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Abstract 

The exploitation of the superpnsm phenomenon for optical demultiplexing uSlOg a slab 

photonic crystal on the silicon on insulator platform is the main subject of this thesis. The S

vector and k-vector superprisms are considered. Design equations for the S-vector superprism 

demultiplexer which fully take into account the nonlinear spectral dependence of beam 

propagation and dispersion are introduced. This allows wide-band coarse wavelength division 

multiplexing (CWDM) demultiplexers to be designed. Selecting minimum prism area as a 

metric, the best photonic crystallattice, design parameters and prism geometry is sought. A full 

3-D modeling approach using the plane wave expansion method is employed to ensure the 

practicality of the design. We show that the slab l-D photonic crystal can provide the smallest 

superprism. Based on our result, an area of 1367 Jlm2 is sufficient to resolve 4 standard 

CWDM channels (20om channel spacing). We extend this approach by proposing a stratified 

photonic crystal which has 5 cimes less area for an 8 channel CWDM design. 

We then propose the first fully integrated k-vector superprism layout. Design rules and 

equations are presented and we use these to obtain the design parameters that result in a 

minimum prism area. We show that an optimized l-D photonic crystal k-vector superprism 

with the area of less than 0.1 nun2 is sufficient to resolve 32 standard dense wavelength division 

multiplexing (DWDM) channels (100GHz channel spacing). The resulting chip size is 

approximately 4.5 cimes less than an equivalent etched grating demultiplexer. 

We also demonstrate that fast lenses can be made using slab l-D photonic crystal with angular 

periodicity. 

We introduce an analytical approximation technique for slab l-D photonic crystals based on 

the weighted index method. The variational nature of the method leads to acceptable results 

for moderate refractive index contrast materials. The method can also be extended to 2-D 

cases and to nonlinear systems. 
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The plane wave expansion (PWE) method and field matching have been combined to obtain a 

new method which is capable of obtaining an types of modes including the leaky modes of slab 

l-D photonic crystals. The method requires fewer plane waves than the conventional PWE 

method but provides a better approximation. We compare our results with an accurate finite 

element method as a benchmark. 

A report of our first attempt for the fabrication, post-possessing and optical characterization of 

the proposed k-vector superprism demultiplexer is also presented. We recommend the 

development of a cladding, and more accurate fabrication procedures for future investigations. 
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Sommaire 

Le sujet principal de cette thèse est l'eXploitation du phénomène de "super prisme" pour le 

démultiplexage optique à l'intérieur de cristaux photoniques planaires fabriqués à l'aide d'une 

technologie de silicone sur diélectrique. Deux approches sont considérées: la méthode du 

vecteur S et celle du vecteur k. Des équations pour la conception de supers prismes basés sur 

le vecteur S qui prennent en considération les effets spectraux non linéaires de la propagation 

des faisceaux et de la dispersion sont présentées. Celles-ci permettent la création de 

démultiplexeurs à large bande avec une séparation grossière des longueurs d'onde. La 

disposition des cristaux photoniques, la géométrie du prisme ainsi que d'autres paramètres de 

conception sont ihvestigués afin de minimiser la surface du prisme. Un modèle tridimensionnel 

basé sur le développement des ondes planes est employé afin d'assurer la fonctionnalité du 

concept. Nous démontrons que les cristaux photoniques unidimensionnels forment les plus 

petits supers prismes. Selon nos résultats, une surface de 1367 ttm2 est suffisante pour résoudre 

quatre canaux séparés par 20 nm. Cette approche est extrapolée en proposant un cristal 

photonique stratifié dont la surface est cinq fois moins grande et qui peut résoudre huit canaux. 

Ensuite, le premier super prisme complètement intégré basé sur l'approche du vecteur k est 

présenté. Les équations et les principes de conception sont introduits et utilisés pour minimiser 

l'aire du prisme. Il est démontré qu'un cristal photonique unidimensionnel avec une surface de 

moins de 0.1 mm2 est suffisant pour résoudre 32 canaux espacés par 100 GHz. Ce circuit est 

environ 4,5 fois plus petit qu'un démultiplexeur à réseau intégré. 

Il est aussi démontré que des lentilles rapides peuvent être fabriquées avec des cristaux 

photoniques unidimensionnels à périodicité angulaire. 

Une technique d'approximation analytique pour les cristaux photoniques à une dimension 

basée sur la méthode des indexes pondérés est présentée. La nature de cette technique permet 

d'obtenir des résultats acceptables pour des contrastes d'index réfractif modérés. De plus, elle 

peut être étendue aux situations bidimensionnelles et aux systèmes non linéaires. 
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La méthode de développement des ondes planes et celle d'adaptation des champs furent 

combinées afin d'obtenir une nouvelle technique capable de résoudre tous les types de modes, 

incluant les modes de fuite, à l'intérieur des cristaux photoniques unidimensionnels. Cette 

technique requiert moins d'ondes planes que le développement traditionnel mais donne de 

meilleures approximations. Une méthode d'éléments finis est utilisée comme référence pour 

évaluer les résultats obtenus avec la nouvelle technique. 

Les résultats de la fabrication, du post-traitement ainsi que de la caractérisation optique du 

super prisme basé sur le principe du vecteur k sont aussi présentés. Le développement d'une 

gaine et de meilleurs procédés de fabrication sont recommandés pour les travaux futurs. 
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Chapter 1 

INTRODUCTION 

We explain the potential of the photonic crystal superprism for demultiplexing and 

compare it with other alternatives. Our proposed designs for both k-vector and S

vector superprisms are introduced. The original contributions of the thesis are 

outlined together with a description of its layout. 

1.1 Introduction 

During the last two decades, photonic crystals have been a focus of research interest because 

of their ability to control the flow of light on a very small length scale. Although the fltst 

motivation behind photonic crystals was to prohibit light from propagation (using 3-D 

photonic crystals where there is a full bandgap and wavelengths inside the bandgap [1]), the 

dispersive, anisotropic wave propagation inside photonic crystal at wavelengths below the 

bandedge has attracted significant attention too [2;3]. Wave propagation through a perfect 

uniform photonic crystal involves Bloch modes. Near the bandedge they are very dispersive, 

highly anisotropic, and also highly polarization dependent. This highly anomalous dispersion 

behavior of the Bloch modes leads to the extraordinary angular sensitivity which has been 

called the superprism phenomena [2]. The observation of 500 rimes more dispersion whilst 

impressive, was an indication of the emerging of new class of demultiplexers [2]. However, a 

3-D photonic crystal is hard to make and it is not suitable for integrated optics. The planar 

counterpart is a promising choice owning to the fact that its fabrication resembles 

microelectronic pattering techniques. The compatibility with CMOS technology also makes 

the silicon on insulator (SOI) platform a suitable candidate. The slab photonic crystal is an 

optically thin dielectric slab perforated with a 2-D lattice of holes (or in the 1-D case, 

trenches). Light confinement within the slab is due to the refractive index contrast of the slab 
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with substrate, and cladding. The observed dispersion in planar photonic crystal is 50 times 

more than in ordinary glasses [4]. This the sis is an exploration of the superprism 

phenomenon focusing on planar photonic crystals in the SOI platform for demultiplexing. 

There are two types of dispersion with two distinct origins in photonic crystals. The one 

originating from group velocity is based on the sensitivity of the direction of the Bloch 

modes with wavelength (usually near the band edge) [5]. The k-vector superprism on the 

other hand is based on the angular dispersion of the light at the free space/photonic crystal 

interfaces [6-8]. 

1.2 S-vector superprism 

Figure 1.2.1 shows the schematic of a PLC based S-vector superprism. 

Figure 1.2.1 The schematic of PLC based S-vector superprism 

The incident beam, after decomposing into highly localized Bloch modes, propagates through 

photonic crystal (but it looses its spatial coherence soon as it propagates through the photonic 

crystal). As the Bloch modes reach the opposite border of the photonic crystal, they loose 

some power and couple back to the free space wave and no further spatial separation occurs. 

Loss of spatial coherence and lack of dispersion effect outside photonic crystal makes a 

superprism based on group velocity dispersion (also known as S-vector superprism) too large 

for resolving DWDM wavelengths. For the CWDM applications (20nm channel spacing), the 

first order analysis estimation shows that the superprism area is comparable to the other 
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alternatives (in this case PLC based Array Waveguide Grating, A WG) [8]. Figure 1.2.2 depicts 

the AWG layout on a high index contrast system of material [9]. Considering low diffraction 

orders and the difficulty of implementing small path differences in the waveguide array region, 

a typical device area (excluding input and output waveguides) is about 0.8 mm2[9]. 

Figure 1.2.2 High refractive index contrast A WG for CWDM applications [9]. 

Through detail analysis of the wave dynamics in a photonic crystal, in chapter 6 we show that a 

1-D photonic crystal 4-Channel CWDM demultiplexer can be optimized to provide the 

smallest photonic crystal size with the area of 1367 J..Lm2 (which is about 500 fold size reduction 

compared to the A WG alternative). 3-D modeling of the structure and inclusion of all non

linearities and practical micro-fabrication constraints ensure that the designs are realistic. Our 

analysis demonstrates that the other 2-D photonic crystals (in this case square and hexagonal 

lattices) prism areas are more than 10 times larger than the 1-D counterpart. 

By folding and separating the propagation paths of different channels, we then propose the 

stratified photonic crystal to reduce the superprism area even further. A wider band CWDM 

demultiplexer (e.g. 8-channel) with reduced superprism area can be implemented in this way. 

This will be presented in chapter 7 where an 8-channel CWDM demultiplexer is designed with 

five-fold reduction in prism area. The prism area of 0.26 mm2 is achieved with a square lattice. 

Our detailed analysis in chapter 6 and especially our novel proposal for stratification in chapter 

7 show the potential capability of the S-vector superprism for wider band demultiplexing. 
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1.3 k-vector superprism 

The k-vector superpnsm effect is a more recent approach and we are pioneers ID its 

devolvement. The k-vector superprism uses the phase velocity dispersion of photonic crystals 

and is based on the angular dispersion of the refracted beam from a prism shaped photonic 

crystal area. The k-vector superprism has an advantage over the previous S-vector approach in 

that the beam separation can continue outside the photonic crystal region. In this way it is 

much closer to a conventional bulk dispersive prism and implies the possibility of using beam 

expanding and focusing optics with a small prism area. Figure 1.3.1 shows a schematic of our 

proposed device. In this example beam collimation and focusing is accomplished with etched 

mirrors. 

Output 
waveguides 

Figure 1.3.1 The schematic of a k-vector superprism 

The application of the k-vector superprism phenomena which lS described here will 

drastically reduce the sizes of DWDM demultiplexers. Several kinds of DWDM fllters, such 

as PLC-based arrayed waveguide gratings (AWG's) [10;11] and etched grating demultiplexers 

(echelle grating) [12;13] have already been developed. Figure 1.3.2 shows a typicallayout of 

A WG and Echelle grating for the high refractive index contrast material. For the A WG 

choice, the die size for a typical 32 DWDM channel demultiplexer (of 100GHz, -0.8 nm 

channel spacing at the C band) using an SOI wafer with 0.5 Ilm top silicon layer is about 

3x2.5 = 7.5mm2 (excluding the input/output waveguides sections). The grating order is 61, 

and TM polarization has been assumed. The A WG suffers from ghost beams due to the 

higher order diffraction images. For many applications, (A WG) devices face fundamental 
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limits due to the physical size and extreme fabrication tolerances required to achieve higher 

channel counts and narrower channel spacing. Echelle gratings on the other hand by folding 

the input and output path and using the reflective grating, reduces the demultiplexer size 

considerably. The device size for implementation of a similar design using an echelle grating 

(excluding the input/output waveguide parts) is about 3x1.5=4.5mm2
. The ghost image 

similar to the A WG case exists. 

(a) (b) 

Figure 1.3.2 the layout of (a) a typical AWG for 32 DWDM channel, and (b) a typical echelle grating for 48 DWDM 
channel [13). 

For the ftrst rime, this thesis presents a complete analysis, design, fabrication and of the k

vector superprism demultiplexer. 

Detail design rules and optimization for k-vector superprism are presented in Chapter 8. 

The factors underlying the geometry, photonic crystal type and design parameters are also 

discussed. Compared with the 2-D photonic crystal of interest (in this case, 2-D square and 

2-D hexagonal lattice), we have shown that the best photonic crystal that provides the 

smallest k-vector superprism is a 1-D photonic crystal. We have shown that an optimized 1-

D photonic crystal superprism area of about 0.1 mm 2 is enough to resolve 32 DWDM 

standard channels. Including two focusing elements (but again excluding the input/output 

regions) the device size would not be greater than 1 mm 2 • Compared to the nearest rival 

(echelle grating), it provides 4.5 rimes area reduction. 
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Aiso in this thesis, we proposed and design of a new class of 1-D photonic crystallenses. As 

we will show in chapter 9, a fast lens with 130 !-lm focallength, and f /# = 1.3 is achievable 

on SOI technology with 100 nm feature size. The etching area is only 658 /-lm2. 

The parametric mask design and implementation was another achievement, which is explained 

in chapter 10. Figure 1.3.3 shows a typicallayout for 5x16 DWDM k-vector demultiplexer. An 

optical characterization bench has been designed and constructed for measurement of 

transmission spectra of k-vector demultiplexer. Ten different 16-channel DWDM 

demultiplexers have been designed, and sent for fabrication. The fabricated wafers were post

processed and tested. Unfortunately, the unsatisfactory fabrication quality prevented us from 

obtaining any meaningful results. The details of the characterization bench and our post

processing procedure together with some analysis of the fabricated samples and finally some 

recommendations for the next step of the project are presented in chapter 11. 

Figure 1.3.3 A typical mask layout for 5x16 k-vector superprism 

1.4 Analysis and Modeling techniques 

We devote the entire chapter 3 to the theory of l-D photonic crystal. The availability of closed 

fotm equations for the wave vector diagram of the 1-D photonic crystal enables us to explain 

the very basic phenomenon behind k- and S-vector superprisms more easily. 
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In chapter 4, we develop an approximate analytical tool for slab 1-D photonic crystals. The 

well known weighted index method from conventional rectangular waveguide theory is 

adopted and modified for slab 1-D photonic crystals. It is basically a new variational technique 

suitable for rectangular type photonic crystals (such as slab 1-D, 2-D rectangular, 2-D 

rectangular slab and 3-D rectangular parallelepiped with similar atom type photonic crystals). 

The accuracy of the method (compared with the accurate finite element method) was 

satisfactory for the medium refractive index contrast material and it is acceptable for high 

contrast materials. The speed of the method and the low programming effort are the main 

advantage of such a method. The potential for tuning of k-vector superprism with optical 

power is also investigated using the method developed in this chapter. 

3-D modeling of transmission through and reflection from the bulk slab photonic crystal is an 

open problem. Inclusion of many out of plane radiation modes into the calculation makes the 

modeling more cumbersome than the 2-D case with no radiation modes. Alternatively, one can 

find many leaky modes, and carry out mode matching at the interfaces. In order to do that, we 

need a method to obtain a spectrum of the modes at the desired wavelength. The conventional 

plane wave expansion method, with supercell de finition is incapable of doing this. We have 

modified the method to be able to find the spectrum of modes. The accuracy of the method 

compared to an accurate finite elements method is excellent. The method and some results are 

explained in chapter 5. 

Finally we present our comments regarding the future works in the chapter 12 and the 

benchmark finite element method is outlined in Appendix A. 
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Chapler 2 

LITERATURE· REVIEW 

In this chapter, we review the existing research materials on the modal analysis of 

photonic crystals. Those methods capable of obtaining wave vector diagrams for slab 

photonic crystals are on our focus. The methods for obtaining transmission and 

reflection coefficients have been discussed too. Previous researches on mode matching 

techniques (plane wave to Bloch mode) are surveyed. Restricting ourselves to the high 

refractive index contrast materials, the superprism history (both S-vector and k-vector) 

is presented. The waveguide focusing elements which are an important part of the k

vector superprism are reviewed too. 

2.1 Modal analysis 

Due to complexity of 3-D simulations, the first approach to solve the problem was to replace 

the slab photonic crystal layer by an equivalent one. Finding this equivalence has been done by 

simply ignoring the field confinement normal to the plane of photonic crystal layer, and solving 

the problem in two dimensions (treating the layer as a bulk). Whilst these methods are capable 

of providing physical understanding of the light propagation in photonic crystals, they are 

insufficient for the design of a realistic device (as we will discuss them briefly in section 6.6). 

Replacing the slab photonic crystal layer by an equivalent homogenous layer, one can consider 

field confinement in the vertical direction by solving Maxwell's equation in the slab waveguide. 

An equivalent layer can be obtained using homogenization methods, solving dispersion 

equation, which has been obtained analytically, or by discretizing the 2-D media and applying 

numerical methods direcrly, and so on. 
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methods belong to the analytical category, whilst plane wave expansion, fmite difference cime 

domain, spectral methods and transfer matrix methods are basically numerical techniques. 

Effective medium theories are methods that seek to replace the slab photonic crystal with a 

homogenous anisotropic layer. In fuis way they reduce a complicated 2-D structure to 1-D 

modeling. This de finition is very broad and many theories are beyond fuis idea, (e.g., 

homogenization theories are the weIl known one). We have used fuis idea successfully to 

reduce the reflection from bulk photonic crystal (Chapter lOis devoted to fuis idea). 

Effective index methods seeks to reduce a 3-D modeling problem to an equivalent 2-D one. 

The main theme of these methods is the assumption that separable field can be a good 

approximation to the reality. They are more suitable for low contrast slab photonic crystals. 

The spectrum of these methods starts with simply replacing the photonic crystal layer material 

by an equivalent one and solving 2-D photonic crystals, to one enhanced by variational 

methods which try to find the best separable solutions. 

The plane wave expansion method is the outcome of the mature solid state theory. It is weIl 

suited to periodic structures with continuous potential (as we have in atoms in crystals). 

Implementation of Finite Difference Time Domain (FDTD) technique is more recent. Based 

on the rime domain simulation, it is not necessary to save data on aIl mesh points during the 

simulation. This fact reduces the necessary computer storage dramatically. On the other hand, 

the existence of the Fast Fourier Transform (FFT) based technique makes the computational 

gap between cime and frequency domains narrow. On the other hand, spectral domain 

techniques are also weIl known for their accuracies. They use the symmetry of the structure, 

which needs to be implemented only on a unit ceIl. This feature make them attractive, 

however their implementation with a computer program is more complicated. 

2.1. 1 Anafytical techniques 

There are two approximate analytical techniques in the literature for our cases. The first 

method is the effective medium theory that belongs to a more general family of 

approximations known as homogenization theories (which has wide applications on other 

10 



branch of engineering). The second method is the effective index methods that have a good 

reputation in integrated optics as an easy and accurate enough for many applications. We will 

discuss both of them in the following sections. 

2.1.1.1 Homogenization techniques 

The aim of homogenization theory (effective medium theory) is to establish the macroscopic 

behavior of a system, which is microscopically heterogeneous, in order to describe some 

characteristics of the heterogeneous medium (for instance refractive index). This means that 

the heterogeneous material is replaced by a homogenous fictitious one (the 'homogenized' 

material), whose global (or overall) characteristics are as equivalent as the initial one. 

Homogenization theory or effective medium theory exploits this dual scale by introducing a 

small parameter X that is defined by the ratio of two characteristic lengths associated with the 

two scales. When X tends to zero ~ong wavelength or quasi-static limit), the properties of the 

material and of its homogenized version are identical. From the mathematical point of view, 

this signifies mainly that the solutions of a boundary value problem, depending on a small 

parameter X, eventually converge to the solution of a limit boundary value problem, which is 

explicirly described. 

Initially, various effective medium approaches like the Maxwell-Garnert approximation 

(basically a Clausius-Mosotti relation) were used [1], however later it was realized that there 

were inadequate and that the micro-geometry of the medium needs to be taken into account 

even though it is on a much smaller scale than the probing wavelength [2]. In this method, the 

z-dependence of the wave amplitude is given by 

(2.1) 

The constant 11 is read as the square of the effective index for the periodic structures in the Z 

direction and the given polarization. Then the periodic wave with the z-Dependence of Eq. 

(2.1), is used to satisfy the Maxwell's equations inside the periodic structure. Obviously such 

a solution is not correct, but it can be shown that at least for small period-to-wavelength 
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ratios, it is possible to fmd a particular 11 value such that Maxwell's equations are satisfied. It 

is convenient to expand 11 in a power series of X = a -1 = "0/ A (where A is the period of 

the grating in x or Z directions and "0 is the wavelength in vacuum): 

+ -1 + -z + 'Il = 'Ilo 'Ilia 'Ilza ... (2.2) 

where 'Ilo is the square of the zero-th order (quasi-static or long wavelength limit) effective 

index and 'Ili' i = 1,2, . .. is the i-th order coefficient of the series expansion. 

Due to existence of the closed form equations for 1-D photonic crystals (as we have derived 

them in chapter 3), the effective medium theories that are developed for 1-D cases have limited 

advantages. Litnited research has been carried out in the area of 2-D photonic crystals. The 

authors of [3] have derived upper and lower bounds for the zero-th order effective index of 2-

D periodic structures only. Since these bounds are generally quite narrow when the two media 

have similar optical indices, their average represents a good approximation of the zero-th order 

effective index. The approximation is valid when the grating vector is normal to the direction 

of propagation [4]. 

For shallow grating, we cannot use the effective indices derived for the bulk. In our case, the 

depth of the slab photonic crystal layer must not be excessive in order to avoid the second 

order modes From propagating. Additionally, we are not interested in deep gratings that make 

the aspect ratio of the etching process unrealistic. For 1-D photonic crystal cases, by 

analytically solving Maxwell's equation in the small depth limit, it has been shown that effective 

refractive indices are strongly dependent on the grating depth. Moreover, the effective 

properties are shown to depend not only on the grating structure but also on the refractive 

indices of the surrounding media [5]. Considering these limitations, there has not been much 

benefit from this method and its simplicity in our analysis. 
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2.1.1.2 Effective index and Weighted index methods 

Effective index methods are approximate, easy and common techniques for the first order 

modeling that reduces the 3-D modeling effectively into two 2-D models. In its simplest form 

it is based on the assumption that separable wave solution in the Carte sian coordinates is a 

good approximation and that the field is confined mainly in the high refractive index medium. 

The weighted index method [6] belongs to the effective index methods family and is another 

simple method. It is based on the same assumption as the effective index method, but the 

accuracy of the method is enhanced by a variational formula. We have applied weighted index 

method to slab photonic crystals in Chapter 4. 

2.1.2 Numencal approximations 

There are three categories of numerical methods in the literature, which are capable of solving 

our problem. The plane wave expansion method, which comes from solid state theory, 

numerical techniques based on the rime domain (mainly finite difference rime domain method) 

and finally numerical techniques based on spectral domain, (finite element methods and the 

transfer matrix method are good examples of such a family). In the following we discuss each 

of them and try to explain its pros and cons briefly. 

2.1.2.1 Plane wave expansion method (Floquet-Bloch formalism) 

This is one of the standard methods in electronic band structure problems [7]. It is based on 

the Fourier series expansion of permittivity E ( r) and expressing wave functions as Bloch 

theorem indicates. Substituting into Helmholtz equation and using the orthogonality of 

Floquet-Bloch modes leads to a system of homogenous linear equations. For a solution to exist 

the determinant of the linear system should be zero. The propagation constant can be found 

by truncating the linear system and find the solution of the resulting nonlinear equation of 

determinant equal zero [8]. 
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The Floquet-Bloch approach was first applied to 1-D photonic crystals [9]. It is shown that by 

tracing the paths taken by the various components of group velocity, one can reach a detailed 

understanding of the field structure in ail regions of the field [10]. Indeed, since it defines the 

main constant ray-direction of a Floquet-Bloch mode, the group velocity leads us to the 

conclusion that the Floquet-Bloch modes play the same role in a periodic medium as the plane 

waves in an isotropic medium. They may be reflected, refracted, focused, scattered, 

independently excited, will interfere with one another, and groups of them can be united to 

form finite beams. As a matter of fact, the propagation of light inside any dielectric grating can 

be qualitatively understood through the excitation, interference, refraction, and reflection (at 

discontinuities or boundaries) of the Floquet-Bloch modes. We have used this idea extensively 

through the next chapters. In addition (and in sharp contrast to the coupled waves), there 

exists an elegant and satisfying means of summarizing the characteristics of the Floquet-Bloch 

modes cailed the wave vector diagram[11;12]. In the reciprocal space, this diagram shows ail 

the wave vectors permitted (at a fixed optical wavelength) in the periodic medium. This 

diagram has similarity to the dispersion surfaces in the dynamical theory of x-ray diffraction 

[13], and provides an elegant summary of the properties of Floquet-Bloch modes. We have 

used it in a normalized form in this thesis, resembling the index ellipsoid. 

The plane wave expansion method is clearly an attractive method because of its simplicity and 

applicability, at least in principal to any type of €(r). In the case of our interest (slab photonic 

crystal, which the permittivity is constant in each section), the normal component of electric 

field to be discontinuous at the dielectric interfaces. Therefore, the electric field is a 

discontinuous field. On the other hand, the magnetic field is continuous, but its derivatives are 

not. The discontinuity behavior of the electromagnetic fields near the dielectric interfaces 

causes the plane wave expansion method to converge slowly. These discontinuities severely 

limit the accuracy of the method. Deviation of the truncated series from the actual one is large 

and the convergence is very slow. In fact it is weil known that the convergence rate of a 

Fourier series depends strongly on the smoothness of the expansion functions. This problem 

will be more severe for high dielectric contrast and near close-packing ratios and for higher 

frequencies [14]. 

Ref [15] has reduced 3-D modeling of slab photonic crystal to a 2-D one by ustng an 
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equivalent slab refractive index. This approach is highly skeptical in the case that refractive 

index contrast is high. We have shown that how this may lead to erroneous results in chapter 6. 

Ref [16] has presented some results for sinusoidally modulated slab waveguide. Ref [17] 

considers a slab photonic crystal as a 3-D periodic structure in the out of plane direction (the 

supercell method). It also considers the period in the third direction is large enough that the 

bound modes are not affected. The high number of plane waves in the non-periodic direction, 

and the replacing of the open boundary with a periodic one have consequences which are 

discussed in Chapter 5. In that chapter we also present a new method to remove these 

deficiencies. 

2.1.2.2 FDTD method for photonic crystals 

For the calculation of band diagrams of 2-D photonic crystal slabs, one period of the 

structure is mapped on the computational domain [18]. The Bloch boundary condition, 

which is defmed by 

E(r +a,t) = E(r + a,t)exp(tk. a) (2.3 a) 

H(r +a,t) = H(r +a,t)exp(zk'a) (2.3b) 

where a is a primitive lattice vector and k is the wave vector, can be applied at the four lateral 

edges parallel to the y axis (see Figure 2.1.1) . For the top and bottom edges perpendicular to 

the y axis, the Mur's second-order absorbing boundary conditions [19] are applied to absorb 

the waves leaked from the slab. First, broad Gaussian pulses are used to excite the 

electromagnetic eigenmodes of the slab over a wide range of frequencies. The electromagnetic 

fields at observation points are recorded for every rime step and then Fourier transformed to 

obtain frequency spectra. The spectra will contain peaks at frequency values of the eigenmodes 

corresponding to the wave vector k given by the Bloch boundary condition. Second, narrow 

Gaussian pulses are used to excite every single eigenmode individually and to obtain the field 

pattern of such modes. A variational expression has also been obtained for eigen frequencies 

of slab photonic crystals [20]. 
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Figure 2.1.1. One Unit cell computational domain for the band calculation using 3-D FDTD method 

with Bloch and Mur's boundary conditions. 

As is clear, FDTD assumes the wave vector in photonic crystal and ohtains the corresponding 

frequency and fields thereafter. In practice, we usually seek to detertnine the propagation 

constant and field amplitudes for a given frequency (or wavelength in vacuum), and direction 

of propagation. So, one needs to perfonn a series of simulations in which the direction of k is 

fixed and propagation constant is changed over a given range. The corresponding frequencies 

(or wavelengths in vacuum) then can he used via interpolation to detertnine the unknown 

propagation constant corresponding to the desired wavelength in vacuum. The method is also 

not capable of tracing leaky modes due to the presence of absorbing boundaries. 

2.1.2.3 Pinite clement spectral domain 

The elegance and accuracy of rime hannonic electromagnetic field numerical methods for 

photonic crystals shows itself in the finite element method in which periodic boundary 

conditions can he implemented easily [21]. Domain discretiziation of the unit ceil is perfonned 

to produce meshes which are wrapped such that opposite houndary nodes meet. Knowing the 

frequency and the Bloch wave number, propagation constant and fields can be obtained by 

solving an eigenvalue equation. We have used this method as a benchmark for comparison of 

the accuracies in methods presented in chapters 3 and 4. The details of the method have been 

discussed in Appendix A. 
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The progratnnùng efforts needed to implement the finite element method and to generate 

meshes are considerably higher than other methods. It is the reason that such an accurate 

method has not found its deserved position in photonic crystal modeling yet. 

2.2 Reflection from and Transmission through Photonic crystals 

Although, a wave vector diagram can be used to get the transmission and reflection beam 

directions, anything beyond this, needs more accurate numerical modeling. Particularly 

important is the amplitude of the beam, which has commonly been calculated using FDTD 

techniques [22-24]. 

2.2.1 FDTD method 

Although the robustness of FDTD method makes it a choice for analysis of wave propagation 

in many different structures, however FDTD implementation without considering the physics 

behind the model usually makes its computer resource consumption unacceptable. This is 

mosdy the case for a full 3-D modeling of structures. Consider our case of interest, which is 

slab mode reflection and transmission &om photonic crystals. The structure is periodic in only 

two directions or even one direction, the mode confinement in normal to the slab photonic 

crystal plane is achieved by proper refractive index contrast. The wavelength and direction of 

incident slab mode are known. The reflection and transmission coefficients and directions are 

to be detetmined. The accurate simulation needs 3-D simulation. Ignoring the periodicity of 

the media has a dramatic consequence regarding the computer resource consumption that 

makes 3-D simulations virtually impossible. Implementing periodic boundary conditions in 

cime domain requires fields to be known a priori. Even for 2-D modeling when the structure is 

large, the FDTD simulations are often cime consuming, and in many cases prohibitive. To 

study such an effect characterized by high wavelength and angular sensitivity, fine spatial and 

temporal grids and large simulation region are inevitable, which are frequendy beyond the 

capability of commonly available computer facilities. 
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In the last two decades, there have been numerous attempts to improve computational 

efficiency of the FDTD method by using local space and rime grid refinement strategies. The 

accuracy, and/or stability were the sacrifices of the grid refinement. Recendy, a 3-D refinement 

scheme has been introduced that is stable for long rime integration, and possesses the accuracy 

of the original FDTD. A tenfold improvement in computational rime was obtained in 

computing the quality factor of photonic crystal micro-cavity [25]. This method can find 

potential application in our case of interest where the wave reflection at free space (with a large 

grid) from photonic crystal (with fine grid) is desired. 

Parallelization of the FDTD method using distributed computing has been suggested by 

implementing rules and tolerances on a cluster of computers [26;27]. With the new generation 

of parallel machines that possess the connected parallel shared memory system (SMP nodes), a 

typical three weeks long computation period has been reduced to a less than a day (with 24 

processors) [28]. 

Even with ail these improvements, 3-D FDTD simulation of more than a few photonic crystal 

periods is not practical [29]. 

2.2.2 Coup/ed mode theory 

The coupled-wave approach has tended in the past to be used in approximate analyses, 

however, a rigorous numerical coupled wave method, suitable for treating the diffraction of 

plane waves incident on parallel-slab-gratings, has also been introduced [30]. The theory can be 

simplified tremendously for the sub-wavelength grating. Therefore, it may be possible that due 

to their smail period, all higher order diffracted waves are at cut off and only zero-order 

transmitted and reflected beams propagate outside the grating. The condition for such a 

simplified case is discussed further in Chapter 10. 

The grating region is characterized by a permittivity, which can be represented by a Fourier 

expansion. Using Maxwell's equation, a set of coupled ordinary differential equations can be 

found. The number of coupled equation that must be solved depends on the number of spatial 

harmonics that one takes in the Fourier series expansion. As the number of spatial harmonics 
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is increased, the solution will converge to the exact one. In the case that there is no higher 

order diffracted wave, the theory leads to replacing the layer with a biaxial thin film [31]. This 

method has been used as a bench mark for effective medium theories [32]. 

The coupled-wave approaches have been developed mainly for holographic and surface relief 

grating structures. They have been formulated to analyze transmission and reflection of an 

incident plane wave on the surface relief gratings, thick or thin volume index gratings, etc. The 

extension of the theory for slab 2-D photonic crystals has also been presented, but with limited 

accuracy for higher contra st system of materials [33]. It is a proper tool for analysis of multi

stack 1-D photonic crystals (cascaded volume grating) [34]. 

2.2.3 Transfer, Scattering and Impedance matrix method 

The transfer matrix method is another heritage of solid state theory. In its original form, it is 

based on the electron wave equation (the Schrodinger equation) that ignores the polarization 

states of photons [35]. Including polarization, Pendry in 1992 was the pioneer in obtaining 

metrics relating the field components on a rectangular grid. Multiplying these transfer metrics 

and using Bloch condition over a unit ceil, one can get an eigenvalue equation with the Bloch 

mode numbers as eigenvalues[36]. It can also be used for transmission spectra calculation. 

However, the method in its basic form has a convergence problem. It is suitable for small 

number of layers, and even for that it needs special treatments [36]. Assuming the field at the 

mesh points along a line or a plane (depending on the modeling complexity) a smooth function 

of position., one may use orthogonal functions for representing the field. Then the field at the 

mesh points can be replaced by the amplitude of the orthogonal functions. Rayleigh multi

poles [37], analytical modal functions [38], and plane waves [39] have been tried as the 

orthogonal set already. The transfer matrix then relates the amplitudes at a line (or plane) to the 

proceeding line (or plane). If the structure is periodic along this line (or plane), then problem 

can be simplified provided one uses the weil developed theory for the field [37]. Changing the 

dependent variable to forward and backward field (instead of one of the field components), the 

method's convergence problem has a great improvement. Very accurate and stable results have 

been obtained by choosing the impedance matrix for connecting magnetic field at a line (or 
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plane) to the electric field at the proceeding line (or plane) [38]. Although the method is used 

for 3-D photonic crystals [39], it has not been used for obtaining the band diagram and the 

transmission of the interested case of slab photonic crystal yet. The reason probably is behind 

the open boundaries and the convergence problem. 

2.3 Mode matching techniques 

The practicality of many photonic crystal devices relates to how effectively one can couple light 

into them or couple out the light to the free space (or in the planar technology, to the slab or 

the waveguide mode). Unfortunately this coupling is not satisfactory. Depending on the 

situation the mode matching techniques have different structures. In this thesis we are 

interested to couple light from homogenous medium into bulk photonic crystal. 

The light coupling deficiency was recognized soon after the planar superprism was 

proposed[4Ü]. The first successful idea for the 2-D photonic crystal was to play with the 

interface holes. Projected holes are able to reduce the coupling loss efficiently. The loss as 

small as ü.üldB through FDTD simulation [41], the direction of the hole and its corresponding 

shape is critical to achieve such a low coupling loss (see Figure 2.3.1). 

ddddd 
00000 

00000 

Figure 2.3.1 The projected hole as have been suggested by Baba et.al. [41] 

Putting rectangular air-holes at the interface and aligning them in direction of the transmission 

has also been proposed. The 7ü% coupling efficiency has been reported using FDTD 

simulation [22]. The suppression of unwanted refracted modes has also been reported. 

Adiabatic tapering of the air holes atthe interface has also been suggested. The lÜ-layer 

tapered air hole has been optimized to achieve wide band, wide angle coupling efficiency using 

a combination of plane-wave expansion method and mode matching technique. The loss could 
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be negligible but unfortunately, the hole sÏ2es as small as 0.05 of the bulk photonic crystal are 

needed [42]. For a typical example of a bulk silicon photonic crystal of square lattice with 

period 230nm, and hole size of 100nm, the minimum hole sÏ2e would be as small as 5nm. 

Composing the reflected wave component by cascaded diffracting gratings is a novel idea with 

limited applicability. A coupling efficiency of 84% has been achieved for un-slanted hexagonal 

lattice [43]. 

2.4 Multiplexing using photonic crystals (superprism effect) 

The first observation of beam steering with wavelength (later called S-vector superprism effect) 

was observed in slab 1-D photonic crystal (and at TM polarization) in 1987 [16]. A two

channel demultiplexer with channel spacing of 3.9nm and cross talk of 12dB was reported 

using moderate refractive index material (TazOs with refractive index of 2.10 over Tempax 

glass of refractive index of 1.47). The photonic crystal patterns were generated using fringes of 

He-Cd laser produced by an interferometer at wavelength of 441.6 nm. The wave vector 

diagram (also called equi-frequency contour) has been used to analyze the behavior of Bloch 

modes. Optics of Floquet-Bloch waves in photonic crystals was weIl described using wave 

vector diagram by Russell in 1986 too [44]. As we will show in later chapters, the normalized 

form of the wave vector diagram is more suitable for our applications. 

However, it was not until 1998, that Kosaka et.al reported 500 cimes more dispersion than the 

conventional glasses (i.e., 5° /nm compared to 10° //-lm of a conventional glass) [45;46]. The 

phenomenon is caused by the apparent distortion from a circular shape of the wave vector 

diagram and also by multiplicity within the diagram of the second or the third band of 

photonic crystal. Later thls beam steering phenomenon was called S-vector superprism 

dispersion. In planar technology, using GaAs-based heterostructure perforated by a triangular 

photonic crystallattice, it was Wu, et. al. , in 2002 who reported 0.5° /nm dispersion [47]. 

The observation of 5° /nm beam steering dispersion in a pseudo-2-D auto-cloned photonic 

crystal (using high refractive index contrast of silicon and glass) was so promising that the 
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authors claimed that the demultiplexer based on the superprism phenomenon can be four 

orders of magnitude smaller in area compared to other alternatives (say silica-based array 

waveguide grating, AWG, filter) [46]. However soon after, it was recognized that this type of 

dispersion does not lead necessarily to a high resolution. U sing simple Gaussian wave 

assumption in photonic crystal Baba [48] showed that the resolution of S-vector superprism is 

not that great due to large beam divergence inside photonic crystal. This excessive beam 

divergence is originated from the curvature of the wave vector diagram near the bandedge 

where the dispersion is high. They have shown that a resolution of 0.4 nm for 56 channels 

needs photonic crystal size of 6.5 cmz (comparable to the conventional AWG). 

Momeni et.al developed a more rigorous theory for approximating light propagation in 

photonic crystals [49], and optimized the S-vector superprism structure using 2-D photonic 

crystal of air holes into bulk of silicon [50;51]. They have shown that 754 f.UI1z device size 

(photonic crystal area) is sufficient to resolve 4 channels with 20 nm channel spacing. As we 

will show in chapter 6, even this device size is an over estimation of a real situation where one 

has to take into account the finite slab height. 

