
redit- an Editor for a Relational Database Environment

by

Robert John Wilson

A project submitted to

the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements

for the degree of Master of Science (Applied)

School of Computer Science
McGill University
Montreal, Canada

March, 1987

·o

To my dear wife Helen and daughter Ruth who put up with my absence during

the period when this work was done

- ll -

c
Acknowledgements

... , and without Him was not anything made that was made.

I am very grateful to Professor Merrett who encouraged me to come to McGill, taught me

courses in relational databases, and was my supervisor for this project. His patience, criti

cisms, and direction have made this project a reality.

I am also grateful to Normand Laliberte who, permitted me to use functions that he had

written as part of relix in this project.

I am finally grateful to all those who encouraged me in diverse ways during the time this

project was undertaken, and during my stay at McGill University.

- lll -

1.

2.

3.

4.
4.1

4.1.1

4.1.2

4.1.3

4.1.3.1

4.1.3.2

5.

5.1

5.2

5.3

6.

7.

8.

Table of Contents

Acknowledgements 111

Table of Contents iv

Introduction 1

The Relational Database Environment 3

Issues in the Design of a Relational Database Editor 6

Analysis and Design 9

Software Requirement Document 9

Design Goals 10

Constraints .. 11

Processing .. 12

Tuple/Record 13

Template/Form Design .. 15

Implementation 16

Data Structures .. 16

System Design Diagram 20

User Interface 24

Limitations and Extensions 26

Conclusions 27

References 28

9. Appendix :... 30

9.1 User Manual 31

9.1.1 Invoking redz't .. 31

9.1.2 Red it Command Set 32

9.1.3 General Description of red it Modes 33

9.1.3.1 Process Mode ... 33

9.1.3.1.1 Insert Submode .. 34

9.1.3.1.2 Find Submode .. 34

9.1.3.1.3 Change Submode 34

9.1.3.2 Design Mode 35

- lV-

0

9.1.3.2.1 Move Submode .. 35

9.1.3.2.2 List Submode ... 35

9.2

9.2.1

Systems/Programmers Manual .. 36

Window Structures .. 37

9.2.2 Template Structures 35

9.2.3 Module Description 39

9.2.4 Relix - an Implementation or a Relational Database Environment 44

- V •

1. Introduction

A relational database environment requires a set of such relational operations as projection,

selection, join, edit and domain algebra to be applied on relations.

A relational editor performs the edit operation on a relation. Given a search key (made up

of one or more attributes of the relation), the editor allows the user to manipulate the tu-

ples in a relation through a template (form).

The concept of a software engineering programming environment calls for the creation of

highly-interactive display-oriented tools for software development or data manipulation.

Such an editor combines the functions of a normal text-editor with those of a parser or the

semantics of the database environment, and allows a user to create and modify data entities

(eg; tuples) in terms of a relational database environment, or programs in terms of a

language syntactic structure.

This report describes the design and implementation of a relational editor - redit.

It provides a high-level interactive user interface. The basic operations to be performed are

direct/sequential access, creation, insertion, deletion and updating.

Redit has two main modes and various submodes depending on the context of the operation

being performed. The editor commands are therefore context-sensitive, highly-interactive,

and are triggered by a single key stroke. Commands are used and named consistently so as

to eliminate the need for memorizing them, and to reduce the time a user needs to become

comfortable with redit. All the valid commands are displayed in a command window.

The editor has been designed to be compatible with the first release of the relational data-

base implementation - re/£x running on V AX 11/780, Masscomps, and Oadmus Bip Plan

running Unix Operating System. It can be ported to any Unix environment with virtually

no modification.

- 1 -

0

0

The underlying principle in designing redit has been modularity, re-usability, and low de

gree of cohesiveness among the various modules. The program modules are thus easy to use

or modify for a similar application.

Within the limitations of redit and reUx, this design and implementation is in step with

current research and development on the design and implementation of editors for a data

base or programming environment.

- 2 -

2. The Relational Database Environment

Present day database and information systems processing requires the transfer of tens of

thousands of bytes of data from secondary to main memory at any instance. However, the

digital computers that are used to process information are limited by the fact that data is

transmitted from secondary storage to processor (main memory) in units of only one word

the so called "Von Neumann bottleneck" [Back78]. The "Von Neumann architecture" is

based on the design of ENIAC computers which began in 1943. These computers had limit

ed processor memory as compared to secondary storage. As a result, programs and data

were stored in secondary storage and transmitted one word at a time.

The need to cut down on the cost of processing large amounts of data in terms of time has

motivated research in information processing.

The relational data base model for data representation was proposed by Codd [Codd70], as

a rational for information representation. In relational databases, relations are used as a

model for files and sets of relations as a model for data.

Various designs and implementations of Codd's ideas has resulted in such query languages

as Structured English QUery, SEQUEL [Cham74], QUEL, which is based on relational cal

culus [Held75], Aldat, algebraic data language [Merr77], and many others. These languages

allow a user to retrieve or modify the information in a database, knowledge databases and

expert systems, and distributed databases.

A query language may be

tuple oriented (tuple at a time) - relations are processed tuple by tuple.

algebra oriented - operations are defined to take whole relations as operands and

yield relations as the result.

calculus oriented - use of an expression to describe the data to be retrieved; for

mulation of expression may be similar to first order predicate calculus.

- 3 -

An algebraic language considers a relation as the primitive unit of data , and thus provides

a high level of abstraction. The closure property of algebraic operations ensures that the

result of any algebraic operation is a relation. Aldat [Merr77] is an algebraic language pro

posed by Merrett in 1977, as a programming language for which relations are the elements.

The Aldat project is a series of implementations of such a language on different computer

systems at McGill University. These include :

MRDS

MRDSP

MRDSA

- a data sub-language for PL/1 programming language [Merr76], which pro

vided the user with project, select, and the complete array of set theoretic

relational functions called p-join.

- a Pascal language implementation [Merr81] with the addition of 0'-join

operation, and extension of Codd's division [Codd79].

- a UCSD Pascal language version [Chiu82], implemented as a data sub

language for Apple IT microcomputer. This system provided the user with the

extended set of relational operations, including project, p-join, 0'-join, a full

screen relational editor and a QT-select function (an extension of the select

operation) [Merr84] .

MRDS/FS - MRDS with functional syntax [Van83], used MRDSA on an ll3M PC as a

basis for interactive manipulation of relations.

All these implementations were relational database environments where Aldat was embed

ded in a programming language [Merr77].

Relix, the current implementation of Aldat, provides the user with a fast and easy to use

query language [Norm86]. It provides the most complete and comprehensive implementation

of Aldat in that it includes a picture editor and allows the concurrent editing of relations

[Gunn87], a highly-interactive and context-sensitive relational editor, and can handle recur

sively defined relations [Norm86].

