Slab photonic crystal demultiplexers:

analysis and design

by

Aref Bakhtazad ©

A thesis submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Electrical and Computer Engineeting Department
McGill University, Montreal, Canada

Novenber 2006 ©



Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-32143-0
Our file  Notre référence
ISBN: 978-0-494-32143-0
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



Abstract

The exploitation of the superprism phenomenon for optical demultiplexing using a slab
photonic crystal on the silicon on insulator platform is the main subject of this thesis. The S-
vector and k-vector superptisms are consideted. Design equations for the S-vector superptism
demultiplexer which fully take into account the nonlinear spectral dependence of beam
propagation and dispersion are introduced. This allows wide-band coarse wavelength division
multiplexing (CWDM) demultiplexers to be designed. Selecting minimum prism atea as a
metric, the best photonic crystal lattice, design parameters and prism geometry is sought. A full
3-D modeling approach using the plane wave expansion method is employed to ensute the

practicality of the design. We show that the slab 1-D photonic crystal can provide the smallest
superptism. Based on our result, an area of 1367 pm?’ is sufficient to resolve 4 standard
CWDM channels (20nm channel spacing). We extend this approach by proposing a stratified
photonic ctystal which has 5 times less area for an 8 channel CWDM design.

We then propose the first fully integrated k-vector superprism layout. Design rules and
equations are presented and we use these to obtain the design parameters that result in a
minimum prism area. We show that an optimized 1-D photonic crystal k-vector supetptism
with the area of less than 0.1 mm?is sufficient to resolve 32 standard dense wavelength division
multiplexing (DWDM) channels (100GHz channel spacing). The resulting chip size is

approximately 4.5 times less than an equivalent etched grating demultiplexet.

We also demonstrate that fast lenses can be made using slab 1-D photonic crystal with angular

periodicity.

We introduce an analytical approximation technique for slab 1-D photonic ctystals based on
the weighted index method. The variational nature of the method leads to acceptable results
for moderate refractive index contrast materials. The method can also be extended to 2-D

cases and to nonlinear systems.



The plane wave expansion (PWE) method and field matching have been combined to obtain a
new method which is capable of obtaining all types of modes including the leaky modes of slab
1-D photonic crystals. The method requires fewer plane waves than the conventional PWE
method but provides a better approximation. We compate our results with an accurate finite

element method as a benchmatk.

A report of our first attempt for the fabrication, post-possessing and optical chatactetization of
the proposed k-vector superprism demultiplexer is also presented. We recommend the

development of a cladding, and more accurate fabrication procedures for future investigations.



Sommaire

Le sujet principal de cette these est exploitation du phénomeéne de “supet prisme” pour le
démultiplexage optique a I'intérieur de cristaux photoniques planaires fabriqués a I'aide d’une
technologie de silicone sur diélectrique. Deux approches sont considérées: la méthode du
vecteur S et celle du vecteur k. Des équations pout la conception de supets ptismes basés sur
le vecteur § qui prennent en considération les effets spectraux non linéaires de la propagation
des faisceaux et de la dispersion sont présentées. Celles-ci permettent la création de
démultiplexeurs 2 large bande avec une séparation grossitte des longueurs d’onde. La
disposition des cristaux photoniques, la géométrie du prisme ainsi que d’autres paramétres de
conception sont investigués afin de minimiser la surface du prisme. Un modéle tridimensionnel
basé sur le développement des ondes planes est employé afin d’assurer la fonctionnalité du
concept. Nous démontrons que les cristaux photoniques unidimensionnels forment les plus
petits supers prismes. Selon nos tésultats, une surface de 1367 pm? est suffisante pour résoudre
. quatre canaux séparés par 20 nm. Cette approche est extrapolée en proposant un ctistal

photonique stratifié dont la surface est cinq fois moins grande et qui peut tésoudte huit canaux.

Ensuite, le premier super prisme completement intégré basé sur Papproche du vecteur k est
présenté. Les équations et les principes de conception sont introduits et utilisés pout minimiser
laire du prisme. Il est démontré qu’un cristal photonique unidimensionnel avec une surface de
moins de 0.1 mm? est suffisant pour résoudre 32 canaux espacés par 100 GHz. Ce circuit est

environ 4,5 fois plus petit qu’un démultiplexeur a réseau intégré.

Il est aussi démontré que des lentilles rapides peuvent étre fabriquées avec des ctistaux

photoniques unidimensionnels a périodicité ’angulaire.

Une technique d’approximation analytique pour les ctistaux photoniques a une dimension
basée sur la méthode des indexes pondérés est présentée. La nature de cette technique permet
d’obtenir des résultats acceptables pour des contrastes d’index réfractif modérés. De plus, elle

peut étre étendue aux situations bidimensionnelles et aux systémes non linéaires.

v



La méthode de développement des ondes planes et celle d’adaptation des champs furent
combinées afin d’obtenir une nouvelle technique capable de résoudre tous les types de modes,
incluant les modes de fuite, a l'intérieur des ctistaux photoniques unidimensionnels. Cette
technique requiert moins d’ondes planes que le développement traditionnel mais donne de
meilleures approximations. Une méthode d’éléments finis est utilisée comme référence pout

évaluer les résultats obtenus avec la nouvelle technique.

Les résultats de la fabrication, du post-traitement ainsi que de la caractérisation optique du
super prisme basé sur le principe du vecteur k sont aussi présentés. Le développement d’une

gaine et de meilleurs procédés de fabrication sont recommandés pour les travaux futurs.
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Chapter 1

INTRODUCTION

We explain the potential of the photonic crystal superprism for demultiplexing and
compare it with other alternatives. Our proposed designs for both k-vector and S-
vector superprisms are introduced. The original contributions of the thesis are

outlined together with a description of its layout.

1.1 Inttoduction

During the last two decades, photonic crystals have been a focus of research interest because
of their ability to control the flow of light on a very small length scale. Although the first
motivation behind photonic crystals was to prohibit light from propagation (using 3-D
photonic crystals where there is a full bandgap and wavelengths inside the bandgap [1]), the
dispersive, anisotropic wave propagation inside photonic ctystal at wavelengths below the
bandedge has attracted significant attention too [2;3]. Wave propagation through a perfect
uniform photonic crystal involves Bloch modes. Near the bandedge they are very dispersive,
highly anisotropic, and also highly polarization dependent. This highly anomalous dispetsion
behavior of the Bloch modes leads to the extraordinary angular sensitivity which has been
called the superprism phenomena [2]. The observation of 500 times more dispersion whilst
impressive, was an indication of the emerging of new class of demultiplexers [2]. However, a
3-D photonic crystal is hard to make and it is not suitable for integrated optics. The planar
counterpart is a promising choice owning to the fact that its fabrication resembles
microelectronic pattering techniques. The compatibility with CMOS technology also makes
the silicon on insulator (SOI) platform a suitable candidate. The slab photonic crystal is an
optically thin dielectric slab perforated with a 2-D lattice of holes (or in the 1-D case,

trenches). Light confinement within the slab is due to the refractive index contrast of the slab



-

with substrate, and cladding. The observed dispersion in planar photonic ctystal is 50 times
more than in ordinary glasses [4]. This thesis is an exploration of the superprism

phenomenon focusing on planar photonic crystals in the SOI platform for demultiplexing.

Thete are two types of dispersion with two distinct origins in photonic crystals. The one
originating from group velocity is based on the sensitivity of the direction of the Bloch
modes with wavelength (usually near the band edge) [5]. The k-vector supetptism on the
other hand is based on the angular dispersion of the light at the free space/photonic crystal

interfaces [6-8).

1.2  S-vector superprism

Figure 1.2.1 shows the schematic of a PLC based S-vector superprism.

Output waveguides
M

o

Input waveguide Slab waveguide

Figure 1.2.1 The schematic of PLC based S-vector superptism

The incident beam, after decomposing into highly localized Bloch modes, propagates through
photonic crystal (but it looses its spatial coherence soon as it propagates through the photonic
crystal). As the Bloch modes reach the opposite border of the photonic crystal, they loose
some power and couple back to the free space wave and no further spatial separation occurs.
Loss of spatial coherence and lack of dispersion effect outside photonic ctystal makes a
superptism based on group velocity dispersion (also known as S-vector superptism) too latge
for resolving DWDM wavelengths. For the CWDM applications (20nm channel spacing), the

first order analysis estimation shows that the supetprism atea is compatable to the other



alternatives (in this case PLC based Array Waveguide Grating, AWG) [8]. Figure 1.2.2 depicts
the AWG layout on a high index contrast system of material [9]. Considering low diffraction
orders and the difficulty of implementing small path differences in the waveguide array region,

a typical device area (excluding input and output waveguides) is about 0.8 mm?[9].

Figure 1.2.2 High refractive index contrast AWG for CWDM applications [9].

Through detail analysis of the wave dynamics in a photonic crystal, in chapter 6 we show that a

1-D photonic crystal 4-Channel CWDM demultiplexer can be optimized to provide the

smallest photonic crystal size with the area of 1367 pm?® (which is about 500 fold size reduction
compared to the AWG alternative). 3-D modeling of the structure and inclusion of all non-
linearities and practical micro-fabrication constraints ensure that the designs are realistic. Our
analysis demonstrates that the other 2-D photonic crystals (in this case square and hexagonal

lattices) prism areas are more than 10 times larger than the 1-D counterpart.

By folding and separating the propagation paths of different channels, we then propose the
stratified photonic crystal to reduce the superprism area even further. A wider band CWDM
demultiplexer (e.g. 8-channel) with reduced superprism area can be implemented in this way.
This will be presented in chapter 7 where an 8-channel CWDM demultiplexer is designed with
five-fold reduction in prism area. The prism area of 0.26 mm?” is achieved with a square lattice.
Our detailed analysis in chapter 6 and especially our novel proposal for stratification in chapter

7 show the potential capability of the S-vector superprism for wider band demultiplexing.



1.3 k-vector superprism

The k-vector superprism effect is a more recent approach and we are pioneers in its
devolvement. The k-vectot superprism uses the phase velocity dispersion of photonic crystals
and is based on the angular dispersion of the refracted beam from a prism shaped photonic
ctystal area. The k-vector superptism has an advantage over the previous S-vector approach in
that the beam separation can continue outside the photonic crystal region. In this way it is
much closer to a conventional bulk dispersive prism and implies the possibility of using beam
expanding and focusing optics with a small prism area. Figure 1.3.1 shows a schematic of our
proposed device. In this example beam collimation and focusing is accomplished with etched

mirrots.

waveguides

Figure 1.3.1 The schematic of a k-vector superprism

The application of the k-vector superprism phenomena which is described here will
drastically reduce the sizes of DWDM demultiplexers. Several kinds of DWDM filters, such
as PLC-based arrayed waveguide gratings (AWG’s) [10;11] and etched grating demultiplexers
(echelle grating) [12;13] have already been developed. Figure 1.3.2 shows a typical layout of
AWG and Echelle grating for the high refractive index contrast material. For the AWG
choice, the die size for a typical 32 DWDM channel demultiplexer (of 100GHz, ~0.8 nm

channel spacing at the C band) using an SOI wafer with 0.5 um top silicon layer is about
3% 2.5 =7.5mm” (excluding the input/output waveguides sections). The grating order is 61,

and TM polarization has been assumed. The AWG suffers from ghost beams due to the

higher order diffraction images. For many applications, (AWG) devices face fundamental



limits due to the physical size and extreme fabrication tolerances required to achieve higher
channel counts and narrower channel spacing. Echelle gratings on the other hand by folding
the input and output path and using the reflective grating, reduces the demultiplexer size

considerably. The device size for implementation of a similar design using an echelle grating
(excluding the input/output waveguide parts) is about 3X1.5=4.5mm?*. The ghost image
similar to the AWG case exists.

Input waveguides

Paolarization compensator

@) (®)

Figure 1.3.2 the layout of (a) a typical AWG for 32 DWDM channel, and (b) a typical echelle grating for 48 DWDM
channel [13].

For the first time, this thesis presents a complete analysis, design, fabrication and of the k-

vector superprism demultiplexer.

Detail design rules and optimization for k-vector superprism are presented in Chapter 8.
The factors underlying the geometry, photonic crystal type and design parameters are also
discussed. Compared with the 2-D photonic crystal of interest (in this case, 2-D square and
2-D hexagonal lattice), we have shown that the best photonic ctystal that provides the

smallest k-vector superprism is a 1-D photonic crystal. We have shown that an optimized 1-
D photonic crystal superprism area of about 0.1 mm® is enough to resolve 32 DWDM
standard channels. Including two focusing elements (but again excluding the input/output
regions) the device size would not be greater thanl mm®. Compared to the nearest tival

(echelle grating), it provides 4.5 times area reduction.



Also in this thesis, we proposed and design of a new class of 1-D photonic crystal lenses. As

we will show in chapter 9, a fast lens with 130 pm focal length, and f/# =1.3is achievable

on SOI technology with 100 nm feature size. The etching atea is only 658 um®.

The parametric mask design and implementation was another achievement, which is explained
in chapter 10. Figure 1.3.3 shows a typical layout for 5x16 DWDM k-vector demultiplexer. An
optical characterization bench has been designed and constructed for measurement of
transmission spectra of k-vector demultiplexer. Ten different 16-channel DWDM
demultiplexers have been designed, and sent for fabrication. The fabricated wafers were post-
processed and tested. Unfortunately, the unsatisfactory fabrication quality prevented us from
obtaining any meaningful results. The details of the charactetization bench and out post-
processing procedure together with some analysis of the fabricated samples and finally some

recommendations for the next step of the project are presented in chapter 11.

Figure 1.3.3 A typical mask layout for 5x16 k-vector superprism

14  Analysis and Modeling techniques

We devote the entire chapter 3 to the theory of 1-D photonic crystal. The availability of closed
form equations for the wave vector diagram of the 1-D photonic ctystal enables us to explain

the very basic phenomenon behind k- and S-vector superptisms more easily.



In chapter 4, we develop an approximate analytical tool for slab 1-D photonic ctystals. The
well known weighted index method from conventional rectangular waveguide theoty is
adopted and modified for slab 1-D photonic crystals. It is basically a new variational technique
suitable for rectangular type photonic crystals (such as slab 1-D, 2-D rectangular, 2-D
rectangular slab and 3-D rectangular parallelepiped with similar atom type photonic ctystals).
The accuracy of the method (compared with the accurate finite element method) was
satisfactory for the medium refractive index contrast material and it is acceptable for high
contrast materials. The speed of the method and the low programming effort are the main
advantage of such a method. The potential for tuning of k-vector superptism with optical

power is also investigated using the method developed in this chapter.

3-D modeling of transmission through and reflection from the bulk slab photonic crystal is an
open problem. Inclusion of many out of plane radiation modes into the calculation makes the
modeling more cumbersome than the 2-D case with no radiation modes. Alternatively, one can
find many leaky modes, and carry out mode matching at the interfaces. In otder to do that, we
need a method to obtain a spectrum of the modes at the desited wavelength. The conventional
plane wave expansion method, with supercell definition is incapable of doing this. We have
modified the method to be able to find the spectrum of modes. The accuracy of the method
compared to an accurate finite elements method is excellent. The method and some results are

explained in chapter 5.

Finally we present our comments regarding the future works in the chapter 12 and the
benchmark finite element method is outlined in Appendix A.
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Chapter 2

LITERATURE REVIEW

In this chapter, we review the existing research materials on the modal analysis of
photonic crystals. Those methods capable of obtaining wave vector diagrams for slab
photonic crystals are on our focus. The methods for obtaining transmission and
teflection coefficients have been discussed too. Previous tesearches on mode matching
techniques (plane wave to Bloch mode) are surveyed. Restricting ourselves to the high
tefractive index contrast materials, the superprism history (both S-vector and k-vector)
is presented. The waveguide focusing elements which are an important part of the k-

vector supetprism are reviewed too.

2.1 Modal analysis

Due to complexity of 3-D simulations, the first approach to solve the problem was to teplace
the slab photonic crystal layer by an equivalent one. Finding this equivalence has been done by
simply ignoring the field confinement normal to the plane of photonic ctystal layet, and solving
the problem in two dimensions (treating the layer as a bulk). Whilst these methods are capable
of providing physical understanding of the light propagation in photonic crystals, they are
insufficient for the design of a realistic device (as we will discuss them briefly in section 6.6).
Replacing the slab photonic crystal layer by an equivalent homogenous ‘layer, one can consider
field confinement in the vertical direction by solving Maxwell’s equation in the slab waveguide.
An equivalent layer can be obtained using homogenization methods, solving dispersion
equation, which has been obtained analytically, or by discretizing the 2-D media and applying

numerical methods directly, and so on.



methods belong to the analytical category, whilst plane wave expansion, finite difference time

domain, spectral methods and transfer matrix methods are basically numerical techniques.

Effective medium theories are methods that seek to replace the slab photonic crystal with a
homogenous anisotropic layer. In this way they reduce a complicated 2-D structure to 1-D
modeling. This definition is very broad and many theories are beyond this idea, (e.g.,
homogenization theories are the well known one). We have used this idea successfully to

reduce the reflection from bulk photonic crystal (Chapter 10 is devoted to this idea).

Effective index methods seeks to reduce a 3-D modeling problem to an equivalent 2-D one.
The main theme of these methods is the assumption that separable field can be a good
approximation to the reality. They are more suitable for low contrast slab photonic crystals.
The spectrum of these methods starts with simply replacing the photonic crystal layer material
by an equivalent one and solving 2-D photonic crystals, to one enhanced by variational

methods which try to find the best separable solutions.

The plane wave expansion method is the outcome of the mature solid state theory. It is well
suited to periodic structures with continuous potential (as we have in atoms in crystals).
Implementation of Finite Difference Time Domain (FDTD) technique is more recent. Based
on the time domain simulation, it is not necessaty to save data on all mesh points during the
simulation. This fact reduces the necessary computer storage dramatically. On the other hand,
the existence of the Fast Fourier Transform (FFT) based technique makes the computational
gap between time and frequency domains narrow. On the other hand, spectral domain
techniques are also well known for their accuracies. They use the symmetry of the structure,
which needs to be implemented only on a unit cell. This feature make them attractive,

however their implementation with a computer program is more complicated.

2.1.1  Analytical techniques

There are two approximate analytical techniques in the literature for our cases. The first
method is the effective medium theory that belongs to a more general family of

approximations known as homogenization theories (which has wide applications on othetr
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branch of engineering). The second method is the effective index methods that have a good
reputation in integrated optics as an easy and accurate enough for many applications. We will

discuss both of them in the following sections.

2.1.1.1  Homogenization technignes

The aim of homogenization theory (effective medium theory) is to establish the mactoscopic
behavior of a system, which is microscopically heterogeneous, in otder to desctibe some
characteristics of the heterogeneous medium (for instance refractive index). This means that
the heterogeneous material is replaced by a homogenous fictiious one (the ‘homogenized’
material), whose global (or overall) characteristics are as equivalent as the initial one.
Homogenization theory or effective medium theory exploits this dual scale by introducing a

small parameter % that is defined by the ratio of two characteristic lengths associated with the

two scales. When y tends to zero (long wavelength or quasi-static limit), the properties of the
material and of its homogenized version are identical. From the mathematical point of view,
this signifies mainly that the solutions of a boundary value problem, depending on a small
parameter ), eventually converge to the solution of a limit boundary value problem, which is

explicitly desctibed.

Initially, various effective medium approaches like the Maxwell-Garnett approximation
(basically a Clausius-Mosotti relation) wete used [1], however later it was realized that there
were inadequate and that the micro-geometry of the medium needs to be taken into account
even though it is on a much smaller scale than the probing wavelength [2]. In this method, the

g-dependence of the wave amplitude is given by

exp (m%kz) 2.1)

The constant 1 is read as the square of the effective index for the periodic structures in the g
direction and the given polarization. Then the periodic wave with the z-Dependence of Eq.
(2.1), is used to satisfy the Maxwell’s equations inside the periodic structure. Obviously such

a solution is not correct, but it can be shown that at least for small period-to-wavelength
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ratios, it is possible to find a particular 1 value such that Maxwell's equations are satisfied. It
is convenient to expand 1) in a power series of X =o' =)\, /A (where A is the period of

the grating in x or g directions and \, is the wavelength in vacuum):

=", +m0" +n07 4 (22)

whete m, is the square of the zero-th order (quasi-static or long wavelength limit) effective

index and 1,z =1,2,-+ is the /th order coefficient of the series expansion.

Due to existence of the closed form equations for 1-D photonic crystals (as we have derived
them in chapter 3), the effective medium theoties that are developed for 1-D cases have limited
advantages. Limited research has been carried out in the area of 2-D photonic ctystals. The
authors of [3] have detived upper and lower bounds for the zeto-th order effective index of 2-
D periodic structures only. Since these bounds ate generally quite nattow when the two media
have similar optical indices, their average represents a good apptoximation of the zeto-th order
effective index. The approximation is valid when the grating vectot is normal to the direction

of propagation [4].

For shallow grating, we cannot use the effective indices detived for the bulk. In our case, the
depth of the slab photonic crystal layer must not be excessive in order to avoid the second
order modes from propagating. Additionally, we are not interested in deep gratings that make
the aspect ratio of the etching process unrealistic. For 1-D photonic crystal cases, by
analytically solving Maxwell’s equation in the stall depth limit, it has been shown that effective
refractive indices are strongly dependent on the grating depth. Moreover, the effective
properties are shown to depend not only on the grating structure but also on the refractive
indices of the surrounding media [5]. Consideting these limitations, there has not been much

benefit from this method and its simplicity in our analysis.

12



2.1.1.2  Effective index and Weighted index: methods

Effective index methods are approximate, easy and common techniques for the first order
modeling that reduces the 3-D modeling effectively into two 2-D models. In its simplest form
it is based on the assumption that separable wave solution in the Cartesian cootdinates is a

good approximation and that the field is confined mainly in the high refractive index medium.

The weighted index method [6] belongs to the effective index methods family and is another
simple method. It is based on the same assumption as the effective index method, but the
accuracy of the method is enhanced by a variational formula. We have applied weighted index

method to slab photonic crystals in Chapter 4.

2.1.2  Numerical approximations

Thete ate three categories of numerical methods in the literature, which are capable of solving
our problem. The plane wave expansion method, which comes from solid state theoty,
numerical techniques based on the time domain (mainly finite difference time domain method)
and finally numerical techniques based on spectral domain, (finite element methods and the
transfer matrix method are good examples of such a family). In the following we discuss each

of them and try to explain its pros and cons btiefly.

2.1.2.1  Plane wave expansion method (Floquet-Bloch formalism)

This is one of the standard methods in electronic band structure problems [7]. It is based on
the Fourier series expansion of permittivity €(r) and expressing wave functions as Bloch
theorem indicates. Substituting into Helmholtz equation and using the orthogonality of
Floquet-Bloch modes leads to a system of homogenous lineat equations. For a solution to exist
the determinant of the linear system should be zero. The propagation constant can be found
by truncating the linear system and find the solution of the resulting nonlinear equation of

determinant equal zero [8].
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The Floquet-Bloch approach was first applied to 1-D photonic crystals [9]. It is shown that by
tracing the paths taken by the various components of group velocity, one can reach a detailed
understanding of the field structure in all regions of the field [10]. Indeed, since it defines the
main constant ray-direction of a Floquet-Bloch mode, the group velocity leads us to the
conclusion that the Floquet-Bloch modes play the same role in a petiodic medium as the plane
waves In an isotropic medium. They may be reflected, refracted, focused, scattered,
independently excited, will interfere with one another, and groups of them can be united to
form finite beams. As a matter of fact, the propagation of light inside any dielectric grating can
be qualitatively understood through the excitation, interference, refraction, and reflection (at
discontinuities or boundaries) of the Floquet-Bloch modes. We have used this idea extensively
through the next chapters. In addition (and in sharp contrast to the coupled waves), there
exists an elegant and satisfying means of summarizing the charactetistics of the Floquet-Bloch
modes called the wave vector diagram([11;12]. In the reciprocal space, this diagtam shows all
the wave vectors permitted (at a fixed optical wavelength) in the petiodic medium. This
diagram has similarity to the dispersion surfaces in the dynamical theory of x-ray diffraction
[13], and provides an elegant summary of the properties of Floquet-Bloch modes. We have

used it in 2 normalized form in this thesis, resembling the index ellipsoid.

The plane wave expansion method is clearly an attractive method because of its simplicity and
applicability, at least in principal to any type of (). In the case of our interest (slab photonic

crystal, which the permittivity is constant in each section), the normal component of electric
field to be discontinuous at the dielectric interfaces. Therefore, the electric field is a
discontinuous field. On the other hand, the magnetic field is continuous, but its detivatives ate
not. The discontinuity behavior of the electromagnetic fields near the dielectric interfaces
causes the plane wave expansion method to converge slowly. These discontinuities sevetely
limit the accuracy of the method. Deviation of the truncated series from the actual one is latge
and the convergence is very slow. In fact it is well known that the convergence rate of a
Fourier series depends strongly on the smoothness of the expansion functions. This problem
will be more severe for high dielectric contrast and near close-packing ratios and for higher

trequencies [14].

Ref [15] has reduced 3-D modeling of slab photonic crystal to a 2-D one by using an
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equivalent slab refractive index. This approach is highly skeptical in the case that refractive
index contrast is high. We have shown that how this may lead to erroneous results in chapter 6.
Ref [16] has presented some results for sinusoidally modulated slab waveguide. Ref [17]
considers a slab photonic crystal as a 3-D petiodic structure in the out of plane direction (the
supercell method). It also considers the period in the third direction is large enough that the
bound modes are not affected. The high number of plane waves in the non-periodic direction,
and the replacing of the open boundary with a periodic one have consequences which are
discussed in Chapter 5. In that chapter we also present a new method to remove these

deficiencies.

2.1.2.2  FDTD method for photonic crystals

For the calculation of band diagrams of 2-D photonic crystal slabs, one petiod of the
structure is mapped on the computational domain [18]. The Bloch boundary condition,
which is defined by

E(t+a,)=E(t+a,z)exp(k-a) (2.3a)
H(r+a,/)=H(r+a,?)exp(k-a) (2.3b)

where a is a primitive lattice vector and k is the wave vector, can be applied at the four lateral
edges parallel to the y axis (see Figure 2.1.1) . For the top and bottom edges perpendicular to
the y axis, the Mur’s second-order absorbing boundary conditions [19] are applied to absorb
the waves leaked from the slab. First, broad Gaussian pulses are used to excite the
electromagnetic eigenmodes of the slab over a wide range of frequencies. The electromagnetic
fields at observation points are recorded for every time step and then Foutier transformed to
obtain frequency spectra. The spectra will contain peaks at frequency values of the eigenmodes
corresponding to the wave vector k given by the Bloch boundary condition. Second, natrow
Gaussian pulses are used to excite every single eigenmode individually and to obtain the field
pattern of such modes. A variational expression has also been obtained for eigen frequencies

of slab photonic crystals [20].
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4. Mur's absorbing
boundary conditions

Bloch boundary
condition

Figure 2.1.1. One Unit cell computational domain for the band calculation using 3-D FDTD method
with Bloch and Mur’s boundary conditions.

As is clear, FDTD assumes the wave vector in photonic ctystal and obtains the cotresponding
frequency and fields thereafter. In practice, we usually seeck to determine the propagation
constant and field amplitudes for a given frequency (or wavelength in vacuum), and direction
of propagation. So, one needs to perform a seties of simulations in which the ditection of k is
fixed and propagation constant is changed over a given range. The corresponding frequencies
(or wavelengths in vacuum) then can be used via interpolation to determine the unknown
propagation constant corresponding to the desired wavelength in vacuum. The method is also

not capable of tracing leaky modes due to the presence of absorbing boundaries.

2.1.2.3  Finite element spectral domain

The elegance and accuracy of time harmonic electromagnetic field numerical methods for
photonic ctystals shows itself in the finite element method in which petiodic boundary
conditions can be implemented easily [21]. Domain disctetiziation of the unit cell is performed
to produce meshes which are wrapped such that opposite boundary nodes meet. Knowing the
frequency and the Bloch wave number, propagation constant and fields can be obtained by
solving an eigenvalue equation. We have used this method as a benchmark for compatison of
the accuracies in methods presented in chapters 3 and 4. The details of the method have been
discussed in Appendix A.
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The programming efforts needed to implement the finite element method and to generate
meshes are considerably higher than other methods. It is the reason that such an accurate

method has not found its deserved position in photonic crystal modeling yet.

2.2 Reflection from and Transmission through Photonic crystals

Although, a wave vector diagram can be used to get the transmission and reflection beam
directions, anything beyond this, needs more accurate numerical modeling. Particularly
important is the amplitude of the beam, which has commonly been calculated using FDTD
techniques [22-24].

2.2.1 FDTD method

Although the robustness of FDTD method makes it a choice for analysis of wave propagation
in many different structures, however FDTD implementation without considering the physics
behind the model usually makes its computer resource consumption unacceptable. This is
mostly the case for a full 3-D modeling of structures. Consider our case of interest, which is
slab mode reflection and transmission from photonic crystals. The structure is periodic in only
two directions or even one direction, the mode confinement in normal to the slab photonic
crystal plane is achieved by proper refractive index contrast. The wavelength and direction of
incident slab mode are known. The teflection and transmission coefficients and directions are
to be determined. The accurate simulation needs 3-D simulation. Ignoring the petiodicity of
the media has a dramatic consequence regarding the computer resource consumption that
makes 3-D simulations virtually impossible. Implemehting petiodic boundary conditions in
time domain requires fields to be known a priori. Even for 2-D modeling when the structure is
large, the FDTD simulations are often time consuming, and in many cases prohibitive. To
study such an effect characterized by high wavelength and angular sensitivity, fine spatial and
temporal grids and large simulation region are inevitable, which are frequently beyond the

capability of commonly available computer facilities.
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In the last two decades, there have been numerous attempts to improve computational
efficiency of the FDTD method by using local space and time grid refinement strategies. The
accuracy, and/ot stability wete the sacrifices of the gtid reﬁnement. Recently, a 3-D refinement
scheme has been introduced that 1s stable for long time integratioﬁ, and possesses the accuracy
of the original FDTD. A tenfold irnprovement in computational time was obtained in
computing the quality factor of photonic crystal micro-cavity [25]. This method can find
potential application in our case of interest where the wave reflection at free space (with a large

gtid) from photonic crystal (with fine grid) is desired.

Parallelization of the FDTD method using distributed computing has been suggested by
implementing rules and tolerances on a cluster of computers [26;27]. With the new generation
of parallel machines that possess the connected parallel shared memory system (SMP nodes), a
typical three weeks long computation period has been reduced to a less than a day (with 24
processots) [28].

Even with all these improvements, 3-D FDTD simulation of motre than a few photonic crystal

periods is not practical [29].

2.2.2  Coupled mode theory

The coupled-wave approach has tended in the past to be used in approximate analyses,
however, a rigorous numerical coupled wave method, suitable for treating the diffraction of
plane waves incident on parallel-slab-gratings, has also been introduced [30]. The theory can be
simplified tremendously for the sub-wavelength grating, Therefore, it may be possible that due
to their small period, all higher order diffracted waves ate at cut off and only zeto-order
transmitted and reflected beams propagate outside the grating. The condition for such a
simplified case 1s discussed further in Chapter 10.

The grating region is characterized by a permittivity, which can be represented by a Fourier
expansion. Using Maxwell’s equation, a set of coupled ordinary differential equations can be
found. The number of coupled equation that must be solved depends on the number of spatial

harmonics that one takes in the Fourier series expansion. As the numbert of spatial harmonics
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is increased, the solution will converge to the exact one. In the case that there is no higher
order diffracted wave, the theory leads to replacing the layer with a biaxial thin film [31]. This

method has been used as a bench mark for effective medium theoties [32)].

The coupled-wave approaches have been developed mainly for holographic and surface relief
grating structures. They have been formulated to analyze transmission and reflection of an
incident plane wave on the surface relief gratings, thick or thin volume index gratings, ez. The
extension of the theory for slab 2-D photonic crystals has also been presented, but with limited
accuracy for higher contrast system of materials [33]. It is a proper tool for analysis of mult-

stack 1-D photonic crystals (cascaded volume grating) [34].

2.2.3  Transfer, Scattering and Impedance matrisc method

The transfer matrix method is another heritage of solid state theoty. In its original form, it is
based on the electron wave equation (the Schrédinger equation) that ignores the polatization
states of photons [35]. Including polarization, Pendry in 1992 was the pioneer in obtaining
metrics relating the field components on a rectangular grid. Multiplying these transfer metrics
and using Bloch condition over a unit cell, one can get an eigenvalue equation with the Bloch
mode numbers as eigenvalues[36]. It can also be used for transmission spectta calculation.
However, the method in its basic form has a convergence problem. It is suitable for small
number of layers, and even for that it needs special treatments [36]. Assuming the field at the
mesh points along a line or a plane (depending on the modeling complexity) a smooth function
of position., one may use orthogonal functions for representing the field. Then the field at the
mesh points can be replaced by the amplitude of the orthogonal functions. Rayleigh multi-
poles [37], analytical modal functions [38], and plane waves [39] have been tried as the
otthogonal set already. The transfer matrix then relates the amplitudes at a line (ot plane) to the
proceeding line (or plane). If the structure is periodic along this line (ot plane), then problem
can be simplified provided one uses the well developed theoty for the field [37]. Changing the
dependent variable to forward and backward field (instead of one of the field components), the
method’s convergence problem has a great improvement. Vety accurate and stable results have

been obtained by choosing the impedance matrix for connecting magnetic field at a line (ot
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plane) to the electric field at the proceeding line (or plane) [38]. Although the method is used
for 3-D photonic crystals [39], it has not been used for obtaining the band diagram and the
transmission of the interested case of slab photonic crystal yet. The reason probably is behind

the open boundaries and the convergence problem.

2.3 Mode matching techniques

The practicality of many photonic crystal devices relates to how effectively one can couple light
into them or couple out the light to the free space (or in the planar technology, to the slab ot
the waveguide mode). Unfortunately this coupling is not satisfactory. Depending on the
situation the mode matching techniques have different structures. In this thesis we are

interested to couple light from homogenous medium into bulk photonic crystal.

The light coupling deficiency was recognized soon after the planar superprism was
proposed[40]. The first successful idea for the 2-D photonic crystal was to play with the
interface holes. Projected holes are able to reduce the coupling loss efficiently. The loss as
small as 0.01dB through FDTD simulation [41], the direction of the hole and its corresponding
shape is critical to achieve such a low coupling loss (see Figure 2.3.1).

44444

©O000O0
OO0 000

Figure 2.3.1 The projected hole as have been suggested by Baba ez.4/. [41]

Putting rectangular air-holes at the interface and aligning them in direction of the transmission
has also been proposed. The 70% coupling efficiency has been reported using FDTD
simulation [22]. The suppression of unwanted refracted modes has also been repotted.
Adiabatic tapering of the air holes at the interface has also been suggested. The 10-layer
'tapered air hole has been optimized to achieve wide band, wide angle coupling efficiency using

a combination of plane-wave expansion method and mode matching technique. The loss could
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be negligible but unfortunately, the hole sizes as small as 0.05 of the bulk photonic crystal are
needed [42]. For a typical example of a bulk silicon photonic crystal of square lattice with

period 230nm, and hole size of 100nm, the minimum hole size would be as small as 5nm.

Composing the reflected wave component by cascaded diffracting gratings is a novel idea with
limited applicability. A coupling efficiency of 84% has been achieved for un-slanted hexagonal
lattice [43].

2.4 Multiplexing using photonic ctystals (superprism effect)

The first observation of beam steeting with wavelength (later called S-vector superptism effect)
was observed in slab 1-D photonic crystal (and at TM polatization) in 1987 [16]. A two-
channel demultiplexer with channel spacing of 3.9nm and cross talk of 12dB was reported
using moderate refractive index material (T2,0; with refractive index of 2.10 over Tempax
glass of refractive index of 1.47). The photonic crystal patterns were generated using fringes of
He-Cd laser produced by an interferometer at wavelength of 441.6 nm. The wave vector
diagram (also called equi-frequency contour) has been used to analyze the behavior of Bloch
modes. Optics of Floquet-Bloch waves in photonic crystals was well described using wave
vector diagram by Russell in 1986 too [44]. As we will show in later chapters, the normalized

form of the wave vector diagram is more suitable for our applications.

However, it was not until 1998, that Kosaka et.al reported 500 times more dispersion than the
conventional glasses (i.¢, 5°/nm compared to 10°/um of a conventional glass) [45;46]. The
phenomenon is caused by the apparent distortion from a circular shape of the wave vector
diagram and also by multiplicity within the diagram of the second or the third band of
photonic crystal. Later this beam steering phenomenon was called S-vector superptism
dispersion. In planar technology, using GaAs-based heterostructure perforated by a triangular

photonic crystal lattice, it was W, ¢z.4/, in 2002 who reported 0.5°/nm dispersion [47].

The obsetvation of 5°/nm beam steeting dispetsion in a pseudo-2-D auto-cloned photonic

crystal (using high refractive index contrast of silicon and glass) was so promising that the
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authors claimed that the demultiplexer based on the superprism phenomenon can be four
otders of magnitude smaller in area compared to other alternatives (say silica-based atray
waveguide grating, AWG, filter) [46]. However soon after, it was recognized that this type of
dispersion does not lead necessarily to a high resolution. Using simple Gaussian wave
assumption in photonic crystal Baba [48] showed that the resolution of S-vector superprism is
not that great due to large beam divergence inside photonic crystal. This excessive beam
divergence is otiginated from the curvature of the wave vector diagram near the bandedge
where the dispetsion is high. They have shown that a resolution of 0.4 nm for 56 channels

needs photonic crystal size of 6.5 cm® (comparable to the conventional AWG).

Momeni ezal. developed a mote rigorous theory for approximating light propagation in
photonic crystals [49], and optimized the S-vector superprism structure using 2-D photonic
ctystal of air holes into bulk of silicon [50;51]. They have shown that 754 pm?® device size
(photonic crystal area) is sufficient to resolve 4 channels with 20 nm channel spacing. As we
will show in chapter 6, even this device size is an over estimation of a real situation where one

has to take into account the finite slab height.