The excessive beam expansion in S-vector superprism has been mitigated usmg a 

preconditioning technique. The idea is the using to the negative refraction observable at the 

bandedge of the second band to compensate the positively refracted incident beam [52;53]. 

Another issue regarding the observation of the huge dispersion is that it only occurs over 

narrow spectral range. Effective use of the dispersion needs to maintain the dispersion over 

relatively longer spectral range. Cascading the photonic crystals to make a relatively wide band 

demultiplexer is a new idea that has been introduced in chapter 7. 

An alternative to the beam steering dispersion (the S-vector superprism), is to employ the 

angular dispersion that also occurs near the bandedge (the so called k-vector superprism). The 

high sensitivity of refraction angle with wavelength at the free space photonic crystal interface 

will add together if the photonic crystal interfaces cross each other with an angle (this makes 

photonic crystal a prism shape with the interface crossing angle as the apex angle). As a 

consequence, the enhanced type of spectral resolution, (similar to a traditional prism made for 

visuallight) can be achieved [24;54;55]. Better resolution and scaling with channel count make 
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it a suitable choice for fine resolutions and for the most DWDM applications. As we have 

shown in Chapter 8, the device size (prism area) of about 0.01 mm2 is enough for resolving 32 

channels with 100GHz (~0.8 nm) channel spacing. 

The fltst experimental result of k-vector superprism has been carried out in millimeter wave 

range of spectrum. Lin, et. ais. made a two dimensional photonic lattice consists of 10cm long 

cylindrical alumina-ceramic rods of diameter with permittivity of E: r = 8.9. Using the 

conventional microwave setup, they excited the prism with an antenna radiating a beam at 

v = 99 GHz, and observed the high sensitivity of the deviation angle to the incident angle 

[56]. 

2.5 Waveguide focusing elements 

Our proposaI for k-vector demultiplexing consists of two focusing elements. The focusing 

elements for the high contrast material that we have used can be two mirrors. The mirrors can 

be made using the total internaI reflection of light from silicon slab to air. Therefore a parabolic 

trench is the simplest solution. This is the approach we adopted for our layout as is explained 

in chapter 10. However, the case gets more challenging as the refractive index contrast 

becomes smaller. Waveguide lenses have been investigated by several researchers. We have 

reviewed them in the following section. 

The curvature of the wave vector diagram also has been used to collimate light propagating 

inside a photonic crystal. 

2.5.1 Mode-index lenses 

Mode-index (also called homogenous refracting) waveguide lenses were proposed in the early 

days of integrated optics, but they were not so useful due to mode coupling loss [57]. In 

homogeneous thin-film lenses, guided light is refracted at the boundary between two regions of 

disparate waveguide. Having optimized the design of a homogeneous multi-element lens, the 
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lens performance will in practice be litnited by the efficiency of light transfer across that 

boundary. Ibis is the coupling efficiency between the fundamental waveguide modes in the 

two waveguides. Light may be lost by scattering out into the substrate, or by coupling to 

modes other than the fundamental one in the second guide. 

The coupling efficiency may be expressed as the overlap integral between the transverse 

electric field profiles El and Eh in the low and high index guiding regions, respectively. It is 

clear that in order to reduce light in unwanted modes (which would be refracted differently 

from the fundamental mode and hence would constitute a background noise signal around the 

focused spot) the low index waveguide at least should oruy support one mode. It is shown that 

the high index guide will inevitably be multimode for optimum coupling efficiency. However, 

any higher mode excited in the high index lens element by coupling from the fundamental 

mode of the low index waveguide region, at low efficiency, will be re-coupled at exit from the 

lens element at equally low efficiency to the fundamental guide mode, and although mis

focused, should not present significant background noise if coupling efficiency is high. 

Nevertheless, higher modes were supported in the guided region; there could be significant 

coupling of light to them from higher modes in the lens region. 

Various refractive index profiles have been considered for the two guiding layers. U sing step 

profiles the solution of the waveguide characteristic equation is straight forward and electric 

field profiles are easily calculated, and then closed form relation for coupling efficiency can be 

obtained. It can be shown that Snell's law is applicable if one uses the effective refractive index 

of the propagating mode instead of the refractive index of the guide material. It follows that 

the classicallens design techniques can also be used in the design of waveguide lenses. A bi

aspheric lens with focallength of 12mm, f /# = 4 and field of view of e = 6° has been 

designed for ~n ~ 0.12 , the reported insertion loss is 5 dB [58]. Clearly the loss is very high. 

Our investigation regarding mode-index waveguide lenses is on its first stage. The challenge is 

reducing the coupling loss as much as possible, while providing the required f /# and field of 

Vlew. 
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2.5.2 Photonic crystal flcusing elements 

The light propagating inside a photonic crystal is govemed by its wave vector diagram, which 

corresponds to the index ellipsoid in conventional optics. The optical beam shaping due to the 

curvature of different operating point in the wave vector diagram was first observed by Russell 

in 1986[12]. Self collimating was first reported in 3-D photonic crystal by Kosaka in 1999[59]. 

These types of lenses usually work at the second band of the photonic crystal, where the band 

curvature is higher, but they ail suffer from the spherical aberration. A perfect lens needs a 

parabolic wave vector diagram and because of that ail photonic crystal lenses are suffering 

from spherical aberration. Engineering of the photonic crystal to make given part of wave 

vector diagram as parabolic as possible has been done by deforming the triangular lattice [60]. 

Also the insertion loss has to be improved. 

There is also other kind of lens that needs a region of wave vector diagram that looks like a 

circle (isotropic region), then the equivalent refractive index can de defined (which is usually 

smaller than the slab region). Then the conventionallens equations can be used to shape the 

front that back surface of the lens for making the desired beam shaping [61]. By the introduced 

angular periodicity, we have used a similar idea to propose a novellens for integrated optics in 

chapter 9. 
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Chapter 3 

l-D PHOTONIC CRYSTALS 

In this chapter, we start with the matrix formulation of dielectric stratified media, and 

then we obtain the dispersion equation of the slanted 1-D photonic crystal. The 

normalized wave vector diagram, which is the diagram of choice for our next step of 

exploration, is obtained for slanted and un-slanted cases. Based on the normalized 

wave vector diagram we explain and explore the basis of k-vector and S-vector 

dispersion. The zero order diffraction condition is derived for 1-D photonic crystals. 

Finally a model for FDTD analysis is explained. An excellent agreement between our 

wave vector analysis and results of FDTD is observed. Transmission and reflection 

coefficients to and from 1-D photonic crystal have been obtained using the FDTD 

analysis. 

3.1 Maxwell's equation for dielectric media 

The spatial relationship between electric field E(x,y,z)and the magnetic field H(x,y,Z) of 

an optical medium are determined by Maxwell's equations. If we assume that the medium is 

isotropie, then the dielectric constant E:( x, y, Z) can be related to the refractive index 

n( x, y, Z) by E: = n2
E:o, where E:o is the permittivity of free space. On the other hand,· for non

magnetic materials, which normally constitute an optical materials, the magnetic permeability 

!.L is aImost equal to the free space value !.Lo' Under these conditions, the source free Maxwell's 

equations will be as below[l] 
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V.(n2 E)=O 

V·H=O 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

where the waves are assumed to be monochromatic with angular frequency w, ko = 21t/Ào is 

th f b d . al (2 )1/2 d . li" d d e ree space wave num er an lS equ to w Eo 1-10 ,an an lffip Clt ttme epen ence 

exp ( -i wt) is suppressed throughout. 

The boundary conditions across an interface between two media of different refractive indices 

are: 

(i) Continuity of the tangential components of magnetic and electric fields across the interface, 

(ü) Continuity of the normal component of the displacement vector, Eo n
2 E across the 

interface. 

If a medium has a refractive index profile, which dose not vary with distance along Z axis, i.e., 

n = n(x,y), then the media is translationally (axially) invariant. In other words, the electric and 

magnetic fields in the medium are separable as below 

E(x,y,Z) = E(x, y) exp(i kzZ) (3.5) 

H(x,y,Z) = H(x, y) exp(i kzZ) (3.6) 

where kz is the propagation constant along the optical axis. We decompose these fields into 

longitudinal and transverse components, parallel and perpendicular ta the optical axis 

respectively, and denoting by subscripts Z and t, where 
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(3.7) 

(3.8) 

where âz is the unit vector parallel to the longitudinal axis. 

If we substitute the field representation of Eqs.(3.7) and (3.8) into the source free Maxwell's 

equations (Eqs.(3.1) and (3.2)) and compare the longitudinal and the transverse components, 

wewillobtain 

(3.9) 

(3.10) 

(3.11) 

( ]

1/2 
. Eo 1 A i 

H = -t - -a' \7 xE = - \7 . H z k z 1 1 kIl 
1-10 0 z 

(3.12) 

Ifwe eliminate HI or El from Eqs.(3.9) and (3.10), then we can express the transverse fields 

in terms of the longitudinal fields as below 

(3.13) 

(3.14) 

The electric and magnetic fields can be normalized arbitrarily, so that in general 

E(x,y) and H(x,y) are complex vectors. However, in a non-absorbing or non-active media, 

the refractive index n is a real number, and Eqs.(3.9)-(3.12) show that we can choose the 

components of E and H such that the transverse components are real, and the longitudinal 

components are imaginary. Thus, 
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(3.15) 

The backward-propagating fields are simply related to the forward-propagating fields, by 

transforming kz to -kz. We can deduce from Eqs (3.9)-(3.12) that there are two possibilities, 

either 

(3.16) 

or 

(3.17) 

We adopt the last convention throughout this chapter. The relationships (3.15) and (3.17) both 

hold for non-absorbing or non-active media, then by combining them, we will have 

(3.18) 

If we eliminate either the electric field or magnetic field components from Maxwell's equations 

(Eqs.(3.1) and (3.2» assuming fields are separable (as Eqs.(3.5)-(3.8», we obtain the 

homogeneous vector wave equations 

(3.19) 

(3.20) 

The above equations can be reduced to a set of homogeneous vector wave equations for 

transverse and longitudinal components given by 

(3.21) 

(3.22) 

(3.23) 

(3.24) 
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The longitudinal components Ez and Hz in Eqs.(3.22) and (3.24), depend on the transverse 

fields Et and H t . If we use Eqs.(3.13) and (3.14) to express Et and H t in terms of Ez and 

Hz, we will obtain the following coupled equations 

k
2 

[ ]1/2 k k
2 

(V
2 +p)E __ z V E . V ln n2 = 1-10 _o_z â .(V H xV lnn2 ) 
t z p t Z t Eo P z t Z t 

(3.25) 

('1,7; + p )H, - n~~ 'I,7,H, '1,7, ln n' = [:: r k,,; n' â, ('I,7,E, X '1,7, Inn') (3.26) 

where p = k~ n2 
- k;. As it can be seen, the nonzero V t ln n2 terms relate Ez and Hz 

together; so the equations cannot in general be decoupled. Therefore, in general TE and TM 

modes are not appropriate solely, since neither Ez = 0 nor Hz = 0 are accepted solutions. 

Accordingly, the modes of optical media are in general hybrid having both Ez and Hz 

components. 

The transverse components Et and H t are related to each other. If we eliminate Ez from 

Eq.(3.10) by using Eq. (3.11) and after substitution from Eq.(3.21), we will have 

(3.27) 

and similarly for Et 

[ ]
1/2 

E - 1-10 1 A 

t- - --2 azx 
Eo ko n 

1 
k H - -V . (V . H ) 

Z t k t t t 

Z 

(3.28) 
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I~ 

3.2 Wave equation in one dimensional stratified media 

Consider a dielectric medium, wlùch is uniform in y and Z directions. The Z axis is assumed to 

be the direction of wave propagation. (see Figure 3.2.1) In trus planar structure the refractive 

index profile is n (x), and the field components given by Eqs. (3.21)-(3.24) reduces to the 

following equations 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

d
2 

H y d ln n
2 

d H y (2 2 2 ) -----.--+ n k -k H =0 
dx2 d x d x 0 z y 

(3.33) 

nsub 

Cladding Substrate 

o 1 2 J-1 J 

XJ-2 XJ-1 XJ 

Figure 3.2.1 The J +2 layers dielectric stack, lying between the setnÏ-infmite cladding and substrate media. 
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--+-- tk H --- + n k -k H = 0 d
2 

Hz dlnn
2 

(. dHZ ] (2 2 2) 
d X2 d X Z z d X 0 Z Z 

(3.34) 

Field components are related to each other via the following equations: 

(3.35) 

(3.36) 

(3.37) 

ikz .dHz 
H = ---:-"----:-

x 2 k 2 _k2 d n 0 z X 

(3.38) 

Equations (3.35) and (3.36) are independent of Hz ,thus if we assume Ez = 0 (for TE mode) 

we will itnmediately have Ex = H y = O. If we express other field components in term of E y , 

we will have the following relationships for nonzero field components, 

(3.39) 

(3.40) 

where Eq. (3.12) is used and Ey satisfies the scalar wave equation (3.30). Similarly Eqs.(3.37) 

and (3.38) are independent of Ez . By assuming Hz = 0 (for TM mode), we have 

Hx = Ey = O. Using Eq. (3.11), other nonzero field components in term of Hy are written as 

k [ ]1/2 E =_z_ &. H 
x k 2 Y on €o 

(3.41) 
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E =_t_ 1-10 __ y · ( ]1/2 d H 

z kO n2 
E:O d X 

(3.42) 

where Hy does not satisfy the scalar wave equation, but Eq. (3.33). 

A set of polarization-dependent parameters y , U, V and W can be defiued, so that ail 

equations can be applied to both polarizations [2]. For each polarization, three field 

components are zero, and we assign U, V and W to the amplitudes of the nonzero 

components according to Table 3.1. The signs are chosen to coincide with the positive 

direction of the traveling wave propagation in the positive x and Z axes. 

Table 3.1 Polarization-dependent parameters 

( ]
1/2 

;oŒ :~ 

The power flow is given by the cime averaged Poynting vector S, so the components can be 

written as: 

(3.43) 

S =0 y (3.44) 

Sz = ~Re(UW*)exp[ i(kz -k;)Z] (3.45) 

38 



where we consider the possibility of lm ( kz ):;r: O. The total power is found by integrating S 

over an infinite cross sectional area Aoo 

According to Eqs.(3.39)-(3.42) we have: 

where 

and 

V=J.. dU 
a dx 

U=_l_.dV 
"'fa dx 

[ ]

1/2 

-~a :: forTE mode 

for TM mode 

a=~k2-k2 2 
Z 0 n 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

The tangential field components U and V are continuous across the interfaces. Meanwhile W 

is the amplitude of the component normal to the interfaces and is proportional to U. 

Therefore, a total field is adequately specified by the vector [U Vr. Combining Eqs.(3.46) 

and (3.48), we have the following coupled equations 

d U 

dx V 

o 

39 

-1 
a"'f 

o 
U 

V 
(3.51) 



3.3 Field Transfer Matrix Fonnulation 

There are various ways to solve Eq. (3.51) for arbitrary n (x) profile. However, we consider 

only a general approximate method that uses multiplication of 2 X 2 matrices. Unfortunately, 

this is not a very efficient method for complicated structures. If we approximate n2 (x) 

stepwise (see Figure 3.3.1), then we will have 

x>o 

(3.52) 

where ~j =xj -Xj -1 is the width of/h interval approximated with constant refractive index 

n~. This technique is known as stratification method, which consists of replacing the arbitrary 

n (x) by a multilayer structure, where the index value and width of each step is chosen to yield 

a good approximation of the original profile. It can be shown that this method is formally 

equivalent to the Euler discretization method, but it involves substantially greater computation. 

Although it is not a very efficient method, it is shown to be easy and versatile. 

x 

l'igure 3.3.1 The rcfractive index profile of non-dissipative or non-active medium 

The following field transfer matrix M j' relates the field amplitudes U j and V j at x j to the 

corresponding amplitudes at the point x j-1 as follow 
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IU j
-

l
] = M j U j 

V
j

_
1 

V
j 

(3.53) 

The total transfer matrix for a stack, consisting of ] films is given by the product of the 

respective transfer matrices for individuallayers 

] 

M=OMj 
j=1 

(3.54) 

It can be shown that the transfer matrix for non dissipative or non active medium (real 

refractive indices) are unimodular i.e., its diagonal elements m11 and m22 are real, whereas its 

off-diagonal elements m12 and m21 are imaginary. 

The total field transfer matrix M characterizing the stack must yield the correct field at the 

cladding interface, when it is applied to the field at the substrate interface, i.e., 

[
Uel = M [~Ub 
1/';,1 sub 

(3.55) 

The propagation constant kz must be found in such a way that the ab ove equation remains 

valid. Using the ab ove procedure, the dispersion relation can usually be obtained. 

The field transfer matrix M j accounting for the wave propagation through the bulk of each 

layer, is considered in next sections. 

3.4 The field transfer matrix for a uniform layer 

Consider the jb layer whose dielectric profile is constant, as nJ . Taking Laplace transform of 

Eq.(3.51), we obtain 

U j _
1 

V'I J-

o 
(3.56) 

lj û,j 
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where U j = L (U j ), v j = L (Vj ) and s is the variable of the Laplace transfonn. By solving 

Eq.(3.S6) we have 

1 s 
(3.57) 

Thus M j equals to [2] 

M . = cosh( ajD..j ) -lil 
sinh (a j D.. j ) 

J -1 j sinh ( a j D.. j ) cosh ( a j D.. j ) 

(3.58) 

Note that M j is unimodular (real diagonal and imaginary off-diagonal elements). 

3.5 The field transfer matrix for l-D photonic crystal 

A unit cel1 of a binary stratified media (1-D photonic crystal) consists of two layers of different 

refractive index nI and nz or 

(3.59) 

where A is the period of the layered media, and T is the duty factor. Using Eq.(3.5S), the 

transfer matrix of the cel1 can be obtained as: 

T = M = [cosh(~la)cosh(~2b) + 1~112 sinh(~la)sinh(~2b) 
1.2 -12 cosh( ~la )sinh( ~2b) -11 sinh( ~la )cosh( ~2b) 

_1~1 cosh( ~la )sinh( ~2b) _1~1 sinh( ~la )cosh( ~2b)] 
cosh( ~la )cosh( ~2b) + 111~1 sinh( ~la )sinh( ~2b) 

(3.60) 

Where a = TA, and b = (1- T) A . Note also that matrix T is unimodular. 

42 



3.6 Dispersion relation for a l-D photonic crystal 

If the media is periodic, i.e., n (x) = n (x + A), then according to Floquet theorem, wave 

components are of the form 

(3.61) 

where Ukx (x) is periodic with a period of A, i.e., 

(3.62) 

and kx is Bloch wave number. Using transfer matrix of Eq.(3.60), we have 

(3.63) 

The phase factor exp ( -i kxA) is thus the eigenvalue of the translation matrix T which can be 

given by 

1 

exp(-ik,A)=±(t" +tu)±{[±(t" +tu)[' -Ir (3.64) 

where tl1 .t12 ,t21 and t22 are matrix components of transfer matrix T. Since matrix T is uni-

modular, its eigenvalues are inverse of each other. Eq.(3.64) gives the dispersion relation 

between 0), k z and kx Rewriting Eq. (3.64) as [3] 

(3.65) 

Regimes l(tl1 + t22 )/21 < 1 corresponds to real k~ nd thus propagating Bloch waves. In this 

case wave vector finds component in x direction (in addition of the component in Z direction), 

z.e., 
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(3.66) 

However when l(t11 + t2J/21 > 1 then kx = mn/ A + i kxi which has an imaginary part kxi , 

so the Bloch wave is evanescent. The regime in which I(tll + t22 )/21 = 1, corresponds to the 

wave propagation in Z direction (kx = mn/A, corresponding to band edges). In this case 

Eq.(3.65) can be written as: 

cosh (Œ1a )cosh (Œ 2b) + ![.J.L + 12]Sinh (Œ 1a )sinh (Œ 2b) = 1 
2 12 11 

Introducing more conventional variable k (transversal wave number instead of a) 

in Eq. (3.67) and using Eq. (3.49), we have [4] 

cos (k1a )cos (k2b) - ![k2 + !i.]sin (,{;a ) sin (k2b) = 1 
2,{; kz 

forTE modes 

cos(,{;a)cos(kzb)_![n~kz + n~,{;]Sin(,{;a)Sin(k2b)=1 for TM modes 
2 nz,{; n1 kz 

(3.67) 

(3.68) 

(3.69) 

The eigenvectors corresponding to the eigenvalues of Eq.(3.64) are obtained from Eq.(3.63) as 

(3.70) 

The diagram showing the relation between kx and kz at specific wavelength is called the wave 

vector diagram (or equi-frequency contour) [5]. Usually we normalize wave vectors versus ko 

(the wave number in vacuum) as below 

(3.71) 

The analogy of this diagram and index ellipse is obvious [6]. This type of normalization also 

makes implementing of wave vector interface boundary condition easy (see Eq.(3.79». The 

diagram can be made only on the fltst quadrant; the other parts of the diagram can be 
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obtained easily using the group symmetry of the lattice, namely there are mirror symmetries 

around nz and nx. 

3.7 Snell's law in photonic crystals 

Consider a cime harmonic plane wave from a homogenous and isotropic medium of refractive 

index no with a wave-number ~ = noko is incident to another homogenous and isotropie 

medium of refractive index nb where the incident angle is 'Pl' A schematic diagram of the 

structure is depicted in Figure 3.7.1. The tangential component of the wave vector of at the 

planar interface of two different media must be conserved. This is the equivalent way of 

expressing the Snell's refraction in the conventional optics. This law is originated from the 

translational symmetry of the system in the direction of interface [7]. Any wave solutions have 

to follow this symmetry, or 

(3.72) 

Nonnalize it versus ko' we have 

(3.73) 
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Glossary 
no: Refractive index of homogenous medium 
n '0: Higher refractive index of 1 D photonic crystal 

<Pl: Incident angle 

<pz: Refracted phase velo city angle 

<p' z : Refracted group velo city angle 
vp : Phase velocity 
Vg : Group velocity 

11p: Phase velocity deviation angle 

ytg : Group velo city deviation angle 

Figure 3.7.1 The interface of the two homogenous, isotropie media 

Now consider a cime harmonie plane wave from a homogenous and isotropie medium of 

refraetive index no with a wave-number k l = noko is incident to a l-D photonie erystal slanted 

by 81 , where again the incident angle is 'Pl (see Figure 3.7.2). Snell's law now reads 

(3.74) 

where ~ is the wave veetor eomponent of the photonie erystal parallel to the interface. 

Eq.(3.74) in a normalized fotm ean be expressed as 

(3.75) 
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Glossary 
no: Refractive index of homogenous medium 

ni: Higher refractive index of lD photonic crystal 

n2: Lower refractive index of lD photonic crystal 

A: lD photonic crystal period 

81: lD photonic crystal slant angle 

<Pt: Incident angle 

<P2: Refracted phase velocity angle 

<p '2 : Refracted group velocity angle 

vp : Phase velocity 
Vg : Group velo city 

11p : Phase velocity deviation angle 

't1g : Group velocity deviation angle 

Figure 3.7.2 The interface of the l-D photonic crystal and the homogenous medium 

Figure 3.7.3 shows how Eq.(3.75) can be implemented on the wave vector diagram to obtain 

the quiescent point (operating point). From the quiescent point one can fond the refracted 

Bloch mode direction, and (as we show in the proceeding sections) the corresponding group 

and phase velocities. 

5 ...... ., .... + ............ + ......... .. 

4 ~.H~~' •• ~~ •• ~.H ••••••••• ~.H .... H ••••• 

< < 
• < 

e. f / d~ity directio 

it 3 .. . ,j_ . <p 2 
q - ------i ---'-"1 <. 

en :! 

a' 

ne, 

Figure 3.7.3 A normalized wave vector diagram and the quiescent point 
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The slanted l-D photoruc crystal can be assumed as a 2-D rectangular lattice with the 

foilowing lattice constants 

(3.76) 

The unit ceil is depicted Figure 3.7.4. The wave vector diagram of the slanted l-D photoruc 

crystal can be obtained either by considering it as a 2-D square lattice with the unit ceil 

depicted in Figure 3.7.4 (and analyzing the 2-D lattice accordingly), or by rotating the wave 

vector diagram of l-D photoruc crystal by the slant angle 81 , Obviously the later case seems 

easier to implement, as we adopt it in the foilowing sections. 

-~-> 
ç 

Figure 3.7.4 The unit ceU of the slanted slab l-D photonic crystal 

3.8 The Quiescent point of an slanted wave vector diagram 

For TM modes, we choose Ey as the expanding field and the incident wave can be expressed 

as 

(3.77) 

where 

(3.78) 
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and A; = noko is the wave vector in the free space (ko is the wave vector in vacuum). Applying 

the Snell's law of Eq.(3.74) we have 

(3.79) 

Combining Eqs.(3.79) and (3.65) we can obtain the dispersion equation, from which the 

transmission phase vector can de obtained as below 

(3.80) 

It is interesting to note that the slanted 1-D photonic crystal can be assumed periodic in both x 

and Z directions, so the wave inside photonic crystal can be expressed as 

(3.81) 

Where \li k;, >~ (Ç, ç) is a periodic function as below 

(3.82) 

and kf, and kç are the Bloch wave numbers of the slanted photonic crystal. They are related to 

the Bloch wave number of the un-slanted photonic crystal by 

(3.83) 

Then the condition (3.79) can be expressed as 

(3.84) 

Knowing kf, from Eq.(3.84), and by solving Eq. (3.80) for kz ' one can obtain kç from 

(3.85) 
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3.9 A typical wave vector diagram for I-D photonic crystal and form birefringence 

By solving Eq. (3.80) at a particular wavelength, we can obtain the diagram showing the 

relation between kx and kz at that specifie wavelength. For illustration purposes consider the 

following case, 

À = 1545.3 nm 

T=0.5 

81 =0 

n = {3.1294 
1 3.2565 

for TEmode 

for TM mode 

(3.86) 

Figure 3.9.1 and Figure 3.9.2 shows the normalized wave vector diagram for TE and TM 

modes. Note the small period regime where the form birefringence can be observed. 

TE mode 3.5,...----,...----,r-----,----,---..,.----, 

1 

0.5 

0.5 

. . 
iA=.300+n 

1 1.5 
n 

Z 

2 2.5 

Figure 3.9.1 The normalized wave vector diagram for lE mode (Ey is dominant) at À = 1.54982 fLm for different 

periods 
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~" 

TM mode 
3.5r----,---.,....-........,.--..,........-...., 

2.5 

2 

;i:x 

1.5 

1 

0.5 

°0 0.5 1 1.5 2 2.5 
n 
Z 

Figure 3.9.2 The normalized wave vector diagram for TM mode (Ex is dominant) at À = 1.54982 [.Lm for different periods. 

The birefringence property of a periodic layered medium will now be discussed. The long 

wavelength (or short period) regime is worthy of attention. If the period A is sufficiendy smail 

compared to the wavelength, then the whole structure behaves as if it is homogeneous and 

uniaxiaily anisotropie. The wave thus behaves as if it is a plane wave. In the long-wavelength 

regime (>-.» A), these are similar to the dispersion curves of electromagnetic waves in a 

negative uniaxial crystal. To demonstrate the analogy we take the limit of a 1a« 1, a 2b« 1 

and koA« 1 and exp and ail the transcendental functions in Eq.(3.69). After neglecting higher-

order terms, we obtain [8]: 

2 2 n n 
2.. + -3... = 1 for TE mode 

2 2 
no no 

2 2 

nx +~= 1 for TM mode 
2 2 

(3.87) 

no ne 

with 
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n~ = Tn: + (1- T) n; 

1 1 1 
2=T2 +(1-T)2 
ne nI n2 

(3.88) 

where T = a/A. Equations (3.87) represent the two shells of the normal surface in the nznx 

plane. One surface of Eqs.(3.87), which applies to the a TE wave is a sphere, while the TM 

normal surface is an ellipsoid of revolution. TE waves thus are formally similar to the so-called 

ordinary waves in a uniaxial crystal, while TM waves are the extraordinary waves. The normal 

surface becomes more complicated at higher periods. It consists of two oval surfaces 

osculating each other at the intersections with the nx axis as long as the wavelength is higher 

than the first forbidden gap. For wavelengths higher than the forbidden gap, the oval surfaces 

break into several sections. The break points occur at 

À 
n =m-

x 2A (3.89) 

which is the Bragg condition. For the wavelengths lower than the forbidden gap and before the 

second band emerges, there is no propagating wave through photonic crystal. 

The ordinary and extraordinary refractive indices according to Eq.(3.88) are 2.323 and 1.352, 

respectively. These values are matched well by the values obtained from Figure 3.9.1 and 

Figure 3.9.2. 

The scaling law of electromagnetics can be used to relate period to the wavelength, so one can 

normalize period versus wave number in vacuum, and find a transcendental wave vector 

diagram. In other words, if we multiply period by A ~ aA, the wave vector diagram is the 

same as when the wavelength is divided by the same factor, ù., À ~ À/a. For practical 

reasons, Figure 3.9.3 shows a typical normalized wave vector diagram at different wavelengths 

(fixed period), which is obtained using Eq.(3.80) and the following parameters 
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A= 273.8nm 

À = 1545.3 nm 

T= 0.5 

81 =0 

nI = 3.1294 

nz = 1 

Polarization TE, Electric field in Y direction 

3.5 

3 

2.5 

2 

~x 

1.5 

1 

0.5 

00 

· . ---- -- - --- - --- --- ----~------------_ .. _--- ------_ .... - .. _-_.- ---l , , , , , , , , , , , , , , , 
, , l , , , , , , , , , , , , , · , , , , , , , , · , , , . , ,-------_ .. _-- .. -_ .. _--. __ ....... _----_ .. -, , , , · , , , · . · . , , · , · , · , , , 

···········r············4 .. --......... f ••...•••••.• ~ •..••••••• 

0.5 1 
n 

Z 

1.5 2 2.5 

Figure 3.9.3 A typical normalized wave vector diagram for l-D photonic crystal at different wavelength 

(3.90) 

The wave vector diagram evolution with wavelength is the basis of dispersion. This dispersion 

as it is shown in Figure 3.9.3 is at the highest value near the band-edge, where the transmission 

is poor. There are separate sections devoted to the two different types of k and S vectors 

dispersion, but before that we will talk about the Snell's law and how the qwescent point can 

be obtained. 
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3.10 k-vector dispersion 

The variation of the phase front direction (or direction of phase velo city, or wave vector) with 

wavelength is called k-vector dispersion [9-12]. Figure 3.7.2 shows the interface between free 

space and a 1-D photonic crystal. The angle between phase velocity vector and the horizon is 

defined as 'Pz. The incident and sIant angles are 'Pl and 81 respectively. The phase velo city 

deviation angle ('Ilp ) is defined as 

'Ilp = 'Pl - 'Pz (3.91) 

Then the phase velo city dispersion of a single junction can be defined as 

(3.92) 

The interface condition (Eq. (3.79)) is crucial determining how the wave front is refracted at 

the photonic crystal. Assuming the refractive index of the homogenous region is constant with 

wavelength, the quiescent point at each wavelength is the cross section of the horizontal line 

nx = na sin 'Pl , and the normalized wave vector diagram (which may be rotated by the slant 

angle too) at any specific wavelength (see Figure 3.10.1). The normalized phase vector 

(kp = k pl ka) is the vector from the origin to the quiescent point. The angle between the 

phase vector and the horizontal direction (( axis) is 'Pz (see Figure 3.7.2). 

Figure 3.10.1 shows the same wave vector diagram as in Figure 3.9.3, but we have shown a 

typical quiescent points, normalized phase vectors, and so on. 
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3.5.----,----.-----.---.---, 

no sin <Pt 

n 
Z 

Figure 3.10.1 The normalized wave vector diagram and quiescent points at different wavelength. The slant angle is zero. 

Figure 3.10.2 depicts the phase velocity direction versus incident angle for various wavelengths. 

The free space refractive index is assumed no = nt in (3.90). It is interesting that the deviation 

angle is maxitnized at the band-edge. As we will show later, this is the case only when the slant 

angle is zero. 
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Figure 3.10.2 Phase velocity angle versus incident angle when slant angle is zero. 

55 



Figure 3.10.3 shows the phase velocity dispersion of a single junction versus incident angle. 

The dispersion is maximum at the band-edge 0.24 o/nm. The dispersion decreases fast away 

from the band edge at the first Brillouin zone (toward ~1 = 0) , but it declines slower from the 

band edge at the second Brillouin zone (toward ~1 = 90°) . 

0.25,-----,------.---,..----,------r-----,-----,--.,----.,-----, 

: l: , 
0.2 ................ j ................. ( ............... [ ................. j ................. t--............... [ ........... ·1· .. j ........ · ....... ~ .............. . 

l l i 1 i 

~. o::!I,II;II:J 
0.05 ················l·················t······· .- . -.. : - .........•.. ······ .. ·1··1················ -f ..... . 

i i i Bandedge 
1 iy . 

%~--~10~==~2~~====~30;=~-4~0--~50~--6~O-~i~;~0--8~0--~90 
'Pl (0) 

Figure 3.10.3 The phase velocity dispersion of a single junction versus the incident angle when slant angle is zero. 

Our focus has been on untitled 1-D photonic crystal so far. Slanting the photonic crystal is 

another degree of freedom that has a great effect on dispersion and transmission. Let us slant 

the photonic crystal by 81 = -15°. Using Eq.(3.80), the normalized wave vector diagram with 

the parameters of (3.90) is plotted in Figure 3.10.4. The quiescent points are located at the 

second Brillouin zone. This is the case that we are especially interested in chapter 8, where we 

try to optimize the superprism based on the phase velocity dispersion. 
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3.5,.........---..,...----,-.-----,----......----, 

t·n.· ),. 0.9)" 

2.5 

2 

0.5 1 1.5 2 2.5 

Figure 3.10.4 The normalized wave vector diagram and quiescent points at different wavelengths. The slant angle is _15°. 

Figure 3.10.5 and Figure 3.10.6 show phase velo city angle and dispersion versus incident angle. 

As is shown in Figure 3.10.6, while the maximum dispersion is increased (from 0.24 o/nm for 

untitled to 0.29 o/nm for _15 0 of slant), it is possible to avoid the band-edge when the 

maximum dispersion is chosen. 
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Figure 3.10.5 Phase velocity angle versus incident angle when slant angle is _15°. 
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Figure 3.10.6 The phase velo city dispersion of a single junction versus the incident angle when slant angle is _15°. 

The optimization of the 1-D photonic crystal for obtaining the best dispersion will be 

discussed in chapter 8. We will show that it is not always desirable to maximize the phase 

velo city dispersion. 

3.11 s.vector dispersion 

The energy velo city integrated over a unit cell is identical with the group velocity [13-15], so the 

direction of the group velo city in an infinite photonic crystal coincides with the energy flow (or 

the beam direction) [16]. The group velocity can be obtained from 

(3.93) 

Where c is the speed of light in vacuum. The group velocity vector at the quiescent point is 

perpendicular to the wave vector diagrams and is directed toward the lower wavelength 

contours as it is indicated in Eq.(3.93) and shown in Figure 3.11.1. 
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Figure 3.11.1 The typical wave vector diagram and the group velocity at the quiescent points, the slant angle is zero. 

The beam deviation angle (or group velocity deviation angle) is the difference between incident 

angle ('Pl group velo city direction outside the photonic crystal) and the group velocity 

direction inside the photonic crystal 'P~ (see Figure 3.7.2) , i.e,. 

1 
'I1g = 'P2 -'Pl (3.94) 

The group velocity dispersion is defmed as the relative change of group velo city deviation 

angle with respect to the wavelength, i.e., 

(3.95) 

Figure 3.11.2 and Figure 3.11.3 show the beam direction angle and group velo city direction 

versus the incident beam direction. It is interesting that after the band-edge and at the second 

Brillouin zone, the refraction and group velo city dispersion are negative. The group velocity 

dispersion (as it is expected and shown in Figure 3.11.3) is zero at the band edge [17]. The 

maxhnUln dispersion is about 1.3° /nm. 
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Figure 3.11.2 The beam direction versus incident beam direction at various wavelength. The slant angle is zero. 
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Figure 3.11.3 The group velocity dispersion versus incident beam direction, the slant angle is zero. 

Figure 3.11.4 shows the part of slanted wave vector diagram (by -15°), wruch is relevant to the 

quiescent points and the corresponding beam direction. 
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Figure 3.11.4 The wave vector diagram of typical 1-D photoruc crystal, the slant angle is _15°. The group velocity directions 

are also shown at the quiescent points. 

Figure 3.11.5 and Figure 3.10.6 show the beam direction and group velo city dispersion versus 

incident angle. As is shown in Figure 3.11.6, the maximum group velo city is increased from 

1.3°/nm of the un-slanted photonic crystal (see Figure 3.11.3) to 2.6°/nm of _150 slanted case. 

Maximizing the dispersion and its effect on the superprism area is an important issue, which 

will be discussed thoroughly in chapter 6. 
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Figure 3.11.5 The beam angle inside photoruc crystal versus incident angle at different wavelengtbs. 
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Figure 3.11.6 The group velocity dispersion versus incident angle for the slanted 1-D photonic crystal. 

3.12 Refraction and transmission wave vector from 1-D photonic crystal, the condition 

of having only one diffraction order 

The transmission and reflection at the interface of a bulk 2-D (un-slanted) photonic crystal is 

analyzed and documented in [18]. In general, when the interface is not aligned with a special 

crystal direction, the dielectric structure (including both the crystal and the interface) is not 

periodic [19]. However, in l-D photonic crystal, for any slant angle the structure remains 

periodic. 

