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ABSTRACT 

The thesis focuses on efficient solutions of non-cooperative pursuit-evasion games 
with imperfect information on the sta.te of the system. This problem is important 
in the context of interception of future maneuverable ballistic missiles. However, the 
theoretical developments are expected to find application to a broad class of hybrid 
control and estimation problems in industry. The validity of the results is nevertheless 
confirmed using a benchmark problem in the area of terminal guidance. A specifie 
interception scenario between an incoming target with no information and a single 
interceptor missile with noisy measurements is analyzed in the form of a linear hybrid 
system subject to additive abrupt changes. 

The general research is aimed to achieve improved homing accuracy by integrat­
ing ideas from detection theory, state estimation theory and guidance. The results 
achieved can be summarized as follows. (i) Two novel maneuver detectors are devel­
oped to diagnoze abrupt changes in a class of hybrid systems (detection and isolation 
of evasive maneuvers): a new implementation of the GLR detector and the novel 
adaptive-Jtô GLR detector. (ii) Two novel state estimators for target tracking are 
derived using the novel maneuver detectors. The state estimators employ parameter­
ized family of functions to described possible evasive maneuvers. (iii) A novel adaptive 
Bayesian multiple model predictor of the ballistic miss is developed which employs 
semi-Markov models and ide as from detection theory. (iv) A novel integrated esti­
mation and guidance scheme that significantly improves the homing accuracy is also 
presented. The integrated scheme employs banks of estimators and guidance laws, 
a maneuver detector, and an on-line governor; the scheme is adaptive with respect 
to the uncertainty affecting the probability density function of the filtered state. (v) 
A novel discretization technique for the family of continuous-time, game theoretic, 
bang-bang guidance laws is introduced. The performance of the novel algorithms is 
assessed for the scenario of a pursuit-evasion engagement between a randomly ma­
neuvering ballistic missile and an interceptor. Extensive Monte Carlo simulations are 
employed to evaluate the main statistical properties of the algorithms. 

The thesis demonstrates the following. (1) The adaptive-ffo GLR detector de­
livers a more efficient and reliable diagnosis of evasive maneuvers than the origi­
nal GLR detector. (2) Modeling of the target behavior by parametric families of 
functions permits to improve the accuracy of the state estimate. (3) Modeling 
of the future evasive maneuvers by semi-Markov models and their prediction by a 
Bayesian multiple model approach improves the homing accuracy of the terminal 
guidance. (4) The adaptation of the state estimator and the guidance law with re­
spect to the probability density of the filtered state within the integrated scheme 
provides for further tuning of the terminal guidance scheme. (5) The discretization 
scheme for the bang-bang guidance laws is important and much simpler in appli­
cation. Moreover, the homing accuracy achieved by using the discretized law is 



III 

at least as good as that achieved by the original game theoretic guidance laws. 

RÉSUMÉ 

Le focus de la thèse vise la solution efficace de jeux de poursuite-évasion non­
coopératifs dans le contexte d'une information imparfaite sur l'état du système. Ce 
problème est important dans le cadre de l'interception de future missiles ballistiques 
maneuverables. Cependant, il est attendu que les développements théoriques de la 
thèse trouveront application dans une vaste classe de problèmes de commande hybride 
et d'estimation affectant l'industrie. La validité des résultats est néanmoins confirmée 
en utilisant un problème type du domaine du guidage terminal. Spécifiquement, un 
scénario d'interception entre une cible entrante, ayant accès à aucune information, 
et un seul missile intercepteur, avec des mesures bruitées, est analysée sous la forme 
d'un système linéaire hybride sujet à des changements additifs brusques. 

L'ensemble de la recherche vise à atteindre une amélioration de la précision de 
guidage en intégrant des idées provenant de la théorie de la détection, de la théorie 
de l'estimation and du guidage. Les résultats obtenus peuvent être résumé comme 
suit. (i) Deux nouveaux détecteurs de maneuvre sont développés pour diagnoser les 
changements brusques dans une classe de systèmes hybrides (détection et isolation 
de maneuvres): une nouvelle implantation du détecteur GLR et le nouveau détecteur 
GLR adaptatif-&o. (ii) Deux nouveaux estimateurs d'état pour la poursuite de cible 
sont dérivés en utilisant les nouveaux détecteurs de maneuvre. Les estimateurs d'état 
emploient des familles paramétrisées de function pour décrire les possibles maneu­
vres d'évasion. (iii) Un nouveau prédicteur bayésien adaptatif à modèle multiple 
de la distance de passage ballistique est développé en employant des modèles semi­
markoviens et des idées provenant de la théorie de la détection. (iv) Une nouvelle 
approche intégrée de l'estimation et du guidage permettant d'améliorer significative­
ment la précision du guidage est aussi présentée. (v) Une nouvelle technique de 
discrétisation pour une famille de lois de guidage en temps continu de type bang-bang 
et provenant de la théorie des jeux est introduite. La performance des nouveaux algo­
rithmes est déterminée pour le scénario d'engagement de poursuite-évasion entre un 
missile ballistique maneuvrant au hasard et un intercepteur. Des simulations Monte 
Carlo extensives sont employées pour évaluer les propriétés statistiques principales 
des algorithmes. 

La thèse démontre ce qui suit. (1) Le détecteur GLR adaptatif-&o délivre un di­
agnostic des maneuvres d'évasion plus efficace et fiable que le détecteur GLR original. 
(2) La modélisation du comportement de la cible par des familles paramétrisées de 
function permet d'améliorer la précision de l'estimation d'état. (3) La modélisation 
des maneuvres d'évasion futures par des modéles semi-markoviens et leur prediction 
par une approache bayésienne à modèle multiple améliore la précision guidage ter-
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minaI. (4) L'adaptation de l'estimateur d'état et de la loi de guidage par rapport 
à la densité de probabilité de l'état filtré livre, à l'intérieur de l'approche intégrée, 
un réglage supplémentaire du système de guidage terminal. (5) La technique de 
discrétisation pour les lois de guidage de type bang-bang est importante en ce qu'elle 
simplifie leur application. De plus, la précision du guidage obtenue par l'utilisation 
des lois discrétisées est au moins aussi bonne que celle obtenue par les lois de guidage 
originales provenant de la théorie des jeux. 
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ORIGINALITY AND CONTRIBUTIONS 

The original contributions of the thesis comprises the development and the analysis 

of: 

• Two novel maneuver detector algorithms that significantly extend the work of 

Willskyand Jones (1976) to the detection and isolation of target maneuvers in 

the situation when the value of the target acceleration is unknown at aU times. 

The novel detectors are adaptive in the sense that they estimate on-line the 

parameters required for the isolation procedures, see Refs. [21, 28]. 

• Two novel state estimators for jump-Gaussian linear systems. The novel esti­

mators are finite dimension al and recursive Gaussian sum filters that employ 

an adaptive and variable bank of models to approximate the probability distri­

bution function of the state, see Refs. [20, 22, 23, 24] 

• A novel algorithm to calculate the ballistic miss in pursuit-evasion scenarios in­

volving a maneuvering target. The novel algorithm is a multiple model Bayesian 

predictor employing a set of adaptive semi-Markov models to describe the target 

behavioral pattern, see Ref. [27]. 

• A novel design of a guidance law which takes into account the uncertainty in the 

estimate of the target acceleration and which compensates for the interactions 

between the guidance systems and the estimation systems. The novel design 

employs a maneuver detector, banks of estimators and guidance laws, and an 

on-Hne governor, see Refs. [25, 26, 21, 29]. 

• A novel discretization scheme for continuous-time stabilizing bang-bang control 

laws. The discretized control law takes the form of a bounded linear guid­

ance law and is a discrete-time analytical equivalent of the original nonlinear, 

continuous-time, controllaw, see Ref. [19]. 
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Chapter 1 

Introduction 

T HIS chapter discusses the most important results reported in the literature 

and concerning change detection and state estimation in linear jump-Gaussian 

systems, as weIl as guidance in terminal pursuit evasion problems, in as far as they are 

relevant for the problems considered in this thesis. The motivation for the research 

is then provided. 

1.1 Detection 

Many stochastic processes encountered in applications such as target tracking, pattern 

recognition, and fault detection are characterized by the occurrence of abrupt changes 

at unknown time instants. An abrupt change is defined as a rapid change (a change 

which occurs over a single time interval) in the probability density function of a 

process, cf. [10]. The detection is the task of deciding whether an abrupt change 

occurred in a given observed process. There is a vast number of references in both 

the statistics and engineering literature concerning the detection of sudden changes 

occurring in either signaIs or systems. Recent surveys of the various approaches are 

1 
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provided in Refs. [9, 10,37,48,81]. As is pointed out in Ref. [9], p. 5, the basic strategy 

used in many change detection problems typically consists of two steps. First, the 

problem is transformed into a standard form by generating certain "residuals". The 

residuals are artificial measurements designed to refiect possible changes of interest 

in the analyzed signal or system. The value of the residuals is, for example, zero 

while no change occurs. Next, sophisticated statistical methods solve the detection 

problem in terms of the residuals. The first step very much depends on the model 

used for the specific application under consideration while the second step, referred to 

as the "change detection problem", is performed by the detection algorithm. There 

are many diverse detection algorithms presented in the literature. These algorithms 

can be classified in terms of the following requirements: 

• Discrete versus continuous time. Observations may be acquired continu­

ously in time or, else, at discrete time instants. The length of the time intervals 

between discrete time measurements is either constant or, else, varies according 

to sorne rules. 

• On-Hne versus off-Hne detection. All observations may be available in 

advance so that they can be processed simultaneously, or they may have to be 

processed on-line. 

• Performance criterion. All algorithms contain a statistical trade-off be­

tween the speed at which changes are detected and the risk of generating "false 

alarms". The exact formulation of this trade-off may differ between the algo­

rithms. 

• Information concerning the change. By the very nature of the problem, 

the time at which a change occurs is unknown a priori, but the assumptions 

concerning the signal before and after the change vary widely. Important dis­

tinctions include the number of change points and the possible knowledge of 

the statistical distributions of the signal before and after the change. 
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• Isolation of the change. The isolation is the task of characterizing the nature 

of the abrupt change after its detection. Most detection algorithms cannot 

isolate the detected changes. The joint task of detecting and isolating a change 

is referred to as the diagnosis of a change, cf. [37]. 

In this thesis, the research concerning the detection of abrupt changes is limited 

to on-line detection and isolation methods for discrete-time observations containing 

one or more additive abrupt changes. The exact statistical distribution of the signal 

before and after the change is unknown but is assumed to belong to a parametric 

family of distributions. In the case of multiple change points, only "slowly-varying" 

systems are considered, i.e., systems for which the ratio between the large st time 

constant in the dynamics and the lower bound for the length of the time interval 

between the sequential changes is sufficiently small. The slowly-varying assumption 

permits to diagnoze individually the multiple change points. 

The restriction to on-line algorithms implies the study of sequential detection 

methods. Such methods are necessary when an early warning of a change needs to 

be generated from data that are fiowing in, and processed, as time progresses. Most 

sequential detection methods compare, at every time instant, a certain functional 

of the measurements with a certain a priori specified threshold. To position the 

contributions of this thesis in a broader context, various likelihood based and Bayesian 

based methods are reviewed below. 

1.1.1 Bayesian Methods 

For a given fixed probability of false alarm, the Bayesian methods provide the optimal 

detection rule minimizing the expected delay of detection, cf. [87]. The main ide a 

of these methods is to use the a posteriori probability calculations to decide that a 

change has occurred, i.e., a detection occurs when the conditional probability of a 
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change exceeds a conveniently chosen threshold. The performance criterion of the 

Bayesian methods is such that that the cost of a false alarm is one and that the cost 

of each observation after an abrupt change is c. Hence, the Bayesian cost function to 

be minimized is: 

c>o (1.1 ) 

where k* is the time instant of the abrupt change and yk is the a-algebra of all the 

measurements collected up to k. The Bayesian cost function can be rewritten in terms 

of the conditional probability, Pr(k > k*lyk), that a change has occurred before time 

instant k: 

J(k) ~ E [(1- Pr(k > k*lyk)) + C ~ Pr(k > k*lyk)] (1.2) 

Assuming that the distributions of the observations before and after the change are 

known, it can be shown that the process {Pr(k > k*lyk), k > o} is a sub-martingale 

with respect to the filtration generated by the observations and that the conditional 

probabilities can be recursively calculated using the Bayes' rule, cf. [81]. Then, for 

sorne a priori distributions of the time of change, a recursive optimal detection rule 

with the cost as in (1.1) can be explicitly derived; for example, in Ref. [74] the 

optimal detection rule was obtained in the case when Pr(k < k*) has a geometric 

distribution. 

Assuming that the distribution of the observations after the change is unknown, 

the conditional probability of a change loses, in general, its Markov property, cf. [81] 

and references therein. The latter fact disallows a recursive optimal detection rule. 

An important exception occurs in the case of hidden Markov models for which the 

distribution of the observations after the change is a member of a known finite set. 

Then, the conditional probability of a change point can be recursively calculated and 

recursive optimal detection rules can be formulated, cf. [31]. 
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1.1.2 Likelihood Methods 

The likelihood methods employa set of likelihood functions associated to a set of 

hypotheses. The hypotheses de scribe admissible abrupt changes in the input. These 

methods diagnoze abrupt changes in a suitably chosen process with the aid of a se­

quential probability ratio test (SPRT) applied to likelihood functions. When the 

distribution of the observations before and after the change are known and when the 

observations are discrete, the CUSUM algorithm, a likelihood based method intro­

duced in Ref. [60], provides the recursive optimal detector in terms of the worst mean 

detection delay, cf. [59, 62]. A continuous-time analogue was recently presented in 

Ref. [75] with similar recursive and optimal properties as its discrete-time counterpart. 

When the exact distribution of the observations after the change is unknown, 

two possible solutions were suggested provided that the distribution belongs to a 

parametric family of distributions, cf. [83]. Both solutions are recursive if the number 

of considered hypotheses is bounded from above. The first solution relies on weighting 

the likelihood ratios with respect to aIl admissible distribution of the observations 

after the change using a probability measure. In the second solution, the unknown 

distribution is replaced by its maximum likelihood estimate and basically results in 

a generalized likelihood ratio (GLR) algorithm, first introduced in Ref. [85]. For a 

fixed false alarm probability, the GLR algorithm is asymptotically optimal in terms 

of the minimum average delay of detection as the false alarm probability goes to zero, 

cf. [49]. 

1.2 State Estimation 

The state estimation problem is to estimate sequentially the state of a dynamical 

system using a sequence of noisy measurements of the output from the system. The 
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probabilistic formulation of the problem and the requirement for updating the infor­

mation on receipt of new measurements render the problem well suited for a solution 

via the Bayesian approach. The Bayesian approach to dynamic state estimation 

constructs the posterior probability density function (pdf) of the state based on all 

available information. This pdf embodies all available statistical information and it 

may be regarded as to be the complete solution to the estimation problem, cf. [61]. 

At time instant k when a measurement y(k) becomes available, the pdf of the 

state can be expressed using the Bayes' rule: 

(x(k) Iyk) = p (y(k)lx(k)) p (x(k) IYf-l) 
p p (y(k) IYf-l) (1.3) 

where Yf is the a-algebra generated by the measurements: 

Yf 6 a{y( s) : 1 < s ::; k} (1.4) 

Suppose that the pdf of the state at time k - 1 is available, then the predicted pdf at 

time k, p (x(k) IYf-l ), is obtained via the Chapman-Kolmogorov equation, cf. [61]: 

p (x(k) IYf-l) = J p(x(k)lx(k - l))p (x(k - 1) IYf-l) dx(k - 1) (1.5) 

and the normalizing constant in (1.3), p (y(k) IYf-1
), is given by: 

p (y(k) IYf-l) = J p (y(k)lx(k)) p (x(k) IYf-l) dx(k) (1.6) 

The recursive propagation of the posterior pdf given by (1.3)-(1.6) is only a conceptual 

solution in the sense that it cannot be determined analytically. The implementation 

of the conceptual solution requires the storage of the entire pdf which is, in general, 

equivalent to an infinite dimensional vector. Only in a restrictive set of cases can the 

pdf be exactly and completely characterized by a sufficient statistic of fixed and finite 

dimension. Such is the case of a finite dimensional Gaussian linear system which gives 

rise to the Kalman filter, cf. [2]. 

Many continuous-time dynamical systems have often a time-variable structure in 

the sense that they are subject to structural changes occurring at discrete points in 
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time and with only partly known characteristics. The latter are conveniently rep­

resented as hybrid systems which are combinat ions of continuous-time systems and 

discrete-event systems. The major challenge in state estimation for such systems 

arises from the presence of two types of uncertainties: the measurement uncertainty 

and the uncertainty about the current structure of the system. Optimal state esti­

mation in stochastic linear hybrid systems is, in general, computationally intractable 

as it often fails to translate into a finite recursive state estimation scheme, cf. [47]. 

In this thesis, state estimation is limited to jump-Gaussian linear systems. The 

latter are hybrid systems characterized by an input which is both unknown and 

subject to abrupt changes. Several suboptimal state estimators have been proposed 

for jump-Gaussian linear systems. To situate the contributions of this thesis in a 

broader context, the following practical approaches for state estimation in jump­

Gaussian linear systems are reviewed: Gaussian approximations, Gaussian sum filters, 

decision-directed approaches, grid-based methods, and particle filters. 

1.2.1 Gaussian Approximations 

The members of this class of suboptimal filters are analytic approximations which 

enforce the pdf of the state to be Gaussian. To yield a Gaussian pdf, the original 

system is first approximated by a linear Gaussian system. Then, a Kalman filter is 

applied to the approximate linear Gaussian system. For our purpose, the relevant 

members of this class of filters are the extended Kalman filter (EKF), cf. [2], and the 

Kalman filter augmented with a, so-called, shaping filter, cf. [7]. These two filters 

differ in the way the approximate linear Gaussian system is generated. 

The EKFs approximate the original system by use of a local linearization tech­

nique, cf. [2]. The EKF can be an adequate approach when the original system is 

not subject to abrupt changes. In the presence of abrupt changes, the pdf of the 
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state is in general multi-modal and the locallinearization technique do es not capture 

adequately the dynamics of the system, cf. [61]. 

The Kalman filter augmented with a shaping filter applies to linear Gaussian 

systems with an unknown input. This filter obtains a linear Gaussian approximation 

by removing the unknown input and by augmenting the system with a companion 

linear system (the so-called shaping filter). The corn pan ion Gaussian linear system is 

selected in such a way that the distribution of its companion state matches the first 

two moments of the distribution of the unknown input process. For jump-Gaussian 

linear systems, the most corn mon shaping filters are the Wiener process input model 

shaping filter, cf. [7], and the Singer's shaping filter, cf. [76]. The Wiener process input 

model shaping filter approximates the unknown input by a Brownian motion. This 

model is appropriate when the distribution of the jumps follows a Poisson distribution 

since the two first moments of the Wiener and Poisson processes are the same, cf. [32]. 

The Singer's shaping filter approximates the unknown input by a correlated process 

noise. The distribution of this correlated process noise is selected to have the same 

first two moments as the distribution of a random telegraph wave. 

1.2.2 Gaussian Sum Filters 

The Gaussian sum filters are analytical approximations to (1.3)-(1.6) in which the 

pdf of the state is approximated by a Gaussian mixture: 

qk 

P (x Iyk) ~ L w7 N (x:; xi(klk), Pi(klk)) (1.7) 
i=l 

where wf are normalizing weights and xi(klk) and Pi(klk) are outputs of filters 

matched to given linear Gaussian models. Such an approximation can be made as 

accurate as desired by employing a sufficient number of mixture components and it 

can naturally approximate a multi-modal pdf. The problem resides in designing a 

recursive and finite dimensional procedure to calculate w7, xi(klk), and Pi(klk). 
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In jump-Gaussian linear systems, the bank of model-matched filters is introduced 

to de scribe possible behaviors of the system. However, a perfect description of the pdf 

of the state by (1. 7) is impractical since it requires an exponentially growing number 

of models, cf. [52]. Hence, certain model management techniques are required to limit 

the number of models. The model management techniques usually involve either the 

merging of similar models or the pruning of unlikely models. A comparison of both 

techniques is provided in Ref. [42]. 

The interacting multiple model (IMM) estimator is an acclaimed procedure for 

state estimation in jump-Gaussian linear systems. The IMM estimator employs a 

merging technique for model management and was first presented in Refs. [13, 14]. 

The IMM estimator consists of a bank of q models selected a-priori. The model­

matched filters are then re-initialized at each time instant by "mixing" of the models: 
q 

xi(k - 11k - 1) = L 1l7j- 1Xj(k - 11k - 1) (1.8) 
j=l 

q 

Pi(k - 11k - 1) = L 1l7j- 1 [Pj(k - 11k - 1) + (xj(k - 11k - 1) - xi(k - 11k - 1)) x 
j=l 

(Xj(k - 11k - 1) - xi(k - 11k - l))T] (1.9) 

The mixing probabilities, 1l7j-
1

, are calculated from the Markovian transition prob­

abilities between the models (a priori known) and from the conditional probability 

of each model being true. The state estimate is obtained by a probabilistic mixture 

of the model-matched estimates weighted using the conditional probabilities of the 

models. 

1.2.3 Decision Directed Methods 

This class of suboptimal filters employs a governor which selects on-line (at each 

time instant) a model from a pre-defined bank of models. The state estimate is 

the model-matched estimate of the selected model. The selection is based on the 
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output from a detector. The most notable members of this class of estimators are 

the decision directed adaptive estimator, cf. [58], and the variable state dimension 

(VSD) estimator, cf. [5]. Both estimators employa detector to detect the occurrence 

of a maneuver. The detector detects changes in the mean of the pdf of the state. 

Whenever a maneuver is detected, a new model is selected from the bank and the 

most recent measurements are re-processed. However, the detectors employed are 

non-parametric and hence cannot isolate the characteristics of the maneuver. Thus, 

whenever a new model is selected, the number of observations to be re-processed is 

unknown and must be estimated from a-priori information. 

The decision directed adaptive estimator employs a Kalman filter augmented with 

a shaping filter. The shaping filter requires the selection of sorne parameters, most 

notably the variance parameter. The underlying assumption is that the Kalman filter 

with a shaping filter should act as a whitening filter while minimizing the value of 

the variance parameter. The decision directed adaptive estimator employs a bank of 

values for the variance parameter and the value in effect is selected on-line as follows. 

First, the detector monitors the residuals of the filter. Next, whenever the detected 

mean of the residuals deviates from zero, a higher value for the variance parameter 

is selected. 

The VSD estimator employs a bank of models which have different state dimen­

sions and a detector which monitors the residuals of the filter. When the detector 

detects a deviation from zero in the means of the residuals, the governor triggers the 

selection of a model of a higher dimension and re-processes the most recent observa­

tions using the newly selected model. 
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1.2.4 Input Estimation Methods 

In this class of methods, an estimate of the value of the unknown input is obtained by 

inversion of the dynamical system and yields astate estimate associated with the value 

of the estimated input, cf. [15]. This technique requires to perform a least square fit 

over the measurements conditioned on a dynamical system model and thus requires 

an assumption concerning the dynamical profile of the unknown input (the usual 

assumption is that the value of the unknown input is constant). AIso, the least square 

fit can be performed only over a sliding window of the most recent measurements in 

order to avoid a continuous increase of the computational requirements. This class 

of estimators is generally characterized by slower convergence as compared to other 

techniques such as the IMM estimator and is also more computationally demanding, 

cf. [6, 7]. 

1.2.5 Grid-Based Methods 

This class of nonlinear filters performs a numerical integration in order to solve the 

multidimensional integrals in (1.3)-(1.6). These methods can provide an exact pdf 

of the state if the state space is discrete. Then, the approach is finite dimensional 

if the number of states is finite. For continuous state space, the grid-based methods 

requires the discretization of the state space into N cells and the discretization of the 

integrals (1.5) and (1.6) over the trellis of cells, as follows: 

p(x(k)ly~-l) = J p(x(k)lx(k -l))p(x(k -l)ly~-l)dx(k -1) (l.lOa) 

N 

~ L wi(klk - l)<5(x(k) - xi(k)) (1.1Gb) 
i=l 
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p(y(k)IYf-l) -:- J p(ylx(k))p(x(k)IYf-l) dx(k) 

N 

~ L wi(klk - 1) J p (y(k)lx) dx 
i-l 
- XEXi(k) 

N 

~ L wi(klk - l)p (y(k)lxi(k - 1)) 
i=1 

N 

wi(klk - 1) [), L wj(k - 11k - 1) J p (xlxj(k - 1)) dx 
j=1 

N 

~ L wj(k - 11k - l)p (xi(k)lxj(k - 1)) 
j=1 

wi(klk - 1) J p (y(k)lx) dx 
[), XEXi~) 

wi(klk) = p(y(k)IYf-l) 

wi(k - 11k - l)p (y(k)lxi(k - 1)) 
~ p(y(k)IYf-l) 

where xi(k - 1) denotes the center of the ith cell at time instant k - 1. 

