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ABSTRACT 

\ 

We investigate the effect of inelastic shielding on 

neutron-nucleus total cross -sections at high energy. Our 

calculations are performed with~n the framewoI'k of the 

Bochmann-Margolis coupled channel!optical modèl formalism. 
- "", ' - . 

1 

In addition to the elastic channel, we consider the effect 

upon the total cross section of diffractively prod~ed,nudleon 

resonances. In particÛlar we examine, 'different model$, 

inspired by triple Regge theo:ry, for the ~trengths,tith which 

these resonance channels are ceupled to each ether. We con-

cluds that, up to the energies ~sidered to date, the data 

are consistent with a model in which the various inelastic 

4diffracti~e channels ar~ compl~tely decoupled. 
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Résumé 

/ 
/ 

/ 

Utilisant le ,formalisme du modèle opti4ue à canaux coupl~s 
(, 

de Bochmann et Margo lis , nous avons étudié,' l'effet d'écran fotmé '1 

, " fi • 

par les canaux in~lastiques sur ~es sect~ons efficaces totales 

1 dans les collisions neutron-noyau à ha~'es énergies. Seuls le 

" 
c~al élastique et les canaux inélastiflues diffractlfs avec 

,production de résonances du nucléon dnt été considérés. La force 

de couplage entre les . 
inélafiqUeS été calculée de canaux a 

di fférentes manièlies, toutes inspi!rées de la théorie du "triple 
j 

v ' f 
Regge" • 

\ 
Il appert que les donné~s expérimentales dis~onibles à 

présent sont compatibles avec un mod'èle dans lequel les divers 
( 

canaux inélastiques diffracti/s sont totalement découplés. 
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CHAPTER l' 
, ' • • 

Introduction ., 

As the, ti t1e cf the th~sis .~uggests, we are idteresr,ed 

in ca1cu1ating total cross sections of high ~nergy neà\rons . '-
;-.' , 

on nuclei. In performing such a caicu1ation, oné finds it 
\ \ 

most convenient to calculate forward elastic scattering amp1i-

.,tu'des and make use of the optica1 theorem, to get the total 

cross section-. This stI'ategy enables one to ignore the numerous 
't. 

inelastic reactions which, if had to be calculated one by one 

. (especia1ly at'rtigh energy) wouid màke the problem ;èmp1~te1Y, 

, 

, 

intractable. 

Standard Glauber multiple scatterin~ theory énables one 

to calculate the forward è1astic scattering amplitud~ by 

taking 1nto a€count such processes as, shown in Figure-L 

Figure I(a) shows the case of single scattering, while l(b) 

shows doubl~ or 2-step scattering. The "x" denotes the position 
. , 

where' the incident,neutron eIastically scatt~rs off oné of 
. § , 

.+ 
the nucleons in the nucleus. This formalism however does not 

',,> . . 
account for 2-step reg~nerat10n as shown in Figure 2. At 

sufficiently high energies, the incident neutron can be in-
• . • 1 • -

e1ast1cally converted 1n the nucleus 1nto som~ other particle 

which itself then inelastically scatteI'S back into a neutron; 
j 

~he inci4ent neutron is said to have been regenerated. 

\ 

\ 

. 
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"'. 4f ., ( . 
This regeneration of neutrons makes the nucleus 

l ,\. 
êreem less IIblack ll

, or less absorbing ~han one, woul'd expect 

. if o,n~ did, not consider this process.\ rhfj difference bet­

ween total cross s~ions calculatèd with and without re­

generation is called the inela~tic screening contribution 
, 

6I NEL' ~he purpose of this thesis is to calculate total ) 

neutron 'cross sections ~n heavy nuclei taking this effect 
. , . 

i?to account. ' In pa;rticular we examine different models 1 

for the strength with which.the intermediate particles 
1 • 

transform amongst themselves. 1 

fn Chapter 2 we give a more detailed·èxplanation of 

inelastic screening, 'and des,cribe the Bochmann-Margolis 

coupled channel optical model for~alism which is used 
, '. 

to calculate total neutron cross sec!iens, taking account 

of inelastic screening. 
_ J 

ln Chapter 3 we review the history of inelastic 

screening calculations, and recent developments in the use, 
l ' 

,of the Bochmann-Margolia formalisme In' particular we 

discuss a number of models for the, 2-body forward ~mpli­

tudes which couple the various' intermediate states indi­

cated in Figure 2. We aIse discuss ether" terms which a,ppear 

in the equatiens ~f Chapter 2. 

In Chapfer 4 we ae~cribe the computer prog~am which 

was written "to perform the çalculatio~ of total neutron 

cross sectiorls. We discuss the numerical!algori~h~s used 
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and the vario,us errors preseI'l;t in the calcula..tion. Finally 

we present the results of our calculations along with the 

, available experimental data. , 
• 

In appendix A we .present Bochmann' s de'I'ivation of the 

equivalence of the eikonal solution of the coupled c~annel 

optical model to a Glauber-type mul tiplé spattering modeL 

This is a relevant calculation, but somewhat off" the main line 

1 of the th~sis, and so has been put in an appendix. 
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• 
CHAPTER 2 

Theory ), o 

. v2 .1 Screening 

, 

of 

We begin wiih a qua,litative wave-mechanical 
f " '\ 

l . d' l' . (1) e astlC ~n lnea 'stl0 SCreeI}lng. , • 
picture 

.. 
Consider a plane wave incident on a nucleus as in 

, ' 

Figure 3. The incident wave scatters off the nucleons 
, 

at the 'front of the nucleus. The part of the plane wave 
/.. ! ,/ 

which is scattered gives rise to spherical wav~lets coming 
. 

off the target nucleons. The incident plane wave then 

int~rferes with the forward. sèattered wavelets in just such 

a fashion 50 as to account for the particles scattered out 

of the beam. Thîs is essentially the physicaL statement of 

the optical theorem. This interference caused by the outer 

nucledns clearly reduces the 
1 
i 

wave so that the nucleons at 

amplitude of the inoident plane 
o 10 

the back of, the nucleus are in 
1 

effect shadowed or screened, and do not contribute as much 

te the total cross section as do the outer nucleons facing 
/ 
the beam. 

Now. suppose we consider production 0Jl a nuclean to a 
b 

• !ù.. ... 
g~ven .f~nal state; haw is th~s affected by screening? 

Consider a -,nucleon X ~s" shawn in Fig\l~e 3. Production to a 

g:LveJ1, final state Y may proceed in two ways. In bath cases 

, 
" 1 

{II 
" 
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""-' 
.. 

we want'the nucleus to serve only as a passive target 

for our incipent beam (recall we want to calculate ELASTIC 
1 

scattering amplitùdes to get the total cross section), 
... 

and 80 we require that no interaction with a target nucleon , 

be sufficiently strong to excite it into a higher energy 

( 
. f 

level In practlce the energy levels of nucleons appear 

degenerate at high energies, so in reality the mc1st stringent .,. 

condition we can impose is that the inc~ént beam particle 

not knock a nucleon out of the nucleus, or cause the nucleus 

to break up. ) o 

In the first process the incident wave may strike X 

and produce the state Y directly (process (1», Or, the 
"' 

incident wave may scatter off one of the nucleons in fro~t 
\ 

of X, and then the scattered wave produces the state Y on X 

(process (2». If, as we just said, no target excitation 

occurs tnen the two final quahtum states 3ire identical, and 

must be summed coherently. The phase of (2) relative to (1) 

is given by'the forward elastic scattering amplitude on the 

nucleon multiplied by a factor to account for the propo­

gation between nucleons. The forward elastic scattering 

amplitude is predominantly imaginary (especially at high 
, 1 

energy) and by the optical theorem 'is positive, 50 this con-

tributes a factor +i. The clasJical reconst~uction qf a 

wavefront from a plane of scatterers also gives a factor +i 

(the propogation factor) 50 this means that (~) is out of . 

