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ABSTRACT 

Background: Clustering of observations occurs frequently III epidemiological and 

clinical studies of time-to-event outcomes. However, only a few papers addressed the 

challenge of accounting for clustering while analyzing right-censored survival data. 1 

propose two bootstrap-based approaches to correct standard errors of Cox's proportional 

hazards (PH) model estimates for clustering, and validate the approaches in simulations. 

Methods: Both bootstrap-based approaches involve 2 stages of resampling the original 

data. The two methods share the same procedure at the first stage but employ different 

procedures at the second stage. At the first stage of both methods, the clusters (e.g. 

physicians) are resampled with replacement. At the second stage, one method resamples 

individual patients with replacement for each physician (i.e. units within-cluster) selected 

at the 1 st stage, while another method picks up aIl the patients for each selected physician, 

without resampling. For both methods, each of the resulting bootstrap samples is then 

independently analyzed with standard Cox's PH model, and the standard errors (SE) of 

the regression parameters are estimated as the empirical standard deviation, of the 

corresponding estimates. FinaIly, 95% confidence intervals (CI) for the estimates are 

estimated using bootstrap-based SE and assuming normality. 

Simulations Design: 1 have simulated a hypothetical study with N patients clustered 

within practices of M physicians. Individual patients' times-to-events were generated 

from the exponential distribution with hazard conditional on (i) several patient-Ievel 

variables, (ii) several cluster-Ievel (physician's) variables, and (iii) physician's "random 



effects". Random right censoring was applied. Simulated data were analyzed using 4 

approaches: the proposed two bootstrap methods, standard Cox's PH model and "cl as sic" 

one-step bootstrap with direct resampling of the patients. 

ResuUs: Standard Cox's model and "Classic" l-step bootstrap under-estimated variance 

of regression coefficients, leading to serious inflation of type 1 error rates and coverage 

rates of 95% CI as low as 60-70%. In contrast, the proposed approach that resamples both 

physicians and patients-within-physicians, with the 100 bootstrap resamples, resulted in 

slightly conservative estimates of standard errors, which yielded type 1 error rates 

between 2% and 6%, and coverage rates between 94% and 99%. 

Conclusions: The proposed bootstrap approach offers an easy-to-implement method to 

account for interdependence of times-to-events in the inference about Cox model 

regression parameters in the context of analyses of right-censored clustered data. 
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RESUMÉ 

Contexte: Les données issues d'études épidémiologiques et cliniques nécessitant de 

l'analyse de survie ont souvent une structure de données conglomérée. Seuls quelques 

articles discutent du défi de tenir compte de la structure conglomérée des données lors de 

l'analyse de survie de données censurées à droite. Nous proposons deux méthodes basées 

sur la technique de bootstrap tenant compte de la structure conglomérée des données pour 

corriger l'erreur-type des coefficients estimés à l'aide du modèle de risques proportionnels 

de Cox. Nous validons ensuite ces méthodes à l'aide de simulations. 

Méthodes : Les deux approches sont basées sur la technique de bootstrap et comportent 

deux étapes de rééchantillonnage des données initiales. La première étape est la même 

pour les deux méthodes: les conglomérats (e.g. les médecins) sont ré échantillonnés avec 

remise. La seconde étape diffère selon la méthode choisie. Dans la première méthode, 

chaque patient (e.g. unités à l'intérieur des conglomérats) est ré échantillonné avec remise 

pour chacun des médecins échantillonnés lors de la première étape. Dans la seconde 

méthode, tous les patients de chaque médecin échantillonné sont sélectionnés, sans 

nouveau rééchantillonnage. Dans le cas de chaque méthode, chaque jeu de données créé 

par le bootstrap est analysé de façon indépendante à l'aide d'un modèle de Cox standard et 

les erreur-types des paramètres de régression sont estimées à partir de leur écart-type 

empirique. Les intervalles de confiance 95% des coefficients sont estimés à l'aide des 

erreur-types basées sur le bootstrap et sous l'hypothèse de normalité. 

Devis pour les simulations: Nous avons simulé une étude hypothétique avec N patients 
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regroupés dans les clientèles de M médecins. Le temps de réalisation de l'événement 

d'intérêt de chaque patient a été généré à partir d'une distribution exponentielle avec un 

risque conditionnel aux: (i) variables individuelles des patients, (ii) variables 

individuelles des médecins et (iii) effets aléatoires associés aux médecins. La censure à 

droite a été générée de façon aléatoire. Les données simulées ont été analysées de quatre 

façons différentes: les deux méthodes basées sur la technique de bootstrap décrites ci

haut, le modèle standard de risque proportionnel de Cox, et la technique de bootstrap 

'classique' qui consiste en une étape de ré échantillonnage des N patients. 

Résultats : Le modèle standard de risque proportionnel de Cox et la technique de 

bootstrap 'classique' sous-estiment la variance des coefficients de régression, provocant 

une inflation importante des taux d'erreur de type 1 et produisent des taux de couverture 

des intervalles de confiance de 95% aUSSI bas que 60-70%. 

En revanche, les deux méthodes que nous proposons ont nécessité 100 rééchantillonnages 

bootstrap et ont produit des estimés d'erreur-type légèrement conservateurs, produisant 

des taux d'erreur de type 1 entre 2-6% et des taux de couverture entre 94% et 99%. 

Conclusions: Les deux méthodes basées sur le bootstrap que nous proposons sont faciles 

à exécuter et tiennent compte de l'interdépendance entre les temps de réalisation des 

événements dans l'inférence pour les coefficients de régression des modèles de Cox dans 

le contexte de l'analyse d'événements censurés à droites de données conglomérées. 

IV 



Acknowledgements 

First and foremost 1 offer my sincerest gratitude to my supervlsor, Dr Michal 

Abrahamowicz, who has supported me throughout my thesis with his patience and 

knowledge while allowing me the room to work in my own way. 1 attribute the level of 

my Master's degree to his encouragement and effort, and without him this thesis would 

not have been completed. 

1 would like to thank Dr. Karen Leffondre and Dr. Debbie Feldman as the members of 

my thesis committee. 1 thank you for your friendly advices, encouragement and 

reviewing my thesis. 

Thanks are due to Drs Jeannie Haggerty, Pierre Tousignant for their insightful discussion 

in epidemiology. 1 would also like to thank Yves Roy for his work on cleaning the real

life data. 

1 would like to acknowledge the financial support in the form of scholarships from the 

Fonds Québécois de la recherche sur la nature et les technologies. This research was also 

partly supported by the ClliR-funded project "Optimal care trajectories in rheumatoid 

arthritis (RA): the primary-secondary interface". 

Last, but not least, 1 would like to dedicate this thesis to my parents, my husband and my 

daughters, for their love, patience, and understanding-they allowed me to spend most of 

the time on this thesis. 

v 



Table of Contents 

ABSTRACT ........................................................................................................................ i 

, 
RESUME .......................................................................................................................... iii 

Acknowledgements ........................................................................................................... v 

1 Introduction ............................................................................................................... 1 

2 Literature review ...................................................................................................... 4 

2.1 Overview of Survival Analysis ..................................................................................................... 4 

2.1.1 Survival function and hazard function .................................................................................... 4 

2.1.2 Modeling survival data ........................................................................................................... 5 

2.1.2.1 Parametric models ......................................................................................................... 6 

2.1.2.2 Non-parametric models ................................................................................................. 8 

2.1.2.2.1 Single sample non-parametric methods .................................................................... 8 

2.1.2.2.2 Proportional Hazards model ................................................................................... 10 

2.2 Overview of correlated data ...................................................................................................... 14 

2.2.1 Introduction ........................................................................................................................... 14 

2.2.2 Modeling of Correlated Data ................................................................................................ 15 

2.2.2.1 Multilevel modeling .................................................................................................... 15 

2.2.2.2 Marginal modeling of correlated data ......................................................................... 19 

2.3 Adaptation ofCox's model to correlated data ........................................................................... 21 

2.3.1 Random effects models ......................................................................................................... 22 

2.3.2 Marginal mode1ing for correlated survival data .................................................................... 31 

2.4 Overview ofbootstrap methodology ....................................................... ................................... 35 

2.4.1 Parametric VS nonparametric bootstrap ............................................................................... 36 

VI 



2.4.2 Selecting bootstrap samples .................................................................................................. 36 

2.4.3 Bootstrap-based confidence intervals ................................................................................... 37 

2.4.4 Extensions to non- i.i.d. data ................................................................................................. 39 

2.4.4.1 

2.4.4.2 

2.4.4.3 

Regression data ........................................................................................................... 39 

Bootstrapping censored data ....................................................................................... 40 

Hierarchical data ......................................................................................................... 41 

3 Objectives ........................................................ 11 •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 43 

4 Methods .................................................................................................................... 45 

4.1 Overview of Simulation Design and Data Generation .............................................................. 45 

. 4.1.1 Physicians' variables ............................................................................................................. 45 

4.1.2 Patients' variables ................................................................................................................. 47 

4.1.2.1 Patients' characteristics ............................................................................................... 47 

4.1.2.2 Patients' times-to-event ............................................................................................... 49 

4.1.2.2.1 Generation of the expected times-to-events ............................................................ 49 

4.1.2.2.2 Generation oflosses to follow-up ........................................................................... 50 

4.1.2.2.3 Generation of the "observed" event or censoring times ........................................ 50 

4.2 Bootstrap algorithm ........................................................... ........................................................ 51 

4.3 Data Analysis ......................................................................... .................................................... 53 

5 Results ...................................................................................................................... 55 

5.1 The intra-correlation of the generated data .............................................................................. 55 

5.1.1 The effect of the variance of random effects ........................................................................ 55 

5.1.2 The effect of the cluster size ................................................................................................. 56 

5.2 Conventional Cox 's proportional hazards model... ................................................................... 57 

vu 



5.3 Comparison of the standard errors obtained with the conventional Cox 's model and the three 

bootstrap methods ............................................... ..................................................................................... 58 

5.4 Assessing the effect of the number ofbootstrap resamples ........................................................ 62 

5.5 Assessing the normality of the distribution ofbootstrap estimates ofregression coefficients ... 63 

5.6 Comparison ofbootstrap-based standard errors with Generalized Estimating Equations (GEE) 

for a binary outcome .................................................................... ............................................................ 65 

5.6.1 Brief description of the additional simulations ..................................................................... 65 

5.6.2 Briefsummary ofresults of the additional simulations ........................................................ 66 

6 Real-liCe applications ............................................................................................... 69 

7 Discussion and Conclusion ..................................................................................... 72 

Appendix A ...................................................................................................................... 78 

Bibliography .................................................................................................................... 86 

V111 



List of Tables 

Table 2. 1 Properties of sorne popular distributions oftime-to-event ................................ 6 

Table 5. 1 The effect ofthe variance of random effects on the intra-c1ass correlation ..... 56 

Table 5. 2The effect of the c1uster size on the intra-c1ass correlation .............................. 56 

Table 5.3 Bias and relative bias oflog hazard ratios for the standard Cox's PH model. 57 

Table 5. 4 Comparison ofmean ofthe 100 estimated standard errors for the standard 

Cox's model, and the three bootstrap methods, with the empirical standard error of 

the estimates .............................................................................................................. 59 

Table 5.5 Comparison ofthe coverage rates for the standard Cox's model, and the three 

bootstrap methods ..................................................................................................... 61 

Table 5.6 Impact of the number ofbootstrap resamples on the standard error estimates 

and the coverage rates from the double bootstrap method (strategy 3) .................... 63 

Figure 5. 1 Distribution of 100 bootstrap estimates of the log hazard ratio for physicians' 

gender ........................................................................................................................ 64 

Figure 5. 2 Distribution of 100 bootstrap estimates of the log hazard ratio for patients' 

severity ...................................................................................................................... 64 

Table 5. 7 Simulations with a binary outcome: comparison ofmean ofthe 100 estimated 

standard errors for the standard logistic model, GEE, bootstrap methods with 

strategy 2 and with strategy 3 ................................................................................... 67 

Table 5. 8 Simulations with a binary outcome: comparison of coverage rate for the 

standard logistic model, GEE, bootstrap methods with strategy 2 and with strategy 3 . 

.................................................................................................................................. 68 

IX 



Table 6. 1 Analysis ofOPTRA time-to-events data with the standard Cox's PH model 

and the proposed bootstrap method .......................................................................... 70 

List of Figures 

Figure 5. 1 Distribution of 100 bootstrap estimates of the log hazard ratio for physicians' 

gender ........................................................................................................................ 64 

Figure 5. 2 Distribution of 100 bootstrap estimates of the log hazard ratio for patients' 

severity ...................................................................................................................... 64 

x 



1 Introduction 

The Cox's proportional hazards (PH) mode! is the most commonly used regression model 

for survival data. One of the important assumptions for the Cox's mode! is the 

independence between observations. However, c1ustered survival data often arise in 

biomedical field. The observations within the same c1uster tend to be correlated. For 

example, in health care research studies, individual patients (lower level units) are 

typically c1ustered within physician's (higher level units) practices. If the outcome of 

interest is time-to-referral to a specialist, then the outcomes of patients within the same 

physician's practice may be correlated, since these patients share the physician, whose 

unobservable (latent) characteristics may affect patients' times-to-referral. Analyzing the 

correlated survival data, by assuming the standard Cox' s PH model, ignores the 

correlation between observations, and therefore, may incorrectly estimate the variation of 

the regression coefficients, possibly leading to inaccurate inference. 

During the past decade, considerable progress has been made with the analysis of 

correlated data for binary and continuous (un-censored) outcomes. Sophisticated methods 

for c1ustered data, such as the mixed linear models (Laird et al., 1982; Goldstein, 2003) 

and the generalized estimating equations (Liang et al., 1986) method have become 

available in most statistical software packages. However, the development of techniques 

for correlated survival data analysis has proceeded relatively slowly. The random effects 

Cox model, which incorporates random effects into the conventional Cox's PH model, 

either requires imposing restrictive, arbitrary assumptions regarding distribution of 
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random effects and the baseline hazards function, or involves complicated 

computations.(Clayton et al. 1985; Klein, 1992; Sastry, 1998; McGilchrist, 1993; Yau, 

2001; Ma et al. 2003) Although sorne of the statistics programs for frailty models i.e. 

random effects models in survival analysis have become recently available (Stata 7 & S

plus 6), most of them are developed for particular parametric frailty models (such as, 

follow either a gamma or inverse-Gaussian distribution). The marginal modeling is 

another technique to deal with the correlated data. This involves first modeling the 

marginal expectation of the hazards across the population (for this reason, "marginal 

models" are also referred to as "population-average models") and then modeling 

correlation between lower level units within higher level units (or c1usters) by specifying 

different correlation structures. Again, marginal models for right-censored survival data 

are less popular and more difficult to implement than for binary or continuous (un

censored) data. (Wei et al. 1989; Lee et al. 1992; Liang et al. 1993; Cai et al. 1995, 1997; 

Lu et al. 2005) 

In this thesis, 1 propose and evaluate a relatively simple marginal model for correlated 

survival data analysis. The approach involves first estimating the conventional Cox's PH 

model, and then using the computer-intensive bootstrap method to estimate the variance 

of regression coefficients estimates in a way that accounts for within-c1uster correlation of 

time-to-events. 

Bootstrap method is a resampling method for statistical inference. It can be applied to any 

data analysis, no matter how complicated, and requires no assumptions. However, the 
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resampling algorithm must be very carefully designed, to account for the relevant features 

of the data-generating process. 

