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ABSTRACT

Neurotransmitters and their corresponding receptors allow for the transmission of
information between neurons and hence underpin all information processing in the
brain. Creating maps that represent neurotransmitter receptor densities in the brain
is therefore essential for characterizing human brain anatomy and function in both
healthy and diseased states. Neurotransmitter receptor mapping can be accom-
plished at very high spatial resolution (50 µm) using post-mortem imaging with
autoradiography or in vivo at a lower spatial resolution (~2-3 mm) with positron
emission tomography (PET). Creating canonical atlases of neurotransmitter recep-
tor densities in different populations will require large datasets to account for the
variance of receptor densities between individuals within populations. PET is bet-
ter suited for large-scale receptor mapping than autoradiography because it can be
used on living subjects and is relatively less expensive. An important challenge in
using PET for creating brain atlases of neurotransmitter receptor distributions is
that it is not clear at exactly what spatial resolution PET can be used to accurately
quantify receptor densities. We investigated PET spatial resolution in a top-down
approach using real clinical data from patients with ischemic stroke to determine if
PET can detect changes in receptor density in a small (3 mm) region around the
infarct, related to delayed neuronal loss. We then performed a bottom-up investi-
gation of PET resolution by reconstructing 2D autoradiographs into 3D and then
used the reconstructed volume to perform Monte-Carlo PET simulation to create a
highly realistic simulated PET image. In pursuing this objective we developed the
first open-source PET image processing pipeline that includes all the steps necessary
to perform high-resolution receptor mapping with PET.
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ABRÉGÉ

Les neurotransmetteurs et leurs récepteurs correspondent permettent la trans-
mission d’information entre neurones et ainsi sous-tend tout traitement d’information
dans le cerveau. La création d’atlas qui représentent la distribution des densités de
récepteurs de neurotransmetteurs est donc essentiel pour caractériser l’anatomie et
la fonction des cerveaux en états sains et malades. La cartographie des récepteurs
de neurotransmetteurs peut-être accompli a une très haute résolution (50 µm) avec
l’imagerie post-mortem autoradiographique ou in vivo a une plus faible résolution
spatiale (~2-3 mm) avec la tomographie d’émissions de positrons (TEP). La création
d’atlas canonique des densités des récepteurs de neurotransmetteurs dans différentes
populations requiert des grands ensembles de données pour refléter la variance des
densités des récepteurs entre individu dans différentes populations. La TEP convient
mieux pour la cartographie de récepteurs à grande échelle que l’autoradiographie
parce que la TEP peut être utilisé dans des sujets vivent et est relativement moins
cher. Un défis importants dans l’utilisation de la TEP pour la création d’atlas de
distribution de récepteurs de neurotransmetteurs c’est qu’il n’est pas claire a exacte-
ment quelle résolution spatiale la TEP peut être utilisé pour précisément mesurer la
densité des récepteurs. Nous avons utilisé deux approche pour étudier la résolution
spatiale de la TEP. La première approche était d’utiliser des images TEP par venants
de patients avec des accidents vasculaires cérébrales ischémique pour déterminer si
la TEP pouvait détecter des changements dans la densité des récepteurs dans une
petite regions (3 mm) autours d’un infarctus ischémique, reliez aux perds des neu-
rones. Nous avons ensuite poursuivi une étude pour créer des images TEP simuler
réaliste. Pour créer ces images réaliste nous avons reconstruit des images 2D autora-
diographique en volume 3D et utiliser ce volume pour effectuer des simulations TEP
Monte-Carlo. Dans la poursuite de ces objectifs nous avons développé le premier
logiciel "open-source" pour automatiser tout le traitement d’image TEP nécessaire
pour créer des images à haute résolution de récepteurs de neurotransmetteurs.
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CHAPTER 1
Introduction

1.1 Neurotransmitter receptor mapping

Neurotransmitters and their corresponding receptors mediate the transmission

of electrical signals across the synaptic gap between neurons and hence underpin the

brain’s neural information processing capabilities. Quantitative mapping of neuro-

transmitter receptor densities in healthy and pathologic brains is therefore of interest

for understanding normal and pathologic brain function and behaviour. Anatomic

[1–4] and cytoarchitectonic [5–9] atlases of the human brain have been widely used

for many decades, but similar atlases characterizing neurotransmitter receptor dis-

tribution have only just been generated and only for one neurotransmitter system

[10]. We here investigate the possibility of generating high resolution quantitative

atlases of neurotransmitter receptor distribution based on data acquired with in vivo

PET.

There are two primary methods for quantifying neurotransmitter receptor den-

sities in the brain: receptor autoradiography and positron emission tomography

(PET). Both methods use a radioligand–also called a radiotracer–that is composed

of a radioactive isotope attached to a biological ligand to image the distribution of

the receptor to which the ligand binds in biological tissue. Receptor autoradiography

can be conducted by allowing the radioligand to bind in the living animal or in vitro
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[11]. With ex vivo autoradiography the radioligand is injected in a living animal

after which it is sacrificed and the brain is sectioned. In vitro autoradiography is

performed on slices of dead brain tissue incubated in a solution containing the radi-

oligand. While ex vivo autoradiography can only be performed in animals, in vitro

methods can also be applied to post-mortem human brain tissue.

PET is the only imaging modality that is currently available for creating high-

resolution receptor atlases because it can be used in vivo to acquire large, representa-

tive data sets from target populations. However, creating receptor atlases with PET

is limited by relatively poor spatial resolution of a few millimeters, depending upon

scanner type, radioisotope, length of scan, patient motion etc. The so-called partial

volume effect (PVE) refers to the contamination of PET signal in the neurantomical

structure of interest from signal arising in adjacent structures. A variety of software

“partial volume correction” (PVC) approaches, discussed later, have been employed

to correct for this source of bias. As a consequence of these resolution-related fac-

tors, it is not clear up to what spatial resolution PET can be used to accurately map

receptor distributions in the brain. Furthermore, a secondary limitation of using

PET to produce receptor atlases is that it requires complex image analysis that is

susceptible to subtle processing errors that can bias results.

The goal of this project has been to address these two limitations by developing a

strategy to determine the maximum possible spatial resolution that can be obtained

with PET and by facilitating the creation of standardized high-resolution receptor

maps using PET. This investigation includes 1. development of a software package for
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performing in vivo receptor mapping with PET, 2. a practical investigation into PET

spatial resolution with real clinical data and 3. a simulation experiment based on an

atlas of neurotransmitter receptor distribution acquired from gold-standard human

post-mortem data. While these 3 branches of investigation are methodologically

distinct, all three are necessary for creating in vivo receptor atlases at the maximum

spatial resolution possible with PET. Together they provide researchers with the

tools necessary to create novel receptor atlases and validate their spatial accuracy.

1.2 Imaging neurotransmitter receptors in the living human brain

PET is the primary non-invasive imaging modality for quantitative in vivo re-

ceptor mapping of the brain. The current generation PET scanners–such as the CTI-

Siemens ECAT HRRT–have a spatial resolution of up to 2.4mm full-width at half

maximum (FWHM) [12] and new scanners in development are designed to achieve

1.2mm [13] FWHM resolution. While the spatial resolution of PET is clearly not as

high as with autoradiography, PET is the only method to study large, representa-

tive human population samples at many different stages in normal aging or disease

progression. Therefore, the characterization of the spatial distribution of neurotrans-

mitter receptors will have to depend primarily on PET.

The present work is concerned with the effective spatial resolution of PET and

all references to PET spatial resolution should be taken to reflect both the intrin-

sic resolution of the PET system and the properties of the object being imaged.

For example, the CTI-Siemens ECAT HRRT scanner has a maximum resolution of

~2.4mm FWHM at the center of the field of view (FOV) when measured using a
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uniform cylindrical radioactivity source of 1mm diameter [12]. However, the cu-

mulative impact of partial-volume effects (PVE), patient motion, and PET image

reconstruction may degrade the effective spatial scale at which regions in the brain

can be accurately quantified[14] and hence the spatial resolution obtainable with the

CTI-Siemens ECAT HRRT may in practice be worse than 2.4mm. Alavi et al [15]

echo this concern in the context of clinical PET, because clinicians may underesti-

mate the risk of PVE by assuming that the scanner resolution measured in phantom

studies accurately reflects the spatial resolution of PET images acquired from real

patients in the clinic.

Algorithms for partial-volume correction (PVC) can potentially enhance PET

spatial resolution and the quantitative accuracy of measured tissue radioactivity

concentrations [16–18]. However, validation of PVC algorithms has depended on

phantom PET studies or PET simulation studies that do not attempt to model bi-

ologically accurate receptor distributions. The lack of complete validation of PVC

algorithms has practical consequences. For example, in their atlases for several sero-

tonin receptor subtypes, Beliveau et al [10] opted not to use PVC even though it

could in theory produce a higher resolution atlas. They were concerned that differ-

ent PVC algorithms produce different results and hence that PVC may not be fully

reliable [19].

It is therefore of interest to know to what extent PET, with and without PVC,

can be used to measure neurotransmitter receptor densities from small anatomic

regions such as the cortical grey matter layers, small GM structures such as the

amygdala, or even smaller brain stem nuclei. For example, the cortical grey matter
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in the brain is 3-7mm thick and hence is just within the maximum resolution of the

CTI-Siemens ECAT HRRT PET scanner. A more thorough quantification of both

native PET resolution and PV-corrected PET images would allow for better atlases

of neurotransmitter receptor distribution and allow for a more accurate use of PET

imaging more generally. Although the focus of this work is on research applications

of PET, it is also important to note that PVE can have a significant impact on

clinical PET. PVE can make it more difficult to identify cancerous tissue and can

thereby lead to misdiagnosis [20].

1.3 Investigating PET resolution with phantom scans and simulation

Phantom PET studies are typically used to evaluate PET resolution and can also

be used to validate PVC algorithms [16]. In phantom studies a glass object containing

a solution with a known radioactivity concentration is scanned and the ensuing PET

image is compared to the known source radioactivity concentration. While phantoms

that model the human brain are available, such as the Hoffman phantom [21], the

radioactivity distributions in these phantoms are not representative of the actual

receptor distributions in the brain.

An alternative approach is to use digital Monte-Carlo PET simulations [17,

18]. Here a source radioactivity distribution is defined digitally and the physics in-

volved in PET image acquisition are simulated using stochastic Monte-Carlo models.

This allows for much more complex radioactivity source distributions that can more

closely reflect actual receptor distributions. Whereas previous Monte-Carlo PET

simulation studies [22] defined receptor distributions using large regions of interest
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(ROI) with uniform receptor densities, we sought to perform PET simulation using

a gold-standard high resolution map of actual receptor distributions in the human

brain, summarized below and detailed in Chapter 6.

1.4 Probing the limits of PET: the need for a gold standard

Autoradiography provides the best available quantitative map of neurotrans-

mitter receptor distributions. The advantage of autoradiography is its high spatial

resolution of approximately 50 µm. However, autoradiography is performed on 2D

sections that are sliced from full 3D brain volumes and thus only give a series of 2D

representations of the brain. Autoradiography for a full brain is expensive and time

consuming because of the manual labour involved.

Autoradiography provides the ideal ground-truth for creating PET simulations

because both modalities can be used to measure the same receptor distribution,

only at a much higher spatial resolution with autoradiography. To perform 3D PET

simulation with autoradiography, the 2D sections must be reconstructed into 3D.

Once reconstructed the autoradiographs can serve as an input into a PET simulator

to produce realistic simulated PET images based on actual neurotransmitter receptor

distributions. It is then possible to characterize the quantitative performance of PET

using 3D autoradiography as a gold-standard map of real human neurotransmitter

receptor distributions.
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1.5 From single brains to large scale population based neuroreceptor
maps

If simulation studies can demonstrate conclusively what is the maximum spatial

resolution that can be achieved with PET, and whether PVC helps in this, it will be

important to have PET analysis software available that can effectively leverage this

maximum spatial resolution to produce the best possible in vivo neurotransmitter

receptor atlases.

Accurate receptor mapping with PET requires complex data analysis on large

data sets. Indeed, creating an atlas that reflects receptor density with PET requires

at least: 1) anatomic information from structural imaging; 2) the use of tracer ki-

netic analysis to create parametric images of receptor density; 3) transforming these

parametric images into a common coordinate space; and 4) potentially the use of

PVC to enhance the spatial resolution of the PET images. Furthermore, hundreds

of images of individual brains are required to reflect the variability in a target pop-

ulation [10]. To make such large-scale data analysis more robust, it is necessary to

perform quality control for each processing stage of each image that is analyzed.

Providing open-source PET processing software that includes all of these processing

stages would thus facilitate reproducible and robust high-resolution neurotransmitter

receptor mapping with PET.

1.6 Objectives

1.6.1 Objective 1:Practical investigation with real clinical PET images

The practical spatial resolution of real PET images and the potential impact

of PVC was evaluated on images from patients with acute cortical ischemic stroke.
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In acute stroke, neurons die from ischemia in the core of the infarct within minutes

to hours. Brain tissue surrounding this infarct core–called the peri-infarct cortex–

survives but is subject to long-term selective neuronal loss [23]. PET radioligands,

which bind specifically to the body of neurons (such as the GABAABenz. receptor

ligand [18-F]-Flumazenil) can be used as surrogate markers to measure changes in

neuronal density and to measure delayed neuronal loss after stroke. The challenge

lies in the fact that, based on histological studies, the extent of these small patches of

neuronal loss are just at the limit of PET resolution [24–27]. PVEs are thus a partic-

ularly important confounder in detecting delayed neuronal death in stroke patients

because a) the infarct is a region with very low radioligand binding, b) neuronal loss

may have caused cortical atrophy, and c) the transition zone between the infarct and

healthy tissue is susceptible to spill-in artefacts from radioactivity originating from

the adjacent healthy tissue.

We examined if the regions of decreased GABAABenz. around the infarct could

be detected in the peri-infarct cortex with high-resolution PET, both with and with-

out PVC. This tested two hypotheses:

H1) high-resolution PET is capable of detecting a small region of neuronal loss

surrounding the infarct that is predicted by histological studies of stroke, and

H2) that PVC produces statistically different output measures than obtained

from uncorrected PET images.
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Using these advanced image processing methods to push the limits of PET res-

olution, it was indeed possible to detect small regions of delayed neuronal loss in

peri-infarct cortex with longitudinal scans. However, given that we did not know the

true receptor distribution in the patient’s brain, it was impossible to determine if

PVC PET images provided more genuinely more accurate measurements. Further-

more, the question of how far the limits of PET resolution can be pushed with PVC,

can neither be answered by analyzing real PET data sets nor by using phantoms

which do not reflect the complex topology and layered distribution of neurotrans-

mitter receptors in the human cortex.

1.6.2 Objective 2: Theoretical investigation with simulated PET images

Objective 2.1: Reconstructing 3D receptor atlases from 2D autora-
diographs

To further elucidate the maximum possible spatial resolution of PET it was

necessary to perform a theoretical investigation using simulated data. We developed

a bottom-up approach to quantitatively evaluate PET by simulating PET images

from real postmortem receptor autoradiographs which accurately represent the lay-

ered cytoarchitectonics and complex topology of the human cortex.

The autoradiographic data used in this study—provided by Karl Zilles and

Nicola Palomero-Gallgher and described in Ref.[28]–are unique in that autoradio-

graphs measuring 20 different neurotransmitter receptor binding sites were acquired

at a resolution of 50 µm from 3 different donor human brains. These data are par-

ticularly rich, but suffer from numerous artefacts that had up to now prevented
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reconstruction of these 2D autoradiographic sections into 3D digital datasets.

We therefore sought to create an image processing pipeline that could account

for these artefacts and could be used to reconstruct 20 high-resolution receptor at-

lases for each of the 3 donor brains (Chapter 6). This tested the hypothesis that:

H3) It is possible to correct the processing artefacts in the autoradiograph im-

ages to reconstruct them into 3D images; as a proof-of-principle, reconstruction was

performed specifically for GABAABenz. receptor.

The reconstruction process allows for the creation of a library of 20 3D whole

brain neurotransmitter receptor maps at 50 µm resolution. We anticipate that this

library, made available as open source data, will find many applications in neuro-

science in the the years to come. Here, we describe the first 3D reconstruction of

a GABAABenz. receptor autoradiography data set of an entire human brain (see

Fig.6–18).

Objective 2.2: Monte-Carlo PET simulation with 3D receptor atlas

The reconstructed autoradiograph volume was then used to model the source

radioactivity distribution for a Monte-Carlo PET simulator with the software pack-

age GATE [29]. The simulated image allowed us to determine how accurately they

corresponded to the true neurotransmitter receptor distribution. This allowed us to
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determine, under ideal conditions, the spatial accuracy of PET. We thereby tested

the hypothesis that:

H4: PET can in principle measure differences in radioactivity concentrations

stemming from laminar distributions in neurotransmitter receptor density.

The combination of publicly available 3D receptor atlases in combination with

Monte-Carlo simulation packages will allow researchers to determine the maximum

effective spatial resolution of PET in their own specific use-cases.

1.6.3 Objective 3: Framework for high-resolution PET receptor atlas

Objective 3.1: Automated pipeline for PET image analysis

The second aim of this project was to create a software framework for producing

atlases of neurotransmitter receptor distribution based on PET. Creating receptor

atlases based on PET is challenging because it requires multiple steps of image pro-

cessing and computational modelling. These steps can be subject to small errors

that can introduce bias or distortions in the final maps of receptor distribution. Re-

liable and robust software are therefore necessary to produce PET atlases with the

maximum spatial accuracy possible.

While several software packages exist, they do not include all of the processing

steps that may be necessary to produce the in vivo atlases of receptor distribution at

the highest possible spatial resolution. Specifically, to accomplish this it is necessary

for the software package to include PET to MRI coregistration, quantitative mod-

elling, alignment of receptor maps to a stereotaxic template, and may also require
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some form of PVC to enhance PET spatial resolution. Moreover, it is preferable that

such a software package be open-source and easily extendible so that it is available to

the whole research community and so that the best available algorithms can be incor-

porated into the larger pipeline framework. We therefore developed a PET pipeline

that incorporates all of the processing steps necessary to produce high-resolution

neurotransmitter receptor atlases with PET (Chapter 4) and validated it on existing

simulated PET data. This tested the hypothesis:

H5: An automated PET pipeline built with open-source tools can accurately

recover parametric images based on simulated PET data.

Objective 3.2: Automated quality control

To limit the risk of subtle, but systematic errors (e.g., misregistration of the

PET and MRI) that could bias PET quantitative accuracy we developed a novel

automated quality control (QC) algorithm that detects and flags erroneous processing

steps (Chapter 5). We therefore tested the hypothesis:

H6: An automated quality control algorithm can detect processing errors in

automated PET image analysis.

Furthermore, because this form of automated QC is not yet perfectly reliable,

we also included a graphical user interface to allow the user to perform visual QC.

The combination of the receptor atlas and simulation framework from Objective

2 and the PET processing software in Objective 3 will make it possible to produce
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PET atlases at the highest resolution achievable with the currently existing PET

scanner technology and computational algorithms.

1.7 Contribution to Original Knowledge

1. Novel algorithm for calculating geodesic distances on a surface and defining

peri-infarct cortex.

2. The first report using in vivo imaging of a progressive decrease in neuronal

density closer to infarct and long term decrease in neuronal density in the

region surrounding the infarct.

3. Partial-volume correction increases sensitivity to neurotransmitter receptor

density changes in peri-infarct cortex.

4. PET processing pipeline can recover accurate parametric values from simulated

PET images

5. Automated quality control can detect errors in PET image processing and

facilitate neurotransmitter receptor quantification on large data sets.

6. Serially sectioning autoradiographs of different types can be reconstructed into

a 3D volume

7. The creation of the first ever high resolution 3D atlas of GABAABenz. distri-

bution in the human brain.

8. Quantification of PET resolution based on Monte-Carlo simulated PET and

receptor autoradiography.
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1.8 First Author Publications

1. Published: Funck, T., Al-Kuwaiti, M., Lepage, C., Zepper, P., Minuk, J.,

Schipper, H.M., Evans, A.C., Thiel, A., 2017. Assessing neuronal density in

peri-infarct cortex with PET: Effects of cortical topology and partial volume

correction. Hum. Brain Mapp. 38. doi:10.1002/hbm.23363

• PET resolution and partial-volume correction was investigated in the peri-

infarct cortex at 2 weeks and 6 months after ischemic stroke.

2. Published: Funck, T., Larcher, K., Toussaint, P.J., Evans, A.C., Thiel, A.,

2018. APPIAN: Automated Pipeline for PET Image Analysis. Front. Neu-

roinform. 12.

• Novel open-source pipeline for automating PET image analysis called AP-

PIAN.

3. Prepared: Funck, T., Larcher, K., Toussaint, P.J., Hoge, R., Dagher, A., Evans,

A.C., Thiel, A. 2019. Improving reproducibility of PET image analysis with

automated quality control

• Validation of automated quality control algorithm implemented in AP-

PIAN using simulated misalignment between PET and MRI volumes.

4. Prepared: Funck, T., Palomero-Gallagher, N., Wagstyl, K., Omidyeganeh, M.,

Lepage, C., Thiel, A., Zilles, K., Evans, A.C. 3D reconstruction of multi-ligand

autoradiography.

• Automated pipeline for automated reconstruction of 2D autoradiography

into 3D receptor atlases.
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5. Prepared: Funck, T., Palomero-Gallagher, Zilles, K., Evans, A.C., Thiel, A.

Monte-Carlo PET simulation of 3D autoradiograph receptor atlas.

• Evaluation of PET resolution based on Monte-Carlo simulation and high-

resolution receptor atlas.
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CHAPTER 2
Background

2.1 Positron Emission Tomography

2.1.1 PET Physics

Radioactive decay and positron emission

Imaging with PET is based on the radioactive decay of a radioisotope that

is injected into a living human or non-human animal. The radioisotope can be

attached to a biological ligand so that the radioisotope accumulates in regions with

greater density of the target receptor to which the ligand binds. The nucleus of

a radioisotope contains a greater number of protons versus neutrons. This ratio of

protons to neutrons is unstable and, by progressively converting protons to neutrons,

tends to a more stable configuration.

The conversion causes the emission of a positron and a neutrino from the nu-

cleus [30]. The positron follows a random trajectory over which its energy gradually

decreases. The positron eventually collides with an electron for a very brief period

of time, approximately 10−10 s. This collision results in annihilation of the positron

and electron and the emission of two gamma photons, which are detected by the

detectors in the PET camera. The detectors of the PET camera cannot measure the

distance that the positron travels before it joins an electron. This distance depends

on the energy of the positron and imposes an intrinsic physical limitation to PET
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resolution. Radioisotopes with lower energy emit positrons that lose their energy

more quickly and hence travel a shorter distance before combining with an electron

[31]. Images using lower energy radioisotopes tend to produce images with better

spatial resolution.

Detecting the photons

The combined positron and electron annihilate and emit 2 photons with an

energy of 511-KeV along paths at approximately 180° [30]. The photons are recorded

by a pair of scintillation detectors and the location of the annihilation is assumed to

have occurred on the line of response (LOR) between the 2 detectors. If, however,

the positron has residual energy when it annihilates, the angle between the paths

of the photons may not be exactly 180°. The angle is instead randomly distributed

around 180° according to a normal distribution [32]. This phenomenon is termed

non-collinearity and it constitutes another fundamental physical limitation to PET

spatial resolution.

Non-collinearity degrades PET spatial resolution because the LOR recorded by

the scanner does not cover the true location of the annihilation event. To compli-

cate matters further, the impact of non-collinearity depends on the location of the

annihilation event within the field of view (FOV) of the scanner as well as the size

and geometry of the scanner. The closer non-collinear photons are emitted to the

center of the FOV of the scanner, the further they travel before reaching a detector

and the further the recorded LOR is from where the true LOR would have been.

In a vacuum the photons travel along a straight path from the point of anni-

hilation. In a dense medium like the brain it is possible that the trajectory of the
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rays will be altered through interactions with surrounding atoms. One important

interaction is the photoelectric effect [33]. This occurs when a photon imparts its

entire energy to a bound electron that is also soon absorbed. Thus the photon would

not reach the detector. The remaining photon of the pair, which does not interact

with the surrounding tissue, may still be detected by the scanner within the same co-

incidence window as another, unrelated photon. These events are called "randoms"

and contribute noise to the image by adding spurious counts along LOR that do

not reflect true annihilation events. The second most common form of interaction

between photons and surrounding tissue is called Compton scattering [34]. Here a

photon only imparts a portion of its energy to a free or loosely bound electron and

is diverted as a result. This introduces noise and ultimately degrades PET spatial

resolution. Unlike positron travel and photon non-collinearity, photon attenuation

and scatter can at least partially be accounted for with correction algorithms [35,

36].

Scintillation detector crystals of bismuth germenate (BGO) or lutetium oxy-

orthosilicate (LSO) transform the photons into light waves. They are arranged

around the FOV usually in a circle or octagonal geometry [37]. Pairs of detec-

tors detect photons within a coincidence time window such that a pair of photons

is detected within this time window are taken to have been produced by the same

annihilation event. This method is imperfect and can introduce noise when photons

from different annihilation events, i.e., single photons, are detected within the coin-

cidence window and are assumed to reflect a true photon pair. These misidentified

photon pairs are termed "randoms" in contrast to true photon pairs.
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Detectors can be made of continuous or discrete crystals. For discrete detectors,

the surface area of the detectors is important for determining the resolution of the

PET image, where smaller detectors result in higher resolution images. An important

source of loss in PET resolution comes from "depth of interaction" effects. These

occur when a photon hits a detector at an oblique angle, is not stopped by that

detector, and passes through to an adjacent detector [38]. In this case the location

of the photon would thus be misattributed and thus the recorded LOR would be

incorrect.

Another important source of artefacts in PET image generation stems from the

fact that there are more pairs of LORs between detector pairs that pass through

the center of the FOV than its borders. This means that the PET system is more

likely to detect photon pairs closer to the center of the FOV than further away

from the center and hence would overrepresent objects at the center of the FOV.

Normalization algorithms that take into account the scanner geometry are used to

increase the number of counts measured proportional to their distance from the

center of the FOV.

Partial volume effects

Partial-volume effects (PVE) are imaging artefacts that result in a loss of spatial

resolution in the acquired PET image[39]. PVE have been a subject of interest since

the early period of PET research in the late 1970s because they can result in the

misestimation of the measured radioactivity concentrations within a given region [39,

40]. While spatial resolution of modern PET scanners has increased significantly
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since the first PET systems, the problem of PVE remains because improved spatial

resolution leads researchers to seek to resolve smaller objects.

PVEs can be categorized in two groups [41]. The first are tissue-fraction effects

that result from the multiple tissue types being confounded together within the

minimal volume unit (voxel) of a PET image. That is, a single voxel in a PET image

may contain several distinct tissue regions, e.g., white matter and grey matter (GM),

that each have different levels of radioligand binding. This then makes it difficult

to quantify the amount of radioligand binding that is attributable to these distinct

regions.