1 

1 • 
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phase with (1) by approximately 1800 , and they interfere 

destruc~ively. Thus as wé would expect the shadowing, or 

screening, reduces the cross section for the production of 

the state Y on the nucleon X. 

So far this can aIl be described by standard Gla~ber 

theory. However, at sufficiently high energy the secondary 
, 

wavelets in procesp (2) do not have to be identified with 

the original beam particles; they may be diffractively produced 

... resonances. We shali d~fine what we mean by "diffractive 

production"more precisely but for the moment we shall 

only mention that reSQ es which a~e diffractively pre-

duced have the identical quantum numbers as ~he incident beam, 

except possibly'for spin and parity. This makes it possible 

for auch particles. 

a) to be produced on a nucleon without disturbing it 

too much, and 

bY to interfere with the original beam: • J 

Clearly if this mecha~ism _ exists we must Include i t in our 

calculations in order to ~akè accurate theoret~cal predict~ons. 
, (-- \ 

The method by which we include these diffractively 

produced intermediate statés is the coupled channel optical 

model of Bochmann and Margolis. (2) This model requires the 

solution of, a situltaneous set of wave equations .. Each wave 

eqUa~io~ describes the propogation of one type of particle 

1-

~"" " .. ' '( .. iL, a., _ , i .. _ 
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. 
through the nucleus. The equations are coupled to each other 

by optical potentials which allow one channel either to elasti-
1 -

cally scatter or inelastically scatter into another channel. 

Il 
2.2 The Coupled Channel Formalism. 

1 

In tliis section we present a derivation of the Bochmann-

Margolis coupled channel optical model. In Appendix A we 

demonstrate the equivalence of this with a Glauber-type multiple 

scattering model. 
1 

2.2.1 We list here the approximations which we make in deriving 
~ 

this model: 

(i) We solve the equations in the eikonal approximation. 
-

This reduce's them from second",,~rder differential equations 

to ~quations of first order which are easier to deal with. 

This is a good approximation at high energies for small 

angle scattering. 

(ii) Since we are dealing primarily w~th diffractive, re-
.. ,_.>' 

actions we neglect their dependence on isospin. That is, 

we assume tha·t the isospin nonflip ampli tute dominates. We 
1 

• 
do the same for ordinary spin, but with somewhat less justifi-

cation - see the discussion in Section 3.2.4. 

(iii) We describe the nuclear target ground state by a product 

of single particle wave functions. Thus we ignore the effect 

upon the react ion of correlations, between the target nucleons. 

At the high energies we are considering this is a good approx-

imation. 

/ 

1 
----------------____ -.....,...,. ... -';' •.. ',-,. _:....1~"':.-:.':"!":""' . .. ..,..,. .. ..,." ... "" ... 2 .... L ........ ..,x. __________ ==-_ .. 
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Civ) Wè make a large A (atomic number) approximation. 

This can be clearly se'en in the derivation in Appendix A. 

This approximation is weIl satisfied for ,medium and 

,heavy nuclei. 

2.2.2 We introduce a channel a incident on a nucleon in the 

nucleus and describe elastic scattering and coherent prb­

duction by the coupled wave eq~ation:f 

... ... 
l' U l(r) tP".1 Cr) 
a' a a "" 

where ~ is the wave function of the particle incident on 
a 

the nueleon, 

~a'~~ are the wave functions for the eJannels which are 

coupled coherently to the channe a '(the sununation 

over the'channels a' in Equatio (1) includes the 

Pa = 

u ' ara 

term a = a' which is the term elastic scattering 

of the incident channel), \ 
IE2_m2 is the magnitude of the ~\momentum of the a 

\ 

channel ex having mass 111 ,wher~ E \ is the total a \ 
\ 

energy of the incide~t partiele in the lab, 

are optical 'potentials; U is the optical potential , aa 
for elastic scattering in the channel a '(the 

presence of the forward elastie scattering amplitude 
\ , 1 

'in U means, by the optical theorem, that it also aa 

accounts for damping of the wave in the nucleus) and 

Ua ,"a (a '1- a') is ;the'optical potential for coherent, 
/ , 

production of the channel a by the presence of c,hannel 

a' • We assume U, = U ,. , a a aa' 

1: ,1 

., 
~ 

" 



( 

o 

, 1 

(2P 

(3) 

-9-

/ 
The optica1 potentia1s are given by(3) . 1 

,. 
~ 27' U , Cr) = -2i p A!d b' p(o',z)r , 

a~., a , aa 

-+ r is a 3-dimensional position vector with the origin' 

{' at the centre of the nucleus; we denote the magnitude 

of the 
~ (simi1arly for oth~r vectors). '!i' vector r by r 

1 

~s the 
... this is z-component of rand we assume that z 

para11ei to the incident beam in the lab. 
,-

b is 'the a-dimensiona1 component of ft in the plane 

·A 

,.' 

perpendicu1ar to z, i.e. the impact parameter;· 

the integration in Equation (2) is over the range 

of impact parameters in the nuc'leus'. 

is 'the number of nuc1eons in thk nucléus. 

pCb,z) = pC;), ~s the nuc1ear density function 

norma1ized t~ unity. 1 
rcg - b' ) is the so-called "profile function" of a 2-

body interaction and is given by 

r , (h) 
a a 

! -iq . b, 
__ 1 __ f d 2q f, (q 1.)e J., 

2~i Pa l a· a 
= 

-where is the transverse momentum transfer between' the 

chann1f.s a and Cl 1 (i. e. q = Cp ,-p ). b ), 
l a a 

and 

+ f ,(ql) is the 2-body amplitude for the coherent 
aa 

. production of the c~aqpe1 a by the channel a' 

incident on a·nuc1eon. 

1 

We see that the 2-body profile function is just the 2-

dimensiona1 Fourier transform of th,e 2-body scattering ampli tu~e. 
') 

:f 
~ '., 
i 
:~ 

, 
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Taking the i~verse transform we have : 

f, Cq)' = 
a a l 

.';t -+­
-+- l.y:. b 

l ,d2b r , (b). l 
a a e 

and 

(5) f, (0) 
a a = 

Now if we assume that p(~) is slowly varying inside 

the nucleus we may pull it out of the integral in Equation (2) 

and we then ~ave 

(6) or 
III 

'u (~/) '= -41f Ap (~) f, (0) 
a'a. aa 

by I;quation (5). 

, 
We shall refer to f 1 (0), or more simply just f 1 

~a a a a 

as the forward scattering amplitude. 

To solve Equation (1) we use the eikonal approximation, 

which, as we sa"id, ,is. a good approximàti,on at high energies. 

Essentially it assumes that a high energy particle traversing 
\ 

a (fini te) potential will not be deflected greatly by the 
EV"},. &'1 potentfa11 That is, the wave function 1/1 will' ·differ from 

1 
ipz the incident wave e by a term that varies slowly over 

distances of the order IIp{ -- \1). In this spirit we make 

the substitution 

(7) ;~ 
ip z 

= e a r!J (t;) 
Cl 

where 6 (t;) is slowly varying. 
Cl 'ip z' 

Equation (1) and taking e Cl 

-- 1 

,,' get 

Putting this into 

to the right hand side 

;/ 

,-.1'~~- ~(.L~.}i( \'T--~:""'l""_""" _______ .. =_rn 

. , 
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(8) 
a z 

2 +, 
By ou~hJPothesis we m~y neglect v 0 Cr), and our prob1em 

a 

reduces to the' solution oLa coupled set of linear, first 

/ order, complex differen~ia1 equations: 
, 1 

-+ 
a0 (r) 

a l -+ i(p ,-p )z -+ 
I: U 1 (r)e a a ~\,(r) (9) 

= 
a' a a Cl Cl Z 2ip 

a 

The boundary condition for Equation (9) is determined 

by the assumption that before the beam strikes the nucleus 

only the incident channel ao is p~esett so 

(la) rD (b, z = -!XI ) ::: 

a 
Ô aa 

.0 

'" 

We see that with this assuIRption we neglect backscattering ,i 

which again is a good approximation at high'energy. 

