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ABSTRACT

Neurotransmitters and their corresponding receptors allow for the transmission of
information between neurons and hence underpin all information processing in the
brain. Creating maps that represent neurotransmitter receptor densities in the brain
is therefore essential for characterizing human brain anatomy and function in both
healthy and diseased states. Neurotransmitter receptor mapping can be accom-
plished at very high spatial resolution (50 pm) using post-mortem imaging with
autoradiography or in vivo at a lower spatial resolution (~2-3 mm) with positron
emission tomography (PET). Creating canonical atlases of neurotransmitter recep-
tor densities in different populations will require large datasets to account for the
variance of receptor densities between individuals within populations. PET is bet-
ter suited for large-scale receptor mapping than autoradiography because it can be
used on living subjects and is relatively less expensive. An important challenge in
using PET for creating brain atlases of neurotransmitter receptor distributions is
that it is not clear at exactly what spatial resolution PET can be used to accurately
quantify receptor densities. We investigated PET spatial resolution in a top-down
approach using real clinical data from patients with ischemic stroke to determine if
PET can detect changes in receptor density in a small (3 mm) region around the
infarct, related to delayed neuronal loss. We then performed a bottom-up investi-
gation of PET resolution by reconstructing 2D autoradiographs into 3D and then
used the reconstructed volume to perform Monte-Carlo PET simulation to create a
highly realistic simulated PET image. In pursuing this objective we developed the
first open-source PET image processing pipeline that includes all the steps necessary
to perform high-resolution receptor mapping with PET.
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ABREGE

Les neurotransmetteurs et leurs récepteurs correspondent permettent la trans-
mission d’information entre neurones et ainsi sous-tend tout traitement d’information
dans le cerveau. La création d’atlas qui représentent la distribution des densités de
récepteurs de neurotransmetteurs est donc essentiel pour caractériser l’anatomie et
la fonction des cerveaux en états sains et malades. La cartographie des récepteurs
de neurotransmetteurs peut-étre accompli a une tres haute résolution (50 pum) avec
I'imagerie post-mortem autoradiographique ou in vivo a une plus faible résolution
spatiale (~2-3 mm) avec la tomographie d’émissions de positrons (TEP). La création
d’atlas canonique des densités des récepteurs de neurotransmetteurs dans différentes
populations requiert des grands ensembles de données pour refléter la variance des
densités des récepteurs entre individu dans différentes populations. La TEP convient
mieux pour la cartographie de récepteurs a grande échelle que l'autoradiographie
parce que la TEP peut étre utilisé dans des sujets vivent et est relativement moins
cher. Un défis importants dans 1'utilisation de la TEP pour la création d’atlas de
distribution de récepteurs de neurotransmetteurs c’est qu’il n’est pas claire a exacte-
ment quelle résolution spatiale la TEP peut étre utilisé pour précisément mesurer la
densité des récepteurs. Nous avons utilisé deux approche pour étudier la résolution
spatiale de la TEP. La premiere approche était d’utiliser des images TEP par venants
de patients avec des accidents vasculaires cérébrales ischémique pour déterminer si
la TEP pouvait détecter des changements dans la densité des récepteurs dans une
petite regions (3 mm) autours d’un infarctus ischémique, reliez aux perds des neu-
rones. Nous avons ensuite poursuivi une étude pour créer des images TEP simuler
réaliste. Pour créer ces images réaliste nous avons reconstruit des images 2D autora-
diographique en volume 3D et utiliser ce volume pour effectuer des simulations TEP
Monte-Carlo. Dans la poursuite de ces objectifs nous avons développé le premier
logiciel "open-source" pour automatiser tout le traitement d’image TEP nécessaire
pour créer des images a haute résolution de récepteurs de neurotransmetteurs.
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CHAPTER 1
Introduction

1.1 Neurotransmitter receptor mapping

Neurotransmitters and their corresponding receptors mediate the transmission
of electrical signals across the synaptic gap between neurons and hence underpin the
brain’s neural information processing capabilities. Quantitative mapping of neuro-
transmitter receptor densities in healthy and pathologic brains is therefore of interest
for understanding normal and pathologic brain function and behaviour. Anatomic
[1-4] and cytoarchitectonic [5-9] atlases of the human brain have been widely used
for many decades, but similar atlases characterizing neurotransmitter receptor dis-
tribution have only just been generated and only for one neurotransmitter system
[10]. We here investigate the possibility of generating high resolution quantitative
atlases of neurotransmitter receptor distribution based on data acquired with in vivo
PET.

There are two primary methods for quantifying neurotransmitter receptor den-
sities in the brain: receptor autoradiography and positron emission tomography
(PET). Both methods use a radioligand-also called a radiotracer—that is composed
of a radioactive isotope attached to a biological ligand to image the distribution of
the receptor to which the ligand binds in biological tissue. Receptor autoradiography

can be conducted by allowing the radioligand to bind in the living animal or in vitro



[11]. With ex vivo autoradiography the radioligand is injected in a living animal
after which it is sacrificed and the brain is sectioned. In vitro autoradiography is
performed on slices of dead brain tissue incubated in a solution containing the radi-
oligand. While ex vivo autoradiography can only be performed in animals, in vitro
methods can also be applied to post-mortem human brain tissue.

PET is the only imaging modality that is currently available for creating high-
resolution receptor atlases because it can be used in vivo to acquire large, representa-
tive data sets from target populations. However, creating receptor atlases with PET
is limited by relatively poor spatial resolution of a few millimeters, depending upon
scanner type, radioisotope, length of scan, patient motion etc. The so-called partial
volume effect (PVE) refers to the contamination of PET signal in the neurantomical
structure of interest from signal arising in adjacent structures. A variety of software
“partial volume correction” (PVC) approaches, discussed later, have been employed
to correct for this source of bias. As a consequence of these resolution-related fac-
tors, it is not clear up to what spatial resolution PET can be used to accurately map
receptor distributions in the brain. Furthermore, a secondary limitation of using
PET to produce receptor atlases is that it requires complex image analysis that is

susceptible to subtle processing errors that can bias results.

The goal of this project has been to address these two limitations by developing a
strategy to determine the maximum possible spatial resolution that can be obtained
with PET and by facilitating the creation of standardized high-resolution receptor

maps using PET. This investigation includes 1. development of a software package for



performing in vivo receptor mapping with PET, 2. a practical investigation into PET
spatial resolution with real clinical data and 3. a simulation experiment based on an
atlas of neurotransmitter receptor distribution acquired from gold-standard human
post-mortem data. While these 3 branches of investigation are methodologically
distinct, all three are necessary for creating in vivo receptor atlases at the maximum
spatial resolution possible with PET. Together they provide researchers with the

tools necessary to create novel receptor atlases and validate their spatial accuracy.

1.2 Imaging neurotransmitter receptors in the living human brain

PET is the primary non-invasive imaging modality for quantitative in vivo re-
ceptor mapping of the brain. The current generation PET scanners—such as the CTI-
Siemens ECAT HRRT-have a spatial resolution of up to 2.4mm full-width at half
maximum (FWHM) [12] and new scanners in development are designed to achieve
1.2mm [13] FWHM resolution. While the spatial resolution of PET is clearly not as
high as with autoradiography, PET is the only method to study large, representa-
tive human population samples at many different stages in normal aging or disease
progression. Therefore, the characterization of the spatial distribution of neurotrans-
mitter receptors will have to depend primarily on PET.

The present work is concerned with the effective spatial resolution of PET and
all references to PET spatial resolution should be taken to reflect both the intrin-
sic resolution of the PET system and the properties of the object being imaged.
For example, the CTI-Siemens ECAT HRRT scanner has a maximum resolution of

~2.4mm FWHM at the center of the field of view (FOV) when measured using a



uniform cylindrical radioactivity source of lmm diameter [12]. However, the cu-
mulative impact of partial-volume effects (PVE), patient motion, and PET image
reconstruction may degrade the effective spatial scale at which regions in the brain
can be accurately quantified[14] and hence the spatial resolution obtainable with the
CTI-Siemens ECAT HRRT may in practice be worse than 2.4mm. Alavi et al [15]
echo this concern in the context of clinical PET, because clinicians may underesti-
mate the risk of PVE by assuming that the scanner resolution measured in phantom
studies accurately reflects the spatial resolution of PET images acquired from real
patients in the clinic.

Algorithms for partial-volume correction (PVC) can potentially enhance PET
spatial resolution and the quantitative accuracy of measured tissue radioactivity
concentrations [16-18]. However, validation of PVC algorithms has depended on
phantom PET studies or PET simulation studies that do not attempt to model bi-
ologically accurate receptor distributions. The lack of complete validation of PVC
algorithms has practical consequences. For example, in their atlases for several sero-
tonin receptor subtypes, Beliveau et al [10] opted not to use PVC even though it
could in theory produce a higher resolution atlas. They were concerned that differ-
ent PVC algorithms produce different results and hence that PVC may not be fully
reliable [19].

It is therefore of interest to know to what extent PET, with and without PVC,
can be used to measure neurotransmitter receptor densities from small anatomic
regions such as the cortical grey matter layers, small GM structures such as the

amygdala, or even smaller brain stem nuclei. For example, the cortical grey matter



in the brain is 3-7mm thick and hence is just within the maximum resolution of the
CTI-Siemens ECAT HRRT PET scanner. A more thorough quantification of both
native PET resolution and PV-corrected PET images would allow for better atlases
of neurotransmitter receptor distribution and allow for a more accurate use of PET
imaging more generally. Although the focus of this work is on research applications
of PET, it is also important to note that PVE can have a significant impact on
clinical PET. PVE can make it more difficult to identify cancerous tissue and can

thereby lead to misdiagnosis [20].

1.3 Investigating PET resolution with phantom scans and simulation

Phantom PET studies are typically used to evaluate PET resolution and can also
be used to validate PVC algorithms [16]. In phantom studies a glass object containing
a solution with a known radioactivity concentration is scanned and the ensuing PET
image is compared to the known source radioactivity concentration. While phantoms
that model the human brain are available, such as the Hoffman phantom [21], the
radioactivity distributions in these phantoms are not representative of the actual
receptor distributions in the brain.

An alternative approach is to use digital Monte-Carlo PET simulations [17,
18]. Here a source radioactivity distribution is defined digitally and the physics in-
volved in PET image acquisition are simulated using stochastic Monte-Carlo models.
This allows for much more complex radioactivity source distributions that can more
closely reflect actual receptor distributions. Whereas previous Monte-Carlo PET

simulation studies [22] defined receptor distributions using large regions of interest



(ROI) with uniform receptor densities, we sought to perform PET simulation using
a gold-standard high resolution map of actual receptor distributions in the human

brain, summarized below and detailed in Chapter 6.

1.4 Probing the limits of PET: the need for a gold standard

Autoradiography provides the best available quantitative map of neurotrans-
mitter receptor distributions. The advantage of autoradiography is its high spatial
resolution of approximately 50 pm. However, autoradiography is performed on 2D
sections that are sliced from full 3D brain volumes and thus only give a series of 2D
representations of the brain. Autoradiography for a full brain is expensive and time
consuming because of the manual labour involved.

Autoradiography provides the ideal ground-truth for creating PET simulations
because both modalities can be used to measure the same receptor distribution,
only at a much higher spatial resolution with autoradiography. To perform 3D PET
simulation with autoradiography, the 2D sections must be reconstructed into 3D.
Once reconstructed the autoradiographs can serve as an input into a PET simulator
to produce realistic simulated PET images based on actual neurotransmitter receptor
distributions. It is then possible to characterize the quantitative performance of PET
using 3D autoradiography as a gold-standard map of real human neurotransmitter

receptor distributions.



1.5 From single brains to large scale population based neuroreceptor
maps

If simulation studies can demonstrate conclusively what is the maximum spatial
resolution that can be achieved with PET, and whether PVC helps in this, it will be
important to have PET analysis software available that can effectively leverage this
maximum spatial resolution to produce the best possible in vivo neurotransmitter
receptor atlases.

Accurate receptor mapping with PET requires complex data analysis on large
data sets. Indeed, creating an atlas that reflects receptor density with PET requires
at least: 1) anatomic information from structural imaging; 2) the use of tracer ki-
netic analysis to create parametric images of receptor density; 3) transforming these
parametric images into a common coordinate space; and 4) potentially the use of
PVC to enhance the spatial resolution of the PET images. Furthermore, hundreds
of images of individual brains are required to reflect the variability in a target pop-
ulation [10]. To make such large-scale data analysis more robust, it is necessary to
perform quality control for each processing stage of each image that is analyzed.
Providing open-source PET processing software that includes all of these processing
stages would thus facilitate reproducible and robust high-resolution neurotransmitter

receptor mapping with PET.

1.6 Objectives
1.6.1 Objective 1:Practical investigation with real clinical PET images
The practical spatial resolution of real PET images and the potential impact

of PVC was evaluated on images from patients with acute cortical ischemic stroke.



In acute stroke, neurons die from ischemia in the core of the infarct within minutes
to hours. Brain tissue surrounding this infarct core—called the peri-infarct cortex—
survives but is subject to long-term selective neuronal loss [23]. PET radioligands,
which bind specifically to the body of neurons (such as the GABAAR.,.. receptor
ligand [18-F]-Flumazenil) can be used as surrogate markers to measure changes in
neuronal density and to measure delayed neuronal loss after stroke. The challenge
lies in the fact that, based on histological studies, the extent of these small patches of
neuronal loss are just at the limit of PET resolution [24-27]. PVEs are thus a partic-
ularly important confounder in detecting delayed neuronal death in stroke patients
because a) the infarct is a region with very low radioligand binding, b) neuronal loss
may have caused cortical atrophy, and c) the transition zone between the infarct and
healthy tissue is susceptible to spill-in artefacts from radioactivity originating from

the adjacent healthy tissue.

We examined if the regions of decreased GABAARg.,.. around the infarct could
be detected in the peri-infarct cortex with high-resolution PET, both with and with-

out PVC. This tested two hypotheses:

Hy) high-resolution PET is capable of detecting a small region of neuronal loss
surrounding the infarct that is predicted by histological studies of stroke, and
H,) that PVC produces statistically different output measures than obtained

from uncorrected PET images.



Using these advanced image processing methods to push the limits of PET res-
olution, it was indeed possible to detect small regions of delayed neuronal loss in
peri-infarct cortex with longitudinal scans. However, given that we did not know the
true receptor distribution in the patient’s brain, it was impossible to determine if
PVC PET images provided more genuinely more accurate measurements. Further-
more, the question of how far the limits of PET resolution can be pushed with PVC,
can neither be answered by analyzing real PET data sets nor by using phantoms
which do not reflect the complex topology and layered distribution of neurotrans-

mitter receptors in the human cortex.

1.6.2 Objective 2: Theoretical investigation with simulated PET images

Objective 2.1: Reconstructing 3D receptor atlases from 2D autora-
diographs

To further elucidate the maximum possible spatial resolution of PET it was
necessary to perform a theoretical investigation using simulated data. We developed
a bottom-up approach to quantitatively evaluate PET by simulating PET images
from real postmortem receptor autoradiographs which accurately represent the lay-

ered cytoarchitectonics and complex topology of the human cortex.

The autoradiographic data used in this study—provided by Karl Zilles and
Nicola Palomero-Gallgher and described in Ref.[28]-are unique in that autoradio-
graphs measuring 20 different neurotransmitter receptor binding sites were acquired
at a resolution of 50 um from 3 different donor human brains. These data are par-

ticularly rich, but suffer from numerous artefacts that had up to now prevented



reconstruction of these 2D autoradiographic sections into 3D digital datasets.

We therefore sought to create an image processing pipeline that could account
for these artefacts and could be used to reconstruct 20 high-resolution receptor at-

lases for each of the 3 donor brains (Chapter 6). This tested the hypothesis that:

Hj3) Tt is possible to correct the processing artefacts in the autoradiograph im-
ages to reconstruct them into 3D images; as a proof-of-principle, reconstruction was

performed specifically for GABAAg.,.. receptor.

The reconstruction process allows for the creation of a library of 20 3D whole
brain neurotransmitter receptor maps at 50 um resolution. We anticipate that this
library, made available as open source data, will find many applications in neuro-
science in the the years to come. Here, we describe the first 3D reconstruction of
a GABAARe,.. receptor autoradiography data set of an entire human brain (see

Fig.6-18).

Objective 2.2: Monte-Carlo PET simulation with 3D receptor atlas

The reconstructed autoradiograph volume was then used to model the source
radioactivity distribution for a Monte-Carlo PET simulator with the software pack-
age GATE [29]. The simulated image allowed us to determine how accurately they

corresponded to the true neurotransmitter receptor distribution. This allowed us to
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determine, under ideal conditions, the spatial accuracy of PET. We thereby tested
the hypothesis that:

Hy: PET can in principle measure differences in radioactivity concentrations
stemming from laminar distributions in neurotransmitter receptor density.

The combination of publicly available 3D receptor atlases in combination with
Monte-Carlo simulation packages will allow researchers to determine the maximum

effective spatial resolution of PET in their own specific use-cases.

1.6.3 Objective 3: Framework for high-resolution PET receptor atlas

Objective 3.1: Automated pipeline for PET image analysis

The second aim of this project was to create a software framework for producing
atlases of neurotransmitter receptor distribution based on PET. Creating receptor
atlases based on PET is challenging because it requires multiple steps of image pro-
cessing and computational modelling. These steps can be subject to small errors
that can introduce bias or distortions in the final maps of receptor distribution. Re-
liable and robust software are therefore necessary to produce PET atlases with the

maximum spatial accuracy possible.

While several software packages exist, they do not include all of the processing
steps that may be necessary to produce the in vivo atlases of receptor distribution at
the highest possible spatial resolution. Specifically, to accomplish this it is necessary
for the software package to include PET to MRI coregistration, quantitative mod-

elling, alignment of receptor maps to a stereotaxic template, and may also require
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some form of PVC to enhance PET spatial resolution. Moreover, it is preferable that
such a software package be open-source and easily extendible so that it is available to
the whole research community and so that the best available algorithms can be incor-
porated into the larger pipeline framework. We therefore developed a PET pipeline
that incorporates all of the processing steps necessary to produce high-resolution
neurotransmitter receptor atlases with PET (Chapter 4) and validated it on existing

simulated PET data. This tested the hypothesis:

Hs: An automated PET pipeline built with open-source tools can accurately

recover parametric images based on simulated PET data.

Objective 3.2: Automated quality control

To limit the risk of subtle, but systematic errors (e.g., misregistration of the
PET and MRI) that could bias PET quantitative accuracy we developed a novel
automated quality control (QC) algorithm that detects and flags erroneous processing
steps (Chapter 5). We therefore tested the hypothesis:

Hg: An automated quality control algorithm can detect processing errors in
automated PET image analysis.

Furthermore, because this form of automated QC is not yet perfectly reliable,
we also included a graphical user interface to allow the user to perform visual QC.

The combination of the receptor atlas and simulation framework from Objective

2 and the PET processing software in Objective 3 will make it possible to produce
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PET atlases at the highest resolution achievable with the currently existing PET

scanner technology and computational algorithms.

1.7

Contribution to Original Knowledge

. Novel algorithm for calculating geodesic distances on a surface and defining

peri-infarct cortex.

. The first report using in vivo imaging of a progressive decrease in neuronal

density closer to infarct and long term decrease in neuronal density in the

region surrounding the infarct.

. Partial-volume correction increases sensitivity to neurotransmitter receptor

density changes in peri-infarct cortex.

. PET processing pipeline can recover accurate parametric values from simulated

PET images

. Automated quality control can detect errors in PET image processing and

facilitate neurotransmitter receptor quantification on large data sets.

Serially sectioning autoradiographs of different types can be reconstructed into
a 3D volume

The creation of the first ever high resolution 3D atlas of GABAAR.,.. distri-
bution in the human brain.

Quantification of PET resolution based on Monte-Carlo simulated PET and

receptor autoradiography.
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1.8

First Author Publications

. Published: Funck, T., Al-Kuwaiti, M., Lepage, C., Zepper, P., Minuk, J.,

Schipper, H.M., Evans, A.C., Thiel, A., 2017. Assessing neuronal density in
peri-infarct cortex with PET: Effects of cortical topology and partial volume
correction. Hum. Brain Mapp. 38. d0i:10.1002/hbm.23363

o PET resolution and partial-volume correction was investigated in the peri-

infarct cortex at 2 weeks and 6 months after ischemic stroke.

. Published: Funck, T., Larcher, K., Toussaint, P.J., Evans, A.C., Thiel, A.,

2018. APPIAN: Automated Pipeline for PET Image Analysis. Front. Neu-
roinform. 12.

« Novel open-source pipeline for automating PET image analysis called AP-

PIAN.

. Prepared: Funck, T., Larcher, K., Toussaint, P.J., Hoge, R., Dagher, A., Evans,

A.C., Thiel, A. 2019. Improving reproducibility of PET image analysis with
automated quality control
« Validation of automated quality control algorithm implemented in AP-

PIAN using simulated misalignment between PET and MRI volumes.

. Prepared: Funck, T., Palomero-Gallagher, N., Wagstyl, K., Omidyeganeh, M.,

Lepage, C., Thiel, A., Zilles, K., Evans, A.C. 3D reconstruction of multi-ligand
autoradiography.
« Automated pipeline for automated reconstruction of 2D autoradiography

into 3D receptor atlases.
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5. Prepared: Funck, T., Palomero-Gallagher, Zilles, K., Evans, A.C., Thiel, A.
Monte-Carlo PET simulation of 3D autoradiograph receptor atlas.
o Evaluation of PET resolution based on Monte-Carlo simulation and high-

resolution receptor atlas.
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CHAPTER 2
Background

2.1 Positron Emission Tomography
2.1.1 PET Physics

Radioactive decay and positron emission

Imaging with PET is based on the radioactive decay of a radioisotope that
is injected into a living human or non-human animal. The radioisotope can be
attached to a biological ligand so that the radioisotope accumulates in regions with
greater density of the target receptor to which the ligand binds. The nucleus of
a radioisotope contains a greater number of protons versus neutrons. This ratio of
protons to neutrons is unstable and, by progressively converting protons to neutrons,
tends to a more stable configuration.

The conversion causes the emission of a positron and a neutrino from the nu-
cleus [30]. The positron follows a random trajectory over which its energy gradually
decreases. The positron eventually collides with an electron for a very brief period
of time, approximately 1071 s. This collision results in annihilation of the positron
and electron and the emission of two gamma photons, which are detected by the
detectors in the PET camera. The detectors of the PET camera cannot measure the
distance that the positron travels before it joins an electron. This distance depends

on the energy of the positron and imposes an intrinsic physical limitation to PET
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resolution. Radioisotopes with lower energy emit positrons that lose their energy
more quickly and hence travel a shorter distance before combining with an electron
[31]. Images using lower energy radioisotopes tend to produce images with better
spatial resolution.

Detecting the photons

The combined positron and electron annihilate and emit 2 photons with an
energy of 511-KeV along paths at approximately 180° [30]. The photons are recorded
by a pair of scintillation detectors and the location of the annihilation is assumed to
have occurred on the line of response (LOR) between the 2 detectors. If, however,
the positron has residual energy when it annihilates, the angle between the paths
of the photons may not be exactly 180°. The angle is instead randomly distributed
around 180° according to a normal distribution [32]. This phenomenon is termed
non-collinearity and it constitutes another fundamental physical limitation to PET
spatial resolution.

Non-collinearity degrades PET spatial resolution because the LOR recorded by
the scanner does not cover the true location of the annihilation event. To compli-
cate matters further, the impact of non-collinearity depends on the location of the
annihilation event within the field of view (FOV) of the scanner as well as the size
and geometry of the scanner. The closer non-collinear photons are emitted to the
center of the FOV of the scanner, the further they travel before reaching a detector
and the further the recorded LOR is from where the true LOR would have been.

In a vacuum the photons travel along a straight path from the point of anni-

hilation. In a dense medium like the brain it is possible that the trajectory of the
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rays will be altered through interactions with surrounding atoms. One important
interaction is the photoelectric effect [33]. This occurs when a photon imparts its
entire energy to a bound electron that is also soon absorbed. Thus the photon would
not reach the detector. The remaining photon of the pair, which does not interact
with the surrounding tissue, may still be detected by the scanner within the same co-
incidence window as another, unrelated photon. These events are called "randoms"
and contribute noise to the image by adding spurious counts along LOR that do
not reflect true annihilation events. The second most common form of interaction
between photons and surrounding tissue is called Compton scattering [34]. Here a
photon only imparts a portion of its energy to a free or loosely bound electron and
is diverted as a result. This introduces noise and ultimately degrades PET spatial
resolution. Unlike positron travel and photon non-collinearity, photon attenuation
and scatter can at least partially be accounted for with correction algorithms [35,
36].

Scintillation detector crystals of bismuth germenate (BGO) or lutetium oxy-
orthosilicate (LSO) transform the photons into light waves. They are arranged
around the FOV usually in a circle or octagonal geometry [37]. Pairs of detec-
tors detect photons within a coincidence time window such that a pair of photons
is detected within this time window are taken to have been produced by the same
annihilation event. This method is imperfect and can introduce noise when photons
from different annihilation events, i.e., single photons, are detected within the coin-
cidence window and are assumed to reflect a true photon pair. These misidentified

photon pairs are termed "randoms" in contrast to true photon pairs.
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Detectors can be made of continuous or discrete crystals. For discrete detectors,
the surface area of the detectors is important for determining the resolution of the
PET image, where smaller detectors result in higher resolution images. An important
source of loss in PET resolution comes from "depth of interaction' effects. These
occur when a photon hits a detector at an oblique angle, is not stopped by that
detector, and passes through to an adjacent detector [38]. In this case the location
of the photon would thus be misattributed and thus the recorded LOR would be
incorrect.

Another important source of artefacts in PET image generation stems from the
fact that there are more pairs of LORs between detector pairs that pass through
the center of the FOV than its borders. This means that the PET system is more
likely to detect photon pairs closer to the center of the FOV than further away
from the center and hence would overrepresent objects at the center of the FOV.
Normalization algorithms that take into account the scanner geometry are used to
increase the number of counts measured proportional to their distance from the

center of the FOV.

Partial volume effects

Partial-volume effects (PVE) are imaging artefacts that result in a loss of spatial
resolution in the acquired PET image[39]. PVE have been a subject of interest since
the early period of PET research in the late 1970s because they can result in the
misestimation of the measured radioactivity concentrations within a given region [39,

40]. While spatial resolution of modern PET scanners has increased significantly
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since the first PET systems, the problem of PVE remains because improved spatial
resolution leads researchers to seek to resolve smaller objects.

PVEs can be categorized in two groups [41]. The first are tissue-fraction effects
that result from the multiple tissue types being confounded together within the
minimal volume unit (voxel) of a PET image. That is, a single voxel in a PET image
may contain several distinct tissue regions, e.g., white matter and grey matter (GM),
that each have different levels of radioligand binding. This then makes it difficult
to quantify the amount of radioligand binding that is attributable to these distinct
regions.

PVE also result from spill-over effects, where the point-spread function, or blur,
induced by the PET system results in the mixing of radioactivity concentrations
from distinct regions. Spill-over effects in PET are in part a function of factors
that are independent of the particular object being scanned. These factors include
the intrinsic physics involved in PET, e.g., the energy of emitted positron, and the
characteristics of the scanner, e.g., the surface area of the detectors. These factors
determine the blur of the scanned object induced by the PET system.

While the point-spread function of the PET system is independent of the object
being measured the quantitative accuracy of PET does depend on the object in the
scanner. This was originally demonstrated in a seminal series of studies on PET
quantitation including Hoffman et al [39] and Mazziotta et al [40]. Along these lines,
Hoffman and Phelps [14] distinguish between the intrinsic resolution of the PET
system and the practical resolution at which the anatomical objects can reliably be

measured. For instance, blurring between two adjacent regions has a negligible effect
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if these regions have similar radioactivity concentrations, but a large one if they have
very different radioactivity concentrations. Hence the size, shape, and contrast of
the object during image acquisition has a significant impact on the spatial scale at
which PET can accurately recover radioactivity concentrations in vivo. Movement
of the object during the scan can also have an important impact on the effective
spatial resolution of PET.

PVE are therefore the result of multiple physical phenomena and limitations in
PET scanner design. The limitations to spatial resolution imposed by positron travel
and non-collinearity are fundamental and cannot be overcome even with perfect
instrumentation. While photon attenuation and scatter also result from physical
phenomena, reliable algorithms have been designed to account for these. Other
technical limitations, such as depth of interaction effects and detector surface area,
are topics of ongoing research and continue to be improved upon [13]. The net
effect of these artefacts is a decrease in the quantitative accuracy of the measured
radioactivity concentrations.