In this thesis, two resampling techniques for the hierarchical survival data have been 

investigated. One is a two-step bootstrap, which requires to randomly resample 

physicians with replacement at the first step, and then to randomly resample patients for 

each selected physician with replacement in the second step. Another resampling 

approach only randomly resamples physicians with replacement at the first step, but picks 

up all the patients for each selected physician, without resampling, in the second step. 

Simulations are then used to compare the standard error estimates and the coverage rates 

of 95% confidence interval for the two proposed bootstrap methods with the conventional 

Cox' s proportional hazards model. 
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2 Literature review 

2. 1 Overview of Survival Analysis 

In many biomedical studies, the primary outcome of interest is the time it takes for a 

certain event to occur (referred to as time-to-event). Examples include the time for a 

patient to respond to a therapy or the time from cancer diagnosis to death. In order to 

describe the distribution of the time-to-event for a given population, to compare the time

to-events among different groups, or to model the relationship of time-to-event to other 

factors, we need a special methodology, which is known under the general term of 

survival analysis. 

2.1.1 Survival function and hazard function 

In summarizing survival data, there are two functions of central interest, namely the 

survival function and the hazard function. Let the random variable T denote the time to 

the event of interest. The cumulative distribution function of T 

F(t) = peT < t), t ~ 0 (2.1) 

represents the probability that the survival time is less than sorne value t. 

The survival function S(t), is defined to be the probability that the survival time T is 

greater than or equal to t , and so 

Set) = peT ~ t) = 1-F(t). (2.2) 
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The hazard function is an instantaneous rate of failure at time t and represents the risk 

that an individual dies at time t, conditional on the individual having survived until that 

time. For a formaI definition of the hazard function, we consider the probability that the 

random variable Ttakes a value between t andt +ot, where ot > 0 is a very small 

increment of time, conditional on T being greater than or equal to t: 

P(t ~ T < t + ot 1 T :?: t). This conditional probability is then divided by the length of the 

corresponding time interval (ot ) to give the rate. The value of the hazard function at time 

t h(t) is then the limiting value ofthis quantity, as ot goes to zero: 

(2.3) 

From the above definitions, the re1ationship between the survival and hazard function can 

be expressed as: 

1
. P(t ~ T < t + bt) 
Im----'------'--

h(t) = &~O bt 
P(T:?: t) 

f(t) S'(t) d 10g(S(t)) = -- = - -- = ----=-.:........:'-'-"-

S(t) S(t) dt 
(2.4) 

where f(t) is the probability density function ofT. 

2.1.2 Modeling survival data 

In the analysis of survival data, the survival function and the hazard function are 

estimated from the observed survival data. Typically, survival data are distinguished from 

other types of data because they are partly censored. The survival time of an individual is 

said to be censored when the event of interest has not been observed for that individual, 

so that the exact time-to-event remains unknown. The most common type of censoring is 
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the right censoring, which occurs when the subject is followed until a certain time te and 

then is lost to follow-up, without having the event of interest until te' so that we know 

only that the actual time-to-event T > te' Censoring prevents the use of standard methods 

of descriptive and inferential statistics. To estimate the hazard function and the survival 

function, two different general approaches have been developed: parametric methods and 

non-parametric methods. 

2.1.2.1 Parametric models 

Parametric methods require an assumption conceming the parametric form of the 

distribution of the survival times. For example, the most commonly assumed distributions 

that have been proposed for modeling survival times are the Exponential distribution, the 

Weibull distribution and the Log-Logistic distribution (Balakrishnan et al. 1987). The 

survival functions, hazard functions and density functions of these distributions are 

summarized in Table 2.1. 

Table 2. 1 Properties of sorne popular distributious of tirne-to-event 

Survivor function Density function Hazard No. of 

parameters 

Exponential exp(-Ât) Âexp(-Ât) Â 1 

Weibull exp [-(Àty] rÀ(Àty-l exp [ -(..ity] rÀ(Àty-l 2 

Log logistic [1+ (tÀyr1 rA! t y
-
1 [1 + (Àty r2 rtY-1ÀY 2 

[1 + (Àty] 
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Maximum likelihood estimation is used to estimate the unknown parameters of the 

parametric distributions. Since survival data are usually partially censored, a special 

likelihood function is needed. The survival data consist of a pair{t i' ô;} , 

where t;represents the follow-up time for subject i (i = 1, ... , n), and ôi represents the 

survival status. If the ith observation is not censored, then ôi = l , otherwise ôi = 0 . If ti is 

uncensored (ôi = 1), the ith subject contributes f(t;) to the likelihood; If ti is censored 

(Ôi = 0 ), the ith subject contributes Pr (T > t i ) to the likelihood. 

The fulllikelihood for all n subjects is then 

L= I1f(t;;q» I1S(tp ;q» , (2.5) 
i:o;=1 P:Op=O 

where~ is the vector ofparameters. The corresponding log likelihood can be written as: 

(2.6) 

Since f(t) = h(t)S(t), (2.6) may be written as: 

n 

1 = ~)Ogh(ti;q» + ~)ogS(t;;q». (2.7) 
i:o;=1 ;=1 

For example, for the exponential distribution with the rate parameterÂ. , 

S(t) = exp( -Â.t) has a constant hazard function h(t; Â.) = Â.. The general form of log 

likelihood (2.7) takes then the form: 

n n 

1 = ~)ogÂ-ÂLti = dlogÂ-ÂLtp (2.8) 
i:o;=1 ;=1 i=1 
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where d is the total number of failures. The maximum likelihood estimate (MLE) of 

À can be obtained from the equation ~ = 0, which yields X = d~ . 
8À /2jj 

The uncertainty associated with the maximum likelihood estimate of a model parameter is 

assessed by its standard error, which is evaluated in the usual way by calculating the 

inverse of the Fisher information at the MLE. The asymptotic normal distribution of 

maximum likelihood estimates allows us to construct confidence intervals for the 

parameters, based on the MLEs and their standard errors. 

2.1.2.2 Non-parametric models 

If the assumption of the parametric model is valid, then the inference based on such an 

assumption will be accurate and the estimation will be efficient. However, in many cases, 

it is not easy to specify a priori correct assumption conceming the nature or shape of the 

underlying survival distribution. To avoid such difficulties, non-parametric methods have 

become very popular in survival analysis. 

2.1.2.2.1 Single sam pie non-parametric methods 

Life-table estimate and Kaplan-Meier estimate of survival function are two common 

simple non-parametric methods, often used to describe survival in a single sample drawn 

from a homogeneous population. 
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The life-table estimate of the survival function is obtained by first dividing the period of 

observation into a series of time intervals. For each interval, we can then compute the 

number and proportion of subjects that entered the respective interval "alive," the number 

and proportion of subjects that failed in the respective interval and the number of subjects 

that were lost or censored in the respective interval. Based on those numbers and 

proportions, we can estimate the survival function and hazard function (Berkson et al., 

1950; Cutler et al., 1958; Gehan, 1969). 

The Kaplan-Meier estimate (Kaplan et al., 1958) of the survival function is obtained by 

constructing a series of intervals as for the life-table estimate. However, each of these 

intervals is designed to be such that one failure time is observed in the interval and the 

failure time is at the start ofthe interval. 

Let t1 < t2 < ... < tm denote the distinct times at which subsequent events were 

observed, d; the number of events that occurred at timet;, and r; the size of the risk set 

at timet;. The risk set at time t; inc1udes all the subjects in the sample who have not yet 

been censored and have not had the event. The Kaplan-Meier product-limit estimate for a 

survival function is given by: 

" ; d. 
S(tJ = TI (1 __ 1) 

j=1 r j 

(2.9) 

The Kaplan-Meier estimateS(t)is a right-continuous step function with jumps at the 

event times. Censoring times affect the estimate only by reducing the risk set for the next 
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event. The corresponding estimate of the standard error is computed using Greenwood's 

formula (Kalbf1eish et al., 1980) as 

(2.10) 

2.1.2.2.2 Proportional Hazards model 

2.1.2.2.2.1 Definition of the Cox proportional hazards model 

In most medical studies that give rise to survival data, explanatory factors or covariates 

are also recorded on each individual. In many cases, we are typically more interested in 

the effect of those covariates on the survival time than in simply estimating the Ull-

conditional distribution of survival times or assessing how the hazard changes over time. 

Therefore, multivariable regression modeling of survival data is of particular importance. 

By far, the most commonly applied regression model for censored survival data is the 

proportional hazards model introduced by Cox in 1972(Cox, D. R. 1972), which specifies 

that the hazard, conditional on covariates, is a product of a term depending on time and a 

term depending on the covariates: 

(2.11) 

where p is the vector of regression coefficients (logarithms of hazard ratios) for the 

independent variables xl' x2 ,. • " x p; XiI' X i2 , ... , X ip represent covariate values for the ith 

individual and ho (t) is the baseline hazard function, which is the hazard function for 

individuals for whom the values of all the covariates are zero. Actually, the baseline 
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hazard does not have to be specified for the Cox's model. In the sense of "distribution 

free", the model is non-parametric with respect to distribution oftime-to-events. 

Now, consider two observations i and i' that differ in their covariates. The hazard ratio 

for these two observations 

hi(t) ho (t)exp(P1xiI + P2Xi2 + ... + Ppxip) 
= 

h;o(t) ho(t)exp(p1xi'1 + P2 Xi'2 + ... + Ppxi'p) 
(2.12) 

IS independent of time t; so that the ratio of hazards remains constant over time, 

regardless of the change in the absolute values of the hazard. That is why the Cox model 

is called the proportional hazards model. That hazard ratio is constant over time is one of 

the major assumptions of the Cox proportional hazards model. 

Since the proportional hazards model can be re-expressed in the form: 

(2.13) 

this model may also be regarded as a linear model for the logarithm of the hazard ratio. 

This linear relationship between the logarithm of the hazard ratio and covariates 

facilitates the estimation of the Cox proportional hazards model, and the statistical 

inference about the estimates. 
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2.1.2.2.2.2 Partiallikelihood 

Even though the baseline hazard is not specified, the regression parameters in the 

proportional hazards model can still be estimated by the method of maximum partial 

likelihood (MPL), developed by Cox (1972; 1975). Although the resulting estimates are 

not efficient as maximum-likelihood estimates for a specified parametric regression 

model (Efron, 1977), not having to make arbitrary, and possibly incorrect assumptions 

about the form of the baseline hazard is an important practical advantage ofCox's model. 

The partiallikelihood function considers the joint probability of the data conditional on 

the k observed failure times. MPL estimate relies on the concept of "Risk sets". The 

relative probability of individual i failing at time t is proportional to the hazard of that 

individualho(t)exp(x/ P). Renee, the probability that it is individual i (rather than any 

of the other individuals who were at risk at that time) who failed at time t is given by: 

exp (x/ P)ho (t) 

Iexp(xj T P)ho(t) 
j:li?:.1 

and the partiallikelihood is given by: 

= 
exp(x/ P) 

Iexp(xj T P) 
j:li21 

L(P) = Ii exp(x/ ~) 
;=1 Iexp(x j P) 

j:tp.t 

(2.14) 

(2.15) 

which does not depend on the baseline hazard ho (t). The partial likelihood given by the 

above equation is correct only when no ties occurred at any of the failure times, i.e. when 

each failure occurs at a distinct time. If there are ties in the data set, the calculation of the 

partiallog-likelihood function involves permutations and can be time-consuming. In this 
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case, either the Breslow (1974) or Efron (1977) approximations to the partial log-

likelihood can be used. 

2.1.2.2.2.3 Statistical inference 

Estimates for the regression parameters are obtained by maximizing the partiallikelihood. 

Letl(~) = logL(~), then finding ~ to maximize L(~ )is equivalent to finding ÎJ that 

solves the equation ôl(ÎJ) = o. The partiallikelihood has the same asymptotic properties 
ôfJ 

as a standard likelihood (Cox, 1975). Rence, standard errors, confidence intervals can all 

be routinely calculated. The estimated covariance matrix of ÎJ is given by: 

(2.16) 

The corresponding confidence intervals are then obtained relying on normal 

approximation. 
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2.2 Overview of correlated data 

2.2.1 Introduction 

Many types of data analyzed in epidemiological and clinical studies have a hierarchical, 

or clustered structure. For example, in primary care research studies, outcomes of 

different patients of the same physician may be correlated because of the physician's 

competence, practice style or subjective preferences affecting aH hislher patients (Donner 

et al., 1994). In longitudinal studies, repeated measurements for the same individual tend 

to be correlated with one another (Diggle et al., 1994); and in clustered-randomized 

clinical trials, the patients from the same clinical center may share sorne unobserved 

characteristics and their outcomes may be correlated because of the systematic between

centers differences in quality of care or resources. An appropriate statistical analysis of 

these data must take the correlation into account to avoid incorrect statistical inference 

and misleading conclusions (Donner et al., 2000). 

Most standard statistical techniques assume that each of the observations from a data set 

is independent of aH the others. However, such independence assumption is inappropriate 

if subsets of observations represent the same cluster, because the observations in a cluster 

tend to be more similar to one another. The degree of similarity is typically measured by 

the intra-class correlation coefficient (ICC) (Kerry et al, 1998; Goldstein, 2003). (See 

section 2.2.2.1). Ignoring the intra-custer correlation in the analysis results in the under 

estimation of the true variance of the estimated parameters because the amount of the 
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information contained in N correlated observations is lower than in N independent 

observations. Indeed, the higher the ICC the more serious becomes the underestimation of 

the standard error of the estimates (Kish, 1965; Tate et al., 1983). Under-estimation ofthe 

variance can 1ead, in turn, to incorrectly low p-values, inflated type 1 error rates, too 

narrow confidence intervals, and biased estimates, aIl of which can lead to an incorrect 

interpretation ofthe associations between variables (Campbell et al., 1998). 

There are two distinct approaches used to ana1yze correlated data. One approach is to use 

multileve1 models, sometimes referred to as "subject specific" models (Go1dstein, 2003). 

Another approach is to use marginal models, such as Generalized Estimating Equations 

(GEE) mode1 (Liang et al., 1986; 1988). 

2.2.2 Modeling of Correlated Data 

2.2.2.1 Multilevel modeling 

Mu1ti1evel modeling is also known in the statistical literature under a variety of names, 

such as "random coefficient model" (De 1eeuw et al., 1986; Longford, 1993) and 

"variance components model" (Longford, 1993). It assumes hierarchical data structure 

with units at 10wer leve1 c1ustered within larger units, at a higher level. The response 

variable is measured at the lowest level and different explanatory variables are measured 

at different levels. The multilevel model is viewed as a hierarchical structure of regression 

equations (Goldstein, 2003). For example, consider a simple two-Ievel data set. There are 

m c1usters at the first level indexed byi = 1, ... ,m. Within the ith c1uster, there are ni 
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subjects indexed by j = 1, ... , ni. On the individuallevel, we have the response variable y ij 

and the covariate xij. Then, the corresponding multilevel model may be defined by the 

following two equations: 

(2.17) 

(2.18) 

where residuals eij are independent of each other and arise from a normal distribution 

with parameters 

(2.19) 

and U Oi are cluster-specific "random intercepts", i.e., independent, identically distributed 

(i.i.d.) values of a random variable at the cluster level, with parameters 

E(uoJ = 0, 

(2.20) 

Equation (2.17) is similar to the standard linear regresslOn model, except that the 

intercept POi is not constant for aIl the observations, but depends on the clusters. Equation 

(2.18) models POi using a linear combination of a constant coefficient Po and a random 

variable UOi which is referred as to "random effects". Combining (2.17) and (2.18), 1 get: 

(2.21) 
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Since equation (2.21) contains both fixed-effects parameters Po, PI and the random effects 

parameteruOi ' the multilevel model is also called the mixed linear regression model 

(Laird et al., 1982). 