We note th~t if we re-write equation ~9) in terms 

of ~(~), it is directly in~egrable if U , (~) is ind~péndent 
a Cl 

-+ of r. 

constant. 

(6) we ~ee this is true if is a 

however to u~e a Woods-Saxon density 

~ 

distribution (see Section 3.4) because it is a better appro~ ( 

ximation. 
1 

2.2.3 At this point we should discuss the C;6hererce requirement 1• 

As mentioned in Section 2.1 we require ~hat in scattering 
~ 1 

off a target nuc1eon the incident neutron must not disturb 

/ 
1 

/ 
/ 

; 
f 

/ 

1 

, 
L, 

1 

1 

i 
1 
~ 
~ ~. 
'il 

p, 

1 t; 
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.~ 

,r ,r. 
~ 
~ 



/ 

.... = ... 1 ;' . 
1 
1 

r , 
~ 
~ 

1 
t 

J 
1; 

o 

-12-

.-

lit too·violently. Now in an inelastic collision at high 

energy, whe~the neutron converts into a higher mass 

resonance, there is... a minimum forward momentum transfer 

due to the mass difference. This has the form 

m2 2 

(1;1.) 
a - m cl 

Pa' - Pa = 
Pa r + P a 

Production of the state a' by the state a will be coherent 

over the whole nucleus only if (p , - p)z is sufficiently 
i( p ,_p _) zn. a a 

small that e a a which appears in Equation ,,( 9)', does 

not oscillate significantly. Otherwise this term will give 

rise to large cancellations. 
1 

. It is, thus reasonable that the coherence requirement 

be 

(p , - P )R « l 
a a 

where R is the radius of the nucleus. 

However, in performing numerical calculations the very 

presence of the ~?onential serves to enforce coherence 

auto~atically. Whenever the rnomentum tr.ansfer is too large 
/(J 

the oscillations caupe the contribution for t~at mornentum 

transfei to cancel (approximately). So for this work the 

coherence reqùirement is not a~stringent condition. 

2.2.4 We DOW proceed to use the equations We have derived tp 

calculate the elastic scattering amplitude, which will in 

turn L.ve us the total cross section • 

. / 

0·'_ 
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In elementary scattering theory(4) we calculate the 

Green's function for the ~dinger equatien and transform 

it into an integra1 equation having the form 

J , 

. where 

ipr 
ljI (t;) ... 

ljIo(r) = + e ... f(p)' 
," 'J r 

l' d3r 
.... + 

f(p) -~pdr Uer) = - 41f r e 

+ ljI(r) is the scattered wave, and 
' ... 

1/1 (l') is the incident wave. o 

/.~ 

... 
1/I(r) , 

'(Note that we have written the Schroedinger equation in 
2... 2... ... ... the form V ljI(r) + P fer) = UCr)j(r).) 

Extending this procedure to our coupled wave 

.equations we see that 

(13) 
-+- -+-

tU, (r)\jI ,(l') 

where f ( ... ) 
a a Pa o 

, , a a a 
a 

is the coherent amplitude for rhe 

'channel-ao to scatter off a nucl~us into the channel 
1 

... Now when Pa is along the ,z-axis"and the scattering 
0, 

angle and momentum transfer are smatl, we mayapproximate 

p Z 
a 

where Il''''' represents a unit vector. Tpat is, 

tudinal ~omponent of ... 
is approximately equal Pa 

the longi-

te Pa , and 

JI 

the transverse component is ~pproximately equal to the momentum 

transfer. If ... -+- ... then Pa - P' = qa ao . : 
/ 

'" 1 ,} J ' , .. 5, ~ " • ~,' .. ( l'~. ~........ • 
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(p ) =/-a. 

2 -q'·b _-ip z 
1 (J J d bdz e a e a 1: U , (~) 1JJ ,(;) lfif , a a. Cl a 

With ip z 
:: e a. ~ (t;) 

a 
.... 

1/1 (r) 
a 

.+ ,... • (+ .... ) 
1 2 -~q·b œ ~ p ,-p z 

f '. (p ) = f d b e a J dz 1: e a a 
aoa a 1 - 4~ -œ a' 

.+ b _~q. œ 

Lfd2b a By Equation (9) and (la) = e a f dz 2iPa 41T az 

(14) 

to b 

-œ 

iPa ."" .... 
f (+) d2b 

-J.q 'b -+ 
= 

, 
f e a '\ [ri> (b,z = <D)- Ô a a Pa - 21r a. aao 0 

1 .... In the forward direction the component of q parallel 
a 

(the transverse momentum transfer) is zero, and the 

elastic scattering amplitude is given by 

co 

ri> (~) 
a 

= -i p f db b [ri> (b,z=œ)-l] 
°0 0 ao 

where we have assumed azimuthal. symmetry. 

Finally then, by the optical theorem, we have the total 

cross section 

PT 

, ' 
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( '\ 00 

C 1'6) $1ToT = 
4'11' lm f- = 4'11' ! db b [l-Re 01Cb, ... )] 

Pa aoao 0 
0 

To éalculate ,the total cross section we have written 

a computer program which solves Equation (9) for ~lCb,oo)" 
l <il • 

and then performs, the "integration in Equation (16). We 

describe the program in Chapter 4. 
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CHAPTER 3 

Historical Review, Forw~rd Amplitudes, and Nuclear 
1 1 

Parameters. 

~ 1 
Of ûtmost "importance in the Bochmann-Margolis formalism 

are the forward amplitudes f, which se~ve to'couple th~ 
" , . a a 1 

,va~ious channels. Before discussing these forward ampli-

tudes it would be appropriate and conveniênt to review the 
~ 

histo~fcal situation ; this will show us the source for a number , . 
of mod~~J; for the fa' a and help 'Put ~ul1f calculation into 

context. 
,,, 

3.1 Hist6ry. 

As explained in Section 2.1 there are two kinds of 

shadowing corrections to neutron total cross sections on 

nuclei. Fi~st is the elastic shadowing which is accounted for 

in Glauber theory. Second is the ,inelastic shadowing. 
• 

This was first discussed in 1966 in a paper by Abers, Burkhardt, 

• '- d W' lk . ( 5 ) f .. f Tepl~tz " an ~ ~n . The ~rst opt~cal model treatm~nt 0 

the problem was by Pump1in and Ross(6) in 1968. In 1969 
, (7) 

G.ribov performed a similar ana1ysis uSlng th~ graph 

technique. Pump1in and Ross performed sorne numerical calcu­

lations of the inelastic shadowing correction ~INEL' but 
- 1 

rather than considering only diffractively produced inter-

mediate states (as we have indicated in Section 2.1 this 

should be the c'ase) they ~ncluded aIl kinematically a110wed masses. 
, 

) 

- 1 
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( 

Thls was done by looking at the so-called one-partic1e 

inclusive reaction p + p'" + p + X where X cal'), be anything I§ 
1 

allowed by the various conservation 1aws. In this kind of 
; 

experiment only the final-state proton is detected and momen~ 

""" / tum-analyzed. The ~ass of whatever comprises X is hence re-' 

ferned 'to as the "missing mass". The kinematical va:riables 

in such an experiment are the usual Mande{stam variables and the 

invariant missing mass. These are defined as fol10ws. ~or the 

experiment 

we have 

where P a 

that p2 
a 

given by 

a + b -+ P + X 

-s = (P + a 
t = CP a 

u = (Pb 

denotes the 4-vector + (E ,p ) and our metric is such 
a a , 

= E2 
Ipal2 

2 - = m a 1 a 
The invariant missing mass is 0 

M2 =.s+t+u-m2 m2 m2 
a- b- p 

v 

At'the"energies we are consideringwé regard the proton and 

the neutron as equivalent, so a study of p + P + P + X also 

gives the !mp1itudes for a neutron te strike a nucleon and turn 

itself into sorne higher mass state. 

o 

As we have'said, Pump1in'and Ross included the who1e missing 

mass spectrum as possible intermediate states in neutron 
/' 

J 

in ___ ~j ......... 1 
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regeneration. At low energies this had the effect oi de- D 

pleting total C!OSS sections by as much as 20%, and this was 
1 

too large-they obtained too much ine1astic shielding. 