PVE also result from spill-over effects, where the point-spread function, or blur,

induced by the PET system results in the mixing of radioactivity concentrations

from distinct regions. Spill-over effects in PET are in part a function of factors

that are independent of the particular object being scanned. These factors include

the intrinsic physics involved in PET, e.g., the energy of emitted positron, and the

characteristics of the scanner, e.g., the surface area of the detectors. These factors

determine the blur of the scanned object induced by the PET system.

While the point-spread function of the PET system is independent of the object

being measured the quantitative accuracy of PET does depend on the object in the

scanner. This was originally demonstrated in a seminal series of studies on PET

quantitation including Hoffman et al [39] and Mazziotta et al [40]. Along these lines,

Hoffman and Phelps [14] distinguish between the intrinsic resolution of the PET

system and the practical resolution at which the anatomical objects can reliably be

measured. For instance, blurring between two adjacent regions has a negligible effect
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if these regions have similar radioactivity concentrations, but a large one if they have

very different radioactivity concentrations. Hence the size, shape, and contrast of

the object during image acquisition has a significant impact on the spatial scale at

which PET can accurately recover radioactivity concentrations in vivo. Movement

of the object during the scan can also have an important impact on the effective

spatial resolution of PET.

PVE are therefore the result of multiple physical phenomena and limitations in

PET scanner design. The limitations to spatial resolution imposed by positron travel

and non-collinearity are fundamental and cannot be overcome even with perfect

instrumentation. While photon attenuation and scatter also result from physical

phenomena, reliable algorithms have been designed to account for these. Other

technical limitations, such as depth of interaction effects and detector surface area,

are topics of ongoing research and continue to be improved upon [13]. The net

effect of these artefacts is a decrease in the quantitative accuracy of the measured

radioactivity concentrations.

Many important regions of the brain are susceptible to PVE that result from

the properties of the object being imaged. In particular, PVE can be exacerbated

by sharp gradients in radioligand binding and by morphological atrophy. Given that

the cortical GM is already relatively thin compared to PET spatial resolution, PVE

in this region are particularly aggravated by the cortical atrophy that accompanies

both normal aging and is made worse by neurological disorders like Alzheimer’s

disease. The loss in spatial resolution due to PVE is also prominent when measuring

from a small region of low radioligand binding that is located near adjacent regions
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with high binding. Neuronal loss in the surviving cortex following ischemic stroke

is a particularly good test case for investigating PET resolution because this region

is surrounded by healthy tissue likely to have high radioligand binding and is also

subject to cortical thinning.

Realistic simulation studies are necessary to fully characterize PET resolution.

Although assessing PET resolution on real images is useful, the true radioactivity

distribution that gives rise to the acquired PET image is fundamentally unknow-

able. Simulation studies allow for the comparison between the true radioactivity

distribution and that is measured by the PET system. Simulations therefore pro-

vide a complementary method for determining the spatial scale at which PET can

accurately measure receptor densities.

2.2 In vivo imaging of neuronal loss in the human brain

2.2.1 Stroke as a Model for Selective Neuronal Loss in humans

Occlusion of the arteries providing blood-flow to the brain results in ischemic

stroke. Prolonged loss of blood-flow below the minimum viability threshold necessary

to sustain cell metabolism leads rapidly to necrotic cell death in the brain regions

supplied. This results in a region of infarcted tissue. In the brain region surrounding

the infarct, cerebral blood flow may still be above the viability threshold and suffi-

cient for neurons to survive but below the functional threshold necessary to sustain

neuronal function [42]. This region is at risk of infarction, if blood flow is not rapidly

restored within hours.
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Even if blood flow to this viable but non-functional brain tissue is rapidly

restored with reperfusion therapies like intravenous thrombolysis or endovascular

thrombectomy, there is substantial evidence for delayed selective neuronal loss of

initially surviving neurons in these brain regions surrounding the infarct [43] (see

Ref.[23] for a review). This surrounding region is called the peri-infarct cortex and

describes a histologically defined area around the infarct with decreased neuronal

density [26]. This was found both in rodent models as well as in humans that suf-

fered ischemic stroke [24–27]. While the transition between the infarct and adjacent

healthy cortex is histologically well defined, there is a ring of tissue with decreased

neuronal density extending typically from 3-5 mm, and occasionally up to 10mm

from the infarct border into morphologically intact cortex. Assessing these changes

in human stroke is of potential clinical interest because such delayed neuronal loss

may impact stroke recovery and may play a role in the development of post-stroke

cognitive decline.

2.2.2 Flumazenil as radioligand to measure neuronal density

Neuronal loss in the cortex results in a reduction of neuronal density that can be

measured with GABAABenz. receptor as a surrogate marker. While single neurons

cannot be directly visualized in the living human brain, neurotransmitter receptors

on the cell body surface can serve as surrogate markers for the neurons. One such neu-

rotransmitter receptor is the benzodiazepine receptor complex which is co-localized

with the GABA-A receptor on the cell somata and dendrites of cortical neurons,
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where they form synapses with interneurons [44]. Interneurons make up 20% of cor-

tical neurons, and so their corresponding GABAABenz. receptors are densely, and

generally evenly, spread throughout the cortical mantle[45, 46]. Using flumazenil

either labeled with 11-C or 18-F radioisotope, it has been shown that variations in

GABAABenz. density is related to differences in neuronal density in healthy humans

and potentially reflect differences in the underlying cortical cytoarchitectonics [47].

In acute stroke, GABA-receptors from dying neurons are rapidly degraded and PET

with flumazenil performed within hours of stroke onset can delineate infarcted from

non-infarcted brain tissue [43, 48].

Evidence from autoradiography [49, 50] and PET [43, 51, 52] with flumazenil-

based studies in animals suggests that decreased GABAABenz. receptor density can

also be detected in the peri-infarct cortex. However, it should be noted that not all

groups have found a decrease in flumazenil binding after ischemic stroke with in vitro

autoradiography [53]. Decreases in GABAABenz. in the peri-infarct cortex have also

been found in humans with iomazenil single-photon emission computed tomography

(SPECT) [54, 55] and flumazenil PET [56–58].

2.2.3 The challenges of PET with Flumazenil in human stroke

Studying the peri-infarct cortex with PET is made difficult by its limited spatial

resolution. Healthy cortex is between 3-7mm thick and may be subject to atrophy

as a result of ischemia. Moreover, based on histological studies the peri-infarct

region appears to be 3-5mm in width. Not only is the peri-infarct cortex small,

it is also particularly subject to PVE. This is because it is, by definition, located
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between regions of low and normal radioactivity concentrations in the infarct and

surrounding healthy tissue. It is therefore at the very edge of PET resolution and

therefore provides an ideal candidate for assessing whether PET, with and without

PVC, can be used to detect changes in receptor densities in small regions subject to

substantial PVE.

Most previous PET studies in human stroke have detected reduced GABA-A

receptor densities in the peri-infarct cortex in small cross-sectional case series without

accounting for related morphological changes in the cortex. An important exception

to this is Guadagno et al. [57] and Zepper et al. [58], both of which used PVC

to correct for potential PVE stemming from cortical atrophy. The PVC method

used by Guadagno et al [57] does not, however, account for PVE within the cortical

GM [59], which may be an important source of confounding error in the case of the

peri-infarct cortex. PVC is essential because it allows one to disambiguate whether

the cause of decreased flumazenil binding is due to cortical atrophy versus decreased

neuronal density. It should be noted that receptor downregulation is also a potential

cause of a decrease in flumazenil binding. However, while temporary downregulation

of GABAA receptors has been shown in gerbils in the hours after transient ischemic

stroke [60], to our knowledge there is no clear evidence for long-term downregulation

of GABAA receptors in humans.

While PET studies of the peri-infarct cortex have been performed in the past,

we wished to specifically determine if PET could measure small spatial changes in

receptor density in the peri-infarct cortex consistent with delayed neuronal loss. This

requires defining a space along which receptor densities are measured longitudinally.
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Previous PET studies of the peri-infarct cortex have used an Euclidean distance to

define the distance from the infarct border. This is problematic because the cerebral

vasculature does not travel along straight lines through the cortex. Defining the

peri-infarct cortex using Euclidean distances is particularly inappropriate in corti-

cal stroke because the cortical vasculature generally follows the cortical surface. It

is therefore necessary to use an anatomically plausible measure of distances from

the infarct border and thereby identify the peri-infarct cortex. In contrast to Eu-

clidean distance, a geodesic distance refers to the minimum distance measured over

a manifold. If the manifold is flat, then the Euclidean and geodesic distances are

equivalent. In Chapter 3 we describe how geodesic distances provided just such an

anatomically plausible method and use it to quantify GABAABenz. density in the

peri-infarct cortex. This made it possible to determine whether PET was able to

detect small changes in GABAABenz. density along the cortical surface and whether

PVC significantly affected the measured receptor density.

The use of high-resolution PET systems and advanced image processing algo-

rithms can allow for accurate measurements from small regions subject to significant

PVE. However, the question of how far the limits of PET spatial resolution can

be pushed remains and cannot be answered by using non-invasive in vivo imaging

modalities because it is impossible to determine how accurately the acquired and

PV-corrected PET images reflect the true radioactivity distribution. PET simula-

tion allows for an alternative approach to assess PET resolution by making it possible

to compare the source radioactivity distribution with the acquired PET image. How-

ever, given that simulators which accurately model the physics of PET acquisition
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are readily available, realistic PET simulation is only as good as the source radioac-

tivity distribution that is used as input for the simulation. The source radioactivity

distribution should ideally accurately reflect the real distribution of a given radioli-

gand and corresponding receptor in human brains. Such information can only be

derived from in vitro autoradiography but is not without its challenges, including

the inherently 2D nature of autoradiographic images.

2.3 Quantitative Receptor Autoradiography

Autoradiography is an imaging modality that uses a radioligand, or simply a

radioisotope, that binds to biological tissue and measures the particles emitted during

radioactive decay. A radio-sensitive film is used to record the emitted radioactive

particles. The film is composed of a layer of silver halide crystals, or grains, that are

organized into a lattice. Radioactive β particles that hit the lattice cause the release

of free electrons. These electrons migrate along the lattice to locations where they

form silver ions [61]. The latent images produced by the silver ions decay with time

and must be developed to create permanent images of the radioligand distribution.

Early autoradiography studies were used to measure receptor binding in the

brain. The earliest techniques for quantification of receptor density involved the

injection of a radioligand in an animal and, after sacrificing the animal, placing

solubilized brain regions in scintillation vials from which radioactivity counts were

measured [62–64]. However this approach only yields average regional radioactivity
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concentrations and not actual images representing the spatial radioactivity distri-

bution. In vivo autoradiographic techniques were applied to receptor mapping with

autoradiography to map muscarinic and opiate receptor distributions in rats [65–68].

In the late 1970s, Young and Kuhar pioneered a then novel technique for per-

forming autoradiography [69]. Instead of in vivo injection of the radioligand and then

sectioning the brain, they first sectioned the brain and then incubated the sections in

a solution of the radioligand. Hence this method was called in vitro autoradiography.

In vitro autoradiography presented important advantages over in vivo autoradiogra-

phy for receptor mapping, because it makes it possible to incubate adjacent sections

with different radioligands. Hence in vitro autoradiography makes it possible to visu-

alize multiple receptors within the same brain. It is also possible to use radioligands

that do not cross the blood brain barrier and hence cannot be used in vivo.

A broadly standardized approach to in vitro autoradiography for neurotrans-

mitter receptors was arrived at in the 1980s and 1990s [70–77]. According to this

method brains are extracted post-mortem from the donor cadaver and are shock

frozen and stored between -50 and -70 C. Brains are not fixed because fixation can

modify the configuration of the proteins that make up receptors [78].

Frozen brains are sectioned with a cryostat microtome at 20µm. Thicker sections

require shorter exposure time because of the increased radioisotope concentration in

the section but have lower resolution. If the angle at which the electron particle

emitted by the decaying radioisotope is not perpendicular to the film, an electron

emitted in a thicker section would travel further away from its point of emission before

reaching the emulsion. Sections of 20µm provide a good tradeoff between exposure
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time versus spatial resolution [79]. Additionally, prior to sectioning, photographs

of the sections, called block-face images, may be acquired and used as a reference

during 3D reconstruction of the 2D sections.

After sectioning, the sections are thaw mounted onto a glass slide and freeze-

dried. The slides must then be rehydrated and rinsed to remove any endogenous

ligand in the section. The sections are then ready to be incubated in a buffer solution

either with just the titrated ligand or the ligand in addition to another displacer

molecule that also binds to the target receptor. A displacer molecule is used to

create autoradiographs of non-specific binding. A second rinsing step is required

to remove the extra ligand as well as salts from the buffer. The sections are then

exposed to a film that is sensitive to the β particles emitted by the radioisotope in

the section.

After the film is developed, the autoradiographs are digitized with charge-

coupled device (CCD) camera. The digital autoradiographs have 8-bit pixel intensity

resolution, i.e., pixel values from 0 to 255. The pixel intensities of the autoradio-

graphs themselves do not reveal the actual radioactivity concentrations but merely

pixel intensities that are produced by these concentrations. The pixel intensities

must be converted to radioactivity concentrations by using radioactivity standards.

These standards are small cubes with a known radioactivity concentration and are

placed next to the tissue section on the glass slides. Therefore the standards are

co-exposed to the β-sensitive film alongside the tissue section that has been incu-

bated in the radioligand. The standards are hence visible on the autoradiographs

and have unique pixel intensities. Given that the true radioactivity concentration for
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the standard is known, it is possible to plot the acquired pixel intensities versus the

corresponding radioactivity concentration. This calibration curve is interpolated to

convert the pixel intensities of the raw autoradiographs to radioactivity concentra-

tions. These images, are then converted into images with pixel values representing

the concentration of the receptor density in fmol/mg protein [80, 81].

The analysis of autoradiographs has generally been performed in 2D. This is

problematic because these sections cannot accurately represent the complex 3D,

folded topology of the cortical grey matter. That is, the cortical grey matter in

the brain is organized into a series of layers that are oriented orthogonally to the

curvature of the cortical gray matter. Sections which cut through the surface at an

angle other than that is orthogonal to the curvature of the surface misrepresent the

extent of these layers. To illustrate this, imagine cutting a multi-tiered cake at angle

of 90° versus 75°. In the latter case, certain layers appear longer than they would in

the former case. The problem is that the surface of the brain, unlike a rectangular

cake, cannot be cut such that each section is at a perpendicular, or even at a con-

sistent angle, relative to the cortical surface. Algorithms have been developed that

are capable of reconstructing 2D brain sections into 3D and thereby create a more

accurate representation of the brain’s true anatomy and is discussed in the following

sections.

Although many methods have been proposed for 3D reconstruction, these meth-

ods remain useful largely for the datasets similar to the specific use case for which

they were developed. While certain portions of these methods could be borrowed
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and incorporated into new reconstruction methods, there is no generalized 3D re-

construction algorithm that applies to all datasets. The data used in this study are

unique and make it particularly difficult to apply existing techniques. The particu-

larities of this dataset include the diversity of receptors imaged, the large number of

missing sections, the large gaps between autoradiographs of the same receptor, and

the significant non-linear deformations in the autoradiographs. The combination of

these challenges made it necessary to develop a novel reconstruction pipeline. To

avoid developing an entirely new set of tools, a software package for generic image

alignment was used as a key component to this new reconstruction pipeline.

2.4 Image Alignment

2.4.1 Overview

Generic image alignment algorithms provide a useful tool for developing a novel

3D reconstruction method for the autoradiographic data used in this study. This

section describes the general principles of image alignment and describes the SyN

(symmetric normalization) algorithm implemented in the ANTs1 software package.

SyN is a particularly robust and well-validated generic image alignment algorithm

that can be used on images from virtually any modality and can be applied in 2D,

3D, and even 4D. While ANTs has been employed in 3D reconstruction of histological

data [82], it has not to our knowledge been applied to autoradiographic data. It plays

a crucial role in the reconstruction pipeline described in Chapter 6.

1 ANTs is derived from the name of its author Brian Avants
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An image can be thought of as a function that maps a vector of spatial coor-

dinates to a scalar value in the case of grayscale images or a vector of dimension

3 for an RGB color images. Here we only consider grayscale images. The range of

the image can be a binary value (0 or 1), an integer, or a real number, depending

on the type of image. The domain of the image is usually of 2 or 3 dimensions,

which correspond to a 2D image or a 3D image volume. In the case of a 2D image a

coordinate point denotes the center of a pixel while a 3D coordinate point denotes

the center of a volumetric pixel or "voxel".

Image registration is the process by which the coordinates of one image, termed

the "moving" image, is spatially transformed so that it is aligned to a second "fixed"

or "target" image. There are many types of transformations that may be applied to

the moving image to align it to the target image. Transformations can be divided

into 2 classes: linear and non-linear transformations. Whereas linear transformations

apply global changes to each dimension of the coordinate grid of an image, non-linear

transformations allow for local deformations to a subset of the image’s coordinate

grid.

There are many algorithms that have been developed for automated image regis-

tration[83], but these can almost universally be understood in terms of 3 components:

a similarity metric, a transformation, and an optimizer. The similarity metric serves

as a cost-function that quantifies how similar 2 images are to one another. The

transformation defines the model that is used to modify the coordinate points of

an image. The optimizer finds the best, or at least satisfactory, transformation as

defined by the similarity metric.
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2.4.2 Non-linear image alignment with ANTs SyN

Hundreds of methods have been proposed for aligning spatial images with non-

linear transforms [83]. A full description of all existing approaches to non-linear

image alignment is beyond the scope of the overview given here and is not necessary

for understanding the techniques used in this work.

In a comparison of 14 non-linear alignment methods on 4 MRI data sets, Klein,

et al. [84] found that 4 algorithms that consistently provided the most accurate

alignment across all 4 data sets: ART, SyN, DARTEL, and IRTK. Among these,

SyN and ART were consistently the most accurate. We describe SyN because it is

part of a popular image alignment software package, ANTs, and is used extensively

in Chapter 6.

SyN is based on framework based on diffeomorphisms. A diffeomorphism is a

mapping between 2 manifolds that is smooth, invertible and is also differentiable.

Because of these features, diffeomorphisms have the significant benefit that they

guarantee to preserve topology, which is not always the case with other methods

of image alignment. Moreover, the fact that diffeomorphisms are differentiable and

invertible is particularly important because it means that if there exists a diffeo-

morphic non-linear deformation that maps the moving image to the fixed image,

then a mapping from the fixed image to the moving image also exists. The typical

formulation for a diffeomorphic transformation is of the form [85] :

v = argmin
∫ 1

0
||Lv(x, t)||2dt+ λ

∫
M(Im, If ) (2.1)
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where L is a differential operator applied to the vector field, v, M is a similarity

metric, and λ is a parameter modulating the weight of the similarity metric. The

integral with respect to time represents the summation over the vector field that maps

the moving image to the fixed image over unit time. The first component ||Lv(x, t)||2

serves to enforce smoothness by penalizing vector fields with large derivatives. The

second component calculates the similarity metric between the moving and fixed

image over the image domain.

SyN takes advantage of the fact that the diffeomorphism can be split into 2

components, one that calculates the deformation field from 0 to 0.5 time units and

one calculates the deformation field from 1 to 0.5 time units. Hence the equation 2.1

is reformulated as :

v = argmin
∫ 0.5

0
||Lv1(x, t)||2dt+

∫ 1

0.5
||Lv2(x, t)||2dt+ λ

∫
M(Imφ̇1, If φ̇2) (2.2)

where v1 and v2 represent the velocity fields that transform Im and If to a mid-

point at 0.5 time units. SyN therefore changes the traditional approach to alignment.

Instead of calculating the similarity of the moving image transformed to the fixed

image, both the moving and fixed images are transformed to a midpoint. Given that

diffeomorphisms are composable, once the separate diffeomorphisms are calculated

the separate velocity fields can be joined to transform the moving to fixed image and

vice versa. According to Avants et al. [86] this guarantees that the diffeomorphic

transformation calculated by SyN is not just invertible in theory, but that SyN actu-

ally produces the transforms to and from the moving and fixed image, respectively.
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ANTs in particular was therefore a natural choice to develop a novel recon-

struction pipeline because it is well validated on diverse data, produces invertible

transformations, and is publicly available. ANTs has not seem to have been used

to align autoradiographs and it was therefore not obvious whether ANTs would be

capable of overcoming the challenges posed by our autoradiographic data. The im-

plementation of this pipeline is described in detail in Chapter 6.

2.5 Monte-Carlo PET Simulation

The purpose of simulating PET scanners is to obtain an image that reflects the

characteristics of a real PET image but is produced from an a priori defined source

distribution of radioactivity in an object. There are 2 important factors that deter-

mine the realism of the simulation. The accuracy of the physics that are modelled by

the simulator determines if the characteristics of the simulated PET image reflects

the actual process by which a real PET image is acquired. To assess the accuracy

of PET for the particular use case of neurotransmitter receptor mapping, it is neces-

sary to also define a radioactivity distribution that reflects actual neurotransmitter

receptor distribution in the brain. Simulation is useful because it allows for a direct

comparison between the source radioactivity–which is usually inaccessible in the case

of real PET scans–and the simulated image.

The most realistic method for PET simulation is Monte-Carlo simulation. Monte-

Carlo simulations are characterized by their use of random sampling methods to

model stochastic processes. PET Monte-Carlo simulations involve the modeling of

the behaviour of individual particles in real-time according to probabilistic physical
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models [87]. This has the advantage of closely modeling the probabilistic nature of

radioactive decay. This physical realism comes at the cost of significant computation

time.

Several Monte-Carlo PET simulators are available with different degrees of com-

putational speed, accuracy and usability. The most accurate simulators, and conse-

quently the slowest, model each aspect of the physical processes involved in positron

emission, annihilation, and detection of photons as Monte-Carlo processes, i.e. by

generating random numbers. The most accurate of these simulators are GEANT4[88]

and PENELOPE [89], both of which are general purpose Monte-Carlo particle physics

simulators. GEANT4 and PENELOPE are designed for performing a wide range of

particle simulations, of which PET is just one application. This makes it difficult

to use GEANT4 or PENELOPE, and as such, versions of these have been tailored

specifically for modeling PET.

To overcome the limitations of high accuracy Monte-Carlo simulators with re-

spect to computational speed and usability, several alternative simulators have been

proposed. GATE is an open-source PET/SPECT simulator based on the GEANT4

code-base and is actively maintained by an international community of scientists

[29]. Due to the extensive use of Monte-Carlo sampling, GATE is an accurate but

relatively slow simulator. GATE has been validated in empirical studies against

phantom PET simulations and produces nearly identical results [29].

Multiple PET and SPECT simulators have been implemented for GATE, in-

cluding the Siemens HR+ and CTI-Siemens ECAT HRRT scanners. PeneloPET

[90], based on the PenelopePET code-base, and PET SORTEO [22] are attempts to

36



improve the speed of simulation with minimal cost to accuracy by modeling certain

aspects of the simulator with analytic functions. While PeneloPET has been shown

to be many times faster than GATE and to differ from it by only 5% in counts of an-

nihilation events measured between detector pairs, only small animal PET scanners

have been implemented for PeneloPET [90]. Similarly, images fro PET SORTEO

have been shown to be in good agreement with real PET images acquired from PET

phantoms [22] However, the code-base for PET SORTEO is not publicly available

and it has not been implemented for the CTI-Siemens ECAT HRRT. GATE is open-

source, user friendly, accurate, and has been validated for the CTI-Siemens ECAT

HRRT [91].It therefore is an ideal simulator for producing realistic CTI-Siemens

ECAT HRRT PET images based on an anatomically derived radioligand distribu-

tion. Chapter 6 describes the use of a 3D neurotransmitter receptor atlas derived

using autoradiography as a radioactivity source distribution for Monte-Carlo PET

simulation with GATE.
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CHAPTER 3
Assessing Neuronal Density in Peri-Infarct Cortex With PET: Effects of

Cortical Topology and Partial Volume Correction

Thomas Funck1,2, Mohammed Al-Kuwaiti1,2, Claude Lepage1, Peter Zepper3,
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3.1 Preamble

The aim of this study was to use PET with 18F-FMZ to detect small changes

in neuroreceptor density in patients with subacute stroke. These areas are thought

to represent small patches of delayed neuronal loss in the morphologically normal

appearing brain tissue surrounding the infarct which are just at the limit of PET
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resolution. PVEs are thus expected to be particularly important limitation for de-

tecting these changes.

Using a novel method to define the peri-infarct cortex based on geodesic dis-

tances, we demonstrate that these small regions of decreased GABAABenz. around

the infarct can be resolved with high-resolution PET, both with and without PVC

and that PVC produces statistically significant different outcome measures than ob-

tained in uncorrected PET. In addition, results obtained with geodesic distances

were different than those obtained with Euclidean distance metrics. Euclidean dis-

tance metrics are not anatomically realistic when measuring the peri-infarct cortex

in the case of ischemic stroke because the cerebral vasculature does not run through

cortical sulci. More broadly, this also suggests that when analyses are conducted on

the basis of a distance from some region in the brain, e.g., distance from a tumor or

epileptic foci, the distance metric used should reflect the brain’s anatomy.

The fact that decreases in BPnd became more prominent over 6 months and

were present after PVC for atrophy effects, suggests that a delayed loss of neurons

can be detected with such sophisticated methods pushing the limits of neuroreceptor

PET.

3.2 Abstract

Abstract: The peri-infarct cortex (PIC) is the site of long-term physiologic

changes after ischemic stroke. Traditional methods for delineating the peri-infarct

gray matter (GM) have used a volumetric Euclidean distance metric to define its ex-

tent around the infarct. This metric has limitations in the case of cortical stroke, i.e.,
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those where ischemia leads to infarction in the cortical GM, because the vasculariza-

tion of the cerebral cortex follows the complex, folded topology of the cortical surface.