The excessive beam expansion in S-vector supetprism has been mitigated using a
preconditioning technique. The idea is the using to the negative refraction observable at the

bandedge of the second band to compensate the positively refracted incident beam [52;53].

Another issue regarding the observation of the huge dispersion is that it only occurs over
narrow spectral range. Effective use of the dispersion needs to maintain the dispersion over
relatively longer spectral range. Cascading the photonic crystals to make a relatively wide band

demultiplexer is a2 new idea that has been introduced in chapter 7.

An alternative to the beam steeting dispersion (the S-vector superptism), is to employ the
angular dispersion that also occurs near the bandedge (the so called k-vector superprism). The
high sensitivity of refraction angle with wavelength at the free space photonic crystal interface
will add together if the photonic crystal interfaces cross each other with an angle (this makes
photonic crystal a prism shape with the interface crossing angle as the apex angle). As a
consequence, the enhanced type of spectral resolution, (similar to a traditional prism made for

visual light) can be achieved [24;54;55]. Better resolution and scaling with channel count make
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it a suitable choice for fine resolutions and for the most DWDM applications. As we have
shown in Chapter 8, the device size (ptism atea) of about 0.01 mm? is enough for resolving 32

channels with 100GHz (~0.8 nm) channel spacing.

The first experimental result of k-vector superprism has been carried out in millimeter wave
range of spectrum. Lin, et.als. made a two dimensional photonic lattice consists of 10cm long
cylindrical alumina-ceramic rods of diameter with permittivity of €, =89. Using the
conventional microwave setup, they excited the prism with an antenna radiating a beam at

»=99 GHz, and observed the high sensitivity of the deviation angle to the incident angle
[56].

2.5 Waveguide focusing elements

Our proposal for k-vector demultiplexing consists of two focusing elements. The focusing
elements for the high contrast material that we have used can be two mitrors. The mitrors can
be made using the total internal reflection of light from silicon slab to air. Therefore a parabolic
trench 1s the simplest solution. This is the approach we adopted for our layout as is explained
in chapter 10. However, the case gets more challenging as the refractive index contrast
becomes smaller. Waveguide lenses have been investigated by several researchers. We have

reviewed them in the following section.

The curvature of the wave vector diagram also has been used to collimate light propagating

inside a photonic crystal.

2.5.1  Mode-index lenses

Mode-index (also called homogenous refracting) waveguide lenses were proposed in the eatly
days of integrated optics, but they were not so useful due to mode coupling loss [57]. In
homogeneous thin-film lenses, guided light is refracted at the boundaty between two regions of

disparate waveguide. Having optimized the design of a homogeneous multi-element lens, the
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lens petformance will in practice be limited by the efficiency of light transfer across that
boundaty. This is the coupling efficiency between the fundamental waveguide modes in the
two waveguides. Light may be lost by scattering out into the substrate, or by coupling to

modes other than the fundamental one in the second guide.

The coupling efficiency may be expressed as the overlap integral between the transverse

electric field profiles E, and E, in the low and high index guiding regions, respectively. It is

clear that in order to reduce light in unwanted modes (which would be refracted differently
from the fundamental mode and hence would constitute a background noise signal around the
focused spot) the low index waveguide at least should only support one mode. It is shown that
the high index guide will inevitably be multimode for optimum coupling efficiency. However,
any higher mode excited in the high index lens element by coupling from the fundamental
mode of the low index waveguide region, at low efficiency, will be re-coupled at exit from the
lens element at equally low efficiency to the fundamental guide mode, and although mis-
focused, should not present significant background noise if coupling efficiency is high.
Nevertheless, higher modes were supported in the guided region; there could be significant
coupling of light to them from higher modes in the lens region.

Various refractive index profiles have been considered for the two guiding layers. Using step
profiles the solution of the waveguide characteristic equation is straight forward and electric
field profiles are easily calculated, and then closed form relation for coupling efficiency can be
obtained. It can be shown that Snell’s law is applicable if one uses the effective refractive index
of the propagating mode instead of the refractive index of the guide material. It follows that
the classical lens design techniques can also be used in the design of waveguide lenses. A bi-
asphetic lens with focal length of 12mm, f/#=4 and field of view of 8=6° has been

designed for An =2 0.12, the repotted insertion loss is 5 dB [58]. Cleatly the loss is very high.
Our investigation regarding mode-index waveguide lenses is on its first stage. The challenge is

reducing the coupling loss as much as possible, while providing the required f / # and field of

view.
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2.5.2  Photonic crystal focusing elements

The light propagating inside a photonic crystal is governed by its wave vector diagram, which
corresponds to the index ellipsoid in conventional optics. The optical beam shaping due to the
curvature of different operating point in the wave vector diagram was fitst obsetved by Russell

in 1986[12]. Self collimating was first reported in 3-D photonic crystal by Kosaka in 1999[59].

These types of lenses usually work at the second band of the photonic ctystal, whete the band
curvature 1s higher, but they all suffer from the spherical aberration. A perfect lens needs a
parabolic wave vector diagram and because of that all photonic crystal lenses are suffering
from spherical aberration. Engineering of the photonic crystal to make given patt of wave
vector diagram as parabolic as possible has been done by deforming the triangular lattice [60].

Also the insertion loss has to be improved.

There is also other kind of lens that needs a region of wave vector diagram that looks like a
circle (isotropic region), then the equivalent refractive index can de defined (which is usually
smaller than the slab region). Then the conventional lens equations can be used to shape the
front that back surface of the lens for making the desited beam shaping [61]. By the introduced
angular periodicity, we have used a similar idea to propose a novel lens for integrated optics in

chapter 9.
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- ’YC/mp‘l‘er 3

1-D PHOTONIC CRYSTALS

In this chapter, we start with the matrix formulation of dielectric stratified media, and
then we obtain the dispetsion equation of the slanted 1-D photonic ctystal. The
normalized wave vector diagram, which is the diagram of choice for our next step of
exploration, is obtained for slanted and un-slanted cases. Based on the normalized
wave vector diagrdm we explain and explore the basis of k-vector and S-vector
dispersion. The zero order diffraction condition is derived for 1-D photonic crystals.
Finally a model for FDTD analysis is explained. An excellent agreement between our
wave vector analysis and results of FDTD ‘is observed. Transmission and reflection
coefficients to and from 1-D photonic crystal have been obtained using the FDTD

analysis.

3.1 Maxwell’s equation for dielecttic media

The spatial relationship between electric field E(x, y,7)and the magnetic field H(x, y,5) of

an optical medium are determined by Maxwell’s equations. If we assume that the medium is

isotropic, then the dielectric constant €(x, y,7) can be telated to the refractive index
n(x, y,3) by € =n’e,, where €, is the permittivity of free space. On the other hand, for non-

magnetic materials, which normally constitute an optical materials, the magnetic permeability

i is almost equal to the free space value |, . Under these conditions, the source free Maxwell’s

equations will be as below[1]
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V><E=z'[”_°] EH ‘ | 3.1)

VxH=— [—"] 3.2)
L

E (3.3)

V:-H=0 3.4

whete the waves are assumed to be monochromatic with angular frequency w, & = 2m/\, is

. 1/2 Y
the free space wave number and is equal to <w2 € LLO) , and an implicit time dependence

exp(—7w?) is suppressed throughout.

The boundaty conditions across an interface between two media of different refractive indices

are:

(i) Continuity of the tangential components of magnetic and electric fields across the interface,

(i) Continuity of the normal component of the displacement vector, €,#°E across the

interface.

If a medium has a refractive index profile, which dose not vary with distance along g axis, ze.,

n=n(x, y), then the media is translationally (axially) invariant. In other words, the electric and

magnetic fields in the medium are separable as below

E(x, 5,2 =E(x, y) exp(i £3) (3.5
H(x, 5,5)=H(x, y) exp(/ £3) (3.6)

whete £_ is the propagation constant along the optical axis. We decompose these fields into

longitudinal and transverse components, parallel and perpendicular to the optical axis

respectively, and denoting by subscripts g and t, where
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E(x, ) =E,(x,5)+ E (x,)) a, (3.7)
H(x, y)=H,(x, )+ H (x, »)a, (3.8)
where a_ is the unit vector parallel to the longitudinal axis.

If we substitute the field representation of Eqs.(3.7) and (3.8) into the source free Maxwell’s
equations (Eqs.(3.1) and (3.2)) and compare the longitudinal and the transverse components,
we will obtain

Etz—[”—] ! 4, x( & H +iV,H,) (3.9)
S o” |
[ ] /eia x(&E,+iV,E,) (3.10)
E{=[ ] iV, xH, = (\7 ‘E,+E,-V, Inn*) (3.11)
€y ) by 1 k,
1/2
.| € 1., Z
H,=—i —] —4_-V,XE,=—V,-H, (3.12)
l"l‘O /éO /ég

If we eliminate H, or E, from Eqgs.(3.9) and (3.10), then we can express the transverse fields

in terms of the longitudinal fields as below

1/2
Et m/@ VE [80] /éoﬁ{XVtH{ (313)

<

1/2
/é V.H -I-[ ] koﬂzﬁ xV. E (3.14)
g

Ht /éZ 2 /é bd t 2

k4

The electric and magnetic fields can be normalized arbitrarily, so that in general
E(x, y) and H(x, y) are complex vectors. However, in a non-absotbing or non-active media,
the refractive index # is a real number, and Eqgs.(3.9)-(3.12) show that we can choose the

components of E and H such that the transverse components are real, and the longitudinal

components are imaginary. Thus,
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E,, H, real, and E , H_ imaginary (3.15)

The backward-propagating fields are simply related to the forwatrd-propagating fields, by
transforming £, to —k,. We can deduce from Eqs (3.9)-(3.12) that there are two possibilities,

either
-_ + + A T — 1t + A
E =-E, —I—E{ a3 H =H, ——H{ a, (3.16)
or
E =E/-E i; H =—H+H; 3 (3.17)

We adopt the last convention throughout this chapter. The relationships (3.15) and (3.17) both

hold for non-absorbing or non-active media, then by combining them, we will have
E =(E"); H =(-H") (3.18)

If we eliminate either the electric field or magnetic field components from Maxwell’s equations
(Eqs.(3.1) and (3.2)) assuming fields are separable (as Eqs.(3.5)-(3.8)), we obtain the

homogeneous vector wave equations
(V:+7* k- )E=—(V,+ik4 )E, -V, Inr’ (3.19)
(V247" & —£2)JH=|(V, +i k4, )xH][x 7, lIns" (3.20)

The above equations can be reduced to a set of homogeneous vector wave equations for

transverse and longitudinal components given by

(Vi+7#* & —& JE, ==V, (E, V,Inr*) (3.21)
(Vi+n* &l — k2 )E, =ik E, -V, Inn’ (3.22)
(Vi+n* & —£ JH, =(V,xH,)xV,lnr’ (3.23)
(Vi+# & k2 )H,=(V,H,—ikH,)-V, In 2’ (3.24)
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The longitudinal components E, and H, in Eqs.(3.22) and (3.24), depend on the transverse
fields E, and H,. If we use Eqs.(3.13) and (3.14) to express E, and H, in terms of E, and

H_, we will obtain the following coupled equations

% Y g B
(Vf -I—p)E{ — 2V, E,-V,In n? :[Bﬁ] 0% ﬁ{.(vt H, XV, h‘lﬂz) (3.25)
? &) P
2,2 V2L b 2
(Vf +P)H:< _k V.H, V.l e :[8_0] O_ZLQ{-(VtE{thlnnz) (3.26)
Mo p

where p= k) n’ —kg. As it can be seen, the nonzero V,Inn’ terms relate E and H,

together; so the equations cannot in general be decoupled. Therefore, in general TE and TM

modes are not approptiate solely, since neither E, =0 nor H, =0 are accepted solutions.
Accordingly, the modes of optical media are in general hybrid having both Ez and H{

COl’IlpOl’lCl’ltS.

The transverse components E, and H, are related to each other. If we eliminate E, from

Eq.(3.10) by using Eq. (3.11) and after substitution from Eq.(3.21), we will have

1/2
a:Fﬂ ! a x| 7’ kB, —V, x(V,xE,)] (3.27)
u’O /éO Bg
and similarly for E,
" 1
Ko A
E =|t i x| kA H ——V (V.-H 3.28
t €0 ] ko ”2 4 2 t /é{ t ( t t) ( )
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3.2 Wave equation in one dimensional stratified media

Consider a dielectric medium, which is uniform in y and g directions. The g axis is assumed to
be the direction of wave propagation. (see Figure 3.2.1) In this planar structute the refractive

index profile is #(x), and the field components given by Egs. (3.21);(3.24) reduces to the

following equations
Ai*E, d dlnn’ 22 2 ‘
B ]+(n K—E)E,=0 (3.29)
i*E
7‘% +(ﬂ2 kg—/é:)EJ:— 0 (3.30)
X
4B : dlnn’ 242 42
— z/éz[ » E +(n* & —£)E =0 (3.31)
2
dd If +(n B~ )H, =0 (3.32)
X .

PH, Jinn® dH,

J

R oy +(n* k3 — B )H =0 (3.33)

l x
J na | m | m Y I
Cladding Substrate
0|1f2 71| J
X0 X1 X2 X2 XJ1 Xy

Figure 3.2.1 The J+2 layers dielectric stack, lying between the semi-infinite cladding and substrate media.
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A2H, dinA( dH
ik H = —5 | 4 (s — k) H = 0 (3.34)

Field components are related to each other via the following equations:

iB. dE
E ==t .2 % 3.35
*TPE-E dx (3.33)
/2|
oo —|%| _thr 2B 3.36
J 2 12 2 (‘ )
Ry 7k —k dx
1/2 i
E =t ik 4H, 3.37
J 2 72 2 ( )
e) "E-K dx

ik, dH,

TRk dx

(3.38)

Equations (3.35) and (3.36) ate independent of H, , thus if we assume E, =0 (for TE mode)
we will immediately have E =H ,=0. If we express other field components in term of E s

we will have the following relationships for nonzero field components,

—,é 1/2
H == Z{io—} E, (3.39)
0 0
. 1/2
H{:%’[e_o] i’f_f (3.40)
o \Fo X

where Eq. (3.12) is used and E satisfies the scalar wave equation (3.30). Similarly  Eqs.(3.37)
and (3.38) are independent of E, . By assuming H, =0 (for TM mode), we have

H_ =E, = 0.Using Eq. (3.11), other nonzero field components in term of H | are written as

(3.41)



o .
; dH
- E=—t_|M| 25 (3.42)

okt e, dx.

where H  does not satisfy thg scalar wave equation, but Eq. (3.33).

A set of polarization-dependent parameters Y , VU, V. and W can be defined, so that all
equations can be applied to both polarizations [2]. For each polarization, three field
components are zero, and we assign U, [V and W to the amplitudes of the nonzero
components according to Table 3.1. The signs are chosen to coincide with the positive

direction of the traveling wave propagation in the positive x and g axes.

Table 3.1 Polatization-dependent parameters

The power flow is given by the time averaged Poynting vector S, so the components can be

written as:

5. =%Re(UV*)exp[z' (.~ )3] (3.43)
5,=0 (3.44)
5, =5 Re(UW")esp i(, — £}z (3.45)
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where we consider the possibility of Im (4 )]=0. The total power is found by integrating S
p ty x p y g g

ovet an infinite cross sectional area .4

According to Eqs.(3.39)-(3.42) we have:

1 zl.ﬂ (3.46)
o dx
.
W——z/éz— U (3.47)
o
v=—L.4" (3.48)
Nou dx
. whetre
. 1/2
—,éZOOL [EQ-] for TE mode
B
N= | 0 s » (3.49)
_Z(: B for TM mode
kyn | g,
and

o= -k (3.50)

The tangential field components U and 7 are continuous across the interfaces. Meanwhile

is the amplitude of the component normal to the interfaces and is proportional to U.
Thetefore, a total field is adequately specified by the vector [U V]T . Combining Eqs.(3.46)

and (3.48), we have the following coupled equations

U
|4

4
dx

0 o~y

'U 3.51
ay 0 ||V 3-31)
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3.3 Field Transfer Matrix Formulation

There are various ways to solve Eq. (3.51) for atbitrary #(x) profile. However, we consider
only a general approximate method that uses multiplication of 2X2 mattices. Unfortunately,

this is not a vety efficient method for complicated structures. If we approximate 7*(x)

stepwise (see Figure 3.3.1), then we will have

2 x>0
J
ﬂz(x)=~2njn(x—xj) x; <x <0 (3.52)
=1 A,
ﬂf X <X

where A =x;—x | is the width of /" interval approximated with constant refractive index

”jz This technique is known as stratification method, which consists of replacing the arbitrary

” (x) by a multilayer structure, where the index value and width of each step is chosen to yield

a good approximation of the original profile. It can be shown that this method is formally
equivalent to the Euler discretization method, but it involves substantially greater computation.

Although it is not a very efficient method, it is shown to be easy and versatile.

Figure 3.3.1 The refractive index profile of non-dissipative or non-active medium

The following field transfer matrix M, relates the field amplitudes U ; and I7; at x; to the

cottesponding amplitudes at the point x -1 38 follow
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Ul | (3.53)
Vo ", '

The total transfer matrix for a stack, consisting of | films is given by the product of the

respective transfer matrices for individual layers

M=[]M, (3.54)

It can be shown that the transfer matrix for non dissipative or non active medium (real

refractive indices) are unimodular ze., its diagonal elements »,, and ,, are real, whereas its

off-diagonal elements #,, and ,, are imaginary.

The total field transfer matrix M characterizing the stack must yield the cottect field at the

cladding interface, when it is applied to the field at the substrate interface, ze.,

Ual|_ M Uso 3.55
v

cl

The propagation constant /éz must be found in such a way that the above equation remains

valid. Using the above procedure, the dispetsion relation can usually be obtained.

The field transfer matrix M accounting for the wave propagation through the bulk of each

layer, is considered in next sections.

3.4 'The field transfer matrix for a uniform layet

Consider the jh layer whose dielectric profile is constant, as nj . Taking Laplace transform of

Eq.(3.51), we obtain
sl U] [ 0 e[, 656
0 I LY B e VL VR U [
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where #,=L (U,), »,=L (I/;) and s is the vatiable of the Laplace transform. By solving

Eq.(3.56) we have
", o, | (UL
[ e (3.57)
vi| 5o |0y s V4
Thus M equals to [2]
cosh{a A —~7'sinh (o, A,
M. — ( J /) J ( J /) (3.58)

a —ﬂ{jsinh<0Lj. A].) COSh(OLj Aj>

Note that M ; is unimodular (real diagonal and imaginaty off-diagonal elements).

3.5 The field transfer matrix for 1-D photonic crystal

A unit cell of a binaty stratified media (1-D photonic crystal) consists of two layers of different

refractive index #, and #, or

n, 0<x<TA

3.59
n, TA<x<A ( )

where A is the petiod of the layered media, and T is the duty factor. Using Eq.(3.58), the

transfer matrix of the cell can be obtained as:

ToM. = cosh (ala) cosh (oazb) + A7 ', sinh (ala)sinh(azb) —~;" cosh ((xla)sinh (uzb) -~ sinh(ala)cosh (oazb)
oM —~, cosh(oy,)sinh (ot,6) —~, sinh(o,#)cosh(a,b)  cosh(oya)cosh (azb) + N7 sinh (o, @)sinh (o,b)
(3.60)

Where a=7TA ,and b= (1 - T)A . Note also that matrix T is unimodular.
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3.6 Dispersion relation for a 1-D photonic crystal

If the media is periodic, ze., n(x) = n(x-I—A), then according to Floquet theorem, wave

components are of the form
U(x)=U, (x)exp(ik.x) (3.61)
whete U, () is petiodic with a period of A, ze.,

U, (x+A)=U, (x) (3.62)

N

and £_ is Bloch wave number. Using transfer matrix of Eq.(3.60), we have

"|=exp (—z' /éxA)[g”] (3.63)

The phase factor exp(—74_A) is thus the eigenvalue of the translation matrix T which can be

given by

exp(—ikA)= %(fu 1) i{[é(;“ +1, )] - 1}2 (3.64)

whete 7,,,7,,,2,, and ?,, are matrix components of transfer mattix T. Since matrix T is uni-
modular, its eigenvalues are inverse of each other. Eq.(3.64) gives the dispersion relation

between o, /ez and £, Rewriting Eq. (3.64) as [3]

kA= cos™!

%(’11 +tzz)] (3.65)

Regimes ’(t“ +1,, ) / 2] <1 corresponds to real &3 nd thus propagating Bloch waves. In this

case wave vector finds component in x direction (in addition of the component in g direction),

ze.,
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k=ka +ka

g XX

(3.66)

However when |(l11 +14,, )/2[ >1 then &, = m~/A+ik,; which has an imaginary part £,
so the Bloch wave is evanescent. The regime in which ‘(tll +1, ) / 2’ =1, corresponds to the
wave propagation in g direction (£, = #7/A, corresponding to band edges). In this case
Eq.(3.65) can be written as:
cosh (o) cosh (o) +%[% +%1] sinh (o) sinh (0,6) = 1 (3.67)
2 h

Introducing more conventional variable £ (transversal wave number instead of o)

k=ia= [nk — & (3.68)

in Eq. (3.67) and using Eq. (3.49), we have [4]

cos (/éla) cos (/ézb) - % [—@— + fi] sin (/éla)sin (/ézb) =1 for TE modes
2 (3.69)

2 2
cos (/éla) cos (/ézla) — %[-le—é + %%] sin (,éla) sin (/ézb) =1 forTM modes
2 1

The eigenvectors cotresponding to the eigenvalues of Eq.(3.64) are obtained from Eq.(3.63) as

Us
V.

0

,’12 (3.70)
exp(—ik,\)—1,

The diagram showing the relation between £, and k. at specific wavelength is called the wave

vector diagram (or equi-frequency contour) [5]. Usually we normalize wave vectots versus £,

(the wave number in vacuum) as below
n, =k [k, n, = ,éz//éo (3.71)

The analogy of this diagram and index ellipse is obvious [6]. This type of normalization also
makes implementing of wave vector interface boundary condition easy (see Eq.(3.79)). The

diagram can be made only on the first quadrant; the other parts of the diagram can be
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obtained easily using the group symmetry of the lattice, namely there are mirror symmetries

around n, and #_.

3.7 Snell’s law in photonic crystals -

Consider a time harmonic plane wave from a homogenous and isotropic medium of refractive

index #, with a wave-number £, = #,k,is incident to another homogenous and isotropic

medium of refractive index #, where the incident angle is ,. A schematic diagtam of the

structure is depicted in Figure 3.7.1. The tangential component of the wave vector of at the
planar interface of two different media must be conserved. This is the equivalent way of
expressing the Snell’s refraction in the conventional optics. This law is originated from the
translational symmetry of the system in the direction of interface [7]. Any wave solutions have

to follow this symmetry, or

& sing, = £lsin, (3.72)
Normalize it versus 4,, we have

n,sinp, = ) sin, (3.73)
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Glossary
no: Refractive index of homogenous medium
n’o: Higher refractive index of 1D photonic ctystal
¢1: Incident angle
©2 Refracted phase velocity angle
@2 : Refracted group velocity angle
% : Phase velocity
#; : Group velocity
Mp: Phase velocity deviation angle
1g: Group velocity deviation angle

Figure 3.7.1 The interface of the two homogenous, isotropic media

Now consider a time harmonic plane wave from a homogenous and isotropic medium of

refractive index #, with a wave-number £ = 7,4, is incident to a 1-D photonic ctystal slanted

by 0,, where again the incident angle is ¢, (see Figure 3.7.2). Snell’s law now reads
keytty SN = k¢ (3.74)

where £, is the wave vector component of the photonic crystal parallel to the interface.

Eq.(3.74) in a normalized form can be expressed as

n,sInQ, =7 3.75
0 1 ¢
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Glossary
#o: Refractive index of homogenous medium
m: Higher refractive index of 1D photonic ctystal
n2: Lower refractive index of 1D photonic crystal
‘A: 1D photonic crystal period
01: 1D photonic crystal slant angle

¢1: Incident angle

@2: Refracted phase velocity angle
¢ "2 : Refracted group velocity angle
v : Phase velocity

vy : Group velocity

M : Phase velocity deviation angle
Ng : Group velocity deviation angle

Figure 3.7.2 The interface of the 1-D photonic crystal and the homogenous medium

Figure 3.7.3 shows how Eq.(3.75) can be implemented on the wave vector diagram to obtain
the quiescent point (operating point). From the quiescent point one can fond the refracted
Bloch mode direction, and (as we show in the proceeding sections) the corresponding group

and phase velocities.

é,‘3““/ ;/T,2

Quiescent point

Figure 3.7.3 A normalized wave vector diagram and the quiescent point
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The slanted 1-D photonic crystal can be assumed as a 2-D rectangular lattice with the

tollowing lattice constants
A, = A/cosb,, A= A/|sin 91| (3.76)

The unit cell is depicted Figure 3.7.4. The wave vector diagram of the slanted 1-D photonic
crystal can be obtained either by considering it as a 2-D square lattice with the unit cell
depicted in Figure 3.7.4 (and analyzing the 2-D lattice accordingly), or by rotating the wave
vector diagram of 1-D photonic ctystal by the slant angle 8,. Obviously the later case seems

easier to implement, as we adopt it in the following sections.

Figure 3.7.4 The unit cell of the slanted slab 1-D photonic crystal

3.8 The Quiescent point of an slanted wave vector diagram

For TM modes, we choose E , as the expanding field and the incident wave can be expressed

as

E, =Pexp|i (k& +40)|4, (3.77)

whete

k= ksing,, k=& cosy, (3.78)
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and & = 7k, is the wave vector in the free space (%, is the wave vector in vacuum). Applying

the Snell’s law of Eq.(3.74) we have

k¢ =k, cosb + £ sin, (3.79)

Combining Eqs.(3.79) and (3.65) we can obtain the dispersion equation, from which the

transmission phase vector can de obtained as below

A ('ém sech, — £ tan0, ) = cos™’

e+ )] (3.80)

It 1s interesting to note that the slanted 1-D photonic crystal can be assumed periodic in both x

and g directions, so the wave inside photonic crystal can be expressed as

D(C,E) =T, , (G.E)exp(ikl+ikk) (3.81)
Whete ¥, (¢,&) is a periodic function as below

U, s (GE) =T, , (C+A/sinb, €+ Afcosh,) (3.82)

and 4, and & ate the Bloch wave numbets of the slanted photonic crystal. They are related to

the Bloch wave number of the un-slanted photonic crystal by

k| |cosO, —sin@ |4
=, < (3.83)
k| [sinB,  cosB, ||,
Then the condition (3.79) can be expressed as
ke = e (3.84)

Knowing k; from Eq.(3.84), and by solving Eq. (3.80) for £_, one can obtain & from

k. =k, secB — & tan®, (3.85)
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3.9 A typical wave vector diagtam for 1-D photonic crystal and form birefringence

By solving Eq. (3.80) at a particular wavelength, we can obtain the diagram showing the

telation between £, and &, at that specific wavelength. For illustration purposes consider the

following case,

A =1545.3 nm
T=0.5
0, =0 (3.86)

. 3.1294 for TE mode
' 13.2565 for TM mode

n, =1

Figure 3.9.1 and Figure 3.9.2 shows the normalized wave vector diagram for TE and TM

modes. Note the small period regime where the form birefringence can be observed.

TE mode

[A=3004m | 400nm! 500 nm

T !

Figure 3.9.1 The normalized wave vector diagram for TE mode (EJ is dominant) at X\ = 1.54982 pm for different

periods

50



TM mode

Figure 3.9.2 The normalized wave vector diagram for TM mode (EX is dominant) at \ =1.54982 pm for different periods.

The birefringence property of a periodic layered medium will now be discussed. The long
wavelength (or short period) regime is worthy of attention. If the period A is sufficiently small
compared to the wavelength, then the whole structure behaves as if it is homogeneous and
uniaxia]ly' anisotropic. The wave thus behaves as if it is a plane wave. In the long-wavelength
regime (N> A), these are similar to the dispetsion cutves of electtomagnetic waves in a
negative uniaxial crystal. To demonstrate the analogy we take the limit of a,¢ <1, a0 K1

and £,A <1 and expand all the transcendental functions in Eq.(3.69). After neglecting higher-

otder terms, we obtain [8]:

" n’
—;—+—§-=1 for TE mode
7 7
° Z (3.87)
"’ 7
_;+_§: 1 forTM mode
”0 ”e

with
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n’ =T -I—(l——’r)nj
1 1 1 3.88
S =T75+(1-1)= 59
7 7 n,

where T=a/A. Equations (3.87) represent the two shells of the normal surface in the nn,

plane. One surface of Eqs.(3.87), which applies to the a TE wave is a sphere, while the TM
normal surface is an ellipsoid of revolution. TE waves thus are formally similar to the so-called
ordinary waves in a uniaxial crystal, while TM waves are the extraotdinaty waves. The notmal
surface becomes more complicated at higher petiods. It consists of two oval surfaces
osculating each other at the intersections with the #,_axis as long as the wavelength is higher
than the first forbidden gap. For wavelengths higher than the forbidden gap, the oval surfaces

break into several sections. The break points occur at
no=m— (3.89)

which is the Bragg condition. For the wavelengths lower than the forbidden gap and before the

second band emerges, there is no propagating wave through photonic crystal.

The ordinary and extraordinary refractive indices according to Eq.(3.88) are 2.323 and 1.352,
respectively. These values are matched well by the values obtained from Figute 3.9.1 and

Figure 3.9.2.

The scaling law of electromagnetics can be used to relate petiod to the wavelength, so one can
normalize period versus wave number in vacuum, and find a transcendental wave vector
diagtam. In other words, if we multiply period by A — oA, the wave vector diagram is the
same as when the wavelength is divided by the same factor, ze., X — X/, For practical

reasons, Figure 3.9.3 shows a typical normalized wave vector diagram at diffetent wavelengths

(fixed period), which is obtained using Eq.(3.80) and the following parametets
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A =273.8nm

A =1545.3 nm

T=0.5

0, =0 (3.90)
n, = 3.1294

n, =1

Polarization TE, Electric fieldin ydirection

35

Figure 3.9.3 A typical normalized wave vector diagram for 1-D photonic crystal at different wavelength

The wave vector diagram evolution with wavelength is the basis of dispersion. This dispetsion
as it is shown in Figure 3.9.3 is at the highest value near the band-edge, where the transmission
is poot. There are separate sections devoted to the two different types of k and § vectors
dispersion, but before that we will talk about the Snell’s law and how the quiescent point can

be obtained.
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3.10 k-vector dispetsion

The vatiation of the phase front direction (or direction of phase velocity, or wave vector) with
wavelength is called k-vector dispersion [9-12]. Figure 3.7.2 shows the intetface between free
space and a 1-D photonic ctystal. The angle between phase velocity vector and the hotizon 1s

defined as ¢,. The incident and slant angles ate ¢, and 0, respectively. The phase velocity
deviation angle (7, ) is defined as

My =P1 7 P2 (3.91)

Then the phase velocity dispersion of a single junction can be defined as

6“1’ _ M (>‘2)_np (>‘1) _¥ (>‘z>—LPz (>\1)
O N, — N, N, =N,

(3.92)

The interface condition (Eq. (3.79)) is crucial determining how the wave front is refracted at
the photonic crystal. Assuming the refractive index of the homogenous region is constant with
wavelength, the quiescent point at each wavelength is the cross section of the horizontal line

n, =un,siny,, and the normalized wave vector diagram (which may be rotated by the slant
angle too) at any specific wavelength (see Figure 3.10.1). The normalized phase vector

(& , =k, / k,) is the vector from the origin to the quiescent point. The angle between the

phase vector and the hotizontal direction (( axis) is ¢, (see Figure 3.7.2).

Figure 3.10.1 shows the same wave vector diagram as in Figure 3.9.3, but we have shown a

typical quiescent points, normalized phase vectors, and so on.
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729 sin ¢y

Figure 3.10.1 The normalized wave vector diagram and quiescent points at different wavelength. The slant angle is zero.

Figure 3.10.2 depicts the phase velocity direction versus incident angle for various wavelengths.

The free space refractive index is assumed #, = 7, in (3.90). It is interesting that the deviation

angle is maximized at the band-edge. As we will show latet, this is the case only when the slant

angle is zero.

90

80 .
70 / 1ﬁ~~‘_
60 / bY //

5 / 0.9)\/
() yd
20 /

10

0 10 20 30 40 50 60 70 80 920
#1(°)

Figure 3.10.2 Phase velocity angle versus incident angle when slant angle is zero.
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Figure 3.10.3 shows the phase velocity dispersion of a single junction versus incident angle.

The dispersion is maximum at the band-edge 0.24 °/ nm . The dispersion decreases fast away
from the band edge at the first Brillouin zone (toward ¢, = 0), but it declines slower from the

band edge at the second Brillouin zone (toward @, =90°).

0.25

AN

0.2 G

/O (°/nm)
\\

P
=)
=

an

0.05
Bandedge

L N
0 10 20 30 40 50 60 70 80 90
v1(°)

Figure 3.10.3 The phase velocity dispersion of a single junction versus the incident angle when slant angle is zero.

Our focus has been on untitled 1-D photonic crystal so far. Slanting the photonic crystal is
another degree of freedom that has a great effect on dispersion and transmission. Let us slant
the photonic ctystal by 8, = —15°. Using Eq.(3.80), the normalized wave vector diagram with
the parameters of (3.90) is plotted in Figure 3.10.4. The quiescent points are located at the
second Brillouin zone. This is the case that we are especially interested in chapter 8, whetre we

try to optimize the superprism based on the phase velocity dispersion.
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Figure 3.10.4 The normalized wave vector diagram and quiescent points at different wavelengths. The slant angle is -15°.

Figure 3.10.5 and Figure 3.10.6 show phase velocity angle and dispersion versus incident angle.
As is shown in Figure 3.10.6, while the maximum dispersion is increased (from 0.24 °/nm fot
untitled to 0.29 °/nm for -15° of slant), it is possible to avoid the band-edge when the

maximum dispersion is chosen.
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Figure 3.10.5 Phase velocity angle versus incident angle when slant angle is -15°.
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Figure 3.10.6 The phase velocity dispersion of a single junction versus the incident angle when slant angle is -15°.

The optimization of the 1-D photonic crystal for obtaining the best dispetsion will be
discussed in chapter 8. We will show that it is not always desirable to maximize the phase

velocity dispersion.

3.11 Svector dispetsion

The energy velocity integrated over a unit cell is identical with the group velocity [13-15], so the
direction of the group velocity in an infinite photonic crystal coincides with the enetgy flow (or

the beam direction)[16]. The group velocity can be obtained from

'—v/)\(’é)

— (3.93)

v =V,ew(/é)=c

4

Where ¢ is the speed of light in vacuum. The group velocity vector at the quiescent point is
perpendicular to the wave vector diagrams and is ditected toward the lower wavelength

contours as it is indicated in Eq.(3.93) and shown in Figure 3.11.1.
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Figure 3.11.1 The typical wave vector diagram and the group velocity at the quiescent points, the slant angle is zero.

The beam deviation angle (or group velocity deviation angle) is the difference between incident

angle (yp, group velocity direction outside the photonic crystal) and the group velocity

ditection inside the photonic crystal } (see Figure 3.7.2) , i.e,.
N, =9, — ¢, (3.94)

The group velocity dispersion is defined as the relative change of group velocity deviation
angle with respect to the wavelength, ze.,
ang ng(XZ)_ng(xl) Lp;(>\2)_kp;(>\1)

= = (3.95)
N N — N\, X, =\

Figure 3.11.2 and Figure 3.11.3 show the beam direction angle and group velocity direction
versus the incident beam direction. It is interesting that after the band-edge and at the second
Brillouin zone, the refraction and group velocity dispersion are negative. The group velocity
dispersion (as it is expected and shown in Figure 3.11.3) is zero at the band edge [17]. The

maximum dispetsion is about 1.3°/nm.
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Figure 3.11.2 The beam direction versus incident beam direction at various wavelength. The slant angle is zero.
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Figure 3.11.3 The group velocity dispersion versus incident beam direction, the slant angle is zero.

Figure 3.11.4 shows the part of slanted wave vector diagram (by -15°), which is relevant to the
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quiescent points and the corresponding beam direction.
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Figure 3.11.4 The wave vector diagram of typical 1-D photonic crystal, the slant angle is -15°. The group velocity directions

are also shown at the quiescent points.

Figure 3.11.5 and Figure 3.10.6 show the beam direction and group velocity dispersion versus
incident angle. As is shown in Figure 3.11.6, the maximum group velocity is increased from
1.3°/nm of the un-slanted photonic ctystal (see Figure 3.11.3) to 2.6°/nm of -15° slanted case.
Maximizing the dispersion and its effect on the supetprism atea is an important issue, which

will be discussed thoroughly in chapter 6.
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Figure 3.11.5 The beam angle inside photonic crystal versus incident angle at different wavelengths.
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Figure 3.11.6 The group velocity dispersion versus incident angle for the slanted 1-D photonic crystal.

3.12 Refraction and transmission wave vector from 1-D photonic crystal, the condition

of having only one diffraction order

The transmission and reflection at the interface of a bulk 2-D (un-slanted) photonic crystal is
analyzed and documented in [18]. In general, when the interface is not aligned with a special
crystal direction, the dielectric structure (including both the crystal and the interface) is not
periodic [19]. However, in 1-D photonic crystal, for any slant angle the structure remains

periodic.