Many important regions of the brain are susceptible to PVE that result from
the properties of the object being imaged. In particular, PVE can be exacerbated
by sharp gradients in radioligand binding and by morphological atrophy. Given that
the cortical GM is already relatively thin compared to PET spatial resolution, PVE
in this region are particularly aggravated by the cortical atrophy that accompanies
both normal aging and is made worse by neurological disorders like Alzheimer’s
disease. The loss in spatial resolution due to PVE is also prominent when measuring

from a small region of low radioligand binding that is located near adjacent regions
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with high binding. Neuronal loss in the surviving cortex following ischemic stroke
is a particularly good test case for investigating PET resolution because this region
is surrounded by healthy tissue likely to have high radioligand binding and is also
subject to cortical thinning.

Realistic simulation studies are necessary to fully characterize PET resolution.
Although assessing PET resolution on real images is useful, the true radioactivity
distribution that gives rise to the acquired PET image is fundamentally unknow-
able. Simulation studies allow for the comparison between the true radioactivity
distribution and that is measured by the PET system. Simulations therefore pro-
vide a complementary method for determining the spatial scale at which PET can

accurately measure receptor densities.

2.2 In vivo imaging of neuronal loss in the human brain
2.2.1 Stroke as a Model for Selective Neuronal Loss in humans
Occlusion of the arteries providing blood-flow to the brain results in ischemic
stroke. Prolonged loss of blood-flow below the minimum viability threshold necessary
to sustain cell metabolism leads rapidly to necrotic cell death in the brain regions
supplied. This results in a region of infarcted tissue. In the brain region surrounding
the infarct, cerebral blood flow may still be above the viability threshold and suffi-
cient for neurons to survive but below the functional threshold necessary to sustain
neuronal function [42]. This region is at risk of infarction, if blood flow is not rapidly

restored within hours.
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Even if blood flow to this viable but non-functional brain tissue is rapidly
restored with reperfusion therapies like intravenous thrombolysis or endovascular
thrombectomy, there is substantial evidence for delayed selective neuronal loss of
initially surviving neurons in these brain regions surrounding the infarct [43] (see
Ref.[23] for a review). This surrounding region is called the peri-infarct cortex and
describes a histologically defined area around the infarct with decreased neuronal
density [26]. This was found both in rodent models as well as in humans that suf-
fered ischemic stroke [24-27]. While the transition between the infarct and adjacent
healthy cortex is histologically well defined, there is a ring of tissue with decreased
neuronal density extending typically from 3-5 mm, and occasionally up to 10mm
from the infarct border into morphologically intact cortex. Assessing these changes
in human stroke is of potential clinical interest because such delayed neuronal loss
may impact stroke recovery and may play a role in the development of post-stroke

cognitive decline.

2.2.2 Flumazenil as radioligand to measure neuronal density

Neuronal loss in the cortex results in a reduction of neuronal density that can be
measured with GABAARg.,.. receptor as a surrogate marker. While single neurons
cannot be directly visualized in the living human brain, neurotransmitter receptors
on the cell body surface can serve as surrogate markers for the neurons. One such neu-
rotransmitter receptor is the benzodiazepine receptor complex which is co-localized

with the GABA-A receptor on the cell somata and dendrites of cortical neurons,
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where they form synapses with interneurons [44]. Interneurons make up 20% of cor-
tical neurons, and so their corresponding GABAAR.,.. receptors are densely, and
generally evenly, spread throughout the cortical mantle[45, 46]. Using flumazenil
either labeled with 11-C or 18-F radioisotope, it has been shown that variations in
GABAAR.,.. density is related to differences in neuronal density in healthy humans
and potentially reflect differences in the underlying cortical cytoarchitectonics [47].
In acute stroke, GABA-receptors from dying neurons are rapidly degraded and PET
with flumazenil performed within hours of stroke onset can delineate infarcted from
non-infarcted brain tissue [43, 48].

Evidence from autoradiography [49, 50] and PET [43, 51, 52] with flumazenil-
based studies in animals suggests that decreased GABAAR.,.. receptor density can
also be detected in the peri-infarct cortex. However, it should be noted that not all
groups have found a decrease in flumazenil binding after ischemic stroke with in vitro
autoradiography [53]. Decreases in GABAARe,.. in the peri-infarct cortex have also
been found in humans with iomazenil single-photon emission computed tomography

(SPECT) [54, 55] and flumazenil PET [56-58].

2.2.3 The challenges of PET with Flumazenil in human stroke

Studying the peri-infarct cortex with PET is made difficult by its limited spatial
resolution. Healthy cortex is between 3-7mm thick and may be subject to atrophy
as a result of ischemia. Moreover, based on histological studies the peri-infarct
region appears to be 3-5mm in width. Not only is the peri-infarct cortex small,

it is also particularly subject to PVE. This is because it is, by definition, located
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between regions of low and normal radioactivity concentrations in the infarct and
surrounding healthy tissue. It is therefore at the very edge of PET resolution and
therefore provides an ideal candidate for assessing whether PET, with and without
PVC, can be used to detect changes in receptor densities in small regions subject to
substantial PVE.

Most previous PET studies in human stroke have detected reduced GABA-A
receptor densities in the peri-infarct cortex in small cross-sectional case series without
accounting for related morphological changes in the cortex. An important exception
to this is Guadagno et al. [57] and Zepper et al. [58], both of which used PVC
to correct for potential PVE stemming from cortical atrophy. The PVC method
used by Guadagno et al [57] does not, however, account for PVE within the cortical
GM [59], which may be an important source of confounding error in the case of the
peri-infarct cortex. PVC is essential because it allows one to disambiguate whether
the cause of decreased flumazenil binding is due to cortical atrophy versus decreased
neuronal density. It should be noted that receptor downregulation is also a potential
cause of a decrease in flumazenil binding. However, while temporary downregulation
of GABAA receptors has been shown in gerbils in the hours after transient ischemic
stroke [60], to our knowledge there is no clear evidence for long-term downregulation
of GABAA receptors in humans.

While PET studies of the peri-infarct cortex have been performed in the past,
we wished to specifically determine if PET could measure small spatial changes in
receptor density in the peri-infarct cortex consistent with delayed neuronal loss. This

requires defining a space along which receptor densities are measured longitudinally.
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Previous PET studies of the peri-infarct cortex have used an Euclidean distance to
define the distance from the infarct border. This is problematic because the cerebral
vasculature does not travel along straight lines through the cortex. Defining the
peri-infarct cortex using Euclidean distances is particularly inappropriate in corti-
cal stroke because the cortical vasculature generally follows the cortical surface. It
is therefore necessary to use an anatomically plausible measure of distances from
the infarct border and thereby identify the peri-infarct cortex. In contrast to Eu-
clidean distance, a geodesic distance refers to the minimum distance measured over
a manifold. If the manifold is flat, then the Euclidean and geodesic distances are
equivalent. In Chapter 3 we describe how geodesic distances provided just such an
anatomically plausible method and use it to quantify GABAAg.,.. density in the
peri-infarct cortex. This made it possible to determine whether PET was able to
detect small changes in GABAAR.,.. density along the cortical surface and whether
PVC significantly affected the measured receptor density.

The use of high-resolution PET systems and advanced image processing algo-
rithms can allow for accurate measurements from small regions subject to significant
PVE. However, the question of how far the limits of PET spatial resolution can
be pushed remains and cannot be answered by using non-invasive in vivo imaging
modalities because it is impossible to determine how accurately the acquired and
PV-corrected PET images reflect the true radioactivity distribution. PET simula-
tion allows for an alternative approach to assess PET resolution by making it possible
to compare the source radioactivity distribution with the acquired PET image. How-

ever, given that simulators which accurately model the physics of PET acquisition
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are readily available, realistic PET simulation is only as good as the source radioac-
tivity distribution that is used as input for the simulation. The source radioactivity
distribution should ideally accurately reflect the real distribution of a given radioli-
gand and corresponding receptor in human brains. Such information can only be
derived from in vitro autoradiography but is not without its challenges, including

the inherently 2D nature of autoradiographic images.

2.3 Quantitative Receptor Autoradiography

Autoradiography is an imaging modality that uses a radioligand, or simply a
radioisotope, that binds to biological tissue and measures the particles emitted during
radioactive decay. A radio-sensitive film is used to record the emitted radioactive
particles. The film is composed of a layer of silver halide crystals, or grains, that are
organized into a lattice. Radioactive 3 particles that hit the lattice cause the release
of free electrons. These electrons migrate along the lattice to locations where they
form silver ions [61]. The latent images produced by the silver ions decay with time
and must be developed to create permanent images of the radioligand distribution.

Early autoradiography studies were used to measure receptor binding in the
brain. The earliest techniques for quantification of receptor density involved the
injection of a radioligand in an animal and, after sacrificing the animal, placing
solubilized brain regions in scintillation vials from which radioactivity counts were

measured [62-64]. However this approach only yields average regional radioactivity
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concentrations and not actual images representing the spatial radioactivity distri-
bution. In vivo autoradiographic techniques were applied to receptor mapping with
autoradiography to map muscarinic and opiate receptor distributions in rats [65-68].

In the late 1970s, Young and Kuhar pioneered a then novel technique for per-
forming autoradiography [69]. Instead of in vivo injection of the radioligand and then
sectioning the brain, they first sectioned the brain and then incubated the sections in
a solution of the radioligand. Hence this method was called in vitro autoradiography.
In vitro autoradiography presented important advantages over in vivo autoradiogra-
phy for receptor mapping, because it makes it possible to incubate adjacent sections
with different radioligands. Hence in vitro autoradiography makes it possible to visu-
alize multiple receptors within the same brain. It is also possible to use radioligands
that do not cross the blood brain barrier and hence cannot be used in vivo.

A broadly standardized approach to in vitro autoradiography for neurotrans-
mitter receptors was arrived at in the 1980s and 1990s [70-77]. According to this
method brains are extracted post-mortem from the donor cadaver and are shock
frozen and stored between -50 and -70 C. Brains are not fixed because fixation can
modify the configuration of the proteins that make up receptors [78].

Frozen brains are sectioned with a cryostat microtome at 20pum. Thicker sections
require shorter exposure time because of the increased radioisotope concentration in
the section but have lower resolution. If the angle at which the electron particle
emitted by the decaying radioisotope is not perpendicular to the film, an electron
emitted in a thicker section would travel further away from its point of emission before

reaching the emulsion. Sections of 20pum provide a good tradeoff between exposure

28



time versus spatial resolution [79]. Additionally, prior to sectioning, photographs
of the sections, called block-face images, may be acquired and used as a reference
during 3D reconstruction of the 2D sections.

After sectioning, the sections are thaw mounted onto a glass slide and freeze-
dried. The slides must then be rehydrated and rinsed to remove any endogenous
ligand in the section. The sections are then ready to be incubated in a buffer solution
either with just the titrated ligand or the ligand in addition to another displacer
molecule that also binds to the target receptor. A displacer molecule is used to
create autoradiographs of non-specific binding. A second rinsing step is required
to remove the extra ligand as well as salts from the buffer. The sections are then
exposed to a film that is sensitive to the [ particles emitted by the radioisotope in
the section.

After the film is developed, the autoradiographs are digitized with charge-
coupled device (CCD) camera. The digital autoradiographs have 8-bit pixel intensity
resolution, i.e., pixel values from 0 to 255. The pixel intensities of the autoradio-
graphs themselves do not reveal the actual radioactivity concentrations but merely
pixel intensities that are produced by these concentrations. The pixel intensities
must be converted to radioactivity concentrations by using radioactivity standards.
These standards are small cubes with a known radioactivity concentration and are
placed next to the tissue section on the glass slides. Therefore the standards are
co-exposed to the [-sensitive film alongside the tissue section that has been incu-
bated in the radioligand. The standards are hence visible on the autoradiographs

and have unique pixel intensities. Given that the true radioactivity concentration for
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the standard is known, it is possible to plot the acquired pixel intensities versus the
corresponding radioactivity concentration. This calibration curve is interpolated to
convert the pixel intensities of the raw autoradiographs to radioactivity concentra-
tions. These images, are then converted into images with pixel values representing
the concentration of the receptor density in fmol/mg protein [80, 81].

The analysis of autoradiographs has generally been performed in 2D. This is
problematic because these sections cannot accurately represent the complex 3D,
folded topology of the cortical grey matter. That is, the cortical grey matter in
the brain is organized into a series of layers that are oriented orthogonally to the
curvature of the cortical gray matter. Sections which cut through the surface at an
angle other than that is orthogonal to the curvature of the surface misrepresent the
extent of these layers. To illustrate this, imagine cutting a multi-tiered cake at angle
of 90° versus 75°. In the latter case, certain layers appear longer than they would in
the former case. The problem is that the surface of the brain, unlike a rectangular
cake, cannot be cut such that each section is at a perpendicular, or even at a con-
sistent angle, relative to the cortical surface. Algorithms have been developed that
are capable of reconstructing 2D brain sections into 3D and thereby create a more
accurate representation of the brain’s true anatomy and is discussed in the following
sections.

Although many methods have been proposed for 3D reconstruction, these meth-
ods remain useful largely for the datasets similar to the specific use case for which

they were developed. While certain portions of these methods could be borrowed
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and incorporated into new reconstruction methods, there is no generalized 3D re-
construction algorithm that applies to all datasets. The data used in this study are
unique and make it particularly difficult to apply existing techniques. The particu-
larities of this dataset include the diversity of receptors imaged, the large number of
missing sections, the large gaps between autoradiographs of the same receptor, and
the significant non-linear deformations in the autoradiographs. The combination of
these challenges made it necessary to develop a novel reconstruction pipeline. To
avoid developing an entirely new set of tools, a software package for generic image

alignment was used as a key component to this new reconstruction pipeline.

2.4 Image Alignment
2.4.1 Overview

Generic image alignment algorithms provide a useful tool for developing a novel
3D reconstruction method for the autoradiographic data used in this study. This
section describes the general principles of image alignment and describes the SyN
(symmetric normalization) algorithm implemented in the ANTs! software package.
SyN is a particularly robust and well-validated generic image alignment algorithm
that can be used on images from virtually any modality and can be applied in 2D,
3D, and even 4D. While ANTs has been employed in 3D reconstruction of histological
data [82], it has not to our knowledge been applied to autoradiographic data. It plays

a crucial role in the reconstruction pipeline described in Chapter 6.

1 ANTs is derived from the name of its author Brian Avants
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An image can be thought of as a function that maps a vector of spatial coor-
dinates to a scalar value in the case of grayscale images or a vector of dimension
3 for an RGB color images. Here we only consider grayscale images. The range of
the image can be a binary value (0 or 1), an integer, or a real number, depending
on the type of image. The domain of the image is usually of 2 or 3 dimensions,
which correspond to a 2D image or a 3D image volume. In the case of a 2D image a
coordinate point denotes the center of a pixel while a 3D coordinate point denotes
the center of a volumetric pixel or "voxel".

Image registration is the process by which the coordinates of one image, termed
the "moving" image, is spatially transformed so that it is aligned to a second "fixed"
or "target" image. There are many types of transformations that may be applied to
the moving image to align it to the target image. Transformations can be divided
into 2 classes: linear and non-linear transformations. Whereas linear transformations
apply global changes to each dimension of the coordinate grid of an image, non-linear
transformations allow for local deformations to a subset of the image’s coordinate
grid.

There are many algorithms that have been developed for automated image regis-
tration[83], but these can almost universally be understood in terms of 3 components:
a similarity metric, a transformation, and an optimizer. The similarity metric serves
as a cost-function that quantifies how similar 2 images are to one another. The
transformation defines the model that is used to modify the coordinate points of
an image. The optimizer finds the best, or at least satisfactory, transformation as

defined by the similarity metric.
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2.4.2 Non-linear image alignment with ANTs SyN

Hundreds of methods have been proposed for aligning spatial images with non-
linear transforms [83]. A full description of all existing approaches to non-linear
image alignment is beyond the scope of the overview given here and is not necessary
for understanding the techniques used in this work.

In a comparison of 14 non-linear alignment methods on 4 MRI data sets, Klein,
et al. [84] found that 4 algorithms that consistently provided the most accurate
alignment across all 4 data sets: ART, SyN, DARTEL, and IRTK. Among these,
SyN and ART were consistently the most accurate. We describe SyN because it is
part of a popular image alignment software package, ANTs, and is used extensively
in Chapter 6.

SyN is based on framework based on diffeomorphisms. A diffeomorphism is a
mapping between 2 manifolds that is smooth, invertible and is also differentiable.
Because of these features, diffeomorphisms have the significant benefit that they
guarantee to preserve topology, which is not always the case with other methods
of image alignment. Moreover, the fact that diffeomorphisms are differentiable and
invertible is particularly important because it means that if there exists a diffeo-
morphic non-linear deformation that maps the moving image to the fixed image,
then a mapping from the fixed image to the moving image also exists. The typical

formulation for a diffeomorphic transformation is of the form [85] :

1
v = argmin/ Loz, ¢)|[2dt + )\/M(Im, 1) (2.1)
0
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where L is a differential operator applied to the vector field, v, M is a similarity
metric, and A is a parameter modulating the weight of the similarity metric. The
integral with respect to time represents the summation over the vector field that maps
the moving image to the fixed image over unit time. The first component ||Lv(z, t)]||?
serves to enforce smoothness by penalizing vector fields with large derivatives. The
second component calculates the similarity metric between the moving and fixed
image over the image domain.

SyN takes advantage of the fact that the diffeomorphism can be split into 2
components, one that calculates the deformation field from 0 to 0.5 time units and

one calculates the deformation field from 1 to 0.5 time units. Hence the equation 2.1

is reformulated as :

0.5 1 : :
v = argmin/ ||Lv1(:v,t)||2dt+/ ||ng(:r,t)||2dt+)\/M([mgbl,lfqbg) (2.2)
0 0.5

where v; and v, represent the velocity fields that transform I,,, and I to a mid-
point at 0.5 time units. SyN therefore changes the traditional approach to alignment.
Instead of calculating the similarity of the moving image transformed to the fixed
image, both the moving and fixed images are transformed to a midpoint. Given that
diffeomorphisms are composable, once the separate diffeomorphisms are calculated
the separate velocity fields can be joined to transform the moving to fixed image and
vice versa. According to Avants et al. [86] this guarantees that the diffeomorphic
transformation calculated by SyN is not just invertible in theory, but that SyN actu-

ally produces the transforms to and from the moving and fixed image, respectively.
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ANTs in particular was therefore a natural choice to develop a novel recon-
struction pipeline because it is well validated on diverse data, produces invertible
transformations, and is publicly available. ANTs has not seem to have been used
to align autoradiographs and it was therefore not obvious whether ANTs would be
capable of overcoming the challenges posed by our autoradiographic data. The im-

plementation of this pipeline is described in detail in Chapter 6.

2.5 Monte-Carlo PET Simulation

The purpose of simulating PET scanners is to obtain an image that reflects the
characteristics of a real PET image but is produced from an a priori defined source
distribution of radioactivity in an object. There are 2 important factors that deter-
mine the realism of the simulation. The accuracy of the physics that are modelled by
the simulator determines if the characteristics of the simulated PET image reflects
the actual process by which a real PET image is acquired. To assess the accuracy
of PET for the particular use case of neurotransmitter receptor mapping, it is neces-
sary to also define a radioactivity distribution that reflects actual neurotransmitter
receptor distribution in the brain. Simulation is useful because it allows for a direct
comparison between the source radioactivity—which is usually inaccessible in the case
of real PET scans—and the simulated image.

The most realistic method for PET simulation is Monte-Carlo simulation. Monte-
Carlo simulations are characterized by their use of random sampling methods to
model stochastic processes. PET Monte-Carlo simulations involve the modeling of

the behaviour of individual particles in real-time according to probabilistic physical
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models [87]. This has the advantage of closely modeling the probabilistic nature of
radioactive decay. This physical realism comes at the cost of significant computation
time.

Several Monte-Carlo PET simulators are available with different degrees of com-
putational speed, accuracy and usability. The most accurate simulators, and conse-
quently the slowest, model each aspect of the physical processes involved in positron
emission, annihilation, and detection of photons as Monte-Carlo processes, i.e. by
generating random numbers. The most accurate of these simulators are GEANT4[88]
and PENELOPE [89], both of which are general purpose Monte-Carlo particle physics
simulators. GEANT4 and PENELOPE are designed for performing a wide range of
particle simulations, of which PET is just one application. This makes it difficult
to use GEANT4 or PENELOPE, and as such, versions of these have been tailored
specifically for modeling PET.

To overcome the limitations of high accuracy Monte-Carlo simulators with re-
spect to computational speed and usability, several alternative simulators have been
proposed. GATE is an open-source PET /SPECT simulator based on the GEANT4
code-base and is actively maintained by an international community of scientists
[29]. Due to the extensive use of Monte-Carlo sampling, GATE is an accurate but
relatively slow simulator. GATE has been validated in empirical studies against
phantom PET simulations and produces nearly identical results [29].

Multiple PET and SPECT simulators have been implemented for GATE, in-
cluding the Siemens HR+ and CTI-Siemens ECAT HRRT scanners. PeneloPET
[90], based on the PenelopePET code-base, and PET SORTEO [22] are attempts to
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improve the speed of simulation with minimal cost to accuracy by modeling certain
aspects of the simulator with analytic functions. While PeneloPET has been shown
to be many times faster than GATE and to differ from it by only 5% in counts of an-
nihilation events measured between detector pairs, only small animal PET scanners
have been implemented for PeneloPET [90]. Similarly, images fro PET SORTEO
have been shown to be in good agreement with real PET images acquired from PET
phantoms [22] However, the code-base for PET SORTEO is not publicly available
and it has not been implemented for the CTI-Siemens ECAT HRRT. GATE is open-
source, user friendly, accurate, and has been validated for the CTI-Siemens ECAT
HRRT [91].1t therefore is an ideal simulator for producing realistic CTI-Siemens
ECAT HRRT PET images based on an anatomically derived radioligand distribu-
tion. Chapter 6 describes the use of a 3D neurotransmitter receptor atlas derived
using autoradiography as a radioactivity source distribution for Monte-Carlo PET

simulation with GATE.
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3.1 Preamble

The aim of this study was to use PET with 18F-FMZ to detect small changes
in neuroreceptor density in patients with subacute stroke. These areas are thought
to represent small patches of delayed neuronal loss in the morphologically normal

appearing brain tissue surrounding the infarct which are just at the limit of PET
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resolution. PVEs are thus expected to be particularly important limitation for de-
tecting these changes.

Using a novel method to define the peri-infarct cortex based on geodesic dis-
tances, we demonstrate that these small regions of decreased GABAAg.,.. around
the infarct can be resolved with high-resolution PET, both with and without PVC
and that PVC produces statistically significant different outcome measures than ob-
tained in uncorrected PET. In addition, results obtained with geodesic distances
were different than those obtained with Euclidean distance metrics. Euclidean dis-
tance metrics are not anatomically realistic when measuring the peri-infarct cortex
in the case of ischemic stroke because the cerebral vasculature does not run through
cortical sulci. More broadly, this also suggests that when analyses are conducted on
the basis of a distance from some region in the brain, e.g., distance from a tumor or
epileptic foci, the distance metric used should reflect the brain’s anatomy.

The fact that decreases in BPnd became more prominent over 6 months and
were present after PVC for atrophy effects, suggests that a delayed loss of neurons

can be detected with such sophisticated methods pushing the limits of neuroreceptor

PET.

3.2 Abstract

Abstract: The peri-infarct cortex (PIC) is the site of long-term physiologic
changes after ischemic stroke. Traditional methods for delineating the peri-infarct
gray matter (GM) have used a volumetric Euclidean distance metric to define its ex-

tent around the infarct. This metric has limitations in the case of cortical stroke, i.e.,
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those where ischemia leads to infarction in the cortical GM, because the vasculariza-
tion of the cerebral cortex follows the complex, folded topology of the cortical surface.
Instead, we used a geodesic distance metric along the cortical surface to subdivide
the PIC into equidistant rings emanating from the infarct border and compared this
new approach to a Euclidean distance metric definition. This was done in 11 patients
with [F-18]-Flumazenil ([18-F]-FMZ) positron emission tomography (PET) scans at
2 weeks post-stroke and at 6 month follow-up. FMZ is a PET radiotracer with
specific binding to the alpha subunits of the type A g-aminobutyric acid (GABAA)
receptor. Additionally, we used partial-volume correction (PVC) of the PET im-
ages to compensate for potential cortical thinning and long-term neuronal loss in
follow-up images. The difference in non-displaceable binding potential (BPND) be-
tween the stroke unaffected and affected hemispheres was 35% larger in the geodesic
versus the Euclidean peri-infarct models in initial PET images and 48% larger in
follow-up PET images. The inter-hemispheric BPND difference was approximately
17-20% larger after PVC when compared to uncorrected PET images. PET studies
of peri-infarct GM in cortical strokes should use a geodesic model and include PVC
as a preprocessing step. Key words: PET; partial-volume effects; receptor mapping;

ischemic stroke; neuronal density

3.3 Introduction
Long-term physiologic changes occur after ischemic stroke in morphologically
preserved gray matter (GM) surrounding the core of ischemic brain parenchyma,

termed peri-infarct cortex (PIC). This region can be defined along morphologic or
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physiologic criteria. When using a physiologic definition of the PIC, it is typically
termed the “penumbra” and refers to cortex where cerebral blood flow is reduced
below the level necessary for neuronal function, but above that needed for maintain-
ing neuronal integrity [42]. However, the PIC can also be defined as cortex that has
undergone morphologic change resulting from the stroke. Changes in the PIC are
various, depending on the location of the infarct, time post-stroke and the patient’s
use of rehabilitative therapy [92-94]. Whereas some of the physiologic changes in
the PIC are adaptative, others are deleterious to the patient. An infarct in the so-
matosensory cortex results in an adaptive remapping of the body representation in
this region through a decrease in the number of dendritic spines and an increase in
axonal sprouting [94-100]. Similarly, gene expression related to axonal sprouting is
up regulated in the PIC [101]. Other studies have demonstrated neuroinflammatory
changes in the PIC post-stroke [102-104] and argued that this persistent neuroin-
flammation may be related to the development of post-stroke cognitive impairment
[105, 106]. Changes in the PIC can develop over several months post-stroke in both
rat models and humans [58, 93, 107, 108]. Previous studies have shown evidence of
neuronal loss outside of the infarct core, both in post mortem studies [24-27] and
in-vivo [54, 55, 57, 58].

The PIC may be useful for predicting patient outcomes, monitoring the evolution
of the infarct, and may be an important site for post-stroke therapy. Decreased FMZ
binding in the PIC has been shown to correlate with decreased oxygen consumption
and eventual infarction [48]. An accurate measure of the extent of the PIC may

be useful for predicting the patient’s outcome and defining the region around the
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infarct that would benefit from therapeutic intervention. The size of penumbral
PIC appears to be inversely correlated with functional outcome [109]. For stroke
therapy, electrical stimulation of PIC in nonhuman primates resulted in improved
motor performance [110].

When the PIC is taken as the region surrounding the infarct that is morpho-
logically preserved after ischemia, it is typically defined by delineating a region sur-
rounding the infarct using an Euclidean distance metric [43, 58, 103, 111-113]. An
Euclidean-based PIC is limited when defining PIC in cortical infarcts, because the
vascularization of the cerebral cortex follows the complex, folded topology of the
cortical surface. That is, two points on neighbouring gyri may be close together in
3D space, but much further from one another when measuring the geodesic distance
along the 2D cortical surface. We therefore propose a new method that uses the
geodesic distance along a 2D representation of the cortical mantle to define the PIC.
Our method allows the PIC to be segmented into rings based on the distance from
the infarct and at the same time to study the effect of ischemia at regular intervals
outwards from the infarct core.

In positron emission tomography (PET), regions that are less than approxi-
mately twice the resolution of the scanner are subject to partial-volume effects (PVE)
[39]. In regions of high radiotracer concentration, PVE result in a decrease in the
measured radiotracer concentration because a portion of the signal “spills-out” to
neighboring regions. Cortical thickness is generally between 3—4 mm and thus tends
to be less than or, in the case of high resolution PET scanners [12], just on the cusp

of what the PET scanner can measure without spill-out effects. Thus radiotracer
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concentrations in the cortical surface may be underestimated due to PVE resulting
from cortical atrophy. PVE may also be increased by particularly low radiotracer
binding in the infarct. The PIC may also be subject to important “spill-in” PVE
because reduced radiotracer binding in the PIC may lead an increased proportion in
signal from adjacent healthy tissue spilling-in.

PVC is of particular concern in the case of acute focal ischemia, because this
has been shown to lead to selective neuronal loss [23, 24, 26, 43, 55, 57, 114-116]
and may result in decreased cortical thickness [117]. Using a GM representation
extracted from MRI it is possible to perform PVC for potential spill-out from the
cortical GM.