The reflected waves in Figure 3.7.2 (from the different diffraction orders) have two wave vector 

components. One of them can be written as 

(3.96) 

The other reflected wave vector component can be written as 
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(3.97) 

The square root sign ID Eq. (3.97) has to he selected to guarantee the reflection of a 

propagating wave or a decaying wave from the interface. The reflected wave then can he 

expressed as 

Er = 2:R; exp[i(çk;'ç +çk;,~)lây (3.98) 
m 

or 

The reflected wave is not evanescent if (see Eq.(3.97)) 

(3.100) 

Ail reflected wave except the main one (m = 0) are evanescent, provided 

(3.101) 

where À
min 

is the minimum wavelength of interest. Or using Eq.(3.76), we have 

(3.102) 

The ahove equation is also valid for the other type of polarization. Figure 3.12.1 shows the 

condition that ail reflections due to different diffraction orders except zero are evanescent. The 

homogenous medium refractive index is assumed no = 3.104 at À min = 1537.40 nm. 
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Figure 3.12.1 The condition for reflection due ta higher arder diffraction being evanescent 

Normally, we would like to work near the band-edge where the dispersion is high; so we are 

not interested to let this region be unavailable by slanting the photonic crystal too much. The 

maximum and minimum allowable rotation is the angle that brings the band-edge to the nx 

and/ or nz axis. Considering that, nzo (known as the band-edge after slanting by el) moves to 

the new location of 

-sine 1 (3.103) 

If we assume lPld as the incident angle at which the incident beam hit the un-slanted l-D 

photonic crystal band-edge, then applying the Snell's law (Eq.(3.75)) we have 

(3.104) 

Then the slant angle must be in the following window 

e - -1 [noSinlP1d] -1[ nzo 1 1 - - tan , tan --.-'---
nzo no smlPld 

(3.105) 
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As we will show in chapter 8, sometimes we are interested to work in the second Brillouin 

zone, then the incident angle 'Pl must be greater than 

n 
sin'Pl > Sin'Pld COSel+~sinel 

no 

Or the period A must be greater than 

(3.106) 

(3.107) 

For the operating point being in the second Brillouin zone and for the homogenous medium 

of refractive index no = 3.124 atÀmax =1562.23 nm, Figure 3.12.2 shows the minimum period 

versus incident angle for different refractive index at the bandedge nzo ' 
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Figure 3.12.2, The minimum period condition for being at the second Brillouin zone, versus the incident angle and the slant 

angle is a parameter, where the effective index at the bandedge is at (a) nzo = 0.2, (b) nzo = 0.5, (c) nzo = 1 and (d) 
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The period has to satisfy both Eqs.(3.107) and (3.102) in order to have only one diffraction 

order and being at the second Brillouin zone. Assuming nzo = 0.2, Table 3.2 shows a typical 

data. 

Table 3.2 Typical data for nzo = 0.2 

-10 45 278 

Note that, as the period gets close to the condition of (3.107), nearer to the band-edge, the 

higher dispersion will be achieved. 

3.13 Refraction and transmission wave vector from l-D photonic crystal, the FDTD 

Bloch boundary condition 

Expressing the transmitted wave inside photonic crystals by a summation of Bloch modes, 

enable us to apply electric and magnetic fields boundary conditions based on Eqs.(3.99) and 

(3.77). The trial field expression inside photonic crystal must satisfy the Helmholtz equation. 

We exp and the periodic dielectric constant and the Bloch modes by Fourier series. Using 

orthogonality of Fourier components (plane waves), we will achieve a set of equations for the 

Fourier series coefficients. The resulting set of equations after truncation is a finite set of 

equation with reflection coefficient of each diffraction order among the unknowns [20;21]. 

This method like other plane wave expansion method has a convergence difficulty for high 

contrast systems [7] .. Utilization of this method in the slab photonic crystal also seems 

impossible due to presence of continuum of radiation modes inside and outside the photonic 

crystal. 

Analysis of the l-D photonic crystal (thick hologram) has a vast history in literature. Several 

methods have been proposed; of them due to its advantages, rigorous coupled wave analysis 

(RCWA) is the most widely used [22;23]. It uses Maxwell's equations along with Floquet 
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theorem to solve the field distribution in spatially modulated media. It should be noted that the 

method is an approximation and is not suited for very high modulation depths and very thick 

layers. But the method is well applicable to the problems involving wave propagation through 

cascaded l-D photonic crystal (specifically, to slanted periodic structures). 

Here we choose a different approach which is adapted to the slanted l-D photonic crystal. 

Basically, this method is capable of handling the 3-D modeling of the slab l-D photonic 

crystal, but the computational burden is exhausting for our computers at the moment. 

When the structure under study is periodic along the interface, then the plane wave excitation, 

reflection and transmission can be obtained by analyzing ooly a unit cell using the Finite 

Difference Time Domain (FDTD) method. Consider the structure of Figure 3.7.2, the structure 

remains periodic in the direction of interface (Ë. direction) even after slanting. Figure 3.13.1 

demonstrates such a region. The unit cell can be confined on the other direction (( direction) 

by implementing sufficient Perfectly Matched Layers (PML). The length of the unit cell must 

be large enough that the transmission and reflection at the free space and l-D photonic crystal 

ends are not affected by the boundary conditions (PML layers). In other words, reflection of 

structure at the far ends of the unit cell which is replaced by PML layers has little effect on 

transmission and reflection. This restriction can be satisfied by increasing the length of the unit 

cell inside the photonic crystal. The PML width must be wide enough and its reflection must 

be small enough that it suits steep wave directions. 

Figure 3.13.1 The Bloch Boundary condition between free space and the slanted 1-D Photonic crystal. 
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The fields at the boundary marked as D Ùl Figure 3.13.1 are the same as the correspondillg 

pOÙlts at boundary B except for the Bloch phase factor of exp (i~~ A/cos 81) (see Eq.(3.82» 

(3.108) 

The plane wave excitation as it is expressed by Eq.(3.77) satisfies the Bloch boundary 

condition, i.e, 

<pIc = <Po exp[i (kçË. + kç()llc = <Po exp[i (kç A/cos 81 + kç()llc 

= <Pt exp (ikç A/cos 81) 

(3.109) 

This result is not SurprisÙlg because we can assume the free space is periodic with the period of 

A/ cos 81 • In conclusion both Bloch wave Ùl photonic crystal and plane wave Ùl free space 

satisfy the Bloch boundary condition. This conclusion origillates from the boundary condition 

expressed Ùl Eq.(3.84). 

Consider the cases represented Ùl Figure 3.13.2, which are un-slanted and -150 slanted 1-D 

photonic crystal with the parameters depicted Ùl (3.90). Five micron of PML is added to the 

top and the bottom of the structure and its reflection is kept very smail at 10-20 
• The grid size 

is chosen as 10 nm on both directions, and the computational domaÙl is restricted to a unit ceil 

with Bloch periodic boundary conditions. The cime grid is chosen at the Courant stability limit 

(about cD.t:S 7.11 nm), and simulation has continued up to ct = 300flm. The continuous 

wave type of excitation and TE polarization is chosen. 

68 



PML layer with 10-2<) reflection 

Field launch 

-0 4 -O.~ 0 0.2 OA 0.6 

ç (~Lm) Ç(~lm) 

Figure 3.13.2 The un-slanted and slanted l-D photonic crystal with appropriate boundary conditions. 

Considering the incident angle of 

(3.110) 

the quiescent points shown in Figure 3.10.1 and Figure 3.11.1 for un-slanted and Figure 3.10.4 

and Figure 3.11.4 for slanted cases is achieved. The simulation result after stacking five unit 

cells together is depicted in Figure 3.13.3 for un-slanted and in Figure 3.13.4 for the slanted 

case. As is shown in Figure 3.10.1 (and more clearly in Figure 3.10.2), for this incident angle, 

the phase velo city direction is about 78° above the horizontal direction (( direction in Figure 

3.7.2). As is seen from Figure 3.13.3, it is pretty much on the same direction as perpendicular to 

the wave front inside photonic crystal. 

Similarly for the slanted case, as is shown in Figure 3.10.4 (and more clearly in Figure 3.10.5) 

Figure 3.10.1, for this incident angle, the phase velocity direction is about 62° above the 

horizontal direction (( direction in Figure 3.7.2). A good agreement is seen in Figure 3.13.4. 
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Figure 3.13.3 Stacking E y profile for five unit cells when <.pl = 60° , 8t = O. 

-0.6 -0.4 -0.2 o 
ç(!.tm) 

0.2 0.4 0.6 

k, 

Figure 3.13.4 Stacking Ey profile for five unit cells when <.pt = 60° , 81 = -15°. 

Direction of power flow, or the group velocity can be found using Eqs. (3.43) and (3.45). If we 

calculate the average power by integrating the Poynting vector along x axis and choose 

integration interval as A, and similarly along the Z axis, then the power flow direction with 

respect to ç direction can be found as 

(3.111) 
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And the total transmitted power can be obtained as below 

(3.112) 

where ~is the average power density. The reflected power density (Sr) considering only zero 

order diffraction, can be obtained by averaging the Poynting vector along 11 + 'Pl direction. 

Finally, ptovided the electric field excitation with amplitude of A, the incident power density is 

obtained as below 

(3.113) 

where Zo = 376.730 D is the characteristic impedance of the vacuum. Then the reflection and 

transmission coefficients can be obtained as: 

T= St and f= Sr 
Si Si 

(3.114) 

Note that basically because there is no radiation 10ss 

T+f=l (3.115) 

The results of FDTD analysis for both cases have been summarized in Table 3.3. 

Table 3.3 The result ofFDTD analysis 

Px 0.1495 

T 0.9564 0.1432 
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The group velocity directions in both cases are in a very good agreement with the results 

shown in Figure 3.11.2 and Figure 3.11.5 (which are obtained using the wave vector diagrams). 

The negative refraction on the second Brillouin zone of the slanted case [24] is accompanied 

by low transmission coefficient. 
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Chapter 4 

WEIGHTED INDEX METHOD FOR SLAB l-D PHOTONIC 
CRYSTALS 

An analytical approximate method is introduced to obtain wave vector diagrams for 

slab 1-D photonic crystals. Based on the best separable wave solution, a variational 

formula provides the best estimate for propagation constant. The wave vector diagram 

and the wave profile are obtained for a typical PECVD technology (with a medium 

refractive index contrast ~n ~ 0.5). Excellent agreement with an accurate finite 

element method is achieved. Due to iterative nature of the method, any wave 

amplitude nonlinearity can be modeled easily. By applying this method we also 

evaluate the wavelength tuneability oft-D photonic crystal k-vector superprisms. 

4.1 Introduction 

AlI the potential applications of slab l-D photonic crystals rely on the understanding of the 

wave behavior in the structure. Analytical approximate techniques which require low computer 

resources to solve the wave equation in slab l-D photonic crystals are attractive tools for first 

order analysis (specialIy when the refractive index is high). Such techniques are welI-suited to 

design optitnization tasks that need many simulations to find the best results. One may check 

the final design with a more accurate and titne consummg method such as the plane wave 

expansion method, or the finite element method. We have chosen the finite element method 

results as a benchtnark to check the accuracy of the proposed method. The details of the 

benchtnark method are outlined in appendix A. 
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Effective index methods are approximate, easy and common techniques for a fust order model 

that reduces the 2-D waveguide model effectively into two 1-D models. In its simplest form it 

is based on the assumption that the separable wave solution in Carte sian coordinates is a good 

approximation and that the field is confined mainly in the high refractive index medium. The 

weighted index method [6] belonging to the effective index method family is another simple 

method, which is based on a same assumptions as simple as the effective index method. A 

variational formula is then used to get to the best propagation constant based on the best 

separable modal field profile. In order to get to the best separable solution the perturbation 

feedback method has been adopted [7]. In this chapter, we show how weighted index method 

can be applied to slab 1-D photonic crystal. In the next section, we will discuss the nonlinear 

weighted index method as applied to slab 1-D photonic crystal for obtaining wave-vector 

diagrams for various input power levels. 

The band gap shift due to Kerr type nonlinearity in photonic crystals is weU known 

phenomenon [5]. This phenomenon can be used to make a tunable photonic crystal 

multiplexer. Two kinds of tunability are recognized. The dispersion can be adjusted by using an 

external pump beam, or by the signal power itself. The latter needs less power and leads to the 

self-induced superprism effect, if the input power level reaches the amount necessary to bring 

the quiescent point near the band-edge where the dispersion is the highest. The huge 

dispersion reported in 3-D and 2-D slab [1] makes a high channel multiplexer a reality. The 

certain amount of power than many input channels brings into the multiplexer when adds 

together would be a large amount of power. The multiplexer then must operate linearly at high 

power or measure must be taken into account to address the nonlinearity. As we will show, the 

deviation angle sensitivity of the prism is much larger than the angular dispersion sensitivity. In 

other words, superprism can be a multilevel switch and a multiplexer together if it operates at 

multilevel input power (or control can be imposed by multilevel pump signal). The device also 

can be tuned by controlling the optical power to compensate aU of the process-related 

uncertainties that may exist due to the fabrication of the fine periodic structure. So it is 

important to understand the behavior of the device at high power. 

Dispersion management via the nonlinear regime of slab 1-D photonic crystals is another 

interesting area of research [3]. Varying input power, self focusing and defocusing have been 

observed within the same medium, structure and wavelength [4]. 
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4.2 Weighted effective index method for slab I-D photonic crystals 

The weighted index method was first developed for rectangular dielectric waveguides [6]. The 

main idea of the method is in finding the best separable solution based on a variational 

formula. The variational formula plays a dual role. It gets the best propagation constant based 

on the approximate field profile and on the other hand it provides a gauge for convergence. 

Weighting the real refractive index, it searches for the nearest structure with true separable 

solution. The convergence gauge will guarantee that the result is the nearest to reality which 

poses the separable solution. 

While the theory could be developed for the most general case (i.e., 3-D cubic photonic crystal, 

for this chapter we restrict ourselves to slab l-D photonic crystal. We assume the structure is 

periodic in one dimension (say x direction) and it is uniform in Z direction, that is: 

n(x,y) = n(x+A,y) (4.1) 

Figure 4.2.1 shows a simple slab l-D photonic crystal. Real structures usually are more 

complicated than this simple one; however the theory can be extended easily. 

Lower cladding 

Upper cladding 

Figure 4.2.1 A typical slab l-D photonic crystal 

Using Floquet's theorem, the wave solution can be expressed as: 

w (x, y) = «> (x, y) exp (ikxx ) 
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where exp ( kzZ - iwt) has been suppressed. <I> (x, y) 1S a periodic function ln the x 

direction, i. e., 

<I>(x,y) = <I>(x + A,y) (4.3) 

and kx is the Bloch wave number. Our analysis is based on solving Helmholtz equation 

approximately and has a variational nature. It seeks a separable solution for <I> (x, y) in order 

to minimize a variational equation. Let us start with establishing a variational equation for 

fuis case. 

4.2.1 Variational equation for slab I-D photonic crystal 

The scalar Helmholtz equation can be expressed as a generalized eigenvalue problem: 

(4.4) 

The eigenvalue k: is a scalar constant. Defining a scalar dot product of n and W over the 

unit ceil volume of Vas: 

(4.5) 

Since \72 is a Hermitian operator and n2 is real, the foilowing variational equation in the form 

of Rayleigh's quotient is valid [8]: 

(4.6) 

Inserting Eq.(4.2) into Eq.(4.6), it is not difficult to show that: 
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(4.7) 

and note that due to periodic nature of <I>, (<I> la x I<I> ) = 0 . 

4.2.2 Basic assumptions 

Let us assume that separable solution is a good approximation, i.e., 

<I> (x, y) = F (x) C (y) (4.8) 

Aiso assume that there is a photonic crystal with refractive index ft (x, y) (perturbation of real 

n (x, y)) such that its exact solution is separable. If we define t::..p proportional to the 

difference between the wave number squared of real and perturbed photonic crystals as: 

(4.9) 

where k 2 = k~ + k;. Note that 1:.2 is satisfied in Eq.(4.7), i.e., 

(4.10) 

where we have normalized field components over periods: 

(FIF) = (CIC) = 1 (4.11) 

lnitially, we take the actual field as <I> = FC of the perturbed waveguide, then using Eqs.(4.7) 

and (4.10), we have: 

(4.12) 
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where 

(4.13) 

The method converges when /:).p converges to its minimum. 

4.2.3 Separating Helmholtz equation 

Inserting the separable solution of (4.8) into Helmholtz equation, we have: 

(4.14) 

Multiplying Eq.(4.14) with(CI we have: 

(4.15a) 

where 

(4.15b) 

Eq.(4.15a) can be considered as the equation of horizontal slab waveguide with a periodic 

refractive index of ne (x) = ne (x + A). Similarly multiply Eq.(4.14) with(FI, we have: 

Ic") +(k~n: (y)- k2 )Ic) = 0 (4.16a) 

where 

(4.16b) 
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Eq.(4.16a) can be considered as the equation of a vertical slab waveguide with a periodic 

refractive index of ne (y). Multiplying Eq.(4.1Sa) with IC) and Eq.(4.16a) with IF) and 

adding them together, we have: 

(4.17a) 

where 

n2 (x, y) = n; (x) + n; (y) _ k: 
ko 

(4.17b) 

4.2.4 The method 

We adopt a perturbation feedback method which has an iterative nature [7]. In each iteration, 

we solve Eqs.(4.15a),(4.16a), then check the convergence gauge (4.12) . In the beginning of l' 

iteration, knowingF;_t and Ci-! of the last step, we solve Eq.(4.15a), with the refractive index 

of (4.15b) (however we ignore the second term), i.e., 

(4.18) 

to obtain kh,i and Ci (y). Now in order to take the second term of Eq.(4.15b) into account 

which was previously assumed zero, we proceed as follows: 

We multiply both sides of Eq.(4.18) by ICi (y t and integrate with respect toy, we have: 

(4.19) 

Multiplying both side of Eq.(4.15a) by (F;-tl, we have: 

(4.20) 
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Adding Eqs.(4.19) and (4.20), we have: 

(R-l IR~l ) = k:'i-l - k~ (R-l In~i_l (x) IR-l) 
- k~ ( Ci In~i (y) ICi) + ~ (R-ICi In2 IR_1Ci ) 

(4.21) 

D fi · -2 e l1l1l1g ni as: 

k 2 

-2 ( ) 2 () + 2 () v i-1 ni x,y = n,,i-1 x ne,i y -7 
o 

(4.22) 

then from Eqs.(4.15b), and (4.12) we have: 

(4.23) 

where the subscript i has been added to /:}.p to emphasize that this error belongs to the ith 

iteration. n~i (y) will be is corrected at the end of this iteration as: 

(4.24) 

and ~h,i and Ci (y) are also updated. The next iteration begins by solving Eq.(4.15a), ignoring 

the first term of refractive index in Eq. (4. 15b), i.e.: 

(4.25) 

with n~i+1 (x) calculated from the above equation. To consider the effect of the second term, 

bya similar procedure, we obtain: 

(Ci Ic:) = k;,i - k~ (Ci In~i (y )ICi ) 

- k~ (R+1In~i+1 (x )IR+1) + k~ (R+ICi IR+1Ci) 
(4.26) 

Now defining ii:+1 as: 
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k 2 

-2 ( ) 2 () + 2 () h,i n i+1 x,y =ne,i+l X ne,i Y - k 2 
o 

(4.27) 

we can write: 

(4.28) 

Inclucling this correction in Eq.(4.2S) we have: 

(4.29) 

This completes the iteration procedure, which must be repeated until b.p becomes negligible. 

F or the first iteration we need to choose initial guesses for F (x) and G (y) , as fol1ows 

Fa (x) = 101/.J AT for !xl < AT/2 
elsewhere 

(4.30) 

Go (y) = {1/ Jb for Iyl < b/2 
o elsewhere 

(4.31) 

With the initial guess of Eq.(4.30), Eq. (4.16a) will be the wave equation of a three layer vertical 

dielectric waveguide, while the initial guess of Eq.(4.31) makes Eq.(4.1Sa) the wave equation 

for horizontal stratified dielectric waveguide. (see Figure 4.2.2) 
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(a) 

Lower cIadding 
Slab 

(b) 

Figure 4.2.2 Equivalent vertical (a) and horizontal (b) waveguide corresponding to initial guesses ofEq.(4.30) and (4.31) 
respectively. 

Numerical illustration based on this formulation will be presented in the following sections 

after we discuss the method in handling a nonlinear l-D photonic crystal. 

4.3 Nonlinear weighted index method 

N onlinear wave propagation in photonic crystals involving Kerr type nonlinearity leads to 

interesting phenomena. Positive Kerr type nonlinearity can lead to spatial gap solutions [4;5], 

while negative Kerr type nonlinearity can cause bi-stability [9]. Optical switches and limiters 

have also been suggested recendy using alternative layers of positive and negative Kerr type 
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nonlinearity [10]. The main analytical approach to the analysis of nonlinear propagation in 1-D 

photonic crystal has been coupled mode theory [11-13], however recently FDTD analysis has 

been applied [14]. The main drawback of coupled mode theory is the lack of modal 

understanding of the structure, while the proposed FDTD analysis cannot be applied to large 

structures and is unable to provide a thorough understanding of the photonic crystals. The 

numerical spectral domain method is the best alternative in this case. N onlinearity can be 

implemented in the original Helmholtz equation or can be applied if the ho st method is 

iterative. Those rigorous methods that solve for modes must be based on self-consistency and 

must take the vectorial nature of the problem into account which would be very time and 

memory consuming. The effective index method is a well-known simple method for analyzing 

dielectric waveguides [15]. It can analyze virtually any linear dielectric waveguide with 

rectangular cross section. The method has been extended to take the guide nonlinearity into 

account [16;17]. Another simple, but more accurate method is the weighted index method [6]. 

Here we extend it for analyzing of slab 1-D photonic crystal with intensity dependent refractive 

index nonlinearity. 

Any nonlinear guiding system can be analyzed with an iterative procedure using a suitable 

linear analysis tool as a basis. lndeed it is not necessary to ditectly solve the goveming 

nonlinear differential equation. Rather it is possible to construct solutions from modal 

solutions of linear waveguides through an elementary self-consistency relation. It can be shown 

that any solution of a nonlinear problem can be associated to a linear solution of an equivalent 

structure[18]. lndeed the problem can be reduced to only determining the equivalent linear 

model, and then analyzing it by a reliable linear routine. The equivalent linear model and the 

original nonlinear structure are related to each other by an elementary self consistency relation. 

The self consistency relation is one that indicates the relation between the nonlinear refractive 

index and the modal pattern [18]. As an example, for Kerr type nonlinearity it can be expressed 

as: n = no ± û, IEI2 . On the other hand, it is reasonable to daim that the modes of any linear 

waveguide correspond to the modes of sorne nonlinear waveguide with a particular type of 

nonlinearity. This type of nonlinearity is revealed by the inversion of the self consistency 

relation. 

The equivalent linear model can be obtained by the following iterative procedure. At initial step 
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of each iteration, the nonlinearity is not considered while the system is analyzed. At the end of 

the step the nonlinearity is taken into account, i.e., by evaluating the field distribution in the 

linear model and using the self consistency relation, the refractive index of the equivalent linear 

model is corrected accordingly. This is an approximation of the equivalent linear model. The 

next iteration begins by analyzing the approximate equivalent model of the previous step, and 

ends up by obtaining the next approximation of linear equivalent model. This procedure can 

be repeated until convergence is achieved. The outputs of iterations are the equivalent linear 

model together with the propagation constant and the modal pattern corresponding to the 

original nonlinear waveguide. The flowchart of the above procedure is shown in Fig. 3a. In this 

flowchart it is assumed that the basis linear analyzing routine has an iterative nature. 

The nonlinear iteration loop and the linear analysis loop could be merged, if the basis linear 

analyzing routine has an iterative nature. In this way a new algorithm will emerge. The 

flowchart of this method is shown in Fig. 3b. Note that the convergence blocks are also 

merged. In this way, an the analysis capability of the previous routine is transferred naturally to 

the new nonlinear one. Furthermore it is evident that, the new routine is much faster than the 

preVlous one. 

We select the weighted index method as the basis routine. Figure 4.3.2 depicts one period of 

the slab l-D photonic crystal. This algorithm assigns vertical and horizontal equivalent slab 

Linear System Analyzing Routine 

No 

Main LinearSystem 
Routine; 

No 
Convergence? 

Yes 

(a) 

Yes 

Yes 

(b) 

Figure 4.3.1 The flowcharts of two nonlinear system analyzers based on an iterative linear system analyzing routine, (a) the 
simple but inefficient routine, and (b) the modified one. 
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waveguides to the original slab 1-D photonic crystal in each computational step. The 

equivalent horizontal waveguide is a slab waveguide with non-uniform periodic refractive 

index. The equivalent vertical one is ordinary slab waveguide with non-uniform refractive 

index. There are various ways to analyze such waveguides. One such method, (which is the 

most reliable and the simplest one, but with the lowest efficiency) is stratification [19]. Our 

analysis employs the stratification technique. 

ni 

1

4 

c 

TA 

y 

nco1 = no +alEl2 o n c02 

x n 
~1·~s~ub ____ ~A ________ ~~1 

Figure 4.3.2 The schematic representation of a slab 1-D photonic crystal with nonlinear Kerr type nonlinearity. 

4.4 Numerical illustrations 

For the sake of demonstrating the methods, we have selected two structures, one with 

relatively low refractive index contras t, and the other with higher refractive index contrast with 

Kerr type non-linearity. The cross section of the 1-D photonic crystal of lower refractive index 

contrast is depicted in Figure 4.4.1. 

PCEVD Oxide 
l~m 

~ 
(n=1.451) 

" , t -----: 

PCEVDOxide 
(n=1.451) 

---, 
t--------

PCEVD SiOxNy 

(n=1.496) 

Figure 4.4.1 Schematic of the low refractive index contrast slab 1-D photonic crystal. 

Using the structure illustrated in Figure 4.4.1 and with grating period of A = 0.5 flm and duty 

factor of T = 0.5, Figure 4.4.2 shows the normalized wave vector diagram 
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Quasi TM mode 

Figure 4.4.2. Wave vector diagram obtained using effective index method (dashed) and weighted index method (solid). 

Table 4.1 shows the comparison with the finite element method (which we take as a 

benchmark). There is a good agreement between these two methods which is an indication that 

our method is accurate in this range of refractive index contrast. The maximum error happens 

again at the bandedge and it is 2.5%. Note that the computational domain for finite element 

method can be reduced by 50% by considering the structural symmetry along the y direction 

(see Figure 4.4.1) 

Table 4.1 The comparison of our method with the finite element method results in low refractive index contrast regime 

% error 0.4 0.6 0.7 2.5 

In Figure 4.4.3 and Figure 4.4.4 the deviation of the re&active indices of equivalent horizontal 

and vertical waveguides are plotted compared to the corresponding effective index method 

ones versus nonnalized Bloch wave number. The best separable field solution is obtained by 

these refractive index adjustments. As expected the deviation is higher near the band edge. 
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In Figure 4.4.3 and Figure 4.4.4 the deviation of the refractive indices of equivalent horizontal 

and vertical waveguides are plotted compared to the corresponding effective index method 

ones versus normalized Bloch wave number. The best separable field solution is obtained by 

these refractive index adjustments. As expected the deviation is higher near the band edge. 
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Figure 4.4.3. Refractive index deviation of the equivalent horizontal waveguide compared the corresponding effective index 
method versus normalized Bloch wave number. Due to symmetry the upper and lower cladding refractive indices are always 

the same. 

Equivalent veltical waveguide 
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Figure 4.4.4 Refractive index deviation of equivalent vertical waveguide comparing to the corresponding effective index 
method one versus normalized Bloch wave number. Due to symmetry upper and lower cladding refractive indices are 

always the same. 
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Finally in Figure 4.4.5 and Figure 4.4.6 we plot the mode profile (Ex) in x and y directions at a 

fixed Bloch wave number nx = 1.24. As Figure 4.4.6 shows there is a field discontinuity at the 

core interface. This kind of discontinuity cannot be observed by solving the scalar Helmholtz 

equation. 

nx =1.24 
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Figure 4.4,5, Field distribution in x direction for quasi TM mode at a flXed Bloch wave number, 

nx =1.24 
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Figure 4.4,6. Field distribution iny direction for quasi TM mode at a flXed Bloch wave number. 
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Figure 4.4.7 Cross section of the silicon on insulator slab l-D photonic crystal. 

Table 4.2 shows the results of the comparison. As can be seen, the accuracy is acceptable 

except near the bandedge. 

Table 4.2 The comparison of our method with Finite element results in high refractive index contrast regime 

Weighted index method 2.11 

.IJî1Iliii-~iîijitf'IIIQ~;lil 
%ettor 

The second example that we have chosen is a slab 1-D photonic crystal of nonlinear 

rectangular cores (Si) on a linear substrate (SiOz). The cladding is also linear (Air). The third 

order nonlinearity of Si is taken into account n2 = 4.1x10-12 (m2 jV2
) [20]. The nonlinearity 

of the silica is ignored. We have also ignored losses and assume a constant temperature 

throughout the device. We choose the model of Figure 4.3.2 with the following constants: 

b=0.5f.Lm, A=300 flm, T=0.5, Ào=1.55flm, ncol =3.26+4.1X10-12IBI2, nsub =1.45 

and nco2 = nc/ = 1. In Figure 4.4.8 w e have shown the normalized wave vector diagram 

( nx,z - ~x,zj ko)' with maximum electric field (Bmax) as a parameter. The routine is fast and 
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b=O.s~m, A=300 f.lm, T=O.s, À-o =1.55f.lm, nco1 =3.26+4.1X10-12IEI2, nsub =1.45 

and nco2 = nc/ = 1. In Figure 4.4.8 w e have shown the normalized wave vector diagram 

( n - ~ 1 b ), with maximum electric field (Emax) as a parameter. The routine is fast and 
X,Z X,Z "'0 

2.5,----.--,---...----.-,-----n--,-----,----.-------, 

2f-· .. ·· ...... · ...... ···.;. .. ·· .. · .............. "k 

1.5 

1 ............. . 

%~--O~.5~--L---~1.~5--~~~~2.~5~-~3 

n 
z 

Figure 4.4.8 Normalized wave vector diagram with various maximum electric field as a parameter. 

converges within 4 - 8 iterations. Note that the conventional Floquet theory is not valid in the 

nonlinear case, however due to periodicity; the wave vector diagram repeats itself as is the case 

for linear systems. 

Figure 4.4.9 demonstrates the refractive index perturbation in the core region of the equivalent 

linear model at Emax =3kV/m and nx =0, nx =1.5 and nx =2.5. The field nonlinearity 

causes the increase of the core refractive index, but it smoothes out the refractive index 

contrast. This smoothing increases the accuracy of the method. In other words, the results 

would be more accurate than the linear case (or when lEI < < 1). The accuracy of linear case 

has been listed in Table 4.2. Note that the refractive index is periodic in each case, but the 

refractive index profile changes with the propagation direction. More field confinement at near 

the bandedge also causes larger refractive index gradient at the core region. 
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Figure 4.4.9 Refractive index perturbation for different Bloch wave number. 

In Figure 4.4.10 the superprism geometry with various defiued parameters is illustrated. We 

have assumed that the left and the right sides of the prism are air and any reflections at the 

boundaries have been ignored. 
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81 is slant angle 
p is apex angle 
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---
<1'4 

Figure 4.4.10. Superprism geometry based on slab 1-D photonic crystal. 
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Figure 4.4.11 shows the deviation angle versus maximum electric field at fixed incident angle 

'Pl = -550 
, apex angle of p = 600 and slant angle of 81 = -200

• Figure 4.4.11 also shows 

angular dispersion versus maximum electric field under 

p=60o,e
l 
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Figure 4.4.11. Change of deviation angle and angular dispersion versus maximum electric field in the core region. 

the sitnilar conditions. As can be seen, at lower power levels the dispersion is nearly constant 

whilst the deviation angle change starts even at lower power levels. Tbis feature is helpful for 

tuning the device versus any process related imperfections. The sensitivity to optical power is 

high enough that at higher power levels, the device can divert aU output channels many degrees 

by increasing input power. Tbis effect could be used to make a multilevel optical switch. 

4.5 Conclusion 

An approximate analytical method for the analysis of slab 1-D photonic crystal has been 

introduced. The method is an extension of the known weighted index method for rectangular 

dielectric waveguides. Based on a variational equation developed for this case, the best 

separable wave solution is sought. Due to the variational nature of the method, the wave 
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vector diagram will have a second order accuracy if the wave profile has only fust order 

accuracy. The wave vector diagram plays a vital role detennining refraction and reflection 

direction of the slab waveguide modes of the slab 1-D photonic crystal. 

Based on the modal behavior of rectangular dielectric waveguides, the accuracy of this method 

is much better than the effective index method especially near bandedge, while the accuracy of 

effective index method is comparable to the solution of scalar Helmholtz equation. Compared 

to the accurate finite element methods results, the the weighted index method is accurate in 

the low refractive index contrast systems (!::.n ~ 0.5), but it deteriorates as the refractive index 

contrast becomes higher (!::.n ~ 2). 

The weighted index method has also been extended to handle the nonlinear slab 1-D photonic 

crystal. Merging the loop of the weighted index method with the loop of the nonlinear routine 

will speed up the method considerably. The resultant method is simpler, and converges 

virtuallyas fast as the conventional perturbation feedback method (through 4 to 8 iterations). 

A wave vector diagram versus the input power can be obtained using the results shown in 

Figure 4.4.8 (the maximum electric field in Figure 4.4.8 can be replaced with the transmitted 

power). Furthermore, since we have not considered the refractive index saturation effects, 

there is a one ta one correspondence between maximum electric field at the core center and 

the transmitted power [21]. 
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Chapter 5 

A NEW PLANE WAVE EXPANSION METHOD FOR SLAB l-D 

PHOTO NIC CRYSTALS 

The conventional plane wave expansion method is extended for slab photonic crystal. 

The open boundary condition is applied instead of the conventional supercell scheme. 

The implicitly restarted Arnoldi method is also modified to solve a nonlinear 

eigenvalue equation. Fewer Fourier components are necessary for convergence than 

are required for the conventional plane wave expansion method with supercell 

definition. The open boundary condition makes analysis of leaky mode a feasible task. 

5.1 Introduction 

Modeling of slab mode reflections from and transmission into the slab photonic crystal is 

crucial for any practical designs using slab photonic crystal. Every accurate model should 

encompass the vertical field confinement and also out of slab radiation losses. The mode 

matching method is a powerful technique for analysis of waveguide discontinuities such as 

junctions and facets. Existence of dis crete and finite orthogonal modes at both sides of the 

junction is a key factor that makes the mode matching method an efficient tool. However, for 

open waveguides commonly used in photonic integrated circuits, the mode-matching method 

is litnited to applications in wruch the modal solutions are known analytically such as one

dimensional (l-D) multilayer waveguides [1;2]. The plane wave expansion method also can be 

applied to the modeling of I-D photonic crystal structure, where the vertical field confinement 

and out of slab radiation have no place in the adopted model. In this respect, the inclusion of 

the continuum of radiation modes in the field expansion constitutes a significant challenge. In 

order to avoid this problem, one may enclose the structure with applying artificial periodicity in 

vertical direction, so that aIl modes become dis crete. It also makes the implementation of the 
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traditional plane-wave expansion method possible. Then the modes can be divided into two 

categories: the guided modes, which are confmed to the slab and the supercell modes (or ab ove 

the light line modes), which are related to the imposed artificial periodicity. If the supercell is 

sufficiently large, then the original problem can be accurately simulated by the artificial model. 

On the other hand, the plane wave spectral spacing is inversely proportional to the size of the 

supercell, so a large number of plane waves need to be included in the field expansion to 

ensure adequate accuracy. Mathematically, the field expansion method in terms of the guided 

and supercell modes is not very effective, especially for accurate representation of the radiation 

fields. 

A solution for guidance along an open structure is called spectral if it satisfies all the boundary 

conditions, including the one at infinity (in the transverse direction). Certain "nonspectral" 

complex solutions (so called leaky modes), which do not satisfy the boundary condition at 

infinity (in the transverse direction), may nevertheless be physically valid in a restricted region 

of space. They are very useful due to highly convergent representations of a major portion of 

the continuum of radiating spectrum. The imaginary parts of the propagation constants for the 

leaky modes represent for the leakage loss and the modal-field distributions within the critical 

points represent the radiation fields[3]. Therefore, the radiation field in a slab photonic crystal 

can be approximated by the summation of leaky modes too. 

In this chapter, the plane wave expansion method has been modified for the slab l-D photonic 

crystal. Although the formulation is presented for slab l-D photonic crystals, it can be easily 

adapted for 2-D cases. The modified implicitly restarted Amoldi method is introduced to solve 

the nonlinear eigenvalue equation, which are obtained in the next section. Numerical results are 

compared with the conventional plane wave expansion method and supercell definition. The 

capability of the method for obtaining the leaky modes is also demonstrated. We conclude the 

chapter with some final comments on this method. 
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5.2 The method 

Full vector wave calculation of photonic band structure has been carried out using the plane 

wave expansion method [4]. Given the desired Bloch wave number (usually along the 

irreducible Brillouin zone) the band structure can be obtained, i.e., the method provides the 

wavelength corresponding to that wave number. If Land M reciprocallattice points (Fourier 

components) are included in the calculation in each periodic directions, then the resulting 

eigenvalue equation will be of the order of 2L X 2M. The eigenvalue matrix will be 

Hamiltonian with real eigenvalues (wavelength). There was a poor convergence of Fourier 

transform especially in high contrast material system [5], which has been mitigated by 

interpolating the dielectric constant over discontinues. The Hamiltonian nature of the 

Helmholtz equation is reflected to the Hamiltonian matrix eigenvalue equation (which is sparse 

too). To calculate the real eigenvalues of a sparse Hamiltonian matrix, there are very effective 

computational technique [6]. Employment of a basis of ~ 106 plane waves can be processed 

with 104 cimes less computer resources, if one uses a proper variational approach [7]. With aIl 

these improvements, now the plane wave expansion method is a viable technique to obtain the 

band diagram of photonic crystal. Nonetheless, the method has some disadvantages. First it is 

necessary to start with Bloch wave numbers and then the wavelength (corresponding to that 

Bloch wave number) can be obtained. However, if the wavelength is known and the permitted 

Bloch wave numbers are sought (for the so called wave vector diagram), then we have to scan 

the whole Brillouin zone very finely. Secondly, the method cannot handle mixed periodic, non

periodic structures, i.e. the structure is periodic in at least one direction but it is not on the 

others. The supercell technique replaces the unit cell with a more complicated unit cell while 

retaining the periodicity. For a known case of slab photonic crystal, periodicity is preserved in 

the vertical direction by assuming periodicity at that direction, but the period is assumed too 

large that the filed at the periodic boundary is negligible [8]. In addition to the need to model a 

large unnecessary area (requiring the incorporation of a large number of plane waves), more 

importantly, the leaky modes cannot be traced. 

The structure to be analyzed is depicted in Figure 5.2.1. There are many forms of Helmholtz 

equation and choices of wave vector components, which are literally equivalent. The best 

selection of components and the corresponding form of Helmholtz equation, however 

100 



ni Region 1 

T 
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n2 Region 2 

Figure 5.2.1. A simplified slab l-D photoruc crystal cross section, suitable for modeling. 

depends on the nature of the problem in hand. As the structure is periodic, Fourier series are 

used to exp and field and refractive index profiles. Due to nonmagnetic nature of the structure, 

transverse magnetic fields are continuous, so their Fourier series converge more rapidly than 

the Fourier transform of transverse electric fields, which are not continuous. Whilst 

traditionaliy, researchers prefer modeling using electric field components, however for the 

speed of convergence it is better to choose the magnetic field as a set of independent field 

components. Electric field components if they are required can be calculated easily using the 

transverse magnetic field eigenvectors. In this case, in which two open boundaries (in the y 

directions) exist, and we do not desire to consider any forms of absorbing boundary conditions 

(in order to keep sufficient accuracy near cutoffs) we will need to apply open boundary 

conditions. Implementing these conditions will transform the final eigenvalue problem to a 

complex, nonsymmetrical and nonlinear one. Considering this fact, we can eliminate Hz From 

the homogenous Helmholtz equation (see Eq. (3.20)) to achieve 

(5.1) 

where kz is the propagation constant in Z direction. By this elimination we reduce the size of 

the eigenmatrix by one third, but unfortunately it also reduces the sparsity of the final eigen 
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matrix. Considering the citcumstances, the simulation is based on Eq.(5.1), and of course we 

expect to have a complex and non-symmetrical eigenmatrix (with less sparsity). 