The objective of analysis of multilevel models is to estimate the fixed coefficients 

Po and PI , and two covariance parameters, (J"~o and a;. The variance of response 

y ij given the fixed effects is: 

(2.22) 

which is the sum of a level 1 and a level 2 variance. The covariance between two 

observations in the same c1uster is given by: 

(2.23) 

Given (2.21) and (2.23), the correlation between the two observations in the same c1uster, 

i.e. the ICC, equals: 

(2.24) 

A general specification for the mixed linear model is written as: 

Y=XJ3 +Zy +E (2.25) 

where y denotes the vector of observed response y ij' ~ is the unknown fixed-effects 

parameter vector, X is the known design matrix of explanatory variables xy's and 

X = {l, xij }, y is the vector of unknown random-effects parameters, Z is the known 
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design matrix for y, and E is the unobserved vector of independent and identically 

distributed Gaussian random errors. 

To estimate parameters in the multilevel model, the best approach is to use likelihood-

based methods, exploiting the assumption that y and E are normally distributed with the 

expected values and variances defined as respectively: (Laird et al, 1982; Jennrich et al, 

1986) 

The estimation procedure is iterative (Goldstein, 2003). It usually starts with the estimates 

of the fixed parameters fitted by a traditional estimation procedure, such as 'ordinary least 

squares' (OLS) (assuming independence between observations). From these initial 

estimates, 'raw' residuals are formed and used to get the initial estimates of variance-

covariance parameters. Then, the new estimates of the fixed effects will be obtained by 

using maximum likelihood methods, and the algorithm altemates between the variance-

covariance parameters and the fixed parameters estimation until the procedure converges. 

An estimate ofthe variance-covariance matrix ofthe parameter estimates is obtained from 

the inverse ofthe information matrix. The information matrix is defined as the negative of 

the expectation of the matrix of second-order derivatives. Expressions for the information 

matrix are given in Engle (1982) and Bollerslev (1986). 
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Several alternative covariance structures may be assumed depending on the expected 

pattern of within-c1uster correlation of the residuals. The Compound symmetry (CS) 

structure, often referred to as exchangeable structure (Digger et al., 1994), assumes that 

variances are homogeneous across c1usters and that the correlation between any two 

observations in the same c1uster is constant. The autoregressive structure (AR) has 

homogeneous variances and correlations that dec1ine exponentially with distance (Digger 

et al, 1994). The unstructured (UN) structure allows every term in the variance

covariance matrix to be different which allows total flexibility but may have convergence 

problem due to too many parameters to be estimated. 

The mixed linear regression model works only for continuous outcome variable which is 

approximately normally distributed. To deal with non-normal distributed outcomes, the 

generalized linear mixed-effects model (GLMM) (Liang et al., 1986; McCulloch et al., 

2001; Fahrmeir, 2001) has been proposed. The GLMM is a straightforward extension of 

the generalized linear model (Nelder et al., 1972). It involves adding random effects to 

the linear predictor (transformed by an appropriate link function), and expressing the 

expected value ofthe response conditional on the random effects. 

2.2.2.2 Marginal modeling of correlated data 

The generalized estimated equation (GEE) model (Liang et al., 1986) is the most popular 

example of a marginal model for correlated data. The marginal model separates the 

modeling of the between-subjects covariate effects from modeling of within-c1uster 
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correlations. The fonner is modeled through the model for the marginal mean E(Yij) , 

while the latter is modeled through the modeling of the within-c1uster 

covariance COV(Yij,:r;k) that accounts for inter-dependence of the outcomes within the 

c1usters. 

The marginal mean depends on covariates via a link function: 

E(Yij 1 Xij) =,uij' 

g(,uij) = /30 + /31 * xij , (2.26) 

Here, in contrast to the multilevel modeling (2.19), J3 describes how the population 

averaged (PA) response, rather than one subject's response, depends on the covariates. 

The procedure of fitting a marginal model may be viewed as an iterative procedure. The 

first step is to fit a standard generalized linear model assuming independence. The second 

step uses the residuals from the regression model, the current estimates of coefficients and 

the assumed within-c1uster correlation structure, to estimate the working correlation 

structure. The pre-specified correlation structure can be chosen from the same structures 

described in section 2.2.2.1 for multilevel modeling. The third step uses this working 

correlation structure to estimate the covariance, and next to update the estimates of the 

regression coefficients by solving the GEE equation. Then, the second step and the third 

step are repeated until the estimates stabilize and convergence is achieved. In general, the 

final GEE estimates of the regression coefficients are quite similar to those obtained from 

the first step, i.e. from the independent-data marginal mode!. In contrast, standard errors 
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of the final regression coefficients are higher than those from the first step, doe to the 

inter-correlation of outcomes in the same cluster (Hanley, 2003). 

Marginal models are most effectively used in population studies, since the population

averaged response is the focus in these studies. One advantage of marginal modeling is 

that the PA response for a given covariate can be directly estimated from observations 

without assumptions about the heterogeneity in the parameters across the clusters. 

Another advantage of marginal modeling is that the GEE methods permit the calculation 

of robust estimates for the standard errors of the regression coefficients (Liang et al., 

1986) and the robust standard errors ensure consistent inferences even if the chosen 

correlation structure is incorrect. 

2.3 Adaptation of Cox's model to correlated data 

Correlated survival data arise often in biomedical study. Since the semi-parametric Cox 

proportional hazards model allows for the estimation of the relative risk without the need 

to specify a baseline hazard and is very popularly used in biomedical research, the ability 

to extend its use to the correlated data setting is important. In the literature, two 

approaches are commonly used to account for the intra-cluster correlation of time-to

events: random effects models and marginal models. In random effects models (same as 

the multilevel models in section 2.2), the dependence structure is explicitly specified by 

sorne unobserved random quantities that are common to observations from the same 

cluster. In marginal models, the intra-cluster association is left unspecified but adjusted 

for at the inference step. 
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2.3.1 Random effects models 

The use of random effects modeling in statistics has increased greatly in recent 

years. However, the introduction of such modeling to the field of survival analysis has 

proceeded more slowly. The most popular modeling method in survival analysis, Cox 

proportional hazards regression (Cox, 1972), requires no specification of the baseline 

hazard functionho(t). Unfortunately, multilevel modeling (random effects modeling) 

methods typically require such parameterization (Sargent, 1998). 

Clayton and Cuzick (1985) introduce the proportional hazards frailty (i.e. random effect 

in survival analysis) model, where a cluster of observations is assigned a random effect 

that acts multiplicatively on the baseline hazard function. Therefore, this cluster specific 

random effect modeling allows the baseline hazard function to be the same within clusters 

while to differ between clusters. This model implies independent survival times 

conditional on the frailty terms. Suppose there are m independent clusters indexed 

byi,i = 1, ... ,m. Within the ith cluster, there are Jjindividuals indexed by j,j = 1, .. .Jj • Let 

the hazard function for individual (i, j) at time t be denoted by hij (t). Given the random 

effects wj ' the proportional hazards frailty model is written as: 

(2.27) 

where ho (t) is the baseline hazard function, xij is the covariates vector and /3 is the 

coefficients vector. 
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Frequentist approaches to frailty survival models have usually been restricted to specific 

parametric random effects distributions. Klein (1992) and Sastry (1998) considered 

gamma frailties. McGilchrist (1993) and Vau (2001) considered lognonnal frailties. 

With the same set-up of the frailty model as equation (2.27), Klein (1992) assumes that 

random effects wj 's are independent and identically gamma distributed with 

E( wj ) = 1 and var( wj ) = O. The association between individuals in the same c1uster, 

measured by Kendall's't (Hougaard, 2000), is_
e 
-, so the strength of the inter-

0+2 

dependence is increased ase is increased, with e = 0 corresponding to independence 

between c1uster members. 

To get the estimates of the fixed and random effects, Klein (1992) uses an EM algorithm 

(Dempster et al., 1977) and estimates the baseline hazard function ho (t) based on a profile 

likelihood at each iteration. Klein applied this method to the Framingham Heart Study 

(Dawber, 1980) to examine the risks of death from any cause associated with smoking, 

adjusting for potential random effects due to within-family c1ustering. He considered two 

possible types of c1ustering, one was the frailty shared by siblings and another one was 

the frailty shared by a married couple. In the analysis, a total of 25 covariates were 

considered. The EM algorithm yielded ê' s for sibling effect and marital effect. In both 

cases ê was significantly different from 0, which showed there were associations between 

times to death of siblings and married couples. He found that the absolute magnitude of 

the estimates (ft) of fixed effects tended to be smaller under the assumption of 

independence than under frailties analysis. However, we need to interpret P' s in a 
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different manner than in the usual Cox's regression model. For example, in usual Cox's 

model, we will interpret the coefficient of "smoking" as the logarithm of the hazard ratio 

for a smoker as compared to a non-smoker, adjusted for other covariates. In contrast, 

under the model adjusted for the random sibling effect, the coefficient will be interpreted 

as the logarithm ofthe hazard ratio of smoking between two brothers (or two sisters), one 

of them is a smoker and another is a non-smoker, adjusted for other covariates. The EM 

algorithm approach proposed by Klein (1992) is used only for a single level of random 

effects, and is limited by the gamma frailty assumption. 

Sastry (1997) introduces a nested frailty model for hierarchically clustered survival data. 

In this model, two independent cluster-specific random effects, Vi and wij are considered. 

The higher-Ievel random effectvi is assigned to each of i = 1, ... ,m clusters, and the lower

level random effectwijis assigned to each of j = 1, ... ,Ji subclusters of clustervi . For 

example, clustered child survival data are correlated at the community level and at the 

family level (Sastry, 1997). Within each sub-cluster (i, j) there are nij individuals indexed 

by k = 1, ... , nij . The random effects are assumed to operate multiplicatively on the 

baseline hazard, therefore the hazard function for individual (i,j,k) at time tis given: 

(2.28) 

where ho (t) is the baseline hazard and Xijk IS the vector of covariates for 

individual(i,j,k) . 
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Sastry (1997) assumes Vi and wij are mutually independent, and are gamma distributed 

with variances ra and X respectively. Furthermore, to ensure identifiability, he 

assumes both effects have means equal to 1 at time zero. Finally, he assumes the baseline 

hazard to be piecewise constant. Sastry applies the EM algorithm to estimate the 

parameters a, 11 and J3. There are 3 components in the expectation of the log 

likelihoodQ(a,11, J3). Sastry introduces a new approach that essentially applies the EM 

algorithm independently to the two components Qa (a) and Q17 (1]) of Q, therefore, 

resulting in a more rapid convergence. However, the EM algorithm in his approach does 

not provide correct standard errors (Sastry, 1997). Therefore, he proposes to report the 

standard errors based on an estimate of the asymptotic covariance matrix constructed 

from the first derivatives of the incomplete-data log-likelihood function. A potential 

problem with this method is that with a piecewise baseline hazard, the standard errors 

based on the score may not be consistent as the number of intervals increases (Sastry, 

1997). 

The problem of accounting for clusters effects in survival analysis has been also 

approached from a Bayesian perspective. Recent work includes Clayton (1991) and Sinha 

(1993), who parameterize the baseline hazard function as an independent-increment 

gamma process. Aslanidou et al. (1998) uses a piecewise-constant baseline hazard 

function with correlated pieces. 
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Sargent (1998) develops a hierarchical Cox model, which is an extension of Cox's 

original mode!. He rewrites the proportional hazards frailty model, equation (2.27) as 

h(t; xij' Zi) = ho (t) exp(x~ fJ + Zi) (2.29) 

where Zi = log(wJ and wiis defined as a random effect in equation (2.27). He then uses 

the Cox's partiallikelihood as the likelihood component for the model parameters and 

uses Markov Chain Monte Carlo (MCMC) methods (Smith and Roberts, 1993) to 

compute Bayesian quantities such as means, standard deviations and the marginal 

posterior density estimates. These methods allow sampling from the joint posterior 

density of the base model parameters and a set of random effects parameters that capture 

the dependence between observations in the same c1uster. The advantage ofthis method is 

that an assumption for the distribution of the baseline hazard function is not needed since 

the partiallike1ihood is used. The use of appropriate MCMC methods also e1iminates the 

need for assumptions about the distribution of the random effects. However, this 

approach is computationally intensive, and thus impractical for massive datasets (Sargent, 

1998). 

Applying the generalized linear mixed model (GLMM) to analyze multilevel survival 

data has been also considered in recent years (McGilchrist, 1993; Yau, 2001). The 

GLMM method starts with the construction of a log likelihood analogous to the 

likelihood associated with the best linear unbiased prediction (BLUP) (Henderson, 1975) 

based on the Cox partial likelihood. Parameter estimation is then achieved by 

maximization of this log likelihood at the initial step of estimation, and is extended to 
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obtain residual maxImum likelihood (REML) (Thompson, 1980) estimators of the 

variance components. 

Ma et al. (2003) also combine the random effects Cox's model with the generalized linear 

mixed model, but in a different way. They propose characterizing the random effects 

Cox's model as an auxiliary random effects Poisson regression model. Ma's approach 

allows an unspecified baseline hazard function and relies only on the first and the second 

moments of the random effects distributions. Using this approach, a Cox's model with 

two levels of nested random effects is proposed. There are i = 1, ... , m independent c1usters, 

j = 1, ... , Ji correlated sub-c1usters within the ith c1uster, and k = 1, ... , nij individuals 

within each sub-c1uster(i,j). Let U i represent the c1uster level random effect and Uij 

represent the sub-c1uster level random effect within the ith c1uster. Instead of 

incorporating both random effects U i and U ij into the hazard function as equation (2.28) 

does, Ma et al. inc1ude only the sub-c1uster level random effect U ij in the model: 

(2.30) 

where lis the follow-up time andxijk is the vector of covariates for individual (i,j,k) . 

On the other hand, the cluster level random effect Ui is used to define the distribution 

ofU ij' It is assumed that Ui ' s are independent and identically distributed positive random 

effects with 

E(U i ) = 1, (2.31) 
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Furthennore, it IS assumed that, glven the cluster level random effects 

the sub-cluster random effects U1p ... ,U mJ are positive and 
m 

conditionally independent, and that the conditional distribution of U ij depends on 

U i = ui only with: 

(2.32) 

Ma et al. then define an auxiliary random effects Poisson regression model (to simplify, 1 

omit the stratum in Ma's fonnula). Let rp ... ,rqdenote the distinct failure times, with 

m h , h = 1, ... , q indicating the number of failures. Let t ijk be the observed survival time for 

individual (i,j,k) at timerh , and let Yijk,h be 1 if that individual fails at that time, and 0 

otherwise. The risk set at time rh is then defined as 9î( rh) = (ci, j, k) : t ijk ~ rh}' Let Y and 

U denote the vectors of the Yijk,h and the sub-cluster random effects U ij' respectively. An 

auxiliary random effects Poisson model is then defined: 

(2.33) 

where Po means a Poisson distribution. Given the random effects, the maxImum 

conditional Poisson likelihood estimates (à,P) for (a, f3) satisfy the equation 

A mh exp(ah ) = TA' 

'" u .. exp(x"k fJ) ~(i,j,k)EIJl(Th) 1} 1} 

(2.34) 

and a nonparametric estimate of the cumulative baseline hazard function is given by 

Âo(t) = Lexp(àh)· (2.35) 
Th st 
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With sorne algebra, Ma et al. show that the joint partiallikelihood for the random effects 

Cox model (l/f3;Y,U» is equal to the joint Poisson likelihood (l(a, B ;Y,U) ) 

multiplied by a constant (not dependent on the parameters of interest) term. Therefore, 

the maximum likelihood estimates and the inferences for B about the random effects Cox 

models can be made by fitting the auxiliary random effects Poisson model (Ma et al., 

2003). 