12 

(1.11a) 

(1.11b) 

(1.11c) 

(1.12a) 

(1.12b) 

(1.13a) 

(1.13b) 

For systems which can be represented by a hidden Markov model, the grid-based 

methods can successfully find the full pdf of the system, cf. [57]. However, the gr id­

based methods have several disadvantages, cf. [61]. The gr id must be sufficiently 

dense to deliver a good approximation of a continuous state space. As the dimen­

sionality of the state space increases the computational cost of the approach increases 

dramatically. If the state space is not finite, a grid-based approach necessitates sorne 

imposed limitation of the state space. The state space must also be partitioned into 

cells a priori; the last implies that the resolution of the discretization cannot be later 

enhanced in the regions with high conditional probabilities. 

The Viterbi algorithm, first presented in Ref. [82], is one of the most popular 

grid-based methods and is extensively used in speech processing. The state estimate 

is obtained from the path of the maximum a posteriori probability through the trellis. 
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That is, the state estimate is the last component of the sequence of discrete states 

that, given the measurements, maximizes the probability of the state sequence. 

1.2.6 Particle Filters 

This class of nonlinear filters performs numerical integrations in order to solve the 

multi-dimensional integrals in (1.3)-(1.6) to yield a pdf of the state. The numeri­

cal integrations are carried out by a sequential Markov chain Monte Carlo (MCMC) 

technique which can be viewed as a randomized adaptive gr id approximation. The 

MCMC technique employs N particles which evolve randomly in time according to 

sorne a priori selected dynamics and, at each time instant, the population of parti­

cles is re-sampled using an importance sampling procedure. The pdf of the state is 

approximated by: 

N 

p (xlyn ~ L wfb (x(k) - xi(k)) dXi (1.14) 
i=l 

where wf is the weight of particle i. 

In analogy with the grid-based methods, the particles can be viewed as the centers 

of the grid cells that also have the capacity to evolve, cf. [61]. The advantage of 

filters based on such evolving particles rather than on a fixed grid is that they do 

not require truncation of infinite state spaces, permits the resolution of the numerical 

integration to be increased in regions with high conditional probabilities (by increasing 

the number of particles evolving in these regions), and are characterized by a limited 

computational cost that does not increase exponentially with the dimensionality of 

the state space. The main disadvantage is that, over time, the particles tend to 

degenerate in the sense that the particles follow the same path; The degeneracy of 

the particles renders the estimated description of the pdf unreliable. 

The MCMC technique leads to several types of particle filters such as the filter 
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presented in Ref. [35] which is similar to a Viterbi algorithm, but which employs 

evolving particles rather than a fixed trellis. See Ref. [61] and references therein for 

a review of several different implementations. 

1.3 Guidance 

Guidance is the process of modifying the trajectory of a vehicle in motion to reach a 

pre-specified target. In the most general sense, the target can be defined in terms of 

its state which can vary with time. 

In application to a pursuit-evasion engagement, the guidance and control problem 

is usually separated into two phases: the midcourse phase and the terminal phase, 

cf. [36]. The midcourse phase occurs between the launch of the pursuer and the ter­

minal phase. The midcourse phase has for its main objective to bring the pursuer in 

position that allows to reach the evader by the pursuer's on-board sensors. Once the 

target is detected by the pursuer, the terminal phase is initiated. The terminal guid­

ance aims to minimize the miss distance of the pursuer with respect to the detected 

target. In this thesis, only the terminal guidance problem is considered. 

Whenever the target is a moving object (an evader), the solution to the terminal 

guidance problem is difficult due to imperfect information about the target dynamics 

and its future evasive strategy. In particular, the interception of a highly maneuver­

ing target such as a tactical ballistic missile (TBM) is an open problem. A highly 

maneuvering target is a target over which the interceptor does not enjoy a significant 

maneuverability advantage. The optimal solution to the finite horizon control prob­

lem with bounded controls and a terminal cost function for linear stochastic systems 

has been studied by Striebel in Ref. [78]. The theorem 1 in Ref. [78] demonstrates 

that the optimal control solution is in general a function of the whole pdf of the state 

rather than just its mean, Le., the separation principle does not apply in general. 
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Nevertheless, this theorem demonstrates that, at least in certain cases, the optimal 

state estimator is still independent of the controllaw. 

The two corn mon solution approaches to the terminal guidance problem are based 

on deterministic optimal control formulations, cf. [90], and on deterministic game 

theoretic formulations, cf. [65, 67]. These approaches yield closed form guidance laws 

which are functions of an auxiliary variable called the zero effort miss (ZEM) and 

also known as the ballistic miss. The ZEM is the miss distance obtained from the 

homogenous solution of the system equations of motion; thus, the ZEM is dependent 

on the formulation of the problem and the system model. In a one-sided optimal 

control optimization problem, the ZEM at time instant t has the physical meaning 

of being the miss distance if, from the current time onwards, the interceptor does 

not apply controls (u(l) = 0, l = t, ... , tf, where u is the interceptor's control and 

t f is the final time instant of the engagement) and the target performs the expected 

maneuvers. In a two-sided game differential problem, the ZEM is the miss distance 

if, from the current time onwards, both players do not apply controls. 

1.3.1 Optimal Control Formulations 

Optimal control techniques assume that the future evasive strategy is completely de­

fined, either in open-Ioop or close-Ioop form. The feedback nature of the guidance 

law then allows the pursuer to correct for inaccurate predictions of target maneuvers. 

The closed form guidance laws based on optimal control theory guidance are usually 

based on the application of linear quadratic optimal control theory and requires as­

suming full state observation and an unbounded control commando The difference 

between the various guidance laws then depends on the model employed to describe 

the system. The models can use various assumptions about the evader's acceleration 

and the pursuer's airframejautopilot response. In aIl cases, the resulting optimal 

guidance law can be viewed as a modified form of proportional navigation, cf. [36]. 
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The proportional navigation guidance (PN) law is a prominent member of this 

family of guidance laws, cf. [88, 90]. The characteristic assumption used in the PN 

law is that the future evader's acceleration is zero and that there is no lag in the 

autopilot response. Extensions to the PN law to an autopilot response represented 

by a first order transfer function (the MEL law) and to a non-zero (but constant) 

future target maneuver (the APN law) are provided in Refs. [18, 34], respectively. 

In practice, three of the assumptions of deterministic optimal control formulations 

can never be met: the pursuer's command is always bounded, the state of the system 

cannot be fully and exactly observed, and the future target maneuvers are unknown. 

Hence, the solutions obtained using deterministic optimal control formulations are 

suboptimal and yield an acceptable terminal cost only when the interceptor enjoys a 

large maneuverability advantage over the evader, cf. [72]. 

1.3.2 Game Theoretic Formulations 

The mathematical framework for analyzing confiicts controlled by independent agents 

is in the realm of dynamic games. The concept of such a formulation dates back to the 

fifties and was published in the seminal book of Isaacs [41]. Using this approach, the 

scenario of intercepting a maneuverable target is formulated as a zero-sum pursuit-

evasion game: 

(1.15) 

Here, Xl (t f) is the miss distance, u and z are the pursuer and evader controls, re­

spectively, and P denotes the family of piecewise continuous functions. The symbols 

Ap and AB represent the feasible sets for the purs uer and evader strategies, respec­

tively. As compared to the deterministic control formulation, there is no information 

required about the future target maneuvers. The game solution provides simulta­

neously the missile's guidance law (the optimal pursuer strategy), the worst target 
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maneuver (the optimal evader strategy) and the resulting guaranteed miss distance 

(the value of the game). However, a unique optimal (saddle-point) strategy does not 

always exists, and even if it exist, obtaining the solution can be challenging. 

The game-theoretic saddle-point solutions are found to exist only into a part of 

the game space referred to as the regular area. Outside the regular area, Le., in the 

so-called singular area, the value of the game is constant so the optimal strategies 

are arbitrary. The specific saddle-point strategies are functions of the information 

available to the evader, the dynamics of the system, and the maneuverability of the 

opponent. Whenever the information available to one the parties is imperfect, the 

solution of the game might involve a mixed strategy, Le., the optimal solution might 

be of stochastic nature and be defined by a probabilistic distribution, cf. [8]. 

In the literature, there are two major formulations of a zero-sum pursuit-evasion 

game which delivers game-theoretic saddle-point analytical solutions. Both formula­

tions assume full state observation (with a possible delay) and the original nonlinear 

dynamics is linearized along the collision course. The two formulations differ with 

respect to the type of bound affecting the acceleration of the two players. In the 

first formulation, called "linear quadratic differential game" (LQDG), a soft bound 

is employed, Le., the control commands are theoretically unbounded, but effectively 

restricted through the employed cost function. The LQDG cost function penalizes 

the control energy of the players, cf. [11, 12, 51]. The resulting guidance laws require 

solving a Riccati equation. The second formulation, called "normed differential game" 

(NDG), employs a hard bound on the controls of both players, cf. [38, 39, 65, 67, 68]. 

The resulting guidance laws are of the bang-bang type and are a function of the ZEM; 

the explicit formulae for calculating the ZEM in these double-sided game differential 

formulations depend on the employed system models and are obtained by assuming 

that, from the current time onwards, both players do not apply control. A comparison 

of the two formulations is provided in Ref. [80]. 
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In practice, the assumption of full state observation (delayed or not) is never met. 

Hence, the analytical saddle-point solutions of the game problem formulations are 

suboptimal. Simulation results show that the game theoretic guidance laws yield a 

lower terminal cost as compared with the guidance laws derived from deterministic 

optimal control problem, cf. [3]. 

1.4 Motivation for the Research Reported 

in this Thesis 

The modern ballistic missile (BM) presents a great challenge to the guided missile 

community. Successful interception of a BM, carrying probably an unconventional 

warhead, requires a very small miss distance, or even a direct hit. This challenge mû­

tivated an intensive development of several ballistic missile defense (BMD) systems. 

AlI of them were designed by using state of the art technology, but conventional 

guidance and estimation concepts. Against non-maneuvering targets, flying on pre­

dictable ballistic trajectories, these systems succeeded to demonstrate "hit-to-kill" 

performance. Consequently, with the deployment of these BMD systems the threat 

of the currently operational BMs will be minimized or even eliminated. 

However, in the future, highly maneuvering BMs can be anticipated. Re-entering 

ballistic missiles fly at very high speeds and their atmospheric maneuvering potential 

is comparable to that of the interceptors. Since non-maneuvering targets can be 

easily intercepted, the designer of a future BM will have the option of making this 

inherent maneuver potential usable by only a modest technical effort. Whether a 

BM is maneuvering in a fixed direction, or not maneuvering at aH, its trajectory 

can be considered predictable, thus allowing successful interception. Optimal control 

and differential game formulations of the interception problem, cf. [67, 70], as weIl 

as extensive simulation studies, cf. [90], indicate that the most effective evasion is 
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achieved by a well-timed direction reversaI of the maximum maneuver. However, due 

to the lack of information about the state of the purs uer , the evader cannot accurately 

time the required direction change. Since no maneuvering, or maneuvering in a fixed 

direction might lead to a certain interception, the evasive strategy of the evader has 

to be random. 

Previous studies of the terminal interception problem of a maneuvering BM pointed 

out that the main error sources responsible for a non-zero miss distance are, cf. [66]: 

(a) The noisy measurements, Le., imperfect information on the current evader's 

state, see Ref. [40] for a detailed description of the corruptions affecting the 

collected information, 

(b) The non-ideal dynamics of the control system. 

(c) The evasive maneuvers. 

(d) The limited maneuverability of the pursuer. 

The research presented in the thesis directly addresses the error sources (a) and (c). 

The error source (b) is partially treated in the the sis in the sense that the dynamics of 

the control system is represented by a transfer function. The error source (d) is also 

partially treated whenever the presented guidance schemes are combined with the 

solutions to normed bounded games of the type presented in Refs. [38,39, 65, 67, 68]. 

The thesis presents the following novel algorithms. 

• Two novel maneuver detectors which significantly extend the work of Willsky 

and Jones 1976 to the detection and isolation of target maneuvers in the situa­

tion when the value of the target acceleration is unknown at aIl times. The novel 

detectors are adaptive in the sense that they estimate on-line the parameters 

required for the detection and isolation procedures, see § 3. 
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• Two novel state estimators for jump-Gaussian linear systems. The novel esti­

mat ors are finite dimensional and recursive Gaussian sum filters which employ 

an adaptive and variable bank of models to approximate the probability distri­

bution function of the state, see § 4. 

• A novel algorithm to calculate the ballistic miss in pursuit-evasion scenarios in­

volving a maneuvering target. The novel algorithm is a multiple model Bayesian 

predictor employing a set of adaptive semi-Markov models to describe the target 

behavioral pattern, see § 5. 

• A novel design of a guidance law which takes into account the uncertainty in the 

estimate of the target acceleration and which compensates for the interactions 

between the guidance systems and the estimation systems. The novel design 

employs a maneuver detector, banks of estimators and guidance laws, and an 

on-line govenor, see § 5. 

• A novel discretization scheme of continuous-time stabilizing bang-bang control 

laws. The discretized control law takes the form of a bounded linear guid­

ance law and is a discrete-time analytical equivalent of the original nonlinear 

continuous-time controllaw, see § 5. 

The novel algorithms presented in this thesis apply to a class of problem broader 

than the one defined by the guidance and interception problem. The algorithms apply 

to the class of linear hybrid systems with additive inputs subject to parametric abrupt 

changes, as mathematically described in § 2. This class of systems is commonly en­

countered in several applications, most notably in quality control, recognition-oriented 

signal processing, fault detection, and monitoring and control of industrial plants. 
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The Benchmark Problem: A 

Terminal Interception Engagement 

T ERMINAL interception engagements are short-horizon terminal control prob­

lems describing the pursuit of a maneuverable target by a guided missile. The 

information structure in such scenarios is generally imperfect as it is characterized by 

noise-corrupted measurements of the relative position of the target (evader) acquired 

by the guided missile (pursuer). The evader has no information on the purs uer , but, 

being aware that an interception may occur, is likely to perform evasive maneuvers. 

In § 2.1, the terminal interception problem is formulated as a stochastic time­

varying linear control problem. In the following sections, two specifie time-invariant 

pursuit-evasion problems are considered: an engagement with nonlinear planar kine­

maties and an engagement with linear time-invariant planar kinematics. In the follow­

ing chapters, the novel detection, estimation, and guidance algorithms are developed 

for the stochastic time-varying linear system of § 2.1, while the specifie linear and 

nonlinear pursuit-evasion models are employed for the purpose of numerical simula-

tions. 

21 
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2.1 A Stochastic Problem 

Consider a stochastic time-varying linear system with a continuous-valued base state 

x, sampled at intervals ~, and modeled by: 

x(k + 1) = F(k)x(k) + G 1 (k)u(k) + G 2 (k)z(k) + w(k) 

Ym(k) = H(k)x(k) + ry(k) 

(2.1a) 

(2.1b) 

with x E JR.n, U E JR.iu, Z E JR.P, Ym E JR.r. The process and measurement noises, w and 

ry, are assumed to be normally distributed and independent: w(k) rv N(O, Qw(k)) and 

ry(k) rv N(O, Q1)(k)). The state and measurement variables, x and Ym, are random 

time series and the magnitude of the inputs u and z is bounded by umax and zmax, 

respectively. The input u is a known external input. The random process z is an 

unknown input whose behavior is subject to additive abrupt changes of unknown 

magnitude. The additive abrupt changes belong to a parametric family of functions 

and the time interval between the sequential changes exceeds a given lower bound 

w* sufficiently larger than the sampling time interval, i.e., w* » ~. Moreover, the 

system is slowly-varying in structure in the sense that the ratio between the largest 

time constant in the dynamical description of the system and the lower bound w* 

is sufficiently small. The process z is not directly observed but the system (2.1) is 

assumed observable. 

In the pursuit-evasion problem, the known input u in system (2.1) is the pursuer's 

command acceleration, also denoted by ap, while the unknown input z represents the 

evader's command acceleration. The cost function, J, to be minimized by the purs uer 

is the miss distance. Due to the uncertainties, the miss distance is a random variable 

and the cost function has to be stated in a stochastic setting which also respects the 

definition of a successful interception model. 

A realistic interception model depends on many physical parameters and is very 

complex. In this point-mass study, the probability of interception is determined by 
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the following 

(2.2) 

where Rk is the lethal (kill) radius of the interceptor and M is the miss distance. 

This model assumes an overall entire reliability of the guidance system equal to one. 

The objective of the interceptor (pursuer) is to intercept the target (evader) with 

a predetermined probability of success, using the smallest possible lethal radius Rk. 

This probability, termed the single shot kill probability (SSKP), is defined by 

(2.3) 

where E is the mathematical expectation taken with respect to the probability density 

of the noise against any given feasible target maneuver. Using this definition, the 

stochastic cost function, JI, for sorne prescribed value SSKP = Ppr is 

J' = inf {Rk with respect to a~ E A~} 

where 

Ppr = E(Pd(Rk )) 

A~ 6 {a~ E P Ila~(t)1 :s; (a~)max a.e. tE [0, tf]} 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

Here, Ap is the set of feasible control command acceleration strategies for the pursuer 

and P denotes the family of piecewise functions. The cost function is to be minimized 

by the pursuer against all the disturbances created by the evader's acceleration com­

mands. 

For further use, let y~o denote the a-algebra generated by the measurements: 

(2.5) 
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2.2 A Pursuit-Evasion Scenario with Nonlinear 

Planar Kinematics 

24 

The dynamics of the terminal interception problem is modeled mathematically in 3D 

by a set of nonlinear differential equations which can be linearized about a nominal 

collision trajectory, determined by the initialline of sight and by the initial velo city 

vector of the evader. The pursuer's heading angle, <PP col , required for collision, is 

determined by 

(2.6) 

where Vp and VE are the pursuer and evader velocities, respectively, and <PE is the 

heading angle of the evader. The linearization allows for a decomposition of the 

three-dimensional model into two identical sets of planar equations lying in two per­

pendicular planes, cf. [1]; thus, in further studies, a single model of linearized planar 

motion can be considered. A schematic view of the planar end-game geometry is 

displayed in Fig. 2.1. The X axis is aligned with the initial line of sight that serves 

as the reference direction. Note that the respective velo city vectors are generally 

not aligned with the reference line of sight, but they remain close to the directions 

of the collision course indicated by Eq. (2.6). It is assumed that both the pursuer 

and the evader move with constant speeds and have bounded lateral accelerations 

lajl < (aj)max, j = {E, Pl. Moreover, the maneuvering dynamics of both opponents 

can be approximated by first-order transfer functions with time constants Tp and TE, 

respectively. 
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y 

.• yp 

x 

Figure 2.1: Planar engagement geometry. The pursuer is denoted by "P" and 

the evader by "E". The angles cP p and cP E are the heading angles for the pursuer 

and the evader, respectively, and cPaz is the line of sight angle. The acceleration ap 

(respectively, a'E) is applied perpendicularly to the velocity vector of the pursuer Vp 

(respectively, to the velocity of the evader VE ). 

The (deterministic) nonlinear equations of the planar interception are 

Xp = Vpcos(cPp), XE = VE COS(cPE) (2.7a) 

yp = Vpsin(cPp), YE = VE sin( cP E) (2.7b) 
. ap . aE 

(2.7c) cPP = Vp ' cPE = -
VE 

ap = 
ap - ap 

aE = 
a'E - aE 

(2.7d) , 
Tp TE 

where Xp and yp are the positions of the pursuer along the X and Y axes, respectively, 

XE and YE are the positions of the evader along the X and Y axes, respectively, and 

ap and aE are the lateral accelerations of the pursuer and evader, respectively. 
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2.3 A Pursuit-Evasion Scenario with Linearized 

Planar Kinematics 

For the linearization, it is assumed that the heading angles, cPp and CPE, are close to the 

direction of the collision course as indicated by Eq. (2.6). The linearized differential 

equations of relative planar motion normal to the reference line and the respective 

initial conditions are then 

. ak - X3 
X3 = ; 

TE 

. ap - X4 
X4 = ; 

Tp 

and define a four-dimensional state vector 

Xl(O) = 0 

X2(O) = dd
Y 

1 

t t=o 

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d) 

(2.9) 

where y ~ YE - yp is the lateral separation between the evader and the purs uer , and 

dy/dt is the relative lateral velocity. The non-zero initial condition X2(O) represents 

the difference between the respective initial velo city components which are not aligned 

with the initial (reference) line of sight. Due to the assumption of small deviations 

from the collision geometry, this difference is small compared with the components 

along the line of sight. The linearization also yields a constant closing velocity, Vc 

(2.10) 

allowing to compute the final time of the interception, t f, for a given initial distance, 

X o, as: 

(2.11) 
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The matrix representation of the continuous time-invariant linearized dynamics (2.8) 

is 

x (t) = Ax(t) + B1a~(t) + B2a~(t) (2.12) 

where 

0 1 0 0 0 0 

0 0 1 -1 0 0 
A= , B1 = , B2 = (2.13) 

0 0 -1 0 0 1 
TE TE 

0 0 0 -1 ...l.. 0 
Tp Tp 

The corresponding matrices F, G 1 , and G 2 of the discrete-time representation of the 

linear dynamics over a sampling time interval ~ are, cf. [7], p. 192, 

1 ~ 

F = <I>(t + ~,t) = .c-1 ((sI - A)-l) I~ 0 1 

0 0 

t+~ 

G 1 = J <I>(t +~, T)B 1 dT = 

t 

t+~ 

G 2 = J <I>(t +~, T)B 2 dT = 
t 

where 

0 0 

Tp(~ - 'lI p ) _ ~2 

'lIp-~ 

o 

-TE(~ - 'liE) + ~2 
-'lIE+~ 

o 

i E {P,E} 

TE(~ - 'liE) -Tp(~ - 'li p) 

'liE -'lIp 

e-~/TE 0 

0 e-~/Tp 

(2.14a) 

(2.14b) 

(2.14c) 

(2.14d) 
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2.4 The Measurement Model in the Pursuit-Evasion 

Scenarios 

Using an on-board sensor, the only measurements available to the pursuer are the 

range, r, and the relative angular position, <Paz, of the evader with respect to an 

inertially fixed reference (e.g., the initial li ne of sight). The angle measurement <Paz 

is corrupted by a Gaussian noise jJ, while the range r is assumed to be measured 

perfectly. U sing the small angle approximation, the linearized measurement of the 

lateral separation, Ym, is 

Ym(t) = r(t) sin (<Paz(t) + jJ,(t)) ~ r(t)<Paz(t) + r(t)jJ,(t), 

where jJ, is the angular measurement noise. Thus, the measurement matrix H and 

the linearized measurement noise rJ in Eq. (2.1 b) are 

H=[l 000], (2.16) 

where r(k) is the distance to the evader in the discrete-time representation. 

Remark The linearized pursuit-evasion model presented in § 2.3 and § 2.4, and slight 

variations of this model, have been broadly employed in several studies on guidance, 

see Refs. [11, 90] and references therein. The validity of this linearized model has 

been assessed for several types of pursuit-evasion scenarios and was found to be often 

acceptable during the last instants of a pursuit-evasion engagement, see Refs. [69,90]. 



Chapter 3 

Two Novel Detection Algorithms 

M ANY stochastic pro cesses encountered in applications such as maneuvering 

target tracking, pattern recognition, and fault detection are characterized by 

the occurrence of abrupt changes at unknown time instants. Such abrupt changes 

are usually diagnosed by employing specialized detector algorithms, cf. [48]. The 

diagnosis task is performed in a two-stage manner, see Ref. [37], p. 218. In the first 

stage (referred to as detection), a decision is made whether an abrupt change has 

indeed occurred while in the second stage (referred to as isolation), the abrupt change 

is confirmed, and its estimated parametric characteristics are accepted as valid. 

There is an inherent delay between the moment at which an abrupt change occurs 

and the time instant at which it is detected. This detection delay stems from the 

necessity of collecting sufficient information in order to render a detection with sorne 

reliability (usually, with respect to a pre-specified false alarm probability). It has 

been shown that the minimum average delay of detection is achieved by Bayesian 

detectors, cf. [73]. Unfortunately, optimal Bayesian detectors are in general not finite­

dimensional whenever the value of the system input after the change is unknown, 

as is frequently the case in target tracking applications, see Ref. [81], p. 23. A 

29 
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finite-dimensional alternative for such systems is provided by the class of generalized 

likelihood ratio (GLR) type detectors. The GLR-type detectors have been shown to 

be asymptotically optimal under several criteria related to quickest detection, cf. [49]. 

In previous studies, the GLR detector algorithm, first presented in Ref. [85], has been 

applied successfully to maneuver detection, cf. [30, 46]. These studies assumed the 

system input to be unknown during the maneuver, however, the system inputs prior 

to the ons et of the maneuver, referred to as the "reference realization", were assumed 

known. However, in situations where both the reference realization and the target 

maneuver are unknown, the GLR detector algorithm requires modifications. 

This chapter presents two new detection algorithms suit able in situations when 

the system inputs are unknown both before and after an abrupt change. Both al­

gorithms are equipped with the ability to adapt, on-line, the reference realization 

conditioned on the measurements and on the assumption that the reference realiza­

tion is a member of a parametric family of functions. The first algorithm is a new 

implementation of the GLR detector that adaptively estimates the reference realiza­

tion, but requires discarding the collected measurements intermittently. The second 

algorithm is a novel detector, termed adaptive-J'tO GLR detector, that also adaptively 

estimates the reference realization but which do es not require discarding the collected 

measurements. By preserving the collected measurements, a more accurate estimate 

of the reference realization can be achieved and the reliability of the detector is im­

proved. The adaptive-Jt6 GLR detector can be viewed as a generalization of the GLR 

detector for isolation of additive abrupt changes in unknown inputs in linear systems. 