Instead, we used a geodesic distance metric along the cortical surface to subdivide

the PIC into equidistant rings emanating from the infarct border and compared this

new approach to a Euclidean distance metric definition. This was done in 11 patients

with [F-18]-Flumazenil ([18-F]-FMZ) positron emission tomography (PET) scans at

2 weeks post-stroke and at 6 month follow-up. FMZ is a PET radiotracer with

specific binding to the alpha subunits of the type A g-aminobutyric acid (GABAA)

receptor. Additionally, we used partial-volume correction (PVC) of the PET im-

ages to compensate for potential cortical thinning and long-term neuronal loss in

follow-up images. The difference in non-displaceable binding potential (BPND) be-

tween the stroke unaffected and affected hemispheres was 35% larger in the geodesic

versus the Euclidean peri-infarct models in initial PET images and 48% larger in

follow-up PET images. The inter-hemispheric BPND difference was approximately

17–20% larger after PVC when compared to uncorrected PET images. PET studies

of peri-infarct GM in cortical strokes should use a geodesic model and include PVC

as a preprocessing step. Key words: PET; partial-volume effects; receptor mapping;

ischemic stroke; neuronal density

3.3 Introduction

Long-term physiologic changes occur after ischemic stroke in morphologically

preserved gray matter (GM) surrounding the core of ischemic brain parenchyma,

termed peri-infarct cortex (PIC). This region can be defined along morphologic or
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physiologic criteria. When using a physiologic definition of the PIC, it is typically

termed the “penumbra” and refers to cortex where cerebral blood flow is reduced

below the level necessary for neuronal function, but above that needed for maintain-

ing neuronal integrity [42]. However, the PIC can also be defined as cortex that has

undergone morphologic change resulting from the stroke. Changes in the PIC are

various, depending on the location of the infarct, time post-stroke and the patient’s

use of rehabilitative therapy [92–94]. Whereas some of the physiologic changes in

the PIC are adaptative, others are deleterious to the patient. An infarct in the so-

matosensory cortex results in an adaptive remapping of the body representation in

this region through a decrease in the number of dendritic spines and an increase in

axonal sprouting [94–100]. Similarly, gene expression related to axonal sprouting is

up regulated in the PIC [101]. Other studies have demonstrated neuroinflammatory

changes in the PIC post-stroke [102–104] and argued that this persistent neuroin-

flammation may be related to the development of post-stroke cognitive impairment

[105, 106]. Changes in the PIC can develop over several months post-stroke in both

rat models and humans [58, 93, 107, 108]. Previous studies have shown evidence of

neuronal loss outside of the infarct core, both in post mortem studies [24–27] and

in-vivo [54, 55, 57, 58].

The PIC may be useful for predicting patient outcomes, monitoring the evolution

of the infarct, and may be an important site for post-stroke therapy. Decreased FMZ

binding in the PIC has been shown to correlate with decreased oxygen consumption

and eventual infarction [48]. An accurate measure of the extent of the PIC may

be useful for predicting the patient’s outcome and defining the region around the
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infarct that would benefit from therapeutic intervention. The size of penumbral

PIC appears to be inversely correlated with functional outcome [109]. For stroke

therapy, electrical stimulation of PIC in nonhuman primates resulted in improved

motor performance [110].

When the PIC is taken as the region surrounding the infarct that is morpho-

logically preserved after ischemia, it is typically defined by delineating a region sur-

rounding the infarct using an Euclidean distance metric [43, 58, 103, 111–113]. An

Euclidean-based PIC is limited when defining PIC in cortical infarcts, because the

vascularization of the cerebral cortex follows the complex, folded topology of the

cortical surface. That is, two points on neighbouring gyri may be close together in

3D space, but much further from one another when measuring the geodesic distance

along the 2D cortical surface. We therefore propose a new method that uses the

geodesic distance along a 2D representation of the cortical mantle to define the PIC.

Our method allows the PIC to be segmented into rings based on the distance from

the infarct and at the same time to study the effect of ischemia at regular intervals

outwards from the infarct core.

In positron emission tomography (PET), regions that are less than approxi-

mately twice the resolution of the scanner are subject to partial-volume effects (PVE)

[39]. In regions of high radiotracer concentration, PVE result in a decrease in the

measured radiotracer concentration because a portion of the signal “spills-out” to

neighboring regions. Cortical thickness is generally between 3–4 mm and thus tends

to be less than or, in the case of high resolution PET scanners [12], just on the cusp

of what the PET scanner can measure without spill-out effects. Thus radiotracer
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concentrations in the cortical surface may be underestimated due to PVE resulting

from cortical atrophy. PVE may also be increased by particularly low radiotracer

binding in the infarct. The PIC may also be subject to important “spill-in” PVE

because reduced radiotracer binding in the PIC may lead an increased proportion in

signal from adjacent healthy tissue spilling-in.

PVC is of particular concern in the case of acute focal ischemia, because this

has been shown to lead to selective neuronal loss [23, 24, 26, 43, 55, 57, 114–116]

and may result in decreased cortical thickness [117]. Using a GM representation

extracted from MRI it is possible to perform PVC for potential spill-out from the

cortical GM.

It is the aim of this study to test the hypothesis that geodesic distances, which

are based on more theoretically sound assumptions of cortical vasculature, provide

significantly different results than obtained with an Euclidean distance metric for

defining the PIC. Distance profiles of BPND of [18-F]-FMZ were created on PET

images from patients with ischemic stroke using both metrics. [18-F]-FMZ was used

because it binds to g-aminobutyric acid (GABAA) receptors that are found in large

and uniform quantities in the cortical GM and thus serves as a surrogate marker for

neuronal loss [48]. To assess if there was any difference between the BPND distance

profiles, we compared the sensitivity of each method to detect a difference between

the stroke affected and unaffected hemispheres. The BPND distance profiles pro-

duced with both metrics were also compared directly to see if they were significantly

different from one another. Additionally, we evaluated the effect of PVC on the

BPND measured within the PIC using anatomic information extracted from MRI.
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Cortical thickness maps were calculated to determine if there was significant cortical

atrophy between initial and follow-up images and evaluate its effect on PVC.

3.4 Methods

Subjects

All participants were prospectively recruited from the Jewish General Hospital

and Montreal General Hospital acute stroke units between March 2012 to October

2014. This study was approved by McGill Faculty of Medicine Institutional Review

Board. All participants were enrolled after informed consent in accordance with

regulations for human participant’s studies.

Eleven participants were enrolled if they presented with first ever anterior cir-

culation ischemic stroke within 31 days post stroke onset, had a neurological deficit

defined on National Institutes of Health Stroke Scale (NIHSS) score 5 upon entry

to the study, were between 40 and 90 years of age and able to speak either English

or French (Table 3–1). Patients were excluded if there was evidence of alcoholism

or psychoactive drug use, benzodiazepine use 24 hour prior to the PET study, if

they were unable to complete the initial MRI or PET studies or had a history of

either epilepsy, psychiatric or neurodegenerative diseases. One participant withdrew

from the study after the initial scan and was excluded from analysis when initial and

follow up PET images were compared directly.

Enrolled patients were evaluated in the sub-acute phase of their stroke and on 6

months follow-up images using a clinical assessment battery for motor and cognitive
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Table 3–1: Demographic and clinical information for enrolled patients

recovery, and with both MRI and PET scans to measure the peri-infarct cortical

thickness and estimate the neuronal cell density changes, respectively.

T1 and Flair MR Acquisition

All MR images were acquired on a Siemens MAGNETOM TrioTim syngo MR

B17. The Fluid attenuated inversion recovery (FLAIR)—a T2 weighted MR image

with attenuated CSF signal-sequence used a TR of 9000 ms, TE of 75 ms and TI of

2500 ms with a flip angle of 150° to acquire 60 transaxial slices with thickness of 2

mm and a base resolution of 192 3 192 voxels in plane. The T1-weighted data set for

surface extraction was acquired using a MPRAGE sequence with TR 2300 ms, TE

2.98 ms, TI 9 ms and 9 degree flip angle comprising 160 sagittal slices with isotropic

1mm voxels and 256 3 256 voxels in plane resolution.

The FLAIR image was upsampled to the resolution of the T1 image using linear

interpolation and blurred with a 2 mm FWHM Gaussian kernel to attenuate noise.
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CIVET

CIVET is an image processing pipeline that generates mesh representations of

the cortical GM from T1 MR images. CIVET uses the non-parametric N3 method

to correct MR field non-uniformity [118]. The MRI is then transformed to MNI

stereotaxic space of the ICBM 152 6th generation non-linear brain atlas [4], using a 12

parameter affine transformation [2]. Spatially normalized images are then segmented

into three tissue classes: GM, WM and cerebral spinal fluid using INSECT [119], a

discrete classifier, as well as a probabilistic classifier [120]. The Constrained Laplacian

Anatomic Segmentation using Proximity algorithm generates a mesh representation

of the cortical GM using two deformable mesh models consisting of 81924 vertices

connected to form triangles. Cortical thickness is measured by taking the distance

between the mesh fitted to the WM-GM boundary and that fitted to the GM-pia

boundary. Volumetric cortical GM binary images were created from the WM-GM

and GM-Pia mater surface meshes using a ray-tracing algorithm to identify the

voxels that lie between the two surface meshes [121]. The GM masks and WM

were transformed from MNI stereotaxic space to T1 native using nearest-neighbor

interpolation.

PET Acquisition

[18-F]-FMZ scans were obtained for all participants with an ECAT HRRT PET

scanner in list mode (Siemens Medical Solutions, Knoxville, TN, USA) [12]. The

ECAT HRRT is a dedicated full 3D high resolution brain scanner, with a field view
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of 25.2 cm (axially) and 31.2 cm (diameter), and has a spatial resolution of be-

tween 2.3 mm and 2.8 mm FWHM and enables data acquisition with high spatial

resolution combined with high sensitivity. In addition, the use of two crystal layers

(LSO/LYSO) permits photon detection with depth-of-interaction information. After

a transmission scan for attenuation correction (137Cs-source), approximately 370

MBq [18-F]-FMZ were injected intravenously as a slow bolus over 60 s. The list

mode data were acquired for 60 min after injection and were subsequently binned

into 2209 sinograms (each of size 256 radial bins 3 288 azimuthal bins) using span 9

compression for a total of 17 time frames (40s, 20s, 2 330s, 360 s, 4 350s, 3 3300s,

and 3 3600s), resulting in images with a voxel size of 1.22× 1.22× 1.22mm3. Fully

3D FBP by 3D reprojection (3D RP) was carried out with a Hamming windowed

Colsher filter (alpha 5 0.5, cut off at the Nyquist frequency). The PET image was

co-registered and resampled using linear interpolation to the native T1 using a six

parameter rigid transformation.

Partial-Volume Correction

PET images were partial-volume corrected using the idSURF algorithm [121].

IdSURF is an iterative algorithm based on Lucy-Richardson deconvolution and at-

tempts to make subsequently better guesses of the true tracer-distribution [122, 123].

The algorithm proceeds by filtering an estimate of the true tracer-distribution, ini-

tially the PET image itself, with a model of the PET scanner point-spread function;

in this case a Gaussian filter (FWHM 2.5). The difference between the original

PET image and the filtered test image is used to update the estimate of the true
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tracer distribution. Anatomically constrained filtering is performed by taking the

local mean of voxels within predefined anatomic regions. Whereas traditional linear

filtering, e.g., Gaussian smoothing, are effective at removing noise, they also smooth

between anatomic regions and thus increase PVE. By constraining the filtering to

within anatomic regions, idSURF controls for noise while preserving edges between

these regions. The infarct core, GM and WM were treated as separate anatomic

regions for this analysis. Both the uncorrected PET and idSURF corrected images

were compared to evaluate the effect of PVC on measured radiotracer concentrations

in the PIC.

Tracer Kinetic Analysis

Tracer kinetic analysis was used to quantify specific tracer binding across pa-

tients. We computed the BPND maps from the PET images. BPND of a reversibly

binding radioligand is related to the maximum available concentration of its re-

ceptor (Bmax) accounting for the binding affinity of the tracer and the fraction of

non-displaceable binding (i.e., tracer irreversibly bound to other molecules than the

receptor) in the tissue. Parametric images of BPND were created using the Logan

plot method [124], with a white matter (WM) reference region 1 and a start time of

1 The WM was used as reference region because it is believed to have negligible
GABAABenz. density [125] and has been shown to produce similar results to using
the pons as a reference region [126]. It is also larger than the pons, making it less
susceptible to noise.
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300 seconds for the linear regression. To avoid any potential spill-over signal between

the WM and GM, the WM reference region was eroded by 4 voxels, i.e., 4 mm.

Surface Infarct ROI

Volumetric ROIs were drawn on the FLAIR MR images acquired for each par-

ticipant for both initial and follow-up scans and independently verified by two stroke

neurologists (Fig. 3–1). Initial surface infarct masks were produced by nearest neigh-

bour interpolation of the volumetric infarct ROI with the mid-surface produced using

CIVET (Fig. 3–2C). The surface ROIs were then defragmented to remove isolated

points outside, as well as holes within, the main infarct. All regions smaller than

25% of the largest ROI were removed.

Geodesic Peri-Infarct Rings

Geodesic distances were calculated from the border of the infarct ROI. This

produces a surface map where the value at each surface vertex is the minimum

distance from the vertex to the border of the infarct (Fig. 3–2D). Distance maps were

created using in-house software that calculates the minimum distances by expanding

a closed region out wards along the edges of a surface mesh. The distance maps were

segmented into five rings of 3 mm, from 0 to 15 mm from the infarct. The rings

were named such that the 3 mm contains vertices from 0 to 3 mm and the 6 mm

ring contains vertices from 3 mm to 6 mm from the infarct core, and so forth for the

other rings.
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Figure 3–1: The infarcts were manually identified and drawn independently by two
stroke neurologists on the FLAIR images.
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Figure 3–2: (A) Volumetric masks were drawn by hand on flair MRI. (B) FMZ
BPND parametric images show GABAA receptor density. (C) Infarct masks were
intersected with surface representations of the cortical GM. (D) Distance maps were
produced by calculating geodesic distances from the border of the infarct. (E) Illus-
trative comparison of distance maps. The Euclidean distance maps were calculated
volumetrically, but interpolated onto the participant’s cortical surface representa-
tion. Both B1/2 and C1/2 show that the Euclidean distance metric produces an
inconsistent distance measure that does not increase monotonically. A1/2 show that
the Euclidean distance metric underestimates distances compared to the geodesic
metric.
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The PIC ring width of 3 mm was chosen because this approaches the spatial

resolution of 2.5 mm FWHM of the HRRT [12]. Histological studies have shown

decreased neuronal density up to 10 mm from the infarct core [27]. Hence the 9–12

mm PIC ring was the maximum distance at which BPND was expected to be reduced

in the affected hemisphere. The maximum distance of 15 mm was therefore chosen

to include a 12–15 mm PIC ring that would, presumably, include healthy tissue.

Geodesic PIC rings for the contralateral hemisphere were produced by reflecting

the surface mesh along the midline of the x axis. The reflected surface mesh was

then intersected with the infarct ROI to produce a surface ROI of the infarct in

the contralateral hemisphere. Geodesic distances were calculated from the infarct

reflected onto the unaffected hemisphere ROI and segmented to produce contralateral

PIC rings.

Euclidean Peri-Infarct Rings

Whereas the geodesic PIC rings were defined on a surface, the Euclidean PIC

rings were volumetric and produced in a similar manner as [58]. The first step was

to intersect the infarct and GM ROI. Euclidean distance maps from the GM infarct

were than calculated. As with the geodesic peri-infarct rings, the Euclidean distance

maps were segmented into five rings of 3 mm, from 0 to 15 mm from the infarct.

These rings were then intersected with a binary GM image to eliminate voxels outside

of the GM. Euclidean PIC rings for homologous regions in the unaffected hemisphere

were created by reflecting the infarct ROI along the x-axis and intersecting it with a
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volumetric binary image of the GM. Euclidean distances were then calculated in the

unaffected hemisphere and segmented into Euclidean PIC rings.

Statistical Methods

The effect of the ischemic insult on the PIC was measured by subtracting BPND

in the unaffected hemisphere by that of the affected hemisphere to give the inter-

hemispheric difference of BPND (IHDBP = BPND Unaffected - BPND Affected H).

In all but one of the two-way repeated measures (2RM) ANOVA described below,

the geodesic PIC rings were used as one of the two factors.

The following tests were performed on initial and follow-up images separately.

The effect on BPND of (1) PIC ring and (2) cerebral hemisphere (i.e., unaffected vs

ischemia affected) was tested using a 2RM ANOVA. For the purpose of comparison,

this same test was performed with the Euclidean peri-infarct rings. To determine

that the two distance metrics produced different results, the 2RM ANOVA used (1)

PIC ring and (2) distance metric (i.e., Euclidean vs. geodesic) as factors. Lastly, to

evaluate the effect of PVC on IHDBP we performed a 2RM ANOVA with (1) PIC

ring and (2) PVC method (i.e., uncorrected vs idSURF) as factors.

To determine if there was a change in the IHDBP between initial and follow-up

images, a 2RM ANOVA was performed with (1) PIC ring and (2) scanning session as

factors. This same test was also performed for the cortical thickness values extracted

from the initial and follow-up MRI.

If the interaction effect of the 2RM ANOVA reached significance at the 5%

level, post-hoc tests were performed on each PIC ring to test if there was a significant
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difference in the measured response variable between the two-levels of the factor. The

purpose of the post-hoc testing was to determine which PIC rings contributed to the

significant interaction effect of the ANOVA. This was done using Wilcoxon signed-

rank [127], with P-values adjusted for multiple comparisons with Hochberg’s method

[128]. The correction for multiple comparisons was performed independently for each

set of ANOVA, because these tests asking conceptually independent questions about

the data and do not use the same set of response variables.

3.5 Results

3.5.1 Surface Geodesic Distances Show Decreased BPND Closer to In-
farct

The results of the surface PIC analysis indicate first that BPND is lower in the

affected hemisphere compared to the unaffected hemisphere in both the initial and

follow-up images. The difference in BPND between hemispheres was significant both

in the main effect of hemisphere (Initial: P < 0.01, F = 16.15, Follow-Up: P < 0.001,

F = 20.98) and in the interaction between hemisphere and PIC ring in both initial

and follow-up images (Initial: P < 0.001, F = 18.78, Follow-Up: P < 0.001, F =

20.34). Post-hoc testing revealed that the difference in BPND between hemispheres

is significant from 0 mm to 6 mm in the initial images and 0 mm to 15 mm in the

follow-up images (Fig. 3–3).

There appears to have been a significant increase in IHDBP from initial PET

images to follow-up. The 2RM ANOVA showed an overall significant difference

in IHDBP in the PIC rings between initial and follow-up images (P < 0.01, F =

4.88). However, using the Wilcoxon signed rank test for post-hoc testing, none of
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Figure 3–3: Average BPND measured in affected and unaffected hemispheres for
initial and follow-up images. BPND is reduced closer to the infarct and gradually
increases to close to normal levels further away. ‘*’: P<0.05; ‘**’: P<0.01.
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the individual PIC were significantly different in IHDBP between initial and follow-

up images.

3.5.2 Geodesic and Euclidean Distances Produce Different Results

The distance profiles produced with the Euclidean PIC rings do not show the

gradual increase in BPND in the stroke affected hemisphere that was observed with

the geodesic profiles (Fig. 3–4). In the main effect of hemisphere, the difference in

BPND between hemispheres was trending towards significant in the initial scanning

session and significant in the follow-up session (Initial: P < 0.1, F = 4.59, Follow-Up:

P < 0.01, F = 11.7). There was a significant interaction effect between hemisphere

and PIC ring in both initial and follow-up images (Initial: P < 0.001, F = 15.06,

Follow-Up: P < 0.001, F = 19.95). In post-hoc testing, however, the difference

between hemispheres was only significant in the 0–3 mm PIC rings.

We compared the Euclidean IHDBP profiles to the IHDBP profiles produced

with a geodesic distance metric (Fig. 3–5, see Fig. 3–2 for visual example). In the

initial and follow-up scans, there was a significant difference in IHDBP due to the

main effect of distance metric (Initial: P < 0.05, F = 6.45, P < 0.01, F = 13.09), but

no significant interaction effect between distance metric and peri-infarct ring. The

area under the geodesic IHDBP profile was 35% larger than that under the Euclidean

IHDBP profile in the initial images and 48% larger in follow-up images.
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Figure 3–4: Using an Euclidean distance metric, BPND in the affected hemisphere is
generally lower than in the unaffected hemisphere. However only in the 3 mm ring is
there a statistically significant difference between hemispheres. ’*’: P < 0.05; ”**’:
P < 0.01.
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Figure 3–5: IHDBP is consistently larger with the geodesic masks, particularly in
follow-up images.
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Table 3–2: 2W-RM ANOVA testing the effect of PVC on BPND

3.5.3 Partial-Volume Correction Increases BPIDH

PVC produces larger IHDBP than observed in uncorrected PET images (Table

3–2). However, only in follow-up images was there a significant interaction effect be-

tween PIC ring and PVC. In post-hoc testing, the only significant difference between

PVC and uncorrected images was in follow-up images in the 3 mm PIC ring, but

this did not survive correction for multiple comparisons (Fig. 3–6). PVC IHD BP

was found to be 17% larger than uncorrected IHDBP in the initial images and 20%

larger in the follow-up images.

3.5.4 Cortical Thickness Is Reduced in Follow-up Scans

The difference in cortical thickness between affected and unaffected hemispheres

was only trending towards significance in the initial cortical thickness maps and was

found to be significant in the follow-up maps (Table 3–3). The interaction effect

between PIC rings and hemisphere was significant in the follow-up images, but this

was not attributable to any specific PIC ring.
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Figure 3–6: IHDBP for PVC and uncorrected PET at initial and follow-up images.
Without PVC, the inter-hemispheric difference in BPND appears to be underesti-
mated.

Table 3–3: 2W-RM ANOVA testing effect of scanning session on cortical thickness
(mm)
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3.6 Discussion

The PIC is the site of important physiologic changes after ischemic stroke in

initially viable cortex and is often defined using a Euclidean distance metric to mea-

sure distances from the infarct. We developed a new PIC model that uses geodesic

distances measured along a surface model of the cortical GM and used it to ana-

lyze [18-F]-FMZ PET images of stroke patients. Using the geodesic method results

in IHDBP that is 35–48% larger than that obtained with a traditional Euclidean

method and is 17–20% larger with PVC.

3.6.1 IHDBPMeasured with Geodesic PIC Rings Show Long-Term Neu-
ronal Cell Loss

Distances measured relative to the cortical vasculature are better modeled with

a geodesic distance metric than an Euclidean metric, because the former does not cut

across the folds of the cortical surface. Defining the PIC using a geodesic distance

metric allows for a more anatomically realistic measurement of changes in BPND

along the cortical surface. There was a significant reduction of BPND in the PIC in

the affected hemisphere compared to the unaffected hemisphere and this difference

was larger closer to the infarct core. This suggests that the effect of the stroke

on viable cortex does not have a sharp boundary and should be studied at regular

distance intervals from the infarct border rather than in a single region.

IHDBP was significantly larger at follow-up than in the initial images. [18-

F]-FMZ binds to GABAA receptors on cortical neurons and is used as a surrogate

marker of neuronal density [47, 129]. The increase in IHDBP between initial and

follow-up is consistent with long-term neuronal cell death in the peri infarct grey
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matter after ischemic stroke. This interpretation is consistent with findings from

post-mortem histological studies of humans with ischemic infarcts [24, 25, 27]. In

these participants, a transition zone of decreased neuronal density from 0–5 mm (and

up to 10 mm in some patients) around the infarct border was observed. It should be

noted that these histological studies measured distance from the infarct by projecting

distances along the cortical surface onto the outside surface of the brain, excluding

the sulcal depths. This distance metric will produce uniformly larger distances than

the geodesic distance metric. In the initial PET images we found a decrease in BPND

in the affected hemisphere from 0 mm to 6 mm, which was consistent with previous

results from histological studies. In the follow-up images, however, the decrease in

BPND in the affected hemisphere extended up to 15 mm, suggesting a larger and

more gradual transition zone between infarct ed and healthy tissue.

In vivo evidence has also been found for selective neuronal loss in the non-

infarcted penumbra both in FMZ PET [56–58] and [123-I]-Iomazenil SPECT [54,

55]; for a review, see [23]. The limitation of these methods is that they define the

PIC as a single, uniform region and do not reveal changes in BPND within the PIC.

The current findings suggest that the PIC is not homogeneous and may vary as a

function of the distance from the infarct core.

Previous studies of the effect of stroke on cortical thickness have also reported

changes in cortical thickness. Some studies have also reported increases in cortical

thickness in regions associated with functional remapping in both acute [130] and

chronic stroke [131]. A study of sub-cortical infarcts from cerebral small vessel disease
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found long-term cortical thinning in GM regions connected via WM tracts to the

infarct [132].

3.6.2 Euclidean PIC Rings Are Less Sensitive to IHDBP

The PIC can be defined morphologically by measuring the distance from the

border of the infarct to the surrounding tissue. Traditional approaches have delin-

eated the PIC using a Euclidean distance metric [103, 107, 111–113]. These methods

start by defining a volumetric ROI of the infarct. The PIC is then defined by iden-

tifying points that are within a given distance from the infarct, where the distance

is measured as a straight line in 3D space. This is typically done by performing a

pixel or voxel-wise dilation of the infarct to produce PIC rings or spheres. Dilations

of the infarct implicitly use a Euclidean metric by assuming that all voxels contained

within a dilation are equally far from the infarct.

The geodesic and Euclidean PIC rings produced different BPND profiles. With

the Euclidean peri-infarct rings, unlike the geodesic IHDBP profiles, there was little

difference between the stroke affected and unaffected hemispheres beyond the 3 mm

ring. The difference between geodesic and Euclidean IHDBP was larger in follow-up

images. The reason for this appears to be that the BPND profiles produced with

Euclidean and geodesic PIC rings differ in how they relate to the topology of the

cortical surface and its vasculature.

The Euclidean metric measures distances in the PIC as a straight line to the

border of the infarct. The limitation of this method is that it cuts across folds in

the cortical surface (Fig. 3–21.E and 3–2.2.E), and thus underestimates the true
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distance traveled by the vasculature (Fig. 3–2.1.D and 3–2.2.D). The result of this

underestimation is that beyond 3 mm, where the geodesic and Euclidean rings sample

approximately the same voxels, the Euclidean PIC rings include regions that are

relatively unaffected by the stroke and thus have normal BPND. Hence, beyond the

3 mm PIC rings, the Euclidean PIC rings exhibited no difference in BPND between

the unaffected and stroke affected hemispheres in both initial and follow-up images.

The surface-fitting used by CIVET depends on a sharp WM-GM gradient, which

may be eroded or eliminated by the infarction caused by acute ischemia. Visual

inspection of the CIVET surfaces revealed that they closely followed the cortical

mantle outside of the infarct where the WM GM border was preserved. The surfaces

did not follow the cortical mantle inside of the infarct, but this region was not used

in the present analysis.

3.6.3 Partial-Volume Correction Results in Higher Sensitivity to Long-
Term Neuronal Cell Loss

In the initial and follow-up PET images there was significant difference between

uncorrected and PVC IHDBP. However, at follow-up there was a significant inter-

action between PVC and PIC ring. This suggests that PVEs are a more important

confounds in PET-images acquired 6 months after the stroke.