~ 
ln 1.973 Kaida10v and Kondratyu~ (8) proposed ·that only 

the diffractive part of the missing mass spectrum co,.ntri­

butes to the inelastic shadowing effect. By a diffractive 
1 

reaction we mean one that proceeds by exçhange of vacuum 

quantum numbers. in the t-channel, ~.e. PQmero~ exchange. 

Two-body diffnactive reactions are readily identified by 

h.ving B weaR energy depe~dence in ~~, and having ampli-
Iii 

tudes which are mostly imaginary: - Of greatest interest are 
. 

elastic scattering and diffraction dissociation at high 

energy. Diffractio'n dissociation reactio~s are quasi 

two-body reactions of the sort 

* + N 

1 

where resonance having the same quantum 

numbers as the nU,cleon (except possibly spin and pari ty) but 
6' 

higher mass. The expectation is that as two-body reactions 
, 

are made at ever higher energies, only these diffractive 

~~eactions will persist as the energy goes ,to infinrty., 

{n r Kaidalov and Kondratyuk pointed out that i1\ considering 

mechanisrrs for ô 1NEL ' only diffraction dissociation ohas an. 

imagina~y amplitude as required for the proper sign of the 

correction term (reca11 discussion of Section 2.1). They 
• a 

se~te the total ~elastic cross section for P + P ~ P + X 

'" 
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'. 
1 

into two parts, the diffractive part and the inelastic 

background. The inelasticl background may be viewed at low 

~ energy as the result of non-vacuum Regge exchanges, such as 

W,p, A2 and 1T. Because of the difference in'phase between , , 

thëse exchange's and porneron exchange, Kaidalov and Kondratyuk 

felt that these two contributions to ~INEL should be examined 
1 c 

separately. In a Regge-pole framework they showed that the 

contribution of the inel~stic Ibackgro~nd to ~INEL was negligible 
, 

compared to the contribution of diffraction diss,ociation. 

, (9) 
In 1973 Karmanov and Kondratyuk performed a calcu-

lation of ~INEL~using only the contribution of diffraction 

dissociation. ,They did their calculation to second order 

in perturbation theory. 
1 

Tqis means that they allow for 

-only one transition from a neutron to a resonance then 

back to a neutron ... Onl~ the inelastic couplings are 

calculated to second' order; elastic scatterings are treated 

to aIl orders (i.e. any number of elastic scatterings 

are allowed). (We note 'here that our coupled-channel cal,cu­

lat ion is"",done to aIl orders' in th~ inel~stic couplings. 

The fact that we describe tbe reactio~ by coupled equations 

means that any number of back and forth transitions'can occur 

between aIl channels.) Karmanov and Kondratyuk found that , 

inclusion of ~INEL gave a 2-3% decrease in total neutron cross 

sections above 10 gev/c, and that ~INEL increases loghrithmi­

cally with e~ergy. 

i. 
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(10 ) 
In 1975 Murthy et Al. reported results of high 

energy (30-300 gev/c) total neutron-nucleus cross section 

measurements performed at Fermilab. In analyzing their 

results they used the method of Karmanov and Kondratyuk to 

calculate ~INEL' Although the error bars on their measure­

ments made precise comparisons difficul t, the inc1usio'n of 

à INEL brought the theoretical curve into ,good agreement with 

the experimental po~ts, particularly in the energ~ dependence 

of the data. 

3.2 Recent Developments and the Inter-Resonance Couplings 

3.2.1. Late'in 1975 a criticism of the analysis of Murthy 

et al. was published by D. Julius(ll). His work revealed 

very little inelastic shielding, and he felt that if the ex-

perimentalists had used different nuclear radii they would 

have found virtually no inelastic shie1ding at aIl. Julius 

used the Bochmann-Margolis coupled channel formalisme To 

do this he had to specify the forward amplitudes f, . This 
q a a 

he did as follows: 

( (12) 
Triple Regge theory predicts the cross section for 

p + P -+ P + X to be 

d 2a c/M2 -- = "-
dt dM2 t=O 

(15 ) 

where JUlius, following Fishbane and Trefil (13) tak,s the 

value of c to be 2.9 mb/gev 2 . At high energy the scatterïng 

amplitude is related to da 
dt by 

, , 

.. 

i 
" 
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= (16 ) 
\ 

1 

If we assume that the phase is purely imaginary then the 

amplitude for production of some channel j by an incident 

neutron (in channel 1) is given by 

(17 ) 

d 2
cr Now the missing mass spectrum is given by ~~-

dt dM 2 t=Q 
2 2 ' vs. M. If we divide this into intervals of ôM , where the 

j th c~annel is represented by the j th mass interval, we 

may integrate the spectrum approximately to obtain 

da 
dt (1 -+ j) 

t=O 
= (18 ) 

- c 

~ 
J 

= 
(19 ) 

(In particular Julius used ô M2 = m2
N 

where mN is the 

f h l d M2 . . 2 d a Cl 7" j) 
mass 0 tenue eon, an J = J m N' so dt 

t=O 

We will use a varying mass interval and so we leave the 
l ' 

equations in the form given) 

= c/j. 

To get the further amplitudes f .. (i,j # 1) Julius made 
~J 

what he felt'was the simplest possible generalization of 
1 

Equation (19), namely, 
• j 

) 

/ 

. -
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t=O 

= ( 2 c 2 2) 
IM.-M·I+m N l. J 

(20) 

(This generalization is more apparent ~sing Julius's choice 
" 

With the 

Then da(i .... j) 
dt 

assumption of 

f .. = i p. ( 
olJ l. 

= c ) 

t=O li-j l' +1 

1 

imaginary phases we get 

c 15M2 11'2 -(21) -
IM2 ._M21 2 ) 

n +mN l. . 
) 

The neutron 2-body in~lastic scattering amplitude fIl is 

obtained from pp elastic scattering data, and' all resonance 

elastic scattering amplitudes fjj are set equal to fIl' 

Julius used a coherence condition based on Equation (12) 

to cut off the missing mas,s spectrum.' Up to 60 gev/c he 

was able to use the Bochmann-Margolis formalism, since at this 

energy only a comparatively small number of coupled channels 

• was required, The computer time necessary to solve the coupled 
~ 

channel problem rise& very rapidly with the number of coupled 

channels, and so Julius'devised a high energy approximation 

to get to neutron moment a abéve 60 gev/c. The details are 

contained in reference (11), 

3.2.2. In what follows we shall have a number of comment to 
, 

make concerning Julius's paper. The first and most important, 

which we shall make now, is that there is NO JUSTIFICATION 

,,' 
,:. ~,~ .• ~ •. '_~.l,l" ',I,'.~ f~l~ ",,:..' 1 ---,-.-..-::~;'~~~-\)~" ... > ~ ·~4,·ltf!-:''''~i':-J ~ ',! l''r-_~ ",-- .. bh.~..J._ .... ~~Iidt' "lfW·':!?M"'!~~ .. p, 
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\ 

either theoretieal or expèrimental for Ju~ius's choiee of 

f, where a ~ al ~ l (in future we shall always refer to a a 

the, amplitudes eoupling various resonances to other resonances 

by fala; we shall treat the cases of fla and faa separately). 