The GLR detector is derived first. It is next followed in § 3.2 by a description 

of the novel implementation of the GLR detector for maneuver detection. The novel 

adaptive-Jt6 GLR detector is then derived in § 3.3. 
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3.1 The GLR Detector 

The GLR detector addresses the basic problem of detecting changes in the mean 

value of an independent Gaussian sequence. As explained in Ref. [83], two possible 

solutions exist when the change is parametric but the parameter is unknown. Both 

solutions require calculating the ratio between the likelihood of a change and the 

likelihood that no change occurred. The first solution consists of weighting the likeli­

hood ratio with respect to aU possible values of the unknown parameter; however, it 

requires computing an integral of probability densities over the parameter space. The 

second solution replaces the unknown parameter by its maximum likelihood estimate, 

thus avoiding the integral operation. The second solution results in the generalized 

likelihood ratio (GLR) algorithm which was first presented in Ref. [85]. The GLR 

algorithm is described in detailed in Ref. [10]. 

The main ingredients of the GLR detector are parametric families of input func­

tions. These input functions are translated into parametric families of distributions 

for the observations. The distributions of the observations are estimated on-line as 

members of these families of distributions. Based on the estimated distributions, 

a decision concerning the occurrence (or absence) of a maneuver is made, and the 

characteristics of the maneuver are derived. The basic tool employed by the GLR 

detector to estimate the distribution is the likelihood ratio defined as 

(3.1) 

where (Jo, (JI are parameters. Whenever (Jo is known, the likelihood ratio is a sufficient 

statistic for the parametric family (JI. In other words, the information about (JI 

contained in the a-algebra y~o is concentrated in the statistic L((JI, (Jo, y~o). For this 

reason, if the sufficient statistic L((JI, (Jo, Y~o) is available, it is not necessary to know 

the whole a-algebra y~o to make inference about (JI. 

The statistical approach of the GLR algorithm applies when the likelihood ratio 
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is a function of two unknown independent parameters: the time instant of the change 

and the parameter describing the change (JI. The parameter (Jo is assumed known and 

describes the signal or system before the change. The statistical approach is then to 

use the maximum likelihood estimates of the two unknown parameters, and thus the 

double maximization 

(3.2) 

where gk is the decision function. The precise statement of the conditions on the 

probability densities p(Y~ol(Ji), i E {D, 1}, under which this double maximization can 

be performed is found in Ref. [56]. The densities should belong to the so-called 

Koopman-Darmois family of probability densities 

(3.3) 

where () is a function strictly concave and infinitely many times differentiable over an 

interval of the real line, and T is a monotonie function. The detection of a change is 

proclaimed whenever the value of the decision function gk reaches or exceeds a given 

threshold, h, as follows 

(3.4) 

The scheme defined by the Eqs. (3.2) and (3.4) belongs to the class of sequential 

probability ratio tests (SPRT). 

After a change is detected, the maximum likelihood estimates of the onset time 

instant of the change and of the parameter (JI, denoted k*, ÔI, respectively, are given 

by k* = jmax and Ô1 = (J~up where 

(3.5) 
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3.1.1 The G LR Detector in Linear Systems 

The GLR detector can be applied to Gaussian linear systems subject to additive 

abrupt changes, see Ref. [10], p. 209. The application of the GLR detector to such 

systems requires the generation of residuals, namely of artificial measurements that 

reflect the changes of interest. The residuals result from the transformation of the 

original sequence of dependent measurements into a sequence of independent Gaussian 

artificial measurements. These residuals are calculated to be the innovations of a 

Kalman filter. Let k* be the onset time instant of the additive abrupt change Bb 

then the mean value of the innovation '/'1 delivered by a Kalman filter matched to Bo 

(referred to as the reference Kalman filter) is given by 

Ebl(k)) = Ebo(k)) + ih(k, k*) (3.6) 

where '/'0 is the innovation in absence of a change and the symbol Pl denotes a drift 

in the mean (the so-called innovation signature, see § 3.1.2 for its calculation).l 

The probability density p(Y~o IBi) can be calculated in terms of the innovations as 

follows 
k 

-~ 2: 'YT(j)V- 1 (jhi(j) k 

p(Y;oIBi) = ce j=kO II vIY-l(j)1 (3.7) 
j=ko 

where Y is the innovation covariance (the value of Y is independent of Bi) and c is 

a normalizing constant. The probability density is then a member of the Koopman­

Darmois family of densities with the functions D(·) and T(·) being vector quadratic 

functions. Let the log-likelihood ratio, l, denote 

(3.8) 

The log-likelihood ratio is calculated in terms of the innovations by: 

(3.9) 

1Technically, only 10 is an innovation and Il is a residual. For simplicity, both are referred to as 

innovations. 
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The supremum of the likelihood ratio can then be calculated analytically by noting 

that the log-likelihood ratio is a quadratic hypersurface. Before calculating the supre­

mum, the quadratic hypersurface in Eq. (3.9) is expressed by employing Eq. (3.6) as 

k 1 k 

l(Ol, 00 , Y~o) = L pi(j, k*)V-l(jho(j) - 2 L pi(j, k*)V-l(j)Pl(j, k*) (3.10) 
j=ko j=ko 

Then, the analytical unconstrained supremum of the quadratic hypersurface is 

(3.11) 

The formula (3.11) is unusable as, by assumption, the parameter of the change 01 is 

unknown, hence its signature Pl is unknown. However, a normalized signature, Pl, 

can be calculated by assuming sorne non-zero value for the parameter 01 . Then, by 

linearity, any signature in the parametric family 01 can be calculated in terms of the 

normalized signature as follows, see Ref [10], p. 241, 

j = k*,··· ,k (3.12) 

where VI is a scaling factor. By employing Eqs. (3.12) and (3.11), the supremum of 

the log-likelihood ratio can be calculated, without knowing the value of Ob as follows 

k 1 d2 (Ol, 00 , Y:o) 
s~p l(Ol, 00 , Yko ) = 2 J(Ol, (

0
) 

k 

d(Ol, 00 , Y~o) '" L pi(j, k*)V-l(jho(j) 
j=ko 

k 

J(Ot, ( 0 ) '" L pf(j, k*)V-l(j)Pl (j, k*) 
j=ko 

and the maximum likelihood estimate, VI, of the scaling factor is given by 

VI '" arg sup p (Y~o IVl, ( 1) 
VI 

_ d(Ol, 00 , Y:o) 

J(Ol, ( 0 ) 

(3.13a) 

(3.13b) 

(3.13c) 

(3.14a) 

(3.14b) 
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In the above, d can be viewed as a correlation between the innovations and the normal­

ized signature. This correlation property is typical of a matched filtering operation, 

see Ref. [10], p. 54. The quantity denoted by J is interpreted as the Kullback-Leibler 

divergence between the parameter Bo and the normalized value of BI. The Kullback­

Leibler divergence is an information theoretic norm which acts as an index of the 

separability between two probability measures; it here provides the Euclidean dis­

tance between the parameter Bo and the normalized value of BI, see Ref. [10], p. 26. 

3.1.2 Signature of the Change on the Innovations 

Consider the following state space representation of a linear system subject to additive 

changes in the state or observation equation 

x(k + 1) = F(k)x(k) + GI(k)u(k) + G2(k)fx(k, k*) + w(k) 

Ym(k) = H(k)x(k) + DI(k)u(k) + D2(k)fy(k, k*) + TJ(k) 

(3.15a) 

(3.15b) 

where u is a known input, fx and fy are the dynamic profiles of the assumed change 

and k* is the onset time instant of the change so that fx(k, k*) = fy(k, k*) = 0 for 

k < k*. The functions fx and fy are assumed to be parametric functions of time 

parameterized by BI. By linearity, the state, the state estimate from the reference 

Kalman fllter, denoted x, and its innovation can be decomposed as follows 

x(k) = xo(k) + a(k, k*) 

x(klk) = xo(klk) + f3(k, k*) 

'Yl(k) = 'Yo(k) + fh(k, k*) 

(3.16a) 

(3.16b) 

(3.16c) 
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where the subscript (·)0 denotes quantities calculated in absence of a change. The 

functions a, 13, and pare calculated recursively as follows, see Ref. [10], p. 239, 

a(k, k*) = F(k)a(k - 1, k*) + G2(k - l)fx(k - 1, k*) 

f3(k, k*) = F(k)f3(k - 1, k*) + K(~)p(k, k*) 

p(k, k*) = H(k) (a(k, k*) - F(k)f3(k - 1, k*)) + D2(k)fy(k, k*) 

with the initial conditions 

a(k*, k*) = 0 

f3(k*, k*) = 0 

and where K is the Kalman gain of the reference Kalman filter. 

3.2 The Original GLR Algorithm for 

Maneuver Detection 

(3.17a) 

(3.17b) 

(3.17c) 

(3.17d) 

(3.17e) 

In the context of the problem specified in § 2.1, the task of the detector is to provide a 

full diagnosis of the unknown input maneuver z. The standard GLR detector tests a 

number of pre-specified hypotheses concerning the history of z after an abrupt change, 

but requires the knowledge of the input z before the change. Hence, the GLR detector, 

as first presented in Ref. [85], is not directly applicable to this problem because the 

input z is unknown at aIl time, Le., z is unknown both before and after an abrupt 

change. This lack of information on z is common to many realistic detection scenarios. 

This section presents an original implementation of the G LR detector for maneuver 

detection. The original GLR algorithm employs a re-initialization procedure to adapt 

on-line the estimated realization of z before an abrupt change, denoted by z. Such an 

adaptation of the realization z provides the GLR detector with the ability to detect an 
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abrupt change in z. It also provides the detector with the capacity to diagnoze more 

than one abrupt change. However, there are two trade-offs to this adaptation. First, 

aIl the measurements collected before the re-initialization must be discarded. Next, 

the adaptation of z is in general imperfect, hence the assumption of the GLR detector 

about a perfectly known z is invalid and the reliability of the detector degrades. 

The following linear system, defined in § 2.1, is considered 

x(k + 1) = F(k)x(k) + G1(k)u(k) + G 2(k)z(k) + w(k) 

Ym(k) = H(k)x(k) + 1J(k) 

(3.18a) 

(3.18b) 

where z is an unknown input subject to parametric additive abrupt changes. At 

any time instant k, the input signaIs to the GLR detection procedure are: 1) the 

measurements Ym, and 2) the set of hypotheses S~, for k 2': O. Let f(k) be a binary 

indicator random variable (the detection indicator), such that 

{ 

1 when an abrupt change has been detected at time k 
f(k) ~ 

o otherwise 
(3.19) 

Similarly, let fR (k) be a binary indicator random variable (the isolation indicator), 

such that 

{ 

1 when an abrupt change has been isolated at time k 
fR(k) ~ 

o otherwise 
(3.20) 

The output signaIs from the GLR detection procedure are 1) the estimated ons et 

time of the abrupt change, k*, 2) the estimated value, i ML, of the unknown input z 

after the change (this also necessitates identifying the class of parametric functions 

to which z belongs), 3) the state of the detection indicator f(k), and 4) the state of 

the isolation indicator fR(k). The Figure 3.1 depicts a schematic block diagram of 

the original GLR algorithm for maneuver detection. 

The state of the pair {f(k), fR(k)} describes one of the following mutually exclu-

sive situations: 



CHAPTER 3. TWO NOVEL DETECTION ALGORITHMS 38 
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Figure 3.1: Schematic flow diagram of the a GLR detector for maneuver detection. 

1. {E(k),ER(k)} = {O,O}: in this case no abrupt change has been detected at 

t = k. AlI past detected abrupt changes, if any, have been isolated. 

2. {E(k), ER(k)} = {l, O}: in this case an abrupt change has been detected at time 

k, but not yet isolated. 

3. {E(k),ER(k)} = {1,1}: in this case an abrupt change has been detected and 

isolated at time k. To allow for the detection of subsequent abrupt changes, 

the states of both indicators are reset to zero at time instant k + 1, Le., {E (k + 

1), ER(k+ 1)} = {O,O} (unless another abrupt change has been detected at time 

k + 1, in which case {E(k + 1), ER(k + 1)} = {l, O}). 

Using the detection and isolation indicators, a false detection (false alarm) event is 

defined as the event that results in the sequence {E (k - 1) = 1, E R( k - 1) = 0, E (k) = 

0, ER(k) = O}. The various cases described he rein are shown schematically in Fig. 3.2. 

The procedures for determining the values of the binary variables E, ER are outlined 

in the sequel. 
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Figure 3.2: Detection and isolation indicators' states. J: jump, D: detection, I&R: 

isolation and reset of both indicators. 
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The GLR algorithm is sequential in nature, as concisely detailed in the ensuing, 

and its computationalload increases linearly with the number of considered hypothe-

ses. 

3.2.1 The Set of Hypotheses 

A finite set of hypotheses S!Ye = {~, ~k .•• , ~:} is first introduced to adequately 

describe aIl relevant realizations of the time series z. This set of hypotheses must 

be updated at each current time instant k. Each hypothesis Yt;k E S!Ye corresponds 

to a different assumption about the ons et time of the abrupt change, kt(k), and an 

assumption about the possible class of parametric functions which adequately charac­

terizes the shape of the change. Let {fiC kt) }Y'=1 be a set of functions, representing aIl 

feasible classes of functions after the abrupt change. A particular shape of a change 

will then be referred to as fi(l,kt), l E [kt,k], for sorne i E {1,2, ... w}, whereas 

the actual change function would be Vdi(l, kt), l E [kt, k], where Vi is the change 

intensity. The GLR hypotheses do not require an assumption about the actual value 

of the change, as this value will be estimated later on by scaling. The members of 

the set of hypotheses S!Ye are, hence, defined as foIlows 

~: 

.u:k • 
J~i . 

z(l) = a.7l6(l) l = k~, ... , k 

z(l) = a.7l6(l) + 1 (k;)vdi (l, k;) l E {k~, ... , k}, 

(3.21a) 

iE{l, ... ,w} (3.21b) 

where 1(·) is the unit step function. The hypothesis ~ is interpreted as the absence 

of any recent abrupt changes in the random process z and it assumes a specifie 

realization a.7l6 for the process z, whereas the hypothesis Yt;k corresponds to the 

occurrence of an abrupt change, of shape fi, starting at time instant ki. It should be 

noted that aIl the hypotheses imply that only a single abrupt change can occur in the 

interval [kô, k]. In this context, it is clear how the parameters kt(k) should be chosen 

at each k: since the length of the time interval between successive abrupt changes 

has been assumed to be bounded from below by w*, the parameters must be chosen 
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so that (k - w*) < ki(k) < k for aH i E {1, ... ,w}. It is hence implied that aH the 

abrupt changes outside the maximal sliding window [k - w*, k] have been detected 

and isolated prior to k. 

Effective Sliding Window of Hypotheses 

In situations where w* is large, it can be desirable to employa sliding window smaHer 

than the maximal sliding window to reduce the computational load. The resulting 

effective sliding window (ESW) has a width w:ff < w* and contains aH the hypotheses 

with an onset time in the interval (k - w:ff ) < kt( k) < k. The detector loses litt le by 

employing an ESW provided that w:ff is sufficiently large and that sorne additional 

hypotheses are sparsely distributed over the interval (k - w*) < ki(k) ::; (k - w:ff ), 

as discussed in Ref. [49]. For the purpose of isolating the abrupt change, one of the 

hypotheses that has "slid out" of the ESW can be included as a member of the set of 

additional hypotheses. This additional hypothesis keeps track of a detected change 

whenever it slides out of the ESW. 

3.2.2 The Reference Kalman Filter 

To evaluate the likelihood of the individual hypotheses, a reference Kalman filter is 

implemented for the system (2.1a)-(2.1b), based on the assumption that hypothesis 

&0 is true 

i (k + llk) = F(k)i (klk) + G1(k)u(k) + G2(k)a~(k) 

i (klk) = i (klk - 1) + K(kh(k) 

(3.22a) 

(3.22b) 

where a.J1é6 is the assumed realization for the process z. The measurement residual, 

--y(k) , is 

--y(k) = Ym(k) ---,- H(k)i (klk - 1) (3.23) 
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The gain, K, the state estimation covariance, P, and the residual covariance, Y, 

satisfy the Kalman filter Riccati equation, solved recursively by 

K(k) = P(klk - 1)HT(k)y- 1(k) 

P(k + llk) = F(k)P(klk)FT(k) + Qw(k) 

P(klk) = P(klk - 1) - K(k)H(k)P(klk - 1) 

Y(k) = H(k)P(klk - l)HT(k) + Q7J(k) 

(3.24a) 

(3.24b) 

(3.24c) 

(3.24d) 

To calculate the likelihood ratios, the outputs needed from the reference Kalman filter 

are K, " and Y. The reference Kalman filter is designed to act as a whitening filter 

over time intervals with no abrupt changes. 

3.2.3 The Normalized Signatures: Novel Formulae 

As mentioned earlier, the reference Kalman filter is matched to a hypothesis assuming 

a realization a.Yt'o for the pro cess z. Whenever an abrupt change occurs, the difference 

between the true realization of z and the one employed by the Kalman filter manifests 

itself by a drift (the signature) in the mean of the residuals. 

By assuming a normalized magnitude for the abrupt change, i.e., by employing a 

signature shape fi(k, kt), a normalized signature, p(k, i), can be defined. The latter 

is recursively calculated as the product 

p(k, i) = H(k)r(k, i) i E {l, ... ,w} 

where 

and 

r(l, i) = G 2 (k)fi(l, kn + F(l - l)r(l - 1, i) 

r(k;, i) = 0 

F(l - 1) 6 F(k)[I - K(l - l)H(k)] 

l E {k; + 1, ... , k} 

(3.25) 

(3.26a) 

(3.26b) 

(3.26c) 
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The Eqs. (3.25) and (3.26) introduced here to calculate an innovation signature are 

novel. They are mathematically equivalent to Eqs. (3.17) in case of an additive change 

in the state, but are simpler. The signature of an abrupt change and the normalized 

signature are related by a scaling factor. The value of this scaling factor is calculated 

as the ratio between the abrupt change and the shape of this abrupt change, as defined 

in Eq. (3.12). 

Remark To facilitate the detection of a change, the signature of a change in the 

innovations should be large as it increases the Kullback-Leibler divergence between 

the hypotheses, see Eq. (3.13c). Hence, the reference Kalman filter should be char­

acterized by a low bandwidth, as then the signature will be more pronounced after a 

change occurs. 

3.2.4 The Log-Likelihood Ratios 

To calculate the log-likelihood ratios, it is required to specify the realization of the 

process z after the abrupt change. Since the latter is unknown, its ML estimate is 

employed instead. The ML estimate of the process z is obtained under the assumption 

that hypothesis Jt;,k is true. The log-likelihood ratio, l(k, i), between the hypotheses 

Jt;,k and Jfô, is then given by 

l(k .) = ! d2
(k, i) 

,z 2 J(k, i) 
i E {l, ... ,w} (3.27) 

where J(k, i) is the Kullback-Leibler divergence and d(k, i) is the signature correla­

tion of hypothesis Jt;,k E S!Ye, see § 3.1.1 for the derivation. The Kullback-Leibler 

divergence is a measure of the "distance" between the hypotheses Jt;,k and &0 in S!Ye 
and is calculated recursively as follows 

J(l, i) = J(l - 1, i) + pT(l, i)V-1(l)p(k, i) 

J(k7, i) = 0 

l E {k7 + 1, ... , k} (3.28a) 

(3.28b) 
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The signature correlation is interpreted as a least squares estimate of the value of the 

abrupt change, assuming that .Yt;k is true and that no prior information about the 

value of the abrupt change is available, cf. [85]. It is recursively calculated as follows 

d(l, i) = d(l - 1, i) + pT(I, i)V-1(lh(l) 

d(k;, i) = 0 

3.2.5 The GLR Test 

1 E {k; + 1, ... , k} (3.29a) 

(3.29b) 

The GLR test establishes the validity of the hypotheses. The test is performed in two 

stages. First, the index, i*(k), of the hypothesis maximizing the log-likelihood ratios 

is determined 

i*(k) = arg max {l(k, i)} 
iE{I,··· ,w} 

(3.30) 

Next, the validity of the most likely hypothesis, .Yt;~, is assessed by comparing the 

maximized log-likelihood ratio with the value of a pre-selected threshold h 

Je6 
l(k, i*(k)) ~ h 

Yt';~ 

and the detection indicator E (k) is set accordingly 

{
o &0 is true 

E(k) = 

1 .Yt;~ is true 

(3.31) 

(3.32) 

The value of h is selected as a function of the predefined probability of false alarm, 

denoted a, and is calculated from the tail of the distribution of the log-likelihood 

ratios. As the log-likelihood ratios are proportional to the square of the Gaussian 

random variable "i, see Eq. (3.27), the log-likelihood ratios have a X2 distribution. 

Furthermore, this X2 distribution has one degree of freedom only, cf. [10], p. 242. 

Henee, the value of h satisfies 

(3.33) 
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The Bounded GLR Test 

When an upper bound in the magnitude of the abrupt change is known a priori, 

the GLR test can incorporate this additional information by modifying Eq. (3.30) as 

follows, see Ref. [10], p. 53, 

i*(k) = arg ° max {l(k, i) 112 (k, i)1 < z~r} 
tE{l,ooo,w} 

(3.34) 

where 2 (k, i) is the hypothesis-matched estimate of the abrupt change and ZMf' is an 

upper bound on the magnitude of this estimate. The value of ZMf' should be larger 

than the a priori known upper bound, to allow for the presence of estimation errors 

in 2 (k, i). The estimate 2 (k, i) is given by 

(3.35) 

In Eq. (3.35), the scaling factor, D(k, i), matches the shape employed by hypothesis 

~k with the estimate of Z and is calculated as the ratio 

~(k 0) = d(k, i) 
V,Z J(k,i) 

3.2.6 The ML Estimates 

(3.36) 

The GLR detector provides the ML estimate, k*, of the ons et time of the abrupt 

change, and the ML estimate, 2 ML, of the value of the abrupt change. The ML 

estimate k* is given by 

ê(k) = 0 

E(k) = 1 
(3.37) 

where k~ is the ML estimate of the time instant of the last confirmed abrupt change 

k~(k) = k~(k - 1) k~(o) = 0 (3.38) 
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The value of k5(k-l) is updated by the re-initialization module described in the next 

subsection. The ML estimate Z ML is given by 

3.2.7 The Re-initialization Procedure 

E(k) = ° 
E(k) = 1 

(3.39) 

The purpose of the re-initialization of the detector is to allow for the detection of 

more than one abrupt change and to provide the GLR detector with the ability to 

eventually compensate for the unknown realization of z before an abrupt change. The 

time instant of this re-initialization is application dependent. In fault detection appli­

cations, for which no accurate isolation of the change is required, the re-initialization 

is usually carried out immediately after the detection of an abrupt change. In target 

tracking applications, the re-initialization is delayed to allow for a more accurate iso­

lation of the target maneuver characteristics. Henee, in this work, a re-initialization 

of the GLR detector, indicated by ER(k) = 1, is performed whenever both an abrupt 

change is detected and the ML estimate of the time instant of the change is located 

at the lower end of the maximal sliding window, that is 

{E(k) = 1} 1\ {k* = k - w*} 
(3.40) 

otherwise 

The re-initialization is carried out by modifying the hypothesis &0 so that it en­

capsulates the history of the proeess z prior to the lower end of the effective sliding 

window and by discarding the previously collected measurements, cf. [30, 85]. Such 

a re-initialization is performed as follows. 
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1. The reference Kalman filter is matched to the hypothesis ~: by setting 

a!,~(l) = a;:(l) + D(k, i*(k))fï* (l, k:*) l = k,' .. 

i (klk)!,~ = i (klk);: + D(k, i*(k))Y(k, i*(k)) 

P(klk)!,~ = P(klk);: + Y(k, i*(k))J-1(k, i*(k))yT(k, i*(k)) 

where 

Y(k, i*(k)) t:, (1 - K(k)H(k))r(k, i*(k)) 

(3.41a) 

(3.41b) 

(3.41c) 

(3.41d) 

and Oold and Onew denote variables before and after re-initialization, respec­

tively, and (.).nb denotes variables employed by the reference Kalman filter. 

2. The likelihood ratios are reset to zero by discarding the previously collected 

information 

r(k, i) = 0, d(k, i) = 0, J(k, i) = ° i E {l, ... , w} (3.42) 

3. The information about the time instant of a confirmed abrupt change is pre­

served within k~ 

k~(k) = k*(k) (3.43) 
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3.3 A Novel Adaptive-~ GLR Detector 

The novel implementation of the GLR detector of the previous section is based on the 

underlying assumption that the estimated realization a-Yf6 is indeed the true realization 

of the pro cess z before the onset of the abrupt change and employs a re-initialization 

procedure to compensate for the unknown realization of z before an abrupt change. 

However, the re-initialization degrades the conditioning of the hypotheses as a re­

initialization discards the collected measurements. 