The transverse magnetic field is approximated by a limited summation of Bloch modes, as 

L L 

H, = L hx' (y)exp[i(2he/A+kx)x]âx + L hy' (y)exp[i(2i'rr/A+kJx]ây (5.2) 
I=-L I=-L 

where ki s the Bloch wave number, and A is the period in x direction. Note that there is no 

refractive index change outside hatched regions so we can write Eq.(5.1) as a homogenous 

Maxwell's equation, and implement boundary conditions at the interfaces. Therefore, outside 

the hatched regions, we have 

(5.3) 

Inserting Eq.(5.2) in Eq.(5.3), we have 

L {hx, -[(2/11/ A + kx)2 + k: - n2k; ]hx, }exp(i 2i'rrx/ A) = 0 
1 

(5.4) 

where the dot stands for derivative with respect to y . A similar equation can be obtained 

for h yI' Then we can use the orthogonality of exponential functions to achieve 

V/=-L,"',L (5.5) 

Assuming zero boundary conditions at infinities in the y direction (or no wave coming from 

there), the solution will be as follows 

where 
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y? d/2 
(5.6) 



.~. 

(5.7) 

and ax!' cx! are constants ta be determined. The square root branch cut has ta be selected 

properly ta satisfy the boundary conditions at infinity. For hyl ' similarly we have 

(5.8) 

For the central region (-c/2 ~ y ~ c/2 including the hatched region and two small top and 

bottom strips), we exp and the refractive index squared as a two dimensional Fourier series 

M L 

n2 I: I: vbn exp (i2Tilx/A) exp (i2Timy/c), -c/2~ y ~c/2 (5.9) 
m=-M !=-L 

And truncate it ta m = -M,"',M 1 = -L,"',L and similarly, 

M L 

Y't lnn2 = I: I:(v~bnâx+v~bnây)exp(i2Tilx/A)exp(i2Timy/c), -c/2~y~c/2 (5.10) 
m=-MI=-L 

In addition, we expand h xl and h yi as: 

M 

hx!(Y)= I: bxbn exp(i2Timy/c), -c/2 ~ y ~ c/2 
m=-M 

(5.11) 
M 

hy/(y)= I: bybn exp(i2Timy/c), -c/2 ~ y ~ c/2 
m=-M 

which we have limited the number of elements in the summation to 2M + 1. By inserting Eqs. 

(5.2), (5.9), (5.10), and (5.11) into Eq. (5.1), and arranging terms, we will have: 
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L M 

-[(2ht/A+kJ2 + (2m1t/c)2]bx,I,m + I: I: {iv~,'_I',m_m' 
/'=-Lm'=-M 

[(2'1'i/'/A+k)b l' ,-b l' , 2'1'im'/c] + VI_l' _ ,k~b l' ,}=kZ
2
bxI x y.,1n x, ,In ,m ln x"m , ,In 

L M 

-[(2/'1'i/ A + kx / + (2m'1'i/c /]bY,l,m - I: I: {iV:,l_t',m_m' 
t'=-Lm'=-M 

(5.12) 

[(2'1'i/'/A+k )b l' ,-b l' ,2'1'im'/c]-vl_I, _ ,k~b l' ,}=k2bYI x Y, ,m x, ,m ,m m J"m Z, ,In 

where 1 = -L, ... ,L, m = - M + 1, ... ,M -1. If we apply boundary conditions (continuity of 

tangential magnetic and nonnal electric field) at y = ± d /2, see Figure 5.2.1., we will have 

M 

I: bX,l,m (kil - 2i'1'im/c )exp( -i'1'imd/c) = 0 
m=-M (5.13) 

M 

I: bX,l,m(k2/+2i'1'im/c)exp(i'1'imd/c)=0 
m=-M 

where 1 = -L, ... ,L, and Eqs. (5.11), (5.6) and (5.8), have been involved. For b y,l,m the same 

equations are valid. 

From Eqs. (5.13), we can solve bx,l,-M ,bx,l,M as fol1ow 

Where 

M-l 

bX,l,-M = I: dl mbx 1 m' 
m=-M+l 

M-l 

bX,l,M = I: el,mbx,I,m 
m=-M+l 

d - -1 [k k 4 mM'1'i
2

]. ['1'id(M-m)] [i'1'id(M-m)](M'1'i b _m'1'i k ) I,m - 11 21 + 2 sm + exp "'11 21 
D, ccc c c 

[
-iTId(M -m)](MTI mTI) + exp -k2,--kll ccc 

_ -1 [b k -4 mM'1'i
2

]. [TId(M + m)] [i'1'id(M + m)](mTI M'1'i) e',m - '''II 2' 2 sm + exp ,{;, + k 2' 
D, ccc c c 

[
-iTId(M + m)](m1I M'1'i) + exp -k21 +-kll ccc 
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(5.16) 



and DI is defined as 

By inserting Eqs. (5.14), and similar equations for by,l,_M and by,l,M back into Eqs. (5.12), we 

will have 

M-l L 

tobx,I,m+ z= z= {bx J',m,(t1 +t3 ) +bY ,I',m,t4 } = k:bx,l,m 
m'=-M+II'=-L 

M-l L 

toby,l,m + L: L: {bY ,I',m' (t5 +t3 ) +bxJ',m,t2 } = k:by,l,m 
m'=-M+lt'=-L 

where 

to (l,m) = -[(2h:/A+kJ2 + (2m1\/c/] 

tl (l,m,i',m') = 2i1\/ c( -m'v~,I_t',m_m' + Mdl',m,V~,I-I',m+M - Met',m,V~,1_I',m_M) 

'2 (i,m,i', m') = -2i1\/c (-m'V:,1_I',m_m' + Mdl',m'V:,1_I',m+M - Met',m'V:,1_I',m_M) 

'3 (i,m,i',m') = k~ (V I_I',m_m' +dl',m,VI_I',m+M +el',m,VI_I',m_M) 

t4 (i, m,i', m') = i (21\1'/ A + kJ (V~,1-t',m-m' + dt',m,v~,I_I',m+M + et',m,V~,I-I',m_M) 

'5 (i, m,i', m') = -i (21\1'/ A + kx) (V:,1_I',m_m' + dl',m,v:,1_I',m+M + el',m,v:,1_I',m_M ) 

(5.18) 

(5.19) 

With these modifications, Eqs.(5.18) are 2 (2L + 1) X (2M -1) complex nonlinear eigenvalue 

equations. Eqs.(5.18) are about two rimes larger than the eigenvalue matrix of the conventional 

plane wave expansion method, which is due to the complex nature of the plane wave 

amplitude (compared to the real ones in conventional plane wave expansion method [9]). 

5.3 Fourier transform coefficients of Eqs. (5.9) and (5.10) 

V m,l of Eq. (5.9) can be expressed as 
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(5.20) 

where 

1 lC/2JAj2 l, m = - exp ( -i2TIlxj A)exp( -i2TImyjc )dxcfy 
, cA h/2 -Aj2 

(5.21) 

1 J-b/2JA/2 
l"m =- exp (-i2TIlxjA) exp (-i2TImyjc)dxcfy 

cA -c/2 -Aj2 
(5.22) 

1 J
b
/
2 

J
TAj2 

K"m = - exp ( -i 2TIlxj A)exp( -i2TImyjc )dxcfy 
cA -b/2 -TAj2 

(5.23) 

L, m = - + exp( -i 2TIlxj A)exp( -i 2TImyjc )dxdy 1 [J
b
/
2 
J-

TAj2 
J

b
/
21A

/
2 

1 
, cA -b/2 -Aj2 -b/2 TA/2 

(5.24) 

or 

(5.25) 

(5.26) 

K"m = TT' sine (mT') sine (h) (5.27) 

L',m = T' sine(mT')[sine(!)-TSine(h)] (5.28) 

where T' - bj c , and sine x - sin TIxjTIX . If we take derivative of the Fourier series of ln n2 
, 

then by using the ab ove expansion, v:"m and v~"m in Eq. (5.10) ean be ealculated as below 

V~,!,m = i2TIljA (ln n:l"m +lnn;l"m +lnn:K"m +lnn:L"m) 

v~,!,m = i2TImj c(lnn:l"m + lnn:l"m + ln n~K/,m + lnn~L/,m) 

The Hamming window of 
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WI~ ~ {~.54 + 0.46 cos (Z'rrm / M)1I0.54 + 0.46 cos (Z'rrj / L)]. 
-M~m~M, 

-L~/~L (5.30) 

otherwise 

has also been applied to moderate the Gibbs phenomenon due to truncation of e1ements in the 

series [10]. 

5.4 Iterative nonlinear Amoldi method 

Eqs (5.18) represents a nonlinear eigenvalue problem. It can be re-written in matrix form as 

(5.31) 

where B is a complex large sparse matrix and a function of the sought eigenvalue k; b 

represents the collection of eigenvectors. 

The implicidy restarted Arnoldi method is an efficient iterative technique to detetmine the few 

eigenvalues and eigenvectors of a large linear sparse matrix[11]. To explain the method, first 

consider a linear case, in which B is a constant square matrix. The method in its basic fotm is 

the most suitable technique for finding a specific eigenvalue and eigenvector, based on an 

initial eigenvector guess. The Ritz pair (the eigenvector and eigenvalue) at the end of each 

iteration also provide the best eigenvalue and a better eigenvector guess for the next step. 

However, the results are too sensitive to the initial guess. The implicidy restarted Arnoldi 

method sorts a few eigenvalues according to the desired criteria (e.g., maximum real value) that 

one can choose between, and then adapt the Ritz pairs according to that selection. The 

simplified flow chart of linear implicidy restarted Arnoldi method is depicted in Figure 5.4.1. 
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No 

Convergence? 

Yes 

1. The matrix B 
2. The number of eigenparies to be computed 
3. A sorting cntenon 

Calculate the Ritz pair 
Sorting eigen values 

aecording to the sorting 
cntenon, and select the 

desired one 

Figure 5.4.1 The flow chart of linear Amoldi method 

Now consider the nonlinear case in which the matrix B is a function of the sought eigenvalue. 

The proposed flowchart of nonlinear Arnoldi method is depicted in Figure 5.4.2 . Note that we 

have to update the nonlinear matrix B based on the desired eigenvalue. For example to achieve 

the bound mode, one can sort the eigenvalues according to the magnitude of their real parts, 

and then select the largest one for updating matrix B. 

No 

Convergence? 

Yes 

1. The matrix B and an initial eigen value guess 
2. The number of eigenparies to be eomputed 
3. A sorting criterion 

Sorting eigen values 
aceording to the sorting 
eritenon, and select the 

desired one 

Figure 5.4.2 The flow chart of nonlinear Amoldi method 
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If the method converges, then the output of this technique will be the desired eigenvalue 

satisfying Eq.(5.31) . 

5.5 Mode characterization 

Since the Bloch wave number is the phase of a periodic Bloch wave, so ail wave numbers 

beyond the fust Brillouin zone can be shifted into the fust Brillouin zone. Ail discussion in this 

chapter is based on this assumption. 

A bound mode is a mode with an amplitude that neither decreases nor increases by 

propagating thtough the photonic crystal. Aiso ail of the wave components have to be 

decaying outside the photonic crystal. The transverse propagation constant of the field 

components outside photonic crystal (Eqs.(5.7» can be written as 

(5.32) 

Where 

(5.33) 

So for the bound mode, ail kpmust be real, i.e., 

(5.34) 

Otherwise, some field components outside photonic crystal will have imaginary transverse 

wave numbers. In other words, they will be radiative. Figure 5.5.1 shows the complex 

npc - k / ka plane in terms of various solutions for slab 1-D photonic crystals. Additionaily, we 

have assumed ndacl < nsub ; and for symmetrical structure in which ndacl = nsub ' the "substrate 

leaky" region ceases to exist. 
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Figure 5.5.1 The complex npc plane in terms of various solutions 

5.6 Numerical demonstration 

Consider the SOI wafer with top silicon layer of 0.5 ~m thickness. The grating period of 

256nm, and the grating duty factor of T = 0.5. The wavelength of interest is 

À = 1537.4nm and the polarization is TM like (Electric field normal to the slab surface). For 

the sake of modeling the permittivity of the silicon and silica are assumed 12 and 2, 

respectively. The parameters of Figure 5.2.1 are chosen as 

n1 =1, nz=J2, n3 =02, n4=1 
A = 265nm, a = A/2 = 132.5nm, b = 500nm 

c = 1000 nm, d = 800nm, L = M = 20 

(5.35) 

Figure 5.6.1 shows near the band edge versus the number of plane waves in normal direction 

to the slab, using the conventional plane wave expansion method with the supercell of 6 rimes 

of the height of slab[9]. Neither refractive index over sampling nor tensor averaging is applied. 

The number of modes in the periodic direction is assumed to be L = 32. As is seen, at the 

band edge, there is about 10% error, when M = L = 32 (total number of participating plane 
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waves is 1024). Accurate results are only achievable after M = 256, or total number of modes 

of 4096. Then the eigenmatrix dimension is 32768. 

Figure 5.6.2 shows the convergence pattern of the adopted Arnoldi method when it is initiated 

with randomly generated eigenvector. One hundred twenty iterations are enough to get to four 

L=32, P = 1t/ A, Iv = 1537.40 nrn 
0.28,-------.----'x::,----,--o"----,.-------.-----,2.55 

0.27 ···· .... ········1· .... ··· .......... : .......... · .... ·!· ............ · .... !········ .......... i········ ........ ··· ··1.1125 

:: :: 
: : . : : 

0.26 ................ j .............. + .............. -+ .... · .......... ·-f·· ...... ·········f· .. · ............ ·· ··4.775 

0.25 ................ ;... ............. .; ..................................... [ ................. 1 ................. 1.8.4375 8 

.~ 024 .............. ;.....:,.........1·········1···········).......]."., ~ 
0.23 ........ ·· .. ···l ...... ··· ...... ·· j ................ ·r ................ , .. ········· ...... t .................. ··15.7625 

: ::: 
0.22 .............. j ..................................... , .................. [ ................ t"" ................ ··19.425 

32 64 128 

M 
256 512 1024 

Figure 5.6.1 Normalized band edge versus plane wave components 

in the vertical direction. 
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O,-----,---,--x---,---,-----,---r-1f---, 
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Re(1I 2) 
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Figure 5.6.2 A typical convergence pattern of the nonlinear Arnoldi method for the dominant eigenvalue 
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meaningful decimal points accuracy for the real mam eigenvalue. If one starts from an 

appropriate initial guess (e.g. the eigenvector of the previous step in the procedure of obtaining 

the full wave vector diagram), the convergence will be faster and it will be achievable in about 

thirty iterations. AIl intermediate values have a zero imaginary parts too (the convergence path 

layon the real axis). Considering the number of components that we have chosen, 

L = M = 32, the dimension of eigen matrix is 2(2L + 1)(2M -1) = 8190. 

Figure 5.6.3 shows the results of our method compared to the traditional plane wave expansion 

method with a variational formula, and the exact finite element method. The parameters of 

(5.35) are selected. Assuming the results of the finite elements as a benchmark, our results are 

very weIl matched with the accurate results. More specificaIly, the error is less than 0.3% in the 

ranges that the graph has been plotted. The method provides better agreement with the exact 

finite element method than the conventional plane wave extension method [9] when L = 128 

and M = 32 modes have been employed. The size of the corresponding eigenvalue matrix is 

16384. The benchmark method is explained in appendix A. 

Figure 5.7.1 shows the movement of the six first modes in the complex n:c plane with nx (at a 

constant wavelength of "41 = 1537.40 nm). As is seen, each mode has a unique trajectory. 

1.4,----,---,------,~-,__-_.-____r--_,__-__._-_._-_____, 

~~;~i:~ 
1.2 

: : : : Finit~ Eleme~t Method ! \, !i.\ : 
0.2 ··········r··········j···········+···········i········ .... j ........... + .......... j ........... -l ... \\k-....... . 

. i EPWE method with 20x20 plane waves ; i!!o\ 

P85 1.9 

: , , . . , : : :1' 
1.95 2 2.05 2.1 

n 
Z 

2.15 2.2 

Figure 5.6.3 The results of various methods 
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Bound modes are hasically those with no imaginary parts and their real parts lie hetween 

min (n~b' n~ad) = 2, and n~ore = 12. Figure 5.5.1 depicts how the proper set of modes can he 

selected to match a particular setup. 

5.7 Conclusion 

Eqs. (5.12) can he reduced to the conventional plane wave expansion method with supercell 

definition, provided we choose a sufficiently large expansion window c/22: y 2: -c/2 and 

choosing 1 = -L, ... ,L, m = -M, .. " M. This selection hy default implies that the field 

repeats itself along the vertical direction. The convergence of this form of the plane wave 

2.5 \ 
\ 

2 

1 

0.5 

f 

\ 
\ 

\ 

" 

,/ 
,/ 

,/ 

;t 

5 

e b a o ~-L~ __ ~ __ ~ ____ -L-L ____ J-~ ________ L-~ 

-1 0 1 2 3 4 5 6 7 8 9 

Re[ n~c] 

Figure 5.7.1 The real and imaginary part of n;c versus nx at fixed wavelength of )...41 = 1537.40 nm. The bottom 

scale is for the real part (bold lines) modes characterized sequentially by the English alphabet. The top scale is for the 

imaginary part (dashed lines) modes characterized sequentially by the English alphabet and a prime. 
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expanslon method remams the same compared with the method when it was initially 

introduced [4]. However, the method as presented here is computationally more intensive than 

the state of art plane wave expansion method. Although we have to execute the plane wave 

expansion program numerous rimes, thanks to the Bloch variational iterative formula[9], the 

method is relatively fast. Finally, the capability of our method to trace the leaky modes and the 

fact that it needs fewer Fourier components in the non-periodic direction make it attractive. 
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Chapter 6 

FIRST BAND S-VECTOR PHOTONIC CRYSTAL SUPERPRISM 
DEMULTIPLEXER DESIGN AND OPTIMIZATION 

We present a complete approach to the design of a wavelength demultiplexer based on 

the S-vector superprism photonic crystal phenomenon. We make use of a full 3-D 

modeling approach based on the plane wave expansion method which allows the full 

dynamics of beam propagation to be considered. This reveals significant non

uniformities in beam divergence and dispersion as a function of wave1ength which has 

been neglected in previous 2-D models and which reduces the scalability of these 

devices. We examine 1-D and 2-D photonic crystal lattices and show that the 1-D 

lattice results in the smallest superprism area as a function of channel count. This is 

due to its lower band curvature relative to 2-D square and hexagonal lattices, even 

though it has much lower angular dispersion. We also modify the previous S-vector 

superprism design so that for each channel the prism region extends only as far as 

necessary for channel resolution at a specified crosstalk level. Based on Silicon-On

Insulator technology, with a top silicon layer of 260 nm and minimum feature size of 

75nm, we present the design of a 4-channel Coarse Wavelength Division Multiplexing 

(CWDM) de multiplexer with theoretical crosstalk of 20dB, which has a superprism 

area of1367J.1m2. 

6.1 Introduction 

Although the Fust motivation for the development of photorllc crystals \Vas the prohibition of 

light propagation in specified directions at wavelengths inside the bandgap, wave propagation 

through photorllc crystals at wavelengths below the band edge has more recently been of great 
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interest. One of the most widely investigated phenomena is that of beam steering which was 

f11:st obselved in slab 1-D photonic crystals about 20 years ago [1], but it was not until 1998 

that the observation of 5° /nm beam steering dispersion in a pseudo-2-D auto-cloned photonic 

crystal [2] gathered a great deal of attention. This phenomenon has become known as the 

superprism effect, despite the fact that it arises from anomalous rcfraction near the band edge, 

(which is based on group velocity dispersion) rather than phase velocity dispersion which is the 

origin of wavelength separation in a conventional isotropic prism. This distinction recently has 

been made clearcr by referring to devices of this type as S-vector superprisms. In contrast, 

photonic ctystal superprisms that make use of phase velocity dispersion are referred to as k

vector supeq)risms [3-6]. When the large beam steering effect in the S-vector superprism was 

first observed it was thought that it would be a promising alternative for D\VDM 

demultiplexers (requiring 1.00 GHz channel spacing) or even beyond. However, it has been 

shown recently that the demultiplexer resolution of the S-vector superprism is not only a 

function of dispersion, but is also a function of the beam divergence within the photonic 

crystals [6]. Unfortunately, the beam divergence is a function of band curvature which is not 

small near the band edge wherc the dispersion is high [7]. The beam divergence is indeed the 

main factor limiting the resolution. Using the neg'tltive refraction observable at the bandedge of 

the second band to compensate the positively refracted incident beam (the so called 

preconditioning) is a novel idea that has been suggested for rnitigating tlns issue [8;9]. But thls 

cancellation is achievable only over relatively narrow bandwidth (only 32 nm), and the loss of 

working too near the band edge is considerable[8]. Adiabatic tapering of the lattice has also 

been inttoduced to reduce the loss[9;10], but of course the fabrication would be challenging. 

The resolution can also be improved by increasing tlle aperture size, thls requires large 

photonic crystal regions tllat means the devices are no longer small compared to other 

demultiplexer technologies. However for Coarse Wavelength Division Multiplexing (CWDI'v1) 

applications which require a 20 nm channel spacing the S-vector superprism has been shown 

to be competitive [6]. However, as we will show in this chapter previous studies of superprism 

scalability have been based on a set of assumptions that may lead to overly optirnistic rcsults. 

Figure 6.1.1 shows the well known S-vector superprism configuration ,vhere the output 

waveguides arc located on the circumfercnce of a circle and directed radially (in direction of the 

beam inside the photonic crystal) and the input waveguide is at the centre of the circle [11;12]. 
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Although this configuration makes the physical path inside photonic crystal the same for ail 

channels, it suffers From the fact that channels with large divergence angles and high angular 

dispersion occupy unnecessarily a large slice of photonic crystal to reach the output 

circumference. This \vill result in excessive loss and output beam width, in addition to requiring 

a larget photonic crystal area, although it simplifies the design process. Noting that the 

conservation of the tangential component of the wave vector across the bulk photonic crystal 

and the output facets is the key factor in detennining the output beam direction, the output 

beall1 direction outside photonic crystal is not always the same as the one inside. Therefore, 

either the output waveguide direction needs correction or the output facet direction with the 

bulk photonic crystal must be modified. 

Input 
waveguide ~<'Rl 

~N 
Output waveguides 

Figure 6.1.1. The conventional S-vector demultiplexer configuration. 

The S-vector superprism phenomenon can be observed either in the first or the second 

photonic crystal bands. For the second band the effect is caused bythe apparent distortion 

From a circular shape of the wave vector diagram (eqw-frequency band diagram) and also by 

multiplicity within the diagram [2] Clearly when there is no multiplicity (as in l-D photonic 

crystals), cilere will be less dispersion, and when there is high multiplicity (as in hexagonal 

lattice), there will be more [11]. Fabrication is simplified since for the second band the period is 

about twice that of the f1tst band, but cile presence of the first band may cause bands to 

ovetlap. Then multiple refractions at the input interface are unavoidable due to the overlapping 
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of the bands. This multiple refraction ",'Ûl increase the coupling loss (ali the power wruch has 

been coupled to the modes in the first band is lost). Furtheml0re, there may be many 

diffracted waves at the output facet of the photonic crystal \Vith various diffraction angles [13] 

which is due to many reciprocal lattice vectors of small amplitude (due to the size of the 

photonic cryst.al period). Considering the fact that each diffracted beam carries a portion of the 

initial power and the design is based only on one particular beam, the loss would be large. 

The dispersion observed in the first band of photonic crystal has been also exploited for S

vector superprisms[12j. The source of dispersion in this case is the evolution of the band with 

wavelength. The first band diagram evolves with decreasing wavelength from a clos cd curve 

(resembling the photonic crystal type in the rcciprocal space), to hav1ng the band gap 

perpendicul.ar to the main S}lmmetry axes of the !.attice. The maximum dispersion happens at 

the transition of the band wherc it evolves from a closed curve around the origin to having 

bandgaps. The period is usualiy small enough and the reciprocal!.attice vectors arc too large to 

allow many diffracted waves at the output interface to be generated. The wave rcfraction at the 

interface of photonic crystal can be described by the wave vector diagram which reprcsents the 

wave propagation constant for a given wavelength and direction of propagation (also known as 

the equi-frequency contour diagram). Figure 6.1.2 shows wave vector diagram of a superprism 

where input and output interfaces are paraliel and the incident angle is n01nlal. The lattice is a 

2-D square which has been rotated by 15°. The circle is the slab free-space wave vcctor 

diagram. As is shown on the diagram, double rcfraction (points A and 13 in Figure 6.1.2) arc 

possible at the output interface. Aligning the output waveguide with either direction will 

capture the wave de:flected on1y in that direction (subject to the low acceptance angle of the 

output waveguides, and/or de:flection beam angles dlat arc not too close to each odler). 

However, the grcat dispersion that has been obscrved and reportcd [2;5;14J usually happens 

\v1thin a narrow bandwidth, which fades quickly for other wavelengths. Furthermore and as we 

will show, the divergence angle of the bcam is also highly non-uniform with respect to 

wavelength. Underthese circumstances, the wavelength resolution is not re!.ated in any simple 

way to dispersion and beam divergence. Also, although the design equations usually are not 

affected if one chooses 2-D photonic cryst.al modeling the omission of the thircl dimension will 

cause the results obtained to be unrealistic. However this has been the approach followed in 

most previous analyses of these devices [3;6;15]. 
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Figure 6.1.2. Input and output light detlection including ail Brillouin zones. 

We will show in this chapter that an attempt to dete11lùne which photonic crystal type and 

configuration renders maximum dispersion and nùnimum beam divergence at a single 

wavelength using linear analysis (i.e. assuming equal dispersion and beam divergence for all 

channels) is not adequate for real applications. Therefore there is a need for a generai modeling 

and design tool that can properly predict and take into account the non-uniformities of these 

devices. 

This chapter attempts to find the best photonic crystal type, configuration and geometry for an 

N-channel demultiplexer using the first band S-vector superprism. Making use of full 3-D 

modeling of the slab photonic crystal, the general modeling and design equations are 

developed which include all the non-U1ùfomuties of the S-vector superprism. Wc will thcn use 

this model to demonstrate the limitations of 2-D modeling in tlùs context and the importance 

of a full 3-D model ,vhen realistic results are required. Independently of trus more rigorous 

modeling approach, we also int.roducc a novel method for finding the best configuration for 

each lattice type. 'T'he chapter is organized as follows. In section 2 wc introduce the dispersion 

gauge concept and apply it to three slab lattice photonic crystal types including the 1-D lattice, 

a 2-D square lattice, and a 2·D hexagonallattice on the first band. Based on this gauge, wc 

maximize dispersion in order to obtain the best lattiee configurations for each lattice type. The 
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superprism design equations are developed in section 3. This uniform design approach enables 

us to make a comparison between lattice types based on the criteria of minimum prism area for 

a given channel count, spacing and crosstalk level. Being mature enough to provide a feature 

size of 50 111U or less with an aspect ratio of more than 10, wc have selected the Silicon-on

insulator (SOI) technology for our demonsttation. The wafer wc have chosen has 260 nm top 

silicon layer. 'The design equations have been us cd by applying them to the design of a 4-

channel CWDM demultiplexer with theoretical cross talk levcl of 20dB, using various slab 

photonic crystal types in section 4. \Ve compare these lattice types with respect to superprism 

area. In section 5 wc discuss our results and compare them with other design data. A 

discussion of the importance of full 3-D modeling and difficulty of the 2-D eqlùvalent models 

are presented in section 6. Section 7 conc1udes the chapter. 

6.2 Maximum available dispersion, average group velo city 

Figure 6.2.1 shows the unit celi of 1-D lattice, 2-D square lattice and 2-D hexagonallattice 

photonic ctystals. The lattices are rotated to ensure that there "rill be a band-gap for a wave 

traveling in the Z direction. For later reference, the first Brillouin zone in each case is also 

shown in Figure 6.2.2. The photonic crystal.s are made by etching groves (for the 1-D case) or 

holes (for the 2-D cases) on a slab of silicon, the substrate is silicon oxide. 

~A~ 

l 
A 

J 
Figure 6.2.1. l-D lattice, 2-D square lattice, and 2-D hexagonallattice photonic crystal unit cells 
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Figure 6.2.2. l-D lattice, 2-D square lattice, and 2-D hexagonallattice photonic crystal Brillouin zones together with 
irreducible zones. 

Wave-front refraction at the photonic crystal boundaries can be determined by imposing the 

conservation of the tangential component of dle phase velo city (or k-vector) across the 

interface. However, the beam direction follows the group velocity direction (S-vector) and it is 

direeted along the gradient of the wave veetor diagram at the operating point[16]. 

The beam divergence inside the photonic crystal, which has a dominant effect in limiting the 

resolution of the demultiplexer, can be obtained by using the curvature of the wave vector 

diat,ttam again at the operating point [7]. We find that using the nonnalized wave vector 

diagram (wave vector components divided by the wave number in vacuum (ko = 2Ti/À), i.e. 

nx kxJko ,nz - kz/ko ) simplifies the implementation of the wave vector boundary 

conditions [4; 17 -19]. This is because the effective index of the slab (n eff - ~ / ko ) is only a weak 

function of the wavelength and so we can treat it as a constant. In contrast to this, the 

tangential component of wave vector is obviously a strong function of wavelength, and thus 

different boundary conditions are required for each wavelength. It is also interesting to note 

that at longer wavelengdls (or at the smaller photonic crystal periods), as the Bloch modes 

approach plane waves, the nOl1nalized wave vector diagram approaches the index ellipsoid. For 

the 2-D photonic crystals that we investigate here, due to symmetry, the normalized wave 

vector diagram approaches a circle (the photonic crystal behaves as an isotropic material), while 

for the 1-D case, it approaches to an ellipse and the birefringence is well-known as foml 

birefringence [20] . 

Keeping the tangential component of the phase velo city continuous across the interface, z:e., 

(6.1) 
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wherelPt is the incident angle (see Figure 6.1.1), one can find the direction of phase velocity in 

the photonic crystal as 

(6.2) 

where c is tlle velo city of light in vacuum and nz corresponds to nx obtained from Eq.(6.1) at 

tlle specified wavelength. The group velocity 1S defined by 

(6.3) 

and it is perpendicular to the wave vector diagram [16J at the operating point. For our analysis 

it is easier to work with a normalized group velocity given by: 

(6.4) 

'lbe wave refraction at the interface of the input waveguide and the photonic crystal can be 

described by the wave vector diagram too. In this case the effective index of the sbb can be 

replaced by the effective index of the input waveguide at the interface. 

Tt has been shown recently that the amount of dispersion is related to the stored energy in the 

photonic crystal [21]. T'herefore more dispersive photonic crystals have lower energy velocities. 

For the spatially modulated medium, the gtoup velocity repœsents the velocity of energy 

transfer averaged over the period [21]. We monitor the variation of the normalized wave vector 

nx along the band edge (where kz = TI/A at point X, kz = TI/A along XM and 

kz = 2TI/J3A along .KM directions for 1-D, 2-D square and 2-D hexagonal lattiee types 

respectively, see Figure 6.2.2) within the desired spectral window [À!> ÀN J. Figure 6.2.3 

depicts a typical 2-D hexagonal wave vector diagram at 8 different wavelengths. It shows 

clearly the normalized wave vector components at the 
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2-D hexagonal, A=283 nm, h = 260 nm 
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Figure 6.2.3. A typical normalized wave vector diagram of a 2-D hexagonallattice slab photonic crystal at eight different 
wavelengths. 

band edge. The average gradient of nx along the band edge (first Brillouin zone edge) can be 

written as: 

(6.5) 

Then dle average normalized group velocity at the band edge, using Eq.(6.5), can be expressed 

as: 

(6.6) 

Because the maximum dispersion usually happens at the band edge (and the lower the group 

velocity, the higher the dispersion) the above parameter can be taken as an indicator for the 

maxin1Um available dispersion. In other words, a lattice type with a configuration that provides 

lower (v g) over the desired spect.tal window has higher available dispersion and would be a 

better choice for making a superprism. 

124 



The wave vector diagrams are obtained by using the plane wave expansion method over the 3-

D structure. The mesh size is 64x64 on the lattice surface (x-Z plane) and also 64 points in the 

vertical direction (y a.xis), on which we impose an artificia1 periodicity (the so called super-ceIl) 

of 6 cimes the slab height. Figure 6.2.4 shows the super-cell of a 2-D hexagonal slab photonic 

crystal. The dielectric constant is sampled 6 times finer than the imposed mesh size. For an 

accurate complete wave vector diagram the reduced Brillouin zone has been sampled into 104 

partitions. The polarization is assumed ta be TM (electric field normal ta the slab surface). 

Within our model, we assume that the silicon slab and silica substrate have a refractive index of 

.J12 and .fi respectively. We ensure that we are working above the light line cone by 

checking that the effective index of the photonic crystal defined as nef[ (PC) - ~n~ + n: is less 

than the refractive index of the cladding (which is air) and the substrate (which is silica). 

x 

Figure 6.2.4. The supercell of slab 2-D hexagonal photonic crystal. 
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Figure 6.2.5 The normalized wave vector diagram for 2-D square lat1Îce and l-D lattice photOlùc crystal. 

Figure 6.2.5 shows a typical normalized wave vector diagram for the ftrst band of the 2-D 

square lattice and the 1-D lattice photonic crystal. There are some differences and similarities 

among the wave vector diagrams of different lattice types. The first band of the 1-D photoruc 

crystal is an open curve (provided there is a bandgap), but the 2-D square and 2-D hexagonal 

first band wave vector diagrams resemble square and equilateral triangles with an asymptotic 

internaI angle of 90 and 60 degrees respectively. In other words, the wave vector diagrams 

resemble the lattice type in reciprocal space (as is shown in Figure 6.2.5) and dley inherit dle 

photonic crystal symmetries along the edges of the irreducible Brillouin zone (l~e., along kx ' 

rM and rK directions for 1-D, square and hexagonallattices respectively), Therefore, one can 

conclude that the higher the symmetry order (i.e. higher n in the symmetry operation en)' the 

more pronounced the curvature of the wave vector diagram \\o-ill be. Comparing lattice types 

with this respect, 1-D has the least curvature whilst hexagonal has the most. (see Figure 6.2.5). 

As we mentioned before, the maximum dispersion happens when the band diagram evolves 

from the closed curve around the origin to the ons et of the bandgap. However, in order to 

reduce sensitivity to fabrication imperfections wc choose the lattice parameters such that the 

bandgap size is less sensitive to the lattice dimensions (i.e., we do not want too small the 

bandgap). However this represents a trade-off between improved dispersion and more 

challenging fabrication. This implies that (for practical reasons) it is preferable to have a small 

band gap at the long wavelength end of dle desired spectrum, (for example, in Figure 6.2.4 the 
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wave vector diagram shows a small band gap nx = 0.2 for a wave1ength of Â8 = 1.45f.lm), ù., 

we keep n (ÂN)I = 0.2. Note that in photonic crystals, the dispersion is usually 
. x bandedge . . 

negative, i.e., n (Â1 )1 ? n (ÂN)I ., as a result, there will be a weIl established band 
x bandedge x bandedge 

edge alollg the whole spectrum. Al~o since the smaller the bandgap, the more dispersion is 

achievable, by fixing n (Â N)I = 0.2 we impose a reasonable restriction for lattice types, 
. x bandedge' . 

which makes comparison more meaningful. 

A 

Hole diameter (cf), and 
initial guess for period (A;) 

Calculate nx at 'AN where kz is at the bandedge, 
using 3-D plane wave expansion method 

Yes 
Convergence? 

1 nx-O.21 <8 

No Multiply dimensions by 
O.2/nx (except for the 

slab height) 

Figure 6.2.6. The flow chart for obtaining the period for each hole diameter, keeping nx (Â N ) = 0.2 at the bandedge. 

Imposing the ab ove restriction on photonic crystals with fi'œd slab height, we propose the 

following procedure (See Figure 6.2.6 for the flow chatt). This iterative procedure finds proper 

period for each hole diameter maintaining the restriction nx (ÂN )Ibandedge = 0.2. The scaling law 

of photonic crystals (ignoring its effect of the slab height) was used to correct the initial guess 

and to lillk iterations. Five iterations were almost always enough for convergence. 

Figure 6.2.7 shows the average notmalized bJ1:0UP vclocity versus the hole diameter d for l-D, 

2-D square and 2-D hexagonal lattice slab phOt01ÙC crystals maintaining the restriction of 
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n (À N)I = 0.2. The average has been taken ove! the wavelength span of À1 = 1.391lm 
x bandedge 

to À4 = 1.45 J.lffi . As can be seen, the lowest group velocity is found for the 2-D hexagonal 

lattice slab photonic crystal whilst the largest is found for the slab 1-D photonic crystal. Tt is 

notable that the extent of the hexagonal lattice band diagram shrinks dramatically for larger 

hole diameters (or at lower wavelengths), making it less appropriate for practicul applications. 

h = 260 nm 
o.22r--,------,---,----,------:::I===p---.---=:o=-----. 

0.2 ············t·············j············ ;··············f·············j···········)············+ ........... -j- ........... . 
: : : li: : 

0.18 ............ + ........... ; .......... ) ............. + ............ ; ........... ..! ............. ~ ... ······~quare 

0.16 ............ ~ ... '1-D : ..............•............ L ........... j ............. ··············T······ .... ·1············ 
, ! : i ! l ' : O. 14 --- -:----_ ......... ~ ... -.-.. -.----~-............ -:- .... -, .. -.-.- ~-- --------- '-'f-' ........ .~-.--- ------·'1" •••••••••••• 

1;:0, !!!!!!!! 
: : : : : , : : 

'-/ 0.12···" ..... ; .............. ! ............ -+ ........... + ........... +.... . .... ! ............. + ............ + .......... . 
l : 1 : : i i i 

0.1 ···········~·············i··········)···········)·· ········i···········..j··············~··········)······· .... 

0.08 ............ 1... .......... ,........... ;··············~·············l-·············l·············l············;············· 
, : . ., ............. L ........... ~~~~~~~~~ ....... J .......... . 0.06 ...... ;!';! 

i i i i 
O. 0400-----="50:-----:1-':-00=----:-15=-=0,-----2=-'0'-=-0--:2:-::5-=-0 --::3-':-00=-----=:-35=-=0,-----4"'"0,--;:0-----:-'450 

d(nm) 

Figure 6.2.7. Averaged normalized group velocity at the band-edge for various lattice types versus hole diameter. 
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Figure 6.2.8. The inner-hole spacing versus hale diameter corresponds ta Figure 6.2.7. 
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Figure 6.2.8 shows the inter-hole size (A - d) versus hole diameter d with the same conditions 

as considered in Figure 6.2.7. The hole size and inter-hole size must be greater than the 

minimum feature size of the fabrication process. 