Thus, the random effects Cox Proportional hazards models specified by (2.30), (2.31) and 

(2.32) can be studied using the equivalent auxiliary random effects Poisson models 

specified by (2.33), (2.31) and (2.32). First, the random effects are estimated by the 

orthodox best linear unbiased predictors (Harvey, 1981; Jorgensen et al., 1996). To 

estimate regression parameters, the estimating equation is established by setting the first 

derivatives of the joint log likelihood of the auxiliary model for the data and the random 

effects to be equal to O. The parameters in the estimating equation are y = (a, B ), 

wherea is the vector {ap ... ,ah } and B is the vector of regression coefficients. For 

detailed description of the equation, see Ma et al. (2003). The Newton scoring algorithm 

(Jorgensen et al., 1996) is used to solve this equation in order to provide the estimates of 

the regression parameters. Under mild regularity conditions, this equation can be shown 

to be asymptotically normal with asymptotic mean and asymptotic variance given by the 

inverse of the Godambe information matrix (LeIe, 1991; Artes et al., 2000). If the 

dispersion parameters are unknown, then they can be estimated by the adjusted Pearson 

estimators. An analogue of Wald test is available for testing hypotheses about regression 

coefficients (Ma et al., 2003). 
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In the computational procedure, the initial values of the regresslon parameters are 

obtained as the estimates of coefficients from the standard Poisson regression model, with 

independence assumption. Initial estimates of random effects Ûi and Û ij are given by the 

mean of the responses in c1uster i divided by the mean of aIl responses, and the mean of 

the responses within sub-c1uster (i, j) divided by the mean of aIl responses, respectively. 

Initial dispersion parameter estimates are calculated from the Pearson estimators. The 

algorithm then iterates between updating the regression parameters estimates, updating 

random effects and updating the dispersion parameter estimates (Ma et al., 2003). 

Ma et al. use the proposed method to reanalyze the data from a large cohort study of air 

pollution and mortality (Pope et al., 1995). There are 574,438 subjects, nested in 151 

cities, and the cities nested in 44 states. Twelve covariates are considered (sulphate 

partic1e level, smoking history, alcohol consumption, education, occupational exposures, 

body mass index and other potential risk factors for mortality). The corresponding nested 

random effects Cox model is defined by equation (2.30), and the state random effects 

Ui and the city random effects U ij are described by (2.31) and (2.32), respectively. The 

survival time is the time from entry into the study to death or censoring at the end of the 

study or loss to follow-up. The authors used a C++ program to implement their method, 

and computation took more than 10 hours to complete the estimation. They compared the 

results from the standard Cox model, the Cox models with single level random effects at 

either city or state level, and the two-level nested Cox model. They found that the level of 
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statistical significance of association between city-Ievel aIr pollution and mortality 

depended on the underlying assumptions ofthe fitted model. 

The approach proposed by Ma et al. (2003) deals with an unspecified baseline hazard 

function and relies on the first and second moments of random effects only, which is very 

attractive. However, in their paper, the authors didn't mention any evaluation of the 

method in simulation. Moreover, the time used to analyze the air pollution data was very 

long. Moreover, the prograIll is not public1y available and the authors were not willing to 

provide us with their software. 

2.3.2 Marginal modeling for correlated survival data 

The marginal hazard function for observations specified by the proportional hazards 

model may take two different forms (Wei et al., 1989; Liang et al., 1993). One assumes 

that the baseline hazard is the SaIlle for all the observations. The alternative approach 

assumes that the baseline hazard is the SaIlle only for the observations within the SaIlle 

c1uster. The hazard functions for the jth (j = 1, ... , ni ) observation of the 

ith (i = 1, ... , m) c1uster are written, respective1y, as 

or 

h(t 1 xij) = ho (t) exp(x; 13) 

h(t 1 xij) = hOj (t) exp (x; 13), 

where xij is the vector of covariates and P is the vector of regression coefficients. 

(2.36) 

(2.37) 
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Wei, Lin and Weissfeld (1989) use the second fonn (2.37) to model multivariate failure 

time data, where two or more distinct failures are recorded for each subject. The 

dependence structure arnong the distinct failure times of the sarne subject is unspecified. 

First, the data are stratified by the type of failure and a separate analysis of all regression 

coefficients for each stratum is carried out by using the standard Cox proportional hazards 

model. This gives a number of estimates of each regression coefficient which are 

consistent if the model is correctly specified. Wei, Lin and Weissfeld show that 

asyrnptotically, for large m (the number of subjects or c1usters), the estimates of each 

regression coefficient from all strata are correlated and nonnally distributed. Next, the 

robust estimate of the covariance matrix of the regression coefficients estimates (Lin et 

al., 1989) is then computed. Finally, the last step is to combine the estimates of regression 

coefficients. Suppose that Pl = P2 = ... = PK , where K is the number of strata, then the 

estimate ofJ3 is given by the linear combination of the Pk' s,k = 1, ... ,K, that is, 

I.:=ICkÎJk with I.:=ICk = 1. The weight C = (cp c2"",CK )'is calculated according to the 

robust covariance matrix (Wei et al., 1985). If the Pk 's are unequal but with no 

qualitative differences arnong them, the combined ÎJ can be interpreted as the "average 

effect" of the covariates. 

Weighted procedures to estimate regresslOn pararneters under both stratified and 

unstratified marginal proportional hazards models are developed by Cai and Prentice 

(1995) and Cai (1997). Analogous to the GEE approach developed by Liang and Zeger 

(1986), weights that account for failure time dependencies are introduced into the partial 

likelihood score equations. There are many possible choices for the weight matrices. In 
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particular, the weight matrices can be specified as the inverse of the correlation matrix for 

the marginal martingale (Cai et al., 1995). The estimates for regression coefficients are 

then shown to be consistent and asymptotically normally distributed (Cai et al., 1995; Cai, 

1997). 

For the unstratified marginal proportional hazards model, Liang et al. (1993) develop a 

pseudo-likelihood approach by taking at most one individual in the risk set for each 

c1uster, thereby removing dependence within c1usters. Lu and Wang (2005) apply the 

same princip le, but devise a risk set sampling method to sample new risk sets that are 

composed of the independent individuals and preserve the marginal risk structure at each 

distinct failure time. The risk set sampling method consists of two steps. First, among all 

the individuals in a risk set, randomly choose one individual per c1uster that is at risk (not 

inc1uding the cluster from which the failure cornes). In the second step, a weight is given 

through a probability weighting for each individual chosen in step 1; the probability 

weight is proportional to the number ofnonfailures (still at risk) in the c1uster from which 

that individual is chosen. Lu and Wang (2005) prove that the resulting estimates.ô 's are 

consistent and converge to mean-zero normal distribution. Since this approach involves 

sampling the data, the precision and the efficiency can be improved by repeating the 

estimation procedure several times and taking the average of the estimates. 

The "independence working model" approach, which takes the form (2.36), is described 

by Lee et al. (1992). The approach consists oftwo stages. In the first stage, all the data 

are analyzed using the standard Cox proportional hazards model, i.e. ignoring the 
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dependence between observations. The estimates obtained in this stage are used as the 

final estimates. The second stage attempts to estimate the variability of the estimates for 

regression coefficients, by means of the robust variance matrix, not relying on the 

assumption of independence. As long as the marginal model is correctly specified and 

censoring is independent, the estimates of regression coefficients are consistent and 

asymptotically normally distributed (Lee et al. 1992). 

Lipsitz and Parzen (1996) proposed a "one-step jackknife" estimator of variance for Cox 

regression for correlated survival data, which is another "independence working mode!" 

approach, and accounts for both stratified and unstratified marginal models. Similar to the 

approach of Lee et al. (1992), "one-step jackknife" approach involves two stages. The 

estimates ofregression coefficients are first obtained by using the standard Cox's model, 

treating aIl the observations as independent. The one-step jackknife estimator of variance 

(Lipsitz et al., 1994) is then used to estimate the variance of the regression coefficients. 

The one-step jackknife estimator of variance of P proposed by Lipsitz et al. (1994) is 

ca1culated as follows: 

(
m - p) m A A A A , 

--;;;- ~ (fJ -j - fJ)(fJ -j - fJ) , (2.38) 

where m is the number of clusters, p is the dimension ofP, and P_jis the estimate of 

p obtained by deleting the aIl the observations in cluster i, and performing one step of 

the Newton- Raphson algorithm, usingp as the starting value. Thus, the variance 

estimator in (2.38) simply applies the leave-one-out approach to jackknife the entire 

clusters. The one-step jackknife variance estimate is proved to be asymptotically 
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equivalent to the robust variance estimate proposed by Wei et al. (1989) and Lee et al. 

(1992). Lipsitz and Parzen (1996) apply this method to analyze the survival data, which 

were originally analyzed by Wei et al. (1989). The data were obtained from a clinical trial 

to determine the effects of different doses of ribavirin in preventing the occurrence of 

HIV -1 positive virus in subjects with AIDS. Three blood samples for each patient were 

collected at different times. Therefore, the cluster consisted of three blood samples from 

the same patient. The failure time was defined as the number of days until the virus was 

detected in the blood sample. The estimates for p were obtained from the Cox's mode1 

with independence assumption, and the variance was estimated by the one-step jackknife 

method. The results show that the jackknife variance estimates are only slightly larger 

than the robust variance estimates proposed by Wei et al. (1989). The results from a small 

simulation, with 20 clusters and two observations per cluster, show that the jackknife 

variance estimates yield coverage rates for the 95% confidence intervals that are quite 

close to the nominal rate of95%. 

2.4 Overview of bootstrap methodology 

Bootstrap is a very general data-based resampling method for statistical inference, which 

was introduced by Efron (1979; 1983). This method requires no theoretical calculations 

and can be applied in an automatic way to almost any data analysis, no matter how 

complicated (Davison et al., 1997). It is commonly used to estimate confidence intervals, 

but it can also be used to estimate bias and variance of an estimator. 
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2.4.1 Parametric VS nonparametric bootstrap 

The essence of bootstrap is the concept that the distribution of the statistic of interest 

e = t(F)can be approximated by estimates from repeated samples, drawn from an 

approximation to the unknown population. Here, F is the cumulative distribution 

function (CDF) of a set of independent, identically distributed (i.i.d.) observations: 

YPY2' ... Yn' e is called a statistic and t is a real-valued function whose domain inc1udes 

the sample space of (YPY2, ... ,Yn). 

The most common approximations lead to parametric and nonparametric bootstraps. The 

parametric bootstrap assumes that the distribution of the dataFyt (y) is known except for 

the unknown parameter vectonjf . Then Fyt (y) can be approximated by Fy/ (y), with an 

estimate fÎ/ fonjf. The nonparametric bootstrap is a method where the population 

distribution function is unknown and is approximated by the empirical distribution 

function (EDF) which puts equal probabilities ..!.. at each value in the original sample. 
n 

2.4.2 Selecting bootstrap samples 

For parametric bootstrap, the resampling procedure is very straightforward (Efron, 1993; 

Davison, 1997). However, in many applications, the parametric form of the 

distribution F is unknown. Therefore, we will consider the case of non-parametric 

bootstrap. Suppose we have i.i.d. dataYpY2, ... Yn with an unknown distribution function. 

We use the EDF to estimate the unknown CDF. Because the EDF puts equal probabilities 
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on the original data values, each bootstrap sample y;, j = 1, ... , n, is a simple random 

sample, with replacement, of the observations. 

The computation of the standard errora(Ô)of an estimatorÔcan be approximated by 

Monte Carlo methods: 

1. Draw a bootstrap sample y; ,y;, ... ,y: by independent random sampling from the 

EDFF. Obtain the estimate of 8 from the bootstrap 

replicationÔ* =t(y;,y;, ... ,y:). 

2. Repeat step l "B" times, where B is a large number, typically 100 ~ B ~ 10,000, 

A.t A*2 A*B . 
obtaining independent bootstrap-based estimates B ,B , ... ,B and approxlmate 

(2.39) 

AsB -)0 00, the bootstrap-based standard errorâ B converges to a(Ô) (Efron et al., 1983). 

2.4.3 Bootstrap-based confidence intervals 

ln this section, 1 review four methods for computing bootstrap-based confidence interval. 

1. Standard bootstrap confidence interval (Davison et al., 1997) 

Standard bootstrap confidence interval is based on the assumption that the 

estimatorÔis normally distributed with mean8 and variancea 2
• Ô is an estimate 
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calculated from the original data set, and using the bootstrap estimate of the 

standard error as in (2.39), an approximate 1 OO(1-a)% confidence interval is 

given byO ± zizÔ" B' where z follows a standard normal [0, 1] distribution. 

2. Biased-corrected percentile method (Efron, 1981) 

The bootstrap estimate ofbias is given by Bias B (0) = 000 

- 0, whereO·o is defined 

In (2.39). The bootstrap bias corrected estimate IS then glVen 

by OB = 0 - (0. 0 

- 0) = 20 - 0.0 

• Accordingly, using the same approach as above, 

the bias-corrected 1 00(1 - a )% confidence interval is defined to be 

3. Bootstrap percentile confidence interval (Efron, 1981) 

This is a more direct approach for constructing al 00(1 - a )% confidence interval 

forS. The method is based on thel00(<;'i)and100(1-~)percentiles of the 

empirical distribution of B bootstrap estimatesO·b ,b = 1, ... ,B. Thus, the 

approximate confidence interval is given by [OB (~), OB (1-~) ]. 

4. Studentized bootstrap method (Davison et al., 1997) 

The studentized bootstrap is based on a different bootstrap distribution than the 

other bootstrap-based estimates of the confidence intervals. The estimate OjOb and 

its standard error s ê~b from each bootstrap sample are used to calculate studentized 
1 

estimates, t: = (otb -O)/Sê~b' Then, the 100(a/2)and 100(1-a/2)quantiles of 
1 

the distribution of t: are used to calculate the confidence interval forS . 
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2.4.4 Extensions to non- i.i.d. data 

The bootstrap methods discussed so far are appropriate for a single sample of i.i.d. 

observations. However, many problems involve observations that are not i.i.d. Examples 

include regression problems and hierarchical data. 

2.4.4.1 Regression data 

In regression analysis, the effects of covariates on a response variable are of interest. To 

estimate regression coefficients, we need the response value and the covariates values. 

Therefore, there are two general resampling approaches for such data: resampling the 

observations, also called case resampling, and resampling the residuals, also called error 

resampling (Efron et al., 1993; Davison et al., 1997). 

Case resampling is an approach that considers the data as a sample from sorne 

multivariate distribution F of(X,Y). The regression coefficients are viewed as statistical 

functions ofF (Davison et al., 1997). The resampling therefore involves sampling the 

cases with replacement, where each case is a vector of covariates values and a response 

value. For each bootstrap resample, the regression model is fitted to get the resample

specific estimates of regression coefficients. 

Error resampling involves three steps (Davison et al., 1997). First, the regression model is 

fitted to the original sample and residuals, Ci = Yi - xi f3, are ca1culated for each 

observation. Then a series of bootstrap samples of residuals (c; ,c; , ... , 8:) is drawn with 

replacement from the observed residuals. The bootstrap sample of observations is 
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regression model is fitted to the bootstrap sample to give the estimates of coefficients for 

a given resample. 

Resampling observations and resampling residuals are asymptotically equivalent (Efron, 

1986). The choice of bootstrap depends on the goal and context of the analysis. 