Despite these concerns, PVC has not been widely implemented in studies involv-

ing the PIC and may be a source of bias in results. For example, several PET and

SPECT studies have reported decreased binding to GABAA receptors [43, 54–56,

108] at several weeks to months post-stroke. Without PVC it is difficult to conclude
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whether their results are consistent with those reported here, because it remains pos-

sible that their reported decrease in radiotracer binding to GABAA was the result

of a change in cortical thickness and not a change in the availability of GABAA

receptors.

While PVC is not widely used in studies of the PIC, some studies have used

simple PVC algorithms that compensate for spill-out effects [57, 58]. In the present

study we found that spill-in PVE were particularly important because small but

significant changes in radiotracer binding within a region can be obscured by spill-in

radiotracer concentration from adjacent regions.

There are a multitude of factors that come into play when determining whether

or not PVC be important in PET images of stroke patients: size of the infarct,

presence of cortical thinning, the gradient of radiotracer concentration between the

infarct and healthy tissue. It is difficult to know a priori how these will come into

play. The use of PVC methods that correct for both spill-in and spill-out effects in

the analysis may thus reduce the risk of overlooking significant results due to PVE

and should be considered in standard data analysis procedures. The aforementioned

studies of GABAA with PET and SPECT use mismatch between an image of the

initial hypoperfusion, e.g., from perfusion CT, with the an image of the final infarct,

e.g., from FLAIR MRI, and thereby define one large peri-infarct region [43, 54–57,

108]. Our geodesic PIC method is compatible with this approach because the image

of the initial hypoperfusion can be mapped onto a surface representation of the

cortical GM and used to constrain the spatial extent of the PIC rings. This would
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ensure that the PIC rings only sample from tissue that is known to be hypoperfused

and improve the signal-to noise ratio of the BPND distance profiles.

3.6.4 Limitations

One limitation of the present study was the use of the contra-lateral hemispheres

instead as comparator. Kim et al. [108] have reported both widespread bilateral de-

crease in GABAA receptor density in human stroke patients as well as some localized

increase in GABAA receptor density in the contralateral peri-infarct. A global de-

crease however should not affect the results presented here, because the difference

between the hemispheres remains the same given a global reduction in both hemi-

spheres. Moreover, if the peri infarct rings of the unaffected hemisphere in this study

do include regions with increased GABAA receptor density, then the results would

only tend to underestimate the true difference in BPIHD and would only introduce

a bias into the conservative direction.2

Infarction causes a local reduction in the gradient of the MRI signal between

the WM and GM and and thus interferes with the definition of a WM-GM surface

mesh. Without a reliable WM-GM surface mesh, it is impossible to accurately

2 Disruption of the blood-brain-barrier could theoretically have caused an un-
specific influx of the radioligand and thus an overestimation of BPND in the initial
scans in the subacute phase. The effect of BBB disruption is however considered to be
low because by definition the PIC is morphologically normal tissue (BBB-disruption
mainly occurs in the infarct). Even if the BPND would have been overestimated,
this would have introduced a bias into the conservative direction because it would
have led to a decreased of the interhemispheric difference in BPND.
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measure cortical thickness. Visual inspection of the surface meshes revealed that the

distortion of the mesh is limited to the infarct and thus had no visible effect on the

surrounding PIC.

The most important limitation is the high variability of the size, shape and loca-

tion of the stroke volumes. The only way to account for this variability would be to

use the size or location of the stroke as an additional factor in the statistical analysis.

A complex statistical analysis such as this would require additional participants and

was not possible in the present study.

3.7 Conclusions

In cortical strokes, a geodesic distance metric provides an anatomically realistic

method for modeling the PIC because it conforms more closely to the anatomy of the

vasculature than traditional, Euclidean distance metric. PVC may be important in

the context of cortical ischemic stroke because it gives a more anatomically realistic

estimate of BPND and controls for long-term changes in cortical thickness due to

the ischemic insult.
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4.1 Preamble

In this chapter we present a novel software package, APPIAN (Automated

Pipeline for PET Image ANlaysis) to facilitate and improve the state of neurotrans-

mitter receptor mapping with PET by making it more robust and reproducible. The

challenge of neurotransmitter receptor mapping with PET is that it requires several

image processing stages in order to produce the desired quantitative values represent-

ing radioligand binding densities. While researchers have a wide variety of algorithms

to choose from, it is often not clear which algorithm offers the best solution for the
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specific task. Another problem is that at each stage there is a potential for errors

that may be difficult for the user to notice, but that can subtly bias the final results.

While there exists a software package that handles most of the needs of re-

searchers, it is not open-source and is prohibitively expensive for smaller research

groups. By making the software package presented here open-source, we hope to

encourage the PET research community to participate in the development of this

software by contributing preferred algorithms. This will allow easy comparison be-

tween different algorithms on a wide variety of different data sets and promote the

adoption of consensus image processing methods. In this study, APPIAN was not

directly compared to existing pipelines on the same datasets. In the future a com-

parison would ideally be performed versus PMOD as this is currently considered the

gold-standard data set.

In the following manuscript a comparison is made between existing PET process-

ing pipelines. Two important software packages were not included in the manuscript,

one of which had not yet been released at time of publication, but are important to

include in a discussion of competing PET pipelines. PETSurfer [19, 133] is a suite of

individual tools that can be used to perform post-reconstruction PET motion correc-

tion, PET-MRI coregistration, PVC, and quantification with tracer kinetic analysis.

Magia is another recent PET pipeline and includes: post-reconstruction PET motion

correction, PET-MRI coregistration, quantification with tracer kinetic analysis [134].

In addition to the criteria which are used in the manuscript to distinguish these

pipelines, there are a few additional considerations for differentiating them: the

ability to use arterial input functions, use the subject’s MRI, and motion correction.
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Of the reviewed pipelines the ones that allow the use of arterial input functions are:

APPIAN, MIAKAT, and PMOD. Post-reconstruction motion correction can be an

important preprocessing step in PET imaging and is implemented in : MIAKAT,

PMOD, PETSurfer, and Magia. All described software packages except CapAIBL

can be used with the subject’s MRI.

To demonstrate that this software package, which is based on freely available

PET processing tools, can accurately recover parametric values, such as radioligand

binding potential, from raw PET image, we evaluate its accuracy on Monte-Carlo

simulated PET data.

4.2 Abstract

APPIAN is an automated pipeline for user-friendly and reproducible analysis

of positron emission tomography (PET) images with the aim of automating all pro-

cessing steps up to the statistical analysis of measures derived from the final output

images. The three primary processing steps are coregistration of PET images to T1-

weighted magnetic resonance (MR) images, partial-volume correction (PVC), and

quantification with tracer kinetic modeling. While there are alternate open-source

PET pipelines, none offers all of the features necessary for making automated PET

analysis as reliably, flexibly and easily extendible as possible. To this end, a novel

method for automated quality control (QC) has been designed to facilitate reliable,

reproducible research by helping users verify that each processing stage has been per-

formed as expected. Additionally, a web browser-based GUI has been implemented

to allow both the 3D visualization of the output images, as well as plots describing
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the quantitative results of the analyses performed by the pipeline. APPIAN also uses

flexible region of interest (ROI) definition— with both volumetric and, optionally,

surface-based ROI—to allow users to analyze data from a wide variety of experi-

mental paradigms, e.g., longitudinal lesion studies, large cross-sectional population

studies, multi-factorial experimental designs, etc. Finally, APPIAN is designed to

be modular so that users can easily test new algorithms for PVC or quantification or

add entirely new analyses to the basic pipeline. We validate the accuracy of APPIAN

against the Monte-Carlo simulated SORTEO database and show that, after PVC,

APPIAN recovers radiotracer concentrations within 93–100% accuracy.

4.3 Introduction

The increasing availability of large brain imaging data sets makes automated

analysis essential. Not only is automated analysis important for saving time, but

it also increases the reproducibility of research. No existing post-reconstruction

positron emission tomography (PET) software package satisfies all the needs of re-

searchers, specifically code that is free, open-source, language agnostic, easily ex-

tendible, deployable on web platforms as well as locally, and including all necessary

processing steps prior to statistical analysis. We therefore present APPIAN (Au-

tomated Pipeline for PET Image Analysis) a new open-source pipeline based on

NiPype [135] for performing automated PET data analysis. The starting point for

APPIAN are reconstructed PET images on which all necessary processing steps are

performed to obtain quantitative measures from the original PET images (Figure

4–1). In conjunction with the reconstructed PET image, APPIAN uses T1-weighted
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MR images to define regions of interest (ROI) that are used at multiple processing

stages. Briefly, APPIAN (1) coregisters the T1 MR image with the PET image, (2)

defines ROI necessary for later processing steps, (3) performs partial- volume cor-

rection (PVC), (4) calculates quantitative parameters, (5) produces a report of the

results, and finally, (6) performs QC on the results (see Figure 4–1 for a schema of

APPIAN, and Discussion section for a detailed description of the pipeline, complete

with flowchart).

4.4 Materials and Methods

4.4.1 Pipeline Overview

Coregistration

Positron emission tomography images are coregistered to the corresponding non-

uniformity corrected [118] T1 MR-images using a six parameter linear fitting algo-

rithm that minimizes normalized mutual information. The algorithm is based on

minctracc1 and proceeds hierarchically by performing iterative coregistration at

progressively finer spatial scales [2]. Coregistration is performed in two stages, the

first using a binary mask for the PET and the T1 MR images, respectively, to obtain

a coarse coregistration. This is followed by a second registration step to refine the

initial fit between the PET and T1 MR images without the use of the binary images.

1 https://github.com/BIC-MNI/minc-toolkit-v2
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Figure 4–1: APPIAN performs all processing steps necessary to obtain quantitative
parameters from reconstructed PET images. Flexible definition of ROI allows use
of APPIAN for a wide variety of experimental designs. Integrated QC helps ensure
that the pipeline performs as expected.
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MR Image Processing

T1 structural preprocessing is performed if the user does not provide a binary

brain mask volume and a transformation file that maps the T1 MR image into

stereotaxic space. If these inputs are not provided, APPIAN will automatically

coregister the T1 MR image to stereotaxic space. By default, the stereotaxic space

is defined on the ICBM 152 6th generation non-linear brain atlas [4], but users can

provide their own stereotaxic template if desired. Coregistration is performed using

an iterative implementation of minctracc [2]. Brain tissue extraction is performed in

stereotaxic space using BEaST [136]. In addition, tissue segmentation can also be

performed on the normalized T1 MR image. Currently, only ANTs Atropos package

[137] has been implemented for T1 tissue segmentation but this can be extended

based on user needs.

Regions of Interest

Regions of interest have an important role in three of the processing steps in

APPIAN: PVC, quantification, and reporting of results. ROIs are used in PVC

algorithms to define anatomical constraints. When no arterial input is available for

quantification, a reference ROI is placed in a brain region devoid of specific tracer

binding. Finally, when reporting results from APPIAN, ROIs are needed to define the

brain areas from which average parameters are calculated for final statistical analysis.

ROIs for each of these processing steps can be defined from one of three sources. The

simplest ROI are those derived from a classification of the T1 MR image, e.g., using

ANIMAL [4], prior to using APPIAN. Users can also use tissue classification software
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implemented in APPIAN to classify their T1 MR images, thereby eliminating the

need to run a strictly MR image-based pipeline prior to using APPIAN.

Regions of interest can also be defined on a stereotaxic atlas, e.g., AAL [138],

with a corresponding template image. In this case, the template image is non- linearly

coregistered to the T1 MR image in native space, and subsequently aligned to the

native PET space of the subject. Finally, it is frequently necessary to manually

define ROI on each individual MR image, for instance when segmenting focal brain

pathologies such as a tumor or ischemic infarct. This option is also implemented in

APPIAN.

Partial-Volume Correction

In PET, partial-volume effects result from the presence of multiple tissue types

within a single voxel and the blurring of the true radiotracer concentrations. PVC of

PET images is thus necessary to accurately recover the true radiotracer distribution

and, for example, differentiate between true neuronal loss from cortical thinning.

Several methods have been proposed to perform PVC, many of which are imple-

mented in PETPVC [139]. In addition, we have also implemented idSURF [121], a

voxel-wise iterative deconvolution that uses anatomically constrained smoothing to

control for noise amplification while limiting the amount of spill-over between dis-

tinct anatomical regions. APPIAN thus allows the user to select the appropriate

PVC method based on their needs and their data. If the desired PVC method is not

implemented in APPIAN, it can be easily included in the pipeline by creating a file

describing the inputs and outputs of the method.
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Quantification

In PET images, quantitative biological or physiological parameters—such as

non-displaceable binding potential or cerebral blood flow—are often calculated from

the measured temporal change of tissue radiotracer concentration, so-called time

activity curves (TACs), within voxels or ROIs. Many models exist for performing

quantification depending on the type of radiotracer, parameter of interest, and time

frames acquired. The quantification methods available in APPIAN are from the

Turku PET Centre tools2 [140]. Currently, the implemented models are: the Logan

Plot [141], Patlak–Gjedde Plot [142, 143], Simplified Reference Tissue Model [144],

and standardized uptake value [145]. APPIAN implements both voxel-based and

ROI-based quantification methods. It can also process arterial input functions as

well as input functions from reference regions devoid of specific binding. Arterial

inputs are in the “.dft” format described by the Turku PET Centre.

Results Report

The ROI defined in “MR Image Processing” section are used to calculate regional

mean values for the parameter of interest from the output images after coregistration,

PVC and quantification processing steps. Additionally, if cortical surface meshes are

provided by the user, the output images can be interpolated on these meshes and

be used to derive surface-based parameter estimates. Regional mean parameter

2 http://www.turkupetcentre.net/petanalysis/formattpcdft.html
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values are saved in wide format ‘.csv’ files in the so-called ‘vertical format’ (i.e., the

output measure from each subject and each region is saved in a single column). This

standardized data format simplifies subsequent analysis with statistical software,

such as R (R Core Team, 2016 or scikit-learn [146]).

APPIAN also calculates group-level descriptive statistics obtained from the out-

put images. The group-level statistics that are provided exploit the BIDS3 naming

convention which requires that file names include the subject ID, the task or condi-

tion, and the scanning session. APPIAN thus provides users with summary statistics

for the subjects, tasks, and sessions. Descriptive statistics are plotted and displayed

in a web browser-based GUI to allow simple and easy visualization of the results.

Quality Control and Visualization

APPIAN includes both visual and automated quality control. Visual quality

control is facilitated by the incorporation of BrainBrowser–a 3D/4D brain volume

viewer [147]– in the web browser-based GUI (Figure 4–2). This makes it possible to

visualize the output images of the coregistration, PVC and quantification processing

stages without the need for additional software.

While visual inspection remains the gold-standard method for verifying the ac-

curacy of PET coregistration [148–152], automated QC can be useful in guiding the

user to potentially failed processing steps. The first stage of the automated QC is to

define a QC metric that quantifies the performance of a given processing step. For

3 Brain Imaging Data Structure
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Figure 4–2: Output images produced by APPIAN can be viewed via a web browser-
based dashboard. Visual QC for the coregistration stage can be performed by viewing
the MRI, PET, and the fusion images of the two.
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Figure 4–3: Output from automated quality control (QC) allows users to assess
the performance of major processing steps at a glance. Here the automated QC
metrics for the coregistration processing stage are shown: CC, cross-correlation,gc
MI, mutual information, FSE, feature-space entropy.

example, in the case of PET-MRI coregistration the relevant QC metric is the similar-

ity metric that quantifies the joint-dependence of spatial signal intensity distribution

of the PET and MR images. By itself a single metric is insufficient to determine

whether the processing step has been performed correctly. However, by calculating

the distribution of several QC metrics for all subjects, it is possible to identify po-

tential anomalies. Kernel density estimation is used to calculate the probability of

observing a given QC metric under the empirical distribution of the entire set of QC

metrics. The results are displayed in an interactive plot in the web browser-based

dashboard (Figure 4–3).
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File Formats

Input files for APPIAN are organized following the Brain Imaging Data Struc-

ture (BIDS) specifications [153], which uses the Nifti format. In addition, APPIAN

also supports input files in the MINC file format [10], which are also organized ac-

cording to the BIDS specifications but with the MINC file extension.

High Performance Computing

APPIAN is optimized for high performance computing in two ways. APPIAN

is distributed in a Docker container4 that contains all the software necessary to run

APPIAN on any computing platform supporting such containers (i.e., where Docker

or Singularity has been installed). APPIAN can therefore be run identically across a

wide variety of computing environments. This not only facilitates the reproducibility

of results, but also allows APPIAN to be deployed simultaneously across multiple

computing nodes to analyze subjects in parallel. Additionally, APPIAN supports

multithread processing via NiPype and can therefore be run in parallel on multiple

CPUs on a given computing platform, e.g., a personal workstation or a processing

node on a server.

APPIAN also follows the specification of the BIDS apps in being capable of

running subject-level and group-level analyses independently. This means that an

instance of APPIAN can be run for each subject in parallel across the available

4 https://www.docker.com/
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computing resources. Once the individual processing steps have been completed and

stored in the same location, the group-level analyses can then be run, e.g., automated

QC and reporting of group-level descriptive statistics. Thus, a given data set can be

processed with APPIAN at different times and on different computing platforms.

The ability to process large data sets in an easy, fast, and reproducible manner

is essential, particularly in cases where parameters for a given algorithm need to be

optimized or where the performance of different algorithms at a given processing

stage is being compared.

Accuracy of APPIAN

The accuracy of the APPIAN pipeline was evaluated using the SORTEO Monte-

Carlo simulated PET data set [22]. These data consist of 15 subjects with a real T1

MR image segmented into anatomical defined ROIs derived from these images. From

each of these anatomically segmented images, three sets of simulated PET images

were produced by assigning empirically derived TACs of radiotracer concentrations

of [11- C]-raclopride (RCL), [18-F]-fluorodeoxyglucose (FDG), and [18-F]-fluorodopa

(FDOPA) into each segmented ROI. The PET images were simulated using the

SORTEO Monte-Carlo PET simulator for the Siemens ECAT HR+ scanner [154].

Magnetic resonance images were processed using CIVET. CIVET uses the non-

parametric N3 method to correct MR field non-uniformity [118]. The MR image is

then transformed to MNI stereotaxic space of the ICBM 152 6th generation non-

linear brain atlas [4], using a 12 parameter affine transformation [2]. Spatially nor-

malized images are then segmented into gross anatomical regions with ANIMAL
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(Collins and Evans, 1997. Thus all ROI images used in the subsequent analysis were

derived using CIVET prior to running APPIAN.

The accuracy of the APPIAN was verified by comparing the results of the three

central processing stages (coregistration, PVC, quantification) to the true radiotracer

concentration TACs or the parametric values derived from them. For the coregistra-

tion and PVC stages, the integral of the TAC recovered from the processed images

was compared to the integral of the true radiotracer concentration TACs. Parameter

values were obtained by calculating the Ki, BPnd, and SUVR for the FDOPA, RCL,

and FDG images, respectively, and compared to the same values calculated from

the true radiotracer concentration TACs. The accuracy for each processing stage

was calculated by dividing the results from APPIAN by the true radiotracer concen-

tration or parametric values. This calculation was performed for a specific ROI for

each radiotracer: cortical GM for FDG, the putamen for FDOPA, and the caudate

nucleus for RCL. PVC was performed using the GTM method with a point spread

function of 6.5 mm full-width half-maximum [155]. The cerebellum was used as a

reference region for the calculation of parametric values in the quantification stage.

4.5 Results

APPIAN was able to recover accurate values at each major processing stage

(Table 4–1), see Figure 4–4 for illustrative example from one subject. The recovered

values for the coregistration and PVC were the integral of the regional TACs. For the

quantification stage the recovered values were the parametric values as described in

section “Accuracy of APPIAN”. The accuracy of the coregistration stage was between
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Figure 4–4: Illustrative example of the image volumes produced by APPIAN for the
three major processing stages for FDG, FDOPA, and RCL.
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Table 4–1: Accuracy is measured as the ratio of recovered to true radiotracer concen-
tration or parameter value. APPIAN accurately recovers radiotracer concentrations
and tracer kinetic parameters from the SORTEO simulated PET images.

0.66 and 0.77, which represented an underestimation of the radiotracer distribution

due to partial-volume effects. The accuracy was significantly improved by PVC,

ranging between 0.93 and 1.05. The effect of PVC on the uncorrected radioactivity

concentration for each radiotracer is shown in Figure 4–5. The PVC led to a slight

overestimation in the caudate nucleus with RCL, but near perfect accuracy in the

putamen with FDOPA. The final output parametric values were very accurate for

RCL (1.02) and FDG (0.94), and lower in the case of FDOPA (0.83).

4.6 Discussion

4.6.1 Accuracy of APPIAN

APPIAN recovered accurate values for each of the three major processing steps

on the SORTEO simulated PET data set. Not surprisingly, the accuracy of the

recovered parameters was initially low (0.65–0.77), because of partial-volume effects.

This improved significantly after PVC with the GTM method (0.93– 1.05). For RCL

and FDG, the parametric values resulting from the quantification processing stage

maintained a similar level of accuracy to that of the PVC radiotracer concentrations.
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Figure 4–5: Time-activity curves for each subject and each radiotracer. Blue points
indicate the uncorrected PET radioactivity concentration after PET-MRI coregis-
tration and green points show radioactivity concentration after PVC with the GTM
method. PVC corrects for spill-over of radiotracer distribution and increases the
measured radioactivity concentration.

This was not the case with FDOPA where the accuracy decreased from 1 to 0.83.

The decrease in accuracy was due to noise in the radiotracer concentrations that

were measured in the caudate nucleus, which led to errors in the calculation of the

integrals used by the Patlak plot to determine Ki.

For each radiotracer, the validation of APPIAN’s accuracy was performed with

differing ROI and using different methods for calculating parametric values. These

differences mean that it is not possible to quantitatively compare APPIAN’s accuracy

for each radiotracer. The choice of ROI and algorithms for deriving parametric

values were chosen to reflect analysis procedures that are widely used by researchers

for each of the three radiotracers. It should be noted that the cerebellum is not

typically used as a reference region for calculating SUVR or Ki for FDG and FDOPA,

respectively. However, while the specific location of the reference region is of utmost
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Table 4–2: Many different PET processing software exist with various features.

importance when performing true PET quantification, it is not relevant for verifying

the computational accuracy of the algorithms in the APPIAN pipeline.

4.6.2 Comparison to Existing Pipelines

Several PET processing pipelines have been presented in recent years. We here

briefly describe them to highlight their relative strengths (Table 4–2) and discuss

how APPIAN compares to these. There are other PET pipelines that carry out at

least three of the six steps performed by APPIAN, they are: PMOD [156], CapAIBL

[157], MIAKAT [158], Pypes [159], and NiftyPET [160].

PMOD

PMOD [156] is the gold-standard software for quantification of PET images

and is distributed in modules that perform specific aspects of PET analysis. PKIN

includes an exhaustive list of quantification models and preprocessing methods for

blood and plasma activity curves for analyzing regional PET data, while PXMOD

performs the same analyses at the pixel level. PMOD also has modules that perform
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analysis and PVC (PBAS), and image registration (PFUS). All these modules can

be used interactively using a graphical user interface (GUI) but can also be linked

together in a pipeline to automate the analysis of large data sets. A particularly

useful feature is the option to add a QC step after each processing stage. PMOD

thus includes all the preprocessing and analysis methods needed for automated PET

analysis. As a commercial software solution however, the PMOD code is not open-

source and thus imposes limitations on the user community with respect to flexible

development and implementation of new image processing and analytical methods.

CapAIBL

CapAIBL [157] is a surface-based PET processing pipeline that is available

through an online platform. It spatially normalizes PET images to cortical sur-

face templates for the surface-based analysis and visualization of PET data without

the need for structural imaging. Cortical surfaces are derived from a standardized

template, thus subcortical structures such as the basal ganglia are not included in the

analysis. A purely surface-based approach is also limited to images from structurally

intact brains and may thus be difficult to apply to datasets with focal brain lesions.

Nonetheless, CapAIBL provides a highly original method for performing automated

PET analysis that is useful for the study of the cerebral cortex in cases where no

structural image has been acquired alongside the PET image. Dore et al. [161] have

shown a close correspondence in PET quantification across a wide range of radio-

tracers with coregistered PET and MR images and using CapAIBL, i.e., without

coregistration.
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Pypes

A recent multi-modal pipeline, Pypes [159], combines PET analysis with struc-

tural, diffusion, and functional MR images. This pipeline is free, open-source, and

it is also written using NiPype [135]. Pypes leverages several brain imaging software

packages–including SPM12 [162], FSL [163], and AFNI [164]–to provide multi-modal

workflows. While Pypes does incorporate PVC, it does not incorporate tracer kinetic

analysis, flexible ROI definition, or automated QC.

MIAKAT

MIAKAT [156] is the most complete, open- source PET processing pipeline. In

addition to featuring many tracer-kinetic models, MIAKAT also includes motion-

correction, a feature that is not currently implemented in APPIAN. One of MI-

AKAT’s most important features is its user-friendly GUI. This makes MIAKAT

easy to use for users not familiar with the command-line interface. In addition to

analyzing PET images, MIAKAT also includes the option to include structural im-

ages which are used to define regions of interest (ROI). MIAKAT has been recently

extended for use on non-brain PET image analysis and for application to species

other than humans [165].

One limitation of MIAKAT is that it does not include PVC, although this could

potentially be added to the pipeline. More importantly, it is built using MATLAB,

which restricts MIAKAT to a single, proprietary language with licensing restrictions.
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NiftyPET

NiftyPET is another open-source, Python-based PET processing pipeline that

implements Graphical Processing Unit-processing for massively parallel processing

[160]. It is the only PET processing pipeline to reconstruct PET images from sino-

grams and to perform PVC [166]. It should be noted that the authors of NiftyPET

use the term “quantification” to refer to quantification of radioactivity concentra-

tions, whereas this term is here used to refer to the quantification of underlying

biological or physiological parameters. NiftyPET therefore does not include para-

metric quantification.

APPIAN

There are a wide variety of PET pipelines presently available, each satisfying a

different niche. APPIAN provides a highly flexible framework for processing large

PET data sets, see Figure 4–6 for a detailed flowchart of APPIAN. One important

feature is that APPIAN allows the user to define ROI from a variety of sources and

is therefore compatible with a wide variety of experimental designs. Whereas lesion

studies frequently use a binary lesion image defined on each subject’s respective

structural image in its native coordinate space, it may be necessary for some studies

(e.g., investigating lesion effects on functional systems as in aphasia post stroke) to

use a common brain atlas in MNI-space. On the other hand, PET studies of, e.g.,

microglial inflammation may identify ROI based on the subjects’ respective tracer

binding pattern in PET images in their native space. Quantification of PET images

also requires users to be able to use either ROI to define a reference region without
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specific binding of the radiotracer or TAC measured from arterial blood samples.

APPIAN is therefore suited for a wide variety of experimental contexts because of

its flexible system for ROI definition.