The reflected waves in Figure 3.7.2 (from the different diffraction orders) have two wave vector

components. One of them can be written as

” 2mT
ke =k +T (3.96)
§

The other reflected wave vector component can be written as
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m
R

= (Y .97

The squate root sign in Eq. (3.97) has to be selected to guarantee the reflection of a
propagating wave or a decaying wave from the interface. The reflected wave then can be

expressed as
E, =Y REexpli(£4] +CA7 )4, (3.98)

or

E = ZR;E exp {z’& </ég + 2mmf A ) + z'Q[,éf - </é£ + 2mmf A )2

%}51 (399)

The reflected wave is not evanescent if (see Eq.(3.97))
ky > R (3.100)

All reflected wave except the main one (7 = 0) are evanescent, provided

A
A< 3.101
Wb, o

where X ;. is the minimum wavelength of interest. Or using Eq.(3.76), we have

A cos b,

A " 77 1
it sine, )7,

(3.102)

The above equation is also valid for the other type of polarization. Figure 3.12.1 shows the
condition that all reflections due to different diffraction orders except zero are evanescent. The

homogenous medium refractive index is assumed 7, = 3.104 at X, =1537.40 nm.
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Figure 3.12.1 The condition for reflection due to higher order diffraction being evanescent

Normally, we would like to work near the band-edge where the dispersion is high; so we are
not interested to let this region be unavailable by slanting the photonic crystal too much. The

maximum and minimum allowable rotation is the angle that brings the band-edge to the #,
and/or n, axis. Consideting that, 7., (known as the band-edge after slanting by 6,) moves to

the new location of

n cosf, —sinf,

k4

”X'

ﬂzo

Nonae /24

(3.103)

sinB,  cos,

If we assume ¢,, as the incident angle at which the incident beam hit the un-slanted 1-D

photonic crystal band-edge, then applying the Snel’s law (Eq.(3.75)) we have
nysing,, =N, [2A (3.104)

Then the slant angle must be in the following window

1| #,sin _ 0
tan [__o_ﬁ tan 1[_'«1_

7 7o SIN P,

9, =|—

1

(3.105)

20
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As we will show in chapter 8, sometimes we are interested to work in the second Brillouin
zone, then the incident angle ¢, must be greater than
. : . . nzO .
sin, > siny,,; cos 0, +——sin0, (3.106)
)
Ot the period A must be greater than

A> LB (3.107)

2nysech; sinp, —2tanb,z,

For the operating point being in the second Brillouin zone and for the homogenous medium

of refractive index #, = 3.124 at\__ =1562.23 nm, Figure 3.12.2 shows the minimum petiod

versus incident angle for different refractive index at the bandedge 7.
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Figure 3.12.2, The minimum period condition for being at the second Brillouin zone, versus the incident angle and the slant

angle is a parameter, where the effective index at the bandedge is at (a) o= 02,®) Ny = 0.5, (© fg = 1 and (d)

ﬂ{0=2.
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The period has to satisfy both Eqs.(3.107) and (3.102) in order to have only one diffraction
otder and being at the second Brillouin zone. Assuming Hyy = 0.2, Table 3.2 shows a typical

data.

Table 3.2 Typical data for 72,, = 0.2

Note that, as the period gets close to the condition of (3.107), nearer to the band-edge, the
higher dispersion will be achieved.

3.13 Refraction and transmission wave vector from 1-D photonic crystal, the FDTD

Bloch boundary condition

Expressing the transmitted wave inside photonic crystals by a summation of Bloch modes,
enable us to apply electric and magnetic fields boundary conditions based on Eqs.(3.99) and
(3.77). The trial field expression inside photonic crystal must satisfy the Helmholtz equation.
We expand the periodic dielectric constant and the Bloch modes by Fourier seties. Using
orthogonality of Fourier components (plane waves), we will achieve a set of equations for the
Foutier seties coefficients. The tresulting set of equations after truncation is a finite set of
equation with reflection coefficient of each diffraction order among the unknowns [20;21].
This method like other plane wave expansion method has a convergence difficulty for high
contrast systems [7]. .Utilization of this method in the slab photonic crystal also seems
impossible due to presence of continuum of radiation modes inside and outside the photonic

crystal.

Analysis of the 1-D photonic crystal (thick hologtam) has a vast history in literature. Several
methods have been proposed; of them due to its advantages, rigorous coupled wave analysis

(RCWA) is the most widely used [22;23]. It uses Maxwell’s equations along with Floquet
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theorem to solve the field distribution in spatially modulated media. It should be noted that the
method is an approximation and is not suited for very high modulation depths and very thick
layers. But the method is well applicable to the problems involving wave propagation through

cascaded 1-D photonic crystal (specifically, to slanted periodic structures).

Here we choose a different approach which is adapted to the slanted 1-D photonic crystal.
Basically, this method is capable of handling the 3-D modeling of the slab 1-D photonic

crystal, but the computational burden is exhausting for our computers at the moment.

When the structure under study is petiodic along the interface, then the plane wave excitation,
reflection and transmission can be obtained by analyzing only a unit cell using the Finite

Difference Time Domain (FDTD) method. Consider the structure of Figure 3.7.2, the structure

remains petiodic in the direction of interface (§ direction) even aftet slanting. Figure 3.13.1

demonstrates such a region. The unit cell can be confined on the othet direction ({ ditection)

by implementing sufficient Perfectly Matched Layers (PML). The length of the unit cell must
be large enough that the transmission and reflection at the free space and 1-D photonic ctystal
ends are not affected by the boundary conditions (PML layers). In other wotds, reflection of
structure at the far ends of the unit cell which is replaced by PML layers has little effect on
transmission and reflection. This restriction can be satisfied by increasing the length of the unit
cell inside the photonic crystal. The PML width must be wide enough and its reflection must

be small enough that it suits steep wave directions.

Figure 3.13.1 The Bloch Boundary condition between free space and the slanted 1-D Photonic crystal.
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The fields at the boundary marked as D in Figure 3.13.1 are the same as the cortesponding

points at boundary B except for the Bloch phase factor of exp (z'ﬁE A/cos 91) (see Eq.(3.82))

®(C,& +A/cosh, )’D =9((, §)|B exp (zﬁg A/cos0, ) (3.108)

The plane wave excitation as it is expressed by Eq.(3.77) satisfies the Bloch boundary

condition, i.e,
3. =9, exp{z' (,éiﬁ + /écQ)”C =, exp[z' (’ét AfcosH, + /éQC)]
= <I>||A exp (z)ég A/cos 91)

¢ (3.109)

This result is not surprising because we can assume the free space 1s periodic with the period of
A/cos®, . In conclusion both Bloch wave in photonic ctystal and plane wave in free space
satisfy the Bloch boundary condition. This conclusion originates from the boundary condition
expressed in Eq.(3.84).

Consider the cases represented in Figure 3.13.2, which are un-slanted and —15° slanted 1-D
photonic crystal with the parameters depicted in (3.90). Five micron of PML is added to the

top and the bottom of the structure and its reflection is kept very small at 107, The grid size
is chosen as 10 nm on both directions, and the computational domain is restricted to a unit cell
with Bloch periodic boundary conditions. The time grid is chosen at the Courant stability limit

(about ¢Ar<7.11 nm), and simulation has continued up to ¢ =300pum. The continuous

wave type of excitation and TE polarization is chosen.
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Figure 3.13.2 The un-slanted and slanted 1-D photonic crystal with appropsiate boundary conditions.

Considering the incident angle of

@, = 60° (3.110)

the quiescent points shown in Figure 3.10.1 and Figure 3.11.1 for un-slanted and Figure 3.10.4
and Figure 3.11.4 for slanted cases is achieved. The simulation result after stacking five unit
cells together is depicted in Figure 3.13.3 for un-slanted and in Figure 3.13.4 for the slanted
case. As is shown in Figure 3.10.1 (and more clearly in Figure 3.10.2), for this incident angle,

the phase velocity ditection is about 78° above the horizontal ditection ( ditection in Figure
3.7.2). As is seen from Figure 3.13.3, it is pretty much on the same direction as perpendicular to

the wave front inside photonic crystal.

Similarly for the slanted case, as is shown in Figure 3.10.4 (and more clearly in Figure 3.10.5)
Figure 3.10.1, for this incident angle, the phase velocity direction is about 62° above the

hotizontal direction (( direction in Figure 3.7.2). A good agteement is seen in Figure 3.13.4.
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And the total transmitted power can be obtained as below

_ ’ 2+ 2
s _M (3.112)

! A
where ft is the average power density. The reflected power density (3; ) considering only zero

order diffraction, can be obtained by averaging the Poynting vector along T -+, direction.

Finally, provided the electric field excitation with amplitude of A4, the incident power density is

obtained as below

s, =-’?0—2§°-A2 (3.113)

H

where Z, = 376.730 ) is the characteristic impedance of the vacuum. Then the reflection and

transmission coefficients can be obtained as:

T=3¢ and =32 (3.114)
5, s

Note that basically because there is no radiation loss

T+I=1 (3.115)

The results of FDTD analysis for both cases have been summarized in Table 3.3.

‘Table 3.3 The result of FDTD analysis

1.1829 04915

s s
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The group velocity directions in both cases are in a very good agreement with the tesults
shown in Figure 3.11.2 and Figure 3.11.5 (which are obtained using the wave vector diagrams).
The negative refraction on the second Brillouin zone of the slanted case [24] is accompanied

by low transmission coefficient.

References

[1] S nyder A.W.and J.D.Love, in Optical wavegnide theory Chapman and Hall, 1983.

[2] J . Chilwell and I. Hodgkinson, "Thin-Films Field-Transfer Mattix-Theoty of Planar
Multilayer Waveguides and Reflection from Prism-Loaded Waveguides," Journal of the
Optical Society of America A-Optics Image Science and Vision, vol. 1, no. 7, pp. 742-753, 1984.

[3] P.Yeh, A. Yariv, and C. S. Hong, "Electromagnetic Propagation in Petiodic Stratified
Media .1. General Theory," Journal of the Optical Society of America, vol. 67, no. 4, pp. 423-
438, 1977.

[4] H.Kikuta, Y. Ohira, and K. Iwata, "Achromatic quatter-wave plates using the
dispersion of form birefringence," Applied Optics, vol. 36, no. 7, pp. 1566-1572,
Mar.1997.

[5] P .St Russell, "Optics of Floquet-Bloch Waves in Dielectric Gratings," Applied Physics
B-Photophysics and Laser Chenzistry, vol. 39, no. 4, pp. 231-246, Apr.1986.

[6] M ax Born and Emil Wolf, "Optics of crystals," in Principles of Optics: Electromagnetic
Theory of Propagation, Interference and Diffraction of Light, Tth ed 1999, pp. 790-849.

[7] K .Sakoda, "Transmision spectra," in Op#ical Properties of Photonic Crystals, 1st ed Springet,
Berlin, 2001, p. 90.

[8] P.Y. Amnon Yariv, "Electromagnetic propagtaion in periodic media," in Optical Waves
in Crystals : Propagation and Control of Laser Radiation Wiley Seties in Pure and Applied
Optics, 2003, pp. 115-219.

[9] A . Bakhtazad and A. G. Kitk, "Superprism effect with planar 1-D photonic ctystal,"
Proceedings of the SPIE, vol. 5360, pp. 364-372, June2004.

[10] A .Bakhtazad and A. G. Kitk, "slab 1-D photonic ctystal k-vector supetptism
demultiplexer: analysis, and design," Opzics Express, vol. 13, no. 14, pp. 5472-5482,
July2005.

72



[11] C.Y.Luo, M. Soljacic, and J. D. Joannopoulos, "Superptism effect based on phase
velocities," Opties Letters, vol. 29, no. 7, pp. 745-747, Apr.2004.

[12] T . Matsumoto and T. Baba, "Photonic crystal k-vector supetprism," Journal of Lightwave
Technology, vol. 22, no. 3, pp. 917-922, Mar.2004.

[13] H . Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S.
Kawakami, "Superprism phenomena in photonic crystals," Physical Review B, vol. 58, no.
16, pp. 10096-10099, Oct.1998.

[14] T . Baba and D. Ohsaki, "Interfaces of photonic crystals for high efficiency light
transmission," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review
Papers, vol. 40, no. 10, pp. 5920-5924, Oct.2001.

[15] S.Y.Lin, V. M. Hietala, L. Wang, and E. D. Jones, "Highly dispetsive photonic band-
gap prism," Optics Letters, vol. 21, no. 21, pp. 1771-1773, Nov.1996.

[16] R .S. Chu and T. Tamir, "Group Velocity in Space-Time Periodic Media," Ectronics
Letters, vol. 7, no. 14, p. 410-&, 1971.

[17] M.]. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. M. de Sterke, A. Norton, P. Bassi,
and B. J. Eggleton, "Analytic propetties of photonic ctystal superptism parameters,"
Physical Review e, vol. 71, no. 5 May2005.

[18] E . Istrate, A. A. Green, and E. H. Sargent, "Behavior of light at photonic ctystal
interfaces," Physical Review B, vol. 71, no. 19 May2005.

[19] X.F.YuandS. H. Fan, "Anomalous reflections at photonic ctystal surfaces," Physical
Review ¢, vol. 70, no. 5 Nov.2004.

[20] E.Istrate, A. A. Green, and E. H. Sargent, "Behavior of light at photonic crystal
intetfaces," Physical Review B, vol. 71, no. 19 May2005.

[21] X.F.YuandS. H. Fan, "Anomalous reflections at photonic crystal surfaces," Physical
Rewview ¢, vol. 70, no. 5 Nov.2004.

[22] M. G. Mohatam, E. B. Grann, D. A. Pommet, and T. K. Gaylotd, "Formulation for
Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary
Gratings," Journal of the Optical Society of America A-Optics Image Science and Viision, vol. 12,
no. 5, pp. 1068-1076, May1995.

[23] M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylotd, "Stable
Implementation of the Rigorous Coupled-Wave Analysis for Surface-Relief Gratings -

73



Enhanced Transmittance Matrix Approach," Journal of the Optical Society of America A-
Optics Image Science and Vision, vol. 12, no. 5, pp. 1077-1086, May1995.

[24] S.L. He, Z. C. Ruan, L. Chen, and J. Q. Shen, "Focusing propetties of a photonic
crystal slab with negative refraction," Physical Review B, vol. 70, no. 11 Sept.2004.

74



Chapter 4

WEIGHTED INDEX METHOD FOR SLAB 1-D PHOTONIC
CRYSTALS

An analytical approximate method is introduced to obtain wave vector diagrams for
slab 1-D photonic ctystals. Based on the best separable wave solution, a variational
formula provides the best estimate for propagation constant. The wave vector diagram
and the wave profile are obtained for a typical PECVD technology (with a medium
refractive index contrast Az =0.5). Excellent agteement with an accurate finite
element method is achieved. Due to iterative nature of the method, any wave
amplitude nonlinearity can be modeled easily. By applying this method we also

evaluate the wavelength tuneability of 1-D photonic crystal k-vector supetprisms.

4,1 Introduction

All the potential applications of slab 1-D photonic crystals rely on the understanding of the
wave behavior in the structure. Analytical approximate techniques which require low computer
resources to solve the wave equation in slab 1-D photonic ctystals are attractive tools for first
order analysis (specially when the refractive index is high). Such techniques are well-suited to
design optimization tasks that need many simulations to find the best results. One may check
the final design with a more accurate and time consuming method such as the plane wave
expansion method, or the finite element method. We have chosen the finite element method
results as a benchmark to check the accuracy of the proposed method. The details of the
benchmark method are outlined in appendix A.
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Effective index methods are approximate, easy and common techniques for a fitst order model
that reduces the 2-D waveguide model effectively into two 1-D models. In its simplest form it
is based on the assumption that the separable wave solution in Cartesian coordinates is 2 good
approximation and that the field is confined mainly in the high refractive index medium. The
weighted index method [6] belonging to the effective index method family is another simple
method, which is based on a same assumptions as simple as the effective index method. A
variational formula is then used to get to the best propagation constant based on the best
separable modal field profile. In order to get to the best separable solution the perturbation
feedback method has been adopted [7]. In this chapter, we show how weighted index method
can be applied to slab 1-D photonic crystal. In the next section, we will discuss the nonlinear
weighted index method as applied to slab 1-D photonic crystal for obtaining wave-vectot

diagrams for various input power levels.

The band gap shift due to Kerr type nonlinearity in photonic crystals is well known
phenomenon [5]. This phenomenon can be used to make a tunable photonic ctystal
multiplexer. Two kinds of tunability are recognized. The dispersion can be adjusted by using an
external pump beam, or by the signal power itself. The latter needs less power and leads to the
self-induced superprism effect, if the input power level reaches the amount necessaty to bring
the quiescent point near the band-edge where the dispetsion is the highest. The huge
dispersion reported in 3-D and 2-D slab [1] makes a high channel multiplexer a reality. The
certain amount of power than many input channels brings into the multiplexer when adds
together would be a large amount of power. The multiplexer then must operate lineatly at high
power or measure must be taken into account to address the nonlinearity. As we will show, the
deviation angle sensitivity of the prism is much larger than the angular dispersion sensitivity. In
other words, superprism can be a multilevel switch and a multiplexer together if it operates at
multilevel input power (or control can be imposed by multilevel pump signal). The device also
can be tuned by controlling the optical power to compensate all of the process-related
uncertainties that may exist due to the fabrication of the fine petriodic structure. So it is

important to understand the behavior of the device at high powet.

Dispersion management via the nonlinear regime of slab 1-D photonic ctystals is another
interesting area of research [3]. Varying input power, self focusing and defocusing have been

obsetved within the same medium, structure and wavelength [4].
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4.2 Weighted effective index method for slab 1-D photonic crystals

The weighted index method was first developed for rectangular dielectric waveguides [6]. The
main idea of the method is in finding the best separable solution based on a variational
formula. The variational formula plays a dual role. It gets the best propagation constant based
on the approximate field profile and on the other hand it provides a gauge for convergence.
Weighting the real refractive index, it searches for the nearest structure with true separable
solution. The convetgence gauge will guarantee that the result is the nearest to reality which

poses the separable solution.

While the theory could be developed for the most general case (Z.¢., 3-D cubic photonic crystal,
for this chapter we testrict ourselves to slab 1-D photonic crystal. We assume the structure is

petiodic in one dimension (say x direction) and it is uniform in g direction, that is:
n(x, y)=n(x+A7, ) 4.1

Figute 4.2.1 shows a simple slab 1-D photonic crystal. Real structures usually are more

complicated than this simple one; however the theory can be extended easily.

Lower cladding
N <TA>I — A —si Planar 1-D Photonic
- < . . . ¢ crystal
z N
{ b
y N
Upper cladding

Figure 4.2.1 A typical slab 1-D photonic crystal

Using Floquet’s theorem, the wave solution can be expressed as:

U(x, y)=(x, y)exp(ikx) 4.2)
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where exp(,é{f{—z'wz‘) has been suppressed. ®(x, y) 1s a periodic function in the x

ditection, ze.,
CID(x,)/) =<I>(x—|—A,}/) “4.3)

and 4_ is the Bloch wave number. Our analysis is based on solving Helmholtz equation

apptoximately and has a variational nature. It secks a separable solution for ®(x, y) in order

to minimize a variational equation. Let us start with establishing a vatiational equation for

this case.

4.2.1  Variational equation for slab 1-D photonic crystal

The scalar Helmholtz equation can be expressed as a generalized eigenvalue problem:
(V*+ &7 ) U =R (4.4)

The eigenvalue /éj is a scalar constant. Defining a scalar dot product of 2 and ¥ over the

unit cell volume of 1 as:
()= [awa 45)
|

Since V? is a Hermitian operator and #”is real, the following variational equation in the form

of Rayleigh’s quotient is valid [8]:

UV + 67 |T)

!
<] (] |w)

(4.6)

Inserting Eq.(4.2) into Eq.(4.6), it is not difficult to show that:
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7 N

&2 +(2|V* + 1" )

kX |= .
[£] o) &)
and note that due to petiodic nature of ©, <<I> |8X |CI>> =0.
4.2.2  Basic assumptions
Let us assume that separable solution is a good approximation, Ze.,
(%, 0)=F(¥)G() (48)

Also assume that there is a photonic crystal with refractive index 7 (x, j) (pertutbation of real

n(x, y)) such that its exact solution is separable. If we define Ap proportional to the

difference between the wave number squared of real and perturbed photonic crystals as:
Dp =k — & 4.9)
where &° = £ + £ . Note that £* is satisfied in Bq.(4.7), i,
¥ =(F|F")+(G|c")+ & (FG|#|FG) (4.10)
where we have normalized field components over periods:
(FIF)=(G|G)=1 4.11)

Initially, we take the actual field as ® = FG of the perturbed waveguide, then using Eqs.(4.7)
and (4.10), we have:

Ap=(FGon|FG) (4.12)
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where
5 =n* (%, y)— 7" (x, y) (4.13)

The method converges when Ap converges to its minimum.

4.2.3  Separating Helmholtz equation

Inserting the separable solution of (4.8) into Helmholtz equation, we have:
|[F'G)+|FG")+ 2ik, |F'G) +(kin* — )| FG) = 0 (4.14)
Multiplying Eq.(4.14) with (G| we have:
[F")+ 2ik, |F') + (&322 (x)— &7)| F) =0 (4.15a)
where

<G | GII>
A

(4.15b)

[

n (x):: (G|n2|G>+

Eq.(4.152) can be considered as the equation of horizontal slab waveguide with a periodic

refractive index of #, (x)=#, (> + A). Similarly multiply Eq.(4.14) with(F |, we have:

G")+ (&7 (5)—#)|G) =0 (4.162)
whete

# (9)=(F|~’|F)+ (1) (4.16b)
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Eq.(4.16§) can be considered as the equation of a vertical slab waveguide with a periodic
refractive index of #,( y). Multiplying Eq.(4.152) with |G) and Eq.(4.162) with |F) and

adding them together, we have:

|F'G)+|FG") + 2it,

F'G)+ (&7 — &*)|FG) =0 (4.172)

whete

7 (e, y)= 2 () + 72 () —— (4.17b)

4.24  The method

We adopt a perturbation feedback method which has an iterative nature [7]. In each iteration,
we solve Eqs.(4.15a),(4.16a), then check the convergence gauge (4.12) . In the beginning of #*

iteration, knowing F,_, and G,_, of the last step, we solve Eq.(4.15a), with the refractive index

of (4.15b) (however we ignore the second term), ze.,

H

”ez,z' (J’):<Fi—1 l”z F’—1> (4.18)

to obtain £,; and G, ( y). Now in order to take the second term of Eq.(4.15b) into account

which was previously assumed zero, we proceed as follows:

We multiply both sides of Eq.(4.18) by |G, ( y)’z and integrate with respect to y, we have:

e

Multiplying both side of Eq.(4.152) by (F._,

G)=(F-G|r*|F.G.) (4.19)

”ez,i (J’ )

, we have:

<Fi—1 lP;Z > =k;

v, i=1

—’éoz <Fz’—1 I”z' (X)|Fi—1> (4.20)

e,i—1
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Adding Eqs.(4.19) and (4.20), we have:

(FLEL )= £ =45

ul | >

~£ (G2, ())IG,)+ £ (F_G,|r* |FG,) 42D
Defining 7 as :
)
7 (3, y) = nly () 2, ()= —,;— (4.22)
then from Eqgs.(4.15b), and (4.12) we have:
(FL|E" Y =0, (4.23)

where the subsctipt 7 has been added to Ap to emphasize that this error belongs to the ith

iteration. ﬂf ; ( y) will be is cortected at the end of this iteration as:
7 () =(E|?E)- Ap, (4.24)

and B3, and G, ( y) are also updated. The next iteration begins by solving Eq.(4.15a), ignoring

the first term of refractive index in Eq.(4.15b), Ze.:

n

i (X)=<Gi ‘”2 |Gf> (4.25)

with ﬂc i1 (x) calculated from the above equation. To consider the effect of the second term,

by a similar procedure, we obtain:

(Gleh=&,-£ (G|

< i+1

7 IG)

(4.26)
u+1 | z+1>+’éz <Fz+1G l i+1 >

Now defining ﬁlz 41 8S:
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we can write:

<Gi |Gi”> =Ap;y,

Including this correction in Eq.(4.25) we have:

”e2,i+1 (x) = <Gz' l”z

(4.27)

(4.28)

Gi > - A Din (4-29)

This completes the iteration procedute, which must be repeated until Ap becomes negligible.

For the first iteration we need to choose initial guesses for I (X) and G ( y) , as follows

1/VAT

0

)|

1/\b

0

Gy (J’):{

for Ix[ < AT/2 (430)
elsewhere .
for |y| <bf2 @31)
elsewhere

With the initial guess of Eq.(4.30), Eq. (4.16a) will be the wave equation of a three layer vertical

dielecttic waveguide, while the initial guess of Eq.(4.31) makes Eq.(4.15a) the wave equation

for horizontal stratified dielectric waveguide. (see Figure 4.2.2)
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Figure 4.2.2 Equivalent vertical (a) and horizontal (b) waveguide corresponding to initial guesses of Eq.(4.30) and (4.31)
respectively.

Numerical illustration based on this formulation will be presented in the following sections

after we discuss the method in handling a nonlinear 1-D photonic crystal.

4.3 Nonlinear weighted index method

Nonlinear wave propagation in photonic crystals involving Kerr type nonlinearity leads to
interesting phenomena. Positive Kerr type nonlinearity can lead to spatial gap solutions [4;5],
while negative Kerr type nonlinearity can cause bi-stability [9]. Optical switches and limiters

have also been suggested recently using alternative layers of positive and negative Ketr type
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nonlinearity [10]. The main analytical apProach to the analysis of nonlinear propagation in 1-D
photonic crystal has been coupled mode theory [11-13], however recently FDTD analysis has
been applied [14]. The main drawback of coupled mode theory is the lack of modal
understanding of the structure, while the proposed FDTD analysis cannot be applied to large
structutes and is unable to provide a thorough understanding of the photonic crystals. The
numetical spectral domain method is the best alternative in this case. Nonlineatity can be
implemented in the original Helmholtz equation or can be applied if the host method is
iterative. Those tigorous methods that solve for modes must be based on self-consistency and
must take the vectorial nature of the problem into account which would be very time and
memory consuming. The effective index method is a well-known simple method for analyzing
dielectric waveguides [15]. It can analyze virtually any linear dielectric waveguide with
rectangular cross section. The method has been extended to take the guide nonlinearity into
account [16;17]. Another simple, but more accurate method is the weighted index method [6].
Here we extend it for analyzing of slab 1-D photonic crystal with intensity dependent refractive

index nonlinearity.

Any nonlinear guiding system can be analyzed with an iterative procedure using a suitable
linear analysis tool as a basis. Indeed it is not necessaty to directly solve the governing
nonlinear differential equation. Rather it is possible to construct solutions from modal
solutions of linear waveguides through an elementary self-consistency relation. It can be shown
that any solution of a nonlinear problem can be associated to a linear solution of an equivalent
structure[18]. Indeed the problem can be reduced to only determining the equivalent linear
model, and then analyzing it by a reliable linear routine. The equivalent linear model and the
original nonlinear structure are related to each other by an elementary self consistency relation.
The self consistency relation is one that indicates the relation between the nonlinear refractive

index and the modal pattern [18]. As an example, for Ketr type nonlineatity it can be expressed

as: 7=n, :i:0c|E|2. On the other hand, it is reasonable to claim that the modes of any linear

waveguide correspond to the modes of some nonlinear waveguide with a particular type of
nonlinearity. This type of nonlinearity is revealed by the inversion of the self consistency

relation.

The equivalent linear model can be obtained by the following iterative procedure. At initial step

85



of each iteration, the nonlinearity is not considered while the system is analyzed. At the end of
the step the nonlineatity is taken into account, ze., by evaluating the field distribution in the
linear model and using the self consistency relation, the refractive index of the equivalent linear
model is corrected accordingly. This is an approximation of the equivalent linear model. The
next iteration begins by analyzing the approximate equivalent model of the ptevious step, and
ends up by obtaining the next approximation of linear equivalent model. This procedure can
be repeated until convergence is achieved. The outputs of iterations are the equivalent linear
model together with the propagation constant and the modal pattern corresponding to the
otiginal nonlinear waveguide. The flowchart of the above procedute is shown in Fig. 3a. In this

flowchart it is assumed that the basis linear analyzing routine has an iterative nature.

The nonlinear iteration loop and the linear analysis loop could be metged, if the basis linear
analyzing routine has an iterative nature. In this way a new algorithm will emerge. The
flowchatt of this method is shown in Fig. 3b. Note that the convergence blocks are also
metged. In this way, all the analysis capability of the previous routine is transfetted naturally to
the new nonlinear one. Furthermore it is evident that, the new routine is much faster than the

previous one.

We select the weighted index method as the basis routine. Figure 4.3.2 depicts one petiod of
the slab 1-D photonic crystal. This algorithm assigns vertical and hotizontal equivalent slab

Linear System Analyzing Routine

g Ye:
Convergence 7

Main Linear System
Routine

Main Linear System
Routine -

Including the Nonlinearity

v “Ineluding the Nonlinearity
into the Linear Model '

| into the Linear Model

Convergence ?

Yes |
(@ ()

Figute 4.3.1 The flowcharts of two nonlinear system analyzers based on an iterative linear system analyzing routine, (a) the
simple but inefficient routine, and (b) the modified one.
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waveguides to the original slab 1-D photonic crystal in each computational step. The
equivalent horizontal waveguide is a slab waveguide with non-uniform periodic refractive
index. The equivalent vertical one is ordinary slab waveguide with non-uniform refractive
index. Thete are various ways to analyze such waveguides. One such method, (which is the
most reliable and the simplest one, but with the lowest efficiency) 1s stratification [19]. Our

analysis employs the stratification technique.

| ”cl
| TA
1
B o2 ot = #y + o IEI
b ”COZ
J !
Y X
| ”sub |
[ A !

Figure 4.3.2 The schematic representation of a slab 1-D photonic crystal with nonlinear Kerr type nonlinearity.

4.4 Numerical illustrations

For the sake of demonstrating the methods, we have selected two structures, one with
relatively low refractive index contrast, and the other with higher refractive index contrast with
Kert type non-linearity. The cross section of the 1-D photonic crystal of lower refractive index

contrast is depicted in Figure 4.4.1.

X
T PCEVD Oxide
y Sum um  (n=1.451) | _—PCEVD Si;N;
| (~2)
=~ PCEVD SiO.N,
=1.496
8pm PCEVD Oxide @ )
(n=1.451)

Figure 4.4.1 Schematic of the low refractive index contrast slab 1-D photonic crystal.

Using the structure illustrated in Figute 4.4.1 and with grating petiod of A =0.5 um and duty

factor of 7=0.5, Figure 4.42 shows the normalized wave vector diagram
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Figure 4.4.2. Wave vector diagram obtained using effective index method (dashed) and weighted index method (solid).
Table 4.1 shows the comparison with the finite element method (which we take as a

benchmatk). There is a good agreement between these two methods which is an indication that
our method is accurate in this range of refractive index contrast. The maximum error happens
again at the bandedge and it is 2.5%. Note that the computational domain for finite element
method can be reduced by 50% by considering the structural symmetry along the y direction
(see Figure 4.4.1)

Table 4.1 The comparison of our method with the finite element method results in low refractive index contrast regime

7

- ;

Weighted index method 1,681

%% ertor

In Figure 4.4.3 and Figure 4.4.4 the deviation of the refractive indices of equivalent horizontal
and vettical waveguides ate plotted compared to the corresponding effective index method
ones versus normalized Bloch wave number. The best separable field solution is obtained by

these refractive index adjustments. As expected the deviation is higher near the band edge.
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In Figure 4.4.3 and Figure 4.4.4 the deviation of the refractive indices of equivalent hotizontal
and vertical waveguides ate plotted compared to the corresponding effective index method
ones versus normalized Bloch wave number. The best separable field solution is obtained by

these refractive index adjustments. As expected the deviation is higher near the band edge.

Equivalent horizontal waveguide
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Figure 4.4.3. Refractive index deviation of the equivalent horizontal waveguide compared the corresponding effective index
method versus normalized Bloch wave number. Due to symmetry the upper and lower cladding refractive indices are always
the same.

Equivalent vertical waveguide
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Figure 4.4.4 Refractive index deviation of equivalent vertical waveguide comparing to the corresponding effective index
method one versus normalized Bloch wave number. Due to symmetry upper and lower cladding refractive indices are
always the same.
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Finally in Figure 4.4.5 and Figure 4.4.6 we plot the mode profile ( E, ) in x and y directions at a
fixed Bloch wave numbern, =1.24. As Figure 4.4.6 shows there is a field discontinuity at the

cote intetface. This kind of discontinuity cannot be observed by solving the scalar Helmholtz

equation.

0.85
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0.35 i
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x (pm)

Figure 4.4.5. Field distribution in x direction for quasi TM mode at a fixed Bloch wave number.
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Figure 4.4.6. Field distribution in y direction for quasi TM mode at a fixed Bloch wave number.
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Figure 4.4.7 Cross section of the silicon on insulator slab 1-D photonic crystal.

Table 4.2 shows the results of the comparison. As can be seen, the accuracy is acceptable

except near the bandedge.

Table 4.2 The comparison of our method with Finite element results in high refractive index contrast regime

eighted index meth.

R e

od 211 038
inite element method || (2114
9 error 14 15

The second example that we have chosen is a slab 1-D photonic crystal of nonlinear

rectangular cores (Si) on a linear substrate (SiO,). The cladding is also linear (Air). The third
order nonlinearity of Si is taken into account 7, = 4.1x107" (mz/ V2> [20]. The nonlinearity

of the silica is ignored. We have also ignhored losses and assume a constant temperatute

throughout the device. We choose the model of Figure 4.3.2 with the following constants:

b=0.5um, A=300pum, T=05, N\y=155um, n,, =3.26+41x10"2|E[, n, =145

and #_, =n,=1. In Figure 4.4.8 we have shown the normalized wave vector diagram

(n,,=8,. / &, ), with maximum electric field (E,_ ) as a parameter. The routine is fast and
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b=05wn, A=300 um, T=05, X\,=1.55um, 7, =326+41x10"*|E[, n, =145
and #_, =#,=1. In Figure 4.4.8 we have shown the normalized wave vector diagram

(n,,=8,, / k, ), with maximum electric field (E_, ) as a parameter. The routine is fast and
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CO 0.5 1 1.5 2 2.5 3

Figure 4.4.8 Normalized wave vector diagram with various maximum electric field as a parameter.

converges within 4 - 8 iterations. Note that the conventional Floquet theory is not valid in the
nonlinear case, however due to petiodicity; the wave vector diagram repeats itself as is the case

for linear systems.

Figure 4.4.9 demonstrates the refractive index perturbation in the core region of the equivalent
linear model at E_ =3kV/m and #, =0, #, =15 and #, =2.5. The field nonlinearity
causes the increase of the cote refractive index, but it smoothes out the refractive index
contrast. This smoothing increases the accuracy of the method. In other words, the results
would be mote accurate than the linear case (or when |E| << 1). The accuracy of linear case
has been listed in Table 4.2. Note that the refractive index is periodic in each case, but the

refractive index profile changes with the propagation direction. More field confinement at near

the bandedge also causes larger refractive index gradient at the core region.
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Figure 4.4.9 Refractive index perturbation for different Bloch wave number.

In Figure 4.4.10 the superprism geometry with various defined parameters is illustrated. We

have assumed that the left and the right sides of the prism are air and any reflections at the
boundaries have been ignored.

¢4 is insident angle
64 is slant angle
p is apex angle
n is deviation angle

Figure 4.4.10. Superprism geometry based on slab 1-D photonic crystal.
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Figure 4.4.11 shows the deviation angle versus maximum electric field at fixed incident angle
(p, =—55°, apex angle of p=60° and slant angle of 8, =—20°. Figure 4.4.11 also shows

angular dispersion versus maximum electric field under

p=60°,01=-20°,¢1=-55°,A=O.3 pm,t=0.5,4 =1.55 um
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Figure 4.4.11. Change of deviation angle and angular dispersion versus maximum electric field in the core region.

the similar conditions. As can be seen, at lower power levels the dispersion is nearly constant
whilst the deviation angle change starts even at lower power levels. This feature is helpful for
tuning the device versus any process related imperfections. The sensitivity to optical power is
high enough that at higher power levels, the device can divert all output channels many degrees

by increasing input powet. This effect could be used to make a multilevel optical switch.

4.5 Conclusion

An approximate analytical method for the analysis of slab 1-D photonic crystal has been
introduced. The method is an extension of the known weighted index method for rectangular
dielectric waveguides. Based on a variational equation developed for this case, the best

separable wave solution is sought. Due to the variational nature of the method, the wave
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vector diagram will have a second order accuracy if the wave profile has only first order
accuracy. The wave vector diagram plays a vital role determining refraction and reflection

direction of the slab waveguide modes of the slab 1-D photonic crystal.

Based on the modal behavior of rectangular dielectric waveguides, the accuracy of this method
is much better than the effective index method especially near bandedge, while the accuracy of
effective index method is comparable to the solution of scalar Helmholtz equation. Compared
to the accurate finite element methods results, the the weighted index method is accurate in
the low refractive index contrast systems (Az = 0.5), but it detetiorates as the refractive index

contrast becomes higher (Az 2 2).

The weighted index method has also been extended to handle the nonlinear slab 1-D photonic
crystal. Merging the loop of the weighted index method with the loop of the nonlinear routine
will speed up the method considerably. The resultant method is simpler, and converges
virtually as fast as the conventional perturbation feedback method (through 4 to 8 iterations).
A wave vector diagram versus the input power can be obtained using the results shown in
Figure 4.4.8 (the maximum electric field in Figure 4.4.8 can be replaced with the transmitted
powet). Furthermore, since we have not considered the refractive index saturation effects,
there is a one to one cotrespondence between maximum electric field at the core center and

the transmitted power [21].
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Chapter 5

A NEW PLANE WAVE EXPANSION METHOD FOR SLAB 1-D
PHOTONIC CRYSTALS

The conventional plane wave expansion method is extended for slab photonic crystal.
The open boundary condition is applied instead of the conventional supercell scheme.
The implicitly restarted Arnoldi method is also modified to solve a nonlinear
eigenvalue equation. Fewer Fourier components are necessaty for convergence than
are requited for the conventional plane wave expansion method with supercell

definition. The open boundary condition makes analysis of leaky mode a feasible task.

