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ABSTRACT

\

“

We investigate the effect of inelastic shielding on
neutron~-nuc¥eus total cross sections at high energy. Our
calculations are performed within the framework of the

®

Boqhmann—Margoli§ coupled channel/optical_mo&él formalisim.

In addition to the elastft channel, we consider the effect .
upon the total cross section of diffracfi&ely proddaed‘nudleon
resonanceé. In particdlar we examiﬁe,different models,
inspired by triple Regge theory, for the ;trengths‘ ith which
these resonance channels are coupied to eacﬁ other. We con-
clude that, up to the energies w@nsidered to date, the data’

are consistent with a model in which the various inelastic

.diffractite channels are completely decoupled.
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Résumé

Utilisant le formalisme du modéle opt'i;/iue 3 canaux couplés
fr
de Bochmann et Margolis, nous avons étudié 1'effet d'écrar} formé « é
. e ' a i
par les canaux inélastiques sur les sectifons efficaces totales .

]
v

g

idams les collisions neutron-noyau a hauges énergies. Seuls le
!

canal élastique et les canaux ind@lastifjues diffractifs avec

S

.production de résonances du nucléon ont été considérés. La force
- 1 {
de couplage entre les canaux inélas(ﬁiques a été calculée de . *
[ aifférentes maniéres, toutes inspirées de la théorie du "triple
i

} [ 4 (/ rd 1] ' N
\Regge". 11 appert gue les donnée¢s expérimentales disgoxubles a

. présent sont compatibles avec un modéle dans lequel les divers

et 7 p L SRR e s

i’
4
canaux inélastiques diffracti’és sont totalement découplés,
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CHAPTER 1 ' -

Introduction

.,

" As the title %f the thegsis ‘suggests, we are i%teres?ed
[ \ . - 4

in calculating total cross sections of high energy nedirons %
~ L :

on nuclei. In performing such a calculation, oné finds it

\

‘ . \‘ \ ‘~
. most convenient to calculate forward elastic scattering ampli- ‘%
+ ' tudes and make use of the optical theorem to get the total %

cross section. This strategy enables one to ignore the numerous :

inelastic reactions which, if had to be calculated one Dy one

" (especially at7ﬁ§gh energy) would make the problem cSmplétely,

'
!

intractable. o /

N Standard Glauber multiple scattering theory enables one
to calculate the forward élastic scattering amplitude by

taking into aecount such processes as shown in Figure-1. !

Figure 1(a) shows the case of single scattering, while 1(b)
shows doub;é’or 2-step scattering. The "x" denotes the position P
wherefthe inéiﬁent)neutron elastically scatte?s off oné of wd,g
the nucléopsian the nucleus. This formalism however does not 3
account for 2-step regeneration as shown in Figure 2.0 At
sufficiently high energies the incident neutron can be in-
elastically converted in the nucleus inté some other particle
which itself then inelastically scatters back ;nto a neutfoh;

' j . ,
the incident neutron is said to have been regenerated.




- transform amongst themselves.

. c o B4
- / v
This regeneration of neutrons makes the nucleus

v

N

’ ] ’ N

#eem less "black", or less absorbing than one would expect
if one did not consider this process. Tﬁe difference bet-
ween total cross s?j;ions calculated with and without re-

generation is called the inelastic screening contribution

1
~

MNEL' The purpose of this thesis 1s to calculate total /

neutron ‘cross sections -on heawy nuclei taking this effect

P

i?to account. In particular we examine different models

for the strength with which.the intermediate particles

/

L

In Chapter 2 we give a more detailed explanation of
inelastic screening, and describe the Bochmann-Margolis
coupled channel optical model formalism which is used

to calculate total neutron cross secyibns, taking account

‘¢

of inelastic screening.
]

— n "
In Chapter 3 we review the history of inelastic

e

screening calculations, and recent developments in the use,

| AN
of the Bochmann-Margolis formalism. In' particular we

discuss a number of models for the 2-body forward ampli-

tudes which couple the various intermediate states indi-

cated in Figure 2. We also discuss other terms which appear

in the equations of Chapter 2.

In Chapter 4 we heécribé the computer program which
was written to perform the qalculatio? of total neutron

cross sections. We discuss the numerical jalgorithms used
. . ' .
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and the various errors present in the calculation. Finally

we present the results of our calculations along with the

» available experimental data. )

» In ai)pendix A we present Bochmann's derivation of the
equivalence of the eikonal solution of the coupled cQannel
‘optical model to a Glauber-type multiple égattering model.

This is a relevant calculation, but somewhat offiy the main line

of the thesis, and so has been put in an appendix.

Y
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CHAPTER 2 | L e

-

: Theory > ¢
¢ . ‘ A
0 @ ‘ /,,,

1
B e e A bR G

2.1 Screening ’

' We begin wif:oh a qualitative wave-mecilaniéal picture
of elastic and inealstie scr;eening. (1? . e
‘ . . :
Consider a plane wave incident on a nucleus as in ;
Figure 30. The incident wave scatters off the nucle“c;ns
at the ‘fro{pt of the xumcleusn. The part of the I/Jiane wave ?*
wﬁicﬁ is scattered gives rise to spherical wavelets cohming
off the tar;get nucleons. The incident ’plane wave then \%}j

il
o ts

interferes with the forward s¢attered wavelets in just such
\ 0 -

a fashion so as to account for the particles scattered out

of the beam. This is essentially the physical.statement of
the optical theorem. This interference caused by the outer

nulcledns’ clearly reduces the amplitude of the incident plane

1

wave so that the nucleons at the bﬁack of. the nucleus are in N
1 ‘

effect shadowed or screened, and do not contribute as much

i

to the total cross section as do the nuter nucleons facing

9
<

the beam. ) o N

a
<¢ [

Now suppose we consider production on a nucleon to a
b :
. g, . . .
given .final state; how is this affected by screening?
Consider a pucleon X gs shown in Figure 3. Production to a

given final state Y may proceed in two ways. In both cases

~

\ : ‘
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c ' %
- we want ‘the nucleus to serve only as a passive target
. for our incident beam (recall we want to cdlculate ELASTIC
: /

b | scattering amplitides to get the total cross section),

and so we Péquirelthat no interaction with a target nucleon,

be sufficiently strong to excite it into a higher energy

level (In practicé the energy levels of nucleons appear
degenerate at high energies, so in reality the mdst stringént ~
condition we can impose is that the inci¥ént beam particle

not knock a nucleon out of the nucleus, or cause the nucleus

g to break up.) - ]

Q

In the first process the. incident wave may strike X

and produce the state Y directly (process (1)). Or, the

incident wave may scatter off one of the nucleons in front

-

|
., of X, and then the scattered wave produces the state Y on X
(process (2)). If, as we just said, no target excitation
occurs then the two final quantum states\ﬁfe identical, and

must be summed coherently. The phase of (2) relative to (1)

PRRSRIAESTC iy ~ 23 St CPPNGEMREIRAT IS K s s b

is given by the forward elastic scattering amplitudé on the

nucleon multiplied by a factor to account for the propo-

Megorree

gation between nucleons. The forward elastic scattering

agplitude is predominantly imagin?ry (especialiy at high
energy) and by the optical theorem is positive, so this con-
tributes a.factor +i, The clasgical reconstruction‘qf a ‘
wavefront from a plane of scatterers also gives[a factor +i

(the propogation factor) so this means that (2) is out of

/

s o
N
- .
a .
- .
Py .
%5 . P — _
S R iy o Lhd L T




phase with (1) by approximately 180°, and they interfere
destructively. Thus as wé€ would expect the shadowing, or

screening, reduces the cross section for the production of

the state Y on the nucleon X. e ¥

So far this can all be described by standard Glauber : 3
.theory._ However, at sufficiently high energy the secondary
wavelets in process (2) do not have to be identified with %
‘the original beam particles; they may be diffractively‘produced ?3

. resonances. We shall define what we mean by "diffractive

produttion"more precisely latepd but for the moment we shall

only mention that reso es which abte diffractively pro-

duced have the identical quantum numbers as the incident beam,

except possibly- for spin and parity. This makes it possible

Il

. for such particles.

a) to be produced on a nucleon without disturbing it
. too much, and

b) to interfere with the original beam. Ly

‘

Clearly if this mechanism exists we must Znclude it in our

calculations in order to/mgké accurate theoreti%fl predictions.