- 4 -

As a primary memory implementation of Aldat, the design of relix is based on the assump

tion that relations will be small enough so that the operands (at most two in any case), of

any operation of the relational algebra can fit into memory.

This assumption places a limit on the size and number of relations; however, the trade off is

a fast response time.

- 5 -

3. Issues in The Design of a Relational Database Editor

An editor is usually a user interface to any computer system environment, and they vary in

complexity depending on its functionality within the environment. There are generally three

classes of editors. These are :

general text editors [Hans71] - for editing text files,

graphics-based editors [Hert84] - graphical user interfaces,

language-based program editors [Teit81] - a syntax-directed programming

environment.

Language-based editors differ from general text and graphics-based editors, in that they

incorporate the syntax of the programming language to help create syntactically correct pro

grams by only permitting the entry of information that maintains a syntactically correct

program. The user creates a new program in a top down fashion, generating program con

structs and filling in the details. In many respects, it is similar to a fill-in-the-blanks style of

editing, where the cursor can be moved to the desired position on the screen and entering

the desired identifier or command [Kove86].

Such an editor may in addition have an incremental parser to further parse each statement

into executable machine instruction as in the MUPE-2 system at McGill University

[Madh84].

A relational database editor belongs to the class of language-based editors [Her84]. However,

instead of being the interface to the environment from which other facilities or operations

can be accessed, it is one of the operations defined in the relational database environment. A

user may therefore bypass the relational editor, unless there is the need to use it.

The edit operation provides changes to the environment for either creating a new relation or

re-designing (making changes to the attributes of a domain) an existing relation interac

tively.

- 6-

m the design and implementation of redit, certain techniques were applied to improve the

quality of the software and reduce maintenance and enhancement costs [Somm82]. These

include basing the entire design on prototyping, which involves designing and testing the

software incrementally as they are approved by the user.

This provides two advantages :

1. The design flaws were corrected and the implementation became simpler as more

insight was gained into the functionality of the main parts of the editor.

2. The frequent interaction with the user ensured the software will meet the user's

requirements when finally delivered.

m order to make the editor compatible with future enhancements and the frequent updates

to relix during its design and implementation, a thorough analysis was made at the system,

module, and code levels. At the system level, the need to design a consistent program struc-

ture independent of who applies it eliminated the need to for "quick and dirty" solutions

which could lead to inconsistencies and finally to "quick fixes". A connection was esta-

blished between the modules quite early in the design stage, in order to limit the degree of

cohesion, and also to ensure low coupling between modules [Berg81], [Somm82].

At the module level, modules that are an integral part of others, shared common data with

others; and the types of association (cohesion) among component elements within a module

were identified. To limit coupling among the modules, hierarchical modularity (pure tree

structures} was used in the structural design. This makes data abstraction, testing, and

general program modification easier and simpler.

Extensive use was made of functions for data abstraction. A general dynamic data structure

was designed for efficient use of memory, and was made sufficiently flexible enough for

future extension to a more complex data structure.

mitial experiences in the design and implementation editors was gained in the design and

implementation of SPED- a Structured Pascal EDitor [McGr85] for a Software Engineering

- 7 -

course (CS 308-762A), and DIRS- a Deductive Information Retrieval System [Wils86J for a

course in Artificial Intelligence Methodologies and Programming(CS 308-763B).

0
- 8-

0
4. Analysis and Design

4.1 Software Requirements Document

The relational editor is to provide a highly interactive and context-sensitive user interface to

relix. The following are the basic functions of the editor :

1. To provide a mechanism for allowing the application programmer/user to view a

relation algebraically as a set of tuples, or a relation tuple-at-a-time.

n. To provide a consistent set of interactive commands to the user.

m. To provide a command language to enable the user to perform the following opera

tions :

direct/sequential access of relations,

creation of relations,

insertion of tuples,

deletion of tuples, and

valid changes to tuples.

iv. To provide a mechanism for checking that

domain values have the correct form;

search keys and functional dependencies of the relation are not violated;

integrity constraints on the relation are not violated.

- 9-

4.1.2 Design Goals

0 In other to meet the software requirements specified in section 4.1, the following were esta-

blished :

1. To make the editor highly interactive and easy to use, single key stroke commands

shall be defined.

2. To implement context-sensitivity, functional areas shall be identified; and valid

commands shall be defined for each function area.

3. For each major functional area, there will be a corresponding mode or submode in

order to reduce the complexity of the design of the entire system.

4. Functions for data validation will be made general enough to be used by any func-

tional area. This will ensure consistency in operations and also make it easier for

data validation on attributes of the relation.

5. The User interface is to be organized in such a way that valid commands are :

displayed in a command window,

consistent within the editor, the database environment and Unix environ-

ment,

meaningful with regards to the function they perform.

In addition, screen windows will be designed so as to enable a user to distinguish between

the main text (actual domain values), domain names, commands within each context, and
. ..._,__

error and informatory messages. Importan~por~ items will be highlighted on the ___ _)
screen.

0
- 10-

4.1.3 Constraints

The design constraints include :

1. The C programming language is being used for the ongoing development of

relix. In addition, most of the implementation already done relie heavily on the

Unix operating system and utilities. To make the editor compatible with the

ongoing development and its future enhancements, the C programming

language and Unix system utilities shall be used for the implementation of

red it.

ii. The data structures to be used in the manipulation of tuples in redit has to be

compatible with what has already been implemented for relix. Therefore to

ensure compatibility, consistency and easy modification, certain functions have

been imported from relix.

iii. The implementation is to be based on v2200+ and vt100+ terminals available

at McGill university; however, it will be portable enough to operate on all ter-

minals the can be connected to Unix operating system.

0
- 11-

c

0

4.1.4 Processing

The editor will provide facilities for :

- creation, change and deletion of tuples in a relation,

- redesigning of an existing relation,

- access to all tuples in the relation either sequentially or directly,

tuple-at-a-time.

The editor will operate on the following units :

Tuple - a record occurrence of a relation,

Search key - a minimal subset of the attributes of a relation that can be used

to identify each tuple.

Template/Form - a structure for manipulating tuples. It will be made up of the

relation name, domain name, and other relevant information that will be used

to display the tuple on the screen.

- 12-

4.1.3.1 Relation

A database is simply a collection of relations. Suppose SCHOOL IS a database with

OOURSE_420 as a relation.

Figure 4.1 shows sample data for OOURSE_420.