5.1 Introduction

Modeling of slab mode reflections from and transmission into the slab photonic ctystal is
crucial for any practical designs using slab photonic crystal. Every accurate model should
encompass the vertical field confinement and also out of slab radiation losses. The mode
matching method is a powerful technique for analysis of waveguide discontinuities such as
junctions and facets. Existence of discrete and finite orthogonal modes at both sides of the
junction 1s a key factor that makes the mode matching method an efficient tool. However, for
open waveguides commonly used in photonic integrated circuits, the mode-matching method
is limited to applications in which the modal solutions are known analytically such as one-
dimensional (1-D) multilayer waveguides [1;2]. The plane wave expansion method also can be
applied to the modeling of 1-D photonic crystal structure, whete the vertical field confinement
and out of slab radiation have no place in the adopted model. In this tespect, the inclusion of
the continuum of radiation modes in the field expansion constitutes a significant challenge. In
order to avoid this problem, one may enclose the structure with applying artificial periodicity in

vertical direction, so that all modes become disctete. It also makes the implementation of the
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traditional plane-wave expansion method possible. Then the modes can be divided into two
categories: the guided modes, which are confined to the slab and the supetcell modes (ot above
the light line modes), which are related to the imposed artificial periodicity. If the supercell is
sufficiently large, then the otiginal problem can be accurately simulated by the artificial model.
On the other hand, the plane wave spectral spacing is inversely proportional to the size of the
supercell, so a large number of plane waves need to be included in the field expansion to
ensute adequate accuracy. Mathematically, the field expansion method in terms of the guided
and supercell modes is not very effective, especially for accurate representation of the radiation

fields.

A solution for guidance along an open structure is called spectral if it satisfies all the boundary
conditions, including the one at infinity (in the transverse direction). Certain “nonspectral”
complex solutions (so called leaky modes), which do not satisfy the boundary condition at
infinity (in the transverse direction), may nevertheless be physically valid in a restricted region
of space. They are very useful due to highly convergent representations of a major portion of
the continuum of radiating spectrum. The imaginary pazts of the propagation constants for the
leaky modes represent for the leakage loss and the modal-field distributions within the critical
points represent the radiation fields[3]. Therefore, the radiation field in a slab photonic ctystal

can be approximated by the summation of leaky modes too.

In this chapter, the plane wave expansion method has been modified for the slab 1-D photonic
crystal. Although the formulation is presented for slab 1-D photonic crystals, it can be easily
adapted for 2-D cases. The modified implicitly restarted Arnoldi method is introduced to solve
the nonlinear eigenvalue equation, which are obtained in the next section. Numerical results are
compared with the conventional plane wave expansion method and supercell definition. The
capability of the method for obtaining the leaky modes is also demonstrated. We conclude the

chapter with some final comments on this method.

99



5.2 'The method

Full vector wave calculation of photonic band structure has been catried out using the plane
wave expansion method [4]. Given the desired Bloch wave number (usually along the
irreducible Brillouin zone) the band structute can be obtained, Ze., the method provides the
wavelength cotresponding to that wave number. If L. and M reciprocal lattice points (Fourier
components) ate included in the calculation in each periodic directions, then the resulting
eigenvalue equation will be of the order of 2LX2M . The eigenvalue matrix will be
Hamiltonian with real eigenvalues (wavelength). There was a poor convergence of Fourier
transform especially in high contrast material system [5], which has been mitigated by
interpolating the dielectric constant over discontinues. The Hamiltonian nature of the
Helmholtz equation is reflected to the Hamiltonian matrix eigenvalue equation (which is sparse

too). To calculate the teal eigenvalues of a sparse Hamiltonian matrix, there are very effective
computational technique [6]. Employment of a basis of ~10° plane waves can be processed

with 10* times less computer resources, if one uses a ptopet vatiational approach [7]. With all
these imptovements, now the plane wave expansion method is a viable technique to obtain the
band diagtam of photonic ctystal. Nonetheless, the method has some disadvantages. First it is
necessaty to start with Bloch wave numbers and then the wavelength (corresponding to that
Bloch wave number) can be obtained. However, if the wavelength is known and the permitted
Bloch wave numbets ate sought (for the so called wave vector diagram), then we have to scan
the whole Btillouin zone vety finely. Secondly, the method cannot handle mixed periodic, non-
periodic structures, Ze. the structure is petiodic in at least one direction but it is not on the
others. The supetcell technique replaces the unit cell with a more complicated unit cell while
retaining the petiodicity. For a known case of slab photonic crystal, periodicity is preserved in
the vertical direction by assuming periodicity at that direction, but the period is assumed too
large that the filed at the periodic boundary is negligible [8]. In addition to the need to model 2
large unnecessary area (requiring the incorporation of a large number of plane waves), more

importantly, the leaky modes cannot be traced.

The structute to be analyzed is depicted in Figure 5.2.1. There are many forms of Helmholtz
equation and choices of wave vector components, which are literally equivalent. The best

selection of components and the corresponding form of Helmholtz equation, however
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Region 1

" l Region 2

Figure 5.2.1. A simplified slab 1-D photonic crystal cross section, suitable for modeling.

depends on the nature of the problem in hand. As the structute is petriodic, Foutier seties are
used to expand field and refractive index profiles. Due to nonmagnetic nature of the structure,
transverse magnetic fields are continuous, so their Fourier seties converge mote tapidly than
the Fourier transform of transverse electric fields, which are not continuous. Whilst
traditionally, researchers prefer modeling using electric field components, however for the
speed of convergence it is better to choose the magnetic field as a set of independent field
components. Electric field components if they are required can be calculated easily using the
transverse magnetic field eigenvectors. In this case, in which two open boundaties (in the y
directions) exist, and we do not desire to consider any forms of absorbing boundary conditions
(in order to keep sufficient accuracy near cutoffs) we will need to apply open boundary
conditions. Implementing these conditions will transform the final eigenvalue problem to a

complex, nonsymmettical and nonlinear one. Consideting this fact, we can eliminate H_ from

the homogenous Helmholtz equation (see Eq. (3.20)) to achieve
{V,+7*€ —£}H, =(V,xH,)xV, lnr* G.1)

where £, is the propagation constant in g direction. By this elimination we reduce the size of

the eigenmatrix by one third, but unfortunately it also reduces the sparsity of the final eigen
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matrix. Considering the circumstances, the simulation 1s based on Eq.(5.1), and of course we

expect to have a complex and non-symmetrical eigenmatrix (with less sparsity).

The transverse magnetic field is approximated by a limited summation of Bloch modes, as

H, = Z b (3)espli (2rnfA+.)x]a, + 3 b, (D)espli i/ + £)la,  62)

I=—L

whete #j s the Bloch wave numbet, and A is the petiod in x ditection. Note that there is no

refractive index change outside hatched regions so we can write Eq.(5.1) as a homogenous
Maxwell’s equation, and implement boundary conditions at the interfaces. Therefore, outside

the hatched regions, we have
{V,+7°8 - £}H,=0 (5.3)
Inserting Eq.(5.2) in Eq.(5.3), we have

Z{L’x, —[(2im/A+ k) + 2=k, } exp(i 2mx/A) =0 (5.4)

/

where the dot stands for derivative with respect to y . A similar equation can be obtained

for/ . Then we can use the orthogonality of exponential functions to achieve

b= |(m/A+ &) +£ = n R b, =0 ¥i=-L,.L (5.5)

Assuming zero boundary conditions at infinities in the y direction (or no wave coming from

there), the solution will be as follows

_|awep|k, (y+d[2)]  y<-d/2

N Cxl exp[—/éy (J”'d/2>] y=df2 0

by (J’ )

where
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k=2 A R ) +E -8, j=12 (.7)

and 4, ¢, are constants to be determined. The square root branch cut has to be selected

propetly to satisfy the boundary conditions at infinity. For A

2

similarly we have

ey explhy (b +df2)]  y<—df2

& )= £y exp[-—/éZ/ (y—d/Z)] y>df2

(5.8)

For the central region (—¢/2 < y <¢/2 including the hatched region and two small top and

bottom sttips), we expand the refractive index squared as a two dimensional Fourier series

n = Z Z v, exp (z'Z’rt/x/A) exp (z'Z’rwg//c), — 0/2 <y< 6‘/2 (5.9)

m=—M [=—1.

And truncateitto w =—M,-,M /= —L,-+-, L and similarly,

ML
V,nn’ =) Z(vfdméx+v'},mé])exp(z'Z’lT/x/A)exp(z'ZTrmy/c), —¢/2< y<¢/2 (5.10)

m=—M [=—L

In addition, we expand 4,, and b, as:

M
hy(y)= Z b, exp(i2wmy/c), —¢f2< y<¢f2
o (5.11)
/yj,(y)z Z b],mexp(z'Z'nmy/c), —¢f2< y<¢f2
m=—M

which we have limited the number of elements in the summation to 2M +1. By inserting Eqgs.
(5.2), (5.9), (5.10), and (5.11) into Eq. (5.1), and arranging terms, we will have:
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'—[(Zhr/A+kx)2 (27m/e) ] b+ Z z {zv}, Vv

=—Ln'=-M

(G U A 2. RN A Sy

X, 2 X m

_[<2/’K/A+/éx> +(2mm/e) ]sz Z Z {zvx”, o

=L w'=—M

(5.12)

b 250 Je) =0y RS} = B

pl' ' Cxlm 2 b

(2nt//A+ )b

whete /=—L,--, L, m=—-M+1,---,M —1. If we apply boundary conditions (continuity of
tangential magnetic and normal electric field) at y = :I:d/ 2, see Figure 5.2.1., we will have

M
Z bx’,,m (/é“ — 22'1rm/c) exp (——z”rrmd/c) =
(. (5.13)

M
Z by ) (/éy + 22"7'\'777/6‘) exp (z"rrmd/c) =0

m=—M

where /=—L,:--,L, and Egs. (5.11), (5.6) and (5.8), have been involved. Fot & , , the same

equations are valid.

From Egs. (5.13), we can solve bx’,’_ M ,bx’ ES follow

M1 M1
bx,l,—M: Z dlmbxlm’ bx,l,M: Z el,mbx,l,m (514)
m=—M+1 m=—M+1
Whete
—1 mMT* ) . ’Nd(M—m) i'ﬁd(M—-m) M T
d,, =——I|#yky +4——sin +exp ky———ky
’ D, ¢ ¢ ¢ ¢
(5.15)
—iwd (M —
—l—exp[ = ( M)][Mﬂkzl_ﬂ’éuﬂ
¢
—1 mMw*| . (Td(M+m i*d (M +m M
_'—[[’éu'éz/_d' 2 ]sm[ ( >]+exp[¥][——k”+—k2/]
¢ ¢ ¢ ¢ ¢
(5.16)
—iTd (M
+eXp{—-—m( +m)][@_kz,+—]\—/fjﬁku]
¢
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and D, is defined as

2Mm

= (ky oy, — 47 MP [ )sin (2mMd )+ (/é“ + &, )cos(2mMdfe)  (5.17)

By inserting Eqs. (5.14), and similar equations for 4, , and 4 ,,, back into Egs. (5.12), we

will have
M- L
Yoy + Z Z {bx,/',ml (f1 +t3) +b},/’,mll4}:/€:bx,/,m
A= M1=—L (5.18)
1,y Z Z{b ot 1) 00 0} =k,
m'=—M+1/'=—L
where

1, (l,m) = [(ZZW/A—I—/é ) (27717(/0)2}

t(Lom ') =2imfe(=m, o+ M,

=1 m—m 'Y g~ \m+M

 +Md, v

xI=1' \m—m ' =1 m+ M

Mel/ /V

yul=t' m— M)

=—2i7/c (——m v —Me, v

'V x l—l',m—M ) (5.19)

:+d1 ny

L — m y//’m+M+"1'm’Uy//’m M)

(Z'rr/'/A—i-/é )(

( )

1y (Lt ) = BV B Vit F 0Vt
( )=
( ) (2“11/1\—-*—/é )( x/ ! - m’+d/' 'le/’m+M+el'm'le l'm—M)

With these modifications, Eqs.(5.18) are 2(2L + l) X (2M —1) complex nonlinear eigenvalue

equations. Eqs.(5.18) are about two times larger than the eigenvalue matrix of the conventional
plane wave expansion method, which is due to the complex nature of the plane wave

amplitude (compated to the real ones in conventional plane wave expansion method [9]).

5.3 Fourier transform coefficients of Eqgs. (5.9) and (5.10)

v, ,0f Eq. (5.9) can be expressed as
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w Ilm +”2]/m +”§K1m +”2L/m (520)

where
o2 A2 '
,m 2 f s exp zZTr/x/ A)exp (—zZ'ﬁmy / c)dx@/ (5.21)
—b/2 A2
Jiw= e f ue exp —ZZ’TT/X/ A)exp( i27my/ c) dxcdy (5.22)
b2 TAJ2 .
I L2 f 2 exp —i 27lx/] A) exp( i 2mmy/ c) docdy (5.23)
b2 —TA/z b2 pA2 '
_yad a2 Y exp(—i 2nlx/N)exp(—i 2mmy[c)dxdy ~ (5.24)
or
(1-7) _ , . /
I,= sinc (/) smc[m/Z (1 —T )] exp[—z m’ﬂ/Z (l 4T )] (5.25)
(1-7) . , , . /
Jim= 5 smc(/)s1nc[m/2 (1 -7 )}exp{wm/z (1 47 )] (5.26)
K, = 7' sinc (m'r')sinc (/T) (5.27)
L,= 1! sinc (mq-’) [sinc (/) —T sinc(/’r)] (5.28)

where 7' = b/ ¢, and sincx =sin ’KX/ T . If we take derivative of the Fourier seties of In#?,

then by using the above expansion, v/,  and v/],’m in Eq. (5.10) can be calculated as below

oy, =i2nl/A(Innll,, +nn}],, +1nniK,, +nniL, )
’ ’ ’ (5.29)

v, =12xmfc(nnil,, +nn}], , +nAK,, +nrL, )

The Hamming window of
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054 +0.46cos (2mm/ M)|[054 +0d6cos(2nt /L)), =S
— 46 cos(27m . 46cos  _L<I<L  (530)

N

0 otherwise

has also been applied to moderate the Gibbs phenomenon due to truncation of elements in the

series [10].

5.4 Tterative nonlinear Arnoldi method

Eqs (5.18) tepresents a nonlineat eigenvalue problem. It can be re-written in matrix form as
B(£})b=£D (5.31)

whete B is a complex large sparse matrix and a function of the sought eigenvalue /ég b

represents the collection of eigenvectots.

The implicitly restarted Atnoldi method is an efficient iterative technique to determine the few
eigenvalues and eigenvectors of a large linear sparse matrix[11]. To explain the method, first
consider a linear case, in which B is a constant square matrix. The method in its basic form is
the most suitable technique for finding a specific eigenvalue and eigenvector, based on an
initial eigenvectot guess. The Ritz pair (the eigenvector and eigenvalue) at the end of each
iteration also provide the best eigenvalue and a better eigenvector guess for the next step.
However, the results ate too sensitive to the initial guess. The implicitly restarted Arnoldi
method sotts a few eigenvalues according to the desired criteria (e.g., maximum real value) that
one can choose between, and then adapt the Ritz pairs according to that selection. The

simplified flow chatt of linear implicitly restarted Arnoldi method is depicted in Figure 5.4.1.
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1. The matrix B
2. The number of eigenparies to be computed
3. A sorting criterion

Initial guess # update Core Armoldi method

Sorting eigen values

Calculate the Ritz pair according to the sorting

criterion, and select the
desired one

Convergence?

Figure 5.4.1 The flow chart of linear Arnoldi method

Now consider the nonlinear case in which the matrix B is a function of the sought eigenvalue.
The proposed flowchart of nonlinear Arnoldi method is depicted in Figure 5.4.2 . Note that we
have to update the nonlinear matrix B based on the desired eigenvalue. For example to achieve
the bound mode, one can sort the eigenvalues according to the magnitude of their real parts,

and then select the largest one for updating matrix B.

l

1. The matrix B and an initial eigen value guess
2. The number of eigenparies to be computed
3. A sorting criterion

J

Initial guess » update Core Arnoldi method
Sorting eigen values
Calculate the Ritz pair according to the sorting
criterion, and select the
\L desired one
Update B

Figure 5.4.2 The flow chart of nonlinear Arnoldi method
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If the method converges, then the output of this technique will be the desired eigenvalue
satisfying Eq.(5.31) .

5.5 Mode characterization

Since the Bloch wave number is the phase of a periodic Bloch wave, so all wave numbers
beyond the first Brillouin zone can be shifted into the first Brillouin zone. All discussion in this

chapter is based on this assumption.

A bound mode is a mode with an amplitude that neither decreases nor increases by
propagating through the photonic crystal. Also all of the wave components have to be
decaying outside the photonic crystal. The transverse propagation constant of the field

components outside photonic crystal (Eqs.(5.7)) can be written as

k= \[4mk A+ (2UT/A) + £ R, j=1,2 (5.32)
Where
$ 53
So for the bound mode, all £ , must be real, Ze¢.,
Bk >n, j=12 (5.34)

Otherwise, some field components outside photonic crystal will have imaginary transverse
wave numbets. In other words, they will be radiative. Figure 5.5.1 shows the complex

ne =k / k, plane in terms of various solutions for slab 1-D photonic crystals. Additionally, we
have assumed 7, <7, ; and for symmetrical structure in which z,, = #_, , the “substrate

sub ?

leaky” region ceases to exist.
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Bouﬁd modes

Figure 5.5.1 The complex ﬂp . plane in terms of various solutions

5.6 Numetical demonstration

Consider the SOI wafer with top silicon layer of 0.5 pm thickness. The grating period of
256nm, and the grating duty factor ofT=0.5. The wavelength of interest is
X\ =1537.4nm and the polatization is TM like (Electric field normal to the slab surface). For

the sake of modeling the permittivity of the silicon and silica are assumed 12 and 2,

respectively. The parameters of Figure 5.2.1 are chosen as
P y p gur

n =1, nZZ\/E, n3=\/a, n,=1
A=265nm, a=A/2=1325n0m, =>500nm (5.35)
¢=1000 nm, 4 =800nm, L.=M =20

Figure 5.6.1 shows neat the band edge versus the number of plane waves in normal direction
to the slab, using the conventional plane wave expansion method with the supercell of 6 times
of the height of slab[9]. Neither refractive index over sampling nor tensor averaging is applied.
The number of modes in the petiodic direction is assumed to be L =32. As is seen, at the

band edge, thete is about 10% etror, when M = L. =32 (total number of participating plane
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waves is 1024). Accutate results are only achievable after M = 256, or total number of modes

of 4096. Then the eigenmatrix dimension is 32768.

Figure 5.6.2 shows the convergence pattern of the adopted Arnoldi method when it is initiated

with randomly generated eigenvector. One hundred twenty iterations are enough to get to four

L=32,B =mn/A, A =1537.40 nm
0.28 X e

255

0.27 ~ -1.1125

0.26 / 4775
0.25 / -8.4375
0.24 -12.1
0.23 / -15.7625
0.22 / -19.425

16 32 64 128 256 512 1024
M

P
% Heror

Figure 5.6.1 Normalized band edge versus plane wave components

in the vertical direction.

" =0, M=L=32 ast iteration

A §

20
g
—_
-15 <
First iteration \/
” i i
-T20 -100 -80 -60 -40 20 0 20

2
Re{n 5
O

+

Figute 5.6.2 A typical convergence pattern of the nonlinear Arnoldi method for the dominant eigenvalue
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meaningful decimal points accuracy for the real main eigenvalue. If one starts from an
approptiate initial guess (e.g. the eigenvector of the previous step in the procedure of obtaining
the full wave vector diagram), the convergence will be faster and it will be achievable in about
thirty iterations. All intermediate values have a zero imaginary parts too (the convetgence path
lay on the real axis). Considering the numbet of components that we have chosen,

L = M = 32, the dimension of eigen matrix is 2(2L + 1)(2M —1)=8190.

Figute 5.6.3 shows the results of our method compated to the traditional plane wave expansion
method with a vatiational formula, and the exact finite element method. The parameters of
(5.35) are selected. Assuming the results of the finite elements as a benchmark, our results are
very well matched with the accurate results. More specifically, the etrot is less than 0.3% in the
ranges that the graph has been plotted. The method provides better agreement with the exact
finite element method than the conventional plane wave extension method [9] when L =128

and M =32 modes have been employed. The size of the corresponding eigenvalue matrix is
16384. The benchmark method is explained in appendix A.

Figure 5.7.1 shows the movement of the six first modes in the complex nic plane with #_ (ata

constant wavelength of \,; =1537.40 nm ). As is seen, each mode has a unique trajectory.

1.4

M,
SRy

1.2

4

0.8

N
0.6 PWE method with 128x32 plane waves N

X
R,
S,

s,
%\ N
A

Finite Element Method Sy

02 i : : AR

0.4

EPWE method with 20x20 plane waves “'.
10.85 1.9 1.95 2 205 21 215 22 225 I2.3 2.35
n

<

g A

Figure 5.6.3 The results of various methods
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Bound modes ate basically those with no imaginary parts and their real parts lie between

. 2 2 \__ 2
rnm(nsub,ndad) =2,and #

core

=12. Figure 5.5.1 depicts how the proper set of modes can be

selected to match a particular setup.

5.7 Conclusion

Egs. (5.12) can be reduced to the conventional plane wave expansion method with supercell

definition, provided we choose a sufficiently large expansion window c/ 2292 —c/ 2 and
choosing /=—L,---L, m=—M,---,M . This selection by default implies that the field

repeats itself along the vertical direction. The convergence of this form of the plane wave

Figure 5.7.1 The real and imaginary part of ﬂ; . versus 7 at fixed wavelength of PN P 1537.40 nm . The bottom

scale is for the real part (bold lines) modes characterized sequentially by the English alphabet. The top scale is for the
imaginary part (dashed lines) modes characterized sequentially by the English alphabet and a prime.

113



expansion method remains the same compated with the method when it was initially
introduced [4]. However, the method as presented hete is computationally mote intensive than
the state of art plane wave expansion method. Although we have to execute the plane wave
expansion program numerous times, thanks to the Bloch variational iterative formula[9], the
method is relatively fast. Finally, the capability of our method té trace the leaky modes and the

fact that it needs fewer Foutier components in the non-periodic direction make it attractive.
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Chapter 6

FIRST BAND S-VECTOR PHOTONIC CRYSTAL SUPERPRISM
DEMULTIPLEXER DESIGN AND OPTIMIZATION

We ptesent a complete approach to the design of a wavelength demultiplexer based on
the S-vector superprism photonic ctystal phenomenon. We make use of a full 3-D
modeling approach based on the plane wave expansion method which allows the full
dynamics of beam propagation to be considered. This reveals significant non-
uniformities in beam divergence and dispersion as a function of wavelength which has
been neglected in previous 2-D models and which reduces the scalability of these
devices. We examine 1-D and 2-D photonic ctystal lattices and show that the 1-D
lattice results in the smallest superptism area as a function of channel count. This is
due to its lower band curvature relative to 2-D square and hexagonal lattices, even
though it has much lower angular dispetsion. We also modify the previous S-vector
superprism design so that for each channel the prism region extends only as far as
necessaty for channel resolution at a specified crosstalk level. Based on Silicon-On-
Insulator technology, with a top silicon layer of 260 nm and minimum feature size of
75nm, we present the design of a 4-channel Coarse Wavelength Division Multiplexing
(CWDM) demultiplexer with theoretical crosstalk of 20dB, which has a superprism

area of 1367pm’.

6.1 Introduction

Although the first motivation for the development of photonic crystals was the prohibition of
light propagation in specified directions at wavelengths inside the bandgap, wave propagation

through photonic ctystals at wavelengths below the band edge has more recently been of great
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interest. One of the most widely investigated phenomena is that of beam steering which was
first observed in slab 1-ID photonic crystals about 20 years ago [1], but it was not until 1998
that the observation of 5°/nm beam steeting dispetsion in a pseudo-2-D auto-cloned photonic
crystal [2] gatheted a great deal of attention. This phenomenon has become known as the
supetptism effect, despite the fact that it arises from anomalous refraction near the band edge,
(which is based on group velocity dispersion) rather than phase velocity dispersion which is the
otigin of wavelength separation in a conventional isotropic prism. This distinction recently has
been made clearer by refetring to devices of this type as S-vector superprisms. In contrast,
photonic ctystal superprisms that make use of phase velocity dispersion are referred to as k-
vector superptisms [3-6]. When the large beam steering effect in the S-vector superprism was
first obsetved it was thought that it would be a promising alternative for DWDM
demultiplexers (requiting 100 GHz channel spacing) or even beyond. However, it has been
shown recently that the demultiplexer resolution of the S-vector superprism is not only a
function of dispersion, but is also a fanction of the beam divergence within the photonic
crystals [6]. Unfortunately, the beam divergence is a function of band curvature which is not
small near the band edge where the dispersion is high [7]. The beam divergence is indeed the
main factor limiting the tesolution. Using the negative refraction observable at the bandedge of
the second band to compensate the positively trefracted incident beam (the so called
preconditioning) is a novel idea that has been suggested for mitigating this issue [8;9]. But this
cancellation is achievable only over relatively natrow bandwidth (only 32 nm), and the loss of
working too near the band edge is considerable[8]. Adiabatic tapering of the lattice has also
been introduced to reduce the loss[9;10], but of coutse the fabrication would be challenging.
The resolution can also be improved by increasing the aperture size, this requires large
photonic ctystal regions that means the devices are no longer small compared to other
demultiplexer technologies. However for Coarse Wavelength Division Multiplexing (CWDM)
applications which require a 20 nm channel spacing the S-vector superprism has been shown
to be competitive [6]. However, as we will show in this chapter previous studies of superptism

scalability have been based on a set of assumptions that may lead to overly optimistic results.

Figure 6.1.1 shows the well known S-vector superptrism configuration where the output
waveguides are located on the circumference of a circle and directed radially (in direction of the

beam inside the photonic crystal) and the input waveguide is at the centre of the circle [11;12].
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Although this configuration makes the physical path inside photonic crystal the same for all
channels, it suffers from the fact that channels with large divergence angles and high angular
dispersion occupy unnecessarily a large slice of photonic crystal to reach the output
citcumference. This will result in excessive loss and output beam width, in addition to requiring
a larger photonic crystal area, although it simplifies the design process. Noting that the
conservation of the tangential component of the wave vector actoss the bulk photonic crystal
and the output facets is the key factor in determining the output beam direction, the output
beam direction outside photonic crystal is not always the same as the one inside. Therefore,
either the output waveguide direction needs correction or the output facet direction with the

bulk photonic crystal must be modified.

Incident angle

N~

>\1,>\2,...,>\N

Input
waveguide

Figure 6.1.1. The conventional S-vector demultiplexer configuration.

The S-vector superprism phenomenon can be observed either in the first or the second
photonic crystal bands. For the second band the effect is caused by the apparent distortion
from a circuiar shape of the wave vector diagram (equi-frequency band diagram) and also by
muldplicity within the diagram [2] Clearly when there is no multiplicity (as in 1-DD photonic
crystals), there will be less dispersion, and when there is high multiplicity (as in hexagonal
lattice), there will be more [11]. Fabrication is simplified since for the second band the period is
about twice that of the first band, but the presence of the first band may cause bands to

ovetlap. Then multiple refractions at the input interface are unavoidable due to the overlapping
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of the bands. This multiple refraction will increase the coupling loss (all the powet which has
been coupled to the modes in the first band is lost). Furthermore, there may be many
diffracted waves at the output facet of the photonic crystal with vatious diffraction angles [13]
which is due to many reciprocal lattice vectors of small amplitude (due to the size of the
photonic crystal period). Considering the fact that each diffracted beam catties a portion of the

initial power and the design is based only on one particular beam, the loss would be latge.

The dispersion obsetved in the first band of photonic crystal has been also exploited for S-
vector superprisms|12]. The source of dispersion in this case is the evolution of the band with
wavelength. The first band diagram evolves with decreasing wavelength from a closed curve
(tesembling the photonic crystal type in the reciprocal space), to having the band gap
petpendicular to the main symmetry axes of the lattice. The maximum dispetsion happens at
the transition of the band where it evolves from a closed cutve around the origin to having
bandgaps. The petiod is usually small enough and the reciprocal lattice vectots ate too large to
allow many diffracted waves at the output interface to be generated. The wave refraction at the
interface of photonic crystal can be described by the wave vector diagram which represents the
wave propagation constant for a given wavelength and direction of propagation (also known as
the equi-frequency contour diagram). Figure 6.1.2 shows wave vector diagram of 2 superptism
where input and output interfaces are parallel and the incident angle is normal. The lattice is a
2-D> square which has been rotated by 15°. The circle is the slab free-space wave vector
diagram. As is shown on the diagram, double refraction (points A and B in Figure 6.1.2) are
possible at the output interface. Aligning the output waveguide with either direction will
captute the wave deflected only in that direction (subject to the low acceptance angle of the

output waveguides, and/or deflection beam angles that are not too close to each other).

Howevet, the great dispersion that has been observed and reported [2;5;14] usually happens
within a narrow bandwidth, which fades quickly for other wavelengths. Furthermore and as we
will show, the divergence angle of the beam is also highly non-uniform with respect to
wavelength. Under these circumstances, the wavelength resolution is not related in any simple
way to dispersion and beam divergence. Also, although the design equations usually are not
affected if one chooses 2-D photonic ctystal modeling the omission of the third dimension will
cause the results obtained to be unrealistic. However this has been the approach followed in

most previous analyses of these devices [3;6;15].
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Input and output direction \
of Photonic crystal «—_| \ \
- }

Figure 6.1.2. Input and output light deflection including all Brillowin zones.

We will show in this chapter that an attempt to determine which photonic crystal type and
configuration renders maximum dispersion and minimum beam divergence at a single
wavelength using linear analysis (Z.e. assuming equal dispersion and beam divergence for all
channels) is not adequate for real applications. Therefore there is a need for a general modeling
and design tool that can propetly predict and take into account the non-uniformities of these

devices.

This chapter attempts to find the best photonic crystal type, configuration and geometry for an
N-channel demultiplexer using the fitst band S-vector superprism. Making use of full 3-D
modeling of the slab photonic crystal, the general modeling and design equations ate
developed which include all the non-uniformities of the S-vector superprism. We will then use
this model to demonstrate the limitations of 2-ID modeling in this context and the impottance
of a full 3-D model when realistic results are required. Independently of this more rigorous
modeling apptoach, we also introduce a novel method for finding the best configuration for
each lattice type. The chapter is organized as follows. In section 2 we introduce the dispersion
gauge concept and apply it to three slab lattice photonic crystal types including the 1-D lattice,
a 2-D squate lattice, and a 2-D hexagonal lattice on the first band. Based on this gauge, we

maximize dispersion in order to obtain the best lattice configurations for each lattice type. The
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supetptistm design equations are developed in section 3. This uniform design approach enables
us to make a comparison between lattice types based on the criteria of minimum ptism area for
a given channel count, spacing and crosstalk level. Being mature enough to provide a feature
size of 50 nm or less with an aspect ratio of more than 10, we have selected the Silicon-on-
insulator (SOI) technology for our demonstration. The wafer we have chosen has 260 nm top
silicon layer. The design equations have been used by applying them to the design of a 4-
channel CWDM demultiplexer with theotetical cross talk level of 20dB, using vartious slab
photonic ctystal types in section 4. We compare these lattice types with respect to superprism
area. In section 5 we discuss our results and compare them with other design data. A
discussion of the importance of full 3-D modeling and difficulty of the 2-D equivalent models

are presented in section 6. Section 7 concludes the chapter.

6.2 Maximum available dispersion, average group velocity

Figure 6.2.1 shows the unit cell of 1-D lattice, 2-D square lattice and 2-D hexagonal lattice
photonic ctystals. The lattices are rotated to ensure that there will be a band-gap for a wave
traveling in the  direction. For later reference, the first Brillouin zone in each case is also
shown in Figure 6.2.2. The photonic crystals are made by etching groves (for the 1-D case) or

holes (for the 2-I cases) on a slab of silicon, the substrate 1s silicon oxide.

— A

\3

Figure 6.2.1. 1-D lattice, 2-D square lattice, and 2-D hexagonal lattice photonic crystal unit cells
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Figure 6.2.2. 1-D lattice, 2-D square lattice, and 2-D hexagonal lattice photonic crystal Brillouin zones together with
irreducible zones.

Wave-front refraction at the photonic crystal boundaties can be determined by imposing the
conservation of the tangential component of the phase velocity (or k-vector) across the
interface. However, the beam direction follows the group velocity direction (S-vector) and it is

directed along the gradient of the wave vector diagram at the operating point[16].

The beam divergence inside the photonic crystal, which has a dominant effect in limiting the
resolution of the demultiplexer, can be obtained by using the curvature of the wave vector
diagram again at the operating point [7]. We find that using the normalized wave vector
diagram (wave vector components divided by the wave number in vacuum (4, = 21/\), ie.
n. =k, [k M =k, / k,) simplifies the implementation of the wave vector boundary
conditions [4;17-19]. This is because the effective index of the slab (7, = B/4; ) is only a weak
function of the wavelength and so we can treat it as a constant. In contrast to this, the
tangential component of wave vector is obviously a strong function of wavelength, and thus
different boundary conditions are required for each wavelength. It is also interesting to note
that at longer wavelengths (or at the smaller photonic crystal petiods), as the Bloch modes
approach plane waves, the normalized wave vector diagram approaches the index ellipsoid. For
the 2-D photonic crystals that we investigate here, due to symmetry, the normalized wave
vector diagram approaches a circle (the photonic crystal behaves as an isotropic matetial), while
for the 1-D case, it approaches to an ellipse and the birefringence is well-known as form

birefringence[20].
Keeping the tangential component of the phase velocity continuous across the interface, z¢.,

”x = ”eff Sin @1 (61)
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where @, is the incident angle (see Figure 6.1.1), one can find the direction of phase velocity in

the photonic crystal as
v, =t‘(ﬂxﬁx+ﬂzﬁz)/(ﬂi+ﬂs) 6.2)

where ¢ is the velocity of light in vacuum and 7, corresponds to 7, obtained from Eq.(6.1) at

the specified wavelength. The group velocity is defined by
v, =V, w(k) (6.3)

and it is perpendicular to the wave vector diagram [16] at the operating point. For our analysis

it is easier to work with a normalized group velocity given by:

S/ NI— 2
£ w0, /0w)  w(0n, /0w
(0n,/8) * 0, /0] .
a a

X 2

N\ (8n,/ON) N (81, JOX)

The wave refraction at the intetface of the input waveguide and the photonic crystal can be
desctibed by the wave vector diagram too. In this case the effective index of the slab can be

replaced by the effective index of the input waveguide at the interface.

It has been shown recently that the amount of dispersion is related to the stored energy in the
photonic crystal [21]. Thetefore mote dispersive photonic crystals have lower energy velocities.
For the spatially modulated medium, the group velocity represents the velocity of energy
transfer averaged over the period [21]. We monitor the variation of the notmalized wave vector

7. along the band edge (where /éz :’TV/A at point X, /éz =’IT/A along XM and
k, = Z'K/ \/-3-./\ along KM directions for 1-D, 2-D square and 2-ID hexagonal lattice types
respectively, see Figure 6.2.2) within the desired spectral window [)\1,)\N]. Figure 6.2.3

depicts a typical 2-D hexagonal wave vector diagram at 8 different wavelengths. It shows

cleatly the normalized wave vector components at the
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Figure 6.2.3. A typical normalized wave vector diagram of a 2-D hexagonal lattice slab photonic crystal at eight different
wavelengths.

band edge. The average gradient of #_ along the band edge (first Brillouin zone edge) can be

written as:

An

X

AN

", ()\ )—nx ()\N)I

L 6.5
N (6.5)

bandedge bandedge

Then the average normalized group velocity at the band edge, using Eq.(6.5), can be expressed

as:

A

<V'g>=_[xl+xN]x ()= () o

-
2 X, = Ay

bandedge

Because the maximum dispersion usually happens at the band edge (and the lower the group
velocity, the higher the dispersion) the above parameter can be taken as an indicator for the

maximum available dispersion. In other words, a lattice type with a configuration that provides
lower <V g> over the desired spectral window has higher available dispersion and would be a

better choice for making a superprism.
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The wave vector diagrams are obtained by using the plane wave expansion method over the 3-
D structure. The mesh size is 64x64 on the lattice surface (x- plane) and also 64 points in the
vettical direction (y axis), on which we impose an artificial periodicity (the so called super-cell)
of 6 times the slab height. Figure 6.2.4 shows the super-cell of a 2-D hexagonal slab photonic
crystal. The dielectric constant is sampled 6 times finer than the imposed mesh size. For an
accurate complete wave vector diagram the reduced Brillouin zone has been sampled into 10*

pattitions. The polarization is assumed to be TM (electric field normal to the slab surface).

Within our model, we assume that the silicon slab and silica substrate have a refractive index of
Vi2 and V2 tespectively. We ensure that we are working above the light line cone by
checking that the effective index of the photonic crystal defined as 7, (PC)= /s + ﬂ; is less

than the refractive index of the cladding (which is air) and the substrate (which is silica).

Figure 6.2.4. The supercell of slab 2-D hexagonal photonic crystal.
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2-D square, A=270 nm 1-D, A=254 nm

Figure 6.2.5 The normalized wave vector diagram for 2-D square lattice and 1-D lattice photonic crystal,

Figure 6.2.5 shows a typical normalized wave vector diagram for the first band of the 2-D
squate lattice and the 1-D lattice photonic crystal. There are some differences and similarities
among the wave vector diagrams of different lattice types. The first band of the 1-D photonic
crystal is an open cutve (provided there is 2 bandgap), but the 2-D square and 2-D hexagonal
first band wave vector diagrams resemble square and equilateral triangles with an asymptotic
internal angle of 90 and 60 degrees respectively. In other words, the wave vector diagrams
resemble the lattice type in reciprocal space (as is shown in Figure 6.2.5) and they inherit the

photonic crystal symmetries along the edges of the irreducible Brillouin zone (i, along &,
I'M and 'K ditections for 1-D, square and hexagonal lattices respectively), Therefore, one can

conclude that the higher the symmetty order (Ze higher # in the symmetry operationC,), the

morte pronounced the curvature of the wave vector diagram will be. Comparing lattice types

with this respect, 1-D has the least curvature whilst hexagonal has the most. (see Figure 6.2.5).