The method by which we include these diffractively ‘
produced intermediate stateés is the coupled channel‘optical ,

model of Bochmann and Margolis.(z) This model requires the

a,
Q

. ¢ .
solution of a simultaneous set of wave equations. . Each wave

equakion describes the propogation of one type of particle
[ ‘\J v b '

- ' '

¥

1
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‘[ through the nucleus. The equations are coupled to each other
by optical potentials which allow one channel either to elasti-

cally scatter or inelastically scatter into another channel.

o
2.2 The Coupled Channel Formalism.

In thissection we present a derivation of the Bochmann-
Margolis coupled channel optical model. In Appendix A we

demonstrate the equivalence of this with a Glauber-type multiple

S

scattering model. ,
l
é 2.2.1 We list here the approximations which we make in deriving
; “
this model:

R L

(i) We solve the equations in the eikonal approximation.

. i e . . s
This reduces them from second order differential equations

’
i

to equations of first order which are easier to deal with.

)
f
*

This is a good approximation at high energies for small #
angle scattering.

(ii) Bince we are dealing primarily with diffractive re-
actions we neglect their degzhdence on isospin. That is,

we assume that the %sospin nonflip amplitute dominates. We

do the same for ordinary spin, but with somewhat less justifi-
cation - see the discussion in Section 3.2.4.

(iii) We describe the nuclear target ground state by a product
of sinéle particle wave functions. Thus we ignore the effect
upon the reaction of correlations between the target nucleons.

At the high energies we are considering this is a good approx-

imation. ' .




‘E . (iv) We make a large A (atomic number) approximation.
This can be clearly seen in the derivation in Appendix A.
This approximation is well satisfied for medium and

L

- heavy nuelei.

2.2.2 We introduce a channel o incident on a nucleon in the

nucleus and describe elastic scattering and coherent pro-

”

duction by the coupled wave equation:,
2 7 T S L +
(L) ‘v + p2) ¢y (1) : 5' Ua,a(r) wa'(r)

where y is the wave function of the particle incident on \

A

the nucleon,

|

L PRI the wave functions for the cﬁ;nnels which are

¢

N coupled coherently to the channel a (the summation

p
r
b
ta
§
sl
t
9
tH
1
"3
K

over the channels a' in Equation (1) includes the
term a = a' which is the term for elastic scattering

of the incident channel), \

P, = /Ez—mz is the magnitude of the g;momentum of the

3

channel o having mass n, swhere E\\is the total

\
energy of the incident particle in the lab,

U

ale are optical potentials; Uso is the optical potential
| V

for elastic scattering in the channel a (the

presence of the forward elastic scattering amplitude
\ . '
‘in Uaa means, by the optical theorem, that it also

' accounts for damping of the wave in the nucleus) and
Uu(d(d‘# a') ilehe'optical potential for coherent
production of the channel a by the presence of channel

1 -
. e ass = .
o W ume Ua'a Uaa’

f —
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/

The optical potentials are given by(g)

(2) U, () = -2ip A ra’b’ p(Broziry,, (BB

q ..

is a 3-dimensional position vector with the origin’

2 4

7 at the centre of the nucleus; we denote the magnitude

of the vector T by r (similarly for other vectors). .,
. LonT

z is the z-component of T and we assume that this is

parallel to the incident beam in the 1ab.

A

B is the 2-dimensional component of T in the plane
perpendicular to z, i.e. the impact parametef;—
the integration in Equation (2) is over the range

of impact parameters in the nucleus.

. A 1s ‘the number of nucleons in thé nucleus.

0(B,2) = (D). is the nuclear density function

" normalized to unity. * J

sg
“4
;

r(% - B'") is the so-called "profile function" of a 2-

body interaction and is givén by

B ae x S umr -

: -iq, . b
3 1, B =—2 _radq £, @ e L , ]
a'a , 27i p ot Tala ¥

) /

- ¥ .
-where 4, 1is the transverse momentum transfer between: the

! * channels o and o' (i.e. q, ® (5a,-30)-g ), and

aH}al) is the 2-body amplitude for the coherent

- production of the chanpel o by the channel o

f

incident on a nucleon.

We see that the 2-body profile function is just the 2-

dimensional Fourier transform of the 2-body scattering amplitude.
» 7 i !
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1\

and we then have

.the incident wave e

=10~

Taking the igverse transform we have : .

( %)= _Pa 2 5, 48
¢ - ) 1
4) £ ‘9 s [ a1, ()
and . -
P ip A N
(5) £, (0 = —= raZbr , ().
e 27 a'a |

Now if we assume that p(P) is slowly varying inside

the nucleus we may pull it out of the integral in Equation (2)

'1
\

N o 2t + >
Uaolm) = -2ip _Ap(®) s d'p Ty g (7-b')

(8) or . .

U, () = b Ap(D) £4,(0) by Equation (5).

[s J+ )

We shall refer to £ , (0), or more simply just f ,
1 I+ ) a4’ o

as the forward scattering amplitude. ' :

To solve Equation (1) we use the eikonal approximation,

which, as we said, .is, a good approximation at high energies.
|

Essentially it assumes that a high energy particle traversing

a (finite) potential will not be deflected greatly by the
-
‘.}A’ '«
potential. That is, the wave function ¢ will ‘differ froém
|

1pz by a term that varies slowly over

distances of the order l/p(“'VS. In this spirit we make

‘ 1]
the substitution

. N ip,2z R
(7) ~ p (r) = e 6a(r)
where éa(?) is slowly varying. Putting this into
. rip z*

Equation (1) and taking e o

e @

to the right hand side

.t ge‘t . ‘ ’ .

PR DI R 1 ST Mt v e e e TUETS T Lt a8 T e i




o

36 (D)
a

]
™
(et
~
o]
-
4]
~
g
p -

(8) VZQS“ (F) + 2ip,

‘

92 a!

By our® hypothesis we‘may negiect Vzéa(;); and our problem
reduces to the’ solution of, a coupled set of linear, first
order, complex differential equations:

aéa(;) 1 J N i(pa,—pa)z

= r U, (Pe «s&,(%)
92 2ipu a . w

(9)

1

The boundary condition for Equation (9) is determined .
' a

~

by the assumption that before the beam strikes the nucleus t

w

only the incident channel @, is p@eséﬁt so -

ao
o) ,

+ - s
(10) éa(b,z Z .w ) =6 . &

1 ,"(

We see that with this assufiption we neglect backscattering ,

which again is a good approximation at high energy.

We note that if we re-write equation (9) in terms

of w(?), it is directly integrable if Ua,a(;) is independent ;

of T. From Equatidh (6) we see this is true if p(7) is a
constant. prefer however to use a Woods-Saxon density
distribution (see Section 3.u4) because it is a better appro- (

ximation.
. : . 4
2.2.3 At this point we should discuss the cohererce requirement.