NAME STUID SEC ASSIGN! ASSIGN2 MID_TERM FIN AVG_MARKS GRADE

a.muesiwa, araba 8506273 2 8.5 9.0 18 48 90.1 A

berard, paulette 8314201 3 9.2 8.4 22 40 79.6 B

brady, vivian 8230267 1 4.4 6.8 16 44 71.2 B

christos, marilou 8215291 2 5.2 7.6 22 38 72.8 B

giroux, aline 8314626 1 8.0 6.4 24 46 84.4 B

halzeh, araba 8192214 1 7.2 8.0 18 42 75.2 B

hart, heather 8317112 1 4.8 4.4 16 25 50.2 D

jones, raymond 8215174 2 5.2 6.8 14 30 56.0 c
king, tarn 8328521 3 6.8 8.8 24 36 75.6 B

lamontagne, paul 1913295 2 8.0 8.0 22 43 81.0 B

rivet, maurice 8214512 3 6.4 8.4 18 41 73.8 B

Figure 4.1 - an instance of an m-ary relation.

The form shown in figure 4.1 is an instance of an m-ary relation satisfying the following

properties :

i. All rows are distinct.

ii. The ordering of the rows is immaterial.

111. Each column is labelled making the ordering of columns insignificant.

1v. The value in each row under a given column is simple. For example, it does not

have components such as (amuesiwa, araba; 7913295; 8.8; 0) nor multiple

values such as (8214512; 3).

The rows in figure 4.1 are called tuples or the "n-tuples" of the instance of a relation. An

instance of a relation is therefore an abstraction of which figure 4.1 is only a representa-

tion.

0
The column headings (NAME, STUID, SEC, etc.) are the domains in the relation, and the

- 13-

0

0

element in each domain is an attribute. A domain may thus have several or no attributes

associated with it in different relations or in one relation.

A relation with the characteristics described above is called a normalized relation or a

relation of the first normal form. A relational database is one which is made up of such

relations. For a full treatment of relational database concepts refer to [Merr84].

- 14-

4.1.3.2 Template/Form Design

c A template/form is a representation for the display of relations on the screen. The tern-

plate has the same name as the relation and is created in a database called TEMPLATE.

The TEMPLATE database is created as a sub-directory for each database.To make a

template accessible to the database environment, it is stored as a relation.

It is possible to have more than one template for the same relation. A template therefore

has a name and a sequence number. In addition, for each domain in the relation, the

name, the maximum possible length, and the row and column coordinates for displaying

the domain are stored as attributes of the template relation.

Figure 4.2a is the template relation COURSE_420, the default template for

COURSE_420.

The name "temp" in this instance was supplied by the user. Figure 5.3(ii) shows how the

template looks on the screen.

TNAME TDOM_NAME TNUM TLENGTH TROW TCOL

temp NAME 01 26 00 00
temp STUID 01 07 01 00
temp SEC 01 02 02 00
temp ASSIGN I 01 13 03 00
temp ASSIGN2 01 13 04 00
temp MID_TERM 01 11 05 00
temp FIN 01 11 06 00
temp AVG_MARKS 01 13 (17 00

temp GRADE 01 02 08 00

Figure 4.2a- template relation COURSE_420, a default template for COURSE_420.

A template may be manipulated to suit the user's needs. A separate functional area is

created to allow the default template to be re-designed (to be moved to any position on

the screen).

- 15-

0

0

5. Implementation

5.1 Data Structures

A template/form is created for each relation, and is made up of the following data :

tname - template name (supplied by the user- default is relation name).

tdom_name - domain name in relation.

tnum -template sequence number.

tlength - length of a domain.

trow - row coordinate for displaying domain name and value.

tcol - column coordinate for displaying a domain name and value.

A simple linked list is used for storing a template for the session. This is to allow for easy

manipulation, and also to ensure efficient use of memory by the general dynamic nature of

linked lists. It also makes it easy for future generalization of the structure to form other

complex combinations of data representation.

In this implementation, a linked list is basically an ordered sequence of elements (nodes).

Such a list has a head (beginning), and a tail (end). Since lists are generally dynamic in

nature (that is the number of nodes cannot be predicted before run-time), pointers are used

instead of arrays to achieve efficient and reliable implementation. To allow for future

modifications or reusability, a general list is designed in which each node of a list can con

tain several pieces of data. A structure of type TEMPLATE_REL corresponds to the data

to be stored at each node.

TEMPLATE_REL contains the actual data (tname, tdom_name, tnum, tlength, trow, tcol)

in the list structure and is illustrated in 5.1a. TEMPLATE_REL can thus be modified by

either adding or deleting some of the data in the structure.

To make the structure more general, another type TNODE has been defined. This structure

is made up of a pair of pointers.

- 16-

The first points to the data associated with the node (TEMPLATE_REL), and the second

gives the address where the next node can be found. Combining both TNODE and

TElviPLATE_REL leads to the linked-list structure in figure 5.1b.

TEMPLATE_REL

tname

tdom_
name

tnurn

tlength

trow

teal

Figure 5.1a- illustration for type structure TE:NIPLATE_REL.

Finally, a list head which acts as an interface between the list and the functions that mani-

pulate it is defined as a separate structure, and contains only the information required. This

eliminates waste of memory space and also allows the addition of an extra information

about the list; such as the current number of elements in the list and a pointer to the last

element of the list. A structure type T_HEAD is defined and corresponds to the data to be

stored in the header.

The type T_HEAD is illustrated in figure 5.1c.

The entire structure for representing a template is as shown in figure 5.1d.

- 17-

TNODE TNODE T~ODE

c - tin ~ex I tne..xt - tinfex tnext - tin,iex

~ 111 I!J

tname tname tname

tdom..... tdom_ tdom_
name name name

tnum tnum tnum

tlength tlength tlength

trow trow trow

tcol tcol teal

Figure 5.1b- illustration for type structure TNODE.

T_LEAD

last f"irst

Figure .).le -illustration for type structt:re T_HEAJ).

Functions for implementing special operations on the list have been implemented.

c
These include functions for creation of new lists (list head, nodes, and data), insertion into

- 18-

the list, appending into the end of the list, and deletion of nodes in the list.

T_HE.-\D TNODE T~ tpDE

I last I length I first I , tinfex I tnext I
> ... tinfex I NULL I

t 11

tname tname

tdom_ tdom_
name name

tnum tnum

tlength tlength

trow trow

tcol tcol
I

Figure S.ld illustrating the representation of a template in memory.

- 19-

5.2 Systems Design Diagram

The entire system was organized as a hierarchy of modules. This is to help reduce the com-

plexity of the entire system; and also to maintain hierarchical modularity and thus low eau-

pling among the program modules. Such a. design ensures reusability of program modules

and consistency in the general system structure.