This section presents a novel GLR detector, named the adaptive-&a GLR detector, 

which allows to compensate for the unknown realization of z before an abrupt change 

without discarding the collected measurements. By preserving the collected measure­

ments, a more accurate estimate of the process z can be achieved and the reliability 

of the detector is improved. The adaptive-JfQ GLR detector enables the reference 

acceleration for hypothesis &a to be adapted on-line by introducing an additional 

and novel procedure for adaptation. The flowchart of the adaptive-&a G LR detector 

is shown in Fig. 3.3. Compared to the implementation of GLR detector in § 3.2, 

the adaptive-JfQ GLR detector has one more component termed "&a-adaptation". 

Four other components of the previous implementation of the GLR detector are also 

modified or augmented: the set of hypotheses S!Ye, the GLR test, the ML estimates, 

and the re-initialization procedure. The calculations of the normalized signatures and 

of the log-likelihood ratios are similar to those of the GLR detector in § 3.2, however, 

in the new algorithm they employ the augmented set of hypotheses. 

3.3.1 The Augrnented Set of Hypotheses 

The original set of hypotheses [Eqs. (3.21)] is now augmented with hypotheses whose 

purpose is to describe admissible shapes for a mismatch between the true realization 

of the process z and the realization assumed for a.Yf6. These additional hypotheses 
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Figure 3.3: Schematic fiow diagram of the adaptive-&o GLR detector. 

are analogs of ~ in the sense that they assume the absence of abrupt changes within 

the maximal sliding window. For simplicity of the exposition, only a single such 

additional hypothesis is considered here. Let (.), designate quantities associated with 

this additional hypothesis, ~, defined as 

~: z(l) = a.J'é6(l) + v,f,(l, k~) lE{k~, ... ,k} (3.44) 

where f,(·, kô) is the shape assumed for the mismatch and v, is the intensity of the 

mismatch. The augmented set of hypotheses becomes S~ = {&o, ~, ~k , ... , &j;}. 

3.3.2 The Modified GLR Test 

The GLR test now has the double task of: 1) establishing the validity of the hypothe­

ses, as before, and 2) distinguishing between the event of an abrupt change in the 

process z and the event of a mismatch in the realization a.J'é6. The task of establish­

ing the validity of the hypotheses is carried out as in § 3.2, but the index i* is now 
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determined according to 

i*(k) = arg max {j3(i)l(k, i) Iii (k, i)1 < z~r} 
iE{(,l, ... ,w} 

50 

(3.45) 

where the factor j3 is selected such that j3( i) = 1 for i E {l,··· ,w} and j3( () ~ 1. 

The purpose of the factor j3 is to enable the algorithm to favor the selection of the 

hypothesis .nç whenever the available information is not sufficient for the task of 

distinguishing between the onset of an abrupt change and a mismatch in a.Yt'o. The 

validity of the most likely hypothesis, Jltff, is assessed by comparing the maximized 

log-likelihood ratio with the value of a pre-selected threshold h 

.Yt'o 
l ( k, i* ( k )) ~ h (3.46) 

~~ 

and the value ofthe detection indicator E(k) is set by Eq. (3.32), similarly to the new 

GLR detector of § 3.2. 

The additional task, of deciding about the type of the event, is carried out by 

introducing a complementary binary variable, EO, whose value is set according to the 

rule 

{ 

0 {Jltff is true} /\ { i* (k) =1= (} 
EO(k) = 

1 {Jltff is true} /\ {i*(k) = (} 

(3.47) 

In Eq. (3.47), EO(k) = 0 indicates the event of an abrupt change in the pro cess z, 

whereas EO(k) = 1 indicates the event of a mismatch in the reference realization a.Yt'o. 

3.3.3 The Modified ML Estimates 

The interpretation of the ML estimates provided by the detector depends on the type 

of event detected in the previous stage. In the event of an abrupt change (EO(k) = 0), 

there are two ML estimates: an estimate of the onset time instant and an estimate 

of the realization of the abrupt change. These two ML estimates are calculated as 
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in the § 3.2 using Eqs. (3.37) and (3.39), respectively. In the event of a mismatch 

(&O(k) = 1), there is only one ML estimate, which is the value of the mismatch. 

There is no estimate of the onset time of the mismatch in this case because the onset 

time instant of the realization a.Yt6 is already known. The ML estimate, â.Yt6, of the 

reference realization is given by 

(3.48) 

3.3.4 The Adaptation of Hypothesis .no 

An adaptation of hypothesis &0 is performed whenever an error in the reference 

realization employed by the hypothesis .no is detected, i.e., whenever &0 (k) = 1. Let 

a;!~ denote the reference realization employed by the hypothesis .no after adaptation. 

The adaptation is 

whenever &0 (k) = 1 (3.49) 

For consistency with the newly adapted reference realization, the reference Kalman 

filter and the likelihood ratios, which were calculated with respect to the erroneous 

reference realization, are corrected by employing Prop. 3.3.1. 

Proposition 3.3.1 Let the &0 hypothesis be adapted on-line and let (.no)old and 

(&o)new denote the hypotheses before and after adaptation, respectively. The outputs 

of the Kalman fllter matched to the (&o)new hypothesis can be calculated in terms of 

the outputs of a Kalman fllter matched to the (&o)old hypothesis as follows 

x(klk)~~ = x(klk);: + D(k, ()"f(k, () 

P(klk)~~ = P(klk);: + "f(k, ()J-l(k, ()"fT(k, () 

(3.50a) 

(3.50b) 

where the subscripts Oold and Onew denote variables before and after adaptation. 

Similarly, the likelihood ratios calculated with a reference Kalman fllter matched to 
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the (Jt'O)new hypothesis can be calculated in terms of the likelihood ratios calculated 

with a reference Kalman jilter matched to the (&o)old hypothesis by correcting the 

signature correlations, d, as follows 

d(k, i)new = d(k, i)old - D(k, ()od(k, i) 

where od(k, i) is obtained from the recursion 

Od(l, i) = Od(l- 1, i) + pT(l, i)y-l(l)p(l, () 

od(kt, i) = 0 

iE{(,I,"',w} 

l E {kt + 1, ... ,k} 

(3.51) 

(3.52a) 

(3.52b) 

Proof: Equation (3.49) corrects the realization a.Yt'o, employed by the reference Kalman 

filter, by adopting the ML estimate of the realization of the process z. This modi­

fication of a.Yt'o requires a corresponding correction of the state estimate and the as­

sociated estimation error covariance (previously calculated by the reference Kalman 

filter). These corrections are provided by Eqs. (3.50a) and (3.50b), respectively, see 

Ref. [16]. The adaptation of the a.Yt'o realization do es not require the correction of 

the normalized signatures and the Kullback-Leibler divergences because they are not 

functions of a.Yt'o. However, the signature correlations are functions of a.Yt'o, so they 

need to be corrected. The signature correlation correction, stated in Eq. (3.51), is 

proven next. 

Let a;!~ be the reference realization, adapted using hypothesis Jf(, and let a~ 

be the reference realization before the adaptation. Let d(k, i)old be the signature cor­

relation calculated using a: and let d(k, i)new be the signature correlation calculated 

using a;!~. These signature correlations are, according to Eq. (3.29a) 

d(k, i)new = d(k - 1, i)new + pT(k, i)y-l(khnew(k) 

d(k, i)old = d(k - 1, i)old + pT(k, i)y-l(khold(k) 

(3.53) 

(3.54) 

where "Inew and "Iold are the residuals of reference Kalman filters employing a;!~ or 
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a~, respectively. The distributions of the residuals ,new and ,old are 

,(k)new rv N(b(k), Y(k)) 

,(k)old rv N(b(k) + D(k, ()oldP(k, (), Y(k)) 

53 

(3.55) 

(3.56) 

where b is sorne bias, p(k, () is the normalized signature of hypothesis Jf(, see 

Eq. (3.25), and D(k, ()old is the scaling factor associated with Jf( when a~ is em­

ployed, see Eq. (3.36). Whenever the realization a:e~ matches the true realization of 

the proeess z, the bias b is identically zero, see Ref. [10], p. 240. Whenever the real­

ization a:e~ do es not match the true realization of the proeess z, the bias bis non-zero 

and, by virtue of linearity, it is the same in both Eqs. (3.55) and (3.56). Henee, using 

Eqs. (3.55) and (3.56) in Eqs. (3.53) and (3.54), the following key relation is obtained 

d(k, i)new -d(k, i)old = d(k-l, i)new -d(k-l, i)old - D(k, ()old (pT(k, i)y-1(k)p(k, ()) 

(3.57) 

From the above relation and by observing that d(kt, i)new = d(kt, i)old = 0, it follows 

that the relation between the signature correlations can be rewritten as 

(3.58a) 

where 
k 

6d(k, i) ~ L pT (j, i)y-1(j)p(j, () (3.58b) 
j=ki 

The normalized correction term, 6d(k, i), can be interpreted as a correlation between 

the normalized signatures of the hypotheses ~k and Jf(. Rewriting Eq. (3.58b) in a 

recursive form finally yields Eqs. (3.52). 1 

Finally, the re-initialization procedure is carried out similarly to the re-initialization 

in § 3.2, with the addition that the Jf6 adaptation module must also be re-initialized, 

whenever [R(k) = 1, by setting 

iE{(,l, ... ,w} (3.59) 

However, this realization is here neeessary only if more than one abrupt change has 

to be diagnozed. 



Chapter 4 

Two Novel State Estimators for 

Maneuvering Targets 

C ONTINUOUS-time dynamical systems subject to structural changes occurring 

at discrete points in time are conveniently represented as hybrid systems which 

are combinat ions of continuous-time systems and discrete-event systems. The major 

challenge in state estimation for such systems arises from the presence of two types 

of uncertainties: the measurement uncertainty and the uncertainty about the current 

structure of the system. The last type of uncertainty arises when a continuous­

time system is subject to an abrupt structural change with only partially known 

characteristics. Optimal state estimation in stochastic linear hybrid systems, i.e. 

hybrid systems subject to random discrete events is, in general, computationally 

intractable as it often fails to translate into a finite recursive state estimation scheme, 

cf. [47]. 

The jump-Markov linear system (2.1) is a stochastic hybrid system. The op­

timal Gaussian sum estimator for jump-Markov system is a NP-complete problem 

involving an exponentially growing tree of models; it cannot be implemented in real 

54 
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time, cf. [52]. Hence, practical, suboptimal, Gaussian sum estimators have to rely on 

certain model management techniques to keep the number of models limited, thus 

allowing the computational scheme to remain finite. Among these estimators, the 

most notable is the IMM estimator which employs a limited bank of models together 

with a technique of merging models to account for transitions between the models, 

cf. [13, 14]. The IMM estimator employs a bank of fixed and a priori selected models. 

With reference to estimation in stochastic hybrid systems, it was suggested that the 

introduction of a variable bank of models into a multiple model scheme could offer 

improvements over the IMM, cf. [52]. Until now, few attempts in this direction were 

made, cf. [45, 53, 54]. 

This chapter presents two novel multiple model estimators which employ an adap­

tive and variable bank of models. Both estimators generate a finite bank of models 

by pruning on-line a full tree of models. The pruning removes the unlikely models 

and yields a computationally finite estimation scheme. The pruning of the models is 

carried out in two steps. First, parametric families of models describing the unknown 

input are selected from a-priori information. Next, the bank of models is constructed 

by selecting on-line the most likely models from within the parametric families. The 

selection of the most likely models, along with their a posteriori probabilities and 

model-matched estimates, is achieved by employing a GLR algorithm. The state es­

timate is then calculated as a probabilistic mixture of the model-matched estimates. 

Both estimators are recursive and their computational requirements increase linearly 

with the number of models. 

The first novel multiple model estimator is referred to as the multiple reference 

GLR (MR-GLR) estimator. The MR-GLR estimator employs two banks of mod­

els. The first bank describes the realization of the unknown input before an abrupt 

change (the "reference" realizations). This first bank is fixed and is neither variable 

nor adaptive. The second bank describes the realization of the unknown input after 

an abrupt change. The models in the second bank are variable and adaptive. The 
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other ingredients are a cumulative sum (CUSUM) algorithm (cf. [10]), a GLR algo­

rithm (see § 3), and a novel mapping scheme whose task is to calculate the likelihood 

ratios conditioned on different reference realizations. The CUSUM algorithm calcu­

lates the likelihood ratios between models, like the GLR algorithm does, however 

the CUSUM algorithm requires a bank of fixed (non-adaptive) models. Henee, the 

CUSUM algorithm is employed only with the fixed models contained in the first bank. 

For the adaptive models in the second bank, the calculation of the likelihood ratios is 

more complicated as the likelihood ratios of the models after the abrupt change (the 

second bank) are inherently conditioned on the models before the change (the first 

bank). These likelihood ratios are calculated as follows. First, the likelihood ratios 

conditioned on one of the referenee realizations are calculated using the GLR algo­

rithm. The GLR algorithm yields the likelihood ratios for the models in the second 

bank but conditioned only on a single model in the first bank. Next, the likelihood 

ratios conditioned on the remaining reference realizations are calculated by employing 

the novel mapping scheme which relates the first likelihood ratios with the remaining 

ones. 

The second multiple model estimator is referred to as the adaptive multiple ref­

erenee GLR (AMR-GLR) estimator. The AMR-GLR estimator is also provided with 

two banks of models. However, the first bank, containing models of the unknown 

input before the abrupt change, is now made adaptive. A GLR algorithm calculates 

the likelihood ratios in the first bank. The AMR-GLR estimator employs ideas from 

the adaptive-~ GLR algorithm, presented in § 3, to calculate the likelihood ratios 

between the models in the second bank. However, these likelihood ratios are condi­

tioned on only one of the referenee models in the first bank. Whenever there is more 

than one model in the first bank, a mapping scheme is employed to yield the likelihood 

ratios of the remaining referenee models from the one calculated by the adaptive-~ 

GLR algorithm. As compared to the MR-GLR estimator, the AMR-GLR estimator 

requires less a-priori information and/or a sm aller number of models in the first bank. 
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Figure 4.1: MR-GLR estimator. 

4.1 The MR-GLR Estimator 

The flowchart of the MR-GLR estimator is shown in Figure 4.1 and can be sum­

marized in six steps performed repeatedly: (1) formation of a generalized set of hy­

potheses, (2) CUSUM and multiple reference GLR computations, (3) formation of the 

model banks, (4) model-matched state estimation, (5) calculation of the a posteriori 

probabilities of the models, and (6) estimate fusion. In the model banks, the first 

bank, which describes z before an abrupt change, contains q models and the second 

bank contains w models. 

4.1.1 A Generalized Set of Hypotheses 

The generalized set of hypotheses, 6'1, contains hypotheses describing the history of 

the unknown input z over the time interval [ka, k], where ka denotes the time instant 

of initialization of the algorithm. The generalized set 61I is partitioned into subsets of 

hypotheses, Le., 61 = {Sr,'" ,s;} which are given by Sj = {XiJ,j,~k, ... ,&:}, 

j E {l, . .. ,q}. Each subset of hypotheses contains a single reference hypothesis XiJ,j 

which assumes a specific realization, Zj, for the process z. The remaining w hypotheses 

in the subset Sj are parametric families of realizations describing an additive abrupt 
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change in the pro cess z. The abrupt change hypotheses Yti k are characterized by a 

time instant kt for an abrupt change in z and by a dynamic profile of the abrupt 

change. These dynamic profiles are additive with respect to the realization assumed 

by &o,j. The subsets Sj differ only by the reference realization assumed by &O,j; 

i.e., for aH the subsets, the additive dynamic profiles employed by the abrupt change 

hypotheses Ytik , i E {l, ... ,w}, are the same. 

4.1.2 The CUSUM Algorithm 

A standard CUSUM algorithm calculates recursively the likelihood ratios, L (&o,j) , 

between the reference hypotheses in et 
L (Yen .) ~ p (y~o 1&O,j) 

0,) p (y~o 1&0,1) 
j E {2, ... ,q} (4.1) 

See Ref. [10] for details on the CUSUM algorithm. 

4.1.3 The Multiple Reference GLR Algorithm 

The multiple reference GLR algorithm employs the GLR algorithm with the addition 

of a mapping scheme for the likelihood ratios. The mapping scheme employs the 

likelihood ratios calculated by the GLR algorithm (which are obtained with respect to 

only one reference realization) and maps them to likelihood ratios for other reference 

realizations. The algorithm functions in two steps. First, the GLR algorithm is 

implemented by employing the hypotheses contained in the subset Sf and, thus, it 

employs the reference &0,1, For each of the abrupt change hypotheses Ytik in S~, the 

GLR algorithm yields the maximum likelihood estimate of z after the change, if:iL, 
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and the generalized likelihood ratio of each hypotheses, denoted by L( Jt;,k, zM.L ) , 

A ML ~ - + (yk l '>dJk - - ) zi,l = Zl arg m§1x p ka J'-i ,Z, Zl 
z 

iE{I,···,w} (4.2) 

(yk 1 ~k A ML - ) 
L(~k z~L) ~ p ka i' Zi,l , Zl 

~ , ~,1 (yk l '>dJ -) p ka J'-O,l, Zl 
(4.3) 

In the above, the sum Zl + z is a realization of the proeess z after an abrupt change. 

The calculation of Eqs (4.2) and (4.3) is described in § 3, it involves the use of 

hypotheses-matched signatures, signature correlations, Kullback-Leibler divergences, 

scaling factors, and state estimate differenees. 

Next, the values of if!l and L(Ytfk, zfjL) are calculated with respect to the other 

subsets Sj, j E {2,··· , q}, by mapping ZfjL and L( Ytfk, ZfjL) into Sj. To carry 

out the mapping, it must be noted that, in the GLR calculations, only the signa­

ture correlations and the scaling factors are modified by the mapping 5t ===} 5j, 
j E {2, ... , q}. Moreover, the scaling factors depend on 5j only because they are 

functions of the signature correlations. Renee, to perform the mapping 5t ===} 5j 
on Eqs. (4.2) and (4.3), the only requirement is the existence of an mapping between 

the signature correlations. 

Proposition 4.1.1 Consider the bank of reference realizations, {&a,1,··· ,&a,q}. 

Each hypothesis &a,j assumes a difJerent reference realization Zj. Let the relative 

realizations zjel be given by zjel ~ Zj - Zl, j E {2,··· ,q}. Let i5j be the signature 

of the relative realization zrl
. Let df,j denote the signature correlation of hypothesis 

Ytfk E 5j. Then, the mapping df,l ===} df,j is carried out as follows 

d~ . = d~ 1 - o~ . 
~,J ~, ~,J 

i E {l, ... , w}, j E {2, ... , q} (4.4) 

where the correction of,j is recursively calculated using 

(4.5) 

In the above, V is the covariance of the residuals generated by the reference Kalman 

fllter (matched to &a,1) as employed by the GLR algorithm. 
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Proof: The proof of Eqs (4.4) and (4.5) is the same as the pro of concerning the 

adaptation of hypothesis &0 presented in § 3. 1 

Remark. The Proposition 4.1.1 allows a single GLR procedure to be used with several 

reference hypotheses. Alternatively, but such an approach would be numerically less 

efficient, several GLR algorithms can be implemented in parallel, one for each subset 

S'fI. 

4.1.4 The Banks of Models 

The banks of models describe several possible realizations of Z over the time inter­

val [ka, k]. At each time instant k, a model, Mi~j, is associated with the reference 

hypothesis YtO,j and with an abrupt change hypothesis Yt1.k E S; as follows 

Mt,j: zj(l) 

Mi~j: zj(l) [l(ka) - l(k;)] + z~L(l)l(k;) 

( 4.6a) 

(4.6b) 

where i E {l, ... ,w}, jE {l,··. ,q}, and l E {ka,··· ,k}. The symboll(s) denotes 

the unit step function at time instant s and kt is the time instant of the abrupt 

change assumed by Yt1.k
• The adaptation of the models through the parameters zIjL 

is very important as it effectively allows to restrict the number of models used in the 

sense that for each parametric family of models considered, i.e., for each hypotheses 

in each subset S;, a single model is incorporated into the model bank. 

4.1.5 The Model-Matched Estimates 

The model-matched state estimate, i i,j(klk), is obtained by assuming that the model 

M~. is true 
t,) 

(4.7) 
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The model-matched estimate xo,l(klk) and its covariance Po,l(klk) are calculated 

by the reference Kalman filter of the GLR algorithm. The remaining i i,j(klk) and 

Pi,j(klk) are calculated using outputs of the GLR algorithm 

io,j(klk) = iO,l(klk) + îJ i E {2,·.· ,q} 

i i,j(klk) = i o,j(klk) + Dtj Y7 i E {1,· ., ,w} 

Pi,j(klk) = Po,l(klk) + Y~ Ji
k

-
1Y7 T 

( 4.8a) 

(4.8b) 

(4.8c) 

where Dtj is the scaling factor associated with hypothesis Yt;.k E 8j and îj is the state 

estimate difference between &0,1 and &O,j as calculated by the CUSUM algorithm. 

4.1.6 The A Posteriori Probabilities of the Models 

The a posteriori probability of each model, Pr (Mi~j 1 YZo ), is calculated from the 

likelihood ratios of the models. 

Proposition 4.1.2 Let Pr (Mi~j) be the unconditional probability of model Mi~j' De-

( k) . L (Mk) .!à. p(YZoIMf,j) fine the likelihood ratio L Mi,j as. i j - (yk IMk )' Then, the a posteriori 
, p kO 0,1 

probability of each model is 

L (Mk.) Pr (M~.) 
Pr (Mi~j 1 Y~o) = _W __ q-,--_t:::...,J :....-----'-_t:::...,J:....-_ 

L L L (M:,s) Pr (M:,s) 
v=Os=l 

where 

L(M~j) = L (&o,j) jE {2, ... ,q} 

L(M~.) = L (Yt!~ z!'1.L ) L (Mok .) t,J t , t,J ,J i E {1, .. , ,w}, j E {1, ... ,q} 

(4.9) 

(4.lOa) 

(4.10b) 

(4.lOc) 

Proof: The conditional a posteriori probability of model M i
k is, according to the 
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Bayes' rule 

L (M~.) Pr (M~.) 
2,J 2,J (4.11) 

The validity of Eqs (4.10) requires that the models employ the same assumptions 

as the hypotheses and their associated maximum likelihood estimates, as stated in 

Eq. (4.6b). From this one-to-one association between the model Mi~j and the hypoth­

esis ~~, the CUSUM algorithm provides the likelihood ratios needed in (4.lOb) and 

the multiple reference GLR algorithm provides the likelihood ratios required to solve 

Eq. (4.lOc). 1 

4.1.7 The Estimate Fusion 

The minimum mean square state estimate, x (klk), and its covariance matrix, P(klk), 

is expressed as a probabilistic mixture using the law of total probability 

w q 

x (klk) 1':. E (x IY~o) = L LX i,j (klk) Pr (Mi~j IY~o) (4.12a) 
i=O j=l 

w q 

P(klk) = LLPr(Mi~j IY~o) x {Pi,j(klk)+ 
i=O j=l 

[x i,j(klk) - x (klk)] [x i,j(klk) - x (klk)r } (4.12b) 
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Figure 4.2: AMR-GLR estimator. 

4.2 The AMR-GLR Estimator 

The flowchart for the AMR-GLR estimator is shown in Figure 4.2 and it can be 

summarized in six repetitive steps: (1) formation of a generalized set of hypotheses, 

(2) adaptive multiple reference GLR computations, (3) formation of the model bank, 

(4) model-matched state estimation, (5) calculation of the a posteriori probabilities 

of the models, and (6) estimate fusion. As compared with the MR-GLR estimator, 

the AMR-GLR estimator differs in terms of the generalized set of hypotheses, the 

GLR algorithm, the bank of models, and the a posteriori probability computations. 

AIso, the AMR-GLR does not employa CUSUM algorithm. 

4.2.1 A Generalized Set of Hypotheses 

The generalized set 'of hypotheses, et, is defined similarly to § 4.1.1. The reference 

hypotheses Ylô,j now assume a parametric family of reference realizations, charac-

terized by a dynamic profile Ii, instead of a fixed realization Zj. The generalized 

set of hypotheses also contains an additional subset of hypotheses, S~, given by 

sg = {~,O,JtQ,l,'" ,JtQ,q, ~k, ... ,&':}, where ~,o is a non-adaptive reference 

hypothesis with the following realization for the process z: z(l) = 0, l E {ko, ... ,k}. 
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At time instant k, each reference hypothesis Ytô,j, j E {l,'" ,w}, is equipped 

with an adaptive reference realization, Z~,jl, which is a member of the parametric 

family defined by the profile fj. The prior reference realization Z~,jl will be possibly 

adapted at time instant k by the action of the procedure in the following section 

§ 4.2.2. 

4.2.2 The Adaptive Multiple Reference GLR Aigorithm 

The adaptive multiple reference GLR algorithm employs ideas from the adaptive-&o 

GLR algorithm with the addition of a mapping scheme to calculate the likelihood 

ratios of the hypotheses for several references. As opposed to the multiple reference 

GLR algorithm in § 4.1.3, the novelty and computational advantage of the adaptive 

multiple reference GLR algorithm resides in the estimation of realizations for the 

pro cess z both before and after the abrupt change on-line. The estimated realizations 

lie in parametric families of realizations; each parametric family describing the process 

z either before or after the abrupt change. The calculations of the adaptive multiple 

reference GLR algorithm are carried out in four steps described below. 