Using Figure 6.2.8 and with the minimum feature size of 75 nm, the results for the best 

parame ter of various Iattice types (which maximize the dispersion at the bandedge whilst 

respecting the restriction of n (À N)I = 0.2) are summarized in Table 6.1. 
. x bandedge 

Table 6.1 Period, [111 factor and maximum available dispersion for various !attiee types based on a 75 nm hale diametcr 

2-D hex 208.4 283.4 6 0.062 

Table 6.1 aiso records the fill factor. It is interesting to observe in Table 6.1 that the minimum 

group velo city and the fill factor are monotorucally related. Having the lowest fill factor, dle 

hexagonallattice provides the lowest group velocity at the band edge, whilst the 1-D photonic 

crystal gives the highest BU factor with the highest group velocity. Keep in mind that the 

average group velo city and dispersion are inversely related. 

6.3 S-vector demultiplexer design equations 

The goal is to design an N~chanllel demultiplexer, which resolves N waveiengths at 

À = Àp"',ÀN within a speciBed crosstalk level. The channel spacing is fl.xed at~À. Figure 

6.3.1a shows a typical Brst band diagram near the band edge in a suitable operating region for 

the S-vector superprism. To be sure that tangential component of the wave vectors inside 

photoruc crystal are greater than or equal to the tangential component of the incident beam 

wave vector (in other words to avoid band-gap), the bulk photoruc crystal stmcture has to be 

129 



. ~. 

wave1ength, see Figure 6.3.1 a) in the line with the tangential component of incident beam wave 

vector, i.e., 

(6.7) 

where!.pl is the input waveguide angle with respect to the normal to the interface, and 81 is the 

slant angle defined as dle angle between dle Z axis of the lattice (as defined in Figure 6.2.2) and 

the normal to the interface). Figure 6.3.1 b demonstrates how the band gap is avoided by 

choosing the slant angle greater dlan 81min • When incident angle is zero (!.pl = 0) Eq.(6.7) will 

be recluced to [22] 

81min = tan-
1 (n /nx)1 

Z bandedge 
(6.8) 

The schematic of the proposed demultiplexer is shown in Figure 6.3.2, in which the beam 

propagation length is truncated to the minimum value necessary to resolve a channel from its 

neighbors (we will explain how this length is determined later), and also we extend the 

demultiplexer area to exacdy accomttlodate the beam expansion inside the photonic crystal. 

The mininlum propagation length Rm,m+l to resolve dle mth channel (at the wavelength >--m 

with the main propagation direction of !.p~,m) from the (m+1t channel (at >--m+l with the 

main propagation direction of !.p2,m+l) \vithin a specified photonic crystal, since each plane-

wave component is e:xpanded into Bloch waves and they will then be affected by the complex 

dispersion characteristics of the photonic crystal. The light intensity envelope can be 

approximated by a Gaussian profile when the beam divergence angle is sufficiendy small [7]. 

Modeling Gaussian beam propagation in the photonic crystal therefore requires calculation of 

the propagation characteristics of the plane wave com.ponents (with the full spectral width at 

e-2 intensity of80 ). 'Ille divergence angle of the beam can be approximated as follows [7] . 
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Figure 6.3.1. Normalized wave vector diagram near the band edge Ca) without rotation (b) with a rotation of 81 > 81min . 

Figure 6.3.2. The proposed S-vector superprism demultiplexer. 

The input waveguide mode can be approximated by a Gaussian beam[23]. However, this beam 

is no longer Gaussian when it propagates through the photonic crystal, since each plane-wave 
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component is expanded into Bloch waves and they will then be affected by the complex 

dispersion characteristics of the photonic crystal. The light intensity envelope can be 

approximated by a Gaussian proflle when the beam divergence angle is sufflciendy small [7]. 

(6.9) 

where weff is the effective input beam width Modeling Gaussian beam propagation in the 

photonic crystal therefore requires calculation of the propagation characteristics of the plane 

wave components (with the full specttal widdl at e -2 intensity of(0 )' The divergence angle of 

the beam can be approximated as follows [7] 

(6.10) 

Figure 6.3.3. A Schematic of the demultiplexer showing the defmed parameters. 
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and Wo is thc cffcctivc input wavcguide width[23], neff is thc effcctivc rcfractivc index of thc 

slab reglon and p is the bcam divergcnce multiplication factor (reprcscnting thc beam 

divergence pro pert y of the photonic crystal) which 1S defined as [7] 

(6.11) 

whcrc 'Pl and 'P~ arc thc incident and dlC stccring angle of thc bcam. Ra is thc Raylcigh rangc 

dcfincd as 

(6.12) 

À is thc wavclcngth of thc incidcnt light. Thus, thc optical powcr dcnsity in thc slab rcgion (to 

fust ordcr approximation) can bc writtcn as 

(6.13) 

whcrc () is measurcd vcrsus propagation direction, ho 1S thc cffcctivc photonic crystal slab 

hcight, the'y axis is pcrpcndicular to the slab direction. am is the total propagation 10ss. 

Theoretical cross talk of two ncighboring channel can bc dcfincd as thc normalizcd 

ovcrlapping integral of the two propagating Gaussian bcam at the fixed R corresponds to these 

channels, i.e., 

(6.14) 

where p (divcrgence angle ratio) is the ratio of beam divergence anglc of the two ncighboring 

channels, and T] (deviation anglc ratio) is thc ratio of the differcnce in the beam deviation angle 

and ilic beam divergence anglc (.6.'P~ - T]8J. Using Eq.(6.14), the maximum thcoretical cross 

talk can bc expressed as 

(6.15) 
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Figure 6.3.4 shows the deviation angle ratio 'Tl versus the beam divergence angle ratio p for 

various theoretical cross talk levels. The divergence angle of the Gaussian beam reduces from 

infmity at the waist to 1ts minimum value at the far field. However, 1t 1S not necessary to let it 

expand that far to be ableto resolve it from neighboring channels. The minimum propagation 

length to resolve the mth channel from (m+lt one within a specified crosstalk level Rm.m+l 

(see Figure 6.3.4) can be found solving Eq. (6.15)using Eq. (6.9), and noting that 

(6.16) 

Obviously, the propagation length obtained in this way is not in the Fraunhofer zone. 'Ibe 

demultiplexer length for mth channel (Rm) is the maximum of Rm.m+l and Rm.m-l' 

10 \ ... j ............. ; 
\ i 

1 

P 

_____ .. _ ...... _ ... ~ ............. -,~ .... :,'/1 
: ,/ 

4 5 

Figure 6.3.4. The deviation angle ratio 'Tl versus beam divergence ratio p for various maximum theoretical crosstalk levels. 

We will now show that our analys1s (Eq.(6.15)) 1S an extension of prevlous models [6] and it 

will reduce to the prevlous results if the device s1ze 1S large compared to the Rayleigh range, 

and if the wavelength increment is small (or non-uniformity is negligible), Let us assume that 

beam divergence is equal for all channels 50 thatp ~ 1, then using Eq.(6.15) cross-tall< can be 

approximated as 
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(6.17) 

Using Eq.(6.9) and in the Fraunhofer range (or when the Rayleigh range is small compared to 

the device size), we have 

(6.18) 

Where ris the resolution parameter defllled as 

r- p/q (6.19) 

And q is the normalized angular dispersion defined as 

(6.20) 

1bus the resolution can be written as 

(6.21) 

This is essentially the same expœsslOn (for a theoretical cross talk lev el of 17.4dB, 

or.J -ln E, = 2) as the one obtained previously [6]. As will be explained in the next section, we 

can neither ignore the non-uniformity nor t.reat the device as large compared to the Rayleigh 

range, so we have to use the general Eq.(6.15) in our case. 

6.4 Numerical illustration 

To obtain specific results, we design a 4-chanel C\"VDM demultiplexer (.6.>- = 20nm) with a 

desired theoretical crosst.alk level of 20dB. The desired spectral window is from >-1 = 1.39j..lm 

to >-4 = 1.45j..lm . The polarization is T']',,1 with the electtic field normal to the slab surface. The 

design has been carried out for the three latrice types that we optimized in section 2 (with the 

results summarized in Table 6.1). The direction of the input waveguide (incident angle l(1)' the 
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angle 81 can be used to minimize the superprism area (-S). There is a trade-off between being 

near dle band edge (i.e., higher dispersion) and having the required output beam width (i.e, 

higher band curvature or beam divergence). \X'hilst getting too close to the band edge makes 

the output beam too large, operating far from the band edge will reduce the dispersion. The 

gauge for the trade off is the minimization of the superprism area. We perfonned a downhill 

search on the three parameters (lPI' 81 and wo), scanning the values of each untilno further 

reduction in prism area was found. 

Table 6.2, shows the result of such an optimization for various lattice types. The lattice 

parameters are taken from Table 6.1. As is seen from Table 6.2, the optimum l-D superprism 

is about one order of magnitude smaller than the 2-D lattice counterparts. l'rom dus finding, 

one can conclude that the dominant factor determining the size of multiplexer is the band 

curvature. Although the l-D case has the lowest dispersion (see Table 6.1), it provides the 

smallest demultiplexer slze due to hs low wave vector diabl'!am CU1"vature near the band-edge. 

Table 6.2 4-channel CWDM demllitiplexer design specification with various lattice types 

Lattice 810pt lPlopt Woopt Wmax Wmin SU1"face 
type (0) (0) (!-lm) (!-lm) (J.l1n) (J.lm

2
) 

22.2 -2.04 6.85 17.58 6.85 19,062 

Comparing square and hexagonallattices which have similar dispersion at the band edge (see 

Table 6.1) is also interesting. The hexagonal demultiplexer size is greater than the square one 

due to higher CU1"vature of the hexagonal wave vector diagram. In conclusion, the slab l-D 

photonic c.rystal, by providing modest dispersion but smallest wave vector diagram curvature, 

is the best choice for demultiplexers based on the S-vector superprism phenomena. 

As is shown in Table 6.2, the best operating point (which is determined by the slant angle and 

incident angles) of the superprism for dle 1-D lattice differs significantly from the two other 

cases. This emphasizes the fact that beanl divergence is more inlportant than the dispersion if 
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the superprism wavelength resolution is a concern. Our optimization procedure puts the 

optimum operating point of dle 1-D photonic crystal (with open wave vector diagram) far 

away from the bandedge where both the dispersion and the beam divergence are low. 

However by working that far from the bandedge in 2-D photonic crystals (with closed wave 

vector diagram), we only sacrifice the 9ispersion \vithout reducing the divergence that much, so 

the trade-off operating point for 2-D ph01ÙC crystals are very near the bandedge. Being far 

from the bandedge is a1so advantageous because it promises better transmission. 

I-D lattice slab photonic crystal 
25 0 2-D square lattice slab photonic crystal i Ch2 Chi 

20 o --_ (a) 
Ch4 Ch3, _______ 

0 

f 
0 

f 0 il 
Input 

15 

'[ 
'-' 

" 10 

500 

2-D hexagonallattice slab photonic crystal 

î :,ur------------!---------· .... -------.. -----j-- .. -------:; 
'-' 

" 
o 50 

z( J-Ull) 
100 z(f-Ull) 

Figure 6.4.1, A Schematic of the demultiplexer using a) slab I-D photonic crystal, b) 2-D square lattice photonic crystal and 
c) 2-D hexagonallattice photonic crystal. 

It is also interesting to note that the input and output beam \viclths of the 1-D case are 

compatible with the use of ordinary waveguides, whereas in the other cases a more complex 

optical system (i.e., focusing lenses, mirrors or long tapered waveguides, eh:) must be added to 

the demultiplexer output to reduce the output beam to a manageable size for integrated optics 

applications. 

Note that dùs conclusion is basecl on the first band of the above-mentioned lattice types. Note 

also that the second band of l-D phototÙc crystal is not located around the origin and also 

there lS no multiplicity in the wave vector diagram; therefore it is not a proper choice for this 

kind of application. 

The superprism layouts of the dtree demultiplexer phototÙc crystals are shown in Figure 6.4.1. 

Input and output channel locations and sizes are marked too. Note that the output beam 
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direction can be adjusted by changmg the output facet direction with respect to the bulk 

phOt01ÙC crystal. 

As we mentioned before, and as is clear from Figure 6.4.1, neighboring channcls may have 

quite different beam widths (see specifically channels 1 and 2 in Figure 6.4.1b, and c) depicting 

the output beam width for all channcls at the exit points for three lattice types. To be more 

specific, Figure 6.4.2 shows the output beam width for different channels for the designs 

depicted in Figure 6.4.1. As is seen, for 2-D lattice types, the output beam widdl varies 

considerably from channel to channel, and usually it is higher where dle dispersion is higher (or 

the divergence factor is highcr, seeEq.(6.11), and (6.15». If the designs are going to have any 

intcgrated applications, the vatiation of the output beam width has to be addrcssed (especially 

in 2-D lattice types). Consideting the high refractive index contrast material that we have used 

in our design, a curved nùrwr seems to be the easiest way to focus the output beams to more 

practical values. Also one always can compromise the output powet, by sclecting an output 

waveguide width \vhich is smaller than the beam width. 

Figure 6.4.3 shows the deviation angle 'Il = ~~ - ~1 (see Figure 6.3.3 for clarification of dle 

parameters) for all channels and for thrcc lattice types. By using this data, togethcr with the 

channel spacing (20 nm), we can calculate the angular dispersion as a function of wavelength. 

For the 2-D square lattice, although the angular dispersion is lùgh (0.25° /nm) for the first 

channel (at 1390nm), it is low (0.09° /nm) at the last channel (at 1450nm). This is a 2.7-fold 

dispersion rcduction over 60 nm. The 2-D hexagonal Iattice follows a similar pattern. 

Considering the fact that the conventional demultiplexer design is usually governed by the 

worst channel dispersion [11], this significant non-uniformity is troublesome (especially for 

higher channel count demultiplexers where dispersion non-uniformity is much higher). 

However, the situation will be more complicated if one takcs the non-uniformity of pinto 

aCCOtUlt (seeEll.(6.11». 

Figure 6.4.4 shows the beam divergence multiplication factor p for various channcls for the 

thrce lattice types. The non-utÙformity ofp, especially for 2-D lattice types is significant, 

particularly when lüspersion is high (compare Figure 6.4.4 and Figure 6.4.3). Tlùs is dle main 
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factor limiting the scalability of the S-vector superprism as has already been pointed out by 

Baba [3]. 
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Figure 6.4.4. Bearn divergence multiplication factor for each channel 

.Also note the sign of angular dispersion in 1-D and 2-D cases (in the 1-D case it 1S positive; in 

2-D cases it is negative). This fact however is not general; a search over d1e design space yields 

regions of positive and negative dispersion. However, the dispersion in 1-D lattices is always 

more uniform, also p values are lower and more uniform than the 2-D lattices. We emphasize 

once again that the main reason that 1-D lattice type allows the smallest prism area is its low 

band curvature. Despite having the lowest dispersion (see Figure 6.4.3), its low p value (see 

Figure 6.4.4) more dominant as long as demultiplexer area is the main concem. 

6.5 Discussion and comparison with previous work 

Once the resolution of the S-vector superprism had been fonnulated, and it was understood 

that the resolution was less d1an had been previously hoped [3] (and to achieve even a mode st 

resolution impractical photoruc crystal s1zes have to be utilized[3]) there werc many attempts 

to push the limits to find the smallest device [3;6;11;14;15]. The second band ofvanous lattice 

types were examined. Using the 2-D plane wave expansion method and making use of the 

photoruc crystal scaling laws these researchers obtained designs which are wavelength 

independent. The linearized model usingp, q and r parameters (see Eqs. (6.11), (6.19) and 

(6.18)) has been used to maximize dispersion and minimize divergence angle [6;11;15]. The 
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design equations wruch have been developed are based on the conventional S-vector 

superprism depictcd in Figure 6.1.1, assuming a ncarly nonnal angle of incidence, equal 

dispersion for ail channels, and the Fraunhofer Gaussian field approximation [2;6]. 'I11e 

propagation mccharusm of the beam inside photoruc crystal has been partiaily taken into 

account recently (we will tefer to it as the semi-linear model to distinguishing it from the simple 

linear method) [11]. 'Ille design equations in this case are based on the assumption of an equal 

divergence angle of neighboring channels wruch as we have shown is not always the case if the 

channel spacing is not very small [11]. The assumption that at the maximum resolution length 

(i.e. the maximum propagation distance tequired to resolve the worst channels), all channels 

have smaller or equal beam-widths than the worst channels was also implied [11]. However, as 

we have shown in Figure 6.3.3 this may not always be the case (this is also illustrated in Figure 

6.1.1, where the resolution length might be sufficient to resolve channel N from 

channelN -1, but it is the first two channels that have the greatest beam \vidths). In addition, 

the beam direction outside the photoruc crystal in the conventional S-vector superprism 

photoruc cryst.al will not remain radial, so that radially directed output waveguides will result in 

excessive channel non-unifonnity. Theoretical analysis based on the plane wave expansion and 

mode matching methods show 10dB channel non-unifonnity in a 4-Channel demultiplexer 

[11 ]. 

The fact that these models neglect non-uniformity might be acceptable for sufficiently na1'row 

bandwidths, but unfortunately, theit resolutions are too low to justify the narrow band-width 

assumption. In other words, the S-vector superprism can only resolve wide channel spacings 

where the non-urufonnity can no longer be ignored (particularly beam divergence non

unifonnity as shown in Figure 6.4.2). Therefore, when designing such a wideband S-vector 

superprism, we need a model such as the one presented here that takes the full non-uniformity 

into account. 

We can compare our design results with those of other researchers who used these more 

approximate models. One recent study which is based on the semi-linear model and made use 

of the 2-D pL'me \vave expansion method on the second band (which uses real refractive 

indices for the 2-D model), concluded that the best lattice type is the hexagonallattice in the 

fM direction with TE polarization [11]. For the similar CWDM demultiplexer, the minimum 
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photonlc crystal size was then found to be 754 f.Un2 (wruch is about half the size of our 

minimum case). However dle validity of this conclusion is litnited by dle validity of the semi

linear model used and the fact that they have used the 2-D model widl real refractive indices. 

As we will show in the next section, it overestimates the dispersion. 

6.6 2-D versus 3-D modeling of slab photonic crystals 

Consideting the efficiency of plane wave expansion method, it is relatively simple to employ 3-

D modcling. However this requires a fixed slab height, which sacrifices the scaling properties 

of 2-D modeling. In other words, our results will be specifie, rather than general. T1lis may 

explain why many superprism designers have tended to make use of 2-D models. Another 

reason why designers tend to avoid using the full 3-D model for obtaining the wave vector 

diagram may be the lack of a viable 3-D model for calculating the transmission spectrum from 

a slab photonic crystal, whereas a 2-D transmission model is available. However, as we have 

shown, we do not need a transmission modeling for designing a multiplexer. 

It is also true dlat 2-D models that assume geometrical unifonllity in one direction and 

periodicity in the other two exhibit aU the fundamental phenomena of the slab photonic crystal 

where the field is not uniform in non-periodic direction. However finding the proper 2-D 

modcling parameters for each application is not very obvious. AldlOugh one can use the slab 

guiding layer refractive index for the background, and the air refractive index for the holes, the 

band edge and the dispersion so obtained are far from the real3-D model, especially when the 

confinement is low in the non-periodic direction. Using the effective index of the slab region 

for the background of the 2-D model and air for the holes has been used already [6;12;14] but 

the band edge is not still the same as the 3-D model and furthermore there is no physical basis 

for such an assumption. 

Thanks to the efficiency of the plane wave expansion medl0ds, the band diagram using the 3-

D model can be found easily by imposing virtual periodicity in the third direction. Figure 6.6.1 

shows the average group velocity of the 2-D square lattice of Table 6.1 versus slab height using 

3-D model and 2-D model using the effective index of the slab for the background and 
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refractive index of air for the holes (SOI technology has been assumed). The two methods 

converge for slab heights greater than 5~1m. Tt means that if one uses 2-D model with real 

rcfractive index of the gui ding layer and air for the holes, it shows similar dispersion only if the 

slab heights 1S f:,l1:eater than Sp,m. There 1S also another cross point where two models give 

similar dispersion (at h ~ 0.48~m) and some authors [6;14] have chosen this one as the 

effective index of their model. As it is dear for our case of h = 260 nm the 2-D model using 

effective index [12] underestimates the dispersion, whilst using the slab index [11], or the 

middle cross point [6;14] overestimates the dispersion. By decreasing the background refractive 

index and increasing the holes' the location of the band edges for the 2-D model may dosely 

approach those of the real 3-D band diagram [22]. The best 2-D model parameters (basically 

the best refractive indices for the background and the holes) can be obtained by matching the 

band edge of 3-D and 2-D band diagrams over the desired wavelength span [22]. Whilst the 

band diag-rams of 2-D and the 3-D cases now look much the same, the band CUivatures are 

not, thus making beam divergence modeling inside photonic crystal unrealistic. 

Furthermore there is no guarantee that the transmission spectra would be the same if the band 

diagrams are 1l1.uch the same. Tt remains an open question as to wruch 2-D model provides the 

most realistic transmission spectra. These problems show the importance of the full 3-D 

modeling in calculating either band diagrams or transmission spectra. We have therefore used a 

full 3-D model band diagram in our desif:,'11 procedure. 
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Figure 6.6.1. The average group velocity versus slab height, ca\culated either by 3·D modeling or 2·D which ernploys effective index 
of the slab with the same width for the background refractive index. 

6.7 Summary and conclusions 

We have developed general design equations for designing a demultiplexer using S-vector 

superprism phenomena based on the first band of phOt01ÙC crystals. We have examined three 

lattice types: l-D, 2-D square and 2-D hexagonal. A typical SOI wafer technology with a top 

silicon layer thickness of 260 nm has been used for our simlùation. We have shown that the 

average group velo city over the band edge is a suitable indicator for the maximum available 

dispersion. 111e hexagonallattice, followed by the square lattice, shows the maximum available 

dispersion. The slab 1-D photonic crystal provides the lowest dispersion available at the band 

edge. Based on the Gaussian field approximation in photocic crystals, the minimum resolution 

length for each channel has been calculated. The superprism area is then adjusted ta provide 

enough area for the beam e:xpansion and to allow each channel be resolved from neighboring 

channels. We have shown that the resolution is more critically dependent on the beam 

divergence inside dle photonic crystal than on angular dispersion. As result the 1-D photocic 
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ct-ystal provides the best resolution, despite the fact that the hexagonallattice displays an order 

of magnitude large! angular dispersion. 

\YI e have shown that a 4-channel C\YIDM demultiplexer with a theoretical cross talk level of 20 

dB can be made with a the prism area of 1367J.lm2
• The lattice type is slab 1-D photonic 

crystal and it is based on a typical SOI technology with a minimum feature size of 75jlm. The 

input beam width is about 1.5 jlm and the maxitnmn output beam width is about 3 !-lm. 

U tilizing the full 3-D plane wave expansion method, the design parameters are much more 

realistic than those obtained by 2-D models. Our investigation also shows that it 1S not easy to 

design higher channel count demultiplexers based on the S-vector superprism phenomenon 

due to the high non-uniformity of the band diagram as it evolves with the wavelength. 
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Chapter 7 

STRATIFIED PHOTONIC CRYSTAL DEMULTIPLEXER 

A new wide-band CWDM demultiplexer using cascaded photonic crystals is proposed. 

Five-fold superprism size reduction is achieved. The new demultiplexer is compared 

with the conventional S-vector superprism. The output channel beam sizes are found 

to be more uniform. 

7.1 Introduction 

In the previous chapter we showed that S-vector device has some limitations that make them 

more suitable for CWDM applications. In this chapter, we introduce a new approach to 

improve the scalability of the S-vector superprism. 

While in the previous chapter, we modified the conventional S-vector superprism a little bit to 

minimize the area, in this chapter we compare the results of our proposed structure with the 

conventional S-vector demultiplexer. For the sake of simplicity, we assume that the input 

waveguide is normal to the photonic crystal interface. Then the tangential component of the k 

vector will be zero at the input interface and stays zero up to the output interface. The output 

waveguide similarly needs to be aligned perpendicular to the photonic crystal interface [9]. If 

we start with the familiar square lattice photonic crystal, and restrict ourselves to the first band, 

then it is not difficult to demonstrate that the beam reflection angles could be all positive 

provided the lattice rotation angle is positive. Based on this observation, the schematic of the 

demultiplexer for a planar fabrication technology is shown in Figure 7.1.1 
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Output waveguides 

Figure 7.1.1 The conventional S-vector superprism demultiplexer 

As we have previously explained, the wave refraction behavior at the interface of the input 

waveguide and the photonic crystal can be described by the wave vector diagram. The 

direction of phase velocity in the photonic crystal can be detertnined by keeping the tangential 

component of the phase velocities constant on both sides of the interface (in the normalized 

fotm neff sin <.pl = nx ' where neff is the effective index of the slab region and <.pl is the incident 

angle). The phase velo city can then be found from v p = c (nxâx + néz )/(n~ + n~) where c is 

the velocity of light in vacuum. The group velo city v g = \7 kW (k) , however is perpendicular to 

the wave vector diagram at the intersection point [10]. 

This chapter is arranged as fol1ows. In the next section, the optimization of the conventional S

vector superprism is discussed. Our proposed photonic crystal demultiplexer is introduced in 

section 3. We compare the results and conclude the chapter in sections 4. 

7.2 The conventional S-vector superprism 

To be more specific, let us fol1ow the design of a conventional demultiplexer based on S

vector superprism. It also provides us with the necessary framework for our proposal. The goal 

is to design an 8-channel CWDM demultiplexer working at ),,=1310,"',1450 nm. The 

channel spacing is assumed to be 20 nm. The Gaussian beam propagation in the photonic 
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crystal involves different propagation characteristic of its plane waye components (with the full 

spectral width at exp ( - 2) intensity of 80 ), However, the envelop of the light intensity profile 

can be approximated by a Gaussian when 80 is sufficiently small. The divergence angle of the 

beam can be approximated by [11;12] 

(7.1) 

where Wo is the effective input waveguide width [13], n is the effective refractive index of the 

incident beam media, \0 is the wavelength of the incident light and p is the beam divergence 

multiplication factor (which represents the beam divergence property of the photonic crystal) 

and defined as 

(7.2) 

where 'Po and 'Pt are the incident and the refraction angle of the beam. The far field beam 

width can be approximated by 

(7.3) 

where Lis the distance from input end. zth channel has the following beam width and the lateral 

shift at the output interface 

(7.4) 

(7.5) 

The minimum length to resolve zth channel from (i_1)th one with a modest crosstalk can be 

detetmined from the following equation. 

(7.6) 

or 

2wo 
Li = + + + 8+ + 8+ (7.7) 

tan'PJ>., -tan'PJ>., - 2sec 'PIÀ tan cÀ. - 2sec 'Pn tan cÀ ) ,-1 ) l , , ) , ) ,-1 , ,-1 
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where Li is the resolution length (minimum length from the input end to resolve channel i 

from the proceeding one). The demultiplexer length is the maximum of Li' The demultiplexer 

photonic crystal area (assuming it is in rectangular shape) can be found from 

(7.8) 

A feature size of 50 nm with aspect ratio of grater than lOis chosen. We have selected the 

silicon on insulator technology. The wafer has 260 nm top silicon layer thickness, the hole 

diameter is 190 nm and the polarization is TM (electric field parallel to the air hole). The period 

of 280 nm on square lattice provides us a broad enough band diagram. The wave vector 

diagram (equi-frequency band diagram) is obtained using the plane wave expansion method. 

The mesh size is 64x64 in the lattice surface and also 64 points in the vertical direction, which 

we impose periodicity of 6 rimes grater than the slab height. The dielectric constant is sampled 

6 rimes finer that the imposed mesh. The whole first Brillion zone has been scanned 4x104 

rimes for a complete wave vector diagram. 

The minimum rotational angle of the lattice which ensures that no channel launches at the 

band gap can be found from [14] 

(7.9) 

where the wavelength of the first channel is \ = 1310 nm . In our case, 8min = 22.9 0
• It is not 

difficult to show the minimum demultiplexer surface area occurs at8 = 23.40
• Figure 7.2.1 

illustrates part of normalized wave diagrams relevant to our design. Directions of group 

velocity (beam directions) are also indicated. 
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TM polarization, h = 260 nm, a = 280 nm, 2f= 190 nm, e = 23.40 
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Figure 7.2.1 The normalized wave vector diagram 

Figure 7.2.2 demonstrates the angular deviation profile for an 8-channel demultiplexer based 

on the band diagram of Figure 7.2.1. As is seen, whilst the theoretical dispersion is significant 

at the first channel (at 1310nm) 0.9 o/nm, it is not that large at the last channel (at 1450nm) 

0.087 o/nm. This large non-uniformity is troublesome, considering the fact that demultiplexer 

design is usually govemed by the worst dispersion. However, the situation gets more 

complicated, if one takes the non-uniformity of p (see Eq. (7.1)) into account. We will discuss 

this issue later. 

TM polarization, h =260 nm, a = 280nrn, 2r =190 nm, e =23.4° 
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Figure 7.2.2 The beam deviation angle versus wavelength of a typical demultiplexer 
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Figure 7.2.3 depicts the demultiplexer length versus input waveguide width. As is clear, at low 

waveguide width, the dispersion of the photonic crystal can only overcome the spatial 

divergence of the beam inside the photonic crystal at large distances. Since, the spatial 

divergence of the beam reduces by increasing the input waveguide width, the required distance 

to achieve the desired spectral resolution will decrease. However, this distance increases again 

as we need more length to separate wide beams. The minimum multiplexer length of 

L min = 754 f-lm is achievable at the input waveguide width of Wo = 9.1f-lm. Then the 

photonic crystal area will be 1.38 mm2
• 

TM polarization, h = 260 nm, a = 280 nm, 2r= 190 nm, e = 23.40 
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Figure 7.2.3 Resolution length and beam divergence multiplication factor versus channel wavelength. 

Figure 7.2.3 shows the beam divergence multiplication factor p (see Eq.(7.1» at the input 

wavelength for Wo = 9.1f-lm. The first point from the large non-uniformity of dispersion 

observed in Figure 7.2.2 is that the low dispersion of the last channel has caused the 

demultiplexer length to be large. It is interesting to mention that the large dispersion of the first 

channel is negated by the large divergence factor, whereas the dispersion near the band edge (at 

the first channel) is high enough that needs a quarter of the distance required at the last 

channels. Putting the ftrst channel in the same line as the last channel causes the first channel 

to exp and excessively. Figure 7.2.4 shows the output channel width of the multiplexer. The 

output channel width reduces 300 fold from the first channel to the last one. In other words, 

we need to increase the demultiplexer width to coyer the entire expanded beam. In previous 
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chapter, by bringing forward the exit of the first channel, we tried to reduce the prism area. 

Here we introduce a new idea; the next section is devoted to this new idea. 

3 TM polarization, h = 260 nm, a = 280 nm, 2r = 190 nm, El = 23.40 
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Figure 7.2.4 Output channel widths versus channel wavelength 

7.3 Our proposai 

In order to bring the band edge in line with the normal incident angle beam, the lattice 

rotational angle must be 8min (see Eq.(7.9». The signal will propagate through the lattice 

provided the rotational angle is greater than 8min , otherwise the beam will be reflected back 

after encountering the lattice band gap. There is no barrier to experiencing high dispersion at 

the last channel, but the type of structure that demonstrates high dispersion probably does not 

allow the beam to propagate at the first channel. The beams, which are prohibited from 

propagation through the band gap usually reflect back. This intuitive observation brings us to 

the following design idea. Consider a stack of photonic crystals where each layer is designed to 

maximize the dispersion for specific channel; however it puts the entire proceeding channels 

into the band gap (reflect them back). Figure 7.3.1 illustrates the schematic of our proposal. 
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Figure 7.3.1 The schematic of the stratified photonic crystal for N channel demultiplexing 

By setting the incident beam angle normal to the interfaces, the tangential phase velo city 

components will remain zero along the layers, which makes the design much simpler. The 

lattice type is assumed to be square and because of its axial symmetty the beam encounters 

similar lattice geometty in propagating forward or backward. Each section has four parameters 

to be chosen: length L, period a, hole diameter 2r and lattice rotational angle (slant angle) 8. 

order to make the multiplexer response uniform (i.e., grid wavelengths be refl.ected back at the 

desired location). Arbitrarily, we select 

al = az = ... = aN = A, and 1j = rz = ... = r N = r (7.10) 

In order to avoid low refl.ection at the boundaries, we select the slant angle 8 of the each layer 

in such a way to make n x = 0 half way between two successive wave vector diagram 

(corresponding to the channel in the band gap, which is supposed to be refl.ected and the one 

with maximum dispersion which is supposed to pass through). For this purpose, the only 

remaining degree of freedom is the length of each layer, which must be chosen together with 

the input waveguide width appropriately, in order to make photonic crystal area as small as 

possible. 
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Furthermore we define refraction angle matrices which contain the refraction angles at each 

wavelength through each layer for the forward traveling waves as 

And similarly for the backward traveling waves, as 

'Pl,À! 

- 'Pl,À2 'Pz,À2 c.p =: (7.12) 

Also we define the divergence factor matrices that contain the beam divergence multiplication 

factor can also be determined (using Eq.(7.2» for the forward traveling waves as 

(7.13) 

F or the backward traveling waves we have 

P~À! 

P 
- P~À2 P;'À2 - (7.14) 

P~ÀN P;'ÀN P~,ÀN 

The beam divergence angle can be calculated using Eq.(7.1) subsequently. The beam width of 

the first channel at the input interface is 

(7.15) 
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In order to avoid excessive cross ta1.k we have to separate the output channels for at least 280 

apart from each other. Then the first channel has to be separated from the input channel by 

(see Figure 7.3.2): 

(7.16) 

Wl 

Figure 7.3.2 The input/output waveguide geometry. 

The first layer must be wide enough to provide the lateral beam shift Dl' or 

(7.17) 

Solving Eqs(7.16) and (7.17) together (using Eq. (7.15)) we will have 

(7.18) 

if L j > 0 the layer will fulfill the requirements properly. The next channel beam width at the 

input interface is 

W2 = 2Ll (sec 'PtÀ
2 

tan etÀ2 + sec 'P~À2 tan e~À2 ) + 

2Lz (sec 'P;À2 tan e;À2 + sec'P~,À2 tan e~'ÀJ + Wo 

157 

(7.19) 



The channel spatial shift and the layer width can be determined by fmding the common 

solution to the both following equations 

(7.20) 

(7.21) 

Solving Eqs.(7.20) and (7.21) (using Eqs. (7.17)and (7.19) for Lz' we will have: 

Similarly if Lz > 0 the layer will satisfy the needs properly. The beam width of l' channel can 

be obtained as 

i 

wi = l: 2Lm (cos 'P !,À, tan 8!,À; + cos 'P :,À; tan 8~'ÀJ + Wo (7.23) 
m=l 

Similarly Di and Li can be found by solving the both following equations 

(7.24) 

i 

Di = I:Lm (tan'P!,À; +tan'P:,ÀJ (7.25) 
m=l 

Eqs.(7.24) and (7.25) are used to calculate Li as follow 

If all Li > 0 the design will be feasible. The photonic crystal area can be found from 

(7.27) 

The lattice rotational angle in order to bring the band edge in line with the normal incident 

beam angle is given by Eq(7.9). The beam will propagate through the lattice provided the 

rotational angle is greater than e, otherwise the beam will be reflected back encountering the 

lattice band gap. Figure 7.3.3 demonstrates the band edge rotational angle versus the 

wavelength À. 
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TM polarization, h = 260 nm, a = 280 nm 2r= 190 nm 
25r----,-----,-----.----,-----,-----r----, 

~2~8~--~1.3~--~1.~32~--~1.3~4~~1~.3~6--~1.~38~--~1.~4--~1.42 
;\..0 (I-I-m) 

Figure 7.3.3 Band edge rotational angle versus the wavelength À, vertical grid lines are plotted at the mid 
channel wavelengths for the design purposes. 

If we select the rotational angle of each layer (the slant angle) to be the same as the band edge 

rotational angle of the mid wavelength grid points, we will ensure that while the dispersion is 

high, the reflection of the proceeding channels remains adequate. The results are shown in 

Table 7.1. 

Table 7.1 Slant angle for each layer 

Figure 7.3.4 depicts the superprism area versus input waveguide width. Clearly the optimum 

input beam width is 18.6!J.m, and the minimum prism area will be 0.26 mm2
• Compared to the 

size of conventional superprism, we have achieved about five fold area reduction. 
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TM palarizatian, h = 260 nm, a = 280 nm, 2r = 190 nm 
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Figure 7.3.4 Superprism area versus input beam width for structure of Figure 7.3.1 

Figure 7.3.5 shows the output beam width of the optimum stratified photonic crystal. As can 

be seen, much better output channel uniformity is achieved (2.2 times versus 300 times for the 

conventional one). 

TM palarizatian, h = 260 nm, a = 280 nm, 2r = 190 nm 
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Figure 7.3.5 Output channel beam widths versus wavelength far structure of Figure 7.3.1 
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7.4 Conclusions 

We have proposed a novel stratified photonic crystal, which is five cimes smaller than the 

conventional S-vector superprism. In particular we have designed an 8-channel standard 

CWDM demultiplexer (160nm bandwidth) with a 0.26 mm2 photonic crystal area. The non

uniformity of the output channel width also shows tremendous improvement over the 

conventional superprism. It is also interesting to note that the fabrication challenges of the 

proposed demultiplexer would be the same as the conventional one (since we only use from 

the rotation of the base photonic crystal). 
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Chapter 8 

FIRST BAND K-VECTOR SUPERPRISM PHOTONIC CRYSTAL 
DESIGN AND OPTIMIZATION 

Design rules for a complete demultiplexer based on the k-vector superprism in a slab 

photonic crystal are presented. Based on these mIes, we select parameters for three 

types of lattices of interest, ie., l-D, 2-D square and 2-D hexagonal and compare the 

performance. The plane wave expansion method is used to obtain the wave vector 

diagram and from this we develop design equations based on conventional ray tracing. 

We then present an optimization approach which minimizes the prism area 

independent of lattice types. We show that the l-D superprism photonic crystal shows 

a minimum prism area when compared to the other photonic crystal cases. Using 

typical silicon-on-insulator technology, a photonic crystal area of 0.099 mm2 is 

sufficient to resolve 32 channels spaced by 0.8 nm (100 GHz) in the Cband for a dense 

wavelength division multiplexing system. In order to achieve this, the angular 

dispersion of the slab photonic crystals are enhanced considerably by expanding the 

input beam through the superprism region an:d employing etched mirrors to collimate 

and focus the light into and out of the superprism. We have shown that the superprism 

area approximately increases by square of the channel count. Finally the non

uniformity of phase velocity dispersion across the desired spectral window is 

addressed. The l-D photonic crystal is superior in this regard too. 