As we mentioned before, the maximum dispersion happens when the band diagram evolves
from the closed cutve around the origin to the onset of the bandgap. However, in order to
reduce sensitivity to fabrication impetfections we choose the lattice parameters such that the
bandgap size is less sensitive to the lattice dimensions (ie., we do not want too small the
bandgap). However this represents a trade-off between improved dispersion and more
challenging fabrication. This implies that (for practical reasons) it is preferable to have a small

band gap at the long wavelength end of the desired spectrum, (for example, in Figure 6.2.4 the
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wave vector diagtam shows a small band gap #, = 0.2 for a wavelength of \; =1.45um ), ze.,

we keep 7, ()\N )‘bmdedge =0.2. Note that in photonic crystals, the dispersion is usually

negative, z¢., 7, (>\1 )| as a result, there will be a well established band

> |
bandedge — 7y (>\N ) bandedge
edge along the whole spectrum. Also since the smaller the bandgap, the more dispetsion is

achievable, by fixing #_ (>\ N)

bandodse = 0.2 we impose a reasonable restriction for lattice types,
andedge - ‘ 3

which makes comparison more meaningful.

Hole diameter (d), and
initial guess for period (Aj)

r

Calculate n, at Ay where k; is at the bandedge,
using 3-D plane wave expansion method

Multiply dimensions by
CTnv_%r%TrLce? 0.2/n, (except for the
NcU.cl < slab height)

Figure 6.2.6. The flow chart for obtaining the period for each hole diameter, keeping 7, ()\ N ) == (.2 at the bandedge.

Imposing the above restriction on photonic ctystals with fixed slab height, we propose the

following procedute (See Figure 6.2.6 for the flow chart). This iterative procedure finds proper

petiod for each hole diameter maintaining the restriction 7, ()\ N )| =0.2. The scaling law

bandedge
of photonic crystals (ignoring its effect of the slab height) was used to correct the initial guess

and to link iterations. Five iterations were almost always enough for convergence.

Figure 6.2.7 shows the average normalized group velocity versus the hole diameter d for 1-D,

2-D squate and 2-D hexagonal lattice slab photonic ctystals maintaining the restriction of
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=0.2. The average has been taken ovet the wavelength span of \; =1.39 um

7y (>\N)

to A\, =1.45um . As can be seen, the lowest group velocity is found for the 2-D hexagonal

bandedge

lattice slab photonic crystal whilst the largest is found for the slab 1-D photonic crystal. It is
notable that the extent of the hexagonal lattice band diagram shrinks dramatically for larger

hole diameters (or at lower wavelengths), making it less appropriate for practical applications.

h =260 nm
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Figure 6.2.7. Averaged normalized group velocity at the band-edge for various lattice types versus hole diameter.
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Figure 6.2.8. The inner-hole spacing versus hole diameter corresponds to Figure 6.2.7.
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Figute 6.2.8 shows the inter-hole size (A —d) versus hole diameter 4 with the same conditions
as considered in Figure 6.2.7. The hole size and inter-hole size must be greater than the

minimum feature size of the fabrication process.

Using Figure 6.2.8 and with the minimum feature size of 75 nm, the results for the best

parameter of various lattice types (which maximize the dispersion at the bandedge whilst

respecting the restriction of # ()\ ) = (.2) ate summarized in Table 6.1.
: x N /lbandedge

Table 6.1 Period, fill factor and maximum available dispession for various lattice types based on a 75 nm hole diameter

sDEe 2084 2834 ¢ 0.062

Table 6.1 also records the fill factor. It is interesting to observe in Table 6.1 that the minimum
group velocity and the fill factor are monotonically related. Having the lowest fill factor, the
hexagonal lattice provides the lowest group velocity at the band edge, whilst the 1-ID photonic
crystal gives the highest fill factor with the highest group velocity. Keep in mind that the

average group velocity and dispersion are inversely related.

6.3 - S-vector demultiplexer design equations

The goal 1s to design an N-channel demultiplexer, which resolves N wavelengths at
X=X, ", Ay Wwithin a specified crosstalk level. The channel spacing is fixed at AX . Figure
6.3.1a shows a typical first band diagram near the band edge in a suitable operating region for
the S-vector supetptism. To be sure that tangential component of the wave vectors inside
photonic crystal are greater than or equal to the tangential component of the incident beam

wave vector (in other words to avoid band-gap), the bulk photonic crystal structure has to be
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wavelength, see Figure 6.3.12) in the line with the tangential component of incident beam wave

vectot, i¢.,

Hq sinp, > (nx (N )cos6, — n, (\,)sin6, )

bandedge 6.7
where @, is the input waveguide angle with respect to the normal to the interface, and 0, is the
slant angle defined as the angle between the 3 axis of the lattice (as defined in Figure 6.2.2) and
the notmal to the interface). Figure 6.3.1b demonstrates how the band gap is avoided by
choosing the slant angle greater than 0, . When incident angle is zero (¢, = 0) Eq.(6.7) will
be teduced to [22]

0, =t (ﬂ{ /. )| (6.8)

bandedge

The schematic of the proposed demultiplexer is shown in Figure 6.3.2, in which the beam
propagation length is truncated to the minimum value necessary to resolve a channel from its
neighbors (we will explain how this length is determined later), and also we extend the

demultiplexer area to exactly accommodate the beam expansion inside the photonic crystal.

The minimum propagation len R to resolve the 7™ channel (at the wavelen N
p p g . m,m+1 m

with the main propagation direction of ) ) from the (m+1)" channel (at X\,,, with the
main ptopagation ditection of , ,.,) within a specified photonic crystal, since each plane-
wave component is expanded into Bloch waves and they will then be affected by the complex
dispersion characteristics of the photonic crystal. The light intensity envelope can be
approximated by a Gaussian profile when the beam divergence angle is sufficiently small [7].

Modeling Gaussian beam propagation in the photonic crystal therefore requires calculation of

the propagation characteristics of the plane wave components (with the full spectral width at

¢~? intensity of6, ). The divergence angle of the beam can be approximated as follows [7].
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Figure 6.3.2. The proposed S-vector superprism demultiplexer,

The input waveguide mode can be approximated by a Gaussian beam[23]. Howevert, this beam

is no longet Gaussian when it propagates through the photonic crystal, since each plane-wave
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component is expanded into Bloch waves and they will then be affected by the complex

dispersion characteristics of the photonic ctystal. The light intensity envelope can be

approximated by a Gaussian profile when the beam divergence angle is sufficiently small [7].

6, (R) = p8, (R) = >\P\/ 1+ (Ro /R)2 /(’“”eff”’eff)

6.9)

where w,, is the effective input beam width Modeling Gaussian beam propagation in the

photonic ctystal therefore requites calculation of the propagation characteristics of the plane

wave components (with the full spectral width at ¢ intensity of 90 )- The divergence angle of

the beam can be approximated as follows [7]

_ !
W, = W, COSP, /cos @,
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Figure 6.3.3. A Schematic of the demultiplexer showing the defined parameters.
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and w,is the effective input waveguide width[23],# . is the effective refractive index of the
slab region and p is the beam divergence multiplication factor (representing the beam

divergence property of the photonic crystal) which 1s defined as [7]
p=0¢,/0¢, (6.11)

where ¢, and ; are the incident and the steering angle of the beam. R, is the Rayleigh range

defined as

Ry= ”eff'“”’esz />‘P (6.12)

X is the wavelength of the incident light. Thus, the optical power density in the slab region (to

first order approximation) can be written as

s 2L,

" TOR exp (—-2 92/9[2 ) exp (—2 j,Z//gg ) exp (—OLmR) (6.13)

where 6 is measured versus propagation direction, A,is the effective photonic crystal slab

height, the y axis is perpendicular to the slab direction. o, is the total propagation loss.

Theoretical cross talk of two neighboring channel can be defined as the normalized
overlapping integral of the two propagating Gaussian beam at the fixed R cortesponds to these

channels, 7.,

£ =2/(m0) [ J: exp (676 )exp[— (0 -0, /(06,)" |40 (6.14)

where p (divergence angle ratio) is the ratio of beam divergence angle of the two neighboting
channels, and m (deviation angle ratio) is the ratio of the difference in the beam deviation angle
and the beam divergence angle (A, =19,). Using Eq.(6.14), the maximum theoretical cross

talk can be expressed as

€= «/2/<p+1/p) exp

o / (max(p, 1/p)" + 1)] 6.15)
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Figure 6.3.4 shows the deviation angle ratio mversus the beam divergence angle ratiop fot

various theoretical cross talk levels. The divergence angle of the Gaussian beam reduces from
infinity at the waist to its minimum value at the far field. However, it is not necessary to let it

expand that far to be ableto resolve it from neighboring channels. The minimum propagation
length to resolve the 7" channel from ( -{-1)th one within a specified crosstalk level R, .,

(see Figure 6.3.4) can be found solving Eq. (6.15)using Eq. (6.9), and noting that

(6.16)

. R '
N min (ef,x,,, > ef,x,m ) = ‘“Pz,x,, 2R

Obviously, the propagation length obtained in this way is not in the Fraunhofer zone. The

demultiplexer length for 7" channel (R ) is the maximum of R, ., and R, .

12

10}

?/S 1/4 13 172 1 2 3 4 5

Figure 6.3.4. The deviation angle ratio T} versus beam divergence ratio P for various maximum theoretical crosstalk levels.

We will now show that our analysis (Eq.(6.15)) is an extension of previous models [6] and it
will reduce to the previous results if the device size is large compared to the Rayleigh range,
and if the wavelength inctement is small (or non-uniformity is negligible), Let us assume that

beam divergence is equal for all channels so thatp &1, then using Eq.(6.15) cross-talk can be

approximated as
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£ =exp(—n’) 6.17)

Using Eq.(6.9) and in the Fraunhofer tange (or when the Rayleigh range is small compared to

the device size), we have

§=exp

- (r’rmeffu/eff A)x/)xz )2} 6.18)

Whete ris the resolution parameter defined as

r=plq (6.19)

And g is the normalized angular dispersion defined as
g= N0, [ON (6.20)

Thus the resolution can be written as

ANN=X\J—In ﬁ/(rﬂneffweff) (6.21)

This is essentially the same exptession (for a theoretical cross talk level of 17.4dB,
oty/—In§ = 2) as the one obtained previously [6]. As will be explained in the next section, we

can neither ignote the non-uniformity not treat the device as large compared to the Rayleigh

range, so we have to use the general Eq.(6.15) in our case.

6.4 Numerical illustration

To obtain specific results, we design a 4-chanel CWDM demultiplexer (AX = 20nm) with a

desired theoretical crosstalk level of 20dB. The desired spectral window is from X\, =1.39um
to A, =1.45um . The polarization is TM with the electric field normal to the slab surface. The

design has been catried out for the three lattice types that we optimized in section 2 (with the

results summarized in Table 6.1). The direction of the input waveguide (incident angle ¢, ), the
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angle 0, can be used to minimize the superprism area (). There is a trade-off between being
near the band edge (i.c., higher dispersion) and having the required output beam width (i.e,
higher band curvature ot beam divergence). Whilst getting too close to the band edge makes
the output beam too large, operating far from the band edge will reduce the dispersion. The
gauge for the trade off is the minimization of the supérprism area. We petformed a downhill

search on the three patameters (¢,,0, and w,), scanning the values of each until no further

reduction in prism area was found.

Table 6.2, shows the résult of such an optimization for various lattice types. The lattice
parametets are taken from Table 6.1. As is seen from Table 6.2, the optimum 1-D superprism
is about one order of magnitude smaller than the 2-D lattice counterparts. From this finding,
one can conclude that the dominant factor determining the size of multiplexer is the band
curvature. Although the 1-D case has the lowest dispersion (see Table 6.1), it provides the

smallest demultiplexer size due to its low wave vector diagram curvature near the band-edge.
Table 6.2 4-channel CWDM demultiplexer design specification with various lattice types
Surface

)

Comparing square and hexagonal lattices which have similar dispersion at the band edge (see
Table 6.1) is also interesting. The hexagonal demultiplexer size is greater than the square one
due to higher curvature of the hexagonal wave vector diagram. In conclusion, the slab 1-D
photonic crystal, by providing modest dispersion but smallest wave vector diagram cutvature,

is the best choice for demultiplexets based on the S-vector superptrism phenomena.

As is shown in Table 6.2, the best operating point (which is determined by the slant angle and
incident angles) of the superptism for the 1-D lattice differs significantly from the two othet

cases. This emphasizes the fact that beam divergence is mote important than the dispetsion if
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the superprism waveléngth resolution is a concern. Our optimization procedure puts the
optimum operating point of the 1-D photonic crystal (with open wave vector diagram) far
away from the bandedge where both the dispersion and the beam divergence are low.
However by wotking that far from the bandedge in 2-D photonic ctystals (with closed wave
vector diagram), we only sacrifice the dispersion without reducing the divergence that much, so
the trade-off operating point for 2-D phonic crystals are very near the bandedge. Being far

from the bandedge is also advantageous because it promises better transmission.

215'01) lattice slab photonic erystal 2-D square lattice slab photonic crystal

Ch2 Chi
200} (2)
10 100 150 200 250 300 400 500
g 2-D hexagonal lattice slab photonic crystal
" 100 I
50
Input l 300
0 50 100 2(um)
z(um)

Figure 6.4.1, A Schematic of the demultiplexer using a) slab 1-D photonic crystal, b) 2-D square lattice photonic crystal and
¢) 2-D hexagonal lattice photonic crystal.

It is also interesting to note that the input and output beam widths of the 1-ID case are
compatible with the use of ordinary waveguides, whereas in the other cases a more complex
optical system (i.e., focusing lenses, mirrors or long tapered waveguides, e/.) must be added to
the demultiplexer output to reduce the output beam to a manageable size for integrated optics

applications.

Note that this conclusion is based on the first band of the above-mentioned lattice types. Note
also that the second band of 1-D photonic crystal is not located around the origin and also
there 1s no multiplicity in the wave vector diagram; therefore it is not a proper choice for this

kind of application.

The superprism layouts of the three demultiplexer photonic crystals are shown in Figure 6.4.1.

Input and output channel locations and sizes are marked too. Note that the output beam
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direction can be adjusted by changing the output facet direction with respect to the bulk

photonic crystal.

As we mentioned before, and as is clear from Figure 6.4.1, neighboring channels may have
quite different beam widths (see specifically channels 1 and 2 in Figure 6.4.1b, and c) depicting
the output beam width for all channels at the exit points for three lattice types. To be mote
specific, Figure 6.4.2 shows the output beam width for different channels for the designs
depicted in Figure 6.4.1. As is seen, for 2-D lattice types, the output beam width varies
considerably from channel to channel, and usually it is higher where the dispersion is higher (ot
the divergence factor is higher, see Eq.(6.11), and (6.15)). If the designs are going to have any
integrated applications, the variation of the output beam width has to be addressed (especially
in 2-D lattice types). Consideting the high refractive index contrast material that we have used
in our design, a cutved mitror seems to be the easiest way to focus the output beams to more
practical values. Also one always can compromise the output power, by selecting an output

waveguide width which is smaller than the beam width.

Figure 6.4.3 shows the deviation angle = @, — @, (see Figure 6.3.3 for clatification of the
patameters) for all channels and for three lattice types. By using this data, together with the
channel spacing (20 nm), we can calculate the angular dispersion as a function of wavelength.
For the 2-D square lattice, although the angular dispersion is high (0.25°/nm) for the first
channel (at 1390nm), it is low (0.09°/nm ) at the last channel (at 1450nm). This is a 2.7-fold
dispersion reduction over 60 nm. The 2-ID hexagonal lattice follows a similar pattern.
Consideting the fact that the conventional demultiplexer design is usually governed by the
worst channel dispersion [11], this significant non-uniformity is troublesome (especially for
higher channel count demultiplexers where dispersion non-uniformity is much higher).
However, the situation will be more complicated if one takes the non-uniformity of p into

account (see Fq.(6.11)).

Figure 6.4.4 shows the beam divergence multiplication factor p for various channels for the
three lattice types. The non-uniformity of p, especially for 2-D lattice types is significant,

particulatly when dispetsion is high (compare Figure 6.4.4 and Figure 6.4.3). This is the main
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factor limiting the scalability of the S-vector superptism as has already been pointed out by
Baba [3].
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Figure 6.4.2. The output beam width at the exit point for various channels.
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Figure 6.4.3. Beam steering angle for each channel.

139



\ /Z-D hexagonal lattice
1
/ 2-D square lattice
0.1
Q
——
1-D lattice
0.01 \
0'0011 2 3 4
Channel

Figure 6.4.4. Beam divergence multiplication factor for each channel

Also note the sign of angular dispersion in 1-D and 2-D cases (in the 1-D case it is positive; in
2-D cases it is negative). This fact however is not general; a search over the design space yields
regions of positive and negative dispersion. However, the dispersion in 1-D lattices is always
mote uniform, also p values are lower and more uniform than the 2-D lattices. We emphasize
once again that the main reason that 1-D lattice type allows the smallest prism area is its low
band curvature. Despite having the lowest dispersion (see Figure 6.4.3), its low p value (see

Figure 6.4.4) more dominant as long as demultiplexer area is the main concern.

6.5 Discussion and comparison with previous work

Once the resolution of the S-vector superprism had been formulated, and it was understood
that the resolution was less than had been previously hoped [3] (and to achieve even a modest
resolution impractical photonic crystal sizes have to be utilized[3]) there were many attempts
to push the limits to find the smallest device [3;6;11;14;15]. The second band of various lattice
types wete examined. Using the 2-D plane wave expansion method and making use of the
photonic ctystal scaling laws these researchers obtained designs which are wavelength
independent. The linearized model using p, ¢ and r parameters (see Egs. (6.11), (6.19) and

(6.18)) has been used to maximize dispersion and minimize divergence angle [6;11;15]. The
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design equations which have been developed are based on the conventional S-vector
superprism depicted in Figure 6.1.1, assuming a neatly normal angle of incidence, equal
dispersion for all channels, and the Fraunhofer Gaussian field approximation [2;6]. The
propagation mechanism of the beam inside photonic crystal has been partially taken into
account recently (we will refer to it as the semi-linear model to distinguishing it from the simple
linear method) [11]. The design equations in this case are based on the assumption of an equal
divergence angle of neighboting channels which as we have shown is not always the case if the
channel spacing is not very small [11]. The assumption that at the maximum tesolution length
(7e. the maximum propagation distance requited to resolve the worst channels), all channels
have smaller ot equal beam-widths than the worst channels was also implied [11]. Howevet, as
we have shown in Figure 6.3.3 this may not always be the case (this is also illustrated in Figure
6.1.1, where the resolution length might be sufficient to resolve channel N from
channel N —1, but it is the first two channels that have the greatest beam widths). In addition,
the beam direction outside the photonic crystal in the conventional S-vector superprism
photonic crystal will not remain radial, so that radially directed output waveguides will result in
excessive channel non-uniformity. Theotetical analysis based on the plane wave expansion and
mode matching methods show 10dB channel non-uniformity in a 4-Channel demultiplexer

[11].

The fact that these models neglect non-uniformity might be acceptable for sufficiently natrow
bandwidths, but unfortunately, their resolutions ate too low to justify the narrow bandwidth
assumption. In other wotds, the S-vector superprism can only resolve wide channel spacings
where the non-uniformity can no longer be ignored (patticularly beam divergence non-
uniformity as shown in Figure 6.4.2). Therefore, when designing such a wideband S-vector
superprism, we need 2 model such as the one presented here that takes the full non-uniformity

into account.

We can compate out design results with those of other researchers who used these mote
approximate models. One recent study which is based on the semi-linear model and made use
of the 2-D plane wave expansion method on the second band (which uses real refractive

indices for the 2-D model), concluded that the best lattice type is the hexagonal lattice in the

I'M direction with TE polatization [11]. For the similar CWDM demultiplexer, the minimum
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photonic ctystal size was then found to be 754 um® (which is about half the size of out
minimum case). However the validity of this conclusion is limited by the validity of the semi-
linear model used and the fact that they have used the 2-D model with real refractive indices.

As we will show in the next section, it overestimates the dispersion.

6.6 2-D versus 3-D modeling of slab photonic ctystals

Considering the efficiency of plane wave expansion method, it is relatively simple to employ 3-
D modeling. However this requires a fixed slab height, which sacrifices the scaling properties
of 2-D modeling. In other words, our results will be specific, rather than general. This may
explin why many supetprism designers have tended to make use of 2-DD models. Another
reason why designers tend to avoid using the full 3-ID model for obtaining the wave vector
diagram may be the lack of a viable 3-ID model for calculating the transmission specttum from
a slab photonic crystal, whereas a 2-ID transmission model is available. However, as we have

shown, we do not need a transmission modeling for designing a multiplexer.

It is also true that 2-ID models that assume geometrical uniformity in one direction and
periodicity in the other two exhibit all the fundamental phenomena of the slab photonic crystal
where the field is not uniform in rion—periodic direction. However finding the proper 2-D
modeling parameters for each application is not very obvious. Although one can use the slab
guiding layer refractive index for the background, and the air refractive index for the holes, the
band edge and the dispersion so obtained are far from the real 3-D model, especially when the
confinement is low in the non-petiodic direction. Using the effective index of the slab region
for the background of the 2-D model and air for the holes has been used already [6;12;14] but
the band edge is not still the same as the 3-1D model and furthermore there 1s no physical basis

for such an assumption.

Thanks to the efficiency of the plane wave expansion methods, the band diagram using the 3-
ID model can be found easily by imposing virtual periodicity in the third direction. Figure 6.6.1
shows the average group velocity of the 2-) square lattice of Table 6.1 versus slab height using

3-D model and 2-ID model using the effective mdex of the slab for the background and
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converge for slab heights greater than 5pm. It means that if one uses 2-ID model with real
refractive index of the guiding layer and air for the holes, it shows similar dispersion only if the
slab heights is greater than 5um. There 1s also another cross point where two models give

similar dispersion (at 4~ 0.48pm) and some authors [6;14] have chosen this one as the
effective index of their model. As it is clear for our case of b= 260nm the 2-D model using

effective index [12] underestimates the dispersion, whilst using the slab index [11], or the
middle cross point [6;14] overestimates the dispersion. By decreasing the background refractive
index and increasing the holes’ the location of the band edges for the 2-D model may closely
approach those of the real 3-D band diagram [22]. The best 2-1D model parameters (basically
the best tefractive indices for the background and the holes) can be obtained by matching the
band edge of 3-D and 2-D band diagtams over the desired wavelength span [22]. Whilst the
band diagrams of 2-D and the 3-D cases now look much the same, the band curvatures are

not, thus making beam divergence modeling inside photonic crystal unrealistic.

Furthermore there is no guarantee that the transmission spectra would be the same if the band
diagrams are much the same. It remains an open question as to which 2-D model provides the
most realistic transmission spectra. These problems show the importance of the full 3-D
modeling in calculating either band diagrams or transmission spectra. We have therefore used a

full 3-1D model band diagram in our design procedure.
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Figure 6.6.1. The average group velocity versus slab height, calculated either by 3-D modeling or 2-D which employs effective index
of the slab with the same width for the background refractive index.

6.7 Summary and conclusions

We have developed general design equations for designing a demultiplexer using S-vector
supetprism phenomena based on the first band of photonic crystals. We have examined three
lattice types: 1-D, 2-DD square and 2-D hexagonal. A typical SOI wafer technology with a top
silicon layer thickness of 260 nm has been used for our simulation. We have shown that the
average group velocity over the band edge is a suitable indicator for the maximum available
dispersion. The hexagonal lattice, followed by the square lattice, shows the maximum available
dispersion. The slab 1-D photonic crystal provides the lowest dispersion available at the band
edge. Based on the Gaussian field approximation in photonic crystals, the minimum tresolution
length for each channel has been calculated. ‘The superprism area is then adjusted to provide
enough atea for the beam expansion and to allow each channel be tesolved from neighboring
channels. We have shown that the resolution is more critically dependent on the beam

divergence inside the photonic crystal than on angular dispersion. As result the 1-D photonic
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crystal provides the best resolution, despite the fact that the hexagonal lattice displays an order

of magnitude larger angular dispersion.

We have shown that a 4-channel CWDM demultiplexer with a theoretical cross talk level of 20

dB can be made with a the prism area of 1367um?. The lattice type is slab 1-D photonic

crystal and 1t is based on a typical SOI technology with a minimum feature size of 75um. The

input beam width is about 1.5 pum and the maximum output beam width is about 3 pm.

Utllizing the full 3-D plane wave expansion method, the design parameters are much more
realistic than those obtained by 2-D models. Our investigation also shows that it is not easy to
design higher channel count demultiplexers based on the S-vector superptism phenomenon

due to the high non-uniformity of the band diagram as it evolves with the wavelength.
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Chapter 7

STRATIFIED PHOTONIC CRYSTAL DEMULTIPLEXER

A new wide-band CWDM demultiplexer using cascaded photonic crystals is proposed.
Five-fold superptism size reduction is achieved. The new demultiplexer is compared
with the conventional S-vector superprism. The output channel beam sizes are found

to be mote uniform.

7.1 Introduction

In the previous chapter we showed that S-vector device has some limitations that make them
more suitable for CWDM applications. In this chapter, we introduce a new approach to

improve the scalability of the S-vector superprism.

While in the previous chapter, we modified the conventional S-vector superprism a little bit to
minimize the area, in this chapter we compare the results of our proposed structure with the
conventional S-vector demultiplexer. For the sake of simplicity, we assume that the input
waveguide is normal to the photonic crystal interface. Then the tangential component of the k
vector will be zero at the input interface and stays zero up to the output interface. The output
waveguide similarly needs to be aligned perpendicular to the photonic crystal interface [9]. If
we start with the familiar square lattice photonic crystal, and restrict ourselves to the first band,
then it is not difficult to demonstrate that the beam reflection angles could be all positive
provided the lattice rotation angle is positive. Based on this observation, the schematic of the

demultiplexer for a planar fabrication technology is shown in Figure 7.1.1
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Output waveguides

Slab waveguide

Figure 7.1.1 The conventional S-vector superprism demultiplexer

As we have previously explained, the wave refraction behavior at the interface of the input
waveguide and the photonic crystal can be described by the wave vector diagram. The
direction of phase velocity in the photonic crystal can be determined by keeping the tangential
component of the phase velocities constant on both sides of the interface (in the normalized

form n sinp, = n,_ , where 7 is the effective index of the slab region and , is the incident
angle). The phase velocity can then be found from v, =¢ (ﬂxéx +na, ) / (ﬂi + nz) where c is

the velocity of light in vacuum. The group velocity v, = V,w (£) , however is perpendicular to

the wave vector diagram at the intersection point [10].

This chapter is arranged as follows. In the next section, the optimization of the conventional S-
vectot supetptism is discussed. Our proposed photonic crystal demultiplexer is introduced in

section 3. We compatre the results and conclude the chapter in sections 4.

7.2 'The conventional S-vector superptism

To be more specific, let us follow the design of a conventional demultiplexer based on S-
vector superptism. It also provides us with the necessary framework for our proposal. The goal

is to design an 8-channel CWDM demultiplexer working at X =1310,---,1450 nm. The

channel spacing is assumed to be 20 nm. The Gaussian beam propagation in the photonic
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crystal involves different propagation characteristic of its plane wave components (with the full
spectral width at exp(—2) intensity of ;). However, the envelop of the light intensity profile
can be approximated by a Gaussian when 0 is sufficiently small. The divergence angle of the
beam can be approximated by [11;12]
A
et‘ = p 00 = ? P (7' 1)

T,

where w, is the effective input waveguide width [13], n is the effective refractive index of the
incident beam media, X\, is the wavelength of the incident light and p is the beam divergence

multiplication factor (which represents the beam divergence property of the photonic crystal)
and defined as

p= 09} [0, (7.2)

where @, and ] are the incident and the refraction angle of the beam. The far field beam

width can be approximated by

w=w,+2Lsecy; tanf" (7.3)

whete L is the distance from input end. /" channel has the following beam width and the lateral

shift at the output interface

w, = w, +2Lsec Lp:;\i tan Ofxi (7-4)

D, = Ltanyp}, (7.5)

The minimum length to resolve /" channel from (i-1)" one with a modest crosstalk can be

determined from the following equation.

D, =D, _ =w+w,_, (7.6)
ot
2w
L = 0 7.7)
" tan &pfm —tan kpt)\'_ —2sec “P;tx,. tan 6;&{ —2sec apfm tan Ozm
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whete L, is the resolution length (minimum length from the input end to resolve channel ;
from the proceeding one). The demultiplexer length is the maximum of L, . The demultiplexer

photonic ctystal area (assuming it is in rectangular shape) can be found from
S = LX(Ltankpr +w, —I-wo) (7.8)

A feature size of 50 nm with aspect ratio of grater than 10 is chosen. We have selected the
silicon on insulator technology. The wafer has 260 nm top silicon layer thickness, the hole
diameter is 190 nm and the polatization is TM (electric field parallel to the air hole). The period
of 280 nm on square lattice provides us a broad enough band diagram. The wave vector
diagtam (equi-frequency band diagram) is obtained using the plane wave expansion method.
The mesh size is 64x64 in the lattice surface and also 64 points in the vertical direction, which
we impose periodicity of 6 times grater than the slab height. The dielectric constant is sampled
6 times ﬁnér that the imposed mesh. The whole first Brillion zone has been scanned 4x10*

times for a complete wave vector diagram.

The minimum rotational angle of the lattice which ensures that no channel launches at the

band gap can be found from [14]

6, =tan" (n ()7 O )La,,dedge) 7.9)

where the wavelength of the first channelis X\, =1310 nm . In our case, 0, = 22.9°. Itis not

difficult to show the minimum demultiplexer surface area occuts atf =23.4°. Figure 7.2.1
illustrates part of normalized wave diagrams relevant to our design. Directions of group

velocity (beam directions) are also indicated.
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Figure 7.2.1 The normalized wave vector diagram

Figure 7.2.2 demonstrates the angular deviation profile for an 8-channel demultiplexer based
on the band diagtam of Figure 7.2.1. As is seen, whilst the theoretical dispersion is significant
at the first channel (at 1310nm) 0.9 °/nm, it is not that large at the last channel (at 1450nm)
0.087 °/nm. This large non-uniformity is troublesome, considering the fact that demultiplexer
design is usually governed by the worst dispersion. However, the situation gets mote
complicated, if one takes the non-uniformity of p (see Eq. (7.1)) into account. We will discuss

this issue later.

TM polarization, k =260 nm, a = 280nm, 2r =190 nm, 0 =23.4°

55 G\

30 \

e

N 13 T3 136 138 14 14 144 146
Aog(puam)

Figure 7.2.2 The beam deviation angle versus wavelength of a typical demultiplexer
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Figute 7.2.3 depicts the demultiplexer length versus input waveguide width. As is clear, at low
waveguide width, the dispersion of the photonic crystal can only overcome the spatial
divergence of the beam inside the photonic crystal at large distances. Since, the spatial
divergence of the beam reduces by increasing the input waveguide width, the required distance
to achieve the desited spectral resolution will decrease. However, this distance increases again
as we need more length to separate wide beams. The minimum multiplexer length of

L, =754 pm 1is achievable at the input waveguide width of w; =9.1um. Then the

photonic crystal area will be 1.38 mm?”.

TM™ polarization, h = 260 nm, a = 280 nm, 2r= 190 nm, 6 = 23.4°

900 20
€ _/
&
-]
e k)
109.3 1.32 1.34 1.36 1.38 1.4 142 1.44 1}%
% (um)

Figure 7.2.3 Resolution length and beam divergence multiplication factor versus channel wavelength.

Figure 7.2.3 shows the beam divergence multiplication factor p (see Eq.(7.1)) at the input

wavelength for w, =9.1 um. The first point from the large non-uniformity of dispersion

obsetved in Figure 7.2.2 is that the low dispersion of the last channel has caused the
demultiplexer length to be large. It is interesting to mention that the large dispersion of the first
channel is negated by the latge divergence factor, whereas the dispersion near the band edge (at
the first channel) is high enough that needs a quarter of the distance required at the last
channels. Putting the first channel in the same line as the last channel causes the first channel
to expand excessively. Figure 7.2.4 shows the output channel width of the multiplexer. The
output channel width reduces 300 fold from the first channel to the last one. In other words,

we need to increase the demultiplexer width to cover the entire expanded beam. In previous
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chaptet, by bringing forward the exit of the first channel, we tried to reduce the prism area.

Here we introduce a new idea; the next section is devoted to this new idea.

. TM polarization, h = 260 nm, a = 280 nm, 2r = 190 nm, 6 = 23.4°
10

SN
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10 \

w_ (um)

1
101‘3 1.32 1.34 1.36 1.38 1.4 1.42 1.44 1.46

A (pm)

Figure 7.2.4 Output channel widths versus channel wavelength

7.3 Our proposal

In order to bring the band edge in line with the normal incident angle beam, the lattice
rotational angle must be 0 _, (see Eq.(7.9)). The signal will propagate through the lattice
ptovided the rotational angle is greater than 0, , otherwise the beam will be reflected back
after encountering the lattice band gap. There is no bartier to experiencing high dispersion at
the last channel, but the type of structure that demonstrates high dispersion probably does not
allow the beam to propagate at the first channel. The beams, which are prohibited from
propagation through the band gap usually reflect back. This intuitive observation brings us to
the following design idea. Consider a stack of photonic crystals where each layer is designed to
maximize the dispersion for specific channel; however it puts the entire proceeding channels

into the band gap (teflect them back). Figure 7.3.1 illustrates the schematic of our proposal.
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Figure 7.3.1 The schematic of the stratified photonic crystal for N channel demultiplexing

By setting the incident beam angle normal to the interfaces, the tangential phase velocity
components will remain zero along the layers, which makes the design much simpler. The
lattice type is assumed to be square and because of its axial symmetry the beam encountets
similar lattice geometty in propagating forward or backward. Each section has four parametets
to be chosen: length I, petiod 4, hole diameter 2 and lattice rotational angle (slant angle) ©.
The set of parameters, {Ll,al,rl,()l}, {Lz,az,rz,ez}, ,{LN,aN,rN,GN} , can be selected in
order to make the multiplexer response uniform (..c., grid wavelengths be reflected back at the

desired location). Arbitrarily, we select

gg=a,==ay=ANandrn=r==ry=r (7.10)

In order to avoid low reflection at the boundaries, we select the slant angle © of the each layer
in such a way to make # =0 half way between two successive wave vector diagram
(corresponding to the channel in the band gap, which is supposed to be reflected and the one
with maximum dispetrsion which is supposed to pass through). For this purpose, the only
remaining degree of freedom is the length of each layer, which must be chosen together with
the input waveguide width appropriately, in order to make photonic crystal area as small as

possible.
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Furthermote we define refraction angle matrices which contain the refraction angles at each

wavelength through each layer for the forward traveling waves as

+
Py,

+ +
KP+ — ?pl,)\z :Pz,xz (711)

+ + +
Ping Pory 7 Paag

And similatly for the backward traveling waves, as

LPl_,x,
— [P P2, 7.12)
@;xN “P;,xN ot “P;,x,\,

Also we define the divergence factor matrices that contain the beam divergence multiplication

factor can also be determined (using Eq.(7.2)) for the forward traveling waves as

Py,
+ +
pt= :p e :p 2 (7.13)
P:,rxN P;,xN Pltr,xN
Fort the backward traveling waves we have
Dy,
p = :]’1,>\2 :Pz,xz (7.14)

Piry Pory T Pnpw

The beam divergence angle can be calculated using Eq.(7.1) subsequently. The beam width of

the first channel at the input interface is

w; = 2L, sec “pih tan 951 + 2L, secpy, tanb, +w, (7.15)
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In order to avoid excessive cross talk we have to sepatate the output channels for at least 20,

apatt from each other. Then the first channel has to be separated from the input channel by
(see Figure 7.3.2):

(7.16)
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Figure 7.3.2 The input/output waveguide geometry.
The first layer must be wide enough to provide the lateral beam shift D,, or
D, =L, (tanep], +tanyy;) ) (7.17)
Soiving Eqs(7.16) and (7.17) together (using Eq. (7.15)) we will have

L = %o (7.18)

0.5 (tan P1y, T0.5tanwp, ) —tan @], secy), —tany, secy,

if L, >0 the layer will fulfill the requitements propetly. The next channel beam width at the

input interface is

w, =2L, (Sec Py, tan by +secipy tanb, ) + (7.19)
2L, (sec "P;,xz tan 9:’& +secy;,, tan OZM ) +w,
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The channel spatial shift and the layer width can be determined by finding the common

solution to the both following equations

D,—D,=w, +w, (7.20)
D,=L, (tan &pfxz +tan;, ) +L, (tan npj’xz +tan,, ) (7.21)
Solving Eqs.(7.20) and (7.21) (using Eqgs. (7.17)and (7.19) for L, , we will have:

_ wytw+ D - (tan ©}y, Ttanp, —2sec @, tanb, —2secy, tan0, )L1 (7.22)

2 n = T n - -
tan,, +tane,, —2secyp,, tanb;, —2secy,, tanb,

Similarly if L, >0 the layer will satisfy the needs propetly. The beam width of #* channel can

be obtained as

w, = Z 2L, <cos @, anb,, +cosp,, tandy, ) + w, (7.23)
m=1

Similatly D, and L, can be found by solving the both following equations

D,;=D, =w+w_, (7.24)
D=3 L, (tan P, NG, ) (7.25)
m=1

Eqgs.(7.24) and (7.25) are used to calculate L; as follow

i—1
wy+w,_,+D,_, — Z (tan kp;—’xi +tany, , —2sec kp;)xi tan OZ’X‘_ —2secp, , tan@, ) L,
L = =1 (7.26)

' tan;, +tanyp;, —2secp;, tan6!, —2secyp;, tanb],

Ifall L, >0 the design will be feasible. The photonic crystal area can be found from

§=(Dy+w, +w,)xy L, (7.27)

The lattice rotational angle in order to bting the band edge in line with the normal incident
beam angle is given by Eq(7.9). The beam will propagate through the lattice provided the
totational angle is greater than 0, otherwise the beam will be reflected back encountering the
lattice band gap. Figure 7.3.3 demonstrates the band edge rotational angle versus the
wavelength X.
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TM polarization, h = 260 nm, a = 280 nm, 2r= 190 nm
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Figure 7.3.3 Band edge rotational angle versus the wavelength N, vertical gtid lines are plotted at the mid
channel wavelengths for the design purposes.