As mentioned in Section 2.1 we require that in scattering

ey s
off a target nucleon the incident neutron must not disturb

3

) | j

i
T BRTRT v TV o P R R R Hggrcsap s wmearm e« pe oo e,
(R St e, L AT ~M¢’,u?/ U e, . -y ‘
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‘it too'violently. Now in an inelastic collision at high

energy, whevg‘the neutron converts into a higher mass

resonance, there is.a minimum forward momentum transfer

due to the mass difference. This has the form ‘

: T ’“za = “‘za' |
(1) . P+~ P =
a o p + p .
a' a

Production of the state a' by the state o will be coherent

over the whole nucleus only if (pu. - pa)z is sufficiently
i(P '-P,)Z c s .

small that e & ¢ » which appears in Equation (9), does

not oscillate significantly. Otherwise this term will give

rise to large canc§llations. |

!

“

It is thus reasonable that the coherence requirement
I

be
(12) (pu. - pa)R << 1
where R is the radius of the nucleus. . '>w

However, in performing numerical calculations the very
ﬁresence of the ﬁiponential serves to enforce coherence
automatically. Whenever the momentum tnansfer is too large
the oscillations cause the contribution for that momentun{<P

transfer to cancel (approximately). So for this work the

coherence requirement is not a stringent condition.

2.24 We now proceed to use the equations we have derived tp
calculate the elastic scattering amplitude, which will in

turn ;.ve us the total cross section.

S y

s bt
s

MRS
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(1)

A In elementary scattering theory we calculate the

Green's function for the Schroedinger equation and transform

I

it into an integral equation having the form

/

/ -+ -+ eipr' >
: (r) = (r) + f(p)- \
; v *? : r P ’ oot
h . >
- where £@) = - =1 dPr TPV U w(d,

; ; ]
w(?) is the scattered wave, and

wo(;) is the incident wave. v

‘(Note that we have written the Schroedinger equation in
the form viy(F) + p2y(P) = V(BB .)

o , 0

Extending this procedure to our coupled wave

.equations we see that -
R ip_-r
(13) £ @) z==-1—1/3d%e * $U, B B
a0 G Rl Sy oa'a !
a 3
— gl
* .
where fa . (Bu) is the coherent amplitude for the
o

wchannelzao to scatter off a nucleus into the channel a -
|

Now when ﬁa is along the .z-axis,.and the scattering

0. &
angle and momentum transfer are small, we may approximate -4
\ ‘

-
By Y

-+ - + a A ~ ,

- . + -
P, ~‘H?a pao) blb P 2 .

where """ represents a unit vector. That is, the longi-
tudinal ‘component of Ea is approximately equal to P, > and
the transverse component is gﬁproximately equal to the momentum

-»> <> .
tra§sfer. If P, - P“o =q, then o




p \
> ,
‘ +> -q.*b -ip =z
- RN 2 a > +
| fuga (p) =/- f /7 dbdz e e E,Uu'u(r)wa'(r)
. © With ip z
p (B). = e % 4 (D) |
) | & > ’ +
[ -iq *b = i(p ,-p )=z
f B3)z-2sabe ¢ sdzie &
a0 “a Yo 1
, o - «
§
. l Y
; . Ui (D) @ () ‘
« s a
: s - 1 2 -1qa' . 2 >
g By Equation (9) and (10) = - E?fd b e [ dz 2ip, 35 éa(r)
| ip ~ ig P
Po 2. Tt4g° >
i (a4) £ (F)=-—3- sabe )\ [6(Bz=)-06__ ]

| \

[ ' In the forward direction the component of aa parallel

- P R el
iy & Fra . P S e IV 0 T
i e R R P e

ik SN S L i

to b (the transverse momentum transfer) is zero, and the

7
o
"y

elastic scattering amplitude is given by

(15), £ (0) zf  =-ip fdbb [6 (b,zze)-1]
- %% %% % o %

N where we have assumed azimuthal symmetry.

o

Fihally then, by the optical theorem, we have the total

eross section
f |




(L ‘ .

U AU R, 4 e TSSO AT e e
BTN ' g
/ .
\kIS) LI = Uy ? db b [1-Re & (b,=)]
e ProT P, o % o 1
B ' o

To calculate :the total cross section we have written
a computer program which solges Equation (9) for él(b,w),,

and then performs the "integration in Equation (16). We

describe the program in Chapter 4.
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. CHAPTER 3

H%itorical Review, Forward Amplitudes, and Nuclear

Parameters. I

‘ |
* , :
Of utmost importance in the Bochmann-Margolis formalism

are the forward amplitudes fa,a which serve to'couple thd
N . . t
vadious channels. Before discussing these forward ampli-

o

tudes it would be appropriate and convenient to review the

histoﬁibal situation ; this will show us the source for a number
of mod;iﬁ for the fa,a and help put our/ caleculation into

context. !

3.1 History.

As explained in Section 2.1 there are two kinds of
shadowing corrections to neutron total cross sections on
nuclei. First is the elastic shadowing which is accounted for ~

in Glauber theory. Second is the ,inelastic shadowing.

This was first discussed in 1966 in a paper by Abers, Burkhardt,
(5)

Teplitz;iamﬂWilkin . The first optical model treatment of
the problem was by Pumplin and Ross(s) in 1968. 1In 1969
Gribov(7) performed a similar analysis using the graph

technique. Pumplin and Ross performed some numerical calcu-
1a§ions of the inelastic shadowing correction A INEL’ but

rather than considering only diffractively produced inter-

mediate states (as we have indicated in Section 2.1 this

should be the case) they included all kinematically allowed masses.
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\ This was done by looking at the so-called one-particle
inclusive reaction p + p * p + X where X can be anything g
allowed by the various cgqfervation laws. In this kind of
experiment only the fizfl-state/proton is deteatea and momen=
tum~-analyzed. The mass of whatever comprises X is hence re--
ferred to as the "missing mass". The kinematical variables

in such an experiment are the usual Mandelstam varia@les and the

invariant missing mass. These are defined as follows. For the

experiment . ' N

a+b-»>p+X
we have 9
8 = (Pa + Pb)
_ 2
F = (Pa - Pp)
_ _ 2 ‘
u = (Pb Pp) )

where P_ denotes the 4-vector (Ea,ﬁa) and our metric is such

that P2 = E° - |p |2 = m? . The invariant missing mass is’

a a a a

given by

2 2 I 2 2
. g+t +u-— - -
i s+t+u-m m ] m p

2 |
(Pa + Pb - PP) .

=
]

At ‘the energies we are considering wé regard the proton and
the neutron as equivalent, so a study of p + p + p + X also
gives the &mplitudes for a neutron to strike a nucleon and turn

itself into some higher mass state.

As we have 'said, Pumplin and Ross included the whole missing

mass spectrum as possible intermediate states in neutron
N -~
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regeneration. At low energies this had the effect of de- '

.~

pPleting total cross sections by as much as 20%, and this was

too large-they obtained too much inelastic shielding.