It is the aim of this study to test the hypothesis that geodesic distances, which
are based on more theoretically sound assumptions of cortical vasculature, provide
significantly different results than obtained with an Euclidean distance metric for
defining the PIC. Distance profiles of BPND of [18-F]-FMZ were created on PET
images from patients with ischemic stroke using both metrics. [18-F]-FMZ was used
because it binds to g-aminobutyric acid (GABAA) receptors that are found in large
and uniform quantities in the cortical GM and thus serves as a surrogate marker for
neuronal loss [48]. To assess if there was any difference between the BPND distance
profiles, we compared the sensitivity of each method to detect a difference between
the stroke affected and unaffected hemispheres. The BPND distance profiles pro-
duced with both metrics were also compared directly to see if they were significantly
different from one another. Additionally, we evaluated the effect of PVC on the

BPND measured within the PIC using anatomic information extracted from MRI.
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Cortical thickness maps were calculated to determine if there was significant cortical

atrophy between initial and follow-up images and evaluate its effect on PVC.

3.4 Methods

Subjects

All participants were prospectively recruited from the Jewish General Hospital
and Montreal General Hospital acute stroke units between March 2012 to October
2014. This study was approved by McGill Faculty of Medicine Institutional Review
Board. All participants were enrolled after informed consent in accordance with
regulations for human participant’s studies.

Eleven participants were enrolled if they presented with first ever anterior cir-
culation ischemic stroke within 31 days post stroke onset, had a neurological deficit
defined on National Institutes of Health Stroke Scale (NIHSS) score 5 upon entry
to the study, were between 40 and 90 years of age and able to speak either English
or French (Table 3-1). Patients were excluded if there was evidence of alcoholism
or psychoactive drug use, benzodiazepine use 24 hour prior to the PET study, if
they were unable to complete the initial MRI or PET studies or had a history of
either epilepsy, psychiatric or neurodegenerative diseases. One participant withdrew
from the study after the initial scan and was excluded from analysis when initial and
follow up PET images were compared directly.

Enrolled patients were evaluated in the sub-acute phase of their stroke and on 6

months follow-up images using a clinical assessment battery for motor and cognitive
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Table 3-1: Demographic and clinical information for enrolled patients

Affected

vascular Initial scan time F/U scan time Initial infarct F/U infarct
Patient Age Sex territory (Days) (Months) volume (cm®) volume (cm®)
1 66 M MCA 21 5.53 65 75
2 87 M MCA 13 5.63 0.46 0.36
3 71 M MCA 18 5.93 4.6 4
4 63 F MCA 14 6.16 3.7 3.8
5 54 M ACA 10 5.93 109 104
6 62 M MCA 21 5.93 5 2.3
7 53 M MCA 27 6.83 2.5 14
8 50 M MCA 15 6.03 3.8 3
9 69 F MCA 27 5.93 99.6 82.5
10 72 F MCA 17 NA 20.2 NA
11 55 F MCA 31 7 6.5 55

recovery, and with both MRI and PET scans to measure the peri-infarct cortical

thickness and estimate the neuronal cell density changes, respectively.

T1 and Flair MR Acquisition

All MR images were acquired on a Siemens MAGNETOM TrioTim syngo MR
B17. The Fluid attenuated inversion recovery (FLAIR)—a T2 weighted MR image
with attenuated CSF signal-sequence used a TR of 9000 ms, TE of 75 ms and TT of
2500 ms with a flip angle of 150° to acquire 60 transaxial slices with thickness of 2
mm and a base resolution of 192 3 192 voxels in plane. The T1-weighted data set for
surface extraction was acquired using a MPRAGE sequence with TR 2300 ms, TE
2.98 ms, TT 9 ms and 9 degree flip angle comprising 160 sagittal slices with isotropic
1mm voxels and 256 3 256 voxels in plane resolution.

The FLAIR image was upsampled to the resolution of the T1 image using linear

interpolation and blurred with a 2 mm FWHM Gaussian kernel to attenuate noise.
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CIVET

CIVET is an image processing pipeline that generates mesh representations of
the cortical GM from T1 MR images. CIVET uses the non-parametric N3 method
to correct MR field non-uniformity [118]. The MRI is then transformed to MNI
stereotaxic space of the ICBM 152 6th generation non-linear brain atlas [4], using a 12
parameter affine transformation [2]. Spatially normalized images are then segmented
into three tissue classes: GM, WM and cerebral spinal fluid using INSECT [119], a
discrete classifier, as well as a probabilistic classifier [120]. The Constrained Laplacian
Anatomic Segmentation using Proximity algorithm generates a mesh representation
of the cortical GM using two deformable mesh models consisting of 81924 vertices
connected to form triangles. Cortical thickness is measured by taking the distance
between the mesh fitted to the WM-GM boundary and that fitted to the GM-pia
boundary. Volumetric cortical GM binary images were created from the WM-GM
and GM-Pia mater surface meshes using a ray-tracing algorithm to identify the
voxels that lie between the two surface meshes [121]. The GM masks and WM
were transformed from MNI stereotaxic space to T1 native using nearest-neighbor

interpolation.

PET Acquisition

[18-F]-FMZ scans were obtained for all participants with an ECAT HRRT PET
scanner in list mode (Siemens Medical Solutions, Knoxville, TN, USA) [12]. The
ECAT HRRT is a dedicated full 3D high resolution brain scanner, with a field view
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of 25.2 cm (axially) and 31.2 cm (diameter), and has a spatial resolution of be-
tween 2.3 mm and 2.8 mm FWHM and enables data acquisition with high spatial
resolution combined with high sensitivity. In addition, the use of two crystal layers
(LSO/LYSO) permits photon detection with depth-of-interaction information. After
a transmission scan for attenuation correction (137Cs-source), approximately 370
MBq [18-F]-FMZ were injected intravenously as a slow bolus over 60 s. The list
mode data were acquired for 60 min after injection and were subsequently binned
into 2209 sinograms (each of size 256 radial bins 3 288 azimuthal bins) using span 9
compression for a total of 17 time frames (40s, 20s, 2 330s, 360 s, 4 350s, 3 3300s,
and 3 3600s), resulting in images with a voxel size of 1.22 x 1.22 x 1.22mm?. Fully
3D FBP by 3D reprojection (3D RP) was carried out with a Hamming windowed
Colsher filter (alpha 5 0.5, cut off at the Nyquist frequency). The PET image was
co-registered and resampled using linear interpolation to the native T1 using a six

parameter rigid transformation.

Partial-Volume Correction

PET images were partial-volume corrected using the idSURF algorithm [121].
IdSURF is an iterative algorithm based on Lucy-Richardson deconvolution and at-
tempts to make subsequently better guesses of the true tracer-distribution [122, 123].
The algorithm proceeds by filtering an estimate of the true tracer-distribution, ini-
tially the PET image itself, with a model of the PET scanner point-spread function;
in this case a Gaussian filter (FWHM 2.5). The difference between the original

PET image and the filtered test image is used to update the estimate of the true
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tracer distribution. Anatomically constrained filtering is performed by taking the
local mean of voxels within predefined anatomic regions. Whereas traditional linear
filtering, e.g., Gaussian smoothing, are effective at removing noise, they also smooth
between anatomic regions and thus increase PVE. By constraining the filtering to
within anatomic regions, idSURF controls for noise while preserving edges between
these regions. The infarct core, GM and WM were treated as separate anatomic
regions for this analysis. Both the uncorrected PET and idSURF corrected images
were compared to evaluate the effect of PVC on measured radiotracer concentrations

in the PIC.

Tracer Kinetic Analysis

Tracer kinetic analysis was used to quantify specific tracer binding across pa-
tients. We computed the BPND maps from the PET images. BPND of a reversibly
binding radioligand is related to the maximum available concentration of its re-
ceptor (Bmax) accounting for the binding affinity of the tracer and the fraction of
non-displaceable binding (i.e., tracer irreversibly bound to other molecules than the
receptor) in the tissue. Parametric images of BPND were created using the Logan

1

plot method [124], with a white matter (WM) reference region ' and a start time of

' The WM was used as reference region because it is believed to have negligible
GABAABRey.. density [125] and has been shown to produce similar results to using
the pons as a reference region [126]. It is also larger than the pons, making it less
susceptible to noise.
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300 seconds for the linear regression. To avoid any potential spill-over signal between

the WM and GM, the WM reference region was eroded by 4 voxels, i.e., 4 mm.

Surface Infarct ROI

Volumetric ROIs were drawn on the FLAIR MR images acquired for each par-
ticipant for both initial and follow-up scans and independently verified by two stroke
neurologists (Fig. 3-1). Initial surface infarct masks were produced by nearest neigh-
bour interpolation of the volumetric infarct ROI with the mid-surface produced using
CIVET (Fig. 3-2C). The surface ROIs were then defragmented to remove isolated
points outside, as well as holes within, the main infarct. All regions smaller than

25% of the largest ROI were removed.

Geodesic Peri-Infarct Rings

Geodesic distances were calculated from the border of the infarct ROI. This
produces a surface map where the value at each surface vertex is the minimum
distance from the vertex to the border of the infarct (Fig. 3-2D). Distance maps were
created using in-house software that calculates the minimum distances by expanding
a closed region out wards along the edges of a surface mesh. The distance maps were
segmented into five rings of 3 mm, from 0 to 15 mm from the infarct. The rings
were named such that the 3 mm contains vertices from 0 to 3 mm and the 6 mm
ring contains vertices from 3 mm to 6 mm from the infarct core, and so forth for the

other rings.
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Figure 3—1: The infarcts were manually identified and drawn independently by two
stroke neurologists on the FLAIR images.
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Figure 3-2: (A) Volumetric masks were drawn by hand on flair MRI. (B) FMZ
BPND parametric images show GABAA receptor density. (C) Infarct masks were
intersected with surface representations of the cortical GM. (D) Distance maps were
produced by calculating geodesic distances from the border of the infarct. (E) Illus-
trative comparison of distance maps. The Euclidean distance maps were calculated
volumetrically, but interpolated onto the participant’s cortical surface representa-
tion. Both B1/2 and C1/2 show that the Euclidean distance metric produces an
inconsistent distance measure that does not increase monotonically. A1/2 show that
the Euclidean distance metric underestimates distances compared to the geodesic
metric.

o1



The PIC ring width of 3 mm was chosen because this approaches the spatial
resolution of 2.5 mm FWHM of the HRRT [12]. Histological studies have shown
decreased neuronal density up to 10 mm from the infarct core [27]. Hence the 9-12
mm PIC ring was the maximum distance at which BPND was expected to be reduced
in the affected hemisphere. The maximum distance of 15 mm was therefore chosen
to include a 12-15 mm PIC ring that would, presumably, include healthy tissue.

Geodesic PIC rings for the contralateral hemisphere were produced by reflecting
the surface mesh along the midline of the x axis. The reflected surface mesh was
then intersected with the infarct ROI to produce a surface ROI of the infarct in
the contralateral hemisphere. Geodesic distances were calculated from the infarct
reflected onto the unaffected hemisphere ROI and segmented to produce contralateral

PIC rings.

Euclidean Peri-Infarct Rings

Whereas the geodesic PIC rings were defined on a surface, the Euclidean PIC
rings were volumetric and produced in a similar manner as [58]. The first step was
to intersect the infarct and GM ROI. Euclidean distance maps from the GM infarct
were than calculated. As with the geodesic peri-infarct rings, the Euclidean distance
maps were segmented into five rings of 3 mm, from 0 to 15 mm from the infarct.
These rings were then intersected with a binary GM image to eliminate voxels outside
of the GM. Euclidean PIC rings for homologous regions in the unaffected hemisphere

were created by reflecting the infarct ROI along the x-axis and intersecting it with a
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volumetric binary image of the GM. Euclidean distances were then calculated in the

unaffected hemisphere and segmented into Euclidean PIC rings.

Statistical Methods

The effect of the ischemic insult on the PIC was measured by subtracting BPND
in the unaffected hemisphere by that of the affected hemisphere to give the inter-
hemispheric difference of BPND (IHDBP = BPND Unaffected - BPND Affected H).
In all but one of the two-way repeated measures (2RM) ANOVA described below,
the geodesic PIC rings were used as one of the two factors.

The following tests were performed on initial and follow-up images separately.
The effect on BPND of (1) PIC ring and (2) cerebral hemisphere (i.e., unaffected vs
ischemia affected) was tested using a 2RM ANOVA. For the purpose of comparison,
this same test was performed with the FEuclidean peri-infarct rings. To determine
that the two distance metrics produced different results, the 2RM ANOVA used (1)
PIC ring and (2) distance metric (i.e., Euclidean vs. geodesic) as factors. Lastly, to
evaluate the effect of PVC on IHDBP we performed a 2RM ANOVA with (1) PIC
ring and (2) PVC method (i.e., uncorrected vs idSURF) as factors.

To determine if there was a change in the IHDBP between initial and follow-up
images, a 2RM ANOVA was performed with (1) PIC ring and (2) scanning session as
factors. This same test was also performed for the cortical thickness values extracted
from the initial and follow-up MRI.

If the interaction effect of the 2RM ANOVA reached significance at the 5%

level, post-hoc tests were performed on each PIC ring to test if there was a significant
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difference in the measured response variable between the two-levels of the factor. The
purpose of the post-hoc testing was to determine which PIC rings contributed to the
significant interaction effect of the ANOVA. This was done using Wilcoxon signed-
rank [127], with P-values adjusted for multiple comparisons with Hochberg’s method
[128]. The correction for multiple comparisons was performed independently for each
set of ANOVA, because these tests asking conceptually independent questions about

the data and do not use the same set of response variables.

3.5 Results

3.5.1 Surface Geodesic Distances Show Decreased BPND Closer to In-
farct

The results of the surface PIC analysis indicate first that BPND is lower in the
affected hemisphere compared to the unaffected hemisphere in both the initial and
follow-up images. The difference in BPND between hemispheres was significant both
in the main effect of hemisphere (Initial: P < 0.01, F = 16.15, Follow-Up: P < 0.001,
F = 20.98) and in the interaction between hemisphere and PIC ring in both initial
and follow-up images (Initial: P < 0.001, F = 18.78, Follow-Up: P < 0.001, F =
20.34). Post-hoc testing revealed that the difference in BPND between hemispheres
is significant from 0 mm to 6 mm in the initial images and 0 mm to 15 mm in the
follow-up images (Fig. 3-3).

There appears to have been a significant increase in IHDBP from initial PET
images to follow-up. The 2RM ANOVA showed an overall significant difference
in IHDBP in the PIC rings between initial and follow-up images (P < 0.01, F =

4.88). However, using the Wilcoxon signed rank test for post-hoc testing, none of
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Effect of hemisphere on BPnd
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Figure 3-3: Average BPND measured in affected and unaffected hemispheres for
initial and follow-up images. BPND is reduced closer to the infarct and gradually
increases to close to normal levels further away. ‘*’: P<0.05; “**’: P<0.01.
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the individual PIC were significantly different in IHDBP between initial and follow-

up images.

3.5.2 Geodesic and Euclidean Distances Produce Different Results

The distance profiles produced with the Euclidean PIC rings do not show the
gradual increase in BPND in the stroke affected hemisphere that was observed with
the geodesic profiles (Fig. 3-4). In the main effect of hemisphere, the difference in
BPND between hemispheres was trending towards significant in the initial scanning
session and significant in the follow-up session (Initial: P < 0.1, F = 4.59, Follow-Up:
P < 0.01, F = 11.7). There was a significant interaction effect between hemisphere
and PIC ring in both initial and follow-up images (Initial: P < 0.001, F = 15.06,
Follow-Up: P < 0.001, F = 19.95). In post-hoc testing, however, the difference
between hemispheres was only significant in the 0-3 mm PIC rings.

We compared the Euclidean IHDBP profiles to the IHDBP profiles produced
with a geodesic distance metric (Fig. 3-5, see Fig. 3-2 for visual example). In the
initial and follow-up scans, there was a significant difference in IHDBP due to the
main effect of distance metric (Initial: P < 0.05, F = 6.45, P < 0.01, F = 13.09), but
no significant interaction effect between distance metric and peri-infarct ring. The
area under the geodesic IHDBP profile was 35% larger than that under the Euclidean

IHDBP profile in the initial images and 48% larger in follow-up images.
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Figure 3-4: Using an Euclidean distance metric, BPND in the affected hemisphere is
generally lower than in the unaffected hemisphere. However only in the 3 mm ring is
there a statistically significant difference between hemispheres. *’: P < 0.05; 7**’:
P < 0.01.
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Figure 3-5: THDBP is consistently larger with the geodesic masks, particularly in

follow-up images.
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Table 3-2: 2W-RM ANOVA testing the effect of PVC on BPND

Response Variable Main effect 1 Main effect 2 Interaction effect
Scanning Session PIC ring PVC PIC ring X PVC
Initial BPnp P <0.001, F=19.75 P <0.05, F=10.35 N.S. (P <0.1), F=228
Follow-up BPnp P <0.001, F =26.01 P <0.05, F=5.45 P <0.01, F=4.61

“N.S.”: Not significant.

3.5.3 Partial-Volume Correction Increases BPIDH

PVC produces larger IHDBP than observed in uncorrected PET images (Table
3-2). However, only in follow-up images was there a significant interaction effect be-
tween PIC ring and PVC. In post-hoc testing, the only significant difference between
PVC and uncorrected images was in follow-up images in the 3 mm PIC ring, but
this did not survive correction for multiple comparisons (Fig. 3-6). PVC IHD BP
was found to be 17% larger than uncorrected IHDBP in the initial images and 20%

larger in the follow-up images.

3.5.4 Cortical Thickness Is Reduced in Follow-up Scans

The difference in cortical thickness between affected and unaffected hemispheres
was only trending towards significance in the initial cortical thickness maps and was
found to be significant in the follow-up maps (Table 3-3). The interaction effect
between PIC rings and hemisphere was significant in the follow-up images, but this

was not attributable to any specific PIC ring.
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Figure 3-6: IHDBP for PVC and uncorrected PET at initial and follow-up images.
Without PVC, the inter-hemispheric difference in BPND appears to be underesti-

mated.

Table 3-3: 2W-RM ANOVA testing effect of scanning session on cortical thickness

(mm)
Response variable Main effect 1 Main effect 2 Interaction effect
Scanning Session PIC ring Hemisphere PIC ring X Hemisphere
Initial Cortical thickness (mm) NS, F=1.12 N.S. (P <0.1), F=4.86 N.S., F=0.63
Follow-up Cortical thickness (mm) P <0.05, F=2.99 P <0.05, F=7.32 N.S., F=157

“N.S.”: Not significant.
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3.6 Discussion

The PIC is the site of important physiologic changes after ischemic stroke in
initially viable cortex and is often defined using a Euclidean distance metric to mea-
sure distances from the infarct. We developed a new PIC model that uses geodesic
distances measured along a surface model of the cortical GM and used it to ana-
lyze [18-F]-FMZ PET images of stroke patients. Using the geodesic method results
in IHDBP that is 35-48% larger than that obtained with a traditional Euclidean

method and is 17-20% larger with PVC.

3.6.1 TIHDBP Measured with Geodesic PIC Rings Show Long-Term Neu-
ronal Cell Loss

Distances measured relative to the cortical vasculature are better modeled with
a geodesic distance metric than an Euclidean metric, because the former does not cut
across the folds of the cortical surface. Defining the PIC using a geodesic distance
metric allows for a more anatomically realistic measurement of changes in BPND
along the cortical surface. There was a significant reduction of BPND in the PIC in
the affected hemisphere compared to the unaffected hemisphere and this difference
was larger closer to the infarct core. This suggests that the effect of the stroke
on viable cortex does not have a sharp boundary and should be studied at regular
distance intervals from the infarct border rather than in a single region.

IHDBP was significantly larger at follow-up than in the initial images. [18-
F]-FMZ binds to GABAA receptors on cortical neurons and is used as a surrogate
marker of neuronal density [47, 129]. The increase in IHDBP between initial and

follow-up is consistent with long-term neuronal cell death in the peri infarct grey
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matter after ischemic stroke. This interpretation is consistent with findings from
post-mortem histological studies of humans with ischemic infarcts [24, 25, 27]. In
these participants, a transition zone of decreased neuronal density from 0-5 mm (and
up to 10 mm in some patients) around the infarct border was observed. It should be
noted that these histological studies measured distance from the infarct by projecting
distances along the cortical surface onto the outside surface of the brain, excluding
the sulcal depths. This distance metric will produce uniformly larger distances than
the geodesic distance metric. In the initial PET images we found a decrease in BPND
in the affected hemisphere from 0 mm to 6 mm, which was consistent with previous
results from histological studies. In the follow-up images, however, the decrease in
BPND in the affected hemisphere extended up to 15 mm, suggesting a larger and
more gradual transition zone between infarct ed and healthy tissue.

In vivo evidence has also been found for selective neuronal loss in the non-
infarcted penumbra both in FMZ PET [56-58] and [123-1]-Iomazenil SPECT [54,
55]; for a review, see [23]. The limitation of these methods is that they define the
PIC as a single, uniform region and do not reveal changes in BPND within the PIC.
The current findings suggest that the PIC is not homogeneous and may vary as a
function of the distance from the infarct core.

Previous studies of the effect of stroke on cortical thickness have also reported
changes in cortical thickness. Some studies have also reported increases in cortical
thickness in regions associated with functional remapping in both acute [130] and

chronic stroke [131]. A study of sub-cortical infarcts from cerebral small vessel disease
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found long-term cortical thinning in GM regions connected via WM tracts to the

infarct [132].

3.6.2 Euclidean PIC Rings Are Less Sensitive to IHDBP

The PIC can be defined morphologically by measuring the distance from the
border of the infarct to the surrounding tissue. Traditional approaches have delin-
eated the PIC using a Euclidean distance metric [103, 107, 111-113]. These methods
start by defining a volumetric ROI of the infarct. The PIC is then defined by iden-
tifying points that are within a given distance from the infarct, where the distance
is measured as a straight line in 3D space. This is typically done by performing a
pixel or voxel-wise dilation of the infarct to produce PIC rings or spheres. Dilations
of the infarct implicitly use a Euclidean metric by assuming that all voxels contained
within a dilation are equally far from the infarct.

The geodesic and Fuclidean PIC rings produced different BPND profiles. With
the Euclidean peri-infarct rings, unlike the geodesic IHDBP profiles, there was little
difference between the stroke affected and unaffected hemispheres beyond the 3 mm
ring. The difference between geodesic and Euclidean IHDBP was larger in follow-up
images. The reason for this appears to be that the BPND profiles produced with
Euclidean and geodesic PIC rings differ in how they relate to the topology of the
cortical surface and its vasculature.

The Euclidean metric measures distances in the PIC as a straight line to the
border of the infarct. The limitation of this method is that it cuts across folds in

the cortical surface (Fig. 3-21.E and 3-2.2.E), and thus underestimates the true
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distance traveled by the vasculature (Fig. 3-2.1.D and 3-2.2.D). The result of this
underestimation is that beyond 3 mm, where the geodesic and Euclidean rings sample
approximately the same voxels, the Euclidean PIC rings include regions that are
relatively unaffected by the stroke and thus have normal BPND. Hence, beyond the
3 mm PIC rings, the Euclidean PIC rings exhibited no difference in BPND between
the unaffected and stroke affected hemispheres in both initial and follow-up images.

The surface-fitting used by CIVET depends on a sharp WM-GM gradient, which
may be eroded or eliminated by the infarction caused by acute ischemia. Visual
inspection of the CIVET surfaces revealed that they closely followed the cortical
mantle outside of the infarct where the WM GM border was preserved. The surfaces
did not follow the cortical mantle inside of the infarct, but this region was not used

in the present analysis.

3.6.3 Partial-Volume Correction Results in Higher Sensitivity to Long-
Term Neuronal Cell Loss

In the initial and follow-up PET images there was significant difference between
uncorrected and PVC THDBP. However, at follow-up there was a significant inter-
action between PVC and PIC ring. This suggests that PVEs are a more important
confounds in PET-images acquired 6 months after the stroke.

Despite these concerns, PVC has not been widely implemented in studies involv-
ing the PIC and may be a source of bias in results. For example, several PET and
SPECT studies have reported decreased binding to GABAA receptors [43, 54-56,

108] at several weeks to months post-stroke. Without PVC it is difficult to conclude
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whether their results are consistent with those reported here, because it remains pos-
sible that their reported decrease in radiotracer binding to GABAA was the result
of a change in cortical thickness and not a change in the availability of GABAA
receptors.

While PVC is not widely used in studies of the PIC, some studies have used
simple PVC algorithms that compensate for spill-out effects [57, 58]. In the present
study we found that spill-in PVE were particularly important because small but
significant changes in radiotracer binding within a region can be obscured by spill-in
radiotracer concentration from adjacent regions.

There are a multitude of factors that come into play when determining whether
or not PVC be important in PET images of stroke patients: size of the infarct,
presence of cortical thinning, the gradient of radiotracer concentration between the
infarct and healthy tissue. It is difficult to know a priori how these will come into
play. The use of PVC methods that correct for both spill-in and spill-out effects in
the analysis may thus reduce the risk of overlooking significant results due to PVE
and should be considered in standard data analysis procedures. The aforementioned
studies of GABAA with PET and SPECT use mismatch between an image of the
initial hypoperfusion, e.g., from perfusion CT, with the an image of the final infarct,
e.g., from FLAIR MRI, and thereby define one large peri-infarct region [43, 54-57,
108]. Our geodesic PIC method is compatible with this approach because the image
of the initial hypoperfusion can be mapped onto a surface representation of the

cortical GM and used to constrain the spatial extent of the PIC rings. This would
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ensure that the PIC rings only sample from tissue that is known to be hypoperfused

and improve the signal-to noise ratio of the BPND distance profiles.

3.6.4 Limitations

One limitation of the present study was the use of the contra-lateral hemispheres
instead as comparator. Kim et al. [108] have reported both widespread bilateral de-
crease in GABAA receptor density in human stroke patients as well as some localized
increase in GABAA receptor density in the contralateral peri-infarct. A global de-
crease however should not affect the results presented here, because the difference
between the hemispheres remains the same given a global reduction in both hemi-
spheres. Moreover, if the peri infarct rings of the unaffected hemisphere in this study
do include regions with increased GABAA receptor density, then the results would
only tend to underestimate the true difference in BPTHD and would only introduce
a bias into the conservative direction.?

Infarction causes a local reduction in the gradient of the MRI signal between
the WM and GM and and thus interferes with the definition of a WM-GM surface

mesh. Without a reliable WM-GM surface mesh, it is impossible to accurately

2 Disruption of the blood-brain-barrier could theoretically have caused an un-
specific influx of the radioligand and thus an overestimation of BPND in the initial
scans in the subacute phase. The effect of BBB disruption is however considered to be
low because by definition the PIC is morphologically normal tissue (BBB-disruption
mainly occurs in the infarct). Even if the BPND would have been overestimated,
this would have introduced a bias into the conservative direction because it would
have led to a decreased of the interhemispheric difference in BPND.
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measure cortical thickness. Visual inspection of the surface meshes revealed that the
distortion of the mesh is limited to the infarct and thus had no visible effect on the
surrounding PIC.

The most important limitation is the high variability of the size, shape and loca-
tion of the stroke volumes. The only way to account for this variability would be to
use the size or location of the stroke as an additional factor in the statistical analysis.
A complex statistical analysis such as this would require additional participants and

was not possible in the present study.

3.7 Conclusions

In cortical strokes, a geodesic distance metric provides an anatomically realistic
method for modeling the PIC because it conforms more closely to the anatomy of the
vasculature than traditional, Euclidean distance metric. PVC may be important in
the context of cortical ischemic stroke because it gives a more anatomically realistic
estimate of BPND and controls for long-term changes in cortical thickness due to

the ischemic insult.
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4.1 Preamble

In this chapter we present a novel software package, APPTAN (Automated
Pipeline for PET Image ANlaysis) to facilitate and improve the state of neurotrans-
mitter receptor mapping with PET by making it more robust and reproducible. The
challenge of neurotransmitter receptor mapping with PET is that it requires several
image processing stages in order to produce the desired quantitative values represent-
ing radioligand binding densities. While researchers have a wide variety of algorithms

to choose from, it is often not clear which algorithm offers the best solution for the
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specific task. Another problem is that at each stage there is a potential for errors
that may be difficult for the user to notice, but that can subtly bias the final results.