If we select the rotational angle of each layer (the slant angle) to be the same as the band edge
rotational angle of the mid wavelength grid points, we will ensure that while the dispersion is

high, the reflection of the proceeding channels remains adequate. The results are shown in

Table 7.1.

Table 7.1 Slant angle for each layer

9, (°)
.
11.58

Figure 7.3.4 depicts the superprism area versus input waveguide width. Clearly the optimum
input beam width is 18.6um, and the minimum ptism area will be 0.26 mm®* Compared to the

size of conventional superprism, we have achieved about five fold area reduction.
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TM polanzation, b = 260 nm, 4 = 280 nm, 2r= 190 nm
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Figure 7.3.4 Superprism area versus input beam width for structure of Figure 7.3.1

Figure 7.3.5 shows the output beam width of the optimum stratified photonic ctystal. As can
be seen, much better output channel uniformity is achieved (2.2 times versus 300 times for the

conventional one).

TM polarization, » = 260 nm, 4 = 280 nm, 2r = 190 nm
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Figuare 7.3.5 Output channel beam widths versus wavelength for structure of Figure 7.3.1
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7.4 Conclusions

We have proposed a novel stratified photonic ctystal, which is five times smaller than the
conventional S-vector superprism. In particular we have designed an 8-channel standard
CWDM demultiplexer (160nm bandwidth) with a 0.26 mm? photonic ctystal area. The non-
uniformity of the output. channel ‘width also shows tremendous improvement over the
conventional supetptism. It is also intetesting to note that the fabrication challenges of the
proposed demultiplexer would be the same as the conventional one (since we only use from

the totation of the base photonic crystal).
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Chapter 8

FIRST BAND K-VECTOR SUPERPRISM PHOTONIC CRYSTAL
DESIGN AND OPTIMIZATION

Design rules for a complete demultiplexer based on the k-vector superptism in a slab

photonic crystal are presented. Based on these rules, we select parameters for three

types of lattices of interest, Ze., 1-D, 2-D squate and 2-D hexagonal and compare the

petformance. The plane wave expansion method is used to obtain the wave vector
diagram and from this we develop design equations based on conventional ray tracing.
We then present an optimization approach which minimizes the prism area
independent of lattice types. We show that the 1-D superprism photonic crystal shows
a minimum prism area when compared to the other photonic crystal cases. Using
typical silicon-on-insulator technology, a photonic crystal atea of 0.099 mm’ is
sufficient to resolve 32 channels spaced by 0.8 nm (100 GHz) in the C'band for a dense
wavelength division multiplexing system. In order to achieve this, the angular
dispersion of the slab photonic crystals are enhanced considerably by expanding the
input beam through the superprism region and employing etched mitrors to collimate
and focus the light into and out of the superprism. We have shown that the superptism
area approximately increases by squate of the channel count. Finally the non-
uniformity of phase velocity dispersion across the desired spectral window is

addressed. The 1-D photonic crystal is superior in this regard too.

8.1 Introduction

k-vector superprism is based on the angular dispersion of the light at each of the free
space/photonic crystal interfaces. So long as the two interfaces are non-parallel, the different

wavelengths will continue to diverge in the free-space region beyond the photonic crystal.
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This implies that the photonic crystal is a prism shapes with the interface crossing angle
equal to the apex angle. As a consequence, an enhanced spectral resolution, similar to that of
a traditional ptism made of dispersive glass can be achieved. Interestingly, the attainable
tesolution could be more than enough for resolving channels in the conventional DWDM
applications. Petipheral optics usually is required to collimate input light and focus the
output light to the output waveguides (or detectors). By careful selection of the photonic
crystal parameters and prism ‘geometry, we will show that it is possible to design a small
photonic crystal to resolve narrow wavelengths of DWDM. Figure 8.1.1 shows a schematic
of k-vector superprism in the planar technology [1]. In this example beam collimation and
focusing is accomplished with etched mirrors (other approaches such as tapers or waveguide

lenses may also be feasible).

Planar mirror \ y(\ﬁ Outpl.lt
waveguides

Input
waveguide \)

N A
. N b
Superprism'
region

Wb S

Planar mirror

Figure 8.1.1 Schematic representation of k-vector superprism

The purpose of an input collimating mirror is to convert the input beam wavefront into a
planar one with a small range of spatial frequencies. This avoids the need for the flat
dispersive band diagram that would be required for narrow incident beams [2]. Note that the
output beam width after the prism has to be sufficiently large to provide the required
wavelength resolution through the Rayleigh critetion. So the tesolution of the demultiplexer
can be enhanced if the prism expands the incident beamwidth considerably. Using the fact
that rays follow the group velocity direction but the wavefront refraction will be in the

direction of the phase velocity, the photonic crystal can be rotated in such a way that there is
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a large deflection angle between the incident beam and the refracted beam inside the
photonic ctystal. By proper selection of the apex angle, this results in an expanded beam

width which amplifies the resolution of the demultiplexet.

Whilst the input facet must be large enough to cover the incident beam, the output facet of
the prism has to be of sufficient size to capture all beams in all wavelengths over the desired
window of opetation. Considering the group velocity dispersion of the prism neat the band
gap edge, the output side of the ptism will usually be larger than the local beam width. The
output mirror will collect the transmitted rays from the prism and focus them toward the
output waveguides. The displacement of the output beam with wavelength due to the group
velocity dispersion will only cause extra coma in the output waveguides, which can be

mitigated by a proper mirror design.

The dispersion behavior of the Bloch modes can best be understood through the wave vector
diagram, which is the contout of the components of propagation constant of the Bloch modes
at a specific wavelength (also known as equi-frequency contour) [3]. We have also recognized
that normalizing the wave vector components versus wave number in vacuum makes

supetprism design much easier.

The wave vector diagtam shows as many degtrees of symmetry as the corresponding photonic
crystal type. Confining ourselves to the slab photonic crystal, there are three types of photonic
crystal that have mainly been used. Figure 8.1.2 shows the three well known photonic crystal
lattices. The lattices are rotated so we have always bandgap at the x direction. The rotational

angle of the photonic crystal with respect of the intetface (the slant angle 6, has also been

defined).
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Interface Interface
direction

Figure 8.1.2 Three well known different photonic crystal lattices with the slant angle (91 ) definition in each case.

For the superptism purpose, we need the wave that propagates through the photonic crystal,
i.., we have to choose wavelengths below the band edge. The wave vector diagram of the 1-D
photonic crystal is an open cutve (which is the consequence of having band edge at only one
direction), it also has the smoothest wave vector diagram (which is the consequence of having
the lowest crystal symmetry) and provides the longest rang of operations. By providing a
modest band gap and a modest lattice symmetry groups, the 2-D square lattice on the other
hand provides modest range of operation. However, the hexagonal lattice by having large band
gap and large lattice symmetry groups provides the smallest range of operation. Beside the
difficulty of working with hexagonal lattice, it remains unclear which photonic crystal is better
for making k-vector superprism. As a basis for comparison in this chaptet, we have chosen

supetptism atea as a figure of merit.

In the next section we describe a basis for photonic crystal comparison. Based on that basis,
we select photonic crystal parametets for the three photonic crystals for which we are going to
make a compatison. In section three, we will show how k-vector dispersion is higher at the
second Brillouin zone. In section four we detive the unifying equations for the design of k-
vector superptism. Our scheme for minimizing the superprism area which consists of wotking
in second Brillouin zone and selecting the proper ptism apex angles are presented in section
five. The selections of the remaining parameters for minimizing the superprism area are taken
cate of in the next section. The typical results for designing a 32 DWDM channels in C band
are presented for three photonic ctystals of interest in section six. A discussion on the results

followed by a conclusion terminates the chapter
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8.2 Lattice parameter selection for k-vector superprism

The first band wave vector diagram of all photonic crystals evolves with the wavelength (or
equivalently with the period) more or less the same way. They start as closed cutves around the
origin with a shape that resembles the crystallographical symmetry of the corresponding
photonic crystal. Increasing the wavelength, the closed curves grow bigger and bigger until they
touch the first Brillouin zone edges, then they break down (in direction normal to symmetry
directions of photonic crystal) and the band gaps ernergé. Both kinds of dispersion are basically
related to how fast this evolution occurs with the wavelength (or petriod). This is usually slow
when there is no bandgap, but it is fast when the bandgap is small and it settles at 2 minimum
as the bandwidth grows larger. To show this fact analytically, we define a parameter to measute
the speed of evolution. We define the slope of wave vector change at the bandedge (after it

appears) versus wavelength as

On 7, (\)=n, (N4 AN)|

[N AN

(8.1)

bandedge bandedge

The slope is proportional to the slope of the conventional photonic crystal band diagram
at the desired wavelength along the main symmetrical directions (i.e., I'X for 1-D and 2-
D square and I'M for 2-D hexagonal lattices). The slope defined by Eq.(8.1) can also be

related to the normalized group velocity at the band edge as:

v, = S (8.2)

6>\ bandedge

It is well-known that both high phase and group velocity dispersion occur near the band edge
[2]. Because the maximum dispersion usually happens at the band edge and the lower the
group velocity, the higher the dispersion [4]; the above parameter can be adopted as a gauge
for the maximum available dispersion. In other words, the lattice type with a configuration that

provides lower Vv , at the central wavelength of interest has higher available dispersion at its

band-edge and it would be a better choice for making a supetprism.
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Figure 8.2.1 shows 7 and its slope vetsus wavelength as a function of lattice constant for a
typical 1-D photonic ctystal. Note that the bandgap emerging point is where 7, =0. As is

clear near this point, where the bandgap is small and the wave vector diagram evolves fast, the
dispersion is maximal. The dispetsion falls rapidly with period and it settles at 2 minimum

around A = 300nm in this typical case.

k. =T/A
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Figure 8.2.1 A typical 7, and its slope versus wavelength as a function of lattice constant for 1-D photonic crystal

Working very neat the bandgap emerging point, we could enjoy higher dispetsion as has been
depicted in Figure 8.2.1. But being too near to this point has it own drawback. Sensitivity to the
wavelength reflects the sensitivity to the photonic crystal dimensions (this is inferred from the
scaling law of photonic ctystals). Therefore for a practical dévice, we cannot choose an

opetating point too near to this point. Arbitrarily, we have chosen the margin of n, > My

Since by increasing the wavelength the bandgap decreases, so the only thing that we have to do

is to fix bandedge at the highest wavelength of intetest atz,, .

168



Figure 8.2.2 shows a typical wave vector diagram near the bandedge. p'is the asymptotic angle

of the wave vector diagram (which is determined by the lattice type). The operating point 1s
determined by the continuity of tangential component of the wave vector at the interface.

Consider the interface of the slab waveguide with the slab photonic crystal, and assume the

effective index of the slab waveguide at the wavelength of interest as 74 (slab) , then for the
slab mode incident angle of ¢, , the continuity of the tangential components of wave vectots at

the interface (in the normalized form) can be expressed as

n, = n (slab)sin (8.3)
x 2 1

/ "
P <P <P

n X ”X ”X
’ -
-~ 3 =S
£ &Ky s H
l > l : > >
”% : Az V]
(@) (b) ©

Figure 8.2.2 The operating point of un-slanted wave vector diagram with operating point a) in the first Brillouin zone, b) at

the bandedge and ¢) in the second Brillouin zone.

It can be shown easily that the effective index of the slab waveguide is higher than the
normalized Bloch wave number at the bandedge of the first Brillouin zone. It indicates that
the operating point in the second Brillouin zone is feasible if one chooses a sufficient steep

incident angle. If we define the ,, as the angle that causes the operating point to be at the
bandedge (see Figure 8.2.2b), then if , <,,, the operating point is the first Brillouin zone
(see Figure 8.2.2a) and if ¢, >, then it is at the second Brillouin zone (see Figure 8.2.2) .

As we will show later, for the sake of higher dispersion, we ate in favor of working at the

second Brillouin zone. Note also that the direction of the group velocity v . is normal to the
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wave vector diagram at the operating point and directed toward the lower wavelength

contouts.

Let us fix the bandedge for all three photonic ctystals (at the highest wavelength of intetest) at

{”z PN (84)

n, =N (slab) sinQ,,

Given ,, , the photonic crystal petiod can be found from

Ny for 1D
2sin1 1, (slab)
A={— Mo for 2D square (8.5)
2sin @, 7, (slab)
— Poss for 2D hex
| V3sin Pyt (slab)

Note that 7 (slab) is a function of the slab height and wavelength. The functionality of
7.4 (slab) for the Silicon On Insulator (SOI) wafer with permittivity of 12 and 2 at the

wavelength of \,, = 1562.23 nm is plotted in Figure 8.2.3.

At each period given by Eq.(8.5), the hole sizes can be obtained by adjusting 7, at the
bandedge to #,,. Figure 8.2.4 shows hole sepatations (A—d) and the hole size 4 versus slab

height for the three photonic crystals of interest where
fo =02, @, =60° (8.6)
and TM polarization (electric field normal to the slab) have been assumed.
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A=1562.23 nm
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Figure 8.2.3 The slab waveguide effective index versus slab height for both polarizations. Electric field at TE and TM
modes are directed parallel and normal to the slab surface respectively.
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Figure 8.2.4 Distance between holes (A —d ) ,and hole size d versus slab height for a) 1-D photonic crystal, bold line,
b) 2-D square, dashed line, and c) 2-D hexagonal, dot-dashed line when Mo = 0.2 and P = 60°.
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Using the parametets of Figute 8.2.4, the normalized group velocity versus the slab height for
the photonic ctystals of interest has been plotted in Figure 8.2.5. It is interesting to note that
the 2-D hexagonal lattice has the highest dispersion at the bandedge while the 1-D lattice has
the least. As we will show latet, dispetsion is not the only parameter determining the size of the

prism.

The plane wave expansion method has been used to obtain the wave vectors. In otder to
apply the plane wave expansion method, the super cell technique has been employed, ze., the
structure is assumed to be artificially periodic notrmal to the slab. But the period is large
enough that the artificial petiodicity can be ignored. We have observed that an artificial
periodicity of 6 times of the slab width is enough to obtain convergence. The tolerance for
eigenvalue calculation is10™"?. The mesh size is 64x64 on the lattice surface (x-g plane) and
also 64 points in the vertical direction (y axis), on which we impose an artificial periodicity.
The dielectric constant is sampled 6 times finer than the imposed mesh size. For an accurate
complete wave vector diagtam the reduced Brillouin zone has been sampled into 10*

partitions.

0.18
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(77g> \
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Figure 8.2.5 Normalized group velocity versus slab height for the photonic crystal of Figure 8.2.4.
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Limiting the feature size to about 70nm, the three wave vector diagtams will look alike (ic.,
their band-edge at the specific wavelength pass through the specific point), provided that we

choose their parametets according to the following table. Note that for TM polatization and at

wavelength of X\, =1562.23 nm, the shb effective index is 7 (slab) = 2.9087 (see also
Figure 8.2.3).

Table 8.1 The lattice parameters that makes comparison possible

Holewidth d(mr) 201 238 21

Figure 8.2.6 shows the normalized wave vector diagram of three lattice types according to

Table 8.1. Note the asymptotic wave vector bend angles that resemble the original lattice types.

5 3.5
45 / \ -
4 // /V
35 25 60

I £
<25 ( \900 § 2 i

AN

0.5 AN 05

Figure 8.2.6 The normalized wave vector diagram of the photonic crystals of interest using the data of Table 8.1
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8.3 The first and the second Brillouin zone dispersion compatison

It is not difficult to show analytically that dispetsion is higher in the second Brillouin zone.

Consider two symmetrical points (4 and B) around the band edge (see Figure 8.3.1)

Figute 8.3.1 Constant wavelength contour neat the bandedge

The following relation holds

27
'éxB Z’K-—"/éxA (87)
Differentially we can write
AF=an=2E e + 981 Ae, (8.8)
Ok, P &éz y <

Continuity of the tangential component of phase velocity at the interface with the slab region

dictates that

] Ay (slab)sin (8.9)
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where , is the incident angle for operating point A and

2w

NG (slab)sin ¢, (8.10)
Eq.(8.9) can be approximated by
Ak, = %neff (slab)sin ¢, (8.11)
Writing Eq.(8.8) for point B, we have
AF=AX\= ;aF ) Ak, +—g£; Ak, (8.12)
x A

where symmetry around the band edge has been taken into account, and
™ . !
k= NG (slab)sin ¢, (8.13)

where «; is the incident angle for the operating point B. Similar to Eq.(8.11) but for the

operating point can be written as

Ak, =~ -A—glne“ (slab)sin ¢, (8.14)

Subtracting Eq.(8.12) from Eq.(8.8) we have

OF |0k, ,

SAk, = Dk, —Dky=(Dky— Ak, ) OF /0% ‘
2lAa

(8.15)

where §A_is an indication of dispersion difference between point 4 and B. Using Eq. (8.10),

(8.11), (8.13), (8.14) and (8.7) into Eq.(8.15) we have
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w2 )

OF/0k, |,

—L s 8.16
OF |0k ®19

All three parameters in Eq.(8.16) are positive, so the dispersion difference is positive too. In
conclusion, we have shown than dispersion in the second Brillion zone is higher than the first

Brillouin zone, (or the dispersion difference is positive).

8.4 Design equations

Figure 84.1 shows the schematic diagram of a photonic crystal k-vector superprism and the

parameters used in this section[1].

Figure 8.4.1 The photonic ctystal superptism geometry with slanted photonic crystal

The conservation of the tangential component of the wave vector through different interfaces
is the key factor determining the direction of refraction. The effective index of the slab mode

and the normalized wave vector diagram of the photonic crystal are used to detetmine the
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refraction angle of the incident beam into the photonic ctystal and from the photonic crystal
into the slab. The rays evidently follow the group velocity directions, which usually differ from
phase velocity directions (or that of the wave front). The phase velocity dispersion is defined as
change of deviation angle M=, —, +p versus wavelength (On/OX , see Figure 8.4.1).

Using the Gaussian approximation, the optical power density in the slab region can be written

as

21
I(r,0, y)= O _exp(—20°/02)exp(—2y* /4 8.17
(.9,) — p(—26°/6 )exp(—27/45) (8.17)
where 4, is the Gaussian effective height of the slab, 0, is the effective Gaussian angular width

of the input/output waveguide and is given by [5]

PN
0 = 8.18
° T (slab) w, (8.18)
where w,1s the Gaussian effective width of the waveguide at the slab edge. In otder to avoid

excessive crosstalk, the nominal value for the output waveguide pitch A, = 3.5», is chosen.

Knowing the angular dispersion and A, , the focal length of the output mittor can be found

r= A, /2 35w,
"~ sin(|on/ON[6N/2)  |om/ON|OX

(8.19)

where &\ is channel spacing. Knowing the focal length, and restricting the mirror aperture to

28, , the minimum output aperture size will be
L=2fsin2, (8.20)
or using Eq. (8.19),

L IR
e (l@n / (9)\[ 6>\) Ny (slab)

(8.21)
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The selected aperture size will truncate the field amplitude at 1.8% of its peak value, producing
negligible theoretical cross talk [6]. While the minimum output aperture size (ot the output size
of the ptism) is restricted by the angular dispersion and the channel spacing, the real apertute

size needs to take the group velocity dispersion into account.

For the /" channel, the output beam extension on the output prism side /,; is related to the
input length of the prism /; via

/
COSPy;

== T 8.22
" Iy cos (p + “P;i) ®22

where p is the prism apex angle (see Figure 8.4.1). The input and output beam widths, L, and

L, ate related by the following equation (see Figure 8.4.2)

_ Ly cosy, [ cosp,

M, = =——L. A= TLly (8.23)
L, cosy, /  cosy,

Figure 8.4.2 Relationship between prism facets and beam size that results in a minimum prism area
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Note that at any specific i.ncident angle (¢,) the fraction in Eq.(8.23) is a function of
wavelength because of implicit dependence of phase and group velocity dispetsion in photonic
crystal on operative point The minimum and the maximum of this coefficient play an
important role in the design; let us define them as M, and M, respectively at the
corresponding transmission angle of ¢, .;, and @, . (see Figure 8.4.1). In order that the prism

facets are sufficiently large to cover the beam width and maintaining the required wavelength

resolution, the input apertute size has to be greater than

L
L .= M"“" (8.24)

min

where L . is obtained from Eq.(8.21). Note that both L, (because of phase velocity
dispersion) and M, (because of group velocity dispersion) are functions of wavelength, and

the its maximum has to be found over all channels. Also the output aperture size has to be

greater than

L, .=M_1L

2 min max™ ~1min

(8.25)

In the above equation, M, is a function of wavelength and its maximum has to be obtained

over all channels. The input and output prism facets have to be greater than

jo =Ly Lo (8.26)

min 2min
cos Lpl cos kp4max

The minimum ptism area accommodating the beam extension only can be written as
L in XLy
_m_Z_Zm..m_ (8.27)
Or using Eqs (8.26), (8.24), (8.23) and (8.22), we have
¢ —12 [Mmax ] sin p

min = ‘min 2
M., ]2cos@ cosp, .

S =sinp

8.28
Lfninsiancos%XCOS(P"“\Pgmax) o

2cos’, . Xcos® (p + kpﬁmm)
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Where we have neglected the variation of L, with the wavelength. Assuming narrow spectral

range as is typical for such applications, we can assume o, .. = ¢, and assume group velocity
angular dispersion at the input facet of the prism as O, / O, then

P = Phin + NOX| 00} /ON] (8.29)
Whete N is the number of channels. Assuming |¢¢},,,| > |N8X (8} /OX)| and applying these
approximations into Eq.(8.28), we have

L2 sinpXcos, X[l—I—tan(p-l—kp;min)Nﬁ)\lakp;/a)\”

min S
S . =

min

8.30
2coszkp4><cos(p+kp;min) ( )

The tole of group angular dispetsion is clear through the factor Op;/OX. In the cases that
tan (p + Lp;min)Nﬁ)\ I(?&p;/3>\| > 1, we may further simplify Eq. (8.30) to

N N? ‘&pé /8>\’ 490 sinp X cos , Xsin (p + gp;min)
AN ’37]1) /a)\r 27, (slab) cos® @, X cos” (p + &p;min)

min (8.31)
Where Eq. (8.21) has also been used, and AX = NOXis the desired spectral window (total
device bandwidth). Although the prism area increases due to group velocity dispersion, it
reduces by the square of the phase velocity dispersion. The ptism area scales quadratically with
the number of channels. This scaling law is an interesting feature of k-vector superptism when
compared to the fourth powet for the S-vector superprism [7]. This feature shows that k-

superprism is mote suitable for higher count demultiplexers (over a specific specttal window).

Eqs.(8.24), (8.25) and Eq. (8.20) can be used to design the input and output mitrors. The
output mirror profile can be optimized to reduce the effect of coma on the side channels (due
to lateral displacement of the beam at the output side of the prism because of group velocity

dispersion).

8.5 Apex and slant angles

In this section we introduce a means to expand the input beam width tremendously, so the

minimum output aperture size of Eq.(8.21) can be achieved by a reduced input aperture size.
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The tesult would be a significant reduction in the prism size. We restrict ourselves to operating

points in the second Brillouin zone.

Consider the un-slanted photonic ctystal with the operating point well inside the second

Brillouin zone (see Figure 8.2.2c). As is seen in Figure 8.2.2¢, the treflected beam makes the
angle of ~p' / 2 with the interface, where p’ is the asymptotic wave vector bend angle. So in
this case if we choose the apex angle of the prism as p=p’/2, the beam inside photonic

ctystal will be patallel to the opposite interface of the prism (see Figure 8.5.v1).

i~

yuauodwoo enusdue],

Figure 8.5.1 The refracted beam angle for a photonic crystal with the asymptotic wave vector bend angle of p/ and the

prism of apex angle p = p/ / 2 , the lattice in the prism region is un-slanted 91 =0.

If we choose p>p’/2, then the beam first hits the base of the prism before the opposite side,
but if we choose p <p’ / 2 the beam is expanded and hit the opposite side first (as we wanted).
The beam expansion can be large, if p is chosen near p’ /2. Alternately, one may keep

p=p’/2 and try to slant the photonic crystal to use this phenomenon. The later situation is

depicted in Figure 8.5.2. Both cases of positive and negative slant angles ate feasible. Note that
we have chosen the lattice parameters in order to have a small bandgap this fact places a
restriction on the slant angle, i.e [8],

ﬂzo

elmax - tan‘l .
~ | 74 (slab)sinp,,

(8.32)
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We continue this chapter with the later alternative, ze., we assume p = p/ / 2 as a constant for

all lattice types however we use 91 as a variable.

0,>0 N A 0,<0 Nk
1 1 s
[
=y =Y S Ve P
58 g B
2% 29 >p'2
Zg Tk ~
(D..c ] .8
3% i %
8, 7 EN #y

(2) (®)

Figure 8.5.2. The refracted beam angle for a photonic crystal with the asymptotic wave vector bend angle of p/ and the

prism apex angle of p = p, / 2, the lattice is slanted by 91 which is usually a small angle.

As can be seen from Figure 8.5.2, if we choose 0, > 0, then in otder to have refracted angle
greater than p’/2, we have to chose the operating point deep into second Brillouin zone. But

the drawback is that the dispersion will be lost as the operating point gets farther from the
bandedge (the boundary of the first and the second Brillouin zone). However in the second

case of 0, <0, the condition is satisfied if we makes the operating point neater to the

bandedge (where the wave vectors are far from their asymptotes too).

8.6 Numerical illustration

To provide a specific illustration, we design a 32 channel DWDM demultiplexer starting at
Ay =1537.40 nmand ending at X\;; =1562.23 nm (where indices are the ITU grids

numbers). The channel spacing is 100GHz (or ~ 0.8 nm ). We have tried in section 2 to select
photonic crystal parameters suitable for the k-vector superptism (that also makes the

compatison feasible). Using these selections and fixing the apex angle to p = p/ / 2, we vary the

slant angle 0, and for each slant angle we seek to find the incidence angle (¢,) that minimizes
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the ptism area (whilst respecting all other constraints). Based on the photonic crystal
parameters of Table 8.1 with minimum ptism atea as a figure of merit, the optimum

superptism design parameters are provided in the Table 8.2.

Table 8.2 The optimum k-vector superprism parameters for various lattice types

Slant angle 61( ) '

W

it

Ihput aperture size L, (j)

Drist
Minimum Prism area §_.

(mmZ) 00099 0.0105

As the results of the above table indicate, the minimum atea of the superprism is around
0.01 mm?. The smallest superptism is 1-D, followed closely by 2-D square and then comes 2-

D hexagonal (by about 45% gteater than the smallest area). The operating points in all cases

are located at the second Brillouin zone, whete the dispersion is higher.

The optimization routine by minimizing the superprism area finds the condition that
maximizes the phase velocity dispersion and minimizes the group velocity dispersion as much
as possible. Compating diffetent photonic crystals in this regard, the best photonic ctystal is
the one with maximum phase velocity and minimum group velocity (see Eq.(0.31)). But these
are contradictory requitements. 7., photonic crystals that show high phase velocity dispetsion
(such as the hexagonal lattice) usually show high group velocity dispersion too (see Figure
8.2.5). Interestingly enough, the slab 1-D photonic crystal wins the race with the minimum
phase velocity and group velocity dispersions.
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8.7 Discussion

The smallest supetptism atea is achieved by minimizing the group velocity dispetsion and
maximizing the phase velocity dispersion at the same time. The magnitude of the beamwidth
expansion factor (Eq.(8.23)) is an inverse indication of the degree of group velocity dispersion.
As we expected the 1-D photonic crystal with the lowest group velocity dispersion must have
the largest beamwidth expansion factor. Figure 8.7.1 shows the beamwidth expansion factor
versus the multiplexer channels for various photonic crystals. The multiplexets’ patametets are
adopted from Table 8.2. The beamwidth expansion factor together with associated phase
velocity dispersion ate two factors determining the superptism area. Indeed the benefit that the
1-D photonic crystal gets from the beamwidth expansion factor compensates the smallness of
its phase velocity dispetsion. As the combined result shows, the 1-D photonic crystal provides
the smallest superprism area. The 2-D square lattice by having lower beamwidth expansion
factor but having higher phase velocity dispersion, provides a minimum superprism area neatly
the same as the 1-D case. But 2-D hexagonal lattice that has the lowest beamwidth expansion

factor cannot reach 1-D case even with its highest phase velocity dispersion.

The various channels, besides of having various beamwidth, have been directed in different
directions (due to phase velocity dispersion) and have been shifted along the output prism
facet (due to group velocity dispetsion). Consideting the proposed structure of Figure 8.1.1,

these factors will lead to incteased abetration in the output image.
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Figure 8.7.1, The beamwidth expansion factor for various superprism design of Table 8.2

Phase velocity dispersion which is achievable near the band edge may be substantial, but
there is no guarantee of uniformity over the window of interest, especially if the window is
relatively large. Figure 8.7.2 shows how the angular dispersion versus the multiplexer channel
numbers (or vetsus wavelength in the desited window of spectrum). Given that we need to
demultiplex onto the standard DWDM grid, we need to compensate this non-uniformity.
The easiest way to do this is to make the output channel spacing non-uniform [1]. It is

interesting that 1-D case shows the most uniform phase velocity dispersion however small.
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Figure 8.7.2. Angular dispersion as a function of channel number for the devices specified in Table 8.2

Thete ate many sources of loss in this system, some of which could be mitigated. Side wall
roughness and pattern uniformity of the photonic crystal structure have to be kept as small
as possible. It has been shown that for the minimum feature size of 300 nm, the scattering
loss of a ridge waveguide can be small (3.38 dB/mm)[9]. It has also been shown that the loss
in 2-D photonic ctystal waveguides (with a feature size of 120 nm) using SOI technology is
low (3.5 dB/mm) [10] and is mostly due to fabrication imperfections, which also introduce

sitilar loss in ridge waveguides [10;11].

Some of the fabrication imperfection losses can be minimized for 1-D photonic crystal case by
aligning the lattice lines along the raster lines on the electron beam writet, then the patterns
could be written much mote smoothly via electron beam lithography. In this way, the photonic
ctystal side wall roughness which is an important source of scattering loss would be smaller.

This task can be done on the mask level, as we have done in chapter 10.

Considering the absence of lateral mode confinement in our proposed structure, we therefore

expect to obtain less scattering loss through the superprism region than has been previously
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reported for ridge waveguides. Substrate leakage loss can also be minimized by choosing thick
enough substrates. Nevertheless considering the small size of the superptism, the main source
of loss (also being a mattet of concern to others [12]) is the beam coupling into and out of the
photonic crystal to the free space propagation regions (the slab regions). Maximizing dispersion
usually involves working near the band edge, whefe reflection is usually high. Approaches such
as smoothing the transition by small airtholes ot projected aitholes [13] have been explored for
slab 2-D photonic crystals in order to maximize transmission into photonic crystals. Similar
techniques together with adding a buffer layer which can act as an antireflection coating could
be further explored. We have not yet attempted to calculate the coupling loss for this structure
due to the absence of a suitable 3-D modeling technique that would be tractable for this

relatively large structure and high index contrast.

8.8 Conclusion

In this chapter a complete optical design of a demultiplexer based on photonic crystal k-
vector superprism has been ptoposed. A base for comparison among vatious photonic
crystals has been introduced. We select patameters for three different photonic crystals
which is a suitable choice for making the k-vector supetprism and also make a comparison
feasible. We have developed design equation for k-vector superprism. We have discussed
various operating point on the group velocity dispersion and show that there is a great
advantage to wotk in the second Brillouin zone and select the parametets so the beam width
expand through phonic crystal. Exploiting the beam expansion capability of the prism, an
optimal design has been obtained that maximizes the phase velocity dispetsion and
minimizing the group velocity dispersion as much as possible. The optimum design adjusts
the prism area to just fit the path of the beam through the prism within a margin. The 1-D
photonic crystal has the smallest superprism area of 99,200 um?, which provides sufficient
resolution to demultiplex 32 channels in the C band with a 0.8 nm (100Ghz) channel
spacing. The 2-D square lattice is very close to the smallest size, while the best 2-D
hexagonal superprism is larger by 45% compared to the 1-D counterpart. The desired
situation of having small superptistm area consists of having maximum phase and minimum

group velocity dispersion seem contradictory. It is in this context that 2-D hexagonal with
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high dispersion (both phase and group) has the largest supetrprism area. We have also shown
that in the linear regime, the superptism area is a quadratic function of channel count. Finally
we have addressed dispersion non-uniformity and have shown that 1-D photonic crystal is

the most uniform one.
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Chapter 9

LENS DESIGN WITH SLAB 1-D PHOTONIC CRYSTAL

An aspheric collimating slab waveguide lens is designed using a divetging slab 1-D
photonic ctystal. An approximation method for analysis of such structures has been
developed. A lens design procedure (which minimizes area) is also introduced. For
illustration purposes, we use Silicon on insulator technology with the minimum

feature size of 100 nm. We show that a fast lens with 130 pm focal length, //# =1.3is

achievable with an etching area of only 658 pm’.

9.1 Introduction

Thete are numerous optical devices which requite some form of focusing element to influence
the propagation of an optical beam. In particulat, a lens which can focus the optical signal into
planar lightwave citcuit waveguides may find application in micro-opto-electromechanical
(MOEM) switches, alignment of waveguides to fiber optic terminations, and the integtation of
planar light wave circuits with photodetectors and laser diodes. More specifically we are
interested to design a collimating lens for a superprism with makes use of the engineered
dispersion of slab photonic bandgap materials for very small multiplexers [1]. We have shown

recently that a superptism can be realized with a slab 1-D photonic crystal structure [2].

There is a lot of interest in light propagation in photonic crystals. The light propagation in a
photonic crystal is governed by its dispersion surface (for 1-D photonic ctystals, the wave
vector diagram), which corresponds to the index ellipsoid in conventional crystalline optics.
Anomalous dispetsion neat the band gaps leads to the superprism phenomenon which is based

on the super dispetsion obsetved in this region of the band diagram [1]. The curvatute of the
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band diagram (ot in 1-D case wave vector diagram) also makes the collimation of light possible
when the structure is designed correctly, such that the wave front encounters diffetent parts of
the band diagram in a given way [3]. Wavefront refraction through non-uniform anisotropic
media can be modeled by matching the phase velocity normal to the gradient of the
inhomogeneity at each step and propagating along the local group velocity to the next point.
This process generally can be desctibed by the solution of Hamiltonian equation [4]. In general,
even if collimated rays propagate through photonic a crystal, their phase velocity direction is
not collimated. It means that as soon as the rays leave the photonic ctystal, the collimation is
destroyed. This fact makes wavefront engineering using a quasi-periodic photonic ctystal a
difficult task.

Our approach for controlling the wavefront using a quasi-periodic photonic crystal is to
maintain the group and phase velocities in the same direction inside the photonic ctystal. In the
1-D photonic crystal wave diagram there is a unique point which possesses the property that
group and phase velocities ate in the same direction regardless of the period. Figure 9.1.1
shows a typical wave vector diagram for a slab 1-D photonic crystal for different grating
petiods. Points A are the points where the incident wave vector is parallel to 1-D photonic
crystal grooves (wave vector normal to the grating vector). There is also points B, with the
same property, however, thete are periods where point B is on the band gap tegion, ot the
modes belong to the second band. We restrict ourselves in this appendix to points A. The

change of #_ versus grating period at points A provides us with a unique opportunity to design

a special kind of graded index (GRIN) lens, which is very difficult to achieve in other ways
[5;6].
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Figure 9.1.1 A typical normalized wave vector diagram for a 1-D photonic crystal at different wavelengths

When considering a collimator, the need to have 1-D photonic crystal lines parallel to the rays
emitted from a point source means that the photonic crystal must be quasi-periodic in
direction of the ray. For a diverging ray, we need a diverging photonic crystal. Figure 9.1.2
shows a schematic of such a structure; a diverging slab 1-D photonic crystal spreading along an

arc of circle of center ¢ with radius p. In section two we review the radial effective index

method which we have developed to handle such structures.

Figure 9.1.2. Schematic representation of a diverging photonic crystal

192



Mode-index (also called homogenous refracting) waveguide lenses have been proposed since
the earliest days of integrated optics [7]. In homogeneous thin-film lenses, guided light is
refracted at the boundary between two regions of disparate waveguides. It can be shown that
Snell’s law is applicable if one uses the effective refractive index of the propagating mode
instead of the refractive index of the guide material. It follows that classical lens design

techniques can also be used in the design of waveguide lenses.

As we will show in section two, maintaining the petriod of the diverging 1-D photonic crystal
(see Figure 9.1.2) along the azimuthal (@) direction, the effective refractive index only vaties
slowly in the radial direction. Since the radial profile cannot be engineeted, limiting the design
to a constant period along the azimuthal direction places a limitation on the lens design.
Dropping the testriction of a constant period in this axis allows the effective refractive index to
be controlled in the azimuthal direction. It is intetesting to note that this kind of lens cannot be
categorized as either an axial or a radial GRIN lens. The conventional radial GRIN lens has a
radial refractive index around =0, and no variation along @ =0 line. On the other hand
axial GRIN lenses have a vatiable refractive index along ¢ =0 direction, but have no radial
variation around ¢ = 0 axis. This has required us to develop a new lens design technique fot

this structure.