APPIAN is also modular and easily extendable so that users can either test new

algorithms, e.g., a new PVC method, or add entirely new analyses to the pipeline.

Moreover APPIAN, like Pypes, is written with NiPype and can thus use any program

that can be run in a Bash shell environment. Users therefore do not need to rewrite

their software in, e.g., Python if they wish to implement it in APPIAN. Also, given

that descriptive statistics for ROI are automatically generated in the reporting stage,

it is easy to extend APPIAN to perform sophisticated group-wise analyses. For

example, investigators interested in implementing graph theoretical analyses can

append their analysis to the group-level processing and input the descriptive statistics

that are collected at the reports stage to their analysis.

Finally, APPIAN implements automated and visual QC to facilitate the analysis

of large data sets. This is essential because as multiple processing stages are linked

together into increasingly sophisticated pipelines, it is important that users be able to

easily and reliably confirm that each processing stage has been performed correctly.

Using APPIAN

APPIAN is available for both local use and cloud-based use. The source code

for APPIAN is freely available5 . While the code-base will be maintained by the

5 www.github.com/APPIAN-PET/APPIAN
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Figure 4–6: Flowchart of the modules implemented in APPIAN. Green boxes indicate
mandatory inputs, blue boxes indicate optional inputs, and tan boxes indicate the
primary quantitative outputs of the pipeline.
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authors, we hope to create a community of developers to support the project in

the long-term. Changes to APPIAN will be validated against the open CIMBI PET

data6 [10]. APPIAN is provided via a Docker (see footnote 3) image and can be easily

downloaded from Docker hub under tffunck/appian:latest. Cloud-based APPIAN is

available via the CBRAIN platform7 .

4.7 Conclusion

APPIAN is a novel PET processing pipeline that seeks to automate the pro-

cessing of reconstructed PET images for a wide variety of experimental designs. It

is therefore flexible and easily extendable. In order to ensure that each processing

step is performed as expected, visual and automated QC are implemented. Our

results on Monte-Carlo simulated PET data have shown that APPIAN accurately

recovers radiotracer concentration and parametric values. Future work will focus on

increasing the sensitivity of the automated QC and implementing more algorithms

for coregistration, PVC, and quantification.
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CHAPTER 5
Improving reproducibility of PET image analysis with automated

quality control
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5.1 Preamble

In chapter 3 we presented a software package called APPIAN for automating

PET image analysis. This software package includes a novel algorithm, called GRAD,

for performing automated QC. This algorithm can, in principle, be used to perform

QC for any automated image processing. The only necessary condition is that the

success of a processing stage can be quantified on a continuous scale. Given the

generality of GRAD, it is important to determine how well it works in the particular
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case of PET image processing. The work described in this chapter is aimed at

validating the ability of GRAD to detect processing errors in APPIAN. We used a

set of real PET images and systematically applied misregistrations between the PET

and MRI to determine how reliably GRAD would detect such misalignments.

5.2 Abstract

Automated quality control (QC) is necessary when analyzing large PET-data

sets using processing pipelines to ensure that each processing stage has been per-

formed correctly and hence improve reproducibility of the analysis. We designed a

new algorithm for performing automated QC via a framework we call GRoupwise

Anomaly Detection (GRAD). For a given processing stage, automated QC is per-

formed by first calculating image-derived metrics that quantify the performance of

the processing stage for all images acquired within a study cohort. The empirical

distribution of the QC metrics is then estimated using Gaussian kernel density es-

timation and used to identify images with anomalous values in the chosen metric.

While GRAD can in principle be used to perform automated QC for any imaging

modality, we have implemented and validated it in the context of positron emis-

sion tomography (PET). GRAD was validated by simulating misalignments between

PET and magnetic resonance (MR) images and testing how accurately GRAD could

identify misaligned images in the coregistration, partial-volume correction (PVC),

and quantification stages of PET image processing. The results showed that the

AUC for GRAD’s error detection ROC was 0.7-0.97 for images that were rotated by
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more than 6° or translated by more than 6mm. GRAD was therefore able to detect

moderate to large errors in coregistration with high sensitivity and specificity.

5.3 Introduction

The increasing availability of large brain imaging data sets has made automated

pipelines essential for reproducible and robust image processing and analysis. How-

ever, automated pipelines require rigorous quality control (QC) to ensure that each

processing step has been performed as expected. While manual QC based on visual

inspection is still the most commonly used and gold-standard method for perform-

ing QC [148–152], it requires significant time and labor on the part of investigators.

Manual QC also suffers from inter- and intra-rater variability [167]. We therefore pro-

pose a general framework for performing automated QC based on groupwise anomaly

detection (GRAD) and demonstrate its application to the automated QC of PET

image analysis.

Within the field of brain imaging, automated QC algorithms fall into one of

two conceptual frameworks: reference range approaches and group comparison ap-

proaches

The fist approach identifies a reference range for image-derived metrics from a

set of manually quality controlled images [167–169]. A classifier is then trained on

the reference set of image-derived metrics to determine which images should pass

QC. Automated QC is then performed by applying the trained classifier to a new set

of images.
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In the simplest case the classifier can be a threshold criterion which a metric must

exceed in order to pass QC. This criterion is determined by visual inspection of the

set of metrics obtained from manual quality controlled data [168]. More sophisticated

classifiers may also be used. Esteban, et al.[167] implement both a support vector

machine and random forest classifier to obtain an MR image classification based on

a set of image metrics. Similarly, Oguz, et al. [169] use entropy measures from a set

of artefact-free diffusion MR images to identify directional artefacts.

The fundamental assumption of the reference range approach is the generaliz-

ability of the metrics’ reference range from a reference data set to new scans from

different individuals. This assumption may not hold for imaging modalities with a

high degree of variability in the image-derived metrics. For example, an [18-F]-FDG

PET scan acquired on the CTI-Siemens ECAT HRRT and [18-F]-flumazenil PET

scan acquired on the Siemens ECAT HR+ will have very different image-derived

metrics that make it difficult to use a single reference range.

The second conceptual framework for performing automated QC is to compare

the image-derived metrics for the images acquired within a given study. Group

comparison of QC metrics may be evaluated visually [167, 170] or by a quantitative

algorithm that automatically detects outliers, e.g., k-means clustering [171].

We have implemented a novel technique for groupwise automated quality con-

trol, which we term GRAD (GRoupwise Anomaly Detection). The overall approach

of automated QC is to define a metric that quantifies the performance of a given

processing step. For example, in the case of coregistration this would be a similarity

metric, e.g., mutual information, between the PET and T1-weighted MR images. By
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itself, a metric for a single image is insufficient to determine whether that processing

step was performed correctly. Instead, an outlier detection algorithm is applied to

the empirical distribution of the QC metrics and outliers are identified based on a

user-defined threshold.

While GRAD can in principle be applied to any automated pipeline where mean-

ingful QC metrics can be defined, we evaluate GRAD in the context of PET-MRI

coregistration. Coregistration is the first of the 3 major processing stages that are

regularly performed in PET analysis. This step is usually followed by partial-volume

correction (PVC), and quantification by tracer kinetic analysis. Coregistration is

also a frequent source of error and can have a significant impact on downstream

analyses [17, 152, 166, 172–174]. We therefore evaluate the sensitivity and specificity

of GRAD for detecting errors resulting from misregistration in the coregistration,

PVC, and quantification stages.

5.4 Methods

5.4.1 Groupwise anomaly detection

GRAD was devised to assist the user in performing visual QC. While visual

inspection remains the gold-standard QC method [148–152], automated QC can be

useful in guiding the user to images that have potentially failed a processing stage.

The first stage of GRAD is to define a QC metric that quantifies the performance of

a given processing step.
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The empirical distribution of QC metrics is calculated from all coregistered

image data sets from all subjects in the cohort using kernel density estimation (KDE),

E, with a gaussian kernel, G, and a bandwidth, h, of 0.2:

E(x) = 1
nh

Σi<n
i=0G(x− xi

h
) (5.1)

QC metrics are standardized and centered around 0 to simplify calculations.

This empirical distribution is therefore calculated on a cohort of subjects whose PET

images have been acquired under similar conditions, e.g., a set of subjects acquired

with the same experimental protocol for a particular study. Anomalous values are

those whose probability of being observed falls below a predefined tolerance limit.

The probability of observing a given metric can be defined using either a single-

or two-tailed test (Fig.5–1). Certain QC metrics can be defined such that the per-

formance of the processing stage theoretically increases monotonically as a function

of the QC metric (Fig.5–1A), e.g., the mutual information between the PET and

MR images increases as the fit between the two improves. In this case, abnormally

large QC metrics do not need to be considered in the anomaly detection because

they are assumed to reflect an unusually good performance of the processing stage.

Therefore, only the probability of observing a QC metric value that is less than or

equal to the observed QC metric, i.e., a single-tailed test, needs to be calculated.

There are also instances where the performance does not monotonically increase

with the QC metric (Fig. 5–1B). In this case, anomalous QC metrics are detected by

calculating the probability of observing a QC metric that is larger than the absolute

value of the observed QC metric, i.e., a two-tailed test. Single-tail anomaly detection
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has higher specificity because it ignores positive outliers that represent abnormally

successful QC metrics. Distinguishing between QC metrics requiring single- and

two-tailed tests is therefore useful because it increases the overall specificity of the

automated QC.

QC metric for coregistration

The QC metric for the PET to MRI coregistration is defined as the image

similarity between the PET and MR images. Increasing similarity between the PET

and T1-weighted MR image implies better performance and thus anomaly detection

may be performed by calculating the single tailed probability of observing a value

less than or equal to the QC metric. In practice many metrics exist for evaluating

similarity between images, including mutual information (MI)(Eq.5.2) , feature-space

entropy (FSE)(Eq.5.3), and cross correlation (CC)(Eq.5.4):

MI(x, y) = 1
n

Σi<n
i=0p(x, y)log( p(x, y)

p(x)p(y)) (5.2)

FSE(x, y) = 1
n

Σi<n
i=0p(x, y)log(p(x, y)) (5.3)

CC(x, y) = Σi<n
i=0 (xi − x̂)(yi − ŷ)

Σi<n
i=0 (xi − x̂)Σi<n

i=0 (yi − ŷ) (5.4)

where x and y are the 2 images being compared, i.e., the PET and MRI.
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Figure 5–1: A. Performance is defined as a quantitative measure of how closely the
actual result produced by the pipeline coincides with the ideal result that should the-
oretically be produced by that processing stage. Each point represents an individual
scan from a subject in the sample. If performance of a processing stage increases
monotonically with the QC metric for that processing stage, then a single-tailed test
is sufficient to identify anomalous QC metrics. The red point indicated QC metrics
that would be identified as anomalous values. B. A two-tailed test is necessary to
identify anomalous QC metrics when a higher QC metric does not necessarily reflect
better performance of the processing stage.
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QC metric for PVC

The QC metric that was devised to detect errors at the PVC stage was based on

the standard mathematical formulation of image acquisition is O = P ⊗ RT rue + n,

where O is the observed PET image, RT rue is the true radioactivity distribution,

P is the scanner point-spread function, and n is noise. In principle, PVC therefore

attempts to estimate the source radioactivity distribution, REst., in the object by

removing the blurring effect of the scanner point-spread function, P . The QC metric

for PVC should be defined so that it is, in theory, maximized when the PV-corrected

image, REst. approaches RT rue. The QC metric for PVC used here was defined as

the negative mean-squared error (MSE) between the observed PET image, O, and

the PV-corrected PET image convolved with the approximation of the point-spread

function of the PET scanner used to acquire the image, P ⊗TEst. (Eq.5.5). A better

fit of the PVC algorithm between the observed and PV-corrected images leads to

larger, i.e., less negative, values for the QC metric. A singled tailed test of the

PVC QC metrics is therefore performed to identify potential anomalies. The strong

assumption underlying this approach is that the point-spread function of the PET

scanner can accurately be represented using a simpler model like a gaussian function.

QCP V C = − 1
n

Σi<n
i=0 (PETi − [P ⊗ TEst.]i)2 (5.5)

QC metric for quantification

Whereas the previous 2 processing stages can be characterized in terms of a

QC metric that monotonously increases with processing performance, this is not the
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case for the quantification stage. The quantification stage includes the application of

models to calculate quantitative or semi-quantitative values from the PET images,

e.g., BPnd. The quantification stage therefore includes tracer-kinetic analysis as well

as simpler models such as SUVR. The QC metric for the quantification stage is there-

fore the average parametric value within the user-defined ROI (Eq.5.6). Regardless

of whether the user has selected to calculate quantitative parameters on a voxel or

ROI basis, mean regional values are calculated using the ROI for the results stage.

Outliers from the quantification stage are then calculated using a two-tailed test for

outliers on the empirical probability density function (PDF) of the regional average

values.

The QC metric for the quantification stage is simply the average parametric

value within the set of user-defined ROIs :

QCT KA(r) = 1
nr

σi∈rPET
T KA
i (5.6)

where i is an element of a set of voxel coordinates in a user-defined ROI, r; n

is the number of voxels in the ROI; and PET TKA is the parametric image derived

with the chosen quantification method.

5.4.2 Evaluation of GRAD

PET images

Brain PET images with three different radioligands [18-F]-flumazenil, (FMZ),

[18-F]-fluorodeoxyglucose (FDG), and [C-11]-raclopride (RCL) and corresponding

T1-weighted MR images were acquired. 46 FMZ images were acquired with an
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injected dose of 370MBq [175]. 31 FDG images were acquired with an injected dose

of 185MBq and 27 RCL images [176] with an injected dose of 296-370MBq.

All PET scans were performed on the CTI-Siemens ECAT HRRT scanner in

list mode (SiemensMedical Solutions, Knoxville, TN, USA) [12]. The ECAT CTI-

Siemens ECAT HRRT is a dedicated full 3D high resolution brain scanner, with a

field view of 25.2 cm (axially) and 31.2 cm (diameter) and has a spatial resolution

of between 2.3 and 3.4mm FWHM, allowing data acquisition with high spatial res-

olution and high sensitivity. In addition, the use of two crystal layers (LSO/LYSO)

permits photon detection with depth-of-interaction information. The list mode data

were binned into 2209 sinograms (each of size 256 radial bins × 288 azimuthal bins)

using span 9 compression, resulting in images with a voxel size of 1.22 × 1.22 ×

1.22mm3.

FMZ images were reconstructed using fully 3D FBP by 3D reprojection (3D

RP) carried out with a Hamming windowed Colsher filter (alpha=0.5, cut off at the

Nyquist frequency). RCL and FDG images were reconstructed with 3D ordinary

Poisson OSEM [177].

MR images

The T1 MR images were acquired on a Siemens Magnetom TrioTim syngo MR

B17 using a MPRAGE sequence (repetition time (TR) 2300 ms, echo time (TE) 2.98

ms, TI 9 ms and flip angle = 9° matrix size = 160 × 256 × 256). The T1 MRI

corresponding to the RCL images were acquired on the Siemens Sonata 1.5T system,
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using a gradient echo pulse sequence (TR = 22 ms, TE = 9.2 ms, flip angle = 30°

and matrix size 176 × 256 × 256).

CIVET

All MR images were processed using CIVET on the CBRAIN platform (https://mcin-

cnim.ca/technology/cbrain/). CIVET uses the non-parametric N3 method to correct

MR field non-uniformity [118]. The MR image is then transformed to MNI stereo-

taxic space of the ICBM 152 6th generation non-linear brain atlas [4], using a 12

parameter affine transformation [2]. Spatially normalized images are then segmented

into GM, WM and cerebrospinal fluid [178]. Additionally, a stereotaxic atlas of the

basal ganglia defined on the ICBM 153 template [4] was non-linearly co-registered

onto the subject MRI in MNI stereotaxic space.

Additionally, CIVET uses the ANIMAL and INSECT segmentation algorithms

to classify the T1 MR images into gross anatomical regions. ANIMAL produces a

classification of the cerebral lobes and subcortical grey matter regions [179]. The

INSECT algorithm is used to segment T1 MR images into regions composed of gray

matter, white matter and cerebrospinal fluid [180]. Finally, the results of ANIMAL

and INSECT are combined (ANIMAL+INSECT) to create an image consisting of

a lobular segmentation of the cortical gray matter and white matter in addition to

subcortical grey matter regions [178].
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APPIAN

All PET image processing steps were performed with APPIAN. APPIAN (Au-

tomated Pipeline for PET Image Analysis) [181] an open-source pipeline based on

NiPype [135] for performing automated PET data analysis. APPIAN begins with

reconstructed PET images and performs all processing steps necessary to extract

quantitative measures from the PET images on which users will perform the statis-

tical analysis. In conjunction with the reconstructed PET image, APPIAN uses a

T1-weighted MR-image to define regions of interest (ROI) that are used at multi-

ple processing stages. Briefly, APPIAN 1) coregisters the T1 MR and PET images,

2) defines ROI necessary for later processing steps, 3) performs PVC, and 4) PET

quantification, 5) produces a report of the results, and finally, 6) performs automated

QC.

PVC was performed using the geometric transfer matrix method (GTM)[155].

The regions of interest used for PVC were the segmented images produced by ANI-

MAL+INSECT. For the FMZ and RCL tracers, PET quantification was performed

with the Logan plot [124]. A white matter reference region was used to calculate

non-displaceable binding potential and were defined on classification of the T1 MR

image with INSECT. 6 morphological erosions were applied to the reference region

mask to avoid any contamination from the cortical gray matter. The Patlak-Gjedde

plot method was used to calculate Ki, i.e., the net uptake rate for the radioligand,

for the FDG images using arterial input sampling [142, 143].
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Simulated misalignment

A set of correctly – as determined based on visual inspection - coregistered

PET and MR images were generated by running APPIAN on each of the three

sets of PET images. For each of the correctly coregistered PET images, a series

of transformations were applied to systematically misalign them relative to the MR

image. The misalignments comprised rotations of 2, 4, 6, 12, 18, 24 degrees and

translations of 2, 4, 6, 12, 18, 24 mm in the axial plane, respectively.

The performance of GRAD was evaluated for the three major image processing

stages included in APPIAN: coregistration, PVC, and quantification. Three QC

metrics were used to measure the performance of the coregistration processing stage:

cross-correlation (CC), mutual information (MI), and feature-space entropy (FSE)

[182]. A synthetic similarity metric, "All" was also used and was defined as the

Euclidean norm of the standardized CC, MI, and FSE metrics. For the PVC and

quantification stages, the QC metrics were defined as described in Eq.5.5 and Eq.5.6,

respectively. The automated QC for the quantification stage is performed for specific,

user-defined ROI. For FMZ and FDG PET images, the cortical GM was used for

automated QC of the quantification stage. Automated QC of the quantification stage

for the RCL PET images on the putamen as defined using the basal ganglia atlas

that was co-registered to each subject’s MR image in MNI space.

Outliers were detected as described above (section 2.2). ROC curves were cal-

culated from the probability values generated by GRAD. The area under the curve

(AUC) of the ROC curves was used to compare the performance of the groupwise

outlier detection algorithm at various levels of misregistration.
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5.5 Results

5.5.1 Evaluation of automated QC

The results from the simulated PET to MR image misalignment indicated that

the automated outlier detection was able to detect errors due to misaligned PET

images with good sensitivity in all three image processing stages. For the detection

of rotation errors in the coregistration stage (Fig.5–2, first row) the GRAD algorithm

performed only slightly better than chance (AUC=0.5-0.6) for small errors (2° rota-

tion). This increases to an AUC of 0.7-0.9 for moderate errors (6-16° rotation). The

sensitivity of GRAD depended both on the type of radioligand and the QC metric

used to quantify the performance of coregistration. With respect to rotation errors,

MI was generally the most robust single QC metric across all radioligands, although

anomaly detection with CC and FSE appeared to be more sensitive for FMZ and

FDG, respectively. Anomaly detection with the Euclidean norm of the three indi-

vidual coregistration QC metrics (“All”) was most sensitive for RCL and FMZ, and

similar to results with MI for FDG.

Although the sensitivity of anomaly detection at the PVC stage (Fig.5–2, second

row) was lower than for coregistration, GRAD was nonetheless able to detect anoma-

lies with higher than chance probability (AUC=0.7-0.8 for 20° rotation). The perfor-

mance of GRAD for the quantification processing stage was dependent on the radi-

oligand used. The best performance was obtained with RCL and FMZ (AUC=0.95

for 6° rotation), while the performance with FDG (AUC=0.75 for 20° rotation) was

lower.
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Figure 5–2: Increasing misalignments were generated to evaluate the sensitivity of
GRAD. GRAD showed high sensitivity in the coregistration and quantification pro-
cessing stages with moderate sensitivity for the PVC processing stage.
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For rotation error in the coregistration stage, FSE was the most robust single

QC metric with an AUC of approximately 0.8 for FDG and FMZ for a rotation error

of 6° but was lower for RCL with an AUC of 0.65 for this error level (Fig.5–2). CC

and MI did not have monotonically increasing AUC with increased translation error

for all 3 radioligands (Fig.5–3). However, the mean of the Euclidean norm of the

QC metrics had the best sensitivity for anomaly detection for FMZ and RCL, and a

similar performance to FSE for FDG.

GRAD had a similar level of sensitivity for translation misregistration error

in the PVC stage across all 3 radioligands (AUC=.85-.95 for translation errors of

12mm). A similar sensitivity was achieved for the quantification processing stage

for FMZ and RCL (AUC=0.90-0.95 for translation errors of 6mm). The sensitivity

of GRAD in the quantification stage was lower for FDG (AUC=0.68 for translation

errors of 6mm).

5.6 Discussion

5.6.1 Overview

The analysis of large imaging data sets makes the automation of image analysis

imperative. Rigorous QC is essential to ensure that each processing step has been

performed as expected. We have therefore created an automated QC method based

on identifying anomalous images within a given data set. We systematically misreg-

istered the PET images relative to the MR images to evaluate GRAD’s ability to

detect errors propagated from the simulated misregistration at the major process-

ing stages of PET analysis: coregistration, PVC, and quantification. GRAD was
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Figure 5–3: GRAD was able to detect misregistered images across all processing
stages for translation errors.
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successfully able to detect moderate to large misregistration errors at each of the 3

processing stages, for all 3 radioligand types and both for translation and rotation

alignment errors.

5.6.2 Evaluation of GRAD

The results indicated that the algorithm could detect moderate to large misreg-

istration errors. The outlier detection was only slightly better than chance for small

errors (2mm or 2°). This is not surprising given that such small errors are difficult to

detect even for a human observer. Alpert, et al. [150] validated their coregistration

algorithm against human visual QC and found that human raters had 80% accuracy

in successfully identifying 2mm misregistrations between PET and MRI. While this

level of performance exceeds that of GRAD at present, it highlights the fact that

human observers are imperfect and may benefit from the development of automated

QC algorithms.

The performance of GRAD was worse for the PVC stage across all 3 radiotracers,

indicating that the QC metric may not be sensitive enough to identify failed PVC. A

limitation of the PVC QC metric is that it assumes that convolving the PVC PET

image with the scanner point-spread function produces an image that resembles

the original PET image. This assumption is likely too simplistic given that the

point-spread function varies from the center to the periphery of the field-of-view of

the scanner. Moreover this PVC QC metric is better suited to voxel-wise instead of

ROI-based PVC, because the latter produces potentially large regions of homogenous

radioactivity concentrations. A more robust choice of PVC QCmetric may need to be

128



devised. An example of an alternate PVC QC metric would be the average difference

in radioactivity concentration before and after PVC. That is, by comparing the effect

of PVC within a set of ROI, it may be possible to determine if there was an abnormal

change for a given subject and region that would be indicative of a processing error.

Performance of GRAD

The performance of GRAD for the coregistration stage was highly dependent

on the choice of distance metric, the radioligand, and the type of error. Overall, for

coregistration the most robust QC metric was the Euclidean norm of the three indi-

vidual QC metrics, with good performance for both translation and rotation errors.

However, it was not consistently the most accurate metric, e.g., FSE outperformed

the mean of the QC metrics for FDG for rotation errors.

In the coregistration stage, not all QC metrics increased monotonically with

increasing error. Specifically, for simulated translation errors the CC and MI metrics

exhibited a decrease in AUC for FDG and FMZ images, respectively. The decrease

in AUC is likely due to a spurious match between anatomical structures in the PET

and MR images that result in an erroneous increase in the QC metrics. That is,

QC metrics like CC and MI are imperfect in that they may not improve alignment

between the PET and MR image. When this occurs, a worse alignment results in a

better QC metric and thereby affects the accuracy of GRAD. This illustrates that QC

metrics which should theoretically increase only as a result of improved performance

of the processing stage may in practice be susceptible to artefacts that result in the

violation of this assumption of monotonicity.
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Notably, the violation of the monotonicity assumption by some QC metrics did

not appear to significantly impact the performance of the Euclidean norm of the

QC metrics. A synthetic metric that combines information from multiple individual

metrics is therefore potentially robust against the failure of any one of its composite

metrics. The superior performance of the synthetic metric suggests that the perfor-

mance of GRAD may be improved by evaluating methods for combining the metrics

and a larger set of metrics.

The results of GRAD for the PVC stage were uniformly worse across all the

radioligands for rotation versus translation errors. It is not clear why PVC was

so distinctly affected by the difference in misregistration error. By contrast, the

performance of GRAD for the quantification stage was substantially similar for both

error types for FMZ and RCL, with a larger improvement in error detection from

rotation to translation errors for FDG.

The variability in performance between the three radioligands is due to the ex-

tent to which each radioligand distribution in the PET images is similar to the signal

intensity distribution in the MRI. The more the radioligand’s spatial distribution and

contrast resembles the anatomic structures represented in the MR image, the more

the QC metrics is affected by a mismatch between the PET and MR images and,

hence, the better the performance of the automated QC. FDG, for example, has

significant radioligand binding in both GM and WM. This means that a misaligne-

ment of the FDG image has less impact on the misaligned QC metrics than for a

radioligand with high GM-WM contrast, such as FMZ.
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The correspondence of the PET radioligand distribution to the MR image also

explains the difference in the performance of GRAD between the translation and

rotation error. Up to relatively large angles, rotations preserve a greater overlap

between the PET and the MR image.

Only rotations in the axial plane and translations in the coronal plane were

tested, because of the computational cost of performing exhaustive simulations across

all axes for both error types. Earlier studies from 2D PET scanners are inconclusive

as to whether differences in coregistration errors between dimensions are significant

[148, 149]. Andersson, et al. found that the extent of the difference in misalignment

in the 3 dimensions varied greatly between the FDG, RCL, and nomifenisine [149].

This supports the hypothesis that investigations on PET coregistration are difficult

to generalize across radioligands. More exhaustive investigations in high-resolution

3D PET are required to establish whether there is indeed a differential likelihood of

misregistration in the 3 imaging planes and how this affects different radioligands.