8.1 Introduction 

k-vector superprism is based on the angular dispersion of the light at each of the free 

space/photonic crystal interfaces. So long as the two interfaces are non-parallel, the different 

wavelengths will continue to diverge in the free-space region beyond the photonic crystal. 
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This implies that the photonic crystal is a prism shapes with the interface crossing angle 

equal to the apex angle. As a consequence, an enhanced spectral resolution, similar to that of 

a traditional prism made of dispersive glass can be achieved. Interestingly, the attainable 

resolution could be more than enough for resolving channels in the conventional DWDM 

applications. Peripheral optics usually is required to collimate input light and focus the 

output light to the output waveguides (or detectors). By careful selection of the photonic 

crystal parameters and prism geometry, we will show that it is possible to design a small 

photonic crystal to resolve narrow wavelengths of DWDM. Figure 8.1.1 shows a schematic 

of k-vector superprism in the planar technology [1]. In this example beam collimation and 

focusing is accomplished with etched mirrors (other approaches such as tapers or waveguide 

lenses may also be feasible). 

Input 
waveguide 

regton 

Output 
waveguides 

Figure 8.1.1 Schematic representation of k-vector superprism 

The purpose of an input collimating mirror is to convert the input beam wavefront into a 

planar one with a small range of spatial frequencies. This avoids the need for the fiat 

dispersive band diagram that would be required for narrow incident beams [2]. Note that the 

output beam width after the prism has to be sufficiendy large to provide the required 

wavelength resolution through the Rayleigh criterion. So the resolution of the demultiplexer 

can be enhanced if the prism expands the incident beamwidth considerably. U sing the fact 

that rays follow the group velocity direction but the wavefront refraction will be in the 

direction of the phase velo city, the photonic crystal can be rotated in such a way that there is 
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a large deflection angle between the incident beam and the refracted beam inside the 

photonic crystal. By proper selection of the apex angle, this results in an expanded beam 

width which amplifies the resolution of the demultiplexer. 

Whilst the input facet must be large enough to cover the incident beam, the output facet of 

the prism has to be of sufficient size to capture ail beams in ail wavelengths over the desired 

window of operation. Considering the group velo city dispersion of the prism near the band 

gap edge, the output side of the prism will usuaily be larger than the local beam width. The 

output mirror will coilect the transmitted rays from the prism and focus them toward the 

output waveguides. The displacement of the output beam with wavelength due to the group 

velo city dispersion will only cause extra coma in the output waveguides, which can be 

mitigated by a proper mirror design. 

The dispersion behavior of the Bloch modes can best be understood through the wave vector 

diagram, which is the contour of the components of propagation constant of the Bloch modes 

at a specific wavelength (also known as equi-frequency contour) [3]. We have also recognized 

that normalizing the wave vector components versus wave number in vacuum makes 

superprism design much easier. 

The wave vector diagram shows as many degrees of symmetry as the corresponding photonic 

crystal type. Confining ourselves to the slab photonic crystal, there are three types of photonic 

crystal that have mainly been used. Figure 8.1.2 shows the three weil known photonic crystal 

lattices. The lattices are rotated so we have always bandgap at the x direction. The rotational 

angle of the photonic crystal with respect of the interface (the slant angle 81 has also been 

defined). 
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Figure 8.1.2 Three weil known different photonic crystallattices with the slant angle (81 ) definition in each case. 

For the superprism purpose, we need the wave that propagates through the photonic crystal, 

i.e., we have to choose wavelengths below the band edge. The wave vector diagram of the 1-D 

photonic crystal is an open curve (which is the consequence of having band edge at on1y one 

direction), it also has the smoothest wave vector diagram (which is the consequence of having 

the lowest crystal symmetry) and provides the longest rang of operations. By providing a 

modest band gap and a modest lattice symmetry groups, the 2-D square lattice on the other 

hand provides modest range of operation. However, the hexagonallattice by having large band 

gap and large lattice symmetry groups provides the smallest range of operation. Beside the 

difficulty of working with hexagonallattice, it remains unclear which photonic crystal is better 

for making k-vector superprism. As a basis for comparison in this chapter, we have chosen 

superprism area as a figure of merit. 

In the next section we describe a basis for photonic crystal comparison. Based on that basis, 

we select photonic crystal parameters for the three photonic crystals for wruch we are going to 

make a comparison. In section three, we will show how k-vector dispersion is higher at the 

second Brillouin zone. In section four we derive the unifying equations for the design of k

vector superprism. Our scheme for minimizing the superprism area which consists of working 

in second Brillouin zone and selecting the proper prism apex angles are presented in section 

five. The selections of the remaining parameters for minimizing the superprism area are taken 

care of in the next section. The typical results for designing a 32 DWDM channels in C band 

are presented for three photonic Crystals of interest in section six. A discussion on the results 

followed by a conclusion termina tes the chapter 
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8.2 Lattice parameter selection for k-vector superprism 

The first band wave vector diagram of aIl photonic crystals evolves with the wavelength (or 

equivalently with the period) more or less the same way. They start as closed curves around the 

origin with a shape that resembles the crystallographical symmetry of the corresponding 

photonic crystal. Increasing the wavelength, the closed curves grow bigger and bigger until they 

touch the first Brillouin zone edges, then they break down (in direction normal to symmetry 

directions of photonic crystal) and the band gaps emerge. Both kinds of dispersion are basically 

related to how fast this evolution occurs with the wavelength (or period). This is usually slow 

when there is no bandgap, but it is fast when the bandgap is small and it settles at a minimum 

as the bandwidth grows larger. To show this fact analytically, we define a parameter to measure 

the speed of evolution. We define the slope of wave vector change at the bandedge (after it 

appears) versus wavelength as 

(8.1) 

The slope is proportional to the slope of the conventional photonic crystal band diagram 

at the desired wavelength along the main symmetrical directions (i.e., rXfor I-D and 2-

D square and rM for 2-D hexagonallattices). The slope defined by Eq.(8.1) can also be 

related to the normalized group velo city at the band edge as: 

A 

a 
v = x 

g À ônx 1 

ôÀ bandedge 

(8.2) 

It is well-known that both high phase and group velo city dispersion occur near the band edge 

[2]. Because the maximum dispersion usually happens at the band edge and the lower the 

group velocity, the higher the dispersion [4]; the above parameter can be adopted as a gauge 

for the maximum available dispersion. In other words, the lattice type with a configuration that 

provides lower \Tg at the central wavelength of interest has higher available dispersion at its 

band-edge and it would be a better choice for making a superprism. 
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Figure 8.2.1 shows nz and its slope versus wavelength as a function of lattiee constant for a 

typical 1-D photonic crystal. Note that the bandgap emerging point is where nz = O. As is 

clear near this point, where the bandgap is small and the wave vector diagram evolves fast, the 

dispersion is maximal. The dispersion falls rapidly with period and it settles at a minimum 

around A = 300 nm in this typical case. 
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Figure 8.2.1 A typical nz and its slope versus wavelength as a function oflattice constant for 1-D photoruc crystal 

Working very near the bandgap emerging point, we could enjoy higher dispersion as has been 

depicted in Figure 8.2.1. But being too near to this point has it own drawback. Sensitivity to the 

wavelength reflects the sensitivity to the photonic crystal dimensions (this is inferred from the 

scaling law of photonic crystals). Therefore for a practical deviee, we cannot choose an 

operating point too near to this point. Arbitrarily, we have chosen the margin of nz 2: nzo . 

Sinee by increasing the wavelength the bandgap decreases, so the only thing that we have to do 

is to fix bandedge at the highest wavelength of interest at nzo . 
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Figure 8.2.2 shows a typical wave vector diagram near the bandedge. p' is the asymptotic angle 

of the wave vector diagram (which is detetmined by the lattice type). The operating point is 

detetmined by the continuity of tangential component of the wave vector at the interface. 

Consider the interface of the slab waveguide with the slab photonic crystal, and assume the 

effective index of the slab waveguide at the wavelength of interest as neff (slab) , then for the 

slab mode incident angle of '-Pl , the continuity of the tangential components of wave vectors at 

the interface (in the normalized form) can be expressed as 

(8.3) 

p' ~-... 9-'S: s: .S 
.S .S <n 

<n <n I ".::ël -----
~ j <n .......... 

<n <n 
tt: .......... .......... 

;;"5 tt: ;;" 
;;" 

Ca) 
nz (b) 

nz 
Cc) 

Figure 8.2.2 The operating point of un-slanted wave vector diagram with operating point a) in the fust Brillouin zone, b) at 

the bandedge and c) in the second Brillouin zone. 

nz 

It can be shown easily that the effective index of the slab waveguide is higher than the 

normalized Bloch wave number at the bandedge of the first Brillouin zone. It indicates that 

the operating point in the second Brillouin zone is feasible if one chooses a sufficient steep 

incident angle. If we define the '-Pld as the angle that causes the operating point to be at the 

bandedge (see Figure 8.2.2b), then if '-Pl < '-Pld' the operating point is the ftrst Brillouin zone 

(see Figure 8.2.2a) and if '-Pl > '-Pld then it is at the second Brillouin zone (see Figure 8.2.2c) . 

As we will show later, for the sake of higher dispersion, we are in favor of working at the 

second Brillouin zone. Note also that the direction of the group velo city v gis normal to the 
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wave vector diagram at the operating point and directed toward the lower wavelength 

contours. 

Let us fix the bandedge for all three photonic crystals (at the highest wavelength of interest) at 

(8.4) 

Given lPld ,the photonic crystal period can be found from 

À max for iD 
2sinlPldneff (slab) 

A= À max for 2D square (8.5) 
2 sin lPldneff (slab) 

À max for 2D hex 
J3 sin lPldneff (slab) 

Note that neff (slab) is a function of the sI ab height and wavelength. The functionality of 

neff (slab) for the Silicon On Insulator (SOI) wafer with pennittivity of 12 and 2 at the 

wavelength of ÀlO = 1562.23 nm is plotted in Figure 8.2.3. 

At each period given by Eq.(8.5), the hole sizes can be obtained by adjusting nz at the 

bandedge to nzo ' Figure 8.2.4 shows hole separations (A - d) and the hole size d versus slab 

height for the three photonic crystals of interest where 

nzo = 0.2, lPld = 60° (8.6) 

and TM polarization (electric field normal to the slab) have been assumed. 
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Figure 8.2.3 The slab waveguide effective index versus slab height for both polarizations. Electric field at TE and TM 

modes are directed parallel and normal to the slab surface respectively. 
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Figure 8.2,4 Distance between holes (A - d) , and hole size d versus slab height for a) l-D photonic crystal, bold line, 

b) 2-D square, dashed line, and c) 2-D hexagonal, dot-dashed line when nzo = 0.2 and 'Pld = 60° . 
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Using the parameters of Figure 8.2.4, the normalized group velocity versus the slab height for 

the photonic crystals of interest has been plotted in Figure 8.2.5. It is interesting to note that 

the 2-D hexagonallattice has the highest dispersion at the bandedge while the 1-D lattice has 

the least. As we will show later, dispersion is not the only parameter determining the size of the 

prism. 

The plane wave expansion method has been used to obtain the wave vectors. In order to 

apply the plane wave expansion method, the super ceil technique has been employed, i.e., the 

structure is assumed to be artificiaily periodic normal to the slab. But the period is large 

enough that the artificial periodicity can be ignored. We have observed that an artificial 

periodicity of 6 rimes of the slab width is enough to obtain convergence. The tolerance for 

eigenvalue calculation is 1 0-12 
• The mesh size is 64x64 on the lattice surface (x-Z plane) and 

also 64 points in the vertical direction (y axis), on which we impose an artificial periodicity. 

The dielectric constant is sampled 6 rimes finer than the imposed mesh size. For an accurate 

complete wave vector diagram the reduced Brillouin zone has been sampled into 104 

partitions. 
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Figure 8.2.5 Normalized group velodty versus slab height for the photonic crystal of Figure 8.2.4. 
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Limiting the feature size to about 70run, the three wave veetor diagrams will look alike (i.e., 

their band-edge at the specifie wavelength pass through the specifie point), provided that we 

ehoose their parameters aeeording to the following table. Note that for TM polarization and at 

wavelength of >-'10 = 1562.23 nm, the slab effective index is neff (slab) = 2.9087 (see also 

Figure 8.2.3). 

Table 8.1 The lattice parameters that makes comparison possible 

~'l!IJI1~Î1~ft~tW~ ~i2!Dr:_1îiII 
W$~·,·,,·.é7#.i1 ~., "~ '0'"«:= t ;Mi"t"h,,·, "',, ," s..~",'i:" ~Vi'3i 

380 380 380 

Hole width d (nm ) 201 238 211 

Figure 8.2.6 shows the normalized wave veetor diagram of three lattice types aecording to 

Table 8.1. Note the asymptotie wave veetor bend angles that resemble the originallattice types. 
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Figure 8.2.6 The normalized wave vector diagram of the photonic crystals of interest using the data of Table 8.1 
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8.3 The first and the second Brillouin zone dispersion comparison 

It is not difficult to show analytically that dispersion is higher in the second Brillouin zone. 

Consider two symmetrical points (A and B) around the band edge (see Figure 8.3.1) 

1\/ a 1---+--

Figure 8.3.1 Constant wavelength contour near the bandedge 

The following relation holds 

(8.7) 

Differentially we can write 

(8.8) 

Continuity of the tangential component of phase velocity at the interface with the slab region 

dictates that 

(8.9) 
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where lPI is the incident angle for operating pointA and 

(8.10) 

Eq.(8.9) can be approximated by 

(8.11) 

Writing Eq.(8.8) for point B, we have 

fl.F = fl.).. = -oF fl.k + oF fl.k ok xB ok ZB 
x A Z A 

(8.12) 

where symmetry around the band edge has been taken into account, and 

(8.13) 

where lP~ is the incident angle for the operating point B. Similar to Eq.(8.11) but for the 

operating point can be written as 

(8.14) 

Subtracting Eq.(8.12) from Eq.(8.8) we have 

(8.15) 

where 5fl.kzis an indication of dispersion difference between pointA and B. Using Eq. (8.10), 

(8.11), (8.13), (8.14) and (8.7) into Eq.(8.15) we have 
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(8.16) 

Ail three parameters in Eq.(8.16) are positive, so the dispersion difference is positive too. In 

conclusion, we have shown than dispersion in the second Brillion zone is higher than the first 

Brillouin zone, (or the dispersion difference is positive). 

8.4 Design equations 

Figure 8.4.1 shows the schematic diagram of a photonic crystal k-vector superprism and the 

parameters used in trus section [1 ]. 

Figure 8.4.1 The photonic crystal superprism geometry with slanted photonic crystal 

The conservation of the tangential component of the wave vector through different interfaces 

is the key factor determining the direction of refraction. The effective index of the slab mode 

and the normalized wave vector diagram of the photonic crystal are used to determine the 
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refraction angle of the incident beam into the photoruc crystal and from the photoruc crystal 

ioto the slab. The rays evidendy follow the group velocity clirections, which usually differ from 

phase velocity clirections (or that of the wave front). The phase velocity dispersion is defined as 

change of deviation angle 'Il = !.p 4 -!.pl + p versus wavelength ( 8'1l/ 8>" , see Figure 8.4.1). 

U sing the Gaussian approximation, the optical power density in the slab region can be written 

as 

(8.17) 

where ho is the Gaussian effective height of the slab, 80 is the effective Gaussian angular width 

of the input/output waveguide and is given by [5] 

(8.18) 

where Wo is the Gaussian effective width of the waveguide at the slab edge. In order to avoid 

excessive crosstalk, the nominal value for the output waveguide pitch Ai = 3.5wo is chosen. 

Knowing the angular dispersion and Ai' the focallength of the output mirror can be found 

Ai/2 3.5wo 

f = sin (1 8'1l/8>" 1 Ù>"/2) ~ 18'1l/8>..lù>.. 
(8.19) 

where 5>" is channel spacing. Knowing the focallength, and restricting the mirror aperture to 

280 , the minimum output aperture size will be 

L=2fsin28o (8.20) 

or using Eq. (8.19), 

(8.21) 
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The selected aperture size will troncate the field amplitude at 1.8% of its peak value, producing 

negligible theoretical cross talk [6]. While the minimum output aperture size (or the output size 

of the prism) is restricted by the angular dispersion and the channel spacing, the real aperture 

size needs to take the group velo city dispersion into account. 

For the lh channel, the output beam extension on the output prism side IZi is related to the 

input length of the prism 11 via 

(8.22) 

where pis the prism apex angle (see Figure 8.4.1). The input and output beam widths, L 1 and 

LZi are related by the following equation (see Figure 8.4.2) 

M. = LZi = COSifl ./Zi = COSifl m. 
1 L 1 1 

1 COSif4i 1 COSif4i 

(8.23) 

Figure 8.4.2 Relationship between prism facets and beam size that results in a minimum prism area 
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Note that at any specific incident angle ('Pl) the fraction in Eq.(8.23) is a function of 

wavelength because of implicit dependence of phase and group velocity dispersion in photonic 

crystal on operative point The minimum and the maximum of this coefficient play an 

important role in the design; let us detine them as M min and M max respectively at the 

corresponding transmission angle of 'P4min and 'P4max (see Figure 8.4.1). In order that the prism 

facets are sufficiendy large to coyer the beam width and maintaining the requited wavelength 

resolution, the input aperture size has to be greater than 

L . = L min 
lrrun M. 

mm 

(8.24) 

where L min is obtained from Eq.(8.21). Note that both L min (because of phase velocity 

dispersion) and M min (because of group velocity dispersion) are functions of wavelength, and 

the its maximum has to be found over ail channels. Aiso the output aperture size has to be 

greater than 

(8.25) 

In the above equation, M max is a function of wavelength and its maximum has to be obtained 

over ail channels. The input and output prism facets have to be greater than 

1 . = L lmin 
Imm , 

cos 'Pl 
LZmin IZmin = --=""'--

cos'P4max 

The minimum prism area accommodating the beam extension only can be written as 

Il . x/z . S = sin p mm rrun 

2 
Or using Eqs (8.26), (8.24), (8.23) and (8.22), we have 

S . = L 2
. [Mmax 1 sinp 

tn1n rrun M 2 2 min cos 'Pl COS 'P 4 max 

_ L!u" sin p X COS 'Pl X COS (p + 'P~max ) 
2 cos

2 
'P 4 min X COS

2 
(p + 'P~min) 
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Where we have neglected the variation of Lnùn with the wavelength. Assuming narrow spectral 

range as is typical for such applications, we can assume lp 4nùn ~ 'P 4' and assume group velocity 

angular dispersion at the input facet of the prism as 0'P~ /oÀ , then 

'P~max = 'P~nùn + N5À 10'P~ /OÀI (8.29) 

Where N is the number of channels. Assuming 1'P~nùnl» IN5À(0'P~/OÀ)1 and applying these 

approximations into Eq.(8.28), we have 

L~ sinpxcos'Pl X[1+tan(p+'P~nùn)N5ÀI0'P~/OÀll 
Snùn = 2 (') 2 cos 'P 4 X cos P + 'P2nùn 

(8.30) 

The role of group angular dispersion is clear through the factor O'P~/OÀ. In the cases that 

tan (p + 'P~nùn) N5À 10'P~/ OÀI » 1, we may Emther simplify Eq. (8.30) to 

N 2 10'P~/OÀI 49À2sinpxcos'Plxsin(p+'P~nùn) 
5 nùn ~ A" 1 12 2 2 (l b) 2 2 ( ') U/\ OT]p/OÀ 2TIneff sa cos 'P4XCOS P+'P2nùn 

(8.31) 

Where Eq. (8.21) has also been used, and ~À = N5À is the desired spectral window (total 

device bandwidth). Although the prism area increases due to group velo city dispersion, it 

reduces by the square of the phase velocity dispersion. The prism area scales quadratically with 

the number of channels. This scaling law is an interesting feature of k-vector superprism when 

compared to the fourth power for the S-vector superprism [7]. This feature shows that k

superprism is more suitable for higher count demultiplexers (over a specific spectral window). 

Eqs.(8.24), (8.25) and Eq. (8.20) can be used to design the input and output mirrors. The 

output mirror profile can be optimized to reduce the effect of coma on the side channels (due 

to lateral displacement of the beam at the output side of the prism because of group velocity 

dispersion). 

8.5 Apex and slant angles 

In this section we introduce a means to expand the input beam width tremendously, so the 

minimum output aperture size of Eq.(8.21) can be achieved by a reduced input aperture size. 
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The result would be a significant reduction in the prism size. We restrict ourselves to operating 

points in the second Brillouin zone. 

Consider the un-slanted photonic crystal with the operating point well inside the second 

Brillouin zone (see Figure 8.2.2c). As is seen in Figure 8.2.2c, the reflected beam makes the 

angle of rv p' /2 with the interface, where p' is the asymptotic wave vector bend angle. So in 

this case if we choose the apex angle of the prism as p = p' /2, the beam inside photonic 

crystal will be parallel to the opposite interface of the prism (see Figure 8.5.1). 

Figure 8.5.1 The refracted beam angle for a photonic crystal with the asymptotic wave vector bend angle of p' and the 

prism of apex angle p = p' /2, the lattice in the prism region is un-slanted SI = O. 

If we choose p > p' /2, then the beam first hits the base of the prism before the opposite side, 

but ifwe choose p < p' /2 the beam is expanded and hit the opposite side first (as we wanted). 

The beam expansion can be large, if p is chosen near p' /2. Altemately, one may keep 

p = p' /2 and try to slant the photonic crystal to use this phenomenon. The later situation is 

depicted in Figure 8.5.2. Both cases of positive and negative slant angles are feasible. Note that 

we have chosen the lattice parameters in order to have a small bandgap this fact places a 

restriction on the slant angle, i.e [8], 

-1 [ nzo 1 Slmax = tan 
. neff (slab) sin 'Pld 

(8.32) 
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We continue this chapter with the later alternative, i.e., we assume p = p' /2 as a constant for 

aillattice types however we use 81 as a variable. 

81>0 nx 81<0 nx 

--l !;:P' --l 

~~ S' !l de"t S· !l 
Reg p'/2+81 he"", Reg a [ a [ 
~ 8 ~ ~ ;î S 
;î1l ~'3 

p'/2+8 1 § g >p'/2 ~ " s B 
~ ~ ~ ~ 

0 nz 0 .... .... 

(a) (b) 

Figure 8.5.2. The refracted beam angle for a photonic crystal with the asymptotic wave vector bend angle of p' and the 

prism apex angle of p = p' /2, the lattice is slanted by 81 which is usually a small angle. 

As can be seen from Figure 8.5.2, if we choose 81 > 0, then in order to have refracted angle 

greater than p' /2, we have to chose the operating point deep into second Brillouin zone. But 

the drawback is that the dispersion will be lost as the operating point gets farther from the 

bandedge (the boundary of the flrst and the second Brillouin zone). However in the second 

case of 81 < 0, the condition is satisfled if we makes the operating point nearer to the 

bandedge (where the wave vectors are far from their asymptotes too). 

8.6 Numerical illustration 

To provide a speciflc illustration, we design a 32 channel DWDM demultiplexer starting at 

>-41 = 1537.40 nm and ending at >-11 = 1562.23 nm (where indices are the lTU grids 

numbers). The channel spacing is 100GHz (or ~ 0.8 nm). We have tried in section 2 to select 

photonic crystal parameters suitable for the k-vector superprism (that also makes the 

comparison feasible). Using these selections and flxing the apex angle to p = p' /2, we vary the 

slant angle 81 and for each slant angle we seek to flnd the incidence angle ('PI) that minimizes 
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the pnsm area (whilst respecting ail other constraints). Based on the photoruc crystal 

parameters of Table 8.1 with minimum prism area as a figure of merit, the optimum 

superprism design parameters are provided in the Table 8.2. 

Table 8.2 The optimum k-vector superprism parameters for various lattice types 

:;~?!~j ~lth~~g9lïl 
-10.40' -8.25 ,;,7.20 

As the results of the ab ove table indicate, the minimum area of the superprism is around 

0.01 mm2
• The smallest superprism is 1-D, followed closely by 2-D square and then comes 2-

D hexagonal (by about 45% greater than the smallest area). The operating points in ail cases 

are located at the second Brillouin zone, where the dispersion is higher. 

The optimization routine by minimizing the superprism area finds the condition that 

maximizes the phase velo city dispersion and minimizes the group velocity dispersion as much 

as possible. Comparing different photonic crystals in this regard, the best photonic crystal is 

the one with maximum phase velocity and minimum group velocity (see Eq.(0.31)). But these 

are contradictory requirements. z:e., photonic crystals that show high phase velocity dispersion 

(such as the hexagonallattice) usually show high group velocity dispersion too (see Figure 

8.2.5). Interestingly enough, the slab 1-D photonic crystal wins the race with the minimum 

phase velocity and group velo city dispersions. 
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8.7 Discussion 

The smallest superprism area is achieved by minimizing the group velocity dispersion and 

maximizing the phase velo city dispersion at the same rime. The magnitude of the beamwidth 

expansion factor (Eq.(8.23)) is an inverse indication of the degree of group velo city dispersion. 

As we expected the 1-D photonic crystal with the lowest group velocity dispersion must have 

the largest beamwidth expansion factor. Figure 8.7.1 shows the beamwidth expansion factor 

versus the multiplexer channels for various photonic crystals. The multiplexers' parameters are 

adopted from Table 8.2. The beamwidth expansion factor together with associated phase 

velocity dispersion are two factors determining the superprism area. lndeed the bene fit that the 

1-D photonic crystal gets from the beamwidth expansion factor compensates the smallness of 

its phase velo city dispersion. As the combined result shows, the 1-D photonic crystal provides 

the smallest superprism area. The 2-D square lattice by having lower beamwidth expansion 

factor but having higher phase velo city dispersion, provides a minimum superprism area nearly 

the same as the 1-D case. But 2-D hexagonallattice that has the lowest beamwidth expansion 

factor cannot reach 1-D case even with its highest phase velo city dispersion. 

The various channels, besides of having various beamwidth, have been directed in different 

directions (due to phase velocity dispersion) and have been shifted along the output prism 

facet (due to group velo city dispersion). Considering the proposed structure of Figure 8.1.1, 

these factors willlead to increased aberration in the output image. 
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Figure 8.7.1, The beamwidth expansion factor for various superprism design of Table 8.2 

Phase velo city dispersion which is achievable near the band edge may be substantial, but 

there is no guarantee of uniformity over the window of interest, especially if the window is 

relatively large. Figure 8.7.2 shows how the angular dispersion versus the multiplexer channel 

numbers (or versus wavelength in the desired window of spectrum). Given that we need to 

demultiplex onto the standard DWDM grid, we need to compensate this non-uniformity. 

The easiest way to do this is to make the output channel spacing non-uniform [1]. It is 

interesting that 1-D case shows the most uniform phase velo city dispersion however small. 
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Figure 8.7.2. Angular dispersion as a function of channel number for the devices specified in Table 8.2 

There are many sources of loss in trus system, some of wruch could be mitigated, Side wall 

roughness and pattern uniformity of the photonic crystal structure have to be kept as small 

as possible. It has been shown that for the minimum feature size of 300 nm, the scattering 

loss of a ridge waveguide can be small (3.38 dB/mm)[9]. It has also been shown that the loss 

in 2-D photonic crystal waveguides (with a feature size of 120 nm) using SOI technology is 

low (3.5 dB/mm) [10] and is mosdy due to fabrication imperfections, wruch also introduce 

similar loss in ridge waveguides [10;11]. 

Some of the fabrication imperfection losses can be minimized for 1-D photonic crystal case by 

aligning the lattice lines along the raster lines on the electron beam writer, then the patterns 

could be written much more smoothly via electron beam lithography, In this way, the photonic 

crystal side wall roughness wruch is an important source of scattering loss would be smaller. 

This task can be done on the mask level, as we have done in chapter 10. 

Considering the absence of lateral mode confinement in our proposed structure, we therefore 

expect to obtain less scattering loss through the superprism region than has been previously 
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reported for ridge waveguides. Substrate leakage loss can also be mi.nimized by choosing thick 

enough substrates. Nevertheless considering the small size of the superprism, the main source 

of loss (also being a matter of concem to others [12]) is the beam coupling into and out of the 

photonic crystal to the free space propagation regions (the slab regions). Maxitnizing dispersion 

usually involves working near the band edge, where reflection is usually high. Approaches such 

as smoothing the transition by small airholes or projected airholes [13] have been explored for 

slab 2-D photonic crystals in order to maximize transmission into photonic crystals. Similar 

techniques together with adding a buffer layer which can act as an antireflection coaring could 

be further explored. We have not yet attempted to calculate the coupling loss for this structure 

due to the absence of a suitable 3-D modeling technique that would be tractable for this 

relatively large structure and high index contrast. 

8.8 Conclusion 

ln this chapter a complete optical design of a demultiplexer based on photonic crystal k

vector superprism has been proposed. A base for comparison among various photonic 

crystals has been introduced. We select parameters for three different photonic crystals 

which is a suitable choice for making the k-vector superprism and also make a comparison 

feasible. We have developed design equation for k-vector superprism. We have discussed 

various operaring point on the group velo city dispersion and show that there is a great 

advantage to work in the second Brillouin zone and select the parameters so the beam width 

expand through phonic crystal. Exploiring the beam expansion capability of the prism, an 

optimal design has been obtained that maximizes the phase velocity dispersion and 

minimizing the group velo city dispersion as much as possible. The optimum design adjusts 

the prism area to just fit the path of the beam through the prism within a margin. The 1-D 

photonic crystal has the smallest superprism area of 99,200 I-lm2
, which provides sufficient 

resolution to demultiplex 32 channels in the C band with a 0.8 nm (100Ghz) channel 

spacing. The 2-D square lattice is very close to the smallest size, while the best 2-D 

hexagonal superprism is larger by 45% compared to the 1-D counterpart. The desired 

situation of having small superprism area consists of having maximum phase and minimum 

group velocity dispersion seem contradictory. It is in this context that 2-D hexagonal with 
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high dispersion (both phase and group) has the largest superprism area. We have also shown 

that in the linear regime, the superprism area is a quadratic function of channel count. Finally 

we have addressed dispersion non-uniformity and have shown that 1-D photonic crystal is 

the most uniform one. 
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Chapter 9 

LENS DESIGN WITH SLAB l-D PHOTONIC CRYSTAL 

An aspheric collimating slab waveguide lens is designed using a diverging slab 1-D 

photonic crystal. An approximation method for analysis of such structures has been 

developed. A lens design procedure (which minimizes area) is also introduced. For 

illustration purposes, we use Silicon on insulator technology with the minimum 

feature size of 100 nm. We show that a fast lens with 130 IJ.m focallength, f /# = 1.3 is 

achievable with an etching area of only 658 IJ.m2
• 

9.1 Introduction 

There are numerous optical devices which requite some fotm of focusing element to influence 

the propagation of an optical beam. In particular, a lens which can focus the optical signal into 

planar lightwave circuit waveguides may find application in micro-opto-electromechanical 

(M:OEM) switches, alignment of waveguides to fiber optic tetminations, and the integration of 

planar light wave circuits with photodetectors and laser diodes. More specifically we are 

interested to design a collimating lens for a superprism with makes use of the engineered 

dispersion of slab photonic bandgap materials for very small multiplexers [1]. We have shown 

recently that a superprism can be realized with a slab 1-D photonic crystal structure [2]. 

There is a lot of interest in light propagation in photonic crystals. The light propagation in a 

photonic crystal is governed by its dispersion surface (for 1-D photonic crystals, the wave 

vector diagram), which corresponds to the index ellipsoid in conventional crystalline optics. 

Anomalous dispersion near the band gaps leads to the superprism phenomenon which is based 

on the super dispersion observed in this region of the band diagram [1]. The curvature of the 
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band diagram (or in 1-D case wave vector diagram) also makes the collimation oflight possible 

when the structure is designed correcdy, such that the wave front encounters different parts of 

the band diagram in a given way [3]. Wavefront refraction through non-uniform anisotropie 

media can be modeled by matching the phase velocity normal to the gradient of the 

inhomogeneity at each step and propagating along the local group velocity to the next point. 

This process generally can be described by the solution of Hamiltonian equation [4]. In general, 

even if collimated rays propagate through photonic a crystal, their phase velocity direction is 

not collimated. It means that as soon as the rays leave the photonic crystal, the collimation is 

destroyed. This fact makes wavefront engineering using a quasi-periodic photonic crystal a 

difticult task. 

Our approach for controlling the wavefront using a quasi-periodic photonic crystal is to 

maintain the group and phase velocities in the same direction inside the photonic crystal. In the 

1-D photonic crystal wave diagram there is a unique point which possesses the property that 

group and phase velocities are in the same direction regardless of the period. Figure 9.1.1 

shows a typical wave vector diagram for a slab 1-D photonic crystal for different grating 

periods. Points A are the points where the incident wave vector is parallel to 1-D photonic 

crystal grooves (wave vector normal to the grating vector). There is also points B, with the 

same property, however, there are periods where point B is on the band gap region, or the 

modes belong to the second band. We restrict ourselves in this appendix to points A. The 

change of nz versus grating period at points A provides us with a unique opportunity to design 

a special kind of graded index (GRIN) lens, which is very difficult to achieve in other ways 

[5;6]. 
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Figure 9.1.1 A typical narmalized wave vectar diagram far a 1-D phatanic crystal at different wavelengths 

When considering a collimator, the need to have 1-D photonic crystallines parallel to the rays 

emitted from a point source means that the photonic crystal must be quasi-periodic in 

direction of the ray. For a diverging ray, we need a diverging photonic crystal. Figure 9.1.2 

shows a schematic of such a structure; a diverging slab 1-D photonic crystal spreading along an 

arc of circle of center 0 with radius p. In section two we review the radial effective index 

method which we have developed to handle such structures. 

Figure 9.1.2. Schematic representation of a diverging photonic crystal 
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Mode-index (also cailed homogenous refracting) waveguide lenses have been proposed since 

the earliest days of integrated optics [7]. In homogeneous thin-film lenses, guided light is 

refracted at the boundary between two regions of disparate waveguides. It can be shown that 

Sneil's law is applicable if one uses the effective re&active index of the propagating mode 

instead of the refractive index of the guide material. It foilows that classical lens design 

techniques can also be used in the design of waveguide lenses. 

As we will show in section two, maintaining the period of the diverging 1-D photonic crystal 

(see Figure 9.1.2) along the azimuthal ((') direction, the effective re&active index only varies 

slowly in the radial direction. Since the radial profile cannot be engineered, limiting the design 

to a constant period along the azimuthal direction places a limitation on the lens design. 

Dropping the restriction of a constant period in this axis ailows the effective refractive index to 

be controiled in the azimuthal direction. It is interesting to note that this kind of lens cannot be 

categorized as either an axial or a radial GRIN lens. The conventional radial GRIN lens has a 

radial re&active index around \fi = 0 , and no variation along \fi = 0 line. On the other hand 

axial GRIN lenses have a variable refractive index along \fi = 0 direction, but have no radial 

variation around \fi = 0 axis. This has required us to develop a new lens design technique for 

this structure. 

9.2 Radial effective index method 

The radial effective index method has been developed in order to model a wave propagating in 

a diverging slab 1-D photonic crystal. The cross section of a unit ceil of a diverging 1-D 

photonic crystal is depicted in Figure 9.2.1. 
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Figure 9.2.1 The cross section refractive index distribution of each core 

We must solve the three dimensional Helmholtz equation direcdy. The radial effective index 

method combines the two previously developed methods. First the conventional effective 

index method is applied to obtain an equivalent vertical slab waveguide and then the azimuthal 

effective index method [8] is used for rand <p directions. The scalar Helmholtz equation in 

circular cylindrical coordinates considering zvariation into account is as follows 

(9.1) 

where n2 (l.p, z) is the index distribution of the guide in circular cylindrical coordinates. We 

propose a solution of the form 

U (r,l.p, y) = F (y)W (r,l.p) (9.2) 

The first is a function of y exclusively, and the second is a function of r and <p. Substituting the 

above solution into Eq. (9.1) and grouping terms, we can obtain 

(9.3) 

where we have added and subtracted k:FW from the equation. Now similarly to the familiar 

effective index methods, we multiply both sides of the above equation into rW (r, l.p) and 

integrate with respect of rand <p to get 
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P (2 2 () 2) -2-+ ~neff Y -ky F=û 
dy 

(9.4) 

where 

Eq. (9.4) can be considered as a one-dimensional Helmholtz equation for a horizontal slab 

waveguide with refractive index distribution given by Eq. (9.5). As a fust approximation, we 

assume 'li (r,~) = r-l/2 exp (ikzr )<I?(r,~) where <I? (r,~) is one in the core regions and zero 

elsewhere. It is a guess based on the far-field circular wave propagation, which is taken for the 

wave pattern in this direction. Then ignoring sorne negligible terms, Eq.(9.5) will be the 

refractive index distribution of a three-Iayer horizontal slab dielectric waveguide. The structure 

of this equivalent waveguide is shown in Figure 9.2.2. 

l' 
b 

~ 

nsub 

Figure 9.2.2 The equivalent horizontal dielectric waveguide in Z direction 

Similarly rnultiplying both sides of Eq. (9.3) into F and integrating with respect to y, we have 

02W 1 oW 1 02W 2 2 

--2 +--+2--2 +kOneff (~)W = 0 
Or r or r o~ 

(9.6) 

where 
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Eq.(9.6) can be considered as a scalar Hehnholtz equation for radial wave propagation in 

cylindrical waveguide. Note that although there is no y variation, however the propagation is 

along r-axis. Eq.(9.7) gives the equivalent refractive index distribution of the structure. Similarly 

as a first approximation to get neff (i.p), we take F (z) to be one in the core region b (see 

Figure 9.2.1) and zero elsewhere. 

The azimuthal effective index method tries to solve Helmholtz equation m the circular 

cylindrical coordinates. We suggest the solution of the form [8] 

(9.8) 

We take the first function R (r) as a function of r exclusively, and the second <P (r, i.p) as a 

function of r and <p. Again, we perturb the refractive index distribution in order to make it 

suitable for the suggested solution. lndeed we do our perturbation in a way that the above 

solution be the exact solution of the new perturbed waveguide. Substituting Eq.(9.8) into 

Eq.(9.6) and grouping terms, we can obtain 

1 d
Z 
R 1 dR 1 8

z 
<P Z ( Z () Z) --z-+--+-z;:;;n-z+ko n i.p +npert =0 

R dr Rr dr r '±' ui.p 
(9.9) 

where 

(9.10) 

The first two terms of Eq.(9.9) are functions of r exclusively. We defme them such that they 

are equal to - k:ff (r) . This function acts as a separation function and Eq.(9.9) can be written 

as two components 

(9.11) 

196 



d
2 
R 1 d R 2 2 ( ) 

-2-+--+koneff r R= 0 
dr r dr 

(9.12) 

where we detine 

(9.13) 

Now we assume that <I> varies very slowly along r. This means that, Eq.(9.11) can be solved 

assuming r to be constant, and n:ert (Eq.(9.10» can be neglected. Then for a given r, the partial 

differential equation (9.11) can be replaced by an ordinary one as 

(9.14) 

The above equation is the equation of the field in a one-dimensional slab whose index n
2 

( lP ) 

repeats itself periodically along <p with period 21\. For the waveguide of Figure 9.1.2 , Eq.(9.14) 

represents a multilayer dielectric waveguide. Figure 9.2.3 shows a schematic of thls waveguide. 