9.2 Radial effective index method

The radial effective index method has been developed in order to model a wave propagating in
a diverging slab 1-D photonic crystal. The cross section of a unit cell of a diverging 1-D
photonic ctystal is depicted in Figure 9.2.1.
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Figure 9.2.1 The cross section refractive index distribution of each core

We must solve the three dimensional Helmholtz equation ditectly. The radial effective index
method combines the two previously developed methods. First the conventional effective
index method is applied to obtain an equivalent vertical slab waveguide and then the azimuthal
effective index method [8] is used for 7 and ¢ ditections. The scalar Helmholtz equation in
circular cylindrical coordinates consideting 5 variation into account is as follows

U 10U 10U 90U

+ = +— ,éz 2 , U=0 9.1
67‘2 r 87‘ 7‘2 8@2 + 6"{2 + o7 (kp fZ) ( )

where 7’ (kp,:{) is the index distribution of the guide in circular cylindrical coordinates. We

propose a solution of the form
U, 0) =T (1) ¥ (r.) ©2)

The first is a function of y exclusively, and the second is a function of rand @. Substituting the

above solution into Eq.(9.1) and grouping terms, we can obtain

v 190V 10T O*F
F +——t— + B2 |+ U+ &2 FU — E2F¥ =0 9.3
or* ror rPop* ¢ oy* o 7 ©-3)

where we have added and subtracted /é: FW from the equation. Now similarly to the familiar
effective index methods, we multiply both sides of the above equation into V¥ (r,)and

integrate with respect of rand @ to get
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e +(Bn (9)—£)F =0 94
where
1 %7 a\p T oW ,,.p L
2 ?[f[ = oo +£ Y r]dtpdr—i—[[n 0" rdpr
”eff (.y) - oo 2% (95)

ff|\I’|2 rdpdr
0 0

Eq. (9.4) can be considered as a one-dimensional Helmholtz equation for a horizontal slab

waveguide with tefractive index distribution given by Eq. (9.5). As a first approximation, we
assume \If(r,gp) =7 exp (z)é{r)@(r,up) where @(r,up) is one in the cote regions and zero

elsewhere. It is a guess based on the far-field citcular wave propagation, which is taken for the
wave pattern in this ditection. Then ignoring some negligible terms, Eq.(9.5) will be the
refractive index distribution of a three-layer horizontal slab dielectric waveguide. The structure

of this equivalent waveguide is shown in Figure 9.2.2.

r
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Figure 9.2.2 The equivalent horizontal dielectric waveguide in g direction

Similarly multiplying both sides of Eq.(9.3) into F and integrating with respect to_y, we have

O 10T 1 6*T
57 T +78—¢+é§n§ff (p)T=0 9.6)

whete
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Eq.(9.6) can be considered as a scalar Helmholtz equation for radial wave propagation in
cylindrical waveguide. Note that although there is no y variation, however the propagation is

along r-axis. Eq.(9.7) gives the equivalent refractive index distribution of the structure. Similatly

as a first approximation to get 7. (kp), we take F (z) to be one in the core region 4 (see

Figure 9.2.1) and zero elsewhere.

The azimuthal effective index method tties to solve Helmholtz equation in the circular

cylindrical coordinates. We suggest the solution of the form [8]

T (r,p)=R(r)®(r,¢) (9.8)
We take the first function R(r) as a function of r exclusively, and the second @(r,&p) as a

function of r and @. Again, we perturb the refractive index distribution in order to make it
suitable for the suggested solution. Indeed we do our perturbation in a way that the above
solution be the exact solution of the new pertutbed waveguide. Substituting Eq.(9.8) into
Eq.(9.6) and grouping terms, we can obtain

idzR 1 &R 1 0°9
R dr? err r*® 0p°

e+ &2 (1 () + 7 )=0 (9.9)

whete

2
”Zert — i _1_8_?4_._1_ Q?_}__Z_ f@.@. (9_10)
e k@O r® Or RO dr Or
The first two terms of Eq.(9.9) are functions of r exclusively. We define them such that they

are equal to — &% (r) . This function acts as a separation function and Eq.(9.9) can be written

as two components

gjp(f +{7”2 [/ég (ﬂ2 (“P) +”§ert)_'ée2ff]}q) =0 ©-11)
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7+77;+/e§n§ff (r)R=0 9.12)
whete we define
\ A
”esz (’): @22(7“) (9.13)
0

Now we assume that @ varies very slowly along 7. This means that, Eq.(9.11) can be solved

assuming  to be constant, and nsm (Eq.(9.10)) can be neglected. Then for a given 7, the partial
differential equation (9.11) can be replaced by an ordinary one as

d2® 2 2 2
WJF[/% 7 (i) — £l | @ =0 9.14)
The above equation is the equation of the field in a one-dimensional slab whose index 7 ()

repeats itself periodically along ¢ with period 2. For the waveguide of Figure 9.1.2, Eq.(9.14)
represents a multilayer dielectric waveguide. Figure 9.2.3 shows a schematic of this waveguide.

A solution of the wave equation (9.14) can be obtained using the transfer matrix method (see
for example [9]). The field & must also repeat itself with period 2m. Usually 2mis not a

multiple of A, however since A, < 27, the mismatch can be ignored.

m )

-

Figure 9.2.3 One period of the equivalent waveguide in ¢ direction.
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The solution of Eq.(9.14) yields a value for £, / &> which is the effective index of the

cylindrical sheet of radius 7 (see Eq.(9.13)). The known value of n%: () can be substituted in
Eq.(9.12), which describes the circular-symmetric field of a cylindrical guide whose circular
symmetric index 7’ (r) vaties only in the radial direction. For the waveguide of Figure 9.1.2, if
we evaluate 77 () at discrete 7 it will be a multi-shell circular cylindrical structure (see Figure

9.2.4)

Figure 9.2.4. The equivalent stratified media in rdirection.

If we assume that 7’ () does not vary with 7 rapidly, then it can be shown that the following
analytic approximation is suitable [10]
R(r)=C o) HY [o(r)] (9.15)
rng (r)

where o (r)is the optical path length,

o (r)= [ (r)dr 9.16)

and C is a constant and Hg) is the Hankel function of the fitst kind of order zero. Since r is

usually taken to be much greater than wavelength, the exponential asymptotic approximation

of the Hankel function can be used, so the  dependency can be reduced to a simple form
C/

R(r)zmexp[ic(r)] 9.17)
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whete C’ is another constant. It is expected that 7, (r) is very smooth function of .

9.3 Collimating waveguide lens

In this section we illustrate our approach to design a lens for converting the radiation field
emitted by a waveguide into the slab tregion into planar wave front (expanding the beam
width). Using the Gaussian approximation for the far field pattern of a rectangular dielectric

waveguide in the slab region, the optical intensity can be written as

o1
)= exp(— 297 /0] )exp (=27 /#]) 918)
070

whete 4, is the Gaussian effective height of the waveguide, (@, is the effective Gaussian angular

width of the waveguide and is given by [11]

N
Py = x

= 9.19
T, (slab) w, ©-19)

whete w, is the Gaussian effective width of the waveguide at the slab edge, and 7 (slab) is the
effective index of the slab. Restricting the lens apettute to 2, ;the lens f [# can be expressed

as

f 1 Wl (slab) T

H==L= ~
/1 L 2tan2gp, ax,

9.20)

Using the TE mode of a silicon-on-insulator (SOI) rectangular waveguide with a silicon
thickness of 0.6 pm, and w, =0.82 um, the effective index of slab waveguide would be

ng (slab)=32738, and then @, =105°. The required lens must span 21°
with f /# =1.3. For illustration purposes, we chose L =100pum . So in short, we are going to

design a lens to expand a Guassian beam of width 0.82 pm propagating in the slab region to a

width of 50pm propagating in the same region.

Using the radial effective index method of Section 2, we have calculated the effective index of

the diverging slab 1-D photonic crystal for rays propagating radially. Figure 9.3.1 shows the

radial effective index versus period at X\, =1.55 um , the duty factor 7 is assumed to be 0.5
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(TE mode is assumed). The latge change in effective index versus petiod makes lens design

and its optimization a feasible task.

7V0=1 55 pmy, 1=0.5

3.5

/

¢ J SEETTREEREORIR -- / ..... L

[
in

M
eff

] — ] .

1
rip (pam)

Figure 9.3.1. Radial effective index of diverging slab 1-D photonic crystal versus period

Whilst we restrict ourselves to lenses with circular front entrance (eliminating refraction, so
that we are certain of the radial direction of the rays in the photonic crystal) we are free to
choose the back surface curvature and the variation of the photonic ctystal period with angle.
In this way many designs are feasible. In order to narrow the design space we use the ctitetion
of minimizing lens atea in order to minimize etching area. Other optimization ctitera can also
be chosen and thete ate usually some practical restrictions to be imposed. For example we
cannot have structures finer than the minimum feature size of fabrication technology. We have
assumed this to be 100nm, so petiods lower than 200 nm are not permitted. Also effective
refractive index lower than ~1.8 is not preferred due to loss of lateral confinement which leads

to excessive coupling losses with the slab mode.
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Figure 9.3.2. The proposed aspheric lens with some parameters defined.

We express the back surface profile in polar coordinate with the focal point as an origin, so
x=R(p)sinb, y=R(p)cosp—p—d (9.21)

In order for the rays to be collimated, they need to undergo refraction of ¢. Consideting the

refractive index of # (kp) , we need
#yy, c0s0 = (R, A)cos(p—6) (9.22)

where 0 is the angle of the back surface of the lens at @. Solving for 0, we have

Haw /7 (R, A)—cosp

sin

tan0 =

(9.23)

then using Eq.(9.3), we have,

_ Rng, sing

9.24
”slab - (R’ A) ( )
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where dot stands for differentiation with respect of ¢. Making optical path length from rays

otiginating from o to g = 0 equal, we have

f ) n(r,N)dr+n, (p +d—R(p)cos up) = Const. (9.25)

Eqgs. (9.24) and (9.25) need to be solved together. We also know that

L
d=— 9.26
b 2tan, 020
There are also some testrictions,
Ap)>8/p, and p<R(p)<(p+4d)/cose 9.27)

where  is the photonic crystal minimum period. The atea of the lens can b=obtained as

Prax
§= fo R(p) do—pp,,, 9.28)

Now we will set up an optimization problem, there are two independent variables,

0<d<——
2tanyp,_

A, > 0
L/2tany,_ —d

9.29)

where A, = A, (¢, ). Knowing dand A, we need to solve Eqs. (9.24) and (9.25) to obtain

R(p) and A (), checking the restictions (9.27), then we minimize the lens area of Eq.(9.28).

In order to solve Eqs. (9.24) and (9.25) together we proceed as follows
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e Knowing 4 one can calculate p (from Eq.(9.26)) and note that R, = L/(2sin¢,. ).

e Knowing dand A, and p, The constant of Eq.(9.25), can be calculated.

e then R, can be calculated (from Fq.(9.24)).

e Knowing R, , R(¢p,.. —Ap) can be estimated, and solving Eq.(9.25), A(¢p, .. —Ay) can

be evaluated.
o Knowing R, —A¢) and A, —A¢), R (.. —Ayp)can be evaluated (from

Eq. (9.24)).
The last two stages can be iterated until we obtainp =0.

The result of an optimization is as follows:

d=8436um, A (¢, )=00122 rad, r = 4589 umand § =1316 pm®.

Considering that the duty factor is assumed 0.5, the etching area is only 658 pm?. Figute 9.3.1
shows the top view of the optimized lens, while Figure 9.3.2 shows its period variation with

angle.

A,O=1 55 pm

30
40} //
30 s
2 —Focal point ///
3 L
ER
g } \
-10 \
20 L \\\
230 \\\
-40 \\
=50 "
-120 -100 -80 -60 -40 -20 0

z (pum)

Figure 9.3.1. Aspherical concave lens as a beam expander being designed to have minimum area. The period variation is

given in Figure 9.3.2.
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Figure 9.3.2. The period variation of the aspheric concave beam expander designed to have minimum area.

9.4 Conclusion and discussion

We have proposed the use of quasi-periodic slab 1-D photonic crystals for wavefront
engineering. By keeping the 1-D patterns parallel to the rays, we have avoided the difficulty of
misalignment between the group and phase velocities in photonic crystals. For diverging rays,
the 1-D photonic crystal pattetn is a diverging one. A suitable approximation method has been
developed to obtain the effective index for the radially propagating rays. As a result we have
been able to introduce a design procedute for asheric lenses for collimating light emitted from
a waveguide into the slab region. Many lens configurations are possible. We imposed a

ctiterion of minimum area and as a result, we obtained a unique lens design, with a focal length

of 130 um and operating at 100 um.

Whilst we designed the lens for a single wavelength, since our structure is inherently dispetsive,
collimation will not to be perfect at different wavelengths. Figure 9.4.1 shows chromatic
aberration (wave-front aberration) for the lens designed in section 3. Whilst the aberration

seems huge considerting traditional lenses, however for DWDM applications in which we ate
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only intetested in narrow band of wavelengths, it is seems tolerable. Note that 64 channels of

100 GHz bandwidths only cover +1.65% of central wavelength of X\, =1.55um .

OP;D Gwavelengths)

Figure 9.4.1 Chromatic aberration (wave-front aberration) for various wavelength deviations

It is to be expected that the proposed lens will have high coma abetrations. Since all rays ate
assumed to emanate from the focal point, significant etrors may arise for objects located at

different positions. Further study is underway to evaluate coma aberration of such lenses. The

lens is also designed to operate correctly only for TE polarization.
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Chapter 10

MASK DESIGN

This chapter is devoted to the technical aspect of the layout design for 1-D k-vector
supetprism. The mathematical equations governing the layout geometry are
developed. The parabolic mirror is designed consideting the critical angle of the
silicon air junction. The tapering and the bend are also designed to minimize the loss.
The theoretical coupling loss of the lens tapered fiber and the die are evaluated. The
bending loss of our regular waveguide is discussed. Based on this analysis, one can
select the minimum bending radius to keep the bending loss small. Some practical

mask layout considerations are also mentioned.

10.1 The prism

The prism dimensions must be extended as far as the beam inside the photonic crystal
demands. The input and output sides have to be greater than /and /' as has been shown in
Figure 8.4.2. Additionally we need to keep a margin from what really is needed. It means that
the dimensions on the mask are larger than what theory is suggested by a margin. A 10%

margin seems teasonable, so the dimension on the mask is
=11, /=11 (10.1)

The apex angle (p) must be also known initially. The prism geometry prior to any rotation is

depicted in Figure 10.1.1.
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Figure 10.1.1 Prism geometry before any rotation

The other unknown parameters can be obtained as follows:

1" =P +1"* =24 cosp
p’ =sin™" (/'/1"sinp)
p" =sin™" (//1"sinp)

The prism edge cootdinates can be found from the following equations:

x; =0 9 =0
r_ N B SN
x, =/cosp y,=/sinp

wy=1" =0

(10.2)

(10.3)

As we have mentioned in chapter 8, it is beneficial to align the gratings to the raster lines of the

electron beam writer, and this can be achieved at the mask level. The prism geometry after

rotating to make grating parallel to the die border (coordinate ¢ and x’) is shown in Figure

10.1.2.

The rotation angle that makes the grating parallel to % axis, is

w=m/2—p -6,
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(x3,)3)

Figure 10.1.2. The prism geometry after rotating by @

And if the grating is to be parallel to x' axis, then
w=—p' -6 (10.5)

The new edge coordinate can be found by applying the rotation matrix over the original

coordinates. The mattix for rotating by @ can be written as

cosw —sinw
T= (10.6)

sinw  cosw

10.2 Mitror

Using the total reflection angle of high refractive index matetials and air, making a mirror is

relatively easy. In our case of SOI technology, if the incident angle exceeds the critical angle of

1
0, =sin' [—|=sin"" E%Z =16.78° (10.7)
ng; ‘
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there cannot be any refracted light as every ray undergoes the total reflection. If focusing is also
needed, then the mirror must be the patabolic shape trench which is etched deep into silica. If
the beam is shifted propetly from the axis of the mirror (see Figure 10.2.1) , it is possible that

the incident angle exceeds the critical angle 0, of the silicon air interface of the trench, and the

internal reflection at the interface make the trench a perfect mirror.

Incident Beam¢| ‘ ﬁ‘*

Figure 10.2.1, The parabolic mirror

A parabolic equation of the front sutface of the mirror in polat coordinate can be expressed as

2
Y (10.8)
14 cos@
If we impose the restriction of
0, > 20, (10.9)

it ensures that the beam will focus to the focal point and the mirror would be perfect. The

beam has to be shifted form the mirror axis by

2 fsinb,
=———L=2ftan6, /2 10.10
N 1+ cos, Jtan 1/ ( )

The mirror, at least, has to cover the beam width /,, Ze., it has to be extended from 0, to

0, (see Figure 10.2.1), whete 0, can be found by solving the following equation
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2ftan%=2ftane—21+/” (10.11)

or
0, =2tan"" (tan0,/2+/,/2f) (10.12)

These angles (of course with imposing some margins) are utilized to make a mitror on the final

mask.

10.3 Superprism and the input mitror

Let's start from the rotated supetprism of Figure 10.1.2, the input aperture sizes can be

determined as follows:

L =/secy, (10.13)

Whete ¢, is the incident angle. The mirror distance to the superprism is somewhat atbitrary,

but it is prefetred to locate the mitror as close as possible to the input side (in ordet to reduce
the total chip size and to reduce the propagation loss too). Let us start with the input mitror

first. We find which edge of (x, y,) or (x, y,) is nearer to the input mitror. If ,is positive,
(x5 ,) 1s closer to the input mitror, otherwise (x; y,). For the sake of illustration, let's

assume p, > 0. Then the start point of the mirror path can be found as

x,, =5, +(cosz,
_ (10.14)
Im :J2+csmti
Where
T
fiZ“Pr“E'H’ +w (10.15)
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Figure 10.3.1 depicts the input mirror geometry. The central input waveguide end point is then

determined as

x, =x,, +r,cos’,

_ (10.16)
I = Im +7"2 Smtr
Figure 10.3.1 The input mirror geometry
Where
t, =1, —7+0, (10.17)
and
=2l (10.18)

2 1+ cos®,
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The central waveguide direction is toward the center of the mirror at (X,,,z , }'m2> ze.,

N, =w+t,—92;—91 (10.19)

The equations which ate mentioned in this section and depicted in Figure 10.3.1 are indeed a
special case. Mote general cases (that works for all incident angles) are expressed with the

following equations.

1, =1 _“+Sgn(@1)92
0,46, (10.20

N, =2 +sgn () .

And

X, = ﬁ[l +sgn (‘\p1 )] +ﬁ[l —sgn (kpl )] +(cosz,
2 2 (10.21)

I =—yz-z-[l+Sgn(<P1)]+%[1—Sgﬂ(%)]+@in"f

Note that the input waveguides are tilted toward left if 7/2<~, <3n/2, and they tilted
toward right otherwise (ie., —m/2 <=, <7/2). In other words, in the former case the inputs
are terminated at the right edge of the die, but in the later case they will end at the right edge.
Usually it is preferred to have the input waveguides at the left edge of the die. We can either
rotate the structure another 180° ot 90°. In the later case, the 1-D photonic crystal will be
vertical instead of hotizontal. The situation will get more complicated when the output
waveguide situation is also considered. In other words, the output waveguides must be
terminated to the left edge of the die. In the worst case scenario, there might be some cases

that we have to remove the restriction of making 1-D superprism vertical or hotizontal.

10.4 The input waveguides loci and directions

The center point of the mirror can be written as
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X, =X, trcosn,

_ (10.22)
ymZ = J/w +7’Sln’\fw
Whete ris the equivalent spherical radius of mitror and can be expressed as
= 0,+6
po2 gty (10.23)
14 cos® 2

The loci of the input waveguides make a circle with radius r centered at (xmz, ymz). The
direction of inputs is toward the center of the mirror. The input waveguide pitch (A;) is

somewhat arbitrary, but it is recommended to be the same as the output waveguide pitch (see

Figure 10.4.1)

Input waveguides

Figure 10.4.1 The input waveguides geometry

10.5 Superprism and the output mirror

We start from rotated superprism of Figure 10.1.2 again. The output aperture sizes can be

found below:
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L'=/secy,

(10.24)

Whete @, =n—p-+, is the transmission angle and 1 is the prism deviation angle. Again

we have to find which edge (x; y;) or (x; y;) ate neatet to the output mirrot. Cleatly if ¢, is

positive (x, y,) is closer, otherwise it is (x, y,). For the sake of illustration, we assume

¢, < 0. Then the first point of the mirror can be found as

{x;l = x, +(' cos?]
/ [ /
Im = ¥+ sing;

Whete
o
[il =9, +_—p”+w
2
See Figure 10.5.1. The central input waveguide end point is then determined as
J’;/u = .yr/nl +rzlsmtrl
Where

t: =t,./—1v—0;

And

r =
* 1+4cosb,
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(10.26)

(10.27)

(10.28)
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CENE

Figure 10.5.1 The output mirror geometry

The central output waveguide ditection is toward the center of the mitror at (x,’”z, y;z) i.e.,

Y
N _—_t:—’rr—ez 261 (10.30)
The following equations show the general cases.
(=t =t sga(o,)9]
39/ 10/ (10.31)
2 =1 +sga(,) =
And
X X
x;l = —2—1-[1 —|—sgn(up4)] +——2-3—[1—sgn(gp4)} + C./ cost,./
(10.32)

I =121—[1+Sgn(kp4)]+%[l—sgn(@4)]+C’sinf!

Note that the output waveguides ate tilted toward the left if 7/2 < N < 3w/2, and they tilted

toward the right otherwise (i.e, —T/2 < ~! < m/2). This means in the former case the outputs
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are terminated at the right edge of the die, but in the later case they will end at the left edge.
Usually it is preferred to have the output waveguides at the right edge of the die (see Figure
10.5.2).

Mirror

D
ﬁ%
Output waveguides

Figure 10.5.2 The output side of the mirror and the output waveguide. Note that the prism is rotated another 90 degrees to

bring the output waveguide to the right side of the die

10.6 The output waveguides loci and directions

The coordinates of the center point at the mirror can be written as

I '
X, =X, tr cosm,

10.33
Inz = Yy Hrsiny, 1039

Where 7’ is the equivalent spherical radius of the output mirror and can be expressed as
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__2f o0t

:—————_, 10-34
4 1+4cos 6’ 2 ( )

The loci of the output waveguides make a circle with radius ' centered at (x!,, y' ). The
tp gui w23 Im2

directions of all inputs are toward the center of the mirror. The input waveguide pitch (A,) is

determined by the design (see Figure 10.5.2).

10.7 The input and output waveguide path to the alignment line

For the uniformity, we have to align the input and output waveguides at the die borders with a

constant separation. The paths have to be designed. The procedure can be reduced to just
drawing a number of patterns starting from midpoint of the mitrors (xf, y,) (for the input
mirror it is (xz,ﬂ, J’zm) , and for the output mirror it is (xém, yém)) , spanning around the

central direction of ~ (for the input mirror it is ~,,and for the output it is ~') , and

terminating at any point at the border but having specific pitch (the distances between

neighboring pattetns ate the same and it is known as the border pitch). See Figure 10.7.1.

The patterns to be drawn ate at angle v, (/=1,2,---,N) that is dependent on the centtal

totation angle of the waveguides as follows

’\{—*%X—J-\I—-——;—-l_—zz. first quadrant, 0 <~ < 7/2

“{+%—XN—#£ second quadrant, /2 <N < T 03s
" '\{—-?‘Xﬂ:—;i—zi third quadrant, ® <~ < 37/2 10

LAH_%X“N—# fourth quadrant, 31 /2 < v < 27
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Figure 10.7.1 The pattetn to the die border for the input and output waveguides

The purpose of locating the bends at radius 7+, (or including extra straight pattern 7, after

radius 7 ) is twofold. First, there ate tapeting at the waveguide/slab junction for the sake of
beam shaping, and this length play the role of a buffer between the taper tegion and the bend
tegion. Futthermore, it is usually pteferred to have an extra waveguide length for fanning out
the patterns (it makes them more separated, so providing the desired pith at the die border

would be easier).

Let's start making the pattetns, assuming the bend radius is R, . The coordinates of the pattern

at the alignment line is

x; =X, +(r+rm)cosw,. +R, cos; +/;

10.36
Ji=]c+<r+rex)sj‘nﬁfi+Ri (l—lsin'\{il)sgn(sin'\{i) ( )

Where /,is the extra distance needed to align the patterns to the alignment line of Figure

10.7.1. There ate also some restrictions as follows
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x; =y, i=2,,N
i = Y A, sga(siny), i=2, N (10.37)
R,>R_, i=1.-,N,

min

Whete A,is the waveguide pitch at the botder, and R, is the minimum bending radius. The

set of Eq.(10.36), together with restriction (10.37) can have many solutions, but let us select the

following one
R =R, and /, =/, (10.38)

Considering the y coordinates of the first and M pattern ate at the alignment line, Ze.,

= +(r+7;x)sin"~{1 +R.. (1—|Sin’\{1|)sgn(sin'\{)

(10.39)
9, =.+(r+r,)sin~, +R, (1—|sin~{,.|>sgn(sin~f)

By using the second restriction of Bq.(10.37), ze., 3, = 3, + (i —1)A, sgn (sin~) , we have

(r+r,.)(sin~, —sin~; )+ (7 —1) A, sgn(sin~)

R, = (l—lsin ’\{,-D g0 (inn) +R.. (10.40)
Now consider the x cootdinates of the fitst and pattern are at the alignment line, Ze.,
X, =x[—|—(r-|~rm)cos'\{1 +R_, cos, +/ . (1041)
X, =, +(’+Cx)008“{,~ + R, cosy, +/;
By using the first restriction of Eq.(10.37), ze., x; = x; we have
1, =(r+r,)(cosy, —cos; )+ R ;, cosy, — R, cos, + /. (10.42)

Knowing R;,and /,, all other parameters of the patterns can be determined.
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10.8 Waveguide dominant mode and Tapering
There are four reasons and locations that we implement tapering:

a) at the input border to increase the input coupling,

=2

) at the input slab junction to dectease the beam-width, and beam shaping,
) at the slab output waveguide junction to match the beam-width at the focal point, and,

d) at the output edge to increase the oﬁtput coupling,

The tapering width in cases b) and c) ate mostly design related, whereas in cases a) and d), they
are mask design problems. Considering our SOI wafer with 0.5 pm silicon height and the
availability of lens tapered fiber with beam width of 2.5 um, we have to design a tapeting
profile to minimize the coupling loss. For simplicity, we restrict ourselves to the linear tapeting
profile. Therefore, only two parameters have to be selected: the tapering width at the die

border and the tapering length.

Figure 10.8.1 and Figure 10.8.2 show the first two quasi-TM modes of the main waveguides.
Finite element methods are used to obtain the modal patterns and the effective index of the

modes.

If the tapering width at the border is selected properly, then a long enough tapering will
convert the modal profile at the die botder to the main waveguide profile depicted in Figure
10.8.1. Any misalignment will cause higher order modes to be generated (see the second mode
profile in Figure 10.8.2).
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Figure 10.8.3 shows the theotetical coupling loss of the Gaussian beam of the lens tapered
fiber (with the beam width of 2.5yum ) vetsus border waveguide width; the waveguide height is

fixed at 0.5 um. As can be seen, the coupling loss for the waveguide of 2x0.5 um?is 1.2 dB

pet facet. In our layout the tapering width at the border is 2um.

-05

Coupling loss per facet (dB)
[ 8]

'3'50 1 2 3 4 5 6

» (im)

Figure 10.8.3 The coupling loss of the lens tapered fiber (with the focal beam width of 2.5um) versus waveguide width, the
waveguide height is fixed at 0.5 pm

Figute 10.8.4 shows the modal profile of the dominant electric field (E, ) for the dominant
quasi-TM mode of the waveguide of dimension2x0.5 um?®. Our simulation shows that the

waveguide of this size at wavelength of 1.55 um supports 22 guiding modes. Although, many
of these modes may be excited at the border (especially due to possible misalignment), few of
them will survive after the tapering (which reduces the waveguide width at the border to the
regular waveguide). As is shown later, although our regular waveguide supports more than the
dominant mode, all the non-dominant modes are close enough to the cutoff and will not
survive due to bending loss. In short, with this waveguide dimensions, practically only the

dominant mode would prevail.
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Figure 10.8.4, The dominant electric field component of the dominant quasi-TM mode of 2%x0.5 pmz waveguide

As is shown in Figure 10.8.3, the optimum waveguide width at the border is 3.37 pm. If we
had chosen this waveguide width then our coupling loss would have been reduced to 0.81 dB
per facet. The simulation tool is 3-D beam propagation method; the wavelength is 1.55 um,

and the polarization is quasi-TM.

The simulation shows that the tapering length of 100 pm is sufficient (less than 1% of power
in the dominant mode is lost) to shrink the modal profile of the waveguide at the botder (see
Figure 10.8.4) to that of the dominant mode of our regular waveguide (see Figure 10.8.1).

10.9 Bend calculation

Bent waveguides are the key component in many integrated optical devices. As the curvature
radius R becomes smaller, an optical path direction is changed at the shorter propagation
distance. Thetefore, the optical bending loss will increase as R declines. When guided light
goes around a bend, to maintain a guided mode with equi-phase fronts on  radial planes, the

phase front will need to move mote quickly at the outside of the bend than the inside.
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Following this trend, to greater radii will lead to a point (at a certain radius R ) whete the phase

velocity of the guided mode is equal to the velocity of the unguided light in the free space
there. The matching of velocities there makes the opportunity for the guided light to couple to
the unbounded radiation modes. This means that a patt of the optical power in the guided

mode > R_ (whete R, is the critical radius) radiates toward the outside of the arc. This mode

conversion is the actual reason of the optical loss in the bent waveguides, which should be

considered in designing the bent waveguides.

Figure 10.9.1 Field distribution of the guided mode in a bend

The bending loss has three origins: the radiation losses of the bend (imaginary patt of the
propagation constant of the mode in the bend), conversion loss between the straight to the
bend, and vise versa. Although the bending loss (which is the most important factor among the
others) is related to the length of the bend, the two others are not. To assess the bending loss
we will consider the 180° bend at vatious bending radiuses. Out model is the two dimensional
one (using effective indices of the cotresponding slab at the proper polatization), and we have
used finite element method for this purpose. The wavelength is 1550 nm, and the polarization
is quasi TM. Figure 10.9.2 shows the modal profile of the regular waveguide bend which

produces excessive loss as the center of the modal spot tends outward.
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Figure 10.9.2 The field profile of a lossy bend

Figure 10.9.3 shows the loss in the 180° bend versus the bending radius. Note that at higher
radius, the bend length is also high causing gteater total loss, even though the radiation loss per
length is small (cotresponding to the imaginary part of the propagation constant in the bend).
That is why at higher bending radius, the total loss will not dectease significantly. It seems the

bending radius grater than R,,,, = 30um produces smaller radiation losses.

0.7+

Bending Loss (dB)

Figure 10.9.3 The bending loss of 180° bend versus the bending radius.
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Figure 10.9.4 shows the field profile in a patt of the 180° bend with the bending radius of 30 pm.

As is clear, the mode is well confined, and the modal spot's outward tendency 1s insignificant.

Bending Radius= 30 pm, Contour E,,A=1.55 pm

e P i

£)
2
1%
-15
-15
x (m)

Figure 10.9.4 The field profile in a small portion of the 180° bend, with bending radius 0f 30 um.

An interesting feature of the bend is the ability to impose higher losses to the modes which are
near enough to cutoff. The reason for this loss is the lower modal confinement close to cutoff

that makes the greater amount of power to be extended beyond the critical tadius K, (see

Figure 10.9.1). Figure 10.10.1 shows the field profile of the bend carrying second mode of the
straight waveguide. The amount of loss is enough to assume that bends are a mode

attenuator/filter (which imposes considerable losses to higher order modes near cutoff).

10.10 Alignment waveguide paths

In otder to launch light into the chip, we have to align the input beam (or fibet) to the input
waveguide. Similarly, in order to measute the output power from output waveguides we need
alignment too. To simplify the optical alignment procedure, it is highly recommended making

two extra waveguide paths. One connects the top of the input waveguide at the input facet to
the

227



Bending Radius= 30 um, Contour E,,A=1.55 pm
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Figure 10.10.1 The second mode field profile in a portion of the 180° bend (the bending radius 0f 30um

top of the output waveguide at the output facet and the other connects the bottom to the
bottom. The alignment procedure then would consist of exciting the top and the bottom input
waveguide and obsetve the corresponding outputs. If this procedure is followed propetly, one
can change the input excitation by only displacing the input lens tapered fiber, and then input
waveguide excitation is easily achievable by moving the input fiber to the input waveguide
(only one lateral alignment is left). Unfortunately we have not implemented this scheme in the
layout that was submitted for fabrication. Figure 10.10.2 shows the schematic of such an

arrangement.

N B

Alignment paths

Output waveguide

Figure 10.10.2 The alignment path
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10.11 Chevrons

Chevtons are the inclined trenches (chevron shape) which are put between the input and the
output waveguides in ordet to obscute this region and prevent the light propagation thete. The
region between waveguides if not obscured, can be a propagating region (vety similar to the
waveguide itself, a silicon region between two trenches). In practical alignment procedure, if
there are no chevrons, then it will be vety difficult to recognize whether the light is propagating
in the intended waveguides ot between the waveguides. Typical chevrons are depicted in

Figure 10.11.1.
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Figure 10.11.1 The chevrons.

10.12 Die borders and number

The input and output waveguides have to be extended beyond the input and output die edges.
The die border is usually used as the cleaving guideline, and this extension (200 pm in our case)
guarantees that the cleave line passes through the input and the output waveguide (See Figure
10.12.1). If we keep the separation of neighboting dies in a row as this extension (200 pm in

our case), then by a single cleave we will have two facets.

We have also put die number at the left top corner of the die (see Figure 10.12.1).
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Figure 10.12.1 The position of input waveguides with regard to die border

10.13 A typical layout

A typical layout without the alignment waveguides is depicted in Figure 10.13.1. The straight

waveguide has been made there as a reference for the propagation loss measurement.

Figure 10.13.1 A typical layout
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Chapter 11

EXPERIMENTAL RESULTS

In this chapter we teview our attempt to design, fabricate, post-process and
experimentally measure the performance of the k-vector superprism. Our goal was to
tesolve 16 DWDM channels with 0.8nm channel spacing. We will also discuss the
challenges for forthcoming wotk.

11.1 Inttoduction

Demonstrating the capability of k-vector superprism for resolving fine wavelength sepatration
was one of the first objectives of this thesis. More specifically, the goal was a 16 channel

demultiplexer of 0.8 nm channel spacing.

Our first attempt to design the multiplexer using a moderate refractive index contrast matetial

(such as PECVD silicon nitride over silica) failed due to the following important issues

1. 'The size of photonic ctystal requited to resolve a 16 channel of 0.8nm channel spacing
was prohibitive for most electron beam writets.

2. Design and fabrication of the focusing elements was challenging, as has been addressed
in chapter 9.

3. Furthermore a stress free thick silicon nitride layer was hard to achieve

The high refractive index contrast system of materials such as silicon on insulator (SOI)

technology was a promising candidate because

1. 'The size of photonic ctystal for the desired resolution would not be prohibitive.
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2. Considering the high refractive index contrast of silicon and air, the focusing elements

can be implemented as mirrors.

The thickness of the top silicon layer was selected to be as large as possible to enhance the
vertical field confinement in 1-D photonic crystal. However the thickness must not be too
large that it makes the input/output rectangular waveguides multimode. Details of this aspect
of the design have been presented in chapter 10. We selected top a silicon layer thickness of
0.5 um. A butied oxide layer thickness of 3pm was also selected to prevented the bond Bloch
modes leaking to the substrate. We prepared a complete technical details of the design before

putchasing the wafers from Soitec ( http://www.soitec.com/ ). Repotts of the successful

implementation of such waveguides in other devices also made us confident of our choice [1].

Using the theory developed in chapter 8, we have designed several demultiplexers (a total of

10) fulfilling the requitements. The following ideas were to examine

e Quiescent points in the first, and in the second Brillouin zones.
¢ DPositive and negative incident angles

¢ Bandgap width effect on dispersion

Using the equations developed in chapter 10, masks were designed for all cases. The masks

data were sent to National Research Council (NRC) laboratories for the electron beam writing

on the SOI wafers and reactive ion etching (RIE). All the top silicon layer (0.5 pm) was
supposed to be etched uniformly. The etch profile has to be as vertical as possible.

Placing a cladding over the device (such as PECVD oxide) had the following pros and cons
a) The advantages were

1. By smoothing the transition of silicon and air in the 1-D photonic crystal area, the
scattering loss could be reduced.
2. It physically protects the fine structures, (more discussion on this subject will be

presented later in the chapter)

b) The disadvantages were
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It reduces the refractive index contrast in the 1-D photonic crystal area, which would
reduce the dispersion and increase the superprism size.

It adds another processing step

The uniformity of the oxide layer in the narrow trenches of the 1-D photonic crystal is
doubtful.

At that time no cladding option was chosen. We will discuss the consequence of this decision

later. The dies (total of 30 complete devices) were etched on 4 pieces of one inch by one inch

wafers covered by the left over PMMA layer.

11.2 Wafer post-processing

For protection, the wafers were coated with ~2um Shipley (1813) photoresist, and then soft

baked at 95° for 30 min. For the sake of having smooth facets which is essential for light

coupling into device, we followed the following procedure

1.

2.

3.

We diced the samples into small pieces (less than 1cm by 1cm). Each piece contains at
least a couple of dies.

We thinned the pieces to less than 150um. The Allied polisher was used. Fifteen
minutes polishing with 45pm diamond suspension granules followed by ten minutes
polishing with 9um diamond suspension granule led to a satisfactory result. The
thinning uniformity is important to make the next cleaving step more certain.

We used the Sherbrooke University’s scriber to scribe the samples and then cleaved

them.

Electron Scanning Microscope (ESM) image of a typical facet are depicted in Figure 11.2.1.
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MceGill 17.3mm x15 1k SE(U)

Figure 11.2.1 A typical cleaved facet ESM image

11.3 Optical charactetization setup

The schematic of our optical charactetization setup is shown in Figure 11.3.1.

Polarization
Controller —
—— 200 ¢ h unable
Laser )
IR N
C 5 A
amera Polatimeter
Interferometric olarimete
Objective
DUT =
Camera
Tapered/
Lensed Fiber
Silicon

Figure 11.3.1 The optical characterization setup, (6-D stage stands
for 6 degrees of freedom)
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The laser source is an external cavity laset capable of tuning from 1460 to 1580 nm. The
polatization controller is a three-plate type consisting of a V4 wave plate, a /2 wave plate and a
linear polarizer. The input fiber to the polarization controller is a single mode fiber and the

output is a polatization maintaining fiber. The device under test (DUT) is excited by a tapered

lensed fiber with the output beam-width of 2.5um. The output power is read by an IR coated
60x objective lens (with 2 numerical aperture of 0.65). The 6-D stage is capable of moving the
DUT on all ditections (three translational, and three rotational). The teplaceable top objective
(at the top of the sample) is initially an interferomettic objective (10x, with numerical aperture
of 0.30) for leveling the DUT. Ensuring a level sample is ctucial for reducing the total coupling

losses.