While there exists a software package that handles most of the needs of re-
searchers, it is not open-source and is prohibitively expensive for smaller research
groups. By making the software package presented here open-source, we hope to
encourage the PET research community to participate in the development of this
software by contributing preferred algorithms. This will allow easy comparison be-
tween different algorithms on a wide variety of different data sets and promote the
adoption of consensus image processing methods. In this study, APPIAN was not
directly compared to existing pipelines on the same datasets. In the future a com-
parison would ideally be performed versus PMOD as this is currently considered the
gold-standard data set.

In the following manuscript a comparison is made between existing PET process-
ing pipelines. Two important software packages were not included in the manuscript,
one of which had not yet been released at time of publication, but are important to
include in a discussion of competing PET pipelines. PETSurfer [19, 133] is a suite of
individual tools that can be used to perform post-reconstruction PET motion correc-
tion, PET-MRI coregistration, PVC, and quantification with tracer kinetic analysis.
Magia is another recent PET pipeline and includes: post-reconstruction PET motion
correction, PET-MRI coregistration, quantification with tracer kinetic analysis [134].

In addition to the criteria which are used in the manuscript to distinguish these
pipelines, there are a few additional considerations for differentiating them: the

ability to use arterial input functions, use the subject’s MRI, and motion correction.
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Of the reviewed pipelines the ones that allow the use of arterial input functions are:
APPIAN, MIAKAT, and PMOD. Post-reconstruction motion correction can be an
important preprocessing step in PET imaging and is implemented in : MIAKAT,
PMOD, PETSurfer, and Magia. All described software packages except CapAIBL
can be used with the subject’s MRI.

To demonstrate that this software package, which is based on freely available
PET processing tools, can accurately recover parametric values, such as radioligand
binding potential, from raw PET image, we evaluate its accuracy on Monte-Carlo

simulated PET data.

4.2 Abstract

APPIAN is an automated pipeline for user-friendly and reproducible analysis
of positron emission tomography (PET) images with the aim of automating all pro-
cessing steps up to the statistical analysis of measures derived from the final output
images. The three primary processing steps are coregistration of PET images to T1-
weighted magnetic resonance (MR) images, partial-volume correction (PVC), and
quantification with tracer kinetic modeling. While there are alternate open-source
PET pipelines, none offers all of the features necessary for making automated PET
analysis as reliably, flexibly and easily extendible as possible. To this end, a novel
method for automated quality control (QC) has been designed to facilitate reliable,
reproducible research by helping users verify that each processing stage has been per-
formed as expected. Additionally, a web browser-based GUI has been implemented

to allow both the 3D visualization of the output images, as well as plots describing
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the quantitative results of the analyses performed by the pipeline. APPIAN also uses
flexible region of interest (ROI) definition— with both volumetric and, optionally,
surface-based ROI—to allow users to analyze data from a wide variety of experi-
mental paradigms, e.g., longitudinal lesion studies, large cross-sectional population
studies, multi-factorial experimental designs, etc. Finally, APPIAN is designed to
be modular so that users can easily test new algorithms for PVC or quantification or
add entirely new analyses to the basic pipeline. We validate the accuracy of APPTAN
against the Monte-Carlo simulated SORTEO database and show that, after PVC,

APPIAN recovers radiotracer concentrations within 93-100% accuracy.

4.3 Introduction

The increasing availability of large brain imaging data sets makes automated
analysis essential. Not only is automated analysis important for saving time, but
it also increases the reproducibility of research. No existing post-reconstruction
positron emission tomography (PET) software package satisfies all the needs of re-
searchers, specifically code that is free, open-source, language agnostic, easily ex-
tendible, deployable on web platforms as well as locally, and including all necessary
processing steps prior to statistical analysis. We therefore present APPIAN (Au-
tomated Pipeline for PET Image Analysis) a new open-source pipeline based on
NiPype [135] for performing automated PET data analysis. The starting point for
APPIAN are reconstructed PET images on which all necessary processing steps are
performed to obtain quantitative measures from the original PET images (Figure

4-1). In conjunction with the reconstructed PET image, APPIAN uses T1-weighted
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MR images to define regions of interest (ROI) that are used at multiple processing
stages. Briefly, APPTAN (1) coregisters the T1 MR image with the PET image, (2)
defines ROI necessary for later processing steps, (3) performs partial- volume cor-
rection (PVC), (4) calculates quantitative parameters, (5) produces a report of the
results, and finally, (6) performs QC on the results (see Figure 4-1 for a schema of
APPIAN, and Discussion section for a detailed description of the pipeline, complete

with flowchart).

4.4 Materials and Methods
4.4.1 Pipeline Overview

Coregistration

Positron emission tomography images are coregistered to the corresponding non-
uniformity corrected [118] T1 MR-images using a six parameter linear fitting algo-
rithm that minimizes normalized mutual information. The algorithm is based on

1 and proceeds hierarchically by performing iterative coregistration at

minctracc
progressively finer spatial scales [2]. Coregistration is performed in two stages, the
first using a binary mask for the PET and the T1 MR images, respectively, to obtain

a coarse coregistration. This is followed by a second registration step to refine the

initial fit between the PET and T1 MR images without the use of the binary images.

! https://github.com/BIC-MNI/minc-toolkit-v2
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Figure 4-1: APPIAN performs all processing steps necessary to obtain quantitative
parameters from reconstructed PET images. Flexible definition of ROI allows use
of APPIAN for a wide variety of experimental designs. Integrated QC helps ensure
that the pipeline performs as expected.

83



MR Image Processing

T1 structural preprocessing is performed if the user does not provide a binary
brain mask volume and a transformation file that maps the T1 MR image into
stereotaxic space. If these inputs are not provided, APPIAN will automatically
coregister the T1 MR image to stereotaxic space. By default, the stereotaxic space
is defined on the ICBM 152 6th generation non-linear brain atlas [4], but users can
provide their own stereotaxic template if desired. Coregistration is performed using
an iterative implementation of minctracc [2]. Brain tissue extraction is performed in
stereotaxic space using BEaST [136]. In addition, tissue segmentation can also be
performed on the normalized T1 MR image. Currently, only ANTs Atropos package
[137] has been implemented for T1 tissue segmentation but this can be extended

based on user needs.

Regions of Interest

Regions of interest have an important role in three of the processing steps in
APPIAN: PVC, quantification, and reporting of results. ROIs are used in PVC
algorithms to define anatomical constraints. When no arterial input is available for
quantification, a reference ROI is placed in a brain region devoid of specific tracer
binding. Finally, when reporting results from APPIAN, ROIs are needed to define the
brain areas from which average parameters are calculated for final statistical analysis.
ROIs for each of these processing steps can be defined from one of three sources. The
simplest ROI are those derived from a classification of the T1 MR image, e.g., using

ANIMAL [4], prior to using APPIAN. Users can also use tissue classification software
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implemented in APPIAN to classify their T1 MR images, thereby eliminating the
need to run a strictly MR image-based pipeline prior to using APPIAN.

Regions of interest can also be defined on a stereotaxic atlas, e.g., AAL [138],
with a corresponding template image. In this case, the template image is non- linearly
coregistered to the T1 MR image in native space, and subsequently aligned to the
native PET space of the subject. Finally, it is frequently necessary to manually
define ROI on each individual MR image, for instance when segmenting focal brain

pathologies such as a tumor or ischemic infarct. This option is also implemented in

APPIAN.

Partial-Volume Correction

In PET, partial-volume effects result from the presence of multiple tissue types
within a single voxel and the blurring of the true radiotracer concentrations. PVC of
PET images is thus necessary to accurately recover the true radiotracer distribution
and, for example, differentiate between true neuronal loss from cortical thinning.
Several methods have been proposed to perform PVC, many of which are imple-
mented in PETPVC [139]. In addition, we have also implemented idSURF [121], a
voxel-wise iterative deconvolution that uses anatomically constrained smoothing to
control for noise amplification while limiting the amount of spill-over between dis-
tinct anatomical regions. APPIAN thus allows the user to select the appropriate
PVC method based on their needs and their data. If the desired PVC method is not
implemented in APPIAN, it can be easily included in the pipeline by creating a file

describing the inputs and outputs of the method.
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Quantification

In PET images, quantitative biological or physiological parameters—such as
non-displaceable binding potential or cerebral blood flow—are often calculated from
the measured temporal change of tissue radiotracer concentration, so-called time
activity curves (TACs), within voxels or ROIs. Many models exist for performing
quantification depending on the type of radiotracer, parameter of interest, and time
frames acquired. The quantification methods available in APPIAN are from the
Turku PET Centre tools? [140]. Currently, the implemented models are: the Logan
Plot [141], Patlak—-Gjedde Plot [142, 143], Simplified Reference Tissue Model [144],
and standardized uptake value [145]. APPIAN implements both voxel-based and
ROI-based quantification methods. It can also process arterial input functions as
well as input functions from reference regions devoid of specific binding. Arterial

inputs are in the “.dft” format described by the Turku PET Centre.

Results Report

The ROI defined in “MR Image Processing” section are used to calculate regional
mean values for the parameter of interest from the output images after coregistration,
PVC and quantification processing steps. Additionally, if cortical surface meshes are
provided by the user, the output images can be interpolated on these meshes and

be used to derive surface-based parameter estimates. Regional mean parameter

2 http://www.turkupetcentre.net /petanalysis/format,pcy ft.html
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values are saved in wide format “csv’ files in the so-called ‘vertical format’ (i.e., the
output measure from each subject and each region is saved in a single column). This
standardized data format simplifies subsequent analysis with statistical software,
such as R (R Core Team, 2016 or scikit-learn [146]).

APPIAN also calculates group-level descriptive statistics obtained from the out-
put images. The group-level statistics that are provided exploit the BIDS® naming
convention which requires that file names include the subject ID, the task or condi-
tion, and the scanning session. APPIAN thus provides users with summary statistics
for the subjects, tasks, and sessions. Descriptive statistics are plotted and displayed

in a web browser-based GUI to allow simple and easy visualization of the results.

Quality Control and Visualization

APPIAN includes both visual and automated quality control. Visual quality
control is facilitated by the incorporation of BrainBrowser—a 3D/4D brain volume
viewer [147]— in the web browser-based GUI (Figure 4-2). This makes it possible to
visualize the output images of the coregistration, PVC and quantification processing
stages without the need for additional software.

While visual inspection remains the gold-standard method for verifying the ac-
curacy of PET coregistration [148-152], automated QC can be useful in guiding the
user to potentially failed processing steps. The first stage of the automated QC is to

define a QC metric that quantifies the performance of a given processing step. For

3 Brain Imaging Data Structure
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Figure 4-2: Output images produced by APPIAN can be viewed via a web browser-
based dashboard. Visual QC for the coregistration stage can be performed by viewing
the MRI, PET, and the fusion images of the two.
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Figure 4-3: Output from automated quality control (QC) allows users to assess
the performance of major processing steps at a glance. Here the automated QC
metrics for the coregistration processing stage are shown: CC, cross-correlation,gc
MI, mutual information, FSE, feature-space entropy.

example, in the case of PET-MRI coregistration the relevant QC metric is the similar-
ity metric that quantifies the joint-dependence of spatial signal intensity distribution
of the PET and MR images. By itself a single metric is insufficient to determine
whether the processing step has been performed correctly. However, by calculating
the distribution of several QC metrics for all subjects, it is possible to identify po-
tential anomalies. Kernel density estimation is used to calculate the probability of
observing a given QC metric under the empirical distribution of the entire set of QC

metrics. The results are displayed in an interactive plot in the web browser-based

dashboard (Figure 4-3).
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File Formats

Input files for APPIAN are organized following the Brain Imaging Data Struc-
ture (BIDS) specifications [153], which uses the Nifti format. In addition, APPIAN
also supports input files in the MINC file format [10], which are also organized ac-

cording to the BIDS specifications but with the MINC file extension.

High Performance Computing
APPIAN is optimized for high performance computing in two ways. APPIAN

is distributed in a Docker container?

that contains all the software necessary to run
APPIAN on any computing platform supporting such containers (i.e., where Docker
or Singularity has been installed). APPIAN can therefore be run identically across a
wide variety of computing environments. This not only facilitates the reproducibility
of results, but also allows APPIAN to be deployed simultaneously across multiple
computing nodes to analyze subjects in parallel. Additionally, APPIAN supports
multithread processing via NiPype and can therefore be run in parallel on multiple
CPUs on a given computing platform, e.g., a personal workstation or a processing
node on a server.

APPIAN also follows the specification of the BIDS apps in being capable of

running subject-level and group-level analyses independently. This means that an

instance of APPIAN can be run for each subject in parallel across the available

4 https://www.docker.com/
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computing resources. Once the individual processing steps have been completed and
stored in the same location, the group-level analyses can then be run, e.g., automated
QC and reporting of group-level descriptive statistics. Thus, a given data set can be
processed with APPIAN at different times and on different computing platforms.
The ability to process large data sets in an easy, fast, and reproducible manner
is essential, particularly in cases where parameters for a given algorithm need to be
optimized or where the performance of different algorithms at a given processing

stage is being compared.

Accuracy of APPIAN

The accuracy of the APPIAN pipeline was evaluated using the SORTEO Monte-
Carlo simulated PET data set [22]. These data consist of 15 subjects with a real T1
MR image segmented into anatomical defined ROIs derived from these images. From
each of these anatomically segmented images, three sets of simulated PET images
were produced by assigning empirically derived TACs of radiotracer concentrations
of [11- CJ-raclopride (RCL), [18-F]-fluorodeoxyglucose (FDG), and [18-F]-fluorodopa
(FDOPA) into each segmented ROI. The PET images were simulated using the
SORTEO Monte-Carlo PET simulator for the Siemens ECAT HR+ scanner [154].

Magnetic resonance images were processed using CIVET. CIVET uses the non-
parametric N3 method to correct MR field non-uniformity [118]. The MR image is
then transformed to MNI stereotaxic space of the ICBM 152 6th generation non-
linear brain atlas [4], using a 12 parameter affine transformation [2]. Spatially nor-

malized images are then segmented into gross anatomical regions with ANIMAL
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(Collins and Evans, 1997. Thus all ROI images used in the subsequent analysis were
derived using CIVET prior to running APPIAN.

The accuracy of the APPIAN was verified by comparing the results of the three
central processing stages (coregistration, PVC, quantification) to the true radiotracer
concentration TACs or the parametric values derived from them. For the coregistra-
tion and PVC stages, the integral of the TAC recovered from the processed images
was compared to the integral of the true radiotracer concentration TACs. Parameter
values were obtained by calculating the Ki, BPnd, and SUVR for the FDOPA, RCL,
and FDG images, respectively, and compared to the same values calculated from
the true radiotracer concentration TACs. The accuracy for each processing stage
was calculated by dividing the results from APPIAN by the true radiotracer concen-
tration or parametric values. This calculation was performed for a specific ROI for
each radiotracer: cortical GM for FDG@G, the putamen for FDOPA, and the caudate
nucleus for RCL. PVC was performed using the GTM method with a point spread
function of 6.5 mm full-width half-maximum [155]. The cerebellum was used as a

reference region for the calculation of parametric values in the quantification stage.

4.5 Results

APPIAN was able to recover accurate values at each major processing stage
(Table 4-1), see Figure 44 for illustrative example from one subject. The recovered
values for the coregistration and PVC were the integral of the regional TACs. For the
quantification stage the recovered values were the parametric values as described in

section “Accuracy of APPIAN”. The accuracy of the coregistration stage was between
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Figure 4—4: Illustrative example of the image volumes produced by APPIAN for the
three major processing stages for FDG, FDOPA, and RCL.
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Table 4-1: Accuracy is measured as the ratio of recovered to true radiotracer concen-
tration or parameter value. APPIAN accurately recovers radiotracer concentrations
and tracer kinetic parameters from the SORTEO simulated PET images.

Radiotracer ROI PVE Analysis Metric Accuracy

FDG GM Uncorrected Coregistration integral 0.66 + 0.006
FDG GM Corrected PVC integral 0.93 + 0.025
FDG GM Corrected Quantification SUVR 0.94 + 0.048
FDOPA Putamen Uncorrected Coregistration integral 0.69 + 0.03

FDOPA Putamen Corrected PVC integral 1+0.055
FDOPA Putamen Corrected Quantification Ki 0.83 + 0.238
RCL Caudate Nucleus Uncorrected Coregistration integral 0.77 £ 0.016
RCL Caudate Nucleus Corrected PVC integral 1.05 £ 0.035
RCL Caudate Nucleus Corrected Quantification BPnd 1.03 £ 0.042

0.66 and 0.77, which represented an underestimation of the radiotracer distribution
due to partial-volume effects. The accuracy was significantly improved by PVC,
ranging between (.93 and 1.05. The effect of PVC on the uncorrected radioactivity
concentration for each radiotracer is shown in Figure 4-5. The PVC led to a slight
overestimation in the caudate nucleus with RCL, but near perfect accuracy in the

putamen with FDOPA. The final output parametric values were very accurate for

RCL (1.02) and FDG (0.94), and lower in the case of FDOPA (0.83).

4.6 Discussion
4.6.1 Accuracy of APPIAN

APPIAN recovered accurate values for each of the three major processing steps
on the SORTEO simulated PET data set. Not surprisingly, the accuracy of the
recovered parameters was initially low (0.65-0.77), because of partial-volume effects.
This improved significantly after PVC with the GTM method (0.93- 1.05). For RCL
and FDG, the parametric values resulting from the quantification processing stage

maintained a similar level of accuracy to that of the PVC radiotracer concentrations.
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Figure 4-5: Time-activity curves for each subject and each radiotracer. Blue points
indicate the uncorrected PET radioactivity concentration after PET-MRI coregis-
tration and green points show radioactivity concentration after PVC with the GTM
method. PVC corrects for spill-over of radiotracer distribution and increases the
measured radioactivity concentration.

This was not the case with FDOPA where the accuracy decreased from 1 to 0.83.
The decrease in accuracy was due to noise in the radiotracer concentrations that
were measured in the caudate nucleus, which led to errors in the calculation of the
integrals used by the Patlak plot to determine Ki.

For each radiotracer, the validation of APPIAN’s accuracy was performed with
differing ROI and using different methods for calculating parametric values. These
differences mean that it is not possible to quantitatively compare APPIAN’s accuracy
for each radiotracer. The choice of ROI and algorithms for deriving parametric
values were chosen to reflect analysis procedures that are widely used by researchers
for each of the three radiotracers. It should be noted that the cerebellum is not

typically used as a reference region for calculating SUVR or Ki for FDG and FDOPA,

respectively. However, while the specific location of the reference region is of utmost
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Table 4-2: Many different PET processing software exist with various features.

Feature MIAKAT PMOD Pypes CapAIBL NiftyPET APPIAN
Cost Free 2,970-14,850% Free Free Free Free
Open-source Yes No Yes No Yes Yes
Language MATLAB Java Agnostic* C++ Python Agnostic*
Quantification Yes Yes No SUVR No Yes
PVC No No Yes No Yes Yes
Structural imaging Yes Optional Yes No Yes Required
Cloud-based processing No DICOM server No Yes Maybe Yes
Local processing Yes Yes Yes No Yes Yes
Visualization GUI GUI Result plots 3D surfaces No Dashboard
Surface-based No No No Yes No Yes
Reconstruction No No No No Yes No

importance when performing true PET quantification, it is not relevant for verifying

the computational accuracy of the algorithms in the APPIAN pipeline.

4.6.2 Comparison to Existing Pipelines

Several PET processing pipelines have been presented in recent years. We here
briefly describe them to highlight their relative strengths (Table 4-2) and discuss
how APPIAN compares to these. There are other PET pipelines that carry out at
least three of the six steps performed by APPIAN, they are: PMOD [156], CapAIBL
[157], MIAKAT [158], Pypes [159], and NiftyPET [160].

PMOD

PMOD [156] is the gold-standard software for quantification of PET images
and is distributed in modules that perform specific aspects of PET analysis. PKIN
includes an exhaustive list of quantification models and preprocessing methods for
blood and plasma activity curves for analyzing regional PET data, while PXMOD

performs the same analyses at the pixel level. PMOD also has modules that perform
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analysis and PVC (PBAS), and image registration (PFUS). All these modules can
be used interactively using a graphical user interface (GUI) but can also be linked
together in a pipeline to automate the analysis of large data sets. A particularly
useful feature is the option to add a QC step after each processing stage. PMOD
thus includes all the preprocessing and analysis methods needed for automated PET
analysis. As a commercial software solution however, the PMOD code is not open-
source and thus imposes limitations on the user community with respect to flexible

development and implementation of new image processing and analytical methods.

CapAIBL

CapAIBL [157] is a surface-based PET processing pipeline that is available
through an online platform. It spatially normalizes PET images to cortical sur-
face templates for the surface-based analysis and visualization of PET data without
the need for structural imaging. Cortical surfaces are derived from a standardized
template, thus subcortical structures such as the basal ganglia are not included in the
analysis. A purely surface-based approach is also limited to images from structurally
intact brains and may thus be difficult to apply to datasets with focal brain lesions.
Nonetheless, CapAIBL provides a highly original method for performing automated
PET analysis that is useful for the study of the cerebral cortex in cases where no
structural image has been acquired alongside the PET image. Dore et al. [161] have
shown a close correspondence in PET quantification across a wide range of radio-
tracers with coregistered PET and MR images and using CapAIBL, i.e., without

coregistration.
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Pypes

A recent multi-modal pipeline, Pypes [159], combines PET analysis with struc-
tural, diffusion, and functional MR images. This pipeline is free, open-source, and
it is also written using NiPype [135]. Pypes leverages several brain imaging software
packages—including SPM12 [162], FSL [163], and AFNI [164]-to provide multi-modal
workflows. While Pypes does incorporate PVC, it does not incorporate tracer kinetic

analysis, flexible ROI definition, or automated QC.

MIAKAT

MIAKAT [156] is the most complete, open- source PET processing pipeline. In
addition to featuring many tracer-kinetic models, MIAKAT also includes motion-
correction, a feature that is not currently implemented in APPIAN. One of MI-
AKAT’s most important features is its user-friendly GUI. This makes MIAKAT
easy to use for users not familiar with the command-line interface. In addition to
analyzing PET images, MIAKAT also includes the option to include structural im-
ages which are used to define regions of interest (ROI). MIAKAT has been recently
extended for use on non-brain PET image analysis and for application to species
other than humans [165].

One limitation of MIAKAT is that it does not include PVC, although this could
potentially be added to the pipeline. More importantly, it is built using MATLAB,

which restricts MIAKAT to a single, proprietary language with licensing restrictions.

98



NiftyPET

NiftyPET is another open-source, Python-based PET processing pipeline that
implements Graphical Processing Unit-processing for massively parallel processing
[160]. Tt is the only PET processing pipeline to reconstruct PET images from sino-
grams and to perform PVC [166]. It should be noted that the authors of NiftyPET
use the term “quantification” to refer to quantification of radioactivity concentra-
tions, whereas this term is here used to refer to the quantification of underlying
biological or physiological parameters. NiftyPET therefore does not include para-

metric quantification.

APPIAN

There are a wide variety of PET pipelines presently available, each satisfying a
different niche. APPIAN provides a highly flexible framework for processing large
PET data sets, see Figure 4-6 for a detailed flowchart of APPIAN. One important
feature is that APPIAN allows the user to define ROI from a variety of sources and
is therefore compatible with a wide variety of experimental designs. Whereas lesion
studies frequently use a binary lesion image defined on each subject’s respective
structural image in its native coordinate space, it may be necessary for some studies
(e.g., investigating lesion effects on functional systems as in aphasia post stroke) to
use a common brain atlas in MNI-space. On the other hand, PET studies of, e.g.,
microglial inflammation may identify ROI based on the subjects’ respective tracer
binding pattern in PET images in their native space. Quantification of PET images

also requires users to be able to use either ROI to define a reference region without
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specific binding of the radiotracer or TAC measured from arterial blood samples.
APPIAN is therefore suited for a wide variety of experimental contexts because of
its flexible system for ROI definition.

APPIAN is also modular and easily extendable so that users can either test new
algorithms, e.g., a new PVC method, or add entirely new analyses to the pipeline.
Moreover APPIAN, like Pypes, is written with NiPype and can thus use any program
that can be run in a Bash shell environment. Users therefore do not need to rewrite
their software in, e.g., Python if they wish to implement it in APPIAN. Also, given
that descriptive statistics for ROI are automatically generated in the reporting stage,
it is easy to extend APPIAN to perform sophisticated group-wise analyses. For
example, investigators interested in implementing graph theoretical analyses can
append their analysis to the group-level processing and input the descriptive statistics
that are collected at the reports stage to their analysis.

Finally, APPIAN implements automated and visual QC to facilitate the analysis
of large data sets. This is essential because as multiple processing stages are linked
together into increasingly sophisticated pipelines, it is important that users be able to

easily and reliably confirm that each processing stage has been performed correctly.

Using APPIAN
APPIAN is available for both local use and cloud-based use. The source code

for APPIAN is freely available® . While the code-base will be maintained by the

> www.github.com/APPIAN-PET/APPIAN
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authors, we hope to create a community of developers to support the project in
the long-term. Changes to APPIAN will be validated against the open CIMBI PET
data® [10]. APPIAN is provided via a Docker (see footnote 3) image and can be easily
downloaded from Docker hub under tffunck/appian:latest. Cloud-based APPIAN is
available via the CBRAIN platform” .

4.7 Conclusion

APPIAN is a novel PET processing pipeline that seeks to automate the pro-
cessing of reconstructed PET images for a wide variety of experimental designs. It
is therefore flexible and easily extendable. In order to ensure that each processing
step is performed as expected, visual and automated QC are implemented. Our
results on Monte-Carlo simulated PET data have shown that APPIAN accurately
recovers radiotracer concentration and parametric values. Future work will focus on
increasing the sensitivity of the automated QC and implementing more algorithms

for coregistration, PVC, and quantification.

4.8 Contribution of Authors
Thomas Funck is the primary author of the manuscript, developed the APPTAN

code.

6 https://openneuro.org/datasets/ds001421

" portal.cbrain.mecgill.ca

102



Kevin Larcher developed the APPIAN code.

Paule-Joanne Toussaint is the advisor for designing APPIAN, edited the manuscript,

and ongoing development of new PET quantification models.

Alexander Thiel (principal investigator) and Alan C. Evans (co-principal inves-

tigator) provided conceptual guidance and edited the manuscript.

FUNDING This work was supported by the Canadian Institutes of Health Re-
search (CIHR) grants MOP-115107 (AT) and MOP-37754 (AE), and by the National
Institutes of Health (NIH) operating grant 248216 (AE).

References

2. Collins, D. L., Neelin, P., Peters, T. & Evans, A. Automatic 3D intersuject
Registration fo MR Volumetric Data in Standardized Talairach Space. Journal
of Computer Assisted Tomography 10, 192—205. 1sSN: 10538119 (1994).

4. Magzziotta, J. et al. A probabilistic atlas and reference system for the hu-
man brain: International Consortium for Brain Mapping (ICBM). Philosoph-
ical Transactions of the Royal Society B: Biological Sciences 356, 1293-1322.
ISSN: 0962-8436 (Aug. 2001).

10. Beliveau, V. et al. A high-resolution in vivo atlas of the human brain’s sero-
tonin system. Journal of Neuroscience 37, 120-128. 1sSN: 15292401 (Jan.

2017).

103



19.

22.

118.

121.

133.

134.

135.

136.

Greve, D. N. et al. Different partial volume correction methods lead to different
conclusions: An 18F-FDG-PET study of aging. Neurolmage 132, 334-343.
ISSN: 10538119 (May 2016).

Reilhac, A. et al. PET-SORTEO: Validation and development of database of
simulated PET volumes. IEEE Transactions on Nuclear Science 52, 1321-
1328. 1sSN: 00189499 (Oct. 2005).

Sled, J. G., Zijdenbos, A. P. & Evans, A. C. A nonparametric method for
automatic correction of intensity nonuniformity in MRI data. English. IEEFE
transactions on medical imaging 17, 87-97. 1SSN: 0278-0062 (Feb. 1998).
Funck, T., Paquette, C., Evans, A. & Thiel, A. Surface-based partial-volume
correction for high-resolution PET. Neurolmage 102, 674-87. 1SSN: 1095-9572
(Nov. 2014).

Greve, D. N. et al. Cortical surface-based analysis reduces bias and variance in
kinetic modeling of brain PET data. Neurolmage 92, 225-236. 1SSN: 10959572
(May 2014).

Karjalainen, T. et al. Magia: Robust Automated Image Processing and Kinetic
Modeling Toolbox for PET Neuroinformatics. Frontiers in Neuroinformatics
14, 3. 18sN: 1662-5196 (Feb. 2020).

Gorgolewski, K. et al. Nipype: A Flexible, Lightweight and Extensible Neu-
roimaging Data Processing Framework in Python. Frontiers in Neuroinfor-
matics 5, 13. 1SSN: 1662-5196 (2011).

