free formulas. 1 Blis 

singly exponential in 11;1. 

This is a fairly tight bound: we can construct formulas for which IBI approaches 

it. For example, for a 1; of the form (a /\ Xia) V (b /\ Xib) V ... (where Xi stands for 

i applications of X), IBI is about dx2~. 

Now suppose cP is an until, and cP's subformulas contain no untils (u = du = 1). Then 

we can show that, for any path P and k 2: dx , stepk( cP, P) = T, F, or stepdx (9, Q) 
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for sorne other path Q (Lemma 5.53). And in this case we can show that therefore 

IBI is 0(2(dx -l lIEI) (Corollary 5.55). 

Next, suppose du = 1 but cp itself is not an until. Then it must contain u 

(unnested) sub-untils. Using Lemma 5.53, we can derive bound 3: 

IBI is 0(2(dx+di-l)IEI3U). (Theorem 5.56) 

Since dx , di, I: and u are aIl ::; 1 cpl, this bound says that for formulas with no 

nested untils, IBI is no more than singly exponential in the size of the formula. As 

shown in Figure 4.2, this is a big improvement on bound 1 wh en it applies, but still 

not a reliable indicator of complexity on many inputs. However: 

Conjecture 4.3 When du = 1, in the worst case, bound 3 (Theorem 5.56) is tight: 

no significantly tighter bound on 1 B 1 exists in terms of dx , di, II: 1 and u. 

4.3.4 Conjecture: IBI is 0(2 191 ) 

Any bound is only as useful as the measurements in terms of which it is expressed. 

For example, even if ,vorst-case ex amples exist for any given dx , di, II:I and u such 

that bound 3 is tight, it may be that any such worst cases involve very long formulas. 

It is reasonable to want a general bound directly in terms of Icpl, the length cf the 

formula. This l have not been able to find. 

Conjecture 4.4 There exists a general bound on IBI expressible in terrilS of 101 11'IIicli 

is significantly tighter than bounds 1 or 3. 

And even (optimistically): 

Conjecture 4.5 On typical, non-degenerate inputs, the expected value of IBI is 0(21 0 1). 

A natural way to start looking for these improved bounds is to try to generalize 

bound 2. For example, if the effects on IBI of each atom, boolean operator (-,/ A/V), 

and temporal operator (X lU) could be quantified, they could be combined into a 

bound on IBI in terms of Icpl. 

4.4 A crude upper bound on m 

m, the time taken by a nontrivial calI to measure(cp, s) (not counting time spent 

within recursive calls), can be broken up into three parts: 
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1. time to compute step( cp, 5) 

2. time to make the recursive measureO caUs, not counting the time spent within 

each caU 

3. time taken by solve(xq,s = e) and substitute(xq,s := rct>s) 

We wiU analyze these separately. 

4.4.1 step() 

step( cD. s) performs three types of tasks: recursive caUs to stepO, caHs to BDD 

operations (andO, orO, cond()) , and determining whether an until TUt· is realizable 

from 5 (Definition 3.4). Consider the time required for each task separately. 

The recursive caUs to stepO are aU on subformulas of cp. Therefore. these caUs 

\YiU result in one stepO caU per no de in cp. By Proposition A.l, the number of nodes 

in cf; is 0(21.4.1). Therefore, the total time required by step(9. 5) is 0(21.4.1 . m'), where 

m' is the time required by each recursive stepO caU (not counting its own recursive 

calls) . 

By Proposition A.3, andO, orO, and condO are all 0(21.4.1). Aside from its l'C­

cursive calls, each caU to stepO makes at most four caUs to these BDD operations. 

Therefore the time taken by BDD operations in each stepO cali is 0(2:.4.,). 

Determining whether TUV is realizable from s is faster if we do sorne preprocessing. 

We can begiu the top-level caH to measure(ç6, 5) by caIling measure(L'. t) for each 

until TUV in cb and each state t in M. It is then a standard graph reachability problem 

to determine, for each TUV and t, whether TUV is realizable from t; i.e" whether there 

is any state t' reachable from t such that measure( v, t') > O. With this information 

stored, realizability can be checked by future stepO caIls in constant time. 

How long do es this preprocessing take? The time for the measure(v, t) caUs 

can be ignored here, since 771 excludes the time for other measureO caUs. For an 

implementation (like MeMC) which simply represents M as an [SI x IS! matrix, 

the time required for the reachability computation is at worst 0(15[2 . u). This 

is a reasonable cast, since the time just ta read in such a matrix is 0([5[2). In 

more efficient (e.g., graph-based or BDD-based) Markov chain representations. the 

reachability computation can be brought down proportional to E, the number of 
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edges in M. In either case, as we will see, this preprocessing cost is not a limiting 

factor. 

So apart from some preprocessing, the total time required for a calI to step( cjJ, s) 

is: (the number of recursive stepO calls)·(the time required for each call)= 0(2 IA1 ) . 

0(2 IA1 ) = O( 4IA1 ). 

4.4.2 Recursive measure() caUs 

RecaU again that we are not counting the time spent within these caUs, only the time 

required to make them: that is, one time unit per caU. 

measure(q). s) makes a recursive caU to measure(cjJ', s') for each outgoing edge 

'.vith non-zero probability (6(s, s') > 0). In MCI'vfC's simple matrix representation, 

measure() needs to go through the entire s row to find the valid s' candidates, so 

finding them takes time 151. In more efficient representations, the outgoing edges 

can be looked up directly, bringing the average time down to O( I~I)' i.e .. the average 

degree of M's graph. 

4.4.3 sol ve() / substi tute() 

This is another part of the algorithm where we are stiU faced with a big gap bet\\'cen 

our worst-case bounds and observed performance on sample inputs. 

The \vorst case occurs when lei, the average number of variables in each cached 

solution expression, is proportion al to the total number of variables created. The 

number of variables created is just n. the number of nontrivial caUs to measure(). 

Suppose lei ~ n. Then, on average, sol veO must solve an equation in n variables. 

which is O(n). In fact this can be improved to 0(1), but consider substituteO. 

The number of steps required to substitute an expression of n variables into each of 

n cached solution expressions is O(n2 ). 

Recall that n can certainly be expected to be :2 151, the number of states in M. 

So, if the running time for each measureO cali, m, is n 2 , then even for a simple formula 

CD. the total running time R is (# calls) . (time per caU) = 0(151) .0(151 2
) = 0(151 3 ). 

This is terrible. 

One way to look at this is to observe that these substi tuteO caUs are effectively 

solving a system of n !inear equations in n variables. Naive algorithms to do this are 

indeed 0(n3
). and even fast special-case algorithms only approach 0(n 2 ). From this 
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point of view a 0(151 3
) running time, or at least 0(151 2 ), looks like a legitimate worst 

case. 

However, in practice lei is usually much lower than n. In fact, we can show that 

on many realistic inputs lei ~ 1, so that solveO and substituteO run in constant 

time and are not a significant factor in m. 

Suppose V' and 1// = step( 1jJ, t) are not mutuaUy reducible. Then, by CoroUary 

5.35, measure(1jJ, t) returns a number. And CoroUary 5.36 further asserts that the call 

made by measure( 11!, t) to substi tuteO only performs a single substitution. This 

gives us CoroUary 5.57: when 1jJ and 1jJ' are not mutually reducible, the running times 

of solveO and substituteO are 0(1). 

A common case in which V! and 1jJ' are not mutually reducible is when u = 0: 'Ii' 

contains no unbounded untils. V/hen u = 0, Proposition 5.26 implies that 1j! and 'li,! 

are not mutually reducible, unless 1jJ' = 1jJ. Either way sol veO and substi tuteO are 

0(1). 

~lore generally, the mutually-reducible equivalence relation partitions the total 

set of created LTL-BDDs B into j equivalence classes, each containing IBj 1 mutually 

reducible LTL-BDDs. Lemma 5.32 implies that each call to substitute() or solveO 

deals only with variables whose formulas belong to the same equivalence class (where. 

e.g., the variable of Xq,s is cp). So, rather than solving a single system of n ~ IBi . 151 
equations in n variables, measureO solves j systems, eaeh of 12) ~ IBJI·ISI equations 

in n j variables. 

The expeeted time to solve this type ofsparse matrix varies \videl~' (between 0(n 3 ) 

and O( n)) depending on the size of the B/s. When u ~ 1, the ,vorst case may indeed 

approaeh 0(n 3
). However. we will conjecture that lei is usually O( I~I): 

Conjecture 4.6 On typical, non-degenerate inputs, the expected running time of 

each call to solveO and substituteO is 0((1~1)2). 

4.4.4 Adding it up 

Our worst-case bound for an efficient implementation of m, then, cornes to: 
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(preprocessing time, averaged over n calls) 

+ (time for step()) 

+ (time to make recursive measure 0 calls) 

+ (time for solveO & substituteO) 

O(~) + O(4IA1 ) + O(I~I) + 0(n2
) 

< O( IB~sl) + O( 41A1 ) + O( I~I) + O((IBI . ISI)2) 

< 0(4IA1 ) + O(I~I) + 0((lBI'ISI)2) 
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In general, this expression is dominated by the O( (IBI'ISI)2) time for substi tute(): 

quadratic in the number of LTL-BDDs created, and in the number of states in M. 

In the u = 0 case: it reduces to O( 41A1 + I~I ): exponential in the number of distinct 

LTL-BDD atoms (LTL atoms, nexts and untils) in CP: linear in the average degree of 

M. 

In the event that Conjecture 4.6 holds: the bound on m reduces to O( 4iAI + ( 1~1)2): 
exponential in the number of LTL-BDD atoms, quadratic in the average degree of 

M. 

4.5 Conclusions 

The main objective of a complexity analysis, apart from theoretical intcle::'t. i~ to 

estimate the practicallimits on an algorithm:s input size. As Figure 4.2 makes clear. 

our anal)'sis contains far too man)' special cases, conjectures, 100::;c bOUllds. and ex­

ponentials to be useful for this purpose. 

A more sensible way to gauge the usefulness of the measureO algorit hm is to try it 

out on some realistic examples. To do this properly will require a more mature imple­

mentation than MCMC, but even running such ex amples in l\1GMC seems unlikely to 

pro duce more pessimistic results than our theoretical worst-case bounds. Such tests 

are an obvious area for future work (Chapter 8.2). 

In the absence of realistic tests, we can only summarize the analysis with the 

following bounds on R, the total running time of a calI to measure(cp, s). 

Recall that R = n . m, and n :S IBI . ISI: 
1. Worst case when u = 0: Ris 0(dx 2°(ISI' 41A1 + E)): in rough terms: linear 

in E, singly exponential in Icpl. 

2. Conjectured expected case whenu :2: 1 (assuming Conjectures 4.5 and 

4.6 hold): O(ISI· 21<t>1(4 IA1 + (1~1)2)): roughly. linear in ISI, quadratic in I~!' singl~' 
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exponential in 191. 
3. Theoretical worst case: Ris O(821A1 

• 151 3 ). 



Chapter 5 

Proofs 

This chapt el' contains the proofs relied on by Chapters 3 and 4. 

The number and hairiness of these proofs is unfortunate. There ma~' be a sil1l­

pl el' way to prove the correctness results (in particular, Lemma 5.46: in any call to 

solve(xÇ>8 = e). the coefficient of xq,s in e is < 1), but so far it has escaped me. 

The main results are in the following sections: 

• 5.7 (pages 68-71): a plausible path has a prefix determining rjJ 

• 5.8 (pages 71-80): the big combined induction. proving the correctness ofmeasureO 

and step() 

5.1 Sorne definitions 

The precise definition of the subformulas of an LTL-BDD rjJ is important, because it 

will underpin our many structural inductions: 

Definition 5.1 The subJormulas of an LTL-BDD are as follows: 

• T IF: no subformulas 

• (a ? 'Ii' : w): 'IjJ and w 

• (XT ? 'IjJ : w): T, 'IjJ and w 

• (TUV ? V) : w): T. v 1 V) and w 

50 
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Kote that XT is not a subformula of (XT? V): w), since then (XT? T: F) would 

be a subformula of itself killing our structural inductions. Similarly. TUl l is not a 

subformula of (TUV ? 'lj) : w). 

\Ve will sometimes refer ta "the subformulas of an LTL formula cjJ", referring of 

course ta the subformulas of the LTL-BDD representing 4;. 

Definition 5.2 

udepth(T) = udepth(F) dE 0 

udepth(a ? VJ : w) dE max(udepth('lj)), udepth(w)) 
de! 

udepth(XT ? W : w) max(udepth(T), udepth('l;0), udepth(u.J)) 

udepth(TUV ? 1/-) : w) d!.l max(udepth(T) + 1, udepth(v) + 1, udepth('li)), udepth(:.,,:)) 

udepth(9) computes the maximum depth ofnested untils in 4;. Examples: udepth(aV 

e) = 0, udepth(a 1\ (bUe) 1\ (GUe)) = L udepth((bUa)Ue) = 2. 

As we saw in section 2.3.4, bounded untils are encoded without pure untils, so 

they are not counted b:v udepth(): for any k, udepth(TU:'ô k v ) = max(udepth(T). 

Ildepth ( 1') ). 

Definition 5.3 

xdepth(T) = xdepth(F) de! 0 
de! 

xdepth(a ? '1/) : w) max(l, xdepth('Ij!), xdepth(u":)) 

xdepth(XT ? 'li! : w) de! max(xdepth(T) + 1, xdepth(v)), xdepth(w)) 

xdepth( TUV ? W : w) de! 
max(xdepth(T), xdepth(v), xdepth(w), xdepth(w)) 

xdepth( 4;) computes the maximum depth of nested nexts in cjJ, counting atoms as 

nexts: xdepth(T) = 0, xdepth(a) = 1, xdepth(X(aI\Xb)) = 3, xdepth(X((Xa)U(bV 

XXa))) = 4. 

Because a bounded until TU:sk V is encoded with k nexts (k - 1 around the T), 

xdepth(TU:skV ) = max(xdepth(T) - 1, xdepth(v)) + k. 

Definition 5.4 For a given LTL-BDD 4; and pa th P = (PlI P2, P3, ... ) in a labeled 

Markov chain M: 
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stepO(dJ, P) d~ cp 

stepn>O(cp, P) d~ step11-1(step(cp, pd, P2 = (P2,P3," .)) 

So stepl(cp, P) = step(cp, pd, step2(cp, P) = step(step(cp, pd, P2), etc. Intu­

itively, st ep11 (cp, P) is the result ofthe n th recursive call to stepO made by measure (cp, 

pd as iL craverses P. The following alternative form can also be useful: 

Pro of From the above definition, by an obvious induction on n. • 
Definition 5.6 For a path P in a labeled Markov chain M, and LTL-BDDs cp and 

t', stepO reduces cp to 'Ii! along P if~n ~ 0 such that stepn(1), P) = 1/'. 

Intuitively, stepO reduces cP to ô along P if the sequence of recursive caUs macle 

by measure(r;6, s) as it traverses P eventually includes a caU to measure(c', t) (for 

sorne t). 

Note that n ~ 0 allows n = 0, so by this definition, cp reduces to itself along any 

path. 

Definition 5.7 For two LTL-BDDs cp and 'l/J, cp is reducible ta 'li' (or equi'ualently. 

li' is reducible from 9) if either: 

1, ~ some path P su ch that stepO reduces 1> to 1/' along P. or 

2, cp contains an until TU V, and ~ a pa th P such that stepO reduces v to 'Ij; along 

p, 

Note that, unlike Definition 5.6, Definition 5.7 is independent of any specific path 

or Markov chain. This reducibility relation will be useful to us because of CoroUary 

5.16 and Proposition 5.31: any formula cp is reducible to finitely many other formulas 

1jJ, and for any recursive caU measure( ô, t) resulting from measure( cp, s). cp is reducible 

to 'l/J, 

Definition 5.8 Twa LTL-BDDs cp and 'l/J are mutually reducible if 1> is reducible 

to 1/, and 'l/J is reducible to cp. 
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Definition 5.9 A possible path P in a labeled Markov chain M 1s a (fimte or infi­

nite) sequence of states (Pl, P2, ... ) describing a possible sequence of state transitions 

in M: i.e., such that Vi ~ 1, c5(Pi,Pi+l) > O. 

For two states s and t, then, t is reachable from s iff there exists a possible path 

(Pl = S,P2,··· ,Pn' t). 

Definition 5.10 Astate s occurs infinitely often in a path P = (Pl,P2,"') if 

there are infinitely many i such that Pi = s. Similarly, a finite path Q = (ql, q2, ... , qm) 

occurs infinitely often in P if there are infinitely many i su ch that, VI ~ j ~ m, 

Definition 5.11 A plausible pa th in a labeled Markov chain M is an infinde pos-

sible path P = (Pl, P2, ... ) su ch that for any state s occurring infinitely often in P. 

if Q = (ql = s, q2, q3, ... ,qm) is a finite possible path starting from 8. then Q occurs 

infirzitely often in P. 

The idea of a plausible path is crucial to our algorithm. It formalizes the intuition 

once expressed by my mother: How is it .vou cali so often and l'm not home. if ~"ou 

never cali wh en l'm home? In other words, given enough chances to happen. it is 

implausible that a possible event should ne\"er happen. 

An example of an implausible path in Ml from page 10 is R = (.'11.8].5], ... ). 

which never visits S2 or S3 despite infinitely many opportunities. Section 3.5.3 illus­

trat.es how measureO ignores these implausible paths. 

Definition 5.12 A finite possible path Q = (ql, q2, ... ,qm) de termines an LTL 

form'ula q; in a labeled Markov chain M if either every plausible path P = (p] 

ql, ... ,Pm = qm, Pm+l, ... ) beginning with Q satisfies q;, or no su ch P satisfies cP· 

In other words, the course M follows beyond pm = qm doesn't matter: the first 

m states of P determine whether or not it satisfies cP. 

The following examples are worth tracing through for a full understanding of 

plausible and determining paths: 

l. Note that M is an essential parameter in Definition 5.12. For example. refer­

ring again to Ml from Figure 1.1, it is obvious that the prefix Q' = (SI, sd 
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det.ermines a (as true) and X -,b (as false); but not so obvious that it also de­

termines ô = TU(-,b 1\ X-,b) ("Eventually bis false in successive states"). as 

false, sin ce no possible path in Ml starting with Q' satisfies this formula. In 

fact, the empty path 0 determines 'l/J in Ml. 

2. The stipulation that F )e plausible is also essential to the definition. For 

example, Q' also determines w = TU-,a ("Eventually a is false") in Ml, as 

true, despite the existence of paths such as R = (SI, SI, SI,"') which don't 

satisfy w. Such paths are possible, but not plausible; any plausible path in Ml 

event.ually enters 53, where a is false, satisfying w. 

3. Theorem 5.41 asserts that, for any plausible path P and formula 9. P has a 

finite prefix determining 9. But note that t.his theorem do es not hold in general 

for possible paths: there exist possible paths P such that no finite prefix of 

P determines certain formulas rjJ. but every such P is implausible. ::\0 such P 

exists in Ml, but the 6-st.at.e l'viarkov chain M in t.he sample input to l\IC~lC 

(Chapter 6) contains examples, su ch as S = (55,55,55, .. . ). }';o finite prefix of 

S determines w = TUb. 

Definition 5.13 step() resolves 6 along P ~f it reduces Ci ta '"-' along P (Dchndiml 

5.6). where '"-' = TIF = whether P F cjJ. 

Definition 5.14 An expression e, made up of a sealar term ko and n variable terms 

k l x",!t! ... knxqJntn' represents a number k if replacing the variables witl! the proba­

bilities they stand for leads ta a sum of k: ko + 2.:~1 ki'prob(t; F cp;) = k. 

5.2 measure() and step() terminate 

Proposition 5.15 For any LTL-BDD 1; and state s in a Markov chain M, the return 

values of measure(1;, s) and step(1;, s) contain no LTL-BDD atoms not already 

present in 9. 