Bootstrapping residuals maintains the structure of the covariates, but the inference 

assumes that the model used to calculate the residuals is appropriate. Bootstrapping 

observations repeats sorne covariate values and omits others. It is a useful choice when 

the analysis involves models selection. 

2.4.4.2 Bootstrapping censored data 

Right censoring often occurs in survival data. In this case, the failure time observed 

ist = min(T,tC>, where t)s a censoring value, and Tis a non-negative failure time, 

which is known only ifT ~ te. d is used to indicate censoring, which equals one if T is 

observed and equals zero if te is observed. 

The simplest model for censoring is random censorship, under whicht)s a random 

variable independent ofT . There are several ways to resample censored data. Under the 

random censorship model, the simplest way is to apply case sampling i.e. to resample 

1997). Conditional bootstrap is another way to resample the censored data (Davison et al., 
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1997). In this method, the expected time-to-event (T/) and the censored time (t ;,j) are 

generated separately from the corresponding distributions. Then the minimum value is 

chosen from these two values to be the observed time-to-event. Since t ;,j is generated 

conditional on the censoring status d j , this method is called conditional bootstrap. 

2.4.4.3 Hierarchical data 

In biomedical science, many collected data have a hierarchical or c1ustered structure. The 

most basic structure of such data can be expressed as 

Yij =x; +zij,i=I, ... ,m,j=I, ... ,n;, 

wherex;andzijare independent random variables, at the c1uster and individual level, 

respectively. The feature of this model that complicates resampling is the correlation 

between observations within a c1uster, 

COV(Yij'Y;k) = cov(x; + zij'x; + Z;k) 

= cov(x;,x;) + cov(X;,Z;k) + cov(x;,zij) + cov(Zij,Z;k) 

2 • k =ax,J* . 

There are two strategies for nonparametric resampling of such nested data. The first stage 

for both strategies is to randomly sample groups, with replacement. At the second stage, 

the individual observations are randomly sampled within the se1ected groups, either 

without replacement (strategy 1) (Davison et al., 1997) or with replacement (strategy 2) 

(Abrahamowicz et al., 1998; Davison et al., 1997). Note that strategy 1 keeps selected 
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groups intact. Davison et al.(1997) show that strategy 1 underestimates the covariance of 

observations, while strategy 2 overestimates the covariance. Strategy 1 more c10sely 

mimics the variation properties of the data if the number of c1uster is moderately large. 

Both strategies work well if both c1uster size and the number of clusters are large 

(Davison et al., 1997). 
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3 Objectives 

The literature review, presented in Chapter 2, indicates that the random effects Cox's 

models for analysis of corre1ated survival data either need make assumptions on the 

distributions of random effects or involve complicated computations. On the other hand, 

most methods for estimating the variance in the marginal mode1ing are also very 

complicated, especially for right-censored time-to-event data. Thus, in this thesis, 1 

attempt to propose and validate an easy-to-implement method for the right-censored 

correlated survival data. Specifically, in order to obtain valid confidence intervals for the 

regression coefficients estimates, 1 propose to apply the computer-intensive bootstrap 

procedure, which requires no assumptions, no complicated computations and becomes 

more feasible with constant progress in computing techniques. 1 expect that this approach 

will yield reliable standard errors and confidence intervals for the Cox's proportional 

hazards analysis of c1ustered data. 

To this aim, the following specifie objectives will be addressed: 

1) To propose novel resampling algorithms, specially adapted for randomly censored 

hierarchical survival data. 

2) To evaluate the performance of the proposed methods through simulations, in order 

to: 

a) Validate the methods for inference for the Cox's proportional hazards analysis of 

c1ustered data, and, in particular: 

43 



i) To evaluate how within-cluster correlation of outcomes affects the accuracy of 

the regression coefficients estimates and the standard errors estimates from the 

conventional Cox's proportional hazards model. 

ii) To compare the standard errors estimates and 95% CI coverage rates for 

conventional Cox's PH model, "classical" one-step bootstrap method and the 

two bootstrap methods proposed in this thesis. 

iii) To assess how the performance of the proposed methods varies depending on 

either the strength of random effects or the cluster size. 

iv) To assess the impact of the number ofbootstrap resamples on the accuracy of 

the inference based on the proposed bootstrap-based methods. 

b) Further validate the proposed resampling methods by comparing their 

performance with that of the "classic" GEE model (available in commercial 

statistical packages such as SAS or S-plus) for a binary un-censored outcome. 

44 



4 Methods 

4. 1 Overview of Simulation Design and Data Generation 

1 simulated a hypothetical study with N patients c1ustered within practices of M 

physicians. The study design and variables were based on the general features of an 

empirical study that focuses on assessing whether time until referral of patients with 

Rheumatoid Arthritis (RA) to specialists differs according to geographical, patient or 

physician-related characteristics. Individual patients' times-to-event were generated from 

the exponential distribution with hazard conditional on several patient-level variables, 

several physician-level (c1uster-level) variables, and physicians' "random effects 

(intercepts)". Random right censoring was applied, and the strength of the c1ustering 

effect was controlled by manipulating the variance of random effects. 

4.1.1 Physicians' variables 

1 generated M=50 physicians indexed by j,j = 1, ... ,50. For each physician, 1 generated 

values of three covariates independent of each other: gender (XI) from a binomial 

distribution withP(XI = 1) = 0.6, where XI = 1 indicates a man; age (X2 ) from a uniform 

distribution U[30,65] , and the geographical region (X3 ) from a multinomial distribution 

with probabilities shown in the table: 

Category(X 3 ) Probability in each category Corresponding dummy variables 

1 0.4 reference 

2 0.3 DI 
3 0.2 D 2 

4 0.1 D3 
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The fourth c1uster-Ievel variable, specialty ( X 4) of a physician (X
4 

= ° and 

X
4 

= 1 indicating, respectively, a general practitioner or a specialist) was generated from a 

binomial distribution with the probability P(X4 = 1) conditional on the physician's 

gender and the geographical region: 

{ 
0 

PX =1 X D D = 
(4,J 1 l,J' I,i' 2,J) 0.3 + 0,15 * xI,J + (-0.1) * DI,J + (-0.25) * D2,} 

Note that Pr ob(X 4 = 11 D3 = 1) = 0, which reflects the reality in which all physicians in a 

remote region are general practitioners. 

A latent variable (i.e. random effect) (E ) for a physician was generated from a normal 

distribution with mean =0, and variance = log (1.5), which was used to create c1ustering 

effect. 

Finally, the number of patients (i.e. the c1uster size) n j for the jth physician was generated 

from a normal distribution with the expected value conditional on the characteristics of 

the physician. This involved two steps: 

1. Calculate the "expected number of patients" M j of the jth physician, conditional 

on physician's characteristics: 

M. = 40 + X . * 10 - 5 * lX . - 4°1/10 - 5 * D . - 10 * D . - 20 * D . (4.1) 1 1,1 2,1 1,1 2,1 3,1 
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Specifically, to mimic a realistic scenario, 1 assurned that men have higher number 

of patients, and that the nurnber of patients is the highest for physicians aged 40 

years, and decreases for both younger and older physicians. 

2. Generate n j from a normal distribution with the expected value: 

{ 

nj ~ N[M j ,20], 

n j ~ N[1.5* M j ,15], 
if X 4,j = 0 

if X 4,j = 1 

This implied that the mean nurnber of patients (with a given doctor) is higher for 

specialists (X4,j = 1) and the variance is lower. 

If n j is less than 10, then n j is set to 10. 

4.1.2 Patients' variables 

Three characteristics: gender, age and severity of disease, were generated for the 

ith (i = 1, ... , n j) patient within the practice ofthe jth(j = 1, ... ,50) physician. 

4.1.2.1 Patients' characteristics 

The patient gender (Zl) was generated from a binary distribution. The probability 

ofZl = 1 (patient is a man) depends on the gender of the physician (Xl)' E.g. female 

patients are more likely to have female physician. So, 1 generated Zl,ij in two steps: 
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1) If Xt,j = 0 (physician is a woman) then the expected proportion of Zt,j = 1, 

Ej(ZJ, was generated from a uniform distribution: U [0.2, 0.4]. Otherwise, 

E/Zt)was generated from U [0.3, 0.6]. 

2) The gender was generated from a binary distribution withP[ZI,ij = 1] = Ej (ZI) . 

The age (Z2 ) was generated from a log-normal distribution in three steps: 

1) Generate the expected mean of patients' age for the jth physician: Ej(Z2)~ 

Normal [60, 3]; 

3) Finally, generateZ2,ij = exp(rij). 

4) Next, the patient's age was restricted to [20,100] interval, if Z2,ij<20 then 

Z2 .. =20; if Z2 .. >100 then Z2··=100. ,!I ,!I ,!I 

The disease severity (Z3) was generated from a normal distribution conditional on the 

specialty (X 4) of the physician. In particu1ar, based on empirical evidence, 1 assumed 

that mean severity of disease is higher for patients seen by a specialist (X 4,j = 1 ). First, 

the expected mean of patients' disease severity E/Z3 ) ~as generated from a normal 

distribution N [20, 3] ifX4,j = 0, or from N [30, 4] ifX4,j = 1 . Individual patient's 

severity Z3,ij is then generated from normal distribution with the physician-specific mean 
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4.1.2.2 Patients' times-to-event 

The expected time to event t ij was generated from an exponential distribution with the 

patient-specific hazard rate Âij' The hazard rate Âij depends on the jth physician's and 

the ith patient' s characteristics, as well as the jth physician' s random effect E j' In 

addition, random right censoring times, independent of patients or physicians' 

characteristics and ofthe outcome, were then generated. 

4.1.2.2.1 Generation of the expected times-to-events 

First, 1 generated the hazard rate Âij assuming the Cox proportional hazards model 

(4.2) 

where Âo = 1 is the baseline hazard, corresponding to aIl patient' s and physician' s 

covariates equal to o· , Xis the vector of covariates 

(l,Xl "X2 "X3 "X4 "ZI",Z2 ",Z3 .. ,c.), andp is the vector of the corresponding ,} ,} ,} ,} ,1} ,1} ,1} } 

defined four categories variable to a binomial variable by settingX3,j = 1 for region 3 and 

4, and setting X 3,j = ° for region 1 and 2. The values of regression parameters: p = {O, log 

(0.8), 0, log (0.6), 0, 0, log (1.02), log (1.05), 1} were used first. Thus, 1 assumed that 

physician's age, physician's specialty, and patient's gender have no effect on hazards. Âij 

was set to 0.01 if Âij <0.01. 
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With the generated hazardÂij' 1 then generated the expected time-to-eventtij. Sincetij was 

assumed to follow an exponential distribution with the parameter Âij , the survival function 

and the correspondingly time-to-eventtij is, therefore, calculated by the formula: 

-log(uij) 
t .. = -----"--

l} Â.. 
l} 

(4.3) 

Therefore, the individual times-to-event were generated in two steps: 

1) Generate uijfrom Uniform [0, 1] distribution. 

2) Calculate the correspondingtij using equation (4.3). 

4.1.2.2.2 Generation of fosses to follow-up 

The possible time of 10ss-to-foIlow-up (cij) was also generated from an exponential 

distribution with Â c = exp (1.2). This value was selected so that the censoring rate would 

be around 30%. Then the same method as above was used: 

1) Generate d ij ~ Uniform [0, 1]. 

2) Calculate C ij = -log (d ij )/ Â c • 

4.1.2.2.3 Generation of the "observed" event or censoring times 

FinaIly, the final "observed" data, i.e. foIlow-up timeTij and the censoring status8ij were 

generated. 1 assumed that aIl subjects will be censored atT = 1.0, correspondingly to a 
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hypothetical "administrative" end of the study. The algorithm consists of the following 

steps: 

1) If t ij < c ij and t ij < 1.0 then L ij = t ij ,0 ij = 1. 

2) Iftij ~ cijandcij <1.0 thenLij =cij ,oij=O. 

3) If tij >1 and cij > 1 then L ij =1, oij= o. 

The SAS program, written to generate the above data and to implement the bootstrap 

algorithms described in section 3.2, is included in Appendix A. 

4.2 Boofsfrap algorifhm 

According to the general princip les of bootstrap methodology, discussed in section 2.4, 

my bootstrap algorithm consists of three steps. The first step involves data resampling. 

The second step focuses on the estimation of the standard errors of regression coefficients 

estimates. The last step involves estimation of the 95% confidence intervals. 

Three different bootstrap methods are studied. The three methods share the procedures of 

stage 2 and stage 3, but differ in the first stage. The resampling step (stage 1) accounts for 

the hierarchical structure of my data, with individual patients nested within practices of 

their physician. 1 used three different strategies to resample the hierarchical data. 

Strategy 1 limits resampling to a random resampling of the data at the lower level (i.e. 

patient-level) with replacement. This strategy assumes that aIl the observations are 

independent of each other and, thus, completely ignores the c1ustering effects. PROC 
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SURVEYSELECT in SAS was used to directly, randomly sample the patients, using 

simple individual sampling with replacement. 

Strategy 2 inc1udes two steps. First, 1 randomly resample individual physicians (the 

higher level), with replacement. Then, the bootstrap sample inc1udes aIl the patients of 

each selected physician without any resampling of individual patients within physicians' 

practices. PROC SURVEYSELECTwas used to resample the physicians. PROC SQL in 

SAS was then used to pick up aIl the patients of the selected physicians from the original 

data. 

Strategy 3 also inc1udes two steps. However, in contrast to strategy 2, here both physician 

and patients-within-practices are bootstrapped. The first step is the same as in strategy 2, 

i.e. involves resampling of individual physicians, with replacement. The second step is to 

randomly resample patients of each selected physician, with replacement. PROC 

SURVEYSELECTwas used to implement resampling at the two levels and PROC SQL 

was used to pick up observations from the databases. 

In aIl three strategies, the second stage is to estimate the standard errors (â B) of the 

regression coefficients estimates. As discussed in the section 2.4.2, each of B resulting 

bootstrap samples was first independently analyzed with the standard Cox PH mode!. 

Next, the bootstrap-based standard errors (SE) of the regression parameter was estimated 

as the empirical standard deviation ofB corresponding estimates Ô01 ,Ô02 
, ••• ,ÔOB 

, by using 

the equation (2.39) 
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At the third step, 1 used the standard bootstrap-based confidence interval (See section 

2.4.3) to construct the 95% confidence interval. This method is based on the normality 

assumption of the distribution of regression coefficients estimates. 1 used the estimate ( ê) 

of the regression coefficient from the standard Cox's proportional hazards analysis of the 

original sample and the bootstrap-based standard error (â B) to construct the 95% 

confidence intervals asê ± z'7ieJ-B' where Z follows a standard normal [0, 1] distribution. 

4.3 Data Analysis 

One hundred independent random samples were generated, usmg assumption and 

methods described in section 4.1. Bach datas et was analyzed using 4 approaches: (a) the 

standard Cox' s PH mode1, (b) the bootstrap with the strategy 1 resampling method, (c) the 

bootstrap with the Strategy 2 resampling method, and (d) the bootstrap with the Strategy 3 

resampling method. For each approach, the following covariates were inc1uded in the 

multivariable Cox's PH model, regardless oftheir statistical significance: the patient-Ievel 

covariates: age, gender and disease severity, and the physician-Ievel covariates: age, 

gender, specialty and working region. 