Eskildsen, S. F. et al. BEaST: Brain extraction based on nonlocal segmentation

technique. NeuroImage 59, 2362-2373. 1SSN: 10538119 (Feb. 2012).

104



137.

138.

139.

140.

141.

142.

143.

Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric perfor-
mance in brain image registration. Neurolmage 54, 2033-2044. 18SN: 10538119
(2011).

Tzourio-Mazoyer, N. et al. Automated Anatomical Labeling of Activations in
SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-
Subject Brain. Neurolmage 15, 273-289 (2002).

Thomas, B. A. et al. PETPVC: A toolbox for performing partial volume cor-
rection techniques in positron emission tomography. Physics in Medicine and
Biology 61, 7975-7993. 1sSN: 13616560 (Nov. 2016).

Oikonen, V. Software for positron emission tomography 2017. http://www.
turkupetcentre.net/petanalysis/sw’7B%5C_%7Dpet.html.

Logan, J. et al. Graphical analysis of reversible radioligand binding from time-
activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in
human subjects. Journal of cerebral blood flow and metabolism : official journal
of the International Society of Cerebral Blood Flow and Metabolism 10, 740-7.
I1SSN: 0271-678X (Sept. 1990).

Gjedde, A. Calculation of cerebral glucose phosphorylation from brain uptake
of glucose analogs in vivo: A re-examination. Brain Research Reviews 4, 237—
274. 18SN: 0165-0173 (June 1982).

Patlak, C. S., Blasberg, R. G. & Fenstermacher, J. D. Graphical evaluation
of blood-to-brain transfer constants from multiple-time uptake data. Journal

of cerebral blood flow and metabolism : official journal of the International

105


http://www.turkupetcentre.net/petanalysis/sw%7B%5C_%7Dpet.html
http://www.turkupetcentre.net/petanalysis/sw%7B%5C_%7Dpet.html

144.

145.

146.

147.

148.

149.

150.

Society of Cerebral Blood Flow and Metabolism 3, 1-7. 1SSN: 0271-678X (Mar.
1983).

Gunn, R. N., Lammertsma, A. A., Hume, S. P. & Cunningham, V. J. Para-
metric imaging of ligand-receptor binding in PET using a simplified reference
region model. Neurolmage 6, 279-287. 1SSN: 10538119 (1997).

Sokoloff, L. et al. the [14C]Deoxyglucose Method for the Measurement of Local
Cerebral Glucose Utilization: Theory, Procedure, and Normal Values in the
Conscious and Anesthetized Albino Rat. Journal of Neurochemistry 28, 897—
916. 18SN: 14714159 (May 1977).

Pedregosa, F. et al. Scikit-learn: Machine Learning in Python 2825-2830.
http://dl.acm.org/citation.cfm?id=2078195 (MIT Press, 2001).

Sherif, T., Kassis, N., Rousseau, M.-E., Adalat, R. & Evans, A. C. Brain-
Browser: distributed, web-based neurological data visualization. Frontiers in
Neuroinformatics 8, 89. 1SSN: 1662-5196 (Jan. 2015).

Ge, Y. et al. Retrospective registration of pet and mr brain images: An algo-
rithm and its stereotactic validation. Journal of Computer Assisted Tomogra-
phy 18, 800-810. 1SSN: 15323145 (1994).

Andersson, J. L. R., Sundin, A. & Valind, S. A method for coregistration of
PET and MR brain images. Journal of Nuclear Medicine 36, 1307-1315. ISSN:
01615505 (July 1995).

Alpert, N., Berdichevsky, D., Levin, Z., Morris, E. & Fischman, A. Improved
Methods for Image Registration. Neurolmage 3, 10-18. 1SSN: 1053-8119 (Feb.
1996).

106


http://dl.acm.org/citation.cfm?id=2078195

151.

152.

153.

154.

155.

156.

Mutic, S. et al. Multimodality image registration quality assurance for confor-
mal three-dimensional treatment planning. International Journal of Radiation
Oncology Biology Physics 51, 255-260. 1SSN: 03603016 (Sept. 2001).
DeLorenzo, C. et al. A new method for assessing PET-MRI coregistration in
Proceedings of SPIE (eds Pluim, J. P. W. & Dawant, B. M.) 7259 (Inter-
national Society for Optics and Photonics, Feb. 2009), 72592W-72592W-S.
ISBN: 9780819475107. doi:10.1117/12.812170. http://1link. aip. org/
1ink/PSISDG/v7259/i1/p72592W/s17,7B%5C&,7DAgg=do1i.

Gorgolewski, K. J. et al. The brain imaging data structure, a format for or-
ganizing and describing outputs of neuroimaging experiments. Scientific Data
3, 160044. 18sN: 20524463 (June 2016).

Adam, L.-E. et al. Performance evaluation of the whole-body PET scanner
ECAT EXACT HR/sup +/ following the IEC standard. IEEE Transactions
on Nuclear Science 44, 1172-1179. 18SN: 00189499 (June 1997).

Rousset, O. G., Ma, Y. & Evans, A. C. Correction for partial volume effects
in PET: Principle and validation. Journal of Nuclear Medicine 39, 904-911.
1SSN: 01615505 (May 1998).

Mikolajczyk, K., Szabatin, M., Rudnicki, P., Grodzki, M. & Burger, C. A JAVA
environment for medical image data analysis: Initial application for brain PET
quantitation in Medical Informatics 23 (Taylor & Francis, Jan. 1998), 207
214. doi:10.3109/14639239809001400. http://www.tandfonline.com/doi/

full/10.3109/14639239809001400.

107


http://dx.doi.org/10.1117/12.812170
http://link.aip.org/link/PSISDG/v7259/i1/p72592W/s1%7B%5C&%7DAgg=doi
http://link.aip.org/link/PSISDG/v7259/i1/p72592W/s1%7B%5C&%7DAgg=doi
http://dx.doi.org/10.3109/14639239809001400
http://www.tandfonline.com/doi/full/10.3109/14639239809001400
http://www.tandfonline.com/doi/full/10.3109/14639239809001400

157.

158.

159.

160.

161.

162.

Bourgeat, P. et al. Computational analysis of PET by AIBL (CapAIBL): a
cloud-based processing pipeline for the quantification of PET images in (eds
Ourselin, S. & Styner, M. A.) (International Society for Optics and Photon-
ics, Mar. 2015), 94132V. doi:10.1117/12.2082492. http://proceedings.
spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2082492.
Gunn, R. N., Coello, C. & Searle, G. E. Molecular Imaging And Kinetic Anal-
ysis Toolbox (MIAKAT) - A Quantitative Software Package for the Analysis
of PET Neuroimaging Data. Journal of Nuclear Medicine 57, 1928 (2016).
Savio, A. M., Schutte, M., Grana, M. & Yakushev, I. Pypes: Workflows for
Processing Multimodal Neuroimaging Data. Frontiers in Neuroinformatics 11,
25. 1SSN: 1662-5196 (Apr. 2017).

Markiewicz, P. J. et al. NiftyPET: a High-throughput Software Platform for
High Quantitative Accuracy and Precision PET Imaging and Analysis. Neu-
roinformatics 16, 95—-115. 1SSN: 15392791 (Jan. 2018).

Dore, V. et al. in Patch-Based Techniques in Medical Imaging: Second Inter-
national Workshop, Patch-MI 2016, Held in Conjunction with MICCAI 2016,
Athens, Greece, October 17, 2016, Proceedings (eds Wu, G., Coupé, P., Zhan,
Y., Munsell, B. C. & Rueckert, D.) 109-116 (Springer International Publishing,
Cham, 2016). 1SBN: 978-3-319-47118-1. d0i:10.1007/978-3-319-47118-1_14.
https://doi.org/10.1007/978-3-319-47118-1%7B%5C_%7D14.

Ashburner, J. SPM: A history Aug. 2012. doi:10 . 1016/ j . neuroimage .
2011.10.025. https://www.sciencedirect.com/science/article/pii/

510538119110118887via’7B%5C%%7D3Dihub.

108


http://dx.doi.org/10.1117/12.2082492
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2082492
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2082492
http://dx.doi.org/10.1007/978-3-319-47118-1_14
https://doi.org/10.1007/978-3-319-47118-1%7B%5C_%7D14
http://dx.doi.org/10.1016/j.neuroimage.2011.10.025
http://dx.doi.org/10.1016/j.neuroimage.2011.10.025
https://www.sciencedirect.com/science/article/pii/S1053811911011888?via%7B%5C%%7D3Dihub
https://www.sciencedirect.com/science/article/pii/S1053811911011888?via%7B%5C%%7D3Dihub

163.

164.

165.

166.

Kriegeskorte, N. et al. Greater Neural Pattern Similarity Across Repetitions Is
Associated with Better Memory {\textemdash} Greater Neural Pattern Sim-
ilarity Across Repetitions Is Associated with Better Memory {\textemdash}
Supporting Online Material. Neurolmage 10, 97-102. 1SSN: 10538119 (Aug.
2006).

Cox, R. W. AFNI: What a long strange trip it’s been Aug. 2012. doi:10.1016/
j .neuroimage.2011.08.056. https://www.sciencedirect.com/science/
article/pii/S10538119110097367via%7B%5C%%7D3Dihub.

Searle, G., Coello, C. & Gunn, R. Eztension of the MIAKAT analysis software
package to non-brain and pre-clinical PET analysis supplement 1, 1305—
1305. http:// jnm. snmjournals . org/content /58 /supplement % 7B%5C _
%7D1/1305.short (Society of Nuclear Medicine, May 2017).

Yang, J., Huang, S. C., Mega, M. & Lin, K. P. Investigation of partial volume
correction methods for brain fdg pet studies. IEEFE Transactions on Nuclear

Science 43, 3322-3327. 1sSN: 00189499 (1996).

109


http://dx.doi.org/10.1016/j.neuroimage.2011.08.056
http://dx.doi.org/10.1016/j.neuroimage.2011.08.056
https://www.sciencedirect.com/science/article/pii/S1053811911009736?via%7B%5C%%7D3Dihub
https://www.sciencedirect.com/science/article/pii/S1053811911009736?via%7B%5C%%7D3Dihub
http://jnm.snmjournals.org/content/58/supplement%7B%5C_%7D1/1305.short
http://jnm.snmjournals.org/content/58/supplement%7B%5C_%7D1/1305.short

CHAPTER 5
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5.1 Preamble

In chapter 3 we presented a software package called APPIAN for automating
PET image analysis. This software package includes a novel algorithm, called GRAD,
for performing automated QC. This algorithm can, in principle, be used to perform
QC for any automated image processing. The only necessary condition is that the
success of a processing stage can be quantified on a continuous scale. Given the

generality of GRAD, it is important to determine how well it works in the particular
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case of PET image processing. The work described in this chapter is aimed at
validating the ability of GRAD to detect processing errors in APPIAN. We used a
set of real PET images and systematically applied misregistrations between the PET

and MRI to determine how reliably GRAD would detect such misalignments.

5.2 Abstract

Automated quality control (QC) is necessary when analyzing large PET-data
sets using processing pipelines to ensure that each processing stage has been per-
formed correctly and hence improve reproducibility of the analysis. We designed a
new algorithm for performing automated QC via a framework we call GRoupwise
Anomaly Detection (GRAD). For a given processing stage, automated QC is per-
formed by first calculating image-derived metrics that quantify the performance of
the processing stage for all images acquired within a study cohort. The empirical
distribution of the QC metrics is then estimated using Gaussian kernel density es-
timation and used to identify images with anomalous values in the chosen metric.
While GRAD can in principle be used to perform automated QC for any imaging
modality, we have implemented and validated it in the context of positron emis-
sion tomography (PET). GRAD was validated by simulating misalignments between
PET and magnetic resonance (MR) images and testing how accurately GRAD could
identify misaligned images in the coregistration, partial-volume correction (PVC),
and quantification stages of PET image processing. The results showed that the

AUC for GRAD’s error detection ROC was 0.7-0.97 for images that were rotated by
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more than 6° or translated by more than 6mm. GRAD was therefore able to detect

moderate to large errors in coregistration with high sensitivity and specificity.

5.3 Introduction

The increasing availability of large brain imaging data sets has made automated
pipelines essential for reproducible and robust image processing and analysis. How-
ever, automated pipelines require rigorous quality control (QC) to ensure that each
processing step has been performed as expected. While manual QC based on visual
inspection is still the most commonly used and gold-standard method for perform-
ing QC [148-152], it requires significant time and labor on the part of investigators.
Manual QC also suffers from inter- and intra-rater variability [167]. We therefore pro-
pose a general framework for performing automated QC based on groupwise anomaly
detection (GRAD) and demonstrate its application to the automated QC of PET
image analysis.

Within the field of brain imaging, automated QC algorithms fall into one of
two conceptual frameworks: reference range approaches and group comparison ap-
proaches

The fist approach identifies a reference range for image-derived metrics from a
set of manually quality controlled images [167-169]. A classifier is then trained on
the reference set of image-derived metrics to determine which images should pass
QC. Automated QC is then performed by applying the trained classifier to a new set

of images.
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In the simplest case the classifier can be a threshold criterion which a metric must
exceed in order to pass QC. This criterion is determined by visual inspection of the
set of metrics obtained from manual quality controlled data [168]. More sophisticated
classifiers may also be used. Esteban, et al.[167] implement both a support vector
machine and random forest classifier to obtain an MR image classification based on
a set of image metrics. Similarly, Oguz, et al. [169] use entropy measures from a set
of artefact-free diffusion MR images to identify directional artefacts.

The fundamental assumption of the reference range approach is the generaliz-
ability of the metrics’ reference range from a reference data set to new scans from
different individuals. This assumption may not hold for imaging modalities with a
high degree of variability in the image-derived metrics. For example, an [18-F]-FDG
PET scan acquired on the CTI-Siemens ECAT HRRT and [18-F]-flumazenil PET
scan acquired on the Siemens ECAT HR+ will have very different image-derived
metrics that make it difficult to use a single reference range.

The second conceptual framework for performing automated QC is to compare
the image-derived metrics for the images acquired within a given study. Group
comparison of QC metrics may be evaluated visually [167, 170] or by a quantitative
algorithm that automatically detects outliers, e.g., k-means clustering [171].

We have implemented a novel technique for groupwise automated quality con-
trol, which we term GRAD (GRoupwise Anomaly Detection). The overall approach
of automated QC is to define a metric that quantifies the performance of a given
processing step. For example, in the case of coregistration this would be a similarity

metric, e.g., mutual information, between the PET and T1-weighted MR images. By
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itself, a metric for a single image is insufficient to determine whether that processing
step was performed correctly. Instead, an outlier detection algorithm is applied to
the empirical distribution of the QC metrics and outliers are identified based on a
user-defined threshold.

While GRAD can in principle be applied to any automated pipeline where mean-
ingful QC metrics can be defined, we evaluate GRAD in the context of PET-MRI
coregistration. Coregistration is the first of the 3 major processing stages that are
regularly performed in PET analysis. This step is usually followed by partial-volume
correction (PVC), and quantification by tracer kinetic analysis. Coregistration is
also a frequent source of error and can have a significant impact on downstream
analyses [17, 152, 166, 172-174]. We therefore evaluate the sensitivity and specificity
of GRAD for detecting errors resulting from misregistration in the coregistration,

PVC, and quantification stages.

5.4 Methods
5.4.1 Groupwise anomaly detection

GRAD was devised to assist the user in performing visual QC. While visual
inspection remains the gold-standard QC method [148-152], automated QC can be
useful in guiding the user to images that have potentially failed a processing stage.
The first stage of GRAD is to define a QC metric that quantifies the performance of

a given processing step.
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The empirical distribution of QC metrics is calculated from all coregistered
image data sets from all subjects in the cohort using kernel density estimation (KDE),
E, with a gaussian kernel, GG, and a bandwidth, h, of 0.2:

1 T — x;

Bl2) = - S5G( ) (5.1)

QC metrics are standardized and centered around 0 to simplify calculations.
This empirical distribution is therefore calculated on a cohort of subjects whose PET
images have been acquired under similar conditions, e.g., a set of subjects acquired
with the same experimental protocol for a particular study. Anomalous values are
those whose probability of being observed falls below a predefined tolerance limit.

The probability of observing a given metric can be defined using either a single-
or two-tailed test (Fig.5-1). Certain QC metrics can be defined such that the per-
formance of the processing stage theoretically increases monotonically as a function
of the QC metric (Fig.5-1A), e.g., the mutual information between the PET and
MR images increases as the fit between the two improves. In this case, abnormally
large QC metrics do not need to be considered in the anomaly detection because
they are assumed to reflect an unusually good performance of the processing stage.
Therefore, only the probability of observing a QC metric value that is less than or
equal to the observed QC metric, i.e., a single-tailed test, needs to be calculated.

There are also instances where the performance does not monotonically increase
with the QC metric (Fig. 5-1B). In this case, anomalous QC metrics are detected by
calculating the probability of observing a QC metric that is larger than the absolute

value of the observed QC metric, i.e., a two-tailed test. Single-tail anomaly detection
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has higher specificity because it ignores positive outliers that represent abnormally
successful QC metrics. Distinguishing between QC metrics requiring single- and
two-tailed tests is therefore useful because it increases the overall specificity of the

automated QC.

QC metric for coregistration

The QC metric for the PET to MRI coregistration is defined as the image
similarity between the PET and MR images. Increasing similarity between the PET
and T1-weighted MR image implies better performance and thus anomaly detection
may be performed by calculating the single tailed probability of observing a value
less than or equal to the QC metric. In practice many metrics exist for evaluating
similarity between images, including mutual information (MI)(Eq.5.2) , feature-space

entropy (FSE)(Eq.5.3), and cross correlation (CC)(Eq.5.4):

Mi(e.y) = SSiEipto. gliog( L5 (5.2
FSE(z,y) = ;Zﬂp(x, y)log(p(z,y)) (5.3)

S0 (s — )5S0 (v — 9)

where z and y are the 2 images being compared, i.e., the PET and MRI.
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Figure 5-1: A. Performance is defined as a quantitative measure of how closely the
actual result produced by the pipeline coincides with the ideal result that should the-
oretically be produced by that processing stage. Each point represents an individual
scan from a subject in the sample. If performance of a processing stage increases
monotonically with the QC metric for that processing stage, then a single-tailed test
is sufficient to identify anomalous QC metrics. The red point indicated QC metrics
that would be identified as anomalous values. B. A two-tailed test is necessary to
identify anomalous QC metrics when a higher QC metric does not necessarily reflect
better performance of the processing stage.
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QC metric for PVC

The QC metric that was devised to detect errors at the PVC stage was based on
the standard mathematical formulation of image acquisition is O = P ® Rppue + 1,
where O is the observed PET image, Ry, is the true radioactivity distribution,
P is the scanner point-spread function, and n is noise. In principle, PVC therefore
attempts to estimate the source radioactivity distribution, Rgg. , in the object by
removing the blurring effect of the scanner point-spread function, P. The QC metric
for PVC should be defined so that it is, in theory, maximized when the PV-corrected
image, Rgs. approaches Rr.... The QC metric for PVC used here was defined as
the negative mean-squared error (MSE) between the observed PET image, O, and
the PV-corrected PET image convolved with the approximation of the point-spread
function of the PET scanner used to acquire the image, P ® Tgy. (Eq.5.5). A better
fit of the PVC algorithm between the observed and PV-corrected images leads to
larger, i.e., less negative, values for the QC metric. A singled tailed test of the
PVC QC metrics is therefore performed to identify potential anomalies. The strong
assumption underlying this approach is that the point-spread function of the PET

scanner can accurately be represented using a simpler model like a gaussian function.

1 .
QCpyc = —EZESUDETZ- — [P ® Tga)i)? (5.5)

QC metric for quantification
Whereas the previous 2 processing stages can be characterized in terms of a

QC metric that monotonously increases with processing performance, this is not the
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case for the quantification stage. The quantification stage includes the application of
models to calculate quantitative or semi-quantitative values from the PET images,
e.g., BPnd. The quantification stage therefore includes tracer-kinetic analysis as well
as simpler models such as SUVR. The QC metric for the quantification stage is there-
fore the average parametric value within the user-defined ROI (Eq.5.6). Regardless
of whether the user has selected to calculate quantitative parameters on a voxel or
ROI basis, mean regional values are calculated using the ROI for the results stage.
Outliers from the quantification stage are then calculated using a two-tailed test for
outliers on the empirical probability density function (PDF) of the regional average
values.

The QC metric for the quantification stage is simply the average parametric

value within the set of user-defined ROIs :

1
QCriam = n—ai@PETiT“ (5.6)

where ¢ is an element of a set of voxel coordinates in a user-defined ROI, r; n
is the number of voxels in the ROI; and PET TKA is the parametric image derived

with the chosen quantification method.

5.4.2 Evaluation of GRAD

PET images

Brain PET images with three different radioligands [18-F|-flumazenil, (FMZ),
[18-F]-fluorodeoxyglucose (FDG), and [C-11]-raclopride (RCL) and corresponding

T1-weighted MR images were acquired. 46 FMZ images were acquired with an
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injected dose of 370MBq [175]. 31 FDG images were acquired with an injected dose
of 185MBq and 27 RCL images [176] with an injected dose of 296-370MBq.

All PET scans were performed on the CTI-Siemens ECAT HRRT scanner in
list mode (SiemensMedical Solutions, Knoxville, TN, USA) [12]. The ECAT CTI-
Siemens ECAT HRRT is a dedicated full 3D high resolution brain scanner, with a
field view of 25.2 cm (axially) and 31.2 cm (diameter) and has a spatial resolution
of between 2.3 and 3.4mm FWHM, allowing data acquisition with high spatial res-
olution and high sensitivity. In addition, the use of two crystal layers (LSO/LYSO)
permits photon detection with depth-of-interaction information. The list mode data
were binned into 2209 sinograms (each of size 256 radial bins x 288 azimuthal bins)
using span 9 compression, resulting in images with a voxel size of 1.22 x 1.22 x
1.22mm3.

FMZ images were reconstructed using fully 3D FBP by 3D reprojection (3D
RP) carried out with a Hamming windowed Colsher filter (alpha=0.5, cut off at the
Nyquist frequency). RCL and FDG images were reconstructed with 3D ordinary
Poisson OSEM [177].

MR images

The T1 MR images were acquired on a Siemens Magnetom TrioTim syngo MR
B17 using a MPRAGE sequence (repetition time (TR) 2300 ms, echo time (TE) 2.98
ms, TI 9 ms and flip angle = 9° matrix size = 160 x 256 x 256). The T1 MRI

corresponding to the RCL images were acquired on the Siemens Sonata 1.5T system,
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using a gradient echo pulse sequence (TR = 22 ms, TE = 9.2 ms, flip angle = 30°

and matrix size 176 x 256 x 256).

CIVET

All MR images were processed using CIVET on the CBRAIN platform (https://mcin-
cnim.ca/technology/cbrain/). CIVET uses the non-parametric N3 method to correct
MR field non-uniformity [118]. The MR image is then transformed to MNI stereo-
taxic space of the ICBM 152 6th generation non-linear brain atlas [4], using a 12
parameter affine transformation [2]. Spatially normalized images are then segmented
into GM, WM and cerebrospinal fluid [178]. Additionally, a stereotaxic atlas of the
basal ganglia defined on the ICBM 153 template [4] was non-linearly co-registered
onto the subject MRI in MNI stereotaxic space.

Additionally, CIVET uses the ANIMAL and INSECT segmentation algorithms
to classify the T1 MR images into gross anatomical regions. ANIMAL produces a
classification of the cerebral lobes and subcortical grey matter regions [179]. The
INSECT algorithm is used to segment T1 MR images into regions composed of gray
matter, white matter and cerebrospinal fluid [180]. Finally, the results of ANIMAL
and INSECT are combined (ANIMAL+INSECT) to create an image consisting of
a lobular segmentation of the cortical gray matter and white matter in addition to

subcortical grey matter regions [178].
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APPIAN

All PET image processing steps were performed with APPTAN. APPTAN (Au-
tomated Pipeline for PET Image Analysis) [181] an open-source pipeline based on
NiPype [135] for performing automated PET data analysis. APPIAN begins with
reconstructed PET images and performs all processing steps necessary to extract
quantitative measures from the PET images on which users will perform the statis-
tical analysis. In conjunction with the reconstructed PET image, APPIAN uses a
T1-weighted MR-image to define regions of interest (ROI) that are used at multi-
ple processing stages. Briefly, APPTAN 1) coregisters the T1 MR and PET images,
2) defines ROI necessary for later processing steps, 3) performs PVC, and 4) PET
quantification, 5) produces a report of the results, and finally, 6) performs automated
QC.

PVC was performed using the geometric transfer matrix method (GTM)[155].
The regions of interest used for PVC were the segmented images produced by ANI-
MAL+INSECT. For the FMZ and RCL tracers, PET quantification was performed
with the Logan plot [124]. A white matter reference region was used to calculate
non-displaceable binding potential and were defined on classification of the T1 MR
image with INSECT. 6 morphological erosions were applied to the reference region
mask to avoid any contamination from the cortical gray matter. The Patlak-Gjedde
plot method was used to calculate Ki, i.e., the net uptake rate for the radioligand,

for the FDG images using arterial input sampling [142, 143].
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Simulated misalignment

A set of correctly — as determined based on visual inspection - coregistered
PET and MR images were generated by running APPIAN on each of the three
sets of PET images. For each of the correctly coregistered PET images, a series
of transformations were applied to systematically misalign them relative to the MR
image. The misalignments comprised rotations of 2, 4, 6, 12, 18, 24 degrees and
translations of 2, 4, 6, 12, 18, 24 mm in the axial plane, respectively.

The performance of GRAD was evaluated for the three major image processing
stages included in APPIAN: coregistration, PVC, and quantification. Three QC
metrics were used to measure the performance of the coregistration processing stage:
cross-correlation (CC), mutual information (MI), and feature-space entropy (FSE)
[182]. A synthetic similarity metric, "All" was also used and was defined as the
Euclidean norm of the standardized CC, MI, and FSE metrics. For the PVC and
quantification stages, the QC metrics were defined as described in Eq.5.5 and Eq.5.6,
respectively. The automated QC for the quantification stage is performed for specific,
user-defined ROI. For FMZ and FDG PET images, the cortical GM was used for
automated QC of the quantification stage. Automated QC of the quantification stage
for the RCL PET images on the putamen as defined using the basal ganglia atlas
that was co-registered to each subject’s MR image in MNI space.

Outliers were detected as described above (section 2.2). ROC curves were cal-
culated from the probability values generated by GRAD. The area under the curve
(AUC) of the ROC curves was used to compare the performance of the groupwise

outlier detection algorithm at various levels of misregistration.
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5.5 Results
5.5.1 Evaluation of automated QC

The results from the simulated PET to MR image misalignment indicated that
the automated outlier detection was able to detect errors due to misaligned PET
images with good sensitivity in all three image processing stages. For the detection
of rotation errors in the coregistration stage (Fig.5-2, first row) the GRAD algorithm
performed only slightly better than chance (AUC=0.5-0.6) for small errors (2° rota-
tion). This increases to an AUC of 0.7-0.9 for moderate errors (6-16° rotation). The
sensitivity of GRAD depended both on the type of radioligand and the QC metric
used to quantify the performance of coregistration. With respect to rotation errors,
MI was generally the most robust single QC metric across all radioligands, although
anomaly detection with CC and FSE appeared to be more sensitive for FMZ and
FDG, respectively. Anomaly detection with the Euclidean norm of the three indi-
vidual coregistration QC metrics (“All”) was most sensitive for RCL and FMZ, and
similar to results with MI for FDG.

Although the sensitivity of anomaly detection at the PVC stage (Fig.5-2, second
row) was lower than for coregistration, GRAD was nonetheless able to detect anoma-
lies with higher than chance probability (AUC=0.7-0.8 for 20° rotation). The perfor-
mance of GRAD for the quantification processing stage was dependent on the radi-
oligand used. The best performance was obtained with RCL and FMZ (AUC=0.95
for 6° rotation), while the performance with FDG (AUC=0.75 for 20° rotation) was

lower.
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Figure 5-2: Increasing misalignments were generated to evaluate the sensitivity of
GRAD. GRAD showed high sensitivity in the coregistration and quantification pro-
cessing stages with moderate sensitivity for the PVC processing stage.
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For rotation error in the coregistration stage, FSE was the most robust single
QC metric with an AUC of approximately 0.8 for FDG and FMZ for a rotation error
of 6° but was lower for RCL with an AUC of 0.65 for this error level (Fig.5-2). CC
and MI did not have monotonically increasing AUC with increased translation error
for all 3 radioligands (Fig.5-3). However, the mean of the Euclidean norm of the
QC metrics had the best sensitivity for anomaly detection for FMZ and RCL, and a
similar performance to FSE for FDG.