Proof In the LTL-BDD representation, there is a distinct LTL-BDD atom for each 

distinct LTL atom, next, or until. Examining the definitions of measureO and stepO 

(pages 31 and 33), we find that they create no new LTL atoms, nexts or untils Ilot 

already present in 1;. • 
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Corollary 5.16 For any LTL-BDD cp, if lAI is the number of distinct LTL-BDD 

atoms occurring in cP, then there exist no more than 22!AI distinct 71. such that 9 '/S 

reducible ta V'. 

Proof FoUows from Propositions 5.15 and A.2. • 
Corollary 5.17 For any LTL-BDD cp and state s in a Markov chain M, if lAI is the 

number of distinct LTL-BDD atoms occurring in cp, then a top-level cal! ta measure(Ç>. 
'AI 

s) generates no more than 221 LTL-BDDs. 

Pro of Again, fo11ows from Propositions 5.15 and A.2. • 
Proposition 5.18 measure( cP, s) and step( 9, s) terminate. 

Pro of Structural induction. Assume that. for a11 subformulas ~, of 6, and for aU t. 

measure(Jt', t) and step(1/;, t) terminate, We need to show that therefore measure(o. 

s) and step (CP. s) terminate. 

That step( Q, s) terminates fo11o\\'s immediately by the induction hypothesis: its 

recursive caUs to measureO and step() aU pass in subformulas as arguments. 

~ext, measure(6. s). measureO has three cases, of which the first t\\"o (T/F. or 

a solution in the cache) terminate immediately. There remains the third. 1l0ntri\'Ïal 

case, In this case, measure( cp, s) makes a recursive call to step( 9. 5) alld multiple 

recursive calls to measure(cp', s'). The cali to step(cp, s) terminates by the reasoning 

above. But we cannot infer termination of the recursive calls to measure (6', s') from 

the induction hypothesis. since Q' is not necessarily a subformula of 9. 
However, note that the first thing a nontrivial call to measureO does is store a 

new variable in the cache; new because the nontrivial case is only entered if nothing 

was previously stored in the cache for (9, s). The number of states is finite, and 

by CoroUary 5.17, so is the possible number of distinct LTL-BDDs. Therefore the 

number of possible input pairs (1/;, t) is bounded. So, since each nontrivial call to 

measureO adds a new input pair's variable to the cache, and cached solutions are 

global and never removed, it fo11ows that only finitely many of the recursive caUs to 

measureO are nontrivial. 

Consider the last of these nontrivial caUs. Since it is the last, a11 its recursiw caUs 

must be to the trivial cases, which terminate. Therefore it also terminates. And we 
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can similarly reason that so must the 2nd-last nontrivial calI, the 3rd-Iast, and so on. 

So aIl the nontrivial calls resulting from a calI to measure( 9, s) terminate, as weIl as 

the trivial calIs. Therefore, measure( cf; , s) t.erminates. 

So by induct.ion, every calI t.o measureO or stepO t.erminates. • 

5.3 stepO distributes over BDD operations 

Lemma 5.19 stepO commutes with notO and distributes over andO, orO, and 

condO: 

• step(not(cf;), s) = not(step(cf;, s)) 

• step(and(01' 92), s) = and(step(cf;l' s), step(02, s)) 

• step(or(<pl' (2). s) = or(step(cf;l' s), step(92. s)) 

• step(cond(cf;l, 921 <P3), s) = cond(step(cf;l, s), step(02! s), step(cp:.J. s)) 

Proof \iVe show t.hese by structural induction, using sorne of the BDD operat.ion 

identities from Figure A.15 (page 116) and st.raightforward (if somewhat laborious) 

case analysis. 

1. not(). Assume the commut.ativity identity holds for aIl subforrnulas of 0 (as 

defined in Definition 5.1). \\le shO\v t.hat t.herefore it also holds for 0, wllPther 6 is a 

boolean or an at.orn LTL-BDD. 

Suppose 9 = T (cf; = Fis exact.ly paraIlel): 

step(not(T), s) 

step(F, s) 

:F 

(defn of notO) 

(defn of stepO) 

not(T) (defn of not() again) 

not(step(T, s)) (defn of stepO again) 
Or suppose cf; = (a ? 'ljJ : w) (covering the 0: = a, 0: = XT, and Q = TUU cases aIl 

together): 
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step(not(a ? 'lj; : w), s) 

step((a ? not(7/') : not(w)), s) (defn of not ()) 

cond(a', step(not('lj;), s), step(not(w), s)) (defn of step()) 

cond(a', not(step(1/', s)), not(step(,-,,', s))) (ind hyp) 

not(cond(a', step('lj;, s), step(w, s))) (Figure A. 5) 

not(step((a ? 'lj; : w), s)) (defn of step()) 

In either case the induction holds. So stepO commutes with notO. 

57 

2. and(<pl' <P2)' Structural induction again. This time assume the claim holds 

for any andO operation where both operands are subformulas (of c/Jl or c/J2). or one 

operand is a subformula and the other is c/Jl or cP2. 

Suppose one of the operands, say c/Jl, is F: 

step(and(F, rP2), s) 

step(F. s) (defn of andO) 

F (defn of step()) 

and(F, step(c/J2, s)) (defn of and()) 

and(step(F, s), step(rP2. s)) (defn of stepO) 
Or suppose rPl = T: 

step(and(T, <P2), s) 

step( 02, s) (defn of and()) 

and(T step(92. s)) (defn of and()) 

and(step(T, s). step(62. s)) (defn of step()) 

If neither cPl nor 92 is a boolean, then both are atom LTL-BDDs: 6 1 = (01 ? V'l : ,-,,'r). 

rP2 = (0.2 ? ?i'2 : W2). l\ow there are four cases, based on whether a] = (12. and whether 

andO enters the (n a1 = n~a1) case (see the definition on page 107): 

Case 2a: al =1= 0.2 (say, al < 0;2), and( 1h, cP2) =1= and(Wl, c/J2): 
step(and((al ? 1h : Wl). (0.2 ? 7/)2 : W2)), s) 

= step((al? and('lj;l, cP2) : and(wl, c/J2)), s) (defn of and()) 

cond(a~, step(and('lj;l, c/J2), s), step(and(wl' rP2), s)) (defn of step()) 

cond(a~, and(step(7/)l, s), step(cP2, s)), 

and(step(wl, s), step(c/J2, s))) 

and(cond(a~, step('lj;l, s), step(wl, s)), step(c/J21 s)) 

and(step((al ? 'lj;l : wr), s), step(<p2, s)) 
Case 2b: al < 0.2, and('lj;l, c/J2) = and(wl, c/J2): 

(ind hyp) 

(Figure A.15) 

(defn of step()) 
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step(and((al ? 1/Jl : wd, (a2 ? 1/J2 : W2)), s) 

step(and(?t'll (h), s) (defn of andO) 

= cond(a~. step(and(t/J1, CP2), s), step(and('I/'l' CP2), s)) (defn of condO) 

cond(a~, step(and(1/Jl, CP2), s), step(and(u.,'l' CP2), s)) (case 2b) 

( ... as in case 2a) 

Case 2c: al = a2 = a, and(1/J1 , 1/J2) -=f. and(w1, W2): 
step(and((a ? 1/J1 : wd, (a ? 1/J2 : W2)), s) 

step((a ? and(1/J1, 1/J2) : and(wl, W2)), s) (defn of andO) 

cond(a', step(and(1/J1, 1/J2), s), step(and(w1, W2), s)) (defn of step()) 

cond(a', and(step(1/Jl, s), step('l/J2, s)), 

and(step(w1' s), step(w2, s))) 

and(cond(o'. step(W1, s), step(w1, s)), 

cond(a', step('I/'2. s), step(w2, s))) 

= and(step((a? '1/'1 : wd, s), step((a ? U'2 : W2), s)) 
Case 2d: 01 = 02 = a, and(1/J1l '1/'2) = and(w1, W2): 

step(and((o ? 'I/!1 : wd, (0 ? 'lf'2 : W2)), s) 

step(and(V1, 1lJ2)' s) 

(ind hyp) 

(Figure A.15) 

(defn of stepO) 

(defn of and()) 

cond(a'. step(and('l."'l. 'l,U2), s), step(and('I/'l. 1/J2), s)) (defn of condO) 

cond(o'. step(and(1j!l' 'lf'2)' s). step(and(w1' W2). s)) (case 2d) 

( ... as in case 2c) 

In every case the induction holds, so stepO distributes over and(). 
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And 3. orO and 4. condO foHmv immediately. since orO is defined in terms 

of andO and notO (Definition A.6), and condO in terms of orO. and(J and notO 

(Definition A. 7). • 
Corollary 5.20 stepnO commutes with notO and distributes over andO, orO, and 

condO: 

• stepn(not(cp), P) = not(stepn(cp, P)) 

• stepn(cond(cpl, CP2, CP3). P) = cond(stepn(<p1! P), stepn(cp2. P). step"(<P3. 

P)) 
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Proof Fo11ows from Lemma 5.19 by simple induction on n. Example (for the nOll­

trivial n > 0 case): 

stepn(and(<pI. <P2), P) 
(defn of stepn()) 

stepn-l(and(step(<pI, pd, step(<p2, Pl)), P2) (Lemma 5.19) 

and(stepn-l(step(rpl' Pl)' P2 ), stepn-l(step(rp2, pd, P2 )) (ind hyp) 

and(stepn(rpl. P), stepn(rp2, P)) (defn of stepn()) 
And the others operators fo11ow similarly. • 

5.4 Mutually reducible LTL-BDDs contain the same 

atoms 

Proposition 5.21 

1. The reducible-to and reducible-from relations on formulas (Defi1lihon 5.7) are 

preorders. 

2. The mutually-rcducible relation on formulas (Definition 5.8) is an equivolencc 

relation. 

Proof In d011laill them'y, a preorder is defined as a relation t11at is reftexi\'e and 

transitive. Consider the reducible-to relation first. Reftexivity fo11ows from Definition 

5.6: rp reduces to itself along any path P, so rp is reducible to (and from) itself. 

Transitivity is also clear, from Definition 5.7: if c/J is reducible to w. andu is reducible 

to w, then <p must be reducible to w, And the same holds for reducible-from. 

An equivalence relation is a preorder which is also symmetric. The reftexivity and 

transitivity of mutually-reducible follow straightforwardly from the fact that these 

properties hold for reducible-to and reducible-from, and the symmetry of mut.ually-

reducible is obvious. • 
\Ve can now identify sorne constraints on which pairs of LTL-BDDs satisfy thesC' 

relat.ions: 

Proposition 5.22 If one LTL-BDD, rp, is reducible to another, 'Ii'. then every LTL­

BDD atom Cl' occurring in 1jJ (of one of the three forms a, X T, or TUV) also occurs 

in c/J. 
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Pro of By Proposition 5.15, step( <p, s) introduces no new LTL-BDD atoms 0: not 

already present in <p. So any 0: occurring in a 1/-' of the form stepn (9, P) also occurs 

in <p. Similarly, for any TUV occurring in <p, any 0: occurring in stepn(v, P) occurs 

in v, and therefore of course also in <p. Therefore, by Definition 5.7, any 0: occurring 

in 1jJ also occurs in <p. -
Corollary 5.23 If one LTL-BDD. <p, is reducible to another, 'IjJ, then udepth(<p) ~ 

udepth(1f-;). 

Proof Follows from Proposition 5.22: since <p contains every LTL-BDD atom in 7.h. 

it must contain every until in 1jJ, including those of greatest depth. _ 

Corollary 5.24 Any two mutually reducible LTL-BDDs dJ and 'li' each contain exactly 

the same set of LTL-BDD atoms: and udepth(9) = udepth(~l 

Proof Follows immediately from Definition 5.8, Proposition 5.22. alle! Corollary 

5.23. -
\Ve can also proye some stronger constraints on mutual reducibility: 

Proposition 5.25 For any until-free LTL-BDD 9; and any state .5 in a Marko(" chain 

M: xdepth(step(ÇJ: s)) :s; max(xdepth(ç'J) - 1. 0). 

Proof Straightforward structural induction on cp. Assume the daim holds for <p's 

subformulas. If <p is Tor F, xdepth(step(<p, s)) = xdepth(<p) = 0 alld the daim is 

obviously true. Otherwise, <p must be of the form (0: ? 'l/J : u.J), v"here Q is either an 

LTL atom a or a next XT. 

Case 1: 0: = a. Then by the definition of stepO (page 33), step(o, s) is either 

step(1jJ, s) or step(w, s). Both cases are equivalent, so suppose step(<jJ, s) = step(1i', 

s ): 

xdepth(step((a ? 1jJ : w), s)) 

xdepth(step(1jJ, s)) 

< max(xdepth(1jJ) - 1, 0) 

< max(xdepth(<p) - 1, 0) 
Case 2: 0: = XT: 

(ind hyp) 

(defn of xdepthO) 
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xdepth(step((XT? 1jJ : w), s)) 

xdepth(cond(T, step('Ij!, s), step(u.J, s))) 

< max(xdepth(T), xdepth(step('lj!, s)), xdepth(step(w, s))) 

< max(xdepth(T), max(xdepth('lj!) - 1,0), 

max(xdepth(w) - 1, 0)) 

max(max(xdepth(T), xdepth('lj!) - 1, xdepth(w) - 1).0) 

max(max(xdepth(T) + 1, xdepth('lj!), xdepth(w)) - 1, 0) 

max(xdepth(<p) - 1,0) 
So in either case the daim holds, completing the induction. 
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(defn of step()) 

(defn of xdepthO) 

(ind hyp) 

(defn of xdepth ()) 

• 
Proposition 5.26 Any two distinct mutually reducible LTL-BDDs bath corltain at 

least one m7til. 

Proof It is easy to show that no two distinct until-free LTL-BDDs 6 =f. li, are 

mutua11y reducible: the daim then fo11ows immediately. 

Suppose without loss of generality that xdepth( 'lj!) :S xdepth( <p). If 9 and l:' are 

T and F they are obviously not mutually reducible. Otherwise, at least one of them 

must contain an LTL atom or next, so xdepth( <p) 2:: 1. We will show that ?t' is not 

reducible to 0. Since 'Ij' contains no untils. we only need to show that. for oJl\" poth 

P = (Pl, P2 . ... ) and n 2:: 0, stepn (0, P) i: <p. 

stepO(u', P) = 11' i: cp, so assume n 2:: 1. stepl(W. P) = step(c'. pd. By 

Proposition 5.25, xdepth( step( çiJ. pd) is either 0 or xdepth( 'Ii:') - 1. In cither case. 

this depth is < xdepth(cp), so stepl(1jJ, P) i: çiJ. And, since the depth of nested nexts 

can only decrease with further applications of stepO, we have our result that '\In 2:: O. 

stepn (<p, P) i: <p. Therefore, 1/J is not reducible to cp. 

Therefore, if any distinct pair cf; and 'I/J are mutua11y reducible, at least one of them 

contains an until, and therefore by Corollary 5.24 they both do. • 

Lemma 5.27 For any two distinct mutually reducible LTL-BDDs cp i: 'lj!, every LTL 

atom a or next X T occurring in cp also occurs inside an until in 'l!.J. 

Proof Fo11ows from an extension of the reasoning used to prove Proposition 5.26. 

Let Aci>,p be the set of LTL-BDD atoms occurring in <p but not inside any until in ~'. 

or in 1/J but not in si de any until in cp. Suppose Aq,,p is nonempty. Then let 0: be the 

element (or one of the elements) of this set with the greatest number of nested nexts. 
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i.e .. the greatest xdepthO. Suppose without loss of generality that a occurs in ÇJ, but 

not inside any until in ?i'. 
Using a, we will show that ?jJ is not reducible to ÇJ. It will follow that if cp and ?jJ 

are mutually reducible, then A<I>v' is empty, and the claim holds. 

First we dispense with simple cases. If any untii occurs in one of cp and ?jJ but 

not the other, then Corollary 5.24 is enough to show that cp and ?jJ are not mutually 

reducible. So we need only consider the case where both contain the same untils. 

Also, the second clause of the definition of reducibility (Definition 5.7) is satisfied 

only if ?jJ contains some until TUV such that v is reducible to ÇJ. But by hypothesis, 

no until in ?jJ contains Cl. So by Proposition 5.22, no such v is reducible to 9. 
So it remains only to prove that the first clause of the definition is not satisfied: 

V paths P and n 2: 0, step" (?iJ, P) =f cp. The n = ° case is trivial: stepO(V', P) = ~', 
and by hypothesis '1), =f rp. So assume n 2': 1. 

Suppose step"('ljI. P) = 6. Since rp contains Cl, so does stepnelP, P), and by 

Proposition 5.22, therefore so does ?i'. Furthermore, since no until in J,i, contains Cl, 

we can see from the definition of stepO (page 33) that the a in step"( 'ljJ, P) can only 

have been obtained by applying stepO n times to an LTL-BDD a-n in?jJ in which Cl 

was enclosed by n nexts. That is, xdepth(Cl_ I1 ) 2: xdepth(a) + n > xdepth(Cl). 

No,,", since no until in ?jJ contains Cl, and \ve are assuming rp and V) contaiu the 

same untils, it follows that no untii in cp contains Cl. So, since Cl_ n contains Cl. no 

untii in rp can contain Cl_ I1 • Therefore. 0'-11 belongs to Aç",',. That is. we have another 

element of A';>1;'I \Vith more deeply nested untiis than Cl - contradicting the definition 

of Cl. 

Therefore our assumption, that for some P and n > ° stepn(w, P) = 9. \Vas faise. 

So if cp =f ?jJ and Aci>~ is nonempty, then rp and ?jJ are not mutually reducible. The 

claim follows immediately. • 
Corollary 5.28 If an LTL-BDD ÇJ is mutually reducible with any other LTL-BDD 

?jJ (cp =f '/j'j,. then every LTL atom a or next X T occurring in rp also occurs inside an 

until in cp. 

Proof Follows from Lemma 5.27 and Corollary 5.24: any a or X T in rp must occur 

in an until in ?jJ, and the same untii must also occur in phi. • 
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Remark 5.29 The abave constraints an reducibility and mutual reducibility are nec­

essary but nat sufficient: there exist LTL-BDDs which satisfy these canstraints and 

yet are nat (mutually) reducible. 

For example, although they are made up of the same LTL-BDD atoms and satisfy 

the constraint of Lemma 5.27, the two formulas TUa and aA (TUa) are not mutuaUy 

reducible: TUa is not reducible to a A (TUa). However, for many pairs (cp, 'IjJ) these 

constraints are enough to show that cp is not reducible to 'IjJ, or that cp and 11' are not 

mutuaUy reducible. 

5.5 For every variable x'ljJt in return value r cps, cP and 

1jJ are mutually reducible 

Proposition 5.30 Any call ta measureO eliminates any variables it crmtes befare 

returmng. 

Proof measureO retums an expreSSlOn consisting of sorne variable terms and a 

scalar (numerical) part. Variables are only created in one place in the algorithm: the 

first line of measureO's nontrivial case (page 31). But this case then elimiud1es the 

created \'ariable from aU cached expressions a few lines belO\\'. Since all rccun:ii\'c calls 

measure() makes complete before it retums, eliminating any variables the)' createcl. 

the set of variables in existence at the beginning of any caU to measure() is the same 

as the set in existence when that same caU retums. • 
Proposition 5.31 If a call ta measure(cp, s) ar step(cp, s) results zn a (passibly 

nested) recursive call ta measure('IjJ, t), then cp is reducible ta 1{'. 

Proof FoUows from the definitions of measureO and stepO (pages 31 and 33). 