The ability to simulate misalignments as described here is included in APPIAN so

that users can evaluate the accuracy of the automated QC for other radioligands

than the ones tested here.

Studies of automated PET coregistration have reported misalignment with real

and simulated PET that is within the range of what we have classified as small to

moderate error levels. A study with simulated FDG PET has shown misregistration

errors of between 1-8mm, depending on the coregistration algorithm being used [183].

Another study of FDG PET to MRI coregistration found an average of 2-4mm and

0-7º misalignment errors [148]. Other studies have demonstrated slightly smaller
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average misregistration errors of 2-3mm and with errors as high as 7.4mm [149, 184].

In their retrospective analysis of the accuracy of existing PET-MRI coregistration

algorithms, West, et al. [185] report a misregistration error range of between 2-4mm

for the 12 methods tested.

It should be noted that these studies use an older generation of 2D PET scanners

[148, 184, 185], i.e., Siemens ECAT 933 scanner, with a FWHM spatial resolution of

approximately 6.5mm [186]. Similarly, the simulated images from Anderson, et al.

[149] were generated to have a FWHM spatial resolution of 7mm. Although these

PET images have a generally lower spatial resolution than can be acquired with high-

resolution PET scanners like the CTI-Siemens ECAT HRRT [12], they have a similar

in-plane spatial resolution to the ECAT HR+ scanner [154], which is still actively

used for PET imaging. The results of coregistration studies from earlier generations

of PET scanners are therefore still relevant for understanding misregistration errors

in the context of more modern PET scanners.

Comparison of GRAD to existing QC methods

Training a classifier on a data set of manually quality controlled images is likely

an excellent approach to performing QC on MRI, but it is less applicable in the case

of PET. Not only do PET images vary across sites, but PET image statistics are

highly dependent on several other factors, such as radioligand, the specific activity of

the injected radioligand, injected radioligand dose, scanner, reconstruction method,

patient genotype, and patient population. Esteban, et al. [167] note that the site of

image acquisition presents an important challenge in training their classifier. Given
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the greater potential for variability in PET image statistics versus MR images, an

approach to automated QC like that of MRIQC is all the more difficult to apply to

PET.

Automated QC based on the spread of QC metrics as implemented by GRAD

suffers from two potential limitations. First, GRAD would be unable to detect images

that failed a given processing stage if all the images for that stage had performed

poorly. For example, the MI value of a misaligned PET image from one subject

does not appear anomalous if those of all the subjects were also misaligned and had

correspondingly low MI values. However, such a systematic error is more likely to

be detected by the user than a small subset of failed images and is thus less of a

concern.1

Groupwise QC also requires a sufficient sample size to have a representative

spread of the QC metrics. However, GRAD was designed specifically to process large

datasets where visual QC is highly demanding and where it is therefore plausible to

assume a suitably large data set. Here the smallest data set, that of RCL PET

images, had only 27 images. GRAD, therefore, can perform well for data sets that

fall within the range of sample sizes that are regularly acquired in PET studies.

1 An additional limitation that should be noted is that the effect of post-
reconstruction motion correction and filtering may have a larger impact on the out-
come measures of a study than misregistration [187]. GRAD could be extended to
use for detecting errors in post-reconstruction motion correction by, for example,
averaging similarity metrics calculated between time frames in the PET image.
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It is important to stress that automated QC cannot yet replace diligent visual

QC. Visual QC is the primary method for verifying the accuracy of novel PET-MRI

coregistration algorithms on images that have been acquired in vivo [148–152]. Thus,

visual QC remains the gold standard method for confirming coregistration accuracy

and cannot yet be easily replaced. Visual QC in all imaging domains is, however,

subject to intra- and inter-observer variability, and it is therefore useful for the user to

be directed to potentially problematic images that should be treated with particular

attention. Automated QC is therefore intended as a complement to visual QC and

not yet as replacement. To this end, we have implemented a simple dashboard GUI in

APPIAN that allows users to navigate through co-registered images as 3D volumes.

In addition, the QC metric is also represented graphically so that the user can easily

see how the QC metric of a particular image compares to the overall distribution of

that image.

Limitations

This work to validate GRAD was focused only on misregistration between the

PET and MR image as error source for each of the processing stages. Misregistration

was chosen because it is a common source of error in PET processing that can easily

be parametrized in terms of rotation and translation. Indeed, perfect registration

is often cited as an important underlying assumption for PVC [41, 188]. Moreover,

misregistration is a source of error that can be applied universally regardless of the

type of PET image or the type of algorithm that is being used to analyze the image.
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The error induced by misregistration is similar to what would be expected from

other common other sources of error like erroneous segmentation or patient head

movement because misregistration, like erroneous segmentation and patient head

movement, results in the mixing of radioactivity concentrations from different regions

into a distinct ROI. Contamination of ROI is important because most PVC methods

use ROI to define regions of uniform, or at least similar, radioactivity concentrations

and many quantification methods use an ROI to define a reference region with no

specific binding of the radioligand. Misregistration thus results in contamination of

these ROI with radioactivity concentrations from neighbouring regions and hence

reflects to some degree the errors that would be expected from these other sources.

While alternate sources of erroneous processing may provide useful ways of eval-

uating the performance of GRAD for the PVC and quantification stages, it is difficult

to identify error sources that are common and would provide generalizable results.

Consider erroneous segmentation of the MR image. The problem with using erro-

neous segmentation is that it depends entirely on the regions being segmented, e.g.,

the entire GM versus the supplementary motor area of the GM, and which algorithm

is using the segmented image. For example, a 10% segmentation error of the entire

GM would have a modest effect on a voxel-wise PVC algorithm, but a 10% segmenta-

tion error of the thalamus would likely have a significant impact on ROI-based PVC

of sub-cortical GM areas with the GTM. Hence the results of evaluating GRAD for

detecting segmentation errors would be difficult to generalize.
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5.6.3 Conclusion

GRAD is a novel automated QC algorithm that seeks to automate the processing

of reconstructed PET images for a wide variety of experimental protocols to facilitate

robust and reproducible analysis. Our results have shown GRAD is accurate and is

capable of assisting users in detecting moderate to large errors in processing. While

the desiderata of a reliable, fully automated QC remain elusive, GRAD provides a

general framework for automated QC of image processing software pipelines. Future

work will focus on developing better QCmetrics that allow for more sensitive anomaly

detection.
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6.1 Preamble

Neurotransmitter receptor mapping can be conducted at many spatial scales,

from 50 µm resolution with autoradiography to ~2-3 mm with PET. While the work

in Chapter 3 was an investigation into using novel image processing methods to

optimize the spatial information that can be obtained from PET neurotransmitter

receptor mapping studies, the work in this chapter attempts to go in the opposite

direction. The limitation of using real images to study PET resolution is that it is

impossible to know the true source radioactivity distribution corresponding to that

measured in the image. Simulation and phantom studies are two common methods

for evaluating PET resolution, but the source radioactivity distributions used in these

approaches are too simplistic.

Autoradiography typically provides a high resolution 2D map of neurotransmit-

ter receptor distribution that can in principle be used to define a source radioactivity

distribution and perform realistic PET simulation. This has not been done in part

because of the expense and technical difficulty involved in acquiring autoradiographs

across the entire human brain. There are also technical challenges that must be

overcome before autoradiography can be used to define a source radioactivity con-

centration for PET simulation, the first being to reconstruct the 2D autoradiographs

into a 3D volume. To this end we developed a pipeline to perform 3D reconstruction

and used it to produce a 3D high resolution atlas of GABAABenz. receptor distribu-

tion in the brain. This in and of itself is an important novel contribution because it

is the first ever such 3D autoradiography atlas for the whole human brain.
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Monte-Carlo PET simulation was then performed using the 3D volume ofGABAABenz.

as a source radioactivity distribution. The accuracy of PET imaging for high-

resolution receptor mapping was evaluated by comparing the simulated PET images

to the source volume. It is important to note that the particular neurotransmitter

receptor used to create a simulated PET image, GABAABenz., and the PET scanner

that was modelled, i.e., CTI-Siemens ECAT HRRT, are both the same as were used

for in vivo PET in Chapter 3. We hope therefore to provide complementary insights

into receptor mapping from the perspective of real in vivo PET and from simulation

based on autoradiography.

6.2 Abstract

Neurotransmitter receptor mapping is typically conducted either at high reso-

lution (50 µm) in 2D with autoradiography or at lower resolution (in the order of

millimeters) with positron emission tomography (PET). While PET is less expensive

than autoradiography, it is not clear what is the maximum spatial resolution at which

PET can accurately measure receptor densities. To address this problem we have

developed a pipeline that can reconstruct a 3D volume from 2D autoradiographs

for 20 different neurotransmitter binding site densities obtained from a serially sec-

tioned post-mortem human brain. A validation study using synthetic data was used

to evaluate the interpolation error for estimating missing autoradiographs in the re-

construction pipeline and showed that the error level was generally between 0-6%.

The reconstructed volume was then used to define a source radioactivity distribu-

tion for Monte-Carlo PET simulation using the Geant4 Application for Emission
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Tomography (GATE). A simulated PET image for the radioligand [18-F]-flumazenil

was produced based on the actual distribution of the GABAABenz. receptor distri-

bution from the donor brain. The reconstruction of the receptor density volume for

GABAABenz. receptor was visually compared to the donor’s MRI. The simulated

PET image showed that under ideal conditions, PET was able to measure radioac-

tivity concentrations related to laminar receptor densities in the cortical GM and had

an average local correlation of 0.71 over the GM. We also found that partial-volume

effects (PVE) were highly dependent on cortical morphology, with greater PVE and

decreased correlation (~0.5-0.65) on abutting sulcal walls. The results suggest that

PET can potentially be used to perform neurotransmitter mapping at near lami-

nar spatial resolution. The reconstruction pipeline in conjunction with Monte-Carlo

PET simulation allows for the creation of a database of high resolution neurotrans-

mitter receptor atlases and corresponding simulated PET images, which can serve as

reference standard for the validation of PET algorithms and help the design of next

generation PET cameras.

6.3 Introduction

Three dimensional digital brain atlases are important both for (i) neuroscience,

e.g., characterizing the heterogeneity of brain anatomy or function within a given

population, and (ii) the analysis of brain images, e.g., as a prior for brain image

registration or segmentation [189]. As of yet, high resolution atlases of human neuro-

transmitter receptors have not been available. The lack of neurotransmitter receptor
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atlases is particularly unfortunate given that neurotransmitters and their correspond-

ing receptors underpin all synaptic transmission and hence all information processing

in the brain.

While atlases based on in vivo neurotransmitter receptor imaging using PET

have recently been created [10], PET suffers from relatively poor spatial resolution

when compared to the spatial distribution of neurotransmitter receptors. Despite

its limitations, at present PET offers the only realistic approach to creating atlases

of neurotransmitter receptor density for a wide range of populations with a sample

size sufficient to capture the variability within these populations. While many stud-

ies have been performed to evaluate PET resolution, these typically use geometric

or simple anatomic phantoms [12, 39, 190]. Given that the receptor distributions

measured with PET are more complex than those modeled in phantom scans, it is

not clear how accurately and at what scale PET can quantify receptor densities in

practice.

We have developed a method for creating a 3D 50 µm neurotransmitter receptor

atlas from autoradiographs measuring 20 different neurotransmitter receptor binding

sites. We furthermore show how this reconstructed atlas can be used to derive highly

realistic simulated PET images. These simulated PET images can then be used to

assess the spatial resolution obtainable with PET versus the true source radioactivity

distribution.
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6.3.1 3D reconstruction from 2D post-mortem brain sections

Autoradiography is limited by sectioning artefacts which result in a biased rep-

resentation of the complex cortical topology of the brain. Correcting these artefacts

represents a major challenge to accurately recovering the 3D representation of the

true receptor distribution in the brain.

Many approaches have been devised for reconstructing histological or autoradio-

graphic sections into 3D. Thorough literature reviews have already been written by

Dubois [191] and Pichat et al [192]. We therefore only briefly describe previous tech-

niques for 3D reconstruction of histological and autoradiographic data to contrast

how these relate to the autoradiographic data described in our work. While many 3D

reconstruction algorithms have been proposed, none of these methods are adapted

for reconstruction of the autoradiography data obtained with multiple radioligands

in the same brain [28]. This data poses specific challenges such as the relatively

sparse sampling rate, large non-linear artefacts, and the cutting of the brains into

non-orthogonal slabs, which have not been addressed by existing autoradiography

reconstruction methods.

To accurately reconstruct 2D sections into 3D, there are two major types of cor-

rections that must be applied to the 2D sections, which, according to the terminology

of Dauguet [193], are called "primary" and "secondary" artefacts. Primary artefacts

are global errors that apply to the overall 3D shape of the object being reconstructed

and secondary artefacts pertaining to individual 2D sections.
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Perhaps counter-intuitively, secondary artefacts must be understood and dealt

with first. Secondary artefacts apply to individual 2D sections such as tearing,

shearing, stretching, etc.

Primary artefacts affect the overall 3D shape of the object being reconstructed

and precede secondary artefacts in that they affect the brain before being sectioned.

Primary artefacts include global deformations of the brain or challenges involved

in recovering the 3D shape of the brain. One particularly important instance of

a primary artefact is termed the "banana effect". This refers to the fact that if a

sectioned banana was reconstructed by only aligning the sections to one another, the

reconstructed banana would be straight and would have lost its natural curvature.

There is not enough information in the 2D sections to correct for the banana effect.

Additional imaging that captures the overall shape of the object prior to sectioning

is required.

Three dimensional reconstruction techniques can be categorized along several

criteria, including: the level of manual intervention required, the imaging modality,

and the artefacts that were corrected by the reconstruction method. While the

first reconstruction methods were either entirely manual or semi-automated, more

recent algorithms have attempted to provide fully automated approaches [191, 192].

Reconstruction techniques can also be categorized based on the imaging modality,

e.g., histology or autoradiography, along with the complementary imaging modalities

that were used to provide additional information about the shape of the brain, e.g.,

MRI or blockface imaging.
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Semi-automated methods included the placement of fiducial markers in the brain

prior to sectioning so that the sections have easily identifiable physical landmarks

[194–196]. An alternative approach that did not require physical manipulation of

the brains was to manually identify anatomical landmarks on adjacent sections [197,

198].

The earlier automated reconstruction techniques focused on correcting for sec-

ondary artefacts. Automated reconstruction can be performed with only the 2D sec-

tions themselves using principal-axes transforms[199], intensity or frequency-based

cross-correlation [200, 201], sum of squared error [202], discrepancy matching optical

flow [203], edge-based point matching [204]. The main drawback of these methods

was that misalignment errors were propagated to all subsequently coregistered sec-

tions. Methods have been developed to help address this problem and produce more

robust alignments [205–208].

Additional imaging of the brain is required to correct for primary artefacts. A

common approach is to use blockface imaging as an intermediate step, where the

2D sections are aligned to the blockface image and then the latter is aligned to the

MRI [209–211]. If no blockface imaging has been acquired, an alternative approach

is to perform an initial section-to-section reconstruction followed by alignment of

this first reconstruction to the donor’s MRI in 3D, and then refine the alignment of

the reconstructed volume to the MRI using 2D alignments of the sections [212, 213].

A recent and particularly innovative approach to 2D alignment of histological and

corresponding MRI sections involved using Bayesian methods to simultaneously align
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the histological section and the MRI section while transforming the pixel intensities

of the former to resemble the latter [214].

Despite the existence of many reconstruction algorithms, these tend to be par-

ticular to the data sets they were designed for and hence cannot be straightforwardly

be applied to reconstructing the dataset used in this study.

6.3.2 Challenges

The 3D autoradiograph data set from Zilles et al [28] combines many of the

aforementioned challenges as well as several unique ones, which are elaborated below.

Non-orthogonal slabs

The brains were cut coronally into slabs prior to freezing and sectioning. How-

ever, the cuts were not parallel to one another, hence producing slabs that were not

sectioned along an orthogonal plane (see Fig.6–2 for schematic illustration). This

means that each slab has a different plane of sectioning and as such the coronal

axis for each slab was oriented at a slightly different angle. Resampling the autora-

diographs to a common coordinate grid would require resampling and interpolating

the autoradiographs onto this common space. Because the autoradiographs are not

densely sampled, i.e., there are significant gaps between acquired sections, inter-

polating these onto a new coordinate grid risks introducing interpolation errors by

averaging between autoradiographs and empty regions where no section was acquired.

The 3D reconstruction pipeline must therefore be applied separately for each slab.

Additionally, there are gaps between the slabs therefore even if the slabs were put
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Figure 6–1: Example autoradiograph from each of the 20 neurotransmitter receptor
binding sites illustrating the substantial heterogeneity in image intensities between
the autoradiographs.
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into a common space, it is not clear how far apart and at which angle the slabs

should be positioned relative to one another.

Finally, the ends of the slabs frequently do not contain a full coronal section of

brain tissue, thus making alignment of these incomplete sections difficult.

3D non-linear warping

Significant non-linear warping resulted from the brains not being fixed prior to

removal from the cranial cavity. These non-linear deformities included compression

and expansion both in and out of plane of sectioning. Warping could also result

from collapse of the ventricles. These warping artefacts cannot be corrected without

use of external reference. While this is common to autoradiography, what makes

it particularly challenging in this case is that the entire human brain was being

sectioned. Because the human brain is a relatively large organ, it is difficult to

freeze uniformly and nearly instantaneously. To avoid freezing artefacts, the brain

was cut into slabs of tissue along the coronal axis. However this introduces non-

linear warping artefacts to each individual slab–a problem that is not commonly

encountered in other data sets–and which further complicates the reconstruction.

Missing sections within slabs

Ideally, sections for a particular type of neurotransmitter would be acquired in

equidistant sections every 400µm. However mechanical processing errors or the use

of some slices for other histological staining result in significant gaps between some

of the acquired autoradiographs.
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Figure 6–2: The donor brain was cut into slabs prior to freezing. The red lines
show how cuts made at different angles create slabs of tissue that are then sectioned
along different planes (shown in green). Note that this schema is only for illustrative
purposes and does not represent the actual cuts that were made on the donor brain.

155



Variability in neurotransmitter receptor intensity

One of the most important obstacles for 3D reconstruction of the present data

was the degree of variability in the distributions of neurotransmitter receptors. This

is illustrated in Fig.6–1 where the autoradiographs represent very different receptor

distributions and overall image contrast. In order to make a fully-automated pipeline,

each step of the pipeline should perform equally well for the various ligands and

hence must perform robustly given the diversity of intensity distributions in the

autoradiographs.

Variability in autoradiograph acquisition protocol

After sectioning, brain sections were placed onto the same photographic film

such that the raw autoradiographs contain multiple tissue slices that were incubated

with the same ligand. This requires an automated processing step to identify the

target piece of brain tissue from each autoradiograph and remove extraneous pieces

of brain tissue from the image.

In addition, non-tissue objects, such as frames, arrows, and fiducial triangles,

were placed on the autoradiographs prior to digitization. These also need to be

removed so that they do not interfere with the reconstruction process. These arte-

facts are particularly challenging because they greatly impact the autoradiograph’s

histogram of pixel intensities.
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6.3.3 Reconstruction pipeline overview

Previous methods have typically focused on reconstructing up to 3 different types

of 2D images. Those methods that have attempted to reconstruct multiple types of

sections into 3D have benefitted from blockface images. For example, Schubert,

et al 2016 reconstructed polarized light images, histology, and autoradiographs of

M2 muscarinic neurotransmitter receptor distribution in rat brains using blockface

imaging [211]. To address the unique challenges presented by the data acquired by

Zilles et al [28], we have developed a fully automated pipeline that systematically

accounts for each of these issues to successfully perform reconstruction.

6.4 Methods

6.4.1 Data Acquisition

Although 3 brains were acquired at autopsy from donors (45-77 years), only one

single (male) brain was used in the present study. The brain was acquired 8-13 h

post-mortem without chemical fixation. A T1w MRI was acquired from the donor

after they were declared deceased by the attending physician. The MRI was acquired

on a Siemens Magnetom Sonata scanner with an MPRAGE acquisition protocol (2.2s

TR, 1.2s TE, 15° flip angle).

The brains were then cut into slabs of tissue of approximately 2-3 cm to facilitate

the even freezing of the brain tissue. Each slab was shock frozen between -40 and

-50 C in N-methylbutane.
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Slabs were sectioned at -20C into 20 µm thick sections of brain tissue with a

cryostat microtome and placed on a gelatin-coated glass slide. Sections were freeze-

dried overnight prior to incubation. Sections were first preincubated for rehydration

and to eliminate any endogenous substances that may bind to the target receptor.

Brain sections were then incubated in one of two ways for between 40-60min. For

sections imaged for specific binding of the ligand to the target receptor, sections were

incubated in a solution containing the titrated radiolabeled ligand. Alternatively, a

subset of sections were imaged for non-specific binding by incubating the sections

in a solution containing the radioligand as well as an unlabeled displacer that binds

to 1 of 20 neurotransmitter receptors. The measured neurotransmitter receptors

covered some of the most common neurotransmitter systems : glutamate, GABA,

acetylcholine, dopamine, serotonin, noradrenaline, and adenosine (see Table.6–1 for

detailed list). Sections were incubated sequentially with a specific radioligand such

that there were at least 19 sections of brain tissue between any two sections incu-

bated with the same radioligand. Lastly, the sections were rinsed to remove excess

radioligand and stop additional binding. No blockface images were acquired.

Plastic titrated standards (Microscales®, Amersham) with known radioactivity

concentrations were also placed on the sheets alongside the brain sections and were

co-exposed along with them. These standards allow pixel intensities to be converted

to actual radioactivity concentrations.

Incubated sections were exposed to a β sensitive film (Hyperfilm, Amersham,

Braunschweig, Germany). The autoradiographs were digitized with a CCD-camera

on the Axiovision (Zeiss, Germany) imaging and processing system.
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Table 6–1: List of the 20 radioligands and associated neurotransmitter receptors. The
autoradiographs were categorized into tiers based on the visual contrast of the images.
The tiers were used in the initial section-to-section alignment so that autoradiographs
were only aligned to images in the same tier or lower.

Radioligand Receptor Transmitter Contrast Tier
AMPA AMPA Glutamate 2
Kainate Kainate Glutamate 2
MK-801 NMDA Glutamate 2

LY 341,495 mGluR2/3 Glutamate 2
Muscimol GABAA (agonist) GABA 1
SR95531 GABAA (antagonist) GABA 1

CGP 54626 GABAB GABA 1
Flumazenil GABAABenzodiazepine GABA 1
Pirenzepine Muscarinic M1 Acetylcholine 1

Oxotremorine-M Muscarinic M2 (agonist) Acetylcholine 3
AF-DX384 Muscarinic M2 (antagonist) Acetylcholine 1
4-DAMP Muscarinic M3 Acetylcholine 2

Epibatidine Nicotinic α4β2 Acetylcholine 4
Prazosin α1 Noradrenalin 1
UK-14,304 α2 (agonist) Noradrenalin 2
RX 821002 α2 (antagonist) Noradrenalin 2
8-OH-DPAT 5−HT1A Serotonin 2
Ketanserin 5−HT2 Serotonin 1
SCH 23390 D1 Dopamine 2

DPCPX+Gpp(NH) Adenosine 1 Adenosine 1
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Radioactivity concentrations were calculated using standards. The pixel inten-

sities of these standards were plotted against their respective radioactivity concen-

trations and a calibration curve was fit to these points. Radioactivity concentrations

of pixel intensities were interpolated from the calibration curve.

Finally, binding densities, Cb (fmol/mg protein), were calculated by multiplying

the radioactivity concentrations with a scaling factor according to :

Cb = R

EBWbSa

× KD + L

L
(6.1)

where R is the measured radioactivity concentration interpolated from the cali-

bration curve, E is the efficiency of the scintillation detector, B is a constant for the

amount of radioactivity decays per unit time (Ci/min), Wb is the protein weight of a

standard (mg), and Sa is the specific activity of the ligand (Ci/mmol), KD is the dis-

sociation constant (nM) and L is the free concentration of ligand during incubation

(nM).

6.4.2 Pipeline Overview

The details of the pipeline are explained in the following sections, but it is

useful to first give a broad overview. The overall framework used by the pipeline

was to calculate a series of transformations that would transform each of the 2D

autoradiographs to the correct position on the donor’s MRI (see Fig.6–3). The

purpose of this approach was to minimize the number of manipulations applied to

the raw autoradiographs. Thus while many manipulations were performed on the

autoradiographs at the various stages of the pipeline, the final reconstructed volume
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was produced by applying only two transformations to the autoradiographs: (i) a

composite 2D transformation applied to individual autoradiographs, and (ii) a non-

linear 3D transformation applied to autoradiograph volumes.

As a proof-of-principle for the efficacy of our reconstruction pipeline, a single

volume of GABAABenz. receptors was reconstructed for the right hemisphere of 1 of

the 3 donor brains.

Stages of autoradiograph reconstruction

Enumerated stages 1-7 correspond to S1−7 in Fig.6–3.

Stage 1: Automated cropping to isolate target brain tissue

• Automated cropping of the autoradiographs used to isolate the target piece of

brain tissue from the raw image.

Stage 2: 2D rigid inter-autoradiograph alignment

• An initial 3D autoradiograph volume was reconstructed by aligning autoradio-

graphs to one another.

Stage: 3: Binary GM volume for autoradiograph volumes and MRI

• GM masks were extracted for the MRI (S3A) and autoradiograph volumes

(S3B).

• This was done to facilitate subsequent alignments.

Stage 4: 3D alignment of autoradiograph volumes to MRI

• 3D linear alignment of autoradiograph GM volumes to find corresponding re-

gions in MRI GM volume (S4.1).
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• 3D non-linear alignment of the MRI volume to each of the autoradiograph GM

volumes (S4.2).

• Creates a transformed versions of the MRI in coordinate space of the autora-

diograph slabs.

Stage 5: 2D refinement of autoradiograph alignment to MRI

• 2D alignment of coronal sections in autoradiograph GM volume to correspond-

ing coronal sections in MRI GM volumes.

• Refines the alignment between the autoradiographs and the MRI volume by

correcting deformations in coronal axis.

Stage 6: Interpolation of missing autoradiographs

• MRI sections corresponding to autoradiograph sections were aligned to MRI

sections where autoradiographs are missing (S6.1).

• 3D receptor volume was produced for a given receptor using a distance-weighted

interpolation scheme (S6.2).

Stage 7: Transformation of receptor volumes to MRI coordinate space

• Slabs are transformed to donor’s MRI in MNI coordinate space by inverting

transform T3 from S4.2.