In approach (a), the regression coefficients, the corresponding standard errors, and the 

95% confidence interval were estimated directly from the standard Cox's PH model. In 
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approaches (b), (c) and (d), the regression coefficients estimates were also obtained from 

the standard Cox's PH model, while the standard errors were estimated using the 

respective bootstrap strategy (section 4.2), and the confidence intervals were estimated 

using bootstrap-based SE and assuming normality. 

1 first calculated for each physician-Ievel and patient-Ievel covariate, the mean P of the 

100 regression coefficients, estimated from each of 100 independent simulated samples. 

The bias of the estimates was calculated as the difference between the mean of 100 

estimates P and the true ~ . The root mean square error (RMSE), that combines the bias 

and the variance of the estimates, was ca1culated as the square root of the mean of the 

squared errors (Pi - f3 r . Notice that the mean estimate fi, the bias and RMSE, were, by 

definition, the same across aH models. The main focus was on assessing the accuracy of 

the variance estimates. To this end, 1 compared the mean of the 100 standard errors, 

estimated using approaches (a)-(d), to the empirical standard error, calculated as the 

observed standard deviation of the P estimates from 100 individual samples. Then, the 

coverage rate of the 95 percent confidence interval was estimated as the proportion of 

simulation samples in which the confidence interval, ca1culated according to a given 

approach (a)-(d), inc1uded the true ~ . 
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5 Results 

Three different scenarios for data generation were considered. The data generation 

described in Chapter 4 (Methods) corresponded to scenario 1. The motivation for using 

additional scenarios 2 and 3 was to assess the robustness of the conclusions with respect 

to the strength of the clustering effect. With aIl the other parameters the same as those in 

scenario 1, the standard deviation of the random effects was reduced from log(1.5) to 

log(1.25) in scenario 2. The goal was to assess to what extent the clustering affects the 

results even if the random effects were relatively weak. FinaIly, in scenario 3, the 

parameter that controlled the cluster size, "expected number of patients" M j , was reduced 

byhalf. 

5. 1 The intra-correlation of the generated data 

Censoring of survival times makes it difficult to measure the intra-class correlation. To 

give a sense of the strength of the within-cluster correlation of the generated survival 

times, 1 estimated the intra-class correlation coefficient (lCC) of the individuals' hazards, 

used to generate these times. It should be noticed, however, that this approach is feasible 

only in simulations. In reallife, individual patients' hazards remain unknown. 

5.1.1 The effect of the variance of random effects 

In data generation, the random effects (g) of physicians were used to produce the intra

class correlation. The strength of the clustering effect was controlled by manipulating the 
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vanance of the random effects. 1 generated 100 data sets in scenano 1 (with 

SD(E) = log(1.5» and additional 100 data sets in scenario 2 (withSD(E) = log(1.25». 

Table 5.1 compares the means of the 100 ICCs for the two scenarios. As expected, ICC is 

stronger when variance ofrandom effects is larger. 

Table 5. 1 The effect of the variance of random effects on the intra-c1ass correlation 

Sd(c) = log(1.5) Sd(c) = log(1.25) 

ICe SD (lCC) range ICC SD (lCC) Range 

0.3235 0.0531 0.2333- 0.2760 0.0408 0.1967-

0.5082 0.3758 

5.1.2 The effect of the cluster size 

The c1uster size n j of jth physician can be controlled by changing the "expected number 

of patients" M j of that physician (See Chapter 4). Since the number of patients for each 

physician (i.e. the c1uster size) may affect the impact of the intra-c1uster correlation, 1 

compared the means of the 100 ICCs in scenario 1 and in scenario 3. Table 5.2 shows that 

ICC is decreased only slightly when the c1uster size is reduced about 50%. 

Table 5. 2The effect of the c1uster size on the intra-c1ass correlation 

M ~ (original c1uster sizes) M; (c1uster sizes reduced by 0.5) 

ICC SD (ICC) range ICC SD (ICC) Range 

0.3235 0.0531 0.2333- 0.3018 0.0578 0.1828-

0.5082 0.5807 
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5.2 Convenfional Cox's proportional hazards model 

This section summarizes the results of the three simulation scenarios obtained with the 

conventional Cox PH model, which ignored clustering of patients within physicians' 

practices. 

First, for each covariate and each scenario, the mean of the 100 estimates yielded by the 

standard Cox's model was calculated. Then the relative bias was estimated as the 

ratio(B - P)/ P when true rJ ;1; O. The results are shown in table 5.3. 

Table 5. 3 Bias and relative bias of log hazard ratios for the standard Cox's PH model 

Variables True jJ-p Relative bias 1 

effect (j) - P)/ P 
rJ Scen.l Scen.23 Scen.34 Scen.1 2 Scen.23 Scen.3" 

Physi Gender -0.223 -0.04012 -0.00375 0.00095 0.1799 0.0168 -0.0043 

cian-

level 
Age 0 0.00050 0.00018 0.00134 NA NA NA 

Region -0.5108 0.04101 -0.00786 -0.01222 -0.0803 0.0154 0.0239 

Specialty 0 -0.05053 -0.00215 -0.00977 NA NA NA 

Patien Gender 0 -0.00057 0.00302 0.00193 NA NA NA 

t-
Age 0.0198 -0.00147 -0.00055 -0.00139 -0.0742 -0.0278 -0.0702 

level 
Severity 0.0488 -0.00299 -0.00160 -0.00430 0.06127 0.03279 0.08811 

Relative blas cannot be estlmated when the true J3 = O. 

2 The data generation for Scenario 1 is described in Chapter 4. 
3 With aIl the other parameters the same as those in Scenario 1, the standard deviation of the random effect 
was reduced from log (1.5) to log (1.25) in Scenario 2. 
4 With aIl the other parameters the same as those in Scenario 1, the parameter that controIled the cluster 
size, "expected number of patients", was reduced by half in Scenario 3. 

For both physician-Ievel variables and patient-Ievel variables, the bias is very close to 0, 

as the mean values of the estimates jJ are very close to the true values of the 
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corresponding regression parameter ~ . Accordingly, most of relative biases are very 

small except for the log hazard ratio ofphysician's gender in scenario 1. 

5.3 Comparison of the standard errors obtained with the 
conventional Cox's model and the three bootstrap methods 

This section starts by summarizing the results of Scenario 1, with strong c1ustering and 

larger c1uster sizes. For each independent variable, Table 5.4 compares the means of the 

100 estimated standard errors, for the conventional Cox's mode1 and the three bootstrap 

methods (with B=100 bootstrap resamples) described in Chapter 4. AlI of these four 

methods use the standard Cox' s mode1 to estimate the regression coefficients but employ 

different ways to estimate the variance of the regression coefficients. First, for each 

covariate, the empirical standard error (SD(ÎJ) is shown, as the standard deviation of 

100 P' s, each from an independent random sample. To enhance the comparability and the 

interpretability, the results related to estimated standard errors (SE) are shown as the ratio 

of the mean of 100 model=specific SE estimates, from independent random samples, to 

the observed standard deviation of the estimates SD(P) . 

As shown in table 5.4, theâ for the standard Cox's model is systematically lower than the 

corresponding empirical standard deviation of the estimates (SD(ÎJ). In particular, for 

each physician-Ievel covariate, the conventional estimate of SE is below 50% of the 

corresponding SD(ÎJ). The â for the bootstrap method with strategy 1, in which patients 

(lower-Ievel units) were directly resampled, using individual random sampling with 

58 



replacement, is also much lower than the corresponding empirical standard deviation 

(Table 5.4). This was expected as the bootstrap strategy 1 did not account for the 

c1ustering. In contrast, the last two columns of Table 5.4 show that theâfor the bootstrap 

strategy 2 and 3 are generally similar to theSD(j). However, the estimated standard 

errors are systematically lower than the empirical standard errors for strategy 2 and 

systematically higher for strategy 3. 

Table 5. 4 Comparison of me an of the 100 estimated standard errors for the standard Cox's model, 
and the three bootstrap methods, with the empirical standard error of the estima tes 

Variable True 8/ SD(P) 2 

effect SD(j) 1 Standard Bootstrap Bootstrap Bootstrap 

J3 Cox (Strategyl )3 (strategy2t (Strategy3)s 

Physi- gender -0.223 0.19927 0.3987 0.2876 0.8752 1.1348 

cian age 0 0.01058 0.4036 0.2977 0.8856 1.1815 

region -0.5108 0.19256 0.4060 0.3136 0.8369 1.1106 

specialty 0 0.15227 0.4384 0.3303 0.8995 1.1960 

Patient gender 0 0.05099 0.9553 0.7221 0.7996 1.6493 

age 0.0198 0.00083 0.9518 0.7108 0.8072 1.6627 

severity 0.04581 0.00690 0.5841 0.4217 0.7652 1.1986 

1 SD(ÎJ) indicates the actual standard deviations of the 100 standard Cox's model's estimates, each from an 

independent sarnple, of the corresponding regression coefficient, which approximates the ernpirical 
standard error of a given coefficient. 
2 Last 4 colurnns of Table 5.4 show the ratio of the mean of 100 estimates of SE(ÎJ) , obtained from the 

corresponding method, to the empirical standard error SD(P). Accordingly, ratio lower than 1.0 indicates 

that a given method under-estimates the true variance of the coefficient, where ratio> 1.0 indicates over
estimation of the true variance. 
3 In bootstrap strategy 1, the patients (lower-Ievel units) were directly resampled using individual random 
sarnpling with replacement. 
4 In bootstrap strategy 2, only physicians (clusters) are randomly resampled with replacement.. 
5 In bootstrap strategy 3, both physicians (clusters) and patients-within-physician are randomly resampled 
with replacement. 
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Since the variation of the regression coefficients for the correlated data cornes from both 

between-cluster and within-cluster variation, the standard errors will be under-estimated 

if either variation is not taken into account, such as in the standard Cox's model and in the 

conventional bootstrap strategy 1 that both ignore between-physicians variation. In 

contrast, the first step for both strategy 2 and 3 is to randomly resample physicians with 

replacement, therefore mimicking the variability between physicians (i.e. clusters). For 

each selected physician in step 1, in strategy 2, aIl the original patients are selected. In 

contrast, strategy 3 randomly resamples the patients of each selected physician with 

replacement, thus, inducing additional variability, at the patient level. This difference led 

to the different estimates of the standard error. Strategy 2 slightly underestimated the 

standard error, while strategy 3 slightly overestimated the standard error (Table 5.4). 

For each method, the coverage rates of the nominal 95 percent confidence interval for 

each regression coefficient are shown in Table 5.5. Due to under-estimation of the 

standard errors (Table 5.4), the conventional Cox's model and the bootstrap method 1, 

which resamples only patients, yielded very low coverage rates. This is especiaIly evident 

for the physician-Ievel covariates, for which aIl the coverage rates are below 60%. 

However, even for patient level covariates, the coverage rates may be as low as 58% to 

73% (Table 5.5). The fact that under-estimation of the variance ofregression coefficients 

is more dramatic for physician-Ievel covariates suggests ignoring the cluster effect affects 

more cluster-Ievel standard errors. In contrast, the bootstrap method with strategy 2 and 

strategy 3 yielded much better coverage rates. As described above, strategy 2 slightly 

underestimated the standard error and, therefore, the corresponding coverage rates vary 
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between 80% and 90%. Strategy 3 slightly overestimated the standard error; therefore, the 

coverage rates are between 92% and 100%. There is one exception for strategy 2, related 

to the very low coverage rate for patient's age (only 44%). This can be explained by the 

ratio of the bias of the corresponding estimate relative to its estimated standard error. 

From tables 5.3 and 5.4, we can see that the bias of the estimate for patient's age is -

0.00147, while theÔ'is only 0.00067. The absolute bias, even ifsmall, is two times higher 

than the mean of the estimated standard errors and, therefore, the probability of the 95 

percent confidence interval inc1uding the true effect was very low. 

Table 5. 5 Comparison of the coverage rates for the standard Cox's model, and the three bootstrap 
methods 

Variable Coverage rate (%) 

Standard Cox Bootstrap Bootstrap Bootstrap 
(Strategy1 ) (strategy2) (Strategy3) 

Physician gender 52 36 89 96 
(41.83-62.01)2 (26.82-46.27) (80.78-94.11) (89.49-98.71 ) 

age 49 39 91 99 
(38.94-59.13) (29.56-49.3) (83.17-95.54) (93.76-99.95) 

region 56 47 87 95 
(45.74-65.8) (37.04-57.2) (78.44-92.62) (88.17-98.14) 

specialty 59 46 88 95 
(48.7-68.6) (36.09-56.22) (79.6-93.37) (88.17-98.14) 

Patient gender 93 83 85 100 
(85.62-96.9) (73.89-89.51) (76.15-91.09) (95.39-100) 

age 58 35 44 92 
(47.71-67.67) (25.91-45.26) (34.2-54.26) (84.39-96.23) 

severity 73 61 83 95 
(63.04-81.16) (50.7-70.44) (73.89-89.51) (88.17-98.14) 

1 The coverage rate of the 95 percent confidence interval was estimated as the proportion of simulation 
samples in which the confidence interval included the true ~ . 

2 The exact 95% confidence interval (including continuity correction) for the coverage rate (out of 100) was 
calculated. 
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5.4 Assessing the effect of the number of bootstrap resamples 

The standard error estimates from the bootstrap methods are empirical approximations. 

Accordingly, their asymptotic properties are justified by the law of large numbers (Efron, 

1979). The estimate of the standard error by a bootstrap method converges to the true 

standard error as the number of the bootstrap resamples (B) increases. Therefore, in 

additional simulations, 1 have varied the number of bootstrap resamples and investigated 

its impact on the standard errors and coverage rates. Table 5.6 compares the mean of the 

100 standard error estimates 8 and the coverage rates for the double-resampling 

bootstrap method (strategy 3) with B=100, 300 and 500. As shown in the table, no 

material differences in either 8 or the coverage rate were observed with increasing 

number ofresamples. This implies that B=100 bootstrap resamples are sufficient to obtain 

reasonably accurate variance estimates, which substantially reduces computing time 

compared to larger B values. 
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Table 5. 6 Impact of the number of bootstrap resamples on the standard error estimates and the 
coverage rates from the double bootstrap method (strategy 3) 

Variable SD(Îl) B=100 B=300 B=500 

Û Coverage Û Coverage Û Coverage 

rate (%)1 rate (%) rate (%) 

Physici Gender 0.19927 0.22614 96 0.22787 97 0.22621 96 

an (89.49-98.71)2 (90.85-99.22) (89.49-98.71) 

-level Age 0.01058 0.01250 99 0.01250 99 0.01243 99 

(93.76-99.95) (93.76-99.95) (93.76-99.95) 

Region 0.19256 0.21386 95 0.21547 95 0.21519 95 

(88.17-98.14) (88.17-98.14) (88.17-98.14) 

Specialty 0.15227 0.18212 95 0.18299 96 0.18332 96 

(88.17-98.14) (89.49-98.71) (89.49-98.71) 

Patient Gender 0.05099 0.08410 100 0.08372 100 0.08380 100 

-level (95 .. 39-100) (95 .. 39-100) (95 .. 39-100) 

Age 0.00083 0.00138 92 0.00139 93 0.00138 92 

(84.39-96.23) (85.62-96.9) (84.39-96.23) 

Severity 0.00690 0.00827 95 0.00830 96 0.00827 96 

(88.17-98.14) (89.49-98.71) (89.49-98.71) 

1 The coverage rate of the 95 percent confidence interval was estimated as the proportion of simulated 
samples in which the confidence interval inc1uded the true ~ . 

2 The exact 95% confidence interval (inc1uding continuity correction) for the coverage rate (out of 100 
simulated samples) is shown in brackets. 