I

1nit_
_pos

cur
case_1_
process_
ing

red it

case_2_ cese_3_
proces_ proces_
sing ing

figure 5.2a - structure of redit

- 20-

edit_
session·

The main module (re.dit) interfaces with other modules in each function area as shown in

figure 5.2a. It calls init_cur_po.s to initialize terminal characteristics, window structures, and

cursor variables. Case_l_proces.sing, case_2_processing, and case_9_processing verifies the

list of arguments supplied at the invocation of the editor, and sets the appropriate flags to

enable the system to select the most appropriate mode as follows :

Name Mode Description

case_l_proce.ssing(} process both relation and domain list are given.

case_2_processing(} process/design only a relD.tion is given.

case_9_processing() design only a domain list is given.

The system automatically switches to design mode if no template e.'-:its for the relation.

Control is then passed to edit_session which merely switches the user to the relevant mode

based on the various flags that has been set. Its structure is as shown in figure 5.2b.

Process
Mode

edit_session

Figure 5.2b- structure of edit_session

- 21 -

Design
Mode

The system switches to either process_mode or design_mode based on the flags that have

been set as explained above. The session remains in a given mode until the user switches

mode or decides to quit the editor. Edit_session therefore only controls the switching

between the two top level modes, ensuring that the appropriate fl.ags have been set; it also

transfers control to the main module when the user decides to quit the editor.

Process_mode controls all low level processing of a relation. At the top level it only handles

micro changes or commands. Changes involving tuples such as displaying next and previous

tuples, deletion of tuples, and cursor movement on the screen are handled directly.

At the low level, macro changes are handled by a submode. Insertions, searching and

changes to a domain are handled by submodes. These submodes handle processing of

specific domains, and implement a specific function as a module. Figures 5.2c(i) and 5.2c(ii)

depict the str:rcture of these modules.

Chenga
Suo
Mcd::::

Process Mode

Find
Sub- Mode

Insert
Sub
Mode

Mecro commands
•'

Design
Mode

/

Figure 5.2c(i) - structure of process_mode

~icro

COr:lm

ends

The Design_mode is responsible for manipulating templates. Its design is similar to Process

Mode, and has Move and List submodes for implementing macro changes on the template.

All other changes are handled directly at the top. This structure is sho,vn in figure 5.2c(ii).

- 23-

List
Sutl-Made

Design Mode

M aye
Sutl-Mode

Micra
commands

Figure 5.2c(ii)- structure of design_mode

0

5.3 User Interface

The editor has been designed for use on any standard terminal (particularly the v2200+ and

vt100+ terminals available at McGill), that are compatible with Unix terminal handling

protocols. Most of these terminals emulate standard screen size of 24 rows and 80 columns

of display.

To help the user differentiate between error messages, valid commands and the main text,

windowing facilities have been implemented using curses (a package of C language library

routines).

The use of curses allows the system to do

- screen updating

- screen updating with optimization, and

- cursor motion optimization.

To update the screen optimally, the initial and final window characteristics are made global

for accessibility. The screen is automatically refreshed to make it look neat each time a user

enters a valid command or character (in the case of insertions). In addition the screen is

redrawn automatically if there is a drastic change in the display. However, the user can

redraw the screen whenever desired. The cursor motion has been optimized by using relative

addressing for cursor positioning.

A data structure type called WINDOW in curses has been used to define two window struc

tures. These are relwin and cmdwin. The window structures are based on the beginning row

and column coordinates, number of rows, and number of columns.

Figure 5.3(i) and 5.3(ii) are pictorial representation of the screen in the Design and Process

modes of redit using the relation C0u'RSE_420 defined in figure 4.1.

- 25-

NAME
STUIO
SEC
ASSIGN1
ASSIGN2
MIO_TERM
FIN
AVG..MARKS
GRADE

: IJ. ······
. ~.

- -~ ~~~l~; ~od; j -
<cr>=cursor down d=dt-lete- f=fetch l=lis~
m= move p=process CTRL(r)=redraw Es:c=OU IT

r(O) c(12)

Figure 5.3(i) - pictorial representation of Design mode using the relation COURSE_420.

NAME
STUIO
SEC
ASSIGN1
ASSIGN2
MID_TERM
FIN

:[j-aba, amuesiwa
: 6506277
: 2
: 8.51? 0
: 9.0e 0
: 16
: 46

AVGJ1ARKS : 9 .le- l
GRADE : A

------------ --------------------- j Pr~c-e;s-Mode-)- --
c=change d=de lete f=find i=insert n=nexi p=previous Esc=OU IT
t=template design <cr>=cursor do',•m CTRL(r)=rl?draw r(O) c(12)

Figure 5.3(ii) - pictorial representation of Process mode using the relation

COlJRSE_ 420.

- 26-

6. Limitations and Extensions

The limitations of redit include :

1. The screen design is based on standard screen size (24 rows and 80 columns). How

ever, for different screen sizes, only the portion corresponding to the standard screen

size will be used. This may cause some display problems.

2. The size of the area for displaying a relation and its template is limited to 19 by 79

(rows 0 to 18; columns 0 to 78). This is because it has been assumed that no rela

tion will have more than nineteen (19) domains. The need to have a sufficiently

large command window reasonable enough to display the valid commands in each

context (rows 19 to 24; columns 0 to 78) made this assumption necessary.

3. This implementation does not allow scrolling up or down.

4. Scrolling to the left or right is not not supported.

The extensions to redit in general can be considered as solutions to the limitations stated

above. They are :

1. To extend the window to work properly on a non-standard screen, the size of

"relwin" and "cmdwin" can be modified for the specific terminal by changing the

initial value of rel_NLINES as explained in section 9.2.1.

2. Changing the argument to the function "scrollok" from "FALSE" to "TRUE" in

the module "init_cur_pos" will implement scrolling. This will also provide a solu

tion for the limitation specified in 3. above.

Although Unix does not support scrolling to either the left or right, it could be implemented

by defining windows to contain the extension to the left or right of the screen. In this case a

display of either window can be achieved by defining a command or a function key to be a

call to a function to display the required window.

- 26-

7. Conclusions

The design and implementation of redit has enriched the capability of relix by providing the

edit operation or user interface for editing relations relix relational database environment.

Current software engineering techniques were applied in order to create an editor that can

grow with future enhancements to the environment with little or no modification.

The use of prototyping technique provided the basis for a good design for the data struc

tures, the modules, and the entire system as a whole resulting in a great reduction in its

complexity.

As part of relix, it is consistent with its implementation and interacts properly with the

entire environment. The use of "curses", and the importation of Unix terminal protocols

makes it portable to any environment running Unix, especially on standard screens.