There are only two types of recursive measureO caUs resulting from measure(d>, s): 

those made by measureO, and those made by stepO. The first type occurs \\'hen 

sorne recursive call measure('IjJ, t) calls measure('IjJ', t'), where 'IjJ' = step('IjJ, t). The 

second type is of the form measure(v, t), where TUV is an until occurring in cp. So any 

sequence of these can only lead to recursive calls of the form measure (~', t), where 1/} 

is either stepn(cp, P) for sorne path P and n 2:: 0, or stepn(v, P). In othe1' words, by 

Definition 5.7, cp is reducible to Vi. • 
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Lemma 5.32 If r<l>s is the expression returned by measure(<p: s), or the solution 

cached for (9, s). then for every variable x1jJt occurring (with coefficient> 0) in rç,s. 

<p and V) are mutually reducible. 

Proof Induction on call return order. Suppose the daim holds for aIl expressions 

returned by calls to measure() terminating before measure( <p, s), induding recursive 

calls. \Ve will show that it therefore holds for this call as weil. 

Consider the three cases in measure 0: 
Case 1: <p = T / F. So r ç,s = 1 or 0 and the daim is trivially true. 

Case 2: r<l>s retrieved from the cache. Then a previous call to measure(dJ. s) must 

have cached x'Ps ' If this previous call hasn't yet completed, then it also hasn't yet 

substituted for Xos. so the cached expression is still just xç,s. Therefore r",s = X",S, 

and again the daim is trivially satisfied (since mutual reducibility is refiexivc). 

If the previous call did complete, then the expression r~s it left in the cache was 

the same expression as it returned, and by the induction hypothesis T~., satisfied the 

daim. Since then, r~s may have been modified by variable substitutions, performed by 

calls of the form substitute(x1.',t := r'!jJt). But again, any such substitution occurred 

just before me as ure ('li), t) returned T,pt, so by the induction hypothesis, any variable 

X""'u in 1'';'1 was mutually reducible \Vith 'li). And since 'li, occurred in r~s' alld r~s 

satisfied the daim, <1) and dJ are mutually reducible. So by the transitivit~, of lllutuai 

reducibility (Proposition 5.21), for any variable Xwu introduced by substitutioll into 

r~s' cp and u..,' are mutually reducible. Therefore the daim still holds for 7'os. 

Case 3: no cached solution, Then, apart from x<f;s, r<f;s contains the same variables 

as e, where e is the expression computed as a weighted sum of recursive calls to 

measure( dJ', s'). By the induction hypothesis, for any variable X,pt in one of the 

recursively computed expressions, <p' and psi are mutually reducible. And since <p' = 

step(<p, s), <p is reducible to <p', and by transitivity therefore also to 'IjJ. So it remains 

only ta show that 'IjJ is reducible ta <p. 

By Proposition 5.30, all variables created during the call ta measure( cp, t) are 

eliminat.ed before it. returns. 80 X,pt must have been created, but not eliminated. 

before the call began. Therefore the measure( 'IjJ, t) call which created X1jJt began 

before and ended after the call to measure( <p, s). The only such calls are recursive 

calls waiting for measure(<p, s) to terminate. That is, measure(6, s) is a recursive call 
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resulting from measure( 1jJ, t). So by Proposition 5.31, 1jJ is reducible to tj;. Therefore, 

for any variable x1j,t occurring in rq,Sl tj; and 1jJ are mutually reducible. -
5.6 measure() returns a number 

Corollary 5.33 A top-Ievel cal! to measureO returns a number. 

Proof Of course, no variables exist at the beginning of the top-Ievel call. So by 

Proposition 5.30, none will exist when it returns, and therefore its return value must 

be variabIe-free, i.e., a number. -

Lemma 5.34 If tj; and cp' = step( tj;, s) are not mutually reducible, then every cal! 

from measure(9, s) to measure(9', s') returns a number. 

Proof Follows from Lemma 5.32, and the reasoning used ta prove it. \Ve will show 

that if the expression rç/s, returned by measure(cp', s') contains an)" variable X""t, thcn 

9 and tj;' are mutually reducible. The daim follows immediately. 

Suppose some such x,;.t exists. By Lemma 5.32, cp' and 7jJ are mutually reducible. 

And, following case 3 from our pro of of Lemma 5.32, Xvt must have been created. 

but not eliminated, before the measure( cp', s') call began. Sa either U' = 6. or the 

measure(6. s) call resulted from a prior call to measure(u'. t). In either casC', 1.' is 

reducible ta 9; in the first case trivially, in the second case by Propositioll 5.31. 

But by the definition of cp', tj; is immediately reducible ta 1/. And by the mu­

tuaI reducibility of ri;' and 1jJ, and transitivity of reducible-to (Proposition 5.21), tj; is 

reducible ta 1jJ. 

So if r q,' s' contains a variable, tj; and 1jJ are mutually reducible. Therefore, if they 

are not mutually reducible then r tjis' must be variable-free, i.e., a number. _ 

Corollary 5.35 If cp and cp' = step( tj;, s) are not mutually reducible, then measure( 9, 

s) returns a number. 

Proof tj; cannat be T or F, sin ce in these cases 1/ = tj; and therefore tj; and (/J'are 

mutually reducible. Sa the first call ta measure( tj;, s) returns the sum of some caUs 

ta measure (tj;', s'). By Lemma 5.34, these calls aIl return numbers, and therefore sa 

do es measure(6, s). _ 
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Corollary 5.36 If cP and q/ = step( cP, s) are not mutually reducible, tllen the call 

from measure( cP. s) ta substi tute(xç,s := r </>s) performs exactly one substitution. 

Proof \Ve can show that, at the time of the substitution, the only cached solu­

tion expression containing a term for X</>s is the one-term xcps expression cached by 

measl... 3( cP, s) itself. 

First, consider expressions cached before the calI ta measure( cP, s). Any variable in 

these expressions must have been created before the calI. Therefore, no substitution 

performed by measure( cP, s) or its recursive caIls affects these expressions, because 

aIl such substitutions are for variables created after the measure( cP. s) calI began. 

The only other cached expressions at the time of the substitute(xÇ>8 := l'os) calI 

are those cached by recursive measure(1/', t) calls resulting from measure(9, s). An~' 

sueh calI must have resulted either from one of the calls ta measure( cD/. Si). or from 

the calI made by measure(cP, s) ta step(cP, s). It is easy ta show that, iu either case. 

t' is not reducible ta cD. It will follow that cP and w are not mutually reduciblc. and 

therefore by Lemma 5.32 that xcps do es not oeeur in r';,t. 

Case 1: measure( w. t) results from measure( cPt, Si). cP is immediately reducible 

to (/J'. and by Proposition 5.3L cPt is reducible ta w. Sa, by transitivity of reducible-to 

(Proposition 5.21), if 4-' was reducible ta cP then cD and 9/ would be mutuaIly n'dllcible, 

which is given ta be false. Therefore 'Il' is not reducible ta 9. 

Case 2: measure(w, t) results from step(6. s). Then it must have resulted from 

one of stepO's calls ta measure(t', u), for somc TUt' occurring in Ci Therefore, by 

Proposition 5.3Lv is reducible ta 1jJ. But by Proposition 5.22, t' is Hot reducible ta 

cP, since cP contains TUV whereas v (being finite) does not. Therefore 71' cannot be 

reducible to q;. 

So the only cached occurrence of xç,s at the time of substitution, and therefore the 

only substitution, is in the expression cached by measure( cP, s). • 
Lemma 5.37 A recursive call ta measureO from stepO returns a number. 

Proof Parallels the pro of of Lemma 5.34. First, recall that the only such recursive 

calls occur when an LTL-BDD cP contains an until TUV, and a calI to step(tP, s) 

makes caIls of the form measure(v, u). 

Suppose the expression rvu returned by measure(v, u) contains a variable. X';'I' 

We will derive a contradiction, proving that r vu contains no such variable. 
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By Lemma 5.32, v and 'if; must be mutua11y reducible. LTL-BDDs are finite 

structures, so Li cannot contain itself and therefore cannot contain the until TUt'. 

Therefore, by Coro11ary 5.24, 1/) cannot contain TUV. 

Kow, fo11owing case 3 from our proof of Lemma 5.32, x1jJt must have been created, 

but not eliminateè, before the measure(v, u) ca11 began. measure(v, u) was ca11ed 

by step( cP, s), so lt fo11ows that step( cP, s) resulted from an earlier, unfinished ca11 to 

measure('lb, t). Since cP contains TUV, and neither measure() nor stepO introduces 

any ne\\' LTL-BDD atoms (Proposition 5.15), 'if; must also have contained TUV -

contradicting our previous inference that 1/) does not contain TUV. 

Therefore, our hypothesis that r vu contained a variable x
'
N was false. So no X,;,I 

occurs in r vu , and therefore r V1J is variable-free, i.e., a number. • 
Lemma 5.38 Ifmeasure(cP. s) returns an expression rç)s = ko + 2::7=1 kiX;, then: 

• The coefficients are all between 0 and 1: VO :::; i :::; n. 0 :::; k i :::; 1. 

• Sa is their sum: 0 :::; 2:::'=0 k i :::; 1. 

Proof Induction on return order. Assume both daim holds for aIl ca11s to measure() 

terminating before tUs one does. We want to deduce that the}' hold for r 0" 

Consider again the three cases in measure(ç&, s): 

Case 1: cp = T / F. Returns 1 or O. triviaIly satisfying both daims. 

Case 2: r <ps retrieved from the cache. The only place cacheO is caJled caches an 

expression consisting of a single variable, x<j;s (coef sum: 1), satisf:ving bot h daims. 

This cached expression ma}' have been modified by caIls of the form substi tute(x ,;,/ := 

r1/Jt) before being retrieved as r<pS. But any such substituteO calI was just prior to 

measureO returning r1jJt, so by the induction hypothesis, r1jJt satisfied both daims. 

And it is easy to verify that therefore the substitution of r 1jJt (coef sum: :::; 1) for X,;./ 

(coef sum: 1) couldn 't have violated either daim. Therefore, any r <ps retrieved from 

the cache still satisfies both daims. 

Case 3: no cached solution. Makes a number of recursive caUs to measureO. 

computing an expression e as a weighted sum of the returned expressions, and then 

returning r<j;s = solve(x<j;s = e). We can show that e satisfies both daims, and that 

therefore so do es r <j;s. 

By the induction hypothesis, both daims hold for each of the r <j;'s' expressions 

making up e. So, since every r<j;'s' has positive coefficients, so does e. And even in the 
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maximal case, where each r<p's' has a coefficient sum of 1, e's coefficients only sum to 

Ls' 5(s, s'), which by the definition of a f\1arkov chain (Chapter 2.2.5) is simply 1. 

Then, by the definition of solveO (page 35), rc/Js = e~~xkd>S, where k is the coefficient 

of XdJs in e. By hypothesis above, measureO does return successfully, so we can ignore 

the error case k = 1. Thereb e, since e's coefficients are between 0 and 1, 0 :::;: k < 1. 

So the coefficients of r <pS are just the coefficients of e divided by 1 - k, a positive 

number, and therefore are positive as weil. Furthermore, since the elimination of 

the kX<ps-term reduces e's coefficient sum by k, the sum of the coefficients in r <pS is 

:::;: ~::::Z = 1. Therefore any r <pS computed from e satisfies bath daims. 

80 by induction, both daims aiways hoid for r <ps. • 

5.7 A plausible path has a prefix determining cP 

The proofs in this section refer to Definitions 5.11 (plausible path P) and 5.12 (P 

determines rp). 

Proposition 5.39 If a path P = (Pl,P2, ... ) is plausible, then so is any suffix Pi>l = 

(Pi·Pi+l, .. . ). 

Proof Easily verified from the definition above. • 
Proposition 5.40 A labeled Markov chain M follows a plausible path w1th probabil­

ity 1: Vs, f.1s( {P 1 P is plausible}) = 1. 

Proof If Q = (ql = s, q2, q3, ... , qm) is a finite possible path in M, then M has a 

positive probability k (= rr;n- 15(qi' qi+d) of following Q each time it visits s. So if s 

occurs infinitely often in a path P followed by M, then dearly with probability 1 Q 
occurs infinitely often in P. • 

Note that the ab ove proof depends on the Markovian (memoryless) property: M 

has the same fixed probability k offollowing Q each time it enters state s, independent. 

of other visits. 

Theorem 5.41 For any plausible path P = (Pl, P2, ... ) in a labeled Markov chain 

M, and LTL formula rp, P has a finite prefix pn = (Pl,P2, ... ,Pn) which determines 

r/J. 
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Note that, for a given P, the n may be different for different cp. 

Proof Structural induction. Suppose, for any subformula 7/J of cp and plausible path 

Q = (ql, Q2, ... ), there exists an integer m such that Qm = (ql' q2, ... , qm) det.ermines 

7/J. Using this hypothesis, we will pro duce a corresponding n such that. pn determines 

1;. 

(Note that here we are only proving the existence of such an n, not t.hat. we can 

compute it or that. no sm aller n exists. Later, in Lemma 5.45, we will in effect. prove 

the st.ronger daim that repeated applications of step() compute such an n.) 

If cp = T or F, then any path determines cp, even the empty path: so we have 

n = O. Otherwise, cp must be an LTL-BDD of the form (0: ? 7/J : w), where 0: is one of 

o.. XT, or TUV. Now, by the induction hypothesis, 3k and J! such that pk determines 

'Ii' and pl determines w. Suppose we also had a j su ch that. pj deterrnined Cl. Then. 

letting n = max (j, k, f), it \\'ould follow that pn determined ct, ?}; and (.1.,', aud therefore 

also cp. So we just need to find such a j. 

Consider the three cases for 0:: 

Case 1: 0: = o.. \Ve only need to examine Pl to deterrnine whether P F o.. So 

j=1. 

Case 2: 0: = XT. Not.e that by Proposition 5.39, suffix h = (P2.]J~ .... ) is 

plausible. Sa b~r the induct.ion hypothesis, 3g such t.hat P!J = (P2, .... pg) dctcrmines 

T. But by the definition of X, P 1= X T iff P2 1= T; sa if Pi determines T, thell 

pg = (Pl, ... ,pg) determines XT. So j = g. 

Case 3: 0: = TUV. Vie can show that, if any suffix PX'?l = (Px,PJ+I' ... ) of p 

has a prefix deterrnining TUV, then so do es P. We do this by showing that if Px>l 

has a prefix det.ermining TUV, t.hen sa does Px - l ' Then we can show by case analysis 

that sorne such x always exists. It. will follow by induct.ion on x - i t.hat sorne pj 

det.errnines TU v. 

Suppose, for sorne x ~ 1 and z, P: deterrnines TUV. if x = 1, then pz deter­

mines TUV and we're done. Otherwise, consider Px-l = (Px-l,Px,Px+l," .). By the 

definition of X, Px-l F X(TUV) iff Px F TUV. So, sinee PC: determincs TUV, rC:-l 
deterrnines X(TUV). AIso, by our original induction hypothesis, there exist 9 and h 

such that P;-l deterrnines T and P!:-l det.errnines v. It follows that., for y = rnax(g. 

h, z), P;'-l deterrnines T, v and X(TUV), and therefore also v V (T A X(TUV)). But 

by t.he definit.ion of U, v V (T A X(TUV)) == TUU. Therefore, if P: det.errnines TUt·, 
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then so does PLI' completing the induction. 

So aIl we need to complete our pro of are an x and z such that P; determines TUt'. 

Since there are finitely many states in M, there must be at least one state 5 

occurring infinitely often in P. So we proceed by asking: does there exist a plausible 

path Q = (ql = t, q2, ... ) in M, such that t is reach;,ble from 5, and Q F= v? 

Case 3a: No. That is, no plausible path from any state reachable from 5 satisfies 

v. Therefore no plausible path starting from 5 satisfies TUV. So, let PI = 5 be the 

first occurrence of 5 in P. Then the one-state path pJ = (PI) determines TUV (as 

false). So x = z = f. 
Case 3b: Yeso By the induction hypothesis, sorne prefix QTn = (ql = t . ... -. qm) 

of Q determines v; as true, since Q F= v. Therefore, sin ce any path satisfying v also 

satisfies TUV, Qm also determines TUV as true. 

Nmv, P visits 5 infinitely often, and t is reachable from 5, i.e., there is a finite 

possible path from 5 to t. So by the plausible path property, P also visits t infinitely 

often. And then again, by the same property, QTn occurs infinitely often in P. So let 

pJ-1+m = (PI,P!+I"" ,PI-1+m) be the first occurrence of Qm in P: \il ::::; i ::::; m .. 

PI-1+i = Qi. That is, pJ-Hm = Q1Tl, and therefore pJ-1+m determines TUV as true. 

So we have x = r z = f - 1 + m. 

So in both subcases we have a finite path P; which determines TUV. As we smv, 

it follows that there exists a prefix pj which does too. Therefore, any plausible pat h 

P in M has a prefix pn which determines cP. • 
Corollary 5.42 For any state s in a labeled Markov chain M, and any LTL formula 

cf; , pro b( s F= rD) = ° iff no plausible path P = (Pl = 5, P2, ... ) starting from s satisfies 

cp. 

Proof Suppose no plausible P starting in s satisfies cP. By Proposition 5.40, frorn 

any state M fo11ows a plausible path with probability 1. So with probability 1, the 

path M fo11ows starting from 5 is plausible and therefore doesn't satisfy cP. Therefore, 

prob(5 F= CP) = o. 
Conversely, suppose some plausible P from 5 satisfies cp. By Theorem 5.41, P has 

a determining prefix pn = (Pl = 5, P2, ... ,Pn) such that any plausible path in M 

starting with pn satisfies cp. Consider a path P' = (p~ = 5, P;, ... ) fo11owed b:y M 

from 5. Since pn is possible and finite, the probability k that P' starts with pn is 

> o. And by Proposition 5.40, the probability that M continues along a plausible 
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path from PT! is 1. So, the probability that P' both starts with pn and is plausible. 

and therefore satisfies rjJ, is also k. Therefore, prob(s F rjJ) 2': k > O. • 

Corollary 5.43 For any state s in a labeled Markov chain M, and any LTL formula 

'ljJ, prob(s F 'ljJ) = 1 iff every plausible path P = (Pl = S,P2,"') starting from s 

satisfies '0. 

Proof FoUows directly from CoroUary 5.42, letting rjJ = -,'ljJ, since prob(s F V') = I 

iff prob(s F -,'ljJ) = 0, and P F'ljJ iff P F -,'0. • 

Corollary 5.44 For any plausible path P = (Pl = S,P2,"') in a labeled Markov 

chain M, and for any LTL until formula rjJ = (TUV ? T : F) unreahzable from s, 

P F ç). 

Proof By the definition of an unrealizable until (page 34), Vt reachable from s 

(including s), prob(t F v) = O. So by CoroUary 5.42, no plausible path from such a 

t satisfies 'U. But every suffix Pi '21 = (Pi,Pi+I,"') of Pis such a path. Therefore no 

suffix of P (including P itself) satisfies v, and therefore P F rjJ. • 

5.8 measure() and step() are correct 

vVe are now ready for our main results, in Lemmas 5.45 and 5.46 and Theorems 5.47 

and 5.48. For ease of exposition the four proofs are presented separately. but in faet 

they are ail parts of a single induction pro of on d = udepth( rjJ). That is. we assume 

aU four daims hold VV! such that udepth( '0) < d, and infer that each must hold for 

any rjJ of depth d. 

This combined approach is necessary because ail four results are interdependent: 

each needs at least one of the others as an induction hypothesis. 

We will refer to this combined induction as "Ind1", and its hypothesis as "IH1" 

(or, e.g., "IHI (5.45)", when invoking the Lemma 5.45 part of the hypothesis), to 

distinguish it from other induction hypotheses we will make. 

This seetion uses most of the definitions from section 5.1, especially: udepth( rjJ), 

a plausible path P, P determines rjJ, stepO resolves rjJ along P, expression e 

represents constant k. Vou may want to review these definitions before proceeding. 