6.4.3 Stage 1: Automated cropping to isolate target brain tissue

The raw autoradiographs contained 3 components: the target section of brain

tissue, extraneous pieces of brain tissue, and non-tissue objects (see Fig.6–4). The

first step was to remove the extraneous pieces of brain tissue and non-tissue objects

in the autoradiographs. To increase the computational speed of subsequent image
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Figure 6–3: A multistage (S1−7) pipeline was devised for reconstructing 2D sections
from multiple autoradiographs. The pipeline was applied independently to individual
slabs. Transformations T1, T4, T5 were applied to cropped autoradiographs to pro-
duce a receptor volume in autoradiograph space and transformation T−1

3 was applied
to transform receptor slabs to the donor’s MRI in MNI space[4] .163



Figure 6–4: Example of autoradiographs with multiple pieces of tissue and non-tissue
objects: frames (A), fiducial triangles (B), and arrows (C)

processing, the autoradiographs were downsampled from 20x20µm to a resolution to

200x200µm.

The non-tissue objects were removed using a deep convolutional neural network

based on the U-Net architecture [215]. Training data were created by manually

thresholding a subset of the raw autoradiographs to isolate the frames, arrows, and

triangular shapes, and then manually removing any thresholded pixels that were

not part of the non-tissue objects. A simplified U-Net was then trained on these

data using a binary cross-entropy and the architecture shown in Fig.6–5. Given

the relatively small amount of training data, a simplified U-Net architecture was

chosen instead of the full U-Net architecture. This was done to limit the number of

parameters used by the network. The non-tissue objects were removed by replacing

intensities within the objects with random intensity values sampled from the pixels

within 3 pixels of the border of the non-tissue objects.

After removing the non-tissue objects from the autoradiographs, further process-

ing was used to remove the extraneous pieces of tissue (see Fig.6–6 for illustrative
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Figure 6–5: A simplified U-Net architecture was designed to identify non-tissue ob-
jects (i.e., frames, arrows, and triangles in the autoradiographs).
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example of automated cropping). A multi-resolution approach to separating the fore-

ground from background was implemented to limit the impact of background noise

while attempting to preserve high-frequency spatial features. The autoradiographs

were smoothed with gaussian filters at 0, 2, and 4 standard deviations and each one

of the smoothed autoradiographs were thresholded into binary images with Otsu his-

togram thresholding [216]. The 3 thresholded images were then averaged (yielding

an image between 0 and 1) and thresholded at 0.5 to create a binary image where

pixels of 1 represented brain tissue and 0 represented background.

Foreground pixels were segmented into discrete connected regions and pixels

in each tissue region were assigned a unique integer value for each region. Tissue

regions that overlapped with either the border of the autoradiograph or with the

non-tissue objects identified by the U-Net were discarded. This removed most of the

extraneous pieces of tissue in the autoradiographs, but there were sometimes small

islands of regions identified as tissue that needed to be removed. These could include

both background pixels erroneously identified as tissue regions or small regions of

detached extraneous tissue. To remove remaining extraneous tissue regions, the

number of pixels in each tissue region was calculated and any region that was less

than 5% of the size of the largest tissue region was removed. Finally, 3 series of

morphological erosions followed by 3 morphological dilations was used to denoise the

images.
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Figure 6–6: Autoradiographs were preprocessed before they could be reconstructed.
A deep learning network was trained to identify frames in the autoradiographs and
remove them. Computer vision techniques were then used to remove pieces of brain
tissue other than the target brain tissue in the image.
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Table 6–2: ANTs parameters used to align the autoradiographs to one another.

Transform Iterations Smoothing Downsample Factor Metric
Rigid 2100 3 6 Mattes MI
Rigid 1200 2 4 Mattes MI
Rigid 1200 1 2 Mattes MI
Rigid 10 0 1 Mattes MI

6.4.4 Stage 2: 2D rigid inter-autoradiograph alignment

The initial step of 3D reconstruction consisted in aligning the cropped autora-

diographs to one another using 2D rigid body transformations (see Table.6–2 for

parameters). As is seen in Fig.6–1, certain ligands produced autoradiographs with

much greater image contrast than others. To limit the impact of autoradiographs

with low contrast, the autoradiographs were also categorized into tiers based on

visual evaluation of their image contrast (see Table.6–1). Autoradiographs with lig-

ands in lower tiers were considered to have better image contrast. Each section was

aligned to its nearest neighbour in the same tier or lower. This means that sections

were only aligned to an image with a similar or better image contrast. To limit the

possibility of systematic misalignments between adjacent sections, the entire align-

ment procedure was applied iteratively. The initial alignment was performed on the

cropped autoradiographs that had been downsampled to 200 x 200 µm.

Due to the gap between the slabs and the different planes of sectioning for each

slab, 2D autoradiograph alignment was only performed within each slab. The sec-

tions were aligned to the central section of the slab to limit the impact of incomplete

sections at the ends of slabs.
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Figure 6–7: An initial reconstructed autoradiograph volume was produced by align-
ing autoradiographs to its adjacent neighbour. The central autoradiograph (N/2)
of each section was used as the reference to which the others were aligned. The
alignment process was repeated iteratively to avoid misalignments.

Once the autoradiographs were aligned to one another, they were reconstructed

into an initial 3D autoradiograph volume for each slab, respectively. Therefore 6

initial autoradiograph volumes were produced, one for each slab. Each reconstructed

autoradiograph volume had a resolution of 200x20x200 µm because the downsampled

autoradiographs have a voxel spacing of 200x200µm and each section was 20 µm thick

along the coronal axis. The 2D rigid transforms produced for each autoradiograph

in a slab correspond to transform T1 in Fig.6–3.

6.4.5 Stage 3: Binary GM volume for autoradiograph volumes and MRI

Aligning the autoradiograph volumes to the MRI volume directly was very chal-

lenging given the relatively sparse sampling of the autoradiographs and their het-

erogeneous intensity values. Instead, the alignment was performed between binary

GM volumes derived from the initial autoradiograph volumes and the MRI volume.
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The problem of multi-modal alignment is then simplified to mono-modal alignment

between GM masks.

Extracting GM mask from MRI volume (S3.A)

A binary MRI GM volume was extracted from the donor’s MRI using a mesh rep-

resentation of the cortical surface (Fig.6–8). Cortical surface meshes were obtained

from the MRI using the CIVET pipeline [217]. A super-resolution cortical GM mask

at 250 µm was obtained from these cortical surface meshes by sampling points be-

tween the inner white-matter and outer GM surface meshes[121]. A segmentation

of the donor’s subcortical GM was then generated using ANIMAL [218], upsampled

to 250µm using nearest neighbour interpolation, and added to the super-resolution

cortical GM.

Extracting GM mask from autoradiograph volume (S3.B)

A GM binary volume was generated for the initial autoradiograph volumes for

each slab using a 3-class K-means [219] clustering to segment each 2D autoradiograph

into background, white matter, and GM (Fig.6–9). The 3 classes for the K-means

algorithms were initialized with the image maximum, the mean of non-zero voxels,

and the minimum voxel value. The autoradiograph GM volume was downsampled

from a voxel size of 200x20x200µm to 250µm isotropic resolution with an order 5

spline interpolation. This was done to facilitate alignment with the MRI GM volume.
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Figure 6–8: Cortical surfaces were extracted from the donor’s MRI and used to derive
a 250 µm MRI GM volume. The ANIMAL algorithm was used to create a binary
GM volume for subcortical GM regions.
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Figure 6–9: The autoradiograph slab volume was segmented to identify GM regions
using the K-means algorithm. The segmentation facilitates the alignment to the MRI
GM volume.
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Table 6–3: ANTs parameters used to align the autoradiograph GM slab volume to
the MRI GM volume.

Transform Iterations Smoothing Downsample Factor Metric
Rigid 1500 1 2 Global CC
Rigid 1000 0 1 Global CC
Affine 1500 1 2 Global CC
Affine 1500 0 1 Global CC

6.4.6 Stage 4: 3D alignment of autoradiograph volumes to MRI

Coregistration of the autoradiograph volume to the donor’s postmortem MRI

was used to correct for deformations in the autoradiographs resulting from the brains

not being fixed prior to sectioning and freezing. Coregistration was performed inde-

pendently for each slab.

Finding MRI section corresponding to autoradiograph slabs (S4.1)

An algorithm was developed based on Yang et al [213] to find the position in the

MRI that corresponds to the receptor slab volume (Fig.6–10). Instead of a rigid, i.e.

6 parameter, transformation between volumes of histological tissue and the acquired

MRI, we used a 12 parameter affine transformation to account for some of the defor-

mations in the autoradiograph slab volumes. Prior to alignment, the autoradiograph

and MRI GM volumes were blurred with a gaussian kernel with 0.75 mm standard

deviation and downsampled to 1 mm using nearest neighbour interpolation. The

alignment was calculated between the autoradiograph GM volumes and the MRI

GM volume with ANTs [86] (see Table.6–3 for parameters).

The extra parameters of a full affine versus a rigid transformation increase the

likelihood of misalignments resulting from local minima in the similarity metric. To
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Figure 6–10: The position along the coronal axis for each autoradiograph GM slab
was chosen based on the location that had the maximum weighted cross-correlation.
This figure is for illustrative purposes and does not represent the actual alignment
of the slabs or the corresponding cross-correlation.
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limit the possibility of a misalignment we devised a pseudo-probability distribution

for the probability of autoradiograph’s position along the coronal axis of the MRI.

The width of each brain slab, i.e., its extent along the coronal axis, was calculated

based on the acquired autoradiograph sections in each slab. The expected location

of the slabs was calculated by first placing the anterior and posterior slabs at the

corresponding ends of the MRI. The position of the intermediate slabs was calculated

based on their respective widths and assuming equal spacing between them. The

pseudo-probability distribution was generated for each slab by convolving an impulse

function at the expected slab position with a gaussian function. The gaussian had a

standard deviation equal to 1.5 times the width of the slab. This pseudo-probability

distribution was largest at the position closest to the expected slab position and

dropped towards 0 further away from this position.

Starting from the most anterior position in the brain, the first slab volume

was aligned to the MRI volume using an affine transform. The cross-correlation

was calculated at the position of optimal fit and was weighted by multiplying it by

the probability of a correct alignment at this position. Hence alignments further

away from the expected position were penalized. The slab was then shifted by

5mm and the same process was repeated. To save computational time, positions

that had a probability of less than half of the maximum of the pseudo-probability

distribution were not considered. This process was repeated for each of the slabs in

the hemisphere, alternating between slabs closest to the anterior and posterior poles

of the brain. For each slab, the position with the highest weighted cross-correlation

was taken to be the correct position of that slab relative to the MRI.
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Table 6–4: ANTs parameters used to perform non-linear alignment between the
autoradiograph GM slab volume and the MRI GM volume.

Transform Iterations Smoothing Downsample Factor Metric
SyN 1500 8 4 Global CC
SyN 1000 4 2 Global CC
SyN 500 2 1 Global CC

The 3D linear transformation for aligning the autoradiograph GM volumes for

each slab to the donor’s MRI correspond to transform T2 in Fig.6–3.

3D warping of MRI to autoradiograph volumes (S4.2)

The inverse affine transformation from the autoradiograph GM volume to the

MRI GM volume (this would correspond to the inverse of T2 in Fig.6–3, i.e., T−1
2

) was used to initialize a further non-linear alignments of the MRI GM volume to

the autoradiograph GM volumes for each slab (see Table.6–4 for parameters). The

alignment thus produced an MRI GM mask aligned to the autoradiograph GM mask

for each slab. This yielded a 3D non-linear transform that correpsonds to T3 in

Fig.6–3.

Although the MRI GM volume was transformed to the coordinate space for

each autoradiograph volume, it had to be resampled to the same resolution as the

autoradiograph GM volumes at 200x20x200µm. This was done so that each coronal

section in the transformed MRI GM volume would be aligned to a corresponding

section in the autoradiograph GM volume.
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6.4.7 Stage 5: 2D refinement of autoradiograph alignment to MRI

Whereas the initial autoradiograph was composed of all the acquired autora-

diographs, the ultimate aim of the reconstruction pipeline was to create volumes for

each of the 20 measured neurotransmitter receptors. The first step in creating a

volume for a specific neurotransmitter receptor was to refine the alignment of the

2D autoradiograph sections to the transformed MRI GM volume. Coronal sections

of the autoradiograph GM volumes for a given receptor were non-linearly aligned

in 2D to corresponding coronal sections in the transformed MRI GM volume. The

result of this processing stage was therefore to find transformations, for each slab,

that mapped the autoradiographs for a single receptor to the donor’s MRI in autora-

diograph space. These transforms correspond to T4 in Fig.6–3. ANTs was used to

calculate these transformations [86] with the parameters listed in Table.6–5.

6.4.8 Stage 6: Interpolation of missing autoradiographs

2D alignment of MRI sections to estimate morphology of missing
autoradiograph (S6.1)

Autoradiographs for a specific neurotransmitter receptor were acquired with a

minimum gap of 400µm between acquired slices. This means that ligand binding

densities had to be estimated for positions between autoradiographs acquired for a

particular receptor type. Estimates of missing autoradiographs were generated based

on the neighbouring autoradiographs in the posterior and anterior direction along

the coronal axis. By missing autoradiographs, we mean not only sections where no

autoradiograph was acquired at all, but also autoradiographs that were not acquired

for the particular receptor being reconstructed into a 3D volume.
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While the receptor distribution of the missing autoradiograph is unknown, its

morphology is characterized–if at a coarser spatial resolution–by the MRI. The neigh-

bouring autoradiographs were used to estimate missing autoradiographs by warping

them so that their morphology would resemble that of MRI at the coronal position

of the missing section. This was done using the composition of two transformations

(see Fig.6–11). The first transformation was described in the previous section, S5,

and is the mapping of a coronal section from the the autoradiograph GM volume

to the corresponding MRI section, i.e., T4 in Fig.6–3. The second transformation

was obtained by using a 2D non-linear transformation from sections in the MRI GM

volume corresponding to the acquired autoradiographs to adjacent sections in the

MRI GM volume where the autoradiograph was missing (transformation parameters

listed in Table.6–5). This second transformation corresponds to T5 in Fig.6–3.

Distance-weighted interpolation of missing autoradiograph (S6.2)

Once the anterior and posterior autoradiographs were warped to the coronal

section in the MRI GM volume corresponding to the missing section, these two im-

ages could be averaged to arrive at an estimate of the missing autoradiograph. The

averaging was done so that missing sections closer to the anterior or posterior autora-

diograph would be more heavily weighted towards the receptor distribution repre-

sented in that autoradiograph. A linear distance-weighted interpolation method was

used to estimate missing autoradiographs based on neighbouring autoradiographs

(see Fig.6–11 for details).

178



A reconstructed receptor volume could therefore be generated by applying a

series of 2D transformations to the cropped autoradiographs and using distance-

weighted interpolation for those sections for which no autoradiographs were acquired

for a given receptor. For coronal sections in the reconstructed receptor volume where

an autoradiograph was acquired, the cropped autoradiographs were transformed us-

ing the composite transform of T4 × T1. In effect this meant applying the initial 2D

rigid transform that brought the autoradiograph into initial alignment, T1, and the

2D non-linear transformation to align it to the MRI volume in autoradiograph space,

T4.

For coronal sections where autoradiographs for a given receptor type were not ac-

quired, the neighbouring autoradiographs were transformed by the composite trans-

form of T5× T4× T1. The additional transform, T5, served to transform the cropped

autoradiograph so that it would match the morphology of the MRI at a section where

no autoradiograph for the given receptor was acquired. Distance-weighted interpo-

lation was then used to average neigbouring autoradiographs in the posterior and

anterior direction.

Receptor volumes in autoradiograph space could therefore be created by apply-

ing composite transformations directly to the cropped autoradiographs, thus limiting

the amount of manipulations applied to the images.

6.4.9 Stage 7: Transformation of receptor volumes to MRI coordinate
space

The pipeline for 3D reconstruction operates on the basis of individual slabs. The

last step of the pipeline was to combine the receptor volumes for each slab into a
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Figure 6–11: Green bars L0 and L4 represent autoradiographs at positions 0 and
4. Grey bars represent coronally sliced GM mask at positions 0-4. Autoradiographs
were non-linearly aligned to the corresponding MRI sections. The MRI sections at
positions with corresponding autoradiographs were then non-linearly aligned in 2D to
the positions with no autoradiographs. These two transformations were concatenated
to directly transform the autoradiograph to a new position. The estimated autora-
diograph at position 1 was thus calculated by applying transform TL0,GM1 to L0 and
applying transformation TL4,GM1 to L4. The two transformed autoradiographs from
the anterior and posterior direction were averaged using linear, distance-weighted
interpolation.
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Table 6–5: ANTs parameters used to perform a) non-linear alignment between the
autoradiograph GM slab volume and the MRI GM volume and b) non-linear align-
ment between MRI GM sections.

Transform Iterations Smoothing Downsample Factor Metric
SyN 2100 3 6 Global CC
SyN 1200 2 4 Global CC
SyN 1200 1 2 Global CC
SyN 10 0 1 Global CC

common coordinate space. This was done by transforming the receptor volumes for

each slab to the donor’s MRI in MNI space[4]. This was accomplished by applying

the inverse of the transformation from the MRI GM mask to the autoradiograph

GM volume for each slab, respectively (this corresponds to the inverse of T3 Fig.6–

3). All slabs were therefore mapped onto the donor MRI and were summed together

to create a single volume for a given neurotransmitter receptor type.

The autoradiograph volume was downsampled to 500 µm and then was trans-

formed into the MNI coordinate space [4] by inverting the 3D transformation of the

donor’s MRI GM volume to the autoradiograph GM volume. The image was down-

sampled before transformation because the amount of RAM required to transform

the receptor volumes was in excess of the resources available. Furthermore, a higher

resolution receptor volume was not needed for the subsequent analyses described

below.
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6.4.10 Experiments

Validation of distance-weighted interpolation

To validate the interpolation scheme presented here, we applied the interpolation

method to a synthetically generated receptor volume. An algorithm for calculating

equivolumetric surfaces [220] was applied to the donor’s MRI GM subdividing it into

6 layers. Values from 0 to 1 were assigned to the voxels based on the distance from

the pial surface to the white matter. In the equivolumetric GM layer volume, the

same sections for which GABAABenz. autoradiographs were acquired were used to in-

terpolate the missing GABAABenz. sections. The interpolated values were compared

to the true values in the equivolumetric GM layer volume by dividing the former by

the latter.

Monte-Carlo PET Simulation

The first slab, covering the prefrontal cortex, of the reconstructed GABAABenz.

autoradiograph volume was used for Monte-Carlo PET simulation with GATE [29].

The source radioactivity distribution for performing PET simulation was based on

the receptor binding densities at each voxel of the GABAABenz.. The binding den-

sities in the autoradiograph volume were taken to represent radioactivity concentra-

tions in Bq. GATE, however, requires that the source radioactivity distribution be

defined with an integer valued volume, where each integer represents a region with a

uniform radioactivity concentration. These regions of homogenous radioactivity do

not need to be contiguous. To accommodate the input requirements of GATE, the

autoradiograph volume was subdivided into 100 regions using the K-means algorithm
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[219]. The mean regional value for each of these 100 regions was calculated from the

GABAABenz. autoradiograph volume. The input to GATE therefore consisted of

the autoradiograph volume classified into 100 discrete regions and a text file that

specifies the average radioactivity concentration (Bq) in each of these regions.

An attenuation map was generated from the donor’s MRI by using a brain

mask derived using CIVET [217] and used a skull mask produced by the FSL Brain

Extraction Tool (BET) [221].

The scanner modelled in the simulation was the CTI-Siemens ECAT HRRT [91]

and the total simulation time was 30 s.

The results of the simulation were not reconstructed according to traditional

PET reconstruction algorithms. Instead the locations of the annihilation events were

binned into a grid of 1x1x1 mm voxels. PET does not directly measure the location

of an annihilation but rather the line of response (LOR) from two photons that are

detected by the scanner within a given time window. To accurately reflect this fact in

the binning, the locations of the annihilation events were projected onto the nearest

point on their LOR. For random coincidences, where unrelated annihilation events

are detected by the scanner, the mean of the locations of the two annihilation events

was calculated and projected onto the LOR.

The simulated PET images were compared to the input radioactivity distribu-

tion by calculating the local-cross correlation between the two volumes. The window

for the local cross-correlation was 5x5x5 voxels and Kendall’s tau was used to calcu-

late the correlation [222].
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6.5 Results

The initial reconstruction between the cropped autoradiographs showed that

the alignment algorithm was able to restore the gross anatomy of the donor’s brain

(Fig.6–12). Based on visual inspection, a major improvement in alignment could

be observed between the first and second iterations and overall four iterations were

sufficient for a satisfactory convergence. By the fourth iteration of the alignment

algorithm, sulci and gyri were clearly visible. However, some sulci appear fused

together. This also illustrates that a generic alignment algorithm like ANTs, with a

mutual information cost function, was able to perform accurate alignment between

autoradiographs of different receptors.

The algorithm to align the autoradiograph slabs to the MRI appeared to gen-

erally place the slabs at the correct locations (Fig.6–13). There were substantial

gaps between these aligned slabs, particularly between the 4th and 5th slab from the

anterior pole.

The interpolation of coronal sections where no GABAABenz. autoradiographs

were acquired is shown in Fig.6–14. The interpolation resulted in continuous distri-

butions of synthetic neurotransmitter receptor densities across the cortical GM.

The interpolation scheme provided accurate estimates on the equivolumetric

volume. As can be seen in Fig.6–15, the interpolated volume closely matched the

synthetic volume. This was confirmed quantitatively in the error volume in Fig.6–15

which showed similar error magnitudes across the coronal axis. The average error

in each coronal section was calculated and is shown in Fig.6–16. Error magnitudes
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Figure 6–12: At iteration 0 the autoradiographs were stacked without performing
any alignment. Gross anatomic structures can be seen after a single iteration of rigid
alignment between sections, with smaller refinements in subsequent iterations.
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Figure 6–13: GM volumes extracted from autoradiograph slabs were aligned to the
donor’s MRI GM volume using affine transformations. The alignment appeared
accurate, but required further non-linear deformation to improve the alignment.
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Figure 6–14: An interpolation scheme for estimating missing autoradiographs was
used to reconstruct a continuous 3D representation of GABAABenz. receptor density.
The green lines indicate the coronal sections where autoradiographs representing
GABAABenz. receptor density were acquired. The spaces in between the green lines
represent the estimated GABAABenz. receptor density.187



were generally between 0-6%, except for one particularly large gap between acquired

sections where the error level reached 10%.

The results of the reconstruction pipeline are shown in Fig.6–17 for the first slab

and for the entire hemisphere Fig.6–18. The reconstruction resulted in a 3D image of

GABAABenz. binding densities in the brain that closely resembles the donor’s MRI.

While the correspondence between the reconstructed autoradiograph volume and the

MRI was generally good, the temporal lobe in Fig.6–18 showed that the alignment

was not perfect.

During the GATE simulation, a total of 10,153,400 counts were acquired during

the 30 s simulation. The simulated PET image in Fig.6–19 showed that the simulated

PET recovered some degree of the laminar neurotransmitter receptor distribution

seen in the source radioactivity distribution. There was a clear difference in the

intensity of the simulated PET image more dorsally due to non-uniformity artefacts.

The local correlation between the reconstructed autoradiograph volume and the

simulated PET image indicates that the spatial accuracy of PET was not uniform

throughout the cortex Fig.6–20. The correlation between the two images tended to

be lower (0.5-0.65) in the abutting cortex in sulcal folds and was higher towards the

edge of the cortex (0.75-0.83). Averaging the local correlation across the cortex gave

a correlation of 0.71 ± 0.89.
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Figure 6–15: The equivolumetric GM volume has a discrete label for each layer of the
cortical GM. The middle image shows the result of interpolating the equivolumetric
GM volume using only the coronal sections for which GABAABenz. autoradiographs
were acquired. Note that the interpolation scheme conserves the laminar distribution
of voxel intensities across the cortical surface GM. The error volume was calculated
by dividing the interpolated by the true equivolumetric GM volume. Error levels
were consistent across the coronal axis.
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Figure 6–16: The average error in each coronal section shows that the interpolation
scheme works well when there was a small gap between acquired sections (0-6%),
but increases substantially for larger gaps. The troughs in the error level indicate
the positions where autoradiographs were acquired.

Figure 6–17: The alignment of the reconstructed GABAABenz. autoradiograph vol-
ume in the prefrontal cortex and the donor’s MRI showed that the reconstruction
pipeline produces volumes that accurately match the donor’s gross brain anatomy.
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Figure 6–18: Alignment of the reconstructed GABAABenz. autoradiograph volume
shows good alignment in coronal axis, but illustrates the large gaps between some of
the autoradiograph volumes.
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Figure 6–19: The simulated PET image shows that in principle PET can recover
laminar patterns in the neurotransmitter receptor distribution. The source radioac-
tivity distribution was defined at 500µm and the simulated PET image was sampled
at 1mm.

192



Figure 6–20: Local correlation (Kendall’s Tau) of the reconstructed autoradiograph
volume and simulated PET image show that the accuracy of PET varied based on
cortical folding and thickness.
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6.6 Discussion

We have created a fully-automated pipeline that can successfully reconstruct

3D autoradiographic volumes of ligand binding densities for 20 different neurotrans-

mitter receptors and demonstrated its application for the GABAABenz. receptor.

We then used this reconstructed autoradiograph volume to perform realistic PET

simulation. To recapitulate briefly, the pipeline began by preprocessing the data to

isolate target brain regions from raw autoradiographs. The preprocessed autoradio-

graphs were aligned to one another using rigid transformations to create an initial

3D autoradiograph volume. Each autoradiograph in the initial reconstruction was

then segmented to create an autoradiograph GM volume. A GM volume extracted

from the donor’s MRI was then non-linearly aligned in 3D to the autoradiograph

volume. The 2D sections of the autoradiograph 3D volume were then non-linearly

aligned in 2D to the resampled MRI GM volume. Finally, a volume for 1 of the 20

measured neurotransmitter receptors was created using a linear distance-weighted in-

terpolation scheme. A reconstructed slab of GABAABenz. receptor density was used

as the radioactivity distribution for Monte-Carlo PET simulation. The results in

Fig.6–18 showed that the pipeline was able to accurately reconstruct gross anatomic

features although more work was needed to perfect the reconstruction. The simu-

lated image showed that under ideal conditions, PET shows a strong correlation to

the source radioactivity distribution and appeared able to recover some gradients

in neurotransmitter receptor density stemming from the laminar distribution of the

receptor.
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6.6.1 3D reconstruction of 2D autoradiographs

Accuracy of reconstructed GABABenz. atlas

Visual observations indicate that the reconstruction pipeline can accurately re-

cover the 3D anatomy of the donor’s brain from the 2D autoradiographic sections.

This was seen in both coronal sections as well as sagittal sections (see Fig.6–17

6–18). However, the anatomic accuracy was not perfect. In Fig.6–18 subcortical

GM structures were overlapping with the ventricles and the temporal lobe was also

not perfectly aligned. This imperfect alignment was due to imperfect processing at

multiple steps of the pipeline and are addressed in the following sections.