(8) . &
proposed that only

In 1973 Kaidalovand Kondratyuk
the diffractive part of the missing mass spectruﬁ contri-
butes té the inelastic shadowing effect. By a diffractive
reaction we mean one that proceeds by e&ghange of vacuum
quantum numbers in the t-channel, i.e. pomeron exchange.
Two-body diffractive reactions are readily identified by
haviﬁg & wealk energy dependence in %% » and having ampli-

@ .
tudes which are mostly imaginary. - Of greatest interest are

elastic scattering and diffraction dissociation at high

energy. Diffraction dissociation reactions are quasi
|

two-body reactions of the sort o

where
numbers as the nucleon (except possibly spin and parity) but
higher mass. The expectation is that as two-body reactiohs

are made at ever higher energies, only these diffractive

(jpeactions will persist as the energy goes to infinity.
i | |
[ . Kaidalov and Kondratyuk pointed out that in considering

mechanisms for Apyp . only diffraction dissociation has an,
imaginary amplitude as required for the proper sign of the
correction term (recall discussion of Section 2.1). They

q

separate the total inelastic cross section for P + p - p + X

<1
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| into two parts,’the diffractive part and the inelastic
background. The inelastic background may be viewed at low

% energy as the result of non-vacuum Regge exchapges, such as
w,p, A, and m. Because of the difference in'phgse between
thése exchanges and pomeron exchange, Kaidalov and Kondratyuk
felt that these two contributions to A INEL should be examined
separately. In a Reége—pole framework they sh;wed that the

contribution of the inelastic‘backgroynd to Apypp, Was negligible

compared to the contribution of diffraction dissociation.

! A\
i

: In 1973 Karmanov and Kondratyuk(g) performed a calcu-

lation of AINEL'using only the contribution of diffraction
dissociation. . They did their calculation to second order

in pertuﬁbation theory. This means that they allow for
only one transition from a neutron to a resonance then

back to a neutron.. . Only the inelastic couplings are
calculated to second order; elastic scatterings are treated
to ali orders (i.e. any number of elastic scatterings

are allowed). (We note here that our coupled-channel calcu-
lation is. done to all orders in thé inelastic couplings,

The fact that we describe the reaction by coupled equations
means that any number of back and forth transitions‘éan occur
between all channels.) Karmanov and Kondraxyuk found that

inclusion of AINEL gave a 2-3% decrease in total neutron cross

sections above 10 gev/c, and that AINEL increases logarithmi-

cally with energy.

\
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(10) reported‘results of high

In 1975 Murthy et al.
energy (30-300 gev/c) total neutron-nucleus cross section
measurements performed at Fermilab. In analyzing their
results they used the method of Karmanov and Kondratyuk to -
calculate AINEL' Although the error bars on their measure-

ments made precise comparisons difficult, the inclusion of

Arngpp, Prought the theoretical curve into good agreement with

the experimental poigts, particularly in the energy dependence

of the data.

3.2 Recent Developments and the Inter-Resonance Couplings ~

3.2.1. Laterin 1975 a criticism of the analysis of Murthy

(ll). His work revealed

et al. was published by D. Julius
very little inelastic shielding, and he felt that if the ex-

perimentalists had used different nuclear radii they would

have found virtually no inelastic shielding at all. Julius
used the Bochmann-Margolis coupied channel formalism. To
do this he had ?P specify the forward amplitudes fu'a . This
he did as follows:

(12)

- Triple Regge theory predicts the cross section for

pPp+p+p+ X to be

2
- d"2 = /M2 (15)
- ] dat aMs ..,
where Julius, following Fishbane and Trefil(l3) tak?s the

value of ¢ to be 2.9 mb/gevz. At high energy the scattering

do

amplitude is related to 3T by
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do Ll 2
= = =5 |f (16)
dt p2 l I N

- !
If we assume that the phase is purely imaginary then the

amplitude‘for production of some channel j by an incident

neutron (in channel 1) is given by

£ SR 3))1/2 (17)

13 ° 10§

dzo

dt daM? t=0

2, where the

Now the missing mass spectfum is given by
\

vVs. Mz. If we divide this into intervals of &M
j th channel is represented by the j th mass interval, we

may integrate the spectrum approximately to obtain

! ‘ 2
a3 = L2 sM2 (18)
t=0 dt daM™ +t=0 ‘
. 2_,,2
M®=M
~ J
_ - ¢ 2 , (19)
= o o ‘
]
(In particular Julius used sM2 = m2N where my is the
2 . 2 do (1 » §)

mass of the nucleon{ and M 53 73 Mys 50 F¥ ee0

We will use a varyipg mass interval and so we leave the

equations in the form given) , /

v

To get the further amplitudes fij(i,j # 1) Julius made

what he felt'was the simplest possible generalization of

Equation (19), namely,

- ~ . ¥ Y gt
: A e 2 o T b et
oy, L ay 5 (u oty o i

AR A SR 2N r,‘,.a Wy P n;, fgx”“ AT e T

= c/j.
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— 1

= ( e ) &M
2 2 2
|Mi - Mj]+ my

(20)
> t=0

(This generalization is more apparent ‘using Julius'f choice

M2 =m2N. Then g-g_(l* DI S
t=0 [i-3] +1

, N
With the assumption of imaginary phases we get

2

' . 6M2 1/2

. (21) .
£f..=ip, (S ) (
A3 Pi t ¥ ]Mz.-le +m2
1. N
. ]
The neutron 2-body inelastic scattering amplitude £11 is

obtained from pp elastic scattering daté, and all resonance

elastic scattering amplitudes fjj are set ;qual to fll'
Julius used a coherence condition based on Equation (12)

to cut off the missing mass spéctrumf Up to 60 gev/c he

was able to use the Bochmann-Margolis formalism, since at this

energy only a comparatively small number of coupled channels

was required. The computer time necesséfy to solve thé coupled

channel problem riseéxvery rapidly with the number of coupled

channels, and so Julius-devised a‘high energy approximation

to get to neutron momenta above 60 gev/c. The details are

contained in reference (11).

3.2.2. In what follows we shall have 4 number of comment to

fl

make concerning Julius's paper. The first and most important,

which we shall make now, is that there is NO JUSTIFICATION
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A

either theoretical or expeérimental for Julius's choice of

fa'a where a # o' # 1 (in future we shall always refer to

the, amplitudes coupling various resonances to other resonances

i o by fa,a; we shall treat the cases of fla and faa separately).

Y His choice of amplitudes is little more than a guess, and as
we shall see, other generalizations of the triple Regge

/ . formula are possible. Since it seems unlikely that there will

ever be direct experimental evidence to guide us in this matter

\ N

the baest that we can hope to do in the framework under dis-

cussion is to try different forms for the f , and see which
oo -

fit the data best.

1

3.2.3. The previous comment and others are contained in a

reply to Julius's criticism by Ayre and Longo(lu). The

p:
pe
'
k:
“
ks
Y

f’ crucial point they raise is that the triple Regge formula
: Julius uses for direct resonance ﬁroduction by a neutron(flj)

% simply .does not agree with the data. Recall that these ampli-

T 2 0
~N

tudes may be reconstructed from the missing mass spectrum by
¢
dividing it into bins, and taking the area under the curve
0 for each bin. The amp%itude flj is proportional to the area

of the j th bin. We recall too that we must consider only the
2 .
diffractive part of do . In their calculation Kaidalov
at am? : !

and Kondratyuk had to extrapolate the data-.then available

g‘ﬁ‘?r-ﬁ: & N POR It

e

 (Ejpp > 30 gev) to infinite energy to obtain the diffractive
- part. The experimentalists in reference (10) note that in the
. 2 -
Fermilab data -9-C

f O dt dm

p at small t becomes approximately energy

-
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independent for ELAB > 50 gev. From this they conclude

-~

that the high energy limit has been reached, and assume

that the whole (forward) missing mass spectrum is diffractive

in nature. The formula used by Murthy et al. to fit the data is

2

d"o ) = 26.47(M%=1.17)-35.969 (M?-1.17)2+18.47(M*-1.17)3
dt dM? t=0

¥

2 2

- y1302-1a ) a1 ?-1.17° for 1.17 < M2 < 5 gev

2 2

= y.u/M2 for M® > 5 gev (22)

\
Figure 4 shows the coﬁparison between this formula and
that used by Julius. The discrepancy between Julius and Murthy
et al. becomes immediately clear. In the coupled channel forma-
lism the flj's are the parameters which couple the neutron to

the diffractive resonance. The flj's are proportional to the
5 ;

) d“o . :
area under the curve — . From Figure 4 we seg that the

dt dM™ t=0

area under Julius's form for d20 is much less than for fhe

dt dM? t=0

form used by Murthy et al., which is a fit to the data. This
means that in Julius's calculation the neutron is much less
likely to turn into a diffractive resonance and the whole re-
generation effect is considerably reduced. In the limit that |

the f..'s are set to zero (except for j = 1) then regardless of

1]
the values of the fa.als we completely decouple the neutron

channel from all the others and the result of our calculation

is just the unregenerated cross section.