- 27-

0

[Aho83]

8. References

Aho A. V., Hopcroft J. E. and Ullman J. D., "Data Structures and Algo
rithms ", Addison-W esley, 1983.

[Back78] Backus J., "Can Programming be Liberated from the Von Neumann Style? A
Functional and its Algebra of Programs", Oomm AOM 21, 8, August 1978, pp.
613-641.

[Berg81] Bergland G. D., "A Guided tour of Program Design Techniques", Computer,
Oct., 1981, pp. 13-37.

[Oham74] Ohamberlin, D. D. and Boyce, R. F., "SEQUEL :A Structured English Query
Language", SIGMOD, 1974, pp. 249-264.

[Chiu82] Ohiu G., "MRDSA User's Manual" - Technical Report SOOS82.91, (May
1982).

[Codd70]

[Codd71]

[Codd75]

[Codd79]

[Gunn87]

[Hans71]

[Held75]

[Hert84]

[John75]

[Kame80]

[Kove86]

Oodd E. F., "A Relational Model of Data for Large Shared Data Banks",
CAOM, Vol. 3, No. 6, June 1970, pp. 377-387.

Codd E. F., "Relational Completeness of Data Base Sublanguages", in Data
Base Systems (R. Rustin, ed.), pp. 65-98.

Oodd E. F., "Understanding Relations", (AOM) FDT 7:3-4, 1975, pp. 23-28.

Codd E. F., "Extending the Database Model to Capture More Meaning", AOM
TODS-4-4, Dec 1979, pp. 397-434.

Gunnlaugsson, B. L., "Ooncurrency and Sharing for Prolog and a Picture Edi
tor for Relix", McGill University, March 1987.

Hansen W. J., "User Engineering Principles for Interactive Systems", AFIPS,
1971, pp. 523-532.

Held G. D., M. R. Stonebraker, and E. Wong, "INGRES- a Relational Data
base System", Pore. AFIPS NCO 44, Anaheim, May 1975., pp. 409-416.

Herot C. F., "Graphical User Interfaces, Human Factors and Interactive Com
puting Systems", 1984, pp. 83-103.

Johnson S. C. , "Yacc: Yet Another Compiler Compiler", Computing Science
Technical Report No. 332, 1975, Bell Laboratories.

Kamel R. F., "The Information Processing Language Aldat: Design and Imple
mentation", SOOS-80-14, August 1980.

Koved L. and Ben Schniederman, "Embedded Menus : selecting items in con
text", Oommun. AOM 29, 4 (April1986), 312-318.

- 28-

0

0

[Lali86] Laliberte N., "Design and Implementation of a Primary Memory Version of
ALDAT including Recursive Relations", M. Se. Thesis, School of Computer Sci
ence, Mcgill University, August, 1986.

[Madh84] Madhavji N. H., D. Vouliouris, and N. Leoutsarakos, "The Importance of Con
text in an Integrated Programming Environments", Proc. 18th Annual Hawaii
lnt. Conf. of System Sciences, Hawaii, 1985 pp. 81-99.

[Merr76] Merrett T. H., "MRDS: An Algebraic Relational Database System", Canadian
Computer Conference, May 1976, pp. 102-124.

[Merr77] Merrett T. H., "Relations as Programming Language Elements", Information
Processing Letters, Vol. 6, No. 1, Feb. 1977, pp. 29-33.

[Merr81] Merrett T. H. and Zaidi S. H. K., "MRDSP User Manual", SOCS-81-27,
August 1981.

[Merr84] Merrett T. H., Relational Information Systems, Reston Publishing 1984.

[McGr85] McGreggor A., and Wilson R. J. ,"SPED : A Structured Pascal EDitor",
School of Computer Science, Mcgill University, Dec. 1985.

[Somm82] Sommerville I., "Software Engineering", Addison Wesley, (1982).

[Teit8l] Tietelbaum T., and Reps T., "The Cornell Program Synthesizer: A Syntax
directed Programming Environment", Commun. ACM 24, 9(sept. 1981), 563-
573.

[Wils86] Wilson R. J., DIRS - "A Deductive Information Retrieval System, School of
Computer Science", McGill University, 1986.

[Vanr83] Van Rossum T., "Implementation of a Domain Algebra and a Functional Syn
tax", SOCS-83-1.8, August 1983.

- 29-

9 Appendix

- 30-

9.1 User Manual

9.1.1 Invoking Redit

Redit is invoked as follows :

R <-[attribute la8t] redit A;

where R is the resulting relation after the edit operation,

attribute list is any valid relational algebra expression, a partial or a complete attri·

bute list of an existing relation.

A is either an existing relation or a valid relational expression.

The attribute list and A are optional, but at least one of them must be supplied. If A is om-

itted, then the user is prompted to enter at least one tuple before processing is done. In

batch mode, the attribute list must be supplied.

The following are valid syntax for invoking redit.

R<-redit A;

R< -[GRADE, NAME] redit A;

R<-[NAME,STUID,GRADEj redit;

uses the original sortlist (sequence) of the domain list
of A.

the specified domain list is the new sortlist of A.

creates a new relation R with the specified domain
list.
The user is prompted to insert at least one tuple
before processing of tuples can begin.

NAME,STUID, and GRADE are domain list values of relation A.

- 31.

9.1.2 Redit Command Set

Mode Command Explanation

Process c change - for modifying current tuple.
<er> cursor down - moves cursor down by a row.

d delete - deletes current tuple.
f find - searches for a tuple, given one or more attributes.
i insert- appends tuple(s) to a relation.
n next - displays next tuple.
p previous - displays previous tuple.

Esc quit- quits the editor.
CTRL(r) redraw - redraws the screen.

t template design - switches to design mode.
Insert Esc abort & previous-level.

c accept & change & continue.
<er> accept & continue.

CTRL(a) accept & previous-leveL
Find Esc previous-leveL

n retrieve next tuple.
p retrieve previous tuple.

Change a append- appends characters(s).
X delete char- deletes a character.
y delete toeoln - deletes a domain value.
i insert chars - inserts characters.

Esc previous-level - switches to previous leveL
r replace chars - replace characters.
u undo domain - undo changes made to a domain value.
u undo tuple - undo changes made to a tuple.
h left - moves cursor to the left by a column.
j down - moves cursor down by a row.
k up - moves cursor up by one column.
l right - moves cursor to the right by a column.

Design <er> cursor down - moves cursor down by a row.
d delete - deletes a template.
f fetch - fetches a template to be used for the session.
l list- display template.

m move - for modifying current template.
p process - switches to process mode.

CTRL{r) redraw - redraws the screen.
8 save - save current template.