Step 1. The Likelihood Ratios in Set S~ 

The calculation of the generalized likelihood ratios by a GLR algorithm involve the 

computation of signature correlations as an intermediate step, see § 3.2.4. Consider 

the following generalized likelihood ratios between the hypotheses in S~ and the non­

adaptive reference hypothesis &0,0 calculated using the GLR algorithm of § 3.2. 

L(Yt:k A~L .Yen ) 6 P (Yfo 1 ~k, zV>L) 
1 ,Z1,0' 0,0 (yk 1.Yen ) 

p ko 0,0 

(4.l3a) 

( yk 1.Yen . ZML) L(.Yen . AML .Yen ) ~ P ko o,J' O,j 
o,J' ZO,j' 0,0 - (yk 1.Yen ) 

p ko 0,0 

(4.l3b) 
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For use in the following steps, let df 0' i E {1, ... ,w}, denote the signature correlations , 

involved in the calculation of Eq. (4.13a). The calculation of the maximum likelihood 

estimates zt6L and ZffjL from the signature correlations is described in § 3. The 

generalized likelihood ratios in Eq. (4.13b) are employed later in the section § 4.2.5 

to calculate the a posteriori probabilities of the models. 

Step 2. The Likelihood Ratios in Set 8j with the Prior Reference 

The following generalized likelihood ratios of the abrupt change hypotheses in each 

set 8j, j E {1,··· ,q}, are calculated 

(yk 1 yt;k ZML) 
L(yt;k Z~.L zk--:-1) '" p ko i' i,j 

t , t,) , D,) (yk 1 ~ . zk--:-1) p ko D,), D,) 

(4.14) 

where Yt6,j is the reference hypothesis in 8j and Z~"j1 is the prior reference realization 

adapted at time instant k - 1. The calculation of the generalized likelihood ratios 

in Eq. (4.14) is carried out by mean of the signature correlations, see § 3.2.4. The 

signature correlations associated with the likelihood ratios in Eq. (4.14), and denoted 

df,j' i E {1, ... ,w}, are calculated by a suit able mapping of the signature correlations 

dfo associated with the likelihood ratios in Eq. (4.13a). The likelihood ratios in , 

Eqs. (4.13a) and (4.14) do not employ the same reference realization. The mapping of 

the signature correlations to a different reference realization is obtained by employing 

Prop. 4.1.1 as follows 

( 4.15) 

where the scaling factor v~,j1 is the parameter relating the adapted reference realiza­

tion z~,j1 to the dynamic profile h E Yt6,j, i.e., the value of the scaling factor is such 

that Z~,j1 = v~,j1 h, and the correction 8f,j is calculated recursively using 

s:k s:k-1 kT -1 (k) k u· . = u·· + p. V Po . t,) t,) t ,) (4.16) 
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where P~,j is the innovation signature of the dynamic profile Ii E &O,j' see § 3.2.3, and 

V is the residual covariance of the Kalman filter employed by the GLR algorithm, 

see § 3.2.2. 

Step 3. The Adaptation of the Reference Hypotheses 

The current estimate of the reference realization, Z~,j, associated with the reference 

hypothesis &o,j is calculated by applying the adaptation procedure of the adaptive­

&0 algorithm, see § 3.3.4, to each subset 8j. The adaptation procedure applies 

a modified GLR test, see § 3.3.2, to each subset 8j. and employs the generalized 

likelihood ratios calculated in Eq. (4.14). The modified GLR test sets the value of 

the binary indicator t;0 where the value t;O(k) = 1 indicates a mismatch. Whenever 

the modified GLR test indicates a mismatch in the reference realization z~:t of subset 

8j, the reference is adapted as follows 

(4.17) 

Step 4. The Likelihood Ratios in Set 8j with the Adapted Reference 

Finally, the generalized likelihood ratios matched to the current adapted references 

Z~,j, j E {D,··· ,j}, are calculated for each subset 8j 

L(Yek Z~.L zk.) 6 P (Y~o 1 ~k, ZIjL) 
t , t,) , 0,) (yk 1 &n . zk.) P ko 0,), 0,) 

(4.18) 

These generalized likelihood ratios are calculated as in step 2 except that the current 

adapted references are used instead of the prior ones. 



CHAPTER 4. TWO NOVEL STATE ESTIMATORS 67 

4.2.3 The Bank of Models 

The bank of models describes several possible realizations of Z over the time interval 

[ko, k]. The bank of models of the AMR-GLR estimator is similar to the bank of 

models of MR-GLR estimator in § 4.1.4 except that in the AMR-GLR estimator the 

reference realizations are estimated on-line. At each time instant k, a model, Mi~j, is 

associated with the hypothesis Ytô,j and with .Yt;k E 8j as follows 

Mi,j: Z~,j (l) 

Mi~j: z~,j(l) [l(ko) - l(kn] + zIjL(l)l(kn 

whereiE{l, .. · ,w},jE{l, ... ,q},andlE{ko,'" ,k}. 

4.2.4 The Model-Matched Estimates 

(4.19a) 

(4.19b) 

The model-matched state estimate, x i,j(klk), is calculated under the assumption that 

the model Mi~j is true 

( 4.20) 

The reference Kalman filter of the GLR algorithm in § 4.2.2 delivers the model­

matched estimate x 0,0 (k 1 k) and its covariance P 0,0 (k 1 k). The remaining x i,j (k 1 k) 

and Pi,j(klk) are calculated using the outputs from the GLR algorithm 

x O,j (k 1 k) = x 0,0 (k 1 k) + D~,j îJ ' j E {l, . .. , q} 

X i,j (k 1 k) = x O,j (k 1 k) + Dtj T7 , i E {l, .. . , w} 
- k -k-1 - kT 

Po,j(klk) = Po,o(klk) + T j Jj T j 

Pi,j(klk) = Po,j{klk) + T7 Jik-lT7T 

(4.21a) 

(4.21b) 

(4.21c) 

(4.21d) 

where Jj, îj, Dg,j are the Kullback-Leibler divergence, the normalized state esti­

mate difference, and the scaling factor, respectively, associated with the reference 

hypothesis YtO,j; see § 3 for details. 
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4.2.5 The A Posteriori Probabilities of the Models 

The a posteriori probabilities are calculated from the likelihoods of the models. 

Proposition 4.2.1 Let A(Mik,j) be the likelihood of the model Mi~j, i.e., A(Mi~) 6 

P (Y~o 1 Mi~j) . Let 'Y be the residual of the reference Kalman fllter matched to the 

hypothesis &0,0 and the associated model M~,o. The a posteriori probability of each 

model is 

(4.22) 

with 

A(Mi~j) = L (Yéfk, Z:jL, Z~,j) A (M;'j) (4.23a) 

k { L (&O,j, Zr;:jL, &0,0) A (M~o) 
A(Mo) = ...l..e-hJ(k)V-l~k)';'j(k) A(Mk--:l) 

27r IIV(k)ll~ 0,) 
otherwise 

(4.23b) 

A(M~,o) = p (Ym(k) IM~,o) A(M~,f/) (4.23c) 

where 

'Yj (k) = 'Y( k) - V~,jP~,j (4.24a) 

1 e-hT (k)V-l(k)-y(k) 

p (Ym(k) IM;'o) = 27r IIV(k)ll~ (4.24b) 

and where 'Yj is the residuals of a reference Kalman fllter matched to the reference 

hypothesis &o,j. 

Proof: By the definition of the models in § 4.2.3, the likelihood of model Mi~j is equal 

to the likelihood of the hypotheses: A(Mi~j) = P (Y~oIYéfk, ZfjL, Z~,j) and A(M~) = 

p (YZo l&o,j, Z§,j). Renee, Eq. (4.23a) follows from the definition of L (Yéfk, ZfjL, Z§,j) 

, see Eq. 4.18. 
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In Eq. (4.23b), the expression selected depends on the possible adaptation of 

the reference hypothesis Ytb,j. Whenever the reference hypothesis is adapted, i.e., 

whenever zg,j = Z~L, the likelihood of the reference model MÎ,j follows from the 

definition of L(Ytb,j, Z~L, Ytô,o) in Eq. (4.13b). Whenever the reference hypothesis 

is not adapted, the likelihood is calculated recursively using the total probability 

theorem. By the independent Gaussian noise assumption in Eq. (2.1), the total 

probability theorem yields the recursive expression (4.23b) for the likelihood of the 

model M~,j. 

In Eq. (4.24a), l/~,jP~,j is the signature of the reference Ytb,j in the residuals of 

the reference Kalman filter matched to &0,0, see § 3. By linearity, it follows that the 

residuals of a reference Kalman filter matched to Ytb,j are given by Eq. (4.24a). The 

Eq. (4.24b) delivers the marginallikelihood of the model and it follows from the as­

sumption of independent Gaussian noises in Eq. (2.1). The same assumption permits 

to express the likelihood ofthe model in the recursive form given by Eq. (4.23c). 1 

4.2.6 The Estimate Fusion 

The minimum mean square state estimate, i (klk), and its covariance matrix, P(klk), 

are probabilistic mixtures calculated as for the MR-GLR estimator 

w q 

i (klk) ~ E (x lytJ = L Li i,j (klk) Pr (Mi:j Iyto) (4.25a) 
i=O j=1 

w q 

P(klk) = L L Pr (Mi:j Iyto) x {Pi,j(klk)+ 
i=O j=1 

[x i,j(klk) - x (klk)] [x i,j(klk) - x (klk)f } (4.25b) 



Chapter 5 

Novel Terminal Guidance Schemes 

T HE pursuit-evasion engagement between two non-cooperative agents (the pur­

suer and the evader) requires the development of control strategies for both 

agents. The task of defining and implementing the pursuer's strategy is the dut y of 

the guidance system which usually consist of many components. The seeker and esti­

mator measure the target signal and extract the information required by the guidance 

law, respectively. The control system (autopilot) then translates the output from the 

guidance law into control actuator commands which effect a change to the vehicle 

motion. What is most often termed "guidance" is the combination of the estimator 

with a guidance policy or guidance law, cf. [77]. 

The guidance problem can be separated into two phases: the midcourse phase 

and the terminal phase, cf. [36]. The midcourse phase occurs after the launch phase 

of the pursuer and before the terminal phase. The terminal phase is initiated once 

the target is acquired by the sensors carried on-board the pursuer. The pursuer's 

solution to the terminal guidance problem is the so-called terminal guidance law and 

this solution is employed during the last time instants of the engagement. 

The terminal guidance laws are usually derived using deterministic optimal control 

70 
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techniques, cf. [90], or game theoretic approaches, cf. [65, 67]. In most cases, the 

resulting terminal guidance law takes the form of a function whose argument is the 

ballistic miss. The various guidance laws then differ in terms of the type of function 

involved and in the terms of the formula employed to calculate the ballistic miss. 

For simplicity, the guidance law derived from these techniques usually neglect the 

interactions with the estimator. A notable exception is the game theoretic DGLjC 

law which approximates the interaction with the estimator by assuming a time delay 

on the available information about the evader's acceleration, cf. [67, 68]. However, 

the value of the time delay has to be selected a priori and this time delay is only an 

approximation of the true interaction between the guidance law and the estimator. 

As a result of this interaction, the optimal controller, is in general, a function of the 

whole pdf of the filtered state, cf. [86]. Practical optimal solutions to the stochastic 

control problem are only available for a few special cases, most notably the class of 

LQG problems. Consequently, sub-optimal strategies are of significant interest. The 

strategies for stochastic control can be conveniently divided into two broad classes: 

the conventional feedback control algorithms and the fully dual closed-Ioop control 

algorithms, cf. [4]. 

The conventional feedback control strategies depend on the information that is 

currently available but ignore the possibility that future measurements will become 

available. However, information about the future behavior of the system (via the 

system model and system noise statistics) may be employed. This type of strategy 

precludes any active probing, i.e., deliberately modifying the trajectory of the purs uer 

to improve the observability of the system. 

The fully dual closed-Ioop control strategies (dual control) make use of the current 

information and take at least sorne account of the fact that future measurements will 

be available. These type of strategies may employ active probing by the controller to 

improve observability. 
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Perfect interception of a maneuvering tactical ballistic missile (BM) is an open 

problem whose difficulty arises from imperfect information about the evader's ac­

celeration and from the fact that the maneuverability of the pursuer is often only 

marginally larger than that of the evader, cf. [66]. This chapter introduces two new 

feedback control techniques capable of exploiting more of the available information 

than the usual optimal control and game theoretic approaches. Such capability is of 

paramount importance in the imperfect information environment characterizing the 

interception problem of a BM. The two new techniques are: a novel formula to predict 

the ballistic miss, and a novel integrated estimator-guidance scheme. In addition, the 

chapter presents a novel discretization technique for continuous-time, nonlinear, and 

unbounded control commands and for bounded bang-bang control commands. The 

last is of practical interest as continuous-time bang-bang guidance laws are efficient 

against a highly maneuverable target, but are difficult to implement in discrete-time, 

as required in a realistic setting. 

The new predictor of the ballistic miss (also known as the zero effort miss) employs 

a bank of adaptive semi-Markov models to represent the future evasive maneuvers. 

The ballistic miss is calculated as a probabilistic mixture of the models. The mixture 

is a function of both future and past evasive maneuvers. As compared to Markovian 

predictions, the semi-Markov predictor requires more a-priori information than the 

usuals Markovian predictors, but provides for a more accurate modeling of the be­

havioral pattern of an evasive target. This new prediction of the ballistic miss is then 

employed as the argument of a terminal guidance law. 

The new integrated estimator-guidance scheme employs banks of state estimators 

and guidance laws together with a governor to improve the homing accuracy against a 

maneuvering evader. Guidance schemes employing a bank of guidance law have been 

presented before, see Ref. [63]. The novelty here lies in the introduction of a governor 

that asses ses on-line the uncertainty of the state estimate and selects a guidance law 

from the provided bank according to the specifies of the identified uncertainty. The 
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employed state estimator is suboptimal and the governor also modifies it on-line to 

further improve the accuracy of the state estimate. 

5.1 A Semi-Markov Predictor for the 

Zero Effort Miss 

The zero effort miss (ZEM) at time t is defined as the miss distance if the purs uer 

applies a zero command policy over the time interval [t, tf] and the target performs 

the expected maneuvers. In the context of a pursuit-evasion engagement, the exact 

value of the ZEM is not available because its calculation requires exact information 

about both the current state of the target and the target future trajectory. However, 

a conditional mean estimate of the ZEM can be calculated as an approximation of 

the ZEM. The calculation of the estimated ZEM requires the current state estimate 

of the system and the expectation about the target's future acceleration commando 

The latter is usually assumed or calculated to be zero, i.e.: E (z(l)ly~J = 0, l > t, 

where t denotes the current time. 

In applications to target tracking, it has been demonstrated that multiple model 

approaches are highly efficient techniques for state estimation, cf. [7]. In the same 

context, it was also suggested that semi-Markov models can more closely match the 

observed behavioral patterns of a maneuvering target than the commonly used Marko­

vian models, cf. [17] and references therein. 

This section presents a new predictor for the zero effort miss which employs a 

Bayesian multiple model approach (applied to prediction rather than to state esti­

mation) in conjunction with a bank of semi-Markov models to describe the predicted 

process. The semi-Markov modeling of the motion of the target stems from the 

assumption that the transition probabilities between the levels of the target acceler-
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ation depend on the sojourn time of the maneuver and this implies that in general 

E (z(l)IY~o) =1- 0, a.e. l > t. Furthermore, the bank of models is made variable and 

adaptive by employing a GLR type adaptive algorithm to ca1culate the maximum 

likelihood realizations for the future evasive maneuvers and the a-posteriori proba-

bility of each model. The adaptive-.nQ GLR algorithm is selected for this task. The 

GLR algorithm requires making several hypotheses about the onset time of an evasive 

maneuver and about the type of maneuver expected. 

5.1.1 A Bayesian Multiple Model Zero Effort Miss 

At any time instant k, the ZEM corresponds to the value xl(tf) subject to u(l) = 

0, kt.l :::; l :::; tf' and is defined by: 

ZEM(k) ~ D ('Ii(tf,M)X(k) + l 'Ii(t/>I)B2(I)z(l) dl) 

DT (:, [1 ° ... 0] 

(5.1a) 

(5.1b) 

where q, is the transition matrix, t.l is the sampling time interval of the continuous­

time system, and t = kt.l. 

The ZEM, as given by Eq. (5.1), cannot be calculated explicitly because the values 

of x and z are not available. Thus, the ZEM must be estimated. A new formula to 

ca1culate the conditional expectation in Eq. (5.1) using a Bayesian multiple model 

approach is introduced in Proposition 5.1.1. 

Proposition 5.1.1 Let z be a random process with an unknown pdf. Consider a 

finite set of random processes, Zi, i E {O,··· ,w}, defined in the time interval [t,tf] 

whose pdfs are known. Assume that the random process z matches a member of this 

finite set of random processes (in the sense that it has the same pdf as one of the Zi), 
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i.e., 

p(z(l)) = p(zi(l)) , (5.2) 

for some i, i E {a, ... , w}. Then, the conditional expectation of the ZEM can be 

calculated as follows: 

E (ZEM(k)IYko) = D<I> (tj , t)x(k) + ê(k) (5.3a) 

with 

x(k) 6 E (xIYko) (5.3b) 

ê( k) • t, 0 ( 1 <1'>( t 1> I)B2 ( 1)2;(1) dl) Pr (z, Iz" Y~,) (5.3e) 

zi(l) 6 E (Zi(l)lykJ (5.3d) 

where Pr (zilzi' YkJ is the a-posteriori probability of Zi and t = kLl. 

Proof: Applying the conditional expectation operator to (5.1) and using the prop­

erties of the expectation operator yields 

tl 

E (ZEM(k)IYko) = D<I>(tj, t)E (x(k)IYko) + D J <I>(tf' l)B2 (l)E (z(l)IYto) dl (5.4) 
t 

By the law of total probability, the conditional expectation of the future of the process 

z, E (z(l)IYko) , l E (t, tf], can be written as a probabilistic mixture 

w 

E (z(l)IYkJ = L zi(l)Pr (Zilzi' Yko) (5.5) 
i=O 

where the realization Zi is defined by Eq. (5.3d). The equation (5.3) now follows by 

substit~ting Eq. (5.5) "into Eq. (5.4). 1 
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5.1.2 Adaptive Semi-Markov Acceleration Model 

The computation of Eqs (5.3c) and (5.3d) requires stating a set of models, in the form 

of a set of random processes Zi, i E {D,· .. ,w}, that adequately de scribe the future 

behavior of the pro cess z. The conditional expectations and a-posteriori probabilities 

of each random process Zi are then calculated. To this end, let each random process 

Zi be defined as follows: 

1. The stochastic pro cess Zi is a piecewise constant process whose value changes 

at random time instants. 

2. The last abrupt change in the value of pro cess Zi occurs at time instant kt E 

[ko,k]. 

3. At time instant k, the value of the process Zi is denoted if, i.e., zi(k) = if(k). 

4. The future value of the process Zi satisfies Zi (l) E {-if (k), if (k)}, l E (t, t f ], 

and the value of Zi changes at most once in the time interval l E (t, t f]. 

5. The time instant of a switch in the value of Zi is random and is selected according 

to a Poisson distribution with a variable rate, ai. This variable rate is a function 

of the sojourn time between switches and is given by 

(5.6) 

where 8i is the sojourn time and À is a positive, non-zero, constant Poisson 

parameter. 

Each random process model Zi is characterized by a different model-matched value 

for both if (k) and kt. The conditioning of the intensity of the Poisson process on 

the sojourn time between the switches generates a semi-Markov process, cf. [17]. 
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Proposition 5.1.2 The conditional expectation in the interval of the random switch­

ing process Zi (l), l E (t, t f], conditioned on the CT -algebra yto and characterized by the 

Poisson distributed random switches of rate as given by Eq. (5.6) is 

l E (t, tf], t = k~ (5.7) 

Proof: In the absence of measurements in the interval (t, t f], the conditional expec­

tation of the random process zi(l), l E (t, tf], conditioned on the CT-algebra yto is 

equivalent to the unconditional expectation of Zi and is given 

Zi(l) = zf(k)P}(l) - zf(k)P~(l) 

P}(l) 6 Pr (Zi(l) = zf(k) Ibi ) 

P~(l) 6 Pr (Zi(l) = -zf(k) Ibi ) 

(5.8a) 

(5.8b) 

(5.8c) 

From the Poisson distribution of the switches, the rate of the Poisson process given 

by Eq. (5.6), and the assumption of at most one switch in the interval (t, tf], the 

transition probabilities are given by, cf. [50] 

Pr (zi(l) = zf(k) Ibi ) = e->.lji 

Pr (zi(l) = -zf(k) Ibi) = 1 - e-Mi 

Thus, using Eq. (5.9) in Eq. (5.8), the expectation Zi is calculated as 

1 

(5.9a) 

(5.9b) 

(5.10) 

The set of semi-Markov models is further modified (adaptively) by conditioning 

the value of zf on the measurements. The value of zf and the associated a pos­

teriori probability Pr (zilzi' ytJ are calculated by employing an adaptive-&o GLR 

algorithm, see below. 
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5.1.3 Estimate if and the a Posteriori Probabilities 

An adaptive-&o GLR algorithm is equipped with a set of hypotheses whose members 

comprise: a "no change" hypothesis, &0, and w hypotheses ~k, i E {l,··· ,w}, 

describing abrupt changes. Each hypothesis ~k assumes that the pro cess z is subject 

to an abrupt change at instant kt and that the value of the process z is constant in the 

interval [kt, k]. The GLR algorithm then calculates the maximum likelihood estimate 

of the pro cess z with respect to each hypothesis 

(5.11) 

In order to employa GLR algorithm to calculate the a posteriori probabilities of the 

random pro cesses Zi, i E {D, ... ,w}, it is necessary to associate the hypothesis ~k 

with the random process Zi. This association is achieved by employing the same value 

kt for both the random process Zi and the hypothesis ~k and by setting 

(5.12) 

The association also requires that the value of the reference realization, z, employed 

by the GLR algorithm is the true realization of Z before the true switch instant k*, 

Le., z(l) = z(l), l E [ko, k*). The a posteriori probabilities of the random process 

models are then provided by Prop. 5.1.3. 

Proposition 5.1.3 Let hypothesis ~k assume that the random process z is piecewise 

constant and that the value of z has last changed at time instant kt, kt < k. Let 

L (y:o I~k) be the generalized likelihood ratio of hypothesis ~k 

L (yk 1Y'~k) = p (ytJîf'1L, ~k) 
ko ~ P (ytolZOl &0) (5.13) 

where Zo is the reference realization employed by the hypothesis &o. 

Let Zi be a random process defined as in § 5.1.2 and let Eq. (5.12) hold. Let the 

minimum magnitude for an abrupt change in the value of the process z be Vrnin. Then, 
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the probability that a switch occurred, P s, is calculated as: 

t:,. { 1 [,(i) = 0 
when Izf>1L(k) - zo(k)1 > Vmin 

otherwise 

79 

(5.14a) 

(5.14b) 

where Pr (zf>1L, .J'é;,k) is the unconditional probability of the realization zrL associated 

with hypothesis .J'é;,k. 

The a posteriori probability of each expectation Zi (l), l E (t, t f], conditioned on the 

a-algebra Y~o is given by 

(5.15a) 

(5.15b) 

Proof: The a posteriori probability of the maximum likelihood realization of hypoth­

esis .J'é;,k, i.e., Pr (zf>1L(k)l.J'é;,k,y~o)' is calculated, using the Bayes' rule, as . 

L (Y~o l.J'é;,k) Pr (zf>1L, .J'é;,k) 
Pr (zf.1L(k)I.J'é;,k, Y:J = w 

L (Y~ol&o) Pr (zrL, &0) + L: L (Y:oIYtjk) Pr (zrL, Ytjk) 
j=l 

(5.16) 

The a posteriori probability of the random process Zi(l) , l E (t, tf], is obtained by 

calculating the a posteriori probability, P s, that a change to the value zf occurred 

at the time instant ki, i.e., that z(kt) = zf(k). The a posteriori probability P s 

can be calculated from the a posteriori probability of the hypotheses in Eq. (5.16) 

whenever the random processes are defined according to § 5.1.2 and also by assuming 

that Eq. (5.12) holds. The a posteriori probability P s is calculated as the summation 

of the a posteriori probability of aU the abrupt change hypotheses for whose the 

maximum likelihood estimate of the change meets or exceeds a minimum magnitude, 
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Vmin, for the change 

w 

P s = L L(i)Pr (zfAL(k) IXfk, YZJ (5.17) 
1 

where L is given by Eq. (5.14b). As discussed in the literature, see p. 57 in Ref. [10], a 

minimum magnitude, Vmin, for the change must be employed to distinguish between 

an abrupt change hypothesis indicating a jump and an abrupt change hypothesis 

indicating no jump. This need is due to the fundamental nature of the generalized 

likelihood ratios which permits for a "jump" of zero magnitude at kt. 