His choice of amplitudes is little more than a guess, and as 

we shall see, other generalizations of the triple Regge 

) formula are possible. Since it seems unlikely that there will 

ever be direct experimental evidence to guide us in this matter 

the best that we ean hope to do in the framework under dis-

eussion is to try different forms for the f 1 
a a 

fit the datà best. 

and see which 

3.2.3. The previous comment and others,are contained in a 

reply to Julius's criticism by Ayre a~d Longo(14). The 

crucial point they raise is that the triple Regge formula 

Julius uses for direct resonance production by a neutron(flj ) 

simply,does not agree with the data. Recall that ,these ampli-
, 

tudes may be reoonstructed from the missing mass spectrum by 

dividing it into bins, and 
, 

tak~ng the area under the eurve 

for eaeh bin. The amplitude fI' is proportional to the area 
\ J 

of the j th bin. We recall too that we must conside~ only the 

d
2a diffraetive part of 

dt dM2 
In their ealculation Kaidalov 

i 

and Kondratyuk had to extrapolate the data.then available 

, (ELÀB > 30 gev) to infini te energy to obtain the diffractive 

part. The experimentalists in reference (la) note that in the 
d 2a ' 

Fermilab data at small t becomes approximately energy 
dt dM2 

! " 

'. 
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inpependent for ELAB ~ 50 gev. From this they conclude 

that the high energy limit has been reached, and assume 

that the whole (forward) missing mass sp~ctrum i p diffractive 

in nature. The formula used by Murthy et al. to fit the data is 

= 

= (22) 
2 2' M > 5 gev . 1 for 

Figure 4 shows the comparison between this formula and 

that used by Julius. The discr~pancy between Julius and Murthy 

et al. becomes immediately clear. In the coupled channel forma­

lism the flj's are the parameters which couple the neutron to 

the diffractive resonance. 

d 2 cr area under the curve 
dt dM2 

The fl,'s are proportional to the 
) ' 

From Figure 4 we se~ that the 
t=O 

area under Julius's form for d2cr is much less than for tije 

dt dM2 t=O 
form used by M~vthy et al. , which is a fit to the data. This 

means that in Julius's calGulation the neutron is much less 

likely to turn into a diffractive resonance and the whole re-

generation effect is considerably reduced. In the limit that 

the f lj 's are set to zero (except for j = 1) then regardless of 

the values of the fafa~s we completely decouple the neutron 

channel from aIl the others and the result of our calculation 

is just the unregenerated cross section. 

1 i, 
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3.2.4. At this point we interpose a further cornmrnt of 

our own. 

d 2 cr 

t=O 

We have been discussing 

Of course t = 0 is 

the misstng 

kinemati~ally 

mass spectrum 

inaccessible 
dt dM2 

for M2 2 \ 
t m N' but in the forward direction t = t. is very m1n 

nearly equal 'tb zero at high energies. The point however is 

that measurements cannot be made at Q = 0 in the beam. The 
'\ t 

t-dependence of the reaction is taken up to sorne limiting t 

value, and then is extrapolated to t = O. There is no proÇlem 

with this extrapolation if the reaction does not involve 

helicity flip. Ho~ever if there is a helicity nonconserving 

, component to the amplitude its t dependence includes a term 

where ~À is the helicity flip. Clearly this goes 

to zero as t goes to zero. The helicity conserving amplitude 

does not go to zero at t = O. 

Until recently it was thought that diffraction dissociation 

conserved helicity 'in the s-channel, following the behaviour 
_ 1 

observed in elastic scattering and vector meson photoproduction. 

It now appears that among diffraction dissociations vector-

meson1photoproduction is an exception, for all the other ob-

served reactions do not conserve s-channel helicity. 

This present~ us with a problem. In extrapolating t~r 
data to t = 0 the experimentors will not have taken account 

of any helicity nonconserving amplitudes. If the data was 
, 

taken up to a very small t-value'these amplitudes· will haye 
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rnostly damped out, and ;he error will be sm~ll. If these 

amplitudes, were large enough to give a significant contri-

but ion at the lowest t-value measured then the extrapolation 

to t = 0 will be too large. As we have seen in Section 3.2.3 
, 

this means that we w~l~ overestimate the inelastic shadowing. 

Since the details of the extrapolation are not avail-

able to us, and particularly since the helicity nonconserving , 

amplitudes in diffraction dissociation are not weIl known ~ 
1 

to begin with, we have essentially ignored this whole problem. 
J 

.:> 

If it cornes to lightthat the missing ma~s spectrum has 

been significantly overestimated, theHinelastic shadowing 

correction will have to be decreased appropriately. 

3.2.5, Returning now to the paper of Ayre and Longo ~e come 
1 

to their second major point, which enlarges upon the first 

comment we made in Section 3.2.2, They point out that not 
v lt 

on1y is Julius's model for ~. ad hoc, but it is designed v-s.'J , 
50 aS,to give large couplings between sorne bf the high-mass 

resonances. Looking at Equation (21) we see that when M2 . 
]. 

2 and M J' are c103e, f .. gets large. Physically this is of 
1J 

co~rse possible, but 

smaller uniformly as 

it is also~ossible that 
2 2 M . and M . get larger, 

]. J 

f .. becomes 
l] 

This is 

reflected in another generalization of th~ triple Regge 

model due to ~ . .Henyey, which Ayre and Longo quote. 

He finds , 
, 

4 1/2 
:: i p. (_,_2 __ ) (8M2 ) ~ 

1. M. M. 
]. , ) 

1 

" 

(23) 

1 

" ' , " - --------:', -, -,-,-:'" --, -, '-~'-, ---- ~ == ~.~.I ... 

l " 

1 
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, 
In this model it is clear that there is a much weaker 

coupling between the high-mass states~ 

3.2.6. Heuristically it is interesting to note the effect 

on the total cross se~tion due to changes in the various for­
, / 

/ 

ward amplitudes. As we have a~ready noted the inelastic 

shadoJing is due to coupling the neutron channel to the various 

resonance chan~e19~ The greater the coupling, the more shadow-
\ ; 

ing we get, s~ as#the f lj 's goo~p the total cross section' 

goes down. How~ver for the inter-resonance couplings the 
1 
1 

bppos'ite i8 truJ. As the f ij 's go up the total crqss f:fection 

goes up. This effect lS less pronounced than for the flj's 

and can b~ understood as follow8. 

The re5ult of our coupled chan~el calculation i5 the 

neutron elastic scattering amplitude which i5 directly pro-

portional to the total cross section by the optical theorem. 

As the neutron propogates through the nuc1eus its scattering 

amplitude is d~pleted by conversions to resonance states and 

enhanced by resonances converting back into neutrons. Now if 
J 

we set the f .. ' 5 to 
J.] 

zero, a ,neutron going into the j -th re-

sonance channel can do only one of two things: either it may 

elastical~y scatter (recali f .. = f n ) or i t may turn i tself back 
JJ 

into a neutron. For the larger masses the elastic amplitude 

is much greater than the amplitude for conve~sion to the 

neutronkhannel (which'goes as 11M2 for large mass). SO,when 
1 

, 

; 

,. 41 __ """'"'---~--______ ~ __ ~ ____ --_·' - ---:--:-------------....... '--... 

" 

" 
of 
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h · . \. the 'f. ,,' s are set to zero, a neutron w ~ch goes lnto the J -th 
~J 

resonance channel will be inclined to stay there, thus depleting 

the neutron elastic amplitudes and l~wering ŒToT ' On the other 

hand as the f.,' s are made larger, the prolYab,ility goes up that 
J.J 

the j-th resonance will th en convert to sorne other resonance 

which will fiil.d it easier to return to the neutron channel. 