Esc quit - quits the editor.
Move h left- moves current structure left by a cloumn.

j down- moves current structure down by a row.
k up - moves current structure up by a row.
l right - moves current structure to the right by a column.

CTRL{r) redraw - redraws the screen.
Esc previous level.

List n next - displays next template.
p previous - displays previous template.

Esc previous - level

0
- 32-

c
9.1.3 General Description of Redit Modes

Design and Process are the two main modes in which redit operates.

The Process mode sets the environment for processing tuples in a given relation; while the

Design mode is for processing templates to be used in displaying tuples for the session. In

all the modes the enter key (<er>) provides a cyclic cursor movement by row. The system

exits from either mode and returns to Relix when the Ese key is pressed.

A list of commands valid in each context are displayed in a command window, and a user

need not memorize them. When Redit is invoked, i.e.,

R <-[attribute list] redit A;

the system enters either the Process or Design mode depending on conditions discussed

below.

9.1.3.1 Process Mode

This screen is dispalyed if A is specified and it has at least one tuple. A corresponding tem

plate file (same name as A) must also exist; and contain at least one valid template for

displaying A.

To modify tuples, the Process mode provides Change (c), and Insert (t) submodes. The Find

(IJ submode allows specific tuples to be retrieved from the relation. The system requests

confirmation before the current tuple is deleted (d).

While in this mode if a different template is preferred, one can switch to Design mode (t);

and either redesign the current one or retrieve a new one.

Additional set of commands are provided for displaying the next (n) and previous (p) tuples;

and redrawing (GTRL{r}) the screen if it appears messy.

- 33-

0

c

9.1.3.1.1 Insert Submode

In the insert submode, a new tuple can be appended to A by filling in the blank template

with the desired value for each domain. The domain type and length are specified by the

system, and also checks for valid characters for the domain. A tuple is rejected if it is a

duplicate.

To abort and return to the previous level, Esc can be entered at anytime during the inser

tion. The backspace key can be used to correct typing mistakes within the same domain. If

any previously filled domain is to be corrected, Esc can be entered and the whole operation

can be restarted; or c can be used to switch to Change submode where the current tuple can

be edited.

However c can be used only after the entire template has been filled.

The enter key (<er>) can be used to continue the insertion of tuples. CTRL(a) will accept

the current tuple and return to the previous level.

9.1.3.1.2 Find Submode

Specific tuples can be retrieved by specifying a unique domain value (the key) or one or

more domain values of the tuple. The next (n) and previous (p) commands are useful when

any other domain value(s) are entered and there are more than one tuple with the same

value(s). To return to the previous level Esc has to be entered.

9.1.3.1.3 Change Submode

This mode allows the current tuple to be modified. The main commands are append (a),

delete character (x), delete to-end-of-line (y), insert (~) and replace (r) characters. The cursor

must be moved to the desired position before typing any of these commands. The cursor

keys are up (k), down (i), left (h) and right(/).

To undo a change of a domain value use (u). U will undo all changes made to the current

tuple.

- 34-

0

g.1.3.2 Design Mode

The system enters the Design mode if A has no previous template or is omitted. The user is

provided with a default template which can be modified for the session by going to the

Move mode (m). Once the desired template has been created, the user can exit the Move

mode (Esc), save the template (s) if he so wishes and proceed to the Process mode (p).

The delete (d) command can be used to delete any template, provided it exits and the name

is specified correctly. If the current or session template is deleted, a default template will be

provided automatically. To get information about templates, use list {l).

A previously saved template can be retrieved and made the session template by using the

fetch (/) command.

The user is prompted to insert at least one tuple if there are no tuples to display before the

system switches to Process mode.

g.1.8.2.1 Move Submode

In this mode a template can be redesigned by using the cursor keys up (k), down (j), left (h)

and right (Q; to physically move each template element to the desired position on the

screen.

All operations involving the cursor keys are destructive, except the enter key (<er>) which

provides a cyclic cursor movement by row. CTRL(r} is provided for redrawing the screen.

D.1.3.2.2 List Submode

This is the basic command in the Design mode. It provides the means for finding out about

template(s) available. The next (n) and previous (p) commands are useful if there are more

than one template to display.

- 35-

9.2 Systems/ Programmers Manual

9.2.1 Window Structures

Two windows have been defined as follows :

name from(row, col) to(row, col) no. of rows no. of cols.

relwin 0,0 0,0 19 80

cmdwin 19,0 0,24 5 80

Relw£n is used for displaying information about tuples and templates. In the Design mode,

it is used to display template structures only; while the Process mode has both the session

template and the current tuple displayed. The last row (row 18) is reserved for system mes-

sages pertaining to this window.

Gmdw£n is provided for displaying the list of valid commands within the context of the type

of processing being done. Run time information is displayed on row 24 (i.e. row 5 of

cmdwin); and error messages are displayed on row 19 (i.e. row 0 of cmdwin).

The window definitions are based on curses routines available at any standard Unix

environment. The newwin routine in curses was used to define the windows.

Thus with the declarations

WINDOW *re/win, *cmdwin;
int rel_row_begin, col_begin, cmd_row_begin, rel_NLINES, NGOLS,

cmd_NLINES,

and initializations

NGOLS 80;
rel_row_begin
rei_NLINES
cmd_NLINES

col_begin 0;
cmd_row_begin = 19;

5·
'

the definitions for relwin and cmdwin are as given below.

re/win = newwin(rel_NL!NES, NGOLS, rel_row_begin, col_begin};
cmdwin = newwin{cmd_NLINES, NGOLS, cmd_row_begin, col_begin};

- 36-

0

9.2.2 Template Structures

A template is represented as a relation with the following attributes :

tname - template name (supplied by the user default is relation name).

tdom_name - domain name in relation.

tnum -template sequence number.

tlength - length of a domain.

trow - row coordinate for displaying domain name and value.

tcol - column cocordinates for displaying a domain name and value.

When Redit is invoked, the template information is stored as a linked list so as to ensure

efficient usage of memory. The template information is either read from a file (if a template

already exists) , or from the relation information stored in "rei-table" set up by Relix. Only

one template is read into memory during processing.

The diagram of a link list below illustrates the representation of a template.