The overall structure of the Indl proof is as follows: 
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1. stepO resolves any q; along any plausible P (Lemma 5.45): Using IHI 

(5.47), we show that. if t.his daim holds for aIl subformulas of q;, it must also 

hold for cp. So by a second induction Ind2, this one structural rat.her than on 

d, the daim holds Vq; of depth d. (The proof also uses a t.hird induction, Ind3, 

1.0 show that if an unt.il TUV is resol red along sorne suffix Px of P, then it is 

resolved along P.) 

2. Whenever measure(q;, s) caUs solve(xq,s = e), the coefficient of Xq,s in 

e is < 1 (Lemma 5.46): By the previous proof, Lemma 5.45 holds for q; and 

an}' plausible path. And by Proposition 5.40, there exists at least one plausible 

path P which M can follow from s. vVe show by another induction Ind4 on the 

structure of P that Lemma 5.46 holds for the calI to solve(xQs = e). 

3. P F cf; iff P2 F step(<fi, s) (Theorem 5.47): Another nest.ed structun:d induc­

tion. Ind5. Using IHI (5.48), we show that if the daim holds for q;'s subfonnulas. 

then it holds for 9. 

4. measure(dJ, s) represents prob(s F q;) (Theorem 5.48): In the previous two 

proofs we proved that Lemma 5.46 and Theorem 5.47 hold for aIl formulas of 

dept.h ::; d. Using these result.s. we can complete a final nested induction Inc!6. 

this time on return order: assuming the daim holds for aIl caIls measure( 1.'. t) 

returning before the calI ta measure( 6. S}, where udepth( li'} ::; udepth( ÇJ). we 

infer that it holds for measure (q;, s). 

Lemma 5.45 stepO resolves any LTL formula q; along any plausible path P 

(Pl, P2, ... ). 

Intuitively, this lemma says that stepO computes the det.ermining prefix asserted 

ta exist by Theorem 5.41. Consequently the proof mirrors the proof ta Theorem 5.41. 

Proof IHI (5.48) hypothesis lets us assume that Theorem 5.48 holds for any formula 

'Ij! such that udepth( 'ljJ) < d = udepth( q;). If we additionally assume that the daim 

holds for subformulas of q;, we can show that it holds for q; as weIl. It will folIo\\' by 

a second, nested induction Ind2 that the daim holds for aIl q; of depth d. 

So, we want 1.0 find an n such that stepn( q;, P) = (P F cp) = T / F. assuming 

that such an n exists for any subformula of q;. 
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If cp = T / T, then n = 0 and we are done. So consider the remaining case: 

6 = (a 7 1j' : w), where a is one of a, XT, or TUt'. By IH2, 3k such that stepk(1!'. 

P) = (P ~ 'ljJ). And since for any state t, step(T, t) = T and step(T, t) = T, it 

fo11ows that Vi :2: k, stepi('ljJ, P) = stepk('ljJ, P) = (P ~ '1/)). Similarly, 3P such that 

Vi :2: P, stepi(w, P) = (P ~ w). 

:\Tote that we cannat likewise apply IH2 to a, sinee a is not a subformula (Defini­

tion 5.1). StilL suppose somehow we also find a j such that stepj(a, P) = (P ~ a). 

Then, letting n = max(j, k, P): 

step" (cP, P) 

step"((ct ? V' : w), P) 

step"(cond(a, 'ljJ, w), P) (Prop A.8) 

cond(st ep"(a, P), step" (?jl, P), step"(w, P)) (Cor 5.20) 

cond((P ~ a), (P ~ ?lI), (P ~ w)) (defn of n) 

(P ~ cP) (defn of cond()) 
In other words, if Cl is resolved along P, then so is cP, completing Ind2. So to 

show that stepO resolves cP along P, we only need to find a j such that stepj (Cl. 

P) = (P ~ Cl). 

Consider the tluee cases for a: 

Case 1: Cl = a. So we have j = 1: 

stepJ(a, P) 

stepl(a. P) 

stepO(step(a, pd. P2 ) (defn of stepl()) 

,(s, a) = (P ~ a) (defns of stepOO, step()) 

Case 2: ct = XT. By IH2, 3g such that step9(T, P2) = (P2 FT). Let j = 9 + 1: 

stepj(a, P) 

step9+ l (XT, P) 

step9(step(XT, pd, P2 ) (defn of step9+l0) 
step9(T, P2 ) (defn of step()) 

(P2 ~ T) (defn of g) 

(P ~ X T ) (defn of X) 
Case 3: ct = TUV. This is a more subtle case. We can show that, if TUV is 

resolved along sorne suffix Px>l = (Px, Px+l, ... ) of P, then it. is also resolved along 

P. We do t.his by showing that. if TUV is resolved along Px, then it is resolved along 

Px - l ' Then we can show by case analysis that. such an x always exist.s. It will follow 
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by a simple (third!) induction Ind3, on x - i, that stepO resolves TUV along P. 

Suppose there exist x and z such that stepZ(TUV, Px) = (Px F TUV). Consider 

Px- l = (Px-l, Px,Px+I," .). By IH2, 3g, h such that Vi ~ g. stepi(T, Px-d = (Px-l F 

T), and Vi ~ h, stepi(U, Px-d = (Px-l F v). So let y = max(g, h, z + 1). Then 

stepO resolves TUV along Px- 1 within y steps, completing Ind3: 

stepY(TUv, Px-d 

stepY-l(step(TUv, Px-d, Px) 

stepY-l(or(step(v, Px-d, and(step(T, Px-l), TUV)), Px) 

or(stepY-l(step( v, Px-d, Px), 

and(st epY-l(step(T, Px-d, Px), stepy-l(TUV, Px))) 

(defn of stepY 0) 
(defn of step()) 

(Cor 5.20) 

or(stepY(v, Px- 1 ), and(stepY(T, Px-d, stepY-l(TUV, Px))) (defn of stepY()) 

or((Px-l F v), and((Px_l FT), (Px F TUV))) (defn of y) 

(Px-I F TUV) (defn of U) 
So aU we need to complete our pro of are an x and z such that step'o (TU L'. Pr) = 

(Px F TUv). 

Since there are finitely many states in M, there must be at least one state s 

occurring infinitely often in P. So we proceed by asking: do es there exist a plausible 

path Q = (ql = t, q2"") in M, such that t is reachable from s, anè Q F v? 

Case 3a: No. That is, no plausible path from any state reachable from s satisfies 

1'. Therefore. letting Pf = (Pf = S,P!+I, ... ) be the first occurrence of s in P. 

Pf f= TUt:. 

Also, b:y Corollary 5.42, for every t reachable from 5, prob(t F L') = O. That is, 

TUV is unrealizable from 5 (Definition 3.4). 

So by the special clause in stepO handling unrealizable untils, stepl (TUt', Pj) = 

step(TUv, Pf) = F. The clause relies on calls ta measure(v, t), and therefore on 

Theorem 5.48, but since udepth(v) < udepth(ç6) (Definition 5.2), IH11ets us assume 

Theorem 5.48 holds for v. (This is in fact our only use of IH1 in proving Lemma 

5.45.) So x = J, z = 1 and we are done. 

Case 3b: Yeso By Theorem 5.41, some prefix Qm = (ql = t, ... , qm) of Q 

det.ermines l'; as true, sinec Q F v. 

Since P visits 5 infinitely often, and t is reachable from 5, it fo11ows by the plausi­

bility of P that P also visits t infinitely often. And then again, by the same property, 

Qm occurs infinitely often in P. So let Pf = (pj,P!+l,"') be the first occurrence of 

Qm in P: VI ::; i ::; m, Pj-Hi = qi. Since Pf begins with Qm, and Q17l determines li 
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as true, Pf F v, and therefore Pf F TUV. 

;"Ieanwhile, by IH2, 3h ' such that steph' (v, Pf) = (Pf F v) = T. So: 

steph'(TUV, Pf) 

steph'-I(step(TUv, Pf), Pf+d 

steph'-l(or(step(v, Pf), and(step(T, Pf), TUV)), Pf+d 

or(steph'-l(step( v, Pf), Pf+d, 

steph'-I(and(step(T, Pf), TUV), Pf+d) 

= or(steph'(v, Pf), steph'-l(and(step(T, Pf), TUV), Pf+l)) 

or(T, steph'-I(and(step(T, Pf), TUV), Pf+d) 

T 

(Pf F TUV) 

(defn of steph' ()) 

(defn of stepO) 

(Cor 5.20) 

(defn of steph' 0) 
(defn of h') 

(defn of orO) 

(defn of 1) 
And we have x = j, z = h'. So in both subcases, step() resolves TUl' along sorne 

Pr. and therefore along P. Therefore for every case of a, a is resolved along P, and 

it follows as we sa\\' ab ove that therefore, so is cb. • 

Lemma 5.46 Whenever measure(<p, s) calls solve(xÇ>s = e), any xÇ>s-tenlî in e has 

coefficient < 1. 

Proof (Part of the combined Indl pro of outlined on page 71.) 

\Ve can show that for any given <p and s, there exists at least one finite possible 

path P = (Pl = S,P2,'" ,Pn) from s such that stepn(Çû, P) = TIF. Letting P be the 

short est such path. and letting <Pi be shorthand for stepi (o. P), we will show that 

every (Pi, <Pi) pair is unique; i.e., \fI ::; i < j ::; ri, either Pi i- Pj or Oi i- 0) (or both). 

Then, using P and this property, we can prove the daim by an induction Ind4 on 

1. P exists. By Proposition 5.40, from any state (including s), prob(A-1 follows 

a plausible path) = 1. So there exists at least one plausible path Q = (ql = s, q2 .... ) 

from s, and by the previous pro of (Lemma 5.45), :lm sueh that stepm(<p, Q) = (Q F 
<p) = TIF. That is, Qm = (ql,"" qm) meets the definition of P. 

2. P contains no loops. We will show that, if P eontains an identical pair 

(Pi, tPi) and (Pj, <Pj), i.e., a loop between i and j, we ean eut out the loop to get a 

shorter possible path P' along whieh stepO still resolves <p. Since P was defined to 

be the shortest such path, it will follow that P eontains no sueh loops. 

Suppose for sorne 1 ::; i < j ::; 12 in P, Pi = Pj and <Pi = <pj' Let P' = (p~ = 

PI,P; = P2,'" ,p; = Pi = pj,P;+1 = PHl," .P'm=n-j+i = Pn). Now, the definition of 
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step"(<p, P) (page 51) only depends on the first n states of P, so q;; = CPi = 9j. Theil, 

using Proposition 5.5: <P:+I = step(<p;, P;+I) = step(<pj, pj+d = <Pj+I. Similarly. 

<P:+2 = step(<p:+I' P;+2) = step(<pj+l, Pj+2) = <Pj+2, ... , <P~1 = <Pn = TIF. SO we have 

constructed a shorter possible path P' along which step() resolves cp, contradicting 

the definition of P. 

Therefore, \il ::; i < j ::; n, Pi i- Pj or <Pi i- <pj. 

3. Ind4. Let rj = rq,jp) be an expression returned by a calI to measure(<pj, Pj), 

and let ki,j be the coefficient of a variable Xi = Xq,iPi in rj. We show by induction 

Ind4 on n - j that: \il ::; i < j ::; n, ki,j < 1, and this inequality continues to hold 

through aIl subsequent variable substitutions in rj' Lemma 5.46 will then folIo\\' by 

a short argument. 

First, suppose j = n. Then <Pj = TIF, and measure(cpj, Pj) returns 1 or 0; so Vi, 

ki.j = 0 and the Ind4 daim holds trivially. 

So suppose 1 ::; j < n, and assume IH4 holds for j + 1. \Ve will show that it 

therefore holds for j. Consider the three cases for rj = measure(<pj. Pj): 

Case 1: CPj = TIF. As for <Pn, returns 1 or 0, trivially satisfying Ind4. 

Case 2: rj retrieved from the cache. Sa it must have originally been cached as 

the one-variable expression rj = Xj by an earlier call to measure(<pj, Pj). Since then, 

or in the future, rj may be modified by variable substitutions, but we will show that 

it satisfies the Ind4 daim through aIl such substitutions. 

At first, rj = Xj. And because we eliminated allloops in p, \ii < j .. fi i- J:j, and 

therefore k i ,) = O. 

So suppose variable substitutions take place in rj. The first suc:h substitution 

occurs \\'hen measure(<pj, Pj) calls substitute(xj, rj), right before returning the 

expression rj. In case 3 we will show that the Ind4 daim holds for any such rj, and 

continues ta hold throughout aIl variable substitutions. So, this case reduces to case 

3. 

Case 3: no cached solution. Then rj = solve(xj = e), where e is computed as a 

weighted sum: e = Ls' 6(pj, s') . r:" where r:, = measure(<pj+l, s'). 

Now, by Lemma 5.38, the coefficients in each r:, sum to ::; 1. And by the definition 

of a Markov chain (Chapter 2.2.5), Ls' 6(s, s') = 1. So for the coefficient of any 

variable in e to be 1, its coefficient would have to be exactly 1 in every r:,. 
But because P is a possible path, one of the recursive calls is to measure( <Pj+l' 

pj+d· That is, r~j+l = rj+l' And by IH4, VI ::; i < j + 1 (i.e., VI ::; i ::; j), the 



CHAPTER 5. PROOFS 77 

coefficient ki.j+l of Xi in Tj+l is < 1. Therefore, \il :s; i :s; j. the coefficient of Xi in e 

is < 1. 

By the definition of solveO, Tj = solve(xj = e) = e~~~j, where k is the coefficient 

of Xj in e. \Ve just sa\\' that k < l, so the error case k = 1 do es not occur. And 

sin ce \il :s; i < j the coefficient of Xi in e is < 1, it fo11ows that the coefficient of Xi in 

e - kXj is < 1- k. Therefore, the coefficient ki,j of Xi in Tj is < ~::::Z = 1. And since by 

IH4 the k i ,j+l < 1 inequality continues to hold throughout aIl variable substitutions, 

so do es ki,j < 1. 

So in aIl three cases, the Ind4 daim holds, completing the induction. 

4. Lemma 5.46. FinaIly, using the Ind4 result and the same reasoning as in case 

3 above, we can praye Lemma 5.46. Ifmeasure(cP, s) calls solve(xç,s = e), then e was 

computed as a weighted sum of recursive caIls, one of which was to T2 = measure(Ç1i2' 

P2). So by Ind4, the coefficient of Xl = xq,s in T2 is < 1, and therefore so is its 

coefficient in e. • 
Theorem 5.47 FOT any plausible path P = (PI,P2,P3,"') in a labeled Markov chain 

M, and LTL-BDD 0, P F cP iff suffix P2 = (P2,P3, ... ) F step(cp, s). 

Proof (Third part of the combined Ind1 pro of outlined on page ïl.) 

This pra of \Vas sketched in section 3.4.2. 

Suppose the daim holds for all subformulas of dJ. Using IHI (5.48). "OC can sho\\" 

that it holds for (j) as weIl. It fo11o\\"s by structural induction Ind.5 thclt the daim holds 

for aIl cp of depth d. 

If cP = T / F, then step( cP, s) = cP, and triviaIly P F cp iff P2 F ". So assume cP 

is not a boolean but an LTL-BDD of the form (a ? VI : w), where a is one of a, XT. 

or TUV. step() begins by computing an a', and then returns cP' = cond(o', 'ljJ'. ",/), 

where 'ljJ' = step('ljJ, s) and w' = step(w, s). Suppose we can prove that for any 0:' 

computed by stepO, P F 0: iff P2 F 0:'. Then we can show that, whether or not 

P F 0:, P F cP iff P2 F cP': 

• Suppose P F= 0:. Then by supposition, Pz F= 0:'. And by the definitiOll of cp, 

P F cP iff P F 'ljJ. Now, by IH5, P F 'ljJ iff P2 F 'ljJ'. But since P2 F 0:', it 

fo11ows from the definition of cP' that P2 F ?i/ iff P2 F cp'. So P F <P iff P2 F cP'· 

• Suppose P F 0:. Then similarly, P2 F 0:', and: (P F cP) {:} (P FU':) {:} (P2 F 
w') {:} (P2 F 1;'). 
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So to complete the Ind5 induction, and therefore this third part of lndl, it only 

remains to show that P F 0: iff P2 F 0:'. 

Consider the cases in stepO (page 33): 

Case 1: 0: = a. So 0:' = ,(5, a) = the truth value of a in 5. If Î(5, a) = T, then 

P F a, and triviaUy P2 F 0:' = T. Or if ,(5, a) = F, then P F a and P2 F 0:' = F. 

So in each case, P F a iff P2 F a'. 

Case 2: 0: = XT. 0:' = T. So by the definition of X, P F 0: iff P2 F 0:'. 

Case 3: 0: = TUV. In this case stepO begins by caUing measure(v, t) on every 

state t reachable from 5. (Computing the states in M reachable from 5 is ea')y.) Then 

there are two subcases: 

Case 3a: 'lit, measure(v, t) = O. In this subcase, c/ = F. No\V, udepth(v) < 

udepth(9), so by IHI (5.48), 'lit, prob(t F v) = O. Therefore TUl' is unrealizable 

from 5 (Definition 3.4). And by CoroUary 5.44, P F TUV. So it foUows that P F 0: 

(false) iff P2 F 0:' (also false). 

Case 3b: ::Jt such that measure(l', t) > O. So 0:' = or(u'. and(T'. TUU)), where 

v' = step(l'. 5) and T' = step(T, s). By IH5, P F T iff P2 F T'. and P F v iff 

P2 F v'. And now. by the definition ofU. (P F TUV) Ç} ((P F v)V((P F T)!\(P2 F 
TUl'))) Ç} ((P2 F v') V ((P2 FT')!\ (P2 F TUV))) Ç} (P2 F 0:'). 

So in every case, P F 0: iff P2 F 0:', and as we saw it follows that P != 0 iff 

P2 F q)'. • 

Theorem 5.48 The expression r <ps returned by measure( 0. s) represe'llts prob( 5 F 

cp). 

Proof (Final part of the combined lndl proof outlined on page 71.) 

The main idea here was sketched in section 3.4.1. 

By the previous two proofs, we know that Lemma 5.46 and Theorem 5.47 hold for 

aU 7jJ such that udepth(7jJ) ~ d = udepth(cp), including cp itself. Using these results, 

we can show that if the daim holds for aU caUs measure(w, u) returning before a call 

measure ('li" t), where udepth( w) ::::: udepth( '11"), then it holds for me as ure (4', t). Sinee 

measure(<p, 5) terminates (Proposition 5.18), i.e., results in finitely many recursive 

caUs, it foUow by induction Ind6 on return order that the claim holds for measure( 9, 
s ). 

For brevity let z = prob(5 F 9). Consider the three cases in measureO (page 31): 
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Case 1: cp = T / F. So r q,s = 1 or 0, respectively. Since any path from s satisfies 

T, and none satisfies F, these return values trivially represent z. 

Case 2: solution retrieved from the cache. The cached solution must have origi­

nally been stored as Xq,s, and then possibly modified by subsequent calls to substi tuteO· 

It is obvious from definition 5.14 that xq,s represents z. So we only need to show that 

this equality wasn't broken by the substitutions. 