Similarly, the a posteriori probability that no change occurred, i.e., (1 - Ps), is 

given by the summation of the a posteriori probability of the no change hypothesis 

with the a posteriori probability of aH the abrupt change hypotheses failing to meet 

the minimum magnitude for the change 

w 

1 - Ps = Pr (z~L(k)I&o, Y:o) + L(1- L(i))Pr (zfAL(k)IXfk, Y:J (5.18) 
1 

Hence, the a posteriori probability of the random pro cess zo(l), l E (t, tf], associ­

ated with the no change hypothesis &0, is given by Eq. (5.15a). Consequently, the 

a posteriori probability of the random pro cess Zi(l) , l E (t, tf], associated with the 

abrupt change hypothesis Jltfk, i E {1,· .. ,w}, is given by Eq. (5.15b). 1 

Remark In Prop. 5.1.3, the values of the unconditional probabilities Pr (zrL, Xfk) , 

i = 0, ... ,w, are determined from the a priori information about the pro cess z. If 

no a priori information is available, then the unconditional probabilities should be 

selected equiprobable, i.e., Pr (z~L, ~k) = W~l. If it is known a priori that the 

pro cess z can takes only two values, i.e., z E {-a, a}, than the unconditional pro ba­

bilities can be represented by a bi-modal distribution, for example: Pr (zrL, ~k) = 

~ (e-(zr:L- a)2/u! + e-(zr:L+a)2/u~) where sn is a normalizing constant and (T+ and (T_ 

are the standard deviations of the two modes. 
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5.1.4 An Example 

Let the predicted ZEM associated with the system matrices in Eqs. (2.13) be calcu­

lated by employing the predictor in Prop. 5.1.1 and by using the semi-Markov models 

of § 5.1.2. Let also the elements of the estimated state vector be: E (x(k)IY~J = 

[ Xl (k) X2 (k) X3 (k) X4 (k) ] T. Then, the predicted ZEM is calculated as 

(5.19) 

where 

with 

(5.20b) 

The prediction ê(k) is calculated by employing Prop. 5.1.2 and Eq. (5.12) in Eq. (5.3c) 

and by making use of Prop. 5.1.3 as follows 

w 

ê(k) = L (26(k, kn - 6(k))zrL (k)Pr (zi(l)lzi' Y~o) (5.21a) 
i=O 

where 

(5.21b) 

when ..\-1 = TE 
(5.21c) 

otherwise 

In the above, the factor <I> (k, ..\-1) is calculated as in (5.20b) with {3 = ..\-1 and 
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5.2 Decision Directed Adaptive Estimation and 

Guidance 

82 

The Eqs. (2.1) and (2.4) define a finite horizon, non-Gaussian, stochastic dual control 

problem with bounded inputs and a terminal cost function. The estimation and con­

trol tasks are in general not separable for such problems, cf. [86]. In the quest to find 

a solution to this type of problems, it is worthwhile recalling that a partial separa­

tion theorem holds for Gaussian and non-Gaussian discrete-time linear systems with 

hard constraints on the contraI and under mild regularity assumptions concerning the 

conditional distributions involved. This partial separation theorem, see Theorem 1 

in Striebel [78], requires that: 

(1) at any given time k, aIl the past values of the controls, Ui, and of the outputs, 

Yi, for i = (1, ... , k), are accessible through direct measurements, and 

(2) the cost function involves only (x(k), Ui), k = Tf, i = (1, ... , Tf - 1) as its 

arguments, where x(k) denotes the state of the system at time instant k and Tf 

denotes a fixed time horizon. 

The partial separation theorem guarantees that the conditional distribution of the 

state, as derived in the process of optimal filtering, does not depend on the optimal 

control and the cost function involved. The partial separation theorem hence works 

"one way": the optimal estimator can be derived independently fram the optimal 

contraller, but the optimal controller must then be obtained as a function of the pdf 

of the filtered state, cf. [86]. 

The decision directed adaptive estimation and guidance scheme is an attempt to 

deliver a finite dimensional and recursive sub-optimal solution to the stochastic dual 

control problem on the basis of the partial separation theorem. The proposed adap­

tive scheme solves the filtering problem and the guidance problem semi-separately in 
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Figure 5.1: Decision directed adaptive estimation and guidance scheme. 

that the solution of the filtering problem is obtained first while its error characteristics 

are next used in the design of the guidance law. More precisely, the behavior of the 

conditional pdf is partitioned into "modes" characterizing the type of uncertainties 

affecting the conditional pdf. Decision theory is then employed to identify on-line 

the mode of uncertainty and to adapt the controller accordingly. Furthermore, a 

sub-optimal, but computationally feasible, adaptive state estimator is employed (the 

optimal nonlinear filters for jump-diffusion pro cesses are generally infinite dimen­

sional, cf. [47]). Analogous adaptive sub-optimal approaches to state estimation have 

been proposed before in the context of target tracking, cf. [30, 58]. 

The decision directed adaptive estimation and guidance scheme requires the fol­

lowing components: a maneuver detector, a bank of state estimators, a bank of guid­

ance laws, and an on-line governor. The resulting integrated estimation and guidance 

approach is adaptive and hierarchical, see Figure 5.1 which explains its structure. The 

functions performed by this scheme are described as follows. At each time instant, 

the on-line governor selects astate estimator and a guidance law from the respective 

banks. This selection is based on the current level of uncertainty about the system 

which is assessed on the basis of the output values from a maneuver detector and the 

available prior information about the expected number of evasive maneuvers. The 



CHAPTER 5. NOVEL TERMINAL GUIDANCE SCHEMES 84 

task of the maneuver detector is to deliver a decision concerning the event of an 

abrupt change in the commanded acceleration of the evader and also an estimate of 

the characteristics of such an abrupt change. An abrupt change is a change occurring 

instantaneously or over a single sampling time interval. The output signaIs from the 

maneuver detector are: 

• an estimate of the onset time of the evasive maneuver, k*, 

• an estimate of the evader's commanded acceleration during the evasive maneu-

ver, ZML, and 

• the state of a binary indicator E; while an abrupt change is detected, E (k) = 1, 

otherwise E (k) = O. 

An example implementation of the decision directed adaptive estimation and guid­

ance scheme is described below. This example assumes that a single evasive maneuver 

is expected and it employs an adaptive-J'Z'Q GLR algorithm for maneuver detection, a 

Kalman filter with shaping filters for state estimation, and a bank of game theoretic 

guidance laws. 

5.2.1 A Maneuver Detector 

An adaptive-&o GLR detector is selected to address the task of maneuver detec­

tion. The GLR detector employs a set of hypotheses, {&o, Yt;,k, i = 1, ... ,w}, about 

the unknown evasive maneuver and recursively calculates the following generalized 

likelihood ratio, L(Yéi,k, &0), for each of the hypotheses 

(5.22) 

where Y:o is the a-algebra generated by the measurements. A positive decision con­

cerning the onset of a maneuver is rendered whenever the maximum likelihood ratio 
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in Eq. (5.22) exceeds the value of a threshold and the maximum likelihood estimate 

k* and ZML are delivered; see § 3 for more details. 

5.2.2 A Bank of State Estimators 

For simplicity, the bank of state estimators contains two members, referred to as Eo 

and El. Both estimators have the same general form which is that of a Kalman filter 

enhanced by a shaping filter. The shaping filter is used as a finite dimensional linear 

approximation to the input random process Z;l it is employed by augmenting the 

system with a Wiener process acceleration model (Ref. [7], p. 264) 

(5.23) 

where dWa is a stochastic pro cess with a zero-mean Gaussian distribution and with 

covariance Qa; Qa is referred to as the jerk pro cess covariance. The approximation 

(5.23) preserves the auto correlation function of the random process z whenever a sin­

gle evasive maneuver is expected [33] and tracks a piecewise constant input provided 

that the value of Qa is chosen to be sufficiently large [55]. However, it is known that 

the introduction of the jerk pro cess in the estimation degrades the rejection of the 

Gaussian noises in the original system. 

The estimators Eo and El employ different values for the jerk process covariance; 

these covariances are denoted Qal and Qa2, respectively. In this application, the 

values of Qal and Qa2 are chosen as follows 

(5.24a) 

(5.24b) 

IThe detector provides an estimate, ZML, of the process z but a shaping filter is used to indepen­

dently estimate z because the value of ZML is affected by the detection delay and by possible false 

detections. 
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The larger covariance, Qal, is obtained following the formula recommended by Ref. [89] 

for terminal guidance applications against a maneuvering target. The smaller covari­

ance, Qa2, is a heuristic trade-off between: 

(a) optimal Gaussian noise rejection (for which Qa2 should be set to zero), and 

(b) providing the filter with a sufficiently broad bandwidth to compensate for errors 

in the estimates k* and ZML (for which Qa2 must be sufficiently large). 

The estimator Eo is designed to be employed at time instants where the uncertainty 

in the system is dominated by the uncertainty about the unknown evasive maneuver. 

The estimator El is suit able for times when the evasive maneuver is already detected 

and estimated (the uncertainty in the system is then dominated by the Gaussian noise 

pro cesses ). 

5.2.3 A Bank of Guidance Laws 

The bank of guidance laws is, for simplicity, also limited to two members referred to as 

DGL/C and DGL/l, respectively. Both guidance laws assume first order dynamics 

for both the purs uer and the evader and the availability of full state observation. 

These laws were derived in Refs [65, 67] as an optimal solution to either a perfect 

information or delayed information deterministic zero-sum pursuit-evasion game (the 

Appendix A outlines the solution procedure) 

Ap [). {ap E P Ilap(t)1 ::; (ap)max a.e. tE [0, tf]) 

AB [). {aB E P IlaB(t)1 ::; (aB)max a.e. tE [O,tf]) 
(5.25) 

In the ab ove , j is the cost of the game, Xl (t f) is the miss distance, P denotes the 

family of piecewise-continuous functions, while Ap and AB represent the feasible 

sets for the pursuer and evader strategies, respectively. Since the game theoretic 
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formulation is deterministic, the random process z in Eq. (2.Ia) is replaced by the 

deterministic variable aB' The constants (ap)max and (aB)max provide hard bounds on 

the commanded accelerations. The deterministic problem in Eq. (5.25) is viewed as 

an approximation to the control part of the original dual stochastic control problem 

in Eqs. (2.1). In the continuous-time setting of Eq. (5.25), the DGL/C and DGL/I 

laws both take the same form (see the Appendix A) 

ap(t) = (ap)maxsign(ZEM(t)) (5.26) 

where ZEM is the zero effort miss distance, Le., the miss distance when the purs uer 

applies a zero acceleration policy (i.e., apO = 0) over the time interval [t, t,]. The 

DGL/C and DGL/I guidance laws differ in the way in which the ZEM is calculated. 

The DGL/C law calculates the ZEM explicitly taking into account a delay in the 

estimate of the acceleration of the evader, while the DGL/1 law assumes no such 

delay. Whenever the evasive maneuver is highly uncertain, the DGL/C law achieves 

a smaller miss distance than the DGL/1Iaw. Otherwise, the DGL/1Iaw achieves the 

smallest miss distance, see the discussion in Ref. [71]. 

5.2.4 A Governor 

An on-line governor employs the value of the indicator variable E to select astate 

estimator and a guidance law from the respective banks. This selection is motivated 

by the assumption of a single evasive maneuver and takes account of an inherent delay 

in the estimation of the evader's commanded acceleration. Whenever E(k) = 0, the 

value of the actual evader's commanded acceleration is uncertain since a recent, but 

yet undetected, evasive maneuver might still have taken place. The current estimate of 

the evader's commanded acceleration is considered reliable whenever E(k) = 1 because 

the already detected single evasive maneuver is included in such an estimate. The 

governor thus employs an on-line decision rule which selects both the state estimator, 

Ei' i E {O,I}, and the guidance law, DGLfj, j E {C,I}, relative to the level of 
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uncertainty about the current evader's commanded acceleration. The decision rule is 

hence stated as 

(Ei' DGL/ j) = 0, 
{ 

(E DGL/C) 

(El, DGL/l) 

for E(k) = 0 

for E(k) = 1 

5.2.5 The Re-Initialization of the State Estimator 

(5.27) 

The sub-optimal Kalman filters employed in the bank of state estimators can be 

re-initialized to improve the accuracy of the state estimate. Such re-initialization 

is achieved here by exploiting the information contained in the detector's estimates 

ZML and k*. The re-initialization is employed when the detector updates its current 

estimates, which takes place only in two situations: when an evasive maneuver is 

detected at time instant k (whenever E (k) = 1) and in the event of a false detection 

of a maneuver that is indicated by the sequence of events: {E(k - 1) = 1, E(k) = O}.2 

The re-initialization of the state estimator at time instant k requires correcting 

the value of the state estimate x(k - llk - 1) and its covariance P(k - llk - 1). 

The re-initialization of the state estimator can be carried out in various ways; the 

simplest approach is to re-use the previous estimate without corrections. However, 

the drawback of this approach is that it ignores any new information about the evasive 

maneuver delivered by the detector such as the value of the current estimates ZML 

and k*. Another approach is to reset the state estimate to be equal to ZML over the 

entire time interval [k*, k]. This particular approach can, however, degrade the state 

estimate due to the errors in ZML and k*. What seems to be a reasonable trade­

off between the two extreme approaches is the following. Rather than imposing the 

estimate history to be that of ZML over the entire time interval [k*, k], it is preferable to 

constrain the state estimate only at a single time instant by requiring that x(lll) and 

2If more than one evasive maneuver is expected, the definition of a faise detection is more com­

plicated, see § 3. 
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2M dk) coincide at l = k*. In this way, the subsequent state estimates in the interval 

[k*, k] are let to converge to 2ML under the action of the Kalman filter whenever the 

value of 2ML is correct or else the Kalman filter has the liberty to compensate for any 

error that might arise. 

To define this procedure more precisely, the re-initialized state estimate and co­

variance are calculated in at most two steps. 

1. If a correction of the state estimate 8x(k - 2)old was already made at time k -1, 

this correction is removed by restoring the previous sequence of estimates 

x(k - llk -1)ori = x(k - llk - l)old - 3(k - 1)8x(k - 2)old 

3(k - 1) 6 (1 - K(k - l)fI) F 

(5.28a) 

(5.28b) 

where the subscripts Oori and Oold denote the state estimate without and with 

the correction at k - 1, respectively, K is the Kalman gain, and fI and Fare 

the measurement and dis crete state transition matrices used by the estimators.3 

2. The corrected state estimate, x(k -llk -1)new, is calculated using the updated 

values of both 2ML and k*. Let 82 be the difference between the estimates 

rendered by the detector and by the state estimator for the process z at the 

time instant k*, i.e., 82 6 2Mdk) - 2(k*lk*)ori. Then, 

x(k - llk - l)new = x(k - llk - l)ori + 8x(k - l)new 

where the correction term 8x(k - l)new is obtained from 

8x( l)new = 3( l) 8x( l - 1 )new, 

8x(k*)new = [0 ... 0 82] T 

l=k*(k)+I, ... ,k-l 

The proof of Eqs. (5.29) and (5.30) is provided in Prop. 5.2.1. 

(5.29) 

(5.30a) 

(5.30b) 

3The system matrices of the state estimators eontain a shaping filter. Renee, they differ from the 

system matrices in Eqs (2.1). 
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For simplicity, the covariance of the re-initialized state estimate is updated by 

(5.31) 

Proposition 5.2.1 Consider a Kalman filter with system matrices F, G, and fI and 

let ±(', .) be its state estimate. Suppose that at time instant k, it is desired to force the 

past state estimate ±(k*, k*), k* < k, to adopt the value ±(k*lk*)new. Let o±(k*lk*) 

denote the difference 

o±(k*lk*) t:, ±(k*lk*)new - ±(k*lk*)old k* < k (5.32) 

Then, the current state estimate consistent with the modified history of ±(" .) is 

±(klk)new = ±(klk)old + o±(klk) 

o±(lll) = 3(l)o±(l - III - 1), l=k*+l,··· ,k 

(5.33) 

(5.34) 

where the subscripts (. )old and (. )new denote the variables before and after modification 

of the estimate history, respectively. 

Proof: By linearity, the difference M;(k*lk*) is propagated forward in time using the 

Kalman filter 

±(l + Ill) = F±(lll) + Gu(l) 

±(lll) = ±(lll - 1) + K(l) (Ym(l) - H±(lll - 1)) 

Repetitive applications of filter (5.35) to Eq. (5.32) yields 

(

k-k*-l ) 
6x(klk) = g '2(k - i) 6x(k*lk*) 

The equation (5.36) re-written in a recursive form is 

o±(lll) = 3(l)o±(l - III - 1), l=k*+l,··· ,k 

(5.35a) 

(5.35b) 

(5.36) 

(5.37) 
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Thus, by propagating and by reversing Eq. (5.32) and by employing Eq. (5.37), the 

current state estimate consistent with the modification of x(k*lk*) is 

x(klk)new = x(klk)old + 8x(klk) (5.38) 

• 
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5.3 A Discretization Scheme for a Class of Control 

Commands 

A discretization scheme for a class of nonlinear control laws is presented below. 

The technique delivers discretized control laws that correspond to the respective 

continuous-time laws. An example discretization of the continuous-time DGL/O, 

DGL/1, and DGL/C guidance laws is presented. 

Lemma 5.3.1 Let A be a linear bounded operator A: }Ri" --+ }Rin • Let 8t'(A) be the 

range of the operator A. Then, the following relation holds 

8t'(A) = 8t'(AA*) 

Proof: Step 1. Proof that 8t'(A) => 8t'(AA*). 

Consider y E 8t'(AA*). Then, 

:3v E }Ri" AA*v = y 

Let x l>. A*v. Then, 

Hence, y E 8t'(A). 

Step 2. Proof that 8t'(A) C 8t'(AA*). 

Consider y E 8t'(A). Then, 

Ax=y 

Ax=y 

By the Orthogonal Projection Theorem, x has a unique decomposition 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 
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Then, 

(5.44) 

Since A operates between Hilbert spaces, JVl..(A) = .%'(A*). It follows that X2 E 

.%'(A*). Hence, 

3v E ]Riu A*v = X2 (5.45) 

Therefore 

AX2 = AA*v = y (5.46) 

Thus, y E .%'(AA*). 

From steps 1 and 2, it follows that .%'(A) = .%'(AA*). 1 

Proposition 5.3.2 Consider a deterministic system with linear dynamics of the form 

x(t) = A(t)x(t) + BI (t)u(t) + B2(t)a(t), (5.47) 

where x(t) E ]Rin, u(t) E ]Riu, and a(t) E ]Ria. Suppose that A, BI, and B 2 are con­

tinuous matrix functions of time. Suppose that the transition matrix for this system 

is <I>(., .). Let u and a be the control and deterministic dis turban ce vector functions, 

respectively. Let y(t) /:, g(tlx(t)) E ]Rig , tE [t l ,t2J, be the system output. Further, 

suppose that 9 is restricted to the following class 

g(tlx(t)) /:, ~(t)x(t) (5.48) 

where ~ is a given ig x in time-varying matrix. 

Define an output controllability operator 1) : }Riu ~ }Rig 

(5.49a) 

t2 

Dl /:, J <I>(t2' T)BI(T) dT (5.49b) 

ti 
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Let x(t; U, Xl, ft) denote the trajectory of the system emanating from initial condition 

Xl at t l and due ta the control action u. 

For any fixed initial condition Xl and for any given control function u( t) E JRiu, 

t E [t l , t 2], there exists a constant control Ud E JRiu such that 

(5.50) 

if and only if 

(5.51a) 

with 

(5.51b) 

t2 

Q(l 6 J ~(t2, T)BI(T)U(T) dT (5.51c) 

The constant control Ud (of minimum norm) is given by 

(5.52a) 

where z is any solution of 

(5.52b) 

In case 1)1)* is invertible, Ud is given by the usual pseudo-inverse 

(5.52c) 

Proof: For brevity of notation, let x(t) 6 x(t; U, Xl, t l ) and Xd(t) ,@, x(t; Ud, Xl, tl)' 

Under the action of respective control functions, the states X and Xd at time instant 

t 2 are given by 
~ ~ 

x(t2) = ~(t2, tl)X(t1) + J ~(t2, T)Bl(T)U(T) dT + J ~(t2, T)B 2(T)a(T) dT (5.53a) 
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In short, 

where 

X(t2) = X°(t2) + 2(1 + 2(2 

Xd(t2) = XO(t2) + DlUd + 2(2 

t2 

2(2 6 J <I>(t2, T)B2(T)a(T) dT 

and Dl and 2(1 are given by Eqs. (5.49b) and (5.51c), respectively. Then, 

95 

(5.54a) 

(5.54b) 

(5.54c) 

(5.54d) 

(5.55a) 

(5.55b) 

where l' and Q: are given by Eqs. (5.49a) and (5.51b), respectively. By virtue of 

assumption (5.51a), it follows that 

Since &è(1') = &è(1'1'*) by Lemma 5.3.1, then Ud is given by Eq. (5.52a) because 

(5.57) 

Clearly, if 1'1'* is invertible, Ud is given by Eq. (5.52c), the usual Moore-Penrose 

pseudo-inverse, as readily follows from the Orthogonal Projection Theorem. 1 

Corollary 5.3.3 Under the assumptions of Prop. 5.3.2, suppose that the control in­

put U E JRiu is bringing the system output y to zero at time t 2, i. e., 

y(t2) = g(t2' x(t2; U, Xl, tl)) = 0 (5.58) 

Then, the ((equivalent" dead-beat constant control input Ud exists if and only· if Q: E 

&è(1'), see Eq. (5.51), and is given by 

(5.59a) 
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where z is any solution of 

with XO and 212 given by Eqs. (5.54e) and (5.54d), respectively. In case 1)1)* is 

invertible, Ud is given by 

(5.5ge) 

Proof: By employing Eq. (5.54a), the value of the funetion g(t2' x(t2)) is given by 

g(t2' x(t2)) = <!5(t2)XO(t2) + <!5(t2)2l1 + <!5(t2)2l2 

= <!5(t2)XO(t2) + ~ + <!5(t2)2l2 

By virtue of the assumption (5.58), it follows that 

Renee, 

(5.60a) 

(5.60b) 

(5.61) 

~ = -<!5(t2) (XO(t2) + 2(2 ) (5.62) 

The Eq. (5.59) follows by employing Eq. (5.62) in Prop. 5.3.2 if ~ E q(1)). 1 

Theorem 5.3.4 Consider the system given in Prop. 5.3.2 with the additional as­

sumption that it is a single input single output system, i. e., u E 1:,2, [tl' t2l, and 

y(t) E ]RI. Additionally, suppose that the control input u must stay bounded by a fixed 

constant umax 

Define the function ~(t) : [t l , t2l ---t 1:,2 x]RI and the constants 'I and 3 by 

~(t) 6 <!5(t2)~(t2, t)l3 l (t) 

'I 6 <!5(t2)XO(t2) + <!5(t2)2l2 

(5.63) 

(5.64) 

(5.65) 

(5.66) 
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where XO and 2(2 are defined in Eqs. (5.54c) and (5.54d), respectively. Suppose 1:}3 is 

not identically zero and does not change sign. 

Under these conditions, for any initial condition Xl 

Au 6 {u E .c21Iu(t)l::; umax
, tE [tl,t2]} 

Ad 6 {Ud E IRllludl::; U
max

, tE [tl,t2]} 

(5.67a) 

(5.67b) 

(5.67c) 

Furthermore, the minimum in the right hand side of Eq. (5.67) is achieved by 

{ 
-rr/3, whenever Irr/31 ::; umax 

Ud = -umaxsign('II:}3(tI)), otherwise 
(5.68) 

Proof: Adopt the same short hand notation as given in Eq. (5.53). 

Case 1.: Suppose that 

(5.69) 

By Eq. (5.60b), it follows that 

c = inf Irr + ~I 
UEAu 

(5.70) 

where only I!: is a function of the control signal u and is given by Eq. (5.51b). Sinee 

~ E IRI and 'I E IRI, the assumption that c =f=. 0 implies that 

c = min{rI, r2} 

rI 6 Irr + ~maxl, ~max 6 SUp ~ 
uEAu 

(!:rnin L;, inf (!: 
uEAu 

By employing Eq. (5.51), it follows that ~max is given by 

~max = sup (®(t2)jt
2 

<I>(t2,T)BI(T)U(T) dT) 
uEA" 

tl 

(5.71a) 

(5.71b) 

(5.71c) 

(5.72) 
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As ® is a linear operator, then 
t2 

Q:max = sup j®(t2)<I>(t2,T)BI(T)U(T)dT 
UEA" 

h 

t2 

= sup js:}J(T)U(T) dT 
uEA" 

h 
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(5.73a) 

(5.73b) 

where s:}J is given by Eq. (5.64). By virtue of the assumption that s:}J does not change 

sign, it follows that 

Q:max = 

Similarly, 

Thus, 

c= 

(1!jl( 7) d7 ) um~, if !jl(t,) 2 0 

- (1!jl( 7) d7 ) u-, otherwise 

- (1!jl( 7) d7) um=, if !jl(t,) 2 0 

(l !jl( 7 ) d 7 ) um~, otherwise 

t2 

'I - umax J s:}J( T) dT, if ('Is:}J( t l )) ~ 0 
tl 
t2 

'I + umax J s:}J( T) dT, otherwise 

(5.74) 

(5.75) 

(5.76) 

and that c is achieved by a control U E .c2
, [t l , t2], which is in fact constant so that 

Ud in Eq. (5.67) is given by 

(5.77) 

The above is easily seen by considering the four following cases 

if 'I ~ 0, then c = l'I + Q:min 1 ==} 

if 'I < 0, then c = l'I + Q:maxl ==} 

u(t) = _umax , t E [tl, t 2], 

u(t) = Umax , tE [tl, t2], 

U(t) = Umax,t E [tl,t2], 

if q:J(tl) ~ 0 

ifs:}J(h) < 0 

if s:}J(t l ) ~ 0 

U(t) = _umax , t E [tl, t2], if s:}J(t l ) < 0 

(5.78) 
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Case 2. Suppose that 

(5.79) 

By virtue of assumptions (5.67) and (5.79), it follows that 

(5.80) 

where only <r is a function of u. Then, there exists a sequence of control functions 

Ui E J:,2, [tl, t 2], and such that Ui E Au, i = 1,···, which generates this infimum, 

meaning 

For each i, let 

Hence, 

and for all i 

t2 

-'ri (:, J ~(T )Ui (T) dT -----t -'r 

tI 

Vi 

t2 

as z -----t 00 

IU d,i1131 = IU d,i31 = J ~(T)Ui(T) dT ~ u ffiax l31 
tl 

(5.81) 

(5.82) 

(5.83) 

(5.84) 

by virtue of the facts that Ui E TI~\ Ud,i E lR\ and ~ does not change sign. Therefore, 

lu ·1 < u ffiax 
d,~ _ Vi (5.85) 

Sinee the sequence Ud,i is bounded, it contains at least one convergent subsequence 

(this convergent subsequence is "of course" a sequence of zeroes when 3 = 0). To 

simplify the notation, let {ud,d denote this subsequence and let Ud be its limit. 