I sess-Head

I
last !length first - tin ex tnext ·--

I

tname

tdom_
name

tnum

tlength

I trow

tcol

- 37-

tname

tdom_
name

tnum

tlength

trow

tcol

0

The list head is stored in a global variable sess_Head. Another global variable T ADDR give

the address of the selected template for the session. Sess_Head and TADDR have different

addresses when the list command is executed in the Design mode. The declaration for the

template list is as follows :

struct Lrelation
{

char tnamef MAXTNAME);
char tdom_name[MAXTDOM);
int tnum;
int tlength;
int trow;
int tcol;

} ;

typedef struct t_relation TEMPLATE_REL;

struct Lnodes
{

TEMPLATE....REL *tindex;
struct t_nodes *tnext;

} ;

typedef struct t_nodes TNODE;

struct t_header
{

int length;
TNODE *first, *last;

} ;

typedef struct Lheader T_HEAD;

in addition to these declarations, if we let

TNODE *tptr;

tptr=sess_Head- >first;

then;

tptr accesses the first template relation structure.

tptr-> tindex-> tname accesses the value in name

tptr- > tindex- > tdom_name accesses the value in dom_name

tptr- > tnext accesses the next template relation value.

- 38-

0

9.2.3 Module description

The module description below shows the general logic for the design of various modes of

REDIT, and the interaction between them. Each module shows a list of functions that

implement it. Some fuctions are written general enough to be used by more than one

module. Although standard Unix functions and detailed description of each function has

been omitted, they can be obtained by inspecting the source code.

The various modules are follows :

Name

redit()
- init_cur_pos()
- case_Lprocessing()
- case_2_processing()
- case_3_processing()
- edit_session{)

append...template_list()
- initialize_template_node

binary _search()
- icreUine() *

case_l_processing()
- initialize_redit_env(}

case_2_processing()
- initialize_redit_env{)

case_3_processing{)
- in*'tialize_rediUmv()

ereate_template_list()
- T _MALLOO(}

change_ win._ context()
- icreUine() *
- bound_win{)
- display_tuple()
- delete_toeoln{)
- ring_bell(}
- error_msg(}

* standard functions defined in RELIX environment.

Type

int
void
int
int
int
int

int
TNODE

int
char

int
TNODE

int
TNODE

int
TNODE

T__HEAD
int

int
char
void
void
void
void
void

- 39-

Description

main control module.
initialize windows and cursor coordinates.
both relation and domain list supplied.
only a relation is given.
only a domain list is given.
control module for various modes.

append TEMPLATE_REL to list.
memory allocation & assignment.

binary search for specified domain values.
fetches a tuple from memory.

valid relation and domain list are given.
set up redit structures.

only a valid relation list is given.
set up redit structures.

only a valid domain list is given.
set up redit structures.

create template head.
allocate memory for T__HEAD.

sets up commands for Change Submode.
fetches a tuple from memory.
redraw window boundary.
display a tuple.
delete current domain.
beep signal.
prompts user with error message.

delete_named_template() void delete specified template.
• find_template() TNODE display specified template.
- mark_deleted{) void mark template for deletion.
- display_default_template() void display a default template.
• ring_bell{) void beep signal.

delete_template_node() TEMPLATE_REL deletes a template node.
initialize.....template_node TNODE allocation and memory assgnment.
- T_MALLLOG{) int allocate memory for TNODE.

delete_tuple() int deletes current tuple.
• bound_win() void redraw window boundary.
• icreUine(}* char fetches a tuple from memory.
• 8orL8e8s_tuple8(} void sorts session tuples.
• ring_bell(} void beep signal.
- error_m8g(} void prompts user with error message.

design_ win_ context() int sets up commands for Design Mode.
- di8play_template(} int display a previously saved template.
• di8play_default_template() void display a default template.
• bound_win() void redraw window boundary.
• move_emplate() void modify template structure.
- save_template(j void save current template.
• delete_named_template(} void delete specified template.
- fetch_template(} void retrieved specified template.
• rel_create() int create a new relation.
- insert_win() void initialize Insert Submode.
- insert_win_context() int sets up commands for Insert Mode.
• redit_abort_msg(} void prompts user if there is no memory.
- list_template(} void display all templates available.
• row_col_pos(} void initialize cursor position in window.
• error_msg(} void prompts user with error message.
• ring_bell(} void beep signal.

display _tuple() void display a tuple.
• get_shrinldist{)* int fetches the absolute length of domain.
- icreUine{) * char fetches a tuple from memory.
• inpuLchars(} void set up for modifying a domain value.

dt_boolean() char accepts a valid boolean domain value.
- dt_msg(} void prints valid commands in the context.
• cur_pos(} void display cursor position in relwin window.
- bound_win() void redraw window boundary.
- ring_bell{) void beep signal.
- error_msg(} void prompts user with error message.

dt_integer() char accepts a valid integer domain value.
• dt_msg(} void prints valid commands in the context.
- cur_pos(} void display cursor position in relwin window.
• bound_win() void redraw window boundary.
• FORMINT(}* void format integer.
• ring_bell(} void beep signaL
- error_msg(J void prompts user with error message.

0
- 40-

dt_real() char accepts a valid real domain value.
- dt_msg{) void prints valid commands in the context.
- cur_pos(} void display cursor position in relwin window.

0 - bound_win(} void redraw window boundary.
- FORMREAL{}* void format reaL
- ring_bell{) void beep signaL
- error_msg() void prompts user with error message.

dt_string() char accepts a valid string domain value.
- dt_msg(} void prints valid commands in the context.
- cur_pos() void display cursor position in relwin window.
- bound_win{) void redraw window boundary.
- error_msg() void prompts user with error message.

edit_session() void control module for various modes.
- process_win{) void initialize Process Mode.
- pro cess_template{) void displays template if it exists.
- process_win_context() int sets up commands for Process Mode.
- design_win() void initialize Design Mode.
- process_template(} void displays template if it exists.
- design_win_context(} int sets up commands for Design Mode.

error_msg() void prompts user with error message.
- ring_bell(} void beep signaL

fetclt_template() void retrieved specified template.
- read_template_file(} int read template file if any.
- find_template() TNODE display specified template.
- display_template(} int display a previously saved template.
- display_default_template() void display a default template.
- ring_bell(} void beep signal.

fin<Ltuple() int initialize Find Submode.
- clear_tuple_area() void clears the tuple on the screen.
- tdots_tuple_display(} void display dots instead of tuple.
- dt_boolean(} char accepts a valid boolean domain value.
- dt_integer(} char accepts a valid integer domain value.
- dt_real() char accepts a valid real domain value.
- dt_string(} char accepts a valid string domain value.
- binary_search(} int binary search for specified domain values.
- serial_search(} int serial search for specified domain values.
- di.splay_template{) int display a previously saved template.
- display_default_template(J void display a default template.
- display_tuple{) void display a tuple.
- previous_tuple(} void displays previous tuple if any.
- next_tuple(} void displays next tuple if any.
• ring_bell(} void beep signal.
- process_win() int initialize Process Mode.

get_one_more_page() void allocate a page for insertion.
- get_one_page{)* int get one memory block.
• enqueue_first_used{)* void put memory block in used queue.

get_row _Map() char get characters on the screen.