Suppose a call substitute(x"ut := r"ut) performed a substitution in the cached 

solution, r~s' Then, because x"ut occurred in r~s' it follows by Lemma 5.32 that cp and 

7/; were mutually reducible, and by Corollary 5.24 that udepth(cp) = udepth('l.h). Also. 

the substitution must have occurred right before measure( 7/;, t) returned '"';'1' So by 

rH6, r,;,t represents prob(t F= 1jJ). But by Definition 5.14, X,;,t also represents prob(t F= 
l;.} That is, the variable being substituted and the expression being substituted for 

it represent the same value, and therefore the substitution do es not affect the value 

represented by r~s' 

So sin ce the cached solution originally represented z, and any subsequent substi­

tutions didn't change the value it represents, it still represents z when retrieved as 

Case 3: no cached solution. From state s, the Markov chain M must procced 

to some state s', following a path P = (s, S',P3,P4," .). By Proposition 5...1U. with 

probability 1 P is plausible. So by the previous proof (Theorem 5.4ï). P po 0 iff 

P2 = (S',P3,P4,"') F= cp' = step(<j.J, s). Nmv, by the Markovian propcrt~·. Afs be­

havior once it enters s' is independent of which s it came from. Therefore. z = 

2:: Si 6(S, s')·prob(s' F= di). 

By Corollary 5.23, udepth(cp') :S udepth(cp). So by rH6, z = LSI 6(s, s')·measure(o', 

s'). This is what the third case ofmeasure(cp, s) computes as e. Therefore e represents 

z. 

Finally, by the proof of Lemma 5.46, the coefficient k of xq,s in e is < 1. Therefore 

rq,s = solve(xq,s = e) = e~~x:s is computed without error. And since, by Definition 

5.14 ab ove , kxq,s represents k . z, r q,s represents zl __ :z = z. • 

Corollary 5.49 A top-level caU to measure( cp, s) returns prob( s F= cp). 

Proof By Corollary 5.33, a top-level call to measure() returns a number k. And by 

Theorem 5.48, k represents prob(s F= cp). Therefore, by Definition 5.14 (page 54), 

k = prob(s F= cp). • 
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5.9 Complexity 

Corollary 5.50 If lAI is the number of distinct LTL-BDD atoms in an LTL-BDD cp, 

and IBI is the number of distinct non-T IF LTL-BDDs passed ta measure() during a 

call ta measure( cp, s) for some s, then: 

IBI ::; 2
21A1

• 

Proof Straight from CoroUary 5.17. • 
Proposition 5.51 If cp is an LTL formula containing no untils, dx and 0 are the 

depth of nested nexts and the number of LTL atom occurrences in q; as defined in 

Definition 4.1. and IBI is the number of LTL-BDDs passed ta measureO as defined 

in Definition 4.2, then: 

IBI ::; dx 2°. 

Proof Induction on dx . Assume the daim holds for aU formulas 1j' such that 

xdepth( 1/') < dx = xdepth( 0). We wiU show that therefore it holds for cp. 

If q; is Tor F, IBI is 0 (since it only counts non-T / F LTL-BDDs) and the daim 

holds triviaUy. Otherwise. sin ce cp contains no untils, it must be a boolean combination 

of LTL atom nodes of the form (a ? t' : u.-') and next nodes of the form (a '! t' : ,-,,:). 

So dx 2:: l. 

For any state s. consider 9' = step(cp. s). Let IBI(cP') be the number of distinct 

LTL-BDDs passed to measureO as a result of a caU to measure(o'. t). and o(cP') be 

the number of LTL atom occurrences in q/. By Proposition 5.25, xdepth( cP') < dx . 

So by the induction hypothesis, IBI(ç&') ::; (dx -1)2°(4)/). 

But note that, sin ce cp contains no untils, the value of cp' depends entirely on the 

boolean values of the LTL top-Ievel atoms in ç& (i.e., not counting those nested within 

nexts). Let k be the number of these top-Ievel atoms. Then there are at most 2k 

possible values of cp'. Furthermore, sin ce every occurrence of an atom in cp occurs 

either at the top level or within a next, for any 0', o(cp') ::; 0 - k. 

Now, IBI just counts rp ittlelf, plus the number of 1/ and the formulas reducible 

from them: 
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IBI 
1 + L,pl IBI(<p') 

< 1 + 2k(dx - 1)2°(9' ) 

< 1 + 2k(dx - 1)2o
-

k 

< dx 2° 
Completing the induction. 

Proposition 5.52 If: 

• <P is any LTL-BDD 
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• 

• Dk is the set of LTL-BDDs reducible from cp within k steps, i. e., the set of 7D 

such that for some path P and 0 :::; i :::; k, stepi(cp, P) = 7/J 

• ID,·I 7S the size of Die 

• II:I is the nwnber of distinct LTL atoms in 9 as defined in Definition 4·1 

Proof By the definition of stepi 0, <Pi = stepi (9, P) depends only on the truth 

values of atoms in the first i states of P. There are II:I atoms in P. givillg a total 

of ilI:1 boolean variables determining <Pi. Therefore. there are no more than 2il 2:1 

different values of 0;. 

If II:! = O. <P reduces only to T or F and the claim holds triviall~·. So assume 

II:I 2:: 1. Now, adding up the numbers of <Pi for aH 0 :S i :S k: 

IDkl 

< LZ=ü 2il 2:1 

< 2. 2kl 2:1 • 

Lemma 5.53 If <P is an LTL until whose subformulas contain no untils, and dx is 

the depth of nested nexts in rp as defined in Definition 4.1, then: 

For any path P = (Pl,P2,P3,"') and k 2:: dx - 1, stepk(cp, P) = either T. F, or 

stepdx-l (0, P Ie - dx +2), where Pk- dx +2 = (Pk-dx+2, Pk-dx +3, ... ). 
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Proof Induction on k: assuming the daim holds Vi such that dx - 1 :S i < k, \ve 

will show that it must hold for k. 

Let cp = TUV. First, note that Proposition 5.25 implies that, Vj ~ dx , stepj(T, 

P) and stepj(v, P) are both booleans (T/F). 

Now, if dx = 0, T and v must both be booleans and the daim holds trivially. 

Similarly, if k = dx -1, then stepk(cp, P) = stepdx-l(cp, Pd = stepdX-l(cp, Pk-dx+2). 

So assume k ~ dx ~ 1. Then: 
stepk(cp, P) 

stepk(TUV, P) 

stepk-l(step(TUv, pd, P2) (defn of stepk ()) 

stepk-l(or(step(v, pd, and(step(T, pd, TUV)), P2 ) (defn of step()) 

or(stepk(ll, P), and(stepk(T, P), stepk-l(TUV, P2 ))) (Cor 5.20) 

or(T / F, and(T / F, stepdx-1 (TUV, Pk- dx +2))) (Prop 5.25. ind hyp) 

\Vhich must work out to either T, For stepdx-l (TUV, Pk- dx +2 ). So the inductioll 

holds. • 

Corollary 5.54 If: 

• cf; is an LTL until whose subformulas contain no untils 

• dx is the depth of nesfed nexts in cp, as defined in Definition 4.1 

• 9k is step" (6. P) for some path P and li: ~ dx - 1 

then CPk is determined by pLdx +2 = (Pk-dx +2, Pk-dx +3, ... ,pd, the last dx - 1 states 

j Pk. A, - t dx-l (A-. pk ) o . <Pk - S ep ,+" k- dx+2 ' 

Proof Follows from (essentially a restatement of) Lemma 5.53. • 
Corollary 5.55 If cp is an LTL until whose subjormulas contain no untils, and dx , 

12:1 and IBI are as defined in Definitions 4.1 and 4.2, then: 

IBI is O(2(dx -l ll I: I). 

Proof Proposition 5.31 asserts that every recursive measure() caU resulting from 

measure (cjy, s) is reducible from cp. Therefore, a bound on the number of formulas 

reducible from cp is a bound on IBI. 



CHAPTER 5. PRDOFS 83 

Let 0 = TUV. By Proposition 5.25 and Lemma 5.53, every formula reducible 

from rP (apart from T and F) is reducible within dx - 1 steps, i.e., of the form rPk = 

stepk(rP, P) or '1h = stepk(V, P), for some path P and kleqdx - 1. So we only need 

to count these formulas. 

By T)roposition 5.52, the number of LTL-BDDs reducible from rP within dx - 1 

steps is < 2(dx-l)I~I+l. And similarly so is the number reducible from 1). Therefore, 

IBI < 2· 2(dx-l)I~I+l = 4· 2(dx-l)I~I, and therefore IBI is O(2(dx-l)I~!). • 

Theorem 5.56 If rP is an LTL formula su ch that udepth(rP) :s: 1, and dx , di, 1l:1, u 

and IBI are as defined in Definitions 4.1 and 4.2, then IBI is O(2(dx+d,-1)1~13U). 

Proof As explained in the proof of Coro11ary 5.55: we can count IBI by counting 

the number of distinct LTL-BDDs 'l/J reducible from rP. Every such ?J; is of one of two 

forms: rPk = stepk(rP, P), or Vk = stepk(v, P) for some until TUt' in Q. 

\Ve can further break down the rPk 's to get three types: Vk, CPk<dx' and 9k'2dx' By 

getting bounds on the number of each type, we can get a bound on IBI. 
Type 1: '1h. Since du = xdepth( rP) :s: l, rP contains no nested untils, and therefore 

no v in dJ contains an until. So by Proposition 5.25, v reduces to T or F within dx 

steps. and therefore by Proposition 5.52 the number of distinct non-TIF formulas 

each v can reduce to is O(2(dx-l)I~I). So the total number of LTL-BDDs reducible 

from an l,in 0 is O(u2(dx-1)1~i). 

Type 2: ifJk<dx' Again, by Proposition 5.52, the number of such Ok is O(2(dx-l)I~I). 

Type 3: rPk'2dx ' The interesting case. 

For any until TUV in phi, let de(TUV) be the number of nested llexts enclosing 

TUV. For example, if rP = X(a 1\ XX(bUc)), then de(bUc) = 3. 

N ow, sin ce k 2:: dx, every LTL atom or next not contained within an until in rP 

is reduced to Tor Fin rPk' Specifica11y, these non-until terms are a11 determined (as 

TIF) by the first dx states in P, i.e., by P1
dx . 

It fo11ows that rPk is a boolean combination of until terms, one for each until in rP, 

where the term Ci for a given until Ui = TUV is: stepk-de(Ui' Pt+dJ (writing de as 

shorthand for de ( TU V ) ). 

Recall that di is the greatest depth of nested nexts in any until in cp. So by 

CoroUary 5.54, any such until term Ci which is not T or F is determined by the last 

di - 1 states in P, i.e., by P:-di +2 ). 
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So for any path PlI.:, the first dx states p~x determine the boolean combinat ion 

of until terms (i' and the last di - 1 states PLd,+2) determine the possible non-TIF 

value of each (i. All these dx + di - 1 states don't determine in cPk is which (i reduce 

to TIF and which don 't. So knowing these states, we are left with up to 3U possible 

values of cPk' based :)11 choosing whether 1.0 reduce each (i to T, F, or its only possible 

non-T IF value. 

Therefore, counting the (dx + di - 1) . IZ=I possible atom assignments as in the 

proof of Proposition 5.52, we have the following bound on the total number of possible 

values of cPk?dx : 2(dx +d,-llI2::13u . 

Adding up: 

IBI 
(# stepk(v, P))+(# stepk<dX(6, P))+(# stepk?dX(o, P)) 

0(U2(dx-lll2:l) + 0(2(dx-1)I2:I) + 2(dx +d;-1)12::13" 

0(2(dx +d, -1)12::13") 

• 

Corollary 5.57 If cP 'is an LTL-BDD containing no 7l,ntils,. then the total nmning 

time of any calls made by measure(cP, s) ta solve() and substitute() is 0(1), 

Proof If 0 = T or F, measure (cP. s) returns 0 or 1 immediately and the clailll holds 

trivially. Otherwise, xdepth(o) ~ L Consider phi' = step(o, s), By Propositioll 

5.25, xdepth( 4/) < xdepth( q)), so 1/ -=f. cP. Therefore, Proposition 5.26 implips that cp 

and 6' are not mutually reducible. Then, by Corollaries 5,35 and 5.30. measure( cP, 

s) returns a number and performs only a single substitution. It follows that solve() 

and substi tute() are 0(1). • 



Chapter 6 

An Implementation: MC MC 

~rC?\IC is a straightforward command-line Java implementation of the measureO 

algorithm described by this thesis. Vou enter a Markov chain M and some LTL 

formulas, and it computes the probability of each formula in each state of /v/. 

This chapter goes through a simple example run and outlines the design. Addi­

tional material is in Appendix B: 

• the READ1lE file from tb? distribution 

• a commented sample input file 

• a full transcript from a longer run 

• a code excerpt: Cheeker. java 

The latest version of MCMC (as of this writing, meme-O.9.S), along with API 

documentation, is kept at: www.es . megill. ear j aeob/meme. 

6.1 A sample run 

The following transcript shows MCMC being used to solve the example problems 

traced through in section 3.5. 

Note the satisfyingjcontradicting traces produced for each formula and state. A 

"satisfying trace" is just shorthand for a path determining the formula as true. and 

a "contradicting trace" is a path determining it as false (see Definition 5.12). 
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% java MCMC 

Please enter a Markov chain, as n lines of n outgoing probabilities, followed 

by sorne lines of atom probabilities (0/1), followed by a blank line: 

a: 

b: 

0.5 0.4 0.1 

0.7 0 0.3 

o 0 1 

1 

1 

1 

o 
o 
1 

Parsed the Markov chain: 

-1- -2-

Edge weights: 

1 : 0.5 0.4 

2: 0.7 0 

3: 0 0 

Atoms: 

a: 1 

b: 1 0 

-3-

0.1 

0.3 

1 

0 

1 

Now enter formulas to model check, one per line. Examples: 

lIa&c ll 

"X(! a)" 

"TU(blc)" 

"aU[5]c" 

(a and c) 

(next not a) 

(true until (b or c» 

(a until c within 5) 

a and c are both true. 

a is false in the next state. 

Eventually b is true, or c (or both). 

a is true until, within 5 steps, c is. 

"trace" toggles traces, "debug" toggles debug output, "quit"l"exit" quits. 

> Xa 

Parsed the formula: Xa Xa 

Calculating ... 

Prob in state 1 : 0.9 

Satisfying trace: (1,1) 

Contradicting trace: (1,3) 

Prob in state 2: 0.7 
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Satisfying trace: (2,1) 

Contradicting trace: (2,3) 

Prob in state 3: 0 

Satisfying trace: none 

Contradicting trace: (3) 

Took 0.013 seconds. 

So far: 

5 BDDs created, 4 passed to measure(). 

35 measure() calls (6 nontriv), 19 step() (6). 

6 var subs, avg 0.17 subs (0.0 var terms) per substitute() call. 

> X(bUa) 

Parsed the formula: X(bUa) 

Calculating ... 

Prob in state 1: 

Satisfying trace: 

Contradicting trace: 

Prob in state 2: 

Satisfying trace: 

Contradicting trace: 

Prob in state 3: 

Satisfying trace: 

Contradicting trace: 

Took 0.0070 seconds. 

So far: 

XU(b,a) 

0.9 

(1,2) 

(1,3) 

0.7 

(2,1) 

(2,3) 

0 

none 

(3) 

9 BDDs created, 6 passed to measure() . 

73 measure() calls (12 nontriv), 44 step() (14). 

12 var subs, avg 0.16 subs (0.0 var terms) per substitute() call. 

> ! (TU!a) 

Parsed the formula: !(TU!a) 

Calculating ... 

Prob in statel: 0 

!U(T, !a) 

Satisfying trace: none 

Contradicting trace: (1) 

Prob in state 2: 0 

Satisfying trace: none 

Contradicting trace: (2) 
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Prob in state 3: 0 

Satisfying trace: none 

Contradicting trace: (3) 

Took 0.0050 seconds. 

So far: 

11 BDDs created, 8 passed to measure(). 

101 measure() calls (18 nontriv), 72 step() (23). 

21 var subs, avg 0.21 subs (0.0099 var terms) per substitute() calI. 

> 

6.2 Design 

!\ICl\IC consists of 4300 lines of Java code. divided into 31 classes in 6 packages, 

but most of these are libraries of no special interest. The main algorithm is in 

rncrnc. checker. Checker (Appendix B.4), which contains the implementations ofrneasureO 

and stepO. 

The six packages and their main contents are: 

• rncrnc. checker: Checker, containing rneasureO, stepO. and the top-level 

cornputeProbabili tyO method; and Shell, a simple command-line passing 

user inputs to Checker 

• rncmc. equation: Variable and Expression, used to represent. the variables 

(Xq,8) and expressions (e, r 4>8) manipulated by rneasure(), sol veO and substi tuteO 

• rncmc .ltl: LTLBDDFactory, containing the nextO, untilO and boundedUntilO 

operations on LTL-BDDs; and LTLParserO 

• rncmc. bdd: a generic BDD (ROBDD) implementation 

• rncmc. rnarkov: MarkovChain, a basic matrix-based implementation, and MarkovChainParser 

• rncmc. util: sorne simple utility classes not specifie to MCMC (e.g., TwoKeyHashMap) 

Four simple test programs are also included, ExpressionTest, LTLTest. BDDTest 

and MarkovTest, and a short MCMC wrapper class for ease of compilation and startup. 
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6.3 Features & limitations 

The main priorities in writing l\1CMC were to make it easy to understand and extend. 

For ease of comparison, Checker's measureO and stepO methods correspond quite 

closely to the pseudo code in Definitions 3.2 and 3.3. 

(As a glance will indicate, LTLParser is one class where the aim of cleal_ ;eadability 

was not achieved.) 

The modularity of the packages is aimed at making improvements as painless as 

possible. One natural improvement would be a more sophisticated l\1arkov chain 

implementation (see section 8.2). 

Little effort has been devoted to optimization. 

The design is loosely object-oriented. 

There are fairly extensive comments in the code, though of course not to the level 

of detail of this thesis. 

The bounded until operator (e.g., aU'5. 5 b) from section 2.3.4 is supported. with 

the syntax "aU [5J b". 

l\ICl\1C uses floating-point arithmetic (Java doubles), with values very close to 

o treated as O. Potentially this can result in drastic roundoff errors. partic'llarl~' in 

the divisions performed by sol veO when solving systems of equations. The ::iimplest 

solution would be to s",itch to (presumably much slower) exact rational arithmetic. 

l'l1ore testing will be needed to determine whether such a switch is \\'orthwhile. i.e .. 

how often and in what situations these errors are serious in practice. 

As shown in the sample run above, for each formula cp and state .) ?\ICl\IC out­

puts satisfying and contradicting traces. The algorithm used to find these traces is 

particularly susceptible to roundoff error, since it must detect 0 and 1 probabilities. 

Consequently the trace generation feature ma)' not be reliable, or may only produce 

traces with very low or very high probabilities of satisfying cp. Like the roundoff error 

itself, this is an implementation issue rather than a profound problem. 

See also the README file in Appendix B.l. 



Chapter 7 

Related Work 

7.1 Courcoubetis & Yannakakis 

The problem addressed by this thesis is one of several related problems soh'ecl h~' 

Costas Courcoubetis and 1\1ihalis Yannakakis in [CY95]. So their algorithm is the 

most natural point of comparison. A condensed overview of the algorithm is in 

[eT97]. 

Their solution shares \Vith this work the approach of iteratively transformillg t h(' 

input formula until it is reduced to a trivial (until-free) formula. However the ap­

proaches are otherwise quite different. The most conspicuous clifference is t hat each 

of their transformations results not only in a new formula. but also a nc\\" l\Iarkov 

chain. 

They give tv/O transformations, one for U and one for X. The U transformation 

replaces one "innermost" until in the input formula (an until containing no other 

untils, i.e., of udepth() 1) with a new atom ç, then modifies the Markov chain so 

that probabilities of satisfying the formula are preserved. The transformation for X 

is similar. 

Each transformation eliminates one occurrence of the indicated temporal operator 

in the input formula, so the total number of transformations necessary is linear in the 

size of the formula. Using this fact and standard graph algorithm results. they are 

able to prove that their algorithm mns in time singly exponential in the formula size 

and polynomial in the size (number of nodes and edges) of the Markov chain. 