GRAD had a similar level of sensitivity for translation misregistration error
in the PVC stage across all 3 radioligands (AUC=.85-.95 for translation errors of
12mm). A similar sensitivity was achieved for the quantification processing stage
for FMZ and RCL (AUC=0.90-0.95 for translation errors of 6mm). The sensitivity
of GRAD in the quantification stage was lower for FDG (AUC=0.68 for translation

errors of 6mm).

5.6 Discussion
5.6.1 Overview

The analysis of large imaging data sets makes the automation of image analysis
imperative. Rigorous QC is essential to ensure that each processing step has been
performed as expected. We have therefore created an automated QC method based
on identifying anomalous images within a given data set. We systematically misreg-
istered the PET images relative to the MR images to evaluate GRAD’s ability to
detect errors propagated from the simulated misregistration at the major process-

ing stages of PET analysis: coregistration, PVC, and quantification. GRAD was
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Figure 5-3: GRAD was able to detect misregistered images across all processing
stages for translation errors.
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successfully able to detect moderate to large misregistration errors at each of the 3
processing stages, for all 3 radioligand types and both for translation and rotation

alignment errors.

5.6.2 Evaluation of GRAD

The results indicated that the algorithm could detect moderate to large misreg-
istration errors. The outlier detection was only slightly better than chance for small
errors (2mm or 2°). This is not surprising given that such small errors are difficult to
detect even for a human observer. Alpert, et al. [150] validated their coregistration
algorithm against human visual QC and found that human raters had 80% accuracy
in successfully identifying 2mm misregistrations between PET and MRI. While this
level of performance exceeds that of GRAD at present, it highlights the fact that
human observers are imperfect and may benefit from the development of automated
QC algorithms.

The performance of GRAD was worse for the PVC stage across all 3 radiotracers,
indicating that the QC metric may not be sensitive enough to identify failed PVC. A
limitation of the PVC QC metric is that it assumes that convolving the PVC PET
image with the scanner point-spread function produces an image that resembles
the original PET image. This assumption is likely too simplistic given that the
point-spread function varies from the center to the periphery of the field-of-view of
the scanner. Moreover this PVC QC metric is better suited to voxel-wise instead of
ROI-based PVC, because the latter produces potentially large regions of homogenous

radioactivity concentrations. A more robust choice of PVC QC metric may need to be
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devised. An example of an alternate PVC QC metric would be the average difference
in radioactivity concentration before and after PVC. That is, by comparing the effect
of PVC within a set of ROI, it may be possible to determine if there was an abnormal

change for a given subject and region that would be indicative of a processing error.

Performance of GRAD

The performance of GRAD for the coregistration stage was highly dependent
on the choice of distance metric, the radioligand, and the type of error. Overall, for
coregistration the most robust QC metric was the Euclidean norm of the three indi-
vidual QC metrics, with good performance for both translation and rotation errors.
However, it was not consistently the most accurate metric, e.g., FSE outperformed
the mean of the QC metrics for FDG for rotation errors.

In the coregistration stage, not all QC metrics increased monotonically with
increasing error. Specifically, for simulated translation errors the CC and MI metrics
exhibited a decrease in AUC for FDG and FMZ images, respectively. The decrease
in AUC is likely due to a spurious match between anatomical structures in the PET
and MR images that result in an erroneous increase in the QQC metrics. That is,
QC metrics like CC and MI are imperfect in that they may not improve alignment
between the PET and MR image. When this occurs, a worse alignment results in a
better QC metric and thereby affects the accuracy of GRAD. This illustrates that QC
metrics which should theoretically increase only as a result of improved performance
of the processing stage may in practice be susceptible to artefacts that result in the

violation of this assumption of monotonicity.
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Notably, the violation of the monotonicity assumption by some QC metrics did
not appear to significantly impact the performance of the Euclidean norm of the
QC metrics. A synthetic metric that combines information from multiple individual
metrics is therefore potentially robust against the failure of any one of its composite
metrics. The superior performance of the synthetic metric suggests that the perfor-
mance of GRAD may be improved by evaluating methods for combining the metrics
and a larger set of metrics.

The results of GRAD for the PVC stage were uniformly worse across all the
radioligands for rotation versus translation errors. It is not clear why PVC was
so distinctly affected by the difference in misregistration error. By contrast, the
performance of GRAD for the quantification stage was substantially similar for both
error types for FMZ and RCL, with a larger improvement in error detection from
rotation to translation errors for FDG.

The variability in performance between the three radioligands is due to the ex-
tent to which each radioligand distribution in the PET images is similar to the signal
intensity distribution in the MRI. The more the radioligand’s spatial distribution and
contrast resembles the anatomic structures represented in the MR image, the more
the QC metrics is affected by a mismatch between the PET and MR images and,
hence, the better the performance of the automated QC. FDG, for example, has
significant radioligand binding in both GM and WM. This means that a misaligne-
ment of the FDG image has less impact on the misaligned QC metrics than for a

radioligand with high GM-WM contrast, such as FMZ.
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The correspondence of the PET radioligand distribution to the MR image also
explains the difference in the performance of GRAD between the translation and
rotation error. Up to relatively large angles, rotations preserve a greater overlap
between the PET and the MR image.

Only rotations in the axial plane and translations in the coronal plane were
tested, because of the computational cost of performing exhaustive simulations across
all axes for both error types. Earlier studies from 2D PET scanners are inconclusive
as to whether differences in coregistration errors between dimensions are significant
[148, 149]. Andersson, et al. found that the extent of the difference in misalignment
in the 3 dimensions varied greatly between the FDG, RCL, and nomifenisine [149].
This supports the hypothesis that investigations on PET coregistration are difficult
to generalize across radioligands. More exhaustive investigations in high-resolution
3D PET are required to establish whether there is indeed a differential likelihood of
misregistration in the 3 imaging planes and how this affects different radioligands.
The ability to simulate misalignments as described here is included in APPIAN so
that users can evaluate the accuracy of the automated QC for other radioligands
than the ones tested here.

Studies of automated PET coregistration have reported misalignment with real
and simulated PET that is within the range of what we have classified as small to
moderate error levels. A study with simulated FDG PET has shown misregistration
errors of between 1-8mm, depending on the coregistration algorithm being used [183].
Another study of FDG PET to MRI coregistration found an average of 2-4mm and

0-7° misalignment errors [148]. Other studies have demonstrated slightly smaller
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average misregistration errors of 2-3mm and with errors as high as 7.4mm [149, 184].
In their retrospective analysis of the accuracy of existing PET-MRI coregistration
algorithms, West, et al. [185] report a misregistration error range of between 2-4mm
for the 12 methods tested.

It should be noted that these studies use an older generation of 2D PET scanners
[148, 184, 185], i.e., Siemens ECAT 933 scanner, with a FWHM spatial resolution of
approximately 6.5mm [186]. Similarly, the simulated images from Anderson, et al.
[149] were generated to have a FWHM spatial resolution of 7mm. Although these
PET images have a generally lower spatial resolution than can be acquired with high-
resolution PET scanners like the CTI-Siemens ECAT HRRT [12], they have a similar
in-plane spatial resolution to the ECAT HR+ scanner [154], which is still actively
used for PET imaging. The results of coregistration studies from earlier generations
of PET scanners are therefore still relevant for understanding misregistration errors

in the context of more modern PET scanners.

Comparison of GRAD to existing QC methods

Training a classifier on a data set of manually quality controlled images is likely
an excellent approach to performing QC on MRI, but it is less applicable in the case
of PET. Not only do PET images vary across sites, but PET image statistics are
highly dependent on several other factors, such as radioligand, the specific activity of
the injected radioligand, injected radioligand dose, scanner, reconstruction method,
patient genotype, and patient population. Esteban, et al. [167] note that the site of

image acquisition presents an important challenge in training their classifier. Given
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the greater potential for variability in PET image statistics versus MR images, an
approach to automated QC like that of MRIQC is all the more difficult to apply to
PET.

Automated QC based on the spread of QC metrics as implemented by GRAD
suffers from two potential limitations. First, GRAD would be unable to detect images
that failed a given processing stage if all the images for that stage had performed
poorly. For example, the MI value of a misaligned PET image from one subject
does not appear anomalous if those of all the subjects were also misaligned and had
correspondingly low MI values. However, such a systematic error is more likely to
be detected by the user than a small subset of failed images and is thus less of a
concern.!

Groupwise QC also requires a sufficient sample size to have a representative
spread of the QC metrics. However, GRAD was designed specifically to process large
datasets where visual QC is highly demanding and where it is therefore plausible to
assume a suitably large data set. Here the smallest data set, that of RCL PET

images, had only 27 images. GRAD, therefore, can perform well for data sets that

fall within the range of sample sizes that are regularly acquired in PET studies.

1 An additional limitation that should be noted is that the effect of post-
reconstruction motion correction and filtering may have a larger impact on the out-
come measures of a study than misregistration [187]. GRAD could be extended to
use for detecting errors in post-reconstruction motion correction by, for example,
averaging similarity metrics calculated between time frames in the PET image.
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It is important to stress that automated QC cannot yet replace diligent visual
QC. Visual QC is the primary method for verifying the accuracy of novel PET-MRI
coregistration algorithms on images that have been acquired in vivo [148-152]. Thus,
visual QC remains the gold standard method for confirming coregistration accuracy
and cannot yet be easily replaced. Visual QC in all imaging domains is, however,
subject to intra- and inter-observer variability, and it is therefore useful for the user to
be directed to potentially problematic images that should be treated with particular
attention. Automated QC is therefore intended as a complement to visual QC and
not yet as replacement. To this end, we have implemented a simple dashboard GUT in
APPIAN that allows users to navigate through co-registered images as 3D volumes.
In addition, the QC metric is also represented graphically so that the user can easily
see how the QC metric of a particular image compares to the overall distribution of

that image.

Limitations

This work to validate GRAD was focused only on misregistration between the
PET and MR image as error source for each of the processing stages. Misregistration
was chosen because it is a common source of error in PET processing that can easily
be parametrized in terms of rotation and translation. Indeed, perfect registration
is often cited as an important underlying assumption for PVC [41, 188]. Moreover,
misregistration is a source of error that can be applied universally regardless of the

type of PET image or the type of algorithm that is being used to analyze the image.
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The error induced by misregistration is similar to what would be expected from
other common other sources of error like erroneous segmentation or patient head
movement because misregistration, like erroneous segmentation and patient head
movement, results in the mixing of radioactivity concentrations from different regions
into a distinct ROI. Contamination of ROI is important because most PVC methods
use ROI to define regions of uniform, or at least similar, radioactivity concentrations
and many quantification methods use an ROI to define a reference region with no
specific binding of the radioligand. Misregistration thus results in contamination of
these ROI with radioactivity concentrations from neighbouring regions and hence
reflects to some degree the errors that would be expected from these other sources.

While alternate sources of erroneous processing may provide useful ways of eval-
uating the performance of GRAD for the PVC and quantification stages, it is difficult
to identify error sources that are common and would provide generalizable results.
Consider erroneous segmentation of the MR image. The problem with using erro-
neous segmentation is that it depends entirely on the regions being segmented, e.g.,
the entire GM versus the supplementary motor area of the GM, and which algorithm
is using the segmented image. For example, a 10% segmentation error of the entire
GM would have a modest effect on a voxel-wise PVC algorithm, but a 10% segmenta-
tion error of the thalamus would likely have a significant impact on ROI-based PVC
of sub-cortical GM areas with the GTM. Hence the results of evaluating GRAD for

detecting segmentation errors would be difficult to generalize.
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5.6.3 Conclusion

GRAD is a novel automated QC algorithm that seeks to automate the processing
of reconstructed PET images for a wide variety of experimental protocols to facilitate
robust and reproducible analysis. Our results have shown GRAD is accurate and is
capable of assisting users in detecting moderate to large errors in processing. While
the desiderata of a reliable, fully automated QC remain elusive, GRAD provides a
general framework for automated QC of image processing software pipelines. Future
work will focus on developing better QC metrics that allow for more sensitive anomaly

detection.
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6.1 Preamble

Neurotransmitter receptor mapping can be conducted at many spatial scales,
from 50 pm resolution with autoradiography to ~2-3 mm with PET. While the work
in Chapter 3 was an investigation into using novel image processing methods to
optimize the spatial information that can be obtained from PET neurotransmitter
receptor mapping studies, the work in this chapter attempts to go in the opposite
direction. The limitation of using real images to study PET resolution is that it is
impossible to know the true source radioactivity distribution corresponding to that
measured in the image. Simulation and phantom studies are two common methods
for evaluating PET resolution, but the source radioactivity distributions used in these
approaches are too simplistic.

Autoradiography typically provides a high resolution 2D map of neurotransmit-
ter receptor distribution that can in principle be used to define a source radioactivity
distribution and perform realistic PET simulation. This has not been done in part
because of the expense and technical difficulty involved in acquiring autoradiographs
across the entire human brain. There are also technical challenges that must be
overcome before autoradiography can be used to define a source radioactivity con-
centration for PET simulation, the first being to reconstruct the 2D autoradiographs
into a 3D volume. To this end we developed a pipeline to perform 3D reconstruction
and used it to produce a 3D high resolution atlas of GABAAR.,.. receptor distribu-
tion in the brain. This in and of itself is an important novel contribution because it

is the first ever such 3D autoradiography atlas for the whole human brain.
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Monte-Carlo PET simulation was then performed using the 3D volume of GABAAgey,..

as a source radioactivity distribution. The accuracy of PET imaging for high-

resolution receptor mapping was evaluated by comparing the simulated PET images

to the source volume. It is important to note that the particular neurotransmitter

receptor used to create a simulated PET image, GABAAR.,.., and the PET scanner

that was modelled, i.e., CTI-Siemens ECAT HRRT, are both the same as were used

for in vivo PET in Chapter 3. We hope therefore to provide complementary insights

into receptor mapping from the perspective of real in vivo PET and from simulation

based on autoradiography.

6.2 Abstract

Neurotransmitter receptor mapping is typically conducted either at high reso-

lution (50 pm) in 2D with autoradiography or at lower resolution (in the order of

millimeters) with positron emission tomography (PET). While PET is less expensive

than autoradiography, it is not clear what is the maximum spatial resolution at which

PET can accurately measure receptor densities. To address this problem we have

developed a pipeline that can reconstruct a 3D volume from 2D autoradiographs

for 20 different neurotransmitter binding site densities obtained from a serially sec-

tioned post-mortem human brain. A validation study using synthetic data was used

to evaluate the interpolation error for estimating missing autoradiographs in the re-

construction pipeline and showed that the error level was generally between 0-6%.

The reconstructed volume was then used to define a source radioactivity distribu-

tion for Monte-Carlo PET simulation using the Geant4 Application for Emission
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Tomography (GATE). A simulated PET image for the radioligand [18-F]-flumazenil
was produced based on the actual distribution of the GABAARg,,.. receptor distri-
bution from the donor brain. The reconstruction of the receptor density volume for
GABAAR.,.. receptor was visually compared to the donor’s MRI. The simulated
PET image showed that under ideal conditions, PET was able to measure radioac-
tivity concentrations related to laminar receptor densities in the cortical GM and had
an average local correlation of 0.71 over the GM. We also found that partial-volume
effects (PVE) were highly dependent on cortical morphology, with greater PVE and
decreased correlation (~0.5-0.65) on abutting sulcal walls. The results suggest that
PET can potentially be used to perform neurotransmitter mapping at near lami-
nar spatial resolution. The reconstruction pipeline in conjunction with Monte-Carlo
PET simulation allows for the creation of a database of high resolution neurotrans-
mitter receptor atlases and corresponding simulated PET images, which can serve as
reference standard for the validation of PET algorithms and help the design of next

generation PET cameras.

6.3 Introduction

Three dimensional digital brain atlases are important both for (i) neuroscience,
e.g., characterizing the heterogeneity of brain anatomy or function within a given
population, and (ii) the analysis of brain images, e.g., as a prior for brain image
registration or segmentation [189]. As of yet, high resolution atlases of human neuro-

transmitter receptors have not been available. The lack of neurotransmitter receptor
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atlases is particularly unfortunate given that neurotransmitters and their correspond-
ing receptors underpin all synaptic transmission and hence all information processing
in the brain.

While atlases based on in vivo neurotransmitter receptor imaging using PET
have recently been created [10], PET suffers from relatively poor spatial resolution
when compared to the spatial distribution of neurotransmitter receptors. Despite
its limitations, at present PET offers the only realistic approach to creating atlases
of neurotransmitter receptor density for a wide range of populations with a sample
size sufficient to capture the variability within these populations. While many stud-
ies have been performed to evaluate PET resolution, these typically use geometric
or simple anatomic phantoms [12, 39, 190]. Given that the receptor distributions
measured with PET are more complex than those modeled in phantom scans, it is
not clear how accurately and at what scale PET can quantify receptor densities in
practice.

We have developed a method for creating a 3D 50 pm neurotransmitter receptor
atlas from autoradiographs measuring 20 different neurotransmitter receptor binding
sites. We furthermore show how this reconstructed atlas can be used to derive highly
realistic simulated PET images. These simulated PET images can then be used to
assess the spatial resolution obtainable with PET versus the true source radioactivity

distribution.
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6.3.1 3D reconstruction from 2D post-mortem brain sections

Autoradiography is limited by sectioning artefacts which result in a biased rep-
resentation of the complex cortical topology of the brain. Correcting these artefacts
represents a major challenge to accurately recovering the 3D representation of the
true receptor distribution in the brain.

Many approaches have been devised for reconstructing histological or autoradio-
graphic sections into 3D. Thorough literature reviews have already been written by
Dubois [191] and Pichat et al [192]. We therefore only briefly describe previous tech-
niques for 3D reconstruction of histological and autoradiographic data to contrast
how these relate to the autoradiographic data described in our work. While many 3D
reconstruction algorithms have been proposed, none of these methods are adapted
for reconstruction of the autoradiography data obtained with multiple radioligands
in the same brain [28]. This data poses specific challenges such as the relatively
sparse sampling rate, large non-linear artefacts, and the cutting of the brains into
non-orthogonal slabs, which have not been addressed by existing autoradiography
reconstruction methods.

To accurately reconstruct 2D sections into 3D, there are two major types of cor-

rections that must be applied to the 2D sections, which, according to the terminology

of Dauguet [193], are called "primary" and "secondary" artefacts. Primary artefacts
are global errors that apply to the overall 3D shape of the object being reconstructed

and secondary artefacts pertaining to individual 2D sections.
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Perhaps counter-intuitively, secondary artefacts must be understood and dealt
with first. Secondary artefacts apply to individual 2D sections such as tearing,
shearing, stretching, etc.

Primary artefacts affect the overall 3D shape of the object being reconstructed
and precede secondary artefacts in that they affect the brain before being sectioned.
Primary artefacts include global deformations of the brain or challenges involved
in recovering the 3D shape of the brain. One particularly important instance of
a primary artefact is termed the "banana effect". This refers to the fact that if a
sectioned banana was reconstructed by only aligning the sections to one another, the
reconstructed banana would be straight and would have lost its natural curvature.
There is not enough information in the 2D sections to correct for the banana effect.
Additional imaging that captures the overall shape of the object prior to sectioning
is required.

Three dimensional reconstruction techniques can be categorized along several
criteria, including: the level of manual intervention required, the imaging modality,
and the artefacts that were corrected by the reconstruction method. While the
first reconstruction methods were either entirely manual or semi-automated, more
recent algorithms have attempted to provide fully automated approaches [191, 192].
Reconstruction techniques can also be categorized based on the imaging modality,
e.g., histology or autoradiography, along with the complementary imaging modalities
that were used to provide additional information about the shape of the brain, e.g.,

MRI or blockface imaging.
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Semi-automated methods included the placement of fiducial markers in the brain
prior to sectioning so that the sections have easily identifiable physical landmarks
[194-196]. An alternative approach that did not require physical manipulation of
the brains was to manually identify anatomical landmarks on adjacent sections [197,
198].

The earlier automated reconstruction techniques focused on correcting for sec-
ondary artefacts. Automated reconstruction can be performed with only the 2D sec-
tions themselves using principal-axes transforms[199], intensity or frequency-based
cross-correlation [200, 201], sum of squared error [202], discrepancy matching optical
flow [203], edge-based point matching [204]. The main drawback of these methods
was that misalignment errors were propagated to all subsequently coregistered sec-
tions. Methods have been developed to help address this problem and produce more
robust alignments [205-208].

Additional imaging of the brain is required to correct for primary artefacts. A
common approach is to use blockface imaging as an intermediate step, where the
2D sections are aligned to the blockface image and then the latter is aligned to the
MRI [209-211]. If no blockface imaging has been acquired, an alternative approach
is to perform an initial section-to-section reconstruction followed by alignment of
this first reconstruction to the donor’s MRI in 3D, and then refine the alignment of
the reconstructed volume to the MRI using 2D alignments of the sections [212, 213].
A recent and particularly innovative approach to 2D alignment of histological and

corresponding MRI sections involved using Bayesian methods to simultaneously align
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the histological section and the MRI section while transforming the pixel intensities
of the former to resemble the latter [214].

Despite the existence of many reconstruction algorithms, these tend to be par-
ticular to the data sets they were designed for and hence cannot be straightforwardly

be applied to reconstructing the dataset used in this study.

6.3.2 Challenges
The 3D autoradiograph data set from Zilles et al [28] combines many of the

aforementioned challenges as well as several unique ones, which are elaborated below.

Non-orthogonal slabs

The brains were cut coronally into slabs prior to freezing and sectioning. How-
ever, the cuts were not parallel to one another, hence producing slabs that were not
sectioned along an orthogonal plane (see Fig.6-2 for schematic illustration). This
means that each slab has a different plane of sectioning and as such the coronal
axis for each slab was oriented at a slightly different angle. Resampling the autora-
diographs to a common coordinate grid would require resampling and interpolating
the autoradiographs onto this common space. Because the autoradiographs are not
densely sampled, i.e., there are significant gaps between acquired sections, inter-
polating these onto a new coordinate grid risks introducing interpolation errors by
averaging between autoradiographs and empty regions where no section was acquired.
The 3D reconstruction pipeline must therefore be applied separately for each slab.

Additionally, there are gaps between the slabs therefore even if the slabs were put
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Figure 6-1: Example autoradiograph from each of the 20 neurotransmitter receptor
binding sites illustrating the substantial heterogeneity in image intensities between
the autoradiographs.
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into a common space, it is not clear how far apart and at which angle the slabs
should be positioned relative to one another.
Finally, the ends of the slabs frequently do not contain a full coronal section of

brain tissue, thus making alignment of these incomplete sections difficult.

3D non-linear warping

Significant non-linear warping resulted from the brains not being fixed prior to
removal from the cranial cavity. These non-linear deformities included compression
and expansion both in and out of plane of sectioning. Warping could also result
from collapse of the ventricles. These warping artefacts cannot be corrected without
use of external reference. While this is common to autoradiography, what makes
it particularly challenging in this case is that the entire human brain was being
sectioned. Because the human brain is a relatively large organ, it is difficult to
freeze uniformly and nearly instantaneously. To avoid freezing artefacts, the brain
was cut into slabs of tissue along the coronal axis. However this introduces non-
linear warping artefacts to each individual slab—a problem that is not commonly

encountered in other data sets—and which further complicates the reconstruction.

Missing sections within slabs

Ideally, sections for a particular type of neurotransmitter would be acquired in
equidistant sections every 400pum. However mechanical processing errors or the use
of some slices for other histological staining result in significant gaps between some

of the acquired autoradiographs.
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Figure 6-2: The donor brain was cut into slabs prior to freezing. The red lines
show how cuts made at different angles create slabs of tissue that are then sectioned
along different planes (shown in green). Note that this schema is only for illustrative
purposes and does not represent the actual cuts that were made on the donor brain.
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Variability in neurotransmitter receptor intensity

One of the most important obstacles for 3D reconstruction of the present data
was the degree of variability in the distributions of neurotransmitter receptors. This
is illustrated in Fig.6-1 where the autoradiographs represent very different receptor
distributions and overall image contrast. In order to make a fully-automated pipeline,
each step of the pipeline should perform equally well for the various ligands and
hence must perform robustly given the diversity of intensity distributions in the

autoradiographs.

Variability in autoradiograph acquisition protocol

After sectioning, brain sections were placed onto the same photographic film
such that the raw autoradiographs contain multiple tissue slices that were incubated
with the same ligand. This requires an automated processing step to identify the
target piece of brain tissue from each autoradiograph and remove extraneous pieces
of brain tissue from the image.

In addition, non-tissue objects, such as frames, arrows, and fiducial triangles,
were placed on the autoradiographs prior to digitization. These also need to be
removed so that they do not interfere with the reconstruction process. These arte-
facts are particularly challenging because they greatly impact the autoradiograph’s

histogram of pixel intensities.
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6.3.3 Reconstruction pipeline overview

Previous methods have typically focused on reconstructing up to 3 different types
of 2D images. Those methods that have attempted to reconstruct multiple types of
sections into 3D have benefitted from blockface images. For example, Schubert,
et al 2016 reconstructed polarized light images, histology, and autoradiographs of
M2 muscarinic neurotransmitter receptor distribution in rat brains using blockface
imaging [211]. To address the unique challenges presented by the data acquired by
Zilles et al [28], we have developed a fully automated pipeline that systematically

accounts for each of these issues to successfully perform reconstruction.

6.4 Methods

6.4.1 Data Acquisition

Although 3 brains were acquired at autopsy from donors (45-77 years), only one
single (male) brain was used in the present study. The brain was acquired 8-13 h
post-mortem without chemical fixation. A T1w MRI was acquired from the donor
after they were declared deceased by the attending physician. The MRI was acquired
on a Siemens Magnetom Sonata scanner with an MPRAGE acquisition protocol (2.2s
TR, 1.2s TE, 15° flip angle).

The brains were then cut into slabs of tissue of approximately 2-3 cm to facilitate
the even freezing of the brain tissue. Each slab was shock frozen between -40 and

-50 C in N-methylbutane.

157



Slabs were sectioned at -20C into 20 pm thick sections of brain tissue with a
cryostat microtome and placed on a gelatin-coated glass slide. Sections were freeze-
dried overnight prior to incubation. Sections were first preincubated for rehydration
and to eliminate any endogenous substances that may bind to the target receptor.
Brain sections were then incubated in one of two ways for between 40-60min. For
sections imaged for specific binding of the ligand to the target receptor, sections were
incubated in a solution containing the titrated radiolabeled ligand. Alternatively, a
subset of sections were imaged for non-specific binding by incubating the sections
in a solution containing the radioligand as well as an unlabeled displacer that binds
to 1 of 20 neurotransmitter receptors. The measured neurotransmitter receptors
covered some of the most common neurotransmitter systems : glutamate, GABA,
acetylcholine, dopamine, serotonin, noradrenaline, and adenosine (see Table.6-1 for
detailed list). Sections were incubated sequentially with a specific radioligand such
that there were at least 19 sections of brain tissue between any two sections incu-
bated with the same radioligand. Lastly, the sections were rinsed to remove excess
radioligand and stop additional binding. No blockface images were acquired.

Plastic titrated standards (Microscales®, Amersham) with known radioactivity
concentrations were also placed on the sheets alongside the brain sections and were
co-exposed along with them. These standards allow pixel intensities to be converted
to actual radioactivity concentrations.

Incubated sections were exposed to a [ sensitive film (Hyperfilm, Amersham,
Braunschweig, Germany). The autoradiographs were digitized with a CCD-camera

on the Axiovision (Zeiss, Germany) imaging and processing system.
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Table 6-1: List of the 20 radioligands and associated neurotransmitter receptors. The
autoradiographs were categorized into tiers based on the visual contrast of the images.
The tiers were used in the initial section-to-section alignment so that autoradiographs
were only aligned to images in the same tier or lower.

Radioligand Receptor Transmitter | Contrast Tier
AMPA AMPA Glutamate 2
Kainate Kainate Glutamate 2
MK-801 NMDA Glutamate 2

LY 341,495 mGluR2/3 Glutamate 2

Muscimol GABAA (agonist) GABA 1
SR95531 GABAA (antagonist) GABA 1

CGP 54626 GABAB GABA 1

Flumazenil GABAABenzodiazepine GABA 1

Pirenzepine Muscarinic M; Acetylcholine 1

Oxotremorine-M Muscarinic Ms (agonist) | Acetylcholine 3

AF-DX384 Muscarinic M, (antagonist) | Acetylcholine 1

4-DAMP Muscarinic M3 Acetylcholine 2

Epibatidine Nicotinic ay /39 Acetylcholine 4
Prazosin o Noradrenalin 1

UK-14,304 as (agonist) Noradrenalin 2

RX 821002 oy (antagonist) Noradrenalin 2

8-OH-DPAT 5—HTi4 Serotonin 2

Ketanserin 5— HT; Serotonin 1

SCH 23390 D, Dopamine 2

DPCPX+Gpp(NH) Adenosine 1 Adenosine 1
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Radioactivity concentrations were calculated using standards. The pixel inten-
sities of these standards were plotted against their respective radioactivity concen-
trations and a calibration curve was fit to these points. Radioactivity concentrations
of pixel intensities were interpolated from the calibration curve.