Initial autoradiograph alignment

One particularly important potential source of error in the reconstruction pipeline

comes from the inter-autoradiograph alignment algorithm that we developed. Im-

perfections in the initial reconstruction obscure anatomic landmarks and negatively

impact all downstream stages of the pipeline. While the alignment of 2D biologi-

cal sections, whether from histology or autoradiography, is a problem that has been

solved many times for different data sets, these methods were not well adapted for

the present data.

A method for creating robust reconstructions from 2D sections was proposed

by Cifor et al [207]. They attempted to maximize smoothness of anatomic regions

through axial cuts in the reconstructed image to limit the impact of individual mis-

registrations. However, their approach requires the same anatomic structures to be
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present across sections and may not work well with the significant amount of missing

sections in the present data set.

Similarly, the network-based approach to image alignment of Pichat et al [208]

considered sections to be nodes in a graph and the similarity metric, e.g., mutual

information, between two histological sections to be edge length between the sections.

For example if the alignment between histological sections i and i+1, is poor but the

alignment between section i-1 and i+1 is good, then, instead of transforming section

i to section i+1 directly, it may be more effective to use the transformation from

i to i-1 and then from i-1 to i+1. This is more robust than the method used here

because it allows one to circumvent misalignments by considering alternate paths

between sections. However, this method is unlikely to work in our context because

the similarity metric between pairs of autoradiographs representing different receptor

densities may not be directly comparable.

The block-matching alignment scheme of Ourselin et al. [205] was designed

to align neighbouring histological sections even in cases where sections have suffered

significant damage. Using their method on the current data set may not lead to good

alignment because their method uses the cross-correlation between small 2D blocks

in adjacent sections. Cross-correlation is not well suited to images with different

intensity distributions. A simple solution to make their method more applicable

to our data would be to replace cross-correlation with mutual information. The

method of Ourselin et al[205] was not used here because, except at the edge of slabs,

the sections were largely intact and because ANTs with Mattes mutual information

was found to be sufficient for reliable alignment. Nonetheless it may be the case
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that a modified block-matching strategy may provide better alignment in the few

cases where ANTs was unsuccessful and may constitute a potential avenue for future

development.

Another method for robust section alignment was created by Chakraverty et al.

[206] for cases where no reference data was available. For a given section, they aver-

aged the distortion fields for the alignment with the adjacent posterior and anterior

sections, respectively, and repeated the alignment of all sections over several itera-

tions. While this method does decrease the likelihood of misalignments by repeatedly

reinitializing the alignment process, it is best suited to cases where no reference is

available and where sections have to be non-linearly warped to one another.

A similar scheme was used by both Malandain et al [212] and Amunts et al [9] to

reconstruct histological and autoradiograph volumes in 3D. Generally speaking this

scheme iterates between two steps, where first the donor MRI is aligned in 3D to an

autoradiograph stack and the autoradiographs are aligned in 2D to the transformed

MRI. The difficulty in applying this method to our data is that the warping in

the autoradiographs is so large that aligning autoradiographs to their corresponding

sections in the MRI volume constitutes a significantly ill-posed problem. That is,

there are many potential transformations that can align the autoradiograph section

to the corresponding MRI section. For example, one autoradiograph may be better

aligned in the dorsal portion of the cortex and poorly aligned in the ventral portion

of the cortex, but the opposite may be the case for its neighbour. Thus when,

during the development of the reconstruction pipeline, we attempted to implement a

2D linear alignment of all the autoradiographs sections to their corresponding MRI
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sections, this led to a worse alignment between the autoradiographs than in the initial

reconstruction where autoradiographs were aligned to one another.

Autoradiograph grey matter segmentation

Another important limitation in our reconstruction pipeline was the segmenta-

tion of GM in the autoradiographs. Poor segmentations led to a loss of anatomic

information, especially when sulcal walls were fused. There were also instances where

the entire cortex, including both white matter and GM, in the image was attributed

to GM.

The K-means algorithm is a simple algorithm that suffers from significant limita-

tions in the present context. It only takes into account the image intensities and does

not include information about the spatial structure of the images. K-means also as-

sumes that intensities follow a spherical distribution around their means. Therefore,

while the 3 class K-means algorithm presented here worked well with high-contrast

radioligands like flumazenil, it performed poorly with lower contrast radioligands,

like pirenzepine.

The limitations of the GM segmentation with K-means poses two problems for

autoradiograph reconstruction. The first is that it limits the spatial resolution and

anatomic accuracy of the 3D autoradiograph GM volume which, in turn, limits the

accuracy of the alignment of the autoradiograph and MRI volume. Improving the

autoradiograph segmentation would produce a more anatomically accurate 3D GM

volume that would, for example, have more clearly preserved sulci.
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A further problem is that because 3 class K-means does not work well con-

sistently for low contrast radioligands, the 2D non-linear alignment of the autora-

diograph GM volume to the MRI GM volume in autoradiograph space is likely to

be poor. While it is possible to align autoradiographs to corresponding MRI using

information theoretic distance metrics, this may require fine-tuning parameters for

each neurotransmitter receptor.

The heterogeneity of the imaged receptor distributions and in the acquisition

protocol for the autoradiographs makes it difficult to use a single algorithm to seg-

ment all of the acquired autoradiographs. A more robust approach would be to use

a deep neural network to perform the autoradiograph GM segmentation based on

manually drawn labels. While this approach is time-consuming, it would provide a

general autoradiograph GM classifier that could potentially be applied to other data

sets.

3D alignment of MR to autoradiograph volume

Many reconstruction methods accomplish the alignment of the 2D sections to a

reference MRI by iterating between 3D and 2D alignments between the reconstructed

and MRI volumes, often through the use of intermediate blockface images [9, 209–

212, 214]. While 2D alignments between reconstructed and MRI volumes were used

in our pipeline, the initial alignment of these two volumes was performed in 3D. As

mentioned above, this was because the particularly significant deformations in the

autoradiographs and the lack of blockface images made it difficult to directly align

the 2D sections to the MRI volume.
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The errors in alignment of the reconstructed autoradiograph volume versus the

donor’s MRI may be improved by ensuring a better non-linear alignment between

the autoradiograph GM slab volume and the MRI GM volume. Besides improving

the initial inter-autoradiograph alignment and autoradiograph GM segmentation,

another way of improving the overall reconstruction would be to improve the 3D non-

linear alignment between the autoradiograph and MRI GM volumes. The fact that

the subcortical GM structures in Fig.6–18 appear to be in the correct coronal plane

suggests that the affine transformation that grossly aligns the volumes is correct, but

that further deformation is needed to align these structures. This is also the case for

the temporal lobe because in the raw autoradiographs it appears to be compressed

against the frontal and parietal lobes. Increasing the amount of warping of the MRI

GM volume when aligning it to the autoradiograph GM volume would therefore likely

improve the alignment of the subcortical GM structures. Another way to improve

the non-linear alignment may be to use local instead of global cross-correlation as a

similarity metric for image alignment because the former is more sensitive to local

misalignments.

Interpolation of Missing Sections

The diversity of neurotransmitter receptors that were measured in this dataset

also means that there was a gap between acquired neurotransmitter receptors of

at least 400µm. This is a fundamental limitation of the dataset that cannot be

improved on with the data at hand. An interpolation algorithm was devised to
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provide an estimate of the missing receptor densities based on the nearest available

sections.

An important theoretical limitation with the interpolation method presented

here is that it assumes that each section for a particular autoradiograph cuts through

the cortex orthogonally and therefore accurately represents the laminar distribution

of the neurotransmitter receptor. Our distance-weighted interpolation method as-

sumes that a middle section between acquired posterior and anterior sections can be

accurately estimated as an average of the two acquired sections. A problem occurs if

one, or both, of the acquired sections have been cut at an angle that is not orthogonal

to the folding of the cortex(see Fig.6–21 for an illustration of this problem). In that

case the acquired section may be missing particular laminae and the laminae may be

distorted based on the cutting angle. Misrepresentation of the laminar receptor dis-

tribution will then bias the laminar receptor distribution in the interpolated missing

section.

This problem could be overcome by using anatomic information from the MRI to

constrain the interpolation to within receptor layers and hence avoid contaminating

binding densities from different layers of the cortex[223]. This is a major avenue for

future work and refinement of the method described here.

In practice tangential sectioning appears to have a modest impact of the inter-

polated values. The interpolation method was applied to a synthetically generated

equivolumetric laminar volume [220]. This showed that the interpolation algorithm

was accurate to within 0-6% except when the gap between acquired autoradiographs
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Figure 6–21: Distance-weighted interpolation of a missing autoradiograph section
from adjacent sections is biased if the sections are cut tangentially to curvature of
cortical surface. Section C is tangential to the cortical surface and does not accurately
represent the distribution of layers across the cortical surface. Hence if section B is
interpolated based on sections A and C, section C will bias this estimate due to its
misrepresentation of the laminar distribution of signal intensity across the surface.
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was large. Based on visual inspection of the volume produced using our interpola-

tion method, it is clear that the latter preserves the laminar distribution seen in the

equivolumetric laminar volume.

The distance-weighted interpolation scheme assumes that neurotransmitter re-

ceptor densities change linearly between the acquired sections and the missing sec-

tion. This is not strictly biologically valid because there may be sharp boundaries

between cytoarchitectonic areas [28] which would be obscured by our interpolation

method. It does not appear possible to devise an interpolation method that could

reproduce such sharp regional boundaries without additional information.

Another limitation of the work presented here was that the receptor volume was

reconstructed on the basis of autoradiographs that had been cropped and downsam-

pled. It is possible that interpolation errors were introduced by this downsampling

process. This was done to minimize the computational time of reconstruction. How-

ever, in the future the receptor volume can be reconstructed by applying the final

transformations produced by the pipeline directly to the raw autoradiographs, pro-

ducing a receptor volume with voxels of 20 x 20 x 20 µm.

Quantitative accuracy of autoradiography

An important underlying assumption in the creation of atlases of neurotrans-

mitter receptor density based on autoradiography is that post-mortem in vitro ra-

dioligand binding reflects in vivo neuroreceptor distribution. The available evidence

suggests that prolonged freezing of brain tissue did not affect receptor binding sites

[224–227]. The quantitative accuracy of autoradiography was, however, affected by
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the delay elapsed between the donor’s time of death and the freezing of the brain.

For example, NMDA, GABA, muscarinic M1, D2, and 5-HT2 receptor binding sites

were stable for up to ~75 hours post-mortem [226, 228–231]. Other neurotransmit-

ter receptor densities increased post-mortem before freezing, e.g., D1 and 5-HT 1A

receptor binding sites [230]. Somewhat surprisingly, and most problematically for

the present work, the GABAABenz. receptor binding sites increased by 150% within

a 48h post-mortem delay [224].

The brain used in the present study was frozen within 24h post-mortem. It is

not clear if the increase in GABAABenz. receptor binding sites post-mortem is uni-

form throughout the brain. If the effect is uniform, then the relative distribution of

receptor binding sites will be correct and should not substantially impact the recon-

structed atlas. However further studies would have to be conducted to determine the

precise time course of changes to GABAABenz. receptor binding sites post-mortem.

6.6.2 Monte-Carlo PET simulation with 3D reconstructed autoradiog-
raphy

The results of the Monte-Carlo PET simulation showed that PET can in princi-

ple be used to image near laminar differences in neurotransmitter receptor densities.

This can be observed visually and was measured quantitatively using the local cross-

correlation (0.71 ± 0.89).

The spatial accuracy of PET was not uniform throughout the cortex, but varies

based on morphology. The spatial variability of PET accuracy was seen in the local

cross correlation volume of the simulated PET volume and reconstructedGABAABenz.

receptor density volume. The pattern of cross-correlation in this volume indicated
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that PET is less able to recover the distribution of receptors towards the center

of the cortex and on abutting sulcal walls. The latter was not surprising because

abutting sulcal walls may be physically close in space but can have very different

neurotransmitter receptor distributions. Hence PVE in these locations cause cross-

contamination of radioactivity concentrations from very different regions.

The spatial pattern of PET accuracy highlights the importance of using source

radioactivity distributions that reflect the real distribution of the receptor targeted

by the radioligand. Traditional methods for performing PET simulation have typ-

ically used large ROI with homogenous radioactivity concentrations [22, 232]. The

limitation of this approach is that it does not reflect the complex pattern of neuro-

transmitter receptor distribution. Moreover, using a source radioactivity distribu-

tion based on gross anatomic regions, it would not have been possible to observe

the relationship between cortical morphology and PVE. Another approach to PET

simulation is to derive a voxel-based radioactivity source distribution from a PET

image [233]. This approach is limited in that it can never be used to assess the

spatial resolution of PET because it, by definition, uses a radioactivity source that

is at PET resolution and cannot represent source radioactivity concentrations below

the millimeter scale.

Realism of PET Simulation

The Monte-Carlo simulation with GATE aimed to produce a simulated image

that was as similar as possible to the image that would have been obtained if the
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donor had been injected with [18-F]-flumazenil and scanned with an actual CTI-

Siemens ECAT HRRT. There are important limitations to the realism of the sim-

ulated PET image generated in this study. One of the most important limitations

is that in practice, there are many potential sources of radioligand binding other

than specific binding to the target receptor. Depending on the radioligand, there

can be significant non-specific binding, off-target binding, free radioligand in the

blood and in the interstitial space. Non-specific binding can be accounted for in the

present reconstruction and simulation framework by including the autoradiographs

of non-specific binding which were also acquired as a part of the dataset used here.

Patient head movement is also another factor that affects real PET simulation

and decreases spatial resolution. GATE allows for movement of the radioactivity

source during the simulation and this could be used to model the effect of patient

head movement on PET spatial resolution.

Another limitation concerns the proposed method for binning the location of

annihilation events into a 3D grid. This binning approach does not include several

standard correction algorithms that are implemented during PET reconstruction to

improve the accuracy of the measured radioactivity concentration. These include

non-uniformity correction, scatter correction, and attenuation correction. The effect

of these correction algorithms is not taken into account in our binning method and

would be likely to significantly affect that reconstructed simulated image.

The number of counts acquired in this experiment were also relatively low com-

pared to real PET scans. A total 10,153,400 counts were acquired as opposed to 16

billion counts for whole brain simulations of 10 minutes in Ref.[22]. This relatively
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low number of counts was chosen because GATE is computationally intensive, which

results in long processing times and the number of acquired counts was sufficient to

create a representation of the radioactivity source distribution. A lower number of

counts will tend to produce a noisy image with poorer resolution and so the rela-

tively low number of counts acquired here will only bias our results in a conservative

direction. Nonetheless, in order to produce images that are as similar to real PET

scans as possible, more counts should be acquired in future simulations.

The ideal way to validate the effective spatial resolution of PET would be by

performing a direct comparison of in vivo PET versus in vitro autoradiography in the

same subjects. One such study has been performed but only on 2D autoradiograph

sections in the hippocampus for a clinical population [Koeppe1998]. Given that the

effective resolution of PET will vary based on the ligand, radioisotope, scanner, and

measured region, it is not currently feasible to perform a PET scan and subsequent

full brain autoradiographic imaging to evaluate the effect on effective spatial resolu-

tion for each of these variables. Not only are the costs to full-brain autoradiography

prohibitive, but there are also enormous logistical challenges and ethical concerns to

performing a PET scan followed by post-mortem autoradiography in humans.

Future Work

Improving the realism of the PET simulation will be a central aim of future work

on using 3D autoradiograph reconstruction for PET simulation. As mentioned in the

preceding section, this will include reconstructing the non-specific binding images

and adding these to the radioactivity source distribution for GATE. It will also
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be important to perform simulations with higher count rates that more accurately

reflect the quantities acquired in real PET scans. While it is useful to consider the

theoretical maximum spatial resolution of PET, it is also be of interest to assess PET

resolution after reconstruction with a traditional algorithm, such as ordered-subset

expectation maximization (OSEM).

Finally, several of the autoradiographs for other receptor binding sites could be

used for PET simulation. The same radioligand is used to image the dopamine D1

receptor in both PET and autoradiography. This makes it particularly straightfor-

ward to use for PET simulation as the distribution of radioligand would be similar

in both PET and autoradiography. For several other radioligands there is are dif-

ferent radioligand for PET and autoradiography that nonetheless bind to the same

receptor. These include the receptor binding sites for serotonin 5HT1A and 5HT2,

nicotinic4β2, and the AMPA. In these cases it would be necessary to account for

differences in non-specific binding between the radioligand used in autoradiography

and PET.

6.7 Conclusions

We have created an image processing pipeline for reconstructing 2D autoradio-

graphs into 3D volumes and used one such reconstructed volume to perform Monte-

Carlo PET simulation. Using this pipeline it will be possible to create a set of

canonical high-resolution, 50 µm atlases of neurotransmitter receptor distribution

based on 3 human brains. We have furthermore shown how these atlases can be

used to create a new set of realistic simulated PET images. This data set will allow
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us to investigate PET spatial resolution and serve as a gold-standard data set for

validating PET algorithms for image analysis, reconstruction and correction.
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CHAPTER 7
Discussion

7.1 Discussion

Neurotransmitter receptor mapping can be performed in vivo with PET and

post-mortem with receptor autoradiography. While autoradiography has the advan-

tage of producing images at comparatively high resolution, 50 µm, it is an expensive

procedure and can only be performed post-mortem. Large scale neurotransmitter

receptor mapping will therefore have to depend primarily on PET, but this requires

overcoming important obstacles: PET spatial resolution and standardized PET pro-

cessing software.

PET spatial resolution is a problem because it is not certain at exactly what scale

PET can accurately measure receptor densities. While PVC algorithms may be able

to increase PET spatial resolution, it is not clear exactly how reliable they are. In

Chapter 3 we investigated neurotransmitter receptor mapping with PET in a clinical

context. This experiment showed that PET can detect changes in GABAABenz.

receptor density, which serves as a proxy marker for neuronal density, at a spatial

scale of 3 mm. An algorithm was also used to enhance the spatial resolution of

PET and was found to lead to a larger measured change in GABABenz. receptor

density. The fact that a larger effect size of neuronal loss was larger with resolution
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enhancement suggests that algorithms of this kind are effective in practice and can

increase PET spatial resolution.

The fundamental limitation of practical investigation into PET resolution con-

ducted in Chapter 3 is that the true GABAABenz. receptor distribution is unknown.

It is therefore impossible to determine with certitude the true spatial accuracy of

PET and to assess exactly how much resolution enhancement algorithms can po-

tentially improve spatial resolution. To address this limitation, we sought to use

Monte-Carlo PET simulation as described in Chapter 6.

Neurotransmitter receptor atlases should be composed of enough subjects to

capture the variability in receptor density in the target population. Existing brain

atlases of neuroanatomy and serotonin neurotransmitter receptor densities, based

on MRI and PET respectively, are composed of hundreds of individual scans [4,

10]. This suggests that continued neurotransmitter receptor mapping with PET

will require hundreds of brain scans, possibly from multiple sites. Large-scale image

processing with PET is difficult to perform reliably because it is susceptible to small

but significant artefacts. Small differences in software implementation can also lead

to different results [234].

A standard and open PET software package would be of great help to creating

canonical neurotransmitter receptor atlases with PET. In Chapter 4 we presented

a novel open-source software package for PET image analysis called APPIAN. This

software package is freely available and can be easily extended to meet the needs

of the PET research community. As a part of this software package, we sought to

address the problem of processing error detection in automated PET analysis by
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incorporating a novel algorithm for automated QC algorithm (discussed in Chapter

5). We used computational simulation to test the ability of this algorithm to detect

the most common type of error in PET image analysis. Our results showed that this

method could detect moderate to large errors in PET to MRI alignment.

An important assumption in our development of APPIAN was that PVC could

in principle improve the resolution of PET and therefore constitutes a key processing

step in PET image analysis. However, even if this may apply to analysis of individual

PET scans, the role of PVC for improving spatial resolution of atlases derived from

multiple PET images from different subjects onto a common template space remains

to be demonstrated. While blurring induced by inter-subject averaging is no doubt an

important factor, it would nonetheless be preferable to combine PET images at the

highest resolution possible to limit the extent of this effect. An alternate approach

to defining atlases on a single stereotaxic template has been to combine parcellations

defined on a database of individual MRIs onto a target MRI [235]. Hence, instead of

defining a unified PET atlas on a template brain, it may be preferable to warp PET

images in a hypothetical atlas database onto individual target brains. While there

are advantages to both approaches to building atlases, in both cases using PVC could

improve the spatial resolution of PET atlases–assuming that PVC can be shown to

be accurate and reliable.

APPIAN is currently publicly available. Our processing algorithms, imple-

mented in APPIAN, have been used by others to measure neuronal density changes

in patients with chronic pain [236, 237] and APPIAN is currently being used by PET

researchers at several international sites. The main challenge with such a software
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package is to make it more user-friendly for non-technical users and to ensure that

it works reliably. To this end we are in the process of designing a new graphical

user interface for APPIAN. We are also implementing automatic validation of the

software using the simulated PET data released by Veronese et al.[233]. This will

make it possible to compare the images produced by APPIAN to an objective bench-

mark and ensure that future changes to the code do not corrupt the outputs of the

pipeline.

Additionally, APPIAN contains all the necessary steps to create new PET atlases

in the manner of Beliveau et al [10]. We will therefore create a similar atlas based

on GABAABenz. receptor distribution using flumazenil PET.

Finally in Chapter 6 we presented an image processing pipeline for creating

a high resolution 3D neurotransmitter receptor atlas based on 2D autoradiographs.

The analyses using these autoradiographs were originally published by Zilles et al [28],

but several technical obstacles and image artefacts prevented this data from being

reconstructed into 3D until our work. Indeed, the reconstruction of these data has

been envisioned since 2001 [238] but not been accomplished prior to this thesis work.

The pipeline we designed attempts to systematically address these obstacles and

produce a 3D reconstruction that is correctly aligned with the donor’s brain. While

only a single hemisphere and neurotransmitter receptor have been reconstructed to

date, this pipeline will allow us to create a database of 3D neurotransmitter receptor

atlases for 20 of the most common receptors for 3 donor brains.

While the reconstruction of the 2D autoradiographs has been much advanced by

the work presented here, there are still important limitations to the reconstruction.
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First, the inital rigid alignment of the autoradiographs does not always result in

perfect alignment and this error can be propagated to subsequent sections. Another

limitation is that the use of K-Means classification to derive a GM autoradiograph

volume does not work equally well on all receptor types and thereby introduces

significant noise in the derived GM volume. Both of these limitations in the recon-

struction leads to a loss of smoothness in the reconstructed volume that may impact

the non-linear alignment to the corresponding MRI. One approach to ameliorating

this problem would be to use a more robust method for segmenting the GM in the

autoradiographs, such as using deep learning. A secondary alignment of the autora-

diographs after the initial rigid registration could also help increase the smoothness

of the initial reconstructed autoradiograph volume.

Another major limitation is that the currently implemented method for interpo-

lating missing sections assumes that the autoradiographs are sectioned orthogonally

to the curvature of the cortex. Future work will attempt to overcome this limitation

by developing an interpolation method that accounts for the laminar distribution of

receptors across the cortex. This can be accomplished by only applying interpolation

within layers. While the true receptor laminar distribution is unknown, except where

orthogonally sectioned autoradiographs are available, a laminar model of the cortex

can be derived from the surface meshes extracted from the donor’s MRI. Thus a

laminar representation of the cortex derived from the subject’s MRI can be used to

constrain interpolation of missing autoradiographs to occur only within these layers.

The reconstruction of the receptor atlases is part of a broader collaborative effort

between McGill and Julich Forschungszentrum, the Helmoltz International BigBrain
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Analytics Learning Laboratory (HIBALL), to create an ultra-high resolution atlas of

the brain on which multiple layers for anatomic information can be superimposed.

The fundamental scaffold for this multi-modal atlas is the Big Brain [9] and it will

serve as the template to which the neurotransmitter atlases will be mapped. In

addition, 1µm histology and white matter photon light imaging will be incorporated

into an ultra-high resolution multi-modal brain atlas. Together these combined data

will be used for computational modelling of neuronal and brain network dynamics.

This of course poses the very significant challenge of how to solve the problem of

inter-subject, multi-modal image alignment at < 50 µm. Future work will therefore

also involve devising methods to optimally transform reconstructed receptor volumes

to a common template, perhaps through the use of a method like Multi-modal Surface

Matching [239].

To address the problem of PET spatial resolution raised in Chapter 3 and demon-

strate one potential application of the reconstructed receptor volume, we used a re-

constructed volume of GABAABenz. receptor densities to perform Monte-Carlo PET

simulation. The receptor densities were used to define radioactivity concentrations

for the PET simulator to create a realistic simulated PET image. The simulated

PET images illustrated that PET can, under ideal conditions, recover 71% of the

underlying spatial pattern of radioactivity concentrations and reflects differences in

laminar receptor density in the cortical GM. In the future additional simulations will

be performed with more scanner geometries and based on additional neurotransmit-

ter receptors.

224



Just as the 3D autoradiograph reconstruction will provide the research commu-

nity with a database of high-resolution neurotransmitter receptor atlases, the PET

simulation based on these atlases will provide a freely available dataset of simulated

PET images. These will help inform the spatial accuracy of PET and help deter-

mine the smallest anatomic regions that can be visualized with PET. The work in

Chapter 6 is therefore a continuation of the pioneering work of Hoffman, et al [39]

and Mazziotta, et al. [40] who, in the early days of PET in the late 1970s and early

1980s, attempted to quantify the spatial resolution of PET scanners and the effect

of brain anatomy on the quantitative accuracy of PET. In this work they used sim-

ple geometric phantoms to provide estimates of the quantitative accuracy of PET

for many different anatomic regions. We hope that the simulated PET images pro-

duced using our method will similarly provide the PET research community with

far more accurate measures of PET quantitative accuracy across a wide variety of

radioligands, scanner geometries, and acquisition protocols.

Moreover, this database of simulated images will also serve to validate algorithms

for analyzing or processing PET images. In this context we have already been con-

tacted by several groups who wish to use the simulated images we will produce to

validate their own PET atlases or evaluate novel scanner geometries.

7.2 Conclusion

The research project presented here has investigated the mapping of neuro-

transmitter receptor densities both in vivo with PET and in vitro with receptor

autoradiography. This work has sought to create a high-resolution neurotransmitter
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receptor atlas using autoradiography by developing a novel image processing pipeline

that could reconstruct a 3D volume from 2D autoradiographs. At the same time, we

have attempted to elucidate the spatial scale at which PET can accurately quantify

neurotransmitter receptor densities and thereby be used to create in vivo neuro-

transmitter receptor atlases. We have thus helped provide a framework for future

high-resolution neurotransmitter receptor mapping with PET.
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