So, their complexity results are stronger than those achieved here in Chapter 4. 
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where for the general case we have no better bound than doubly exponential in the 

size of the formula. Furthermore, [CY95] goes on to solve several generalizations, in­

cluding more expressive specification languages (Büchi automata and ETL, extended 

temporallogic) and models (concurrent Markov chains, introducing nondeterministic 

choice). The main advantage of the present work would seem to be that it requires 

no transformation of the l'vIarkov chain. This is significant because in practice model 

size is the most common limiting factor. Their algorithm may also be difficuIt to 

implement, explaining why l have not been able to find an implementation (see also 

section 8.1). 

7.2 Other related wor k 

FormaI verification, and even the specifie study of probabilistic model chec:king. is an 

active field and a full revie\\' of contributions is beyond the scope of this \York. The 

following is a selection of results directly related to the problem of LTL "erification 

on probabilistic models. 

The most common approach in practice is that of [ASBBS95] and [BCHKR97] (sec 

section 2.5). in which the probability is not computed but encoded in the specification 

\Vith a language such as PCTL or pCTL*. The output is then simpl}' true or false. 

and can be computed efficientl)' using non-probabilistic model checking techniques. 

The obvious disadvantage is that the probability is not computed, though it can be 

approximated by binary search. So these techniques are most useful ",heu the exact 

probability is not needed. 

The first algorithm for verifying LTL specifications in probabilistic automata is 

Vardi's 1985 paper [Var85], which showed how to check whether a formula \vas satis­

fied with probability 1. Vardi has also given a more recent overview in [Var99]. 

Baier's 1998 habilitation [Bai98] includes a detailed survey of verification algo­

rithms for probabilistic systems, including those mentioned above. Kwiatkowska's 

[K wi02] tutorial gives a briefer but more recent overview of probabilistic model 

checking techniques, including references to several current implementations, such 

as PRISM [KNP02]. 

The resuIt that every plausible path has a determining prefix (Definitions 5.11 and 

5.12, Theorem 5.41) almost surely exists in the literature but l have not yet found it. 



Chapter 8 

Conclusions 

8.1 Summary of results 

The main contribution of this work is the measureO algorithm for computing the 

probability that astate s in a labeled ~larkov chain M satisfies an LTL formula 6. 

and the accompanying proof of correctness. The complexity bounds, though loose. 

do establish that the algorithm is no worse than doubly exponential in the size of rp 

and cubic in the sizc of M. 

Three possible advantages of this algorithm over the earlier and more goneral 

solution. of [CY95] are: 

1. Only the (normally small) formula is transformed, rather than the (big) model. 

2. Results from l\'IC1'vlC suggest that the bounds in Chapter 4 are pessimistic, and 

that advantage 1 may make measure() more useful for practical verification 

problems. 

3. An implementation exists: MCMe. l have not been able to find an implemen­

tation of the [CY95] algorithm. 

Additional contribut.ions are the proof that evory plausible path has a dctorminiug 

prefix (Theorem 5.41), and the MCMC implementation from Chapter 6. 
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8.2 Future Work 

This work has concentrated on simply proving the algorithm correct and building a 

trial implementation. Many possible improvements and extensions were left for future 

investigation. The three most pressing questions seem to be: 

1. How do es this algorithm compare with the original algorithm of [CY95], 111 

practice? 

2. How does this algorithm compare with the PCTL/pCTL * model checking al­

gorithms of work such as [ASBBS95] and [BCHKR97], in practice? 

3. \iVhat demand is there for a practical algorithm which can compute an ex­

act probability, rather than approximate it with true/false queries via binary 

sem-ch? 

These questions immediate1y suggest sorne avenues for future work. In rough order 

of descending urgency: 

1. More efficient implementation. This is urgent because it is a prerequisite 

for realistic testing 

The ~larkov chain representation in l'vIClvIC is primitive. Tools such as PRIS:\1 

[IG\"P02] use BDD representations and are therefore much more efficient On the 

large models commOn in practice. Such a representation could be iucorporated 

into MCMC, or (more likely) the measure() algorithm could he incorporated 

into these more mature tools. 

The technique MCMC uses to solve systems of equations is a1so crude and might 

be fruitfully replaced with a more sophisticated linear a1gebra package. 

As discussed in section 6.3, floating-point handling in MCMC is sloppy and 

prOne to roundoff error, especially in trace generation. Either more carefu1 

floating-point usage or substitution of exact rational arithmetic would improve 

numerical stability. 

There are also more basic potential optimizations, for example, porting the code 

to C. 
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2. Realistic testing. As discussed in section 4.5, the most productive way of eval­

uating the algorithm's usefulness would seem to be testing on realistic inputs. 

The simplest comparison would be to take problems currently being passed to 

PCTL/pCTL * model checkers, of the form "Does state s satisfy cp with proba­

bility 2:: k?", and compare the running time required by a tool like MCMC to 

ans\\'er the corresponding question, "\Vith what probability do es s satisfy cp?" 

Particularly desirable would be to perform such tests with anyone currently us­

ing existing model checkers to do "binary search" probability checking (repeated 

calls to approximate the exact probability). 

3. Better complexity bounds. Aside from actual performance improvements, 

it might be possible to improve many of the bounds in Chapter 4 purely by 

better analysis. In particular, the conjectures (4.3, 4.4, 4.5, 4.6) need to be 

resolved. 

4. Extension to more powerful formalisms. This thesis has dealt only \Vith a 

single type of model (labeled 11arkov chains) and specification (LTL). Several 

variants and generalizations are considered in work such as [CY95], [CT97]. and 

[ASSB96], including models such as concurrent Markov chains and continuous­

time I\Iarkov processes, and specifications in ETL or as Büchi automata. \Vhich 

of these the measureO algorithm would be easily adaptable ta is an apen ques­

tion. One clear restriction is that the caching measureO uses ta emure termi­

nation would not \York for infinite-state systems. 



Appendix A 

Additional Background 

This appendix reviews sorne background topics more basic than those covered in 

Chapter 2: the original non-probabilistic model checking algorithm, and BDDs (bi­

nary decision diagrams). 

A.l Traditional CTL model checking 

\Ve saw in section 2.1 what the purpose of a model checking algorithm is: to take a 

system description (e.g .. sorne kind of automaton) and a specification (e.g., a formula 

in a temporal logic). and determine whether the system satisfies the specification. 

Here l go through the original model checking algorithm de\'eloped around 1981 b~' 

E Allan Emerson and Ed Clarke. Many of t.he ideas used by this algorithm will also 

be useful to us in the probabilistic setting, though not as many as we might. hope. 

Emerson & Clarke's algorithm takes a specification in CTL, a branching-time 

temporal logic, as contrasted with the linear-time LTL logic used by this thesis. So 

l begin with a discussion of branching-time vs linear-time logics, and define CTL 

syntax. Then l describe Emerson & Clarke's algorithm and go through an example 

involving an automatic door. 

A.1.I Linear-time vs branching-time logics 

Both LTL and CTL are used t.o phrase assertions about the future stat.es of atoms. 

The essential difference between them cornes down to the distinct.ion between linear­

t.ime and branching-time logics. A formula in a linear-time logic like LTL makes an 
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assertion about a single sequence of future states. A single formula in a branching­

time logic like CTL, however, asserts something about a number of possible futures. 

That is, whereas an LTL formula describes a single sequential path in time, a CTL 

formula has as its subject a tree of possible future paths (or branches). 

For example, the LTL formula X a asserts that one step into the future, the atom 

Q will be true. In CTL, sorne future paths may satisfy Q and others may not, so we 

need to darify our daim. \Ve might assert for example that Q is true in the next 

step along al! possible paths: AXa. Or we might assert that at least one future path 

satisfies X a: EX o. See Figures A.l and A.2. 

Figure A.l: The linear computation path from Figure 2.5. This path satisfies the 

LTL formula Xo (but not XXXa). 

Figure A.2: A computation tree, T. T satisfies the CTL formula EXo, but also 

EX 'o. It do es not satisfy AXa. Meanwhile, EXb and AXb are both satisfied: 

EX ,b is not. 
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The multiplicity of different trees mean there are other meaningful claims we couIc! 

want to make in a branching-time logic, such as "exactly one path satisfies X a", or 

"at least two paths satisfy X a." A simple logic like CTL gives us no way to express 

these assertions: we have only A and E - aU, or at least one. However, adding 

negat ;on lets us derive -Œ ("along no paths") and -,A ("not along aU paths") as 

weIL and these four alone aUow us to express many useful daims. 

A.l.2 CTL syntax & semantics 

CTL syntax (Figure A.3) is close to LTL's. The only new idea is the use of the EjA 

quantifiers. Otherwise the basic operators are the familiar operators X anc! U frolll 

LTL, and the usual -, and 1\ boolean combinators. (The useful temporal operators 

F ("eventually") and G ("al ways") can be derived from CTL '5 U. just as we saw for 

LTL in section 2.3.4.) 

dJ 
de! 

TIF 

1 
a 

1 
-,1jJ 

1 'ljJ 1\ """ 

1 
EX1.jJ 

1 
AX?b 

E( ?bU"",') 

A (?jJUi.JJ) 

Figure A.3: CTL syntax: the eight types of basic LTL formulas, Ilot counting the 

derived operators F and G. 

Each CTL temporal operator is made up of a path quantifier (E j A) followed by 

a modality (XjUjFjG). The modality says what's being asserted about the future 

paths; the quantifier says which paths the assertion is being made about. For example, 

the CTL operator EG1jJ asserts that there exists at least one path along which w is 
always satisfied. Conversely, AF1.jJ asserts that 1.jJ is eventually satisfied along every 

path. Figure A.4 shows the values of sorne CTL formulas on the computation treo 

from Figure A.2. 

It can be helpful to think of the path quantifier and the modality of a CTL 



APPENDIX A. ADDITIONAL BACKGROUND 98 

temporal operator as describing the two dimensions of the assertion. In a computation 

tree drawn like the one in Figure A.2, the modality specifies the vertical extent of the 

claim, and the path quantifier specifies its horizontal extent: you look down t.he t.ree 

ta check if a property like X a is sat.isfied, but. you look acr055 t.he tree t.o see which 

computation pp' hs sat.isfy it. 

A.l.3 Computation trees and nondeterministic choice 

One ma~r wonder when it.'s useful t.o make assertions about computation trees, as 

branching-time logics allow us ta do. In particular, constructs such as "always" and 

"eventually" seem best suited ta describing infinite computation trees, and one might 

well wonder how often t.hese come up. The answer is that. t.hey come up often. if one 

happens to be analyzing the behavior of nondet.erministic systems. in which several 

different next steps may be possible from any given state. 

Consider for example the nondet.erministic finite aut.omat.a (NFA) AI from Figure 

A.5. Started in stat.e 51, AI may move ta 52 at. t.he next step, or stay in .'il' As we 

unwind further into the future, the (finit.e) NFA generat.es an infinite computation 

tree, part of which is shawn in Figure A.6. 

So, branching-time logic makes sense in the context of nondeterministic ~\'stems. 

Later we will examine whether it makes sense in probabilistic s~rstems as \yeJl. 

A.l.4 Example: an automatic door 

The original model checking algorithm took astate s in an NFA as the model and 

a CTL formula cf; as the specification, and produced a boolean (truejfalse) value: 

whether s F= cj; (i.e., whet.her the t.ree of possible pat.hs from s satisfies cp). Let's look 

at an example problem, and see how t.he model checker salves it. 

Con si der an automatic door, like t.he door that opens for you wh en you leave the 

supermarket. The door has a sensor plate a built int.o the ground in front of it, and 

another sens or b in the ground behind it.. The door swings open wh en someone steps 

on a, and swings shut after they step off b. See Figure A.7. 

We, the designers of the door, must. make it. follow some protocol which tells it wh en 

to open or close, depending on which sens ors currently register someone standing aIl 

t.hem. There are certain properties we want our proto col to guarantee: for example, 
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that the door never swings open, or shut, whi1e b is on. We will mode1 this system as 

an I\FA, and mode1 check it to verify that it satisfies the properties we want. 

A.1.5 The NFA model 

Vie can see three state var. )les, on or off: aj-,a (sensor a doesjdoesn't have someone 

standing on it), similarly bj-,b, and dj-,d (the do or isjisn't open). These three atoms 

combine to form eight (23 ) possible states for the entire system, as shown in Figure 

A.8. Our design effort goes into choosing the edges - which transitions our proto col 

will permit. 1 

A.1.6 The CTL specifications 

Now, let"s model check for two properties: safety and liveness. By safety here wc 

mean that the door never bangs into someone standing on sensor b. Lh1cness is 

preserved if allyone who steps up to the door eventually gets through. 

\\Te need to encode these properties in CTL. Safety cOllsists of two requirements: 

the door never swings open when b is on, and the door never swings shut when b 

is on. The first can be explèssed as AG((b A -,d) -t -,EX(b Ad)): "It is al\\'ays 

true that. if b is on and the door is closed, it cannot not be true at the next step 

that b is on and the door has opened.·' Similarly, the second safet~' requirE'ment 

can be written as AG((b A d) -t -,EX(b A -,d)). 'Ve can combine these ta fo1'1n: 

AG(((b A -,d) -t -,EX(b A d)) A ((b Ad) -t -,EX(b A -,d))). 

Liveness can be expressed as: any time a is on and b is on, b will eventually be 

off (when the person on b leaves), and any time a is on and b is off, b will eventually 

be on (when the person on a steps through). In CTL this again has two parts, 

AG( (a Ab) -t AF( -,b)) and AG( (a A -,b) -t AF(b)). Again, we can combine these ta 

form AG(((a A b) -t AF(-,b)) A ((a A -,b) -t AF(b))). 

1 Note that states 83 and 84, in which b is true but d is false, are unreachable from the initial 

state. This makes sense: the only way we allow b to be on is if someone has stepped through the 

door, in which case the door must be open, since it can't close again until the person has stepped 

off b. There would be no harm in removing these unreachable states from our system, except that 

later they might become reachable if we changed our proto col. 
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A.1. 7 Converting to primitive operators 

Before proceeding, we will want ta get rid of the non-primitive operators in these 

formulas. Recall that ~, AG, and AF are not part of our technical definition of 

CTL; we need ta replace them with operators defined in Figure A.3, using the helpful 

equivalences described in section 2.3. ' 

Doing this conversion, we obtain -,e(TU--.( --.( (b A --.d) A EX (b A d)) A --.( (b A 

d) A EX(b A --.d)))) for safety, and --.E(TU--.(--.((a A b) A --.A(TU--.b)) A --.((a A --.b) A 

--.A(TUb)))) for liveness. These formulas are unreadable. HoweveL they mean the 

same thing as the old ones, and this conversion can be easily automated, so in general 

only the computer will need to work with the uglier form. 

A.l.B Checking the properties 

No\\' that we have the model and the specifications, how do we check them? The 

essential idea is to take advantage of the compositional structure of the specifications: 

a CTL formula is either basic and therefore easy to check directly (booleans and 

atoms), or made up of a combination of smaller formulas. \Ve will see hü\\' to compute 

whether a formula is satisfied. if we knmv whether its subformulas are satisfied. This 

gives us a recursive algorithm for computing the truth of any specification in the 

model. Figures A.10 and A.ll below show the algorithm being used ta check safety 

in V. 

As a simple example. if we can check whether (the tree of possible paths from) 

astate s satisfies two formulas 7/J and w, we can certainly check wherher s satisfies 

V' A w: just check if it satisfies both subformulas. --.7/J is even easier: any given state 

s satisfies --.7/J iff it doesn't satisfy 7/J. 

More precisely, to model check a (state, formula) pair (cp, s), we first compute the 

truth of aIl cp's subformulas at every state in the system. That is, we check aIl pairs 

(7/J, t), where 7/J is a subformula of cp and t is any state in the system. Since there are 

finitely many subformulas (which keep getting sm aller as you recurse), and finitely 

many states, this algorithm terminates. 

When run with a large input formula cp, this model checking algorithm will begin 

by checking small formulas nested deep within cp (at every state in the system), and 

use them to build up bigger and bigger combinations within cp, until finally cp itself is 

computed. 
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A worthwhile exercise is to use this algorithm to check the liveness property, as 

defined above, in D. You'll find that the model does not satisfy liveness, because 

as defined in Figure A.8, our protocol doesn't foree people to move: the self-looping 

edges of states 84, 86 and 88 allow paths such as 8182868686 ... along which someone 

never gets through the door. To fix this, we coulr' remove the self-Ioops. The model 

checking algorithm would then show that liveness was satisfied. 

A.1.9 Checking nexts 

Checking formulas constructed with the next operators EX / AX is almost as easy as 

checking -. and A. Suppose we want to check whether the following proposition is 

true in D above: from state Si, it is possible in two steps to reach astate where d is 

false. In CTL we would write this EX(EX -.d). This formula has one subformula: 

EX -.d. l\ow, suppose we already knew whether each state satisfied this subformula. 

Then it would be easy to compute the truth of EX(EX -.d): we would just see if 

an)' of the nodes 8., can reach in one step (85, 8i and 88) satisfied EX -.d. (In fact, 

S5 p EX-.d. since S5 can go to SI; therefore 8i F EX(EX-.d).) 

A.1.l0 Checking untils 

Computing untils takes a bit more cleverness. To check a formula ofthe form E('lU~.:). 

we start as usual by checking the truth values of subformulas V! and ~' at every state. 

Then we perform a labeling loop to determine which states satisfy the until. E(7f-Uw). 

Figure A.9 shows an example. 

The labeling loop proeeeds as follows. First of aIl, any state \vhere u) is true 

immediately satisfies the until, so we start with these states labeled true and aIl other 

states labeled false. Next, notice that any state t labeled false which satisfies 7/J and 

has a next state 8 which has been labeled true, itself satisfies the until; this fo11ows 

from the definition of the until operator. So we can change the label of t from false to 

true. Having done so, there may now be another state u where 7/J is true and which 

has an edge to t; so u needs to be labeled true as weil. 

Repeating this relabeling process, we will eventually reach a point where no further 

states can be labeled true. (This is guaranteed to happen, sinee there are finitely many 

states, and at each step we are only increasing the number of states labeled true.) At 
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this point, the states labeled true are exactly those which satisfy the original until 

formula, E( 'ljJUw). Computing the truth of AU formulas is very similar. 

A.1.II Producing a counterexample 

~'I1odel checking algorithms like this have the benefit tha if they determine that 

the model doesn't satisfy the specification, they generally pro duce a counterexample 

computation path. For example, in the course of verifying that liveness does not hold, 

the algorithm would produce a trace such as the 8182868686 ... above. This benefit 

will not con cern us much in our work here. However, in practice it do es present a 

serious advantage to the system verifier, who needs to know not just that his system 

is broken, but ho\\'. 

For a fuller explanation of the original CTL model-checking algorithm. consult 

a standard reference such as [CGPOO]. The essential idea is that a fonnulCl can be 

decomposed into subformulas, whose model-checked truth values in each state can be 

used to compute the truth values for the original formula. 

A.2 BDDs 

BDDs (binary decision diagrams) are an efficient way to represent boolean combina­

tions of variables, such as those represented in traditional proposition al logic as () 1\ b 

or cV -,( a ---7 -,b). In this work, we use BDDs to represent LTL formulas. 

This appendix reviews the basic ROBDD structure introduced in [Br~·86]. 

Figure A.12 shows the BDD for a 1\ b. There are two types of llodes: those 

containing atoms (alb), and the leaf nodes at the bottom containing Tor F. Each 

atom node has two branches: the (right) one followed if the atom is true, and the 

(left) one followed if it 's false. AlI paths from the root node at the top eventually 

reach one of the terminal leaf nodes. So this BDD could be read as follows: "Check 

a. If it's false, return faIse. If a is true, check b, and return whether it's true." We 

can express this in C-like syntax as: (a ? T : (b ? T : F)), or, using a as shorthand 

for (a ? T : F) and -,a for (a ? F : T), more compactly as (a ? T : b). Similarly, the 

BDD for c V (a 1\ b) (Figure A.13) would be transcribed as (a ? (b ? T: c) : c). 
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A.2.1 ROBDDs 

The proper full name of the BDD model we will work with is ROBDDs: reduced, 

ordered BDDs. This is the most common variant, and we will just call them BDDs. 