- 41-

initiali.ze_redit_env() void set up redit structures for session.
- make_sess_rel(} void make temporary relation for the session.
- change-frozen{)* void freeze the session relation.

0 - icrel_get(} * int get memory for the relation.
- change-frozen{)* void unfreeze the session relation.
- icrel_fill(}* void read session relation into memory.
- sort(}* void sort the tuples in the relation.
• icrel_flush{) * void write relation unto temporary relation.
- assign()* void assign relation attributes.
- icreLfree{}* void free memory for relation.
• change-frozen()* void freeze temporary relation.
- icreLget(}* int get memory for temporary relation.
- change-frozen(}* void unfreeze temporary relation.
• icreLfill(}* void read session relation into memory.
- read_template_file(} int read template file if any.
- select_template} TNODE select template for session if any.
- make_default_template() int create a template for relation.

insert_template_list() int insert TEMPLATE__REL to list.
- initialize_template_node TNODE memory allocation & assignment.

insert_ win__ context() int sets up commands for Insert Mode.
- change_sortlist() void allocates memory for sorting tuples.
- clear_tuple_area(} void clears the tuple on the screen.
- tdots_tuple_display() void display dots instead of tuple.
- get_one_more_page{) void allocate a page for insertion.
- dt_boolean{) char accepts a valid boolean domain value.
- dt_integer(} char accepts a valid integer domain value.
- dt_real(} char accepts a valid real domain value.
- dt_string() char accepts a valid string domain value.
- icreUine(}* char fetches a tuple from memory.
- change_win{) void initialize Change Submode.
- display_tuple(} void display a tuple.
- change_win_context(} int set up for Change Submode.
- insert_win(} void initialize Insert Submode.
- ring_bell(} void beep signal.
- sort_sess_tuples(} void sorts session tuples.

list_ template() void display all templates available.
- bound_win{} void redraw window boundary.
- display_template(} int display a previously saved template.
- display_default_template(} void display a default template.
- template_info(} void display template name and number.
- error_msg() void prompts user with error message.
- ring_bell(} void beep signaL

list_template_structure() void list template- for debugging.

make_default_template{) int create a template for relation.
- create_template_list() TJIEAD create template head.
- T_MALLOG(} int allocate memory for TEMPLATE__REL.
- insert_template_list(} int insert TEMPLATE__REL to list.
- append_template_list() int append TEMPLATE__REL to list.

0
- 42-

make_template_file()

mark_ deleted()
- read_template_file()
- write_template_table()

move_ template()
- bound_win(}
- display_template()
- display_default_template{)
- get_blanks{)
- display_element_template{}
- invalid_pos_msg(}
- error_msg()

process_template()
- display_template()
- display_default_template(}

process_ win_ context()
- display_tuple(}
- row_col_pos(}
- cur_pos(}
- bound_win(}
- insert_win{)
- insert_win_context{)
- redit_abort_msg(}
- delete_tuple{)
- find_tuple{)
• change_win{)
- change_win_context()
- sort_sess_tuples{)
- previous_tuple(}
- next_tuple(}
- error_msg(}
- ring_bell(}

read_template_file()
- create_template_list(}
- T_MALLOG{)
- insert_template_list{)
- append_template_list(}

save_ template()
- write_template_table(}
- read_template_file(}

seriaLsearch()
- icreUine(}*

write_template_table()
- int_to_string(J *

0

int

void
int
int

void
void
int
void
int
void
void
void

void
int
void

int
void
void
void
void
void
int
void
void
int
void
int
void
void
void
void
void

int
TNODE
int
int
int

void
int
int

int
char

int
void

- 43-

make default template from a file.

mark template for deletion.
read template file if any.
write template structure.

Move Submode; modify template structure.
redraw window boundary.
display a previously saved template.
display a default template.
get number of consecutive blanks on screen.
display template element.
gives messages about template position.
prompts user with error message.

displays template if it exists.
display a previously saved template.
display a default template.

sets up commands for Process Mode.
display a tuple.
initialize cursor position in window.
display cursor position in relwin window.
redraw window boundary.
initialize Insert Submode.
sets up commands for Insert Mode.
prompts user if there is no memory.
deletes current tuple.
initialize Find Submode.
initialize Change Submode.
sets up commands for Change Submode.
sorts session tuples.
displays previous tuple if any.
displays next tuple if any.
prompts user with error message.
beep signal.

read template file if any.
create template head.
allocate memory for TEMPLATE_REL.
insert TE'MPLATE_.REL to list.
append TE'MPLATE_REL to list.

save current template.
write template structure.
read template file if any.

serial search for specified domain values.
fetches a tuple from memory.

write template structure.
converts integer to string.

0.2.4 Relix - an Implementation of a Relational Database Environment

The implementation of Relix is based on the relational database concept for data

representation. It is interactive, in that it executes a single statement at a time. It is

made up of two main modules; a parser generated by a Unix program called yacc [John

75] performs type checking on the statement and generates an intermediate code, and

an interpreter which executes the intermediate code.

System Overview

The Relix internal representation is made up of a data dictionary and the internal

representation of relations. A database name is a Unix directory name which is the

same as the database name. The name must be unique and less than fourteen bytes. A

database is thus a directory made up of two types of files. The first type is the file asso

ciated with a relation. For example a relation named COURSE-MARKS in a database

SCHOOL corresponds to the file COURSE-MARKS in a directory SCHOOL. Relix does

not recognize any form of abbreviation, and therefore the full name of a database or a

relation must be specified.

The second type is made up of set of files that are used to perform housekeeping work

on the database. These files are : TRACE, DOM, REL, RD, and all files with their

names begginning with an underscore (eg; _NULL). TRACE contains a dump of all

statements the user entered in addition to error messages generated by Relix; and can

be used to provide a trace of a work session.

DOM, REL, and RD contains information used by Relix to maintain a data dictionary

for the database. The information in these files are also stored as a relation. The rela

tion DOM is defined on name, length and type. This relation is actually an extract of

these attributes from DOM_TABLE, where all the information about domains are kept.

All information about relations are kept in REL_TABLE. The relation REL is defined

- 44-

on name, tuple.....size, and ntuples is also an extract of these attributes from

REL_TABLE. RD_ TABLE contains the links between the domains and the relations in

a database. RD is the contents of RD_TABLE, and the extract of the name attribute

from REL_TABLE and domain name from DOM_TABLE. It is thus defined on rela-

tion name, domain name, count, dom_pos and sorLrank. A detailed description of

Relix implementation is given in [Lalib86].

- 45-

0