%
%
i
1
i
i
i
F
{
R
”’%
;
3
;
%
w4
h
b

e e ARG

&% kit ey




5
At

»

T A ——————ta—— o

-25-

3.2.4, At this point we interpose a further commgnt of

N

our own. We have been discussing the miss?ng mass spectrum
2

d o ) Of course t = 0 is kinematibally inaccessible
dt dM™ t=0

\
for M2 £ mZN, but in the forward direction t = thin is very

nearly equal(tb zero at high energies. The point however is

that measurements cannot be made at 8 = 0 in the beam. The

A

A4
t-dependence of the reaction is taken up to some limiting t
value, and then is extrapolated to t = 0. There is no pro®lem
with this extrapolation if the reaction does 1ot involve 1

helicity flip. However if there is a helicity noncenserving

. component to the amplitude its t dependence includes a term

€ —t)Al where A\X is the helicity flip. Clearly this goes
to zero as t goes to zero. The helicity conserving amplitude

does not go to zero at t = 0.

s
i

Until recently it was thought that diffraction dissociation
conserved helicity 'in the s-channel, following the behavio%r
observed in elastic scattering and vector meson photopréduction.
It now appears that among diffraction dissociations vector-
mesoniphotoproduction is an exception, for all the other ob-

served reactions do not conserve s-channel helicity.

This presents us with a problem. In extrapolating thélr
data to t = 0 the experimentors will not have taken account
of any helicity nonconserving amplitudes. If the data was

taken up to a very‘small t-value'these amplitudes will have

DR - PP
WAL Sl TN

r T T AR N
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mostly damped out, and the error will be small. If these

amplitudes were large enough to give a significant contri-
bution at the lowest t-value measured then the extrapolation

to t = 0 will be too large. As we have seen in Section 3.2.3

this means that we will overestimate the inelastic shadowing. .

Since the details of the extrapolation are not avail-

AN

able to us, and particularly since the helicity nonconserving
amplitudes in diffraction dissociation are not well known ¢ :
to begin with, we have essentially ignored this whole problem.

<
If it comes to light that the missing mass spectrum has

been significantly overestimated, the#inelastic shadowing

correction will have to be decreased appropriately.

3

3.2.5, Returning now to the paper of Ayre and Longo we come
| .

to their second major point, which enlarges upon the first

comment we made in Section 3.2.2. They point out that not

Ej

onlyvfs Julius's model for ;iﬁ ad hoc, bdf it is designed

so as to give large couplings between some of the high-mass

&

resonances. Looking at Equation (21) we see that when M2i

. . % (o e "3
- 288 Lo S i 2 La_«mﬁw&az:mmz,a,&ﬁiww A i Gl R L n

and sz are close, fij gets large. Physically this 1is of

s

s

course possible, but it is alsoG?ossible that fij becomes

2i and M2j get larger. This is

=
=2

smaller uniformly as M

< s

reflected in another generalization of the triple Regge

model due to Ef.ﬁenyey which Ayre and Longo quote.

"b' 5
He finds \ . egg\A
1/2

f3=ip; (-—4-39-—4(5142)‘ (23)
143




. In tﬁis model it is clear that there is a much weaker

)

iresonance chanQels{ The greater the coupling, the more shadow-

- -27-

!

coupling between the high-mass states:

s

3.2.6. Heuristically it is interesting to note the effect
on the total cross section due to changes in the various for-
ward amplitudes. As we have already noted the inelastic

shadowing is due to coupling the neutron channel to the various 3

ing we get, s&\as)the flj's go up the total cross section”
goes down. How%ver for the inter-resonance couplings the
opposite is trué. As the fij's go up the total cross section
goes up. This effect is less pronouﬂced than for the flj's
and can be understood as follows. hd

The result of our coupled chanqel calculation is the
neutron elastic scattering amplitude which is directly pro-
portional to the total cross‘section by the optical theorem.
As-the neutron propogates through the nucleus its scattering
amplitude 1is depleted by conversions to resonance states and
enhanced byfesonancesconverting back into neutrons. Now if §
we set the fij}s to zero, a .neutron going into the j-th re-
sonance channel can do only one of two things: either it may
elastically scatter (recal}l fjj = fll) or it may turn itself back
into a neutron. For the larger masses the elastic amplitude
is much greater than the amplitude for conversion to the

neutron kchannel (which goes as 1/M? for large mass). So,when
: ! 1




. . L,
the'fijJs are set to zero, a neutron which goes into the j-th

[

resonance channel will be inclined to stay there, thus depleting
the neutron elastic amplitudes and 19wering OroT On the other
hand as the fij's are made larger, the probability goes up that
the j-th resonance will then convert to some other resonance
which will find it easier to return to the neutr;n channel.
Essentially more ways are open for an inelasticélly scattered
neutron to return to the elastic channel, and so the total cross

section goes up.

-
3.2.7. Still on the subject of the coupling of the higher

mass resonances, we have assumed that e inter-résonance

amplitudes fij are purely imaginary (and positive). Julius
assumes the flj's are also positive imaginary, while Ayre
and Longo set the phase of the flj's equal to the phase of fll'

Once again this is all pure speculation, although we would N

S e Do N L s BRERS

expect the amplitudes to be predominantly fmaginary if they
are diffractive. Nonetheless it is of interest to see what
would happen to the caglculated cross sections by)varéing 5
the signs of the amplitudes. Remarkably enough we found (and
this is easy to show) that alternating the signs of the ampli-
tudes (so that fij'* (-l)i—jfij) is equivalent to alternating
the sign of the wavefunction in each channel (6, + F—l)iéi){

Since the cross section is independent of the sign of the ‘

wavefunction the result is the same. Hence we would expect

that if the phase varies in some random fashion the calculated
)
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»

cross sections will not change by much. To test the most
extreme possible difference we have calculated cross ,sections
with all non-elastic amplitudes changed in sign. The results

are shown in Chapter 4.
3.3. Summéry of Amplitﬁaes

We have two models for the flj(s, the amplitudes for

| producing a diffractive resonance by a neutron incident on a
nucleon. One is based upon a discrete approximation to the '
tripple Regge formula,EquaHion (15)¢%sed by Julius. The other,
used by Ayre and Longo, is based‘upon a discrete approximation
to the experimental data as described by Equation (22).

Julius assumes the phases are positive imaginary, while Ayre

and Longo assume the phases are the same as for neutron elastic
! N

scattering.

We also have two models for the inter-resonance couplings.
Both are generalization of the triple Regge formula,Equation (15).
The first is that of Julius, Equation (21). The'second is that
of Henyey ,Equation (23). Both models assume the phases are

positive imaginary.