They are reduced in that identical subtrees are merged, to save spaee; see Figure A.14 

for the unreduced form of the a 1\ b BDD from Figure A.12. They are' lered in that 

any path from the root at the top to one of the leaf nodes passes through the atoms 

in a fixed or der. Typically the ordering is lexicographie: all nodes containing a occur 

above all nodes containing b, a before aa before b, and so on. Enforcing an or der on 

the atom nodes is important for keeping the representation canonical. 

A.2.2 Benefits of BDDs 

BDDs have a number of niee properties which lead them to be used extensivel)' in 

model checking, as well as other fields. First of aIL they are compact: storcd on 

a computer. the BDD representation of a large formula tends to take up much lpss 

space than most other forms (induding written forms like "a 1\ b"). In the \Vorst case. 

a BDD can be exponential in the number of atoms: 

Proposition A.l Ifn1 is a BDD, A is the set of BDD atoms occurring in lI1· 11111 

is the number of nodes in nI.' and lAI is the size of A, then in the worst casé. 1"11 'is 

O(2IA1 ) . 

Proof Follows from the observation that n1 has the structure of a binary tree of 

height at most lAI. • 

But in practice BDD size is often far sm aller than this, doser to polynomial than 

exponential in lAI. This efficiency is probably the most widely appreciated virtue 

of BDDs. For our purposes, however, a more important benefit is that BDDs are 

canonical: there is only one BDD which represents any given boolean combination 

of variables. In other words, two formulas with the same meaning (for example. Q 1\ b 

and --{-,a V -,b)) always produce the same BDD (Figure A.12). 

The fact that BDDs are canonical is handy in various ways. It keeps down the total 

number of BDDs constructed, sinee only one BDD will be constructed per boolean 

combination: 



APPENDIX A. ADDITIONAL BACKGROUND 104 

Proposition A.2 From lAI BDD atoms, exactly 22A i distinct BDDs can be con­

strllcted. 

Proof Each BDD represents a function from the set of atom truth assignments to 

T / F. There are 2iA i different atom assignments, and therefore 221AI different functions 

from these assignments to T / F. • 

Canonicity also makes it easy to check equality: given two logical formulas like 

the above, you can just create the BDD for each and check if they're (syntactically) 

the same. This ease of checking equality can be helpful when writing algorithms, not 

only to make them run faster, but to ensure that they terminate at aIl. 

A.2.3 Operations on BDDs 

Another useful property of BDDs is that standard boolean operators like notO, and(). 

and orO can be efficiently computed on them. Bere we go through ho\\' you cou Id 

recursively compute and(nI' n2) for two BDDs nI and n2. Then we give the formaI 

algorithms for all the ab ove operators, and for another useful operator, condO· 

The full algorithm for and(nI' n2) is shown in Definition A.5. Recall that there 

are only two kinds of BDDs: those containing an atom, ofthe form nI = (a '! 7/2 : n3)' 

and the primitive booleans T and F. So, the idea is that there are realh' onl)' tllree 

cases for and(nI' n2): 

1. One of the inputs may be a boolean, Tor F. ln either case. the ans\\'er is then 

trivial to compute. For example, if nI = T, then and(nl, n2) is simply n2. 

2. If neither no de contains a boolean, than each must contain an atorll. Suppose 

each contains the same atom, a: nI = (a ? n3 : n4), n2 = (a ? ns : n6). Then, 

in the case where a is true, the answer will be na = and(n3, ns), which we can 

compute recursively. Similarly, in the case where a is false, the answer is n-'a = 

and(n4, n6). So, if na 1- n-,a, the final answer is the a-node with each of these 

possible answers as its children: (a? na : n-,a)' If na = n-,a, then Q 's value 

doesn't matter and we just return na. 

3. There remains only the case where nI and n2 contain different atoms. \Vithout 

loss of generality suppose that nI 's atom cornes before n2's alphabetically, and 
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thus (by the ordered property of ROBDDs) belongs above it in the BDD: nI = 

(0 ? 113 : n4), 112 = (b ? 115 : n6). Then we can recurse as above by considering 

two cases: either a is true, or it is false. If a is true, the answer is na = and( n3, 

112)' If a is false, the answer is n~a = and(n4, n2). So the final answer is: 

(a ? na : n~a) (again, unless na = n~a)' 

The formaI definitions of not(nI), and(nI, n2), or(nI' n2) and cond(nI, n2, n3) 

are below. 

The complexity of these algorithms is easy to analyze: 

Proposition A.3 If A is a set of BDD atoms, nI, n2 and n3 are BDDs made up of 

these atoms. and lAI is the size of A, then in the worst case, the fol!owing operations 

are al! 0(2 IA1 ),' 

• not(nd 

Proof A caU to not(nd just makes two recursive caUs on nI's chi Id nodE's. So, one 

recursive cali is made per node in nI. and therefore notO is O(lnI!). where In!1 is 

the number of nodes in nI. By Proposition A.I, InII is 0(2 IA1 ) in the worst case. So, 

worst case, not(nl) is 0(2 iA!). 

Similarly, each nontrivial caU to and(nI, n2) makes recursive caUs on either nI 's or 

nz 's children, and therefore every node in nI and 112 is passed to at most one recursive 

cali. So andO is 0(lnII+ln21), and therefore again 0(2 IA1 ). And since orO and condO 

sim ply make a fixed number of caUs to not 0 and andO, so are they. • 
FinaUy. sorne useful identities relating these operations are listed in Figure A.IS. 
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All are straightforward to prove from the definitions. 

Definition A.4 

not(nl): 

if nI = T: 

return F 

else if nI = F: 

return T 

else, nI = (a ? n2 : n3): 

return (a ? not(n2) : not(n3)) 

106 
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Definition A.5 

and(nl, n2): 

if nI = F or n2 = F: 

return F 

else if nI = T: 

return n2 

else if n2 = T: 

return nI 

else, nI = (al? n3 : n4), n2 = (a2 ? n5 : n6): 

if al > a2: 

else: 

return and(n2. nr) 

if al < a2: 

na1 = and(n3, n2) 

n~al = and(n4, n2) 

else. al = a2: 

n a1 = and(n3, n5) 

n~al = and(n4. n6) 

if (n a1 = n~al): 
return nal 

else: 

return (al? n a1 : n~a1) 

107 

or(nl' n2) can then be defined in terms of the primitive operators not() and and(): 

Definition A.6 

or(nl, n2): 

return not(and(not(nd, not(n2))) 
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Finally we have cond(nl' n2. n3), which returns the BDD which is equivalent to 

"'2 \\'hen nI is true, and to n3 when nI is faIse: 

Definition A.7 

cond(nl, n2: n3): 

return or(and(nl, n2), and(not(71d, 17,3)) 

The follo\ving proposition can also be useful: 

Proposition A.8 For any node 17,1 = (a ? n2 : n3), nI = cond(a. 17,2. 713) (shorthand 

for cond((a ? T : F), 17,2, 17,3)). 

Proof FolIows trivially from the definition of (a? 1/2 : 17,3). I\ote however that it does 

not follow that an arbitrary cond(n4' 715. 17,6) cal! necessaril~' returns (Iî-l ? Il,, : TIc). 

sin ce in general we have no guarantee that n-l is an atom. or that it bclongs aboyc 

715 and TIc. For example, cond((a ? T : b). b. F) returns b. not the invalid no de 

,.( (a ? T : b) ? b : Fr. • 
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Formula Satisfied 

by tree T? 

EX-,a Yes 

AXa No 

AXb Yes 

EX (E X (a 1\ b) ) Yes 

AX(EXa) 1'\0 

AG (a V b) No 

AF(al\b) Yeti 

EX(AGa) 1\0 

A((a V b)U(a 1\ b)) Yes 

Explanation 

Any path through 53 satisfies X -,a. 

Not aU paths satisfy X a, sin ce paths through 5:; 

don't. (Equivalent to -,EX -,a.) 

AU paths satisfy Xb, since aU pass through 52. 53 

or 54. 

There is at least one path along which (a 1\ b) holds 

two steps from now: (81, 83, 8i)' 

It is not true that, from every possible next state, 

there exists a next state in which a is true: there 

is no such next state from 8.j. (Equivalent to 

-,EX(AX -,a).) 

It is not true that (a V b) is ever)'where true: it is 

false in 58. (Equivalent to -,EF(-,o 1\ -,b).) 

Along every branch, (a 1\ b) is eventualh' truc: III 

There is no next state from which 0 is always truc 

along aU paths, because every next state can reach 

a state in which a is false: 82 can reach "G. 84 cau 

reach 88/89/810, and 53 itself does Ilot satisf)' a. 

(Equivalent to -,AX(EF-,a).) 

Along every path, (a V b) holds until (01\ b) holds. 

The 8182 path succeeds at 82, 8184 succeeds at 

54, and 81538i survives down ta 87, where it is 

satisfied. (Equivalent ta the disgusting -,E( (-'0 V 

-,b )U (-,a 1\ -,b) ). ) 

Figure A.4: Some CTL formulas evaluated on the computation tree T from Figure 

A.2. 
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Figure A.5: A state-labeled NFA, A'. 

Figure A.6: The first fe\v levels of the infinite computation tree generated b~' the ~FA 

A' from Figure A.5. 

-----+-1 >~ a 
shopper 
enters 

open 
"'---r---

1 

1." 
"'1 

1 

closed 

b 
shopper 
exits 

Figure A.7: An automatic door. The door opens automatically when someone steps 

on sens or a, but must never swing open (or shut) while someone is standing on h. 
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Figure A.8: An NFA D modeling the automatic door system. 
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Formula Satisfied in states Explanation 

a 52, 54, 56, 58 First we need the truth values for the ?jJ (a) and 

w (d A b) in the E('ljJUw until formula. 

dAb 5i, 58 These are easily obtained from Figure A.8. 

E(aU(d Ab)) 5i, 58 To compute the truth values of the untiL we begin 

by labeling T only those states which immediately 

satisfy w (d Ab). 

E(aU(d Ab)) 56, 5i, 58 Next, we label true any as-yet unlabeled states 

which: (1) satisfy V) (a), and (2) have an outgo-

ing edge to astate already labeled true. Of the 

unlabeled states here, only 56 satisfics CI and has 

an edge to one of the labeled states (Si)' 

E(aU(d Ab)) 82, S6. Si, 58 Repeating the last step. 52 satisfies a and has an 

edge to the newly labeled state. 56. (Sc, has an 

edge to 56, but doesn't satisfy a.) 

E(aU(dAb)) 52, 54, 5G. 5ï, 58 54 satisfies a and has an edge to 82. 

E(aU(d Ab)) 52, 54, 56, 5ï, 58 None of the remaining states both satisfy a and 

have an edge to a labeled state, so the algorithm 

has terminated. AH remaining unlabeled states 

are labeled false. Only those states no\\" labelcd 

true (52, 54, 56, 5i, and 58) satisfy E(aU(d Ab)). 

Figure A.9: An example of model checking an until formula: checking E(aU(d Ab)) 

("There exists a path along which a is true until astate is reached where d and b are 

both true") in D from Figure A.8. 
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Recursive 

# structure Formula 

1 T T 

2 b b 

3 d d 

4 -,3 -,d 

5 2A4 b A -,d 

6 2A3 b Ad 

7 EX6 EX(b A d) 

8 5A7 (b A ,d) A EX(b Ad) 

9 -,8 -, ( (b A -,d) A EX (b A d)) 

10 EX5 EX(b A -,d) 

11 6 A 10 (b A d) /\ EX(b A -,d) 

12 -,11 -,((b A d) A EX(b A -,d)) 

13 9 A 12 -,((b A ,d) A EX(b A d)) A -,((b A d) A EX(b A -,d)) 

14 -,13 -,(-,((b A -,d) A EX(b A d)) A -,((b Ad) 1\ EX(b A -,cl))) 

15 E(lU14) E(TU-,(-,((b A -,d) A EX(b A d)) A -,((b A d) A EX(b /\ -,d)))) 

16 -,15 -,E(TU-,(-,((b A -,d) A EX(b A d)) A -,((b A d) A EX(b A -,d)))) 

Figure A.10: The order in which the subformulas are model checked, while model 

checking J) (from Figure A.8) for safety. Aside from booleans and atoms, each row is 

assembled from previous rows; for example, the final row 16, representing the safety 

property, is the negation of row 15, which is built from rows 1 and 14. 
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Recursive Truth value in 

# structure 81 82 83 84 85 86 87 88 

1 T T T T T T T T T 

2 b :F :F T T :F :F T T 

3 d :F :F :F :F T T T T 

4 -,3 T T T T :F :F :F :F 

5 2/\4 F :F T T :F :F :F :F 

6 2/\3 F F F F F F T T 

7 EX6 :F :F :F :F :F T T T 

8 5/\7 F F F F F F F F 

9 -,8 T T T T T T T T 

10 EX5 F F T T :F F :F :F 

11 6/\10 F F F F F F F F 

12 -,11 T T T T T T T T 

13 9/\12 T T T T T T T T 

14 -,13 F F F F F F F F 

15 E(lU14) :F :F :F :F :F :F :F :F 

16 -,15 T T T T T T T T 

Figure A. 11 : Model checking the safety property in D. The truth values of subfor-

mulas are computed first, leading to the eventual answer in the last row: the system 

satisfies safety (no matter which state you start in). 
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Figure A.12: The BDD representation of the formula a 1\ b (and of aB equiyalent 

formulas, such as -{'Cl V -,b)). 

Figure A.13: The BDD representation of the formula cV -'(0 ---t -,b). 
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Figure A.14: The unreduced form of the a 1\ b BDD from Figure A.12. 

not(not(nd) 

and(nl' n2) 

or(nl~ n2) 

not(and(nl' n2)) 

not(or(I1I.112)) 

and(or(nl, n2). 113) 

or(and(nl' n2), 113) 

cond(not(nd, n2, n3) 

not(cond(nl, rl2. n3)) 

and(cond(nl, n2, n3), n4) 

and(cond(nl, n2, n3), cond(nl, n4, n5)) 

or(cond(nl' n2, n3), n4) 

or(cond(nl' rl2, n3), cond(nl, n4~ n5)) 

and(n2, nI) 

or(n2' nd 

or(not(l1d, not(172)) 

and(not(nl)' not(n2)) 

or(and(171' 17.3)' and(172' rll)) 

and(or(nl, n3), or(n2' Tl.3)) 

cond(nl' n3. n2) 

cond(nl, not(n2), not(n3)) 

cond(nl, and(n2, n4), and(Tl3, n4)) 

cond(nl, and(n2' n4), and(Tl3, n5)) 

cond(nl, or(n2' n4), or(n3, 714)) 

cond(nl' or(n2' n4). or(n3. n5)) 

Figure A.15: Some useful distributivity and commutativity identities relating BDD 

operations. 



Appendix B 

MCMC excerpts 

This chapter collects sorne excerpts from l\fClvIC, the Java implementation dcscribed 

in Chapter 6. lncluded are: 

• the READ:;"IE file describing how ta get started with l\ICl\IC (pages l18-120) 

• a commented sample input file (pages 121-123) 

• a transcript showing l\lC\IC's output on the sample input file (pnges 124-128) 

• a code excerpt from Checker.java: the core methods computeProbabilityO. 

measureO, stepO, and findSatisfyingTraceFromO (pages 129-135) 
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B.I README 

This is the readme file for MCMC, a Markov chain model checker. 

Last updated March 30th, 2003. 

WHAT IT 18: 

MCMC is a Java program for analyzing the properties of labeled Markov 

chains. You enter a description of a Markov chain and an LTL formula, and it 

computes the probability that the formula is true in each node of the Markov 

chain. 

The algorithm used is described in my thesis: 

www.cs.mcgill.ca/-jacob/thesis. 

1N8TALLING: 

These instructions are for running MCMC on a Unix/Linux machine, but it 

will also run on Windows or pretty much any platform supporting Java. 

Copy the file mcmc-0.9.5.tar.gz, available at 

www.cs.mcgill.ca/-jacob/mcmc. into a directory and untar it: 

gunzip mcmc-O.9.5.tar.gz 

tar xvf mcmc-O.9.5.tar 

COMP1LING: 

You'll need Java version 1.2 or higher to compile MCMC: 

cd mcmc-0.9.5 

make 
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This will also generate the javadoc APIs in a docs subdirectory. 

RUNNING: 

From the mcmc-O.9.S dir: 

java MeMe 

Or, for example, to pass in the included sample input file: 

java MeMe < sample-input 

The output should be self-explanatory. It includes: 

the probability of each input formula being satisfied from each state 

in the Markov chain 

- for each formula and state, a satisfying trace and a contradicting 

trace (when the y exist) 

- diagnostic information: execution time, # LTL-BDDs created, # calls to 

measure()/step(), average # variable substitutions/# variable terms 

substituted per substitute() call 

A "satisfying trace" for a formula phi is a path determining phi as true: 

a finite path, every plausible infinite continuation of which (in the given 

Markov chain) satisfies phi. A "contradicting trace" is a path determining 

phi as false. 

That should be enough to get you started. Use sample-input as a template 

and read the examples provided on the command line. Questions or ambiguities 

may be resolved by the comments in classes like mcmc.checker.Checker or 

mcmc.checker.Shell. 

BUGS: 

This is a proof-of-concept implementation and will break down quickly on 
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large input. The simple Markov chain representation is an obvious target for 

improvement. 

Arithmetic is floating-point, 50 probabilities close to 0 or 1 are 

rounded. Do not use MCMC for your air traffic controlling needs. In 

particular, the satisfying/contradicting traces computed for each formula may 

only satisfy it with very high/low probabilities, rather than true 1 or O. 

Atom probabilities must be 1 or O. Intermediate probabilities were 

handled in a previous version, but seemed useless and slowed the program down. 

The code is lightly tested, but on the whole Knuth applies: "Beware of 

bugs in the above code; l have only proved it correct, not tried it." All bug 

reports welcome large or small. 

LICENSE: 

The code is Copyright 2002-2003, Jacob Eliosoff (jacob©cs.mcgill.ca). 

However if you're interested in modifying it or putting it to sorne use my crack 

legal team will probably be amenable. Drop me a line. 

CHANGE HISTORY: 

0.9.5: 

- bounded untils 

- satisfying/contradicting traces 

- more informative output: # BDDs, # substitutions 

- minor changes 
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B.2 Sample input 

# (Comment lines starting with "#" are ignored by the program.) 

# This is a sample input to the MCMC Markov chain model checking program. 

# You can pass it in to the program with a command like this: 

# 

# java MCMC < sample-input 

# 

# And it will parse the labeled Markov chain M below (the matrix, not the 

# diagram), parse the LTL formulas which follow it at the end of the file, and 

# output their probabilities of being true in each state of M. For example, it 

# will say that the formula "a&c" has probability 1 in state 5 and 0 in aIl 

# others, because as shown in the diagram, state 5 is the only state where both 

# a and c are true. 

# See the README file in this direct ory for more usage information. 

# The Markov chain is read in the standard matrix syntax, with a row of 

# outgoing edge probabilities for each state. For example, the 0.7 arrow from 

# state s5 to state 51 in the diagram is represented by the 0.7 in the first 

# column of the fifth row. It indicates that when the Markov chain is in state 

# 5, it has probabili ty 0.7 (70%) of moving to state 1 at the next step. 

# Atom probabilities are in a similar format. For example, the fact that 

# atom c is true (present) only in states 5 and 6 is indicated by the fact 

# the line starting Ile: Il contains l's only in the 5th and 6th colurnns. 

# LTL syntax: 

# 

# 

# 

"T" stands for LTL true and is true in aIl states, "F" for false. 