Essentially more ways are open for an inelastically scattered 

neutron to return to the elastic channel, and so the total cross 

section goes up, 

3,2,7, 
l ' 

Still on the subject of the coupl' g of the higher 

mass resonances, we have assumed that e inter-résonance 

amplitudég f .. are purely imaginary (and positive). Julius 
J.J 

assu~es the fl,'s are also positive imaginary, while Ayre 
- J 

and Longo set the phase of t~e flj's equal to the phase of fIl' 
~, 

Once again this is aIl pure speculation, although we would 

expect the amplitudes to be predominantly imaginary if they 

are diffractive. Nonetheless it is of interest to see what 

would happen ta the calculated cross sections by Ivarl'ing 

the signs of the amplitudes. Remarka~ly enough we found (and 

this is easy to show) that alternating the signs of the ampli­

tudes (50 that f .. + (_U i - j f .. ) is equivalent to alternating 
J.J J.J 

the sign of the wavefunction in each channel (6. + (_I)i~.) •. 
1 J. 

Since the cross section is independent !Jf the sign of the 
, -

wavefunction the result is the same. Hence we would expect 

that if the phase varies in sorne random fashion the calculated 

1 ).['~ i F li il l'Ir_Bearn, 
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• • 

cross sections will not change by much. To test the most 

o extreme possible difference we have calculated cross ,sections 

with aIl non-eJ.Lastic amplitudes changed in sign: The results 

are shown in Chapter 4. 

, -
3.3. Summary of Amplitudes 

We have two models for the f .'s, the amplitudes for 
lJ , 

producing a diffractive resonance by a neutron incident on a 

mucleon. One is based upon a discrete approximation to the 

tripple Regge formula,Equaiion (15)~sed by Julius. The other, 

used by Ayre and .Longo, is based upon a discrete approximation 

ta the experimental data as described by Equation (22). 

Julius assumes the phases are positive imaginary, while Ayre 

and Longo assume the phases are the same as for neutron elastic 
! 

scattering. 

We also have two models for the inter-resonance couplings. 

Bath are generalization of the triple Regge tormula,Equation (15). 

The first is that of Julius, Equation (2l). The'second is that 

of Henyey,Equation (23). Both mod~ls assume the phases 'are 

positive irnaginary. 

The elastic amplitudes fjj are aIl set equal to fIl the 

neutron elastic scattering amplitudes. This is obtained via 

the optical theorem from experimental data on pp total cr6ss 
l ' 

. (15) 
sect~ons . ,and the phase of the forward elastic scattering 

amplitude (16) 

, , 
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1 On thlS point we issue one caveat. - At low energy we 

are not justified in simply using nn elastic scattering. 

There are protons in the nucleus and the np total cross 

section and phas~ will not berthe same as for nn (~r pp) 

scattering due to different non-ieading Regge exchanges. 

Presumably however, at higher enet'gies these" terms will 

become small and the error we commit in considering only nn 

scattering terms will become negligible. 

3.4. Nuclear Parameters 

We have assumed a spherical nucleus, and have chosen to 

use a Woods-Saxon fo~mula for'the density function. This 

has the form 

, 
.' 

p(r) 

, , 

-
\ 

r-R l + exp(-) c 

where R is the nuclear half-density radius 

c is the nuclear "skin thickness" 

and 1 Po is a nqrmalization 'factor suéh that 

co 

4~ f p(r)dr = 1 
o 1" 

(24) 

''''' 

This normalization integral was calculated numerically, 

with the rartge of integration cut off at R + 16e. 

Accurate measurements of the parameters R a~d C were made 

- \ 

\ 

,( 
~~ . , , 

,~ 
l " 

,i 
~ 
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in the high s.tatistics p-photoproduction experiment of 

Alvensleben et al ~17). We used their value of 'G = .5415 fm., 

but we modified their radius parameter slightly to account 

for the diff~rence between pp scattering and yp scatt~ring., 

Our modification was made as follows. 

Around the energies we are considering, the differential 

~ross section for pp sc;attering goes roughly as e-10 
1 t 1 and 

for yp scattering goes as e .>::.alt 1. If we assume that the 

proton has a Gaussian shape as a function,of impact parameter, 
.. 

then the differential cross section, which is the Fourier-

Bessel transform of t~e spatial distributïon, is also a 

Gaussian in momentum transfer, which means it is an exponential 

in t. To be precise, if the matter distribut ion is given by' 

-b/R2 21 1 \ e then the differential cross section is given by e -R t 1'+ 

whe~e R is the Gaussian radius parameter. 

If Rl is the proton's radius parameter in pp scattering 

and R2 is the parameter in y p scattering then, 

R2 _ R2 
-2 1 2 2 = gev 

'+ (J 
(R,l-R2)( Rl +R2 ) 8 

-2 =, gev 

(R
1

-R
2

) 2 R = 8/25 fm2 

R1 -R2 
'+ fm = 

25 R 

1 
i. ,'" .1 ... • JI 1" '0""" 
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.. 0 

where R is t.he average proton radius. If we assume R = 1.2 fm 

we get R1 -R2 ::: .13 fm. This is the num])er we added to the 

radius parameter of Alvensleben et al. (our radius parameter 

for lead is thus 6.95 fm.). 

. 
Clearly this is aIl very approxima te. In the first place 

the R used above il% the Gaussian parameter not the Woods- Saxon 

parame ter .• Secondly the slopes of pp and yp scattering get 

steeper wi th energy, eorrespondirlg to an increasing radius 

parameter. Henee to be pree ise we really should use an energy 

dependent radius. . We found however that the rough treatment 
"'} 

outlined above was sufficient over the energy range considered. 

In the paper of Murthy et al. the authors use nuclear 
l} 

parameters which they calculate from a best -,fi t to low energy 
'\ 
1 

« 10 gev/c) total neutron cross section data (there they fit 

the data wi th a Glaube'r-type formula given by Franco, and they 
1 

m;ed the expression given
c 
by Kq.rmanov and Kondratyuk for the 

inela.sticû screening). The~ nuclear parameters correspoI)P. 

precisely to the ones we requipe and do not need to be al tereq 

as above. Unfortunately however. we found that using these 

values in our coupled channel fèrmalism we underestimated the 

total neutron cross section' at ,aIl energies. 

'. .. 
" '. 
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GHAPT~R 4 

The ~a~CUla.tion-ReSUl ~ 
The Calculatl.on 

and Discussion 

Our c'Ontribution to the understanding of the inelastic 

shadowing correction to total neutron-nucleus cross sections 

is presented in this chapter. We calculated total neutron 
.... -cross sections on lead ·for aIl the models presertted in ChrPter 3, • 

using the formalism of Chapter 2. Several of these calculations 
.-

\ ) . 
were never done before. We limi t our investigation to le ad ) 

/ mainly because of the limited computing funds available. The J 
i 

calculation however is easily extended to other large A nuclei. 

4.1.1. We have written a 'computer program to perform the cal-, 

culations shown in Chapter 2. Specifically we integrate Equation 
o ) ." 

16 numerically using the method of Romberg Extrapolation' ofl the 

trapezoid rule(18). As in the calculati9n ôf P for Equation 2~_. 
a 

we cut off the integration at b ,= R + 16e. In doi~g the numerical 

integration the program evaluates the integral at a number of 

values of the impact paramete! b. For èach evaluation of the 

integrand the pr~gram must solve the coupled set of differential 

equations shawn in Equation t _along with the boundary"condi-

tion given in Equation 10. We solve this coupled set of equations 

using a th d
(lS) me 0 . fourth arder Runge-Kutta 

~ 1 • 

In Section 4.1.3 we list aIl of the models for which we 

have performed calculations. tOI' aIl these môdels we have 

\ 
1 

t , ·r 
l. .1 .. D 

, , 
"'; 

. '. 
~î 

\ 

/ 
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calculated total neutron cross sections on lead from PLAB=5 gev/c 

to 400 gev/c. In aIl the models considered the missing mass 

spectrum was cut off by the coherence condition given by Julius, 

namely ~ 

3 
< RI' 

1 

where RI is the radius of the nucleus assuming a n~iform 
, 

density and is related to Rand c by 

( 

This condition assures that the minimum momentu~'t~ansfer not 

.exceed values for which the nucleus almost certainly breaks up. 