The elastic amplitudes fjj are all sef equal to fll the
~

neutron elastic scattering amplitudes. This is obtained via

. . 1
the optical theorem from experimental data on pp total cross

. 5 . .
SeCthﬂSSl ),and the phase of the forward elastic scattering

(16)_

amplitude \

© L aadihas *&‘i‘-‘e‘%ﬁ.’w'%'fﬁﬁ L
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5 ‘ -

On th%s point we issue one caveat. ~At low energy we
are not justified in simply using nn elastic scattering. .

~There are protons in the nucleus and the np total cross
ﬂsection and phase will not be the same as for nn (qr pp)
scattering Aue to different non-ieading Regge exchanges.
Presumably however, at higher energies these terms will

, become small and the error we commit in considering only nn

scattering terms will become negligible.

3.4. Nuclear Parameters , @

i

We have assumed a spherical nucleus, and have chosen to

“use a Woods-Saxon formula for'the density function. This

has the form

u by :
o(r) ° (214) |

3
R T L T

1+ exp(gl&
’ C

.t bl

where R 1is the nuclear half-density radius

k23

P

P

¢ 1is the nuclear "skin thickness" i~

© e
respe © 4 ke

and , p_ is a normalization factor such that

T T

*

-]

bm S p(r)dr = 1 .
0 »

e,

o

This normalization integral was calculated numerically,

with the rarge of integration cut off at R + 16C.
¢

Accurate measurements of the parameters R and C were made

1O \
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in the high statistics p-photoproduction experiment of
(17>

Alvensleben et al. . We used their value of ¢ = .545 fm.,

but we modified their radius parameter slightly to account
for the difference between pp scattering and yp scattering.

Qur modification was made as follows.

J

Around the energies we are considering, the differential

eross section for pp scattering goes roughly as e—10|tl

o8l

and
for yp scattering goes as If we assume that the
proton has a Gaussian shape as a function of impact parameter,
then the differential cfoss seétion, which is the Fourier-
Bessel transform of the spatial distribution, is also a
Gaussian in momentum transfer, which means it is an exponential

i

in t. To be precise, if the matter distribution is given by
_b/R2 . . ] ! ] . R2l I /
e then the differential cross section 1s given by e~ Tt/

where R is the Gaussian radius parameter.

If Rl is the proton's radius parameter in pp scattering

and R2 is the parameter in yp scattering then,

RZ - g2
1 -2 !
= 2 gev .
' J
(R,=R,)(R,#R,) =. 8 gev 2 (¢
17727 1T g
(R,-R,) 2 R = g/25 fm’
172 -
.
o ‘ Rl-Rz - ~ fm
25 R
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_the R used above ig the Gaussian parameter not the Woods-Saxon
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o

where R is the average proton radius. If we assume R = 1.2 fm

we get R;-R, = .13 fm. This is the number we added to the

0

radius parameter of Alvensleben et al. (our radius parameter

:

for lead is thus 6.95 fm.). :

[

S

Clearly this is all very approximaté. In the first place

pérameter. Secondly the slopes of pp and yp scattering get

steeper with energy, correspondirig to an increasing radius

-

. 7 I [
PPN SRR Sl 4

parameter. Hence to be precise we really should use an energy N

QRS WA N

dependent radius. . We found however that the rough treatment

N -‘,y}
outlined above was sufficient over the energy range considered.
(

RS

=

In the paper of Murthy et al. the aut\hors use nuclear

e Ly

)
parameters which they calculate from a best x\fit to low energy
/
(< 10 gev/c) total neutron cross section data (there they fit
the data with a Glauber-type formula given by Franco, and they

| )
uged the expression given by Karmanov and Kondratyuk for the

inelastic, screening). Theq@}\ nuclear parameters correspond
precisely to the ones we require and do not need to be altered i
as above. Unfortunately however we found that using these

values in our coupled channel formalism we underestimated the

Bt

total neutron cross section at.all energies.




me gt wemmmc pegres L n meon eTVAE rvmiw* PR RS s ' R T ARE LRGN T F v ot e L .j
N
t
! i
%
N % .
- -
.
. 4
‘ .

\ . 1)

H

The Calculation-Results and Discussion

\ v f

4.1 The Calculation

Our contribution to the understanding of the inelastic
shadowing correction to total neutron-nucleus cross sections

is presented in this chapter. We calculated total neutron
crdés sections on lead -for all the models bresented in Chapter ét J
using the formalism of Chapter 2. Several of these cglcuzations
were never done before. We limit gur investigation to lead | /

\

mainly because of the limited computing funds available. The }

’
4

calculation however is easily extended to other large A nuclei.

“4.1.1. We have written a computer program to perform the cal-

culations shown in Chapter 2. Specifically we integrate Equation

16 numerically using the method of Romberg Extrapolatién‘oﬂ the ~

(18)

trapezoid rule . As in the calculation of po for Equation 28 %

we cut off the iktegration atb = R + 16C. 1In doiﬁg the numerical g
integration the progfam evaluates the integral at a number of
values of the impact parameter b. For each evaluation of the
integrand the program must solve the coupled set of differential

equations shown in Equation %&_along with the boundary condi- 3

tion given in Equation 10. We solve this coupled set of equations .
(18)

using a fourth ord?r Runge-Kutta method
™~
'y

4,1.2. In Section 4.1.3 we list all of the models for which we

have performed calculations. For all these models we have
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b

calculated total neutron cross sections on lead from PLAB=5 gev/e

to 400 gev/c. In all the models considered the missing mass

spectrum was cut off by the coherence condition given by Julius,

namely o

m2-

w0}

3

2
_— N
2B - .

where R' 15 the radius of the nucleus assuming a uniform

1
/ . “

density and is related to R and c by

2

R'2 = 5/3 (.6R% + 7n2C?/5) .

This condition assures that the minimum momentum-transfer not
N

.exceed values for which the nucleus almost certainly breaks up.

%he number of intermediate states into which we divide the
missing mass spectrum varies with energy and is shown in Table 1

along with the values used for the pp(nn) forward elastic scat-

tering amplitude. We used the cutoff and increased the number
b3

of bins, or number of intermediate state&s Tt each energy to
keep the grid size into which we divide the missing mass spectrum
as fineias possible. Up to 60 gev/c.the number of iptermediate

states we employ is approximately the same as the number used

by Julius in his low energy calculation to all orders. In going

-

to higher energies we increased the number of intermediate ; .
states only slightly because the amount of computing time re-
quired rises very rapidly with this number. The final result

does not seem to be very sensitive to the number of intermediate

-

states (as shown in some tests we conducted, and confirmed by
. { .

'
\ t

. o S . s e
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it

2

A

A
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\
more extensive tests [with fij = 0] reported to us by | b

- M.J. Longo in a private communication), but this is probably %

the major source of uggertainty in our calculation at the %

é highest energies. IE
ét 4,1.3 We list below the models we have calculated. The ! g
numbers correspond to the labels on the curves sb?wn in E

!

\ Figure 5. The curves in #igure 5°having an "N" following

R

the number were calculated with negative signs for all the

*

v
non-elastic amplitudes (as discussed in Section 3.2,7). Of

ot
’

o

W

the curves shown, models 2,3,1N and 3N have not, to our

oo
ECEAS S

knowledge, been calculated before.

- i

Model 1 uses the prescription of Julius for all the for-
ward amplitudes. This is given in Equation 21 . Our calcu-
lation duplicates that of Julius, except as we have noted, in

the intermediate state mass spectrum.
¢

Models 2,3 and 4 use the experimental missiné mass spectrum

Equation (22), to calculate the direct amplutides f.. ( and f..).

13 jl
The inter-resonance couplings, fij of model 2 are those used

by Julius.