A solution of the wave equation (9.14) can be obtained using the transfer matrix method (see 

for example [9]). The field <I> must also repeat itself with period 21\. Usually 21\is not a 

multiple of Aw, however since Aw « 21\ , the mismatch can be ignored. 

1< 2n----+)1 

I+-Aro~1 

Figure 9.2.3 One period of the equivalent waveguide in q:> direction. 
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The solution of Eq.(9.14) yields a value for k:ff / ~ which is the effective index of the 

cylindrical sheet of radius r (see Eq. (9. 13)). The known value of n~ff (r) can be substituted in 

Eq.(9.12), which describes the circular-symmetric field of a cylindrical guide whose circular 

symmetric index n~ff (r) varies only in the radial direction. For the waveguide of Figure 9.1.2, if 

we evaluate n~ff (r) at dis crete rit will be a multi-shell circular cylindrical structure (see Figure 

9.2.4) 

Figure 9.2.4. The equivalent stratified media in r direction. 

If we assume that n;ff (r) does not vary with r rapidly, then it can be shown that the following 

analytic approximation is suitable [10] 

(9.15) 

where a (r ) is the optical path length, 

(9.16) 

and C is a constant and H~l) is the Hankel function of the first kind of order zero. Since r is 

usually taken to be much greater than wavelength, the exponential asymptotic approximation 

of the Hankel function can be used, so the r dependency can be reduced to a simple fotm 

C' 
R(r)= ~ exp [ia(r)] 

ka rneff (r) 
(9.17) 
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where C'is another constant. It is expected that neff (r) is very smooth function of r. 

9.3 Collimating waveguide lens 

In this section we illustrate our approach to design a lens for converting the radiation field 

emitted by a waveguide into the slab region into planar wave front (expanding the beam 

width). Using the Gaussian approximation for the far field pattern of a rectangular dielectric 

waveguide in the slab region, the optical intensity can be written as 

(9.18) 

where ho is the Gaussian effective height of the waveguide, 'Po is the effective Gaussian angular 

width of the waveguide and is given by [11] 

(9.19) 

where Wo is the Gaussian effective width of the waveguide at the slab edge, and neff (slab) is the 

effective index of the slab. Restricting the lens aperture to 2'Po ,the lens f j# can be expressed 

as 

f j# = f = 1 ~ WOneff (slab )1\ 
L 2tan2lPo 4\'0 

(9.20) 

Using the TE mode of a silicon-on-insulator (SOI) rectangular waveguide with a silicon 

thickness of 0.6 !lm, and Wo = 0.82 !-lm, the effective index of slab waveguide would be 

neff (slab) = 3.2738, and then 'Po = 10.50
• The required lens must span ±21° 

with f j# = 1.3. For illustration purposes, we chose L = 100 !-lm. So in short, we are going to 

design a lens to exp and a Guassian beam of width 0.82 !lm propagating in the slab region to a 

width of 50!lm propagating in the same region. 

Using the radial effective index method of Section 2, we have calculated the effective index of 

the diverging slab l-D photoruc crystal for rays propagating radially. Figure 9.3.1 shows the 

radial effective index versus period at \'0 = 1.55 !-lm, the duty factor 't is assumed to be 0.5 
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crE mode is assumed). The large change in effective index versus period makes lens design 

and its optimization a feasible task. 

>"0=155 ~Ull, 't=O.5 
3.5.-------,-------,---~--~~-----------,-----,-,~--" 

, , 1 • , 1 , , , , , . , , , , , , 
, , 1 1 • 1 · . , , , . 
, • , 1 • , 
• , , l , , · . , .. , , , , , . , , , , , . , 

3 ------------------r----------j--------r-----!----j----~---l---I--!--- --------------I-----------f-------I-----!----j----I·--i--!-
: : : :: :: ::: : : : : : 

1 Il! 1 i i i :! i i i i . ! 
"~ 25f)lr1 lfiir/)))![ 

"2 ~ .. ~ .. -- --- --- ----~ ---_. ----- .:--------~ -----i --~. -- '( ---:- -.• --+ - -- - -- - -_. - - - - _ .... ~. _ .. _ .. - - - -:- _.- _.- -~ ..... ~ .... ~ ....•. - -~. - i-

i 1 1 . i i Iii i 1 i Iii i i 
: ! : :!! ! : :!:: : : : ! 

1. 5 ................. ! .......... J ··1···[···:···[··)1·[··········· ..... ; ·········)·····)···[···[··1··;·1· 
! 1 : : : : l !::: : : l i 
: : : ! : : : ! i : : : : : : 

lu 10 

Figure 9.3.1. Radial effective index of diverging slab l-D photonic crystal versus period 

Whilst we restrict ourselves to lenses with circular front entrance (eliminating refraction, so 

that we are certain of the radial direction of the rays in the photonic crystal) we are free to 

choose the back surface curvature and the variation of the photonic crystal period with angle. 

In this way many designs are feasible. In order to narrow the design space we use the criterion 

of minimizing lens area in order to minimize etching area. Other optimization critera can also 

be chosen and there are usually some practical restrictions to be imposed. For example we 

cannot have structures finer than the minimum feature size of fabrication technology. We have 

assumed this to be 100nm, so periods 10wer than 200 nm are not permitted. Aiso effective 

refractive index 10wer than ~1.8 is not preferred due to 10ss of lateral confinement which leads 

to excessive coupling los ses with the slab mode. 
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x 

Figure 9.3.2. The proposed aspheric lens with sorne parameters defmed. 

We express the back surface profile in polar coordinate with the focal point as an origin, so 

(9.21) 

In order for the rays to be collimated, they need to undergo refraction of <p. Considering the 

refractive index of n ( ~ ) , we need 

nslab cose = n(R,A)cos(~-e) 

where e is the angle of the back surface of the lens at <p. Solving for e, we have 

then using Eq.(9.3), we have, 

e 
nslab/n(R,A)-cos~ 

tan = -="-'-----'---'----

sin~ 

R = Rnslab sin~ 
nslab - n(R,A) 
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(9.23) 

(9.24) 



where dot stands for differentiation with respect of <p. Making optical path length from rays 

originating from 0 to Z = 0 equal, we have 

f
R('P) 

r n(r,A)dr+nslab (p + d - R(\'p )cos\'p) = Const. 

Eqs. (9.24) and (9.25) need to be solved together. We also know that 

There are also some restrictions, 

L 
p+d=---

2 tan \.Pmax 

where 8 is the photonic crystal minimum period. The area of the lens can b=obtained as 

l 'Pm.. ( )2 2 
S = 0 R \.p de - p \.p max 

Now we will set up an optimization problem, there are two independent variables, 

O<d< __ L __ 
2tan\.Pmax 

8 
Am>------

LJ2 tan \.Pmax -d 

(9.25) 

(9.26) 

(9.27) 

(9.28) 

(9.29) 

where Am = Aw (\.Pmax)' Knowing d and Am' we need to solve Eqs. (9.24) and (9.25) to obtain 

R (\.p) and A (\.p) , checking the restrictions (9.27), then we minimize the lens area of Eq.(9.28). 

In order to solve Eqs. (9.24) and (9.25) together we proceed as fol1ows 
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• Knowing d one can calculate p (from Eq.(9.26» and note that Rm = L/(2sll'Pmax)' 

• Knowing d and Am and p, The constant of Eq. (9.25), can be calculated. 

• then Rm can be calculated (from Eq.(9.24». 

• Knowing Rm' R ('Pmax - ~'P) can be estimated, and solving Eq.(9.25), A ('Pmax - ~'P) can 

be evaluated. 

• Knowing R ('Pmax - ~'P) and A ('Pmax - ~'P), Rm ('Pmax - ~'P) can be evaluated (from 

Eq. (9.24». 

The last two stages can be iterated until we obtain 'P = 0 . 

The result of an optimization is as follows: 

Considering that the duty factor is assumed 0.5, the etching area is only 658 Ilm2. Figure 9.3.1 

shows the top view of the optimized lens, while Figure 9.3.2 shows its period variation with 

angle. 
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Figure 9.3.1. Aspherical concave tens as a beam expander being designed to have minimum area. The period variation is 

given in Figure 9.3.2. 
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Figure 9.3.2. The period variation of the aspheric concave beam expander designed to have minimum area. 

9.4 Conclusion and discussion 

We have proposed the use of quasi-periodic slab 1-D photonic crystals for wavefront 

engineering. By keeping the 1-D patterns parallel to the rays, we have avoided the difficulty of 

misalignment between the group and phase velocities in photonic crystals. For diverging rays, 

the 1-D photonic crystal pattern is a diverging one. A suitable approximation method has been 

developed to obtain the effective index for the radially propagating rays. As a result we have 

been able to introduce a design procedure for asheric lenses for collimating light emitted from 

a waveguide into the slab region. Many lens configurations are possible. We imposed a 

criterion of minimum area and as a result, we obtained a unique lens design, with a focallength 

of 130 !-Lm and operating at 100 fLm. 

Whilst we designed the lens for a single wavelength, since our structure is inherendy dispersive, 

collimation will not to be perfect at different wavelengths. Figure 9.4.1 shows chromatic 

aberration (wave-front aberration) for the lens designed in section 3. Whilst the aberration 

seems huge considering traditionallenses, however for DWDM applications in which we are 
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only interested in narrow band of wavelengths, it is seems tolerable. Note that 64 channels of 

100 GHz bandwidths only cover ± 1.65% of central wavelength of Ào = 1.55 f-lm . 
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Figure 9.4.1 Chromatic aberration (wave-front aberration) for various wavelength deviations 

It is to be expected that the proposed lens will have high coma aberrations. Since ail rays are 

assumed to emanate from the focal point, significant errors may arise for objects located at 

different positions. Further study is underway to evaluate coma aberration of such lenses. The 

lens is also designed to operate correcdy only for TE polarization. 
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Chapter la 

MASKDESIGN 

This chapter is devoted to the technical aspect of the layout design for I-D k-vector 

superprism. The mathematical equations governing the layout geometry are 

developed The parabolic mirror is designed considering the critical angle of the 

silicon air junction. The tapering and the bend are also designed to minimize the loss. 

The theoretical coupling loss of the lens tapered fiber and the die are evaluated. The 

bending loss of our regular waveguide is discussed. Based on this analysis, one can 

select the minimum bending radius to keep the bending loss small. Some practical 

mask layout considerations are also mentioned. 

10.1 The prism 

The prism dimensions must be extended as far as the beam inside the photonic crystal 

demands. The input and output sides have to be greater than i and i' as has been shown in 

Figure 8.4.2. Additionally we need to keep a margin from what really is needed. It means that 

the dimensions on the mask are larger than what theory is suggested by a margin. A 10% 

margin seems reasonable, so the dimension on the mask is 

(10.1) 

The apex angle (p) must be also known initially. The prism geometry prior to any rotation is 

depicted in Figure 10.1.1. 
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z J' 

(x~}) 
~~----------------------I}}~--------------------.~ 
1 1 

Figure 10.1.1 Prism geometry before any rotation 

The other unknown parameters can be obtained as follows: 

1" = ~/Z +l'z -211' cosp 

p' = sin -1 (/'/1" sin p) 

pIf = sin-1 (1/1" sinp) 

The prism edge coordinates can be found from the following equations: 

I
x: =0 

x~ = 1 cosp' 
, 1" x 3 = 

y:=O 
, 1· , yz = smp 

Y, -0 
3-

(10.2) 

(10.3) 

As we have mentioned in chapter 8, it is benefl.cial to align the gratings to the raster lines of the 

electron beam writer, and this can be achieved at the mask level. The prism geometry after 

rotating to make grating parallel to the die border (coordinate Z and :xl) is shown in Figure 

10.1.2. 

The rotation angle that makes the grating parallel to Z' axis, is 

(10.4) 
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(X2J12) 

x' 

z' 

Figure 10.1.2. The prism geometry after rotating by (j) 

And if the grating is to be parallel to x axis, then 

w= -p'-el (10.5) 

The new edge coordinate can be found by applying the rotation matrix over the original 

coordinates. The matrix for rotating by û) can be written as 

T= 

10.2 Mirror 

cosw -sinw 

sinw cosw 
(10.6) 

U sing the total reflection angle of high refractive index materials and air, making a mirror is 

relativelyeasy. In our case of SOI technology, if the incident angle exceeds the critical angle of 

ee = sin-1 [_1 1 = sin-l (_1 ) = 16.78° 
nSi 3.46 

(10.7) 
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there cannot be any refracted light as every ray undergoes the total reflection. If focusing is also 

needed, then the mirror must be the parabolic shape trench which is etched deep into silica. If 

the beam is shifted properly from the axis of the mirror (see Figure 10.2.1) ,it is possible that 

the incident angle exceeds the critical angle 8c of the silicon air interface of the trench, and the 

internal reflection at the interface make the trench a perfect mirror. 

Incident Bearn 

Y2 

_._._._._._._._._ .. _____ ~_L_ 

Figure 10.2.1, The parabolic mirror 

A parabolic equation of the front surface of the mirror in polar coordinate can be expressed as 

21 
r=-~-

1+cos8 
(10.8) 

If we impose the restriction of 

(10.9) 

it ensures that the beam will focus to the focal point and the mirror would be perfecto The 

beam has to be shifted form the mirror axis by 

(10.10) 

The mirror, at least, has to cover the beam width ln' i.e., it has to be extended from 81 to 

82 (see Figure 10.2.1), where 82 can be found by solving the following equation 
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e e 
2ftan--1... = 2ftan2.+ ln 

2 2 
(10.11) 

or 

(10.12) 

These angles (of course with imposing some margins) are utilized to make a minor on the final 

mask. 

10.3 Superprism and the input mirror 

Let's start from the rotated superprism of Figure 10.1.2, the input aperture SlZes can be 

detetmined as fol1ows: 

(10.13) 

Where 'Pl is the incident angle. The minor distance to the superprism is somewhat arbitrary, 

but it is preferred to locate the minor as close as possible to the input side (in order to reduce 

the total chip size and to reduce the propagation loss too). Let us start with the input minor 

fust. We find which edge of (Xl]l) or (X2,Y2) is nearer to the input minor. If 'Plis positive, 

(X2 Y2) is closer to the input mitror, otherwise (Xl YI)' For the sake of illustration, let's , , . 

assume 'Pl > 0 . Then the start point of the mitror path can be found as 

Where 

{
Xml = x 2 +ÇC~Sfi 
Yml = Y2 +Çsmfi 

11 1 
fi = 'Pl +-+p +w 

2 
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(10.14) 

(10.15) 



Figure 10.3.1 depicts the input mirrot geometry. The central input waveguide end point is then 

detetmined as 

Whete 

and 

lx w Xml + rZ c~s t r 

Yw - Yml + rZ smtr 

Figure 10.3.1 The input mirror geometry 

r. - 2J z-
1 + cosez 
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(10.17) 
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The central waveguide direction is toward the center of the mirror at (x m2' Y m2) i.e., 

8 -8 
"1 =11+1 _ 2, 1 

IIV r 2 (10.19) 

The equations which are mentioned in this section and depicted in Figure 10.3.1 are indeed a 

special case. More general cases (that works for all incident angles) are expressed with the 

following equations. 

(10.20) 

And 

(10.21) 

Note that the input waveguides are tilted toward left if 11/2 < 1IV < 311/2, and they tilted 

toward right otherwise (i.e., -11/2 < 1IV < 11/2). In other words, in the former case the inputs 

are terroinated at the right edge of the die, but in the later case they will end at the right edge. 

U sually it is preferred to have the input waveguides at the left edge of the die. We can either 

rotate the structure another 180° or 90°. In the later case, the l-D photonic crystal will be 

vertical instead of horizontal. The situation will get more complicated when the output 

waveguide situation is also considered. In other words, the output waveguides must be 

terroinated to the left edge of the die. In the worst case scenario, there might be some cases 

that we have to remove the restriction of making l-D superprism vertical or horizontal. 

10.4 The input waveguides loci and directions 

The center point of the mirror can be written as 
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{
x m2 = Xw + rc~s1w 
Ym2 = Yw + rS1n 1w 

Where ris the equivalent spherical radius of mirror and can be expressed as 

r= 21 
l+cos e' 

(10.22) 

(10.23) 

The loci of the input waveguides make a circle with radius r centered at (x m2' Y m2). The 

direction of inputs is toward the center of the mirror. The input waveguide pitch (Ai) is 

somewhat arbitrary, but it is recommended to be the same as the output waveguide pitch (see 

Figure 10.4.1) 

,. 
r r 

Input waveguides 

Figure 10.4.1 The input waveguides geometry 

10.5 Superprism and the output mirror 

We start from rotated superprism of Figure 10.1.2 again. The output aperture sizes can be 

found below: 
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L' = l' seclf\ (10.24) 

Where <.p 4 = 'f] - p + <.pl is the transmission angle and 'f] is the prism deviation angle. Again 

we have ta find which edge (XI'yI) or (X3,Y3) are nearer to the output mirror. Clearly if <.p4is 

positive (Xl YI) is closer, otherwise it is (x3 Y3)' For the sake of illustration, we assume , , 

<.p 4 < O. Then the first point of the mirror cao be found as 

Where 

{ 
, ;-" 

xml = X3 +~ costi , ;-'" 
Yml = Y3 +~ smti 

/=[() +1I_p"+W 
1 '1'4 2 

See Figure 10.5.1. The central input waveguide end point is then detetmined as 

{' , , , Xw = Xml + rz costr , , ,., 
Yw = Yml + rz smtr 

Where 

t' = / -11-8' rIZ 

And 

, 21' 
rz = , 

1+cos8z 
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(10.26) 

(10.27) 

(10.28) 

(10.29) 



Figure 10.5.1 The output mirror geometry 

The central output waveguide direction is toward the center of the mirror at (X~2' Y~2) i.e., 

" e~ -e~ 
"J = t -11--=--"':'" 

1., r 2 

The following equations show the general cases. 

And 

!
X~l = ~1 [1 + sgn( l(4)] + ~ [l-sgn( l(4)] + ç' cost; 

Y:l = Yl [1+sgn(lP4)]+ Y3 [1-sgn(lP4)]+ç'sint: 
2 2 

(10.30) 

(10.31) 

(10.32) 

Note that the output waveguides are tilted toward the left if 11/2 < 1: < 311/2, and they tilted 

toward the right otherwise (i.e., -11/2 < 1: < 11/2). This means in the former case the outputs 
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are tenni.nated at the right edge of the die, but in the later case they will end at the left edge. 

Usually it is preferred to have the output waveguides at the right edge of the die (see Figure 

10.5.2). 

Output waveguides 

Figure 10.5.2 The output side of the mirror and the output waveguide. Note that the prism is rotated another 90 degrees to 

bring the output waveguide to the right side of the die 

10.6 The output waveguides loci and directions 

The coordinates of the center point at the mirror can be written as 

{

II 1 1 
x m2 = X w + r cosl", 

1 1 ,. 1 
Ym2 = Yw +r S1nlw 

Where r' is the equivalent spherical radius of the output mirror and can be expressed as 
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r' 21' 
(10.34) 

1 + cos e" 

The loci of the output waveguides make a circle with radius r' centered at (X~2' Y~2) . The 

directions of ail inputs are toward the center of the mirror. The input waveguide pitch (Ao) is 

determined by the design (see Figure 10.5.2). 

10.7 The input and output waveguide path to the alignment line 

For the uniformity, we have to align the input and output waveguides at the die borders with a 

constant separation. The paths have to be designed. The procedure can be reduced to just 

drawing a number of patterns starting from midpoint of the mirrors (xc,yJ (for the input 

mirror it is (X2m 'Y2m) ' and for the output mirror it is (x~m,Y~m) , spanning around the 

central direction of 1 (for the input mirror it is 1., ,and for the output it is 1~) , and 

terminating at any point at the border but having specific pitch (the distances between 

neighboring patterns are the same and it is known as the border pitch). See Figure 10.7.1. 

The patterns to be drawn are at angle 1i (i = 1,2,"', N) that is dependent on the central 

rotation angle of the waveguides as foilows 

"1 -Ij-

A N -1+2i 
1--x firstquadrant, 0 < 1 < Ti/2 

r 2 

A N -1+2i 
1+-x----

r 2 
A N -1+2i 

1--x----
r 2 

second quadrant, Ti/2 < 1 < Ti 

thirdquadrant, Ti < 1 < 3Ti/2 

A N -1+2i 
1+-x Eourthquadrant, 3Ti/2 < 1 < 2Ti 

r 2 
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, Alignment line 
~ 

A 

i~ f~ 
(X,)'I)~ 
(X,)'2): el 

: Ab 

Figure 10.7.1 The pattern ta the die border for the input and output waveguides 

The purpose of locating the bends at radius r + r;x (or including extra straight pattern r;x after 

radius r) is twofold. First, there are tapering at the waveguidej slab junction for the sake of 

beam shaping, and this length play the role of a buffer between the taper region and the bend 

region. Furthermore, it is usually preferred to have an extra waveguide length for fanning out 

the patterns (it makes them more separated, so providing the desired pith at the die border 

would be easier). 

Let's start making the patterns, assuming the bend radius is Ri' The coordinates of the pattern 

at the alignment line is 

IX i = Xc + (r + r;J cos "Ii + Ri cos "Ii + li 
Yi = Yc +(r + r,J sin "Ii +Ri (1-lsin"lil)sgn(sin"lJ 

(10.36) 

Where li is the extra distance needed to align the patterns to the alignment line of Figure 

10.7.1. There are also some restrictions as follows 
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Yi = Yi-! + Ab sgn(sin1), i = 2,"',N 

Ri 2: Rmin , i = 1,"',Nmin 

(10.37) 

Where Abis the waveguide pitch at the border, and Rmin is the minimum bending radius. The 

set of Eq.(10.36), together with restriction (10.37) can have many solutions, but let us select the 

foilowing one 

R = R. and II = 1 . ~~ mm mIn 

Considering the Y coordinates of the first and tth pattern are at the alignment line, i.e., 

{

YI = Yc +(r+r,x) sin 11 +Rmin (1-lsin11I)sgn(sin1) 

Yi = Yc + (r + r,Jsin 1i + Ri (l-lsin 1i I)sgn(sin 1) 

(10.38) 

(10.39) 

By using the second restriction of Eq.(10.37), Ù., Yi = YI + (i -l)Ab sgn (sin 1), we have 

Now consider the x coordinates of the first and tth pattern are at the alignment line, i.e., 

IX I = Xc +(r+r,x)cos11 +Rmin cos 11 +lmin 

x. = x + (r + r ) cos "'V. + R. cos "'V. + 1. 
t c ex Il t Il t 

By using the first restriction of Eq.(10.37), i.e., Xi = Xl we have 

Knowing Ri , and li' ail other parameters of the patterns can be detetmined. 
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10.8 Waveguide dominant mode and Tapering 

There are four reasons and locations that we implement tapering: 

a) at the input border to increase the input coupling, 

b) at the input slab junction to decrease the beam-width, and beam shaping, 

c) at the slab output waveguide junction to match the beam-width at the focal point, and, 

d) at the output edge to increase the output coupling. 

The tapering width in cases b) and c) are mosdy design related, whereas in cases a) and d), they 

are mask design problems. Considering our SOI wafer with 0.5 /-lm silicon height and the 

availability of lens tapered fiber with beam width of 2.5 /-lm, we have to design a tapering 

profile to minimize the coupling loss. For simplicity, we restrict ourselves to the linear tapering 

profile. Therefore, only two parameters have to be selected: the tapering width at the die 

border and the tapering length. 

Figure 10.8.1 and Figure 10.8.2 show the first two quasi-TM modes of the main waveguides. 

Finite element methods are used to obtain the modal patterns and the effective index of the 

modes. 

If the tapering width at the border is selected properly, then a long enough tapering will 

convert the modal profile at the die border to the main waveguide profile depicted in Figure 

10.8.1. Any misalignment will cause higher order modes to be generated (see the second mode 

profile in Figure 10.8.2). 
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Dominant Quasi TM mode, neff = 2.908195, Contour Ey,À=1.55 !-lm 
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Figure 10.8.1. The dominant electric field component of the dominant quasi-TM mode of 0.5 X 0.5 fLm 2 
waveguide 

Second Quasi TM mode, neff = 2.2579, Contour Ey, À=1.55 !-lm 
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Figure 10.8.2. The dominant electric field component of the second quasi-TM mode of 0.5 X 0.5 fLm 2 
waveguide 
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1 

Figure 10.8.3 shows the theoretical coupling loss of the Gaussian beam of the lens tapered 

fiber (with the beam width of 2.5 {lm ) versus border waveguide width; the waveguide height is 

fixed at 0.5 !lm. As can be seen, the coupling loss for the waveguide of 2xO.5 {lm2 is 1.2 dB 

per facet. In our layout the tapering width at the border is 2!lm. 
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Figure 10.8.3 The coupling 10ss of the lens tapered fiber (with the focal beam width of 2.5!lm) versus waveguide width, the 

waveguide height is flXed at 0.5 !lm 

Figure 10.8.4 shows the modal profile of the dominant electric field (E y) for the dominant 

quasi-TM mode of the waveguide of dimension2xO.5 {lm2
• Our simulation shows that the 

waveguide of this size at wavelength of 1.55 !lm supports 22 guiding modes. Although, many 

of these modes may be excited at the border (especially due to possible misalignment), fewof 

them will survive after the tapering (which reduces the waveguide width at the border to the 

regular waveguide). As is shown later, although our regular waveguide supports more than the 

dominant mode, all the non-dominant modes are close enough to the cutoff and will not 

survive due to bending loss. In short, with this waveguide dimensions, practically only the 

dominant mode would prevail. 
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Dominant Quasi TM mode, nerr = 3.126332, Contour Ey, 1..=1.55 J.lm 
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Figure 10.8.4, The dominant electric field component of the dominant quasi-TM mode of 2 X 0.5 flm 2 
waveguide 

As is shown in Figure 10.8.3, the optimum waveguide width at the border is 3.37 /-lm. If we 

had chosen fuis waveguide width then our coupling loss would have been reduced to 0.81 dB 

per facet. The simulation tool is 3-D beam propagation method; the wavelength is 1.55 /-lm, 

and the polarization is quasi-TM. 

The simulation shows that the tapering length of 100 /-lm is sufficient ~ess than 1 % of power 

in the dominant mode is lost) to shrink the modal profile of the waveguide at the border (see 

Figure 10.8.4) to that of the dominant mode of our regular waveguide (see Figure 10.8.1). 

10.9 Bend calculation 

Bent waveguides are the key component in many integrated optical devices. As the curvature 

radius R becomes smal1er, an optical path direction is changed at the shorter propagation 

distance. Therefore, the optical bending loss will increase as R declines. When guided light 

goes around a bend, to maintain a guided mode with equi-phase fronts on radial planes, the 

phase front will need to move more quickly at the outside of the bend than the inside. 
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Following this trend, to greater radii willlead to a point (at a certain radius RJ where the phase 

velocity of the guided mode is equal to the velo city of the unguided light in the free space 

there. The matching of velocities there makes the opportunity for the guided light to couple to 

the unbounded radiation modes. This means that a part of the optical power in the guided 

mode r > Re (where Re is the critical radius) radiates toward the outside of the arc. This mode 

conversion is the actual .reason of the optical 10ss in the bent waveguides, which should be 

considered in designing the bent waveguides. 

Figure 10.9.1 Field distribution of the guided mode in a bend 

The bending loss has three origins: the radiation losses of the bend (imaginary part of the 

propagation constant of the mode in the bend), conversion 10ss between the straight to the 

bend, and vise versa. Although the bending 10ss (which is the most important factor among the 

others) is related to the length of the bend, the two others are not. To assess the bending loss 

we will consider the 1800 bend at various bending radiuses. Our model is the two dimensional 

one (using effective indices of the corresponding slab at the proper polarization), and we have 

used finite element method for this purpose. The wavelength is 1550 nm, and the polarization 

is quasi TM. Figure 10.9.2 shows the modal profile of the regular waveguide bend which 

produces excessive 10ss as the center of the modal spot tends outward. 
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Figure 10.9.2 The field prome of a lossy bend 

·Figure 10.9.3 shows the loss in the 1800 bend versus the bending radius. Note that at higher 

radius, the bend length is also high causing greater totalloss, even though the radiation loss per 

length is small (corresponding to the imaginary part of the propagation constant in the bend). 

That is why at higher bending radius, the totalloss will not decrease significandy. It seems the 

bending radius grater than Rbend = 30 fLm produces smaller radiation losses. 
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Figure 10.9.3 The bending loss of 1800 bend versus the bending radius. 
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Figure 10.9.4 shows the field profile in a part of the 1800 bend with the bending radius of 30 /-Lm. 

As is clear, the mode is weil confined, and the modal spot's outward tendency is insignificant. 

Bending Radius= 30 /lm, Contour Ey, 11.=1.55 /lm 

~10 

-15 

-15 
x (/lm) 

Figure 10.9.4 The field profùe in a small portion of the 1800 bend, with bending radius Of 30 /lm. 

An interesting feature of the bend is the ability to impose higher losses to the modes which are 

near enough to cutoff. The reason for this loss is the lower modal confinement close to cutoff 

that makes the greater amount of power to be extended beyond the critical radius Re (see 

Figure 10.9.1). Figure 10.10.1 shows the field profile of the bend carrying second mode of the 

straight waveguide. The amount of loss is enough to assume that bends are a mode 

attenuatorj filter (which imposes considerable losses to higher order modes near cutoff). 

10.10 Alignment waveguide paths 

In order to launch light into the chip, we have to align the input beam (or fiber) to the input 

waveguide. Similarly, in order to measure the output power from output waveguides we need 

alignment too. To simplify the optical alignment procedure, it is highly recommended making 

two extra waveguide paths. One connects the top of the input waveguide at the input facet to 

the 
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Bending Radius= 30 J.1m, Contour Ey, À=1.55 J.1m 
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Figure 10.10.1 The second mode field prome in a portion of the 1800 bend (the bending radius Of 30J.1m 

top of the output waveguide at the output facet and the other connects the bottom to the 

bottom. The alignment procedure then would consist of exciting the top and the bottom input 

waveguide and observe the corresponding outputs. If this procedure is followed properly, one 

can change the input excitation by only displacing the input lens tapered fiber, and then input 

waveguide excitation is easily achievable by moving the input fiber to the input waveguide 

(only one lateral alignment is left). Unfortunately we have not implemented this scheme in the 

layout that was submitted for fabrication. Figure 10.10.2 shows the schematic of such an 

arrangement. 

Alignment paths 

Input waveguide 

Output waveguide 

L 

Figure 10.10.2 The alignment path 
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10.11 Chevrons 

Chevrons are the inclined trenches (chevron shape) which are put between the input and the 

output waveguides in order to obscure this region and prevent the light propagation there. The 

region between waveguides if not obscured, can be a propagating region (very similar to the 

waveguide itself, a silicon region between two trenches). In practical alignment procedure, if 

there are no chevrons, then it will be very difficult to recognize whether the light is propagating 

in the intended waveguides or between the waveguides. Typical chevrons are depicted in 

Figure 10.11.1. 

Figure 10.11.1 The chevrons. 

10.12 Die borders and number 

The input and output waveguides have to be extended beyond the input and output die edges. 

The die border is usually used as the cleaving guideline, and this extension (200 !lm in our case) 

guarantees that the cleave line passes through the input and the output waveguide (See Figure 

10.12.1). If we keep the separation of neighboring dies in a row as this extension (200 !lm in 

our case), then by a single cleave we will have two facets. 

We have also put die number at the left top corner of the die (see Figure 10.12.1). 
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Figure 10.12.1 The position of input waveguides with regard to die bmder 

10.13 A typicallayout 

A typicallayout without the alignment waveguides is depicted in Figure 10.13.1. The straight 

waveguide has been made there as a reference for the propagation 10ss measurement. 

Il 

L~ 
Figure 10.13.1 A typicallayout 
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Chapter Il 

EXPERIMENTAL RESULTS 

ln this chapter we review our attempt to design, fabricate, post-process and 

experimentally measure the performance of the k-vector superprism. Our goal was to 

resolve 16 DWDM channels with O.8nm channel spacing. We will also discuss the 

challenges for forthcoming work 

11.1 Introduction 

Demonstrating the capability of k-vector superprism for resolving fine wavelength separation 

was one of the first objectives of this thesis. More specifically, the goal was a 16 channel 

demultiplexer of 0.8 nm channel spacing. 

Our first attempt to design the multiplexer using a moderate refractive index contrast material 

(such as PECVD silicon nitride over silica) failed due to the following important issues 

1. The size of photonic crystal required to resolve a 16 channel of 0.8nm channel spacing 

was prohibitive for most electron beam writers. 

2. Design and fabrication of the focusing elements was challenging, as has been addressed 

in chapter 9. 

3. Furthermore a stress free thick silicon nitride layer was hard to achieve 

The high refractive index contrast system of materials such as silicon on insulator (SOI) 

technology was a promising candidate because 

1. The size of photonic crystal for the desired resolution would not be prohibitive. 
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2. Considering the high re&active index contrast of silicon and air, the focusing elements 

can be implemented as mirrors. 

The thickness of the top silicon layer was selected to be as large as possible to enhance the 

vertical field confinement in l-D photonic crystal. However the thickness must not be too 

large that it makes the input/output rectangular waveguides multimode. Details of this aspect 

of the design have been presented in chapter 10. We selected top a silicon layer thickness of 

0.5 j.!m. A buried oxide layer thickness of 3j.!m was also selected to prevented the bond Bloch 

modes leaking to the substrate. We prepared a complete technical details of the design before 

purchasing the wafers from Soitec ( http://www.soitec.com/). Reports of the successful 

implementation of such waveguides in other devices also made us confident of our choice [1]. 

Using the theory developed in chapter 8, we have designed several demultiplexers (a total of 

10) fulfilling the requirements. The foliowing ideas were to examine 

• Quiescent points in the first, and in the second Brillouin zones. 

• Positive and negative incident angles 

• Bandgap width effect on dispersion 

Using the equations developed in chapter 10, masks were designed for ail cases. The masks 

data were sent to National Research Council (NRC) laboratories for the electron beam writing 

on the SOI wafers and reactive ion etching (RIE). Ali the top silicon layer (0.5 j.!m) was 

supposed to be etched uniformly. The etch profile has to be as vertical as possible. 

Placing a cladding over the device (such as PECVD oxide) had the foliowing pros and cons 

a) The advantages were 

1. By smoothing the transition of silicon and air in the l-D photonic crystal area, the 

scattering loss could be reduced. 

2. It physicaliy protects the fine structures, (more discussion on this subject will be 

presented later in the chapter) 

b) The disadvantages were 
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1. It reduces the refractive index contra st in the 1-D photonic crystal area, which would 

reduce the dispersion and increase the superprism size. 

2. It adds another processing step 

3. The uniformity of the oxide layer in the narrow trenches of the 1-D photonic crystal is 

doubtful. 

At that time no cladding option was chosen. We will discuss the consequence of this decision 

later. The dies (total of 30 complete devices) were etched on 4 pieces of one inch by one inch 

wafers covered by the left over PMMA layer. 

11.2 Wafer post-processing 

For protection, the wafers were coated with ~21lm Shipley (1813) photoresist, and then soft 

baked at 95° for 30 min. For the sake of having smooth facets which is essential for light 

coupling into device, we followed the following procedure 

1. We diced the samples into small pieces Oess than lcm by lcm). Each piece contains at 

least a couple of dies. 

2. We thinned the pieces to less than 15ûllm. The Allied polisher was used. Fifteen 

minutes polishing with 451lm diamond suspension granules followed by ten minutes 

polishing with 91lm diamond suspension granule led to a satisfactory result. The 

thinning uniformity is important to make the next cleaving step more certain. 

3. We used the Sherbrooke University's scriber to scribe the samples and then cleaved 

them. 

Electron Scanning Microscope (ESM) image of a typical facet are depicted in Figure 11.2.1. 
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Figure 11.2.1 A typical cleaved facet ESM image 

11.3 Optical characterization setup 

The schetnatic of our optical characterization setup is shown in Figure 11.3.1. 

Polarization 
Controller 

IR ~ n----'~r--Camera 
I......-~==~ 

Interferometrie 
Objective D 

Taperedj 
Lensed Fiber 

6-D 

Silicon 

Figure 11.3.1 The optical characterization setup, (6-D stage stands 
for 6 degrees of freedom) 
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The laser source is an external cavity laser capable of tuning from 1460 to 1580 nm. The 

polarization controiler is a three-plate type consisting of a 1/4 wave plate, a Vz wave plate and a 

linear polarizer. The input fiber to the polarization controiler is a single mode fiber and the 

output is a polarization maintaining fiber. The device under test (DUT) is excited by a tapered 

lensed fiber with the output beam-width of 2.5)..tm. The output power is read by an IR coated 

60x objective lens (with a numerical aperture of 0.65). The 6-D stage is capable of moving the 

DUT on ail directions (three translational, and three rotational). The replaceable top objective 

(at the top of the sample) is initially an interferometric objective (10x, with numerical aperture 

of 0.30) for leveling the DUT. Ensuring a level sample is crucial for reducing the total coupling 

losses. 

The top objective is then replaced by an "infinity-corrected long working distance objectives". 

Initiaily with a 10x objective (with a numerical aperture of 0.28) for the azimuthal alignment of 

the fiber with the DUT input waveguide, and then by 50x objective (with numerical aperture of 

0.45) for the translational alignments. The top IR camera is used the fiber/ DUT alignment 

with the condenser light. In addition, when the laser is on one can also trace the light inside the 

sample using the top IR camera. Figure 11.3.2 demonstrates the aligned a tapered lensed fiber 

with the input waveguides of the DUT. The image has been captured using 50x top objective 

and the top IR camera. Note that the waveguide width at the die border is 2)..tm. 

Figure 11.3.2 The images of an aligned tapered lensed fiber with the input waveguide of the DUT 
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The removable photo diode is for the alignment of the output objective with the output facet. 

The removable polarimeter is for reading the polarization. The computer and the silicon 

detector have been programmed to perform the transmission measurement automatically. 

The side IR camera is for observing the output facet when the photodiode is on, and then the 

output mode when the laser is on. Figure 11.3.3 shows the experimental radiation profile of the 

mode of a 2xO.5{lm2 SOI waveguide at 1550 nm (Quasi TM mode) when it is excited by a 

tapered lensed fiber of 2.5 )lm beam width. The image is captured with the IR camera and 60x 

lens. The image data has also been processed for compensating the nonlinearity of the IR 

camera. Comparing the image with the perfect modal profile of Figure 10.8.4 shows a good 

agreement which is an indication of good alignment. Our estimation of the total coupling loss 

is ~15dB (from the tapered lensed fiber to the chip and from the chip to the detector) 

Figure 11.3.3 Experimental radiation profile of the mode of a 2 X 0.5 [Lm 2 SOI waveguide at 1550 nm (Quasi TM mode) which 

is excited by a tapered lensed fiber of 2.5 Ilm beam width 

Irrespective of our confidence regarding the light coupling into the device, unfortunately there 

was no meaningfullight emerging from the prism region. Although our first inspection of the 

etched patterns indicated that they were satisfactory, this motivated us to make a more careful 

inspection of the etched patterns. In the next section we will summarize our observations. 
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11.4 Etching characterization 

The etching of patterns with large feature sizes were mostly successful (as the following two 

figures clepict). 