It follows that 
~ ~ ~ J ~(T)Ui(T) dT = Ud,i J ~(T) dT -----t Ud J ~(T) dT = -'r as i -----t 00 (5.86) 

tl tl h 
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and 

(5.87) 

as a limit of a sequence bounded by the same number. Therefore, 

(5.88) 

and Ud delivers the minimum in Eq. (5.67). 

Finally, the minimum in Eq. (5.67) is found by first computing the right hand side 

of Eq. (5.88) and determining if it satisfies the pre-specified bound umax . If this is 

so, then the Ud of Eq. (5.88) is indeed the minimizing control. Otherwise, the Ud of 

Eq. (5.77) is the minimizing control which however does not deliver g(t2 , x(t2 )) = O. 

1 
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5.3.1 An Example: The Discretized DGL/O, DGL/1 and 

DGL/C Laws 

The DGL guidance laws are each optimal game theoretic solutions to a continuous­

time deterministic linear pursuit-evasion problem with bounded inputs. These guid­

ance laws are of the form 

with 

i E {a, 1, C} 

ZEMi(t) Â D<Pi(tf, t)x(t) 

DÂ[laaa] 

(5.89) 

(5.9aa) 

(5.9ab) 

(5.9ac) 

Here, Ui, i E {a, 1, C}, are the control commands for the DGL/i laws and <Pi are 

transition matrices of three different systems also of the form (5.47). The ZEM has 

the property that ZEM (t f ) is equal to the miss distance. In each of the three cases, the 

ZEM plays the role of the function 9 in the optimal control problem of Theorem 5.3.4 

and û, as given by Eq. (5.89), is the optimal solution. The linear systems associated 

with each <Pi, i E {a, 1, C}, differ only by the assumptions about the dynamics of the 

evasive maneuvers. The explicit expressions for ZEMi are, cf. [38, 65, 67], 

where 

ZEMo(t) = Xl (t) + X2(t)tgo - X4(t)Op(t) 

ZEMI(t) = Xl(t) + X2(t)tgo + X3(t)OE(t) - X4(t)Op(t) 

ZEMc(t) = XI(t) + X2(t)tgo + X3(t)OE(t)e-b.t!TE - X4(t)Op(t) 

jE{E,P} 

and Tp, TE, and /j,l are parameters. 

(5.91a) 

(5.91b) 

(5.91c) 

(5.91d) 
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In order to obtain a guidance law which is cost-equivalent to Eq. (5.89) and delivers 

a control command with a constant value in time intervals of a given length ~, 

Theorem 5.3.4 is applied as follows. 

The optimal controls Ui as given by Eq. (5.89) are clearly piecewise-continuous 

and bounded functions (because of the continuity of ZEMi ) and hence are members 

of 1:-2 over any finite interval of time. In the context of Theorem 5.3.4, this optimal 

control is viewed as the solution to the following optimal control problem 

inf ZEMi(tf) 
UEAu 

(5.92) 

where Au is defined by Eq. (5.67b) and subject to the constraints provided by the 

dynamical model for the propagation of the ZEMi over the interval [0, t f 1 which is 

easily obtained by differentiating Eqs. (5.91) with respect to time. Assuming that 

ZEMi(t) lies on the optimal trajectory for the system on [0, tf], it then follows from 

the Bellman's principle of optimality that the control Ui restricted to any subinterval 

[t, t + ~l is also optimal for the optimal control problem (5.92) over the restricted 

horizon [t, t+~]. The Theorem 5.3.4 is now readily applied with t l = t and t2 = t+~, 

provided that the functions ~i, corresponding to this restricted control problem, 

satisfy the assumptions. For the pursuit-evasion scenario used in the derivation of 

the DGL/1 law, i.e., for <P = <Pl, the formulae for ~i are obtained by comparing 

Eqs. (2.4), (5.64), (5.90a), and (5.91). Similarly, it is found that the linear operator 

~ is given by ~(t) = D<Pi(tf' t). 

Claim 5.3.5 The function ~i(T), i E {a, 1, Cl, TE [0, tf], does not change sign. 

Proof: From the definition of l.l3"i in Eq. (5.67b), it follows that 

(5.93) 

Consider, 

i E {a, 1,C} (5.94) 
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Clearly, ds,vd dT 2:: ° for T E [0, t f], and hence the function s,vi (T) is growing mono­

tonically in the interval [0, t f ]. Moreover, the maximum of s,vi(T) , TE [0, tf], is 

i E {O, 1, C} (5.95) 

Thus, s,vi(T) , i E {O, 1, Cl, TE [0, tf], is always negative. 1 

Let t = kIJ., and let Ud,i be the control command delivered by the discretized DGL/i 

law, i E {O, 1, Cl, for t E [0, tf]. Then, from Eq. (5.68) it follows that 

~ { ai(k)/8p(k) whenever lai(k)/8 p(k)1 :::; umax 

Ud,i(k) = 
umaxsign ( ai (k) ) otherwise 

(5.96) 

where 

with 

ao(k) = ZEMo(k) + sno(k) 

al(k) = ZEM1(k) + sn1 (k) 

ac(k) = ZEMc(k) + snc(k) 

(5.97a) 

(5.97b) 

(5.97c) 

IJ.2 
8 p(k) = IJ. (tgo - Tp) + T~e-tgO/TP (e~/TP - 1) - - (5.98a) 

2 
t+~ 

sno(k) = J (t f - TE - T + Jo(k))a(T) dT (5.98b) 

t 

t+~ 

sn1(k) = J (t f -TE-T+J1(k))a(T)dT (5.98c) 

t 

t+~ 

snc(k) = J (t f - TE - T + (1 - e-~t!TE)Jo(k) + e-~t!TEJl(k) )a(T) dT (5.98d) 

Jo(k) 6 e-(t-T)/TEe-~/TE(TE - tgo + IJ.) (5.98e) 

JI (k) 6 e-(t-T)/TEe-tgo/TETE (5.98f) 

The ca1culation of sni, i E {O, 1, Cl, requires specifying the realization of a(T), T E 

[t, t + IJ.]. 
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Important Remark 1. 

The Claim 5.3.5, that guarantees that s;P does not change sign over the who le en­

gagement, is a sufficient but not necessary condition for application of Theorem 5.3.4. 

The necessary condition for application of Theorem 5.3.4 is that s;P does not change 

sign over the sampling time interval. 

Important Remark 2. 

The Theorem 5.3.4 guarantees that there is no control strategies in 1:-2
, [t 1 , t2], that 

achieve a smaller value of ZEMi than that delivered by Ud,i' Since the continuous­

time DGL/i law, i E {D,l,C}, is only a subset of the strategies in 1:-2,[t1,t2], it is 

guaranteed that the discretized control signal Ud,i is at least as good to minimize 

ZEMi as the continuous-time DGL/i law, if not better. Moreover, Theorem 5.3.4 

guarantees that the control signal Ud,i is of minimal norm. 



Chapter 6 

Summary of Simulation Results 

Involving the Novel Detection, 

Estimation, and Guidance Schemes 

T HE efficiency and superiority of the novel schemes are demonstrated byexten­

sive simulations in application to a pursuit-evasion terminal engagement be­

tween an interceptor (the pursuer) and a maneuvering ballistic missile (the evader). 

The mathematical description of the engagement is presented in § 2. The simula­

tion parameters are selected to represent the interception problem of a maneuvering 

ballistic missile re-entering the atmosphere after its midcourse suborbital fiight. Dis­

cussions of realistic values for these parameters are found in Refs [40, 77, 79]. The 

control strategy employed by the evader is a bang-bang maneuver with a single switch 

over the time interval of the engagement. The time instant of the switch is unknown 

to the pursuer. The statistical performances of the algorithms are evaluated through 

Monte Carlo simulations. The Monte Carlo simulation repeats the pursuit-evasion 

scenario several times. Each repetition is characterized by a specifie noise realization 

and a specifie ons et time instant for the evasive bang-bang maneuver. 
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Table 6.1: Simulation parameters 

Parameter 

Initial distance 

Pursuer velocity 

Evader velocity 

Pursuer maximal acceleration 

Evader maximal acceleration 

Pursuer time constant 

Evader time constant 

Measurement rate 

Measurement angular noise standard deviation 

False alarm probability 

Maximal magnitude of ZML 

6.1 Simulation Parameters 

Value 

X o = 20 000 m 

Vp = 2300 m/s 

VE = 2700 m/s 

umax = 30 g 

zmax = 15 g 

Tp = 0.2 S 

TE = 0.2 s 

f = 100 Hz 

(J" = 0.1 mrad 

a = 0.001 

zMf = 100 g 
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The nonlinear dynamics of the pursuit-evasion engagement is provided by Eqs. (2.7) 

while the linearized dynamics is given by Eqs. (2.8). In this scenario, the known 

input, u, is the acceleration command of the pursuer, and the unknown input subject 

to additive abrupt changes, z, is the evader's acceleration commando The simulation 

parameters, corn mon to aH simulations, are provided in Table 6.1. The value of zmax 

is unknown to the pursuer. Furthermore, the sampling time interval of the discrete­

time system, ~, is obtained from the measurement rate f as: ~ = 1/ f. The initial 

heading angles are zero, i.e., <pp(O) = 0 and <PE(O) = 0, see Fig. 2.1, and the initial 

evader's acceleration command is z(O) = 15 g. The theoretical false alarm probability, 

a, is employed to select the threshold, h, used in the GLR test and is computed, using 

Eq. (3.33), to be h = 10.83. The value of the bound zMf is selected larger than zmax 
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to permit for the presence of estimation errors in i(k, i), see § 3.2.5. 

To present the results, it is useful to define the time-to-go at the onset of the 

evader's maneuver, tgosw : 

tgosw A tf - t*, t* A k*!:1. (6.1) 

where k* is the onset time instant of the evasive maneuver. 

6.1.1 Parameters for the Detection Statistics 

The detection statistics of the adaptive-&o GLR detector are compared to those of 

the GLR detector. The Monte Carlo simulations employ 40 different time instants 

for the onset of the evader's maneuver, and a total 40 000 different noise realizations. 

Each repetition employs the linearized dynamics of the engagement. The following 

criteria are chosen for the comparison: 

(i) the false alarm rate, 

(ii) the rate of missed detection, 

(iii) the detection delay (the average and the standard deviation), and 

(iv) the error in the estimation of z (the average and the standard deviation). 

The reference Kalman filter employed by the GLR algorithms requires a reference 

realization which is initially selected to be a.7'l6 (l) = 0, l ;:::: O. Henee, the reference 

realization a.7'l6 is initially mismatched with respect to z(O). The referenee Kalman 

filter uses a non zero process noise covariance matrix, Qk, given by 

Ll 

Qk = J tI>(T)QtI>T(T) dT, (6.2) 
o 
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where the transition matrix, ~, is provided in Eq. (2.14a), and where qn = 1 m2
, 

q22 = 10 m2 / S2, and q33 = 1 m 2/ S4. The nonzero Qk provides sorne bandwidth to 

compensate for the uncertainties in the isolation of the abrupt change and possible 

nonlinearities. 

The GLR and the adaptive-&o GLR detectors also require a set of hypotheses 

describing the normalized shape of an evasive maneuver. A constant normalized 

shape is employed for aIl the hypotheses, i.e., fi(l, k*) = 1, l E [k*, k], for aIl i. The 

hypotheses differ only by the onset time instant of the evasive maneuver. AlI the 

onset time instants are contained within a temporal sliding window. The maximal 

width, w*, of the sliding window employed by the GLR detector w* = 70 whereas 

the adaptive-~ GLR detector employs a maximal sliding window of width w* = 400 

and an effective sliding window of width W;ff = 70. Using a tuning process, the 

factor (3((), employed by the GLR test in the adaptive-~ GLR algorithm, is set to 

{3( () = 1.05. 

Remark 1. A larger value for w* is desirable to improve the diagnosis of the evasive 

maneuver. However, the GLR detector requires a smaIler w* than the adaptive­

&0 GLR detector in order to have the ability of detecting two events during the 

engagement: the one event triggered by a possible mis match between the realizations 

a.J1t6 and z, and another event triggered by the evader's maneuver. In the case of 

the adaptive-~ GLR detector, the detection of a mismatch does not prevent the 

detection of the evader's maneuver. Hence, a larger maximal sliding window can be 

employed to improve the diagnosis of the evasive maneuver. 

6.1.2 Parameters for the Estimation Statistics 

The estimation statistics of the AMR-GLR estimator are compared to those of the 

IMM estimator since the latter is recognized to have good performance in tracking 
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problems involving highly maneuvering targets, cf. [44]. The Monte Carlo simulations 

employa single ons et time instant for the evasive maneuver (i.e., t = 2.0 s) and 

100 different noise realizations. Each repetition employs the linearized dynamics of 

the engagement. Five different implementations of the IMM estimators, denoted as 

IMM1, ... , IMM5, are compared with the AMR-GLR estimator. 

The AMR-GLR estimator calculates the (unnormalized) total probability, Pr( Mn, 
as follows: 1 

when i = 0 
(6.3) 

otherwise 

where i E {O,··· ,w}, (J'a = 10 [g] and (J'b = 2 [g]. Contrary to the IMM estimators, 

the AMR-GLR estimator does not employ Markovian transition probabilities between 

the models. 

The estimators IMM1, IMM2, IMM3, and IMM4 employa bank of three Kalman 

filters equipped with a shaping filter (SF). The SF approximates the unknown evasive 

command acceleration by a Wiener process acceleration model (WPAM), cf. [7]. The 

three Kalman filters differ only by the covariance, Qw, of the WPAM; the three 

employed values in the bank oflMM1 are Qw E {O, 9, 225} [g2], Qw E {O, 25, 2500} [g2] 

for IMM2 and IMM4, and Qw E {O, 25, 10000} [g2] for IMM3. The estimators IMM2 

and IMM4 differ only by their Markovian transition probability matrices listed below. 

The estimator IMM5 incorporates 9 Kalman filters in its bank. Each filter assumes 

constant acceleration levels for z which are {-30, -20, -10, -5,0,5,10,20, 30} [g]. 

None of the filters match the true target's command acceleration at any time; the 

last is realistic since zmax is unknown to the purs uer . 

The elements, Pr(Mi
k IMf-l), of the Markovian transition probability matrix are 

IThe total probability in Eq. (6.3) can be unnormalized since it is only used within a ratio, see 

Eq. (4.22). 
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set to: 

IMM1 = { Pr(M.'IM,k-l) = 0.98 
(6.4a) IMM2 

Pr(Mi
kIMf-l) = 0.01 i=l-j 

IMM3 

{ Pr(MkIMk- 1
) = 0.995 

IMM4 ==> 2 2 (6.4b) 
Pr(Mi

kIMf-l) = 0.0025 i=l-j 

{ Pr(M'IMk- 1
) = 0.98 

(6.4c) IMM5 ==> 2 2 

Pr(MikIMjk-l) = 0.0025 i=l-j 

6.1.3 Parameters for the Homing Accuracy of the Guidance 

Law With Semi-Markov Models 

Two terminal guidance laws of the following form are considered 

u(k) = umaxsign (ZEM(k)) (6.5) 

The first guidance law calculate the ZEM using the Bayesian semi-Markov predictor 

given in Eqs. (5.19)-(5.21). The second guidance law is the so-called DGL/1Iaw and 

its ZEM is calculated by employing Eq. 5.91b. The Monte Carlo simulations employ 

50 different time instants for the onset of the evasive maneuver and a total of 10 000 

different noise realizations. Each repetition employs the linearized dynamics of the 

engagement. For both guidance laws, the state estimate is delivered by a Kalman 

filter with a WPAM shaping filter. The covariance of the WPAM is selected to be 

Qa = 225 g2. The two comparison criteria are: the single shot kill probability (SSKP), 

defined as the probability of a successful interception, and the required lethal radius, 

Rk' of the pursuer, see § 2.1 for details. 

The semi-Markov guidance law calculates the (unnormalized) total probability of 
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the semi-Markov models, Pr (zfIL,~), as follows: 

for i = 0 
(6.6) 

for i = 1,··· ,w 

where Qo = 9 g2. The value of the Poisson parameter employed in Eq. (5.21c) is 

À = 0.25 for the semi-Markov model (ifIL, &0) and is À = 0.0025 for the other 

semi-Markov models. 

6.1.4 Parameters for the Homing Accuracy of the Decision 

Directed Adaptive Guidance and Estimation Scheme 

The homing accuracy of the decision directed adaptive guidance and estimation 

scheme is studied with two different banks of guidance laws. In the first case, the 

adaptive scheme employs a bank of guidance laws containing the game theoretic 

DGL/1 and DGL/C laws. In the second case, the bank contains the MEL and PN 

laws. In both cases, the homing accuracy of the adaptive scheme is compared with 

that of the non-adaptive laws matched with the state estimator Eo (see § 5.2.2 for 

a description of estimator Eo). The equations of the DGL/1 and DGL/C laws are 

described in § 5.3.1 and the PN and MEL laws are given by (see chapter 8 in Ref. [90]) 

with 

u(k) = NXI(k) +2X2 (k)tgo 

tgo 

u(k) = ~' [Xl + X2tgo + 0.5X3t~o - X4T~(e-a + a - 1)] 
tgo 

N' t:, 6a2 (e- a + a - 1) 
2a3 - 6a2 + 6a + 3 - 12ae-a - 3e-2a 

t:, tgo 
a=-

Tp 

PN law 

MEL law 

(6.7a) 

(6.7b) 

(6.7c) 

(6.7d) 

The navigation constant ofthe PN law, N, employs the value N = 4. The information 

delay, a parameter of the DGL/C law in Eq. (5.91c), is selected to have the value 
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D.l = 0.3 s. The Monte Carlo simulations employ 100 different time instants for the 

onset of the evasive maneuver and a total of 200 000 different noise realizations. Each 

repetition employs the nonlinear dynamics of the engagement. The two comparison 

criteria are: the single shot kill probability (SSKP), defined as the probability of a 

successful interception, and the required lethal radius Rk of the purs uer. The decision 

directed adaptive guidance and estimation scheme employs a tuning pro cess to set 

the value of the factor j3( () to j3( () = 1.00; the factor j3( () is employed by the GLR 

test in the adaptive-Jf6 GLR algorithm. 

6.1.5 Parameters for the Homing Accuracy of the Discretized 

Guidance Laws 

The discretized versions of the DGL/O, DGL/l, and DGL/C laws are delivered by 

Eqs. (5.96)-(5.98) with the assumption that Z(T) = 0, T E [t, t + D.]. The dis­

cretized DGL laws are compared to two different sample and hold approximations 

of the continuous-time DGL laws. In the first sample and hold approximation, the 

continuous-time DGL laws update the value of the command u(·) at each sampling 

time interval D.. In the second sample and ho Id approximation, the value of the com­

mand u(·) is updated a 1 000 times during each sampling time interval D., hence the 

command is updated at a much higher rate than in the first implementation. To up­

date the command at a rate higher than the measurement rate, an assumption about 

the evader's acceleration between two sampling time is required. Here, the employed 

assumption is the same as for the discretized DGL laws, i.e., z( T) = 0, T E [t, t + D.]. 

The first sample and ho Id approximation corresponds to a straight forward appli­

cation of the continuous-time DGL laws to a discrete-time setting. The second sample 

and hold approximation, with its higher update rate of the control command, better 

approximate a continuous-time system than the first simple and hold approximation; 
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hence, the lost of performance is decreased for the sam pIe and hold approximation at 

the higher update rate. 

For all the guidance laws, the state estimate is delivered by a Kalman filter with 

a WPAM shaping filter. The covariance of the WPAM is selected to be Q a = 225 g2. 

The Monte Carlo simulations employ 100 different time instants for the onset of the 

evasive maneuver and a total of 200 000 different noise realizations. Each repetition 

employs the nonlinear dynamics of the engagement. The statistical performance of 

the guidance laws are compared in terms of the required Rk to achieve SSKP=0.95. 

6.2 The Detection Statistics 

A decision test (such as the GLR test) involves risks of making two types of false 

decisions: rejecting the null hypothesis when it is true (type 1 error), and accepting 

the null hypothesis when it is false (type II error) , see Ref. [43], p. 65. The false 

alarm rate (type 1 error) and the miss detection rate (type II error), for the GLR and 

the adaptive-,)(fo GLR detectors, are shown in Fig. 6.1. Here, the false alarm rate is 

calculated as a ratio between (a) the ensemble average of false alarms before the ons et 

of the evasive maneuver, and (b) the number of decisions delivered before the ons et 

(a decision is delivered at each discrete time instant). The missed detection rate is 

calculated by dividing the total number of engagements with at least one detection 

after the onset of the evasive maneuver by 1 000 (the Monte Carlo simulation employs 

1000 engagements with the same onset time). 

As seen from Fig. 6.1a, the adaptive-,JtQ GLR detector delivers a false alarm prob­

ability about 4 times smaller than that obtained by the GLR detector. The peak in 

the false alarm probability, at tgosw E [3.3,3.8] s, is interpreted as follows. Whenever 

the onset of the evasive maneuver is close to the beginning of the engagement, the 

GLR detector cannot separate the event caused by a mis match in a.J'tô and the event 
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Figure 6.1: False alarm and missed detection rates. Continuous line: adaptive-..nQ 

GLR detector, dotted line: GLR detector. Panels: (a) false alarm rate, (b) missed 

detection rate. 
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caused by the evasive maneuver. Because both events are present within the sliding 

window of the detector and since the detector has no single hypothesis that accounts 

for both, a larger false alarm probability results. 

Figure 6.1b shows that the adaptive-,n'6 and the GLR detectors have, overall, 

similar missed detection probabilities. For an evasive maneuver with an ons et time 

instant at tgosw E [0,0.3] s, the detection is missed because there is not sufficient 

time le ft in the engagement to deliver a decision (see the discussion concerning the 

detection delays in the sequel). For an evasive maneuver with an onset time instant 

at tgosw E [3.9,4.0] s, the adaptive-,n'6 GLR detector may miss the detection of the 

maneuver because the available information is not sufficient to distinguish between 

an alarm raised due to the onset of an evasive maneuver and that due to a mismatch 

in a.Yt'o. 

Due to the necessity of collecting sufficient information to deliver a statistically 

significant decision, there is always a time delay between the ons et time of the evasive 

maneuver and the time instant at which this maneuver is detected. The average 

detection delay and its standard deviation, for the GLR and the adaptive-~ GLR 

detectors, are shown in Fig. 6.2. The GLR and the adaptive-~ GLR have similar 

average detection delays. The dip in the average detection delay produced by the GLR 

detector at tgosw E [3.5,3.7] s deserves an explanation as it is not a manifestation of 

a superior quality of the GLR detector. Instead, it results from the GLR detector's 

inability to separate an event caused by a mismatched a.Yt'o and an event caused by the 

onset of an evasive maneuver. In the situation where both events are present within 

the sliding window, it can happen, by a fortuitous chance, that the GLR detector 

raises an alarm but which is actually a reaction to the initial mismatch in a.J1t6 rather 

than a reaction to the event of the onset of the maneuver. In other words, at this 

point, the GLR detector raises an alarm for the wrong reason; this do es not happen 

in the case of the adaptive-~ GLR detector. 
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Figure 6.2: Detection delay. Continuous line: adaptive-&o GLR detector, dotted 

line: GLR detector. Panels: (a) average detection delay, (b) standard deviation of 

the detection delay. 
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Figure 6.2b shows that the adaptive-.nQ GLR detector exhibits a smaller standard 

deviation in the detection delay than the GLR detector for tgosw E [0.2,2.6] s. The 

standard deviation plots for the detection delays, for tgosw E [2.7,4] s, exhibit a 

complex behavior due to the initial mismatch in a.Yt6. The standard deviation of the 

detection delay for tgosw E [0,0.2] s is high because aIl detections in this interval 

are fortuitous in the sense that they are not triggered by the onset of the evader's 

maneuver but by parasitic phenomena (noises, mismatched a.Yt6). 