Finally, binding densities, C}, (fmol/mg protein), were calculated by multiplying

the radioactivity concentrations with a scaling factor according to :

R Kp+ L

“=ZBws X L

(6.1)

where R is the measured radioactivity concentration interpolated from the cali-
bration curve, E is the efficiency of the scintillation detector, B is a constant for the
amount of radioactivity decays per unit time (Ci/min), W} is the protein weight of a
standard (mg), and S, is the specific activity of the ligand (Ci/mmol), Kp is the dis-
sociation constant (nM) and L is the free concentration of ligand during incubation

(nM).

6.4.2 Pipeline Overview

The details of the pipeline are explained in the following sections, but it is
useful to first give a broad overview. The overall framework used by the pipeline
was to calculate a series of transformations that would transform each of the 2D
autoradiographs to the correct position on the donor’s MRI (see Fig.6-3). The
purpose of this approach was to minimize the number of manipulations applied to
the raw autoradiographs. Thus while many manipulations were performed on the

autoradiographs at the various stages of the pipeline, the final reconstructed volume
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was produced by applying only two transformations to the autoradiographs: (i) a
composite 2D transformation applied to individual autoradiographs, and (ii) a non-
linear 3D transformation applied to autoradiograph volumes.

As a proof-of-principle for the efficacy of our reconstruction pipeline, a single
volume of GABAAR.,.. receptors was reconstructed for the right hemisphere of 1 of
the 3 donor brains.

Stages of autoradiograph reconstruction

Enumerated stages 1-7 correspond to S;_7 in Fig.6-3.

Stage 1: Automated cropping to isolate target brain tissue
o Automated cropping of the autoradiographs used to isolate the target piece of
brain tissue from the raw image.
Stage 2: 2D rigid inter-autoradiograph alignment
o An initial 3D autoradiograph volume was reconstructed by aligning autoradio-
graphs to one another.
Stage: 3: Binary GM volume for autoradiograph volumes and MRI
o GM masks were extracted for the MRI (S34) and autoradiograph volumes
(S3B).
o This was done to facilitate subsequent alignments.
Stage 4: 3D alignment of autoradiograph volumes to MRI
e 3D linear alignment of autoradiograph GM volumes to find corresponding re-

gions in MRI GM volume (Sy1).
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e 3D non-linear alignment of the MRI volume to each of the autoradiograph GM
volumes (Sy2).
o Creates a transformed versions of the MRI in coordinate space of the autora-
diograph slabs.
Stage 5: 2D refinement of autoradiograph alignment to MRI
o 2D alignment of coronal sections in autoradiograph GM volume to correspond-
ing coronal sections in MRI GM volumes.
o Refines the alignment between the autoradiographs and the MRI volume by
correcting deformations in coronal axis.
Stage 6: Interpolation of missing autoradiographs
o MRI sections corresponding to autoradiograph sections were aligned to MRI
sections where autoradiographs are missing (Sg.1).
e 3D receptor volume was produced for a given receptor using a distance-weighted
interpolation scheme (S4.2).
Stage 7: Transformation of receptor volumes to MRI coordinate space
o Slabs are transformed to donor’s MRI in MNI coordinate space by inverting

transform 73 from Sy 5.

6.4.3 Stage 1: Automated cropping to isolate target brain tissue

The raw autoradiographs contained 3 components: the target section of brain
tissue, extraneous pieces of brain tissue, and non-tissue objects (see Fig.6-4). The
first step was to remove the extraneous pieces of brain tissue and non-tissue objects

in the autoradiographs. To increase the computational speed of subsequent image
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Figure 6-4: Example of autoradiographs with multiple pieces of tissue and non-tissue
objects: frames (A), fiducial triangles (B), and arrows (C)

processing, the autoradiographs were downsampled from 20x20um to a resolution to
200x200pm.

The non-tissue objects were removed using a deep convolutional neural network
based on the U-Net architecture [215]. Training data were created by manually
thresholding a subset of the raw autoradiographs to isolate the frames, arrows, and
triangular shapes, and then manually removing any thresholded pixels that were
not part of the non-tissue objects. A simplified U-Net was then trained on these
data using a binary cross-entropy and the architecture shown in Fig.6-5. Given
the relatively small amount of training data, a simplified U-Net architecture was
chosen instead of the full U-Net architecture. This was done to limit the number of
parameters used by the network. The non-tissue objects were removed by replacing
intensities within the objects with random intensity values sampled from the pixels
within 3 pixels of the border of the non-tissue objects.

After removing the non-tissue objects from the autoradiographs, further process-

ing was used to remove the extraneous pieces of tissue (see Fig.6-6 for illustrative
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Figure 6-5: A simplified U-Net architecture was designed to identify non-tissue ob-
jects (i.e., frames, arrows, and triangles in the autoradiographs).
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example of automated cropping). A multi-resolution approach to separating the fore-
ground from background was implemented to limit the impact of background noise
while attempting to preserve high-frequency spatial features. The autoradiographs
were smoothed with gaussian filters at 0, 2, and 4 standard deviations and each one
of the smoothed autoradiographs were thresholded into binary images with Otsu his-
togram thresholding [216]. The 3 thresholded images were then averaged (yielding
an image between 0 and 1) and thresholded at 0.5 to create a binary image where
pixels of 1 represented brain tissue and 0 represented background.

Foreground pixels were segmented into discrete connected regions and pixels
in each tissue region were assigned a unique integer value for each region. Tissue
regions that overlapped with either the border of the autoradiograph or with the
non-tissue objects identified by the U-Net were discarded. This removed most of the
extraneous pieces of tissue in the autoradiographs, but there were sometimes small
islands of regions identified as tissue that needed to be removed. These could include
both background pixels erroneously identified as tissue regions or small regions of
detached extraneous tissue. To remove remaining extraneous tissue regions, the
number of pixels in each tissue region was calculated and any region that was less
than 5% of the size of the largest tissue region was removed. Finally, 3 series of
morphological erosions followed by 3 morphological dilations was used to denoise the

images.
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Initial Image Line Detection Lines Removed

Target Tissue Mask Cropped Image

Figure 6-6: Autoradiographs were preprocessed before they could be reconstructed.
A deep learning network was trained to identify frames in the autoradiographs and
remove them. Computer vision techniques were then used to remove pieces of brain
tissue other than the target brain tissue in the image.
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Table 6-2: ANTs parameters used to align the autoradiographs to one another.

Transform | Iterations | Smoothing | Downsample Factor Metric
Rigid 2100 3 6 Mattes MI
Rigid 1200 2 4 Mattes MI
Rigid 1200 1 2 Mattes MI
Rigid 10 0 1 Mattes MI

6.4.4 Stage 2: 2D rigid inter-autoradiograph alignment

The initial step of 3D reconstruction consisted in aligning the cropped autora-
diographs to one another using 2D rigid body transformations (see Table.6-2 for
parameters). As is seen in Fig.6-1, certain ligands produced autoradiographs with
much greater image contrast than others. To limit the impact of autoradiographs
with low contrast, the autoradiographs were also categorized into tiers based on
visual evaluation of their image contrast (see Table.6-1). Autoradiographs with lig-
ands in lower tiers were considered to have better image contrast. Each section was
aligned to its nearest neighbour in the same tier or lower. This means that sections
were only aligned to an image with a similar or better image contrast. To limit the
possibility of systematic misalignments between adjacent sections, the entire align-
ment procedure was applied iteratively. The initial alignment was performed on the
cropped autoradiographs that had been downsampled to 200 x 200 pm.

Due to the gap between the slabs and the different planes of sectioning for each
slab, 2D autoradiograph alignment was only performed within each slab. The sec-
tions were aligned to the central section of the slab to limit the impact of incomplete

sections at the ends of slabs.
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Figure 6-7: An initial reconstructed autoradiograph volume was produced by align-
ing autoradiographs to its adjacent neighbour. The central autoradiograph (N/2)
of each section was used as the reference to which the others were aligned. The
alignment process was repeated iteratively to avoid misalignments.

Once the autoradiographs were aligned to one another, they were reconstructed
into an initial 3D autoradiograph volume for each slab, respectively. Therefore 6
initial autoradiograph volumes were produced, one for each slab. Each reconstructed
autoradiograph volume had a resolution of 200x20x200 pum because the downsampled
autoradiographs have a voxel spacing of 200x200um and each section was 20 pym thick

along the coronal axis. The 2D rigid transforms produced for each autoradiograph

in a slab correspond to transform 7 in Fig.6-3.

6.4.5 Stage 3: Binary GM volume for autoradiograph volumes and MRI

Aligning the autoradiograph volumes to the MRI volume directly was very chal-
lenging given the relatively sparse sampling of the autoradiographs and their het-
erogeneous intensity values. Instead, the alignment was performed between binary

GM volumes derived from the initial autoradiograph volumes and the MRI volume.
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The problem of multi-modal alignment is then simplified to mono-modal alignment

between GM masks.

Extracting GM mask from MRI volume (S5 4)

A binary MRI GM volume was extracted from the donor’s MRI using a mesh rep-
resentation of the cortical surface (Fig.6-8). Cortical surface meshes were obtained
from the MRI using the CIVET pipeline [217]. A super-resolution cortical GM mask
at 250 um was obtained from these cortical surface meshes by sampling points be-
tween the inner white-matter and outer GM surface meshes[121]. A segmentation
of the donor’s subcortical GM was then generated using ANIMAL [218], upsampled
to 250pum using nearest neighbour interpolation, and added to the super-resolution

cortical GM.

Extracting GM mask from autoradiograph volume (53 p)

A GM binary volume was generated for the initial autoradiograph volumes for
each slab using a 3-class K-means [219] clustering to segment each 2D autoradiograph
into background, white matter, and GM (Fig.6-9). The 3 classes for the K-means
algorithms were initialized with the image maximum, the mean of non-zero voxels,
and the minimum voxel value. The autoradiograph GM volume was downsampled
from a voxel size of 200x20x200um to 250um isotropic resolution with an order 5

spline interpolation. This was done to facilitate alignment with the MRI GM volume.
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Figure 6-8: Cortical surfaces were extracted from the donor’s MRI and used to derive
a 250 pm MRI GM volume. The ANIMAL algorithm was used to create a binary
GM volume for subcortical GM regions.
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Figure 6-9: The autoradiograph slab volume was segmented to identify GM regions
using the K-means algorithm. The segmentation facilitates the alignment to the MRI
GM volume.
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Table 6-3: ANTs parameters used to align the autoradiograph GM slab volume to
the MRI GM volume.

Transform | Iterations | Smoothing | Downsample Factor Metric
Rigid 1500 1 2 Global CC
Rigid 1000 0 1 Global CC
Affine 1500 1 2 Global CC
Affine 1500 0 1 Global CC

6.4.6 Stage 4: 3D alignment of autoradiograph volumes to MRI
Coregistration of the autoradiograph volume to the donor’s postmortem MRI
was used to correct for deformations in the autoradiographs resulting from the brains

not being fixed prior to sectioning and freezing. Coregistration was performed inde-

pendently for each slab.

Finding MRI section corresponding to autoradiograph slabs (S41)

An algorithm was developed based on Yang et al [213] to find the position in the
MRI that corresponds to the receptor slab volume (Fig.6-10). Instead of a rigid, i.e.
6 parameter, transformation between volumes of histological tissue and the acquired
MRI, we used a 12 parameter affine transformation to account for some of the defor-
mations in the autoradiograph slab volumes. Prior to alignment, the autoradiograph
and MRI GM volumes were blurred with a gaussian kernel with 0.75 mm standard
deviation and downsampled to 1 mm using nearest neighbour interpolation. The
alignment was calculated between the autoradiograph GM volumes and the MRI
GM volume with ANTs [86] (see Table.6-3 for parameters).

The extra parameters of a full affine versus a rigid transformation increase the

likelihood of misalignments resulting from local minima in the similarity metric. To
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Figure 6-10: The position along the coronal axis for each autoradiograph GM slab
was chosen based on the location that had the maximum weighted cross-correlation.
This figure is for illustrative purposes and does not represent the actual alignment
of the slabs or the corresponding cross-correlation.
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limit the possibility of a misalignment we devised a pseudo-probability distribution
for the probability of autoradiograph’s position along the coronal axis of the MRI.
The width of each brain slab, i.e., its extent along the coronal axis, was calculated
based on the acquired autoradiograph sections in each slab. The expected location
of the slabs was calculated by first placing the anterior and posterior slabs at the
corresponding ends of the MRI. The position of the intermediate slabs was calculated
based on their respective widths and assuming equal spacing between them. The
pseudo-probability distribution was generated for each slab by convolving an impulse
function at the expected slab position with a gaussian function. The gaussian had a
standard deviation equal to 1.5 times the width of the slab. This pseudo-probability
distribution was largest at the position closest to the expected slab position and
dropped towards 0 further away from this position.

Starting from the most anterior position in the brain, the first slab volume
was aligned to the MRI volume using an affine transform. The cross-correlation
was calculated at the position of optimal fit and was weighted by multiplying it by
the probability of a correct alignment at this position. Hence alignments further
away from the expected position were penalized. The slab was then shifted by
Smm and the same process was repeated. To save computational time, positions
that had a probability of less than half of the maximum of the pseudo-probability
distribution were not considered. This process was repeated for each of the slabs in
the hemisphere, alternating between slabs closest to the anterior and posterior poles
of the brain. For each slab, the position with the highest weighted cross-correlation

was taken to be the correct position of that slab relative to the MRI.
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Table 6-4: ANTs parameters used to perform non-linear alignment between the
autoradiograph GM slab volume and the MRI GM volume.

Transform | Iterations | Smoothing | Downsample Factor Metric
SyN 1500 8 4 Global CC
SyN 1000 4 2 Global CC
SyN 500 2 1 Global CC

The 3D linear transformation for aligning the autoradiograph GM volumes for

each slab to the donor’s MRI correspond to transform 75 in Fig.6-3.

3D warping of MRI to autoradiograph volumes (Sy42)

The inverse affine transformation from the autoradiograph GM volume to the
MRI GM volume (this would correspond to the inverse of T in Fig.6-3, i.e., T, "
) was used to initialize a further non-linear alignments of the MRI GM volume to
the autoradiograph GM volumes for each slab (see Table.6—4 for parameters). The
alignment thus produced an MRI GM mask aligned to the autoradiograph GM mask
for each slab. This yielded a 3D non-linear transform that correpsonds to 73 in
Fig.6-3.

Although the MRI GM volume was transformed to the coordinate space for
each autoradiograph volume, it had to be resampled to the same resolution as the
autoradiograph GM volumes at 200x20x200um. This was done so that each coronal
section in the transformed MRI GM volume would be aligned to a corresponding

section in the autoradiograph GM volume.
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6.4.7 Stage 5: 2D refinement of autoradiograph alignment to MRI
Whereas the initial autoradiograph was composed of all the acquired autora-
diographs, the ultimate aim of the reconstruction pipeline was to create volumes for
each of the 20 measured neurotransmitter receptors. The first step in creating a
volume for a specific neurotransmitter receptor was to refine the alignment of the
2D autoradiograph sections to the transformed MRI GM volume. Coronal sections
of the autoradiograph GM volumes for a given receptor were non-linearly aligned
in 2D to corresponding coronal sections in the transformed MRI GM volume. The
result of this processing stage was therefore to find transformations, for each slab,
that mapped the autoradiographs for a single receptor to the donor’s MRI in autora-
diograph space. These transforms correspond to 7} in Fig.6-3. ANTs was used to

calculate these transformations [86] with the parameters listed in Table.6-5.

6.4.8 Stage 6: Interpolation of missing autoradiographs

2D alignment of MRI sections to estimate morphology of missing
autoradiograph (Sg.1)

Autoradiographs for a specific neurotransmitter receptor were acquired with a
minimum gap of 400um between acquired slices. This means that ligand binding
densities had to be estimated for positions between autoradiographs acquired for a
particular receptor type. Estimates of missing autoradiographs were generated based
on the neighbouring autoradiographs in the posterior and anterior direction along
the coronal axis. By missing autoradiographs, we mean not only sections where no
autoradiograph was acquired at all, but also autoradiographs that were not acquired

for the particular receptor being reconstructed into a 3D volume.
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While the receptor distribution of the missing autoradiograph is unknown, its
morphology is characterized—if at a coarser spatial resolution-by the MRI. The neigh-
bouring autoradiographs were used to estimate missing autoradiographs by warping
them so that their morphology would resemble that of MRI at the coronal position
of the missing section. This was done using the composition of two transformations
(see Fig.6-11). The first transformation was described in the previous section, Ss,
and is the mapping of a coronal section from the the autoradiograph GM volume
to the corresponding MRI section, i.e., T in Fig.6-3. The second transformation
was obtained by using a 2D non-linear transformation from sections in the MRI GM
volume corresponding to the acquired autoradiographs to adjacent sections in the
MRI GM volume where the autoradiograph was missing (transformation parameters

listed in Table.6-5). This second transformation corresponds to 75 in Fig.6-3.

Distance-weighted interpolation of missing autoradiograph (Ss2)

Once the anterior and posterior autoradiographs were warped to the coronal
section in the MRI GM volume corresponding to the missing section, these two im-
ages could be averaged to arrive at an estimate of the missing autoradiograph. The
averaging was done so that missing sections closer to the anterior or posterior autora-
diograph would be more heavily weighted towards the receptor distribution repre-
sented in that autoradiograph. A linear distance-weighted interpolation method was
used to estimate missing autoradiographs based on neighbouring autoradiographs

(see Fig.6-11 for details).
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A reconstructed receptor volume could therefore be generated by applying a
series of 2D transformations to the cropped autoradiographs and using distance-
weighted interpolation for those sections for which no autoradiographs were acquired
for a given receptor. For coronal sections in the reconstructed receptor volume where
an autoradiograph was acquired, the cropped autoradiographs were transformed us-
ing the composite transform of Ty x T7. In effect this meant applying the initial 2D
rigid transform that brought the autoradiograph into initial alignment, 77, and the
2D non-linear transformation to align it to the MRI volume in autoradiograph space,
Ty.

For coronal sections where autoradiographs for a given receptor type were not ac-
quired, the neighbouring autoradiographs were transformed by the composite trans-
form of T5 x T, x T;. The additional transform, T3, served to transform the cropped
autoradiograph so that it would match the morphology of the MRI at a section where
no autoradiograph for the given receptor was acquired. Distance-weighted interpo-
lation was then used to average neigbouring autoradiographs in the posterior and
anterior direction.

Receptor volumes in autoradiograph space could therefore be created by apply-
ing composite transformations directly to the cropped autoradiographs, thus limiting

the amount of manipulations applied to the images.

6.4.9 Stage 7: Transformation of receptor volumes to MRI coordinate
space

The pipeline for 3D reconstruction operates on the basis of individual slabs. The

last step of the pipeline was to combine the receptor volumes for each slab into a
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Figure 6-11: Green bars Ly and L4 represent autoradiographs at positions 0 and
4. Grey bars represent coronally sliced GM mask at positions 0-4. Autoradiographs
were non-linearly aligned to the corresponding MRI sections. The MRI sections at
positions with corresponding autoradiographs were then non-linearly aligned in 2D to
the positions with no autoradiographs. These two transformations were concatenated
to directly transform the autoradiograph to a new position. The estimated autora-
diograph at position 1 was thus calculated by applying transform 77 gan to Lo and
applying transformation 774 gan to Ly. The two transformed autoradiographs from

the anterior and posterior direction were averaged using linear, distance-weighted
interpolation.
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Table 6-5: ANTs parameters used to perform a) non-linear alignment between the
autoradiograph GM slab volume and the MRI GM volume and b) non-linear align-
ment between MRI GM sections.

Transform | Iterations | Smoothing | Downsample Factor Metric
SyN 2100 3 6 Global CC
SyN 1200 2 4 Global CC
SyN 1200 1 2 Global CC
SyN 10 0 1 Global CC

common coordinate space. This was done by transforming the receptor volumes for
each slab to the donor’s MRI in MNT space[4]. This was accomplished by applying
the inverse of the transformation from the MRI GM mask to the autoradiograph
GM volume for each slab, respectively (this corresponds to the inverse of T3 Fig.6—
3). All slabs were therefore mapped onto the donor MRI and were summed together
to create a single volume for a given neurotransmitter receptor type.

The autoradiograph volume was downsampled to 500 yum and then was trans-
formed into the MNI coordinate space [4] by inverting the 3D transformation of the
donor’s MRI GM volume to the autoradiograph GM volume. The image was down-
sampled before transformation because the amount of RAM required to transform
the receptor volumes was in excess of the resources available. Furthermore, a higher
resolution receptor volume was not needed for the subsequent analyses described

below.
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6.4.10 Experiments

Validation of distance-weighted interpolation

To validate the interpolation scheme presented here, we applied the interpolation
method to a synthetically generated receptor volume. An algorithm for calculating
equivolumetric surfaces [220] was applied to the donor’s MRI GM subdividing it into
6 layers. Values from 0 to 1 were assigned to the voxels based on the distance from
the pial surface to the white matter. In the equivolumetric GM layer volume, the
same sections for which GABAApg.,.. autoradiographs were acquired were used to in-
terpolate the missing GABAAge,.. sections. The interpolated values were compared
to the true values in the equivolumetric GM layer volume by dividing the former by

the latter.

Monte-Carlo PET Simulation

The first slab, covering the prefrontal cortex, of the reconstructed GABAAg.,..
autoradiograph volume was used for Monte-Carlo PET simulation with GATE [29].
The source radioactivity distribution for performing PET simulation was based on
the receptor binding densities at each voxel of the GABAARe,... The binding den-
sities in the autoradiograph volume were taken to represent radioactivity concentra-
tions in Bq. GATE, however, requires that the source radioactivity distribution be
defined with an integer valued volume, where each integer represents a region with a
uniform radioactivity concentration. These regions of homogenous radioactivity do
not need to be contiguous. To accommodate the input requirements of GATE, the

autoradiograph volume was subdivided into 100 regions using the K-means algorithm
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[219]. The mean regional value for each of these 100 regions was calculated from the
GABAABRe,. autoradiograph volume. The input to GATE therefore consisted of
the autoradiograph volume classified into 100 discrete regions and a text file that
specifies the average radioactivity concentration (Bq) in each of these regions.

An attenuation map was generated from the donor’s MRI by using a brain
mask derived using CIVET [217] and used a skull mask produced by the FSL Brain
Extraction Tool (BET) [221].

The scanner modelled in the simulation was the CTI-Siemens ECAT HRRT [91]
and the total simulation time was 30 s.

The results of the simulation were not reconstructed according to traditional
PET reconstruction algorithms. Instead the locations of the annihilation events were
binned into a grid of 1x1x1 mm voxels. PET does not directly measure the location
of an annihilation but rather the line of response (LOR) from two photons that are
detected by the scanner within a given time window. To accurately reflect this fact in
the binning, the locations of the annihilation events were projected onto the nearest
point on their LOR. For random coincidences, where unrelated annihilation events
are detected by the scanner, the mean of the locations of the two annihilation events
was calculated and projected onto the LOR.

The simulated PET images were compared to the input radioactivity distribu-
tion by calculating the local-cross correlation between the two volumes. The window
for the local cross-correlation was 5x5x5 voxels and Kendall’s tau was used to calcu-

late the correlation [222].

183



6.5 Results

The initial reconstruction between the cropped autoradiographs showed that
the alignment algorithm was able to restore the gross anatomy of the donor’s brain
(Fig.6-12). Based on visual inspection, a major improvement in alignment could
be observed between the first and second iterations and overall four iterations were
sufficient for a satisfactory convergence. By the fourth iteration of the alignment
algorithm, sulci and gyri were clearly visible. However, some sulci appear fused
together. This also illustrates that a generic alignment algorithm like ANTs, with a
mutual information cost function, was able to perform accurate alignment between
autoradiographs of different receptors.

The algorithm to align the autoradiograph slabs to the MRI appeared to gen-
erally place the slabs at the correct locations (Fig.6-13). There were substantial
gaps between these aligned slabs, particularly between the 4th and 5th slab from the
anterior pole.

The interpolation of coronal sections where no GABAAR.,.. autoradiographs
were acquired is shown in Fig.6-14. The interpolation resulted in continuous distri-
butions of synthetic neurotransmitter receptor densities across the cortical GM.

The interpolation scheme provided accurate estimates on the equivolumetric
volume. As can be seen in Fig.6-15, the interpolated volume closely matched the
synthetic volume. This was confirmed quantitatively in the error volume in Fig.6-15
which showed similar error magnitudes across the coronal axis. The average error

in each coronal section was calculated and is shown in Fig.6-16. Error magnitudes
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Figure 6-12: At iteration 0 the autoradiographs were stacked without performing
any alignment. Gross anatomic structures can be seen after a single iteration of rigid
alignment between sections, with smaller refinements in subsequent iterations.
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Figure 6-13: GM volumes extracted from autoradiograph slabs were aligned to the
donor’s MRI GM volume using affine transformations. The alignment appeared
accurate, but required further non-linear deformation to improve the alignment.
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Figure 6-14: An interpolation scheme for estimating missing autoradiographs was
used to reconstruct a continuous 3D representation of GABAAg.,.. receptor density.
The green lines indicate the coronal sections where autoradiographs representing
GABAAR.,.. receptor density were acquired. The spaces in between the green lines
represent the estimated GABAARBey.. re?%gcor density.



were generally between 0-6%, except for one particularly large gap between acquired
sections where the error level reached 10%.

The results of the reconstruction pipeline are shown in Fig.6-17 for the first slab
and for the entire hemisphere Fig.6-18. The reconstruction resulted in a 3D image of
GABAABRe,.. binding densities in the brain that closely resembles the donor’s MRI.
While the correspondence between the reconstructed autoradiograph volume and the
MRI was generally good, the temporal lobe in Fig.6-18 showed that the alignment
was not perfect.

During the GATE simulation, a total of 10,153,400 counts were acquired during
the 30 s simulation. The simulated PET image in Fig.6-19 showed that the simulated
PET recovered some degree of the laminar neurotransmitter receptor distribution
seen in the source radioactivity distribution. There was a clear difference in the
intensity of the simulated PET image more dorsally due to non-uniformity artefacts.

The local correlation between the reconstructed autoradiograph volume and the
simulated PET image indicates that the spatial accuracy of PET was not uniform
throughout the cortex Fig.6-20. The correlation between the two images tended to
be lower (0.5-0.65) in the abutting cortex in sulcal folds and was higher towards the
edge of the cortex (0.75-0.83). Averaging the local correlation across the cortex gave

a correlation of 0.71 4 0.89.
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Ground Truth Interpolation Error

Figure 6-15: The equivolumetric GM volume has a discrete label for each layer of the
cortical GM. The middle image shows the result of interpolating the equivolumetric
GM volume using only the coronal sections for which GABAAg.,.. autoradiographs
were acquired. Note that the interpolation scheme conserves the laminar distribution
of voxel intensities across the cortical surface GM. The error volume was calculated
by dividing the interpolated by the true equivolumetric GM volume. FError levels
were consistent across the coronal axis.
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Figure 6-16: The average error in each coronal section shows that the interpolation
scheme works well when there was a small gap between acquired sections (0-6%),
but increases substantially for larger gaps. The troughs in the error level indicate
the positions where autoradiographs were acquired.