For model 3 we use the formula of Henyey, Equation (23),

for the f...
1]

For/model 4 we set the fij equal to zero, This means that i
each intermediate state diffractive resonance couples to itself

and to the neutron, but not to any othFr resonances. l
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To illustrate the effect of the inelastic shadowing we

show the curve for the unregenerated cross section, and to
!

indicate the usefulness of this whole exercise we have in-

cluded in Figure 5 all the available data in the energy range

considered.

4.1.4. In as much as this is a theoretical investigation, we
may per?aps be forgiven for not performing a rigorous error
analysis. The fact is that for this calcualtion such an

analysis is extremely difficult. \

The heart of our calculation is the ev&luation of Equations
(9) and (16) . TFrom the numerical methods used we can determine
that both these calculations give convergence more or less to
within plotting accuracy. However the final result is dependent
upon many expgr}mental parameters which are used;as inputs to
the calculation, and upon several assumptions and approximations
we have made along the way. Those listed in Section 2.2.1
have been discussed and justifigd. We feel that no substantial

error is committed through our use of these assumptions.

As mentioned -in Section 4.1.2 we found that our biggest -
source of uncertainty was in the cénvergence of 90T wi%h the
number of int;rmedi;te states considered. Because of the expense
in computing we were not able to investigate this point as tho-

roughly as possiblé. The indications are that the results could

vary by perhaps 5 mb. or possibly more.
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The curves we calculated are very sensitive to the nuclear
and two-body scattering parameters which we use as input.
Errors in these quantities are clearly reflected in the re-

sultant cross sections.

o

Finally of course, the'various modéls we use involve
many different assumptions, but for the most part they stand
or fall precisely on thosé assumptions. If the various consi-
derations already listed do not contribute a significant error
to the calculation, then the goodness of the models we use can
be directly evaluated by how well they fit the data. We simply
caution that in inspecting the various curves in Figure 5, the

previous comments be kept in mind.

N\ 13

4.2. The Results-Discussion and Conclusi;\i

Perhaps the most striking feature of Figure 5 is that models

3 and 3N are almost indistinguishable from model 4 which has no
~

coupling between the different resonances(fij = 0). The fact that

this curve fits the data so w§1l is compelling evidence for these
couplings being small. \
~

As we might have expected from the comments of Section
3.2.3, models 1 and 1N of Julius are very similar to the unre-
generated cross section. That it gives such a ﬁoor fit to the
data compels us to rule it out and reject Julius's suggestion

that the inelastic shadowing is small. We conclude that the

triple Regge formula, Equation (15), is not adequate to describe

“, 4’%: g (’3«153&‘ s

L R
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/

direct resonance produetion by neutrons on nucleons, at least
not for small values of the missing mass. This conclusion

is obvious . from a glanceat Figure 4.

Another interesting feature is the effect of negative

K 1

non-elastic amplitudes on the various models. We note that
for model 1 which uses Julius's form for the fij's'the effect

is fairly marked, while for model 3 using Henyey's form the

effect is somewhat smaller. This is in keeping with the fact
that the fij's are smaller in Henyey's model. We also note
that at high energy the models wiﬁh negative non-elastic ampli-

~ 1
tudes are all below the corresponding models with positive

non-elastic amplitudes,

. We also calculated model 2 wié% negative inter-resonance

e e~ TR AN e

couplings (model 2N). This curve was found to lie very close

hd ETR £
RN

to.model 4 throughout the whole energy range calculated. Un-
fortunately to tﬁe accuracy we were able to afford in our
computer calculation this particular model did not give con-
vergence to plotting accuracy at the high energy end of our
graph and so we omitted this’ cypve.. We feel however that model

2N, like models 3 and 3N is very difficult to distinmguish from

model 4 (although below 100 gev/c it lies between 5 and 10 mb.

above the model 4 curve).

The fact that the data appears to be falling at 300 gev/c
lends some support to model 3N. However the large error bars

in the data, coupled with the ambiguities of the calculation
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The fact that

- 1

models 2N,3,3N and 4 remain close in their predictions even

make this the most tentative of conclusions.

up to high energies make it seem rather unlikely that suffi-
ciently accurate experiments can be performed to decide amongst

thent. For-the time being then we really have little reason

to suggest anything more complicated than model 4 (fij = 0).
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C ‘ APPENDIX A

We present here a proof due tp”Bochmann of the equi-
valence of the coupled channel opfical model to a Glauber; .
type multiple scattering model. NOTE: The notation used
here, unlesé otherwise indicated,\is the same as that of

Chapter 2) As Bochmann noteﬁ, the Glauber production and

multiple scattering formalism becomes very complicated if
seve%al production channels are preéent and multiple-step
production processes are important. Also it is not appli-
- cable when longitudinal‘homentum transfer effects are im-
portant. On the other hand; while the coupled channel optical

model formalism i? easily applied, and does account for longi-

tudinal momentum transfer, it is not easily justifiéd._ Therein
lies the importance of the following proof.

(3)

~5o,

e e B,

Standard Glauber theory tells us that after a wave

EICOR B

ipz
e p

n

I function ¢(;3 has passed through a potential it haa

e'PZ 5(B) where S(B) is the scattering '

the form .w(;)

matrix, and
> > i / b
S(b) = 1 - T(b) A-1 .

with T(B) being the profile function. We recall that
N :

AZWT T L e

\hee
T

1 > ig b .2
Jo£(@) e M7 d%q, A2
2mi p -
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For a wave passing through a nucleus Glauber assumes
that the S matrix for the overall scattering is just the

product of the individual S matrices, so that

S (b_-b) A-3

A i {
Il
- n n

-+ > >
S(bljulc,bA;b) =

n=1

where b is the impact parameter of the inc&qent wave, and
%n is tre transverse position of the n-th nucleon. (Since the
S matrlx can be written as the exponential of a phase shift,
that is equivalent to saying that the oVerall phase shift

is given by the sum of the phage shifts due to the indivi%yal

nucleons)

From A-3 it -follows that

> > >
TBy5eeesB,58) = 1-8(B,,...,B,58)
A (I
- = 1- I [1- rn('ﬁn-ﬁ)] A-4
n=1l

This is the profile function for the instantaneous position

of the nucleons and must be averaged over the nuclear density

\

function.

& -,

I

Keeping in mind these facts from standard Glauber theory we

proceed to Bochmann's proof. As before fsa is the amplitude

for (coherent) production of the state B by the state a incident

on a nucleon. We now use Dirac ' notation and write the states

as |a> , |B>

orthonormal set.
"

B s o eSS T Sl AR e

s etc., where we assume these states form a complete
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We define the two-body transition operator T(r) with

!

the matrix representation

B T(®)|a> = rBa(;) = FBa(E,z)
N ' - 1 f’ d3 —ia‘; -5
= q e £a,(a,) 8(a,-q; (8,a))
2mi pa ,

A-5

whére q; (B,a) is the longitudinal momentum transfer between

the states |8> and |a>.

+ //\
Tao(bs2) = P'Ba b) Y A-6
” O ‘
1, >y 1 2 ~-q, *b T
where T Ba(b) = 5515; [ d q, e 1 ‘fBa(qL) A-7

So T is the 3-dimensional Fourier transform off the
scattering amplitude, and T' is the 2-dimensional Fourier

transform.