5.5 Assessing the normality of the distribution of bootstrap 
estimates of regression coefficients 

As described in Chapter 4, 1 used the standard bootstrap confidence intervaI, which is 

based on the assumption of normality of the distribution of the regression coefficients 

estimates. To verify this assumption, 1 tested the normality of the distribution of 100 

bootstrap-based estimates of each regression coefficient. AlI p-values from the 

alternative tests (Kolmogorov-Smirnov statistic, Anderson-Darling statistic and Cramer-

von Mises statistic) for normality are >0.15, indicating Iack of evidence to reject the nuIl 

hypothesis of normality. The corresponding histograms also support the assumption that 

the estimates are normaIly distributed. Since histograms for aIl the regression coefficients 
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estimates are similar, 1 arbitrarily chose, for illustration, the histograms for one physician-

level covariate (gender) and one patient-level covariate (severity) (figure 5.1 and figure 

5.2, respectively). 

Figure 5. 1 Distributiou of 100 bootstrap estimates of the log hazard ratio for physiciaus' gender 
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Figure 5. 2 Distribution of 100 bootstrap estimates of the log hazard ratio for patients' severity 
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5.6 Comparison of bootstrap-based standard errors with 
Generalized Estimating Equations (GEE) for a binary 
outcome 

The approach 1 propose in this thesis relies on standard Cox's model to get parameter 

estimates and then uses bootstrap to adjust the standard errors for c1ustering. In this sense, 

the approach is similar to marginal models such as GEE (Liang et al., 1986), and it would 

be interesting to use simulations to demonstrate the similarity of the results of the two 

approaches. However, there is no generally available software for GEE analysis of 

c1ustered right-censored time-to-event data. Therefore, 1 have carried out an additional 

simulation experiment, in which 1 generate binary outcomes and then compare the 

standard errors for bootstrap with strategy 2 and 3 against the conventional GEE results, 

obtained from PROC GENMOD in SAS. 

5.6.1 Brief description of the additional simulations 

First, 1 used the same data generation algorithm as described in Chapter 4 for my original 

simulations, to generate all the physician-Ievel covariates (i.e. gender, age, region, 

specialty and number of patients) and all the patient-level covariates (i.e. gender, age and 

severity). Next, instead of generating the times-to-event as the outcome for each patient, 

1 generated a binary outcome(y) for each patient. First, 1 calculated log(~), where 
1 1-Pi 

Pi is the probability of Yi = l, assuming the multiple logistic regression model : 

10g(~) = IF X . 
1- P 
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The same vector of covariates X as in the original simulation was considered, and the 

same values for regression coefficients: ~ = (~o, ~ p ~ 2 , ~ 3' ~ 4' Y P Y 2' Y 3) = {O, log (0.8), 

0, log (0.6), 0, 0, log (1.02), log (l.OS)} were assumed. However, /3' s represent now 

10gOR's rather than 10gHR's. Next, to induce clustering within physicians' practices, a 

random intercept E j was generated for each physician j = 1, ... ,50from N [0, 10g(l.S)] and 

added to the logit for each patient ofthis physician, to obtain: 

{
Pi} J T 10 -- =/3 x..+s .. 

1 y J 
-Pi} 

Then, Yij was generated from a binary distribution with the probability of Yu = 1 equal to 

exp(logitij) / h' ( Pij J 
/(1+exp(logitij»'w ere 10gltij = log 1-Pij . 

One hundred independent random samples of size N (varied around 2000), were 

simulated using the above algorithm. Then, each sample was analyzed using 4 alternative 

methods: standard multiple logistic regression, GEE extension of logistic model with 

exchangeable covariance structure (Digger et al., 1994), and bootstrap methods with 

strategy 2 and 3 (see Chapter 4). 

5.6.2 Brief summary of results of the additional simulations 

Table 5.7 and table 5.8 show that, as expected, the standard logistic model underestimated 

the standard errors of the estimates and, accordingly, yielded very low coverage rates,. In 

contrast, GEE and the two proposed bootstrap methods gave acceptably accurate results. 
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Compared with the GEE model, the bootstrap method with strategy 2 (resampling with 

replacement limited to physicians) gave very similarbut slightly lower coverage rates, 

while the bootstrap method with strategy 3 (resampling both physicians and patients-

within-physician with replacement) gave a somewhat higher coverage rates. These results 

confirm that the proposed bootstrap approaches are similar to GEE modeling. 

Table 5. 7 Simulations with a binary outcome: comparison of mean of the 100 estimated standard 
errors for the standard logistic model, GEE, bootstrap methods with strategy 2 and with strategy 3. 

Variable True â-/SD(ÎJ)
2 

effect SD(ÎJ) 1 
logistic GEE~ Bootstrap Bootstrap 

p 
model (strategy2t (Strategy3i 

Physi- gender 
-0.223 0.2872 0.276602 0.98085 0.905641 1.174791 

cian age 
0 0.0168 0.254167 0.910714 0.85119 1.089286 

region 
-0.5108 0.3397 0.230144 0.964086 0.916691 1.180748 

specialty 
0 0.333 0.20045 0.917718 0.885285 1.153453 

Patient gender 
0 0.0988 0.493016 0.804656 0.758097 1.571862 

age 
0.0198 0.00151 0.523179 0.860927 0.721854 1.529801 

severity 
0.04581 0.0147 0.27415 0.537415 0.748299 1.108844 

1 SD(P) indicates the actual standard deviations of the 100 standard logistic model's estimates, each from 

an independent sample, of the corresponding regression coefficient, which approximates the empirical 
standard error of a given coefficient. 
2 Last 4 columns of Table 5.7 show the ratio of the mean of 100 estimates of SE(P) , obtained from the 

corresponding method, to the empirical standard error SD(P)' AccordirIgly, ratio lower than 1.0 indicates 

that a given method under-estimates the true variance of the coefficient, where ratio> 1.0 indicates over
estimation of the true variance. 
3 Generalized Estimated Equations are used to analyze binary data with logit Hnk function. 
4 In bootstrap strategy 2, only physicians (clusters) are randomly resampled with replacement. 
5 In bootstrap strategy 3, both physicians (clusters) and patients-within-physician are randomly resampled 
with replacement. 
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Table 5. 8 Simulations with a binary outcome: comparison of coverage rate for the standard logistic 
model, GEE, bootstrap methods with strategy 2 and with strategy 3. 

Variable 95% Coverage rate (%)1 

Standard GEE Bootstrap Bootstrap 

logistic mode! (strategy2) (Strategy3) 

Physician gender 55 93 92 99 

(44.75-64.86)2 (85.62-96.23) (84.39-96.23) (93.76-99.95) 

age 46 91 91 95 

(36.09-56.22) (83.17-95.54) (83.17-95.54) (88.17-98.14) 

region 49 93 92 97 

(38.94-59.13) (85.62-96.23) (84.39-96.23) (90.85-99.22) 

specialty 47 95 91 98 

(37.04-57.2) (88.17-98.14) (83.17-95.54) (92.26-99.65) 

Patient gender 91 90 85 99 

(83.17-95.54) (81.96-94.84) (76.15-91.09) (93.76-99.95) 

age 51 40 33 87 

(40.87-61.06) (30.48-50.3) (24.12-43.21) (78.44-92.62) 

severity 62 80 75 93 

(51.71-71.36) (70.57-87.08) (65.16-82.88) (85.62-96.23) 

1 The coverage rate of the 95 percent confidence interval was estimated as the proportion of simulation 
samples in which the confidence interval inc1uded the true J3 . 
2 The exact 95% confidence interval (inc1uding continuity correction) for the coverage rate (out of 100) was 
calculated. 
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6 Real-life applications 

A real-life application of the proposed methods uses data collected within the project 

"Optimal care trajectories in rheumatoid arthritis (RA): the primary-secondary interface" 

(OPTRA) (Feldman et al, 2004) (The assumptions underlying data generation for my 

simulations were, to a large extent, derived from this project). The OPTRA project aims 

to evaluate parameters potentially associated with the primary-secondary care interface, 

which is characterized by the shared care that is initiated when a primary care physician 

requests a consultation with a rheumatologist for a RA patient. RAMQ (Régie 

d'Assurance Maladie du Québec) and Med-Echo database were used to identify RA 

patients, the characteristics of patients and physicians, and the place of residence. 

One of the mam objectives of the OPTRA project is to assess whether time until 

consultation with a rheumatologist differs according to geographical region, and/or 

patient or physician-related characteristics. Time to consultation is measured since the 

diagnosis of RA, and its analysis requires using time-to-event methodology. Since 

patients are nested within physicians' practices, c/ustered censored survival data analysis 

needs to be considered. Therefore, 1 applied the proposed bootstrap-based methods to the 

analyses of relevant data from the OPTRA project. 

A total of 13,244 incident RA patients nested within practices of 3,866 physicians with 

specialty different from rheumatology, were identified from the database. Time 0 for each 

RA patient is defined as the first non-rheumatologist physician c1aim for RA, and the 

"event" of interest is the first-time consultation with a rheumatologist. Subjects who had 
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not seen a rheumatologist are censored at the end of follow-up, death or relocation out of 

Quebec. Patients' characteristics (age, gender and comorbidity), physicians' 

characteristics (gender, specialty and years from graduation), and an indicator of the 

urban (vs rural) residence were included in the regression model. Since most clusters 

(physicians) have very small cluster sizes (number of patients), it is not possible to 

resample patients in the second stage (one of the proposed bootstrap approaches). Thus, 

only the bootstrap method involving resampling only physicians was applied. Table 6.1 

compares the results from the bootstrap method with those from the standard Cox's PH 

model. 

Table 6. 1 Analysis of OPTRA time-to-events data with the standard Cox's PH model and the 
proposed bootstrap method 

Variable !JI Standard Cox" Bootstrap-based Cox~ 

stderr p-value Bootstrap- p-value 

based stderr 

Patient age -0.00381 0.00124 0.0021 0.00188 0.0427 

-level gender 0.26103 0.04170 <0.001 0.05049 <0.001 

comorbidity 0.03434 0.01161 0.0031 0.01504 0.02245 

Physician gender -0.86324 0.05611 <0.001 0.13006 <0.001 

-level specialty -0.75017 0.05900 <0.001 0.13255 <0.001 

Grad. years 0.0005574 0.0001375 <0.001 0.0001415 <0.001 

rural -0.11963 0.04870 0.0140 0.11111 0.0734 

1 ft is the estirnate ofregression coefficient, which is the log ofhazard ratio of the corresponding covariate. 

2 The standard error and the p-value ofthe standard Cox's model are given by SAS procedure: PHREG. 
3 For the bootstrap method, the standard error is bootstrap-based standard error, which was estirnated by 
using the empirical standard deviation of bootstrap-based estimates of regression coefficients. The p-value 
was calculated by finding the probability O~tl ~ ft/SE

ooo1 
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Since the OPTRA project is at the preliminary stage, and the data set has not been 

properly c1eaned and validated, 1 would not interpret the estimated effects of covariates 

(The analysis presented here is just a tentative analysis, to illustrate the proposed 

bootstrap approach). As expected, the standard errors estimated from the standard Cox's 

model are systematically smaller than the corresponding bootstrap-based standard errors. 

Accordingly, the significance levels for the effects of sorne covariates have changed. For 

example, the effect of the geographical variable is significant, at thea = O.05Ievel, in the 

standard Cox's model but not significant for the bootstrap-based method. This confirms 

that the standard Cox' s PH model, that fails to account for the correlation between 

observations on the patients of the same physician, may underestimate the standard error 

and, accordingly, may lead to incorrect inference about the effects of particular 

covariates. Similar to the results of simulations reported in Chapter 5, the results for 

physician-Ievel characteristics are more affected by the failure to account for the 

c1ustering, as the standard errors are often twice smaller for the conventional analyses 

than for the bootstrap. 
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7 Discussion and Conclusion 

ln this thesis, 1 first used simulation to assess the regression coefficients estimates and 

the standard errors estimates of the conventional Cox PH model for correlated 

survival data. As expected, conventional Cox PH model yielded unbiased estimates of 

the effects of both individual-Ievel and c1uster-Ievel covariates. However, due to 

ignoring the correlations between observations within the same c1uster, the standard 

errors estimates are much smaller than the actual standard deviation of the estimates, 

"directly" observed in simulations. Thus, the corresponding 95% confidence intervals 

are too narrow. And furthermore, the coverage rates of the 95% confidence interval 

(CI), especially for c1uster-Ievel covariates, may be as low as 40%-60%, which 

suggests that ignoring the c1ustering effect affects more inference about c1uster-Ievel 

characteristics. The "c1assical" bootstrap method, which directly resampled patients 

with replacement, also ignored the correlation between observations within the same 

c1uster and therefore, underestimated the standard errors, yielded very narrow 95% 

confidence interval, and gave very low 95% CI coverage rates (35% - 50%). 

To estimate such inaccuracies while avoiding complicated random-effects extension 

of the Cox's model (Ma et al., 2003), 1 have proposed an easy-to-implement 

bootstrap-based approach with two variants. 1 then investigated the performance of 

the two proposed variants in simulations. The bootstrap method with strategy 3, which 

first randomly resampled physicians with replacement and then randomly resampled 

patients for each selected physician with replacement, took both between-c1uster 

variance and within-c1uster variance into account. Indeed, simulations suggested that 
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the resulting standard errors estimates were very close to, but slightly higher, than the 

true standard errors. Accordingly, the 95% CI coverage rates were between 92% and 

100%. The bootstrap method with strategy 2 only randomly resampled physicians 

with replacement, and then included all the individual patients of each selected 

physician into bootstrap samples. This method accounted for the between-cluster 

variation and kept the original set of individual observations for each selected cluster 

(physician). In simulations, the standard errors estimates based on this method were 

also very close to, although slightly /ower than, the empirical standard errors, 

observed in simulations. The 95% CI coverage rates varied between 80% and 90%. 

The latter bootstrap method was applied in a real-life example, involving the 

assessment of the determinants of the time between the RA diagnosis and the first 

consultation with a rheumatologist. The results confirmed the importance of 

accounting for clustering as the conventional Cox's model under-estimated the 

standard errors, compared to bootstrap-based standard errors, by a factor of two or 

more, especially for physicians' characteristics. 

The bootstrap-based method is an empirical approximation method, which asymptotic 

properties are based on the law of large numbers. Therefore, 1 investigated the impact 

of the number ofbootstrap resamples on the standard errors and coverage rates. When 

1 increased the number ofbootstrap resamples from 100 to 300, and then to 500, the 

standard errors estimates and the coverage rates were not significantly changed. This 
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suggests that 100 bootstrap resamples are sufficient to obtain reliable vanance 

estimates. 

The assumption of normality of the empirical distribution of the bootstrap-based 

regression coefficients estimates, on which the 95% confidence interval inference was 

based, was also verified in simulations. The histograms showed that the bootstrap

based estimates of the effects of both individual-Ievel and c1uster-Ievel covariates 

were approximately, normally distributed. 

1 also investigated the impact of (i) the c1uster size, and (ii) of the strength of random 

effect on the c1ustering effect. The intra-c1ass correlation coefficient (ICC) of the 

individuals' hazards became weaker when the variance of random effects was smaller 

or when the c1uster size was reduced. As expected, the coverage rates for 

conventional Cox PH model were improved as the ICC decreased, but remained too 

low, in contrast to accurate coverage for the proposed bootstrap methods. 