"! a" asserts "not a" Ca is false in the current state). 

that 

# - "b&c" asserts "b and c" (b and c are both true) , "b 1 c" means "b or c". 

# - "Xb" asserts "next b": b will be true in the next state. 

# "aUb" asserts "a until b": b will eventually be true, and in every 

# state until it's true, a will be true. 

# - "aU[5]b" asserts "a until b within 5 steps": b will be true within 5 

# steps, and in every state until it's true, a will be true. (The bound is 

# inclusive, so, for example, "aU[O]b" is equivalent to "b".) 

# 

# So, "Xc" is 20% likely to be true in state 3, because from state 3 the 

# machine is 80% likely to stay in state 3 (where c is false), and only 20% 

# likely to switch to state 6 where c is true. 

# Another example: "TUa" is true with probability 1 in aIl states, since 

# no matter where you start you'll eventually end up in state 3 or state 4, and 
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# in both a is true. "TUc" is harder. Try to work out "TU! (TU (a&:XXc))" and 

# you'll see why l wrote the program. 

# Markov chain M, as a diagram: 

# 

# 

# 

# 

# 

/ \ 

v 

+-----+ +-----+ +-----+ 

sl 0.8 s2 0.2 s3 

1<---------->1 1----------->1 
a 0.5 b lia b 

+-----+ 

1 -

1 1 0.7 

\ 

\_---------

+-----+ 

\ 

\ 

10.3 

/ 

+-----+ 

0.1 1 1 1 

/ 

---------_/ 
/ 

0.8 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

0.1 0.1 0.2 

v v V v 

+-----+ +-----+ +-----+ 

s4 s5 86 

a a c b c 

+-----+ +-----+ +-----+ 

1 0.2 

\j \j 

# The 8ame Markov chain M in matrix form: 

0 0.8 0 0.1 0.1 0 

0.5 0 0.2 0 0.3 0 

0 0 0.8 0 0 0.2 

0 0 0 1 0 0 

0.7 0 0.1 0 0.2 0 

0 0 1 0 0 0 
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a: 1 

b: 0 

c: 0 

o 
1 

o 

1 

1 

o 

# Input formulas: 

a 

a&c 

X (! a) 

TU(blc) 

Xc 

TUa 

TU [2] c 

TU[lO]c 

TUc 

TU! (TU (a&XXc)) 

1 

o 
o 

1 

o 
1 

o 
1 

1 

# Copyright 2002-2003, Jacob Eliosoff (jacob~cs.mcgill.ca). 
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B.3 Sample transcript 

This chapter shows the output when MCMC is run on the sample input file, with the 

command java MCMC < sample-input. For brevity, trace output was suppressed. 

The machine used for the test was a dual-processor 870-MHz Pentium 3, running 

Debian Linux 3.0 and Java l.3.l. Total execution time was under a second, due to 

the small (6-state) input Markov chain. (For this small M, execution time for the 

more complicated formulas in Figure 4.2 is also under a second.) 

Please enter a Markov chain, as n lines of n outgoing probabilities, followed 

by sorne lines of atorn probabilities (0/1), followed by a blank line: 

Parsed the Markov chain: 

-1- -2- -3- -4- -5- -6-

Edge weights: 

1 : 0 0.8 0 0.1 0.1 0 

2: 0.5 0 0.2 0 0.3 0 

3: 0 0 0.8 0 0 0.2 

4: 0 0 0 1 0 0 

5: 0.7 0 0.1 0 0.2 0 

6: 0 0 1 0 0 0 

Atoms: 

a: 0 1 1 1 0 

b: 0 1 1 0 0 1 

c: 0 0 0 0 1 1 

Now enter formulas to model check, one per line. Examples: 

"a&c" 

"X(! a)" 

"TU(blc)" 

"aU[5] Cil 

(a and c) 

(next not a) 

(true until (b or c» 

(a until c within 5) 

a and c are both true. 

a is false in the next state. 

Eventually b is true, or c (or both). 

a is true until, within 5 steps, c is. 

"trace" toggles traces, "debug" toggles debug output, "quit"l"exit" quits. 

> 

> 

> 
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Trace output off. 

> 

Parsed the formula: 

Calculating ... 

Prob in state 1: 

Prob in state 2: 

Prob in state 3: 

Prob in state 4: 

Prob in state 5: 

Prob in state 6: 

Took 0.012 seconds. 

So far: 

a = a 

1 

0 

1 

1 

1 

0 

3 BDDs created, 3 passed to measure(). 

19 measure() calls (6 nontriv), 12 step() (6). 

6 var subs, avg 0.32 subs (0.0 var terms) per substitute() calI. 

> 

Parsed the formula: a&c (a?c:F) 

Calculating ... 

Prob in state 1: 0 

Prob in state 2: 0 

Prob in state 3: 0 

Prab in state 4: 0 

Prob in state 5: 1 

Prob in state 6: 0 

Took 0.01 seconds. 

50 far: 

5 BDDs created, 4 passed ta measure(). 

38 measure() calls (12 nontriv), 28 step() (16). 

12 var subs, avg 0.32 subs (0.0 var terms) per substitute() calI. 

> 

Parsed the formula: X(! a) X!a 

Calculating ... 

Prab in state 1 : 0.8 

Prab in state 2: 0 

Prob in state 3: 0.2 

Prob in state 4: 0 

Prob in state 5: 0 
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Prob in state 6: 

Took 0.0040 seconds. 

So far: 

o 

7 BDDs created, 6 passed to measure() . 

70 measure() calls (24 nontriv), 58 step() (28). 

24 var SU~3, avg 0.34 subs (0.0 var terms) per substitute() calI. 

> 

Parsed the formula: TU(blc) 

Calculating ... 

Prob in state 1 : 

Prob in state 2: 

Prob in state 3: 

Prob in state 4: 

Prob in state 5: 

Prob in state 6: 

Took 0.0070 seconds. 

So far: 

0.9 

1 

1 

0 

1 

1 

U(T, (b?T:c)) 

11 BDDs created, 8 passed to measure(). 

107 measure() calls (34 nontriv), 91 step() (40). 

34 var subs, avg 0.32 subs (0.0 var terms) per substitute() calI. 

> 
Parsed the formula: Xc Xc 

Calculating ... 

Prob in state 1 : 0.1 

Prob in state 2: 0.3 

Prob in state 3: 0.2 

Prob in state 4: 0 

Prob in state 5: 0.2 

Prob in state 6: 0 

Took 0.0040 seconds. 

So far: 

13 BDDs created, 10 passed to measure(). 

139 measure() calls (46 nontriv), 117 step() (48). 

46 var subs, avg 0.33 subs (0.0 var terms) per substitute() calI. 

> 

Parsed the formula: TUa U(T,a) 

Calculating ... 
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Prob in state 1 : 1 

Prob in state 2: 1 

Prob in state 3: 1 

Prob in state 4: 1 

Prob in state 5: 1 

Prob in state 6: 1 

Took 0.0020 seconds. 

So far: 

15 BDDs created, 11 passed to measure(). 

164 measure() calls (52 nontriv), 143 step() (54). 

52 var subs, avg 0.32 subs (0.0 var terms) per substitute() calI. 

> 
Parsed the formula: TU[2]c (c?T:X(c?T:Xc» 

Calculating ... 

Prob in state 1: 0.34 

Prob in state 2: 0.39 

Prob in state 3: 0.36 

Prob in state 4: 0 

Prob in state 5: 1 

Prob in state 6: 1 

Took 0.0040 seconds. 

So far: 

20 BDDs created, 13 passed to measure(). 

196 measure() calls (64 nontriv), 175 step() (70). 

64 var subs, avg 0.33 subs (0.0 var terms) per substitute() calI. 

> 

Parsed the formula: TU[10]c 

?T:X(c?T:Xc»»»»» 

(c?T:X(c?T:X(c?T:X(c?T:X(c?T:X(c?T:X(c?T:X(c?T:X(c 

Calculating ... 

Prob in state 1 : 0.760044 

Prob in state 2: 0.842524 

Prob in state 3: 0.892626 

Prob in state 4: 0 

Prob in state 5: 1 

Prob in state 6: 1 

Took 0.023 seconds. 

So far: 

52 BDDs created, 21 passed to measure(). 
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306 measure() calls (112 nontriv), 335 step() (150). 

112 var subs, avg 0.37 subs (0.0 var terms) per substitute() call. 

> 

Parsed the formula: TUc = U(T,c) 

Calculating ... 

Prob in state 1 : 0.833333 

Prob in state 2: 0.916667 

Prob in state 3: 1 

Prob in state 4: 0 

Prob in state 5: 1 

Prob in state 6: 1 

Took 0.0080 seconds. 

So far: 

54 BDDs created, 22 passed to measure(). 

345 measure() calls (118 nontriv), 360 step() (156). 

122 var subs, avg 0.35 subs (0.0029 var terms) per substitute() call. 

> 

Parsed the formula: TU!(TU(a&XXc)) U(T, !U(T,(a?XXc:F))) 

Calculating ... 

Prob in state 1: 0.330579 

Prob in state 2: 0.252066 

Prob in state 3: 0 

Prob in state 4: 1 

Prob in state 5: 0.289256 

Prob in state 6: 0 

Took 0.053 seconds. 

Sa far: 

74 BDDs created, 31 passed to measure(). 

> 

> 

> 

443 measure() calls (154 nontriv), 511 step() (210). 

192 var subs, avg 0.43 subs (0.0474 var terms) per substitute() call. 
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B.4 Code excerpt: Checker.java 

This excerpt contains the core methods from Checker . java: computeProbabili tyO \ 

measureO, stepO, and findSatisfyingTraceFromO. 

1** 
* Computes the probability that node s ln the MarkovChain satisfies LTL 

* formula phi, ie, the probability that an infinite path starting from s 

* satisfies phi. 

* <p> 

* The essential idea is to "step" P: for P to be true in s, what must be 

* true in the node following s? (See step().) Based on this unwinding, 

* the algorithm builds equations relating the probabilities of different 

* formulas in different nodes, then solves the resulting system of 

* equations. 

* <p> 

* The checker caches data about the MarkovChain, so it will screw up if 

* the MarkovChain is modified between calls to this method. 

* 
* ©param phi an LTL-BDD. 

* ©param s index of a node in the MarkovChain (1 to n, not 0 to n-l). 

* ©return the probability of phi being satisfied by a path starting at 

* the given node. Results are cached - the second call with the same 

* arguments will be fast. 

* ©see #stepCBDD, int) 

*1 
public double computeProbability(BDD phi, int s) 

{ 

} 

Expression solution = measure(phi, s); 

if (solution.getVariableCoefficients().isEmpty(» { 

1* Solution expression is a scalar, as desired: *1 
return solution.getScalarTerm(); 

} else { 

} 

1* Solution expression has Variables - wasn't fully solved. This 

should never happen: *1 
throw new RuntimeException(IISolution to computeExpression(" + phi + 

", Il + S + ") isn't scalar: Il + solution); 
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* ~param phi an LTL-BDD. 

* ©param s index of a node in the MarkovChain (1 to n, not 0 to n-l). 

* ©return a trace starting from the given state which determines phi as 

* true, ie, a finite path P in the Markov chain such that every plausible 

* infinite continuation of P satisfies phi. 

* <p> 

* The trace is represented as an array of state ints (1 to n, not 0 to 

* n-l). Eg, the array [1,3,lJ represents the trace (sl,s3,sl). 

* <p> 

* If no such trace exists in the Markov chain for the given phi and s, 

* returns null. (This implies that the no plausible path from s satisfies 

* phi, which implies that the probability that a path from s satisfies phi 

* is O.) 

* <p> 

* This method looks for a short trace, but no guarantees are made about 

* the length (ie, it may not be the shortest). 

*/ 
public int[J findSatisfyingTraceFrom(BDD phi, int s) 

{ 

ArrayList trace = new ArrayList(); 

double prob, highestProb; 

ArrayList choices = new ArrayList(); 

int choicelndex; 

while (true) { 

trace.add(new Integer(s)); 

prob = computeProbability(phi, s); 

Log.debug("Added Sil + s + Il to trace (prob Il + prob + ") ... "); 

/* Approximate - values very close to 0 or 1 (within 

Precision.PRECISION) are counted as 0/1: */ 

if (prob < Precision. PRECISION) { 

return null; 

} el se if (prob > (1 - Precision. PRECISION)) { 

int length = trace.size(); 

int[] result = new int[length]; 

for (int i = 0; i < length; ++i) { 

result[iJ = «Integer)trace.get(i)).intValue(); 

} 

return result; 
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} 

} 

} el se { 

} 

/* Find the successor state in which stepCphi, s) is most 

likely to be satisfied: */ 

phi = stepCphi, s); 

highestProb = 0; 

choices. clear 0 ; 
for (int i = 1, z = iMarkovChain.getNumberOfNodes~); i <= z; 

Hi) { 

} 

if CiMarkovChain.getEdgeWeightCs, i) > 0) { 

prob = computeProbability(phi, i); 

} 

if Cprob > highestProb + Precision.PRECISION) { 

choices.clearC); 

choices.addCnew IntegerCi»; 

highestProb = prob; 

} else if (prob == highestProb) { 

choices.add(new IntegerCi»; 

} 

choiceIndex = (int)(Math.randomC) * choices.sizeC»; 

s = «Integer)choices.get(choiceIndex».intValue(); 

1** 
* Computes an Expression representing the probability that the specified 

* node in the MarkovChain satisfies the given LTL formula. 

* 
* ~param phi an LTL-BDD. 

* ~param s index of a node in the MarkovChain (1 to n, not 0 to n-l). 

* ©return an Expression representing the probability of phi being true in 

* node s. 

* ©see #computeProbability(BDD, int) 

*1 
protected Expression measure(BDD phi, int s) 

{ 

++iMeasureCount; 

MEASURE_BDDS.add(phi); 

131 



APPENDIX B. MCMC EXCERPTS 

Expression solution; 

if Cphi instance of BDDBoolean) { 

/* Trivial case: */ 

solution = C Cphi BDDBoolean.TRUE) ? ONE_EXPRESSION: 

ZERO_EXPRESSION); 

} else { 

/* Check the cache: */ 

Integer sInteger = new IntegerCs); 

solution = CExpression)MEASURE_CACHE.getCphi, sInteger); 

if Csolution == null) { 

++iNontrivialMeasureCount; 

/* Create and cache a Variable representing the solution: */ 

solution = new ExpressionC); 

Variable x = new VariableC); 

solution.add(1, x); 

MEASURE_CACHE.put(phi, sInteger, solution); 

/* Solve recursively by stepping: */ 

Expression expr = new Expression(); 

int nNodes = iMarkovChain.getNumberOfNodes(); 

BDD phiPrime; 

double edgeWeight; 

phiPrime = stepCphi, s); 

for Cint sPrime = 1; sPrime <= nNodes; ++sPrime) { 

edgeWeight = iMarkovChain. getEdgeWeight Cs , sPrime); 

if (edgeWeight > 0) { 

expr.add(edgeWeight, 

measure(phiPrime, sPrime»; 

} 

} 

/* Equate the recursive solution with the Variable. This step 

should (eventually) reduce every solution Expression to a 

scalar, so that computeProbability() works: */ 

try { 

solution = expr.solveFor(x); 

} catch CUnsolvableEquationException e) { 
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} 

} 

} 

} 

e.printStackTrace(); 

throw new RuntimeException( 

"Unexpected exception while solving " + 

"computeExpression(II + phi + ", " + S + "): " + e); 

x.substitute(solution); 

return solution; 

/** 

* Computes what must be true at the next step for the given formula phi to 

* be true at this step, based on the atom truth values in the current 

* node s. Examples: 

* <ul> 

* <li>step(T, s) = T 

* <li>step(Xb, s) = b 

* <li>step(c, s) = T if s(c) (that is, if c is true in s), F if !s(c) 

* <li>step«Xc)&amp;(aUb), s) is c if s(b); F if !s(b) and !s(a); and 

* c&amp;(aUb) if !s(b) and s(a) 

* <li>step«!a)UF, s) is F 

* </ul> 

* Note that, as in the last of these examples, step(phi, s) always returns 

* F if phi is an unrealizable until (an until of the form PUQ, where the 

* probability of Q being satisfied is 0 in every node reachable from no de 

* s). 

* 
* ©param phi an LTL-BDD. 

* ©param s index of a node in the MarkovChain (1 to n, not 0 to n-l). 

* ©return the LTL-BDD which must be true at the next node for phi to be 

* true at the current node. 

*/ 

protected BDD step(BDD phi, int s) 

{ 

++iStepCount; 

BDD phiPrime; 

if (phi instanceof BDDBoolean) { 

/* Trivial case: */ 
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phiPrime = phi; 

} else { 

/* Check the cache: */ 

Integer sInteger = new Integer(s); 

phiPrime = (BDD)STEP_CACHE.get(phi, sInteger); 

if (phiPrime == null) { 

++iNontrivialStepCount; 

BDDCond phiCond = (BDDCond)phi; 

LTLBDDAtom alpha = (LTLBDDAtom)phiCond.getVariable(); 

BDD psi = phiCond.getTrueCase(); 

BDD omega = phiCond.getFalseCase(); 

BDD alphaPrime = null; 

if (alpha instanceof LTLAtom) { 

LTLAtom alphaAtom = (LTLAtom) alpha; 

String atom = alphaAtom.getAtom(); 

alphaPrime = (iMarkovChain.isAtomTrue(atom, s) ? 

BDDBoolean.TRUE : 

BDDBoolean.FALSE) ; 

} else if (alpha instanceof LTLNext) { 

LTLNext alphaNext = (LTLNext) alpha; 

BDD tau = alphaNext.getSubformula(); 

alphaPrime = tau; 

} el se if (alpha instanceof LTLUntil) { 

LTLUntil alphaUntil = (LTLUntil) alpha; 

BDD tau = alphaUntil.getSubformulal(); 

BDD upsilon = alphaUntil.getSubformula2(); 

BDD tauUntilUpsilon = LTLBDDFactory.until(tau, upsilon); 

/* Check if the until is realizable: */ 

if ((psi != BDDBoolean.TRUE) Il 

(omega != BDDBoolean.FALSE» { 

/* Delegate (so each until is only checked once): */ 

alphaPrime = step(tauUntilUpsilon, s); 

} else { 

/* Check directly: */ 

TreeSet reachableNodes = getReachableNodesFrom(s); 

Iterator tlter = reachableNodes.iterator(); 
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} 

} 

} 

} 

} 

boolean allProbsZero = true; 

for (int t; allProbsZero && tlter.hasNext();) { 

t = «Integer)tlter.next(».intValue(); 

allProbsZero &= 

(computeProbability(upsilon, t) == 0); 

} 

if (allProbsZero) { 

/* The until is unrealizable, so substitute F: */ 

alphaPrime = BDDBoolean.FALSE; 

} else { 

} 

BDD tauPrime = step(tau, s); 

BDD upsilonPrime = step(upsilon, s); 

alphaPrime = 

upsilonPrime.or(tauPrime.and(tauUntilUpsilon» ; 

if (alphaPrime == BDDBoolean.TRUE) { 

/* So, needn't bother computing omegaPrime: */ 

BDD psiPrime = step(psi, s); 

phiPrime = psiPrime; 

} else if CalphaPrime == BDDBoolean.FALSE) { 

/* Similarly, needn't bother computing psiPrime: */ 

BDD omegaPrime = stepComega, s); 

phiPrime = omegaPrime; 

} else { 

BDD psiPrime = stepCpsi, s); 

BDD omegaPrime = step(omega, s); 

phiPrime = alphaPrime.condCpsiPrime, omegaPrime); 

} 

STEP_CACHE.put(phi, sInteger, phiPrime); 

return phiPrime; 
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