The top objective is then replaced by an “infinity-corrected long wotking distance objectives”.
Initially with a 10x objective (with a numerical aperture of 0.28) for the azimuthal alignment of
the fiber with the DUT input waveguide, and then by 50x objective (with numerical aperture of
0.45) fot the translational alignments. The top IR camera is used the fiber/ DUT alignment
with the condenser light. In addition, when the laser is on one can also trace the light inside the
sample using the top IR camera. Figure 11.3.2 demonstrates the aligned a tapered lensed fiber
with the input waveguides of the DUT. The image has been captured using 50x top objective

and the top IR camera. Note that the waveguide width at the die border is 2um.

Figure 11.3.2 The images of an aligned tapered lensed fiber with the input waveguide of the DUT
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The removable photo diode is for the alignment of the output objective with the output facet.
The removable polarimeter is for reading the polatization. The computer and the silicon

detector have been programmed to perform the transmission measurement automatically.

The side IR camera is for observing the output facet when the photodiode is on, and then the

output mode when the laser is on. Figure 11.3.3 shows the experimental radiation profile of the

mode of 2 2x0.5um?SOI waveguide at 1550 nm (Quasi TM mode) when it is excited by a

tapered lensed fiber of 2.5 um beam width. The itmage is captured with the IR camera and 60x
lens. The image data has also been processed for compensating the nonlinearity of the IR
cameta. Compating the image with the perfect modal profile of Figure 10.8.4 shows a good
agreement which is an indication of good alignment. Our estimation of the total coupling loss
is ~15dB (from the tapered lensed fiber to the chip and from the chip to the detector)

Figure 11.3.3 Experimental radiation profile of the mode ofa 2% 0.5 p,mz SOI waveguide at 1550 nm (Quasi TM mode) which

is excited by a tapered lensed fiber of 2.5 pm beam width

Itrespective of our confidence regarding the light coupling into the device, unfortunately there
was no meaningful light emerging from the prism region. Although our first inspection of the
etched patterns indicated that they were satisfactoty, this motivated us to make a more careful

inspection of the etched pattetns. In the next section we will summarize our observations.
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114 Etching charactetization

The etching of patterns with large feature sizes were mostly successful (as the following two

figures depict).

10.0kV 4. 7mam =2 00k SE(L) /4 7mm x1,00k SE(M) Y SIJI Dl;m ‘

@

Figure 11.4.1 (a) the etched chevrons and (b)the input waveguides/slab region on SOI sample

Figure 11.4.2a shows the etching of 0.5um X 0.5um waveguide. As can be seen the etching

height and side wall verticality seems acceptable. Figure 11.4.2b shows the side wall roughness
of 0.5um X 0.5um waveguide (which is not very satisfactory).

SRR

Ok SE(U)

@ ()

Figure 11.4.2 (a) the etched 0.5um X 0.5um waveguide (b) its sidewall roughness on SOI sample

T
500nm
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However, our careful inspection of the fine patterns (gratings) on many samples revealed
that there wete systematic flaws (many of them catastrophic). In the following we will

categorize them.

The first significant error is that the duty factor of the etched patterns is not according to the
design value (which was 0.5 for all cases). As we will show in the next section, the
performance of the k-vector superprism is very sensitive to this parameter. Figure 11.4.3

shows a typical cross section. As is seen, the duty factor in this case is about 0.4.

MeGill 15.0kV 13.6mm x60.0k SE(U) 500nm

Figure 11.4.3 The cross section of a typical etched grating

The duty factor in many cases was smaller than 0.4 (as Figure 11.4:4a shows the case of a duty
factor ~0.3 ) and in many other cases, it was greater than 0.5 (as Figure 11.4.4 b shows the case
with duty factor of ~0.65). On some occasions, the obsetved duty factor was close to petfect,
but unfortunately not over the entire part of superprism. However in the most observed cases,

the trenches were over etched (the duty factor was lower than expected).
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Figure 11.4.4 The top view of the etched grating, (a) low duty factor of ~0.3 and (b) high duty factor of ~0.65.

Ok SE(U) 3.00um
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Figure 11.4.5 (a) and (b) The top view of an almost perfect grating

The second error was the non-uniformity of duty factor along the prism region. In other
words, the duty factor was changing over the prism area. Usually the duty factor variation (of
about 0.1) occurs smoothly over the prism region. However in cases, the duty factor changed

abruptly. Figure 11.4.6 shows such a situation.
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MeGill 2.0kV 5.0mm x80.1k SE(U) 500nm

Figure 11.4.6. A sudden change of duty factor from 0.41 to 0.27.

The thitd etror was dislocation of the grating patterns and misprinting.

Figure 11.4.8 shows two of such cases.

10.0kV 4 .8mm x18.0k SE(U) 3.00um

Figure 11.4.7 Grating pattern dislocation
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10.0kV 4.9mm x40.1k SE(U)

Figure 11.4.8. Grating pattern misprinting

The forth and the fifth are fabtication imperfections such as the bad and non-uniform etching,

Figute 11.4.9 shows two typical cases of bad and/or non-uniform etchings.

& 2 ” Ak RS e . v'|||||||l‘01ll J ) )
MaGill 2 0k 9 Omm x30.0k SE{U) 8/14/06 1.00um AcG V 8 Gmim x100k SE(U) 811406

(@) ()

Figure 11.4.9 Typical (a) bad and (b) non-uniform etchings

The last etrort is also a fabrication imperfection. The etch pattern of the top silicon layer is not
uniform and the side walls are not sufficiently smooth. This imperfection can be seen from

cross section of Figure 11.4.3.

Although the three last defects are not disastrous (they will cause more scattering loss) the first
three ones are catastrophic. In the next section, we will perform a sensitivity analysis of the k-

vector superptism which shows the importance of having the duty factor under control.
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11.5 Sensitivity analysis

The scaling law of photonic crystal is the duality of wavelength and dimensions. In other
words, if we want an accurate central wavelength, accurate fabrication techniques are needed.
To illustrate this more quantitatively, assume that the fabrication tolerances are on the order of
10nm. Assuming the 1-D photonic ctystal of period 275nm, then approximately the central
wavelength will be shifted by

AA_AA A= E10 1550~ 455 nm (11.1)
N A 275

Considering the channel spacing of 0.8nm, this is a large deviation. Furthermore unfortunately
the k-vector superprism is also very sensitive to the duty factor of the 1-D photonic crystal.
Figure 11.5.1 shows a typical bandgap variation of one of our design versus the duty factor. As
can be seen for this case, a duty factor of less than 0.42 (i.e., trench over etching greater than
22nm) causes the bandgap to disappear. Note that the total internal reflection happens if the

duty factor becomes smaller. This may explain the reason that we could not observe any

transmitted light out of the prism region.

n =2.8178
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Figure 11.5.1 Normalized bandgap variation versus duty factor for a 1-D photonic crystal of period A = 275nm and at
the wavelength of X\ =1549.82nm
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11.6 Challenges ahead and some recommendations

As we have demonstrated in the last section, the dimension and duty factor sensitivity of the 1-
D k-vector superprism is behind the fabrication challenges. Precise control of the dimension

and etching profile is crucial. The etching uniformity is also important.

The option of no cladding had the following consequences

e Exposure of the fine structure to potential external damage. The damages start to

emerge after a soft cleaning of the sample (washing with edge bead removet, acetone,

and isopropanol alcohol). Figure 11.6.1 shows a typical case.

B i S T

10.0kV 4. 7mim x6 S ) oum 10.0kV 4 7mm x3 50k SE{M) 10.0um

Figure 11.6.1 (a) and (b) Typical grating damages right after soft cleaning
¢ The damage often became worse after the samples had undergone the stress of the

thinning process (which includes using wax, heating the sample, removing and cleaning

the wax). Some worse cases have been depicted in Figure 11.6.2
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Figure 11.6.2 (a) Broken waveguide and (b) smeared waveguide due to the stress of post-processing

The built in stress along the long grating lines could be a source of breakage. Figure
11.6.3 shows a typical site.

10.0kV 4.9mm x13.0k SE(U)}

Figure 11.6.3 The stress along the grating lines which seems to be the source of breakage
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e We could not use the dicing and side polishing technique which is a well established
technique for making a good facet. Instead we worked with tiny fragile SOI samples of

150pm width.

For the sake of all of the above points we recommend the developing of a cladding layer over
the entire device. The PECVD silicon oxide can be grown over the wafer, or methylsiloxane
polymers can be spin coated over the sample. A special family of this polymer is capable of
filling small ditches up to 100nm (Honeywell ACCUGLASS T-14 family,

http://www.honeywell.com/ ). Considering modified refractive index distribution, we would

need to change the design. The dispersion in the new design would be lower, and
consequently the sensitivity would be lower, however the ptism area would be latger. We
need to control the accutacy of the electron beam writer and etching profiles. Electron beam

exposure bracketing is also recommended.
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Chapter 12

CONCLUSIONS

In this chapter we conclude the thesis. We summatize the main issues and our

contributions. We also comment on possible future work.

12.1 Introduction

Planar lightwave circuits on the SOI platform using ﬂle well known patterning techniques of
mictoelectronics ate a good candidate technology making the future optical integtated citcuits.
Using a similar or at least a compatible technology, such an integrated device must contain all
the components necessary for doing a specific task. It is in this context that the objective of
this thesis which was to demonstrate the capability of supetptism for making a miniaturized
demultiplexert is situated. Usually, there is a long time that must elapse between an emerging
idea and a realistic device. Although it is now about two decades since the supetprism
phenomenon was first observed [1], a practical device has yet to be demonstrated. There are
many obstacles to overcome. The first astonishing superptism observation was on 3-D
photonic crystal using high refractive index contrast of pseudo-2-D auto-cloned photonic
ctystal. The observed large degree of beam steering (later called the S-vectot superprism)
indeed occurred over a narrow range of specttum, and the transmitted beam had lost a lot of
its spatial coherence. Evolution of the 3-D photonic crystal supetptism to the slab 2-D
counterpatt makes fabtication much easier but it also results in about 10 times dispersion
reduction [2]. Then the first order calculation showed that loss of spatial coherence of the
beam prevents the device from resolving fine wavelengths [3]. That analysis concluded that the
size of the device makes the photonic crystal S-vector demultiplexer more suitable for CWDM

applications. However, the dispersion actoss the wider CWDM bandwidth is so nonlinear that
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linear analysis is not sufficient for designing a practical device. There were attempts to improve
the coherence recently, but the resulting bandwidth is not still suitable for CWIDM applications
[4:5].

The phase velocity dispersion was exploited for making superprisms in the millimeter wave
range of the spectrum [6]. We then pioneered the exploitation of phase velocity dispersion in
the optical spectrum using a 1-D photonic crystal [7]. We have shown that a DWDM
demultiplexer is feasible and that the size of the device is very small when compared to the
alternatives. This configuration was later called the k-vector superprism [8]. No experimental

results for the k-vector superprism in the optical spectrum have yet been reported.

Any accurate design must be based on accurate modeling techniques. The plane wave
expansion method with supercell definition has been used for obtaining the wave vector
diagram of slab photonic ctystals. The speed and accuracy of the method has been improved
considerably using the block-iterative frequency-domain methods [9]. However obtaining the
complete wave vector diagram requires the whole Brillouin zone to be scanned (for a given
wavelength). Furthermore obtaining the wave vector at any quiescent point needs some sort
of interpolation method to be applied which is not particularly accurate. There is also no trace

of any leaky modes in the method due to the application of the supercell technique.

Since any optimization techniques usually tely on repeated simulations of the structure with
different parameters, the current plane wave expansion method is not suitable for such a task
due to its high computational demands. Loss of accuracy at the expense of speed is an

acceptable trade off for such methods.

The high scattering loss of the light propagating through a photonic crystal and low coupling
loss of the light into the photonic crystal are two drawbacks of the planar superprisms. Whilst
the former can be mitigated using more accurate fabrication techniques, the later needs to be
addressed through the design. Reliable transmission and reflection modeling of the bulk
photonic crystal is necessary to obtain any practical designs. Full 3-D FDTD modeling of the
structure exhausts the computer resources and there is no other reliable technique for this
issue. Mode matching using bound and leaky modes is a valuable technique to obtain a reliable

transmission and reflection coefficients. However, leaky modes of the slab photonic crystals
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are not well known, and the plane wave expansion method with supetcell definition cannot

trace them.

A focusing element is a crucial part of the superptism demultiplexers. It is the main component
of our layout for k-vector superprism and it is necessaty element for an S-vector when the

output beam width becomes excessive. A waveguide lens with a relatively large f/# and

bandwidth is required for our task. The superlenses with very short focal length [10] ate not

suitable for our task.

12.2 S-vector superprism

In chapter 6 we have developed general design equations for designing a demultiplexer using S-
vector superprism phenomena based on the first band of photonic crystals. First, we obtained
a criterion for obtaining the best lattice parameters. We have shown that average group velocity
at the bandedge is a suitable indicator of the available dispersion. We have selected the lattice
parameters taking the micro-fabrication limitation into account (we have assumed a minimum
feature size greater than 75um). A 3-D plane wave expansion method with supercell technique
has been employed to insure a more realistic design than the equivalent 2-D counterpatts. The
2-D hexagonal lattice provides an order of magnitude higher angular dispetsion than 1-D

photonic crystal. The angular dispersion of 2-D square lattice was neat to the hexagonal one.

We have defined the minimum resolution length and calculated it for all channels. We have
modified the conventional S-vector superprism geometty in otdet to reduce the total area of
the superprism. Now the superprism area only accommodates the atea necessary fot the beams
to propagate and resolve neighboring channels. Usually the dispersion is high enough that the
Gaussian beams ate resolved from the neighboring channels in the near field. We have derived
a more accurate model to evaluate cross talk in the near Gaussian field. Based on our model,
we have concluded that the resolution is more critically dependent on the beam divergence
inside the photonic crystal than on angular dispersion. As result the 1-D photonic crystals

provide the best resolution, despite theit lower angular dispersion.
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We have shown that a 4-channel CWDM demultiplexer with a theoretical cross talk level of 20
dB can be made with a the prism area of 1367pm?. A typical SOI wafer technology with a top
silicon layer thickness of 260 nm has been used for our simulation. The input beam width is

about 1.5 pm and the maximum output beam width is about 3 pm. This size is about 500 times

smaller than AWG on the similar platform.

Our investigation also shows that it is not easy to design higher channel count demultiplexers
based on the S-vector superprism phenomenon due to the high non-uniformity of the band
diagram as it evolves with the wavelength. In chapter 7, we have introduced a novel concept
for higher count (wider band) demultiplexers. We have shown that a stratified photonic crystal
is capable of reducing the superprism area by five times. The slant angle in each layer has been
selected for maximizing the dispersion for a particular channel, and for reflecting back the
proceeding channels and refracts the succeeding ones. We have shown that we only need a
0.26 mm® photonic crystal area to resolve 8-channel CWDM demultiplexer (with 160nm
bandwidth). The non-uniformity of the output channel width also shows tremendous

improvement over the conventional superprism.

For having a practical CWDM demultiplexer based on the S-vector superptism, there are some

issues to be addressed and also some ideas to explote more.

1. The main issue of the multiplexer is the coupling loss of the input beam into the
photonic crystal bulk and from the bulk into the output waveguide. Working near the
bandedge for the sake of having higher dispersion is causes the low coupling efficiency.
Modeling is more complicated due to the Gaussian nature of the beams. For the input
coupling, we have to consider the divergence of the incident beam, and the group of
Bloch modes that are involved in the coupling. For the output coupling on the other
hands we have to consider the Bloch modes which are involved in the propagation and
the Gaussian modes which are allowed to propagates. Lack of any accurate model is
clear. As we have shown in chapter 6, any practical design has to use the full 3-D
modeling especially when the refractive index contrast is high. So the coupling issue
has to be addressed in full 3-D modeling finally.
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2. The rapid loss of spatial cohetence is another factor that over sizes the conventional
supetprism. Although preconditioning is a novel idea [5], we need some other means
with the bandwidth suitable for CWDM applications. Our stratification technique is
also an idea that can be explored further by varying other lattice parameters of each
section (we only change the slant angle).

3. 'The wave propagation in a stratified media in the limit can be considered as the wave
propagation in the inhomogeneous media (.¢.a gradient refractive index medium). Any
abrupt reflection can be replaced by a smooth turn (similar to radio wave reflection
from the jonosphere or in a gradient refractive index lens). Hamiltonian optics has
been suggested for the modeling of the light propagating in non-uniform photonic
crystal [11], but it has to be explored more.

4. Polatization sensitivity of the photonic ctystal is also problematic. An ideal
demultiplexer has very low polarization dependence. However wave propagation in a
conventional photonic crystal is sufficiently anisotropic, that a polarization beam
splitter has been made from it [12]. Either polarization compensation elements must be
developed or a new structure and/ot new photonic ctystal atoms must be found that

show very low polatization sensitivity.

12.3 k-vector superprism

In chapter 8, a complete optical design of a demultiplexer based on photonic crystal k-vector
superprism has been proposed. The fitst integrated layout for the high contrast matetial has

been introduced.

Once again we have used the group velocity at the bandedge as the indicator for the available
dispersion. Based on this indicator, we have selected the photonic crystal paratnetets in order
to obtain the best k-vector superprism performance. We have developed design equations and
design rules, for the k-vector superptism. We have discussed various operating points and
showed that there is a great advantage to work in the second Brillouin zone and select the
parametets so that the beam expands through the photonic ctystal. As before, the superptism

is latge enough for the beam to expand and providing the desired resolution, and the
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nonlinearity of dispersion has been taken into account. An optimal design maximizes the phase
velocity dispersion and minimizes the group velocity dispersion as much as possible.
Interestingly, we have shown that the 1-D photonic crystal has the smallest superptism area of
99,200 wm?, which provides sufficient resolution to demultiplex 32 channels in the C band with
a 0.8 nm (100Ghz) channel spacing. The 2-D square lattice is vety close to the smallest size,

while the best 2-D hexagonal superprism is larger by 45%.

The maximum phase and the minimum group velocity dispersion is an ideal case for having
small demultiplexer, but this appears to be an impossible condition. This is the teason that the
2-D hexagonal lattice with high dispersion (both phase and group) has the largest superprism

area.

The chip size excluding the input and the output sections is approximately 4.5 times smaller

than the etched grating demultiplexer on the same platform.

One of the main components of our proposed layout is the focusing element. In chapter 9 we
have introduced 2 new class of lenses by introducing rotational periodicity of the lattice. By
keeping the 1-D patterns parallel to the rays, we have avoided the difficulty of misalignment
between the group and phase velocities in photonic crystals. The azimuthal effective index
method has been modified in order to obtain the effective index for the radially propagating
rays. Many types of lenses can be designed but we chose to design a lens for collimating light

emitted from a waveguide into the slab region. We have shown that 658 pum’® lens area is

enough to collimate 100 um beam. The focal length is 130pm. The lens performance appears

to be good in simulation.

In chapter 10, the mathematical equations necessary to design the mask for the proposed

layout has been presented. Many aspects of waveguide designs have been discussed there.

This multiplexer type has also some issues to be solved before become a practical device, and

there are also some ideas to be explored.

1. Similar to the previous case, coupling into and out of the photonic crystal must be
improved, but the case is less complicated than the S-vector case. The incident beam

can be treated as a plane wave, the refracted wave as a Bloch mode (if the quiescent
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point has been chosen cotrectly) and the transmitted wave as a plane wave again. There
are some pioneering works in this regards (including projected holes, adiabatic tapering,
and diffraction grating) [13-16].

A practical demultiplexer for DWDM channel spacings must bring under control the
sensitivity of the structure to the temperature. Any wavelength drift must be a small
fraction of channel spacing. For high count multiplexers, the low powet than many
inputs catty may be a source of significant heat due to propagation loss through the
device. We should therefore investigate the sensitivity of the k-vector supetptism to
temperature, and if it is too sensitive, we need to develop about a means to reduce it.
Tuning the central wavelength of a k-vector superprism with input optical powet, (or
to an external source) is an interesting idea. Design imperfections ot even the
wavelength shift with temperature can be compensated using an external light source.
Applying the proposed method to a study the Kerr-type nonlinearity of k-vector
superprism, we have also pioneered an approach in this area too. But our method is
only approximate and we need mote accurate modeling, especially when the index
contrast is high.

The possibility of implementing our photonic ctystal lens in the k-vector layout is
interesting to explore. The other types of the lens (plano-concave) can be designed
which is more suitable for integrating with the prism. Figute 12.3.1 shows the concept.
Note that the passing of the beam through different photonic ctystal regions in the
limit can be modeled using Hamiltonian optics [11].

Although the modeling which has been used for the lens design is 2 3-D one, however,
its small size makes it a possible candidate for FDTD analysis. It is possible to test the

validity of our lens design with FDTD simulation.
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Figure 12.3.1 An integrated superprism and lens designed with 1-D photonic crystal.

12.4 Modal analysis

In chapter 4 we have presented an approximate analytical method fot the analysis of slab 1-D
photonic crystal. The method is an extension of the known weighted index method for
tectangular dielectric waveguides, and is capable to be applied to some slab 2-D photonic

crystal too.

Compared to the accurate finite elements results, the accuracy of the weighted index method is
good in the low refractive index contrast systems (A#z=0.5), but it deteriorates as the

refractive index contrast becomes higher (A# ~ 2).

The weighted index method has also been extended to handle the nonlinear slab 1-D photonic
crystal. Merging the loop of the weighted index method with the loop of the nonlinear routine
will speed up the method considerably. The resultant method is simpler, and converges
vittually as fast as the conventional perturbation feedback method (through 4 to 8 iterations).

Here ate some ideas for further to exploration of the weighted index method.
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1.

The study of low contrast photonic crystals is an emerging field. The low scattering
loss and the possibih'ty‘ of making large photonic crystals with various methods make it
interesting [17]. For such an application the weighted index method is choice: accurate
enough but very fast.

The application of the method in nonlinear periodic structure can be further explored.

Investigating soliton wave propagation in 1-D photonic ctystal is interesting [18].

In chapter 5, we presented a new method based on the conventional plane wave expansion

method. The method is capable of obtaining a spectrum of slab 1-D photonic crystal mode

including leaky mode (which is valuable for replacing the continuum of radiation modes in the

conventional mode matching technique) Howevet, the method as presented here is

computationally more intensive than the state of art plane wave expansion method. Although

we have to execute the plane wave expansion program numetous times, thanks to the Bloch

variational iterative formula[9], the method is relatively fast. The method can trace the leaky

modes through the Brillouin zone, and the fact that it needs less Foutier components in the

non-petiodic direction make it attractive. This method has a lot of capability to be explored,

including

1.

The full 3-D reflection and transmission can be modeled using the leaky modes
obtained in chapter 5.

‘The method is basically is at the same level as the very first introduction of the plane
wave expansion method, so one can expect that the efficiency of the method can be
improved using more sophisticated eigenvalue solvet.

The more accurate mode characterization of slab photonic ctystal is doable (similar as
2-D rectangular dielectric waveguides) using the results of the method. This will shed
light on the dark side of mode matching and what is behind it.

The last section we explain our achievements and present out comments regarding our

experimental results.
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12,5 Experimental results

In chapter 11, we have reviewed our attempt to design, fabricate, post-process and

expetimentally characterize the of the k-vector superptism.

Paramettic mask design for the proposed k-vector supetprism demultiplexer has been done.

An SOI wafer with a top silicon layer of 0.5 um thickness was selected for fabtication. Ten
different demultiplexer designs for resolving 16 standard DWDM channels were developed.
The mask data for thirty full demultiplexers were sent for fabrication. An optical
characterization setup suitable for coupling light into and reading power out of the samples
with submicron waveguides was designed and constructed. Unfortunately, the sensitivity of our
design to fabrication imperfections and unsatisfactory fabrication quality prevented us from
obtain any meaningful experimental results. For the next step of the project, we suggest the
development of cladding through new device design. More accurate and careful fabtication is

also needed.
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Appendix A

A FINITE ELEMENT METHOD FOR ANALYZING OF SLAB 1-D
PHOTONIC CRYSTAL

A vectorial finite element method is introduced for the analysis of a slab 1-D photonic
ctystal. The petiodic boundaty condition is imposed on the petiodic ditection, while
essential boundarty conditions are adopted for the two other transversal ditections after
inserting enough perfectly matched layer absorber in non periodic direction.
Numetical results illustrate the method. Some comments on the other alternatives are

also presented.

2.1 Introduction

The Finite Element Method (FEM) has already been used to model 2-D and 3-D photonic
crystals [1;2]. Note that 1-D photonic crystal has an analytic solution [3]. Periodic boundary
condition and Floquet theory can be implemented implicitly [1], or explicitly [2]. Using FEM,
the modeling of periodic structures that has been done so fat, is based on the assumption that
the refractive index of the structure is uniform in non-petiodic direction which may not be the
case generally. In slab photonic crystals, the sttucture is petiodic in one or two directions, while
the refractive index in the third direction is atranged to confine light in that ditection. In our
case, the structute is periodic in x direction, uniform in g direction (ditection of propagation)

and inhomogeneous in y direction (light confinement direction which is normal to the slab).
Thete has been a lot of interest in the last two decades to implement FEM on dielectric

waveguides with open boundaties. We have chosen edge type of FEM, which enables us to
model full vectorial Helmholtz’s equation. Edge type FEM guarantees the continuity of
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tangential field components across element interfaces, while allowing discontinuity in normal
components, and by implicitly applying the divergence equation, it eliminates the so called
sputious modes[4]. We have also employed Berenger’s Perfectly Matched Layer (PML) as an
absorbing layer [5]. This kind of artificial absorber shows less sensitivity to the wave incidence
angle and frequency. Essential boundary condition is applied to enclose the computational

domain in y direction (normal to the slab).

This appendix has been arranged in four sections. In section 2, the implementation of periodic
boundary condition together with Floquet theory in implicit form is reviewed. In section 3, we
will show how PML can be implemented and how the corresponding matrix elements are
affected. In section 4, more comments alongside with some guidelines for further research are

presented.

A.2 Periodic boundary condition

In explicit form, one can change the workable variable to Bloch eigenvector and use Maxwell’s
equations for Floquet’s wave, while in implicit form Bloch eigen values are introduced through
parameters in interpolation functions. They are equivalent in a sense that they lead to the same
tesults. We have adopted implicit form for the sake of easiness. Rewriting Eq.(3.1) in a more
familiar form for FEM implementation

V. (12 )(V xH,) = (/n*)V (V.- H,)— (& + & [2*)H, =0 (A1)
The weighted residual formulation of the Helmholtz Eq.(A1) is given by

ST xW)-()2) (9 X H) =W (1), (V, 1)~ (& + 42 ") W1, } A
—f’gWx(l/nz V,xH, ) ndl =0

(A2)
where A is the area of the periodic unit cell (see Figure A.2.1), I represents the perimeter of .4

and W is some arbitrary weighting function.

259



Essential boundary Essential boundary

condition condition
et
I |

o

Petfectly matched Perfectly matched
absorber absorber

Figute 0.1. Unit cell of a singly periodic 2-D structure

In non-periodic cases the line integral in Eq.(A2) is eliminated by constraining the FEM trial

functions (H,) and weight functions W to vanish wherever the essential boundary condition
(H,=0) on I" applies, while the natural condition (V,XH,)-n=0 requires no further

action. Such steps can also be taken here but do not account for the portions of I’
corresponding to the unit cell periodic closures. The latter are taken into account by

employing Floquet's theorem. Thus, the degrees of freedom of H, associated with non-
ovetlapping geometric parts (1 and 2) of the unit cell in Figure 0.1 are related as follows
H? = H, exp(—ik ) (A3)
where 4, is the Floquet wave number. Constraining the weight functions with reciprocal
factors exp (z)éxA) so that
W, = W, exp (i A) (A4)

It follows that the line integtal around I" will be canceled because of equal and opposite

normal vectors n on the first and the second boundaries. Thus instead of Eq.(A1) a residual

[[ {07 )V xW)-(V xB) = (1/#*)W-V (V,-H,) = (& + £ /") W-H, }d4=0 a5)

applies to the whole region 4. On an element-by-element basis one may write

R=)"R =0 (A6)
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R = [[{(/r) (V. xW)-(V,xH,)~ (1/*) W, (V.-H,)~ (& + & [+ )W-H, } 44

(A7)

Provided H, and W are continuous functions across inter-element boundaties, the line

integrals due to such interfaces will cancel and need not to be included in Eq.(A7). The

function H, can be expanded within an element ¢ as:
= H N, (A9
()
where j(¢) signifies edge elements relating to the element ¢ but counted on a global basis,

while N, are the vector interpolation functions. The constant &; 1s introduced in order to

impose the petiodic constraints of Eq.(A3), as shown later. In the preferred weighted residual
option, the weightings are selected from the interpolation functions

W =g N; (A9)
whete the ¢/ ate atbitrary constants. In this case the element residuals Eq.(A7) may be
represented in matrix form by

R,=SH,—-TH, —£UH, (A10)

where the column vector H, cotresponds to H,,. Assuming n*is constant within an

element and given ¢; and g’ the local matrix elements

5?:('& [[(vxN): (9, xN5 ) a2 (All)
?: 'gf ffN N0 (A12)
T; = eg (ﬂ2> Us (A13)

are readily evaluated. Note that by choosing the edge elements as a vector interpolation

function, the second term of the integrand in Eq. (A7) is zeto, se.,
V. N/ =0 (A14)
The constants ¢; and g are specified so as to be consistent with the boundary and intetface

rules:
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2)

b)

If edge /(e) lies on an internal element boundaty, ¢, and g; are chosen such that for any
element ¢’ sharing the edge / ¢; = c;’ Vg = g/", otherwise the continuity of W and H, is

violated. A value of ¢; =1, g =1 may conveniently be chosen for such edges and also for

edges not shared by any other element.

If /(e) is an edge for which H, is presctibed (H, =0 here), ¢/ = Ois chosen to satisfy the
requirement W = 0 at that edge.

If /(eo) =/, represents an edge at (xo, yo)on a petiodic boundary (cotresponding to
geometric part 1 in Figure A.2.1), there is an edge /(¢)=/, at (x,+A_,y,) on the
corresponding periodic cell closure (geometric part 2 in Figure A.2.1). In that case, Egs.
(A4), (A5) and (A9) show that ¢ =1 and ¢} = exp (ik,A,) must be used in Eqgs. (A11)
and (A12) relating to the second edge. In a similar way, from Eq. (A4) g =1 and
&, =exp (—z'/éxAx). Finally, the unknown variable H, is set equal to H, , thereby

eliminating it from the system of equations.

Note that it is required in the above discussion that the finite element mesh at periodic

boundary paits is identical. Figure A.2.2 shows such a mesh for the typical slab 1-D photonic

crystal of chapter 5.

%—PML———» —Core— l«—PMI —»

<+—Cladding——— ~———Substarte——»

A
R

gk

Figure A.2.2 A typical mesh for slab 1-D photonic crystal of chapter
5. The mesh density is lower than the practical one.

Summing the individual element residuals (Eq. (A10)) as in Eq. (AG) now amounts to a

procedure which, element by element and edge by edge, assembles the global mattix equation
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R=SH-TH-£UH=0 (A15)
where H is the column vector of the unknown nodal (H) values, ready for treatment as an

eigen equation to solve for 42 given 4, and &,

A3 Petfectly matched layer (PML) boundary condition

Modeling of open problem space with FEM was at first done by truncating the computational
window and imposing an artificial electric wall around it, a technique which as with the FD

method gives erroneous results for waveguides operating near cut-off.

It can be shown that if we define V, in the absotbing layer as

0 0
V.=a,—+a o, — A16
t X 8_)(‘ J Ty 8} ( )
where o , are patameter associated with the PML boundary condition. PML parametets have

to be determined such that the wave impedance of the PML layer placed at the top and the
bottom of the computational domain is exactly the same as that of the adjacent medium inside
the computational domain. Hence, the PML. medium will petfectly matches the computational
domain medium which will allow the unwanted wave to leave the computational domain freely

without any reflection. This necessary condition can be detived as [6]

1 1
= 0Z, , .0, (AL7)
1—i—— 1—{
ko1 k2,
where Z; = \Jli,/€, is the characteristic impedance of vacuum while o, and o, are the

electric and magnetic conductivity of the PML region, respectively. In the PML medium, if we

let conductivity as a constant and define,

&

i, 5, =8, =15 (A18)
.f]
Then for the plane wave propagating with wave number £ -+ ik, propagating in the y
direction, the wave attenuates as

J exp(—[s4, +5,4,]1y) (A19)
And propagates as
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exp <z' [Jr/é, — 5.k ]) (A20)

In the absence of evanescent wave (&, =0), the wave propagates with the wave number of

5.k, , which results in approximately the same requirement on the mesh density outside of the

PML.

In the PML medium, a parabolic profile is also commonly used for the conductivities, so [6]

3(Ay)
o, =1+ ( Jl InR, (A21)

ko

where 4 is the width of PML, Ay is the distance from the beginning of PML and R, is called

the theoretical reflection coefficient at the PML-computational domain intetface, which is set

to a very small value during the simulations (say 107 )

For PML the definitions of mattix elements (Eqs.(A11) through (A13)) will not change, except
for §; in Eq.(A11) which will be modified as below

5" c‘g’ ffv XN;)-(V, XN )2 (A22)

where & ; is assumed to be constant through each element.

A.4 A Numerical result

Consider the known case of slab 1-D photonic ctystal with the parameters depicted in Eq.
(5.35) and repeated here.

Ha =1, By =2, 0 = V12, X =1537.4 nm
A——265nm, a—’rA—-A/2:132.5nm, b = 500nm
Figure A4.1 shows the unit cell with the convention of this appendix.

(A23)
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Figure A.4.1 a unit cell of slab 1-D photonic crystal with definition of some
parameters.

We assume the cladding and substrate width of 1pum. If we want the wave attenuation

(presumably plane wave) after 1 pm of PML layer reaches to 107°, then

. _lnogy X\ _ 3In10x1.5574
2Ty, 2w x1

=1.69

Assuming the same value for s, then if we assume 10 elements per wavelength in the

PML layer, the maximum element size in PML layer is
A 1.5374

510n  1.69x10%~/2

=/ 64 nm

Under these conditions, Figure A.4.2 shows the magnetic field profile at £, =0 (resonance)
and &= T/A (anti-resonance) at the wavelength of X\, = 1537.40 nm . The notmalized wave
vector in the z direction was obtained as 7, = 2.303 and n, = 0.230 for resonance and anti-

resonance cases respectively.
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265 nm

F 500nm: ™

() 265 nm

Figure A.4.2 The Total magnetic field of (a) resonant case /éx =0

>

and (b) anti-resonant casc & e — ’TY/ A over one period

Note the shift of magnetic field concentration at resonance and anti-resonance case. Although
the method is vety accurate however, it suffers from the existence of non-physical modes
(sputious). Usually for each obtained eigen-value, one has to check the modal profiles to be
sure that the obtained mode is physical.

A.5 Discussion and suggestions for further studies

In following, we will discuss some other aspects of the formulation and suggestions for further

research on this topic.

As it is mentioned earliet, there are two equivalent methods to implement periodic boundary

conditions and Flouqet’s theorem in FEMs for analyzing periodic structures.
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o Implicit method, which uses the conventional Helmholtz equation and apply Flouqget’s
theory with new parameters in interpolating functions, leads us to an eigen value
equation of Eq.(A15), in which all matrix coefficients S, T and U ar e qu adratic

functions of Flouget wave number $_[1]. If we want to calculate the wave vector
diagram (£, versus &, at constant£;) we need to determine all matrix coefficients S, T

and U repetitively in every steps of the calculation.

o Explicit forms utilizing Bloch eigenvectors as a workable variables leads us to matrix
coefficients which is independent of Flouget wave number[2]. The following Bloch
eigen mode 1s introduced

W = exp(ik,x)H, (A24)
where ‘¥ is a periodic function in x direction, .,
W(x, y)=W(x+A,y) (A25)
The proper differential equation corresponds to Eq. (3.1) can be obtained by modifying the
gradient operator as

V., >V, +ika, (A26)

and changing variable to Bloch eigen mode. More study is needed to find similar eigen value

equation as of Eq. (A15). This approach has not been implemented yet using edge elements.

Technically specking, using absorbing layers of any kind at the structute boundaries makes the
whole structure lossy. As a matter of fact, if we put them too close to the waveguide
boundaries, then they will cause significant aberration of the field. Furthermore, using
absorbing layers makes finding accurate cutoff wave number virtually impossible. Ttue cutoff
wave number will be obscured by the uncertainty, which exists in the contribution of absorbing
layer in the imaginary part of obtained eigen values. This uncertainty will be magnified
considering the fact that in vicinity of the cutoff, there is a little field confinement. The
situation will be wotse where there is little refractive index contrast. In this citcumstance, band
structure through cutoff (in our case through band gap region) is impossible using absorbing

layers.

Alternatively, one can search for proper asymptotic physical boundary conditions. They have

been implemented successfully for the single dielectric waveguide [7]. Using the radiation
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conditions, it is well known that the far field expression for electromagnetic waves exhibits the
tollowing form

exp (z}é,p)
&,p

r

where £, =1,(k0ﬂ0)2 —/ézz is the transversal wave number and p=./x’+ y*. 7, is the

refractive index of the free space in which the far field is propagating. Here we have an infinite

F ~ (A27)

array of waveguides with the field phase shifting of exp (—z',éx./\), between consecutive

waveguides. Similarity with the linear antenna array implies that an asymptotic equation for our
case may also be found. Since the far field pattern of Eq.(A27) involves unknown eigen value

k. , using it for the boundary conditions causes the eigen value Eq.(A15) to behave nonlineatly.

Iterative method is used to solve this nonlinear eigen value equation, however, Mcdougall

proposes a method to avoid iteration [8].
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