The GLR detectors provide an estimate, ZML, of the true evader's acceleration 

command, z. The mean and standard deviation of the estimation error, e(k) = 

zMdk) -z(k), are shown in Figs. 6.3 and 6.4, respectively. The results are presented 

for six different onset times of the evader's maneuver. In aIl cases, the initial mismatch 

in a.Yt6 is detected and first corrected at tgo ~ 3.6 s. At that point, the average error 

in the estimate from the GLR detector demonstrates a much larger overshoot than 

the one from the adaptive-&o GLR detector. The pulse-like feature in the plots of 

Fig. 6.3 is generated by the evader's maneuver: the birth of the pulse happens at 

the onset of a maneuver and its left slope corresponds to the actual detection of the 

maneuver. The width of the pulse is associated with the detection delay. Following 

the detection of the maneuver, both detectors exhibit an overshoot in the average 

error of the estimate. This overshoot is clearly much larger using the GLR detector 

and is particularly pronounced for tgosw = 3.5 s. This is attributed to a mismatch 

in the reference realization a.Yt6. The adaptive-&o GLR detector avoids this pitfall 

due to its ability to separate the event of a mismatch and the event of the onset 

of the evasive rrianeuver. Additionally, the GLR detector delivers many false alarms 

(manifested as spikes in the average error) as compared to a negligible number of false 

alarms in the case of the adaptive-.nQ GLR detector (no visible spikes in the average 

error). 

The standard deviation of the estimation error in ZML is demonstrated to be much 

smaller by employing the adaptive-&o GLR detector as compared to the one from the 
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Figure 6.3: Average error of the estimate of the evader's command acceleration for 

several ons et time instant of the bang-bang maneuver. Panels: (a) adaptive-~ GLR 

detector, (b) G LR detector. 



CHAPTER 6. SUMMARY OF SIMULATION RESULTS 

Adaptive-cJ{o GLR Standard GLR 

30 - - , - - - 1 - - -1- - - 30 

__ ~ ___ L ___ 1 __ _ 
20 

1 1 1 
10 - - , - - - 1 - - -1- 10 

o~~~~~~~~~~++~ OFFFF~~~~~~~~~ 
30 - - , - - - 1 - - -1 - - - 30 

__ ~ ___ L ___ 1 
1 1 1 

......., 20 
~ 

10 - - , - - - 1 - - -1 

o~++~~~~~~~~~~ 
30 - - 1 - - - 1 - - -1- - -

1 1 1 --1---1-......., 20 
~ 

10 __ J ___ L 
1 

o~~~~~~~++~~++~ 
30 

,......., 20 
~ 

10 

o~~~~~~~~~~++~ 
30 

......., 20 
~ 

10 

o~~~~~~~~~~~ 
30 

......., 20 
~ 

10 

2 

tgo [s] 

(a) 

3 4 

20 

10 

OFFFFFF~~~~FF~~ 
30 

20 

10 

OFF~;+++~~~49~~~ 
30 

20 

10 

O~~~~TT~~49~~~ 
30 

20 

10 

--,--,­
__ .1.. __ --1_ 

1 1 --,--,-
2 

tgo [s] 
3 4 

(b) 

119 

tgosw=3.5 [s] 

tgo",,=3.0 [s] 

tgo",,=2.0 [s] 

tgosw = 1.0 [s] 

tgo",,=0.5 [s] 
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acceleration for several onset time instant of the bang-bang maneuver. Panels: (a) 

adaptive-.nQ GLR detector, (b) GLR detector. 
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GLR detector, see Fig. 6.4. Moreover, the GLR detector fails to provide a consistent 

estimate of the evader's acceleration command; note the non-zero bias in the standard 

deviation plots in Fig. 6.4b. In contrast, the adaptive-~ GLR detector can serve as 

a consistent filter. 

6.3 The Estimation Statistics 

The estimated evader's acceleration is depicted in Figure 6.5 for one sample noise 

realization (aIl the estimators employ the same sample noise realization). As com­

pared with the estimates from the IMM estimators, the estimate from the AMR-GLR 

estimator is characterized by a better noise rejection and faster convergence after an 

abrupt change. 

The magnitude of the average error in the estimate of the evader's acceleration 

is depicted in Figure 6.6a. As compared to the estimates from the IMM estima­

tors, the estimate from the AMR-GLR estimator converges faster after an abrupt 

change. SpecificaIly, the IMM1 estimator exhibits both a large average error and a 

slow convergence of the estimate. For the IMM2 and IMM3 estimators, increasing 

the covariance of the SF improves the convergence after an abrupt change, but not 

sufficiently to reach the rate of convergence of the AMR-GLR estimator. Further in­

creasing the covariance of the SF at a level higher than IMM3 (not shown here) does 

not yield further improvements in the convergence of the estimate. As for the IMM4 

estimator, it converges faster than the IMM2 estimator despite using the same bank 

of filters. It happens because IMM4 employs lower Markovian transition probabilities. 

However, the IMM4 estimator also exhibits the largest worse-case average error. The 

IMM5 estimator is characterized by a biased estimate. Additional simulations, not 

shown here, employing the IMM5 estimator with different values for its Markovian 

transition probabilities did not significantly improve the performance. 
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Table 6.2: Computational requirements 

Estimator time [1O-2s] factor 

IMM with 3 filters 

AMR-GLR with 70 hypotheses 

IMM with 9 filters 

28 lx 

151 5.4x 

160 5.8x 

The standard deviation (SD) in the estimate of the evader's acceleration is de­

picted in Figure 6.6b. The estimate from the AMR-GLR estimator exhibits a peak SD 

at t t'V 2.4 s, the last occurs in reaction to the abrupt change in the evader command 

acceleration. Before the peak, the AMR-GLR estimator and the IMM1 estimator 

yield estimates with similar SD. After the peak, the lowest SD is achieved by the 

AMR-GLR estimator. The IMM1 estimator exhibits a SD lower than the IMM2 and 

IMM3 estimators because the covariance of its SF is the lowest. The IMM4 esti­

mator demonstrates a large SD of its estimate at the beginning of the engagement 

and after the peak; the low Markovian transition probabilities render the estimate 

sensitive to noise and model uncertainty initially and after an abrupt change. The 

IMM5 estimator is similar to the IMM2 estimator in terms of the SD. 

To summarize the results in Figures 6.6a and 6.6b, the estimate from the AMR­

GLR estimator demonstrates simultaneously fast convergence after an abrupt change 

and a low standard deviation. In the same situation, the IMM estimator can provide 

either an estimate with a fast convergence rate, or an estimate with a low standard 

deviation, but not both simultaneously. 

The computational requirements of the estimators are displayed in Table 6.2. In 

terms of computational requirements, the AMR-GLR estimator with 70 hypotheses is 

similar to an IMM estimator with 9 filters. The IMM estimator with 9 filters requires 

five times more computational time than the IMM estimator with 3 filters. The IMM 
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Figure 6.7: Required lethal radius to guarantee SSKP=0.95. The guidance laws are: 

(1) solid line - the Bayesian semi-Markov law, and (2) dotted line - the DGL/1 law. 

estimator has a computational requirement increasing faster than linearly with the 

number of filters because its procedure for mixing initial conditions is a quadratic 

operation with respect to the number of filters. The computational requirements of 

the AMR-GLR estimator increase linearly with the number of hypotheses, cf. [84]. 

6.4 Homing Accuracy of the Guidance Law for 

Semi-Markov Processes 

The minimum Rk of the pursuer, required to achieve a SSKP = 0.95, is shown in 

Fig. 6.7 as a function of tgosw ' The Bayesian semi-Markov guidance law consistently 

achieves a smaller miss distance than the DGL/1Iaw and the worst-case miss distance 

is reduced by rv 30%. The miss distance for maneuvers occurring in the interval 

tgosw E [0.8, 1.2] s is essentially zero by employing the Bayesian semi-Markov law. By 

comparison, the DGL/1 law reaches rv 6 m in the same interval. 
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Figure 6.8: Overall SSKP versus the lethal radius. The guidance laws are: (1) solid 

line - the Bayesian semi-Markov law, and (2) dotted line - the DGL/1 law. 

The relationship between the overall SSKP and the required Rk is shown in Fig­

ure 6.8. This overall SSKP was obtained by assuming a uniform distribution for the 

onset of the evasive maneuver. The results show that if, for example, a SSKP = 0.90 

is required, then the purs uer needs the following minimum Rk: (i) Rk ~ 2 [ml using 

the Bayesian semi-Markov law, or (ii) Rk ~ 5 [ml using the DGL/11aw. 

6.5 Homing Accuracy of the Decision Directed 

Adaptive Guidance and Estimation Scheme 

The minimum Rk of the interceptor required to achieve a SSKP = 0.95 is shown 

in Fig. 6.9 as a function of the onset time of the evasive maneuver. The decision 

directed adaptive scheme requires a Rk which is always smaller or equal to that of the 

non-adaptive combinat ion of Eo with DGL/C. As compared with the non-adaptive 

combination of Eo with DGL/1, the de ci sion directed adaptive scheme requires a 
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Figure 6.9: Required lethal radius of the pursuer to guarantee SSKP = 0.95. Three 

curves are compared: solid line - decision directed adaptive scheme, dotted line -

non-adaptive Eo filter with a pure DGL/1 law, and dashed line - non-adaptive Eo 

filter with a pure DGL/C law. 

smaller Rk except for tgosw E [0,0.2] [s] and near the beginning of the engagement at 

tgosw ~ 4.0 [s]. 

When the ons et of the maneuver is at tgosw E [0.9,3.9] [s], the adaptive scheme 

has sufficient time after detection of the maneuver to both improve the state estimate 

(by reduction of the filter bandwidth) and to bring the trajectory of the pursuer on a 

collision course with the evader (by employing the DGL/1 law). The improved state 

estimate from the low bandwidth filter El allows the adaptive scheme to achieve a 

smaller miss distance than that of the off-line combination of DGL/1 with a high 

bandwidth filter. Because a low bandwidth filter such as El can only be used after 

a maneuver occurs, its implementation requires an on-line decision mechanism (like 

the governor of the adaptive scheme) to decide when to turn it on. 

When the onset of the maneuver is tgosw < 0.9 [s], the adaptive scheme does 
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not have sufficient time left after detection of the maneuver to bring the pursuer's 

trajectory on a collision course with the evader. Prior to the detection, the pursuer 

trajectory is set by the DGL/C law while, after detection, the trajectory is deter­

mined by the DGL/1 law. The lack of time left after detection when tgosw < 0.9 [s] 

means that the trajectory of the pursuer employing the adaptive scheme is somewhere 

between the trajectories set by application of pure DGL/C and DGL/1 laws. 

When the onset of a maneuver is tgosw E [0,0.2] [s], there is not enough time left in 

the engagement for a significant change of, either, the evader's achieved acceleration 

or the evader's trajectory. For this reason, the DGL/1 law works reasonably weIl 

as the interceptor trajectory as little needs to be corrected to remain on a collision 

course with the evader. In the same situation, the decision directed adaptive scheme 

does not perform as weIl because there is not enough time left after the onset of the 

maneuver for it to react to the change, i.e., to bring the interceptor's trajectory on a 

collision course with the evader. 

When the ons et of a maneuver occurs near the beginning of the engagement, Le., 

at tgosw ~ 4.0 [s], the maneuver detector do es not have sufficient information to 

distinguish between the onset of an evasive maneuver and the error in the initial 

conditions. The onset of an evasive maneuver may then go unnoticed by the detector 

so, the governor of the adaptive scheme fails to get activated. 

The ove raIl SSKP is obtained by assuming a uniform distribution for the onset of 

the evader's maneuver. The relationship between the overall SSKP and the required 

Rk is shown in Figure 6.10. For example, if SSKP = 0.8 is required, then the purs uer 

must have the following lethal radii: (i) Rk ~ 0.2 [ml for the decision directed adaptive 

scheme, (ii) Rk ~ 0.7 [ml for the non-adaptive combinat ion of Eo with DGL/1, and 

(iii) Rk ~ 3.2 lm], for the non-adaptive combinat ion of Eo with DGL/C. 

The homing accuracy of the decision directed adaptive scheme using a different 
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Figure 6.10: Overall SSKP versus the interceptor lethal radius. Three curves are 

compared: solid line - decision directed adaptive scheme, dotted line - non-adaptive 

Kalman filter with a pure DGL/1 law, and dashed line - non-adaptive Kalman filter 

with a pure DGL/C law. 

bank of guidance laws is shown in Figure 6.11. The bank of guidance laws now 

contains the PN and MEL laws. Although the miss distance using the new bank is 

about 10 times higher than that of the bank containing the DGL/1 and DGL/C laws, 

the interpretation of the results is similar to the preceding Figures 6.9 and 6.10. It 

also demonstrates that the decision directed adaptive scheme works weIl with different 

families of guidance laws. 

To summarize the Figures 6.9 - 6.11, the decision directed adaptive scheme achieves 

miss distances significantly smaller than the off-line combinat ion of the DGL/1, 

DGL/C, PN, and MEL laws with an estimator. 
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Figure 6.11: Homing accuracy of the adaptive scheme using the PN and MEL laws. 

Panel (a): Required lethal radius of the pursuer to guarantee SSKP = 0.95. Panel 

(b): Overall SSKP versus the interceptor lethal radius. Three curves are compared: 

solid line - decision directed adaptive scheme, dotted line - non-adaptive Eo filter with 

a pure MEL law, and dashed line - non-adaptive Eo filter with a pure PN law. 
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6.6 Homing Accuracy of the Discretized Guidance 

Laws 

The pursuer's command acceleration history for a sample engagement is presented 

in Fig. 6.12 for two guidance laws: the discretized DGL/1 law and the sample and 

hold approximation of the continuous-time DGL/1 law. The sample run employs 

tgosw = 2.0 [s] and is carried out without noise. The sample and hold approximation 

is characterized by a discontinuous command history due to its bang-bang nature 

while the discretized DGL/1 law provides a smooth acceleration commando 

The minimum Rk of the pursuer required to achieve a SSKP = 0.95 is shown 

in Fig. 6.13 for the DGL/O, DGL/1, and DGL/C laws and for the three considered 

types of implementations of the laws. As is seen from Fig. 6.13, the performance of 

the discretized laws is equivalent to the one of the the sample and hold approximation 

at an update rate of 100 KHz. By comparison, the implementation of the continuous­

time laws using a sample and hold approximation at an update rate of 100 Hz degrades 

the miss distance of the purs uer . 
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Figure 6.12: Pursuer's acceleration command: discrete vs continuous time. A sam-

pIe engagement with no measurement noise is presented. The onset of the evasive 

maneuver is tgosw = 2.0 [s]. Panel (a): Discretized DGL/1 law. Panel (b): Sample 

and ho Id approximation of the DGL/I Iaw (update rate: 100 Hz) 
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Figure 6.13: Required lethal radius to guarantee SSKP = 0.95: discrete vs continu-

ous. Panel (a): DGL/O law. Panel (b): DGL/I law. Panel (c): DGL/e law. Solid 

line - sample and hold approximation (update rate: 100 KHz). Dotted line - sample 

and hold approximation (update rate 100 Hz). Dashed line - discretized DGL law. 



Chapter 7 

The Concluding Remarks 

7.1 General Summary 

This thesis presents a new guidance approach for the interception of a maneuvering 

target. The approach has been developed in several directions as the function of 

homing guidance relies on several subsystems, most notably the estimator and the 

guidance law. The main research contributions are: 

1. The development of two novel maneuver detectors. 

2. The development of two novel adaptive state estimators that employ ideas from 

detection theory. 

3. The development of a novel adaptive Bayesian multiple model predictor of the 

ballistic miss that employs semi-Markov models and ideas from detection theory. 

4. The presentation of a novel integrated estimation and guidance scheme that 

employs banks of estimators and guidance laws, a maneuver detector, and an 

on-line governor. 

133 
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5. The introduction of a novel discretization scheme for a family of bang-bang 

guidance laws. 

The development of the new detection algorithms was motivated by the absence 

of sufficiently fast and reliable sequential detection schemes that were capable of 

detecting and identifying abrupt changes in unknown input pro cesses (such as the 

acceleration commands of randomly maneuvering targets). The first new algorithm 

in this category is a novel implementation of GLR detector for maneuver detection. 

The new implementation introduces a simpler formula to calculate the signature of 

an additive change in the innovation of a Kalman filter and employs a re-initialization 

scheme to compensate for the unknown reference realization of the maneuver. The 

novel adaptive-&o GLR detector is presented next. The adaptive-JtQ GLR detector 

employs a new adaptation scheme to estimate and update on-line the reference re­

alization without discarding information. The adaptive-Jtb GLR detector is hence 

more accurate than the G LR detector. 

The development of the two novel adaptive state estimators employs by the abil­

ity of the GLR algorithm to constrain the evasive maneuver to be a member of a 

parametric family of functions. This ability permits for a more accurate modeling 

of the target behavior as compared with other estimators. The novel estimators em­

ploy banks of parametric families of input functions within a GLR scheme to yield 

a Bayesian state estimate. The estimators apply to linear systems with unknown in­

puts subject to additive abrupt changes. The two new state estimators differ by their 

assumption about the realization of the unknown input before an abrupt change (the 

so-called reference realization). The first state estimator assumes that the reference 

realization is a member of a finite set of pre-specified realizations while the second 

state estimator assumes it to be a member of a parametric family of functions. 

Finally, the terminal guidance problem is approached in three different manners. 

First, a novel Bayesian multiple model predictor of the ballistic miss employing a bank 
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of adaptive semi-Markov models is presented. The semi-Markov modeling permits 

for a more accurate modeling of the future evasive behavioral patterns than their 

Markovian counterparts while the Bayesian multiple model approach yields the pdf 

of the ballistic miss. As most terminal guidance laws are functions of the ballistic 

miss, the mean of this pdf is then employed for terminal guidance. A GLR algorithm 

is employed to adapt the se mi-Markov models and to yield the required a posteriori 

probabilities to calculate the pdf of the ballistic miss. 

A new integrated approach is also presented to improve the homing performance 

by adaptation of the state estimator and terminal guidance law to the characteristics 

of the pdf of the filtered state. Banks of estimators and guidance laws a provided and 

the effective estimator and guidance law are selected on-line by a governor on the basis 

of the outputs of a maneuver detector and a priori information about the number of 

maneuvers expected. The approach can be viewed as an on-line optimization scheme 

of the state estimator and of the guidance law. Lastly, a novel discretization scheme 

for a family of bang-bang guidance laws is presented. 

The performance of the novel algorithms is assessed using an example benchmark 

scenario of a pursuit-evasion engagement between a randomly maneuvering ballistic 

missile and an interceptor. Extensive Monte Carlo simulations are employed to eval­

uate the main statistical properties of the algorithm. The results demonstrate the 

following: 

• The adaptive-.nQ GLR detector outperforms the GLR detector in that it achieves 

a lower observed false alarm rate (about four times smaller than that achieved 

by the GLR detector), a more consistent detection delay, characterized by a 

smaller standard deviation, and a more consistent input estimate, characterized 

by a smaller average error and a smaller standard deviation. AIso, in contradis­

tinction with the standard GLR detector, the observed false alarm rate of the 

novel detector matches its theoretical prediction (the pre-specified false alarm 
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probability) . 

• The novel AMR-GLR estimator is compared to several implementations of the 

IMM estimator. The AMR-GLR delivers a better trade-off between the estima­

tion reliability as expressed by the standard deviation of the error and speed of 

convergence after an abrupt change. None of the implemented IMM estimators 

is capable of delivering estimates characterized by a similar standard devia­

tion error while simultaneously exhibiting comparable rate of convergence. The 

benefits of the AMR-GLR estimator are achievable at relatively modest com­

putational expense as, unlike the IMM estimator, the AMR-GLR estimator 

employs only a single Kalman filter. 

• The Bayesian multiple model prediction of the ballistic miss is compared to 

that employed by the game theoretic DGL/1 law. A terminal guidance law of 

the same form as the DGL/1 law but employing the Bayesian prediction of the 

ballistic miss decreases the achieved miss distance by 30%. 

• The integrated estimation and guidance scheme demonstrates a significant de­

crease of the miss distance as compared with state-of-the-art approaches which 

are optimized off-line. 

• The discretization of the bang-bang guidance laws known as DGL/O, DGL/1, 

and DGL/C is shown to deliver similar miss distances as their continuous-time 

counterpart. 
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7.2 Conel usions 

The main conclusions are: 

• The adaptive-&o GLR detector delivers an efficient and reliable diagnosis of 

evasive maneuvers. 

• The modeling of the target behavior by parametric families of functions pet­

mits to improve its state estimate. Moreover, the GLR algorithm delivers a 

numerically efficient implementation of an estimation procedure. 

• The modeling of the future evasive maneuvers by semi-Markov models and 

their prediction by a Bayesian multiple model approach improves the homing 

accuracy of the terminal guidance. 

• The optimization of the state estimator and the guidance law with respect to 

the pdf of the filtered state improves the homing performance. 

• The discretization of the bang-bang guidance laws is an efficient procedure and 

facilitates their implementation. 

Although primarily developed for a terminal interception problem, the algorithms 

presented in this thesis apply to the broader class of linear hybrid systems described 

in § 2. This class of systems is commonly encountered in several applications, most 

notably in quality control, recognition-oriented signal processing, fault detection, and 

monitoring and control of industrial plants. 

7.3 Future Researeh Avenues 

In spite of the broad coverage of this thesis (presented in Il papers) many important 

topics could not be addressed. The list of such topics includes: 
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1. Analysis of the algorithms in application to problems other than terminal in­

terception scenarios. 

2. Application and evaluation of the algorithms to a three-dimensional non-linear 

time-varying interception scenario. 

3. Development of interception algorithms in the presence of multiple targets or 

in presence of decoys. In such problems, the pdf of the filtered state is multi­

modal and algorithms based on the expected values tend to drive the pursuer 

into the space between the targets rather than to a target. The novel algorithms 

introduced in this thesis employ maximum likelihood estimates that cou Id prove 

advantageous in presence of multiple targets or decoys. 

4. Detection, estimation, and control in the presence of nonlinear dynamics and 

non-additive changes (realistic fiight dynamics are inherently nonlinear in the 

state). 

5. Integration with an autopilot. An autopilot should be able to compensate for 

uncertainties in the dynamics of the vehic1es. These uncertainties vary with the 

fiight conditions. 



Appendix A 

General Solution of the Normed 

DifferentiaI Game 

A general solution for the normed differential game of Eq. (5.25) with perfect infor­

mation is cited below. It appears in Ref. [64], pp. 26-28, and is based on the solution 

presented in Ref. [38]. 

A.l Deterministic Cost Function 

The natural cost function, i, of the perfect information game is the miss distance 

with 

A~ ~ {a~ E P Ila~(t)1 ~ (a~)max a.e. tE [0, tf]} 

A~ ~ {a~ E P Ila~(t)1 ~ (a~)max a.e. tE [0, tf]} 

D=[1000] 
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(A.1b) 

(A. le) 

(A.1d) 
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For simplicity, assume that (ap)'nax = (aË)max = 1. The pursuer attempts to min­

imize the cost j while the evader wants to maximize it. In this deterministic case, 

an SSKP=1 is guaranteed if the pursuer's warhead lethal radius is larger than the 

guaranteed miss distance of the game. 

A.2 Reformulated Problem 

In order to reduce the order of the problem, the following terminal projection trans­

formation is introduced 

Z(t) = D<I>(tf' t)x(t) (A.2) 

where <I>(tf' t) is the transition matrix of the original homogeneous system. The 

variable Z denotes the zero effort miss (or ballistic miss). The transformation (A. 2) 

reduces the problem to a scalar dynamic equation of the form 

dZ(t) 
~ = B(t)a~ + C(t)a~ (A.3a) 

where 

B(t) = D<I>(tf , f)BI(t) (A.3b) 

C(t) = D<I>(tf, J)B 2(t) (A.3c) 

The matrices BI and B2 are the input matrices of the pursuer and evader, respectively, 

in the linear system describing the engagement The cost function becomes 

j = inf sup IZ(t)1 
aj,EAj, aEEAE 

(A.4) 
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A.3 Necessary Conditions of Optimality 

The Hamiltonian of the game is 

H = Àz(t) [B(t)a~ + C(t)a~l (A.5) 

where Àz is the co-state variable satisfying 

. dH 
Àz = - dZ = 0 (A.6a) 

d] 
Àz(tf ) = dZ = sign(Z(tf)) , (A.6b) 

tf 

which means that 

(A.7) 

as long as Àz is continuous. The optimal strategies of the pursuer and the evader, 

(a~)* and (ak)*, respectively, are then expressed as follows 

(a~)* = argmin H = -sign (B(t)Z(tr)) , 

(a~)* = argmaxH = sign (C(t)Z(tf)), 

Assuming B(t) < 0 and C(t) > 0, the optimal strategies become 

(a~)* = (a~)* = sign (Z(tf)), 

The last assumption is satisfied for the interception scenario described in § 2. 

(A.8a) 

(A.8b) 

(A.9) 
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