(a) (b) 

Figure 11.4.1 (a) the etched chevrons and (b)the input waveguides/slab region on SOI sample 

Figure l1.4.2a shows the etching of O.5flm x O.5flm waveguicle. As can be seen the etching 

height and sicle wall verticality seems acceptable. Figure 11.4.2b shows the sicle wall roughness 

of O.5flm x O.5flm waveguide (which is not very satisfactory). 

w W 
Figure 11.4.2 (a) the etched O.51lffi X O.51lffi waveguide (b) its sidewall roughness on SOI sample 
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However, our careful inspection of the flne patterns (gratings) on many samples revealed 

that there were systematic flaws (many of them catastrophic). In the foIlowing we will 

categorize them. 

The ftrst signiflcant error is that the duty factor of the etched patterns is not according to the 

design value (which was 0.5 for aIl cases). As we will show in the next section, the 

performance of the k-vector superprism is very sensitive to this parameter. Figure 11.4.3 

shows a typical cross section. As is seen, the duty factor in this case is about 0.4. 

Figure 11.4.3 The cross section of a typical etched grating 

The duty factor in many cases was smaIler than 0.4 (as Figure 11.4:4a shows the case of a duty 

factor ~0.3 ) and in many other cases, it was greater than 0.5 (as Figure 11.4.4 b shows the case 

with duty factor of ~0.65). On some occasions, the observed duty factor was close to perfect, 

but unfortunately not over the entire part of superprism. However in the most observed cases, 

the trenches were over etched (the duty factor was lower than expected). 
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Figure 11.4.5 Ca) and (b) The top view of an almost perfect grating 

The second error was the non-uniformity of duty factor along the prism region. In other 

words, the duty factor was changing over the prism area. Usually the duty factor variation (of 

about 0.1) occurs smoothly over the prism region. However in cases, the duty factor changed 

abrupdy. Figure 11.4.6 shows such a situation. 
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Figure 11.4.6. A sudden change of duty factor from 0.41 to 0.27. 

The third erro! was dislocation of the grating patterns and misprinting. Figure 11.4.7 and 

Figure 11.4.8 shows two of such cases. 

Figure 11.4.7 Grating pattern dislocation 
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Figure 11.4.8. Grating pattern misprinting 

The forth and the fifth are fabrication imperfections such as the bad and non-uniform etching. 

Figure 11.4.9 shows two typical cases ofbad and/ or non-uniform etchings. 

(a) (b) 

Figure 11.4.9 Typica! (a) bad and (b) non-uniform etchings 

The last error is also a fabrication imperfection. The etch pattern of the top silicon layer is not 

uniform and the side walls are not sufficiendy smooth. This imperfection can be seen from 

cross section of Figure 11.4.3. 

Although the three last defects are not dis as trous (they will cause more scattering loss) the first 

three ones are catastrophic. In the next section, we will perform a sensitivity analysis of the k

vector superprism which shows the importance of having the duty factor under control. 
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11.5 Sensitivity analysis 

The scaling law of photonic crystal is the duality of wavelength and dimensions. In other 

words, if we want an accurate central wavelength, accurate fabrication techniques are needed. 

To illustrate this more quantitatively, assume that the fabrication tolerances are on the order of 

10nm. Assuming the 1-D photonic crystal of period 275nm, then approximately the central 

wavelength will be shifted by 

1).À = 1).A 1).À = ±10 X 1550 ~ ±55 nm 
Ào A' 275 

(11.1) 

Considering the channel spacing of 0.8nm, this is a large deviation. Furthermore unfortunately 

the k-vector superprism is also very sensitive to the duty factor of the 1-D photonic crystal. 

Figure 11.5.1 shows a typical bandgap variation of one of our design versus the duty factor. As 

can be seen for this case, a duty factor of less than 0.42 (i.e., trench over etching greater than 

22nm) causes the bandgap to disappear. Note that the total internaI reflection happens if the 

duty factor becomes smaller. This may explain the reason that we could not observe any 

transmitted light out of the prism region. 
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Figure 11.5.1 Normalized bandgap variation versus duty factor for a I-D photonic crystal of period A = 275nm and at 

the wavelength of À = 1549.82 nro 
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11.6 Challenges ahead and sorne recornrnendations 

As we have demonstrated in the last section, the dimension and duty factor sensitivity of the i

D k-vector superprism is behind the fabrication challenges. Precise control of the dimension 

and etching profile is crucial. The etching uniformity is also important. 

The option of no cladding had the following consequences 

• Exposure of the fine structure to potential external damage. The damages start to 

emerge after a soft cleaning of the sample (washing with edge bead remover, acetone, 

and isopropanol alcohol). Figure 11.6.1 shows a typical case. 

w ~ 
Figure 11.6.1 (a) and (b) Typical grating damages right after soft cleaning 

• The damage often became worse after the samples had undergone the stress of the 

thinning process (which includes using wax, heating the sample, removing and cleaning 

the wax). Some worse cases have been depicted in Figure 11.6.2 
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(a) (b) 
Figure 11.6.2 (a) Broken waveguide and (b) smeared waveguide due to the stress of post-processing 

• The built in stress along the long grating lines could be a source of breakage. Figure 

11.6.3 shows a typical site. 

1 m 

Figure 11.6.3 The stress along the grating lines which seems to be the source of breakage 
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• We could not use the dicing and side polishing technique which is a well established 

technique for making a good facet. Instead we worked with tiny fragile SOI samples of 

150~m width. 

For the sake of aU of the ab ove points we recommend the developing of a cladding layer over 

the encire device. The PECVD silicon oxide can be grown over the wafer, or methylsiloxane 

polymers can be spin coated over the sample. A special family of this polymer is capable of 

filling small ditches up to 100nm (Honeywell ACCUGLASS T-14 family, 

http://www.honeywell.com/). Considering modified refractive index distribution, we would 

need to change the design. The dispersion in the new design would be lower, and 

consequently the sensitivity would be lower, however the prism area would be larger. We 

need to control the accuracy of the electron beam writer and etching proftles. Electron beam 

exposure bracketing is also recommended. 
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Chapter 12 

CONCLUSIONS 

ln this chapter we conclude the thesis. We summarize the main Issues and our 

contributions. We also comment on possible future work. 

12.1 Introduction 

Planar lightwave circuits on the SOI platfonn using the weIl known patterning techniques of 

microelectronics are a good candidate technology making the future optical integrated circuits. 

Using a similar or at least a compatible technology, such an integrated device must contain aIl 

the components necessary for doing a specific task. It is in this context that the objective of 

this thesis which was to demonstrate the capability of superprism for making a miniaturized 

demultiplexer is situated. UsuaIly, there is a long cime that must elapse between an emerging 

idea and a realistic device. Although it is now about two decades since the superprism 

phenomenon was first observed [1], a practical device has yet to be demonstrated. There are 

many obstacles to overcome. The first astonishing superprism observation was on 3-D 

photonic crystal using high refractive index contrast of pseudo-2-D auto-cloned photonic 

crystal. The observed large degree of beam steering ~ater called the S-vector superprism) 

indeed occurred over a narrow range of spectrum, and the transmitted beam had lost a lot of 

its spatial coherence. Evolution of the 3-D photonic crystal superprism to the slab 2-D 

counterpart makes fabrication much easier but it also results in about 10 cimes dispersion 

reduction [2]. Then the first order calculation showed that loss of spatial coherence of the 

beam prevents the device from resolving fine wavelengths [3]. That analysis concluded that the 

size of the device makes the photonic crystal S-vector demultiplexer more suitable for CWDM 

applications. However, the dispersion across the \vider CWDM bandwidth is so nonlinear that 
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linear analysis is not sufficient for desif:,l1ling a practical device. There were attempts to improve 

the coherence recently, but the resulting bandwidth is not still suitable for CWDM applications 

[4;5]. 

The phase velo city dispersion was exploited for making superprisms in the millimeter wave 

range of the spectrum [6]. We then pioneered the exploitation of phase velo city dispersion in 

the optical spectrum using a l-D photonic crystal [7]. We have shown that a DWDM 

demultiplexer is feasible and tl1at the size of the device is very small when compared to the 

alternatives. This configuration was later called the k-vector supelprism [8]. No experimental 

results for the k-vector superprism in the optical spectrum have yet been reported. 

Any accurate design must be based on accurate modeling techniques. The plane wave 

expansion method with supercell de finition has been used for obtaining the wave vector 

diagram of slab photonic crystals. The speed and accuracy of the method has been improved 

considerably using the block-iterative frequency-domain methods [9]. However obtaining the 

complete wave vector diagram requites the whole Brillouin zone to be scanned (for a given 

wavelength). Furthermore obtaining the wave vector at any quiescent point needs sorne sort 

of interpolation method to be applied which is not particularly accurate. There is also no trace 

of any leaky modes in the method due to the application of the supercell technique. 

Since any optitnization techniques usually rely on repeated simulations of the structure with 

different parameters, the current plane wave expansion method is not suitable for such a task 

due to its high computational demands. Loss of accuracy at the expense of speed is an 

acceptable trade off for such methods. 

The high scattering loss of the light propagating through a photonic crystal and low coupling 

loss of the light into the photonic crystal are two drawbacks of the planar superprisms. Whilst 

the former can be mitigated using more accurate fabrication techniques, the later needs to be 

addressed thtough the design. Reliable transmission and reflection modeling of the bulk 

photonic crystal is necessary to obtain any practical designs. Full 3-D FDTD modeling of the 

structure exhausts the computer resources and there is no other reliable technique for this 

issue. Mode matching using bound and leaky modes is a valuable technique to obtain a reliable 

transmission and reflection coefficients. However, leaky modes of the slab photonic crystals 
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are not weIl known, and the plane wave expansion method with supercell definition cannot 

trace them. 

A focusing e1ement is a crucial part of the superprism demultiplexers. It is the main component 

of our layout for k-vector superprism and it is necessary e1ement for an S-vector when the 

output beam width becomes excessive. A waveguide lens with a re1ative1y large f /# and 

bandwidth is required for our task. The superlenses with very short focallength [10] are not 

suitable for our task. 

12.2 S-vector superprism 

In chapter 6 we have developed general design equations for designing a demultiplexer using S

vector superprism phenomena based on the first band of photonic crystals. First, wc obtained 

a criterion for obtaining the best lattice parameters. \'Ve have shown that average group velocity 

at the bandedge is a suitable indicator of the available dispersion. We have se1ected the lattice 

parameters taking the micro-fabrication limitation into account (we have assumed a minimum 

feature size greater dlan 75J . .un). A 3-D plane wave expansion medlod with supercell technique 

has becn employed to insure a more realistic design than the equivalent 2-D counterparts. Thc 

2-D hexagonal lattice provides an ordcr of magnihlde higher angular dispersion than l-D 

photonic crystal. Thc angular dispersion of 2-D square lattice was near to the hexagonal one. 

We have defincd dle minimum resolution length and calculatcd it for aIl channe1s. We have 

modified the conventional S-vector superprism gcometty in order to reduce the total area of 

the superprism. Now the superprism area only accommodates the area necessary for the beam:s 

to propagate and resolve neighboring channe1s. Usually the dispersion is high enough that the 

Gaussian beams are resolved from the neighboring channe1s in the near field. We have derived 

a more accurate model to cvaluate cross talk in the near Gaussian field. Based on our model, 

we have concluded that the resolution is more critically dependent on the beam divergence 

inside the photonic cryst.al than on angular dispersion. As result the l-D photonic crystals 

provide the best resolution, despite their lower angular dispersion. 
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We have shown that a 4-channel C\X'DM dennütiplexer with a theoretical cross talk level of 20 

dB can be made with a the prism area of 1367 !lm 2 
• A typical SOI wafer technolot,'Y with a top 

silicon layer thickness of 260 nm has been used for our simulation. The input beam width is 

about 1.5 I-lm and the maximum output beam width is about 3 pm. This slze is about 500 times 

smaller dlan A WG on the similar platform. 

Our investigation also shows that it is not easy to design higher channel count demultiplexers 

based on the S-vector superprism phenomenon due to the high non-uniformity of the band 

diagram as it evolves with the wavelength. In chapter 7, we have introduced a novel concept 

for higher count (wider band) demultiplexers. We have shown that a strati:fied photonic crystal 

is capable of reducing the superprism area by :five rimes. The slant angle in each layer has been 

selected for maximizing the dispersion for a particular channel, and for reflecting back the 

proceeding channels and refracts the succeeding ones. We have shown that we only need a 

0.26 mm2 photonic crystal area to resolve 8-channel CWDM demultiplexer (with 160nm 

bandwidth). The non-unifortnÏty of the output channel width also shows tremendous 

improvement over the conventional superprism. 

For having a practical C\'V'DM demultiplexer based on the S-vector superpnsm, there ate some 

issues to be addœssed and also some ideas to explore more. 

1. The main issue of the multiplexer is dle coupling loss of the input beam into the 

photonic cryst.al bulk and from the bulk into the output waveguide. Working near the 

bandedge for the sake of having higher dispersion is causes the low coupling efficiency. 

Modeling 1S more complicated due to the Gaussian nature of the beams. For the input 

coupling, we have to consider the divergence of the incident beam, and the group of 

Bloch modes that are involved in the coupling. For dle output coupling on the other 

hands we have to consider the Bloch modes which are involved in the propagation and 

the Gaussian modes which are allowed to propagates. Lack of any accurate mode! is 

clear. As we have shown in chapter 6, any practical desit,l1l has to use the full 3-D 

modeling especially when the tefractive index contrast is high. So the coupling issue 

has to be addressed in full 3-D modeling :finally. 
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2. The rapid loss of spatial coherence is another factor that over sizes the conventional 

superprism. Although preconditioning is a novel idea [5], we need some other means 

with the bandwidth suitable for CWDM applications. Our stratification technique is 

also an idea that can be explored further by varying other lattice parameters of each 

section (we only change the slant angle). 

3. Ihe wave propagation in a stratified media in the limit can be considered as the wave 

propagation in the inhomogeneous media (l:e.a gradient refractive index medium). Any 

abrupt reflection can be replaced by a smooth tum (similar to radio wave reflection 

from the ionosphere or in a gradient refractive index lens). Hamiltonian optics has 

been suggested for the modeling of the light propagating in non-uniform photonic 

crystal [11], but it has to be explored more. 

4. Polarization sensitivity of the photonic crystal is also problematic. An ideal 

demultiplcxer has very low polarization dependence. However wave propagation in a 

conventional photonic crystal is sufficiently anisotropie, that a polarization beam 

splitter has been made from it [12]. Either polarization compensation clements must be 

devcloped or a new structure and/or new photonic crystal atoms must be found that 

show very low polarization sensitivity. 

12.3 k-vector superprism 

In chapter 8, a complete optical design of a demultiplexer based on photonic crystal k-vector 

superprism has been proposed. The first integrated layout for the high contrast material has 

been introduced. 

Once again we have used the group velocity at the bandedge as the indicator for the available 

dispersion. Based on this indicator, wc have sclected the photonic crystal parameters in order 

to obtain the best k-vector superprism performance. We have developed design equations and 

design rules, for the k-vector superprism. We have discussed various operating points and 

showed that there is a great advantage to work in the second Brillouin zone and select the 

parameters so that the beam expands through the photonic crystal. As before, the superprism 

is large enough for the beam to expand and providing the desired resolution, and the 
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nonlinearity of dispersion has been taken into account. An optimal design maximizes the phase 

velocity dispersion and minimizes the group velo city dispersion as much as possible. 

Interestingly, we have shown that the 1-D photonic crystal has the smallest superprism area of 

99,200 I-lm2
, which provides sufficient resolution to demultiplex 32 channels in the Cband with 

a 0.8 nm (100Ghz) channel spacing. The 2-D square lattice is very close to the smallest size, 

while the best 2-D hexagonal superprism is larger by 45%. 

The maximum phase and the minimum group velocity dispersion is an ideal case for having 

small demultiplexer, but this appears to be an impossible condition. This is the reason that the 

2-D hexagonallattice with high dispersion (both phase and group) has the largest superprism 

area. 

The chip size excluding the input and the output sections is approximately 4.5 times smal1er 

than the etched grating demultiplexer on the same platform. 

One of the main components of our proposed layout is the focusing element. In chapter 9 we 

have introduced a new class of lenses by introducing rotational periodicity of the lattice. By 

keeping the 1-D patterns parallel to the rays, we have avoided the difficulty of misalignment 

between the group and phase velocities in photonic crystals. The azimuthal effective index 

method has been modified in order to obtain the effective index for the radially propagating 

rays. Many types of lenses can be designed but we chose to design a lens for collimating light 

emitted from a waveguide into the slab region. We have shown that 658 )lm2 lens area is 

enough to collimate 100 )lm beam. The focallength is 130)lm. The lens performance appears 

to be good in simulation. 

In chapter 10, the mathematical equations necessary to design the mask for the proposed 

layout has been presented. Many aspects of waveguide designs have been discussed there. 

This multiplexer type has also some issues to be solved before become a practical device, and 

there are also some ideas to be explored. 

1. Similar to the previous case, coupling into and out of the photonic crystal must be 

improved, but the case is less complicated than the S-vector case. The incident beam 

can be treatcd as a plane wave, the rcfracted wave as a Bloch mode (if the quiescent 
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point has been chosen correcdy) and the transm1tted wave as a plane wave again. 'lbere 

are some pioneering works in fuis regards (including projected holes, adiabatic tapering, 

and diffraction grating) [13-16]. 

2. A practical demultiplexer for DWDM channel spacings must bring under control the 

sensitivity of the structure to the temperature. Any. wavelength drift must be a small 

fraction of channel spacing. For high count multiplexers, the low power than many 

inputs carry may be a source of significant heat due to propagation loss through the 

device. We should therefore investigate the sensitivity of the k-vector superprism to 

temperature, and if it is too sensitive, we need to develop about a means to reduce it. 

3. Tuning the central wavelength of a k-vector superprism with input optical power, (or 

to an external source) is an interesting idea. Design imperfections or even the 

wavelength shift with temperature can be compensated using an externallight source. 

Applying the proposed method to a study the Kerr-type nonlinearity of k-vector 

superprism, we have also pioneered an approach in fuis area too. But our method is 

only approximate and we need more accurate modeling, especially when the index 

contrast is high. 

4. The possibility of implementing our photonic crystal lens in the k-vector layout is 

interesting to explore. The other types of the lens (pIano-concave) can be designed 

which is more suitable for integrating with the prism. Figure 12.3.1 shows the concept. 

Note that the passing of the beam through different photonic crystal regions in the 

limit can be modeled using Hamiltonian op tics [11]. 

5. Although the modeling which has been used for the lens design is a 3-D one, however, 

its small size makes it a possible candidate for FDTD analysis. It is possible to test the 

validity of our lens design with FDTD simulation. 
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Substrate 

Figure 12.3.1 An integrated superprism and tens designed with 1-D photonic crystal. 

12.4 Modal analysis 

In chapter 4 we have presented an approximate analytical method for the analysis of slab l-D 

photonic crystal. The method is an extension of the known weighted index method for 

rectangular dielectric waveguides, and is capable to be applied to some slab 2-D photonic 

crystal too. 

Compared to the accurate finite elements results, the accuracy of the weighted index method is 

good in the low refractive index contrast systems (!J.n ~ 0.5), but it deteriorates as the 

refractive index contrast becomes higher (!:1n ~ 2). 

The weighted index method has also been extended to handle the nonlinear slab l-D photonic 

crystal. Merging the loop of the weighted index method with the loop of the nonlinear routine 

will speed up the method considerably. The resultant method is simpler, and converges 

virtuallyas fast as the conventional perturbation feedback method (through 4 to 8 Iterations). 

Here are some ideas for further to exploration of the weighted index method. 
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1. The study of low contrast photonic crystals is an emerging field. The low scattering 

loss and the possibility of making large photonic crystals with various methods make it 

interesting [17]. For such an application the weighted index method is choice: accurate 

enough but very fast. 

2. The application of the method in nonlinear periodic structure can be further explored. 

Investigating soliton wave propagation in 1-D photonic crystal is interesting [18]. 

In chapter 5, we presented a new method based on the conventional plane wave expansion 

method. The method is capable of obtaining a spectrum of slab 1-D photonic crystal mode 

including leaky mode (which is valuable for replacing the continuum of radiation modes in the 

conventional mode matching technique) However, the method as presented here is 

computationally more intensive than the state of art plane wave expansion method. Although 

we have to execute the plane wave expansion program numerous rimes, thanks to the Bloch 

variational iterative formula[9], the method is relatively fast. The method can trace the leaky 

modes through the Brillouin zone, and the fact that it needs less Fourier components in the 

non-periodic direction make it attractive. This method has a lot of capability to be explored, 

including 

1. The full 3-D reflection and transmission can be modeled using the leaky modes 

obtained in chapter 5. 

2. The method is basically is at the same level as the very first introduction of the plane 

wave expansion method, so one can expect that the efficiency of the method can be 

improved using more sophisticated eigenvalue solver. 

3. The more accurate mode characterization of slab photonic crystal is doable (similar as 

2-D rectangular dielectric waveguides) using the results of the method. This will shed 

light on the dark side of mode matching and what is behind it. 

The last section we explain our achievements and present our comments regarding our 

experimental results. 
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12.5 Experimental results 

In chapter 11, we have reviewed our attempt to design, fabricate, post-process and 

experimentally characterize the of the k-vector superprism. 

Parametric mask design for the proposed k-vector superprism demultiplexer has been done. 

An SOI wafer with a top silicon layer of 0.5 ~m thickness was selected for fabrication. Ten 

different demultiplexer designs for resolving 16 standard DWDM channels were developed. 

The mask data for thirty full demultiplexers were sent for fabrication. An optical 

characterization setup suitable for coupling light into and reading power out of the samples 

with submicron waveguides was designed and constructed. Unfortunately, the sensitivity of our 

design to fabrication imperfections and unsatisfactory fabrication quality prevented us from 

obtain any meaningful experimental results. For the next step of the project, we suggest the 

development of cladding through new device design. More accurate and careful fabrication is 

also needed. 
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Appendix A 

A FINITE ELEMENT METHOD FORANALYZING OF SLAB 1-D 

PHOTONIC CRYSTAL 

A vectorial finite element method is introduced for the analysis of a slab 1-D photonic 

crystal. The periodic boundary condition is imposed on the periodic direction, while 

essential boundary conditions are adopted for the two other transversal directions after 

inserting enough perfectly matched layer absorber in non periodic direction. 

Numerical results illustrate the method. Some comments on the other alternatives are 

also presented. 

2.1 Introduction 

The Finite Element Method (FEM) has aIready been used to model 2-D and 3-D photonic 

crystals [1;2]. Note that 1-D photonic crystal has an analytic solution [3]. Periodic boundary 

condition and Floquet theory can be implemented implicitly [1], or explicitly [2]. Using FEM, 

the modeling of periodic structures that has been done so far, is based on the assumption that 

the refractive index of the structure is uniform in non-periodic direction whlch may not be the 

case generally. In slab photoruc crystals, the structure is periodic in one or two directions, while 

the refractive index in the third direction is arranged to confine light in that direction. In our 

case, the structure is periodic in x direction, uniform in Z direction (direction of propagation) 

and inhomogeneous iny direction (light confinement direction which is normal to the slab). 

There has been a lot of interest in the last two decades to implement FEM on dielectric 

waveguides with open boundaries. We have chosen edge type of FEM, whlch enables us to 

model full vectorial Helmholtz's equation. Edge type FEM guarantees the continuity of 
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tangential field components across element interfaces, while allowing discontinuity in normal 

components, and by implicitly applying the divergence equation, it eliminates the so called 

spurious modes[4]. We have also employed Berenger's Perfectly Matched Layer (PML) as an 

absorbing layer [5]. This kind of artificial absorber shows less sensitivity to the wave incidence 

angle and frequency. Essential boundary condition is applied to enclose the computational 

domain in y direction (normal to the slab). 

This appendix has been arranged in four sections. In section 2, the implementation of periodic 

boundary condition together with Floquet theory in implicit form is reviewed. In section 3, we 

will show how PML can be implemented and how the corresponding matrix elements are 

affected. In section 4, more comments alongside with some guidelines for further research are 

presented. 

A.2 Periodic boundary condition 

In explicit form, one can change the workable variable to Bloch eigenvector and use Maxwell's 

equations for Floquet's wave, while in implicit form Bloch eigen values are introduced through 

parameters in interpolation functions. They are equivalent in a sense that they lead to the same 

results. We have adopted implicit form for the sake of easiness. Rewriting Eq.(3.1) in a more 

familiar form for FEM implementation 

\7t x( 1/ n2 )(\7t x H t ) - (1/ n2 )\7t (\7t · H t )- (k; + k: / n2 )Ht = 0 (Al) 

The weighted residual formulation of the Helmholtz Eq.(Al) is given by 

ff {(\7t XW)'(1/n 2 )(\7t XHt)- W . (1/n 2 )\7t (\7t 'Ht)-(k; +k: /n 2 )W 'Ht}dA 
A 

-f W x ( 1/ n2 \7 t X H t ). n df = 0 
r 

(A2) 
whereA is the area of the periodic unit cell (see Figure A.2.1), r represents the perimeter of A 

and W is some arbitrary weighting function. 
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Figure 0.1. Unit cell of a singly periodic 2-D structure 

In non-periodic cases the line integral in Eq.(A2) is eliroinated by constraining the FEM trial 

functions (H.) and weight functions W to vanish wherever the essential boundary condition 

(H. = 0) on r applies, while the natural condition ('V t xHJn= 0 requires no further 

action. Such steps can also be taken here but do not account for the portions of r 
corresponding to the unit ceil periodic closures. The latter are taken into account by 

employing Floquet's theorem. Thus, the degrees of freedom of H t associated with non-

overlapping geometric parts (1 and 2) of the unit ceil in Figure 0.1 are related as foilows 

H; = H! exp ( -ikxA) (A3) 

where kx is the Floquet wave number. Cons training the weight functions with reciprocal 

factors exp (ikxA) so that 

(A4) 

It foilows that the line integral around r will be canceled because of equal and opposite 

normal vectors n on the first and the second boundaries. Thus instead of Eq.(Al) a residual 

ff {(1/n2)('Vt XW)'('Vt XHt)-(1/n2)W' 'Vt ('Vt .Ht)-(~ +k:/n2)W'Ht}dA = 0 (AS) 
A 

applies to the whole region A. On an element-by-element basis one may write 

(A6) 
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A, 

(A7) 

Provided H t and W are continuous functions across inter-element boundaries, the line 

integrals due to such interfaces will cancel and need not to be included in Eq.(A 7). The 

function H t can be expanded within an element e as: 

H: (r) = ~Hjg~N~ (A8) 
j(e) 

where j(e) signifies edge elements relating to the element e but counted on a global basis, 

while N~ are the vector interpolation functions. The constant g~ is introduced in order to 

impose the periodic constraints of Eq.(A3), as shown later. In the preferred weighted residual 

option, the weightings are selected from the interpolation functions 

(A9) 

where the C; are arbitrary constants. In this case the element residuals Eq.(A 7) may be 

represented in matrix form by 

(AIO) 

where the column vector He corresponds to Hj(e)' Assuming n
2 is constant within an 

element and given C; and g~ the local matrix elements 

S:. = c;g~ ff(V XN~).(V XNe.)dO 
lJ ( n2 )' 11, t 1 t J 

(AlI) 

e e 

u; = (~:)' f!N;.NjdO (AI2) 

T; = k; ( n2 rU;. (A13) 

are readily evaluated. Note that by choosing the edge elements as a vector interpolation 

function, the second term of the integrand in Eq. (A 7) is zero, i.e., 

Vt·N~ =0 (AI4) 

The constants C; and g~ are spedfied so as to be consistent with the boundary and interface 

rules: 
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a) If edge 1 (e) lies on an internaI element boundary, c; and g; are chosen such that for any 

, 1 1 

element e sharing the edge 1, c; = c; , g; = g; , otherwise the continuity of W and H t is 

violated. A value of C; = 1 ,g; = 1 may conveniendy be chosen for such edges and also for 

edges not shared by any other element. 

b) If I(c) is an edge forwhich H t is prescribed (Ht = 0 here) , c; = Ois chosen to satisfy the 

requirement W = 0 at that edge. 

c) If l(co)=lorepresents an edge at (xo,yo)on a periodic boundary (corresponding to 

geometric part 1 in Figure A.2.1), there is an edge l(ej)=/j at (xo+Ax'yo) on the 

corresponding periodic ceIl closure (geometric part 2 in Figure A.2.1). In that case, Eqs. 

(A4), (AS) and (A9) show that C;~ = 1 and C;; = exp (ikxAJ must be used in Eqs. (A11) 

and (A12) relating to the second edge. In a similar way, from Eq. (A4) g;~ = 1 and 

g;: = exp ( -ikxAx)' FinaIly, the unknown variable R'l is set equal to R,o thereby 

eliminating it From the system of equations. 

Note that it is required in the above discussion that the finite element mesh at periodic 

boundary pairs is identical. Figure A.2.2 shows such a mesh for the typical slab I-D photonic 

crystal of chapter 5. 

xr I~ PML-J x '" ~Cor~ ~PML--l 
1 r--Cladding------j r--Substart~ 

Figure A.2.2 A typical mesh for slab I-D photonic crystal of chapter 
5. The mesh density is lower than the practical one. 

Summing the individual element residuals (Eq. (AI0)) as in Eq. (A6) now amounts to a 

procedure which, element by element and edge by edge, assembles the global matrix equation 
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R = SH - TH - k:UH = 0 (AIS) 

where H is the column vector of the unknown nodal (H) values, ready for treatment as an 

eigen equation to solve for k~ given ko and kx 

A.3 Perfectly matched layer (PML) boundary condition 

Modeling of open problem space with FEM was at first done by truncating the computational 

window and imposing an artificial electric wall around it, a technique which as with the FD 

method gives erroneous results for waveguides operating near cut-off. 

It can be shown that if we defiue V t in the absorbing layer as 

(A16) 

where a. y are parameter associated with the PML boundary condition. PML parameters have 

to be determined such that the wave impedance of the PML layer placed at the top and the 

bottom of the computational domain is exactly the same as that of the adjacent medium inside 

the computational domain. Hence, the PML medium will perfectly matches the computational 

domain medium which will allow the unwanted wave to leave the computational domain freely 

without any reflection. This necessary condition can be derived as [6] 

1 1 
(AI7) 

where Zo = ~IJ-o/€o is the characteristic impedance of vacuum while Œ, and Œm are the 

electric and magnetic conductivity of the PML region, respectively. In the PML medium, if we 

let conductivity as a constant and defme, 

1 
a. - -, Sy = sr -ZS; 

y S 
y 

(AI8) 

Then for the plane wave propagating with wave number k r + ik; propagating in the y 

direction, the wave attenuates as 

(AI9) 

And propagates as 
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(A20) 

In the absence of evanescent wave (kj = 0), the wave propagates with the wave number of 

Srkr' which results in approximately the same requirement on the mesh density outside of the 

PML. 

In the PML medium, a parabolic profile is also commonly used for the conductivities, so [6] 

3(Ll )2 
<X =l+i ~ InR (A2I) 

y 2kond3 t 

where dis the width of PML , Ll Y is the distance from the beginning of PML and RI is called 

the theoretical reflection coefficient at the PML-computational domain interface, which is set 

to a very smail value during the simulations (say 10-10
). 

For PML the de finitions of matrix elements (Eqs.(A11) through (A13» will not change, except 

for S; in Eq.(A11) which will be modified as below 

se, = c;g~ (<x~r 1J(\7 XN~).(\7 XNe,)dO 
IJ ( n2 )' n, t 1 t J 

(A22) 

where <X y is assumed to be constant through each element. 

A,4 A Numerical result 

Consider the known case of slab 1-D photonic crystal with the parameters depicted in Eq. 

(5.35) and repeated here. 

n d•d = 1, nsub = J2, ncore =.J12, À = 1537.4 nm 

A = 265nm, a = TA = A/2 = 132.5nm, b = 500nm 

Figure A.4.l shows the unit ceil with the convention of this appendix. 
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a='tA 

I~ 

Figure A.4.1 a unit cell of slab I-D photonic crystal with definition of sorne 
parameters. 

We assume the cladcling and substrate width of 11lm. If we want the wave attenuation 

(presumably plane wave) after 11lm ofPML layer reaches to 10-3
, then 

Si = lno.pML xÀ = 3lnl0x1.5374 = 1.69 
211~YPML 211 X 1 

Assuming the same value for Sr' then if we assume 10 elements per wavelength in the 

PML layer, the maximum element size in PML layer is 
À 1.5374 64 

~ nm 
Si10n 1.69xl0x.J2 

Under these conditions, Figure A.4.2 shows the magnetic field profile at kx = 0 (resonance) 

and kx = 11/ A (anti-resonance) at the wavelength of ÀlO = 1537.40 nm. The normalized wave 

vector in the z direction was obtained as nz = 2.303 and nz = 0.230 for resonance and anti-

resonance cases respectively. 
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(b) 

11+-0 ---50onm---.-j.1 

Figure A.4.2 The Total magnetic field of Ca) resonant case kx = 0 , 

and (b) anti-resonant case kx = TI/A over one period 

l 
265 nm 

J 

l 
265nm 

J 

Note the shift of magnetic field concentration at resonance and anti-resonance case. Although 

the method is very accurate however, it suffers from the existence of non-physical modes 

(spurious). Usually for each obtained eigen-value, one has to check the modal profiles to be 

sure that the obtained mode is physical. 

A.5 Discussion and suggestions for further studies 

In following, we will discuss some other aspects of the formulation and suggestions for further 

research on this topie. 

As it is mentioned earlier, there are two equivalent methods to implement periodic boundary 

conditions and Flouqet's theorem in FEMs for analyzing periodic structures. 

266 



• Implicit method, which uses the conventional Helmholtz equation and apply Flouqet's 

theory with new parameters in interpolating functions, leads us to an eigen value 

equation of Eq.(A1S), in which ail matrix coefficients S, T and U ar e qu adratic 

functions of Flouqet wave number ~x [1]. If we want to calculate the wave vector 

diagram (kz versus kx at constantko) we need to detetmine ail matrix coefficients S, T 

and U repetitively in every steps of the calculation. 

• Explicit forms utilizing Bloch eigenvectors as a workable variables leads us to matrix 

coefficients which is independent of Flouqet wave number[2]. The foilowing Bloch 

eigen mode is introduced 

W = exp (ikxx) H t 

where 'l' is a periodic function in x direction, i.e., 

W(x,y) = W(x+A,y) 

(A24) 

(A2S) 

The proper differential equation corresponds to Eq. (3.1) can be obtained by modifying the 

gradient operator as 

(A26) 

and changing variable to Bloch eigen mode. More study is needed to find similar eigen value 

equation as ofEq. (A1S). This approach has not been implemented yet using edge elements. 

Technicaily specking, using absorbing layers of any kind at the structure boundaries makes the 

whole structure lossy. As a matter of fact, if we put them too close to the waveguide 

boundaries, then they will cause significant aberration of the field. Furthermore, using 

absorbing layers makes fmding accurate cutoff wave number virtuaily impossible. True cutoff 

wave number will be obscured by the uncertainty, which exists in the contribution of absorbing 

layer in the imaginary part of obtained eigen values. This uncertainty will be magnified 

considering the fact that in vicinity of the cutoff, there is a little field confinement. The 

situation will be worse where there is little refractive index contrast. In this circumstance, band 

structure through cutoff (in our case through band gap region) is impossible using absorbing 

layers. 

Altematively, one can search for proper asymptotic physical boundary conditions. They have 

been implemented successfully for the single dielectric waveguide [7]. U sing the radiation 
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conditions, it is weIl known that the far field expression for electromagnetic waves exhibits the 

following form 

exp (ikrP ) 
F""' ri:: 

-..jkrP 
(A27) 

refractive index of the free space in which the far field is propagating. Here we have an infinite 

array of waveguides with the field phase shifting of exp (-ikxA), between consecutive 

waveguides. Similarity with the linear antenna array implies that an asymptotic equation for our 

case may also be found. Since the far field pattern of Eq.(A27) involves unknown eigen value 

kz ' using it for the boundary conditions causes the eigen value Eq.(A15) to behave nonlinearly. 

Iterative method is used to solve this nonlinear eigen value equation, however, Mcdougall 

proposes a method to avoid iteration [8]. 

References 

[1] C. Mias,]. P. Webb, and R. L. Ferrari, "Finite e1ement modeling of e1ectromagnetic 
waves in doubly and triply periodic structures," Iee Proceedings-Optoelectronics, vol. 146, no. 
2, pp. 111-118, Apr.1999. 

[2] B. P. Hiett,]. M. Generowicz, S.]. Cox, M. Molinari, D. H. Beckett, and K. S. Thomas, 
"Application of finite e1ement methods to photonic crystal modeling," Iee Proceedings
Science Measurement and Technology, vol. 149, no. 5, pp. 293-296, Sept.2002. 

[3] Y ariv Amnon and Yeh Pochi, "Electromagnetic propagation in periodic media," in 
Optical Waves in Crystals: Propagation and Control qfLaser fuldiation Wiley Series in Pure 
and Applied Optics, 2003, pp. 115-219. 

[4] J . Jianming, "Vector Finite Elements," in The finite element method in electromagnetics, 2nd ed 
Willey Interscience,John Wiley and Sons, lnc., 2002, pp. 273-337. 

[5] J . P. Berenger, "A Perfecdy Matched Layer for the Absorption of Electromagnetic
Waves," Journal qfComputational Prysics, vol. 114, no. 2, pp. 185-200, Oct.1994. 

[6] S. S. A. Obayya, B. M. A. Rahman, and H. A. El-Mikati, "New full-vectorial 
numerically efficient propagation algorithm based on the finite e1ement method," 
Journal qfIightwave Technology, vol. 18, no. 3, pp. 409-415, Mar.2000. 

268 



[7] H. E. Hemandezfigueroa, F. A. Femandez, and J. B. Davies, "Finite-Element 
Approach for the Modal-Analysis of Open-Boundary Wave-Guides," Electronics Letters, 
vol. 30, no. 24, pp. 2031-2032, Nov.1994. 

[8] M. J. Mcdougall and J. P. Webb, "Infinite Elements for the Analysis of Open Dielectric 
Wave-Guides," Ieee Transactions on Microwave Theory and Techniques, vol. 37, no. 11, pp. 
1724-1731, Nov.1989. 

269 