Following Glauber in assuming the product form for the
S matrix (or additivity of phase shifts) we define the coherent

production amplitude on a nucleus by

> >

- ip 2 iql'b ‘ 8 3 > -+
=S ¢ |
Fgy (@017 —* S d'b e {<8| J d'ry cee d rylule,,.o.0,ry)
A P k
> >
E [l-F(b-bi,zi)]Ia > =8a, } A-8

1

L e

L e

-
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where ;i is the position of the ith nucleon in the nucleus

and u(;l,...,;A) is the normalized wave function of the nucleus

in its ground state. We take the product in A-8 to be time-

/

ordered. Since we asgume that the incident high energy particle ,

§

moves throudgh the nucleus in the z-direction (without back-
scattering) this is equivalent to taking a z-ordered product.
The z-dependence of the F(g-gi’zi) is given by A-6 and the
remark that the function takes on igs values for z > z; and is
zero for z < Zs To ensure that the incident wave has passed

7

through the nucleus we shall shortly assume z = « ,
/ :

We can simplify A-8 by introducing the operator

2 > e 2
6'(byz) = [ dr ... d3rA|u(rl,...,rA)|

ﬁ [1- T(b-D.,z.) 0(z-2.)] A-9
- B.,2.) . -
, i=l 17 1 1

where 6(z) is the unit step function, i.e. 8(Z) = 1 for

z >0 and 8(z). = 0 for z < 0. The product.is still z-ordered.

A-8 now becomes

. . > -
> 1p 2 1 l'b >
- ! = 00 ) -
Foufa,) = T Jdb e  <B|é'(b,z = ®)-1 > A-10

The problem of calculating FBa is now reduced to that of
calculating é'(g,w) which we proceed to do. We note that A-9
gives us the initial condition é'(g,z = - ) = 1, We begin by

differentiating A-9 with respect to z. Recdll that the derivative
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/ ,)
of a step function is a Dirac §-function, and that the z-
dependence of P(g-gi,zi) is contained in the exponential
—iqu o
e - and the step functiens For the purpose of this

differentiation however we invoke the coherence requirement

9.2 <<1 to neglect the derivative of the exponential. Thus
] -

we have
/
s ¢ B2 | a3, a3, Jule 312 6(z-2.)T(B-B.,2.)
. Bz - ’jzl N 1 LY A l}nooa A j ‘j, j
’ > >
)it [l—F(b-bi,zi) Q(Z—Zi) ] A-11

1 . 1A
| L

Since the integral in A-11 is independent of j we may

write the equation as : ’ .

3 &' (D 3 3 > > 2 > >
55 22) - -AJd ry d rAIu(rl,.., rAI G(Z—ZA)P(b-bA,z)
A-1
I [1-T(B-DB.,z.) 8(z-2.) ] A-12
i=l 1 1 1 .

If we write Iu(;l,...,;A)l2 as a product of single pérticle

density functions (by neglecting correlations) so that

:

T _:‘ A
1 p(?i) A-13
i=1

2
lu(;l""’;A)l

then A-12 can be written as

r
i

S A R i

R

AT,

i
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aé'(g,z) _
e

2 ‘ (A~
] (- £ a%, o(Bp.2) TB-by,z) 6 AV B2 a1y
where é'(n) is' just the operator defined in A-9 for n

nucleons.
In particular é'(A) = 4!

Equation A-14 becomes tractable by making the approxi-
. mation &'{A1) = g1 (A)

. This is 'a large nucleus .approxima-

tion and creates an error of the order of 1/A, whi9h is
acceptable for large A. , oo €

>
We define the matrix element of &'(p,z) by

\ : <B |6 (B,2)|a> 4= qu(E,z) :
h ‘

Taking the matrix element of A-1l% and assuming the above

|
approximation we get

- 3 é(gaZ)\—<s|(AId2b (B,,2)r(d-B,,2) &' (B,2)|a >
3 Bz P = H APYPA> 2 REDT0N0 2 P2

L <B| (-Afa’b, p(B,,2)rB-B,,2) |y><y|6'B,2) >
v

. 1
. -izaBy) .

v \ :

A-15

Q °
whére we have made use of Equation A-6 . If we define

i

F te o e uiad Bl
S B z,wvwwﬂﬁ.a‘d‘ -

> - _oz ( ? ' *, ' +_+’ _
uBY(b’Z) %IPBA Jdb p(b {z) r BY(b bt) A-16
and if we.interpret ée(g,z) as in Equation 7 (Chapter 2)

as the slowly varying part of the wavé function, then A-15
) may be written in the form

g

LT

—
St e s b
S

|
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2y izq, (B,Y) )
ifg (b,2) -, 1 . I uB’(g,z) e L % (B,2) A-17
b Z 2ip3 Y PY Y.
which we recognize as Equation(9) , the eikona{ solution to
™ ) ° =

N the coupled channel optical model. This completes our proof.
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TABLE I
L §
P PP O, o Re £(0) Im£(0) No. of
LAB -ToT . ( . Intermediate
Gev/c) (mb) _ Re £(0) (fm) (fm) - States
\ = Im £(0)
5 39.28 -.34545 ~2.7361 7.9203 4
10 39.1% -.27273 -4.30477  15.7841Y 4
, 20 38.87 +  -.21818 -6.840113 31.35052 4
30 38.60 -.18182 -8.49075 416.699 6
40 38.37 -.14545 -9.002834-- 61.8345 8
50 38.20 -.12727 -9.80322 77.0252 10
60 38. 24 -.10909 -10.0939 92.5272 12
80 38.34 -.01818 -2.24895 123.6922 14
© 120 38.58 '~ . 04545 -8.48635 - 186.6997 14
180 38.88 -.01455 -4.10512 282.227 16
240 39.21 +.00364 +1.38 379.4969 18
, 300 39.465 +.01818 +8.68102 477 .4562 20 !
400 39.95 +.03636 +23.4339 BUL . 432 20
\
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Fig. 1 -- One and two-step neutron elastic scattering.
N
. i
\ ,
|
\ 2 — ‘

vl

W]

-

)
FYE I

)

Sy A

L

{
~




Wbt = KNI ©Fes 2k RS ST

T v 2 e

-52-

e L St 5 sev. T2 N ate T I )
BRI, e S Pt e S e N

mll

n&wu.NﬁnQV
dt dm?
OS&\QN<¢V 4

3

i fo o i BRI e e T e

T FIT USED BY MURTHY €T AL.

=T FORM USED By Juervs

(54

ol -1 1 _ T ==
I 2 < H 5 10 15 20
> Z» mm.mk»v

25

0
3
i
-
)
S
>
)
)
]
o
=

dt dM?

dzo t=0
‘and the fit to the data used by Murthy et al.

PR

Fig. 4 -— A comparison between the form of




™ mwa*Mwm,-. e merme e e

LT

e

%

-

~ A e fr e

4r ~esetmny 1y

T AT R R e e i v -

3200

3100

3050

-53-

3000

2950

2900

LAE T et~y sy

o

- -~
. NO REGENERA T /ION
k’,,/”/// 1
- IN
/
i’ —
o [ -
- PATA REF(Cao-2¢) ' 2
/ —
20 PARWER ET AL, 5.7 [Gevrsc] I
i 21,22 ENGLER ET AL. 8,9,71,/4,7¢, 2/ +
23 JONES ET A&, 12,13,/9, 26,5
d AH McCORRISTON 1.8, 16.9, 25,4 3
™ 2§ MURTHY ET AL, 34, 80,131,180,2/5, o
240,273 2 3N
L 2% 8/FL ET AL, 55, 105, 150,135, 210, )
230 250, 280
A I T I N | | I | | I N A N | | I |
3‘ L [ % yo 20 30 Yo $0 80 100 200 300 %oo
Neorron Momenron {(Gev /c) )
- Pl
. - - o —— )

)

Fig. 5 -~ Neutron total cross sections on lead.