~he number of intermediate states into which we' divide the 
1 

missing mass spectrum varies with energy and is shown in Table l 

along with the values used for the pp(nn) forward elastic scat-
A 

tering amplitude. We used the cutof! and increased the number 

of bins, ornumber of interrne-è-iate' s'tâ'res a:e-each energy to 

keep the grid size into which we divide the missing mass spectrum 

as fine\as possible. Up to 6P gev/c,the number of iQtermediate 
, 

states we employ is approximately the same as the number used 

by Julius i; his low energy calculation to aIl orders. In going 
~~ , ' 

tb higher energi~s we increased the number of intermediate l 
states only slightly because the amou~t of computing time re­

quired rises very rapidly with this number. The final result 

d~es not seem to be very sensitive to the number of, int~rmediate 

states (as shown in sorne tests we conducted, and confirmed by 
f 
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more extensive tests [with f .. : 01 reported to us by 
lJ 

M.J. Longo in a private commun~cation), but this is probably 

the major source of uncertainty in our calculation at the 

highest energies. 

4.1. 3 We list below the models we have calculated. The 

numbers correspond to the labels on the curves shown in 
" 

Figure 5. The curves in figure 5°having an "Nil following 

the number were calculated with negative signs for aIl the 
\ ' 

non-elastic amplitudes (as discussed in Section 3.2.7). 

the curves shown, models 2,3,lN and 3N have not, to our 

knowledge, been calculated before. 

Of 

Model l uses the prescription of Julius for aIl the for-

ward amplitudes. This is given in Equation 21. Our calcu-

lation duplicates that of Juliu~, except as we have noterl, in 

the intermediate state mass spectrum. 
c 

Models 2,3 and 4 use the experimental missing mass spect'rum 
ü 

Equation (22), to calculate the direct amplutides f lj ( and f jl ). 

The inter-resonance couplings, f .. of model 2 are those used 
1.J 

by Julius. 

For model 3 we use the formula of Henyey, Equation (23), 

for the f. .. 
lJ 

For/model 4 we set the f .. equal to zero. This means that 
l) . 

each intermediàte state diffractive resonance couples to itself 

and to the neutron, but not to any other resonances. 
1 

.. r=zc'u ... PI _ .~~~_ .. ~ .J!! Pi _ FŒf""rtlHwœ_'Atec~~ 

1 
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~ 
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To illustrate the effec~ of the inelastic shadowing we 

show the curve for the unregenerated cross section, and to 
1 

indicate the usefulness of this whole exercise we have in-

cluded in Figure 5 aIl the avai1able data in th~energy range 

considered. 

4.1.4. In as mu ch as this is a theoretical investigation, we 

may perhaps be forgiven for not performing a rigorous error 
1 

ana1ysis. The fact is that for this calcualtion such an 

ana1ysis is extremely difficult. 

The heart of our calculation is the evaluation of Equations 

(9) and (16). From the numerical methods used we can determine 

that both these ca1culations give convergence more or less to 
, ' 

within plotting accuracy. However the final,result is dependent 

upon many experimental parameters which are used'as inputs to ) 1;Er 1 

h 
' . . ( .. 

t e calcu1atlon, and u n several assumptlons and approxlmatlons 

we ha~e made along the way. Those 1isted in Section 2.2.1 

have been discussed and justified. We fee1 that no substantial 

error is commi tted through our use of these ,assumptions. 

As mentioned ,in Section 4.1.2 we found that our biggest 

source of uncertainty was in the convergence of 0ToT wi~h the 
\ 

number of intermediate states considered. Because of the expense 

in computing we were not able ~o investigate this point as tho­

roughly as possible. The indicatïons are that the results could 

vary by perhaps 5 rob. or possibly more. 

"-- ._----- -~-----'-, -----_._. ----
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The curves we calculated are very sensitive to the nuclear 

and two-body scattering parameters which we use as input. 

Errors in these quantities are clearly reflected in the re-

sultant cross sections. 

" 
Finally of course, the various models we use involve 

many different assumptions, but for the most part they stand 

or fall precisely on those assumptions. If the various consi­

deratiohs already listed do not contribute a signifi~ant ~rror 

to the calculation, therr the goodness of the models we use can 

be direct,ly evaluated by how well they :fit the data. We simply 

caution thax in inspecting the various curves in Figure S, the 

previous comments be kept in mind. 

4.2. The'Results-Discussion and' conclusio~ 

Perhaps the most striking feature of Figure 5 is that models 

3 and 3N are almost indistinguishable from model 4 which has no 
~" 

coupling between the different resonances (f.. = 0). The fact that 
. ~J 

+ 

this curve fits the data so well is compelling evidence for these 
\ 
\ 

couplings being small. : 

As we might have expected from the comments of Section 

3.2.3, models l and IN of Julius are very similar to the unre­

generated cross section. That it gives such a poor fit to the 

data compels us to rule it out and reject Julius's suggestion 

that the inelastic shadowing is small. We conclude that ,the 

tt'iple Regge formula, Equation (lS)" is not adequate to describe 

-

" 

1 

" , , 

" 
'.; 

," ,: 

.!-. 
" 
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1 
direct resonance produ~tion by neutrons on nucleons, at least 

not for small values of the missing masse This conclusion 

is obvious . from a gl'ance at Figure 4. 

Another interesting feature is the effect of negative 

non-elastic amplitudes on the various models. We note that 

for model l which uses Julius's form for the f .. 's 'the effect 
l.J 

is fairly marked, while for model 3 using Henyey's form the 

effect is somewhat smaller. This is in keepi~~ with the fact 

that the f .. 's are smaller in Henyey's model. We also note 
l.J 

that at high energy the ~odels wi:th negative non-elastic ampli­
.. 

tudes are aIl be'low the corresponding; models wi th positive 

non-elastic amplitudes. 

, We also calculated model 2 wi~ negative inter-resonance 

coupliJl.g,s (model 2N). This curve was found ta lie vbry close 

tq.-,model 4. throughout the whole energy range calculated. Un-

fortunately to the accuracy we were able to afford in our 

computer calculation this particular model did not give con-

vergence to plotting accuracy at the high energy end of our 

,graph and so we omi tted this· c"ve. " We feel howeve'r t;hat model 

2N, like models 3 and 3N is very difficult to distinguish from 

model 4 (although bel'ow 100 gev/c it lies between 5 and 10 mb. 

above the model 4 curve). 

Th~ fact that the data appears to be falling at 300 gev/c 

lends sorne support to model 3N. However the large error bars 

in the data, coupled with the ambiguities of the calculation' 

\ , 
, _1"-"_1 •.• $Ri rrmewwr 1 M'~" 

! 
4. 
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make this the most tentative of conclusions. The fact that 
- [ 

models 2N,3,3N and 4 remain close in their predictions even 

up to high energies make it seem rather unlikely that suffi-

ci~ntly accurate experiments can be performed to decide amongst 

the~. For the time being then we really have little reason 

to suggest anything more complicated than model 4 (f .. = 0). 
~J 
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APPENDIX A 

We present here a proof due t of the equi':" 

valence of the coupled channel op ical model to a Glauber-

type multiple scattering model. NO'TE: The notation used 

here, unless otherwise indicated, is tne same as that of 

Ch~pter 2) As Bochmann note7, the Glauber production and 

, multiple scattering formalism becomes very complicated if 

several production channels are present and multiple-step 

production processes are important. Also it is not appli­

cable when longitudin~l ~omentum transfer effects are im­

portant. On the other hand, while the coupled channel optical 

model formalism iSt easily applied, and does account for lon'gi­
f 

tudinal momentum transfer, i t is not easily j ustified. _ Therein 

lies the importance of the following proof. 