To gain further insight into the performance of the proposed approach, 1 applied the 

two bootstrap-based approaches to correlated data with binary outcomes and 

compared the standard errors estimates and 95% CI coverage rates with those of GEE 

method, which is available in SAS package. As expected, conventional multiple 

logistic regression for independent observations under-estimated the true variance of 

regression coefficients. In contrast, GEE and the two proposed bootstrap methods 

gave acceptably accurate and quite similar results. These additional simulations 
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confinned my expectations that the proposed bootstrap-based methods are similar, in 

both their spirit and their results, to marginal models such as those underlying the 

GEE approach. Indeed, both GEE and my bootstrap-based methods first estimate 

regression coefficients and then correct their standard errors for the within-c1usters 

correlations (Liang et al., 1986). 

The proposed bootstrap methods were implemented in the SAS programmmg 

language. It took 5 minutes for bootstrap method with strategy 3 to analyze one 

simulation sample with 50 c1usters and about 2,500 individual observations, when 

using 100 bootstrap resamples. It took much less time for the bootstrap method with 

strategy 2 to analyze the same data, because only physicians were re-sampled in this 

method. 

Overall, the above results suggest that the proposed bootstrap-based methods provide 

a reasonable, accurate and easy-to-implement approach for estimating standard errors 

and confidence intervals in the context of the Cox's proportional hazards analysis of 

correlated survival data. 

Clearly, further studies and more computer simulations are needed to better 

understand the perfonnance of the two proposed bootstrap methods and the difference 

between these two methods. So far, 1 just investigated the relatively simple scenarios. 

For example, 1 assumed that survival times follow an exponential distribution (i.e. 

constant hazards rates). Moreover, only random intercepts are considered, and the 
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effects of covariates are assumed constant over time, as in proportional hazards model 

(Cox, 1972). Future research should consider more complicated situations, such as 

using different distributions of survival times, taking into account random slopes, 

investigating how to adapt the proposed methods to hierarchical data with more than 

two levels, and extending them to non-proportional hazards models. 

Sorne limitations of this study have to be acknowledged. First, 1 assumed that 

censoring was independent of covariates and therefore, 1 did not need to consider 

whether individual observations are censored or not when resampling the data. Yet, 

the resampling methods must take the censoring into account if the censoring is 

differential (Davison et al., 1997). 

Another limitation is that when 1 ca1culated the 95% confidence interval, 1 assumed 

that the estimates of regression coefficients follow a normal distribution and did not 

consider possible bias in point estimates. However, in my simulations, normality was 

never significantly violated and most regression coefficients showed little or no bias. 

Thus, from the pragmatic point of view, such possibly over-simplifying assumptions 

do not seem to materially affect the accuracy of the proposed methods. Still, the 

empirical coverage rate of one covariate was quite low even when 1 used the proposed 

bootstrap methods with strategy 2 to estimate the standard errors. This suggests that 

other methods for bootstrap-based confidence interval estimation should be perhaps 

considered, such as biased-corrected percentile method (Efron, 1981). 
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Moreover, in my thesis, the number of clusters was fixed and pretty large (m=50). 

However, the number of clusters may also affect the performance of the proposed 

bootstrap methods and this issue needs to be investigated further. 

As mentioned in the literature reVlew, the "one-step" jackknife approach for 

correlated survival data, proposed by Lipsitz et al. (1996), is similar to my methods 

except that they used different resampling technique - jackknife (vs. bootstrap) to 

estimate the variance. The different performance of the two approaches should be 

compared in the future studies. 

Lastly, 1 proposed two alternative bootstrap-based methods to resample the 

hierarchical survival data, and both of them were found to yield reasonable accurate 

standard errors so far. However, as suggested by Davison and Hinkley (1997), the 

two-stage method (strategy 3) tended to slightly over-estimate the true variance of 

regression coefficients, whereas, the method 2 (strategy 2), that resample physician 

only, under-estimated the true variance. Thus, future studies should assess which 

strategy is more robust in more complicated situations. 

Overall, the results suggest that the proposed bootstrap methods, yield reasonable 

estimates of the standard errors and very good coverage rates. The programs 

implementing these methods are simple, and run fast and therefore, may be preferred 

by the applied statisticians to analyze correlated, censored survival data. 
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AppendixA 

1 Generate Data 

%macro simu1i 

%do k=l %to 100i *k is the number of simulationsi 
/********************************************** 
Generate physieian's eharaeteristies 

**********************************************/ 
%macro physieians(index)i 
/*Physician's gender xl, binomial distribution with p=0.6*/ 

data genderi 
lable xl= "phys_gender"i 
do j=l to SOi 
xl=ranbin(O,l,O.6)i 
outputi 
endi 
runi 

/* Add physieian's age x2, eontinous variable, U[30,65]*/ 
data physieiansi 
set genderi 
lable x2="phys_age"i 
x2=3S*ranuni(0)+30i * sinee ranuni(O): [0,1] i 

x2=round(x2,l)i * Round age to an integeri 
runi 

/* Add region x3 where a physieian belongs to. Categorieal data 
with p(x3=l,2,3,4)=0.4, 0.3, 0.2, 0.1 */ 

data physieiansi 
set physieiansi 
label x3="phys_region"i 
x3=rantbl(O,O.4,O.3,O.2,O.1)i 
if(x3=2) then dOi dl=li d2=Oi d3=Oi endi 
else if(x3=3) then dOi dl=Oi d2=li d3=Oi endi 
else if(x3=4) then dOi dl=Oi d2=Oi d3=li endi 
else dOi dl=Oi d2=Oi d3=Oiendi 
runi 

/* Add physieian's speeialty x4, binary data. The 
probability depends on xl and x3 */ 

data physieiansi 
set physiciansi 
lable x4="phys_specialtY"i 
if (x3=4) then x4=Oi 
else dOi 
p=O.3+0.15*xI-O.l*dl-0.25*d2i 
x4=ranbin(O,l,p)i 
endi 
drop Pi 
runi 

/* Add number of patients for eaeh physieian n: depends on 
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%mend; 

each physician's characteristics.*/ 
data physicians; 
set physicians; 
m=(40 + xl*lO +abs(x2-40)/2 - S*dl -lO*d2 -20*d3) i 

/*n: number of patients, normal distr.*/ 
if(x4=O) then n=20*rannor(O)+mi 
else n=lS*rannor(O) + 1.S*m; 
n=round(n,l)j 
if n<lO then n=lOj 
drop mi 

runj 

/* Add individual physician's random effect-- epsilon: normal 
distr.) */ 

data physiciansj 
set physiciansj 
epsilon=rannor(O)*log(1.5)j 
run; 

libname phys "c:\xiao\project_thesis\library\physicians"j 
data phys.physicians&indexj 
set physiciansj 
runi 

%physicians (&k) ; 

/******************************************************** 
Generate patient's characteristics 

*******************************************************/ 
%macro patients; 
%do j=l %to 50j 

data physician&j; 
set physicians(firstobs=&j obs=&j)j 
runj 

/* patient's gender, binary data, depends on gender of 
physician*/ 

data exp_genderj 
set physician&jj 
if xl=O then exp_zl=0.2*ranuni(0)+O.2j 
else exp_zl=O.3*ranuni(O)+O.3; 
calI symput ("exp_zl", exp_zl) i 

calI symput("n",n); 
runi 

/* Add patient's gender zl: binomial distr.*/ 
data patientsj 
label zl="pati gender"; 
%do i= l %to &nj 
id=&ij 
zl=ranbin(O,l,&exp_zl) i 

outputj 
%endj 
runj 
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/* Add patient's age z2, (not depend on physician), lognormal 
distr.*/ 

data exp_age; 
exp_age=rannor(O) *3+60; 
calI symput("exp_age",exp_age); 
run; 

data patients; 
set patients; 
label z2="pati_age"; 
/* r:normal distr.with mean=log(exp_age)*/ 
r=log(3)*rannor(0)+log(&exp_age); 
z2=exp(r)i 
z2=round(z2,1)i 
if z2<20 then z2=20i 
if z2>100 then z2=100i 
drop ri 
runi 

/* Add patient's disease severity z3, depends on physician's 
specialty(x4)*/ 

data exp_severity; 
set physician&ji 
if x4=0 then exp_z3=3*rannor(O)+20i 
else exp_z3=4*rannor(O)+30i 
calI symput("exp_z3", exp_z3)i 
runi 

data patientS&ji 
set patientsi 
label z3="pati_severitY"i 
z3=5*rannor(O)+&eXp_z3 i 
z3=round(z3,1)i 
if z3<=1 then z3=1i 
runi 

%endi 
%mendi 
%patientsi 

/**************************************************** 
Generate time_to_event for each patient 

****************************************************/ 
%macro time(coefl,coef2,coef3,coef4,coefS,coef6,coef7,coef8,coef9)i 
%do j=1 %to SOi 

data _null_i 
set physicians(firstobs=&j obS=&j)i 
calI symput ("xl", xl) i 

calI symput ("x2" , x2) j 

calI symput("x4",x4) j 

If x3=1 or x3=2 then r=O; 
else r=l.j 
calI symput ("x3", r) ; 
calI symput("epsilon", epsilon); 
runj 

/*Generate hazard rate (lamda) specifie for each patient 
depending on the characteristics of physicain and patient, 
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%endi 

as weIl as phyiscian's random effects*/ 
data hazardi 
set patientS&ji 
lamda=exp(&coefl+&coef2*&xl+&coef3*&x2+&coef4*&x3+&coef5*&x4+ 

&coef6*zl+&coef7*z2+&coef8*z3+&coef9*&epsilon)i 
if lamda<O.Ol then lamda=O.Oli 
runi 

/* Generate time-to-event with losses to follow-up, the time 
follows exponential distribution. */ 

data timei 
set hazardi 
/* Generate t: the time when an event occurre */ 
u=ranuni(O) i 

t=-log(u)/lamdai 
/* genreate C: the follow-up time for each patienti*/ 
lamda_c=exp(1.2) i 

d=ranuni(O)i 
c=-log(d)/lamda_ci 
/* Compare c & t to see if a datum is censored 

censor=O -- no event&censored censor=l--event occurred*/ 
if c<t then dOitime=ci censor=Oi endi 
else dOitime=ti censor=li endi 
/* Since the study lasts 1 year, aIl the patients who 

don't have an event will be censored */ 
if time>l then dOi time=li censor=Oiendi 
drop u d lamda_ci 
runi 

data patientS&ji 
set time(drop=t C)i 

runi 

%mendi 
%time(0,-0.223,0,-0.5108,0,0,0.0198,0.0488,l)i 

%macro merge-patients(index)i 
libname pati "c:\xiao\project_thesis\library\patients"i 
%do j=l %to SOi 

%endi 

proc append base=pati.patients&index data=patientS&ji 
runi 

%mendi 
%merge-patients(&k)i 
%endi 
%mendi 

%simuli 

/* Merge physicians with patientsi*/ 
%macro add-physiciansi 
%do k=l %to lOCi 

data physicians&k(drop=l)i 
set phys.physicians&ki 
do 1=1 to ni 

outputi 
endi 
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%endj 
%mend; 

runj 

data pati.patients&k; 
merge pati.patients&k physicians&k; 
run; 

%macro cal_ICC; 
proc mixed data=pati.patients&k; 
class j; 
model lamda=/solution; 
random int/subject=j type=un; 
ods output CovParms=table(keep=covparm estimate); 
runj 

proc transpose data=table out=table1; 
run; 

data icc; 
set table1; 
ICC=col1/(col1+col2); 
keep ICCj 
run; 

proc append base=pati.correlation data=icc; runj 
%mend; 
%cal_ICC; 

options nolabelj 
%addJ'hysicians; 

2 SAS program for bootstrap method: to resample physicians first, 

then to resample patients of each selected physician. 

/* For each simulation, 100 bootstraps are done (First on 
physicians then on patients) . 

*/ 

For each bootstrap sample, run Cox model. 
l get Beta for each variable 
l calaculate mean and sd of 100 betas 

/********************************************************** 

Function: resample---Generate random ID for resample 
***********************************************************/ 

%macro resample(out=, num=,id=); 
data id; 
do &id=l to &num; 

output; 
end; 
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runi 

proc surveyselect data=id method=urs n=&num out=sample noprinti 
runi 

data &out(keep=&id)i 
set samplei 
if numberhitsA=O then dOi 

endi 
runi 

%mendi 

do count=l to numberhitsi 
outputi 

endi 

/*************************************************************** 
Function: meanCoef---calculate mean and standard deviation 

of 100 bootstap-based coefficients 
****************************************************************/ 
/* Mean of coefficients of 100 bootstraps and standard deviation */ 
%macro meanCoef(bb=,name=)i 

/* Calculate mean of coefficients and standard errors*/ 
%do j = 1 %to 7i 

%endi 

data newi 
set coef&j (firstobs=l obs=&bb) i 

runi 

proc means data= neWi 
output out=mean&j (drop=_type _ _ fre~)i 
runi 

data mean&j (rename=(estimate=estimate&j))i 
set mean&ji 
if _stat_ eq "MEAN" or _stat_ eq "STD"i 
runi 

data b_estimatei 
merge meanl mean2 mean3 mean4 meanS mean6 mean7i 
runi 

proc transpose data=b_estimate 
out=b_estimate(rename=(coll=meanOfBeta co12=sd)) i 

runi 

/*Put the mean and sd of beta's from each simulation together*/ 
%do j=l %to 7i 

data rowDatai 
set b_estimate(firstobs=&j obS=&j)i 
runi 

proc append base=&name&j data=rowDatai 
runi 

%endi 
%mend meanCoefi 

/************************************************************* 
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Bootstraps 
*************************************************************/ 

libname pati "c:\xiao\project_thesis\library\patients"j 
libname analysis "c:\xiao\project_thesis\library\analysis\b_analysis"j 
libname phys "c:\xiao\project_thesis\library\physicians"j 
%macro bootstrapsj 
%let b=100j /* 100 bootstraps */ 
%do sim= 1 %to 100j/* 100 simulations */ 

/* resample physicians and patients: 100 times i*/ 
%do res_num=l %to &bi 

%resample(out=phys_id, num=50,id=j)j *sample physiciansj 

proc sqlj 
create table physicians as 
select phys_id.j, n 
from phys.physicians&sim s, phys_id t 
where s.j=t.jj 

/* resample patients */ 
%do count=l %to SOj 

data _NULL_j 

%endj 

set physicians(firstobs=&count obs=&count)j 
calI symput ('pati_num' ,n) j 

call symput('phys_id',j)j 
runj 

/*sample patients for each chosen physician*/ 
%resample(out=pati_id,num=&pati_num,id=id)j 
data pati_idj 
set pati_idj 
j=&phys_idj 
runj 

proc append base=total-pati_id data=pati_idj 
runj 

/* pick up patients according to the resample ID of 
patients */ 

proc sqlj 
create table b-patients as 
select * 
from pati.patients&sim s, total-pati_id t 
where s.j=t.j and s.id=t.idj 

/* Use Cox model on the sample*/ 
data b-patientsj 
set byatientsj 
If x3=1 or x3=2 then x3=Oj 
else x3=lj 
runj 

proc phreg data=b-patientsj 
model time*censor(O)=x1-x4 zl-z3j 
ODS SELECT ParameterEstimatesj 
ODS OUTPUT ParameterEstimates= 

b_summary(keep=variable estimate)j 
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run; 

/* Put the results of 100 bootstraps together by variable*/ 

%end; 

%do j=l %to 7; 

%end; 

data rowData; 
set b_summary(firstobs=&j obs=&j); 
run; 

proe append base=eoef&j data=rowData; 
run; 

proe datasets nolist; 
delete total-Fati_id; 
quit; 

%meanCoef(bb=100, name=analysis.eoeflOO_); 
%end; 
%mend; 

%bootstraps; 
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