Figure 6-17: The alignment of the reconstructed GABAAge.,.. autoradiograph vol-
ume in the prefrontal cortex and the donor’s MRI showed that the reconstruction
pipeline produces volumes that accurately match the donor’s gross brain anatomy.
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Figure 6-18: Alignment of the reconstructed GABAAge,.. autoradiograph volume
shows good alignment in coronal axis, but illustrates the large gaps between some of
the autoradiograph volumes.
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Figure 6-19: The simulated PET image shows that in principle PET can recover
laminar patterns in the neurotransmitter receptor distribution. The source radioac-
tivity distribution was defined at 500um and the simulated PET image was sampled
at lmm.
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Figure 6-20: Local correlation (Kendall’s Tau) of the reconstructed autoradiograph
volume and simulated PET image show that the accuracy of PET varied based on
cortical folding and thickness.
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6.6 Discussion

We have created a fully-automated pipeline that can successfully reconstruct
3D autoradiographic volumes of ligand binding densities for 20 different neurotrans-
mitter receptors and demonstrated its application for the GABAARg.,.. receptor.
We then used this reconstructed autoradiograph volume to perform realistic PET
simulation. To recapitulate briefly, the pipeline began by preprocessing the data to
isolate target brain regions from raw autoradiographs. The preprocessed autoradio-
graphs were aligned to one another using rigid transformations to create an initial
3D autoradiograph volume. FEach autoradiograph in the initial reconstruction was
then segmented to create an autoradiograph GM volume. A GM volume extracted
from the donor’s MRI was then non-linearly aligned in 3D to the autoradiograph
volume. The 2D sections of the autoradiograph 3D volume were then non-linearly
aligned in 2D to the resampled MRI GM volume. Finally, a volume for 1 of the 20
measured neurotransmitter receptors was created using a linear distance-weighted in-
terpolation scheme. A reconstructed slab of GABAAR.,.. receptor density was used
as the radioactivity distribution for Monte-Carlo PET simulation. The results in
Fig.6-18 showed that the pipeline was able to accurately reconstruct gross anatomic
features although more work was needed to perfect the reconstruction. The simu-
lated image showed that under ideal conditions, PET shows a strong correlation to
the source radioactivity distribution and appeared able to recover some gradients
in neurotransmitter receptor density stemming from the laminar distribution of the

receptor.
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6.6.1 3D reconstruction of 2D autoradiographs

Accuracy of reconstructed GABAg,,.. atlas

Visual observations indicate that the reconstruction pipeline can accurately re-
cover the 3D anatomy of the donor’s brain from the 2D autoradiographic sections.
This was seen in both coronal sections as well as sagittal sections (see Fig.6-17
6-18). However, the anatomic accuracy was not perfect. In Fig.6-18 subcortical
GM structures were overlapping with the ventricles and the temporal lobe was also
not perfectly aligned. This imperfect alignment was due to imperfect processing at

multiple steps of the pipeline and are addressed in the following sections.

Initial autoradiograph alignment

One particularly important potential source of error in the reconstruction pipeline
comes from the inter-autoradiograph alignment algorithm that we developed. Im-
perfections in the initial reconstruction obscure anatomic landmarks and negatively
impact all downstream stages of the pipeline. While the alignment of 2D biologi-
cal sections, whether from histology or autoradiography, is a problem that has been
solved many times for different data sets, these methods were not well adapted for
the present data.

A method for creating robust reconstructions from 2D sections was proposed
by Cifor et al [207]. They attempted to maximize smoothness of anatomic regions
through axial cuts in the reconstructed image to limit the impact of individual mis-

registrations. However, their approach requires the same anatomic structures to be
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present across sections and may not work well with the significant amount of missing
sections in the present data set.

Similarly, the network-based approach to image alignment of Pichat et al [208]
considered sections to be nodes in a graph and the similarity metric, e.g., mutual
information, between two histological sections to be edge length between the sections.
For example if the alignment between histological sections i and i+1, is poor but the
alignment between section i-1 and i+1 is good, then, instead of transforming section
i to section i+1 directly, it may be more effective to use the transformation from
i to i-1 and then from i-1 to i+1. This is more robust than the method used here
because it allows one to circumvent misalignments by considering alternate paths
between sections. However, this method is unlikely to work in our context because
the similarity metric between pairs of autoradiographs representing different receptor
densities may not be directly comparable.

The block-matching alignment scheme of Ourselin et al. [205] was designed
to align neighbouring histological sections even in cases where sections have suffered
significant damage. Using their method on the current data set may not lead to good
alignment because their method uses the cross-correlation between small 2D blocks
in adjacent sections. Cross-correlation is not well suited to images with different
intensity distributions. A simple solution to make their method more applicable
to our data would be to replace cross-correlation with mutual information. The
method of Ourselin et al[205] was not used here because, except at the edge of slabs,
the sections were largely intact and because ANTs with Mattes mutual information

was found to be sufficient for reliable alignment. Nonetheless it may be the case
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that a modified block-matching strategy may provide better alignment in the few
cases where ANTs was unsuccessful and may constitute a potential avenue for future
development.

Another method for robust section alignment was created by Chakraverty et al.
[206] for cases where no reference data was available. For a given section, they aver-
aged the distortion fields for the alignment with the adjacent posterior and anterior
sections, respectively, and repeated the alignment of all sections over several itera-
tions. While this method does decrease the likelihood of misalignments by repeatedly
reinitializing the alignment process, it is best suited to cases where no reference is
available and where sections have to be non-linearly warped to one another.

A similar scheme was used by both Malandain et al [212] and Amunts et al [9] to
reconstruct histological and autoradiograph volumes in 3D. Generally speaking this
scheme iterates between two steps, where first the donor MRI is aligned in 3D to an
autoradiograph stack and the autoradiographs are aligned in 2D to the transformed
MRI. The difficulty in applying this method to our data is that the warping in
the autoradiographs is so large that aligning autoradiographs to their corresponding
sections in the MRI volume constitutes a significantly ill-posed problem. That is,
there are many potential transformations that can align the autoradiograph section
to the corresponding MRI section. For example, one autoradiograph may be better
aligned in the dorsal portion of the cortex and poorly aligned in the ventral portion
of the cortex, but the opposite may be the case for its neighbour. Thus when,
during the development of the reconstruction pipeline, we attempted to implement a

2D linear alignment of all the autoradiographs sections to their corresponding MRI
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sections, this led to a worse alignment between the autoradiographs than in the initial

reconstruction where autoradiographs were aligned to one another.

Autoradiograph grey matter segmentation

Another important limitation in our reconstruction pipeline was the segmenta-
tion of GM in the autoradiographs. Poor segmentations led to a loss of anatomic
information, especially when sulcal walls were fused. There were also instances where
the entire cortex, including both white matter and GM, in the image was attributed
to GM.

The K-means algorithm is a simple algorithm that suffers from significant limita-
tions in the present context. It only takes into account the image intensities and does
not include information about the spatial structure of the images. K-means also as-
sumes that intensities follow a spherical distribution around their means. Therefore,
while the 3 class K-means algorithm presented here worked well with high-contrast
radioligands like flumazenil, it performed poorly with lower contrast radioligands,
like pirenzepine.

The limitations of the GM segmentation with K-means poses two problems for
autoradiograph reconstruction. The first is that it limits the spatial resolution and
anatomic accuracy of the 3D autoradiograph GM volume which, in turn, limits the
accuracy of the alignment of the autoradiograph and MRI volume. Improving the
autoradiograph segmentation would produce a more anatomically accurate 3D GM

volume that would, for example, have more clearly preserved sulci.
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A further problem is that because 3 class K-means does not work well con-
sistently for low contrast radioligands, the 2D non-linear alignment of the autora-
diograph GM volume to the MRI GM volume in autoradiograph space is likely to
be poor. While it is possible to align autoradiographs to corresponding MRI using
information theoretic distance metrics, this may require fine-tuning parameters for
each neurotransmitter receptor.

The heterogeneity of the imaged receptor distributions and in the acquisition
protocol for the autoradiographs makes it difficult to use a single algorithm to seg-
ment all of the acquired autoradiographs. A more robust approach would be to use
a deep neural network to perform the autoradiograph GM segmentation based on
manually drawn labels. While this approach is time-consuming, it would provide a
general autoradiograph GM classifier that could potentially be applied to other data

sets.

3D alignment of MR to autoradiograph volume

Many reconstruction methods accomplish the alignment of the 2D sections to a
reference MRI by iterating between 3D and 2D alignments between the reconstructed
and MRI volumes, often through the use of intermediate blockface images [9, 209-
212, 214]. While 2D alignments between reconstructed and MRI volumes were used
in our pipeline, the initial alignment of these two volumes was performed in 3D. As
mentioned above, this was because the particularly significant deformations in the
autoradiographs and the lack of blockface images made it difficult to directly align

the 2D sections to the MRI volume.
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The errors in alignment of the reconstructed autoradiograph volume versus the
donor’s MRI may be improved by ensuring a better non-linear alignment between
the autoradiograph GM slab volume and the MRI GM volume. Besides improving
the initial inter-autoradiograph alignment and autoradiograph GM segmentation,
another way of improving the overall reconstruction would be to improve the 3D non-
linear alignment between the autoradiograph and MRI GM volumes. The fact that
the subcortical GM structures in Fig.6-18 appear to be in the correct coronal plane
suggests that the affine transformation that grossly aligns the volumes is correct, but
that further deformation is needed to align these structures. This is also the case for
the temporal lobe because in the raw autoradiographs it appears to be compressed
against the frontal and parietal lobes. Increasing the amount of warping of the MRI
GM volume when aligning it to the autoradiograph GM volume would therefore likely
improve the alignment of the subcortical GM structures. Another way to improve
the non-linear alignment may be to use local instead of global cross-correlation as a
similarity metric for image alignment because the former is more sensitive to local

misalignments.

Interpolation of Missing Sections

The diversity of neurotransmitter receptors that were measured in this dataset
also means that there was a gap between acquired neurotransmitter receptors of
at least 400um. This is a fundamental limitation of the dataset that cannot be

improved on with the data at hand. An interpolation algorithm was devised to
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provide an estimate of the missing receptor densities based on the nearest available
sections.

An important theoretical limitation with the interpolation method presented
here is that it assumes that each section for a particular autoradiograph cuts through
the cortex orthogonally and therefore accurately represents the laminar distribution
of the neurotransmitter receptor. Our distance-weighted interpolation method as-
sumes that a middle section between acquired posterior and anterior sections can be
accurately estimated as an average of the two acquired sections. A problem occurs if
one, or both, of the acquired sections have been cut at an angle that is not orthogonal
to the folding of the cortex(see Fig.6-21 for an illustration of this problem). In that
case the acquired section may be missing particular laminae and the laminae may be
distorted based on the cutting angle. Misrepresentation of the laminar receptor dis-
tribution will then bias the laminar receptor distribution in the interpolated missing
section.

This problem could be overcome by using anatomic information from the MRI to
constrain the interpolation to within receptor layers and hence avoid contaminating
binding densities from different layers of the cortex[223]. This is a major avenue for
future work and refinement of the method described here.

In practice tangential sectioning appears to have a modest impact of the inter-
polated values. The interpolation method was applied to a synthetically generated
equivolumetric laminar volume [220]. This showed that the interpolation algorithm

was accurate to within 0-6% except when the gap between acquired autoradiographs
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Figure 6-21: Distance-weighted interpolation of a missing autoradiograph section
from adjacent sections is biased if the sections are cut tangentially to curvature of
cortical surface. Section C is tangential to the cortical surface and does not accurately
represent the distribution of layers across the cortical surface. Hence if section B is
interpolated based on sections A and C, section C will bias this estimate due to its
misrepresentation of the laminar distribution of signal intensity across the surface.

202



was large. Based on visual inspection of the volume produced using our interpola-
tion method, it is clear that the latter preserves the laminar distribution seen in the
equivolumetric laminar volume.

The distance-weighted interpolation scheme assumes that neurotransmitter re-
ceptor densities change linearly between the acquired sections and the missing sec-
tion. This is not strictly biologically valid because there may be sharp boundaries
between cytoarchitectonic areas [28] which would be obscured by our interpolation
method. It does not appear possible to devise an interpolation method that could
reproduce such sharp regional boundaries without additional information.

Another limitation of the work presented here was that the receptor volume was
reconstructed on the basis of autoradiographs that had been cropped and downsam-
pled. It is possible that interpolation errors were introduced by this downsampling
process. This was done to minimize the computational time of reconstruction. How-
ever, in the future the receptor volume can be reconstructed by applying the final
transformations produced by the pipeline directly to the raw autoradiographs, pro-

ducing a receptor volume with voxels of 20 x 20 x 20 pum.

Quantitative accuracy of autoradiography

An important underlying assumption in the creation of atlases of neurotrans-
mitter receptor density based on autoradiography is that post-mortem in vitro ra-
dioligand binding reflects in vivo neuroreceptor distribution. The available evidence
suggests that prolonged freezing of brain tissue did not affect receptor binding sites

[224-227]. The quantitative accuracy of autoradiography was, however, affected by
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the delay elapsed between the donor’s time of death and the freezing of the brain.
For example, NMDA, GABA, muscarinic M7, D2, and 5-HT?2 receptor binding sites
were stable for up to ~75 hours post-mortem [226, 228-231]. Other neurotransmit-
ter receptor densities increased post-mortem before freezing, e.g., D1 and 5-HT 1A
receptor binding sites [230]. Somewhat surprisingly, and most problematically for
the present work, the GABAAR.,.. receptor binding sites increased by 150% within
a 48h post-mortem delay [224].

The brain used in the present study was frozen within 24h post-mortem. It is
not clear if the increase in GABAAg.,.. receptor binding sites post-mortem is uni-
form throughout the brain. If the effect is uniform, then the relative distribution of
receptor binding sites will be correct and should not substantially impact the recon-
structed atlas. However further studies would have to be conducted to determine the

precise time course of changes to GABAAR.,.. receptor binding sites post-mortem.

6.6.2 Monte-Carlo PET simulation with 3D reconstructed autoradiog-
raphy

The results of the Monte-Carlo PET simulation showed that PET can in princi-
ple be used to image near laminar differences in neurotransmitter receptor densities.
This can be observed visually and was measured quantitatively using the local cross-
correlation (0.71 & 0.89).

The spatial accuracy of PET was not uniform throughout the cortex, but varies
based on morphology. The spatial variability of PET accuracy was seen in the local
cross correlation volume of the simulated PET volume and reconstructed GABAABen..

receptor density volume. The pattern of cross-correlation in this volume indicated
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that PET is less able to recover the distribution of receptors towards the center
of the cortex and on abutting sulcal walls. The latter was not surprising because
abutting sulcal walls may be physically close in space but can have very different
neurotransmitter receptor distributions. Hence PVE in these locations cause cross-
contamination of radioactivity concentrations from very different regions.

The spatial pattern of PET accuracy highlights the importance of using source
radioactivity distributions that reflect the real distribution of the receptor targeted
by the radioligand. Traditional methods for performing PET simulation have typ-
ically used large ROI with homogenous radioactivity concentrations [22, 232]. The
limitation of this approach is that it does not reflect the complex pattern of neuro-
transmitter receptor distribution. Moreover, using a source radioactivity distribu-
tion based on gross anatomic regions, it would not have been possible to observe
the relationship between cortical morphology and PVE. Another approach to PET
simulation is to derive a voxel-based radioactivity source distribution from a PET
image [233]. This approach is limited in that it can never be used to assess the
spatial resolution of PET because it, by definition, uses a radioactivity source that
is at PET resolution and cannot represent source radioactivity concentrations below

the millimeter scale.

Realism of PET Simulation

The Monte-Carlo simulation with GATE aimed to produce a simulated image

that was as similar as possible to the image that would have been obtained if the
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donor had been injected with [18-F]-flumazenil and scanned with an actual CTI-
Siemens ECAT HRRT. There are important limitations to the realism of the sim-
ulated PET image generated in this study. One of the most important limitations
is that in practice, there are many potential sources of radioligand binding other
than specific binding to the target receptor. Depending on the radioligand, there
can be significant non-specific binding, off-target binding, free radioligand in the
blood and in the interstitial space. Non-specific binding can be accounted for in the
present reconstruction and simulation framework by including the autoradiographs
of non-specific binding which were also acquired as a part of the dataset used here.

Patient head movement is also another factor that affects real PET simulation
and decreases spatial resolution. GATE allows for movement of the radioactivity
source during the simulation and this could be used to model the effect of patient
head movement on PET spatial resolution.

Another limitation concerns the proposed method for binning the location of
annihilation events into a 3D grid. This binning approach does not include several
standard correction algorithms that are implemented during PET reconstruction to
improve the accuracy of the measured radioactivity concentration. These include
non-uniformity correction, scatter correction, and attenuation correction. The effect
of these correction algorithms is not taken into account in our binning method and
would be likely to significantly affect that reconstructed simulated image.

The number of counts acquired in this experiment were also relatively low com-
pared to real PET scans. A total 10,153,400 counts were acquired as opposed to 16

billion counts for whole brain simulations of 10 minutes in Ref.[22]. This relatively

206



low number of counts was chosen because GATE is computationally intensive, which
results in long processing times and the number of acquired counts was sufficient to
create a representation of the radioactivity source distribution. A lower number of
counts will tend to produce a noisy image with poorer resolution and so the rela-
tively low number of counts acquired here will only bias our results in a conservative
direction. Nonetheless, in order to produce images that are as similar to real PET
scans as possible, more counts should be acquired in future simulations.

The ideal way to validate the effective spatial resolution of PET would be by
performing a direct comparison of in vivo PET versus in vitro autoradiography in the
same subjects. One such study has been performed but only on 2D autoradiograph
sections in the hippocampus for a clinical population [Koeppe1998|. Given that the
effective resolution of PET will vary based on the ligand, radioisotope, scanner, and
measured region, it is not currently feasible to perform a PET scan and subsequent
full brain autoradiographic imaging to evaluate the effect on effective spatial resolu-
tion for each of these variables. Not only are the costs to full-brain autoradiography
prohibitive, but there are also enormous logistical challenges and ethical concerns to

performing a PET scan followed by post-mortem autoradiography in humans.

Future Work

Improving the realism of the PET simulation will be a central aim of future work
on using 3D autoradiograph reconstruction for PET simulation. As mentioned in the
preceding section, this will include reconstructing the non-specific binding images

and adding these to the radioactivity source distribution for GATE. It will also
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be important to perform simulations with higher count rates that more accurately
reflect the quantities acquired in real PET scans. While it is useful to consider the
theoretical maximum spatial resolution of PET, it is also be of interest to assess PET
resolution after reconstruction with a traditional algorithm, such as ordered-subset
expectation maximization (OSEM).

Finally, several of the autoradiographs for other receptor binding sites could be
used for PET simulation. The same radioligand is used to image the dopamine D1
receptor in both PET and autoradiography. This makes it particularly straightfor-
ward to use for PET simulation as the distribution of radioligand would be similar
in both PET and autoradiography. For several other radioligands there is are dif-
ferent radioligand for PET and autoradiography that nonetheless bind to the same
receptor. These include the receptor binding sites for serotonin 5HT)4 and 5HT5,
nicotinicyfBs, and the AMPA. In these cases it would be necessary to account for

differences in non-specific binding between the radioligand used in autoradiography

and PET.

6.7 Conclusions

We have created an image processing pipeline for reconstructing 2D autoradio-
graphs into 3D volumes and used one such reconstructed volume to perform Monte-
Carlo PET simulation. Using this pipeline it will be possible to create a set of
canonical high-resolution, 50 pum atlases of neurotransmitter receptor distribution
based on 3 human brains. We have furthermore shown how these atlases can be

used to create a new set of realistic simulated PET images. This data set will allow
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us to investigate PET spatial resolution and serve as a gold-standard data set for

validating PET algorithms for image analysis, reconstruction and correction.
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CHAPTER 7
Discussion

7.1 Discussion

Neurotransmitter receptor mapping can be performed in vivo with PET and
post-mortem with receptor autoradiography. While autoradiography has the advan-
tage of producing images at comparatively high resolution, 50 pm, it is an expensive
procedure and can only be performed post-mortem. Large scale neurotransmitter
receptor mapping will therefore have to depend primarily on PET, but this requires
overcoming important obstacles: PET spatial resolution and standardized PET pro-
cessing software.

PET spatial resolution is a problem because it is not certain at exactly what scale
PET can accurately measure receptor densities. While PVC algorithms may be able
to increase PET spatial resolution, it is not clear exactly how reliable they are. In
Chapter 3 we investigated neurotransmitter receptor mapping with PET in a clinical
context. This experiment showed that PET can detect changes in GABAARep..
receptor density, which serves as a proxy marker for neuronal density, at a spatial
scale of 3 mm. An algorithm was also used to enhance the spatial resolution of
PET and was found to lead to a larger measured change in GABARg,,. receptor

density. The fact that a larger effect size of neuronal loss was larger with resolution
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enhancement suggests that algorithms of this kind are effective in practice and can
increase PET spatial resolution.

The fundamental limitation of practical investigation into PET resolution con-
ducted in Chapter 3 is that the true GABAAR.,. receptor distribution is unknown.
It is therefore impossible to determine with certitude the true spatial accuracy of
PET and to assess exactly how much resolution enhancement algorithms can po-
tentially improve spatial resolution. To address this limitation, we sought to use
Monte-Carlo PET simulation as described in Chapter 6.

Neurotransmitter receptor atlases should be composed of enough subjects to
capture the variability in receptor density in the target population. Existing brain
atlases of neuroanatomy and serotonin neurotransmitter receptor densities, based
on MRI and PET respectively, are composed of hundreds of individual scans [4,
10]. This suggests that continued neurotransmitter receptor mapping with PET
will require hundreds of brain scans, possibly from multiple sites. Large-scale image
processing with PET is difficult to perform reliably because it is susceptible to small
but significant artefacts. Small differences in software implementation can also lead
to different results [234].

A standard and open PET software package would be of great help to creating
canonical neurotransmitter receptor atlases with PET. In Chapter 4 we presented
a novel open-source software package for PET image analysis called APPIAN. This
software package is freely available and can be easily extended to meet the needs
of the PET research community. As a part of this software package, we sought to

address the problem of processing error detection in automated PET analysis by
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incorporating a novel algorithm for automated QC algorithm (discussed in Chapter
5). We used computational simulation to test the ability of this algorithm to detect
the most common type of error in PET image analysis. Our results showed that this
method could detect moderate to large errors in PET to MRI alignment.

An important assumption in our development of APPIAN was that PVC could
in principle improve the resolution of PET and therefore constitutes a key processing
step in PET image analysis. However, even if this may apply to analysis of individual
PET scans, the role of PVC for improving spatial resolution of atlases derived from
multiple PET images from different subjects onto a common template space remains
to be demonstrated. While blurring induced by inter-subject averaging is no doubt an
important factor, it would nonetheless be preferable to combine PET images at the
highest resolution possible to limit the extent of this effect. An alternate approach
to defining atlases on a single stereotaxic template has been to combine parcellations
defined on a database of individual MRIs onto a target MRI [235]. Hence, instead of
defining a unified PET atlas on a template brain, it may be preferable to warp PET
images in a hypothetical atlas database onto individual target brains. While there
are advantages to both approaches to building atlases, in both cases using PVC could
improve the spatial resolution of PET atlases—assuming that PVC can be shown to
be accurate and reliable.

APPIAN is currently publicly available. Our processing algorithms, imple-
mented in APPIAN, have been used by others to measure neuronal density changes
in patients with chronic pain [236, 237] and APPIAN is currently being used by PET

researchers at several international sites. The main challenge with such a software
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package is to make it more user-friendly for non-technical users and to ensure that
it works reliably. To this end we are in the process of designing a new graphical
user interface for APPTAN. We are also implementing automatic validation of the
software using the simulated PET data released by Veronese et al.[233]. This will
make it possible to compare the images produced by APPIAN to an objective bench-
mark and ensure that future changes to the code do not corrupt the outputs of the
pipeline.

Additionally, APPIAN contains all the necessary steps to create new PET atlases
in the manner of Beliveau et al [10]. We will therefore create a similar atlas based
on GABAARey.. receptor distribution using flumazenil PET.

Finally in Chapter 6 we presented an image processing pipeline for creating
a high resolution 3D neurotransmitter receptor atlas based on 2D autoradiographs.
The analyses using these autoradiographs were originally published by Zilles et al [28],
but several technical obstacles and image artefacts prevented this data from being
reconstructed into 3D until our work. Indeed, the reconstruction of these data has
been envisioned since 2001 [238] but not been accomplished prior to this thesis work.
The pipeline we designed attempts to systematically address these obstacles and
produce a 3D reconstruction that is correctly aligned with the donor’s brain. While
only a single hemisphere and neurotransmitter receptor have been reconstructed to
date, this pipeline will allow us to create a database of 3D neurotransmitter receptor
atlases for 20 of the most common receptors for 3 donor brains.

While the reconstruction of the 2D autoradiographs has been much advanced by

the work presented here, there are still important limitations to the reconstruction.
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First, the inital rigid alignment of the autoradiographs does not always result in
perfect alignment and this error can be propagated to subsequent sections. Another
limitation is that the use of K-Means classification to derive a GM autoradiograph
volume does not work equally well on all receptor types and thereby introduces
significant noise in the derived GM volume. Both of these limitations in the recon-
struction leads to a loss of smoothness in the reconstructed volume that may impact
the non-linear alignment to the corresponding MRI. One approach to ameliorating
this problem would be to use a more robust method for segmenting the GM in the
autoradiographs, such as using deep learning. A secondary alignment of the autora-
diographs after the initial rigid registration could also help increase the smoothness
of the initial reconstructed autoradiograph volume.

Another major limitation is that the currently implemented method for interpo-
lating missing sections assumes that the autoradiographs are sectioned orthogonally
to the curvature of the cortex. Future work will attempt to overcome this limitation
by developing an interpolation method that accounts for the laminar distribution of
receptors across the cortex. This can be accomplished by only applying interpolation
within layers. While the true receptor laminar distribution is unknown, except where
orthogonally sectioned autoradiographs are available, a laminar model of the cortex
can be derived from the surface meshes extracted from the donor’s MRI. Thus a
laminar representation of the cortex derived from the subject’s MRI can be used to
constrain interpolation of missing autoradiographs to occur only within these layers.

The reconstruction of the receptor atlases is part of a broader collaborative effort

between McGill and Julich Forschungszentrum, the Helmoltz International BigBrain
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Analytics Learning Laboratory (HIBALL), to create an ultra-high resolution atlas of
the brain on which multiple layers for anatomic information can be superimposed.
The fundamental scaffold for this multi-modal atlas is the Big Brain [9] and it will
serve as the template to which the neurotransmitter atlases will be mapped. In
addition, 1pm histology and white matter photon light imaging will be incorporated
into an ultra-high resolution multi-modal brain atlas. Together these combined data
will be used for computational modelling of neuronal and brain network dynamics.
This of course poses the very significant challenge of how to solve the problem of
inter-subject, multi-modal image alignment at < 50 pm. Future work will therefore
also involve devising methods to optimally transform reconstructed receptor volumes
to a common template, perhaps through the use of a method like Multi-modal Surface
Matching [239].

To address the problem of PET spatial resolution raised in Chapter 3 and demon-
strate one potential application of the reconstructed receptor volume, we used a re-
constructed volume of GABAAR.,.. receptor densities to perform Monte-Carlo PET
simulation. The receptor densities were used to define radioactivity concentrations
for the PET simulator to create a realistic simulated PET image. The simulated
PET images illustrated that PET can, under ideal conditions, recover 71% of the
underlying spatial pattern of radioactivity concentrations and reflects differences in
laminar receptor density in the cortical GM. In the future additional simulations will
be performed with more scanner geometries and based on additional neurotransmit-

ter receptors.
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Just as the 3D autoradiograph reconstruction will provide the research commu-
nity with a database of high-resolution neurotransmitter receptor atlases, the PET
simulation based on these atlases will provide a freely available dataset of simulated
PET images. These will help inform the spatial accuracy of PET and help deter-
mine the smallest anatomic regions that can be visualized with PET. The work in
Chapter 6 is therefore a continuation of the pioneering work of Hoffman, et al [39]
and Mazziotta, et al. [40] who, in the early days of PET in the late 1970s and early
1980s, attempted to quantify the spatial resolution of PET scanners and the effect
of brain anatomy on the quantitative accuracy of PET. In this work they used sim-
ple geometric phantoms to provide estimates of the quantitative accuracy of PET
for many different anatomic regions. We hope that the simulated PET images pro-
duced using our method will similarly provide the PET research community with
far more accurate measures of PET quantitative accuracy across a wide variety of
radioligands, scanner geometries, and acquisition protocols.

Moreover, this database of simulated images will also serve to validate algorithms
for analyzing or processing PET images. In this context we have already been con-
tacted by several groups who wish to use the simulated images we will produce to

validate their own PET atlases or evaluate novel scanner geometries.

7.2 Conclusion
The research project presented here has investigated the mapping of neuro-
transmitter receptor densities both in vivo with PET and in vitro with receptor

autoradiography. This work has sought to create a high-resolution neurotransmitter
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receptor atlas using autoradiography by developing a novel image processing pipeline
that could reconstruct a 3D volume from 2D autoradiographs. At the same time, we
have attempted to elucidate the spatial scale at which PET can accurately quantify
neurotransmitter receptor densities and thereby be used to create in vivo neuro-
transmitter receptor atlases. We have thus helped provide a framework for future

high-resolution neurotransmitter receptor mapping with PET.
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