Standard Glauber theory(3) tells us that after a wave 

function $(~) = eipz has passed through a potential it haq 

the form '$(~) = e~Pz set) where set) isthe scattering 

matrix, and 

~ -+ 
S(b) = l - r(b) 1 A-I 

with r<t) b~ing the profile function. We recall that 
"-

.-+ -+ 
..j! l -+ -~q'b 2 r(b) = f f(q ) e .1 d q.l A-2 

2ni p .1 r 

, ru ft t ·i --iMid; MA" Am'!,? 'ns nsrfe 
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For a wave 'passing through a nucleus Glàuber assumes 

that the S matrix for the overall scattering is just the 

product of the individual S matrices, so that 

A 
n 

n=l 
S (b "'hl n n A-3 

-+ • • 1 
where b ~s the ~mpact parameter of the incident wave, and 

-+ 
bn is tfe transverse position of ,the n-th nucleon. (Since the 

- Cl 
S matrix can be written as the exponential of a phase shift, 

~ that is equivalent to saying that the overall phase shift 

is given by the sum of the phade shifts[due to the indivi~al 

nucleons) 

From A-3 it-follows that 

= 
A 

1- n 
n=l 

A-4 

This is the profile function for the instantaneous po~ition 
1 

of the nucleons and must be averaged over the nuclear density 

function. 

Keeping in mind these facts from standard Glauber theory we 

proceed to Bochmann" s proof. As before f Sa. is the amplitude 

for (coherent) production of the state S by the state a. incident 

on a nucleon. We now use Diraé'notation and write the states 

as 1 a. > , 1 S > ,etc., where we asstpne these states form a complete 

orthono~mal set. 

PUI 
! t fe, if 31 ,o,Wenè#ett",*, 
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We de-fine the two-body transi tJion operator with 

the matrix representation 

,+ -1-

\ 
1 

21Ti P a 

d3q -~q'r + r e fBa(qi) o(qz-QL<B,a» 

A-5 

w~re qL(B,a) is the longitudinal momentum transfer between 

the states, 1 B > and 1 a > • 

A-6 

.. 
where 1 A-7 

So r is the 3-ctimensional Fourier transform 0' the 

scattering amplitude, and r t is the 2-dimensional Fourier 

transform. 

F.ollowing Glauber in assuming the product forro for the 

S matrix (or additivity of phase shifts) we define the coherent 

production amplitude on a nucleus by 
+ + 

iq ·b B 
e J. {< air d r l r 



c 

, 1 

() 

-43-

" 

-+ 
where r. is the position of the ith nucleon in the nuclevs 

]. 

, -+ -+ 
and uCr

l
, ... ,rA) is the normalized wave function of the nucleus 

in its ground state. We take the product in A-a to be timè-
/ 

ordered. Since we aSqume that the incident high energy partièle 1 

moves throdgh the nucleus in the z-direction (without back­

scatte~ing) this is equivalent to taking a z-ordered product. 

The z-dependence of the rCb-b.,z.) is given by A-6 and the 
]. ]. r 

remark that the function takes on its values for z > z. and is 
]. 

zero for z < z .. 
]. 

To ensure that the inc1dent wave has passed 

through the nucleus we shall shortly assume z = ~ 
/ 

We can simplify A-8 by introducing the operator 

<1>' (b, z) = 

A 
n 

i=l 

" -+ ...-
[1- r(b-b. ,z.) 

]. ].' 
9 (z-z. )] 

]. 

1 

A-9 

where G(z) is the unit step function, i.e. Gei) = 1 for 

z > D and Qtz~ = 0 for z < O. The,product.is still z-ordered. 

A-a now becomes 

ip a =-
2n 

-+ 
< B 1<I>'(b,z = (0)-1 > A-ID 

The problem of calculating Fen is now reduced to that of 

calculating ~'(b,oo) which we proceed to do. We note that A-9 

gives us the initial condition ~'(b,z = -~ ) = 1\ We begin by 

differentiating A-9 with respect to z. Rec4l1 that the derivative 

.. 

, 
, 1 

, ' 
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)' 
of a step function is a Dirac ô-function, and' that the ~-

dependence of r(b-b. ,z.) is contained in the exponential 
~ 1 -

-iq z 
e L, and ih~ step functicin~ For the purpose of this 

differentiation however we invoke the co~erence requirement 

~L z « l to neglect the derivative of the exponential. Thus 
1 

we have 

1 

a 16' (~,z) 
;.az = -

+ + [l-r<b-b.,z.> Q(z-z.) 
1 ~ 1 

A-Il 

~ 
Since the integral in A-Il is independent of J we may 

write the equation as 

I6 ' Cb,z> = 3 
-A f d rI 

A-I 
fi 

i=l 

-i- + [1-rCb-b. ,z.) Q(z-z.) 
111 

A-12 

1 
-+ + 12 " If we write uCrl, ..• ,rA) as.a product of single particle 

density functions Cby neglecting correlations) so that 

then A-12 can be written as 

A 
n 

i=l 

1 

A-13 

Ri .,smr ",pa Id. nT nI".,.",. ze,., .'r .11 _,!ir .. lŒ'I .... f~~~ 

. 
,': .' 

,,, 

l
" 

0, 1 

" r 
" , 

~ .... ~, 
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A-14 

where rb' (n) is' just the operator defined in A-9 for n nucleons. 

In particular rb' (A) : ~, • 

Equation A-14 becomes tractable by making the approxi­

mation rb,(A-l) = ~,(A). This is 'a large nucleusoapproxima­

tionand creates an error of the order qf lIA, whi?h is 1 

acceptable for large A. , 

+ 
We define the matrix element of rb'(b,z) by 

< f3 Ir/J' (b,z) la > .if: 

Taking the matrix element of A-14 and assuming the above 
1 

approximation we get 

: 

= 

A-15 

C:. 

wh~re we have made use of Equation A-6 • If we define 

ua,/b,z) = -~ipaA 1d
2
b ' p(b',.z) r'Sy(b"-b"l) A-16 

and if we.interpret 

as the slowly varying 

May be written in thé 

. , • • 

+ 
~a(b,z) 

part of 

form 

, ... 

as 

the 

in Equation 7 (Chapter 2) 
1 wave function, then A-15 

• 1 1 

! 
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which we r~cogn~ze as Equation(9) 
, ~ 

the coupled channel optiQal model. 

l ' 

<\. \ 

Ij; 

, 

.< , 
1 

A-17 

, the eikonat solution to 

This co~pletes our proof. 

i um 1 111111 P 
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t 

PLAB pp <:1T6T p Re f(O) lm f(O) No. of 

f{O) 
Intermediatè 

(Gev/c) (mb) Re (fm) " Çfm) , States 
= lm f(O) 

5 39.28 -.3,4545 -2.7361 7.9203 4 
10 39.1l1- -.27273 -4.30477 ,15.78414 4 
20 38.87 J -.21818 -6.840113 31.35052 4 
30 38.60 -.18182 -8~49075 416.699 6 
40 38.37 -.14545 -9.002834-- 61.8945 8 
50 38.20 -.12727 -9.80322 77.0252 10 
60 38.24' -.10909 -10.0939 92.5272 12 
80 38.34 -.01818 -2.24895 123.6922 14 

120 38.58 '-.04545 -8.48635 186.6997 14 
180 38.88 -.01455 -4.10512 282.227 16 
240 39.21 +.00364 +1. 38 379.4969 18 
300 39.465 +.01818 +8.68102 477.4562 20 \ 

400 39.95 +.03636 +23.4339 644.432 20 
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Fig. 1 -- One and two-step neutron elastic scattering. 1 
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Fig. 2 -- Two-step neutron regeneration. 
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Fig. 3 -- Wave meèhanical illustration of scattering. 
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